
TransLucid: From theory to implementation

Author:
Beck, Jarryd

Publication Date:
2015

DOI:
https://doi.org/10.26190/unsworks/18117

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/54286 in https://
unsworks.unsw.edu.au on 2024-05-01

http://dx.doi.org/https://doi.org/10.26190/unsworks/18117
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/54286
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


TransLucid: From theory to implementation

Jarryd P. Beck

A thesis in fulfilment of the requirements for the degree of

Doctor of Philosophy

The School of Computer Science and Engineering

The Faculty of Engineering

March 2015



Abstract

This thesis presents the programming language TransLucid, from its denotational se-

mantics to its concrete implementation. In TransLucid, a variable denotes an intension,

which is an array of arbitrary rank and infinite extent, indexed by a multidimensional

context. TransLucid is descended from Lucid, whose development since 1974 left several

open problems, all of which are solved in this thesis. These open problems are: 1) the

semantics and implementation of higher-order functions over intensions; 2) the semantics

and implementation of dimensions as first-class values, atomic values as dimensions, and

contexts as first-class values; and 3) the implementation of a cache-based evaluator. In

addition, this thesis presents a type inference algorithm for TransLucid, and the concrete

TransLucid system, which is a synchronous reactive programming environment.
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Chapter 1

Introduction

This dissertation presents the programming language TransLucid, from its denotational

semantics to its concrete implementation. TransLucid is an intensional programming

language, meaning that a variable denotes an intension, which is an array of arbitrary

rank and infinite extent. Programming with infinite arrays allows the data flow of a

computation to be made explicit, with every subcomputation explicitly indexable. The

most immediate application of such a language is in parallel programming; by writing down

equations describing this data flow, the programmer is not concerned with the specific

implementation details of synchronisation, locking, shared memory, and so on, but with

expressing the problem in a manner that makes the available parallelism obvious. The

interpreter presented in Chapters 8 and 9 is currently available at http://translucid.

web.cse.unsw.edu.au. The entire presentation is given in a bottom-up manner, building

on simple concepts at each step, since the concepts are too new for a top-down presentation.

TransLucid is a descendant of the dataflow language Lucid, first presented by Wadge

and Ashcroft in 1976 [7]. In order to understand the contributions this thesis makes to

TransLucid, it is necessary to examine the historical context, mainly the development of

Lucid, which left open several problems, all of which are solved in the following chapters.

We begin in 1974, with the mathematician William (Bill) Wadge, and the computer

scientist Edward (Ed) Ashcroft. Wadge made the observation that it is typical to write

statements like the following in a program:

I = 0

while (I < N)

{

...

I = I + 1

}

Mathematically, these statements are nonsensical, in particular I = I + 1. To a mathe-

matician, a variable is not assigned to, but is a mathematical object defined by an equation,

or set of equations, and is typically parameterised by one (or more) dependent variable(s).

Wadge realised that the variable I could be described by the following equations:

1
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first I = 0

next I = I + 1

Initially, when Wadge took this idea to Ashcroft, the latter responded positively, but with

the question, “What is the semantics?” The first answer provided by Wadge was to give

an operational explanation of what was going on—which is not semantics. Wadge, having

studied the Baire space (irrationals with infinite decimal expansion) while doing his PhD,

soon after realised that the semantics of the variable I is an infinite stream, 〈0, 1, 2, . . .〉,
representing the history of I as it varies through “time”. This infinite stream obeyed

the prefix order, which is that a stream s is less defined than another, s′, if s is a prefix

of s′—in other words, that it was necessary to compute elements in order. It was seen this

way exactly because the operational view of I suggested the semantics; since I was a loop

variable, it had to be evaluated sequentially.

This exchange, here between Wadge and Ashcroft, in which several threads of ideas

interact, would be repeated as Lucid evolved. The first, and most important, of these

threads is the question, “What is its semantics?” The second thread, which we have also

seen, is how the operational view of computation interacts with the semantics, and is also

frequently recurring. There are other significant threads of ideas, each is introduced as it

occurs; each is solved completely in this thesis, but their presentation is deferred, because

the solutions only become clear in their entirety.

Lucid was first presented to other researchers in 1975 at the Symposium on Proving and

Improving Programs, hosted by Gilles Kahn and Gérard Huet in Arc-et-Senans (France).

There, it quickly became clear that Kahn’s work on dataflow networks, and Wadge and

Ashcroft’s work on Lucid, were intimately related. In 1977, Kahn wrote [23] about this

connection:

The style of programming also recalls LUCID, which has a similar semantics.

The obvious pay off will be in easier correctness proofs. Note also that this

programming language is just what is needed to compute over real numbers

with unlimited accuracy.

Lucid streams were soon understood as dataflow networks, and a new operator, fby (fol-

lowed by) was introduced. As a result, the two declarations for I, as above, could be

replaced by one:

I = 0 fby I + 1

Another luminary of the same period, Alan Kay, designer of Smalltalk, also noticed

Lucid. For Kay, a Smalltalk object was a function transforming a sequence of messages

received into a sequence of messages sent. In a 2004 interview [21], Alan Kay said:

One of my favorite old languages is one called Lucid by Ed Ashcroft [and Bill

Wadge]. It was a beautiful idea. He said, “Hey, look, we can regard a variable

as a stream, as some sort of ordered thing of its values and time, and use

Christopher Strachey’s idea that everything is wonderful about tail recursion

and Lisp, except what it looks like.” When he looked at Lisp, he had a great
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insight: which was that tail-recursive loops and Lisp are so clean because you’re

generating the right-hand side of all the assignment statements before you do

any rebinding. So you’re automatically forced to use only old values. You

cannot rebind, so there are no race conditions on anything.

You just write down all of those things, and then when you do the tail recursion,

you rebind all of those variables with these new values. Strachey said, “I

can write that down like a sequential program, as a bunch of simultaneous

assignment statements, and a loop that makes it easier to think of.” That’s

basically what Lucid did—there is no reason that you have to think recursively

for things that are basically iteration, and you can make these iterations as

clean as a functional language if you have a better theory about what values are.

The intuition Kay held for Smalltalk objects was that they were filters between Lucid

variables.

Although Wadge and Ashcroft wrote about dataflow, they were already aware by 1977

that the primitives of Lucid allowed the creation of programs that could not be interpreted

as pure dataflow, but in a demand-driven manner, which they later called eduction. The

first Lucid interpreters, implemented by Tom Cargill and David May, which were sub-

sequently refined by Calvin Ostrum [26], evaluated elements of streams in this demand-

driven manner, meaning that some elements were never even computed. In fact, these

interpreters even worked if there were elements defined by nonterminating computations,

as long as those elements were never requested. However, this model of evaluation was

not consistent with the dataflow semantics, because the prefix order on streams required

that a stream be defined sequentially, from zero, in effect, forcing iteration. This brings

us back to the second thread of ideas: the way in which the operational view influences

the semantic view. We will return to this semantic problem shortly.

The term eduction was used around the same time (1978) for exactly the same purpose

in a completely different area of computer science. David P. Reed published his PhD thesis

Naming and Synchronization in a Decentralized Computer System [38], in which a trans-

action in a distributed system could be defined by supposing an independent transaction

on a complete (virtual) copy of the system, whose result would be then integrated back

into the (in the mean time) possibly-changed physical system, should there be no contra-

dictions. If there were, then the transaction would need to be restarted. This principle

is the basis for software transactional memory. The actual implementation of this idea

requires a demand-driven strategy to acquire copies of components of the original system,

as needed, for the purposes of the transaction; this strategy Reed also called eduction. It

is unclear how two different research groups ended up, at the same time, with exactly the

same terminology for what was essentially the same process, used in different situations.

In the first interpreters, elements of streams were cached. This was fairly trivial, since

streams only varied in a single time dimension. A cached evaluator worked as follows:

the user would request the value of some stream, say, I, defined above, at some time,

say, 6. This would then need I at time 5, which would need I at time 4, down to time 0.

Since every stream varied in only the time dimension, it was trivial to remember the value
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resulting from each pair of requests. Then, if a request later came along for I at some

time, for which the value at that time had already been computed, it could just be looked

up in the cache. This is in fact the next thread of ideas: it is desirable to cache results of

computation, to reduce repeated computation of the same thing. However, as will soon

be seen, this became increasingly difficult as the language evolved.

At the end of their 1977 CACM article [8], Wadge and Ashcroft gave their vision for

Lucid:

There are, besides iteration, several other features so far not discussed which a

programmer would expect to find in a high-level programming language. These

include arrays, structured data and user-defined, possibly recursive, functions.

Naturally any such extensions must be compatible with the denotational ap-

proach; the addition of imperative features would make the rules of inference

invalid. Function definitions offer no real difficulty, because, as was noted in

Section 2 [of the paper], recursion equations are simply assertions. The ad-

dition of arrays is not quite so straightforward, but is possible if we allow

the value of a variable to depend on space as well as time parameters (David

May’s interpreter deals with arrays in this way). Details will be given in a

subsequent paper.

Solving these problems took a lot longer than expected, precisely because of the interplay

between methodology, semantics and implementation. As a problem was being solved, it

was also generalised, which forced advances in other aspects of the language. The above

problems are all solved in this thesis, and due to the history of the language, not always in

the manner envisioned by Wadge and Ashcroft, but using a more general approach where

applicable. In particular, the introduction of intensions and higher-order functions over

intensions was non-trivial, and forms the key contribution of this thesis.

By the time that Wadge and Ashcroft wrote their first book on Lucid in 1985, Lucid:

the Dataflow Programming Language [43], streams were written with a single definition,

using operators that transformed streams. Their vision was that a Lucid function was

essentially a filter—as was envisioned by Kay—which transformed streams of data. At the

start of their book, Wadge and Ashcroft presented an example program that computes

the root mean square of an input stream. With the appropriate function definitions, the

expression sqroot(avg(square(a))) is a filter producing a stream, whose elements are

the root mean square of the elements of a, up to that point. They likened this to Unix

pipes, whereby one could write something like (sqroot | avg | square) < a to achieve

the same effect.

With the initial intuition that a variable is an infinite stream, and the subsequent

realisation that problems can be described as data flowing through a network, Wadge and

Ashcroft saw the potential for exploiting the maximum parallelism in a problem, by simply

writing down the problem declaratively, rather than a sequential solution to that problem.

In their 1985 book Lucid: the Dataflow Programming Language, they wrote [43, p.31]:

Machines exist to solve problems; to simulate an airplane in flight, to control a

refinery, to compute the gas bill. The role of the programmers in this context
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is to communicate the problem to the machine—the programming language

is their tool. The reason that the programmer wants to get away from the

machine is to get closer to the problem.

These three sentences epitomised their vision for Lucid. Wadge and Ashcroft saw the

potential for parallel programming, at the time in its infancy, and understood that to solve

parallel programming problems, it was imperative that programming move away from the

sequential programming model, and towards a language in which parallel problems could

naturally be expressed.

Although, by 1977, they recognised that the semantics and implementation were dif-

ferent to pure dataflow, it continued to inspire their vision, which made it difficult for

them to look further. By initially looking at a stream such as I, which provided a very

good model for declarative iteration, Wadge and Ashcroft restricted themselves to think-

ing only about iteration, i.e., a single stream varying in time, whose elements depended

on the value of the previous element. Furthermore, by doing this, they were essentially

focusing on task-level parallelism, and never considered data-level parallelism; they had

the correct intuition with regards to connecting different filters together, but by forcing

everything to be iterative, they lost the potential for every element in an entire stream to

be computed in parallel.

The lack of functions in Lucid was problematic, because they were necessary for trans-

forming streams. So by their 1985 book [43], there were user-defined functions in Lucid,

but they were not first-class objects. This led to criticism from the functional program-

ming community, who did not consider Lucid to be a functional language because it did

not have higher-order functions, even though every single Lucid variable was itself a func-

tion (a stream is a function from naturals to values), so any Lucid function was, in fact,

inherently higher-order, just not in the sense that the functional programming community

wanted. In addition, Wadge wanted an approach to the implementation of functions that

was consistent with the eductive implementation of Lucid variables.

At the end of their 1985 book [43, p.233], the authors presented an idea for a hypothet-

ical version of Lucid, in which there could be streams of functions, as well as higher-order

functions over streams. They wanted to be able to define a variable like P as follows:

P = (\x : x) fby (\x : x * P(x))

Functions as first-class values is the next thread of ideas in Lucid, beginning with this idea

about allowing streams of functions; the idea is picked up again later. The TransLucid

solution to the above problem is presented in §4.13.

Also at the end of their 1977 paper [8], Wadge and Ashcroft presented the possibility

of manipulating arrays in Lucid, essentially allowing streams of arrays, or explicit mul-

tidimensionality, instead of the current single-dimensional model. So the thread of ideas

was, “How do we allow more dimensions to be manipulated by the user?” In their 1985

book [43], Wadge and Ashcroft presented several implementations which attempted to an-

swer that question. To achieve this multidimensionality, additional space dimensions were

made available to the user through additional operators. There were operators such as
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cby (continued by), amongst others, which were “space” analogs of the functions used to

manipulate streams varying in “time”. These functions had slightly different semantics in

each implementation, but the basic idea was that they allowed some limited manipulation

of the “space” and “time” dimensions. These ideas were heading in the right direction,

but since the user could not explicitly manipulate dimensions as first-class values, the pro-

grams that could be written were limited by the operators made available in the language.

In addition, the dimensions over which a function operated were preordained, so if the

user wrote a function that operated over a stream varying in space dimension s0, then it

could not be made to operate over space dimension s1, forcing it to be rewritten.

In fact, as shown in this thesis, both higher-order functions and multidimensionality

need each other. So it is not surprising that without either concept being completely

understood, neither of them was successful. Multidimensionality is not particularly inter-

esting without higher-order functions, because functions are necessary to structure data;

and higher-order functions need multidimensionality for implementation purposes.

Meanwhile, the desire to understand the concepts of Lucid denotationally continued.

So, now, we return to the problem of the semantics of streams versus the implementation.

It was later realised that the correct order for streams is, in fact, not the prefix order, but

the Scott order, which says that a stream s is less defined than s′ if s′ defines at least the

elements that s defines, and that they concur for those elements.

The Scott order of streams led to the idea of the intension [15] in 1986. This had the

implication that a variable is not a stream in one dimension, but an infinite array varying

in arbitrary dimensions (the intension is a generalisation of the Lucid stream, extended to

multiple dimensions, so a stream can be seen as an intension varying in one dimension).

In logic, an intension is a mapping from possible worlds to extensions, see the work by

Carnap [12] and Montague [14, 42]. In Lucid, an intension is a mapping from possible

worlds (multidimensional indices) to extensions (atomic values).

From this point onwards, the questions driving the development of Lucid were about al-

lowing the user to explicitly manipulate all of the concepts referred to in the semantics. So

in continuing the thread about the user manipulating dimensions, the next natural question

was, “What if the user can explicitly manipulate dimensions?” The answer to this question

was Indexical Lucid, introduced by Faustini and Jagannathan in 1991 [16, 17], and later

presented in the 1995 book Multidimensional Declarative Programming [9]. In Indexical

Lucid, a function rotate, which takes as input an intension varying in dimension d1 and

rotates it into dimension d2, i.e., returning an intension varying in dimension d2, can be

defined as follows:

rotate.d1,d2 X = X @.d2 #.d1

If a and b were actual dimensions, and A were an intension varying in dimension a, then

the function application:

rotate.a,b A

would rotate A into dimension b. In Indexical Lucid, functions take dimensional parame-

ters, and intensional parameters, and cannot be partially applied. So here, a and b are not
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passed as values as in ML-style languages, but are passed as the dimension names a and b

to rotate. Indexical Lucid made huge progress in the way that programs were written.

However, it always came back to the question, “What is its semantics?” In Multidimen-

sional Declarative Programming [9, Chapter 3], the authors gave an intuitive description

of the semantics, but no rigorous mathematical semantics. In addition, the cached eval-

uator previously used did not work with the huge number of dimensions now used in a

program; it was not clear how to tag the result of a computation, nor how to later look

it up, since not all dimensions being used at any given time were relevant to the value

of any particular expression. The implementation of a cached evaluator became an open

problem, and is solved in Chapter 6.

Continuing along the thread of introducing first-class functions, the next question was,

“Can we introduce higher-order functions?” In 1999, Rondogiannis and Wadge presented

a system for transforming higher-order functional programs into multidimensional inten-

sional programs with no functions [39]. However, their system only worked for a restricted

class of functional programs, in which functions could take other functions as argument,

but could not return functions—so partially applied functions were not allowed either.

This was a step in the right direction, but did not produce a Lucid language with func-

tions, only a means to transform other programs to Lucid with no functions.

To return to the thread about explicitly manipulating dimensions, the next question

was, “Do dimensions necessarily have to be special parameters to functions?”. In 1999

and 2000, Paquet and Plaice suggested with Tensor Lucid [27, 29], that dimensions could

be first-class values. Then in 2000, Plaice proposed Multidimensional Lucid [31], in which

any atomic object could be used as a dimension. If dimensions could become first-class

values, it was only natural that contexts should become first-class values. In 2001, in

developing his GIPSY project [28], Paquet suggested that the context change operator

become E′ @E, meaning that E should evaluate to a context κ, and E′ would be evaluated

by perturbing the running context with κ. However, the implementation issues became

further complicated.

In 2005, Plaice started the TransLucid project, with an idea from Wadge called lazy

eduction. This was a back-and-forth interaction between the cache and the evaluator,

whereby the cache would build up the dimensions used to produce a result by attempting

evaluation with only the dimensions known about. If more dimensions were required, the

cache would record this, and the process would continue until a result was obtained. All

of this work culminated with Plaice’s Habilitation thesis in 2010 [32], which attempted to

provide a denotational semantics, operational semantics and cache semantics for TransLu-

cid with higher-order functions and first-class dimensions and contexts. Whilst the ideas

were heading in the right direction, clearly defining the future work, much was not imple-

mented, and the set of primitives defined therein turned out to be definable by an even

smaller set, leading to simpler semantics and implementation.

It is at this point that the present thesis steps in and draws all of these threads together.

This thesis provides an answer to each of the following questions from the history of Lucid:

“What is its semantics?”, “Can we have first-class higher-order functions?”, “Can we
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implement a cached evaluator?”, and “Can contexts and dimensions be first-class values,

to be manipulated as the user desires?”

Chapter 2 presents the semantics of Core TransLucid, which is a basic functional pro-

gramming language, with only four more syntactic elements than a standard functional

language, in which an expression with no free variables denotes an intension. Further-

more, intensions, functions, contexts and dimensions are all part of the semantic domain

(Definition 1), meaning that they are all first-class values.

After the denotational semantics, much of the work in this thesis exists to produce

a concrete language that is usable and implementable. In order to move from Core

TransLucid to Concrete TransLucid, presented in Chapter 8, several different syntaxes

are presented, with complete syntactic transformations and semantics. To illustrate the

syntax and transformations, the remainder of this Chapter will use the example of a sim-

ple matrix multiplication, presenting it in each different syntax. Matrix multiplication is

presented in (canonical) TransLucid, and explained in detail in §4.7.

Suppose that A and B are two matrices, of sizes 2 × 3 and 3 × 2 respectively, both

indexed by dimensions a and b. We can visualise these matrices in the following tables:

‘A’ 0 1 2
#.a→ ‘B’ 0 1

#.a→
0 1 2 3 0 9 8

1 4 5 6 1 7 6

#.b↓ 2 5 4

#.b↓

In fact, in Core TransLucid, A and B are two-dimensional intensions, of infinite size, but we

only need concern ourselves with the relevant entries. With this example it should be clear

why we refer to this style of programming as Cartesian Programming, because all variables

are arrays sitting in a Cartesian coordinate space, indexed by as many dimensions as

necessary. In Core TransLucid the multiplication of A and B is defined by the expression:

W wherevar

A′ = A @ [a← #.d]

B′ = B @ [b← #.d]

Z = A′ ×B′

W = if #.d ≡ 0 then Z else Z +W fi

end

wheredim

d← 2

end

Here, we create a new dimension d, and initialise its ordinate to 2, resulting in the wherevar

clause being evaluated in the context {d 7→ 2}. The variables A′ and B′ are the result of

rotating A into dimension d along dimension a and B into dimension d along dimension b.

Then, Z is a 2×3×2 parallelepiped, formed as the result of multiplying every corresponding

element of A′ and B′. The variable S is the result of summing the elements of Z in the
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d direction. Since the size of the common dimension of the matrices is 3, we need to pull

out the third entry of the sum (counting from zero), hence initialising the d-ordinate to 2.

The variables used to produce the result can be visualised as follows:

‘A′’ 0 1 2
#.d→

0 1 2 3

1 4 5 6

#.b↓

‘B′’ 0 1 2
#.d→

0 9 7 5

1 8 6 4

#.a↓

‘Z @ [a← 0]’ 0 1 2
#.d→

0 9 14 15

1 36 35 30

#.b↓

‘Z @ [a← 1]’ 0 1 2
#.d→

0 8 12 12

1 32 30 24

#.b↓

For the variable W which sums the elements of Z, we write dimension d to the right,

which is the direction of the summation, and the boxes represent the values making up

the final result.

‘W @ [a← 0]’ 0 1 2
#.d→

0 9 23 38

1 36 71 101

#.b↓

‘W @ [a← 1]’ 0 1 2
#.d→

0 8 20 32

1 32 62 86

#.b↓

The final result is reproduced below using a single table, rotating the table so that dimen-

sion a is to the right again.

‘W @ [d← 2]’ 0 1
#.a→

0 38 32

1 101 86

#.b↓

In Core TransLucid, we can write down higher-order functions over intensions, although

it is a little verbose. Therefore, Chapter 3 presents (canonical) TransLucid, which provides

several function abstractions and applications, implemented as syntactic sugar over Core

TransLucid, and demonstrates the canonical way that the user would write higher-order

functions. These function abstractions are:

1. An intension abstraction, which promotes the intension to a first-class object;

2. A base abstraction, whose body must define a single atomic value;

3. A call-by-value abstraction, whose parameter is evaluated when applied, and whose

body defines an intension;

4. A call-by-name abstraction, whose parameter is evaluated when used, and whose

body defines an intension.
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In addition, the wherevar and wheredim clauses are combined into a single where clause.

Using the syntactic sugar of TransLucid, we define a function matrix multiply that takes

as input two matrices, the dimensions in which they vary and the size of their common

dimension, this example corresponds to the one in §4.7:

fun matrix multiply .dc.dr.k X Y = W

where

dim d← k

var X ′ = rotate.dc.d X

var Y ′ = rotate.dr.d Y

var Z = X ′ × Y ′

varW = foldl .d.plus.0 Z

end

Then the expression matrix multiply .a.b.3 A B gives the matrix multiplication of A and B.

The fun declaration is also presented with TransLucid, and it is syntactic sugar for a

variable declaration, which defines a function. In this case it is the equivalent to:

var matrix multiply = λbdc → λbdr → λbk → λnX → λnY →W where · · · end

Here, X ′ and Y ′ are defined using the function rotate.d.d′ X (§4.5), which rotates dimen-

sion d of its argument X into d′, and variable S is defined using foldl .d.f.z X (§4.6), which

computes the left fold of its argument X along direction d using the function f and with z

as the initial element.

After presenting TransLucid, Chapter 4 gives an introduction into the methodology

of programming in TransLucid, by presenting how TransLucid solves several standard

programming problems, with particular reference to the geometric view of an intension.

This is a key chapter, because it is through this geometric view that it can be seen

how the flattening of the data involved in a computation allows data dependencies to be

made explicit, with the goal of drawing out maximal parallellism. This is in contrast

to a language such as Haskell, which requires the programmer to explicitly program the

parallelism, using extensions such as Control Parallel [4], Concurrent Haskell [3] and Data

Parallel Haskell [1], the result being that if an opportunity for parallelism is missed by the

programmer, then it cannot be recovered by a compiler.

In moving TransLucid towards an implementation, Chapter 5 presents Operational

TransLucid, which moves manipulations of the environment into manipulations of the

context—another key contribution of this thesis. It is necessary to do this because a

direct implementation of the denotational semantics would be horribly inefficient. To

achieve this, all uses of the environment in function abstractions are transformed to uses

of the context, and a function abstraction must hold on to the ordinate of any dimension

used as a parameter by a surrounding abstraction. In addition, call-by-name abstractions

are transformed to call-by-value abstractions that take an intension as parameter, call-by-

name applications are transformed to call-by-value applications that wrap the right-hand
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side in an intension abstraction, and the where clause is split into wheredim and wherevar.

The matrix multiplication example is transformed to the following (note that the user does

not see this syntax, it is purely for implementation purposes):

var matrix multiply = λb◦ φdc →
λb◦ {φdc} φdr →
λb◦ {φdc , φdr} φk →
λv◦ {φdc , φdr , φk} φX →
λv◦ {φdc , φdr , φk, φX} φY →W

wherevar

var X ′ = rotate.φdc .φd (↓ φX)

var Y ′ = rotate.φdr .φd (↓ φY )

var Z = X ′ × Y ′

varW = foldl .d.plus.0 ! (↑ {φdc , φdr , φk, φX , φY } Z)

end

wheredim◦

dim φd ← k

end

The question of the cached evaluator is solved in Chapter 6. The evaluator discovers

the dimensions of relevance using a back-and-forth interaction with the cache. Initially,

an attempt is made to evaluate with no dimensions; should a dimension be required, the

cache records the dimension and its ordinate and tries again. This continues until an

answer is produced, at which point the cache has built up a tree describing the dimensions

necessary to evaluate an intension.

Consider an evaluation of the Fibonacci numbers. We would like to compute the value

of the following expression:

fib

where

dim d← 3

var fib = if #.d ≡ 0 then 1

elsif #.d ≡ 1 then 1

else
(
fib @ [d← #.d− 1]

)
+
(
fib @ [d← #.d− 2]

)
fi

end

Without the cache, the evaluator requests the pair (fib, {d 7→ 3}), which requests the pairs

(fib, {d 7→ 2}) and (fib, {d 7→ 1}), the latter gives the result 1, and the former requests

(fib, {d 7→ 1}) and (fib, {d 7→ 0}) which both produce 1. Even with the third Fibonacci

number there are two requests for the first Fibonacci number.

Evaluating with the cache is slightly different. Initially we ask for (fib, {d 7→ 3}), and

the cache starts the computation with the empty context ∅. When the evaluator reaches

#.d inside the condition of the if expression, it returns the fact that it needs dimension d.

The cache records this, and then attempts to evaluate again with the context {d 7→ 3}.
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This time, the else branch is taken, and a request is made at {d 7→ 2}. This whole

process is repeated, except that this time the cache knows that the d-ordinate is required,

so it starts evaluating immediately, and again comes to the else branch, which requests

(fib, {d 7→ 1}). Again this is repeated, but this time the result 1 is returned, so the cache

remembers that (fib, {d 7→ 1}) = 1. As evaluation continues, the same process is carried

out for the values at 0 and 2. Finally, evaluation returns to the right-hand side of the

addition when the context is {d 7→ 3}, which requests (fib, {d 7→ 1}). This time, that

result is already stored in the cache, so it does not attempt to recompute it, and simply

returns the result.

As a final note, the cache scheme is so effective, that the plethora of dimensions

resulting from the transformation to Operational TransLucid causes no problems for it.

In addition, this thesis seeks to answer two additional questions: “How far can we take

static analysis of TransLucid programs?” and, “Can we produce not just an expression

evaluator, but a complete programming environment with multidimensional input and

output, that remains completely declarative?”

Chapter 7 presents a type inference algorithm for TransLucid, which starts with the

idea that the principal type of an object is itself. To support this idea, types are inferred in

a framework which generates subtyping constraints. For example, the type of the number

42 is not intmp, but α, with the constraint (42 ≤ α). The types of larger programs

are built up by composing the constraints generated by subexpressions, and placing them

in a constraint graph, if that graph is closed then it has a solution, and the program is

well-typed.

An example type that can be inferred in this system is the Y -combinator, whose

definition is:

λnf →
(
λnx→ f (x x)

) (
λnx→ f (x x)

)
and whose type is inferred as:

∀α.(↑ (↑ α v→ α)
v→ α)

which is something that unification-based type-inference algorithms cannot do, such as is

used by Haskell.

Then finally, Chapter 8 presents Concrete TransLucid, along with the TransLucid

system, which is a synchronous reactive programming environment, supported by the

TransLucid standard library presented in Chapter 9. Concrete TransLucid provides con-

crete syntax for expressions and atomic objects, so that the user can write down real

programs, using real atomic objects available in the host environment. The TransLucid

system evaluates demands across several instants, taking finite multidimensional arrays as

input and producing finite multidimensional arrays as output. Additionally, the behaviour

of the system can be modified, by the programmer adding the appropriate declarations

at each instant. All of this is completely declarative, with the demands for computation

being carried out each instant, and the results written to the required outputs. This solves

the problem that Simon Peyton Jones referred to when he said that “Haskell is useless” [2].
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By providing a semantics for side effects to occur in discrete time instants, this thesis has

produced a completely declarative system, which is capable of affecting the outside world.

To finish with the matrix multiplication example in Concrete TransLucid, with the

system evaluating demands at each instant, and taking inputs and producing real output,

we can create a system that evaluates matrix multiplications every instant, with new

inputs each time. We declare the variables A and B to be inputs, and variable C to be an

output:

indim a

indim b

invar A← URL

invar B ← URL

outvar C := matrix multiply.a.b.3 A B

outvardest C → URL

Each of the three URLs would be set to point to the appropriate location, and as long the

inputs provide a different matrix at each instant, the request for assignment into variable C

will compute a different matrix, upon each instant, until the end of time.

The open problems left by Lucid in the 1970s and 1980s are closed by this thesis,

but many new questions are raised, which research teams could spend many fruitful years

working on. Chapter 10 examines the different problems raised, and points in the direction

of their solution, with much of the future work being in static analysis, so that efficient

code with maximal parallelism, as appropriate for the target architecture, can be generated

from the same program.



Chapter 2

Core TransLucid

This chapter presents the key concepts and semantics for TransLucid. The language

presented here is Core TransLucid, a higher-order functional language in which a variable

denotes an intension, which is a mapping from contexts to ordinary values, where a context

is a set of dimension–ordinate pairs. Core TransLucid is a standard functional language,

to which are added four syntactic constructs: the tuple, the context, the context change,

and the wheredim clause. Core TransLucid’s semantics requires the definition of domains

for contexts and intensions, in addition to ordinary functions.

The chapter begins with an extensive presentation (§2.1) of the concept of intension,

the very basis for the language, and the hardest to grasp. This intuition leads naturally to

the definition of the domains needed to define Core TransLucid’s semantics (§2.2). In this

semantics, the evaluation of an expression takes place with respect to the interpretation

of the constant symbols in the expression, to an environment mapping identifiers in the

expression to intensions, and to a current context. During this evaluation, new dimensions

may be allocated, for which two approaches, one non-deterministic, one deterministic, are

presented.

The full language used to program, simply called TransLucid, will be presented in the

next chapter. It uses the same semantic domains, but requires syntactic extensions, all

directly translatable to Core TransLucid.

2.1 Intensions, contexts and functions

In TransLucid, a variable, and in fact every expression, defines a multidimensional inten-

sion, which is an array that may be indexed by as many dimensions as one needs. In

the discussion below, we make use of two dimensions, x and y, the ordinates of which are

considered to be natural numbers. The word ordinate comes from the word co-ordinates,

literally meaning “ordinates which are together”. Below, in addition to two-dimensional

intensions, we have one-dimensional and zero-dimensional intensions. These are visualized

as tables, with the x dimension being displayed to the right, and the y dimension being

displayed down the page. A zero-dimensional intension is simply a single value, such as

the intension defined by the expression ‘42’.

14
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In TransLucid, we can write a definition for variable A using a declaration like the

following one:

var A = 42 + (2 ∗ #.x) + #.y

The above expression defining A is built up from subexpressions ‘42’, ‘2’, ‘ + ’, ‘ ∗ ’,

‘#.x’, and ‘#.y’. If we consider the evaluation of these subexpressions in the aforemen-

tioned {x, y} two-dimensional space, then these subexpressions give:

‘42’

42

‘ + ’

+

‘2’

2

‘ ∗ ’
×

‘#.x’ 0 1 2 3
#.x→

0 1 2 3 · · ·
‘#.y’

0 0

1 1

2 2

3 3

#.y↓
...

Subexpressions ‘42’, ‘2’, ‘+ ’ and ‘ ∗ ’ all define zero-dimensional entities; we say that

the rank of each is ∅ (the empty set). It is important to remember that each expression

defines a whole array, all at once. So the expression ‘42’ defines an array whose only

entry is the value 42. One should not think of this as a two-dimensional one-by-one array,

or even a one-dimensional array with one entry, because that is not what is going on here.

The array truly is zero-dimensional, and holds one value, it does not have a number of

cells holding different values, or even a number of cells all holding 42. Hence, the only

value that can be retrieved from the array is the one value that defines it. We cannot

emphasize this point enough, because it is critical to understanding the remainder of the

text. Without understanding that every expression defines an array, any further attempt

at understanding will be fraught with difficulty.

Subexpressions ‘#.x’ and ‘#.y’ are 1-dimensional arrays: ‘#.x’ has rank {x}, which

means that it is an array that has entries in the x direction. In fact, it is an array whose

entries are simply the index of the entry, in the x direction. Again, this point is key to

understanding TransLucid: when specifying a cell in an intension, one must give, for each

dimension in the rank of the intension, both the relevant dimension (the direction) and

its ordinate. Similarly, ‘#.y’ has rank {y} and is an array whose entries are the index of

the entry in the y direction.

For subexpression ‘2 ∗ #.x’, since subexpressions ‘2’ and ‘ ∗ ’ are of rank ∅, they are

naturally extended to rank {x}, and the resulting array is the multiplication of each pair

of corresponding entries from the arrays ‘2’ and ‘#.x’.

‘2’ 0 1 2
#.x→

2 2 2 · · ·
‘ ∗ ’ 0 1 2

#.x→
× × × · · ·

‘2 ∗ #.x’ 0 1 2
#.x→

0 2 4 · · ·

For expression ‘42 + (2 ∗#.x) +#.y’, the subexpressions ‘42’ and ‘+’ (both rank ∅),
‘2 ∗ #.x’ (rank {x}), and ‘#.y’ (rank {y}) are all extended to rank {x, y}, and so the

value of ‘A’ is:
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‘A’ 0 1 2 3
#.x→

0 42 44 46 48 · · ·
1 43 45 47 49 · · ·
2 44 46 48 50 · · ·
3 45 47 49 51 · · ·

#.y↓
...

...
...

...
. . .

Looking at example ‘A’, one could easily get the impression that ordinates must

always be natural numbers. This is not the case. Here we show an intension ‘L’, without

showing how it might be defined, giving the textual representation of the integers in several

languages, varying in dimensions x and lang:

‘L’
#.x← −2 −1 0 1 2

#.x→
EN · · · “minus two” “minus one” “zero” “one” “two” · · ·
ES · · · “menos dos” “menos uno” “cero” “uno” “dos” · · ·
FR · · · “moins deux” “moins un” “zéro” “un” “deux” · · ·

#.lang↓
...

...
...

...
...

...
. . .

Viewing an intension as a multidimensional table does provide us with an intuition

of what an intension is. Nevertheless, in general, this table is infinite, and cannot be

constructed explicitly in a computer. Furthermore, programmers do not normally see

their variables as infinite tables: Faustini and Wadge [15] state, with respect to an example

about temperature, “No one in their right mind would think of temperature as denoting

some vast infinite table; nor would they consider statements about the temperature to be

assertions about infinite tables.”

In fact, the infinite table is the extensional view of an intension. The intensional

view is from the perspective of a particular point, called a context, within the table. For

example, we might want to query for the value of A at context {x 7→ 3, y 7→ 2}, which is 50.

In this intensional manner, an expression can be thought of as a mapping from the set

of possible worlds (all the contexts for which the intension is defined) to its meaning in

each specific world (each particular context). Then, when a specific entry is required, one

need only compute the entries necessary.

This is, in fact, how the semantics in §2.2 is defined. To compute the value of an

expression in an intensional manner, one must first define at which array entry, or at which

context, one would like to reach into the intension. That context is called the “current”

context, which corresponds to the # symbol appearing in our examples. Therefore, in

evaluating A in the example above in the context {x 7→ 3, y 7→ 2}, the expressions #.x and

#.y have the values 3 and 2 respectively.

Because the rank of A is {x, y}, A is defined whenever the current context defines at

least x and y. So, for example, if the current context is {x 7→ 2, y 7→ 1, z 7→ 12, w 7→ 10},
then the value of A is the same as if the current context were {x 7→ 2, y 7→ 1}, i.e., the

value is 47.
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If we view an intension from the extensional point of view, i.e., as a giant, infinite,

multidimensional table, then the context is the set of Cartesian coordinates that allows us

to pick out a specific value in the table.

However, if the intensional point of view is taken, the current context can be considered

to be an implicit parameter of an expression that can be manipulated explicitly as needed,

using the context constructor [· · · ] and the context change operator ‘ @ ’.

The context is changed by specifying the relevant dimensions in a context constructor,

and the new ordinates for each of these. For each dimension, the change can be either

relative to the current context, or an absolute change, as seen in the following examples:

var B = A @ [x← #.x+ 1, y ← #.y + 2] var B′ = A @ [x← #.x+ 1, y ← 3]

The variable B defines an intension that has the same values as A, but shifted one ‘to the

left’ and two ‘up’; the context change is relative for both x and y. As for B′, one absolute

row in the y direction is chosen, making B′ a one-dimensional intension.

‘B’ 0 1 2 3
#.x→

0 46 48 50 52 · · ·
1 47 49 51 53 · · ·
2 48 50 52 54 · · ·
3 49 51 53 55 · · ·

#.y↓
...

...
...

...
. . .

‘B′’ 0 1 2 3
#.x→

47 49 51 53 · · ·

In both cases, the context constructor to the right of the ‘ @ ’ produces a new context

in each context:

‘[x← #.x+ 1, y ← #.y + 2]’

0 1 2 3
#.x→

0 {x 7→ 1, y 7→ 2} {x 7→ 2, y 7→ 2} {x 7→ 3, y 7→ 2} {x 7→ 4, y 7→ 2} · · ·
1 {x 7→ 1, y 7→ 3} {x 7→ 2, y 7→ 3} {x 7→ 3, y 7→ 3} {x 7→ 4, y 7→ 3} · · ·
2 {x 7→ 1, y 7→ 4} {x 7→ 2, y 7→ 4} {x 7→ 3, y 7→ 4} {x 7→ 4, y 7→ 4} · · ·
3 {x 7→ 1, y 7→ 5} {x 7→ 2, y 7→ 5} {x 7→ 3, y 7→ 5} {x 7→ 4, y 7→ 5} · · ·

#.y↓
...

...
...

...
. . .

‘[x← #.x+ 1, y ← 3]’

0 1 2 3
#.x→

{x 7→ 1, y 7→ 3} {x 7→ 2, y 7→ 3} {x 7→ 3, y 7→ 3} {x 7→ 4, y 7→ 3} · · ·

For example, suppose the current context were {x 7→ 2, y 7→ 1, z 7→ 12, w 7→ 10}. Then

the expression ‘[x← #.x+ 1, y ← #.y+ 2]’ would evaluate to the context {x 7→ 3, y 7→ 3},
and so the new context resulting from the application of the ‘ @ ’ would be {x 7→ 3, y 7→
3, z 7→ 12, w 7→ 10}, i.e., the ordinates of z and w would not be affected, and so the result

would be 51. As for the expression ‘[x ← #.x + 1, y ← 3]’, it would also evaluate to the

context {x 7→ 3, y 7→ 3}, so the result would also be 51.
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So, putting the two perspectives together, programming in TransLucid can be called

Cartesian intensional programming.

When a function appears in TransLucid, it can be considered to be an encapsulated

intension with arguments. For example, here we define a function with two arguments:

‘ var C = λa→ λb→ a+ b+ 2’

‘C’

a, b

0 1 2 3
a→

0 2 3 4 5 · · ·
1 3 4 5 6 · · ·
2 4 5 6 7 · · ·
3 5 6 7 8 · · ·
b↓

...
...

...
...

. . .

‘C.(#.x).(#.y)’ 0 1 2 3
#.x→

0 2 3 4 5 · · ·
1 3 4 5 6 · · ·
2 4 5 6 7 · · ·
3 5 6 7 8 · · ·

#.y↓
...

...
...

...
. . .

In the table to the left, the box is an atomic value, meaning that the value of ‘C’ is an

intension of rank ∅. Note that the box has a little box attached, holding the arguments a

and b. This is how a function with two arguments is visualized. In the table to the right,

‘C.(#.x).(#.y)’ is the application of ‘C’ to arguments ‘#.x’ and ‘#.y’.

Local identifiers can be introduced both for variables, with primitive wherevar, and

dimensions, with primitive wheredim. Here is the definition for iterative factorial, using

a local dimension identifier d. When this expression is evaluated, a new dimension is

allocated for d, and then used.

var fact =

λn→ F wherevar

F = if #.d ≡ 0 then 1 else #.d×
(
F @ [d← #.d− 1]

)
fi

end

wheredim

d← n

end

It is, in general, possible for there to be several active instantiations of the same wheredim

clause. Therefore, the dimension allocation must ensure that a different dimension be allo-

cated for each of these instantiations. This is done by using a series of χiν dimensions, which

are indexed by the current path—encoded as a list ν—in the currently-being-evaluated

expression tree (held in the current context by dimension ρ), and by the position i in the

wheredim clause (for the current example, i = 1).

‘F’ 0 1 2 3 4
#.χ1

#.ρ→
1 1 2 6 24 · · ·
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The current context is initialized with #.χ1
#.ρ set to n.

The above definition could be rewritten, using syntactic sugar, as:

fun fact .n = F

where

dim d← n

var F = if #.d ≡ 0 then 1 else #.d×
(
F @ [d← #.d− 1]

)
fi

end

Note the introduction of the fun fact .n = · · · notation, as well as that of the where clause,

combining the wherevar and wheredim clauses into one. These ideas will be developed in

detail in the next chapter.

All of the primitives of TransLucid have now been presented informally; their formal-

ization follows in the next section.

2.2 Semantics

The denotational semantics computes least fixed points of systems of equations in a se-

mantic domain where variables denote intensions. The semantic rules are of the form

JEKιζκ

where E is an expression, ι is an interpretation of the constant symbols, ζ is an environment

mapping variables to intensions, and κ is the current context. The section will define basic

notation, the domains and the formal syntax (Figure 2.1, p.23), then give the rules. This

presentation order is chosen to be consistent with the bottom-up nature of the dissertation:

the definitions for domains are key.

2.2.1 Notation for function manipulation

• Let A and B be two sets. A partial function f from A to B is written f : A� B.

• Let f be a function with finite domain {v1, . . . , vm}. Then f can be given as its

graph {v1 7→ f(v1), . . . , vm 7→ f(vm)}. When the graph is empty, it is written ∅.

• Let f, g : A� B. The perturbation of f by g is defined by:

(f † g)(v) =

{
g(v), v ∈ dom g

f(v), otherwise.

• Let f : A� B, and let S ⊆ A. The domain restriction of f to S is defined by

(f C S)(v) =
{
f(v), v ∈ S.
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• Let f : A� B, and let S ⊆ A. The domain antirestriction of f to S is defined by

(f −C S)(v) =
{
f(v), v 6∈ S.

2.2.2 Domains

Definition 1. Let D be an enumerable set of values. The semantic domain D derived

from D is the least solution to the equations

D = D ∪ Datomic,m ∪ Dctxt ∪ Dintens ∪ Dfunc

Datomic,m = Dm� D, m > 0

Dctxt = D� D

Dintens = Dctxt� D

Dfunc = D� D

where for all η ∈ Dintens, if κ ∈ dom η, then for all κ′ such that κ = κ′ C (dom κ), we

have η(κ) = η(κ′). We call this the intension restriction.

We call

• D the set of atomic values; an atomic value is written δ; a subset of D is written ∆;

• Datomic,m the set of atomic functions of arity m, such as arithmetic and Boolean

operators; an atomic function is written op;

• Dctxt the set of contexts; a context is written κ; elements of the domain of a context

are called dimensions; elements of the codomain of a context are called ordinates;

• Dintens the set of intensions, mapping contexts to values; an intension is written η;

• Dfunc the set of functions; a function is written f .

Note that Datomic,1, Dctxt and Dintens are all subsets of Dfunc. Because of this situa-

tion, we will only need to define one kind of application in the abstract syntax.

The intension restriction, that for all κ′ such that κ = κ′ C (dom κ), we have η(κ) =

η(κ′), ensures that a TransLucid expression gives a certain result in context κ, that adding

to the context will not change the value of the expression. This is a finitary requirement,

essential given that we are working with infinite data structures. This precludes any sort

of belief revision or non-monotonic reasoning.

Definition 2. Let D be an enumerable set of values, D be the semantic domain derived

from D, and ⊥ 6∈ D. Then we define the order v over D⊥ = D ∪ {⊥} by:

• For all d ∈ D⊥, ⊥ v d.

• For all δ ∈ D, δ v δ.

• For all op, op′ ∈ Datomic,m, op v op′ iff op = op′ C (dom op).
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• For all κ, κ′ ∈ Dctxt, κ v κ′ iff κ = κ′ C (dom κ).

• For all η, η′ ∈ Dintens, η v η′ iff η = η′ C (dom η).

• For all f, f ′ ∈ Dfunc, f v f ′ iff f = f ′ C (dom f).

Proposition 1. The pair (D⊥,v) is a complete partial order, such that the following are

also cpos:

1. (D⊥,v), where D⊥ = D ∪ {⊥};

2. (Datomic,m,v);

3. (Dctxt,v);

4. (Dintens,v);

5. (Dfunc,v).

Proof. Mostly standard. See §2.4.1, p.27.

Definition 3. The rank of an intension η, written rank(η), is the minimal set of dimen-

sions needed to fully define η. It is given by:

rank(η) =
⋃ {

dom(κ) | κ ∈ dom(η) and 6 ∃κ′ @ κ, η(κ′) = η(κ)
}
.

The rank of an intension can be infinite, although in practice, in TransLucid, as we

shall see, the ranks of intensions in programs we write have very low dimensionality.

The semantics of TransLucid relies on the dynamic allocation of dimensions, something

similar to the dynamic allocation of memory in imperative languages. A key point for the

semantics to have meaning is that it does not matter which dimensions are allocated.

We therefore need to define a notion of equivalence (Definition 7), which requires first

definitions of occurrence and substitution of atomic values in a value (Definitions 4–6).

Definition 4. Let d ∈ D be a value, and δ ∈ D be an atomic value. We say that δ occurs

in d iff

δ = d, d ∈ D

∃(δ1, . . . , δm) ∈ dom(op) s.t.

(∃i s.t. δ occurs in δi) ∨ (δ occurs in op(δ1, . . . , δm)), d = op ∈ Datomic,m

δ ∈ dom(κ) ∨ ∃δ′ ∈ dom(κ) s.t. δ occurs in κ(δ′), d = κ ∈ Dctxt

δ ∈ rank(η)

∨ ∃κ ∈ dom(η) s.t. δ occurs in κ C rank(η)

∨ ∃κ ∈ dom(η) s.t. δ occurs in η(κ), d = η ∈ Dintens

δ occurs in dom(f) ∨ ∃d′ s.t. δ occurs in f(d′), d = f ∈ Dfunc.
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Definition 5. Let d ∈ D be a value, and δ, δ′ ∈ D be atomic values, and suppose that δ′

does not occur in d. Then the substitution of δ′ for δ in d, written θ(δ, δ′, d), replaces each

occurrence of δ in d by δ′, and is defined as follows:

δ′, δ = d

d, otherwise,
d ∈ D

{(
θ(δ, δ′, d1), ..., θ(δ, δ

′, dm)
)
7→ θ

(
δ, δ′, op(d1, . . . , dm)

)
|

(d1, . . . , dm) ∈ dom(op)
}
, d = op ∈ Datomic,m{(

θ(δ, δ′, d′)
)
7→ θ

(
δ, δ′, κ(d′)

)
| d′ ∈ dom(κ)

}
, d = κ ∈ Dctxt{(

θ(δ, δ′, d′)
)
7→ θ

(
δ, δ′, f(d′)

)
| d′ ∈ dom(η)

}
, d = η ∈ Dintens{(

θ(δ, δ′, d′)
)
7→ θ

(
δ, δ′, f(d′)

)
| d′ ∈ dom(f)

}
, d = f ∈ Dfunc.

Definition 6. Let d ∈ D be a value, and Λ = 〈δ1, . . . δm〉 and Λ′ = 〈δ′1 . . . δ′m〉 be disjoint

sequences of atomic values in D, and suppose that none of the δ′i occur in d. Then the

substitution of Λ′ for Λ in d, written Θ(Λ,Λ′, d), replaces each occurrence of δi in d by

the corresponding δ′i, and is defined as follows:

Θ(Λ,Λ′, d) = θ
(
δ1, δ

′
1, . . . , θ(δm, δ

′
m, d) . . .

)
.

Definition 7. Let d, d′ ∈ D. Then we call d and d′ equivalent, written d ≡ d′, when there

exist disjoint sequences Λ = 〈δ1, . . . , δm〉 and Λ′ = 〈δ′1, . . . , δ′m〉 such that d′ = Θ(Λ,Λ′, d).

2.2.3 Signatures, interpretations, environments and syntax

Definition 8. A signature Σ = (C, ar) is a pair consisting of a set C of constant symbols

and an arity function ar : C → N. We write mc for a constant symbol in C of arity m.

Definition 9. Let Σ be a signature and let D be a set of atomic values. An interpretation

of Σ over D is a function ι : C → D ∪
⋃
m>0(D

m � D) such that ι(0c) ∈ D and

ι(mc) : Dm � D, m > 0. We write Interp(Σ, D) for the set of interpretations of Σ

over D.

The pair (Σ, ι) together form an algebra, which will be provided by a host environment

for the concrete language (see Chapter 8).

Definition 10. Let D be an enumerable set of values and X be a set of variables. Then

Env(X,D) is the set of environments over X and D, i.e., mappings ζ : X � Dintens.

We extend v and ≡ to environments and define the extended rank (erank) and extended

range (eran):

ζ v ζ ′ iff dom(ζ) ⊆ dom(ζ ′) and ∀x ∈ dom ζ, ζ(x) v ζ ′(x)

ζ ≡ ζ ′ iff dom(ζ) = dom(ζ ′) and ∀x ∈ dom(ζ), ζ(x) ≡ ζ ′(x)

erank(ζ) =
⋃ {

rank(ζ(x)) | x ∈ dom(ζ)
}

eran(ζ) =
⋃ {

ran(ζ(x)) | x ∈ dom(ζ)
}
.
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Definition 11. Let Σ be a signature and X (3 x) be a set of identifiers. Then Expr(Σ, X)

(3 E) is the set of TransLucid expressions over Σ and X. The free variables of a

TransLucid expression E are written FV (E). The abstract syntax for TransLucid ex-

pressions is given in Figure 2.1.

E ::= x identifier
| mc constant symbol
| # current context
| [E ← E, . . .] context constructor
| λx→ E function abstraction
| E . (E, . . . , E) function application
| if E then E else E fi conditional
| E @ E context perturbation
| E wherevar x = E, . . . end local variables
| E wheredim x← E, . . . end local dimensions

Figure 2.1: Syntax of Core TransLucid expressions

The function application can have multiple arguments because the function may be a

host function of arity m > 1. User-defined TransLucid functions are all curried.

2.2.4 Nondeterministic semantic rules

We will present two sets of semantic rules: one allocates dimensions non-deterministically,

the other deterministically. The non-deterministic semantics was proposed in the Multi-

dimensional Programming book [9, Chapter 3], and involves passing around an infinite

set of dimensions from which dimensions can be allocated, which is split into smaller, but

still infinite, sets at each syntax branch. The deterministic rules, presented in §2.2.6, lead

naturally to an implementation.

The structure of the rules for the two semantics, and, in fact, all but one rule—for

the wheredim clause—, are shared. The syntax for both semantics is, in fact, the same,

and the only different rule is for the wheredim clause. Therefore, we only present the

properties and rules once, and present the minor differences for the second semantics.

Before giving the non-deterministic semantic rules, we need to define notation appear-

ing therein:

• Let d be a value. Then d̂ is a constant intension, defined by d̂ = λκ.d.

• Suppose ∆ is an infinite set of values, and let n ∈ N. We suppose that ∆ can

be partitioned into 0∆, 1∆, . . . , n∆ such that they are all mutually disjoint and all

infinite.

Preamble 1. Let X be a set of variables; D = ∆S ∪ ∆H ∪ ∆O, where ∆S is a set of

atomic values, and ∆H is a second set of atomic values, called hidden dimensions; ∆O is

a third set of atomic values, called other dimensions; Σ be a signature; E ∈ Expr(Σ, X);
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ι ∈ Interp(Σ,∆S); ζ ∈ Env(X,D); and κ be a context such that

∆O ∩∆S = ∆O ∩∆H = ∆S ∩∆H = ∅

{true, false} ⊆ ∆S

erank(ζ) ∪ eran(ζ) ⊆ ∆S

dom(κ) ∪ ran(κ) ⊆ ∆S .

Preamble 2. Let ρ ∈ ∆O, and κ be a context such that ∆ = κ(ρ) is an infinite set of

values. We define

iκ = κ † {ρ 7→ i∆}.

The notation iκ appears repeatedly in the semantic rules, and it is used to designate κ,

where just the ρ-ordinate has been changed. For the non-deterministic rules, a smaller,

but still infinite, set of dimensions is created.

Definition 12. Suppose Preamble 1 holds, let ∆H be a large infinite set of hidden dimen-

sions, and suppose iκ is defined as in Preamble 2. Then the non-deterministic semantics

for E with respect to ι, ζ and κ is given by

JEKιζ
(
κ † {ρ 7→ ∆H}

)
,

where the rules for J·K are given in Figure 2.2, and the wheredim rule is given in Figure 2.3.

JxKιζκ = ζ(x)(κ) (2.1)

JmcKιζκ = ι(mc) (2.2)

J#Kιζκ = κ (2.3)
q
[Ei0 ← Ei1]i=1..m

y
ιζκ =

{
JEi0Kιζ(iκ) 7→ JEi1Kιζ((i+m)κ)

}
(2.4)

q
λx→ E0

y
ιζκ = λda.JE0Kι

(
ζ † {x 7→ d̂a}

)(
0κ C {ρ}

)
(2.5)

q
E0.(Ei)i=1..m

y
ιζκ =

(
JE0Kιζ(0κ)

)(
JEiKιζ(iκ)

)
(2.6)

Jif E0 then E1 else E2 fiKιζκ = let d0 = JE0Kιζ(0κ)

in

 JE1Kιζ(1κ), d0 ≡ true

JE2Kιζ(2κ), d0 ≡ false

(2.7)

q
E0 @ E1

y
ιζκ = JE0Kιζ

(
0κ † JE1Kιζ(1κ)

)
(2.8)

JE0 wherevar xi = Ei end i=1..mKιζκ = let ζ0 = ζ † {xi 7→ ∅}
ζα+1 = ζα †

{
xi 7→ JEiKιζα

}
ζt = lfp ζα

in JE0Kι(ζt)κ

(2.9)

Figure 2.2: Semantics of Core TransLucid expressions

We explain all of the different cases below. Note that for each subexpression, the

context is perturbed by changing the ordinate for dimension ρ to keep track of the set of

unused dimensions which may be used for dimension allocation.
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JE wheredim xi ← Ei endi=1..mKιζκ = let δi ∈ κ(ρ)

κ′ = κ †
{
ρ 7→

(
κ(ρ)− {δ1, . . . , δm}

)}
di = JEiKιζ(iκ

′)

in JE0Kι
(
ζ † {xi 7→ δ̂i}

)(
0κ
′ † {δi 7→ di}

)
(2.10)

Figure 2.3: Non-deterministic wheredim

(2.1) A variable identifier x is looked up in environment ζ, and the resulting intension is

applied to κ to produce a value.

(2.2) An m-ary constant symbol mc is looked up in interpretation ι, returning an atomic

value if m = 0, otherwise an m-ary atomic function if m > 0.

(2.3) The current context is returned when # appears.

(2.4) The context constructor creates a function whose domain is the set of the results of

the left-hand sides and whose range is the set of the results of the right-hand sides.

(2.5) The λ creates a function whose body is only sensitive to the ρ-ordinate.

(2.6) In function application, the function and the arguments are all built in context κ,

then the function is applied to the arguments, also in κ.

(2.7) Condition E1 is evaluated in context κ, then, depending on the returned value, one

of the choices E2 or E3 is evaluated, also in κ.

(2.8) Expression E1 is evaluated to a context, used to perturb the current context κ to

produce a new running context for the evaluation of E2.

(2.9) A sequence of environments ζα, α ∈ N, is defined by creating the initial environment

ζ0 = ζ †{xi 7→ ∅}i=1..m, then applying the meaning of the individual equations, map-

ping variable identifier xi to the meaning of defining expression Ei to produce ζα+1

from ζα. The expression E is then evaluated in the least-fixed-point environment ζt

resulting from the sequence of the ζα.

(2.10) Each dimension identifier xi is mapped in the new environment to δ̂i, where δi is

a dimension non-deterministically chosen from the infinite set of hidden dimensions

κ(ρ); the δi-ordinate is initially the value of expression Ei in context κ.

2.2.5 Soundness of semantics

In the semantics, the allocation of dimensions in the wheredim clause is non-deterministic,

as is the splitting in each subexpression of the available dimensions from which to allocate.

For the semantics to be correct, it is necessary that the meaning of a program not depend

on the actual sets of dimensions chosen when wheredim clauses are encountered.
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Proposition 2. Let E be an expression, ι be an interpretation, ζ, ζ ′ be environments,

and κ, κ′ be contexts, such that ζ ≡ ζ ′ and (κ−C {ρ}) ≡ (κ′ −C {ρ}). Then

JEKιζκ ≡ JEKιζ ′κ′.

Proof. By induction over the structure of E. See §2.4.2, p.28.

2.2.6 Deterministic semantic rules

Since non-deterministic behaviour does not easily lead to an implementation, we present a

deterministic method for allocating dimensions, in which a list representing the evaluation

tree is passed through the semantics. Since the actual choice of dimensions in a wheredim

clause is irrelevant to the meaning of a program, we should be able to implement that

choice of dimension in any way that we want. Therefore, we present a deterministic

means to allocate dimensions to bring TransLucid one step closer to an implementation.

Since we make use of a list in the deterministic semantics, we use the notation below

to manipulate lists, and then change the meaning of iκ to suit the new semantics.

• We write ν for a list of natural numbers, where ν ∈ N∗. The empty list is written ε,

and the consing of element i ∈ N onto list ν is written i : ν.

• We suppose that there is an infinite set of hidden dimensions of the form χiν , where

i ∈ N and ν ∈ N∗.

Preamble 3. Let ρ ∈ ∆O, and κ be a context such that ν = κ(ρ) is a list of natural

numbers. We define

iκ = κ † {ρ 7→ i : ν}.

Definition 13. Suppose Preamble 1 holds, let

∆H =
{
χiν | i ∈ N, ν ∈ N∗

}
,

and suppose iκ is defined as in Preamble 3. Then the deterministic semantics for E with

respect to ι, ζ and κ is given by

JEKιζ
(
κ † {ρ 7→ ε}

)
,

where the rules for J·K are given in Figure 2.2, with the wheredim rule given in Figure 2.4.

JE wheredim xi ← Ei endi=1..mKιζκ = let δi = χiκ(ρ)

di = JEiKιζ(iκ)

in JE0Kι
(
ζ † {xi 7→ δ̂i}

)(
0κ † {δi 7→ di}

)
(2.11)

Figure 2.4: Deterministic wheredim

Proposition 2 holds for the semantics in Definition 13, since this is simply a special

case of Definition 12, where the choice of hidden dimensions is made deterministically.
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2.3 Conclusions

In this chapter, we have presented the Core TransLucid programming language and its

denotational semantics. The difficulties solved by this chapter were two-fold: First, what

was the exact choice of primitives? Initially, it was thought that the full TransLucid lan-

guage, with the different kinds of abstraction, presented in the next chapter, was primitive.

Then, it was discovered that in fact, so long as the current context was a first-class value,

that only a single functional abstraction was necessary.

The second difficulty arose in the allocation of dimensions in wheredim clauses, so that

each entry is guaranteed to allocate a new dimension. The semantics presented in §2.2

manipulates in the context a special dimension ρ, whose ordinate is an infinite set of

dimensions from which the wheredim clause can take dimensions. Using the ρ-ordinate

upon entry to a wheredim clause guarantees that there is no possibility of dimension clash

when allocating new dimensions.

However, this is not effective for implementation, since it is non-deterministic, so the

second method sets the ρ ordinate to a list encoding the path from the root of the eval-

uation tree of the expression being evaluated. This approach ensures a deterministic

approach to dimension allocation, which is one step closer to an implementation.

Despite presenting a semantics for TransLucid, this chapter makes no attempt at solv-

ing implementation issues such as concrete syntax, concrete objects and operations over

those objects. Rather, it supposes a set D of atomic types, and a function ι which pro-

vides an interpretation of constants. Neither does this chapter give more than a basic

presentation of how problems can be solved using TransLucid.

These issues are resolved in later chapters, with Chapter 4 giving a presentation of

programming in TransLucid, with a focus on viewing problems from a geometric perspec-

tive. Then Chapter 5 presents the infrastructure necessary to move the semantics towards

an implementation, by changing manipulations of the environment to manipulations of

the context, with Chapter 8 presenting the complete concrete TransLucid system, with

syntax and data types available for the user to create and manipulate.

2.4 Proofs of propositions

2.4.1 Proof of Proposition 1

Proof. Suppose (di)i∈N is an v-increasing chain in D⊥. Then, unless all the di = ⊥, there

exists a j such that for all k ≥ j, dk will belong to one of the above enumerated cases. We

consider them each in turn.

1. Case (D⊥,v). This is a flat order, hence a cpo.

2. Case (Datomic,m,v). This is the standard order on the set of partial functions

from Dm to D, hence a cpo.

3. Case (Dctxt,v). This is the standard order on the set of partial functions from D

to D, hence a cpo.
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4. Case (Dintens,v). This is the non-standard case. Define ηi = di+j , i ∈ N. We define

the function ηt as follows:

dom(ηt) =
⊔
i

dom ηi and, for κ ∈ dom(ηt),

ηt(κ) = ηiκ(κ), iκ is the least i s.t. κ ∈ dom ηi.

Since, for all i, dom ηi ∈ Dctxt, it follows that dom (ηt) ∈ Dctxt.

Now suppose that κ ∈ dom ηt. Then there exists iκ such that κ ∈ dom ηiκ .

But since ηiκ ∈ Dintens, it follows that for all κ′ such that κ = κ′ C dom κ,

that ηiκ(κ′) = ηiκ(κ), hence ηt(κ′) = ηt(κ). Because of the intension property,

iκ′ ≤ iκ. But should iκ′ < iκ, because the ηi form an increasing chain, it follows

that ηiκ′ (κ
′) = ηiκ(κ′) = ηt(κ′). Since κ was chosen arbitrarily, it follows that

ηt ∈ Dintens.

Now suppose that ηb is an upper bound of the ηi. Then, for each ηi, dom ηi v dom ηb.

Hence dom(ηt) v dom ηb, and so ηt v ηb. Hence ηt is the least upper bound of the

chain of ηi. It follows that (Dintens,v) is a cpo.

5. Case (Dfunc,v). This is the standard order on the set of partial functions from D

to D, hence a cpo.

Therefore (D⊥,v) is a cpo.

2.4.2 Proof of Proposition 2

Proof. Proof by induction on the structure of E. There are three base cases.

JxKιζκ

= ζ(x)(κ)

≡ ζ ′(x)(κ′)

= JxKιζ ′κ′

JmcKιζκ

= ι(mc)

≡ ι(mc)

= JmcKιζ ′κ′
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J#Kιζκ

= κ

≡ κ′

= J#Kιζ ′κ′

There are seven inductive cases. We let n = 2M , where M is the maximum m

occurring in an instance of “[· · · ]”, “.”, “wheredim” or “wherevar”, and suppose that

κ(ρ) = ∆ and κ′(ρ) = ∆′. Then, by assumption, we can split ∆ into distinct, infinite sets
0∆, . . . ,n ∆ and, similarly, ∆′ into 0∆′, . . . ,n ∆′. The inductive hypothesis is that for any

j ∈ 0..n, JEjKιζ(jκ) ≡ JEjKιζ ′(jκ′).

q
[Ei0 ← Ei1]i=1..m

y
ιζκ

=
{
JEi0Kιζ(iκ) 7→ JEi1Kιζ((i+m)κ)

}
≡
{
JEi0Kιζ ′(iκ′) 7→ JEi1Kιζ ′((i+m)κ

′)
}

=
q
[Ei0 ← Ei1]i=1..m

y
ιζ ′κ′

q
λx→ E0

y
ιζκ

= λda.JE0Kι
(
ζ † {x 7→ d̂a}

)(
0κ C {ρ}

)
≡ λda.JE0Kι

(
ζ ′ † {x 7→ d̂a}

)(
0κ
′ C {ρ}

)
=

q
λx→ E0

y
ιζ ′κ′

q
E0.(Ei)i=1..m

y
ιζκ

=
(
JE0Kιζ(0κ)

)(
JEiKιζ(iκ)

)
≡
(
JE0Kιζ ′(0κ′)

)(
JEiKιζ ′(iκ′)

)
=

q
E0.(Ei)i=1..m

y
ιζ ′κ′
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Jif E0 then E1 else E2 fiKιζκ

= let d0 = JE0Kιζ(0κ)

in

{
JE1Kιζ(1κ), d0 ≡ true

JE2Kιζ(2κ), d0 ≡ false

≡ let d0 = JE0Kιζ ′(0κ′)

in

{
JE1Kιζ ′(1κ′), d0 ≡ true

JE2Kιζ ′(2κ′), d0 ≡ false

= Jif E0 then E1 else E2 fiKιζ ′κ′

q
E0 @ E1

y
ιζκ

= JE0Kιζ
(
0κ † JE1Kζ(1κ)

)
≡ JE0Kιζ ′

(
0κ
′ † JE1Kζ ′(1κ′)

)
=

q
E0 @ E1

y
ιζ ′κ′

JE0 wherevar xi = Ei end i=1..mKιζκ

= let ζ0 = ζ † {xi 7→ ∅}
ζα+1 = ζα †

{
xi 7→ JEiKιζα

}
ζt = lfp ζα

in JE0Kι(ζt)κ

≡ let ζ ′0 = ζ ′ † {xi 7→ ∅}
ζ ′α+1 = ζ ′α †

{
xi 7→ JEiKιζ ′α

}
ζ ′t = lfp ζ ′α

in JE0Kι(ζ ′t)κ′

= JE0 wherevar xi = Ei end i=1..mKιζ ′κ′
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The wheredim case is the only non-trivial one.

JE0 wheredim xi ← Ei end i=1..mKιζκ

= let δi ∈ κ(ρ), i = 1..m

κ′′ = κ †
{
ρ 7→

(
κ(ρ)− {δ1, . . . , δm}

)}
di = JEiKιζ(iκ

′′)

in JE0Kι
(
ζ † {xi 7→ δ̂i}

)(
0κ
′′ † {δi 7→ di}

)
≡ let δ′i ∈ κ′(ρ), i = 1..m

κ′′ = κ′ †
{
ρ 7→

(
κ′(ρ)− {δ′1, . . . , δ′m}

)}
di = JEiKιζ(iκ

′′)

in JE0Kι
(
ζ ′ † {xi 7→ δ̂′i}

)(
0κ
′′ † {δ′i 7→ di}

)
= JE0 wheredim xi ← Ei end i=1..mKιζ ′κ′

The two middle lines are valid because if ζ and ζ ′ are equivalent, then ζ † {xi 7→ δ̂i} ≡
ζ ′ †{xi 7→ δ̂′i}, by definition. Similarly for the κ′′ case. Therefore, the induction hypothesis

applies.

We have therefore proven that should ζ ≡ ζ ′ and κ ≡ κ′, then JEKιζκ ≡ JEKιζ ′κ′.



Chapter 3

TransLucid

This chapter presents TransLucid, which is the language that is seen by the user, and

is defined using a set of syntactic extensions to Core TransLucid. The new constructs

include a where clause combining the wheredim and wherevar clauses; as well as abstrac-

tions whose body, once evaluated, is sensitive to the context at the time of application,

and possibly also sensitive to a named set of dimensions of the context at the time of

abstraction.

The extensions are of two kinds. First are the intension, function and call-by-value

abstractions (and corresponding applications); these, together with Core TransLucid, de-

fine TransLucid Lite, and are given a semantics, along with a proof of the validity of

their transformation to Core TransLucid. Second are the call-by-name abstraction and

the where clause, which are simply defined as syntactic sugar over TransLucid Lite.

3.1 Syntax

The syntax of TransLucid is given in Figure 3.1, where · · · is the syntax of Core TransLucid.

Each of the new syntactic elements is presented in one of the following sections, and the

detailed syntax for the where clause is given in §3.6.

E ::= · · ·
| ↑{E, . . .} E intension abstraction
| ↓E intension application
| λb {E, . . .} x→ E function abstraction
| λv {E, . . .} x→ E call-by-value abstraction
| E ! E call-by-value application
| λn {E, . . .} x→ E call-by-name abstraction
| E E call-by-name application
| E where · · · end where clause

Figure 3.1: Syntax of TransLucid extensions

32
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3.2 Intension abstraction

The ↑ operator allows an entire intension to be wrapped up into a single value, and the ↓
operator decapsulates an encapsulated intension, as can be seen with the examples of A

and B. The rank of A is ∅: it is a zero-dimensional array whose value is the encapsulated

intension, while ↓ A has rank {x, y}.

var A = ↑(#.x+ #.y + 2)

‘A’

0 1 2 3
#.x→

0 2 3 4 5 · · ·
1 3 4 5 6 · · ·
2 4 5 6 7 · · ·
3 5 6 7 8 · · ·

#.y↓
...

...
...

...
. . .

‘↓ A’ 0 1 2 3
#.x→

0 2 3 4 5 · · ·
1 3 4 5 6 · · ·
2 4 5 6 7 · · ·
3 5 6 7 8 · · ·

#.y↓
...

...
...

...
. . .

As seen above, an encapsulated intension, when decapsulated, gives an array that is

identical to the one that was encapsulated. However, there are situations in which one

does not wish to encapsulate the entire array, but instead to filter out a particular row in

a certain direction. This is done by explicitly stating which dimensions are to be filtered.

For example, here B filters out the y direction. As a result, the rank of B is {y}, and there

is a different intension for each y-ordinate. If we wish a particular one of these intensions,

we can specify which one with @, as seen here with C, and its decapsulation ↓ C.

var B = ↑ {y} (#.x+ #.y + 2)

‘B’

0
0 1 2 3

#.x→
2 3 4 5 · · ·

1
0 1 2 3

#.x→
3 4 5 6 · · ·

#.y↓
...

var C = B @ [y ← 1]

‘C’

0 1 2 3
#.x→

3 4 5 6 · · ·

‘↓ C’ 0 1 2 3
#.x→

3 4 5 6 · · ·

As described in §2.2, an intension is a mapping from contexts to atomic values. So,

to encode that in primitive TransLucid, an intension as first-class object is a function

that takes a context—which we will always refer to as an encapsulated intension, in order

to avoid confusion with the intensions that an expression defines—whose body may or

may not use that context. Without considering the freezing of dimensions, the expression

‘↑ E’ can be considered to be syntactic sugar for ‘λκ→ E @ κ’, and ‘↓ E’ for ‘E.#’, the

application to the current context of the function to which E evaluates.
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The semantics of the intension abstraction and application are as follows:

q
↑{Ei}i=1..m E0

y
ιζκ = let di = JEiKιζiκ

in λκa.JE0Kιζ
(
κa † (κ C {di})

) (3.1)

J↓E0Kιζκ = (JE0Kιζ0κ)1κ (3.2)

3.3 Freezing the context for function abstractions

Similarly to the way in which the arguments in braces of the intension abstraction operator

are used to freeze the ordinates of a specified set of dimensions from the context at the

creation of the abstraction, we can freeze the ordinates of a set of dimensions at the

creation of a function abstraction. For example, the function abstraction A given below

creates a different function for each different x-ordinate:

var A = λb{x} a→ a+ #.x

‘A’ 0 1
#.x→

a a

0 1 2 3
a→

0 1 2 3 · · ·
0 1 2 3

a→
1 2 3 4 · · ·

· · ·

If we apply A to a query for the x-ordinate, we get:

‘A.(#.x)’ 0 1 2 3
#.x→

0 2 4 6 · · ·

The semantics of the λb function abstraction is as follows:

q
λb {Ei}i=1..m x→ E0

y
ιζκ = let di = JEiKιζiκ

in λda.JE0Kι
(
ζ † {x 7→ d̂a}

)
(0κ C {ρ, di})

(3.3)

The corresponding function application is the same as the function application in Core

TransLucid, and has the same semantics.

3.4 Call-by-value context-sensitive functions

The intension abstraction operator ↑ allows the construction of expressions which are sen-

sitive to the application context, as well as the abstraction context for named dimensions.

We do the same for functions, with the λv operator. Here, A is defined with respect to
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the x-ordinate of the abstraction context and the y-ordinate of the application context.

var A = λv {x} a→ a+ #.x+ #.y + 1

‘A’ 0 1
#.x→

a

0 1 2 3
a→

0 1 2 3 4 · · ·
1 2 3 4 5 · · ·
2 3 4 5 6 · · ·
3 4 5 6 7 · · ·

#.y↓
...

...
...

...
. . .

a

0 1 2 3
a→

1 2 3 4 5 · · ·
2 3 4 5 6 · · ·
3 4 5 6 7 · · ·
4 5 6 7 8 · · ·

#.y↓
...

...
...

...
. . .

· · ·

Application of these call-by-value context-sensitive functions is done with the ‘!’ op-

erator. If we apply A to a query for the x-ordinate, we get:

‘A!(#.x)’ 0 1 2 3
#.x→

0 1 3 5 7 · · ·
1 2 4 6 8 · · ·
2 3 5 7 9 · · ·
3 4 6 8 10 · · ·

#.y↓
...

...
...

...
. . .

The semantics of call-by-value function abstraction and application are as follows:

q
λv {Ei}i=1..m x→ E0

y
ιζκ = let di = JEiKιζiκ

in λda.λκa.

JE0Kι
(
ζ † {x 7→ d̂a}

)(
κa † (κ C {di})

)
(3.4)

JE0 ! E1Kιζκ =
(
JE0Kιζ0κ

)(
JE1Kιζ1κ

)
2κ (3.5)

3.5 Call-by-name context-sensitive functions

Up to now, all of the arguments to functions are fully evaluated before being passed to

the functions. However, there are many times in which one wishes to pass an entire,

encapsulated, and therefore unevaluated, intension to a function. This is done with the λn

operator. Here, function A takes a dimension d and an intension X as input, and shifts X

one “to the left”. We write X{d7→i} for the value of X when the current d-ordinate is i.
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var A = λ d→ λn X → X @ [d← #.d+ 1]

‘A’

d,X

0 1 2 3
#.d→

X{d7→1} X{d 7→2} X{d 7→3} X{d 7→4} · · ·

Application of these call-by-name context-sensitive functions is done with the space (‘ ’)

operator. If we apply A to a query for the x-ordinate plus one, we get:

‘A.x (#.x+ 1)’ 0 1 2 3
#.x→

0 2 3 4 5 · · ·

With more syntactic sugar, from the next subsection, the definition of A could be

rewritten as the function next , described in more detail in Chapter 4.

fun next .d X = X @ [d← #.d+ 1]

3.6 The where clause

Some of the examples presented in §2.1 defined functions using the fun keyword, and used

where clauses in which both dimension and variable identifiers were defined. It turns out

that the where clause, along with the dim, var and fun keywords, are syntactic sugar for

constructs in the abstract syntax defined in Figure 2.1.

For example, the following expression computes the factorial of 5:

fact .5

where

fun fact .n = F

where

dim d← n

var F = if #.d ≡ 0 then 1 else #.d×
(
F @ [d← #.d− 1]

)
fi

end

end

and that expression is syntactic sugar for the following expression:

fact .5 wherevar

fact = λbn→ F wherevar

F = if #.d ≡ 0 then 1 else #.d×
(
F @ [d← #.d− 1]

)
fi

end

wheredim

d← n

end

end
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3.7 Translations

Definition 14. A TransLucid Lite expression E is a TransLucid expression with no where

clauses or λn expressions. Translation W (Figure 3.2) translates TransLucid to TransLu-

cid Lite.

Definition 15. Translation T (Figure 3.3) translates TransLucid Lite to Core TransLu-

cid.

Proposition 3. Let E be a TransLucid expression, ι be an interpretation, ζ an environ-

ment, and κ a context. Then

q
T (W(E))

y
ιζκ ≡ JEKιζκ.

Proof. See §3.8.2, p.40.

W(x) = x

W(mc) = mc

W(#) = #

W([Ei0 ← Ei1]i=1..m) = [EWi0 ← EWi1 ]

W(λx→ E0) = λx→ EW0

W(E0 . (Ei)i=1..m) = EW0 . (EWi )

W(if E0 then E1 else E2 fi) = if EW0 then EW1 else EW2 fi

W(E0 @ E1) = EW0 @ EW1

W(↑{Ei}i=1..m E0) = ↑
{
EWi

}
EW0

W(↓E0) = ↓ EW0
W(λb {Ei}i=1..m x→ E0) = λb

{
EWi

}
x→ EW0

W(λv {Ei}i=1..m x→ E0) = λv
{
EWi

}
x→ EW0

W(E0 ! E1) = EW0 ! EW1

W(λn {Ei}i=1..m x→ E0) = λv
{
EWi

}
x→ EW0 [x/↓x]

W(E0 E1) = EW0 !
(
↑EW1

)
W(E0 wherevar xi = Ei end i=1..m) = EW0 wherevar xi = EWi end

W(E0 wheredim xi ← Ei end i=1..m) = EW0 wheredim xi ← EWi end

W



E0

where

dim xi ← Ei, i = 1..`
var x′j = E′j , j = 1..m
fun x′′k pk1 xk1 · · · pkmk

xkmk
= E′′k ,

k = 1..n
end


=



EW0 wherevar

x′j =W(E′j)
x′′k = F(pk1) xk1 → · · · →

F(pkmk
) xkmk

→W(E′′k )
end

wheredim

xi ← Ei
end


F(‘.’) = λb

F(‘ ! ’) = λv

F(‘ ’) = λn

Figure 3.2: Translation W from TransLucid to TransLucid Lite
(
EW =W(E)

)
.



CHAPTER 3. TRANSLUCID 38

T (x) = x

T (mc) = mc

T (#) = #

T ([Ei0 ← Ei1]i=1..m) = [ETi0 ← ETi1]

T (λx→ E0) = λx→ ET0

T (E0 . (Ei)i=1..m) = ET0 . (ETi )

T (if E0 then E1 else E2 fi) = if ET0 then ET1 else ET2 fi

T (E0 @ E1) = ET0 @ ET1

T
(
↑ {E1, . . . , Em} E0

)
=
(
λx1 → · · · → λxm → λxκ → λxκ′

→ ET0 @ [xi ← xκ.xi]i=1..m @ xκ′
)
.ET1 . · · · .ETm.#

T
(
↓ E0

)
= ET0 .#

T
(
λb{E1, . . . , Em} x→ E0

)
=
(
λx1 → · · · → λxm → λxκ → λx
→ ET0 @ [xi ← xκ.xi]i=1..m

)
.ET1 . · · · .ETm.#

T
(
λv{E1, . . . , Em} x→ E0

)
=
(
λx1 → · · · → λxm → λxκ → λx→ λxκ′

→ ET0 @ [xi ← xκ.xi]i=1..m @ xκ′
)
.ET1 . · · · .ETm.#

T
(
E0 ! E1

)
= ET0 .E

T
1 .#

T (E0 wherevar xi = Ei end i=1..m) = ET0 wherevar xi = ETi end

T (E0 wheredim xi ← Ei end i=1..m) = ET0 wheredim xi ← ETi end

Figure 3.3: Translation T from TransLucid Lite to Core TransLucid
(
ET = T (E)

)
.

Assume that x1, . . . , xm, xκ, xκ′ are not free in E0, . . . , Em.
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3.8 Proofs of validity of syntactic translations

3.8.1 Basic equivalences

Proposition 4. The following equivalences hold.

q
λx→ E @ x

y
ιζκ ≡ JEKιζ [x free in E]

JE0.E1.E2Kιζκ ≡
(
JE0Kιζ(0κ)

)(
JE1Kιζ(1κ)

)(
JE2Kιζ(2κ)

)
J(λx1 → · · ·λxm → E0).E1. · · · .EmKιζκ ≡ let di = JEiKιζ(iκ)

in JE0Kι
(
ζ † {xi 7→ d̂i}

)(
0κ C {ρ}

)
Proof.

q
λx→ E @ x

y
ιζκ

= λda.JE @ xKι
(
ζ † {x 7→ d̂a}

)(
0κ C {ρ}

)
= λda.JEKι

(
ζ † {x 7→ d̂a}

)((
00κ C {ρ}

)
† JxKι

(
ζ † {x 7→ d̂a}

)(
10κ C {ρ}

))
= λda.JEKι

(
ζ † {x 7→ d̂a}

)((
00κ C {ρ}

)
† da

)
= λda.JEKι

(
ζ † {x 7→ d̂a]

)
(da)

= λda.JEKιζ(da)

= JEKιζ

JE0.E1.E2Kιζκ

=
(
JE0.E1Kιζ(0κ)

)(
JE2Kιζ(1κ)

)
=
(
JE0Kιζ(00κ)

)(
JE1Kιζ(10κ)

)(
JE2Kιζ(1κ)

)
≡
(
JE0Kιζ(0κ)

)(
JE1Kιζ(1κ)

)(
JE2Kιζ(2κ)

)

q
(λx1 → E0).E1

y
ιζκ

=
(
Jλx1 → E0Kιζ(0κ)

)(
JE1Kιζ(1κ)

)
=
(
λda.JE0Kι

(
ζ † {x1 7→ d̂a]

)
(00κ C {ρ})

)(
JE1Kιζ(1κ)

)
= let d1 = JE1Kιζ(1κ)

in JE0Kι
(
ζ † {x1 7→ d̂1]

)(
00κ C {ρ}

)
≡ let d1 = JE1Kιζ(1κ)

in JE0Kι
(
ζ † {x1 7→ d̂1}

)(
0κ C {ρ}

)
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q
(λx1 → · · ·λxm → E0).E1. · · · .Em

y
ιζκ [m > 1]

≡ let d1 = JE1Kιζ(1κ)

in
q
(λx2 → · · ·λxm → E0).E2. · · · .Em

y
ι
(
ζ † {x1 7→ d̂1}

)(
0κ C {ρ}

)
≡ let di = JEiKιζ(iκ)

in JE0Kι
(
ζ † {xi 7→ d̂i}

)(
0κ C {ρ}

)

3.8.2 Proof of Proposition 3

Proof. We first prove that if E is a TransLucid Lite expression, that JET Kιζκ ≡ JEKιζκ,

which we do by induction over the structure of E. There are three base cases, where E is

of the form x, mc or #. In each of these three cases, ET = E, so JET Kιζκ = JEKιζκ.

There are twelve inductive cases. We let n = 2M , where M is the maximum m

occurring in an instance of “[· · · ]”, “.”, “ ! ”, “wherevar” or “wheredim”. The inductive

hypothesis is that for any j ∈ 0..n, JEjKιζ(jκ) ≡ JEjKιζ ′(jκ′).
For seven of these cases, the structure of ET is the same as that of E, and it follows

directly from the induction hypothesis that JET Kιζκ = JEKιζκ. These cases are ‘[· · · ]’,
‘λ’, ‘.’, ‘if–then–else’, ‘@’, “wherevar” and “wheredim”.

The remaining five cases are more difficult, since the transformation T is non-trivial.

q
T
(
↑ {E1, . . . , Em} E0

)y
ιζκ

=
q
(λx1 → · · · → λxm → λxκ → λxκ′

→ ET0 @ [xi ← xκ.xi] @ xκ′).ET1 . · · · .ETm.#
y
ιζκ

≡ let di =
q
ETi

y
ιζ(iκ)

in
q
λxκ′ → ET0 @ [xi ← xκ.xi] @ xκ′

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂}

)(
0κ C {ρ}

)
≡ let di =

q
ETi

y
ιζ(iκ)

in λκa.
q
ET0 @ [xi ← xκ.xi]

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂}

)
κa

≡ let di =
q
ETi

y
ιζ(iκ)

in λκa.
q
ET0

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂}

)(
0κa †

q
[xi ← xκ.xi]

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂}

)
1κa
)

≡ let di =
q
ETi

y
ιζ(iκ)

in λκa.
q
ET0

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂}

)(
0κa † (κ C {di})

)
≡ let di =

q
ETi

y
ιζ(iκ)

in λκa.
q
ET0

y
ιζ
(
0κa † (κ C {di})

)
≡ let di = JEiKιζ(iκ)

in λκa.
q
E0

y
ιζ
(
0κa † (κ C {di})

)
≡ let di = JEiKιζ(iκ)

in λκa.
q
E0

y
ιζ
(
κa † (κ C {di})

)
=

q
↑ {E1, . . . , Em} E0

y
ιζκ
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q
T
(
↓E0

)y
ιζκ

=
q
ET0 .#

y
ιζκ

≡
(
JET0 Kιζ(0κ)

)(
J#Kιζ(1κ)

)
≡
(
JE0Kιζ(0κ)

)
(1κ)

= J↓E0Kιζκ

q
T
(
λb{E1, . . . , Em} x→ E0

)y
ιζκ

=
q
(λx1 → · · · → λxm → λxκ → λx

→ ET0 @ [xi ← xκ.xi]).E
T
1 . · · · .ETm.#

y
ιζκ

≡ let di =
q
ETi

y
ιζ(iκ)

in
q
λx→ ET0 @ [xi ← xκ.xi]

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂}

)(
0κ C {ρ}

)
≡ let di =

q
ETi

y
ιζ(iκ)

in λda.
q
ET0 @ [xi ← xκ.xi]

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂, x 7→ d̂a}

)(
0κ C {ρ}

)
≡ let di =

q
ETi

y
ιζ(iκ)

in λda.
q
ET0

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂, x 7→ d̂a}

)((
00κ C {ρ}

)
†

q
[xi ← xκ.xi]

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂, x 7→ d̂a}

)(
10κ C {ρ}

))
≡ let di =

q
ETi

y
ιζ(iκ)

in λda.
q
ET0

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂, x 7→ d̂a}

)(
00κ C {di, ρ}

)
≡ let di =

q
ETi

y
ιζ(iκ)

in λda.
q
ET0

y
ι(ζ † {x 7→ d̂a})

(
00κ C {di, ρ}

)
≡ let di =

q
Ei

y
ιζ(iκ)

in λda.
q
E0

y
ι(ζ † {x 7→ d̂a})

(
00κ C {di, ρ}

)
≡ let di = JEiKιζ(iκ)

in λda.JE0Kι
(
ζ † {x 7→ d̂a}

)(
0κ C {di, ρ}

)
=

q
λb{E1, . . . , Em} x→ E0

y
ιζκ
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q
T
(
λv{E1, . . . , Em} x→ E0

)y
ιζκ

=
q
(λx1 → · · · → λxm → λxκ → λx→ λxκ′

→ ET0 @ [xi ← xκ.xi]).E
T
1 . · · · .ETm.#

y
ιζκ

≡ let di =
q
ETi

y
ιζ(iκ)

in
q
λx→ λxκ′ → ET0 @ [xi ← xκ.xi] @ xκ′

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂}

)(
0κ C {ρ}

)
≡ let di =

q
ETi

y
ιζ(iκ)

in λda.λκa.
q
ET0 @ [xi ← xκ.xi]

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂, x 7→ d̂a}

)
κa

≡ let di =
q
ETi

y
ιζ(iκ)

in λda.λκa.
q
ET0

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂, x 7→ d̂a}

)(
0κa †

q
[xi ← xκ.xi]

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂, x 7→ d̂a}

)
(1κa)

)
≡ let di =

q
ETi

y
ιζ(iκ)

in λda.λκa.
q
ET0

y
ι
(
ζ † {xi 7→ d̂i, xκ 7→ κ̂, x 7→ d̂a}

)(
0κa † (κ C {di})

)
≡ let di =

q
ETi

y
ιζ(iκ)

in λda.λκa.
q
ET0

y
ι
(
ζ † {x 7→ d̂a}

)(
0κa † (κ C {di})

)
≡ let di = JEiKιζ(iκ)

in λda.λκa.JE0Kι
(
ζ † {x 7→ d̂a}

)(
0κa † (κ C {di})

)
≡ let di = JEiKιζ(iκ)

in λda.λκa.JE0Kι
(
ζ † {x 7→ d̂a}

)(
κa † (κ C {di})

)
=

q
λv{E1, . . . , Em} x→ E0

y
ιζκ

q
T
(
E0 ! E1

)y
ιζκ

=
q
ET0 .E

T
1 .#

y
ιζκ

≡
(q
ET0

y
ιζ(0κ)

)(q
ET1

y
ιζ(1κ)

)(
J#Kιζ(2κ)

)
≡
(
JE0Kιζ(0κ)

)(
JE1Kιζ(1κ)

)
(2κ)

= JE0 ! E1Kιζκ

Hence, by the inductive hypothesis, if E is a TransLucid Lite expression, JET Kιζκ ≡
JEKιζκ. SinceW is a purely syntactic manipulation, it follows that for a general TransLu-

cid expression E, that JT (W(E))Kιζκ ≡ JEKιζκ.



Chapter 4

The Geometrical View

This chapter presents a selection of programming examples in TransLucid, starting from

a set of functions dating back to the original Lucid of the 1970s, followed by a presenta-

tion of the TransLucid solution to several standard programming problems. The problems

presented here are viewed from a geometric perspective, which allows the visualisation of

the arrays defined by a TransLucid program. Visualising these arrays has three benefits:

1) the general principles of programming in TransLucid can be better understood, 2) solv-

ing a specific problem in TransLucid can be made easier by visualising the arrays that

are built, and 3) standard programming problems can be understood in a new geometric

manner, which may provide fresh insight into these problems.

Several of the examples presented in this chapter come from previous publications on

Lucid, and we present both the original Lucid version and the TransLucid version. By

comparing the different ways of solving these problems, it can be seen that the use of

higher-order functions and explicit dimensionality, both provided by TransLucid, make

the solutions much cleaner, and easier to both read and specify.

The examples presented here are in some sense a TransLucid 101, giving a glimpse

of what is possible with multidimensional programming. The programming methodology

presented here is a result of solving these problems, but will evolve as new problems are

also considered from a geometric point of view.

4.1 Intensional functions from Indexical Lucid

Before presenting complete programming examples, we first present several functions that

come from Indexical Lucid. Each of these functions takes a dimension as parameter, and

the original Lucid had corresponding functions that manipulated an implicit dimension,

which was called time (not to be confused with the time dimension to be presented

in §8.11).

43
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We begin with the following five functions:

fun index ! d = #.d+ 1

fun at .d.v X = X @ [d← v]

fun first .d X = at .d.0 X

fun next .d X = X @ [d← #.d+ 1]

fun fby .d X Y = if #.d ≡ 0 then X else Y @ [d← #.d− 1] fi

The function index takes a call-by-value parameter d, so it evaluates its body in the

context in which the function is applied, and so returns the d-ordinate, plus one, at the

point of call. The reason for defining index is that it is common to use the index of the

entry in the second argument to fby (“followed by”), which decreases the ordinate by one,

hence the plus-one to get back to its original value.

The function at evaluates its call-by-name argument X, changing the current context

so that the d-ordinate becomes v. In Indexical Lucid, this function was written using the

@ symbol, which we use in TransLucid to change the ordinates of multiple dimensions at

a time. We retain the single-dimension context-change function for brevity of code.

The next three functions, first , next and fby , are analogous to the functions hd , tail

and cons for lists. The function first takes the zeroth entry of its parameter X in the d

direction. If the rank (dimensionality) of X contains the dimension d, then the rank of

the result does not.

The function next shifts its argument along by one. It can be viewed in two ways: in

the extensional view, it produces an array that is its parameter shifted one to the left in

the d direction; in the intensional view, in a given context in which the d-ordinate is n,

expression next .d X will access the (n+ 1)-st entry of X, in the d direction.

The function fby takes two intensions, and a direction. It defines an intension whose

zeroth entry in the d direction is that of X, then the remaining entries are taken from Y

starting at zero.

If A = 〈a0, a1, a2, . . .〉 and B = 〈b0, b1, b2, . . .〉 are two intensions varying in dimension d,

then

0 1 2 3 4 5
#.d→

index ! d 1 2 3 4 5 6 · · ·
at .d.v A av av av av av av · · ·
first .d A a0 a0 a0 a0 a0 a0 · · ·
next .d A a1 a2 a3 a4 a5 a6 · · ·

fby .d A B a0 b0 b1 b2 b3 b4 · · ·

4.2 Filters

Lucid had several standard functions which operated as filters, taking elements from a

stream under certain conditions. These have been adapted to TransLucid and filter ele-
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ments from intensions. The first filter is wvr (“whenever”), and is defined as follows:

fun wvr .d X Y = if first .d Y

then fby .d X
(
wvr .d (next .d X) (next .d Y )

)
else wvr .d (next .d X) (next .d Y ) fi

It defines an intension, varying in the d dimension, that retains elements of the X input

whenever the corresponding Y element is true. If B = 〈T, F, T, T, F, T, T, F, T, . . .〉, then

the result of wvr .d A B is as follows

0 1 2 3 4 5
#.d→

wvr .d A B a0 a2 a3 a5 a6 a8 · · ·

The function asa (“as soon as”) takes two intensions X and Y as arguments, and

gives the first element from X for which the corresponding element from Y is true. It is

defined, simply using first and wvr , as follows:

fun asa.d X Y = first .d (wvr .d X Y )

The last filter is the function upon, which takes as argument intensions X and Y , and

produces an intension whose elements are copies of elements from X whenever Y is false.

It is named after its behaviour of advancing upon X only when Y is true. Its definition is

as follows:

fun upon.d X Y = X @ [d← Z]

where

var Z = fby .d 0 (if Y then Z + 1 else Z fi)

end

For example, for variable A defined above, and if B = 〈F, T, F, F, T, . . .〉 defined above,

the expression upon.d A B produces the following:

0 1 2 3 4 5
#.d→

upon.d A B a0 a0 a1 a1 a1 a2 · · ·

4.3 Embedding finite data structures into infinite ones

In TransLucid, all intensions are infinite, but it is often necessary to deal with finite data.

The standard way to carry out a computation with finite data is to embed the finite

region into an infinite sea of 0’s, 1’s, ∞’s, or possibly some other value, depending on

the problem; usually, the value chosen is the neutral element for the computation being

carried out. To achieve this, we define a one-dimensional function, default1.d.m.n.v X,

and a two-dimensional function, default2.d1.d2.m1.n1.m2.n2.v X. The function default1

takes as input a dimension d and two integers m and n, and defines an intension whose

values are X between m and n, and v everywhere else. The function default2 defines a

two-dimensional equivalent, which defines a similar region in two-dimensional space.
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The function default1 is defined as follows:

default1.d.m.n.v X = if m ≤ #.d && #.d ≤ n then X else v fi

For example, the variables C = default1.d.1.5.1 (#.d), and D = default1.d.1.5.1 A, can

be visualised as follows:

0 1 2 3 4 5 6 7
#.d→

C 1 1 2 3 4 5 1 1 · · ·
D 1 a1 a2 a3 a4 a5 1 1 · · ·

The function default2 is defined as follows:

default2.d1.m1.n1.d2.m2.n2.v X = if m1 ≤ #.d1 && #.d1 ≤ n1 &&
m2 ≤ #.d2 && #.d2 ≤ n2

then X

else v

fi

(In Chapter 8, a construct reminiscent of pattern matching is introduced, making the

above two definitions simpler.)

For example, the expression default2.a.1.3.b.1.3.0 (#.a + #.b) defines the following

intension:
0 1 2 3 4 5

#.a→
0 0 0 0 0 0 0 · · ·
1 0 2 3 4 0 0 · · ·
2 0 3 4 5 0 0 · · ·
3 0 4 5 6 0 0 · · ·
4 0 0 0 0 0 0 · · ·
5 0 0 0 0 0 0 · · ·

#.b↓
...

...
...

...
...

...
. . .

4.4 Sieve of Eratosthenes

The sieve of Eratosthenes creates an intension varying in dimension d of the prime numbers.

It is built using a local dimension d′, and presented below as a two-dimensional table. The

zeroth row is the naturals ≥ 2, and each subsequent row is the previous row without the

multiples of the zeroth element of the previous row. The sequence of primes is formed by

the zeroth column.
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S 0 1 2 3 4 5 6 7
#.d′→

0 2 3 4 5 6 7 8 9 · · ·
1 3 5 7 9 11 13 15 17 · · ·
2 5 7 11 13 17 19 23 25 · · ·
3 7 11 13 17 19 23 29 31 · · ·

#.d↓
...

...
...

...
...

...
...

...
. . .

fun sieve.d = S

where

dim d′ ← 0

var S = fby .d (#.d′ + 2)(
wvr .d′ S

(
S mod (first .d′ S) 6≡ 0

))
end

4.5 Transposing and rotating

In Multidimensional Programming, the following expression was presented to define the

transpose of a matrix A that varies in dimensions x and y:

realign.t,x
(
realign.x,y

(
realign.y,t (A)

))
where

dimension t

realign.a,b (C) = C @.a #.b

end

If X is an intension that varies in dimension a, then realign.a,b (X) produces an intension

that varies in dimension b, with the same entries that X has in direction a. To carry out a

transposition, since the @ operator only allowed the changing of one dimension at a time,

it was necessary to declare a third dimension, then use realign to rotate the array A three

times to swap the appropriate dimensions.

In TransLucid, we call the realign function rotate, and it is defined similarly as follows:

fun rotate.d.d′ X = X @ [d← #.d′]

However, since TransLucid can change the ordinates of multiple dimensions at the

same time, we can do transposition in one go:

fun transpose.d1.d2 X = X @ [d1 ← #.d2, d2 ← #.d1]

4.6 Folding left 6= folding right

In functional programming, a fold operation takes as input a list, a function and a neutral

element, and produces as output an object that is produced by iteratively applying the
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function to every element, starting with the neutral element.

In TransLucid, rather than lists, we have intensions, so we will define a fold over the

elements of an intension, in a particular direction. Furthermore, we can make the fold

infinite, leaving it up to the user to choose at which point in the resulting intension the

desired value should be pulled out, thereby giving them the choice as to how many elements

to fold.

The left-fold function is defined as follows:

fun foldl .d.f.z X = F

where

var F = fby .d z (f ! F !X)

end

Here, we define a variable F , whose entries are the result of folding the previous entries of

the input X. The zeroth entry is the initial element z, then every subsequent entry is the

result of applying the function f to the previous entry of the fold and the previous entry

of the input X. The result is F , allowing zero elements of X to be folded, the result of

which is z.

The foldl function can be visualised by the following table

F 0 1 2 3

z f(z, x0) f(f(z, x0), x1) f(f(f(z, x0), x1), x2)

Like the left fold, the right fold takes an array X, and defines an array which is the

result of folding elements up to the corresponding element of X; however, the right fold

starts at the last element and works its way back. We define a function foldr .d.f.z X,

which makes use of a two-dimensional array, and the result is the zeroth column of that

array. The zeroth row is made up of the neutral element z, the first row is z, except for

its zeroth entry, which is the result of applying f to x0 and z. The second row is all z,

except for the first and zeroth entries, which are the result of applying f to x1 and z, and

applying f to x0 and the first entry, respectively.

The right-fold operation can be visualised by the following table, which defines the two

dimension array F . The result is the zeroth column.

F 0 1 2 3 4
#.d′→

0 z z z z z · · ·
1 f(x0, z) z z z z · · ·
2 f(x0, f(x1, z)) f(x1, z) z z z · · ·
3 f(x0, f(x1, f(x2, z))) f(x1, f(x2, z)) f(x2, z) z z · · ·

#.d↓
...

...
...

...
...

. . .
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The function foldr is defined as follows:

fun foldr .d.f.z X = F

where

dim d′ ← 0

var X ′ = rotate.d.d′ X

var F = if #.d′ ≥ #.d then z

else f !X ′ ! (next .d′ F )

fi

end

We can also define a “left-fold-whenever” function, which carries out a left fold, but

only includes the elements for which a specified condition is true. Therefore, we define

foldl wvr .d.f.v X Y , that folds array X in direction d with function f , whenever Y is

true. When Y is false, the previous value is used. Its definition is as follows:

fun foldl wvr .d.f X Y = F

where

var F = fby .d X if Y then f ! F ! (next .d X) else F fi

end

4.7 Matrix multiplication

This section presents the multiplication of two matrices, X × Y , in TransLucid. If the

matrix X has m rows and k columns, and Y has k rows and n columns, then their

multiplication is defined. To multiply the two matrices, we consider how each element of

the resulting matrix is computed. The resulting matrix will have m rows and n columns,

and the entry in row i and column j is computed by summing the multiple of each pair

of entries from row i of X, and column j of Y . Figure 4.1 shows that cell (0, 1) of the

multiplication of a 2× 3 and a 3× 3 matrix is computed by summing the products of the

zeroth row of the former and the first column of the latter.

a b c

d

e

f

a× d

b× e

c× f

+

+

Figure 4.1: Cell (0, 1) of a matrix multiplication

Matrix multiplication can of course be viewed geometrically, which aids in under-

standing how it is implemented in TransLucid. One can imagine that the columns of the

matrices are a horizontal dimension in space, and the rows of the matrices are a vertical
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dimension in space. The two matrices can then be rotated into a third dimension, where

the columns of matrix X and the rows of matrix Y are moved to the third dimension. The

matrix multiplication is computed in an m× n× k parallelepiped, every element of which

is the product of the corresponding elements from the rotated X and Y . The final result

is then the sum of k elements along the third dimension.

Figure 4.2 shows the geometrical view of matrix multiplication. The original row and

column dimensions go down the page and to the right respectively, and the third dimension

comes out of the page. The rotated X matrix is on the left, and the rotated Y matrix

is on the bottom. The result lies in the plane described by the original row and column

dimensions. The cells used to compute one entry of the result are shown.

Σ

Figure 4.2: Geometric view of matrix multiplication

To define matrix multiplication in TransLucid, we define the function matrix multiply ,

which takes as argument the row and column dimensions (dr and dc) of the matrices,

the length k which is the width of the first and the height of the second, and the two

matrices X and Y . Its definition is as follows:

fun matrix multiply .dr.dc.k X Y = W

where

dim d← 0

var X ′ = rotate.dc.d X

var Y ′ = rotate.dr.d Y

var Z = X ′ × Y ′

varW = (foldl .d.plus.0.k Z) @ [d← k]

end
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We allocate a new dimension d, in which to rotate both arrays X and Y , then arrays X ′

and Y ′ are the result of rotating the dc (resp. dr) dimension of X (resp. Y ) into the d

direction. Then, the array Z is simply the three-dimensional cube that results from

multiplying every corresponding element from X ′ and Y ′, and W is the result of summing

back along the d direction, for k elements, which collapses the result back down to a

two-dimensional array which is the result of multiplying the two input matrices.

4.8 Root mean square

The original Lucid book presented a program to compute the root mean square of a stream

using Newton’s method of approximation [43, p.1]. We present the original program below,

and then the TransLucid solution to the same problem.

In the original Lucid solution, the program was given as a single expression which com-

puted the root mean square of an input stream a, where each of the subsidiary functions

were defined in the where clause as part of that expression. The program is defined as

follows:

sqroot(avg(square(a)))

where

square(x) = x ∗ x;

avg(y) = mean

where

n = 1 fby n+ 1;

mean = first y fby mean + d;

d = (next y −mean)/(n+ 1);

end

sqroot(z) = approx asa err < 0.0001

where

Z is current z;

approx = Z/2 fby (approx + Z/approx )/2;

err = abs(square(approx )− Z);

end

end

We start with the definition of the function avg . It takes as argument a stream y, and

returns a stream whose elements are the average of all of the elements of y up to that point.

Since Lucid had no means to access the current element being defined, it was necessary to

define the variable n, which is just a stream of natural numbers. In TransLucid, we can

simply write index ! d to define the equivalent array varying in the d dimension.

The variable mean is computed incrementally. The mean of one number is just that

number, hence first y for the first entry of mean. Then every subsequent value is

computed by updating mean with the appropriate value, which is given by the stream d.

To compute the value with which to update the mean, we subtract the old mean from

the next value of the stream y, then divide it by its position in the stream. Since fby
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computes its right-hand side at the previous index, it is necessary to use next y and n+1.

For the definition of sqroot , we use Newton’s method of approximation. Each entry

in the stream approx is the next approximation to the square root. However, for approx ,

we want a stream of approximations for every element of a. In TransLucid, we would

simply allocate a new dimension, but Lucid did not have explicit access to dimensions,

so the keyword is current was used to “freeze” the stream z at its current position, and

that element would be referred to as Z. The remainder of the definition of approx is the

standard definition using Newton’s method. Finally, the variable err computes how far

from the real value the approximation is, and in this definition, we take the value as soon

as the error is less than 0.0001.

In the TransLucid solution below, we present the subsidiary functions as they would

be given to the interpreter. Expression rms.d A defines an array whose entries are the

root mean square of the entries of A up to the entry being defined, where A and the result

vary in dimension d.

fun sqroot .x = asa.d approx (err < floatmp"0 .0001")

where

dim d← 0

var approx = fby .d (x/floatmp"2")
(
(approx + x/approx )/floatmp"2"

)
var err = abs ! (approx × approx − x)

end

fun avg .d X = mean

where

var n = index ! d

var mean = fby .d X (mean + a)

var a = (next .d X −mean)/
(
convert .floatmp.(n+ 1)

)
end

fun rms.d X = sqroot .
(
avg .d (X ×X)

)
The differences between the TransLucid solution and the Lucid solution seem small,

however, they are important. A design decision of TransLucid is to not have implicit

numeric conversion. Also, there are no floating-point literals, so floating-point numbers

must be input explicitly using the syntax for type literals (the floatmp type is presented

in detail in Chapter 9).

In TransLucid, as mentioned earlier, the variable n can be defined by directly accessing

the index in which it varies. In addition, since we can declare new dimensions as required,

the is current operator becomes unnecessary; we simply allocate a new dimension d in

the function sqroot , and then approx simply varies in that dimension. We also do not

define sqroot over an array, since we can pass individual elements, and the behaviour of

the Lucid program can still be duplicated, by simply writing sqroot .X, where X is some

intension. The result is then an intension which varies in the same dimensions as X, since

base functions are applied pointwise to all elements.
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4.9 Divide and conquer

A divide-and-conquer solution to a problem consists of breaking up the problem into a

number of (approximately) equal-size subproblems, solving these subproblems, and com-

bining the results thereof to produce the final result. This section presents a general

framework for binary divide-and-conquer solutions in TransLucid.

In binary divide-and-conquer problems, since the problem is being divided in half each

time, the solution to the problem will be found after dlog2(n + 1)e division iterations.

Therefore, we need a function to compute the ceiling of the logarithm of a number. We

observe that the powers of 2, starting from zero, are 1, 2, 4, 8, 16 and so on, and the

logarithm of any power of two is its position in the list of powers of two. Therefore, the

logarithm of any number between two powers of two is a number between the respective

position of the powers. Since we want the ceiling, the logarithm of a number n is the

position of the first power of two that is greater than or equal to n. To encode that

calculation in TransLucid, we say that we want the index of the power of two as soon as

the power of two is greater than or equal to n. The function ilog .n is therefore defined as

follows:

fun ilog .n = asa.d (#.d) (double ≥ n)

where

dim d← 0

var double = fby .d 1 (double × 2)

end

Here we define an array double in direction d, which is the powers of 2, and we use the

asa function. We are specifying that we want the index (#.d), at the first position that

the array double is greater than or equal to n.

The calculation of a factorial can be solved in a divide-and-conquer manner, and this

solution is more suitable for large numbers. To compute the factorial of n, what is needed

is to multiply every number from 1 to n together—the order is irrelevant. So, to compute

factorial in a divide-and-conquer manner, we multiply pairs of numbers from the sequence 1

to n, then multiply pairs of the results, and so on until there is one number left, which

will be after dlog2 ne iterations.

To carry out the above process in TransLucid, we can use fby to create an infinite array

of rows, where each row of entries is the multiple of the appropriate pairs of elements from

the previous row. The difficulty then is how to make the first row. If the number of

elements in the first row is not a power of 2, then if we choose the first row incorrectly,

we could be computing the wrong thing. The solution is that every other element in the

first row should be the number 1, since 1 is the neutral element for multiplication. As a



CHAPTER 4. THE GEOMETRICAL VIEW 54

result, the table for the computation of the factorial of 8 looks as follows:

Fn=8 0 1 2 3 4 5 6 7 8 9
#.d→

0 1 1 2 3 4 5 6 7 8 1 · · ·
1 1 6 20 42 8 1 1 1 1 1 · · ·
2 6 840 8 1 1 1 1 1 1 1 · · ·
3 5040 8 1 1 1 1 1 1 1 1 · · ·
4 40320 1 1 1 1 1 1 1 1 1 · · ·

#.d′↓
...

...
...

...
...

...
...

...
...

...
. . .

We use two local dimensions, d and d′, where each row in direction d′ is an array of

multiplications which varies in d. The following list shows the relevant calculations.

• 1× 1 = 1, 2× 3 = 6, 4× 5 = 20, 6× 7 = 42, 8× 1 = 8, . . .

• 1× 6 = 6, 20× 42 = 840, 8× 1 = 8, . . .

• 6× 840 = 5040, 8× 1 = 8, . . .

• 5040× 8 = 40320, . . .

For the purposes of divide-and-conquer, we also define the functions lPair .d X and

rPair .d X, which retrieve the left and right entries (from a pair) and combine them

to make each subsequent row. For example, entry zero is created by combining entries

zero and one, so for entry zero, lPair gives 0 and rPair gives 1. They are defined as

follows:

fun lPair .d X = X @ [d← #.d× 2]

fun rPair .d X = X @ [d← #.d× 2 + 1]

The function fact .n below defines the factorial of the input n using divide-and-conquer,

using default1 to generate the initial row:

fun fact .n = F

where

dim d← 0

dim d′ ← ilog .(n+ 1)

var F = fby .d′
(
default1.d.1.n.1 (#.d)

) (
lPair .d F × rPair .d F

)
end

4.10 Powers

In the 1995 book Multidimensional Programming, a program was presented to compute

the N -th powers of any natural number N . After presenting how the problem is solved

geometrically, we will present their solution here, and then the TransLucid solution.
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First we start with the observation that the running sum of the odd positive integers

(1, 3, 5, . . .) produces the squares (1, 4, 9, 16, . . .). We make a generalisation of this proce-

dure to produce any power. If we start with a number N , then drop every N -th number,

and make a running sum of the result, then repeat that procedure for N − 1 until we get

to 1, we will get the N -th powers. We use two variables, varying in two dimensions: n,

signifying that we are dropping every n-th value, which varies in dimension a; and seq ,

varying in dimensions a and b, which is the sequence of numbers in direction b that are

the result of dropping every n-th and summing the result.

For example, we will visualise here the tables produced for N = 4, where the boxes

enclose the elements that are dropped to produce the next row.

n

0 4

1 3

2 2

3 1

#.a↓
...

seq 0 1 2 3 4 5 6 7 8 9 10 11
#.b→

0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

1 1 3 6 11 17 24 33 43 54 67 81 96 . . .

2 1 4 15 32 65 108 175 256 369 500 671 864 . . .

3 1 16 81 256 625 1296 2401 4096 6561 . . .

#.a↓
...

...
...

...
...

...
...

...
...

. . .

The variable n holds the n-th element to drop each time around. The variable seq is the

sequence of numbers at each iteration, with the row when n is 1 being the N -th powers.

The table visualising drop.b.n seq is the result of dropping every n-th element of seq , and

each row of seq is produced by summing the previous row of drop.b.n seq .

drop.b.n seq 1 2 3 4 5 6 7 8 9 10 11 12
#.b→

0 1 2 3 5 6 7 9 10 11 13 14 15 . . .

1 1 3 11 17 33 43 67 81 113 131 171 193 . . .

2 1 15 65 175 369 671 1105 1695 2465 3439 4641 6095 . . .

#.a↓
...

...
...

...
...

...
...

...
...

...
...

...
. . .

The program, as presented in Multidimensional Programming, is presented in Fig-

ure 4.3. This program is presented as a single expression defining the N -th powers for

some number N . Here, the variable seq varies in a dimension b, and dimension a is declared

as a local dimension in the where clause. The function drop simply uses wvr to choose

only the elements that are needed. Then seq is defined as the first row in direction b being

the positive integers in direction a, and every subsequent row being the result of the sum

of dropping the n-th element of the previous row.

In previous versions of Lucid, some of the standard functions were built in, and in fact,

before Multidimensional Lucid, the functions could not be defined in the language, because

dimensions could not be manipulated. Therefore, those functions could be recognised

by the parser, and written using infix notation. So where the above program writes

y fby.d next.d y + s, we write in TransLucid, fby .d y (next .d y + s).

It is important to realise that in the version of Lucid used here, Indexical Lucid, there

is no partial application of functions, and that functions take two kinds of parameters.
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seq @.a (N − 1)
where

dimension a;
seq = posint fby.a runningSum.b

(
drop.b(seq , n)

)
posint = next.b #.b;
runningSum.d(y) = s
where

s = y fby.d next.d y + s;
end

drop.c(U,m) = U wvr.c wanted
where

wanted = (#.c+ 1) mod m ne 0;
end

n = N fby.a n− 1;
end

Figure 4.3: Powers program in Indexical Lucid

The parameters that appear after the period can only be dimensions, and if they are more

than one, they are separated by commas. The parameters that appear in parentheses are

streams.

The TransLucid version is as follows:

fun drop.d.n X = wvr .d X
(
(index ! d) % n 6≡ 0

)
fun powers.b !N = seq

where

dim a← N − 1

var seq = fby .a posint
(
foldl .b.plus.0 (drop.b.n seq)

)
var posint = index ! b

var n = N − #.a

end

Thus, we define the two functions drop and powers. Using powers, an array varying in

dimension d defining the powers of a number N is given by the expression powers.b ! N .

We use a call-by-value function for the parameter N because the result of powers is an

array, so a base function would not suffice.

Since TransLucid supports higher-order functions, we can define the running-sum part

of the computation as a fold using the plus function. We can also initialise dimensions

when they are declared in a where clause, so rather than writing seq @.a (N − 1), we can

initialise the dimension when it is declared with dim a ← N − 1. Alternatively, we could

have written seq @ [a← N − 1].
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4.11 Dynamic programming

Dynamic programming is similar to divide and conquer, except that the division into

smaller subproblems is rarely equal. As a result, only a small piece of the problem is solved

from each division. Then, the solution to that smaller problem is remembered, so that

any of the bigger problems can be solved by recalling the results of smaller subproblems.

The knapsack problem is a good example of a dynamic programming problem. There

are several versions of the knapsack problem, here we will look at the unbounded knapsack

problem, with integer weights and values. The problem is to determine, from a list of

objects with weights wi and values vi, the greatest value that can be achieved by choosing

any number of each object, where the sum of the weights of each object does not exceed

some specified weight W .

To solve the knapsack problem, we define an array K, where entry K[w] is the maxi-

mum value that we can make out of objects that weigh no more than w. K[0] is obviously 0,

as having nothing in the knapsack has zero value. To compute every other entry, we notice

that the optimum value of objects weighing less than some weight w is the value of some

optimum object vo, with weight wo, whatever that object may be, plus the optimum value

for a smaller knapsack that cannot fit that object, K[w − wo]. So the goal then is to find

that optimum value object. As we are trying to maximise the weight, the optimum value

object will clearly be the one for which vo + K[w − wo] is the greatest. So therefore, we

have the following recurrence relation:

K[0] = 0

K[w] = max
wi≤w

(
vi +K[w − wi]

)
The solution to the problem, the maximum value that can be stored in the knapsack

weighing no more than W , is the entry K[W ].

We define the function knapsack unbounded .d.n W V , which defines an array whose

entries are the maximum value that can be obtained by making a knapsack with maximum

weight that is the index of the entry. There are n items, and the arrays W and V are the

item weights and item values respectively, both varying in dimension d. The definition is

fairly straightforward, the only difficulty being that we need to compute the maximum of

an array, but only include entries whenever the condition wi ≤ w is met.

For that, we use the left-fold-whenever function defined previously, and folding using

the max function, to achieve what we want. We define the function knapsack unbounded

as follows:
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fun knapsack unbounded .d.n W V = K

where

dim a← n+ 1

var K = fby .d 0
(
fold wvr .a.max .0

(
Va + (K @ [d← #.d−Wa])

)(
Wa ≤ #.d

))
var Va = rotate.d.a V

var Wa = rotate.d.a W

end

To solve the knapsack problem, we define a variable K, varying in the d direction, whose

entries are the maximum value that can be achieved for the weight which is the index of

the entry. Since direction d is already being used, we define a new dimension a for the

direction in which the fold wvr filter will be carried out. Therefore, we rotate both the

weights W and the values V into direction a, and define these as Wa and Va. Then, each

entry of K is simply the maximum of the expression passed as argument to fold wvr .

4.12 Sorting

The next few sections will examine the four best known sorting algorithms, and present

their implementation in TransLucid, along with a geometric view of the structures created

whilst carrying out the respective sorts.

4.12.1 Swapping

A common operation in sorting is to swap two elements. In TransLucid, since every ex-

pression defines a new intension, what is required is to define a function whose result is the

input, but with the two requested elements swapped. We define a function swap.d.m.n X,

which takes as input the array X, for which we would like to swap the elements m and n

in direction d, and returns an array where those two elements are swapped. (Note that

swap continues to work, even if m = n.)

fun swap.d.m.n X = if #.d ≡ m then X @ [d← n]

elsif #.d ≡ n then X @ [d← m]

else X

fi

For example, the result of the function application swap.0.0.1 (10− #.0) is summarised in

the following table:

0 1 2
#.0→

10− #.0 10 9 8 · · ·
swap.0.0.1 (10− #.0) 9 10 8 · · ·
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4.12.2 Bubble sort

Next we will explore the bubble-sort algorithm. The input to a bubble sort is an array

of n objects, and the output is that array of objects in increasing order.

Let us first take a procedural view of bubble sort: it runs through the array n times,

each time iterating through the array, swapping every pair of successive objects that is

out of order. The bubble sort is named because it has the effect of bubbling each element

up to its sorted position. After the first pass, the greatest element will be in its sorted

position, after the second pass, the second greatest element, and so on. Therefore, after n

passes, the entire array will be sorted. A small optimisation is to recognise that after i

passes, the last i elements will be sorted, so pass i can be stopped at n− i elements.

Let us now consider an indexical solution to bubble sort. When designing an indexical

solution to a problem, the general idea is that every computational step is indexable.

In other words, every transformation of data is accessible in some array by as many

dimensions as necessary.

For bubble sort, we will build up the solution piece by piece, looking at each of the

transformations carried out on the input array. The first step is to define a function that

swaps two elements of an array if they are not in sorted order. Since, in TransLucid, every

function defines a new intension based on its inputs rather than producing a side effect,

the intension that we need to define has every element the same as the input, except for

the two that we are concerned about. Then if the lower element is greater than the higher

element, they are swapped.

The next step is to define the array that is the result of doing one pass of swaps. For

that we define the function bubble one.d.n X, that will only do one pass of the input

array X, for n elements, in direction d.

bubble one.d.n X = A

where

dim a← n− 1

var A = fby .a X

if at .d.(#.a) A > at .d.(index ! a) A

then (swap.d.(#.a).(index ! a) A)

else A

fi

end

We define a local dimension a for the direction in which to carry out the swaps. Then

the variable A is a two-dimensional array, where the a-th row is the result of swapping

elements a and a + 1 if necessary. Suppose that the input array has 4 elements, and is

the sequence of numbers 13, 5, 23, 19, then the intension A is defined as in the diagram
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below, with arrows indicating the direction of the data flow.

A
d→

a↓ 13
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The last step is to modify the array A so that it carries out n sequences of swaps. To

achieve that, we declare another dimension b, so that each layer in direction b is one set of

swaps in direction a. The neatest way is to define the whole top row as the input array X,

and the first row of each layer is the last row of the previous layer. The new code is as

follows:

bubble sort .d.n X = A

where

dim a← n− 1

dim b← n− 1

var A = fby .b X(
fby .a (at .a.(n− 1) A)

(next .b if at .d.(#.a) A > at .d.(index ! a) A

then swap.d.(#.a).(index ! a) A

else A

fi)
)

end

In Figure 4.4, observe that the whole top layer in direction b is the input intension X,

and every other layer below that is the second argument to fby . Within each layer, the

zeroth entry in direction a is the same as the last entry in the previous row. Then the

second argument to the second fby produces the remainder of each layer.

Using this geometric view of bubble sort, we can analyse its computational complexity.

To do that, we look at how much work is done in each dimension of the cube.

The only place where actual work is done is in stepping from one row to the next

in the a direction, which corresponds to the second argument to fby .a, where there is a

conditional to determine whether the appropriate two elements should be swapped or not.

One step carries out a constant amount of work, or Ω(1) work.

From there, it is simply a matter of counting up how many steps are carried out in

each direction. As it is clear that there are n steps in the a direction, and n steps in the b
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d

X

a

b
A0,n

A1,n

A2,n

= A0,n

= A1,n

= A2,n

Figure 4.4: Bubble sort array A (version 1)

direction, the complexity of this algorithm is Ω(n2), which agrees with the procedural

implementation of bubble sort.

There is a small improvement that we can make to bubble sort. We observe that after i

passes, the last i elements will be in sorted order. So therefore, it is unnecessary to continue

the swaps after we have been through n− i elements. In the TransLucid implementation,

this corresponds to taking the result at row #.b = i at position #.a = n − i. The faster

bubble sort is defined below, and Figure 4.5 shows the three-dimensional structure created:

bubble sort faster .d.n X = A

where

dim a← 0

dim b← n− 1

var A = fby .b X(
fby .a (at .a.(n− #.b) A)

(next .b if at .d.(#.a) A > at .d.(index ! a) A

then
(
swap.d.(#.a).(index ! a) A

)
else A fi)

)
end

4.12.3 Insertion sort

In an insertion sort, the array to be sorted is split into two arrays: the still-unsorted part,

and the already-sorted part. Initially, the already-sorted part is empty, and then each

item from the still-unsorted part is inserted into the already-sorted part. We can use a

binary search to look for the position to insert the next item, and then every item past it
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X

Figure 4.5: Bubble sort array A (version 2)

in the sorted array must be shifted along by one.

First, we define a binary-search function. To determine where to insert the next

element v into the already-sorted array X, we want to find the first position in X that

does not compare less than v. So we define the function lower bound , which takes as input

the direction to search in, the bounds of the area to search, the value to search for, and

the array to search in.

The function lower bound is defined as follows:

fun lower bound .d.l.r.v X = asa.a left (left ≡ right)

where

dim a← 0

var left = fby .a l
(
if (X @ [d← middle]) < v then middle + 1 else left fi

)
var right = fby .a r

(
if (X @ [d← middle]) < v then right else middle fi

)
var middle = (left + right)/2

end

Here we use three variables and a dimension a. The variables each vary in dimension a,

and represent the search area at each step of the search. Initially, we search the full bounds

of the area to search, then, if the value to search for is in the left half, we move the right

end of the search area, and if it is in the right half, we move the left end of the search

area. We stop the search when the search area is one item, and the position of that one

item is the result.

The function insertion sort is defined below, and sorts the array X in direction d from

positions 0 to n.
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fun insertion sort .d.n X = if 0 ≤ #.d && #.d < n then sorted else X fi

where

dim a← n

var sorted = fby .a infty (insert .d.v.insertPos sorted)

var v = X @ [d← #.a]

var insertPos = lower bound .d.0.(#.a+ 1).v sorted

fun insert .d.v.p X = if #.d < p then X elsif #.d ≡ p then v else prev .d X fi

end

We define a dimension a, which is used for each step of the sort—one step in direction a

results in the next element from X being inserted into the sorted array. We initialise the

sorted part of the array with the value infty—every integer compares less than infty—

hence all insertions will be before the infty values. Then it is simply a matter of finding

the position to insert with lower bound , and inserting the next item in the appropriate

position. The insert function inserts a value v at position p into array X. Everything

before position p is unchanged, the value at position p becomes v, and every subsequent

value is just the previous value from X.

4.12.4 Merge sort

Next we examine the TransLucid implementation of merge sort. Merge sort works by

merging pairs of already sorted parts of the input array to make new sorted parts, then

repeats the process until the array is completely sorted. Initially, none of the array is

sorted, so it is considered that each item by itself is a sorted array of size one, and each

pair of these one-element arrays is merged together, creating sorted arrays of size two.

Then the pairs of arrays of size two are merged to create sorted arrays of size four, and

so on. There are two parts to the solution, the first is to define the merge operation, the

second is to decide how many times to perform the merge, and on which parts of the array,

so that the whole array is sorted.

First, we consider the merge operation in sequential programming. We keep one pointer

into each of the two arrays, initially both pointing to the first element of their respective

array. The element that is chosen as the first element of the sorted array is the smaller

of the two. Then, only the pointer for the array from which the element was chosen

is advanced. This process, choosing the smaller and then advancing only its respective

pointer, is repeated until the end of both arrays is reached.

Below, we present the definition of the merge function, an explanation will follow.

fun merge.d X Y = if X ′ ≤ Y ′ then X ′ else Y ′ fi
where

var X ′ = upon.d X (X ′ < Y ′)

var Y ′ = upon.d Y (Y ′ ≤ X ′)
end
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Here we have a strange double recursion going on. A simple example will make sense of

the situation. Consider the function application merge.0 A B, where arguments A and B

both vary in dimension 0, and are defined as follows:

0 1 2 3
#.0→

A 2 5 7 9 . . .

B 3 6 7 10 . . .

Then the first eight entries of the variables X ′ and Y ′ are:

0 1 2 3 4 5 6 7
#.0→

X ′ 2 5 5 7 7 9 9 X4 . . .

Y ′ 3 3 6 6 7 7 10 10 . . .

First, consider the zeroth entry of both X ′ and Y ′. The zeroth entry of the array defined

by the upon function is the zeroth entry of its second argument. So the zeroth entries

of X ′ and Y ′ are simply the zeroth entries of A and B.

The upon function defines an array whose values are the result of advancing upon the

second argument whenever the third argument is true; the third argument is evaluated at

the previous index. So to see what the first entry of X ′ is, we compare the values from

the zeroth entries of X ′ and Y ′, 2 and 3, and since 2 is less than 3, A is advanced upon,

and the first entry is 5. For Y ′, a similar process is carried out, but with the direction

of the comparison swapped. As 3 is not less than 2, B is not advanced upon, so the first

entry of Y ′ is 3, the same as the zeroth entry. The same process is carried out for every

subsequent pair of entries from X ′ and Y ′.

The result of the merge function is then simply comparing each corresponding pair of

entries from X ′ and Y ′, giving the result below:

0 1 2 3 4 5 6 7
#.0→

merge.0 A B 2 3 5 6 7 7 9 10 . . .

Once the merge function has been defined, it then remains to merge the appropriate

parts of the input array. There are two problems to solve: 1) the merge function merges

two arrays from position zero—we cannot specify an arbitrary starting point; and 2) the

merge function is an infinite merge, it merges array elements until there are no more

elements to merge. To solve this, we need to merge all subarrays from zero, and provide

a way to terminate the merging.

We will describe the solution to both of these problems by way of an example. Suppose

that the input array X, varying in dimension d is as in the following table, and we want

to sort the first ten elements.

0 1 2 3 4 5 6 7 8 9
#.d→

X 43 48 43 8 25 46 3 2 5 4 . . .

To solve the above two problems, we use, as for the insertion sort, the value infty . By
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surrounding the parts of the array that we want to sort with infty values, we effectively

terminate the sorting at the infty . To start the merge of each subarray at zero, we rotate

the input array into a new direction a, and surround the rotated array by infty in both

directions a and d. To surround the array by infty in two dimensions, we use the function

default2, which takes six arguments defining a rectangle, a default value for the values

outside of the rectangle, and an intension whose values will be used inside the rectangle.

The rectangle is defined using the dimension of relevance, and the start and end positions,

in both directions.

default2.d.0.0.a.0.9.infty (rotate.d.a X) 0 1
#.d→

#.a↓ 43 infty . . .

48 infty . . .

43 infty . . .

8 infty . . .

25 infty . . .

46 infty . . .

3 infty . . .

2 infty . . .

5 infty . . .

4 infty . . .

infty infty . . .
...

...
. . .

Then, we only need to merge in direction d, every pair of arrays in direction a. This

process of merging each pair of arrays is repeated until the array is completely sorted. We

carry out each set of merges in a new direction b. If we define a variable Y to hold the

result of the merges in the b direction, then the table presented above is Y @ [b← 0], and

the following two tables are Y @ [b← 1] and Y @ [b← 2], respectively.

Y @ [b← 1] 0 1 2
#.0→

#.a↓ 43 48 infty . . .

8 43 infty . . .

25 46 infty . . .

2 3 infty . . .

4 5 infty . . .

infty infty infty . . .
...

...
...

. . .
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Y @ [b← 2] 0 1 2 3
#.0→

#.a↓ 8 43 43 48 . . .

2 3 25 46 . . .

4 5 infty infty . . .

infty infty infty infty . . .
...

...
...

...
. . .

What is going on here is that each row m in the a direction is the result of merging

rows 2m and 2m+ 1 from the previous set of entries in the b direction. To specify this in

TransLucid, we want to use the function fby , in the b direction, where the first entry is

the rotation and nesting in the sea of infty as above, and every subsequent entry merges

as just described. The full merge sort definition is below:

fun merge sort .d.n X = Y

where

dim a← 0

dim b← ilog .n

var Y = fby .b
(
default2.d.0.0.a.0.(n− 1).infty (rotate.d.a X)

)(
merge.d (LofPair .a Y ) (RofPair .a Y )

)
end

4.12.5 Quick sort

Quick sort is an interesting case in TransLucid, because the structure of the recursion is

based on the data, rather than being fixed, as for merge sort. For merge sort, we can write

down statically the intensions that will be built, which is regardless of the data being

sorted; we know that we need a two-dimensional intension to sort any sequence of values

using merge sort. In contrast, for quick sort, we cannot know how the computation will

proceed until given some input data. We therefore set up quick sort to make two recursive

calls to itself, each call allocating a new dimension for itself.

For quick sort, most of the work is in partitioning the array; it is trivial to join the

sorted portions back together. To partition the array, we choose a pivot element p, and

then we want all the elements that are smaller than p to be on its left, and all the elements

that are greater than p on its right. To carry out the partition, we make one pass through

the array, keeping a pointer to the end of the smaller portion, smallend , as computed so

far. Then, when an element that is smaller than p is encountered, it is added to the end

of the smaller portion, and smallend is incremented by one. Then, once we are at the end

of the array, the partition is done.

Finally, there is some housekeeping necessary with the pivot value. Before partitioning,

the pivot is placed at the end of the array, to keep it out of the way; after partitioning, it

is placed in its final position in between the two partitioned parts, which will be at index

smallend .

After partitioning, we then simply sort the left half and the right half separately, using

the ranges [m, smallend) and [smallend +1, n), since we do not need to sort the pivot value.
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We define the function quick sort .d.m.n X, which takes the dimension in which to

sort, and the range [m,n) in which to sort X. Every other value of X is left the same.

fun quick sort .d.m.n X = if #.d < m || #.d ≥ n then X else result fi

where

dim a← n−m− 2

var result = if n−m < 2 then X else glued fi

var glued = if #.d < smallend

then quick sort .d.m.smallend partition

else quick sort .d.(smallend + 1).n partition

fi

var partition = swap.d.(n− 1).smallend P

var P = fby .a (swap.d.pivoti .(n− 1) X)

(if doswap then swap.d.current .smallend P else P fi)

var current = #.a+m

var smallend = upon.a (#.a+m) doswap

var doswap = (P @ [d← current ]) < pivot

var pivoti = m+ (n−m)/2

var pivot = X @ [d← pivoti ]

end

There are several parts of this program that need explaining. For the choice of the pivot,

here we have simply chosen the middle value, but this can be chosen in any way desired.

The variable P is the result of partitioning X. For the first entry, we swap the pivot

to the end of the array, then every subsequent entry is simply the result of swapping

the appropriate element if necessary. The index of the current element to look at is

current = #.a+m, since we are starting from position m. The variable doswap is an array

of Booleans that indicates whether the current element needs swapping or not. Then, the

end of the smaller part of the array, smallend , is only advanced upon whenever we have

to swap an element.

Finally, the fully partitioned array is given by partitioned , which requires us to swap

the pivot back to its final position in the array. Then the actual result of the quick

sort is given by the variable glued , which just carries out a quick sort on the lower half

for elements smaller than the pivot, and in the upper half for elements greater than the

pivot. We also do not want to try to sort anything if we have fewer than two elements

to sort, since arrays of size zero and one are already sorted. Therefore result defines the

fully sorted array. Then, finally, the expression defining the function ensures that only

elements between m and n are actually sorted.

4.13 Arrays of functions

The final example, which motivated much of the work in Chapters 2 and 3, comes from

the end of the book, Lucid, the Dataflow Programming Language [43], in which a hypo-
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thetical language, called Lambda Lucid, allowing streams of functions, is presented. The

function exp.n, defined below, returns a function, namely the n-th–power function, or n-th

exponent, such that exp.n.m calculates the value mn.

fun exp.n = P

where

dim d← n

var P = fby .d (λb m→ 1)
(
λb {d} m→ m× P.m

)
end

The explicit {d} in the second λ ensures that the d-ordinate needed to evaluate P within

the abstraction is frozen at the time of creation of the abstraction. Here is the table for P :

P 0 1 2
#.d→

λm→ m0 λm→ m1 λm→ m2 · · ·

A divide-and-conquer version of P could also be defined.

4.14 Conclusion

This chapter has presented a selection of programming examples, using TransLucid, along

with a guide to understanding these problems geometrically, which is applicable not only

to TransLucid, but to understanding these problems in general.

The final example presenting arrays of functions solves the problem of the hypothetical

language Lambda Lucid. In fact, the problem as it was originally presented could not have

worked, as is, in Lucid, and it is only with the binding of dimensions that the problem

was solved.

The examples presented in this chapter barely touch the surface of programming in

general, and what is possible with multidimensional programming in TransLucid. It is only

through further development of programming methodology, and attempts to solve more

problems in TransLucid, that progress will be made in understanding multidimensional

programming.

Nevertheless, these examples demonstrate that a geometric interpretation of problems

is useful, both in understanding the problem, and in specifying the solution in TransLucid.

If this geometric view is extended to implementations, then we will be better able to

understand the physical movement of data through caches, pipelines and memories, also

in a geometric manner.



Chapter 5

Operational TransLucid

This chapter presents Operational TransLucid, which is the language used in Chapter 6 for

producing an operational semantics with memoization (caching) and in Chapter 7 for type

inference. All TransLucid Lite expressions can be translated to Operational TransLucid,

using a syntactic transformation given in this chapter. In Operational TransLucid, func-

tion parameters and local dimension identifiers become dimensions, to be manipulated in

the context rather than in the environment. As a result, implementing TransLucid be-

comes simpler, since the only manipulation of the environment is in the wherevar clause.

5.1 Abstract syntax

The syntax of Operational TransLucid is given in Figure 5.1. Apart from identifiers (x),

for every syntactic element in the semantics of TransLucid Lite, there is a corresponding

syntactic element in Operational TransLucid: #, λb, λv, ↑ and wheredim become, respec-

tively, #◦, λ
b
◦ , λ

v
◦, ↑◦ and wheredim◦. Identifiers x become either x (if x is defined in the

initial environment or in a wherevar clause), or φx (if x is defined as a function parameter

or a local dimension identifier), where φx is a hidden dimension. The symbol Φ stands for

a set of hidden dimensions of the form {φx1 , . . . , φxn}.

E ::= φx constant dimension
| x identifier
| mc m-ary constant symbol, m ∈ N
| #◦ context
| [E ← E, . . .] tuple builder
| λb◦ {E, . . .} Φ φx → E base abstraction
| E . (E, . . .) base application
| if E then E else E fi conditional
| E @ E context perturbation
| ↑◦ {E, . . .} Φ E intension abstraction
| ↓E intension application
| λv◦ {E, . . .} Φ φx → E call-by-value abstraction
| E ! E call-by-value application
| E wherevar x = E, . . . end local variables
| E wheredim◦ φx ← E, . . . end local dimensions

Figure 5.1: Syntax of Operational TransLucid expressions

69
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The idea for a parameter x is that it will be replaced by the entry φx, which will

evaluate to κ(φx), i.e., the φx-ordinate in the current context.

A TransLucid expression E, in which no identifier is masked by a wherevar or wheredim

clause, will be transformed into an equivalent Operational TransLucid expression using

transformations W (Figure 3.2, p.37) and U (Figure 5.2, p.71).

5.2 Using the context

The key concept of Operational TransLucid is that, other than the wherevar clause, uses of

the environment are replaced with uses of the context. To achieve this, every identifier x in

function abstractions and wheredim clauses is replaced with a unique hidden dimension φx.

Then, where the semantics for TransLucid perturbs the environment with a new intension

for x, the semantics of Operational TransLucid perturbs the context with a new value for

the ordinate of φx, and every occurrence of x in the syntax is replaced with a context

lookup for dimension φx.

This however, is not quite enough. We observe that in the original semantics, the

body of an abstraction is evaluated in the environment in which it was created, not the

one in which it is evaluated. Therefore, the setting of any function parameters and local

dimension identifiers enclosing the relevant abstraction must be retained as part of the

closure for that abstraction. Since we have just moved those parameters to the context,

it is necessary to retain a set of dimensions containing the φ dimensions of the enclosing

abstractions and wheredim clauses.

5.3 Transformation

Definition 16. Let E be a TransLucid Lite expression in which no identifier is masked

by a wheredim or wherevar clause, Φ = {φxi} be a set of hidden dimensions, where

each φxi corresponds to an identifier xi defined in a λb-abstraction, a λv-abstraction or

a wheredim clause for which E is a subexpression, and X = {xj} be a set of identifiers,

where expression xj is to be replaced by expression φxj . Then expression U(E,Φ, X) is

the transformation of E into Operational TransLucid, where U is given by Figure 5.2.

When E is a standalone expression, Φ = ∅ and X = ∅, since there are no surrounding

λb-abstractions, λv-abstractions or wheredim clauses.

Definition 17. Let E be a standalone TransLucid expression in which no identifier is

masked by a wheredim or wherevar clause. Expression U(W(E), ∅, ∅) transforms E into

an Operational TransLucid expression.

The transformation U takes three parameters: the expression to transform, a set of

φ dimensions for the abstractions above the current expression, and a set of identifiers

for the abstractions above the current expression. For the four abstractions, the transfor-

mation replaces them with their corresponding circle abstraction which retains the set Φ

for the hidden dimensions to retain when the abstraction is created. Additionally, for the
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U(x,Φ, X) =

{
φx, x ∈ X
x, otherwise

U(mc,Φ, X) = mc

U(#,Φ, X) = #◦

U([Ei0 ← Ei1]i=1..m,Φ, X) =
[
EUi0 ← EUi1

]
U(λx→ E0,Φ, X) = λb◦ ∅ Φ φx → U

(
E0,Φ ∪ {φx, ρ}, X ∪ {x}

)
U(E0 . (Ei)i=1..m,Φ, X) = EU0 . EUi

U(if E0 then E1 else E2 fi,Φ, X) = if EU0 then EU1 else EU2 fi

U(E0 @ E1,Φ, X) = EU0 @ EU1

U(↑{Ei}i=1..m E0,Φ, X) = ↑◦
{
EUi
}

Φ EU0

U(↓E0,Φ, X) = ↓ EU0
U(λb {Ei}i=1..m x→ E0,Φ, X) = λb◦

{
EUi
}

Φ φx → U
(
E0,Φ ∪ {φx, ρ}, X ∪ {x}

)
U(λv {Ei}i=1..m x→ E0,Φ, X) = λv◦

{
EUi
}

Φ φx → U
(
E0,Φ ∪ {φx, ρ}, X ∪ {x}

)
U(E0 ! E1,Φ, X) = EU0 ! EU1

U(E0 wherevar xi = Ei end i=1..m,Φ, X) = EU0 wherevar xi = EUi end

U(E0 wheredim xi ← Ei end i=1..m,Φ, X) = U
(
E0,Φ ∪ {φxi}, X ∪ {xi}

)
wheredim◦ φxi ← EUi end

Figure 5.2: Transformation U from TransLucid Lite to Operational TransLucid(
EU = U(E,Φ, X)

)
.

abstractions that take a parameter, and the wheredim clause, their bodies are transformed

with their hidden dimension added to Φ, and their parameter added to X.

The set X in the transformation is the set of identifiers which have been mapped to

hidden dimensions. So when an identifier x is the parameter of an abstraction, or a local

dimension identifier, and appears in the body of that abstraction or wheredim clause,

it is replaced with a dimension lookup for the appropriate φ dimension. Otherwise, the

transformation of an identifier is itself.

5.4 Semantic rules

Definition 18. Let E be an Operational TransLucid expression over Σ and X, ι be an

interpretation, ζ be an environment, κ be a context, and ΦX ⊂ ∆O be a set of φ dimensions.

Then the semantics of E is given by JEKιζ(κ † {ρ 7→ ε}), where the rules for J·K are given

in Figure 5.3.

The operational semantic rules make use of a set ΦX of φ dimensions. These dimensions

are added to the semantic domain D by specifying that they are a part of the set ∆O of

other dimensions (cf. Preamble 1, p.23), which allows any number of new dimensions to be

added to the system for the purposes of implementation. When the syntactic constructs

for Operational TransLucid and TransLucid Lite differ, we explain the corresponding rules

in the itemised paragraph below.
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JφxKιζκ = κ(φx) (5.1)

JxKιζκ = ζ(x)(κ) (5.2)

JmcKιζκ = ι(mc) (5.3)
q
#◦

y
ιζκ = κ−C ΦX (5.4)

q
[Ei0 ← Ei1]i=1..m

y
ιζκ =

{
JEi0Kιζ(iκ) 7→ JEi1Kιζ((i+m)κ)

}
(5.5)

Jif E0 then E1 else E2 fiKιζκ = let d0 = JE0Kιζ(0κ)

in

 JE1Kιζ(1κ), d0 ≡ true

JE2Kιζ(2κ), d0 ≡ false

(5.6)

q
E0 @ E1

y
ιζκ = JE0Kιζ

(
0κ † JE1Kιζ(1κ)

)
(5.7)

q
λb◦ {Ei}i=1..m Φ φx → E0

y
ιζκ = let di = JEiKιζ(iκ)

in λda.JE0Kιζ((
0κ C ({ρ, di} ∪ Φ)

)
† {φx 7→ da}

)
(5.8)

q
E0.(Ei)i=1..m

y
ιζκ =

(
JE0Kιζ(0κ)

)(
JEiKιζ(iκ)

)
(5.9)

q
↑◦ {Ei}i=1..m Φ E0

y
ιζκ = let di = JEiKιζ(iκ)

in λκa.JE0Kιζ
(
κa † (κ C {di} ∪ Φ)

) (5.10)

J↓E0Kιζκ = (JE0Kιζ0κ)1κ (5.11)
q
λv◦ {Ei}i=1..m Φ φx → E0

y
ιζκ = let di = JEiKιζ(iκ)

in λda.λκa.JE0Kιζ(
κa † (κ C ({di} ∪ Φ)) † {φx 7→ da}

)
(5.12)

JE0 ! E1Kιζκ =
(
JE0Kιζ0κ

)(
JE1Kιζ1κ

)
2κ (5.13)

JE0 wheredim◦ φxi
← Ei end i=1..mKιζκ = let δi = χiκ(ρ)

di = JEiKιζ(iκ)

in JE0Kιζ
(
(0κ) † {φxi 7→ δi, δi 7→ di}

)
(5.14)

JE0 wherevar xi = Ei end i=1..mKιζκ = let ζ0 = ζ † {xi 7→ ∅}
ζα+1 = ζα †

{
xi 7→ JEiKιζα

}
ζt = lfp ζα

in JE0Kι(ζt)κ

(5.15)

Figure 5.3: Semantics of Operational TransLucid

(5.1) The ordinate of dimension φx is looked up in the current context κ.

(5.8) An abstraction is created that evaluates its body in a context in which the frozen Φ

dimensions are retained, and the context at the point of application is ignored.

(5.10) An abstraction is created that evaluates its body in the context passed in at the

point of application, retaining the frozen Φ dimensions from the point of creation of

the abstraction.

(5.12) An abstraction is created that evaluates its body in the context passed in at the

point of application, putting its parameter in the context, along with the retained Φ

dimensions.
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(5.14) A new dimension δi is allocated for each local dimension, and the body of the

wheredim◦ clause is evaluated, perturbing the context such that the hidden dimen-

sion φxi maps to the allocated dimension δi, and δi maps to the initial value, di, for

each dimension.

5.5 Validity of semantics

Proposition 5. Let Φ be a set of φ dimensions, X be a set of identifiers, E be a TransLu-

cid Lite expression, ι be an interpretation, ζ, ζ ′ be environments, κ, κ′ be contexts such that

κ = κ′ C dom(κ) (5.16)

ζ ′ = ζ C dom(ζ ′) (5.17)

dom(κ′)− dom(κ) =
{
φx | x ∈ dom(ζ)− dom(ζ ′)

}
(5.18)

dom(ζ)− dom(ζ ′) =
{
x | φx ∈ dom(κ′)− dom(κ)

}
(5.19)

∀φx ∈ dom(κ′), κ′(φx) = ζ(x)(κ). (5.20)

Then
q
U(E,Φ, X)

y
ιζ ′κ′ = JEKιζκ.

Proof. By induction over the structure of E. There are four base cases, since there are

two cases for x. In the first, x ∈ X:

q
U(x,Φ, X)

y
ιζ ′κ′

= JφxKιζ ′κ′

= κ′(φx)

= ζ(x)(κ)

= JxKιζκ

In the second, x 6∈ X:

q
U(x,Φ, X)

y
ιζ ′κ′

= JxKιζ ′κ′

= ζ ′(x)(κ′)

= ζ ′(x)(κ)

= ζ(x)(κ)

= JxKιζκ
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q
U(mc,Φ, X)

y
ιζ ′κ′

= JmcKιζ ′κ′

= ι(mc)

= JmcKιζκ

q
U(#,Φ, X)

y
ιζ ′κ′

= J#◦Kιζ ′κ′

= κ′ −C ΦX

= κ

= J#Kιζκ

The transformation U (Definition 16) and semantics (Definition 18) maintain the in-

variant defined by properties (5.16)–(5.20). If this invariant holds, then the induction

hypothesis is that
q
U(E,Φ, X)

y
ιζ ′κ′ = JEKιζκ. The first seven inductive cases, ‘[· · · ]’,

‘if–then–else’, ‘@’, ‘.’, ‘↓’, ‘!’, and ‘wherevar’, are straightforward.

q
U([Ei0 ← Ei1]i=1..m,Φ, X)

y
ιζ ′κ′

=
q
[Ei0 ← Ei1]

y
ιζ ′κ′

=
{q
EUi0

y
ιζ ′(iκ

′) 7→
q
EUi1

y
ιζ ′((i+m)κ

′)
}

=
{
JEi0Kιζ(iκ) 7→ JEi1Kιζ((i+m)κ)

}
=

q
[Ei0 ← Ei1]

y
ιζκ

q
U(if E0 then E1 else E2 fi,Φ, X)

y
ιζ ′κ′

=
q
if EU0 then EU1 else EU2 fi

y
ιζ ′κ′

= let d0 =
q
EU0

y
ιζ ′(0κ

′)

in


q
EU1

y
ιζ ′(1κ

′), d0 ≡ true
q
EU2

y
ιζ ′(2κ

′), d0 ≡ false

= let d0 =
q
E0

y
ιζ(0κ)

in


q
E1

y
ιζ(1κ), d0 ≡ true

q
E2

y
ιζ(2κ), d0 ≡ false

= Jif E0 then E1 else E2 fiKιζκ
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q
U(E0 @ E1,Φ, X)

y
ιζ ′κ′

=
q
EU0 @ EU1

y
ιζ ′κ′

=
q
EU0

y
ιζ ′
(
0
κ′ †

q
EU1

y
ιζ ′(1κ

′)
)

=
q
E0

y
ιζ
(
0
κ †

q
E1

y
ιζ(1κ)

)
= JE0 @ E1Kιζκ

q
U(E0 . (Ei)i=1..m,Φ, X)

y
ιζ ′κ′

=
q
EU0 . (E

U
i )

y
ιζ ′κ′

=
(q
EU0

y
ιζ ′(0κ

′)
)(q

EUi
y
ιζ ′(1κ

′)
)

=
(
JE0Kιζ(0κ)

)(
JEiKιζ(1κ)

)
= JE0 . (Ei)Kιζκ

q
U(↓E0,Φ, X)

y
ιζ ′κ′

=
q
↓ EU0

y
ιζ ′κ′

=
(q
EU0

y
ιζ ′(0κ

′)
)
(1κ
′)

=
(q
EU0

y
ιζ(0κ)

)
(1κ)

= J↓E0Kιζκ

q
U(E0 ! E1,Φ, X)

y
ιζ ′κ′

=
q
EU0 ! EU1

y
ιζ ′κ′

=
(q
EU0

y
ιζ ′(0κ

′)
)(q

EUi
y
ιζ ′(1κ

′)
)
(2κ
′)

=
(q
EU0

y
ιζ(0κ)

)(q
EUi

y
ιζ(1κ)

)
(2κ)

= JE0 ! E1Kιζκ



CHAPTER 5. OPERATIONAL TRANSLUCID 76

q
U(E0 wherevar xi = Ei end i=1..m,Φ, X)

y
ιζ ′κ′

=
q
EU0 wherevar xi = EUi end

y
ιζ ′κ′

= let ζ ′0 = ζ ′ † {xi 7→ ∅}
ζ ′α+1 = ζ ′α †

{
xi 7→

q
EUi

y
ιζ ′α
}

ζ ′t = lfp ζ ′α

in
q
EU0

y
ι(ζ ′t)κ′

= let ζ0 = ζ † {xi 7→ ∅}
ζα+1 = ζα †

{
xi 7→ JEiKιζα

}
ζt = lfp ζα

in JE0Kι(ζt)κ

= JE0 wherevar xi = Ei endKιζκ

The remaining four cases are the interesting ones, as the semantics for Operational

TransLucid must ensure that the invariant holds.

q
U(↑{Ei}i=1..m E0,Φ, X)

y
ιζ ′κ′

=
q
↑◦
{
EUi
}

Φ EU0
y
ιζ ′κ′

= let di =
q
EUi

y
ιζ ′(iκ

′)

in λκa.
q
EU0

y
ιζ ′
(
κa † (κ′ C {di} ∪ Φ)

)
= let di = JEiKιζ(iκ)

in λκa.JE0Kιζ
(
κa † (κ C {di})

)
= J↑ {Ei} E0Kιζκ

The invariant states that for φx ∈ Φ, φx ∈ dom(κ′), x 6∈ dom(ζ ′), and ζ(x)(κ) = κ′(φx).

Since we can make no such assumption about κa, it is necessary to add those dimensions

from κ′ into κa before evaluating EU0 . Therefore, the invariant is maintained from step 2

to 3, and the induction hypothesis holds. Similar manipulations are required for the other

three cases.

q
U(λb {Ei}i=1..m x→ E0,Φ, X)

y
ιζ ′κ′

=
q
λb◦
{
EUi
}

Φ φx → U(E0,Φ ∪ {φx}, X ∪ {x})
y
ιζ ′κ′

= let di =
q
EUi

y
ιζ ′(iκ

′)

in λda.
q
EU0

y
ιζ ′
(
(0κ
′ C ({ρ, di} ∪ Φ)) † {φx 7→ da}

)
= let di = JEiKιζ(iκ)

in λda.JE0Kι
(
ζ † {x 7→ d̂a}

)
(0κ C {ρ, di})

= Jλb {Ei} x→ E0Kιζκ
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q
U(λv {Ei}i=1..m x→ E0,Φ, X)

y
ιζ ′κ′

=
q
λv◦
{
EUi
}

Φ φx → U(E0,Φ ∪ {φx}, X ∪ {x})
y
ιζ ′κ′

= let di =
q
EUi

y
ιζ ′(iκ

′)

in λda.λκa.
q
EU0

y
ιζ ′
(
κa † (κ′ C ({di} ∪ Φ)) † {φx 7→ da}

)
= let di = JEiKιζ(iκ)

in λda.λκa.JE0Kι(ζ † {x 7→ d̂i}
(
κa † (κ C {di})

)
= Jλv {Ei} x→ E0Kιζκ

q
U(E0 wheredim◦ φxi ← Ei end i=1..m,Φ, X)

y
ιζ ′κ′

=
q
U(E0,Φ ∪ {φxi}, X ∪ {xi}) wheredim◦ φxi ← EUi end

y
ιζ ′κ′

= let δi = χiκ(ρ)
di =

q
EUi

y
ιζ ′(iκ

′)

in
q
U(E0,Φ ∪ {φxi}, X ∪ {xi})

y
ιζ ′
(
(0κ) † {φxi 7→ δi, δi 7→ di}

)
= let δi = χiκ(ρ)

di = JEiKιζ(iκ)

in JE0Kι
(
ζ † {xi 7→ δ̂i}

)(
0
κ † {δi 7→ di}

)
= JE0 wheredim xi ← Ei endKιζκ

Hence, by the inductive hypothesis, JU(E,Φ, X)Kιζκ = JEKιζ ′κ′.



Chapter 6

Cached Evaluation

This chapter presents an operational semantics for TransLucid using a form of demand-

driven computation called eduction. This semantics uses a cache storing the results of

previously computed (variable, context) pairs. The key technical contribution is to pro-

vide a mechanism for this cache to work with arbitrary-dimensional spaces. We argue

how this operational semantics is compatible with the denotational semantics of Chap-

ter 5. This chapter is an extension of the technical part of a paper to be published in

Mathematical Structures in Computer Science [11], and is inspired by the author’s current

implementation, and subsumes previous work by Rahilly and Plaice [37].

6.1 Eduction

In the previous chapters, the discussion focused on denotational semantics—the meaning

of an expression—rather than on how to actually compute the value of an expression. The

problem for evaluating TransLucid is that in general, once the values of its free variables

are defined, an expression’s value is an intension, and that intension has infinite extent.

The only possible solution is, rather than computing the value of an expression, to compute

the value of an expression in a particular context.

In fact, the semantics almost does this already. The semantic function J·K gives the

meaning of an expression in a particular context, and in fact all but two of the rules ma-

nipulate the context, and evaluate their subexpressions in the appropriate context. So, in

fact, most of the denotational semantics rules already lead naturally to an implementation.

For example, for expression #.E, when E evaluates to dimension δ, the δ-ordinate is

simply looked up in the current context. Similarly for E0 @E1, expression E1 is evaluated

in the current context, producing a tuple, and E0 is evaluated in the context produced by

perturbing the current context with that tuple.

The one problematic rule is for E0 wherevar xi = Ei end, which creates a sequence

of environments produced by mapping each identifier xi to the intension produced by

the result of evaluating the corresponding expression Ei in the previous environment;

then E0 is evaluated in the environment which is the least fixed point of the sequence of

environments. The problem here is that each identifier is mapping to an infinite intension,

which cannot be computed.

78
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The solution to evaluating a wherevar clause is called eduction; the use of the term

first appeared in [43], and was derived from the word educe, which means to draw out. In

evaluating using eduction, the value of an intension is computed in a particular context,

which may result in other intensions, and possibly itself again, being evaluated in different

contexts. Conceptually, a demand is made for a pair (x0, κ0) of an identifier and a context,

which results in demands for further pairs (xi, κi). When all of these demands have been

satisfied, the final result can be computed.

As an example, we reproduce below the factorial function presented in Chapter 2.

fun fact .n = F

where

dim d← n

var F = if #.d ≡ 0 then 1 else #.d×
(
F @ [d← #.d− 1]

)
fi

end

To compute the value of expression fact .a, for some positive integer a ∈ N − {0}, the
value of the variable F at the context {d 7→ a} must be computed. Since #.d 6= 0, the else

branch is evaluated, which results in a request for F at {d 7→ a − 1}. This is repeated a

times, until the then branch returns 1, and then every other value can be computed.

There are only two changes to the semantics required to implement eduction: 1) rather

than passing around an environment ζ, it is necessary to pass a mapping ξ from identifiers

to expressions; 2) the rule for the wherevar clause is modified to perturb ξ with a mapping

from xi to Ei, rather than to compute a least fixed point. In addition, the rule for x must

be changed to evaluate the expression ξ(x) in the current context.

Unfortunately, however, evaluation using naive eduction is typically an inefficient way

to evaluate an expression, due to repeated requests for the same (x, κ) pair. Take as

example the Fibonacci program below:

fib.n = F

where

dim d← n

var F = if #.d ≤ 1 then #.d else
(
F @ [#.d← #.d− 1]

)
+
(
F @ [#.d← #.d− 2]

)
fi

end

Even demands for low numbers produce an enormous number of repeated requests. A
demand for F in the context {d 7→ 5} requests F at {d 7→ 4} and {d 7→ 3}. Those two

demands produce another demand for F at {d 7→ 3}, and additionally two demands at

{d 7→ 2} and one at {d 7→ 1}. The second demand at 3 then produces demands at 2 and

1 again. This only gets worse as the Fibonacci number requested grows.

The solution is to remember the results of particular entries the first time they are

computed, so that they are not recomputed when later requested. Then they can simply

be looked up for future requests. This technique is called memoisation, and is commonly

used for caching intermediate results in calls of recursively-defined pure functions. The

key technical contribution of this chapter is to extend this idea to memoisation in an

arbitrary-dimensional space, what we call multidimensional memoisation.
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6.2 Multidimensional memoisation

The difficulty in implementing a multidimensional cache scheme is that the dimensions

of relevance in looking up a cache entry cannot be known a priori, and therefore must

be discovered by the interpreter during evaluation. This chapter presents a solution that

involves a completely new method of evaluation, in which there is a back-and-forth in-

teraction between the cache and the evaluator, with the evaluator returning demands for

dimensions as they are required, whilst the cache builds a hierarchy of those dimensions

as they are requested.

The basic idea of caching results of computation is that for each entry in an intension

that has been computed, we store the dimensions that were used to compute it, and the

value computed. As an example, consider a simple multiplication table:

varM = #.a× #.b

It is easy to see how a cache might work in this situation. When a request for the value

of M at the context κ = {a 7→ 5, b 7→ 6} is made, the cache is looked up at κ, and if an

entry exists, it is returned, otherwise, the value 30 is computed and, the following fact is

entered into the cache:

value of M at {a 7→ 5, b 7→ 6} is 30

This works fine for simple expressions, although, even this case raises some questions. The

question that must be solved in order to implement a cache is, which dimensions are being

used to define an intension? In this case, we can see that it is dimensions a and b, but

especially in more complex expressions, it is not so trivial to arrive at that answer, and it

is not so simple for the evaluator to determine that itself.

There are three possibilities: 1) static analysis is used, in order to determine which

dimensions are used by any expression, 2) the cache simply uses the dimensions that are

present in a computation, or 3) the computer uses some more complex method of deter-

mining which dimensions are relevant to a computation. The solution is (3), because we

can eliminate the other two quite easily. Option (1) is not possible, because dimensions can

be passed as parameters, and can be computed, and so the dimensions used to compute

the value of an expression are not in general known statically. Option (2) does not work,

because as will be explained shortly, there may be many other dimensions present that

are not relevant for a particular cache request. Therefore, we present a solution for im-

plementing the cache that involves the evaluator discovering, at run time, the dimensions

relevant for a computation, and entering the appropriate information into a cache.

Finally, without some sort of garbage collection, the cache would quickly grow to an

unmanageable size, so we also implement what was called the “retirement-plan” garbage-

collection system by Faustini and Wadge [18], which is essentially a system for retaining

the most recently used entries, and throwing out entries that have not been used for a

while. In their implementation, almost nothing used later was thrown away, and the cache

was kept to a reasonable size. The retirement-plan scheme is not unlike that used by an
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operating system in managing a CPU’s cache of memory, or the cache of a disk in RAM.

6.3 Accessing the cache

The difficulty with the cache becomes apparent with a simple example. When there are

more dimensions in the context than necessary to define a particular expression, it is not

immediately clear to the evaluator that not all of those dimensions should be used in

defining the cache entry. The variable N , defined below, only uses the s-ordinate when it

is greater than zero, otherwise, it uses both the s-ordinate and the t-ordinate:

N = if #.s > 0 then neg .s else #.s+ #.t fi

In any evaluation, it is likely that both dimensions t and s will be present in the context.

For example, if a request like the following were made:

requesting the value of N at {t 7→ −5, s 7→ −6}

then the value is −11, and uses both dimensions s and t. But we may eventually see

demands of the form:

requesting the value of N at {t 7→ 4, s 7→ 2}

The calculation of this value will ignore the t-ordinate and produce the value −2. Ignoring

the t-ordinate is not the problem; the problem is that the cache entry:

value of N at {t 7→ 4, s 7→ 2} is −2

will have t 7→ 4 as part of its “tag”. This information is irrelevant and should not be

included in the tag. Otherwise, the cache will fill with duplicated entries:

value of N at {t 7→ 0, s 7→ 2} is −2

value of N at {t 7→ 1, s 7→ 2} is −2

value of N at {t 7→ 2, s 7→ 2} is −2

· · ·

which should all be replaced by the generic entry:

value of N at {s 7→ 2} is 2

The problem is not in producing suitably generic entries; as a computation proceeds,

the interpreter could keep a running tally of those dimensions whose values are actually

required, and tag the cache entry with the coordinates of just those dimensions.

The problem finally appears when we have to search the cache. Suppose the current

request is for N at {t 7→ 4, s 7→ 2}. When we search the cache for the requested value,
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what tag do we look for? We need to know which dimensions are actually required in the

computation, and since we are trying to avoid performing the computation in the first

place, there is no a priori reason that we should have this information.

If there are only two dimensions to begin with, the problem is not very serious. We

could search first with the tag {t 7→ 4, s 7→ 2}, then try {t 7→ 4}, then (successfully) try

{s 7→ 2}. But suppose there are dozens of dimensions to begin with, or that users can

declare their own dimensions, or that there are in fact infinitely many. The cache scheme

breaks down.

The pLucid interpreter [43] never solved this problem, which is one of the reasons that

the multidimensionality was undocumented. Fortunately, many of the programs people

wrote in practice did not cause severe duplication of cache entries. But this was not always

the case, and would have been too much to hope for in the presence of, say, dimensions as

function parameters.

6.4 Lazy tags

Wadge and Faustini proposed a possible solution in the late 1980s [18]. The idea is that

during eduction and caching, even the tags are generated using a demand-driven scheme.

It is this solution which we will retain in our implementation.

As indicated above, when the value of a variable is computed, a tally is kept, and only

referenced dimensions are included in the tag. The key idea is that searching a value in

the cache proceeds as a sort of dialogue, in which the searcher gradually assembles the tag

associated with the value sought.

Suppose that we want the value of a variable X in the presence of a large number of

dimensions, most of which will turn out to be irrelevant.

The first step is to ask (optimistically) for the value of X with an empty tag. The

hope here is that X is a constant. There are three possibilities:

1. The cache provides a value—say, 42—then X is indeed the constant 42 and the

search concludes successfully.

2. The cache finds no entry at all with the empty tag, then we conclude that nothing

about X has yet been stored in the cache and we must proceed with the calculation.

3. The cache returns a dimension (i.e., a name, not an ordinate). Suppose that the

name returned is “z”. This means that we must provide the z-ordinate before we

can retrieve any more information about X from the cache. In this case, the process

is repeated, after providing the z-ordinate.

Suppose that the third option occurred, and that the current z-ordinate is 8. We ask

for the cache for information about X tagged with {z 7→ 8}. Once again, we have the

same three possibilities. This time, we could have:

1. The cache returns a value, say, 64. This means that X has the value 64 whenever

the z-ordinate has the value 8, and our search is successful.
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2. There is no entry for X with tag {z 7→ 8}. This means the value we need is yet to be

computed, and we must proceed with the computation (adding appropriate entries

to the cache as we do so).

3. The cache returns another dimension—say, u. This means that for {z 7→ 8} we also

need the u-ordinate to get a value of X.

This time, suppose that we have the second option, which means that we must proceed

with the computation. In doing so, there are two possibilities:

1. A value is returned, say, 42. The cache now records the fact that X has the value

42 at the tag {z 7→ 8}.

2. Another dimension, or set of dimensions, say, {u}, is returned by the evaluator. The

cache records that the u-ordinate is required for the value of X at {z 7→ 8}, and we

continue with the computation until case (1) occurs.

In this way we eventually either (1) build up the tag that retrieves the required value

or (2) learn that we will have to compute it.

At the same time, the cache is building up that same hierarchy of dimensions needed

to compute the value of X. Then, whenever a value from the cache is requested, the

cache goes through each level of the hierarchy, either returning the dimensions needed to

go further, or if those dimensions are available, moving to the next level until either a

dimension is required or a value is present.

6.5 Caching TransLucid

The next section (§6.6) presents the complete cached semantics for TransLucid. The

semantic rules describe a maximally parallel interpreter with a centralized cache. To

achieve this, we define threads, each with an associated clock, and their interaction with

the cache. The clock is necessary to synchronise the result of a computation when several

threads attempt to compute the same thing at the same time. Rather than all threads

computing the same value, all but one of the threads wait for that one thread, then their

clocks are synchronised.

The semantic rules are for the syntax of Operational TransLucid, but with a modifi-

cation to the wheredim clause, explained below, along with some assumptions about the

structure of a program.

6.5.1 Assumptions

The cache-based implementation does not fully implement Operational TransLucid (Chap-

ter 5). Rather, it is assumed that a static semantics is applied to TransLucid programs,

and only those passing are implementable using a cache.

The denotational semantics for TransLucid allows the context to be passed around

explicitly, simply by writing #. In the cache-based implementation, the context must

always appear in an expression of the form #.E, i.e., the context may only appear in a
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context-query situation; an arbitrary context may not be passed from one part of the

program to another. In addition to simplifying the implementation, this choice can also

be defended from a security point of view: the context can only reveal the ordinates of

dimensions computed explicitly within the program.

The denotational semantics generates different dimensions for a given local dimension

identifier each time that the local wheredim clause in which it is declared is entered, by

using a list to encode the path through evaluation. This does not work for the cached

semantics; for a variable defined inside a wheredim clause, the dimensions in which it varies

will change every time the wheredim clause is evaluated, almost completely negating the

point of the cache. For example, in any one evaluation of Fibonacci numbers, the cache

would be useful, since the local dimension is allocated once. But if another Fibonacci

number is requested, a new dimension will be allocated, making the previous memoisation

useless. For a computation of a factorial, the cache would be completely useless.

To solve this, we allocate dimensions in a different way to the denotational semantics.

Rather than allocate a different dimension for every path through the evaluation tree, we

only allocate a different dimension when the evaluation of a wheredim clause re-enters

itself; we guarantee that each dimension allocation at the same depth will always be the

same. Most programs presented so far in this dissertation do not use recursion, and

therefore do not enter the same wheredim clause multiple times. The only program that

does is quick sort (§4.12.5), which when run in the cached implementation is orders of

magnitude faster than in the naive implementation.

However, this allocation of dimensions is no longer correct for all programs. Fortu-

nately, it turns out that the programs for which this allocation is a problem are either

error cases, or are so bizarre that comprehending them, let alone writing them, is difficult,

and they do not solve any meaningful problem. For the case that is already an error,

we can make a clear statement. An abstraction defined inside a wheredim, and returned

from that clause, must not have a local dimension identifier in its rank. This is obviously

an error, because the dimension does not exist outside the wheredim, and therefore the

array defined by the abstraction cannot be indexed. However, using the cache-based im-

plementation, a valid result might be produced, rather than an error. This is analogous to

returning the address of an automatic variable in C, which is undefined according to the C

language standards.

As far as determining the boundary between meaningful and bizarre programs, the

ideas about what constitutes a valid program for the cache are less clear. If an abstraction

is created which freezes a local dimension, and is returned from the wheredim defining

that dimension, then is later passed back into another instance of the same wheredim

clause, cached evaluation may not give the correct results. However, we have yet to find

any useful program that makes use of this: in fact, we have yet to find any comprehensible

program that makes use of this.
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6.5.2 Syntax

The cache semantics is for tagged Operational TransLucid expressions, written EQ. The

only difference between the Operational TransLucid syntax and the tagged Operational

TransLucid syntax is for the wheredim clause:

EQ ::= · · ·

| EQ0 wheredimW q ψq φxi ← EQi end

In the tagged wheredim clause, q ∈ N is the clause’s label, and ψq is an other dimension,

whose ordinate will always be a natural number. The transformation Q takes an Oper-

ational TransLucid expression E to produce EQ. For a given expression EQ, we write

Q(EQ) for the set of all the wheredimW labels inside EQ.

Tagging the wheredim clauses allows us to allocate dimensions by keeping track of

the depth of evaluation through each wheredimW clause. For each q ∈ Q(E), the initial

ψq ordinate is zero, and each entry into a wheredimW clause tagged q will increment its

ψq-ordinate. This way, dimensions are allocated deterministically based on the depth of

evaluation through each wheredimW clause. We can reuse the χ dimension allocation from

Chapter 2. By making a two-element list 〈q, κ(ψq)〉, and by using the index i of the dimen-

sion being allocated, we allocate dimensions χi〈q,κ(ψq)〉, as will be seen in Rule (6.17), p.93.

6.5.3 Definitions

For evaluation by eduction to work, it is necessary to pass a mapping from identifiers to

expressions through the semantic rules, rather than a mapping to intensions, as for the

denotational semantics.

Definition 19. Let Σ be a signature, X a set of identifiers, then Env∗(X,Expr(Σ, X))

is the set of expression environments over Σ and X, i.e., mappings ξ : X 7→ Expr(Σ, X).

Given the increasing availability of parallelism in the computing infrastructure, at

both the fine-grain and the coarse-grain levels, the rules provided below are designed to

encourage maximal parallelism.

Definition 20. A thread is a list of natural numbers, w ∈ N∗. If i ∈ N, then we write

wi = w || i to denote the appending of i to the list w. We write w′ ≤ w to mean that

thread w′ is an ancestor to thread w, i.e., that w′ is a prefix of w. The initial thread is

written ε.

In the cached rules, the evaluation of an expression E will require the evaluation

of subexpressions Ei, i = 1..n. The evaluation of expression E will take place using a

thread w, and the calculation of each of the subexpressions Ei will take place using a

thread wi.

Definition 21. A clock is a natural number t ∈ N.
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Each thread and the cache will have its own clock. Each time that a thread uses the

cache, the clocks of both are set to the fastest clock. Each time that a thread uses the

results from other threads, its clock is advanced to the fastest clock. All clocks start from

zero.

6.5.4 The cache

A cache β is a synchronous, reactive machine with four internal variables:

• β.ck ∈ N is a clock (a counter), initially 0;

• β.age ∈ N is the global retirement age, initially 2, for the garbage collector;

• β.data contains the nodes of the cache;

• β.limit contains the maximum number of nodes in the cache.

The variable β.data contains a number of nodes γj , j ∈ N. Each γj is either a leaf

node or an internal node. If γj is a leaf node, it either stores an ordinary value dj or a

value calc〈w〉, meaning that thread w is currently responsible for computing this entry.

If γj is an internal node, it will hold a pair consisting of 1) a set ∆j of dimensions whose

ordinates must be provided, and 2) a set of pairs (ordinatesji,nextNodeji), meaning that

when the dimensions in ∆j take on the ordinatesji, then the next node is nextNodeji.

As a result, β.data acts a decision tree for each variable x, keeping track of the di-

mensions that are needed to access a value. Suppose that thread w is seeking the value

for variable x and context κ in β.data. The root of the tree for x gives the stored value

for evaluating variable x with the empty context ∅. Should β.data(x, ∅) be an ordinary

value d, then whatever the context κ, the value of x in κ will be d. Should β.data(x, ∅)
be a set of dimensions ∆1, then the cache is asking that the ordinates for the dimensions

in ∆1 be provided. So the process is started over with β.data(x, κC∆1), and is repeated

until ultimately an ordinary value d is returned or else the cache inserts a calc〈w〉 value,

meaning that thread w is responsible for calculating this entry.

In summary, should the value for variable x and context κ actually be in β.data, then

there would be n mutually exclusive sets of dimensions ∆1, . . . ,∆n, n ∈ N, such that:

β.data(x, ∅) = ∆1

β.data(x, κC∆1) = ∆2

β.data
(
x, κC (∆1 ∪∆2)

)
= ∆3

. . .

β.data
(
x, κC (∆1 ∪ · · · ∪∆n−1)

)
= ∆n

β.data
(
x, κC (∆1 ∪ · · · ∪∆n)

)
= d

We can then write that β.data∗(x, κ) = d.

The cache uses the retirement plan mentioned in Section 6. Each node γj has an age,

γj .age, initialized to zero when the node is created. Every time that a node is retrieved,
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its age is reset to zero. The garbage collector keeps a global retirement age, and every

garbage collection run, the global retirement age is decreased by one. On the other hand,

if at any point, a node whose age is greater than the global retirement age is retrieved,

the global retirement age is increased to the age of the node before that node is set back

to zero. Every garbage collection run, the age of every node is increased by one. Only leaf

nodes can be collected. Should, during any one garbage collection run, an internal node

have all of its children collected, then it can be collected immediately if its age is greater

than the retirement age.

In the semantic rules, rather than passing an immutable cache object around, which

is modified by certain rules, we pass a global cache object that has operations with side

effects. The cache responds to two different instructions generated by threads, and one

instruction generated internally:

• (v′, t′) = β.find(x, κ, w, t)

– If t > β.ck, advance β.ck to t.

– If β.data(x, κ) = calc〈w′〉 and w′ ≤ w, hang (do not return).

– If β.data(x, κ) is not defined, let β.data(x, κ) be calc〈w〉 and advance β.ck

by 1. Should β receive more than one β.find(x, κ, wi, ti) instruction at the same

instant β.ck, the w is nondeterministically chosen from among the wi.

– For all the nodes γj in the chain which stores β.data∗(x, κ), if γj .age > β.age,

then set β.age = γj .age + 1, then set γj .age = 0.

– If the number of nodes is greater than β.limit, then run β.collect().

– Return (β.data(x, κ), β.ck).

• (v′, t′) = β.add(x, κ, w, t, v)

– If t > β.ck, advance β.ck to t.

– If β.data(x, κ) 6= calc〈w〉, hang (do not return).

– Let β.data(x, κ) be v and advance β.ck by 1.

– Return (β.data(x, κ), β.ck).

• β.collect()

– β.age = β.age− 1.

– For each node γj in the cache, in a post-order traversal of the tree:

∗ If γj .age ≥ β.age then remove the node if it has no children, and if it is not

holding the value calc〈w〉.
∗ If γj has not been collected, increment γj .age by one.
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6.5.5 Validity of the cache

In showing that the semantics are valid, we will not attempt to prove that the cache

semantics produces the same result as the operational semantics, since we know that

it does not, in general, due to the allocation of dimensions, but that for all reasonable

programs it gives the same result. Therefore, there are two separate issues that need to

be considered for these semantics to be valid, and therefore useful for evaluation: 1) The

cache must correctly discover all dimensions of relevance for the value of an intension,

with the correct hierarchy, for sane programs; 2) we must be able to put some definition

on what a sane program is.

For the first point, it is necessary to show that the rules correctly pass all appropriate

dimensions back to the cache, and in the correct order, so that the cache does not end

up broken, with an invalid hierarchy of dimensions being stored. Therefore, we argue that

the cache maintains an invariant, and that each cache function has preconditions for its

use, which the semantics must respect. For the second, the definition of a sane program

will be much less rigorous, and no attempt is made to detect whether a program is valid

for the cache or not; this is left as future work.

The following invariant must be maintained in the cache. If β.data(x, κ) exists, then

there exists a chain of entries β.data(x, κi), i = 0..n, where

κi = κ C (∆0 ∪ · · · ∪∆i)

∆0 = ∅

∀j, k s.t. j 6= k ∆j ∩∆k = ∅

κn = κ.

Should β.data(x, κ) = d, where d is not a set ∆, then there cannot exist a κ′ such that

dom κ ⊂ dom κ′, κ = κ′ C dom κ, and β.data(x, κ′) exists.

6.6 Semantics

The cached semantic rules presented below are of the form

JEKwξκ∆βwt,

meaning an expression E is evaluated in a given environment ξ, at a particular context κ,

using a cache β, a set ∆ of dimensions, a thread w and a clock t. The interaction between

each of these components is explained in the following paragraphs.

We begin by supposing that we are evaluating a demand for a variable x = E, in some

context κ, where the variable x is being cached. There are no cache entries, so the job of

the evaluator is to help the cache discover the dimensions of relevance in computing the

value of E in the current context. Suppose that at some point inside E the ordinate of

some dimension, say δ, is required. The evaluator needs to know at this point that the

cache does not know about dimension δ, so that it can inform the cache that dimension δ
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is required in computing the value of E. This is achieved by the cache setting ∆ to ∅;
when a lookup for dimension δ is reached, and δ is not in ∆, the evaluator returns to the

cache, saying that it needs dimension δ.

The cache records this fact, along with the ordinate of δ, then attempts evaluation

again, this time setting ∆ = {δ}. Now suppose that some dimension γ is now required,

this process is repeated, and the cache records this as a child node under δ, and evaluates

again, setting ∆ = {γ, δ}. This process is repeated until no more dimensions are required,

and the evaluator returns a value instead of a set of dimensions.

However, should evaluation go through another cache node, this whole process is re-

peated from the start, for that cache node. As a result, each cache node builds its entries

correctly. This back-and-forth process might seem to be overkill, but it correctly builds

the hierarchy of dimensions required to compute a value, and experiments have shown

that the time required for the initial discovery phase is quickly made up for in the time

saved repeating computations.

The threads w and clocks t passed through the semantics play an important part in

this computation. Suppose that while thread w is computing the value of an expression,

thread w′ wants that value in the same context. Rather than recompute that value,

thread w′ waits for the answer to come back from w. As a side effect of this, loops in the

definitions can be detected, rather than a program running forever. If w′ < w, then the

thread w′ is a descendant of w, meaning that the computation being done on thread w′

was spawned by w. Therefore, the computation for E at κ requires E at κ, and there is

a loop. In the semantics given below, the result is left undefined, but our implementation

handles this case with error values.

Definition 22. Let E be an Operational TransLucid expression, satisfying the conditions

of §6.5.1, ι be an interpretation, ζ be an environment, and κ be a context such that JEKιζκ
is defined. Then, the cached semantics for E are given by

q
EQ

yW
ιξ0κ0∆0β0w0t0

such that

ξ0 = ∅

κ0 = κ †
{
ψq 7→ 0 | q ∈ Q

(
EQ
)}

∆0 = dom(κ) ∪
{
ψq | q ∈ Q

(
EQ
)}

w0 = ε

t0 = 0

and β0 is the least β such that ∀x, κ, if ζ(x)(κ) is defined, β0.data∗(x, κ) = ζ(x)(κ), and

where the rules for J·Kw are given in §6.6.1. Where the rules refer to v, this can either be

d ∈ D or a set ∆ of dimensions requested.

Here, it is necessary for β0 to be preinitialised with every entry of the inputs to E.

In the denotational semantics, the inputs are in ζ, which is a mapping from identifiers
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to intensions. For the cached rules, we use ξ, a mapping from identifiers to expressions,

and the inputs to E are not necessarily specified as expressions. Therefore, we place the

contents of ζ for the inputs into the initial cache β0.

Proposition 6. Let E, ι, ζ, κ be as in Definition 22. If JEKιζκ is defined, then

JEKιζκ ≡
q
EQ

yW
ιξ0κ0∆0β0w0t0.

We will not prove the proposition, as it would parallel exactly the explanation of the

rules that follow, and would take up too much space.

6.6.1 The cached semantics rules

JφxKwιξκ∆βwt (6.1)

=


(
{φx}, t

)
, φx 6∈ ∆(

κ(φx), t
)
, otherwise

JmcKwιξκ∆βwt (6.2)

=
(
ι(mc), t

)
q
[Ei0 ← Ei1]i=1..m

yw
ιξκ∆βwt (6.3)

= let (vij , tij) = JEijKwιξκ∆βwijt

in


(⋃

ij ∆ij ,max(tij)
)
, vij is of form ∆ij(

{vi0 7→ vi1},max(tij)
)
, otherwise

Jλb◦ {Ei}i=1..m Φ φx → E0Kwιξκ∆βwt (6.4)

= let (vi, ti) = JEiKwιζκ∆βwit

in



(⋃
i ∆i,max(ti)

)
, vi is of form ∆i(⋃

i{vi},max(ti)
)
, vi 6∈ κ(

λd.λβ.λwλt.

JE0Kwιζ
(
{φx 7→ d} †

(
κ C ({vi} ∪ Φ)

))
({vi} ∪ {φxj

})βwt,

max(ti)
)
, otherwise

q
E0 . (Ei)i=1..m

yw
ιξκ∆βwt (6.5)

= let (vi, ti) = JEiKιξκ∆βwit

in


(⋃

i ∆i,max(ti)
)
, vi is of form ∆i

v0(vi)βw
(
max(ti)

)
, otherwise
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Jif E0 then E1 else E2 fiKwιξκ∆βwt (6.6)

= let (v0, t0) = JE0Kwιξκ∆βwt

in


(∆0, t0), v0 is of form ∆0

JE1Kwιξκ∆βwt0, v0 ≡ true

JE2Kwιξκ∆βwt0, v0 ≡ false

J#.E0Kwιξκ∆βwt (6.7)

= let (v0, t0) = JE0Kwιξκ∆βwt

in


(∆0, t0), v0 is of form ∆0(
{v0}, t0

)
, v0 6∈ ∆(

κ(v0), t0
)
, otherwise

JE0 @ E1Kwιξκ∆βwt (6.8)

= let (v1, t1) = JE1Kwιξκ∆βwt

in

(∆1, t1), v1 is of form ∆1

JE0Kwιξ(κ † v1)
(
∆ ∪ dom(v1)

)
βwt1, otherwise

J↑◦ {Ei}i=1..m Φ E0Kwιξκ∆βwt (6.9)

= let (vi, ti) = JEiKwιξκ∆βwit

in



(⋃
∆i,max(ti)

)
, vi is of form ∆i(⋃

i{vi},max(ti)
)
, vi 6∈ κ(

λκa.λ∆a.λβa.λwa.λta.

JE0Kwιξ
(
κa †

(
κ C ({vi} ∪ Φ)

))(
∆a ∪ {vi} ∪ Φ

)
wata,

max(ti)
)
, otherwise

J↓E0Kwιξκ∆βwt (6.10)

= let (v0, t0) = JE0Kιξκ∆βwt

in

(∆0, t0) v0 is of form ∆0

vκ∆βwt0 otherwise
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Jλv◦ {Ei}i=1..m Φ φx → E0Kwιξκ∆βwt (6.11)

= let (vi, ti) = JEiKwιζκ∆βwit

in



(⋃
i ∆i,max(ti)

)
, vi is of form ∆i(⋃

i{vi},max(ti)
)
, vi 6∈ κ(

λda.λκa.λ∆a.λβa.λwa.λta.

JE0Kwιζ(
κa † {φx 7→ da} †

(
κ C ({vi} ∪ Φ)

))(
∆a ∪ {vi} ∪ {φx} ∪ Φ

)
βawata,

max(ti)
)
, otherwise

JE0 ! E1Kwιξκ∆βwt (6.12)

= let (vi, ti) = JEiKιξκ∆βwit

in


(⋃

i ∆i,max(ti)
)
, vi is of form ∆i

v0v1κ∆βw
(
max(ti)

)
, otherwise

JxKwιξκ∆βwt (6.13)

= let (v0, t0) = JxK1ιξκ∅∆βwt

in

(v0, t0) v0 is of form ∆0

β.find(x, κ C ∆, t, w), otherwise

JxK1ιξκ∆∆′βwt (6.14)

= let (v0, t0) = JxK2ιξκ∆βwt

in


JxK1ιξκ(∆ ∪∆0)∆′βwt, v0 is of form ∆0 and ∆0 ⊆ dom(κ) and ∆0 ⊆ ∆′

(∆0 −∆′, t0) v0 is of form ∆0 and ∆0 6⊆ ∆′

(v0, t0), otherwise

JxK2ιξκ∆βwt (6.15)

= let (v0, t0) = β.find(x, κ C ∆, t, w)

in



let (v1, t1) = Jξ(x)Kιξκ∆βwt0

in β.add(x, κ C ∆, t1, w, v1), v0 is of form calc〈w′〉 and w′ ≡ w

JxK2ιξκ∆βw(t0 + 1), v0 is of form calc〈w′〉 and w′ 6≤ w

(v0, t0), v0 is not of form calc〈· · · 〉
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JE0 wherevar xi = Ei end i=1..mKwιξκ∆βwt (6.16)

= JE0Kwι
(
ξ † {xi 7→ Ei}

)
κ∆βwt

JE0 wheredimW Q ψQ ψxi ← Ei endKιξκ∆βwt (6.17)

= let δi = χi〈q,κ(ψq)〉

(vi, ti) = JEiKwιξκ∆βwit

in


(⋃

i ∆i,max(ti)
)
, vi is of form ∆i

JE0Kwιξ
(
κ † {ψq 7→ κ(ψq) + 1, φxi

7→ vi}
)
∆βw

(
max(ti)

)
otherwise

6.6.2 Comments on the rules

All of the evaluation rules that involve some computation of subexpressions take into

account the fact that any of those subexpressions might evaluate to a demand for one

or more dimensions. Should this occur, computation does not continue, and all of these

demands are aggregated into a larger demand, which becomes the result. This behaviour

is consistent with the cache invariant, due to the behaviour of rule JxKw (explained below),

which only evaluates its defining expression with respect to the dimensions already known

by the cache. Then, if any further dimensions are required, these rules pass them back to

the nearest JxKw node.

Rule (6.2) corresponds to the evaluation of constants. They evaluate to the same value

in all contexts and do not interact with the cache in any manner.

Rules (6.3)–(6.6), (6.9)–(6.12) and (6.16) are trivial modifications of their equiva-

lent rules from the denotational semantics. They simply pass on demands for dimensions

resulting from the evaluation of subexpressions.

Rules (6.1) and (6.7), for context queries, is where demands for dimensions are gener-

ated. Any time the context is looked up, the requested dimension must be available in ∆.

If it is not in ∆, then a demand is returned for that dimension.

Rule (6.8), for context perturbations, adds to ∆ any dimensions whose ordinates have

been changed. This is done because any dimension that is changed cannot possibly affect

the value of an identifier being cached further up the tree. The dimension is then added

to ∆ so that if its value is later requested, a demand for it is not generated.

Rules (6.13)–(6.15) are where the interaction with the cache takes place. We will use

a simple example to illustrate how these three rules interact with the cache. Suppose that

we have a variable A with the following definition:

var A = #.d
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Clearly A depends on dimension d. Now, suppose that we request value of A at the context

{d 7→ 4}, then the cache should record that A at {d 7→ 4} is 4. If the evaluator just started

evaluating the body of A in the current context, it would return the value 4 and the cache

would not learn anything. Therefore, it is necessary for the cache to start from scratch to

learn the dimensions relevant to computing A. This is why rule JxKw calls JxK1 with ∅ as

the fourth argument, corresponding to the dimensions known about by the current cache

node. Then, initially, rule JxK1 hands evaluation to JxK2, which tries to find an entry in the

cache. The context here is ∅, and there is no cache entry. So the cache returns calc〈w〉,
indicating that this thread should calculate the value with no context.

It goes ahead and does that, and in this case, will come back with the result that it

needs dimension d. Therefore, the fact that at context ∅, dimension d is required, will

be entered into the cache. Control then returns back to JxK1, and since dimension d is

present in κ, the same process will repeat, but this time with the fourth argument of JxK1

set to {d}, since the cache now knows about d. This time, an answer will be returned,

and the fact that A at {d 7→ 4} is 4 can be entered into the cache.

Control then returns back to JxKw. At this point, we could just return the value, but

then no information about the dimensions used to compute x would be passed back up

to any cache nodes above the current point of evaluation. Instead, we find the value in

the cache, using the original ∆, which holds the dimensions known about by the previous

cache node. If there are not enough dimensions to compute the value, then the cache will

simply return the dimensions required, and the higher-up cache node will have discovered

the relevant dimensions. This back-and-forth between cache nodes allows them to discover

the relevant dimensions for a computation.

The cache invariant is maintained here by rule JxK2, because every time it finds a value

in the cache, and receives back a calc value, it computes that value and enters it into the

cache, ensuring that the find and add operations are paired. If another thread w′ were

to get back a calc value, it would be for the original thread w, and the cache guarantees

that w′ 6≤ w, so w′ would simply wait until the answer comes back from w.

Rule (6.17): The wheredimW clause is similar to the one from Operational TransLucid.

The difference is in how dimensions are allocated. The rule allocates dimensions using

the χ dimensions from Chapter 2, by making a two-element list 〈q, κ(ψq)〉 and the index

of the dimension being allocated, i. Since q is unique, κ(ψq) is the depth of entry into

the current wheredimW clause, and i is a unique index for the dimension being allocated,

χi〈q,κ(ψq)〉 will be a unique dimension for that wheredimW clause, and for the current depth

of recursion. Then, the ψq-ordinate is incremented to evaluate the body E0. When the

current wheredimW clause has not previously been entered into, the ψq-ordinate will be

zero. This has the result that if a wheredimW clause does not recursively use itself,

then the local dimensions allocated will always be the same. Then, evaluating E0 at

{ψq 7→ κ(ψq) + 1} ensures that if a wheredimW clause does recursively use itself, the

dimensions allocated will be the same at each depth.
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6.7 Conclusion

This chapter has presented an effective semantics for the memoisation of TransLucid ex-

pressions, which solves a problem that first appeared in 1985 when the pLucid interpreter

introduced multidimensionality, which was undocumented, due to the lack of a solution to

that problem [43]. Furthermore, experiments have shown that cached evaluation is several

orders of magnitude faster than naive eduction, and despite the change in the allocation

of dimensions, works for all problems presented in this dissertation.

The evaluator presented in this chapter is significant, because it provides an upper

bound on the execution time of programs, given a naive cached evaluator that does not

know anything statically about the program it is running. In addition, it provides a

starting point from which any future models of evaluation can be measured against, both

for correctness and speed, without resorting to the completely naive interpreter, for which

one might wait an incredibly long time for an answer to be returned.

Viewing all computation as storing values in a cache is incredibly useful, because

improved methods of evaluation become a matter of putting bounds on the rank of a

variable, and on the regions that might be demanded. For example, if it is possible to

determine the rank of a variable precisely, which could be only one or two dimensions,

then a fixed array in memory could be used rather than the tree built by the cache. This

array could be a dynamic size if bounds could not be put on the possible regions to be

demanded, but with techniques such as Abstract Interpretation [13], even these bounds

could be determined, and a static array could be used.

Even with simple static analysis, which is not necessarily guaranteed to be complete,

the cache could be used by an implementation that guesses which entries are the most

useful to precompute. Then if those values were never used, no harm would be done, if

they were used, then the implementation might have just saved some time.

Essentially, all static analysis comes down to determining the appropriate structure

with which to cache a variable, and if insufficient information can be decided at compile

time, the current cache model is always there as a fallback.

Despite the significance of the results in producing a cached evaluator, there is still one

problem left unresolved. The allocation of dimensions presented in §6.5.1 is not correct

for all programs, and there is currently no known way to check this whether it is. It would

be advantageous if it were possible to check whether a program could be run by the cache

and produce the correct result. If not, the cached implementation should refuse to run it.



Chapter 7

Type Inference

This chapter presents a type inference algorithm for TransLucid expressions. The key idea

for any static analysis of a TransLucid program, is that the principal type of an object

is itself, which is an idea from a 1977 paper by William W. (Bill) Wadge, “Data Types

as Objects” [40]. The type inference system that is used in this chapter is a subtyping

system with constraints, adapted from the system presented by François Pottier in his

1998 PhD thesis, Type inference in the presence of subtyping: from theory to practice [34].

Additionally, in [35], Pottier adds conditional constraints to the system, which allows

a constraint to be activated based on the type of another object, used for conditional

expressions, which we also adapt to TransLucid, and call guarded constraints.

In our type system, typing requirements are expressed as a system of constraints, where

the constraints are subtyping requirements between the appropriate types. For example,

for a function f , with type τ0
v→ τ1, and expression x, which has type τ2, the function

application f ! x requires that the constraint τ0
v→ τ1 ≤ τ2

v→ α be true, which implies the

two constraints τ2 ≤ τ0 and τ1 ≤ α, where α is the type of the result returned from the

function application. What that set of constraints means is that the input to f , the type

of x, must be a smaller type than the types allowed as inputs to f . Similarly, the type of

the result is allowed to be a greater type than the specified output of f .

In general, to determine if an expression is well-typed, all the constraints implied by

the subexpressions of an expression are gathered together into a constraint graph (§7.3.4),

and if the graph is closed (Definition 46), then the expression is well-typed.

The theory underlying the type system presented in this chapter comes completely

from Pottier’s thesis, along with the addition of conditional constraints. The difference is

in the exact types used and the way in which they are manipulated. Additionally, since

the concept of running context is particular to the TransLucid programming language,

we present a means to infer types for the ordinates of dimensions used in a TransLucid

program (§7.5).

After determining if an expression is well-typed, a constraint graph can have a large

number of constraints, most of which are not useful, as they only contributed to the type

at intermediate stages. So §7.8 onwards presents ways to simplify a constraint graph.

First, we present our ground types (§7.1), which are types with no type variables.

These are the monomorphic types such as intmp for GNU MP integers, ustring for

96



CHAPTER 7. TYPE INFERENCE 97

the Unicode strings, and every atomic object, since the principal type of an object is

itself. Then, we introduce type variables to produce polymorphic types (§7.2). Once the

types are defined, we can build a type scheme (§7.3), which holds all of the information

necessary to describe the type of an expression. Once the type scheme has been described,

we present how to build a type scheme, with the type inference rules, and then describe

the simplifications that can be carried out on a type scheme.

This chapter closes with a presentation of how simplified type schemes are displayed,

and with the complete working-through of several examples.

7.1 Ground types

The ground types are types with no occurrences of type variables. They are built up from

a set of disjoint atomic types. The ground types are atomic objects, atomic types, function

types and bottom and top elements. The whole system takes as input a set T of disjoint

atomic types, meaning that the actual set of atomic types and objects used can change,

and the system will still work. The only requirement is that T contain the type bool,

containing exactly the values bool〈true〉 and bool〈false〉; from now on we write true

and false.

Definition 23. An atomic type is a name t, to which is associated a set Dt of atomic

objects. An element a of Dt is written t〈a〉, meaning atomic value a of type t.

Definition 24. Let T be a set of atomic types {t1, . . . , tn} such that ∀i, j ∈ 1..n, i 6= j ⇒
Dti ∩Dtj = ∅ and 6 ∃i, j ∈ 1..n, ti ∈ Dtj . Then we define DT =

⋃
i∈1..nDti.

In the current interpreter, the atomic types are:

• bool, containing the values true and false;

• uchar, for Unicode characters, where value uchar〈‘c’〉 will be written as ‘c’.

• ustring, for Unicode strings, where value ustring〈“string”〉 will be written as

“string”; and

• intmp, for the GNU mp (arbitrary precision) integers, where values intmp〈1〉,
intmp〈2〉, . . . will be written as 1, 2, . . ..

In our system, we consider an atomic object to itself be a type. We also consider an

explicitly named union of atomic objects and atomic types to be a type. So, the basic

types are the atomic objects, the atomic types, and these unions.

Definition 25. A basic type t is an atomic object, an atomic type, or an arbitrary union

of those:

t ::= t

| t〈a〉
| union

〈
t〈a〉, . . . , t〈a〉, t, . . . , t

〉



CHAPTER 7. TYPE INFERENCE 98

Definition 26. The denotation of a basic type is the set of objects making it up, i.e., a

subset of T = 2T∪DT − {∅}:

denot(t) = Dt

denot
(
t〈a〉

)
=
{
t〈a〉

}
denot

(
union〈t1〈a1〉, . . . , tm〈am〉, t′1, . . . , t′n〉

)
=
{
t1〈a1〉, . . . , tm〈am〉

}
∪
⋃
j=1..nDt′j

The set D of the denotational semantics (Chapter 2) corresponds to the union of the

denotations of the basic types.

We are now ready to define the ground types. These are the basic types, the minimal

bottom (⊥) element, the maximal top (>) element, and the function types, of which there

are three kinds.

Definition 27. The set of ground types, denoted by G (3 g), is defined by the following

grammar:

g ::= t (the basic types)

| ⊥ (the bottom element)

| > (the top element)

| g
v→ g (call-by-value function type)

| (g, ...)
b→ g (base function types, of variable arity)

| ↑g (the intension type)

As we are interested in subtyping, it is necessary to define a subtyping order v over the

ground types. This order includes obvious ones, such as 42 v intmp, but also describes

the way in which functions can be decomposed to make subtypes. The definition is entirely

structural for functions, and is defined in the standard way.

Definition 28. We define a partial order, v, over G, as follows:

∀g ∈ G, ⊥ v g

∀g ∈ G, g v >

t〈a〉 v t′ iff t ≡ t′

t〈a〉 v t′〈a′〉 iff t ≡ t′ ∧ a ≡ a′

t〈a〉 v union〈t1〈a1〉, . . . tm〈am〉, t′1 . . . t′n〉 iff

∃i ∈ 1..m, t〈a〉 ≡ ti〈ai〉 ∨ ∃j ∈ 1..n, t ≡ t′j
t v union〈t1〈a1〉, . . . tm〈am〉, t′1 . . . t′n〉 iff ∃i ∈ 1..n, t ≡ ti

(g1
v→ g0) v (g′1

v→ g′0) iff (g0 v g′0) ∧ (g′1 v g1)

((gj=1..m)
b→m g0) v ((g′j=1..m)

b→m g′0) iff (g0 v g′0) ∧
∧

j=1..m

(g′j v gj).

(↑g) v (↑g′) iff (g v g′)
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7.2 Types

The ground types do not suffice. The process of type inference relies on the ability to

label the type of an expression, so that the type can be constrained by how it is used. For

example, if we have the expression

f ! E

then type inference is effectively saying, “Whatever the type of E is, it should be smaller

than the required input type of f , whatever that is.” There are two potential unknowns

here: the type of f , and the type of E. To link the information about the input of f and

the type of E, the type inference process draws from an infinite supply of type variables.

A type variable can be used to represent any type, and is often constrained either from

below, above, or both.

Due to the fact that we are working with subtyping, and that the ground types have a

partial order, it makes sense to talk about the least upper bound and greatest lower bound

of sets of elements using that order. These are used when an expression can have multiple

types, due to a conditional expression, or when an input parameter is used in multiple

functions. They can be seen as an approximation of a union of types and an intersection

of types, respectively.

Consider the expression

if φx then 1 else 5 fi

In traditional type inference, its type would be something like intmp, as both 1 and 5

are integers. However, we know that the only two possible values that can come from the

expression are 1 and 5, so the most precise type is in fact the set {1, 5}, i.e., the union of

the type 1 and the type 5.

In fact, it is appropriate to say that the output type should include every object that

could be returned, but that more objects could also be included. Ideally, the type would

include the smallest number of extra objects possible. Therefore, we use the least upper

bound to combine two output types, which is an approximation of a union.

The case for function inputs is similar. Consider that a function parameter, φx, is

used as the input to two functions inside the body of the function defining it. If the two

functions work with input types of 1..10 and 5..20 respectively, then the only set of values

that is allowed for both is 5..10. In this case, the allowed set of values that works for

the functions is the biggest set of values that only includes values from both, which is the

greatest lower bound, and an approximation of an intersection.

As a type variable represents any type, it is not possible to compute an actual least

upper bound or greatest lower bound of two type variables. In the case of two ground

types, those should be immediately computable, but when type variables are involved,

it is necessary to hold onto the information that a least upper bound or greatest lower

bound of two type variables, whatever their value may end up as later, is being computed.

Therefore, to the ground types, we add type variables, as well as t for least upper bound

and u for greatest lower bound, to make types.

As the least upper bound can only appear in output types, and the greatest lower
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bound can only appear in input types, it is necessary to split the types into two sets of

types, defined mutual-recursively. The function types are decomposed appropriately—

when a function type is an output, the function’s input is an input type, and its output

is an output type. However, when a function is used as an input, the case is reversed,

and the function’s input is an output type, and its output is an input type. Therefore a

type is either an output type, which we call a pos-type, or an input type, which we call a

neg-type.

This terminology is reused in §7.10, when it will be seen that a type variable can be

marked as negative or positive (or both), meaning that it is used as an input or an output

respectively.

Definition 29. The set V = {α, β, γ, . . . , v, v′, v0, v1, v2, . . .} is an infinite enumerable set

of type variables, which is the set of entities that may be used as variables.

Below, we use characters from the beginning of the Greek alphabet (α, β, γ, etc.) in

specific examples, and the vi form whenever we need a large number of variables.

Definition 30. The grammar for pos-types τ+, neg-types τ−, and types τ is:

τ+ ::= V
| t

| τ+0
v→ τ−1

| (τ+j )
b→ τ−0

| ↑τ+

| τ+ t τ+

τ− ::= V
| t

| τ−0
v→ τ+1

| (τ−j )
b→ τ+0

| ↑τ−

| τ− u τ−

τ ::= τ+

| τ−

The set of pos-types (resp. neg-types, types), is written T+ (resp. T+, T).

It is possible to construct types using t and u which are syntactically different, but

which obviously denote the same type. To remove the ambiguity, we define a set of

equivalences between types so that we can define a canonical form for writing a type.

Definition 31. The equivalences between types are defined in Figure 7.1, where τ is

written instead of τ+, and τ instead of τ−.

Note that the equivalences defined in Figure 7.1 are purely structural, and are com-

pletely independent of the set V of variables and the set T of atomic types. Both t and u
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τ t τ ≡ τ
τ u τ ≡ τ

τ1 t τ2 ≡ τ2 t τ1
τ1 u τ2 ≡ τ2 u τ1

τ1 t (τ2 t τ3) ≡ (τ1 t τ2) t τ3
τ1 u (τ2 u τ3) ≡ (τ1 u τ2) u τ3

⊥ t τ ≡ τ
⊥ u τ ≡ ⊥
> t τ ≡ >
> u τ ≡ τ

(τ1
v→ τ0) t (τ ′1

v→ τ ′0) ≡ (τ1 u τ ′1)
v→ (τ0 t τ ′0)

(τ1
v→ τ0) u (τ ′1

v→ τ ′0) ≡ (τ1 t τ ′1)
v→ (τ0 u τ ′0)(

(τ j=1..m)
b→ τ0

)
t
(
(τ ′j=1..m)

b→ τ ′0
)
≡ (τ j uj τ ′j)

b→ (τ0 t τ ′0)(
(τ j=1..m)

b→ τ0
)
u
(
(τ ′j=1..m)

b→ τ ′0
)
≡ (τ j tj τ ′j)

b→ (τ0 u τ ′0)
(↑τ t ↑τ ′) ≡ ↑(τ t τ ′)

(↑τ) u (↑τ ′) ≡ ↑(τ u τ ′)

Figure 7.1: Type equivalences with respect to t and u.

are idempotent, commutative and associative. For t (resp. u), ⊥ is the 0 (resp. 1) element

and > is the 1 (resp. 0) element. Both t and u distribute over the function types, with

inversion of polarity for the inputs. These equivalences are adapted from those defined by

Pottier in Definition 2.2 of [34, p.27]. The identities are either standard or structural, and

we have simply adapted the structural ones to the TransLucid types.

By interpreting the equivalencies involving >, ⊥ and the functional types, as rewrite

rules towards the right, we can rewrite all types to be trees where the u and t appear

on the leaves, in which variables and atomic types appear as arguments. For the types

that we build in this paper, if a variable is an argument of a u or t, then so are the other

arguments. Furthermore, since t and u are both commutative and associative, we can

write t{α, β, γ} instead of α t β t γ (similarly for u). For a set of variables V ⊂ V, we

can write tV or uV .

The t and u operators are not defined above for arguments of the form t. Suppose

we have t t τ , for some t. There are three possibilities:

1. τ is a variable. Because of the aforementioned construction restriction, this is not

possible and so we do not define it.

2. τ is a function type. An example would be 5 t (intmp
v→ ustring). We could

imagine producing a union type combining the two, but we do not consider this

to be the right decision. In all such cases, the result is >, and the corresponding

definition for u is ⊥.
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3. τ is itself of the form t. Then the rules are in Figure 7.2.

Note that the rules in Figure 7.2 can be added to, depending on the intermediate types

that we wish to consider important. For example, we could add rules for ranges so that,

for example, 5 t 10 would be the range 5..10. This flexibility is the second input to the

type inference system, alongside the choice of set T of atomic types. It is important to

note here that Pottier’s system did not include basic types, but, rather, left them as a

parameterisation of the system, described in §14.1 and §14.2 of [34, pp.143–5]. Here we

have simply made these choices explicit.

t1〈a1〉 t t2〈a2〉 ≡


t1〈a1〉 t1 ≡ t2 ∧ a1 ≡ a2
t1 t1 ≡ t2
> otherwise

t1〈a1〉 u t2〈a2〉 ≡

{
a1 t1 ≡ t2 ∧ a1 ≡ a2
⊥ otherwise

t t t〈a〉 ≡ t
t u t〈a〉 ≡ t〈a〉

t t t′ ≡

{
t t ≡ t′

> otherwise

t u t′ ≡

{
t t ≡ t′

⊥ otherwise

t t union〈ti〈ai〉, . . . , tj , . . . 〉 ≡

{
union〈ti〈ai〉, . . . , tj , . . . 〉 ∃j s.t. tj ≡ t
union〈ti〈ai〉, . . . , t, tj , . . . 〉 otherwise

t u union〈ti〈ai〉, . . . , tj , . . . 〉 ≡


t ∃j s.t. t ≡ tj
union〈{ti〈ai〉 | ti ≡ t}〉
∅ otherwise

t〈a〉 t union〈ti〈ai〉, . . . , tj , . . . 〉 ≡


union〈ti〈ai〉, . . . , tj , . . . 〉 ∃i s.t. ti〈ai〉 ≡ t〈a〉
union〈ti〈ai〉, . . . , tj , . . . 〉 ∃j s.t. tj ≡ t
union〈t〈a〉, ti〈ai〉, . . . , tj , . . . 〉 otherwise

t〈a〉 u union〈ti〈ai〉, . . . , tj , . . . 〉 ≡

{
t〈a〉 ∃i s.t. ti〈ai〉 ≡ t〈a〉
∅ otherwise

Figure 7.2: t and u equivalences for basic types

Definition 32. The canonical form of a type is defined by pushing the u and t terms as

deep as possible in the syntax tree defining that type, modulo associativity and commuta-

tivity. This corresponds with always replacing the left-hand sides of Figures 7.1 and 7.2

with the corresponding form on the right-hand side.

We extend the order v to the types, by taking advantage of the properties of t and

u. By observing that α t (α t β) is equal to α t β, we see that the type α is “already

included” in the type αtβ, and therefore conclude that the type αtβ contains a superset
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of the information which type α contains. Therefore, we can state that α is a subtype of

α t β.

Definition 33. We define the order v∗, an extension over types of the order v.

• ∀τ, τ ′, τ v τ ′ =⇒ τ v∗ τ ′

• τ+0 v∗ τ
+
1 iff τ+0 t τ

+
1 ≡ τ

+
1

• τ−0 v∗ τ
−
1 iff τ−0 u τ

−
1 ≡ τ

−
1

We simply use v from now on.

When we later define guarded constraints, a constraint is added to the system only

after the lower bound of another type variable is in the type class specified by the guarded

constraint. The types are split into sets of type classes, where each basic type defines its

own type class and each functional type has a type class. Then we define a type class

selector, which will later be used as the guard of a guarded constraint.

Definition 34. We define the type classes S as S =
{

[t] | t ∈ t
}
∪
{

[
v→], [↑]

}
∪
⋃
m[

b→m].

Definition 35. A type class selector is a pair of a variable τ and a type class s ∈ S,

written τ ∈ s. Note that the symbol ∈ is in bold face, to differentiate the relation for being

in a type class, and is defined as follows:

∀t ∈ t, t ∈ [t]

∀t〈a〉, t〈a〉 ∈ [t]

t ∈ union
〈
ti〈ai〉, . . . , tj , . . .

〉
, if ∃j s.t. t ≡ tj

t〈a〉 ∈ union
〈
ti〈ai〉, . . . , tj , . . .

〉
, if ∃i s.t. t〈a〉 ≡ ti〈ai〉 ∨ ∃j s.t. t ≡ tj

∀τ, τ ′, (τ v→ τ ′) ∈ [
v→]

∀τ, (↑τ) ∈ [↑]

∀τ0, τm=1..j ,
(
(τm)

b→ τ0
)
∈ [

b→m]

The type inference algorithm supposes a certain structure on types, which is that their

height is at most one.

Definition 36. The function height(τ) defines the height of a type, and is defined as

follows:

height(v) = 0

height(t) = 0

height(τ
v→ τ ′) = max

(
height(τ), height(τ ′)

)
+ 1

height(τ
b→ τ ′) = max

(
height(τ), height(τ ′)

)
+ 1

height(↑τ) = height(τ) + 1

height(τ t τ ′) = max
(
height(τ), height(τ ′)

)
+ 1

height(τ u τ ′) = max
(
height(τ), height(τ ′)

)
+ 1
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Definition 37. Let τ be a type, then τ is a minimal-height type iff height(τ) ≤ 1.

7.3 The type scheme

This section describes a type scheme, which is made up of a type context, specifying the

required types of the free parameters to an expression; the type of the expression; and a

constraint graph, which links the two together, through a set of constraints defined below.

Consider the function plusone = λvφa → φa + 1, whose type we wish to determine.

Doing so consists of determining two things: 1) the largest possible set of values that can

be used as an input, i.e., the parameter φa, so that the function “works”; and 2) the set of

values that could be output from this function. Both will generally be an approximation,

but what is important is that for the inputs, we only include values that work, and for the

outputs, we include at least the values that will be output. For example, for the absolute

value function, it can take as input real numbers, and outputs real numbers. A better type

would be that it takes as input real numbers and outputs positive real numbers. Another

valid type is that it takes as input integers and outputs the natural numbers.

In order to determine the type of the function plusone, we traverse its parse tree, and

generate type information from each subexpression. The first relevant subexpression that

we reach is φa, i.e., an access of a function parameter. At this point, we do not know its

type, so we allocate a new type variable for it, say α, and record in the type context that

its type is α.

As an aside, it is necessary now to state that type variables are allowed to represent

an input or an output, but not both. This is in order for simplifications presented later to

work.

Returning to the example, the type α of φa is its input type. We need another type

variable for its output type, say β. We then link the two type variables together with

a constraint, (α ≤ β), and the type of expression φa is therefore β, along with the type

context {φa 7→ α} and the constraint (α ≤ β).

Here, we will state without justification that the type of the function “+” is intmp
v→

intmp
v→ intmp. In other words, it is a call-by-value function that takes as input two

objects of at most type intmp, and outputs only an object of type intmp.

The next subexpression that we reach is the application of “+” to φa. What we require

is that the type of the actual input to “+”, i.e., the type of φa, is a smaller type than

the required input, which is intmp. The way we do that is by generating the constraint

(intmp
v→ intmp

v→ intmp ≤ β
v→ γ). This constraint is then decomposed into two

constraints, (β ≤ intmp) and (intmp
v→ intmp ≤ γ). Because we have the constraint

(α ≤ β), the existing constraint on β is transferred to α, so we also get the constraint

(α ≤ intmp).

This process is then repeated for the application to the value 1. The result is another

constraint (intmp
v→ intmp ≤ 1

v→ δ), which is decomposed into the two constraints

(intmp ≤ δ) and (1 ≤ intmp). The latter is trivially true. The type of the result of the

final application is therefore δ.
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This leaves us with the function abstraction. The type of its body is δ, along with

all of the previously mentioned constraints and type context. The type of φa is pulled

out of the type context, which is α, and therefore the type of the abstraction is α
v→ δ,

along with all of the above constraints, and an empty type context, since the parameter

is removed.

To recap, the type is α
v→ δ, along with an empty type context and the constraints

below, which together make up the type scheme.

α ≤ intmp

α ≤ β

β ≤ intmp

intmp
v→ intmp ≤ γ

intmp ≤ δ

1 ≤ intmp

At this point we can also give an intuition into garbage collection, presented in §7.10.

It can be seen quite trivially that the only type variables that are reachable in the above

constraint set are α and δ, therefore we can remove the others. The resulting type is

simply α
v→ δ with the constraints:

α ≤ intmp

intmp ≤ δ

Lastly, this type can be displayed to the user in a much more friendly way. As α is

an input, and it only has one upper bound, it can be replaced with that upper bound.

Likewise for δ and its lower bound, since it is an output. Therefore, we can display to the

user that the type of plusone is intmp
v→ intmp.

7.3.1 Type contexts

A type context represents the types that are required by the usage of an identifier or a

function parameter, alternatively, the type of any inputs as required by their usage in the

expression. In addition, the TransLucid context information is stored in a type context.

There are four parts to a type context:

1. a mapping from identifiers to the type required by their usage;

2. a mapping from φ dimensions (function parameters) to the type required by their

usage;

3. a mapping from constants, which are known dimensions, to both their lower and

upper bounds, as set by context changes, and as required by their respective usage;

and

4. a mapping from φ dimensions, whose values are used as dimensions, to a triple of a

type variable representing their actual type, the lower and upper bounds, which are

the same as for the previous item.



CHAPTER 7. TYPE INFERENCE 106

Definition 38. Let X be a set of identifiers and Dφ be a set of hidden dimensions, then

a type context is a 4-tuple of functions K = (Kx,Kλ,Kc,Kφ), defined as follows:

Kx : X � T−

Kλ : Dφ� T−

Kd : D� (T+,T−)

Kφ : Dφ� (T+,T+,T−)

We define a join operator to join together type contexts. This is used in the type

inference algorithm when an expression has multiple subexpressions, and the resulting

type contexts must be joined to make one type context. When the domains of the two

type contexts do not overlap, then this is simply function perturbation. When they do

overlap, any pos-types must be combined with t, and any neg-types must be combined

with u.

Definition 39. Let K and K ′ be type contexts, then the generalised meet, K uK ′, of the

two type contexts is defined as below:

(
K uK ′

)
(v) =

(
Kx uK ′x,Kλ uK ′λ,Kc uK ′c,Kφ uK ′φ

)
(
Ki∈{x,λ,d,φ} uK ′i

)
(v) =

Ki(v) v ∈ dom Ki ∧ v 6∈ dom K ′i

K ′i(v) v 6∈ dom Ki ∧ v ∈ dom K ′i(
Kx uK ′x

)
(x) = Kx(x) uK ′x(x)(

Kλ uK ′λ
)
(φx) = Kx(φx) uK ′x(φx)(

Kd uK ′d
)
(d) = (τ0 t τ ′0, τ1 u τ ′1), Kd(v) = (τ0, τ1) ∧K ′d(v) = (τ ′0, τ

′
1)(

Kφ uK ′φ
)
(φx) = (τ0 t τ ′0, τ1 t τ ′1, τ2 u τ ′2),

Kφ(φx) = (τ0, τ1, τ2) ∧K ′φ(φx) = (τ ′0, τ
′
1, τ
′
2)

Here our type context is adapted from the one presented by Pottier in Definition 4.1

of [34, p.42]. Pottier’s type context has two components, which correspond to our Kx

and Kλ. We have adapted ours to have four components, as appropriate for TransLucid.

7.3.2 Constraints

A constraint is a pair τ ≤ τ ′ of two types, which specifies that the left-hand type must be

a subset of or equal to the right-hand type. A constraint expresses the desire that τ v τ ′

be true. If a constraint appears in the system for which this is not true, then the relevant

expression has a type error; this situation occurs when the function subc (Definition 42)

is not defined for its input.

Definition 40. A constraint is a pair of a pos-type τ+ ∈ T+ and a neg-type τ− ∈ T−,

written τ+ ≤ τ−.

As will be described shortly, constraints are stored in a constraint graph, which is

maintained as a closed graph at all times. A consequence of keeping the graph closed is that
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subc(tS ≤ τ ′) =
⋃
τ∈S

subc(τ ≤ τ ′)

subc(τ ≤ uS) =
⋃
τ ′∈S

subc(τ ≤ τ ′)

subc(c) = {c} if c is elementary

subc
(
t〈a〉 ≤ t〈a〉

)
= ∅

subc
(
t〈a〉 ≤ t

)
= ∅

subc(t ≤ t) = ∅
subc

(
t ≤ union〈t, . . . 〉

)
= ∅

subc
(
t〈a〉 ≤ union〈t, . . . 〉

)
= ∅

subc
(
t〈a〉 ≤ union〈t〈a〉, . . . 〉

)
= ∅

subc(⊥ ≤ τ) = ∅
subc(τ ≤ >) = ∅

subc
(
(τ0

v→ τ1) ≤ (τ ′0
v→ τ ′1)

)
= subc(τ ′0 ≤ τ0) ∪ subc(τ1 ≤ τ ′1)

subc
(
((τj=1..n)

b→ τ0) ≤ ((τ ′j)
b→ τ ′0)

)
= subc(τ0 ≤ τ ′0) ∪

⋃
j

subc(τ ′j ≤ τj)

subc(↑τ ≤ ↑τ ′) = subc(τ ≤ τ ′)

Figure 7.3: The function subc.

if any constraint implies any other constraint, then those other constraints are also stored

in the graph. For that reason, it is necessary to define how constraints are decomposed

into what we call elementary constraints. For example, the constraint τ0
v→ τ1 ≤ τ ′0

v→ τ ′1
implies the set of elementary constraints {τ ′0 ≤ τ0, τ1 ≤ τ ′1}.

Definition 41. A constraint τ ≤ τ ′ is elementary iff the following conditions are met:

• neither τ nor τ ′ are of the form uV or tV ;

• at least one of {τ, τ ′} is a type variable.

Note that there is a special case for u and t; they are special objects used to en-

code greatest-lower-bounds and least-upper-bounds of type variables. So the constraint

t{α, β} ≤ γ is not elementary—it can be broken into the set of elementary constraints

{α ≤ γ, β ≤ γ}. Both Definitions 40 and 41 correspond exactly to those presented in

Definitions 3.1 and 3.4 of [34, pp.36–7].

Definition 42. The rules given in Figure 7.3, whose order is important, define the func-

tion subc, which decomposes any solvable constraint into a set of elementary constraints.

As subc is used in the constraint closure algorithm, if the input is not in its domain, then

that indicates a type error.

The function subc is presented by Pottier as Proposition 3.1 in [34, p.37]. We have

simply adapted the definition to the types of TransLucid.
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7.3.3 Guarded constraints

Here we extend Pottier’s presentation of conditional constraints presented in [35] to

TransLucid, and rename it to guarded constraints. Guarded constraints are an exten-

sion to type inference with subtyping, which allow a constraint to be dependent on some

other type.

More specifically, guarded constraints allow a more refined type for conditional expres-

sions. One way to handle conditional expressions would be to require that the condition

have a type smaller than Boolean, and for the type of the conditional to be the common

lower bound of the branches. With guarded constraints, if we know that the condition is

always true, then the conditional only has the type of the true branch, the case is similar

if the condition is always false. If the best that we can infer is Boolean for the type of the

condition, then we would still use the common lower bound as before.

It is important to notice here that the principal type of an object being itself is nec-

essary for guarded constraints to be useful. The implication is that an expression can

have type true or false, rather than bool. If the type of the condition in a conditional

expression could only ever be bool, then guarded constraints would be a complete waste

of time.

Definition 43. A guarded constraint is a pair of a type class selector (τ ∈ s), and a

constraint (τ1 ≤ τ2), written

(
τ∈s

τ1 ≤ τ2
)

.

The guarded constraint encodes that if τ is in the type class s, then the constraint

τ1 ≤ τ2 is also implied.

The reason for using type classes, rather than a complete type, is that a complete type

may have type variables in it. As a result, it is impossible to decide whether one type

is smaller than another. The solution is to use the type class instead, as it provides an

obvious means to determine the condition of the constraint.

As an example of the use of the guarded constraint, consider the following expression:

λva→ if a then 42 else “hello world” fi

Then the type of the expression would be v0
v→ v1, with the following constraints:

42 ≤ v2
“hello world” ≤ v3
v0 ≤ bool

along with the two guarded constraints:(
v0∈true
v2 ≤ v1

)
(
v0∈false
v3 ≤ v1

)
Here, v0 is for the type of the input parameter a, v1 is for the type of the whole conditional

expression, v2 is for the type 42, and v3 is for the type “hello world”. The effect is that if
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the input type is known to be true, then the type of the function will be 42; and if the

input type is known to be false, then the type will be “hello world”. If the input type is

not known that precisely, i.e., it is bool, then both guarded constraints will be valid, and

the type will be 42 t “hello world”.

7.3.4 Constraint graph

Definition 44. A constraint graph G = (VG,≤G), of domain V ⊆ V, is a vertex- and

edge-labelled directed graph. Each vertex label is a type interval, which consists of a lower

bound, which is a pos-type, written G↓(v), and an upper bound, which is a neg-type, written

G↑(v), whose free variables are in V . The edges, ≤G, are labelled with type class selectors,

labelled edges are written as
s∈α

v ≤G v′, and unlabelled edges are written as v ≤G v′.

Here we have defined our constraint graph slightly differently to Pottier. His paper

on conditional constraints does not even define a graph, rather, it talks about a set of

constraints. The criteria we have defined for closure below is still consistent with Pottier’s,

whether a graph or a set of constraints is used. Our graph differs cosmetically in that we

have labelled both vertices and edges, but nevertheless, the two are equivalent.

The following two definitions are about the closure of a graph. If a constraint graph is

closed, then it has a solution, otherwise it does not. If the constraint graph generated by

the type inference rules for a program is closed, then the program is well typed. The first

definition is for the closure of a graph, the second an algorithm for computing the closure.

Definition 45. Let G be a constraint graph of domain V . Then G is closed iff

∀α, β, γ ∈ V, (α≤G β) ∧ (β ≤G γ) =⇒ (α≤G γ)

∀α, β ∈ V s.t. (α≤G β), G↓(β) v∗ G↓(α) ∧G↑(α) v∗ G↑(β)

∀α ∈ V, subc(G↓(α) ≤ G↑(α)) is defined

(α≤G β) ∧
(

β∈s
γ ≤G δ

)
=⇒

(
α∈s

γ ≤G δ
)

(
γ∈s

α ≤G β
)
∧G↓(γ) ∈ s =⇒ (α≤G β)

The first three points of this definition correspond to Pottier’s definition of closure

presented in Definition 3.10 of [34, p.40], the addition of the last two points corresponds

to Definition 14 of [35, p. 4].

Definition 46. Let G = (VG,≤G) be a constraint graph, C be a set of constraints of the

form α ≤ β, α ≤ τ or τ ≤ β, where α and β are type variables, and τ is a minimal-height

type. The closure algorithm described below maintains the transitive closure of G, after

adding all of the constraints in C. If the set of constraints in G and C has no solution,

then the function subc will fail because at least one input from the closure computation

will not be in its domain.

The algorithm produces a stream of pairs of constraint graphs and sets of constraints

(Gi, Ci), where G0 = G, C0 = C, and cases for i ≥ 1 are described below. The algorithm

terminates with the result being Gi for the first Ci that is empty.
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Pick some constraint ci in Ci, then C ′i = Ci \ {ci}. The set C?
i is a set of constraints

generated by conditional constraints at each step, and B′i is a set of variables that each

received a new lower bound at each step.

There are three cases, depending on the structure of the constraint ci:

• ci is of the form α ≤ β. If α≤Gi β, then (Gi+1, Ci+1) = (Gi, C
′
i), as there is nothing

further to do. Otherwise, Gi+1 and Ci+1 are defined as follows:

B′i = {β′ | β ≤G β′}

≤Gi+1 = ≤Gi ∪
{
α′ ≤ β′ | α′ ≤Gi α ∧ β′ ∈ B′i

}
∪
{(

α∈s
γ ≤ δ

) ∣∣ ( β∈s
γ ≤Gi δ

)}

G↓i+1(β
′) =

G
↓
i (β
′) tG↓i (α), β′ ∈ B′i

G↓i+1(β
′) = G↓i (β

′), otherwise

G↑i+1(α
′) =

G
↑
i (α
′) uG↑i (β), α′ ∈ {v | v ≤Gi α}

G↑i (α
′), otherwise

C?
i =

{
γ ≤ δ

∣∣∣ ( β′∈s
γ ≤Gi δ

)
∧ β′ ∈ B′i ∧G

↓
i+1(β

′) ∈ s

}
Ci+1 = C ′i ∪ C?

i ∪ subc(G↓i (α) ≤ G↑i (β))

• c is of the form α ≤ τ . If τ v G↑i (α), then (Gi+1, Ci+1) = (Gi, C
′
i). Otherwise Gi+1

and Ci+1 are defined as follows:

≤Gi+1 = ≤Gi
G↓i+1 = G↓i

G↑i+1(α
′) =

G
↑
i (α
′) u τ, α′ ≤Gi α

G↑i (α
′), otherwise

Ci+1 = C ′i ∪ subc(G↓i (α) ≤ τ)

• c is of the form τ ≤ β. If τ v G↓i (β), then (Gi+1, Ci+1) = (Gi, C
′
i). Otherwise, Gi+1

and Ci+1 are defined as follows:

B′i = {β | β ≤Gi β′}

≤Gi+1 = ≤Gi

G↓i+1(β
′) =

G
↓
i (β
′) t τ, β′ ∈ B′i

G↓i (β
′), otherwise

G↑i+1 = G↑i

C?
i =

{
γ ≤ δ

∣∣∣ ( β′∈s
γ ≤Gi δ

)
∧ β′ ∈ B′i ∧G

↓
i+1(β

′) ∈ s
}

Ci+1 = C ′i ∪ C?
i ∪ subc(τ ≤ G↑i (v1))
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In understanding the above algorithm, it is useful to remember that the less-than

relation in a constraint graph is reflexive, meaning that for all constraint graphs G =

(V,≤G), ∀α ∈ V, α≤G α.

This algorithm is presented in Definition 7.1 of [34, p.74], without conditional con-

straints. Here we have presented the algorithm in an iterative manner, and taken into

account guarded constraints.

Finally, we present two operators over constraint graphs, the union and the closure.

Definition 47. The union of two constraint graphs G0 = (VG0 ,≤G0) and G1 = (VG1 ,≤G1)

can be taken when VG0 ∩ VG1 = ∅, and is defined as follows:

G0 ∪G1 = (VG0 ∪ VG1 ,≤G0 ∪ ≤G1)

Definition 48. The closure of a constraint graph is written using the + operator, where

G+ c denotes adding the constraint set {c} to the graph G using the incremental closure

computation in Definition 46.

Notation

Here we introduce the notation we use to write down a constraint graph in some of the

examples presented later in this chapter. Here is an example constraint graph:

v1 ≤ v2

intmp v1 ≤ v2

v4 ≤ v3 ≤ v5, v6 (v1
v→ v2)

v4 ≤ v3, v5, v6 (v1
v→ v2)

v4 ≤ v5

v4 ≤ v6

Here we have six variables, each with some constraints. Each variable appears once in the

center column, with its lower bounds to the left and its upper bounds to the right. We

separate visually the bounds which are not simply variables. Here the variable v1 only

has the constraint v1 ≤ v2, whilst v2 also has a lower bound intmp. The variable v3 has

v4 less than it, and v5 and v6 greater than, along with the upper bound (v1
v→ v2). The

variable v4 must have the same upper bound as v3 for the graph to be closed, along with

the same variables that are greater than it. Then v5 and v6 are also written down with v4

as less than both.

7.3.5 Building a type scheme

The type of an expression is not a simple type, but a type scheme, which is a tuple of a

type context, a type and a constraint graph.

Definition 49. A type scheme is a triple σ = (Kσ, τ
+
σ , Gσ), normally written as

Kσ ⇒ τ+σ |Gσ
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and read as the pos-type τ+σ such that the constraints Gσ hold given the inputs required by

the type context Kσ.

Note that a type scheme is implicitly universally quantified over all type variables—

there is no explicit for-all quantifier in our type grammar. A consequence of this is that

the so called let-polymorphism is handled by renaming all of the type variables in the type

scheme for a particular identifier.

Definition 50. The function (σ′, V ′) = rename(σ, V ) takes as input a type scheme and a

set of variables (σ, V ), and returns a type scheme and a set of variables (σ′, V ′) such that

V ′ ⊆ V ∧ FV (σ) ∩ FV (σ′) = ∅ ∧ FV (σ′) ∩ V ′ = ∅.

7.4 Constraint generation

The process of type inference consists of traversing an expression tree and generating

constraints, whilst simultaneously keeping the constraint graph of all those constraints

closed. If this succeeds, then the result is the most general type of the expression whose

type is being inferred. The rules presented below can be used in a syntax directed way to

infer the type of an expression.

Definition 51. A type environment is a mapping ζτ , from TransLucid identifiers X to

type schemes ζτ :

ζτ : X � σ

Definition 52. Given an expression E, an interpretation ι, and a type environment ζτ ,

where FV (E) ⊆ dom ζτ , such that σi = ζτ (xi) is the most general type of the expression

defining variable xi, then the most general type of E is determined by evaluating the

following:

ι, ζτ
τ
` E : K ⇒ τ |G

meaning that E has the type τ such that the constraints in G are satisfied, under the type

context K.

When composing constraints, the rules make use of two distinct operations. One is the

union of two constraint graphs (∪), and the other is adding to the closure of a constraint

graph (+). When the union of two constraint graphs can be taken, it is because those

constraint graphs have come from two separate syntax trees, which by definition share no

type variables, so the union is already a closed graph. When we use the + symbol with

a constraint graph G and a constraint c, we are running the closure algorithm with the

input (G, {c}). Even in constructing a graph with a single constraint, it is necessary to

write ∅+α ≤ β, because the closure computation must construct a graph G, with an edge

α≤G β.

7.5 The TransLucid context

The computation of the general type of an expression E, as defined in Definition 52,

assumes a type context K. According to Definition 38 (§5.1), K is a four-tuple of the form
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(Kx,Kφ,Kd,Kφ), where Kd : D � (T+,T−) maps a constant c—used as dimension—to

the range of ordinates that c can take on as dimension.

However, the rank of an expression E, i.e., the set of dimensions relevant to the evalua-

tion of E, cannot in general be computed statically. When the general type of an expression

is of the form #.E0, the problem is that, in theory, E0 can evaluate to any value to be used

as dimension. A similar case applies to E′0 in an expression of the form E0 @ [E′0 ← E′1].

As a result, the Kd component of K cannot in general be properly determined.

To resolve this problem correctly would require having an abstract interpreter built

in to the type inference algorithm to determine the possible values of E0 and E′0 in the

above expressions. We do not exclude this possibility in future work, but for now, we will

only type expressions in which such expressions lead to a constant or an input parameter

as dimension.

The rules therefore use a function, “unique bound pos”, in order to determine that the

type of an expression is a constant type. The rules use “unique bound pos” where a type

variable is positive; we will define the polarity, both positive and negative, of a variable

in §7.10.

Definition 53. Given a constraint graph G, the unique bound of a positive type variable

v is given by the function unique bound pos(v,G)

unique bound pos(v,G) =

v′, G↓(v) ≡ ⊥ and v′ is the unique v′ s.t. v′ ≤G v

τ, G↓(v) ≡ τ and there is no v′ s.t. v′ ≤G v

When unique bound pos is not defined, the positive type variable v does not have a unique

bound.

To determine which dimension is being used in a context change or query, we consider

three specific cases: 1) a dimension in a context change or context query is an atomic

value, which corresponds to the type of E0 or E′0 above having a unique bound, 2) a

dimension in a context change or context query is passed as a parameter to a function,

and 3) a dimension is a local dimension declared in a wheredim clause.

As well as inferring the actual dimensions used in a program, it is necessary to deter-

mine a type for the ordinate of each dimension. Type information for the ordinate of a

dimension d can come from two places: 1) the way in which an ordinate is used after a

context lookup, #.d, which provides an upper bound for the ordinate of d, and 2) a context

change, E0 @ [d← E′1], which provides a lower bound for the ordinate of dimension d. For

a TransLucid context to be well-typed, it is necessary that the lower bounds provided by

context changes be consistent with the upper bounds required by the usage of an ordinate.

Inferring the type of an ordinate of a dimension in the TransLucid context is made

difficult by the fact that dimensions are dynamically bound, which means that the ordinate

of a dimension could come from any context change in a program.

To see the solution to determining the type of each ordinate, we can look at the scope

in which an ordinate can be used, so that we can see what the appropriate lower and upper

bounds for that ordinate are.
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First we will consider the type of a function parameter, since an ordinate is like a

function parameter, but used in a slightly different way. Inside a function, an input

parameter will potentially be used in a number of ways, each providing an upper bound

on the type allowed for the parameter. The final type for the input parameter is the

greatest lower bound of all those upper bounds. The scope for a function parameter is

inside the function, which is why we take the greatest lower bound of all the upper bounds

of the parameter as used inside the function, which is anywhere that it can be used in its

scope.

We do the same thing for ordinates of dimensions. The difference is that the scope of a

dimension is the entire program, so we need to take the greatest lower bound τu, of all the

upper bounds of a dimension as required by the entire program. The lower bound of the

ordinate of a dimension is set in a similar way to the lower bound of a function parameter,

except that rather than being set by a function application, the ordinate of a dimension is

set by every context change in the whole program that modifies that dimension. So for a

dimension d, we take the least upper bound, τl, of the lower bound of all the expressions

that set the ordinate of d. Finally, we add the set of constraints “subc(τl ≤ τu)” to our

constraint graph.

7.5.1 Atomic values

Firstly, we will consider an atomic value c being used as a dimension. There are two

places in which c can be used, a context lookup and a context change, each providing,

respectively, an upper bound and a lower bound for the ordinate of that dimension.

Let us consider a program in which the following three expressions appear:

#.0× 5

E0 @ [0← 1]

E1 @ [0← #.0 + 1]

The two # subexpressions are used in such a way that the ordinate of dimension 0

has an upper bound of intmp—both the addition and multiplication functions require

their inputs to be a smaller type than intmp. As a result, we have an upper bound for

the ordinate of dimension 0: intmp u intmp, which is intmp. For the @ expressions,

the ordinate of dimension 0 is initialised with an expression whose type is 1 and intmp

respectively. Therefore, the lower bound for the ordinate of dimension 0 is 1 t intmp,

which is intmp.

For a program in which the above three expressions are the only occurences of dimen-

sion 0 being accessed, we can therefore infer that both the lower and upper bounds for

the ordinate of dimension 0 are intmp.

All of the above is trivial, as it is the same as the way in which function parameters

are handled. The difficulty is in determining, in general, what the dimension is—since it

can be computed dynamically, it is undecidable by the type checker—we require here that

the dimension be computable in the rules. For the above example, consider the expression
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‘#.0’. The type of expression ‘0’ is a type variable α, with the constraint graph (0 ≤ α).

As the type variable α has the lower bound 0, with no type variables smaller than it, we

say that the unique bound of α is 0. It is because the unique bound is defined that we

can say that we are looking up dimension 0 in the context. The case for a context change

expression is identical.

7.5.2 Dimensions as parameters

Second, we will consider the case when a dimension is passed as a function parameter.

As described above, a dimension must be an atomic value. However, when the body of a

function is being analysed, we do not know what its actual parameters are, so we cannot

assign the use of a dimension to a specific atomic value. As a result, we must also keep

track of dimensions that are passed as function parameters, and then assign them to the

actual dimension once it is known.

Consider a function λφd → E0, whose body E0 contains the expression ‘#.φd’, i.e.

an expression looking up in the context the dimension passed as parameter φd. When

checking the type of this expression, we do not know which dimension is being accessed,

because it will be passed as a parameter when the function is applied. This expression

violates the previous condition that the type of a dimension be known, but we cannot

exclude it, since one of the core concepts of TransLucid is that dimensions can be passed

around.

The solution then is to look for expressions that are consistent with looking up a

dimension passed as a parameter. A parameter is the expression φx, and a context lookup

is #.E, so we need a rule for #.φx. The rule is similar to the one for context lookup with an

atomic value as dimension. The main difference is that we must also keep around the type

variable that will eventually have as its lower bound the type of the actual dimension.

Then, whenever the function whose parameter is used as a dimension is applied, the

lower bound of that parameter will be set by the application, and as long as that lower

bound is an atomic value, then this case degenerates into the case when a dimension is an

atomic value.

7.5.3 The wheredim clause

Third, we consider a dimension declared in a wheredim clause. A dimension declared in

a wheredim clause is treated almost the same as in the first case, for an atomic value; in

fact, the value used for a local dimension is an atomic value, it is just a special hidden

value that can only be accessed through a local dimension identifier. The solution then is

quite similar to the first case. The differences are that a wheredim clause can initialise its

dimension, which acts like a context change, and since the scope of a local dimension is

inside its defining wheredim clause, that wheredim clause combines the lower and upper

bounds for its dimensions in the same way as is done for atomic values at the whole

program scope.
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7.6 Abstract syntax

The abstract syntax that we use for type inference is the syntax used by the operational

semantics, presented in Chapter 5, with some restrictions. These restrictions are as follows:

1. As for Chapter 6, all uses of the context must be an immediate lookup of a dimen-

sion, or the lookup of a dimension passed as parameter, i.e., that # only appear in

expressions of the form #.E, or #.φx.

2. All context changes must have as their right-hand side an explicit tuple builder

expression, i.e., that @ only appear in expressions of the form E @ [E ← E, . . .].

The actual structure of wherevar clauses manipulated by the implementation is more

complicated than what is presented here. The implementation carries out substantial

syntactic-level manipulation to reorganise systems of equations into strongly connected

components. This is done so that groups of mutually recursive variables have their most

general types correctly inferred. Nevertheless, the rules presented below apply regardless

of the structure of wherevar clauses, and are what is relevant to this chapter. But it is

noted that for the best types to be inferred, this restructuring should be carried out.

7.7 The rules

The rules presented below are in the form of structural operational semantics. They

provide a syntax-directed mechanism by which to infer the type of an expression. The

rules are of the form:
p

ι, ζτ
τ
` E : K ⇒ τ |G

The symbol p above the line stands for all of the predicates and a set of variable bindings.

When the set of predicates in p are true, and the expression whose type is being inferred

matches the form of E, then that rule is applicable. When the rule is applicable, we

can say that E has the type K ⇒ τ |G. By convention, for each rule, we explicitly

define K, τ , and G. To avoid the rules becoming too messy, we do not write down

an implicit V component, which is used to allocate type variables. Whenever any of α, β,

γ, δ or ε appears free in a rule, a new type variable is being taken from the set V . When

subexpressions E0, E1, . . . are being typed, the set V needs to be split into V0, V1, . . . in

such a way that the Vi are always infinite.

G = ∅+
(
ι(mc) ≤ α

)
τ = α

K = (∅, ∅, ∅, ∅)

ι, ζτ
τ
` mc : K ⇒ τ |G

(7.1)
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G = ∅+ (α ≤ β)

τ = β

K =
(
∅, {φx 7→ α}, ∅, ∅

)
ι, ζτ

τ
` φx : K ⇒ τ |G

(7.2)

G = ∅+ (α ≤ β) + (δ ≤ ε)

τ = ε

K =
(
∅, {φx 7→ α}, ∅, {φx 7→ (β, γ, δ)}

)
ι, ζτ

τ
` #.φx : K ⇒ τ |G

(7.3)

ι, ζτ
τ
` E0 : K0 ⇒ τ0|G0

unique bound pos(τ0, G0) : c

G = G0 + (β ≤ α)

τ = α

K = K0 u
(
∅, ∅, {c 7→ (α, β)}, ∅

)
ι, ζτ

τ
` #.E0 : K ⇒ τ |G

(7.4)

ι, ζτ
τ
` E0 : K0 ⇒ τ0|G0

ι, ζτ
τ
` Ei : Ki ⇒ τi|Gi

K0λ(φxj ) : τj

G =
(
G0 ∪

⋃
iGi
)

+
(
(τj)→b τ0 ≤ α

)
τ = α

K =
(
K0x ,K0λ −C

⋃
j{φxj},K0c ,K0φ

)
u

d
iKi

ι, ζτ
τ
` λb◦ {Ei}i=1..m Φ φx → E0 : K ⇒ τ |G

(7.5)

ι, ζτ
τ
` E0 : K0 ⇒ τ0|G0

ι, ζτ
τ
` Ei : Ki ⇒ τi|Gi

G =
(
G0 ∪

⋃
i
Gi
)

+
(
τ0 ≤ (τi)→b α

)
+
(
α ≤ β

)
τ = β

K = (K0 u
d
iKi)

ι, ζτ
τ
` E0 . (Ei)i=1..m : K ⇒ τ |G

(7.6)
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ι, ζτ
τ
` E0 : K0 ⇒ τ0|G0

ι, ζτ
τ
` E1 : K1 ⇒ τ1|G1

ι, ζτ
τ
` E2 : K2 ⇒ τ2|G2

G =
(
G0 ∪G1 ∪G2

)
+
(
τ0 ≤ α

)
+
(
α ≤ bool

)
+

(
τ0∈true

τ1 ≤ β
)

+

(
τ0∈false

τ2 ≤ β
)

τ = β

K = K0 uK1 uK2

ι, ζτ
τ
` if E0 then E1 else E2 fi : K ⇒ τ |G

(7.7)

ι, ζτ
τ
` E0 : K0 ⇒ τ0|G0

ι, ζτ
τ
` E′0 : K ′0 ⇒ τ ′0|G′0

ι, ζτ
τ
` E′1 : K ′1 ⇒ τ ′1|G′1

unique bound pos(τ ′0, G
′
0) : c

G = G0 ∪G′0 ∪G′1
τ = τ0

K = K0 uK ′0 uK ′1 u
(
∅, ∅, {c 7→ (τ ′1, α)}, ∅

)
ι, ζτ

τ
` E0 @ [E′0 ← E′1] : K ⇒ τ |G

(7.8)

ι, ζτ
τ
` E0 : K0 ⇒ τ0|G0

ι, ζτ
τ
` E′1 : K ′1 ⇒ τ ′1|G′1

G = (G0 ∪G′1) + (τ ′1 ≤ γ) + (α ≤ β)

τ = τ0

K = K0 uK ′1 u
(
∅, {φx 7→ α}, ∅, {φx 7→ (β, γ, δ)}

)
ι, ζτ

τ
` E0 @ [φx ← E′1] : K ⇒ τ |G

(7.9)

ι, ζτ
τ
` E0 : K ′ ⇒ τ0|G0

ι, ζτ
τ
` Ei : Ki ⇒ τi|Gi

Kλ(φx) : τ

G = G0 + (τ → τ0 ≤ α)

τ = α

K =
(
K ′x,K

′
λ −C {φx},K ′c,K ′φ

)
u

d
iKi

ι, ζτ
τ
` λv◦ {Ei}i=1..m Φ φx → E0 : K ⇒ τ |G

(7.10)
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ι, ζτ
τ
` E0 : K0 ⇒ τ0|G0

ι, ζτ
τ
` E1 : K1 ⇒ τ1|G1

G = (G0 ∪G1) + (α ≤ β) + (τ0 ≤ τ1 →v α)

τ = β

K = K0 uK1

ι, ζτ
τ
` E0 ! E1 : K ⇒ τ |G

(7.11)

ι, ζτ
τ
` E0 : K0 ⇒ τ0|G0

ι, ζτ
τ
` Ei : Ki ⇒ τi|Gi

G =
(
G0 ∪

⋃
i
Gi
)

+
(
↑τ0 ≤ α

)
τ = α

K = K0 u
d
iKi

ι, ζτ
τ
` ↑{Ei}i=1..m E0 : K ⇒ τ |G

(7.12)

ι, ζτ
τ
` E0 : K0 ⇒ τ0|G0

G = G0 + (τ0 ≤ ↑α) + (α ≤ β)

τ = β

K = K0

ι, ζτ
τ
` ↓E0 : K ⇒ τ |G

(7.13)

ι, ζτ
τ
` Ei : σi = Ki ⇒ τi|Gi

K ′ =
d
iKi

G′ = (
⋃
iGi) +

Ř

i(τi ≤ αi) + (αi ≤ βi) + (βi ≤ τ ci )

ζ = ζτ †
{
xi 7→ ((K ′x −C

⋃
i{xi},K ′λ,K ′c,K ′φ)⇒ τi|G′)

}
ι, ζ

τ
` E0 : K0 ⇒ τ0|G0

G = G0

τ = τ0

K = K0

ι, ζτ
τ
` E0 wherevar xi = Ei end i=1..m : K ⇒ τ |G

(7.14)

x 6∈ dom ζτ

G = ∅+ (α ≤ β)

τ = β

K =
(
{x 7→ α}, ∅, ∅, ∅}

)
ι, ζτ

τ
` x : K ⇒ τ |G

(7.15)
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x ∈ dom ζτ σ = rename
(
ζτ (x)

)
ι, ζτ

τ
` x : σ

(7.16)

ι, ζτ
τ
` Ei : Ki ⇒ τi|Gi

ζ = ζτ † {φxi 7→ τi}

ι, ζ
τ
` E0 : K0 ⇒ τ0|G0

G = G0 ∪
⋃
i
Gi

τ = τ0

K = K0 u
d
iKi

ι, ζτ
τ
` E0 wheredim◦ φxi ← Ei end i=1..m : K ⇒ τ |G

(7.17)

We explain each of the cases below.

mc For an m-ary constant mc, we look up its interpretation

d = ι(mc). If d is a constant of arity zero, then it is the same as for the type of d, otherwise,

it is a base function.

φx To type the contextual lookup of constant dimension φx,

which will always be the lookup of a function parameter or a local dimension declared in a

wheredim clause, we allocate a fresh variable α for the upper bound of the parameter φx,

and the type is the lower bound β. The two are linked with the constraint (α ≤ β).

#.φx For the type of a lookup of a dimension passed as a pa-

rameter to a function with argument φx, we place the same information in the type context

and constraint graph as in φx. Additionally, we have the variable β for the eventual actual

parameter c of the function defining φx, the variable γ for the lower bound of the ordinate

of c, and δ for the upper bound of the ordinate of c.

#.E For a context lookup to be well-typed, the expression

defining the dimension to lookup must have a unique bound. When the unique bound

is a constant c, we place type variable α (resp. β) in the type context, which represents

the lower (resp. upper) bound of the ordinate of c. The type of the lookup is the lower

bound α.

λb {Ei}i=1..m x→ E0

λv {Ei}i=1..m x→ E0

↑{Ei}i=1..m E0 For the type of a base function abstraction, we determine

that the type of the body E0 is τ0, and look up the types, τj , of the parameters, xj , required

by the type context K0. The type of the abstraction is a new type variable α, where its
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lower bound is a base function type construct from the inferred τj types,
(
(τj)

b→ τ0
)
.

The type of a call-by-value (resp. intension) abstraction is the same as for base function

abstraction, except that there is one (resp. zero) parameter.

E0 . (Ei)i=1..m

E0 ! E1

↓E0 For the type of a base function application, the subex-

pressions E0 and Ei have type τ0 and τi, respectively. We generate constraints that

require that τ0 be a smaller type than
(
(τi)

b→ α
)
, which is some function mapping the

types of the arguments to a new type variable α.

if E0 then E1 else E2 fi The type of a conditional expression is specified using

conditional constraints. The condition E0 has type τ0, the upper bound of which must

be bool. Then the type of the conditional includes the true (resp. false) branch if τ0

includes the type true (resp. false.)

E0 @ [E′0 ← E′1] An unbounded context change expression must have a

unique bound for the dimension that is being changed, which is the context change pair

of (7.4). If the unique bound is a constant c, then we return in the type context that the

type of expression E′1 is a lower bound for the ordinate of c.

When E′0 is of the form φx, the dimension being changed is a dimension passed as

a function parameter φx. The function whose parameter is φx will later be applied to a

constant c, and the type of expression E′1 provides a lower bound for the ordinate of c.

E0 wherevar xi = Ei end i=1..m For the type of a wherevar clause, it is assumed that the

variables defined are a group of mutually recursive variables. Expressions Ei define each

variable xi, and have types τi. In the type context, Ki for each expression will be an

upper bound for each identifier. We combine all the Ki to produce K ′, then link the

upper bounds to the lower bounds of each identifier with the constraints {τi ≤ K ′x(xi)}.
The type environment is then perturbed with the resulting type schemes, and the body

E0 has its type inferred.

x There are two rules for x, rule (7.15) is for when x is not

in the domain of the type environment ζτ , and rule (7.16) is for when it is in the domain.

The former will be matched when inferring the type of an identifier that is defined in the

same mutually recursive group that is currently having the types of its variables inferred.

In this case, there is no type information for the identifier, so we treat the identifier in the

same way as a function parameter. Its type is constrained from above by its use inside

the mutually recursive group, and constrained from below by the type of the expression

defining it.

In the case of the latter rule we do have type information for the identifier, so we

simply look up the type scheme in the type environment, and rename each of the type

variables that appear in the type scheme.



CHAPTER 7. TYPE INFERENCE 122

E0 wheredim xi ← Ei end i=1..m For the type of a wheredim clause, the expression initial-

ising each dimension xi provides a lower bound for the ordinate of xi, and the use of xi

inside the body E0 provides an upper bound.

7.8 Simplifying constraints

Even for fairly simple expressions, a large number of constraints is generated. For example,

type inference of the TransLucid standard header generates several thousand constraints

before simplification! Nevertheless, most of these constraints are unnecessary for the final

result, as they only play an intermediate role in computing the final type of an expression.

Furthermore, it is next to impossible for the user to decipher the meaning of more than

a few constraints. Fortunately, it is often possible to reduce the number of constraints to

just a few, and from there it is often possible to display the type to the user as a single

type term, not subject to the minimal-height types invariant, but more useful to the user.

The process of simplifying constraints always takes as input a type scheme, and pro-

duces as output a type scheme that denotes the same type, but is written down in a

different manner. The simplification of a type scheme is a four-stage process:

1. Canonisation (§7.9), in which all occurrences of the form tV or uV are replaced by

new type variables, and appropriate constraints are added so that the denoted type

scheme is the same.

2. Garbage collection (§7.10), in which all superfluous constraints are removed from a

type scheme. When computing the type of an expression, many of the constraints

generated are generated in computing the type of subexpressions, and only play an

intermediate role in computing the final type, playing no role in denoting the final

type, hence can be removed.

3. Minimisation (§7.11), in which a type scheme is minimised in a process similar

to deterministic finite automata minimisation, which identifies sets of equivalent

type variables, and for each of these sets, replaces all members by a single variable

throughout the type scheme.

4. Displaying (§7.12), in which a type scheme is displayed in a manner readable to the

user.

There is a question as to when to apply these simplifications. In his thesis, Pottier

suggests that a type scheme be simplified before it is placed in the environment. For

him, that means simplifying the type of an identifier in a let expression; in our case, we

simplify a type scheme before placing it in the environment during the typing of a whole

program. The simplifications can be applied at any point and in almost any order. The

only restriction is that the input to garbage collection is a type scheme with no occurrences

of u or t. To achieve the best results, a type scheme should be canonised, then garbage

collected, finally minimised.
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We will use the Y -combinator, as defined in TransLucid, as an example for simplifying

a type scheme. In concrete syntax, it is defined as

λnf →
(
λnx→ f (x x)

) (
λnx→ f (x x)

)
which is translated to the following abstract syntax

λvφf →
(
λvφa → ↓φf ! (↓φa ! ↓φa)

)
!
(
λvφb → ↓φf ! (↓φb ! ↓φb)

)
The full example for the Y -combinator is presented in Appendix 7.15. Nevertheless, here

we present a summary. Initially, the expression generates 49 constrained type variables,

which grow to 66 with canonisation. However, this is not a problem, since garbage col-

lection removes most of those constraints, after which only 7 constrained type variables

remain. Two of those are equivalent according to the minimisation algorithm, so after the

full simplification process, only 6 constrained type variables remain. Even a constraint

graph with only 6 type variables is not particularly easy for the user to understand, but

with the mechanism to display types in a sane way, the Y -combinator in TransLucid has

the type ↑(↑α v→ α)
v→ α. (All types are implicitly universally quantified over all type

variables, so we do not need ∀α at the beginning of the type.)

7.9 Canonisation

In this section, we present the canonisation algorithm. It takes a type scheme, and returns

a type scheme in which all occurrences of the form tV or uV are replaced by new type

variables, and new constraints are added for said variables; the resulting type scheme

denotes the same type.

To remove the t (resp. u), for each set V of type variables, each occurrence of tV
(resp. uV ) is replaced with the variable λV (resp. γV ), and the set of constraints {α ≤
λV | α ∈ V } (resp. {γV ≤ α | α ∈ V }) is added. This is not sufficient, as the closure of the

constraint graph must be maintained, and only adding the necessary constraints with the

closure algorithm could reintroduce t or u. Therefore, it is necessary to define a set of

rewriting rules that add the necessary constraints and maintain closure of the constraint

graph while guaranteeing that neither t nor u are re-added to the graph.

Definition 54. The canonisation of a type scheme K ⇒ τ |G is

canonise(K ⇒ τ |G) = (K ′ ⇒ τ ′|G′)

where K ′, τ ′ and G′ are defined below, and the functions r+ and r− are defined in Fig-

ure 7.4.
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If K is as follows:

K =


{xi 7→ τi},
{φxj 7→ τj},
{dk 7→ (τ0k, τ1k},
{φxl 7→ (τ0l, τ1l, τ2l)}


then

K ′ =


{xi 7→ r−(τi)},
{φxj 7→ r−(τj)},{
dk 7→

(
r+(τ0k), r

−(τ1k)
)}
,{

φxl 7→ (r+(τ0l), r
+(τ1l), r

−(τ2l)
)}



We define τ ′ = r+(τ), and G′ is defined in Figures 7.5 and 7.6.

r+(t) = t r−(t) = t

r+(α) = α r−(α) = α

r+(tV ) = λV r−(uV ) = γV

r+(⊥) = ⊥ r−(⊥) = ⊥
r+(>) = > r−(>) = >

r+
(
(τj)

b→ τ0
)

= r−(τj)
b→ r+(τ0) r−

(
(τj)

b→ τ0
)

= r+(τj)
b→ r−(τ0)

r+(τ1
v→ τ0) = r−(τ1)

v→ r+(τ0) r−(τ1
v→ τ0) = r+(τ1)

v→ r−(τ0)

r+(↑τ) = ↑ r+(τ) r−(↑τ) = ↑ r−(τ)

Figure 7.4: Rules for canonisation rewriting function

G′↓(α) = r+
(
G↓(α)

)
G′↑(α) = r−

(
G↑(α)

)
G′↓(γV ) = ⊥ G′↑(γV ) = r−

(
l

α∈V
G↑(α)

)

G′↓(λV ) = r+

(⊔
α∈V

G↓(α)

)
G′↑(λV ) = >

Figure 7.5: New bounds for canonisation

This definition of canonisation corresponds to Definition 11.5 of [34, p. 118], except for

the extra variables that appear in the type context K. The only difference with the type

context is that where Pottier applies r− to the members of the two components of his type

context, we apply r− and r+ to the appropriate members of the four components of our

type context. Pottier’s proof of correctness is given as Theorem 11.1 and Proposition 11.11
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α ≤G′ β when α ≤G β
γV ≤G′ α when ∃β ∈ V | β ≤G α
α ≤G′ λV when ∃β ∈ V | α ≤G β
γV ≤G′ λT when ∃α ∈ V ∃β ∈ T α ≤G β

Figure 7.6: New less than relation for canonisation

of [34, pp.113,119]. The addition of guarded constraints, corresponds to Definition 20, with

the proof of its correctness given as Theorem 3 in [35, pp.7,9]. The change in K does not

affect the proof, all we are doing is ensuring that every type can be rewritten. The system

presented in [35] only adds to the system presented in [34], and in fact refers to the proof

from the latter for part of its result. Since our system is consistent with the one presented

in the former, we can state that the definition of garbage collection here is correct.

To return to the Y -combinator example, there are several occurrences of t and u in

its type, all of which are removed, and extra constraints generated by canonisation. This

results in the type having 66 constrained type variables.

7.10 Garbage collection

In this section, we present the garbage-collection algorithm, which removes constraints

from a type scheme that are not relevant to the type denoted by that type scheme. During

type inference, many constraints are generated which play a part in generating the final

type, but whose information has been incorporated into other constraints, and no longer

convey any information about the type. All these constraints do is clutter the type scheme,

make it slower to process by the computer, and make it harder for the user to read.

Therefore, it is desirable to remove them.

To determine which type variables are superfluous, we compute which variables play a

part in the type denoted by the type scheme. To do that, we present the idea of polarity,

which is that we say that a variable can be positive, negative, bipolar, or neutral.

Polarity is a specific form of reachability, which is to determine which type variables

in a type scheme actually contribute to denoting the type. A coarse notion of reachability

is simply that a type variable v in G is reachable if v appears in K or τ , or if it appears in

the upper or lower bounds or the less than relation in G of any other reachable variable. If

a variable cannot be reached, then it can be discarded from the constraint graph, because

it plays no part in the denotation of the type.

We will consider an example to demonstrate the coarse idea of reachability, and then

use the same example to demonstrate the refinement that polarity makes to reachability,

which is used to define, garbage collection. Consider the type scheme ∅ ⇒
(
α

v→ γ
)
|G,
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where G is defined by the constraints graph:

α ≤ β, γ δ
v→ ε

α ≤ β ≤ γ δ
v→ ε

α, β ≤ γ ≤ δ
v→ ε

α
v→ γ ≤ λ

> ≤ ε

From the point of view of our coarse notion of reachability, we look at the type α
v→ γ

and see that α and γ are reachable; then looking at the constraints on α and γ, we see

that β, δ and ε are also reachable. The only variable that is not reachable is λ, so it can

clearly be removed, as it plays no part in the type.

The idea of polarity is finer than what we just mentioned, by taking into account the

direction of data flow. In a type scheme, τ is a pos-type, which represents an output, so it

is marked as positive, and K is made up of both pos-types and neg-types, which represent

outputs and inputs respectively. So each neg-type in K is marked as negative, and each

pos-type is marked as positive. This idea of marking type variables we call polarity, and we

say that a type variable in a type scheme can be positive, negative, bipolar or neutral. The

rules for propagation of polarity are finer than for reachability. If a variable is positive,

its lower bound is marked as positive; if the variable is negative, then its upper bound is

marked as negative.

To revisit the previous example and mark the polarity of each variable, we notice

that since α
v→ γ is an output, α represents an input and is marked as negative, and γ

represents an output and so is marked as positive. So now we mark the upper bound of α

as negative, and the lower bound of γ as positive, which results in δ being positive, and

ε being negative. There is nothing further to do, so the positive type variables are {γ, δ}
and the negative type variables are {α, ε}; the remaining variables are neutral.

Our definition of polarity corresponds to Definition 10.3 in [34, p.104]. The only

difference being that our type context K contains more information, and polarity takes

into account all of the type variables mentioned in K.

Definition 55. The polarity of a type variable in a type scheme σ = (K, τ,G) is a subset

of {+,−}, and we say that a variable is either positive, negative, bipolar or neutral. We

define the function polarity, which takes as input a type scheme σ, and a type variable v,

and returns a subset of {+,−}:

ε ∈ polarity(σ, v) ⇐⇒ v ∈ V ε

where V + and V − are defined below.

Computing polarity makes use of two auxiliary functions,

mark+ : T→
(
{P,N} → V

)
mark− : T→

(
{P,N} → V

)
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where each returns a set of positive and negative type variables in τ based on their structure.

Both functions are defined in Figure 7.7.

The computation of polarity is an iterative process, where in iteration i we compute

the sets V +
i and V −i . The results V + and V − are the least fixed points of V +

i and V −i .

let Px = mark−(Kx)

Pλ = mark−(Kλ)

(d0, d1) = Kd

Pd = mark+(d0) ∪mark−(d1)

(φ
0
, φ

1
, φ

2
) = Kφ

Pφ = mark+(φ
0
) ∪mark+(φ

1
) ∪mark−(φ

2
)

in V +
0 = mark+(τ)(P ) ∪

⋃
v∈dom G

(
Px(P ) ∪ Pλ(P ) ∪ Pd(P ) ∪ Pφ(P )

)
V −0 = mark−(K) ∪

⋃
v∈dom G

(
Px(N) ∪ Pλ(N) ∪ Pd(N) ∪ Pφ(N)

)
V +
i+1 =

⋃
v∈V +

i

mark+
(
G↓(v)

)
(P ) ∪

⋃
v∈V −i

mark−
(
G↑(v)

)
(P )

V −i+1 =
⋃
v∈V +

i

mark+
(
G↓(v)

)
(N) ∪

⋃
v∈V −i

mark−
(
G↑(v)

)
(N)

V + = lfp V +
i

V − = lfp V −i

After marking all variables, the garbage collection process is quite simple. We only

keep each component from the constraint graph under one of the following four conditions:

1. α≤G β if α ∈ V − and β ∈ V +.

2. G↓(α) if α ∈ V +.

3. G↑(α) if α ∈ V −.

4.
α∈s

β ≤G γ if α ∈ V −.

Otherwise, the constraint can be removed from the graph.

This definition of garbage collection corresponds to Pottier’s Definition 10.5, with the

proof of its correctness given in Theorem 10.1 of [34, p.106]. The addition of guarded

constraints corresponds to Definition 18, with the proof of correctness given in Theorem 2

of [35, p.6]. The addition of guarded constraints is correct for the same reason given

in §7.9.

To finish our example, as the variables {γ, δ} are positive and {α, ε} are negative, the
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mark+(α) =
{
P 7→ {α}, N 7→ ∅

}
mark−(α) =

{
P 7→ ∅, N 7→ {α}

}
mark+((τj)

b→ τ0) = let lj = mark−(τj)
r = mark+(τ0)

in
{
P 7→

(⋃
j lj(P )

)
∪ r(P ), N 7→

(⋃
j lj(N)

)
∪ r(N)

}
mark−

(
(τj)

b→ τ0
)

= let lj = mark+(τj)
r = mark−(τ0)

in
{
P 7→

(⋃
j lj(P )

)
∪ r(P ), N 7→

(⋃
j lj(N)

)
∪ r(N)

}
mark+

(
τ0

v→ τ1
)

= let lhs = mark−(τ0)
rhs = mark+(τ1)

in
{
P 7→ lhs(P ) ∪ rhs(P ), N 7→ lhs(N) ∪ rhs(N)

}
mark−(τ0

v→ τ1) = let lhs = mark+(τ0)
rhs = mark−(τ1)

in
{
P 7→ lhs(P ) ∪ rhs(P ), N 7→ lhs(N) ∪ rhs(N)

}
mark+(↑τ) = mark+(τ)

mark−(↑τ) = mark−(τ)

Figure 7.7: Rules for polarity decomposition

constraint graph can be reduced to the two constraints:

α ≤ δ v→ ε

α ≤ γ

To continue with the Y -combinator example, it is now useful to present the type scheme

after garbage collection, as it has been reduced to just 7 constrained type variables. Its

type is ∅ ⇒ v2|G, where G equals (instead of Greek letters, we have here used vi for type

variables):

v6 ≤ v1

(v3
v→ v1) ≤ v2

v3 ≤ ↑v4
v4 ≤ (v5

v→ v6)

↑v7 ≤ v5

v6 ≤ v1, v7

v6 ≤ v7

7.11 Minimisation

In this section we present minimisation, which takes as input a type scheme K ⇒ τ |G,

and produces as output an equivalent type scheme in which sets of variables that are

equivalent have been merged together. This is an adaptation of DFA minimisation, with

the definition of what makes two variables equivalent being specific to this problem.
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At this point in the simplification process, we will have a type scheme that has no

occurrences of t or u, and no superfluous constraints. However, we might still not have an

optimal representation for the type scheme. Especially due to the nature of canonisation,

it is possible that there will be groups of type variables that are all equivalent, and each

group can be replaced with one type variable.

Broadly speaking, two variables are equivalent if nothing distinguishes them: if they

are less than and greater than the same variables, if they have the same polarity and if

their lower bounds and upper bounds are equivalent. The lower and upper bounds do not

have to be equal, rather, if the respective variables that make up one of the bounds are

equivalent, then the bounds are equivalent. For example, for the types α
v→ β and γ

v→ δ,

if α and γ are equivalent, and β and δ are equivalent, then those two types are equivalent.

It is necessary to define two functions:

Definition 56. Let G be a constraint graph, and α ∈ dom G, then

predG(α) = {β | β ≤G α}

succG(α) = {β | α≤G β}

Definition 57. Two variables α and β ∈ dom G are said to be equivalent if the following

conditions hold, then we write α ≡G β:

predG(α) = predG(β)

succG(α) = succG(β)

head
(
G↓(α)

)
= head

(
G↓(β)

)
head

(
G↑(α)

)
= head

(
G↑(β)

)
polarityG(α) = polarityG(β)

if G↑(α) = (vj)
b→ v0 and G↑(β) = (v′j)

b→ v′0 and v0 ≡G v′0 ∧
∧
j

vj ≡G v′j

if G↓(α) = (vj)
b→ v0 and G↓(β) = (v′j)

b→ v′0 and v0 ≡G v′0 ∧
∧
j

vj ≡G v′j

if G↑(α) = v1
v→ v0 and G↑(β) = v′1

v→ v′0 and v0 ≡G v′0 ∧ v1 ≡G v′1
if G↓(α) = v1

v→ v0 and G↓(β) = v′1
v→ v′0 and v0 ≡G v′0 ∧ v1 ≡G v′1

if G↑(α) = ↑v and G↑(β) = ↑v′ and v ≡G v′

if G↓(α) = ↑v and G↓(β) = ↑v′ and v ≡G v′

α∈s
γ ≤G γ′ ∧

β∈s
δ ≤G δ′ =⇒ γ ≡G δ ∧ γ′ ≡G δ′

The equivalence classes described in the above definition can be computed using stan-

dard algorithms for DFA minimisation, such as Hopcroft’s algorithm [22].

The definition of equivalence given here is the same as the one given by Pottier in

Chapter 13 of [34, p.135] and [35], except that it has been adapted to the TransLucid

types. The proofs of correctness are given in Lemma 13.3 and Theorem 13.2 of the former,

and Theorem 4 of the latter. Our system is correct for the same reason given in §7.9.



CHAPTER 7. TYPE INFERENCE 130

Let us return to our Y -combinator example, after canonisation and garbage collection,

its type is as given at the end of the previous section. The type variables v1 and v7 are

equivalent, as the only constraint on the two is that each is greater than v6. Since they

are equivalent, we can substitute all instances of v7 with v1, which removes v7 from the

constraint graph, and replaces one occurrence of ↑v7 with ↑v1. The resulting constraint

graph is:

v6 ≤ v1

(v3
v→ v1) ≤ v2

v3 ≤ ↑v4
v4 ≤ (v5

v→ v6)

↑v1 ≤ v5

v6 ≤ v1

The Y -combinator does not have any constructed bounds, so it is trivial to see where

the equivalent variables are. As a better illustration, consider the following constraint

graph:

v1 ≤ v5, v6

v2 ≤ v5, v6

v5
v→ v1 ≤ v3

v6
v→ v2 ≤ v4

v1, v2 ≤ v5

v1, v2 ≤ v6

The variables v1 and v2 are equivalent, as they both have v5 and v6 as their successors,

similarly, v5 and v6 are equivalent. The purpose of this example is to demonstrate that v3

and v4 are equivalent. For the lower bounds of v3 and v4, the left-hand sides are v5 and

v6 respectively. Since v5 and v6 are equivalent, the left-hand side does not differentiate v3

and v4. Similarly, the right-hand sides are equivalent. Therefore, v3 and v4 are equivalent,

and the whole constraint graph can be collapsed to just three type variables:

v1 ≤ v3

v3
v→ v1 ≤ v2

v1 ≤ v3

7.12 External display

In this section we present a means for types to be presented in a readable manner to the

user: i.e., typically as one-type terms. The fact that no type can have depth more than

one means that a large number of type variables are used in the constraint graph of the

type; this can be very difficult for the user to read. At this point, the only purpose of this

simplification is to display the type in a more readable manner to the user; it is not so

useful for the computer for any further analysis.

For example, whilst the displayed type of the Y -combinator is ↑(↑α v→ α)
v→ α, its

inferred type is more complex. We reproduce its type here for reference, although it is

the same as the type given in the previous section. Its type is ∅ ⇒ v2|G, where G is the
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constraint graph (instead of Greek letters, we have here used vi for type variables):

v6 ≤ v1

(v3
v→ v1) ≤ v2

v3 ≤ ↑v4
v4 ≤ (v5

v→ v6)

↑v1 ≤ v5

v6 ≤ v1

which is difficult to interpret. More complex functions only get worse.

Fortunately, it is quite simple to produce a readable type: if a type variable has a unique

bound, then it can be replaced by that bound as long as the variable does not appear free

in the said bound. There is an extra condition required by guarded constraints: if a type

variable appears in a guarded constraint, then it cannot be simplified.

We previously presented the definition of the unique bound for positive variables in

Definition 53, here we present the symmetric definition for negative variables.

Definition 58. Given a constraint graph G, the unique bound of a negative type variable

v is given by the function unique bound neg(v,G).

unique bound neg(v,G) =

v′, G↑(v) ≡ > and v′ is the unique v′ s.t. v ≤G v′

τ, G↑(v) ≡ τ and there is no v′ s.t. v ≤G v′

Definition 59. Let A ⇒ τ |G be a type scheme. Let α be a type variable in the domain

of G. Then α can be replaced with its unique bound under the following two conditions:

1. unique bound pos(α,G) is defined if α is a positive variable, or

unique bound neg(α,G) is defined if α is a negative variable.

2. ∀s, α, β, γ s.t.

(
a∈s
b ≤ c

)
∈ G, α 6≡ a ∧ α 6≡ b ∧ α 6≡ c

Then, it is simply a matter of repeatedly replacing variables with their unique bound

until this process is no longer possible.

Finally, we will go through the above process with the Y -combinator, so that it can

be seen how to get from the above type scheme to its display type. The type of the

Y -combinator is v2, which is positive, so we start by replacing that with its lower bound,

(v3
v→ v1). The variables v1 and v3 are positive and negative respectively, so we replace

them with their lower and upper bounds and get (↑v4
v→ v6). Here, we must make an

arbitrary decision; replacing v6 with its upper bound, v1, would result in going in circles,

continually replacing v6 with v1 and v1 with v6. So when a variable has one predecessor

or successor, we stick with the smaller variable, in this case v6. Next we replace v4

with its upper bound, so the type is now (↑(v5
v→ v6)

v→ v6). We now replace v5 with

↑v1, which gives us (↑(↑v1
v→ v6)

v→ v6). Then finally, replacing v1 with v6 gives us

(↑(↑v6
v→ v6)

v→ v6). We can then arbitrarily replace the vn type variables with alphabetic

type variables, and state that the type of the Y -combinator is (↑(↑α v→ α)
v→ α).
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The usefulness of minimisation can now be seen. Without it, displaying the Y -

combinator type scheme in a readable manner would be impossible because the variable v6

did not have a unique bound before minimisation.

7.13 Examples

This section presents examples of the types that are inferred for some of the standard

TransLucid functions.

7.13.1 fby

The fby function is defined as

fun fby .d X Y = if #.d ≤ 0 then X else Y @ [d← #.d− 1] fi

which is translated to abstract syntax as

var fby = λbφd1 → λvφX → λvφY →
if #.φd1 ≤ 0 then ↓φX else ↓φY @ [φd1 ← #.φd1 − 1] fi

Here we use φd1 for the φ dimension allocated for the first parameter, because our next

example, upon, also has a parameter d, which we will allocate φd2 .

Its display type is

fby :: α
b→ ↑β v→ ↑β v→ β

However, the type shown above is not its full type. Although the display type is useful for

seeing an overall picture of the type, it is missing the context information, which is the

following:

intmp ≤ #.(φd1 = α) ≤ intmp

The context information here contains solely dimensions that are passed as parameters,

as the fby function only uses the one dimension passed as a parameter. The line above

describes the dimension passed as a φ parameter, whose type is α, which is the type of

the first parameter to fby , and whose ordinate has lower bound intmp, and upper bound

intmp. Or in other words, its ordinate is set to an integer in the function, and its usage

inside the function requires it to be at most an integer.

Now to see the use of the above type, we see that if we apply fby to the value 0, the

type of the resulting function is

fby .0 :: (↑α v→ ↑α v→ α)

with context

intmp ≤ #.0 ≤ intmp

Now the context has moved from being dependent on a function parameter to knowing
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the exact dimension of relevance. From the above we can see that the use of dimension 0

requires it to be no more than an intmp, and that it is set to something in the set intmp,

which is consistent, and therefore the use of dimension 0 is well-typed.

7.13.2 upon

The standard function upon is defined as

fun upon.d X Y = X @ [d← T ]

where

var T = fby .d 0 (if Y then T + 1 else T fi)

end

which is translated to the following abstract syntax

upon = λbφd2 → λvφX → λvφY → ↓φX @ [φd2 ← T ]

wherevar

T = fby .φd2 ! (↑ 0) ! (↑ if ↓φY then T + 1 else T fi)

end

Its display type is:

upon :: α
b→ ↑β v→ γ

v→ β

with the constraints:
γ ≤ bool

0 ζ ≤ δ

intmp ≤ ε

ζ ≤ δ

with the guarded constraints:

false ≤ γ ? η ≤ ζ
true ≤ γ ? ε ≤ ζ

and with the context:

δ ≤ #.(φd2 = α) ≤ >
intmp ≤ #.(φd1 = α) ≤ intmp

Each type variable plays a role in the type of upon, which will be described below.

The first parameter to upon has type α, which has no constraints, and is mentioned in the

type context. The two lines which describe the type context indicate that both function

parameters, φd1 and φd2 , which are the parameters of upon and fby respectively, have the

type α. The first line indicates that the ordinate is bounded by the type d from below,

and unbounded from above. The second line indicates that the ordinate is bounded by

intmp from below, and intmp from above.

The type variable d only has partial information: the value 0 is in its type, along with

whatever type information is later supplied by the type variable ζ, which comes from the



CHAPTER 7. TYPE INFERENCE 134

guarded constraint when upon is later used. The type γ is for the parameter B of upon,

so the guarded constraints indicate that if B is false, then type ζ should have η as a

lower bound, and if B is true, that ζ should have ε as a lower bound. The type η has no

constraints, so adds nothing to the type of ζ. Since ε has intmp as its lower bound, the

type intmp is propagated to the lower bound of ζ if B has true in its type. The only

purpose of ζ is to propagate a type to δ, which is used in determining the type of the

ordinate of the first parameter to upon.

The type β is also unconstrained, as upon does nothing with the second parameter,

other than to evaluate it in the current context. Therefore, the return type of upon is

simply the type of the second parameter.

It is impossible to come up with a completely simplified meaningful display type, since

the type variable δ does not have a unique bound. Despite that, an expression that

fully applies upon is still well-typed, and also has a nice display type. For example the

expression:

(upon.0 (#.0) (2 mod 0 ≡ 0)) @ [0← 5]; ;

has the type:

intmp

with TransLucid context information:

intmp ≤ #.0 ≤ intmp

which simply means that the ordinate of dimension zero is set to an integer in the program,

and is constrained to be at most an integer in the program.

7.14 Conclusions

This chapter has demonstrated a type inference algorithm for TransLucid expressions. The

type inference algorithm supports parametric polymorphism, and the use of constraints

with type variables allows recursive types. It is this ability to infer recursive types that

allows the Y -combinator presented above to be typed with the definition given, which is

not possible in Haskell.

It is important that some type be inferred for the ordinate of each dimension in the

TransLucid runtime context. This is done quite effectively, with this type inference system

being able to determine an upper and a lower bound for each dimension that was used in

a whole program. Although the limitation that each dimension in the context be required

to have the same type throughout a program seems restrictive, it does not in practice

limit the programs that can be written. If dimensions with different types are required,

it suffices to introduce more dimensions; it is then trivial to write functions that take a

dimension as a parameter.

This system, at the moment, is not particularly more powerful than any other type

inference system in current use. However, by combining the ideas of the principal type

of an object being itself, and subtyping with constraints, it seems reasonable that this
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system can be extended to something much more powerful. With other kinds of static

analysis, it might be possible to infer better types (for example, finer ranges for integers)

for certain expressions, and then the subtyping system presented here would infer a more

precise, not necessarily atomic, type for a given expression.

The system is parameterised in three places:

1. the ground types (§7.1);

2. the choice of t and u for the non-structural types (§7.2); and

3. the freedom in the values of the dimensions for expressions of the form #.E and

E @ [E ← E].

Any of the above three items can be changed, and the system will still work, although often

points (1) and (2) will go together for the system to make sense. In particular, it seems

entirely reasonable that point (3) will be where there is the most room for improvement.

With other static analyses, such as Abstract Interpretation [13], it should be possible to

improve the approximations of which dimensions are used in a program.

It is envisioned that there are many possible static analyses for a TransLucid program;

type inference, and in particular this type inference algorithm, is not the only way to

analyse a program. Rather, it can be seen that it is useful to analyse a TransLucid program

using any appropriate static analysis, which provides another piece of information about

the properties of a program. The interplay between type inference and other static analysis

will most likely be a back and forth process, with each analysis providing a little more

information to each of the others. Then, that process can stop at either a least fixed point,

or some point chosen by the programmer or configurable by the user.

We have not considered the tuple expression in isolation; the only place that the tuple

can appear is to the right-hand side of an @ expression. It seems reasonable that a tree-like

data structure would be represented by a tuple, although the same could be achieved with

intensions, so the utility of a tuple as a data object in TransLucid is questionable. The

difficulty in typing the tuple is the possibility of the aliasing of dimensions. Even in what

was presented, aliasing had to be taken account of, and is solved with the restriction that

dimensions be atomic values, or function parameters.

7.15 Y -combinator type

In this appendix, we present the full simplification of the type of the Y -combinator, as

defined in TransLucid. The Y -combinator is defined in concrete syntax as:

λnf →
(
λnx→ f (x x)

) (
λnx→ f (x x)

)
which is translated to the following abstract syntax:

λvφf →
(
λvφa → ↓φf ! (↓φa ! ↓φa)

)
!
(
λvφb → ↓φf ! (↓φb ! ↓φb)

)
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The type of the Y -combinator, before any simplification, is ∅ ⇒ v1|G, where G is given

in Figure 7.8. In the following figures, where the constraints are too wide for the page,

the line is split to the previous line for the lower bounds and to the next line for the upper

bounds.

First, we will canonisation the type scheme. Canonisation is the replacement of every

occurrence of tV and uV with another type variable, along with the appropriate additional

cosntraints. The type is as before, with only the constraint graph changing, which is

presented in Figures 7.9 and 7.10. We will examine a few of the type variables so that we

can see what is going on.

First look at v1 before canonisation, it has as its lower bound the type (u{v2, v21}
v→

v41). The u is replaced with v44, and its corresponding variable for t is v45, they both

require some extra constraints. In Figure 7.6, the appropriate constraints are given by

γV ≤G′ α when ∃β ∈ V | β ≤G α

so we look for every variable greater than v2 and v21, and set each of them as greater than

v44. We have v2 ≤ v3, and v21 ≤ v22. Therefore, we have v44 ≤ v3, v21.
The variables v3 and v21 have the upper bounds ↑v4 and ↑v23, respectively. So the

upper bound of v44 is set to (↑v4)u (↑v23), which is ↑u {v4, v23}. Rather than introducing

another u, the type v4 u v23 is replaced with new variables in the same way, along with

the appropriate constraints. So the upper bound of v44 becomes ↑v59, and the constraints

on variable v59 are constructed in the same manner.

The same occurs for every other instance of tV and uV in the graph. For example,

by looking at the lower bounds of v25 and v26, we can see that every case of t{v13, v32}
is replaced by v52. Similarly, the lower bounds of v31 and v32 indicate that u{v25, v29} is

replaced with v45.

Next we look at garbage collecting the type scheme. Here we will run through the

complete polarity computation. Initially, variable v1 is marked as positive. So we have

the sets V +
0 and V −0 as follows:

V +
0 = {v1}

V −0 = ∅

Because v1 is positive, we mark its lower bound, (v44
v→ v41) as positive, which results in

v44 being negative and v41 being positive. So we now have:

V +
1 = {v1, v41}

V −1 = {v44}

The variable v41 has no lower bound, so there is nothing left to mark as positive. However,

as v44 is negative, we mark its upper bound as negative, which is ↑v59. Which results in

v59 being negative. So we now have:
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V +
2 = {v1, v41}

V −2 = {v44, v59}

So we now mark the upper bound of v59, which is (v60
v→ v61), as negative. The result is

that v60 is positive, and v61 is negative. So we now have:

V +
3 = {v1, v41, v60}

V −3 = {v44, v59, v61}

Variable v60 has the lower bound ↑v62, which we mark as positive, making v62 positive.

Variable v61 has no upper bound, so nothing further is done. Therefore we now have:

V +
4 = {v1, v41, v60, v62}

V −4 = {v44, v59, v61}

The variable v62 has no lower bound, so no further work is needed, and V +
4 and V −4 are

our sets of positive and negative variables.

We can now remove most of the constraints from the graph. The conditions for keeping

constraints are reproduced below:

1. α≤G β if α ∈ V − and β ∈ V +.

2. G↓(α) if α ∈ V +.

3. G↑(α) if α ∈ V −.

4.
α∈s

β ≤G γ if α ∈ V −.

By condition (1), we only need to keep v61 ≤ v41 and v61 ≤ v62. By condition (2), we

keep the lower bounds of v1 and v60. By condition (3) we only keep the upper bounds

of v44 and v59. Condition (4) does not apply because there are no guarded constraints.

Therefore, the resulting constraint graph is:

(v44
v→ v41) ≤ v1

v61 ≤ v41

v44 ≤ ↑v59
v59 ≤ (v60

v→ v61)

↑v62 ≤ v60

v61 ≤ v41, v62

v61 ≤ v62

The next step is to minimise the constraint graph. The variables v41 and v62 are

equivalent, because they are both positive, and both have the set {v61} as their less than

variables. Their lower (resp. upper) bound is the same, which is ⊥ (resp. >). Therefore, we
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merge them by arbitrarily choosing to keep v41, and replacing v62 with v41. The resulting

graph is:

(v44
v→ v41) ≤ v1

v61 ≤ v41

v44 ≤ ↑v59
v59 ≤ (v60

v→ v61)

↑v41 ≤ v60

v61 ≤ v41

This concludes the type simplification process for the type manipulated by the com-

puter. Refer to §7.12 for the details of presenting the type in a manner readable to

the user.
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(u{v2, v21}
v→ v41) v43 ≤ v1 ≤ >

⊥ ≤ v2 ≤ v3 ↑v4
⊥ v2 ≤ v3 ≤ ↑v4
⊥ ≤ v4 ≤ v5 (v17

v→ v19)

⊥ v4 ≤ v5 ≤ (v17
v→ v19)

↑v39 v40 ≤ v6 ≤ v7 ↑v8
↑v39 v6, v40 ≤ v7 ≤ ↑v8

(u{v25, v29}
v→ v37) v39 ≤ v8 ≤ v9 (v14

v→ v16)

(u{v25, v29}
v→ v37) v8, v39 ≤ v9 ≤ (v14

v→ v16)
↑v39 v40 ≤ v10 ≤ v11 ↑v12

↑v39 v10, v40 ≤ v11 ≤ ↑v12
(u{v25, v29}

v→ v37) v39 ≤ v12 ≤ v13, v27, v28, v31, v32 (v33
v→ v35)

(u{v25, v29}
v→ v37) v12, v39 ≤ v13 ≤ v27, v28, v31, v32 (v33

v→ v35)
↑v13 ≤ v14 ≤ v25, v26, v29, v30 ↑ u {v27, v31}

⊥ v16, v37, v38 ≤ v15 ≤ >
⊥ v37, v38 ≤ v16 ≤ v15 >

↑v15 ≤ v17 ≤ >
⊥ v19 ≤ v18 ≤ v41, v42 >

⊥ ≤ v19 ≤ v18, v41, v42 >
(u{v6, v10}

v→ v18) ≤ v20 ≤ (v40
v→ v42)

⊥ ≤ v21 ≤ v22 ↑v23
⊥ v21 ≤ v22 ≤ ↑v23

⊥ ≤ v23 ≤ v24 (v36
v→ v38)

⊥ v23 ≤ v24 ≤ (v36
v→ v38)

↑ t {v13, v32} v14, v33 ≤ v25 ≤ v26 ↑v27
↑ t {v13, v32} v14, v25, v33 ≤ v26 ≤ ↑v27

(u{v25, v29}
v→ v37) v12, v13, v31, v32, v39 ≤ v27 ≤ v28 (v33

v→ v35)

(u{v25, v29}
v→ v37)

v12, v13, v27, v31, v32, v39 ≤ v28 ≤ (v33
v→ v35)

↑ t {v13, v32} v14, v33 ≤ v29 ≤ v30 ↑v31
↑ t {v13, v32} v14, v29, v33 ≤ v30 ≤ ↑v31

(u{v25, v29}
v→ v37) v12, v13, v32, v39 ≤ v31 ≤ v27, v28, v32 (v33

v→ v35)

(u{v25, v29}
v→ v37) v12, v13, v31, v39 ≤ v32 ≤ v27, v28, v31 (v33

v→ v35)
↑v32 ≤ v33 ≤ v25, v26, v29, v30 ↑ u {v27, v31}

⊥ v35, v37, v38 ≤ v34 ≤ >
⊥ v37, v38 ≤ v35 ≤ v34 >

↑v34 ≤ v36 ≤ >
⊥ v38 ≤ v37 ≤ v15, v16, v34, v35 >

⊥ ≤ v38 ≤ v15, v16, v34, v35, v37 >
(u{v25, v29}

v→ v37) ≤ v39 ≤ v8, v9, v12, v13, v27, v28, v31, v32
(t{v14, v33}

v→ u{v16, v35})
↑v39 ≤ v40 ≤ v6, v7, v10, v11 ↑ u {v8, v12}

⊥ v18, v19, v42 ≤ v41 ≤ >
⊥ v18, v19 ≤ v42 ≤ v41 >

(u{v2, v21}
v→ v41) ≤ v43 ≤ v1 >

Figure 7.8: Y -combinator constraint graph before simplification
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(v44
v→ v41) v43 ≤ v1 ≤ >

⊥ ≤ v2 ≤ v3 ↑v4
⊥ v2, v44 ≤ v3 ≤ ↑v4

⊥ ≤ v4 ≤ v5 (v17
v→ v19)

⊥ v4, v59 ≤ v5 ≤ (v17
v→ v19)

↑v39 v40 ≤ v6 ≤ v7 ↑v8
↑v39 v6, v40, v49 ≤ v7 ≤ ↑v8
(v45

v→ v37) v39 ≤ v8 ≤ v9 (v14
v→ v16)

(v45
v→ v37) v8, v39, v57 ≤ v9 ≤ (v14

v→ v16)
↑v39 v40 ≤ v10 ≤ v11 ↑v12

↑v39 v10, v40, v49 ≤ v11 ≤ ↑v12
(v45

v→ v37) v39 ≤ v12 ≤ v13, v27, v28, v31, v32, v48, v52
(v33

v→ v35)

(v45
v→ v37) v12, v39, v57 ≤ v13 ≤ v27, v28, v31, v32, v48, v52 (v33

v→ v35)
↑v13 ≤ v14 ≤ v25, v26, v29, v30, v46 ↑v47

⊥ v16, v37, v38, v55, v61 ≤ v15 ≤ >
⊥ v37, v38, v61 ≤ v16 ≤ v15, v62 >

↑v15 ≤ v17 ≤ >
⊥ v19, v61 ≤ v18 ≤ v41, v42 >

⊥ ≤ v19 ≤ v18, v41, v42 >
(v49

v→ v18) ≤ v20 ≤ (v40
v→ v42)

⊥ ≤ v21 ≤ v22 ↑v23
⊥ v21, v44 ≤ v22 ≤ ↑v23

⊥ ≤ v23 ≤ v24 (v36
v→ v38)

⊥ v23, v59 ≤ v24 ≤ (v36
v→ v38)

↑v52 v14, v33, v53 ≤ v25 ≤ v26 ↑v27
↑v52 v14, v25, v33, v45, v53 ≤ v26 ≤ ↑v27

(v45
v→ v37)

v12, v13, v31, v32, v39, v47, v51, v57 ≤ v27 ≤ v28 (v33
v→ v35)

(v45
v→ v37)

v12, v13, v27, v31, v32, v39, v47, v51, v57 ≤ v28 ≤ (v33
v→ v35)

↑v52 v14, v33, v53 ≤ v29 ≤ v30 ↑v31
↑v52 v14, v29, v33, v45, v53 ≤ v30 ≤ ↑v31

(v45
v→ v37) v12, v13, v32, v39, v47, v51, v57 ≤ v31 ≤ v27, v28, v32, v48, v52 (v33

v→ v35)

(v45
v→ v37) v12, v13, v31, v39, v47, v51, v57 ≤ v32 ≤ v27, v28, v31, v48, v52 (v33

v→ v35)
↑v32 ≤ v33 ≤ v25, v26, v29, v30, v46 ↑v47

⊥ v35, v37, v38, v55, v61 ≤ v34 ≤ >
⊥ v37, v38, v61 ≤ v35 ≤ v34, v62 >

↑v34 ≤ v36 ≤ >
⊥ v38, v61 ≤ v37 ≤ v15, v16, v34, v35, v56, v62 >

⊥ ≤ v38 ≤ v15, v16, v34, v35, v37, v56, v62 >
(v45

v→ v37) ≤ v39 ≤ v8, v9, v12, v13, v27, v28, v31, v32
v48, v52, v58 (v54

v→ v55)
↑v39 ≤ v40 ≤ v6, v7, v10, v11, v50 ↑v57

⊥ v18, v19, v42, v61 ≤ v41 ≤ >
⊥ v18, v19, v61 ≤ v42 ≤ v41 >

(v44
v→ v41) ≤ v43 ≤ v1 >

Figure 7.9: Y -combinator constraint graph after canonisation (1)
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⊥ ≤ v44 ≤ v3, v22 ↑v59
⊥ ≤ v45 ≤ v26, v30 ↑v47

↑v52 v14, v33, v53 ≤ v46 ≤ >
⊥ ≤ v47 ≤ v27, v28, v31, v32, v48, v52 (v33

v→ v35)

(v45
v→ v37)

v12, v13, v31, v32, v39, v47, v51, v57 ≤ v48 ≤ >
⊥ ≤ v49 ≤ v7, v11 ↑v57

↑v39 v40 ≤ v50 ≤ >
⊥ ≤ v51 ≤ v27, v28, v31, v32, v48, v52 (v33

v→ v35)

(v45
v→ v37)

v12, v13, v31, v32, v39, v47, v51, v57 ≤ v52 ≤ >
⊥ ≤ v53 ≤ v25, v26, v29, v30, v46 ↑v47

↑v52 ≤ v54 ≤ >
⊥ ≤ v55 ≤ v15, v34, v62 >

⊥ v37, v38, v61 ≤ v56 ≤ >
⊥ ≤ v57 ≤ v9, v13, v27, v28, v31, v32, v48, v52

(v54
v→ v55)

(v45
v→ v37) v39 ≤ v58 ≤ >

⊥ ≤ v59 ≤ v5, v24 (v60
v→ v61)

↑v62 ≤ v60 ≤ >
⊥ ≤ v61 ≤ v15, v16, v18, v34, v35, v37, v41, v42, v56, v62 >

⊥ v16, v35, v37, v38, v55, v61 ≤ v62 ≤ >

Figure 7.10: Y -combinator constraint graph after canonisation (2)



Chapter 8

The TransLucid/C++ System,

or Concrete TransLucid

This chapter shows how we move from TransLucid, with its abstract syntax and deno-

tational semantics, to a full, concrete language, with concrete syntax and concrete data

types of another (host) language. To undertake this task, we have two choices: 1) to fix

the set of atomic values, or 2) to provide the means to access the atomic values (which

is not a fixed set) of another language. We choose the second path, and use as the host

language C++11, along with the GNU mp integer and floating-point libraries, and IBM’s

icu for Unicode support.

The denotational semantic rules—presented in Chapter 2—are of the form JEKιζκ,

where E is an expression, ι is the interpretation of the constants, ζ is an environment, and

κ is a context. Implicit in all of this is the set D of atomic objects, which is the basis for

the semantic domains, with ι(0c) ∈ D and ι(mc) ∈ (Dm → D),m > 0.

When we move from TransLucid to Concrete TransLucid, we need, of course, to define

a concrete syntax (§8.1) for expressions E. But, more importantly, the host environment

provided by C++11 and the core libraries in the concrete language, corresponds to the pair

(D, ι) of Core TransLucid. In this chapter, we make everything concrete: concrete atomic

types to define D, user-defined constructible types, concrete syntax for E, including the

means to add new unary or binary operators, and the full use of Unicode characters,

amongst other things.

The host environment provides a set of atomic types, whose union forms the set

D (§8.2). We assume at the very least that Booleans, integers, and Unicode charac-

ters and strings are provided. As for the ι, it corresponds to the union of the parsers

for each of the atomic types. Since we are dealing with an interpreter, we also need to

define what is effectively ι−1, which corresponds to the union of the printers for each of

the atomic types.

We start with the syntax for Concrete TransLucid (§8.1), without explaining how cer-

tain constructs are recognised by the parser, then present the infrastructure for interacting

with the host environment. Then we can focus on the concrete syntax for variable decla-

rations (§8.5), for function declarations (§8.6) and the user-defined data types (§8.7), all

of which require the use of a new type of conditional expression, called bestfitting (§8.4),

142



CHAPTER 8. THE TRANSLUCID/C++ SYSTEM 143

in which the branch to be chosen is the best choice depending on the current context. We

then present operator declarations (§8.8), which, using the host environment, enable pre-

fix, postfix and infix notation, and inform the parser how to recognise symbols presented

in §8.1. In addition, all of this infrastructure can be extended with libraries (§8.9), which

add new objects to D, and functions to manipulate them.

Finally, we present the TransLucid system (§8.10), which takes all of the declarations

and infrastructure presented in this chapter, and produces a programming environment

that allows the user to add declarations and evaluates expressions. Then we extend that

system to evaluate expressions through time (§8.11), taking new declarations and expres-

sions to evaluate at each instant, taking real data as input, and producing real data as

output at each instant (§8.12).

8.1 Concrete TransLucid

Concrete TransLucid is a set of declarations, and a set of concrete expressions to be

evaluated. The remainder of this chapter presents the recognised declarations, with their

syntax, and the syntax of expressions. In this section, we focus on the syntax.

8.1.1 Expressions

Concrete TransLucid expressions can appear standalone or within declarations. Each

expression is a sequence of lexemes, which is transformed by a Concrete TransLucid parser

to a TransLucid expression. There are four kinds of lexemes:

• punctuation symbols, which define TransLucid constructs, and correspond closely to

the symbols from the abstract syntax;

• literals, which are the lexemes that are translated by ι to elements of D;

• identifiers, which are unaltered in the abstract syntax; and

• operator symbols, which are translated to function applications.

Each of these lexemes is transformed by the lexical analyser into a tuple which describes

the meaning of the token so that it can be used by the parser to build an expression.

8.1.2 Punctuation

The TransLucid punctuation is as follows:

• declaration punctuation:

| = := ;;

• tuple manipulation:

[ : <- ]
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• context manipulation:

# @

• intension manipulation:

↑ ↓ { }

• functional abstraction:

\ \\ ->

• functional application:

! .

• general grouping:

( , )

Each punctuation symbol s is transformed into a tuple of the form:

[kind ← punctuation, symbol ← s]

8.1.3 Literals

The syntax of the literals recognised by the lexical analyser is presented in the following

sections.

Boolean literals

The Boolean literals are of type bool, and consist of the two constants true and false.

A Boolean symbol b is transformed by the lexical analyser to the following tuple:

[kind ← literal , type ← bool , value ← b]

Integer literals

The integer literals are of type intmp, implemented using GNU mp integers. An integer

symbol n is transformed by the lexical analyser to the following tuple:

[kind ← literal , type ← intmp, value ← n]

Their syntax is outlined below.

• Negative integers are an integer literal preceded by character ~.

• Any integer starting with characters 1 through 9 is interpreted as base 10.

• The character 0 by itself corresponds to the value 0.

• An integer beginning with 01 followed by n more 1s is base-1 notation for the num-

ber n.
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• An integer beginning 0 followed by a character in the range [2-9A-Za-z] uses that

second character as base-designator as follows:

– 2 through 9 mean bases 2 through 9, respectively;

– A through Z mean bases 10 through 35, respectively;

– a through z mean bases 36 through 61, respectively.

The subsequent characters are interpreted as digits in that base. For a number in

base n, only ‘digits’ from 0 to n− 1 may be used.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G H I J K L M N O P Q R S T U V

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

W X Y Z a b c d e f g h i j k l

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

m n o p q r s t u v w x y z

48 49 50 51 52 53 54 55 56 57 58 59 60 61

For example, the number 39912 becomes

• 021001101111101000 in binary (base 2);

• 08115750 in octal (base 8);

• 0A39912 in decimal (base 10);

• 0G9BE8 in hexadecimal (base 16);

• 0K4JFC in vigesimal (base 20), as used by the Mayans:

�
„
‹
¸

• 0yB5C in sexagesimal (base 60), as used by the Babylonians:

Character literals

A character literal is implemented using a Unicode 32-bit character literal (UCS-4, http:

//www.unicode.org), and is written as a single cooked character surrounded by single

quotes (’c’). A character literal c is transformed by the lexical analyser to the following

tuple:

[kind ← literal , type ← uchar , value ← c]

The cooked character c is either a single character, or an escape sequence. The valid

escape sequences are:

021001101111101000
08115750
0A39912
0G9BE8
0K4JFC
0yB5C
http://www.unicode.org
http://www.unicode.org
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\n for a newline (000A);

\r for a carriage return (000D);

\t for a horizontal tab (0009);

\’ for a single quote (0027);

\" for a double quote (0022);

\\ for a backslash (005C);

\uXXXX where XXXX are four hex digits, for a Unicode character in the Basic Multilingual

Plane, range 0000–FFFF;

\UXXXXXXXX where XXXXXXXX are eight hex digits, for a Unicode character not in the Basic

Multilingual Plane, range 10000–10FFFF;

\xXX for a valid one-byte UTF-8 sequence, designating a Unicode character in the range

0000–007F;

\xXX\xXX for a valid two-byte UTF-8 sequence, designating a Unicode character in the

range 0080–07FF;

\xXX\xXX\xXX for a valid three-byte UTF-8 sequence, designating a Unicode character in

the range 0800–FFFF;

\xXX\xXX\xXX\xXX for a valid four-byte UTF-8 sequence, designating a Unicode character

in the range 10000–10FFFF.

String literals

String literals are a sequence of n cooked characters, described in the previous paragraph,

surrounded by double quotes ("c0 · · · cn−1"), or a raw string literal, which is a sequence of

bytes interpreted as UTF-8 placed between back quotes (‘c0 · · · cn−1‘). A string literal s

is transformed by the lexical analyser to the following tuple:

[kind ← literal , type ← ustring , value ← s]

Generic literals

A generic literal is a single lexeme made up of an identifier T followed by a string literal,

either cooked or raw. Therefore, its syntax is either T"s" or T‘s‘. It is translated by the

lexical analyser to the tuple

[kind ← literal , type ← generic, typeid ← T, value ← s]
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8.1.4 Special values

In the concrete language, we have chosen that there be no undefined computations. The

semantics leaves certain things undefined, such as the meaning of κ(δ) when δ 6∈ dom(κ),

for some context κ and some dimension δ. For these “error” cases, we return an object

from the special type, rather than the other option of crashing (gracefully or otherwise),

or worse, continuing in some erroneous state. The special values are all written spvalue

for some special value describing the error value. The special values and their uses are

summarised in the following table:

Special value Description

sptypeerror Function application error

spundef Undefined identifier (x 6∈ dom(ζ))

spdim Undefined dimension (d 6∈ dom(κ))

spmultidef Multiple definitions (§8.4)

spaccess Access error (§8.11)

sploop Loop in cache (§6.6)

8.1.5 Identifiers

An identifier (x ) in TransLucid is of the following form:

x ::= ( Letter | ) ( Letter | Number | )+

where Letter stands for the entire Unicode class Letter, which is any kind of “letter”

from any script (including most Chinese characters), and Number stands for the Unicode

class Number, which is any kind of numeric character in any script. Examples of uses of

unusual characters in identifiers are H2O (water) and 3
2He (helium-3).

The following TransLucid keywords are reserved.

• declaration introductions:

data dim fun hd

op var assign host

• conditional expressions:

if then elsif else fi

• local declarations:

where end

• Boolean values:

true false

• bestfitting keywords (§8.4):

is imp bestof
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The declaration-introduction symbols x are transformed to the following tuple:

[kind ← declaration, value ← x]

The other keywords x are transformed to the following tuple:

[kind ← keyword , value ← x]

8.1.6 Operator symbols

An operator (op) in TransLucid has the following form:

op ::= ( Symbol | ! | % | * | - | . | & | / | : )+

where Symbol stands for the Unicode character class Symbol. The six exceptions are the

symbols that are TransLucid punctuation:

= : | ! . //

Operator symbols can be used to improve the clarity of programs, rather than using

verbose prefix function-call notation for every expression. An operator can be declared by

the user to be unary postfix, unary prefix, or binary infix, and using those declarations

the resulting expression is transformed by the parser to the appropriate function-call

expression. The mechanism for declaring these and their transformation by the lexical

analyser to a tuple is explained in §8.8. Nevertheless, we can present the way in which

the symbols will be used without presenting how they get there. Each of the operators

is mapped to a function name, and can stand for a call-by-name or call-by-value function

application. The binary infix operators also have an associativity and precedence. A unary

postfix operator is translated to the following tuple:

[kind ← operator , type ← postfix , function ← id , call type ← cbn | cbv]

A unary prefix operator is translated to the following tuple:

[kind ← operator , type ← prefix , function ← id , call type ← cbn | cbv]

A binary infix operator is translated to the tuple:

[kind ← operator ,

type ← infix ,

function ← id ,

call type ← cbn | cbv,
precedence ← intmp,

assoc ← AssocNon | AssocRight | AssocLeft]

The precedence of unary postfix operators is highest, then unary prefix, then binary infix.
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8.2 Types and the host system

In any programming language, there is a notion of the type of an object, i.e., it is an

integer, a string, and so on. Then, the operations over objects are restricted by the type

of those objects, since some operations do not make sense for certain types of objects.

For example, usually, it makes no sense to add a string and an integer, or at least if it

does make sense, it is still only by converting the integer to a string and concatenating the

result. For the types in TransLucid, we take a slightly different approach to the norm. The

intuition behind data types in TransLucid comes from Shamir and Wadge’s 1977 ICALP

paper, “Data Types as Objects” [40], in which types are both sets of values and objects

themselves, as are all of the subsets of these types perceived as desirable, interesting or

relevant by the users of a system.

Despite considering any object or set of objects as a type, there is still a practical

consideration here. Every object manipulated by the system is a set of bits that are

understood to represent that object, and are interpreted in a manner suitable for that

type of object. Therefore, regardless of how we view types, it must still be consistent with

each object having a physical type.

As presented in §7.1, we suppose that the atomic objects manipulated by the system

are made up of distinct sets of object, such as strings, integers and so on, each of which is

given a name. Each of those sets we call a type. In addition, so that we can have data types

as objects, we require that each type itself also be an object manipulable by the system.

The type objects are then members of the type type, including type itself. In addition,

the concrete Translucid system manipulates ranges over integers, so we require objects

representing negative infinity and positive infinity, for the ends of unbounded ranges of

integers, along with a type for ranges of integers.

In fact, when mapping the concrete system to the semantics presented in the chapters

up to now, the set of objects just mentioned is actually the set D used by the semantics,

from §2.2.2, Chapter 2 on. As a result, the set D of atomic objects is formed as the

union of

1. the set {type, range} ∪ {t1, t2, . . . , tn}, where t1, t2, . . . , tn are the concrete types in

the system; this list must include bool, intmp, uchar, ustring and special;

2. Dt1 ∪Dt2 ∪ . . . ∪Dtn , where each Dt is the set of elements corresponding to type t;

3. {−∞,∞}, special elements used for designating the ends of unbounded ranges of

integers; and

4. {∅}∪ {(−∞, n]}∪ {[m,n] | m ≤ n}∪ {[m,∞)}∪ {(−∞,∞)}, where m,n ∈ Z, which

are the possible ranges of integers.

Because we are working with an interpreter, it is necessary for there to be a mechanism

to both read values as input, and write values as output. Therefore, each concrete type in

the system must have both a constructor and a printer. The constructors are functions of

the form:

construct t : ustring→ t
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where t ∈ {type, range, special, t1 . . . , tn}. As for the printers, they are functions of the

form:

print t : t→ ustring

The mechanism for adding these functions is presented in §8.6.

8.3 Host functions

A Concrete TransLucid system provides a declaration for informing the system about a

function that is accessed through a C-style function pointer, with the purpose of carrying

out low-level operations on data types provided in the system. A declaration informs the

system of the existence of a function x, its arity m, and its address in memory. The

function residing at that address should take as argument m TransLucid atomic objects,

and return an atomic object. Functions are declared using the hostfun declaration, whose

syntax is as follows:

hostfun x m address ;;

where m and address are non-negative integers. In the case m = 0, this means a constant

function, in the case address = 0, this is usually a runtime error, typically a segmentation

fault. Note that normally the user will not use this declaration, since the address of a

function is not usually known, and might change depending on the dynamic linker. Rather,

it is used internally to declare the built-in functions, and can be used by libraries (§8.9)

which can add to the set of types and functions in the system.

These functions are in fact defining the concrete C/C++ implementation of the inter-

pretation ι of constant symbols (§2.2.3). These functions, along with the black-box lexical

analyser and parser, are the basis for the C/C++ interface to the TransLucid system.

Although there is only a small number of functions that are required by the system,

to produce a complete system, it is necessary to provide all of the standard functionality

for each of the types. The functions presented in the following sections map one or more

atomic objects to atomic objects.

8.3.1 Integer functions

The integer functions all operate over the GNU mp integers, which have the type intmp,

and include the standard arithmetic and comparison functions.

intmp plus : (intmp, intmp)→ intmp

intmp minus : (intmp, intmp)→ intmp

intmp times : (intmp, intmp)→ intmp

intmp divide : (intmp, intmp)→ intmp

intmp modulus : (intmp, intmp)→ intmp

intmp lte : (intmp, intmp)→ bool

intmp lt : (intmp, intmp)→ bool
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intmp gte : (intmp, intmp)→ bool

intmp gt : (intmp, intmp)→ bool

intmp eq : (intmp, intmp)→ bool

intmp ne : (intmp, intmp)→ bool

intmp uminus : intmp→ intmp

8.3.2 Floating-point functions

The integer functions all operate over the GNU mp floating-point numbers, which have the

type floatmp, and include the standard arithmetic and comparison functions.

floatmp plus : (floatmp,floatmp)→ floatmp

floatmp minus : (floatmp,floatmp)→ floatmp

floatmp times : (floatmp,floatmp)→ floatmp

floatmp divide : (floatmp,floatmp)→ floatmp

floatmp modulus : (floatmp,floatmp)→ floatmp

floatmp lte : (floatmp,floatmp)→ bool

floatmp lt : (floatmp,floatmp)→ bool

floatmp gte : (floatmp,floatmp)→ bool

floatmp gt : (floatmp,floatmp)→ bool

floatmp eq : (floatmp,floatmp)→ bool

floatmp ne : (floatmp,floatmp)→ bool

floatmp sqrt : floatmp→ floatmp

floatmp abs : floatmp→ floatmp

floatmp uminus : floatmp→ floatmp

floatmp convert intmp : floatmp→ intmp

8.3.3 Boolean functions

The only Boolean function required is equality.

bool eq : (bool,bool)→ bool

8.3.4 Character functions

For the Unicode character type, we provide a number of functions implemented by IBM’s

icu library.

is printable : uchar→ bool

code point : uchar→ intmp
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code point 4 : uchar→ ustring

code point 8 : uchar→ ustring

8.3.5 String functions

For the moment, we provide a restricted set of functions for strings:

ustring concatenate : (ustring,ustring)→ ustring

ustring substr : (ustring, intmp, intmp)→ ustring

8.3.6 Range functions

The range functions allow the user to create a range that is either bounded or unbounded

in either direction. The range unbounded in both directions, make range infinite, which

is equivalent to the type intmp, is in fact a constant.

make range : (intmp, intmp)→ range

make range infty : intmp→ range

make range neginfty : intmp→ range

make range infinite : range

8.3.7 Concluding remarks

The functions above provide the standard operations for each data type. However, they

would not normally be used directly by the user, as the syntax becomes unwieldy. For

convenience, §8.8 describes how the user can declare unary postfix, unary prefix and binary

infix operator symbols, so that these can be translated to function calls using the above

functions.

8.4 Bestfitting

This section presents a new type of conditional expression called bestfitting, never previ-

ously added to any Lucid-like language. Bestfitting allows an expression E to be defined as

a choice from among a set of subexpressions, where each of these subexpressions is guarded

by a context region, which is a set of contexts. When expression E is to be evaluated in a

particular context κ, the subexpression to be evaluated depends on which context region

the current context κ happens to be inside. Should κ turn out to be more inside more

than one of these context regions, then the most specific, or bestfit, region is chosen.

The ideas behind bestfitting were first presented in the seminal 1993 IEEE TOSE

article “A New Approach to Version Control” [30] by Plaice and Wadge, which presented

bestfitting as a means to select a different version of a piece of software, or the components

of a piece of software, based on some context. Their ideas were developed over the following

fifteen years, the results of which are summarised in the 2008 Mathematics in Computer

Science paper “Possible Worlds Versioning” [25] by Mancilla and Plaice. Uses of bestfitting
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included intensional HTML [45], a context-aware sequential programming language [41],

and an intensional mapping server [24].

Bestfitting was used to guard a definition with a context, so that only the definitions

applicable to the current context would be chosen. Then, out of those applicable, the

bestfit definition would be chosen. Previously (in previous work), the definitions of an

object were restricted to being guarded by a single context. Then, the bestfit definition

was the one whose context was more refined than those of the other definitions. Context κ

refined context κ′ if κ defined at least the dimensions of κ′, and the ordinates of their

corresponding dimensions were the same.

Here, we extend the idea of bestfitting so that definitions can be guarded by sets of

contexts, rather than just a single context. A definition is considered valid if the current

context is inside the guard for that definition. The bestfit definition out of several is

still the one whose guard is more refined than the others, but we extend the definition of

refinement so that a region k is more refined than another region k′ if k defines at least

the dimensions of k′, and each ordinate of k for a corresponding dimension is a subset of

the corresponding ordinate of k′.

Determining both which region a context is inside and which region out of several

is the most refined is, in general, undecidable. Therefore, we must restrict the way in

which regions can be specified so that bestfitting is still decidable. As a result, we present

bestfitting in two parts: the first is the semantics, which is in general, undecidable, and

the second is some practical restrictions to the sets allowed so that bestfitting can be

decidable.

We begin by adding to the abstract syntax for the denotational semantics (Figure 2.1):

bestof Ei0 | Ei1 → Ei2 end

For example, consider the following possible definition of the factorial function (the

new syntax “:” and is are explained below):

λvn→ F

where

dim d← n

var F = bestof

[d is 0]→ 1

[d : 1..infty]→ #.d×
(
F @ [d← #.d− 1]

)
end

end

First we allocate a new dimension d, and initialise its ordinate to the parameter n. We

can then create an array F that varies in dimension d, and whose entries are the factorial

of the index of the entry. The first choice in the bestof says that when the ordinate of

dimension d is the value 0, the value of the expression is 1. The second choice states that

when the ordinate is an integer in the range 1..infty, the value of the expression is the
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index of the ordinate multiplied by the array F at the previous entry.

The denotational semantics for bestfitting would then be as follows:

Jbestof Ei0 | Ei1 = Ei2 endi=1..mKιζκ =

let ki = JEi0Kιζ(iκ)

bi = JEi1Kιζ((i+m)κ)

di = JEi2Kιζ((i+2m)κ)

valid = {i ∈ 1..n | κ ∈ ki ∧ bi ≡ true}
best = {i ∈ valid |6 ∃j ∈ valid s.t. kj ⊂ ki}

in
⊕
{di | i ∈ best}

It is important to realise that this semantics is not syntactic sugar on top of existing

infrastructure, like the constructs presented in Chapter 3. The bestof construct is, in

fact, a new primitive.

What is going on here is that for each guarded expression Ei2, the expression Ei0

evaluates to a region ki, Ei1 evaluates to a Boolean value bi, and Ei2 evaluates to some

value di. Then, if bi is true, and the current context κ is in the region ki, definition i

is considered valid. Then, from all the valid definitions, the one whose region is not a

superset of any other region is chosen. If multiple regions fit that criterion, then they are

combined with the operator
⊕

.

Currently, the definition of
⊕

is that it returns the special value spmultidef to indicate

that there were multiple definitions for the best region. However, it is feasible that this

could be changed in another system. Depending on what the user wants, the system could

behave in several ways, so long as
⊕

is associative and commutative: unicity (the current

solution), identity, sum, product, maximum, minimum, union, intersection, . . . .

There are two parts to the semantics that are undecidable if we do not make restrictions

to the allowable sets: 1) the test κ ∈ ki, which specifies that a context κ must be inside the

region ki; 2) the test kj ⊂ ki, which tests whether a region kj is a subset of the region ki.

For these two operations, their decidability is determined by the possible regions that can

be defined. These choices are fairly arbitrary, and as long as they are decidable, different

decisions can be made for any particular implementation. The choices made for the current

interpreter are to be pragmatic whilst still being useful.

A region is defined as a set of contexts. We define each set of contexts by defining a

set of values for the ordinate of each dimension in that region. Therefore, a region can be

understood as a mapping from dimensions to sets

k = {δi 7→ si}.

Let us look at how κ ∈ k and k ⊂ k′ are specified, and see how their definitions lead

naturally to an implementation. They are as follows:

κ ∈ k ⇐⇒ dom k ⊆ dom κ ∧ ∀δi ∈ dom k, κ(δi) ∈ si
k ⊂ k′ ⇐⇒ dom k′ ⊆ dom k ∧ ∀δ ∈ dom k′, k(δ) ⊆ k′(δ) ∧ ∃δi ∈ dom k′ s.t. k(δi) ⊂ k′(δi).
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There are two components in the above two cases that must be restricted to make best-

fitting decidable, κ(δi) ∈ si and k(δ) ⊆ k′(δ): in other words, is an atomic value in some

set, and is one set a subset of another. Therefore, to make bestfitting decidable, it is the

definition of the set of values for an ordinate in a region that must be restricted.

Our solution is to restrict an ordinate to being one of the following three cases:

1. a single atomic value,

2. a type, or

3. a set whose containment procedure is decidable.

The concrete syntax for regions is similar to that for tuples, except that the left-arrow

symbol is replaced with the type of containment being specified. There is a different

symbol for each of the three cases above. The syntax is as follows:

region ::= [Ei0 containment Ei1]

containment ::= is

| imp

| :

The three cases for containment correspond to the three cases above. For the third case,

there are only two sets that can be specified

1. a range over integers, with the addition of the values infty and negintfy; and

2. another region.

One can imagine more types of sets for the third case, and more cases of containment,

as long as they are decidable. For example, a regular expression type of containment could

be implemented, so that strings matching a particular pattern could be bestfit against.

One could also imagine implementing pattern matching with data types in a manner

similar to Haskell. However, in such cases, one would need to be careful about checking

kj ⊂ ki should there be multiple valid regions.

8.5 Variable declarations

Here we extend the variable-declaration component of the where clause (§3.6) by adding

bestfitting syntax. Several declarations can be made for the same identifier, each with a

guard, and when the system is evaluated (§8.10), all of the definitions for each identifier

are combined into one declaration whose expression is a bestof clause.

The syntax for variable declarations is:

vardecl ::= var x guard = E ;;

where guard is the syntax E0 | E1 from §8.4.
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For example, variable F from the factorial function example in §8.4 could be written

as the following two variable declarations:

var F [0 is 0] = 1

var F [0 : 1..infty] = #.0× (F @ [0← #.0− 1])

which are transformed, of course, into the form below:

var F = bestof

[0 is 0]→ 1

[0 : 1..infty]→ #.0×
(
F @ [0← #.0− 1]

)
end

In general, a set of declarations

var x Ei0|Ei1 = Ei2

is transformed into the following declaration:

var x = bestof Ei0 | Ei1 → Ei2 end

8.6 Function declarations

We extend function declarations in a manner similar to variable declarations, by allowing

bestfitting to be built-in to the declaration. The syntax for a function declaration is:

fundecl ::= fun x pi xi guard = E ;;

where each pi is one of ‘.’, ‘!’ or ‘ ’, as in §3.7. As for variable declarations, which can have

multiple declarations for each identifier, function declarations are rewritten to a single

declaration with an appropriate expression, which defines a function, and additionally,

we require that the parameters used in each declaration for the same identifier be consis-

tent. We make use of the infrastructure provided by Operational TransLucid (Chapter 5),

which replaces function parameters with φ dimensions, and allow function parameters to

appear on the left-hand sides of the regions guarding each expression. Then, a series of n

declarations gives (i = 1..m, j = 1..n):

fun x pi xi Ej0| Ej1 = Ej2

is rewritten to the single variable declaration:

var x = bestof Ej0[xi/φxi ] | Ej1 →
(
F(p1) x1 → · · · → F(pm) xm → Ej2

)
end

where F is defined in Figure 3.2, p.37.
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8.7 Data types

The user can declare data constructors, which are a shorthand notation for a function

that builds a tuple with specific fields present. There are two declarations used to define

a data type with constructors: data for the type, and constructor to declare each data

constructor.

The syntax of the data and constructor declarations is

datadecl ::= data x ;;

constructordecl ::= constructor x x∗ guard = x ;;

To define a data type T with constructors, the data type should be declared as

data T

then the constructors should be declared with the x to the right of the equals sign being T .

Each constructor can be declared with as many arguments as desired, and can also be

guarded, so that only certain types or sets of values can be used to construct a value.

A data object is just a tuple, and the data and constructor declarations use a number of

dimensions in the resulting tuple to describe a data object. Every data object will always

have the type and cons dimensions present, and they will be the name of the data type

and the name of the constructor respectively. Then, if a constructor has m arguments,

those arguments will be stored in the fields arg0 through to arg(m− 1).

The data type itself can then be used as an identifier, because a data declaration for

type T results in a declaration

var T = [type is “T”]

Then, that type can be used with bestfitting, to match any argument that is a list whose

type dimension is set to “T”.

For example, a list type could be declared as follows

data list

constructor Nil = list

constructor Cons a b [b : list ] = list
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Those three declarations would result in the following three variable declarations:

var list = [type is “list”]

var Nil = [type ← “list”, cons ← “Nil”]

var Cons = λva→ λvb→
bestof

[b : list ]→ [type ← “list”, cons ← “Cons”, arg0 ← a, arg1 ← b]

end

We can then define the standard list functions head and tail as follows, with a guard to

check that the list is not empty:

fun head .l
[
l : [type is “list”, cons is “Cons”]

]
= l.arg0

fun tail .l
[
l : [type is “list”, cons is “Cons”]

]
= l.arg1

With the list type, we can then write a length function that uses bestfitting to check that

its argument is a list:

fun list length.l [l is Nil ] = 0

fun list length.l [l : list ] = 1 + list length.(tail .l)

Below is an example of a function that flattens a list of lists, of arbitrary depth, to a single

list:

fun flatten.l [l is Nil ] = l

fun flatten.l [l : list ] = concat .
(
flatten.(head .l)

)
.
(
flatten.(tail .l)

)
fun flatten.l = Cons.l.Nil

8.8 Operator declarations

For convenience, postfix, prefix, and binary infix operators can be defined by the user, along

with their precedence and associativity. An operator is declared using the op declaration.
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The syntax for an op declaration is:

opdecl ::= op op = oparg ;;

oparg ::= OpPostfix.string .call type

| OpPrefix.string .call type

| OpInfix.string .call type.assoc.intmp

assoc ::= AssocNon

| AssocLeft

| AssocRight

call type ::= cbv

| cbn

op ::= ( Symbol | ! | % | * | - | . | & | / | : )+

The symbols OpPostfix, OpPrefix and OpInfix are constructors whose data type is

OpType; the symbols AssocNon, AssocLeft and AssocRight are nullary constructors

whose data type is Assoc; and the symbols cbv and cbn are nullary constructors whose

data type is CallType. Their full definition is in §9.1.

The parser uses the information provided by the operator declarations to build a parse

tree using the precedence and associativity declared by the user. Take as example the

following expression. We write opn to mean an operator symbol of precedence n, and

assume that the operators are left-associative. If the input is of the form:

E0 op1 E1 op2 E2

then after recognising the operator symbols and looking up their precedence, the parser

would parse this as:

E0 op1 (E1 op2 E2)

Supposing that the operators are both for call-by-value functions f and g respectively,

then that expression would be subsequently rewritten to:

f ! E0 ! (g ! E1 ! E2)

which is the final TransLucid abstract syntax.

8.8.1 Postfix and prefix operators

The postfix and prefix operators are defined similarly, using the OpPostfix and OpPrefix

functions. They both take two arguments: the first being the function to map the operator

to, and the second being true to map to call-by-name, and false to map to call-by-value,

allowing the user to choose whether the arguments to an operator are evaluated lazily or

eagerly.
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If we have defined an operator like so

op s = OpPrefix.f.true

then any occurrences of

s E

will be translated to

f E

and the following function declaration is expected

fun f X = E′

The case is similar for call-by-value and postfix operators.

8.8.2 Binary infix operators

In addition to the first two parameters, which are the same as for postfix and prefix

operators, the associativity and precedence of binary operators are defined by the user.

For associativity, there are three cases:

AssocNon the operator is parsed as non-associative, meaning that it is an error for more

than two non-associative operators to appear next to each other;

AssocLeft the operator is parsed as left-associative, meaning that more than one operator

of the same precedence next to each other will be grouped from the left;

AssocRight the operator is parsed as right-associative, meaning that more than one op-

erator of the same precedence next to each other will be grouped from the right.

The precedence of operators is specified as an intmp value, meaning that any integer

representable on the host system is available as a precedence. The parser groups operators

based on their precedence if multiple operators of the same associativity appear next to

each other, then, as by the standard rules, operators are grouped based on which has

higher precedence.

The ability to define operators as either call-by-value or call-by-name has an interesting

implication, in that certain operations, such as conditionals, can be lazy or eager as the

user desires. For example, the TransLucid standard library has the following declarations

for the || and && operators:

op || = OpInfix."bool or".true.AssocLeft.15

op && = OpInfix."bool and".true.AssocLeft.20

fun bool or X Y = if X then true else Y fi

fun bool and X Y = if X then Y else false fi
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Since both of these are call-by-name, the second argument to both will not be evaluated

unless the first is true in the case of ||, and false in the case of &&.

In addition to operators like || and && that can be implemented completely within

the language, there are a number of operators that are mapped to host functions §8.3

through the call-by-value functions that they are mapped to by the op declaration. For

each operator that is mapped to a call-by-value function, that function can have multiple

definitions, guarded by the appropriate types. This allows multiple data types to use the

same operator symbol for an operation. For example, the TransLucid standard library has

the following declaration for addition:

op + = OpInfix."plus".false.AssocLeft.100

For intmp addition, there is the following definition of the function plus:

fun plus ! a ! b [a imp intmp, b imp intmp] = intmp plus.(a, b)

8.9 External libraries

The TransLucid programming environment can be extended through the use of external

libraries loaded at runtime. An external library can add to the system in two ways: 1) by

adding new data types and functions, which extends the language by adding to the set D

and the function ι; and, 2) by adding any of the declarations described in this chapter.

For an external library to work, there must be a programming API for each of the

declarations, and the host environment (the programming language, the operating system

and the compilation model) must have the ability to load dynamic libraries at runtime.

In the current implementation, which is written in C++, and runs in a Unix environment,

libraries are opened using the libtool library, and if the library’s name is tllib, then

it must provide a function lib tllib init, which initialises the library and adds its

declarations to the system.

A library is declared using the library declaration, which has the following syntax

libdecl ::= library id ;;

The declaration

library l ;;

opens the library whose name is l, and whose executable can be referred to as libl, and

is found in the operating system’s standard search path. The function lib l init is then

run, which should add the libraries declaration to the system.

8.10 The TransLucid system

A TransLucid system is a set of declarations, which are provided with the purpose of

giving the definitions of variables, functions, data types, and operators so that a set of
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expressions can be evaluated. To illustrate this point, we present a small session in the

tltext command line interface to the TransLucid interpreter [5]:

op ** = OpInfix."exponent".cbv.AssocRight.400 ;;

fun exponent!a!b [a imp intmp, b imp intmp] = exp.b.a ;;

fun exp.n = P

where

dim d <- n ;;

var P = fby.d (\_s -> 1) (\_ {d} s -> s * P.s) ;;

end ;;

%%

2**10 ;;

Here, we define an operator **, which stands for the function exponent, which is provided

as a suitable interface to the exp function presented in §4.13. This is defined so that the

expression 2**10 is equivalent to the function call exp.10.2, and computes 2 raised to

the 10th power. The symbol %% separates the declarations from the expressions to be

computed.

The presentation above glossed over the fact that several of the declarations require

the evaluation of other declarations for the parser to even work. For example, to parse

an operator symbol op, it is necessary to evaluate the function application operator .op.

The definition of operator in turn uses several data declarations. In addition, to compile a

variable declaration for an identifier x, it is necessary that all of the variable declarations

for x be present, so that it can be combined into one definition. So how does all of this

work so that declarations can be parsed and processed in the appropriate order and have

the system still work?

The syntax is designed so that all of the declarations can be recognised without requir-

ing them to be parsed. This way, they can all collected without being processed, and then

they are parsed in a completely lazy manner. The parser starts by parsing the expressions

to be evaluated, and then only parses declarations as they are required. Furthermore,

once evaluation starts, declarations are still only parsed as they are required. This has the

side effect that declarations that are never needed are not even parsed.

From this point it is a trivial matter to map the concrete system into Operational

TransLucid. Conceptually, the declarations presented in this chapter, along with any

dimension declarations (allowing global dimensions), are grouped together into one (po-

tentially very large) where clause, whose body is the expression to be evaluated. Should

there be more than one expression to evaluate, each expression is evaluated as though it

is the body of the aforementioned where clause.
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8.11 Time

The system presented in the previous section is still not the complete story. The complete

Translucid interpreter, in fact, is a programming environment—a synchronous reactive

system—that evaluates expressions using declarations presented in a sequence of time

instants. Everything presented up to now is for one instant, and is still valid for any

single instant, with some rules about the interaction with previous and future instants.

The extension to multiple time instants is achieved by the system simulating a sequence

of discrete time instants, and by the addition of a time dimension whose ordinate is the

current instant—a natural number, starting from 0—being simulated.

At each time instant being simulated, the system takes as input all the declarations

for that instant, and evaluates any expressions requested. Then, the clock is incremented

and the process repeats until something tells the system to stop.

To allow the user to access information about which instant the system is currently

running, we add a time dimension, whose ordinate when evaluating a demand will always

be the number denoting the current instant. Consider the following input to the tltext

program to see the use of the time dimension:

%%

#.time ;;

$$

%%

#.time ;;

the output is:

1

2

The current instant is terminated using the $$ token, which tells the system to process

the demands and declarations from the current instant, increments the clock and waits

for more input. The only difference between instants is the time-ordinate.

Some restrictions must be made to the use of the time dimension. To be consistent

with time in the real world, we must not be able to change the past, we can only access

the past if the information from the past still exists, and we cannot access the future.

Therefore, we make the following restrictions in how the time dimension is used:

1. Declarations only affect instants from when they were made, and no declaration can

be made that changes a past declaration.

2. A computation looking into the past can be carried out, and the system will compute

whatever it can based on the declarations that it still has. If some declarations have

been deleted, then the computation will fail.

3. The time-ordinate cannot be increased using a context change expression. Attempt-

ing to do so will produce an spaccess special value.
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At any given instant, the set of declarations used by the system is the set of the

most recent declarations for each variable. In addition, a declaration can have the time

dimension mentioned in its guard, however, this is orthogonal to whether a definition is

included in the current set of declarations. Bestfitting is about choosing the most specific

definition during evaluation, after the appropriate declarations for an instant have been

chosen.

For example, if the following declaration for variable A were made at instant 5:

var A [time is 3] = E ;;

it would never be used, because it would not be seen at instant 3.

8.12 Input and output

Finally, to conclude this chapter, we present a means for the system to take finite multi-

dimensional arrays as input, and to produce finite multidimensional arrays as output. Up

to this point, except for demand-driven evaluation, the discussion has been entirely about

the infinite, but at some point, it is necessary for finite objects to be passed around—either

by the system being required to compute some finite amount of data, or by there being

some finite amount of input to the system that the system is required to transform.

As alluded to in Chapter 6, an input is just a cache, that has the relevant entries

already filled-in. This was necessary because the cached semantics uses ξ, a mapping

from identifiers to expressions, instead of ζ, a mapping from identifiers to intensions. Any

input to the system can be assumed to be in ζ, because it is a mathematical object. But

this doesn’t work for ξ, because it specifically maps to expressions, and the inputs to the

system are most likely not presented as expressions. Therefore, it is necessary to initialise

a cache with every entry in any inputs.

In Chapter 6, using a cache for inputs was the natural choice, given that the environ-

ment mapped to expressions. In moving to the concrete system, it is, in fact, the correct

solution that all inputs be initialised as a cache. This is consistent with the intuitive point

of view—a cache is just a store of values, as is an input.

We add two declarations to the concrete system so that it can accept multidimensional

arrays as input: indim and invar. It is necessary to declare dimensions that will be in the

domain of input variables so that the system knows that it should treat these as special

cases. The syntax of the indim declaration is:

indim x ;;

The input variable declaration is similar to the variable declaration, including with best-

fitting, except that each guarded definition is a URL to a source location, which is a

multidimensional array. This allows a single input variable to have multiple sources and

to be grouped together so that a whole array of inputs can be referred to by one variable.

In addition, an input variable can be initialised with an expression so that some part of
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the input variable has a default value. The syntax for the invar declaration is:

invar x guard← source ;;

invar x guard = E ;;

For the second version of the definition, E should either be constant or other inputs, with

no dependency loops between variables.

Output variables are declared similarly, and are also informing the system about a

finite multidimensional array. However, the semantics is entirely different. Writing to

an output variable is the only part of the whole TransLucid system that produces a side

effect. Up to this point, everything presented has been declarations, since TransLucid

is a declarative language. Other than evaluating single expressions, there has been no

means to make the system actually do anything. Despite the fact that writing to output is

an operation with a side effect, it is still done declaratively. Since the TransLucid system

evaluates with respect to a time dimension, output declarations are made per-instant, and

these have to be consistent. Only if a whole output request is defined, and is consistent

with all other declarations, is the output sent off at the end of an instant.

There are three keywords for declaring outputs: outdim, outvar and outvardest.

The reasons for needing outdim are analogous to those for indim. Its syntax is:

outdim x ;;

The outvardest declaration provides the system with the location of an output variable,

which is similar to an input variable, but it is understood that the location is a multidi-

mensional sink. The syntax for the outvardest declaration is:

outvardest x guard→ dest ;;

The syntax for the outvar declaration is:

outvar x guard := E ;;

The reason for having a guard for both outvardest and outvar is that the location being

written to could be defined over several regions, and the data being written could be

defined by several expressions over different regions.

8.13 Conclusion

This chapter has presented a complete Concrete TransLucid system, which is completely

declarative, with physical inputs and outputs, yet is reactive and responds to requests

to do work. Furthermore, none of this required another language to describe—all of

these features can be described in the same language, simply by extending the declaration

mechanism, and using the existing expression evaluation infrastructure.
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This Concrete TransLucid system is implemented as a C++ library, and the tltext

interface (§8.10) is just a textual interface to that library. In fact, as part of the source dis-

tribution, a web-based text interface is provided, which is similar to the tltext interface; a

version of this interface is running at http://translucid.web.cse.unsw.edu.au/tlweb.

This means that the inputs and outputs to tltext can come directly from C++, or from

any location that the user can write down.

Not all of the input and output mechanism presented is actually implemented, rather,

the declarations presented in §8.12 are only implemented internally. The tltext interface

uses the C++ system API to add declarations and demands for computation internally;

in addition, arguments can be passed on the command line which are added as an input

variable. However, there is currently no mechanism for the user to add input from arbitrary

sources.

What is missing from all of this is a system abstraction, which would be a TransLucid

system that can be created inside another system, and passed around just like any other

abstraction. This would require a clock dimension that can be passed as a parameter, so

that a system abstraction can exist inside another system at a single instant, but have its

own clock, accessible by the outer system. The clock of the internal system could then run

infinitely faster than the outer system, and in one outer tick, the outer system could pull

out the result of calculations after the internal system has run several ticks of its internal

clock.

Also required is a semantics for multiple systems interacting with each other, adding

input to and requesting demands from each other. But for all this the focus would be

the semantics of time, synchronisation of clocks, distribution of computation, atomicity of

communication and all of the other difficulties inherent in distributed computation.

The author, with John Plaice and Blanca Mancilla, designed a mechanism for a sys-

tem abstraction to be created internally to an outer system, along with a clock dimension,

presented in a 2013 Spatial Computing Workshop article [33]. It is necessary to pass finite

multidimensional arrays to internal systems, and to be able to accept finite multidimen-

sional arrays as the output from those systems. So part of that mechanism includes a block

demand expression, written E $ [· · · ], which forces the evaluation of E over the specified

region, so that the resulting finite array can be passed around. The key idea of the article

was multiple systems sitting in a systolic array, all carrying out a small part of the over-

all computation. However, this lacked proper semantics and has not been implemented.

Nevertheless, the approach is correct, and if the issues brought up by this chapter were

resolved, systolic arrays of systems would be trivial in TransLucid.

The open problems left by this chapter are substantial, and are probably worth another

PhD in themselves. With these problems resolved, TransLucid would become suitable for

various methods of distributed programming, all within a declarative framework, and all

described by the one language, with no need for extra formalisms, languages or systems

to coordinate the processing nodes.

http://translucid.web.cse.unsw.edu.au/tlweb


Chapter 9

The TransLucid Standard Library

This chapter describes the TransLucid standard library, which is defined in the standard

header to tltext, found in the file src/tltext/header.tl in the TransLucid distribu-

tion [5].

9.1 Data types

The TransLucid standard library defines several data types, defined using the data and

constructor declarations. These are described below.

9.1.1 Associativity

The data type describing the three types of associativity of operators: left, right and

non-associative is declared as:

data Assoc

and has the following members:

constructor AssocNon = Assoc

constructorAssocLeft = Assoc

constructorAssocRight = Assoc

The associativity data objects are used in defining the TransLucid operators (§9.2).

9.1.2 Call type

The data type used to describe how a function is called is defined as follows:

data CallType

167
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and has the following members:

constructor cbv = CallType

constructor cbn = CallType

9.1.3 Operator types

The data type describing the operator types: prefix, postfix and infix, which are used to

define each TransLucid operator (§9.2), is declared as:

data OpType

and has the following members:

constructor OpPostfix a b [a imp ustring , b imp bool ] = OpType

constructor OpPrefix a b [a imp ustring , b imp bool ] = OpType

constructor OpInfix a b c d [a : ustring , b : CallType, c : Assoc, d : intmp] = OpType

9.2 Operators

The infix binary operators are defined in Table 9.1. Their definitions are in the standard

header in the form:

op Symbol = OpInfix.string.bool.Assoc.intmp

Table 9.1: TransLucid infix operators

Operator Precedence Associativity cbn/cbv Function

+ 100 left cbv plus
- 100 left cbv minus
* 200 left cbv times
/ 200 left cbv divide
% 200 left cbv modulus
< 50 non cbv lt
<= 50 non cbv lte
> 50 non cbv gt
>= 50 non cbv gte
== 25 non cbv eq
!= 25 non cbv ne
&& 20 left cbn bool and
|| 15 left cbn bool or
>> 100 left cbv concatenate
.. 0 non cbv range construct

The unary prefix operators are described in Table 9.2. They are declared in the

standard header as:

op Symbol = AssocPrefix.string.bool
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Table 9.2: TransLucid prefix operators

Operator cbv/cbn function

¬ cbv negate
√

cbv sqrt

9.3 Variables

There are several pre-defined variables in the standard library; these are described in the

following sections.

9.3.1 Ranges

There are several pre-defined ranges over integers; these are as follows:

var pos = 1..infty

var nat = 0..infty

var int = neginfty..infty

var neg = neginfty..~1

9.3.2 Types

Each of the predefined types has an associated identifier; these are as follows:

var intmp = type"intmp"

var uchar = type"uchar"

var ustring = type"ustring"

var floatmp = type"floatmp"

var bool = type"bool"

var special = type"special"

9.3.3 Special values

None of the special values are recognised by the parser, and need to be defined using type

literal syntax. For convenience, we declare a variable for each special value as follows:

var spdim = special"dim"

var spaccess = special"access"

var sptypeerror = special"typeerror"

var spundef = special"undef "
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var spmultidef = special"multidef "

var sploop = special"loop"

9.4 Atomic functions

There are a number of functions that operate only on atomic values. These are described

in the following sections.

9.4.1 min and max

The function min.a.b (resp. max .a.b) returns the smaller (resp. greater) of two values a

and b.

fun min.a.b = if a < b then a else b fi

fun max .a.b = if a < b then b else a fi

9.4.2 ilog

The function ilog .n computes dlog2(n+ 1)e.

fun ilog .n = asa.d (#.d) (double ≥ n)

where

dim d← 0

var double = fby .d 1 (double × 2)

end

9.5 Intensional functions

There are several standard functions that manipulate intensions in particular directions.

These are presented in the subsections below.

9.5.1 at

The function at .d.n X is provided as a convenience for changing the context with a single

dimension.

fun at .d.n X = X @ [d← n]

9.5.2 first

The function first .d X returns element zero of the intension X, in direction d.

fun first .d X = at .d.0 X
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9.5.3 wvr

The function wvr .d X Y takes two intensions, X and Y , both varying in dimension d, and

defines an intension which has the values of X at the positions where Y is true.

fun wvr .d X Y = at .d.T X

where

var T = fby .d U (at .d.(T + 1) U)

var U = if Y then #.d else next .d U fi

end

9.5.4 upon

The function upon.d X Y takes as input two intensions, and creates a stream that repeats

the current element of X as long as Y is false, only giving the next element of X when Y

is true.

fun upon.d X Y = at .d.T X

where

var T = fby .d 0 (if Y then T + 1 else T fi)

end

9.5.5 merge

The function merge.d X Y merges the two sorted infinite arrays X and Y .

fun merge.d X Y = if X ′ ≤ Y ′ then X ′ else Y ′ fi
where

var X ′ = upon.d X (X ′ ≤ Y ′)
var Y ′ = upon.d Y (Y ′ < X ′)

end

9.5.6 asa

The function asa.d X Y returns the first entry of X for which the corresponding entry

of Y is true.

fun asa.d X Y = first .d (wvr .d X Y )

9.5.7 rotate and transpose

The function rotate.d.d′ X takes as input two dimensions and an intension, and produces

an intension having the values of X which varies in dimension d′ instead of d.

fun rotate.d.d′ X = at .d.(#.d) X
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The function transpose.d.d′ X takes as input two dimensions d and d′, and an inten-

sion X, and swaps dimensions d and d′ for X.

fun transpose.d.d′ X = X @ [d← #.d′, d′ ← #.d]

9.5.8 Default values

There are one- and two-dimensional functions for surrounding values from an intension

in a sea of default values. These both take as input an intension X and the region over

which to use values from X. They are defined as follows:

fun default1.d.m.n.v X = Y

where

var Y [d : m..n] = X

var Y [d : nat] = v

end

fun default2.d1.m1.n1.d2.m2.n2.v X = Y

where

var Y [d1 : m1..n1, d2 : m2..n2] = X

var Y [d1 : nat , d2 : nat ] = v

end

9.5.9 Divide-and-conquer functions

There are two functions for tournament-style computation: one for computations in one

dimension, another for computations in two dimensions. A tournament computation in

one dimension collapses elements next to each other using a user-specified function, and

in two dimensions collapses groups of four elements next to each other.

The two functions lPair .d X and rPair .d X give the left and right elements of the

input array X in direction d.

fun lPair .d X = X @ [d← #.d× 2]

fun rPair .d X = X @ [d← #.d× 2 + 1]

There are four functions for producing the elements from the appropriate corners of a

two dimensional array for a two-dimensional tournament computation. These are defined

as follows:

fun NWofQuad .d1.d2 X = X @ [d1 ← #.d1 × 2, d2 ← #.d2 × 2]

fun SWofQuad .d1.d2 X = X @ [d1 ← #.d1 × 2 + 1, d2 ← #.d2 × 2]

fun NEofQuad .d1.d2 X = X @ [d1 ← #.d1 × 2, d2 ← #.d2 × 2 + 1]

fun SEofQuad .d1.d2 X = X @ [d1 ← #.d1 × 2 + 1, d2 ← #.d2 × 2 + 1]

The two functions tournamentOp1 .d.n.g X and tournamentOp2 .d1.d2.n.g X carry out



CHAPTER 9. THE TRANSLUCID STANDARD LIBRARY 173

a tournament computation in one and two dimensions respectively. The parameter n is

for how many elements to use for the computation, and g is a function that combines the

elements at each level.

fun tournamentOp1.d.n.gX = first .d Y

where

dim t← ilog .n

var Y = fby .t X
(
g ! (LofPair .d Y ) ! (RofPair .d Y )

)
end

fun tournamentOp2.d1.d2.n.gX = first .d1 (first .d2 Y )

where

dim t← ilog .n

var Y = fby .t X
(
g ! (NWofQuad .d1.d2 Y ) ! (NEofQuad .d1.d2 Y )

! (SWofQuad .d1.d2 Y ) ! (SEofQuad .d1.d2 Y )
)

end



Chapter 10

Conclusions

This thesis presented the TransLucid programming language, from its denotational seman-

tics in Chapter 2, right through to its concrete implementation in Chapter 8. In presenting

TransLucid, this thesis set out to solve several open problems left in the history of Lucid,

and added a few questions of its own. These were:

• Dimensions as first-class values, atomic values as dimensions, and contexts as first-

class values;

• The semantics and implementation of higher-order functions over intensions;

• The semantics and implementation of a cached evaluator;

• The semantics and implementation of a concrete TransLucid system;

• Static analysis with the assumption that the principal type of an object is itself.

The first solved problems are higher-order functions with first-class dimensions and

contexts; these are solved in Chapters 2 and 3. In addition, there is an underlying goal

of making the language implementable. The presentation starts with the syntax and de-

notational semantics of a basic function language, called Core TransLucid. Its syntax

(Figure 2.1, p.23) is specified by adding only four new syntactic elements to those of

standard functional programming languages: the context (#), the tuple constructor [· · · ],
the context perturbator (@), and the wheredim clause. Then, the denotational semantics

of a variable is an intension, which maps contexts to the semantic domain D (Defini-

tion 1, p.20); the semantics of an expression is a mapping from environments to intensions,

where an environment maps variables to intensions. This semantic domain is based on the

set D of atomic objects, whose members, as explained in Chapter 8, can be chosen by an

implementation.

The first version of the denotational semantics, called non-deterministic (Definition 12,

p.24), gives the meaning of an expression E in an environment ζ and a runtime context κ.

Identifiers in the environment are lexically bound, whilst the entities in the context are

dynamically bound, permeating the entire program, in a manner similar to UNIX envi-

ronment variables. However, unlike for UNIX environment variables, the control of the

TransLucid context is extremely fine-grained. This runtime context is used as an index

174
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into the intension defined by E in the environment ζ. The wheredim clause allows unique

local dimensions to be allocated, so that an array used for a subcomputation can be made

orthogonal to every other array in a program. These dimensions are allocated from an

infinite set of available dimensions (Figure 2.3, p.25), which is split at each branch in the

evaluation tree, ensuring that each dimension allocation is unique. However, since this is

not implementable, the deterministic semantics (Definition 13, p.26) takes the first step

in moving TransLucid towards an implementation by making the allocation of dimensions

deterministic, by threading a list through the ρ ordinate of the running context κ, which

represents the evaluation stack of the current expression. Then, the wheredim clause

in Figure 2.4 (p.26) allocates dimensions by taking values from a set of dimensions χiν ,

indexed by the list ν = κ(ρ) and a natural number i.

Whilst the Core TransLucid language can completely express higher-order intensional

programming, expressing higher-order functions and writing canonical TransLucid pro-

grams in Core TransLucid is verbose. Therefore, Chapter 3 presents TransLucid, which

is the language in which the user writes expressions. TransLucid adds several function

abstractions to the core language, and combines the wherevar and wheredim clauses into

a single where clause, all without changing the core language, but by defining syntactic

transformations from TransLucid to Core TransLucid. In some sense, TransLucid is to

Core TransLucid as C++ is to C; they are equally powerful, yet TransLucid produces clearer

and more concise programs. The example in §3.6 (p.36) demonstrates the reduction in

verbosity by using a single where clause. The abstractions of TransLucid are implemented

using Core TransLucid by passing the appropriate context around when abstractions are

created and applied. For example, the intension abstraction expression (↑ E) creates

a function that takes a context as parameter, and evaluates its body in that context

(λκ→ E @ κ), then the intension application expression (↓ E) simply applies the current

context to its body (E.#). The other abstractions are defined similarly.

The choice of function abstractions in TransLucid is made by recognising the different

ways that abstractions can behave with respect to their argument and the context. There

are five options available for function abstractions, a function can:

1) take no argument (intensions, with item (4));

2) take one argument (base, call-by-value and call-by-name functions), for these there

are two more options:

(a) their argument is evaluated when the function is applied (base functions, with

item (3), and call-by-value functions, with item (4)),

(b) their argument is evaluated at the context in which it is used inside the body

of the function (call-by-name functions, with item (4));

3) have their body evaluated without respect to the runtime context; or

4) have their body evaluated with respect to the runtime context.

Combining options (1) and (3) would give a constant intension, and has little use

outside the semantics (see Figure 2.2, item (2.5), p.24). Option (2)(b) with (3) would give
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call-by-name functions that are not evaluated with respect to the current context, which

also seems to have little point. In summary, the valid options for abstractions are: i) the

intension, which takes no parameter and is evaluated with respect to the context at which

it is applied; ii) the base function, which takes one parameter which is evaluated when

applied, and whose body is evaluated with no context; iii) the call-by-value function, which

takes one parameter which is evaluated when applied, and whose body is evaluated with

respect to the context at which it is applied; and iv) the call-by-name function, which takes

one parameter that is evaluated with respect to the context at which it is used inside the

function, and whose body is evaluated with respect to the context at which it is applied.

With the semantics of higher-order functions solved, the presentation moves towards

an implementation. The key problem in implementing TransLucid is the use of the envi-

ronment for abstractions. For the semantics of base functions and call-by-value functions

(Figure 2.2 item (2.5) and equation (3.4), p.35), both pass their function parameters by

modifying the environment with a constant intension. The abstraction created needs a

closure over the entire environment to function correctly. Chapter 5 presents the way in

which uses of the environment are transformed to uses of the context, leaving the only

manipulation of the environment to the wherevar clause. This way, no closure over parts

of the environment is required, and the exact dimensions that need to be retained for the

closure to be correct are made explicit in the Φ parameter that is part of each abstraction

(see §5.3, p.70).

Chapter 6 continues the goal of moving towards an implementation by presenting

eduction, which evaluates a TransLucid expression in a single context, and repeatedly

evaluates any resulting demands for (x, κ) pairs until the result is reached. However,

this naive model leads to huge amounts of repeated computation, and is not effective.

To alleviate this, results are cached. The difficulty with caching is that the dimensions of

relevance are not known until one begins evaluating an expression. To solve this, §6.4 (p.82)

describes a back-and-forth interaction between the evaluator and each cache node, with

§6.6 (p.88) giving an operational semantics of that procedure. This solves a problem

existing in Lucid-like languages ever since multidimensional streams, which goes back to

the original pLucid interpreter [43]; that feature was, in fact, present, but undocumented

because of the lack of a solution. Furthermore, multidimensionality became explicit in

Indexical Lucid [9] in 1995, further compounding the problems, and since then there has

been no complete solution to the problem of caching.

Completing the goal of moving towards an implementation, Chapter 8 presents Con-

crete TransLucid, which builds a complete TransLucid system that takes real input and

produces real output. Concrete TransLucid specifies that the atomic objects provided by

the host system are the base set D for the semantic domain D, and that the operations

provided by the host system are the interpretation of constants ι. These are provided by

the concrete system as the set of atomic objects that can exist in the host environment,

and the set of functions that can operate over them. For these to be accessible inside

the language, concrete syntax is provided for writing down atomic objects in §8.1 (p.143),

along with concrete syntax for expressions. Some of the functionality of the concrete sys-
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tem is built in TransLucid itself, so a minimum set of objects in D is required for the

system to work (§8.2, p.149); these are the Booleans, integers, Unicode characters, and

Unicode strings.

Concrete TransLucid contains a number of declarations, which are all syntactic sugar,

to enrich the programming environment with more useful notation. Many declarations can

be guarded by context regions, and then only the definition applicable will be chosen, so

first a new kind of conditional called bestfitting is defined (§8.4, p.152). Then the different

kinds of declarations are presented: the variable declaration (§8.5, p.155), the function

declaration (§8.6, p.156), the data type declarations (§8.7, p.157), and the operator dec-

larations (§8.8, p.158), which make the syntax for expressions more friendly to the user.

In addition, the system has both a library interface and a textual interface, so that it can

be used by both C++ programs and from the command line.

Finally, the concrete system was extended by adding time (§8.11, p.163), and input

and output (§8.12, p.164), to produce a synchronous reactive system. This system allows

arbitrary multidimensional input to be given to the system, and for the system to produce

multidimensional arrays as output, furthermore, this can be done as the system simulates

clock ticks. The deficiencies in input and output are that in the current implementa-

tion, the means to specify the location of an input or output is quite limited. But the

infrastructure is there for this to be extended.

It is at this point that the development of Lucid comes full circle. The original idea

for Lucid, in 1974, was that a variable was an infinite stream changing through time.

Whilst the semantics of a variable evolved to a multidimensional intension, the semantics

of a system is exactly a set of streams varying through time, which obey the prefix order.

The whole system itself with the relevant inputs and outputs all change through time,

the semantics of which is constrained by the fact that time in this universe continually

advances. The result being that one can only look into the past if it is remembered, the

past cannot be changed, and it is impossible to look into the future. The implications for

input and output are clear, because the order of operations is fixed by the progression of

time, so an input that arrives at time t necessarily arrives before an input at time t + 1,

similarly for producing output.

The problems left by the development of Lucid have been completely solved, with the

implementation of a concrete TransLucid system allowing the user to evaluate TransLucid

expressions, and with the cached evaluator providing an effective and efficient mechanism

for evaluating in a completely dynamic system. This work has left several of its own

problems, and ideas for future work.

The cached semantics left an open problem: by changing the way that dimensions are

allocated to allow the cache to work, not all programs produce the same result as the

denotational semantics. However, we do not consider this to be a problem, since it is

suspected that only programs that would otherwise produce an error, or at least that are

so bizzare that no one would write them, will not be evaluated correctly. Nevertheless, it

is desirable that in the future there be some decidable procedure, i.e., a static semantics,

to determine if a program can be run correctly using the cached semantics.
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Chapter 8 leaves open the problem of a complete semantics of a system abstraction,

with input, output, synchronisation and all that distributed computing entails. Addition-

ally, the idea of a system changing through time, or other physical dimensions, leaves open

numerous possibilities. Some of these are:

• A system becomes a new kind of abstraction, and time is not a special dimension,

but rather, a clocked dimension passed as input from the system’s caller, possibly

declared therein.

• In each instant, there could be a set of environment variables, which are fixed for

that instant, but could take on different values in future instants.

• The exact parameters of numeric data types could differ from one instant to another,

or from one place to another. These parameters include the default precision of fixed-

precision integers or floating-point numbers, whether or not to use overflow-protected

integers, and how to handle floating-point exceptions.

• Multiple systems could be composed into a larger one. A particular case is that of

systolic algorithms. Ideas in this direction were presented by the author with John

Plaice and Blanca Mancilla in [33].

• Assuming advances in the semantics of timed systems, we can envisage more com-

plicated, non-synchronous, compositions of systems.

Finally, it should be stated that since the key semantic and implementation issues of

TransLucid are resolved, attention can be focused more on methodological and parallel

implementation issues. We believe that programming with multidimensional, infinite data

structures in an intensional manner allows programming to be viewed from a completely

new perspective. This intuition will only be confirmed through experimentation with

real problems, such as with multidimensional databases and simulations. With the right

analysis, it should not be long before parallel programming becomes mainstream, with the

programmer writing down the problem, and staying as far from the machine as possible,

so that efficient code can be generated no matter the architecture on which the program

happens to be running.

A glimpse of this is seen in Chapter 4, which presents a geometrical view of intensional

programming, and it is here that the implications of Cartesian Programming can be seen.

In TransLucid, a variable denotes an array, and many common programming problems can

be solved by flattening the data structures used to represent the problem, and iterating

over the resulting (non-hierarchical) arrays. By flattening out the data, and allowing every

part of a computation to be indexed, we have made the data involved in a computation

explicit. In fact this is the purpose of higher-order functions in TransLucid: to structure

data. They are rarely used in the way that a language such as Haskell uses them, which

is to describe computation. So, with the appropriate analysis, data and task parallelism

should become apparent, allowing programs to be reasonably distributed across parallel

computing networks.
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For example, merge sort (§4.12.4, p.63), which is often implemented recursively, in

TransLucid uses no functional recursion, but, instead, recurrence relations to define the

variables used in its definition. It is this explicit definition of the structure of a merge sort

that will allow an optimal implementation to be produced for it, including distribution over

a parallel computing network. Furthermore, there is a vast body of work in the analysis

of dependencies and the generation of iterative and distributed code from systems of

recurrence equations (see [44, 19, 20, 10]). With the appropriate static analysis, it should

not be difficult to implement such a scheme and produce incredibly fast code for evaluating

TransLucid expressions on a wide variety of architectures. There is also a vast body of

work in minimising the memory required to evaluate a system of recurrence equations

(see [36, 6]), so despite the fact that the TransLucid solution creates an array of size

Ω(n2), an optimal implementation will only use Ω(n) memory. The key to all of this is to

determine the rank of each variable in a program, and the dependencies between variables.

By examining the examples presented in Chapter 4, it can be seen that the infinite is

still very relevant to Cartesian programming. Rather than limiting the length of intensions,

programs can be defined much more naturally if one assumes that an intension is being

defined for an infinite number of entries. Then, it is only the demands made of the system

that limits what is computed. In fact, if the demands that will be made of a system can be

determined ahead of time, or at least constrained, then only code relevant to the demands

can be generated.

This should lead naturally to just-in-time compilation for TransLucid. The demand-

driven computation of the current interpreter becomes demand-driven over regions, and

then code specific to the computation of the requested regions can be generated on the fly.

This way, parts of programs that are never demanded, never even have their code gener-

ated. In fact, key to generating efficient code will be the interaction between a completely

static system, a dynamic system with just-in-time compilation, and the cache which ties

them both together. An efficient implementation can be seen as a cache which knows

something about the structure of a program in advance. If the hierarchy of dimensions

required and the dependencies between variables can be determined in advance, caches

with both more efficient memory layout and garbage collection schemes can be generated.

An example of this is an array whose elements are dependent on the previous element,

such as is the case when fby is used: to compute an element of such an array, only the

previous element need be retained. In this case, the cache is a single element, and garbage

collection throws out the old value immediately.

Chapter 7 presents a start on the question of static analysis, and is the most experimen-

tal chapter, by attempting to produce a type inference algorithm that is consistent with

the idea that the principal type of an object is itself. This idea is, in fact, a fundamental

idea in the design of TransLucid, and bestfitting (§8.4, p.152) is implemented with that

in mind, and any future static analysis should also operate based on that principle. The

type inference algorithm presented determines types by generating subtyping constraints,

rather than unification requirements, as is standard in type-inferring functional languages.

This allows the type of an object to be itself, rather than its atomic type, and for inferred
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types to be more precise, by allowing specific union types, such as ranges over integers.

Any static analysis will necessarily not be complete with respect to the denotational

semantics. Therefore, the goal for static analysis is to be as permissive as possible so that

most normal programs pass, but to be strict enough that enough information is gathered

to do something useful with it, such as generate faster code. The type inference chapter

has left a large volume of future work. Rather than making TransLucid a static language,

with a fixed type system, we have started with a completely dynamic system, and future

work is to determine suitable constraints on programs so that static analysis works for

reasonable cases, and can produce extremely efficient parallel code for most reasonable

programs likely to be entered by the user.
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