
New developments in the construction of lattice rules:
applications of lattice rules to high-dimensional integration
problems from mathematical finance.

Author:
Waterhouse, Benjamin James

Publication Date:
2007

DOI:
https://doi.org/10.26190/unsworks/17537

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/40711 in https://
unsworks.unsw.edu.au on 2024-04-29

http://dx.doi.org/https://doi.org/10.26190/unsworks/17537
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/40711
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


New developments in the

construction of lattice rules

Applications of lattice rules to high-dimensional

integration problems from mathematical finance

A thesis presented to

The University of New South Wales

in fulfilment of the thesis requirement

for the degree of

Doctor of Philosophy

by

Benjamin James Waterhouse

May, 2007



Abstract

There are many problems in mathematical finance which require the evaluation

of a multivariate integral. Since these problems typically involve the discreti-

sation of a continuous random variable, the dimension of the integrand can be

in the thousands, tens of thousands or even more.

For such problems the Monte Carlo method has been a powerful and pop-

ular technique. This is largely related to the fact that the performance of the

method is independent of the number of dimensions. Traditional quasi-Monte

Carlo techniques are typically not independent of the dimension and as such

have not been suitable for high-dimensional problems. However, recent work

has developed new types of quasi-Monte Carlo point sets which can be used in

practically limitless dimension. Among these types of point sets are Sobol′ se-

quences, Faure sequences, Niederreiter-Xing sequences, digital nets and lattice

rules. In this thesis, we will concentrate on results concerning lattice rules.

The typical setting for analysis of these new quasi-Monte Carlo point sets is

the worst-case error in a weighted function space. There has been much work

on constructing point sets with small worst-case errors in the weighted Korobov

and Sobolev spaces. However, many of the integrands which arise in the area

of mathematical finance do not lie in either of these spaces. One common

problem is that the integrands are unbounded on the boundaries of the unit

cube. In this thesis we construct function spaces which admit such integrands

and present algorithms to construct lattice rules where the worst-case error in

this new function space is small.

Lattice rules differ from other quasi-Monte Carlo techniques in that the

iii



points can not be used sequentially. That is, the entire lattice is needed to

keep the worst-case error small. It has been shown that there exist generating

vectors for lattice rules which are good for many different numbers of points.

This is a desirable property for a practitioner, as it allows them to keep increas-

ing the number of points until some error criterion is met. In this thesis, we

will develop fast algorithms to construct such generating vectors. Finally, we

apply a similar technique to show how a particular type of generating vector

known as the Korobov form can be made extensible in dimension.

iv



Contents

1 Introduction 1

2 Multivariate integration 7

2.1 Monte Carlo and quasi-Monte Carlo . . . . . . . . . . . . . . . . 7

2.2 Reproducing kernel Hilbert spaces . . . . . . . . . . . . . . . . . 9

2.3 Worst-case error analysis . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Tractability . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Worst-case error formulations . . . . . . . . . . . . . . . 11

2.3.3 QMC mean . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Useful spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Weighted Korobov spaces . . . . . . . . . . . . . . . . . 17

2.4.3 Weighted Sobolev spaces . . . . . . . . . . . . . . . . . . 25

2.4.4 Randomly shifted point sets . . . . . . . . . . . . . . . . 29

2.4.5 Unbiased error estimation . . . . . . . . . . . . . . . . . 30

2.5 Lattice rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Worst-case error formulation . . . . . . . . . . . . . . . . 32

2.5.2 Existence of good lattice rules . . . . . . . . . . . . . . . 33

2.5.3 Optimal rate of convergence . . . . . . . . . . . . . . . . 37

2.6 Construction of good lattice rules . . . . . . . . . . . . . . . . . 40

2.6.1 Korobov form . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.2 Component-by-component algorithm . . . . . . . . . . . 42

2.6.3 Fast component-by-component construction . . . . . . . 48

v



2.7 Applications of multivariate integration to financial mathematics 49

2.7.1 Basic finance problems . . . . . . . . . . . . . . . . . . . 50

2.7.2 Problem formulation . . . . . . . . . . . . . . . . . . . . 50

2.7.3 Application of MC and QMC . . . . . . . . . . . . . . . 53

2.7.4 Covariance matrices . . . . . . . . . . . . . . . . . . . . 54

2.8 Difficulty applying lattice rules to finance problems . . . . . . . 57

3 Multivariate integration for a class of unbounded analytic func-

tions 59

3.1 The function space . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 The univariate case . . . . . . . . . . . . . . . . . . . . . 62

3.1.2 The multivariate case . . . . . . . . . . . . . . . . . . . . 64

3.2 Worst-case error analysis . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 The existence of good generating vectors . . . . . . . . . 71

3.2.2 Component-by-component construction . . . . . . . . . . 77

3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1 Robustness: comparison of worst-case errors . . . . . . . 82

3.3.2 Performance: pricing Asian options . . . . . . . . . . . . 85

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Randomly shifted lattice rules for unbounded integrands 91

4.1 The function space . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.1 The univariate case . . . . . . . . . . . . . . . . . . . . . 92

4.1.2 The multivariate case . . . . . . . . . . . . . . . . . . . . 100

4.2 Worst-case error analysis . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Lattice rules extensible in the number of points 113

5.1 Extensible lattice rules . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 The sieve algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 115

vi



5.2.1 Bounds on the worst-case error . . . . . . . . . . . . . . 116

5.2.2 The sieve principle . . . . . . . . . . . . . . . . . . . . . 118

5.2.3 The sieve algorithm . . . . . . . . . . . . . . . . . . . . . 120

5.3 CBC construction . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 The CBC sieve algorithm . . . . . . . . . . . . . . . . . 123

5.3.2 Optimising the CBC sieve algorithm . . . . . . . . . . . 128

5.3.3 The fast CBC sieve algorithm . . . . . . . . . . . . . . . 129

5.3.4 Theoretical bounds on the algorithm of Cools et al . . . 131

5.4 Numerical testing . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Korobov-form generating vector extensible in the dimension 141

6.1 Construction of extensible rules . . . . . . . . . . . . . . . . . . 142

6.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 145

vii



Acknowledgements

I must begin by thanking my supervisor Professor Ian Sloan and co-supervisor

Frances Kuo, it has been a privilege to work with them. Over the last few years

they have always been wonderfully helpful and supportive, always making time

to answer my questions. They have given me the opportunities to attend many

conferences around the world to meet the leading figures in the field.

Among the people I have had the pleasure of working with over the last three

years I would particularly like to thank my collaborators Grzegorz Wasilkowski,

Josef Dick and Friedrich Pillichshammer as well as my fellow colleagues Henryk

Woźniakowski, Stephen Joe, Dirk Nuyens and Ronald Cools who have been

helpful in many different ways.

The funding support of the Australian Research Council under its Centres

of Excellence program is gratefully acknowledged.

To my office-mates Rob Taggart, Patrick Costello, Petr Stehlik and John

Ormerod, thank you for the laughs, the discussion, wit and banter in between

which I managed to get this thesis written.

Finally I must thank my family, particularly my beautiful wife Emma, for

all their love, support and encouragement over the last few years.

ix



Chapter 1

Introduction

This thesis is concerned with the problem of accurately estimating the value

of the integral of some function over the d-dimensional unit cube [0, 1]d. Such

problems are of major interest in areas such as mathematical finance, where the

value of the dimension d can be very large. These finance problems typically

involve the calculation of some expected value of some payoff function, driven

by a random process. The integral is introduced to calculate the expected

value of a payoff function where the asset price is assumed to possess some

probability distribution. Of course such problems do not arise naturally over

the unit cube, as will become apparent later on. However, we will begin by

assuming that the integrand is defined over the unit cube.

The Monte Carlo method is a popular approach to estimating the value of

the integral. The method involves randomly choosing a number (not necessarily

known in advance) of i.i.d. points, say, t0, t1, . . . , tn−1 ∈ [0, 1]d and evaluating

the function at each point. The approximation to the integral is an equal-

weight average of the function evaluations. As the value of n increases, the

approximation will converge to the true value of the integral.

Quasi-Monte Carlo methods differ from Monte Carlo methods in that rather

than being chosen randomly, the points t0, t1, . . . , tn−1 are chosen determinis-

tically. While there are many different ways in which this point set may be

chosen, we shall be interested in a point sets known as lattice rules. An n-point

1



point set has points given by tk = {kz/n + Δ} for k = 0, 1, . . . , n − 1, where

the integer vector z is known as the generating vector, the vector Δ is known

as the shift, and the braces {·} indicate that we are taking only the fractional

part. We will always assume that the shift Δ is randomly chosen from the unit

cube [0, 1]d. Because of this random shift, we shall refer to our lattice rules as

randomly-shifted lattice rules.

We are interested in constructing good randomly-shifted lattice rules. The

quality of a randomly-shifted lattice rule for a given value of n is completely

determined by the choice of the generating vector z. There are many ways to

measure the quality of a randomly-shifted point set, or equivalently a gener-

ating vector. We will always measure the quality by means of the worst-case

error measurement. This quantity for a particular point set Pn,d is the greatest

difference between the actual value of an integral and its n-point approximation

using Pn,d taken over all functions in the unit ball of some reproducing kernel

Hilbert space. This approach to quality measurement has been extensively

studied recently, most commonly with the weighted Korobov and weighted

Sobolev spaces being popular choices of reproducing kernel Hilbert spaces.

The weights γ = (γ1, γ2, . . .) are a set of positive non-increasing weights which

correspond to the relative importance of the dimensions.

Analysis of these spaces has proven the existence of lattice rules with small

worst-case error and allowed their construction. We will give a more precise

definition to the meaning of “small” in due course. It has been shown that

if suitable assumptions are made about the weights in the space, then the

worst-case error can converge at a rate arbitrarily close to the known optimal

rate.

A key weakness with the choice of a weighted Korobov or weighted Sobolev

space to measure the worst-case error is that many integrands of interest from

the area of mathematical finance do not lie inside the space. This is common

because the integrands are typically defined over the whole plane R
d and then

mapped back to the unit cube [0, 1]d via some inverse cumulative density func-

2



tion. As a result, the integrands are usually unbounded at the boundaries of

the unit cube.

The first part of this thesis aims to solve this problem. We introduce

reproducing kernel Hilbert spaces which admit integrands unbounded on the

boundaries of the unit cube. We show that it is possible to efficiently construct

lattice rules, where the number of points is a power of a prime, which have

a shift-averaged worst-case error less than the QMC mean. While the rate

of convergence is the same as that of the Monte Carlo method and not the

optimal rate, numerical results indicate that the lattice rules do in fact achieve

close to the optimal rate of convergence. The proof of this remains an open

problem.

Most of the material in Chapter 3 is joint work with Ian Sloan and Frances

Kuo and appeared in the paper [65]. In that paper, the results were presented

for the number of points in the lattice being prime, whereas in the thesis

we extend the results to n being a power of a prime. The space introduced

in this chapter is a space of analytic functions which possess the boundary

behaviour of those unbounded integrands arising from financial applications.

We present an algorithm for the construction of lattice rules in this space with

small worst-case error. The idea for the inner product of this space came

from Ian Sloan. My contribution was the proofs to Lemmas 3.1.1 and 3.2.1,

which underpin the proofs of the existence of good lattice rules in the space;

I also proved the Theorems 3.2.3 and 3.2.4 which provide a lower and upper

bound to the worst case error. I also proved Theorem 3.2.5 which shows that

the CBC algorithm does indeed construct a generating vector with worst-case

error inside this bound. All of the numerical experiments and programming

including the implementation of the fast CBC algorithm were my work as well.

The material in Chapter 4 is joint work with Greg Wasilkowski and Frances

Kuo and has appeared in [37]. Again the results in the paper were for n prime,

whereas the thesis presents results for n being the power of a prime. Chapter 4

is in many ways an extension of Chapter 3. The space of functions is much

3



broader, admitting functions whose mixed first derivatives, when multiplied

by some weight function ψd, are bounded in the L2-norm. Similar analysis

of the space is carried out and a construction algorithm developed for lattice

rules with small worst-case error. The idea for the space was due to Greg

Wasilkowski. This work was reliant on my proof of Lemma 3.2.1 from the pre-

vious chapter, as well as Lemma 4.1.6. I made the suggestion to normalise the

worst-case errors by scaling the weights by some constant to allow comparison

of worst-case errors with different weights. All of the numerical experiments

and programming were my work.

Many of the competing quasi-Monte Carlo alternatives take the form of

sequences. That is, the final number of points used in the approximation

need not be known in advance. This is an attractive feature because it allows

a practitioner to use as many points as required to obtain a given level of

accuracy. Since the points in a lattice rule are dependent on the n, the number

of points in the lattice must be known in advance. Should the accuracy not

be good enough and additional points required, the process must begin again

with a different lattice rule and therefore different points. This feature make

lattice rules unattractive to a practitioner.

It has been shown that there exist generating vectors z which have small

worst-case error for n = b, b2, b3, . . . for any integer b ≥ 2. Until now, there

has been no proven way of constructing such a vector. In Chapter 5 we de-

velop an algorithm to construct generating vectors which achieve the optimal

rate of convergence for n = pm1 , pm1+1, . . . , pm2 for any prime p and positive

integers m1 ≤ m2. This material is joint work with Josef Dick and Friedrich

Pillichshammer and will appear in [11]. We will also note how this can be sim-

ply extended so that the algorithm works for n = bm1 , bm1+1, . . . , bm2 for any

integer b ≥ 2. The initial approach to proving this construction algorithm via

a counting argument was developed independently by Friedrich Pillichsham-

mer and myself. Josef Dick made the suggestion of including a probabilistic

approach with which we were able to prove that squared worst-case error is

4



less than some constant times the QMC mean. I also extended the proof to

show that the algorithm achieved the optimal rate of convergence. Methods

of optimising the performance of the algorithm were my idea. All of the pro-

gramming and computational results were also my work. The paper [11] also

contains an extension of this algorithm for constructing lattice rules with small

weighted star-discrepancy which was my work.

Finally, the techniques used in Chapter 5 are also used to construct a

Korobov-form generating vector which is extensible in dimension. The ex-

istence of such vectors has been known, but these results have until now been

non-constructive. This joint work with Josef Dick and Friedrich Pillichsham-

mer forms Chapter 6 and will appear in [12]. My contribution to this work

was in the proof that the algorithm described does in fact achieve the optimal

rate of convergence. All of the numerical experiments were my work.

5



Chapter 2

Multivariate integration

This chapter is a summary of the field of multivariate integration. It is intended

as a broad introduction to the new material in the following chapters.

We are interested in approximating an integral over the d-dimensional unit

cube

Id(f) =

∫
[0,1]d

f(x) dx (2.1)

with an n-point equal weight quadrature rule of the form

Qn,d(f) =
1

n

n−1∑
k=0

f(tk). (2.2)

The point set Pn,d = {t0, t1, . . . , tn−1} consists of points in the d-dimensional

unit cube. As will be seen below, we will typically assume that the function f

belongs to some reproducing kernel Hilbert space of integrable functions. We

are interested primarily in cases where the dimension d is large. Examples of

typical problems from mathematical finance (see below in Section 2.7) require

d to be in the hundreds, thousands and even larger.

2.1 Monte Carlo and quasi-Monte Carlo

If the points in the point set Pn,d are independent and identically distributed

random samples from the unit cube, then we shall refer to (2.2) as a Monte

7



Carlo (MC) method. The MC method has the following important classical

result.

Theorem 2.1.1 For all square-integrable functions f

E[Id(f) − Qn,d(f)]2 =
σ2(f)

n
,

where the variance of f is given by

σ2(f) = Id(f
2) − [Id(f)]2 .

The MC method has proven very useful for high-dimensional problems be-

cause the error bound in Theorem 2.1.1 has convergence of order O(n−1) in-

dependent of the dimensional d. Of course the variance σ2(f) may depend on

d. However, MC does have three fundamental weaknesses.

The first weakness is the rate of convergence. The error of the MC method

converges with order O(n−1/2). We shall see later that it is possible to construct

point sets which have a rate of convergence of order O(n−1), or even faster if

there is more smoothness present.

The second weakness is the way in which any smoothness in the integrand

is ignored. We should exploit the greater levels of smoothness to achieve higher

orders of convergence.

Finally, the error bounds achieved by the MC method are probabilistic. It

would be preferable to know with certainty that a particular rule has a certain

error.

We will attempt to choose point sets Pn,d from the unit cube which perform

better in the integration problem than MC. Such point sets where the points are

chosen in some deterministic manner are known as quasi-Monte Carlo (QMC)

methods. We shall seek point sets which have a faster rate of convergence

than MC, which exploit the smoothness of the integrand and which allow us

to determine upper bounds on the error.

8



2.2 Reproducing kernel Hilbert spaces

We shall see below that it is very often convenient to assume that the function

f belongs to a reproducing kernel Hilbert space Hd of integrable functions

on [0, 1]d. This approach is now widely used in numerical analysis and other

areas to define function classes of integrands. The theory of reproducing kernel

Hilbert spaces was first developed in [2]. See also [22] where reproducing kernel

Hilbert spaces were used to investigate numerical integration.

The reproducing kernel of a reproducing kernel Hilbert space Hd is a func-

tion Kd : [0, 1]d × [0, 1]d → R where

Kd(·, y) ∈ Hd for all y ∈ [0, 1]d

and

〈f, Kd(·, y)〉Hd
= f(y) for all y ∈ [0, 1]d and f ∈ Hd

where 〈·, ·〉Hd
denotes the inner product of Hd, and ‖·‖Hd

= 〈·, ·〉1/2
Hd

denotes the

corresponding norm.

A reproducing kernel Hilbert space is a Hilbert space were point evaluation

is a bounded linear functional on Hd. This is equivalent to assuming that the

Hilbert space is equipped with a reproducing kernel. To show this, assume

that point evaluation is a bounded linear functional and let

Ty(f) = f(y) for all y ∈ [0, 1]d and f ∈ Hd.

For any y ∈ [0, 1]d by the Riesz representation theorem there exists a unique

function Kd(·, y) ∈ Hd, called the representer of Ty(f), such that for all y ∈
[0, 1]d

Ty(f) = f(y) = 〈f, Kd(·, y)〉Hd
for all f ∈ Hd. (2.3)

Note that any reproducing kernel is symmetric in its arguments, since for all

x, y ∈ [0, 1]d

Kd(x, y) = 〈Kd(·, y), Kd(·, x)〉Hd
= 〈Kd(·, x), Kd(·, y)〉Hd

= Kd(y, x).

9



For any other bounded linear functional T on Hd the representer T̃ satisfying

T (f) =
〈
f, T̃

〉
Hd

is given by

T̃ (y) =
〈
T̃ , Kd(·, y)

〉
Hd

=
〈
Kd(·, y), T̃

〉
Hd

= T (Kd(·, y)). (2.4)

The function spaces we will deal with will always be tensor product spaces.

Let H
(1)
1 , . . . , H

(d)
1 be d one-dimensional Hilbert spaces over [0, 1], then the

tensor product space

Hd = H
(1)
1 ⊗ . . . ⊗ H

(d)
1 (2.5)

is the completion of linear combinations of tensor products f1 ⊗ · · ·⊗ fd where

fj ∈ H
(j)
1 for j = 1, . . . , d. The space Hd consists of functions of the form

f(x) =

∞∑
h1=1

· · ·
∞∑

hd=1

(
ch1,...,hd

d∏
j=1

fj,hj
(xj)

)
,

where the real coefficients ch1,...,hd
satisfy

∞∑
h1=1

· · ·
∞∑

hd=1

c2
h1,...,hd

< ∞,

and for each j = 1, . . . , d, {fj,h}∞h=1 forms an orthonormal basis for H
(j)
1 . If

each H
(j)
1 has a reproducing kernel K

(j)
1 , then

Kd(x, y) =
d∏

j=1

K
(j)
1 (xj , yj)

is the reproducing kernel for Hd.

2.3 Worst-case error analysis

We would like to determine a point set Pn,d such that the QMC rule (2.2) is a

good approximation to the integral (2.1). We will always perform our analysis

in the worst-case setting. That is, we will define the worst-case error to be

en,d(Pn,d; Kd) = sup
f∈Hd,‖f‖Hd

≤1

| Id(f) − Qn,d(f) | ,

10



where Pn,d is the point set used in (2.2) and Kd is the reproducing kernel of the

reproducing kernel Hilbert space Hd. This quantity corresponds to the worst

error of the point set over all functions in the unit ball of Hd. We will often

compare this to the initial error which we define to be

e0,d(Kd) = sup
f∈Hd,‖f‖Hd

≤1

| Id(f) | .

2.3.1 Tractability

We will often be interested in reducing the initial error e0,d by some factor.

For a reproducing kernel Hilbert space Hd, with reproducing kernel Kd and

ε ∈ (0, 1), we define the minimum number of quadrature points needed to

reduce the initial error by a factor of ε−1 by

n(ε, d; Kd) = min{n : ∃Pn,d such that en,d(Pn,d; Kd) ≤ εe0,d(Kd)}.

We say that multivariate integration is QMC tractable in the space Hd if

and only if there exist non-negative constants C, p and q, independent of ε and

d such that

n(ε, d; Kd) ≤ Cε−pdq for all ε ∈ (0, 1) and d ≥ 1.

Note that p and q may not be uniquely defined.

We say that multivariate integration is strongly QMC tractable in the space

Hd if it is QMC tractable with q = 0.

In each case, p is known as the ε-exponent of tractability and q is known

as the d-exponent of tractability.

2.3.2 Worst-case error formulations

The advantage of considering functions from a reproducing kernel Hilbert space

is seen in the following well-known theorem.

11



Theorem 2.3.1 The worst-case error for a QMC rule with point set Pn,d =

{t0, t1, . . . , tn−1} in a reproducing kernel Hilbert space Hd with reproducing

kernel Kd where ∫
[0,1]2d

Kd(x, y) dx dy < ∞ (2.6)

is given by

e2
n,d(Pn,d; Kd) (2.7)

=

∫
[0,1]2d

Kd(x, y) dx dy − 2

n

n−1∑
i=0

∫
[0,1]d

Kd(ti, y) dy +
1

n2

n−1∑
i=0

n−1∑
k=0

Kd(ti, tk).

The initial error satisfies

e2
0,d(Kd) =

∫
[0,1]2d

Kd(x, y) dx dy.

Proof. Due to the assumption (2.6), both Id and Qn,d are bounded linear func-

tionals on Hd. Using (2.4), we can write

Id(f) − Qn,d(f) = 〈f, ξn,d〉Hd

where the representer ξn,d is given by

ξn,d = Id(Kd(·, y)) − Qn,d(Kd(·, y)) =

∫
[0,1]d

Kd(x, y) dx − 1

n

n−1∑
i=0

Kd(ti, y).

The Cauchy-Schwarz inequality gives an error bound of

|Id(f) − Qn,d(f)| = | 〈f, ξn,d〉Hd
| ≤ ‖f‖Hd

‖ξn,d‖Hd
.

To show that the inequality is sharp, we take f to be ξn,d. In this case, the

worst-case error is

|Id(f) − Qn,d(f)| = | 〈ξn,d, ξn,d〉Hd
| = ‖ξn,d‖2

Hd

which means that

en,d(Pn,d; Kd) = ‖ξn,d‖Hd
.

12



We now express the worst-case error in terms of the reproducing kernel Kd for

a given point set Pn,d = {t0, t1, . . . , tn−1} by writing

e2
n,d(Pn,d; Kd)

=

∥∥∥∥∥
∫

[0,1]d
Kd(x, ·) dx − 1

n

n−1∑
i=0

Kd(ti, ·)
∥∥∥∥∥

2

Hd

=

〈∫
[0,1]d

Kd(x, ·) dx − 1

n

n−1∑
i=0

Kd(ti, ·),
∫

[0,1]d
Kd(x, ·) dx − 1

n

n−1∑
i=0

Kd(ti, ·)
〉

Hd

=

〈∫
[0,1]d

Kd(x, ·) dx,

∫
[0,1]d

Kd(x, ·) dx

〉
Hd

− 2

n

n−1∑
i=0

〈∫
[0,1]d

Kd(x, ·) dx, Kd(ti, ·)
〉

Hd

+
1

n2

n−1∑
i=0

n−1∑
k=0

〈Kd(ti, ·), Kd(tk, ·)〉Hd

=

∫
[0,1]2d

Kd(x, y) dx dy − 2

n

n−1∑
i=0

∫
[0,1]d

Kd(ti, y) dy +
1

n2

n−1∑
i=0

n−1∑
k=0

Kd(ti, tk).

The initial error is given by

e2
0,d(Kd) =

∥∥∥∥∫
[0,1]d

Kd(x, ·) dx

∥∥∥∥2

Hd

=

∫
[0,1]2d

Kd(x, y) dx dy.

�

Following [28], we will see that the expression in (2.7) can be simplified

if the reproducing kernel is shift-invariant. This property means that the

reproducing kernel satisfies

Kd(x, y) = Kd({x + Δ}, {y + Δ}) for all x, y,Δ ∈ [0, 1]d (2.8)

where the braces denote the fractional part of each component of the vector.

Taking Δ = −y, we see that for all shift-invariant kernels

Kd(x, y) = Kd({x − y}, 0) for all x, y ∈ [0, 1]d.

This allows us to simplify Theorem 2.3.1.

Theorem 2.3.2 The worst-case error for a QMC rule with point set Pn,d =

{t0, t1, . . . , tn−1} in a reproducing kernel Hilbert space Hd with shift-invariant

13



reproducing kernel Kd is given by

e2
n,d(Pn,d; Kd) = −

∫
[0,1]d

Kd(x, 0) dx +
1

n2

n−1∑
i=0

n−1∑
k=0

Kd({ti − tk}, 0). (2.9)

The initial error satisfies

e2
0,d(Kd) =

∫
[0,1]d

Kd(x, 0) dx.

Proof. The proof follows from Theorem 2.3.1 noting that∫
[0,1]d

Kd(x, y) dy =

∫
[0,1]d

Kd({x − y}, 0) dy =

∫
[0,1]d

Kd(u, 0) du

and ∫
[0,1]2d

Kd(x, y) dx dy =

∫
[0,1]d

Kd(u, 0) du

�

For a point set Pn,d = {t0, t1, . . . , tn−1} and a shift Δ ∈ [0, 1]d, define the

shifted point set Pn,d(Δ) to be the point set with points

{t0 + Δ}, {t1 + Δ}, . . . , {tn−1 + Δ}.

For any reproducing kernel Kd, we define the associated shift-invariant ker-

nel, denoted by Ksh
d , to be

Ksh
d (x, y) =

∫
[0,1]d

Kd({x + Δ}, {y + Δ}) dΔ.

Putting these two concepts together, we obtain the shift-invariant relation-

ship.

Theorem 2.3.3 For any reproducing kernel Kd and associated shift-invariant

kernel, and any point set Pn,d∫
[0,1]d

e2
n,d(Pn,d(Δ); Kd) dΔ = e2

n,d(Pn,d; K
sh
d ).

14



Proof. We begin by noting that the right-hand side is

e2
n,d(Pn,d; K

sh
d ) = −

∫
[0,1]d

Ksh
d (x, 0) dx +

1

n2

n−1∑
i=0

n−1∑
k=0

Ksh
d ({ti − tk}, 0)

and that∫
[0,1]d

Ksh
d (x, 0) dx =

∫
[0,1]2d

Kd({x+Δ},Δ) dΔ dx =

∫
[0,1]2d

Kd(u,Δ) dΔ du.

Following some manipulations

e2
n,d(Pn,d(Δ); Kd) =

∫
[0,1]2d

Kd(x, y) dx dy − 2

n

n−1∑
i=0

∫
[0,1]d

Kd({ti + Δ}, y) dy

+
1

n2

n−1∑
i=0

n−1∑
k=0

Kd({ti + Δ}, {tk + Δ}).

Integration over all possible shifts Δ ∈ [0, 1]d gives∫
[0,1]d

e2
n,d(Pn,d(Δ); Kd) dΔ

=

∫
[0,1]2d

Kd(x, y) dx dy − 2

n

n−1∑
i=0

∫
[0,1]2d

Kd({ti + Δ}, y) dΔdy

+
1

n2

n−1∑
i=0

n−1∑
k=0

∫
[0,1]d

Kd({ti + Δ}, {tk + Δ}) dΔ

=

∫
[0,1]2d

Kd(x, y) dx dy − 2

∫
[0,1]2d

Kd(x, y) dx dy +
1

n2

n−1∑
i=0

n−1∑
k=0

Ksh
d (ti, tk)

= −
∫

[0,1]2d

Kd(x, y) dx dy +
1

n2

n−1∑
i=0

n−1∑
k=0

Ksh
d ({ti − tk}, 0)

= −
∫

[0,1]d
Ksh

d (x, 0) dx +
1

n2

n−1∑
i=0

n−1∑
k=0

Ksh
d ({ti − tk}, 0).

�

This result will prove to be extremely important. It says that the worst-case

error of a shifted point set, averaged over possible shifts, can be explicity

written down. This implies that there must exist at least one shift Δ such

that

e2
n,d(Pn,d(Δ); Kd) ≤ e2

n,d(Pn,d; K
sh
d ). (2.10)

15



2.3.3 QMC mean

One useful measure of the quality of a point set Pn,d is to compare its worst-

case error to the QMC mean. The QMC mean is defined to be the square

root of the average of the squared worst-case error over all possible point sets.

Formally, for a reproducing kernel Hilbert space Hd with reproducing kernel

Kd we define the QMC mean Mn,d by

M2
n,d =

∫
[0,1]nd

e2
n,d(t0, t1, . . . , tn−1; Kd) dt0 dt1 · · · dtn−1. (2.11)

Since M2
n,d represents the average of e2

n,d(Pn,d; Kd) over all point sets Pn,d, we

know that there must exist at least one point set Pn,d as good as average. That

is, at least one point set Pn,d where

en,d(Pn,d; Kd) ≤ Mn,d. (2.12)

The quantity Mn,d can be viewed as an upper bound on the minimal worst-case

error.

2.4 Useful spaces

Two of the more commonly examined spaces are the weighted Korobov and

weighted Sobolev spaces. In this section we will formally define each space

and establish its worst-case error and QMC error. We begin with some brief

comments on the weights in these spaces.

2.4.1 Weights

We will see that it is often useful not to assume that each variable is equally

important. Sloan and Woźniakowski [56] introduced a non-negative and non-

increasing sequence of weights γ = (γ1, γ2, . . .) to express the importance of

each variable. That is, the weight γj symbolises the importance of the j-th

variable xj .

16



Weights of this type are known as product weights and are in fact a subset

of the general weights γu which describes the importance of a set of variables

xu = {xj : j ∈ u} (see [13, 14, 55]). Other special types of weights include

finite-order weights and order-dependent weights. In this thesis, we will restrict

ourselves to the use of product weights.

2.4.2 Weighted Korobov spaces

Here we give an overview of the weighted Korobov space. For a deeper study

see [29, 57].

The univariate case

The univariate weighted Korobov space Hper,1,α,γ is the space of 1-periodic

absolutely-integrable functions f on the unit interval with an absolutely con-

vergent Fourier series

f(x) = f̂(0) +
∑′

h∈Z

f̂(h)e2πihx

and Fourier coefficients

f̂(h) =

∫ 1

0

f(x)e−2πihx dx,

where i =
√−1 and the notation

∑′ indicates a summation with the zero

term excluded. The inner product of the space Hper,1,α,γ is given by

〈f, g〉Hper,1,α,γ
=f̂(0)ĝ(0) +

2π2

γ

∑′

h∈Z

|h|αf̂(h)ĝ(h)

=
∑
h∈Z

rα(h, γ)f̂(h)ĝ(h)

where

rα(h, γ) =

⎧⎪⎨⎪⎩ 1 if h = 0,

2π2|h|α
γ

if h 
= 0.

The corresponding norm is given by

‖f‖Hper,1,α,γ
= 〈f, f〉1/2

Hper,1,α,γ
=

(∑
h∈Z

rα(h, γ)|f̂(h)|2
)1/2

.

17



The parameter α restricts the convergence of the Fourier coefficients of the

functions in the Korobov space. The reproducing kernel of the space Hper,1,α,γ

is given by

Kper,1,α,γ(x, y) = 1 +
γ

2π2

∑′

h∈Z

e2πih(x−y)

|h|α =
∑
h∈Z

e2πih(x−y)

rα(h, γ)
. (2.13)

Throughout the thesis we will assume that α > 1 so the reproducing kernel is

well-defined. The space Hper,1,α,γ is formally defined to be

Hper,1,α,γ = {f : ‖f‖Hper,1,α,γ
< ∞}.

It is easy to see that Kper,1,α,γ is a reproducing kernel. We note that for all

y ∈ [0, 1] the Fourier coefficients of Kper,1,α,γ(·, y) are

K̂per,1,α,γ(h, y) =
e−2πihy

rα(h, γ)
.

It follows that for all f ∈ Hper,1,α,γ

〈f, Kper,1,α,γ(·, y)〉Hper,1,α,γ
=
∑
h∈Z

rα(h, γ)f̂(h)K̂per,1,α,γ(h, y)

=
∑
h∈Z

f̂(h)e2πihy

=f(y).

Remark 2.4.1 The definition given here for the weighted Korobov space dif-

fers slightly from the conventional definition in that the weights γj are replaced

by γj/2π2 for j = 1, 2, . . .. This is done to simplify the relationship between

the weighted Korobov space and the weighted Sobolev space as will be seen in

Remark 2.4.5.

The multivariate case

As seen in (2.5) of Section 2.2, the d-dimensional weighted Korobov space

Hper,d,α,γ is given by

Hper,d,α,γ = Hper,1,α,γ1 ⊗ Hper,1,α,γ2 ⊗ · · · ⊗ Hper,1,α,γd
.

18



The inner product of the space Hper,d,α,γ is given by

〈f, g〉Hper,d,α,γ
=
∑
h∈Zd

rα(h, γ)f̂(h)ĝ(h),

where for h = (h1, . . . , hd),

rα(h, γ) =

d∏
j=1

rα(hj, γj).

The norm for the d-dimensional case is

‖f‖Hper,d,α,γ
= 〈f, f〉1/2

Hper,d,α,γ
=

(∑
h∈Zd

rα(h, γ)|f̂(h)|2
)1/2

.

The space Hper,d,α,γ has a reproducing kernel of the form [22]

Kper,d,α,γ(x, y) =
d∏

j=1

Kper,1,α,γj
(xj , yj)

=
d∏

j=1

(
1 +

γj

2π2

∑′

h∈Z

e2πih(xj−yj)

|h|α
)

=
d∏

j=1

∑
h∈Z

e2πih(xj−yj)

rα(h, γj)

=
∑
h∈Zd

e2πih·(x−y)

rα(h, γ)
. (2.14)

The space Hper,d,α,γ is formally defined to be

Hper,d,α,γ = {f : ‖f‖Hper,d,α,γ
< ∞}.

Worst-case error

Using equations (2.13) and (2.14) we see immediately that the reproducing

kernels Kper,1,α,γ and Kper,d,α,γ are shift-invariant, that is, they satisfy the shift-

invariant property given in (2.8). Therefore, using Theorem 2.3.2 and some

simple algebraic manipulation we may write the worst-case error for a point

19



set Pn,d = {t0, t1, . . . , tn−1} in the d-dimensional Korobov space as

e2
n,d(Pn,d; Kper,d,α,γ)

= −
∫

[0,1]d
Kper,d,α,γ(x, 0) dx +

1

n2

n−1∑
i=0

n−1∑
k=0

Kper,d,α,γ({ti − tk}, 0)

= −1 +
1

n2

n−1∑
i=0

n−1∑
k=0

d∏
j=1

(
1 +

γj

2π2

∑′

h∈Z

e2πih(ti,j−tk,j)

|h|α
)

(2.15)

= −1 +
1

n2

n−1∑
i=0

n−1∑
k=0

∑
h∈Zd

e2πih·(ti−tk)

rα(h, γ)
, (2.16)

with the initial error given by e2
0,d(Kper,d,α,γ) = 1.

Upper bounds on the minimal error and the QMC mean

Using (2.11) we see that the QMC mean for the Korobov space is given by

M2
per,n,d,α,γ =

∫
[0,1]nd

(
−1 +

1

n2

n−1∑
i=0

n−1∑
k=0

∑
h∈Zd

e2πih·(ti−tk)

rα(h, γ)

)
dt0 · · · dtn−1

=
1

n

(
d∏

j=1

(
1 +

γjζ(α)

π2

)
− 1

)
, (2.17)

where ζ(α) =
∑∞

k=1
1

kα is the Riemann zeta function.

It follows from the averaging argument that there must exist one point set

Pn,d = {t0, t1, . . . , tn−1} such that

e2
n,d(Pn,d; Kper,d,α,γ) ≤ 1

n

(
d∏

j=1

(
1 +

γjζ(α)

π2

)
− 1

)
= M2

per,n,d,α,γ. (2.18)

Lower bounds on the minimal error

We have just seen in (2.18) that the upper bound on the minimal error is

M2
per,n,d,α,γ. We will now show that it is possible to get a lower bound on this

minimal error.

Theorem 2.4.2 (Sloan and Woźniakowski[57]) For any point set Pn,d =

{t0, t1, . . . , tn−1}

e2
per,n,d,α,γ(Pn,d; Kper,d,α,γ) ≥ 1

n

d∏
j=1

(
1 +

κγjζ(α)

π2

)
− 1

20



where

κ = min

(
1,

π2

γ1|gmin|
)

and gmin is the minimum of the function

g(u) =

∞∑
h=1

cos(2πhu)

|h|α , u ∈ [0, 1].

Proof. Consider another sequence of non-negative, non-increasing weights γ̄ =

(γ̄1, γ̄2, . . .) such that γ̄j ≤ γj for j = 1, 2, . . .. We see that for all j = 1, 2, . . .

and all h ∈ Z that this implies that rα(h, γj) ≤ rα(h, γ̄j). Using the definition

of the norms in the weighted Korobov space, all functions which lie in the unit

ball of the space Hper,d,α,γ̄ must also lie in the unit ball of the space Hper,d,α,γ

since

‖f‖Hper,d,α,γ
≤ ‖f‖Hper,d,α,γ̄

, for all f ∈ Hper,d,α,γ̄.

By the definition of the worst-case error, we have that

e2
n,d(Pn,d; Kper,d,α,γ̄) ≤ e2

n,d(Pn,d; Kper,d,α,γ).

Also note that

gmax = max
u∈[0,1]

g(u) = g(0) = ζ(α).

Since there is no value of u such that cos(2πhu) = −1 for all h = 1, 2, . . .,

it follows that gmin > −gmax, which implies |gmin| < gmax. We see that

Kper,d,α,γ̄(x, y) can be written as

Kper,d,α,γ̄(x, y) =

d∏
j=1

(
1 +

γ̄j

2π2

∑′

h∈Z

e2πih(xj−yj)

|h|α
)

=

d∏
j=1

(
1 +

γ̄j

2π2

∑′

h∈Z

cos(2πh(xj − yj))

|h|α
)

=

d∏
j=1

(
1 +

γ̄j

π2
g(xj − yj)

)
.

Taking γ̄j = κγj for all j, we see that each factor 1+
γ̄j

π2 g(xj−yj) is non-negative

since,

1 +
γ̄j

π2
g(u) = 1 +

κγj

π2
g(u) ≥ 1 − κγj

π2
|gmin| ≥ 1 − κγ1

π2
|gmin| ≥ 0

21



and noting that cos(x − y) = cos(|x − y|) for all x, y ∈ [0, 1].

Therefore, we can write down the worst-case error of the space Hper,d,α,γ̄

with γ̄j = κγj to be

e2
n,d(Pn,d; Kper,d,α,γ̄) = −1 +

1

n2

n−1∑
i=0

n−1∑
k=0

d∏
j=1

(1 +
κγj

π2
g(ti,j − tk,j)).

Since all the factors in the product are non-negative, we can bound this quan-

tity from below by excluding all the terms where i 
= k. This gives us

e2
n,d(Pn,d; Kper,d,α,γ̄) ≥ −1 +

1

n2

n−1∑
i=0

d∏
j=1

(
1 +

κγj

π2
g(0)

)
=

1

n

d∏
j=1

(
1 +

κγjζ(α)

π2

)
− 1.

Since, as shown above, en,d(Pn,d; Kper,d,α,γ̄) ≤ e2
n,d(Pn,d; Kper,d,α,γ), this is also a

lower bound to e2
n,d(Pn,d; Kper,d,α,γ). �

Tractability

In Section 2.3.1 we introduced the concept of tractability. Using the upper

and lower bounds on the minimal error found above, we are able to establish

sufficient and necessary conditions for tractability and strong tractability in

the weighted Korobov space. We defined the quantity

n(ε, d; Kd) = min{n : ∃Pn,d such that en,d(Pn,d; Kd) ≤ εe0,d(Kd)}

which denotes the smallest number of points we require so that there exists a

point set where the worst-case error en,d(Pn,d; Kd) is reduced from the initial

error e0,d(Kd) by a factor of ε−1, for ε ∈ (0, 1).

Using the upper bound on e2
n,d(Pn,d; Kper,d,α,γ) found in (2.18), and initial

error e0,d(Kper,d,α,γ) = 1, we see that

1

n

(
d∏

j=1

(
1 +

γjζ(α)

π2

)
− 1

)
≤ ε2

22



implies

n(ε, d; Kper,d,α,γ) ≤ 1

ε2

d∏
j=1

(
1 +

γjζ(α)

π2

)
.

If we use the fact that
∏d

j=1 xj = exp
(∑d

j=1 log xj

)
, this becomes

n(ε, d; Kper,d,α,γ) ≤ 1

ε2
exp

(
d∑

j=1

log

(
1 +

γjζ(α)

π2

))
.

Finally, using log(1 + x) ≤ x for all x > −1 we see that

n(ε, d; Kper,d,α,γ) ≤ 1

ε2
exp

(
ζ(α)

π2

d∑
j=1

γj

)
.

Similarly, the lower bound on e2
n,d(Pn,d; Kper,d,α,γ) seen in Theorem 2.4.2

says that

e2
n,d(Pn,d; Kper,d,α,γ) ≥ 1

n

d∏
j=1

(
1 +

κγjζ(α)

π2

)
− 1

which implies that

n(ε, d; Kper,d,α,γ) ≥ 1

1 + ε2

d∏
j=1

(
1 +

κγjζ(α)

π2

)
,

which can be written as

n(ε, d; Kper,d,α,γ) ≥ 1

1 + ε2
exp

(
d∑

j=1

log

(
1 +

κγjζ(α)

π2

))
.

Now, define the function

Ψ(x) = log(1 + x) − bαx, where bα =
log(1 + κγ1ζ(α)/π2)

κγ1ζ(α)/π2
.

Clearly

Ψ(0) = 0, Ψ(κγ1ζ(α)/π2) = 0 and Ψ′′(x) = − 1

(1 + x)2
< 0.

Therefore, for all x ∈ [0, κγ1ζ(α)/π2], log(1 + x) ≥ bαx, which gives

n(ε, d; Kper,d,α,γ) ≥ 1

1 + ε2
exp

(
bακζ(α)

π2

d∑
j=1

γj

)
.

23



Putting the upper and lower bounds together, we get

1

1 + ε2
exp

(
bακζ(α)

π2

d∑
j=1

γj

)
≤ n(ε, d; Kper,d,α,γ) ≤ 1

ε2
exp

(
ζ(α)

π2

d∑
j=1

γj

)
.

(2.19)

The conditions for tractability and strong tractability can be put in the

following theorem.

Theorem 2.4.3 (Sloan and Woźniakowski [57]) For a sequence of non-

increasing, non-negative weights γ = (γ1, γ2, . . .), the integration problem (2.2)

in a weighted Korobov space Kper,d,α,γ of functions is

1. strongly tractable if and only if

∞∑
j=1

γj < ∞ (2.20)

where the ε-exponent of strong tractability is at most 2,

2. tractable if and only if

β = lim sup
d→∞

∑d
j=1 γj

log(d + 1)
< ∞ (2.21)

where the ε-exponent of tractability is at most 2 and the d-exponent of

tractability can be arbitrarily close to ζ(α)β/π2.

Proof. We begin by showing that (2.20) is a sufficient and necessary condition

for strong tractability. If
∑∞

j=1 γj < ∞, then

n(ε, d; Kper,d,α,γ) ≤ 1

ε2
exp

(
ζ(α)

π2

∞∑
j=1

γj

)
≤ Cε−2

for some constant C which is independent of d. This proves the sufficiency

of (2.20). If (2.20) does not hold, then the lower bound of (2.19) means that

as d → ∞, the quantity n(ε, d; Kper,d,α,γ) → ∞, which contradicts strong

tractability. Thus (2.20) is a sufficient and necessary condition for strong

tractability.

24



To prove the tractability conditions, we first make use of the observation

ex = (d + 1)x/ log(d+1). This allows us to write (2.19) as

1

1 + ε2
(d + 1)

bακζ(α)

π2

Pd
j=1

γj
log(d+1) ≤ n(ε, d; Kper,d,α,γ) ≤ 1

ε2
(d + 1)

ζ(α)

π2

Pd
j=1

γj
log(d+1) .

(2.22)

If β = lim supd→∞
Pd

j=1 γj

log(d+1)
< ∞ then for any δ > 0 there exists some dδ such

that
d∑

j=1

γj ≤ (β + δ) log(d + 1), for all d ≥ dδ.

Therefore, the right-hand inequality of (2.22) implies

n(ε, d; Kper,d,α,γ) ≤ ε−2(d + 1)
ζ(α)

π2 (β+δ)

for all d ≥ dδ. So there must exist a constant Cδ such that for all d ≥ 1,

n(ε, d; Kper,d,α,γ) ≤ Cδε
−2d

ζ(α)

π2 (β+δ).

Since this holds for any δ > 0, tractability with ε-exponent at most 2 and

the d-exponent arbitrarily close to ζ(α)β/π2. To prove the necessity, we again

observe that if β = ∞, then by the lower bound of (2.22) with d → ∞, we

obtain n(ε, d; Kper,d,α,γ) → ∞ which contradicts tractability. �

2.4.3 Weighted Sobolev spaces

The second space commonly used in the analysis of multivariate integration

problems is the weighted Sobolev space. For a deeper look at this space see

[53].

The univariate case

The univariate weighted Sobolev space Hsob,1,γ is the space of absolutely-

continuous functions f on the unit interval with square-integrable first deriva-

tives. The inner product of the space Hsob,1,γ is given by

〈f, g〉Hsob,1,γ
=

∫ 1

0

f(x) dx

∫ 1

0

g(x) +
1

γ

∫ 1

0

f ′(x)g′(x) dx.

25



The corresponding norm is given by

‖f‖Hsob,1,γ
= 〈f, f〉1/2

Hsob,1,γ
=

((∫ 1

0

f(x) dx

)2

+
1

γ

∫ 1

0

f ′(x)2 dx

)1/2

and the reproducing kernel of the space Hsob,1,γ is

Ksob,1,γ(x, y) = 1 + γ
(

1
2
B2 (|x − y|) + (x − 1

2
)(y − 1

2
)
)

(2.23)

The function B2 (x) = x2 − x + 1
6
, x ∈ [0, 1] is the Bernoulli polynomial of

degree 2. It is sometimes convenient to use the form

B2 (x) =
1

2π2

∑′

h∈Z

e2πihx

h2
, x ∈ [0, 1]. (2.24)

The space Hsob,1,γ is formally defined to be

Hsob,1,γ = {f : ‖f‖Hsob,1,γ
< ∞}.

Remark 2.4.4 This particular Sobolev space is known as the unanchored

Sobolev space. Similar anchored Sobolev spaces can be constructed with the

inner product of the form

〈f, g〉Hsob,1,γ
=f(a)g(a) +

1

γ

∫ 1

0

f ′(x)g′(x) dx (2.25)

for some a ∈ [0, 1] (see [53]). The reproducing kernel for the space Hsob,1,γ in

this case is

Ksob,1,γ(x, y) = 1 + γωa(x, y)

where

ωa(x, y) =

⎧⎪⎨⎪⎩min(|x − a|, |y − a|), if (x − a)(y − a) > 0,

0, if (x − a)(y − a) ≤ 0.

Throughout this thesis, we will adopt the unanchored version, in order to

simplify the algebra.

It is easy to see that Ksob,1,γ is a reproducing kernel. Note that

1
2
B2 (|x − y|) + (x − 1

2
)(y − 1

2
) =

⎧⎪⎨⎪⎩
1
2
x2 + 1

2
y2 − y + 1

3
, if 0 ≤ x ≤ y,

1
2
x2 + 1

2
y2 − x + 1

3
, if y < x ≤ 1,

26



so that
∫ 1

0
1
2
B2 (|x − y|) + (x − 1

2
)(y − 1

2
) dx = 0. Also note that

∂

∂x

(
1
2
B2 (|x − y|) + (x − 1

2
)(y − 1

2
)
)

=

⎧⎪⎨⎪⎩ x, if 0 ≤ x < y,

−1 + x, if y < x ≤ 1,

It follows with some simple manipulation that for all f ∈ Hsob,1,γ

〈f, Ksob,1,γ(·, y)〉Hsob,1,γ
= f(y)

thus proving the reproducing property.

Unlike the kernel of the Korobov space Hper,1,α,γ, the kernel of the space

Hsob,1,γ is not shift-invariant. With some manipulation, we see that the asso-

ciated shift-invariant kernel Ksh
sob,1,γ is given by

Ksh
sob,1,γ(x, y) =

∫ 1

0

Ksob,1,γ({x + Δ}, {y + Δ}) dΔ = 1 + γB2 (|x − y|) .

Remark 2.4.5 Since B2 (|x − y|) = B2 ({x − y}) for all x, y ∈ [0, 1], we can

use (2.24) to see that the associated shift-invariant kernel of the weighted

Sobolev space Ksh
sob,1,γ is identical to the reproducing kernel of the weighted

Korobov space Kper,1,α,γ given in (2.13) with α = 2. Note also that the repre-

senter of integration is the function Ksob,1,γ(·, y) = 1.

The multivariate case

The multivariate weighted Sobolev space Hsob,d,γ is given by

Hsob,d,γ = Hsob,1,γ1 ⊗ Hsob,1,γ2 ⊗ · · · ⊗ Hsob,1,γd
.

The inner product of the space Hsob,d,γ is given by

〈f, g〉Hsob,d,γ
=
∑
u⊆D

(∏
j∈u

1

γj

∫
[0,1]u

(∫
[0,1]d−|u|

∂|u|f
∂xu

(x) dxD\u

)

×
(∫

[0,1]d−|u|

∂|u|g
∂xu

(x) dxD\u

)
dxu

)
(2.26)

where we define D = {1, 2, . . . , d}, |u| denotes the cardinality of u, xu is the

|u|-dimensional vector with components of x whose indices belong to u and

27



xD\u denotes the (d − |u|)-dimensional vector with components of x whose

indices do not belong to u. The norm for the d-dimensional case is

‖f‖Hsob,d,γ
=
∑
u⊆D

(∏
j∈u

1

γj

∫
[0,1]u

(∫
[0,1]d−|u|

∂|u|f
∂xu

(x) dxD\u

)2

dxu

)
.

The space Hsob,d,γ has a reproducing kernel of the form

Ksob,d,γ(x, y) =

d∏
j=1

(
1 + γj

(
1
2
B2 (|xj − yj|) + (xj − 1

2
)(yj − 1

2
)
))

. (2.27)

The space Hsob,d,γ is formally defined to be

Hsob,d,γ = {f : ‖f‖Hsob,d,γ
< ∞}.

The associated shift-invariant kernel K sh
sob,d,γ is

Ksh
sob,d,γ(x, y) =

d∏
j=1

(1 + γjB2 (|xj − yj|))

and is again identical to the kernel Kper,d,α,γ with α = 2. Note that the

representer of multivariate integration is the function Ksob,1,γ(·, y) = 1.

Worst-case error and QMC mean

Since the kernel Ksob,d,γ is not shift-invariant, we need to use Theorem 2.3.1

to evaluate the worst-case error of a given point set Pn,d = {t0, t1, . . . , tn−1}.
Following some manipulation we get

e2
n,d(Pn,d; Ksob,d,γ)

= −1 +
1

n2

n−1∑
i=0

n−1∑
k=0

d∏
j=1

(
1 + γj

(
1
2
B2 (|ti,j − tk,j|) + (ti,j − 1

2
)(tk,j − 1

2
)
))

and the initial error is given by e2
0,d(Ksob,d,γ) = 1. Using Theorem 2.3.3 we see

that error of a shifted point set Pn,d(Δ) = {{t0+Δ}, {t1+Δ}, . . . , {tn−1+Δ}},
averaged over all possible shifts Δ ∈ [0, 1]d is given by∫

[0,1]d
e2

n,d(Pn,d(Δ); Ksob,d,γ) dΔ = e2
n,d(Pn,d; K

sh
sob,d,γ)

= 1 +
1

n2

n−1∑
i=0

n−1∑
k=0

d∏
j=1

(1 + γjB2 (|ti,j − tk,j|)) .

28



Using (2.11) we see that the QMC mean for the Sobolev space is given by

M2
sob,n,d,γ =

1

n

(
d∏

j=1

(
1 +

γj

6

)
− 1

)
,

which, as expected, is exactly the same as the QMC mean for the weighted

Korobov space in 2.17 with α = 2. Note that ζ(2) = π2

6
. Further, it is clear

that the analogue of Theorem 2.4.3 for the Sobolev space is identical with

α = 2.

2.4.4 Randomly shifted point sets

We will see below that point sets Pn,d(Δ), where the shift Δ is taken to be

randomly from a uniform distribution over the unit cube [0, 1]d, are particularly

interesting. Theorem 2.3.3 says that the average worst case error of a shifted

point set in a weighted Sobolev space, averaged over all possible shifts, is equal

to the worst-case error of the unshifted point set in the weighted Korobov space

with α = 2.

This means we can say that the expected worst-case error in a weighted

Sobolev space for a randomly shifted point set is identical to the error of the

unshifted point set in the weighted Korobov space with α = 2. That is

E [en,d(Pn,d(Δ); Ksob,d,γ)] = en,d(Pn,d; K
sh
sob,d,γ) = en,d(Pn,d; Kper,d,2,γ). (2.28)

Therefore, while we will from now on mainly refer to point sets in the

weighted Korobov space, all the results carry over in a probabilistic sense for

randomly-shifted point sets in the weighted Sobolev space when we take α = 2.

It is of course possible to check the quality of a particular shift by computing

the worst-case error. Therefore, we have can create a “semi-constructive”

approach to finding shifts Δ which such that

en,d(Pn,d(Δ); Ksob,d,γ) ≤ cen,d(Pn,d; K
sh
sob,d,γ)

for some c > 1. By Chebyshev’s inequality, taking s random shifts will generate

at least one such shift with probability 1 − c−s.

29



2.4.5 Unbiased error estimation

We would like to be able to measure the performance of a particular point set

Pn,d = {t0, t1, . . . , tn−1} on a particular problem. We will do this by calculating

an unbiased estimate of the standard error of an average of several evaluations

using different random shifts.

For a particular problem Id(f) of the form (2.1), and an unshifted point

set Pn,d = {t0, t1, . . . , tn−1}, we generate s random shifts Δ1, . . . ,Δs each i.i.d.

from [0, 1]d to construct the shifted point sets Pn,d(Δ1), . . . , Pn,d(Δs). We then

evaluate for � = 1, . . . , s

Q�,n,d =
1

n

n−1∑
k=0

f(t�,k), where t�,k = {tk + Δ�} .

We then approximate Id(f) by

Qn,d =
1

s

s∑
�=1

Q�,n,d.

An unbiased estimate of the standard error of Qn,d is√√√√ 1

s(s − 1)

s∑
�=1

(Q�,n,d − Qn,d)
2.

2.5 Lattice rules

We aim to find a good point set Pn,d = {t0, t1, . . . , tn−1}, or shifted point

set Pn,d(Δ) = {{t0 + Δ}, {t1 + Δ}, . . . , {tn−1 + Δ}}, which will accurately

approximate the integration problem (2.1) when used as quadrature points in

the QMC method (2.2). The results so far in this chapter have provided us with

tools to examine the worst-case error for a given (possibly randomly-shifted)

point set in a reproducing kernel Hilbert space. The problem remains to choose

the set of points Pn,d.

There are many possible choices of Pn,d. It is beyond the scope of this

thesis to give a summary of all of them. Some of the more popular choices of

30



quadrature points are Halton sequences [18], Hammersley point sets [19], Sobol’

points [58], Niederreiter-Xing sequences [66], (t, d)-sequences and (t, m, d)-nets

[41, 42, 44]. The remainder of the thesis will concentrate on a particular choice

of point sets known as lattice rules.

Definition 2.5.1 A rank-1 lattice rule is an equal-weight quadrature rule of

the form

Qn,d(f) =
1

n

n−1∑
k=0

f

({
kz

n

})
where z ∈ {1, 2, . . . , n − 1}d is called the generating vector with gcd(zj , n) = 1

for all j = 1, . . . , d. The points

tk =

{
kz

n

}
, k = 1, . . . n

are known as (unshifted) lattice points. The set Pn,d(z) = {t0, t1, . . . , tn−1}
defines the (unshifted) point set which is wholly determined by the generating

vector z.

Lattice rules in their early form were first analysed by Korobov [33] and Hlawka

[30]. A textbook have been written by Sloan and Joe in 1994 [51]. Lattice rules

were also mentioned in the book by Niederreiter in 1992 [42].

One of the key advantages of lattice rules lies in the one-dimensional projec-

tions. It is well-known that for one-dimensional integration on the unit interval

with equal-weight quadrature points, the optimal choice for points is equally-

spaced points. In this sense, all lattice rules have optimal one-dimensional

projections.

We will see that the family of shifted rank-1 lattice rules is also particularly

interesting.

Definition 2.5.2 A shifted rank-1 lattice rule is an equal-weight quadrature

rule of the form

Qn,d(f) =
1

n

n−1∑
k=0

f

({
kz

n
+ Δ

})
. (2.29)

31



The set Pn,d(z,Δ) = {{t0 + Δ}, {t1 + Δ}, . . . , {tn−1 + Δ}}, where tk =
{

kz
n

}
for k = 1, . . . n, defines the point set of shifted lattice points and is determined

by the generating vector z and the shift Δ ∈ [0, 1]d.

2.5.1 Worst-case error formulation

In this thesis, we will concern ourselves with point sets consisting of randomly

shifted lattice rules. We will therefore now drop the Pn,d notation, expressing

the worst-case error for a lattice rule in a Korobov space as eper,n,d,α,γ(z). The

worst-case error for a lattice rule with a given shift Δ in the Sobolev space is

denoted by esob,n,d,γ(z,Δ) and the expected error for a randomly-shifted lattice

is given by esob,n,d,γ(z). Under this notation, taking α = 2, (2.28) becomes

E [esob,n,d,γ(z,Δ)] = esob,n,d,γ(z) = eper,n,d,α,γ(z).

We have seen above in (2.15) and (2.16) that the worst case error of a point

set in a Korobov space can be written as

e2
n,d(Pn,d; Kper,d,α,γ) = −1 +

1

n2

n−1∑
i=0

n−1∑
k=0

d∏
j=1

(
1 +

γj

2π2

∑′

h∈Z

e2πih(ti,j−tk,j)

|h|α
)

= −1 +
1

n2

n−1∑
i=0

n−1∑
k=0

∑
h∈Zd

e2πih·(ti−tk)

rα(h, γ)

This formulation requires a double sum each over n terms. This is unattractive

from a computational perspective as the number of points n can become very

large. However, if we exploit the structure in the rank-1 lattice rule with points

tk =

{
kz

n

}
, for k = 0, . . . n − 1

we see that the expressions in (2.15) and (2.16) simplify to

e2
per,n,d,α,γ(z) = −1 +

1

n

n−1∑
k=0

d∏
j=1

(
1 +

γj

2π2

∑′

h∈Z

e2πikhzj/n

|h|α
)

(2.30)

= −1 +
1

n

n−1∑
k=0

∑
h∈Zd

e2πikh·z/n

rα(h, γ)

=
∑

h∈Z
d\{0}

h·z≡0 (mod n)

1

rα(h, γ)
. (2.31)

32



The final line (2.31) follows from the result

1

n

n−1∑
k=0

e2πikh·z/n =

⎧⎪⎨⎪⎩ 1 if h · z ≡ 0 (mod n),

0 otherwise.

(2.32)

From a computational perspective if α = 2, then using the Bernoulli polynomial

from (2.24), the formulation in (2.30) is the most useful, as it requires just a

single sum over n terms. The form in (2.31) will prove useful later on.

2.5.2 Existence of good lattice rules

Recall that the components of the vector z ∈ {1, . . . , n−1}d must be co-prime

with n. For simplicity, it is often assumed that n is prime. It turns out that

the formulations are also relatively simple if n is taken to be the power of a

prime. In this thesis, we will usually assume that n is indeed the power of

a prime, although we see that the results in Chapter 5 can be extended to n

being the power of an arbitrary positive integer. For results concerning lattice

rules for more general composite numbers n, the reader is directed to [36]. We

now define formally the sets of vectors which may be considered as admissible

generating vectors for n being prime or, more generally, a power of a prime

of the form n = pm, where p is prime and m some non-negative integer. We

first define the set of d-dimensional integer vectors with components co-prime

to n = pm

Zd
p = {z = (z1, . . . , zd) ∈ N

d : gcd(zj , p
m) = 1, j = 1, . . . , d}, (2.33)

where N = {1, 2, . . .}. The set of admissible generating vectors is then given

by

Zd
p,m = {z ∈ Zd

p : zj < pm, j = 1, . . . , d}. (2.34)

For analysis of convergence, it is often easier to think in terms of n, rather

than pm. Therefore, we will take the set Zd
n,1 to mean the same as Zd

p,m where

n = pm. In cases where d = 1, we may drop the superscript. Note that the

cardinality of the set Zd
p,m = φ(pm)d, where φ is Euler’s totient function; and

33



φ(pm) = pm−1(p − 1) is p is prime. For the remainder of the thesis, unless

otherwise stated, we will always assume that p prime.

We now show that there exist good generating vectors z. At this stage,

we will say a generating vector is “good” (or equivalently that the worst-case

error is “small”) if the worst-case error of the lattice rule it generates is less

than the QMC mean as defined in (2.11).

Theorem 2.5.3 Let m and d be positive integers and γ = (γ1, γ2, . . .) a posi-

tive non-increasing sequence. If p ≥
(

γ1ζ(α)
2π2

)1/α

then we have

1

φ(pm)d

∑
z∈Zd

p,m

e2
per,pm,d,α,γ(z) ≤ M2

per,pm,d,α,γ

where M2
per,n,d,α,γ is the QMC mean of the weighted Korobov space as given in

(2.17).

Proof. The proof of the first part is similar to the proof of [36, Theorem 2.2].

We see that

1

φ(pm)d

∑
z∈Zd

p,m

e2
per,pm,d,α,γ(z)

= −1 +
1

pm

d∏
j=1

(
1 +

γjζ(α)

π2

)

+
1

pm

pm∑
k=1

d∏
j=1

⎛⎝1 +
1

φ(pm)

γj

2π2

∑
zj∈Zp,m

∑′

h∈Z

e2πikhzj/pm

|h|α

⎞⎠
≤ M2

per,pm,d,α,γ,

where the final inequality holds if

d∏
j=1

⎛⎝1 +
1

φ(pm)

γj

2π2

∑
zj∈Zp,m

∑′

h∈Z

e2πikhzj/pm

|h|α

⎞⎠ ≤ 1.

We will show that this does indeed hold if p ≥ 1
α

log
(

γ1ζ(α)
2π2

)
by showing that

for all j = 1, . . . , d and k = 1, . . . , pm − 1

−1 ≤ 1 +
1

φ(pm)

γj

2π2

∑
zj∈Zp,m

∑′

h∈Z

e2πikhzj/pm

|h|α ≤ 1.

34



By [36, Lemma 2.1] we see that

1

φ(pm)

∑
zj∈Zp,m

∑′

h∈Z

e2πikhzj/pm

|h|α =
2ζ(α)

φ(pm)

gcd(pm−1, k)α

(pm)α−1

(
1 − pα−1

)
< 0

which takes care of the second inequality. Using [36, Lemma 2.1] again we see

that the first inequality will hold if

1

φ(pm)

gcd(pm−1, k)α

(pm)α−1

(
pα−1 − 1

) ≤ 2π2

γjζ(α)
(2.35)

for each k = 1, . . . , pm − 1. For a given k, take gcd(pm−1, k) = p�. Now,

using φ(pm) = pm−1(p − 1) for p prime, we see that (2.35) will hold if for all

� = 0, 1, . . . , m − 1 (
pm−�

)α ≥ γjζ(α)

2π2
.

This holds for all the required values of � if p ≥
(

γ1ζ(α)
2π2

)1/α

, since γ1 ≥ γ2 ≥ · · · .

�

Remark 2.5.4 The constraint on the choice of p is not great since it will

always be satisfied if α = 2 and γ1 ≤ 12.

Theorem 2.5.3 says that the average squared worst-case error taken over

all choices of admissible generating vectors is less than the square of the QMC

mean. Using an averaging argument, this theorem admits a simple corollary.

Corollary 2.5.5 Let n = pm be a power of a prime p such that p ≥
(

γ1ζ(α)
2π2

)1/α

and d be a positive integer. There exists at least one z ∈ Zd
n,1 such that

e2
per,n,d,α,γ(z) ≤ M2

per,n,d,α,γ =
1

n

(
d∏

j=1

(
1 +

γjζ(α)

π2

)
− 1

)
.

Corollary 2.5.6 For n = pm with p ≥
(

γ1ζ(α)
2π2

)1/α

, if
∑∞

j=1 γj < ∞ then there

exists a generating vector z and a constant C∞ independent of d such that

eper,n,d,α,γ(z) ≤ C∞n−1/2.

35



Proof. We have seen from Corollary 2.5.5 that there exists

eper,n,d,α,γ(z) ≤ Cdn
−1/2. (2.36)

Once again using log(1 + x) ≤ x for x > −1 we get

C2
d =

(
d∏

j=1

(
1 +

γjζ(α)

π2

)
− 1

)
≤ exp

(
d∑

j=1

log

(
1 +

γjζ(α)

π2

))

≤ exp

(
ζ(α)

π2

d∑
j=1

γj

)

≤ exp

(
ζ(α)

π2

∞∑
j=1

γj

)
= C2

∞,

where C∞ is independent of d if
∑∞

j=1 γj < ∞. �

Note that the condition
∑∞

j=1 γj < ∞ is exactly the sufficient and necessary

condition for strong tractability in Section 2.4.2.

To achieve a similar result to Theorem 2.5.3 without the constraint on the

prime p, we note the following theorem from Kuo and Joe [36, Theorem 2.2].

Theorem 2.5.7 Let m and d be positive integers, p prime and γ = (γ1, γ2, . . .)

a positive non-increasing sequence. Then we have

1

φ(pm)d

∑
z∈Zd

p,m

e2
per,pm,d,α,γ(z) ≤ M

2

per,pm,d,α,γ (2.37)

where

M
2

per,pm,d,α,γ =
1

pm

(
d∏

j=1

(
1 + 4

γj

2π2
ζ(α)

)
− 1

)
(2.38)

Remark 2.5.8 Note that the proof of Theorem 2.5.7 as given in [36] unnec-

essarily omits the final −1 term in (2.38).

Remark 2.5.9 The result in [36] in fact gives a more general result for n being

an arbitrary positive integer. In this case we can generalise (2.38) by replacing

M
2

per,n,d,α,γ with M̃2
per,n,d,α,γ where

M̃2
per,n,d,α,γ =

1

n

(
d∏

j=1

(
1 + 2κ+1 γj

2π2
ζ(α)

)
− 1

)
(2.39)

36



and κ is the number of distinct prime factors of n. We will continue to assume

that n = pm is the power of a prime p, but will point out in Chapter 5 where

this can be easily generalised.

2.5.3 Optimal rate of convergence

Recall earlier from Theorem 2.1.1 that the expected error of MC integration is

O(n−1/2). From Corollary 2.5.6 we see that if

∞∑
j=1

γj < ∞

then the worst-case error, where n is the power of a prime, is also O(n−1/2). It

is also known classically that the best rate of convergence possible for a one-

dimensional problem is O(n−α/2), known as the optimal rate of convergence.

Clearly, if this is the best possible for a one-dimensional problem, then it must

also give an upper bound for problems of higher dimension. We will now see

that if we impose stronger conditions on the weights, it is possible to achieve

this rate of convergence using lattice rules for problems of arbitrary dimension.

Theorem 2.5.10 Let n = pm be the power of a prime p with p ≥
(

γ1ζ(α)
2π2

)1/α

and γ = (γ1, γ2, . . .) a positive non-increasing sequence where (2.20) holds,

then there exists a generating vector z ∈ Zd
n,1 such that for all λ ∈ (1/α, 1]

e2
per,n,d,α,γ(z) ≤ M2

per,n,d,α,γ(λ),

where

M2
per,n,d,α,γ(λ) = n−1/λ

(
d∏

j=1

(
1 + 2

( γj

2π2

)λ

ζ(αλ)

)
− 1

)1/λ

.

Further, if

s∗ = sup

{
s :

∞∑
j=1

γ
1/s
j < ∞

}
, (2.40)

then the integration problem is strongly tractable with the ε-exponent of strong

tractability lying in the range ( 2
α
, max( 2

s∗
, 2

α
)].

37



Proof. The result is roved by making use of Jensen’s inequality, which states

for a sequence {ak} of positive numbers

∑
k

ak ≤
(∑

k

aλ
k

)1/λ

for all 0 < λ ≤ 1. (2.41)

Applying Jensen’s inequality to e2
per,n,d,α,γ(z), using the formulation in (2.31),

note that [rα(h, γ)]λ = rαλ(h, 2π2( γ

2π2 )
λ), where ( γ

2π2 )
λ = (( γ1

2π2 )
λ, ( γ2

2π2 )
λ, . . .).

This implies that for any z ∈ Zd
n,1 and for all 0 < λ ≤ 1 we obtain

e2
per,n,d,α,γ(z) ≤

⎛⎜⎜⎜⎝ ∑
h∈Zd\{0}

h·z≡0 (mod n)

1

[rα(h, γ)]λ

⎞⎟⎟⎟⎠
1/λ

=

⎛⎜⎜⎜⎝ ∑
h∈Zd\{0}

h·z≡0 (mod n)

1

rαλ(h, 2π2( γ

2π2 )λ)

⎞⎟⎟⎟⎠
1/λ

= [e2
per,n,d,αλ,2π2( γ

2π2 )λ(z)]1/λ. (2.42)

Now from Corollary 2.5.5 we see that for n = pm, the power of a prime p where

p ≥
(

γ1ζ(α)
2π2

)1/α

, there exists a z ∈ Zd
n,1 such that

e2
per,n,d,αλ,2π2( γ

2π2 )λ(z) ≤ 1

n

(
d∏

j=1

(
1 + 2

( γj

2π2

)λ

ζ(αλ)

)
− 1

)
.

We see from (2.42) that this implies that there exists a z ∈ Zd
n,1 such that for

all λ ∈ (1/α, 1]

e2
per,n,d,α,γ(z) ≤ n−1/λ

(
d∏

j=1

(
1 + 2

( γj

2π2

)λ

ζ(αλ)

)
− 1

)1/λ

.

Note that we must restrict the range of values λ so that ζ(αλ) is well defined,

i.e. λα > 1. To see that the integration problem is strongly tractable, we recall

(2.36) and write

eper,n,d,α,γ(z) ≤ Cd,λn
−1/2λ,

38



where

Cd,λ =

(
d∏

j=1

(
1 + 2

( γj

2π2

)λ

ζ(αλ)

)
− 1

)1/2λ

≤ exp

(
ζ(αλ)

λ(2π2)λ

d∑
j=1

γλ
j

)
.

For any δ > 0, choose λ to satisfy

− 1

2λ
= − 1

max( 2
s∗

, 2
α
)

+ δ.

Then, we see that since λ > max( 1
s∗

, 1
α
),

C∞,λ = lim
d→∞

Cd,λ ≤ exp

(
ζ(αλ)

λ(2π2)λ

∞∑
j=1

γλ
j

)
< ∞

which is independent of d and hence implies strong tractability. The rate of

convergence is therefore

O
(

n
− 1

max( 2
s∗

, 2
α )

+δ
)

for any δ > 0. Taking δ arbitrarily small, we see that the ε-exponent of strong

tractability lies in the range ( 2
α
, max( 2

s∗
, 2

α
)]. �

Note that if s∗ ≥ α then the rate of convergence O (n−α/2+δ
)

is achievable

for arbitrarily small δ > 0. Therefore, we may come arbitrarily close to the

optimal rate of convergence O (n−α/2
)
.

As was the case with Theorem 2.5.7, we can clearly drop the constraint on

p in Theorem 2.5.10 with

Theorem 2.5.11 Let n = pm be the power of a prime p and γ = (γ1, γ2, . . .) a

positive non-increasing sequence where (2.20) holds, then there exists a z ∈ Z d
n,1

such that for all λ ∈ (1/α, 1]

e2
per,n,d,α,γ(z) ≤ M

2

per,n,d,α,γ(λ),

where

M
2

per,n,d,α,γ(λ) = n−1/λ

(
d∏

j=1

(
1 + 4

( γj

2π2

)λ

ζ(αλ)

)
− 1

)1/λ

.

39



Remark 2.5.12 For the case where n being an arbitrary positive integer, the

bound M
2

per,n,d,α,γ(λ) may be replaced by M̃2
per,n,d,α,γ(λ) where

M̃2
per,n,d,α,γ(λ) = n−1/λ

(
d∏

j=1

(
1 + 2κ+1

( γj

2π2

)λ

ζ(αλ)

)
− 1

)1/λ

and κ is the number of distinct prime factors of n. This bound will be used

later in Chapter 5.

2.6 Construction of good lattice rules

We have established that if n is the power of a prime, then there exist gener-

ating vectors z which construct point sets in the Korobov space whose rate of

convergence is arbitrarily close to the optimal rate of O (n−α/2
)
.

All of the results presented thus far are existence results. In practice, we

would like to be able to construct such generating vectors z ∈ Zd
n,1 which

achieve the optimal rate of convergence. (For simplicity we will refer to a

generating vector or a lattice rule achieving the optimal rate of convergence

O (n−α/2
)

if it achieves the rate O (n−α/2+δ
)

for any δ > 0.)

For n = pm, the number of generating vectors z ∈ Zd
p,m is φ(pm)d =

(pm−1(p − 1))d. Common problems will see the number of points n = pm

in the thousands or higher and the dimension d in the hundreds, thousands, or

higher. Therefore, a computer search of all possible generating vectors is infea-

sible. We must look for ways of reducing the search space. Below, we present

two alternative ways of constructing a generating vector which achieves the

optimal rate of convergence.

2.6.1 Korobov form

The Korobov form of a generating vector (not to be confused with the Korobov

space) was first suggested by Korobov in [33, 34] and assumes that n is prime.

40



The generating vector has the form

zd(a) = (1, a, a2, . . . , ad−1) (mod n)

for some a ∈ {1, 2, . . . , n − 1}. Using an averaging argument and the Jensen’s

inequality, it can be shown [61] that there exists an a ∈ {1, 2, . . . , n − 1},
such that for all λ ∈ (1/α, 1], the generating vector z(a) = (1, a, a2, . . . , ad−1)

(mod n) has a worst-case error bounded by

e2
per,n,d,α,γ(zd(a)) ≤ M̂2

per,n,d,α,γ(λ), (2.43)

where

M̂2
per,n,d,α,γ(λ) = (n − 1)−1/λd1/λ

d∏
j=1

(
1 + 2

( γj

2π2

)λ

ζ(αλ)

)1/λ

Note that (2.43) can be re-written as

eper,n,d,α,γ(zd(a)) ≤ Ckor,d,λd
1/(2λ)n−1/(2λ),

where

Ckor,d,λ = 21/(2λ)
d∏

j=1

(
1 + 2

( γj

2π2

)λ

ζ(αλ)

)1/(2λ)

≤ 21/(2λ) exp

(
ζ(αλ)

λ(2π2)λ

∞∑
j=1

γλ
j

)
= Ckor,∞,λ < ∞.

If, as in Section 2.5.3, we choose λ to satisfy

− 1

2λ
= − 1

max( 2
s∗

, 2
α
)

+ δ

for any δ > 0, then we may bound the worst-case error by

eper,n,d,α,γ(zd(a)) ≤ Ckor,∞(δ)d
1

max( 2
s∗

, 2
α )

−δ
n
− 1

max( 2
s∗

, 2
α )

+δ

where s∗ is defined as in (2.40) and Ckor,∞(δ) = Ckor,∞,λ for the choice of λ.

We see that it is possible to achieve the optimal rate of convergence with

polynomial dependence on d. Also, it is clear that we have tractability but not

41



strong tractability; the quantity n(ε, d; Kper,d,α,γ) depends at most linearly on

the d.

Since the search space is reduced to n−1 possible choices for a, it is feasible

to search through all possible choices and locate one which satisfies this bound.

By the theory above, we know at least such a one exists.

While it is possible to achieve the optimal rate of convergence with gener-

ating vectors of the Korobov form, the method does have certain weaknesses.

Firstly, the method considers only a very small subset of generating vectors.

Secondly, the dependence of the upperbound on the worst-case error (2.43) on

the variable d is not ideal. Thirdly, the number of points n must be prime.

There are results (see Wang et al [61]) for constructing rules of the Korobov

form with the number of points being a product of distinct primes. However,

in this case the optimal rate of convergence is not achieved. Finally, the gener-

ating vector zd(a) is good for only one value of d, that is, it is not extensible in

dimension. We will see in Chapter 6 that this final problem can be overcome.

In the meantime, we describe another method of constructing the generat-

ing vector which has proven to be of great practical value.

2.6.2 Component-by-component algorithm

The component-by-component (CBC) algorithm was developed by, among oth-

ers, Sloan, Reztsov, Joe, Kuo and Dick (see [54, 52, 53, 8, 10]). As the name

suggests, the central idea behind the algorithm is to construct the generating

vector z one component at a time. For an n = pm-point lattice rule, at each

of the d dimensions, there is a choice between φ(pm) different components.

Therefore, the size of the search space is dφ(pm), rather than φ(pm)d.

In simple terms, given a generating vector z∗
d = (z∗1 , z

∗
2 , . . . , z

∗
d), the CBC

chooses the component z∗d+1 which minimises the quantity

eper,pm,d+1,α,γ((z∗, zd+1))

over all possible choices zd+1 ∈ Zp,m. It is simple to see that all choices to

42



z1 have equal worst-case error if z1 is co-prime with n = pm, so we will by

convention take z1 = 1. The CBC algorithm is stated formally in Algorithm 1.

Algorithm 1 CBC algorithm

Require: Let n = pm be the power of a prime p, α > 1, dmax some integer

1: Set z∗1 = 1

2: for d = 1 to dmax − 1 do

3: Find z∗d+1 ∈ Zp,m which minimises eper,pm,d+1,α,γ((z∗
d, zd+1))

4: Set z∗
d+1 = (z∗

d, z
∗
d+1)

5: end for

We now present a proof that for n = pm being a power of a prime p, the

CBC algorithm can achieve the optimal rate of convergence. The proof is

similar to that of [35] and [8].

Theorem 2.6.1 Let n = pm be a power of a prime p and dmax be some inte-

ger. Then the CBC algorithm, as described above in Algorithm 1, constructs a

generating vector z∗
d such that for all λ ∈ (1/α, 1]

e2
per,n,d,α,γ(z∗

d) ≤ M
2

per,n,d,α,γ(λ)

for all d = 1, 2, . . . , dmax.

Proof. We first show this for the case where λ = 1. That is, we show that

e2
per,n,d,α,γ(z∗

d) ≤ M
2

per,n,d,α,γ =
1

n

(
d∏

j=1

(
1 + 4

γj

2π2
ζ(α)

)
− 1

)
.

So as to make the later use of the Jensen’s inequality clear, we will sometimes

leave uncancelled terms in fractions. We now prove the CBC algorithm by

induction. Beginning with the d = 1 and z∗
1 = 1, we see from (2.30) and (2.32)

43



that

e2
per,pm,1,α,γ1

(z∗1) = −1 +
1

pm

pm−1∑
k=0

(
1 +

γj

2π2

∑′

h∈Z

e2πikh/n

|h|α
)

=
∑′

h∈Z

γj

2π2

1

|h|α
1

pm

pm−1∑
k=0

e2πikh/pm

≤ 2

pm

γj

2π2
ζ(α) ≤ M

2

per,pm,1,α,γ1
.

Now assume for some integer d that

e2
per,pm,d,α,γ(z∗

d) ≤ M
2

per,pm,d,α,γ. (2.44)

We will show that if we choose z∗
d+1 to minimise eper,pm,d+1,α,γ((z∗

d, zd+1)), then

e2
per,pm,d+1,α,γ((z∗

d, z
∗
d+1)) ≤ M

2

per,pm,d+1,α,γ.

We begin by defining the quantity

θper,pm,d+1,α,γ(z∗
d, zd+1) = e2

per,pm,d+1,α,γ((z∗
d, zd+1)) − e2

per,pm,d,α,γ(z∗
d), (2.45)

and showing that

1

φ(pm)

∑
zd+1∈Zp,m

θper,pm,d+1,α,γ(z∗
d, zd+1) ≤ θper,pm,d+1,α,γ

where

θper,pm,d+1,α,γ =
4

pm

γd+1

2π2
ζ(α)

d∏
j=1

(
1 + 2

γj

2π2
ζ(α)

)
.

44



From (2.30) we see that

1

φ(pm)

∑
zd+1∈Zp,m

θper,pm,d+1,α,γ(z∗
d, zd+1)

=

∣∣∣∣∣ 1

pm

pm−1∑
k=0

d∏
j=1

(
1 +

γj

2π2

∑′

h∈Z

e2πikhz∗j /pm

|h|α
)
×⎡⎣ 1

pm

γd+1

2π2

∑
zs+1∈Zp,m

∑′

h∈Z

e2πikhzd+1/pm

|h|α

⎤⎦∣∣∣∣∣∣
≤ 1

pm

pm−1∑
k=0

d∏
j=1

∣∣∣∣∣1 + 2
γj

2π2

∞∑
h=1

cos(2πkhz∗j /p
m)

|hα|

∣∣∣∣∣×∣∣∣∣∣∣ 1

pm

γd+1

2π2

∑
zd+1∈Zp,m

∑′

h∈Z

e2πikhzd+1/pm

|h|α

∣∣∣∣∣∣
≤ 1

pm

pm−1∑
k=0

d∏
j=1

(
1 + 2

γj

2π2
ζ(α)

) ∣∣∣∣∣∣ 1

φ(pm)

γd+1

2π2

∑
zd+1∈Zp,m

∑′

h∈Z

e2πikhzd+1/pm

|h|α

∣∣∣∣∣∣
≤ 4

pm

γd+1

2π2
ζ(α)

d∏
j=1

(
1 + 2

γj

2π2
ζ(α)

)
where the final line uses the result in [36, Lemma 2.1 and Lemma 2.3] which

says that for m any integer

pm−1∑
k=0

∣∣∣∣∣∣ 1

φ(pm)

∑
z∈Zp,m

∑′

h∈Z

e2πikhz/pm

|h|α

∣∣∣∣∣∣ ≤ 4ζ(α). (2.46)

This tells us that for any given z∗
d, there must exist a z∗d+1 ∈ Zp,m such that

θper,pm,d+1,α,γ(z∗
d, z

∗
d+1) ≤

4

pm

γd+1

2π2
ζ(α)

d∏
j=1

(
1 + 2

γj

2π2
ζ(α)

)
(2.47)

Putting the inductive assumption (2.44) together with (2.47) we see that

e2
per,pm,d+1,α,γ(z∗

d, z
∗
d+1)

≤ 1

pm

(
d∏

j=1

(
1 + 4

γj

2π2
ζ(α)

)
− 1

)
+

4

pm

γd+1

2π2
ζ(α)

d∏
j=1

(
1 + 2

γj

2π2
ζ(α)

)
≤ 1

pm

(
d+1∏
j=1

(
1 + 4

γj

2π2
ζ(α)

)
− 1

)
.

45



We have now shown the special case of the theorem where λ = 1. We will now

prove the more general case where λ ∈ (1/α, 1]. Before we begin, recall the

result in (2.42) which says that for all z ∈ Zd
p,m and λ ∈ (1/α, 1]

e2
per,pm,d,α,γ(z) ≤ [e2

per,pm,d,αλ,2π2( γ

2π2 )λ(z)]1/λ.

We first derive a similar result for θper,pm,d+1,α,γ(z∗
d, zd+1). Note that by (2.31),

we can also write θper,pm,d+1,α,γ(z∗
d, zd+1) in the form

θper,pm,d+1,α,γ(z∗
d, zd+1)

=
∑

(h,hd+1)∈Zd+1\{0}
(h,hs+1)·(z∗

d
,zd+1)≡0 (mod pm)

1

rα((h, hd+1), γ)
−

∑
h∈Zd\{0}

h·z∗
d
≡0 (mod pm)

1

rα(h, γ)

=
∑

(h,hd+1)∈Zd+1,hd+1 �=0
(h,hd+1)·(z∗

d
,zd+1)≡0 (mod pm)

1

rα(h, γ)
. (2.48)

Note that each term in the expression in (2.48) is positive. This allows us to

apply the Jensen’s inequality to (2.48), which, recalling (2.42), allows us to

write

θper,pm,d+1,α,γ(z∗
d, zd+1) ≤

⎛⎜⎜⎜⎝ ∑
(h,hd+1)∈Zd+1,hd+1 �=0

(h,hd+1)·(z∗
d
,zd+1)≡0 (mod pm)

1

[rα(h, γ)]λ

⎞⎟⎟⎟⎠
1/λ

=

⎛⎜⎜⎜⎝ ∑
(h,hd+1)∈Z

d+1,hd+1 �=0
(h,hd+1)·(z∗

d
,zd+1)≡0 (mod pm)

1

rαλ(h, 2π2( γ

2π2 )λ)

⎞⎟⎟⎟⎠
1/λ

= [θper,pm,d+1,αλ,2π2( γ

2π2 )λ(z∗
d, zd+1)]

1/λ. (2.49)

We are now ready to prove the main result using induction. It is clear from

above that when d = 1 and z∗
1 = 1, for all λ ∈ (1/α, 1]

e2
per,pm,1,α,γ1

(z∗1) ≤ M
2

per,pm,1,α,γ1
(λ).

We now assume for some integer d that

e2
per,n,d,α,γ(z∗

d) ≤ M
2

per,n,d,α,γ(λ)

46



In a similar vein to the first part of the proof we see that if z∗
d+1 is chosen to

minimise e2
per,pm,d+1,α,γ(z∗

d, zd+1) for given z∗, then by (2.49) z∗d+1 must satisfy

θper,pm,d+1,α,γ(z∗
d, z

∗
d+1) ≤ [θper,pm,d+1,αλ,2π2( γ

2π2 )λ(z∗
d, z

∗
d+1)]

1/λ

≤ [θper,pm,d+1,αλ,2π2( γ

2π2 )λ ]1/λ

Putting this together with the inductive assumption, we see that

e2
per,pm,d+1,α,γ(z∗

d, z
∗
d+1) = e2

per,pm,d,α,γ(z∗
d) + θper,pm,d+1,α,γ(z∗

d, z
∗
d+1)

≤ M
2

per,n,d,α,γ(λ) + [θper,pm,d+1,αλ,2π2( γ

2π2 )λ ]1/λ

≤ 1

pm/λ

(
d∏

j=1

(
1 + 4

( γj

2π2

)λ

ζ(αλ)

)
− 1

)

+
4

pm/λ

(γd+1

2π2

)λ

ζ(αλ)

d∏
j=1

(
1 + 2

( γj

2π2

)λ

ζ(αλ)

)

≤ 1

pm/λ

(
d+1∏
j=1

(
1 + 4

( γj

2π2

)λ

ζ(αλ)

)
− 1

)
,

where the final inequality follows by another application of the Jensen’s in-

equality. Therefore, for n = pm, the power of a prime p, we see that a vector

z∗ may be constructed for arbitrary dimension d such that for all λ ∈ (1/α, 1]

e2
per,n,d,α,γ(z∗

d) ≤ n−1/λ

(
d∏

j=1

(
1 + 4

( γj

2π2

)λ

ζ(αλ)

)
− 1

)1/λ

.

�

We can see that if the vector z is constructed with the CBC algorithm, then

for any λ ∈ (1/α, 1] the worst-case error can be written in the form

eper,n,d,α,γ(z) ≤ Ccbc,d,λn
−1/2λ,

where

Ccbc,d,λ =
d∏

j=1

(
1 + 4

( γj

2π2

)λ

ζ(αλ)

)1/2λ

≤ exp

(
2ζ(αλ)

λ(2π2)λ

∞∑
j=1

γλ
j

)
= Ccbc,∞,λ < ∞.

47



If, as in Section 2.5.3, we choose λ to satisfy

− 1

2λ
= − 1

max( 2
s∗

, 2
α
)

+ δ

for any δ > 0, then we may bound the worst-case error by

eper,n,d,α,γ(z) ≤ Ccbc,∞(δ)n
− 1

max( 2
s∗

, 2
α )

+δ

where s∗ is defined as in (2.40) and Ccbc,∞(δ) = Ccbc,∞,λ for the choice of λ.

Taking δ arbitrarily small, we see that the ε-exponent of strong tractability

lies in the range [ 2
α
, max( 2

s∗
, 2

α
)].

2.6.3 Fast component-by-component construction

The cost of constructing the n-point lattice rule for d dimensions is O(n2d2)

operations which can be reduced to O(n2d) operations by storing the product

terms during the search. This storage requires O(n) storage. This cost cor-

responds to a matrix-vector multiplication which costs O(n2) which must be

performed d times. The matrix in the matrix-vector multiplication is based

upon the matrix

[kz (mod n)] 1≤k≤n
1≤z≤n−1

.

It was pointed out by Nuyens and Cools [45, 47, 46], that the n×n matrix

in this multiplication contains the same n entries in each column. Moreover,

they showed a way to permute the rows and columns of this matrix to turn it

into a circulant matrix.

For example, taking n = 5, (discarding the trivial column where k = n) we

obtain a matrix which, with a permutation of its columns and then its rows,

gives us a circulant matrix:⎡⎢⎢⎢⎢⎢⎢⎣
1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

⎤⎥⎥⎥⎥⎥⎥⎦ �

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 4 3

2 4 3 1

3 1 2 4

4 3 1 2

⎤⎥⎥⎥⎥⎥⎥⎦ �

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 4 3

3 1 2 4

4 3 1 2

2 4 3 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

48



For an n × n circulant matrix Cn with first column c, the matrix-vector

multiplication Cnx can be performed in O(n log n) operations by

Cnx = IFFT(FFT(c) .∗ FFT(x)),

where we adopt the MATLAB notation .∗ for a componentwise multiplication

and FFT and IFFT correspond to the Fast Fourier Transform and Inverse Fast

Fourier Transform respectively.

The CBC algorithm which exploits this property is known as the fast CBC

algorithm and has total cost of O(n log(n) d) operations. This allows the prac-

tical computation of good generating vectors for problems of a realistic scale.

2.7 Applications of multivariate integration to

financial mathematics

There is tremendous practical interest in high-dimensional multivariate inte-

gration from the financial mathematics community. We shall see shortly how

many problems of mathematical finance can be solved using MC or QMC tech-

niques. Indeed, we should remember that much of the interest in QMC tech-

niques has been spurred on by the work of Paskov and Traub [49], who showed

that QMC techniques performed much better than MC for the collateralised

mortgage-backed obligations problem.

In this thesis, we will focus on the Asian option problem. This is a different

style of problem to that considered by Paskov and Traub. We will see that

QMC methods can make a remarkable improvement upon MC methods. Before

we delve into the details of the problem, we provide a short introduction on the

nature of these problems. Please note that this introduction is by no means

comprehensive. For a deeper look at the problems of financial mathematics

see Hull [31]; and for a more specific examination of the use of MC and QMC

techniques in finance problems, see Glasserman [17].

49



2.7.1 Basic finance problems

Around the world there are many exchanges where the trading of different

assets takes place. Tradable assets include government bonds, shares in com-

panies, different currencies and commodities such as gold, crude oil, natural

gas, wheat, barley and pork bellies. Additionally, there is an exponentially

growing derivatives market. These are markets where the products traded are

derived from some underlying traded asset.

For a simple example as to why such a market is attractive, consider an

airline. Aviation fuel is obviously a very large component of their costs. When

the price of fuel rises dramatically, the profitability of the business may suffer.

Therefore, the airline might buy an option on aviation fuel. This is the right,

but not the obligation to buy fuel at some pre-determined price. A typical

contract might be to buy 1000 units of fuel at, say, US$100 per unit in one

years time. If the market price of the fuel in one years time is US$80, then it

does not make sense to exercise the option. However, if the market price of

the fuel in one years time is US$120, then the option will be exercised. In the

former case, when the option was not exercised, the payoff is said to be zero.

In the latter case, the payoff would be US$20.

The problem for the financial mathematician is to calculate a fair price now

for such an option, or indeed any such derivative.

2.7.2 Problem formulation

We will formulate the problems of financial mathematics using arbitrage-free

pricing. Put simply, this means that prices in the market are at such a level

that participants in the market cannot make risk-free profits.

As a simple example of a market, consider a game where an unbiased coin

is tossed regularly. Participants can pay an entry fee to the game. The par-

ticipants are paid $1 if a “heads” is thrown and receive nothing if a “tails” is

thrown. The fair value of entry to this game is clearly 50 cents. If the price

50



in the marketplace were anything different, then a simple arbitrage strategy

would ensure risk-free profits.

The outcomes of a stock market are, of course, more complicated than

that of a simple coin-tossing exercise. However, the principle remains the

same. The fair value of a derivative is the present value of the expected value

of the payoff. The expected value is taken with respect to some risk-neutral

probability measure. The present value part simply discounts the future payoff

cashflows back to their current value. Put simply, $x received T years in the

future has a present value of $xe−rT in the present, where r is the continuously

compounded risk-free interest rate, whose value is known from the market price

of traded government bonds.

There are several different models which are used to model stock price

movements. One of the more popular models is the famous Black-Scholes

model, developed by Black and Scholes [3] and Merton [40]. Under this model,

the price of a stock is assumed to follow the stochastic differential equation

(SDE)
dS(t)

S(t)
= r dt + σ dW (t) (2.50)

where W is a standard Brownian motion and σ is a parameter representing the

volatility of the stock price. The value of σ is usually measured from market

data (see [31]).

The SDE in (2.50) has solution

S(t) = S0 exp
(
(r − 1

2
σ2)t + σW (t)

)
(2.51)

where S0 is the stock price at t = 0, which we will assume is known.

Remark 2.7.1 In this thesis we shall make the simplifying assumptions that

the risk-free rate r and volatility σ are fixed over the life of the product. This

is typically not true in practice. The Black-Scholes model can be generalised

so that r and σ may vary, either deterministically, or stochastically (see Hes-

ton [21]). We will also assume that there are no dividends paid on any stocks.

51



The random variable W (t) in (2.51) is normally distributed with mean 0 and

variance t. We may therefore replace W (t) with
√

tZ, where Z is a standard

normal random variable. We can see that log S(t) is normally distributed.

Therefore, the stock price S(t) is said to be log-normally distributed.

The payoff of an option exercisable at time T , where the payoff is dependent

only on the final price S(T ), is known as a European option. A common

example is the European call option with strike price K, whose payoff is given

by

g(S(T )) = (S(T ) − K)+ (2.52)

where (x)+ is equal to the greater of x and 0. If the option is exercisable before

the time T , then it is known as an American option.

We shall be interested in another type of option known as an Asian option.

This is an option which is dependent on the whole trajectory of the share price

S(t) for t ∈ [0, T ], not just the final price S(T ). For example, an (arithmetic)

Asian call option is often defined to be a derivative with payoff

g(S(t) : t ∈ [0, T ]) =

(
1

T

∫ T

0

S(t) dt − K

)+

. (2.53)

The arbitrage-free price of such a derivative is given by

E
[
e−rT g(S(t) : t ∈ [0, T ])

]
(2.54)

where the expectation is taken with respect to the log-normal density of S(t).

That is, we integrate the payoff over all possible paths S(t) and discount the

value to find the arbitrage-free price. In the case of the European call option

in (2.52), this has a closed-form solution

E[e−rT (S(T ) − K)+] = S0Φ (d1) − e−rT KΦ (d2) ,

where

d1,2 =
log(S0/K) + (r ± 1

2
σ2)/T

σ
√

T

and Φ is the cumulative normal distribution, defined by

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2

t2 dt.

52



However, this is a special case. In general, the expression (2.54) will not have

a closed-form solution.

The space of all Brownian motion paths is an infinite-dimensional space.

We must therefore reduce the dimensionality of the problem.

2.7.3 Application of MC and QMC

In the examples considered in this thesis, we will approximate the continuous

solution of the SDE (2.51) with d equally-spaced time discretisations at times

tj = jΔt for j = 0, 1, . . . , d where Δt = T/d, which gives us

S(tj) = S0 exp
(
(r − 1

2
σ2)tj + σW (tj)

)
, j = 1, . . . , d. (2.55)

Our method of discretising the stock prices is therefore simply discretising the

Brownian motion W at the times tj for j = 1, . . . , d.

Remark 2.7.2 The use of the discretisation does introduce bias into the prob-

lem. However, this bias is not completely undesirable, since most seemingly

continuous problems in the real world are in fact discrete. For example, stock

prices are generally rounded to the nearest cent, and times to the nearest sec-

ond. An Asian problem like the one described in (2.53) may in fact monitored

daily, or perhaps less frequently. We shall therefore generally assume that the

value of d is set to reflect the “natural” level of discretisation in the market.

Let us take u = (W (t1), . . . , W (td))
T to be the vector with the value of

the Brownian motion at each time discretisation. The vector u is therefore

a multivariate normal distribution with zero mean and symmetric positive-

definite covariance Σ = (Σi,j)
d
i,j=1 matrix given by

Σi,j = min(ti, tj). (2.56)

The Asian option with payoff given in (2.53) is therefore the continuous ana-

logue of the discretised Asian option with payoff

G(u) = g(S(t1), . . . , S(td)) =

(
1

d

d∑
j=1

S(tj) − K

)+

, (2.57)

53



where S(tj) is formulated as in (2.55). When we now refer to an “Asian option”,

we will always be referring to this discretised version. Using (2.54), we see that

the arbitrage-free price of such a derivative is

C =

∫
Rd

e−rT

(
√

2π)d
√

det Σ
G(u) exp

(−1
2
uT Σ−1u

)
du. (2.58)

We now attempt to find an approximate solution to (2.58) using MC and

QMC techniques. The usual form to take such a problem (2.1) is an integral

over the unit cube. We therefore begin by mapping (2.58) to the unit cube.

We begin by making the substitution u = Az, where A is any matrix such

that AAT = Σ. This allows us to write

C =

∫
Rd

e−rT

(
√

2π)d
√

det Σ
G(u) exp

(−1
2
uT Σ−1u

)
du

=

∫
Rd

e−rT

(
√

2π)d
G(Az) exp

(−1
2
zT z

)
dz

=

∫
[0,1]d

e−rT G(AΦ−1(x)) dx

where Φ−1(x) = (Φ−1(x1), . . . , Φ
−1(xd)) is a vector of componentwise inverse

cumulative density functions.

We can now write the arbitrage-free value of the Asian option in the form

of the integral problem (2.1), that is

C =

∫
[0,1]d

f(x) dx, where f(x) = e−rT G(AΦ−1(x)). (2.59)

2.7.4 Covariance matrices

In the section above, we needed to find a matrix A such that AAT = Σ for

ti = iΔt, where Σ is the covariance matrix. The choice of the matrix A will

play an important role in the performance of the lattice rules.

The vector u = (W (t1), . . . , W (td))
T is constructed by u = Az, where

z = (z1, . . . , zd) is a vector of i.i.d. standard normal variables. The choice of

A will determine how the vector y and hence the path S(t) is constructed.

54



Standard construction

There are three common choices for this matrix A. The first, usually referred

to as the standard construction, is to choose the Cholesky factor of Σ. For this

particular matrix Σ, the Cholesky factor has the simple form

A =
√

Δt

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.60)

This choice of A corresponds to sequentially generating the Brownian path,

one increment after another. It is clear that taking W (t0) = 0, the path is

constructed by

W (tj) = W (tj−1) +
√

Δtzj for j = 1, . . . , d.

The use of the standard construction is attractive from a computation per-

spective since the matrix-vector multiplication Az is, in effect, just a cumula-

tive sum of the components of the vector z.

Brownian bridge

The Brownian bridge construction differs from the standard construction in

that rather than constructing the increments sequentially, the coarse outline

of the path of W (tj) for j = 1, . . . , d is constructed and then progressively

refined.

It is easiest to see this for the case where d is some power of 2. We first

construct the endpoint W (T ), then the midpoint W (T/2), then the midpoints

of each segment W (T/4) and W (3T/4) and so on, each time finding the new

midpoint of each segment.

55



Formally, the path W (tj) for j = 1, . . . , d is constructed by

W (0) = 0

W (T ) =
√

Tz1

W (T/2) =
W (0) + W (T )

2
+

√
T

4
z2

W (T/4) =
W (0) + W (T/2)

2
+

√
T

8
z3

W (T/4) =
W (T/2) + W (T )

2
+

√
T

8
z4

...

W ((d − 1)T/d) =
W ((d − 2)T/d) + W (T )

2
+

√
T

2d
zd.

Although this can be formulated into a matrix A, in practice it is more

efficient to use the structure above to calculate W (tj) for j = 1, . . . , d.

The Brownian bridge construction has the effect of placing more impor-

tance on the earlier variables than the later variables. To see this, for d being

some power of 2, consider the paths of W (tj) for j = 1, . . . , d, if the variables

zd/2+1, . . . , zd were “lost”. Under the standard construction, the path would be

unknown past W (td/2). However, under the Brownian bridge construction, the

general shape of the path would be clear, with every second point “smoothed

out”.

The placement of greater importance on the leading variables is an attrac-

tive feature for lattice rules. It allows us to focus on getting good projections in

the smaller number of important variables. This is the purpose of the weights

which were described in Section 2.4.1.

Principal components analysis construction

We have seen that the Brownian bridge construction places greater emphasis

on the earlier variables, which is attractive for our weighted lattice rules. It

56



is therefore natural to seek a construction which maximises the importance

of the leading variables. The answer to such a problem lies in the principal

components analysis construction (PCA).

If we re-write the matrix vector multiplication u = Az as

u = a1z1 + a2z2 + · · ·+ adzd

where aj is the j-th column of A, we would like to find the choice of aj for

j = 1, . . . , d which minimises the approximation error

E

[
‖u −

j∑
i=1

aizi‖2

]
.

By Rayleigh’s principle, it can be seen that the minimum is achieved when for

j = 1, . . . , d we take

aj =
√

λjvj (2.61)

where λ1 > λ2 > · · · > λd > 0 are the eigenvalues of Σ and the vj ’s are the

corresponding unit-length eigenvectors.

It has been noted by Glasserman [17] that a weakness of the PCA method

is that the matrix-vector multiplication requires O(d2) operations, whereas

the structure of the standard and Brownian bridge constructions mean only

O(d) operations are needed to construct the discretised Brownian motion path.

However, recent work by Giles [16] suggests the use of an FFT to reduce this

cost to O(d log d).

2.8 Difficulty applying lattice rules to finance

problems

In this chapter we have given a very brief overview of the theory of multivariate

integration, and more specifically lattice rules, as well as a description of the

types of integration problems encountered in mathematical finance. It is nat-

ural to now seek to apply the lattice rules technology to the finance problems.

57



However, there are several issues and problems in trying to apply the lattice

rules to these problems. Some of these problems are theoretical, while some

are practical.

The first problem is a theoretical one. In Section 2.5, we analysed lattice

rules (usually randomly-shifted) in weighted Korobov and weighted Sobolev

spaces. However, the integrands in the finance problems, for example the one

presented in (2.59), do not lie in the weighted Sobolev space.

A second problem concerns the practical application of lattice rules. A

practitioner would ideally like to use only as many points (and hence function

evaluations) as required to get an answer within the desired level of accuracy.

For QMC point sets based on open-ended sequences, this is not a problem.

However, our theory assumes that we will always evaluate all n-points in each

lattice rule. If n is too large, then the practitioner will have wasted compu-

tational time. On the other hand, if n is not sufficiently large to achieve the

desired error bound, then the process must begin again from scratch, because

the lattice rules constructed by the Korobov or CBC algorithms are dependent

upon n. It would be advantageous to be able to construct lattice rules which

are good for a range of values of n.

The remainder of the thesis will deal with attempting to solve these two

problems.

58



Chapter 3

Multivariate integration for a

class of unbounded analytic

functions

This chapter of the thesis is based on work which appeared in [65]. Some of

the results have been generalised for the thesis.

We have seen in Section 2.7 that many finance problems such as (2.58) are

formulated as integrals of the form

Iρd
(g) =

∫
Rd

g(u)ρd(u) du (3.1)

where

ρd(u) =
1

(
√

2π)d
√

det Σ
exp

(−1
2
uT Σ−1u

)
for some payoff function g and some covariance matrix Σ. Using a matrix fac-

torisation of the form AAT = Σ and mapping this back to the unit cube

by means of the inverse cumulative normal density Φ−1
d , where Φ−1

d (x) =

(Φ−1(x1), . . . , Φ
−1(xd))

T , the derivative pricing problem corresponds to the in-

tegral

Iρd
(g) =

∫
[0,1]d

f(x) dx = Id(f), where f(x) = g(AΦ−1
d (x)). (3.2)

59



The transformation described above almost inevitably leads to an integra-

tion problem over the unit cube for which the integrand blows up near the

boundary. Typical functions g arising in mathematical finance are exponential

in character (see for example Hull [31]), thus we introduce a function class that

allows functions g that are exponential. In this introduction, however, as an

illustration we will take g to be linear and d to be 1, that is

g(u) = a + bu, u ∈ R,

for some a, b ∈ R, so that (taking A = 1) the final integral (3.2) becomes

Iρ(g) =

∫ 1

0

(
a + b Φ−1(x)

)
dx. (3.3)

Note, for simplicity, we will write ρ1 simply as ρ.

The graph of Φ−1, shown in Figure 3.1, shows the essential problem: that

unless g itself is bounded, the transformation process induces unbounded (but

weakly singular) behaviour on the boundary of [0, 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

Figure 3.1: Graph of Φ−1(x)

MC methods have no problem with an integral such as (3.3), or in higher

dimensions the more general (3.2), because MC methods work for any f ∈
L2([0, 1]d) with moderate variance. QMC methods, on the other hand, have a

serious difficulty with unbounded integrands, in that the error may be infinite

if any point tk is on the boundary.

60



Owen [48] addresses the problem of unbounded integrands in the context

of low-discrepancy QMC methods by studying, and if necessary modifying, the

location of integration points that lie close to the boundary.

Our approach in this chapter is different. We tackle the problem of un-

bounded or irregular integrands f by using randomly-shifted rank-1 lattice

rules – that is to say, the shift Δ in (2.29), instead of being a fixed vector

in [0, 1]d, is now chosen randomly from a uniform distribution on [0, 1]d. The

first advantage is that the unbounded integrands arising from the transforma-

tion process no longer cause concern. There is also a second advantage (first

pointed out by Cranley and Patterson [5], see also [32, 52]) that the random

nature of the shift allows (just as for MC methods) the easy computation of a

probabilistic error estimate.

We study a completely different reproducing kernel Hilbert space Hpow,d,α,γ,

but one which is again a tensor-product space with weights γ = (γ1, γ2, . . .). A

key feature which distinguishes our space Hpow,d,α,γ from other spaces studied

earlier is that typical functions in our space are unbounded near the boundary.

The functions in our space Hpow,d,α,γ are of the form

f(x) = g(Φ−1
d (x)),

where g(u) is some function on R
d which can be represented pointwise by its

power series. These functions f can be considered to arise from a multivariate

expected value (3.1) with A = I.

An underlying motivation of this work is the common observation that

QMC methods often perform well even for integrands that do not have the

square-integrable mixed first derivatives as assumed in [56] (as is indeed the

case for the finance problem in [49]); another motivation is the observation

that QMC methods usually perform no worse than MC methods even for very

difficult integrands f . The latter property, though not often mentioned, attests

to an unremarked robustness of QMC methods.

61



3.1 The function space

In this section we define a reproducing kernel Hilbert space of functions in

(0, 1)d which contains functions that blow up near the boundary. These func-

tions correspond to a large class of power series in R
d, including some expo-

nential functions, and are analogous to the Taylor space setting introduced by

Dick [9]. The singularities are the result of using the cumulative inverse normal

transformation to map the original integrand g(u)ρd(u) in R
d to the unit cube

[0, 1]d, where the integrand becomes g(Φ−1
d (x)) which may be unbounded. We

start by considering the one-dimensional case.

3.1.1 The univariate case

Consider the expected value

Iρ(g) =

∫
R

g(u) 1√
2π

e−
u2

2 du. (3.4)

We wish to define a space of functions g on R which includes at least all

polynomials,

g(u) = a0 + a1u + · · · + amum,

together with a large class of power series

g(u) =
∞∑

k=0

aku
k (3.5)

with infinite radius of convergence. In particular, the space should include the

exponential functions

eλu =
∞∑

k=0

λk

k!
uk

for all values of λ.

Let (β1, β2, . . .) be a sequence of positive numbers such that βk → 0 and

βk+1/βk → 0 as k → ∞. Formally, we define Hpow,1,α,γ to be the space of

all real-valued functions on R which are represented pointwise by their power

series (3.5) and have finite norms

‖g‖2
Hpow,1,α,γ

=
∞∑

k=0

a2
k

βk

< ∞.

62



The space Hpow,1,α,γ is a Hilbert space with the inner product

〈g, g̃〉Hpow,1,α,γ
=

∞∑
k=0

akãk

βk
.

The sequence (β1, β2, . . .) will later be completely determined by a single pa-

rameter α which is included as a subscript in Hpow,1,α,γ.

Note that the norm and the inner product for functions in Hpow,1,α,γ are

defined in terms of the coefficients ak in their power-series representations (3.5).

Now we use the substitution x = Φ(u) to map the integral (3.4) over R into

the unit interval (0, 1). The resulting integral is∫ 1

0

f(x) dx,

where the transformed integrand f(x) is of the form

f(x) = g(Φ−1(x)) =

∞∑
k=0

ak[Φ
−1(x)]k, x ∈ (0, 1). (3.6)

Note that f is defined over the open unit interval (0, 1) because it is unbounded

at 0 and 1. Thus we obtain a Hilbert space Hpow,1,α,γ of functions f which is

isomorphic to Hpow,1,α,γ of functions g, and which consists of C∞(0, 1) functions

f with norm given by

‖f‖2
Hpow,1,α,γ

=
∞∑

k=0

a2
k

βk

< ∞,

and inner product given by〈
f, f̃

〉
Hpow,1,α,γ

=
∞∑

k=0

akãk

βk

.

We stress at this point that the ak’s are the coefficients in the power-series

representation of the function g ∈ Hpow,1,α,γ which is related to the function

f ∈ Hpow,1,α,γ by (3.6).

The function

Kpow,1,α,γ(x, y) =
∞∑

k=0

βk[Φ
−1(x)]k[Φ−1(y)]k, x, y ∈ (0, 1),

63



is the reproducing kernel in Hpow,1,α,γ. Indeed we have

‖Kpow,1,α,γ(x, ·)‖2
Hpow,1,α,γ

=
∞∑

k=0

(βk[Φ
−1(x)]k)2

βk

=
∞∑

k=0

βk[Φ
−1(x)]2k, x ∈ (0, 1),

which is finite by the ratio test since βk+1/βk → 0 as k → ∞, proving

that Kpow,1,α,γ(x, ·) ∈ Hpow,1,α,γ for all x ∈ (0, 1). Clearly Kpow,1,α,γ(x, y) =

Kpow,1,α,γ(y, x) for all x, y ∈ (0, 1). Moreover we have, for all x ∈ (0, 1) and f

of the form (3.6),

〈f, Kpow,1,α,γ(x, ·)〉Hpow,1,α,γ
=

∞∑
k=0

akβk[Φ
−1(x)]k

βk

=
∞∑

k=0

ak[Φ
−1(x)]k = f(x),

which proves the reproducing property.

To ensure that the functions f(x) = g(Φ−1(x)) corresponding to the expo-

nential functions g(w) = eλw are included in the space for all values of λ, we

can choose

βk =
αk

k!
, (3.7)

where α > 0 and 0! = 1. Since the power-series representation of g(u) = eλu is

eλu =

∞∑
k=0

λk

k!
uk,

we can easily verify that our choice (3.7) of the βk’s leads to

‖f‖2
Hpow,1,α,γ

= ‖g‖2
Hpow,1,α,γ

=
∞∑

k=0

(λk

k!
)2

αk

k!

=
∞∑

k=0

λ2k

αk

k!
= e

λ2

α < ∞.

One major benefit from our choice (3.7) of the βk’s is that the reproducing

kernel can be written in a simple closed form,

Kpow,1,α,γ(x, y) = eαΦ−1(x)Φ−1(y).

3.1.2 The multivariate case

Now we turn to general d ≥ 1 and define a d-dimensional space on (0, 1)d to

be a tensor product of d univariate spaces Hpow,1,α,γ. At the same time we

introduce weights in the manner of [56] to allow more flexibility. Note once

64



again that the functions are defined over the open unit cube (0, 1)d because

they are unbounded near the boundaries.

Let Hpow,d,α,γ be the reproducing kernel Hilbert space with the reproduc-

ing kernel

Kpow,d,α,γ(x, y) =
d∏

j=1

( ∞∑
k=0

βk,j[Φ
−1(xj)]

k[Φ−1(yj)]
k

)
,

where, for each j = 1, . . . , d, we choose

β0,j = 1 and βk,j = γj
αk

k!
for k ≥ 1,

with α > 0 and γ = (γ1, γ2, . . .) a non-increasing sequence of positive num-

bers. This choice of the βk,j’s ensures that the series in the definition of

Kpow,d,α,γ(x, y) is always convergent. The space Hpow,d,α,γ consists of func-

tions of the form

f(x) =
∑
k∈Nd

ak[Φ−1(x1)]
k1 · · · [Φ−1(xd)]

kd ,

with norm given by

‖f‖2
Hpow,d,α,γ

=
∑
k∈Nd

a2
k

βk1,1 · · ·βkd,d
< ∞,

and inner product 〈
f, f̃

〉
Hpow,d,α,γ

=
∑
k∈Nd

akãk

βk1,1 · · ·βkd,d
. (3.8)

In particular, Hpow,d,α,γ includes those functions on (0, 1)d which correspond to

exponential functions in R
d of the form

g(u) = eλ·u =
d∏

j=1

eλjuj

for all real values of the λj’s. Moreover, it is easy to see that functions corre-

sponding to g̃(u) = g(Au + b) also belong to Hpow,d,α,γ, where A is a d × d

matrix and b is a d-dimensional vector.

65



Our choice of the βk,j’s leads to a simple form for the reproducing kernel

Kpow,d,α,γ(x, y) =

d∏
j=1

(
1 + γj

∞∑
k=1

αk

k!

[
Φ−1(xj)

]k [
Φ−1(yj)

]k)

=

d∏
j=1

(
1 + γj

[
eαΦ−1(xj)Φ

−1(yj) − 1
])

,

from which it can be easily shown that for α ∈ (0, 1/2)∫
[0,1]d

Kpow,d,α,γ(x, x) dx =
d∏

j=1

(
1 + γj

(
1√

1−2α
− 1
))

.

To see this, note that∫ 1

0

eα[Φ−1(x)]
2

dx =

∫ ∞

−∞

1√
2π

e−
1
2
(1−2α)u2

du =
1√

1 − 2α
.

Similarly, ∫
[0,1]2d

Kpow,d,α,γ(x, y) dx dy =

d∏
j=1

(
1 + γj

(
1√

1−α2 − 1
))

.

These two integrals appear in our analysis later. To ensure that they are finite,

we shall assume throughout this chapter that

0 < α < 1
2
.

We shall make use of the shift-invariant kernel associated with the repro-

ducing kernel Kpow,d,α,γ(x, y),

Ksh
pow,d,α,γ(x, y) =

∫
[0,1]d

Kpow,d,α,γ({x + Δ}, {y + Δ}) dΔ

=

d∏
j=1

(1 + γj [ω({xj − yj}) − 1]) ,

where

ω(t) =

∫ 1

0

eαΦ−1(u)Φ−1({u+t}) du (3.9)

=

∫ 1−t

0

eαΦ−1(u)Φ−1(u+t) du +

∫ 1

1−t

eαΦ−1(u)Φ−1(u+t−1) du.

We list here a few useful properties of the function ω. These properties are

mostly straightforward, although some require tedious calculations.

66



Lemma 3.1.1 For 0 < α < 1
2
, the function ω defined by (3.9), for t ∈ [0, 1]

has the following properties:

1. ω is continuous over t ∈ [0, 1]

2. ω(t) > 0 for all t ∈ [0, 1]

3. ω(1 − t) = ω(t), i.e., ω is symmetric about t = 1
2

4. ω(0) = ω(1) = 1√
1−2α

5.
∫ 1

0
ω(t) dt = 1√

1−α2

6. ω and its derivatives can be written as

ω(t) = 2Υ(t) + 2Υ(1 − t),

ω′(t) = 2Υ′(t) − 2Υ′(1 − t),

ω′′(t) = 2Υ′′(t) + 2Υ′′(1 − t),

where

Υ(t) =

∫ Φ−1( 1−t
2 )

−∞
eαuΦ−1(Φ(u)+t) 1√

2π
e−

u2

2 du,

Υ′(t) =

∫ Φ−1( 1−t
2 )

−∞
αue

1
2
[Φ−1(Φ(u)+t)]2+αuΦ−1(Φ(u)+t)−u2

2 du − 1
2
e−α[Φ−1( 1−t

2 )]
2

,

Υ′′(t)√
2πα

=

∫ Φ−1( 1−t
2 )

−∞
u[Φ−1(Φ(u)+t)+αu]e[Φ−1(Φ(u)+t)]2+αuΦ−1(Φ(u)+t)−u2

2 du

− Φ−1
(

1−t
2

)
e( 1

2
−α)[Φ−1( 1−t

2 )]
2

.

7. ω′′(t) ≥ 0 for all t ∈ [0, 1].

Proof. Parts 1–5 are elementary. To prove part 6, we write ω(t) as a sum of

four integrals:

ω(t) =

∫ 1−t
2

0

eαΦ−1(x)Φ−1(x+t) dx +

∫ 1−t

1−t
2

eαΦ−1(x)Φ−1(x+t) dx

+

∫ 1− t
2

1−t

eαΦ−1(x)Φ−1(x+t−1) dx +

∫ 1

1− t
2

eαΦ−1(x)Φ−1(x+t−1) dx.

67



To remove the singularities at the boundaries, we use a different substitution

for each integral:

first integral u = Φ−1(x), second integral u = −Φ−1(x + t),

third integral u = Φ−1(x + t − 1), fourth integral u = −Φ−1(x).

These substitutions, together with the property −Φ−1(x) = Φ−1(1 − x), lead

to the new expression for ω(t) in terms of the integral Υ(t). The expressions

for Υ′(t) and Υ′′(t) can be obtained using Leibniz’s formula.

To prove part 7, it suffices to show that

Υ′′(t)√
2πα

=

∫ Φ−1( 1−t
2 )

−∞
q(u)ue−

u2

2 du − Φ−1
(

1−t
2

)
e( 1

2
−α)[Φ−1( 1−t

2 )]
2

is non-negative, where

q(u) =
(
Φ−1(Φ(u) + t) + αu

)
eΦ−1(Φ(u)+t)[Φ−1(Φ(u)+t)+αu]

for −∞ < u ≤ Φ−1(1−t
2

) ≤ 0. First we observe that Φ−1(Φ(u) + t) + αu is

monotonically increasing in u, with a limit of −∞ as u → −∞ and a value

of (1 − α)Φ−1(1+t
2

) ≥ 0 at the upper limit u = Φ−1(1−t
2

). Thus there exists

some −∞ < u ≤ Φ−1(1−t
2

) ≤ 0 such that Φ−1(Φ(u) + t) + αu = 0. Clearly

ue−u2/2 ≤ 0 for all u ≤ 0, q(u) ≤ 0 for u ≤ u, and q(u) ≥ 0 for u ≥ u. By

splitting the integral into two and dropping the one with the positive integrand,

we can write

Υ′′(t)√
2πα

=

∫ u

−∞
q(u)ue−

u2

2 du +

∫ Φ−1( 1−t
2 )

u

q(u)ue−
u2

2 du

− Φ−1
(

1−t
2

)
e( 1

2
−α)[Φ−1( 1−t

2 )]
2

≥
∫ Φ−1( 1−t

2 )

u

q(u)ue−
u2

2 du − Φ−1
(

1−t
2

)
e( 1

2
−α)[Φ−1( 1−t

2 )]
2

.

68



For u ≤ u ≤ Φ−1(1−t
2

), q(u) ≥ 0 attains its maximum at u = Φ−1(1−t
2

). Thus

Υ′′(t)√
2πα

≥ q
(
Φ−1

(
1−t
2

)) ∫ Φ−1( 1−t
2 )

u

ue−
u2

2 du − Φ−1
(

1−t
2

)
e( 1

2
−α)[Φ−1( 1−t

2 )]
2

= (1 − α)Φ−1
(

1+t
2

)
e(1−α)[Φ−1( 1+t

2 )]
2 (

e−
u2

2 − e−
1
2 [Φ−1(1+t

2 )]
2)

+ Φ−1
(

1+t
2

)
e( 1

2
−α)[Φ−1( 1+t

2 )]
2

= (1 − α)Φ−1
(

1+t
2

)
e(1−α)[Φ−1( 1+t

2 )]
2−u2

2 + αΦ−1
(

1+t
2

)
e( 1

2
−α)[Φ−1( 1+t

2 )]
2

≥ 0.

This concludes the proof. �

See Figure 3.2 for the graphs of ω(t), ω′(t) and ω′′(t) when α = 0.375.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2
Plot of ω(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10
Plot of ω’(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100
Plot of ω’’(t)

Figure 3.2: Graph of ω(t), ω′(t) and ω′′(t) for α = 0.375

3.2 Worst-case error analysis

Using the theory developed in Section 2.3, we can write down the worst-case

error en,d(Pn,d; Kpow,d,α,γ) for a given point set in this new space, as well as the

69



QMC mean Mn,d. We begin by noting that

‖f‖L2([0,1]d) =

(∫
[0,1]d

f 2(x) dx

)1/2

≤
(∫

[0,1]d
Kpow,d,α,γ(x, x) dx

)1/2

‖f‖Hpow,d,α,γ
.

Note that since α ∈ (0, 1/2) we have∫
[0,1]d

Kpow,d,α,γ(x, x) dx < ∞

to ensure that Hpow,d,α,γ is embedded in L2([0, 1]d). This assumption also

ensures that the initial error e2
0,d(Kpow,d,α,γ) in Hpow,d,α,γ is finite and Mn,d < ∞.

For our function space Hpow,d,α,γ, Id is well defined, with the representer

ξn,d(x) =
d∏

j=1

(
1 + γj

(
e

1
2
α2[Φ−1(xj)]2 − 1

))
.

To simplify our notations, we define for s ∈ (0, 1),

ηs =
1√

1 − s
− 1.

Thus we have ω(0) = ω(1) = 1+ η2α and
∫ 1

0
ω(t) dt = 1+ ηα2. The initial error

in Hpow,d,α,γ is

e0,d(Kpow,d,α,γ) =
d∏

j=1

(1 + γjηα2)1/2 ,

and the squared QMC mean is

M2
pow,n,d,γ =

1

n

(
d∏

j=1

(1 + γjη2α) −
d∏

j=1

(1 + γjηα2)

)
. (3.10)

In this chapter, we shall denote the worst-case error for a lattice rule with

generating vector z and shift Δ by epow,n,d,α,γ(z,Δ). If the shift Δ is taken

to be randomly chosen, then we shall denote the expected worst-case error for

the randomly-shifted lattice rule by epow,n,d,α,γ(z).

70



The squared worst-case error for randomly-shifted rank-1 lattice rules in

Hpow,d,α,γ is given by

e2
pow,n,d,α,γ(z) =

∫
[0,1]d

e2
pow,n,d,α,γ(z,Δ) dΔ

= −
d∏

j=1

(1 + γjηα2) +
1

n

n−1∑
k=0

d∏
j=1

(
1 + γj

[
ω
({

kzj

n

})
− 1
])

.

(3.11)

3.2.1 The existence of good generating vectors

We are now in a position to assess the potential of randomly-shifted rank-1

lattice rules. Theorem 3.2.2 below proves the existence of a generating vector

for which the worst-case error is smaller than the QMC mean. The proof of

this theorem relies on the following lemma. Again, we will only consider the

case where n = pm is the power of a prime p.

Lemma 3.2.1 Let ω(t) be defined as in (3.9) and n = pm be the power of a

prime p. Then

1

φ(pm)

∑
z∈Zp,m

ω
(

z
pm

)
<

∫ 1

0

ω(t) dt = 1 + ηα2 ,

with Zp,m defined by (2.34) for d = 1.

This was shown for the case where n is prime in [65]. Here, we extend the

lemma for powers of a prime.

Proof. We begin by noting that the result is trivial if p = 2. In this case

1

φ(pm)

∑
z∈Zp,m

ω
(

z
pm

)
is a midpoint-rule approximation of∫ 1

0

ω(t) dt.

The convexity of ω means that the midpoint rule will underestimate the integral

and so the inequality holds. For the case where p is an odd prime, we can use

71



the symmetry of ω(t) about t = 1/2 to write the left-hand side of the lemma

as

1

φ(pm)

∑
z∈Zp,m

ω
(

z
pm

)

=
1

φ(pm)

pm−1−1∑
k=0

p−1∑
i=1

ω
(

kp+i
pm

)

=
2

φ(pm)

(pm−1−3)/2∑
k=0

p−1∑
i=1

ω
(

kp+i
pm

)
+

1

φ(pm)

p−1∑
i=1

ω
(

1
2

+ 2i−p
2pm

)
. (3.12)

We will now treat each of the two parts of the last line separately. Beginning

with the second part, we define a mapping ϕp,m(t) by

ϕp,m(t) = p
p−1

(
t − 1

2

)
+ 1

2
.

Clearly ϕp,m(1
2
) = 1

2
, ϕp,m(t) < t if t < 1

2
and φp,m(t) > t if t > 1

2
. Therefore, it

follows by the convexity of ω that

1

φ(pm)

p−1∑
i=1

ω
(

1
2

+ 2i−p
2pm

)
<

1

pm−1

1

p − 1

p−1∑
i=1

ω
(
ϕp,m

(
1
2

+ 2i−p
2pm

))
=

1

pm−1

1

p − 1

p−1∑
i=1

ω
(

1
2

+ 2i−p
2pm−1(p−1)

)
<

∫ 1
2
+

1
2pm

1
2
− 1

2pm

ω(t) dt.

Looking now at the first part of (3.12), we see that ω is always monotonic

decreasing. We will exploit this by writing each term in the sum for k =

0, . . . , pm−3
2

as

1

φ(pm)

(p−1)/2∑
i=1

(
ω
(

kp+i
pm

)
+ ω

(
kp+p−i

pm

))
.

As before, consider the mapping

ϕp,m,k(t) = p
p−1

(
t − 2k+1

2pm−1

)
+ 2k+1

2pm−1 .

For a given k ∈ {0, . . . , pm−3
2

} and for i = 1, . . . , p−1
2

we can see by the mono-

tonicity of ω that

ω
(

kp+i
pm

)
< ω

(
ϕp,m,k

(
kp+i
pm

))
72



and

ω
(

kp+p−i
pm

)
> ω

(
ϕp,m,k

(
kp+p−i

pm

))
.

However, since ω is also concave up, it follows that

ω
(
ϕp,m,k

(
kp+i
pm

))
− ω

(
kp+i
pm

)
> ω

(
kp+p−i

pm

)
− ω

(
ϕp,m,k

(
kp+p−i

pm

))
.

Therefore, we can write

1

φ(pm)

(p−1)/2∑
i=1

(
ω
(

kp+i
pm

)
+ ω

(
kp+p−i

pm

))
<

1

pm−1

1

p − 1

(p−1)/2∑
i=1

(
ω
(
ϕp,m,k

(
kp+i
pm

))
+ ω

(
ϕp,m,k

(
kp+p−i

pm

)))
=

1

pm−1

1

p − 1

p−1∑
i=1

ω
(

2k+1
2pm−1 + 2i−p

2pm−1(p−1)

)
<

∫ k+1
pm−1

k
pm−1

ω(t) dt.

Taking this over all values of k gives the result. �

We now prove, by means of an averaging argument, that for n = pm

there exists a generating vector z ∈ Zd
p,m such that the worst-case error of

the randomly-shifted lattice rule is smaller than the QMC mean.

Theorem 3.2.2 For n = pm the power of a prime p and α ∈ (0, 1/2), there

exists a generating vector z ∈ Zd
p,m such that

epow,pm,d,α,γ(z) < Mpow,pm,d,α,γ

Proof. Averaging e2
pow,pm,d,α,γ(z) (see (3.11)) over all possible z ∈ Zd

p,m and

separating out the k = pm term, we obtain

1

φ(pm)d

∑
z∈Zd

p,m

e2
pow,pm,d,α,γ(z)

= −
d∏

j=1

(1 + γjηα2) +
1

pm

d∏
j=1

(1 + γjη2α)

+
1

pm

pm−1∑
k=1

d∏
j=1

⎛⎝1 + γj

⎡⎣ 1

φ(pm)

∑
zj∈Zp,m

ω

({
kzj

pm

})
− 1

⎤⎦⎞⎠ .

73



We note that for a given 1 ≤ k ≤ pm − 1, the set{{
kzj

pm

}
: zj ∈ Zp,m

}
is p� copies of the set {{

zj

pm−�

}
: zj ∈ Zp,m−�

}
where � is the largest integer such that p�|k. Therefore, we may use this and

Lemma 3.2.1 to write

1

φ(pm)

∑
zj∈Zp,m

ω

({
kzj

pm

})
− 1 =

1

φ(pm−�)

∑
z∈Zp,m−�

ω

({
zj

pm−�

})
− 1 < ηα2 ,

(3.13)

which leads to

1

φ(pm)d

∑
z∈Zd

p,m

e2
pow,pm,d,α,γ(z)

< −
d∏

j=1

(1 + γjηα2) +
1

pm

d∏
j=1

(1 + γjη2α) +
pm − 1

pm

d∏
j=1

(1 + γjηα2)

= M2
pow,pm,d,α,γ.

with M2
pow,pm,d,α,γ given by (3.10). Thus there exists a z for which the squared

worst-case error is smaller than the average, and in turn smaller than the

squared QMC mean. �

We can obtain a lower bound on epow,n,d,α,γ(z) following the technique used in

Section 2.4.2.

Theorem 3.2.3 For n = pm the power of a prime p, α ∈ (0, 1/2) and any

generating vector z ∈ Zd
p,m, we have

e2
pow,n,d,α,γ(z) ≥ −

d∏
j=1

(1 + κγjηα2) +
1

n

d∏
j=1

(1 + κγjη2α) ,

where

κ = min

(
1,

1

γ1|ω(1
2
) − 1 |

)
.

74



Proof. Let γ̄ = (γ̄1, γ̄2, . . .) be a non-increasing sequence given by γ̄j = κγj,

where κ is as defined in the theorem. Then it is not hard to verify that for

each j = 1, . . . , d we have

γ̄j ≤ γj and 1 + γ̄j [ω(t) − 1 ] ≥ 0 for all t ∈ [0, 1],

where the second condition follows from the property that ω(t) has its minimum

at t = 1/2.

Since the new weights γ̄ are no larger than γ, the unit ball of the space

weighted by γ̄ is contained in the unit ball of the space weighted by γ̄ and thus

it follows from the definition of worst-case error and the expression (3.11), with

γj replaced by γ̄j, that

e2
pow,n,d,α,γ(z) ≥ e2

pow,n,d,α,γ̄(z)

= −
d∏

j=1

(1 + γ̄jηα2) +
1

n

n−1∑
k=0

d∏
j=1

(
1 + γ̄j

[
ω

({
kzj

n

})
− 1

])
.

This last expression includes a sum over non-negative terms and thus a lower

bound can be obtained by keeping only the k = 0 term in the sum. This leads

to the lower bound stated in the theorem. �

From the upper and lower bounds established in Theorems 3.2.2 and 3.2.3,

we may conclude that the condition
∑∞

j=1 γj < ∞ is both necessary and suffi-

cient for epow,n,d,α,γ(z) to be bounded independently of d.

Theorem 3.2.4 If
∑∞

j=1 γj < ∞, then for n = pm the power of a prime p

there exists a generating vector z ∈ Zd
p,m such that

epow,n,d,α,γ(z) <
c√
n

for all d = 1, 2, . . . ,

where c is independent of n and d. On the other hand if
∑∞

j=1 γj = ∞, then

epow,n,d,α,γ(z) grows to infinity as d → ∞ for all n = pm and all z ∈ Zd
p,m.

The proof is similar to that given in Section 2.4.2, and relies on Theo-

rem 3.2.3.

75



Proof. It follows from Theorem 3.2.2 that there exists a z ∈ Zd
p,m, where for

n = pm

epow,n,d,α,γ(z) < Mpow,n,d,γ <
1√
n

d∏
j=1

(1 + γjη2α)1/2

=
1√
n

exp

(
1

2

d∑
j=1

log (1 + γjη2α)

)

≤ 1√
n

exp

(
η2α

2

∞∑
j=1

γj

)
.

Thus we have epow,n,d,α,γ(z) < cn−1/2, where c is bounded independently of d

if
∑∞

j=1 γj < ∞.

Now we prove the necessity of
∑∞

j=1 γj < ∞. It follows from Theorem 3.2.3

that

epow,n,d,α,γ(z) ≥
d∏

j=1

(1 + κγjηα2)1/2

[
1

n

d∏
j=1

(
1 + κγjη2α

1 + κγjηα2

)
− 1

]1/2

. (3.14)

We begin by finding a lower bound on the term

d∏
j=1

(1 + κγjηα2) = exp

(
d∑

j=1

log(1 + κγjηα2)

)
.

Consider the function

Ψ(x) = log(1 + x) − bαx, where bα =
log(1 + κγ1ηα2)

κγ1ηα2

.

Clearly

Ψ(0) = 0, Ψ(κγ1ηα2) = 0 and Ψ′′(x) = − 1

(1 + x)2
< 0.

Therefore, for x ∈ [0, κγ1ηα2 ], log(1 + x) ≥ bαx. Since γ1 ≥ γj for all j =

1, . . . , d, we may write

d∏
j=1

(1 + κγjηα2) ≥ exp

(
log(1 + κγ1ηα2)

γ1

d∑
j=1

γj

)
.

Similarly, we can show that a lower bound of the second product in (3.14) is

d∏
j=1

(
1 + κγjη2α

1 + κγjηα2

)
≥

d∏
j=1

(
1 +

κ(η2α − ηα2)

1 + κγ1ηα2

γj

)

≥ exp

(
1

γ1
log

(
1 +

κγ1(η2α − ηα2)

1 + κγ1ηα2

) d∑
j=1

γj

)
.

76



Hence if
∑∞

j=1 γj = ∞, epow,n,d,α,γ(z) must go to infinity as d → ∞. This

completes the proof. �

3.2.2 Component-by-component construction

Here we present a component-by-component (CBC) algorithm, similar to the

one presented in Section 2.6.2 to construct the generating vector z based on

minimising the worst-case error in each step. Theorem 3.2.5 below states that

the lattice rule constructed this way has worst-case error smaller than the QMC

mean.

Algorithm 2 CBC algorithm for the space of analytic functions

Require: Let n = pm be the power of a prime p, α ∈ (0, 1/2), dmax some

integer

1: Set z∗1 = 1

2: for d = 1 to dmax − 1 do

3: Find z∗d+1 ∈ Zp,m which minimises epow,pm,d+1,α,γ((z∗
d, zd+1))

4: Set z∗
d+1 = (z∗

d, z
∗
d+1)

5: end for

Theorem 3.2.5 For n = pm the power of a prime p and α ∈ (0, 1/2), the

generating vector z∗
d = (z∗1 , . . . , z

∗
d) ∈ Zd

p,m constructed by Algorithm 2 satisfies

epow,n,d,α,γ(z∗1 , . . . , z
∗
d) < Mpow,n,d,γ

for all d = 1, 2, . . . , dmax.

Proof. We prove this theorem by induction. For d = 1 we take z∗
1 = 1, and by

(3.10), (3.11) and Lemma 3.2.1

e2
pow,pm,1,α,γ1

(z∗1)

= − (1 + γ1ηα2) +
1

pm
(1 + γ1η2α) +

1

pm

n−1∑
i=1

(
1 + γ1

[
ω

(
i

pm

)
− 1

])
< − (1 + γ1ηα2) +

1

pm
(1 + γ1η2α) +

pm − 1

pm
(1 + γ1ηα2) = M2

pow,pm,1,α,γ1
.

77



Now assume that e2
pow,pm,d,α,γ(z∗1 , . . . , z

∗
d) < M2

pow,pm,d,α,γ holds for some d. As

in (2.45), we define the quantity

θpow,pm,d+1,α,γ(z∗
d, zd+1) = e2

pow,pm,d+1,α,γ((z∗
d, zd+1)) − e2

pow,pm,d,α,γ(z∗
d), (3.15)

and show that

1

φ(pm)

∑
zd+1∈Zp,m

θpow,pm,d+1,α,γ(z∗
d, zd+1) ≤ θpow,pm,d+1,α,γ(z∗)

where

θpow,pm,d+1,α,γ(z∗) = γd+1ηα2e2
pow,pm,d,α,γ(z∗) +

γd+1(η2α − ηα2)

pm

d∏
j=1

(1 + γjη2α) .

From the definition of θpow,pm,d+1,α,γ(z∗
d, zd+1) and (3.11) we see that

θpow,pm,d+1,α,γ(z∗
d, zd+1)

= −γd+1ηα2

d∏
j=1

(1 + γjηα2) +
γd+1η2α

pm

d∏
j=1

(1 + γjη2α)

+
γd+1

pm

pm−1∑
k=1

[(
ω

({
kzd+1

pm

})
− 1

) d∏
j=1

(
1 + γj

[
ω

({
kz∗j
pm

})
− 1

])]
.

As before, we recall (3.13) which showed

1

φ(pm)

∑
zj∈Zp,m

ω

({
kzj

pm

})
− 1 < ηα2 ,

which gives us

1

φ(pm)

∑
zd+1∈Zp,m

θpow,pm,d+1,α,γ(z∗
d, zd+1)

= −γd+1ηα2

d∏
j=1

(1 + γjηα2) +
γd+1η2α

pm

d∏
j=1

(1 + γjη2α)

+
γd+1ηα2

pm

pm−1∑
k=1

d∏
j=1

(
1 + γj

[
ω

({
kz∗j
pm

})
− 1

])
.

= γd+1ηα2e2
pow,pm,d,α,γ(z∗) +

γd+1(η2α − ηα2)

pm

d∏
j=1

(1 + γjη2α) .

78



Putting this together with the inductive assumption, we obtain

1

φ(pm)

∑
zd+1∈Zp,m

e2
pow,pm,d+1,α,γ(z∗1 , . . . , z

∗
d, zd+1)

≤ (1 + γd+1ηα2) e2
pow,pm,d,α,γ(z∗) +

γd+1(η2α − ηα2)

pm

d∏
j=1

(1 + γjη2α)

≤ 1

pm
(1 + γd+1ηα2)

(
d∏

j=1

(1 + γjη2α) +
d∏

j=1

(1 + γjηα2)

)

+
γd+1(η2α − ηα2)

pm

d∏
j=1

(1 + γjη2α)

=
1

pm

(
d+1∏
j=1

(1 + γjη2α) +
d+1∏
j=1

(1 + γjηα2)

)
= M2

pow,pm,d+1,α,γ.

Now since z∗d+1 ∈ Zp,m is chosen to minimise e2
pow,pm,d+1,α,γ(z∗1 , . . . , z

∗
d, zd+1), it

must satisfy

e2
pow,pm,d+1,α,γ(z∗1 , . . . , z

∗
d, z

∗
d+1)

≤ 1

φ(pm)

∑
zd+1∈Zp,m

e2
pow,pm,d+1,α,γ(z∗1 , . . . , z

∗
d, zd+1) < M2

pow,pm,d+1,α,γ.

This completes the proof. �

The implementation of the CBC algorithm requires the evaluation of the

function

ω(t) =

∫ 1−t

0

eαΦ−1(u)Φ−1(u+t) du +

∫ 1

1−t

eαΦ−1(u)Φ−1(u+t−1) du,

at t = i
pm for each i = 0, . . . , pm−1. We use the double exponential substitution

first proposed in [59], that is, we use

u = 1
2
(1 − t)

[
1 + tanh

(
π
2

sinh w
)]

.

This leads to an integral which can be evaluated using Simpson’s rule with low

truncation error.

The cost of constructing the n-point lattice rule for d dimensions is O(n2d2)

operations which can be reduced to O(n2d) operations by storing the product

79



terms during the search. This requires O(n) storage. Using the fast CBC

implementation of [45, 47, 46], the cost can be reduced to O(n log(n) d) oper-

ations.

3.3 Numerical experiments

In this section we compare the robustness and the performance of the lattice

rules obtained from our new function spaces with those obtained from the

unanchored weighted Sobolev spaces presented in Section 2.4.3. Recall that

the worst-case error for randomly-shifted rank-1 lattice rules in the unanchored

weighted Sobolev spaces is identical to the worst-case error of the weighted

Korobov space with α = 2. From (2.30) we get that this worst-case error is

e2
sob,n,d,γ(z) = −1 +

1

n

n−1∑
k=0

d∏
j=1

(
1 + γjB2

({
kzj

n

}))
(3.16)

where B2 (x) = x2 − x + 1/6 is the Bernoulli polynomial of degree 2.

For these spaces, we consider five different sequences of γ, including both

decaying weights and equal weights

γj =
1

j2
, γj = 0.9j, γj = 0.05, γj = 0.5, γj = 0.9. (3.17)

Note also that the choice of equal weights in our current tensor-product

setting has an alternative interpretation – it is equivalent to having order-

dependent weights under the more generalised setting of [55], where a weight

Γ� describes the relative importance of the interactions between variables taken

� at a time. More precisely, having γj = r in a tensor-product setting is equiv-

alent to having Γ� = r� in the order-dependent setting. By choosing r < 1, we

are saying that the higher-order interactions are less and less important com-

pared to the lower-order ones. Results from some experiments have indicated

that lattice rules constructed according to the classical criterion Pα (see for

example [51], [54]) perform poorly in some practical applications. This is not

at all surprising as Pα is equivalent to taking r = 2π2 in the tensor-product

80



n γj = 1/j2 γj = 0.9j γj = 0.05 γj = 0.5 γj = 0.9

1009 2.32e-02 2.73e-01 1.07e-02 2.07e-01 7.48e-01

2003 1.53e-02 1.91e-01 7.08e-03 1.44e-01 5.27e-01

4001 1.01e-02 1.32e-01 4.62e-03 9.96e-02 3.69e-01

8009 6.64e-03 9.18e-02 3.03e-03 6.90e-02 2.58e-01

16001 4.38e-03 6.37e-02 1.99e-03 4.76e-02 1.81e-01

32003 2.88e-03 4.41e-02 1.30e-03 3.29e-02 1.26e-01

64007 1.89e-03 3.05e-02 8.54e-04 2.27e-02 8.84e-02

Table 3.1: Worst-case errors in the new spaces

n γj = 1/j2 γj = 0.9j γj = 0.05 γj = 0.5 γj = 0.9

1009

2003
0.598 0.517 0.601 0.521 0.505

4001
0.604 0.526 0.615 0.530 0.513

8009
0.602 0.529 0.609 0.530 0.515

16001
0.602 0.528 0.610 0.535 0.514

32003
0.603 0.531 0.612 0.532 0.518

64007
0.605 0.529 0.606 0.535 0.515

Table 3.2: The observed order of convergence O(n−a) in the new spaces

setting. Thus much more emphasis is put on the higher-order interactions,

which is often a very unrealistic assumption in practice.

For each sequence of weights γ given above and for each n = 1009, 2003,

4001, 8009, 16001, 32003, and 64007 (all of which are prime numbers), we

construct a generating vector up to 100 dimensions using the fast CBC im-

plementation of Algorithm 2. The worst-case errors (as defined in (3.11)) for

these generating vectors and the observed order of convergence O(n−a) are

given in Tables 3.1 and 3.3 respectively. Note that the observed orders of con-

vergence in Table 3.3 are better than the theoretically predicted value of 0.5

(see Theorems 3.2.2 and 3.2.4).

81



3.3.1 Robustness: comparison of worst-case errors

It is interesting to assess the robustness of the generating vectors with respect

to different weights γ. More precisely, we would like to know how a generating

vector for a particular sequence γ performs when applied to the space with

a different set of weights. This is important for practical problems, because

it is not yet well understood which weights should be chosen for a particular

application.

To test this robustness, we take n = 64007 and take d up to 100 dimensions.

For each sequence of weights γ from (3.17) we construct a generating vector

using the fast CBC implementation of Algorithm 2. We then calculate the

worst-case errors (3.11) for this generating vector for each of the five choices

of weights. The results are summarised in Table 3.3.

To describe what the entries mean, recall epow,n,d,α,γ(z) denotes the worst-

case error based on the weights γ and let zγ denote the generating vector

constructed with the weights γ. Then each entry in the table represents

max
1≤d≤100

epow,64007,d,α,γ=column(zγ=row)

epow,64007,d,α,γ=column(zγ=column)
,

where the weights γ are specified by the headings of the rows and the columns.

For example, the second entry 1.020 in the first column means

max
1≤d≤100

epow,64007,d,α,γj=1/j2(zγj=0.9j)

epow,64007,d,α,γj=1/j2(zγj=1/j2)
= 1.020.

Clearly the diagonal entries should all be 1. Since the largest entry in the table

is 1.081, we conclude that the worst-case error for rules found with “incorrect”

weights is never more than 8.1% larger than the worst-case error for rules found

with the “correct” weights. Therefore the generating vectors obtained from our

new space can be said to be reasonably robust with respect to the selection of

weights.

In Table 3.4 we see a similar analysis for the unanchored Sobolev spaces.

Here the worst-case errors seem to be much more sensitive to the weights γ, in

the sense that rules found with “incorrect” weights can have worst-case errors

up to 78.5% larger.

82



New space worst-case error ratios

New space rules γj = 1/j2 γj = 0.9j γj = 0.05 γj = 0.5 γj = 0.9

Found with γj = 1/j2 1 1.027 1.059 1.048 1.028

Found with γj = 0.9j 1.020 1 1.047 1.006 1.002

Found with γj = 0.05 1.032 1.028 1 1.023 1.040

Found with γj = 0.5 1.039 1.007 1.044 1 1.009

Found with γj = 0.9 1.048 1.002 1.081 1.005 1

Table 3.3: Robustness of the generating vectors for varying weights in our new

spaces

Sobolev space worst-case error ratios

Sobolev space rules γj = 1/j2 γj = 0.9j γj = 0.05 γj = 0.5 γj = 0.9

Found with γj = 1/j2 1 1.208 1.545 1.253 1.267

Found with γj = 0.9j 1.236 1 1.351 1.055 1.041

Found with γj = 0.05 1.306 1.379 1 1.334 1.462

Found with γj = 0.5 1.655 1.052 1.263 1 1.027

Found with γj = 0.9 1.785 1.058 1.389 1.066 1

Table 3.4: Robustness of the generating vectors for varying weights in the

Sobolev spaces

83



Sobolev space worst-case error ratios

New space rules γj = 1/j2 γj = 0.9j γj = 0.05 γj = 0.5 γj = 0.9

Found with γj = 1/j2 1.060 1.791 2.043 1.990 1.891

Found with γj = 0.9j 1.147 1.056 1.804 1.094 1.073

Found with γj = 0.05 1.512 1.477 1.099 1.397 1.462

Found with γj = 0.5 1.495 1.063 1.256 1.052 1.081

Found with γj = 0.9 1.696 1.099 1.558 1.071 1.027

Table 3.5: Robustness of the generating vectors from our new spaces to Sobolev

spaces

In Tables 3.5 and 3.6 we perform the same analysis as Tables 3.3 and

3.4, except that we measure the robustness to different weights and different

spaces. That is, in Table 3.5 we take the generating vector constructed with a

particular weight sequence in our new spaces and evaluate its worst-case error

in the Sobolev spaces for different sequences γ. Table 3.6 is the reverse of

Table 3.5 in that we take the generating vectors constructed in Sobolev spaces

and evaluate their worst-case errors in our new spaces for various weights. Note

that the diagonal entries in these two tables no longer remain 1.

A reasonable conclusion from Table 3.6 might be that the rules found in

Sobolev spaces are fairly robust for use in our new spaces. Since the CBC

algorithm in our new spaces requires a significant setup cost (especially to

approximate ω(t) at multiples of 1/n), it would seem reasonable to recommend

the use of rules found in Sobolev spaces. We are yet to understand the correct

relationship between the weights in our new spaces and the weights in Sobolev

spaces. However, since the diagonal entries in Tables 3.5 and 3.6 are in general

smaller than the off-diagonal entries, a direct correspondence seems reasonably

applicable in practice.

84



New space worst-case error ratios

Sobolev space rules γj = 1/j2 γj = 0.9j γj = 0.05 γj = 0.5 γj = 0.9

Found with γj = 1/j2 1.002 1.014 1.051 1.024 1.022

Found with γj = 0.9j 1.032 1.007 1.052 1.007 1.008

Found with γj = 0.05 1.027 1.031 1.007 1.018 1.040

Found with γj = 0.5 1.043 1.001 1.058 1.002 1.004

Found with γj = 0.9 1.065 1.007 1.081 1.009 1.008

Table 3.6: Robustness of the generating vectors from Sobolev spaces to our

new spaces

3.3.2 Performance: pricing Asian options

We now examine the performance of lattice rules constructed using the fast

CBC algorithm for our new spaces. To do this, we have chosen to examine the

pricing of an Asian call option, as described in Section 2.7.

Recall that the payoff of an Asian option is the greater of the arithmetic av-

erage of a stock price over d equally spaced points in time less the agreed strike

price K, and zero. In (2.57), we saw that the payoff can thus be formulated as

G(u) = g(S(t1), . . . , S(td)) =

(
1

d

d∑
j=1

S(tj) − K

)+

. (2.57′)

with S(tj) given by

S(tj) = S0 exp
(
(r − 1

2
σ2)tj + σW (tj)

)
, j = 1, . . . , d

As we saw above, the Asian option problem is written as an integration problem

C =

∫
[0,1]d

e−rT G(AΦ−1
d (x)) dx, (3.18)

where A is a matrix such that AAT = Σ. In this set of experiments, we will

test the problem where A is taken to be the Cholesky factor, or the PCA factor

(see Section 2.7.4).

We compute the price of the Asian call option with parameters

S0 = 100, r = 0.1, σ = 0.2, T = 1, K = 100, d = 100

85



using lattice rules from our new spaces and the Sobolev spaces, and MC meth-

ods. We use both the standard construction and the PCA construction. Since

all of these methods involve a degree of randomisation, we perform 10 eval-

uations of the integral to obtain an estimated standard error as described in

Section 2.4.5. The standard errors for lattice rules with different values of n

and different sequences γ are given in Tables 3.7–3.11. The standard errors for

the MC methods are given in Table 3.12.

Standard construction PCA construction

n New space Sobolev

space

New space Sobolev

space

1009 3.23e-02 2.47e-02 6.26e-03 6.26e-03

2003 1.77e-02 1.47e-02 2.65e-03 2.54e-03

4001 5.26e-03 1.04e-02 1.30e-03 1.34e-03

8009 4.85e-03 7.56e-03 7.52e-04 8.05e-04

16001 1.57e-03 3.93e-03 4.41e-04 4.52e-04

32003 1.39e-03 1.77e-03 2.76e-04 2.67e-04

64007 1.33e-03 1.40e-03 1.00e-04 9.07e-05

Table 3.7: Comparison of standard errors for γj = 1/j2

We should note immediately that the PCA construction considerably re-

duces the standard errors for lattice rules, but has no obvious impact on the

MC approach. This is not surprising, since the PCA construction reallocates

the variances to reduce the effective dimension of the problem and at the same

time leaves the total variance unchanged. See [60] for a discussion of effective

dimensions on finance problems.

In most cases the MC methods give the highest standard error. In fact,

for the largest value of n, we see that lattice rules outperform MC methods by

approximately a factor of 10 for the standard construction and a factor of 100

for the PCA construction. The choice of the sequence γ does not seem to have

a lot of bearing on the standard error.

86



Standard construction PCA construction

n New space Sobolev

space

New space Sobolev

space

1009 2.04e-02 2.89e-02 6.34e-03 6.39e-03

2003 1.07e-02 1.87e-02 2.74e-03 2.66e-03

4001 7.71e-03 5.08e-03 1.20e-03 1.22e-03

8009 6.03e-03 7.18e-03 8.11e-04 8.00e-04

16001 3.45e-03 3.68e-03 4.58e-04 4.62e-04

32003 1.58e-03 2.19e-03 2.75e-04 2.78e-04

64007 1.56e-03 1.83e-03 8.48e-05 1.02e-04

Table 3.8: Comparison of standard errors for γj = 0.9j

Standard construction PCA construction

n New space Sobolev

space

New space Sobolev

space

1009 1.85e-02 2.18e-02 7.12e-03 6.76e-03

2003 1.16e-02 1.72e-02 2.84e-03 3.05e-03

4001 1.02e-02 5.74e-03 1.29e-03 1.41e-03

8009 6.76e-03 3.49e-03 7.38e-04 7.97e-04

16001 3.34e-03 3.18e-03 4.61e-04 4.53e-04

32003 2.91e-03 2.03e-03 2.94e-04 2.76e-04

64007 1.44e-03 1.10e-03 1.07e-04 9.82e-05

Table 3.9: Comparison of standard errors for γj = 0.05

87



Standard construction PCA construction

n New space Sobolev

space

New space Sobolev

space

1009 3.48e-02 2.23e-02 6.05e-03 6.49e-03

2003 1.64e-02 1.75e-02 2.68e-03 2.62e-03

4001 1.03e-02 1.12e-02 1.33e-03 1.23e-03

8009 8.78e-03 6.67e-03 8.11e-04 8.15e-04

16001 4.91e-03 4.84e-03 4.92e-04 4.52e-04

32003 2.53e-03 2.13e-03 2.82e-04 2.73e-04

64007 1.84e-03 1.85e-03 9.52e-05 9.38e-05

Table 3.10: Comparison of standard errors for γj = 0.5

Standard construction PCA construction

n New space Sobolev

space

New space Sobolev

space

1009 2.58e-02 2.09e-02 6.43e-03 6.36e-03

2003 1.07e-02 2.04e-02 2.61e-03 2.65e-03

4001 1.05e-02 1.00e-02 1.43e-03 1.23e-03

8009 6.52e-03 4.22e-03 8.06e-04 8.17e-04

16001 6.40e-03 6.10e-03 4.81e-04 4.84e-04

32003 3.94e-03 2.42e-03 2.70e-04 2.74e-04

64007 1.42e-03 2.14e-03 9.01e-05 1.06e-04

Table 3.11: Comparison of standard errors for γj = 0.9

88



n Standard construction PCA construction

1009 7.76e-02 8.64e-02

2003 6.60e-02 4.91e-02

4001 7.14e-02 4.12e-02

8009 2.06e-02 3.39e-02

16001 1.83e-02 2.65e-02

32003 1.19e-02 1.10e-02

64007 1.14e-02 9.75e-03

Table 3.12: Comparison of standard errors for MC methods

There does not appear to be a clear “winner” between the new spaces and

the unanchored Sobolev spaces. It should however be noted that the integrand

in (3.18) does not lie in either of the spaces due to its non-smoothness: since

(like most finance problems) it does not have square-integrable mixed first

derivatives, it does not fall into the usual spaces where worst-case error analysis

has been undertaken.

3.4 Discussion

Evidently our function spaces do not include those functions arising from option

pricing because of the lack of smoothness in the integrands. Unlike those

common problems in finance, many statistical problems of the form

Iρd
(g) =

∫
[0,1]d

g
(
AΦ−1

d (x)
)

dx

have a function g(u) which is very smooth. For example, the likelihood integral

for some parameter-driven Poisson state-space models (see [6]) can be simplified

in the one-dimensional case to∫ ∞

−∞
exp(yu − eu) 1√

2π
e−

u2

2 du, y = 0, 1, . . . .

The function g(u) = e−eu

(for the case y = 0) has infinite smoothness. However,

based on our current definition of the norm, it is impossible to define a sequence

89



of βk’s such that both

‖g‖Hpow,1,α,γ
= ‖f‖Hpow,1,α,γ

< ∞ and

∫ 1

0

Kpow,1,α,γ(x, x) dx < ∞

hold; these conditions are needed to ensure that f = g(Φ−1(·)) ∈ Hpow,1,α,γ ⊆
L2([0, 1]). Note that our definition for the norm does not distinguish between

positive and negative coefficients in the power-series representation of the func-

tions. Thus if functions of the form g(u) = e−λu2
are to be included in the space,

so must the functions eλu2
which are clearly not integrable.

Note that smoothness can be very misleading, because it is possible for

smooth functions to have huge norms. Consider the functions of the form

f(x) = g(Φ−1(x)) in our space Hpow,1,α,γ. The norm of f in any Sobolev space

with smoothness parameter 1 depends on∫ 1

0

[f ′(x)]2 dx = 2π

∫ 1

0

[g′(Φ−1(x))]2e[Φ−1(x)]2 dx =
√

2π

∫ ∞

−∞
[g′(u)]2e

u2

2 du,

which is clearly infinite for most g ∈ H(R) or equivalently f ∈ Hpow,1,α,γ. Thus

the apparent smoothness in g does not translate to smoothness in f .

On the other hand, we can check and see if the functions g ∈ Hpow,1,α,γ

actually belong to any of the Sobolev spaces in R. In fact it can be shown that

for all convergent power series g ∈ Hpow,1,α,γ we have∫ ∞

−∞
[g(r)(u)]2e−αu2

du < ∞,

where α ∈ (0, 1
2
) is the parameter in (3.7). Results in [63] then indicate that

it is possible to achieve O(n−r) convergence with a suitable quadrature rule in

one dimension. Furthermore, a Smolyak-type algorithm (linear but not equal

weight) can be constructed for higher dimensions which will preserve this rate

of convergence, see [62]. It is unknown whether such rate of convergence can

be achieved with QMC algorithms, or in particular, with lattice rules.

90



Chapter 4

Randomly shifted lattice rules

for unbounded integrands

In Chapter 3 we studied the problem of multivariate integration on the unit

cube for unbounded integrands of the form (see (3.1) and (3.2))

Iρd
(g) =

∫
Rd

g(u)ρd(u) du =

∫
[0,1]d

f(x) dx = Id(f) (4.1)

where

f(x) = g(Φ−1
d (x)),

and where ρd is the d-dimensional normal distribution and Φ−1 is the cumula-

tive inverse normal distribution. The unbounded integrands arise as a result

of using the cumulative inverse normal distribution to map the integral from

the unbounded domain R
d to the unit cube [0, 1]d. The function space used in

Chapter 3 assumed that the functions were analytic, which is not usually the

case for many finance problems, such as the ones describes in Section 2.7.

In this chapter, we expand the ideas of Chapter 3 in that we allow the

probability density function ρd to be a more general probability density func-

tion, rather than restricting it to a Gaussian distribution (see more precise

definitions below). Further, we consider a class of functions g which are only

once differentiable (in each direction), as opposed to being analytic.

91



The work in this chapter is also an extension of [27], which proved in a non-

constructive way that there existed QMC methods to approximate the weighted

integral (4.1) for general ρd with the worst-case error of order O(n−1/2). In

this chapter, we construct lattice rules which achieve this rate of convergence.

4.1 The function space

We will define the function space in the same way as in [63, 64]. We will always

assume that ρd is a probability density function of the form

ρd(u) =
d∏

j=1

ρ(uj)

where ρ is a 1-dimensional probability density function. As before, we shall

define the cumulative density function for one variable by

Φ(u) =

∫ u

−∞
ρ(t) dt

and the d-dimensional cumulative density function by

Φ(u) = (Φ(u1), . . . , Φ(ud))
T .

The corresponding inverse cumulative density functions are defined in a similar

way.

We begin by noting from (4.1) that the integral can be thought of as either

an integral over the space R
d or an integral over the d-dimensional unit cube

[0, 1]d. Correspondingly, we will construct two spaces for the two realisations

of the same integral.

Informally, the space Hunb,d,γ will consist of function g from (4.1), while

Hunb,d,γ will consist of functions f of the form f = g(Φ−1
d (·)), for g ∈ Hunb,d,γ.

4.1.1 The univariate case

For given a, b ∈ R ∪ {−∞,∞}, a < b, let

D = (a, b) ⊆ R.

92



Since we allow a = −∞ and b = ∞, the domain can be either a closed interval

[a, b], a half line [a,−∞) or (−∞, b], or the whole real line (−∞,∞). For

simplicity of notation, we assume that 0 ∈ D. Let ρ : D → R+ be a probability

density function over the domain D, i.e.,∫ b

a

ρ(u) du = 1,

and we consider approximating an integral of the form

Iρ(g) =

∫ b

a

g(u)ρ(u) du.

The space Hunb,1,γ

For a Lebesgue measurable and (a.e.) positive function ψ : D → R, let Hunb,1,γ

be the space of absolutely continuous functions g : D → R with derivative g ′

bounded in the following way

‖g′ψ‖2
L2(D) =

∫ b

a

|g′(u)ψ(u)|2 du < ∞.

This space is a separable Hilbert space when equipped with the following inner

product and norm

〈g, g̃〉Hunb,1,γ
= g(0)g̃(0) +

1

γ

∫ b

a

g′(u)g̃′(u)ψ2(u) du

and

‖g‖Hunb,1,γ
= 〈g, g〉1/2

Hunb,1,γ
.

Here γ > 0 is a weight parameter. Clearly γ does not change the space Hunb,1,γ,

it only changes the inner product and the norm in Hunb,1,γ. As in the previous

chapter, the role of γ will become apparent when we introduce the multivariate

case. Notice that the space Hunb,1,γ depends on the choice of ψ. For simplicity

of the notation, we shall in general not make this dependence explicit.

We assume that∫ v

u

ψ−2(t) dt < ∞ for all u, v ∈ D ∩ (−∞,∞).

93



Then Hunb,1,γ is a reproducing kernel Hilbert space with the kernel Kunb,1,γ

given by

Kunb,1,γ(u, v) = 1 + γ1−(max(u, v))

∫ 0

max(u,v)

ψ−2(t) dt

+ γ1+(min(u, v))

∫ min(u,v)

0

ψ−2(t) dt, u, v ∈ D. (4.2)

Here and elsewhere, 1− and 1+ denote the indicator functions of the half lines

(−∞, 0] and [0, +∞), respectively.

From the definition of reproducing kernels we have

Kunb,1,γ(·, u) ∈ Hunb,1,γ and g(u) = 〈g,Kunb,1,γ(·, u)〉Hunb,1,γ

for all u ∈ D and g ∈ Hunb,1,γ. To see this, observe that

∂

∂u
Kunb,1,γ(u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−γψ−2(u), v < u < 0,

+γψ−2(u), 0 < u < v,

0, otherwise.

The significance of the weight function ψ is in the fact that by a proper

choice, we could make the space Hunb,1,γ very large or very small. To see this,

consider a = −∞ and b = ∞, i.e., D = R. By letting ψ(u) = exp(−αu2) with

α > 0, the corresponding space contains polynomials, exponential functions of

the form exp(β|u|) for every β, and even exp(+βu2) as long as β < α. On the

other hand, if ψ(u) is bounded away from zero when |u| → ∞, then among all

polynomials only constant functions belong to Hunb,1,γ.

The initial error e0,1(Kunb,1,γ) of the integration problem defined in Hunb,1,γ,

that is

e0,d(Kunb,1,γ) = sup
g∈Hunb,1,γ

‖g‖Hunb,1,γ
≤1

|Iρ(g)| =

(∫ b

a

∫ b

a

Kunb,1,γ(u, v)ρ(u)ρ(v) du dv

)1/2

.

For the problem to be well defined we have to assume that e0,1(Kunb,1,γ) is

finite. From (4.2) it can be shown that this assumption is equivalent to

C0 =

∫ 0

a

ψ−2(t)

(∫ t

a

ρ(u) du

)2

dt+

∫ b

0

ψ−2(t)

(∫ b

t

ρ(u) du

)2

dt < ∞, (4.3)

94



and we have e0,1(Kunb,1,γ) = (1 + C0γ)1/2. Furthermore, we assume an even

stronger condition ∫ b

a

Kunb,1,γ(u, u)ρ(u) du < ∞,

which ensures that the embedding of Hunb,1,γ is in L2,ρ(D). Again it follows

from (4.2) that we require

C1 =

∫ 0

a

ψ−2(t)

∫ t

a

ρ(u) du dt +

∫ b

0

ψ−2(t)

∫ b

t

ρ(u) du dt < ∞. (4.4)

Clearly we have C1 ≥ C0 for all choices of ψ and ρ.

Example 4.1.1 Consider D = R and a Gaussian distribution

ρ(u) =
exp(−u2/(2λ))√

2πλ
, λ > 0.

Using

1

t

(
1 − 1

t2

)
e−t2/2 ≤ 1√

2π

∫ ∞

t

e−u2/2 du ≤ 1

t
e−t2/2 for all t > 0,

we see that both (4.3) and (4.4) hold if ψ(u) converges to zero (with |u| → ∞)

slower than any Gaussian density. If we take ψ(u) = exp(−|u|/α), then (4.3)

and (4.4) hold for all α > 0, and the space Hunb,1,γ contains functions such

as exp(|u|/β) provided that β > α. If we take ψ(u) = exp(−u2/(2α)), then

it is easy to see that (4.3) holds if and only if α > λ and (4.4) holds if and

only if α > 2λ. Moreover, the space Hunb,1,γ contains even such fast diverging

functions as exp(+u2/(2β)) as long as β > α.

Example 4.1.2 Consider D = [a,∞) for finite a ≤ 0 and an exponential

distribution

ρ(u) =
exp(−(u − a)/λ)

λ
, λ > 0.

If ψ(u) converges to zero slower than any function with an exponential decay

then (4.3) and (4.4) are satisfied. Consider therefore ψ(u) = exp(−u/α). Then

4.3 holds if and only if α > λ and 4.4 holds if and only if α > 2λ. Clearly in

this case the space Hunb,1,γ contains functions such as exp(+u/β) if β > α.

95



Example 4.1.3 Consider D = R and a two-tailed exponential distribution

ρ(u) =
exp(−|u|/λ)

2λ
, λ > 0.

Taking ψ(u) = exp(−|u|/α) we see that (4.3) holds if and only if α > λ and

(4.4) holds if and only if α > 2λ. With this choice of ψ, the space Hunb,1,γ

contains functions such as exp(|u|/β) provided that β > α.

Example 4.1.4 Consider D = R and a logistic distribution

ρ(u) =
1

λ

eu/λ

(1 + eu/λ)
2 , λ > 0.

This density function has a bell shape similar to Gaussian, but its tails have

exponential decay, since

1

4
e−|u|/λ ≤ eu/λ

(1 + eu/λ)
2 ≤ e−|u|/λ.

Suppose that ψ(u) = eu/α/(1 + eu/α)2. Then it is not hard to see that (4.3)

holds if and only if α > λ and (4.4) holds if and only if α > 2λ. This choice

of ψ leads to a space Hunb,1,γ containing functions such as exp(|u|/β) provided

that β > α.

Example 4.1.5 Consider D = R and

ρ(u) =
λ − 1

2

1

(1 + |u|)λ
, λ > 1.

Suppose also that ψ(u) = (1+|u|)−α. Then (4.3) holds if and only if α < λ−3/2

and (4.4) holds if and only if α < λ/2 − 1. Clearly now Hunb,1,γ contains

polynomials of degree smaller than α + 1/2.

The space Hunb,1,γ

Let Φ−1 be the inverse of the cumulative density function

Φ(u) =

∫ u

a

ρ(t) dt.

96



Then after the change of variables x = Φ(u), as discussed above, we have

∫ b

a

g(u)ρ(u) du =

∫ 1

0

f(x) dx where f(x) = g(Φ−1(x)).

Let Hunb,1,γ denote the corresponding space of functions f = g(Φ−1(·))
defined over the domain [0, 1]. The space Hunb,1,γ is isometric to Hunb,1,γ defined

earlier

g ∈ Hunb,1,γ ⇐⇒ f = g(Φ−1(·)) ∈ Hunb,1,γ and ‖g‖Hunb,1,γ
= ‖f‖Hunb,1,γ

.

Similarly, we see that Hunb,1,γ is a reproducing kernel Hilbert space with

the kernel given by

Kunb,1,γ(x, y) = Kunb,1,γ(Φ
−1(x), Φ−1(y)), x, y ∈ [0, 1].

Note that we use calligraphic letters for the space defined over the general D

in contrast to upright letters for the space defined over the unit interval [0, 1].

(Technically, the domain of Hunb,1,γ could be either [0, 1], (0, 1], [0, 1) or (0, 1),

depending on whether the domain D of Hunb,1,γ is a closed interval, a half line,

or the whole real line.) The space Hunb,1,γ depends on the choice of ψ. So as to

ease the congestion in the notation, we will not include the ψ in the subscripts.

Since

e0,1(Kunb,1,γ) =

(∫ 1

0

∫ 1

0

Kunb,1,γ(x, y) dx dy

)1/2

=

(∫ b

a

∫ b

a

Kunb,1,γ(Φ(u), Φ(v))ρ(u)ρ(v) du dv

)1/2

=

(∫ b

a

∫ b

a

Kunb,1,γ(u, v)ρ(u)ρ(v) du dv

)1/2

= (1 + C0γ)1/2 = e0,1(Kunb,1,γ),

the condition (4.3) guarantees that every function f from Hunb,1,γ is integrable.

97



Moreover, we have for all f ∈ Hunb,1,γ that

‖f‖L2([0,1]) =

(∫ 1

0

|f(x)|2 dx

)1/2

≤
(∫ 1

0

Kunb,1,γ(x, x) dx

)1/2

‖f‖Hunb,1,γ

=

(∫ b

a

Kunb,1,γ(u, u) du

)1/2

‖f‖Hunb,1,γ

= (1 + C1γ)1/2 ‖f‖Hunb,1,γ
.

Hence the condition (4.4) implies that Hunb,1,γ is embedded in L2([0, 1]), and

all functions f in Hunb,1,γ are square-integrable.

We end this section with a discussion on the shift-invariant kernel (see

Section 2.3.2) associated with Kunb,1,γ, which is defined by

Ksh
unb,1,γ(x, y) =

∫ 1

0

Kunb,1,γ({x + Δ}, {y + Δ}) dΔ, x, y ∈ [0, 1].

From this definition, it is not hard to see that Ksh
unb,1,γ depends only on {x−y}.

Here is the derivation of Ksh
unb,1,γ(x, y) together with some properties that will

be needed later.

Lemma 4.1.6 The shift-invariant kernel associated with Kunb,1,γ is of the form

Ksh
unb,1,γ(x, y) = 1 + γω({x − y}), x, y ∈ [0, 1],

where ω(t) = Υ(t) + Υ(1 − t), with

Υ(t) =

∫ 0

Φ−1(t)

ψ−2(u)(Φ(u) − t) du. (4.5)

Moreover, ω is non-negative, symmetric along t = 1/2, with

ω(0) = C1,

∫ 1

0

ω(t) dt = C0, and ω′′(t) ≥ 0 for all t ∈ (0, 1),

where C0 and C1 are as defined in (4.3) and (4.4).

Proof. Clearly Ksh
unb,1,γ(x, y) = 1 + γω({x − y}) with ω(t) = ω1(t) + ω2(t), for

ω1(t) =

∫ 1

0

1−(max(Φ−1(Δ), Φ−1({Δ + t})))
∫ 0

m(Δ,t)

ψ−2(u) du dΔ,

ω2(t) =

∫ 1

0

1+(min(Φ−1(Δ), Φ−1({Δ + t})))
∫ m(Δ,t)

0

ψ−2(u) du dΔ,

98



where

m(Δ, t) = min(Φ−1(Δ), Φ−1({Δ + t}))
m(Δ, t) = max(Φ−1(Δ), Φ−1({Δ + t})).

Consider first ω1(t). Since Φ−1 is monotonically increasing, m(Δ, t) equals

Φ−1(max(Δ, {Δ + t})), which equals Φ−1(Δ + t) when Δ ≤ 1 − t and equals

Φ−1(Δ) when Δ ≥ 1 − t. Thus

ω1(t) =

∫ 1−t

0

1−(Φ−1(Δ + t))

∫ 0

Φ−1(Δ+t)

ψ−2(u) du dΔ

+

∫ 1

1−t

1−(Φ−1(Δ))

∫ 0

Φ−1(Δ)

ψ−2(u) du dΔ

=

∫ 1

t

1−(Φ−1(z))

∫ 0

Φ−1(z)

ψ−2(u) du dz

+

∫ 1

1−t

1−(Φ−1(Δ))

∫ 0

Φ−1(Δ)

ψ−2(u) du dΔ.

Let α0 = Φ(0). Since Φ−1(z) ≤ 0 iff z ≤ α0, we have

ω1(t) = 1+(α0 − t)

∫ α0

t

∫ 0

Φ−1(z)

ψ−2(u) du dz

+ 1+(α0 − 1 + t)

∫ α0

1−t

∫ 0

Φ−1(Δ)

ψ−2(u) du dΔ

= 1+(α0 − t)

∫ 0

Φ−1(t)

ψ−2(u)(Φ(u) − t) du

+ 1+(α0 − 1 + t)

∫ 0

Φ−1(1−t)

ψ−2(u)(Φ(u) − 1 + t) du.

Similarly, one can show that

ω2(t) = 1+(1 − t − α0)

∫ Φ−1(1−t)

0

ψ−2(u)(1 − t − Φ(u)) du

+ 1+(t − α0)

∫ Φ−1(t)

0

ψ−2(u)(t− Φ(u)) du.

Hence we have ω(t) = Υ(t) + Υ(1 − t), with

Υ(t) =

∫ 0

Φ−1(t)

ψ−2(u)(Φ(u) − t) du.

99



It is easy to show that

Υ′(t) = −
∫ 0

Φ−1(t)

ψ−2(u) du, Υ′′(t) =
ψ−2(Φ−1(t))

ρ(Φ−1(t))
,

and ∫ 1

0

Υ(t) dt =

∫ α0

0

∫ 0

Φ−1(t)

ψ−2(u)(Φ(u) − t) du dt

+

∫ 1

α0

∫ Φ−1(t)

0

ψ−2(u)(t − Φ(u)) du dt

=

∫ 0

a

ψ−2(u)
(Φ(u))2

2
du +

∫ b

0

ψ−2(u)
(1 − Φ(u))2

2
du.

Thus

ω(0) = Υ(0) + Υ(1) =

∫ 0

a

ψ−2(u)Φ(u) du +

∫ b

0

ψ−2(u)(1 − Φ(u)) du = C1,∫ 1

0

ω(t) dt = 2

∫ 1

0

Υ(t) dt = C0,

ω′′(t) = Υ′′(t) + Υ′′(1 − t) =
ψ−2(Φ−1(t))

ρ(Φ−1(t))
+

ψ−2(Φ−1(1 − t))

ρ(Φ−1(1 − t))
≥ 0 ∀t.

This completes the proof. �

4.1.2 The multivariate case

For d ≥ 2, we study d-dimensional integrals of the form∫
Dd

g(u) ρd(u) du, where ρd(u) =
d∏

j=1

ρ(uj).

We now define the spaces of d-variate functions as tensor products of the spaces

Hunb,1,γ and Hunb,1,γ.

The space Hunb,d,γ

For a given sequence of non-increasing positive weights γ = (γ1, γ2, . . .), we

define the reproducing kernel Kunb,d,γ as the tensor product of the kernels

Kunb,1,γj
,

Kunb,d,γ(u, v) =

d∏
j=1

Kunb,1,γj
(uj, vj), u, v ∈ Dd.

100



The space Hunb,d,γ is then the Hilbert space generated by the one-dimensional

reproducing kernel Kunb,d,γ.

Alternatively, the space Hunb,d,γ can be characterised in terms of its inner

product

〈g, g̃〉Hunb,d,γ
= g(0)g̃(0) +

∑
∅�=u⊆D

γ−1
u

∫
D|u|

∂|u|

∂uu

g(uu, 0)
∂|u|

∂uu

g̃(uu, 0) ψ2
u
(uu) duu,

where u is defined as in Section 2.4.1. By (xu, 0) we mean a d-dimensional

vector whose jth coordinate is xj if j ∈ u and zero otherwise. Moreover,

γu =
∏
j∈u

γj and ψu(uu) =
∏
j∈u

ψ(uj).

Letting (
d⊗

j=1

gj

)
(u) =

d∏
j=1

gj(xj),

the space Hunb,d,γ is the completion of

span

{
d⊗

j=1

gj : gj ∈ Hunb,1,γj

}
,

with respect to the norm ‖·‖Hunb,d,γ
= 〈·, ·〉1/2

Hunb,d,γ
.

The space Hunb,d,γ

Similarly to the one-dimensional case, we will now define the corresponding

space Hunb,d,γ over [0, 1]d which is isometric to Hunb,d,γ. Again we use upright

and calligraphic letters to make a distinction between these two spaces. Using

the substitution x = Φd(u) = (Φ(u1), . . . , Φ(ud))
T , we have∫

Dd

g(u)ρd(u) du =

∫
[0,1]d

f(x) dx with f(x) = g(Φ−1
d (x)).

The space Hunb,d,γ, which contains the corresponding functions f = g(Φ−1(·)),
is isometric to Hunb,d,γ, that is,

g ∈ Hunb,d,γ ⇐⇒ f = g(Φ−1
d (·)) ∈ Hunb,d,γ and ‖g‖Hunb,d,γ

= ‖f‖Hunb,d,γ
.

101



The reproducing kernel in Hunb,d,γ is given by

Kunb,d,γ(x, y) = Kunb,d,γ(Φ−1
d (x), Φ−1

d (y))

=
d∏

j=1

Kunb,1,γj
(Φ−1(xj), Φ

−1(yj)), x, y ∈ [0, 1]d,

with the associated shift-invariant kernel

Ksh
unb,d,γ(x, y) =

d∏
j=1

Kunb,1,γj
(xj , yj)

=

d∏
j=1

(1 + γjω({xj − yj})) , x, y ∈ [0, 1]d.

QMC methods are traditionally designed for integrals over the unit cube.

That is, we construct a set of points Pn,d = {t0, t1, . . . , tn−1} with each point

lying in the unit cube. For an integral such as Iρd
(g) in (4.1) defined over R

d,

we desire to find a point set τ 0, τ 1, . . . , τ n−1 where τ k = Φ−1
d (tk) for some

tk ∈ (0, 1)d, for k = 0, 1, . . . , n − 1.

We shall carry out our analysis in the space Hunb,d,γ to construct the point

set for the integration problem Id(f) and then exploit the isometry between

Hunb,d,γ and Hunb,d,γ to construct the point set for Iρd
(g).

4.2 Worst-case error analysis

From the theory developed in Section 2.3.2, the squared worst-case error for a

point set Pn,d = {t0, t1, . . . , tn−1} of points in the unit cube is given by

e2
n,d(Pn,d; Kunb,d,γ) =

∫
[0,1]2d

Kunb,d,γ(x, y) dx dy

− 2

n

n−1∑
i=0

∫
[0,1]d

Kunb,d,γ(ti, y) dy +
1

n2

n−1∑
i=0

n−1∑
k=0

Kunb,d,γ(ti, tk).

By Munb,n,d,γ we denote the QMC mean for this space. As stated in Sec-

tion 2.3.3, the QMC mean is defined as the root mean squared QMC worst-case

102



error over all possible points t0, t1, . . . , tn−1 ∈ [0, 1]d. We have

M2
unb,n,d,γ =

∫
[0,1]nd

e2
unb,n,d,γ(t0, t1, . . . , tn−1) dt0 dt1 · · · dtn−1

=
1

n

(∫
[0,1]d

Kunb,d,γ(x, x) dx −
∫

[0,1]2d

Kunb,d,γ(x, y) dx dy

)
=

1

n

(
d∏

j=1

(1 + C1γj) −
d∏

j=1

(1 + C0γj)

)
.

By the averaging argument, there clearly exists a set of points {t0, t1, . . . , tn−1}
such that

eunb,n,d,γ(Pn,d; Kunb,d,γ) ≤ Munb,n,d,γ ≤ 1√
n

exp

(
C1

2

d∑
j=1

γj

)
.

This leads to a O(n−1/2) rate of convergence. Moreover, the implied constant

can be bounded independent of d provided that
∑∞

j=1 γj < ∞. We shall use

the QMC mean as a benchmark for our lattice rules below.

We now calculate the expected worst-case error for a randomly-shifted lat-

tice rule with generating vector z. As in Section 3.2, we will refer to the

worst-case error for a lattice rule with generating vector z and shift Δ as

eunb,n,d,γ(z,Δ). If the shift is chosen randomly, we shall refer to the expected

randomly-shifted worst-case error as eunb,n,d,γ(z).

Following Theorem 2.3.3, we can write the squared worst-case error for a

randomly shifted lattice rule as

e2
unb,n,d,γ(z) =

∫
[0,1]d

e2
unb,n,d,γ(z,Δ) dΔ

= −
∫

[0,1]2d

Kunb,d,γ(x, y) dx dy +
1

n

n−1∑
i=0

Ksh
unb,d,γ

({
iz
n

}
, 0
)

= −
d∏

j=1

(1 + C0γj) +
1

n

n−1∑
i=0

d∏
j=1

(
1 + γjω

({
izj

n

}))
, (4.6)

Therefore, we know there must exist at least one shift Δ such that

e2
unb,n,d,γ(z,Δ) ≤ e2

unb,n,d,γ(z).

In other words, it serves as an upper bound for the worst-case error of shifted

rank-1 lattice rules with deterministic shifts.

103



We see from Lemma 4.1.6 that

ω(0) = C1,

∫ 1

0

ω(t) dt = C0, and ω′′(t) ≥ 0 for all t ∈ (0, 1).

The fact that ω is convex and symmetric about t = 1/2 implies that for n = pm

the power of a prime p (see Lemma 3.2.1)

1

φ(pm)

∑
z∈Zp,m

ω

(
z

pm

)
<

∫ 1

0

ω(t) dt = C0 (4.7)

which is an essential step for our analysis below.

We now use a component-by-component (CBC) algorithm to construct the

generating vector z. The vector z constructed this way has a worst case error

not greater than the QMC mean.

Algorithm 3 CBC algorithm for the space of unbounded functions

Require: Let n = pm be the power of a prime p, dmax some integer and ψ

some function such that g ∈ Hunb,d,γ or equivalently f ∈ Hunb,d,γ

1: Set z∗1 = 1

2: for d = 1 to dmax − 1 do

3: Find z∗d+1 ∈ Zp,m which minimises eunb,pm,d+1,γ((z∗
d, zd+1))

4: Set z∗
d+1 = (z∗

d, z
∗
d+1)

5: end for

Theorem 4.2.1 For n = pm the power of a prime p, then the generating vector

z∗
d = (z∗1 , . . . , z

∗
d) ∈ Zd

p,m constructed by Algorithm 3 satisfies

eunb,n,d,γ(z∗1 , . . . , z
∗
d) < Munb,n,d,γ

for all d = 1, 2, . . . , dmax.

Proof. The proof is very similar to the proof of Theorem 3.2.5 and is excluded

here for the sake of brevity. �

In the implementation of Algorithm 3 we once again use a modified version

of the fast CBC algorithm of Cools and Nuyens mentioned above. This allows

104



us to calculate the vector z∗ in O(dn log n) operations. The function ω must

be pre-computed at all multiples of 1/n. This requires O(n) storage.

Finally, we can easily calculate a lower bound for the worst-case error. As

was the case for the space Hpow,d,α,γ, we use the fact that ω is non-negative

and dropping the terms in (4.6) where i 
= 0, we obtain

e2
unb,n,d,γ(z) ≥ −

d∏
j=1

(1 + C0γj) +
1

n

d∏
j=1

(1 + C1γj) for all z ∈ Zd
n,1.

Using this as lower bound and the QMC mean Munb,n,d,γ as upper bound, it

follows that the condition
∑∞

j=1 γj < ∞ is both necessary and sufficient for

eunb,n,d,γ(z) to be bounded independently of d.

4.3 Numerical experiments

In this section, we test the performance of the randomly-shifted lattice rules

generated by Algorithm 3. We test the lattice rules with the same problem

which we used for the analytic space of functions in Section 3.3.2, namely the

Asian option pricing problem, with the same values for the parameters.

We have seen in Section 3.3.2 that the PCA construction gives far superior

performance to the standard construction. For this reason, we will only include

results in this section using the PCA construction.

Therefore, we are solving the problem over R
d of

C =

∫
Rd

g(u) du, where g(u) =
e−rT

(
√

2π)d
√

det Σ
G(u) exp

(
1
2
uT Σ−1u

)
(4.8)

or equivalently over the unit cube

C =

∫
[0,1]d

f(x) dx, where f(x) = e−rT G(AΦ−1
d (x)), (4.9)

where G is the payoff function as defined in (2.57), Σ is the covariance matrix

as defined in (2.56), A is the matrix with columns as defined in (2.61) and Φ−1

is the inverse cumulative normal density function.

105



Thus the density ρ is pre-determined, but we have the freedom to choose the

weight function ψ. We must stress at this point that, no matter how we choose

ψ, the function space Hunb,d,γ will not include this function g. Nevertheless,

we will ignore this fact and proceed to choose ψ to capture some features of

g. A closer examination of the payoff function indicates that, at least in one

dimension, g behaves like exp(σu) when |u| → ∞. Thus we shall choose ψ

so that (4.3) and (4.4) both hold with respect to a Gaussian ρ, and we want

Hunb,1,γ to include the function exp(σu). Three possibilities are:

1. Gaussian ψ(u) = exp
(
− u2

2α

)
, α > 2.

2. Two-tailed exponential ψ(u) = exp
(
− |u|

α

)
, 0 < α < 1/σ.

3. Logistic ψ(u) =
eu/α

(1 + eu/α)2
, 0 < α < 1/σ.

See Examples 4.1.1, 4.1.3, and 4.1.4 for a discussion of these choices. Note

that in order to calculate the worst case error, we must evaluate the function

ω, or equivalently, the function Υ given in (4.5), at multiples of 1/n. In this

case Φ is the cumulative normal distribution function, which can be evaluated

with any standard computational package. The integral in Υ can be evaluated

using a one-dimensional quadrature formula. The values of C0 and C1 may be

calculated in a similar fashion.

Remark 4.3.1 It is not entirely true that the density ρ is fixed in this case.

It is always possible to write∫
[0,1]d

g(u)ρd(u) du =

∫
[0,1]d

g(u)ρd(u)

ρ̃d(u)
ρ̃d(u) du,

where ρ̃d can be the product of any univariate probability density. By using

a different density, we can change the feature of the transformed integrand,

making it bounded or unbounded near the boundary of the cube. Consider for

example the one dimensional integral∫ ∞

−∞
exp(σu)

e−u2/2

√
2π

dx.

106



When ρ is the standard normal density, the transformed integrand in the unit

interval is exp(σΦ−1(x)), which is clearly unbounded at x = 1. If we take

instead ρ̃(u) = eu/(1 + eu)2, then the transformed integrand is

exp(σΦ̃−1(x))
e−[eΦ−1(x)]2/2

√
2π

(1 + e
eΦ−1(x))2

eeΦ−1(x)
, with Φ̃−1(x) = log

(
x

1−x

)
,

which is bounded on the entire interval [0, 1]. The question we should ask

ourselves is whether it is better to work with an unbounded integrand arising

from the natural transformation, or is it better to seek a transformation which

ensures that the transformed integrand is bounded? This falls outside the

scope of the thesis. But it is our opinion that an unbounded integrand with

weak singularities is easier to handle in practice than a bounded integrand with

huge norms resulting from the large derivative values near the boundary.

We consider three cases: for a Gaussian ψ we take α = 5; for a two-tailed

exponential ψ we take α = 2; and for a logistic ψ we take α = 2 as well. In each

case, we carry out the fast CBC algorithm with d = 100 and prime numbers

n = 1009, 2003, 4001, 8009, 16001, 32003, and 64007, using three different

“styles” of weights:

γj ∝ 1/j2 (slow decaying), γj ∝ 0.9j (fast decaying), and γj ∝ 1 (equal).

Note that each of the three cases corresponds to a different function space,

with different values of C0, C1, and initial error eunb,0,d,γ. Clearly we cannot

directly compare the worst-case errors. It follows from the upper and lower

bounds in the previous section that the normalised worstcase error satisfies√
max

(
R

n
− 1, 0

)
≤ eunb,n,d,γ(z)

eunb,0,d,γ
≤
√

R − 1

n
,

where

R =

d∏
j=1

1 + C1γj

1 + C0γj
.

Thus if we choose the “scaling” of the weights so that R is the same in all six

cases, then we have the same upper and lower bounds in each case, and thus

the normalised worst-case errors would be roughly comparable.

107



How should we choose this number R? Clearly we have R > 1 and it

follows from the upper bound that a small value of R means small normalised

worst-case errors. On the other hand, if R is large compared to n, then it

is possible for the lower bound to be greater than 1, which means that the

worst-case error can be larger than the initial error. To ensure that this never

happens, we take R = 2, which leads to a value of 1 for both the upper and

lower bounds at n = 1.

Remark 4.3.2 By rescaling the weights, as above, we make them dependent

on d; whereas so far we assumed that γj’s are independent of d. The latter

assumption was made only for the simplicity of presentation and the results of

this paper can be easily generalized to the case of γj = γd,j depending on d.

The problem of finding a good scaling for the weights was already considered in

[13] with a conclusion that the sum of the weights should be in a certain range

(e.g., between d and 2d) to reduce the error. Our approach here is very similar

and, in particular, the quantity R corresponds to an exponential function of the

sum of weights. For the purpose of our experiments here, we consider d = 100

to be given and fixed, and we treat the scaling factors in each case as if they

were constants.

Our next step is to compute the price of the Asian call option using these

newly constructed randomly-shifted lattice rules. Each evaluation of the inte-

gral Id uses a random shift; we carry out 10 such evaluations Q1, . . . , Q10 using

10 independent random shifts and we take the average Q = (Q1 + · · ·+Q10)/10

as our final approximation to the integral Id. An unbiased estimate of the stan-

dard error for this approximation can be computed by√√√√ 1

10
× 1

9

10∑
i=1

(Qi − Q)2.

The results are presented in Tables 4.1–4.3. Each table contains the estimated

standard errors using those randomly-shifted lattice rules generated in the three

cases based on a particular style and a specific scaling of weights. The scaling

108



factors are included in the third row of each table. For example, the weights for

the case of a Gaussian ψ with α = 5 in Table 4.1 are given by γj ≈ 0.773/j2.

These seemingly arbitrary scaling factors were chosen to keep R = 2 within

each table. The last row of each table corresponds to the observed order of

convergence O(n−a), which is estimated by taking a least squares fit. Also

included in the final column of Tables 4.1–4.3 are the standard errors in the

Sobolev space anchored at the center of the unit cube (1/2, . . . , 1/2). Recall

Section 2.4.3 and specifically (2.25) for a discussion of the anchored Sobolev

space. As a comparison, Table 4.4 includes results obtained from three sets

of calculations using Monte Carlo methods. All entries were computed using

the same 10 random shifts. We report here only the results from the PCA

construction since it consistently gives better QMC approximations than the

standard construction. The PCA construction has the effect of reallocating

most of the variance to the first few integration variables, thus reducing the

effective dimension of the problem (see [1, 60]). Note that it has no effect on

MC approximations, since the MC error depends only on the total variance of

the integrand, which is unchanged under the PCA construction.

n ψ Gaussian ψ two-tailed ψ logistic Sobolev

α = 5 α = 2 α = 2

7.73e-01 3.71e-01 5.34e-02 3.35e+00

1009 6.23e-03 6.49e-03 6.97e-03 6.60e-03

2003 3.12e-03 3.03e-03 3.02e-03 2.87e-03

4001 1.32e-03 1.28e-03 1.32e-03 1.42e-03

8009 8.21e-04 7.90e-04 7.54e-04 8.54e-04

16001 4.68e-04 5.29e-04 5.33e-04 4.37e-04

32003 2.65e-04 3.01e-04 2.87e-04 2.62e-04

64007 9.55e-05 8.49e-05 8.59e-05 9.12e-05

a 0.95 0.96 0.97 0.97

Table 4.1: Standard errors for Asian option problem with γj ∝ 1/j2

109



n ψ Gaussian ψ two-tailed ψ logistic Sobolev

α = 5 α = 2 α = 2

1.15e-01 5.63e-02 7.87e-03 4.79e-01

1009 7.00e-03 5.98e-03 6.35e-03 6.17e-03

2003 2.87e-03 2.56e-03 3.10e-03 3.05e-03

4001 1.31e-03 1.27e-03 1.26e-03 1.24e-03

8009 7.33e-04 7.78e-04 7.74e-04 7.38e-04

16001 4.53e-04 5.48e-04 4.86e-04 4.89e-04

32003 2.69e-04 2.77e-04 2.63e-04 2.72e-04

64007 9.92e-05 9.56e-05 1.03e-04 9.01e-05

a 0.96 0.91 0.94 0.95

Table 4.2: Standard errors for Asian option problem with γj ∝ 0.9j

We see from the numbers that, regardless of the choice of ψ, the rules

from our new spaces perform as well as the rules from the anchored Sobolev

spaces. The empirical rate of convergence is much better than the theoretically

predicted O(n−1/2), that is, a = 0.5. This suggests that it is possible to

construct lattice rules which achieve the optimal rate of convergence. Whether

this is true or not remains an open problem.

We must stress once again that the integrand from the Asian option problem

lies in neither the anchored Sobolev spaces nor in our Hunb,d,γ spaces. It fails

to lie in the Sobolev spaces for two reasons: it is unbounded at the boundaries

of the unit cube and its mixed first derivatives do not exist. With the spaces

Hunb,d,γ, the first of these problems is remedied; however, the second is yet to

be rectified.

4.4 Discussion

In this chapter we provide a CBC algorithm for constructing randomly-shifted

lattice rules to approximate multivariate ρd-weighted integrals with the worst-

110



n ψ Gaussian ψ two-tailed ψ logistic Sobolev

α = 5 α = 2 α = 2

1.01e-02 4.96e-03 6.90e-04 4.19e-02

1009 7.11e-03 5.78e-03 6.61e-03 7.17e-03

2003 2.99e-03 3.14e-03 3.04e-03 2.81e-03

4001 1.29e-03 1.10e-03 1.39e-03 1.33e-03

8009 7.83e-04 6.65e-04 7.52e-04 7.86e-04

16001 4.67e-04 4.87e-04 5.10e-04 4.58e-04

32003 2.62e-04 2.60e-04 2.73e-04 2.77e-04

64007 9.53e-05 9.35e-05 9.42e-05 1.00e-04

a 0.97 0.94 0.96 0.95

Table 4.3: Standard errors for Asian option problem with γj ∝ 1

case error at least proportional to 1/
√

n. This result holds for a rather wide

class of integrands: the function space can be tuned, by way of an additional

weight function ψ, to suit a specific application. That is, for a given integrand,

one can choose the weight ρ to write the integral in the form (4.1), and next

the weight ψ. Once (4.3) and (4.4) are satisfied, and the corresponding norm

of g exists, one can then apply the CBC algorithm.

We stress that for any specific application, there is no unique pair (ρ, ψ)

satisfying (4.3) and (4.4). Unfortunately, choosing the best (or almost best) pair

might be a difficult task. Nevertheless, we believe that this approach can be

successfully used for many practical problems including numerous maximum

likelihood integrals in statistics (see, e.g., [6]). It can also be used for integrands

that cannot be modeled by any choice of (ρ, ψ) as illustrated by the numerical

experiments with the Asian option problem.

111



n MC 1 MC 2 MC 3

1009 9.63e-02 7.23e-02 8.98e-02

2003 8.25e-02 7.01e-02 6.54e-02

4001 3.56e-02 4.17e-02 2.82e-02

8009 3.33e-02 2.20e-02 3.35e-02

16001 1.73e-02 2.25e-02 1.79e-02

32003 1.45e-02 1.23e-02 1.25e-02

64007 1.01e-02 1.51e-02 1.45e-02

a 0.57 0.45 0.48

Table 4.4: Standard errors for Asian option problem with Monte Carlo methods

112



Chapter 5

Lattice rules extensible in the

number of points

We have seen that an n-lattice rule with generating vector z and (random)

shift ∆ gives us an n-point point set Pn,d with points

{
kz

n
+ ∆

}
, for k = 0, 1, . . . , n� 1.

We see that each point in the lattice is explicitly dependent on the number of

points n. This is not a desirable feature for a practitioner.

We saw in Section 2.4.5 that using a number of random shifts of given

point set, we are able to make an unbiased estimate of the standard error of

an approximation to the integration problem. A practitioner may wish to only

use as many points as are necessary so the the standard error is within some

bound. This is difficult with lattice rules as the value of n must be decided

before the standard error can be calculated.

There are several QMC alternatives to lattice rules which do not have this

problem. Point sets based on Sobol’ points [58], Kronecker type sequences [38,

39, 42] and digital nets and sequences, see [41, 42, 44].

Though a desirable property [23], a generating vector which is good for

many different values of n has until now not been constructed with either the

Korobov or CBC-type algorithms.

113



5.1 Extensible lattice rules

The theoretical existence of generating vectors which have small worst-case

error for a number of different values of n has been shown in [24]. The lattice

rules generated from such vectors are nowadays called extensible lattice rules.

In this case the quadrature points are given by tk = {ϕ(k)z + Δ}, where

k = k0 + k1p + · · · + kmpm for k = 0, 1, . . . , n − 1 and the radical inverse

function ϕ is defined by ϕ(k) = k0p
−1 + · · · + kmp−m−1. Here z is a vector of

p-adic numbers. (See [26] for a definition of p-adic numbers; for our purposes

here it is enough to assume that z is a vector of natural numbers hence we will

not introduce p-adic numbers here.)

The existence of good extensible lattice rules has been proven in [26] (see

Section 5.5 about a discussion of the precise meaning of “extensible”). Therein

it was shown that there exists a generating vector z which yields a lattice

rule which is good for n = b, b2, b3, . . ., for any integer b ≥ 2. The proof is

based on a more sophisticated averaging argument. It should be noted that

the lattice rules whose existence was proven in [26] are extensible in both the

number of points and the dimension. They share this property with lattice rules

constructed by the CBC algorithm. After the existence had been established

it remained a challenge to provide some construction algorithm which yields

generating vectors for extensible lattice rules. Several successful numerical

investigations have been carried out [4, 25], but a proof that those algorithms

yield good extensible lattice rules was not provided.

In this chapter we provide such an algorithm together with a proof. The

argument for the proof is indeed similar to the one used in [26]. It uses a

combination of Markov’s inequality, Jensen’s inequality and an extension of the

following simple fact: let A, B be two subsets of a finite set N and let |N | denote

the number of elements in N . Then |A|, |B| > |N |/2 implies that A ∩ B 
=
∅. (We use an extension of this to an arbitrary number of subsets of N .)

Using these principles we can obtain both an algorithm and a proof, thereby

114



providing first construction algorithms for extensible lattice rules. To speed up

the algorithm we show that we can also use a CBC approach (as described in

Section 2.6.2) together with the fast CBC computation method (as described

in Section 2.6.3). This way we obtain a practically feasible construction of

extensible lattice rules in (for many applications) sufficiently large dimensions

and a range of values of n.

Unfortunately our construction algorithms are not extensible in both n and

d simultaneously. The first sieve algorithm (see Section 5.2), though slow, is

in principle extensible in n, but is not extensible in the dimension. The CBC

sieve algorithm and the fast CBC sieve algorithm (see Section 5.3) construct

generating vectors for a range of moduli and is extensible in the dimension,

but once the vector is constructed it is not possible to extend the vector to

work well also for other moduli. Hence the CBC sieve constructions provide

embedded rather then extensible lattice rules [4]. Obtaining an algorithm

which is extensible in both n and d simultaneously remains an interesting open

question. See also Section 5.5 at the end of the chapter for a discussion of this

topic.

The existence of good extensible lattice rules was originally proven by show-

ing that the quantity Rα is small. (See [42] for a description of Rα.) It is

possible to use our approach to minimise a similar quantity R (see [11] for

details).

5.2 The sieve algorithm

In [26] the authors used p-adic numbers to show the existence of good exten-

sible lattices. Basically we could use p-adic numbers too, but we focus on the

construction of finitely extensible lattices by computer search. In theory, the

lattice could be infinitely extensible if the computer were able to search for an

infinite length of time. It is enough in our case to assume that the generating

vector is in the set N
d.

115



The paper [26] proved that it was possible to construct generating vectors

z with small worst-case error for n = b, b2, b3, . . . for all integers b ≥ 2. In

this chapter, we will again consider p to be an arbitrary prime, rather than

any integer, and we will show that lattice rules may be constructed for n =

p, p2, p3, . . .. However, it is almost trivial to extend the following construction

algorithm to the case where n = b, b2, b3, . . . for all integers b ≥ 2. See the

Remarks 5.2.8 and 5.3.6.

Then we restrict the set of admissible generating vectors to Zd
p as defined

in (2.33). Clearly, there is an infinite number of elements in this set. Since

eper,pm,d,α,γ(ẑ) = eper,pm,d,α,γ(z) if z ≡ ẑ (mod pm), we exploit the structure

inherent in lattice rules by restricting our searches to the set Zd
p,m as defined

in (2.34). We will say that for z ∈ Zd
p , the vector ẑ is the corresponding vector

in Zd
p,m.

5.2.1 Bounds on the worst-case error

In this section we prove some essential results which will shed light on how we

intend to construct good extensible lattice rules. Recall from Theorems 2.5.3

and 2.5.10 that for p such that p ≥
(

γ1ζ(α)
2π2

)1/α

and m and d positive integers

there exists a generating vector z ∈ Zd
p,m such that

e2
per,pm,d,α,γ(z) ≤ M2

per,pm,d,α,γ, (5.1)

and more generally for all λ ∈ (1/α, 1]

e2
per,pm,d,α,γ(z) ≤ M2

per,pm,d,α,γ(λ). (5.2)

We wish to define a probability measure over the set of all generating vectors

Zd
p [26, 43]. We would like to do so such that the measure of corresponding

vectors in Zd
p,m is equiprobable. For m ∈ N let μd,m be the equiprobable

measure on the set Zd
p,m. We say a subset A of Zd

p is of finite type, if there

exists an integer m = m(A) ∈ N and a subset A′ of Zd
p,m such that

A = {z ∈ Zd
p : (z (mod pm)) ∈ A′}.

116



The measure of the finite type subset A is then defined as

μd(A) = μd,m(A)(A
′).

Thus,

μd(A) =
#A′

φ(pm)d
. (5.3)

(Of course the number m = m(A) is not uniquely defined by A since if m

works, then also any number larger than m will work in the definition of a

finite type subset. It is easy to see that (5.3) does not depend on the specific

choice of m.)

We now define the following set. For a real c ≥ 1 let

Cn,d,α,γ(c) = {z ∈ Zd
p : e2

per,n,d,α,γ(z) ≤ cM2
per,n,d,α,γ}. (5.4)

This set has the following property.

Theorem 5.2.1 Let p be prime such that p ≥
(

γ1ζ(α)
2π2

)1/α

and let m and d be

positive integers. For any c ≥ 1 we have

μd(Cpm,d,α,γ(c)) > 1 − c−1.

Proof. This follows immediately from applying Markov’s inequality to (5.1).

�

We now make a small adjustment to this set which allows us to incorporate

Jensen’s inequality, see [13] where a similar argument was used. For a real

c ≥ 1 define the set

C̃n,d,α,γ(c) = {z ∈ Zd
p : e2

per,n,d,α,γ(z) ≤ c1/λM2
per,n,d,α,γ(λ) for all λ ∈ (1/α, 1]}.

(5.5)

We obtain the following theorem.

Theorem 5.2.2 Let p be prime such that p ≥
(

γ1ζ(α)
2π2

)1/α

and m and d be

positive integers. For any c ≥ 1 we have

μd(C̃pm,d,α,γ(c)) > 1 − c−1.

117



Proof. Let c ≥ 1 be given and choose 1/α < λ∗ ≤ 1 such that

c1/λ∗

M2
per,pm,d,α,γ(λ∗) ≤ c1/λM2

per,pm,d,α,γ(λ)

for all λ ∈ (1/α, 1], noting that the minimum can not occur at λ∗ = 1/α since

M2
per,pm,d,α,γ(1/α) is infinite. From Theorem 5.2.1 we see that

μd(Cpm,d,αλ∗,γλ∗ (c)) > 1 − c−1. (5.6)

Now, if z ∈ Cpm,d,αλ∗,γλ∗ (c), then

e2
per,pm,d,αλ∗,γλ∗(z) ≤ cM2

per,pm,d,αλ∗,2π2( γ

2π2 )λ∗ .

By (2.42) this implies that

(
e2
per,pm,d,α,γ(z)

)λ∗ ≤ cM2
per,pm,d,αλ∗,2π2( γ

2π2 )λ∗ ,

which can be re-written as

e2
per,pm,d,α,γ(z) ≤ c1/λ∗ (

M2
per,pm,d,α,γ

)1/λ∗

= c1/λ∗

M2
per,pm,d,α,γ(λ∗),

which in turn implies that z ∈ C̃n,d,α,γ(c). This means that Cpm,d,αλ∗,γλ∗ (c) ⊆
C̃pm,d,α,γ(c). Using (5.6) as a lower bound, we find that

μd(C̃pm,d,α,γ(c)) ≥ μd(Cpm,d,αλ∗,γλ∗ (c)) > 1 − c−1.

�

In the following we will use the above theorem to construct lattices for a

range of moduli.

5.2.2 The sieve principle

We now want to construct lattice rules which work well for several choices of

m. Let pm1 be the lowest number of points and pm2 be the highest number

of points in which we are interested in, i.e., m1 ≤ m2. Then for each m =

m1, m1 + 1, . . . , m2 we can define a set C̃pm,d,α,γ(cm) as in (5.5). In order to

118



obtain a generating vector which works well for all choices of m = m1, . . . , m2

we need to show that the intersection
⋂m2

m=m1
C̃pm,d,α,γ(cm) is not empty, or

equivalently, has measure greater than 0. To this end choose cm ≥ 1 such that

m2∑
m=m1

c−1
m ≤ 1, (5.7)

then the measure of the intersection of the sets above can be shown to be

strictly positive.

In the following we will write C̃c
pm,d,α,γ(cm) to denote the complement of the

set C̃pm,d,α,γ(cm) in Zd
p .

Theorem 5.2.3 Let p be prime such that p ≥
(

γ1ζ(α)
2π2

)1/α

, d be a positive

integer and let 0 < m1 ≤ m2. Let cm ≥ 1 for all m = m1, . . . , m2 such that∑m2

m=m1
c−1
m ≤ 1. Then there exists a vector z ∈ Zd

p such that

e2
per,pm,d,α,γ(z) ≤ c1/λ

m M2
per,pm,d,α,γ(λ)

for all λ ∈ (1/α, 1] and m = m1, . . . , m2.

Proof. We need to show that μd

(⋂m2

m=m1
C̃pm,d,α,γ(cm)

)
> 0. This is a simple

calculation,

μd

(
m2⋂

m=m1

C̃pm,d,α,γ(cm)

)
= 1 − μd

(
m2⋃

m=m1

C̃c
pm,d,α,γ(cm)

)

≥ 1 −
m2∑

m=m1

μd(C̃c
pm,d,α,γ(cm))

> 1 −
m2∑

m=m1

c−1
m ≥ 0.

�

The arguments used to prove Theorem 5.2.3 are very similar to the argu-

ments used in [26]. (Using p-adic numbers we could indeed also allow m2 to

be infinite. As in [26], using the above arguments, it is also possible to show

the existence of a large number of good generating vectors.) In the following

section, we will demonstrate how this theory can also be used to construct

good generating vectors.

119



5.2.3 The sieve algorithm

In this section we introduce the idea of how a good generating vector can

be found by describing a sieve algorithm for the construction of a generating

vector z∗ ∈ Zd
p which works well for m = m1, . . . , m2. This algorithm is quite

slow, but in later sections we will give some modifications which speed up the

sieve algorithm.

We wish to find a vector z∗ ∈ Zd
p which for m = m1, . . . , m2 satisfies

e2
per,pm,d,α,γ(z∗) ≤ c1/λ

m M2
per,pm,d,α,γ(λ), for all λ ∈ (1/α, 1].

That is, we wish to find a vector z∗ ∈ Zd
p that lies in

⋂m2

m=m1
C̃pm,d,α,γ(cm).

For m = m1 we use a computer search to find �(1 − c−1
m1

)φ(pm1)d� + 1 of the

φ(pm1)d vectors in Zd
p,m1

, which satisfy e2
per,pm1 ,d,α,γ(z) ≤ c

1/λ
m1 M2

per,pm1 ,d,α,γ(λ)

for all λ ∈ (1/α, 1] and label this set Tm1 . By Theorem 5.2.2 we know that at

least such a number of vectors exist.

We then construct the set Sm1+1 of all vectors z ∈ Zd
p,m1+1, such that there

exists some z ∈ Tm1 with z ≡ z (mod pm1). From the set Sm1+1 we only

keep �(1 − (c−1
m1

+ c−1
m1+1))φ(pm1+1)d� + 1 vectors which satisfy the inequality

e2
per,pm1+1,d,α,γ

(z) ≤ c
1/λ
m1+1M

2
per,pm1+1,d,α,γ

(λ) for all λ ∈ (1/α, 1] and label this

set Tm1+1. Again by Theorem 5.2.2 we know there must be at least

�(1 − c−1
m1+1)φ(pm1+1)d� + 1

vectors in Zd
p,m1+1 which satisfy e2

per,pm1+1,d,α,γ
(z∗) ≤ c

1/λ
m1+1M

2
per,pm1+1,d,α,γ

(λ)

for all λ ∈ (1/α, 1]. Therefore, there must be at least

�(1 − (c−1
m1

+ c−1
m1+1))φ(pm1+1)d� + 1

vectors which satisfy e2
per,pm1 ,d,α,γ(z∗) ≤ c

1/λ
m1 M2

per,pm1 ,d,α,γ(λ) for all λ ∈ (1/α, 1]

as well.

In the same way, we construct the sets Sm1+2, Tm1+2, . . . , Sm2 and Tm2 . By

Theorem 5.2.3 above, Tm2 is guaranteed not to be empty. We may select z∗ to

be any vector from Tm2 (see Section 5.3.2 for some comments on how to choose

a vector from Tm2).

120



Remark 5.2.4 In principle we can allow m2 to be infinite, i.e., we can choose

cm such that
∑∞

m=m1
c−1
m ≤ 1. Then we can stop the computer search at some

finite m′ > m1. If one stores all the necessary values from the initial search it

is then also possible to resume the computer search at a later point in time to

obtain an extensible lattice rules also for moduli larger than pm′
. Hence the

construction is truly extensible in the modulus (see also Section 5.5 for more

information on extensibility). As we will show in the next section, the vector

can also be extended in the dimension using a CBC approach, but once this is

done, it becomes “embedded” (see [4]) rather than extensible in the modulus,

since the values of m1 and m2 may not be altered once chosen.

Further, as can be seen from the arguments above, one need not choose

successive values of m, i.e., one could choose an arbitrary subset K ⊂ N and

construct a good lattice rule with pm points for all m ∈ K.

Remark 5.2.5 The constants cm ≥ 1 for m = m1, . . . , m2 may be chosen to

be any positive sequence of reals such that (5.7) is satisfied. If m2 is finite, one

possible choice of cm to satisfy (5.7) is cm = m2 − m1 + 1. This corresponds

to the lattice rule having in some sense the same quality for each value of m.

This choice will be used later in Section 5.4.

If m2 is chosen to be infinite, we cannot choose cm to be independent of m as

we did above. Instead, the constants cm must grow with m sufficiently fast so

that the sum in (5.7) converges. One possible choice is cm = Cm(log(m+1))1+ε

for any ε > 0 where C is chosen to be larger than
∑∞

m=m1
m−1(log(m+1))−(1+ε).

This is the choice used in [26]. A similar choice would be cm = ζ(1 + ε)m1+ε

again for any ε > 0.

The following theorem now applies to generating vectors constructed by

the sieve algorithm.

Theorem 5.2.6 Let p be prime such that p ≥
(

γ1ζ(α)
2π2

)1/α

, d be a positive

integer and let 0 < m1 ≤ m2. Let cm ≥ 1 for all m = m1, . . . , m2 such that∑m2

m=m1
c−1
m ≤ 1. Then the sieve algorithm constructs a vector z∗ ∈ Zd

p such

121



that

e2
per,pm,d,α,γ(z∗) ≤ c1/λ

m M2
per,pm,d,α,γ(λ)

for all λ ∈ (1/α, 1] and m = m1, . . . , m2.

Note that it is always possible to choose cm of order m1+ε for any ε > 0,

hence the factor cm in the bound in the above theorem contributes at most

another factor of m(1+ε)/λ = (log n)(1+ε)/λ, where n is the number of points. It

can be shown that for every 0 < δ < 1 there is a constant Dδ > 0 such that

(log n)cn−1 ≤ Dδn
−δ, hence for every λ ∈ (1/α, 1] there is a constant Cλ > 0

such that

e2
per,pm,d,α,γ(z∗) ≤ Cλp

m/λ
d∏

j=1

(
1 + 2γλ

j ζ(αλ)
)1/λ

for all m = m1, . . . , m2. (Here the constant Cλ may depend on the particular

choice of cm; on the other hand there is also a constant Cλ even if m2 = ∞,

see [26]). So using the sieve algorithm we can construct generating vectors

for lattice rules which achieve the optimal rate of convergence for a range of

moduli.

Remark 5.2.7 In the theorems above, we have always made the assumption

that p is chosen such that p ≥
(

γ1ζ(α)
2π2

)1/α

. If we replace M2
per,pm,d,α,γ(λ) with

M
2

per,pm,d,α,γ(λ) in each theorem, we can see that we can drop the condition on

p.

Remark 5.2.8 Following Remark 2.5.9, we see that the above theorems also

hold if M2
per,pm,d,α,γ(λ) is replaced by M̃2

per,bm,d,α,γ(λ) for an arbitrary positive

integer b ≥ 2.

5.3 CBC construction

In the previous section we gave the idea of how to construct extensible lattice

rules. In this section we show that the sieve algorithm can be combined with

a CBC approach (as discussed in Section 2.6.2) to obtain a faster construction

122



algorithm which will allow us to construct good lattice rules for a practically

relevant range of moduli and dimensions. This also gives the added benefit of

obtaining a construction which is also extensible in the dimension, but unfortu-

nately the range of moduli in this case has to be chosen in advance and cannot

be extended anymore. In this sense our lattice rules are embedded rather then

extensible, see also Section 5.5 and [26].

5.3.1 The CBC sieve algorithm

We may reduce the construction cost by constructing the vector z∗ component-

by-component. This approach has been shown to be very useful and effec-

tive in constructing lattice rules for fixed n where one has φ(n)d choices of

z. Recall that the CBC algorithm works the following way: choose the first

component of the generating vector z∗
1 = 1. Then, for z∗

d = (z∗1 , . . . , z
∗
d) al-

ready chosen, we will choose a component z∗
d+1 such that the worst-case error

eper,pm,d+1,α,γ(z∗
d, z

∗
d+1) satisfies a certain bound. This way we can obtain a

good generating vector inductively.

We will now establish a similar sequence of theorems to those of Theo-

rems 5.2.1–5.2.3 which now include the component-by-component approach.

Since we construct a vector z∗
d+1 = (z∗

d, zd+1) with z∗
d fixed, we are concerned

only with the incremental impact of the choice of zd+1 on the worst-case error.

Recall the definition from (2.45)

θper,pm,d+1,α,γ(z∗
d, zd+1) = e2

per,pm,d+1,α,γ((z∗
d, zd+1)) − e2

per,pm,d,α,γ(z∗
d),

and the fact that

1

φ(pm)

∑
zd+1∈Zp,m

θper,pm,d+1,α,γ(z∗
d, zd+1) ≤ θper,pm,d+1,α,γ (5.8)

where

θper,pm,d+1,α,γ =
4

pm

γd+1

2π2
ζ(α)

d∏
j=1

(
1 + 2

γj

2π2
ζ(α)

)
.

123



We now define a set which is analogous to (5.4). For a real c ≥ 1 and

z∗
d ∈ Zd

p let

Cpm,d+1,α,γ(c; z∗
d) = {zd+1 ∈ Zp : θper,pm,d+1,α,γ(z∗

d, zd+1) ≤ c θper,pm,d+1,α,γ}.
(5.9)

The following theorem follows immediately from Markov’s inequality. Recall

that each term θper,pm,d+1,α,γ(z∗
d, zd+1) is non-negative as seen in (2.48) and

hence Markov’s inequality can be applied. As in this section we only deal with

sets of one-dimensional vectors we simply write μ for the measure μ1.

Theorem 5.3.1 Let m and d be positive integers and p prime. Then for any

c ≥ 1 we have

μ(Cpm,d+1,α,γ(c ; z∗
d)) > 1 − c−1.

Proof. This follows immediately from applying Markov’s inequality to (5.8).

�

We will be able to achieve stronger convergence results for the worst-case

error if we use Jensen’s inequality. We define the set

C̃pm,d+1,α,γ(c; z∗
d) =

{
zd+1 ∈ Zp : θper,pm,d+1,α,γ(z∗

d, zd+1) (5.10)

≤ c1/λ
(
θper,pm,d+1,αλ,2π2( γ

2π2 )λ

)1/λ

for all λ ∈ (1/α, 1]
}
.

This new set has the following property.

Theorem 5.3.2 Let m and d be positive integers and p prime. Then for any

c ≥ 1 we have

μ(C̃pm,d+1,α,γ(c; z∗
d)) > 1 − c−1.

Proof. From Theorem 5.3.1 we can say

μ(C̃pm,d+1,αλ,γλ(c; z∗
d)) > 1 − c−1. (5.11)

Now, if zd+1 ∈ Cpm,d+1,αλ,γλ(c; z∗
d) then

θper,pm,d+1,αλ,2π2( γ

2π2 )λ(z∗
d, zd+1) ≤ c θper,pm,d+1,αλ,2π2( γ

2π2 )λ .

124



Applying Jensen’s inequality to (2.48) we see that

(θper,pm,d+1,α,γ(z∗
d, zd+1))

λ ≤ θper,pm,d+1,αλ,2π2( γ

2π2 )λ(z∗
d, zd+1).

Combining the last two inequalities implies

θper,pm,d+1,α,γ(z∗
d, zd+1) ≤ c1/λ

(
θper,pm,d+1,αλ,2π2( γ

2π2 )λ

)1/λ

which implies that zd+1 ∈ C̃pm,d+1,α,γ(c; z∗
d). It then follows immediately that

Cpm,d+1,αλ,γλ(c; z∗
d) ⊆ C̃pm,d+1,α,γ(c; z∗

d), which by using (5.11) as a lower bound

implies that

μ(C̃pm,d+1,α,γ(c; z∗
d)) ≥ μ(Cpm,d+1,αλ,γλ(c; z∗

d)) > 1 − c−1.

�

In the same vein as Theorem 5.2.3, we show in the following theorem that

there exists a component z∗
d+1 ∈ Zp such that the squared worst-case error

e2
per,pm,d,α,γ(z∗

d, z
∗
d+1) is small for all m = m1, . . . , m2.

Theorem 5.3.3 Let m and d be positive integers and p prime. Let z∗
d ∈ Zd

p .

Let cm ≥ 1 for all m = m1, . . . , m2 such that
∑m2

m=m1
c−1
m ≤ 1. Then there

exists a z∗d+1 ∈ Zp such that

θper,pm,d+1,α,γ(z∗
d, z

∗
d+1) ≤ c1/λ

m

(
θper,pm,d+1,αλ,2π2( γ

2π2 )λ

)1/λ

for all λ ∈ (1/α, 1] and m = m1, . . . , m2.

Proof. We need to show that μ
(⋂m2

m=m1
C̃pm,d+1,α,γ(cm; z∗

d)
)

> 0. This is a

simple calculation,

μ

(
m2⋂

m=m1

C̃pm,d+1,α,γ(cm; z∗
d)

)
= 1 − μ

(
m2⋃

m=m1

C̃c
pm,d+1,α,γ(cm; z∗

d)

)

≥ 1 −
m2∑

m=m1

μ(C̃c
pm,d+1,α,γ(cm; z∗

d))

> 1 −
m2∑

m=m1

c−1
m ≥ 0.

�

125



We can put the existing vector z∗
d together with the new component z∗

d+1

to show that the vector z∗
d+1 = (z∗

d, z
∗
d+1) has the following properties.

Theorem 5.3.4 Let m and d be positive integers and p prime. Let z∗
d be

chosen so that

e2
per,pm,d,α,γ(z∗

d) ≤ c1/λ
m M

2

per,pm,d,α,γ(λ)

and z∗d+1 be chosen so that

θper,pm,d+1,α,γ(z∗
d, z

∗
d+1) ≤ c1/λ

m

(
θper,pm,d+1,αλ,2π2( γ

2π2 )λ

)1/λ

for all λ ∈ (1/α, 1]. Then

e2
per,pm,d+1,α,γ(z∗

d+1) ≤ c1/λ
m M

2

per,pm,d+1,α,γ(λ)

for all λ ∈ (1/α, 1], where z∗
d+1 = (z∗

d, z
∗
d+1).

Proof. We have

e2
per,pm,d+1,α,γ(z∗

d, z
∗
d+1) = e2

per,pm,d,α,γ(z∗
d) + θper,pm,d+1,α,γ(z∗

d, z
∗
d+1)

≤ c
1/λ
m

pm/λ

(
d∏

j=1

(
1 + 4γλ

j ζ(αλ)
)− 1

)1/λ

+
c
1/λ
m

pm/λ

(
4γλ

d+1ζ(αλ)
d∏

j=1

(
1 + 4γλ

j ζ(αλ)
))1/λ

≤ c
1/λ
m

pm/λ

(
d∏

j=1

(
1 + 4γλ

j ζ(αλ)
)− 1 + 4γλ

d+1ζ(αλ)

d∏
j=1

(
1 + 4γλ

j ζ(αλ)
))1/λ

=
c
1/λ
m

pm/λ

(
d+1∏
j=1

(
1 + 4γλ

j ζ(αλ)
)− 1

)1/λ

= c1/λ
m M

2

per,pm,d+1,α,γ(λ),

where the second inequality uses another application of Jensen’s inequality. �

We may now construct the extensible generating vector z∗ using the CBC

method. The algorithm to do this is stated formally in Algorithm 4.

126



Algorithm 4 CBC construction of z∗ with small e2
per,pm,d,α,γ(z∗) for m =

m1, . . . , m2

Require: m1 ≤ m2 ∈ N0, α > 1 , a positive sequence of weights γ, p and dmax

positive integers and a sequence cm1 , . . . , cm2 such that
∑m2

m=m1
c−1
m ≤ 1

1: Set z∗1 = 1

2: for s = 1 to dmax − 1 do

3: Find �(1− c−1
m1

)φ(pm1)�+1 components zd+1 ∈ Zd
p,m1

to populate the set

Tm1,d+1 ⊆ {zd+1 ∈ Zd
p,m1

: e2
per,pm,d+1,α,γ(z∗

d, zd+1) ≤ c1/λ
m M

2

per,pm,d+1,α,γ(λ)

for all λ ∈ (1/α, 1]}.

4: for m = m1 + 1 to m2 do

5: Define the set

Sm,d+1 = {zd+1 ∈ Zp,m : ∃ z ∈ Tm−1,d+1

such that zd+1 ≡ z (mod pm−1)}

6: Find �(1 −∑m
i=m1

c−1
i )φ(pm)� + 1 vectors to populate the set

Tm,d+1 ⊆ {zd+1 ∈ Sm,d+1 : e2
per,pm,d+1,α,γ(z∗

d, zd+1) ≤ c1/λ
m M

2

per,pm,d+1,α,γ(λ)

for all λ ∈ (1/α, 1]}.

7: end for

8: Select z∗d+1 ∈ Tm2,d+1

9: Set z∗
d+1 = (z∗

d, z
∗
d+1)

10: end for

11: Set z∗ = z∗
dmax

127



Theorem 5.3.5 Let d be a positive integer and 0 < m1 ≤ m2. Let cm ≥ 1 for

all m = m1, . . . , m2 such that
∑m2

m=m1
c−1
m ≤ 1. Then Algorithm 4 constructs a

vector z∗ ∈ Zd
p such that

e2
per,pm,d,α,γ(z∗) ≤ c1/λ

m M
2

per,pm,d,α,γ(λ)

for all λ ∈ (1/α, 1] and m = m1, . . . , m2.

Remark 5.3.6 Again we may generalise this result to n being the power of

an arbitrary integer b ≥ 2 by replacing M
2

per,pm,d,α,γ(λ) with M̃2
per,bm,d,α,γ(λ).

5.3.2 Optimising the CBC sieve algorithm

The classical CBC algorithm constructs one component of the generating vector

at a time. For each dimension, it takes the component which minimises the

worst-case error. The requirement that this component is the minimum is

important in using Jensen’s inequality to gain the optimal rate of convergence

(see [35]). The sieve algorithm does not have this requirement. Rather than

finding the minimiser at each step, we require a certain number of admissible

vectors, that is, vectors whose worst-case error is lower than some bound.

Therefore, Algorithm 4 will find an extensible lattice rule without the need for

any optimisation.

However, it is instinctive that we should attempt to go beyond looking for

simply a set of admissible vectors and attempt to find the best (in some sense)

generating vectors at each step. This can be done by modifying the choice of

the set Tm,d+1 for m = m1, . . . , m2 and d = 1, . . . , dmax − 1 in Algorithm 4.

Rather than just constructing Tm,d+1 with the first �(1−∑m
i=m1

c−1
i )φ(pm)�+1

components zd+1 such that

e2
per,pm,d+1,α,γ(z∗

d, zd+1) ≤ c1/λ
m M

2

per,pm,d+1,α,γ(λ)

for all λ ∈ (1/α, 1], we construct the set Tm,d+1 to contain all components

that satisfy the bound. We then truncate the set Tm,d+1 to contain exactly

128



those �(1−∑m
i=m1

c−1
i )φ(pm)�+1 elements which have the smallest worst-case

error e2
per,pm,d+1,α,γ(z∗

d, zd+1), for the given z∗
d. As we will see in the numerical

section, the bound is significantly larger than the actual errors and hence using

such an optimisation step ensures that we do not choose any component which

merely satisfies the bound but rather one that is amongst the best possibilities.

5.3.3 The fast CBC sieve algorithm

In the previous section we constructed the components of the generating vector

by first choosing the first m1 digits and then extending those up to m2 digits

step-by-step for a set of good components. Though this algorithm is feasible for

practical values, it does not allow us to use the fast CBC algorithm introduced

by Nuyens and Cools mentioned in Section 2.6.3. Their construction algorithm

reduces the usual construction cost of the CBC algorithm from O(dn2) to

O(dn logn) (which is a remarkable speed-up for large n) by exploiting the

structure of the calculation.

In order to make use of the fast CBC algorithm we modify the previous

construction algorithms. In this case it is necessary to search over all possible

choices of the new component zd+1, rather than just those which have been

shown to be good for earlier values of m. Here we simply store all the good

components zd+1 for the generating vector (z∗
d, zd+1) for each value of m. The

construction is then performed by minimising a new error measure, which, for

given z∗
d ∈ Zd

p,m2
, is defined by

Fm1,m2,d+1,α,γ(zd+1) =

m2∑
m=m1

max
λ∈(1/α,1]

e2
per,pm,d+1,α,γ((z∗

d, zd+1))

c
1/λ
m M

2

per,pm,d+1,α,γ(λ)
. (5.12)

Using this measure we now construct a generating vector one component at a

time, in each step choosing z∗s+1 which minimises the quantity Fm1,m2,d+1,α,γ.

We can now use Theorem 5.3.3 to show that there must be at least one

choice of zd+1 ∈ Zp which is good for all m = m1, . . . , m2.

129



Algorithm 5 Fast CBC sieve construction of a good generating vector z∗ with

small e2
per,pm,d,α,γ(z∗)

Require: m1 ≤ m2 ∈ N0, α > 1 , a positive sequence of weights γ and

dmax positive integers and the positive sequence cm1 , . . . , cm2 such that∑m2

m=m1
c−1
m ≤ 1

1: Set z∗1 = 1

2: for d = 1 to dmax − 1 do

3: for m = m1 to m2 do

4: Compute λ∗
m ∈ (1/α, 1] which minimises

Nm,cm
(λ) = c1/λ

m M
2

per,pm,d+1,α,γ(λ)

as a function of λ.

5: For each zd+1,m ∈ Zp,m compute

e2
per,pm,d+1,α,γ((z∗

d, zd+1))

Nm,cm
(λ∗

m)
.

6: end for

7: Set

Td+1 =

{
zd+1 ∈ Zp,m2 : max

m1≤m≤m2

e2
per,pm,d+1,α,γ((z∗

d, zd+1))

Nm,cm
(λ∗

m)
≤ 1

}
.

8: Select z∗d+1 ∈ Td+1 which minimises

m2∑
m=m1

e2
per,pm,d+1,α,γ((z∗

d, zd+1))

Nm,cm
(λ∗

m)

.

9: Set z∗
d+1 = (z∗

d, z
∗
d+1)

10: end for

11: Set z∗ = z∗
dmax

130



Theorem 5.3.7 Let d be a positive integer, p prime and 0 < m1 ≤ m2. Let

cm ≥ 1 for all m = m1, . . . , m2 such that
∑m2

m=m1
c−1
m ≤ 1. Then Algorithm 5

constructs a vector z∗ ∈ Zd
p such that

e2
per,pm,d,α,γ(z∗) ≤ c1/λ

m M
2

per,pm,d,α,γ(λ)

for all λ ∈ (1/α, 1] and m = m1, . . . , m2.

Remark 5.3.8 In Algorithm 5 note that instead of choosing z∗
d+1 ∈ Td+1 which

minimises the quantity

m2∑
m=m1

e2
per,pm,d+1,α,γ((z∗

d, zd+1))

Nm,cm
(λ∗

m)

it would be enough in theory to pick any z∗
d+1 ∈ Td+1 (which must be non-empty

by Theorems 5.3.3 and 5.3.4). But as searching for the minimum increases the

construction cost only marginally it is advisable to include this step since the

bound is typically very loose (see Section 5.4). Note that another legitimate

choice in line 8 would be to select the z∗
d+1 ∈ Td+1 which minimises

F ′
m1,m2,d+1,α,γ(zd+1) = max

m1≤m≤m2

e2
per,pm,d+1,α,γ((z∗

d, zd+1))

Nm,cm
(λ∗

m)
. (5.13)

In this instance we have chosen the former because it gives smaller worst case

errors in the numerical experiments.

The minimum of Nm,cm
(λ) can be found with sufficient accuracy using any

standard one-dimensional constrained optimisation software. Computing the

normalised worst-case error Algorithm 5 can be done in order n log n operations

using the fast CBC algorithm.

5.3.4 Theoretical bounds on the algorithm of Cools et

al

Algorithm 5 is very similar in nature to the algorithm suggested in [4]. Their

algorithm is different in that given z∗
d they choose z∗d+1 to minimise the error

131



measure defined by

Vp,m1,m2,d+1,α,γ((z∗
d, zd+1)) = max

m1≤m≤m2

e2
per,pm,d+1,α,γ((z∗

d, zd+1))

e2
per,pm,d+1,α,γ(z(m))

(5.14)

for d = 1, . . . , dmax − 1 where z(m) is the generating vector with the CBC

algorithm for n = pm for m = m1, . . . , m2. In [4] there was no formal proof

with any bound on the size of the error measure Vp,m1,m2,d,α,γ(z), although the

numerical experiments suggested that it remained small.

Observe that the quality measures F ′
m1,m2,d+1,α,γ(zd+1), which is given by

(5.13), and Vp,m1,m2,d+1,α,γ((z∗
d, zd+1)) used in [4] are very similar. Indeed we

will show in the following that with a few slight modifications we can change

Algorithm 5 such that it is the same as the algorithm considered in [4].

Let λ′
m1

, . . . , λ′
m2

∈ (1/α, 1] (we will see later how those values could be

chosen) and let

cm =

(
e2
per,pm,d+1,α,γ(z(m))

M
2

per,pm,d+1,α,γ(λ′
m)

)λ′
m

⎛⎝ m2∑
k=m1

(
M

2

per,pk,d+1,α,γ(λ′
k)

e2
per,p(,d+1,α,γ

z(k))

)λ′
k

⎞⎠λ′
mα

. (5.15)

Further choose λ∗
m in Algorithm 5 as λ′

m and select z∗d+1 in line 8 by minimising

F ′
m1,m2,d+1,α,γ(zd+1) with the constant cm given by (5.15). Then

Nm,cm
(λ′

m) = c1/λ′
m

m M
2

per,pm,d+1,α,γ(λ′
m) = Ce2

per,pm,d+1,α,γ(z(m)),

where

C =

⎛⎝ m2∑
k=m1

(
M

2

per,pk,d+1,α,γ(λ′
k)

e2
per,pk,d+1,α,γ

(z(k))

)λ′
k

⎞⎠α

is independent of m. This way we obtain the same algorithm as proposed by

[4]. Note that the constant C does not have any influence on which z∗
d+1 will

be chosen and can actually be left out in Algorithm 5.

The basic principles used to obtain Theorem 5.3.7 now still apply as long

132



as
∑m2

m=m1
c−1
m ≤ 1, that is

m2∑
m=m1

c−1
m

=

⎛⎝ m2∑
k=m1

(
M

2

per,pk,d+1,α,γ(λ′
k)

e2
per,pk,d+1,α,γ

(z(k))

)λ′
k

⎞⎠−λ′
mα

m2∑
m=m1

(
e2
per,pm,d+1,α,γ(z(m))

M
2

per,pm,d+1,α,γ(λ′
m)

)−λ′
m

≤
⎛⎝ m2∑

k=m1

(
M

2

per,pk,d+1,α,γ(λ′
k)

e2
per,pk,d+1,α,γ

(z(k))

)λ′
k

⎞⎠−1
m2∑

m=m1

(
e2
per,pm,d+1,α,γ(z(m))

M
2

per,pm,d+1,α,γ(λ′
m)

)−λ′
m

= 1.

Hence we obtain the bound

e2
per,pm,dmax,α,γ(z∗) ≤ e2

per,pm,dmax,α,γ(z(m))

⎛⎝ m2∑
k=m1

(
M

2

per,pk,dmax,α,γ(λ′
k)

e2
per,pk,dmax,α,γ

(z(k))

)λ′
k

⎞⎠α

for all m = m1, . . . , m2, where z∗ is constructed by Algorithm 5 based on the

quality measure F ′
m1,m2,d+1,α,γ(zd+1) with the constant cm given by (5.15). This

shows that the error criteria used in [4] has to satisfy the bound

Vp,m1,m2,d,α,γ(z∗
d) ≤

⎛⎝ m2∑
k=m1

(
M

2

per,pk,d,α,γ(λ′
k)

e2
per,pk,d,α,γ

(z(k))

)λ′
k

⎞⎠α

for d = 1, . . . , dmax.

The values λ′
m1

, . . . , λ′
m2

do not have any influence on the algorithm as seen

above, they only appear in the bound above. Hence we have the following

result.

Theorem 5.3.9 Let dmax be positive integer, p prime and 0 < m1 ≤ m2.

Let cm be given by (5.15) for all m = m1, . . . , m2. Then the modification of

Algorithm 5 proposed above, or equivalently the construction algorithm used in

[4], constructs a vector z∗ ∈ Zd
p such that

Vp,m1,m2,d,α,γ(z∗
d) ≤ min

1/α<λ′
m1

,...,λ′
m2

≤1

⎛⎝ m2∑
k=m1

(
M

2

per,pk,d,α,γ(λ′
k)

e2
per,pk,d,α,γ

(z(k))

)λ′
k

⎞⎠α

for d = 1, . . . , dmax.

133



Compared with the numerical results in [4], the bound is certainly conser-

vative. Further, the bound also depends on m1 and m2 as each summand in

the sum in the bound above is at least 1.

Note that in the theory above we could also use the bound from [8, Theo-

rem 6] instead of M
2

per,pk,d,α,γ(λ′
k), which states that the error is bounded by

e2
per,n,d,α,γ(z∗

d) ≤
Cα(log log n)α

nα

d∏
j=1

(
1 + 2γ

1/α
j (1 − log 2 + ζ(α)1/α + log n)

)α

for all n ∈ N (we just used the fact that there is a constant C such that

φ(n)−1 < C(log log n)/n, see for example [20, Theorem 328]). If we use the

lower bound from [50] instead of e2
per,pk,d,α,γ(z(k)) we obtain that the bound

in Theorem 5.3.9 is at most of order m2 to some power. Hence also for the

algorithm of [4] the worst-case error for the extensible lattice rule can only be

worse by a factor of m2 to some power compared to the worst-case error for

a lattice rule constructed by a component-by-component algorithm only for a

fixed value of number of points.

5.4 Numerical testing

We have shown that it is possible to construct a generating vector z∗ such that

e2
per,pm,d,α,γ(z∗) ≤ c1/λ

m M
2

per,pm,d,α,γ(λ)

for all λ ∈ (1/α, 1] where cm ≥ 1 for m = m1, . . . , m2 such that
∑m2

m=m1
c−1
m ≤ 1.

The testing was all performed using the fast CBC algorithm since it is the

fastest computationally. There are several parameters for each calculation

which we must choose. In each example we take p = α = 2. We also assume

that the constants cm for m = m1, . . . , m2 are equal for each m, that is cm =

m2−m1 +1. For these experiments we take m1 = 10, m2 = 20 and dmax = 360.

There are two conclusions which can be drawn from our numerical exper-

iments. The first conclusion we may draw is that the worst-case error for

134



eper,2m,360,2,γ(z∗) c
1/2λ∗

m Mper,2m,360,2,γ(λ∗) U2,10,20,360,2,γ

m = 10 8.20e-02 1.44e+00 5.71e-02

m = 11 5.33e-02 1.01e+00 5.25e-02

m = 12 3.41e-02 7.17e-01 4.76e-02

m = 13 2.21e-02 5.07e-01 4.37e-02

m = 14 1.44e-02 3.59e-01 4.00e-02

m = 15 9.41e-03 2.54e-01 3.71e-02

m = 16 5.81e-03 1.79e-01 3.24e-02

m = 17 3.73e-03 1.27e-01 2.94e-02

m = 18 2.37e-03 8.97e-02 2.65e-02

m = 19 1.53e-03 6.34e-02 2.41e-02

m = 20 9.89e-04 4.48e-02 2.20e-02

Table 5.1: Worst-case error of the extensible lattice rule where γj = 1/j2

the extensible lattice rule is much smaller than the bound in Theorem 5.3.7

suggests. To demonstrate this we define the quantity

Up,m1,m2,dmax,α,γ = max
1≤d≤dmax

eper,pm,d,α,γ(z∗(m1,m2))

c
1/2λ∗

m Mper,pm,d,α,γ(λ∗)
(5.16)

where c
1/λ∗

m M
2

per,pm,d,α,γ(λ∗) ≤ c
1/λ
m M

2

per,pm,d,α,γ(λ) for all λ ∈ (1/α, 1] and the

vector z∗(m1,m2) is a generating vector constructed with Algorithm 5. Theo-

rem 5.3.7 shows that Up,m1,m2,dmax,α,γ is bounded by 1.

In Tables 5.1–5.3 we compare the values of U2,10,20,360,2,γ for different choices

of γ. We see that in each case U2,10,20,360,2,γ is orders of magnitude less than

1. In fact, the numerical tests do not find any examples where U2,10,20,360,2,γ is

greater than 0.062.

The second conclusion we may draw is that the worst-case error for the

extensible lattice rule is not significantly greater than the worst-case error

for the “near optimal” lattice rule as constructed by the CBC algorithm. To

demonstrate this we examine the error measure Vp,m1,m2,s,α,γ(z∗) defined above.

135



eper,2m,360,2,γ(z∗) c
1/2λ∗

m Mper,2m,360,2,γ(λ∗) U2,10,20,360,2,γ

m = 10 4.00e+02 3.50e+05 5.55e-02

m = 11 2.83e+02 2.47e+05 5.04e-02

m = 12 2.00e+02 1.75e+05 4.63e-02

m = 13 1.41e+02 1.24e+05 4.20e-02

m = 14 9.99e+01 8.75e+04 4.23e-02

m = 15 7.06e+01 6.18e+04 3.55e-02

m = 16 5.00e+01 4.37e+04 3.25e-02

m = 17 3.53e+01 3.09e+04 2.95e-02

m = 18 2.50e+01 2.19e+04 2.76e-02

m = 19 1.77e+01 1.55e+04 2.42e-02

m = 20 1.25e+01 1.09e+04 2.27e-02

Table 5.2: Worst-case error of the extensible lattice rule where γj = 0.9j

eper,2m,360,2,γ(z∗) c
1/2λ∗

m Mper,2m,360,2,γ(λ∗) U2,10,20,360,2,γ

m = 10 2.51e+10 1.80e+21 6.19e-02

m = 11 1.77e+10 1.27e+21 5.85e-02

m = 12 1.25e+10 9.01e+20 5.58e-02

m = 13 8.87e+09 6.37e+20 5.09e-02

m = 14 6.27e+09 4.51e+20 4.85e-02

m = 15 4.44e+09 3.19e+20 4.46e-02

m = 16 3.14e+09 2.25e+20 4.23e-02

m = 17 2.22e+09 1.59e+20 4.04e-02

m = 18 1.57e+09 1.13e+20 3.74e-02

m = 19 1.11e+09 7.96e+19 3.56e-02

m = 20 7.84e+08 5.63e+19 3.43e-02

Table 5.3: Worst-case error of the extensible lattice rule where γj = 0.05

136



0 50 100 150 200 250 300 350
0.8

1

1.2

1.4

1.6

1.8

2

γj = 0.05

γj = 0.9j

γj = 1 / j2

s

V
2,

10
,2

0,
s,

2,
γ

Figure 5.1: Graph of V2,10,20,s,2,γ for 3 choices of γ and s = 1, . . . , 360

In Figure 5.1 we see when m1 = 10, m2 = 20 and p = α = 2 the greatest

ratio of the worst-case error of the extensible lattice z∗ and the worst-case

error of the corresponding near optimal choice z(m) (as constructed by the

CBC algorithm) is always less than 2 for these particular choices of γ. This is

similar to the results in [4, Table 6.1].

5.5 Discussion

Though we provide some useful constructions here there are still some open

questions. First let us address the meaning of “extensible”. In the introduction

we wrote that the existence of good extensible lattice rules was shown in [26].

The use of the word “extensible” means that there exists a generating vector

z∗ such that one can obtain good lattice rules for all moduli p, p2, . . .. What

would be an interesting result in this direction, but was not shown in [26], is

the following:

137



For any generating vector of a good lattice rule in dimension s with number

of points pm, there exists an extension of this generating vector such that one

obtains a good lattice rule for some other number of points pm′
with m′ 
= m.

(Compare this statement with a probabilistic version in Remark 5.2.4. Fur-

ther, an analogous result for the dimension is known if s′ > s, see [8, 35].)

Such a result would indeed be interesting, but at present it is not even known

whether this statement is true, let alone how it can be made constructive. This

seems to be a much more challenging question as the probabilistic arguments

used in [7, 26, 43] and here do not seem to apply, rather one would have to find

some number theoretic reason to prove such a result (a constructive algorithm

which achieves this might be even more difficult to obtain). Hence in terms

of construction, what is known until now is only the existence of good “em-

bedded” lattice rules (embedded in the number of points n), i.e. lattice rules

which work well for a whole range of moduli, rather than are extensible. Hence

the algorithms introduced here are feasible constructions of good lattice rules

achieving what is known until now about their existence. Thus everything

known about the existence of extensible lattice rules has been made practical

in this paper (see [7] for the analogue for polynomial lattice rules).

To make even more precise what we mean here let us give an example of

true extensibility. Namely using the CBC algorithm good lattice rules are truly

extensible in the dimension, that is, if one is given a good extensible lattice

rule in some finite dimension d then one can add another coordinate to obtain

a good lattice rule in d + 1 dimensions [8, 35, 52]. On the other hand such

a lattice rule does not have to be embedded in the dimension: for example,

construct a good Korobov lattice rule in dimension d (i.e., the generating vector

is of the form (1, z, z2, . . . , zd−1)), then using the CBC algorithm we can add

arbitrarily many coordinates to obtain a good lattice rule in d′ > d dimensions

[15]. But until now we cannot prove that we can extract an d− 1 dimensional

good lattice rule from the d′ dimensional or d dimensional lattice rule given

at the beginning. Hence our lattice rule is extensible in the dimension, but

138



not necessarily embedded (meaning that we can extract a good lattice rule

from a given one in dimensions d = 1, 2, 3, . . .). Using the CBC algorithm

from dimension one onwards we can of course obtain a lattice rule which is

extensible and embedded in the dimension in this sense.

Thus, in this terminology, what was shown in [26] is the existence of a good

lattice rule which is embedded in n and d simultaneously and this has been

made constructive in this paper. Note that in this paper we even improved

this result by showing the existence of a lattice rule which is embedded in n

and extensible and embedded in d and this is also made constructive in our

algorithms (which is achieved by incorporating the CBC approach).

139



Chapter 6

Korobov-form generating vector

extensible in the dimension

In Section 2.6.1 we introduced the Korobov-form generating vector, which is a

generating vector of the form

zd(a) = (1, a, a2, . . . , ad−1) (mod n),

where n is prime and a chosen from the set Zn,1 = {1, 2, . . . , n − 1}. As

mentioned in (2.43), it is possible to find an element a ∈ Zn,1, and hence a

generating vector zd(a) such that

e2
per,n,d,α,γ(zd(a)) ≤ M̂2

per,n,d,α,γ(λ), (2.43′)

where

M̂2
per,n,d,α,γ(λ) = (n − 1)−1/λd1/λ

d∏
j=1

(
1 + 2

( γj

2π2

)λ

ζ(αλ)

)1/λ

.

As discussed in Section 2.6.1 a major weakness of the Korobov-form vector

over other construction approaches such as the CBC algorithm, is that the

generating vector zd(a) is not extensible in dimension. That is, the quantity

e2
per,n,d,α,γ(zd(a)) is small only for fixed d.

In this chapter, we incorporate the ideas of Chapter 5 to derive an algorithm

to construct a generating vector of the Korobov form which is good for a range

141



of dimensions. The existence of extensible Korobov-form rules was first shown

for polynomial lattice rules by Niederreiter [43].

6.1 Construction of extensible rules

In this section, we shall demonstrate how to choose an element a ∈ Zn,1 such

that for a given set S = {d1, . . . , ds}, and corresponding set of positive con-

stants c1, . . . , cs, for each k = 1, . . . , d

e2
per,n,dk,α,γ(zd(a)) ≤ c

1/λ
k M̂2

per,n,dk,α,γ(λ) (6.1)

for all λ ∈ (1/α, 1].

Let μ be the equiprobable measure on the set Zn,1. For a real c ≥ 1 we

define the set

Cn,d,α,γ(c) =
{

a ∈ Zn,1 : e2
per,n,d,α,γ(zd(a)) ≤ cM̂2

per,n,d,α,γ

}
.

In the subsequent theorem we give a lower bound on the measure of this set.

Theorem 6.1.1 Let α > 1, n prime and d be a positive integer. Then for any

c ≥ 1 we have μ(Cn,d,α,γ(c)) > 1 − c−1.

Proof. This follows immediately from applying Markov’s inequality to (2.43′)

with λ = 1. �

Furthermore, for a real c ≥ 1 we define the set

C̃n,d,α,γ(c) =
{

a ∈ Zn,1 : e2
per,n,d,α,γ(zd(a)) ≤ c1/λM̂2

per,n,d,α,γ(λ)

for all λ ∈ (1/α, 1]
}
.

We obtain the following theorem.

Theorem 6.1.2 Let α > 1, n prime and d be a positive integer. Then for any

c ≥ 1 we have μ
(
C̃n,d,α,γ(c)

)
> 1 − c−1.

142



Proof. The proof of this theorem is almost identical to that of Theorem 5.2.2.

�

To find a generating vector of the Korobov form such that (6.1) is satisfied,

we seek an element a ∈ Zn,1 such that

a ∈
⋂
d∈S

C̃n,d,α,γ(cd).

In the theorem below, we see this is possible if we choose cd ≥ 1 large enough

such that
∑

d∈S c−1
d ≤ 1.

Theorem 6.1.3 Let α > 1, n prime and S be a subset of N. Let cd ≥ 1 for

all d ∈ S, such that
∑

d∈S c−1
s ≤ 1. Then there exists an a ∈ Zn,1 such that

e2
per,n,d,α,γ(zd(a)) ≤ c

1/λ
d M̂2

per,n,d,α,γ(λ)

for all d ∈ S and all λ ∈ (1/α, 1].

Proof. As

μ

(⋂
d∈S

C̃n,d,α,γ(cd)

)
= 1 − μ

(⋃
d∈S

C̃c
n,d,α,γ(cd)

)
≥ 1 −

∑
d∈S

μ(C̃c
n,d,α,γ(cd)) > 1 −

∑
d∈S

c−1
d ≥ 0,

by Lemma 6.1.2 and our assumption on the choice of cd, it follows that the set⋂
d∈S C̃n,d,α,γ(cd) is not empty and we are done. �

Remark 6.1.4 Note that it is always possible to choose cd of order d1+ε for

some ε > 0. Hence the factor c
1/λ
d in the above bound can be chosen such that

it contributes at most another factor of d(1+ε)/λ.

Assuming the conditions of Theorem 6.1.3, using Algorithm 6 one can find

generating vectors of Korobov form for which the worst-case error satisfies the

bound from Theorem 6.1.3 for a given set of dimensions.

143



Algorithm 6 Search for a ∈ Zn,1 with small e2
per,n,d,α,γ(zd(a)) for all d ∈ S

Require: S = {d1, . . . , ds}, α > 1, a positive sequence of weights γ, n prime

and the positive sequence cd1 , . . . , cds
≥ 1 such that

∑
d∈S c−1

d ≤ 1.

1: T0 = Zn,1.

2: for k = 1 to s do

3: Find at least �(1 −∑k
i=1 c−1

di
)(n − 1)� + 1 elements to populate the set

Tk ⊆{a ∈ Tk−1 : e2
per,n,dk,α,γ(zdk

(a)) ≤ c
1/λ
dk

M̂2
per,n,dk,α,γ(λ),

for all λ ∈ (1/α, 1]}.

4: end for

5: Choose any a ∈ Ts.

Theorem 6.1.5 Let α > 1, n prime and S be a subset of N. Let cd ≥ 1 for all

d ∈ S, such that
∑

d∈S c−1
d ≤ 1. Then Algorithm 6 gives an element a ∈ Zn,1

such that

e2
per,n,d,α,γ(zd(a)) ≤ c

1/λ
d M̂2

per,n,d,α,γ(λ)

for all d ∈ S and all λ ∈ (1/α, 1].

Proof. Let S = {d1, . . . , ds}. We show by induction on d that the sets Tk−1,

as constructed by Algorithm 6, contain at least �(1 −∑k
i=1 c−1

di
)(n − 1)� + 1

elements a such that e2
per,n,dk,α,γ(zdk

(a)) ≤ c
1/λ
dk

M̂2
per,n,dk,α,γ(λ) for all 1 ≤ k ≤ d

and all λ ∈ (1/α, 1].

Assume that c−1
d1

≤ 1. Then it follows from Lemma 6.1.2 that there are at

least �(1 − c−1
d1

)(n − 1)� + 1 elements a ∈ Zn,1 = T0 such that

e2
per,n,d1,α,γ(zd1(a)) ≤ c

1/λ
d1

M̂2
per,n,d1,α,γ(λ).

Hence the result is proved for k = 1.

Assume now that
∑k+1

i=1 c−1
di

≤ 1 and that for some integer 1 ≤ k < s we

have at least �(1 −∑k
i=1 c−1

di
)(n − 1)� + 1 elements in the set

{a ∈ Tk−1 : e2
per,n,dk,α,γ(zdk

(a)) ≤ c
1/λ
dk

M̂2
per,n,dk,α,γ(λ), ∀λ ∈ (1/α, 1]},

144



that is,

μ
(
{a ∈ Tk−1 : e2

per,n,dk,α,γ(zdk
(a)) ≤ c

1/λ
dk

M̂2
per,n,dk,α,γ(λ), ∀λ ∈ (1/α, 1]}

)
> 1 −

k∑
i=1

c−1
di

.

We show that

μ
(
{a ∈ Tk : e2

per,n,dk+1,α,γ(zdk+1
(a)) ≤ cdk+1

M̂2
per,n,dk+1,α,γ(λ), ∀λ ∈ (1/α, 1]}

)
> 1 −

k+1∑
i=1

c−1
di

,

from which the result then follows as 1 −∑k+1
i=1 c−1

di
≥ 0 and hence the above

set is not empty. We have

{a ∈ Tk : e2
per,n,dk+1,α,γ(zdk+1

(a)) ≤ c
1/λ
dk+1

M̂2
per,n,dk+1,α,γ(λ), ∀λ ∈ (1/α, 1]}

= {a ∈ Tk−1 : e2
per,n,dk,α,γ(zdk

(a)) ≤ c
1/λ
dk

M̂2
per,n,dk,α,γ(λ), ∀λ ∈ (1/α, 1]}

∩ {a ∈ Zn,1 : e2
per,n,dk+1,α,γ(zsk+1

(a)) ≤ c
1/λ
dk+1

M̂2
per,n,dk+1,α,γ(λ), ∀λ ∈ (1/α, 1]}.

Hence

μ
(
{a ∈ Tk : e2

per,n,dk+1,α,γ(zdk+1
(a)) ≤ c

1/λ
dk+1

M̂2
per,n,dk+1,α,γ(λ), ∀λ ∈ (1/α, 1]}

)
= 1 − μ

(
{a ∈ Tk−1 : e2

per,n,dk,α,γ(zdk
(a)) ≤ c

1/λ
dk

M̂2
per,n,dk,α,γ(λ), ∀λ ∈ (1/α, 1]}c

∪ {a ∈ Zn,1 : e2
per,n,dk+1,α,γ(zdk+1

(a)) ≤ c
1/λ
dk+1

M̂2
per,n,dk+1,α,γ(λ), ∀λ ∈ (1/α, 1]}c

)
≥ 1 −

(
k∑

i=1

c−1
di

+ c−1
dk+1

)

= 1 −
k+1∑
i=1

c−1
di

,

where we used the induction hypothesis and Lemma 6.1.2. The result follows.

�

6.2 Numerical results

In this section we examine the quality of the Korobov-form generating vectors

which are good for multiple values of d. The experiment we perform constructs

145



a generating vector of extensible Korobov form with small worst-case error for

each d ∈ S where S = {5, 10, 25, 50, 100}. We compare this worst-case error

with the bound achieved in Theorem 6.1.5 and with the worst-case error of the

non-extensible Korobov rule. Further, we compare the worst-case error with

the worst-case error of the generating vector constructed by the CBC algorithm.

Each comparison is made for different values of prime n and different sets of

weights γ. In our experiments we have chosen α = 2.

Tables 6.1 and 6.2 contain the results of these experiments. The rows

marked “Bound” contain the quantity

min
1/α<λ≤1

c
1/(2λ)
d M̂2

per,n,d,α,γ(λ),

where M̂2
per,n,d,α,γ is a bound on the root mean square worst-case error. The

rows marked “Ext. Korobov” contain the root mean square worst-case error

eper,n,d,α,γ(zd(a)) in the weighted Korobov space, and where a is constructed

by Algorithm 6. The rows marked “Korobov” contain the root mean square

worst-case error eper,n,d,α,γ(zd(a)), where a is chosen to have the smallest root

mean square worst-case error for that particular choice of d. Finally, the row

marked “CBC” contains the root mean square worst-case error eper,n,d,α,γ(z),

where the generating vector z is chosen using the CBC algorithm. The choice

of a ∈ Ts in Line 5 of Algorithm 6 is taken to be

argmin
a∈Ts

s∑
k=1

e2
per,n,dk,α,γ(zdk

(a))

c
1/λ∗

dk
M̂2

per,n,dk,α,γ(λ∗)

where 1/α < λ∗ ≤ 1 is the minimiser of c
1/λ
dk

M̂2
per,n,dk,α,γ(λ). The constants cdk

are all taken to be 5.

The first observation we can make from the results in Tables 6.1 and 6.2

is that the extensible Korobov rule has a worst-case error much smaller than

the bound in Theorem 6.1.5 suggests. This is similar to the results observed

in [61]. The second observation we may make is that the worst-case error

for the extensible Korobov rule is not much greater than that of either the

Korobov rule for fixed dimension or the lattice rule constructed using the CBC

146



n Method d = 5 d = 10 d = 25 d = 50 d = 100

Bound 3.36e-01 4.99e-01 7.93e-01 1.12e+00 1.59e+00

Ext. Korobov 3.03e-03 3.71e-03 4.24e-03 4.51e-03 4.68e-03

257
Korobov 3.03e-03 3.68e-03 4.24e-03 4.51e-03 4.68e-03

CBC 2.88e-03 3.27e-03 3.60e-03 3.75e-03 3.83e-03

Bound 2.24e-01 3.45e-01 5.63e-01 7.98e-01 1.13e+00

Ext. Korobov 1.52e-03 1.83e-03 2.71e-03 2.87e-03 2.93e-03

509
Korobov 1.52e-03 1.83e-03 2.40e-03 2.59e-03 2.68e-03

CBC 1.50e-03 1.72e-03 1.91e-03 2.00e-03 2.06e-03

Bound 1.46e-01 2.32e-01 3.93e-01 5.63e-01 7.97e-01

Ext. Korobov 8.48e-04 1.22e-03 1.59e-03 1.66e-03 1.78e-03

1021
Korobov 8.48e-04 1.07e-03 1.31e-03 1.50e-03 1.61e-03

CBC 7.83e-04 9.14e-04 1.03e-03 1.08e-03 1.11e-03

Bound 9.27e-02 1.52e-01 2.68e-01 3.93e-01 5.62e-01

Ext. Korobov 4.30e-04 6.47e-04 8.14e-04 8.92e-04 9.23e-04

2053
Korobov 4.30e-04 5.75e-04 6.81e-04 7.71e-04 8.51e-04

CBC 4.05e-04 4.81e-04 5.46e-04 5.76e-04 5.95e-04

Table 6.1: Comparison table for classical lattice rules with γj = 1/j2

algorithm. Hence from a practical point of view we obtain Korobov lattice

rules which are useful for a range of dimensions.

147



n Method d = 5 d = 10 d = 25 d = 50 d = 100

Bound 4.17e-01 7.03e-01 1.36e+00 2.03e+00 2.88e+00

Ext. Korobov 1.12e-02 2.66e-02 5.19e-02 6.00e-02 6.08e-02

257
Korobov 1.12e-02 2.58e-02 5.19e-02 6.00e-02 6.08e-02

CBC 1.02e-02 2.45e-02 5.02e-02 5.80e-02 5.86e-02

Bound 2.96e-01 4.99e-01 9.68e-01 1.44e+00 2.04e+00

Ext. Korobov 7.90e-03 1.74e-02 3.34e-02 3.95e-02 4.00e-02

509
Korobov 5.92e-03 1.59e-02 3.34e-02 3.93e-02 3.98e-02

CBC 5.78e-03 1.51e-02 3.19e-02 3.73e-02 3.77e-02

Bound 2.07e-01 3.52e-01 6.83e-01 1.02e+00 1.44e+00

Ext. Korobov 4.67e-03 1.05e-02 2.19e-02 2.65e-02 2.68e-02

1021
Korobov 3.45e-03 9.69e-03 2.19e-02 2.61e-02 2.65e-02

CBC 3.31e-03 9.01e-03 2.01e-02 2.37e-02 2.40e-02

Bound 1.42e-01 2.48e-01 4.82e-01 7.16e-01 1.02e+00

Ext. Korobov 3.34e-03 6.20e-03 1.33e-02 1.58e-02 1.77e-02

2053
Korobov 1.93e-03 5.76e-03 1.33e-02 1.58e-02 1.66e-02

CBC 1.78e-03 5.37e-03 1.27e-02 1.51e-02 1.53e-02

Table 6.2: Comparison table for classical lattice rules with γj = 0.9j

148



n Method d = 5 d = 10 d = 25 d = 50 d = 100

Bound 2.57e-01 4.43e-01 7.75e-01 1.22e+00 2.12e+00

Ext. Korobov 1.09e-03 1.99e-03 5.37e-03 1.37e-02 3.52e-02
257

Korobov 9.31e-04 1.74e-03 5.04e-03 1.32e-02 3.52e-02

CBC 9.29e-04 1.70e-03 5.27e-03 1.36e-02 3.53e-02

Bound 1.60e-01 2.95e-01 5.50e-01 8.63e-01 1.50e+00

Ext. Korobov 7.16e-04 1.47e-03 4.11e-03 8.73e-03 2.17e-02
509

Korobov 4.66e-04 9.10e-04 3.00e-03 8.00e-03 2.17e-02

CBC 4.68e-04 8.75e-04 3.05e-03 8.09e-03 2.23e-02

Bound 9.76e-02 1.92e-01 3.87e-01 6.09e-01 1.06e+00

Ext. Korobov 4.31e-04 1.01e-03 2.54e-03 5.57e-03 1.36e-02
1021

Korobov 2.44e-04 5.02e-04 1.71e-03 4.90e-03 1.36e-02

CBC 2.43e-04 4.73e-04 1.69e-03 4.75e-03 1.38e-02

Bound 5.86e-02 1.23e-01 2.67e-01 4.30e-01 7.48e-01

Ext. Korobov 1.36e-04 2.64e-04 1.14e-03 3.08e-03 8.72e-03
2053

Korobov 1.23e-04 2.64e-04 9.49e-04 2.84e-03 8.72e-03

CBC 1.23e-04 2.49e-04 9.27e-04 2.88e-03 8.73e-03

Table 6.3: Comparison table for classical lattice rules with γj = 0.05

149



Bibliography

[1] P. Acworth, M. Broadie, and P. Glasserman. A comparison of some Monte

Carlo and quasi-Monte Carlo techniques for option pricing. In Monte Carlo

and quasi-Monte Carlo methods 1996 (Salzburg), pages 1–18. Springer-

Verlag, New York, 1998.

[2] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc.,

68:337–404, 1950.

[3] F. Black and M. S. Scholes. The pricing of options and corporate liabilities.

Journal of Political Economy, 81:637–54, 1973.

[4] R. Cools, F. Y. Kuo, and D. Nuyens. Constructing embedded lattice rules

for multivariate integration. Submitted.

[5] R. Cranley and T. N. L. Patterson. Randomization of number theoretic

methods for multiple integration. SIAM J. Numer. Anal., 13:904–914,

1976.

[6] R. A. Davis, Y. Wang, and W. T. M. Dunsmuir. Modeling time series

of count data. In Asymptotics, nonparametrics, and time series, volume

158, pages 63–113. Dekker, New York, 1999.

[7] J. Dick. The construction of extensible polynomial lattice rules with small

weighted star discrepancy. Math. Comp. To appear.

[8] J. Dick. On the convergence rate of the component-by-component con-

struction of good lattice rules. J. Complexity, 20:493–522, 2004.

151



[9] J. Dick. A Taylor space for multivariate integration. Monte Carlo Methods

Appl., 12:99–112, 2006.

[10] J. Dick and F. Y. Kuo. Reducing the construction cost of the component-

by-component construction of good lattice rules. Math. Comp., 73:1967–

1988, 2004.

[11] J. Dick, F. Pillichshammer, and B. J. Waterhouse. The construction of

good extensible rank-1 lattices. Math. Comp. To appear.

[12] J. Dick, F. Pillichshammer, and B. J. Waterhouse. The construction of

good extensible Korobov rules. Computing, 79:79–91, 2007.

[13] J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski. Liberating the

weights. J. Complexity, 20:593–623, 2004.

[14] J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski. Good lattice rules in

weighted Korobov spaces with general weights. Numer. Math., 103:63–97,

2006.

[15] J. Dick and X. Wang. A hybrid construction method for good lattice rules

in weighted korobov space. Preprint.

[16] M. Giles. Private communication.

[17] P. Glasserman. Monte Carlo methods in financial engineering. Springer-

Verlag, New York, 2004.

[18] J. H. Halton. On the efficiency of certain quasi-random sequences of points

in evaluating multi-dimensional integrals. Numer. Math., 2:84–90, 1960.

[19] J. M. Hammersley. Monte Carlo methods for solving multivariable prob-

lems. Ann. New York Acad. Sci., 86:844–874, 1960.

[20] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers.

Oxford University Press, Oxford, 5th edition, 1979.

152



[21] S. L. Heston. A closed-form solution for options with stochastic volatil-

ity with applications to bond and currency options. Rev. Financ. Stud.,

6:327–343, 1993.

[22] F. J. Hickernell. A generalized discrepancy and quadrature error bound.

Math. Comp., 67:299–322, 1998.

[23] F. J. Hickernell. My dream quadrature rule. J. Complexity, 19:420–427,

2003.

[24] F. J. Hickernell and H. S. Hong. Computing multivariate normal probabil-

ities using rank-1 lattice sequences. In Scientific computing (Hong Kong,

1997), pages 209–215. Springer-Verlag, Singapore, 1997.

[25] F. J. Hickernell, H. S. Hong, P. L’Écuyer, and C. Lemieux. Extensible lat-

tice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput.,

22:1117–1138, 2000.

[26] F. J. Hickernell and H. Niederreiter. The existence of good extensible

rank-1 lattices. J. Complexity, 19:286–300, 2003.

[27] F. J. Hickernell, I. H. Sloan, and G. W. Wasilkowski. On tractability

of weighted integration for certain Banach spaces of functions. In Monte

Carlo and quasi-Monte Carlo methods 2002, pages 51–71. Springer-Verlag,

Berlin, 2004.

[28] F. J. Hickernell and H. Woźniakowski. Integration and approximation in

arbitrary dimensions. Adv. Comput. Math., 12:25–58, 2000.

[29] F. J. Hickernell and H. Woźniakowski. Tractability of multivariate inte-

gration for periodic functions. J. Complexity, 17:660–682, 2001.

[30] E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale. Monatsh.

Math., 66:140–151, 1962.

153



[31] J. C. Hull. Options, futures and other derivatives. Prentice Hall, Upper

Saddle River, N.J., 5th edition, 2003.

[32] S. Joe. Randomization of lattice rules for numerical multiple integration.

J. Comput. Appl. Math., 31:299–304, 1990.

[33] N. M. Korobov. Approximate evaluation of repeated integrals. Dokl. Akad.

Nauk SSSR, 124:1207–1210, 1959.

[34] N. M. Korobov. On number-theoretic methods in approximate analysis. In

Probl. Numer. Math. Comp. Techn. (Russian), pages 36–44. Gosudarstv.

Naučno-Tehn. Izdat. Mašinostr. Lit., Moscow, 1963.

[35] F. Y. Kuo. Component-by-component constructions achieve the optimal

rate of convergence for multivariate integration in weighted Korobov and

Sobolev spaces. J. Complexity, 19:301–320, 2003.

[36] F. Y. Kuo and S. Joe. Component-by-component construction of good

lattice rules with a composite number of points. J. Complexity, 18:943–

976, 2002.

[37] F. Y. Kuo, G. W. Wasilkowski, and B. J. Waterhouse. Randomly shifted

lattice rules for unbounded integrands. J. Complexity, 22:630–651, 2006.

[38] G. Larcher. On the distribution of an analog to classical Kronecker-

sequences. J. Number Theory, 52:198–215, 1995.

[39] G. Larcher and H. Niederreiter. Generalized (t, s)-sequences, Kronecker-

type sequences, and Diophantine approximations of formal Laurent series.

Trans. Amer. Math. Soc., 347:2051–2073, 1995.

[40] R. C. Merton. Theory of rational option pricing. Bell Journal of Eco-

nomics, 4:141–183, 1973.

[41] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random num-

bers. Bull. Amer. Math. Soc., 84:957–1041, 1978.

154



[42] H. Niederreiter. Random number generation and quasi-Monte Carlo meth-

ods. SIAM, Philadelphia, PA, 1992.

[43] H. Niederreiter. The existence of good extensible polynomial lattice rules.

Monatsh. Math., 139:295–307, 2003.

[44] H. Niederreiter. Constructions of (t, m, s)-nets and (t, s)-sequences. Finite

Fields Appl., 11:578–600, 2005.

[45] D. Nuyens and R. Cools. Fast algorithms for component-by-component

construction of rank-1 lattice rules in shift-invariant reproducing kernel

Hilbert spaces. Math. Comp., 75:903–920, 2006.

[46] D. Nuyens and R. Cools. Fast component-by-component construction,

a reprise for different kernels. In Monte Carlo and quasi-Monte Carlo

methods 2004, pages 373–387. Springer-Verlag, Berlin, 2006.

[47] D. Nuyens and R. Cools. Fast component-by-component construction of

rank-1 lattice rules with a non-prime number of points. J. Complexity,

22:4–28, 2006.

[48] A. B. Owen. Halton sequences avoid the origin. SIAM Review, 48:487–503,

2006.

[49] S. Paskov and J. Traub. Faster valuation of financial derivatives. Journal

of Portfolio Management, 22:113–120, 1995.

[50] I. Sharygin. A lower estimate for the error of quadrature formulas for

certain classes of functions. Zh. Vychisl. Mat. i Mat. Fiz., 3:370–376,

1963. In Russian.

[51] I. H. Sloan and S. Joe. Lattice methods for multiple integration. The

Clarendon Press, Oxford, 1994.

155



[52] I. H. Sloan, F. Y. Kuo, and S. Joe. Constructing randomly shifted lattice

rules in weighted Sobolev spaces. SIAM J. Numer. Anal., 40:1650–1665,

2002.

[53] I. H. Sloan, F. Y. Kuo, and S. Joe. On the step-by-step construction of

quasi-Monte Carlo integration rules that achieve strong tractability error

bounds in weighted Sobolev spaces. Math. Comp., 71:1609–1640, 2002.

[54] I. H. Sloan and A. V. Reztsov. Component-by-component construction of

good lattice rules. Math. Comp., 71:263–273, 2002.

[55] I. H. Sloan, X. Wang, and H. Woźniakowski. Finite-order weights imply

tractability of multivariate integration. J. Complexity, 20:46–74, 2004.

[56] I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms

efficient for high-dimensional integrals? J. Complexity, 14:1–33, 1998.

[57] I. H. Sloan and H. Woźniakowski. Tractability of multivariate integration

for weighted Korobov classes. J. Complexity, 17:697–721, 2001.

[58] I. M. Sobol′. Distribution of points in a cube and approximate evaluation

of integrals. Z̆. Vyčisl. Mat. i Mat. Fiz., 7:784–802, 1967.

[59] H. Takahasi and M. Mori. Double exponential formulas for numerical

integration. Publ. Res. Inst. Math. Sci., 9:721–741, 1973/74.

[60] X. Wang and K.-T. Fang. The effective dimension and quasi-Monte Carlo

integration. J. Complexity, 19:101–124, 2003.

[61] X. Wang, I. H. Sloan, and J. Dick. On Korobov lattice rules in weighted

spaces. SIAM J. Numer. Anal., 42:1760–1779, 2004.

[62] G. W. Wasilkowski and H. Woźniakowski. Explicit cost bounds of algo-

rithms for multivariate tensor product problems. J. Complexity, 11:1–56,

1995.

156



[63] G. W. Wasilkowski and H. Woźniakowski. Complexity of weighted ap-

proximation over R1. J. Approx. Theory, 103:223–251, 2000.

[64] G. W. Wasilkowski and H. Woźniakowski. Tractability of approximation

and integration for weighted tensor product problems over unbounded

domains. In Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong

Kong), pages 497–522. Springer-Verlag, Berlin, 2002.

[65] B. J. Waterhouse, F. Y. Kuo, and I. H. Sloan. Randomly shifted lattice

rules on the unit cube for unbounded integrands in high dimensions. J.

Complexity, 22:71–101, 2006.

[66] C. P. Xing and H. Niederreiter. A construction of low-discrepancy se-

quences using global function fields. Acta Arith., 73:87–102, 1995.

157


	Title Page - New developments in theconstruction of lattice rules
	Abstract
	Table of Contents
	Acknowledgements

	Chapter 1 - Introduction
	Chapter 2 - Multivariate integration
	Chapter 3 - Multivariate integration for a class of unbounded analytic functions
	Chapter 4 - Randomly shifted lattice rules for unbounded integrands
	Chapter 5 - Lattice rules extensible in the number of points
	Chapter 6 - Korobov-form generating vector extensible in the dimension
	Bibliography



