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Abstract

Temperature, energy and performance are essential design considerations during the con-

ception of modern digital systems. Static and dynamic methods can be used to overcome

the limitations imposed by energy and power consumption, and the resulting increase in

temperature. Static methods target digital circuit aspects such as cache configuration,

bus width and component layout which, once fixed, can generally not be changed af-

ter the circuit has been manufactured. On the other hand, dynamic methods including

dynamic voltage and frequency scaling, application adaptation and task re-mapping on

a Network-on-Chip make modifications to the system while the device is deployed. The

work presented in this thesis focusses on three aspects in the realm of temperature, energy

and performance.

First an evaluation of the suitability of the dynamic application adaptation method

is researched with the aim of using it to control the temperature of an FPGA device.

Despite the use of an extremely adaptive custom JPEG encoder it was determined that

application adaptation alone is ineffective in an FPGA for thermal management. However,

when implemented alongside other dynamic methods such as frequency scaling and clock

gating, a temperature difference of 6◦C could be achieved.

Next, a study is performed which aims to assess which components are principally

responsible for the rise in temperatures in FPGAs. A novel thermal measurement system

based on an infrared camera was used to determine that the biggest contributor to elevated

FPGA temperatures is the external memory interface. Having found that a lower external

memory access rate lowers the FPGA temperature, a model is proposed linking cache

miss rate with device temperature.

The third and main aspect covered in this dissertation is that of CPU cache simulation.

Depending on the application executed, the cache configuration can have a drastic impact

not only on temperature but also on system performance and energy consumption. Pre-

cise cache simulation is often used to evaluate different cache configurations, yet current

simulation tools are notorious for their slow execution times, especially when analysing

vii



the trace of large and complex applications. Three Multiple cAche Simulators in Hard-

ware (MASH) or in Software (MASS) are proposed for three cache replacement policies:

MASH{lru} for the Least Recently Used (LRU) cache algorithm, MASH{fifo} for First

In First Out (FIFO) and MASS{plrut} for Pseudo Least Recently Used tree (PLRUt).

The former two are novel in that they are implemented in hardware and are respectively

53x and 11.10x faster than software counterparts. The PLRUt simulator presents for

the first time an optimised hash table-based algorithm yielding a speedup of 1.93x over

an unoptimised solution. All cache simulators employ cache properties specific to their

replacement policies to improve simulator characteristics. For the hardware-based simu-

lators, these cache properties are exploited to minimise the resource usage of a simulator

instance.

Additionally, it is shown that the hardware (or MASH) simulators can be implemented

in-system alongside an embedded system, allowing for the direct trace extraction and

cache simulation from within an FPGA. Using in-system simulation, large speedups can

be achieved as trace generation and multiple cache simulation happen at the same time at

high frequencies.

Finally, a cache compression algorithm is discussed that is characterised by extremely

fast encoding and decoding times with the additional benefit of being easy to implement

in hardware.
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Chapter 1

Introduction

The world of computing has advanced in leaps and bounds since the invention of the

transistor in the middle of the 20th century. A transistor, the fundamental building block

of electronics and digital circuits, was combined with other transistors on a die to make an

Integrated Circuit (IC) a little over ten years thereafter, paving the way for electronics that

could do a lot more at a cheaper cost while requiring less power and energy. As the process

of manufacturing integrated circuits was refined, the transistors could be made smaller

allowing for additional, faster IC functionality and lower power consumption. The trend

of miniaturisation is famously observed by Moore’s Law, which states that the number of

transistors in an integrated circuit will double approximately every two years [1]. While

we are currently experiencing the end of Moore’s law as we reach the physical limits of

the materials used [2], Moore’s prediction has been surprisingly accurate for over fifty

years.

Traditionally, the primary aim of digital integrated circuit designers has been to max-

imise the computational throughput of their chips. Until recently this could be achieved

in two ways: by increasing the complexity of the chip or by increasing the operating fre-

quency. These options conflict with each other, as increasing the complexity of a chip

generally results in a lower maximum operating frequency. Recently however, the en-

ergy consumption and the resulting increase in die temperature have become the main

factors limiting the processing power of integrated circuits. A transistor switching at a

1
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higher frequency consumes more energy: smaller and faster transistors lead to higher

power densities. Nowadays, extremely complex circuits could be clocked at higher fre-

quencies if it were not for the high temperatures produced. The consequences of elevated

temperatures in ICs can be devastating. As the aging of silicon is accelerated at higher

temperatures, overheating integrated circuits are prone to premature failures in the form

of transient or permanent faults [3]. Sudden and localised temperature increases lead to

large temporal and spacial thermal gradients which can cause cracks in the die. To coun-

teract these problems, an obvious need has arisen for IC designers to seriously consider

the thermal aspect of their circuits at design time.

With a surging market for mobile devices, another facet of electronic design has be-

come prominent: energy and power consumption. The vast majority of mobile devices

are powered by batteries which can only store a limited amount of energy. Addition-

ally, batteries are adversely affected by fluctuating power consumption levels [4]. It has

become important for manufacturers to design electronic circuits that present high pro-

cessing power and offer acceptable battery life in order to remain competitive.

1.1 Energy, Power and Temperature

Electronics are powered by electric energy that circuits can convert into many other forms

of energy such as heat, light and kinetic energy. Digital electronics are also powered by

electric energy of course, yet it is not immediately obvious why this electric energy is

required. After all, the output of purely digital circuits is information in the form of

ones and zeroes which, by themselves, contain little to no energy. And yet computers

require non-negligible amounts of energy (in the case of mobile phones for example) to

vast amounts of energy (for server farms) to function. In digital circuits, the energy is

consumed by the transistors that compute the output. This energy is dissipated within

the wires of the IC in the form of heat. The temperature and energy consumption of a

digital IC are therefore very closely related. Power is the rate of energy consumption with

respect to time. The power consumption of a circuit greatly impacts the battery lifetime
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of mobile devices and is an important consideration for power supply design.

CMOS (Complementary Metal-Oxide-Semiconductor) ICs are by far the most com-

mon digital transistor technology, but are plagued by certain electrical characteristics that

arise from the way they are constructed and the materials they are made from. Firstly, a

transistor in a CMOS chip will always exhibit a certain amount of capacitance at a num-

ber of locations within the transistor. A capacitor stores an increasing amount of energy

when the differential voltage across the capacitor increases. When the voltage difference

decreases, that energy is fed back into the driving circuit. In the case of a CMOS tran-

sistor, there is capacitance between the input (gate) and the ground of the circuit. When

the gate is ‘1’, or high, a differential is applied across the capacitance which causes it to

store energy. If afterwards the gate is switched to ‘0’, or low, the energy stored in the

capacitance will be dissipated in the circuit driving this transistor. The capacitance of our

transistor therefore consumes and stores energy when the gate goes from ‘0’ to ‘1’, and

releases it when the gate goes from ‘1’ to ‘0’ by dissipating it within the wires of the

CMOS IC in the form of heat.

The energy consumption due to transistor capacitance only manifests itself when the

transistor switches and is therefore called ‘dynamic energy consumption’. The amount

of energy (Ecap) stored in a capacitor of capacitance Ce f f is given by the following equa-

tion [5]:

Ecap =
1
2
∗Ce f f ∗V 2

dd (1.1)

Thus the dynamic power consumed by a transistor switching at frequency f can be

described as follows [6]:

Pdynamic =Ce f f ∗ f ∗V 2
dd (1.2)

In other words, by reducing the frequency at which the device is driven, the power

consumption is also reduced in a linear manner. As energy/power are proportional to

the square of the voltage, it is possible to reduce the energy consumption of a switching
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transistor by reducing the power supply voltage. Lowering the voltage, however, lowers

the speed at which the transistor operates: a lower voltage potential at the gate leads

to a longer switching time caused by the gate capacitance, as it takes longer to charge.

Additionally, slow switching times are the cause of short circuit energy dissipation, which

is also a form dynamic energy consumption. Each wire within an IC needs to be driven

by at least two transistors, where one drives the wire high and the other drives it low.

Transitioning from one state to the other takes a finite amount of time in which both

transistors allow an electric current to flow through them, effectively short–circuiting the

supply voltage to the ground.

Static power consumption is the power an IC consumes when it is not switching and is

primarily comprised of tunnel and subthreshold leakage currents. The former have been

exacerbated by the shrinking of the transistor size as more electrons are likely to tunnel

across the oxide insulation layer as it gets thinner. The latter have been on the rise due

to the lowering of the supply voltage, and the need it created to lower the subthreshold

voltage accordingly. Subthreshold leakage currents are also strongly temperature depen-

dent as the subthreshold voltage decreases with temperature [7]. As a result, static power

consumption, which has been insignificant for a large part of the transistor’s history, has

become a dominant factor in recent years [8].

In summary, with the advancements in IC fabrication technology, transistors have

become increasingly more compact, thereby reducing their dynamic power consumption

and making them faster. This has been accompanied with lower supply voltages and

higher static power consumption. Overall, the energy consumed by transistors has been

decreasing linearly, while their density has been increasing exponentially. This has led

to an increase in energy density causing higher temperatures which, in turn, cause even

higher static power consumption. It should be clear by now that there are many factors

that closely affect each other in the functioning of an integrated circuit. The designers of

modern digital chips are presented with a number of quantities that are often conflicting:
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1. processing throughput, to ensure the IC is capable of performing the tasks it is made

for,

2. energy and temperature, as excessive temperatures can lead to transient and perma-

nent faults, reduced lifetime and greater power consumption,

3. power consumption, which affects the cost of the electronics used to power the chip

and the battery life in mobile devices

4. chip size and complexity, which has an impact on the processing throughput, the

power consumption of an IC and also cost, as larger dies are more expensive.

As it happens, CPU caches profoundly affect each of these quantities, as we shall see

in Section 1.2. However the first part of this dissertation focuses on temperature, one

of the main bottlenecks in recent digital circuit design. More precisely, the impact that

a method called Application Adaptation (Chapter 2) can have on the temperature of a

Field Programmable Gate Array (FPGA, Section 1.3) is investigated. The self-heating

characteristics of FPGAs is looked into in Chapter 4.

1.2 CPU Caches

The advancements in the fields of digital circuit design are met with ever increasing soft-

ware complexity and memory requirements [9], ‘consuming’ the increased performance

that is provided. The need for larger memories has outpaced the rate at which memory

performance increases, resulting in memory speed that is now lagging far behind the per-

formance of the processor it is connected to. Unfortunately, a processor, or Central Pro-

cessing Unit (CPU), heavily relies on memory to read the instructions it needs to execute

and to load and store data. This means that the CPU, while physically capable of greater

processing throughput, has to spend much time waiting for the memory to catch up. This

is commonly known as the “Processor Memory Gap” or the “Memory Wall” [10], the

magnitude of which is shown in Figure 1.1.
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Figure 1.1: The processor memory gap is growing at an exponential rate. Figure by Jacob et
al. [11]

For years this bottleneck has largely been overcome with the use of CPU caches [6,

12]. The main memory is so slow because it is so large, and a smaller memory is faster

but cannot hold as much data. However, during the execution of a program, the locations

accessed in memory exhibit a large amount of spatial and temporal proximity: an item of

data that was recently accessed and its neighbouring items of data are very likely to be

accessed in the near future.

A simple analogy for this situation would be the role of an accountant who has to

work their way through many documents located in a filing cabinet. Each document is

uniquely identified, and this identifier bears a relation to the order in which the documents

are stored. For example, documents could be identified and ordered by filing date. It is

very probable that a document obtained from the filing cabinet will be looked at a number

of times before it is returned. Given the order in which files are stored, there is also a

high chance that the neighbouring files will be used shortly thereafter. Alas, accountants,

much like computer engineers, are famed for their lack of physical vigor, and it takes a

certain amount of time and effort to retrieve a document from the filing cabinet. To make

the trip worthwhile the accountant therefore collects the targeted document together with

the neighbouring files, and puts them on their desk for quick subsequent access.

A cache acts very much like the accountant’s desk in that it is a small, fast-access data
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1 – 2

cycles

30+ 

cycles
Main MemoryCPU

Figure 1.2: A cache is the small fast memory, close to the CPU, that acts as intermediate stor-
age between the fast CPU and the slow main memory. The clock cycles given are only a rough
indication as to how long it would take to access these memories.

repository located close to the unit that requires the data, and that it stores the recently

used and neighbouring data. The document identification, in this case, is much like the

memory address of the data. While accessing the main memory can take many tens of

clock cycles, a cache is accessed in a matter of clock cycles. If the data is not present

in the cache we have a cache miss and the data has to be obtained from the slow main

memory. Accessing data that is cached results in a cache hit and the data can be obtained

much more quickly. This is shown in Figure 1.2. Returning to the desk analogy, choosing

a desk is not always straight-forward. The accountant could buy a desk that is very large to

temporarily store more documents, but this desk would cost more and finding a document

amongst other documents on it could take longer. In fact, the desk could be so large that

finding a document on it could take longer than getting it from the filing cabinet. Caches

face the exact same issues: larger caches display greater hit rates but are slower and more

expensive. But cache size is not a simple linear quantity as caches are configured by a

number of parameters, notably:

• block size, or line size (ls), defining how many bytes are stored in a cache line,

• set size (ss), defining how many sets are stored in a cache,

• associativity (assoc), the number of different locations where an item of data could

be stored within a set,

• replacement policy (rep), which determines which item of data will be evicted if a

cache set is full.
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Figure 1.3: A demonstration of how line size, set size and associativity affect cache size and
layout.

Confusingly, the quantity set size does not define the size of sets but the number of

sets in a cache. This follows the convention established by previous authors in the field of

cache simulation (Janapsatya [13], Haque [14] and Tawada [15]).

On one extreme there are caches with an associativity of one, also known as direct

mapped caches, where a cached item of data can only be stored in one single location.

For example, the desk system could be set up so that every document whose identifier

ends with a ‘6’ can only be stored in one location of the desk. If however more than

one different document with an identifier ending in ‘6’ are accessed in an alternating

manner, every document is evicted before it is reused. The occurrence of continuous

storing and eviction of data from a cache line is called cache thrashing and needs to be

avoided as it removes any benefit of having a cache. Although it is far from ideal, a direct

mapped cache is fast, as it only needs to look at a single location to check if a data item

is there or not. Increasing the number of locations in which a data item could be stored

amounts to increasing the associativity. If a cache has an associativity of four it means

that data at a certain address could be cached at four different locations. A depiction

of a cache with these specifications can be seen in Figure 1.3. The set index is like the

last digit of our document identifier, and each set can hold four cache lines. If a data

item needs to be stored in a set but all four lines are filled, the cache replacement policy
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determines which item of data to evict to make room for the new data. The most common

replacement policies are Least Recently Used (LRU), First In First Out (FIFO), Pseudo

Least Recently Used (PLRU) and Random replacement. We will be looking into their

precise functionality in future sections, but just as an example: an LRU replacement policy

keeps track of how recently items of data were used and orders them accordingly. When

time comes to evict an item, the least recently used cache line is selected for replacement.

The other extreme of cache configurations is a fully associative cache which is equiv-

alent to a cache with a set size of one and associativity one or larger. When it comes to

CPU caches, fully associative caches are hardly ever used due to their high hardware re-

source cost (one comparator for every tag) and low speed (at every access the entire cache

is searched). Size of the cache is determined by the product ls× ss×assoc bytes.

1.2.1 The Impact Caches have on Systems

In rough terms, the larger a cache is the slower it is, the more power it consumes and the

more it costs. But a CPU cache does not work in isolation: a cache miss causes a memory

request to the main memory whose interface can consume a large amount of energy. A

cache miss also forces the CPU to stall for a certain number of clock cycles, thereby

reducing the overall CPU power consumption and performance. The complex relations

between CPU, cache and memory closely relate to one quantity, which is the cache hit

rate. The cache hit rate, in turn, relies on the cache configuration and the order of the

memory accesses which depends on the application being executed. This means that for

any application, certain cache configurations will be more optimal in terms of power and

performance than other cache configurations.

Figure 1.4 plots the hit rates of many cache configurations against execution time

(system performance) and energy consumption for a G.721 encoding application. It is

easy to see that the configuration yielding the maximum hit count is far from being the

configuration with minimum execution time or minimum energy consumption.
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1.2.2 Choosing the Right Cache through Cache Simulation

Many modern processor cores such as NIOS II [16], ARM [17] and Tensilica Xtensa [18]

provide the designer with the ability to configure the system cache or caches. Designers

therefore need to know which cache configuration (set size, associativity and block size)

would be optimal depending on the application they are running on the given processor.

To find the cache configuration yielding the minimum execution time and/or power con-

sumption, the cache hit and miss counts need to be determined for each unique cache

configuration available. The obtained hit and miss values can directly be used to deter-

mine the timing and energy consumption of caches and even memory systems comprised

of a cache and external memory device (e.g., a DRAM chip) by using equations such as

those presented by Janapsatya et al. [13]. The equations require cache performance met-

rics in the form of cache hit and miss rates and a number of cache parameters, such as die

area, timing and energy values that can easily be obtained using the free CACTI tool [19].

Having calculated the performance and memory consumption of the memory system for

each cache configuration, designers can then choose the best cache configuration for their

purposes based on their design constraints.

Cache performance metrics can be precisely determined through precise cache simu-

lation. A precise cache simulator analyses the order of memory accesses, also known as

the memory trace, and computes the hit and miss values of caches of different configura-

tions. Some simulators only keep track of one cache configuration at a time [20] and are

therefore known as ‘multi-pass’ simulators, as x simulation runs need to be performed to

simulate x configurations. The downside of this approach is that it can take an exceedingly

long time to explore the design space given a representative range of inputs, especially for

modern and complex applications that perform hundreds of millions of memory accesses

per second. For example, it was found that encoding 24 low resolution images into an

MPEG2 video using a software encoder (i.e., without hardware acceleration) produces a

trace file containing over 11 billion memory accesses. Precise cache simulation can be

sped up through the use of ‘single-pass’ simulators, a technique known as ‘multiple cache
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simulation’ where a memory trace is only read once but many different caches are sim-

ulated. Single-pass cache simulators lend themselves well to the creation of optimised

algorithms and data structures specially tailored for rapid cache evaluation.

Unfortunately, despite all the research effort in the field, single pass simulators are

still very slow. In a test conducted on one of the fastest single pass simulators, processing

the MPEG2 encoding trace file mentioned above took over an hour. The hit rates of only

40 caches out of hundreds of possible configurations were predicted, and the simulation

run took this long even though the output of the application was only one second worth

of low-resolution video (see Chapter 5). In an environment where design turnaround time

is paramount, the speeding up of cache simulation is vital.

Increasing the performance of single-pass cache simulators is the main focus of this

thesis. Methods are explored whereby simulating multiple caches can be sped up by

making use of cache properties.

1.3 Field Programmable Gate Arrays

This thesis dissertation researches a number of aspects relating to temperature, perfor-

mance and the power consumption of digital devices, with a strong focus on Field Pro-

grammable Gate Arrays, or FPGAs. The functionality of a digital chip relies on the binary

state of its transistors which can be ‘1’ or ‘0’, also often described as ‘high’ or ‘low’, ‘set’

or ‘cleared’ respectively. Transistors are combined to make logic gates, the very basic

functional units of digital circuits. Logic gates perform simple operations such as out-

putting high if all input signals are high (AND gate), or outputting high if any input is

high (OR gate). Of special interest is the NAND (Negated-AND) gate which only outputs

low if all input signals are high, and outputs high otherwise. Any digital circuit can be im-

plemented with a combination of NAND gates as it exhibits a property called functional

completeness (a property also exhibited by the NOR gate). Most digital ICs are Appli-

cation Specific Integrated Circuits (ASICs) as the functionality is hardwired into the chip

for a clearly defined purpose. For example, a memory chip is an ASIC that is designed
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and wired to act as a memory chip and could hardly be used for any other purpose, as one

would expect.

An FPGA, on the other hand, is not application specific as it can be configured to

mimic any digital circuit. An analogy for an FPGA would be a very large pile of NAND

gates that can be connected together any way the designer pleases. The way in which

the logic is connected is called the FPGA ‘configuration’ and is defined in software. The

designer is then able to load the configuration, or design, onto the FPGA, following which

the device behaves like a fully functional digital IC. In reality, an FPGA is not made up

of NAND gates but of Look-Up Tables (LUTs) and Registers that are connected together

by configuration logic and interconnect. The size of the FPGA, which is determined by

the number of LUTs and registers, defines the maximum size or complexity of the circuits

that can be implemented.

Naturally, there are upsides and downsides to using FPGAs instead of ASICs. The

latter are faster and require less power to perform the same task as an FPGA contains

a large amount of configuration and interconnect logic that both slow it down and con-

sume additional power. However, the fabrication of ASICs is characterised by very high

non-recurring engineering costs that make it unsuitable for low production volumes. On

the other hand, the flexibility of FPGAs means that the same chip can be used for many

different purposes, and that it can even be reconfigured in the field. For these reasons

FPGAs have become increasingly popular as reconfigurable accelerators, development

platforms and as complex ICs in low-volume production designs. Despite consuming

more power than ASICs for the same functionality, it is generally considered that FPGAs

do not suffer from overheating, as the logic is subject to lower switching densities and fre-

quencies. While this holds true for older devices and simpler designs, the recent progress

in semiconductor manufacturing processes and the appearance of FPGA ICs with vast

logic resources have made thermal issues a concern, even for FPGA designs, as will be

explored in Chapter 2.
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1.4 Thesis Overview

The aim of the research presented in this dissertation is to supplement the current knowl-

edge on addressing the pertinent issues facing embedded and FPGA-based systems today.

As previously mentioned, one of the principal concerns is self-heating which severely

limits the processing throughput of digital circuits and lowers their long term reliability.

Even in the field of FPGA research, temperature has been identified as a limiting factor.

Jones et al. [21], for example, documented a case where the self-heating of an FPGA

caused the destruction of their development board. Jones’s solution was mostly based on

frequency scaling, a technique that has long been used to reduce the power and energy

consumption of digital electronics.

The decision was made to evaluate the effectiveness of software-based Application

Adaptation as a means to dynamically lower the temperature within FPGAs. Using an

extremely adaptive custom JPEG encoder, the impact of application adaptation was tested

on two Altera FPGAs built on older (90nm) and more recent (40nm) technology. Those

experiments are covered in Chapter 3 which concludes that application adaptation on an

FPGA is only effective when combined with conventional clock gating and frequency

scaling. The observation is also made that a greater understanding of FPGA thermal

characteristics is required to better mitigate self-heating issues while maximising system

performance.

Chapter 4 describes a thermal analysis of reconfigurable logic. Insight into the self-

heating of FPGAs was obtained through accurate measurements using an infrared thermal

camera pointing at an exposed FPGA die. This thermal evaluation determined that the

hotspot in a conventional embedded system implemented on an FPGA is caused by the

memory controller. Memory controllers are often large and complex pieces of hardware

running at high frequencies, especially for modern memory devices such as DDR3 and

QDR SRAM. Additionally it was discovered that minimising the number of accesses to

the external memory can significantly lower the hotspot temperature of an FPGA device.

As processor caches reduce the number of external memory accesses, it was found that
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cache configuration impacts device temperature, and a model is proposed linking device

hotspot temperature with cache hit and miss rates.

Cache evaluation is a commonly performed task that enables designers to select caches

that meet certain performance and energy criteria. As mentioned in Chapter 2, the main

difficulty with cache simulation is that determining precise cache metrics is a slow pro-

cess which increases the design time, especially for embedded systems running complex,

process-intensive software with long traces. Having established that cache evaluation can

also help minimising the temperature of System-on-Chips, methods to speed-up cache

simulation were investigated.

The first attempt towards this goal targeted the rapid simulation of caches obeying the

LRU replacement policy. The simulator called Multiple cAche Simulator in Hardware for

LRU replacement policy (MASH{lru}) is covered in Chapter 5. It is implemented as a

hardware simulator that runs considerably faster than any software alternatives. A variant

of the simulator, MASH{fifo}, is proposed in Chapter 6 which is capable of evaluating

caches with the FIFO replacement policy. As the proposed simulators are fully imple-

mented in hardware it is also possible to implement them within a real-world embedded

system, an aspect also covered in Chapter 6. A PLRUt cache simulator, MASS{plrut},

is presented in Chapter 7, though this tool was built in software as the optimisations

presented are ill-suited for hardware implementation. Finally, Chapter 8 covers a trace

compression algorithm that can be employed to significantly speed up trace-based cache

simulation.



Chapter 2

Literature Survey

This thesis focuses on three main areas of research:

• minimising the detrimental effects of temperature in digital circuits through appli-

cation adaptation,

• a study of temperature within FPGA-based systems, evaluating which functional

components contribute the most towards FPGA self-heating, and,

• most importantly, the study of cache simulators and methods to improve them for

greater performance and flexibility.

The related work of each of these points is analysed throughout this chapter.

2.1 IC Self-Heating and What To Do About It

In order to limit the overheating of digital electronic circuits numerous techniques have

been developed and researched. The resulting improvements are situated either in the

field of chemical materials and IC technology or actual system design. While the former

are understandably reserved to chemical materials and manufacturing engineers, the latter

involves attention to circuit routing and hardware/software design.

16
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The cause of the self-heating of the CMOS transistor within a digital circuit was cov-

ered in Chapter 1: temperature increase is proportional to power consumption which is

made up of a static power and a dynamic power component. Some methods used to

lower power consumption can therefore also be used to target temperature control and

temperature-aware circuit design. This section covers dynamic voltage and frequency

scaling and application adaptation though other methods are also mentioned at the end.

2.1.1 Dynamic Voltage and Dynamic Frequency Scaling

Dynamic power consumption was the main cause of self-heating throughout most of the

integrated circuit’s history. Even as late as 1998, Yeap [5] stated that “dynamic power dis-

sipation is several million times larger than leakage current”. Research therefore focused

on dynamic power consumption, and especially the capacitor power equation (Equation

1.1 presented in Section 1.1). Dynamic voltage and dynamic frequency scaling, or a com-

bination of both (known as Dynamic Voltage and Frequency scaling, or DVFS) became

a common way to lower the power consumption of a processor at the cost of process-

ing power. Lowering the voltage decreases the amount of charge stored in the transistor

capacitance and also lowers the short-circuit current, thereby decreasing the energy con-

sumption. The frequency at which these capacitors charge/discharge and at which short

circuits are caused depends on the frequency at which the circuit is driven. Lowering

the frequency will therefore also have the obvious consequence of lowering the dynamic

power consumption.

There is a limit however as to the extent that these factors can be changed: transistors

require a minimum voltage in order to function correctly, lower voltages induce greater

leakage power and reduce the maximum switching speed of the transistors. It is the latter

that is very important, as it sets the maximum frequency at which an IC can be clocked.

Many DVFS schemes lower voltage and frequency together, thereby lowering processing

capabilities linearly while decreasing power consumption exponentially.

Dynamic voltage and/or dynamic frequency scaling has been extensively researched [21–
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34]. In [21], Jones et al. witnessed the catastrophic failure of one of their FPGA boards

caused by the self-heating of their chip. They managed to resolve the issue by adjusting

the frequency at which the system was running depending on the temperature of the de-

vice. A similar technique was employed in later work by Jones, targeting a multi-core

pattern recognition system on FPGA [22] and including a new feature: if overheating

still occurred after the lowest frequency had been reached, a rough form of Application

Adaptation (see section 3.3) disabled low-priority processing cores to lower the dynamic

power consumption.

Choi et al. in [23] present a DVFS scheme that uses predictions on upcoming work-

load in an MPEG decoding application. Using these predictions, frequency and voltage

levels are dynamically selected allowing the application to meet its deadlines. This is a lit-

tle similar to [24] except that Aydin et al. statically compute the workload of periodic tasks

instead of predicting them. The main difference between these two approaches lies in the

nature of the application: Choi et al. aim for applications that display a large amount

of variation in workload (and therefore also extremely large worst-case workloads that

depend on the input data), while the tasks employed by Aydin et al. have comparatively

equal workloads during their operation.

Other research by Choi et al. [25] uses a technique named ‘workload decomposition’

which is a different form of application controlled DVFS. The ratio of the on and off-chip

workloads is collected by a performance monitoring unit, and is used to determine the

frequencies assigned to the CPU, the internal bus and the external bus, i.e., higher clock

frequencies are allocated to the hardware components that are doing more work.

Chow et al. [26] discuss a dynamic voltage scaling method that uses feedback from

an on-chip thermal sensor. As the delay of transistors is both voltage and temperature

dependent, the DVS scheme proposed runs the IC at the lowest possible voltage given a

certain temperature. The main inconvenience of this approach is that extensive tests need

to be run for every digital design and technology to determine the temperature thresholds

at which to switch voltages.

The progressive move from single-processor to Multi-Processor Systems on Chip
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(MPSoC) and the emergence of Networks on Chip (NoC) has made space for new meth-

ods to control IC temperature. Martinez and Atienza [34] describe such a form of tem-

perature management. The temperature of each processing element (PE) is measured and

sent to a central thermal management unit using the NoC interconnect. This temperature

measurement is used together with local communication statistics and workload predic-

tion to set the voltage and frequency levels of the individual cores.

2.1.2 Application Adaptation

The mechanism behind Application Adaptation is extremely simple: processes within an

application vary their resource demand by varying their Quality of Service (QoS) in order

to meet resource constraints. These resources may be connectivity bandwidth, processing

power, memory, temperature etc.

The Odyssey tool [35–38] provides an API intended to simplify the communication

between the high-level application software and the low level resource information. The

application lets the API know which resources it is interested in. Odyssey then monitors

that resource and notifies the application asynchronously when given tolerance bounds

are reached. [35] gives an example use of Odyssey with a video and mapping application.

[36] demonstrates the use of Odyssey in mobile applications for a video player, a

web browser and a speech recogniser. The paper also delves into the finer control details

of the application adaptation, simulating bandwidth perturbations in order to estimate the

effectiveness of the API.

A rough form of application adaption for thermal control is presented by Jones et al.

in [39] and is combined with DVFS in [22]. The system is implemented in an FPGA

and contains four parallel processing elements running an image recognition task. Each

processing element contains two masks that store a feature they are meant to recognise.

All masks are ordered by feature priority, before being assigned to processing elements

in pairs. If the FPGA becomes exceptionally hot and DVFS is insufficient to lower the

chip temperature, low priority feature masks are disabled one by one to lower the power
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consumption and temperature. If both masks allocated to a processor are disabled, the

associated processor is also disabled to further reduce the temperature. The change in QoS

that the application performs affects the number of features that the system can recognise.

Application adaptation is also at the centre of the research performed by Peddersen

et al. [40]. The resource under constraint is power, as the application tries to keep the

current drawn from a battery constant to maximise its life expectancy. The applications

performed are JPEG, MPEG and LAME MP3 encoding, the power consumption of which

are strongly dependent on the raw media data. The power is measured using performance

counters. Application QoS parameters are modified during operation such as lossiness,

DCT algorithm quality and colour depth for JPEG encoding to meet the given power

target. For the MPEG encoding application, adaptation is performed on the search space

used for backward and forward prediction and the amount of motion prediction. Huffman

coding, quantisation, noise shaping, psychoacoustics and side stereo coding are adapted

for LAME encoding.

Peddersen et al. go into great detail describing the low-level programming techniques

that can be used to perform application adaptation in the C programming language. An-

other point taken into account is the rate at which the QoS is changed. The adaptation

algorithm employed attempts to minimise the quality jumps, even when the processor

is faced with large jumps in processing requirements, to give the user a smooth media

experience.

2.1.3 Other Methods to Lower IC Temperature

Only the most relevant research on lowering the temperature in ICs has been covered so

far. For completeness, task remapping and temperature aware routing are quickly covered

here.

With the rise of multiprocessor systems (and MPSoCs), Task Remapping has become

a popular area of research to minimise the impact of self-heating [41–48]. The principal

idea behind it is that tasks are moved from one processor to another in order to distribute
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the power consumed over a larger area of the die. As a consequence individual cores can

be clocked at higher frequencies; when a thermal threshold is reached a processor’s tasks

are remapped to another core to allow it to cool down. This results in an overall higher

throughput and an even temperature distribution across the die.

Temperature aware routing is a step that can be performed at design time or in the

field for reconfigurable systems and is the process by which hardware block and signal

wire placement are taken into account during IC design to minimise self-heating. Many

different types of algorithms have been developed over the years to optimise these place-

ments [49–54]. Two steps are generally required for temperature aware routing which are

evaluating the temperature distribution on the die (in thermal simulation or hardware) and

then routing the system depending on these measurements.

2.2 FPGA Thermal Sensors and Characteristics

The ability to study the thermal characteristics of ICs and to perform temperature man-

agement and control strongly depends on the ability to measure temperatures accurately.

Though many ICs have a built-in temperature sensor, it is often important to measure the

temperature at many different locations within an FPGA for more fine grained thermal

management. Sensor accuracy is of importance: it was found that a 1% error margin

in sensor accuracy introduced slowdowns of 6-13%, and up to 75% performance loss in

the dynamic thermal management system presented by Skadron et al. [30]. Below is a

description of the different known means by which temperature can be measured.

2.2.1 Temperature-Sensing Diode

As previously mentioned, numerous ICs contain a thermally sensitive diode for sili-

con temperature measurement. The devices themselves are cheap to implement though

additional circuitry is required for clocking, control and analogue-to-digital conversion

(ADC). They also present the advantage of being fairly resistant to power supply voltage
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fluctuations. High-end Xilinx R© and Altera R© FPGAs contain one such circuit [55]. For

ideal FPGA thermal measurement many such sensors would need to be deployed within

the die, yet such devices do not currently exist. Other methods for temperature sensing

therefore need to be investigated.

2.2.2 Clamping Diode

One approach mentioned by Lopez et al. in [56] suggests measuring the junction forward

voltage of a clamping diode. These are present at every input/output (I/O) pad of an FPGA

in order to protect the IC from low-power voltages that are outside the chip’s range. As

most modern FPGAs are fabricated in a Ball Grid Array (BGA) package, with some

models containing over a thousand I/O pins, it is possible to place a temperature sensor

almost anywhere on the IC, assuming that there is an I/O pad at the right location that is

not being used by the design.

Lopez et al. point out that such an approach would also be very resistant to power

supply voltage fluctuations, though they also state that diodes are less linear than ring

oscillators. The main disadvantage is also clear: this setup requires a significant amount

of external circuitry to provide a constant negative bias voltage or current, a means to

measure a voltage with high-precision (as the relation between voltage and temperature

at a constant current of 5mA is 1.14mV/C) together with circuitry to communicate the

measured value to the FPGA digitally. However, given the amount of process variation

(and therefore, voltage supply variation) in the latest technology ICs of today, using the

clamping diode for thermal measurement may still be advantageous.

2.2.3 Delay Line

Measuring the temperature with a delay line is possible as IC delay is strongly affected

by temperature in a mostly linear way. Theoretically it is therefore possible to measure

the temperature by timing the responsiveness of a circuit. The main difficulties presented

by this approach are accurate timing and strong dependence on power supply voltage.
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There are however clear advantages: this circuit can be configured anywhere on an FPGA

at minimal hardware cost, the implementation is executed in the configuration software

(no external components required) and the output is in digital format without having to

perform analogue to digital conversion. One of the few research groups to have used delay

lines are Chen et al. In [57] such a temperature sensor using 140 FPGA logic elements

is described with a minimum error of -0.7 to 0.9C following a second order curvature

correction of the measured values. In [58] the sensor design only uses 48 FPGA logic

elements, and its performance is compared to that of a ring-oscillator. Their findings show

that ring oscillators are more accurate than delay lines. It must be taken into account that

the FPGA used for the experiments is low-tech, and that power supply voltage fluctuations

are therefore much less likely to occur.

A delay line is also implemented by Chow et al. [26], as was described in Sec-

tion 2.1.1. The purpose of the sensor in this case is not to measure the temperature but the

overall maximum speed achievable given the current voltage/temperature of the IC.

2.2.4 Ring Oscillator

Ring Oscillators (ROs) have been widely used as the most popular way of measuring the

temperature within a digital circuit, be it in FPGA hardware or simulation [3,22,30,41,44,

48,56,58–62] and are patented by Xilinx [63]. Their functioning relies on the same physi-

cal phenomena as delay lines. A small number of buffers/inverters are chained together in

a ring configuration containing an uneven number of inverters. This ring oscillates at the

highest frequency possible given the thermal and voltage conditions. Assuming a steady

supply voltage, one can therefore estimate the temperature by measuring the oscillating

frequency of this setup.

The advantages and disadvantages are identical to those presented by delay lines. ROs

are characterised by great flexibility and low hardware cost while being plagued with

sensitivity to supply voltage levels. This disadvantage was pointed out as early as the

year 2000 by Lopez Buedo et al. [56]. Jones et al. [22] also noted this effect as different
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applications with different processing requirements caused the supply voltage to fluctuate,

making the ring oscillator readings unusable for temperature measurement. To avoid this

issue they implemented a pause phase where the processor halted for a certain amount of

time to let the transients dissipate in the hopes that the supply voltages stabilise. Needless

to say this pause in processor operation incurred a performance penalty, the magnitude

of which was 1% in the case of Jones et al. who performed a temperature measurement

every 50ms.

Zick et al. [64] pointed out that the greatest problem faced by ROs today is the ad-

vancement in technology. As the transistor size decreases, the effect of temperature on

delay becomes much less significant. Worse still, lower supply voltages and process varia-

tion dramatically increase the noise ratio on the power supply lines. Accurately measuring

the temperature using an RO is difficult at 65nm, and is predicted to be near-impossible

at 28nm.

2.2.5 Power Meters and Event Counters

As the temperature rise in a circuit is proportional to its power consumption, it should

theoretically be possible to measure the temperature of hardware blocks by measuring

the power they consume, assuming that initial temperature conditions are known. Power

measurement techniques have been researched at all levels of design [65–71]. The power

consumption of different instructions is determined by Tiwari et al. [65] by isolating the

processor so that the power consumption of software can be optimised to draw a minimum

of current. Nikolaidis et al. [67] use the same approach, taking their CPU measurements

with a high-speed and high-accuracy automated test-setup.

In [70], integrated performance counters are used in an Intel XScale processor. These

hardware counters present the advantage that they are already integrated into the system.

Having estimated the power consumption of the hardware blocks under different parame-

ters, count values can be collected during operation and computed to estimate the current

drawn. This technique was found to be accurate within 4%.
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Peddersen et al. [71] strategically placed their own performance counters in hardware

by running simulations to analyse events. Separate hardware modules were analysed and

ranked by their power variation. To minimise the amount of hardware used by the coun-

ters, only the modules displaying the largest amount of power variation were monitored.

This setup yielded a power estimation error of 2% and an energy estimation error of 1.5%

requiring a 4.9% increase in chip area and, on average, 3% more power.

A rare instance where activity monitors are used for temperature measurement is

found in [72]. This paper presents an emulation framework with an MPSoC implementa-

tion on an FPGA. Statistics are extracted by hardware sniffers during operation and sent

through a standard Ethernet connection to a host PC running software for thermal mod-

elling. The computed temperature is returned to the FPGA to test different temperature

management strategies. The main disadvantage of this setup is the processing needed for

the thermal modelling, requiring an external PC to be computed.

On the whole, power meters are an inadequate method to measure on-chip tempera-

ture. As pointed out in [16], localised heating can only be detected when statistics are

extracted at the granularity of on-chip blocks, and the thermal modelling needs to take

into account spatial distribution, block coupling, heat sinks etc.

2.2.6 Thermal Simulation

Obtaining accurate temperature measurements that are not affected by external factors

(fluctuating ambient temperature or power supply voltages) is difficult, which is why some

researchers turn to thermal simulation to get an idea of how their chip is heating up. IC

thermal modeling software tools go to great lengths to create thermal models of all the

different parts that an IC is made of (e.g., die, pins, packaging, heat sink, leakage power).

Each model has its margin of error, and these errors are cumulative. The error is aggra-

vated when observing transient temperatures as errors of thermal capacitors are made all

the more important. On top of that, the power consumption of a block which is used as

an input to the model is provided by software tools, such as Wattch [73], which contain a
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certain amount of error [74]. The extent of the overall error is very difficult to estimate,

as instances of published comparisons between static and transient simulation results and

real-life die implementations do not exist. HotSpot [75] was validated by comparing it

with finite element analysis tools such as ANSYS [76] and FreeFEM3d(FF3d) [77]. This

proved that the results given by HotSpot, in comparison to those given by ANSYS, were

accurate within approximately −2◦C for a given system with a good thermal interface

material, and within +4◦C and −1◦C for the same system with a bad thermal interface

material. It must be remembered, however, that ANSYS is also but a simulation tool,

containing a certain margin of error, and that the power data for both tools was extracted

using Wattch or similar.

Other software developed to model temperature include 3D Thermal-ADI [78] by

Wang et al., a 3D transient thermal simulator based on the alternating direction implicit

method. Zhan et al. [79] proposed observing temperature effects by using the green func-

tion method. Neither of these methods present any form of temperature validation.

Atienza et al. [80] introduced an interesting approach that emulates a system in an

FPGA where performance counters provide power consumption estimates to a PC running

a thermal model in real time. The clear advantage of such an emulation framework is

speed. What is not so clear is how accurate the thermal model really is, as it was calibrated

against a 3D finite element analysis tool, and validated against HotSpot with less than 3◦C

error difference in the best cases.

2.2.7 Thermal Camera

Recent thermal research has seen the employment of thermal cameras directed at the

exposed die of FPGAs [81, 82]. This allows for a fine-grained and precise measurement

of the temperature at any location within the die. The approach also has obvious down-

sides: temperature measurement cannot be performed in the field as the IC needs to be

‘opened’ for the die to be exposed and the equipment required comes at a considerable

cost. It has however proven to be very useful to study the temperature of digital circuits
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in a lab setting. In Chapter 4 a thermal camera is also used for the study of FPGA thermal

characteristics.

2.2.8 FPGA Thermal Characteristics

An early study on the manner in which FPGA fabric heats up was conducted by Sun-

dararajan et al. [83]. Relying on the results obtained from the HS3D thermal simulator

they established the amount of heat generated by the different types of resources that can

be instantiated in an FPGA design. As this study was based on temperature simulation the

accuracy was limited. Huang et al. [62] went so far as to validate their HotSpot thermal

simulation software with a 0.13µm FPGA system. They proposed to spread many ROs

across the FPGA die to measure the temperature of different operating blocks. Thermal

variations of up to 0.7◦C were measured, and the simulated and measured values corre-

lated with errors within 0.2◦C. However, the limited range of these results may suggest

that this correlation is mainly caused by the heating trend and are insufficient to validate

the HotSpot thermal simulator.

Long before FPGA self-heating became a key concern, Boemo et al. [60] proposed

ROs as temperature sensors in reconfigurable logic. An array of such sensors was later

used to observe the thermal behavior of a 0.22µm FPGA [59] configured with two soft-

core processors. This showed that a change in processing throughput resulted in a change

in temperature though these variations were very small (within −0.8◦C and +0.7◦C from

the mean temperature). Similar work was performed many years later by Zick et al. [53]

who also configured an array of ring oscillators on a modern 65nm FPGA to analyze

process variation and to track the aging of the chip’s fabric.

Aided by a thermal camera pointing at an FPGA chip, Cochran et al. [81] presented a

methodology to convert the captured images to estimate power patterns and demonstrated

the low-pass filter effect the die has on temperature. Nowroz et al. [82] also used a sim-

ilar thermal camera setup demonstrating that thermal gradients could reach 9◦C in their

setup. Happe et al. [84] researched the precise design of micro-heaters and their transient
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effect on temperature based on the components they are made up from (LUTs and FFs)

at different frequencies. None of these papers analyzed the temperature of FPGA-based

embedded processors to clarify the responsible parts for the chip’s temperature increase,

despite the fact that it is considered a key usage of FPGAs [85].

2.3 Cache Simulation

CPU caches profoundly impact a computer system’s performance and energy consump-

tion as was described in Chapter 1.2.1. Designers of time critical systems need to ensure

that their Worst Case Execution Time (WCET) is within acceptable levels. Judiciously

selecting the optimal cache configuration can also provide a significant improvement to

the functioning of the system, especially if it is designed under stringent performance or

energy limitations. Cache behaviour depends on two factors which are cache configu-

ration and the application executed. Two general steps are therefore required for cache

simulation: the execution of the application resulting in a certain order of memory ac-

cesses and the subsequent cache analysis. An intermediate step is often employed where

the trace is stored to a file for later processing by cache simulators.

Often cache simulators are categorised depending on how they are ‘driven’, with terms

such as ‘trace-driven’ (‘off-line’), ‘execution-driven’ (‘on-line’) and ‘binary instrumenta-

tion’ being used in the literature. One could argue that such categorisation is confusing as

all cache simulators are effectively trace-driven and that these categories are therefore un-

helpful at differentiating how these simulators function. From this point onwards, cache

simulators will be classified as follows:

• cycle-accurate, or cache emulation, where processor and cache interactions are ac-

curately simulated or emulated, allowing for cache statistics and timing information

to be reported (formerly described as ‘excution-driven’),

• entire-trace, or analytical cache simulation, where the whole trace is required before

the cache simulator can perform its task (formerly ‘trace-driven’),
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• heuristic cache selection, where the successive selection of different caches is used

to converge on the optimal cache configuration (formerly ‘execution-driven’), and

• continuous, or precise cache simulation, where addresses from the trace are pro-

cessed one-by-one in the order in which they were accessed (formerly ‘execution-

driven’, ‘trace-driven’ or ‘binary instrumentation’ depending on sources).

These distinctions having been made, this section will first look into the approaches

used to generate traces before covering the methods employed to simulate caches.

2.3.1 Trace Generation

To obtain the trace from an application running on a processor the application needs to be

executed in some form or other. As the processor executes the application the successive

memory addresses that are accessed need to be sent to a cache simulator or saved to a

trace file depending on the type of simulation employed. For continuous and analytic

cache simulation the data flow, in the form of the memory access trace, proceeds in one

direction only, from the CPU to the simulator. For cycle-accurate cache simulation a

cache model needs to be employed where processor and cache interact with each other

in a cycle-accurate manner. As a consequence, cycle-accurate cache simulation is very

involved and slow but has distinct benefits. For one, the exact timing information can be

obtained. On top of that, cache timing is important when using out-of-order execution

processors as the order of memory accesses is affected by the delays caused by having

to fetch data from memory. As such, the only way to obtain precise cache hit and miss

values when using an out-of-order processor is to use cycle-accurate cache simulation.

The Pin tool provided by Intel [86] is a dynamic binary instrumentation framework for

the IA-32 and x86-64 instruction-set architectures. It allows the execution of unmodified

executables on common multi-core Intel processors while extracting all kinds of data

about what is going on within the CPUs, including the instructions executed and the

addresses that are accessed. This is achieved by making modifications to the application

after it is loaded into memory adding new instructions to perform analysis from within
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the program, and then recompiling code with a just-in-time compiler. Other popular but

older instrumentation tools include ATOM [87] and Dynist [88]. Based on the Pin tool,

CMP$im by Jaleel et al. [89] was able to collect the performance statistics of multiple

caches by intercepting the addresses accessed by each CPU core. The Sniper Simulator

by Carlson et al. [90] is also based on the Pin tool, giving insight into complex systems

containing DVFS, branch prediction, shared and private caches etc. Using the sniper tool

it is easy to obtain memory access traces at any point in the memory hierarchy.

Ideally, designers would extract traces directly from a real, hardware-based processor

as this would be fast and also accurately reflect program execution in the real world.

The tools provided by Lauterbach [91] allow for such fast in-system extraction with the

downside that the required hardware comes at a considerable cost. The Altera Nios II [16]

provides the option to implement a trace-collecting unit within the processor core. The

size of the trace it can store is limited by the amount of internal block RAM allocated to

it. The Nios II core can therefore only sample snippets of the trace, having to send the

trace data to a host computer on a very regular basis.

One of the most popular methods to obtain the memory trace, especially for Appli-

cation Specific Integrated Processors (ASIPs), is to simulate the target processor. Often

during the creation of ASIPs hardware will not be available at the time when cache con-

figuration needs to be chosen. As simulated processors are implemented in software they

are very flexible, and the system can be analysed at the level of detail required by the

designer. The processor can be simulated at the most superficial level in an instruction

set simulator, a cycle-accurate simulator covering a microarchitecture on a step-by-step

basis, or a fully fledged full-system simulator. From the plethora of existing processor

simulators, only the most relevant are covered here.

The late nineties saw the development of SimOS by Rosenblum et al. [92] support-

ing the full hardware simulation of MIPS processor variants. By using a combination of

high-speed machine emulation and accurate machine simulation, SimOS was able to run

significantly faster than its competitors at the time. At around the same time, the Sim-

pleScalar tool was presented by Burger and Austin [93], capable of simulating computer



2.3. CACHE SIMULATION 31

architectures at a more or less intricate level, from fast functional simulators down to a

more accurate processor model. Since its initial development, the SimpleScalar tool has

managed to keep up to date with modern processor architectures with the implementation

of ARM and x86 instruction sets, amongst others. Other well-known simulators capable

of generating traces are SimICS [94] and the GEMS toolset which is based on SimICS

and which targets multiprocessor systems used in databases and web servers [95]. Finally,

the Xtensa processor by Tensilica [18] is a customisable processor frequently used in em-

bedded systems research and implemented in modern embedded systems. The simulator

provides many tools for in-depth system analysis, custom instructions and Digital Signal

Processor (DSP) integration.

2.3.2 Cache Emulation

Many cycle-accurate simulators and emulators track the behaviour of an entire system

and include cache models. As the cache behaviour is fully mimicked in these models it is

easy to add counters to them, counting the number of hits and misses registered. Generally

these cycle-accurate simulators are built to study the system as a whole and produce the

cache performance metrics as a useful byproduct. The Xtensa simulator [18] processor

can produce cache hit and miss values after application execution, as can other simulators

such as SniperSim [90] and SimICS [94]. In fact, advanced simulation tools are not even

required. It would be possible to download the hardware description for the open source

32-bit OpenRISC [96] processor for example, add cache hit counters (which is trivial),

and then simulate the processor at the RTL level using software such as Icarus [97] or

Modelsim [98].

Hardware emulation platforms are an interesting alternative as they implement most

if not all of the target circuit in hardware. Taking advantage of the inherent parallelism

of FPGAs, hardware platforms can run much faster than their software counterparts, es-

pecially when researching large, complex circuits. ProtoFlex [99] is one such simulator:

running an UltraSPARC processor at a frequency of up to 100 MHz complete with L1 and
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L2 caches, complex and infrequent behaviours such as I/O devices are performed in soft-

ware on a connected computer. FAST by Chiou et al. [100] is a cycle-accurate model for

entire computer systems and is capable of running the x86 instruction set. RAMP Gold is

another FPGA based architecture simulator where functionality and timing are modeled

separately for 64 SPARC CPUs [101]. Ravishankar et al. presented pCache [102], a spe-

cialised component designed to take a number of measurements related to the cache per-

formance characteristics. Data memory accesses (i.e., the data trace) was routed through

this component which collected information such as read and write hits and misses, aver-

age memory access times etc.

The downside of cache emulation as a means to evaluate cache performance is that

only one single cache configuration can be analysed at any one time. Given that hundreds

of cache configuration combinations are possible, exploring the entire design space would

take a considerable amount of time. For a comprehensive cache analysis other types of

cache simulators are generally preferred.

2.3.3 Analytic Cache Simulators

Analytic cache simulators make estimates as to the hit and miss rates by analysing the

memory trace as a whole. Cache performance is predicted by determining memory ac-

cess locality and data reuse patterns using mathematical models. In other words, general

memory access patterns are detected and then used to make an educated guess as to what

the cache performance could be. The main advantage of analytic methods is that they are

extremely fast with the downside that they are not fully accurate. In fact, accuracy drops

considerably once applications are executed that do not follow a regular program execu-

tion flow; this applies mainly to applications whose program flow is strongly affected by

the application input such as video encoding or data compression. A principal aim of

analytic cache simulator designers has therefore been to make the simulator as accurate

as possible while keep the simulation execution acceptably fast.

Agarwal et al. [103] presented a hybrid cache model that derived cache miss rates by
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categorising conditions that lead to cache misses. This included start-up effects (initial

burst of misses caused by an empty cache), nonstationary behaviour (performing a set of

identical operations but on a different data set), intrinsic interference (when useful data is

discarded due to lack of cache space), and extrinsic interference (cache or program flow

are changed due to external events such as I/O or another thread accessing data). A model

was made for each of these miss categories which were combined to give an overall miss

rate for different caches. The model was not very accurate though, with errors as large as

39% for caches of associativity 2 and line length 16 bytes.

In a similar way, Harper et al. [104] also categorises the types of hits and misses

that can occur and models them separately. Performance is extremely fast with errors

in the region of 15 to 20%. The ability of the simulator to handle different types of

program flow was tested by four different kinds of computations, namely matrix multiply,

‘Stencil’ operation, two-dimensional Jacobi loop and blocked matrix multiply. A different

approach was taken by Pieper et al. [105] where the original source code is annotated

before the application is run in an instruction set simulator. As a consequence, this is one

of the rare cache simulators that is not trace-driven as the memory trace is not used as the

simulator input. Instead the cache behaviour of program fragments is obtained, based on

which cache configurations can quickly and effectively be determined. The downside is

that code annotation is slow (as slow as “normal address trace based simulation”), but it

only needs to be performed once. Li et al. [106] exploited the properties of the lossless

Sequitur compression algorithm. The Sequitur algorithm [107] detects data patterns in an

input string and represents it as a context free grammar. A memory trace compressed in

that manner will have the memory access order efficiently represented as sets of patterns

and repetitions. All the simulator needs to do is calculate the cache hits for these patterns

or snippets and then determine the order in which these patterns occur to calculate the

total hit count. What is not mentioned in this work is the time taken to compress the trace

in the first place, a process that effectively does much of the heavy lifting this simulator

relies on.

The simulator by Ghosh et al. [108] does not perform exhaustive cache evaluation
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but instead uses the desired cache hit rates as an input and determines cache config-

urations that satisfy the desired hit and miss rates. Guo and Solihin appear to be the

first researchers to take into account the cache replacement policy in an analytical sim-

ulator [109]. Statistical properties of application access patterns were determined and

combined with replacement probability functions which are capable of approximating a

number of different replacement policies. An average simulation error of 1.41% was re-

ported which is surprisingly accurate, though it must be noted that the simulation time

is not given. A probabilistic approach was taken by Liang et al. [110] who also use a

generalised binomial tree presented by Sugumar et al. [111]. This research is some of the

only research in analytical cache simulation to make a direct comparison with fast precise

simulators. Another point of interest is that apart from Guo and Solihin, the vast majority

of analytical cache simulators assume the use of caches employing the LRU replacement

policy. The LRU replacement policy however is rarely implemented in embedded systems

due to its high hardware cost (See Section 6.1).

2.3.4 Heuristics-Based Cache Optimisation

Heuristics-based cache simulation is also an estimation method, and is used to determine

a cache configuration that, though not optimal, will be good enough for the current design.

Fornaciari et al. [112] presented such an approach where an instruction set simulator is

connected to a hierarchy of reconfigurable caches and evaluators measuring cache perfor-

mance and energy consumption. After a one-off sensitivity analysis the framework learns

the ‘tuning information’, the ways in which a change in cache parameters affects system

performance. As the application executes, performance statistics are collected which are

then combined with performance targets and tuning information to iteratively produce a

more optimal cache configuration. After successive guesses a suitable cache hierarchy is

found without exhaustively exploring the design space which yields enormous speedups.

The research surrounding dynamically-reconfigurable caches, i.e., caches that can

change configuration while executing an application in the field, has heavily focussed
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on heuristics as a means for determining the best cache at runtime. Such an approach is

often described as ‘cache tuning’. Zhang et al. [113] presented a self-tuning cache ar-

chitecture: energy is evaluated based on cache performance metrics following which a

hardware-based tuning heuristic algorithm suggests a better-suited cache configuration.

Similarly, Gordon et al. [114] also changed cache configuration on the fly but instead of

using consecutive guesses designed a ‘one-shot’ tuner that could select an adequate cache

configuration in one single iteration. It is not based on heuristics as such but the general

problem approach is identical.

Tony Givargis [115] developed a heuristic algorithm that analyses cache accesses at

design time to establish optimal cache indexing for a given application. In other words,

the address bits used for cache index selection are connected in such a way that the cache

suffers the fewest misses. If, for example, an extremely simple application consecutively

accesses addresses 0x01 (1) and 0x71 (113), a conventional direct-mapped cache would

require to have a minimum size of 128 bytes to avoid cache thrashing. If however the

seventh bit is used as an index (which is ‘0’ for 0x01 and ‘1’ for 0x71) instead of the

lowest 7 bits of the address, a cache of only 2 bytes would be sufficient. By optimising

cache indexing, performance can be improved at no additional cost.

2.3.5 Precise Cache Simulators

All cache simulators presented until now are either slow (cache emulation) or make only

estimates of the cache hit rates. Slow cache simulation is a big problem when simulating

complex applications as exploring the design space can take an extremely long time. It

is also necessary for measurements to be precise as even a small deviation in hit rate

can significantly alter the effectiveness of a cache [116]. These two requirements have

spawned the creation of precise cache simulators which take into account every single

memory access to calculate the hit and miss rates. Exhaustively analysing the effect

of individual memory accesses requires a certain amount of computing power which is

why the field of precise cache simulation has seen many proposed optimisation methods.
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One such method is to simulate multiple caches at the same time resulting in single-pass

simulators (also known as multiple cache simulators) as the trace file is only read once

as opposed to the multi-pass simulators who need to re-read the trace for every distinct

cache configuration.

Mattson et al. [6] were one of the first to look into storage size and hierarchy evalu-

ation, presenting methods to determine the ‘success function’ of multi-level storage de-

vices. To do this they presented a stack algorithm where the two-level storage hierarchy

is depicted as a stack. Any replacement policy can be simulated as long as the contents

of smaller storage devices is contained in larger storage devices, a characteristic defined

as an ‘inclusion property’. In modern terms (the article was written in 1970), the storage

hierarchy described is a two level fully associative cache with constant line length. By

adding up the stack distance of the accessed items it is possible to easily calculate how

effective different storage size combinations are.

Hill and Smith [117] proposed the forest simulation algorithm and use the all-associativity

algorithm (a stack algorithm generalised to arbitrary set-mapping functions) specifically

targeting direct-mapped, set-associative and fully-associative CPU caches (see Section 1.2).

The precise simulators presented until now mainly focus on the LRU replacement pol-

icy and make use of LRU cache properties, though these cache properties have different

names depending on the source. In this thesis, these properties are called the LRU cache

inclusion properties and are formally defined in Sections 5.3.1 and 5.3.2 and are sum-

marised as such:

• Given two caches of same set size and line length, the data of the cache of smaller

associativity will always be a subset of the cache of larger associativity.

• Given two caches of same associativity and line length, the data of the cache of

smaller set size will always be a subset of the cache of larger set size.

Sugumar et al. [111] proposed what they call a Generalized Binomial Tree, a data

structure that very efficiently stores the cached tags in such a way that they can quickly

be scanned. It heavily relies on the LRU inclusion properties, as each data tag that may
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be held in any of the caches simulated is only stored once. Caches are searched from

the smallest to the largest. As soon as a matching entry has been found the larger caches

no longer need to be simulated as they also contain that entry. The algorithm was im-

plemented in the Cheetah cache simulator which is available for free as a piece of open

source software. DineroIV [20] is another open source cache simulator capable of simu-

lating LRU, FIFO and Random replacement policies. The simulator can analyse 2-level

instruction and data caches and is easy to configure. The downside of DineroIV is that it

is a multi-pass simulator and that it is therefore excessively slow for design space explo-

ration purposes. Due to its free availability it is often employed as a reference point when

assessing the performance of cache simulators.

Janapsatya et al. [13] also employed LRU inclusion properties in their forest of trees

data structure, simulating many LRU caches at the same time. One of the main contri-

butions of this paper is that it provides equations to calculate energy and performance

metrics based on cache hit rates. Subsequent LRU cache research ( [14, 118]) considered

Janapsatya’s algorithm to be the fastest at the time (in 2006) though this assertion is ques-

tionable as no comparison was made with respect to the Cheetah simulator from 1995.

Tojo et al. developed the CRCB algorithm [118] which encompasses Janapsatya’s imple-

mentation and augments it with two simple optimisations, named CRCB1 and CRCB2.

Had Tojo et al. inspected the Cheetah source code more closely they may have come to

the realisation that both CRCB1 and CRCB2 had effectively already been implemented

in Cheetah in 1995. Haque et al. [14] took a different approach for their SuSeSim LRU

simulator in that the binomial tree is searched from the leaf node to the root node (bottom

to top) instead of from the root to the leaf like previous simulators. The simulator was

sped up through the use of contrapositions of the LRU cache inclusion properties, i.e., the

definition of cases where data would definitely not be present in smaller caches. Impres-

sive speedup results were given with respect to the CRCB algorithm though comparisons

with Cheetah were, again, lacking.

Up until 2010 the effect of cache replacement policy had mostly been ignored in the

design of single pass simulators. This can be explained by the fact that only the LRU



38 CHAPTER 2. LITERATURE SURVEY

replacement policy contains obvious inclusion properties making LRU caches an easy

target for optimisation. Haque et al. presented a number of FIFO cache simulators, first

DEW [119], then SCUD [120] and finally CIPARSim [121], with each improving on the

former. DEW represented the caches in a binary tree and used wave pointers to keep track

of where the data for a given address is stored in different caches. SCUD dropped the wave

pointers and instead used a central look up table in combination with a binomial tree. It

is CIPARSim however that is the most effective and interesting of the simulators as it

makes use of a number of FIFO cache intersection properties. The intersection properties

are presented as a list of certainties (for example, data block is present in larger cache)

that hold true if a number of conditions are met. Tawada et al. [15, 122] also dabbled

in the conception of FIFO and PLRU cache simulators by applying the CRCB algorithm

to these replacement policies together with a priority queue, making recently accessed

data (which is more likely to be re-accessed) quicker to find. The optimisations presented

could be considered trivial, and no performance comparison was provided with respect to

the work by Haque et al.

A hash table-based implementation was presented by Chen et al. [123] with their LRU

simulator HC-Sim. They claim their simulator is 2.56 times faster than SuSeSim which

is questionable as the memory trace is obtained from an instrumentation tool, Pin [86],

meaning that the timings reported in their results section hardly reflect cache simulator

performance as the creation of the trace is the bottleneck of this setup. In his thesis,

Mohammad Haque [116] proposes PSAICO, a PLRU cache simulator which improves on

the PRLU simulator by Tawada et al. [15] by stating that the two most recently used tags

will also be stored in all caches of larger associativity and set size assuming a constant

line length. Zang et al. [124] developed a space-efficient stack-based algorithm capable

of simulating both level one and level two caches simultaneously. It is one of the few

precise simulators to evaluate multi-level caches.
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2.3.6 Parallelised Cache Simulators

The rise in multi-processor systems gave birth to another category of cache simulators that

leverage the ability to execute code on multiple processors at the same time. As early as

1990, Philip Heidelberger [125] sped up cache simulation by splitting the trace into non-

overlapping partitions and simulating them separately on different processors. A problem

that then arises is that the state of the cache at the beginning of a trace snippet is unknown,

leading to inaccuracies. Heidelberger largely overcame this issue by performing short

‘re-simulations’ at the end of the main simulation runs. For every trace partition, the

re-simulation takes into account the state of the cache at the end of previous trace snippet.

Han et al. [126] made use of the abundance of CUDA cores in general purpose Graph-

ics Processing Units (GPUs) to speed up the simulation of multiple caches. Their GPU

simulator relies on the fact that given a set in a cache, a small subset of the entries in a

trace will affect that set, and that set only. By mapping sets to GPU cores simulation was

sped up by a factor of 2.76 with respect to single-pass simulation. Ma et al. [127] also

employed GPUs yet their approach was more similar to that by Han et al. [126] in that the

trace was split up and distributed amongst the CUDA cores resulting in a speedup of only

1.91 times.

2.3.7 Trace Reduction and Compression

Any simulator that bases its calculations on a trace obtained from a file will be spending

a considerable amount of time accessing the file from the harddrive. This affects cache

simulation time but also makes optimised cache simulation algorithms look less impres-

sive: if two cache simulators, one normal sn and one optimised so, take different amounts

of time to process a given trace assuming zero disk access time, tsn and tso where tsn < tso,

then the simulation speedup due to improvements in the optimised algorithm are equal to

tsn/tso. However, if trace file access takes a constant time t f a then the real duration of the

cache simulation runs will be tsn + t f a and tso + t f a resulting in a lower overall speedup.

It is therefore in the interest of developers of cache simulation algorithms to reduce t f a as
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much as possible.

Reducing the disk access time can be done in two ways: by employing faster trace

memory (such as Solid State Drives, known as SSDs) or by making the trace file smaller

through trace reduction or compression. Alan Smith [128] reduced the size of the memory

trace to increase the performance of certain paging algorithm simulators. For example,

some paging algorithms ignore any accesses that result in a hit in the cache. The trace

could therefore be traversed and all the memory accesses that cause a cache hit could be

deleted from the trace. Wang et al. [129] also determined a method by which a trace could

be made shorter if misses are counted. Assuming a direct mapped cache and a constant

line length, the misses of a smaller cache are a superset of the misses of a larger cache.

In a first simulation run of the smallest target cache, only the memory accesses causing

a miss are written to the new trace file. As a result, simulating the larger caches can be

done on a trace that is up to two magnitudes smaller while still calculating exact cache

miss rates. By the same token, Wu et al. [130] also stripped the memory trace after an

initial simulation run, removing entries that had no impact on the result of subsequent

simulations.

Though trace stripping is an effective way to reduce the trace size, it can only be

applied to direct mapped or LRU caches, and only if all simulated caches have constant

line length. Trace compression retains the information of all memory accesses but finds a

way to represent them in a more compact manner. Memory addresses are large (at least 4

bytes are needed to represent a 32-bit memory address) but often occur consecutively or

in patterns. Johnson et al. [131,132] took advantage of these facts to encode the offset, or

difference, from one memory access to the other which is usually much smaller. Luo et

al. [133] also encoded address offsets using data types of different sizes depending on the

size of the address difference.

Zhang et al. [134] labelled a static program representation with profile information

to obtain a program control flow graph. Each item in the graph is a block of memory

accesses which then only needs to be represented once instead of being repeated at each

occurrence. The work by Li et al. [106] which was covered in Section 2.3.3 used the
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Sequitur compression algorithm where the compressed trace is efficiently represented

as a series of patterns in a context free grammar. However little mention is made of

how long the trace compression process actually takes. Janapsatya et al. [135] used a

similar approach with the difference that symbols could appear more than once in a single

grammar. This results in a less efficient compression algorithm than Sequitur but which

is much quicker to execute. This brings up the important notion that trace compression is

only beneficial if the process of compressing the trace does not take too long. Aleksandar

and Milena Milenkovic [136] took compression and decompression time into account in

their single-pass trace compression algorithm. The general program flow is detected and

split into streams, trying to detect blocks of memory accesses that start and stop with the

same address. These streams are then compactly represented.



Chapter 3

Application Adaptation on FPGAs

3.1 Introduction

The need for temperature control within FPGAs has become increasingly apparent, high-

lighted by the 2006 study by Jones et al. documenting the catastrophic failure of a de-

velopment board that was caused by FPGA self-heating [21]. In this particular case the

self-heating of the FPGA caused the deformation of the circuit board it was placed on,

leading to short-circuits and subsequent component failure. Jones et al. were capable of

mitigating the issue of over-heating by making their design temperature aware. In their

design the operating frequency of the circuit is lowered as the temperature increases, a

method commonly referred to as Dynamic Frequency Scaling (DFS). The same authors

also researched a rough form of application adaptation [22] where the Quality of Service

(QoS) of the application is changed in order to lower device temperature. Their approach

is as follows: if the temperature needs to be lowered in a system performing multi-core

pattern-matching, the lowest priority processor is switched off.

This chapter focuses on temperature control within FPGAs that perform JPEG im-

age encoding. For these purposes, a special adaptive JPEG encoding implementation

was designed for resource-constrained embedded systems (Section 3.2). That same JPEG

42



3.1. INTRODUCTION 43

encoder was presented in 2013 at the Design Automation and Test in Europe confer-

ence [137]. After initial experiments on an older generation FPGA (covered in Sec-

tion 3.4), JPEG application adaptation was then tested on a multicore SoC instantiated

within a modern FPGA (Section 3.5). The contributions are:

• a highly adaptive JPEG encoder with the following advantages:

– it has a very small footprint, requiring 20 to 27kB of ROM and a minimum of

5 to 9kB of RAM, depending on the processors tested,

– it can easily adapt its QoS between frames, and

– the adaptation significantly alters the processing requirements of the DCT

algorithm. This is done by combining different luma and chroma subsam-

pling ratios, switching between a fast yet inaccurate, and a slow accurate DCT

alogrithm and performing downsampling by averaging, or directly through a

16x16 DCT.

• the observation that application adaptation alone has little effect on the temperature

of an FPGA, and

• that application adaptation can be effective at controlling the temperature of an

FPGA when combined with frequency scaling and clock gating.

But first, a little background on JPEG encoders.

Background on JPEG Encoders

Digital image compression is often essential as it reduces the image data size by at least

an order of magnitude with very little loss in quality. This comes at the expense of com-

putational and memory requirements as the Discrete Cosine Transform (DCT) employed

in JPEG encoding performs many multiplications and memory accesses. As a result,

executing JPEG encoding on a small embedded processor with varying power, band-

width or throughput constraints can be problematic. Tailoring a system for the worst
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case constraints is not a good solution as the processor will spend most of the time under-

performing.

Peddersen et al. [40] were capable of meeting power targets, in simulation, through

application adaptation in a number of applications including JPEG encoding. The source

code used was developed by the Independent JPEG Group [138]. This software, though

extremely flexible, instantiates data memory in the order of megabytes and also requires a

large amount of ROM. This makes it unsuitable for very small embedded systems. Other

available open source JPEG encoders, such as the Embedded JPEG Codec Library [139],

jpec [140] and Jpegant [141], are not capable of varying the output quality in any way.

It is also important to note that what is conventionally referred to as JPEG quality is in

fact a reference to the amount of data compression performed. This changes the size of

the quantisation factors which has a direct impact on the low-power Huffman encoding

stage and the file size. Independent of the compression chosen, typical implementations

do not change the process-intensive DCT stage which requires a fixed, large amount of

computation. For this reason, the focus here is on quality variation at the DCT level which

can easily be combined with the variation of compression. The most suitable candidate

for our purposes from available open-source software is “jpeg-compressor” [142] as both

the compression and DCT levels are adaptable. It is important to note that one of its

shortcomings is the use of dynamically allocated memory, which is often undesirable in

small embedded systems. Also, the options for quality variation of a colour image on

the DCT level are limited, as it relies solely on differing chroma subsampling ratios (i.e.,

three quality levels 1x1, 2x1, 2x2).

3.2 JPEG Encoding Application

The stages of JPEG encoding can be seen in Figure 3.1. Variation of the application is

primarily achieved by selective downsampling of the YCbCr components (by a factor of

2 in both horizontal and vertical directions) and changing the DCT algorithm used. In

the JPEG encoding process, an image is first converted from the RGB into the YCbCr
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Figure 3.1: Different Stages of JPEG encoding.
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Figure 3.2: Discrete Cosine Transform of an MCU block that is not downsampled.

colour space (stage 1) before being subdivided into Minimum Coded Unit (MCU) blocks.

Only a 16x16 MCU block size is used in the new JPEG encoder. If a component is not

downsampled (Figure 3.2), the MCU of that component is divided into four 8x8 blocks.

Four 8x8 DCTs are then performed producing four 8x8 arrays of DCT coefficients.

Quality variation of the 8x8 DCT is accomplished by switching between a fast yet

inaccurate, and a slow accurate algorithm. The slow algorithm is characterised by using

12 multiplications per pass, whereas the fast algorithm uses 5 multiplications. Note that

16 passes are computed for each 8x8 block. Downsampling, the process of reducing the

DCT output of an MCU to one single 8x8 array, is performed in two ways. Either the

entire MCU is computed by a 16x16 DCT algorithm (Figure 3.3) or the MCU is first

averaged to obtain an 8x8 array before executing an 8x8 DCT (Figgure 3.4). The former

produces the better quality output, though it requires 28 multiplications per pass, and 24

passes.

Q 
I H H H I 

.r ~~ 

• 
•• 



46 CHAPTER 3. APPLICATION ADAPTATION ON FPGAS

�����������

�	
��
����
�� �������������
��

Figure 3.3: Downsampling through the use of a 16x16 DCT.
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Figure 3.4: Downsampling by averaging.

The number of multiplications required for each process mentioned can be seen in

Table 3.1. Though the computational requirements of an algorithm are not solely defined

by the multiplication count, this table gives a rough idea of the processing requirements

of the different approaches. Additionally, the JPEG encoding format allows for different

downsampling rates for the different components of the YCbCr colour space. The most

common configuration contains no downsampling of the luminance component (Y), while

both chrominance components (Cb and Cr) are downsampled by a factor of 4; this is

known as the 4:2:0 ratio. A 4:4:4 ratio describes a configuration where no components

are downsampled. On the other hand, downsampling all of the components effectively

lowers the image resolution by a factor of four, i.e., a 640x480 pixel image is transformed

into a 320x240 pixel image with a 4:4:4 ratio. Combining the different luminance and

chrominance downsampling ratios and conversion methods, 9 quality levels were created.

This can be seen in Table 3.2. By changing the quality level, the application can adapt its

processing requirements.
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Table 3.1: Multiplications required for different MCU transform methods.

Conversion Method 8x8 DCT speed Mults.
Four 8x8 DCTs Slow 768
Four 8x8 DCTs Fast 320
Downsampled by 16x16 DCT N/A 672
Downsampled by averaging Slow 196
Downsampled by averaging Fast 80

Table 3.2: Definition of the 9 quality levels.

Lvl Output Resolution Ratio Downsampling 8x8 DCT
1 640x480 4:4:4 N/A Slow
2 640x480 4:4:4 N/A Fast
3 640x480 4:2:0 16x16 DCT Slow
4 640x480 4:2:0 16x16 DCT Fast
5 640x480 4:2:0 Averaging Slow
6 640x480 4:2:0 Averaging Fast
7 320x240 4:4:4 16x16 DCT N/A
8 320x240 4:4:4 Averaging Slow
9 320x240 4:4:4 Averaging Fast

3.3 Performance

An input image size of 640x480 pixels was used for the experiments. From Table 3.3 it

can be seen that the compressed file size mostly depends on the chosen YCbCr downsam-

pling rates. The JPEG encoding application was implemented on three different embed-

ded processors: an Atmel AVR ATmega1280 (8 bit), a Microchip PIC24FJ256GB110 (16

bit) and an Altera NIOS II softcore processor (32 bit) running only from on-chip mem-

ory with 8kB instruction and 8kB data caches. For fair comparison, the timing values

are scaled to represent operation at 16MHz. The source code was compiled with the re-

spective gcc compilers optimising for size (-Os). Memory usage can be seen in Table 3.4

while Figure 3.5 shows the timing at each quality level. A compression level of Q=90 was

used at each run.
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Table 3.3: Output File size for the different quality levels

Quality Level 1 2 3 4 5 6 7 8 9
Compressed File Size (kB) 114 114 96 96 96 96 38 37 37

Table 3.4: Memory requirements for the different processors (in Bytes)

AVR PIC24 NIOS II
ROM 20078 26412 21924
RAM 6154 4994 8236
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Figure 3.5: Time it takes to encode a frame on the different processors. The values were scaled to
display operation at 16MHz.



3.4. APPLICATION ADAPTATION ON CYCLONE 2 FPGA 49
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������	
�����

���

Figure 3.6: Photo of the Altera Cyclone 2 experimental setup with temperature sensor.

3.4 Application Adaptation on Cyclone 2 FPGA

The first attempt at implementing the adaptive JPEG encoder on an FPGA was performed

on a DE2-70 development board, depicted in Figure 3.6, which is centered around an

older technology Altera 90nm Cyclone 2 FPGA. As this FPGA does not contain any

internal temperature-sensing capabilities a temperature sensor was attached to the out-

side of the device. Thermal paste was applied to the surface between the sensor and the

external housing for better heat conduction. A soft-core System-on-Chip (SoC) was in-

stantiated within the FPGA supporting external SRAM and DDR-RAM memories, a 5

megapixel digital camera sensor and an SD storage card. The temperature sensor was of

type DS18B20 from Maxim Integrated [143], capable of temperature readings between

−55◦C to +125◦C with a 12-bit (0.044◦C) resolution.

Much like Peddersen et al. [40] the application was adapted by varying the compres-

sion quality (the quantisation) and switching between a slow and fast 8x8 DCT. Addition-

ally, subsampling was either done through 16x16 DCT or averaging. In other words, the

adaptive JPEG encoder was used at quality levels 3 to 6 and quantisation levels of 1, 10

and all increments of 10 up until 90. The sample JPEG image was encoded 100 times
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Figure 3.7: Temperature of FPGA given successive image encoding. Slow/Fast indicates the
speed of the 8x8 DCT employed.

at every quality level. No measurements were taken for the first 50 iterations to allow

the temperature to stabilise. The following 50 iterations were then averaged to obtain

the temperature for that quality level. Note that the measurements were conducted in a

general-purpose office with air conditioning.

The results of this experiment can be seen in Figure 3.7. Four observations can be

made from this graph:

1. the range of the temperatures measured is very small, within 1◦C,

2. the average temperature is not especially stable from one quantisation level to the

next,

3. the different subsampling and DCT methods appear to have had very little effect on

the temperature as they are drowned out by noise, and

4. the temperature is the highest when encoding at the lowest quality level, whereas

higher quality levels yield the coldest temperatures.

The limited temperature range is due to the low utilisation of the FPGA logic. The
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sequential software application causes few signal transitions compared to complex hard-

ware blocks that are highly parallelised. Points two and three can mostly be explained

by the fact that the temperature range is so small, resulting in a lot of noise. As a conse-

quence, finer temperature changes caused by a change in quality or quantisation cannot

be measured. The last point is of great interest as it brings another variable into the JPEG

QoS definition, the frequency at which images are encoded. The output file at the lowest

quantisation level (1) is significantly smaller than for the highest quantisation level (90).

With higher quantisation levels the file becomes larger and the Huffman encoding stage

requires more time to process. Accordingly, more data needs to be written to the SD card

through Input/Output (I/O) routines. It appears that the final encoding stages (lower en-

ergy routines, Huffman encoding and I/O) require much less energy than the rest of the

JPEG encoding process (higher energy routines, RGB to YCbCr conversion, downsam-

pling and DCT). At lower quantisaton the ratio of time spent in high energy to low energy

routines is much higher than at high levels of quantisation.
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Figure 3.8: Temperature of FPGA given constant time image encoding.

Lower quantisation leads to higher encoding frequency, leading to higher tempera-

tures. Figure 3.8 shows the temperatures measured when the frame encoding rate is reg-

ulated. After each encoding operation the processor is put to sleep for the remainder of
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the period, ensuring that each image is given the same amount of time to encode the pic-

ture. This time the general temperature trend matches the quantisation level corresponding

more to what was expected. The range of temperatures is still very small though, and the

effect of using different downsampling and DCT methods is still drowned out by noise.

3.5 Application Adaptation on a Modern FPGA

In an attempt to overcome the limitations of the Cyclone 2 setup, subsequent application

adaptation experiments were run on a modern FPGA built on more recent technology.

A 40nm Altera Stratix IV FPGA was employed to estimate the impact of temperature

control on a modern FPGA. Apart from being a faster device it is also much larger than

the Cyclone II FPGA, is capable of implementing circuits that are significantly more

complex, and also contains an internal temperature-sensing diode that can be used for

accurate temperature measurement from within the device. The only downside is that the

internal temperature sensor is not highly precise, as it can only take measurements at a

resolution of 1◦C. In order to observe a greater variation in temperature, all heatsinks and

cooling fans were removed from the chip.

Moving the experiment to a larger and later technology FPGA came with the drawback

that a single core processor does not consume as much energy and that it occupies a much

smaller portion of the available resources. Therefore, an experiment was designed involv-

ing multiple processors performing JPEG encoding at the same quality level at the same

time, increasing the overall device temperature. On this device, the maximum number of

32-bit NIOS 2 processors with sufficient amounts of local RAM and ROM that could be

instantiated was 15. The JPEG encoding application was stripped of the Huffman encod-

ing stage and the I/O interaction that comes with it. The application was therefore not

usable as it processed static batches of artificial image data, but was representative of the

effects that application adaptation can have on such a system. A mechanism was devised

to synchronise all of the processors where one master CPU ensures that its operation and

that of the slave CPUs happen in step with each other. A ‘start’ signal going from the
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Figure 3.9: Synchronous multicore experimental setup with clock control module for frequency
scaling and clock gating.

master CPU to all the slave CPUs would indicate when to encode the next frame, while

every slave CPU was able to let the master CPU know if it was finished through its ‘done’

signal. This configuration can be seen in Figure 3.9.

Furthermore, a clock control module was designed to test the effect of frequency scal-

ing and clock gating. This module was also controlled by the master CPU. JPEG encoding

was performed at a constant frequency of one frame every 2.2 seconds as this is the time it

takes to encode an image at the highest quality and highest clock rate. Three temperature

control modes were tested:

1. application adaptation (AA) on its own where the processor would execute a low-

power loop after encoding a frame,

2. application adaptation and clock gating (AACG) where the clock is gated for the

remaining time at the end of the period, and

3. application adaptation, frequency scaling and clock gating (AAFSCG) where the

clock is slowed down to the lowest frequency possible to ensure the desired frame

rate. After encoding a frame the processor is then clock gated.
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Figure 3.10: Demonstration of how the processor spends its time under the different temperature
control modes.

Figure 3.10 visualises how the CPU spends its time under these three different modes.

The same data was successively encoded at quality levels 1 to 9 (as seen in Table 3.2)

with 100 frames encoded at each quality level. The resulting temperature measurements

are shown in Figure 3.11. Here it can be seen that application adaptation, all by itself, has

very little impact on the device temperature with the temperature, varying mostly within

1◦C. This is despite the fact that the amount of time spent in high energy routines is much

higher at quality level 1 than at quality level 9. By comparison, when the processors are

clock gated (in AACG) at the end of the frame, the temperature drops sensibly with the

worsening of quality although the effect is delayed by the high heat capacity of the FPGA

die. Within the time span of the experiment the temperature dropped from 81◦C down to

75◦C. A similar temperature range was also measured when using AAFSCG, although the

temperature drops earlier when compared to AACG. On average, AAFSCG is 0.9222◦C

cooler than AACG even though they both effectively execute the same instructions. The

only difference between the two is that AACG performs all these instructions as quickly

as it can and then goes to sleep, while AAFSCG tries to distribute them evenly across the
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frame period.

One hypothesis that can explain the difference in temperature between AACG and

AAFSCG is that although the dynamic energy consumption of both modes is identical,

the temperature is averaged out in AAFSCG whereas it spikes and troughs for AACG.

As the leakage current increases exponentially with temperature [144] it is possible that

a temporary temperature that is more elevated than the average leads to overall greater

static current consumption. This hypothesis is further endorsed by the fact that FPGAs

consume a considerable amount of static power due to their large die area. All the re-

dundant resources of the FPGA (configuration bits, vias, unused LUTs and Registers) are

always powered, independent of whether they are used or not. To give a rough indication

of the amount of idle power consumption: when the FPGA used for these experiments

is left in an un-configured state (i.e., consuming barely any dynamic power), a tempera-

ture of 47◦C was reached in an air-conditioned space of a little over 20◦C. This drastic

temperature increase was caused nearly exclusively by static power consumption.

3.6 Summary

The ability to perform JPEG application adaptation on an FPGA was studied. For these

purposes, a specialised embedded JPEG encoder was implemented that is characterised

by improved adaptability over most JPEG encoding implementations and is processor

independent. It enables embedded system designers to change application QoS depending

on system constraints by dynamically switching between nine discrete quality levels. Its

extremely small footprint also sets it apart and makes it ideal for use in embedded systems.

This is unlike usual JPEG encoders with limited or no adaptability and which often require

a large amount of memory.

Two successive experiments were executed based on one older generation and one

modern FPGA. The conclusion was reached that software application adaptation, by itself,

is insufficient to control the temperature of the FPGA in a significant way. It yields a

temperature variation of less than 1◦C in most cases on the given setups. The second
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experiment demonstrated that the processor idle time caused by application adaptation

could be used to implement other temperature control mechanisms such as clock gating

and frequency scaling, enabling the FPGA to cool down by as much as 6◦C. Following

the study of the experimental results, it became apparent that a greater understanding is

required of how and where FPGA fabric heats up. This issue was subsequently researched

and is covered in Chapter 4.



Chapter 4

Thermal Characteristics of FPGAs

4.1 Introduction

In recent years, there has been an increasing focus on FPGA-based systems as they offer

an interesting alternative to ASICs due to their high level of functionality, flexibility and

advantageous low-volume production costs. The issue of overheating is already severe in

ASIC design where the dynamic workload is often responsible for thermal hotspots. FP-

GAs present additional thermal problems as they are capable of being reconfigured at run

time [85]. Due to the increase in deployment of such run time reconfigurable hardware

in FPGAs, it is no longer clear when and where thermal hotspots evolve as not all sce-

narios can be predicted at design time. This has spurred a significant amount of research

in the field including Ring Oscillator-based (RO) thermal sensor design [53, 59, 60] and

thermal simulation [62,83]. Not only is there a need to accurately understand the thermal

characteristics of modern FPGAs, it is also essential to define the parts responsible for

the temperature increase in FPGA-based embedded systems to avoid undesirable elevated

temperatures during operation.

The work presented in this chapter is mostly the result of a collaboration between the

Embedded Systems Group at the University of New South Wales and the Department of

Computer Science at the Karlsruhe Institute of Technology (KIT). Any images produced

58
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by the latter are marked as such. A large portion of the findings that resulted from this col-

laboration were published at the Conference on Field Programmable Logic in 2013 [145].

The principal contributions are:

1. A case-study of the most important thermal characteristics of FPGAs such as spa-

tial/temporal thermal gradients and peak temperatures. This includes a discus-

sion about the stability of ring oscillator-based thermal sensors and the accuracy

of simulation-based temperature evaluation techniques.

2. An analysis of the thermal behavior of a conventional embedded system imple-

mented on an FPGA using soft as well as hard embedded processors and a demon-

stration that thermal hotspots are frequently located on the memory interface (e.g. DDR

controller).

3. An investigation of the thermal impact of a cache component, showing that it plays a

substantial role in the thermal behavior of embedded systems. A model is proposed

linking cache configurations with peak system temperature.

There is no existing research linking cache configuration with FPGA temperature.

Moreover, unlike most previous thermal studies of FPGAs, this work employs a thermal

camera to precisely capture the infrared emissions from the silicon wafer of the FPGA.

4.2 Measuring Temperatures

While built-in thermal diode sensors are becoming ubiquitous in high-end FPGAs, these

are limited by the fact that there is usually only one of them. Moreover, the fixed place-

ment of such a sensor often makes it unable to capture the peak temperature, particularly

when the thermal hotspot is generated far away from the sensor. To overcome this limi-

tation, most previous research relies on spreading an array of RO-based thermal sensors

across the FPGA die to obtain the spatial temperature distribution. Another method is to

employ thermal simulations. The shortcomings of both of these methods is discussed to-

gether with a justification for the use of a new setup based on an infrared thermal camera.
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Figure 4.1: 3D thermal profile of a design with a low logic activity resulting in smooth temperature
changes, measured using ROs.
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Figure 4.2: Measured 3D thermal profile of an FPGA die in the case of intense logic activity
leading to severe RO instability.
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4.2.1 RO-based Thermal Sensor

The ease of implementation of ROs has made them the temperature sensor of choice for

reconfigurable logic [22, 44, 53, 59]. Though many designs and optimizations have been

proposed, their accuracy is plagued by their dependence on a stable supply voltage. This

is made all the more problematic by technology scaling, as smaller process technology

is characterised by an increase in voltage supply noise. Zick et al. [53] mention this

issue and tried to circumvent it by measuring the chip voltage and including it in their

temperature calculations, but even this does not make up for local voltage fluctuations.

To examine the issue, an experiment was run where a mesh of 33 ROs was configured to

cover half a 40nm Altera Stratix IV FPGA. ROs were found to be surprisingly accurate

as temperature sensors when the FPGA is configured with a design with low amounts of

switching activity. The result is smooth temperature changes and an even supply voltage

distribution, as observed in Figure 4.1 which shows the thermal distribution once the

temperature had stabilised.

On the other hand, configuring a micro-heater [81, 84] in the top corner of the FPGA

causing intense logic activity in the designated area resulted in severe instability of the

RO readings. The 3D plot showing the measured temperatures derived from the RO fre-

quency at one instance in time can be seen in Figure 4.2. It must be noted that it is

representative of the locations where the ROs were picking up a large amount of noise.

The figure demonstrates that the introduction of intense logic activity in the FPGA fab-

ric leads to sharp changes in temperature readings from the RO-based sensors. This made

them unusable as temperature sensors as measured errors reached a maximum of 10,000%

with respect to the internal thermal diode sensor. And yet, with the exception of the one

problematic sensor (recognisable by the negative peak), the erroneous behavior was con-

tained within the area in which the micro-heater was placed. All other sensors displayed

steady, accurate readings leading to the conclusion that supply voltage fluctuations are

localised. As the aim is to measure the temperature of precisely those areas of intense

activity, RO-based thermal sensors are inadequate for extreme FPGA thermal analysis.
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Figure 4.4: Comparison between simulated and infrared thermal images show that the simulated
measurements display larger amounts of thermal variation. Images by KIT.

4.2.2 Thermal Simulation

Estimating the temperature of a design based on thermal simulation always starts with

having to estimate the power consumption trace in different blocks in that design.1 Then,

the power information is used by a thermal simulator such as HotSpot [62] which evalu-

ates an RC model to obtain the thermal profile. To estimate the consumed power in the

targeted FPGA, the XPower Analyzer tool from Xilinx [146] was used because it gives

more realistic quiescent values than the device power spreadsheet [146] which has been

1In this scope, a block is a rectangular region of the FPGA which simplifies thermal simulation through
abstraction.
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utilised in other studies [83]. The XPower Analyzer takes as input the corresponding

Value Change Dump (VCD) and the fully routed Native Circuit Description (NCD) file

that represents a physical circuit description of the tested design as applied to a specific

FPGA device. The Xilinx PlanAhead tool can localise the routing of the design. It takes

the netlist file that describes the synthesised design and updates the User Constraints File

(UCF) to guarantee that the design will be routed in the desired location. The XPower

analyser can also be used to estimate temperature but it assumes that the consumed power

is uniformly distributed across the die. As the thermal distribution within the die is tar-

geted, this measurement could not be used. Instead the HotSpot thermal simulator was

employed, as it generates an estimated thermal profile which can easily be compared to

the images obtained from the infrared camera. HotSpot takes the FPGA flooplan and the

generated power distributions within different blocks across the chip to build the ther-

mal image. To draw the required floorplan the area of the target FPGA was divided into

equally sized blocks. It is worth noting that Xilinx does not provide the actual size of

the FPGA die and that an approximation of these dimensions had to be measured after

removing the packaging of the chip. The flowgraph that describes the phases required to

obtain the simulated thermal image is presented in Figure 4.3.

The results for the thermal simulation taken from the HotSpot simulator can be seen

in Figure 4.4. Since the HotSpot thermal model always includes a heat sink and heat

spreader, their thickness was set as low as possible in order to make their effect on tem-

perature and temperature distribution negligible. In this experiment these specifications

were set at 100nm because simulation fails at smaller sizes. This allowed for easy com-

parison between the simulation results and the temperatures captured by the infrared cam-

era. It was found that the maximum temperature of the simulation is comparable to the

measured temperatures, but the maximum thermal variation over the chip is significantly

higher (a difference of 25◦C for simulation and 12◦C for the thermal camera). This is

mainly due to the inaccurate simulation of leakage power in blocks where there are no

switching components. Additionally the amount of detail in the temperature distribution

is considerably lower since power values are used at the block abstraction level, i.e. each
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block has exactly one summed power value and power variations within a block are not

considered. The same holds for temporal power variations since XPower only provides

one averaged power value over time. While this is sufficient for some designs, it can lead

to inaccurate power estimation in highly dynamic designs.

Following these experiments, the conclusion was reached that thermal simulation may

be too imprecise to study the thermal behavior of the FPGA chip. Additionally, RO-based

setups may suffer from instability. To overcome these issues a novel setup employing an

infrared camera is recommended for design time temperature exploration. This technique

can be used to obtain real thermal images containing the detailed thermal distribution of

FPGA-based systems.

4.3 Experimental Setup

In the experimental thermal camera setup a 65nm Xilinx Virtex-5 FPGA [146] was con-

sidered. On-chip temperatures were directly measured using a DIAS pyroview 380L com-

pact infrared thermal camera capable of precisely capturing temperatures with an accuracy

of ±1◦C and a spatial resolution of 50 µm [147]. Figure 4.5 illustrates the experimental

setup with the required equipment to take the thermal measurements. Once the readings

have been obtained the camera sends them at a frame rate of 50Hz to a PC which analyses

them to build the corresponding thermal image of the tested chip.

Emissivity Aspect: An important aspect to consider when performing infrared measure-

ments is the emissivity of the material. This property states what percentage of heat is

emitted from the material in the infrared spectrum. Ideal measurements can be obtained

from a so-called black body with an emissivity of 1.0. Other materials, such as polished

metal, have a very low emissivity of around 0.01. Figure 4.6 shows an emissivity test

of an FPGA chip with and without metal packaging. The left half of the Altera chip ap-

pears cool due to the low emissivity of the metal. The actual temperature, however, is

much closer to the right coated half of the chip. For this purpose, masking tape (with an

emissivity of 0.92 [148]) was applied to the material’s surface, increasing its emissivity
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Figure 4.5: The experimental setup used for thermal measurement. Image by KIT.
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in the infrared spectrum of the camera (8−14 µm). Masking tape was chosen due to its

relatively high emissivity and its non-intrusiveness (it can easily be removed) compared

to, for instance, black paint. The uniform distribution of the temperature measurement

(shown in the uncoated half) is the result of the properties of the packaging which acts as

a heat spreader and uniformly distributes the generated heat. To accurately determine lo-

cal temperatures and hotspots, the packaging had to be removed from the chip to expose

the silicon wafer. The silicon die (in the right half) has an emissivity between 0.75-

0.9. Masking tape was still applied to the silicon wafer to improve accuracy. Since the

emissivity is known the camera software can internally compensate for the missing 8%

temperature. As noted, the variation in temperature between the covered and uncovered

halves in this example falsely appear to be up to 20◦C.

4.4 FPGA Thermal Characteristics

4.4.1 High-Stress Scenario

To investigate the thermal characteristics of the targeted Xilinx FPGA platforms under a

high-stress scenario, regions were selected on the tested FPGA die and subjected to high-

stress conditions while capturing and analysing the infrared images emitted. A special

design was synthesised and implemented with the intention of pushing all the available re-

sources (such as LUTs, FFs and BRAM/DSP blocks) to consume as much dynamic power

as possible in the considered region by continuously toggling them. Registered parts of

the design were operated at 600 MHz, the maximum rated frequency of the target FPGA.

This test design is similar to the micro-heaters used in papers mentioned earlier [81, 84]

but is different in that they seek stable and reliable heat generation. The aim of this ex-

periment is to reach maximum power consumption by taking into account all types of

available FPGA resources. As seen in the captured thermal image shown in Figure 4.7a,

the peak temperature of the FPGA chip under this worst-case, high-stress scenario can

reach a critical level (124◦C) which can disturb the functionality of the configured system
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on the FPGA.

More importantly, the on-chip thermal diode sensor that comes built into state of the

art FPGAs and is permanently placed at the center of the chip will most likely fail to cap-

ture the maximum temperature because the thermal hotspot is located far away from it. It

was observed that the thermal variation between where the hotspot is generated and the

center of chip reaches around 20◦C. The maximum thermal variation (defined as the tem-

perature difference between the hottest and coldest sites across the FPGA’s die) reached

34◦C. This, in turn, can negatively affect the timing constraints of the running system.

Additionally, the aspect of spatial and temporal thermal gradients are also considered one

of the key reliability concerns. It is therefore crucial to analyze potential thermal gradients

during FPGA operation as well as the peak temperature. The spatial thermal gradient is

defined as the temperature variation over a distance, while the temporal thermal gradient

is known as the temperature variation in a predetermined location over time. Figure 4.7b

presents an example of measured spatial/temporal thermal gradients.2 Measured peak

spatial and temporal thermal gradients reached 32◦C/mm and 10◦C/s respectively under

high-stress scenarios.

4.4.2 FPGA-based Embedded Systems

In this section commonly used FPGA-based embedded processors are examined. The

soft-core MicroBlaze processor from Xilinx [146] and LEON3 from Aeroflex Gaisler [149]

were targeted as well as the hard-core PowerPC-440 microprocessor from IBM [150] for

these purposes. A soft-core CPU is a synthesisable VHDL model of a processor that

can be built using the FPGA resources whereas the hard-core processor is an ASIC core

permanently embedded in the FPGA die. The MicroBlaze system is built by combining

blocks of Xilinx IP cores to end up with a 32-bit RISC-based DLX architecture optimised

for implementation in Xilinx FPGA reconfigurable logic. It is capable of single-cycle

2In the experiment capturing the spatial thermal gradient shown in Figure 4.7b, the masking tape (further
details in Section 4.3) was not applied to cover the FPGA die in order to obtain a more detailed observation.
Measurements were adjusted to make up for the lower emissivity of silicon.
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Figure 4.8: Infrared thermal images of FPGA-based embedded processors. It can be seen that the
thermal hotspot is located on the chip’s border due to the dominant role of the memory interface
on FPGA temperature. Images by KIT.
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throughput under most circumstances and can be configured with a 3- or 5-stage pipeline.

The LEON3 is also a 32-bit soft-core microprocessor based on the SPARC-V8 instruc-

tion set architecture and implements a 7-stage pipeline. On the other hand, the hard-core

PowerPC-440 is a 32-bit high-performance superscalar embedded RISC processor con-

sisting of a 7-stage pipeline. Unlike the soft-core CPUs that can only operate at relatively

low frequencies (between 100 - 200MHz), the hard-core PowerPC-440 CPU can run at

higher frequencies (up to 550MHz). For fair comparison, the same FPGA family (Xilinx

Virtex-5) was used throughout study to evaluate the different embedded target CPUs.

The key observation from running different applications from the cBench [151] (an

updated version of Mibench [152]) Benchmark Suite on the aforementioned FPGA-based

processors is that the peak temperature of the FPGA chip when running only from on-

chip memory is always in a relatively low temperature range with an average temperature

of 55◦C.3 On the other hand a drastic increase in the chip’s temperature was measured,

exceeding 70◦C, when a memory interface (e.g. DDR controller) is part of the system.

The infrared thermal images in Figure 4.8 show that the thermal hotspot is located on

the border of the FPGA chip where the DDR memory interface is implemented4. This

observation can be explained by the fact that the generated temperature is directly related

to the consumed power per area. As discussed in Section 1.1, the consumed dynamic

power is equal to:

Pdynamic =Ce f f ∗ f ∗V 2
dd (4.1)

where Ce f f , f , and Vdd are the load capacitance, frequency, and supply voltage respec-

tively. The load capacitance associated with the input and output pins of the DDR mem-

ory interface is significant and the switching frequency is high at 400MHz (transfers

at double-data rate with a 200MHz clock). Moreover, the supply voltage of the pins

3In these experiments the soft-core and hard-core CPUs were run at the highest possible frequencies of
200 MHz and 550 MHz respectively.

4It was found that the DDR controller in Xilinx FPGAs is implemented as a hard-macro which is per-
manently placed on the side of the FPGA’s die adjacent to the DDR memory chip.
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(2.5V /1.8V ) is considerably higher than that of the rest of the FPGA fabric (1.0V ). Com-

bined with the fact that a memory interface is made up of many pins (e.g. 113, 115 and

117 pins for the DDR2 memory controller in the MicroBlaze, PowerPC-440, and LEON3

CPUs respectively) it can confidently be presumed that the inclusion of the DDR memory

interface in an FPGA-based embedded system results in thermal hotspots in that location.

A similar observation was made when interfacing the system with an SRAM memory

chip.

4.5 Modelling the Thermal Impact of Cache

Having determined that frequently accessing the DDR pins significantly increases the

temperature of the FPGA chip, the impact of memory configuration on temperature was

investigated. More specifically, the aim was to establish whether the inclusion of a cache

in a system impacts the temperature of an FPGA in a meaningful way. A cache miss will

force the system to retrieve data from the external memory, while a cache hit means that

the CPU can retrieve the data locally from the cache. For the same cache associativity

and line size, a larger cache generally means fewer misses which leads to fewer DDR

memory accesses. It is therefore likely that a lower miss rate has a positive impact on

FPGA die temperature. Another factor that comes into play is cache configuration: the

combination of cache associativity, line size and cache size directly influences cache miss

rates depending on the memory access patterns of the application. As such, a large cache

with a suboptimal configuration for a given application will not perform as well as a

smaller cache with an optimal configuration. For this reason, both temperature and cache

configuration are analysed for different applications in this section.

Figure 4.9 shows the temperature results obtained when varying the cache size of a

MicroBlaze embedded system running a JPEG encoding application, together with both

read and write DDR accesses registered with each cache size. The evaluation here raises

the observation that the temperature of an FPGA-based embedded system strongly cor-

relates with the number of DDR accesses. As a consequence, increasing the cache size
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Figure 4.9: The influence of cache size on the FPGA temperature as well as the DDR memory
read/write accesses for a direct-mapped cache with a line size of 4 words.

can have a positive effect on FPGA temperature as it may result in reducing the need to

access the DDR memory due to a higher cache hit rate. This is contrary to existing cache

power impact research [73] which usually focuses on ASIC cache implementations. In

this case, the low switching density of the FPGA fabric that the cache is built upon, com-

bined with the high power consumption of DDR pins means that lower miss rates are

always synonymous with lower power consumption and die temperature.

4.5.1 Proposed Thermal Cache Model

Adding a memory interface alone adds a base offset in temperature compared to a system

where a processor uses purely on-chip memory, largely due to signals such as the DDR

clock. While the latter alone had an average temperature of TBASE = 55◦C, adding the

memory interface raises this to TBASE +TMEM = 63◦C. Afterwards, it was observed that

the rise in peak temperature can be estimated by the number of accesses per time interval,

the access rate r.

T = α · e−1/β r +TMEM +TBASE (4.2)
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Figure 4.10: Evaluating and Modelling the impact of cache.

α , β , TMEM, and TBASE can all be obtained experimentally using select temperature pro-

files obtained as shown in Figure 4.10 and are constant for a particular FPGA platform

assuming that the ambient temperature is constant. It can be noted from Equation 4.2

that the temperature increase for an initial increase in r is more significant than a change

where r is already large, mainly due to heat conduction.

In order to model the effect of cache on temperature, measurements were taken using

a number of different cache configurations using the LEON3 processor whose cache is

more configurable than the cache available for the MicroBlaze processor. As the cache

behavior is largely application dependent, various applications were examined using the

DineroIV [20] cache simulator. This was used to calculate their cache miss rates as a

metric for memory accesses. These results were then stored in N×M matrices of rates for

N different line sizes and M different associativities for each cache size k. The estimated

peak temperature is thus given as an extension of Equation 4.2.

Tk = α · f (Ik +Dk)+TMEM +TBASE (4.3)
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α β TMEM TBASE

4.01 0.52 7◦C 55◦C
Associativities 1, 2, 4
Line sizes (B) 16, 32

Cache sizes (kB) 0, 4, 8, 16, 32, 64

Table 4.1: Model parameters in the target Xilinx FPGA platform.

where f is a function defined as

f : RN×M→ RN×M

xn,m→ e−1/βxn,m
(4.4)

and I and D are the cache miss rate matrices for instruction and data cache, respectively.

For k = 0, the cache configuration is irrelevant meaning that ∀in.m ∈ I0, in,m = rI and

∀dn,m ∈ D0,dn,m = rD with rI and rD being the maximum memory access rates for in-

struction and data memory, respectively, of the examined application.

The model was analysed using various benchmark applications (ADPCM, Matrix

Multiply, QSORT and Random) by comparing the peak temperatures estimated by the

model with those obtained using the infrared thermal camera. In the experiments the pa-

rameters were set as shown in Table 4.1, and r was taken as memory accesses per 103

cycles. As can be seen in Table 4.2 the maximum estimation error remains low and is

within the accuracy granularity of the camera (±1◦C) for all examined applications, bar

one exception. The exception was QSORT and was partly due to an overestimation of the

average r in the instruction memory through various short peaks during application exe-

cution, but also due to a slightly higher ambient temperature resulting in a higher TBASE.

The Random application is comprised of random accesses to memory that allowed for

the examination of cases where the data cache hit rate remains low regardless of cache

size. Since these accesses are performed in a small loop, small instruction cache sizes are

already sufficient to prevent cache misses. As a consequence, the maximum estimation

error of the given model for the Random application is the lowest, and it is also the appli-

cation with the smallest range in temperature at the memory interface. It must be noted

that the temperature measurements were made by members of KIT, that the DineroIV
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ADPCM Matrix QSORT Random AverageMultipication
0.53◦C 0.64◦C 1.2◦C 0.2◦C 0.64◦C

Table 4.2: Maximum estimation error between the given model and infrared camera measure-
ments for different benchmarks

cache simulation was executed by the author while the cache temperature model was pro-

posed by Thomas Ebi.

4.6 Summary

Technology scaling has made temperature concerns one of the major challenges that de-

signers face as higher-temperatures have a negatively impact on reliability. Accurately

analyzing the thermal properties of an FPGA chip is crucial to avoid violating thermal

constraints during operation. The error of thermal simulation methods was quantified

through the use of a temperature-measurement setup employing an infrared camera. It

was also shown that the dominant part of thermal hotspots comes from the memory in-

terface when targeting FPGA-based processors. Based on the observation that different

cache configurations result in different memory access rates affecting the thermal be-

havior, a thermal cache model was proposed linking cache miss rates with FPGA die

temperature. This model exhibits an average maximum error of 0.64◦C.

The link between cache configuration and temperature combined with the presented

thermal model opens the doors to early-stage thermal evaluation in simulation that does

not require hardware implementation. In other words, the thermal impact of many dif-

ferent cache configurations can be analysed in software. However, such thermal evalu-

ation relies on cache simulation which, depending on the complexity of the application,

can take a very long time to compute. Such cache analysis comes with the additional

benefit that designers are then able to chose the cache configuration displaying optimal

performance and/or energy consumption. It is therefore of great interest for designers to

simulate caches as quickly as possible.



Chapter 5

MASH{lru}: Hardware-Based LRU

Cache Simulation

5.1 Introduction

Much research has focused on simulating Least Recently Used (LRU) cache behaviour

under certain applications in order to find the optimal cache configuration. Precise cache

simulators keep track of every single memory access and determine precisely when a

hit or miss occurs in a cache of given configuration. Despite many advancements, these

cache simulators can still be prohibitively slow, especially when simulating the latest

high-power applications. As mentioned in Chapter 2, a number of different approaches

have been proposed for the simulation of LRU caches by taking advantage of LRU inclu-

sion properties. Most notably, Cheetah by Sugumar et al. [111] and SuSeSim by Haque

et al. [14] employ specialised data structures and algorithms with the goal of speeding

up cache simulation. Even GPGPU methods have been proposed. However, no existing

simulator makes use of reconfigurable logic to accelerate the exploration of LRU caches.

The contribution of this chapter is: a presentation of the first precise multiple cache

simulator that is exclusively based on hardware and is implemented on an FPGA.

This design is a Multiple cAche Simulator in Hardware (MASH) for caches with the

76
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Figure 5.1: Breakdown of a 16 bit address for a cache of line length 8 bytes and a set size of 8
lines.

LRU replacement policy. By exploiting the inherent parallelism found in FPGA fabric

many cache configurations can be analysed at high speed. The Multiple cAche Simulator

in Hardware (MASH) makes use of the LRU cache inclusion properties to minimise the

FPGA resource usage. The MASH{lru} simulator was presented at the Asia South Pacific

Design Automation Conference in January 2014 [153].

5.2 Cache Organisation

Although cache functionality and organisation has already mostly been covered in Chap-

ter 1, it is briefly reiterated here.

The three main configuration parameters that govern the manner in which data is

stored in a cache are line length (ls), set size (ss) and associativity (assoc). The line

length defines how many bytes are stored in one cache line and the set size defines how

many sets are stored in the cache. When an address is accessed, the log2(ls) lowest bits

determine the desired byte, while the next lowest log2(ss) bits point to the set index within

the cache. The rest of the address bits are the Tag, which is held in the cache together with

the associated data to determine whether a specific line is stored or not. Figure 5.1 shows

how a 16 bit address access is broken down in a cache where ls = 8 bytes and ss = 8 sets,

i.e., the lowest three bits are the byte index while the next lowest three bits are the set

index.

Associativity defines the number of locations in which memory lines with the same

set index can be stored. In a cache with associativity one (i.e., a direct mapped cache)

all addresses with set index 0b111 (7 in decimal) could only reside in one location in
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Figure 5.2: Depiction of the data organisation within a cache with line length 8 bytes, set size 8
lines and associativity 4.

the cache. On the off-chance that the software contains an access pattern where different

lines with the same set index are frequently being accessed alternatively, we will get cache

thrashing, leading to an excessive amount of cache misses. A set associative cache lowers

the risk of such an occurrence as data can be stored in assoc different locations with other

data of same set index. The data organisation of a 4-way associative cache can be seen in

Figure 5.2. In the event that all four ways of a set are occupied and a new line needs to be

stored, one of the older lines needs to be discarded to make room for the new line. The

line to be discarded is determined by the cache replacement policy. In this chapter only

the LRU cache replacement policy is investigated; a policy which keeps track of the order

in which lines were accessed and discards the one that was accessed the longest time ago.

5.3 Minimising Hardware Resources

Different hardware implementations of the LRU replacement policy exist, but for the pur-

poses of this work it is convenient to represent a cache set with all levels of associativity

as shift registers. This is similar to the linked list representation used in many software

cache simulators [13, 14]. In real cache implementations each entry would hold the ad-

dress tag, the line data and a valid bit. As the cache is simulated and not emulated, only
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Figure 5.3: A cache set with 4 levels of associativity implemented with shift registers and multi-
plexers. The solid arrows indicate in which direction data will be shifting at the next clock tick.

the address tag and the valid bit are needed. In four steps Figure 5.3 shows how different

address accesses are processed by a cache set of a four way set associative cache:

(a) The address accessed, 12, is shifted into the cache set. After this, all four ways are

full.

(b) Another address token, 24, is shifted in. As all four ways are full the least recently

used address token, 13, is discarded.

(c) The accesses address matches the oldest address token, 32, moving it to the front

of the queue.

(d) Again a hit occurs as address 24 is already stored in the cache. The older address

tokens, 12 and 55, do not move.

5.3.1 Inclusion Property 1: Associativity

This is where the first LRU cache property is used to minimise the amount of hardware

required: a cache of set size ss, line length ls and associativity assoc is a subset of a

cache of set size ss, line length ls and associativity larger than assoc. This means that

for multiple caches of identical set size, only the cache of largest associativity needs

to be simulated in order to also simulate all lower levels of associativity with the same

hardware.

Figure 5.4 depicts the design of a 4-way set associative cache (i.e., with four lines)

containing only one set. If a hit occurs in the second line, the En 2, En 3 and En 4 signals
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Figure 5.4: One cache set of associativity 4 is all that is required to also simulate caches of same
set size of associativity 3, 2 and 1. The signal coming out of each level of associativity (or line)
indicates whether a hit has occurred at this level. The EN x signals indicate when the counter for
that level of associativity should increment.

would enable the hit counters 2, 3 and 4 to increment. We would know that caches with

associativity 2, 3 and 4 would have registered a hit, while a cache of associativity 1 would

have suffered a cache miss. Caches usually have more than one set, in which case all

the hit signals for a given level of associativity are ‘or’-ed to drive the counters and to

create a group of signals called assoc. hits, as can be seen in Figure 5.5. This setup can be

extended to simulate any group of caches of same set size ss and associativity assoc and

smaller, within the limits of the available FPGA resources.
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Figure 5.5: Cache simulator for caches of set size s = 4 and associativity a≤ 4.
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Figure 5.6: Two caches of identical associativity and line size. Cached data stored at set index 1
in the smaller cache B would also always be stored at either of two locations at set indices 1 or 5
in cache A of double the set size. These two locations are denoted by ‘0’, or left and ‘1’, or right

To simulate multiple caches with different cache sizes it would be possible to imple-

ment multiple instances of this design. Yet such an approach would not be efficient in

terms of resource usage. The current design utilises 71 LookUp Tables (LUTs) and 84

Registers for a cache set of associativity 4. These numbers hold true for a cache simulator

capable of consuming a trace with an address width of 32 bits, but even with narrower ad-

dress spans the resources required are very high. To overcome this issue, a second cache

property is exploited.

5.3.2 Inclusion Property 2: Set Size

Caches with LRU replacement policy contain another important characteristic that can

be used to reduce hardware utilisation of the cache simulator. A cache of line length

ls, associativity assoc and set size ss is always a subset of a cache of line length ls,

associativity assoc and set size larger than ss. We can further refine this property as the

data from a cache of given set size would be located in either of two sets of a cache of

twice the set size. This can be seen in Figure 5.6, where data stored at set index 1 in a

cache of set size 4 would also always be stored at either set index 1 or 5 in a cache of set

size 8, given the same trace. This means that caches of smaller set size can be simulated

by keeping track of where their data is stored within a simulated cache of larger set size.
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For this purpose, specialised hardware components called sub-sets were designed. Al-

though their functionality is considerably more complex than the shift registers presented

in Section 5.3.1, they do not need to manipulate, hold and compare as many data bits.

As a result, one sub-set only requires 32 LUTs and 16 registers for an associativity of

4. To more clearly demonstrate the task of a sub-set, let us look at the example given in

Figure 5.7. This shows the state the highlighted sets from Figure 5.6 could be in if the

caches A and B had been subjected to the same trace. It can be observed that:

1. all entries of the set in cache B are contained within the two given sets of cache A,

2. if the set from cache B contains x similar entries from one of the sets from cache

A, then the matching entries will be the x entries of lowest associativity of that set

from cache A, and

3. the order of the last four accesses was first 61, then 12 and 23, and finally 5.

Figure 5.8 shows the same cache set state as mentioned, only that the set of cache B is

depicted by an extremely small shift register. Instead of containing a duplicate of all the

address tokens held in Cache A, only two bits are shifted, a source bit and a valid bit. The

valid bit is set when the associated source bit is not empty. The source bit determines if

the address token it is keeping track of is located at set index 1 or at set index 5 of cache

A, which is determined by a value of ‘0’ or ‘1’ respectively. In the example, the source

bit order “1001” means that the first token (5) is stored at set index 5, the second (23) and

third (12) tokens are stored at set index 1, and the last token (61) is stored at set index 5

of cache A.

The sub-set is based on such a shift register but also includes two mask registers as

seen in Figure 5.9. These registers indicate whether the address token at a certain level of

associativity in cache A is held within cache B. In the current scenario, tokens 23 and 12,

and 5 and 61 are tracked by the sub-set, which explains why the first two bits in Mask 0

and Mask 1 associated with those values are set. The purpose of these masks is to easily

determine whether a hit has occurred in the sub-set, simplifying future operation. The

finer implementation details are given in Appendix A.5.
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Figure 5.7: Example of addresses that could be stored in the highlighted sets of Figure 5.6 if both
caches A and B were administered the same trace. Each set is of associativity 4.
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Figure 5.8: Same example from Figure 5.7 with the set from cache B represented as shift registers.
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Figure 5.9: One subset and its registers. If a hit occurs with address token 12 in cache A, set index
1, we would immediately be able to tell if a hit has also occurred in the subset thanks to Mask 0.
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At this point the cache simulator can be divided into levels where each level represents

the hardware used to simulate caches of a given set size. The biggest set size (stop) is sim-

ulated by the top level, like in the design depicted in Figure 5.5, and directly manipulates

address tags. The associativity hit vector (assoc. hits) of the top level is then passed down

to the second level of the simulator which simulates caches of set size s2nd = stop/2, and

is made up of s2nd sub-sets. The three signal groups used to control the sub-sets are: an

enable signal (determined from the set index), an address bit (the highest set index bit

from the level above) and the assoc. hits vector from the level above. Each level of sub-

sets also has its own assoc. hits output which is used to count the hits for this level and

which can also be passed down to a lower level of the cache simulator. Figure 5.10 shows

most of these signals, and more importantly, how they are connected within the cache

simulator. Registers are introduced between the levels of the cache simulator to increase

the maximum operating frequency (i.e., address token consumption rate), with each level

increasing the latency by one clock cycle.

The entire cache simulator design is described in VHDL, most of which can be viewed

in Appendix A. The parameters of the simulating hardware determining the maximum and

minimum set size and the largest associativity to be simulated are defined in one location

(Appendix A.1). Lower levels are instantiated recursively, halving the set sizes at each

level, until the smallest set size has been reached. The maximum address token width can

also be modified to minimise the resources required by the top level if the range of the

addresses is limited.

5.3.3 Line Length

For now the cache simulator can simulate different levels of associativity and different set

sizes. Simulating different line lengths is trivial: when breaking down the address token

the size of the byte index is set to log2ls bits (where ls is the line length in bytes), the

set index is of constant size but is shifted so it is placed next to the byte index, and the

remaining bits are used for the tag. This is demonstrated in Figure 5.11. However, an
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Figure 5.11: Breakdown of the 16-bit address of value 0x1234 for the line lengths of 16 and 32
bytes and set size s = 16.

instance of the cache simulator can only simulate one line length at any one time. This

means that simulating a different line length requires a rerun of the simulator. Alterna-

tively, one could instantiate another cache simulator instance, in parallel, configured to

simulate that line length.

5.4 FPGA Implementation and Performance

5.4.1 Resource Usage

The amount of resources required in the form of LookUp Tables (LUTs) and Registers

(Regs) by a hardware cache simulator instance is an important aspect to consider to make

sure the design will fit on a given FPGA. This is entirely dependent on the size of the

largest cache simulated. Three main cache simulator parameters defined at design time

come into play: the address token width (addrw), the maximum set count (set countmax)

and the maximum associativity simulated (amax). Table 5.1 shows the required resources

of a cache simulator with its CPU interface depending on these parameters. Some param-

eter combinations could not be compiled as the resource usage of the resulting configura-

tion would have been too large to fit the target FPGA. The numbers show that the size of

the hardware instance grows linearly with the parameter values.

5.4.2 Performance

The cache simulator was tested on an Altera Stratix IV GX FPGA containing 230 thou-

sand logic elements depicted in Figure 5.12. Given the amount of resources available, it
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ad
dr

w

a m
ax

set countmax

32 256 1024
LUTs Regs LUTs Regs LUTs Regs

17
4 4932 3702 25085 15326 79431 46077
8 10529 7163 56859 29935

16 21434 14084 112098 59152

22
4 5517 4342 26541 20446 87626 66557
8 11644 8443 60321 40175

16 23672 16644 127876 79632

27
4 5997 4982 31990 25566 105037 87037
8 12655 9723 70216 50415

16 26203 19204 147526 100112

32
4 6410 5622 35313 30686 126235 107517
8 13500 11003 77732 60655

16 27829 21764

Table 5.1: Resource requirements (in LUTs and Registers) depending on the size of the largest
cache simulated.

was possible to instantiate a simulator capable of simulating caches with four different

levels of associativity (a = 1, 2, 3 and 4), eleven different set sizes (s = 1 to 1024) and

seven different line lengths (l = 4 to 256). Within these parameters 308 different cache

configurations can be simulated, while 44 configurations can be simulated concurrently

as the line length has to remain constant for each simulation run.

On the target FPGA, the resulting cache simulating hardware instance is capable of

running at 100 MHz with a latency of eleven clock cycles; it is capable of consuming an

address trace at 100 million address tokens per second. As the hardware implementation

is the first of its kind, it was not possible to compare it with existing cache simulators at

the time of conception and evaluation. Static trace simulation requires fast access to a

very large trace file. At the time of experimentation it was not possible to transfer such a

large trace file to the FPGA cache simulator, as a high-speed data interface was yet to be

implemented.

The correct functionality of the cache simulator was tested in Modelsim [98] and with

a hardware implementation where static traces were provided through a JTAG UART

connected to a PC.
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Figure 5.12: FPGA hardware used to test the cache simulator. The devices outside the FPGA
(Camera, I/O etc.) are used in future chapters.

Due to the extremely slow bandwidth of the JTAG UART interface it was not used for

the performance assessment. Instead, timing results of software-based cache simulators

were compared with the throughput of the cache simulating hardware. The traces simu-

lated were obtained from both the SimpleScalar computer architecture simulator [93] and

the Tensilica Xtensa processor simulator [18]. The traces of four Mediabench [154] appli-

cations and five SPEC CPU2000 [155] benchmarks were extracted using these two sim-

ulators. Every trace was fed to three different software-based cache simulators, namely

DineroIV [20], Cheetah [111] and SuSeSim [14]. The simulations were performed on the

high-end Intel system described in Table 5.2. The exact 44 configurations that the hard-

ware is capable of simulating were also simulated on Cheetah and SuSeSim. This was not

possible with DineroIV as it does not allow for associativities that are not a power of two.

As a consequence, only 33 cache configurations were simulated with this tool. The line

length simulated was 8 bytes and the traces were purely made up of instruction memory

accesses in order to simulate the instruction cache only.

Given the trace consumption rate that the FPGA implementation is capable of, the

cache simulation times are given in Table 5.3 while the speedup with respect to software-

based simulators can be seen in Figure 5.13. In Table 5.3 the last row indicates the speedup
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Processing
core count

32

Processor Intel Xeon X7560
@ 2.27GHz

System memory 256 GB

Table 5.2: Specifications of the setup used for software simulating purposes.

that could be achieved by a MASH{lru} instance as it can consume 100 million address

tokens per second. Compared with Cheetah, the hardware core displayed a speedup of

32x to 53x, with an average speedup of 38x. When set against SuSeSim, MASH{lru}was

between 41x and 74x times faster, averaging 52x faster. DineroIV, despite only simulating

33 configurations, was still up to three orders of magnitude slower than the FPGA-based

setup simulating 44 configurations.

5.5 Summary

This chapter presented MASH{lru}, the first multiple cache simulator implemented in

hardware. Its ability to process address tokens at 100MHz, concurrently simulating 44

different cache configurations, make it up to 53x faster than the fastest software-based

cache simulators for a set of benchmarks. Cache inclusion properties were exploited to

optimise the amount of FPGA hardware resources required. As a result, an implementa-

tion of a cache simulator capable of simulating 308 different cache configurations requires

over half the resources of a 230 thousand logic element Altera Stratix IV FPGA.

The simulator, its optimisations and hardware design are very specific to the LRU

cache replacement policy due to the handy inclusion properties. The general concept

and approach, however, have paved the way for extremely fast cache simulators for other

replacement policies.
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Chapter 6

MASH{fifo}: FIFO Cache Simulation

in Hardware

6.1 Introduction

This chapter examines the FIFO cache replacement policy which is frequently imple-

mented on embedded processors (Tensilica Xtensa [18], ARM9 and ARM11 [17] etc.)

due to its low hardware complexity, especially when compared to the LRU cache replace-

ment policy [156]. MASH{fifo} is presented here which improves upon existing research

with the following contributions:

• for the first time inclusion properties are presented that are applicable to the FIFO

cache replacement policy,

• based on the FIFO inclusion properties, a design is presented supporting hardware-

based multiple cache simulation for caches employing the FIFO replacement policy

and

• it is demonstrated how such a cache simulator instance can be configured in-system,

on an FPGA, together with a CPU and memory. Leveraging the high throughput of

MASH{fifo}, multiple cache simulation is performed in real-time.

92
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As discussed in Section 2.3.5 it is much more difficult to simulate many FIFO caches

compared to simulating LRU caches as the FIFO replacement policy does not obey the

LRU inclusion properties that are easy to exploit. As a consequence, multiple cache

simulators supporting the FIFO replacement policy have only recently been proposed.

Notably Haque et al. presented CIPARSim [121] which is considered one of the fastest

FIFO cache simulators. Tawada et al. published two works on FIFO cache simulators [15]

[122] with the shortcoming that their proposed optimisations (CRCB and priority queue)

are trivial. In comparison with previous work, MASH{fifo} distinguishes itself with very

high simulation speeds of multiple caches that employ the FIFO replacement policy. Most

of the work in this chapter was published at the Design Automation Conference (DAC) in

2014.

6.2 Cache Simulator Design

A naive approach towards hardware-based cache simulation would be the parallel instan-

tiation of many caches of targeted configurations. If caches of sizes ssmax and smaller and

associativities assocmax and smaller were to be simulated, the cache simulator would have

to manipulate and compare (2ssmax−1)∗(2assocmax−1) tags. As storing and comparing

tags of up to 32 bits requires many hardware resources, reducing the number of tags the

hardware simulator has to hold can also reduce the size of the simulator instance. For

MASH{lru}, LRU cache inclusion properties were exploited to minimise hardware util-

isation as the state of smaller LRU caches can easily be deducted by observing the state

of larger caches. In this section, inclusion properties for the FIFO replacement policy are

defined which can be used to significantly reduce the size of a MASH{fifo} instance.

6.2.1 Inclusion Property 1

The first inclusion property is as follows: an LRU cache set of associativity 2∗assoc−1

will always hold the data blocks present in a FIFO cache set of associativity assoc and
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smaller. To develop the inclusion property for the FIFO cache we evaluate the longest

possible lifetime of an address tag in a cache line. Let us suppose that at time t0 a FIFO

cache line of associativity assoc is subject to a miss following which address tag (addr1)

is inserted in the front of the FIFO queue. The first inclusion property relies on the fact

that there is a limited number of unique addresses that can be accessed before addr1

is evicted. The instant after t0, addr1 is pushed onto the FIFO and is held alongside

assoc− 1 addresses that were stored previous to t0. Any of these assoc− 1 addresses

or addr1 can be accessed without changing the state of the FIFO set. If an address is

accessed that is not equal to addr1 or any of the old assoc− 1 addresses the cache set

signals a miss and a new item is pushed onto the FIFO. This brings addr1 one step closer

to being discarded. After assoc−1 misses addr1 is pushed to the end of the FIFO queue,

preceded by assoc−1 newer addresses. At the assocth miss, addr1 is discarded from the

cache line. As a consequence, we know that at most:

1(addr1)+(assoc−1)(old)+(assoc−1)(new) = 2∗assoc−1 (6.1)

unique addresses will be accessed before addr1 is discarded. In other words, as soon as

more than 2∗assoc−1 unique addresses that are not addr1 have been accessed after t0,

we can be certain that addr1 will no longer be in the cache.

To simulate a FIFO cache set of associativity assoc or smaller an abstract data type

(or ‘container’) can be used which is certain to hold at least all the address tags of the

cache line. It will also have to follow the given specification: store a data item d until

at least 2 ∗ assoc− 1 unique data tokens that are not equal to d have been accessed or

stored. An LRU cache line of associativity assocLRU = 2 ∗ assoc− 1 presents precisely

these properties: by prioritising recently used data it only discards data once assocLRU

other data tokens have been accessed.
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6.2.2 Inclusion Property 2

The second FIFO inclusion property is based on the second LRU cache inclusion property

from Section 5.3.2: given an identical line size ls and associativity assoc, an LRU cache

of set size ss will always contain the data stored in an LRU cache of set size smaller than

ss.

As the data of each FIFO set of associativity assoc is also held in an LRU set of

associativity 2 ∗ assoc− 1, both inclusion properties can be combined to more clearly

match our purposes: given a line size ls, an LRU cache of associativity 2∗assoc−1 and

set size ss will always hold all the data blocks present in a FIFO cache of line size ls,

associativity assoc and smaller and set size ss and smaller.

6.2.3 Hardware Design
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Figure 6.1: Top level FIFO set simulating associativities 1, 2 and 4. A container holds and
compares the tags, and the tag to be discarded upon a miss is determined by the LRU shift register.
Based on the signals output by the container, the state of the FIFO sets can be deduced by the
FIFO shift registers.
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Figure 6.2: Top level set at time t0. The input address (21) matches the tag stored at location L1.
L1 is therefore the most recently used index and is pushed to the front of the LRU shift register.
The FIFO set of assoc. 4 is currently tracking L1 and therefore signals a hit while the other two
FIFO sets of assoc. 2 and 1 signal a miss as they are not tracking L1. Arrows indicate the direction
in which data will be latched at the next clock tick.

Figure 6.1 shows the design of the top level set which makes use of the first inclusion

property. Just like the LRU simulator only the tag and valid bit are stored and not the

entire cache line. Each top level set holds a container capable of storing 2 ∗ assoc− 1

tags at fixed locations (L1, L2, L3, etc.) and compares their value to the input address.

If the input address matches one of the stored tags, the Hit signal goes high. The LRU

and FIFO shift registers manipulate tag register pointers encoded on log2(2∗assoc) bits,

and are therefore very compact. An LRU shift register is employed to determine which

tag was least recently used, effectively making the container behave like an LRU set of

associativity 2 ∗ assoc− 1. Upon container hit (as indicated by Hit = 1), each FIFO set

checks whether the hit location (given by MRU idx) is stored in its FIFO shift register. If

the given tag pointer is present, the FIFO set signals a hit. If the FIFO set does not contain

the tag pointer MRU idx or if the container signals a miss (Hit = 0), the FIFO set signals

a miss and the FIFO shift register is updated with the new value.

Figures 6.2 to 6.4 demonstrate the inner workings of a top level set which is also

described by the code given in Appendix B.1. Currently only a single set is simulated.
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Figure 6.3: Top level set at time t1. The address input (23) does not match any of the stored tags.
It will therefore be stored in the register containing the oldest data which is pointed to by the last
pointer in the LRU shift register, L2. As the container signals a miss, all FIFO sets also signal a
miss. All shift registers and the new tag at location L2 are updated.
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Figure 6.4: Top level set at time t2. The address given is stored in the container at location L2. L2
is the most recently used location in the LRU shift register and is being tracked by all the FIFO
sets. At the next clock tick the set will not change. Lx indicates the second to last location at time
t1 which was not depicted due to space constraints.
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Figure 6.5: Top level of the FIFO cache simulator. The multiplexers ensure that only the outputs
from the set selected by Set index are used.
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Figure 6.6: The data in set 1 of a FIFO cache of set size 4 and associativity a will always also be
stored in sets 1 or 5 of a container of set size 8 and associativity 2a−1.
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To simulate a cache of set size ss, ss top level sets need to be instantiated. The FIFO hit

signals of each level of associativity assoc can then be multiplexed to determine whether

a hit would have occurred in a cache of set size ss and associativity assoc. Each level of

associativity has a hit counter which is enabled by the multiplexed hit output. Figure 6.5

shows a top level design capable of simulating caches of set size 8 and associativities 4

and smaller.

Figure 6.6 demonstrates the two inclusion properties combined. The data stored in

set 1 of a FIFO cache of set size 4 has to be present in either set 1 (set index 1 of the

lower half) or 5 (set index 1 of the upper half) of the container of twice the set size. A tag

register pointer in the given lower level FIFO set will be encoded on log2(2 ∗ assoc)+ 1

bits as it also needs to include a set pointer encoded on one bit which is equal to ‘0’ if the

tag is present in container 1 and a ‘1’ if the tag is present in container 5. By storing the

tags in a container of set size ss and associativity assoc at the top level, it is possible to

simulate FIFO caches of set sizes ss and smaller and associativities assoc and smaller. The

components are combined as shown in Figure 6.7. The lower levels simulate smaller set

sizes and are governed by the registered MRU idx, Set index and Hit signals, effectively

pipelining the design and increasing the overall operating frequency. By using the two

inclusion properties, the number of tags the cache simulator has to store has been reduced

to ssmax ∗ (2 ∗ assocmax− 1), which is nearly half as many tags than would have been

needed for an unoptimised implementation as described in the beginning of this section.
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ad
dr

w

as
so

c m
ax ssmax

32 128 512
LUTs Regs LUTs Regs LUTs Regs

22
4 7763 8545 26769 28405 95818 100713
8 15564 18271 58826 65104

16 33260 39132 122643 142122

27
4 8117 9665 27595 32986 106578 118572
8 16412 20847 61084 73812

16 41562 46946

32
4 8897 10852 30415 37523 111604 135458
8 17834 23156 65936 83428

16 40347 49779

Table 6.1: MASH{fifo} resource usage measured in terms of Altera Look Up Tables (LUTs) and
Registers (Regs) depending on the largest cache simulated.

6.3 Implementation

The resulting cache simulator is a self-contained hardware instance written in VHDL.

The important parts of the source code can be seen in Appendix B. The same centralised

settings file is used as for the MASH{lru} simulator (Appendix A.1) making the design

extremely parametrisable based on three main settings:

• addrw, the width of the address tags stored at the top level,

• assocmax, the maximum associativity simulated and

• ssmax, the largest set count simulated.

The settings define the size of the largest cache to be simulated and the hardware to

simulate all the smaller caches is instantiated automatically. The line length ls to be

simulated is set at run-time with a range between 4 and 128 bytes as only one line length

can be simulated at any one time. Using the Altera Quartus [157] software the design was

compiled for the same Stratix IV FPGA with 230 thousand logic elements that was used

for the MASH{lru} simulator. Despite the modest size of the FPGA when compared to

the latest offerings by FPGA vendors, it was possible to compile a cache simulator for a

maximum associativity of 4 and set size of 512, i.e., the largest cache that can be simulated
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has a size of 256 kB. The relationship between simulator parameters and hardware usage

can be seen in Table 6.1 in which smax defines the largest set count, amax the largest

associativity and addrw the address token width simulated. A blank field indicates that

the resource requirements would have been too large for the target FPGA.

In terms of throughput, the simulator instance can be clocked at up to 75 MHz on the

target device, i.e., the design can analyse an address trace at a rate of 75 million addresses

per second. This is 3/4 of the throughput of the MASH{lru} simulator which is faster

as its combinational logic is simpler. However, higher frequencies may be achieved on

devices built on more recent technology (e.g., Altera Stratix V). Two slave buses allow

for easy integration and usage: one port acts as the address input and the other controls

the simulator and is used to obtain the cache statistics at the end of a simulation run. The

correct functioning of the simulator was verified in Modelsim [98].

6.4 Static Trace Simulation

Conventional cache simulators usually obtain their input from a very large trace file stored

on the hard drive of a computer. To use MASH{fifo} to simulate large static traces a

storage medium could be connected directly to the FPGA, but for the purposes of fair

comparison the FPGA was mounted within the same test rig on which the software-based

simulations were run. The target computer contained a quad core Intel Core 2 processor

with 3 GB of memory. In order to minimise hard drive read times for the large traces a

256 GB Solid State Drive (SSD) was employed with a tested throughput of 280 MB/s.

A high-speed PCIe data interface was used to transfer the trace file from the test rig

to the FPGA. An application had to be programmed that would read the trace file, per-

form a simple trace-compression algorithm before sending the data to the PCIe interface.

Alternatively, the trace could be pre-compacted for faster hard drive read times. On the

hardware side, the PCIe interface would send the data to a hardware instance that per-

forms trace decompression before passing the trace on to the cache simulator instance.

The different steps involved can be seen in Figure 6.8. The trace compression algorithm
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Figure 6.8: Steps that are executed in software and hardware allowing MASH{fifo} to perform
simulation based on a large static trace. The input trace can be either in the Dinero ‘.din’ format
or pre-compressed.

employed is described in Chapter 8. The algorithm was tailored for extremely fast per-

formance when compressing the trace, and the ability to easily decompress the trace in

hardware.

The performance of MASH{fifo}was compared with DineroIV [20] and also CIPAR-

Sim [121] which is widely regarded as one of the fastest FIFO cache simulators. Separate

data and instruction traces of a number of applications were used as input and were en-

coded in the Dinero ‘.din’ file format. Care was taken that each cache simulator covered

the same design space with set sizes of 1 to 512, associativities of 1 to 4 (2 to 4 for CIPAR-

Sim) and line lengths of 4 to 64 bytes. A total of 150 (100 for CIPARSim) distinct cache

configurations were simulated by each simulator. The traces were obtained by previously

running a number of embedded media applications and benchmarks in an Xtensa simu-

lator. For each application cache simulation was performed for the instruction and data

trace separately.

The resulting timings and speedups of the experiment can be viewed in Table 6.2. It

can be seen that MASH{fifo} is between 7.38x and 11.10x faster than CIPARSim and

180x to 255x faster than DineroIV.

6.5 In-System Cache Simulation

Due to the hardware-only nature of the simulator it is possible to instantiate a MASH{fifo}

instance within an actual embedded system. Such an in-system simulator would allow a
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designer to perform multiple cache simulation, in real time, on an embedded system run-

ning an application that is subjected to real-world inputs. Notably, the advantages of such

an approach are:

• Fast multiple cache simulation. Given the high throughput of MASH{fifo}, many

cache configurations can be simulated quickly.

• Fast trace generation. As mentioned previously, generating a trace from a processor

simulator can take a long time especially when running high-performance appli-

cations for a wide range of inputs. An in-system MASH approach is significantly

quicker as the processor runs in hardware at high frequencies.

• The trace is governed by real-world inputs. If the application input strongly affects

program flow (e.g., video encoding, file compression or any application with a user

interface) a designer may want to analyse the cache design space given a range of

realistic inputs. In contrast, when an application is run on a simulated processor

inputs tend to be hard-coded and contrived.

An overview of the embedded system with integrated cache simulator can be seen

in Figure 6.9. A NIOS II/f CPU clocked at 200 MHz was employed that uses external

DDR3 memory as data memory. MASH{fifo} unobtrusively monitors all the accesses

to the DDR3 memory by snooping the data bus thereby obtaining the data trace. On the

given NIOS II/f CPU only data caches can be simulated as it is not possible to disable

the internal instruction cache as the core is closed source, i.e., instruction accesses by the

application may be cached internally in which case they will not be visible on the external

instruction bus. If a different CPU had been employed that is open source (e.g., Open-

RISC) or where the internal instruction bus is accessible from the outside (e.g., NIOS II/e),

instruction caches could also be simulated.

The same applications and benchmarks evaluated in Section 6.4 were implemented

on the embedded system. An SD card was used to provide input and output capabilities

to the applications. Other input or output devices, such as a camera, could be added and
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Figure 6.9: Overview of the embedded system which includes in-system cache simulation.

are limited only by the available resources remaining on the FPGA. The same FPGA

development board was used as in the previous chapter, a depiction of which can be seen

in Figure 5.12 highlighting the main components of the system.

The in-system run time was compared with the time it would have taken to create a

trace for the given application on a simulated Xtensa system. The Xtensa simulator was

run as a single thread on a computer containing 32 Intel Xeon X7560 cores running at

2.27 GHz and 256 GB of system memory. As cache simulation is executed at the same

time as application execution, run times are also compared to CIPARSim data cache simu-

lation times from Table 6.2 for those same applications. It is only a rough comparison for

obvious reasons: the processors are built on different architectures, the applications are

compiled with different compilers and the input and output interfaces are vastly different.

The aim of this experiment is to generally demonstrate the magnitude of the speedup that

can be achieved with the hardware-only approach.

The resulting timings, trace lengths and speedups are given in Table 6.3. The table

shows that the number of data memory accesses for the benchmarks (autocorrelate, con-

volution, fir, idct, mandelbrot and matrix) are very similar for the Xtensa and the in-system

implementations. On the other hand, memory access counts varied greatly between the

Xtensa and in-system experiments for embedded applications such as the JPEG, MP3 and

MPEG2 encoders and MP3 decoder as they perform many I/O operations. On average

-------1 
I :.......____. 
l _____ _ 
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Xtensa In-System Speedup
Application Time (s) Trace

length
Time (s) Trace

length
Trace

gen.
CIPAR

-Sim
autocorrelate 24792 700M 35.57 657M 697x 8.57x
convolution 3616 71.5M 3.47 69.5M 1042x 5.45x
fir 3590 98.2M 4.61 91.5M 779x 6.38x
idct 962 26.6M 1.05 21.7M 917x 7.32x
JPEG enc. 5730 89.8M 16.01 277M 358x 7.51x
mandelbrot 15115 245M 11.45 249M 1320x 7.41x
matrix 66941 1.66B 90.69 1.39B 738x 5.51x
MP3 dec. 22633 302M 28.86 594M 784x 10.55x
MP3 enc. 322894 2.21B 818.11 14.9B 395x 7.74x
MPEG2 enc. 255397 1.48B 957.73 3.20B 267x 1.37x

Table 6.3: A rough comparison between the time taken to run an application on a simulated Xtensa
processor and on an embedded system with in-system cache simulator. The speedup shown with
respect to CIPARSim is in terms of throughput as the trace lengths differ.

the NIOS II processor generated the trace 730x faster than the Xtensa simulator with min-

imum and maximum speedups of 267x and 1320x respectively. When compared with

CIPARSim throughput (trace length divided by time), the throughput of the in-system

cache simulator was on average 6.78x times faster while covering the same cache design

space. One notable outlier is the MPEG2 encoding application, where cache simulation

was only 1.37x faster in hardware than in software. The modest speedup can mostly

be explained by the fact that the Xtensa processor includes a floating point accelerator

whereas the NIOS II processor does not.

Implementing MASH{fifo} in a NIOS II system is trivial as a cache simulator compo-

nent has been created for the Altera Qsys SoC design software. In fewer than 10 mouse-

clicks a designer can include a MASH{fifo} instance in their system, simulating caches

for any memory bus by routing it through the simulator.

6.6 Summary

MASH{fifo} has been presented which is capable of determining the hits and misses

for many caches that employ the FIFO cache replacement policy. FIFO cache inclusion
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properties have been discovered which enable the hardware simulator to evaluate 30 cache

configurations simultaneously at an address token consumption rate of 75 MHz. In a

direct speed comparison, MASH{fifo} was up to 11.10x faster than one of the fastest

software based FIFO cache simulators, CIPARSim. In-system implementations of the

cache simulator were also investigated where a simulating instance is inserted in a real-

world embedded system to perform real-time cache analysis. Traces were generated 730x

faster on average when compared to the Xtensa processor simulator, and cache simulation

throughput was increased by an average of 6.78x compared to CIPARSim.



Chapter 7

MASS{plrut}: Optimised PLRUt

Cache Simulation

7.1 Introduction

The LRU inclusion property has been shown to be extremely effective with the downside

that its hardware design is very complex. As stated earlier, the FIFO replacement policy

shows worse performance but is very cheap to implement and hence the FIFO algorithm

is frequently used in embedded systems. However, the PLRU replacement policy is ad-

vantageous on both facets as it is characterised by low-complexity hardware while being

nearly as effective as the LRU algorithm [156]. For this reason it is employed in a range

of high-performance Intel and PowerPC processors.

Quickly exploring the design space of PLRU caches is difficult, however, as old data

can remain in a cache indefinitely for some cache configurations given certain access

patterns. For this reason, different PLRU caches are generally simulated separately with

little room for optimisation. In this chapter an alternative approach towards PLRU cache

simulation is presented, specifically targeting the PLRU–tree (PLRUt) algorithm. Another

facet of cache simulation is explored which is rarely mentioned in the literature which is

the disk access performance. The contributions are as follows:

109
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• the first optimised single pass PLRUt cache simulator based on a hash table is pre-

sented named Mulitple cAche Simulator in Software, or MASS{plrut},

• for the first time, two PLRU union properties are defined based on which it is

demonstrated that the memory usage of an optimised single pass PLRUt cache

simulating algorithm has an upper bound significantly below that of a brute–force

algorithm, and,

• a fast tree–updating method is proposed based on look–up tables that can be used

to quickly point the PLRU tree to the Most Recently Used (MRU) tag and does not

require loops.

There are hardly any proposed simulator designs targeting the PLRU replacement pol-

icy. Tawada et al. [15] implemented a PLRUt simulator with a CRCB–2 optimisation: if

the same address is processed twice in a row all hit counters can be incremented with-

out having to update cache states, a property already implemented in Cheetah for LRU

simulation. Performance was boosted by an additional 6.91% on average by using a pri-

ority queue (presented as the ‘CSG’ optimisation). In his thesis, Mohammad Haque [116]

proposes PSAICO which improves on CRCB–2 by stating that the two most recently

used tags will also be stored in all caches of larger associativity and set size assuming a

constant line length. Section 7.3 establishes that this property is a subset of the PLRU

property presented in this chapter. Additionally, both these simulators compare their re-

sults with DineroIV which is a very poor reference point (see Section 7.5). The findings

covered in this chapter have been presented at the Asia South Pacific Design Automation

Conference in January 2015.

Note: due to the frequent employment of equations in this chapter, cache parameter

names have been shortened, from assoc to a for associativity, ss to s for set size and ls to

l for line size.
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7.2 The PLRUt Replacement Policy

The PLRUt replacement policy relies on a tree data structure to determine which item of

data should be evicted from the cache upon a miss. Every tree node points towards the

most recently used of its two branches. Figure 7.1 shows a PLRUt cache set where a = 4.

The manner in which a PLRUt cache set deals with hits and misses is depicted in

Figures 7.2 and 7.3, representing a set hit and a set miss respectively. Two types of

operations need to be performed on the tree:

• update, pointing the tree to the MRU item of data, and

• get evict, determining which node should be evicted on the next miss.

If a cache set is subject to a hit an update operation is performed on that tree and the cache

line with the matching tag is set as the most recently used item of data. A cache miss, on

the other hand, initialises a get evict operation followed by an update, i.e., the cache line

to be evicted is determined, the new data is loaded into that new location, and the tree is

then updated to mark this new cache line as the MRU.

Both the update and get evict operations can be efficiently implemented in hardware

yet software implementations need to loop through each layer of the tree which can be

inefficient, especially for caches with large associativities. Updating the tree is performed

more frequently, and is purely a matter of ensuring that certain nodes are in certain states

while leaving the remainder of the other nodes untouched. If the tree is represented as

a row of bits stored in a word variable, it is possible to update the tree by applying a

single bitwise ‘and’ followed by an ‘or’ operation on this variable with respect to a pair

of constants stored in a lookup table, i.e., updating the tree can be performed in two

steps as demonstrated in Figure 7.4. The lookup table can be hardcoded and needs to

store 2∗assoc masking values with a minimum bit-width of assoc−1, where assoc is the

maximum associativity simulated, i.e., to simulate associativities of up to 32, an optimised

PLRUt tree updating function requires a lookup table of at least sixty-four 31-bit integers.

An optimised cache update implementation can be seen in Appendix C.1.
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0 1
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0x123 0x856 0xC23 0x324
MRU
item

Next item to
be evicted

Cache line
in set

1 2 3 4

Associativity

Figure 7.1: The PLRUt tree structure for a cache set of associativity 4. Each node indicates
whether the least recently used item of data is stored in the left or right branch, denoted by a ‘0’
and a ‘1’ respectively. The numbers in the cache lines indicate the address of the data contained
therein.
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Figure 7.2: From the cache set in Figure 7.1 data is accessed at address 0xC23 which is already
stored in the cache. The set signals a hit and the tree is updated to point to this least recently used
data.
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Figure 7.3: Data is accessed at address 0x786 which is not stored in the cache. The set signals a
miss and the item pointed to for eviction (with address 0x856) is discarded. The top and left node
flip states, making the new item of data the least recently used line.
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Before: After:

Update tree to mark
assoc. #2 as MRU

(0b010 AND 0b001) OR 0b100 = 0b100

0b001 0b000

0b001 0b100

0b100 0b010

0b100 0b011

And Or
1

2

3

4

Lookup table

Figure 7.4: Example of updating the tree Before to point to the data at associativity number 2,
resulting in tree After. A value pair is obtained from the lookup table at index 2, the And value is
‘and-ed’ with the value of the tree, the result of which is ‘or-ed’ with the Or value.

7.3 Cache Overlap

As seen in Chapter 5, LRU caches overlap completely due to their inclusion properties in

that all the data stored in a cache will always be present in a cache of larger associativity

and/or set size given the same line length. This is not the case with FIFO or PLRUt caches

where data can be present in a smaller cache only without being available in a larger

cache. For MASH{fifo} inclusion properties were developed for the FIFO replacement

policy by taking into account the longest lifetime of an item of data. For the PLRUt

algorithm it is possible to prove that there is a minimum of overlap amongst different

PLRUt cache configurations (assuming identical line lengths) by observing the shortest

possible lifetime of cached data.

When an item of data d0 is inserted or accessed in a cache set it is marked as the

most recently used data, meaning that all the tree nodes between the target cache line

and the root of the tree point towards the target cache line (as seen in both example sets

in Figure 7.5). In the case of PLRU set A in Figure 7.5 representing a cache set of
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PLRU set B, associativity 8:

A1
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Figure 7.5: Possible state of two cache sets A and B that have an associativity of 4 and 8 respec-
tively and are part of two caches of set size 1 and identical line length. Both caches are presented
with the same trace and an item of data, d0, has just been accessed. As a consequence, nodes A1
and A2 in set A, and nodes B1, B2 and B3 in set B point towards d0 in the respective cache sets.

associativity 4, nodes A1 and A2 have to change state and a miss has to occur for d0 to

be evicted, which means that at least three different addresses that are not d0 must be

accessed before it is possible for d0 to no longer be in that cache set. The tree in set B

of associativity 8 has an additional level of nodes (with a total node count of 7 instead of

3) meaning that at least four different addresses need to be accessed before set B may no

longer hold d0. This means that as long as we are sure that d0 is stored in set A, we can

also be certain that it is stored in set B.

This union property can be described as a minimum certain overlap between sets A

and B: at any point in time we can always be sure that at least three of the data items in set

A are also stored in set B. The amount of overlap between two cache sets of successive

associativity depends on the size of the smaller tree and is equal to the number of levels

in this tree plus one, in other words, the amount of minimum overlap between set A and

set B is log2asetA + 1 = 3 which is also equal to log2asetB. This holds true for every
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Figure 7.6: Demonstration of how many cache lines overlap with the cache lines of the set of
larger associativity. The number of non-overlapping cache lines, in this case 21, is the number of
maximum data items that will need to be tracked by a cache simulator simulating associativities
of 1 to 16. Note: the cache lines previously represented as squares are now shown as circles.

set of consecutive associativity: the overlap between set B and a hypothetical set C of

associativity 16 would be log2asetC = 4.

The increasing amount of overlap between cache sets up to an associativity of 8 can be

seen in Figure 7.6. The property can be exploited in that fewer unique items of data need

to be tracked during simulation as the contents of the overlapping cache lines are already

stored in the set of largest associativity. Figure 7.6 shows that simulating cache sets up

to associativity 16 requires keeping track of at most lcountopt = 16+ 4+ 1 = 21 cache

lines at any one time instead of the 16+8+4+2+1 = 31 required for an un-optimised

implementation. Generalising the number of cache lines required to optimally simulate

all sets of associativity a and smaller in a cache of set size 1:

lcounttopLevelSet = a+
a
2
− log2a+

a
4
− log2

a
2
...

= a+
a
2
+

a
4
...− log2a− log2

a
2
...

= 2a−1− log2a(log2a+1)
2

= 2a−1− (log2a)2

2
− log2a

2

(7.1)
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Cache A

Cache B

Set A1 Set A2

Set B2Set B1

Set A3 Set A4

Figure 7.7: Two caches A and B of associativity 4 and set sizes 4 and 2 respectively. The three
overlapping cache lines of set B1 will be present in sets A1 and A3 and of set B2 in sets A2 and
A4 respectively.
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Figure 7.8: Cache line overlap between caches of associativities 1 to 4 and set sizes 1 to 4. A total
of 19 cache lines do not overlap which means that a maximum of 19 cache lines are required to
simulate these nine cache configurations instead of 49 for an un-optimised implementation.

And for set sizes s larger than 1:

lcounttopLevel = (2a−1− (log2a)2

2
− log2a

2
)∗ s (7.2)

The first union property is as follows: Given PLRUt caches of set size s, line length l

and associativities a and smaller, the maximum number of different cache lines that need

to be stored is (2a−1− (log2a)2/2− log2a/2)∗ s.

Not only do caches of different associativities overlap, caches of different set sizes do

too. Figure 7.7 shows two caches A and B of associativity 4 and constant line length. The

set size of cache A is 4 while that of cache B is 2. Given that sets A1 and A3 are subject

to the same memory accesses as set B1 and that the shortest lifetime of an item of data is
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three for all those sets, we can be sure that three sets of B1 will always be stored in either

A1 or A3, i.e., that they will be overlapping. The same applies to set B2 with respect to

sets A2 and A4. This results in many overlapping cache lines when simulating caches of

varying set sizes and associativities (Figure 7.8).

To calculate the total number of cache lines required to simulate a set of caches of set

sizes s and smaller, associativities a and smaller and constant line length, the line count

from the caches with the largest set size (given by Equation 7.2) is added to the number

of non-overlapping cache lines for the smaller set sizes. The total non-overlapping lines

for caches of set size one is equal to the value given by Equation 7.1 minus the overlap

for the largest associativity, log2a+1:

lcountlowLevelSet = 2a−1− (log2a)2

2
− log2a

2
− log2a−1

= 2a−2− (log2a)2

2
− 3log2a

2

(7.3)

Bringing the total number of cache lines a simulator needs to track to:

lcounttotal = (2a−1− (log2a)2

2
− log2a

2
)∗ s+(2a−2− (log2a)2

2
− 3log2a

2
)∗ (s−1)

= (4a−3− (log2a)2−2log2a)∗ s−2a+2+
(log2a)2

2
+

3log2a
2

(7.4)

Which leads to the second union property: Given PLRUt caches of line length l, set

sizes s and smaller and associativities a and smaller, the total number of different cache

lines that need to be stored is [Equation 7.4].
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Figure 7.9: Hypothetical entry in the hash table for address d0 in a simulator covering cache
configurations of set sizes up to 32 and associativities 8 and smaller. Every entry in the Locations
table indicates the associativity d0 is stored in in the respective configurations. For example, d0 is
stored in cache line 7 in the cache of set size 32 and associativity 8. Every configuration marked
with an ‘x’ no longer contains d0.

7.4 Simulator Design

Ideally a hardware based PLRUt simulator would have been implemented in the same

vein as MASH{lru} and MASH{fifo}, but as the union properties are not easy to exploit

in hardware, the decision was made to implement a Multiple cAche Simulator in Software

(hence MASS{plrut}) instead. Much of the source code can be seen in Appendix C.

An effective way to pool all the lcounttotal cache lines in a fast and accessible man-

ner is to store them in a hash table of size lcounttotal where the address of the accessed

memory is hashed to obtain the table index. As the table may be subject to collisions,

addresses yielding the same table index are chained in linked lists. At most lcounttotal

entries will ever be stored in the hash table meaning that these structures can be allocated

at initialisation in an ‘entry pool’, thereby saving on the overhead of dynamic memory

allocation and freeing operations. Every entry in the hash table naturally contains the key

(i.e., the address) but also a byte-array of locations, one byte for every cache configura-

tion simulated. Each location byte indicates whether this address is stored in that cache

configuration and if it is, in which cache line (associativity) it is located. An example hash

table and linked list are depicted in Figure 7.9.
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Figure 7.10: Hash table entry from Figure 7.9 and its relation to one of the cache lines it is
tracking.

A separate data structure is employed to hold all the PLRU trees, one tree for every

set in every cache configuration simulated. Each tree additionally stores a byte-pointers,

where a is the associativity of the cache configuration the tree is part of. The purpose of

these byte pointers is so that every tree can keep track of where the location bytes pointing

towards it are stored in the hash table, i.e., the location byte points to the cache line and

the cache line points to the location byte (Figure 7.10). If the cache set suffers a miss, the

byte pointer of the evicted cache line is used to clear the now obsolete location entry in

the hash table (which in the figures is equivalent to writing an ‘x’ to it).

For every address in the memory trace the cache simulator performs two successive

steps:

1. Check whether the input address is stored in the hash table. If it is return the entry,

otherwise create a new entry, link it to the hash table and return the new entry

instead.

2. Use the returned entry from step 1) to update the target cache set for every cache

configuration simulated.

Step 2) is detailed in Algorithm 1 where the update() and getEvict() functions are the

ones presented in Section 7.2. The only important step not covered yet is the removal

of obsolete entries in the hash table. An entry is obsolete when all of its location bytes
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Algorithm 1 Update cache set states
Require: entry, target entry from hash table
Require: setStates, stores all set states of simulated caches

1: for all s in set sizes do
2: for all a in associativities do
3: targetSet = setStates[s][a][entry.addr.setIdx]
4: location = &entry.locations[s][a]
5: if location is ‘x’ then
6: newLine = getEvict(targetSet)
7: *targetSet.lines[newLine]->location = ‘x’
8: *location = newLine
9: targetSet.lines[newLine]->location = location

10: update(targetSet, newLine)
11: else
12: update(targetSet, newLine)

no longer track a cache line (in the given examples it means they all contain ‘x’). One

solution is to scan the entire linked list for a given table index every time the hash table

is accessed; this is in the hopes that the linked lists remain short resulting in quicker

search times. It is possible, though unlikely, that old entries silently accumulate in the

hash table, a situation that can be detected when the entry pool runs out of free entries.

This can trigger a garbage collect which scans the entire hash table and removes obsolete

entries.

Additionally, the repeat address optimisation which is used in Cheetah [111] and is

described as CRCB–2 by Tawada et al. [15] is also implemented.

7.5 Experimental Setup

The existing research on PLRUt cache simulators ( [15,116]) contains a number of draw-

backs. Firstly, the optimisations presented are trivial. More importantly though, the main

reference point for experimentation is a modified version of DineroIV [20] which is not

a single pass simulator. The trace therefore needs to be re-read for every single cache

configuration resulting in excessively high disk-access overheads. Additionally, the al-

gorithms and data structures implemented in DineroIV are remarkably ill suited for the
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simulation of PLRUt caches, mostly because cache states are stored in linked lists while

simple PLRUt implementation requires the tags to remain stationary while storing the set

state in a tree.

The MASS{plrut} simulator is therefore compared with two simulator implementa-

tions: a DineroIV variant that has been modified to make it obey the PLRUt replacement

policy and a CRCB cache simulator implementation that simulates each cache separately

and makes use of the repeat address optimisation. It is therefore identical to Tawada’s

CRCB simulator without the minor CSG optimisation (see Section 7.1). All experiments

were run on a computer with a quad core Intel Core 2 processor running at 2.4 GHz with

3 GB of memory. To minimise disk access overhead, traces were read from a 256 GB Slid

State Drive (SSD) yielding a measured maximum sequential read speed of 280 MB/s.

The Cheetah source code was used as base for the CRCB and Hash Table-based (HT)

simulators as it is a modular, well-programmed and open source piece of software that

can easily be extended. The code was also modified for enhanced trace reading speed

and parsing of the Dinero trace input format. Additionally a simple trace compression

(TC) and decompression algorithm was used to further lower the disk access time of both

the CRCB and HT simulators. If the trace needs to be read multiple times the simulator

can create a compressed version of the trace in the first run and then employ it in all

subsequent simulations. As MASS{plrut} can only simulate one line length at a time,

trace compression can be beneficial when consecutively simulating caches of different

line lengths. The trace compression algorithm is described in depth in Chapter 8.

The traces of eight benchmarks were used to evaluate the different cache simulators.

Caches of set sizes 1 to 1024 and line lengths 4 to 64 were simulated in every simulation

run. Associativities of 4 and smaller and 8 and smaller were simulated separately; the

larger the maximum associativity simulated the slower the CRCB implementation will be

as every miss forces a search through a cache lines while the hash table access is still

performed in constant time for the optimised simulator. DineroIV was exclusively run at

a maximum associativity of 4 to save time and also to provide a rough estimate of the kind

of speedups obtained as a reference point for comparison with previous research.



122 CHAPTER 7. MASS{PLRUT}: OPTIMISED PLRUT CACHE SIMULATION

7.6 Results

As the optimised hash table-based cache simulator with trace compression (HT + TC)

performs the quickest, the results are displayed as speedup with respect to that simulator.

The computation times are compared with DineroIV, a CRCB implementation, a CRCB

simulator with trace compression and a Hash Table-based simulator without trace com-

pression. The results of the experiments can be seen in Table 7.1.

The HT + TC simulator was 28.33× faster than DineroIV on average while the CRCB

simulator implementation was on average 21.20× faster. Interestingly, Tawada et al. [15]

claimed that their CRCB implementation was up to 200× faster than DineroIV. This larger

speedup may be explained by a number of factors. Tawada et al. were simulating more

cache configurations, 380 instead of our 165, and the disk access overhead of DineroIV is

proportional to the number of configurations simulated while for a single pass simulator

the disk access overhead remains constant as the trace is only read once. It is also likely

that they were not employing solid state storage which is characterised by significantly

faster disk access times compared to conventional hard disk drives; if this was the case

the disk access overhead would have been significantly and proportionately exacerbated.

We omit a comparison with the work by Haque due to questionable results1.

Speedup with respect to the CRCB cache simulator with trace compression (CRCB

+ TC) gives an idea of the contribution in speedup as a consequence of using the opti-

mised cache simulator design based on a hash table which we presented in Section 7.4.

The maximum and average speedups caused alone by the hash table design are max =

1.82 (44.94%) and 1.18 (15.35%), and average = 1.58 (36.51%) and 1.13 (11.73%)

for associativities of 8 and 4 respectively. As explained at the end of Section 7.5, even

greater speedups could be achieved at greater associativities. Combining trace compres-

sion and the optimised hash table-based algorithm resulted in maximum and average

speedups of max = 1.93 (48.09%) and 1.42 (29.82%), and average = 1.72 (41.71%)

1The optimised single-pass simulator by Haque [116] is only four times faster than DineroIV for a line
size of four bytes which is extremely unlikely given that he is simulating 75 cache configurations, especially
if a standard hard drive was used instead of an SSD.
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and 1.30 (23.28%) for associativities of 8 and 4 respectively. These increased speedups

demonstrate the improvements that trace compression can bring and are quantified by

the speedup up achieved in comparison to the hash table-based simulator without trace

compression (HT) yielding an average improvement of 13.35%.

7.7 Summary

For the first time two union properties have been introduced that are applicable to the

PLRUt cache replacement policy that sets an upper bound to the memory requirements

of a PLRUt single pass simulator. Additionally, a number of optimisations have been

proposed which can be employed to speed up the execution of precise PLRUt single-pass

simulators. The optimisations include a tree-updating method that can be performed in

two simple steps using a look-up table, trace compression, and a hash table-based simu-

lation approach. All have been implemented in a software-based cache simulator called

MASS{plrut}. As a result, the optimised simulator is up to 1.93× faster than a non-

optimised simulator, averaging a speedup of 1.72× for a maximum simulated associativ-

ity of 8.



Chapter 8

Trace Compression

8.1 Introduction

The benefits of trace compression have been amply demonstrated in the past by authors

such as Johnson et al. [131], Luo et al. [133], Janapsatya et al. [135] and Aleksander

and Milena Milenkovic [136]. As discussed in Section 2.3.7, trace compression creates a

more compact version of a trace file which is quicker to read from a permanent storage

device than a raw, un-compressed trace file. A frequently overlooked facet of trace com-

pression is the time it takes to compress and decompress the trace. Trace compression

can even worsen the performance of cache simulators if the time gained from reading

a compacted trace is cancelled out by the time it takes to decompress the file. What is

also of interest in the research context of this dissertation is the ability to perform trace

decompression in hardware to speed up the simulation times of hardware-based simula-

tors such as MASH{lru} and MASH{fifo}. This chapter presents a trace compression

algorithm that focuses on simplicity, speed of compression and decompression and the

ability to perform decompression in hardware. To simplify the algorithm and minimise

hardware complexity the compressed output is byte-aligned so that a minimum of shift

operations are required. The proposed algorithm improves on the technique presented

by Luo et al. [133] where address offsets are encoded using data types of different sizes.

125
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Address Difference
402657512
402657514 +2
402657516 +2
402657516 +0
402657518 +2
402657520 +2
402657514 -6
402657516 +2
402657518 +2
402657520 +2
402657514 -6
402657516 +2

Table 8.1: Address sample.

402657511

402657512

402657513

402657514

402657515

402657516

402657517

402657518

402657519

402657520

402657521
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A

dd
re

ss

Memory Access

Figure 8.1: Address sample with three loop iterations.

The proposed improvements include defining ‘floats’ and detecting repetitions. The trace

compression method described here was successfully employed to speed up cache simu-

lation in Chapters 6 and 7.

8.2 Address Order Observations

The order of memory accesses of an application will often display predictable behaviour

due to the nature of program execution on an in-order processor. Note that it is assumed

that the address width is at least 32 bit, and that therefore the lowest two bits of the address

are ignored in the current implementation.

8.2.1 Small Address Jumps

Though addresses themselves are large, the difference between consecutive instruction

addresses is usually very small as one instruction is executed after the other. Other than

linear address progression, programs primarily execute loops where a small number of

consecutive instructions are executed followed by a jump to an address visited shortly

before. Such an address progression can be seen in Figure 8.1 which is a trace sample of

a JPEG encoding application running on an Xtensa processor. A snippet of this sample is
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Figure 8.2: Sample of a data memory trace.

shown in Table 8.1 showing addresses and difference between the consecutive addresses.

Similarly, data memory accesses also display a significant amount of memory access

locality, though large jumps are much more common. A sample of data memory accesses

for the same JPEG application can be seen in Figure 8.2.

These address differences can be efficiently encoded on data types that are much

smaller than the full 32-bit address type. The decision was made to create 3 special data

types, one 3-bit for values -4 to 3, one 6-bit for values -32 to 31 and one 14-bit for values

-8192 to 8191. The histogram in Figure 8.3a shows how the address differences of an

instruction trace fall into these three categories for the same JPEG encoding application.

It can be seen that by far the largest category is an address difference in the range of -4

to 3. Data traces (Figure 8.3b) also have many small address differences though on the

whole large jumps are performed much more frequently. Encoding address differences on

special data types is therefore not as effective for data traces.

The first two bits at the beginning of a data token determine what kind of data type the

consecutive bytes contain or whether a command is encoded on this byte. If the difference
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(a) Instruction trace.
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(b) Data trace.

Figure 8.3: Distribution of consecutive instruction and data address differences within the given
ranges.

Bit 7 Bit 6 Significance
0 0 Command
0 1 6-bit type
1 0 Two 3-bit types
1 1 14-bit type

Table 8.2: Data type is determined based on the bits 6 and 7 from the next compressed trace byte.

between two addresses is beyond the largest range of -8191 to 8192 then a command is

used to indicate that the next four bytes give the absolute address of the next memory

access. This means that an absolute memory address is encoded on 5 bytes, which is

larger than the 4 bytes that would be required if the entire trace were made up of absolute

addresses. The fair assumption is made that the space savings obtained by using smaller

data types outweighs the extra bytes required to represent absolute memory addresses.

The byte content for the three data types and an absolute memory address command are

depicted in Figure 8.4. The first token in a compressed trace always contains an absolute

address command to set the starting point of the memory accesses.



8.2. ADDRESS ORDER OBSERVATIONS 129

0 1 a a a a a a

1 0 a a a b b b

1 1 a a a a a a a a a a a a a a

6 bit difference

3-bit diff 3-bit diff

14-bit difference

0 0 0 1 1 x x x 0xaa 0xaa 0xaa 0xaa

(a)

(b)

(c)

(d)

Absolute address encoded on 4 bytes

Figure 8.4: Example bit encodings for the three supported data types in (a), (b) and (c). (d) shows
how an absolute address is loaded for when the address difference is greater than 8191 or less than
-8192.

0 0 1 r r r r r

Figure 8.5: Bit encoding for a repeat command.

8.2.2 Repeat Differences

Very frequently the difference between consecutive memory accesses will be repeated a

certain number of times. In the instruction address trace sample from Figure 8.6 it can

be seen that a difference of +2 is repeated four times and then six times in a row. The

compression algorithm detects such repetitions and instead of writing out every single

address memory difference sends a command to indicate that the previous difference is to

be repeated r times. r is encoded on 5 bits, as shown in Figure 8.5, representing between

1 and 32 repetitions of the previous difference.

8.2.3 Address Floats

A number of reasons can cause large jumps in the accessed address. For instruction traces,

function calls will often take the program to a location in instruction memory that is far

away from the calling code. After the function is executed, the program returns to where
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Figure 8.6: Instruction trace sample with repetitions.
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Figure 8.7: Instruction trace sample showing jumps between certain address localities due to
function calls.
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Figure 8.8: Data trace sample showing jumps between certain address localities due to stack
operations.
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Command Address Float 0 Float 1
Set float 0 to 28 28 28 -

+2 30 30 -
+2 32 32 -

Set float 1 to 9000 9000 32 9000
+2 9002 32 9002
+4 9006 32 9006

Switch to float 0 - 32 9006
+2 34 34 9006
+2 36 36 9006

Switch to float 1 - 36 9006
+4 9010 36 9010

Table 8.3: Sequence of commands sent and the corresponding addresses produced. The states of
two floats are given with the selected float in bold.

it was located before the function was called. Depending on the application, functions

may be called a number of times in a row, i.e., large jumps are frequently performed to

the same set of locations (Figure 8.7). This observation is even more so valid for data

traces where frequent accesses to the stack memory cause large jumps in memory address

that keep going back to the same locations.

Given the compression techniques that have been presented so far, each large jump

would require a 5 byte absolute memory address. To further reduce the size of the trace,

address floats are proposed which can keep track of up to eight different localities in

memory. Every time an absolute address command is issued it is provided with a float

index pointing to the float that is currently used. The given absolute address represents the

value of the current float. Subsequent differences between addresses update the location

of that float until either another absolute address command or a switch float command are

issued. A possible command sequence using floats is given in Table 8.3. Commands in

the Command column are issued creating the address given in the address column. The

states of float 0 and float 1 are also given in the right hand columns.

To implement floats the absolute address command was changed to include the float

index encoded on three bits. Similarly, the switch float command also uses three bits to

indicate which float to switch to. The command bits can be seen in Figure 8.9.
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0 0 0 1 0 f f f

Switch to float

0 0 0 1 1 f f f 0xaa 0xaa 0xaa 0xaa

(a)

(b)

Create new float at the absolute address encoded on 4 bytes

Figure 8.9: A switch float (a) and a new float (b) command. The index of the float is encoded on
the three ’f’ bits.

Trace density (bytes/token)
Application Data Instruction

Autocorrelate 1.33 0.38
Convolution 0.90 0.32

FIR 1.27 0.33
Idct 1.18 0.26

JPEG simple encoder 1.56 0.50
Mandelbrot 1.07 0.41

Matrix 1.48 0.20
MP3 decoder 1.44 0.68
MP3 encoder 1.74 0.61

MPEG2 encoder 1.41 0.42
Quantisation 1.26 0.40

Table 8.4: Trace compression density for data and instruction traces for a number of benchmarks.

8.3 Performance

The compression density achieved with the proposed algorithm for a number of bench-

marks can be seen in Table 8.4. The large difference between data and instruction trace

densities can be explained by a number of factors:

1. Data traces perform large jumps much more frequently, an assertion which is backed

by the graphs in Figure 8.3, and every float switch requires an additional byte.

2. Tokens from a data trace require an additional bit to determine whether the memory

access is a read or a write. This bit was appended to the end of the address, making

it vary ever so slightly more than an address without read/write information.
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3. Data traces are not as regular as instruction traces, and thus repeat difference com-

mands are rarely encoded, whereas repeats are frequently found in instruction traces.

The compression and decompression speed of the algorithm was measured for the

benchmarks in Table 8.4 on the same computer as was used in Section 7.5, i.e., a quad

core Intel Core 2 processor at 2.4 GHz with 3 GB of memory, reading the trace from a

256 GB SSD. The different timings can be seen in Table 8.5. The Standard .din Parse

column shows how long it takes to read and parse the .din trace file. For the proposed

algorithm, it can be seen that encoding and storing the trace takes a little longer than

parsing the trace. This observation is exploited in Chapters 6 and 7 where the trace needs

to be read a number of consecutive times: in the first simulation iteration the raw .din file

is read and a compressed version of the trace is stored with little overhead; any subsequent

simulation runs read the compressed trace directly which is significantly quicker, as can

be seen in the Decode time column for the proposed compressor.

For the sake of comparison, gzip compression was also performed on those same

traces. While the size of the compressed traces produced is much smaller than for the

proposed algorithm, trace encode and especially decode operations take a lot longer for

gzip. Having long trace decode times defeats the purpose of employing trace compression

to speed up cache simulation. The proposed algorithm is therefore much better optimised

to speed up cache simulation. In terms of hardware implementation, the trace decoder

requires 1338 LUTs and 392 registers when implemented on an Altera Stratix IV FPGA.

The circuit was successfully tested at 150 MHz but is capable of running at higher fre-

quencies, which is generally limited by the circuits on either side of the hardware decoder.

For cache simulation requiring six simulation runs, the employment of the proposed

trace compression algorithm can reduce the trace access time on average by a factor 4.27x

for instruction traces and 3.81x for data traces. Additionally, trace compression can re-

duce the required bandwidth for trace transfer as shown in Chapter 6 where memory

access information needs to be sent from a computer to an FPGA through a PCIe port.
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8.4 Future Work

There is one memory access behaviour which could be exploited, but has not been at

this point: the repeated occurrence of patterns in the trace. The loop from Figure 8.1

shows part of a loop which repeats the differences +2, +2, +2 then -6. In the actual trace

these differences are repeated 7 times. Instead of encoding this sequence 7 times it would

be possible to implement a start pattern and an end pattern command. The end pattern

command could then be followed by a repeat command which indicates how many times

the last pattern should be repeated.

To implement such pattern repeat functionality the encoder would need to be made

more complex by adding pattern detection capability. The trace decoder implementation

would be more straightforward than that, as it would just have to keep a local copy of the

pattern to be repeated, and repeat it the given number of times.

8.5 Summary

A trace compression algorithm has been presented with a focus on fast trace encoding

and decoding, with the capability of decoding the trace in hardware. A number of trace

observations were exploited to create this optimised algorithm. Small differences be-

tween consecutive addresses are exploited by performing offset encoding using special

data types. Repeated differences are compactly represented with a repeat command, and

frequent large jumps between localities are improved upon with floats. When performing

cache simulation, the amount of time required to read the trace can be sped up by a factor

of approximately 4x with the aid of trace compression, if the trace needs to be read 6

consecutive times.



Chapter 9

Conclusions

Driven by the constant need for faster and more complex digital devices, designers have to

be certain that temperature, energy and performance criteria are met in today’s integrated

circuit designs. These IC requirements increasingly apply to FPGA-based circuits where

the drastic rise in power densities has led to observable thermal problems [29]. Digital

circuits have to be optimised at design time using ever more sophisticated tools such as

system and thermal simulation, and fast cache evaluation. Despite these efforts, design

time optimisations are often insufficient requiring the implementation of run-time meth-

ods that adapt the way the device operates in the field depending on up-to-date conditions

and requirements.

At first the dynamic application adaptation method was considered through the cre-

ation of a specialised JPEG encoding application. The encoder is characterised by un-

precedented adaptability at the DCT level while requiring very few resources. This makes

it ideal for use in embedded systems. The application was implemented on an FPGA with

the goal of lowering the device temperature if the chip became too hot. Following two

successive experiments, one on an older 90nm and one on a newer 40nm device, it was

found that application adaptation, by itself, is incapable of lowering FPGA temperature

unless it is combined with other dynamic thermal management methods such as frequency

scaling or clock gating.

Deeper thermal analysis of an embedded system implemented on an FPGA revealed

136
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that the component principally responsible for elevated temperatures is the external mem-

ory interface. This large, complex IP block operating at high frequencies is active mostly

when the external memory is being accessed. It logically follows that fewer external mem-

ory accesses reduce the device temperature. For an embedded system containing a CPU

cache this means that fewer cache misses results in fewer external memory accesses and

lower memory interface temperature. Based on temperature measurements and miss rates

of different caches for a JPEG encoding application, a model was proposed by Thomas

Ebi linking cache miss rate r with temperature T :

T = α · e−1/β r +TMEM +TBASE (9.1)

where α , β , TMEM and TBASE need to be determined experimentally. If the miss rate and

device thermal characteristics are known the device temperature can be estimated.

Single-pass cache simulation is the tool of choice to accurately evaluate the miss rates

of many different cache configurations. Inconveniently, the execution time of precise

cache simulation is very slow for an exhaustive analysis of the cache design space. In

order to improve a designer’s ability to analyse caches and consequently temperature at

design time, methods were researched to improve the throughput of single-pass cache

simulators.

Initially the simulation of LRU caches was considered with MASH{lru}, a Multiple

cAche Simulator in Hardware implemented on an FPGA. The device’s resource usage was

minimised by making use of two known LRU cache inclusion properties. In rough terms

the inclusion properties state that the contents of a cache are a subset of the contents of a

larger cache. It follows that only the largest cache needs to be simulated based on which

the state of all the smaller caches can be deduced. This design approach requires consider-

ably fewer resources than the creation of a separate cache instance for every distinct cache

simulated. The resulting simulator instance can concurrently simulate 44 cache config-

urations at a trace consumption rate of 100 MHz when instantiated on a medium-sized

Altera Stratix IV FPGA. Experiments concluded that MASH{lru} is up to 53x faster than
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the fastest software alternatives.

Simulators of caches obeying the FIFO replacement policy are addressed with the pro-

posed MASH{fifo} simulator which is also a hardware-based single-pass cache simulator.

To optimise the resource usage of MASH{fifo} two FIFO cache inclusion properties are

presented for the first time which can be summarised as follows: the contents of FIFO

caches of set sizes ss and smaller and associativities assoc and smaller will always be a

subset of the data held in an LRU cache of set size ss and associativity 2∗assoc−1. The

resulting hardware instance can be clocked at 75 MHz while simulating 30 cache config-

urations at the same time. Compared to software solutions this makes MASH{fifo} up to

11.10x faster for static trace cache simulation that is read from a disk drive.

A novel ‘in-system’ cache simulation methodology is explored which is made possi-

ble through the hardware-only nature of the MASH simulators. By instantiating a cache

simulator instance alongside an embedded system on an FPGA, the memory trace can be

obtained by directly observing accesses on the memory bus. The benefits of in-system

cache simulation are fast trace generation based on a real-world embedded system com-

bined with concurrent and real time cache simulation. As a consequence the trace is based

on an application flow governed by real world inputs and the trace is generated at very

high speed. An in-system approach is ideal when designing an embedded system that

runs a complex application that is subject to a large range of inputs.

A PLRUt simulator is proposed with MASS{plrut} which is a software based cache

simulator. By defining union properties of PLRUt caches the maximum memory require-

ments of a PLRUt simulator can be determined. Armed with this knowledge an optimised

hash table-based simulator was designed that is up to 1.93× faster than an unoptimised

solution. The effect of trace compression is also taken into account and a simple trace

compression algorithm is presented.

The findings and inventions presented in this dissertation can help embedded design-

ers meet their temperature, energy and performance requirements in a number of ways.

The adaptive JPEG encoder can be employed when image compression is required at

the highest possible quality level under fluctuating system conditions. LRU, FIFO and
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PLRUt caches can now be simulated at unprecedented speeds to determine the cache con-

figurations yielding the best energy consumption and performance. The output of these

simulators can also be combined with the thermal cache model from Equation 9.1, al-

lowing for the selection of a cache configuration with suitable thermal characteristics in

an embedded system implemented on an FPGA. Finally, the ability to perform in-system

cache simulation enables designers to obtain measurements from within a real embedded

system, providing fast and realistic cache performance insights like never before.



Appendix A

MASH{lru} Implementation

This appendix provides the main code of the different components that the MASH{lru} simulator
is made from.

A.1 MASH configuration
The global.vhd file contains a number of constant and function definitions that are used by the
different MASH implementations. It also holds a number of settings that the designer can modify
to tailor the simulator to their needs. This includes:

• set count mux, the set size of the biggest cache simulated as a power of two.

• min set count mux, the smallest set size simulated, also given as a power of two.

• associativity mux, the maximum associativity as a power of two.

• address width, maximum tag size, in bits.

• assoc inc width, indicates whether consecutive simulated associativities are incremental or
in powers of two.

• counter width, bit width of the hit counters.

1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL ;
3 use IEEE . NUMERIC STD .ALL ;
4

5 package g l o b a l i s
6

7 −−−−> SETTINGS USED TO CONFIGURE THE CACHE SIMULATOR
8 c o n s t a n t s e t c o u n t m u x : i n t e g e r := 1 0 ; −− D e t e r m i n e s

how many s e t s are a t t h e t o p l e v e l
9 c o n s t a n t m i n s e t c o u n t m u x : i n t e g e r := 0 ; −− S m a l l e s t

number o f s e t s we want t o s i m u l a t e

140
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10 c o n s t a n t a s s o c i a t i v i t y m u x : i n t e g e r := 2 ; −− D e f i n e s t h e
g r e a t e s t l e v e l o f a s s o c i a t i v i t y s i m u l a t e d

11 c o n s t a n t a d d r e s s w i d t h : i n t e g e r := 2 2 ; −− To save on
t a g b i t s and compara tors , make t h e a d d r e s s w i d t h as s m a l l
as p o s s i b l e

12 c o n s t a n t a s s o c i n c w i d t h : i n t e g e r := 2 ∗∗
a s s o c i a t i v i t y m u x ; −− I f t h e a s s o c i a t i v i t y l e v e l s
s i m u l a t e d are i n c r e m e n t a l ( 1 , 2 , 3 e t c . ) d e f i n e ’2 ∗∗
a s s o c i a t i v i t y m u x ’ .

13 −− For i n
powers o f
two ( 1 , 2 ,
4 , 8 e t c . )
d e f i n e ’
a s s o c i a t i v i t y m u x
+ 1 ’

14 c o n s t a n t c o u n t e r w i d t h : i n t e g e r := 4 0 ; −− B i t w i d t h
o f t h e c o u n t e r s t o be used

15

16 −−−−> DO NOT TOUCH <−−−−
17 c o n s t a n t a s s o c i a t i v i t y : i n t e g e r := 2 ∗∗

a s s o c i a t i v i t y m u x ;
18 c o n s t a n t t a g l e n g t h : i n t e g e r := a d d r e s s w i d t h −

s e t c o u n t m u x − 2 ;
19 c o n s t a n t c o u n t e r s c o u n t : i n t e g e r := 2 ∗ ( s e t c o u n t m u x −

m i n s e t c o u n t m u x + 1) ; −− D e f i n e s t h e number o f c o u n t e r s
t h a t w i l l be r e q u i r e d . 2 x because one i s needed f o r read ,
and one f o r w r i t e .

20 c o n s t a n t b o t t o m a d d r b i t s : i n t e g e r := a d d r e s s w i d t h − 1 −
t a g l e n g t h ; −− Mainly used i n t h e unpack addr ( ) f u n c t i o n .
D e f i n e s t h e w i d t h o f t h e lower a d d r e s s b i t s , once t h e t a g
has been removed

21

22 −− H i t c o l l e c t i o n b u n d l e s t o g e t h e r h i t r e s u l t s so t h e y can
e a s i l y be p as se d t o lower l e v e l sub cache s e t s .

23 type h i t c o l l e c t i o n i s array ( n a t u r a l range <>) of
s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto 0) ;

24

25 −− H i t i n c r e m e n t c o l l e c t i o n i n d i c a t e s which c o u n t s s h o u l d be
i n c r e m e n t e d .

26 type h i t i n c r c o l l e c t i o n i s array ( n a t u r a l range <>) of
s t d l o g i c v e c t o r ( a s s o c i n c w i d t h − 1 downto 0) ;

27

28 −− I n t e g e r v a l u e s used t o s t o r e t h e h i t c o u n t s . I n c r e m e n t e d by
t h e h i t c o u n t e r module .
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29 type h i t c o u n t e r s i s array ( a s s o c i n c w i d t h − 1 downto 0) of
u n s i g n e d ( c o u n t e r w i d t h − 1 downto 0) ;

30

31 −− A blob o f h i t c o u n t v a l u e s .
32 type h i t c o u n t e r s b l o b i s array ( n a t u r a l range <>) of

h i t c o u n t e r s ;
33

34 −− A r e c o r d t o s t o r e t h e d i f f e r e n t p a r t s a r e q u e s t e d a d d r e s s
i s made up o f .

35 type a d d r s e c t i o n s i s
36 record
37 t a g : s t d l o g i c v e c t o r ( t a g l e n g t h − 1 downto 0) ;
38 s e t i d x : s t d l o g i c v e c t o r ( s e t c o u n t m u x − 1 downto 0) ;
39 new addr : s t d l o g i c v e c t o r ( a d d r e s s w i d t h − 1 downto 0) ;
40 end record ;
41

42 f u n c t i o n f o r m a t h i t l i s t ( a r g : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y
− 1 downto 0) ) re turn s t d l o g i c v e c t o r ;

43 f u n c t i o n u n p a c k a d d r ( add r : s t d l o g i c v e c t o r ( a d d r e s s w i d t h −
1 downto 0) ; l i n e l e n : i n t e g e r range 0 to 6 ) re turn
a d d r s e c t i o n s ;

44 end ;
45

46 package body g l o b a l i s
47

48 −−######################################################
49 −− T h i s f u n c t i o n b a s i c a l l y m u l t i p l e x e s t h e i n p u t . I t t a k e s t h e

h i t l i s t as an i n p u t
50 −− and from t h e r e i n d i c a t e s a t which l e v e l o f a s s o c i a t i v i t y a

h i t has o c c u r r e d .
51 −− The r e t u r n v a l u e can d i r e c t l y be f e d i n t o a h i t c o u n t e r .
52 f u n c t i o n f o r m a t h i t l i s t ( a r g : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y

− 1 downto 0) ) re turn s t d l o g i c v e c t o r i s
53 v a r i a b l e r e s u l t : s t d l o g i c v e c t o r ( a s s o c i n c w i d t h − 1

downto 0) ;
54 v a r i a b l e h i t r e a r r : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1

downto 0) ;
55 v a r i a b l e h i t o c c u r : s t d l o g i c ;
56 begin
57 i f a s s o c i n c w i d t h = a s s o c i a t i v i t y then
58 −− A s s o c i a t i v i t y s i z e s s i m u l a t e d are i n c r e m e n t a l . I f a h i t

i s d e t e c t e d , s e t a l l h i t s a t g r e a t e r l e v e l s o f
a s s o c i a t i v i t y .

59 −−
60 −− B e f o r e : | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | A f t e r : | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
61 −− Assoc : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
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62 −−
63 h i t o c c u r := ’ 0 ’ ;
64

65 f o r k in a s s o c i n c w i d t h − 1 downto 0 loop
66 i f a r g ( k ) = ’1 ’ then
67 h i t o c c u r := ’ 1 ’ ;
68 end i f ;
69 r e s u l t ( a s s o c i n c w i d t h − 1 − k ) := h i t o c c u r ;
70 end loop ;
71 e l s i f a s s o c i n c w i d t h = a s s o c i a t i v i t y m u x + 1 then
72 −− A s s o c i a t i v i t y s i z e s s i m u l a t e d are i n powers o f two
73 −−
74 −− F i r s t o f f , r e v e r s e t h e b i t o r d e r o f t h e h i t s so t h i s

whole t h i n g i s e a s i e r t o f i g u r e o u t
75 −− Example , a s s o c i a t i v i t y = 8
76 −−
77 −− B e f o r e : | 0 | 1 | 0 0 | 0 0 0 0 | A f t e r : | 0 0 0 0 | 0 0 | 1 | 0 |
78 −− Assoc : | 1 | 2 | 4 | 8 | | 8 | 4 | 2 | 1 |
79 −−
80 f o r k in a s s o c i a t i v i t y − 1 downto 0 loop
81 h i t r e a r r ( k ) := a r g ( a s s o c i a t i v i t y − 1 − k ) ;
82 end loop ;
83

84 r e s u l t := ( o t h e r s => ’ 0 ’ ) ;
85 i f t o i n t e g e r ( u n s i g n e d ( h i t r e a r r ) ) > 0 then
86 −− S e t t h e MSb i f we have any h i t a t a l l
87 r e s u l t ( a s s o c i a t i v i t y m u x ) := ’ 1 ’ ;
88 f o r k in a s s o c i a t i v i t y m u x − 1 downto 0 loop
89 −− T h i s f o r loop s u c c e s s i v e l y compares t h e i n p u t v a l u e

t o p r e d e f i n e d v a l u e s marking a s s o c i a t i v i t y l e v e l s
90 −− i . e . , f o r 16 b i t i n p u t (4 t o 0 r e s u l t ) , i t c h e c k s

i f t h e i n p u t v a l u e i s s m a l l e r than :
91 −− 0 b0000000100000000 − r e s u l t |= 0 b01000
92 −− 0 b0000000000010000 − r e s u l t |= 0 b00100
93 −− 0 b0000000000000100 − r e s u l t |= 0 b00010
94 −− 0 b0000000000000010 − r e s u l t |= 0 b00001
95 i f (2 ∗∗ (2 ∗∗ k ) ) > t o i n t e g e r ( u n s i g n e d ( h i t r e a r r (2

∗∗ a s s o c i a t i v i t y m u x − 1 downto 0) ) ) then
96 r e s u l t ( k ) := ’ 1 ’ ;
97 end i f ;
98 end loop ;
99 end i f ;

100 e l s e
101 −− I f we g e t he re i t ’ s because o f a bad a s s o c i n c w i d t h

s e t t i n g
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102 a s s e r t f a l s e r ep or t ”Bad <a s s o c i n c w i d t h > s e t t i n g . P l e a s e
f i x c o n s t a n t d e c l a r a t i o n i n g l o b a l . vhd . ” s e v e r i t y

f a i l u r e ;
103 end i f ;
104

105 re turn r e s u l t ;
106 end f u n c t i o n ;
107

108

109 −−######################################################
110 −− unpack addr t a k e s as an i n p u t t h e c u r r e n t l y a c c e s s e d

a d d r e s s and chops i t up i n t o i t s d i f f e r e n t s e c t i o n s :
111 −− − tag , o f maximum t a g l e n g t h , w i t h b i t s c l e a r e d depend ing

on l i n e l e n
112 −− − s e t i d x , a s u b s t r i n g o f addr , t h e l o c a t i o n o f which

depends on l i n e l e n
113 −− − b y t e s e l e c t e d , which i s a c t u a l l y n e v e r used , b u t t h e r e

f o r c o m p l e t e n e s s
114 −− − new addr , t h e addres s , b u t m o d i f i e d w i t h c l e a r e d b i t s

t o t a k e t h e l i n e l e n g t h i n t o a c c o u n t
115 f u n c t i o n u n p a c k a d d r ( add r : s t d l o g i c v e c t o r ( a d d r e s s w i d t h −

1 downto 0) ; l i n e l e n : i n t e g e r range 0 to 6 ) re turn
a d d r s e c t i o n s i s

116 v a r i a b l e r e s u l t : a d d r s e c t i o n s ;
117 v a r i a b l e a d d r 0 : s t d l o g i c v e c t o r ( b o t t o m a d d r b i t s downto

0) ;
118 begin
119 a d d r 0 := ( o t h e r s => ’ 0 ’ ) ;
120 case l i n e l e n i s
121 when 0 =>
122 r e s u l t . t a g := add r ( a d d r e s s w i d t h − 1 downto

b o t t o m a d d r b i t s + 1 ) ;
123 r e s u l t . s e t i d x := add r ( b o t t o m a d d r b i t s downto

b o t t o m a d d r b i t s − s e t c o u n t m u x + 1) ;
124 when 1 =>
125 r e s u l t . t a g := add r ( a d d r e s s w i d t h − 1 downto

b o t t o m a d d r b i t s + 2 ) & ’ 0 ’ ;
126 r e s u l t . s e t i d x := add r ( b o t t o m a d d r b i t s + 1 downto

b o t t o m a d d r b i t s − s e t c o u n t m u x + 2) ;
127 when 2 =>
128 r e s u l t . t a g := add r ( a d d r e s s w i d t h − 1 downto

b o t t o m a d d r b i t s + 3 ) & ” 00 ” ;
129 r e s u l t . s e t i d x := add r ( b o t t o m a d d r b i t s + 2 downto

b o t t o m a d d r b i t s − s e t c o u n t m u x + 3) ;
130 when 3 =>
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131 r e s u l t . t a g := add r ( a d d r e s s w i d t h − 1 downto
b o t t o m a d d r b i t s + 4 ) & ” 000 ” ;

132 r e s u l t . s e t i d x := add r ( b o t t o m a d d r b i t s + 3 downto
b o t t o m a d d r b i t s − s e t c o u n t m u x + 4) ;

133 when 4 =>
134 r e s u l t . t a g := add r ( a d d r e s s w i d t h − 1 downto

b o t t o m a d d r b i t s + 5 ) & ” 0000 ” ;
135 r e s u l t . s e t i d x := add r ( b o t t o m a d d r b i t s + 4 downto

b o t t o m a d d r b i t s − s e t c o u n t m u x + 5) ;
136 when 5 =>
137 r e s u l t . t a g := add r ( a d d r e s s w i d t h − 1 downto

b o t t o m a d d r b i t s + 6 ) & ” 00000 ” ;
138 r e s u l t . s e t i d x := add r ( b o t t o m a d d r b i t s + 5 downto

b o t t o m a d d r b i t s − s e t c o u n t m u x + 6) ;
139 when 6 =>
140 r e s u l t . t a g := add r ( a d d r e s s w i d t h − 1 downto

b o t t o m a d d r b i t s + 7 ) & ” 000000 ” ;
141 r e s u l t . s e t i d x := add r ( b o t t o m a d d r b i t s + 6 downto

b o t t o m a d d r b i t s − s e t c o u n t m u x + 7) ;
142 when o t h e r s =>
143 end case ;
144 r e s u l t . new addr := r e s u l t . t a g & a d d r 0 ;
145 re turn r e s u l t ;
146 end f u n c t i o n u n p a c k a d d r ;
147

148 end package body ;

A.2 Main LRU Simulator File
This is the top level simulator file, lru cache sim.vhd. It instantiates and connects top level and
lower level sets together with hit counters.

1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL ;
3 use IEEE . NUMERIC STD .ALL ;
4

5 l i b r a r y work ;
6 use work . g l o b a l .ALL ;
7

8 e n t i t y l r u c a c h e s i m i s
9 port (

10 c l k : in s t d l o g i c ;
11 r e s e t n : in s t d l o g i c ;
12 a d d r e s s : in s t d l o g i c v e c t o r ( a d d r e s s w i d t h − 1

downto 0) ; −− The a d d r e s s t h a t i s b e i n g r e q u e s t e d
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13 new addr : in s t d l o g i c ; −− L i k e an
i n p u t e n a b l e f o r a new a d d r e s s

14 r e a d n : in s t d l o g i c ; −− 0: we are
read ing , 1 : we are w r i t i n g

15 s t i l l c o m p u t i n g : out s t d l o g i c ; −− S e t when
and a c c e s s i s s t i l l b e i n g computed

16 l i n e l e n g t h m u x : in i n t e g e r range 0 to 6 ; −−
D e f i n e s t h e l e n g t h o f a l i n e f o r t h e c u r r e n t run

17 a l l h i t c o u n t s : out h i t c o u n t e r s b l o b (0 to c o u n t e r s c o u n t
− 1) ; −− A blob c o n t a i n i n g a l l t h e h i t c o u n t s o f a l l

s e t s i z e s and a l l l e v e l s o f a s s o c i a t i v i t y
18 t o t a l a c c e s s e s : out u n s i g n e d ( c o u n t e r w i d t h − 1 downto 0) ;

−− C o n t a i n s t h e t o t a l a d d r e s s a c c e s s e s t h a t have been
per fo rmed

19 r e a d a c c e s s e s : out u n s i g n e d ( c o u n t e r w i d t h − 1 downto 0) ;
−− T o t a l r e a d s

20 w r i t e a c c e s s e s : out u n s i g n e d ( c o u n t e r w i d t h − 1 downto 0)
−− T o t a l w r i t e

21 ) ;
22 end l r u c a c h e s i m ;
23

24 a r c h i t e c t u r e r t l of l r u c a c h e s i m i s
25

26 c o n s t a n t s e t c o u n t : i n t e g e r := 2 ∗∗ s e t c o u n t m u x ;
27

28 component l r u s e t
29 port (
30 c l k : in s t d l o g i c ;
31 r e s e t n : in s t d l o g i c ;
32 s e t s e l e c t : in s t d l o g i c ;
33 a d d r e s s : in s t d l o g i c v e c t o r ( a d d r e s s w i d t h − 1

downto 0) ;
34 h i t i d x : out s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1

downto 0)
35 ) ;
36 end component ;
37

38 component l r u s u b s e t c o l l e c t i o n
39 g e n e r i c (
40 t o p s e t c o u n t m u x : i n t e g e r −− L e t us know how many

s e t c o u n t s are l o c a t e d a t t h e l e v e l above
41 ) ;
42 port (
43 c l k : in s t d l o g i c ;
44 r e s e t n : in s t d l o g i c ;
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45 s e t i d x : in s t d l o g i c v e c t o r ( t o p s e t c o u n t m u x − 1
downto 0) ;

46 s e t s e l e c t : in s t d l o g i c v e c t o r (2 ∗∗ t o p s e t c o u n t m u x −
1 downto 0) ;

47 h i t s a b o v e : in s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto
0) ;

48 h i t s i n c r : out h i t i n c r c o l l e c t i o n ( s e t c o u n t m u x −
m i n s e t c o u n t m u x − 1 downto 0)

49 ) ;
50 end component ;
51

52 component h i t c o u n t e r
53 port (
54 c l k : in s t d l o g i c ;
55 r e s e t n : in s t d l o g i c ;
56 e n a b l e n : in s t d l o g i c ;
57 h i t l i s t : in s t d l o g i c v e c t o r ( a s s o c i n c w i d t h − 1

downto 0) ;
58 h i t c o u n t s : out h i t c o u n t e r s
59 ) ;
60 end component ;
61

62 −− D e t e r m i n e s which s e t i s t o be s e l e c t e d f o r compar i son w i t h
t h e t a g .

63 s i g n a l s e t s e l e c t : s t d l o g i c v e c t o r ( s e t c o u n t − 1 downto 0) ;
64

65 −− The new a d d r e s s t o be compared t o a tag , and depends on t h e
g i v e n l i n e l e n g t h .

66 s i g n a l a d d r f o r m a t t e d : s t d l o g i c v e c t o r ( a d d r e s s w i d t h − 1
downto 0) ;

67

68 −− S t o r e s t h e s e t i n d e x t h a t we are c u r r e n t l y a c c e s s i n g
69 s i g n a l s e t i d x : s t d l o g i c v e c t o r ( s e t c o u n t m u x − 1 downto

0) ;
70

71 −− C o l l e c t i o n o f h i t s i n e v e r y s e t .
72 s i g n a l h i t s i n s e t : h i t c o l l e c t i o n ( s e t c o u n t − 1 downto 0) ;
73

74 −− I n d i c a t e s a t which a s s o c i a t i v i t y l e v e l t h e h i t o c c u r r e d
75 s i g n a l a s s o c h i t : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto

0) ;
76

77 −− C o l l e c t i o n t h a t i n d i c a t e s a t which l e v e l s o f a s s o c i a t i v i t y
a h i t has o c c u r r e d .

78 −− T h i s i n f o r m a t i o n i s c o n t a i n e d f o r e v e r y s e t s i z e s i m u l a t e d .



148 APPENDIX A. MASH{LRU} IMPLEMENTATION

79 s i g n a l h i t s i n c r : h i t i n c r c o l l e c t i o n (0 to s e t c o u n t m u x −
m i n s e t c o u n t m u x ) ;

80

81 −− I n s t a n c e t h a t groups a l l c o u n t v a l u e s t o g e t h e r !
82 s i g n a l a l l c o u n t s : h i t c o u n t e r s b l o b (0 to c o u n t e r s c o u n t −

1) ;
83

84 −− Counts t h e t o t a l number o f a c c e s s e s
85 s i g n a l a c c e s s e s : u n s i g n e d ( c o u n t e r w i d t h − 1 downto 0) ;
86 s i g n a l w r i t e s : u n s i g n e d ( c o u n t e r w i d t h − 1 downto 0) ;
87 s i g n a l r e a d s : u n s i g n e d ( c o u n t e r w i d t h − 1 downto 0) ;
88

89 −− I n d i c a t e s which l e v e l s o f t h e cache s i m u a l t o r are s t i l l
p r o c e s s i n g da ta

90 s i g n a l l e v e l p r o c e s s i n g : s t d l o g i c v e c t o r (0 to s e t c o u n t m u x
− m i n s e t c o u n t m u x − 1) ;

91

92 −− Keeps t r a c k o f which l e v e l s are c u r r e n t l y do ing a read , and
which ones are do ing a w r i t e .

93 s i g n a l l e v e l r e a d n : s t d l o g i c v e c t o r (0 to s e t c o u n t m u x −
m i n s e t c o u n t m u x − 1) ;

94 s i g n a l i l e v e l r e a d n : s t d l o g i c v e c t o r (0 to s e t c o u n t m u x −
m i n s e t c o u n t m u x ) ;

95 s i g n a l n l e v e l r e a d n : s t d l o g i c v e c t o r (0 to s e t c o u n t m u x −
m i n s e t c o u n t m u x ) ;

96

97 begin
98

99 −− Determine which s e t t o a c c e s s depend ing on t h e a d d r e s s
100 p r o c e s s ( a d d r e s s , l i n e l e n g t h m u x , new addr )
101 v a r i a b l e v a d d r : a d d r s e c t i o n s ;
102 begin
103 v a d d r := u n p a c k a d d r ( a d d r e s s , l i n e l e n g t h m u x ) ;
104 a d d r f o r m a t t e d <= v a d d r . new addr ;
105 s e t i d x <= v a d d r . s e t i d x ;
106

107 −− D e t e c t which s e t i s c u r r e n t l y b e i n g a c c e s s e d . A l so make
s u r e t h a t new addr i s e q u a l t o ’ 1 ’ .

108 −− I f i t i s n ’ t no s e t i s a c c e s s e d which has t h e same e f f e c t
as no read or w r i t e o c c u r r i n g !

109 f o r k in s e t c o u n t − 1 downto 0 loop
110 i f v a d d r . s e t i d x = s t d l o g i c v e c t o r ( t o u n s i g n e d ( k ,

s e t c o u n t m u x ) ) and new addr = ’1 ’ then
111 s e t s e l e c t ( k ) <= ’ 1 ’ ;
112 e l s e
113 s e t s e l e c t ( k ) <= ’ 0 ’ ;
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114 end i f ;
115 end loop ;
116 end p r o c e s s ;
117

118 −− G e n e r a t e s t h e t o p l e v e l s e t s
119 GENERATE SETS :
120 f o r k in s e t c o u n t − 1 downto 0 g e n e r a t e
121 l r u s e t i n s t : l r u s e t
122 port map (
123 c l k => c lk ,
124 r e s e t n => r e s e t n ,
125 s e t s e l e c t => s e t s e l e c t ( k ) ,
126 a d d r e s s => a d d r f o r m a t t e d ,
127 h i t i d x => h i t s i n s e t ( k )
128 ) ;
129 end g e n e r a t e GENERATE SETS ;
130

131 −− Cr ea t e sub−s e t c o l l e c t i o n .
132 l r u s u b s e t c o l i n s t : l r u s u b s e t c o l l e c t i o n
133 g e n e r i c map (
134 t o p s e t c o u n t m u x => s e t c o u n t m u x
135 )
136 port map (
137 c l k => c lk ,
138 r e s e t n => r e s e t n ,
139 s e t i d x => s e t i d x ,
140 s e t s e l e c t => s e t s e l e c t ,
141 h i t s a b o v e => a s s o c h i t ,
142 h i t s i n c r => h i t s i n c r (1 to s e t c o u n t m u x −

m i n s e t c o u n t m u x )
143 ) ;
144

145 −− T h i s p r o c e s s b u n d l e s a l l t h e h i t v a l u e s o f t h e h i g h e s t
l e v e l o f t h e d i f f e r e n t

146 −− s e t s so t h a t i t can l a t e r be d e t e r m i n e d i n which
a s s o c i a t i v i t y b l o c k t h e h i t o c c u r r e d .

147 p r o c e s s ( h i t s i n s e t )
148 v a r i a b l e v a s s o c h i t : s t d l o g i c ;
149 begin
150 −− ’OR’ t h a t s h i t
151 f o r j in a s s o c i a t i v i t y − 1 downto 0 loop
152 v a s s o c h i t := ’ 0 ’ ;
153

154 −− Check i f we have any h i t s i n t h i s a s s o c l e v e l
155 f o r k in s e t c o u n t − 1 downto 0 loop
156 i f h i t s i n s e t ( k ) ( j ) = ’1 ’ then
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157 v a s s o c h i t := ’ 1 ’ ;
158 end i f ;
159 end loop ;
160

161 −− I f t h e r e i s a h i t , s e t t h e b i t
162 a s s o c h i t ( j ) <= v a s s o c h i t ;
163 end loop ;
164 end p r o c e s s ;
165

166 −− Turn t h e raw h i t da ta i n t o an i n d i c a t o r as t o which c o u n t e r
( s ) s h o u l d be i n c r e m e n t e d

167 −− Look a t g l o b a l . vhd
168 −− For power o f 2 a s s o c i a t i v i t i e s example : a s s o c i a t i v i t y = 8 ,

a s s o c h i t = | 0 | 0 | 0 1 | 0 0 0 0 | −> 1100 , i . e . , i n c r e m e n t a s s o c =
4 and 8 , b u t n o t 1 and 2

169 −− For i n c r e m e n t a l a s s o c i a t i v i t i e s example : a s s o c i a t i v i t y = 8 ,
a s s o c h i t = | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −> | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | , i . e . ,

i n c r e m e n t a s s o c = 4 , 5 , 6 , 7 and 8 , b u t n o t 1 , 2 and 3
170 −−
171 h i t s i n c r ( 0 ) <= f o r m a t h i t l i s t ( a s s o c h i t ) ;
172

173 −− Connect each h i t s i n c r ( k ) w i t h a c o u n t e r !
174 GENERATE HIT COUNTERS :
175 f o r k in 0 to s e t c o u n t m u x − m i n s e t c o u n t m u x g e n e r a t e
176 c o u n t e r i n s t r e a d : h i t c o u n t e r
177 port map (
178 c l k => c lk ,
179 r e s e t n => r e s e t n ,
180 e n a b l e n => i l e v e l r e a d n ( k ) ,
181 h i t l i s t => h i t s i n c r ( k ) ,
182 h i t c o u n t s => a l l c o u n t s (2 ∗ k )
183 ) ;
184 c o u n t e r i n s t w r i t e : h i t c o u n t e r
185 port map (
186 c l k => c lk ,
187 r e s e t n => r e s e t n ,
188 e n a b l e n => n l e v e l r e a d n ( k ) ,
189 h i t l i s t => h i t s i n c r ( k ) ,
190 h i t c o u n t s => a l l c o u n t s (2 ∗ k + 1)
191 ) ;
192 end g e n e r a t e GENERATE HIT COUNTERS ;
193

194 a l l h i t c o u n t s <= a l l c o u n t s ;
195

196 −− Workaround . Modelsim can ’ t ha nd l e a s h i f t r e g i s t e r where
one b i t i s c o m b i n a t i o n a l and t h e r e s t are r e g i s t e r e d .
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197 i l e v e l r e a d n ( 0 ) <= r e a d n ;
198 i l e v e l r e a d n (1 to s e t c o u n t m u x − m i n s e t c o u n t m u x ) <=

l e v e l r e a d n ;
199 n l e v e l r e a d n <= not i l e v e l r e a d n ;
200

201 −− Count t h e t o t a l number o f a c c e s s e s t h a t have been
r e g i s t e r e d

202 −− Ano ther f u n c t i o n o f t h i s p r o c e s s i s t o p i p e l i n e t h i s l e v e l
o f t h e cache s i m u l a t o r

203 −− and t o s h i f t t h e ’ l e v e l p r o c e s s i n g ’ s i g n a l t o i n d i c a t e a t
which l e v e l s s h i t i s s t i l l happen ing

204 p r o c e s s ( c lk , r e s e t n )
205 begin
206 i f r e s e t n = ’0 ’ then
207 a c c e s s e s <= ( o t h e r s => ’ 0 ’ ) ;
208 r e a d s <= ( o t h e r s => ’ 0 ’ ) ;
209 w r i t e s <= ( o t h e r s => ’ 0 ’ ) ;
210 l e v e l p r o c e s s i n g (0 to s e t c o u n t m u x − m i n s e t c o u n t m u x −

1) <= ( o t h e r s => ’ 0 ’ ) ;
211 e l s i f r i s i n g e d g e ( c l k ) then
212 i f new addr = ’1 ’ then
213 i f r e a d n = ’0 ’ then
214 r e a d s <= r e a d s + 1 ;
215 e l s e
216 w r i t e s <= w r i t e s + 1 ;
217 end i f ;
218 a c c e s s e s <= a c c e s s e s + 1 ;
219 end i f ;
220

221 −− S h i f t a l l o f t h e l e v e l p r o c e s s i n g b i t s t o u pd a t e where
da ta i s b e i n g computed

222 f o r k in s e t c o u n t m u x − m i n s e t c o u n t m u x − 1 downto 1
loop

223 l e v e l p r o c e s s i n g ( k ) <= l e v e l p r o c e s s i n g ( k − 1) ;
224 l e v e l r e a d n ( k ) <= l e v e l r e a d n ( k − 1) ;
225 end loop ;
226

227 l e v e l p r o c e s s i n g ( 0 ) <= new addr ;
228 l e v e l r e a d n ( 0 ) <= r e a d n ;
229 end i f ;
230 end p r o c e s s ;
231

232 p r o c e s s ( l e v e l p r o c e s s i n g , new addr )
233 begin
234 −− Or a l l o f t h e s i g n a l s o f l e v e l p r o c e s s i n g t o l e t t h e

h i g h e r l e v e l know t h a t
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235 −− t h e cache s i m u l a t o r i s s t i l l comput ing v a l u e s
236 s t i l l c o m p u t i n g <= new addr ;
237 f o r k in 0 to s e t c o u n t m u x − m i n s e t c o u n t m u x − 1 loop
238 i f l e v e l p r o c e s s i n g ( k ) = ’1 ’ then
239 s t i l l c o m p u t i n g <= ’ 1 ’ ;
240 end i f ;
241 end loop ;
242 end p r o c e s s ;
243

244 t o t a l a c c e s s e s <= a c c e s s e s ;
245 r e a d a c c e s s e s <= r e a d s ;
246 w r i t e a c c e s s e s <= w r i t e s ;
247

248 end r t l ;

A.3 LRU Set Definition
LRU set definition from lru set.vhd. For MASH{lru} the LRU tags are stored in shift registers.

1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL ;
3 use IEEE . STD LOGIC ARITH .ALL ;
4 use IEEE . STD LOGIC UNSIGNED .ALL ;
5

6 l i b r a r y work ;
7 use work . g l o b a l .ALL ;
8

9 e n t i t y l r u s e t i s
10 port (
11 c l k : in s t d l o g i c ;
12 r e s e t n : in s t d l o g i c ;
13 s e t s e l e c t : in s t d l o g i c ;
14 a d d r e s s : in s t d l o g i c v e c t o r ( a d d r e s s w i d t h − 1 downto

0) ;
15 h i t i d x : out s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto

0)
16 ) ;
17 end l r u s e t ;
18

19 a r c h i t e c t u r e r t l of l r u s e t i s
20 type s e t e n t r y i s
21 record
22 v a l i d : s t d l o g i c ;
23 t a g : s t d l o g i c v e c t o r ( t a g l e n g t h − 1 downto 0) ;
24 end record ;
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25 type s e t a r r a y i s array ( a s s o c i a t i v i t y − 1 downto 0) of
s e t e n t r y ;

26 s i g n a l s e t i n s t : s e t a r r a y ;
27

28 s i g n a l l h i t i d x : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto
0) ;

29 s i g n a l l h i t : s t d l o g i c ;
30 s i g n a l n e w e s t t a g : s t d l o g i c v e c t o r ( t a g l e n g t h − 1 downto 0)

;
31 s i g n a l comp tag : s t d l o g i c v e c t o r ( t a g l e n g t h − 1 downto 0)

;
32

33 begin
34

35 −− E x t r a c t t h e t a g v a l u e
36 comp tag <= a d d r e s s ( a d d r e s s w i d t h − 1 downto b o t t o m a d d r b i t s

+ 1 ) ;
37

38 −− Determine whe ther we have a h i t or not , and s e t t h e h i t
i n d e x

39 p r o c e s s ( s e t s e l e c t , a d d r e s s , s e t i n s t , comp tag )
40 v a r i a b l e v h i t : s t d l o g i c ;
41 v a r i a b l e v n e w e s t t a g : s t d l o g i c v e c t o r ( t a g l e n g t h − 1

downto 0) ;
42 begin
43 v n e w e s t t a g := ( o t h e r s => ’ 0 ’ ) ;
44 i f s e t s e l e c t = ’1 ’ then
45 v h i t := ’ 0 ’ ;
46 f o r k in a s s o c i a t i v i t y − 1 downto 0 loop
47 i f s e t i n s t ( k ) . v a l i d = ’1 ’ and s e t i n s t ( k ) . t a g =

comp tag then
48 l h i t i d x ( k ) <= ’ 1 ’ ;
49 v h i t := ’ 1 ’ ;
50 v n e w e s t t a g := s e t i n s t ( k ) . t a g ;
51 e l s e
52 l h i t i d x ( k ) <= ’ 0 ’ ;
53 end i f ;
54 end loop ;
55 l h i t <= v h i t ;
56

57 i f v h i t = ’0 ’ then
58 v n e w e s t t a g := comp tag ;
59 end i f ;
60 e l s e
61 l h i t i d x <= ( o t h e r s => ’ 0 ’ ) ;
62 l h i t <= ’ 0 ’ ;
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63 end i f ;
64 n e w e s t t a g <= v n e w e s t t a g ;
65 end p r o c e s s ;
66

67 −− Outpu t t h e h i t b i t and i n d e x
68 h i t i d x <= l h i t i d x ;
69

70 −− When t h e c l o c k t i c k s , up da t e t h e o r d e r i n which t h e t a g s
are s t o r e d

71 p r o c e s s ( c lk , r e s e t n , s e t s e l e c t )
72 v a r i a b l e v s h i f t : s t d l o g i c ;
73 begin
74 i f r e s e t n = ’0 ’ then
75 f o r k in a s s o c i a t i v i t y − 1 downto 0 loop
76 s e t i n s t ( k ) . v a l i d <= ’ 0 ’ ;
77 end loop ;
78 e l s i f r i s i n g e d g e ( c l k ) and s e t s e l e c t = ’1 ’ then
79 i f l h i t = ’1 ’ then
80 v s h i f t := ’ 0 ’ ;
81 e l s e
82 v s h i f t := ’ 1 ’ ;
83 end i f ;
84

85 f o r k in 1 to a s s o c i a t i v i t y − 1 loop
86 i f l h i t i d x ( k − 1) = ’1 ’ then
87 v s h i f t := ’ 1 ’ ;
88 end i f ;
89

90 i f v s h i f t = ’1 ’ then
91 s e t i n s t ( k − 1) <= s e t i n s t ( k ) ;
92 end i f ;
93 end loop ;
94

95 s e t i n s t ( a s s o c i a t i v i t y − 1) <= ( t a g => n e w e s t t a g , v a l i d
=> ’ 1 ’ ) ;

96 end i f ;
97 end p r o c e s s ;
98

99 end r t l ;

A.4 Lower Level Definition
Instantiates subsets and connects them with signals from the level above and below. Defined in
lru sub set collection.vhd.
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1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL ;
3 use IEEE . STD LOGIC ARITH .ALL ;
4 use IEEE . STD LOGIC UNSIGNED .ALL ;
5

6 use work . g l o b a l .ALL ;
7

8 e n t i t y l r u s u b s e t c o l l e c t i o n i s
9 g e n e r i c (

10 t o p s e t c o u n t m u x : i n t e g e r −− L e t us know how many s e t
c o u n t s are l o c a t e d a t t h e l e v e l above

11 ) ;
12 port (
13 c l k : in s t d l o g i c ;
14 r e s e t n : in s t d l o g i c ;
15 s e t i d x : in s t d l o g i c v e c t o r ( t o p s e t c o u n t m u x − 1

downto 0) ;
16 s e t s e l e c t : in s t d l o g i c v e c t o r (2 ∗∗ t o p s e t c o u n t m u x − 1

downto 0) ;
17 h i t s a b o v e : in s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto

0) ;
18 h i t s i n c r : out h i t i n c r c o l l e c t i o n (0 to t o p s e t c o u n t m u x

− m i n s e t c o u n t m u x − 1)
19 ) ;
20 end l r u s u b s e t c o l l e c t i o n ;
21

22 a r c h i t e c t u r e r t l of l r u s u b s e t c o l l e c t i o n i s
23

24 c o n s t a n t s e t c o u n t : i n t e g e r := 2 ∗∗ ( t o p s e t c o u n t m u x −
1) ;

25

26 component l r u c a c h e s u b s e t i s
27 port (
28 c l k : in s t d l o g i c ;
29 r e s e t n : in s t d l o g i c ;
30 s e t s e l e c t : in s t d l o g i c ;
31 add r : in s t d l o g i c ;
32 i n h i t : in s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto

0) ;
33 o u t h i t : out s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1

downto 0)
34 ) ;
35 end component ;
36

37 component l r u s u b s e t c o l l e c t i o n i s
38 g e n e r i c (
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39 t o p s e t c o u n t m u x : i n t e g e r −− L e t us know how many
s e t c o u n t s are l o c a t e d a t t h e l e v e l above

40 ) ;
41 port (
42 c l k : in s t d l o g i c ;
43 r e s e t n : in s t d l o g i c ;
44 s e t i d x : in s t d l o g i c v e c t o r ( t o p s e t c o u n t m u x − 1

downto 0) ;
45 s e t s e l e c t : in s t d l o g i c v e c t o r (2 ∗∗ t o p s e t c o u n t m u x −

1 downto 0) ;
46 h i t s a b o v e : in s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto

0) ;
47 h i t s i n c r : out h i t i n c r c o l l e c t i o n (0 to

t o p s e t c o u n t m u x − m i n s e t c o u n t m u x − 1)
48 ) ;
49 end component ;
50

51 −− S e l e c t s a s e t by or−i n g odd and even s e t s e l e c t b i t s coming
from above

52 s i g n a l l o c a l s e t s e l e c t : s t d l o g i c v e c t o r ( s e t c o u n t − 1
downto 0) ;

53

54 −− A s i n g l e b i t e x t r a c t e d from s e t s e l e c t i n o r d e r t o
d e t e r m i n e i f we are a c c e s s i n g t h e even , ’0 ’ , or odd , ’1 ’
upper s e t

55 s i g n a l l o c a l a d d r : s t d l o g i c ;
56

57 −− C o n t a i n s t h e h i t s o f t h i s s u b s e t c o l l e c t i o n
58 s i g n a l l o u t h i t s : h i t c o l l e c t i o n ( s e t c o u n t − 1 downto

0) ;
59

60 −− or−s l o u t h i t s t o c o n t a i n t h e h i t r e s u l t a t t h e
a s s o c i a t i v i t y l e v e l

61 s i g n a l l a s s o c h i t s : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1
downto 0) ;

62

63 s i g n a l r e g h i t s a b o v e : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1
downto 0) ;

64 s i g n a l r e g s e t i d x : s t d l o g i c v e c t o r ( t o p s e t c o u n t m u x
− 1 downto 0) ;

65 s i g n a l r e g s e t s e l e c t : s t d l o g i c v e c t o r ( s e t c o u n t − 1
downto 0) ;

66

67 begin
68

69 −− Use t h e h i g h e s t s e t s e l e c t b i t t o d e t e r m i n e t h e a d d r e s s b i t
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70 l o c a l a d d r <= r e g s e t i d x ( t o p s e t c o u n t m u x − 1) ;
71

72 −− C r e a t e s t h e sub−s e t s e l e c t s i g n a l from t h e t o p s e t s e l e c t
s i g n a l by or−i n g e v e r y p a i r

73 −− o f p o t e n t i a l s t o r a g e s e t s e l e c t s i g n a l s .
74 p r o c e s s ( s e t s e l e c t )
75 begin
76 f o r k in s e t c o u n t − 1 downto 0 loop
77 l o c a l s e t s e l e c t ( k ) <= s e t s e l e c t ( k ) or s e t s e l e c t ( k +

s e t c o u n t ) ;
78 end loop ;
79 end p r o c e s s ;
80

81 −− G e n e r a t e s t h e compact sub−s e t modules t h a t keep t r a c k o f
where t h e i r da ta i s s t o r e d

82 −− i n t h e h i g h e r s e t s i m u l a t o r s
83 GENERATE SUB SETS :
84 f o r k in s e t c o u n t − 1 downto 0 g e n e r a t e
85 l r u c a c h e s u b s e t i n s t : l r u c a c h e s u b s e t
86 port map (
87 c l k => c lk ,
88 r e s e t n => r e s e t n ,
89 s e t s e l e c t => r e g s e t s e l e c t ( k ) ,
90 add r => l o c a l a d d r ,
91 i n h i t => r e g h i t s a b o v e ,
92 o u t h i t => l o u t h i t s ( k )
93 ) ;
94 end g e n e r a t e GENERATE SUB SETS ;
95

96 −− The s u b s e t c o l l e c t i o n i s a r e c u r s i v e module t h a t c r e a t e s
i n s t a n c e s o f i t s e l f

97 −− t o s i m u l a t e s m a l l e r s e t−c o u n t s . Check i f we have reached
t h e s m a l l e s t s e t c o u n t

98 −− t h a t we want t o s i m u l a t e , and i f we haven ’ t , i n s t a n t i a t e a
new s u b s e t c o l l e c t i o n

99 GENERATE LOWER LEVEL :
100 i f m i n s e t c o u n t m u x < t o p s e t c o u n t m u x − 1 g e n e r a t e
101 l r u s u b s u b c o l i n s t : l r u s u b s e t c o l l e c t i o n
102 g e n e r i c map (
103 t o p s e t c o u n t m u x => t o p s e t c o u n t m u x − 1
104 )
105 port map (
106 c l k => c lk ,
107 r e s e t n => r e s e t n ,
108 s e t i d x => r e g s e t i d x ( t o p s e t c o u n t m u x − 2 downto

0) ,
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109 s e t s e l e c t => r e g s e t s e l e c t ,
110 h i t s a b o v e => l a s s o c h i t s ,
111 h i t s i n c r => h i t s i n c r (1 to t o p s e t c o u n t m u x −

m i n s e t c o u n t m u x − 1)
112 ) ;
113 end g e n e r a t e ;
114

115 −− Bundle t h e h i t s f o r d i f f e r e n t l e v e l s o f a s s o c i a t i v i t y
116 p r o c e s s ( l o u t h i t s )
117 v a r i a b l e v a s s o c h i t s : s t d l o g i c ;
118 begin
119 −− Loop t h r o u g h t h e d i f f e r e n t a s s o c i a t i v i t y l e v e l s
120 f o r j in a s s o c i a t i v i t y − 1 downto 0 loop
121 v a s s o c h i t s := ’ 0 ’ ;
122

123 −− Check i f we have any h i t s i n t h i s a s s o c l e v e l
124 f o r k in s e t c o u n t − 1 downto 0 loop
125 i f l o u t h i t s ( k ) ( j ) = ’1 ’ then
126 v a s s o c h i t s := ’ 1 ’ ;
127 end i f ;
128 end loop ;
129

130 −− I f t h e r e i s a h i t , s e t t h e b i t
131 l a s s o c h i t s ( j ) <= v a s s o c h i t s ;
132 end loop ;
133 end p r o c e s s ;
134

135 h i t s i n c r ( 0 ) <= f o r m a t h i t l i s t ( l a s s o c h i t s ) ;
136

137 −− P i p e l i n e i t !
138 p r o c e s s ( c lk , r e s e t n )
139 begin
140 i f r e s e t n = ’0 ’ then
141 r e g h i t s a b o v e <= ( o t h e r s => ’ 0 ’ ) ;
142 r e g s e t i d x <= ( o t h e r s => ’ 0 ’ ) ;
143 r e g s e t s e l e c t <= ( o t h e r s => ’ 0 ’ ) ;
144 e l s i f r i s i n g e d g e ( c l k ) then
145 r e g h i t s a b o v e <= h i t s a b o v e ;
146 r e g s e t i d x <= s e t i d x ( t o p s e t c o u n t m u x − 1 downto 0) ;
147 r e g s e t s e l e c t <= l o c a l s e t s e l e c t ;
148 end i f ;
149 end p r o c e s s ;
150 end r t l ;
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A.5 LRU Subset

1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL ;
3 use IEEE . NUMERIC STD .ALL ;
4 use work . g l o b a l .ALL ;
5

6 e n t i t y l r u c a c h e s u b s e t i s
7 port (
8 c l k : in s t d l o g i c ;
9 r e s e t n : in s t d l o g i c ;

10 s e t s e l e c t : in s t d l o g i c ;
11 add r : in s t d l o g i c ;
12 i n h i t : in s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto 0) ;
13 o u t h i t : out s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1 downto 0)
14 ) ;
15 end l r u c a c h e s u b s e t ;
16

17 a r c h i t e c t u r e r t l of l r u c a c h e s u b s e t i s
18 type s e t e n t r y i s
19 record
20 v a l i d : s t d l o g i c ;
21 s o u r c e : s t d l o g i c ;
22 end record ;
23 type s e t a r r a y i s array ( a s s o c i a t i v i t y − 1 downto 0) of

s e t e n t r y ;
24

25 type s t o r e b u f f e r i s array (1 downto 0) of s t d l o g i c v e c t o r (
a s s o c i a t i v i t y − 1 downto 0) ;

26

27 −− Three i m p o r t a n t s i g n a l s used t o t r a c k h i t s
28 s i g n a l v a l i d b u f f e r : s t o r e b u f f e r ;
29 s i g n a l b u f f e r o r d e r : s e t a r r a y ;
30

31 −− Unimpor tan t s i g n a l s t o s t o r e s t a t e s
32 s i g n a l e v e n h i t r e s u l t : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1

downto 0) ;
33 s i g n a l o d d h i t r e s u l t : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1

downto 0) ;
34 s i g n a l l h i t o r : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1

downto 0) ;
35 s i g n a l h i t : s t d l o g i c ;
36 s i g n a l h i t i d x : i n t e g e r range 0 to a s s o c i a t i v i t y − 1 ;
37 s i g n a l a d d r i d x : i n t e g e r range 0 to 1 ;
38 s i g n a l n o t a d d r i d x : i n t e g e r range 0 to 1 ;
39 s i g n a l s h i f t u n t i l : i n t e g e r range 0 to a s s o c i a t i v i t y − 1 ;
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40

41 begin
42 −− D e t e c t t h e h i t s we have w i t h h a l f t h e s e t s − easy as bro !
43 e v e n h i t r e s u l t <= i n h i t and v a l i d b u f f e r ( 0 ) when add r = ’0 ’

e l s e ( o t h e r s => ’ 0 ’ ) ;
44 o d d h i t r e s u l t <= i n h i t and v a l i d b u f f e r ( 1 ) when add r = ’1 ’

e l s e ( o t h e r s => ’ 0 ’ ) ;
45 l h i t o r <= e v e n h i t r e s u l t or o d d h i t r e s u l t ;
46 h i t <= ’0 ’ when l h i t o r = ( l h i t o r ’ range => ’ 0 ’ ) e l s e ’ 1 ’ ;
47

48 −− M u l t i p l e x t h e h i t a r r a y t o d e t e r m i n e t h e i n d e x o f t h e
e l e m e n t i n which t h e h i t o c c u r r e d .

49 p r o c e s s ( l h i t o r )
50 v a r i a b l e v h i t i d x : i n t e g e r range 0 to a s s o c i a t i v i t y − 1 ;
51 begin
52 v h i t i d x := 0 ;
53 f o r k in a s s o c i a t i v i t y − 1 downto 0 loop
54 i f l h i t o r ( k ) = ’1 ’ then
55 v h i t i d x := k ;
56 end i f ;
57 end loop ;
58 h i t i d x <= v h i t i d x ;
59 end p r o c e s s ;
60

61 a d d r i d x <= 1 when add r = ’1 ’ e l s e 0 ;
62 n o t a d d r i d x <= 0 when add r = ’1 ’ e l s e 1 ;
63

64 −− T h i s i s t h e t r i c k y p a r t − k e e p i n g t r a c k o f which b l o c k s are
v a l i d , and where and t h e o r d e r i n which t h e y are s t o r e d

65 p r o c e s s ( c lk , r e s e t n )
66 v a r i a b l e v n a c c v a l i d : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1

downto 0) ; −− V a l i d b i t s f o r t h e a d d r e s s t h a t i s NOT
c u r r e n t l y a c c e s s e d

67 v a r i a b l e v a c c v a l i d : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y − 1
downto 0) ; −− V a l i d b i t s f o r t h e a d d r e s s t h a t i s
c u r r e n t l y a c c e s s e d

68 begin
69 i f r e s e t n = ’0 ’ then
70 v a l i d b u f f e r ( 0 ) <= ( o t h e r s => ’ 0 ’ ) ;
71 v a l i d b u f f e r ( 1 ) <= ( o t h e r s => ’ 0 ’ ) ;
72 f o r k in a s s o c i a t i v i t y − 1 downto 0 loop
73 b u f f e r o r d e r ( k ) . v a l i d <= ’ 0 ’ ;
74 b u f f e r o r d e r ( k ) . s o u r c e <= ’ 0 ’ ;
75 end loop ;
76 e l s i f r i s i n g e d g e ( c l k ) then
77 i f s e t s e l e c t = ’1 ’ then
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78 −− Two d i f f e r e n t s i t u a t i o n s can occur :
79 i f h i t = ’0 ’ then
80 −− ∗No h i t = s h i f t b u f f e r o r d e r . I f i t o v e r f l o w s from

t h e o t h e r a c c e s s e d v a l i d b u f f e r , d e l e t e t h e l a s t ’1 ’
from i t .

81 −− Fi gu re o u t what t o do w i t h any o v e r f l o w
82 i f b u f f e r o r d e r ( 0 ) . v a l i d = ’1 ’ and not ( b u f f e r o r d e r ( 0 )

. s o u r c e = add r ) then
83 v n a c c v a l i d := v a l i d b u f f e r ( n o t a d d r i d x ) ;
84 f o r k in 0 to a s s o c i a t i v i t y − 1 loop
85 i f v n a c c v a l i d ( k ) = ’1 ’ then
86 −− We have found t h e l a s t ’1 ’ i n t h e o t h e r sub−

b u f f e r . C lear i t .
87 v n a c c v a l i d ( k ) := ’ 0 ’ ;
88 e x i t ;
89 end i f ;
90 end loop ;
91 v a l i d b u f f e r ( n o t a d d r i d x ) <= v n a c c v a l i d ;
92 end i f ;
93

94 −− Only s h i f t t h e s e l e c t e d v a l i d b u f f e r i f t h e da ta
s h i f t e d on to i t i s n o t a t t h e end a l r e a d y

95 i f not ( b u f f e r o r d e r ( 0 ) . v a l i d = ’1 ’ and b u f f e r o r d e r ( 0 )
. s o u r c e = add r ) then

96 v a c c v a l i d := v a l i d b u f f e r ( a d d r i d x ) ;
97 f o r k in 0 to a s s o c i a t i v i t y − 2 loop
98 v a c c v a l i d ( k ) := v a c c v a l i d ( k + 1) ;
99 end loop ;

100 v a c c v a l i d ( a s s o c i a t i v i t y − 1) := ’ 1 ’ ; −− mark t h e
f i r s t i t e m as t a k e n

101 v a l i d b u f f e r ( a d d r i d x ) <= v a c c v a l i d ;
102 end i f ;
103 end i f ;
104

105 −− Now s h i f t t h e o r d e r b u f f e r
106 f o r k in 0 to a s s o c i a t i v i t y − 2 loop
107 i f k >= s h i f t u n t i l then
108 b u f f e r o r d e r ( k ) <= b u f f e r o r d e r ( k + 1) ;
109 end i f ;
110 end loop ;
111 b u f f e r o r d e r ( a s s o c i a t i v i t y − 1) . v a l i d <= ’ 1 ’ ; −− Make

t h e f i r s t e n t r y v a l i d
112 b u f f e r o r d e r ( a s s o c i a t i v i t y − 1) . s o u r c e <= addr ; −−

S t o r e t h e ’ addres s ’ o f t h e e n t r y ( i n even or odd
b u f f e r )

113 end i f ;
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114 end i f ;
115 end p r o c e s s ;
116

117 p r o c e s s ( b u f f e r o r d e r , addr , h i t i d x , h i t , s e t s e l e c t )
118 v a r i a b l e v c o u n t e r : i n t e g e r range 0 to a s s o c i a t i v i t y −

1 ;
119 v a r i a b l e v s h i f t u n t i l : i n t e g e r range 0 to a s s o c i a t i v i t y −

1 ;
120 begin
121 v s h i f t u n t i l := 0 ;
122 i f h i t = ’0 ’ or s e t s e l e c t = ’0 ’ then
123 o u t h i t <= ( o t h e r s => ’ 0 ’ ) ;
124 e l s e
125 −− ∗H i t = f i n d l o c a t i o n o f h i t , o u t p u t t h e h i t s f o r t h i s

s u b s e t l e v e l , and i n d i c a t e , t h r o u g h
126 −− s h i t u n t i l , how many b u f f e r o r d e r s s h o u l d be s h i f t e d a t

t h e n e x t c l o c k c y c l e .
127 v c o u n t e r := a s s o c i a t i v i t y − 1 ;
128 f o r k in a s s o c i a t i v i t y − 1 downto 0 loop
129 i f b u f f e r o r d e r ( k ) . s o u r c e = add r then
130 i f v c o u n t e r = h i t i d x then
131 −− We have found our s e t e n t r y t h a t c o r r e s p o n d s t o

t h e h i t . E x i t
132 v s h i f t u n t i l := k ;
133 −− S e t t h e ’ h i t ’ b i t f o r t h i s cache sub−s e t t o be

c o n n e c t e d t o cache
134 −− h i t c o u n t e r s and lower l e v e l s o f sub−c ac he s
135 o u t h i t ( k ) <= ’ 1 ’ ;
136 e l s e
137 o u t h i t ( k ) <= ’ 0 ’ ;
138 end i f ;
139

140 i f v c o u n t e r > 0 then
141 v c o u n t e r := v c o u n t e r − 1 ;
142 end i f ;
143 e l s e
144 o u t h i t ( k ) <= ’ 0 ’ ;
145 end i f ;
146 end loop ;
147 end i f ;
148 s h i f t u n t i l <= v s h i f t u n t i l ;
149 end p r o c e s s ;
150 end r t l ;



Appendix B

MASH{fifo} Implementation

The main source files for the MASH{fifo} simulator are given here. The configuration file global.vhd
is missing as the same file has already been portrayed in Appendix A.1. The main top-level file
fifo cache sim.vhd and the fifo sub set collection.vhd file are not given either as they are very
similar to the ones presented in Appendix A.2 and A.4 respectively.

B.1 Top Level FIFO Cache Set
Defined in this section is a top level set of the MASH{fifo} cache simulator. It effectively com-
bines the LRU container with the different FIFO shift register chains.

1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL ;
3 use IEEE . STD LOGIC UNSIGNED .ALL ;
4

5 l i b r a r y work ;
6 use work . g l o b a l .ALL ;
7

8 e n t i t y f i f o c a c h e s e t i s
9 port (

10 c l k : in s t d l o g i c ;
11 r e s e t n : in s t d l o g i c ;
12

13 −− C o n t r o l i n p u t s
14 s e t s e l e c t : in s t d l o g i c ;
15 a d d r e s s : in s t d l o g i c v e c t o r ( a d d r e s s w i d t h − 1 downto

0) ;
16

17 −− H i t o u t p u t s f o r d i f f e r e n t l e v e l s o f a s s o c i a t i v i t y o f t h i s
s e t

18 h i t s i n c r : out s t d l o g i c v e c t o r (0 to a s s o c i n c w i d t h −
1) ;

19

163
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20 −− O u t p u t s f o r s m a l l e r cache s e t c o u n t s
21 l o c a t i o n p t r : out s t d l o g i c v e c t o r ( a s s o c i a t i v i t y m u x

downto 0) ;
22 h i t : out s t d l o g i c
23 ) ;
24 end f i f o c a c h e s e t ;
25

26 a r c h i t e c t u r e r t l of f i f o c a c h e s e t i s
27

28 component l r u s e t i s
29 port (
30 c l k : in s t d l o g i c ;
31 r e s e t n : in s t d l o g i c ;
32 s e t s e l e c t : in s t d l o g i c ;
33 a d d r e s s : in s t d l o g i c v e c t o r ( a d d r e s s w i d t h − 1

downto 0) ;
34

35 l o c a t i o n p t r : out s t d l o g i c v e c t o r ( a s s o c i a t i v i t y m u x
downto 0) ;

36 h i t : out s t d l o g i c
37 ) ;
38 end component ;
39

40 component f i f o s e t i s
41 g e n e r i c (
42 t r a c k e r w i d t h : i n t e g e r ;
43 l i n e c o u n t m u x : i n t e g e r range 0 to a s s o c i a t i v i t y m u x
44 ) ;
45 port (
46 c l k : in s t d l o g i c ;
47 r e s e t n : in s t d l o g i c ;
48

49 −− I n p u t s used t o c o n t r o l t h e module
50 s e t s e l e c t : in s t d l o g i c ;
51 l o c a t i o n p t r : in s t d l o g i c v e c t o r ( t r a c k e r w i d t h − 1

downto 0) ;
52 h i t i n : in s t d l o g i c ;
53

54 −− Outpu t used t o d e t e c t a h i t
55 h i t o u t : out s t d l o g i c
56 ) ;
57 end component ;
58

59 s i g n a l l l o c a t i o n p t r : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y m u x
downto 0) ;

60 s i g n a l l h i t : s t d l o g i c ;
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61

62 begin
63

64 −− I n s t a n t i a t e t h e t o p l e v e l l r u s e t o f s i z e 2 ∗ a s s o c i a t i v i t y
− 1 .

65 −− A 4 way s e t a s s o c i a t i v e s e t w i l l need an LRU o f 7 ways
66 l r u s e t i n s t : l r u s e t
67 port map (
68 c l k => c lk ,
69 r e s e t n => r e s e t n ,
70

71 −− C o n t r o l i n p u t s
72 s e t s e l e c t => s e t s e l e c t ,
73 a d d r e s s => a d d r e s s ,
74

75 −− S t a t u s o u t p u t s
76 l o c a t i o n p t r => l l o c a t i o n p t r ,
77 h i t => l h i t
78 ) ;
79

80 h i t <= l h i t ;
81 l o c a t i o n p t r <= l l o c a t i o n p t r ;
82

83 GENERATE FIFO SETS :
84 f o r k in 0 to a s s o c i a t i v i t y m u x g e n e r a t e
85 f i f o s e t i n s t : f i f o s e t
86 g e n e r i c map (
87 t r a c k e r w i d t h => a s s o c i a t i v i t y m u x + 1 ,
88 l i n e c o u n t m u x => k
89 )
90 port map (
91 c l k => c lk ,
92 r e s e t n => r e s e t n ,
93

94 −− C o n t r o l i n p u t s
95 s e t s e l e c t => s e t s e l e c t ,
96 l o c a t i o n p t r => l l o c a t i o n p t r ,
97 h i t i n => l h i t ,
98

99 −− Outpu t used t o d e t e c t a h i t
100 h i t o u t => h i t s i n c r ( a s s o c i a t i v i t y m u x − k )
101 ) ;
102 end g e n e r a t e ;
103

104

105 end r t l ;
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B.2 LRU Container Definition
LRU container definition from lru set.vhd for use in the MASH{fifo} simulator. The main differ-
ence between this implementation and that of Appendix A.3 is that here the tag data is fixed in a
location. Separate LRU shift registers ensure that the tags obey the LRU replacement policy.

1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL ;
3 use IEEE . NUMERIC STD .ALL ;
4

5 l i b r a r y work ;
6 use work . g l o b a l .ALL ;
7

8 e n t i t y l r u s e t i s
9 port (

10 c l k : in s t d l o g i c ;
11 r e s e t n : in s t d l o g i c ;
12 s e t s e l e c t : in s t d l o g i c ;
13 a d d r e s s : in s t d l o g i c v e c t o r ( a d d r e s s w i d t h − 1 downto

0) ;
14

15 l o c a t i o n p t r : out s t d l o g i c v e c t o r ( a s s o c i a t i v i t y m u x
downto 0) ;

16 h i t : out s t d l o g i c
17 ) ;
18 end l r u s e t ;
19

20 a r c h i t e c t u r e r t l of l r u s e t i s
21 −− Note t h a t i n some s i t u a t i o n s ’ ( a s s o c i a t i v i t y ∗ 2) − 2 ’ was

n o t r e p l a c e d w i t h
22 −− ’ l e a s t r e c e n t l y u s e d ’ : t h o s e c a s e s d e a l w i t h i n d e c i e s f o r ’

l r u s e t i n s t ’ which
23 −− j u s t s t o r e s da ta w i t h o u t any knowledge o f how r e c e n t l y a

b l o c k was used .
24 c o n s t a n t l e a s t r e c e n t l y u s e d : i n t e g e r := ( a s s o c i a t i v i t y ∗ 2)

− 2 ;
25

26 −− T h i s a r r a y t r a c k s where t h e da ta would be s t o r e d i n an LRU
cache

27 type l r u s e t e n t r y i s
28 record
29 v a l i d : s t d l o g i c ;
30 s o u r c e p t r : i n t e g e r range 0 to l e a s t r e c e n t l y u s e d ;
31 end record ;
32 type s e t t r a c k e r i s array (0 to l e a s t r e c e n t l y u s e d ) of

l r u s e t e n t r y ;
33 s i g n a l l r u s e t t r a c k e r : s e t t r a c k e r ;
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34

35 −− T h i s a r r a y o f t a g s h o l d s t h e t a g da ta i t s e l f
36 type l r u s e t i s
37 record
38 v a l i d : s t d l o g i c ;
39 t a g : s t d l o g i c v e c t o r ( t a g l e n g t h − 1 downto 0) ;
40 end record ;
41 type s e t a r r a y i s array (0 to (2 ∗ a s s o c i a t i v i t y ) − 2) of

l r u s e t ;
42 s i g n a l l r u s e t i n s t : s e t a r r a y ;
43

44 −− S i g n a l used i n i t i a l l y t o p r o v i d e an i n d e x a t which t o
i n i t i a l l y f i l l l r u s e t i n s t

45 s i g n a l f i l l t a g i d x : i n t e g e r range 0 to l e a s t r e c e n t l y u s e d +
1 := 0 ;

46

47 −− Loca l s i g n a l s t h a t are e x p o r t e d
48 s i g n a l l h i t i d x : s t d l o g i c v e c t o r (0 to l e a s t r e c e n t l y u s e d )

;
49 s i g n a l l h i t p t r : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y m u x downto

0) ;
50 s i g n a l l h i t : s t d l o g i c ;
51

52 s i g n a l i h i t p t r : i n t e g e r range 0 to (2 ∗ a s s o c i a t i v i t y ) −
1 ;

53

54 −− < s t a r t s h i f t i n g > d e f i n e s a t which l o c a t i o n i n t h e LRU s h i f t
r e g i s t e r a h i t has o c c u r r e d .

55 −− I f t h e v a l u e i s e q u a l t o l e a s t r e c e n t l y u s e d + 1 we are
p o i n t i n g t o beyond t h e s h i f t

56 −− r e g i s t e r , i n which case j u s t s h i f t t h e e n t i r e c h a i n .
57 s i g n a l s t a r t s h i f t i n g : i n t e g e r range 0 to

l e a s t r e c e n t l y u s e d + 1 := l e a s t r e c e n t l y u s e d + 1 ;
58 −− D e f i n e s which l r u s e t i n s t i n d e x we are w r i t i n g t o .
59 s i g n a l w r i t e t o s e t : i n t e g e r range 0 to

l e a s t r e c e n t l y u s e d + 1 := 0 ;
60

61 −− C u r r e n t a d d r e s s t a g
62 s i g n a l comp tag : s t d l o g i c v e c t o r ( t a g l e n g t h − 1 downto 0)

;
63

64 begin
65

66 −− E x t r a c t t h e t a g v a l u e
67 comp tag <= a d d r e s s ( a d d r e s s w i d t h − 1 downto b o t t o m a d d r b i t s

+ 1 ) ;
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68

69 −− Determine whe ther we have a h i t or not , and s e t t h e h i t
i n d e x

70 p r o c e s s ( s e t s e l e c t , l r u s e t i n s t , comp tag )
71 v a r i a b l e v h i t : s t d l o g i c ;
72 begin
73 i f s e t s e l e c t = ’1 ’ then
74 v h i t := ’ 0 ’ ;
75 f o r k in 0 to (2 ∗ a s s o c i a t i v i t y ) − 2 loop
76 i f l r u s e t i n s t ( k ) . v a l i d = ’1 ’ and l r u s e t i n s t ( k ) . t a g =

comp tag then
77 l h i t i d x ( k ) <= ’ 1 ’ ;
78 v h i t := ’ 1 ’ ;
79 e l s e
80 l h i t i d x ( k ) <= ’ 0 ’ ;
81 end i f ;
82 end loop ;
83 l h i t <= v h i t ;
84 e l s e
85 l h i t i d x <= ( o t h e r s => ’ 0 ’ ) ;
86 l h i t <= ’ 0 ’ ;
87 end i f ;
88 end p r o c e s s ;
89

90 −− Out o f t h e l h i t i d x v e c t o r c r e a t e a p o i n t e r .
91 p r o c e s s ( l h i t i d x )
92 v a r i a b l e v h i t p t r : s t d l o g i c v e c t o r ( a s s o c i a t i v i t y m u x

downto 0) ;
93 begin
94 v h i t p t r := ( o t h e r s => ’ 0 ’ ) ;
95 f o r k in 0 to ( a s s o c i a t i v i t y ∗ 2) − 2 loop
96 i f l h i t i d x ( k ) = ’1 ’ then
97 v h i t p t r := s t d l o g i c v e c t o r ( t o u n s i g n e d ( k ,

a s s o c i a t i v i t y m u x + 1) ) ;
98 end i f ;
99 end loop ;

100 l h i t p t r <= v h i t p t r ;
101 end p r o c e s s ;
102

103 −− A s s i g n t h e h i t−r e l a t e d o u t p u t
104 h i t <= l h i t ;
105

106 i h i t p t r <= t o i n t e g e r ( u n s i g n e d ( l h i t p t r ) ) ;
107

108 −− Determine how da ta s h o u l d be s h i f t e d depend ing on t h e
c u r r e n t h i t s t a t u s
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109 p r o c e s s ( l h i t , i h i t p t r , l r u s e t t r a c k e r , f i l l t a g i d x )
110 v a r i a b l e v s t a r t s h i f t i n g : i n t e g e r range 0 to

l e a s t r e c e n t l y u s e d + 1 ;
111 begin
112 v s t a r t s h i f t i n g := l e a s t r e c e n t l y u s e d + 1 ;
113

114 i f l h i t = ’1 ’ then
115 −− We have a h i t ! Find a t which i n d e x i n our LRU s h i f t

r e g i s t e r t h i s t a g i s l o c a t e d
116 s t a r t s h i f t i n g <= l e a s t r e c e n t l y u s e d + 1 ;
117 f o r k in 0 to l e a s t r e c e n t l y u s e d loop
118 i f l r u s e t t r a c k e r ( k ) . v a l i d = ’1 ’ and l r u s e t t r a c k e r ( k )

. s o u r c e p t r = i h i t p t r then
119 v s t a r t s h i f t i n g := k ; −− Determine when i n t h e c h a i n

we need t o s t o p s h i f t i n g .
120 end i f ;
121 end loop ;
122 w r i t e t o s e t <= i h i t p t r ; −− T h i s r e p l a c e s t h e h i t t a g

v a l u e w i t h i t s e l f , b u t i s e a s i e r t o imp lemen t .
123 e l s e
124 −− No h i t has o c c u r r e d . E i t h e r p l a c e new da ta i n an empty

l o c a t i o n , or d i s c a r d an i t e m o f da ta
125 i f f i l l t a g i d x = l e a s t r e c e n t l y u s e d + 1 then
126 −− W r i t e t o t h e t a g p o i n t e d t o by t h e l e a s t r e c e n t l y

used b i t o f da ta i n t h e LRU t r a c k e r .
127 w r i t e t o s e t <= l r u s e t t r a c k e r ( l e a s t r e c e n t l y u s e d ) .

s o u r c e p t r ;
128 e l s e
129 −− We s t i l l have some empty t a g ( s )
130 w r i t e t o s e t <= f i l l t a g i d x ;
131 end i f ;
132 end i f ;
133

134 −− S h i f t t h e whole c h a i n
135 s t a r t s h i f t i n g <= v s t a r t s h i f t i n g ;
136 end p r o c e s s ;
137

138 −− L e t t h e o u t s i d e wor ld know a t which l o c a t i o n we are s t o r i n g
t h e n e x t t o k e n

139 l o c a t i o n p t r <= s t d l o g i c v e c t o r ( t o u n s i g n e d ( w r i t e t o s e t ,
a s s o c i a t i v i t y m u x + 1) ) ;

140

141 −− When t h e c l o c k t i c k s , up da t e t h e o r d e r i n which t h e t a g s
are s t o r e d

142 p r o c e s s ( c lk , r e s e t n , s e t s e l e c t )
143 v a r i a b l e v s h i f t : s t d l o g i c := ’ 0 ’ ;
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144 begin
145 i f r e s e t n = ’0 ’ then
146

147 f o r k in 0 to l e a s t r e c e n t l y u s e d loop
148 l r u s e t i n s t ( k ) . v a l i d <= ’ 0 ’ ; −− Here we have t h e

s e t da ta i t s e l f
149 l r u s e t t r a c k e r ( k ) . v a l i d <= ’ 0 ’ ; −− And here t h e

t r a c k e r so t h a t t h e whole t h i n g behaves l i k e an LRU
cache

150 end loop ;
151 f i l l t a g i d x <= 0 ;
152

153 e l s i f r i s i n g e d g e ( c l k ) and s e t s e l e c t = ’1 ’ then
154

155 i f l h i t = ’0 ’ and f i l l t a g i d x < l e a s t r e c e n t l y u s e d + 1
then

156 f i l l t a g i d x <= f i l l t a g i d x + 1 ;
157 end i f ;
158

159 i f s t a r t s h i f t i n g = l e a s t r e c e n t l y u s e d + 1 then
160 v s h i f t := ’ 1 ’ ;
161 e l s e
162 v s h i f t := ’ 0 ’ ;
163 end i f ;
164

165 −− W r i t e t h e t a g t o t h e s e l e c t e d s e t e n t r y
166 l r u s e t i n s t ( w r i t e t o s e t ) . v a l i d <= ’ 1 ’ ;
167 l r u s e t i n s t ( w r i t e t o s e t ) . t a g <= comp tag ;
168

169 −− S h i f t e v e r y t h i n g s m a l l e r or e q u a l t o s t a r t s h i f t i n g
170 f o r k in l e a s t r e c e n t l y u s e d downto 1 loop
171 i f k <= s t a r t s h i f t i n g then
172 l r u s e t t r a c k e r ( k ) <= l r u s e t t r a c k e r ( k − 1) ;
173 end i f ;
174 end loop ;
175

176 −− S e t t h e l e a s t r e c e n t l y used e n t r y
177 l r u s e t t r a c k e r ( 0 ) . v a l i d <= ’ 1 ’ ;
178 l r u s e t t r a c k e r ( 0 ) . s o u r c e p t r <= w r i t e t o s e t ;
179 end i f ;
180 end p r o c e s s ;
181 end r t l ;
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B.3 FIFO Set
fifo set.vhd is a lightweight shift register that tracks the state of an actual FIFO set by shifting
pointers that point towards the corresponding tags in the LRU container.

1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL ;
3 use IEEE . NUMERIC STD .ALL ;
4

5 l i b r a r y work ;
6 use work . g l o b a l .ALL ;
7

8 e n t i t y f i f o s e t i s
9 g e n e r i c (

10 t r a c k e r w i d t h : i n t e g e r ;
11 l i n e c o u n t m u x : i n t e g e r range 0 to a s s o c i a t i v i t y m u x
12 ) ;
13 port (
14 c l k : in s t d l o g i c ;
15 r e s e t n : in s t d l o g i c ;
16

17 −− I n p u t s used t o c o n t r o l t h e module
18 s e t s e l e c t : in s t d l o g i c ;
19 l o c a t i o n p t r : in s t d l o g i c v e c t o r ( t r a c k e r w i d t h − 1 downto

0) ;
20 h i t i n : in s t d l o g i c ;
21

22 −− Outpu t used t o d e t e c t a h i t
23 h i t o u t : out s t d l o g i c
24 ) ;
25 end f i f o s e t ;
26

27 a r c h i t e c t u r e r t l of f i f o s e t i s
28

29 c o n s t a n t l i n e c o u n t : i n t e g e r := 2 ∗∗ l i n e c o u n t m u x ;
30

31 −− T h i s a r r a y t r a c k s where t h e da ta would be s t o r e d i n a FIFO
cache

32 type f i f o s e t e n t r y i s
33 record
34 v a l i d : s t d l o g i c ;
35 s o u r c e p t r : i n t e g e r range 0 to 2 ∗∗ t r a c k e r w i d t h − 1 ;
36 end record ;
37 type s e t t r a c k e r i s array (0 to l i n e c o u n t − 1) of

f i f o s e t e n t r y ;
38 s i g n a l f i f o s e t t r a c k e r : s e t t r a c k e r ;
39
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40 −− E x t e r n a l i n p u t c o n v e r t e d t o an i n t e g e r
41 s i g n a l i l o c a t i o n p t r : i n t e g e r range 0 to 2 ∗∗ t r a c k e r w i d t h

− 1 ;
42

43 −− n e x t e n t r y d e f i n e s a t which l o c a t i o n i n t h e FIFO t h e n e x t
e n t r y

44 −− w i l l be w r i t t e n t o
45 s i g n a l n e x t e n t r y : i n t e g e r range 0 to l i n e c o u n t − 1 := 0 ;
46 −− Loca l h i t
47 s i g n a l l h i t : s t d l o g i c ;
48

49 begin
50

51 i l o c a t i o n p t r <= t o i n t e g e r ( u n s i g n e d ( l o c a t i o n p t r ) ) ;
52

53 p r o c e s s ( i l o c a t i o n p t r , h i t i n , f i f o s e t t r a c k e r )
54 begin
55 i f h i t i n = ’1 ’ then
56 l h i t <= ’ 0 ’ ;
57 f o r k in 0 to l i n e c o u n t − 1 loop
58 i f f i f o s e t t r a c k e r ( k ) . v a l i d = ’1 ’ and f i f o s e t t r a c k e r (

k ) . s o u r c e p t r = i l o c a t i o n p t r then
59 l h i t <= ’ 1 ’ ;
60 end i f ;
61 end loop ;
62 e l s e
63 l h i t <= ’ 0 ’ ;
64 end i f ;
65 end p r o c e s s ;
66

67 h i t o u t <= l h i t ;
68

69 p r o c e s s ( c lk , r e s e t n )
70 begin
71 i f r e s e t n = ’0 ’ then
72

73 n e x t e n t r y <= 0 ;
74 f o r k in 0 to l i n e c o u n t − 1 loop
75 f i f o s e t t r a c k e r ( k ) . v a l i d <= ’ 0 ’ ;
76 end loop ;
77

78 e l s i f r i s i n g e d g e ( c l k ) then
79

80 i f s e t s e l e c t = ’1 ’ and l h i t = ’0 ’ then
81 −− Only i f t h e r e i s a mi s s do we change t h e s t a t e o f our

t r a c k e r s
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82 f i f o s e t t r a c k e r ( n e x t e n t r y ) . v a l i d <= ’ 1 ’ ;
83 f i f o s e t t r a c k e r ( n e x t e n t r y ) . s o u r c e p t r <=

i l o c a t i o n p t r ;
84 i f n e x t e n t r y < l i n e c o u n t − 1 then
85 n e x t e n t r y <= n e x t e n t r y + 1 ;
86 e l s e
87 n e x t e n t r y <= 0 ;
88 end i f ;
89 end i f ;
90

91 end i f ;
92 end p r o c e s s ;
93

94 end r t l ;



Appendix C

MASS{plrut} Implementation

The main code for the MASS{plrut} simulator is given in this Appendix.

C.1 PLRU Update and Get Evict Functions

1 / / Lookup t a b l e f o r t h e f a s t t r e e up da t e
2 c o n s t u i n t 6 4 t s e t P a t t e r n s [ 3 2 ] = {
3 0 x000000007FFF7F74 , / / 1
4 0 x000000017FFF7F74 , / / 2
5 0 x000000027FFF7F71 , / / 3
6 0 x000000067FFF7F71 , / / 4
7 0 x000000087FFF7F47 , / / 5
8 0 x000000187FFF7F47 , / / 6
9 0 x000000287FFF7F17 , / / 7

10 0 x000000687FFF7F17 , / / 8
11 0 x000000807FFF747F , / / 9
12 0 x000001807FFF747F , / / 10
13 0 x000002807FFF717F , / / 11
14 0 x000006807FFF717F , / / 12
15 0 x000008807FFF477F , / / 13
16 0 x000018807FFF477F , / / 14
17 0 x000028807FFF177F , / / 15
18 0 x000068807FFF177F , / / 16
19 0 x000080007F747FFF , / / 17
20 0 x000180007F747FFF , / / 18
21 0 x000280007F717FFF , / / 19
22 0 x000680007F717FFF , / / 20
23 0 x000880007F477FFF , / / 21
24 0 x001880007F477FFF , / / 22
25 0 x002880007F177FFF , / / 23
26 0 x006880007F177FFF , / / 24
27 0 x00808000747F7FFF , / / 25

174
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28 0 x01808000747F7FFF , / / 26
29 0 x02808000717F7FFF , / / 27
30 0 x06808000717F7FFF , / / 28
31 0 x08808000477F7FFF , / / 29
32 0 x18808000477F7FFF , / / 30
33 0 x28808000177F7FFF , / / 31
34 0 x68808000177F7FFF , / / 32
35 } ;
36

37 INLINE u i n t 8 t t r e e G e t E v i c t I d x ( IN P l r u T r e e t r e e , IN u i n t 8 t n ) {
38 r e g i s t e r i n t node ;
39 r e g i s t e r u i n t 8 t r e s u l t = 0 ;
40

41 / / S t a r t a t node (2 ˆ n ) / 2
42 f o r ( node = (1 << n ) >> 1 ; node > 0 ; node >>= 1) {
43 i f ( ! ( t r e e & 1 << ( node − 1) ) ) {
44 r e s u l t |= node ;
45 t r e e >>= node ;
46 }
47 }
48

49 re turn r e s u l t ;
50 }
51

52 INLINE void t r e e U p d a t e ( IN P l r u T r e e ∗ t r e e , IN u i n t 8 t i d x ) {
53 / / U l t ra− f a s t t r e e u pd a t e w i t h loo ku p t a b l e
54 u i n t 6 4 t s e t P a t t e r n = s e t P a t t e r n s [ i d x ] ;
55 ∗ t r e e = ( P l r u T r e e ) ( ( ( u i n t 6 4 t ) ∗ t r e e & s e t P a t t e r n ) | s e t P a t t e r n

>> 32) ;
56 }

C.2 Main MASS{plrut} code

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e < s t r i n g . h>
4 # i n c l u d e ” p l r u u t i l s . h ”
5

6 # d e f i n e ONE 1
7 # d e f i n e TWO 2
8 # d e f i n e LOCATION EMPTY 0xFF
9 # d e f i n e LOCATION EMPTY 64 0xFFFFFFFFFFFFFFFF

10

11 t y p e d e f s t r u c t S e t S t a t e o p t {
12 P l r u T r e e t r e e ;
13 u i n t 8 t ∗∗ t r a c k e r s ;
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14 } S e t S t a t e o p t ;
15

16 t y p e d e f s t r u c t {
17 S e t S t a t e o p t ∗ s e t S t a t e s ;
18 } C a c h e S t a t e ;
19

20 t y p e d e f s t r u c t Node {
21 u i n t 3 2 t v a l ;
22 u i n t 8 t ∗ l o c a t i o n s ;
23 s t r u c t Node ∗ nextNode ;
24 } Node ;
25

26 t y p e d e f s t r u c t NodeLst {
27 Node ∗ nodes ;
28 i n t nodeCount ;
29 i n t n o d e s A v a i l a b l e ;
30 } NodeLis t ;
31

32 e x t er n i n t N; / / Degree o f a s s o c i a t i v i t y = 2ˆN .
33 e x t er n i n t B ; / / Max s e t f i e l d w i d t h .
34 e x t er n i n t A; / / Min s e t f i e l d w i d t h .
35 e x t er n i n t L ; / / L ine f i e l d w i d t h .
36 e x t er n i n t T ; / / Max no o f a d d r e s s e s t o be
37 / / p r o c e s s e d .
38 e x t er n i n t SAVE INTERVAL ; / / I n t e r v a l s a t which o u t p u t s h o u l d
39 / / be saved .
40 e x t er n i n t P INTERVAL ; / / I n t e r v a l s a t which p r o g r e s s
41 / / o u t p u t i s done .
42

43 e x t er n i n t (∗ t r a c e ) ( ) ;
44 e x t er n FILE ∗ o u t ;
45

46 / / Loca l v a r i a b l e s
47 C a c h e S t a t e ∗∗ c a c h e S t a t e s ; / / S t a t e o f t h e e n t i r e cache .
48 NodeLis t f r e e N o d e s ; / / L i s t o f empty nodes .
49 Node ∗∗ nodeHash ; / / Hash t a b l e c o n t a i n i n g a l l t h e
50 / / nodes s t o r e d i n a l l t h e c ac he s .
51

52 i n t TWO PWR N; / / 2 ˆN . i . e . , Degree o f
53 / / a s s o c i a t i v i t y .
54 i n t MAX DEPTH; / / B−A , Number o f range o f s e t s
55 / / s i m u l a t e d .
56 i n t TOP LEVEL SETS ; / / S e t s i z e o f t h e l a r g e s t cache t o
57 / / be s i m u l a t e d .
58 i n t CONTAINER SIZE ; / / S i z e o f a c o n t a i n e r a t t o p l e v e l

.
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59 i n t SUBCONTAINER SIZE ; / / S i z e o f a c o n t a i n e r f o r t h e
60 / / l ower l e v e l s .
61 i n t HASH TABLE SIZE ; / / S i z e o f t h e hash t a b l e .
62 i n t TOTAL NODE COUNT; / / T o t a l number o f nodes we w i l l be
63 / / u s i n g .
64 i n t CONFIG COUNT ; / / T o t a l number o f c o n f i g u r a t i o n s
65 / / we are s i m u l a t i n g .
66 i n t LOCATIONS FIELD SIZE ; / / S i z e o f t h e f i e l d c o n t a i n i n g
67 / / l o c a t i o n s − g i v e n i n u i n t 6 4 t .
68

69 u i n t 6 4 t ∗∗ h i t s ; / / H i t c o u n t e r s f o r t h e d i f f e r e n t
70 / / cache c o n f i g u r a t i o n s .
71 u i n t 6 4 t h i t s a l l ; / / Counts t h e number o f h i t s due t o
72 / / t h e p r e v i o u s addr b e i n g r e p e a t e d
73

74 u i n t 6 4 t a c c e s s C o u n t ; / / Count o f a d d r e s s e s p r o c e s s e d .
75

76 / / Shared t r e e f u n c t i o n s g i v e n i n s a c p l r u . c
77 e x t er n INLINE u i n t 8 t t r e e G e t E v i c t I d x ( IN P l r u T r e e t r e e , IN

u i n t 8 t n ) ;
78 e x t er n INLINE void t r e e U p d a t e ( IN P l r u T r e e ∗ t r e e , IN u i n t 8 t i d x )

;
79

80 INLINE void c l e a r L o c a t i o n s ( IN u i n t 8 t ∗ l o c a t i o n s ) {
81 memset ( l o c a t i o n s , 0xFF , LOCATIONS FIELD SIZE ∗ s i z e o f ( u i n t 6 4 t

) ) ;
82 }
83

84 INLINE u i n t 8 t i s T r a c k e d ( CONST IN u i n t 8 t ∗ l o c a t i o n s ) {
85 u i n t 8 t i d x ;
86 u i n t 6 4 t ∗ l o c a t i o n s 6 4 b i t = ( u i n t 6 4 t ∗ ) l o c a t i o n s ;
87

88 / / Check whe ther a l l t h e g i v e n l o c a t i o n s are empty , 8 a t a
t i m e .

89 f o r ( i d x = 0 ; i d x < LOCATIONS FIELD SIZE ; i d x ++) {
90 i f (∗ l o c a t i o n s 6 4 b i t != LOCATION EMPTY 64 ) {
91 re turn TRUE;
92 }
93 l o c a t i o n s 6 4 b i t ++;
94 }
95 re turn FALSE ;
96 }
97

98 INLINE void r e t u r n F r e e N o d e ( IN Node ∗node ) {
99 node−>nextNode = f r e e N o d e s . nodes ;

100 f r e e N o d e s . nodes = node ;
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101 f r e e N o d e s . n o d e s A v a i l a b l e ++;
102 }
103

104 INLINE void g a r b a g e C o l l e c t ( ) {
105 i n t nodeIdx ;
106 Node ∗∗ s t a r t N o d e ;
107 r e g i s t e r Node ∗prevNode ;
108 r e g i s t e r Node ∗ c u r r e n t N o d e ;
109

110 f o r ( nodeIdx = 0 ; nodeIdx < HASH TABLE SIZE ; nodeIdx ++) {
111 s t a r t N o d e = &nodeHash [ nodeIdx ] ;
112 c u r r e n t N o d e = ∗ s t a r t N o d e ;
113 prevNode = NULL;
114 whi le ( c u r r e n t N o d e != NULL) {
115 i f ( i s T r a c k e d ( cu r r en tNode−> l o c a t i o n s ) == FALSE) {
116 / / We have s t u m b l e d a c r o s s an o b s o l e t e node , d e l e t e i t

from t h e hash t a b l e
117 i f ( prevNode == NULL) {
118 ∗ s t a r t N o d e = cu r r en tNode−>nextNode ;
119 r e t u r n F r e e N o d e ( c u r r e n t N o d e ) ;
120 c u r r e n t N o d e = ∗ s t a r t N o d e ;
121 } e l s e {
122 prevNode−>nextNode = cur r en tNode−>nextNode ;
123 r e t u r n F r e e N o d e ( c u r r e n t N o d e ) ;
124 c u r r e n t N o d e = prevNode−>nextNode ;
125 }
126 c o n t i nu e ;
127 }
128

129 prevNode = c u r r e n t N o d e ;
130 c u r r e n t N o d e = cur r en tNode−>nextNode ;
131 }
132 }
133 }
134

135 INLINE Node ∗ ge tFreeNode ( ) {
136 Node ∗ r e tNode ;
137

138 i f ( f r e e N o d e s . n o d e s A v a i l a b l e == 0) {
139 / / No f r e e nodes a v a i l a b l e . Shou ld be a r a r e o c c u r r e n c e .
140 / / T r a v e r s e t h e e n t i r e hash t a b l e and f r e e any nodes t h a t
141 / / can be f r e e d .
142 g a r b a g e C o l l e c t ( ) ;
143 }
144

145 r e tNode = f r e e N o d e s . nodes ;
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146 f r e e N o d e s . nodes = f r e e N o d e s . nodes−>nextNode ;
147 f r e e N o d e s . n o d e s A v a i l a b l e −−;
148

149 re turn r e tNode ;
150 }
151

152 / / P e r l ’ s hash f u n c t i o n
153 INLINE u i n t 3 2 t h a s h f u n c ( CONST IN void ∗key ) {
154 r e g i s t e r s i z e t i = 4 ;
155 r e g i s t e r u i n t 3 2 t hv = 0 ; / / can p u t a seed here i n s t e a d o f 0
156 r e g i s t e r c o n s t unsigned char ∗ s = ( char ∗ ) key ;
157 whi le ( i−−) {
158 hv += ∗ s ++;
159 hv += ( hv << 10) ;
160 hv ˆ= ( hv >> 6) ;
161 }
162 hv += ( hv << 3) ;
163 hv ˆ= ( hv >> 11) ;
164 hv += ( hv << 15) ;
165

166 re turn hv ;
167 }
168

169 INLINE Node ∗ getNode ( IN u i n t 3 2 t add r ) {
170 r e g i s t e r Node ∗ c u r r e n t N o d e ;
171 r e g i s t e r Node ∗prevNode = NULL;
172 Node ∗∗ s t a r t N o d e = &nodeHash [ h a s h f u n c (& addr ) %

HASH TABLE SIZE ] ;
173 Node ∗ t a r g e t N o d e = NULL;
174

175 c u r r e n t N o d e = ∗ s t a r t N o d e ;
176

177 whi le ( 1 ) {
178 i f ( c u r r e n t N o d e == NULL) {
179 i f ( t a r g e t N o d e == NULL) {
180 t a r g e t N o d e = ge tFreeNode ( ) ;
181

182 / / I n i t i a l i s e t h i s new node
183 t a r g e t N o d e−>v a l = add r ;
184 t a r g e t N o d e−>nextNode = ∗ s t a r t N o d e ;
185 ∗ s t a r t N o d e = t a r g e t N o d e ;
186 }
187 break ;
188 } e l s e {
189 i f ( add r == cur r en tNode−>v a l ) {
190 / / We have found t h e node we are l o o k i n g f o r
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191 t a r g e t N o d e = c u r r e n t N o d e ;
192 } e l s e i f ( i s T r a c k e d ( cu r r en tNode−> l o c a t i o n s ) == FALSE) {
193 / / We have s t u m b l e d a c r o s s an o b s o l e t e node , d e l e t e i t

from t h e hash t a b l e
194 i f ( prevNode == NULL) {
195 ∗ s t a r t N o d e = cu r r en tNode−>nextNode ;
196 r e t u r n F r e e N o d e ( c u r r e n t N o d e ) ;
197 c u r r e n t N o d e = ∗ s t a r t N o d e ;
198 } e l s e {
199 prevNode−>nextNode = cur r en tNode−>nextNode ;
200 r e t u r n F r e e N o d e ( c u r r e n t N o d e ) ;
201 c u r r e n t N o d e = prevNode−>nextNode ;
202 }
203 c o n t i nu e ;
204 }
205 prevNode = c u r r e n t N o d e ;
206 c u r r e n t N o d e = cur r en tNode−>nextNode ;
207 }
208 }
209

210 re turn t a r g e t N o d e ;
211 }
212

213 INLINE void u p d a t e T a b l e s ( Node ∗node ) {
214

215 u i n t 3 2 t mask = TOP LEVEL SETS − 1 ;
216 i n t l e v e l ;
217 i n t a s s o c ;
218 u i n t 8 t ∗ l o c a t i o n s = node−> l o c a t i o n s ;
219

220 f o r ( l e v e l = 0 ; l e v e l < MAX DEPTH + 1 ; l e v e l ++) {
221 f o r ( a s s o c = 0 ; a s s o c < N + 1 ; a s s o c ++) {
222 S e t S t a t e o p t ∗ c u r r e n t S e t = &( c a c h e S t a t e s [ l e v e l ] [ a s s o c ] .

s e t S t a t e s [ node−>v a l & mask ] ) ;
223

224 i f (∗ l o c a t i o n s != LOCATION EMPTY) {
225 / / We have a h i t
226 h i t s [ l e v e l ] [ a s s o c ] + + ;
227 t r e e U p d a t e (& c u r r e n t S e t−>t r e e , ∗ l o c a t i o n s ) ;
228 } e l s e {
229 / / We have a mi s s
230

231 u i n t 8 t newIdx ;
232 u i n t 8 t ∗ o l d L o c a t i o n ;
233

234 i f ( a s s o c > 0) {
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235 newIdx = t r e e G e t E v i c t I d x ( c u r r e n t S e t−>t r e e , a s s o c ) ;
236 } e l s e {
237 / / I f our cache o n l y has one s e t t h e r e p l c e m e n t i d x

w i l l a lways be 0
238 newIdx = 0 ;
239 }
240

241 o l d L o c a t i o n = c u r r e n t S e t−> t r a c k e r s [ newIdx ] ;
242 i f ( o l d L o c a t i o n != NULL) {
243 / / The new l o c a t i o n i s l i n k e d t o an o l d a d d r e s s node .

C lear i t .
244 ∗ o l d L o c a t i o n = LOCATION EMPTY ;
245 }
246 c u r r e n t S e t−> t r a c k e r s [ newIdx ] = l o c a t i o n s ;
247 ∗ l o c a t i o n s = newIdx ;
248 t r e e U p d a t e (& c u r r e n t S e t−>t r e e , newIdx ) ;
249 }
250 l o c a t i o n s ++;
251 }
252 mask >>= 1 ;
253 }
254 }
255

256 void s a c p l r u o p t ( ) {
257 u i n t 3 2 t add r ;
258 u i n t 3 2 t p r e v a d d r = 0 x80000000 ;
259

260 u i n t 6 4 t n e x t s a v e t i m e ;
261 unsigned l ; / / C u r r e n t l i n e i n d e x w i t h i n t h e b u f f e r .
262 unsigned ∗ b u f f e r ; / / I n p u t b u f f e r .
263 unsigned nr ; / / Number o f l i n e s read from t h e l a s t
264 / / f i l e read op .
265

266 n e x t s a v e t i m e = SAVE INTERVAL ;
267

268 whi le ( n r = t r a c e (& b u f f e r ) ) {
269 i f ( a c c e s s C o u n t > n e x t s a v e t i m e ) {
270 o u t p r s a c p l r u ( ) ;
271 n e x t s a v e t i m e += SAVE INTERVAL ;
272 }
273

274 f o r ( l = 0 ; l < nr ; l ++) {
275 ++ a c c e s s C o u n t ;
276 i f ( ( a c c e s s C o u n t % P INTERVAL ) == 0) {
277 p r i n t f ( ” A d d r e s s e s p r o c e s s e d %l l u \n ” , a c c e s s C o u n t ) ;
278 }
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279

280 add r = ∗ ( b u f f e r + l ) ;
281 add r >>= L ;
282

283 i f ( p r e v a d d r == add r ) {
284 / / The same a d d r e s s has j u s t been r e p e a t e d . A l l cache

c o n f i g s have a h i t .
285 h i t s a l l ++;
286 } e l s e {
287 Node ∗node = getNode ( add r ) ;
288 u p d a t e T a b l e s ( node ) ;
289 }
290

291 p r e v a d d r = add r ;
292 }
293 }
294 }
295

296 void o u t p r s a c p l r u o p t ( ) {
297 i n t l e v e l ;
298 i n t a s s o c ;
299 u i n t 6 4 t sum ;
300

301 f p r i n t f ( out , ” A d d r e s s e s p r o c e s s e d : %l l u \n ” , a c c e s s C o u n t ) ;
302 f p r i n t f ( out , ” Line s i z e : %d b y t e s \n ” , (ONE << L ) ) ;
303 f p r i n t f ( out , ”\n ” ) ;
304 f p r i n t f ( out , ” H i t R a t i o s \n ” ) ;
305 f p r i n t f ( out , ” \n\n ” ) ;
306 f p r i n t f ( out , ”\ t \ t A s s o c i a t i v i t y \n ” ) ;
307 f p r i n t f ( out , ”\ t \ t ” ) ;
308 f o r ( a s s o c = 0 ; a s s o c < N + 1 ; a s s o c ++) {
309 f p r i n t f ( out , ”%d\ t \ t ” , ( 1 << a s s o c ) ) ;
310 }
311 f p r i n t f ( out , ”\n ” ) ;
312 f p r i n t f ( out , ”No . o f s e t s \n ” ) ;
313 f o r ( l e v e l = 0 ; l e v e l <= MAX DEPTH; l e v e l ++) {
314 f p r i n t f ( out , ”%d\ t \ t ” , (ONE << ( l e v e l + A) ) ) ;
315 f o r ( a s s o c = 0 ; a s s o c < N + 1 ; a s s o c ++) {
316 sum = h i t s [MAX DEPTH − l e v e l ] [ a s s o c ] + h i t s a l l ;
317 f p r i n t f ( out , ”%l f \ t%l l u \ t ” , ( 1 . 0 − ( ( double ) sum / ( double )

a c c e s s C o u n t ) ) , sum ) ;
318 / / ( t e n t r i e s − sum ) ) ;
319 }
320 f p r i n t f ( out , ”\n ” ) ;
321 }
322 f p r i n t f ( out , ”\n\n\n ” ) ;
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323 }
324

325 void i n i t s a c p l r u o p t ( ) {
326 i n t l e v e l ;
327 i n t a s s o c ;
328 i n t s e t ;
329 i n t node ;
330

331 TWO PWR N = (ONE << N) ;
332 MAX DEPTH = B − A;
333

334 TOP LEVEL SETS = (ONE << B) ;
335 CONTAINER SIZE = ( ( 1 << N) << 1) − 1 − ( (N ∗ (N + 1) ) >> 1) ;

/ / 2n − 1 − (N ∗ (N + 1) ) / 2
336 SUBCONTAINER SIZE = CONTAINER SIZE − N − 1 ;
337 TOTAL NODE COUNT = ( CONTAINER SIZE ∗ TOP LEVEL SETS ) + (

SUBCONTAINER SIZE ∗ ( TOP LEVEL SETS − 1) ) ;
338 HASH TABLE SIZE = TOTAL NODE COUNT;
339 CONFIG COUNT = (MAX DEPTH + 1) ∗ (N + 1) ;
340

341 LOCATIONS FIELD SIZE = CONFIG COUNT / s i z e o f ( u i n t 6 4 t ) ;
342 i f (CONFIG COUNT % s i z e o f ( u i n t 6 4 t ) != 0 ) {
343 LOCATIONS FIELD SIZE += 1 ;
344 }
345

346 / / I n i t i a l i s e t h e h i t c o u n t e r s
347 h i t s = ( u i n t 6 4 t ∗∗ ) m a l l oc ( ( MAX DEPTH + 1) ∗ s i z e o f ( u i n t 6 4 t

∗ ) ) ;
348 f o r ( l e v e l = 0 ; l e v e l < MAX DEPTH + 1 ; l e v e l ++) {
349 h i t s [ l e v e l ] = ( u i n t 6 4 t ∗ ) c a l l o c (N + 1 , s i z e o f ( u i n t 6 4 t ) ) ;
350 }
351 h i t s a l l = 0 ;
352

353 / / I n i t i a l i s e t h e cache s t a t e s f o r a l l t h e d i f f e r e n t c ac he s
s i m u l a t e d

354 c a c h e S t a t e s = ( C a c h e S t a t e ∗∗ ) m a l l oc ( ( MAX DEPTH + 1) ∗ s i z e o f (
C a c h e S t a t e ∗ ) ) ;

355 f o r ( l e v e l = 0 ; l e v e l < MAX DEPTH + 1 ; l e v e l ++) {
356 c a c h e S t a t e s [ l e v e l ] = ( C a c h e S t a t e ∗ ) ma l l oc ( (N + 1) ∗ s i z e o f (

C a c h e S t a t e ) ) ;
357 f o r ( a s s o c = 0 ; a s s o c < N + 1 ; a s s o c ++) {
358 S e t S t a t e o p t ∗ s e t S t a t e s = ( S e t S t a t e o p t ∗ ) ma l lo c ( (

TOP LEVEL SETS >> l e v e l ) ∗ s i z e o f ( S e t S t a t e o p t ) ) ;
359 c a c h e S t a t e s [ l e v e l ] [ a s s o c ] . s e t S t a t e s = s e t S t a t e s ;
360 f o r ( s e t = 0 ; s e t < ( TOP LEVEL SETS >> l e v e l ) ; s e t ++) {
361 s e t S t a t e s [ s e t ] . t r e e = 0 ;
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362 s e t S t a t e s [ s e t ] . t r a c k e r s = ( u i n t 8 t ∗∗ ) c a l l o c ( ( u i n t 6 4 t )
(1 << a s s o c ) , s i z e o f ( u i n t 8 t ∗ ) ) ;

363 }
364 }
365 }
366

367 / / I n i t i a l i s e t h e l i s t o f f r e e nodes
368 f r e e N o d e s . n o d e s A v a i l a b l e = TOTAL NODE COUNT;
369 f r e e N o d e s . nodeCount = TOTAL NODE COUNT;
370 f r e e N o d e s . nodes = ( Node ∗ ) ma l lo c (TOTAL NODE COUNT ∗ s i z e o f (

Node ) ) ;
371 f o r ( node = 0 ; node < TOTAL NODE COUNT; node ++) {
372 f r e e N o d e s . nodes [ node ] . l o c a t i o n s = ( u i n t 8 t ∗ ) ma l lo c (

LOCATIONS FIELD SIZE ∗ s i z e o f ( u i n t 6 4 t ) ) ;
373 c l e a r L o c a t i o n s ( f r e e N o d e s . nodes [ node ] . l o c a t i o n s ) ;
374 }
375 / / L ink a l l t h e f r e e nodes t o g e t h e r
376 f o r ( node = 0 ; node < TOTAL NODE COUNT − 1 ; node ++) {
377 f r e e N o d e s . nodes [ node ] . nextNode = &f r e e N o d e s . nodes [ node + 1 ] ;
378 }
379 f r e e N o d e s . nodes [ node ] . nextNode = NULL;
380

381 / / I n i t i a l i s e t h e hash t a b l e
382 nodeHash = ( Node ∗∗ ) c a l l o c ( HASH TABLE SIZE , s i z e o f ( Node ∗ ) ) ;
383 }
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