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Summary 

Rainfall and temperature (the main driver of evaporation) are key inputs for hydrologic 

models in studying catchment responses to climate scenarios. Both rainfall and 

temperature, however, are uncertain, with rainfall having a larger degree of uncertainty. 

Using uncertain inputs in hydrologic models, without due consideration of their 

associated uncertainties, results in biased outcomes. The purpose of this thesis is to 

develop methods for quantifying uncertainties in climate data (with emphasis on rainfall) 

towards proposing strategies to incorporate these uncertainties into water resource 

assessment.  

Rain gauge and satellite rainfall data are initially compared and merged to produce an 

improved gridded rainfall dataset with its associated standard error. This is implemented 

for Australian rainfall. The standard error estimation logic is then extended to develop a 

novel uncertainty metric, the square root error variance (SREV), for quantifying 

uncertainties in global climate model (GCM) data. The method is applied to estimate 

GCM-projected rainfall and temperature uncertainty across the world. It is found that 

GCM uncertainty arises mainly from model structural errors. Subsequently, two case 

studies that implement the SREV metric into hydrologic systems are carried out. 

First, future drought, across the world, is estimated with due consideration to the 

uncertainties involved in GCM rainfall projections. Simulation extrapolation, which 

reduces parameter bias when input errors are known, is used to mitigate biases in drought 

estimates. It is found that consideration of GCM rainfall uncertainties is vital, as drought 

values with and without considering the uncertainties are significantly different. Second, 

a comprehensive analysis is carried out to evaluate water availability at the Warragamba 
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Catchment in Sydney, Australia. An additive error model is proposed to generate rainfall 

and temperature realizations that are used to simulate streamflow. Future storage 

requirement with its associated uncertainty is then evaluated using reservoir behavior 

analysis. It is found that the existing storage capacity suffices the future requirements, 

although large uncertainty exists in storage estimates.  

In conclusion, the thesis presents methods to quantify and account for uncertainties in key 

hydrologic variables. Provision of these uncertainties offers an effective platform for risk-

based assessments of any integrative or adaptive water management plans that may be 

formulated using measured or simulated climate data. 
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Chapter One 

1. Introduction and Literature review 

This chapter begins by introducing the important research questions and, thus, motivation 

for the research addressed in the thesis. It then reviews the relevant literature, and 

highlights the gaps in the existing body of knowledge. The main objectives and outline 

of the thesis are presented towards the end. The terms ‘uncertainty’ and ‘standard error’ 

in regards to a given variable are used synonymously throughout the thesis. 

1.1. Research motivation  

Global warming, caused by anthropogenic changes, likely alters the global climate 

system. According to the Intergovernmental Panel on Climate Change [IPCC, 2007], 

global average surface temperature has increased by 0.74°C during the last century (1906 

to 2005) and an increase of up to 4°C (based on high greenhouse gas emission scenario) 

is also projected for the end of the 21st century. Although it is hard to make exact 

predictions of these impacts on water resources, a majority of studies suggest occurrences 

of more-frequent extreme climate events, such as floods and droughts [IPCC, 2007; 

Kundzewicz et al., 2008; Milly et al., 2002]. Climate projections simulated from global 

climate models (also known as, general circulation models (GCMs)) are typically used to 

assess the impacts of climate change on water resources. The GCMs are state-of-the-art 

tools, developed by different climate modelling groups around the world, that exhibit the 

physical processes in the atmosphere, ocean, cryosphere and land surface [IPCC, 2007].  
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Twenty four GCMs have been considered in the fourth assessment report (AR4) of the 

IPCC that commonly serves as the basis for climate change impact assessments. A 

number of studies have been carried out to evaluate the skills of these models through 

inter-comparison of the model outcomes with each other as well as with observations [e.g. 

Johnson and Sharma, 2009a; Johnson et al., 2011; Masson and Knutti, 2011; Perkins et 

al., 2007]. These studies have generally found that the GCMs show better accuracy at 

large scales (e.g., average across the world) than at small scales (e.g., at the GCM grid 

location), indicating that the uncertainty of GCM projections varies spatially. The 

uncertainty in GCM projections also vary temporally depending on the projection period 

(e.g., historical projections have better accuracy than future ones) as well as projection 

timestep (i.e., monthly projections have better accuracy than daily ones). Further, GCM 

projection uncertainty varies depending on the type of the variable under consideration. 

For example, rainfall, which is the main driver of hydrologic processes and the key input 

to hydrologic models, is poorly simulated when compared to temperature, which is also 

an important variable for estimating evaporation. Although both rainfall and temperature 

projections are uncertain, they are often used, without consideration of their uncertainties, 

as inputs to hydrologic models, in the assessment of the impacts of climate change on 

water resources. 

Using uncertain rainfall and temperature as inputs to hydrologic models results in biased 

outcomes that will likely lead to erroneous science and policy plans and/or decisions. In 

view of this, it is of great practical interest to give due consideration to the uncertainties 

in GCM rainfall and temperature projections in water resources assessment. This provides 

the motivation for this thesis towards considering GCM uncertainties for climate change 

impact assessment as well as proposing strategies to incorporate GCM uncertainties for 
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planning and management of water resources. This is done in two steps: (i) quantification 

of spatio-temporal uncertainties in GCM projections; and (ii) consideration of these 

uncertainties in water resources assessment. An important research question that this 

thesis attempts to address with respect to the former step is: 

 How to explicitly quantify the uncertainty in any GCM output that vary in space 

and time? 

Although this thesis focuses mainly on rainfall and temperature projections, it is 

important to develop a generic method that allows its use for any other output from 

GCMs. After developing the GCM uncertainty estimation methods, this thesis 

investigates approaches to implement the uncertainties into water resources assessment. 

With regard to this, a research question of particular interest is:  

 How can the uncertainty associated with GCM projections be taken into account 

in the assessment of climate change impacts on hydrologic systems? 

1.2. Literature review  

This section provides a review of literature relevant to the objectives of the thesis. An 

exhaustive literature review is also provided at the beginning of chapters 2 to 5. 

Climate data (such as rainfall and temperature) form key inputs to hydrologic models. 

These data can be obtained through measurements or simulations using climate models 

(e.g. GCMs). In the context of climate change impact assessment, the former are often 

used to calibrate impact assessment models as well as to correct biases in GCM 

projections, whereas the latter are used to evaluate the potential impacts of climate change 

on water resources. Both data, however, are uncertain with varying degrees and sources 
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of uncertainty. Although this thesis mainly deals with uncertainties in GCM outputs, the 

methods proposed to quantify them will be initially developed using observed rainfall 

data. Therefore, a brief literature review of uncertainties involved in observed rainfall 

data will be discussed first in section 1.2.1, followed by a detailed review of uncertainties 

associated with GCM projections in section 1.2.2. 

1.2.1. Uncertainty in observed rainfall data 

Rainfall is measured directly using rain gauges or indirectly using remote sensing 

methods (such as satellite-based techniques or weather radars). Rain gauge-based rainfall 

data, measured at sample locations, are uncertain due to systematic errors (such as errors 

due to wind, flaws in gauge installation and wetting losses), random errors [Ren and Li, 

2007; Sevruk, 1996] as well as interpolation errors [Tao et al., 2009]. Several interpolation 

methods have been developed and/or applied during the past century, such as Thiessen 

polygons [Thiessen and Alter, 1911], inverse distance weighting [Shepard, 1968], 

geostatstical methods [Journel and Huijbregts, 2003] and spline fitting [Hutchinson, 

1998]. All these interpolation methods have their own associated uncertainties, which 

vary in space and time. In contrast to rain gauge rainfall, satellite-based rainfall data (e.g., 

using Tropical Rainfall Measuring Mission (TRMM) [Kummerow, 2000]) provide 

continuous rainfall in space and time that somewhat mitigates the uncertainties that would 

be introduced due to rain gauge rainfall interpolation. However, satellite-based rainfall 

have its associated uncertainty as well, as a result of temporal sampling and retrieval of 

rainfall rate from satellite signals [Gebremichael et al., 2010].  

A number of studies have estimated the uncertainties involved in gridded rainfall 

estimation [Grimes et al., 1999; Isaaks and Srivastava, 1989; Jeffrey et al., 2001; Oke, 
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2009]. Such studies have largely estimated the rainfall errors either in space (without 

considering the temporal variability) or in time (without considering the spatial 

variability). However, due to high variability of rainfall in space and time, the rainfall 

estimation errors also vary spatially and temporally. This research attempts to develop a 

method to quantify rainfall uncertainties that vary both in space and time. The method 

developed based on rain gauge and satellite rainfall will then be extended to GCM 

projection uncertainties (see, section 1.2.2). 

Another interesting question regarding rain gauge and satellite rainfall data is: Whether 

or not merging of these two rainfall datasets reduces errors in rainfall estimation? In 

connection with this, a number of studies that merge rain gauge and TRMM-based rainfall 

have been carried out [Grimes et al., 1999; Huffman et al., 1995; Li and Shao, 2010]. 

These studies have used dense rain gauge networks and found that merging of the two 

reduces estimation errors only at locations where the rain gauge network is poor. It is, 

therefore, interesting to assess the extent of improvement that may be obtained using 

relatively sparse network of rain gauges. This thesis attempts to do this by developing a 

merging algorithm that combines rain gauge and satellite rainfall for three different sparse 

rain gauge networks across Australia (see, chapter 2). Focus is given to the estimation of 

the associated spatio-temporal errors as well as to the evaluation of the extent of error 

reduction after merging rain gauge and satellite rainfall.  

1.2.2. Quantifying uncertainty in GCM simulations 

Uncertainty in GCM simulations  

Projections from GCMs are commonly used for climate change impact assessment on 

streamflows as well as other hydrologic variables (such as rainfall and ground water 
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level). Streamflows and other variables, however, are poorly simulated in GCMs [Kuhl 

and Miller, 1992] that the following indirect procedure is typically adopted to assess the 

impacts of climate change on water resources: (1) projection of future climate data (e.g., 

rainfall and temperature) using GCMs; (2) downscaling of coarse-scale GCM outputs to 

fine-scale data appropriate for hydrology and water resources studies; and (3) estimation 

of river flow and groundwater levels using hydrologic models. Although this procedure 

is considered reasonable, the reliability of the assessments and its usefulness for practical 

applications is questionable due to the various uncertainties introduced at each stage of 

the process.  

According to the fourth assessment report (AR4) of the IPCC, there is a significant level 

of uncertainty in the sign of change of rainfall across different GCM projections using 

A1B scenario (Figure 1.1). One can expect much larger uncertainty in the magnitude of 

rainfall and more so if different emission scenarios are considered. Additional 

uncertainties are also introduced due to the downscaling methods and impact assessment 

models used. Figure 1.2 shows the propagation of uncertainties in the local climate change 

impacts and adaptation responses from various uncertainties introduced at different stages 

of the analysis. Multiple GCMs, emission scenarios, downscaling methods and impact 

models are used by Chen et al. [2011], Deque et al.  [2007], and Kay et al. [2009] to 

evaluate these uncertainties. These studies estimated the uncertainties propagated from 

GCM projections to a given variable of interest (e.g. flow) and have found that GCM 

model structure is the largest source of uncertainty compared to all other sources. The 

outcomes of these studies offer some insights into the uncertainty introduced from GCMs 

to impact assessment; however, none of them have directly quantified the uncertainties 
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involved in the GCM projections themselves. Few studies, however, have attempted this, 

which are discussed below.  

 

Figure 1.1: Relative changes in precipitation (%) for the period 2090-2099, relative to 

1980-1999. Values are multi-model averages based on the SRES A1B scenario 

for (a) December to February and (b) June to August (right). White areas are 

where less than 66% of the models agree in the sign of the change and stippled 

areas are where more than 90% of the models agree in the sign of the change. 

(Source: IPCC [2007]). 

           

(a) (b) 
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Figure 1.2: The propagation of uncertainty in climate change impact studies. The 

increasing width of the pyramid indicates the expanding of the uncertainty 

envelope due to the various uncertainties introduced at each of the procedures 

(after, Wilby and Dessai [2010]). 

Quantifying GCM simulation uncertainty 

Uncertainty in GCM simulations arise from three sources: model structure (i.e., 

uncertainty due to inadequate representation of the climate system in models); scenario 

(i.e., uncertainty due to incomplete information about the greenhouse gas emission 

scenarios); and ensemble runs (i.e., uncertainty due to natural variability of the climate 

system) [Yip et al., 2011]. These individual uncertainties as well as their total uncertainty 

vary spatially and temporally, depending on the GCM being assessed and on the variable 

of interest (e.g. rainfall or temperature) [Johnson and Sharma, 2009b; Perkins et al., 

2007].  

Ideally, the uncertainties associated with GCM simulations should be provided by the 

modelling groups that provide the projection data. However, as of now, the GCM 

modelling groups do not provide the associated uncertainties, due to computational and/or 

time constraint of simulating thousands of realizations required to adequately characterise 

the uncertainty [Murphy et al., 2004]. The modelling groups, however, provide few 

ensemble runs for each model and emission scenario. Using these few ensemble runs, 

different approaches have been used in the literature to evaluate skills of GCMs towards 

selecting the best models as well as to quantify GCM projection uncertainties. 

Evaluation of GCM skills is commonly carried out by comparing the historical GCM runs 

with the observations. This approach, known as ‘model performance’, has largely been 
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applied to select the best subset of models for simulating variables of interest as well as 

to estimate weighing factors to optimally combine different GCM outputs [Dessai et al., 

2005; Hawkins and Sutton, 2009; Johnson and Sharma, 2009b; Perkins et al., 2007]. The 

assumption pertinent in the evaluation of GCM performance based on historical 

simulations is that the future skill of GCMs is similar to the historical period. However, 

this is not the case, as reported, for instance, by Power et al. [2011] and Jun et al. [2008], 

where weak accuracy is obtained between the historical and future simulations. To deal 

with such a problem, an approach, known as ‘model convergence’, which assesses GCM 

skills based on the agreement of future GCM projections with the ensemble mean has 

been used [Dessai et al., 2005; Giorgi and Mearns, 2002; Greene et al., 2006]. The above 

studies offer insights into the overall accuracy and uncertainty of the GCMs; however, 

they do not explicitly quantify the GCM uncertainties that vary in space and time.  

There are indeed a number of studies that attempt to explicitly quantify GCM 

uncertainties [Déqué et al., 2007; Hawkins and Sutton, 2009; Hodson and Sutton, 2008; 

Yip et al., 2011]. These studies typically use the analysis of variance (ANOVA) to 

partition the total variance using multiple GCMs, emission scenarios and ensemble runs 

into the three sources of uncertainty mentioned above (i.e., model structure, scenario and 

ensemble runs uncertainties). An important limitation of all these studies is that the 

uncertainties are quantified for long-term mean (‘long-term mean’ refers here five years 

or more) of the GCM variable, and so they do not offer any information about the 

variability of the uncertainty at short time scales (such as monthly or annual). 

Therefore, an appropriate framework that enables one to estimate GCM uncertainties that 

varies in space and time for any GCM output is lacking. This is further investigated in 
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this thesis and a method to quantify the spatio-temporal GCM uncertainties is developed 

in chapter 3. Provision of the GCM spatio-temporal uncertainty has important 

implications for subsequent modelling applications, i.e., the uncertainty information can 

be implemented in impact assessment models to assess regional changes together with 

their associated uncertainty. The existing literature towards implementation of GCM 

uncertainty for impact assessment on water resources is discussed next. 

Implementation of GCM simulation uncertainty in impact assessment studies  

In the previous section, review of various sources of GCM projection uncertainties as 

well as insights into quantifying them was described. With the knowledge that GCM 

projections are uncertain, an important question is: which and how many GCMs to use 

for impact assessment? 

A number of studies suggest the use of one or a few GCMs having the best skills obtained 

through evaluation of model performance and/or convergence [Johnson and Sharma, 

2009b; Masson and Knutti, 2011; Pennell and Reichler, 2010; Perkins et al., 2007]. 

However, use of one or a few GCMs also has a disadvantage in that information from the 

GCMs that are not considered will be lost. One may argue that the GCMs excluded have 

less skill in simulating the variable of interest. Although this can be considered 

reasonable, there is a lack of reliable method to convincingly evaluate GCM skills [Weigel 

et al., 2010]. Due to this, studies recommend the use of either numerous simulations from 

different GCMs, scenarios and ensemble runs [Murphy et al., 2004] or thousands of 

simulation runs from a single GCM [Stainforth et al., 2005] to precisely reproduce the 

uncertainty interval in the regional changes.  
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Despite these suggestions, many researchers still carry out impact assessments using only 

a single or a few GCM projections. Among others, the following could be important 

reasons for this: (1) Cost and/or time constraint to analyse large ensembles [Perkins et 

al., 2007]; (2) The total number of available GCM projections, in the first place, are few 

[KjellstrÖM et al., 2011; Prein et al., 2011] that it is difficult to make statistically 

acceptable uncertainty interval.  

In view of the above, it is important to develop an appropriate framework that helps to 

generate thousands of realizations for a single GCM applicable for water resources 

assessment. Stainforth et al. [2005] have carried out this through simulation of a single 

GCM, thousands of times, by perturbing selected model parameters and initial conditions. 

However, this method is computationally expensive, as it needs  tens of thousands of 

computational machines around the world [Stainforth et al., 2005], and thus makes the 

analysis difficult for practical applications..  

Considering this, it is vital to develop a less computationally expensive stochastic method 

to generate GCM realisations through post-processing of the available GCM projections. 

In regard to stochastic data generation, extensive literature is available for generating 

climate data (especially rainfall) through parametric, semi-parametric and nonparametric 

methods [Harrold et al., 2003; Jones and Thornton, 1993; Mehrotra and Sharma, 2007]. 

Carpenter and Georgakakos [2001] have applied a simple error model to generate 

ensemble streamflow forecasts by adding noise to the streamflow estimate, where the 

noise is estimated based on the uncertainty of the forecast. Due to its usefulness and 

simplicity, this method is of particular interest in this thesis. 
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Once a method to generate GCM realisations is developed, it can be used to reduce the 

influence of input uncertainty in impact assessment models. To this end, several statistical 

approaches have been developed in the literature: Integrated Bayesian uncertainty 

estimator (IBUNE) [Ajami et al., 2007]; Bayesian total error analysis (BATEA) [Kavetski 

et al., 2006a]; and Simulation extrapolation (SIMEX) [Chowdhury and Sharma, 2007]. 

The SIMEX, which attempts to reduce model parameter biases due to uncertainty in the 

input data, is implemented in this thesis for assessing and reducing uncertainty in future 

drought estimation (Chapter 4). 

The GCM realizations can also be used to simulate the variable(s) of interest (such as 

streamflow or reservoir storage) with the associated uncertainty. This will be helpful for 

any alternative planning or decisions that could be made based on the GCM projections. 

A case study towards this is investigated at the Warragamba catchment, New South Wales 

(Australia) in Chapter 5. 

1.3. Aims and objectives of the thesis 

The above literature review reveals that while an extensive amount of research has already 

been carried out to understand and analyse the impacts of climate change on water 

resources, very less attention has been given to characterize and reduce the uncertainties 

introduced into impact assessment from the GCM simulation uncertainty. Thus, this 

thesis aims to develop an appropriate framework that is fine-tuned to quantify spatio-

temporal GCM uncertainty as well as to implement such uncertainty information for 

water resources assessment. The specific objectives of the thesis, according to the topic 

presented in different chapters, are: 
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 To compare and merge rain gauge and remote sensing rainfall data as well as to 

estimate the associated spatio-temporal standard errors for Australian conditions; 

 To develop a method that can quantify spatio-temporal GCM projection 

uncertainty; 

 To implement spatio-temporal GCM projection uncertainty into water resources 

assessment using Simulation Extrapolation (SIMEX), with an example for 

drought analysis across the world; 

 To develop methods that can be used to implement GCM projection uncertainty 

information for water resources assessment, with an example for reservoir storage 

analysis at the Warragamba Catchment in Sydney, Australia. 

1.4. Thesis outline 

This thesis is presented as a series of chapters that are reproduced, with minor 

modifications, from journal papers either published or submitted for publication. The 

outline of the main chapters (Chapters 2 to 5) is given in Figure 1.3, which is arranged 

according to the specific objectives described in section 1.3, above. Each of these chapters 

can be read as a stand-alone document, and the notations used in each chapter are specific 

to that particular chapter. The thesis is organised in two parts: Part-1 and Part-2 (Figure 

1.3). In Part-1 (Chapters 2 and 3), methods to quantify spatio-temporal uncertainties in 

climate datasets are discussed, whereas implementation of the spatio-temporal 

uncertainties for water resources assessment is presented in Part-2 (Chapters 4 and 5). In 

what follows, a brief overview of the main chapters (Chapters 2 to 5) is given. 

Chapter 2 provides a preliminary study that compares and evaluates the uncertainties 

involved in the estimation of gridded rainfall using observed rainfall data based on two 
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different sources, i.e. rain gauge and remote sensing, across Australia. Both datasets have 

significant uncertainties due to various sources of errors, interpolation and retrieval 

errors, in either case. In an attempt to reduce these uncertainties, the study develops and 

implements a method to merge the two rainfall sources. Finally, a method to quantify the 

spatio-temporal standard error that varies in space and time is developed. The spatio-

temporal standard error estimation method, developed based on observed rainfall, is then 

extended to estimate GCM projections uncertainty, which forms a basis for the remaining 

chapters (Chapters 3 to 5). 

 

Figure 1.3: Flow chart showing the outline of chapters 2 to 5. 

Chapter 3 develops a novel method to quantify GCM uncertainty at monthly timestep 

across the world. The method is implemented for rainfall and temperature projections 

from six GCMs and three scenarios using the CMIP3 datasets of the fourth assessment 

report (AR4) of the IPCC. Using the GCM projections and the new uncertainty estimates, 
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two application studies towards assessing uncertainties involved in climate change impact 

assessments for water resources are carried out, which are discussed in chapters 4 and 5.  

In chapter 4, drought assessment using Standardised Precipitation Index (SPI) for future 

climate, across the world, is discussed. The GCM uncertainty established in chapter 3 is 

implemented to analyse the influence of GCM uncertainty in the future SPI estimates. In 

addition, Simulation Extrapolation (SIMEX) method is applied to reduce SPI parameter 

bias that would otherwise occur due to the uncertainty in the GCM rainfall. A 

comprehensive assessment of water resources considering GCM uncertainties is then 

carried out in chapter 5. The study quantifies and evaluates the GCM uncertainties 

introduced in the assessment of climate change impacts on reservoir storage. The 

uncertainty estimation method developed in chapter 3 is used to quantify uncertainties in 

rainfall and evaporation projections, which are then used to estimate the uncertainties 

propagated into reservoir storage. This is carried out for the Warragamba catchment in 

New South Wales, Australia. An overall conclusion of the thesis as well as future research 

directions is discussed in chapter 6. 
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Chapter Two 

2. Merging gauge and satellite rainfall with specification of 

associated uncertainty across Australia 

 

Accurate estimation of spatial rainfall is crucial for modeling hydrologic systems and 

planning and management of water resources. While spatial rainfall can be estimated 

either using rain gauge-based measurements or using satellite-based measurements, such 

estimates are subject to uncertainties due to various sources of errors in either case, 

including interpolation and retrieval errors. This chapter investigates the benefit of 

merging rain gauge measurements and satellite rainfall for Australian conditions as well 

as produces a database of retrospective rainfall along with a new uncertainty metric for 

each grid location at each timestep. The uncertainty metric estimation method, in this 

chapter, will be further extended in chapter 3 to estimate uncertainties of GCM 

projections. The content of this chapter is reproduced, with permission and minor 

changes, from a paper that is published in Journal of Hydrology, below. 

Woldemeskel, F.M., B. Sivakumar, and A. Sharma (2013), Merging gauge and satellite 

rainfall with specification of associated uncertainty across Australia, Journal of 

Hydrology, 499, 167-176.  

2.1. Introduction 

Accurate estimation of spatial rainfall at fine scales is crucial for many practical 

hydrological and environmental modelling purposes, such as rainfall-runoff modelling, 

hydraulic structure design, and pollutant transport. There are two common methods for 

measuring rainfall: (1) using direct measurements (e.g. rain gauges); and (2) using remote 
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sensing techniques (e.g. weather radar or satellite-based techniques). The conventional 

way of obtaining spatial rainfall is through conversion (e.g. averaging or interpolation) of 

point rainfall measured at rain gauge locations. While the point rainfall itself is only a 

representation of average over an area, the approach is somewhat reliable if there is a 

dense network of rain gauges. However, in areas where there is only a sparse network of 

rain gauges, this approach to obtain spatial rainfall (as well as rainfall at other temporal 

scales) is subject to a large degree of uncertainty. Furthermore, rainfall measured using 

rain gauges is uncertain due to the effects of wind, flaws in rain gauge installation, wetting 

losses, and other random and systematic errors [e.g. Ren and Li, 2007; Sevruk, 1996]. 

Some of the above problems may be mitigated with the use of satellite-based techniques 

for rainfall measurements. Satellite-based techniques provide continuous rainfall at much 

finer temporal and spatial resolutions than ground-based rain gauges do. However, they 

are also uncertain due to temporal sampling and retrieval of rainfall rate from satellite 

signals [e.g. Gebremichael et al., 2010]. There exist several satellite-based global rainfall 

products; however, the products from the Tropical Rainfall Measuring Mission (TRMM) 

rainfall estimates [e.g. Kummerow, 2000] are arguably the most extensive and most 

widely used for rainfall studies in tropical regions.  

The TRMM was launched in November 1997 with an aim to measure tropical rainfall 

from space with combined passive and active microwave instruments [Kummerow, 2000]. 

Several studies have favourably assessed the utility of TRMM rainfall data by comparing 

them with rain gauge observations [e.g. Chiu et al., 2006; Chokngamwong and Chiu, 

2008; Hughes, 2006] as well as by using TRMM rainfall data for streamflow simulation 

[e.g. Bitew, 2010; Collischonn et al., 2008; Su et al., 2008]. Some efforts have also been 

made to merge TRMM rainfall data with rain gauge observations [Grimes et al., 1999; 
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Huffman et al., 1995; Li and Shao, 2010; Oke, 2009], including for Australia. For 

instance, Li and Shao [2010] showed that a nonparametric kernel merging of gauge and 

TRMM rainfall data improves Australian rainfall estimation in terms of biases when 

compared with other approaches. Oke et al. [2009] used TRMM data as a predictor in 

geostatistical estimation methods to estimate daily rainfall in Australia. It was 

demonstrated that incorporating TRMM data in rainfall estimation did not increase the 

overall accuracy, although some improvement was obtained in areas with sparse rain 

gauge network. They argued that the reason for the moderate performance of the merging 

is due to the poor correlation of TRMM data with gauge observations as well as to the 

existence of large bias in TRMM daily rainfall data, especially in coastal and high altitude 

regions.  

The outcomes of these studies are encouraging as to the usefulness of merging satellite 

and rain gauge measurements, and there is certainly a great potential for further advances. 

This provides the motivation for the present study towards improving spatial rainfall 

estimation in Australia. More specifically, the study attempts to merge the high-quality 

monthly rainfall data measured using rain gauges and the accumulated monthly TRMM 

3B42 data. Unlike the previous studies on merging such data for Australia [e.g. Oke et 

al., 2009; Li and Shao, 2010], which have used relatively dense rain gauge network, we 

analyse three sparse rain gauge networks to specifically investigate the benefit of 

incorporating TRMM rainfall in data-limited areas. We also develop a new basis to assess 

uncertainty of the estimated gridded rainfall data at a monthly timestep for each grid. The 

analysis involves the following steps: First, a comparison of rain gauge rainfall and 

TRMM 3B42 data is carried out. Second, a methodology is described to estimate gridded 

monthly rain gauge rainfall using thin plate smoothing splines (TPSS) and modified 
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inverse distance weight (MIDW) method. Third, the gridded rain gauge rainfall is merged 

with the monthly accumulated TRMM 3B42. Finally, cross validation (CV) errors at 

sampling locations as well as standard errors at grid points are estimated. We analyse a 

network of 230 rain gauges across Australia, which have high-quality rainfall data 

[Lavery et al., 1997]. The CV error statistics indicate that merging of the two datasets 

improves the estimation of spatial rainfall, and more so where the rain gauge network is 

sparse. The provision of spatio-temporal standard errors with the retrospective dataset is 

particularly useful for subsequent modelling applications where input error knowledge 

can help reduce the uncertainty associated with modelling outcomes. This is particularly 

useful for distributed hydrological modelling where input data at each grid point is 

required. In such applications, the standard error at each grid point can be used as an input 

to study the propagation of rainfall uncertainty throughout the model as well as to reduce 

parameter bias due to input uncertainty in the parameter estimation.  

2.2. Study area and data  

2.2.1. Study area 

The Australian climate varies from tropical in the north to arid in the middle to temperate 

in the south. The oceans surrounding Australia have a large impact on its climate. For 

instance, the El-Niño Southern Oscillation (ENSO), the western Pacific and the Indian 

Ocean sea surface temperatures (SST), and the Southern Ocean atmospheric variability 

influence the climates of different regions of Australia by varying degrees [Taschetto and 

England, 2009]. The country is largely dry, especially the middle and the west, with the 

rainfall highly variable in space and time. More than 80% of the country gets an annual 

rainfall of less than about 600 mm. However, the tropical region of the far north gets an 
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annual rainfall as high as about 4000 mm. Rainfall is mainly monitored using the 

thousands of rain gauges installed at different parts of the country. However, the majority 

of these rain gauges have been installed only near the coasts of east, south east and south 

west of Australia, where much of the population is concentrated and in big cities. In the 

interior of the country, which is largely desert and very sparsely populated, the number 

of rain gauges is very few. 

2.2.2. Data 

The rainfall data used in this study are high-quality monthly rain gauge rainfall as well as 

TRMM 3B42 products across Australia. The sources and features of these data are 

presented next. 

Rain gauge data 

Rainfall data observed over a period of 10 years (January 1998–December 2007) at 230 

rain gauges across Australia are considered (Figure 2.1). These 230 stations are selected 

from high-quality monthly rainfall measuring rain gauges, identified by Lavery et al. 

[1997] through detailed statistical tests of homogeneity as well as other quality-testing 

criteria (such as observational practice, site relocations and exposure of instruments). 

Where there are missing data (on average, just 1 % of the gauges have missing values in 

a given month during 1998–2007), they are filled by the long-term rainfall mean of the 

respective month. 

TRMM data 

The TRMM rainfall products are downloaded from the Goddard Distributed Active 

Archive Center (GDAAC). The Version 6 products of TRMM 3B42 for the period 1998–
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2007 are considered in this study, and the available daily TRMM 3B42 data are used to 

calculate the accumulated monthly rainfall for analysis. 

 

Figure 2.1: Location map of 230 rain gauge stations in Australia. The figure also shows 

five regions considered for leave-region-out cross validation (L-R-OCV) 

(numbers 1 to 5). 

 

Latitude, longitude and elevation 

Latitude, longitude and elevation at each rain gauge station are obtained from the 

Australian Bureau of Meteorology (BOM). Latitude and longitude at grid locations are 

determined by successively adding the grid size (0.05) to the starting values of latitude 

and longitude. Elevation data at 0.05 x 0.05 latitude/longitude grid (about 5 km x 5 km) 

are obtained by aggregating 90 m Digital Elevation Model (DEM) of the Shuttle Radar 
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Topography Mission (SRTM), which is extracted from the Consortium for Spatial 

Information (http://www.cgiar-csi.org/). 

2.3. Method  

The methodology used in this chapter involves four important steps. First, the quality of 

the TRMM 3B42 rainfall data is assessed by comparing them with gauge observations at 

the sampling points. Second, rain gauge observations are interpolated to obtain rainfall 

data at 0.05 x 0.05 latitude/longitude grid. Third, merged rain gauge–TRMM data at 

0.05 x 0.05 latitude/longitude grid are estimated. Finally, interpolation error at sampling 

points and standard error at grid locations are evaluated. We use the R statistical software 

to implement the methodology. Further details of these specific steps are presented next. 

2.3.1. Comparison of TRMM 3B42 and rain gauge data 

The quality of TRMM 3B42 data is initially assessed to investigate whether the satellite 

data reasonably captures rainfall in Australia or not by comparing them with rain gauge 

data at the sampling points. Figure 2.2 shows the correlation between rain gauge and 

TRMM 3B42 rainfall data for all the 230 stations, plotted with respect to the 

corresponding latitude of the rain gauge stations. The figure indicates that TRMM 3B42 

rainfall data reasonably agree with rain gauge observations, especially for stations within 

39 degrees of the equator. However, the correlation is rather weak at more poleward 

locations (such as Tasmania) and other locations close to the coast, reflecting the 

uncertainty of TRMM rainfall estimates in coastal areas. A two-sample Kolmogorov-

Smirnov (K-S) distributional test shows that significant difference in the statistical 

properties of rain gauge and TRMM 3B42 is found in about 10 % of the stations (see 

http://www.cgiar-csi.org/
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Figure 2.3). These stations are mainly along the coast as well as at more poleward 

locations. 

 

Figure 2.2: Correlation between rainfall data observed through rain gauges versus TRMM 

3B42. The correlations are plotted with respect to the latitude of the rain gauge 

locations. 

2.3.2. Gridded rainfall estimation 

Monthly rainfall values at 0.05 x 0.05 latitude/longitude grid are estimated for both 

TRMM 3B42 and rain gauge rainfall to facilitate the merging of the two. For TRMM 

3B42, the cell value corresponding to 0.25 x 0.25 latitude/longitude grid is used. No 

error reduction is found when the inverse distance weighted (IDW) interpolation is used 

to estimate TRMM rainfall at 0.05 x 0.05 latitude/longitude grid from 0.25 x 0.25 

latitude/longitude grid (see, for example, Isaaks and Srivastava [1989] for details of the 
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IDW interpolation method). For rain gauge data, rainfall measured at 230 sampling points 

are interpolated to obtain gridded rainfall at 0.05 x 0.05 latitude/longitude grid. The 

interpolation is carried out for three different types of rain gauge networks, which are 

obtained by removing on average one, 10 % and 20 %, respectively, of the rain gauges 

from the total number of 230 during cross validation (see section 2.3.4 for more details 

about these three rain gauge networks and cross validation). The interpolation procedure 

involves the following four important steps. 

 

Figure 2.3: A two-sample Kolmogorov-Smirnov (K-S) test between rain gauge and 

TRMM 3B42 rainfall data. Significance difference in the statistical properties of 

the data is observed only in the 10 % of the stations.      

Step 1 – Normalisation: Normality tests of the rainfall data using Lilliefors test 

[Lilliefors, 1967] show that the raw rainfall data can be considered normally distributed 

only at 5 % of the locations at 5 % significant level. We, thus, normalise the raw data by 
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raising to an appropriate fractional power; this helps to reduce the spatial and temporal 

skewness that exist in rainfall. Hutchinson [1998] and Jeffrey et al. [2001] used square 

root normalisation for daily rainfall in the USA and monthly rainfall in Australia, 

respectively. Based on their recommendations and considering its simplicity, we herein 

use the square root normalisation for monthly rainfall, given by: 

 𝑃𝑛𝑜𝑟(𝑖,𝑛) = 𝑃𝑟𝑎𝑤(𝑖,𝑛)
0.5  (2.1) 

 

where i is the month, n represents the station number, Pnor is the monthly normalised 

rainfall and Praw is the monthly raw rainfall.  This transformation step reduces the 

skewness of the rainfall data; i.e., at 5 % significant level, 65 % of the stations can be 

considered normal. The skewness coefficient of the remaining 35 % stations also becomes 

closer to zero, which is an indication that the transformed data can now be reasonably 

assumed to be normally distributed when compared to that of the raw data. 

Step 2 – Standardisation: Standardised rainfall (hereafter referred to as ‘residual’) is 

estimated using: 

 
𝑟𝑖,𝑛 = 

𝑃𝑛𝑜𝑟(𝑖,𝑛) − 𝜇𝑗,𝑛

𝜎𝑗,𝑛
 

(2.2) 

 

where j is the month in a given year, r is the monthly residual, µ is the long-term monthly 

mean and  is the long-term monthly standard deviation. 

The standardisation is carried out to interpolate the normalised long-term mean and 

standard deviation separately from the residual. The spatial variability of rainfall, which 

is largely due to topographic influences, is effectively reduced as a result of the 

standardisation procedure. Therefore, the residual can be reasonably interpolated using 
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observations of a few nearest neighbours. On the other hand, since the topographic 

influences are also, to a certain extent, depicted through the long-term mean and standard 

deviation [Dai et al., 1997; Jeffrey et al., 2001], topographic information is used as a 

predictor variable in the interpolation of the parameters. Thus, standardisation of rainfall 

data and interpolation of the parameters separately from the residuals help to achieve 

improved interpolation outcomes [Chen et al., 2002]. 

Step 3 – Interpolation: During the past century, several interpolation methods have been 

developed and/or applied for rainfall estimation, such as Thiessen polygons [e.g. Thiessen 

and Alter, 1911], inverse distance weight [e.g. Shepard, 1968], geostatstical methods [e.g. 

Journel and Huijbregts, 2003] and spline fitting [e.g. Hutchinson, 1998]. In this chapter, 

a variant of the inverse distance weight and spline fitting are implemented, as follows. 

The long-term mean and standard deviation of the rainfall data are interpolated using the 

Thin Plate Smoothing Splines (TPSS), which is a regression approach that estimates a 

surface by minimising a certain penalty function [e.g. Hastie et al., 2003]. Topographic 

information, such as latitude, longitude and elevation, are used as predictors for the TPSS 

model. On the other hand, the residual is interpolated using the Modified Inverse Distance 

Weight (MIDW) method that accounts for inter-gauge distance as well as direction, 

according to the method presented by Shepard [1968]. The TPSS and MIDW methods 

are selected in this research as they have been well investigated for spatial rainfall 

estimation and found to be useful. See Chapter 7 (Appendix A and B) for more details 

about the TPSS and MIDW methods, respectively. 

Step 4 – Back-transformation: Rainfall at grid points are obtained using: 

�̂�𝑛𝑜𝑟(𝑖,𝑛) = �̂�𝑖,𝑛 × �̂�𝑗,𝑛 + �̂�𝑗,𝑛 (2.3) 
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�̂�𝑟𝑎𝑤(𝑖,𝑛) = �̂�𝑛𝑜𝑟(𝑖,𝑛)
2  (2.4) 

where norP̂  is the estimated monthly normalised rainfall, r̂  is the estimated monthly 

residual, ̂  and ̂  are the estimated long-term standard deviation and mean for each 

month, and rawP̂  is the estimated monthly raw rainfall. Note that variables without hat (^) 

represent observed data or calculated values using observed data at rain gauge locations, 

whereas variables with hat represent interpolated values at grid points. 

It has to be noted that interpolation of rainfall data in the normal space and then back-

transformation introduce some bias in the statistical properties (such as mean and standard 

deviation) of the rainfall data [e.g. Salas et al., 1980]. Albeit this limitation, the 

normalisation step is important to reduce the spatial and temporal skewness of the rainfall 

data which ultimately improves the gridded rainfall estimation. Gaussian Anamorphosis 

normalisation approach [Wackernagel, 1996] may be used to circumvent such bias 

introduced during back transformation. However, we have not applied the Gaussian 

Anamorphosis normalisation or any other bias reduction approach in this study.  

2.3.3. Merging 

We estimate the merged rain gauge–TRMM rainfall by doing a linear weighted 

combination according to: 

 �̂�𝐺𝑆𝑖 = �̂�𝑖�̂�𝐺𝑖 + �̂�𝑖𝑃𝑠𝑖 (2.5) 

   

where GSiP̂  is the merged rainfall estimate at the ith grid, GiP̂ (referred as rawP̂  in Equation 

(2.4)) is the rain gauge rainfall at the ith grid, SiP  is the satellite rainfall at the ith grid, iĝ  
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is the weight for rain gauge rainfall estimate at the ith grid, and iŝ  is the weight for satellite 

rainfall estimate at the ith grid. A number of studies [Gebregiorgis and Hossain, 2011; 

Grimes et al., 1999; Huffman et al., 1995; Marshall et al., 2006; Sharma and Chowdhury, 

2011; Wasko et al., 2013] utilise merging and model combination approaches somewhat 

similar to this. The weights ( iĝ  and iŝ ) are calculated based on the error variances of 

each estimate at a grid location according to: 

 
�̂�𝑖 =

𝜀�̂�𝑖
2

𝜀�̂�𝑖
2 + 𝜀�̂�𝑖

2   (2.6a) 

   

 
�̂�𝑖 =

𝜀�̂�𝑖
2

𝜀�̂�𝑖
2 + 𝜀�̂�𝑖

2    (2.6b) 

   

where 2ˆgi  is the rain gauge rainfall error variances at the ith grid and 2ˆsi  is the satellite 

rainfall error variance at the ith grid. 

We use thin plate smoothing splines (Chapter 7, Appendix A) to interpolate the error 

variance from sampling points to each grid location for both rain gauge and TRMM 3B42 

rainfall estimates. Latitude, longitude, elevation and distance to nearest neighbour are 

used as predictors for rain gauge data. For TRMM 3B42, however, instead of distance to 

nearest neighbour, the overall monthly mean rainfall is used. 

2.3.4. Error estimation 

Cross validation errors at sampling points 
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Cross validation is carried out to evaluate the estimated gridded rain gauge and merged 

rain gauge–TRMM rainfall data using mean error (ME), mean absolute error (MAE) and 

root mean square error (RMSE), calculated according to:  

 
𝑀𝐸 = 

1

𝑁
∑(�̂�𝑛 − 𝑃𝑛)

𝑁

𝑛=1

        
(2.7) 

 

 

 
𝑀𝐴𝐸 = 

1

𝑁
∑|�̂�𝑛 − 𝑃𝑛|

𝑁

𝑛=1

 (2.8) 

   

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(�̂�𝑛 − 𝑃𝑛)

2
𝑁

𝑛=1

 

 

(2.9) 

 

where N is the total number of observations in the analysis and nP̂ and nP  are the 

estimated and observed rainfall at a particular rain gauge, respectively. 

In this study, we carry out three different cross-validation schemes: (1) leave-one-out 

cross validation (L-1-OCV); (2) leave-ten-out cross validation (L-10p-OCV); and (3) 

leave-region-out cross validation (L-R-OCV). In L-1-OCV, at each time, one rain gauge 

is removed from the analysis. In L-10p-OCV, at each time, 10 % of the rain gauges are 

randomly removed from the analysis. In L-R-OCV, the rain gauges are divided into five 

regions (numbered 1 to 5 in Figure 2.1), so that each region contains approximately 20 % 

of the total number of gauges. To estimate rainfall in any region, data from stations in the 

other four regions are considered. This, in some way, characterises an extreme case of 

ungauged basins and allows us to assess the utility of merging gauge and satellite data for 

large ungauged areas. 
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The TPSS is used to estimate the parameters (i.e. mean and standard deviation) for the 

three CV schemes, as follows. For L-1-OCV and L-10p-OCV, the parameters are 

estimated by consecutively removing one rain gauge and 10 % of rain gauges, 

respectively, from the analysis, which results in 230 and 23 parameter values in these two 

cases. We then use the average of these 230 and 23 values to obtain the parameters for L-

1-OCV and L-10p-OCV, respectively. For L-R-OCV, the parameters in any region are 

estimated based on parameter values of other regions. Similarly, the MIDW is used to 

estimate the residuals for the three cases by removing one, 10 % and approximately 20 % 

(i.e. one out of five regions) of the rain gauges from analysis. 

Standard error at grid points  

The estimated cross validation errors at rain gauge locations are used to estimate the 

standard errors at grid points for each timestep (month). Here, ‘standard error’ is defined 

as the standard deviation of the estimated cross validation errors. We adopt the following 

procedure for estimating the standard errors: 

i. Standard deviation of the cross validation absolute errors and long-term mean 

rainfall at each rain gauge location is estimated for each month during 1998–2007.  

ii. Using long-term monthly mean rainfall as a predictor and monthly standard 

deviation as a response variable, a thin plate smoothing spline (TPSS) model is 

developed. This model is then used to predict standard error for each timestep at 

the rain gauge locations. Ideally, the mean of the predicted standard error and 

standard deviation at rain gauge locations should be equal. However, due to errors 

in the TPSS model, the predicted standard errors can be somewhat biased. 
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iii. The bias in the standard error is corrected by multiplying with correctional factors. 

These factors are determined by dividing the standard deviation by the mean of 

the predicted standard errors at rain gauge locations for each month. Then, simple 

inverse distance weight interpolation is used to estimate the factors at grid points 

using six nearest neighbours. 

iv. Standard errors at grid points are predicted by using estimated rainfall as an input 

in the TPSS model in Step (2) and the bias is corrected by multiplying with the 

factors estimated in Step (3). The estimation of the standard error is carried out 

for L-1-OCV, L-10p-OCV and L-R-OCV as well as for their merged estimates 

with TRMM 3B42. 

 

Figure 2.4: Monthly cross validation (a) root mean square error (RMSE) and (b) mean 

absolute error (MAE) for different number of nearest neighbours and power 

parameter. The figures show that number of stations equal to six as well as power 

parameter (k), Equation B2 (Appendix B), equal to 2 are optimal values to obtain 

the minimum RMSE and MAE. 



 

CHAPTER 2 

 

 

33 

 

 

Figure 2.5: Density plots of distances to first (a) and sixth (b) nearest neighbours under 

L-1-OCV, L-10p-OCV and L-R-OCV. 

2.4. Results 

2.4.1. Number of nearest neighbours 

The optimum number of nearest neighbours for interpolation of residuals is selected by 

minimising the cross validation RMSE and MAE. Figures 2.4(a) and (b) show the RMSE 

and MAE for different power parameter values (k), Equation B2 (Appendix B), CVs and 

interpolation methods. In these figures, only the results for L-1-OCV and L-10p-OCV are 

shown, since they have better accuracy for selecting the optimum number of nearest 

neighbours than those of L-R-OCV. The figures show that the errors are large for the first 

few nearest neighbours. As the number of neighbours increases, the error decreases 

rapidly until the number of nearest neighbours is about six. After that, the error again 

increases slowly. This seems to be an indication that six nearest neighbours are optimal 

and, therefore, are used for interpolating the residuals. The density plots of the distances 
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to the first and sixth nearest neighbours for the three cases are shown in Figures 2.5(a) 

and (b), respectively. Under L-1-OCV and L-10p-OCV, the density plots have similar 

peaks and pattern; however, in the case of L-R-OCV, the peaks are shifted to the right. 

The average distances to the first and sixth nearest neighbours are, respectively, 170 km 

and 406 km for L-1-OCV, 178 km and 428 km for L-10p-OCV, and 227 km and 498 km 

for L-R-OCV. As for the power parameter (k), a value equal to two is used, as it gives the 

minimum value for both RMSE and MAE. 

2.4.2. Merging weights at grid points 

The merging of rain gauge and TRMM 3B42 rainfall data is done using Equation (2.5), 

whereas the merging weights ( iĝ  and iŝ ) are calculated using Equations (2.6a) and (2.6b). 

Figures 2.6(a) to (c) show the calculated rain gauge weights at each grid point for leave-

one-out cross validation (L-1-OCV), leave-ten-out cross validation (L-10p-OCV) and 

leave-region-out cross validation (L-R-OCV), respectively. The weights are stationary 

over time, but vary spatially from zero to one. The respective weights for TRMM 3B42 

can also be estimated as one minus the weight for rain gauge. For L-1-OCV and L-10p-

OCV (Figures 2.6(a) and (b)), the weights for rain gauge are greater than those for TRMM 

3B42 in southwest and southeast Australia. This is essentially due to the dense network 

of rain gauges in these areas. On the other hand, due to the sparse network of rain gauges 

in the central and northern parts of the country, the weights for rain gauge are relatively 

smaller than those for TRMM 3B42. For L-R-OCV (Figure 2.6(c)), as large numbers of 

rain gauges are excluded during the cross- validation analysis, the rain gauge weights are 

significantly smaller when compared to those for L-1-OCV and L-10p-OCV, in almost 

all areas across Australia. 
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Figure 2.6: Rain gauge spatial weights for merging rain gauge and TRMM for (a) L-1-

OCV, (b) L-10p-OCV and (c) L-R-OCV. The dots indicate rain gauge locations 

used in the analysis. Weights for TRMM 3B42 is one minus weights for rain 

gauge. 

2.4.3. Cross validation errors at sampling points 

Figures 2.7 and 2.8 show the spatial root mean square error (RMSE) for rain gauge data 

as well as merged gauge–TRMM 3B42 for L-1-OCV and L-R-OCV, respectively; the 

results are for data averaged over the period 1998–2007 at the rain gauge locations (The 
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results for L-10p-OCV are not shown here, as they largely resemble that of L-1-OCV). 

The figures show that the RMSE of the merged rainfall estimate is reduced at the stations 

at longitudes between 122 and 130, which is essentially due to the sparse network of 

rain gauges in this area (see Figure 2.1). The reduction in RMSE is more significant for 

merging TRMM 3B42 with L-R-OCV than that with L-1-OCV (Figure 2.8). The results 

also indicate that only little or even no improvement in RMSE is obtained for L-1-OCV 

in stations located in the eastern or western parts of Australia, likely due to the use of 

relatively dense rain gauge network for analysis in these areas. However, for L-R-OCV, 

considerable improvement is obtained by incorporating TRMM, as the gauge-only 

estimate is still uncertain in those regions due to the removal of all stations from that 

particular region. 

 

Figure 2.7: RMSE of L-1-OCV as well as merged L-1-OCV and TRMM 3B42 at each 

rain gauge location averaged over the period 1998–2007. The RMSE values are 

plotted with respect to the longitude of the rain gauge locations. 
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Figure 2.8: Similar to Figure 2.7 but for L-R-OCV as well as merged L-R-OCV and 

TRMM 3B42.   

Figures 2.9 and 2.10 show the time series of RMSE for rain gauge data as well as merged 

rain gauge–TRMM 3B42, averaged over the 230 rain gauges, for L-1-OCV and L-R-

OCV cases, respectively. The results indicate that the merging increases RMSE in many 

of the timesteps in L-1-OCV (Figure 2.9). On the other hand, merging decreases RMSE 

in almost all the timesteps in L-R-OCV, which is a clear indication of the benefit of 

incorporating TRMM 3B42 for sparse rain gauge network. Figures 2.9 and 2.10 further 

show the seasonal fluctuation of the error, with larger errors observed whenever the 

accumulated rainfalls are larger. 
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Figure 2.9: Time series of RMSE of L-1-OCV as well as merged L-1-OCV and TRMM 

3B42 averaged over 230 rain gauges. 

 

Figure 2.10: Similar to Figure 2.9 but for L-R-OCV as well as merged L-R-OCV and 

TRMM 3B42. 
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Table 2.1: Summary of performance of different rainfall estimation methods (1998–

2007): CV – cross validation; ME – mean error; MAE – mean absolute error; 

RMSE – root mean square error. 

Rainfall estimation 

method 

Rain gauges  

omitted in CV 

ME 

(mm) 

MAE 

(mm) 

RMSE 

(mm) 

L-1-OCV 1 -1.85 14.16 23.11 

L-10p-OCV 10% -1.90 14.15 23.02 

L-R-OCV ~20% (Region) -1.59 21.74 33.59 

TRMM 3B42 & L-1-OCV 1 -2.25 14.45 23.34 

TRMM 3B42 & L-10p-OCV 10% -2.42 14.75 23.76 

TRMM 3B42 & L-R-OCV ~20% (Region) -2.65 18.30 28.24 

TRMM 3B42 -  -3.42 18.26 27.80 

 

Table 2.1 presents the overall error statistics (ME, MAE and RMSE) for the various 

interpolated and merged rainfall estimates. The error statistics for L-1-OCV and L-10p-

OCV are comparable; however, the MAE and RMSE of L-R-OCV are much larger. 

Merging TRMM 3B42 and L-R-OCV decreases the overall MAE from 21.74 mm to 18.30 

mm and RMSE from 33.59 mm to 28.24 mm. The mean error increases from –1.59 mm 

to –2.65 mm. The merged TRMM 3B42 and L-R-OCV has a slightly higher RMSE and 

MAE compared to that from TRMM 3B42 alone; however, TRMM 3B42 overestimates 

rainfall when compared to the merged TRMM 3B42 and L-R-OCV. The slight increase 

in the RMSE and MAE is due to a significantly large error obtained in the L-R-OCV 

estimate in heavy rainfall regions, particularly northern Australia, which increases the 

overall average RMSE and MAE of the merged estimate. Nevertheless, merging has 

reduced RMSE and MAE in majority of the locations compared to the TRMM3B42.  
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2.5. Discussion 

The results from the present study generally indicate that merging rain gauge and TRMM 

3B42 rainfall is not that beneficial for the L-1-OCV and L-10p-OCV rain gauge networks. 

Only little, and sometimes even no, improvement is observed in terms of MAE and RMSE 

at all the rain gauge locations considered for the analysis. This may be due to the 

uncertainties in the rain gauge and TRMM rainfall data as well as to the error introduced 

during the interpolation procedure. The rain gauge-based gridded data are subject to 

measurement errors, due to the effects of wind, wetting loss, interpolation errors and other 

factors, whereas the TRMM rainfall are also uncertain due to sampling and retrieval 

errors, among others. On the other hand, noticeable improvement is obtained by merging 

rain gauge and TRMM 3B42 for the L-R-OCV rain gauge network, despite the above 

uncertainties mentioned above, due to an exclusion of on average 20 % of the rain gauges 

from the same region from the analysis.  

This suggests the particular importance of TRMM rainfall data for areas where the rain 

gauge network is sparse. 

To gain the full benefit of the TRMM rainfall data in merging, it is vital to consider the 

uncertainties in the data measurements in both rain gauges and TRMM. This data 

uncertainty problem is not addressed in the present study; for instance, the original rainfall 

data themselves are considered for analysis. Furthermore, the TRMM rainfall products at 

0.25 x 0.25 latitude/longitude grid are directly used to obtain rainfall at 0.05 x 0.05 

latitude/longitude grid. This also introduces a certain degree of uncertainty, since it 

largely eliminates the local effects on rainfall estimation at the finer scale. We intend to 

extensively examine the data uncertainty problem in the future. To this end, we will also 
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consider an approach similar to the one adopted by AghaKouchak et al. [2009], who 

generated an ensemble of TRMM rainfall estimates by simulating error fields 

stochastically and imposing them in TRMM rainfall estimates. We will report the 

outcomes of such analysis in our future publications.  

In the present study, the rainfall mean and standard deviation are interpolated separately 

from the residual field. The standard inverse distance weight (IDW) method is modified 

to more appropriately specify the weights for nearest rain gauge stations for interpolating 

the residuals. Consideration of only the horizontal distance and direction as influencing 

factors for calculating weights does not create a significant problem, since the effects of 

topography are already included in the mean and standard deviation interpolation. The 

analysis indicates that, in all cases considered, six nearest neighbours are optimal for 

residual interpolation (Figures 2.4(a) and (b)). For cases where the power parameter (k), 

see Equation (B2) in Appendix B (Chapter 7), equals two and as the number of nearest 

neighbours is beyond six, the cross validation errors start to increase. However, for values 

of k equal to three or four, the cross validation errors continue to be almost constant, 

regardless of the number of neighbours. This outcome is acceptable, because, for k values 

of three or four, the calculated weights are very small for large values of inter-gauge 

distance (d) (see Equation (B2) in Appendix B (Chapter 7)), and thus the interpolation is 

again solely based on the first six nearest neighbours. 

The present study reveals that merging of gridded rain gauge data and TRMM 3B42 

improves spatial rainfall estimation especially for sparse rain gauge network. This is in 

accordance with the general conclusion drawn by Oke et al. [2009]. However, it is 

important to mention that, in the present study, we perform a far more elaborate analysis 

using three different densities of rain gauges networks formulated through cross 
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validation. This helps to assess the utility of merging for catchments/basins with varying 

degrees of rain gauge density. In addition, a new methodology is developed, in the present 

study, to estimate the standard error for the rain gauges based as well as merged gridded 

datasets that can be used to assess the propagation of error to models (such as hydrological 

models) that use rainfall as an input. The standard error estimation method developed 

herein can be extended to estimate uncertainties of simulated climate data, such as Global 

Climate Model (GCM) projections (For instance, Woldemeskel et al. [2012]). One can 

also use the improved rainfall data as a more reliable input to hydrological models to 

ultimately improve streamflow simulations. Further, the interpolation and merging 

procedure described here can be reproduced in other areas, especially in developing 

regions where rain gauge network is generally scarce; however, depending on the 

topography, climatic conditions and rain gauge networks in such areas, different findings 

may result.  

2.6. Conclusions 

This study presented an approach to integrate rain gauge and TRMM 3B42 rainfall data 

for estimating monthly rainfall and associated standard errors at a finer spatial scale across 

Australia. Three different combinations of rain gauge networks were considered: leave-

one-out cross validation (L-1-OCV); leave-ten-out cross validation (L-10p-CV); leave-

region-out cross validation (L-R-OCV). Rainfall was estimated from rain gauge 

observations using thin plate smoothing splines (TPSS) and modified inverse distance 

weight (MIDW) method. While thin plate smoothing splines was used for interpolating 

the mean and standard deviation rainfall field, MIDW was used for interpolating the 

residual field. The MIDW incorporated weights for direction as well as distance. This 

improved the interpolation, especially in situations where most of the rain gauges are 
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concentrated in one direction and only a few in the other direction. The results indicate 

an increase in the overall errors (mean absolute error (MAE) and root mean square error 

(RMSE)) when the density of the rain gauge network decreases. The L-R-OCV method 

produced the largest error, since in this case many rain gauges were removed from the 

analysis from the same region. The errors in L-1-OCV and L-10p-OCV are comparable, 

however. 

Rainfall estimates from TRMM are advantageous, as they are available in high spatial 

and temporal resolutions. However, they are also uncertain due to sampling and retrieval 

errors. The overall MAE and RMSE of TRMM 3B42 are found to be greater than those 

of the L-1-OCV and L-10p-OCV estimates, despite the fact that the rain gauge density of 

L-1-OCV and L-10p-OCV are already sparse compared to the total number of rain gauges 

(in thousands) that operate in Australia. The overall MAE and RMSE of TRMM 3B42 

are smaller from L-R-OCV, in which about 20 % of the rain gauge stations were omitted 

from the analysis. Merging TRMM 3B42 with L-1-OCV and L-10p-OCV has only little 

benefit, if any. However, merging TRMM 3B42 with L-R-OCV improves rainfall 

estimation in most rain gauge stations considered. This suggests that integration of 

satellite rainfall with rain gauge data improves rainfall estimation, especially in areas with 

sparse rain gauge network. Assuming standard errors as a function of rainfall magnitude, 

a thin plate smoothing spline model was developed to estimate standard errors at each 

grid for all the timesteps. The estimated standard errors reveal that the errors are 

significantly large for the combination of large rainfall values and sparse rain gauge 

density. The provision of the gridded rainfall data together with the standard errors is 

useful for subsequent modelling applications, particularly where knowledge of the input 

error can help reduce the uncertainty associated with modeling outcomes.  
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Chapter Three 

3. An error estimation method for precipitation and 

temperature projections for future climates 

 

Precipitation and temperature projections from Global Climate Models (GCMs) are 

generally the basis for assessing the impact of climate change on water resources. The 

reliability of such assessments, however, is questionable, since GCM projections are 

subject to uncertainties arising from inaccuracies in the models, greenhouse gas emission 

scenarios, and initial conditions (or ensemble runs) used. The method to quantify 

uncertainties of observed rainfall data discussed in chapter 2 is extended here to estimate 

the spatio-temporal uncertainties involved in future GCM future projections. The content 

of this chapter is reproduced, with permission and minor changes, from a paper that is 

published in Journal of Geophysical Research: Atmospheres, below. 

Woldemeskel, F. M., A. Sharma, B. Sivakumar, and R. Mehrotra (2012), An error 

estimation method for precipitation and temperature projections for future 

climates, Journal of Geophysical Research: Atmospheres, 117 (D22), D22104. 

3.1. Introduction  

Global climate change is anticipated to have enormous impacts on our water resources. 

Although it is hard to make exact predictions of these impacts, a majority of studies 

suggests intensification of the global hydrologic cycle and occurrence of more-frequent 

and greater-magnitude extremes, such as floods and droughts [IPCC, 2007; Kundzewicz 

et al., 2008; Milly et al., 2002]. Recent increases in abnormal floods and droughts around 

the world seem to have only strengthened such findings. As a result, study of climate 
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change impacts on water resources is at the forefront of scientific research today (see 

Cleugh et al. [2011], Fowler et al. [2007],  IPCC [2007], Obeysekera et al. [2011], Piao 

et al. [2010], Sahoo et al. [2011], Sivakumar [2011], and Towler et al. [2010] for some 

recent accounts). 

Towards assessing the impacts of climate change on water resources, the following steps 

are typically adopted: (1) projection of future climate data (e.g. precipitation, 

temperature) using Global Climate Models (GCMs); (2) downscaling of coarse-scale 

GCM outputs to fine-scale data appropriate for hydrology and water resources studies; 

and (3) estimation of river flow and groundwater levels using hydrologic models. 

Although this procedure is considered reasonable, there are also important questions 

about its reliability because of the various uncertainties involved in GCM projections, 

downscaling methods, and hydrologic models [Sivakumar, 2011; Xu, 1999]. The present 

study focuses on the quantification of uncertainties associated with outputs from GCMs. 

Uncertainties in GCM outputs arise due to many factors, including uncertainty in the 

representation of the climate system in models, uncertainty in greenhouse gas emissions 

(GGE) scenarios, and the internal variability of the climate system itself. Yip et al. [2011] 

describe these as follows: “Model uncertainty arises because of an incomplete 

understanding of the physical processes and the limitation of implementation of the 

understanding. Scenario uncertainty arises because of incomplete information about 

future emissions. Internal variability is the natural unforced fluctuation of the climate 

system.” Extensive research has already been carried out towards understanding of the 

overall uncertainties in climate change impact assessment using multiple GCMs/RCMs 

(Regional Climate Models), GGE scenarios, ensemble runs, downscaling methods, and 
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hydrologic models [e.g. Chen et al., 2011; Déqué et al., 2007; Kay et al., 2009]. Such 

assessments give a wide range of values for a given variable of interest (e.g. flow), which 

can then be used for possible alternative planning and designing needed. 

A major limitation of the above approach, however, is that the single or multiple 

GCM/RCM simulations are assumed to be a good representative of what will happen in 

the future. This is not a reasonable assumption, given the known/unknown uncertainties 

in GCM simulations, especially if only a single model and scenario are used. In view of 

this problem, an important question is if it is possible to explicitly quantify the uncertainty 

for any GCM output variable in space and time, by making use of estimates of simulations 

from multiple GCMs? Reliable quantification of these uncertainties indeed allows one to 

ask more sensible questions, general and specific, such as: (1) Are GCM estimates of 

precipitation over high altitudes less uncertain compared to those over coasts?; (2) Is the 

precipitation uncertainty associated with El-Niño events higher than that associated with 

other large-scale climatic events?; and (3) Where and how should the uncertainty 

associated with rainfall inputs be taken into account in planning, design, and management 

of water resources structures? Furthermore, one can also apply such information to 

investigate the propagation of GCM uncertainty to impact assessment models (e.g. 

hydrologic models) and to potentially reduce bias in model parameter estimation using 

methods such as simulation extrapolation [Chowdhury and Sharma, 2007] or Bayesian 

total error analysis [Kavetski et al., 2006a] that would otherwise occur due to GCM output 

uncertainty (see Wilby [2005] for details). 

Quantification of uncertainties in GCM simulations requires utilization of many ensemble 

runs for each model and scenario. However, the climate modelling groups around the 
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world produce, as of now, at the most only a few ensemble runs for each scenario. Using 

these limited number of ensemble runs, studies generally quantify the uncertainties in 

model, scenario, and internal variability in GCM projections and then add up these 

individual contributions to obtain the total uncertainty [Déqué et al., 2007; Hawkins and 

Sutton, 2009; Hodson and Sutton, 2008; Yip et al., 2011]. An important step in such 

studies is the use of multiple GCMs/RCMs, GGE scenarios, and ensemble runs as well 

as the application of the analysis of variance (ANOVA), which is a statistical method to 

partition variances between and within groups [e.g. Harris, 1994]. For instance, Déqué et 

al. [2007] use ten RCMs, two GGE scenarios, three GCMs for boundary forcing, and 

three ensemble runs to evaluate the uncertainty for mean change of precipitation and 

temperature, and report that uncertainty due to GCM is greater than other uncertainties, 

especially for temperature. Hawkins and Sutton [2009], fitting polynomial functions to 

temperature data, show that the relative importance of the above three sources of 

uncertainty varies in different regions and for different forecast lead times; the results are 

also shown to be comparable with those from the ANOVA analysis [Yip et al., 2011]. 

Despite their usefulness, the above studies possess an important limitation, which is that 

the uncertainties in GCM simulations are quantified for long-term means of climate data, 

such as precipitation and temperature (here ‘long-term’ refers to five years or more). 

Although quantification of uncertainties for long-term mean offers insights on its 

magnitude, it does not offer any information about the variability of the uncertainty at 

shorter timescales (e.g. monthly, annual). The main reason behind the analysis for long-

term mean is the disagreement of GCM simulations at shorter timescales. In the present 

study, we attempt to overcome this problem by estimating the uncertainties across space 

and time. 
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The main purpose of this chapter is to develop an error estimation method that yields 

approximate quantification of the main sources of uncertainty in future GCM projections 

in both space and time. To this end, we analyse uncertainties in spatial and temporal 

patterns of GCM simulations at global and regional scales. We also discuss the issues of 

independence and choice of GCM(s) with regard to uncertainty estimation. More 

specifically, we formulate a method that estimates an uncertainty metric, which we call 

“Square Root Error Variance” (SREV), for future climate projections. 

In this study, we estimate uncertainty for GCM precipitation and temperature simulations 

at a monthly time step across the world for the period 2001–2099. Our focus on 

precipitation and temperature is based on our specific interest in water resources 

assessment: precipitation is the most important input for hydrologic models (e.g. rainfall-

runoff), whereas temperature forms a key input for estimation of evaporation and 

evapotranspiration. Nevertheless, our error estimation method is general and can be used 

for estimation of uncertainty in other GCM output variables (e.g. wind velocity, 

atmospheric pressure) as well.  

The results indicate that, for both precipitation and temperature, uncertainty due to model 

structure is the largest source of uncertainty. Scenario uncertainly increases, especially 

for temperature, in future due to divergence of the three emission scenarios analysed. It 

is also found that ensemble run uncertainty is more important in precipitation simulation 

than in temperature simulation. Estimation of uncertainty in both space and time sheds 

lights on the spatial and temporal patterns of uncertainties in GCM outputs. The generality 

of this error estimation method also allows its use for uncertainty estimation in any other 
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output from GCMs, providing an effective platform for risk-based assessments of any 

alternate plans or decisions that may be formulated using GCM simulations. 

The rest of this chapter is organized as follows. Section 3.2 describes the GCM datasets, 

and section 3.3 presents details of the proposed error estimation method. Section 3.4 

presents the uncertainty estimation results. A discussion of these results is made in section 

3.5, and conclusions are given in section 3.6. 

3.2. Data 

Monthly precipitation and temperature outputs from six GCMs of the World Climate 

Research Programme (WCRP) Coupled Model Inter-comparison Project phase 3 

(CMIP3) multi-model datasets are considered for analysis in the present study. The multi-

model datasets are downloaded from the Earth System Grid (ESG) website 

(https://esg.llnl.gov:8443/index.jsp). We use the CMIP3 datasets as an example (as they 

are already established well) to demonstrate the applicability of the error estimation 

method; however, the method can be applied to CMIP5 or other datasets as well. The 

GCMs are selected on the basis of availability of at least three ensemble runs for three 

Special Report on Emission Scenarios (SRES) emission scenarios (B1, A1B, and A2), so 

as to allow estimation of all three sources of uncertainty (i.e., model, scenario, and 

ensemble runs) as well as to be confident of interpretations of results and conclusions. 

The above three scenarios (B1, A1B, and A2) are carefully chosen to represent a wide 

range of emission scenarios, i.e., low, medium, and high forcing effects, respectively, as 

they are based on different assumptions about population growth, economic development, 

energy use, and globalisation [IPCC, 2007; Knutti et al., 2008]. The scenarios are more 

https://esg.llnl.gov:8443/index.jsp
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specifically characterized as follows: B1 represents a convergent world with low 

population growth, rapid changes in economic structures toward a service and 

information economy, reduction in materials intensity, and the introduction of clean and 

resource efficient technologies; A1B represents a future world of very rapid economic 

growth and rapid introduction of new and more efficient technology; A2 represents a very 

heterogeneous world with economic development primarily regionally oriented and per 

capita economic growth and technological change more fragmented. 

Overall, six GCMs, three scenarios, and three ensemble runs for the period 2001–2099 

are considered, resulting in a total of 54 (3 x 3 x 6) monthly time series. Table 3.1 presents 

some basic information about the groups that have developed these GCMs and the spatial 

resolutions of these models. Figure 3.1 shows an example of the projections of global 

mean precipitation (left) and temperature (right) for the three scenarios (B1, A1B, and 

A2) with  a single ensemble run; the mean values are obtained by smoothing values over 

five years using lowess smoother. The figure reveals that the projections for both 

precipitation and temperature corresponding to the three scenarios diverge in the future 

(especially after 2040). Global mean and standard deviation of precipitation and 

temperature for the six GCMs during two different time periods (i.e., 2011–2030 and 

2071–2090) are given in Table 3.2. The mean precipitation increases during 2071–2090 

in comparison to 2011–2030 for all the scenarios considered (B1, A1B, and A2); 

however, B1 scenario shows larger standard deviation than A1B and A2 scenarios. 

Similarly, mean temperature also shows an increase during 2071–2090 in comparison to 

2011–2030 under A1B and A2 scenario. Further, A2 scenario, which is the most extreme 

scenario considered, gives the largest temperature increase during 2071–2090. 
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Figure 3.1: Global mean precipitation and temperature smoothed over five years using 

lowess smoother. The light colors show precipitation and temperature for six 

GCMs and three SRES scenarios (B1, A1B, and A2). The bold colors show mean 

of precipitation and temperature for six GCMs for each scenario. A single 

ensemble run (run 1) is shown for each SRES scenario. 

 

 

 

 

 

Table 3.1: List of GCMs and their atmospheric horizontal resolutions [IPCC, 2007]. The 

horizontal resolutions are expressed in triangular spectral truncation as well as 

degrees of latitude/longitude. 
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GCM  

 

Modeling Group(s), Country 

 

Atmospheric 

horizontal resolution 

 

PCM (Parallel Climate 

Model) 

 

National Center for Atmospheric Research 

(NCAR), USA 

 

T42 (  8.28.2~ ) 

 

CCSM3 (the 

Community Climate 

System Model, 

version 3) 

 

National Center for Atmospheric Research 

(NCAR), USA 

 

T85 (  4.14.1~ ) 

 

MIROC3.2 (medres) 

(a Model for 

Interdisciplinary 

Research On Climate, 

version 3.2) 

 

Centre for Climate System Research (The 

University of Tokyo), National Institute for 

Environmental Studies, and Frontier Research 

Centre for Global Change (JAMSTEC), Japan 

 

T42 (  8.28.2~ ) 

 

 

ECHO-G 

 

Meteorological Institute of the University of 

Bonn, Meteorological Research Institute of 

KMA, and Model and Data group, 

Germany/Korea 

 

T30 (  9.39.3~ ) 

 

ECHAM5/MPI-OM 

 

Max Planck Institute for Meteorology , Germany 

 

T63 (  9.19.1~ ) 

 

CGCM3.1 (T47) 

(Coupled Global 

Climate Model, 

version 3.1) 

 

Canadian Centre for Climate Modelling & 

Analysis, Canada 

 

T47  

(  75.375.3~ ) 

 

Table 3.2: Global mean (µ) and standard deviation () of precipitation and temperature 

for six GCMs under B1, A1B, and A2 scenarios for two future time periods 

(2011–2030 and 2071–2090). 



 

CHAPTER 3 

 

 

 

54 

 

 B1 A1B A2 

Year Statistic 

 µ  µ  µ  

 Precipitation (mm/month) 

2011–2030 87 5.7 87 4.5 87 4.5 

2071–2090 89 5.2 90 4.6 90 4.7 

 Temperature (K) 

2011–2030 288 0.4 288 0.7 288 0.7 

2071–2090 288 0.9 289 1.0 290 1.0 

 

3.3.  Methodology 

The proposed method for uncertainty estimation involves four important steps: (1) data 

interpolation to common grid; (2) data conversion to percentiles; (3) uncertainty 

estimation; and (4) translation of the estimated uncertainty to time series. The procedure 

for conversion of data to percentiles and estimation of uncertainty for each quantile is 

somewhat similar to the quantile regression approach [Koenker and Bassett, 1978], which 

estimates functional relationships of variables at any quantile of a distribution. However, 

unlike quantile regression, our approach estimates uncertainty of GCMs simulations at 

any and every percentile. The above four steps are discussed in more detail below. 
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Figure 3.2: Percentile plots of precipitation (left) and temperature (right) at a point in 

Southeast Australia (latitude = -32.5°, longitude = 147.5°). Each color shows 

different GCMs and consists of nine precipitation and temperature values (For 

three SRES scenario and three ensemble runs). The names of the GCMs are 

indicated by P (PCM), CC (CCSM3), M (MIROC3.2 (medres)), EG (ECHO-G), 

EM (ECHAM5/MPI-OM), and CG (CGCM3.1 (T47)). 

Step 1 – Data interpolation to a common grid: Precipitation and temperature data 

gathered from the above six GCMs (at different spatial resolutions) are interpolated to a 

common grid, i.e. at 3° x 3° latitude/longitude grid. To achieve this, an inverse distance 

weight interpolation method using four nearest grid cells is applied, after Nawaz and 

Adeloye [2006]. 

Step 2 – Data conversion to percentiles: The common-gridded data are ranked in 

ascending order from the beginning to the last time step (which is 1188, corresponding to 

the number of values in the time series = 99 x 12). Figure 3.2, for instance, shows the 

percentile plots for precipitation (left) and temperature (right) for all the six GCMs, three 

scenarios, and three ensemble runs at a grid cell in Southeast Australia (-32.5o latitude 
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and 147.5o longitude). The figure clearly reveals the variability of precipitation and 

temperature at different percentiles. However, greater variability across simulations can 

be seen particularly at small percentiles for temperature than for precipitation. 

Step 3 – Calculation of uncertainty: Uncertainty in GCM simulations can be assessed 

by either analysing the consistency between different GCM projections or comparing 

historical GCM simulations with observed data [Dessai et al., 2005; Raisanen, 2007]. 

The former approach is chosen in this study, as our interest herein is to assess the 

uncertainty of future climate projections. Standard deviation at a particular percentile is 

used as a measure of uncertainty, as it calculates variability between equally possible 

climate projections of multiple GCMs. Here we apply the standard deviation in a novel 

way, which we call “Square Root Error Variance” (SREV), to estimate model, scenario, 

and ensemble run uncertainty individually as well as their total.  Equations (3.1) to (3.3) 

are used to calculate the model, scenario, and ensemble run uncertainty at each percentile 

(p), denoted as M
pSREV , S

pSREV , and E
pSREV , respectively (M – model, S – scenario, and 

E – ensemble run): 
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where var is variance,  ppp ESM ,|  is precipitation/temperature values for a given 

scenario and ensemble run at p,  ppp EMS ,|  is precipitation/temperature values for a 

given model and ensemble run at p, and ppp SME ,| is precipitation/temperature values 

for a given model and scenario at p. For clarity of presentation, the notations of grid cell 

indexes are excluded. Further, the units for the SREV values are similar to those for 

precipitation and temperature, as the case may be (i.e. ‘mm’ for precipitation and degree 

‘K’ for temperature). 

As mentioned earlier, M = 6, S = 3, and E = 3 (representing number of GCMs, scenarios, 

and ensemble runs) are considered in the present study. The parameter Er is an ensemble 

run chosen randomly from 1 to 3 (see Table 3.3) at about the median percentile (i.e. rank 

= 594 out of 1188); the superscript (r) is to indicate that Er is a randomly chosen ensemble 

run. The table shows such ensemble runs used for calculating model and scenario SREV. 

For example, for calculating model SREV, ensemble runs 1, 2, 3, 1, 2, and 2 are used. 

The variability at this percentile among the different GCMs, scenarios, and ensemble runs 

is shown in Figure 3.3 for precipitation and temperature. At this percentile, the variance 

of precipitation, based on equations 3.1, 3.2 and 3.3, is equal to 3295, 47, and 4 mm2 and 

of temperature is equal to 10, 1, and 0.01 K2
 for model, scenario, and ensemble runs, 

respectively. The reason behind using only a single combination of ensemble runs for the 

estimation of model and scenario uncertainty is this: since the variability across ensemble 

runs is much smaller than the model and scenario SREV, the choice of different 

combinations of ensemble runs does not really have any effect in the estimated values of 

the model and scenario SREV.   
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Figure 3.3: Variability of model, scenario, and ensemble at rank about 50th percentile for 

precipitation (a, b, and c) and temperature (d, e, and f) at grid cell similar to Figure 

3.2. Whiskers show range from minimum to maximum values. Panels a and d 

show model variability for three scenarios (B1, A1B, and A2) and ensemble run 

1; b and e show scenario variability for six models and ensemble run 1; and c and 

f show ensemble run variability for six GCMs and A2 scenario. The names of 

GCMs are same as given in Figure 3.2. 

The symbol V is a variable representing precipitation/temperature, with MSEV  being the 

Eth observation for model M and scenario S. The symbols rSE
V

.
, rEM

V
.

, and .MSV are 

precipitation/temperature values averaged over models, scenarios, and ensemble runs, 

respectively, and are given by: 
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Finally, total SREV ( T
pSREV ) is obtained by taking square root of sum of squares of 

individual SREV, as follows: 

      2
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p
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M
p

T
p SREVSREVSREVSREV       (3.7) 

It is important to note that the SREV metric used in this study is equivalent to the 

conditional total standard deviation of the variables of interest conditional to specific 

percentiles and, thus, can be interpreted likewise (here ‘standard deviation’ (SD)  refers 

to the standard deviation of all data points estimated by mixing data from different 

models, scenarios, and ensemble runs). Hence, it is indeed a reasonable and useful statistic 

for inferring uncertainty associated with the GCM outputs. The following short example 

helps explain how the SREV metric can be interpreted. Let us assume that the 

precipitation and total SREV for a given GCM output are 100 and 20 mm/month, 

respectively. With the assumptions that the precipitation data follow a Normal 

distribution and that the sample standard deviation represents the standard deviation of 

the population, one can say that the precipitation data may fall in the range 60–140 

mm/month (= 100 ± 2  20) with a 95% probability. 
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Table 3.3: Randomly selected ensemble runs (from 1 to 3) used to calculate model and 

scenario square root error variance (SREV) at about median percentile. The 

numbers in the parentheses are used for scenario SREV estimation. Model SREV 

is calculated for each scenario, whereas scenario SREV is calculated for each 

model, and then mean uncertainty for either case is determined. The symbols used 

for GCMs are defined as P (PCM), CC (CCSM3), M (MIROC3.2 (medres)), EG 

(ECHO-G), EM (ECHAM5/MPI-OM), and CG (CGCM3.1 (T47)). 

Models  

Scenarios 

P CC M EG EM CG 

B1 1 (3) 2 (3) 3 (3) 1 (3) 2 (3) 2 (3) 

A1B 1 (3) 2 (3) 3 (3) 1 (3) 2 (3) 2 (3) 

A2 1 (3) 2 (3) 3 (3) 1 (3) 2 (3) 2 (3) 

 

An important assumption involved in this method of estimating uncertainty is that the 

non-exceedance probabilities of different GCMs are consistent. This is also closely 

related to the assumption in the quantile-based bias correction approach of  Li et al. [2010] 

that matches GCM simulations with observations at the same percentile. However, unlike 

the quantile-based bias correction method, in the present study, we estimate SREV of 

model, scenario, and ensemble runs matching percentiles of GCM projections. We also 

assume that each of the six GCMs analysed is independent of the others, an assumption 

usually made in climate studies [Pirtle et al., 2010]. A further assumption in this method 

is that all GCM projections analysed have equal uncertainty at any percentile, as is made 

in Equations (3.1) to (3.3). 
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At this point, it is also relevant to note that the method followed here to calculate the 

individual sources of uncertainty and the total uncertainty is  similar in intent to the one 

adopted in the ANOVA approach [Hodson and Sutton, 2008; Holtanova et al., 2010]. 

However, there are also notable differences between the two approaches in terms of the 

assumptions involved, as pointed out as follows. According to the ANOVA approach, 

variables are averaged across models, scenarios, and ensemble runs in the evaluation of 

model, scenario, and ensemble run variability. For instance, variables are averaged across 

scenarios and ensemble runs to obtain values (six values in the present case) for each 

GCM at a particular percentile, which are then used to calculate model variability. 

However, instead of averaging out variables across models and scenarios, we select, in 

our approach, the ensemble runs randomly (from 1 to 3).  As a result of this assumption, 

equation (3.7) does not include the interaction term, which supposedly accounts for 

different model responses to the same forcing [Hodson and Sutton, 2008]. In our case, 

the interaction term is partially shared between model and scenario uncertainty.  

Step 4 – Translation of uncertainty to time series: The estimated individual and total 

SREV conditional on the percentiles of simulations are converted to actual time series. 

The month and year of GCM simulations at any given percentile are used to obtain SREV 

value for that particular month and year of the time series. Each of the total, model, 

scenario and ensemble SREV are translated to time series. 
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3.4. Results 

The proposed error estimation method is now applied to the monthly precipitation and 

temperature data from the six GCMs described above. Here, for the sake of brevity, we 

present results for only two of these six GCMs: ECHO-G and ECHAM5/MPI-OM. These 

two GCMs are selected mainly based on information and recommendations available 

from past studies, especially for Australian conditions: ECHO-G has been shown to have 

better skills in representing probability density function of precipitation and temperature 

[Perkins et al., 2007] and ECHAM5/MPI-OM in representing persistence [Johnson et al., 

2011], compared to a host of other GCMs analysed. The spatial uncertainties are 

discussed in section 3.4.1 for two future time spans (2020s, i.e. mean of 2011 to 2030; 

and 2080s, i.e. mean of 2071 to 2090), whereas temporal uncertainties are discussed in 

section 3.4.2 for global and selected regional means. 

3.4.1. Spatial uncertainty 

Figures 3.4 and 3.5 show the square root of error variances (SREV) of precipitation and 

temperature for ECHO-G and ECHAM5/MPI-OM models, respectively; these results 

correspond to scenario A2 and ensemble run 1. 

For precipitation, the SREV values for 2020s show that the total uncertainty of ECHO-G 

is larger in mid-latitudes and reduces towards high and low latitudes (Figure 3.4a). This 

is in accordance with previous studies, which also report considerable uncertainty for 

precipitation change at mid-latitudes than at high and low latitudes [IPCC, 2007; Miller 

and Yates, 2006]. The results also indicate that model uncertainty is the main contributor 

to the total uncertainty in all regions and is much larger than scenario and ensemble run 
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uncertainties (see first row and columns 1 to 4 of Figure 3.4a). However, scenario and 

ensemble run uncertainties are also considerable in mid-latitudes, with scenario 

uncertainty being generally larger than ensemble run uncertainty. The results for 2080s 

are similar to those for 2020s, except that a slight increase in uncertainty is estimated in 

mid-latitudes, especially for scenario uncertainty (see second row and columns 1 to 4 of 

Figure 3.4a). 

 

Figure 3.4: Maps of square root error variance (SREV) values for total, model, scenario, 

and ensemble uncertainty for precipitation and temperature for 2020s (2011–2030 

mean) and 2080s (2071–2090 mean). The SREV values are shown for model 

ECHO-G, with A2 scenario and ensemble run 1. 
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As for temperature, unlike precipitation, uncertainty is large in high and low latitudes, 

with the maximum values obtained over the Arctic Ocean (see first row and first column 

of Figure 3.4b), which show large warming in the future due to a decrease in ice cover 

and thickness [Raisanen, 2007]. With regard to contributions of uncertainties, model 

uncertainty is still the main contributor to the total uncertainty, similar to that observed 

for precipitation; however, scenario uncertainty is more pronounced for temperature than 

for precipitation (see first row and columns 2 to 4 of Figure 3.4b). Further, scenario 

uncertainty increases for 2080s when compared to that for 2020s, which is likely due to 

the divergence of the three scenarios for 2080s than for 2020s (see second row and 

columns 1 to 4 of Figure 3.4b).  

 

Figure 3.5: Same as Figure 3.4 but for ECHAM5/MPI-OM.  
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It is important to note that the total uncertainty does not show any noticeable increase for 

2080s compared to 2020s, since model uncertainty, the main contributor, is almost 

constant. The results of ECHAM5/MPI-OM (Figures 3.5a and 3.5b) are comparable with 

ECHO-G, except that a decrease is observed for uncertainty in temperature in the Polar 

regions (see second row and first column of Figure 3.5b). The results are generally 

consistent with those observed for the other four GCMs as well (not shown). 

3.4.2. Temporal uncertainty 

Global mean 

Estimates of global average SREV at monthly time scale are discussed next. Figures 3.6a 

and 3.6b present the temporal SREV values for precipitation for global five-year moving 

average for ECHO-G and ECHAM5/MPI-OM, respectively; these results correspond to 

scenario A2 and ensemble run 1. The results indicate that model uncertainty is the largest 

contributor to the total uncertainty, consistent with the results obtained for the spatial 

uncertainty case (section 3.4.1). Further, the SREV values of ECHO-G and 

ECHAM5/MPI-OM are also comparable, with the only exception being that the model 

uncertainty for precipitation from ECHAM5/MPI-OM is larger than that from ECHO-G 

(Figure 3.6b). 

For temperature, scenario uncertainty is found to be significantly greater than ensemble 

run uncertainty, and it clearly shows an increasing trend due to the divergences of the 

different scenarios in the future (Figures 3.6c and 3.6d). The ensemble run uncertainties  

estimated here are also comparable with the results obtained by Hawkins and Sutton 

[2009], who report an overall uncertainty (i.e., mean of uncertainty in space and time) of 
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0.12 K. The scenario uncertainty estimates between the two studies are also generally 

comparable; however, the model uncertainty is underrepresented in Hawkins and Sutton 

[2009] compared to our results. Since uncertainties vary in different regions depending 

on precipitation and temperature magnitudes as well as on patterns of precipitation and 

temperature projections, spatial mean uncertainties of some selected regions are also 

estimated, as detailed next. The global mean monthly uncertainty estimates for the six 

GCMs are made available online (http://hydrology.unsw.edu.au/downloads/data/). 

 

Figure 3.6: Global mean of total, model, scenario, and ensemble square root error 

variances for precipitation (top) and temperature (bottom). The first column is for 

ECHO-G and the second column is for ECHAM5/MPI-OM with A2 scenario, and 

http://hydrology.unsw.edu.au/downloads/data/
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ensemble run 1. Five-year moving average using lowess smoother is shown. The 

vertical axis is in logarithmic scale. 

Regional means 

For studying uncertainties in regional means, three regions located at different geographic 

regions, and also with vastly different climatic conditions, land use characteristics, and 

socio-economic development are considered: Western Australia (WA), the Amazon (A), 

and Greenland (GL). The extent of each of these regions and the number of grid cells 

considered are shown in Table 3.4. 

Table 3.4.  Temporal uncertainty analysis for regional means: Regions and their basic 

details. 

Region name Symbol  Latitude extent Longitude 

extent 

Number of cells 

West Australia WA 13° S – 34° S 113° E – 131° E 49 

 

Amazon 

 

Greenland 

 

A 

 

GL 

 

8° S –13° S 

 

68° N – 86° N 

 

49° W – 73° W 

 

19° W – 58° W 

 

64 

 

98 
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Figure 3.7: Regional mean of total, model, scenario, and ensemble square root error 

variances for precipitation (top) and temperature (bottom) with ECHO-G, A2 

scenario, and first ensemble run. Five-year moving average using lowess 

smoother is shown. The vertical axis is in logarithmic scale. 
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Figure 3.8: Percentage of contribution of model, scenario, and ensemble run SREV to the 

total SREV for precipitation (left) and temperature (right) for two time spans 

(2020s and 2080s). EG (ECHO-G) and EM (ECHAM5/MPI-OM) with A2 

scenario and first ensemble run are shown. The symbols used for the y-axis label 

are defined as follows: G (Global), A (the Amazon), WA (West Australia), and 

GL (Greenland). 

Figures 3.7a to 3.7c show the precipitation SREV values for ECHO-G, scenario A2, and 

ensemble run 1. The results show that model uncertainty is largest in the Amazon (Figure 

3.7b) and smallest in Greenland (Figure 3.7c). However, this is not the case for 

temperature, with the largest model uncertainty observed for Greenland (Figure 3.7f) 

followed by that for Western Australia (Figure 3.7d) and the Amazon (Figure 3.7e). These 

observations are even clearer in Figure 3.8, which shows that the relative contributions of 

model, scenario, and ensemble run uncertainties to the total uncertainty for the above 
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regions as well as for the global means. The relative contribution of ensemble run 

uncertainty for global mean is approximately 8% and 5% for precipitation and 

temperature, respectively. This is a clear indication that ensemble run uncertainty is more 

important in precipitation estimation than in temperature estimation, an observation also 

made by Raisanen [2001]. Unlike for precipitation, the relative contribution of scenario 

uncertainty for temperature increases for 2080s when compared to that for 2020s. Similar 

regional variations in the accuracy of GCMs  for different variables have also been 

reported by Johnson and Sharma [2009a], although their study uses a variable 

convergence score approach for assessment of agreement between/among GCM 

projections. 

 

Figure 3.9: Ratio of SREV to mean monthly precipitation and temperature for 2020s (top) 

and mean monthly 2020s precipitation and temperature (bottom) for ECHO-G 

under A2 scenario and ensemble run 1. 
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3.5. Discussion 

Precipitation uncertainty is considerably large in mid-latitudes, which is also in 

accordance with the generally large magnitude of rainfall occurrence in these regions due 

to air masses that converge from both northern and southern hemispheres (Figures 3.4 

and 3.5). Conversely, precipitation uncertainty is very small in latitudes close to the north 

and south poles as well as in arid and semi-arid regions that generally receive only a 

meager amount of rainfall throughout the year, such as Sahara and the Middle East. It is 

possible; therefore, that large uncertainty in wet regions and small uncertainty in dry 

regions could simply be an indication of the direct relationship between uncertainty in 

precipitation estimation and magnitude of precipitation. This can indeed be seen from the 

percentile plots of GCM simulations presented in Figure 3.2; i.e., the variability between 

different projections is small at small percentiles, but it increases as the percentile 

increases. 

To further examine the effects of precipitation and temperature magnitude on uncertainty, 

the SREV ratio is calculated by dividing the SREV values for 2020s by the mean monthly 

simulated precipitation and temperature (see first row and columns 1 to 2 of Figure 3.9). 

The results generally reveal that the spatial variability of SREV diminishes when divided 

by precipitation and temperature. There are a few exceptions to this observation, however, 

such as some areas in the Pacific Ocean, Atlantic Ocean, and Sahara, which have 

noticeably larger uncertainty with respect to the magnitude of precipitation; the 

observation of large uncertainty relative to precipitation magnitude for Sahara is also 

consistent with that reported by Johnson and Sharma [2009a]. For temperature, however, 
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the spatial pattern of SREV values is not affected when divided by the magnitude of 

temperature. 

The reason behind the small uncertainty for temperature against large uncertainty in 

precipitation in mid-latitudes could be two-fold. First, the range of (or difference 

between) maximum and minimum values of temperature is significantly smaller when 

compared to that of precipitation. Second, there is considerable variability in the 

minimum temperature values (including below zero ones), unlike precipitation where it 

is generally zero. The mean SREV estimates of the regional 5-year moving average for 

Greenland are less variable in time than those for Western Australia and the Amazon for 

precipitation, whereas the reverse is true for temperature (Figure 3.7). Possible reasons 

for this are: (1) differences between the numbers of grid cells used for calculating mean 

SREV for different regions (Table 3.4), since a smoother mean is normally expected when 

the SREV is calculated for a large area; and (2) differences in the magnitude of 

precipitation and temperature between these regions.  Further analysis is needed to 

substantiate the extent to which these two possibilities affect the temporal variability of 

SREV in different regions. 

In this study, the evaluation of uncertainty in GCM precipitation and temperature 

projections is done at regional and global scales at a monthly time scale. Since none of 

the past studies, to our knowledge, have considered similar spatial and temporal scales 

for uncertainty estimation of GCM outputs,  direct comparisons of the present results with 

others are not possible. However, some reliable comparisons between the results over a 

long-term timescale (i.e. five years or more) can be made.  For instance, our study 

indicates that the uncertainty due to model is equal to about 80% and 75% for 
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precipitation and temperature, respectively. This is clearly in accordance with the studies 

by Déqué et al. [2007], Hawkins and Sutton [2009], and Yip et al. [2011], which report 

that the largest source of uncertainty is due to model, especially for projections until 2050. 

In our study, scenario uncertainty is the second largest followed by ensemble runs for 

both precipitation and temperature. Although scenario uncertainty slightly increases after 

2050, the order of percentage contribution from the three sources stays the same 

throughout the 21st century. However, the studies by Yip et al. [2011] and Hawkins and 

Sutton [2009] report that the scenario uncertainty becomes greater than model uncertainty 

for temperature projection after about 2050. Hawkins and Sutton [2011] also report that 

ensemble runs is the largest uncertainty for precipitation projections until 2030 and model 

uncertainty dominates thereafter. These differences in the percentage contribution of 

different sources of uncertainty between our study and other studies could be due to the 

methods adopted. More specifically, our study ascertains uncertainty by focussing on a 

specific quantile in contrary to past studies which estimate uncertainty for temporal mean 

of the variable. As for spatial distribution of uncertainty, our results indicate that 

precipitation uncertainty is large in mid-latitudes and temperature uncertainty is large in 

the north and south poles. These results generally agree well with previous findings by 

Hawkins and Sutton [2011] and Miller and Yates [2006] for precipitation and by Hawkins 

and Sutton [2009] for temperature. 

The large percentage contribution of model uncertainty suggests that climate processes 

are inadequately represented in the GCMs. This problem is expected, since GCM 

simulations have systemic deviations from observations that needs to be corrected. 

Applying statistical bias correction methods, such as Equidistant quantile mapping [H Li 

et al., 2010] or Nested bias correction [Johnson and Sharma, 2012], prior to estimating 
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SREV values could significantly reduce model uncertainty. However, such uncertainty 

reduction is due neither to an advancement of our understanding of the climate processes 

nor to an improvement of the implementation of this understanding, but it is simply 

through post-processing of the statistical properties of GCM simulations to match with 

observations. We will investigate the extent of SREV reduction through bias correction 

in a future study. 

Another important assumption in the proposed error estimation method for assessment of 

uncertainty in future climate projections is that the GCMs are independent. However, this 

assumption is imprecise, since the models (and modelling groups) share theoretical 

concepts, data information, literature, and even codes [Pirtle et al., 2010]. Justification 

for the independence of GCMs is a challenging topic in climate studies, and there have 

indeed been some efforts so far [Abramowitz and Gupta, 2008; Masson and Knutti, 2011; 

Pennell and Reichler, 2010; Power et al., 2011]. These studies evaluate independence 

mainly based on whether different GCM simulations differ from multi-model mean (or 

observations) significantly or not. However, as reported by Pirtle et al. [2010], this does 

not necessarily prove independence, as models could still share similar biases. 

Nonetheless, it is common to assume that GCMs are independent in climate studies [Pirtle 

et al., 2010], and thus the independence assumption for the six models is used in our 

study. It is relevant to note that the findings of Masson and Knutti [2011] and Pennell and 

Reichler [2010], albeit their limitations, are also in favor of this assumption, as each of 

the six GCMs analysed is less dependent on the other GCMs in their studies. Further, both 

these studies assess independence for the 20th century climate, but it is diffcult to 

guarantee whether the same is true for future projections [Power et al., 2011]. 
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To examine the effects of choice and independence of GCM on uncertainity estimation, 

a preliminary sensitivity analysis is carried out here. To this end, the SREV values are 

compared for four different combinations of GCMs, as follows: (1) Group-1 – comprises 

the six GCMs analysed in this study; (2) Group-2 – comprises 22 GCMs, each having at 

least a single ensemble run for the A1B scenario; (3) Group-3 – comprises 14 GCMs that 

are supposed to be independent according to Pennell and Reichler [2010]; and (4) Group-

4 – comprises 14 GCMs, each having at least a single ensemble run for the B1, A1B, and 

A2 scenarios. 

 

Figure 3.10: Sensitivity of SREV for different combinations of GCMs for each grid cell 

along latitude averaged over all longitudes for precipitation (a) and temperature 

(b). Group 1 – comprises all the six GCMs analysed in this study; Group 2 – 
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comprises 22 GCMs, each having at least a single ensemble run for the A1B 

scenario; Group 3 –  comprises 14 GCMs that are presumed to be less dependent 

on each other, according to Pennell and Reichler[2010]; and Group 4 – comprises 

14 GCMs, each having at least a single ensemble run for B1, A1B, and A2 

scenarios. Model SREV sensitivity is shown for the four groups; however, 

scenario SREV sensitivity computation is possible only for Group 1 and Group 4. 

Figure 3.10a presents the estimated SREV results for precipitation simulations, for each 

grid cell along latitude averaged over all longitudes. The four groups generally show 

similar patterns; however, some differences are also seen at the peak values close to the 

equator for the case of uncertainty in terms of model. The GCMs in Group-3, which are 

considered to be indepenenent, result in larger SREV peak when compared to that in 

Group-4, although both groups use equal number of GCMs (i.e. 14). This could be due to 

the interdependence of some of the GCMs in Group-4, which results in an 

underestimation of SREV. The six GCMs in Group-1 also underestimate the peak SREV 

compared to Group-2 and Group-3. 

The SREV results for the temperature simulations are presented in Figure 3.10b. Group-

2 gives higher SREV than all other groups, especially at low and high latitudes. Group-3 

and Group-4 have similar SREV in all latitudes, which is an indication that SREV is less 

sensitive to the independent GCMs categorized in Group-3. There is also no noticeable 

sensitivity of scenario SREV to model choice, regardless of whether the data is 

precipitation or temperature. These observations leads to an interpretation that the 

interdependence of GCMs could affect the estimation of SREV and, therefore,  further  

investigation is required to obtain a good sub-set of independent GCMs for SREV 
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estimation. However, at this stage, evaluation of the interdependence of GCMs is 

premature, due to lack of a solid assessment framework as well as detailed information 

about internal structure of GCMs. Study of this is an interesting topic, especially for 

climate researchers,  if detailed information about the models is made publicly available. 

In this study, all the six GCMs analysed are assumed to have equal uncertainty at a 

particular percentile (Step 3 of the error estimation method). Several  studies have 

suggested that the skill of the GCMs varies in reproducing the 20th century climate [e.g. 

Johnson et al., 2011; Perkins et al., 2007]. To address this issue, Hawkins and Sutton 

[2009] used multiplicative weights to account for varying accuracy of GCMs in their 

estimation of uncertainity for future projections. Introducing weights to account for 

accuracy of GCMs is meaningful only if the past accuracy of GCMs would be repeated 

for future projections as well. However, this is not the case, as reported, for instance, by 

Power et al.[2011]  and Jun et al. [2008], where they discussed weak relationship between 

the accuracy of current and future GCMs simulations. In addition, lack of an accurate 

GCM skill measurement framework as well as limitation of length of verification data 

also  complicate any attempt at finding reasonable weights [Irving et al., 2011; Weigel et 

al., 2010]. These issues have essentially led us to assume an equal uncertainity for all 

GCMs at a particular percentile. 

3.6. Conclusions 

This study developed a new method for estimation of uncertainty in precipitation and 

temperature GCM simulations across space and time. The basis for this was six GCMs 

from CMIP3, selected so as to have at least 3 ensemble runs for the three emission 

scenarios considered. Monthly precipitation and temperature simulations for the period 
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2001–2099 from each of these models served as the basis for ascertaining the square root 

error variance (SREV), a measure equivalent to the standard deviation of the error 

conditional to the rainfall or temperature simulated. The SREV was calculated 

empirically, matching percentiles of different GCM simulations with an assumption that 

non-exceedance probabilities across models were consistent. Three main sources of 

uncertainty, namely model, scenario, and ensemble run, as well as the associated total 

uncertainty were evaluated for each of the six GCMs, three GGE scenarios, and three 

ensemble runs. 

The results show that model uncertainty is the largest contributor to the total uncertainty 

followed by scenario and ensemble run uncertainty for both precipitation and 

temperature. Unlike uncertainty due to model and ensemble runs (which is almost 

constant), scenario uncertainty shows a significant increase in the far future due to 

divergence of the three emission scenarios. This increase is particularly more pronounced 

for temperature than for precipitation. The results also reveal that the patterns of 

precipitation and temperature uncertainties in space are different: for precipitation, large 

uncertainties are estimated in mid-latitudes close to the equator (which receive large 

amount of rainfall), whereas for temperature, large uncertainty is estimated in high and 

low latitudes. This suggests that the accuracy of GCMs in space varies on the type of 

variable analysed. The ensemble uncertainty is more pronounced for precipitation than 

for temperature globally as well as in certain regions. The estimated SREV values are 

generally less affected by GCM independence and model choice, although considerable 

sensitivity is observed at the peak values. Nevertheless, further investigations are required 

to categorically establish, and possibly confirm, the effects of GCM interdependence in 

uncertainty estimation. 
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The proposed error estimation method is an important contribution for improving climate 

models and climate change impact studies, since it is useful to improve climate models 

in locations where large uncertainty is revealed. The uncertainties at the monthly time 

step, together with GCM precipitation and temperature simulations, can also be used to 

mitigate parameter bias due to input uncertainty in climate change impact studies on water 

resources.  Finally, the generality of the error estimation method allows its use for 

estimation of uncertainty for any other variable simulated from GCMs. 
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Chapter Four 

4. A framework to quantify GCM uncertainties for use in 

impact assessment studies 

 

An uncertainty metric, square root error variance (SREV), to quantify uncertainties 

involved in precipitation and temperature projections from GCMs is developed in chapter 

3. This chapter provides an application example of the SREV for drought assessment 

using the standard precipitation index (SPI). For this purpose, a new framework is 

proposed that involves quantification of GCM precipitation uncertainties as well as 

consideration of this uncertainty during the estimation of SPI parameters.  The content of 

the chapter is reproduced from a paper submitted to Journal of Hydrology, below. 

Woldemeskel, F. M., A. Sharma, B. Sivakumar, and R. Mehrotra (2013), A framework 

to quantify GCM uncertainties for use in impact assessment studies, Journal of 

Hydrology, Submitted.  

4.1. Introduction 

Climate change is anticipated to intensify the global water cycle and affect the livelihood 

of people, economies and ecosystems [Beaumont et al., 2011; Hawkins and Sutton, 2009; 

Nicholas, 2006; Parmesan and Yohe, 2003; Sahoo et al., 2011; Whitehead et al., 2009]. 

General Circulation Models (GCMs), developed in different parts of the world, are 

commonly used as a basis to study the climate of the future which helps to understand the 

impacts of climate change and develop strategies to adapt to or possibly mitigate these 

impacts [Cleugh et al., 2011; IPCC, 2007; Sivakumar, 2011; Towler et al., 2010]. 
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Although GCMs exhibit the physical processes of the climate system, the outcomes from 

these models are highly uncertain, due to insufficient representation of the climate system, 

unknown greenhouse gas emission scenarios and initial conditions, and downscaling 

methods [Bennett et al., 2012; Groves et al., 2008; Hawkins and Sutton, 2009; Yip et al., 

2011]. As a result, a reliable projection of future climate and assessment of its impacts on 

water resources are difficult to make. 

Studies report that predictions of hydrologic variables made using ensembles of GCMs 

have large spread due to uncertainties introduced at different stages. Buytaert et al. 

[2009], using climate projections from 20 GCMs and a hydrologic model, found that the 

simulated discharges widely diverge among themselves, reflecting the uncertainties in 

climate change impact assessment on river discharges. Many other researchers have also 

concluded that reliable predictions of extreme hydrologic variables (such as flood or 

drought) are difficult due to the uncertainties in climate projections and impact 

assessment models [Burke and Brown, 2008; Ghosh and Mujumdar, 2007; 2009; Salas et 

al., 1980; Wackernagel, 1996].  

Although accurate prediction of climate change impacts has been impossible so far, there 

are nevertheless demands, by policy makers, for reliable estimates for undertaking 

practical measures, such as the design of hydraulic structures and allocation of water for 

various uses. Therefore, consideration of uncertainties in GCM outputs and impact 

assessments is very important. Reducing uncertainties, at the minimum, requires 

improvement of models to enhance the quality of climate simulations (e.g., through 

regional climate modelling [Ehret et al., 2012; Wang et al., 2004] ) and/or implementation 

of methods to account for the GCM uncertainties during parameterisation of subsequent 
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modeling. Beven and Cloke [2012] and Wood et al. [2012] report that quantification of 

uncertainties in climate data and hydrologic models as well as development of methods 

to account for such uncertainties are among the most challenging and pressing issues in 

hydrology research today. 

In view of these, it is necessary to formulate an appropriate framework that is fine-tuned 

to deal with the following two tasks: (1) quantification of uncertainty; and (2) 

consideration of this uncertainty in modelling applications. The former seeks to evaluate 

the amount of uncertainty that exists in climate data, which commonly serve as inputs for 

impact assessment models. The latter seeks to take into account the estimated uncertainty 

and make adjustments during the parameter estimation procedure. Although some 

previous attempts have been undertaken towards these, such have largely considered the 

two tasks separately, rather than jointly. For instance, Déqué et al. [2007], Hawkins and 

Sutton [2009; 2011], Hodson and Sutton [2008] and Woldemeskel et al. [2012] quantified 

uncertainties in GCM projections considering multiple GCMs, scenarios, and ensemble 

runs. However, they have offered no discussion as to how to apply this uncertainty 

information in subsequent modelling applications. On the other hand, many frameworks 

to account for input, model structure, and output uncertainties in the estimation of model 

parameters have been developed during the past couple of decades [Ajami et al., 2007; 

Chowdhury and Sharma, 2007; Cook and Stefanski, 1994; Kavetski et al., 2006a; b]. 

These studies have assumed synthetic uncertainty data or made a crude assumption about 

the uncertainty of the input and/or output data. 

In this study, we address both the aforementioned tasks by developing a sound framework 

that combines quantification of uncertainty in the climate data and consideration of this 
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uncertainty during parameter estimation of subsequent models. In doing so, we seek 

answers to the following specific research questions: How does one quantify uncertainty 

in climate projections using outputs from an ensemble of GCMs? Does the uncertainty 

significantly reduce after correction of the biases in GCM outputs? Can one use a single 

GCM simulation and its associated uncertainty, instead of multiple GCMs without 

explicitly considering associated uncertainty, as a basis for climate change impact 

assessment?  

To address these, monthly precipitation outputs from six GCMs of the Coupled Model 

Inter-comparison Project phase 3 (CMIP3) datasets are considered. Global gauge-based 

gridded rainfall data are used for correction of GCM biases using the nested bias 

correction (NBC) approach [Johnson and Sharma, 2011; 2012; Rajeshwar Mehrotra and 

Sharma, 2012]. Uncertainty estimation for raw as well as bias-corrected data is carried 

out using an uncertainty metric, the square root of error variance (SREV), recently 

developed by Woldemeskel et al. [2012]. Precipitation outputs from a single GCM and 

the associated uncertainty are then used to estimate the drought index through a 12-month 

Standard Precipitation Index (SPI-12). The uncertainties are incorporated in the 

estimation of SPI using a novel method, called simulation-extrapolation (SIMEX), [Cook 

and Stefanski, [1994], which corrects biases in the model parameters when the standard 

error (or uncertainty) associated with input data is known. Finally, drought frequencies 

for 2080s (2070–2090) are analysed and discussed for raw and bias-corrected 

precipitation data with and without using SIMEX. 

The results reveal that model structural uncertainty is the main source of error in GCM 

outputs and that correction for biases significantly decreases this error. SPI model 
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parameters as well as the future drought frequency before and after implementation of the 

method differ widely. The proposed method allows quantifying and accounting for GCM 

uncertainties in climate change impact assessment more reliably. 

The rest of the chapter is organised as follows. Section 4.2 discusses the details of the 

proposed methodology. Section 4.3 describes the different sources of data used in this 

study. Application to drought assessment is detailed in section 4.4, followed by the 

presentation of results in section 4.5. The results are discussed in section 4.6, while the 

conclusions are drawn in section 4.7.  

4.2. Method 

Climate data projected using GCMs are uncertain due to errors in the model 

parameterisation, scenario and initial conditions. Therefore, using GCM outputs as inputs 

to any impact assessment model introduces biases in parameter estimation and prediction. 

Accounting for erroneous input data generally involves quantification of the uncertainty 

and consideration of this uncertainty in subsequent modelling applications. Here, we 

propose a framework to implement these two steps when impact assessment models are 

forced by uncertain GCM projections. The proposed method is summarised in Figure 4.1. 

Initially, the systemic biases in GCM outputs are corrected using a nested bias correction 

(NBC) approach [Johnson and Sharma, 2011; 2012; Rajeshwar Mehrotra and Sharma, 

2012]. The NBC is selected here for its ability to fix the mean, standard deviation and 

lag-1 autocorrelation of the GCM outputs at multiple time scales. The remaining 

uncertainties are dealt with as follows. First, the amount of error in the GCM is quantified 

using the uncertainty metric, the square root error variance (SREV), developed by 

Woldemeskel et al. [2012]. Then, simulation-extrapolation (SIMEX) is used to specify 
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parameters of the impact assessment models, utilising the GCM outputs and the 

associated uncertainty. A brief account of the SREV and SIMEX procedures are given 

below. More details on SREV can be found in Woldemeskel et al. [2012] and on SIMEX 

in Cook and Stefanski [1994] with also an application in hydrology in Chowdhury and 

Sharma [2007]. An example application on how to use the method will be discussed in 

section 4.4 for drought analysis through the standard precipitation index (SPI). 

 

Figure 4.1: Flow-chart of the framework used to estimate uncertainties of GCM 

projections and parameters of gamma distribution. Shaded boxes indicate method 

whereas empty boxes indicate data. 

4.2.1. Square root error variance (SREV) 

The square root error variance (SREV), which is an empirical error estimation metric, is 

used to formulate the main uncertainties of GCM projections, namely model, scenario 

and initial condition uncertainties as well as their total magnitude. In this study, the 

uncertainties are estimated through the following steps. First, outputs from a host of 

GCMs for at least three scenarios and three ensemble runs are rearranged in 
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ascending/descending order to convert to their percentiles. Second, standard deviation 

across models, scenarios and ensemble runs are separately calculated, conditional on their 

percentile (p), as shown in Equations 4.1 to 4.3 that we refer to as model SREV (𝑆𝑅𝐸𝑉𝑝
𝑀), 

scenario SREV (𝑆𝑅𝐸𝑉𝑝
𝑆) and ensemble runs SREV (𝑆𝑅𝐸𝑉𝑝

𝐸). The total SREV (𝑆𝑅𝐸𝑉𝑝
𝑇) 

is then calculated by taking the square root of the sum of the squares of individual SREV 

for model, scenario and ensemble runs (Equation 4.4). Finally, the SREV estimates at 

each percentile are translated to time series.  
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where var is variance,  ppp ESM ,|  is GCM output for a given scenario and ensemble 

run at p,  ppp EMS ,|  is GCM output for a given model and ensemble run at p, and 

ppp SME ,| is GCM output for a given model and scenario at p. In this study, M = 6, S = 

3, and E = 3 (representing number of GCMs, scenarios, and ensemble runs) are 

considered. The parameter Er is an ensemble run chosen randomly from 1 to 3; the 

superscript (r) is to indicate that Er is a randomly chosen ensemble member. The symbol 
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V is a variable representing GCM output, with MSEV  being the Eth simulation for model 

M and scenario S. The symbols rSE
V

.
, rEM
V

.
, and .MSV are GCM output values averaged 

over models, scenarios, and ensemble runs, respectively. Further, the units for the SREV 

values are similar to those for the GCM outputs. 

 

Figure 4.2: Illustration of simulation-extrapolation (SIMEX) procedure for the shape 

parameter of a gamma distribution fitted for GCM precipitation data. 

4.2.2. Simulation-Extrapolation (SIMEX) 

Simulation-Extrapolation (SIMEX) is a method to correct bias in model parameters when 

inputs to the model are measured with uncertainty [Cook and Stefanski, 1994]. The 

method involves two steps – Simulation and Extrapolation – which are demonstrated in 

Figure 4.2, with a discussion using a gamma distribution parameter for precipitation data, 

as follows. 
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Simulation  

Let us assume that a precipitation value from a GCM is used to fit a gamma distribution 

function that has two parameters: shape and scale. The parameters will be biased if they 

are estimated using conventional methods that give no consideration to the uncertainties 

in the precipitation data. However, SIMEX helps to correct the biases in the parameters 

as follows. 

i.  A parameter value is estimated using the original erroneous precipitation (Poriginal) 

and through any conventional optimisation method. Such parameter estimates, 

called naïve estimate, are biased due to the uncertainties in the precipitation data. 

The naïve estimate of the shape parameter is shown in Figure 4.2 (top) 

corresponding to the zero error level (λ = 0). 

 

ii. Additional parameters are then estimated for a new set of precipitation (Pnew) 

obtained by intentionally adding errors sampled from a normal distribution with 

mean zero and standard deviation σ (i.e.,𝑁 (0,)) multiplied by an error level (λ) 

to the original precipitation data (Poriginal), according to. 

𝑃𝑛𝑒𝑤 = 𝑃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 +  𝜆 × 𝑁 (0,)      (4.5) 

where σ is the total uncertainty (SREV) described in Equation 4.4 and λ is an error 

level ranging between 0 and 2, according to Cook and Stefanski [1994]. For λ = 

0.25, several Pnew and parameter values are estimated by randomly replicating the 

normal distribution 𝑁 (0,) as shown in Figure 4.2 (top). In this study, the 

analysis is carried out for 50 random replicates.  
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iii. Step 2 is then repeated for other error levels. Overall, we use λ = 0, 0.25, 0.5, 0.75, 

1, 1.25, 1.5, 1.75, 2. Note that λ = 0 corresponds to the naïve parameter estimator. 

The mean of the parameters at each error level (λ) is then calculated to develop a 

trend between λ and the parameter estimates to be used for the extrapolation step 

(Figure 4.2 (bottom)). 

Extrapolation  

In the extrapolation step, a trend line is fitted between the parameter estimates and the 

error level (λ). Linear, quadratic or nonlinear trend lines are suggested by Cook and 

Stefanski [1994] for the extrapolation. Following this, we use quadratic extrapolation, as 

it better represents our data structure (based on preliminary analysis). The quadratic trend 

line is finally extrapolated to λ = –1 corresponding to an unbiased parameter value called 

‘SIMEX estimate’ (Figure 4.2 (bottom)). 

4.3. Data 

4.3.1. Observed data  

Gridded monthly gauge precipitation data for the period 1950–1999 are obtained from 

the University of Delaware air temperature and precipitation archive provided by 

NOAA/OAR/ESRL PSD on their website at http://www.esrl.noaa.gov/psd/. The land-

only precipitation data at a spatial grid of 1o x 1o latitude/longitude are used to obtain 

precipitation data at 3o x 3o latitude/longitude grid using simple averaging. The observed 

gridded data are utilised for correction of GCM biases. 

http://www.esrl.noaa.gov/psd/
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4.3.2. GCM data 

Precipitation outputs from six GCMs of the World Climate Research Programme 

(WCRP) Coupled Model Inter-comparison Project phase 3 (CMIP3) multi-model datasets 

are considered for analysis in the present study. Basic information of the GCMs and the 

groups that developed them are given in Table 4.1. The GCMs are selected on the basis 

of availability of at least three ensemble runs for three emission scenarios (B1, A1B, and 

A2). Overall, six GCMs, three scenarios and three ensemble runs for the period 2001–

2099 are used to estimate uncertainties of future precipitation projections. The three 

scenarios are chosen as they represent a large range of forcing effects, i.e., low, medium, 

and high, respectively [IPCC, 2007; Knutti et al., 2008]. The baseline scenario (20C3M) 

for the six GCMs for the period 1950–1999 is also considered for correction of GCM 

biases. The GCMs at different spatial scales are re-gridded to a common 3o x 3o 

latitude/longitude grid by coinciding with the observed gridded data (see section 4.3.1) 

using the inverse distance weight interpolation, after Nawaz and Adeloye [2006]. 
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Table 4.1: List of GCMs and their atmospheric horizontal resolutions [IPCC, 2007]. The 

horizontal resolutions are expressed in triangular spectral truncation as well as 

degrees of latitude/longitude. 

 

GCM  

 

Modeling Group(s), Country 

 

Atmospheric 

horizontal resolution 

 

PCM (Parallel Climate 

Model) 

 

National Center for Atmospheric Research 

(NCAR), USA 

 

T42 (  8.28.2~ ) 

 

CCSM3 (the 

Community Climate 

System Model, 

version 3) 

 

National Center for Atmospheric Research 

(NCAR), USA 

 

T85 (  4.14.1~ ) 

 

MIROC3.2 (medres) 

(a Model for 

Interdisciplinary 

Research On Climate, 

version 3.2) 

 

Centre for Climate System Research (The 

University of Tokyo), National Institute for 

Environmental Studies, and Frontier Research 

Centre for Global Change (JAMSTEC), Japan 

 

T42 (  8.28.2~ ) 

 

 

ECHO-G 

 

Meteorological Institute of the University of 

Bonn, Meteorological Research Institute of 

KMA, and Model and Data group, 

Germany/Korea 

 

T30 (  9.39.3~ ) 

 

ECHAM5/MPI-OM 

 

Max Planck Institute for Meteorology , Germany 

 

T63 (  9.19.1~ ) 

 

CGCM3.1 (T47) 

(Coupled Global 

Climate Model, 

version 3.1) 

 

Canadian Centre for Climate Modelling & 

Analysis, Canada 

 

T47  

(  75.375.3~ ) 
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4.4. Application to drought analysis  

A number of drought monitoring indices have been developed in the literature, e.g., 

Palmer drought severity index (PDSI) [Palmer, 1965]; Standard precipitation index (SPI) 

[McKee et al., 1993]; Crop moisture index (CMI) [Palmer, 1968]. Standard precipitation 

index (SPI) is a meteorological drought index used to determine dry or wet events from 

precipitation records alone. The SPI is estimated by first aggregating monthly 

precipitation dataset into a moving 3-, 6-, 12-, 18- or 24-month total precipitation, 

depending on the timescale of interest. Each of these datasets is then fitted to a gamma 

probability distribution, as. 

 
 



 


x

exxf





 111

,;           (4.6) 

where x  > 0 is the precipitation amount,  , > 0 are the shape and scale parameters, 

respectively, and    is the gamma function given by. 

  dyey y






0

1            (4.7) 

The property of the gamma distribution indicates that the product of the shape and scale 

parameters gives the precipitation mean. Once an appropriate estimate for the shape and 

scale parameters is obtained, the probability of a given precipitation event gives an 

indication of the extent of dryness or wetness of that particular precipitation event relative 

to the average precipitation. Generally, lower probabilities indicate dryness whereas 

higher probabilities are associated with the occurrence of wet events. As precipitation 

varies highly in space, the magnitude of precipitation that produces dry or wet events at 
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different location also varies significantly. This makes it difficult to compare droughts in 

different regions. The SPI, however, estimates drought index consistent in different 

regions by calculating the score value (i.e., the number of standard deviations from the 

mean) of a hypothetical standard normal distribution for the same gamma distribution 

probability of a given precipitation. The score value of the standard normal distribution 

gives the SPI estimate for that particular location and timescale. Table 4.2 presents the 

drought categories based on SPI estimate, as suggested by McKee et al. [2006]. 

Table 4.2: Drought categories based on SPI value, as suggested by McKee et al. [2006]. 

SPI value Drought Category 

0 to –0.99 Mild drought 

–1 to –1.49 Moderate drought 

–1.5 to –1.99 Severe drought 

≤–2.0 Extreme drought 

 

Conventionally, the shape and scale parameters are estimated using least squares method 

or other optimisation techniques without due consideration to precipitation uncertainties. 

This approach produces unbiased parameters only if the precipitation data are accurate. 

However, since accurate precipitation records are seldom available, the parameters 

estimated using this procedure are biased, leading to an uncertain SPI value. For instance, 

the GCM precipitation outputs used, in this study, to estimate future droughts across the 

world are highly uncertain and, therefore, produce biased SPI estimate if the uncertainties 

are not given due consideration during fitting of gamma distribution parameters. 
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To deal with such a problem, we use a framework, discussed in section 4.2, that accounts 

for the uncertainties of precipitation data during parameter estimation. The method 

involves estimation of the uncertainties involved in the GCM precipitation data (using 

SREV) and application of the SIMEX method for parameter estimation of the gamma 

distribution. We estimate the shape parameter using the SIMEX procedure with the scale 

parameter being determined from the relationship between the two (i.e., the scale 

parameter is calculated by dividing the mean precipitation and the shape parameter). This 

way, the long-term mean precipitation is maintained. We also note that estimation of the 

parameters using the other way around (i.e., using SIMEX for the scale parameter and the 

shape parameter being estimated from their relationship) produce worse results than the 

former and, therefore, we use only the former approach for further analysis. The 

uncertainty estimation as well as drought assessment is carried out at a monthly timescale 

across the world for a spatial scale of 3o x 3o latitude/longitude grid, which has important 

implications for large scale water resources management and planning. 

The SPI values are used to determine frequency of severe droughts for 2080s (2070–

2090). Severe drought frequency is defined here as the percentage of times in which a 

severe drought (i.e., –1.99 ≤ SPI ≤ –1.5) occurs within a given time period. The six GCMs, 

three scenarios and three ensemble runs, discussed in section 4.3.2, are used for the 

overall analysis. However, for the sake of brevity, main results (i.e., uncertainty values, 

parameter estimates, and drought frequency analysis) for only a single GCM and scenario 

(i.e., ECHAM5/MPI-OM with A2 scenario) are discussed below. The ECHAM5 model 

is selected for its better skills, compared to a host of others, in representing rainfall 

persistence, especially for Australian conditions [Johnson et al., 2011]. It should be noted 

that, since the variability across different GCMs in the drought assessment is considered 
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through the uncertainty estimate, results of the other GCMs are also comparable with 

those of ECHAM5. 

4.5. Results 

4.5.1. GCM precipitation uncertainty 

The precipitation outputs from six GCMs and three scenarios are converted to their 

percentiles to estimate the uncertainties using the square root of error variance (SREV) 

metric. The results are shown in Figure 4.3 for a grid point in Southeast Australia (= –

32.5 o S latitude and 147.5 o E longitude). In these plots, the precipitation percentiles are 

plotted against the magnitude for the baseline scenario (20C3M) and three future 

scenarios (A2, A1B and B1) for a single simulation run. The top plot corresponds to 

precipitation data before bias correction while the plot at bottom is obtained after using 

the nested bias correction (NBC) method. The pre-NBC results show that a large 

variability is observed across different GCMs for a given percentile, while the post-NBC 

results reveal a significant decrease in variability. Thus the large uncertainties in raw 

GCM precipitation dataset can be reduced through bias correction. The large variability 

across different models for raw data and its significant reduction after bias correction is 

not particular to either the first simulation run or different scenarios, as similar results are 

also observed for A2 scenario and other simulation runs (Figure 4.4). 
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Figure 4.3: Percentile plots of baseline and future scenarios for precipitation data before 

(top) and after (bottom) bias correction. Pre-NBC is for precipitation data before 

bias correction using the nested bias correction (NBC) and post-NBC is for 

precipitation data after bias correction. ‘O’ in the legend refers to observed rainfall 

data. 
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Figure 4.4: Percentile plots of baseline and A2 scenario for three ensemble runs for 

precipitation data before and after bias correction. Pre-NBC is for precipitation 

data before bias correction using the nested bias correction (NBC) and –post-NBC 

is for precipitation data after bias correction. 

The square root of error variance (SREV) is first estimated at each percentile and then 

translated to time series. Figure 4.5 shows the time series of global mean SREV for 

different sources of uncertainty using raw and bias-corrected precipitation data. The 

figure reveals that for pre-NBC data, the model uncertainty is the main source of error, 

which is followed by scenario and ensemble run uncertainties. This is clearly in 

accordance with the observation made by several other studies, such as Déqué et al. 

[2007], Hawkins and Sutton [2009] and Woldemeskel et al. [2012]. Some seasonal 

fluctuation can also be seen in the model uncertainty, as the estimates are generally 

smaller in the early months and middle of the years than those in other months. 
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Figure 4.5: Global mean square root of error variance (SREV (mm/month)) for 

precipitation before and after bias correction using ECHAM5/MPI-OM. Pre-NBC 

is for precipitation data before bias correction using the nested bias correction 

(NBC) and post-NBC is for precipitation data after bias correction. 

For the bias-corrected data, the model uncertainty significantly reduces in all the 

timesteps due to the correction of the systematic biases. This is expected, since bias 

correction increases the agreement of model outputs with observations as well as among 

the different models [Ehret et al., 2012; Johnson and Sharma, 2012; Watanabe et al., 

2012]. Following this some reduction is also observed in the scenario and ensemble run 

uncertainties. As a result of the reduction of individual uncertainties, the total uncertainty 

also decreases significantly after bias correction.  
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Figure 4.6: The shape parameter estimates of gamma distribution for different cases using 

precipitation outputs of ECHAM5/MPI-OM and A2 scenario. Pre-NBC is for 

precipitation data before bias correction using the nested bias correction (NBC) 

and post-NBC is for precipitation data after bias correction. Pre-SIMEX is without 

using SIMEX and post-SIMEX is using SIMEX. 

4.5.2. Gamma distribution parameters  

The shape parameter is estimated with and without SIMEX for both pre- and post-NBC 

precipitation data to allow comparison of results for all of these four cases (i.e., with and 

without SIMEX for raw and bias corrected GCM precipitation simulation). The scale 

parameter for the four cases is obtained through the relationship between the shape and 

scale parameter with the mean precipitation (i.e., dividing the mean precipitation by the 

shape parameter). The results of shape parameter for ECHAM5 and A2 scenario for the 

four cases are shown in Figure 4.6. As seen, the shape parameter is large in some regions, 

such as Canada, the Amazon, Central Africa, for both pre- and post-SIMEX using pre-
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NBC data. Wide differences are observed between the pre- and post-NBC results in many 

grid locations, such as South America, North and South Africa, Antarctica, the Middle 

East and Australia. These differences are even more clearly visible in Figures 4.7a and 

4.7c, which show the ratio of pre-NBC and post-SIMEX as well as post-NBC and post-

SIMEX parameters divided by pre-NBC and pre-SIMEX, respectively. The large 

difference between Figures 4.7a and 4.7c show the impact of using GCM bias correction 

on the shape parameter. This indeed is expected, as the statistical properties of the 

precipitation data are corrected during bias correction, which, in turn, lead to improved 

parameter estimates than the original data. Another reason could be this: in some locations 

where precipitation magnitude is very small, negative precipitation values are obtained 

during bias correction, which are then replaced by zero as negative rainfall is meaningless. 

To maintain the long-term mean, however, the precipitation series is multiplied by an 

appropriate factor. Although this seems reasonable, other properties (such as standard 

deviation) of the time series are modified resulting in large difference in the parameter 

values in such locations. Comparison of Figure 4.7c with 4.7b, which show the ratio of 

post-NBC and pre-SIMEX divided by pre-NBC and pre-SIMEX, reveals that the impact 

of SIMEX is minimal in contrast with NBC. However, Figure 4.7d, which shows the ratio 

of post- and pre-SIMEX for post-NBC data, indicates that the implementation of SIMEX 

produces significant increase in the parameter estimates. The scale parameter values or 

the four cases are shown in Figure 4.8. The parameter is generally large in the mid-

latitude, where the rainfall is high, and reduces in the high and low latitudes. 
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Figure 4.7: Ratio of shape parameters of gamma distribution for different cases; a) pre-

NBC and post-SIMEX divided by pre-NBC and pre-SIMEX, b) post-NBC and 

pre-SIMEX divided by pre-NBC and pre-SIMEX, c) post-NBC and post-SIMEX 

divided by pre-NBC and pre-SIMEX, d) post-NBC and post-SIMEX divided by 

post-NBC and pre-SIMEX using ECHAM5/MPI-OM. Pre-NBC is for 

precipitation data before bias correction using the nested bias correction (NBC) 

and Post-NBC is for precipitation data after bias correction. Pre-SIMEX is without 

using SIMEX and post-SIMEX is using SIMEX. 
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Figure 4.8: The same as figure 4.6 but for scale parameter. Pre-NBC is for precipitation 

data before bias correction using the nested bias correction (NBC) and Post-NBC 

is for precipitation data after bias correction. Pre-SIMEX is without using SIMEX 

and post-SIMEX is using SIMEX. 

4.5.3. Drought Frequency 

Using the shape and scale parameters obtained above, gamma distribution is fitted at all 

the grid locations. The distribution is then converted to standard normal distribution using 

approximate methods to formulate the 12-month standard precipitation index (SPI-12). 

The drought frequency is finally estimated by calculating the percentage of drought 

events within a fixed time span. The change in drought frequency of the future (2070-

2090) relative to the current (1970-1999) is shown in figure 4.9 for three scenarios (A2, 

A1B and B1). The figure reveals that drought frequency increases in some parts of the 

world and decreases in others as a result of global warming. Significant increase is 

observed over most of the United States, South America, North Africa, and South Asia 

whereas significant decrease being obtained in Central and Northern Eurasia, Canada and 
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Antarctica. These results are clearly in accordance with previous studies by Burke et al. 

[2006] and Dai [2011], which found comparable changes in the future drought using 

Palmer Drought Severity Index (PDSI). Figure 4.9 further shows that the intensity of 

change in the drought frequency is different for different emission scenarios with the 

intensity somewhat decreasing in the following order: A2, A1B and B1. This is as a result 

of the different assumptions in the forcing effects of the three scenarios as they are based 

on high, medium and low greenhouse gas emissions, respectively. 

 

Figure 4.9: Change in drought frequency (%) during 2070-2099 relative to 1970-1999 for 

three future scenarios (A2, A1B and B1). The figure shows results of ensemble-

mean of six GCMs (table 4.1) for bias corrected data using NBC.   

Figure 4.10 shows the frequency of severe droughts for 2080s (i.e., the percentage of time 

in which a severe drought occurs in any given year during 2070–2090) using 

ECHAM5/MPI-OM and A2 scenario with and without SIMEX for raw and bias-corrected 

data. Looking at Figure 4.10a, a large percentage (up to 10 %) of the severe drought 

frequency is generally observed in dry areas, such as some parts of North America, North 
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Africa, and South Asia. On the other hand, in wet regions, such as Canada and Europe, 

the frequency of severe droughts is relatively low. The drought frequency estimates using 

SIMEX (Figure 4.10b and 4.10d) show more or less similar spatial trends as the pre-

SIMEX estimates, although the drought frequency is more pronounced in the former case. 

 

Figure 4.10: Severe drought frequency for different cases using ECHAM5/MPI-OM in 

2080s (2070–2090). Pre-NBC is for precipitation data before bias correction using 

the nested bias correction (NBC) and Post-NBC is for precipitation data after bias 

correction. Pre-SIMEX is without using SIMEX and post-SIMEX is using 

SIMEX. 

Figure 4.11 shows the box-plots of severe and moderate drought frequency for all grid 

points across the world. Severe drought frequency estimates at the 25th, 50th and 75th 

percentiles with and without SIMEX are somewhat similar for both pre- and post-NBC 

data. However, the post-NBC results differ from the pre-NBC in that the drought 

frequency values for the former have smaller range between the 25th and 75th percentiles 

as compared to the later for both pre- and post-SIMEX. In addition, the post-NBC results 



 

CHAPTER 4 

 

 

 

106 

 

reveal higher severe drought frequency values than the pre-NBC. For the moderate 

drought, unlike the severe drought, the drought frequencies are much larger. In addition, 

the post-SIMEX results show smaller drought frequency estimate at the 25th, 50th and 75th 

percentiles than the pre-SIMEX results for both pre- and post-NBC. 

 

Figure 4.11: Box-plots of severe (–1.99 ≤ SPI ≤ –1.5) and moderate (–1.49 ≤ SPI ≤ –1) 

drought frequency for grid points across the world using ECHAM5/MPI-OM in 

2080s (2070–2090). Pre-NBC is for precipitation data before bias correction using 

the nested bias correction (NBC) and Post-NBC is for precipitation data after bias 

correction. Pre-SIMEX is without using SIMEX and post-SIMEX is using 

SIMEX. The horizontal lines of each box-plot show the 25th, 50th and 75th 

percentiles, whereas points outside the whiskers are outliers. 
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4.6. Discussion 

An important assumption in the proposed method is that the GCMs, developed by 

different climate modelling groups around the world, are independent of each other. 

Although this assumption is not just limited to the present study but is common to climate 

studies, it  is nevertheless difficult to justify, since the climate modelling groups generally 

share theoretical concepts, literatures, and data information [Pirtle et al., 2010]. The 

implication of this assumption is that, if the models used to formulate the uncertainty are 

interdependent, then the uncertainty will be underestimated, as the variability across such 

models will be small. 

The different cases considered to estimate the gamma distribution parameters in this study 

(i.e., with and without using SIMEX for pre- and post-bias corrected data) suggest that 

the parameter values as well as the drought frequency estimates differ widely. The utility 

of SIMEX, to obtain unbiased model parameters when uncertain inputs are used, has been 

favourably reported across different disciplines, such as hydroclimatology [Chowdhury 

and Sharma, 2007], applied statistics [Guolo and Brazzale, 2008] and biometrics 

[Marschner, 2006]. To evaluate the performance of the SIMEX for drought estimation, 

we analysed drought frequency for the current period where observed data is available. 

To this end, drought frequency during 1960-1999 is calculated for six GCMs and 20C3M 

scenario as well as observed rainfall. Then, mean absolute error (MAE) across the world 

is calculated for severe (–1.5 ≤ SPI < –1.99) and extreme (SPI ≤ –2.0) drought events. 

The results (summarised in table 4.3) show a consistent reduction in MAE after 

implementation of the SIMEX procedure, except MIROC3.2 and ECHO-G (severe 
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drought). Therefore, the use of the SIMEX procedure with the bias- corrected data is the 

novel aspect of this study and the results are also far more reliable.  

Table 4.3: Global mean absolute error (MAE) of severe (–1.5 ≤ SPI < –1.99) and extreme 

(SPI ≤ –2.0) drought frequency before (Pre-SIMEX) and after (Post-SIMEX) 

using SIMEX during 1960 to 1999 for six GCMs and 20C3M scenario. The MAE 

reduces consistently after implementing the SIMEX. 

 

GCM 

Severe drought (%) Extreme drought (%) 

Pre-SIMEX Post-SIMEX Pre-SIMEX Post-SIMEX 

PCM 4.4 4.3 2.5 2.3 

CCSM3 4.5 4.4 2.6 2.4 

MIROC3.2 4.3 4.3 2.4 2.4 

ECHO-G 4.1 4.2 2.9 2.5 

ECHAM5/MPI-OM 4.4 4.3 2.5 2.3 

CGCM3.1 (T47) 4.4 4.2 2.5 2.3 

 

The proposed framework emphasises two themes – quantification of uncertainty and 

consideration of this uncertainty in modelling applications – in dealing with the issue of 

uncertainty in GCM outputs for impact assessment studies. The framework is applied to 

study an assessment of droughts across the world only to show its utility for hydrologic 

studies. It is important to mention that the framework is also applicable for other water 

resource studies, which use parametric models, as well. One example of such applications 

is the probabilistic design of reservoir storage by considering the precipitation data as a 
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stochastic process. Another useful application of the GCM uncertainty estimates is one 

can use a single GCM simulation with the associated uncertainty for climate change 

impact assessments instead of using multiple GCMs. This simplifies and reduces the 

effort and time required to assess climate change impacts using multiple GCMs.  

As SIMEX is relatively new to the hydroclimatology discipline, some issues still need 

further investigation. One of the issues is that the parameter estimation through 

extrapolation is somewhat sensitive to the type of the function used. In this study, we use 

a quadratic function, as it is recommended by Stefanski and Cook [1993] and also 

somewhat represents our data structure; however, detailed analysis will help to identify 

the most plausible extrapolant function suitable for hydrologic studies. Another issue that 

needs further consideration is the implementation of SIMEX when multivariate 

parameters are involved. In this study, only two parameters are involved; however, in 

rainfall-runoff models, and many other environmental models for that matter, where 

several parameters need to be optimised, the SIMEX needs to be modified to 

accommodate the optimisation of multivariate parameters. 

4.7. Conclusions 

A new framework is developed in this study to obtain unbiased estimates of model 

parameters when uncertain GCM outputs are used in impact assessment models. The 

uncertainty in the raw and bias-corrected GCM data is first estimated using the square 

root error variance (SREV) metric, considering the variability in the precipitation outputs 

of six GCMs, three scenarios and three ensemble runs. Then, the GCM data together with 

the associated uncertainty are used to optimise model parameters with a novel method, 

called simulation-extrapolation (SIMEX). The method is applied to estimate the shape 
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and scale parameters of gamma distribution, which are then used to estimate the 

frequency of droughts across the world using the standard precipitation index (SPI). 

The results indicate that the uncertainty in precipitation comes mainly from structural 

uncertainty followed by scenario and initial condition errors. The model uncertainty 

considerably decreases after bias correction, as the systematic biases are reduced. The 

shape and scale parameters estimated for raw and bias-corrected data show significant 

differences in areas where the rainfall is generally low. This is because some negative 

precipitation values are replaced by zero during bias correction which possibly alters the 

statistical properties of the data.  However, effort is made to maintain the long-term mean 

value of precipitation at such areas by multiplying with an appropriate factor. Estimates 

of frequency of severe droughts in 2080s (2070–2090) for the four cases studied (i.e., 

with and without using SIMEX for raw and bias-corrected data) also differ widely. 

As the actual frequency of severe droughts in the future are not known, it is difficult to 

make an absolute recommendation; however, the results from the SIMEX for the bias-

corrected data can be considered as more plausible ones, as SIMEX takes into 

consideration the various uncertainties in GCM precipitation outputs. The framework 

proposed and implemented in this study provides a new approach to dealing with 

uncertainties in climate change impact assessment. There is clearly room for improving 

the framework further. For instance, analysis of GCM interdependence prior to 

uncertainty quantification and modification of the SIMEX algorithm to accommodate 

multivariate parameter estimation are just two of the possible areas for improvement. We 

are currently conducting research in these directions, and will report the details in the 

future. 



 

CHAPTER 4 

 

 

 

111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 5 

 

 

 

112 

 

Chapter Five 

5. A new framework for incorporating GCM uncertainty for 

reservoir storage estimation for future (warmer) climates 

 

Having shown an application example of the SREV for drought assessment in chapter 4, 

this chapter provides an additional example for reservoir storage assessment. Whether or 

not water availability and reservoir storage requirement is affected as a result of climate 

change is a question of great interest to water managers and policy makers. Among other 

factors, uncertainties in GCM projections make accurate assessment of climate change 

impacts on reservoir storage estimation extremely complicated. This chapter investigates 

the influence of GCM uncertainty on the estimation of reservoir storage. The content of 

the chapter is reproduced from a submitted paper to Journal of hydrology, below. 

Woldemeskel, F. M., A. Sharma, B. Sivakumar, and R. Mehrotra (2013), A new 

framework for incorporating GCM uncertainty for reservoir storage estimation for 

future (warmer) climates, Journal of Hydrology, submitted.   

5.1. Introduction  

Population growth and the many associated activities have and continue to necessitate 

large-scale storage of water to meet our various water demands. Dams and reservoirs are 

often a suitable means for large-scale water storage, so that water can be supplied to 

different places and at different times, as needed.  A normal practice in the estimation of 

storage capacity of reservoirs is to use the historical streamflow records as the main input, 

with an inherent assumption that similar characteristics of streamflow will also occur in 
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the future. This assumption, however, can no longer be reliably justified in the face of 

global climate change (caused by greenhouse gas emissions) and its effects on hydrology 

and water resources [IPCC, 2007]. According to the Intergovernmental Panel on Climate 

Change [IPCC, 2007], global average surface temperature has increased by 0.74°C during 

the last century (1906 to 2005) and an increase of up to 4°C (based on high greenhouse 

gas emission scenario) is also projected for the end of the 21st century. As a result of this 

change, more-frequent and greater-magnitude extreme hydroclimatic events (e.g. floods, 

droughts, sea level rises) are also anticipated to occur [IPCC, 2007; Kundzewicz et al., 

2008; Milly et al., 2002]. These projected changes in surface temperature and extreme 

hydroclimatic events will likely affect future water availability and demands. This will, 

in turn, likely influence the future role of reservoirs and their functions in different parts 

of the world, including need for additional reservoirs, removal of some existing ones, and 

the reliability of established reservoir operation policies. 

Occurrences of more floods, in some areas of the world, bring more sediment to the 

reservoirs, thereby reducing their storage capacities [Peizhen et al., 2001]. On the other 

hand, increased drought events, in other areas, induce water stress [Arnell, 1999; Harding, 

2012; Piao et al., 2010]. Further, climate change will also likely alter seasonal streamflow 

sequences. For example, Barnett et al. [2005] estimate that, for the western United States, 

the peak spring flow in the future will be observed about a month earlier than usual. 

Reservoir storages, estimated based on historical flows alone, will not be able to 

accommodate such peak flows that occur earlier than normal [Barnett et al., 2005]. As a 

result, water shortage will occur during low flows later in the year. A number of other 

studies have also found that the benefits of reservoirs will likely reduce as a result of 

climate change [Ashofteh et al., 2013; Christensen and Lettenmaier, 2007; Thomas A. 
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McMahon et al., 2010; Raje and Mujumdar, 2010]. These studies have indeed improved 

our understanding of the impacts of climate change on reservoir storages. However, none 

of these studies have explicitly considered the uncertainties associated with global climate 

model (GCM) projections, which commonly serve as the basis for climate change impact 

assessment. Since uncertainties in GCM projections can play a key role in the assessment 

of our future water resources, the existing studies cannot be considered to offer reliable 

assessments on the implications of climate change on reservoir storage requirements. 

Regarding this an important question is: how is reservoir storage influenced by GCM 

projection uncertainties? This can be evaluated by first quantifying GCM projection 

uncertainties and then considering such uncertainties in the estimation of reservoir 

storage.  

A number of studies were carried out to quantify GCM projection uncertainties and their 

influence in impact assessment models [ Chen et al., 2011; Déqué et al., 2007; Hawkins 

and Sutton, 2009; Kay et al., 2009; Yip et al., 2011]. Most recently, Woldemeskel et al. 

[2012] developed an uncertainty metric, square root error variance (SREV), to quantify 

GCM uncertainties that vary in space and time. It was found that GCM model structure 

is the main source of uncertainty followed by uncertainties in greenhouse gas emission 

scenario and internal variability. To consider such uncertainties of GCM in water 

resources assessment, studies recommend the use of numerous projections from different 

models, scenarios and ensemble runs in order to precisely reproduce the uncertainty 

interval [IPCC, 2007; Murphy et al., 2004]. Although this seems reasonable, there are 

challenges with regard to its implementation.  
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First, researchers commonly make water resources assessment using a single or a multi-

model mean of a few model projections, despite the above recommendation that such 

assessments fail to reproduce the full range of regional changes [IPCC, 2007]. The 

reluctance to consider numerous projections for impact assessment could be due to the 

extensive computational time and effort needed to analyze large datasets from many 

GCMs, scenarios and ensemble runs [Perkins et al., 2007]. Second, although one makes 

water resources assessments based on all the available GCM projections, the numbers of 

such projections are limited that it is impossible to infer statistically acceptable 

uncertainty intervals, which require thousands of realizations [KjellstrÖM et al., 2011; 

Stainforth et al., 2005]. 

In this chapter, we address both the aforementioned challenges by developing a 

framework to generate thousands of realizations of each model and scenario projection 

towards characterization of GCM uncertainties into reservoir storage estimation. By 

doing so, we provide answers to the key research question presented above; that is, how 

are reservoir storages influenced by GCM projection uncertainties? The method proposed 

here involves three important steps. First, GCM uncertainties are quantified in space and 

time using the square root of error variance (SREV) metric [Woldemeskel et al., 2012]. 

Second, multiple GCM realizations are generated based on an additive error model for a 

selected GCM projection. Third, the GCM realizations are used to estimate reservoir 

storage requirements as well as the associated uncertainty. 

The proposed method is applied to quantify uncertainties in rainfall and temperature 

projections using six GCMs, three scenarios and three ensemble runs for the Warragamba 

Catchment in New South Wales, Australia. The biases in the GCM projections are 
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corrected first using the Nested Bias Correction (NBC) [Johnson and Sharma, 2011; 

2012; Mehrotra and Sharma, 2012]. Multiple rainfall and temperature realizations are 

generated then for a selected GCM and scenario. The temperature realizations are used to 

obtain evaporation realizations, which are then used as input (together with rainfall 

realizations) to a rainfall-runoff model for estimating streamflow. Finally, these 

streamflow realizations are used to quantify reservoir storage requirements with the 

associated uncertainty, using reservoir behavior analysis. 

The results suggest that GCM uncertainties will be significantly large for the future period 

than the current period for both rainfall and temperature. Large uncertainty in the future 

reservoir storage is also estimated. Comparison of influences of rainfall and evaporation 

uncertainty suggests that reservoir storage uncertainty is mainly introduced from rainfall 

than evaporation. Finally, the proposed method provides an effective framework to 

quantify and incorporate GCM uncertainties in climate change impact assessment on 

water resources 

The rest of the chapter is organized as follows. Section 5.2 discusses the details of the 

proposed methodology. Section 5.3 describes the study area and different sources of data 

used in this study. Results are discussed in section 5.4, followed by conclusions in 

sections 5.5.  

5.2. Method 

The methodology proposed is discussed by grouping into three sections. Section 5.2.1 

describes the method to generate rainfall, temperature and evaporation realizations. The 
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rainfall-runoff model used to simulate streamflows is then presented in section 5.2.2. 

Finally, the reservoir storage estimation method is given in section 5.2.3.  

5.2.1. Rainfall, temperature and evaporation realizations  

The method to generate rainfall, temperature and evaporation realizations involves the 

following steps. First, uncertainty in bias-corrected multi-GCM, scenario and ensemble 

runs is estimated using the square root of error variance (SREV) [Woldemeskel et al., 

2012]; the GCM bias correction is carried out using the nested bias correction (NBC) 

approach [Johnson and Sharma, 2012]. A brief account of the SREV metric is given in 

below, and the reader is referred to Woldemeskel et al.[2012] for more details. Second, 

an error model is developed to generate thousands of rainfall and temperature realizations 

for a single GCM (referred as ‘reference GCM’ from now on), as explained below. The 

temperature realizations are finally used to estimate evaporation realizations. 

Square root error variance (SREV) 

The SREV is estimated by aggregating standard deviation of each source of GCM 

uncertainty (i.e., model, scenario and ensemble run) at every percentile (Equation 5.1). 
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Where T
pSREV , M

pSREV , S
pSREV , and E

pSREV  are square root of error variances of total 

(T), model (M), scenario (S) and ensemble runs (E) at each percentile (p), respectively. 

Square root error variance for any of the individual sources of uncertainties (i.e., M
pSREV

, S
pSREV , or E

pSREV ) are estimated by calculating standard deviation of multi-GCM, 
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scenario and ensemble run projections, at each percentile, conditional on the other two. 

For example, model SREV ( M
pSREV ) at each percentile is estimated by calculating 

standard deviation of many model projections for a given scenario (e.g., A2) and a 

randomly selected ensemble run (e.g., run1). This is then repeated for other scenarios 

(e.g., A1B, B1, etc…) and the average of the SREV estimates conditional on all the 

scenarios is considered as the model uncertainty (i.e., M
pSREV ). Similarly, scenario 

SREV is estimated by conditioning on models and ensemble runs whereas ensemble runs 

SREV is calculated by conditioning on models and scenarios. Finally, the SREV at each 

percentile for any GCM projection is translated to time-series to obtain SREV at each 

time-step based on the month and year of the GCM projection at that percentile. 

Error model  

Global climate modeling groups around the world produce, at most, only a few climate 

projections for each emission scenario, due to computational expensiveness in simulating 

many realizations. These few climate projections are not enough to infer a statistically 

acceptable uncertainty interval, which typically needs thousands of realizations. 

Considering this, an error model, which uses the reference GCM projections and its 

associated uncertainty, is developed here to generate the GCM realizations. The model is 

described as follows. 

Let us denote the reference GCM projection for a given scenario at any timestep (t) and 

a certain grid location by 𝑣(𝑡); for simplicity here, let us exclude the notation for the grid. 

The value 𝑣(𝑡) is a deterministic estimate of the GCM variable under consideration, 

which is also uncertain. A Gaussian noise is, therefore, added to 𝑣(𝑡) for obtaining 
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thousands of possible realizations of the variable that enables us to incorporate the 

uncertainty associated with the variable for any subsequent application, as: 

  𝑉(𝑡;  𝜔) = 𝑣(𝑡) +  𝜀(𝑡;  𝜔)        (5.2) 

Where 𝑉(𝑡;  𝜔) is a GCM variable at time-step (t) with 𝜔 denoting a particular realization, 

𝜀(𝑡;  𝜔) is a noise sampled from Gaussian distribution with mean equal to zero and 

standard deviation equal to the total SREV value estimated above. Carpenter and 

Georgakakos [2001] used an error model in intent similar to this for streamflow 

forecasting; however, they used a different approach to estimate the standard deviation of 

the noise.  

Equation 5.2 is used to obtain thousands of rainfall and temperature realizations for the 

current (1960 to 1999) and future climate (2001 to 2099) periods for the reference GCM. 

The temperature realizations are then used to obtain evaporation realizations, as described 

next.  

Evaporation realizations 

A number of potential evaporation (PE) estimation methods have been proposed in the 

literature: Penman [Penman, 1948], Penman-Monteith [Monteith, 1965] and 

Thornthwaite [Thornthwaite, 1948], to mention a few. These methods generally require 

several climate and aerodynamic data that sometimes may not be directly available. Oudin 

et al. [2005] developed a simplified method, which uses only temperature and 

extraterrestrial radiation data, to estimate potential evaporation at the daily timestep, 

given by: 
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 𝑃𝐸 =  
𝑅𝑒

𝜆𝜌

𝑇𝑎+5

100
 , if 𝑇𝑎 + 5 > 0                               (5.3) 

PE = 0, Otherwise 

where PE [mm day-1] is the rate of potential evaporation, Re [MJ m-2 day-1] is the 

extraterrestrial radiation, λ [MJ kg-1] is the latent heat flux, ρ [kg m-3] is the density of 

water, and Ta [C] is the mean daily air temperature. We use Equation 5.3 to estimate the 

potential evaporation at the monthly timestep, following the reasonably good results 

presented by Kay and Davies [2008].  It should be mentioned that although both 

temperature and extraterrestrial radiation are used as an input in Equation 5.3, many 

realizations are considered only for the case of temperature while a single GCM 

projection is being employed for radiation. This is because, GCMs simulate 

extraterrestrial radiation fairly well and so the uncertainty associated with radiation is 

ignored in the analysis. 

5.2.2. Rainfall-Runoff model  

The relationship between rainfall and runoff is recognized as highly non-linear, especially 

during extreme flood events [e.g., Liu and Brutsaert, 1978]. Therefore, a nonlinear data-

driven rainfall-runoff model, nonlinear autoregressive Exogenous (NARX) model, 

widely used in system identification, is developed in this study to estimate streamflows. 

The NARX model has also been well investigated for rainfall-runoff modeling and found 

to produce reasonable outcomes [e.g., Ali, 2009; Amisigo et al., 2008; Previdi et al., 

1999]. The model can be written as follows (Equation 5.4):  
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𝑦(𝑡) = 𝑓 (𝑦𝑡−1,  𝑦𝑡−2, … , 𝑦𝑡−𝑛𝑦
, 𝑢𝑡 , 𝑢𝑡−1,  𝑢𝑡−2, … , 𝑢𝑡−𝑛𝑢+1, 𝑥𝑡, 𝑥𝑡−1,  𝑥𝑡−2, … , 𝑥𝑡−𝑛𝑥+1) 

(5.4) 

where y(t) is the output signal at time t (e.g., streamflow), u(t) and x(t) are exogenous 

input variables at time t (e.g., rainfall, evaporation) and f is a nonlinear function. We use 

a wavelet network function for representing the nonlinear function (f) [Billings and Wei, 

2005]. The model is calibrated to obtain the values of the input (nu and nx) and output (ny) 

lags to reduce the prediction error. For the Warragamba catchment studied here (see 

section 3), ny = nu = nx = 1 produce the best outcomes. Therefore, using these parameter 

values, rainfall and evaporation realizations are used in Equation 5.4 to obtain streamflow 

realizations. The potential evaporation is multiplied by coefficient of 0.7, somewhat 

reasonable according to [Richard, 2007], to convert the potential evaporation to actual 

evaporation of the catchment.  

5.2.3. Reservoir capacity estimation  

Reservoir behavior analysis is carried out at monthly timestep to estimate reservoir 

storage capacity. Behavior analysis is based on the water balance of input to and output 

from the reservoir, as given by [McMahon and Mein, 1986].  

          𝑆𝑡+1 = 𝑆𝑡 + 𝑄𝑡 − 𝐷𝑡 − 𝑎𝑡  ×  𝐸𝑡                    (5.5) 

                    0 ≤ 𝑆𝑡+1 ≤ 𝑆𝑚𝑎𝑥 

where St, Qt, Dt, and Et are reservoir storage, streamflow (inflow), demand (or release) 

and evaporation at time t, respectively; at is the top surface area of water in the reservoir 

at time t; St+1 is reservoir storage at time t + 1; and Smax is the maximum capacity of the 
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reservoir. Streamflow and evaporation realizations are used to estimate storage capacity 

stochastically by assuming different demand values. To convert evaporation flux to 

volume, it is assumed that the reservoir has cylindrical shape with the absence of any 

depth-area-volume relationship for the reservoir (i.e., a is considered constant for all 

timesteps in Equation 5.5). Reservoir storage values, for current and future climates, are 

estimated and the uncertainties associated with them are evaluated.   

 

Figure 5.1: Location map of the Warragamba catchment in New South Wales (NSW), 

Australia. The nearest GCM grids to the catchment are shown in c and points 1 

and 2 show the centers of these GCM grids. 
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5.3. Study area and data 

5.3.1. Study area  

The study is carried out for the Warragamba catchment, located in New South Wales 

(NSW), Australia (Figure 5.1). The catchment has an area of 9050 km2 and receives an 

average annual rainfall of 840 mm. The Warragamba dam in this catchment is one of the 

largest water supply dams in the world. The storage reservoir, Lake Burragorang, which 

has a volume of about 2000 GL and maximum depth of 105 m, provides 80 % of the 

water supply to Sydney [Cox et al., 2003], the capital of NSW and the largest city in 

Australia. Figure 5.1c shows the two nearest GCM grids to the Warragamba catchment. 

Grid-2, which indicates a higher correlation between GCM rainfall and the observed 

rainfall, is selected for the analysis, after Carpenter and Georgakakos [2001] .    

5.3.2. Data 

Data from observations, reanalysis and GCM projections are used for this study. Monthly 

rainfall data observed during 1960–1999 at 45 rain gauges in and around the Warragamba 

catchment are used to calculate the weighted average rainfall, is used as an observed 

rainfall estimate for bias correction of GCM rainfall outputs as well as calibration of the 

rainfall runoff model. Similarly, monthly streamflow, for the same time period, is 

considered for this study. Monthly average temperature data is obtained from the 

University of Delaware air temperature and precipitation archive provided by 

NOAA/OAR/ESRL PSD on their website at http://www.esrl.noaa.gov/psd/. Whenever 

observed data is not available, reanalysis data from the NCEP/NCAR reanalysis project 

is considered. Thus, reanalysis data for the period 1960 to 1999 are used for 

extraterrestrial radiation. The observed and reanalysis data are used to correct biases in 

http://www.esrl.noaa.gov/psd/
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GCM as well as to develop the rainfall-runoff model. Climate projections for rainfall, 

temperature and extraterrestrial radiation for two time periods, current (1960 to 1999) and 

future (2001 to 2099), are obtained from CMIP3 datasets for six GCMs (see Table 5.1 for 

details), three scenarios (B1, A1B and A2) and three ensemble runs. The GCM outputs 

as well as the reanalysis data are interpolated to a common 3° x 3° latitude/longitude grid. 

Among the six GCMs, we consider ECHAM5/MPI-OM as the reference GCM, since it 

has been found to have better skills in representing persistence across Australia [Johnson 

et al., 2011]. As for the scenarios, we select the three scenarios carefully to represent a 

wide range of greenhouse gas emissions, i.e., low (B1), medium (A1B) and high (A2) 

[IPCC, 2007]. 

Table 5.1: List of GCMs and their atmospheric horizontal resolutions [IPCC, 2007]. The 

horizontal resolutions are expressed in triangular spectral truncation as well as 

degrees of latitude/longitude. 

GCM 

Atmospheric horizontal 

resolution 

PCM  (Parallel Climate Model) 
T42 (  8.28.2~ ) 

CCSM3  (the Community Climate System Model, version 3) 
T85 (  4.14.1~ ) 

MIROC3.2 (medres) (a Model for Interdisciplinary Research On 

Climate, version 3.2) 

T42 (  8.28.2~ ) 

ECHAM5/MPI-OM 
T63 (  9.19.1~ ) 

ECHO-G (Coupled climate model ECHAMA4 and ocean model 

HOPE-G) 

T30 (  9.39.3~ ) 

CGCM3.1 (T47) (Coupled Global Climate Model, version 3.1) 
T47 (  75.375.3~ ) 
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5.4. Results and Discussion  

5.4.1. Rainfall and temperature uncertainty  

The uncertainty estimates, in terms of square root error variance (SREV), of current and 

future rainfall and temperature projections for the reference GCM (ECHAM5/MPI-OM) 

and A2 scenario are shown in Figure 5.2. For both rainfall and temperature, the 

uncertainty is larger in the future as compared to the current. This is expected as the model 

outputs, in general, are more accurate in the current period than the future. However, there 

is another reason, in addition to this, as follows. For the current period, only a single 

greenhouse gas emission scenario (i.e., 20C3M) based on observations during the 20th 

century is considered [IPCC, 2007],  and, as a result, uncertainty due to emissions is not 

included in the current period. For the future, however, uncertainty due to three different 

emission scenarios (i.e., B1, A1B and A2) is examined. Therefore, the total uncertainty 

for the future will, in all likelihood, be significantly larger than that for the current.  

The ratio of the overall mean future SREV divided by the current SREV is 1.6 and 10.3 

for rainfall and temperature, respectively. This indicates that the relative increase in the 

future uncertainty in temperature is significantly larger than rainfall. The reason for this 

could be that temperature is fairly well projected for the current period, while it is highly 

uncertain for the future period. On the other hand,  rainfall is generally poorly simulated 

in both periods due to its high variability in space and time [Johnson and Sharma, 2009a]. 

Figure 5.2 further shows that there is a particularly increasing trend in SREV after 2060 

for temperature while such is not observed for rainfall. This is in accordance with the 

studies by Yip et al. [2011] and Woldemeskel et al. [2012], which show that temperature 
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simulation uncertainty increases for the future period due to divergence of greenhouse 

gas emission scenarios.  

 

Figure 5.2: Rainfall and temperature square root error variance (SREV) for current and 

future time periods at the Warragamba Catchment in Australia. The result is for 

ECHAM5/MPI-OM under A2 scenario and 20C3M for future and current time 

periods, respectively. 

5.4.2. Potential evaporation and streamflow simulations  

Thousands of potential evaporation realizations for the current and future are estimated 

for the reference GCM projection using temperature realizations and radiation data 
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(results not shown). Figure 5.3 illustrates the current and future long-term mean monthly 

potential evaporation results for the reference GCM (ECHAM5/MPI-OM) and A2 

scenario. Overall, potential evaporation is large during summer (December to February) 

and low during winter (June to August). Figure 5.3 further shows that potential 

evaporation slightly increases in the future during summer and decreases during winter. 

Actual evaporation values, estimated by multiplying the potential evaporation by a factor 

0.7, are used as inputs to the nonlinear autoregressive exogenous (NARX) rainfall-runoff 

model. Figure 5.4 shows the observed and simulated streamflow values obtained using 

this rainfall-runoff model. As seen for the current period, the model estimates streamflow 

fairly well, except an underestimation of peaks during some months. The rainfall-runoff 

model is used to simulate thousands of streamflow realizations for the current and future 

period (results not shown), which are then used to estimate reservoir storage with its 

associated uncertainty.  
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Figure 5.3: Long-term monthly mean potential evaporation for current (1960 to 1999) and 

future (2001 to 2099) periods. The result is for ECHAM5/MPI-OM and A2 

scenario. 

 

Figure 5.4: Monthly observed and simulated streamflow using the nonlinear 

autoregressive exogenous (NARX) model for 1960 to 1999. The simulations 

reproduce the observed streamflow fairly well.   
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5.4.3. Storage estimation  

Reservoir behavior analysis is used to estimate and evaluate storage at the Warragamba 

dam for four different datasets: 

(i) Observed data; 

(ii) Projections from the reference GCM (ECHAM5/MPI-OM) with the A2 

scenario; 

(iii) Thousands of realizations from the reference GCM (ECHAM5/MPI-OM) 

with the A2 scenario; and 

(iv) Projections from five additional GCMs with the A2 scenario. 

The thousands of storage realizations (case-iii above) are used to estimate the 5th and 95th 

percent storage uncertainty intervals for the reference GCM. The storages estimated using 

the other five GCM projections (case-iv) are used to validate the uncertainty interval. 

Ideally, it is expected that about 90 % of the storage estimates using the five GCMs be 

within the uncertainty interval. 

Figure 5.5 illustrates the current and future storage requirements at different demand 

levels for the above four cases. For both time periods, i.e. current and future, the storage 

requirement increases as the demand increases, with a sharp increase when the demand 

reaches about 300 GL/year. The upper and lower bounds around the reference GCM 

indicate the 5th and 95th percent uncertainty intervals. The uncertainty interval for the 

current period is narrower than that for the future, which reflects that future storage 

estimation is more uncertain than the current one. For the current period, although 

storages of some of the five other GCMs fall within the uncertainty range, a number of 

them are still outside of the interval, even when the demand levels are smaller. However, 
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for the future, most of the five GCM storage estimates fall within the uncertainty range, 

except some storage estimates which are outside at larger demand levels (i.e. over 300 

GL/year).  

 

Figure 5.5: Estimated storage for current (1960 to 1999) and future (2001 to 2099) periods 

established using observed data, reference GCM, reference GCM realizations and 

five other GCMs under A2 scenario for different demand levels. Refer table 5.1 

for all the GCMs considered. 

In the above analysis, we have focused only on the uncertainties from GCM projections, 

as they are the main sources of error in the impact of climate change on water resources 

[Chen et al., 2011; Déqué et al., 2007; Kay et al., 2009]. However, both rainfall-runoff 

models and reservoir behavior analysis introduce additional uncertainty in the storage 

estimation. Although we do not aim here to specifically ascertain the uncertainties in the 

rainfall-runoff model and in the reservoir behavior analysis, a preliminary bias correction 

using an approach similar to delta change [Hay et al., 2000] is carried out to reduce 
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storage biases that would be introduced as a result of these two. The correction is carried 

out as follows. Initially, delta change factors are estimated by calculating the ratio of the 

future storage divided by the current one, at each demand level. Then, the storages 

estimated using observed data are then multiplied by these factors to obtain bias-corrected 

future storage estimates. Figure 5.6 shows the results of the storage bias correction for the 

future. It is clear that most of the estimates from the additional five GCMs now fall within 

the uncertainty interval, especially at lower demand levels. Nevertheless, at higher 

demand level, three of the five GCMs still fall outside of the uncertainty interval. 

 

Figure 5.6: Estimated storage for future (2001 to 2099) periods established using 

reference GCM, reference GCM realizations and five other GCMs under A2 

scenario after correcting rainfall-runoff and reservoir behavior analysis biases 

using delta change approach. Refer table 5.1 for all the GCMs considered. 
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With the above uncertainty estimates based on rainfall and evaporation together, it would 

also be interesting to look at the extent of reservoir storage uncertainty contributed from 

these two individual sources. Figure 5.7 illustrates these for the current and future time 

periods. The results indicate that, for both time periods, the storage uncertainty 

originating from evaporation is significantly smaller than that from rainfall. This is 

commensurate with other studies that have also found that, in general, GCMs simulate 

surface temperature (hence evaporation) fairly well when compared to rainfall [Gleckler 

et al., 2008; Johnson and Sharma, 2009a; Perkins et al., 2007]. 

 

Figure 5.7: Storage uncertainty originating from rainfall and evaporation for current 

(1960 to 1999) and future (2001 to 2099) periods for different demand levels. The 

result is for ECHAM5/MPI-OM and A2 scenario. 

 

In this study, we have analyzed only a single reservoir at the Warragamba catchment. 

However, it is a common practice to combine multiple reservoirs as a single system in 

establishing reservoir operation policies. For example, the Sydney water supply 
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headworks system consists of several interconnected reservoirs that draw water from four 

catchments [Cui and Kuczera, 2005]. Our future research will examine the influences of 

GCM uncertainties in multi-reservoir systems as well as optimization of water systems 

for future climate considering GCM uncertainties using methods, for example, by 

Georgakakos and Marks [1987]. 

5.5. Conclusions  

Global climate model projections are highly uncertain that they, if used as an input for 

impact assessment studies without due consideration to uncertainties, produce biased 

outcomes. In this study, we have evaluated the influence of uncertainties in GCM outputs 

in reservoir storage estimation for the current (1960 to 1999) and future (2001 to 2099) 

climates, with the Warragamba catchment in Australia as a case study. After estimating 

the uncertainties in rainfall and temperature projections from six GCMs and three 

scenarios, thousands of rainfall and temperature realizations are generated for a selected 

reference GCM (ECHAM5/MPI-OM) and scenario (A2). The temperature realizations 

are then used to estimate potential evaporation, which together with rainfall, form inputs 

for simulation of streamflow and reservoir storage. 

The results indicate comparatively larger uncertainties in rainfall, temperature and 

reservoir storage for the future time period than for the current period. Future reservoir 

storages estimated using the reference GCM (ECHAM5/MPI-OM) and scenario (A2) at 

different water supply demand levels are generally of the same order of magnitude as the 

storage estimated using the observed data. However, the 5th and 95th percent uncertainty 

interval is significantly large, especially at larger demand levels. Storage estimates using 

five other GCMs fall reasonably well within the uncertainty interval, especially for the 
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future projections, suggesting that the estimated uncertainty bounds capture uncertainties 

in GCM projections. Results also indicate that storage estimation uncertainty largely 

originates from rainfall projections from GCMs than evaporation realizations based on 

temperature. This is mainly due to the greater skill of GCMs in simulating temperature 

than in simulating rainfall.  

In concluding remarks, this study reveals that a significant amount of uncertainty is 

introduced to the reservoir storage estimation from GCM projection uncertainties. 

Therefore, it is important to give due consideration of GCM projection uncertainties 

during water resources assessment. An effective framework to carryout this is proposed 

herein that quantifies and incorporates GCM projection uncertainties into water reservoir 

estimation. The method can be simply extended to any other assessment of climate change 

impacts on water resources 
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Chapter Six 

6. Synthesis 

6.1. Overview 

Climate change, caused by greenhouse gas emissions, is anticipated to have significant 

impacts on our water resources. Accurate estimation of these impacts, however, is 

extremely challenging, due to the various uncertainties involved both in the projections 

from GCMs and the assessment of their impacts on water resources. A thorough literature 

review, in this thesis, revealed that an appropriate framework to quantify the uncertainties 

associated with GCM projections, which are commonly used as inputs to impact 

assessment models, is clearly lacking. In particular, a reliable method to quantify GCM 

projection uncertainties that vary in both space and time, which is crucial for proper 

assessment of climate change impacts on water resources, is almost non-existent. Since 

development of an appropriate method to incorporate such uncertainty into impact 

assessment models is crucial for future water planning and management, two important 

research questions were identified in the present research: 

i. How can we explicitly quantify the uncertainty of any GCM output variable that 

varies in space and time? 

ii. How can the uncertainty associated with GCM projections be taken into account 

in the assessment of the impacts of climate change on hydrologic systems? 

These questions were investigated in this thesis, which led to the development of an error 

estimation method that quantifies spatio-temporal uncertainties in GCM projections. 

Further, the thesis illustrated various methods to implement the estimated spatio-temporal 
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uncertainties into water resources assessment through case studies in Australia and 

around the world. The details of the methods and conclusions drawn from the case studies 

were documented in chapters 2 to 5. In what follows, a brief summary and conclusions 

from the present research are given. The main limitations and future research avenues in 

this area will also be highlighted towards the end. 

6.2. Summary and conclusions 

Summary and conclusions of the thesis are grouped below into two sections, according 

to the content of the thesis. Summary of chapters 2 and 3, which deal with quantification 

of uncertainties in climate data, is presented in section 6.2.1. Section 6.2.2 provides 

summary of chapters 4 and 5 that deal with the application of the estimated GCM 

projection uncertainty for water resources assessment. 

6.2.1. Quantifying spatio-temporal uncertainties in climate data 

Climate data (such as, rainfall and temperature that have significant importance for water 

resources assessment) vary significantly in space and time. This variability is particularly 

significant in rainfall due to the influence of various factors. For instance, in Australia, 

the El-Nino Southern Oscillation (ENSO), the western Pacific and the Indian Ocean sea 

surface temperatures (SST), and the Southern Ocean atmospheric variability influence 

the climate (in general) and rainfall (in particular) by varying degrees [Taschetto and 

England, 2009]. Different techniques are used to measure or simulate rainfall for water 

resources assessment; however, all the methods have their associated uncertainty that 

varies in space and time.  
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Chapter 2 provided a detail study of the spatio-temporal uncertainties associated with 

observed rainfall based on rain gauge and satellite data, which was extended to GCM 

projection uncertainty later in the thesis. The chapter illustrated a method to estimate 

gridded rainfall from gauge measurements at sample locations and proposed an approach 

to merge gauge and satellite rainfall, in an attempt to reduce errors and enhance the quality 

of spatial rainfall estimation. 

It was generally found that integration of satellite rainfall with rain gauge data improves 

rainfall estimation, especially in areas with sparse rain gauge network. An important 

contribution of this study is the development of spatio-temporal standard errors along 

with retrospective rainfall datasets. This has significance for subsequent modelling 

applications (e.g. rainfall-runoff modelling), where input knowledge can help reduce the 

uncertainty associated with modelling outcomes. Although analysis towards this last step 

has not been carried out in this study, the logic of estimating spatio-temporal error 

estimation has been extended to quantify uncertainties involved in GCM projections, and 

then applied for water resources assessment. 

Global climate model projections, which are commonly used for climate change impact 

assessment on water resources, suffer from uncertainties that arise from model structure, 

scenario and ensemble runs. Although GCMs have large uncertainty, climate modelling 

groups around the world do not provide the associated uncertainties with the projections, 

but only provide few simulation runs, for all the models and each emission scenario. 

Using these few simulation runs, chapter 3 developed a novel uncertainty metric, square 

root error variance (SREV), that quantifies GCM projection uncertainty for each location 

and time step. The methodology was implemented to quantify uncertainties associated 
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with rainfall and temperature projections of six GCMs, three scenarios and three ensemble 

runs. 

It was found that GCM model structural error is the largest source of uncertainty followed 

by scenario and ensemble runs, for both rainfall and temperature. Scenario uncertainty 

shows a significant increase in the future, unlike model structural and emission scenario, 

which are almost constant. It was also found that the spatial distribution of uncertainty is 

different for rainfall and temperature. For rainfall, large uncertainties are obtained in mid-

latitudes close to the equator, whereas for temperature, large uncertainties are obtained at 

high and low latitudes close to the equator. Further, uncertainty due to ensemble runs is 

more pronounced in rainfall projections than that of temperature. 

The spatio-temporal uncertainties estimated in chapter 3 provoke a number of research 

questions. The following two questions were investigated in chapters 4 and 5, which are 

summarised in section 6.2.2: 

 Is it possible to improve parameter estimation of impact assessment models, given 

knowledge of the uncertainties in the GCM projections?  

 How do uncertainties in GCM rainfall and temperature projections affect 

assessment of reservoir storage requirements?  

6.2.2. Incorporating GCM uncertainties into water resources assessment 

Chapter 4 provided an assessment of future droughts using standardised precipitation 

index (SPI), across the world. Emphasis was given to the development of a method that 

can reduce drought estimation parameter bias, which would otherwise occur due to the 
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GCM uncertainties. To this end, simulation extrapolation (SIMEX), which tries to 

estimate error free parameters, when input errors are known, was used as a tool to estimate 

the parameters of the SPI. Further, biases in the raw GCM projection were corrected using 

the Nested Bias Correction (NBC) approach [Johnson and Sharma, 2012]. It was found 

that the model structural uncertainty of rainfall projections considerably decreases after 

bias correction, as the systemic biases are reduced. It was also found that future drought 

frequencies estimated for four cases (i.e., with and without using SIMEX for raw and 

bias-corrected data) differ widely. Finally, the drought estimates based on SIMEX for the 

bias-corrected data were recommended as the most plausible one, as the SIMEX and bias 

correction steps take into consideration the various uncertainties involved in GCM 

precipitation outputs.  

Chapter 5 implemented a method to incorporate GCM rainfall and temperature 

uncertainties into reservoir storage assessment. To this end, an error model was proposed 

to generate thousands of rainfall and temperature realizations based on a single GCM 

projection and its associated uncertainty. Then, the rainfall and temperature realizations 

were used to estimate uncertainties propagated to reservoir storage estimation using 

rainfall-runoff model and reservoir behavior analysis. This was implemented for the 

Warragamba catchment in Australia, for different demand levels. A significant 

uncertainty in the future reservoir storage requirement was found, especially at larger 

demand levels. The uncertainty of the storage mainly propagated from the rainfall than 

temperature, which is reasonable as GCM rainfall projection is highly inaccurate 

compared to temperature.  
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6.3. Limitation and future work 

Assumptions and limitations of the thesis have been discussed in each of the chapters. In 

this section, the main assumptions and future research directions towards improving them 

are discussed. One of the assumptions, in the development of the GCM uncertainty in 

chapter 3, is that the six GCMs considered are independent. These models are selected 

from the CMIP3 datasets based on a criterion that each model should have at least three 

ensemble runs for three future emission scenarios, to enable us to estimate the uncertainty 

associated with the ensemble runs. The criterion, therefore, does not consider whether the 

selected GCMs are independent or not. Studies, however, suggest that the assumption of 

independence is imprecise as climate modelling groups share theoretical concepts, data 

information and even codes [Pirtle et al., 2010]. A preliminary analysis carried out in 

chapter 3 showed that the interdependence of the six models has minor effect on the 

outcomes. However, further study about this is necessary towards improving the analysis 

in this thesis (in particular) as well as towards developing a generic framework that can 

be used for selection of independent models for any other impact assessment study. 

In this thesis, quantification of uncertainty was mainly carried out at a large spatial scale, 

commensurate with the GCM spatial resolution. This, however, has an important 

limitation for water resource assessment, which commonly needs evaluation at a much 

finer scale. To reduce biases that are introduced as a result of this, nested and quantile-

based bias correction methods were used in chapter 5. Another alternative, which has not 

been attempted in this thesis, is to downscale larger-scale GCM outputs to smaller scale 

appropriate for water resource assessment. The uncertainty quantification method, 

developed in this thesis, can be easily modified to evaluate uncertainties in the 
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downscaled GCM output. To this end, dynamic downscaling outcomes using Regional 

Climate Models (RCMs), which have higher spatial resolutions, can be used to estimate 

uncertainty in a similar manner to that of the method described in chapter 2. It is necessary 

to use several RCM outputs in order to incorporate the additional uncertainty that will be 

introduced as a result of the downscaling method. Some attempts have already been made 

towards this in the literature [e.g. Déqué et al., 2007; Rowell, 2006], although such studies 

have mainly been carried out for long-term mean, rather than monthly timescale. 

Statistical downscaling methods, which are less computationally demanding than RCMs, 

can also be used as an alternative to downscale large-scale GCM projections to local scale. 

Several statistical downscaling methods should also be considered to account for the 

uncertainties introduced as a result of downscaling. Reviews of different statistical 

downscaling methods can be found in, for example, Wilby and Wigley [1997] and XU 

[1999].  

Further research is also necessary to deal with uncertainties associated with impact 

assessment models. The main uncertainties in this regard are those due to model structure, 

parameter estimation as well as input and outputs. Extensive research has already been 

carried out towards quantification and reduction of these uncertainties [e.g. Ajami et al., 

2007; Beven and Binley, 1992; Chen et al., 2011; Jeremiah et al., 2012; Kavetski et al., 

2006a]. Therefore, it is important to combine the uncertainties of impact assessment 

models with the GCM uncertainties towards a more comprehensive assessment of climate 

change impacts on water resources. 

In this thesis, monthly rainfall data from different sources (rain gauge, satellite based and 

GCM output) are used for development of the uncertainty quantification method. Monthly 
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rainfall data has a number of applications for short- to medium-term water resources 

planning and management, particularly for water supply, reservoir operation and 

environmental flows assessment. However, it has also limitation for some hydrologic 

applications, such as assessment of extremes and flood events. The uncertainty 

quantification methods developed in this thesis can easily be applied to quantify 

uncertainties involved in daily rainfall data as well. 

The provision of spatio-temporal GCM uncertainties, in this thesis, provides several 

research opportunities towards climate change impact assessment on water resources. 

Two application examples have been demonstrated: assessment of future drought and 

reservoir storage requirements. The former was carried out using Simulation 

Extrapolation (SIMEX) approach, whereas an additive error model was developed for the 

latter. These application examples provide initial attempts to characterise GCM 

projection uncertainties into water resources assessment; however, further research can 

also be done towards incorporating GCM uncertainties in the planning, design and 

management of water resources. To this end, one can carry out future water resources 

system optimization by incorporating the associated uncertainty using methods, for 

example, proposed by Georgakakos and Marks [1987] and Carpenter and Georgakakos 

[2001]. In regards to this, the following research questions (both specific and general) 

need further investigation: How can one incorporate GCM uncertainty in impact 

assessment of multi-reservoir systems? Does any planning or decisions that may be 

formulated based on GCM projections change after incorporating the uncertainties? and 

Would reservoir operating rules be affected or reservoir benefits reduce because of 

climate change and associated uncertainty? Further, the analysis in this thesis was carried 
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out using CMIP3 datasets as the CMIP5 datasets were not well established during the 

study period of this research. As CMIP5 data are readily available now, it is interesting 

to evaluate and compare the uncertainties with that obtained for CMIP3. These issues and 

other related ones will be investigated in future.  

In closing, rainfall and temperature projections have a significant level of uncertainty that 

should be given due consideration in the assessment of their impacts on water resources. 

This thesis developed frameworks to quantify spatio-temporal GCM uncertainties and 

offered application examples towards incorporating these uncertainties in impact 

assessment models, thus providing an effective platform for risk-based assessments of 

any alternate plans or decisions that may be made based on impact assessments. 
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Chapter 7 

7. Appendix 

Appendix A: Thin plate smoothing spline  

The Thin Plate Smoothing Spline (TPSS) interpolation is a regression approach to 

estimate a continuous surface by minimising a certain penalty function [e.g. Hastie et al., 

2003]. Depending on the number of predictors used, thin plate smoothing splines is also 

called bivariate thin plate smoothing splines (two predictors) or trivariate thin plate 

smoothing splines (three predictors) or, in general, multivariate thin plate smoothing 

splines. This study uses the trivariate thin plate smoothing splines to interpolate long-term 

normalised monthly mean rainfall and standard deviation at a 0.05 x 0.05 

latitude/longitude grid. The trivariate thin plate smoothing splines model can be written 

as: 

 �̂�𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) + 𝜀𝑛      𝑛 = 1,… ,𝑁    (A1) 

   

where N is the total number of rain gauges, nÔ  is the response variable representing either 

the long-term normalised monthly mean rainfall or its standard deviation, nx , ny  and nz  

are the predictors corresponding to latitude, longitude and elevation, respectively, and n  

is the random error assumed to be normally distributed with mean zero and standard 

deviation  . The TPSS estimates optimum surface f by minimising a penalty function 

(Equation A2) that makes a compromise between calibration and prediction errors (i.e., 

errors that result when the estimated surface f is used to predict the response variable).  
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 1

𝑁
∑{𝑂𝑛 − 𝑓(𝑥𝑛, 𝑦𝑛, 𝑧𝑛)}2 + 𝜆 𝐽𝑚(𝑓)

𝑛=𝑁

𝑛=1

   (A2) 

   

where N is the total number of rain gauges, nÔ is observed response variable representing 

either the long-term normalised monthly mean rainfall or its standard deviation, nx , ny  

and nz are predictors corresponding to longitude, latitude and elevation, respectively,  

 nnn zyxf ,,  is the value of the fitted surface at the nth rain gauge, λ is the smoothing 

parameter and mJ  is mth order roughness penalty function. In this study, m = 2 is used 

and the roughness penalty function ( 2J ) is given by [Wahba, 1990] : 

 
𝐽2(𝑓) =  ∫∫∫(𝑓𝑥𝑥

2 + 𝑓𝑦𝑦
2 + 𝑓𝑧𝑧

2 + 2 × [𝑓𝑥𝑦
2 + 𝑓𝑥𝑧

2

+ 𝑓𝑦𝑧
2 ]) 𝑑𝑥𝑑𝑦𝑑𝑧  

 

(A3) 

The parameter λ (Equation A2) controls the amount of smoothness provided for fitting 

surface f. As λ approaches zero, the interpolated surface passes through all the rain gauge 

points, whereas as λ approaches infinity, the interpolated surface approaches to least 

squares plane [Hastie et al., 2003]. Neither of these values of λ is appropriate, because 

either the prediction error or/and calibration errors will be large. An optimal value of λ is 

determined by minimising the prediction error through Generalised Cross Validation 

(GCV) [Hastie et al., 2003]. 
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Appendix B: Modified inverse distance weight 

A modified inverse distance weight (MIDW) method is employed for interpolating the 

residual of the normalised rainfall. The MIDW, unlike the conventional inverse distance 

weight that considers weights only for distance, improves the interpolation by also 

incorporating directional factors, according to the method presented by Shepard [1968]. 

The MIDW method has been extensively used and found to be appropriate for rainfall 

interpolation [e.g. Chen et al., 2002; Dirks et al., 1998; Yatagai, 2008].  A brief account 

of this interpolation method is presented below, and the reader is directed to Shepard 

[1968] for additional details. 

The interpolation method at any grid can be written as: 

 
 �̂�  =

∑ 𝑤𝑛𝑟𝑛
𝑛=𝑁
𝑛=1

∑ 𝑤𝑛
𝑛=𝑁
𝑛=1

 (B1) 

 

where r̂ is the interpolated residual at 0.05 x 0.05 latitude/longitude grid, nr  is the 

known residual at rain gauge n and wn is the interpolation weight, which is calculated by 

considering inter-gauge horizontal distance and direction.  

The interpolation weight (wn) is calculated according to: 

 

𝑤𝑛 =

[
 
 
 
 
 
 (

1

𝑑𝑛
)
𝑘

× (1 + 𝑡𝑛)       𝑖𝑓 𝑑𝑛  ≠ 0

1

𝑛
                                  𝑖𝑓 𝑑𝑛 = 0 

 
 

  

 

(B2) 
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𝑡𝑛 =
∑ (

1
𝑑𝑛∗

)
𝑘

(1 − 𝑐𝑜𝑠(𝛼𝑛∗)) 𝑛∗=𝑁−1
𝑛∗=1

∑ (
1

𝑑𝑛∗
)
𝑘

𝑛∗=𝑁−1
𝑛∗=1

          (B3) 

   

where k is the power parameter (to be chosen), tn is the factor for direction, n
d  is the 

distance from nearest neighbours to the point of interest and n
  is the inter-gauge angle 

between nearest rain gauges (nearest neighbours). The difference between n and n* is this: 

n denotes a nearest neighbour where tn is to be calculated, whereas n* represents other 

nearest neighbours than denoted by n. For example, if six nearest neighbours are 

considered (i.e. N = 6), to calculate tn for first nearest neighbour (i.e., n = 1), then n* will 

be from 2 to 6 consecutively. The cosine of the angle n
  in Equation (B3) is calculated 

by the inner product as: 

 𝑐𝑜𝑠 𝛼𝑛∗

=
[(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛∗) + (𝑦 − 𝑦𝑛)(𝑦 − 𝑦𝑛∗)]

𝑑𝑛𝑑𝑛∗
                             

 

(B4) 

where x and y are the cartesian coordinates of the reference point at which the residual is 

to be estimated, nx  and ny  are the cartesian coordinates of a rain gauge for which the 

directional factor is to be calculated, n
x and n

y  are the cartesian coordinates of nearest 

neighbours other than rain gauges denoted by nx  and ny , nd  is the distance between the 

reference point and a rain gauge station for which the directional weight is to be calculated 

and n
d  is the distance between the reference point and other nearest neighbours. For 
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instance, if two nearest neighbours to a certain point are in the same direction, then αn = 

0 and tn = 0; if they are in opposite directions, then αn = 180 and tn = 2. Note that at tn = 

0, MIDW is the same as inverse distance weight (IDW) interpolation. 
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