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Abstract

The results of this thesis are motivated by the investigation of abstract Cauchy

problems. Our primary contribution is encapsulated in two new theorems.

The first main theorem is a generalisation of a result of E. M. Stein [65].

In particular, we show that every symmetric diffusion semigroup acting on

a complex-valued Lebesgue space has a tensor product extension to a UMD-

valued Lebesgue space that can be continued analytically to sectors of the

complex plane. Moreover, this analytic continuation exhibits pointwise con-

vergence almost everywhere. Both conclusions hold provided that the UMD

space satisfies a geometric condition that is weak enough to include many clas-

sical spaces. The theorem is proved by showing that every symmetric diffusion

semigroup is dominated by a positive symmetric diffusion semigoup. This al-

lows us to obtain (a) the existence of the semigroup’s tensor extension, (b) a

vector-valued version of the Hopf–Dunford–Schwartz ergodic theorem and (c)

an holomorphic functional calculus for the extension’s generator. The ergodic

theorem is used to prove a vector-valued version of a maximal theorem by Stein

[65], which, when combined with the functional calculus, proves the pointwise

convergence theorem.

The second part of the thesis proves the existence of abstract Strichartz

estimates for any evolution family of operators that satisfies an abstract en-

ergy and dispersive estimate. Some of these Strichartz estimates were already

announced, without proof, by M. Keel and T. Tao [42]. Those estimates which

are not included in their result are new, and are an abstract extension of in-

homogeneous estimates recently obtained by D. Foschi [24]. When applied to
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physical problems, our abstract estimates give new inhomogeneous Strichartz

estimates for the wave equation, extend the range of inhomogeneous estimates

obtained by M. Nakamura and T. Ozawa [53] for a class of Klein–Gordon equa-

tions, and recover the inhomogeneous estimates for the Schrödinger equation

obtained independently by Foschi [23] and M. Vilela [75]. These abstract es-

timates are applicable to a range of other problems, such as the Schrödinger

equation with a certain class of potentials.

iv



Contents

1 Introduction 1

1.1 Semigroups and Cauchy problems . . . . . . . . . . . . . . . . . 3

1.2 Strichartz estimates . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The pointwise convergence of symmetric diffusion semigroups . . 16

2 Symmetric diffusion semigroups in vector-valued Lp spaces 23

2.1 Tensor product extensions of subpositive operators . . . . . . . 23

2.2 Subpositivity for contraction semigroups . . . . . . . . . . . . . 30

2.3 A vector-valued ergodic theorem . . . . . . . . . . . . . . . . . . 38

2.4 A vector-valued maximal theorem . . . . . . . . . . . . . . . . . 40

2.5 Bounded imaginary powers of the generator . . . . . . . . . . . 43

2.6 Proof of Theorem 1.3.5 . . . . . . . . . . . . . . . . . . . . . . . 47

3 Miscellany 49

3.1 Inequalities in Lp spaces . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Interpolation spaces . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Interpolation of Lp spaces . . . . . . . . . . . . . . . . . . . . . 56

3.4 Besov spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Translation invariant operators . . . . . . . . . . . . . . . . . . 62

4 Strichartz estimates 65

4.1 A motivating example . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Abstract Strichartz estimates . . . . . . . . . . . . . . . . . . . 71

v



4.3 Equivalence, symmetry and invariance . . . . . . . . . . . . . . 75

4.4 Proof of the homogeneous estimates . . . . . . . . . . . . . . . . 82

4.5 Proof of the endpoint estimate . . . . . . . . . . . . . . . . . . . 84

4.6 Proof of the inhomogeneous estimates . . . . . . . . . . . . . . . 91

4.7 Application to the Schrödinger equation . . . . . . . . . . . . . 95

4.8 Application to the wave equation . . . . . . . . . . . . . . . . . 99

5 Inhomogeneous Strichartz estimates 107

5.1 Global and local inhomogeneous Strichartz estimates . . . . . . 108

5.2 Proof of the local Strichartz estimates . . . . . . . . . . . . . . . 112

5.3 Dyadic decompositions . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Proof of Theorem 5.1.2 . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Atomic decompositions of functions in Lp spaces . . . . . . . . . 124

5.6 Alternate proof of Theorem 5.1.2 . . . . . . . . . . . . . . . . . 128

5.7 The sharpness of Theorem 5.1.2 . . . . . . . . . . . . . . . . . . 132

5.8 Applications to the wave, Schrödinger and Klein–Gordon equa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.9 Applications to the Schrödinger equation with potential . . . . . 141

vi



Acknowledgments

It is a pleaure to acknowledge the contribution of my supervisor Michael Cowl-

ing, who introduced me to the main topics covered in the thesis. Throughout

the last three-and-a-half years, he has given much encouragement and many

helpful comments and suggestions, as well as teaching me how to write about

mathematics. His help has been greatly appreciated.

I would also like to acknowledge the assistance of my co-supervisor Ian

Doust. His input helped shed light on a couple of technical obstacles, while

his generosity with time kept the smoldering wick of confidence burning during

periods of doubt.

Thanks go to Pierre Portal and Tuomas Hytönen who took an interest in

my work on symmetric diffusion semigroups and gave helpful feedback. A

referee for the journal Mathematische Zeitschrift pointed out that one of the

hypotheses of an earlier version of Theorem 1.3.5 could be removed, while one

of the thesis examiners made several suggestions for improving my exposition

of Strichartz estimates. I thank them both.

It was a pleasure to share an office with Patrick, John, Ben, Petr and

James for the duration of my research. Patrick in particular listened to my

mathematical ramblings and squinted at my doodlings and was a great help in

maintaining interest in the thesis. The others have likewise have been wonder-

ful friends, which is much more than what could be asked for in office mates.

Ray, Jim and the other postgraduate students at the School of Mathematics

and Statistics at UNSW deserve mention for their friendship and the interest

they have shown in my research.

vii



Many thanks go to Daniel Chan who periodically gave general advice on

how to approach research, submit papers and write a thesis. Other senior

colleagues in the School of Mathematics and Statistics, particularly those with

whom I taught, helped make my postgraduate experience an enriching one.

My wife Karina and my family gave their full support to this project and

I thank them for their love.

This research was funded by an Australian Postgraduate Award and by

the Australian Research Council’s Centre of Excellence for Mathematics and

Statistics of Complex Systems.

viii



Chapter 1

Introduction

Many initial value problems (such as the inhomogeneous Schrödinger, wave,

heat and Klein–Gordon equations) can be written in abstract form as⎧⎪⎨⎪⎩u′(t) + Lu(t) = F (t) ∀t ≥ 0

u(0) = f

(1.1)

where L is a closed linear operator on a Banach space B, u and F are B-valued

functions on [0,∞) and f ∈ Dom(L). A function u which satisfies (1.1) is

called a solution to the problem, the point f in B is called the initial data, and

F is called the forcing (or source) term of the equation. If F = 0 then (1.1) is

called an homogeneous or abstract Cauchy problem; otherwise, it is referred to

as an inhomogeneous Cauchy problem.

In this thesis we explore what can be said about solutions to such problems

using techniques of functional analysis. Our journey takes us in two direc-

tions. First, we consider how the system has evolved locally, pointwise. More

specifically, suppose that for each nonnegative time t, the solution u(t) to the

homogeneous problem lies in a Lebesgue function space. If we write u as a

function (t, x) �→ u(t, x) of time and spatial variables, then when can we say

that

lim
τ→0+

u(t + τ, x) = u(t, x)

for almost every point x? This question may be translated to asking which
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one-parameter semigroups acting on the Lebesgue space Lp exhibit pointwise

convergence almost everywhere. E. M. Stein [65] showed that this question

may be answered in the affirmative in the case of symmetric diffusion semi-

groups which act on scalar-valued Lp spaces. In this thesis we generalise Stein’s

result to show that this is also true of tensor extensions of symmetric diffusion

semigroups which act on an important class of vector-valued Lp spaces. This

generalisation is stated in Theorem 1.3.5.

Second, given a particular inhomogeneous Cauchy problem (1.1), it is nat-

ural to ask the following question: Does (1.1) have a solution, and if so, is

this solution unique and continuously dependent on the initial data f? The

Cauchy problem is said to be well-posed if all parts of the above question have

an affirmative answer. While there are various tools designed to answer this

question, we focus on Strichartz estimates in particular. A Strichartz estimate

for (1.1) is an a priori spacetime estimate to the solution of (1.1) depending

on the norm of f and F . Classically, such estimates have the form

‖u‖Lp(R;Ls(Rn)) ≤ C
(
‖f‖L2(Rn) + ‖F‖Lep(R;Les(Rn))

)
,

where n is the spatial dimension, p and p̃ are the time exponents, and s and

s̃ are the spatial exponents. The challenge is to find a wide range of norms

for which the spacetime estimate holds. In this thesis we prove the existence

of certain Strichartz estimates in a very general abstract setting. The two

main results are Theorem 4.2.2 (due to M. Keel and T. Tao [42, Theorem

10.1]) and Theorem 5.1.2 (which is a new result). The abstract Strichartz

estimates of these theorems will then be applied to concrete problems, including

inhomogeneous wave, Klein–Gordon and Schrödinger equations.

The structure of the thesis is as follows. Chapter 1 is devoted to elucidat-

ing these results within a broader mathematical and historical context. The

goal of Chapter 2 is to prove our extension of Stein’s pointwise convergence

theorem for symmetric diffusion semigroups. In Chapter 3 we give a collection

of mathematical tools which will be used to prove the results of the last two
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chapters. We thereby hope that the thesis, and in particular our exposition of

the theory related to Strichartz estimates, will be mostly self-contained. Chap-

ter 4 gives a proof of the abstract Strichartz estimates given by Keel and Tao

[42, Theorem 10.1]. While Keel and Tao prove this theorem for a specific case,

they omit the proof of the general case. We hope that that our detailed proof

will be a welcome addition to the literature. Using techniques from Chapter

4, we prove some new abstract inhomogeneous Strichartz estimates in Chapter

5, before ending with a smattering of applications.

Throughout the thesis, there is one unifying example whose prominence is

deserved: the Gaussian semigroup {e−tΔ : t ≥ 0} on L2. On the one hand, this

semigroup is the prototypical example of a symmetric diffusion semigroup. On

the other hand, its boundary group {eitΔ : t ∈ R} is the prototypical example

of an evolution group to which we apply the abstract Strichartz estimates.

1.1 Semigroups and Cauchy problems

The class of one-parameter semigroups of operators is one of the fundamental

mathematical objects that arise in the study of abstract Cauchy problems. The

aim of this section is to sketch out some key ideas behind this connection and

indicate some basic strategies for solving inhomogeneous Cauchy problems.

Definition 1.1.1. Suppose that B is a Banach space and that, for each non-

negative t, there is a bounded linear operator Tt acting on B. We say that the

family {Tt : t ≥ 0} is a one-parameter semigroup on B if

(i) T0 = I, where I is the identity operator on B, and

(ii) Ts+t = TsTt whenever s and t are nonnegative.

If, in addition to the above two axioms, the B-valued map t �→ Ttf is continuous

on [0,∞) for each f ∈ B, then we say that {Tt : t ≥ 0} is a strongly continuous

(one-parameter) semigroup on B.
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For illustrative purposes, we give two explicit examples of strongly contin-

uous semigroups. Our first is the (right) translation semigroup {Tt : t ≥ 0},
which acts on the space C(R) of continuous functions, and is given by

(Ttf)(x) = f(x − t) ∀t ≥ 0 ∀f ∈ C(R).

For the second example, consider an n × n matrix L with real entries. If Tt

is defined by Tt = e−tL then {Tt : t ≥ 0} is a strongly continuous semigroup

on Rn. Among other, more important, examples are the Gaussian semigroup,

given formally by

{e−tΔ : t ≥ 0},

and the Poisson semigroup

{e−t(−Δ)1/2

: t ≥ 0}.

If {Tt : t ≥ 0} is a strongly continuous semigroup on a Banach space B
then we define the generator −L of the semigroup by the formula

−Lf = lim
t→0+

Ttf − f

t
∀f ∈ Dom(L),

where the domain of L consists of all f in B for which the above limit exists.

It is obvious that L is a linear operator. While L may be unbounded, one can

show that L is closed and has dense domain in B. Moreover,

Tt(Dom(L)) ⊆ Dom(L) ∀t ≥ 0,

the map t �→ Ttf is continuously differentiable on [0,∞) and

d

dt
Ttf = −LTtf ∀f ∈ Dom(L)

(see, for example, [18, Chapter 1]). Hence if −L is the generator of a strongly

continuous semigroup {Tt : t ∈ R}, f ∈ Dom(L) and F = 0, then the homoge-

neous Cauchy problem⎧⎪⎨⎪⎩u′(t) + Lu(t) = 0 ∀t ≥ 0

u(0) = f

4



(that is, (1.1) without the forcing term) has a solution u given by

u(t) = Ttf ∀t ≥ 0. (1.2)

Moreover, since there is a one-to-one correspondence between strongly contin-

uous semigroups and their generators, we deduce that the solution u given by

(1.2) is unique.

With these considerations in mind, and taking inspiration from the case

when L is a square matrix, we often write

Tt = e−tL,

where the right-hand side may not be more than a formal expression.

It is natural to ask, then, when a closed and densely defined operator is the

generator of a one parameter semigroup. This problem has received much at-

tention over the years. The following celebrated theorem, proved by K. Yosida

[80] and independently by E. Hille and R. Phillips [33], gives a characterisation

of generators in terms of spectral theory (see [58], [59] and [18]).

Theorem 1.1.2 (Hille–Phillips–Yosida theorem). Suppose that ω ∈ R,

M > 0 and L is a closed densely defined operator on a Banach space B. Then

the following statements are equivalent.

(i) The operator −L is the generator of a strongly continuous semigroup

{Tt : t ≥ 0} satisfying

‖Tt‖ ≤ Meωt ∀t ≥ 0.

(ii) Every λ greater than ω lies in the resolvent set of −L and∥∥(λI + L)−m
∥∥ ≤ M(λ − ω)−m

whenever m is a positive integer and λ > ω.

It can be shown that many operators (such as −Δ) associated with im-

portant Cauchy problems generate strongly continuous semigroups. In fact,
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although the theory for solving homogeneous Cauchy problems extends far

beyond what we have alluded to here, these problems are relatively well un-

derstood compared to those that are inhomogeneous (see, for example, the

well-posedness results in [1]).

One way to approach the inhomogeneous Cauchy problem is to decompose

(1.1) into the homogeneous part with nonzero initial data

v′(t) + Lv(t) = 0, v(0) = f, t ≥ 0,

and the inhomogeneous part with zero initial data

w′(t) + Lw(t) = F (t), w(0) = 0, t ≥ 0.

By linearity it is easy to see that the solution u to (1.1) is equal to v + w.

Formally, the solution to the homogeneous and inhomogeneous parts are

v(t) = e−tLf

and

w(t) =

∫ t

0

e−(t−s)LF (s) ds

respectively. Hence the formal solution u of (1.1) is given by

u(t) = e−tLf +

∫ t

0

e−(t−s)LF (s) ds.

The heuristics sketched here are known as Duhamel’s principle.

One can give a rigorous treatment of the above ideas by imposing suitable

conditions on L, f , F and the solution space (see, for example, [8, Chapter 4]).

In this thesis, most of the generators we work with are selfadjoint on L2 and

spectral theory will, in some appropriate sense, justify the formalism above.

From here, various approaches are possible. For example, suppose that

1 < p < ∞ and that L satisfies the a priori estimate∫ ∞

0

‖u′(t)‖p
B dt +

∫ ∞

0

‖Lu(t)‖p
B dt ≤ Cp

∫ ∞

0

‖F (t)‖p
B dt

∀F ∈ Lp([0,∞);B),

6



where u is a solution to (1.1) with f = 0. Such an operator L is said to

have maximal Lp-regularity on [0,∞). In this case, solving the inhomogeneous

abstract Cauchy problem (1.1) with nonzero initial data f may be reduced to

solving the corresponding homogeneous problem. In particular, this reduction

enables one to determine whether an inhomogeneous problem is well-posed.

Even though we do not pursue maximal Lp-regularity in the thesis, much of

the mathematics that we explore in Chapter 2 has strong connections to the

development of this method. Readers who wish to explore these ideas further

are encouraged to read the excellent exposition [47] of P. Kunstmann and L.

Weis.

A different approach to the same kind of problem involves finding an a

priori spacetime estimate, known as a Strichartz estimate, to the solution of

(1.1). Strichartz estimates facilitate the use of fixed point theorems and ap-

proximation methods, so that solutions to the inhomogeneous Cauchy problem

can essentially be found from solutions to the homogeneous problem. The ap-

plication of these estimates to inhomogeneous problems will be illustrated in

Sections 4.1 and 5.9, justifying the search for Strichartz estimates, which forms

a major component of the thesis.

Before giving a proper introduction to Strichartz estimates, we attend to

some notation. Suppose that (X, μ) is a positive σ-finite measure space. If 1 ≤
p < ∞, denote by Lp(X;B) the Bochner space of all B-measurable functions

F on X satisfying

‖F‖p :=
(∫

X

‖F (x)‖p
B dμ(x)

)1/p

< ∞.

Denote by L∞(X;B) the Bochner space of all B-valued measurable functions

which are μ-essentially bounded. (As is customary, we will not distinguish be-

tween equivalence classes of functions and members of each equivalence class.)

The space of functions in L∞(X;B) with compact support will be denoted by

L∞
0 (X;B). In the case when B is the set C of complex numbers, Lp(X;B) corre-

sponds to the space of complex-valued pth power Lebesgue integrable functions
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on X, and we denote Lp(X; C) simply by Lp(X). If p is any Lebesgue–Bochner

exponent in [1,∞], then denote by p′ its conjugate exponent, given by

1

p
+

1

p′
= 1.

For f ∈ Lp(X), we write f ≥ 0 if f(x) ≥ 0 for almost every x ∈ X.

Whenever this is the case, the function f is said to be nonnegative. The subset

of all nonnegative functions of Lp(X) is a Banach lattice and shall be denoted

by Lp
+(X).

Throughout the thesis, we shall also use the notation

‖f‖C � K(j) ‖g‖B

to mean

‖f‖C ≤ CK(j) ‖g‖B ,

where C is a constant, possibly changing from line to line, depending only on

the Banach spaces B and C. In particular, C does not depend on the functions

f or g or on the variable j. If we write A ≈ B then we mean that A � B and

B � A.

1.2 Strichartz estimates

Consider the inhomogeneous Schrödinger initial value problem⎧⎪⎨⎪⎩ iu′(t) + Δu(t) = F (t) ∀t ≥ 0

u(0) = f,

(1.3)

whose formal solution u is given by

via Duhamel’s principle. In the seminal paper [67] published in 1977, R.

Strichartz showed that if u is a solution to (1.3) in n spatial dimensions and

q = 2(n + 2)/n, then

‖u‖Lq(R;Lq(Rn)) � ‖f‖L2(Rn) + ‖F‖Lq′ (R;Lq′ (Rn)) (1.4)

8



whenever f ∈ L2(Rn) and F ∈ Lq′(R; Lq′(Rn)).

The above spacetime estimate was a corollary obtained from an investiga-

tion of Fourier transform restriction theorems, going back to the work of P.

Tomas [71] and E. M. Stein [64]. In particular, Strichartz [67] posed the fol-

lowing question: If S is a subset of Rn and μ is a positive measure supported

on S with temperate growth at infinity, then for which values of q is it true that

the tempered distribution fdμ has a Fourier transform in Lq(Rn) satisfying

∥∥∥f̂dμ
∥∥∥

q
≤ Cq

(∫
Rn

|f |2 dμ

)1/2

,

whenever f ∈ L2(Rn, μ)? Strichartz gave a complete solution when S is a

quadratic surface in Rn. With the correct choice of quadratic surface S, the

above estimate is equivalent to a spacetime estimate for the homogeneous part

v of the solution u to (1.3), namely

‖v‖Lq(R;Lq(Rn)) =
∥∥eitΔf

∥∥
Lq(R;Lq(Rn))

� ‖f‖L2(Rn) . (1.5)

Strichartz obtained the spacetime estimate

‖w‖Lq(R;Lq(Rn)) =

∥∥∥∥∫ t

0

ei(t−s)ΔF (s) ds

∥∥∥∥
Lq(R;Lq(Rn))

� ‖F‖Lq′ (R;Lq′(Rn)) (1.6)

for the inhomogeneous part w by interpolating between

∥∥eitΔh
∥∥

L2(Rn)
= ‖h‖L2(Rn) (1.7)

and ∥∥eitΔh
∥∥

L∞(Rn)
≤ C|t|n/2 ‖h‖L1(Rn), (1.8)

and then applying fractional integration to the result. Since u = v + w, the

estimate (1.4) is obtained. The key estimates (1.7) and (1.8) were easily de-

duced from Plancherel’s theorem and an explicit integral representation of the

Schrödinger operator eitΔ.

Similar estimates were obtained for the inhomogeneous Klein–Gordon equa-

9



tion, of which the inhomogeneous acoustic wave equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−u′′(t) + Δu(t) = F (t) ∀t ≥ 0

u(0) = f

u′(0) = g

(1.9)

is a particular example. Whenever ρ ∈ R, let Ḣρ(Rn) denote the homogeneous

Sobolev space (−Δ)−ρ/2L2(Rn), with norm given by

‖f‖Ḣρ =
∥∥(−Δ)ρ/2f

∥∥
L2(Rn)

.

Strichartz showed that if u is a solution to (1.9) then

‖u‖Lq(R;Lq(Rn)) � ‖f‖Ḣρ(Rn) + ‖g‖Ḣρ−1(Rn) + ‖F‖Lq′ (R;Lq′ (Rn)) (1.10)

whenever q = 2(n + 1)/(n + 1 − 2ρ), 1 ≤ ρ < (n + 1)/2, f ∈ Ḣρ(Rn),

g ∈ Ḣρ−1(Rn) and F ∈ Lq′(R; Lq′(Rn)). His proof of the spacetime esti-

mate was similar to that for the inhomogeneous Schrödinger equation. The

restriction theorem was used to obtain the homogeneous estimate, while the

inhomogeneous estimate was obtained via an interpolation argument. In fact,

the spacetime estimate for the solution w to the inhomogeneous wave equation

with zero initial data was already contained in Strichartz’ earlier paper [66].

In view of related work [62] by I. Segal, who was another early pioneer, inho-

mogeneous spacetime estimates have a longer history than their homogeneous

counterparts.

The spacetime estimates (1.4) and (1.10), and variations of these, are now

universally known as Strichartz estimates. Strichartz estimates, such as (1.5),

for the homogeneous Cauchy problem with initial data are known as homoge-

neous Strichartz estimates, while those, such as (1.6), for the inhomogeneous

problem with zero initial data are known as inhomogeneous Strichartz esti-

mates. The estimates (1.7) and (1.8) are examples of what is respectively

known as an energy and dispersive estimate. For the wave equation, fun-

damental dispersive estimates are the result of work by P. Brenner [5] and

H. Pecher [55].
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Following the early developments of Strichartz, work by B. Marshall [49] on

the Klein–Gordon equation suggested that the space and time exponents in the

Strichartz estimate (1.10) need not be equal. While this possibility had been

noted in an early paper [66] of Strichartz, it was H. Pecher [56] who obtained

almost all possible Strichartz estimates of the form

‖v‖Lq(R;Lr(Rn)) � ‖f‖Ḣρ(Rn) + ‖g‖Ḣρ−1(Rn)

for the homogeneous wave equation with nonzero initial data. Around this

time, it became evident that the restriction theorems were unnecessary for

obtaining Strichartz estimates for the homogeneous equations. In fact, it was

shown by J. Ginibre and G. Velo [27] that the duality arguments used to

establish such estimates were more efficiently applied in an abstract operator

setting where the Fourier transform did not play an essential role. This point

of view was fully exploited by K. Yajima [78] who provided a large set of

Strichartz inequalities for the homogeneous Schrödinger equation.

Strichartz estimates for the wave equation were later generalised by replac-

ing the Lebesgue space norms (for the functions of the spatial variables) with

norms of more general spaces. After contributions by various authors (includ-

ing [38], [25] and [48]), Ginibre and Velo [28] gave a unified presentation of the

known generalised Strichartz estimates for the inhomogeneous wave equation.

By this stage, the picture was almost complete for Strichartz-type estimates

of the homogeneous parts of the wave and Schrödinger equations. Necessary

and sufficient conditions for exponent pairs (q, r), such that the homogeneous

Strichartz estimates

‖v‖Lq(R;Lr(Rn)) � ‖f‖L2(Rn)

(for the Schrödinger equation) and

‖v‖Lq(R;Lr(Rn)) � ‖f‖Ḣρ + ‖g‖Ḣρ−1

(for the wave equation) are valid, coincided at all but the ‘endpoint’ (see Q and

Q′ in Figure 1.1 and the commentary below; see also Section 4.7). Moreover,
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Figure 1.1: The range of exponents that give valid Strichartz estimates.

if the exponent pair (q̃, r̃) also satisfied these sufficient conditions, then the

inhomogeneous Strichartz estimate

‖w‖Lq(R;Lr(Rn)) � ‖F‖Leq′ (R;Ler′(Rn)) (1.11)

(for both wave and Schrödinger equations) was also valid.

In a major contribution, M. Keel and T. Tao [42] showed that both the ho-

mogeneous and inhomogeneous Strichartz estimates at the endpoint are valid,

except in a special case (depending on the dimension n) where the Strichartz

estimates were already known to be false (see [44] and [51]). This completely

settled the problem of determining all homogeneous Strichartz estimates for

all dimensions n.

Figure 1.1 represents the range of exponents that give valid Strichartz es-

timates in higher spatial dimensions. If n > 2 and u is a (weak) solution to

the inhomogeneous Schrödinger equation (1.3), then the closed line segment

QR of Figure 1.1 (a) represents exponent pairs (q, r) and (q̃, r̃) for which the

Strichartz estimate

‖u‖Lq(R;Lr(Rn)) � ‖f‖L2(Rn) + ‖F‖Leq′ (R;Ler′(Rn)) (1.12)

is valid. The point Q corresponds to the endpoint determined by Keel and

12



Tao [42], while the point S corresponds to the original estimate (1.4) of R.

Strichartz [67].

Similarly, suppose that n > 3 and u is a (weak) solution to the inhomo-

geneous wave equation (1.9). If the pairs (1/q, 1/r) and (1/q̃, 1/r̃) lie in the

closed shaded region of Figure 1.1 (b) and satisfy the ‘gap condition’

1

q
+

n

r
=

n

2
− ρ =

1

q̃′
+

n

r̃′
− 2,

then the Strichartz estimate

‖u‖Lq(R;Lr(Rn)) � ‖f‖Ḣρ(Rn) + ‖g‖Ḣρ−1(Rn) + ‖F‖Leq′ (R;Ler′(Rn)) (1.13)

holds. The point Q′ corresponds to the endpoint determined by Keel and Tao

[42], while the line segment OS ′ corresponds to the original estimate (1.10) of

R. Strichartz [67]. It must also be noted that, when r = ∞, the Lr norm in

(1.13) must be replaced with a Besov norm, and similarly when r̃ = ∞.

While earlier authors had determined Strichartz estimates by proving op-

erator estimates, Keel and Tao [42] instead proved equivalent bilinear form

estimates. This allowed them to employ techniques that are difficult to re-

produce in the operator setting. They also stripped assumptions to the bare

essentials, assuming only that the family of evolution operators {U(t) : t ∈ R}
associated to the Cauchy problem satisfied an abstract energy estimate

‖U(t)h‖B0
� ‖h‖H ∀h ∈ H (1.14)

and an abstract dispersive estimate

‖U(t)U(s)∗h‖B∗
1

� |t − s|−σ ‖h‖B1
∀h ∈ B1, (1.15)

where σ > 0, H is a Hilbert space and B0 and B1 are compatible (in the sense of

real interpolation) Banach spaces. This allowed a unified treatment of both the

wave and Schrödinger equations, as well as, for example, the kinetic transport

equation.

In Chapter 4, we present a proof of the abstract generalised Strichartz

estimates [42, Theorem 10.1] of Keel and Tao. We do so for two reasons. First,
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[42] does not prove this result in its most general form, choosing instead to prove

the special case when (B0,B1) = (L2(X), L1(X)), where X is a measure space.

While this special case is sufficient for obtaining all Strichartz estimates (in

classical norms) for the homogeneous wave and Schrödinger equations, it does

not yield generalised Strichartz estimates. Second, the techniques presented in

our proof of [42, Theorem 10.1] will be used again in Chapter 5, where original

results are proved. A statement of [42, Theorem 10.1] may be found in Section

4.2. At the end of Chapter 4, we illustrate how this abstract result recovers

all Strichartz estimates for the Schrödinger equation (illustrated in Figure 1.1

(a)) and the generalised Strichartz estimates of [28] for the wave equation.

While all homogeneous Strichartz estimates for the wave and Schrödinger

equations were determined by the late 1990s, there remained exponent pairs

(q, r) for which the inhomogeneous Strichartz estimate holds but the homo-

geneous estimate fails. Prior to [42], this phenomenom was observed by D.

Oberlin [54] and J. Harmse [31] for the wave equation, and by T. Cazenave

and F. Weissler [10] and T. Kato [39] for Schrödinger’s equation. Using the

techniques of [42], D. Foschi [24] and M. Vilela [75] independently obtained

what is currently the largest known range of exponent pairs (q, r) and (q̃, r̃) for

which the inhomogeneous Strichartz estimate (1.11) for the Schrödinger equa-

tion is valid. While this was a significant advance, the gap between necessary

and sufficient conditions on these exponent pairs is still substantial (see the

discussion in Section 5.7) and the problem of determining all inhomogeneous

Strichartz estimates remains open. It was remarked by Keel and Tao [42] that

identifying all inhomogeneous Strichartz estimates is likely to be a very difficult

problem. In the case of the wave equation, it is related to unsolved conjectures

such as the local smoothing conjecture of C. Sogge [63] and the Bochner–Riesz

problem for cone multipliers of J. Bourgain [4].

The result of D. Foschi [24, Theorem 1.4] is of particular interest because it

is more general than the result of [75] and can be used to find inhomogeneous

Strichartz estimates for both the wave and Schrödinger equations. Even so,
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the hypothesis of Foschi’s theorem is unnecessarily restrictive, requiring that

(1.14) and (1.15) both hold when (B0,B1) = (L2(X), L1(X)). In Chapter 5

we generalise Foschi’s results by removing the restriction on (B0,B1), thereby

obtaining one of the two main results of this thesis (see Theorem 5.1.2). When

this new theorem is applied, we recover all inhomogeneous Strichartz estimates

contained in [24] and [75] for Schrödinger equation, as well as extending the

list of inhomogeneous Strichartz estimates determined by M. Nakamura and T.

Ozawa [53] for a class of inhomogeneous Klein–Gordon equations (see Section

5.8). The abstract result also allows us to give a new set of generalised in-

homogeneous Strichartz estimates for the wave equation (see Corollaries 5.8.2

and 5.8.3), in the same spirit as the generalised Strichartz estimates presented

by Ginibre and Velo [28]. Finally, it is shown in Section 5.9 that our abstract

theorem allows one to obtain Strichartz estimates for important nonstandard

problems, such as inhomogeneous Schrödinger equations with potential. For

potentials of a certain class, the crucial ingredient needed to apply the abstract

result is a dispersive estimate provided by K. Yajima [79].

The body of literature examining Strichartz estimates is now very large

and the above historical overview only summarises one strand of developments,

starting from Strichartz [67], maturing in Keel and Tao [42] and branching off

to the inhomogeneous estimates of Foschi [24], Vilela [75] and the present work.

Other authors have studied weighted Strichartz estimates, Strichartz estimates

on manifolds, Strichartz estimates for inhomogeneous problems with variable

coefficients and Strichartz estimates derived from dispersive estimates other

than those considered here. Such topics are beyond the scope of the thesis.

While the thesis is not about applications of Strichartz estimates, we are

aware that the quest to find Strichartz estimates is driven by the need to solve

problems in inhomogeneous partial differential equations and scattering the-

ory. We therefore frame our treatment of Strichartz estimates with two simple

examples (see Sections 4.1 and 5.9) highlighting their power as a technical tool.
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1.3 The pointwise convergence of symmetric

diffusion semigroups

We move now to introduce a special class of semigroups, focusing in partic-

ular on two classical results which go back to E. M. Stein’s monograph [65].

Connected with these ideas, we give a statement of an original result (Theo-

rem 1.3.5) which extends these classical results to the setting of vector-valued

Lebesgue spaces and constitutes the second major result of the thesis. Follow-

ing this we shall indicate the method of proof of this new theorem, reserving

the proof itself for Chapter 2.

Definition 1.3.1. Suppose that {Tt : t ≥ 0} is a semigroup of operators on

L2(X). We say that

(a) the semigroup {Tt : t ≥ 0} satisfies the contraction property if

‖Ttf‖q ≤ ‖f‖q ∀f ∈ L2(X) ∩ Lq(X) (1.16)

whenever t ≥ 0 and q ∈ [1,∞]; and

(b) the semigroup {Tt : t ≥ 0} is a symmetric diffusion semigroup if it satis-

fies the contraction property and if Tt is selfadjoint on L2(X) whenever

t ≥ 0.

It is well known that if 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ then Lq(X) ∩ Lp(X) is

dense in Lp(X). Hence, if a semigroup {Tt : t ≥ 0} acting on L2(X) has the

contraction property then each Tt extends uniquely to a contraction of Lp(X)

whenever p ∈ [1,∞). By abuse of notation, we shall also denote by {Tt : t ≥ 0}
the unique semigroup extension which acts on Lp(X).

The class of symmetric diffusion semigroups is widely used in applications

and includes the Gaussian and Poisson semigroups on L2(Rn), where n ∈ Z+.

Despite the simplicity of Definition 1.3.1, symmetric diffusion semigroups have

a rich theory. For example, if {Tt : t ≥ 0} is a symmetric diffusion semigroup
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on L2(X) then the semigroup can also be continued analytically to sectors of

the complex plane. To be precise, given a positive angle ψ, let Γψ denote the

cone {z ∈ C : | arg z| < ψ} and Γψ its closure. We shall denote the interval

[0,∞) by Γ0. Using spectral theory and complex interpolation, Stein proved

the following result.

Theorem 1.3.2 (Stein [65]). Suppose that 1 < p < ∞,

ψ/π = 1/2 − |1/p − 1/2| > 0,

and {Tt : t ≥ 0} is a symmetric diffusion semigroup on acting L2(X). Then

{Tt : t ≥ 0} extends uniquely to a semigroup {Tz : z ∈ Γψ} of contractions on

Lp(X) such that the operator-valued function z �→ Tz is holomorphic in Γψ and

weak operator topology continuous in Γψ.

We now recall two results of M. Cowling [15], developing the fundamental

work of Stein [65]. The first is a useful technical tool. For f in Lp(X), define

the maximal function Mψf by

Mψf = sup{|Tzf | : z ∈ Γψ}.

The maximal theorem, stated below, says that the maximal function operator

Mψ is bounded on Lp(X).

Theorem 1.3.3 (Stein–Cowling [15]). Suppose that 1 < p < ∞ and that

0 ≤ ψ/π < 1/2 − |1/p − 1/2|.

If {Tz : z ∈ Γψ} is the semigroup on Lp(X) given by Theorem 1.3.2, then there

is a positive constant Cp,ψ, depending only on p and ψ, such that

∥∥Mψf
∥∥

p
≤ Cp,ψ ‖f‖p ∀f ∈ Lp(X).

The maximal theorem allows one to deduce a pointwise convergence result

for the semigroup {Tz : z ∈ Γψ}.
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Corollary 1.3.4 (Stein–Cowling [15]). Assume the hypotheses of Theorem

1.3.3. If f ∈ Lp(X) then (Tzf)(x) → f(x) for almost every x in X as z tends

to 0 in Γψ.

The earliest form of the maximal theorem appeared in Stein [65, p. 73] for

the case when ψ = 0. From this Stein deduced the pointwise convergence of

Ttf to f as t → 0+. Using a simpler approach, Cowling [15] extended Stein’s

result to semigroups {Tz : z ∈ Γψ}, holomorphic in the sector Γψ, without

additional hypotheses. Given z ∈ Γψ, Cowling’s strategy was to decompose

the operator Tz into two parts:

Tzf =
1

t

∫ t

0

e−sLf ds +
[
e−zLf − 1

t

∫ t

0

e−sLf ds
]
, (1.17)

where t = |z| and −L is the generator of the semigroup. The Lp norm of

the first term on the right-hand side can be controlled by the Hopf–Dunford–

Schwartz ergodic theorem. A clever use of the Mellin transform allows the

terms in brackets to be controlled by bounds on the imaginary powers of L.

One of the main contributions of this thesis is to observe that, under certain

assumptions, the argument in [15] may be adapted to the setting of Lp spaces

of Banach-space-valued functions. Several other results contained in Stein’s

monograph [65] have already been pushed in this direction (see, for example,

[77], [50] and [36]). In a broader context, there has been much recent interest in

operators which act on such spaces, particularly since tools for solving abstract

Cauchy problems, such as vector-valued Laplace transforms and maximal Lp-

regularity (see the expositions [1] and [47] and the references therein), require

this setting. It is unsurprising that developments related to these methods are

pertinent to techniques and results we use in this thesis. For example, several

decades ago it was shown in the ground breaking work of J. Bourgain [3] and

D. Burkholder [7] that Banach spaces possessing the so-called UMD property

(see Section 2.5) were the spaces where classical singular integral and Fourier

multiplier theory could be generalised to a vector-valued setting. Following

this, extensions of the classical Littlewood–Paley, Marcinkiewicz and Mikhlin
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multiplier theorems were obtained in the UMD setting by F. Zimmermann

[81]. Earlier, Cowling [15] had shown how to construct an H∞-functional

calculus for generators of symmetric diffusion semigroups using the transference

methods popularised by R. Coifman and G. Weiss [12]. M. Hieber and J. Prüss

[32] combined transference with the vector-valued Mikhlin multiplier theorem

to construct an H∞-functional calculus for generators of positive contraction

semigroups which act on Lp spaces of UMD-valued functions. It is noteworthy

that we use their method to show that the generator of a UMD-valued extension

of a symmetric diffusion semigroups also possesses such a functional calculus.

Other advances in this area that are of interest include studies on bounded

imaginary powers of operators (of which the article [20] of G. Dore and A. Venni

is now a classic), H∞-functional calculi for sectorial operators (see especially

the fundamental paper [16] of A. McIntosh and his collaborators) and maximal

Lp-regularity (see L. Weis [76] and the references therein). The article [47] of P.

Kunstmann and L. Weis gives an excellent exposition of the interplay between

these motifs in the vector-valued setting as well as an extensive bibliography

detailing the key contributions made to the field over the last two decades.

Suppose that B is a (complex) Banach space and let Lp(X;B) denote the

Bochner space of B-valued p-integrable functions on X. Given a symmetric

diffusion semigroup {Tt : t ≥ 0} on L2(X), its tensor product extension {T̃t :

t ≥ 0} to Lp(X,B) exists by the contraction property (see Section 2.1). If {T̃t :

t ≥ 0} can be continued analytically to some sector Γψ+ε, where 0 < ψ < π/2

and ε is a (sufficiently) small positive number, then denote this continuation

by {T̃z : z ∈ Γψ+ε}. If such a continuation does not exist, we take ψ to be 0.

Given any function F in Lp(X;B), one defines the maximal function Mψ
BF by

Mψ
BF = sup{|T̃zF |B : z ∈ Γψ}. (1.18)

The theorem below is one of the main results of the thesis.

Theorem 1.3.5. Suppose that (X, μ) is a σ-finite measure space and that

{Tt : t ≥ 0} is a symmetric diffusion semigroup on L2(X). Suppose also that B
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is a Banach space isomorphic to a closed subquotient of a complex interpolation

space (H,U)[θ], where H is a Hilbert space, U is a UMD space and 0 < θ < 1.

If 1 < p < ∞, |2/p − 1| < θ and

0 ≤ ψ <
π

2
(1 − θ)

then

(a) {T̃t : t ≥ 0} has a bounded analytic continuation to the sector Γψ in

Lp(X;B),

(b) there is a positive constant C such that∥∥∥Mψ
BF
∥∥∥

Lp(X)
≤ C ‖F‖Lp(X;B) ∀F ∈ Lp(X;B),

and

(c) if F ∈ Lp(X;B) then T̃zF (x) converges to F (x) for almost every x in X

as z tends to 0 in the sector Γψ.

It is noteworthy that the class of Banach spaces B satisfying the interpola-

tion hypothesis of Theorem 1.3.5 is a subset of those Banach spaces possessing

the UMD property. It includes those classical Lebesgue spaces, Sobolev spaces

and Schatten–von Neumann ideals that are reflexive. The reader is directed to

Section 2.5 for further remarks on these spaces.

While Theorem 1.3.5 will be proved in Chapter 2, we now indicate the

structure of the proof and the main techniques involved. We begin, in Section

2.1, by considering tensor product extensions of operators to vector-valued Lp

spaces. It is well known that every positive (that is, positivity-preserving)

operator on Lp(X) has such an extension, but less known is the fact that

every subpositive operator on Lp(X) also has a tensor extension. As its name

suggests, subpositivity is a weaker condition than positivity but surprisingly

is not exploited in the literature as often as it could be. In Section 2.2, we

demonstrate that every measurable semigroup {Tt : t ≥ 0} on L2(X) satisfying
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the contraction property is subpositive on Lp(X) when 1 ≤ p < ∞, and that it

is dominated by a measurable positive semigroup on Lp(X) which also satisfies

the contraction property. This is an extension of a similar result obtained

independently by Y. Kubokawa [46] and C. Kipnis [43] for semigroups acting

on L1(X). Our extension, while not difficult to prove, allows us to deduce

that {Tt : t ≥ 0} has a tensor product extension to Lp(X;B). (We note here

that there are other well known methods for achieving the same ends; see

Remark 2.2.3.) More importantly however, the our semigroup subpositivity

result also allows us to easily deduce a vector-valued version of the Hopf–

Dunford–Schwartz ergodic theorem in Section 2.3.

Parts (a) and (b) of Theorem 1.3.5 are proved in Sections 2.4 and 2.5.

Following techniques used in [15], we begin by proving a maximal theorem for

the tensor product extension {T̃t : t ≥ 0} to Lp(X;B) of a strongly continuous

semigroup {Tt : t ≥ 0} satisfying the contraction property. Here we assume

that 1 < p < ∞ and B is any Banach space, provided that the generator

−L̃ of the B-valued extension has bounded imaginary powers on Lp(X;B)

with a power angle less than π/2 − ψ. Section 2.5 discusses circumstances

under which this condition holds. In general, it is necessary that B has the

UMD property. Moreover, by exploiting the subpositivity of {Tt : t ≥ 0} and

adapting arguments of M. Hieber and J. Prüss [32], we show that if B has

the UMD property then L̃ has an H∞-functional calculus. This, along with

spectral theory (where the self-adjointness of each operator Tt is imposed) and

interpolation, allows us to remove the bounded imaginary powers hypothesis

at the cost of restricting the class of Banach spaces B for which the maximal

theorem is valid.

In Section 2.6 we show that that the pointwise convergence of {T̃z : z ∈ Γψ}
is easily deduced from the pointwise convergence of {Tz : z ∈ Γψ} and the

maximal theorem. This completes the proof of Theorem 1.3.5.
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Chapter 2

Symmetric diffusion semigroups

in vector-valued Lp spaces

The main goal of this chapter is to give a proof of Theorem 1.3.5. The broad

outline of the proof, which also determines the structure of the chapter, was

given at the end of Section 1.3 and we will not repeat it here. There are several

results presented in the chapter which are of interest independent to the proof

of the main theorem. These are the subpositivity theorem for semigroups pos-

sessing the contraction property (see Theorem 2.2.1), the vector-valued Hopf–

Dunford–Schwartz ergodic theorem (see Corollary 2.3.2) and the fact that the

generator of a UMD-valued extension of a symmetric diffusion semigroup has

an H∞-functional calculus (see Theorem 2.5.1).

Throughout this chapter, we will suppose that (X, μ) is a σ-finite measure

space.

2.1 Tensor product extensions of subpositive

operators

Suppose that B is a Banach space with norm | · |B and that (X, μ) is a σ-

finite measure space. We assume throughout this section that p ∈ [1,∞). Let
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Lp(X)⊗B denote the set of all finite linear combinations of B-valued functions

of the form uf , where u ∈ B and f ∈ Lp(X). It is well known that this set is

dense in Lp(X;B) (see, for example, [29]). Many operators acting on scalar-

valued function spaces can be extended to act on B-valued function spaces in

the following canonical way.

Definition 2.1.1. Suppose that T is a bounded operator on Lp(X). If IB

denotes the identity operator on B then define the tensor product T ⊗ IB on

Lp(X) ⊗B by

T ⊗ IB

(
n∑

k=1

ukfk

)
=

n∑
k=1

ukTfk

whenever n ∈ Z+, uk ∈ B, fk ∈ Lp(X) and k = 1, . . . , n. We say that a

bounded operator T̃ : Lp(X;B) → Lp(X;B) is a B-valued extension of T if

T̃ = T ⊗ IB on Lp(X) ⊗ B. In this case, T̃ is also called a tensor product

extension of T to Lp(X;B).

If it exists, a B-valued extension T̃ of T is necessarily unique, by the density

of Lp(X)⊗B in Lp(X;B). We now consider a class of operators for which such

extensions are possible.

Definition 2.1.2. Suppose that T is a linear operator on Lp(X) and that

{Tt : t ≥ 0} is a semigroup of operators on Lp(X). We say that

(a) the operator T is positive if Tf ≥ 0 whenever f ≥ 0 for f in Lp(X);

(b) the operator T on Lp(X) is subpositive if there is a bounded positive

operator S on Lp(X) such that |Tf | ≤ S|f | whenever f ∈ Lp(X), in

which case we also say that T is dominated by S; and

(c) the semigroup {Tt : t ≥ 0} is subpositive if there is a family {St : t ≥ 0}
of bounded positive operators on Lp(X) such that |Ttf | ≤ St|f | whenever

t ≥ 0 and f ∈ Lp(X).

It is well known that every bounded positive operator T on Lp(X) has a

B-valued extension T̃ on Lp(X;B) (see, for example, [29, Section 4.5]). We will

deduce the same for subpositive operators.
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Lemma 2.1.3. Suppose that T is a subpositive operator on Lp(X) dominated

by a bounded positive operator S. Then

(i) T has a B-valued extension T̃ on Lp(X;B),

(ii) |T̃F |B ≤ S|F |B whenever F ∈ Lp(X;B), and

(iii) ‖T̃‖Lp(X;B)→Lp(X;B) ≤ ‖S‖Lp(X)→Lp(X).

Although the above lemma is undoubtedly known by the experts, we are

not aware of any proof in the literature. We shall therefore give one here. In

what follows, we write B∗ for the dual of B and write 〈u, v〉 for v(u) when

u ∈ B and v ∈ B∗.

Proof. Suppose that T is a subpositive operator dominated by a bounded pos-

itive operator S. We begin by noting that for any countable set K,

sup
k∈K

|Tgk| ≤ sup
k∈K

S|gk| ≤ S
(
sup
k∈K

|gk|
)

whenever {gk}k∈K ⊂ Lp(X) and supk∈K |gk| ∈ Lp(X), by the positivity of S.

Let IB denote the identity operator on B. We will show that T ⊗IB is bounded

on Lp(X) ⊗ B and can therefore be extended to a bounded operator T̃ on

Lp(X;B).

Given F in Lp(X)⊗B, write F as
∑n

j=1 ujfj where uj ∈ B and fj ∈ Lp(X).

Since F and T ⊗ IBF both take values in a finite dimensional (and hence

separable) subspace of B, there exists a countable subset V of the unit ball of

B∗ such that

sup
v∈V

|〈T̃F (x), v〉| = |T̃F (x)|B

and

sup
v∈V

|〈F (x), v〉| = |F |B(x)
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for almost every x in X. Therefore

|T ⊗ IBF (x)|B = sup
v∈V

|〈T̃ F (x), v〉|

= sup
v∈V

∣∣∣T( n∑
j=1

〈uj, v〉 fj

)
(x)
∣∣∣

≤ S

(
sup
v∈V

∣∣∣ n∑
j=1

〈uj, v〉 fj

∣∣∣) (x)

= S(|F |B)(x).

for almost every x in X. Taking the Lp(X) norm of both sides gives

‖T ⊗ IBF‖Lp(X;B) ≤ ‖S‖Lp(X)→Lp(X) ‖F‖Lp(X;B)

as required.

Given a strongly continuous semigroup of subpositive operators, we would

like to know when its B-valued extension is also strongly continuous. We

remind readers that a family of operators {Rz : z ∈ Λ} on Lp(X;B) indexed

by z on some subset Λ of the complex plane is said to be locally uniformly

bounded in norm on Λ if, for each positive r and each z in Λ, there exists a

positive number M such that

‖RwF‖p ≤ M ‖F‖p ∀F ∈ Lp(X;B)

whenever |w − z| < r and w ∈ Λ.

Lemma 2.1.4. Suppose that ψ ≥ 0 and that {Tz : z ∈ Γψ} is a semigroup of

subpositive operators on Lp(X) such that the mapping z �→ Tz is strongly con-

tinuous for z in Γψ. If its B-valued extension {T̃z : z ∈ Γψ} is locally uniformly

bounded in norm on Γψ, then the mapping z �→ T̃z is strongly continuous for

z ∈ Γψ.

Proof. Suppose that z ∈ Γψ, that F ∈ Lp(X;B) and that ε > 0. By the

hypothesis there exists a positive number M such that∥∥∥T̃wG
∥∥∥

p
≤ M ‖F‖p ∀G ∈ Lp(X;B)
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whenever |w − z| < 1 and w ∈ Γψ. Choose nonzero G in Lp(X) ⊗B such that

‖F − G‖p <
ε

3M
.

The function G has the representation
∑n

k=1 ukgk, where uk ∈ B and gk ∈
Lp(X) for some finite integer n. Write α for

∑n
k=1 |uk|B. Since the map z �→ Tz

is strongly continuous, for each k in {1, . . . , n} there is a positive δk such that

‖Tzgk − Twgk‖p <
ε

3α

whenever |z − w| < δk and w ∈ Γψ. Denote by δ the minimum of the set

{1, δ1, δ2, . . . , δn}. If w ∈ Γψ and |z − w| < δ then∥∥∥T̃zF − T̃wF
∥∥∥

p
≤
∥∥∥T̃zF − T̃zG

∥∥∥
p
+
∥∥∥T̃zG − T̃wG

∥∥∥
p
+
∥∥∥T̃wG − T̃wF

∥∥∥
p

≤ 2M ‖F − G‖p +

n∑
k=1

|uk|B ‖Tzgk − Twgk‖p

<
2ε

3
+

ε

3

= ε.

Hence {T̃z : z ∈ Γψ} is strongly continuous on Lp(X;B).

Remark 2.1.5. If a strongly continuous semigroup {Tz : z ∈ Γψ} on Lp(X)

is dominated by a positive family {Sz : z ∈ Γψ} that is locally uniformly

bounded in Lp(X) norm, then the B-valued extension {T̃z : z ∈ Γψ} is strongly

continuous.

Suppose that a strongly continuous semigroup {Tt : t ≥ 0} of subpositive

operators on Lp(X) has a B-valued extension {T̃t : t ≥ 0} that is also a strongly

continuous semigroup. As usual, the generator B of {T̃t : t ≥ 0} is given by

BF = lim
t→0+

T̃tF − F

t

for all F in Lp(X;B) for which the limit exists. The collection of such F is the

domain of B. Let −L be the generator of {Tt : t ≥ 0}. It is easy to show that

Dom(L)⊗B ⊆ Dom(B) and that B = −L⊗ IB on Dom(L)⊗B. Therefore we

denote B by −L̃.
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We close this section by demonstrating that our definition of subpositivity

coincides with that implied by R. Coifman, R. Rochberg and G. Weiss [11,

p. 54] (strictly speaking, [11] only introduces the notion of a subpositive con-

traction). We later use the equivalence of these definitions to prove Theorem

2.5.1.

If R is an operator on Lp(X) then define R by the formula Rf = Rf̄

whenever f ∈ Lp(X), and define Re(R) by (R + R)/2.

Proposition 2.1.6. If 1 ≤ p ≤ ∞ and T is a linear operator on Lp(X) then

the following statements are equivalent.

(i) The operator T is a subpositive operator.

(ii) There exists a bounded positive operator S on Lp(X) such that S +

Re(eiθT ) is positive whenever θ ∈ R.

Proof. Suppose that (i) holds. Then there is a bounded positive operator S

such that Sf ≥ |Tf | for all nonnegative f in Lp(X). Choose f in Lp(X) such

that f ≥ 0. Then for all real θ,

(
S + Re(eiθT )

)
f = Sf + Re(eiθTf)

≥ Sf − |Tf |

≥ 0.

Thus (ii) holds.

Conversely, suppose that (ii) holds. We deduce that (i) holds in three steps.

Step 1. Assume that f ≥ 0. Then

Sf + Re(eiθT )f ≥ 0 ∀θ ∈ R.

That is,

S|f | + Re(eiθTf) ≥ 0 ∀θ ∈ R.

Therefore

S|f | + inf
θ∈Q

Re(eiθTf) ≥ 0.
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But it is clear that

−|Tf | = inf
θ∈Q

Re(eiθTf)

and hence (i) holds for f ≥ 0.

Step 2. Suppose that α > 0 and that f ∈ Lp(X), such that f only takes

values in the sector Λα, where Λα is defined by the formula

Λα = {z ∈ C : 0 ≤ arg z < α} ∪ {0}.

Then Re(f) ≥ 0 and

0 ≤ Im(f) ≤ tan(α)Re(f).

So using Step 1,

|Tf | ≤ |T (Re(f))| + |iT (Im(f))|

≤ S(Re(f)) + S(tan(α)Re(f))

≤ (1 + tan α)S|f |.

Step 3. Let F be any function in Lp(X). Suppose that ε > 0 and choose n

in N such that n > 2π/ tan−1(ε). Whenever j = 0, . . . , n− 1, denote by Λj the

sector

{ei2πj/nz : z ∈ Λ2π/n}

and define fj by

fj(x) =

⎧⎪⎨⎪⎩f(x) if f(x) ∈ Λj

0 otherwise.

Then f =
∑n−1

j=0 fj, |f | =
∑n−1

j=0 |fj| and

|Tf | ≤
n−1∑
j=0

|Tfj| =
n−1∑
j=0

|T (e−i2πj/nfj)|. (2.1)

But for each j in {0, . . . , n − 1}, the function e−i2πj/nfj takes values only in

Λ2π/n. Continuing from (2.1) with an application of the result of Step 2, we
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have

|Tf | ≤
n−1∑
j=0

(
1 + tan(2π/n)

)
S|e−i2πj/nfj |

=
(
1 + tan(2π/n)

)
S
( n−1∑

j=0

|fj|
)

< (1 + ε) S|f |.

Since ε is arbitrary, |Tf | ≤ S|f | as required.

2.2 Subpositivity for contraction semigroups

The goal of this section is to prove that every semigroup on L2(X) with the

contraction property is, when extended to a semigroup on Lp(X) for p in [1,∞),

dominated by a positive contraction semigroup on Lp(X).

We begin with a few preliminaries. Suppose that 1 ≤ p < ∞ and T is a

bounded linear operator on Lp(X). If 1 ≤ q < ∞ and ‖Tf‖q ≤ C ‖f‖q for

all f in Lq(X) ∩ Lp(X) then, by a density argument, T has a unique bounded

linear extension acting on Lq(X) and by abuse of notation we will also denote

this extension by T .

We say that a family of operators {Tt : t ≥ 0} is (strongly) measurable on

Lp(X) if, for every f in Lp(X), the Lp(X)-valued map t �→ Ttf is measurable

with respect to Lebesgue measure on [0,∞). The family is said to be weakly

measurable if the complex-valued map t �→ 〈Ttf, g〉 is measurable with respect

to Lebesgue measure on [0,∞) whenever f ∈ Lp(X) and g ∈ Lp′(X). If 1 ≤
p < ∞ then Lp(X) is a separable Banach space and hence strong measurability

and weak measurability coincide, by the Pettis measurability theorem (see [21,

Theorem III.6.11]).

The main result of this section is the following theorem.

Theorem 2.2.1. Suppose that {Tt : t ≥ 0} is a semigroup on L2(X) satisfying

the contraction property. Then there exists a positive semigroup {St : t ≥ 0}
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on L2(X), satisfying the contraction property, such that

|Ttf | ≤ St|f | ∀f ∈ Lp(X)

whenever 1 ≤ p < ∞ and t ≥ 0. If {Tt : t ≥ 0} is a measurable semigroup on

L2(X) then {St : t ≥ 0} extends to a measurable semigroup on Lp(X) whenever

1 ≤ p < ∞.

If {Tt : t ≥ 0} is a strongly continuous semigroup, it is natural to ask

whether the positive semigroup {St : t ≥ 0} of Theorem 2.2.1 is also continuous.

Under certain circumstances one can answer in the affirmative (see Corollary

2.2.9). However, such a result is unnecessary for our applications. What we do

use is the following corollary, which is immediately deduced from the theorem

and Lemma 2.1.4.

Corollary 2.2.2. Suppose that B is a Banach space, that 1 ≤ p < ∞ and

that {Tt : t ≥ 0} is a strongly continuous semigroup on L2(X) satisfying the

contraction property. Then Tt has a B-valued extension to Lp(X;B) and the

family {T̃t : t ≥ 0} is a strongly continuous semigroup of contractions on

Lp(X;B).

Remark 2.2.3. It is well known that any operator T that acts as a contraction

on Lq(X) for all q ∈ [1,∞] has a contractive tensor extension to Lp(X;B)

whenever 1 ≤ p < ∞. This is not hard to show if p = 1; for other values of p the

result is obtained by duality and interpolation. This provides an alternate proof

of Corollary 2.2.2. We point out that Theorem 2.2.1 is still needed to prove

our vector-valued version of the Hopf–Dunford–Schwartz ergodic theorem.

We turn now to the proof of Theorem 2.2.1, which shall be achieved via a

sequence of lemmata. The final stage of the proof draws heavily on the work

of Y. Kubokawa [46] and C. Kipnis [43], who independently proved a similar

result for L1 contraction semigroups.

Lemma 2.2.4. If 1 ≤ p < ∞ then Lp
+(X) is a closed subset of Lp(X).
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Proof. Suppose that {fn}n∈N ⊂ Lp
+(X) and that fn → f in Lp(X) as n → ∞.

We will first show that Imf = 0. Suppose that this is not the case. Then

there exists a subset E of X with positive measure such that |Imf | > 0 on E.

If

En = {x ∈ E : 1/n ≤ |Imf(x)| < n}

whenever n ≥ 1, then En ⊆ En+1 whenever n ≥ 1 and

∞⋃
n=1

En = E.

Since

0 < μ(E) = lim
n→∞

μ(En),

there exists a positive integer j such that μ(Ej) > 0. But then

‖fn − f‖p ≥ ‖Im(fn − f)‖ = ‖Imf‖ ≥ μ(Ej)/j

for every n in N, contradicting the hypothesis that fn → f in Lp(X). Hence

Imf = 0.

It is also easy to show, using an argument similar to that above, that the

negative part of f is 0. Hence f ≥ 0.

Lemma 2.2.5. Suppose that 1 < p < ∞. Assume also that T and S are

bounded operators on L1(X) such that ‖Tf‖p ≤ ‖f‖p and ‖Sf‖p ≤ ‖f‖p when-

ever f ∈ L1(X) ∩ Lp(X). If S is positive and dominates T on L1(X) then

|Tf | ≤ S|f | ∀f ∈ Lp(X).

Proof. Assume the hypotheses of the lemma and suppose that f ∈ Lp(X).

Since L1(X)∩Lp(X) is dense in Lp(X), there is a sequence {fn}n∈N of functions

in L1(X) ∩Lp(X) such that fn → f in Lp(X). By continuity, |Tfn| → |Tf | in

Lp(X) and similarly S|fn| → S|f | in Lp(X). Moreover, |Tfn| ≤ S|fn| for all

n. If gn = S|fn| − |Tfn| and g = S|f | − |Tf | then each gn is nonnegative and

gn → g in Lp(X). By the previous lemma, this implies that g ≥ 0, completing

the proof.
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Lemma 2.2.6. Suppose that p and q both lie in the interval [1,∞) and that

{Tt : t ≥ 0} is a family of operators on L2(X) satisfying the contraction

property. If {Tt : t ≥ 0} is measurable on Lp(X) then {Tt : t ≥ 0} is measurable

on Lq(X).

Proof. Assume the hypotheses and suppose that f ∈ Lq(X) and g ∈ Lq′(X).

It suffices to show that the map φ : [0,∞) → C, defined by

φ(t) = 〈Ttf, g〉 ,

is measurable. We will construct a sequence {φn}n∈N of measurable functions

converging pointwise to φ. By [21, Corollary III.6.14], this will complete the

proof.

Since (X, μ) is a σ-finite measure space, there is a sequence {Xn}n∈N of

measurable sets such that ⋃
n∈N

Xn = X

and Xn ⊂ Xn+1 whenever n ∈ N. When q �= 1, there is a sequence {gn}n∈N in

Lq′(X) ∩ Lp′(X) such that

‖g − gn‖q′ ‖f‖q ≤
1

n

for all n in N. When q = 1, set gn equal to g whenever n ∈ N. Now find a

sequence {fn}n∈N ⊂ Lp(X) ∩ Lq(X) such that

‖f − fn‖q ‖gn‖q′ ≤
1

n

for all n in N. For n in N, define φn : [0,∞) → C by φn(t) = 〈Ttfn, 1Xngn〉,
where 1Xn denotes the characteristic function of the set Xn. Now f ∈ Lp(X),

the semigroup {Tt : t ≥ 0} is measurable on Lp(X) and 1Xngn ∈ Lp′(X), so φn

is measurable. Given positive ε and nonnegative t, choose N > 3/ε such that

∥∥1X\XnTtf
∥∥

q
‖g‖q′ <

ε

3
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whenever n > N . Then

|φ(t) − φn(t)| ≤ | 〈Ttf, g − 1Xng, 〉 | + | 〈Ttf, 1Xn(g − gn)〉 |

+ | 〈Ttf − Ttfn, 1Xngn〉 |

≤
∥∥1X\XnTtf

∥∥
q
‖g‖q′ + ‖f‖q ‖g − gn‖q′ + ‖f − fn‖q ‖gn‖q′

< ε

whenever n > N . This completes the proof.

Lemma 2.2.7. Suppose that T is a linear contraction on L1(X) and that

‖Tf‖q ≤ ‖f‖q

whenever f ∈ Lq(X)∩L1(X) and 1 ≤ q ≤ ∞. Then there is a unique bounded

linear positive operator T on L1(X) such that

(i) the operator norms of T and T on L1(X) are equal,

(ii) ‖Tf‖q ≤ ‖f‖q whenever f ∈ Lq(X) ∩ L1(X) and 1 ≤ q ≤ ∞,

(iii) |Tf | ≤ T|f | whenever f ∈ Lp(X) and 1 ≤ p ≤ ∞, and

(iv) Tf = sup{|Tg| : g ∈ L1(X), |g| ≤ f} whenever f ∈ L1
+(X).

Proof. For the existence of a unique operator T satisfying properties (i), (iii)

(in the case when p = 1) and (iv), see, for example, [45, Theorem 4.1.1].

Property (ii) holds by [21, Lemma VIII.6.4]. We can now deduce property

(iii), in the case when 1 < p < ∞, from Lemma 2.2.5.

The operator T introduced in the lemma is called the linear modulus of

T . If {Tt : t ≥ 0} is a bounded semigroup on L1(X) then Ts+t ≤ TsTt

for all nonnegative s and t. However, equality may not hold so the family

{Tt : t ≥ 0} of bounded positive operators will not, in general, be a semigroup.

However Kubokawa [46] and Kipnis [43] (see [45, Theorems 4.1.1 and 7.2.7] for

a more recent exposition) showed that the linear modulus Tt could be used to

construct a positive semigroup {St : t ≥ 0}, known as the modulus semigroup,

which dominates {Tt : t ≥ 0}. The following proof uses this construction.
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Proof of Theorem 2.2.1. Assume the hypothesis of Theorem 2.2.1 and suppose

that t > 0. Let Dt denote the family of all finite subdivisions (si) of [0, t]

satisfying

0 = s0 < s1 < s2 < . . . < sn = t.

If s = (si) and s′ = (s′j) are two elements of Dt then we write s < s′ whenever

s′ is a refinement of s. With this partial order, Dt is an increasingly filtered

set. For f in L1
+(X) put

Φ(s, f) = Ts1Ts2−s1 . . .Tsn−sn−1f,

where Tα is the linear modulus of Tα whenever α ≥ 0. It follows from Tα+β ≤
TαTβ that Φ(s, f) ≤ Φ(s′, f) when s < s′. Since the operator Tα is contraction

whenever α ≥ 0, we have ‖Φ(s, f)‖1 ≤ ‖f‖1. We now define St on L1
+(X) by

Stf = sup{Φ(s, f) : s ∈ Dt}.

Note that

sup{Φ(s, f) : s ∈ Dt} = lim
s∈Dt

Φ(s, f),

so St is well-defined by the monotone convergence theorem for increasing fil-

tered families.

It is easy to check that St(f + g) = Stf + Stg and St(λf) = λStf whenever

f and g belong to L1
+(X) and λ ≥ 0. Moreover, ‖Stf‖1 ≤ ‖f‖1 if f ∈ L1

+(X).

Therefore St can now be defined for all f in L1(X) as a linear contraction of

L1(X). We define S0 as the identity operator on L1(X).

We now show that {St : t ≥ 0} is a semigroup. Suppose that t and t′ are

both positive. If

0 = s0 < s1 < s2 < . . . < sn = t

and

0 = s′0 < s′1 < s′2 < . . . < s′n = t′

form subdivisions of [0, t] and [0, t′] then

0 = s0 < s1 < s2 < . . . < sn = sn+s′0 < sn+s′1 < sn+s′2 < . . . < sn+s′n = t+t′
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forms a subdivision of [0, t+ t′]. Conversely every subdivision of [0, t+ t′] which

is fine enough to contain t is of this form. This yields St+t′ = StSt′ .

By Lemma 2.2.7 (ii), it is easy to check that {St : t ≥ 0} extends to a

contraction semigroup on L2(X) which satisfies the contraction property. We

now show that |Ttf | ≤ St|f | whenever f ∈ Lp(X) and t ≥ 0. For the case

when p = 1, consider any finite subdivision (si) of [0, t] satisfying

0 = s0 < s1 < s2 < . . . < sn = t.

Then

|Ttf | = |Ts1Ts2−s1 . . . Tsn−sn−1f |

≤ Ts1Ts2−s1 . . .Tsn−sn−1|f |.

Hence |Ttf | ≤ St|f |. For the case when 1 < p < ∞, apply Lemma 2.2.5.

It remains to show that if {Tt : t ≥ 0} is measurable on L2(X) then

{St : t ≥ 0} is measurable on Lp(X) whenever 1 ≤ p < ∞. In view of

Lemma 2.2.6, we may assume that {Tt : t ≥ 0} is measurable on L1(X) and

it suffices to show that {St : t ≥ 0} is measurable on L1(X). Fix f in L1(X)

and define φ : [0,∞) → L1(X) by φ(t) = Stf . We will construct a sequence

{φn}n∈N of measurable functions converging pointwise to φ, completing the

proof.

Since f can be decomposed as a linear combination of four nonnegative

functions (the positive and negative parts of Re(f) and Im(f)) and each St is

linear, we may assume, without loss of generality, that f ≥ 0.

When t > 0 and n ∈ N, let m be the smallest integer such that m ≥ 2nt

and s(n, t) denote the subdivision (sk(n, t))m
k=0 of [0, t] given by

sk(n, t) =

⎧⎪⎨⎪⎩k2−n if k = 0, 1, . . . , m − 1

t if k = m.

Now define φn : [0,∞) → L1(X) by

φn(t) = Φ(s(n, t), f)
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when t > 0 and φn(0) = f . By the definition of St, |φ(t) − φn(t)| → 0 as

n → ∞ for each t ≥ 0.

Our task is to demonstrate that φn is measurable for each n in N. Note

that φn(t), when t is restricted to the interval [k2−n, (k +1)2−n), is of the form

Bk,nTt−k2−nf

where Bk,n is a contraction on L1(X). It follows that if E is an open set of

L1(X) then

φ−1
n (E) =

∞⋃
k=1

{
t ∈ [k2−n, (k + 1)2−n) : Bk,nTt−k2−nf ∈ E

}
.

Hence if the map ϕ : [0, 2−n) → L1(X), defined by

ϕ(t) = Ttf,

is measurable then φ−1
n (E) can be written as a countable union of measurable

sets and consequently φn is measurable. But by Lemma 2.2.7 (iv) there is a

sequence {fj}j∈N in L1
+(X) such that |Ttf − Ttfj| → 0 as j → ∞. In other

words, ϕ is the pointwise limit of a sequence {ϕj}j∈N of measurable functions,

defined by ϕj(t) = Ttfj , and hence ϕ is measurable.

The following lemma, which is needed later, fits into the theme of this

section.

Lemma 2.2.8. Suppose that {Tt : t ≥ 0} is a semigroup on L2(X) with the

contraction property. If {Tt : t ≥ 0} is strongly continuous on Lp(X) for some

p in [1,∞) then {Tt : t ≥ 0} is strongly continuous on Lq(X) for all q in

(1,∞).

Proof. Suppose that 1 ≤ p < ∞, 1 < q < ∞ and {Tt : t ≥ 0} is strongly

continuous on Lp(X). It suffices to show that {Tt : t ≥ 0} is weakly continuous

on Lq(X) (see, for example, [18, Chapter 1, Section 2]).

Suppose that f ∈ Lq(X) and g ∈ Lq′(X). We aim to show that

lim
s→t

| 〈Tsf − Ttf, g〉 | = 0
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whenever t ≥ 0. The proof is trivial if f = 0, so suppose otherwise. Fix

positive ε. Choose positive nonzero g1 in Lq′(X) ∩ Lp′(X) such that

‖g − g1‖q′ <
ε

6 ‖f‖q

and choose f1 in Lq(X) ∩ Lp(X) such that

‖f − f1‖q <
ε

6 ‖g1‖q′
.

Since {Tt : t ≥ 0} is weakly continuous on Lp(X), there exists a positive δ such

that

| 〈Tsf1 − Ttf1, g1〉 | < ε/3

whenever |s − t| < δ. Hence

| 〈Tsf − Ttf, g〉 | ≤ | 〈Tsf, g − g1〉 | + | 〈Ttf, g − g1〉 | + | 〈Tsf − Ttf, g1〉 |

≤ 2 ‖f‖q ‖g − g1‖q′ + | 〈Tsf − Tsf1, g1〉 |

+ | 〈Tsf1 − Ttf1, g1〉 | + | 〈Ttf1 − Ttf, g1〉 |

<
ε

3
+ 2 ‖f1 − f‖q ‖g1‖q′ +

ε

3

< ε

whenever |s − t| < δ.

Corollary 2.2.9. If {Tt : t ≥ 0} is a semigroup on L2(X) satisfying the

contraction property whose extension to L1(X) is strongly continuous, then

the positive semigroup {St : t ≥ 0} on L2(X) of Theorem 2.2.1 extends to a

strongly continuous semigroup on Lp(X) for all p in [1,∞).

Proof. If {Tt : t ≥ 0} is strongly continuous on L1(X) then {St : t ≥ 0} is

strongly continuous on L1(X) (see, for example, the proof of this fact in [45,

pp. 246–247]). Now apply Lemma 2.2.8.

2.3 A vector-valued ergodic theorem

We now obtain a vector-valued version of the Hopf–Dunford–Schwartz ergodic

theorem for use in Section 2.4. If T is a bounded strongly measurable semi-
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group {Ts : s ≥ 0} on Lp(X) then define the operator A(T , t), for positive t,

by the formula

A(T , t)f =
1

t

∫ t

0

Tsf ds ∀f ∈ Lp(X).

For f in Lp(X), we may then define a maximal ergodic function AT f by

AT f = sup
t>0

|A(T , t)f |. (2.2)

A simplified version of the classical Hopf–Dunford–Schwartz ergodic theorem

may be stated as follows.

Theorem 2.3.1. [21, Theorem VIII.7.7] Suppose that T is a measurable semi-

group on L2(X) satisfying the contraction property and assume that p ∈ (1,∞).

Then the maximal ergodic function operator AT satisfies the inequality

∥∥AT f
∥∥

p
≤ 2

(
p

p − 1

)1/p

‖f‖p ∀f ∈ Lp(X).

We will now develop a vector-valued version of this theorem. Fix p in the

interval (1,∞). Suppose that T is a strongly continuous semigroup {Tt : t ≥ 0}
on L2(X) satisfying the contraction property. By Lemma 2.2.8, the semigroup

T is a strongly continuous semigroup of contractions when viewed as acting

on Lp(X). We first show that the bounded linear operator A(T , t) on Lp(X)

has an extension to Lp(X;B) for all positive t. By Theorem 2.2.1 there is a

measurable semigroup {St : t ≥ 0} of positive contractions on Lp(X), which

we denote by S, dominating T on Lp(X). Hence A(S, t) is also a positive

contraction on Lp(X) for each positive t. Moreover,

|A(T , t)f | ≤ 1

t

∫ t

0

|Tsf | ds ≤ 1

t

∫ t

0

Ss|f | ds = A(S, t)|f |

whenever f ∈ Lp(X). It follows that A(T , t) has a tensor product extension

to Lp(X;B) for all positive t by Lemma 2.1.3. We can now define a maximal

ergodic function operator AT
B by the formula

AT
BF = sup

t>0
|Ã(T , t)F |B ∀F ∈ Lp(X;B). (2.3)
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Moreover, if F ∈ Lp(X;B) then AT
BF is measurable. To see this, observe

that since the mapping t �→ A(T , t)f is continuous from (0,∞) to Lp(X)

and the operator norm of Ã(T , t) is locally uniformly bounded in t, the vector-

valued mapping t �→ Ã(T , t)F is continuous from (0,∞) to Lp(X;B) by Lemma

2.1.4. This implies that t �→ |Ã(T , t)F |B is continuous from (0,∞) to Lp(X).

Therefore the measurable function supt∈Q+ |Ã(T , t)F |B, where Q+ denotes the

set of positive rationals, coincides with supt>0 |Ã(T , t)F |B.

Corollary 2.3.2. Suppose that B is a Banach space and that T is a symmetric

diffusion semigroup on L2(X). If 1 < p < ∞ then the maximal ergodic function

operator AT
B , defined by (2.3), satisfies the inequality

∥∥AT
BF
∥∥

Lp(X)
≤ 2

(
p

p − 1

)1/p

‖F‖Lp(X;B) ∀f ∈ Lp(X;B).

Proof. Fix p in (1,∞) and let S denote the semigroup dominating T which

was introduced in the discussion preceding the statement of the corollary. Now

for F in Lp(X;B),

AT
BF = sup

t>0
|Ã(T , t)F |B

≤ sup
t>0

A(S, t)|F |B

= AS |F |B.

The result follows upon taking the Lp(X) norm of both sides and applying

Theorem 2.3.1.

2.4 A vector-valued maximal theorem

The main result of this section is a vector-valued version of Theorem 1.3.3. It

gives an Lp estimate for the maximum function Mψ
BF (defined by (1.18)) under

the assumption that the generator −L̃ of {T̃t : t ≥ 0} has bounded imaginary

powers.
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Theorem 2.4.1. Suppose that (X, μ) is a σ-finite measure space, B is a Ba-

nach space, 1 < p < ∞ and {Tt : t ≥ 0} is a strongly continuous semigroup on

L2(X) with the contraction property. If there exists ω less than π/2−ψ and a

positive constant K such that L̃ has bounded imaginary powers satisfying the

norm estimate

‖L̃iuF‖Lp(X;B) ≤ Keω|u| ‖F‖Lp(X;B) ∀F ∈ Lp(X;B) ∀u ∈ R, (2.4)

then {T̃t : t ≥ 0} has a bounded analytic continuation in Lp(X;B) to the sector

Γψ and there is a constant C such that the maximal function operator Mψ
B

satisfies the inequality∥∥∥Mψ
BF
∥∥∥

Lp(X)
≤ C ‖F‖Lp(X;B) ∀F ∈ Lp(X;B). (2.5)

Proof. Assume the hypotheses of the theorem. Since L̃ has bounded imagi-

nary powers satisfying (2.4), −L̃ generates a uniformly bounded semigroup on

Lp(X;B) with analytic continuation to any sector Γψ0 , where

ψ0 <
π

2
− ω,

by a result of J. Prüss and H. Sohr [57, Theorem 2]. Hence the operator Mψ
B

is well-defined. It remains to show (2.5).

Take F in Lp(X;B) and z in Γψ\{0}. Write z as eiθt, where |θ| ≤ ψ and

t > 0. The key idea of the proof is to decompose T̃zF into two parts:

T̃zF =
1

t

∫ t

0

e−seLF ds +
[
e−zeLF − 1

t

∫ t

0

e−seLF ds
]
. (2.6)

Define the function mθ on (0,∞) by

mθ(λ) = exp(−eiθλ) −
∫ 1

0

e−sλ ds ∀λ > 0. (2.7)

Then (2.6) can be rewritten formally as

T̃zF =
1

t

∫ t

0

e−seLF ds + mθ(tL̃)F,

whence

sup
z∈Γψ\{0}

|T̃zF |B ≤ sup
t>0

∣∣∣∣1t
∫ t

0

e−seLF ds

∣∣∣∣
B

+ sup
t>0

sup
|θ|≤ψ

|mθ(tL̃)F |B.
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If we take the Lp(X) norm of both sides then we have, formally at least,∥∥∥Mψ
BF
∥∥∥

p
≤
∥∥AT

BF
∥∥

p
+

∥∥∥∥∥sup
t>0

sup
|θ|≤ψ

|mθ(tL̃)F |B

∥∥∥∥∥
p

, (2.8)

where T denotes the semigroup {Tt : t ≥ 0} and AT
B is the operator defined by

(2.3). By Corollary 2.3.2, the first term on the right-hand side is majorised by

2[p/(1 − p)]1/p ‖F‖Lp(X;B). We need to control the second term.

Write nθ for mθ ◦ exp and observe that

mθ(λ) =
1

2π

∫ ∞

−∞

n̂θ(u)λiu du, (2.9)

where n̂θ denotes the Fourier transform of nθ. Calculation using complex anal-

ysis shows that

n̂θ(u) =
(
e−θu − (1 + iu)−1

)
Γ(iu) ∀u ∈ R,

and the theory of the Γ-function (see, for example, [70, p. 151]) gives the

estimate

|n̂θ(u)| ≤ C0 exp
(
(|θ| − π/2)|u|

)
∀u ∈ R,

where C0 is a constant independent of u and θ. Thus, the existence of bounded

imaginary powers of L̃ gives

sup
t>0

sup
|θ|≤ψ

|mθ(tL̃)F |B ≤ sup
t>0

sup
|θ|≤ψ

1

2π

∫ ∞

−∞

|n̂θ(u)| |(tL̃)iuF |B du

≤ sup
t>0

sup
|θ|≤ψ

1

2π

∫ ∞

−∞

C0e
(|θ|−π/2)|u||tiu| |L̃iuF |B du

≤ C0

2π

∫ ∞

−∞

e(ψ−π/2)|u||L̃iuF |B du.

Taking the Lp(X) norm of both sides of the above inequality and applying

(2.4) gives∥∥∥∥∥sup
t>0

sup
|θ|≤ψ

|mθ(tL̃)F |B

∥∥∥∥∥
p

≤ C0

2π

∫ ∞

−∞

e(ψ−π/2)|u|
∥∥∥L̃iuF

∥∥∥
p

du

≤ C0K

2π

∫ ∞

−∞

e(ψ−π/2)|u|eω|u| ‖F‖p du

< C1 ‖F‖Lp(X;B) ,
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since ψ − π/2 + ω < 0, and where C1 is a positive constant independent of F .

Now (2.8) and Corollary 2.3.2 yields (2.5) for some positive constant C.

The opening formal calculations can be justified by working backwards,

provided that the function

sup
t>0

sup
|θ|≤ψ

|mθ(tL̃)F |B (2.10)

is measurable. Since the map z �→ T̃zF is continuous from Γψ to Lp(X;B), the

map (t, θ) �→ |mθ(tL̃)F |B is continuous from (0,∞)× [−ψ, ψ] to Lp(X). Hence

sup
t>0

sup
|θ|≤ψ

|mθ(tL̃)F |B = sup
(t,θ)∈R

|mθ(tL̃)F |B,

where R is the denumerable set
(
(0,∞)× [−ψ, ψ]

)
∩Q2. Since each mθ(tL̃)F

is measurable in Lp(X;B) it follows that (2.10) is measurable in Lp(X).

2.5 Bounded imaginary powers of the genera-

tor

In this section we examine circumstances under which the bounded imaginary

power estimate (2.4), one of the hypotheses of the preceding theorem and

corollary, is satisfied. A fruitful (and in our context, necessary) setting is when

the Banach space B has the UMD property. A Banach space B is said to be a

UMD space if one of the following equivalent statements hold:

(a) The Hilbert transform is bounded on Lp(X;B) for one (and hence all) p

in (1,∞).

(b) If 1 < p < ∞ then B-valued martingale difference sequences on Lp(X;B)

converge unconditionally.

(c) If 1 < p < ∞ then (−Δ)iu⊗IB extends to a bounded operator on Lp(R,B)

for every u in R (a result due to S. Guerre-Delabrière [30]).
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Several other characterisations of UMD spaces exist (see, for example, [6] and

the survey in [60]) but those cited here are, for different reasons, the most

relevant to our discussion. If the Hilbert transform, which corresponds to

the multiplier function u �→ i sgn(u), is bounded on Lp(X;B) then one can

establish vector-valued versions of some Fourier multiplier theorems (such as

Mikhlin’s multiplier theorem [81]). This fact is used below to establish Theorem

2.5.1. The second characterisation gave rise to the name UMD. The third

characterisation shows that, in general, B must be a UMD space if L̃ is to

have bounded imaginary powers, since −Δ generates the Gaussian semigroup.

Examples of UMD spaces include, when 1 < p < ∞, the classical Lp(X) spaces

and the Schatten–von Neumann ideals Cp. Moreover, if B is a UMD space then

its dual B∗, closed subspaces of B, quotient spaces of B and Lp(X;B) when

1 < p < ∞ also inherit the UMD property.

It was shown by Hieber and Prüss [32] that when 1 < q < ∞ the generator

of a UMD-valued extension of a bounded strongly continuous positive semi-

group on Lq(X) has a bounded H∞-functional calculus. The next result says

that the same is true if the positivity condition is relaxed to subpositivity (as-

suming that the UMD-valued extension of the semigroup is bounded), though

it is convenient in the present context to state it for semigroups possessing the

contraction property. First we introduce some notation. If σ ∈ (0, π] then let

H∞(Γσ) denote the Banach space of all bounded analytic functions defined on

Γσ with norm

‖f‖H∞(Γσ) = sup
z∈Γσ

|f(z)|.

Theorem 2.5.1. Suppose that 1 < q < ∞ and B is a UMD space. If

{Tt : t ≥ 0} is a strongly continuous semigroup on L2(X) satisfying the con-

traction property and −L̃ is the generator of its tensor extension {T̃t : t ≥ 0}
to Lq(X;B), then L̃ has a bounded H∞(Γσ)-calculus for all σ in (π/2, π]. Con-

sequently, for every σ ∈ (π/2, π] there exists a positive constant Cq,σ such that

‖L̃iuF‖Lq(X;B) ≤ Cq,σe
σ|u| ‖F‖Lq(X;B) ∀F ∈ Lq(X;B) ∀u ∈ R. (2.11)
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Proof. Since the semigroup {Tt : t ≥ 0} can be extended to a subpositive

strongly continuous semigroup of contractions on Lq(X), it has a dilation to

a bounded c0-group on Lq(X ′) for some measure space (X ′, μ′). In other

words, there exists a measure space (X ′, μ′), a strongly continuous group

{Ut : t ∈ R} of subpositive contractions on Lq(X ′), a positive isometric

embedding D : Lq(X) → Lq(X ′) and a subpositive contractive projection

P : Lq(X ′) → Lq(X ′) such that

DTt = PUtD ∀t ≥ 0

(see the result of G. Fendler [22, pp. 737–738] which extends the work of Coif-

man, Rochberg, and Weiss [11]). Lifting this identity to its B-valued extension,

we see that the semigroup {T̃t : t ≥ 0} on Lq(X;B) has a dilation to a bounded

c0-group {Ũt : t ∈ R} on Lq(X ′,B).

Let −L̃ denote the generator of {T̃t : t ≥ 0}. Then the dilation implies

that L̃ has a bounded H∞(Γσ)-calculus for all σ in (π/2, π] (see [32] or the

exposition in [47, pp. 212–214], where the H∞-calculus is first constructed

for the generator of the group {Ũt : t ∈ R} using the vector-valued Mikhlin

multiplier theorem in conjunction with the transference principle, and then

projected back to the generator −L̃ of {T̃t : t ≥ 0} via the dilation).

The bounded H∞(Γσ)-calculus gives a positive constant Cq,σ such that

‖f(L̃)‖Lq(X;B) ≤ Cq,σ ‖f‖H∞(Γσ) ∀f ∈ H∞(Γσ).

If f(z) = ziu for u in R then (2.11) follows.

The theorem above suggests that the problem of finding bounded imaginary

powers of L̃ is critical to L2(X;B). That is, if

‖L̃iuF‖L2(X;B) ≤ Ceω|u| ‖F‖L2(X;B) ∀F ∈ L2(X;B) ∀u ∈ R

for some ω less than π/2 − ψ then one could interpolate between the L2 es-

timate and (2.11) to obtain (2.4). Unfortunately, suitable L2(X;B) bounded

imaginary power estimates, where B is a nontrivial UMD space, appear to be
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absent in the literature, even when L̃ is the Laplacian. However, if B is a

Hilbert space, such estimates are available via spectral theory.

Lemma 2.5.2. Suppose that H is a Hilbert space. If {Tt : t ≥ 0} is a sym-

metric diffusion semigroup on L2(X) then the generator −L̃ of the H-valued

extension {T̃t : t ≥ 0} to L2(X,H) satisfies

‖L̃iuF‖L2(X,H) ≤ ‖F‖L2(X,H) ∀F ∈ L2(X,H) ∀u ∈ R. (2.12)

Proof. It is not hard to check that the tensor product extension to L2(X,H)

of the semigroup {Tt : t ≥ 0} is a semigroup of selfadjoint contractions on

L2(X,H). Its generator −L̃ is therefore selfadjoint on L2(X,H) and hence L̃

has nonnegative spectrum. Spectral theory now gives estimate (2.12).

To obtain (2.4) we shall interpolate between (2.11) and (2.12). Hence we

consider the class of UMD spaces whose members B are isomorphic to closed

subquotients of a complex interpolation space (H,U)[θ], where H is a Hilbert

space, U is a UMD space and 0 < θ < 1. Members of this class include

the UMD function lattices on a σ-finite measure space (such as the reflexive

Lp(X) spaces) by a result of Rubio de Francia (see [60, Corollary, p. 216]), the

reflexive Sobolev spaces (which are subspaces of products of Lp spaces) and the

reflexive Schatten–von Neumann ideals. This class can be further extended to

include many operator ideals by combining Rubio de Francia’s theorem with

results due to P. Dodds, T. Dodds and B. de Pagter [19] which show that

the interpolation properties of noncommutative spaces coincide with those of

their commutative counterparts under fairly general conditions. It was asked

in [60] whether the described class of UMD spaces includes all UMD spaces.

It appears that this is still an open question.

Corollary 2.5.3. Suppose that B is a UMD space isomorphic to a closed sub-

quotient of a complex interpolation space (H,U)[θ], where H is a Hilbert space,

U is a UMD space and 0 < θ < 1. Suppose also that {Tt : t ≥ 0} is a symmet-

ric diffusion semigroup on L2(X) and denote by −L̃ the generator of its tensor
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extension to Lp(X;B), where 1 < p < ∞. If

|2/p − 1| < θ (2.13)

and

0 ≤ ψ <
π

2
(1 − θ)

then there exists ω less than π/2−ψ such that L̃ has bounded imaginary powers

on Lp(X;B) satisfying estimate (2.4).

Proof. Assume the hypotheses of the corollary. Note that

π

2
<

1

θ

(π

2
− ψ

)
so that if σ is the arithmetic mean of π/2 and (π/2 − ψ)/θ then σ > π/2 and

σθ < π/2 − ψ. Now choose q such that

1

p
=

1 − θ

2
+

θ

q
.

Inequality (2.13) guarantees that 1 < q < ∞. Interpolating between (2.12)

and (2.11) (for the space Lq(X,U)) gives

‖L̃iu‖Lp(X;B) ≤ Cθ
q,σe

σθ|u| ‖F‖Lp(X;B) ∀F ∈ Lp(X;B) ∀u ∈ R.

If ω = σθ then (2.4) follows, completing the proof.

2.6 Proof of Theorem 1.3.5

In this final section of Chapter 2, we complete the proof of Theorem 1.3.5.

Suppose the hypotheses of the theorem. Parts (a) and (b) follow immediately

from Theorem 2.4.1 and Corollary 2.5.3. Part (c) will be deduced from the

vector-valued maximal theorem and the pointwise convergence of {Tt : t ≥ 0}
(see Corollary 1.3.4).

For ease of notation, write z → 0 as shorthand for z → 0 with z in Γψ.

Suppose that F ∈ Lp(X;B) and ε > 0. There exists a function G in

Lp(X)⊗B such that ‖G − F‖Lp(X;B) < ε. Write G as
∑n

k=1 ukfk, where n is a
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positive integer, {uk}n
k=1 is contained in B and {fk}n

k=1 is contained in Lp(X).

Hence, for almost every x in X,

lim sup
z→0

|T̃zF (x) − F (x)|B ≤ lim sup
z→0

|T̃zF (x) − T̃zG(x)|B + |G(x) − F (x)|B

+ lim sup
z→0

|T̃zG(x) − G(x)|B

≤ sup
z∈Γψ

|T̃z(F − G)(x)|B + |G(x) − F (x)|B

+

n∑
k=1

∣∣uk

∣∣
B

lim sup
z→0

∣∣Tzfk(x) − fk(x)
∣∣

≤ 2Mψ
B(G − F )(x),

since Corollary 1.3.4 implies that

lim
z→0

|Tzfk(x) − fk(x)| = 0

for each k and for almost every x in X. By taking the Lp(X) norm and applying

Theorem 2.4.1 we obtain∥∥∥∥lim sup
z→0

|T̃zF − F |B
∥∥∥∥

p

≤ 2
∥∥∥Mψ

B(G − F )
∥∥∥

p
< 2Cε,

where the positive constant C is independent of F and G. Since ε is an arbitrary

positive number,

lim sup
z→0

|T̃zF (x) − F (x)|B = 0

for almost every x in X, proving the theorem.
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Chapter 3

Miscellany

The results contained in this chapter serve as a reference point for tools used

later chapters. It is thereby hoped that our treatment of Strichartz estimates

is self-contained. If the reader is unfamiliar with basic Lp inequalities and

Banach space interpolation, then they may want to peruse Sections 3.1, 3.2

and 3.3 before starting Chapter 4. Otherwise, readers may wish to skip this

chapter, returning to it only when knowledge of its contents is required.

3.1 Inequalities in Lp spaces

The following Lp inequalities will be used in the proof of Strichartz estimates

in Chapters 4 and 5. We only state the inequalities here, referring readers to

[59] or other standard texts for proofs. For us, by far the most used of these

inequalities is Hölder’s inequality.

Theorem 3.1.1 (Hölder’s inequality). Suppose that X is a measure space

and p, q, r ∈ [1,∞]. If 1/r = 1/p + 1/q, f ∈ Lp(X) and g ∈ Lq(X) then

fg ∈ Lr(X) and

‖fg‖r ≤ ‖f‖p ‖g‖q .

If (X, μ) is a measure space, then the convolution f ∗ g of two measurable
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complex-valued functions f and g is formally given by

f ∗ g(x) =

∫
X

f(x − y)g(y) dμ(y) ∀x ∈ X.

The following theorem gives integrability conditions on f and g so that their

convolution is well-defined.

Theorem 3.1.2 (Young’s inequality). Suppose that X is a measure space

and p, q, r ∈ [1,∞]. If 1 + 1/r = 1/p + 1/q, f ∈ Lp(X) and g ∈ Lq(X) then

f ∗ g is defined and

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q .

By specialising the above theorem to the �p sequence spaces, one may obtain

the following result.

Lemma 3.1.3 (Young’s inequality for convolution of sequences). Sup-

pose that a, b and c are sequences {an}n∈Z, {bn}n∈Z and {cn}n∈Z of nonnegative

numbers. If p, q, r ∈ [1,∞] and

1

p
+

1

q
+

1

r
≥ 2

then ∑
m,n∈Z

ambncm−n ≤ ‖a‖
p ‖b‖
q ‖c‖
r .

The following theorem may be proved using an extended version of Young’s

inequality (see [58, pp. 31–32]).

Theorem 3.1.4 (The Hardy–Littlewood–Sobolev inequality). Suppose

that 0 < λ < n and q, r ∈ (1,∞), where 1/q + 1/r + λ/n = 2. Then∫
Rn

∫
Rn

|f(s)||g(t)|
|t − s|λ dns dnt � ‖f‖q ‖g‖r ∀f ∈ Lq(Rn) ∀g ∈ Lr(Rn).

3.2 Interpolation spaces

Interpolation of Banach spaces is a subject of immense importance to mathe-

matical analysis in general, and its importance to this thesis is no exception.
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Of the many mathematicians who have made contributions to this theory, A.

Calderón, J. Lions and J. Peetre deserve to be mentioned. In this section we

give a brief outline of the philosophy behind Banach space interpolation and

introduce the complex and real methods of interpolation. Our treatment is

rudimentary so readers who wish to pursue the subject in greater depth are

directed to [72] or [2].

Suppose that B̃ and C̃ are Hausdorff topological vector spaces and that

S : B̃ → C̃ is a linear operator. In general S will not be bounded, but it may

be possible to find Banach spaces B0 and B1 contained in B̃ and Banach spaces

C0 and C1 contained in C̃ such that the restriction maps S : B0 → C0 and

S : B1 → C1 are bounded. In this case, we ask if there are other Banach spaces

B ⊂ B̃ and C ⊂ C̃ such that the restriction map S : B → C is also bounded.

To develop these ideas further, we introduce the notions of Banach couples,

intermediate spaces and interpolation spaces.

A Banach couple (B0,B1) is a pair of Banach spaces B0 and B1 such that

both B0 and B1 can be algebraically and topologically embedded in a Hausdorff

topological vector space B̃.

If B0 ∩ B1 ⊆ B ⊆ B0 + B1 with continuous inclusions, then B is said to be

an intermediate space for the Banach couple (B0,B1).

Suppose that B and C are intermediate spaces for (B0,B1) and (C0, C1)

respectively and that the restriction maps S : B0 → C0 and S : B1 → C1 are

both bounded. If this implies that the restriction map S : B → C is bounded

then we say that B and C are interpolation spaces with respect to (B0,B1) and

(C0, C1).

We remark here that if the Banach spaces B0 and B1 are known but B̃ has

not been specified, we can always take B̃ to be the Banach space B0+B1, where

B0 + B1 = {a0 + a1 : a0 ∈ B0, a1 ∈ B1}

with norm

‖a‖B0+B1
= inf{‖a0‖B0

+ ‖a1‖B1
: a = a0 + a1, a0 ∈ B0, a1 ∈ B1}
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(see [72, 1.2.1] for more details).

There are two main methods of Banach space interpolation: real and com-

plex. The complex method usually finds intermediate spaces by considering

vector-valued functions which are continuous and bounded on the strip

Λ = {z ∈ C : 0 ≤ Re(z) ≤ 1}

and analytic on the open strip Λ0 = {z ∈ C : 0 < Re(z) < 1}. Construc-

tions are based on various complex analytic theorems, of which Hadamard’s

celebrated three-lines lemma is a prototype.

Given a Banach couple (B0,B1), one way of constructing an interpolation

space B using the complex interpolation method is as follows. Let F denote

the space of all functions f with values in B0 + B1 which are bounded and

continuous on Λ, analytic on Λ0 and satisfy the following property: for each j

in {0, 1} the functions t �→ f(j + it) are continuous functions from R into Bj

and tend to zero as |t| → ∞. We equip F with the norm

‖f‖F = max
(
sup
t∈R

‖f(it)‖B0
, sup

t∈R

‖f(1 + it)‖B1

)
.

It turns out that F is a Banach space. We now define, for θ in (0, 1), the

interpolation space B to be the space of all a ∈ B0 +B1 such that a = f(θ) for

some f ∈ F . We denote this space B by (B0,B1)[θ] and give it the norm

‖a‖[θ] = inf
{
‖f‖F : f(θ) = a, f ∈ F

}
.

Basic inclusion and density properties associated to the interpolation space

(B0,B1)[θ] are given by the following lemma. All inclusions below are continu-

ous.

Theorem 3.2.1. [2, Theorems 4.2.1 and 4.2.2][72, Theorem 1.9.3] Suppose

that (B0,B1) is a Banach interpolation couple. Then

(i) (B0,B1)[θ] = (B1,B0)[1−θ] (with equal norms) whenever 0 ≤ θ ≤ 1,
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(ii) B0 ⊂ B1 implies that

B0 ⊂ (B0,B1)[θ0] ⊂ (B0,B1)[θ1] ⊂ B1

whenever 0 < θ0 < θ1 < 1,

(iii) (B0,B0)[θ] = B0 if 0 < θ < 1, and

(iv) B0 ∩ B1 is dense in (B0,B1)[θ].

Moreover, suppose that 0 < θ < 1, B = (B0,B1)[θ] and C = (C0, C1)[θ]. If S is a

linear operator such that

‖Sb0‖C0
≤ M0 ‖b0‖B0

∀b0 ∈ B0

and

‖Sb1‖C1
≤ M1 ‖b1‖B1

∀b1 ∈ B1,

then S is a bounded linear operator from B to C satisfying

‖Sb‖C ≤ M1−θ
0 Mθ

1 ‖b‖B ∀b ∈ B.

The last part of the above theorem has a generalisation to multilinear forms.

In this thesis we shall often use the bilinear version below.

Theorem 3.2.2. [2, Theorem 4.4.1] Suppose that the pairs (A0,A1), (B0,B1)

and (C0, C1) are Banach interpolation couples. Assume that S : A0 ∩A1 ×B0 ∩
B1 → C0 ∩ C1 is bilinear and that for every (a, b) in A0 ∩ A1 × B0 ∩ B1 the

inequalities

‖S(a, b)‖C0
≤ M0 ‖a‖A0

‖b‖B0

and

‖S(a, b)‖C1
≤ M1 ‖a‖A1

‖b‖B1

hold. If 0 < θ < 1 and 0 < q ≤ ∞ then S extends uniquely to a bilinear

mapping from (A0,A1)[θ]×(B0,B1)[θ] to (C0, C1)[θ] with norm at most M1−θ
0 Mθ

1 .
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Applications of complex interpolation to Lp spaces are given in the next

section. Now, however, we introduce real interpolation. One way of construct-

ing a real interpolation space B from an interpolation couple (B0,B1) is known

as the K-method [72, 1.3]. When 0 < t < ∞ and b ∈ B0 + B1, define K by the

formula

K(t, b,B0,B1) = inf
b=b0+b1

(‖b0‖B0
+ t ‖b1‖B1

). (3.1)

If θ ∈ (0, 1) and q ∈ [1,∞), then we construct the interpolation space (B0,B1)θ,q

by

(B0,B1)θ,q =
{

b ∈ B0 + B1 : ‖b‖(B0,B1)θ,q
< ∞

}
where

‖b‖(B0,B1)θ,q
=

(∫ ∞

0

(
t−θK(t, b,B0,B1)

)q dt

t

)1/q

. (3.2)

One can also define the interpolation space (B0,B1)θ,∞, but we shall not do so

here.

Some basic properties of real interpolation spaces are given in the next

theorem.

Theorem 3.2.3. [2, Theorems 3.1.2 and 3.4.1] Suppose that (B0,B1) is a

Banach interpolation couple, 0 < θ < 1 and 1 ≤ q ≤ ∞. Then the following

properties hold:

(i) (B0,B1)θ,q = (B1,B0)1−θ,q with equal norms,

(ii) if 1 ≤ q ≤ r ≤ ∞ then

(B0,B1)θ,1 ⊆ (B0,B1)θ,q ⊆ (B0,B1)θ,r ⊆ (B0,B1)θ,∞,

(iii) (B0,B0)θ,q = B0 with equivalent norms, and

(iv) if B0 and B1 are complete then so is (B0,B1)θ,q.

Moreover, suppose that 0 < θ < 1, B = (B0,B1)θ,q and C = (C0, C1)θ,q. If S is

a linear operator such that

‖Sb0‖C0
≤ M0 ‖b0‖B0

∀b0 ∈ B0

54



and

‖Sb1‖C1
≤ M1 ‖b1‖B1

∀b1 ∈ B1

then S is a bounded linear operator from B to C satisfying

‖Sb‖C ≤ M1−θ
0 Mθ

1 ‖b‖B ∀b ∈ B.

Some bilinear results for real interpolation spaces are now given.

Theorem 3.2.4. [2, pp. 76–77] Suppose that (A0,A1), (B0,B1) and (C0, C1)

are interpolation couples.

(i) Suppose that for every (a, b) in A0 ∩ B0 ×A1 ∩ B1 the inequalities

‖S(a, b)‖C0
≤ M0 ‖a‖A0

‖b‖B0

and

‖S(a, b)‖C1
≤ M1 ‖a‖A1

‖b‖B1

hold. If 0 < θ < 1 and 1/r + 1 = 1/p + 1/q with 1 ≤ r ≤ ∞, then S

extends uniquely to a bilinear mapping from (A0,A1)θ,p × (B0,B1)θ,q to

(C0, C1)θ,r with norm at most M1−θ
0 Mθ

1 .

(ii) Suppose that the bilinear operator S acts as a bounded transformation as

indicated below:

S : A0 × B0 → C0

S : A0 × B1 → C1

S : A1 × B0 → C1.

If θ0, θ1 ∈ (0, 1) and p, q, r ∈ [1,∞] such that 1 ≤ 1/p+1/q and θ0 +θ1 <

1, then S also acts as a bounded transformation in the following way:

S : (A0,A1)θ0,pr × (B0,B1)θ1,qr → (C0, C1)θ0+θ1,r.
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3.3 Interpolation of Lp spaces

In this section, we compile a list of results that are used in later chapters.

We begin by noting the elegance of complex interpolation when applied to the

vector-valued Lp spaces.

Theorem 3.3.1. [2, Theorem 5.1.2] Suppose that (X, μ) is a measure space,

(B0,B1) is a Banach interpolation couple, p0, p1 ∈ [1,∞] and 0 < θ < 1. If

1/p = (1 − θ)/p0 + θ/p1 and B[θ] = (B0,B1)[θ] then(
Lp0(X;B0), L

p1(X;B1)
)
[θ]

= Lp(X,B[θ]).

If pi = ∞ for some i in {1, 2}, then Lpi must be replaced with the space L∞
0 of

bounded functions with compact support.

Proof. This is a simple application of [2, Theorems 5.1.1 and 5.1.2].

The situation with real interpolation of Lp spaces is more complicated. This

is partly due to the extra interpolation parameter and also to the fact that,

in general, real interpolation of Lp spaces gives Lorentz spaces rather than Lp

spaces.

Definition 3.3.2. Suppose that (X, μ) is a measure space, B is a Banach space

and 1 < p < ∞. If 1 ≤ q < ∞ then the Lorentz space Lp,q(X) is given by

Lp,q(X;B) = {F ∈ L1(X;B) + L∞(X;B) : ‖F‖Lp,q(X;B) < ∞},

where

‖F‖Lp,q(X;B) =

(∫ ∞

0

(
t1/pF ∗(t)

)q dt

t

)1/q

and F ∗ is the measure-preserving rearrangement function of F (see [72, 1.18.6]

for further details).

Theorem 3.3.3. [2, Theorem 5.2.1] Suppose that X is a measure space, B
is a Banach space, 1 ≤ p0 < p1 ≤ ∞, p0 < q ≤ ∞ and 0 < θ < 1. If

1/p = (1 − θ)/p0 + θ/p1 then(
Lp0(X;B), Lp1(X;B)

)
θ,q

= Lp,q(X;B) (3.3)
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with equivalent norms.

The right-hand side of the interpolation formula (3.3) can be replaced with

an Lp space in certain circumstances by applying the following embedding

results.

Lemma 3.3.4. [2, p. 8] Suppose that X is a measure space and B is a Banach

space.

(i) If 1 ≤ r1 < r2 ≤ ∞ and 1 < p < ∞ then Lp,r1(X;B) ⊆ Lp,r2(X;B).

(ii) If 1 ≤ p ≤ ∞ then Lp,p(X;B) = Lp(X;B) with equal norms.

A consequence of the lemma is that

Lp(X;B) ⊆
(
Lp0(X;B), Lp1(X;B)

)
θ,q

= Lp,q(X;B)

whenever 0 < θ < 1, 1/p = (1− θ)/p0 + θ/p1 and p ≤ q. One would hope that

if we consider mixed Banach spaces B0 and B1 then the above formula would

generalise to (
Lp0(X;B0), L

p1(X;B1)
)

θ,q
= Lp,q

(
X; (B0,B1)θ,q

)
.

Unfortunately, M. Cwikel [17] showed that this is not the case if p is different

from q, even when p0 = p1. However, there is a positive result.

Theorem 3.3.5. [2, p. 130][72, p. 128] Suppose that X is a measure space,

p0, p1 ∈ [1,∞), θ ∈ (0, 1) and 1/p = (1− θ)/p0 + θ/p1. If (B0,B1) is a Banach

interpolation couple then(
Lp0(X;B0), L

p1(X;B1)
)

θ,p
= Lp

(
X; (B0,B1)θ,p

)
. (3.4)

A little more flexibility is gained by mixing up real and complex interpola-

tion.

Lemma 3.3.6. Suppose that p0, p1 ∈ [1,∞], 1 < θ0, < θ1 < 1, η ∈ [0, 1],

q0, q1 ∈ [1,∞], X is a measure space and (B0,B1) is a Banach interpolation

couple. Denote (B0,B1)θi,qi
by Bθi,qi

whenever i = 1, 2. Then(
Lp0(X;Bθ0,q0), L

p1(X;Bθ1,q1)
)
[η]

= Lp(X;Bθ,q)
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where

1

p
=

1 − η

p0
+

η

p1
,

1

q
=

1 − η

q0
+

η

q1
, θ = (1 − η)θ0 + ηθ1. (3.5)

If pi = ∞ for some i in {1, 2}, then Lpi must be replaced with L∞
0 .

Proof. The lemma is a simple consequence of Theorem 3.3.1 and the formula

(Bθ0,q0,Bθ1,q1)[η] = Bθ,q,

valid whenever (3.5) holds, which connects the real and complex methods of

interpolation (see [2, Theorem 4.7.2]).

We shall also use interpolation results for weighted Lebesgue sequence

spaces. Whenever s ∈ R and 1 < q < ∞, let �q
s denote the space of all

scalar-valued sequences {aj}j∈Z such that

‖{aj}j∈Z‖
q
s

=
(∑

j∈Z

2js|aj |q
)1/q

< ∞. (3.6)

If q = ∞ then the norm is defined by

‖{aj}j∈Z‖
∞s
= sup

j∈Z

2js|aj|.

We have the following interpolation theorem.

Theorem 3.3.7. [2, Theorem 5.6.1] Assume that 0 < q0 ≤ ∞, 0 < q1 ≤ ∞,

0 < θ < 1 and s0 �= s1. If 0 < q ≤ ∞ then

(�q0
s0

, �q1
s1

)θ,q = �q
s

where s = (1 − θ)s0 + θs1.

In Chapters 4 and 5 we will use the special case

(�∞s0
, �∞s1

)θ,1 = �1
s. (3.7)
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3.4 Besov spaces

When finding Strichartz estimates for the wave equation, Littlewood–Paley

dyadic decompositions of functions seem unavoidable. Besov spaces consist

of functions whose Littlewood–Paley decomposition is bounded in the Besov

norm. From another perspective, Besov spaces arise naturally as the real inter-

polants of Sobolev spaces. There are also embedding relations between Sobolev,

Besov and classical Lebesgue spaces. We mainly consider the so-called homo-

geneous Besov spaces rather than Besov spaces. Both share similar properties

but the symmetry of the former’s norm will be helpful in our context. For a

treatment of these spaces in greater depth, we refer the reader to [2] and [72].

We begin with a brief introduction to Littlewood–Paley dyadic decompo-

sitions. Suppose that ψ ∈ C∞
0 (Rn) and that its Fourier transform ψ̂ satisfies

the properties 0 ≤ ψ̂ ≤ 1, ψ̂(ξ) = 1 whenever |ξ| ≤ 1 and ψ̂(ξ) = 0 whenever

|ξ| ≥ 2. If j ∈ Z then define ϕj by

ϕ̂0(ξ) = ψ̂(ξ) − ψ̂(2ξ)

and ϕ̂j(ξ) = ϕ̂0(2
−jξ). This means that

supp(ϕ̂j) ⊆ {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1}

and ∑
j∈Z

ϕ̂j(ξ) = 1

for any ξ in Rn\{0}, with at most two nonvanishing terms in the sum. When

j ∈ Z, define ϕ̃j by the formula

ϕ̃j = ϕj−1 + ϕj + ϕj+1 (3.8)

This implies that ϕ̂j = ˆ̃ϕjϕ̂j, thereby allowing for the use of the standard trick

ϕj ∗ u = ϕ̃j ∗ ϕj ∗ u (3.9)

for any tempered distribution u.
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If ρ ∈ R, 1 ≤ r ≤ ∞, 1 ≤ s ≤ ∞ and u is a tempered distribution then

define ‖u‖Ḃρ
r,s

by

‖u‖Ḃρ
r,s

=

(∑
j∈Z

2ρj ‖ϕ ∗ u‖s
Lr(Rn)

)1/s

. (3.10)

We note that if u is a polynomial then supp(û) = {0} and hence ‖u‖Ḃρ
r,s

= 0.

Conversely if ‖u‖Ḃρ
r,s

= 0 then u is a polynomial. We therefore define the

homogeneous Besov space Ḃρ
r,s to be the completion in ‖·‖Ḃρ

r,s
of the set of

equivalence classes of tempered distributions u, modulo polynomials, such that

‖u‖Ḃρ
r,s

< ∞.

The Besov norm of u corresponds to taking the Lr(Rn) norm of each ϕj ∗u

and then the weighted �s norm in the j variable. Therefore the following inter-

polation result should come as no surprise. In what follows, S ′(Rn) denotes the

set of tempered distributions on Rn and P(Rn) denotes the set of polynomials

on Rn.

Lemma 3.4.1. [72, Section 2.4] Suppose that ρ0, ρ1 ∈ R, ρ0 �= ρ1, r0, r1 ∈
[1,∞), r0 �= r1, s0, s1 ∈ (1,∞) and θ ∈ (0, 1). Then(

Ḃρ0
r0,s0

, Ḃρ0
r0,s0

)
θ,s

= Ḃρ
r,s,(s)

where

ρ = (1 − θ)ρ0 + θρ1,
1

r
=

1 − θ

r0
+

θ

r1
,

1

s
=

1 − θ

s0
+

θ

s1

and

Ḃρ
r,s,(s) =

{
u ∈ S ′(Rn)\P(Rn) :

∥∥∥{2ρj ‖ϕj ∗ u‖Lr,s(Rn)

}
j∈Z

∥∥∥

s

< ∞
}

.

If s = 2 then we can use the above lemma together with the continuous

embedding

Lp = Lp,p ⊆ Lp,2 (p ≤ 2)

to obtain the continuous inclusion

Ḃρ
r,2 ⊂ Ḃρ

r,2,(2) =
(
Ḃρ0

r0,2, Ḃ
ρ0
r0,2

)
θ,s

(3.11)
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whenever r ≤ 2.

A few other continuous embedding results will be needed. The first one is

an easy consequence of Young’s inequality and the definition of homogeneous

Besov spaces. The proof is short so we present it here.

Lemma 3.4.2. [2, Section 6.5] Suppose that 1 ≤ r2 ≤ r1 ≤ ∞, 1 ≤ s ≤ ∞,

ρ1, ρ2 ∈ R and ρ1 − n/r1 = ρ2 − n/r2. Then Ḃρ2
r2,s ⊆ Ḃρ1

r1,s and

‖u‖Ḃ
ρ1
r1,s

≤ C ‖u‖Ḃ
ρ2
r2,s

(3.12)

for some positive constant C.

Proof. By (3.9) and Young’s inequality,

‖ϕj ∗ u‖r1
≤ ‖ϕ̃j‖p ‖ϕj ∗ u‖r2

where n/p′ = n/r1 − n/r2 = ρ2 − ρ1. But by scaling, ‖ϕ̃j‖p = 2jn/p ‖ϕ̃0‖p and

hence

‖ϕj ∗ u‖r1
≤ 2j(ρ2−ρ1) ‖ϕ̃0‖p ‖ϕj ∗ u‖r2

.

Substituting this into (3.10) gives (3.12) with C = ‖ϕ̃0‖p.

The homogeneous Sobolev spaces Ḣρ
r may be defined in terms of Riesz

potentials. Briefly, whenever 1 < r < ∞ and ρ ∈ R, the space Ḣρ
r coincides

with the space (−Δ)−ρ/2L2(Rn) with norm

‖u‖Ḣρ ≈
∥∥(−Δ)−ρ/2u

∥∥
L2(Rn)

(see [2] or [73] for further details). The homogeneous Besov spaces and homo-

geneous Sobolev spaces are related by interpolation and in particular by the

continuous embeddings

Ḃρ
r,2 ⊆ Ḣρ

r when 2 ≤ r < ∞; Ḃρ
r,2 ⊇ Ḣρ

r when 1 < r ≤ 2, (3.13)

whenever ρ ∈ R. When r = 2 it is customary to write Ḣρ instead of Ḣρ
2 . In

this case (3.13) reduces to Ḣρ = Ḃρ
2,2.
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We shall use Besov spaces to prove one corollary in Section 5.8. For the

definition of the Besov space Bρ
r,p, see [2] or [72]. We need only mention here

that Lemmas 3.4.1 and 3.4.2 have exact analogies for the ‘non-dotted’ Besov

spaces Bρ
r,p.

3.5 Translation invariant operators

We use a translation invariance argument in Chapters 4 and 5 to demonstrate

some necessary conditions for the validity of various Strichartz estimates. The

basis of this argument is found below.

Definition 3.5.1. Suppose that X is a measure space, that B and C are

Banach spaces and that p and q are Lebesgue exponents in [1,∞]. We say that

an operator A : Lp(X;B) → Lq(X; C) is translation invariant if

τyAf = Aτyf ∀y ∈ X ∀f ∈ Lp(X;B),

where the translation operator τy is given by τyf(x) = f(x − y).

The following lemma is a simple vector-valued extension of a result due

to L. Hörmander [34, Theorem 1.1]. It asserts that no nontrivial translation

invariant operator can map from a higher Lebesgue exponent space to a lower

Lebesgue exponent space.

Lemma 3.5.2. Suppose that B and C are Banach spaces and that the linear

operator A : Lp(R;B) → Lq(R; C) is bounded and translation invariant. If

q < p < ∞ then A = 0 and if q < p = ∞ then A = 0 on L∞
0 (R;B).

Proof. Suppose first that q < p < ∞. We begin by showing that

lim
y→∞

‖f + τyf‖Lp(R;B) = 21/p ‖f‖Lp(R;B) ∀f ∈ Lp(R;B). (3.14)

To see this, suppose that ε > 0 and write f as g + h where g has compact

support and ‖h‖Lp(R;B) < ε. For |y| sufficiently large, the supports of g and τyg

do not meet and hence

‖g + τyg‖Lp(R;B) = 21/p ‖g‖Lp(R;B) .
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Now since
∣∣ ‖f‖Lp(R;B) − ‖g‖Lp(R;B)

∣∣ < ε,

∣∣ ‖f + τyf‖Lp(R;B) − ‖g + τyg‖Lp(R;B)

∣∣ < 2ε

and ε is arbitrary, we obtain (3.14).

Assume now that

‖Af‖Lq(R;C) ≤ C ‖f‖Lp(R;B) ∀f ∈ Lp(R;B)

where the nonnegative constant C is chosen to be as small as possible. By the

linearity and translation invariance of A,

‖Af + τyAf‖Lq(R;B) = ‖A(f + τyf)‖Lq(R;C)

≤ C ‖f + τyf‖Lp(R;B) ∀y ∈ R ∀f ∈ Lp(R;B).

If we let y approach infinity and apply (3.14) to both sides then

‖Af‖Lq(R;C) ≤ C 21/p−1/q ‖f‖Lp(R;B) ∀f ∈ Lp(R;B).

Since p > q we must have C = 0, otherwise C 21/p−1/q < C and a contradiction

results. Hence A = 0.

If q < p = ∞ then the same arguments apply provided that we replace L∞

with L∞
0 .
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Chapter 4

Strichartz estimates

In this chapter we prove and apply the abstract Strichartz theorem of M.

Keel and T. Tao [42, Theorem 10.1]. The theorem is stated in Section 4.2

and proved over the four sections following. In Section 4.7, we show how

the theorem completely solves the problem of determining all homogeneous

Strichartz estimates for the Schrödinger equation. The following section then

puts the theorem to work on the wave equation. Though there are no new

results in this chapter, its content serves as fundamental background to new

material contained in Chapter 5. Before attending to the theorem and its

proof, we shall illustrate why Strichartz estimates are sought after by those

working with inhomogeneous Cauchy problems.

4.1 A motivating example

In this section, we illustrate the power of Strichartz estimates for answering

questions concerning nonlinear dispersive partial differential equations. The

theorem given below is a variant on results that go back as far as the 1980s

(see, for example, [26], [40], [9] and the references therein) but the proof is

essentially the same. A particularly readable account may be obtained from

lecture notes [68] of T. Tao. For ease of notation, write Lp
x for the space Lp(R2)

and Lp
t,x for the space Lp(R; Lp(R2)).

65



Theorem 4.1.1. [9] Consider the initial value problem⎧⎪⎨⎪⎩iu′(t) + Δu(t) = λ|u(t)|2u(t) ∀t ≥ 0

u(0) = f ,

(4.1)

where Δ is the Laplacian on L2
x, λ is a complex constant and ‖f‖L2

x
= 1. If |λ| is

sufficiently small then there is a global solution u to (4.1) such that ‖u(t)‖L2
x

�

1 for every time t. Furthermore the solution u satisfies the spacetime estimate

‖u‖L4
t,x

� 1, (4.2)

is unique subject to the above conditions, and depends continuously in L4
t,x on

the initial data f in L2
x. Finally we have scattering in the sense that there

exists some initial data f+ in L2
x such that

lim
t→∞

∥∥u(t) − eitΔf+

∥∥
L2

x
= 0. (4.3)

Equation (4.1), known as the meson equation, is a perturbation of the free

(or homogeneous) Schrödinger equation iu′+Δu = 0. With two spatial dimen-

sions, it is an L2 critical perturbation in the sense that, unlike other powers

of u, the cubic forcing term cannot vanish under a rescaling of dimensions if

one requires that u(t) is dimensionless with constant L2 norm (as happens in

physical applications where u(t) is interpreted probabilistically).

Our principal reason for considering the above theorem and its proof is to

illustrate the use of Strichartz estimates. A sketch of the argument will be in

given certain places to avoid obscuring the main ideas. For convenience, we

state the contraction mapping principle which is used in the proof of Theorem

4.1.1.

Theorem 4.1.2 (The contraction mapping principle). Suppose that X

is a complete metric space with metric d and that N : X → X is a contraction

mapping satisfying

d(N(u), N(v)) ≤ cd(u, v) ∀u, v ∈ X,
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where the contractivity coefficient c lies in [0, 1). Suppose that u0 ∈ X and

inductively define the sequence {uk}∞k=0 by uk+1 = N(uk) whenever k > 0.

Then N has a unique fixed point u, the sequence {uk}∞k=0 converges to u and

d(u, uk) ≤ ckd(u, u0) ∀k ≥ 0.

Sketch proof of Theorem 4.1.1. It is well known that if we want to solve an

equation of the form

iu′(t) + Δu(t) = F (t), u(0) = f,

then the only solution is

u(t) = eitΔf − i

∫ t

0

ei(t−s)ΔF (s) ds

by Duhamel’s principle and spectral theory. Therefore we rewrite the inhomo-

geneous equation (4.1) in its integral form

u(t) = eitΔf − iλ

∫ t

0

ei(t−s)Δ
(
|u(s)|2u(s)

)
ds. (4.4)

To find a solution to (4.4) we shall construct a sequence {uk}∞k=0 of approximate

solutions which converges to the solution. First approximate u by the solution

u0, given by

u0(t) = eitΔf,

of the free Schrödinger initial value problem. Now make a better approximation

u1, given by

u1(t) = eitΔf − iλ

∫ t

0

ei(t−s)Δ
(
|u0(s)|2u0(s)

)
ds.

More generally, define the inhomogeneous map u �→ Nf(u) by

Nf (u)(t) = eitΔf − iλ

∫ t

0

ei(t−s)Δ
(
|u(s)|2u(s)

)
ds

and define {uk}∞k=0 by the iteration uk+1 = Nf (uk) whenever k > 0.

To prove that (4.1) has a unique global solution, it suffices to show that

the sequence {uk}∞k=0 has a limit u satisfying u = Nf(u) and that u is the
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only fixed point of Nf . This will be achieved by applying the contraction

mapping principle to Nf for a suitable contraction space X. Our choice of X

is determined by the existence of the estimates∥∥eitΔf
∥∥

L4
t,x

� ‖f‖L2
x

∀f ∈ L2
x, (4.5)∥∥∥∥∫ ∞

0

e−isΔF (s) ds

∥∥∥∥
L2

x

� ‖F‖
L

4/3
t,x

∀F ∈ L
4/3
t,x (4.6)

and ∥∥∥∥∫ t

0

ei(t−s)ΔF (s) ds

∥∥∥∥
L4

t,x

� ‖F‖
L

4/3
t,x

∀F ∈ L
4/3
t,x . (4.7)

These three estimates are Strichartz estimates associated to the initial value

problem (4.1). Theorem 4.2.2, which is given in the next section, will imply

these estimates (see Remark 4.7.3); for the moment, we simply assume that

they are true and use them to complete the proof of Theorem 4.1.1.

Define the metric space X by

X = {u : ‖u‖L4
t,x

≤ C}

where C is an absolute constant (sufficiently large for the argument below to

hold) and with metric induced from the L4
t,x norm. To apply the contraction

mapping principle, it suffices to show that u0 ∈ X,

‖Nf (u) − Nf(v)‖L4
t,x

≤ 1

2
‖u − v‖L4

t,x
∀u, v ∈ X (4.8)

and N(u) ∈ X whenever u ∈ X.

First, (4.5) implies that u0 ∈ X since ‖f‖2 = 1. To show (4.8), we first

note that

Nf (u) − Nf(v) = −iλ

∫ t

0

ei(t−s)Δ
(
|u(s)|2u(s) − |v(s)|2v(s)

)
ds

and hence (4.7) gives

‖Nf (u) − Nf(v)‖L4
t,x

� |λ|
∥∥|u|2u − |v|2v

∥∥
L

4/3
t,x

.

By a pointwise estimate

|u|2u − |v|2v = O(|u|2|u − v|) + O(|v|2|u − v|)
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which gives

‖Nf(u) − Nf(v)‖L4
t,x

� |λ|
(∥∥|u|2|u − v|

∥∥
L

4/3
t,x

+
∥∥|v|2|u − v|

∥∥
L

4/3
t,x

)
� |λ|

(
‖u‖2

L4
t,x

‖u − v‖L4
t,x

+ ‖v‖2
L4

t,x
‖u − v‖L4

t,x

)
by Hölder’s inequality. Since u and v both belong to X, their L4

t,x norms are

bounded and it follows that (4.8) holds if λ is sufficiently close to zero. Finally,

if u ∈ X then it may be easily deduced that Nf(u) ∈ X by (4.8) (see, for

example, the argument at (5.69)).

So far we have shown the existence and uniqueness of the solution u to

(4.1). Since u ∈ X we also have (4.2). We turn now to show the continuous

dependence of the solution on the initial data. Suppose that v is a solution to

(4.1) with initial data g satisfying ‖g‖L2
x

= 1. Then

‖u − v‖L4
t,x

= ‖Nf(u) − Ng(v)‖L4
t,x

≤
∥∥eitΔf − eitΔg

∥∥
L4

t,x
+ ‖Nf (u) − Nf(v)‖L4

t,x

≤ C1 ‖f − g‖L2
x

+
1

2
‖u − v‖L4

t,x

by (4.5) and (4.8). Rearranging the estimate gives

‖u − v‖L4
t,x

≤ 2C1 ‖f − g‖L2
x

as required.

To show that ‖u(t)‖L2
x

� 1 for all t, observe from (4.4) that

‖u(t)‖L2
x

�
∥∥eitΔf

∥∥
L2

x
+

∥∥∥∥eitΔ

∫ t

0

e−isΔ
(
|u(s)|2u(s)

)
ds

∥∥∥∥
L2

x

provided that both terms on the right-hand side are bounded. It is a stan-

dard fact of Fourier analysis (and in particular a consequence of Plancherel’s

theorem) that ∥∥eitΔf
∥∥

L2
x

= ‖f‖L2
x
. (4.9)

Looking now at the second term, (4.6) gives∥∥∥∥∫ t

0

e−isΔ
(
|u(s)|2u(s)

)
ds

∥∥∥∥
L2

x

�
∥∥|u|2u∥∥

L
4/3
t,x

= ‖u‖3
L4

t,x
≤ C.
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By combining this with (4.9) we obtain the uniform L2
x boundedness of u(t).

It remains to show scattering. Define f+ by

f+ = f − iλ

∫ ∞

0

e−isΔ
(
|u(s)|2u(s)

)
ds.

From (4.6) and the argument just given, we see that f+ ∈ L2
x. By (4.4),

u(t) − eitΔf+ = iλeitΔ

∫ ∞

t

e−isΔ
(
|u(s)|2u(s)

)
ds

and hence ∥∥u(t) − eitΔf+

∥∥
L2

x
�
∥∥1(t,∞)|u|2u

∥∥
L

4/3
t,x

by (4.6) and (4.9), where 1(t,∞) denotes the characteristic function of the in-

terval (t,∞). The limit (4.3) now follows from the monotone convergence

theorem.

The above proof illustrates how impressively Strichartz estimates perform

as a technical tool for solving inhomogeneous Cauchy problems. However,

we have yet to give a proof of the Strichartz estimates (4.5), (4.6) and (4.7)

themselves. These estimates will be a consequence of some abstract Strichartz

estimates proved in the ensuing sections. In anticipation of later developments,

we highlight that, if we define a family {U(t) : t ∈ R} of operators on L2
x by

U(t) = eitΔ, then we have conservation of probability

‖U(t)f‖L2
x

= ‖f‖L2
x

∀f ∈ L2
x ∀t ∈ R

and a dispersive estimate

‖U(s)U(t)∗g‖∞ � |t − s|−1 ‖g‖1 ∀g ∈ L1
x ∩ L2

x ∀ real s �= t.

The dispersive estimate may be easily derived from the integral representation

of U(t) (see Section 4.7) while conservation of probability, an example of what

we later term an energy estimate, is simply a restatement of (4.9).

Remark 4.1.3. Theorem 4.1.1 states that the solution u to (4.1) is unique

subject to the conditions

‖u‖L4
t,x

� 1 and ‖u(t)‖L2
x

� 1 ∀t ∈ R.
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In fact, one can strengthen uniqueness by showing that u is a unique solution

subject only to the condition ‖u(t)‖L2
x

� 1 for all t. This type of ‘unconditional

uniqueness’ result goes back to [40] and [41]. See [13, Section 16] for a recent

discussion .

4.2 Abstract Strichartz estimates

In this section we develop a framework which will enable us to write down

Strichartz estimates in a very general form. This leads to the statement of

Theorem 4.2.2 which gives a range of spacetime exponents for which abstract

Strichartz estimates hold under some very simple hypotheses. The section

concludes with a broad outline of how the theorem will be proved while the

proof itself begins in Section 4.3.

Suppose that H is a Hilbert space, (B0,B1) is a Banach interpolation couple

and σ > 0. Suppose also that for each time t in R we have an operator

U(t) : H → B∗
0. Its adjoint U(t)∗ is an operator from B0 to H. We will assume

that the family {U(t) : t ∈ R} satisfies the energy estimate

‖U(t)f‖B∗
0

� ‖f‖H ∀f ∈ H ∀t ∈ R, (4.10)

and either the untruncated decay estimate

‖U(s)U(t)∗g‖B∗
1

� |t − s|−σ ‖g‖B1
∀g ∈ B1 ∩ B0 ∀ real s �= t (4.11)

or the truncated decay estimate

‖U(s)U(t)∗g‖B∗
1

� (1 + |t − s|)−σ ‖g‖B1
∀g ∈ B1 ∩ B0 ∀s, t ∈ R (4.12)

The two decay estimates are sometimes referred to as dispersive estimates.

The energy estimate allows us to consider the operator T : H → L∞(R;B∗
0)

defined by the formula

Tf(t) = U(t)f ∀f ∈ H ∀t ∈ R.
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Its formal adjoint is the operator T ∗ : L1(R;B0) → H given by the H-valued

integral

T ∗F =

∫
R

U(s)∗F (s) ds.

The composition TT ∗ : L1(R;B0) → L∞(R;B∗
0) is the operator given by

TT ∗F (t) =

∫
R

U(t)U(s)∗F (s) ds, (4.13)

which can be decomposed as the sum of retarded and advanced parts

(TT ∗)RF (t) =

∫
s<t

U(t)U(s)∗F (s) ds

and

(TT ∗)AF (t) =

∫
s>t

U(t)U(s)∗F (s) ds.

In many applications (see Sections 4.1, 4.7, 4.8 and 5.9 for examples)

{U(t) : t ∈ R} is the evolution group associated to a homogeneous differential

equation. The operator T solves the initial value problem of the homogeneous

equation while (TT ∗)R is used, by Duhamel’s principle, to solve the corre-

sponding inhomogeneous problem with zero initial data. Spacetime estimates

for the functions Tf and (TT ∗)RF therefore correspond to homogeneous and

inhomogeneous Strichartz estimates.

When θ ∈ [0, 1], let Bθ denote the real interpolation space (B0,B1)θ,2. In

this chapter we will show that, for certain exponent pairs (q, θ) and (q̃, θ̃), the

family {U(t) : t ∈ R} has Strichartz estimates of the following form:

(i) the homogeneous Strichartz estimate

‖Tf‖Lq(R;B∗
θ ) � ‖f‖H ∀f ∈ H, (4.14)

(ii) its dual estimate

‖T ∗F‖H � ‖F‖Lq′ (R;Bθ) ∀F ∈ Lq′(R;Bθ) ∩ L1(R;B0) (4.15)

and
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(iii) the inhomogeneous (or retarded) Strichartz estimate

‖(TT ∗)RF‖Lq(R;B∗
θ ) � ‖F‖Leq′ (R;Beθ

) ∀F ∈ Leq′(R;Beθ) ∩ L1(R;B0).

(4.16)

These estimates will be obtained by first interpolating between a bilinear ver-

sion of the energy estimate (4.10) and one of the dispersive estimates (4.11)

or (4.12). This, and further manipulation, impose certain conditions on the

exponents q, q̃, θ and θ̃, giving rise to the following definition.

Definition 4.2.1. Suppose that σ > 0. We say that a pair of exponents (q, θ)

is σ-admissible if (q, θ, σ) �= (2, 1, 1), 2 ≤ q ≤ ∞, 0 ≤ θ ≤ 1 and

1

q
≤ σθ

2
. (4.17)

We say that a pair of exponents (q, θ) is sharp σ-admissible if equality holds

in (4.17) and nonsharp σ-admissible otherwise.

It is natural to interpret σ-admissible pairs (q, θ) as those corresponding to

the points (1/q, θ) in [0, 1]× [0, 1]. Figure 4.1 illustrates regions which contain

these points for different values of σ. The closed line segments OQ and OR

correspond to the sharp admissible pairs in each case. The point Q = (1/2, 1/σ)

corresponds to the sharp endpoint P , which is given by the formula

P = (2, 1/σ) (4.18)

when σ > 1. This endpoint will be of notable interest later in the chapter.

The main theorem is this chapter is the following result.

Theorem 4.2.2 (Keel–Tao [42]). Suppose that σ > 0. If U(t) satisfies

the energy estimate (4.10) and the untruncated decay estimate (4.11) then

the abstract Strichartz estimates (4.14), (4.15) and (4.16) hold for all sharp

σ-admissible pairs (q, θ) and (q̃, θ̃). Furthermore, if the decay hypothesis is

strengthened to (4.12), then the Strichartz estimates (4.14), (4.15) and (4.16)

hold for all σ-admissible pairs (q, θ) and (q̃, θ̃).
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Figure 4.1: σ-admissible pairs (q, θ) for different values of σ.

The theorem above, when announced in the late 1990s, was a breakthrough

in several respects. First, the abstract setting allowed both the wave and Schrö-

dinger equations to be treated in a unified manner. Second, when applied to

the wave and Schrödinger equations in higher spatial dimensions, the theo-

rem gave previously unknown Strichartz estimates. These new estimates occur

precisely when σ > 1 and (q, θ) or (q̃, θ̃) are the endpoint P . Consequently

this completely solved the problem of determining all possible homogeneous

Strichartz estimates for the wave and Schrödinger equations in higher dimen-

sions. Third, while previous publications in the field largely followed techniques

used by R. Strichartz [67], Keel and Tao [42] provided new techniques for ob-

taining Strichartz estimates. These have been adopted in recent papers (see,

for example, [24] and [75]) and will also be exploited in this thesis.

In Section 4.7, we apply Theorem 4.2.2 to obtain Strichartz estimates for

the Schrödinger equation. As a by-product, this application gives the estimates

(4.5), (4.6) and (4.7) used in Section 4.1 to solve the meson equation (see

Remark 4.7.3). An application of the theorem to the wave equation is explored

in Section 4.8, by a route alluded to in [42, Section 10].

The rest of the chapter is dedicated to the proof of Theorem 4.2.2. This is

novel in the sense that the article [42] of Keel and Tao only gives a proof of

this theorem when B0 and B1 are respectively specialised to L2(X) and L1(X),

where X is a measure space. Moreover, details familiar to the experts are
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sometimes omitted in the presentation of [42]. It is therefore hoped that our

proof of Theorem 4.2.2 will be welcomed at least by the uninitiated.

The structure of the proof is as follows. Section 4.3 explores the symmetry

inherent in the Strichartz estimates and their bilinear equivalents. The results

stated there are used repeatedly in proofs throughout this chapter and the

next. In Section 4.4, we prove homogeneous Strichartz estimates for all σ-

admissible exponent pairs excluding the endpoint P . The basic strategy will be

to interpolate between bilinear versions of the energy and dispersive estimates

and then to estimate further via a classical Lp inequality. The task of obtaining

homogeneous Strichartz estimates for the endpoint P is more delicate because

the classical Lp inequality breaks down in this case. Section 4.5 addresses this

difficulty by decomposing a bilinear version of the Strichartz estimate into a

dyadic sum. While this sum diverges if each term is estimated individually,

some summability is obtained by slightly perturbing the spatial exponents.

We then interpolate between the perturbed estimates to prove the endpoint

estimate. Finally, in Section 4.6 we prove inhomogeneous Strichartz estimates

for σ-admissible pairs. This is achieved by proving inhomogeneous estimates

for some extreme exponents and then interpolating between these and the

sharp σ-admissible exponents. The proofs for these extreme cases utilise the

homogeneous Strichartz estimates proved in earlier sections.

Taken together, Theorems 4.4.1, 4.4.2, 4.5.1, 4.6.1 and 4.6.3 give Theorem

4.2.2. For the retarded Strichartz estimate (4.16), the conclusion of Theorem

4.2.2 also holds for a wider class of exponent pairs. We will devote our attention

to this in Chapter 5.

4.3 Equivalence, symmetry and invariance

The results of this section constitute a tool kit for simplifying the proof of

Theorem 4.2.2. We show that there is a bilinear form B such that each of

the Strichartz estimates (4.14), (4.15) and (4.16) is implied by a corresponding
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estimate on B. Not only will this give a more unified approach to proving

the estimates, but, as we shall see later sections, the bilinear form estimates

yield a manipulative flexibility that is harder to extract from their operator

estimate counterparts. Critically, the proof of the homogeneous Strichartz

estimates at the endpoint P relies on a result of real bilinear interpolation. In

this section we also prove that certain key estimates are invariant under the

exponent symmetry (q, θ) ↔ (q̃, θ̃). It ends by demonstrating the invariance of

the theorem’s hypothesis (in the sharp σ-admissible case) under a particular

set of scaling transformations.

We set the tone with a formal calculation of the dual of (TT ∗)R. For clarity,

denote by 〈f, g〉B the action of a linear functional g on an element f of B. (Note

that 〈 · , · 〉 with no subscript denotes the inner product on H.) Suppose that

F and G are in L1(R;B0). Then

〈(TT ∗)RF, G〉L∞(R;B∗
0) =

∫
R

〈
U(t)

∫ t

−∞

U(s)∗F (s) ds, G(t)

〉
B∗

0

dt

=

∫∫
s<t

〈U(s)∗F (s), U(t)∗G(t)〉H ds dt (4.19)

=

∫
R

〈
F (s), U(s)

∫ ∞

s

U(t)∗G(t) dt

〉
B0

ds

= 〈F, (TT ∗)AG〉L1(R;B0)

So formally, ((TT ∗)R)∗ = (TT ∗)A. Inspired by (4.19), define the bilinear form

B on L1(R;B0) × L1(R;B0) by

B(F, G) =

∫∫
s<t

〈U(s)∗F (s), U(t)∗G(t)〉 ds dt. (4.20)

Lemma 4.3.1. Suppose that q, q̃ ∈ [1,∞] and θ, θ̃ ∈ [0, 1]. Then the retarded

Strichartz estimate (4.16) is equivalent to the bilinear estimate

|B(F, G)| � ‖F‖Leq′ (R;Beθ
) ‖G‖Lq′ (R;Bθ)

∀F ∈ Leq′(R;Beθ) ∩ L1(R;B0) ∀G ∈ Lq′(R;Beθ) ∩ L1(R;B0), (4.21)

where the bilinear form B is given by (4.20).
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Proof. By (4.19),

B(F, G) = 〈(TT ∗)RF, G〉 .

Hence if (4.21) holds then, by taking the supremum over all functions G in

Lq′(R;Bθ) ∩ L1(R;B0) such that ‖G‖Lq′ (R;Bθ) ≤ 1, we obtain

‖(TT ∗)RF‖Lq(R;B∗
θ ) = sup

G
|B(F, G)| � ‖F‖Leq′ (R;Beθ

)

whenever F ∈ Leq′(R;Beθ) ∩ L1(R;B0).

On the other hand, suppose that (4.16) holds. Then

|B(F, G)| ≤ ‖(TT ∗)RF‖Lq(R;B∗
θ ) ‖G‖Lq′ (R;Bθ)

� ‖F‖Leq′ (R;Beθ
) ‖G‖Lq′ (R;Bθ) ,

by duality.

The next lemma explains why the conditions on the exponents of the

Strichartz estimate (4.16) appearing in Theorem 4.2.2 must be invariant under

the symmetry (q, θ) ↔ (q̃, θ̃). We exploit the facts that ((TT ∗)R)∗ = (TT ∗)A

and that (TT ∗)A becomes (TT ∗)R when we invert the direction of time.

Lemma 4.3.2. Suppose that (q, θ) and (q̃, θ̃) are two exponent pairs. If the

energy estimate (4.10) and one of the dispersive estimates (4.11) or (4.12)

imply the retarded Strichartz estimate (4.16), then

‖(TT ∗)RF‖Leq(R;B∗
eθ
) � ‖F‖Lq′ (R;Bθ) ∀F ∈ Lq′(R;Bθ) ∩ L1(R;B0). (4.22)

Proof. Suppose that {U(t) : t ∈ R} satisfies the energy estimate and one

of the dispersive estimates. If V (t) = U(−t) whenever t ∈ R then the family

{V (t) : t ∈ R} also satisfies the energy estimate and dispersive estimate. Hence

if the operator S is given by Sf(t) = V (t)f then

‖(SS∗)RF‖Lq(R;B∗
eθ
) � ‖F‖Leq′ (R;Beθ

) ∀F ∈ Leq′(R;Beθ) ∩ L1(R;B0),

or equivalently

‖(SS∗)AF‖Leq(R;B∗
eθ
) � ‖F‖Lq′(R;Bθ) ∀F ∈ Lq′(R;Bθ) ∩ L1(R;B0) (4.23)
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by duality. But

((SS∗)AF )(t) =

∫ ∞

t

V (t)V (s)∗F (s) ds

=

∫ −t

−∞

V (t)V (−s)∗F (−s) ds

=

∫ −t

−∞

U(−t)U(s)∗F0(s) ds

= ((TT ∗)RF0)(−t),

where F0(s) = F (−s). Therefore (4.23) implies (4.22).

Later we decompose B(F, G) dyadically as
∑

j∈Z Bj(F, G), where

Bj(F, G) =

∫∫
t−2j+1<s<t−2j

〈U(s)∗F (s), U(t)∗G(t)〉 ds dt. (4.24)

Using the same techniques as above, one can prove the following lemma.

Lemma 4.3.3. Suppose that (q, θ) and (q̃, θ̃) are two exponent pairs and that

C(j) is a positive constant for every j in Z. If the energy estimate (4.10) and

one of the dispersive estimates (4.11) or (4.12) imply the bilinear estimate

|Bj(F, G)| ≤ C(j) ‖F‖Leq′ (R;Beθ
) ‖G‖Lq′(R;Bθ)

∀F ∈ Leq′(R;Beθ) ∩ L1(R;B0) ∀G ∈ Lq′(R;Bθ) ∩ L1(R;B0)

then

|Bj(F, G)| ≤ C(j) ‖F‖Lq′ (R;Bθ) ‖G‖Leq′(R;Beθ
)

∀F ∈ Lq′(R;Bθ) ∩ L1(R;B0) ∀G ∈ Leq′(R;Beθ) ∩ L1(R;B0).

Proof. We adopt the notation of the proof of Lemma (4.3.2) and follow the

same strategy. The key observation is that∣∣∣∣∫∫
t−2j+1<s<t−2j

〈V (s)∗F (s), V (t)∗G(t)〉 ds dt

∣∣∣∣ = |Bj(G0, F0)|

where F0(s) = F (−s) and G0(t) = G(−t). The details are left to the reader.
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So far we have shown that an appropriate estimate on the bilinear form B

implies the inhomogeneous Strichartz estimate (4.16). The same can be said

for the homogeneous Strichartz estimates.

Lemma 4.3.4. Suppose that q ∈ [1,∞] and θ ∈ [0, 1]. If

|B(F, G)| � ‖F‖Lq′ (R;Bθ) ‖G‖Lq′ (R;Bθ) ∀F, G ∈ Lq′(R;Bθ) ∩ L1(R;B0)

(4.25)

then the homogeneous Strichartz estimates (4.14) and (4.15) hold.

Proof. We first show that the bilinear estimate∣∣∣∣∫∫
R2

〈U(s)∗F (s), U(t)∗G(t)〉 ds dt

∣∣∣∣ � ‖F‖Lq′ (R;Bθ) ‖G‖Lq′ (R;Bθ)

∀F, G ∈ Lq′(R;Bθ) ∩ L1(R;B0) (4.26)

is equivalent to (4.15) (and by duality to (4.14) also). If (4.26) holds then

estimate (4.15) is easily derived by taking F equal to G. Conversely, if (4.15)

holds then the Cauchy–Schwarz inequality gives (4.26).

Now observe that∣∣∣∣∫∫
R2

〈U(s)∗F (s), U(t)∗G(t)〉 ds dt

∣∣∣∣ ≤ |B(F, G)| + |B(G, F )|.

Hence (4.25) implies (4.26) and the proof is complete.

The next lemma will help with the transparency of future proofs.

Lemma 4.3.5. Suppose that I is an interval of the real line. If (4.15) holds

then ∥∥∥∥∫
I

U(s)∗F (s) ds

∥∥∥∥
H

� ‖F‖Lq′ (R;Bθ) ∀F ∈ Lq′(R;Bθ). (4.27)

Proof. Let 1I denote the characteristic function of I on R. Replacing F by

1IF in (4.15) yields the result.

The following lemma will later be used in conjunction with Lemma 3.5.2

to demonstrate the necessity of some exponent conditions.
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Lemma 4.3.6. If {U(t) : t ∈ R} has the group property

U(t)U(s)∗ = U(t − s) ∀s, t ∈ R (4.28)

then (TT ∗)R is translation invariant.

Proof. If (4.28) holds then

τy(TT ∗)RF (t) =

∫ t−y

−∞

U(t − y − s)F (s) ds

=

∫ t

−∞

U(t − v)F (v − y) dv

= (TT ∗)RτyF (t)

for any translation τy, where y ∈ R.

In later sections, scaling arguments will be used to simplify the proof of

Theorem 4.2.2 for the sharp σ-admissible case. The hypotheses for this case

(that is, estimates (4.10) and (4.11)) are invariant under many rescalings; we

regard the one introduced below to be the simplest.

Proposition 4.3.7. If λ > 0 then the estimates (4.10) and (4.11) are invariant

under the scaling ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(t) ← U(t/λ)

〈f, g〉 ← 〈f, g〉

‖f‖B0
← ‖f‖B0

‖f‖B1
← λσ/2 ‖f‖B1

.

(4.29)

Before attending to the proof, we give a two helpful lemmata related to the

rescaling of Banach space norms.

Lemma 4.3.8. Suppose that B is a Banach space and λ > 0. Then the scaling

‖f‖B ← λ ‖f‖B ∀f ∈ B (4.30)

induces the scaling

‖φ‖B∗ ← λ−1 ‖φ‖B∗ ∀φ ∈ B∗.
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Proof. Let B′ denote the Banach space induced from B under scaling (4.30).

Then

‖φ‖(B′)∗ = sup
{
| 〈f, φ〉 | : ‖f‖B′ = 1

}
= sup

{
| 〈f, φ〉 | : ‖λf‖B = 1

}
= sup

{
|
〈
λ−1g, φ

〉
| : ‖g‖B = 1

}
= λ−1 ‖φ‖B∗

as required.

Lemma 4.3.9. If θ ∈ [0, 1] then scaling (4.29) implies that

‖f‖Bθ
← λσθ/2 ‖f‖Bθ

.

Proof. Whenever ϑ ∈ [0, 1], let B′
ϑ denote the Banach space induced from Bϑ

under scaling (4.29). Suppose that f ∈ Bθ. Recalling (3.1), we have

K(t, f,B′
0,B′

1) = inf
{
‖f0‖B0

+ tλσ/2 ‖f1‖B1
: f0 + f1 = f

}
= K(λσ/2t, f,B0,B1)

whenever t > 0. Hence, by (3.2),

‖f‖B′
θ

=

(∫ ∞

0

(
t−θK(t, f,B′

0,B′
1)
)2 dt

t

)1/2

=

(∫ ∞

0

(
t−θK(λσ/2t, f,B0,B1)

)2 dt

t

)1/2

=

(∫ ∞

0

((
λ−σ/2s

)−θ
K(s, f,B0,B1)

)2 ds

s

)1/2

= λσθ/2 ‖f‖Bθ

and the lemma follows.

Proof of Proposition 4.3.7. It is obvious that (4.10) is invariant with respect

to the rescaling (4.29). For the second estimate (4.11), there is a constant C

such that

‖U(t)U(s)∗g‖B∗
1
≤ C|t − s|−σ ‖g‖B1

∀g ∈ B1 ∩ B0 ∀ real s �= t.
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When scaling (4.29) is applied,

λ−σ/2 ‖U(t/λ)U(s/λ)∗g‖B∗
1
≤ C|t−s|−σλσ/2 ‖g‖B1

∀g ∈ B1∩B0 ∀ real s �= t.

The substitutions s �→ s/λ and t �→ t/λ yield

‖U(t)U(s)∗g‖B∗
1
≤ C|λt − λs|−σλσ ‖g‖B1

∀g ∈ B1 ∩ B0 ∀ real s �= t,

from which we recover (4.11).

4.4 Proof of the homogeneous estimates

We now begin the proof of Theorem 4.2.2. In this section, we derive homoge-

neous Strichartz estimates under the assumption that the family {U(t) : t ∈ R}
satisfies the energy estimate (4.10) and one of the decay estimates (4.11) or

(4.12). The basic strategy is as follows. We need to find conditions under

which the bilinear estimate (4.25) holds. We begin by interpolating between

the energy estimate and one of the decay estimates. This yields a new esti-

mate, which we further manipulate via a classical Lp inequality, to establish

(4.26). This last step imposes conditions on the spacetime exponent pair (q, θ);

these are precisely the σ-admissibility criteria defined in Section 4.2. The clas-

sical inequalities used are the Young, Hölder and Hardy–Littlewood–Sobolev

inequalities; these are stated in Section 3.1.

Recall that the exponent endpoint P is (2, 1/σ) whenever σ > 1.

Theorem 4.4.1. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the

energy estimate (4.10) and the untruncated decay estimate (4.11). If (q, θ) is

sharp σ-admissible and (q, θ) �= P then the homogeneous Strichartz estimates

(4.14) and (4.15) and the bilinear estimate (4.25) hold.

Proof. In view of Lemma 4.3.4, it suffices to establish (4.25). Suppose that F
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and G belong to Lq′(R;B1) ∩ L1(R;B0). On the one hand, (4.11) implies that

| 〈U(s)∗F (s), U(t)∗G(t)〉 | = | 〈F (s), U(s)U(t)∗G(t)〉 |

≤ ‖F (s)‖B1
‖U(s)U(t)∗G(t)‖B∗

1

� |t − s|−σ ‖F (s)‖B1
‖G(t)‖B1

, (4.31)

while on the other hand, the dual

‖U(t)∗g‖H � ‖g‖B0
∀t ∈ R ∀g ∈ B0 (4.32)

of the energy estimate (4.10) implies that

| 〈U(s)∗F (s), U(t)∗G(t)〉 | � ‖F (s)‖B0
‖G(t)‖B0

. (4.33)

Integrating (4.33) with respect to s and t gives (4.25) when (q, θ) = (∞, 0).

Suppose now that (q, θ) �= (∞, 0). Real interpolation (see Theorem 3.2.4)

between (4.31) and (4.33) gives

| 〈U(s)∗F (s), U(t)∗G(t)〉 | � |t − s|−σθ ‖F (s)‖Bθ
‖G(t)‖Bθ

, (4.34)

where θ ∈ (0, 1]. By an application of the triangle inequality,∣∣∣∣∫∫
s<t

〈U(s)∗F (s), U(t)∗G(t)〉 ds dt

∣∣∣∣ � ∫
R

∫
R

‖F (s)‖Bθ
‖G(t)‖Bθ

|t − s|σθ
ds dt.

(4.35)

To deduce (4.26), we need only estimate the right hand side of (4.35) by the

Hardy–Littlewood–Sobolev inequality. We require that 0 < σθ < 1 and that

2/q′ + σθ = 2; this is guaranteed by one of the hypotheses. Hence∫
R

∫
R

‖F (s)‖Bθ
‖G(t)‖Bθ

|t − s|σθ
ds dt � ‖F‖Lq′ (R;Bθ) ‖G‖Lq′ (R;Bθ)

which, together with (4.35), establishes (4.25) as required.

Note that the method of the proof above covers sharp admissible pairs

(q, θ) when 2 < q ≤ ∞. However, the Hardy–Littlewood–Young inequality

cannot handle the case when q = 2 (that is, when (q, θ) is the endpoint P ).
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Establishing homogeneous Strichartz estimates for this case is a more delicate

problem and we defer this task to Section 4.5.

By strengthening the decay hypothesis, homogeneous Strichartz estimates

are obtained for a larger set of exponent pairs (q, θ).

Theorem 4.4.2. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the

energy estimate (4.10) and the truncated decay estimate (4.12). If (q, θ) is

nonsharp σ-admissible, then the homogeneous Strichartz estimates (4.14) and

(4.15) and the bilinear estimate (4.25) hold.

Proof. Suppose that F and G are functions in Lq′(R;B1)∩L1(R;B0). To begin

we follow the method of the first half of the proof of Theorem 4.4.1. However,

since we are using the truncated estimate, we obtain

| 〈U(s)∗F (s), U(t)∗G(t)〉 | � (1 + |t − s|)−σθ ‖F (s)‖Bθ
‖G(t)‖Bθ

(4.36)

rather than (4.34) when θ ∈ [0, 1]. Suppose now that f(t) = ‖F (t)‖Bθ
,

g(t) = ‖G(t)‖Bθ
and h(t) = (1 + |t|)−σθ. Successive applications of the tri-

angle inequality, estimate (4.36), Hölder’s inequality and Young’s inequality

give ∣∣∣∣∫∫
s<t

〈U(s)∗F (s), U(t)∗G(t)〉 ds dt

∣∣∣∣ � ‖h ∗ f . g‖1

≤ ‖h ∗ f‖q ‖g‖q′

≤ ‖h‖q/2 ‖f‖q′ ‖g‖q′

� ‖F‖Lq′ (R;Bθ) ‖G‖Lq′(R;Bθ) ,

provided that h ∈ Lq/2(R). This occurs precisely when qσθ/2 > 1, which is

guaranteed by one of the hypotheses. Hence (4.25) is satisfied.

4.5 Proof of the endpoint estimate

The methods of the previous section were not able to prove the homogeneous

Strichartz estimate for the endpoint P . We now deal with this special case.
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Throughout this section, suppose that σ > 1,

P = (q, θ) = (2, 1/σ) (4.37)

and {U(t) : t ∈ R} satisfies both the energy estimate (4.10) and the untrun-

cated decay estimate (4.11). Our goal is to prove the following.

Theorem 4.5.1. Under the assumptions above, the homogeneous Strichartz

estimates (4.14) and (4.15) and the bilinear estimate (4.25) hold.

In view of Lemma 4.3.4, it suffices to show (4.25), where B(F, G) is defined

by (4.20). To do this, we decompose B(F, G) dyadically as
∑

j∈Z Bj(F, G),

where each Bj is defined by (4.24). Note that if scaling (4.29) is applied to the

estimate

|B(F, G)| ≤ C ‖F‖L2(R;Ba) ‖G‖L2(R;Bb)
,

then

|B(F0, G0)| ≤ Cλ
σ
2
(a+b)−1 ‖F0‖L2(R;Ba) ‖G0‖L2(R;Bb)

where F0(s) = F (λs) and G0(t) = G(λt) (see Step 1 of the proof below where

we rehearse the necessary calculations). Inspired by this observation, define

the quantity β(a, b) by the formula

β(a, b) =
σ

2
(a + b) − 1 (4.38)

whenever a, b ∈ [0, 1]. For positive ε, define the set Ψε by

Ψε = {(a, b) ∈ [0, 1] × [0, 1] : 0 ≤ |a − 1/σ| < ε, 0 ≤ |b − 1/σ| < ε}.

The following two-parameter family of estimates for the dyadic parts Bj will

be proved.

Lemma 4.5.2. There is a positive ε such that, for every j in Z,

|Bj(F, G)| � 2−jβ(a,b) ‖F‖L2(R;Ba) ‖G‖L2(R;Bb)

∀F ∈ L2(R;Ba) ∩ L1(R;B0) ∀G ∈ L2(R;Bb) ∩ L1(R;B0) (4.39)

whenever (a, b) ∈ Ψε.
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Proof. The proof will take place in three steps, the first two of which will

dramatically simplify the problem. In Step 1, we show that if (4.39) holds

when j = 0 then it holds for any j in Z. In Step 2, we take j equal to 0 and

show that if (4.39) holds for all F and G which have compact support in an

interval of length 2, then (4.39) holds for all F and G. To complete the proof

it suffices to show that there is a positive ε such that, when j = 0 and every

function F and G has support on an interval of length 2, (4.39) holds whenever

(a, b) ∈ Ψε. This is achieved in Step 3.

Step 1. Suppose that the hypotheses of this section implies that (4.39)

holds when j = 0. By Proposition 4.3.7, the hypotheses are invariant under

the rescaling (4.29). Hence the hypotheses also imply that the rescaled version

of (4.39) (when j = 0), given by∣∣∣∣∫∫
t−2<s<t−1

〈U(s/λ)∗F (s), U(t/λ)∗G(t)〉 ds dt

∣∣∣∣
≤ C λσa/2 ‖F‖L2(R;Ba) λσb/2 ‖G‖L2(R;Bb)

∀F ∈ L2(R;Ba) ∩ L1(R;B0) ∀G ∈ L2(R;Bb) ∩ L1(R;B0),

holds. If F0(s) = F (λs) and G0(t) = G(λt), then a change of variables on the

left-hand side gives

λ2

∣∣∣∣∫∫
t−2λ−1<s<t−λ−1

〈U(s)∗F0(s), U(t)∗G0(t)〉 ds dt

∣∣∣∣
≤ C λσ(a+b)/2+1 ‖F0‖L2(R;Ba) ‖G0‖L2(R;Bb)

∀F0 ∈ L2(R;Ba) ∩ L1(R;B0) ∀G0 ∈ L2(R;Bb) ∩ L1(R;B0).

Now cancel λ2 from both sides and set λ equal to 2−j . This gives

|Bj(F0, G0)| ≤ C 2−jβ(a,b) ‖F0‖L2(R;Ba) ‖G0‖L2(R;Bj)

∀F0 ∈ L2(R;Ba) ∩ L1(R;B0) ∀G0 ∈ L2(R;Bb) ∩ L1(R;B0),

completing Step 1.

Step 2. Suppose that j = 0 and that (4.39) holds with the modification

that every F and G has support on an interval of length 2. Now take any F

86



in L2(R;Ba) ∩ L1(R;B0) and any G in L2(R;Bb) ∩ L1(R;B0) (not necessarily

with compact support). We will show that

|B0(F, G)| � ‖F‖L2(R;Ba) ‖G‖L2(R;Bb)
.

Decompose F and G each as a sum

F (t) =
∑
m∈Z

φm(t)F (t), G(t) =
∑
m∈Z

φm(t)G(t),

where φ0 ∈ C∞
0 (R), 0 ≤ φ0 ≤ 1, φ0 = 0 outside the interval [−1, 1], φm(t) =

φ0(t − m) whenever m ∈ Z and t ∈ R, and
∑

m∈Z φm = 1. (Such a sequence

{φm}m∈Z of functions exists by the usual construction of a partition of unity.)

Then

B0(F, G) =

∫∫
t−2<s<t−1

〈U(s)∗F (s), U(t)∗G(t)〉 ds dt

=
∑

m,n∈Z

∫∫
t−2<s<t−1

〈U(s)∗φm(s)F (s), U(t)∗φn(t)G(t)〉 ds dt

=
∑

|m−n|≤3

∫∫
t−2<s<t−1

〈U(s)∗φm(s)F (s), U(t)∗φn(t)G(t)〉 ds dt

=
3∑

j=−3

∑
m∈Z

∫∫
t−2<s<t−1

〈U(s)∗φm(s)F (s), U(t)∗φm+j(t)G(t)〉 ds dt

=

3∑
j=−3

∑
m∈Z

B0(φmF, φm+jG).

Since φmF and φm+jG both have support on an interval of length 2, there

exists a positive constant C such that

|B0(F, G)| ≤ C
3∑

j=−3

∑
m∈Z

‖φmF‖L2(R;Ba) ‖φm+jG‖L2(R;Bb)

≤ C
3∑

j=−3

(∑
m∈Z

‖φmF‖2
L2(R;Ba)

)1/2(∑
m∈Z

‖φm+jG‖2
L2(R;Bb)

)1/2

≤ C ′

(∑
m∈Z

‖φmF‖2
L2(R;Ba)

)1/2(∑
m∈Z

‖φmG‖2
L2(R;Bb)

)1/2

,
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where the second estimate is justified by Hölder’s inequality. By further esti-

mation,∑
m∈Z

‖φmF‖2
L2(R;Ba) =

∑
m∈Z

∫
R

φm(t)2 ‖F (t)‖2
Ba

dt ≤ ‖F‖2
L2(R;Ba) ,

since

0 <
∑
m∈Z

φ2
m ≤ 1.

Therefore

|B0(F, G)| ≤ C ′ ‖F‖L2(R;Ba) ‖G‖L2(R;Bb)
,

as required.

Step 3. If B is a Banach space, let Lp
c(R;B) denote the subset of functions

of Lp(R;B) whose supports are contained in intervals of length 2. In light of

previous steps, our task is to find a positive ε such that

|B0(F, G)| � ‖F‖L2(R;Ba) ‖G‖L2(R;Bb)

∀F ∈ L2
c(R;Ba) ∩ L1(R;B0) ∀G ∈ L2

c(R;Bb) ∩ L1(R;B0) (4.40)

whenever (a, b) ∈ Ψε. Our approach is to prove (4.40) for the pair (a, b) in the

following cases:

(i) a = b = 1;

(ii) 0 < a < 1/σ, b = 0;

(iii) 0 < b < 1/σ, a = 0; and

(iv) a = b = 0.

Since (1/σ, 1/σ) lies in the interior of the convex hull of cases (i) to (iv) (see

Figure 4.2), Step 3 will follow from real interpolation (Theorem 3.3.5).

To prove (i), observe that (4.31) gives

|B0(F, G)| ≤
∫∫

t−2<s<t−1

| 〈U(s)∗F (s), U(t)∗G(t)〉 | ds dt

�

∫∫
t−2<s<t−1

|t − s|−σ ‖F (s)‖B1
‖G(t)‖B1

ds dt

≤ ‖F‖L1(R;B1)
‖G‖L1(R;B1) .
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Figure 4.2: Interpolation region for Step 3.

We now move to the proof of (ii). By the triangle and Cauchy–Schwarz

inequalities,

|B0(F, G)| ≤
∫

R

∣∣∣∣〈∫
t−2<s<t−1

U(s)∗F (s) ds, U(t)∗G(t)

〉∣∣∣∣ dt

≤
(

sup
t∈R

∥∥∥∥∫
t−2<s<t−1

U(s)∗F (s) ds

∥∥∥∥
H

)∫
R

‖U(t)∗G(t)‖H dt. (4.41)

The first term of the above product can be estimated using Lemma 4.3.5 and

Theorem 4.4.1 applied to the sharp σ-admissible pair (q(a), a), where q(a) =

2(σa)−1. The dual (4.32) of the energy estimate gives a bound for the second

term. Thus

|B0(F, G)| � ‖F‖Lq(a)(R;Ba) ‖G‖L1(R;B0) .

Since F has compact support we can write F as F = 1IF , where 1I is the

characteristic function of some interval I of length 2. By Hölder’s inequality,

‖F‖Lq(a)′(R;Ba) ≤ ‖1I‖Lp(R) ‖F‖L2(R;Ba) ≤ 2 ‖F‖L2(R;Ba) , (4.42)

where 1/q(a)′ = 1/p + 1/2. We estimate ‖G‖L1(R;B0) similarly to obtain

|B0(F, G)| � ‖F‖L2(R;Ba) ‖G‖L2(R;B0) .

By symmetry (see Lemma 4.3.3), (iii) follows from (ii). To prove (iv),

successive applications of the triangle inequality, Cauchy-Schwarz inequality

and the dual (4.32) of the energy estimate give

|B0(F, G)| � ‖F‖L1(R;B0) ‖G‖L1(R;B0)
.

The technique used in (4.42) yields the result. This completes Step 3.
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To prove Theorem 4.5.1 it suffices to show (4.25). One would hope that

this could be achieved, via (4.39), by

|B(F, G)| ≤
∑
j∈Z

|Bj(F, G)|

�
∑
j∈Z

2−jβ(1/σ,1/σ) ‖F‖L2(R;B1/σ) ‖G‖L2(R;B1/σ)

� ‖F‖L2(R;B1/σ) ‖G‖L2(R;B1/σ) .

However, β(1/σ, 1/σ) = 0 so the sum diverges. Instead, we slightly perturb

the exponent pair (1/σ, 1/σ), obtaining three estimates of the form (4.39). An

abstract real interpolation argument, applied to the three estimates, then gives

the homogeneous Strichartz estimate for the endpoint.

Proof of Theorem 4.5.1. In light of Lemma 4.3.4 and the triangle inequality, it

suffices to show that

∑
j∈Z

|Bj(F, G)| � ‖F‖L2(R;B1/σ) ‖G‖L2(R;B1/σ)

whenever F and G belong to L2(R;B1/σ) ∩ L1(R;B0). Define a function B̃ on

L1(R;B0) × L1(R;B0) by B̃(F, G) = {Bj(F, G)}j∈Z. Recall the definition of �s
q

given by (3.6). If we can show that the map

B̃ : L2(R;B1/σ) × L2(R;B1/σ) → �1
0 (4.43)

is bounded then the proof will be complete.

By Lemma 4.5.2 there is a positive ε such that the map

B̃ : L2(R;Ba) × L2(R;Bb) → �∞β(a,b) (4.44)

is bounded for all (a, b) in the set Ψε. We carefully choose three points (a, b)

in Ψε so that interpolating between (4.44) for these three points gives (4.43).

Suppose that a0 = b0 = 1/σ + ε/3 and a1 = b1 = 1/σ − 2ε/3. Then

β(a0, b1) = β(a1, b0) �= β(a0, b0)
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and the maps

B̃ :L2(R;Ba0) × L2(R;Bb0) → �∞β(a0,b0)

B̃ :L2(R;Ba0) × L2(R;Bb1) → �∞β(a0,b1)

B̃ :L2(R;Ba1) × L2(R;Bb0) → �∞β(a1,b0)

are bounded by (4.44). From Theorem 3.2.4 we deduce that the map

B̃ :
(
L2(R;Ba0), L

2(R;Ba1)
)

η0,2
×
(
L2(R;Bb0), L

2(R;Bb1)
)

η1,2

→
(
�∞β(a0,b0), �

∞
β(a0,b1)

)
η,1

(4.45)

is bounded, where η0 = η1 = 1
3

and η = η0 + η1. It is easy to check that

(1 − η)β(a0, b0) + ηβ(a0, b1) = β(1/σ, 1/σ) = 0.

If we combine this with (3.7) then (4.45) simplifies to

B̃ : L2(R;B1/σ) × L2(R;B1/σ) → �1
0.

Hence (4.43) is bounded, as desired.

4.6 Proof of the inhomogeneous estimates

In this section, we prove the inhomogeneous Strichartz estimate (4.16) for σ-

admissible pairs. The problem of finding other exponent pairs for which (4.16)

is valid will be examined in Chapter 5.

Theorem 4.6.1. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the

energy estimate (4.10) and the untruncated decay estimate (4.11). If the pairs

(q, θ) and (q̃, θ̃) are sharp σ-admissible then the retarded Strichartz estimate

(4.16) and the bilinear estimate (4.21) hold.

Proof. Suppose that (q, θ) and (q̃, θ̃) are sharp σ-admissible. By Lemma 4.3.1

it suffices to show (4.21). Observe that (∞, 0) is sharp σ-admissible and that
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the three points (1/q′, θ), (1/q̃′, θ̃) and (1/∞′, 0) are therefore collinear. We

break the proof into three cases.

Case 1. If (q, θ) = (q̃, θ̃) then Theorem 4.4.1 implies that

|B(F, G)| � ‖F‖Leq′ (R;Beθ
) ‖G‖Leq′(R;Beθ

) (4.46)

and the proof is complete.

Case 2. Suppose that (1/q′, θ) lies closer to (1/∞′, 0) than does (1/q̃′, θ̃).

If F ∈ Leq′(R;Beθ)∩L1(R;B0) and G ∈ L1(R;B0) then the same argument used

to derive (4.41) gives

|B(F, G)| ≤
(

sup
t∈R

∥∥∥∥∫
s<t

U(s)∗F (s) ds

∥∥∥∥
H

)∫
R

‖U(t)∗G(t)‖H dt. (4.47)

We use Lemma 4.3.5 to estimate the first term of the product and use the dual

(4.32) of the energy estimate to estimate the second term. This gives

|B(F, G)| � ‖F‖Leq′ (R;Beθ
) ‖G‖L∞′(R;B0) . (4.48)

Complex interpolation (see Lemma 3.3.6) between (4.46) and (4.48) yields

(4.21).

Case 3. Finally, if (1/q̃′, θ̃) lies closer to (1/∞′, 0) than does (1/q′, θ) then

(4.21) follows from Case 2 and symmetry (see Lemma 4.3.2).

The proof of Theorem 4.2.2 is almost complete. We only need to show that

(4.16) holds for σ-admissible pairs under the truncated decay hypothesis (4.12).

The strategy will be to prove the bilinear estimate (4.21) for σ-admissible expo-

nents which lie on the boundary of the admissibility region and then interpolate

between them. We already have estimates for the boundary corresponding to

sharp σ-admissible pairs. The other necessary boundary estimates are deduced

in the following technical lemma, which is a crude variant of Lemma 4.5.2.

Lemma 4.6.2. Suppose that σ > 0, (q, θ) is nonsharp σ-admissible and (q̃, 1)

is σ-admissible. Then there exists a positive δ such that, for every j in Z,

|Bj(F, G)| � 2αj ‖F‖Leq′(R;B1) ‖G‖Lq′ (R;Bθ)

∀F ∈ Leq′(R;B1) ∩ L1(R;B0) ∀G ∈ Lq′(R;Bθ) ∩ L1(R;B0) (4.49)
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whenever α ∈ (−δ, δ).

Proof. We prove the lemma in three steps.

Step 1. Suppose that α ∈ R and j ∈ Z. We observe that if (4.49) holds

with the modification that every F and G is supported on an interval of length

2j, then (4.49) holds for any F and G. To establish this we adapt the approach

of Step 2 in the proof of Lemma 4.5.2. In this case, φ0 = 0 outside the interval

[−2j−2, 2j−1 + 2j−2] and φm(t) = φ0(t − m2j−1) whenever m ∈ Z and t ∈ R.

Step 2. Suppose that j ∈ Z and consider the inequality

|Bj(F, G)| � 2αj ‖F‖Leq′(R;B1) ‖G‖Lq′ (R;Ba)

∀F ∈ Leq′(R;B1) ∩ L1(R;B0) ∀G ∈ Lq′(R;Ba) ∩ L1(R;B0) (4.50)

We aim to show that (4.50) holds in the following cases:

(i) a = 0 and α = 1/q,

(ii) a = 1 and α = −σ + 1/q̃ + 1/q, and

(iii) a = 1 and α = 1/q̃ + 1/q.

In light of Step 1, we may assume in the following calculations that F and G

are supported on an interval of length 2j .

We establish (i) using the same argument employed to derive (4.41), fol-

lowed by an application of the dual (4.32) of the energy estimate. This yields

|Bj(F, G)| �

(
sup
t∈R

∥∥∥∥∫
t−2j+1<s<t−2j

U(s)∗F (s) ds

∥∥∥∥
H

)
‖G‖L1(R;B0) .

Since (q̃, 1) is σ-admissible, Theorem 4.4.2 gives

|Bj(F, G)| � ‖F‖Leq′ (R;B1) ‖G‖L1(R;B0) .

Now G is supported on an interval I of length 2j, so

‖G‖L1(R;B0)
= ‖1IG‖L1(R;B0) ≤ ‖1I‖Lq(R) ‖G‖Lq′ (R;B0) ≤ 2j/q ‖G‖Lq′(R;B0) ,

(4.51)
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where the first inequality is justified by Hölder’s inequality. This proves (i).

To prove (ii), we integrate (4.31) to get

|Bj(F, G)| � 2−jσ ‖F‖L1(R;B1)
‖G‖L1(R;B1) .

Using Hölder’s inequality as in (4.51) gives (ii).

Case (iii) may be proved by integrating (4.36) when θ = 1 to get

|Bj(F, G)| � ‖F‖L1(R;B1) ‖G‖L1(R;B1)

Once again, Hölder’s inequality is applied to yield the result.

Step 3. Interpolating between (i) and (iii) gives (4.50) when a = θ and

α = 1/q + θ/q̃ > 0. On the other hand, interpolating between (i) and (ii) gives

(4.50) when a = θ and

α = (1 − θ)
1

q
+ θ

(
−σ +

1

q̃
+

1

q

)
(4.52)

=

(
1

q
− σθ

2

)
+ θ

(
1

q̃
− σ

2

)
.

From the hypothesis, 1/q−σθ/2 < 0 and 1/q̃−σ/2 ≤ 0. Hence the α in (4.52)

is negative. The lemma now follows by interpolating between the case when

α > 0 and the case when α < 0.

Theorem 4.6.3. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the en-

ergy estimate (4.10) and the truncated decay estimate (4.12). Then the retarded

Strichartz estimate (4.16) holds for all σ-admissible pairs (q, θ) and (q̃, θ̃).

Proof. We will establish (4.21) for σ-admissible pairs (q, θ) and (q̃, θ̃). Every

σ-admissible pair is an interpolant between a sharp σ-admissible pair and a

σ-admissible pair (q, 1). Hence it suffices to show (4.21) when

(i) (q, θ) and (q̃, θ̃) are sharp σ-admissible,

(ii) (q, θ) and (q̃, θ̃) are σ-admissible and θ̃ = 1 and

(iii) (q, θ) and (q̃, θ̃) are σ-admissible and θ = 1.
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Case (i) is immediate from Theorem 4.6.1. For case (ii) there is, by Lemma

4.6.2, a negative α0 and a positive α1 such that

|B(F, G)| ≤
0∑

j=−∞

|Bj(F, G)| +
∞∑

j=1

|Bj(F, G)|

�

0∑
j=−∞

2α1j ‖F‖Leq′ (R;B1)
‖G‖Lq′ (R;Bθ)

+

∞∑
j=1

2α0j ‖F‖Leq′ (R;B1) ‖G‖Lq′(R;Bθ)

� ‖F‖Leq′(R;B1) ‖G‖Lq′ (R;Bθ) .

By symmetry (Lemma 4.3.2), case (iii) may be deduced from case (ii).

4.7 Application to the Schrödinger equation

To illustrate how Theorem 4.2.2 is applied to a concrete setting, we first exam-

ine the inhomogeneous Schrödinger equation in the Euclidean space Rn with

initial data. The results stated in this section are relatively well known (see,

for example, [42]).

Our strategy is to show that the evolution group {U(t) : t ≥ 0} on L2(Rn)

associated to the Schrödinger equation satisfies the energy estimate and un-

truncated decay estimate when σ = n/2, B0 = H = L2(Rn) and B1 = L1(Rn).

In these circumstances, the sharp σ-admissibility criteria correspond to the

following conditions on the time exponent q and the spatial exponent r.

Definition 4.7.1. Suppose that n ≥ 1. We say that a pair (q, r) of Lebesgue

exponents are Schrödinger n-admissible if q ∈ [2,∞],

1

q
+

n

2r
=

n

4
(4.53)

and (q, r, n) �= (2,∞, 2).

Corollary 4.7.2. Suppose that n ≥ 1 and that (q, r) and (q̃, r̃) are Schrödinger

n-admissible pairs. If f ∈ L2(Rn), F ∈ Leq′(R; Ler′(Rn)) and u is a (weak)
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solution to the problem⎧⎪⎨⎪⎩iu′(t) + Δu(t) = F (t) ∀t ∈ R

u(0) = f,

(4.54)

then

‖u‖Lq(R;Lr(Rn)) � ‖f‖L2(Rn) + ‖F‖Leq′ (R;Ler′(Rn)) . (4.55)

Conversely, if u is a weak solution to (4.54) and the estimate (4.55) holds for

all f in L2(Rn) and F in Leq′(R; Ler′(Rn)), then (q, r) and (q̃, r̃) are necessarily

Schrödinger n-admissible pairs.

Proof. Fix the spatial dimension n and suppose that f ∈ L2(Rn). Define the

family {U(t) : t ∈ R} by U(t)f = eitΔf and note that if u(t) = U(t)f , then u

is the solution to the homogeneous initial value problem⎧⎪⎨⎪⎩iu′(t) + Δu(t) = 0 ∀t ∈ R

u(0) = f.

(4.56)

If F ∈ Leq′([0, T ]; Ler′(Rn)) for some exponents q̃ and r̃, then by Duhamel’s

principle the solution u to the inhomogeneous initial value problem (4.54) may

be formally written as

u(t) = eitΔf − i

∫ t

−∞

ei(t−s)ΔF (s) ds

= Tf(t) − i(TT ∗)RF (t) ∀t ∈ R,

where T is the operator introduced in Section 4.2. The right-hand side will be

estimated by Theorem 4.2.2 once we demonstrate that the hypotheses of the

theorem are satisfied.

First, the Fourier transform F gives the identity

F
(
U(t)g

)
(ξ) = eit|ξ|2Fg(ξ)

whenever g ∈ L2(Rn) and t ≥ 0, and Plancherel’s theorem now gives

‖U(t)g‖L2(Rn) = ‖F(U(t)g)‖L2(Rn) = ‖Fg‖L2(Rn) = ‖g‖L2(Rn) .
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Hence {U(t) : t ∈ R} satisfies the energy estimate. Second, Plancherel’s theo-

rem and the above identity also shows that {U(t) : t ∈ R} satisfies the group

property

U(t)U(s)∗ = U(t − s) ∀s, t ∈ R. (4.57)

If we combine this with the explicit representation

eitΔg(x) = (2πit)−n/2

∫
Rn

e−
|x−y|2

2it g(y) dy

of the Schrödinger evolution operator, then

‖U(t)U(s)∗g‖L∞(Rn) =
∥∥ei(t−s)Δg

∥∥
L∞(Rn)

� |t − s|−n/2 ‖g‖L1(Rn) ∀ real s �= t.

Hence {U(t) : t ∈ R} satisfies the dispersive estimate (4.11). We may now

apply Theorem 4.2.2 when σ = n/2, H = L2(Rn), B0 = L2(Rn) and B1 =

L1(Rn) so that

‖u‖Lq(R;B∗
θ ) ≤ ‖Tf‖Lq(R;B∗

θ ) + ‖(TT ∗)RF‖Lq′ (R;B∗
θ )

� ‖f‖L2(Rn) + ‖F‖Leq′ (R;Beθ
)

whenever (q, θ) and (q̃, θ̃) are sharp (n/2)-admissible. Now

Bθ =
(
L2(Rn), L1(Rn)

)
θ,2

= Lr′,2(Rn) ⊃ Lr′(Rn),

where 1/r′ = (1− θ)/2 + θ/1 and the inclusion is continuous (see Section 3.3).

It is not hard to show that (q, r) is Schrödinger n-admissible if and only if (q, θ)

is sharp (n/2)-admissible and 1/r′ = (1−θ)/2+ θ/1. This completes the proof

of the first half of the corollary.

To prove the converse, suppose that u is a solution to the initial valuable

problem (4.54) satisfying (4.55) for all forcing terms F in Leq′(R; Ler′(Rn)) and

all initial data f in L2(Rn). Since the solution u can be written in the form

u(t) = Tf(t) − i(TT ∗)RF (t),

the Strichartz estimate (4.55) implies that

‖Tf‖Lq(R;Lr(Rn)) � ‖f‖L2(Rn) (4.58)
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and

‖(TT ∗)RF‖Lq(R;Lr(Rn)) � ‖F‖Leq′(R;Ler′(Rn)) (4.59)

by taking F equal to 0 and f equal to 0 respectively.

We first show that (q, r) is Schrödinger n-admissible. By interpreting u as

a function (t, x) �→ u(t, x) of time t and spatial position x in Rn, we see that

the initial value problem⎧⎪⎨⎪⎩
i
∂u

∂t
(t, x) + Δu(t, x) = 0 ∀t ∈ R ∀x ∈ Rn

u(0, x) = f(x)

is invariant under the rescaling t ← λ2t and x ← λx. If this rescaling is applied

to (4.58) then

λ−(n/r+2/q) ‖Tf‖Lq(R;Lr(Rn)) ≤ Cλ−n/2 ‖f‖L2(Rn) .

Hence n/r + 2/q = n/2, which is equivalent to (4.53). The negative result of

[51] shows that the estimate ‖Tf‖Lq(R;Lr(Rn)) � ‖f‖L2(Rn) cannot hold when

(q, r, n) = (2,∞, 2). Finally, since the operator (TT ∗)R is translation invariant

(see Lemma 4.3.6) and satisfies (4.59), it follows from Lemma 3.5.2 that q ≥ q ′.

This shows that q ≥ 2. Hence (q, r) is Schrödinger n-admissible.

To show that (q̃, r̃) is Schrödinger n-admissible, we use the duality and time

reversing arguments of Section 4.3 (see especially Lemma 4.3.2 and its proof).

Explicitly, the solution v to the initial value problem⎧⎪⎨⎪⎩iv′(t) − Δv(t) = F (t) ∀t ∈ R

v(0) = f

is given by v(t) = Sf(t)+(SS∗)RF (t) where V (t) = U(−t) and Sf(t) = V (t)f .

The operator norms of S and T are equal while the operator norms of (SS∗)A

and (TT ∗)R are equal. The estimate (4.58) gives

‖Sf‖Lq(R;Lr(Rn)) = ‖Tf‖Lq(R;Lr(Rn)) � ‖f‖L2(Rn) ∀f ∈ L2(Rn),
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while (4.59) yields

‖(SS∗)AF‖Lq(R;Lr(Rn)) = ‖(TT ∗)RF0‖Lq(R;Lr(Rn)) � ‖F‖Leq′ (R;Ler′(Rn))

∀F ∈ Leq′(R; Ler′(Rn)),

where F0(t) = F (−t). By duality,

‖(SS∗)RF‖Leq′(R;Ler′(Rn)) � ‖F‖Lq(R;Lr(Rn)) ∀F ∈ Lq(R; Lr(Rn)).

Hence

‖v‖Leq(R;Ler(Rn)) � ‖f‖L2(Rn) + ‖F‖Lq′(R;Lr′(Rn))

∀f ∈ L2(Rn) ∀F ∈ Lq(R; Lr(Rn))

and we may repeat the arguments in the preceding paragraph to show that

(q̃, r̃) is Schrödinger n-admissible.

Remark 4.7.3. The Strichartz estimates (4.5), (4.6) and (4.7) for the meson

equation in R2 are obtained from Corollary 4.7.2 by noticing that the exponent

pair (4, 4) is Schrödinger 2-admissible.

4.8 Application to the wave equation

Strichartz estimates for the wave equation may be found using the truncated

decay hypothesis (see the approach of Keel and Tao in [42, Section 8]). Instead,

we show that they can be found using the untruncated decay hypothesis and

Besov spaces. The results obtained are exactly those stated in [28], with the

exception that we now also have the Strichartz estimate corresponding to the

endpoint P . The material of this section will also lay the groundwork for

Section 5.8, where new Strichartz estimates are obtained for the inhomogeneous

wave equation with zero initial data. Before reading this section, it is vital that

the reader is familiar with Besov spaces (see Section 3.4).
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Figure 4.3: Wave admissible pairs (q, r) when n > 3.

Corollary 4.8.1. Suppose that n ≥ 1, that μ, ρ, ρ̃ ∈ R, that q, q̃ ∈ [2,∞] and

that the following conditions are satisfied:

q ≥ 2, q̃ ≥ 2,

1

q
≤ n − 1

2

(
1

2
− 1

r

)
,

1

q̃
≤ n − 1

2

(
1

2
− 1

r̃

)
,

(q, r, n) �= (2,∞, 3), (q̃, r̃, n) �= (2,∞, 3),

ρ + n

(
1

2
− 1

r

)
− 1

q
= μ = 1 −

(
ρ̃ + n

(
1

2
− 1

r̃

)
− 1

q̃

)
. (4.60)

Suppose also that f ∈ Ḣμ, g ∈ Ḣμ−1 and F ∈ Leq′(R; B−eρ
er′,2). If u is a (weak)

solution to the initial value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−u′′(t) + Δu(t) = F (t)

u(0) = f

u′(0) = g

(4.61)

then

‖u‖Lq(R;Ḃρ
r,2) � ‖f‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖

Leq′(R;Ḃ−eρ

er′,2
)
. (4.62)

The closed region in Figure 4.3 represents the range of exponent pairs (q, r)

and (q̃, r̃) such that the Strichartz estimate (4.62) is valid.

Remark 4.8.2. Corollary 4.8.1 implies Strichartz estimates for spaces more fa-

miliar than the Besov spaces. By Besov–Sobolev embedding, estimate (4.62)

still holds when Ḃρ
r,2 is replaced everywhere by Ḣρ

r under the additional as-

sumption that r < ∞ and r̃ < ∞. In fact, using Sobolev embedding, one can
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deduce that

‖u‖Lq(R;Lr(Rn)) � ‖f‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖Leq′ (R;Ler′(Rn))

under the additional assumption that r < ∞ and r̃ < ∞. One may also replace

the infinite interval R by any finite time interval [0, τ ] where τ > 0. See [42,

Corollary 1.3] and [28] for these variations.

We begin with a heuristic argument to indicate how Theorem 4.2.2 will be

applied in this setting. For convenience, write ω for the operator (−Δ)1/2. The

homogeneous problem may be written as

v′′(t) + ω2v(t) = 0, v(0) = f, v′(0) = g,

with solution v is given by

v(t) = cos(ωt)h1 + sin(ωt)h2

for some functions h1 and h2 determined by imposing initial conditions. Hence

v(t) = cos(ωt)f + ω−1 sin(ωt)g.

The inhomogeneous problem

−w′′(t) + Δw(t) = F (t), w(0) = 0, w′(0) = 0

may be solved by Duhamel’s principle to give

w(t) =

∫
s<t

ω−1 sin
(
ω(t − s)

)
F (s) ds.

Define {U(t) : t ∈ R} by U(t) = eiωt. Then the solution u to problem (4.61)

can be written as

u(t) = v(t) + w(t)

=
1

2

(
U(t) + U(−t)

)
f + ω−1 1

2i

(
U(t) − U(−t)

)
g

+

∫
s<t

ω−1 1

2i

(
U(t)U(s)∗ − U(−t)U(−s)∗

)
F (s) ds (4.63)
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and it is clear that if we have appropriate Strichartz estimates for the group

{U(t) : t ∈ R} then (4.62) will follow.

In what follows, let ϕj and ϕ̃j denote the Littlewood–Paley functions of

Section 3.4. We define the operator T by Tf(t) = U(t)f , whenever f belongs

to the Hilbert space Ḃ0
2,2.

Lemma 4.8.3. Suppose that n ≥ 1 and that the triples (q, r, γ) and (q̃, r̃, γ̃)

satisfy the conditions

q ≥ 2, q̃ ≥ 2, (4.64)

1

q
=

n − 1

2

(
1

2
− 1

r

)
,

1

q̃
=

n − 1

2

(
1

2
− 1

r̃

)
, (4.65)

γ =
n + 1

2

(
1

2
− 1

r

)
, γ̃ =

n + 1

2

(
1

2
− 1

r̃

)
, (4.66)

(q, r, n) �= (2,∞, 3), (q̃, r̃, n) �= (2,∞, 3). (4.67)

Then the operator T satisfies the Strichartz estimates

‖Tf‖Lq(R;Ḃ−γ
r,2 ) � ‖f‖Ḃ0

2,2
∀f ∈ Ḃ0

2,2 (4.68)

and

‖(TT ∗)RF‖Lq(R;Ḃ−γ
r,2 ) � ‖F‖

Leq′ (R;Ḃeγ

er′,2
)

∀F ∈ Leq′(R; Ḃeγ
er′,2). (4.69)

Proof. We begin with the stationary phase estimate

sup
x∈Rn

∣∣∣∣∫
ξ∈Rn

exp(it|ξ| + i 〈x, ξ〉)ϕ̂0(ξ) dξ

∣∣∣∣ ≤ C|t|−(n−1)/2,

where C is a positive constant (see, for example, [35, Section 7.7]). For j in Z,

apply the scaling ξ ← 2−jξ, x ← 2jx, t ← 2jt to obtain

sup
x∈Rn

2−jn

∣∣∣∣∫
ξ∈Rn

exp(it|ξ| + i 〈x, ξ〉)ϕ̂j(ξ) dξ

∣∣∣∣ ≤ C|t|−(n−1)/22−j(n−1)/2.

The above estimate may be rewritten as

‖U(t)ϕj‖L∞(Rn) � |t|−(n−1)/22j(n+1)/2.
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If f is a sufficiently regular function (or distribution) in the spatial variable

then

‖ϕj ∗ U(t)f‖L∞(Rn) = ‖ϕj ∗ U(t)ϕ̃j ∗ f‖L∞(Rn)

≤ ‖U(t)ϕj‖L∞(Rn) ‖ϕ̃j ∗ f‖L1(Rn)

� |t|−(n−1)/22j(n+1)/2 ‖ϕ̃j ∗ f‖L1(Rn) , (4.70)

by (3.9) and Young’s inequality. Multiplying by 2j(n+1)/4 gives∥∥2−j/2ϕj ∗ U(t)f
∥∥

L∞(Rn)
� |t|−(n−1)/2

∥∥2jn/2ϕ̃j ∗ f
∥∥

L1(Rn)
,

where the left- and right-hand sides define the jth term of two sequences. If we

take the �2 norm of each sequence and apply (3.8), then the above inequality

yields

‖U(t)f‖
Ḃ

−(n+1)/4
∞,2

� |t|−(n−1)/2 ‖f‖
Ḃ

(n+1)/4
1,2

∀f ∈ Ḃ
(n+1)/4
1,2 . (4.71)

This corresponds to the abstract untruncated decay estimate (4.11).

On the other hand, each U(t) is an isometry on the homogeneous Sobolev

space Ḣ0 and hence we have the energy estimate

‖U(t)f‖Ḃ0
2,2

� ‖f‖Ḃ0
2,2

∀f ∈ Ḃ0
2,2,

by (3.13). If H = B0 = Ḃ0
2,2 and B1 = Ḃ

(n+1)/4
1,2 then

Ḃγ
r′,2 ⊆ Bθ = (B0,B1)θ,2

by (3.11), where 1/r′ = (1 − θ)/2 + θ and γ = (n + 1)θ/4. It is not hard to

show from here that the sharp case of Theorem 4.2.2 proves the lemma.

Proof of Corollary 4.8.1. It is well known that if μ ∈ R, then ωμ is an isomor-

phism from Ḃγ
r,2 to Ḃγ−μ

r,2 . Hence replacing f with ωμf in (4.68) gives

‖Tf‖Lq(R;Ḃ−γ+μ
r,2 ) � ‖f‖Ḃμ

2,2
∀f ∈ Ḃμ

2,2.

The same trick applied to (4.69) yields

‖(TT ∗)RF‖Lq(R;Ḃ−γ+μ
r,2 ) � ‖F‖

Leq′ (R;Ḃeγ+μ

er′,2
)

∀F ∈ Leq′(R; Ḃeγ+μ
er′,2 ).
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If ρ = −γ + μ then these estimates combine with (4.63) to give

‖u‖Lq(R;Ḃρ
r,2) � ‖Tf‖Lq(R;Ḃρ

r,2) +
∥∥ω−1Tg

∥∥
Lq(R;Ḃρ

r,2)
+
∥∥ω−1(TT ∗)RF

∥∥
Lq(R;Ḃρ

r,2)

� ‖f‖Ḃμ
2,2

+
∥∥ω−1g

∥∥
Ḃμ

2,2
+
∥∥ω−1F

∥∥
Leq′ (R;Ḃeγ+μ

er′,2
)

� ‖f‖Ḃμ
2,2

+ ‖g‖Ḃμ−1
2,2

+ ‖F‖
Leq′(R;Ḃeγ+μ−1

er′,2
)
.

If ρ̃ = −(γ̃ + μ − 1) then the estimate above becomes

‖u‖Lq(R;Ḃρ
r,2) � ‖f‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖

Leq′(R;Ḃ−eρ

er′,2
)
. (4.72)

So far we have imposed the conditions μ ∈ R, (4.64), (4.65), (4.67) and

ρ +
n + 1

2

(
1

2
− 1

r

)
= μ = 1 − ρ̃ − n + 1

2

(
1

2
− 1

r̃

)
.

This last condition may be rewritten as

ρ + n

(
1

2
− 1

r

)
− 1

q
= μ = 1 − ρ̃ − n

(
1

2
− 1

r̃

)
+

1

q̃
.

Now if r1 ≥ r and ρ − n/r = ρ1 − n/r1, then

‖u‖Lq(R;Ḃ
ρ1
r1,2)

≤ C ‖u‖Lq(R;Ḃρ
r,2)

by Lemma 3.4.2. Similarly, if r̃1 ≥ r̃ and ρ̃ − n/r̃ = ρ̃1 − n/r̃1, then

‖F‖
Leq′(R;Ḃ−eρ

er′,2
)
≤ C ‖F‖

Leq′ (R;Ḃ
eρ1
er′1,2

)
.

Applying these estimates to (4.72) gives

‖u‖Lq(R;Ḃ
ρ1
r1,2) � ‖f‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖

Leq′ (R;Ḃ
−eρ1
er′
1

,2
)

(4.73)

whenever the conditions

q ≥ 2, q̃ ≥ 2,

1

q
≤ n − 1

2

(
1

2
− 1

r1

)
,

1

q̃
≤ n − 1

2

(
1

2
− 1

r̃1

)
,

(q, r1, n) �= (2,∞, 3), (q̃, r̃1, n) �= (2,∞, 3),

ρ1 + n

(
1

2
− 1

r1

)
− 1

q
= μ = 1 − ρ̃1 − n

(
1

2
− 1

r̃1

)
+

1

q̃

are satisfied. These conditions and the Strichartz estimate (4.73) coincide with

those in the statement of Corollary 4.8.1.
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Remark 4.8.4. One can see from (4.63) that the derivative u′ can also be ex-

pressed in terms of T , (TT ∗)R and ω. Thus we have the Strichartz estimate

‖u′‖Lq(R;Ḃρ−1
r,2 ) � ‖f‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖

Leq′(R;Ḃ−eρ

er′,2
)
.

whenever the exponents satisfy the conditions of Corollary 4.8.1.
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Chapter 5

Inhomogeneous Strichartz

estimates

It was remarked by Keel and Tao in [42] that, assuming the energy and one of

the dispersive estimates, the inhomogeneous Strichartz estimate (4.16) holds

for exponent pairs (q, θ) and (q̃, θ̃) other than those satisfying the admissibility

criteria of Theorem 4.2.2. Suppose, in the notation of Section 4.2, that B0 =

L2(X) and B1 = L1(X) for some measure space X. It was the aim of D.

Foschi to find the largest range of pairs (q, θ) and (q̃, θ̃) which guarantees the

validity of the inhomogeneous Strichartz estimate (4.16), assuming only the

energy estimate (4.10) and the untruncated decay estimate (4.11). He made

substantial progress in this direction in [24] by using techniques introduced

by Keel and Tao [42]. Independently of but simultaneously to Foschi, M.

Vilela [75] also obtained similar results for solutions to the inhomogeneous

Schrödinger equation.

In this chapter we show that much of the argument of [24] can be adapted

to a more general setting where (B0,B1) is a Banach couple. Where Foschi’s

argument cannot be generalised, we instead use abstract methods introduced

in [42]. As a result, we are able to obtain new Strichartz estimates for the wave

equation and a range of other equations.

The structure of the chapter is as follows. In Section 5.1, we announce
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Figure 5.1: σ-acceptable pairs (q, θ) for different values of σ.

the main result. This will be proved in Sections 5.2, 5.3 and 5.4. We present

an alternate proof of part of the main theorem in Section 5.6 using p-atomic

decompositions. The sharpness of the main theorem will be discussed in Section

5.7. Finally, in the last two sections we apply the result to the Schrödinger

equation, wave equation, Klein–Gordon equation and Schrödinger equation

with potential.

5.1 Global and local inhomogeneous Strichartz

estimates

Our aim is to find exponent pairs (q, θ) and (q̃, θ) other than those which are

σ-admissible such that the inhomogeneous Strichartz estimate (4.16) holds.

With this is mind we give the following definition.

Definition 5.1.1. Suppose that σ > 0. We say that a pair (q, θ) of exponents

is σ-acceptable if either

1 ≤ q < ∞, 0 ≤ θ ≤ 1,
1

q
< σθ

or (q, θ) = (∞, 0).

The shaded regions of Figure 5.1 represent the set of σ-acceptable pairs

(q, θ) for different values of σ. The closed line segments OQ and OR correspond

to the sharp σ-admissible pairs in each case.
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If (B0,B1) is a Banach interpolation couple then we write Bθ,q for (B0,B1)θ,q.

As was the case in Chapter 4, we shall continue to denote (B0,B1)θ,2 by Bθ.

The main result of this chapter, given by the following theorem, extends the

work of D. Foschi [24, Theorem 1.4].

Theorem 5.1.2. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the

energy estimate (4.10) and the untruncated decay estimate (4.11). Suppose

also that the exponents pairs (q, θ) and (q̃, θ̃) are σ-acceptable and satisfy the

scaling condition
1

q
+

1

q̃
=

σ

2
(θ + θ̃). (5.1)

(i) If
1

q
+

1

q̃
< 1, (5.2)

(σ − 1)(1 − θ) ≤ σ(1 − θ̃), (σ − 1)(1 − θ̃) ≤ σ(1 − θ), (5.3)

and, in the case when σ = 1, we have θ < 1 and θ̃ < 1, then the

inhomogeneous Strichartz estimate (4.16) holds.

(ii) If q, q̃ ∈ (1,∞),
1

q
+

1

q̃
= 1 (5.4)

and

(σ − 1)(1 − θ) < σ(1 − θ̃), (σ − 1)(1 − θ̃) < σ(1 − θ) (5.5)

then the inhomogeneous Strichartz estimate

‖(TT ∗)RF‖Lq(R;(Bθ,q′ )
∗) � ‖F‖Leq′ (R;Beθ,eq′

) ∀F ∈ Leq′(R;Beθ,eq′)∩L1(R;B0)

(5.6)

holds.

Remark 5.1.3. Suppose that the scaling condition (5.1) holds. Then the expo-

nent conditions appearing in (i) and (ii) above are always satisfied if σ < 1 or

if σ = 1, θ < 1 and θ̃ < 1.

109



Remark 5.1.4. Condition (5.1) is a consequence of the invariance of (4.16) with

respect to the rescaling (4.29). In fact, (5.1) and (5.4) are necessary conditions

(see Section 5.7). The combination of these two conditions have the following

geometric interpretation: if the points (1/q, θ) and (1/q̃, θ̃) satisfy (5.1) and

(5.4), then their midpoint is a sharp σ-admissible pair.

Remark 5.1.5. By specialising Theorem 5.1.2 to the case when (B0,B1) =

(L2(X), L1(X)), where X is a measure space X, we recover the results [24,

Theorem 1.4] of Foschi.

As in [24], our proof that global inhomogeneous Strichartz estimates of

Theorem 5.1.2 exist is based on the existence of localised inhomogeneous es-

timates given by the theorem below. In Chapter 5, these localised estimates

will play the same role as did those Strichartz estimates obtained in Chapter 4

for functions having compact support (see, for example, the proofs of Lemma

4.5.2 and Lemma 4.6.2).

Theorem 5.1.6. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the

energy estimate (4.10) and the untruncated decay estimate (4.11). Assume also

that I and J are two time intervals of unit length separated by a distance of scale

1 (that is, |I| = |J | = 1 and dist(I, J) ≈ 1). Then the local inhomogeneous

Strichartz estimate

‖TT ∗F‖Lq(J ;B∗
θ ) � ‖F‖Leq′ (I;Beθ

) ∀F ∈ Leq′(I;Beθ) ∩ L1(I;B0) (5.7)

holds whenever the pairs (q, θ) and (q̃, θ̃) satisfy the conditions

q, q̃ ∈ [1,∞], θ, θ̃ ∈ [0, 1], (5.8)

(σ − 1)(1 − θ) ≤ σ(1 − θ̃), (σ − 1)(1 − θ̃) ≤ σ(1 − θ), (5.9)

1

q
≥ σ

2
(θ − θ̃),

1

q̃
≥ σ

2
(θ̃ − θ). (5.10)

If σ = 1 then θ and θ̃ must be strictly less than 1.

The range of possible values of θ and θ̃ that give local and global inhomo-

geneous estimates is compared in Figure 5.2. Region AOEC represents sharp
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Figure 5.2: The range for exponents θ and θ̃ when σ > 1.

σ-admissible exponents, region AOEDB represents exponents for the global

estimates of Theorem 5.1.2 and region AOEF represents exponents for the

local estimates of Theorem 5.1.6. The boundaries of each region are included

except at the points B and D for the global estimates.

Remark 5.1.7. The requirement in the hypothesis that dist(I, J) ≈ 1 is due to

the lack of integrability of the dispersion estimate (4.11) when s is close to t

(see (5.13)). This condition can be removed if σ < 1.

Remark 5.1.8. If one assumes the scaling condition (5.1) then strict inequalities

in conditions (5.8) and (5.10) are equivalent to saying that the pairs (q, θ) and

(q̃, θ̃) are σ-acceptable.

We prove Theorem 5.1.2 over the next three sections. Section 5.2 gives

a proof of Theorem 5.1.6 by interpolating between the local inhomogeneous

estimate (5.7) when the exponents are σ-admissible and when (q, θ; q̃, θ̃) =

(∞, 1;∞, 1). In Section 5.3 we show how the global inhomogeneous estimate

(4.16) can be decomposed as a sum of local estimates via a dyadic Whitney

decomposition. These sections closely follow the approach of Foschi [24, Sec-

tions 2 and 3]. Section 5.4 marks a departure from Foschi’s method. Here we

show, using abstract real interpolation, how the local estimates and Whitney

decomposition combine to prove Theorem 5.1.2. While we could stop there,

we choose to present an alternate proof of some of the global estimates to illus-
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trate other available techniques. The main technique, first introduced to the

Strichartz community by Keel and Tao [42] and known as p-atomic decomposi-

tion of functions in Lp, is given in Section 5.5. This alternate proof of Theorem

5.1.2 (i) is presented in Section 5.6.

5.2 Proof of the local Strichartz estimates

Given two intervals I and J of R, write Q = I×J and define BQ by the formula

BQ(F, G) = B(1IF, 1JG) =

∫∫
(s,t)∈I×J

〈U(s)∗F (s), U(t)∗G(t)〉 ds dt (5.11)

whenever F and G belong to L1(R;B0). One can easily show (using calculations

similar to those of Section 4.3) that the local inhomogeneous estimate (5.7) is

equivalent to the bilinear estimate

|BQ(F, G)| � ‖F‖Leq′(I;Beθ
) ‖G‖Lq′ (J ;Bθ)

∀F ∈ Leq′(I;Beθ) ∩ L1(I;B0) ∀G ∈ Lq′(J ;Bθ) ∩ L1(J ;B0). (5.12)

We use this equivalence to prove results in this and subsequent sections.

Proof of Theorem 5.1.6. Suppose that I and J are two intervals satisfying the

hypothesis of the theorem and write Q = I ×J . Let Ψ denote the set of points

(1/q, θ; 1/q̃, θ̃) in [0, 1]4 corresponding to the pairs (q, θ) and (q̃, θ̃) for which

estimate (5.7), or its bilinear equivalent (5.12), is valid.

If we apply the bilinear version (4.31) of the dispersive estimate then

|BQ(F, G)| �

∫
J

∫
I

|t − s|−σ ‖F (s)‖B1
‖G(t)‖B1

ds dt

� ‖F‖L1(I;B1)
‖G‖L1(J ;B1) . (5.13)

Hence (0, 1; 0, 1) ∈ Ψ. On the other hand, if the homogeneous Strichartz

estimate (4.15) of Theorem 4.2.2 is applied then

|BQ(F, G)| ≤
∥∥∥∥∫

I

U(s)∗F (s) ds

∥∥∥∥
H

∥∥∥∥∫
J

U(t)∗G(t) ds

∥∥∥∥
H

� ‖F‖Leq′ (I;Beθ
) ‖G‖Lq′ (J ;Bθ) (5.14)

112



whenever (q, θ) and (q̃, θ̃) are sharp σ-admissible. Complex interpolation (see

Lemma 3.3.6) between (5.13) and (5.14) shows that Ψ contains the convex hull

of the set

(0, 1; 0, 1)∪
{

(1/q, θ; 1/q̃, θ̃) : (q, θ) and (q̃, θ̃) are σ-admissible pairs
}

. (5.15)

Since G is restricted to a unit time interval, Hölder’s inequality gives

‖G‖Lq′ (J ;Bθ) = ‖1JG‖Lq′ (J ;Bθ) ≤ ‖1J‖Lr′(J) ‖G‖Lp′(J ;Bθ) � ‖G‖Lp′ (J ;Bθ)

whenever 1/q′ = 1/r′ + 1/p′. We can always perform this calculation provided

that p ≤ q. Similarly, if p̃ ≤ q̃ then

‖F‖Leq′ (I;Beθ
) � ‖F‖Lep′ (I;Beθ

) .

Hence if (1/q, θ; 1/q̃, θ̃) ∈ Ψ then (1/p, θ; 1/p̃, θ̃) ∈ Ψ whenever p ≤ q and

p̃ ≤ q̃. If we apply this property to the points of the convex hull of (5.15)

then we obtain a set Ψ∗, contained in Ψ, that is described precisely by the

conditions appearing in Theorem 5.1.6. Details of this computation are given

in the following lemma.

Lemma 5.2.1. The set Ψ∗, defined in the proof above, is precisely the set of

all (q, θ; q̃, θ̃) in [0, 1]4 which satisfy the conditions on q, q̃, θ and θ̃ given in

statement of Theorem 5.1.6.

Proof. We will construct the set Ψ∗ in three steps.

First, Ψ∗ contains the point (1/p, φ; 1/p̃, φ̃) when the pairs (p, φ) and (p̃, φ̃)

are sharp σ-admissible. The collection of such points is a square in [0, 1]4

defined by

1

p
=

σφ

2
,

1

p̃
=

σφ̃

2
,

1

p
,
1

p̃
∈
[
0,

1

2

]
, φ, φ̃ ∈ [0, 1] (5.16)

and if σ = 1 then we require that (p, φ) �= (2, 1) and (p̃, φ̃) �= (2, 1).

Second, Ψ∗ contains the convex hull of the above square with the point

(0, 1; 0, 1). These are points of the form(
α/p, 1 + α(φ − 1); α/p̃, 1 + α(φ̃ − 1)

)
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where (p, φ) and (p̃, φ̃) satisfy (5.16) and 0 ≤ α ≤ 1.

Third, Ψ∗ contains points of the form (1/q, θ; 1/q̃, θ̃) where

1

q
≥ α

p
, θ = 1 + α(φ − 1),

1

q̃
≥ α

p̃
, θ = 1 + α(φ̃ − 1).

Hence Ψ∗ is the set of points (1/q, θ; 1/q̃, θ̃) in [0, 1]4 for which there exist

p, p̃, θ, θ̃ and α such that

1

p
=

σφ

2
,

1

p̃
=

σφ̃

2
,

1

p
,
1

p̃
∈
[
0,

1

2

]
, φ, φ̃, α ∈ [0, 1],

1

q
≥ α

p
,

1

q̃
≥ α

p̃
,

θ = 1 + α(φ − 1), θ = 1 + α(φ̃ − 1),

and if σ = 1 then we require that φ �= 1 and φ̃ �= 1. We will show that this

description is identical to the one given by the conditions of Theorem 5.1.6.

The last two equalities can be used to eliminate φ and φ̃:

α

p
=

σ

2
(θ + α − 1),

α

p̃
=

σ

2
(θ̃ + α − 1),

1

p
,
1

p̃
∈
[
0,

1

2

]
, θ, θ̃ ∈ [1 − α, 1],

1

q
≥ α

p
,

1

q̃
≥ α

p̃
,

α ∈ [0, 1].

Eliminate p and p̃ using the first two inequalities:

0 ≤ σ

2
(θ + α − 1) ≤ α

2
, 0 ≤ σ

2
(θ̃ + α − 1) ≤ α

2
,

α ∈ [0, 1], θ, θ̃ ∈ [1 − α, 1],

1

q
≥ σ

2
(θ + α − 1),

1

q̃
≥ σ

2
(θ̃ + α − 1).

If we rearrange the inequalities we get

α ∈ [0, 1],

1 − α ≤ θ ≤ α(1/σ − 1) + 1, 1 − α ≤ θ̃ ≤ α(1/σ − 1) + 1,

1

q
+

σ

2
(1 − θ) ≥ σα

2
,

1

q̃
+

σ

2
(1 − θ̃) ≥ σα

2
.
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The quantity α is isolated:

0 ≤ α ≤ 1,

1 − θ ≤ α ≤ σ(1 − θ)

σ − 1
, 1 − θ̃ ≤ α ≤ σ(1 − θ̃)

σ − 1
,

α ≤ 2

σq
+ 1 − θ, α ≤ 2

σq̃
+ 1 − θ̃.

Now there exists some α which satisfies the above system of inequalities if and

only if any expression which appears on the left of α in these inequalities is

less than or equal to any expression which appears on the right. This means

that

0 ≤ σ(1 − θ)

σ − 1
, 0 ≤ σ(1 − θ̃)

σ − 1

1 − θ ≤ σ(1 − θ̃)

σ − 1
, 1 − θ̃ ≤ σ(1 − θ)

σ − 1
,

1 − θ̃ ≤ 2

σq
+ 1 − θ, 1 − θ ≤ 2

σq̃
+ 1 − θ̃.

We rearrange these inequalities into their final form:

θ ≤ 1, θ̃ ≤ 1,

(σ − 1)(1 − θ) ≤ σ(1 − θ̃), (σ − 1)(1 − θ̃) ≤ σ(1 − θ),

1

q
≥ σ

2
(θ − θ̃),

1

q̃
≥ σ

2
(θ̃ − θ).

We recall that if σ = 1 then θ �= 1 and θ̃ �= 1. It is now clear that these

conditions coincide with those given in the statement of Theorem 5.1.6.

Recall (see Proposition 4.3.7) that the energy estimate (4.10) and untrun-

cated decay estimate (4.11) are invariant with respect to the rescaling (4.29).

We shall apply this scaling to the local inhomogeneous estimate (5.7) to obtain

a version of Theorem 5.1.6 for intervals I and J that don’t have unit length.

115



When scaling (4.29) is applied, (5.7) becomes

λ−σθ/2

(∫
J

∥∥∥∥∫
R

U(t/λ)U(s/λ)∗F (s) ds

∥∥∥∥q

B∗
θ

dt

)1/q

≤ Cλσeθ/2 ‖F‖Leq′(I;Beθ
) .

The substitution s �→ λs gives

λ−σθ/2+1

(∫
J

‖(TT ∗F0)(t/λ)‖q
B∗

θ
dt

)1/q

≤ Cλσeθ/2+1/eq′ ‖F0‖Leq′ (λ−1I;Beθ
)

where F0(s) = F (λs). A further substitution t �→ λt yields

λ−σθ/2+1+1/q ‖TT ∗F0‖Lq(λ−1J ;B∗
θ) ≤ Cλσeθ/2+1−1/eq ‖F0‖Leq′ (λ−1I;Beθ

) .

Hence

‖TT ∗F0‖Lq(λ−1J ;B∗
θ) ≤ Cλ−β(q,θ;eq,eθ) ‖F0‖Leq′(λ−1I;Beθ

)

where

β(q, θ; q̃, θ̃) =
1

q
+

1

q̃
− σ

2
(θ + θ̃). (5.17)

If we replace λ with λ−1 in the last inequality then we obtain the following

proposition.

Proposition 5.2.2. Suppose that σ > 0, λ > 0 and {U(t) : t ∈ R} satisfies the

energy estimate (4.10) and the untruncated decay estimate (4.11). Assume also

that I and J are two time intervals of length λ separated by a distance of scale

λ (that is, |I| = |J | = λ and dist(I, J) ≈ λ). Then the local inhomogeneous

Strichartz estimate

‖TT ∗F‖Lq(J ;B∗
θ ) � λβ(q,θ;eq,eθ) ‖F‖Leq′ (I;Beθ

) ∀F ∈ Leq′(I;Beθ)∩L1(I;B0) (5.18)

holds whenever the pairs (q, θ) and (q̃, θ̃) satisfy the conditions appearing in

Theorem 5.1.6.

5.3 Dyadic decompositions

Recall from Lemma 4.3.1 that the bilinear estimate (4.21) is equivalent to the

operator estimate (4.16). In Sections 4.5 and 4.6, we decomposed the bilinear
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form B dyadically as a sum
∑

j∈Z Bj to prove Strichartz estimates. Theorem

5.1.2 will be similarly proved by decomposing B into a sum of localised opera-

tors to which Proposition 5.2.2 is applied. What was achieved in Chapter 4 by

taking a simple dyadic decomposition of B combined with the localisation of

the functions F and G can also be achieved by taking a Whitney decomposition

of the domain of integration {(s, t) ∈ R2 : s < t} in (4.21). We adopt the latter

approach in Chapter 5.

We begin with a few preliminaries. We say that λ is a dyadic number if

λ = 2k for some integer k. The set 2Z of all dyadic numbers is a multiplicative

Abelian group. In this and the following three sections, λ always denotes a

dyadic number.

We say that a square in R2 is a dyadic square if its side length λ is a dyadic

number and if the all the coordinates if its vertices are integer multiples of

λ. Any open set in R2 can be decomposed as the union of essentially disjoint

cubes whose lengths are proportional to their distance from the boundary of

the open set. In fact, this is true of Rn in general. If Q is a cube in Rn then

let �(Q) denote its length.

Lemma 5.3.1 (Dyadic Whitney decomposition). [29, Appendix J] If Ω

is a proper open subset of Rn then there exists a countable family Q of closed

dyadic cubes such that

(a)
⋃

Q∈Q Q = Ω and the interiors of the cubes in Q are pairwise disjoint,

(b)
√

n �(Q) ≤ dist(Q, Ωc) ≤ 4
√

n �(Q) for every cube Q in Q,

(c) if the boundaries of two cubes Q and Q′ in Q touch then

1

4
≤ �(Q)

�(Q′)
≤ 4

and

(d) for any given cube Q in Q there are at most 12n other cubes in Q that

touch it.
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Q

Figure 5.3: Whitney’s decomposition for the region s < t.

From now on, let Q denote a Dyadic Whitney decomposition, given by

Lemma 5.3.1 and illustrated in Figure 5.3, for the domain Ω, where

Ω = {(s, t) ∈ R2 : s < t}.

For each dyadic number λ, let Qλ denote the family contained in Q consisting

of squares with side length λ. Each square Q in Qλ is the Cartesian product

I × J of two intervals of R and has the property that

λ = |I| = |J | ≈ dist(Q, ∂Ω) ≈ dist(I, J). (5.19)

Since

Ω =
∑
λ∈2Z

∑
Q∈Qλ

Q

and the squares Q in the decomposition are essentially disjoint, we have the

decomposition

B =
∑
λ∈2Z

∑
Q∈Qλ

BQ, (5.20)

where BQ is given by (5.11) whenever Q = I × J . The scaled version

|BQ(F, G)| � λβ(q,θ;eq,eθ) ‖F‖Leq′(I;Beθ
) ‖G‖Lq′ (J ;Bθ)

∀F ∈ Leq′(I;Beθ) ∩ L1(I;B0) ∀G ∈ Lq′(J ;Bθ) ∩ L1(J ;B0) (5.21)
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of (5.12) is equivalent to the scaled local inhomogeneous Strichartz estimate

(5.18). The next proposition will enable us to replace the spaces Leq′(I;Beθ)

and Lq′(J ;Bθ) with Leq′(R;Beθ) and Lq′(R;Bθ) at the cost of imposing another

condition on q̃ and q.

Proposition 5.3.2. Suppose that σ > 0, 1/q + 1/q̃ ≤ 1, λ is a dyadic number

and {U(t) : t ∈ R} satisfies the energy estimate (4.10) and untruncated decay

(4.11). If the pairs (q, θ) and (q̃, θ̃) satisfy the conditions appearing in Theorem

5.1.6 then∑
Q∈Qλ

|BQ(F, G)| � λβ(q,θ;eq,eθ) ‖F‖Leq′ (R;Beθ
) ‖G‖Lq′(R;Bθ)

∀F ∈ Leq′(R;Beθ) ∩ L1(R;B0) ∀G ∈ Lq′(R;Bθ) ∩ L1(R;B0). (5.22)

The proposition is an immediate consequence of Proposition 5.2.2, the

equivalence of (5.18) and (5.21), and the following lemma.

Lemma 5.3.3. Suppose that 1/p + 1/p̃ ≥ 1. If λ is a dyadic number then∑
I×J∈Qλ

‖f‖Lep(I) ‖g‖Lp(J) ≤ 4 ‖f‖Lep(R) ‖g‖Lp(R)

whenever f ∈ Lep(R) and g ∈ Lp(R).

Proof. Suppose that f ∈ Lep(R) and g ∈ Lp(R). The inequality∑
n∈Z

|anbn| ≤
(∑

n∈Z

|an|ep
)1/ep(∑

n∈Z

|bn|p
)1/p

,

valid whenever 1/p + 1/p̃ ≥ 1, gives∑
I×J∈Qλ

‖f‖Lep(I) ‖g‖Lp(J) ≤
( ∑

I×J∈Qλ

‖f‖ep

Lep(I)

)1/ep( ∑
I×J∈Qλ

‖g‖p
Lp(J)

)1/p

.

Note that for each dyadic interval J there are at most two dyadic intervals I

such that I × J ∈ Qλ (see (5.19) and Figure 5.3). Also each such interval J

has the form [mλ, (m + 1)λ] where m ∈ Z. Hence( ∑
I×J∈Qλ

‖g‖p
Lp(J)

)1/p

≤
(
2
∑
m∈Z

∫ (m+1)λ

mλ

|g(t)|p dt
)1/p

≤ 2 ‖g‖Lp(R) .

A similar argument applied to the sum involving f completes the proof.
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5.4 Proof of Theorem 5.1.2

In this section we shall prove Theorem 5.1.2. Our proof marks a total departure

from the approach of Foschi [24, Sections 4 and 5], whose chief technical tool

is p-atomic decomposition of Lp functions. In our abstract setting, the luxury

of such decompositions for elements of the Banach space Bθ is not present

(but see Remark 5.5.3). Instead we prefer to use an abstract argument that

appeals to real interpolation theory in much the same way as [42, Section 6]

(see Section 4.5). The advantage of this approach is twofold. First, the proofs

are shorter than Foschi’s proofs. Second, it admits function spaces other than

the Lebesgue spaces. It must be conceded that some transparency may lost by

using the abstract interpolation argument; as such we present in Section 5.6

an alternate proof of Theorem 5.4.1 imitating Foschi’s approach.

Theorem 5.4.1. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the

energy estimate (4.10) and the untruncated decay estimate (4.11). Then the

inhomogeneous Strichartz estimate (4.16) holds whenever the exponent pairs

(q, θ) and (q̃, θ̃) satisfy the conditions

q, q̃ ∈ (1,∞), θ, θ̃ ∈ [0, 1],

(σ − 1)(1 − θ) ≤ σ(1 − θ̃), (σ − 1)(1 − θ̃) ≤ σ(1 − θ),

1

q
>

σ

2
(θ − θ̃),

1

q̃
>

σ

2
(θ̃ − θ),

1

q
+

1

q̃
< 1

and

1

q
+

1

q̃
=

σ

2
(θ + θ̃). (5.23)

If σ = 1 then we also require that θ < 1 and θ̃ < 1.

Proof. Suppose that the exponent pairs (q, θ) and (q̃, θ̃) satisfy the conditions

appearing in the statement of the theorem. Then there is a positive ε such
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that the pairs (q0, θ) and (q̃0, θ̃) and the pairs (q1, θ) and (q̃1, θ̃), defined by

1

q0
=

1

q
− ε,

1

q̃0
=

1

q̃
− ε,

1

q1

=
1

q
+ 2ε,

1

q̃1

=
1

q̃
+ 2ε,

also satisfy all the conditions appearing in the statement of the theorem except

for (5.23).

Define a function B̃ on L1(R;B0) × L1(R;B0) by

B̃(F, G) =

⎧⎨⎩ ∑
Q∈Q

2−j

BQ(F, G)

⎫⎬⎭
j∈Z

Recall once again the definition of �p
s given by (3.6). Proposition 5.3.2 implies

that the maps

B̃ : Leq′0(R;Beθ) × Lq′0(R;Bθ) → �∞
β(q0,θ;eq0,eθ)

B̃ : Leq′0(R;Beθ) × Lq′1(R;Bθ) → �∞
β(q1,θ;eq0,eθ)

B̃ : Leq′1(R;Beθ) × Lq′0(R;Bθ) → �∞
β(q0,θ;eq1,eθ)

are bounded. Note that β(q1, θ; q̃0, θ̃) = β(q0, θ; q̃1, θ̃). So we may apply Lemma

3.2.4 to obtain the bounded map

B̃ :
(
Leq′0(R;Beθ), L

eq′1(R;Beθ)
)

η0,eq′
×
(
Lq′0(R;Bθ), L

q′1(R;Bθ)
)

η1,q′

→
(
�∞
β(q0,θ;eq0,eθ)

, �∞
β(q1,θ;eq0,eθ)

)
η,1

(5.24)

where η0 = η1 = 1
3

and η = η0 + η1. It is easy to check that

(1 − η)β(q0, θ; q̃0, θ̃) + ηβ(q1, θ; q̃0, θ̃) = β(q, θ; q̃, θ̃) = 0.

If we combine this with (3.7) then (5.24) simplifies to

B̃ : Leq′(R;Beθ) × Lq′(R;Bθ) → �1
0.

By (5.20) this is equivalent to the bilinear estimate (4.21) and hence the the-

orem is proved.
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The above theorem perturbed the time exponents q and q̃ in estimate (5.22)

and then interpolated. For the perturbation to work we required strict inequal-

ities in most of the conditions appearing in Theorem (5.1.6) that involved q

and q̃. To prove the next theorem, we instead perturb the spatial exponents

θ and θ̃. This allows us to recover some boundary cases that the previous

theorem excludes.

Theorem 5.4.2. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the

energy estimate (4.10) and the untruncated decay estimate (4.11). Then the

inhomogeneous Strichartz estimate (5.6) holds whenever the exponent pairs

(q, θ) and (q̃, θ̃) satisfy the conditions

q, q̃ ∈ (1,∞], θ, θ̃ ∈ (0, 1),

(σ − 1)(1 − θ) < σ(1 − θ̃), (σ − 1)(1 − θ̃) < σ(1 − θ), (5.25)

1

q
>

σ

2
(θ − θ̃),

1

q̃
>

σ

2
(θ̃ − θ), (5.26)

1

q
+

1

q̃
≤ 1 (5.27)

and
1

q
+

1

q̃
=

σ

2
(θ + θ̃). (5.28)

Proof. Suppose that the exponent pairs (q, θ) and (q̃, θ̃) satisfy the conditions

appearing in the statement of the theorem. Then there is a positive ε such

that the pairs (q, θ0) and (q̃, θ̃0) and the pairs (q, θ1) and (q̃, θ̃1), defined by

θ0 = θ − ε, θ̃0 = θ̃ − ε,

θ1 = θ + 2ε, θ̃1 = θ̃ + 2ε,

also satisfy all the conditions appearing in the statement of the theorem except

(5.28).

Define a function B̃ on L1(R;B0) × L1(R;B0) by

B̃(F, G) =

⎧⎨⎩ ∑
Q∈Q

2−j

BQ(F, G)

⎫⎬⎭
j∈Z

.

122



Proposition 5.3.2 implies that the maps

B̃ : Leq′(R;Beθ0
) × Lq′(R;Bθ0) → �∞

β(q,θ0;eq,eθ0)

B̃ : Leq′(R;Beθ0
) × Lq′(R;Bθ1) → �∞

β(q,θ1;eq,eθ0)

B̃ : Leq′(R;Beθ1
) × Lq′(R;Bθ0) → �∞

β(q,θ0;eq,eθ1)

are bounded. Note that β(q, θ1; q̃, θ̃0) = β(q, θ0; q̃, θ̃1). So we may apply Theo-

rem 3.2.4 to obtain the bounded map

B̃ :
(
Leq′(R;Beθ0

), Leq′(R;Beθ1
)
)

η0,eq′
×
(
Lq′(R;Bθ0), L

q′(R;Bθ1)
)

η1,q′

→
(
�∞
β(q,θ0;eq,eθ0)

, �∞
β(q,θ1;eq,eθ0)

)
η,1

(5.29)

where η0 = η1 = 1
3

and η = η0 + η1. It is easy to check that

(1 − η)β(q, θ0; q̃, θ̃0) + ηβ(q, θ1; q̃, θ̃0) = β(q, θ; q̃, θ̃) = 0.

If we combine this with (3.7) then (5.29) simplifies to

B̃ : Leq′(R;Beθ,eq′) × Lq′(R;Bθ,q′) → �1
0.

By (5.20) this is equivalent to the bilinear estimate

|B(F, G)| � ‖F‖Leq′ (R;Beθ,eq′
) ‖G‖Lq′(R;Bθ,q′ )

which in turn implies (5.6).

The two theorems of this section combine to give Theorem 5.1.2. For exam-

ple, suppose that (q, θ) and (q̃, θ̃) satisfy the conditions appearing in Theorem

5.1.2 case (ii). If θ > 0 and θ̃ > 0 then σ-acceptability is equivalent to (5.26) by

the scaling condition (5.1). In this case Theorem 5.4.2 shows that the retarded

Strichartz estimate (5.6) holds. On the other hand, if either θ = 0 or θ̃ = 0

then σ-acceptability, (5.1) and (5.5) imply that both (q, θ) and (q̃, θ̃) are sharp

σ-admissible. Hence the Strichartz estimate (4.16) holds by Theorem 4.2.2.

But since q ≥ 2 and q̃ ≥ 2, Theorem 3.2.3 gives the continuous embeddings

Bθ,q′ ⊆ Bθ and Beθ,eq′ ⊆ Beθ and (4.16) implies (5.6).
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5.5 Atomic decompositions of functions in Lp

spaces

As mentioned in the previous section, we shall present an alternate proof of

Theorem 5.4.1 by adapting the approach of Foschi [24, Section 4]. The main

technical tool of employed, which is of interest in its own right, is a special

decomposition of functions belonging to Lebesgue spaces. We remind readers

that for this section and the next, λ is always a dyadic number.

Definition 5.5.1. Suppose that 1 ≤ p ≤ ∞, X is a measure space and B
is a Banach space. A p-atom in Lp(X;B) of size λ is a measurable function

ϕ : X → B such that

(i) x �→ ϕ(x) is supported on a set of measure less than 2λ and

(ii) ‖ϕ‖L∞(X;B) ≤ λ−1/p.

It follows from the definition that, for any p-atom of size λ and any exponent

q in [1,∞],

‖ϕ‖Lq(X;B) � λ1/q−1/p. (5.30)

The following lemma says that any function in Lp can be decomposed into

a dyadic sum of p-atoms. A sketch proof was indicated by Keel and Tao [42,

Section 5] in the scalar-valued case, but these kinds of results appear to have a

longer history. In [24] it was observed, without proof, that the natural vector-

valued analogue presented below is also true.

Lemma 5.5.2. If 1 ≤ p ≤ ∞, (X, μ) is a σ-finite measure space, B is a

Banach space and F ∈ Lp(X;B) then F can be decomposed as

F =
∑
λ∈2Z

aλϕλ

where

(i) each ϕλ is a p-atom in Lp(X;B) of size λ,
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(ii) the atoms ϕλ have disjoint supports, and

(iii) each aλ is a nonnegative constant and if a = {aλ}λ∈2Z then ‖F‖Lp(X;B) ≈
‖a‖
p.

Proof. Suppose that F ∈ Lp(X;B) and define the distribution function F∗ by

F∗(α) = μ({x ∈ X : ‖F (x)‖B > α})

whenever α > 0. We note for future reference that the function α �→ F∗(α) is

nonincreasing and right-continuous (see, for example, [61, p. 166]). For each

λ ∈ 2Z define αλ, aλ and ϕλ by the formulae

αλ = inf{α > 0 : F∗(α) < λ},

aλ = λ1/pαλ,

ϕλ =
1

aλ
1(α2λ,αλ](‖F‖B)F for almost every x ∈ X.

(Note that the last equality is interpreted pointwise as

ϕλ(x) =
1

aλ
1(α2λ,αλ]

(
‖F (x)‖B

)
F (x)

for almost every x in X.) Now the function λ �→ αλ is nonincreasing, so the

set {(α2λ, αλ] : λ ∈ 2Z} consists of pairwise disjoint intervals whose union is

(0,∞). Hence we have property (ii) and the pointwise identities

1 =
∑
λ∈2Z

1(α2λ,αλ]

(
‖F‖B

)
and

F =
∑
λ∈2Z

aλϕλ.

We will now show that each ϕλ is a p-atom of length λ. First, if

1(α2λ,αλ]

(
‖F (x)‖B

)
= 1

then ‖F (x)‖B ≤ αλ and hence

‖ϕ‖L∞(X;B) ≤
1

aλ
αλ = λ1/p.
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Second, by the right-continuity of F∗ and the definition of αλ,

F∗(αλ) ≤ λ (5.31)

for any dyadic number λ. Hence

μ({x ∈ X : ϕλ(x) �= 0}) ≤ μ({x ∈ X : α2λ < ‖F (x)‖B ≤ αλ})

= μ({x ∈ X : ‖F (x)‖B > α2λ})

− μ({x ∈ X : ‖F (x)‖B > αλ})

= F∗(α2λ) − F∗(αλ)

≤ F∗(α2λ)

≤ 2λ

and each ϕλ is a p-atom of length λ.

It remains to show property (iii). Formally,∑
λ∈2Z

ap
λ =

∑
λ∈2Z

λαp
λ

=

∫ ∞

0

αp
(∑

λ∈2Z

λδ(αλ − α)
)

dα

=

∫ ∞

0

αp
(
− G′(α)

)
dα (5.32)

where δ is the Dirac delta function,

G(α) =
∑
λ∈2Z

λH(αλ − α)

whenever α > 0 and H is the Heaviside step function. By the definition of H ,

G(α) =
∑
αλ>α

λ

whenever α is positive and does not belong to the discrete set Λ given by

Λ = {αλ : λ ∈ 2Z}.

Our ultimate goal will be to integrate (5.32) by parts and show that the

resulting expression is no bigger than 2 ‖F‖p
Lp(X;B). The formal manipulation
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above can then be justified by working backwards. To fulfil these aims we shall

establish the bound

F∗(α) ≤ G(α) ≤ 2F∗(α) (5.33)

whenever α > 0 and α /∈ Λ.

Suppose that α > 0 and α /∈ Λ. If {λ ∈ 2Z : αλ > α} is empty then

F∗(α) = 0 = G(α) and we are done. So suppose otherwise. Since αλ → 0 as

λ → ∞, we can define the dyadic number ν by

ν = max{λ ∈ 2Z : αλ > α}.

Hence

G(α) =
∑
αλ>α

λ = ν + ν/2 + ν/22 + · · · = 2ν.

By the definition of ν we have the ordering α2ν ≤ α < αν . Hence

ν ≤ F∗(α) ≤ F∗(α2ν) ≤ 2ν = G(α) ≤ 2F∗(α),

where the first inequality is justified by the definition of αν , the second by the

fact that F∗ is nonincreasing, the third by (5.31) and the fourth by the first

inequality. This proves (5.33).

Now ∫
X

‖F (x)‖p
B dμ(x) = p

∫ ∞

0

αp−1F∗(α) dα (5.34)

(see [61, p. 163]) and since F ∈ Lp(X;B) we consequently have αpF∗(α) → 0

as α → 0 and as α → ∞ (see [61, p. 162]). We use these limits in conjunction

with (5.33) to integrate (5.32) by parts. Hence

∑
λ∈2Z

ap
λ = p

∫ ∞

0

αp−1G(α) dα.

If we apply the two-sided estimate (5.33) followed by the identity (5.34) then

‖F‖p
Lp(X;B) ≤

∑
λ∈2Z

ap
λ ≤ 2 ‖F‖p

Lp(X;B)

and (iii) is proved.
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Remark 5.5.3. Similar atomic compositions exist for functions belonging to

spaces other than the Lebesgue spaces Lp. See, for example, the atomic de-

compositions of the Besov spaces Bρ
r,p in [74, Section 1.5]. It is likely that the

arguments of the next section can be adapted to these spaces.

5.6 Alternate proof of Theorem 5.1.2

Before presenting an alternate proof of Theorem 5.4.1, we begin with an expo-

sition of the basic strategy. This will point out a technical difficulty which is

resolved with a lemma. The proof of the theorem will follow after we establish

the lemma. Throughout this section λ, μ and ν denote dyadic numbers.

To establish the global inhomogeneous Strichartz estimate (4.16), we prove

the equivalent bilinear estimate (4.21). Suppose that F ∈ Leq′(R;Beθ)∩L1(R;B1)

and G ∈ Lq′(R;Bθ)∩L1(R;B1). By Lemma 5.5.2, we obtain the decompositions

F (t) =
∑
μ∈2Z

aμϕμ(t), G(t) =
∑
ν∈2Z

bνψν(t),

where ϕμ is a q̃′-atom in Leq′(R;Beθ) of size μ, ψν is a q′-atom in Lq(R;Bθ) of

size ν and

‖F‖Leq′ (R;Beθ
) ≈
∥∥{aμ}μ∈2Z

∥∥

eq′ , ‖G‖Lq′ (R;Bθ) ≈ ‖{bν}ν∈2Z‖
q′ . (5.35)

If we substitute these function decompositions into the Whitney decomposition

(5.20) of B, then

B(F, G) =
∑

λ,μ,ν∈2Z

aμbν

∑
Q∈Qλ

BQ(ϕμ, ψν). (5.36)

By assuming the hypothesis of Proposition 5.3.2 we have

∑
Q∈Qλ

|BQ(ϕμ, ψν)| � λβ(q,θ;eq,eθ) ‖ϕμ‖Leq′ (R;Beθ
) ‖ψν‖Lq′(R;Bθ) .

However, if we sum the above over all λ in 2Z then the right-hand side will

diverge and we make no progress towards estimating the right-hand side of
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(5.36). A similar situation was encountered in Section 4.5. There we perturbed

the exponents θ and θ̃ slightly to gain some summability; here instead we will

perturb q and q̃.

In what follows it will simplify notation if we introduce the function [·] :

R+ → R+ defined by

[λ] = max{λ, 1/λ}.

This function plays a role in the multiplicative group R+ similar to the role

played by the absolute values function in the additive group R. In particular,

[2k] = 2|k|.

Lemma 5.6.1. Suppose that σ > 0, that {U(t) : t ∈ R} satisfies the esti-

mates (4.10) and (4.11) and that the exponent pairs (q, θ) and (q̃, θ̃) satisfy the

conditions

q, q̃ ∈ (1,∞), θ, θ̃ ∈ [0, 1],

(σ − 1)(1 − θ) ≤ σ(1 − θ̃), (σ − 1)(1 − θ̃) ≤ σ(1 − θ),

1

q
>

σ

2
(θ − θ̃),

1

q̃
>

σ

2
(θ̃ − θ), (5.37)

and

1/q + 1/q̃ < 1.

Then there exists a positive ε such that for all dyadic numbers λ, μ and ν,

∑
Q∈Qλ

|BQ(ϕμ, ψν)| � λβ(q,θ;eq,eθ)
[μ
λ

]−ε [ν
λ

]−ε

(5.38)

whenever ϕμ is a q̃′-atom in Leq′(R;Beθ) of size μ and ψν is a q′-atom in Lq(R;Bθ)

of size ν.

Proof. Since the conditions imposed on q and q̃ in the hypothesis are given by

strict inequalities (in contrast to the conditions of Theorem 5.1.6), there is a full

neighbourhood N of points (q0, q̃0) about (q, q̃) such that the exponent pairs

(q0, θ) and (q̃0, θ̃) also satisfy the hypothesis of the lemma. Hence the pairs
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(q0, θ) and (q̃0, θ̃) also satisfy the hypothesis of Proposition 5.3.2. Therefore,

by the proposition and property (5.30) of dyadic atoms,∑
Q∈Qλ

|BQ(ϕμ, ψν)| � λβ(q0,θ;eq0,eθ) ‖ϕμ‖Leq′0 (R;Beθ
)
‖ψν‖Lq0 (R;Bθ)

� λβ(q0,θ;eq0,eθ)μ1/eq−1/eq0ν1/q−1/q0

� λβ(q,θ;eq,eθ)
(μ

λ

)1/eq−1/eq0
(ν

λ

)1/q−1/q0

whenever (q0, q̃0) ∈ N . Now choose (q0, q̃0) in N such that

1

q̃
− 1

q̃0
=

⎧⎪⎨⎪⎩+ε if μ ≤ λ

−ε if μ > λ

and

1

q
− 1

q0
=

⎧⎪⎨⎪⎩+ε if ν ≤ λ

−ε if ν > λ

where ε is a small positive number depending only on the neighbourhood N .

With this choice of (q0, q̃0) we have(μ

λ

)1/eq−1/eq0

=
[μ
λ

]−ε

and (ν

λ

)1/q−1/q0

=
[ν
λ

]−ε

,

completing the proof.

Alternate proof of Theorem 5.4.1. Suppose that the exponent pairs (q, θ) and

(q̃, θ̃) satisfy the conditions appearing in Theorem 5.4.1. The decomposition

(5.36) of B combines with Lemma 5.6.1 to give

|B(F, G)| �
∑

μ,ν∈2Z

aμbν

∑
λ∈2Z

λβ(q,θ;eq,eθ)
[μ
λ

]−ε [ν
λ

]−ε

(5.39)

for some positive ε independent of the dyadic numbers λ, μ and ν. The scaling

condition 1/q+1/q̃ = σ(θ+ θ̃)/2 implies that β(q, θ; q̃, θ̃) = 0. (We remark that

if this were not the case then the sum in λ would diverge). We now compute
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an upper bound for the sum in λ. If λ = 2l, μ = 2m, ν = 2n and j = m − n

then ∑
λ∈2Z

[μ
λ

]−ε [ν
λ

]−ε

=
∑
l∈Z

[
2m

2l

]−ε [
2n

2l

]−ε

=
∑
l∈Z

2−ε|m−l|2−ε|n−l|

=
∑
l∈Z

2−ε|j+l|2−ε|l|.

If we consider the case when j ≥ 0, then∑
λ∈2Z

[μ
λ

]−ε [ν
λ

]−ε

=
∑
l<−j

2ε(j+l)2εl +
∑

−j≤l<0

2−ε(j+l)2εl +
∑
l≥0

2−ε(j+l)2−εl

= 2εj
∑
l>j

(
2−2ε

)l
+ j2εj + 2−εj

∑
l≥0

(
2−2ε

)l
≤ C(1 + j)2−εj,

where C is a positive constant independent of j. We combine this with a similar

calculation for the case when j < 0 and obtain∑
λ∈2Z

[μ
λ

]−ε [ν
λ

]−ε

� cm−n,

where cj = (1 + |j|)2−ε|j| for all integers j. Note that if c = {cj}j∈Z then

‖c‖
1 < ∞. Continuing from (5.39),

|B(F, G)| �
∑

m,n∈Z

a2mb2ncm−n

≤ ‖a‖
eq′ ‖b‖
q′ ‖c‖
1

� ‖F‖Leq′ (R;Beθ
) ‖G‖Lq′(R;Bθ) ,

where the final two estimates are justified by Young’s inequality for sequences

(see Corollary 3.1.3) and the norm approximation (5.35). We remark that our

use of Young’s inequality is valid because

1/q̃′ + 1/q′ + 1 = 3 − 1/q̃ + 1/q > 2

by the hypothesis that 1/q̃ + 1/q < 1. Since we have proved (4.21), the proof

of the theorem is complete.
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Remark 5.6.2. This method of proof may be adapted to prove Theorem 5.4.2

in the case when Beθ and Bθ are the Lebesgue spaces Ler′ and Lr′ . Instead of

decomposing F and G atomically in Leq′(R; Ler′) and Lq′(R; Lr′), one decomposes

F (s) and G(t) atomically in Ler′ and Lr′ at each point s and t in R. One then

perturb the space exponents r̃ and r to obtain an estimate similar to (5.38).

However, when the decomposition is reassembled, the technical condition

q̃ ≤ r̃, q ≤ r (5.40)

is needed to recover sequence estimates in the desired norms (see [24, Section

5]). If instead one applies the abstract result of Theorem 5.4.2 in this setting

then condition (5.40) is precisely that needed to extract the Lr′ and Ler′ norms

from the Bθ,q′ and Beθ,eq′ norms in (5.6). Thus both methods yield the same

result in this context.

5.7 The sharpness of Theorem 5.1.2

In this section we discuss the sharpness of the exponent conditions appearing

in Theorem 5.1.2.

Proposition 5.7.1. Suppose that σ > 0 and that the global inhomogeneous

Strichartz estimate (4.16) holds for any {U(t) : t ≥ 0} satisfying the energy

estimate (4.10) and the untruncated decay estimate (4.11). Then (q, θ) and

(q̃, θ̃) must be σ-admissible pairs which satisfy the following conditions:

1

q
+

1

q̃
=

σ

2
(θ + θ̃), (5.41)

1

q
+

1

q̃
≤ 1, (5.42)

|θ − θ̃| ≤ 1

σ
(5.43)

and

(σ − 1)(1 − θ) − 2

q
≤ σ(1 − θ̃), (σ − 1)(1 − θ̃) − 2

q
≤ σ(1 − θ). (5.44)

Moreover, if σ = 1 then the inhomogeneous estimate is false when θ = θ̃ = 1.
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Figure 5.4: Necessary and sufficient conditions on the exponents θ and θ̃ for

global inhomogeneous Strichartz estimates.

Before proving the proposition, we note that the difference in the neces-

sary and sufficient conditions for the validity of the inhomogeneous Strichartz

estimate (4.16) lies in three places. First there is the gap between (5.44) and

(5.3). Second, there is the gap between (5.43) and the range of values for θ

and θ̃ shown in Figure 5.2. This difference is shown by the triangles ABB ′

and EDD′ in Figure 5.4. (More precisely, the region AOEDB in Figure 5.4

corresponds to sufficient conditions for θ and θ̃ while the region AOED′B′ cor-

responds to necessary conditions. The boundaries of each region are included

except at the points B and D for the sufficient conditions.) Third, there is the

difference between (5.42) and the strict inequality of (5.2). This discrepancy

is muted somewhat by the validity of the inhomogeneous estimate (5.6) when

1/q + 1/q̃ = 1.

Proof. Suppose that σ > 0 and that the global inhomogeneous Strichartz esti-

mate (4.16) holds for any {U(t) : t ≥ 0} satisfying the energy estimate (4.10)

and the untruncated decay estimate (4.11). We we systemically establish the

necessity of each of the conditions above.

Recall that (4.10) and (4.11) are invariant with respect to scaling (4.29).
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When the same scaling is applied to (4.16), we obtain

λσθ/2+1+1/q ‖(TT ∗)RF‖Lq(R;B∗
θ) � λσeθ/2+1/eq′ ‖F‖Leq′(R;Beθ

)

∀F ∈ Leq′(R;Beθ) ∩ L1(R;B0)

(see the discussion prior to Proposition 5.2.2 for a similar calculation). Invari-

ance with respect to scaling requires that

σθ

2
+ 1 +

1

q
=

σθ̃

2
+

1

q̃′
,

which is equivalent to (5.41).

To show the necessity of condition (5.42), consider any family {U(t) : t ∈ R}
which possesses the group property U(t)U(s)∗ = U(t−s) whenever s and t are

real numbers (the Schrödinger group given by U(t) = e−itΔ will suffice). Under

such circumstances, (TT ∗)R is translation invariant by Lemma 4.3.6 and hence

Lemma 3.5.2 implies that q̃′ ≤ q. This last inequality is equivalent to (5.42).

The necessity of (5.43) and (5.44) is the result of two particular forcing

terms F constructed for the Schrödinger group (see [24, Examples 6.9 and

6.10] for details).

Finally, the exclusion of the case (θ, θ̃, σ) = (1, 1, 1) follows from the neg-

ative result of T. Tao [69] for the Schrödinger equation in two spatial dimen-

sions.

5.8 Applications to the wave, Schrödinger and

Klein–Gordon equations

We illustrate how the abstract results of Theorem 5.1.2 give Strichartz esti-

mates for inhomogeneous Schrödinger, wave and Klein–Gordon equations. For

the first equation, the results aren’t new (see Foschi [24, Section 6] and similar

results by Vilela [75]). However, in the case of the wave equation, many of

the Strichartz estimates are new. The estimates we give for the Klein–Gordon
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equation improves slightly the results of M. Nakamura and T. Ozawa [53] by

admitting some boundary exponents.

Suppose that n is a positive integer. We say that a pair (q, r) of Lebesgue

exponents are Schrödinger n-acceptable if either

1 ≤ q < ∞, 2 ≤ r ≤ ∞,
1

q
< n

(
1

2
− 1

r

)
or (q, r) = (∞, 2).

Corollary 5.8.1 (Foschi–Vilela). Suppose that n is a positive integer and

that the exponent pairs (q, r) and (q̃, r̃) are Schrödinger n-acceptable, satisfy

the scaling condition

1

q
+

1

q̃
=

n

2

(
1 − 1

r
− 1

r̃

)
and either the conditions

1

q
+

1

q̃
< 1,

n − 2

r
≤ n

r̃
,

n − 2

r̃
≤ n

r

or the conditions

1

q
+

1

q̃
= 1,

n − 2

r
<

n

r̃
,

n − 2

r̃
<

n

r
,

1

r
≤ 1

q
,

1

r̃
≤ 1

q̃
.

When n = 2 we also require that r < ∞ and r̃ < ∞. If F ∈ Leq′(R; Ler′(Rn))

and u is a weak solution of the inhomogeneous Schrödinger equation

iu′(t) + Δu(t) = F (t), u(0) = 0

then

‖u‖Lq(R;Lr(Rn)) � ‖F‖Leq′ (R;Ler′(Rn)) . (5.45)

Proof. In light of the work done in Section 4.7, this is a simple application of

Theorem 5.1.2 when (B0,B1) = (L2(Rn), L1(Rn)), σ = n/2. To obtain (5.45)

from (5.6), we use the embedding Lr′(Rn) ⊆ Lr′,q′(Rn) whenever r′ ≤ q′ (see

Section 3.3).

135



Suppose that n is a positive integer. We say that a pair (q, r) of Lebesgue

exponents are wave n-acceptable if either

1 ≤ q < ∞, 2 ≤ r ≤ ∞,
1

q
< (n − 1)

(
1

2
− 1

r

)
or (q, r) = (∞, 2).

Corollary 5.8.2. Suppose that n is a positive integer and that the exponent

pairs (q, r1) and (q̃, r̃1) are wave n-acceptable, satisfy the scaling condition

1

q
+

1

q̃
=

n − 1

2

(
1 − 1

r1
− 1

r̃1

)
and the conditions

1

q
+

1

q̃
< 1,

n − 3

r1
≤ n − 1

r̃1
,

n − 3

r̃1
≤ n − 1

r1

When n = 3 we also require that r1 < ∞ and r̃1 < ∞. If r ≥ r1, r̃ ≥ r̃1, ρ ∈ R,

ρ + n

(
1

2
− 1

r

)
− 1

q
= 1 −

(
ρ̃ + n

(
1

2
− 1

r̃

)
− 1

q̃

)
,

F ∈ Leq′(R; Ḃ−eρ
er′,2) and u is a weak solution of the inhomogeneous wave equation

−u′′(t) + Δu(t) = F (t), u(0) = 0, u′(0) = 0,

then

‖u‖Lq(R;Ḃρ
r,2) � ‖F‖

Leq′ (R;Ḃ−eρ

er′,2
)
. (5.46)

Figure 5.5 shows the range for various exponents appearing in Corollary

5.8.2. In the first diagram, the dark region represents the range for the homo-

geneous Strichartz estimate while the union of light and dark regions represents

the range for the inhomogeneous Strichartz estimate. In the second diagram,

the coordinates of C and D are given by(
(n − 3)2

2(n − 2)(n − 1)
,

n − 3

2(n − 2)

)
and (

n − 3

2(n − 2)
,

(n − 3)2

2(n − 2)(n − 1)

)
respectively.
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Figure 5.5: Range of exponents for Corollary 5.8.2 when n > 3.

Proof. In light of the work done in Section 4.8, the case when r = r1 and r̃ = r̃1

is a simple application of Theorem 5.1.2 when (B0,B1) = (Ḃ0
2,2, Ḃ

(n+1)/4
1,2 ) and

σ = (n − 1)/2. The case when r > r1 and r̃ > r̃1 is obtained using the Besov

embedding result of Lemma 3.4.2.

The case when 1/q + 1/q̃ = 1 cannot be simply integrated into the above

result via Besov embedding, except when q = q̃ = 2 (which corresponds to a

sharp admissible estimate). We therefore state this case separately, using the

notation a ∨ b and a ∧ b for max{a, b} and min{a, b} respectively.

Corollary 5.8.3. Suppose that n is a positive integer not equal to 3 and that

the exponent pairs (q, r1) and (q̃, r̃1) are wave n-acceptable, satisfy the scaling

condition
1

q
+

1

q̃
=

n − 1

2

(
1 − 1

r1

− 1

r̃1

)
and the conditions

1

q
+

1

q̃
= 1,

n − 3

r1
<

n − 1

r̃1
,

n − 3

r̃1
<

n − 1

r1
,

1

r1
≤ 1

q
,

1

r̃1
≤ 1

q̃
.

If r ≥ r1, r̃ ≥ r̃1, ρ ∈ R,

ρ + n

(
1

2
− 1

r

)
− 1

q
= 1 −

(
ρ̃1 + n

(
1

2
− 1

r̃

)
− 1

q̃

)
,
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F ∈ Leq′(R; Ḃ−eρ
er′,2) and u is a weak solution of the inhomogeneous wave equation

−u′′(t) + Δu(t) = F (t), u(0) = 0, u′(0) = 0,

then

‖u‖Lq(R;Ḃρ
r,2∨q) � ‖F‖

Leq′ (R;Ḃ−eρ

er′,2∧q
)
. (5.47)

Proof. We apply Theorem 5.1.2 (ii) when σ = (n − 1)/2 and (B0,B1) =

(Ḃ0
2,2, Ḃ

(n+1)/4
1,2 ).

First suppose that r = r1 and r̃ = r̃1. To obtain (5.47) from the abstract

Strichartz estimate (5.6), we apply the embeddings

Beθ,eq′ ⊇ Ḃ
(n+1)eθ/4
er′,2∨eq′,(eq′) ⊇ Ḃ

(n+1)eθ/4
er′,2∨eq′

and

(Bθ,q′)
∗ = (Ḃ0

2,2, Ḃ
−(n+1)/4
∞,2 )θ,q ⊆ Ḃ

−(n+1)θ/4
r,2∧q,(q) ⊆ Ḃ

−(n+1)θ/4
r,2∧q

(see [72, p. 183], [2, Theorem 3.7.1] and Lemma 3.3.4) and follow the general

approach of the proofs in Section 4.8. Here we have taken 1/r̃′ = (1−θ̃)/2+θ̃/1,

1/r = (1 − θ)/2 + θ/∞, imposed the restrictions r̃′ ≤ q̃′ and q ≤ r and used

the fact that q̃′ = q.

Suppose now that r > r1 and r̃ > r̃1. To obtain (5.47), simply apply Besov

embedding (Lemma 3.4.2) to the result obtained for the case when r = r1 and

r̃ = r̃1.

Remark 5.8.4. The generalised Strichartz estimates given by the two corollaries

above appear to be new except when the conditions coincide with those in

Corollary 4.8.1. The results of Foschi [24] may be applied to the wave equation

to obtain the inhomogeneous Strichartz estimate

‖u‖Lq(R;Lr1 (Rn)) � ‖F‖
Leq′ (R;Ler′

1(Rn))
,

provided that r1 and r̃1 are strictly finite, and that (q, r1) and (q̃, r̃1) satisfy

either the conditions of Corollary 5.8.2 or the conditions of Corollary 5.8.3

with the additional assumption that r1 ≥ q and r̃1 ≥ q̃. These results of Foschi

138



extend previous results by D. Oberlin [54] and J. Harmse [31], who proved

similar results in the case when q = r1 and q̃ = r̃1.

Finally, we show that Theorem 5.1.2 (i), when applied to the inhomogeneous

Klein–Gordon equation

−u′′(t) + Δu(t) − u = F (t), u(0) = u′′(0) = 0, t ≥ 0, (5.48)

slightly improves the range of inhomogeneous Strichartz estimates given by

Nakamura and Ozawa [53, Proposition 2.1]. In a manner analogous to the

wave equation, one can show that the weak solution u of (5.48) is given by

u(t) =
1

2i

∫ t

0

ω−1
(
U(t)U(s)∗ − U(−t)U(−s)∗

)
F (s) ds,

where ω = (1 − Δ)1/2 and the evolution group {U(t) : t ∈ R} is given by

U(t) = eitω. The resulting Strichartz inequalities are naturally expressed in

Besov space norms, rather than homogeneous Besov space norms. We use the

fact that the operator ωμ is an isomorphism from Bρ
r,2 to Bρ−μ

r,2 whenever μ ∈ R.

Corollary 5.8.5 (Nakamura–Ozawa). Suppose that n is a positive integer,

0 ≤ η ≤ 1 and the real numbers λ and σ satisfy

2λ = n + 1 + η, n − 1 − η ≤ 2σ ≤ n − 1 + η, σ > 0.

Suppose also that the exponent pairs (q, r1) and (q̃, r̃1) satisfy the acceptability

condition

1 ≤ q < ∞, 2 ≤ r1 ≤ ∞,
1

q
< 2σ

(
1

2
− 1

r1

)
; or (q, r1) = (∞, 2);

1 ≤ q̃ < ∞, 2 ≤ r̃1 ≤ ∞,
1

q̃
< 2σ

(
1

2
− 1

r̃1

)
; or (q̃, r̃1) = (∞, 2);

the scaling condition
1

q
+

1

q̃
= σ

(
1 − 1

r1
− 1

r̃1

)
,

and the conditions

1

q
+

1

q̃
<1,

σ − 1

r1
≤ σ

r̃1
,

σ − 1

r̃1
≤ σ

r1
. (5.49)
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When σ = 1 we also require that r1 < ∞ and r̃1 < ∞. If r ≥ r1, r̃ ≥ r̃1, ρ ∈ R,

ρ + n

(
1

2
− 1

r

)
− λ − n

σq
= 1 −

(
ρ̃ + n

(
1

2
− 1

r̃

)
− λ − n

σq̃

)
,

F ∈ Leq′(R; B−eρ
er′,2) and u is a weak solution of the inhomogeneous Klein–Gordon

equation (5.48) then

‖u‖Lq(R;Bρ
r,2) � ‖F‖

Leq′ (R;B−eρ

er′,2
)
. (5.50)

Before proving the corollary, we note that our application of Theorem 5.1.2

improves [53, Proposition 2.1] by removing strict inequalities in (5.49).

Proof. As with the wave equation (see Section 4.8), we begin with a stationary

phase estimate to derive the dispersive estimate

‖U(t)f‖
B

−λ/2
∞,2

� |t|−σ ‖f‖
B

λ/2
1,2

∀f ∈ B
λ/2
1,2

(see [53, pp. 261–262] for details). The corresponding energy estimate follows

from the unitarity of U(t) on B0
2,2. Hence we may apply Theorem 5.1.2 (i)

when H = B0 = B0
2,2, B1 = B

λ/2
1,2 , 1/r′ = (1−θ)/2−θ/1, 1/r̃′ = (1− θ̃)/2− θ̃/1

and the pairs (q, θ) and (q̃, θ̃) satisfy the hypothesis of Theorem 5.1.2 (i). This

gives

‖(TT ∗)RF‖
Lq(R;B

−λ(1/2−1/r)
r,2 )

� ‖F‖
Leq′ (R;B

λ(1/2−1/er)

er′,2
)
.

Suppose now that μ ∈ R and

ρ = μ + λ

(
1

2
− 1

r

)
, ρ = 1 − μ − λ

(
1

2
− 1

r

)
.

We thus obtain

‖u‖Lq(R;Bρ
r,2) ≈ ‖ωμu‖

Lq(R;B
−λ(1/2−1/r)
r,2 )

�
∥∥ωμ−1(TT ∗)RF

∥∥
Lq(R;B

−λ(1/2−1/r)
r,2 )

�
∥∥ωμ−1F

∥∥
Leq′(R;B

−λ(1/2−1/er)

er′,2
)

� ‖F‖
Leq′ (R;B−eρ

er′,2
)
.

This proves the corollary in the case when r1 = r and r̃1 = r̃. The case when

r1 < r and r̃1 < r̃ can be proved by Besov embedding.
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Remark 5.8.6. In all the Strichartz estimates given in this section, one may

exchange the infinite time interval R appearing in the spacetime norms with a

finite time interval I or J . This is done by redefining each U(t) as 1I(t)U(t),

where 1I is the characteristic function of I on R, and by redefining F as 1JF .

5.9 Applications to the Schrödinger equation

with potential

The goal of this section is to demonstrate that our generalisation of Foschi’s

work [24] allows one to obtain Strichartz estimates for Schrödinger equations

involving certain potentials. The potentials we consider introduce the dif-

ficulty that the dispersive estimate (4.11) does not hold when (B0,B1) =

(L2(X), L1(X)) (see Remark 5.9.3 for further details).

Suppose that V : R3 → R is a real-valued potential on R3 with decay

|V (x)| ≤ C 〈x〉−β ∀x ∈ R3, (5.51)

where β > 5/2 and 〈x〉 = (1 + |x|2)1/2. Consider the Hamiltonian operator H ,

given by H = −Δ + V , on the Hilbert space L2(R3) with domain W 2,2(R3),

where W k,p(X) denotes the Sobolev space of order k in Lp(X). Our goal is

to obtain spacetime estimates for the solution u of the inhomogeneous initial

value problem ⎧⎪⎨⎪⎩
(
i ∂
∂t

+ H
)
u(t) = F (t) ∀t ∈ [0, τ ],

u(0) = f,

(5.52)

where τ > 0 and, for each time t in R, f and F (t) are complex-valued functions

on R3.

Hamiltonians that satisfy the above conditions are considered by K. Yajima

in [79]. There it mentions that H is self-adjoint on L2(R3) with a spectrum

consisting of a finite number of nonpositive eigenvalues, each of finite multi-

plicity, and the absolutely continuous part [0,∞). Denote by Pc the orthogonal
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projection from L2(R3) onto the continuous spectral subspace for H . Under

the general assumption (5.51), it is known that Pc, when viewed as an operator

on Lp(R3), is bounded only when 2/3 < p < 3.

We denote by Hγ the weighted Lebesgue space L2(R3, 〈x〉2γ dx). When

γ ∈ (1/2, β − 1/2), define the null space N by

N =

{
φ ∈ H−γ : φ(x) +

1

4π

∫
R3

V (y)φ(y)

|x − y| dy = 0

}
.

As noted in [79], the space N is finite dimensional and is independent of the

choice of γ in the interval (1/2, β − 1/2). All φ belonging to N satisfy the

stationary Schrödinger equation

−Δφ(x) + V (x)φ(x) = 0, (5.53)

where (5.53) is to be interpreted in the distributional sense. Conversely, any

function φ ∈ H−3/2 which satisfies (5.53) belongs to N . Hence, if 0 is an

eigenvalue of H , and E denotes the associated eigenspace, then E is a subspace

of N .

Definition 5.9.1. We say that H or V is of generic type if N = {0} and is

of exceptional type otherwise. The Hamiltonian H is of exceptional type of the

first kind if N �= {0} and 0 is not an eigenvalue of H . It is of exceptional type

of the second kind if E = N �= {0}. Finally, we say that H is of exceptional

type of the third kind if {0} ⊂ E ⊂ N with strict inclusions.

While most V are of generic type, examples that are of exceptional type are

interesting from a physical point of view. In particular, if V is of exceptional

of the third kind then any function φ in N\E is called a resonance of H .

We would like to apply Theorems 4.2.2 and 5.1.2 to the case where U(t) is

the operator e−itH , defined by the functional calculus for self-adjoint operators.

However, if g is an eigenfunction of H with corresponding eigenvalue λ, then

U(s)U(t)∗g = ei(s−t)Hg = ei(s−t)λg (5.54)
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and therefore U(s)U(t)∗g is stationary. Consequently, none of the decay hy-

potheses (4.11) or (4.12) of Theorem 4.2.2 are satisfied. Fortunately, this is

not the case if g lies in the continuous spectral subspace of H .

Theorem 5.9.2 (K. Yajima [79]). There exists a positive constant Cp such

that the dispersive estimate

∥∥eitHPcg
∥∥

p′
≤ Cp|t|−3(1/p−1/2) ‖g‖p ∀g ∈ L2(R3) ∩ Lp(R3) ∀ real t �= 0

(5.55)

is satisfied in the following two cases:

(i) if H is of generic type, β > 5/2 and 1 ≤ p ≤ 2; and

(ii) if H is of exceptional type, β > 11/2 and 3/2 < p ≤ 2.

Remark 5.9.3. If H is of exceptional type then (5.55) cannot hold when p = 1,

otherwise it would contradict the local decay estimate of Jensen–Kato [37] or

Murata [52]. Hence one cannot apply the results of Foschi [24] to this situation.

If u is a solution to (5.52), define uc by

uc(t) = Pcu(t) ∀t ∈ [0, τ ].

Similarly, let Ppp denote the orthogonal projection onto the pure-point spectral

subspace of H and define upp by

upp(t) = Pppu(t) ∀t ∈ [0, τ ].

It is clear that u = upp + uc.

The dispersive estimate (5.55) gives rise to the admissibility conditions

1

q
+

3

2r
=

3

4
, 4 < q ≤ ∞;

1

q̃
+

3

2r̃
=

3

4
, 4 < q̃ ≤ ∞ (5.56)

sketched in Figure 5.6. These correspond to the sharp σ-admissibility condi-

tions in the case when σ = 3(1/p − 1/2), H = B0 = L2(R3), B1 = Lp(R3) and

p → 3/2 from the right. Note that they also correspond to the Schrödinger

3-admissibility conditions (see Section 4.7) with restricted range.
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Figure 5.6: The line segment AB and the shaded region respectively give

admissible and acceptable exponents for Strichartz estimates associated to the

inhomogeneous initial value problem (5.64).

When considering the inhomogeneous problem with zero initial data, the

exponent conditions of Theorem 5.1.2 reduce to the scaling condition

1

q
+

1

q̃
=

3

2

(
1 − 1

r
− 1

r̃

)
(5.57)

and the acceptability conditions

1 ≤ q < ∞, 2 ≤ r < 3,
1

q
< 3

(
1

2
− 1

r

)
, or (q, r) = (∞, 2); (5.58)

1 ≤ q̃ < ∞, 2 ≤ r̃ < 3,
1

q̃
< 3

(
1

2
− 1

r̃

)
, or (q̃, r̃) = (∞, 2). (5.59)

This is because σ = 3(1/p − 1/2) < 1.

Corollary 5.9.4. Suppose that u is a (weak) solution to problem (5.52) for

some data f in L2(R3), some source F and for some time τ in (0,∞).

(i) If (q, r) and (q̃, r̃) satisfy the admissibility condition (5.56) and F belongs

to Leq′([0, τ ]; Ler′(R3)), then

‖uc‖Lq([0,τ ],Lr(R3)) � ‖f‖L2(R3) + ‖F‖Leq′ ([0,τ ],Ler′(R3)) . (5.60)

(ii) If the exponent pairs (q, r) and (q̃, r̃) satisfy conditions (5.57), (5.58) and

(5.59), f = 0 and F ∈ Leq′([0, τ ]; Ler′(R3)), then

‖uc‖Lq([0,τ ],Lr(R3)) � ‖F‖Leq′ ([0,τ ],Ler′(R3)) .
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Proof. Fix p such that

3/2 < p < min{r′, r̃′}.

For t in R define U(t) on L2(R3) by U(t) = 1[0,τ ](t)e
itHPc. If g belongs to

L2(R3) ∩ Lp(R3), then

‖U(s)U(t)∗g‖p′ =
∥∥1[0,τ ](s)1[0,τ ](t)e

i(s−t)HPcg
∥∥

p′

≤
∥∥ei(s−t)HPcg

∥∥
p′

≤ |s − t|−3(1/p−1/2) ‖g‖p .

by Theorem 5.9.2. Therefore {U(t) : t ∈ R} satisfies the untruncated decay

estimate (4.11) when

σ = 3(1/p − 1/2),

B0 = H = L2(R3) and B1 = Lp(R3). Moreover, since each operator e−itH

on L2(R3) is unitary and Pc is an orthogonal projection, {U(t) : t ∈ R} also

satisfies the energy estimate (4.10). Now if u is a weak solution to (5.52) then

u(t) = e−itHf − i

∫ t

0

e−i(t−s)HF (s) ds. (5.61)

by Duhamel’s principle and the functional calculus for self-adjoint operators.

Hence

uc(t) = eitHPcf − i

∫ t

0

ei(t−s)HPcF (s) ds

= Tf(t) − i(TT ∗)RF (t).

An application of Theorem 4.2.2 and Theorem 5.1.2 gives the required space-

time estimates for uc once we observe that

Lr′(R3) ⊂ Lr′,2(R3) = Bθ,

where 1/r′ = (1 − θ)/2 + θ/p and the inclusion is continuous.

To find a spacetime estimate for the solution u of (5.52), we now need only

analyse the projection of each u(t) onto the pure point spectral subspace of H .
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It is known (see [79, p. 477]) that eigenfunctions of H with negative eigenvalues

decay at least exponentially. Since such eigenfunctions belong to the domain

of Δ, they are necessarily continuous and consequently also belong to Lr(R3)

whenever 1 ≤ r ≤ ∞ by Sobolev embedding. However, if 0 is an eigenvalue

then a corresponding eigenfunction φ may decay as slowly as C〈x〉−2 when

|x| → ∞. Hence, in general, φ is a member of Lp(R3) only when p > 3/2.

Except in the case when the time exponent is ∞, one cannot hope for a

spacetime estimate for upp which is global in time due to (5.54). However, one

can still obtain spacetime estimates on finite time intervals. For illustrative

purposes, the next lemma gives a crude spacetime estimate for upp when H is

of exceptional type. No further analysis on H is needed.

Lemma 5.9.5. Suppose that τ > 0, that q, q̃ ∈ [1,∞] and that r, r̃ ∈ (3/2, 3).

Suppose also that f ∈ L2(R3), F ∈ Leq′([0, τ ], Ler′(R3)) and H is of exceptional

type. If u is a (weak) solution to problem (5.52) then

‖upp‖Lq([0,τ ],Lr(R3)) ≤ Cr,H

(
‖Pppf‖2 + τ 1/q+1/eq ‖PppF‖Leq′ ([0,τ ],Ler′(R3))

)
where the positive constant Cr,H depends on r and H only. If q = q̃ = ∞ then

τ 1/q+1/eq is interpreted as 1.

Proof. Suppose that {φj : j = 1, . . . , n} is a complete orthonormal set of

eigenfunctions for H on L2(R3) corresponding to the set {λj : j = 1, . . . , n} of

eigenvalues (counting multiplicities). Write

Pppf =
n∑

i=1

αjφj

and

PppF (s) =
n∑

j=1

βj(s)φj,

where each αj and βj(s) is a complex scalar. By orthogonality and the equiv-

alence of norms in finite dimensional normed spaces (see [14, p. 69]), there are

positive constants C and C ′ (both independent of f , F (s), {αj} and {βj(s)})
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such that
n∑

j=1

|αj | ≤ C
( n∑

j=1

|αj|2
)1/2

= C ‖Pppf‖2

and
n∑

j=1

|βj(s)| ≤ C
( n∑

j=1

|βj(s)|2
)1/2

= C ‖PppF (s)‖2 ≤ C ′ ‖PppF (s)‖
er′ .

Following from (5.61),

upp(t) = eitHPppf − i

∫ t

0

ei(t−s)HPppF (s) ds

=
n∑

j=1

αje
itλj φj − i

∫ t

0

n∑
j=1

βj(s)e
i(t−s)λj φj ds.

By taking the Lq([0, τ ], Lr(R3)) norm and applying Hölder’s inequality,

‖upp‖Lq([0,τ ],Lr(R3)) ≤
n∑

i=j

|αj| ‖φj‖r +

∥∥∥∥∥
∫ t

0

n∑
j=1

|βj(s)| ‖φj‖r ds

∥∥∥∥∥
Lq([0,τ ])

≤ C ′′ max
1≤j≤n

‖φj‖r

(
‖Pppf‖2 +

∥∥∥∥∫ t

0

‖PppF (s)‖
er′ ds

∥∥∥∥
Lq([0,τ ])

)
≤ Cr,H

(
‖Pppf‖2 + τ 1/q ‖PppF‖L1([0,τ ];Ler′(R3))

)
≤ Cr,H

(
‖Pppf‖2 + τ 1/q+1/eq ‖PppF‖Leq′([0,τ ];Ler′(R3))

)
where

Cr,H = C ′′ max
1≤j≤n

‖φj‖r .

This completes the proof.

Combining the lemma with Corollary 5.9.4 and the fact that u = uc + upp

gives the following result.

Corollary 5.9.6. Suppose that H is of exceptional type, that τ > 0 and that

(q, r) and (q̃, r̃) satisfy the admissibility conditions (5.56). If f ∈ L2(R3) and

F ∈ Leq′([0, τ ], Ler′(R3)) and u is a (weak) solution to problem (5.52) then

‖u‖Lq
t ([0,τ ],Lr(R3)) � ‖f‖L2(R3) +

(
1 + τ 1/q+1/eq

)
‖F‖

Leq′

t ([0,τ ],Ler′(R3))
. (5.62)

If q = q̃ = ∞ then τ 1/q+1/eq is interpreted as 1. If f = 0 then the conditions on

(q, r) and (q̃, r̃) may be relaxed to satisfying (5.57), (5.58) and (5.59).
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While the Strichartz estimate (5.62) is not of the usual form, the next

proposition shows that it can still answer questions about well-possedness.

Proposition 5.9.7. Suppose that for each real number k in the interval [1, 2),

there is a transformation Fk of functions satisfying⎧⎪⎨⎪⎩ |Fk(u)| � |u|k

|u||F ′
k(u)| ≈ |Fk(u)|.

(5.63)

Suppose also that f ∈ L2(R3), 3k/2 < r ≤ 2k and (q, r) satisfies the admissi-

bility conditions (5.56). Then there is a positive τ , depending only on f , and

a unique weak solution u to the initial value problem⎧⎪⎨⎪⎩
(
i ∂
∂t

+ H
)
u(t) = Fk(u)(t), 0 < t < τ,

u(0) = f

(5.64)

such that u ∈ Lq([0, τ ]; Lr(R3)) and u depends continuously on the initial data.

The proof of the proposition follows standard arguments which appeal to

the contraction mapping theorem (see for example Section 4.1, [42, Section 9]

and particularly [9], where (5.64) was studied in the nonpotential case when

H = Δ).

Proof. Suppose that 1 ≤ k < 2 and that (q, r) satisfies the hypotheses of the

proposition. Then there exists an exponent r̃ in [2, 3) such that

r = r̃′k. (5.65)

Now choose q̃ such that (q̃, r̃) satisfies the admissibility condition (5.56). One

can easily verify that

q > q̃′k. (5.66)

In a manner similar to the proof of Theorem 4.1.1, we will show that the

map u �→ Nf (u), given by

Nf(u)(t) = eitHf − i

∫ t

0

ei(t−s)HFk(u)(s) ds,
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is a contraction map on metric space X given by

X = {u ∈ Lq([0, τ ]; Lr(R3)) : ‖u‖Lq([0,τ ];Lr(R3)) ≤ M},

where M is chosen such that

‖Nf (0)‖Lq([0,τ ];Lr(R3)) ≤
M

2
(5.67)

and τ is a positive constant to be determined. (Note that M is well-defined

by the homogeneous part of the Strichartz estimate (5.62) and that M is inde-

pendent of τ . Also, the metric on X is that induced by the Lq([0, τ ]; Lr(R3))

norm.)

First we will show that

‖Nf(u) − Nf (v)‖X ≤ 1

2
‖u − v‖X ∀u, v ∈ X. (5.68)

The assumptions (5.63) on Fk show that

|Fk(u) − Fk(v)| =

∣∣∣∣∫ 1

0

d

dλ
Fk

(
λu + (1 − λ)v

)
dλ

∣∣∣∣
=

∣∣∣∣∫ 1

0

(u − v)F ′
k

(
λu + (1 − λ)v

)
dλ

∣∣∣∣
� |u − v|

∫ 1

0

∣∣λu + (1 − λ)v
∣∣k−1

dλ

≤ |u − v|
(
|u| + |v|

)k−1
.

By the Strichartz estimate (5.62), we obtain

‖Nf (u) − Nf (v)‖X �
(
1 + τ 1/q+1/eq

)
‖Fk(u) − Fk(v)‖Leq′ ([0,τ ];Ler′(R3))

�
(
1 + τ 1/q+1/eq

) ∥∥∥|u − v|
(
|u| + |v|

)k−1
∥∥∥

Leq′ ([0,τ ];Ler′(R3))
.

Two applications of Hölder’s inequality give∥∥∥|u − v|
(
|u| + |v|

)k−1
∥∥∥

Leq′ ([0,τ ];Ler′(R3))

≤ ‖u − v‖Lq([0,τ ];Lr(R3))

∥∥∥(|u| + |v|
)k−1

∥∥∥
Lq/(k−1)([0,τ ];Lr/(k−1)(R3))

×
∥∥1[0,τ ]

∥∥
Lp([0,τ ];L∞(R3))

,
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where p is chosen such that

1

q̃′
=

1

q
+

1

q/(k − 1)
+

1

p
.

Note that the above applications of Hölder’s inequality are valid by (5.65) and

(5.66) and that 1 < p < ∞. Hence

‖Nf(u) − Nf (v)‖X ≤ Cτ 1/pMk−1(1 + τ 1/q+1/eq) ‖u − v‖X .

Now choose τ such that

Cτ 1/pMk−1(1 + τ 1/q+1/eq) ≤ 1

2

to obtain (5.68).

Note that since

‖Nf(u)‖X ≤ ‖Nf(0)‖X + ‖Nf(u) − Nf(0)‖X

≤ M

2
+

1

2
‖u − 0‖X (5.69)

≤ M

whenever u ∈ X, we have Nf : X → X and hence Nf is a contraction on

X. Hence the contraction mapping theorem implies that there is a unique

solution u to the initial value problem (5.64). Following arguments similar to

that contained in the proof of Theorem 4.1.1, one can show that the solution u

in Lq([0, τ ]; Lr(R3)) depends continuously on the initial data f in L2(R3).
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[38] L. V. Kapitanskĭı, Some generalizations of the Strichartz-Brenner inequal-

ity, Algebra i Analiz 1 (1989), no. 3, 127–159.

[39] T. Kato, An Lq,r-theory for nonlinear Schrödinger equations, Spectral and

scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math.

Soc. Japan, Tokyo, 1994, pp. 223–238.

[40] Tosio Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré
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