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Abstract

Key-Value Stores (KVSs) have become a standard component for many web services and

applications due to their inherent scalability, availability, and reliability. Many enterprises

are now adopting them for use on servers leased from Infrastructure-as-a-Service (IaaS)

providers. The defining characteristic of IaaS is resource elasticity. KVSs benefit from

elasticity, when they incorporate new resources on-demand as KVS nodes to deal with

increasing workload, and decommission excess resources to save on operational costs.

Elasticity of a KVS poses challenges in allowing efficient, dynamic node arrivals and

departures. On one hand, the workload needs to be quickly balanced among the KVS

nodes. However, current data partitioning and migration schemes provide low priority to

populate new nodes, thereby reducing the effect of adding resources on increasing work-

load. On the other hand, dynamic node changes downgrade data durability at multiple

node failures caused by hardware failure in IaaS Cloud, which is built from commodity

components that fail as the norm at large scales; but current replica placement strategies

tend to rely on static mapping of data to nodes for high durability.

This thesis proposes a set of data management schemes to address these issues. Firstly,

it presents a decentralised automated partitioning algorithm and a lightweight migration

strategy, to improve the efficiency of node changes. Secondly, it presents the design of

ElasCass, an elastic KVS that incorporates these schemes, implemented atop Apache

Cassandra. Finally, it presents a replica placement algorithm with a proof that shows its

correctness, to fill the gap of allowing dynamic node changes while maintaining high data

durability at multiple node failures. Contributions of this thesis lie in this set of novel

schemes for data partitioning, placement, and migration, which provide efficient elasticity

for decentralised, shared-nothing KVSs.

The evaluations of ElasCass, conducted on Amazon EC2, revealed that, the proposed

schemes reduce node incorporation time and improve load-balancing, thereby increasing
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scalability and query performance. The other evaluation simulated thousands of KVS

nodes and demonstrated that the proposed placement algorithm maintains a close to min-

imised data loss probability under different failure scenarios, and exhibits better scalability

and elasticity than state-of-the-art placement schemes.
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Chapter 1

Introduction

Mighty oaks from little acorns grow.

– Alexander Bryan Johnson

This chapter provides an introduction to the research addressed in this thesis. It

begins with an overview of distributed data stores, and focuses on the state-of-the-art in

Key-Value Stores. Then, it introduces the paradigm of Cloud computing, and discusses

the motivation of deploying a KVS on the Cloud. Next, it provides an overview of the

research problem, and the objectives of this research. Moreover, it outlines the expected

research contribution of this thesis. Finally, this chapter concludes with an outline of the

organisation of this thesis.

1.1 Introduction to Distributed Data Stores

Data is central to applications and services. Be it personalised search, sharing information

in social networking, or recommending products for online shopping, data plays a key

role in improving customer satisfaction. Data drives knowledge, which breeds innovation.

Therefore, many modern enterprises are collecting data at the most detailed level possible,

resulting in ever-growing data repositories that consist of massive data objects. Hence,

software providing the storage and retrieval of data objects forms a critical component of

these data-centric stacks. Such software is termed as a data store in this thesis.

Thanks to the development of commodity computers, data stores have been designed

to run on many low-performance, low-cost machines working in parallel, rather than on

individual high-performance, high-cost machines. This has changed the way that a data

1
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Figure 1.1: A comparison between RDBMS and structured storage systems

store can grow, in the face of increasing workload demands. For data stores running

on multiple commodity computers, the system’s capacity is improved by adding more

commodity computers. This is termed as scale-out. In contrast, for data stores deployed

on high-end machines, more resources (such as CPU, memory, and network) are added to

a single machine to achieve better performance. This is termed as scale-up. Therefore,

current-state data stores are distributed systems with the capability of scaling-out. There

have been various distributed data stores, classified into two categories: relational database

management systems (RDBMSs), and structured storage systems. A description is given

as follows.

RDBMSs are classical examples of data stores. They provide rich functionality using

the relational model introduced by Codd (1970), along with a declarative query language

called SQL. Since the 1980s, these systems have been extremely successful in traditional

enterprise settings. One of the key features contributing to the widespread use of RDBMSs

is transactional access to data, which is guaranteed by the set of ACID properties, namely

atomicity, consistency, isolation, and durability. In database transactions, the consistency

and integrity of data are treated with the highest priority.

In spite of the success of RDBMSs in classical enterprise infrastructures, their avail-

ability and scalability are somewhat limited. On one hand, the issue of availability is

codified in Eric Brewer’s “CAP Conjecture” (Gilbert & Lynch, 2002), which states that

a distributed data store can simultaneously provide only two out of three of the following

properties: consistency (C), availability (A), and tolerance of network partitions (P). Par-

tition tolerance means that the distributed system continues to operate despite arbitrary
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failure of a part of the system. As shown in Figure 1.1a, RDBMSs always choose consist-

ency. Therefore, they sacrifice availability in the face of network partition. On the other

hand, since commodity computers are in use, an increase in workload demand requires

the system to scale out (i.e. adding more commodity computers). However, scaling out

RDBMSs has a performance cost, due to the need for distributed lock mechanisms to

facilitate transactions. Moreover, during scale-out, it is a major engineering challenge to

partition the data following the relational model (Figure 1.1b). Therefore, scalability is

more expensive in RDBMSs.

Driven by the demand of real-time web applications and massive data repositories,

another class of data stores, called structured storage systems (or NoSQL), were designed

to provide inherent scalability and finer control over availability. In these systems, data is

structured in means other than the relational model as in RDBMSs, so that scalable data

partitioning techniques can be employed (Figure 1.1b). In the context of Brewer’s CAP

Conjecture, structured storage systems do not provide full ACID transaction support, but

adopt a weaker consistency model, so as to maintain high availability while withstanding

network partitions (Figure 1.1a). Therefore, the varying degrees of weaker consistency

engender finer-grained availability.

To meet different demands of applications, structured storage systems have diverse

data models, the representatives of which are key-value-based, document-oriented, graph-

based, and object-oriented. Amongst the variety of these systems, Key-Value Stores

(KVSs) have evolved as the most widely used data stores for general-purpose distributed

data storage. Examples of KVSs are Google’s Bigtable (Chang et al., 2006), Amazon’s

Dynamo (DeCandia et al., 2007), Yahoo!’s PNUTS (Cooper et al., 2008), and many other

open source variants derived from the aforementioned systems. The merits of KVSs in-

clude: simple but extendable data model of key-value pairs, inherent scalability in data

partitioning, and low-latency, highly available data access due to weaker consistency mod-

els. The next section will discuss the motivation of designing a KVS for the paradigm of

Cloud computing.

1.2 Key-Value Stores on the IaaS Cloud

Cloud computing has emerged as an important paradigm for service oriented computing.

It delivers the utilities of hardware and software resources as a service over the Internet.



4 CHAPTER 1. INTRODUCTION

Analysts project that, worldwide spending on public IT Cloud services is increasing and

is expected to exceed over 100 billion dollars in the near future (Gartner, Inc., 2013).

There are three major Cloud abstractions that have gained wide acceptance (Mell &

Grance, 2011). First, Infrastructure as a service (IaaS) is the lowest abstraction, wherein

raw computing resources (such as CPU, memory, storage, and network) are provisioned

as a service. Next, Platform as a service (PaaS) is a higher service abstraction where an

application platform is provisioned as a service. Application developers can develop and

deploy customised software solutions on the platform that provides the underlying hard-

ware and software support. Last, Software as a service (SaaS) is the highest abstraction

layer, which provides the utility of application software and databases as a service.

This thesis focuses on the leverage of IaaS Cloud, which provisions computing re-

sources, usually in the form of virtual machines (VMs), to host distributed data stores

(e.g. KVSs). Compared to traditional data centres, the IaaS Cloud brings in new per-

spectives about utilising the infrastructure. Quoting Armbrust et al. (2010): First, “the

illusion of infinite computing resources available on demand”; Second, “the elimination

of an up-front commitment by Cloud users”; Third, “the ability to pay for use of com-

puting resources on a short-term basis as needed, and release them as needed”. Moreover,

the transfer of risks allows small application developers to host systems on servers leased

from large infrastructure providers.

Due to these new features, it becomes appealing for KVSs to be deployed on the IaaS

Cloud, and more importantly, to add and remove VMs on demand. Note that the workload

demands are usually dynamic, caused by orderly human activities or unpredictable events

or other factors. Therefore, when the workload demand increases, a KVS is required to

scale out by adding more VMs as the nodes (i.e. members) of the KVS, so as to maintain

a consistent service performance while dealing with extra workloads. In contrast, when

the workload demand decreases, a KVS should remove the idle nodes with redundant data

off the system (i.e. scale-in), so as to reduce the operational cost on the infrastructure,

since the IaaS Cloud follows the “pay-per-use” billing model.

Hence, when a KVS is deployed on the IaaS Cloud, it requires that the KVS is cap-

able of matching its capacity to the dynamic workload demands as closely as possible.

Such capability is termed as elasticity. There are two determinants to the degree of

elasticity (Herbst et al., 2013). One is precision, which involves an automated controller
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that determines when and how many VMs should be added or removed based on the

change of workload demands. The other factor is speed, which indicates how quickly the

KVS can incorporate and utilise the VMs for serving workloads. This thesis targets the

latter. Armbrust et al. (2010) had also identified scaling quickly as one of the research

obstacles/opportunities in Cloud computing. The next section will unveil the research

challenges in improving the efficiency of elasticity.

1.3 Research Problem

Resource elasticity is the key feature of the IaaS Cloud, wherein computing resources (e.g.

VMs) can be acquired on-demand to deal with increasing workload, and dismissed later to

save on operational costs. KVSs benefit from elasticity, when node addition and removal

(in other terms, scale-out and scale-in) are as efficient as possible.

However, scaling a distributed data store, such as a KVS, is challenging in that each

node is associated with a significant volume of data, which requires delicate design to

distribute across a dynamic number of nodes. A good data distribution design can result

in well balanced load at each stable scale, leading to optimised resource use, maximised

throughput, and minimised response time, without overloading any part of the system.

The strategies of data distribution largely depend on the storage model of a KVS.

There have been two models to organise data for a number of nodes: shared-storage

and shared-nothing. The shared-storage KVSs use a decoupled storage layer, such as

networked attached storage (NAS) or distributed file system (DFS), to store a single data

copy that is accessed by all the nodes. Thus, adding or removing nodes from a KVS, does

not affect the data location on the decoupled storage. Additionally, shared-storage KVSs

typically maintain directory services using dedicated components, which are also leveraged

to facilitate load balancing and synchronisation in a centralised manner.

In contrast, the shared-nothing KVSs are consisting of data nodes, each with their

own separate storage that stores one portion of the whole data repository. To avoid

data loss due to node failures, each data object has several copies (or replicas) stored by

different nodes. Therefore, it is inevitable to reallocate (i.e. move) data replicas across

nodes when the nodes are added or removed. However, moving a large volume of data

introduces a significant amount of workloads that occupy the resources for serving queries,

and thus posing negative impact on query performance. Even worse, shared-nothing KVSs
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are typically deployed in a decentralised manner to avoid single-node failure. The lack of

dedicated components gives rise to the issue of decentralised coordination.

Hence, this thesis aims to investigate the research problem of how the data can be

efficiently distributed for a dynamic number of nodes in shared-nothing KVSs. The goal

of efficiency for an elastic KVS is three-fold, and is described as three research problems

as follows:

• Lightweight data movement. When the nodes are added or removed from a

shared-nothing KVS, data movement across nodes is inevitable for the reallocation

of data replicas. The design of an elastic KVS must simultaneously address two

main, typically opposing, concerns: i) reducing the time required to populate a new

empty node with data for serving workloads; and ii) minimising the negative impact

of data movement against online query processing. In many KVSs, data movement

is usually executed in a low-priority, background thread that can last for many

hours (DeCandia et al., 2007). Moreover, due to the dynamic changes in nodes,

data movement is more frequent in an elastic KVS. It poses a challenge to ensuring

data consistency, while supporting online query processing during data movement.

• Better load balancing. The goal of elasticity is to match system capacity against

dynamic workloads for better performance and resource utilisation. Such goals can

only be achieved when the load that each node undertakes, in terms of both workload

demand and data volume, is well balanced at each stable scale after node changes.

The challenge of load balancing lies in the design of a more flexible mapping between

data and nodes. It also requires a scheme of data storage that quantifies the load

shifted in each data reallocation.

• Higher data durability. The dynamic nature of elastic KVSs presents a challenge

to ensuring high data durability. Maintaining data durability is already difficult

in shared-nothing data stores (Borthakur et al., 2011). Note that at a large scale,

hardware failure is the norm rather than an exception (Ghemawat et al. 2003, Vish-

wanath & Nagappan 2010). The failure of hardware components on the IaaS Cloud

can cause multiple VMs to fail simultaneously (Guo et al., 2013), which can result in

the loss of all the replicas of certain data. Worse still, maintaining data durability is

even more difficult in an elastic, shared-nothing KVS, wherein the mapping between
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data and nodes is less steady. As a result, high-durability placement strategies re-

lying on static deployment (Cidon et al., 2013) are no longer applicable in elastic

KVSs.

In short, these research problems are related to the need for lightweight data move-

ment, better load balancing, and higher data durability in shared-nothing KVSs. Solving

these problems will make a shared-nothing KVS efficiently elastic to the dynamic work-

load demands. As can be seen, these problems are all related to the design choices in

data management techniques, including partitioning, placement, and movement. How-

ever, there is a lack of a set of data management schemes that efficiently deals with node

addition and removal in shared-nothing KVSs.

Furthermore, as will be discussed in Chapter 3, most shared-nothing KVSs follow the

mantra of “no single source of failure” as in distributed systems. Therefore, the KVSs are

typically deployed in a decentralised, symmetric network, where every node plays the same

role. This thesis has also adopted this decentralised architecture. That is to say, when it

comes to decision-making or distributed synchronisation, there will be no centralised or

dedicated components to rely on. Hence, decentralised coordination is another research

problem that will be addressed in this thesis.

1.4 Research Objective

The main aim of this thesis is to discover, design, and implement a set of data management

schemes that improve the efficiency of elasticity for decentralised, shared-nothing KVSs.

The data schemes focus on reducing the time for incorporating new empty VMs as nodes

of a KVS, while maintaining online query processing and data consistency during data

movement. The data schemes aim to achieve balanced load, in terms of both workload

demand and data volume, at each stable scale of the KVS, so as to optimise resource use,

maximise throughput, and minimise response time. Moreover, the data schemes address

the problem of ensuring high data durability during simultaneous node failures, while

allowing dynamic node addition and removal at runtime. Additionally, the data schemes

do not assume the existence of any dedicated components; instead, they incorporate the

design of decentralised coordination into the execution of distributed tasks.

In order to evaluate the efficiency of the proposed data schemes, it is necessary to im-
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plement the proposed schemes into a shared-nothing KVS. The implementation is built on

a state-of-the-art open-source KVS project, so as to make use of the advanced techniques

that have already been proposed in literature, and to improve the system’s performance

in general. A widely used benchmark is used to evaluate this implementation on an IaaS

Cloud.

1.5 Research Contribution

This thesis makes several contributions towards realising our vision of building elastic

KVSs for the IaaS Cloud. The contributions significantly advance the state-of-the-art by

supporting efficient and dynamic node additions and removals, while maintaining high

query performance and data durability, in decentralised shared-nothing KVSs. These are

highlighted as follows.

• This thesis presents a thorough study of the state-of-the-art distributed data stores

with the focus on KVSs, and analyse the design choices in building different systems

for varying applicability and scope. It then discusses the data management tech-

niques in designing the KVSs that are adaptive on the IaaS Cloud. The objective

of this exercise is to carry forward the lessons learned from the rich literature in

distributed data stores, and to identify technologies and algorithms developed in

related areas that can be applied to the target research area.

• This thesis presents a set of data distribution schemes, to improve the efficiency of

adding and removing data nodes in decentralised, shared-nothing KVSs. It reduces

the overheads of data movement by consolidating partition replicas into transfer-

able units via automated partitioning, which is accomplished using a decentralised

coordination scheme based on election. Moreover, it achieves balanced workload

and data distribution using a set of replica placement algorithms that reallocate

the partition replicas at node addition and removal. Additionally, the movement of

partition replicas is carried out without affecting query performance and data con-

sistency. This set of data distribution schemes fills in the gap of efficient elasticity

in decentralised, shared-nothing KVSs.

• This thesis presents the implementation of ElasCass, an elastic, decentralised KVS

that handles large volumes of data across many nodes. ElasCass realises the proposed
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data distribution schemes to achieve efficient elasticity, and is built atop Apache

Cassandra, a widely-used open-source KVS, to provide high performance in terms

of scalability and throughput. Compared to current-state KVSs, ElasCass exhibits

significantly better resource utilisation in computing and storage due to a well-

balanced load, and as a result, delivers a query throughput more than twice that of

current-state KVSs. Moreover, ElasCass reduces the time required to incorporate

a new node from several hours to within ten minutes, hence fulfilling the goal of

efficient node addition.

• This thesis presents ElasticCopyset, a novel data placement scheme that guarantees

high data durability while allowing dynamic node changes. Preventing data loss

from simultaneous node failures is essential to large-scale systems, wherein hardware

failure is the norm rather than an exception (Ghemawat et al. 2003, Vishwanath &

Nagappan 2010). In ElasticCopyset, a novel shuffle algorithm is designed, and proved

in mathematical terms, to create the minimum sets of nodes for storing the same

data, thus achieving a minimised probability of data loss when a certain combination

of nodes have failed simultaneously. For example, in a cluster of 5000 storage nodes

under a failure event where 1% of nodes are shut down, ElasticCopyset managed

to reduce the probability data loss from 99.99% in current-state KVSs to less than

3.8%. Moreover, by supporting a dynamic node number with the use of grouping,

ElasticCopyset also exhibits great scalability and elasticity that are not possessed

by high-durability, yet static placement strategies (Cidon et al., 2013).

1.6 Thesis Outline

This chapter has provided a general introduction to KVSs and the requirement for elasti-

city in IaaS Cloud environments. It has also presented an overview of the research question,

the research objectives, and the research contributions of this thesis. The remainder of

this thesis is organised as follows:

Chapter 2 reveals Cloud computing as an important paradigm for delivering the util-

ities of computing resources over the Internet, and then discusses the motivation of a key

feature of the Cloud, i.e. elasticity. Moreover, it has reviews a variety of distributed data

stores in literature, and classifies Key-Value Stores (KVSs) as the state-of-the-art systems
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for general-purpose storage and retrieval of data. Finally, it presents the model for hosting

a data store (e.g. a KVS) on the Cloud.

Chapter 3 provides a detailed survey of the design space of current-state KVSs under

the paradigm of Cloud computing. Next, it examines the schemes of data management in

KVSs in terms of node addition and removal for the sake of elasticity. Finally, it identifies

the lack of decentralised schemes of data management for the efficient elasticity of KVSs

that follow the shared-nothing architecture.

Chapter 4 presents a set of decentralised data distribution schemes to improve the

efficiency of elasticity for shared-nothing KVSs. The proposed schemes consist of an auto-

mated partitioning algorithm that splits and merges partitions based on the data volume,

an election-based coordination to facilitate the decentralised partitioning, a number of

replica placement algorithms for node addition and removal, and a data migration policy

that ensures online query processing.

Chapter 5 presents the implementation of the set of data distribution schemes pro-

posed in Chapter 4 to build ElasCass. The implementation was developed atop Cas-

sandra (Apache, 2009), and is consisting of three core functionalities, including token

management, data storage, and replica reallocation. Chapter 5 also presented the ex-

perimental evaluations of ElasCass in several aspects, including data partitioning, node

addition, and query performance.

Chapter 6 presents ElasticCopyset, a data placement scheme that maintains the min-

imum sets of nodes for storing the same data, to minimise the probability of data loss in

simultaneous node failures. It also provides a proof for the correctness of the shuffle al-

gorithm in ElasticCopyset. Moreover, Chapter 6 evaluates ElasticCopyset in the scenarios

of static deployment, linear scaling, and elastic scaling based on dynamic workloads.

Chapter 7 concludes this thesis with an outline of the thesis contributions, and discusses

the limitations and future extensions to the research described herein.

Appendix A contains the mathematical proof for each of the six lemmas of Elastic-

Copyset defined in Chapter 6.

Furthermore, the core chapters are derived from various articles published during the

course of the Ph.D. candidature as detailed below:

Chapter 4 and Chapter 5 are partially derived from:

• Li, H. & Venugopal, S. 2013, ‘Efficient node bootstrapping for decentralised shared-
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nothing key-value stores’, in ACM/IFIP/USENIX International Middleware Con-

ference 2013, Springer, Beijing, China, pp. 348–367.

Chapter 6 is partially derived from:

• Li, H. & Venugopal, S. 2014, ‘ElasticCopyset: An elastic replica placement scheme

for high durability’, Tech. Rep. UNSW-CSE-TR-201402, Computer Science and

Engineering, UNSW, Sydney, Australia.





Chapter 2

Background

A rising tide lifts all boats.

– John F. Kennedy

This is the first chapter of the literature review, which is divided into two chapters:

Chapter 2 and Chapter 3. This chapter reviews the current literature to examine the

key concepts in Cloud computing and distributed data stores, two areas that form the

contextual background of this thesis. Next, it discusses the model and requirements for

deploying a distributed data store on the Cloud, and then concludes.

2.1 Cloud Computing and Elasticity

2.1.1 Cloud Computing

Cloud computing has emerged as an important paradigm for provisioning the utilities of

hardware and software resources over the Internet. There have been various definitions

for the phrase “Cloud computing”, such as Foster et al. (2008), Buyya et al. (2009),

Armbrust et al. (2010). These definitions describe Cloud computing from the perspectives

of economic model, system, and datacenter, respectively. In this thesis, the paradigm of

Cloud computing is termed as the “Cloud”.

This thesis focuses on the leverage of the Cloud to provision computing resources

(such as processing, memory, storage, and networking) for hosting data services, and

therefore, considers the Cloud as a pool of computing resources. Hence, we follow the

definition proposed by Mell & Grance (2011) from NIST (National Institute of Standards

and Technology), quoted as:

13
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Figure 2.1: Relationships between providers and consumers on the Cloud

• “Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management effort or service provider interaction.”

Figure 2.1 depicts the relationships between providers and consumers on the Cloud.

The Cloud providers offer computing resources, such as servers, networks, and storage,

to Cloud consumers. These consumers can be either individual end users who require

computing resources, or service providers that leverage these provisioned resources as an

infrastructure to deploy web applications and services. Therefore, these service providers

are both Cloud consumers and providers, who provide applications and services for the

end users, i.e., the service consumers.

Characteristics of Cloud Computing

Buyya et al. (2009) characterised Cloud computing as the model to “deliver computing as

the 5th utility” (other than water, electricity, gas, and telephony). Mell & Grance (2011)

have summarised five essential characteristics of Cloud computing, but only three of them

are closely related to the notion of utility, listed as follows:

• On-demand provisioning. A Cloud consumer can acquire and dismiss the re-

sources on a fine-grained, self-service basis near real-time, wherein the resources can

be either the utility of hardware such as processor, memory, storage and network,

or the services offered by software such as system, platform and application. There

are well-established APIs that automatically provision resources as needed, without

requiring human interaction with Cloud providers.
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• Resource pooling. The Cloud provider pools the computing resources via virtu-

alisation of different physical infrastructure, and uses the virtualised resources to

serve multiple consumers using multi-tenancy. Hence, each individual consumer can

assume that the resource pool is sufficiently large, but should also be aware that

the competition between multiple tenants may cause a downgrade in services. For

example, the problem of performance interference in the virtualised environments

has been well studied (Koh et al. 2007, Nathuji et al. 2010).

• Metering. The Cloud provider packages the computing resources as a metered ser-

vice, wherein resource usage is monitored, controlled, and reported by the provider.

The consumer is usually billed with the “charge-per-use” or “pay-as-you-go” model.

This model converts capital expenditure to operational expenditure, and thus has

the advantage of a low or no initial cost to acquire computing resources.

Cloud computing has many other characteristics, such as rapid elasticity, easy mainten-

ance, low startup cost and broad network access. However, all these characteristics benefit

from the notion of delivering computing as a utility, so they are the advance features of

Cloud computing, rather than the defining characteristics.

Classifications of Cloud Computing

In Cloud computing, the utility of computing is delivered over the Internet to the con-

sumers as a metered service. To categorise the Cloud, the terminology of “X as a Service

(XaaS)” has been widely used (Youseff et al. 2008, Zhang et al. 2010, Mell & Grance

2011), wherein the values of X include Infrastructure, Hardware, Platform, Software, and

even Database (Curino et al., 2011). This thesis lists three major Cloud service models

that have gained wide acceptance (Mell & Grance, 2011):

• Infrastructure as a Service (IaaS) provides the utility of fundamental computing

resources, such as processing, storage, and networks, to the Cloud consumers, so

that they can run arbitrary software including operating systems and applications.

Examples of IaaS providers are Amazon EC2, Rackspace, and GoGrid.

• Platform as a Service (PaaS) provides a platform for application developers

with the support of programming languages, libraries, services, and tools, so that

developers can develop and deploy customised software solutions that can be hosted
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by the Cloud platform. Google AppEngine, Microsoft Azure, and Force.com are

examples of PaaS providers.

• Software as a Service (SaaS) provides the utility of application software and

databases that are running on a Cloud infrastructure. The consumers access the

services via various client interfaces (e.g. a web browser), and do not manage or

control the underlying infrastructure and software. Examples of SaaS providers are

Salesforce.com, Oracle’s on demand CRM software, and Cumulux.

This thesis has focused on the leverage of the IaaS Cloud, which allows the fully control

of the software (e.g. a system that provides data services) on the raw computing resources.

Armbrust et al. (2010) also emphasised the utility of Cloud infrastructure, which is further

divided into three categories, namely computation, storage, and networking, elaborated

as follows:

• Computation is typically provisioned in the form of a virtual machine (VM), which

is a software-based emulation of a computer that executes programs like a physical

machine (Popek & Goldberg, 1974). From a Cloud consumer’s view, each VM con-

sists of a static but configurable setup of resources, including processor(s), memory,

and “local” storage that is durable only within the VM’s lifetime. From a Cloud pro-

vider’s perspective, each VM is a process (i.e. guest OS) running atop a hypervisor,

which uses virtualisation to subdivide and isolate the computing resources from one

or several physical machines.

• Storage is formulated as a virtualised pool of distributed storage space that is gen-

erally hosted in data centres. The storage provider guarantees that the storage is

highly fault tolerant and durable, by replicating and distributing the data across

many physical storage devices. Similar to computation, Cloud providers virtualise

the physical storage and exposes the storage capacity based on the consumers’ re-

quirements. The data is stored and retrieved over the network, and can be in various

forms depending on the type of storage system running in the backend. For example,

Amazon S3 (Amazon, 2006a) stores data objects in the form of binary files, while

Amazon EBS (Amazon, 2007) provides raw block devices that can be attached to

VMs and accessed via network.
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• Networking resources include network bandwidth and traffic that are consumed for

the communication between computing resources and data transfer between storage.

Cloud providers use VLANs and network switches to provide isolated virtual net-

works. In terms of pricing, Cloud consumers are usually charged by the bytes used,

with the rate varying based on the QoS guarantee of the virtual network.

Furthermore, the Cloud can be categorised based on the scope of Cloud consumers (Mell

& Grance, 2011). A Cloud is called a public Cloud, if it is made available for open use

by the general public. Conversely, a private Cloud is provisioned for exclusive use by a

single organisation, while a community Cloud can be shared by a specific community with

common concerns. Moreover, there are Cloud consumers who setup a composition of two

or more Clouds (private, community or public) to form a hybrid Cloud. Note that this

categorisation is made regardless of whether the hardware of the Cloud is hosted internally

(i.e. on-premise) or externally (i.e., off-premise by a third-party organisation).

2.1.2 Elasticity: A Key Feature of Cloud

Cloud computing introduces the possibility of on-demand provisioning and de-provisioning

of computing resources. It brings in new perspectives about utilising the hardware (i.e.,

computation, storage, and networking). Armbrust et al. (2010) have listed three aspects

that are important to the technical and economic changes. First, “the illusion of infinite

computing resources available on demand”. Second, “the elimination of an up-front com-

mitment by Cloud users”. Third, “the ability to pay for use of computing resources on a

short-term basis as needed, and release them as needed”.

According to these aspects, it becomes possible for systems and applications on the

Cloud to add and remove resources commensurately with demand, at a fine grain and in

a timely manner. Mell & Grance (2011) defined such feature as rapid elasticity, listed as

one of the essential characteristics of Cloud computing. Herbst et al. (2013) proposed a

definition of elasticity, quoted as:

• “Elasticity is the degree to which a system is able to adapt to workload changes by

provisioning and de-provisioning resources in an autonomic manner, such that at

each point in time the available resources match the current demand as closely as

possible.”
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(a) Diurnal Pattern (b) Seasonal Pattern

(c) Unexpected Bursts (d) An Increasing Trend

Figure 2.2: Various patterns of workload demand

The need for elasticity is motivated by variations in workload. There are many factors

that cause the demand to change over time. Figure 2.2 depicts a few demand patterns.

Firstly, due to orderly human activities, the workloads of web services usually exhibit

diurnal and weekly patterns (Atikoglu et al., 2012), shown as in Figure 2.2a. Secondly,

annual holidays lead to seasonal or other periodic demand variation in web services. For

example, train ticket booking sites peak before holidays, while photo sharing sites peak

after holidays; and e-commerce peaks in December (Figure 2.2b). Thirdly, unpredictable

events (e.g. news events) cause some unexpected demand bursts (Figure 2.2c). Lastly,

the success of a web service results in an increase in its workload and thus the demand

(Figure 2.2d). Figure 2.2 also demonstrates that, when the computing capacity is static,

the service providers, i.e. computing-resource consumers, have to choose between over-

provisioning, which causes waste of resources (marked as yellow), and under-provisioning,

which hurts the service performance (marked as red).

Figure 2.3 depicts the ideal scenario where an elastic system adapts its capacity to

the changes of workload demand. The benefit of having an elastic system is two-fold.

On one hand, when the workload demand increases, the system is able to improve its

capacity to deal with the extra demand, by adding more computing resources (i.e. scale

out). This ability results in satisfactory service performance. On the other hand, when

the demand declines, the system is able to remove the redundant computing resources
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Figure 2.3: Provisioning elastic capacity for dynamic workload demand

that are “charged-per-use” (i.e. scale in). The reward is the reduction in the waste of

resources and the economic cost for using Cloud resources.

Up to this point, this section has unveiled the paradigm of Cloud computing, and

discussed in general terms the motivation of elasticity, a key feature of the Cloud. The

next section will investigate the domain of distributed data stores and their applicability

to the Cloud.

2.2 Distributed Data Stores

A distributed data store is a computer network where information is stored, usually in a

replicated fashion, on more than one node. This section reviews a variety of distributed

data stores in literature.

2.2.1 Distributed Database Systems

Although a data store can be referred to any data repository, this thesis reserves the

term databases for more traditional relational database systems (RDBMS), such as Ceri

& Pelagatti (1984), Sheth & Larson (1990). Tamer Özsu & Valduriez (2011) provide

thorough surveys of the design space, principles, and properties of databases. These

systems are robust in distributing data and query processing over a set of database servers

while providing the semantics of centralised systems.

Databases guarantee the reliability of distributed transactions by meeting the ACID

semantics (Gray et al., 1981). To elaborate, ACID consists of four properties: Atomicity

requires that each transaction is either completed or totally aborted (i.e. all or nothing);

Consistency ensures that any transaction will bring the database from one valid state

to another; Isolation ensures that concurrent transactions result in a state that would
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be achieved if transactions were executed one after another (i.e. in a serialised manner);

Durability means that a transaction that has been committed will remain so, even in

the event of software or hardware failures.

ACID semantics are well suited for commerce transactions in the classical enterprise

infrastructure. However, ACID makes no guarantees regarding availability. This issue is

codified by Eric Brewer’s “CAP Conjecture” (Gilbert & Lynch, 2002), which states that

a distributed data store can simultaneously provide only two out of three of the following

properties:

• Consistency (C) means that all nodes see identical replicas of the data at the same

time;

• Availability (A) guarantees that every request of an operation receives a response,

no matter the execution of the operation is successful or failed.

• Partition tolerance (P) means that the distributed system continues to operate

despite arbitrary failure of part of the system.

Note that in the face of network partition, a distributed system can retry communica-

tion to achieve consistency, using coordination techniques such as Paxos (Lamport, 2001)

or two-phase commit protocol (2PC) (Bernstein et al., 1987). These techniques rely heav-

ily on retrying communication and blocking other transactions, which introduce a delay

for the data store to make the fundamental decision: either cancel the operation and thus

decrease user satisfaction, or proceed with the operation and thus risk data inconsistency.

However, availability decreases as the time period of such delay is prolonged, The CAP

conjecture points out that, retrying communication indefinitely is in essence choosing con-

sistency over availability. Brewer notes that, to withstand the event of network partition,

distributed databases always choose consistency, and sacrifice availability. That is, data-

base systems typically use distributed lock mechanisms to guarantee data consistency,

which increases response time of the queries. Therefore, availability is somewhat limited

in distributed databases.

Moreover, distributed databases are less flexible in terms of scalability. These systems

store tables of data objects that are formally described and organised as the relational

model, introduced by Codd (1970). The relational model provides rich functionalities

to query data objects that have links (i.e. relationship) between tables, wherein the
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four basic relational operators are based on the traditional mathematical set operations,

including union, intersection, difference (i.e. except or minus), and cartesian product

(i.e. cross join). As can be seen, it is not efficient to execute these relational operations

in a distributed manner, because it requires a large number of comparisons and merge

of data objects across the nodes. Worse still, when the nodes change (i.e. adding or

removing nodes), it is a major engineering challenge to reorganise the data tables (i.e. via

database normalisation), while minimising the needs for such set operations. Therefore,

in distributed databases, scalability is achieved with considerable administration costs.

Hence, the success of databases is limited in Internet-scale infrastructure, due to their

inefficiency in availability and scalability. Particularly, databases are often considered to

be less “friendly” to the Cloud environment (Agrawal et al., 2011), because databases are

typically intended for an enterprise infrastructure that is statically provisioned, and there

is a lack of adequate tools and guidance for databases to scale in and scale out in response

to the fluctuation in workloads.

Furthermore, Web applications and services began to serve realtime operations and

to consume a large amount of data. The primary value of data stores to the user is not

necessarily strong consistency or rich functionalities, but rather high availability of data

and high query performance. As a result, there arose research works that have tackled

the problem of providing distributed data stores with high availability and scalability

over Internet-scale infrastructure. The next subsection describes the evolution of these

distributed data stores.

2.2.2 Evolution of Distributed Data Stores

Three representative distributed data stores are reviewed below. These systems are chosen

because of their wide acceptance in the Internet-scale distributed environments.

Peer-to-Peer Network

Peer-to-peer (P2P) network (Oram, 2001) is a distributed network architecture, in which

interconnected nodes (called peers) share resources amongst each other without the use

of a centralised administrative component. It builds on the notion that equal peer nodes

can function simultaneously as “clients” and “servers” to the other nodes on the network.

The benefits of this architecture are: to improve scalability and reliability by removing the
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centralised authority, and to ensure redundancy and anonymity so as to tolerate network

partitions.

P2P networks have been used for applications in various domains. The most commonly

known is content distribution (Ding et al., 2005), covering projects such as Napster (1999),

Gnutella (2000), FastTrack (2001), Kazaa (2001), and Freenet (Clarke et al., 2001). Other

P2P applications include: instant messaging applications (e.g., ICQ, Yahoo, and MSN),

computing resource sharing, such as Seti@Home (Sullivan III et al. 1997, Anderson et al.

2002) and Computer Power Market (Buyya & Vazhkudai, 2001). Recently, there are also

P2P-based digital currencies such as Bitcoin (Nakamoto, 2008).

Detailed taxonomies and surveys on P2P networks have been published previously (Mi-

lojicic et al. 2002, Androutsellis-Theotokis & Spinellis 2004). These focus mostly on con-

tent and file sharing networks that popularised the P2P technology. The focus of such

networks is on designing efficient strategies to locate particular content amongst the peers,

and to transfer content reliably even in the face of high volatility. The early-stage P2P

systems are mostly unstructured, in which the placement of content (e.g. files) is com-

pletely unrelated to the overlay topology, that is, the network topology of how the nodes

are overlaid on the Internet. As a result, these systems suffer severe scalability and per-

formance problems, because there is a lack of mechanism to balance the workload and

data distribution as the nodes join or leave. This issue motivated the development of

structured P2P network, described in the following subsection.

Distributed Hash Tables

Distributed Hash Tables (DHT) are structured P2P networks (Lua et al., 2005), wherein

the overlay topology of nodes is tightly controlled and data objects (or pointers to them)

are placed at precisely specified locations, which makes query routing more efficient.

In DHT-based systems, data objects (i.e., values) are assigned unique identifiers called

keys, which are mapped by the overlay network protocol to a unique peer in the network.

Each peer has a unique NodeID, and maintains a small routing table consisting of its neigh-

bouring peers’ NodeIDs and IP addresses. In this way, the responsibility for maintaining

the mapping from keys to data objects is distributed among the nodes, which ensures

minimal amount of disruption when node changes occur. Hence, DHT-based systems are

capable of scaling to extremely large numbers of nodes and dealing with arbitrary node
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arrivals and departures.

There are various DHTs that use different schemes for data objects, key space, and

routing strategies. The four best-known DHT systems are: Content Addressable Net-

work (CAN) (Ratnasamy et al., 2001) that is architected as a virtual multi-dimentional

Cartesian coordinate space on a multi-torus; Chord (Stoica et al., 2001) that leverages

consistent hashing (Karger et al., 1997) to form uni-directional and circular key space;

Tapestry (Zhao et al., 2001, 2004) and Pastry (Rowstron & Druschel, 2001) that both use

variants of Plaxton mesh network (Plaxton et al., 1999) for load distribution and routing

locality. Other popular DHTs include Kademlia (Maymounkov & Mazieres, 2002), Vice-

roy (Malkhi et al., 2002), Koorde (Kaashoek & Karger, 2003) and BitTorrent (Cohen,

2003).

In theory, given N peers in the system, all of these DHTs guarantee that any data

object can be located in O(logN) overlay hops on average. Moreover, these systems

minimise the disruption caused by node joining or leaving, by confining each node to

coordinate with only O(logN) other nodes.

One major limitation of DHTs is that they only support exact-match lookups: one

needs to know the exact key of a data object to locate the nodes that store it. This has

led to research on building a distributed query engine on top of a DHT. SkipNet (Harvey

et al., 2003) supports logarithmic time range-based lookups and guarantees path locality,

by organising peers and data objects according to their lexicographic addresses in the

form of a probabilistic skip list. PIER (Huebsch et al., 2003) runs relational queries across

thousands of machines, with a relaxed consistency called “dilated-reachable snapshot”.

Gupta et al. (2003a) used locality sensitive hashing to find data ranges for approximate

answers to the complex queries. Mercury (Bharambe et al., 2004) is a scalable protocol

that supports multi-attribute queries and explicit load balancing.

Nonetheless, the focus of P2P systems (including DHTs) is on providing a lookup

service that efficiently retrieves the value associated with a given key. They do not expli-

citly deal with data consistency, and therefore, do not settle down the trade-offs between

consistency, availability, and network partition tolerance discussed in Brewer’s CAP Con-

jecture (Gilbert & Lynch, 2002). This leads to the introduction of structured storage.
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Structured Storage

With the need for scaling real-time web applications and the increase in the amount

of available data, there arose the demand for data stores that are intended primarily

for simple retrieval and appending operations, while possessing the properties of high

horizontal scaling, high availability, and high performance in serving queries. Systems with

such characteristics are termed as structured storage, which provide various mechanisms

for storage and retrieval of data that is structured in means other than the relational

model (Codd, 1970) in databases.

Structured storage typically process queries with the requirement of BASE (Fox et al.,

1997), a data semantic that is weaker than ACID (Gray et al., 1981) as in databases. In

the parlance of Eric Brewer’s CAP Conjecture (Gilbert & Lynch, 2002), systems follow-

ing ACID semantics always choose consistency over availability. In contrast, the BASE

semantics trade consistency for availability and rely on soft state for robustness in failure

management. The three properties of BASE are described as follows:

• Basically Available (BA) means that the service as a whole must be available

during runtime, despite transient partial hardware or software failures;

• Soft state (S) means that, stale data can be temporarily tolerated, and can be

regenerated at the expense of additional computation or disk I/O;

• Eventual consistency (E) guarantees that if no new updates are made, all copies

of the data will eventually reach consistency after a short time.

The essence of BASE is to allow soft state, i.e., the temporary existence of stale data.

Compared to ACID, there are two advantages of BASE. First, it improves performance

from avoiding transaction commits that require blocking, which affects system availability.

Second, it increases robustness in the event of network partitions, because it allows to

postpone communication and disk I/O until a more convenient time, rather than requiring

durable and consistent state across partial failures as in ACID semantics.

Moreover, eventual consistency “guarantees that if no new updates are made to the

object, eventually all accesses will return the last updated value” (Vogels, 2009). This

weak consistency model makes distributed data stores tolerable to network partition, in

the Internet-scale environment where “component failures are the norm rather than the

exception” (Ghemawat et al., 2003). Moreover, structured storage allows SQL-like query
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languages to be used, and therefore, is also referred to as “NoSQL”, which is currently

read as “Not only SQL”.

Structured storage systems are diverse in data model and system architecture, and are

designed to meet demands of different applications. There have been various approaches

to categorising such data stores. Here presents a classification of structured storage based

on the modelling of data. The most popular data models (DB-Engines, 2013) are key-value

based, document-oriented, and graph-like, as described as follows:

• Key-Value Store (KVS) enables applications to store schema-less data in the

form of a key-value pair, usually consisting of a string representing the key, and

the actual data considered to be the value. This key-value mapping can be recurs-

ive, such that the value of a data object can be a collection of key-value pairs. As

this data model closely resembles DHTs’ key-value mapping, KVSs can inherit the

network architectures developed in DHT systems. Hence, KVSs also possess high

performance and scalability in storing and retrieving data indexed by unique iden-

tifiers. Examples of KVSs include Memcached (2004), Google’s Bigtable (2006),

Amazon’s Dynamo (2007), Apache Cassandra (2009), and Redis (2009).

• Document Store is also known as document-oriented database. Document stores

are designed for storing, retrieving, and managing semi-structured data (Abiteboul

et al., 2000) in the form of a Document, which encapsulates and encodes data in

standard formats such as XML, YAML, JSON, and BSON. Documents are addressed

via a unique key that is often a simple string, a URI, or a path. The advantage of

document stores is that they offer API or query language that facilitates the retrieval

and integration of documents based on the content. Current-state document stores

are Apache CouchDB (2008a), MongoDB (2010), and Couchbase (2012).

• Graph Database builds on graph theory (Bondy & Murty, 1976) to store and

provide efficient queries on data sets in the associative model (Williams, 2000),

in which everything is modelled as an entity and associations between the entit-

ies. Graph databases employ graph structures with nodes, properties, and edges to

represent data. Entities are represented as nodes, while the pertinent information

related to nodes are properties. The associations from nodes to nodes or from nodes

to properties are represented as edges. Hence, graph databases are a powerful tool
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for graph-like queries. Popular graph databases are Neo4j (Neo Technology, 2010)

and InfiniteGraph (Objectivity Inc., 2010).

There are other structured storage systems. Triple stores (a.k.a. RDF stores) (Wilkin-

son et al., 2003) manage triples in the domain of semantic web (Berners-Lee et al., 2001),

wherein a triple is a composition of subject-predicate-object, and is usually expressed

using Resource Description Framework (RDF) (Klyne et al., 2004). Object databases,

such as Db4o (Versant corporation, 2008) and ObjectStore (Lamb et al., 1991), represent

information in the form of objects as used in object-oriented programming.

Among the variety of structured storage, Key-Value Stores (KVSs) have evolved as the

most influential data store for general-purpose distributed storage, because of the simpli-

city in terms of data model and operation, optimised performance in query processing, and

high availability and scalability. Current-state KVSs will be revealed in the next chapter.

Comparisons of Various Data Stores

This section has introduced four categories of distributed data stores. RDBMS have been

a predominant choice for the storage of relational data and the support of transactional

queries. P2P networks were developed to allow individual Internet end users to share

files amongst each other. Distributed Hash Tables (DHTs), as structured P2P networks,

support more complex services with better routing performance than traditional P2P

networks. Structured storage systems have become a standard reference for serving data

for web applications that require high performance data retrieval.

Table 2.1 summarises these data stores. Aside from the purpose and examples, there

are five properties chosen to differentiate these data stores. From the perspective of

infrastructure, P2P and DHT systems focus on key lookups based on the overlay of nodes

in a network, while RDBMS and structured storage are typically deployed in a cluster

of interconnected commodity (or virtual) machines to serve more sophisticated queries.

In terms of architecture, DHTs follow a structured overlay of nodes to provide key-based

routing that is more efficient than that of P2P networks, which use unstructured overlay.

Moreover, RDBMS and structured storage differ in their data model and consistency

model. That is, RDBMS store data in the relational model (Codd, 1970), and support

transactional queries by meeting the ACID semantics (Gray et al., 1981). In contrast,

structured storage avoid the use of the relational model to simplify the partitioning of data,



2.2. DISTRIBUTED DATA STORES 27

Property RDBMS Peer-to-Peer
Network

Distributed
Hash Tables

Structured
Storage

Purpose Store relational
data, support
transactional
queries

Share files
across Internet

Support more
complex
services with
structured
networks

Serve big data
and real-time
web services
and apps

Infrastruc-
ture

Interconnected
machines on
traditional
enterprise
infrastructures

Enormous end
devices across
Internet

Interconnected
end devices
with identifiers

Interconnected
machines
across wide
area network

Architecture Multiple
masters or
master-slave

Unstructured
P2P network

Structured
P2P on overlay
network

Either
centralised or
decentralised

Data Model Relational
model

Arbitrary files Key-value pairs Key-value,
document,
graph, object,
etc.

Consistency
Model

ACID
semantics

Weak Weak BASE
semantics

Data
Discovery

B tree indexing Flooded
requests or
document
routing

Key lookup
within O(log n)
hops

Key mapping
in 0-hop

Examples Oracle DB,
MySQL, IBM
DB2, and MS
SQL Server

Napster,
Gnutella,
Kazaa, and
Freenet

Chord, CAN,
Tapestry, and
Pastry

Bigtable,
Dynamo,
MongoDB, and
Neo4j

Table 2.1: Comparison between various distributed data stores

and serve simple retrieval and appending operations by following the BASE semantics (Fox

et al., 1997).

In addition, these four types of data stores are also varied in the way of data discovery.

RDBMS use many variants of Binary tree to build indexes for the keys of the data, while

DHTs and structured storage rely on hash functions to maintain the mapping between

data and nodes. By comparison, unstructured P2P networks adopt a flooding query model,

which is the least efficient in these four data stores.

2.2.3 Distributed Data Stores on the Cloud

Subsection 2.1.1 presents a number of classifications of the Cloud (page 15). Based on

these classifications, Figure 2.4 presents a typical model for the leverage of IaaS Cloud to
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KVS
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VM
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KVS
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VM
Block
device
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IaaS Cloud Provider

Figure 2.4: A typical model to deploy a distributed data store on the IaaS Cloud

host a distributed data store (e.g. a KVS).

As can be seen, the provider of IaaS Cloud, either public or private, provisions the

computational capacity in the form of multiple VMs, each hosting one node (or one in-

stance) of the distributed data store. Since VMs normally do not provide durable disks,

the persistence of data is guaranteed by the storage provisioned from the Cloud. Although

the storage space can be of various forms, the widely accepted form of storage is raw block

device (e.g. Amazon EBS), because it closely resembles the hard disk of a commodity

machine, and can be attached to the VMs at runtime, serving like a local disk. In addi-

tion, networking is usually provisioned along with the VMs, and serves as a means to data

delivery across the VMs.

This model provides data services using a a stateless computation tier, along with a

stateful storage tier. It is widely accepted in the industry (Cockroft, 2011), and is also

adopted in this thesis due to two considerations. First, each VM, when attached with

a storage device, closely resembles a commodity machine, so that systems running in

traditional data centres can be seamlessly migrated to the Cloud. Second, decoupling the

resources of computation, storage, and networking, allows us to identify new challenges

that are not presented in computing environments composed of commodity machines.

Requirements for Elastic Data Stores

In the early stage of Cloud computing, the elasticity feature has been exploited by state-

less applications and services, and is termed as “auto-scaling”. For example, AppEn-

gine (Google, 2008) provides automatic scaling feature for web applications, by enforcing

an application structure of clean separation between a stateless computation tier and a

stateful storage tier. Stateless applications and services are the ideal model for scaling, be-
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cause adding and removing computation nodes (which are decoupled from storage space)

is sufficient to track workload variation.

In contrast, it is more challenging to achieve elasticity in a data store. Even though

computing resources can be provisioned on demand from the Cloud, one should be aware

that, adding or removing certain amount of computing resources, does not necessarily

increase or decease the capacity of a data store. The reason is that, each storage node

has to acquire control of its own data before it can serve queries, but handing over a large

amount of data to a new, empty node requires significant amount of workloads, and more

importantly, the delicate design of schemes to redistribute the data across the nodes.

To enable elasticity, there are two requirements for data stores (and many other sys-

tems) to convert the computing resources into system capacity (Herbst et al., 2013):

• Precision is the deviation between the system capacity and the current workload

demand. Since computing resources can be provisioned (and charged) at a fine-

grained level, the challenge of precision lies in resource management strategies that

control the provisioning of resources based on the change of workloads.

• Speed is the time period from the state where resource provisioning is in need,

to the state where the system’s capacity has matched up to the demand. Cloud

providers can allocate new VMs quickly within several minutes (Li et al., 2010), so

the challenge of speed for a data store is how quickly it can incorporate and utilise the

VMs for serving workload demand. The speed of scaling a data store is determined

by the data management schemes that partition, replicate (or place), and migrate

the data over the cluster of storage nodes.

Accordingly, the requirements of precision and speed in terms of scaling a data store,

lead to two research problems: resource management, and data management.

The focus of resource management for elastic data stores is on designing an automated

controller, which continuously monitors the system and automatically determines when

and how much to provision (or de-provision) resources. There have been research on

resource management. Lim et al. (2010) identified the constraint of actuator delays in

the controller, which is caused by data rebalancing (i.e. the redistribution of data across

nodes), and proposed a cost-optimisation-based approach to determine the amount of

bandwidth to use for rebalancing data, and to trade the impact on the guest service against
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the time to complete data rebalancing. The SCADS Director (Trushkowsky et al., 2011) is

a control framework for Key-Value Stores (KVSs). It uses a machine learning model (i.e.

Model-Predictive Control) to predict resource requirements based on workload statistics,

and to move and replicate data as needed. SCADS also organises data as small units for

a finer granularity of load-balancing and workload statistics. EStoreSim (Moulavi et al.,

2012) is a simulation framework that allows developers to simulate an elastic KVS on the

Cloud, and be able to experiment with different controllers and workloads.

These publications investigated meeting service level objectives (SLOs) and reducing

costs by adding or removing computing resources. However, none of them provide discus-

sions on how the data can be distributed when the number of nodes (that store the data)

changes, because the schemes of data management vary drastically in different categories

of data stores. The next chapter will focus on KVSs, the most influential data stores, and

discusses the approaches towards elasticity in current-state KVSs.

2.3 Chapter Summary

This chapter has revealed Cloud computing as an important paradigm for delivering the

utilities of computing resources over the Internet. It has reviewed the three Cloud service

models that gained wide acceptance (Mell & Grance, 2011), namely Infrastructure as

a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), and

identified IaaS as the primary model for hosting data stores. Next, it presented the

definition and motivation of a key feature of the Cloud, i.e. elasticity, which requires a

system to adapt its capacity to workload changes for better performance and resource

utilisation.

Moreover, this chapter has reviewed four categories of distributed data stores. It star-

ted by discussing traditional databases (i.e. RDBMS) and their limitations in scalability

and availability due to the constraint of ACID semantics (Gray et al., 1981) and the re-

lational model (Codd, 1970). In light of Eric Brewer’s “CAP Conjecture” (Gilbert &

Lynch, 2002), and with the need for scaling real-time web applications and serving an

increasing amount of data, there arose many distributed data stores that loosen the ACID

constraint and focus on scaling over the Internet. Three categories of distributed data

stores have evolved since then, and structured storage is the current-state data store that

focuses on high horizontal scaling, high availability, and high performance in serving quer-
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ies. Amongst the variety of structured storage, Key-Value Stores (KVSs) have risen to be

the state-of-the-art systems for storage and retrieval of data for general purposes.

Given the background of Cloud computing, elasticity, and distributed data stores, this

chapter presented the model for hosting a data store (e.g. a KVS) on the IaaS Cloud. It

also discussed the requirements for achieving elasticity in a data store, which leads to the

challenges in data management for dynamic node addition and removal. The literature

review continues in the next chapter, which will examine this question in the context of

KVSs.





Chapter 3

State of the Art

If I have seen further it is by standing on the shoulders of giants.

– Isaac Newton

This chapter is the second and final chapter of the literature review. The previous

chapter has concluded that Key-Value Stores (KVSs) are the state-of-the-art data stores

for general purposes, and has also discussed the model and motivation for designing an

elastic data store using the IaaS Cloud. The purpose of this chapter is to review existing

approaches to building an elastic KVS that is able to adapt its capacity to the workload

changes by efficiently adding or removing nodes. This chapter begins with a thorough

survey of the design choices in KVSs. Then, it discusses the existing schemes of data

management for the sake of building an elastic KVS. Finally, this chapter identifies the

research gaps and then concludes.

3.1 Key-Value Stores (KVSs)

KVSs have become “a high-performance alternative to relational database systems with

respect to storing and accessing data” (Seeger, 2009). Ever since the advent of the first

generation KVSs, such as Memcached (Fitzpatrick, 2004), Bigtable (Chang et al., 2006),

Dynamo (DeCandia et al., 2007), and PNUTS (Cooper et al., 2008), KVSs have been

evolving in both quality and quantity.

As categorised in Figure 3.1, these KVSs differ in several fundamental aspects in their

designs, including system architecture, data consistency model, system quality attributes,

and query performance. This section presents a thorough survey of current-state KVSs,
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Figure 3.1: Categorise the design choices in Key-Value Stores

by discussing the choices made in the design of KVSs. It also introduces a number of

state-of-the-art KVSs that have significant influence to the development of KVSs.

3.1.1 System Architecture

The design choices in system architecture separates a KVS from one category to an-

other. The storage model determines the performance and approaches to data manage-

ment strategies, while the coordination model establishes the way how the nodes of a

KVS collaborate with each other. KVSs exhibit various characteristics due to the choice

of different storage and coordination models.

Storage Model

Figure 3.2 provides a classification of storage models based on the storage device that the

data is mainly hosted. Storage device is used as the classification criteria, because the

performance of data access differs drastically using different devices. The most traditional

device is hard disk, on which there are two storage models:

• Shared-storage treats the whole data set as one single large data image, which

stored in separate location, such as networked attached storage (NAS) (Gibson &

Van Meter, 2000) or distributed file system (DFS) (Ghemawat et al. 2003, Shvachko
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Figure 3.2: A classification of Key-Value Stores based on storage model

et al. 2010) that can be accessed by all the nodes of the KVS. Hence, when a node is

added (or removed) to the KVS, only the metadata (e.g. indexes and file pointers)

is required to be migrated across nodes, while the actual data remains unchanged in

the common storage space. Examples of shared-storage KVSs are Bigtable (Chang

et al., 2006), HBase (Apache, 2010), and Hypertable (Hypertable, 2009).

• Shared-nothing requires the partitioning of data into independent sets that are

physically located on different nodes. Each node is self-sufficient in maintaining a

portion of the key space and the related data on their own storage, without shar-

ing memory or disk storage with any other peer nodes. Hence, data migration is

inevitable when a node is added or removed. Dynamo (DeCandia et al., 2007),

PNUTS (Cooper et al., 2008), Cassandra (Apache, 2009), and Project Voldemort

(2009) are examples of shared-nothing KVSs.

Aside from the use of hard disks, there are many KVSs using RAM or flash memory

as the storage media, termed as in-memory and on-flash KVSs, respectively.

In-memory KVSs keep the entire data sets exclusively in the RAM devices in a

distributed fashion. The in-memory nature allows these systems to support extremely

high performance beyond the limitation of slow I/O operations using hard disk. Since

RAM devices are volatile, there are two classes of in-memory KVSs designed to meet

different functionality requirements. One is used as a memory caching system in front

of a database, to improve performance and offload the backend system. An example is

Memcached (Danga Interactive, 2004). The other class of in-memory KVSs is a stand-

alone KVS that that requires external storage to provide data durability, like Redis (2009).

However, due to the high cost per bit of RAM, in-memory cache and storage are still an

expensive approach to serving billions of key-value objects. In-memory KVSs are either

constrained by the infrastructure to store limited amount of data, or require a costly

expenditure on RAM devices.
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With the increasing demand of high-performance data-intensive applications, recent

trends have been to design KVSs using a combination of RAM and flash memory, a

persistent storage medium in the form of solid state disks (SSDs). Flash memory stands

in the middle between RAM and hard disk in terms of cost and performance. It is 10x

cheaper than RAM, while 20x more expensive than disk. According to Leventhal (2008),

flash provides access times that are 100-1000 times lower than disk while 100 times higher

than DRAM. There are two types of flash devices, namely NOR and NAND flash. The

latter allows a denser layout and greater storage capacity per chip, and therefore, is widely

used for general storage.

On-flash KVSs store key-value pairs fully on flash memory, while maintaining a small

size of metadata per key in RAM to support faster data lookups. These KVSs focus on

reducing the size of metadata per key stored in memory, as well as the number of accesses

to flash memory required per key-value pair. For example, SkimpyStash (Debnath et al.,

2011) reduces the memory footprint to about 1 byte per key, compared to 6 bytes per

key in FAWN (Andersen et al., 2009) and ChunkStash (Debnath et al., 2010a). Moreover,

SILT (Lim et al., 2011) achieves 1.01 flash reads for key-value pair with even less memory

footprint, in contrast to SkimpyStash that requires five flash reads per lookup. Despite

that there are KVSs using flash memory as the secondary cache in the middle of RAM

and disk, e.g. FlashStore (Debnath et al., 2010b), the overall trend is to replace hard disk

with flash memory as a general-purpose storage media in the future. In this sense, the

storage models for hard disk (i.e. shared-storage and shared-nothing) can be inherited by

on-flash KVSs.

Table 3.1 summarises the storage models described. On-disk KVSs are the most widely

used because of low cost of hard disks, but they also exhibit the slowest data access out

of the three classes. In-memory KVSs go to extremes by hosting the entire data set in

memory for outstanding performance, but pay the price of high cost in storage and extra

support for data durability. By comparison, on-flash KVSs stand between on-disk and

in-memory. The decreasing price of flash memory makes it a good replacement for the

hard disk drive in the near future.
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Property On-disk In-memory On-flash

Storage Device Hard disk drive DRAM / RAM SSD, typically
NAND-based flash
memory

Cost Lowest cost Highest cost Medium cost

Performance Slow in both read
and write

Best in both read
and write

Better in read than
write, bad at small
writes

Strength Inexpensive, vast
storage space

Extremely high
query performance

Good balance
between cost and
performance

Weakness Disk I/O is
expensive

High cost per bit,
extra concern on
durability

Cost is higher than
disk, but decreasing

Examples Bigtable, Dynamo,
Cassandra

Memcached, Redis SkimpyStash, SILT

Table 3.1: Summary of various storage models of Key-Value Stores

Coordination Model

KVSs are distributed systems, consisting of a large number of interconnected nodes. The

relationships between nodes and the roles each node plays are diverse in different models.

There are two common coordination models: master-slave (i.e. centralised), and peer-to-

peer (i.e. decentralised).

In the master-slave model, a master is elected from a group of eligible nodes, to facil-

itate metadata management and decision making, while the other nodes are acting in the

role of slaves. For example, Bigtable (Chang et al., 2006) and PNUTS (Cooper et al., 2008)

use one master (or controller) per region to support geographically distributed data stores.

The use of a centralised master in each region makes it easier to implement sophisticated

data placement and replication policies, as the master possesses and controls most of the

relevant information. The key design related to this model is the election of a master,

which is usually based on distributed consensus protocols (Lamport, 1998). For example,

Bigtable relies on distributed lock service called Chubby (Burrows, 2006), in which the

master must obtain votes from a majority of the replicas (i.e. slaves), each promising that

they will not elect a different master for a time interval. This promise is called the master

lease, which is periodically renewed by the replicas.

The peer-to-peer model is typically based on decentralised DHT networks. Examples

are Dynamo (DeCandia et al., 2007), Cassandra (Apache, 2009) and Project Voldemort
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(2009). These systems are able to scale to extremely large numbers of nodes, and more im-

portantly, are capable of handling continual node arrivals, departures, and failures without

any dedicated component. The key design related to decentralised KVSs is message ex-

changing for routing information and membership. The typical choice is to use the gossip-

based protocols (Lin & Marzullo, 1999), where each node, on receiving a message, forwards

the message to a small subset of nodes that are randomly selected. This gossip-based

messaging builds on probabilistic broadcast algorithms that trade reliability guarantees

against scalability.

A Comparison of System Architectures

This thesis follows the use of the most traditional storage devices, i.e., hard disks, to store

data of a KVS, because our aim is to provide data services for general purposes. Hence,

in the remaining of this chapter, the focus is on the on-disk KVSs. As discussed, the

on-disk model is classified into shared-storage and shared-nothing. Table 3.2 presents a

detailed comparison between these two storage models, with extra considerations on the

coordination model.

Shared-storage KVSs typically use dedicated directory services to improve flexibility

in the mapping between data objects and nodes. Hence, they commonly leverage the same

dedicated component to act as a master node. The advantage of this centralised, shared-

storage architecture is three-fold. First, the stateless computation is separated from the

stateful storage. That is, the reliability and scalability of data are maintained by the

underlying NAS or DFS, so that KVS nodes, which are responsible for query processing,

can be added or removed without moving the actual data across nodes. Second, due to the

existence of dedicated directories, it allows dynamic reallocation of data to achieve better

load balancing. Third, the master node can simplify the coordination between nodes.

However, the dependence on dedicated components also gives rise to several disadvant-

ages: i) it makes the system more vulnerable to single-node failure; ii) the availability of

the system depends on the functioning status of the dedicated nodes; and iii) the total

number of nodes in the system is constrained by the capability of the dedicated nodes,

hence the scalability is somewhat limited.

In contrast, shared-nothing KVSs typically partition the key space into a structured

P2P overlay topology to essentially form a DHT. Hence, this decentralised, shared-
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Property Centralised,
shared-storage

Decentralised,
shared-nothing

Data storage Multiple nodes access the
shared data set

Each node accesses its private
memory and disk(s)

Maintenance
overhead

Dedicated directories required Ongoing re-partitioning
required

Data access
speed

NAS or DFS access latency Local disk access latency

Data shipping Move metadata only Move actual data at each
node change

Load
Balancing

Dynamic load balancing via
dedicated directories

Fixed load balancing based on
partitioning

Fault
tolerance

Vulnerable to single-node
failure

Robust to single-node failure

Availability Depend on availability of
dedicated components

Higher availability due to no
single-node failure

Scalability Dedicated components limit
total number of nodes

Inherent scalability, but data
shipping may downgrade
scalability

Consistency All nodes see one copy of
data, and conflict is resolved
by allowing multiple versions

Writes are propagated across
nodes, and replicas are
converged within a time
period

Examples Bigtable, HBase, and
Hypertable

Dynamo, Cassandra, PNUTS,
and Voldemort

Table 3.2: Comparing centralised, shared-storage vs. decentralised, shared-nothing

nothing architecture inherits several merits from DHTs. For one thing, DHT-based

KVSs exhibit inherent scalability, which allows the KVS to scale to an extremely large

number of nodes and to handle continual node arrivals, departures, and failures. For

another, it is more tolerant of single-node failure, due to the decentralised manner of data

distribution, and therefore, provides higher availability than the shared-storage model

using dedicated components. Additionally, unlike previous DHTs that provide O(logN)

lookups, most shared-nothing KVSs store the complete routing information in each peer

locally to support O(1) lookups (Ramasubramanian & Sirer, 2004), which is as efficient

as using a dedicated directory as in shared-storage KVSs.

Nevertheless, decentralised, shared-nothing KVSs also have downsides. First, since the

data is stored in each individual node, the requirement of data migration at node changes

may downgrade the efficiency of system scaling. Second, the use of distributed hash

functions limits the flexibility of employing more dynamic load-balancing strategies. Last,
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the decentralisation model requires delicate design for node coordination when certain

decisions need to be made.

3.1.2 Consistency Model

Data consistency is an important property for systems that replicate and distribute data

over many nodes. Transactional consistency, which guarantees that the database is in

a consistent state once a transaction is finished, has been the cornerstone of relational

databases.

Transactional consistency is a strong consistency model, usually assessed by two cor-

rectness criteria. First, serialisability (Papadimitriou, 1979) requires that a history of

committed transactions issue the same operations and receive the same responses as in a

sequential history of transactions without concurrency. Second, linearisability (Herlihy &

Wing, 1990) requires that all requests are ordered chronologically by their arrival time in

the system and that all requests always see the effects of the preceding request. In other

terms, all requests can be visualised as happening instantaneously at a single point in time

and not during an interval of time.

However, the ACID requirements severely limit the scalability and availability of dis-

tributed systems. Eric Brewer neatly codifies this issue in his “CAP Conjecture” (Gilbert

& Lynch, 2002), stated that a partition-tolerant distributed system can guarantee either

consistency or availability, but not both. Relational databases often sacrifice availability

to maintain strong consistency. In contrast, KVSs usually aim for higher availability and

lower latency, and comprise on strong consistency.

An Overview of Consistency Properties

In a distributed storage system, there are two perspectives on consistency (Tanenbaum

& Van Steen, 2007). From a developer’s point of view (i.e. the client side), consistency

is focused on how data updates are observed by different processes that need to share

information. Table 3.3 shows a number of consistency properties (Tanenbaum & Van Steen

2007, Vogels 2009) that are important to consider from the client-side.

However, in the literature of KVSs, these client-side properties are not explicitly guar-

anteed. Instead, the standpoint is on the server side, wherein consistency is related to how

data updates flow through the nodes that serve the corresponding replicas. Consistency
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Consistency
Properties

Guarantee Usage

Monotonic
read

A following access sees the
data that is at least as fresh
as what was seen before.

It helps as data versions become
visible in chronological order.

Monotonic
write

Two writes by the same pro-
cess are serialised in the or-
der that they arrive at the
server.

It prevents the last write of a
datum from being overwritten.

Read-your-
writes

The process that commits a
recent write, sees the data
that is at least as fresh as
what it just wrote.

It prevents the situation where a
process re-issues the same write
several times, because it sees a
stale datum that it just wrote and
(falsely) conceive that the previ-
ous write failed.

Causal Writes that potentially have
a causal relationship are seen
by every process of the sys-
tem in the same order.

It preserves all potential causality,
which is evaluated via dependency
trees or vector clocks.

Table 3.3: Consistency properties from the developer’s perspective

is maintained with quorum-based protocols, where three parameters need to be defined:

• N is the number of nodes that serve the replicas of some data;

• R is the number of replicas that should be accessed in a valid read operation;

• W is the number of replicas that are required to acknowledge the write before a

write completes.

When W +R > N , that is, the read and write sets always overlap by at least one node,

strong consistency is guaranteed. Conversely, when W + R ≤ N , the read and write sets

may not overlap, leading to weaker consistency. There are situations where W + R > N

cannot be satisfied, described as below.

One situation is to maintain high availability during network partition, wherein some

nodes in the system cannot reach other nodes, but both are reachable by clients. The

network partition that has less than R (or W ) replicas becomes unavailable for read (or

write) operations.

The other situation is to provide high performance. As the latency of a read (or write)

is dictated by the slowest of the R (or W ) replicas, in order to provide lower latency, R

and W are usually configured to be less than N . For example, R = 1 is the optimised read

case, while W = 1 is the ideal write case. However, given the constraint that W+R > N , a
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Figure 3.3: Consistency from the system’s perspective

smaller R results in a greater W , and vice versa, meaning that read and write performances

cannot be simultaneously optimised. Hence, for systems that aim to serve heavy read (or

write) loads, the latency of write (or read) can end up to be very high.

The setback for both situations is to allow weaker consistency, where W + R ≤ N .

Since the write set is smaller than the replica set (i.e. W < N), a common approach is

to propagate a write in a lazy manner to the remaining replicas that do not acknowledge

in the first place. The time period until all replicas have updated the write is termed as

the inconsistency window (Vogels, 2009). Hence, during this time window, it is possible

that the system will return a stale value, resulting in weak consistency. As shown in

Figure 3.3, current-state KVSs have offered various weaker consistency properties from

eventual consistency to limited ACID.

Eventual Consistency

Eventual consistency (Vogels, 2009) is a specific form of weak consistency, and guarantees

that if no new updates are made to a data object, subsequent accesses will return the last

updated value “eventually”, that is, after the inconsistency window just defined. Eventual

consistency has two benefits. First, it allows temporarily disconnected replicas to remain

fully available to clients, since it guarantees that updates are eventually delivered to all

replicas. Second, it does not require updates to be immediately performed on all replicas,

thus improving scalability.

Eventual consistency was firstly demonstrated in Amazon’s Dynamo (DeCandia et al.,

2007) as an appropriate trade-off for building a highly available KVS. Dynamo allows

each data object to have multiple versions, differentiated using vector clocks (Lamport,

1978). Conflicting versions are reconciled using “last write wins” (Thomas, 1979). Cas-

sandra (Apache, 2009) extends eventual consistency to provide tuneable consistency. Given
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W and R defined in the previous subsection, Cassandra allows the clients to tune each

value separately for any given write or read, which trades consistency against latency. As

discussed, a smaller W (or R) gives lower write (or read) latency. But if both W and R are

small such that W +R < N , then consistency guarantee becomes weak. Hence, Cassandra

leaves application developers the flexibility and responsibility to control the consistency

level for each read and write.

Although eventual consistency is widely adopted in KVSs (DeCandia et al. 2007, Vol-

demort 2009), it is criticised as “very vague in terms of concrete guarantees”, and “often

fulfils these guarantees (of the client-side consistency properties) for a majority of re-

quests but does not guarantee to do so” (Bermbach & Kuhlenkamp, 2013). There are

examples to back up this statement. Wada et al. (2011) observed SimpleDB (Amazon,

2008), and revealed that, when serving successive eventual consistent reads, SimpleDB

provided the fresh value at the probability of only about 33% in the first read, and about

67% in the second read. SimpleDB also served stale data that violates the guarantees

of read-your-writes and monotonic read consistency. Bermbach & Tai (2011) evaluated

Amazon S3 (Amazon, 2006a), and also observed violation of monotonic read consistency

in about 12% of all requests. Hence, an eventually consistent system do not provide safety

guarantees, and can return any value within the inconsistency window.

Conditional ACID

Due to the lack of safety guarantees of eventual consistency, there are KVSs seeking

conditional ACID properties over a single entity, such as a data object or a partition. These

systems typically use concurrency control methods used in relational databases (Bernstein

& Goodman, 1981), as well as distributed consensus algorithms (Lamport, 1998, 2001).

Transactional consistency has been guaranteed at the level of per data object (e.g., row

or record). Bigtable (Chang et al., 2006) provides row-level consistency with the technique

of copy-on-write, in which a copy is made for the columns that are to be updated within

a row. Bigtable uses one timestamp per column to resolve conflicts between different

versions. It also allows the existence of multiple versions of the same data, which are

indexed by timestamp. Yahoo!’s PNUTS (Cooper et al., 2008) provides per-record timeline

consistency, which guarantees that all updates of a given record (i.e. row) are applied by

all the replicas in the same order. This consistency model gives the same ACID guarantees
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as a transaction with a single write operation in it. PNUTS also implemented a whole

range of API calls, which allow single-row transactions on a given version without any

locks.

Recent research works focus on partition-level transactional consistency. ElasTraS (Das

et al. 2009, 2013) uses a statically partitioned setup to limit the transactions of an applic-

ation into single partitions. Then, ElasTraS leverages Chubby locking service (Burrows,

2006) that uses the Paxos consensus algorithm (Lamport, 1998), to achieve consistency

at the level of partition replica (Chandra et al., 2007). Google’s Megastore (Baker et al.,

2011) replicates each partition of the data store separately, so as to provide fully serialisable

ACID semantics within partitions. This partitioning allows Megastore to synchronously

replicate each write across a wide area network within reasonable latency, which supports

interactive applications. Still, Megastore provides only limited consistency guarantees

across partitions. Additionally, Google’s Spanner (Corbett et al., 2012), the successor to

Bigtable, supports externally-consistent (Gifford, 1981) reads and writes at global scale,

by sharding data across many sets of Paxos (Lamport, 1998) state machines for two-phase

commits.

3.1.3 Quality Attributes

Quality attributes are non-functional requirements that specify criteria for judging the

operation of a system. This thesis studies KVSs in terms of elasticity, which requires

the KVS to scale in response to workload changes. Hence, the first and foremost quality

attribute to investigate is scalability. Moreover, KVSs are distributed systems designed

to run on hundreds or thousands of inexpensive commodity machines. Under such scale,

component failures are “the norm rather than the exception” (Ghemawat et al., 2003),

and can result in an unavailable system and, worse, corrupted data. Hence, the design of

KVSs also focuses on the availability of system and the durability of data.

System Scalability

Scalability is the ability of a system to maintain consistent performance under an increasing

workload. In other words, a system whose performance improves after adding computing

resources, proportionally to the capacity added, is said to be a scalable system.

The scaling of a system can be horizontal, where computing resources are added or
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removed from the system in the form of nodes (e.g. commodity machines). The process of

horizontal scaling is also termed as “scale out” and “scale in”. In contrast, scaling can also

be vertical, where more computing resources (e.g., processors and RAMs) are added to a

single machine. Vertical scaling is also known as “scale up” and “scale down”. Nowadays,

scaling is typically horizontal for distributed data stores, because low-cost commodity

machines, rather than high-end machines, have been widely used.

The way that a KVS is scaled depends on its storage model, which is described in

Subsection 3.1.1. In shared-nothing KVSs (DeCandia et al., 2007, Lakshman & Malik,

2010) where the data is stored in separate disks, scalability is typically achieved by data

partitioning, which splits the large tables into many small partitions that can be scattered

across nodes. Scalability can be further improved if the number of partitions is sufficiently

larger than the number of nodes, as the overhead of re-partitioning can be avoided when the

system scales within an arbitrary number of nodes. Cassandra (Apache, 2009) from version

1.1 onwards has started using a large number of “virtual nodes”, a concept proposed

by (Stoica et al., 2001), to build consolidated partitions that are transferable between

nodes.

In contrast, in shared-storage KVSs (Chang et al., 2006, Apache, 2010) where all the

KVS nodes access the same data, the scalability of a system relies on the throughput of

the underlying storage. When a DFS is in use (Ghemawat et al., 2003, Shvachko et al.,

2010), the data files are usually segmented into a large number of data chunks, each being

replicated and distributed across a number of nodes in the DFS. That is, shared-storage

KVSs rely on the underlying storage layer to scale.

System Availability

The availability of a system is measured as the proportion of time a system is in a func-

tioning condition. To build a highly available system, one should address the failure

scenarios that may cause a downtime of the services provided by the system. To ensure

high availability in distributed systems, there are two design principles that have been

long followed.

The first principle is to follow the mantra of “no single source of failure”. It has been

adopted by P2P systems, such as Chord (Stoica et al., 2001) and Pastry (Rowstron &

Druschel, 2001), where the network is symmetric (i.e., each node plays the same role).
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The influence of the failure of any arbitrary node is equivalent, and thus can be minim-

ised by supplying redundant resources. Conversely, in a centralised system where certain

dedicated components play the master role, the failure of such dedicated components can

cause a downtime for many services in the system. There are several remedies. Bigt-

able (Chang et al., 2006), which uses a single master, leverages a distributed lock service

called Chubby (Burrows, 2006) to elect and ensure one active master at any time. It

requires very delicate implementation of the Paxos algorithm (Lamport, 1998, Chandra

et al., 2007). Instead, HBase (Apache, 2010), which derives from Bigtable and uses Zoo-

keeper (Hunt et al., 2010) as its distributed coordination service, has added support for

multiple masters, since it is challenging to guarantee that a single master will always be

available.

The second principle is to loosen ACID guarantees. It has been widely acknowledged

by both industry (DeCandia et al., 2007) and academia (Fox et al., 1997) that data stores

providing ACID guarantees tend to have poor availability. As discussed in Subsection 3.1.2,

when network partition occurs, certain partitions may not possess enough replicas to meet

the quorum of a strong consistency, resulting in unavailable write or read. Therefore, in

order to tolerate network partitioning, the system must give up strong consistency in ex-

change for high availability. The approach is to allow a smaller W and R for writes and

reads, where W + R < N (defined in Subsection 3.1.2). For example, Dynamo (DeCan-

dia et al., 2007) allows other live nodes to store updates for nodes that are temporarily

unavailable, with the help of a “sloppy quorum” and hinted handoff. Cassandra (Apache,

2009) and Riak (Basho Tech., 2012) that are derived from Dynamo, allow the clients to

tune the values of W and R for each single operation.

Data Durability

Durability means that once an update to the data set has been committed, it will survive

permanently even in the event of power loss, crashes, or errors. However, when commodity

machines fail, it is not uncommon that certain machines do not come back to life after

the failure is recovered. In such a scenario, node failures can also cause data corruption

or data loss. There are several techniques to support the durability of data when node

failures occur.

One common technique is replication. Distributed file systems (DFSs) (Ghemawat
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et al., 2003, Shvachko et al., 2010), on which a shared-storage KVS is built, replicate data

chunks across many nodes. Each chunk is usually associated with a version number. As

an example, GFS (Ghemawat et al., 2003) uses checksumming to detect data corruption in

each chunk, and relies on a master to track and discover any stale replica with an outdated

version number. Shared-nothing KVSs (DeCandia et al., 2007, Lakshman & Malik, 2010)

make multiple copies for each write via propagation. Each operation is associated with a

timestamp, and version conflicts are reconciled typically based on “last-write-wins”.

Another technique is to use journals, which record the write operations in chronological

order before an operation is applied. If a data node fails before the write is persistently

stored, the last write can be recovered at the system restart, where the operations recorded

by the journal can be re-applied. Hence, the journal is also called the “redo log” in database

systems.

In addition, KVSs can also periodically create a system image for the entire data set,

and back it up to a more persistent storage. The most common system image is a database

dump, usually written in the form of a list of SQL (or SQL-like) statements. Another form

of system image is a snapshot, which is a complete copy of the data files that are set to

“read-only” at a point in time. Compared to traditional database systems, KVSs are

suitable for creating snapshots, as data files are mostly immutable, that is, unalterable

once the file has been created (Chang et al., 2006, Apache, 2009).

3.1.4 Query Performance

The performance of query processing (i.e. storage and retrieval of data) is affected by

several factors. First, the data model (i.e. the internal data structure of key-value pairs)

decides the types of data sets the KVS can support. Next, the types of supported queries

determines the applicability domain. In addition, the techniques that improve data storage

and retrieval are also a key performance factor. The performance of a KVS can be assessed

along several dimensions and therefore, there are multiple approaches to benchmarking

that are reviewed later in this subsection.

Data Model

The abstract view of data model in KVSs is a mapping from a unique key to a value

that contains the information of a data object. The key is typically a primitive data type
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Figure 3.4: Various internal data models of a key-value pair

such as numbers, strings or byte arrays, while the value can use a more sophisticated data

structure, depending on the type of data sets the KVS intends to support.

The most simple structure of a value is a single entity that does not have or require

interpretation of its internal structure. Examples include: binary large objects (blob), as

in Dynamo (DeCandia et al., 2007) and PNUTS (Cooper et al., 2008), and files indexed

by a string, as in filesystems and traditional P2P networks.

Column family is a more flexible structure, proposed in Bigtable (Chang et al., 2006).

The value is a set of columns, each having a name, a value and a timestamp. In addition,

a column is called a super column if it contains another set of columns. Column fam-

ily sorts the data by keys, so essentially it is a sorted, hierarchical map, which supports

both structured and semi-structured data. For the sake of storage, the value is serial-

ised and treated as uninterpreted strings. KVSs that implement column family include

Cassandra (Apache, 2009), HBase (Apache, 2010), and Accumulo (Apache, 2011).

The richest data types are supported by KVSs like Redis (2009) that hosts the entire

data sets in memory. The value of a data object can be a high-level abstract collection,

such as list, sorted and unsorted set, and hash map. Redis also provides atomic support

for high level operations such as intersection, union, and difference between the collections

of data objects.

Query Possibilities

KVSs are designed to support the storage and retrieval of data organised as key-value

pairs. Queries in KVSs have been focused on relatively simple operations such as insertion,

retrieval and scanning. Based on the granularity of data that is returned, the query

mechanisms can be broadly classified into three categories, namely CRUD, multivalued
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access, and MapReduce support, described as below.

First of all, KVSs support four standard “CRUD” operations: Create, Read, Update,

and Delete. These operations are mostly applied to a single data object, indexed by

its key. Some details are worth mentioning. Create is to insert a data object, which is

usually grouped with other data objects in memory before they are written into a sorted,

immutable file. Read is to retrieve a data object given its key, or to scan a list of contiguous

data objects given by a key range. Update is to modify the value of a data object, and is

treated as inserting a new data object with a newer version. Delete is to remove a data

object given its key. In most on-disk KVSs, the data object is marked as deleted, but the

persistent data remains on disk, until the data file, which is immutable, is reconstructed

in garbage collection.

The CRUD operations are only suitable for exact key match. The need for support-

ing more complex queries gives rise to research efforts on providing multivalued access.

G-store (Das et al., 2010a) proposed a novel Key Group abstraction with the Key Group-

ing protocol, which provides a granule of transactional access over a set of keys that

are dynamically selected. That is, G-Store uses the single key access guarantees sup-

ported by KVSs to support transactional multi key accesses. HyperDex (Escriva et al.,

2012) provides a unique search primitive that enables queries on secondary attributes. It

leverages the concept of hyperspace hashing, in which multi-attribute objects are determ-

inistically mapped to coordinates in a low dimension Euclidean space. This mapping leads

to efficient implementations for partially-specified secondary attribute searches and range

queries. HyperDex demonstrated that partially specified objects are retrieved 12-13 times

faster than Cassandra and MongoDB.

Aside from multivalued support, there are demands for using big data in KVSs to

run online analytical processing (OLAP) tasks. Since MapReduce (Dean & Ghemawat,

2008) has evolved as the most widely used framework for processing large data sets, many

KVSs also provide MapReduce-compatible interfaces. Hive (Thusoo et al., 2009) is a

data warehouse infrastructure built on top of Hadoop. It provides SQL-like queries called

HiveQL, which generates MapReduce jobs to analysis data sets stored in varied storage

systems including HDFS (Shvachko et al., 2010) and HBase (Apache, 2010). DataStax

Enterprise (DSE) (DataStax, 2013a) is an integration of Hadoop (Apache, 2008b) and

Cassandra (Apache, 2009). In DSE, Cassandra serves data files for the input and output
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of Apache Pig (Olston et al., 2008) and Hive (Thusoo et al., 2009). Other KVSs that

support MapReduce include PNUTS (Cooper et al., 2008), Accumulo (Apache, 2011),

Riak (Basho Tech., 2012), and DynamoDB (Amazon, 2012).

In addition, KVSs have provided varied APIs to facilitate more flexible queries other

than simple retrieval and appending operations. PNUTS (Cooper et al., 2008) supports

a range of API calls with varying levels of consistency guarantees. Cassandra provides

a SQL-like interface called CQL (Cassandra Query Language) (DataStax, 2013b), which

supports tuneable and linearisable consistency guarantees. Tables in HBase also are ac-

cessible through REST, Avro (Apache, 2012a) and Thrift (Apache, 2012b). Hence, KVSs

are also termed as NoSQL, that is, “Not only SQL”.

Data Access

KVSs are designed to provide high performance for the insertion and retrieval of data. The

techniques for improving the performance of data access are associated with the storage

models described in Subsection 3.1.1.

On-disk KVSs, such as Bigtable (Chang et al., 2006) and Cassandra (Apache, 2009),

improve write performance by grouping the data with an in-memory data structure called

memtable, which is flushed onto the disk at once when the memory becomes full. This

strategy is suitable for workloads with majority writes, as each write is committed by

an append-only journal (i.e. write-ahead log), with the value buffered in memory. The

data files on disk are immutable, allowing multiple versions of certain data to be stored

simultaneously on disk. In order to reduce the number of I/Os when reading a data object,

each data file is built with a Bloom filter (Bloom, 1970), which is a space-efficient data

structure that can be loaded into memory. In KVSs, Bloom filters are used to test the

existence of a given key in the related data file. Bloom filters allow false-positive test

results, so all the data files containing the given key will be read. As a result, multiple

versions of certain data are reconciled at read.

On-flash KVSs also maintain a small amount of metadata in memory to improve per-

formance. The difference is that, on-flash KVSs usually build an in-memory index for

locating data, rather than Bloom filters that are more suitable for membership quer-

ies. For example, SkimpyStash (Debnath et al., 2011) and SILT (Lim et al., 2011) have

achieved a small memory footprint (i.e. less than one byte per key). By comparison,
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in-memory KVSs, such as Memcached (Danga Interactive, 2004) and Redis (2009), have

already achieved extremely high performance by hosting the entire data set in RAM.

However, this type of KVSs requires much higher investment in infrastructure, since RAM

devices are much more expensive than hard disks and flash.

Benchmarking

Benchmarking is an effective approach to evaluating and comparing the relative perform-

ance of a system in various aspects. There have been a variety of benchmarks designed for

different data storage systems, such as SPC Benchmarks (SPC, 2013) for file systems, TPC

Benchmarks (Gray, 1992, TPC, 2001) for transactional evaluation, and XMark (Schmidt

et al., 2002) for XML systems. Pavlo et al. (2009) focus on benchmarking batch or ana-

lytical systems such as MapReduce in Hadoop (Dean & Ghemawat, 2008, Apache, 2008b)

and relational OLAP systems.

In the context of KVSs, the benchmarking focus is on scalability, availability and query

performance (e.g., throughput, response time, etc.). YCSB, i.e. Yahoo! Cloud Serving

Benchmark (Cooper et al., 2010), is an influential benchmark for KVSs. YCSB defines

five core workloads that are usually seen in web sites, including read heavy, write heavy,

read only, read latest, and short range query. It also provides choices to generate the

load based on various distributions. YCSB is available as open-source, with extensible

interfaces that allow developers to implement new workload packages and to assess new

systems. This extensibility has made YCSB popular in evaluating KVSs. YCSB++ (Patil

et al., 2011) is an extension from YCSB to support multi-tester coordination, multi-phase

workloads and abstract APIs. BG (Barahmand & Ghandeharizadeh, 2013) extends both

YCSB benchmarks to rate data stores using a pre-specified service level agreement (SLA),

which is the essence of TPC-C benchmark (Gray, 1992). In addition, BG focuses on the

processing of interactive social networking actions.

There are also research efforts on analysing the workload characteristics in large-scale

data stores. Atikoglu et al. (2012) have analysed five workloads from Facebook’s Mem-

cached deployment, and reveals a number of workload patterns. For example, an examina-

tion of query performance over time clearly shows diurnal and weekly patterns, consistent

with the statistics of I/O requests for Facebook’s photo storage (Beaver et al., 2010). It

is also observed that applications can have an extreme read/write ratio (i.e. 30:1), higher
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than assumed in the literature. Other evaluations include: Netflix’s experience with Cas-

sandra (Cockroft, 2011), Facebook’s Hadoop deployment (Borthakur et al., 2011), and a

characterisation of workload traces in windows servers 2008 (Kavalanekar et al., 2008).

3.1.5 Key-Value Stores in Practice

Google’s Bigtable

Bigtable (Chang et al. 2006, 2008) is the first generation KVS that follows the central-

ised, shared-storage architecture. It resembles relational parallel databases (DeWitt &

Gray, 1992) in many implementation strategies. For example, Bigtable stores data in

a distributed file system called GFS (Ghemawat et al., 2003), and uses a distributed

lock called Chubby (Burrows, 2006) for consensus, which is similar to Oracle RAC data-

base (Oracle, 2001). In order to improve disk writes, the data is sorted and buffered in

an in-memory structure called memtable before being written to disk, like the updates in

LSM-Tree (O’Neil et al., 1996). To improve reads, rows (i.e., data objects) are grouped

and then compressed based on a client-defined locality group, similar to column-based

databases (Abadi et al., 2006). Bigtable also creates Bloom filters (Bloom, 1970) for each

locality group of files (called SSTables) to reduce disk accesses.

As a KVS, Bigtable differs from relational databases in its data model and consistency

model. For one thing, in order to support structured data and semi-structured for a

variety of applications, Bigtable uses a flexible data model called column family, which

is analogous to a table in relational databases. The internal structure of column family

has been discussed in Subsection 3.1.4 (page 48). For another, in order to provide highly

available services, Bigtable loosens the ACID requirements, and allows the co-existence of

multiple versions of the same data object (i.e. data row). Bigtable maintains row-level

consistency by using a technique called copy-on-write (COW), in which a new copy of

the row is created when rewriting the row and the old copy persists as part of a previous

snapshot.

There are many shared-storage KVSs that are modelled after Bigtable. HBase (Apache,

2010, George, 2011) is the open-source derivative, running on top of Hadoop Distributed

Filesystem (HDFS) (Shvachko et al., 2010), which resembles Google’s GFS (Ghemawat

et al., 2003). Tables in HBase can serve as the input and output for Hadoop’s implementa-

tion of MapReduce (Dean & Ghemawat, 2008), which is the standard parallel, distributed
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framework for processing data on a large cluster. Hypertable (2009) is another KVS that

follows Bigtable’s architecture. It improves the performance of random reads over HBase,

using an in-memory CellCache with adaptive memory allocation. Hypertable has been

deployed by Baidu (Dong, 2009), the leading Chinese language search engine.

Amazon’s Dynamo

Dynamo (DeCandia et al., 2007) is the first generation KVS that follows the decentralised,

shared-nothing architecture. It focuses on providing highly available data services “at

massive scale”, and uses a synthesis of well known techniques to achieve scalability and

availability.

To achieve high scalability, Dynamo is architected as a completely decentralised system,

with the data partitioned and replicated using consistent hashing (Karger et al., 1997).

This architecture closely resembles the overlay topology of Chord (Stoica et al., 2001). A

gossip-based membership protocol is employed for failure detection in a totally decent-

ralised and symmetric manner. To achieve high availability, Dynamo sacrifices strong

consistency required in databases, and provides eventual consistency using a synthesis of

techniques. It leverages object versioning (Lamport, 1978) as in OceanStore (Kubiatowicz

et al., 2000) to resolve conflicts between replicas. Moreover, to deal with temporary node

failures, it also uses a quorum-like synchronisation and hinted handoff. Dynamo has suc-

cessfully demonstrated that eventual consistency can be used to design a highly available

data store.

Dynamo was then followed by many shared-nothing KVSs, including Cassandra (Apache,

2009), Voldemort (2009), and Dynamo’s open-source derivative called Riak (Basho Tech.,

2012). Cassandra (Apache 2009, Lakshman & Malik 2010) is a hybrid of Dynamo and

Bigtable. It partitions and replicates the data using Dynamo’s Chord-like architecture

to provide high scalability and availability, while modelling the data using column family

adopted from Bigtable (Chang et al., 2006) to offer flexible, dynamic schema. Because

of its great performance and flexibility, Cassandra is currently the most popular KVS,

according to DB-Engines (2014a).
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Memcached and Redis

Memcached (Fitzpatrick 2004, Danga Interactive 2004) is the representative of in-memory

KVSs for caching. It uses the client-server architecture, wherein the servers cache the

data as a unified distributed hash table based on consistent hashing (Karger et al., 1997),

while the clients populate and query the table. It should be noted that Memcached is a

transitory cache. That is, when the in-memory table is full, the oldest values are purged

in least recently used (LRU) order. Memcached is widely used by many data-driven

websites, including YouTube, Facebook, and Wikipedia. Other distributed caching KVSs

are Ehcache (2009) and Hazelcast (2013). In addition, MemcacheDB (2008) is built on the

Memcached protocol, although it uses Berkeley DB (Seltzer & Bostic, 1986) as its storing

backend for data persistence.

In contrast, Redis (2009) is the most popular in-memory KVS that supports persistent

data (DB-Engines, 2014b). It achieves data persistency in two different ways. The older

version (up to 1.0) uses snapshotting, which periodically writes data from memory to

disk in the format of relational database dump. The current version uses an append-only,

on-disk journal to record operations processed in memory. Other persistence-enabled in-

memory KVSs, such as Tarantool (2009), implement write-ahead logging and snapshotting

for data persistence. Furthermore, Redis also differs from other KVSs in its data type.

The value of a data object in Redis can be not only strings, but also abstract collections,

such as lists, (sorted) sets, or mappings as in object-oriented programming language.

SkimpyStash and SILT

SkimpyStash (Debnath et al., 2011) is an on-flash KVS that is designed for high throughput

server applications. It uses a hash table directory in RAM to index key-value pairs stored

in a log-structure on flash. The distinguishing feature of SkimpyStash is extremely low

RAM footprint at about 1 byte per key-value pair, which is more aggressive than other

on-flash KVSs including FAWN (Andersen et al., 2009), BufferHash (Anand et al., 2010),

ChunkStash (Debnath et al., 2010a), and FlashStore (Debnath et al., 2010b). SkimpyStash

achieves low RAM footprint by moving most of the pointers (for key lookup) from RAM

to flash. To improve performance (i.e. reduce flash reads per lookup), SkimpyStash uses

linear chaining (Litwin, 1980) to resolve in-memory hash table collisions, and employs

Bloom filters (Bloom, 1970) to avoid unnecessary lookups. Hence, the use of flash and low



3.2. APPROACHES TO THE ELASTICITY OF KVSS 55

RAM footprint per key allow SkimpyStash to provide 100,000 get-set operations/sec.

SILT (Lim et al., 2011), i.e. Small Index Large Table, is another state-of-the-art

on-flash KVS. SILT is a synthesis of three basic KVSs, each with a different emphasis,

i.e. on either memory-efficiency or write-friendliness. LogStore, which is write-friendly,

appends individual updates (i.e. PUTs and DELETEs) to a log file on flash, with an in-

memory index built based upon cuckoo hashing (Pagh & Rodler, 2004). When LogStore

becomes full, it is converted to an immutable, on-flash HashStore that does not require

an in-memory index. Multiple HashStores are in use at a time, until they are merged

into a SortedStore, which stores key-value data in sorted key order on flash. SortedStore

implements entropy-coded tries to provide an extremely compact index at 0.4 bytes per

key. Overall, SILT requires only 0.7 bytes of DRAM per key and retrieves a key-value pair

using 1.01 flash reads on average.

Up to this point, four categories of KVSs have been reviewed. Bigtable (Chang et al.,

2006) is a centralised, shared-storage KVS that employs many techniques from database

systems, but still achieves high scalability and availability by replacing the relational

model with column family, and by allowing multiple versions per data object. In contrast,

Dynamo (DeCandia et al., 2007) is a decentralised, shared-nothing KVS that builds on

Chord (Stoica et al., 2001), and also leverages many techniques to provide highly available

data services. Both KVSs have been followed by many open-source projects including

Cassandra (Apache, 2009), HBase (Apache, 2010), and Voldemort (2009).

Furthermore, Memcached and Redis serve as the examples of in-memory KVSs that

support extremely high performance with the price of high cost per bit in storage, while

SkimpyStash and SILT are on-flash KVSs with the focus on reducing the size of metadata

per key in memory. Although this thesis focuses on on-disk KVSs, there are lessons

learned from these two categories of KVSs, respectively. First, how to efficiently maintain

a persistent backend storage while serving data in memory. Second, how to maintain a

minimised amount of indexing for the large amount of data stored on flash (or on disk).

3.2 Approaches to the Elasticity of KVSs

As discussed in Subsection 2.2.3, distributed data stores (e.g. KVSs) that are efficient

in elasticity should be able to add and remove nodes at runtime, which means that the

process of queries should not be interrupted by data movement during node changes.
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This requires delicate management of data in a KVS for the sake of node addition and

removal. This section describes the properties and techniques regarding to the algorithms

for splitting the data set into partitions, the strategies for replicating the partitions among

the nodes, and the approaches to moving data across the nodes.

3.2.1 Data Partitioning

Data partitioning is the division of a logical data set into distinct independent parts.

Having multiple partitions facilitates the distribution of data across nodes, and the locality

of group queries.

Dimensions of Data Partitioning

In the context of KVSs, partitioning is focused on the division of one table, either hori-

zontally, or vertically, or both.

Horizontal partitioning, also known as “sharding”, splits a table according to the key

into multiple blocks for the sake of storage. That is, some tables can be very large in

size, and are split and stored by multiple nodes. There are several ways to partition a

table horizontally. DHT-based systems use hash functions to segment the key space into

a list of buckets, termed as virtual nodes (Stoica et al., 2001). The mappings from

virtual nodes to storage nodes can be either one-to-one as in Cassandra (Apache, 2009)

(up to version 1.0), which partitions the data based on the number of nodes available.

Alternatively, the mappings can be many-to-many as in Dynamo (DeCandia et al., 2007)

and Voldemort (2009), where each node serves multiple virtual nodes (i.e. data partitions)

and each virtual node is replicated to multiple nodes. Additionally, KVSs with centralised

components usually group the data objects with consecutive keys into partitions, called

tablets (Chang et al., 2006, Cooper et al., 2008) or directories (Corbett et al., 2012). The

centralised components also shard the partitions to store a bounded volume of data, so

that each partition can be served as the unit of data distribution and load balancing.

In contrast, vertical partitioning (a.k.a. “row splitting”), divides a table into multiple

tables with fewer columns, with each resulting table having an independent locality. An

example is the locality group in Bigtable (Chang et al., 2006), which segregates column

families that are not typically accessed together into separate locality groups. In this way,

each locality group provides all the columns that are required for the majority of queries,
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and therefore, it avoids the operations of filtering columns so as to improve the efficiency

of reads. The effectiveness of this approach has already been demonstrated in database

systems (Stonebraker et al., 2005).

A table can be partitioned horizontally and vertically at the same time. For example,

KVSs following the column family model can split a table into several column families

(i.e. vertical partitioning). Then, each column family can be divided into multiple blocks,

each storing a number of data objects (i.e. horizontal partitioning).

Data Partitioning at Node Changes

Elasticity of a KVS requires re-distribution of the data when a node is added or removed.

We focus on the scheme of horizontal partitioning, because it determines the segment in

which the data is located. There are various partitioning schemes in the KVSs, depending

on the storage models discussed in Subsection 3.1.1.

Shared-storage KVSs, such as Bigtable (Chang et al., 2008), Spanner (Corbett et al.,

2012), and HBase (Apache, 2010), do not require re-partitioning of the data when a node

is added or removed. The persistent data is stored as one single image in the underlying

distributed file system, such as GFS (Ghemawat et al., 2003) or HDFS (Shvachko et al.,

2010). Das et al. (2011) proposed that data can be migrated by exchanging only the

metadata of data blocks between the nodes of a database system (or a KVS), while the

persistent data remains unmoved in the shared storage. A centralised controller is also

used for metadata management in these schemes.

In contrast, in shared-nothing KVSs, the data has to be partitioned, because each

node uses its individual storage to store a portion of the data. As discussed, the mappings

between the resulting partitions (i.e. virtual nodes) and the nodes, can be either one-

to-one or many-to-one. Accordingly, there are two approaches to data partitioning for

node addition (or removal), termed as split-move and virtual-node-based, respectively.

They are elaborated as follows.

Split-Move Approach

The split-move approach is commonly used in distributed hash tables (DHTs), and was

adopted by Cassandra (Lakshman & Malik, 2010). Typically, consistent hashing (Karger

et al., 1997) is used, as it introduces minimal disruption when a hash table (e.g. a key
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Figure 3.5: Different partitioning approaches to the addition of a KVS node

range or a partition) is resized during node changes.

As shown in Figure 3.5, the key space is split into a list of consecutive key ranges,

each assigned to one node. Therefore, each node maintains one master replica for its own

range, and also stores the slave replicas of several other key ranges for high availability.

When a new node is added to the KVS, the key space of the data set is re-partitioned.

One or several existing partitions are split into two sets of data (e.g. B1 and B2 as in

Figure 3.5). One is retained in the existing nodes. The other set of data is moved out, in

the form of individual key-value pairs, to the new node.

There are multiple drawbacks to this approach. One is the overhead of moving indi-

vidual key-value pairs. When a partition is split, the node contributing the subset has

to scan its entire dataset to prepare a list of key-value pairs for the new node, which, on

receiving the data, has to reassemble the key-value pairs into files. Both scanning and

reassembling are heavyweight operations.

The other drawback is that, consistent hashing aims at remapping a minimised number

of keys when the number of nodes changes. As a result, only a limited number of nodes can

participate in populating the new node, each undertaking relatively heavy workload. This

is also true in the case of node removal. According to Amazon’s experience (DeCandia

et al., 2007), this approach of node addition is highly resource intensive, and is only suitable

to run at a lower priority. However, low priority results in significantly slow addition of

nodes, making the KVS adapt less quickly to dynamic load.

Virtual-Node-based Approach

A virtual node is a consolidated data partition that is transferable as a single unit. The

idea of “virtual node” was introduced in Chord (Stoica et al., 2001) and other consistent
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hashing systems, upon which KVSs such as Dynamo (DeCandia et al., 2007), Voldemort

(2009), and Cassandra (Lakshman & Malik, 2010) are based. Other KVSs, such as Bigt-

able (Chang et al., 2008) and PNUTS (Cooper et al., 2008), use the term “tablet” instead.

This approach avoids the overhead of scanning and reassembling individual key-value

pairs as in the split-move approach. In practice, the key space is over-partitioned, such that

the number of virtual nodes is made much greater than the data nodes. Each data node is

assigned many virtual nodes. Hence, a new node can be bootstrapped (i.e. populated with

data) by multiple existing nodes, each offering one or several virtual nodes. Therefore,

each participating node shares a relatively small amount of workload in bootstrapping.

However, there is a lack of efficient data partitioning schemes for completely decent-

ralised KVSs. The current-state research efforts (DeCandia et al. 2007, Voldemort 2009)

use a simplified partitioning strategy, wherein the key space is split into static key ranges

of equal length, or hashed into buckets with equal capacity. Although this strategy avoids

complex coordination amongst the peer nodes, it leads to data skew for biased key distri-

butions. That is, a majority of keys are allocated to a minority of partitions (or buckets).

Data skew results in some “giant” partitions that are difficult to migrate because of the

large volume of data (Cooper et al., 2008).

One refinement is to re-hash the inserted keys using uniform hash functions, most

of which, however, are not order-preserving, making the support of range queries more

difficult. For those uniform order-preserving hash functions, Aberer (2011) pointed out

their fundamental limitation: the key space is discrete and cannot adapt to any arbitrary

application key distributions. Alternatively, PNUTS (Cooper et al., 2008) proposed to

shard the tablets (i.e. partitions) into bounded sizes. However, it relies on a centralised

component called tablet controller, which is not applicable to those KVSs following the

decentralised architecture.

3.2.2 Data Placement

In a distributed data store, the partitions of a table (or a key space) are usually replicated

to multiple nodes. The problem of data placement has been extensively studied in the

literature, to meet requirements including load-balancing and data durability.
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Random Placement of Replicas

In current-state KVSs (DeCandia et al. 2007, Lakshman & Malik 2010), the common

approach to replica placement is to manage the data through coarse-grained structures

such as buckets or virtual nodes, rather than identifying an optimal placement strategy

at the granularity of single data object as proposed by Krishnan et al. (2000).

Consistent-hashing-based KVSs, such as Dynamo (DeCandia et al., 2007) and Cas-

sandra (Lakshman & Malik, 2010), typically adopt a random replication strategy,

wherein a hash function is used to randomly assign the replicas of groups of data ob-

jects (i.e. buckets or virtual nodes) to nodes. This strategy allows key lookups to be

performed locally, in a very efficient manner (DeCandia et al., 2007). Other KVSs, such

as Bigtable (Chang et al., 2006), PNUTS (Cooper et al., 2008) and Spanner (Corbett et al.,

2012), rely on dedicated directory services that provide flexible mapping from virtual nodes

to storage nodes. Essentially, this approach also uses random replication strategy, because

both virtual nodes and storage nodes are randomly chosen, without explicit constraint on

the location of data.

Although random replication merits in simplicity and efficient key lookup (DeCandia

et al., 2007), it also has two disadvantages. First, due to the ignorance of the access

frequencies of nodes to data, the placement may result in highly sub-optimal performance

in terms of load balancing. Second, random placement of data replicas leads to higher

probability of data loss when multiple nodes fail simultaneously. Cidon et al. (2012, 2013)

have demonstrated that random replication is nearly guaranteed to cause a data loss event

once the size of the system scales is beyond hundreds of nodes.

Data Placement For Load Balancing

There has been research on the problem of optimising data placement based on the work-

load for better load balancing and query performance.

Ceph (Weil et al., 2006) performs dynamic placement of individual data objects, with

the aim to evenly distribute loads over all nodes. However, Anderson et al. (2005) pointed

out that the problem of finding load balancing schemes with minimal re-configuration costs

is just a variant of bin-packing or knapsack, which is inherently expensive and solvable

offline. Instead, Everest (Narayanan et al., 2008) focused on dealing with peak loads, by

off-loading the workload from overloaded storage nodes to under-utilised nodes.
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Moreover, Ursa (You et al., 2011) formulates the problem of workload-aware replica

placement as an integer linear programming (ILP) problem, with the goals to eliminate

hot-spots while minimising the data movement cost. Yet, Ursa (You et al., 2011) relies on

centralised components to compute the placement and to maintain a location map, which

is not applicable to decentralised KVSs.

In contrast, AUTOPLACER (Paiva et al., 2013) uses a decentralised algorithm that

optimises the placement of the top-k most frequent data objects in a self-tuning manner.

It combines the usage of consistent hashing with a probabilistic mapping strategy that

operates at the granularity of the single data object. AUTOPLACER relies on Bloom

filters (Bloom, 1970) and decision-tree classifiers (Domingos & Hulten, 2000), to achieve

a highly efficient re-allocation of a very large number of hotspot data objects.

Additionally, others research efforts (Laoutaris et al., 2006, Zaman & Grosu, 2011)

also proposed distributed algorithms for the problem of replica placement. However, these

efforts only consider the placement of read-only replicas.

Data Placement for Data Durability

Replica placement and its impact on data durability has been studied extensively in the

past. In order to achieve high data durability, peer-to-peer system evaluations (Weather-

spoon & Kubiatowicz 2002, Rodrigues & Liskov 2005) have considered replication (Lee &

Thekkath 1996, Dabek et al. 2001, Ghemawat et al. 2003) versus coding techniques (Pat-

terson et al., 1988), and concluded that replication provides better robustness to survive

the high rate of failures in distributed infrastructures.

In the context of DHT systems, Chun et al. (2006) have identified that randomly rep-

licating data across a large set of nodes increases data loss probability under simultaneous

failures. They investigated the effect of different sizes of node sets for replication using

their DHT system called Carbonite, which creates and keeps track of additional replicas

to handle small-scale failure events at a low cost. Yu et al. (2006) also analysed the

replication strategies used in DHTs (Stoica et al. 2001, Rowstron & Druschel 2001, Rat-

nasamy et al. 2001), and proposed to improve availability by constraining the placement of

replicas within the DHT-structured called “Group”. Similarly, Glacier (Haeberlen et al.,

2005) constrains each replica (of a partition) to be placed at equal distances in the keys’

hash space. Glacier also trades efficiency in storage utilisation for durability, by maintain-
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ing massive redundancy of data to provide highly durable data. However, this approach

is expensive in terms of maintaining data consistency over a large number of replicas.

Cidon et al. (2013) also proposed to confine the placement of replicas into certain

predefined sets of nodes, called “copysets”. Hence, the failure of a copyset of nodes

is equivalent to the loss of that unit. The copyset-based replication schemes focus on

minimising the number of copysets in the system to provide high data durability. They

compared this copyset-based strategy against random replication, and proved that the

copyset-based strategy could significantly reduce the probability of data loss when a non-

negligible percentage of nodes (e.g. 1%) fail simultaneously.

However, existing implementations of copyset-based replication (Cidon et al. 2013,

2012) rely on random permutation to create copysets. For each node addition, new

copysets are formed without altering any existing copyset, while no affected copysets are

dismissed at each node removal. Instead, an existing node is randomly selected to replace

the removed node. This approach ends up in increasing number of copysets if nodes join

or leave dynamically, and therefore, is not applicable to KVSs that require elasticity in

response to workload changes.

There are other research efforts on data durability. Large companies, as in the case

of Facebook (Hamilton, 2008) and Google (Ford et al., 2010), consider geo-replication

as an effective technique to prevent data loss under large scale concurrent node failures.

However, this approach is not feasible for storage providers that operate within one region.

Disaster recovery systems (Chang et al. 2002, Patterson et al. 2002) use replication and

mirroring to increase durability. These systems focus on the cost of propagating updates on

data files that are alterable, which is not applicable to KVSs that store data in immutable

files (DeCandia et al. 2007, Lakshman & Malik 2010).

In addition, the relation between data durability and the number of possible replicas

has also been discussed previously (Saito et al. 2004, Van Renesse & Schneider 2004).

The trade-off here is between reducing the probability of losing a data object during a

simultaneous failure (by limiting the number of replicas) and improving the robustness

to tolerate a higher average failure rate (by increasing the number of replicas). However,

none of these have discussed the trade-offs between data durability and scalability.
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3.2.3 Data Migration

The elasticity of KVSs requires the nodes to be added or removed at runtime. To efficiently

deal with node addition and removal, these arises the need for online data migration, the

focus of which is on maintaining the ability to execute queries while data movement is in

progress, which is termed as live migration (Das et al., 2010b).

Shared-storage KVSs, such as Bigtable (Chang et al., 2006) that runs atop GFS (Ghem-

awat et al., 2003) do not require actual data migration. Instead, each new KVS node only

needs to acquire small amounts of metadata or in-memory cache for a warm startup.

For example, Albatross (Das et al., 2011), which targets at the shared-storage architec-

ture, provides a lightweight migration solution that simply hands over the identifiers (i.e.

metadata) of data blocks across nodes. Albatross also uses a technique called Iterative

Copy (Das et al., 2010b) to replicate the caches and metadata (i.e. file pointers) from the

source node to the destination, with no aborted transactions, such that the destination

node starts with a hot cache.

In contrast, data migration is inevitable in shared-nothing KVSs when node changes

occur. There has been prior research on maintaining data availability during node ad-

dition or removal. Relational Cloud (Curino et al., 2010a) proposed various migration

strategies, including splitting a partition into smaller partitions for incremental migra-

tion, and prefetching data to prepare warm stand-by copies. Zephyr (Elmore et al., 2011)

minimises service interruption with a synchronised dual mode, where the source and des-

tination nodes are both enabled to execute transactions. However, Zephyr is intended

for migrating small amount of data. In practise, the process of data migration can be

extremely slow. As reported by Amazon, Dynamo “has taken almost a day to complete”

data migration for adding a new node (DeCandia et al., 2007), because the throughput

of data transfer is throttled to avoid introducing large amount of workloads to the source

nodes. There is a lack of strategies that improves migration performance while maintaining

service availability.

Slacker (Barker et al., 2012) is the state-of-the-art live migration solution, and is de-

signed for CloudDB (Hacigumus et al., 2010). Slacker makes use of the “slack” (i.e. idle)

resources for migration without seriously impacting workloads that are already present on

the nodes. It is performed in three steps: i) snapshot is prepared and transferred from the

source node, which continues to serve queries during this step; ii) the delta is calculated
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by examining the query log of the source node; iii) a freeze-and-handover is performed to

copy the delta to the destination node. This snapshot-delta-handover approach is similar

to the VM migration technique employed by Clark et al. (2005), who also discussed some

extreme cases such as workloads with very high write turnover.

Additionally, migration can also be performed implicitly by replication. Schism (Curino

et al., 2010b) uses a workload-driven, graph-based algorithm to decide the number of par-

titions that each tuple should be replicated. The decision is made by trading off the costs

of distributed updates against distributed transactions. EcStore (Vo et al., 2010) extends

the BATON tree (Jagadish et al., 2005) to provide a two-tier replication mechanism, where

ecStore creates secondary and slave replicas in addition to the primary copy. The second-

ary replicas are maintained to provide data availability, while the slave replicas are created

for popular data objects to improve load balancing. Other research (Savinov & Daudjee,

2010) attempts to provision backup replicas when the master server is heavily loaded or

even fails, wherein the replicas are created via database dump, which contains a definition

of the table structure and the data from a database, usually written in the form of a list

of SQL (or SQL-like) statements.

3.3 Discussion and Summary

This chapter has provided a thorough survey of the design choices in KVSs. This survey is

essential to carry forward the lessons learned from the rich literature, presented based on

four aspects. First, the design choices in system architecture, such as storage model and

coordination model, separates a KVS from one category to another, such as centralised,

shared-storage KVSs and decentralised, shared-nothing KVSs. Second, the consistency

model is a dominant factor to system availability in light of “CAP Conjecture” (Gilbert

& Lynch, 2002), i.e., weaker consistency model results in better availability. Moreover,

quality attributes, such as scalability, availability, and data durability, specify criteria to

assess the quality of system operations. Last, the variety and performance of query directly

affect user satisfaction. Multiple approaches to benchmarking were also reviewed for the

assessment of a KVS’s performance in various aspects. Given this survey, this chapter

has also studied a number of state-of-the-art KVSs that have significant influence to the

development of KVSs.

Based on the background of KVSs introduced, this chapter continued to examine the
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schemes of data management in KVSs in terms of efficient node addition and removal

for the sake of elasticity. To begin with, this chapter has identified the need for data

partitioning in shared-nothing KVSs, and then compared two common strategies to data

partitioning, termed as split-move and virtual-node-based. It has concluded that split-

move is inefficient in data migration, while virtual-node-based approaches rely on either

hash functions for static partitioning, which leads to the issue of data skew, or centralised

components for distributed coordination, which is not applicable to decentralised KVSs.

Hence, there is a lack of decentralised scheme of data partitioning for shared-nothing KVSs

to efficiently add or remove nodes.

Moreover, this chapter has reviewed the strategies of data placement in current-state

KVSs, most of which use random replication that randomly assign replicas of data to

nodes. As discussed, this strategy leads to two issues: i) sub-optimal performance in load

balancing due to the ignorance of the access frequencies of nodes to data; and ii) higher

probability of data loss when multiple nodes fail simultaneously. Consequently, there arose

research, including Ursa (You et al., 2011) and AUTOPLACER (Paiva et al., 2013) that

address the problem of workload-aware data placement.

The problem of data durability at multiple node failures was tackled by constraining

the placement of data replicas at particular nodes (Haeberlen et al. 2005, Chun et al.

2006, Yu et al. 2006). Cidon et al. (2013) proposed the concept of “copyset” to confine the

placement of replicas into certain predefined sets of nodes. This copyset-based placement

strategy minimises the probability of data loss at node failures. However, the formation of

copysets is calculated offline, and is not adaptive to dynamic node changes. Hence, there

is a lack of data placement strategy that minimises the data loss at multiple node failures,

while allowing dynamic node addition and removal at runtime.

Last but not least, this chapter has also reviewed the approaches to moving data

across nodes without affecting the execution of queries, termed as live migration (Das

et al., 2010b). The current-state solution is Slacker (Barker et al., 2012), which effectively

makes use of the “slack” (i.e. idle) resources for migration without seriously impacting

workloads that are already present on the nodes.

Now that the research gaps in data partitioning and placement have been identified,

the rest of this thesis will elaborate a set of data management schemes for the efficient

elasticity of KVSs.





Chapter 4

Data Distribution for Efficient

Elasticity of KVSs

Our greatest weakness lies in giving up. The most certain way to succeed is

always to try just one more time.

– Thomas A. Edison

This chapter presents the design of a data distribution middleware that improves the

efficiency of elasticity for decentralised shared-nothing KVSs, while the implementation

and evaluation of this middleware will be presented in the next chapter. This chapter

starts with an analysis of the challenges of efficient elasticity in the decentralised, shared-

nothing architecture. Then, it presents the detailed design of a set of data distribution

schemes. Finally, this chapter concludes with a general discussion on the contributions of

this middleware.

4.1 The Elasticity Challenge

Distributed KVSs (Chang et al., 2006, DeCandia et al., 2007, Cooper et al., 2008) have

become a standard component for many web services and applications due to their inherent

scalability, reliability and data availability, even in the face of hardware failures. While

KVSs have been mostly used in data centres, many enterprises are now adopting them for

use on servers leased from the Infrastructure-as-a-Service (IaaS) Cloud.

As discussed in Section 2.1, computing resources from the IaaS Cloud are typically in

the form of virtual machines (VMs), and can be provisioned or de-provisioned anytime

67
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on-demand. To deal with increasing workload, new VMs are acquired to improve the

system’s capacity. Since IaaS providers normally follow the “pay-as-you-go” pricing model,

redundant VMs can be shut down in the face of declining demand to save on economic

costs. In the remaining of this thesis, the process of incorporating a new empty VM as a

member of KVS is termed as node bootstrapping. In contrast, the process of eliminating an

existing member with redundant data off the KVS is called node decommissioning. In this

regard, efficient elasticity requires a KVS to bootstrap or decommission a node quickly

and frictionlessly, i.e. without affecting online query processing.

The storage model of a KVS determines the performance of data movement during

node bootstrapping and decommissioning. In shared storage KVSs, the persistent data is

stored in the underlying storage, such as networked attached storage (NAS) or distributed

file system (DFS), which is accessed by all the nodes. The data can be migrated between

nodes without actual data transfer. An example is Albatross (Das et al., 2011), which

exchanges the metadata (e.g., identifiers or ownership) of data blocks located in the shared

storage to achieve lightweight data migration.

In contrast, shared-nothing KVSs consist of distributed nodes, each with their own

separate storage, coordinated as a distributed hash table (DHT). When a new node joins

(or leaves) the KVS, it has to obtain (or give away) data over its peer nodes. This

process is usually throttled, or run in a low-priority thread, so as to avoid affecting the

online query processing by consuming network bandwidth and computational processing

capacity. However, as revealed in Amazon’s experience (DeCandia et al., 2007), this

strategy significantly slows the bootstrapping process, especially when the query workload

is high.

It is non-trivial to efficiently bootstrap or decommission a node for shared-nothing

KVSs. The goal of efficiency is three-fold. First, the negative impact of data movement

against online query processing should be minimised. Second, data consistency and avail-

ability should be maintained during bootstrapping and decommissioning. Third, after

node changes, the load, in terms of both data volume and query workload that each node

undertakes, should be re-balanced as quickly as possible. KVSs that handle node changes

with such requirements are efficiently elastic.

The challenge of efficient elasticity in the shared-nothing KVSs lies in the data distri-

bution strategies when a node is bootstrapped or decommissioned. Specifically, it requires
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a mechanism that partitions the key space of a data set and then reallocates the parti-

tion replicas (i.e., via data migration) during node arrival or departure. Moreover, most

shared-nothing KVSs (DeCandia et al., 2007, Lakshman & Malik, 2010) are essentially

DHTs, deployed in a completely decentralised architecture (i.e., a P2P network). There

is a need for decentralised coordination between the nodes to execute data distribution.

However, as discussed in Subsection 3.2.1, the current-state data partitioning strategies,

i.e. virtual-node-based, rely on either hash functions for static partitioning, which leads to

the issue of data skew, or centralised components for distributed coordination, which is

not applicable to decentralised KVSs.

This chapter describes the design of a middleware layer that provides a decentralised

scheme of data partitioning and reallocation to improve the efficiency of node changes in

shared-nothing KVSs. The main contribution of this work is a decentralised automated

partitioning scheme that consolidates each partition of data into single transferable rep-

licas. This scheme is extended from the virtual-node-based partitioning strategies. It

eliminates the overhead of migrating individual key-value pairs, and overcomes the is-

sue of data skew introduced by static partitioning in the virtual-node-based approach.

Through automated partitioning, the data volume of each partition replica is confined

into a bounded range.

This chapter also discusses the related placement and migration schemes for the con-

solidated partition replicas. The placement algorithm evenly reallocates the replicas when

a node is bootstrapped or decommissioned, with the objectives of: i) rebalancing the data

volume and workload each node undertakes; ii) maintaining high data availability; and

iii) minimising data movement at startup for quick bootstrapping. The data migration

leverages a token ownership mechanism to allow online query processing with eventual

consistency guarantees, while a partition replica is being migrated from the source node

to the destination.

4.2 Design of An Elasticity Middleware

The targeted system follows the typical decentralised shared-nothing architecture. As

depicted in Figure 4.1, each node (denoted as ni) of a KVS runs in one single virtual

machine (VM), provisioned from IaaS providers such as Amazon EC2 (Amazon, 2006b).

Each VM is attached to an individual persistent storage on which the data assigned to the
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Figure 4.1: The decentralised shared-nothing architecture of Key-Value Stores

node is stored. The key space of a data set is split, or hashed, into multiple partitions.

Each partition, denoted as Pi, is replicated to multiple nodes for high availability, and

each node serves many partitions for load balancing purposes.

The KVS processes queries similar to DHTs such as Chord (Stoica et al., 2001) and

Pastry (Rowstron & Druschel, 2001). Clients can connect to any node and execute CRUD

(create, read, update and delete) operations given the key(s). We term the node to which

a client is connected as the master node for the operation (i.e., ni in Figure 4.1). The

master node consults with the routing information to prepare a list of nodes that serve

the key. The query is applied to those nodes via remote procedure call (RPC) and the

result is returned to the client via the master node. Unlike DHTs that use multiple-hop

routing, each node of the KVS maintains enough routing information locally so as to route

a request to the appropriate node directly, i.e. in 0-hop (Gupta et al., 2003b).

This section discusses the design of a middleware layer that sits between the key space

of a data set and the storage of nodes. The design assumes the presence of a number

of techniques that are already implemented in the KVS. First, a membership and failure

detection protocol, such as gossip-based messaging (Van Renesse et al., 1998). Second, a

sloppy quorum approach, like hinted handoff (DeCandia et al., 2007), to tolerate temporary

node or network failure. Last but not least, data objects are assigned with timestamps,

and a timestamp-based reconciliation is used to ensure eventual consistency.

The following of this section describes the synthesis of an automated partitioning al-

gorithm, a decentralised coordination scheme, a replica placement strategy for dynamic

node changes, and a data migration approach that maintains online query and data

consistency, which together improve the efficiency of elasticity for decentralised, shared-

nothing KVSs. The notational conventions used throughout the chapter are summarised
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Table 4.1: Notational Conventions

Notation Description

N The number of nodes in a KVS
Q The number of partitions of a key space
ni The ith node in a KVS
Pi The ith partition of a keyspace
Ti The ith token that defines the boundary of Pi and Pi+1

νi The total number of replicas of Pi

Θmax The upper-bound size of a partition
Θmin The lower-bound size of a partition
K The replication number
L The consistency level
hi,t The local hit count of Pi between time t− 1 and t
Hi,t The moving average of the local hit count of Pi at time t
Wi The workload of the node ni in certain period
Ri The total number of replicas that the node ni has

i, j, k Non-negative integers
{xi}ni=1 The set of n elements, wherein the argument x could be any variable
σx The standard deviation of {xi}ni=1

x The average value of {xi}ni=1

in Table 6.1.

4.2.1 Automated Data Partitioning

The aim of automated partitioning is to confine the actual volume of data in each partition

into a bounded range. The benefit is three-fold. First, partitioning is adapted to the

change of data volume, thus eliminating the concern of data skew in the virtual-node-

based approach. Second, each partition replica can be consolidated as a single storage

unit, which can be easily moved across nodes without extra preparation of data, such as

scanning or reassembling. Third, the task of load-balancing becomes easier, because every

partition replica contains similar volume of data, which means balancing the number of

replicas in each node can result in a balanced distribution of data.

This subsection describes the partitioning strategy in the view of the key space, and the

next subsection presents the coordination over a cluster of decentralised nodes to execute

an automated partitioning task in a decentralised manner.

A Varient of Consistent Hashing

The partitioning algorithm builds on consistent hashing (Karger et al., 1997), in which

the largest hash value is wrapped around to the smallest to form a fixed circular space
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or “ring”. As shown in Figure 4.2a, when a data table is created (or declared), a sorted

list of tokens, {Ti : 0 < i ≤ Q}, are generated to segment the key space of the data into

Q consecutive equal-size key ranges. Note that in consistent hashing, T0 = TQ, and Q is

configurable by the KVS administrators. Each key range defines one partition of data.

Therefore, each partition Pi can be associated with the token Ti, which defines the upper

bound of Pi. The lower bound is determined by the predecessor Ti−1. To lookup a key,

simply walk the ring clockwise to find the first token that is larger than the key. Thus,

the key locates in the partition represented by the found token.

This variant of consistent hashing was adopted by Dynamo (DeCandia et al., 2007),

and has been widely followed by Project Voldemort (2009), Riak (Basho Tech., 2012), and

Cassandra (Apache, 2009, version 1.2 onwards). As discussed, it is a static partitioning

strategy, which is prone to data skew issues when the key distribution of the data set

is biased. To overcome this limitation, this thesis proposes an automated partitioning

algorithm extended from this variant.

Definitions of Split and Merge

Let Size(Pi) be the data volume of the partition Pi, termed as the partition size. The

maximum size Θmax and the minimum size Θmin are constant, and are defined as in

Equation 4.1 before the KVS starts up. Hence, a partition Pi is split, when Size(Pi)

exceeds Θmax as a result of data insertion. At least one resulting partition after the split

has a partition size larger than Θmax/2. Conversely, two adjacent partitions (e.g., Pi−1

and Pi) are merged, when their total data volume falls below Θmin due to data deletion.

Therefore, the size of the merged partition is less than Θmin.
∀i ∈ [1, Q], Size(Pi) ≤ Θmax

∀i ∈ [1, Q], Size(Pi−1) + Size(Pi) ≥ Θmin

(4.1)

To avoid oscillation between split and merge, it is required that Θmax > Θmin. In

practice, we set Θmax ≥ 2Θmin. Therefore, when a partition is equally split (i.e., original

Size > Θmax ≥ 2Θmin), each sub-partition size is no less than Θmin, which does not

trigger a merge even if the size of the adjacent partition is zero. Also, when two partitions

are merged, the resulting partition size is approximately Θmax/2, which is only halfway

down to trigger a split.
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Figure 4.2: The automated data partitioning algorithm

Given Θmax and Θmin, we can also provide an estimation of the actual data volume of

a partition on average. It is assumed that data objects (i.e., key-value pairs) are randomly

inserted and deleted across the key space and over a long run. We consider the total

size of any two adjacent partitions. According to Equation 4.1, the maximum total size

(of two partitions) can be 2Θmax, while the minimum total size can be Θmin. Since the

data is randomly scattered, the average total size of two adjacent partitions is close to the

median of the maximum and the minimum, which is (2Θmax + Θmin)/2. Hence, it can be

estimated that the average data volume of a partition, denoted as Size(P ), is given by

Equation 4.2.

Size(P ) = Θmax/2 + Θmin/4 (4.2)

This estimation helps the KVS administrators to decide the values of Θmax and Θmin.

For example, let Θmax = 2Θmin. Then, the average partition size is 0.625Θmax, that is,

62.5% of the upper bound.

Split and Merge Operations

Figure 4.2b illustrates the management of key ranges during partition split or merge.

When the partition Pi is split, a new token Tnew is chosen between the key range of Ti−1

and Ti, such that the resulting sub-ranges (Ti−1, Tnew] and (Tnew, Ti] contain roughly equal

volumes of data. Since the tokens form a sorted list, when Tnew is inserted into the ring,

Tnew becomes the new Ti. The original Ti becomes Ti+1, and Ti+1 becomes Ti+2, and so

forth. Although the insertion of Tnew increases the ordinals of its following tokens, it only

changes the key range of Pi, which is split into the new Pi and Pi+1.
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To merge two adjacent partitions Pi and Pi+1, the token Ti that sets the boundary

of these two partitions is removed. Thus, the merged key range is (Ti−1, Ti+1]. Similarly,

when Ti is removed, the original Ti+1 becomes the new Ti, and the ordinals of the following

tokens move forwards. Thus, Pi and Pi+1 are merged as the new Pi.

By comparison, the operation of split is straightforward since it is associated with only

one partition. However, the operation of merge involves with two partitions, and thus

requires additional considerations. On one hand, since a partition with small volume of

data is easy to migrate over the nodes, there is less harm in retaining “sparse” parti-

tions that contain small amount of data, rather than merging them aggressively, which

introduces extra workload. On the other hand, keeping the sparse partitions downgrades

load-balancing, as these partitions are more likely to attract fewer workloads. In addi-

tion, maintaining a large number of partitions also increases the overheads of metadata

management.

Hence, we attempt to merge partitions whenever applicable, except for two scenarios.

First, two adjacent partitions will not be merged, if they are not stored on the same set

of nodes. Note that each partition is replicated to a set of nodes. A merge will not

be executed if there exists at least one node that stores only one of the two adjacent

partitions. In most cases, it is not necessary to move the two partitions onto the same

set of nodes for the sake of merging partitions. However, it does no harm to move the

partitions if both the source and destination nodes have sufficient idle resources. This idea

is similar to Slacker (Barker et al., 2012), which proposes “slack migration”. Second, we

try to maintain a minimum number of partitions in each key space. If the actual number

of partitions is no greater than the predefined value Q, then the merge operation will not

be triggered. This is to restrict excessive merging of partitions, especially when a table is

recently created while the data is not yet populated.

Rebuilding Replicas for Automated Partitioning

The challenge of automated partitioning, either split or merge, lies in the consolidation

of each partition replica as a single transferable unit. It requires that, data objects (i.e.

key-value pairs) belonging to different partitions, should be stored in separate data files.

A consolidated replica can be transferred in the form of a list of data files, rather than

key-value pairs. Compared to KVSs that do not specifically use separate files for different
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Figure 4.3: Rebuild replicas during automated partitioning

partitions, this consolidation reduces the overheads of data migration in two ways. First, it

saves the computation of serialising (or marshalling) key-value pairs for the sake of trans-

mission. Second, it eliminates the scan for every desired key-value pair to be reallocated,

and the reassembling into data files at the destination.

Figure 4.3 illustrates how to rebuild a consolidated replica when a partition is split or

merged. When splitting a partition Pi with a token Tnew, the data files of a Pi replica

is rewritten into two groups of files: one stores the key-value pairs with the keys ranging

between Ti−1 and Tnew, while the other stores the data between Tnew and Ti+1. In contrast,

when merging Pi and Pi+1, the data files of these two partitions are rewritten into one

group of files, which stores key-value pairs ranging between Ti−1 and Ti+1.

Rebuilding replicas of the affected partitions is the key operation in automated parti-

tioning. It takes off the overheads in data migration during node bootstrapping and decom-

missioning, by preparing the partition replicas as transferable units in advance. However,

since each partition has multiple replicas in different nodes, it requires a decentralised co-

ordination scheme to accomplish the task of rebuilding replicas. This coordination scheme

is presented in the following subsection.

4.2.2 Decentralised Coordination

Coordination of Data Partitioning

Since each partition is replicated to multiple nodes, the operation of rebuilding each local

replica is executed by different nodes asynchronously. Thus, coordination is required

to ensure the consistency of the key space and persistent data across the nodes that

participate in partitioning. As shown in Figure 4.4, data partitioning in a distributed

KVS is coordinated in four steps. In the following discussion, the partitions that are to

be split or merged, are termed as the targeted partitions, while the nodes that host the
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Figure 4.4: Automated partitioning with election-based coordination

targeted partitions are termed as the participating nodes.

Step 1: Election.

When the data volume of certain partition replicas reaches the boundary (Θmax or

Θmin), the node that serves the targeted partitions initiates a partitioning operation.

This operation can be initiated by multiple participating nodes simultaneously. Hence, a

coordinator node should be nominated to supervise the whole operation.

The election of a coordinator relies on the Chubby implementation (Burrows, 2006),

which is extensively used by Bigtable (Chang et al., 2006) for a variety of distributed

tasks. According to Chubby, the coordinator must obtain votes from a majority of the

participating nodes. The votes are also attached with the promises that those participating

nodes will not elect a different coordinator for a time interval known as the master lease,

which is periodically renewed. In our design, the node that initiates the partitioning

retrieves the complete list of nodes that serve the partition. The list is sorted by certain

criteria, and the node on top is voted as the coordinator (for this single operation only).

The other participating nodes also vote for the node on top of the list. Thus, the node

that receives a majority of votes becomes the coordinator. Note that the coordinator is

also a participating node that rebuilds its replica.

There are two challenges with this election mechanism. First, some participating nodes

may use an outdated partition-node mapping, and vote for different nodes. The remedy

is to force the nodes to “gossip” their lists of nodes serving the targeted partitions before

the election. Each node updates the gossip message, by answering whether it owns the

targeted partitions or not. Thus, the information of partition-node mapping is updated via

gossiping. Second, in some KVSs, each partition is replicated to only two or three nodes.
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A consensus cannot be reached if one or two of the participating nodes fail to respond.

To address the issue that a consensus cannot be reached among the participating nodes, a

public vote is initiated instead, where all the living nodes of the KVS are invited to vote

in the election.

Step 2: Notification.

The elected coordinator makes all the decisions for this single partitioning operation.

In the case of a split, the coordinator calculates the splitting token Tnew based on its

own the local replicas of the targeted partition. This token Tnew will be used by all the

participating nodes. In the case of merge, the coordinator examines whether the extra

prerequisites for merging are satisfied. For example, the two targeted partitions should be

located on the same list of nodes. And if they are not, the coordinator decides whether a

reallocation of the targeted partitions can be performed between any idle nodes available.

In our design, the coordinator identifies an idle node based on a threshold of the cpu

utilisation, which is pre-defined by system administrators (e.g., cpu usage below 30%).

Once the prerequisites are met, the coordinator notifies that a split or a merge should

be launched. Then, all the participating nodes start to rebuild their own replica after they

receive the notification. On the other hand, if the prerequisites (of a merge operation) are

not met, the coordinator will cancel this operation. To prevent the participating nodes

from repeatedly initiating the same merge operation that is to be canceled, the coordinator

notifies that this operation should not be submitted within a long time period.

Step 3: Synchronisation.

The operation of rebuilding replicas is executed within the participating nodes. De-

pending on the size of replicas and the workload each node undertakes, the time taken to

rebuild the replicas can be varied. This operation is completed asynchronously by differ-

ent nodes. When a node finishes, it notifies the coordinator and then waits for further

announcement. The coordinator synchronises this operation until all the participating

nodes have finished.

During this operation, each participating node creates the internal replicas for the new

partitions after split or merged, but still uses the original partitions for query processing.

From the perspective of the non-participating nodes, the key space remains unchanged,

unless the coordinator makes relevant announcement.

Step 4: Announcement.
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Once the coordinator has received the acknowledgement of Finish from all the par-

ticipating nodes, it notifies the participating nodes to replace the old replicas with the

newly-built replicas. The participating nodes update the internal file pointers and ac-

knowledge the replacement immediately. Finally, the coordinator announces globally that

the key range of the affected partition should be updated to the new range. On receiving

this final announcement, every node in the KVS updates the query routing information.

At this point, the partitioning operation is completed.

Failover During Data Partitioning

Based on the four-step coordination described, we discuss how to handle node failures

during a partitioning operation. This failover scheme aim to achieve two goals. First,

if only one participating node fails during the process, the partitioning can proceed and

succeed regardless of whether the failed node can resurrect or not. Second, if more than

one participating node fail, the partitioning operation can be aborted and rolled back

without data loss.

The failure detection in our system is gossip-based (Van Renesse et al., 1998). The

first challenge is the failure of failure detection. We assume detection error exists, since

a failure detector is not always completely accurate. There are two types of detection

errors. A false-negative detection error, due to the delay in detection, considers a node as

still alive, while the node is actually dead. In our design, the communication between a

coordinator and a non-coordinator follows the typical three-way handshaking policy as in

a TCP connection. Hence, this type of error can be easily detected, because each message

requires an acknowledgment from the receiver. In contrast, a false-positive detection error

is usually caused by message loss. It detects a node as dead, while the node is still alive.

We focus on addressing this type of detection error in the failover scheme.

Figure 4.5, extended from Figure 4.4, depicts the failure recovery scheme. As shown,

the discussion of the failover falls into three parts, depending on a participating node is

detected as failed (by gossip) before, during, or after the execution of rebuilding replicas

of the partition Pi. In the following, Tpause is defined as a time period that is longer than

twice the end-to-end gossip broadcast delay. This time period is effective in allowing the

failed node to resurrect, because most temporary node failures are due to false-positive

detection errors caused by message loss.
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Figure 4.5: Failure recovery in the election-based coordination

Before the execution.

This phase starts when a partitioning operation is initiated, and ends before a noti-

fication for partitioning is sent out by the coordinator. In this period, if a participating

node is detected as failed, the partitioning procedure is paused for Tpause. There are three

scenarios following the pause. First, if more than one participating nodes are detected as

failed, then the partitioning operation is aborted. Second, if only one participating node

fails, and it is the coordinator, then a different coordinator should be elected, even when

the previous coordinator resurrects. Third, if it is one non-coordinator that fails, then the

partitioning operation should continue after Tpause.

In addition, the node that resurrects within Tpause can continue to participate in the

operation, while the node that resurrects after Tpause is not allowed to participate. Yet, this

node continues to serve queries for the targeted partitions, until the coordinator announces

an update to the key range (at the end of Step 4). At this point, this node invalidates its

own replicas, and it will no longer serve the targeted partitions.

During the execution.

This phase starts when the notification for partitioning is sent, and ends when all

the living nodes have finished the execution of rebuilding replicas. During this period, if

there is only one node (even it is the coordinator) that fails, the other participating nodes

continue the operation of rebuilding the replicas regardlessly. However, if more than one

participating nodes are detected as failed, and remain dead for a period of Tpause, then

-. 

L--J_______ ! ~D 
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the operation is aborted.

The challenge here is to determine the number of failed nodes if the coordinator itself

fails. In the design, every participating node maintains the complete list of participating

nodes, and is responsible for detecting node failures. Thus, any participating node that

confirms the event of multiple node failures (i.e., after waiting for Tpause), can announce

the abortion of partitioning via broadcast.

After the execution.

The execution of rebuilding replicas is considered complete when all the living nodes

have finished the execution, with no more than one node failed during the execution. At

the end of the execution, if there is one failed node, then the partitioning procedure is

paused for another Tpause to await the node’s resurrection. If the node resurrects within

Tpause, the other nodes should await until the resurrected node finishes rebuilding its

replicas. Otherwise, the failed node is excluded from the participation list.

Now that all the living nodes have been settled, the targeted partitions will be inval-

idated from any dead nodes. In addition, if the dead node is the coordinator, then a new

coordinator is elected amongst the living nodes, following the same algorithm as in Step

1. Once the coordinator is in presence, it announces that the partitioning is successful, as

in Step 4.

In any other scenarios that are not discussed above, the partitioning operation can be

safely aborted. Such abortion does not incur any data loss, because the original partition

replicas are still in use before the final announcement from the coordinator. The aborted

partitioning operation will be reinitiated after a long pause. In addition, during the fail-

over, some failed nodes have invalidated their own replicas. If they resurrect, these nodes

have the priority to regain the ownership of the targeted partitions after the partitioning

operation is completed or aborted.

Hence, this automated partitioning algorithm consolidates partitions that are suitable

for efficient data migration. Based on such consolidated replicas, the next subsection

discusses the replica placement strategy for node bootstrapping and decommissioning.

4.2.3 Replica Placement

This replica placement scheme is focused on the assignment of partition replicas to the

nodes. It differs from, but does not contradict, the ElasticCopyset placement scheme
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described in Chapter 6, which determines how to group the nodes for higher data durability

at multiple node failures. Hence, both placement schemes can co-exist in a KVS. Listed

is a number of rules that this placement scheme follows. The notational conventions used

can be found in Table 4.1.

• Rule 1: Complexity Reduction. Partition reallocation and repartitioning are

mutually exclusive. That is, partitions that are being split or merged will not be

selected for reallocation, and partitions that are being reallocated will not be split

or merged. This is to avoid the complex coordination between data placement and

partitioning.

• Rule 2: High Availability. Each partition Pi has νi replicas allocated in νi

different nodes. The replication number, denoted as K, is configurable by the system

administrators. It is required that ∀i ∈ [1, Q], νi ≥ K, wherein Q is the number of

partitions. If a partition has less than K replicas (e.g. due to node failure), a replica

should be duplicated to a separate node.

• Rule 3: Load Balancing. The load on a node is reflected in its CPU usage, as the

CPU is a load-dependent resource. The workload of node ni is denoted as Wi. The

nodes with higher workloads have higher priority to offer replicas. Hence, heavily

loaded nodes have the priority to move out more replicas (thus shifting the workload)

to the new node.

• Rule 4: Data Balancing. Since each partition replica is confined into bounded

sizes by automated partitioning, balancing the number of partition replicas can result

in balancing the volume of data stored in each node.

The rest of this subsection elaborates a two-phase data migration strategy to achieve

quick node bootstrapping and load balancing, with Algorithm 1 and Algorithm 2 for popu-

lating a new node presented. Next, Algorithm 3 is presented as a strategy for redistributing

replicas when a node is decommissioned. This discussion finishes with Algorithm 4 for

dealing with node failures.

Node Pre-bootstrapping

In the pre-bootstrapping phase, the new node aims at maintaining high availability (re-

ferring to Rule 2) and alleviating nodes under heavy workloads (Rule 3). As shown in
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Algorithm 1 Generate replica operations for the pre-bootstrapping phase

1: ops← newEmptyList()
2: for i = 1→ Q do
3: if IsPartitioning(Pi) = true then . Referring to Rule 1
4: continue
5: else if νi < K then . Referring to Rule 2
6: op← replicate(Pi)
7: ops.add(op)
8: end if
9: end for

10: {Wi}Ni=1 ← getWorkloadByNodes()
11: for i = 1→ N do
12: if IsHeavyLoad(Wi) = true then . Referring to Rule 3
13: {Pj}kj=1 ← getPartitionsFrom(ni)

14: total← k ∗ proportion
15: count← 0
16: for j = 1→ k do
17: if count ≥ total then
18: break
19: else if containsPartition(ops, Pj) = false then
20: op← migrate(Pj , ni)
21: ops.add(op)
22: count← count+ 1
23: end if
24: end for
25: end if
26: end for
27: return ops

Algorithm 1, the new node will skip all the partitions that are being split or merged (Rule

1). Next, for those partitions that do not meet the replication number K, it will make

an extra replica (i.e., replicate(Pi) in Line 6). After that, the new node pulls in a small

proportion of the replicas from each heavily loaded node, defined by IsHeavyLoad(Wi) in

Line 12. Once the new node receives these replicas, it completes bootstrapping and starts

serving queries immediately as a member of the KVS.

The CPU usage is collected to estimate the workload each node undertakes. Wi repres-

ents the moving average of the CPU usage in ni. The CPU usage (i.e. Wi) is piggybacked

on the heartbeat gossip message, sent by each living node periodically and cached by every

other node. Therefore, a new node can download complete workload information from any

existing node. This operation is referred to getWorkloadByNodes() in Algorithm 1. A

node is marked (by the new node) as heavily loaded, if its CPU usage exceeds a certain

threshold, which is left for the KVS administrators to decide. One example of the threshold



4.2. DESIGN OF AN ELASTICITY MIDDLEWARE 83

P1 ... ... Pk
1

2

3

4

k...

k/2Pk/2-1P k/2+1P

P1... ... Pkk/2P k/2-1P k/2+1P

end

start

1 2 3 ... ... kk-1

Preferred List

Preference

Sorted List

...

Figure 4.6: Prepare a preference list of partitions to move out

is that the CPU usage is over 50% and reasonably (e.g. 20%) greater than the average of

all the nodes.

There are also considerations on how to select partition replicas, when an existing node

is requested to offer data. Each node maintains an exponential moving average (EMA) of

the local hit count for each replica, which is updated periodically as in Equation 4.3. For

partition Pi at time t, the moving average of the local hit count is denoted as Hi,t, while

the actual local hit count between time t − 1 and t is denoted as hi,t. The coefficient α

represents the degree of weighting decrease, and is tuneable by system administrators. A

higher value of α means a greater weight that hi,t contributes.

Hi,t = αhi,t + (1− α)Hi,t−1 (4.3)

Figure 4.6 describes how to prioritise the orders for the partition replicas to move

out. Firstly, the node sorts its own replicas by the EMA of hit count. Then, the pointer

traverses the sorted list starting from the middle, and hops towards the left and right ends

alternately. Thus, the hottest and coldest partitions are placed at the end of the preference

list. This strategy is designed to avoid the greedy heuristic, which has two limitations.

First, moving the hottest replicas will hurt the query performance during the migration,

and may overwhelm the destination node. Second, moving the coldest replicas does not

help shift the workload over the nodes, but only feeds a new node with large amounts of

unpopular data.

When the new node receives such a preference list of partition replicas (i.e. via

getPartitionsFrom(ni) in Line 13), it chooses a small proportion of partitions from the

top of the list. The value of proportion (Algorithm 1, Line 16) is given by proportion =

minimum(1/N, 10%), where N is the number of nodes. Thus, even if all the N nodes are

heavily loaded, the new node will take over only an average number of replicas during the

-4 I I I I I I I 
I> 
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Algorithm 2 Generate replica operations for the post-bootstrapping phase

Require: ops . Requires operation records from Algorithm 1
1: R←

∑Q
i=1 νi/(N + 1) . Average #replicas each node will have

2: {Wi}Ni=1 ← getWorkloadByNodes()
3: nodeList← getSortedList({Wi}Ni=1, descend) . Referring to Rule 3
4: for i = 1→ N do
5: node← nodeList.get(i)
6: {Pj}kj=1 ← getPartitionsFrom(node)

7: total← maximum(k −R, 0) . Referring to Rule 4
8: count← 0
9: for j = 1→ k do

10: if count ≥ total then
11: break
12: else if IsPartitioning(Pj) = true then . Referring to Rule 1
13: continue
14: else if containsPartition(ops, Pj) = false then
15: op← migrate(Pj , node)
16: ops.add(op)
17: count← count+ 1
18: if ops.size() ≥ R then . Referring to Rule 4
19: return ops
20: end if
21: end if
22: end for
23: end for

pre-bootstrapping phase. The value 10% is used to handle a small cluster with less than 10

nodes, in which case each node offers 10% of its replicas. In addition, when the new node

traverses the list, it chooses those partitions that are not already selected for migration

(i.e. not found in the ops list). Note that migrate(Pj , ni) moves partition Pj from node ni

to the node that executes this operation, while replicate(Pi) duplicates partition Pi from

any available replica.

Node Post-bootstrapping

In the post-bootstrapping phase, the new node has already been bootstrapped, and aims

to achieve load-balancing in terms of both workload and data volume. The new node

continues to pull in more replicas from other existing nodes, using the operation list

generated by Algorithm 2.

To achieve balanced data volume, let R be the average number of replicas within each

node. The new node recalculates R as in Line 1 of Algorithm 2. The new node will

continue to pull in data as long as it has less than R replicas (Line 18), and an existing
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node keeps offering (i.e. move out) replicas while it has more than R replicas (Line 7).

These operations follow Rule 4, which balances the number of replicas that each node

serves. Since a data set is split into many partitions of a bounded size, assigning an equal

number of replicas is very likely to yield a similar volume of data in each node.

Moreover, in order to balance the workload, the new node prioritises the existing

nodes by their workloads. As shown in Line 7 of Algorithm 2, the nodes with higher

workload have a higher priority to offer replicas. Following the pre-bootstrapping phase,

each node offers a preference list of partition replicas, sorted using the algorithm depicted

in Figure 4.6. Additionally, the process of post-bootstrapping is run in a background

thread, with data transfer rate throttled, so that the side-effects on online query processing

are minimised.

Overall, in this two-phase procedure, the new node receives the majority of its replicas

in the post-bootstrapping phase. The reason is that, in the pre-bootstrapping phase, each

heavily loaded node offers only a small proportion of replicas, and in most cases, not every

node is heavily loaded. By comparison, in the post-bootstrapping phase, the new node

can pull in data from any node (no matter loaded or not) until it has acquired R replicas.

Therefore, the volume of data transferred in pre-bootstrapping is reduced by a large extent,

and the first phase of bootstrapping is completed in a timely manner. Hence, the new

node is able to start serving queries within a short time after it is initiated, and therefore

achieves quick bootstrapping.

Node Decommissioning

There are circumstances when node decommissioning is necessary. First, provisioned com-

puting resources may become redundant due to decrease in workload demand. For ex-

ample, none of the living nodes is heavily loaded and there exist nodes that receive less

queries than expected. Second, a living node is misbehaving, e.g. it is failing more often

than it should or its performance is noticeably slow. Third, the system administrators

may reduce the system scale due to other strategic and operational considerations, such

as shutdown for scheduled maintenance of infrastructure. In any case, the decision to

decommission a node is made by the KVS administrators. This discussion is focused on

how to reallocate the replicas when node decommissioning is requested.

Algorithm 3 presents the replica operations for node decommissioning. The node to be
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Algorithm 3 Generate replica operations for decommissioning a node

1: ops← newEmptyList()
2: {Hi,t}ki=1 ← getHitCounts() . Sort replicas in descendant by hit count
3: replicaList← getSortedList({Hi,t}ki=1, descend)
4: {Wi}N−1

i=1 ← getWorkloadByNodes() . Sort nodes in ascendant by workload
5: nodeList← getSortedList({Wi}N−1

i=1 , ascend)

6: R←
∑Q

i=1 νi/(N − 1)
7: for i = 1→ N − 1 do
8: proportion← getProportion(i,N − 1)
9: maxR← R ∗ (1 + proportion) . Allow extra replicas for idle nodes

10: if replicaList.size() ≤ 0 then
11: return ops . Move out until no replica left
12: end if
13: node← nodeList.get(i)
14: count← getReplicaCount(node)
15: for j = 1→ replicaList.size() do
16: replica← replicaList.get(j)
17: if count ≥ maxR then . Accept replicas until maximum
18: break
19: else if containsReplica(node, replica) = false then
20: op← moveTo(replica, node)
21: ops.add(op)
22: count← count+ 1
23: replicaList.remove(replica)
24: end if
25: end for
26: end for

decommissioned moves out its replicas one by one, sorted in descending order of average hit

count Hi,t (Equation 4.3). The destination nodes that accept the replicas are prioritised

based on their workloads in ascending order. And the nodes with a lower workload are

allowed to accept an extra proportion of replicas than the average number of replicas that

each node should have.

It is worth mentioning that Algorithm 3 assigns different proportions of replicas to

nodes with different priorities. As shown in Line 8, the value of proportion is determined

by the position of the node in the list. In the design, the return of getProportion(i,N−1)

is given by (1 − i
N−1) ∗maximum( 1

N−1 , 10%), which equals maximum( 1
N−1 , 10%) when

i = 0, and decreases to 0 when i = N − 1. Similar to the proportion value in node

bootstrapping, the function maximum( 1
N−1 , 10%) is used to deal with a small cluster of

less than 10 nodes. In this way, the nodes with lower workloads receive approximately

10% more replicas than they should have, while the nodes with higher workloads may not

receive any replica, because the decommissioning node may have moved out all its replicas
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(Line 11).

These prioritisation prefers to balance the query workload rather than the data volume,

because storage is much cheaper than the computation on the Cloud. Overall, the replicas

from the decommissioning node are scattered over many living nodes, and the nodes with

a lower workload receive more replicas that are popular in terms of hit count. In the end,

the node can safely leave the KVS when there are no more replicas under its ownership.

Recovery from Node Failure

Node failure is common in distributed systems, usually caused by hardware malfunction,

network failure or even human misbehaviour. Although in certain circumstances multiple

nodes may fail simultaneously, this discussion is focused on dealing with single node failures

that occur unexpectedly.

To continually serve queries during node failure, hinted handoff (DeCandia et al.,

2007) is used. To illustrate, when a node ni is unreachable for a write, a copy of the write

operation is sent to another node nj that does not currently serve the partition for the

write. This is to maintain the desired availability guarantees (i.e., at least K replicas).

This destination node nj is termed as the surrogate node, and will write a hint in its

metadata, suggesting that the write was intended for ni. Once nj detects that ni has

resurrected, it will attempt to deliver the copies it saved back to ni. Finally, the surrogate

node nj can safely delete the copies once the transfer succeeds in ni.

However, hinted handoff is intended for transient node failures. If the failure becomes

permanent, additional replicas have to be created for all the partitions that were hosted by

the dead node, so that the availability requirements (i.e. Rule 2) are met. There are two

approaches to provide recovery from permanent failure. One strategy is to bootstrap a new

empty node. In the pre-bootstrapping phase, this new node will make an extra replica

for those partitions that do not meet availability requirements (shown in Algorithm 1,

Line 6). Alternatively, the existing nodes have to create the replicas among themselves,

which is termed here as spontaneous recovery.

The procedure of spontaneous recovery follows the same coordination described in

Subsection 4.2.2. It is initiated by a surrogate node of hinted handoff (i.e. nj in the

previous discussion). There can be multiple surrogate nodes in presence, since the dead

node was serving multiple partitions. When one of the surrogate nodes decides that a
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Algorithm 4 Generate replica operations for spontaneous recovery

1: ops← newEmptyList()
2: partitionList← newEmptyList()
3: for i = 1→ Q do
4: if IsPartitioning(Pi) = true then . Referring to Rule 1
5: continue
6: else if νi < K then . Referring to Rule 2
7: partitionList.add(Pi)
8: end if
9: end for

10: {Wi}Ni=1 ← getWorkloadByNodes() . Sort nodes in ascendant by workload
11: nodeList← getSortedList({Wi}Ni=1, ascend)

12: R← (partitionList.size() +
∑Q

i=1 νi)/N
13: for i = 1→ N do
14: proportion← getProportion(i,N)
15: maxR← R ∗ (1 + proportion) . Allow extra replicas for idle nodes
16: if partitionList.size() ≤ 0 then
17: return ops
18: end if
19: node← nodeList.get(i)
20: count← getReplicaCount(node)
21: for j = 1→ partitionList.size() do
22: partition← partitionList.size(j)
23: if count ≥ maxR then . Accept replicas until maximum
24: break
25: else if containsPartition(node, partition) = false then
26: op← replicateTo(partition, node)
27: ops.add(op)
28: count← count+ 1
29: partitionList.remove(partition)
30: end if
31: end for
32: end for

node is permanently dead (e.g., after waiting for a long time), it initiates a public vote

that requires all the living nodes to elect a coordinator.

The coordinator is responsible for generating a list of replication tasks based on Al-

gorithm 4. This algorithm shares a very similar logic to the distribution of replicas for

node decommissioning (Algorithm 3), except that the coordinator does not prioritise the

partitions for replication. Another difference is that, in node decommissioning, the rep-

licas are moved out to the other living nodes (Algorithm 3, Line 20); while in spontaneous

recovery, the coordinator requests a less loaded node to replicate the partition from other

living nodes (Algorithm 4, Line 26).

As can be seen, each replication task consists of a partition to be replicated and a
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destination node to host the replica. The coordinator assigns the tasks to each related

node, and supervises the execution of these tasks until they are completed. The node that

executes a replication task is free to choose the source node from which the partition is

replicated. It finishes by sending an ack back to the coordinator. Once the coordinator has

collected the acknowledgement of completion for all the tasks, the procedure of spontaneous

recovery is successfully completed.

As in any distributed process, there is a probability of failure during spontaneous

recovery. The coordinator may fail during the process, and is replaced by re-election. A

new coordinator can decide whether to regenerate a list of replication tasks or continue to

supervise the existing tasks. Besides the coordinator, a node that execute the replication

tasks may also fail. In this case, the coordinator will submit another list of replication

tasks after all the living nodes have acknowledged their completion.

4.2.4 Data Migration

In the previous subsection, the replica placement scheme generates a list of replica op-

erations, each consisting of a partition Pi to operate, a source node ns to offer data, a

destination node nd to receive data, and the operator, which can be either migrate or

replicate. The challenge of executing these operations is to maintain data consistency

guarantees during data migration. This subsection first introduces the consistency model,

followed by a token ownership policy that is tailored to the consistency model. Last but

not least, it presents a proof that demonstrates the data consistency is maintained.

Consistency Model

The consistency model here follows that of Cassandra (Apache, 2009) wherein KVS users

define a consistency level L for each individual query operation. Different consistency levels

require different numbers of nodes to acknowledge before a query operation is considered

valid. A higher consistency level needs more nodes to respond, thus increasing the request

latency, while a lower consistency level requires fewer nodes to reply, but is prone to

reading stale value and losing a recent write. Therefore, the users can trade consistency

guarantees against request latencies.

It is worth mentioning that, the consistency level L is independent from the replication

number K (Subsection 4.2.3, Rule 2). The replication number requires each data object
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Types of
node set

Number of
nodes

Responsibility Time to
respond

Query type

L set ≥ the maximum
consistency level

Serve online query
for Pi

Immediately Both read
and write

K set ≥ the replication
number

Maintain replicas for
Pi for availability

Eventually Delayed
write, no read

Table 4.2: The sets of nodes entitled to serve query operations for a partition Pi

to be eventually copied into K replicas for the concerns of availability and durability. In

contrast, the consistency level requires L nodes to respond before a query operation is

committed. Hence, L ≤ K. Regarding to a write operation, the first L nodes that have

acknowledged the write, will propagate the value to all the K nodes eventually, i.e., to

provide eventual consistency.

From the perspective of query processing, the group of nodes that are entitled to

achieve the consistency level L for certain partition, is termed as the L set, while the

group of nodes entitled to maintain the K replicas, is termed as the K set. There are

implications regarding these two sets, summarised in Table 4.2.

Being in an L set means that, a node is capable of serving both read and write oper-

ations for the related partition at any time. Hence, it requires that the latest writes be

propagated to this node, which means that, a node in the L set also belongs to the K set

of the related partition. Conversely, being in a K set does not make the node responsive to

query operations. It only means the writes of the related partition should be propagated

to this node eventually, for the sake of availability and durability. In other words, the K

set of nodes should store data of the related partition, but do not necessarily serve online

query. In almost all the KVSs, the L set and the K set are the same set of nodes that

serve the partition, except in the our proposed scheme of data migration, where the L set

is a subset of the K set, i.e. L set ⊆ K set.

Token Management for Data Migration

A token ownership policy is proposed to ensure data consistency for partition replicas

that are being migrated or replicated. As discussed in Subsection 4.2.1, each partition Pi

is associated with one token Ti. For query execution purposes, only the nodes that are

entitled to host Pi can own the token Ti. Moreover, each token is a boolean value, wherein

a positive token indicates that the node is in both the L and K sets, while a negative



4.2. DESIGN OF AN ELASTICITY MIDDLEWARE 91

ns

nd

t0 t1 t4 t5t3

Negative PositiveNot Assigned

Time

write1 write2 write3

t2 Data Transfer

write4

L setK setAll 
nodes

Figure 4.7: Manage a token during replica migration for data consistency

token allows the node to be in the K set only.

Figure 4.7 depicts when and how to assign and switch the value of Ti, when a replica

of the partition Pi is being migrated from ns to nd. As shown, a request for migrating Pi

is submitted at time t0. The source node ns makes a snapshot of Pi at t2, immediately

transfers the snapshot (i.e. replica) to the destination node nd, and finishes the transfer at

t3. Each time interval between ti and ti+1 is longer than the end-to-end gossip broadcast

delay, so that a message for an update of token value is well propagated.

In terms of token management, the source node ns owns the positive Ti before the

data transfer is completed at t3, because it owns Pi and is entitled to serve online queries

for this partition. In contrast, the destination node nd does not own Pi (or Ti) before t0.

At time t0, the migration task of Pi is initiated, and nd is assigned with the negative Ti.

Having a negative Ti means that, the ongoing writes destined to Pi will be propagated to

nd in the background (by other nodes with the positive Ti). It also means that nd does

not serve any query, because this node does not have the complete replica for Pi. The

gossip message about nd having the negative Ti is spread to the whole network by the time

t1. From t1 onwards, nd is known by the other nodes to be entitled to store the writes

destined to Pi.

The source node ns waits until t2 to start data transfer, so as to leave a sufficient

time window for nd to receive all recent writes dating from t1. The transfer finishes at t3.

On receiving the complete replica, nd takes a short interval to merge the writes that are
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propagated to it between t1 and t3, into the replica. The destination node nd finishes the

merging of writes at time t4, so it possesses an updated replica of Pi just like the other

nodes that own the positive Ti. Hence, nd switches Ti from negative to positive, and starts

to serve online queries for Pi. The message for this token switching is gossiped throughout

the KVS network. At time t5, the source node ns hears that nd has taken over Pi, so it

releases its own token Ti and discards its local replica safely.

In comparison, the operation of replicating replicas (e.g. from ns to nd) is very similar

to migrating replicas. The only difference is that, at the end of data transfer, the source

node ns does not release Ti (or discard the replica), because the intention of replication is

to create an extra replica for Pi.

Consistency during Data Migration

A proof by contradiction is presented to demonstrate that the replica in the destination

nd is consistent with the other existing replicas of Pi. To begin with, we presume that

the data is inconsistent, which means, there exists a recent write that is not saved to nd.

There are four possible scenarios of a committed write, depicted as write1, write2, write3,

and write4 in Figure 4.7.

• The write is committed before t0, i.e. write1. Then ns has enough time (i.e. t2− t0)

to save the write into its replica, which is transferred to nd at t2. Thus, nd sees

write1 at t3, that is, before nd starts to serve queries at t4.

• The write is committed between t0 and t1, i.e. write2. Then this write may or may

not be propagated to nd, depending on when the negative Ti is seen. But ns has

enough time (i.e. t2 − t1) to save the write into its replica before transfer. Thus, nd

still sees write2 at t3.

• The write is committed between t1 and t2, i.e. write3. Then, ns may not have

enough time to save this write into its replica before transfer. However, write3 is

sure to be propagated to nd, because the other living nodes already know that nd is

entitled to store a replica for Pi. Hence, nd sees the latest version of write3 when

the write is propagated to it. At t3, nd may also see another version of write3 in the

replica from ns. The conflicts between different versions are reconciled based on the

timestamp stored in the data object, and “the last write wins” (Thomas, 1979).
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• The write is committed after t2, i.e. write4. Then, ns does not save this write

into the replica (i.e. a snapshot of Pi) that is transferred, but write4 is sure to be

propagated to nd. After nd receives the replica at t3, it sees its own version of write4,

and it reconciles any version conflicts seen based on the timestamp.

Hence, all the possible scenarios of writes are guaranteed to be saved to the destination

node nd. It contradicts the previous presumption, and thereby proves that the replica

migrated to nd is consistent with the other replicas of Pi in the KVS.

Overall, the process of online query is not interrupted by the migration of replicas.

The source node ns is responsible for serving Pi, along with the other nodes having the

positive Ti, during the whole process of data transfer. This avoids interruptions to query

processing, with two time windows to hand over the ownership of the partition. One

time window is before the transfer, i.e. from t0 to t2, during which the destination node

nd becomes eligible to accept writes destined to Pi. The other time window is after the

transfer, i.e., from t3 to t5, when nd possesses the complete replica and is made known to

all nodes that it starts to serve online queries for Pi. These two time windows guarantee

a consistent view of the partition-node mappings for all the KVS nodes.

4.3 Chapter Summary

Efficient elasticity is an important feature for distributed KVSs running virtual machines

(VMs) leased from IaaS Cloud. In order to improve the efficiency of elasticity for shared-

nothing KVSs, this chapter has presented a set of decentralised data management schemes.

It started with an automated partitioning algorithm, which splits and merges partitions

based on the actual data volume in each partition. With automated partitioning, each

partition replica is confined into a bounded size, and is consolidated into a transferable

unit, so that the overheads of data migration at node changes are reduced, and load-

balancing also becomes simpler.

Moreover, this chapter has presented an election-based, fault-tolerant coordination to

facilitate the execution of automated partitioning in a decentralised manner. It is followed

by the description of four replica placement algorithms that determine the assignment

of replicas to the nodes for the scenarios of two-phase bootstrapping, decommissioning,

and unexpected failure, respectively. This placement scheme achieves fast bootstrapping,
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and maintains well balanced workload and distribution of data. Finally, it has depicted

the execution of replica placement decisions, i.e., data migration, which leverages a token

ownership policy to maintain online query processing during data migration, and to provide

eventual consistency.

This set of decentralised data management schemes forms a middleware layer between

the key space of a data set and the storage of the KVS nodes. The major innovations in this

middleware are to automatically partition the data into transferable units for decentralised

KVSs, and to achieve efficient node bootstrapping and decommissioning with the help of

the replica placement and migration schemes that build on the transferable replicas.

The next chapter will discuss the implementation of this middleware layer, to build an

elastic KVS called ElasCass on top of Apache Cassandra. The evaluations of ElasCass on

a public IaaS Cloud will also be presented.



Chapter 5

Implementation and Evaluation of

ElasCass

Idle hands are the devil’s workshop.

– St. Jerome

The previous chapter proposed the design of a set of data distribution schemes for the

efficient elasticity of decentralised shared-nothing KVSs. To realise the proposed schemes,

this chapter presents the implementation and evaluation of ElasCass (Elastic Cassandra),

which is built on top of Apache Cassandra. It starts with an introduction to the challenges

of implementing the proposed data distribution schemes, and then compares a number of

open source KVSs and describes the background of Apache Cassandra. Next, it presents

the three core functionalities implemented in ElasCass. Based on the implementation, this

chapter presents the experimental evaluations of ElasCass against Apache Cassandra, and

then concludes.

5.1 Introduction

Distributed KVSs have become a reference architecture for managing large volumes of data

on servers leased from the IaaS Cloud. The key feature of the Cloud is resource elasticity,

which requires a KVS to bootstrap or decommission a node quickly and frictionlessly. The

previous chapter has targeted the decentralised shared-nothing KVSs, and proposed the

design of a set of data management schemes in this regard. This chapter focuses on the

implementation and evaluation of the proposed design.

95
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There have been a number of open source KVSs that follow the decentralised shared-

nothing architecture introduced in Amazon’s Dynamo (DeCandia et al., 2007), such as

Cassandra (Apache, 2009), Riak (Basho Tech., 2012), and Project Voldemort (2009).

Therefore, leveraging an established KVS is more feasible for implementing the proposed

data management schemes than developing a new KVS from scratch. We have identi-

fied Cassandra (Apache, 2009) as the basis of our implementation due to several reasons.

First and foremost, it follows the decentralised shared-nothing architecture, which matches

our system prototype described in Figure 4.1 (page 70). Second, it derives many design

choices from Google’s Bigtable (Chang et al., 2006) and Amazon’s Dynamo (DeCandia

et al., 2007), both of which are influential KVSs that have demonstrated their success in

serving large volumes of data for interactive web applications and services. Third, it is

an open source software under the development of Apache Software Foundation with an

active community around it.

However, there are challenges to realise our proposed design on top of Apache Cas-

sandra. First, our design requires more sophisticated bindings between the partitions

and nodes, while Cassandra follows the basic consistent hashing (Karger et al., 1997) to

maintain a simple one-to-one mapping. Second, our design demands the consolidation

of each partition replica into one standalone transferable unit, whilst in Cassandra there

does not exist a mapping between data files and partitions. Third, our design proposes

a set of replica placement algorithms based on workload statistics, while Cassandra uses

static assignment. Last, our design relies on election-based coordination to perform a list

of distributed tasks, which is not implemented in Cassandra.

This chapter presents the implementation of ElasCass, which addresses the challenges

described. The implementation consists of a token management component that deals

with dynamic partition-node mappings during automated partitioning and replica realloc-

ation, a data storage component that efficiently confines the files into standalone partition

replicas with a background process, and a replica reallocation component that gathers

workload statistics and coordinates nodes for ensuring consistency during data movement.

In addition, the election-based coordination is integrated with the three components de-

scribed.

This chapter also presents a set of experimental evaluations, carried out using a public

IaaS Cloud, that demonstrates that the proposed schemes of data partitioning and real-
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location: i) distribute data and workload more evenly among the nodes, ii) reduce the

time to bootstrap nodes and improve data movement speed, and thereby, iii) improve the

scalability and throughput of the KVS.

5.2 Background

5.2.1 Existing Open Source KVSs

The aim of this implementation is to build a KVS on top of an existing open source

project, so as to realise the data distribution schemes proposed in Chapter 4. Compared

to developing a brand new KVS from scratch, leveraging an established KVS helps us

concentrate on the data management techniques, and also facilitates benchmarking against

other current-state KVSs.

KVSs that have gained wide attention include Memcached (Danga Interactive, 2004),

Redis (2009), Cassandra (Apache, 2009), Project Voldemort (2009), and HBase (Apache,

2010). Among the variety of choices, we intend to focus on those KVSs following the

decentralised, shared-nothing architecture that is depicted in Figure 4.1 (page 70). As

discussed, this architecture was adopted by Amazon’s Dynamo (DeCandia et al., 2007),

which is proprietary. However, it inspired a number of open source KVSs, including

Riak (Basho Tech., 2012), Project Voldemort (2009), and Cassandra (Apache, 2009). A

comparison among these three KVSs is presented as follows.

Riak (Basho Tech., 2012) follows many design choices in Dynamo. It inherits the

virtual-node approach (Section 3.2.1, page 58), to split the key space into partitions with

an equal-length key range. It retains the simple data model of key-value pairs, wherein

the values are stored on disk as binaries. Riak also has a pluggable backend storage, with

the default being Bitcask (while Dynamo uses Berkeley DB and MySQL as the backend

storage). Bitcask is a log-structured hash table for write-once, append-only queries. There

are two drawbacks in Riak. First, the data model of simple key-value mapping is too

limiting for supporting structured and semi-structured data. Second, the log-structured

Bitcask is not efficient in reads, which is compensated by retaining the whole key space in

memory, and therefore, is not memory conservative.

Project Voldemort (2009) is very similar to Riak. It also uses the virtual-node approach

for data partitioning and replication, and inherits the simple key-value data model. As
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in Dynamo, the storage engines are pluggable, with the default being Berkeley DB and

MySQL. One notable feature of Voldemort is the in-memory caching coupled with storage

system, so that a separate caching tier is no longer required. The other feature is that

several components are made pluggable, such as serialisation, data placement, and storage

engine. However, the query API that supports only simple CRUD operations of key-value

pairs, is not pluggable. This has limited its range of applications.

In contrast to Riak and Voldemort, Cassandra (Apache, 2009) adopts the model of

column family from Google’s Bigtable (Chang et al., 2006). Column family is richer than

the simple key-value model, and is able to support structured and semi-structured data.

Yet it is still simple enough to be efficiently stored in flat-file representation. Cassandra

experienced a major change in the strategy of data partitioning between versions. Prior

to Version 1.2 (which is released on Jan 18, 2013), it followed the traditional consistent

hashing to partition the key space based on the number of data nodes, that is, the split-

move approach described in Section 3.2.1 (page 57). This approach hurts load balancing.

From Version 1.2 onwards, it has adopted the virtual-node approach similar to Dynamo,

Riak and Voldemort. However, our implementation started in 2011. At that time Version

1.0 was the latest release, which adopted the split-move approach.

Cassandra is a mixture of Google’s Bigtable and Amazon’s Dynamo. Its column family

model supports a wide range of applications, while its decentralised, shared-nothing ar-

chitecture offers inherent scalability and the potential to be elastic. According to a recent

survey of DB-Engines (2014c), Cassandra is indeed ranked top of the list of all kinds of

KVSs. Hence, out of the three KVSs discussed, we have chosen Cassandra as the basis of

our implementation.

5.2.2 Overview of Apache Cassandra

Apache Cassandra is a decentralised, shared-nothing KVS that handles large amounts

of data across many commodity machines. Cassandra combines Dynamo’s DHT-like ar-

chitecture (DeCandia et al., 2007), with Bigtable’s data storage schemes (Chang et al.,

2006). Since Cassandra is an ever-developing project, an implementation choice in one

release may be deprecated in a later release. To avoid inter-version confusion, this sub-

section mainly focuses on Cassandra Version 1.0 that served as the stable release between

October 2011 and July 2012, during which ElasCass was implemented.
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Architecture

Apache Cassandra follows Amazon Dynamo’s DHT-like architecture (DeCandia et al.,

2007). A Cassandra cluster contains multiple nodes, which form a P2P, symmetric network

without the presence of any centralised component. Each node is running on one separate

commodity machine, or a VM with a persistent storage device attached individually. The

nodes do not share memory or storage space between each other, and hence, are deployed

in a shared-nothing architecture.

Cassandra (version 1.0) leverages the traditional consistent hashing to distribute the

data across multiple storage nodes. In consistent hashing (Karger et al., 1997), the largest

key wraps around to the smallest key to form a fixed circular space or “ring”. In a

Cassandra cluster, each node is assigned a random value (i.e. token) within this space

which represents its “position” on the ring. Thus, each node becomes responsible for the

region in the ring between it and its predecessor node on the ring. The node associated

with the token is also termed as the coordinator of the related partition. The responsibility

of the coordinator is to maintain a master replica and to decide the surrogate node when

a node storing a slave replica temporarily fails.

Data Distribution

Figure 5.1 depicts how Cassandra distributes its data when a node is added or removed

from the cluster. Scenario 1 shows that, each node serves as the coordinator (i.e. storing

the master replica) for only one partition, the slave replicas of which are stored on the

successor nodes (on the ring) following the coordinator, so as to improve data availability.

For example, Node a is the coordinator of Partition A, which has two slave replicas on

Node b and Node c.

Scenario 2 illustrates how to handle node arrival in Cassandra. A new node is assigned

to a new position on the ring, for example, c1, which is between b and c, and splits

Partition C into C1 and C2. The new node, associated with c1, becomes the coordinator

for Partition C1. Since the new node is the successor of Node a and b, it also serves a

slave replica for Partition A and B, the data of which is replicated from the corresponding

coordinators. In contrast, Node c retains the coordinator ownership for Partition C2, the

other half of Partition C. Moreover, since the new node has occupied Position c1 on the

ring, its successors, namely Node c, d and e, are no longer responsible for Partition A, B
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Figure 5.1: Data distribution at node changes in Apache Cassandra

and C1, respectively.

Conversely, Scenario 3 show how to deal with node departure from Scenario 1. An

existing node, e.g. Node c, fails or is decommissioned. Since it is associated with Token

c on the ring, this token is no longer valid after the departure of Node c. As a result,

Partition C and D are merged into one partition, i.e. Partition CD. The direct successor

of Node c, i.e. Node d, becomes the coordinator for this merged partition. Moreover, since

the replicas of Partition A, B and C are removed along with Node c, the affected partitions

are replicated (from the corresponding coordinators) to Node d, e and a, respectively.

As can be seen, each node change affects its direct successor nodes, the number of

which is equal to the number of replicas each partition has. Although this partitioning

approach leverages consistent hashing (Karger et al., 1997) to affect a minimum number

of nodes, it is not efficient in data migration, as discussed in Section 3.2.1 (page 57).

Data Storage and Access

Apache Cassandra has adopted many design choices from Google Bigtable (Chang et al.,

2006) in terms of data storage and retrieval, including the data model of column fam-

ily, described in Subsection 3.1.1 (page 47), and the processing of read/write operations

(Figure 5.2).

A column family resembles a row-based table in databases. Each data object is

a key-value mapping, wherein the key is the output of certain hash function (either
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MD5/MurmurHash or lexical), and is serialised into an array of raw bytes. The value

of a data object is a collection of standard columns, each consisting of a column name, a

column value and a timestamp. There is also the super column, which is composed of a

column name and a collection of standard columns. In Cassandra, multiple column fam-

ilies share the same partitioning of the keyspace, which resembles a database in database

systems.

Figure 5.2 depicts how to handle the read/write operations in a column family. Each

write (including insert, update, and delete) is considered committed, as soon as the opera-

tion is appended to a write-ahead commit log and the value is buffered in memtable, which

is an in-memory bucket. The memtable is associated with one column family. When the

memtable size reaches a threshold, the memtable is frozen, and is replaced by a new empty

memtable in an atomic operation. The frozen memtable is converted to an SSTable, which

is written onto the disk. The SSTable is an immutable, sorted string data file. Multiple

SSTables (of the same column family) are regularly compacted in the background into

one larger SSTable, so as to reduce metadata and file handlers, and more importantly, to

remove obsolete data objects, including the ones marked as deleted and those overwritten

by a newer version.

In contrast, each read operation attempts to retrieve the value from multiple data

sources. First, it looks up the in-memory cache, including a KeyCache that contains the

location of the related data object on disk, and an optional RowCache that caches query
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results, which is memory-consuming. Second, it checks with memtable to see if the related

data object is recently updated. Last but most important, it retrieves the data object

from a list of on-disk SSTables. Note that the SSTables are immutable, and thus can store

obsolete data objects. It requires that the node visit every SSTable of the column family

so as to retrieve all the possible versions of certain data object. In order to reduce the

number of I/O accesses, each SSTable has a Bloom filter (Bloom, 1970), which is loaded

into the memory and is used to test the presence of certain data object given the key.

Overall, Cassandra is optimised for write operations with the use of append-only com-

mit log and memtable, while it is less efficient in read operations since it allows obsolete

data objects to scatter across multiple SSTables, making the retrieval of a data object less

straightforward.

Query Processing

Since Cassandra leverages consistent hashing for data partitioning, each node is associated

with a token which represents a position on the ring of the key space. To locate a data

object given a key, simply walk the ring clockwise to find the first token larger than the

key. As discussed, this token and its predecessor define the key range of the partition to

which the given key belongs. Since each partition has multiple replicas for high availability,

for the sake of query processing, each token is therefore mapped to the nodes that store

a replica for the related partition. In addition, it is also worth mentioning that every

node caches the mapping between the partitions and the nodes, so that a key lookup can

be performed by any living node. The update of the mapping is propagated based on

gossiping protocols (Lin & Marzullo, 1999).

Cassandra allows tunable consistency for each query. Different consistency levels de-

mand for different numbers of nodes to acknowledge the query before a query is considered

successful. Since each token is mapped to all the nodes serving the associated partition,

the node connected to the client randomly selects K healthy nodes from the mapping,

wherein K is the required consistency level of the query.

Cassandra also uses hinted handoff (DeCandia et al., 2007) to provide extreme write

availability when a node temporarily fails. When the number of living (or healthy) nodes

is less than the required consistency level (due to node failure), a hint is written to the co-

ordinator (which serves the master replica), indicating that the write needs to be replayed
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to the unavailable node.

Current State

To this end, the latest release of Apache Cassandra is Version 2.0. Two major changes

have been made in the design since Version 1.0.

First and foremost, Cassandra has also adopted the concept of “virtual node” in Ver-

sion 1.2, which was released in January 2013. It allows the developers to define the number

of tokens before the key space is initialised, so that the key space is statically partitioned

into the desired number of vnodes. This approach has no difference from Riak and Project

Voldemort as discussed. By comparison, ElasCass not only uses the “virtual node” ap-

proach that Cassandra Version 1.2 has adopted, but also automatically splits and merges

the partitions for more balanced distribution of data.

Second, Cassandra has provided row-level (i.e. data-object-level) transaction support

in Version 2.0, released in September 2013. It extends the Paxos consensus protocol

to provide linearisable consistency, and exposes this functionality as a compare-and-set

operation. However, this linearisable consistency is provided at the cost of four round

trips between a leader node and the replicas. Hence, it is only applicable for a small

minority of operations in the system.

5.3 ElasCass Implementation

Table 5.1 summarises the differences between Apache Cassandra and ElasCass in terms

of data management strategies and components. As shown, the strategies regarding data

partitioning and placement are diverse in the two KVSs, and therefore it requires a signific-

ant amount of reprogramming to implement the functionalities related to the components

of key space, token metadata, and SSTable in ElasCass. Conversely, in order to clarify,

there are several functionalities that are leveraged from Apache Cassandra, including: i)

the propagation of gossip messages; ii) hinted handoff for handling temporary node fail-

ures; and iii) the storage format of SSTable, that is, each SSTable has a Bloom filter, an

index, and the compression information.

Table 5.1 also unveils the challenges in implementing ElasCass atop Cassandra, from

the internal data storage and token management, to the inter-node data reallocation and

coordination. A discussion is presented as follows.
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Properties Apache Cassandra ElasCass

Strategies

Data
Partitioning

Each partition is associated with
one node, and is split/merged at
each node arrival/departure.

The key space is initially segmen-
ted into Q partitions, and is fur-
ther split/merged depending on
the volume of data.

Data
Placement

Based on consistent hashing, the
coordinator serves the master rep-
lica, while the successor nodes
serve the slave replicas.

Each replica is assigned independ-
ently based on a set of placement
algorithms.

Data
Movement

Scan to prepare a list of data ob-
jects from multiple SSTables at
source node; Rebuild SSTables at
the destination node.

Simply transfer SSTables that are
associated with certain partition.

Coordination A node is the coordinator for a
partition if it owns the associated
token.

A coordinator is nominated via an
election when required.

Components

Key Space Multiple column families share a
key space.

Each column family has a separate
key space for data partitioning.

Token
Metadata

An array of raw bytes represent-
ing a position on the key ring; The
token-node mapping is one-to-one.

Raw bytes for positioning, plus
a boolean value indicating the
node set for query processing
(Table 4.2); The token-node map-
ping is many-to-many.

SSTable An SSTable stores any data ob-
jects in the same column family.

An SSTable only stores the data
objects belonging to one particu-
lar partition.

Memtable Each memtable is flushed to form
one new SSTable.

Each memtable is flushed to form
multiple new SSTables, each asso-
ciated with a different partition.

Table 5.1: Comparison between Apache Cassandra and ElasCass

• Token management. Data partitioning in Cassandra is based on the number of

nodes, while ElasCass partitions the key space based on the data volume in each

partition. Hence, unlike Cassandra that uses a unified key space for all the column

families, ElasCass requires column-family-specific key spaces, since the data distri-

butions in different column families are usually diverse. More importantly, Elas-

Cass maintains flexible, many-to-many partition-node mappings, which requires a

dynamic token management scheme that is far more complicated than the one im-

plemented in Cassandra.
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• Data storage. Cassandra stores data objects into any SSTable (i.e. a data file) of

the same column family, while ElasCass requires that each SSTable be tied up with

one specific partition, so that data movement can be easily executed by moving the

integrated SSTables across the nodes. It gives rise to two issues. First, there is a

need to maintain a map between a set of SSTables and a partition. Maintaining

such a mapping is non-trivial, especially when the partitions are split or merged

dynamically at runtime. Second, for the sake of efficiency, the SSTables within each

partition should be compacted periodically, which is challenging in two ways. First,

compactions should not affect online query processing. Second, compactions should

be efficiently rolled back for fail recovery.

• Data reallocation. In Cassandra, the locations of data objects are relatively static,

and are determined by the node positions on the key ring. By comparison, ElasCass

treats each partition replica as a transferable unit that can be dynamically realloc-

ated to any node as required. This requires the implementation of a set of replica

placement algorithms, and a data migration scheme that transfers the data in the

form of SSTables, without affecting the online query performance or impinging on

data consistency.

• Coordination. In Cassandra, each node is associated with one token that defines

one partition. Thus, each node serves as the coordinator for the partition with which

it is associated. In contrast, ElasCass requires the Chubby service (Burrows, 2006)

for the election of a coordinator within a set of nodes (i.e. not necessarily the whole

cluster of nodes). Since the mechanism of the coordination has been thoroughly

discussed in Subsection 4.2.2 (page 75), the focus will be on message exchange,

which is integrated with the implementation of the previous three components.

In the remaining of this section, three subsections will be presented to describe the

implementation of three core functionalities in ElasCass, namely token management, data

storage, and data reallocation.

5.3.1 Token Management

In order to realise the designs of automated partitioning and a set of replica placement

algorithms, ElasCass has to deal with a much more dynamic partition-node mapping than
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Ongoing ViewOriginal View Future View

Stable Token Joining Token Leaving Token

Figure 5.3: The ongoing view of key space in ElasCass

Apache Cassandra. This subsection presents the implementation of token management

scheme for maintaining the partition-node mapping.

An Ongoing View of Key Space

To implement automated partitioning described in Subsection 4.2.1 (page 71–page 75),

there is a challenge in associating the data files with a partition. That is, when certain

partitions are being split or merged, different nodes have different views of the key space.

To illustrate, the nodes that do not participate in the split/merge operation simply over-

look the operation, while the participating nodes simultaneously deal with two versions of

key ranges for each targeted partition: one is the original key range, and the other is the

future key range as a result of the split/merge operation.

To avoid confusion between multiple versions of key ranges for the sake of automated

partitioning, each node has an ongoing view of the key space. As shown in Figure 5.3,

the ongoing view takes into account of the ongoing partitioning operations. To illustrate,

during a split operation, the new token that divides the targeted partition is marked as a

joining token; It is then marked as stable when the split operation is completed. Similarly,

when a merge operation is in progress, the token to be removed is marked as a leaving

token, and is actually removed when the merge operation succeeds. Hence, an original

view of the key space is to ignore all joining tokens, but to retain all leaving tokens. In

contrast, a future view is to add all joining tokens, but to remove all leaving tokens from

the key space.

In terms of query processing, every node in the system uses the original view to serve

key lookups, because the key space should not be altered until the split/merge operation

• 0 
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Multimap Roles in queries Purposes

Token-To-Node Negative: write only;
Positive: writable,
readable.

Maintains the set of related nodes for each
token in the original view of key space,
making key lookups easier.

Node-To-Token Negative: write only;
Positive: writable,
readable.

Maintain the set of tokens in the original
view for each living node, making node-
oriented statistics gathering easier.

Joining-Token Always writable,
readable

Maintain the set of nodes for each joining
node, and help keep track of a partition-
splitting operation.

Leaving-Token Always writable,
readable

Maintain the set of nodes for each leaving
node, and help keep track of a partition-
merging operation.

Table 5.2: The token-node multimaps in ElasCass

finally succeeds. However, from the perspective of the participating nodes, all the data

files (i.e. SSTables) should be created based on the future view of the key space, which is

the process of rebuilding replicas described in Subsection 4.2.1 (i.e. Figure 4.3 on page 75).

Moreover, when a token is mapped to certain node, the token is assigned with a boolean

value (i.e. either positive or negative) to indicate the responsibility of the node in serving

queries, which has been discussed in Subsection 4.2.4 (Table 4.2 and Figure 4.7, page 89–

page 93).

Storage of Token-Node Mappings

Figure 5.3 depicts three types of tokens, namely Stable, Joining, and Leaving, which yield

different views of the key space for different purposes. Moreover, the mappings between

tokens and nodes are many-to-many, and each token-node mapping requires a boolean

value indicating the role of the node towards the related partition (Figure 4.7 on page 91).

In addition, a mechanism to reconcile the conflicting mappings stored in different nodes

is required, since the mapping information is shared without the presence of a centralised

component.

ElasCass deals with the many-to-many relationship with a multimap, which maps a

key to a set of values. It uses four multimaps for each key space to store different types

of tokens. First, a token-to-node multimap maps a token in the original view to the nodes

that own the token, wherein each node is bound with a boolean value indicating the node’s

responsibility. Second, a node-to-token multiple is the reverse map of the token-to-node
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multimap, with the boolean value bound to the token. Last, a joining-token multimap

and a leaving-token multimap store the mappings from a token to the related node for the

joining and leaving tokens, respectively. The purposes and the roles of these mappings in

query processing have been summarised in Table 5.2.

For the sake of conflict reconciliation, ElasCass uses a multikey map (i.e. from multiple

keys to a single value) to record the type with a timestamp of update for each token-node

entry, that is 〈token, node〉 → (type, timestamp), wherein the type can be one of Stable,

Joining, Leaving, or nonexistent. This timestamp is created by the node that initiates

the update of the binding type, and cannot be modified by other nodes that store it,

unless the type is altered in a later event (with a later timestamp). Furthermore, it is

worth mentioning that these mappings are also stored in the system metadata table for

durability, so that a temporary node failure can be self-recovered without resorting to

message exchange.

Gossip Message for Token Update

ElasCass follows Cassandra to leverage the gossiping protocols for propagating the updates

of token ownership. Cassandra only broadcasts the one-to-one mapping between the token

and its coordinator node, so the content of a gossip message is relatively simple. In

contrast, ElasCass maintains an ongoing view of key space per column family with a

many-to-many mapping between tokens and nodes. Hence, a much richer gossip message

format is required in ElasCass.

As shown in Table 5.3, a gossip message consists of two IDs (i.e. column family

and node), one operation with its execution status, one boolean value for the token,

and two timestamps. To illustrate, ColumnFamily ID indicates the related key space to

update, while Node ID specifies the node to which the operation is applied. Next, the add

and remove operations are associated with replica migration, while the split and merge

operations deal with automated partitioning. Moreover, reporting the execution state of

an operation helps each node to maintain the ongoing view of key space (Figure 5.3).

In addition, each token is assigned with a positive or negative value to indicate different

responsibilities of the node (Figure 4.7 on page 91).

Furthermore, there are two timestamps. One is the update timestamp, which is used

to reconcile multiple conflicting token updates. Note that each token-node mapping is
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Variables Possible Values Notes or examples

Column Family ColumnFamily ID Each column family has a separate key space.

Node Node ID The node to which the operation is applied.

Operation

Add Assign a partition to a node.

Remove Remove a partition from a node.

Split Split a partition into two sub-partitions.

Merge Merge two partitions into one.

Execution state
In progress E.g. a partition is being migrated to a node.

Complete E.g. a partition has been added to a node.

Token
Positive A node is ready for query processing.

Negative A node is receiving a partition replica, but is
not yet ready for query processing.

Update time Timestamp A timestamp indicating when the update was
performed. It is used for versioning.

TTL Timestamp A time-to-live timestamp indicating when the
message expires.

Table 5.3: Variables of a gossip message for token updates in ElasCass

assigned with a timestamp. Thus, only the update with a later timestamp will be applied.

The other is the TTL (time-to-live) timestamp that sets an expiry time for a gossip message

to spread. Each gossip message, when created, is assigned with a TTL timestamp, which

equals the current time plus a TTL time period (the default is 30 seconds). Thus, if a

node receives a gossip message at a time point later than the TTL timestamp, then it

discards this message, which is otherwise forwarded to a set of randomly selected nodes.

The maximum TTL (denoted as MTTL) represents the end-to-end gossip broadcast delay,

and is important for controlling the timing of exchanging messages for replica migration

between the source and destination nodes.

It is also worth mentioning how a node synchronises the token-node mappings, when it

first joins the cluster or restores from the failure. For a new empty node, it will download

the complete mapping information from a healthy node that is responsive and alive for a

relatively long time. This new node will also store the mappings in its system metadata

table, and updates the entries whenever it receives new gossip messages.

On the other hand, if it is an existing node that has recovered from a failure, then

this node will reuse the mappings read from the system metadata table. In this case, it

sends out gossip messages for each unsettled token-node mapping along with the update



110 CHAPTER 5. IMPLEMENTATION AND EVALUATION OF ELASCASS

Node Set Purposes How to generate

L set Serve online reads
and writes.

Retrieve node set from Token-To-Node given
the token, and exclude all negative nodes.

K set Maintain high
availability.

Retrieve all nodes from Token-To-Node given
the token.

Partitioning
participants

Execute a partition
operation.

Given the token, retrieve all nodes from Token-
To-Node and Joining-Token. Then exclude all
nodes retrieved from Leaving-Token with the
same token.

Table 5.4: The set of eligible nodes for different operations in ElasCass

timestamp read from the table, wherein unsettled mappings include a joining or leaving

token, or a token-node mapping bound with a negative value. On receiving such gossip

messages, other living nodes will compare the update timestamp with their own records.

A new gossip message containing a newer update will be sent out if a conflict is detected,

so that the resurrected node can receive this newer update.

Choose Eligible Nodes during Token Update

Now that the data structure for storage and the message format (i.e. Table 5.3) for

information exchange have been introduced, we discuss how to handle a token update

event within each node. The challenge lies in efficiently providing the right set of nodes

for different data storage and retrieval scenarios, because key lookups stand in the critical

path of query processing.

Given the multimaps described in Table 5.2, each ElasCass node prepares different sets

of nodes for different operations. First, to serve reads of certain partition, the node set

is retrieved from the token-to-node multimap using the token that is associated with the

partition. Only the nodes bound with a positive value are eligible for serving reads. Second,

to serve writes of certain partition, it requires two sets of nodes. One is identical to the

node set for reads, and is used to serve online writes (i.e. the L set in Table 4.2 on page 90).

The other is the K set, wherein all the nodes mapped by the token (associated with the

partition) are eligible, regardless of whether the token value is positive or negative. A

write will be propagated to every node in the K set in the background for high availability.

Both reads and writes use the original view of key space for key lookups. In contrast, to

create new data files (i.e. SSTables) for a partitioning operation (i.e. split/merge), each

participating node uses the future view instead, which has been depicted in Figure 4.3
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(page 75). A summary of generating these node sets is presented in Table 5.4.

Note that an update of the token-node mapping can lead to the change of the node

sets in Table 5.4. Such update is triggered by the event of replica reallocation or reparti-

tioning, and is propagated in the form of gossip messages. On receiving a gossip message

regarding a token update, a node validates the update timestamp and then applies it to

the multimaps described as follows.

ElasCass uses an atomic ReadWriteLock to maintain a consistent view of the node sets

during update. For the sake of efficiency, the node sets are generated once, and then cached

in the query engine. This is done to avoid computing the node sets at each key lookup.

When a token update is required, the node acquires a write lock for all the multimaps

(Table 5.2), and then adds or removes the token-node mapping to the multimaps based on

the type of the event. After the update, it invalidates the node sets cached in the query

engine, recalculates the eligible node sets, and finally releases the write lock. During the

time period when the write lock is held, no other process in the same node can obtain a

write or read lock to access the token-node multimaps. Hence, a consistent view of the

node sets is guaranteed.

5.3.2 Data Storage

This subsection presents the implementation of storing data objects into separate files

based on the change in token-node mappings. First, it describes the generation of partition-

specific SSTables to store incoming data objects. Second, it proposes an SSTable com-

paction algorithm that incorporates the process of rebuilding partition replicas into the

routine of system garbage collection. Then, it presents the failover of an interrupted com-

paction. Next, it is followed by the discussion of selecting the right SSTables for serving

reads when a compaction is in progress. Last but not least, it also describes the fulfil-

ment of the prerequisites for executing a replica rebuilding task for the sake of automated

partitioning.

Partition-Specific SSTables

As discussed, data migration is more efficient when the data objects are stored in separate

files based on the partition to which they belong. ElasCass follows Cassandra to use the file

structure called SSTable. As shown in Figure 5.2 (page 101), the SSTables are created as
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a result of flushing the memtable onto the disk. In Cassandra, each memtable is converted

into one SSTable, regardless of the partition to which each data object belongs.

In contrast, ElasCass needs partition-specific SSTables, wherein each SSTable only

stores the data objects belonging to the partition with which it is associated. As in the

discussion of Figure 5.3 (page 106), each ElasCass node uses its future view of the key

space to determine the key range of the partition for each resulting SSTable.

ElasCass also partitions the key space using consistent hashing, wherein every two

adjacent tokens define a partition. To convert the memtable into multiple SSTables, the

data objects in the memtable are sorted by the keys, and the sorted list is segmented into

multiple sublists by the tokens of the future view. Thus, each sublist of data objects are

flushed onto the disk as one new SSTable. The key range of the partition with which this

SSTable is associated, is defined by the two adjacent tokens that segment the sublist. In

addition, these two tokens are written into the metadata of the SSTable, so that any node

that loads this SSTable can perceive the associated key range.

Compared to Cassandra, given the same threshold for flushing the memtable, the size

of the SSTable generated in ElasCass is much smaller, since each memtable is converted

into multiple SSTables rather than one. It results in higher overheads in data retrieval,

since there are more SSTables to visit. There are two remedies. First, ElasCass uses

a higher threshold for memtable flushing, which requires higher memory consumption.

Second, ElasCass adopts a levelled compaction strategy that prefers to merge small-size

SSTables within the same partition. A complete SSTable compaction strategy is presented

as follows.

SSTable Compaction Strategy

As in Bigtable (Chang et al., 2006), the immutable nature of SSTable requires a garbage

collection (GC) process to regularly merge multiple SSTables into a large SSTable. This

process is called the compaction, and has two goals. First, it reduces the total number of

SSTables, which is especially necessary in ElasCass, wherein each memtable is converted

into multiple small-size SSTables. Second, it allows the system to reclaim resources used

by obsolete data and to ensure that deleted data disappears in a timely fashion.

In ElasCass, this GC process is applied not only to the merge of SSTables within the

same partition, but also to the execution of rebuilding replicas when a repartitioning is
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Algorithm 5 Generate SSTable compaction tasks during garbage collection

1: {Pi}qi=1 ← getLocalPartitions() . Hint: the partition list is already sorted
2: for i = 1→ q do
3: {fj}mj=1 ← getSSTables(Pi)

4: size← bytesOnDisk({fj}mj=1)

5: if size ≥ Θmax then
6: submitSplitCompaction(Pi) . To split the partition Pi

7: else if size < Θmin then
8: Pnext ← getSuccessor(Pi)
9: if isLocalPartition(Pnext) then . Try merge if both partitions are local

10: {fk}nk=1 ← getSSTables(Pnext)
11: nextSize← bytesOnDisk({fk}nk=1)
12: if size+ nextSize < Θmin then
13: submitMergeCompaction(Pi, Pnext) . To merge Pi and Pnext

14: end if
15: end if
16: else
17: upperBound← 0.618 ∗ size . 0.618 and 0.191 can be any other values
18: lowerBound← minimum(0.191 ∗ size,ΘminSize)
19: ΘminCmpt ← 4 . Minimum #SSTables for compaction
20: toCompact← newEmptyList()
21: for j = 1→ m do
22: if fj .size ≤ lowerBound then
23: toCompact.add(fj) . Always compact small SSTables
24: else if fj .size > upperBound then
25: markLargeF ile(Pi, fj) . Always avoid a large SSTable
26: end if
27: end for
28: if toCompact.size ≥ ΘminCmpt then
29: submitGCCompaction(toCompact)
30: else
31: toCompact.addAll({fj}mj=1) . Compact all SSTables

32: toCompact.remove(getLargeF iles(Pi)) . Except the large one
33: if toCompact.size ≥ ΘminCmpt then
34: submitGCCompaction(toCompact)
35: end if
36: end if
37: end if
38: end for

required. Hence, there are three types of compactions. The process that merges SSTables

from the same partition is called the GC compaction, while the processes that split or merge

partition replicas for the sake of automated partitioning are called the split compaction and

merge compaction, respectively. In ElasCass, each column family runs an independent GC

process, which regularly inspects the metadata of all the SSTables in the column family.

Then, a list of compaction tasks are generated according to Algorithm 5.
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As shown, the GC process groups the SSTables by partition (which is written in the

metadata of each SSTable), and calculates the total size of SSTables in each partition.

According to Equation 4.1 (page 72), it submits a split compaction (Line 6), if the size

exceeds Θmax. Alternatively, a merge compaction is submitted (Line 13), if the total size

of the examined partition and its immediate predecessor partition is below Θmin.

When neither of the partitioning operations are triggered, the GC process will attempt

to compact the SSTables within each partition. Note that the cost of SSTable compaction

depends on the total size of SSTables to be compacted. Therefore, Algorithm 5 classifies

the SSTables based on their sizes, into three categories: i) large, if the size is above the

upperBound (Line 17); ii) small, if the size is below the lowerBound (Line 18), wherein

ΘminSize statically defines the size of a small SSTable when the total size of a partition

is relatively large; iii) normal, if the SSTable is neither large nor small. Note that the

predefined values in Line 17 and Line 18, i.e. 0.618 and 0.191, are derived from the golden

ratio (related to Fibonacci sequence), and can be replaced by any other numbers.

The GC compaction always attempts to merge small SSTables, since the number of

SSTables can be effectively reduced. There are also two refinements to avoid excessive

compaction. First, the large SSTable will not be compacted unless it is explicitly required,

because it already contains the majority of data of one partition. Second, a GC compaction

will not be submitted if there are no enough SSTables to be merged (ΘminCmpt, Line 28

and 33). Also, when the number of small SSTables is less than ΘminCmpt, the normal

SSTables are also included for compaction (Line 31), so that all the SSTables, except the

large SSTable if there is any, can be merged into one SSTable.

Compaction Execution and Roll Back

A compaction task is submitted in Algorithm 5. A coordinator must be elected in the case

of a split/merge compaction. The coordinator fulfils the prerequisites of partitioning, and

then schedules a simultaneous compaction for all the participating nodes. The discussion

regarding the prerequisites is appended to the end of this subsection on page 117.

In any case, once a compaction is set in motion, the memtable of the related column

family is forced to flush based on the future view of key space, so that the latest writes

are also compacted. Then, the targeted SSTables are marked as compacting in an atomic

operation, such that the SSTables being compacted will not be submitted to multiple
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concurrent compaction tasks. It also means that, if there exists one SSTable that is

already marked as compacting by another thread, then this atomic operation of marking

will fail, and the compaction task is canceled. Otherwise, if the targeted SSTables are

successfully marked, then the node scans all the targeted SSTables simultaneously, and

rewrites the data objects in the ascending order of their keys into one or two new SSTables,

depending on the type of compaction (i.e. merge or split). At the end of compaction, the

new SSTables are loaded into the system (e.g., build indices, cache Bloom filters, etc.),

while the targeted SSTables are deleted from the disk.

A compaction task can be called off and rolled back at any time of the execution. This

is necessary, especially when rebuilding replicas for a distributed split/merge operation.

As depicted in Figure 4.5 (page 79), the partitioning operation should be aborted whenever

there are more than one node failures. There are two scenarios to roll back from failure: one

is for the well-functioning node that is called off by an abortion notification, and the other

is in the case of a failed node. The challenge of rolling back a partitioning is to reconcile

the conflicts between an original view and a future view of the key space (Figure 5.3

on page 106). The following discussion is focused on the split/merge compactions, but a

GC compaction can also be rolled back similarly.

The first scenario is when a well-functioning node is required to abort the related

compaction operation. When the node receives an abortion notification, it immediately

terminates the compaction process and unmarks the related token from joining/leaving.

Note that right before the compaction starts, the latest writes in the memtable have been

converted into several new SSTables using the future view of the key space. The node has

recorded these new SSTables for the sake of roll-back. Hence, these recorded SSTables are

re-compacted if their associated partitions are inconsistent with the original view of the

key space.

On the other hand, for a node that has failed during a compaction, it can be re-

bootstrapped by loading the data from its own disk. Note that each node records the

partition-node mappings in a system table on disk for faster recovery. When the node

comes back to life, it recalls the previous view of key space, and it also attempts to syn-

chronise the current view of key space as discussed on page 109. Next, the node examines

the current status of the key space. If the previous split/merge operation has been can-

celed, then the resurrected node reuses those SSTables that are marked as compacting, and
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also re-compacts those SSTables already built for the future partition. Otherwise, if the

operation has succeeded without the presence of the resurrected node, then the node has

to give up the ownership of the original partition and removes the related SSTables. In

any case, the latest writes will be propagated to this node with the help of hinted handoff.

Finally, the node is resurrected with the consistent ring information and data objects.

In both scenarios, the node will eventually delete those SSTables that are half-way

built due to the interruption of failure, since they are unreadable. This roll-back process

is efficient, because it is only involved with re-compacting several new SSTables converted

from the memtable, the total size of which is small (i.e. between a few kilobytes and tens

of megabytes). Such re-compaction (hence the roll-back) can be completed within one

minute.

Data Retrieval during Compaction

For KVSs that support only GC compaction, data retrieval is straightforward. Since the

SSTables marked as compacting and the resulting SSTable are associated with the same

key range, the data can always be retrieved from all the SSTables available on disk. In

contrast, ElasCass also support split and merge compactions, in which SSTables of the

same partition can be associated with two different key ranges. That is, one set of SSTables

fall into the original key range, i.e. before split/merge, while the other set of SSTables

store data for the future key range, i.e. after split/merge. It is non-trivial to choose the

right set of SSTables when a split/merge compaction is in progress.

As discussed previously, for the sake of rolling back a compaction, a node will mark

the SSTables that are created from the memtable after the compaction has started. These

SSTables fall into the future key range, but they also store data objects that belong to the

original key range. Hence, to serve read operations, the key lookups will be based on the

original view of the key space. But within each node, the data will be retrieved from two

sets of SSTables: one set containing the SSTables belonging to the original key range, and

the other set containing the SSTables that belong to the future key range and are marked

for roll-back. Note that the SSTables created from the compaction will not be visited

before the whole compaction task is completed. This is because the compacted SSTables

are just extra copies of the data that is already stored in the two sets of SSTables.

In addition, at the end of a split/merge compaction, after the partitioning operation is
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Algorithm 6 Calculate a splitting token for a list of SSTables in one partition

Require: {fi}ki=1 . A list of SSTables, each fi provides bytes, minKey, and maxKey
1: minToken← getMinimumKey({fi}ki=1) . The minimum key of all the SSTables
2: distanceList← newEmptyList()
3: for i = 1→ k do
4: distance← getMiddleToken(fi.minKey, fi.maxKey)−minToken
5: distanceList.add(distance, i)
6: end for
7: avgDistance← (

∑k
i=1 distanceList.get(i) ∗ fi.bytes)/(

∑k
i=1 fi.bytes)

8: middleToken← avgDistance+minToken
9: return middleToken

announced successful by the coordinator (Figure 4.4 on page 76), the token-node mapping

is updated via gossip messages. Thus, the future key range becomes the original key range.

Hence, the compacted SSTables are put in use, while the SSTables marked as compacting

can be safely deleted in the end, because all the data objects in the compacting SSTables

have been written into the compacted SSTables.

Fulfilling Prerequisites for Split/Merge Compaction

This subsection has discussed how ElasCass leverages the process of garbage collection

(GC) to trigger a partitioning operation based on Equation 4.1 (page 72), and to ex-

ecute the operation of rebuilding replicas as in Figure 4.3 (page 75). However, there are

implementations required to fulfil the prerequisites of automated partitioning.

As depicted in Figure 4.4 (page 76), the execution of a split/merge operation relies

on the election-based coordination. As discussed, the participating nodes are required to

gossip their ownership of the targeted partitions before the election, so that an updated

partition-node mapping can be seen by the “voters”. The Chubby-based election and the

fault-tolerant coordination have been discussed in Subsection 4.2.2 (page 75–page 80). The

focus here is on how the coordinator fulfils the prerequisites before the execution starts,

described at Step 2 of the coordination (page 77).

In the case of a split, the challenge is to efficiently determine the splitting token that

segments a partition into two equal-size sub-partitions. The problem is that, each partition

can contain many SSTables, and it is not efficient to scan over all SSTable data files to

pinpoint the data object with the key that splits the partition into two equal halves. To

address this problem, an algorithm is proposed to calculate the midpoint for a list of

SSTables, based on only three facts that each SSTable metadata has already provided:
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number of bytes on disk, the minimum key, and the maximum key of all the data objects

in this SSTable. As shown in Algorithm 6, the splitting token is calculated as the weighted

average distance of the middle token of every SSTable (denoted as fi) from the minimum

key in the partition, wherein the weight is the data volume of each SSTable (i.e., fi.bytes).

The idea of this algorithm is similar to calculating the centre of mass for multiple objects

in physics.

In the case of merge, the challenge is to deal with the scenario when the two targeted

partitions are not stored on the same list of nodes. ElasCass allows the coordinator to

reallocate replicas for the sake of merging partitions, with one condition: only if all the

source and destination nodes are idle. In the implementation, an idle node is defined

as having CPU usage below 30%, which can be any other threshold. To reallocate the

replicas of two partitions (e.g. Pi and Pi+1) onto the same node list, the coordinator

always chooses the nodes that serve the latter partition (i.e. Pi+1) as the destination. The

reason is that, when Pi and Pi+1 are merged, the resulting partition is associated with

Ti+1, while Ti is removed. On the other hand, if there exists at least one participating

node that is not idle, the coordinator will cancel this merge operation, with a notification

suggesting that the participating nodes should not submit a merge for the same pair of

partitions within a long period (e.g. 30 minutes).

5.3.3 Replica Reallocation

Now that the replicas have been confined into transferable units, this subsection presents

the implementation regarding replica reallocation. One aspect of replica reallocation is a

set of algorithms to determine the placement of replicas when a node is bootstrapped or

decommissioned, or fails unexpectedly, as discussed in Subsection 4.2.3 (page 80–page 89).

One focus of these algorithms is to achieve load balancing in terms of both workload and

distribution of data. This relies on the gathering of load statistics. The other aspect of

replica reallocation is related to data migration discussed in Subsection 4.2.4, wherein the

focus is on ensuring online query processing based on token management and transfer

throttling.
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Load Metric Means to gather statistics

Workload of
nodes

CPU
utilisation

Linux sar command.

Data volume of
nodes

Number of
replicas

Gossip and cache the complete partition-node
mapping.

Popularity of
partition replicas

Hit count Hit count = number of SSTable reads (by quer-
ies only) + number of objects written to create
SSTables. Both numbers are collected via the data
tracker.

Table 5.5: Gathering load statistics in ElasCass

Gathering Load Statistics

The replica placement algorithms rely heavily on three facts: the workload that each node

undertakes, the data volume each node stores, and the popularity of each partition replica.

However, these load statistics are not provided in Apache Cassandra. The implementation

choices in gathering these statistics are summarised in Table 5.5, while the discussion is

presented as follows.

As mentioned in Subsection 4.2.3 (Rule 3 on page 81), the CPU utilisation of a node

is used as the metric for the workload. Such choice is due to two reasons. First, the

CPU utilisation of a node is strongly correlated to overall response time of queries it

serves (Lim et al., 2010). Second, the CPU utilisation can be obtained from the operating

system without instrumenting application code. In the implementation, ElasCass uses the

Linux sar command to collect CPU statistics.

In regard to the data volume each node stores, ElasCass uses the number of parti-

tion replicas as an indication, because each replica has been confined into a bounded size

through automated partitioning. Moreover, since every node gossips and caches the com-

plete partition-node mapping for the sake of query routing, the information about number

of replicas in certain node is known to every bootstrapped node.

In contrast, measuring the popularity of a partition replica is less straightforward. As

described in Equation 4.3 (page 83), the exponential moving average of the hit count is

used as the popularity metric. However, there are a few issues to consider for measuring

the accurate hit count for a partition replica. First, the write operations are stored in the

memtable, which does not incur I/Os until it is flushed. Second, a read operation (i.e.

retrieving certain data object) may result in accessing multiple SSTables due to the false-

positive matches of Bloom filter (Bloom, 1970). Third, a data object may be cached in
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memory, which does not requires I/O for retrieval. Last but not least, SSTable compaction

also introduces a large number of I/Os.

To deal with these issues, we define the hit count of a partition replica as the sum

of: i) the total number of visits to the SSTables that are introduced by read operations;

and ii) the total number of data objects in the newly created SSTables. Hence, a read

that involves with multiple SSTable accesses is treated as multiple hit counts, while a

read from the cache does not cost any hit count. In terms of writes, since SSTables are

immutable (i.e. write once, read many), the hit count of creating a new SSTable should be

estimated as the number of data objects written. In addition, according to this definition

of hit count, the workload of SSTable compaction is counted as the number of data objects

stored in the compacted SSTables, while the number of reads introduced by compaction

is disregarded. This is to reduce the impact of compaction towards the popularity of the

partition replica.

The hit count measurement has been implemented in a component called data tracker,

which is responsible for providing an atomic reference view of SSTables for query pro-

cessing. Hence, this component is able to keep track of every SSTable visit and every

new SSTable created. In the implementation, each column family has one data tracker,

which maintains a hash map that records and updates the hit count of each partition

periodically, i.e. based on Equation 4.3.

Exchanging Messages

The token management scheme for ensuring data consistency during replica movement

has been depicted in Figure 4.7 (page 91). In terms of implementation, the focus is on the

propagation of token updates and the coordination between the source and destination

nodes.

Furthermore, the TTL (time-to-live) timestamp sets an expiry time for a gossip mes-

sage to spread. Each gossip message is assigned with a TTL timestamp when it is created,

wherein the TTL timestamp equals the current time plus the maximum TTL time period,

which is 30 seconds by default. Hence, if a node receives a gossip message at a time point

later than the TTL timestamp, then this message is discarded (rather than forwarded).

The maximum TTL time period (denoted as MTTL) represents the end-to-end gossip

broadcast delay, and is important for controlling the timing of exchanging messages for
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Figure 5.4: Real-time token management for replica migration

replica migration between the source and destination nodes.

Figure 5.4, extended from Figure 4.7, presents a closer look at the timing for migrating

a replica from the source ns to the destination nd. As shown, when ns initiates the

migration at t0, it immediately notifies nd, which receives the the notification at rt0 (rt

means real time). Then, nd assigns a negative token for the related replica to itself, and

sends out a gossip message regarding this update. As discussed in the proof of data

consistency on page 92, it is critical for nd to await two time periods of MTTL before it

accepts the request for data transfer. Hence, t2 − rt0 ≥ 2 ∗MTTL. Similarly, when nd

switches the token value to positive for serving read operations at t4, it is also important

for ns to wait for one MTTL before it abandons its ownership of the replica. Hence,

t5− rt4 ≥MTTL, wherein rt4 is the time point when ns receives the notification of token

update sent by nd.

Transferring Data

In ElasCass, the data is transferred in the form of data files (i.e. SSTables). The concern

with data transfer is that it should not affect the performance of online query processing.

There are two approaches to throttling the transfer bandwidth.

One option is to set up a TCP connection between two ElasCass nodes. The source

node uses a daemon thread to determine the number of bytes sent at each time interval,

such that the transfer speed in any time interval is no greater than a predefined maximum

throughput for outbound transmission. Alternatively, ElasCass leverages the Linux scp

command to perform file transfer in a more primitive fashion, which introduces lower

overhead than application-level data transfer. The scp command provides the [−l limit]

parameter to limit the bandwidth used.
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Table 5.6: Computational capacity of a single virtual machine in experiments

Property Value

OS Ubuntu 12.04, 3.2.0-29-virtual, x86 64

File system Ext3

Instance Type m1.large

Memory 7.5 GB

CPU 2 virtual cores with 2 EC2 Compute Units each

Storage 2 ephemeral storage with 420GB each

Disk I/O High: 100,000 random read IOPS, 80,000 random write IOPS

The former approach has been used in Cassandra to transfer data at the granularity

of data objects. In comparison, the latter is more suitable for transferring data in the

form of files, but it is applicable to Unix/Linux based systems. Hence, ElasCass provides

the implementation of both approaches, and the KVS administrator can designate the

preferred approach in the configuration file.

5.4 Experiments and Results

5.4.1 Experimental Setup

This subsection presents the general setup for all the experiments in the following sub-

sections. It describes the capacity of the experimental testbed, the configurations of the

KVSs and the YCSB client, and the definitions of several performance metrics. The de-

tailed setup for each specific experiment will be described in each subsection respectively.

The experiments were conducted on Amazon EC2. Each VM runs as one node of the

KVS. All of the VM instances are based off a common Linux image. The computational

capacity of a single VM is shown in Table 5.6. For performance reasons, the persistent data

of the KVS was stored on the 400 GB ephemeral storage that comes along with each VM

serving like a local disk, rather than on an Elastic Block Storage (EBS) volume (Amazon,

2007) that is accessed via network. This is consistent with known production deployments

of Cassandra on EC2 (Cockroft, 2011). Expósito et al. (2013) also revealed that the

use of ephemeral storage can provide better performance than EBS volumes, because the

performance of EBS is deeply influenced by the network overhead and variability. The I/O

performance of the ephemeral storage used in the experiments is categorised as “High”.

According to Amazon, High I/O instances can deliver in excess of 100,000 random read

I/O per second (IOPS) and as many as 80,000 random write IOPS.
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The KVSs used in the experiments are ElasCass and Apache Cassandra (version 1.0.5)

that uses the split-move approach discussed in Subsection 3.2.1 (page 57) for data par-

titioning and placement. An illustration of this approach is also given in Figure 5.1

on page 100. Hence, the experimental results of Cassandra are labeled as split-move.

In addition, we did not compare ElasCass with other decentralised shared-nothing KVSs,

such as Riak (Basho Tech., 2012), and Project Voldemort (2009), because they all use a

similar split-move approach. Also, these KVSs use Berkeley DB or MySQL as the backend

storage, which makes it less comparable with ElasCass or Cassandra.

In terms of configuration, both ElasCass and Cassandra follow the default setting in the

release of Apache Cassandra, while the replication number is set asK = 2 for both systems,

meaning that each data object should be copied onto two different nodes. In addition,

ElasCass requires the settings of the maximum and minimum sizes of a partition as defined

in Equation 4.1 on page 72. Although these thresholds vary in different experiments, the

minimum size is always set as one half of the maximum, i.e. Θmin = Θmax/2. According

to Equation 4.2 (page 73), the estimated average data volume per partition is equal to

0.625Θmax.

The benchmark tools have been reviewed in Subsection 3.1.4 (page 51). The experi-

ments used YCSB (version 0.1.4) (Cooper et al. 2010, GitHub.com 2010), because it has

become an influential benchmark for KVSs (Cattell, 2011). The parameters configured

are shown in Table 5.7. The data set is generated by the YCSB client in the loading

section. The total size is approximately 100GB. The inserted keys are hashed with the

64-bit FNV function1, so that the hotspot data is scattered onto many partitions. Both

write-intensive and read-intensive workloads were generated using YCSB. Each workload

was generated with two different request distributions, i.e. zipfian and hotspot. The

consistency level (DataStax, 2012) is set as ALL for write operations, and ONE for read

operations. This parameter specifies how many replicas must respond before a result is

returned to the client. It tunes response time versus data accuracy, but does not affect

the eventual consistency in Key-Value Stores.

In order to evaluate load balancing, an imbalance index IL is defined to indicate the

imbalance in load {Li}ni=1 across a group of n nodes. Let IL = σL/L, where L is the average

value of all the loads {Li}ni=1, and σL is the standard deviation of {Li}ni=1. This index

1Fowler-Noll-Vo is a non-cryptographic hash function created by Glenn Fowler, Landon Curt Noll, and
Phong Vo.
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Table 5.7: Parameters configured in YCSB

Property Value

Records size = 1KB, count = 100 million

Insert order hashed with 64-bit FNV

Read/update ratio 50/50 for write-intensive, 95/5 for read-intensive

Request distribution
zipfian (constant = 0.99)
hotspot (80% of requests targeting at 20% of data)

Operation count varied

Thread count varied

Consistency level write: ALL; read: ONE

shows the proportion of the variation (or dispersion) from the average. A smaller value

of IL indicates better load balancing. We have evaluated the balancing of both the data

volume and the query workload. Moreover, the average CPU utilisation is used to quantify

the workload each node undertakes. The CPU usage is monitored periodically using the

linux command “sar -u 5 2 ”, which reports the average CPU usage every 10 seconds.

Thus, we calculate the average CPU usage per node to indicate resource utilisation, and

the imbalance index of the CPU usage of all the nodes to evaluate load balancing in the

system.

The experiments were conducted in the following sequence. First, we evaluated the

automated partitioning scheme, by partitioning the 100GB data using different values of

Θmax and Θmin in ElasCass. Based on the experiment result, an appropriate setting of the

thresholds was chosen for the next two experiments. Then, it is followed by the evaluation

of node bootstrapping in both ElasCass and Apache Cassandra. At each system scale, a

set of query workloads were launched against both KVSs, so as to evaluate their query

performance in different scenarios. The experimental results of these three experiments

are presented in the following subsections respectively.

5.4.2 Data partitioning

This experiment demonstrates how the maximum size Θmax and the minimum size Θmin

(defined in Equation 4.1 on page 72) can affect the partitioning results with the automated

partitioning strategy proposed in Subsection 4.2.1.
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Test Threshold Est. avg.
volume

Est.
partitions

Initial Q Initial
replicas

Nodes

1 Θmax = 1GB,
Θmin = 0.5GB

0.625 GB
= 1GB ×
0.625

160 =
100/0.625

32 =
160/5

64 =
32× 2

10

2 Θmax = 2GB,
Θmin = 1GB

1.25 GB 80 16 32 10

3 Θmax = 4GB,
Θmin = 2GB

2.5 GB 40 8 16 10

4 Θmax = 8GB,
Θmin = 4GB

5.0 GB 20 4 8 2

5 Θmax = 16GB,
Θmin = 8GB

10 GB 10 2 4 2

6 Θmax = 32GB,
Θmin = 16GB

20 GB 5 1 2 2

Table 5.8: The setup for evaluating automated partitioning

Experimental Setup

The YCSB client was configured with the parameters shown in Table 5.7. It generated

the 100GB data set independently for each of the six tests in this experiment. In each

test, the data was loaded into a cluster of empty nodes with different setups outlined in

Table 5.8. As shown, the maximum size Θmax increases exponentially, from 1GB to 32GB

by the power of 2, while the minimum size is set as Θmin = Θmax/2.

Note that ElasCass requires the setting of the initial number of partitions (i.e. Q),

which segments the key space into Q equal-length key ranges. Given a total of 100GB

data, the estimated number of resulting partitions is calculated from the estimated average

volume. Then, Q is set to 1/5 of the estimated partition number, so that we can observe

the execution of automated partitioning. Hence, Q decreases by the power of 2, starting

from 32 when Θmax = 1GB, down to 1 when Θmax = 32GB.

Finally, the number of nodes employed in each test is determined based on the initial

number of replicas in the cluster. Note that the replication number is K = 2 for all the

tests. From Test 1 to Test 3, ten empty nodes were employed, since there are at least 16

initial replicas. In contrast, from Test 4 to Test 6, there are less than ten initial replicas,

so two empty nodes were used instead. The replicas were evenly and randomly distributed

across the nodes.
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Figure 5.5: Statistics of partitioning 100GB data under different thresholds

Statistics of Automated Partitioning

Six tests were run based on the setup in Table 5.8, and Figure 5.5 presents a summary of

the partitioning results. The total number of partitions generated is shown in Figure 5.5a,

which also depicts the estimated number of partitions as a comparison. Note that the

estimated number is calculated as 100GB (i.e. the total volume) divided by the estimated

average volume per partition (Table 5.8). As shown, as the value of Θmax increases,

the actual number of partitions decreases inversely. Also, it matches the anticipated

number under all thresholds, although it generates approximately 10% more partitions

than estimated when Θmax = 1GB.

In contrast, Figure 5.5b shows the average volume of data stored in the partitions,

which exhibits an increasing trend when the value of Θmax grows. Moreover, the data

volume in the resulting partitions agrees with the estimated volume when Θmax ≤ 8GB,

but is about one quarter higher when Θmax = 16GB or Θmax = 32GB. The standard

deviation of data volume also grows linearly with Θmax. The clearer trends of the average
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and the deviation are presented in Figure 5.5c.

In Figure 5.5c, we use the term “fullness” to compare data volumes shown in Fig-

ure 5.5b. The value of fullness is calculated as the data volume of a partition divided

by Θmax. In other words, the fullness indicates how full the partition is before it reaches

the maximum capacity. As can be seen, when Θmax ≤ 8GB, the average fullness of the

partition ranges between 60% and 70% when 100GB of data is inserted. This result is co-

herent with our estimation using Equation 4.2 (page 73) that the average volume is 62.5%

of Θmax. This fullness increases to 80% when Θmax ≥ 16GB. Moreover, the standard

deviation of fullness fluctuates between 10% and 20% given different Θmax. The results in-

dicate that the data set is effectively segmented into a list of partitions that are of roughly

equal sizes.

In addition, there is a trend that larger values of Θmax tend to result in greater fullness.

This is because smaller upper bounds increase the number of partitions, which, as a result,

increases the frequency of partition splitting and the difficulty of partition merging. The

reasons are given as follows. First, when a partition is split, the data volume of each

resulting partition is only half of Θmax, i.e. the fullness is 50%. Second, one prerequisite

for merging two partitions is that they have to be located on the same set of nodes. But

such prerequisite becomes more difficult to meet when the number of partitions increases,

in which case the remaining sparse partitions pull down the average fullness.

A Fine-grained View of Partitioning

Figure 5.6 presents the data volume of every resulting partition for the six tests. Each

subfigure represents one test, wherein the partitions are displayed in order based on their

key ranges. As can be seen, none of the partition sizes exceeds its corresponding Θmax,

which means the split operation was successfully triggered and executed whenever a parti-

tion grew over Θmax. Moreover, the total size of any two adjacent partitions is above the

corresponding Θmin, meaning that the merge operation was able to eliminate consecutive

sparse partitions for a more balanced distribution of data over the partitions.

However, Test 1 exhibits one sparse partition that was not merged as expected. As

shown in Figure 5.6a, the 40th partition is extremely small, and the sizes of both the 39th

and the 41th partitions are well below Θmin. According to Equation 4.1 on page 72), the

40th partition should be merged with its adjacent partition. We analysed the system log,
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(b) Θmax = 2GB,Θmin = 1GB
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(c) Θmax = 4GB,Θmin = 2GB

0.00 

1.60 

3.20 

4.80 

6.40 

8.00 

9.60 

1 3 5 7 9 11 13 15 17 19 

D
at

a 
vo

lu
m

e 
in

 p
ar

tit
io

n 
(G

B
) 

The sequence number of partition 

(d) Θmax = 8GB,Θmin = 4GB
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Figure 5.6: A fine-grained view of partitioning 100GB data under different thresholds.
The two horizontal lines in each subfigure represent the values of Θmax and Θmin.

and realised that, the nodes serving the 40th partition did not host either the 39th or the

41th partition. A replica reallocation task (for the sake of merge) could not be executed

either, because all the nodes were heavily loaded when consuming the 100GB data in bulk

load. As discussed, allowing a small number of sparse partitions is more efficient than

merging them aggressively. Nevertheless, it is the only exception out of the total 177

partitions in Test 1, so it still demonstrates the effectiveness of the merge operation.

In the remaining experiments, we have adopted the setting of Test 2, wherein Θmax=2GB

and Θmin=1GB. There are two reasons. First, Figure 5.5c shows that Test 2 yields the

least percentage of deviation in data volume, which can also be seen in Figure 5.6b, in

which there are very few spikes. Second, it generates approximately 80 partitions, which



5.4. EXPERIMENTS AND RESULTS 129

is a moderate number for a cluster of ten nodes.

5.4.3 Node Bootstrapping

This experiment demonstrates the effects of bootstrapping nodes one after another, in

a relatively short time, in both ElasCass and Cassandra that uses split-move. Thus,

this subsection evaluates the efficiency of the proposed approach against the split-move

approach for node bootstrapping.

Experimental Setup

In this experiment, both ElasCass and Apache Cassandra were initialised with one node.

The 100GB data generated by the YCSB client was loaded on to the first node, with

Θmax = 2GB and Θmin = 1GB in ElasCass, wherein the partitioning result is very close

to Figure 5.6b (page 128). Since the replication number is configured as K = 2, when the

second node was added, the 100GB data was automatically and completely replicated to

the second node. From two nodes onwards, one empty node was added at each time. The

data was reallocated according to different strategies in these two systems.

During the whole process of node bootstrapping, both KVSs were subject to a read-

intensive background workload that followed the hotspot distribution (Table 5.7). We

controlled the background workload by tuning the number of threads in the YCSB client,

such that the CPU usage of the most loaded node was less than 80%, while the average

CPU usage of all the existing nodes fluctuated around 50%. Therefore, both systems were

moderately loaded before a new node was added. Moreover, each time before a new node

was initiated, we made sure that every existing node had been serving queries for at least

15 minutes as a normal member of the KVS, so that the data reallocation had been settled

for the previously added node. This workload also warmed up the popular replicas, so that

it was possible for the KVSs to select the appropriate replicas according to the popularity.

Several metrics are measured in this experiment. First, the bootstrap time, which is

denoted as the time between the start of the KVS process and the point when the node is

ready to serve queries. Second, the bootstrap volume, which the volume of data acquired

by a node at bootstrap. Ideally, the ith node should share 1/i of the total volume of data in

the system (BalanceVolume). However, this is affected by the partitioning and placement

strategies employed. Therefore, the imbalance index of data distribution across the nodes
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(b) Data volume acquired by the new node

Figure 5.7: The volume of data transferred at bootstrap in different Key-Value Stores

is also measured.

Data Movement at Bootstrap

Based on the setup, both KVSs scaled out from two nodes to ten nodes. Figure 5.7a

depicts the bootstrap volume, while Figure 5.7b shows the total volume of data acquired

by the new node. In both figures, the x-axis represents the number of nodes that are

already in the system before each bootstrap.

As shown in Figure 5.7a, from two nodes onwards, the bootstrap volume in ElasCass

fluctuates between 5GB and 10GB at all scales. In contrast, the volume of data transferred

with the split-move approach drops exponentially as the system scales out. Note that

ElasCass uses a two-phase bootstrapping strategy, and it deliberately limits the data

volume transferred in the pre-bootstrapping phase (Algorithm 1, page 82), so as to achieve

fast bootstrapping. However, Cassandra bootstraps a node in one step, so this result

indicates that Cassandra does not balance the distribution of data, a fine-grained view of

which will be presented in Figure 5.9a.

Figure 5.7b presents the total volume of data transferred at each bootstrap. The data

volume transferred with the split-move approach is exactly the same as in Figure 5.7a,

because a Cassandra node stops pulling data from its peers when it starts to serve queries.

By comparison, a new node in ElasCass continues to take over more replicas during the

post-bootstrapping phase, that is, after it begins to serve queries. Each new node uses

Algorithm 2 (page 84) to determine the list of replicas to acquire. As can be seen, the

total data volume transferred in this two-phase bootstrapping is roughly equal to Bal-

anceVolume at each scale, which means that each new node in ElasCass obtained an equal

share of data.
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(b) Partition Distribution

Figure 5.8: The change in number of partitions at bootstrap in ElasCass

Note that ElasCass maintains a balanced distribution of data by balancing the number

of partition replicas in each node. Figure 5.8a depicts the number of partitions acquired

by the bootstrapping node, and shows that, the total number of replicas assigned to a

new node exactly matches the average number of replicas each node owns. Moreover,

the changes in the number of partitions for each node is also presented. As shown in

Figure 5.8b, there are ten groups of columns, wherein the ithgroup consists of i columns,

each representing the data volume of a node at the scale of i nodes. It can be seen that

each new node (represented by the rightmost column in each group), not only acquired an

average number of partitions for itself, but also attempted to bring the partition number

in every other node down to the average, by taking over partition replicas from them.

Overall, ElasCass balances the number of partitions across the nodes at all scales.

Data Distribution across Nodes

In order to analyse the bootstrap volume in both KVSs (Figure 5.7), a finer-grained view

of data distribution in each node is presented in Figure 5.9. Both of its sub-figures follow

the display of Figure 5.8b. That is, each system scale is represented as a group of columns,

each showing the data volume in each node. The columns are also displayed in the order

of node joining time. Thus, the ith added node can be found at the ith column in each

group.

Figure 5.9a depicts the data distribution after each node bootstrapping with the split-

move approach. As shown, after a new node was added the volume of data did not change

in any node. For example, the second added node, represented by the second column in

each group, stored over 100GB data on disk ever since it was bootstrapped. It means that,

during the experiment, the data moved to the bootstrapping node, was not deleted at the
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(a) Data distribution under different system scales with the split-move approach
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(b) Data distribution under different system scales in ElasCass

Figure 5.9: A fine-grained view of data distribution after node bootstrapping

source node. Such design is to avoid performing SSTable compaction (Subsection 5.3.2

on page 112) when the system is subject to heavy workload. Note that Cassandra relies

on compaction to remove obsolete data from the immutable SSTables.

However, the obsolete data retained on disk had misled the subsequent new nodes. It

is noticeable in Figure 5.9a that, from the 4th node onwards, the data volume acquired

by each new node (shown as the rightmost column in each group) drops exponentially by

half at each scale, from 80GB at the 4th node, down to merely 1.25GB when the 10th node

was bootstrapped. The reason is that, when a key range of data is moved to the new
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(b) Data volume stored on disk at each scale

Figure 5.10: A summary of data distribution after node bootstrapping

node, the persistent data is retained in (but no longer served by) the source node, until

the SSTables are re-compacted. However, since compaction is a heavyweight operation, it

is rarely triggered when serving read-intensive workloads.

As a result, during the experiment, all the new nodes chose the same node (i.e. the

node with the most data on disk) as the data source. Even worse, each time the chosen

node had to offer half of its remaining key range, which was reduced by half each time a

new node was added. This means that the load on the first three nodes was not reduced

by introduction of the five new nodes, thereby defeating the purpose of elastically scaling

the KVS. This is backed by the CPU utilisation presented in Figure 5.15a on page 139.

By comparison, Figure 5.9b demonstrates that ElasCass achieved a much more bal-

anced distribution of data through node bootstrapping. The data distribution in ElasCass

follows exactly the same pattern as the distribution of partitions shown in Figure 5.8b.

This is because the data volume in each partition of ElasCass has been confined into a

bounded range, shown in Figure 5.6b (page 128). In addition, unlike Cassandra that had

to retain the deleted data on disk, ElasCass was able to remove the unwanted replicas ef-

fortlessly. The reason is that, each partition replica is stored in separate SSTables, which

can be evicted from an ElasCass node as one unit, without any scanning or re-compaction.

Furthermore, Figure 5.10 summarises the data distribution details. Figure 5.10a com-

pares the imbalance indices of data distribution for both ElasCass and the split-move

approach. As described in Subsection 5.4.1, the imbalance index is used to indicate how

imbalanced the targeted metric is over a set of nodes. Hence, a lower index means better

balance. The imbalance index of data distribution is calculated as the standard deviation

divided by the average data volume, both of which are shown in Figure 5.9a and 5.9b.

As shown in Figure 5.10a, the imbalance index of ElasCass remains at a low level at
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(b) Data transfer bandwidth

Figure 5.11: Performance of node bootstrapping in different Key-Value Stores

all scales, which indicates that the data was evenly distributed in ElasCass. In contrast,

in the split-move approach, the imbalance index soars to 1.0 within ten nodes, meaning

that the split-move approach produced a very uneven distribution of data. This is also

backed up by Figure 5.9a. At the scale of ten nodes, there are three nodes, each hosting

80GB of data or more. In the mean while, other five nodes serve less than 10GB of data

on average.

In addition, Figure 5.10b shows the average volume of data stored on disk in all the

nodes. The split-move approach occupies more storage because the source node that offers

data at bootstrap tends to retain the invalid data on disk. By comparison, ElasCass is

more efficient in storage space, since the partition replicas can be reallocated across nodes

as one transferable unit.

Bootstrap Time and Speed

Now that the reallocation of data at bootstrap has been discussed, Figure 5.11 presents

the performance of node bootstrapping in terms of bootstrap time and data transfer

bandwidth, which is calculated as the data volume transferred (i.e. Figure 5.7a, page 130)

divided by the bootstrap time. As mentioned, from two nodes onwards, both ElasCass

and Apache Cassandra were subject to a moderate workload when bootstrapping a new

node. Hence, the data transfer bandwidth was throttled by each KVS.

Figure 5.11a shows the bootstrap times in logarithmic scale for both KVSs with in-

creasing number of nodes. ElasCass experienced a slow start at the scale of two nodes,

but later on the bootstrap time fluctuates between five and ten minutes under different

scales. By comparison, Cassandra, following the split-move approach, spent more than

two hours in bootstrapping a node when there were four nodes or less in the system. From
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the scale of four nodes onwards, the bootstrap time of Cassandra drops exponentially as

the number of nodes grows, from 130 minutes to merely two minutes at the scale of nine

nodes.

The result of Figure 5.11a can be explained by the bootstrap volume as shown in

Figure 5.7a. At all scales from two nodes onwards, ElasCass managed to transfer less

than 10GB of data constantly at bootstrap, as the remaining replicas were migrated in

the post-bootstrapping phase. In contrast, with the split-move approach, the volume of

data migrated decreases from over 80GB to merely 1GB. Specifically, from the scale of

seven nodes onwards, the split-move approach did not migrate enough data as ElasCass

did, thus requiring less time for bootstrapping. The penalty is that split-move suffered

from load imbalance issue when serving queries, revealed in Subsection 5.4.4.

Moreover, Figure 5.11b depicts the data transfer bandwidth during node bootstrap-

ping. Except for a slow start at two nodes, ElasCass managed to transfer the data at

the speed fluctuating between 10MB/sec and 20MB/sec from three nodes onwards, while

with the split-move approach, the data transfer bandwidth is relatively smaller, varying

between 5MB/sec and 15MB/sec. The reason is that, in ElasCass, the data objects can be

transferred in the form of files with the Linux scp command. Conversely, the split-move

approach requires the source node to scan its data set to prepare the list of data objects,

which are then reassembled into data files in the destination node. This process is more

heavyweight than simple file transfer as in ElasCass.

5.4.4 Query Performance

This experiment compares the performance of query processing in ElasCass and Apache

Cassandra that uses the split-move approach. As the two KVSs bootstrapped new nodes

one after another (described in Subsection 5.4.3), a set of query workloads were launched

against the KVSs at each system scale. This subsection evaluates the query performance

and load balancing of both KVSs. Note that the experimental results of Cassandra are

labeled as split-move.

Experimental Setup

This experiment is focussed on the improvement of workload throughput as the system

scaled out. In order to measure the throughput at a steady state, we set an upper-bound
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(a) Throughput under zipfian distribution
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(b) Throughput under hotspot distribution

Figure 5.12: The throughput of intensive writes with different distributions

for the average read latency as 100 milliseconds (or ms), which can be considered as a

service level objective (SLO) for certain web services. Before each test, we tuned the

number of threads in the YCSB client, such that the average read latency is one-step

below this bound. Based on this latency, we tuned the operation count (i.e. number of

requests), so that the test can last long enough (at least 1000 seconds). Therefore, in all

the tests presented, the average read latency is slightly less than 100 ms, and each run

lasts at least 1000 seconds.

As mentioned in Subsection 5.4.1, there are two types of workloads, namely write-

intensive and read-intensive, generated using YCSB. In a write-intensive workload, the

read/update ratio is 50/50, while in a read-intensive workload, 95% of requests are reads.

Moreover, each workload followed two different request distributions. In the zipfian dis-

tribution, the zipfian constant is set as 0.99, whilst in the hotspot distribution, 80% of the

requests are targeting at 20% of the dataset.

Throughput at Different System Scales

Figure 5.12 depicts the throughputs of write-intensive queries in Cassandra (using split-

move) and ElasCass against increasing number of nodes. As can be seen in Figure 5.12a,

when the system is subject to write-intensive workload that follows the zipfian distribution,

the throughput of Cassandra using split-move stops improving after adding the 5th node,

while in ElasCass, the throughput increases linearly with the number of nodes. When the

workload following the hotspot distribution was applied, a very similar trend is shown in

Figure 5.12b.

Moreover, Figure 5.13 shows the throughputs of read-intensive workloads for both

KVSs. ElasCass continues to demonstrate better scalability than split-move when subject
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(a) Throughput under zipfian distribution
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(b) Throughput under hotspot distribution

Figure 5.13: The throughput of intensive reads with different distributions

to read-intensive workloads under both zipfian and hotspot distributions. In addition, if we

compare Figure 5.13 with 5.12, it can be seen that both systems have higher throughputs

under write-intensive workloads than read-intensive. This is because write operations are

buffered in memory and written in batch mode, while read operations require random disk

I/Os, which are confined by the I/O performance.

It is clear that ElasCass outperformed Cassandra using split-move in terms of scalab-

ility by a large extent. The reason is due to the imbalanced distribution of data in the

split-move approach (Figure 5.9a on page 132). Due to the lack of data moved to the new

nodes, the split-move approach was not able to scale properly.

In practice, a compaction can be launched manually by system administrators before

bootstrapping a node. Compaction will update the information of data volume on a node,

so that a new node can choose source nodes more appropriately. However, this evalu-

ation was designed to demonstrate how the KVS will behave without human intervention.

Cassandra using split-move was not able to complete a compaction during the evaluation,

which makes it unadaptable in the scenario where new nodes are added one after another

in a relatively short time. In contrast, ElasCass is able to reallocate any partition replica

as one transferable unit, since the data files are built in a partition-specific manner. Hence,

the data volume on each ElasCass node is automatically updated effortlessly.

Furthermore, Figure 5.14 shows the update latency for both ElasCass and Apache

Cassandra under write-intensive workloads. Note that the average read latency was tuned

to be 100 ms to provide a steady state for the experiment, so it is not presented. As can be

seen in Figure 5.14, the update latency fluctuates below 1.5 ms, which is two degree smaller

than the read latency. This result suggests that both ElasCass and Apache Cassandra are

optimised for writes.
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(a) Update latency under zipfian distribution
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(b) Update latency under hotspot distribution

Figure 5.14: Update latency in write-intensive workloads under different distributions

Comparison on Load Balancing

Figure 5.15 presents a finer-grained view of the CPU utilisation in each node during query

processing. The layout of the two subfigures is consistent with Figure 5.9 (page 132). The

workloads used in this figure are read-intensive queries that follow zipfian distribution. The

CPU utilisations when serving other workload patterns show a similar pattern. Hence,

they are not displayed, so as to avoid repetition.

Figure 5.15a shows the CPU utilisations for each node in Cassandra using split-move.

As can be seen, there are only three nodes at most with a CPU utilisation over 50% at

each scale, while the other nodes are under-utilised, with a CPU usage below 20%. This

unveils the reason why the throughput with the split-move approach stops improving in

Figure 5.12 and 5.13, because the majority of the workload was shared by only three

nodes, while the other nodes remained idle most of the time.

It is also worth mentioning that, the CPU utilisations of the first two nodes (represented

by the first two columns), drops drastically from over 70% at the scale of three nodes, to

below 10% from six nodes onwards. Apparently, the workloads were taken over by the 3rd,

4th and 5th nodes, which consistently exhibit a high CPU utilisation at different scales.

It can be inferred that the first two nodes had offered their data to all the other nodes.

This is backed by a comparison between Figure 5.15a and Figure 5.9a. It shows that these

three nodes hosted a total data volume of over 170GB, which occupies 85% of the 100GB

data with the replication number K = 2. Conversely, while the first two nodes stored over

100GB each, their CPU utilisations were very low during query processing.

In contrast, Figure 5.15b depicts the CPU utilisation for each ElasCass node at different

scales. As shown, every node in ElasCass has a CPU utilisation over 50%, with the average
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(a) CPU utilisation of each node with the split-move approach
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(b) CPU utilisation of each node in ElasCass

Figure 5.15: A fine-grained view of CPU utilisations under read-intensive workloads

CPU usage being above 70%. This result indicates that all the nodes are full utilised in

ElasCass. It also explains why ElasCass exhibited a higher scalability than Cassandra

in Figure 5.12 and 5.13, since every node can devote its majority of computing capacity

to query processing. Moreover, the standard deviation of the CPU utilisations fluctuates

constantly at around 10%, meaning that the workloads are well balanced in ElasCass at

different scales.

Furthermore, a summary of the CPU utilisations is also presented to compare the

overall performance of both KVSs in load balancing. Figure 5.16a and 5.16b show the
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(b) Using workloads under hotspot distribution

Figure 5.16: Average CPU utilisations of serving read-intensive workloads at varied scales
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(b) Using workloads under hotspot distribution

Figure 5.17: Imbalance index of CPU utilisation when serving read-intensive workloads

average CPU usage of all the nodes during the tests under the read-intensive workloads,

with zipfian and hotspot distribution, respectively. The results for the write-intensive

workloads show a similar trend, so they are not presented to avoid repetition. As seen,

the average CPU usage of ElasCass remains above 70% in both workload distributions.

However, with the split-move approach, the CPU usage declines gradually as the system

scaled out. The results indicate that ElasCass is able to fully utilise the provisioned

computing resources at different scales for serving queries, while in Cassandra the newly

added nodes were not efficiently incorporated into query processing.

Figure 5.17 presents the imbalance index of the CPU usage. With the split-move

approach, the imbalance index climbs up as the system scales. In both subfigures, from

the scale of eight nodes onwards, the index even goes beyond 1.0, which means that the

standard deviation of the CPU usage is even greater than the average usage. The results

indicate that some nodes are heavily loaded, while the others remain idle. The workload

was not balanced with split-move. However, this index in ElasCass remains below 0.2 in

all the tests. A small value of imbalance index indicates that the workload is well balanced

in ElasCass.
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5.4.5 Discussion

Three experiments have been presented in this section. Subsection 5.4.2 demonstrates

that the data is evenly distributed across the partitions with the proposed automated

partitioning. It can also be inferred that different settings of Θmax (and Θmin) can affect

the system’s performance. If Θmax is too small, partitions are split very frequently, which

increases the overhead of building replicas. In addition, small Θmax results in a large

number of partitions, which increases the complexity of partition reallocation. On the

other hand, if Θmax is too large, the resulting partitions will contain a large volume of

data. Moving a large-size partition replica may end up in overwhelming the node that

takes it over. Moreover, it takes substantially long time to reallocate a large-size replica,

which is not efficient.

Next, Subsection 5.4.3 presents the evaluation of bootstrapping nodes one after an-

other. The experimental results demonstrate that, as the system scales, ElasCass outper-

forms the split-move approach in node bootstrapping several ways. First, it manages to

bootstrap an empty node within a relatively short time (i.e. ten minutes), by limiting

the number of partition replicas transferred pre-bootstrapping. Second, it distributes the

data more evenly amongst the nodes in the post-bootstrapping phase, as it partitions the

key space into a finer grain. Third, it occupies less storage, since it can evict any partition

replicas as one unit. Last but not least, it exhibits faster data transfer speed at bootstrap,

because the data objects can be reallocated across nodes in the form of integrated files.

Furthermore, Subsection 5.4.4 compares the query performance in ElasCass and Cas-

sandra that uses split-move. The experimental evaluation demonstrates that, due to the

balanced distribution of data via node bootstrapping, ElasCass exhibits well balanced

load across the nodes, fully utilisation of the computing resources and great scalability

as the system scales. In contrast, Cassandra using split-move suffered from the polarised

distribution of data, and ended up in serving queries with a small group of nodes, which

results in a bounded throughput and a low resource utilisation.

Finally, we also discuss the limitation in this set of experiments. That is, the rep-

lica placement algorithms for node departure (i.e., decommissioning or failure) were not

evaluated. This is because node decommissioning is treated as the reverse of node boot-

strapping, and is executed only when there are redundant resources. Compared to node

bootstrapping under substantial workloads, data reallocation with idle resources is relat-
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ively trivial in node decommissioning. Moreover, nodes that fail unexpectedly are usually

re-bootstrapped or replaced by new empty nodes provisioned from the IaaS Cloud, which

is essentially node bootstrapping as evaluated in Subsection 5.4.3.

5.5 Chapter Summary

This chapter follows the design of a set of data distribution schemes for improving the ef-

ficiency of elasticity in decentralised shared-nothing KVSs. It falls into two parts. Firstly,

it has discussed the implementation of the proposed schemes to present ElasCass, i.e.

Elastic Cassandra, which is built on top of Cassandra (Apache, 2009) that follows the

split-move strategy. To realise the proposed schemes, three core functionalities have been

implemented. To begin with, a token management component is devised to maintain a

dynamic partition-node binding for automated partitioning and flexible replica realloca-

tion. Then, it is followed by a data storage component, which consolidates the data files

into standalone transferable partition replicas. Finally, a replica reallocation component

is implemented to execute the set of replica placement algorithms proposed for better

balanced workload and distribution of data.

Secondly, this chapter has presented the experimental evaluations of ElasCass against

Cassandra that uses the split-move approach. The evaluations were conducted on the

Amazon EC2 public IaaS, using YCSB as the benchmark tool. There were three sets of

experiments, focusing on data partitioning, node bootstrapping, and query performance,

respectively. These experiments have demonstrated that, ElasCass was capable of incor-

porating new empty nodes consecutively in a relatively short time, with ideally balanced

data distribution and much better balanced workload than Cassandra. As a result, Elas-

Cass exhibited better resource utilisation in computing and storage, and outperformed

Cassandra in scalability by a large extent under the biased workloads. We also demon-

strated the capability of our automated partitioning scheme to confine each partition into

a bounded size, without data skew or sparse partitions.

The positive results from this experiment encourage further exploration into enabling

the elasticity in KVSs. The next chapter will investigate how the requirement of elasticity,

i.e. allowing dynamic node addition and removal at runtime, will impact the performance

of data durability in KVSs. As discussed in Subsection 3.2.2, data durability is affected by

the strategy of data placement. The placement algorithms adopted by ElasCass essentially
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fall into the category of random replication, which may result in higher probability of data

loss in the face of simultaneous failure of multiple nodes (Cidon et al., 2013). Hence,

the next chapter carries forward the automated partitioning and lightweight migration

schemes in ElasCass, and presents a novel replica placement scheme called ElasticCopyset,

to improve data durability over the random replication strategy, while still maintaining

the efficiency of elasticity.





Chapter 6

Replica Placement for High

Durability and Elasticity

The ninety miles is only half of a hundred-mile journey – the going is toughest towards

the end of a journey.

– Zhan Guo Ce (戰國策)

The previous two chapters presented the design of a set of data distribution schemes

that have been implemented to present ElasCass, an elastic KVS that efficiently deals with

node addition and removal on demand. This chapter presents a novel replica placement

scheme called ElasticCopyset, which aims to minimise the probability of data loss when

facing simultaneous failures of multiple nodes, while still allowing dynamic node changes

for the sake of elasticity that is already established in ElasCass.

This chapter begins with the motivation of data durability in the face of multiple node

failures, and then revisits the concept of copyset and its use in reducing the probability

of data loss. Next, it provides the mathematical definitions for the problem of data

durability. Based on the problem definition, it presents the design of ElasticCopyset, and

the experimental evaluations. Finally, this chapter concludes.

6.1 Introduction

Distributed Key-Value Stores (KVSs) (Chang et al. 2006, DeCandia et al. 2007, Cooper

et al. 2008) have become a standard component for data management for applications

145
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deployed on the IaaS Cloud. This thesis focuses on the elasticity of KVSs, which requires

the nodes of a KVS to be efficiently added or removed at runtime.

Data in KVSs is organised in storage units, called variously as chunks, tablets, parti-

tions or virtual nodes, which are replicated for improving fault tolerance and performance.

A fundamental design choice in KVSs is the placement scheme for distributing the replicas

of data storage units across the nodes. The previous two chapters have presented a set of

replica placement algorithms that achieve well balanced workload and data distribution

for node addition and removal.

One characteristic of these placement algorithms is that the replicas of a data storage

unit (i.e. a partition in ElasCass) can be assigned to any node in the KVS. That is to

say, the mappings between replicas and nodes are randomised. As introduced in Subsec-

tion 3.2.2, such a placement strategy is termed as random replication. This strategy

provides sufficient flexibility for a KVS to distribute replicas across nodes, and thus benefits

the dynamic addition and removal of nodes in a KVS. Therefore, random replication has

been adopted by many KVSs including Bigtable (Chang et al., 2006), Dynamo (DeCandia

et al., 2007), and Cassandra (Lakshman & Malik, 2010).

However, Cidon et al. (2013) demonstrated that, once the size of the system scales is

beyond hundreds of nodes, random replication is nearly guaranteed to cause data loss when

there are multiple nodes failing simultaneously. The remaining of this section discusses

the motivation of protecting a KVS from simultaneous node failures, and then reviews

the current-state replica placement strategies that reduce the probability of data loss at

simultaneous node failures.

Simultaneous Node Failures on the Cloud

The IaaS Cloud typically provisions computing resources in the form of virtual ma-

chines (VMs), which are simulated by a hypervisor (Popek & Goldberg, 1974), such as

Xen (Dragovic et al., 2003) or KVM (Kivity et al., 2007), that runs a host on one or more

real machines. In this way, each VM runs as a guest process within the host machine, and

each host machine supports multiple VM processes.

With the growing trend of Cloud computing, IaaS Cloud platforms are usually built

from hundreds of thousands of inexpensive, low-end commodity components. However,

at such a large scale, the failure of a single hardware component at any time becomes
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the norm rather than an exception (Ghemawat et al., 2003). The failure of such single

hardware component can lead to the malfunctioning or even failure of multiple processes

(e.g. VMs) that are running on the corresponding physical machines (Vishwanath &

Nagappan, 2010).

Therefore, hardware failure in the IaaS Cloud can cause the simultaneous failures of

multiple VMs. For example, Raphael (2013) presented a list of outage events in pub-

lic Cloud providers, including Amazon, Microsoft, and Google, for a period of merely

six months. Worse still, as documented in practice by Yahoo! (Shvachko et al., 2010)

and Facebook (Borthakur et al., 2011), in the event of multiple node failures, a non-

negligible percentage of machines (0.5%-1%) cannot be restored even after the failure is

recovered (Cidon et al., 2013).

This has posed a threat to data durability in KVSs that are deployed on the IaaS

Cloud. When a non-negligible percentage of KVS nodes (each running on one VM) fail

simultaneously, if all the replicas of certain storage unit are located in the nodes that have

failed in the event, then this storage unit of data becomes unavailable. Hence, there is a

need for a replica placement scheme that focuses on reducing the probability of data loss.

A further discussion is presented as follows.

Replica Placement Strategies for Data Durability

As discussed in Subsection 3.2.2 (page 61), previous research efforts (Chun et al. 2006,

Cidon et al. 2013) have concluded that the random replication strategy, which randomly

distributes the replicas of data across all the nodes in a KVS, results in a high probability

of data loss at multiple node failures. This will be explained later in Subsection 6.2.2 using

formal definitions in mathematical terms.

Instead of using random replication, Cidon et al. (2013) proposed to confine the place-

ment of replicas into certain predefined sets of nodes, called “copysets”. That is, each

storage unit of data is assigned to a copyset of nodes, each node storing one replica for

this storage unit. In this way, this data will stay available unless all the nodes in this

copyset have all failed. This copyset-based placement scheme builds on the insight that

minimising the number of copysets can minimise the probability of data loss. As demon-

strated in Figure 6.1, given the same percentage of nodes that fail, the number of copysets

dominates the probability of data loss. This conclusion is also backed by Subsection 6.2.2
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Figure 6.1: Probability of data loss versus number of copysets. Given the number of
copysets required at each depicted point, distinct copysets were generated, based on per-
mutation described in Copyset Replication (Cidon et al., 2013). The probability of data
loss was calculated from simulating 10000 occurrences of simultaneous node failures, as
depicted in Section 6.4.

with a proof in mathematical terms.

This copyset-based placement scheme embodies two trade-offs regarding the number

of copysets. First, when one of the nodes in a copyset fails, the replacement node can only

recover data from the remaining nodes in the same copyset. Thus, the speed of recovery is

determined by the total number of nodes that share copysets with the failed node. Hence, a

trade-off needs to be made between lower probability of data loss (by using fewer copysets)

and faster recovery speed (by allocating each node into more copysets). Second, there is

a trade-off involving the frequency and magnitude of data loss. In copyset-based schemes,

data loss occurs only when all the nodes from the same copyset fail simultaneously (i.e.

a copyset failure). The average amount of data loss in a single copyset failure is equal to

the total amount of data divided by the number of copysets. That is, a smaller number

of copysets results in higher amount of data loss in each failure event.

To deal with these two trade-offs, Cidon et al. (2013) introduced the concept of scatter

width, which is defined as the number of nodes that store copies for each node’s data.

Using a high scatter width means that each node shares data with more nodes, which

requires more copysets to be created. Thus, it improves the performance to incorporate or

recover a node, but creates more opportunities of data loss under simultaneous failure of

nodes. In contrast, using a low scatter width limits the number of nodes that each node
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can share data with, thus requiring few copysets to be created. It reduces the probability

that all the replicas of some data are lost when multiple nodes fail, with the trade-off of

slow recovery time from independent node failures.

System administrators can make trade-offs by setting the preferred value of scatter

width. Cidon et al. (2013) proposed a permutation algorithm that forms a minimised

number of copysets based on a given value of scatter width, which is determined by system

administrators. However, current-state copyset implementations (Cidon et al., 2012, 2013)

do not consider the requirement of dynamic node addition and removal at runtime. This

issue is discussed as follows.

Elasticity Requirement

The aim of this chapter is to carry forward the benefit of elasticity that has been established

in the previous two chapters. However, the random replication adopted does not provide

high data durability. In contrast, the current-state copyset-based placement scheme is able

to minimise the probability of data loss at simultaneous node failures, but is not adaptive

to dynamic node changes, discussed as follows.

In current implementation of copyset-based schemes (Cidon et al., 2012, 2013), when

a new node is added to the system, it is not added to any existing copyset. Instead, a

number of new copysets are created for this new node. The new copysets are populated

using existing nodes randomly selected. Moreover, when an existing node is removed (or

fails), its vacancies in the corresponding copysets are filled by an existing node that is also

randomly selected. Therefore, node addition increases the total number of copysets, while

node removal does not reduce the copyset number. As will be demonstrated in Figure 6.17

in Section 6.4, when the system is required to scale dynamically based on workload changes,

the total number of copysets accumulates at each node addition, and eventually becomes

sufficiently large such that the data durability downgrades severely.

Hence, there is a lack of placement scheme that simultaneously maintains a minim-

ised probability of data loss at multiple node failures, while allowing the nodes to be

dynamically added or removed at runtime. This chapter presents ElasticCopyset, a novel

placement scheme that fills in this gap. The next section will provide definitions to formu-

late the problem of data loss at multiple node failures, while the design of ElasticCopyset

will be elaborated in Section 6.3.
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Table 6.1: Notational Conventions

Notation Description

R The replication number, i.e., #replicas of each storage unit
S The scatter width
Pran The probability of data loss using random replication
Pcs The probability of data loss using copyset replication

N The number of nodes in the system
F The number of nodes failed in a failure event
NG The number of nodes in each group
NE The number of extra nodes that cannot form a complete group
Nsu The number of storage units in the database
Ncs The number of copysets in the system

C The number of columns in the shuffle matrix
L The number of rows in the shuffle matrix
a, b, c The bucket of nodes to shuffle
ma,mb,mc The matrix of nodes after shuffle
x, y The x, y coordinate of the shuffled matrix

i, j, k, n Non-negative integers
r, s, t Integers

6.2 Problem Definition

6.2.1 Parameter Definitions

We focus on the issue of data placement in distributed KVSs across a cluster of N data

nodes. Typically, the data is horizontally partitioned, and stored as consolidated replicas.

In this chapter, we define the storage unit as the basic unit for replication, which can refer

to a key-value pair, a tablet or a data chunk in different data stores. Each storage unit

is stored on a set of distinct data nodes, which is called the copyset for this storage unit.

The notational conventions used in this paper are summarised in Table 6.1.

The number of distinct nodes in the copyset is defined by the replication number R,

while the number of nodes that store copies for each node’s data is defined as the scatter

width S (Cidon et al., 2013). Figure 6.2 presents an example to illustrate. As shown, the

storage unit E is replicated to the nodes {0, 3, 6}, so the copyset for E is {0, 3, 6}, wherein

the replication number R = 3, since there are three nodes in total. In contrast, Node 0

shares its data with other six nodes, including the nodes {1, 2, 3, 4, 5, 6}, hence the scatter

width for Node 0 is S = 6.

To reduce complexity, we use a unified replication number and scatter width in the

system. That is, every storage unit is stored by R distinct nodes, which form one copyset,

and every node shares its data with S other nodes. Therefore, it can be inferred that each
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Figure 6.2: An illustration of scatter width S versus replication number R. In this example,
each storage unit is replicated to R = 3 different nodes, while each node shares its data
with S = 6 other nodes in the system.

node shares copysets with at least S other distinct nodes. Since each node has (R − 1)

other nodes in each copyset, then each node should be assigned to at least S
R−1 copysets.

Thus, S ≥ (R− 1). The scatter width is determined by the system administrators, and is

usually a multiple of (R− 1).

6.2.2 Relationship between Data Loss and Copysets

Probability of Data Loss

In a failure event, there are F nodes failed simultaneously. When F > R, there is a chance

that all the R replicas of some storage unit will be lost in this failure event. The way that

the copysets are formed can affect the probability of data loss substantially, discussed as

follows.

In random replication, for each storage unit, R nodes are randomly chosen from all

the nodes in a KVS to form a copyset for this storage unit. As discussed by Cidon

et al. (2012), the probability of losing one single storage unit is
(FR)
(NR)

, wherein
(
N
R

)
and(

F
R

)
denote the number of ways of picking R nodes unordered out of N and F nodes,

respectively. Therefore, the probability of losing at least one storage unit in the scenario
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of F simultaneous failures is given by Equation 6.1, wherein Nsu is the number of storage

units.

Pran = 1−

(
1−

(
F
R

)(
N
R

))Nsu

(6.1)

In contrast, in a copyset-based scheme, the copysets are generated independently from

the data, and each copyset of nodes hosts multiple storage units in a copyset-based scheme.

Therefore, the number of copysets, denoted as Ncs, is less than the number of storage units,

i.e., Ncs < Nsu. Similarly, given Ncs copysets, the probability of incurring any data loss

(i.e., losing all the nodes in a copyset) is given by Equation 6.2.

Pcs = 1−

(
1−

(
F
R

)(
N
R

))Ncs

(6.2)

Two conclusions can be deducted from Equation 6.2. Firstly, the copyset-based scheme

gives a smaller probability of data loss than the random replication, i.e., Pcs < Pran, which

is due to Ncs < Nsu. Secondly, given the same R, N and F , then Pcs is an increasing

function of Ncs. It means reducing the number of copysets can lead to a decrease in the

probability of data loss. This conclusion is consistent with Figure 6.1.

Minimum Number of Copysets

In a copyset-based scheme, generating a minimum number of copysets can lead to a min-

imised probability of data loss. Note that each node should be assigned to at least S
R−1

copysets. Theoretically, for a cluster of N nodes, the minimum number of copysets is given

by Equation 6.3, wherein S
R−1N is divided by R because each copyset is counted R times

repeatedly. Therefore, adding (or removing) a node requires at least S
(R−1)R copysets to

be created (or dismissed).

MinCopysets(N) =
S

R− 1

N

R
(6.3)

The challenge of achieving the minimal copysets lies in ensuring that any two copysets

overlap by at most one node. As defined in Equation 6.3, each node (e.g. ni) is assigned

to exactly S
R−1 copysets, which contain at most S distinct nodes other than ni. Amongst

these S nodes, if there exists a duplicate node, then ni has only (S−1) other distinct nodes

to share its data. In this case, one more copyset is created for ni to fulfil the requirement

that it should share with S other distinct nodes. Then, the number of copysets will exceed

the minimum number.
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Moreover, while using a smaller scatter width S always leads to a lower probability

of data loss, there are trade-offs to consider (Cidon et al., 2013). First, using a higher S

reduces the average amount of data loss in a single failure event. That is, it trades off the

frequency against the magnitude of data loss. Second, a higher S also means that a failed

node can be recovered by more nodes. That is, this trade-off is between the loss frequency

and the speed of recovery.

In this chapter, we focus on designing a copyset-based scheme that minimises the

number of copysets. Moreover, the elasticity characteristic of IaaS Cloud means that

nodes are dynamically added or removed from the system. The minimum number of

copysets should be maintained under dynamic node changes.

6.3 Design of ElasticCopyset

This section describes the design of ElasticCopyset, a replication scheme that efficiently

creates and dismisses copysets as the nodes are added or removed dynamically, such that

the number of copysets is close to minimum (Equation 6.3) for higher data durability

against multiple node failures.

6.3.1 The Intuition

There are properties that form the basis for an elastic, minimal copyset scheme. First,

given R and S defined in Subsection 6.2.1, each copyset contains R nodes, and each

node belongs to at least S
R−1 copysets, in which there are at least S other distinct nodes.

Second, the addition or removal of a node affects only S other nodes in the S
R−1 copysets

it belongs to. Last but more important, any two copysets overlap by at most one node,

as the copyset-based scheme prefers more distinct nodes in fewer copysets.

To achieve these properties, we propose that the nodes should be split into groups, and

that each node forms copysets only with nodes in the same group. There are advantages of

isolating nodes into groups. First, as the number of nodes changes, the number of copysets

can be changed by forming or dismissing a group of nodes accordingly. Second, the effect

of adding or removing a node is restricted to one group, rather than the entire system.

As shown in Figure 6.3, a cluster of N nodes is divided into a list of groups, each having

the same number of nodes, denoted as NG. Thus, every NG nodes form one complete group,
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Figure 6.3: Dividing a cluster of nodes into complete and incomplete groups

wherein the minimum number of non-overlapping copysets are generated using a shuffle

algorithm presented in Subsection 6.3.2.

However, the number of nodes N can be dynamic, and is usually not a multiple of

NG. There are extra nodes, NE = (N mod NG), wherein 0 ≤ NE < NG. The NE nodes

are insufficient to form a new complete group. When NE 6= 0, ElasticCopyset randomly

selects (NG − NE) other nodes that are already in a complete group, to compensate the

NE nodes, so that one extra group of NG nodes can be formed. This group is called

the incomplete group, since there are nodes selected from other complete copyset groups.

ElasticCopyset uses the same shuffle algorithm to generate copysets within the incomplete

group.

Hence, if we group every NG nodes for a cluster of N nodes, there are b N
NG
c complete

groups. One incomplete group is created, if there are extra nodes that cannot form a

complete group, i.e. NE = (N mod NG) > 0. Hence, there are d N
NG
e groups in total.

Note that b N
NG
c and d N

NG
e represent the floor and ceiling values of N

NG
, respectively.



6.3. DESIGN OF ELASTICCOPYSET 155

In our shuffle algorithm, the value of NG is defined using a theorem described in

Subsection 6.3.3. Moreover, a replacement algorithm that handles node addition and

removal in these groups is presented in Subsection 6.3.4.

6.3.2 Copyset Generation within a Group

ElasticCopyset generates copysets with a shuffle algorithm that uses three distinct shuffle

orders. It requires that the replication number R = 3, which is the default value for

many distributed data stores (Chang et al. 2008, Lakshman & Malik 2010, Ousterhout

et al. 2010, Shvachko et al. 2010). Cidon et al. (2013) had evaluated the effect of varying

replication number against the data durability and system performance, and reported that

“(i.e. in random placement) increasing R = 3 to 4 does not provide sufficient durability,

while using R = 5 or more significantly hurts the system’s performance and almost doubles

the cost of storage”. Hence, we use R = 3.

Figure 6.4 illustrates the shuffle algorithm of generating copysets for one group of

nodes. It consists of four steps: divide, replicate, shuffle and merge. First of all, the

nodes are equally divided into R = 3 buckets, denoted as Bucket a, b, and c, respectively.

Therefore, it requires that NG is a multiplier of R. Second, each bucket is transformed

into a matrix, wherein each node is replicated by S
R−1 times, because each node should

appear in at least S
R−1 copysets. Third, the resulting matrices are shuffled in three different

orders, namely Order 1, 2 and 3, respectively. Finally, given the location of a node in the

matrix (i.e. the xth row, the yth column), each shuffled matrix offers one node located at

the same position (x, y). These three nodes are merged to form one copyset.

Now that the intuition of the shuffle algorithm is presented, we provide the formal

definitions for the parameters used, so that we can discuss how to achieve a minimum

number of copysets. To begin with, the number of nodes in each bucket is denoted as C.

Since each group is equally divided into R = 3 buckets, then C = NG
R . The ith node in

each of the three buckets is denoted as a[i], b[i], and c[i], respectively, where 0 ≤ i < C.

Next, the number of rows in the matrix is denoted as L, while the number of columns is

equal to the node number in a bucket, i.e. C. As defined in Equation 6.4, L = S
R−1 , because

each node is replicated S
R−1 in the shuffle algorithm. In addition, the three matrices after

shuffle are denoted as ma,mb, and mc, respectively. The node located at the xth row, yth
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Figure 6.4: Create a minimum group of non-overlapping copysets by shuffling. In this
example, there are NG = 15 nodes, divided into R = 3 buckets: {a1, a2, a3, a4, a5},
{b1, b2, b3, b4, b5} and {c1, c2, c3, c4, c5}. The scatter width S = 8, thus S

R−1 = 4. Hence,
the three buckets are replicated into three 4 × 5 matrices, which are shuffled to form
non-overlapping copysets.

column is denoted as m[x][y], wherein 0 ≤ x < L and 0 ≤ y < C.
C = NG

R

L = S
R−1

(6.4)

Moreover, Figure 6.4 shows that the three matrices are shuffled in three different

orders. In the following, we describe how to place the nodes from each bucket into the

corresponding shuffled matrix. For each node, k is an integer that increases from 0 to

L− 1, inclusively.

• Order 1. Left-to-right, then up-to-down. That is, the nodes are placed in order

horizontally, in each and every row of the matrix. In mathematical terms, each a[i]
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is placed at all positions of ma[x][y], where


x = k

y = i

.

• Order 2. Up-to-down, then left-to-right. That is, the nodes are place in order ver-

tically, from the leftmost column to the rightmost column. In mathematical terms,

each b[i] is placed at all positions of mb[x][y], where


x = (i+ k ∗ C) mod L

y = b i+k∗C
L c

.

• Order 3. Up-to-down, then right-to-left. That is, the nodes are place in order ver-

tically, from the rightmost column to the leftmost column. In mathematical terms,

each c[i] is placed at all positions of mc[x][y], where


x = (i+ k ∗ C) mod L

y = C − 1− b i+k∗C
L c

.

Finally, each copyset is formed given by a pair of (x, y), wherein 0 ≤ x < L and

0 ≤ y < C. That is, every three nodes {ma[x][y],mb[x][y],mc[x][y]} form a copyset. For

example, as shown in Figure 6.4, given (x = 2, y = 2), then {a3, b1, c1} form a copyset,

whilst given (x = 0, y = 3), then another copyset {a4, b3, c5} is generated. Note that the

three matrices are of the same size. Hence, the number of copysets generated in one group

is equal to the number of nodes in the matrix, i.e., L ∗C. The copyset number in a group,

denoted as CopysetsInGroup(NG), is given by Equation 6.5 as a function of NG.

CopysetsInGroup(NG) = L ∗ C =
S

R− 1

NG

R
(6.5)

By comparing Equation 6.5 with Equation 6.3, it can be deducted that this shuffle

algorithm generates the minimum number of copysets for the group of NG nodes. As

discussed, for a cluster of N nodes, there are d N
NG
e groups in total. Therefore, the total

number of copysets generated by ElasticCopyset TotalCopysets(N,NG), is given by Equa-

tion 6.6 as a function of N and NG.

TotalCopysets(N,NG) =
S

R− 1

NG

R
d N
NG
e (6.6)

Compared to Equation 6.3, ElasticCopyset generates more copysets than the minimum.

The difference (i.e. number of extra copysets) is given by Equation 6.7, which is linear

with S and NG.

ExtraCopysets(N,NG) =
S

R− 1

NG −NE

R
(6.7)
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6.3.3 A Theorem for the Minimum Group

The key design of ElasticCopyset is to determine the minimum number of nodes required

to form a group. As shown in Equation 6.7, using a smaller NG reduces the number of

extra copysets, thus producing close to the minimum number of copysets required, which

reduces the probability of incurring data loss under simultaneous failures.

However, it is also constrained by the requirement that each node share copysets with

S other distinct nodes. ElasticCopyset divides the nodes into a list of groups. In each

group, each node is shuffled into S
R−1 copysets, in which there are exactly S nodes other

than this node. Yet, it is uncertain that these S nodes are mutually distinct. Hence, our

task is to find out the minimum value of NG, such that there are exactly S other distinct

nodes in the S
R−1 copysets to which each node belongs. Such NG is given by Theorem 1.

Theorem 1. Given the scatter width S, the replication number R, and a group of NG =

R∗C nodes. Let L = S
R−1 . When C is the smallest odd number that is greater than L, the

shuffle algorithm creates S
R−1 copysets for each given node, which is shared with exactly S

other distinct nodes.

In the following, we will prove Theorem 1 by deduction. The discussion is on choosing

the appropriate value of C, such that any two nodes from each bucket (i.e. a[i], b[j], or c[k],

where 0 ≤ i, j, k < C), after shuffled in each corresponding order described on page 156, do

not share more than one copyset. Note that every three nodes {ma[x][y],mb[x][y],mc[x][y]}

form a copyset, given the same pair of (x, y), wherein 0 ≤ x < L and 0 ≤ y < C.

Possible Values of C for Non-overlapping Copysets

As we think of the shuffle algorithm in column-wise, each node of Bucket a, after shuffled

in Order 1, always and only appears in the ith column of the resulting matrix ma. In

contrast, the column localities of the nodes from Bucket b or Bucket c depend on the value

of C, which is constrained by Lemma 1. The formal proof is presented in Appendix A.1.

Lemma 1. When C ≥ L, given 0 ≤ i < C, any b[i], after shuffled by L times in Order 2

(or c[i] shuffled in Order 3), will appear at most once in any column of the shuffled matrix.

Lemma 1 points out that, when C ≥ L, any two replicas of b[i] (or c[i]), will not

be allocated in the same column of its corresponding shuffled matrix (i.e. mb or mc).

However, all the replicas of a[i] always appear in the same column. Since any two nodes
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from different columns will not be merged into the same copyset, Lemma 2 can be deducted

from Lemma 1, and has been proved in Appendix A.2.

Lemma 2. When C ≥ L, given 0 ≤ i, j, k < C, any combination of (a[i], b[j]) or (a[i], c[k])

appears in at most one copyset.

Moreover, as we consider the shuffle algorithm in row-wise, each a[i] appears in each

and every row of ma, while the row localities of b[i] and c[i] still depend on C. More

specifically, the row position x = (i + k ∗ C) mod L. Similarly, if each b[i] (or c[i]) is

also placed in each and every row of the shuffled matrix mb (or mc), it will simplify the

operation of restricting any two nodes from being allocated together more than once.

According to Lemma 3, C and L should be co-prime (i.e. mutually prime). The proof is

given in Appendix A.3.

Lemma 3. When C ≥ L, if C and L are co-prime, each node (either a[i], b[i], or c[i]),

after shuffled by L times (either in Order 1, 2 or 3), will appear once in each and every

row of the shuffled matrix.

Lemma 3 is an important step towards restricting any combination of (b[i], c[j]) (where

0 ≤ i, j < C) from being allocated into multiple copysets. The reason is that, when

each replica of b[i] or c[j] is restricted to one specific row, the problem can be simplified

as preventing (b[i], c[j]) from appearing on the same column more than once, which is

discussed as follows.

The Minimum C for Non-overlapping Copysets

According to Lemma 3, it requires that C ≥ L, and C is prime to L. Thus, the minimum

value of C is the smallest odd number that is greater than L. We have proved that, given

such value of C, any combination of (b[i], c[j]) appears in at most one copyset, as depicted

in Lemma 4. Note that the value of L is determined by S and R, i.e. L = S
R−1 . The proof

presented in Appendix A.4 is consisting of two parts based on two possible values of L:

i) an even integer; ii) an odd integer. Under both circumstances, there does not exist a

combination of (b[i], c[j]) that appears in more than one copyset.

Lemma 4. When C is the smallest odd number greater than L, given 0 ≤ i, j < C, any

combination of (b[i], c[j]) appears in at most one copyset.
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Hence, based on Lemma 2 and 4, given 0 ≤ i, j, k < C, when the value of C is the smal-

lest odd number that is greater than L, then any combination of (a[i], b[j]), or (a[i], c[k]),

or (b[j], c[k]), appears in at most one copyset, as depicted in Lemma 5, the proof of which

is presented in Appendix A.5). Given such C, each node shares copysets with exactly S

other distinct nodes in each group, as depicted in Lemma 6, proved in Appendix A.6.

Lemma 5. When C is the smallest odd number greater than L, any two copysets share

at most one common node.

Lemma 6. When C is the smallest odd number greater than L, every node belongs to

exactly L copysets, in which there are exactly S other distinct nodes.

Till this end, we have proved Theorem 1 in mathematical terms. It demonstrates that a

collection of minimal copysets can be created for a relatively small group of nodes. Hence,

according to Theorem 1, the minimum number of nodes in each group is NG = R ∗ C,

wherein C = S
R−1 + 1 if S

R−1 is even; otherwise C = S
R−1 + 2. Using a minimised group

can ensure a close to minimised probability of data loss.

6.3.4 Handling Node Changes

In a distributed storage system running on an IaaS Cloud, nodes can spontaneously join

or leave the system. ElasticCopyset aims at minimal disruption of existing copysets when

handling node addition and removal.

As depicted in Figure 6.3 (page 154), the incomplete group is consisting of the re-

maining NE nodes, plus (NG − NE) nodes randomly selected from the complete groups,

together making a total of NG distinct nodes. Hence, according to the type of group to

which a node belongs, we have defined three node roles, described as follows.

• Extra: the node is in the incomplete group, and not in any complete group.

• Elementary: the node is in a complete group, and not in the incomplete group.

• Supplementary: the node is in both complete and incomplete groups.

According to this definition, an incomplete group is comprised by both Extra and

Supplementary nodes. In contrast, a complete group consists of Elementary nodes, but it

may or may not have Supplementary nodes, which are randomly chosen by the incomplete

group. Moreover, since each Supplementary node is placed into two groups, it is allocated
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to 2S
R−1 copysets, rather than S

R−1 . The total number of extra copysets introduced by

these Supplementary nodes has been given by Equation 6.7 on page 157. This number is

minimised by choosing a minimum group NG defined by Theorem 1.

Node Addition and Removal in Groups

Figure 6.5 depicts the operations to deal with node changes. The change of nodes is

handled according to the role of the node. Since there are three node roles, node removal

(either consciously or unexpectedly), is dealt with under three scenarios, labeled as 1, 2,

and 3, respectively. In contrast, there is only one scenario for node addition, labeled as 0.

• Scenario 0 illustrates the addition of a new node. As shown, the new node always

joins the incomplete group. Since there are already NG nodes, one of the Supple-

mentary nodes is chosen and replaced by the new node. According to the definition,

the chosen Supplementary node is also located in a complete group. Hence, this
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node changes its role to Elementary in the complete group. By comparison, the new

node is marked as Extra in the incomplete group.

• Scenario 1 illustrates the removal of an Extra node from the incomplete group.

In this case, an Elementary node is randomly selected from one complete group to

replace the removed node. The selected node is marked as Supplementary in both

the complete and incomplete groups.

• Scenario 2 illustrates the removal of an Elementary node from a complete group.

In this case, the incomplete group offers one of its Extra nodes. This node replaces

the removed node in the affected complete group. Now that the node is assigned to

both the complete and incomplete groups, it is marked as Supplementary in both

groups.

• Scenario 3 illustrates the removal of an Supplementary node, which is located in

the incomplete group and one complete group. There are two solutions. The first

solution consists of two steps: i) select an Elementary node to replace the removed

node in the incomplete group as in Scenario 1; ii) select an Extra node to replace

the removed same node in the complete group as in Scenario 2. This approach is

involved with two operations of node replacement. An alternative is to provision

a new node from the IaaS Cloud, and use it to replace the removed node in both

groups, which is depicted in Figure 6.5.

Moreover, there are extreme cases that involve with the creation and dismissal of the

incomplete group. As depicted in Figure 6.6, due to consecutive node additions, there may

be no more Supplementary node left for replacement. That is, every node in the incomplete

group is Extra. In this case, the existing incomplete group is marked as complete, with

all the nodes in it marked as Elementary. In the meanwhile, a new incomplete group is

created, and the new node joins it as an Extra node. To populate the new incomplete

group, (NG − 1) Elementary nodes are randomly selected from all the complete groups,

such that there are NG nodes in total. These selected nodes are marked as Supplementary.

Conversely, during node removal as in Scenario 2, if the incomplete group has no

more Extra node to offer, then it is dismissed. As depicted in Figure 6.7, the complete

group in which the removed node is located, becomes the new incomplete group, wherein

all the existing nodes become the Extra nodes. Therefore, there are (NG−1) Extra nodes.
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One more Elementary node is randomly selected from a complete group, and is used to

replace the removed node. Hence, this selected node is marked as Supplementary.

Node Changes in Copysets

In the previous discussion, there are three operations that require the change of copysets:

i) replacing a node in one group; ii) creating a new incomplete group; and iii) dismissing

an existing incomplete group. Note that changing the role of a node does not affect any

copyset. In the following, we discuss the side-effects of these operations to the stability of

copysets.

First of all, node replacement is inevitable in every node addition and removal described

in Figure 6.5. In most cases, ElasticCopyset requires only one node replacement, as in

Scenario 0, 1, and 2. Even in Scenario 3 where a Supplementary node is removed, it

requires only two node replacements. Note that replacing a node in one group affects

S
R−1 copysets that the node is associated with. To execute a node replacement, the data

belonging to the replaced node, is transferred to the newly joined node from the existing
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S nodes in the affected S
R−1 copysets.

Moreover, creating a new incomplete group (as in Figure 6.6) requires the generation

of S
R−1

NG
R copysets (Equation 6.5, page 157). In this case, although there are S

R−1
NG
R

copysets involved, data movement is only required in the S
R−1 copysets that contain the

new node. That is, it affects only S existing nodes.

Conversely, unlike creating a group, dismissing an existing incomplete group (as in Fig-

ure 6.7) does involve data movement for all its S
R−1

NG
R copysets. Nevertheless, the incom-

plete group is dismissed because all its nodes have become Supplementary. In order to

reduce the amount of data moved during this process, ElasticCopyset requires that no

data should be assigned to the copysets that are in the incomplete group whilst having no

Extra node. Hence, the data is moved out gradually as more Extra nodes become Supple-

mentary. By the time when the incomplete group is to be dismissed, there is already no

data left.

To sum up, in ElasticCopyset, each node addition or removal requires data movement

in S
R−1 copysets, which involves only one scatter width of nodes. In the extreme cases
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when both the incomplete and complete groups are involved, it affects 2S
R−1 copysets that

contain 2S nodes other than the added/removed node.

6.3.5 Discussion on Implementing ElasticCopyset

ElasticCopyset is a general-purpose data placement scheme that can be implemented on

a wide range of distributed storage systems that distribute data across a cluster of nodes.

This subsection discusses its implementation on decentralised shared-nothing KVSs as

described in this thesis.

First and foremost, ElasticCopyset is designed for large-scale distributed systems with

dynamic node arrivals and departures. It requires at least one complete group to create

minimal copysets, with one incomplete group to deal with node changes. Therefore, the

scatter width should be properly set, so that the existing nodes in the system are sufficient

to form at least one complete group of nodes, i.e., N ≥ NG.

According to Theorem 1 (page 158), the number of nodes in one group is NG = R ∗C,

wherein C equals ( S
R−1 + 1) or ( S

R−1 + 2), such that C is an odd number. Hence, given

R = 3, the size of NG is determined by S. If the scatter width S is set too high, such that

the total number of nodes N < NG ≤ R( S
R−1 + 2), then even one minimum group cannot

be formed. To avoid this situation, ElasticCopyset requires that S ≤Min(N)/2, wherein

Min(N) is the minimum number of nodes that will be maintained in the system. Such

requirement does not hurt the system’s performance, because S is usually set to a lower

value to reduce the probability of data loss.

Initialisation of Copysets

The group size NG = R ∗C is calculated based on S that is set. As depicted in Figure 6.3

(page 154), every NG nodes form one complete group, while the nodes that remain in

the end are assigned to the incomplete group. However, there is one implementation

challenge, that is, the lack of centralised components to divide the nodes into groups at

system startup.

To address this challenge, ElasticCopyset relies on the system administrators to desig-

nate at least one group coordinator at system initialisation. Each coordinator is responsible

for populating one complete group of nodes, and therefore, the number of coordinators

designated can be any positive number no greater than b N
NG
c, i.e., the number of complete
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groups.

To populate a complete group, each coordinator uses the typical two-phase coordin-

ation in Paxos (Lamport, 2001): i) prepare/promise, and ii) propose/accept, as depicted

in Figure 6.8. In Phase 1, each coordinator broadcasts a message to all the non-coordinator

nodes, requesting them to prepare for joining its group. Each non-coordinator node can

receive multiple prepare requests from different coordinators, but it can promise to only

one coordinator that it will not accept any proposal from other nodes within a time period

(i.e. the release). Thus, at the end of Phase 1, each coordinator has collected a number

of promises from the non-coordinators. Next, in Phase 2, each coordinator chooses at

most (NG − 1) nodes from the promises, and proposes to these chosen nodes for joining

its group. On receiving the message, the non-coordinator node will accept the proposal if

its previous promise is still valid.

In this way, each coordinator enrols a number of nodes into its group. However, in

Phase 1, some coordinators may have collected fewer promises than (NG − 1), and as a

result, cannot gather enough nodes to form a complete group. To resolve this issue, if a

coordinator has already enrolled (NG−1) non-coordinator nodes, it sends out another mes-

sage to decline the promises that are not chosen by itself, so that those non-coordinator

nodes become available for other coordinators that need more nodes. Therefore, a co-

ordinator can repeatedly run the process of enrolling nodes, until it has acquired (NG−1)

nodes.
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Note that when the number of coordinators designated is less than b N
NG
c, there must

be at least NG non-coordinator nodes that are not assigned to any group. To create more

complete groups, the existing coordinators will elect one more coordinator amongst the

remaining non-coordinators, wherein the election can be the same as the one proposed in

Subsection 4.2.2. Thus, the elected coordinator follows the two-phase coordination (Fig-

ure 6.8), and forms one more complete group of NG nodes. At this moment, if the number

of remaining non-coordinator nodes is still no less than NG, then another new coordinator

is elected by the existing coordinators. This process can be repeatedly executed, until

there are less than NG nodes remaining. Finally, with the help of b N
NG
c coordinators that

are designated or elected, b N
NG
c complete groups are formed.

Note that there are still NE = (N mod NG) nodes that are not chosen. Once all

the coordinators have finishing populating its own complete group, they also coordinate

to form an incomplete group for the remaining nodes. Similarly, one new coordinator is

elected amongst the remaining nodes. The elected coordinator enrols the remaining nodes

automatically, and it also randomly selects more nodes from the complete groups to join

the incomplete group as Supplementary nodes. In the end, one incomplete group of NG

nodes is also formed.

Once the nodes have been divided into groups, each group coordinator sorts its group

members based on certain criteria. Then, each group member is assigned with a ranking

position in the group, and uses this position p to calculate the copysets it belongs to. For

example, as in Figure 6.4 (page 156), if a node is ranked as p = 7 out of the 15 nodes,

it immediately knows that it is placed at the second position of the second bucket, i.e.

b2 in Figure 6.4. Next, it runs the shuffle algorithm, which shows that it belongs to four

copysets: {a1, b2, c3}, {a2, b2, c5}, {a3, b2, c2}, and {a5, b2, c1}.

In ElasticCopyset, each node is mapped to a group ID and a ranking position once it

joins a group. This position remains unchanged until the node is removed from the group.

Thus, given the information of node positions, every node can calculate the members of

each copyset locally, without the presence of a centralised component. In addition, it is

worth mentioning that, when a node replaces an existing node in a group, it simply takes

over the ranking position of the node to be replaced, since the shuffle algorithm relies on

the ranking positions to determine the copysets.
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Replica Placement

In Subsection 4.2.3, a set of replica placement algorithms have been proposed to assign

partition replicas to each individual node. In contrast, ElasticCopyset requires each storage

unit (i.e. a partition replica) to be associated with one copyset of nodes. Therefore,

these algorithms cannot be leveraged by ElasticCopyset directly, but the proposed rules

(page 81) can be reused.

Note that each bootstrapping (or decommissioning) node is responsible for deciding

the replicas that it will serve. In ElasticCopyset, each new node is added to the incomplete

group, wherein it takes over the position of a Supplementary node as illustrated in Fig-

ure 6.5. Therefore, a bootstrapping node in ElasticCopyset will serve all the replicas that

are already assigned to the copysets that it belongs to. In the meanwhile, it also attempts

to balance the workload and distribution of data across the copysets. Similar to Rule 3

and 4 described on page 81, the bootstrapping node calculates the average CPU utilisation

and data volume in each copyset, and then initiates the reallocation of replicas to/from

its own copysets.

Apart from node bootstrapping and decommissioning, ElasticCopyset also deals with

the creation and dismissal of the incomplete group. As discussed on page 164, although a

new incomplete group creates S
R−1

NG
R copysets, there are only S

R−1 copysets (that contain

the new node) requiring data movement. Hence, the overhead of group creation is the

same as node bootstrapping.

In contrast, to dismiss an incomplete group, all the S
R−1

NG
R copysets in it are des-

troyed. To reduce the data volume transferred at group dismissal, we propose that, in the

incomplete group, the copysets that have no Extra node should not be assigned with any

data. To fulfil this requirement, once the only Extra node in a copyset is removed, the

replicas assigned to this copyset should be moved out gradually (i.e. not affecting online

queries) by the remaining Supplementary nodes in this copyset.

Recovery from Multiple Node Failures

ElasticCopyset is designed to maintain high data durability under simultaneous node fail-

ures. However, when there are F nodes that have failed, even if there is no data loss, the

failure event can affect at most S
R−1F copysets.

One solution is to provision F new empty nodes from the IaaS Cloud. These new nodes
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are added one after another, each choosing a failed node to be replaced. Alternatively, if

there is no new node available, we propose to reorganise the location of nodes across the

groups. The challenge lies in minimising the disruption to the ranking positions of the

living nodes in each group, because the shuffle algorithm relies on these node positions to

deterministically map the nodes into copysets.

To reorganise the group location of the nodes when F nodes have failed, ElasticCopyset

always uses the living Extra nodes in the incomplete group, to replace the failed nodes

in the complete groups. To begin with, ElasticCopyset requires a coordinator elected

amongst the nodes in the incomplete group. This coordinator calculates the number of

Extra nodes that are still alive, denoted as NL, and the number of failed nodes located in

the complete groups, denoted as FC . There are two scenarios depending on the values of

these two numbers.

On one hand, if NL > FC , then there are enough living Extra nodes to fill the vacancies

in the complete groups. To do so, the coordinator reallocates the Extra nodes one by one.

Each Extra node is assigned to one complete group to replace the position of one failed

node. Note that after an Extra node is settled down in a complete group, it is still present

in the incomplete group, but is marked as Supplementary in both groups instead. In

addition, it is worth mentioning that, this process does not require re-assignment between

partition replicas and copysets, but does require the added node to take over the data

belonging to the failed node. When all the FC nodes are replaced, all the complete groups

become integrated. In addition, if the number of living nodes in the incomplete group is

less than NG, then the coordinator will randomly select the Elementary nodes one by one

from the complete groups, to fill the vacancies in the incomplete group.

On the other hand, if NL ≤ FC , it means that the whole incomplete group is to be

dismissed. To do so, the coordinator moves out the Extra nodes one by one. From each of

the S
R−1 original copysets, the moving node carries 1/R of the replicas to each of its S

R−1

destination copysets located in the complete group. Note that this node is then marked

as Supplementary in both the incomplete and complete groups. In this way, the data in

the incomplete group is gradually moved out by each Extra node. Finally, all the Extra

nodes have been moved out, and all the nodes in the incomplete group are Supplementary.

Thus, this group is dismissed after the data is reallocated by the nodes that remain.

Next, if FC−NL > 0, it means that there is at least one complete group with vacancies
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caused by failed nodes. The previous coordinator (from the incomplete group) chooses the

complete group with the most vacancies, and converts it to be an incomplete group. This

process is the same as shown in Figure 6.7 on page 164. A new coordinator is elected from

this new incomplete group. Therefore, this new coordinator follows the same procedure as

described, and uses its Extra nodes to compensate other complete groups. This procedure

can go on iteratively, until all the vacancies are filled in the groups.

To sum up, in ElasticCopyset, each failed node is replaced by one Extra (or new empty)

node, and the data volume transferred in each node replacement is equal to data volume

in the failed node. Moreover, for each incomplete group that is dismissed, it requires at

most S
R−1

NG
R re-mappings between partition replicas and copysets.

6.4 Evaluation

In this section, we provide a set of experimental results to evaluate the impact of Elast-

icCopyset against Copyset Replication (Cidon et al., 2013) and Random Replication, on

data durability under simultaneous node failures. We have used simulations to evaluate

the algorithms, as we do not have access to the thousands of compute nodes needed for

real-world experiments.

For all the experiments, the replication number is set as R = 3, as explained in

Subsection 6.3.2. The number of nodes N changes between 1000 and 10000, and there are

10000 storage unit (e.g., data chunk, partition replica) assigned to each node. This is the

typical cluster size at Facebook (Borthakur et al., 2011), LinkedIn (Chansler, 2012) and

RAMCloud (Ongaro et al., 2011), and is also consistent with the experiments conducted

in Copyset Replication (Cidon et al., 2013).

We have evaluated data durability under three scenarios: i) static deployment with

varied settings; ii) linear scaling at a constant rate; and iii) elastic scaling based on work-

load demands. We have used the probability of data loss to quantify data durability. Each

loss probability is calculated as follows. We simulate 10000 times of simultaneous node

failures, given the same percentage of node failures. Each time, the given percentage of

nodes are randomly chosen to fail. This failure event is considered to have caused data

loss if there exists at least one copyset in which all nodes have failed. The probability of

data loss is equal to the number of failure events that have caused data loss, divided by

10000.
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Figure 6.9: Number of copysets generated by different placement strategies

6.4.1 Evaluation on Static Deployment

This set of experiments compare ElasticCopyset with the other placement schemes, using

static deployment with varied settings of number of nodes, scatter width and percentage

of nodes that failed.

Varied Numbers of Nodes

Figure 6.1 on page 148 has demonstrated that, the probability of data loss is domin-

ated by the number of copysets in the system. In this experiment, we used different

numbers of nodes, to study the number of copysets generated using different placement

schemes. The number of nodes is doubled at every step, starting from 100 up to 51200.

The scatter width is set as S = 10, which is consistent with that reported for Facebook

deployment (Borthakur et al., 2011) and in the evaluation of Copyset Replication (Cidon

et al., 2013).

Figure 6.9 compares the number of copysets generated by Copyset Replication and

ElasticCopyset. Figure 6.9a shows that, the numbers of copysets generated in both schemes

increase linearly with the number of nodes. This result is consistent with Equation 6.3

and 6.6, both equations showing that the number of copysets is a linear function of the

node number.

In order to clearly differentiate the two numbers, we present Figure 6.9b, which com-

pares the resulting number of copysets towards the minimum copysets defined in Equa-

tion 6.3. As can be seen, when the number of nodes N ≥ 100, the percentage of copysets

exceeding the minimum number is less than 0.5% using Copyset Replication. In contrast,

ElasticCopyset generates slightly more copysets. When 100 ≤ N ≤ 400, the number of
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Figure 6.10: Testing how the varied scatter width S will impact the system of 5000 nodes

copysets generated exceeds the minimum by 5%. This percentage of excess falls below

0.5% when N ≥ 3200. Overall, both schemes generate a close to minimum number of

copysets.

Varied Scatter Widths

In a data placement scheme, the value of scatter width is determined by the system

administrators. Figure 6.10 depicts how a system of 5000 nodes will be affected when the

scatter width S increases from 0 up to 500.

Figure 6.10a depicts the probability of data loss when 1% of the nodes, i.e. 50 nodes,

fail simultaneously. As can be seen, the probability of data loss using Copyset Replication

and ElasticCopyset is below 40% even when S = 500, while with Random Replication, the

data is almost guaranteed to be lost when S > 50. Figure 6.10b shows that the number of

copysets generated by Copyset Replication and ElasticCopyset grows steadily and linearly

as S increases. In contrast, the number of copysets generated by Random Replication

goes beyond one million even when S is small, because Random Replication forms one

copyset for each storage unit, and there are 10000 storage units per node. By comparing

Figure 6.10a with Figure 6.10b, it shows that the probability of data loss is determined

by the number of copysets in the system. This is also consistent with the conclusion of

Equation 6.2 on page 152.

Moreover, Figure 6.11 compares the actual scatter width, i.e. number of distinct

nodes that each node shares copysets with, against the value of S predefined by system

administrators. Figure 6.11a shows the percentage of the average actual scatter width of all

the nodes towards the defined S. As S increases, ElasticCopyset presents a wave-like ascent

in the average scatter width, while Copyset Replication shows a steady decline in the actual
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Figure 6.11: Compare the actual scatter width against the predefined S

scatter width on average. When S = 500, the average scatter width in ElasticCopyset

is 105% of the defined S, comparing to 95% of S in Copyset Replication. Moreover,

Figure 6.11b presents the minimum scatter width of all the nodes. ElasticCopyset presents

a constant minimum scatter width equal to the given S, while Copyset Replication again

shows a steady decline in the minimum scatter width. The latter is less than 94% of S

when S > 50.

Overall, ElasticCopyset exhibits higher scatter width than Copyset Replication, but

the percentages of deviation to the given S are less than 10% in both schemes. The

result of Figure 6.11 can be explained. ElasticCopyset guarantees that each node is put

into copysets with S distinct nodes, so the minimum scatter width is always equal to

S. Moreover, the incomplete group generates extra copysets, the number of which is

determined by both S and NE (i.e. Equation 6.7), causing a non-linear increase in the

average scatter width of ElasticCopyset. In contrast, Copyset Replication uses random

permutation to form S
R−1 copysets for each node, without guarantee that there are S

distinct nodes. A greater S results in more duplicating nodes in the copysets that a node

belongs to. Hence, the average and minimum scatter widths both decrease as the given S

grows.

In addition, Figure 6.12 studies ElasticCopyset on the changes in number of copysets

and groups. In this experiment, the scatter width is increased from 0 up to 1000. There

are four tests, with the number of nodes N set as 2500, 5000, 10000, and 20000, respect-

ively. As shown, a larger scale of system results in more copysets and groups. Moreover,

Figure 6.12a shows that the number of copysets rises in a sawtooth pattern as the scatter

width S grows. By comparison, Figure 6.12b shows the number of groups for S ≤ 100.

As S increases from 0 to 100, the total number of groups drops quickly like a power law
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Figure 6.12: The change in numbers of copysets and groups, given varying scatter widths
and node numbers in ElasticCopyset
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Figure 6.13: Probability of data loss with varying percentage of the nodes failed simultan-
eously, using different replication strategies, given S=10.

curve. We also observed that the group number declines slowly as a long tail from S ≥ 100

onwards. In addition, it is worth mentioning that, the sawtooth pattern in both subfigures

is due to the existence of an incomplete group, which creates extra copysets for the NE

nodes that remain (Equation 6.7).

Varied Percentages of Node Failure

We have demonstrated that higher scatter width leads to higher probability of data loss.

This experiment studies data durability under varied percentages of nodes that fail in a

failure event. There are five tests, wherein the number of nodes grows from 500 to 10000.

In each test, the percentage of nodes that are selected to fail increases by 0.5% from 0 up

to 5%. The scatter width is S = 10.
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Figure 6.13 depicts the probability of data loss using ElasticCopyset. For a system of

500 nodes, the loss probability rises, but remains below 10% even when 5% of the nodes

fail simultaneously. As the number of nodes increases, there is a clear trend that the

probability of data loss grows more quickly. For example, when 5% of 10000 nodes fail

concurrently, the probability of data loss is almost 90%. The reason is that, given the

same percentage of node failure, there are more nodes failed in a system with more nodes,

which naturally leads to higher data loss probability.

A horizontal line at 33.3% is added in Figure 6.13. If a system can tolerate one time of

data loss in every three system failures, ElasticCopyset can withstand 5% of node failure

rate for up to 2000 nodes. Alternatively, it can support a system of 10000 nodes, if no more

than 3% of the nodes (i.e. 300 nodes) would fail simultaneously. We have also conducted

this experiment using Copyset Replication. The results are almost identical to Figure 6.13,

and are not shown so as to avoid repetition. A similar figure can be referred to Figure 8

in Cidon et al. (2013). The reason why Copyset Replication and ElasticCopyset exhibit

a similar probability of data loss, is because both schemes generate a close to minimum

number of copysets, as depicted in Figure 6.9.

6.4.2 Scaling at a Constant Rate

We have studied the data durability with static deployment, in which the copysets were

statically generated based on the settings of the system. In this subsection, we study the

scalability of the placement schemes with two online evaluations, wherein the number of

nodes increases or decreases at a constant rate during runtime.

The first experiment is the evaluation on system scale-out. The placement schemes

are required to handle node additions. The initial number of nodes is N = 5000. The new

nodes are added one after another during the runtime, until the system scale is doubled

(i.e., N = 10000). There are three tests, with the scatter width S set as 10, 50, and 250,

respectively.

Figure 6.14a compares the number of copysets generated by Copyset Replication and

ElasticCopyset during scale-out. In all the tests, as the number of nodes grows, the

number of copysets increases more quickly when using Copyset Replication than when

using ElasticCopyset. Consequently, as shown in Figure 6.14b, given 1% of nodes that

fail simultaneously, ElasticCopyset consistently presents a smaller probability of data loss
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Figure 6.14: Scale out the system by adding nodes one-by-one at runtime. Given an initial
number of nodes N = 5000 that rises up to 10000. The figures show varying percentage
that the system is scaled, using varying setting of scatter width.

than Copyset Replication. When the system is scaled out by 100%, the probability of data

loss in Copyset Replication is also almost twice the data loss probability in ElasticCopyset.

The second experiment is to study system scale-in, which is exactly the reverse of the

scale-out experiment. The number of nodes is N = 10000. The nodes were removed from

the system one-by-one during runtime, until the system scale was reduced to a half (i.e.,

N = 5000). Similarly, there are three tests, with S = 10, 50 and 250. The percentage of

nodes that fail is also 1%.
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Figure 6.15: Scale in the system by removing nodes one-by-one at runtime. Given an
initial number of nodes N=10000 that drops down to 5000. The figures show varying
percentage that the system is scaled, using varying setting of scatter width.

As depicted in Figure 6.15a, as the system scales in from 10000 to 5000, the number of

copysets remains constant when using Copyset Replication. In contrast, ElasticCopyset is

able to steadily reduce the copyset number during the scale-in. As a result, ElasticCopyset

exhibits a smaller probability of data loss than Copyset Replication in Figure 6.15b. When

the system is scaled in by 50%, the probability of data loss in ElasticCopyset is 50% smaller

than Copyset Replication.

The experiments have demonstrated that, ElasticCopyset handles online node addition
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Figure 6.16: The input for testing the scalability of Copyset Replication and Elastic-
Copyset under dynamic workloads.

and removal better than Copyset Replication, and maintains a smaller probability of data

loss than Copyset Replication during both scale-out and scale-in.

6.4.3 Elastic Scaling Under Workload

In this experiment, we study the scalability of the placement schemes when the system is

subject to a dynamic workload. The test scenario is based on the workload analysis on

Facebook’s Memcached deployment (Atikoglu et al., 2012). The workload (e.g. number

of requests per second) follows the diurnal pattern, wherein there are peaks in day time

and bottoms in night time. The system is, either automatically or manually, scaled out

and scaled in incrementally according to the changes of workload. During the process

of dynamic scaling, we compared ElasticCopyset against Copyset Replication, on data

durability.

The input of this experiment is shown in Figure 6.16. We simulated the workload

to match the temporal patterns described in the Facebook deployment (Atikoglu et al.,

2012). As depicted in Figure 6.16a, every 24 hours is a period of wave, and there are 200

hours in total. The bottom workload is set as 50,000 requests per second. Depending

on the peak workload, there are three types of patterns, namely low, medium, and high.

The peak workloads are 75000, 100000, and 150000 reqs/sec, respectively, which are 50%,

100% and 200% greater than the bottom workload. Hence, in the remaining figures of this

subsection, the results are labeled as Low, Medium, and High, respectively.

Based on the three types of workload, we then simulated the changes in the number

of nodes. As shown in Figure 6.16b, when the workload is at the bottoms, there are 5000

nodes. The number of nodes is increased as the workload rises up. The system scale peaks
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Figure 6.17: Compare the performance of dynamic scaling between Copyset Replication
and ElasticCopyset. The system is scaled based on different types of workloads. Initial
number of nodes is N=5000.

approximately at 6000, 7000, and 8500 nodes, for Low, Medium, and High Workload,

respectively. Hence, given N = 5000 at the bottom, the percentages of scaling-out are

respectively 20%, 40% and 80% under the workloads.

The number of nodes in Figure 6.16b is served as the direct input for evaluating the data

durability at elastic scaling, the experimental results of which are presented in Figure 6.17.

The numbers of copysets generated are shown in Figure 6.17a. Initially, about 8500

copysets were generated in both schemes. However, as the time elapses, the two schemes
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exhibit two disparate trends. In Copyset Replication, the number of copysets cumulates

step by step every 24 hours, and grows steadily each day. While in ElasticCopyset, the

number of copysets rises and declines according to the number of nodes, and remains at a

horizontal level in the long run.

Consequently, given 1% of nodes that fail, the probability of data loss, which is de-

termined by the number of copysets, also exhibits two disparate trends. As shown in

Figure 6.17b, the loss probability in Copyset Replication increases steadily day after day.

During 200 hours, the probability grows from 1% to 12% under the high workload. At

this rate, the probability of data loss will exceed 50% within 1000 hours (i.e. 40 days). In

contrast, ElasticCopyset manages to maintain the data loss probability below 1.5% under

varied workloads.

Figure 6.17 has demonstrated that, when the system is dynamically scaled out and

scaled in within a range over a long period of time, ElasticCopyset is able to maintain

data loss probability at a close to minimised level, while Copyset Replication is not.

6.4.4 Discussion

We have presented the experimental results. The evaluations on static deployment have

demonstrated that, ElasticCopyset exhibits a close to minimised probability of data loss

under varied system setups and failure rates. Yet, it is noticeable in Figure 6.10b that

ElasticCopyset generates more copysets than Copyset Replication, resulting in slightly

higher probability of data loss shown in Figure 6.10a. This is due to the extra copysets

generated in the incomplete group (Equation 6.7). Nevertheless, as shown in Figure 6.9b,

the percentage of extra copysets is less than 6%.

The evaluations on scalability have shown that ElasticCopyset greatly outperforms

Copyset Replication by maintaining the minimum copysets during online node addition

and removal. The results can be explained. During scale-out, Copyset Replication requires

S
R−1 new copysets to be generated for each node addition, while ElasticCopyset generates

new copysets only when a new incomplete group is required (Figure 6.6). To illustrate,

we assume n new nodes are added. Copyset Replication creates S
R−1n new copysets, while

ElasticCopyset creates S
R−1

NG
R d

n
NG
e new copysets (Equation 6.6). When n � NG, then

S
R−1

NG
R d

n
NG
e ≈ S

R−1
n
R . Since S

R−1n is R times as many as S
R−1

n
R , given R = 3, then the

number of copysets generated for new nodes is almost tripled in Copyset Replication than



6.5. CHAPTER SUMMARY 181

in ElasticCopyset.

During scale-in, when a node is removed, Copyset Replication uses an existing node

to replace it, without destroying any existing copyset. While in ElasticCopyset, the whole

incomplete group is dismissed when there is no Extra node (shown in Figure 6.7). Hence,

when the system is scaled in, the number of copysets in ElasticCopyset is reduced accord-

ingly, while the number in Copyset Replication remains unchanged.

Overall, ElasticCopyset leverages the incomplete group to create and dismiss copysets

for dynamic node addition and removal, and also maintains a close to minimised probab-

ility of data loss in both static deployment and dynamic scaling.

6.5 Chapter Summary

This paper addressed the issue of data durability under simultaneous node failures, for dis-

tributed data stores that are required to efficiently scale out and scale in, in direct response

to workload demands. We have proposed ElasticCopyset, a novel, general-purpose data

placement scheme that builds on the concept of “copysets” (Cidon et al., 2013). Given

the scatter width of the data placement, ElasticCopyset defines the minimum number of

nodes that can form a group, and splits the nodes in the system into a list of complete

group and one incomplete group. ElasticCopyset uses a novel shuffle algorithm to gen-

erate a minimum number of non-overlapping copysets within each group to minimise the

probability of data loss. ElasticCopyset also leverages the incomplete group to efficiently

handle node addition and removal, such that each node operation affects only one scatter

width of nodes.

We have evaluated ElasticCopyset against the current-state data placement schemes

including Random Replication and Copyset Replication. The evaluation has demonstrated

that ElasticCopyset is able to maintain a close to minimum probability with the setting

of varying values of scatter width, number of nodes, and percentage of node failure. In

contrast to the current-state Copyset Replication, ElasticCopyset has also exhibited much

better scalability and elasticity in the scenario where the distributed system is required to

dynamically scale in and scale out under the diurnal workload pattern.





Chapter 7

Conclusions and Future Directions

Reasoning draws a conclusion, but does not make the conclusion certain, unless the mind

discovers it by the path of experience.

– Roger Bacon

The main contribution of this thesis lies in the set of data management schemes, which

have now been proposed, elaborated and evaluated. This concluding chapter summarises

the main ideas and contributions of this thesis, and then discusses the potential future

research directions.

7.1 Thesis Summary

Over the past few years, Cloud computing has emerged as a hundred billion dollar industry

and as a successful paradigm for delivering computing utility as a service. Irrespective

of Cloud service models or Cloud abstractions, distributed data stores form a critical

component in the stack of data-centric applications and services on the Cloud.

This thesis began by studying, characterising and categorising several aspects of dis-

tributed data stores. It then identified Key-Value Stores (KVSs) as the state-of-the-art

data stores that are most applicable to the IaaS model of Cloud computing. KVSs have

advantages of high availability and inherent scalability, the features that are lacking in

RDBMS that focus on ACID transactions. Hence, compared to RDBMS, KVSs are con-

sidered to be more friendly to the IaaS Cloud. Nevertheless, resource elasticity, a key

feature of the Cloud, requires the KVSs to efficiently incorporate and dismiss the provi-

sioned resources as nodes of the KVS according to workload changes. This thesis has found
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that current-state KVSs are not capable of doing so, mostly due to the lack of a set of

data management schemes that focus on addressing the issues of dynamic node additions

and removals.

Hence, this thesis has proposed the design of a data distribution middleware, which

aims to help shared-nothing KVSs improve the efficiency of elasticity in several aspects.

First, in order to reduce the overhead of data movement across nodes, it relies on an

automated partitioning algorithm that divides the data set into multiple partitions, and

then consolidates every partition replica into standalone transferable units with a bounded

size. Second, to achieve a balanced load at each stable scale after node additions and re-

movals, it uses a set of data placement algorithms to distribute the transferable partition

replicas amongst the nodes, with the aims of balancing both workload demand and data

volume. Third, to maintain data consistency during data movement, it proposes a token

management policy that controls the qualification of the source and destination nodes

regarding to serving reads and writes. Last but not least, to address the issue of dis-

tributed synchronisation and decision making without a dedicated component, this thesis

proposes an election-based coordination to facilitate the execution of distributed tasks in

a decentralised manner.

Moreover, in order to evaluate the efficiency of elasticity, this thesis has presented

the implementation of ElasCass for the proposed data distribution middleware. ElasCass

was built on an open-source KVS called Cassandra (Apache, 2009), which follows the de-

centralised, shared-nothing architecture. ElasCass differs from Cassandra in several ways.

First, to facilitate dynamic node additions and removals with finer-grained load balan-

cing, ElasCass supports an ongoing view of a many-to-many mapping between partition

replicas and nodes. The ongoing view also helps to ensure data consistency during data

movement. Second, ElasCass supports automated partitioning in a background process.

The resulting partition replicas are standalone transferable units that can be placed at

any node at anytime, which simplifies data movement to a large extent. Additionally,

ElasCass gathers detailed load statistics for the reallocation of partition replicas.

Given the implementation of ElasCass, the evaluations were conducted on the Amazon

EC2 public IaaS, using YCSB as the benchmark tool. The experimental results have

demonstrated that, ElasCass is capable of incorporating new empty nodes consecutively

in a relatively short time, with ideally balanced data distribution and well-balanced work-
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load. Compared to Cassandra, ElasCass exhibits better scalability and higher resource

utilisation in computing and storage, and delivers a query throughput more than twice

that of Cassandra. Moreover, ElasCass reduces the time required to incorporate a new

node from several hours to within ten minutes, hence fulfilling the goal of efficient node

addition.

Furthermore, hardware failure on the IaaS Cloud usually causes multiple VMs to fail

simultaneously. This thesis has proposed ElasticCopyset, to ensure high data availability

whilst allowing dynamic node additions and removals. ElasticCopyset divides the nodes

into groups, wherein the nodes are shuffled to form a minimum number of non-overlapping

sets of nodes (i.e. copysets). ElasticCopyset extends the concept of copyset (Cidon et al.,

2013) to produce a brand-new set of algorithms for replication under elasticity. This

thesis has also presented mathematical proof for the correctness of the algorithms. The

evaluation has demonstrated that ElasticCopyset is able to maintain a close to minimum

probability with the setting of varying values of scatter width, number of nodes, and

percentage of node failure. For example, given a cluster of 5000 nodes and 1% of node

failure rate, ElasticCopyset managed to reduce the data loss probability from 99.99% to

less than 3.8%. In contrast to the current-state copyset-based replication, ElasticCopyset

has also exhibited much better scalability and elasticity in the scenario where the distrib-

uted system is required to dynamically scale in and scale out under the diurnal workload

pattern.

Overall, this thesis has presented the design and implementation of a set of data man-

agement schemes to achieve lightweight data movement, better load balancing, and higher

data durability, while allowing dynamic node additions and removals, which together im-

prove the efficiency of elasticity for decentralised, shared-nothing KVSs that are deployed

on the IaaS Cloud.

7.2 Future Directions

7.2.1 Supporting Richer Queries

The applicability of KVSs depends on the variety of query commands they provide.

Current-state KVSs are not constrained by the simple CRUD (i.e. create, read, update,

delete) operations. Instead, they need to provide a richer set of commands for query
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processing. There are two major directions, discussed as follows.

One direction is to support efficient range queries for the sake of online analytical

processing (OLAP), catering for the application of business intelligence. Range query is

important to ad-hoc analytical processing. The challenge of range query lies in maintaining

cluster-wide load balancing while allocating consecutive key ranges within a small number

of nodes. Note that the performance of range query depends on how quickly the query

results can be returned in a sorted order, and therefore, given the same key ranges, a

smaller number of nodes require less distributed synchronisation.

There have been research efforts on range queries. Vo et al. (2010) proposed to employ

BATON, a balanced tree structure for overlay network (Jagadish et al., 2005), to effectively

support load-adaptive data placement. It not only differentiates the master replica from

slave replicas of each data partition, but also creates extra “secondary replicas” for load

balancing. This approach is not applicable to the design of this thesis, which proposes

to use copyset-based placement, wherein each data partition has the same number of

indistinguishable replicas. In contrast, ES2 (Cao et al., 2011) is a distributed data store

that provides the implementation of an abstractive overlay based on the Cayley graph

model, so as to support distributed indexing for efficient data retrieval in OLAP workloads.

According to Lupu et al. (2008), the Cayley graph serves the algebraic and combinatorial

base for many P2P networks, and provides a way to traverse all the nodes in an orderly

fashion, so as to answer range queries efficiently. Hence, the future work is to employ the

Cayley graph structure for the support of range query in copyset-based placement.

The other future direction is to enable ACID transactions for KVSs. This is motivated
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by the lack of transactional support in existing commercial and open-source KVSs (DeCan-

dia et al. 2007, Apache 2009), and the desire for traditional database applications, e.g.,

credit card transactions in online shopping. As shown in Figure 7.1, current-state KVSs

are aiming to provide stronger data consistency for ACID transactions, without sacrificing

the inherent scalability.

In the domain of elastic KVSs, this is achieved by supporting localised transaction.

Bigtable (Chang et al., 2006) supports row-level transaction only, while Megastore (Baker

et al., 2011) supports transactions over multiple records. Yet, Megastore requires data

objects be partitioned into a collection of entity groups, wherein each entity must live

within a single scope of serialisability, i.e. one machine or cluster (Helland, 2007). Elas-

Tras (Das et al., 2009) also supports a restricted transaction semantics, termed as mini-

transactions (Aguilera et al., 2007), which is executed within one data partition. How-

ever, it requires the data be statically partitioned, and is not applicable to KVSs that use

automated partitioning as proposed in this thesis. Hence, there is a gap in supporting

transactions over multiple data objects, without restricting data partitioning schemes.

7.2.2 Extending ElasticCopyset

Chapter 6 presented a placement algorithm called ElasticCopyset. It has been proved that,

the copyset-based replication scheme is robust in terms of data durability at the event

of simultaneous node failures, and the organisation of group/copyset division is efficient

in supporting dynamic node arrivals and departures. Yet, there are two directions for

extensions to this research in the near future.

One direction is to realise ElasticCopyset on a large-scale KVS. As discussed in Sub-

section 6.3.5 (page 165), the implementation of ElasticCopyset requires the realisation of

several components:

• Cluster initialisation. The problem is how a cluster of nodes can spontaneously

form groups and copysets without a dedicated component and with minimised hu-

man administration. In Subsection 6.3.5, we have proposed to designate one or a

few coordinators before system startup. These coordinators recruit nodes as group

members using Paxos-based coordination, and they continue to elect new coordinat-

ors to form more groups, until there is no node remaining. Within each group, each

node is assigned with a group ID and a position in the group, which is propagated
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to every other node, so that every node can calculate the copysets locally. Hence,

copysets are formed without dedicated components.

• Replica placement. Subsection 4.2.3 (page 80) has proposed a set of algorithms to

assign the replicas of certain data to each individual node. However, ElasticCopyset

is a copyset-based scheme, wherein all the replicas of certain data should be assigned

to the same copyset of nodes. It gives rise to the challenge of load balancing in

ElasticCopyset, as the nodes within the same copyset can be varied greatly, even

though the load is balanced over the copysets. Figure 7.2 presents such an example.

There are nine nodes that form six copysets. Although the total load (either workload

demand or data volume) of every copyset is the same (e.g. equals 30), the load

in each individual node varies drastically from 6 to 14. Hence, there is a lack of

replica placement strategies that achieve load balancing across nodes, while assigning

replicas on a per-copyset basis.

• Recovery of multiple node failures. In Subsection 6.3.5, we have proposed to

use the living Extra nodes in the incomplete group, to replace the failed nodes in

the complete groups. However, when dealing with node replacement in the groups,

there is still a challenge of balancing the load across nodes, which is determined by

the replica placement strategies discussed. Hence, the replica placement problem for

the copyset-based schemes shall be addressed in the future.

The other direction is to extend ElasticCopyset for the support of various replication

numbers. In the current design, ElasticCopyset requires that the replication number is

R = 3, that is, each data object (or partition) is replicated to three distinct nodes. This
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design choice follows many distributed data stores (Chang et al. 2008, Lakshman & Malik

2010, Ousterhout et al. 2010, Shvachko et al. 2010). Still, we intend to investigate the

possibility of supporting a wider range of replication numbers.

The shuffle algorithm in ElasticCopyset uses three distinct orders to place the nodes

(Figure 6.4 on page 156), so that any two resulting copysets overlap by at most one node.

However, this problem is increasingly difficult with a higher replication number, since

there are very limited distinct orders to shuffle nodes in a matrix. Still, there are ways to

generate copysets for a higher replication number with a shuffle algorithm.

Figure 7.3 illustrates the intuition of such a shuffle algorithm. The basic idea is to split

a higher replication number R into several smaller Ri ≤ 3. For example, when R = 5,

we split it into R1 = 3 and R2 = 2. To generate copysets, we still divide the group of

nodes into R = 5 buckets. But, we use the shuffle algorithm to generate one rank of

sub-copysets consisting of R1 = 3 nodes for the first three buckets, and to generate the

other rank of sub-copysets consisting of R2 = 2 nodes for the remaining buckets. Next,

we merge each sub-copyset of R1 = 3 nodes with one sub-copyset of R2 = 2 nodes. In this

way, each resulting copyset contains R = 5 nodes. This method can be extended for the

use of much higher replication numbers. For example, when R = 10, then it can be split

into 10 = 3 + 3 + 3 + 1. That is, four ranks of sub-copysets are generated separately, and

then merged into one rank of copysets, each consisting of ten nodes.

However, this proposal leads to one challenge that needs to be addressed in the future.
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When we merge two sub-copysets from different ranks, it requires another shuffle order that

is distinct from the three default orders defined. With the lack of such order, there may

exist two copysets that share more than one common node. For example, in Figure 7.3,

c2 and e2 appear together in two copysets. For certain nodes, the actual scatter width

will be slightly smaller than the given S. Nevertheless, as discussed in Section 6.2, the

scatter width is typically set as a multiple of (R − 1), and therefore, a greater R results

in a greater S. Hence, the value of the actual scatter width is still sufficiently large.

To sum up, we aim to extend ElasCass to build an elastic KVS that is adaptive to

the IaaS Cloud in the long term. This KVS shall be able to adapt its capacity according

to the change of workload demands, to efficiently support both OLAP queries and ACID

transactions, and to maintain data durability in the event of multiple node failures.
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Tamer Özsu, M. & Valduriez, P. 2011, Principles of Distributed Database Systems, 3rd

ed., Springer.

Tanenbaum, A. S. & Van Steen, M. 2007, Distributed systems: Principles and paradigms,

2nd ed., Prentice Hall, Upper Saddle River, NJ.

Tarantool 2009, ‘Tarantool: An in-memory NoSQL database’, Accessed 12 December 2013,

<http://www.tarantool.org/>.

Terracotta Inc. 2009, ‘Ehcache: Performance at any scale’, Accessed 04 March 2013,

<http://www.ehcache.org/>.

Thomas, R. H. 1979, ‘A majority consensus approach to concurrency control for multiple

copy databases’, ACM Transactions on Database Systems (TODS), vol. 4, no. 2, pp.

180–209.

Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff,

P. & Murthy, R. 2009, ‘Hive: A warehousing solution over a map-reduce framework’,

Proceedings of the VLDB Endowment (PVLDB), vol. 2, no. 2, pp. 1626–1629.

TPC 2001, ‘TPC Benchmarks’, Accessed 02 May 2011, <http://www.tpc.org/

information/benchmarks.asp>.

Trushkowsky, B., Bod́ık, P., Fox, A., Franklin, M. J., Jordan, M. I. & Patterson, D. A.

2011, ‘The SCADS Director: Scaling a distributed storage system under stringent per-

formance requirements’, in Proceedings of the 9th USENIX Conference on File and

Storage Technologies (FAST), USENIX Association, San Jose, CA, USA, pp. 163–176.

<http://www.tarantool.org/>
<http://www.ehcache.org/>
<http://www.tpc.org/information/benchmarks.asp>
<http://www.tpc.org/information/benchmarks.asp>


REFERENCES 211

Van Renesse, R. & Schneider, F. B. 2004, ‘Chain replication for supporting high through-

put and availability’, in Proceedings of the 6th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI), vol. 4, USENIX Association, San Francisco,

CA, USA, pp. 91–104.

Van Renesse, R., Minsky, Y. & Hayden, M. 1998, ‘A gossip-style failure detection service’,

in ACM/IFIP/USENIX International Middleware Conference 1998 , Springer, The Lake

District, England, pp. 55–70.

Versant corporation 2008, ‘Db4o: Java and .NET Object Database’, Accessed 03 Septem-

ber 2011, <http://www.db4o.com/>.

Vishwanath, K. V. & Nagappan, N. 2010, ‘Characterizing cloud computing hardware

reliability’, in Proceedings of the 1st ACM Symposium on Cloud Computing (SOCC),

ACM, Indianapolis, IN, USA, pp. 193–204.

Vo, H. T., Chen, C. & Ooi, B. C. 2010, ‘Towards elastic transactional cloud storage with

range query support’, Proceedings of the VLDB Endowment (PVLDB), vol. 3, no. 1-2,

pp. 506–514.

Vogels, W. 2009, ‘Eventually consistent’, Communications of the ACM , vol. 52, no. 1, pp.

40–44.

Voldemort 2009, ‘Project Voldemort - A distributed database’, Accessed 5 April 2011,

<http://www.project-voldemort.com/voldemort/>.

Wada, H., Fekete, A., Zhao, L., Lee, K. & Liu, A. 2011, ‘Data consistency properties and

the trade-offs in commercial cloud storage: The consumers’ perspective’, in 5th Biennial

Conference on Innovative Data Systems Research (CIDR), vol. 11, Asilomar, California,

USA, pp. 134–143.

Weatherspoon, H. & Kubiatowicz, J. D. 2002, ‘Erasure coding vs. replication: A quantit-

ative comparison’, in Peer-to-Peer Systems, Springer, pp. 328–337.

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. & Maltzahn, C. 2006, ‘Ceph: A

scalable, high-performance distributed file system’, in Proceedings of the 7th USENIX

Symposium on Operating Systems Design and Implementation (OSDI), USENIX Asso-

ciation, Seattle, WA, USA, pp. 307–320.

<http://www.db4o.com/>
<http://www.project-voldemort.com/voldemort/>


212 REFERENCES

Wilkinson, K., Sayers, C., Kuno, H. A., Reynolds, D. et al. 2003, ‘Efficient RDF Storage

and Retrieval in Jena2.’, in Proceedings of the 1st International Workshop on Semantic

Web and Databases (SWDB), vol. 3, Berlin, Germany, pp. 131–150.

Williams, S. 2000, The associative model of data, Lazy Software Ltd., United Kingdom.

You, G. w., Hwang, S. w. & Jain, N. 2011, ‘Scalable load balancing in cluster storage

systems’, in ACM/IFIP/USENIX International Middleware Conference 2011 , Springer,

Lisbon, Portugal, pp. 101–122.

Youseff, L., Butrico, M. & Da Silva, D. 2008, ‘Toward a unified ontology of cloud comput-

ing’, in Grid Computing Environments Workshop (GCE’08), IEEE, pp. 1–10.

Yu, H., Gibbons, P. B. & Nath, S. 2006, ‘Availability of multi-object operations’, in

Proceedings of the 3rd USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), USENIX Association, San Jose, CA, USA, pp. 211–224.

Zaman, S. & Grosu, D. 2011, ‘A distributed algorithm for the replica placement problem’,

IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 22, no. 9, pp.

1455–1468.

Zhang, Q., Cheng, L. & Boutaba, R. 2010, ‘Cloud computing: State-of-the-art and research

challenges’, Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7–18.

Zhao, B. Y., Kubiatowicz, J. & Joseph, A. D. 2001, ‘Tapestry: An infrastructure for fault-

tolerant wide-area location and routing’, Tech. rep., University of California at Berkeley,

CA, USA.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D. & Kubiatowicz, J. D.

2004, ‘Tapestry: A resilient global-scale overlay for service deployment’, IEEE Journal

on Selected Areas in Communications, vol. 22, pp. 41–53.



Appendix A

Proof of Lemmas

A.1 Proof of Lemma 1

Proof. For all integers i ∈ [0, C) and k ∈ [0, L), each b[i] appears at mb[xb][yb] where
xb = (i+ k ∗ C) mod L

yb = b i+k∗C
L c

.

When C < L, i.e., C
L < 1, there exists at least one violation. For example, let i = 0.

When k1 = 0 or k2 = 1, yb = bk1CL c = bk2CL c = 0. That is, b[0] will appear twice at

mb[0][0] and mb[C][0], which are in the same column.

When C ≥ L, let C = L + t, wherein t ≥ 0. Thus, for any k1 < k2, i.e. k1 + 1 ≤ k2,

we have yb(k2) > yb(k1), because:

yb(k2) = b i+k2∗C
L c

≥ b i+(k1+1)∗(L+t)
L c = bk1 + i+k1∗t+t

L + 1c

> bk1 + i+k1∗t+t
L c ≥ bk1 + i+k1∗t

L c

= b i+k1∗(L+t)
L c

= yb(k1).

That is, yb(k1) 6= yb(k2). Hence, any two replicas of b[i] will not appear in the same

column. Similarly, for each c[i], yc = C− 1−b i+k∗C
L c = C− 1− yb. For any k1 6= k2, since

yb(k1) 6= yb(k2), we have yc(k1) 6= yc(k2). Hence, any two replicas of c[i] will not appear

in the same column, either.
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A.2 Proof of Lemma 2

Proof. Given any two copysets, i.e. {a[i1], b[j1], c[k1]} and {a[i2], b[j2], c[k2]}. We use proof

by contradiction. Assume they share more than one node, i.e.,


i1 = i2

j1 = j2

, or


i1 = i2

k1 = k2

.

According to the definition of Order 1, a[i] is placed in the ith column. Thus, if i1 = i2,

then a[i1] and a[i2] are located in the same column t = i1 = i2, wherein t is a constant.

Since a[i1] and b[j1] are in the same copyset, b[j1] is in column t1 = t, and b[j2] appears in

column t2 = t as a[i2] does.

According to Lemma 1, if j1 = j2, then b[j1] and b[j2] appear in two distinct columns,

i.e., t1 6= t2, which contradicts t1 = t2 = t. That is to say,


i1 = i2

j1 = j2

is not valid. Hence,

there does not exist two copysets that share the same a[i] and b[j].

Similarly, if k1 = k2, then c[k1] and c[k2] are also located in two distinct columns

t3 6= t4, which contradict {t3 = t and t4 = t}. Hence, there does not exist two copysets

that share the same a[i] and c[k], either.

A.3 Proof of Lemma 3

Proof. Given two integers i ∈ [0, C) and k ∈ [0, L).

According to the definition of Order 1, a[i] is placed in the ith column, kth row. There-

fore, a[i] appears in each and every row.

According to Order 2, each b[i] appears at mb[xb][yb], wherein xb = (i+k ∗C) mod L.

We use proof by contradiction. Presume there exist two replicas of b[i], i.e. k1 6= k2, such

that xb = xb(k1) = xb(k2). That is, there exist two integers t1 and t2, such that:
i+ k1 ∗ C = t1 ∗ L+ xb

i+ k2 ∗ C = t2 ∗ L+ xb

(A.1)

From Equation A.1, we have: C
L = t2−t1

k2−k1
. Since ∀k < L, let k1 < k2, then 0 < k2−k1 < L.

Since both (k2 − k1) and (t2 − t1) are integers, there must exist an integer s > 1, such

that L = s ∗ (k2 − k1) and C
L = s(t2−t1)

s(k2−k1)
. In this case, s is a common divisor of C and

L. However, C and L are co-prime, meaning that their greatest common divisor is s = 1,

which contradicts s > 1. Hence, the presumption that there exists k1 6= k2 such that
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xb(k1) = xb(k2) is invalid. That is to say, there is no b[i] appearing more than once in any

row of the matrix.

Moreover, since each b[i] appears exactly L times in mb that has exactly L rows, plus

there is no row containing more than one b[i], the only possible layout is that each b[i]

appears once in each and every row of the matrix.

Similarly, according to Order 3, for each c[j], we have xc = (j + k ∗ C) mod L = xb.

The conclusion for b[i] is also valid for c[j].

A.4 Proof of Lemma 4

This proof consists of two parts: i) L is even; and ii) L is odd. In both cases, we prove

that, given 0 ≤ i, j < C, when C is the smallest odd number that is greater than L, any

combination of (b[i], c[j]) appear together in at most one copyset.

A.4.1 Proof for an Even L

Proof. When L is an even number, let L = 2t and C = 2t + r, wherein t ≥ 1 and r ≥ 0

and both are integers.

According to Order 2, for all integers kb ∈ [0, L), each b[i] appears at mb[xb][yb] where:

yb = b i+kbC
L c = b i+kb∗(2t+r)

2t c = bkb + i+kbr
2t c

= kb + b i+kbr
2t c

xb = (i+ kbC) mod L

=⇒ b i+kbC
L c ∗ L+ xb = i+ kbC

=⇒ (kb + b i+kbr
2t c) ∗ 2t+ xb = i+ kb ∗ (2t+ r)

=⇒ xb = i+ kbr − 2tb i+kbr
2t c

Similarly, according to Order 3, ∀kc ∈ [0, L), each c[j] appears at mc[xc][yc] where:

yc = C − 1− b j+kcC
L c = C − 1− kc − b j+kcr

2t c

xc = (j + kcC) mod L

=⇒ xc = j + kcr − 2tb j+kcr
2t c

If (b[i], c[j]) appears in the same copyset, we have


xb = xc

yb = yc

. Therefore:


i+ kbr − 2tb i+kbr

2t c = j + kcr − 2tb j+kcr
2t c

kb + b i+kbr
2t c = C − 1− kc − b j+kcr

2t c
=⇒
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
b i+kbr

2t c − b
j+kcr
2t c = i+kbr

2t −
j+kcr
2t

b i+kbr
2t c+ b j+kcr

2t c = 2t+ r − 1− (kb + kc)

(A.2)

From b i+kbr
2t c− b

j+kcr
2t c = i+kbr

2t −
j+kcr
2t , we know (i+ kbr) and (j+ kcr) are congruent

modulo 2t. That is:

i+ kbr ≡ j + kcr mod 2t (A.3)

When r = 0, Simultaneous equations A.2 for (kb, kc) become:
b i
2tc − b

j
2tc = i

2t −
j
2t

b i
2tc+ b j

2tc = 2t− 1− (kb + kc)

, which has only one valid equation for (kb, kc).

As a result, for certain b[i] and c[j], there are multiple valid solutions for (kb, kc). For

example, let i = j = 0, then there are 2t possible solutions as in Equation A.4. Thus,

r 6= 0. 
kb = 0

kc = 2t− 1


kb = 1

kc = 2t− 2


......

......


kb = 2t− 1

kc = 0

(A.4)

When r = 1, i.e., C = L+ 1, Simultaneous equations A.2 for (kb, kc) become:
b i+kb

2t c − b
j+kc
2t c = i+kb

2t −
j+kc
2t

b i+kb
2t c+ b j+kc

2t c = 2t− (kb + kc)

(A.5)

We use proof by contradiction to prove that Simultaneous equations A.5 have at most

one solution for (kb, kc), given any valid value of i, j and t. Assume there are two solutions,

i.e. (kb1, kc1) and (kb2, kc2), such that kb1 6= kb2 and kc1 6= kc2, then we have:

b i+kb1
2t c − b

j+kc1
2t c = i+kb1

2t −
j+kc1
2t

b i+kb1
2t c+ b j+kc1

2t c = 2t− (kb1 + kc1)

b i+kb2
2t c − b

j+kc2
2t c = i+kb2

2t −
j+kc2
2t

b i+kb2
2t c+ b j+kc2

2t c = 2t− (kb2 + kc2)

=⇒

(b i+ kb2
2t
c − b i+ kb1

2t
c)− (bj + kc2

2t
c − bj + kc1

2t
c)

=
kb2 − kb1

2t
− kc2 − kc1

2t

(A.6)

(b i+ kb2
2t
c − b i+ kb1

2t
c) + (bj + kc2

2t
c − bj + kc1

2t
c)

= −(kb2 − kb1)− (kc2 − kc1)
(A.7)
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From Equation A.3, when r = 1, we have


i+ kb1 ≡ j + kc1 mod 2t

i+ kb2 ≡ j + kc2 mod 2t

=⇒ kb2 − kb1 ≡ kc2 − kc1 mod 2t

=⇒ (kb2 − kb1) = (kc2 − kc1)± n ∗ 2t, where n ≥ 0.

Let kb1 < kb2. Since ∀k ∈ [0, L) = [0, 2t), then we have 0 < kb2 − kb1 < 2t and

−2t < kc2 − kc1 < 2t. Thus, we have Equation A.8, wherein n ∈ {0, 1}.

(kb2 − kb1) = (kc2 − kc1) + n ∗ 2t (A.8)

When n = 0, i.e. kb2 − kb1 = kc2 − kc1 > 0, then kc1 < kc2. However, the following

equation contradicts Equation A.7. Thus, n 6= 0.
(b i+kb2

2t c − b
i+kb1
2t c) + (b j+kc2

2t c − b
j+kc1
2t c)

≥ (b i+kb1
2t c − b

i+kb1
2t c) + (b j+kc1

2t c − b
j+kc1
2t c) = 0

−(kb2 − kb1)− (kc2 − kc1) < 0

.

When n = 1 (and kb1 < kb2), we have


−2t < kc2 − kc1 < 0

(kb2 − kb1) = (kc2 − kc1) + 2t

=⇒ kb2−kb1
2t − kc2−kc1

2t = 1.

From Equation A.6:

1 = kb2−kb1
2t − kc2−kc1

2t = (b i+kb2
2t c − b

i+kb1
2t c)− (b j+kc2

2t c − b
j+kc1
2t c)

Moreover, since kb < L, let kb = L−d = 2t−d, wherein d > 0. Since i ≤ C−1 = 2t, we

have: b i+kb
2t c ≤ b

2t+2t−d
2t c = 2+b−d

2t c < 2. Thus, b i+kb
2t c ∈ {0, 1}. Similarly, b j+kc

2t c ∈ {0, 1}.

Therefore,


b i+kb2

2t c − b
i+kb1
2t c ∈ {−1, 0, 1}

b j+kc2
2t c − b

j+kc1
2t c ∈ {−1, 0, 1}

(b i+kb2
2t c − b

i+kb1
2t c)− (b j+kc2

2t c − b
j+kc1
2t c) = 1

=⇒


b i+kb2

2t c − b
i+kb1
2t c = 0

b j+kc2
2t c − b

j+kc1
2t c = −1

, or


b i+kb2

2t c − b
i+kb1
2t c = 1

b j+kc2
2t c − b

j+kc1
2t c = 0

That is, (b i+kb2
2t c − b

i+kb1
2t c) + (b j+kc2

2t c − b
j+kc1
2t c) = ±1.

Simultaneous equations A.6 and A.7 become


(kb2 − kb1)− (kc2 − kc1) = 2t

−(kb2 − kb1)− (kc2 − kc1) = ±1

=⇒


kb2 − kb1 = t∓ 1/2

kc2 − kc1 = −t± 1/2
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However, since ∀k are integers, (kb2− kb1) or (kc2− kc1) cannot be non-integers. That

is to say, when r = 1, there does not exist two distinct solutions (kb1, kc1) and (kb2, kc2)

for any two nodes b[i] and c[j]. Hence, when L is an even number and C = L + 1, any

combination of (b[i], c[j]) appear together in at most one copyset.

A.4.2 Proof for an Odd L

Proof. When L is an odd number, let L = 2t − 1 and C = 2t + r, wherein t ≥ 1 and

r ≥ −1 and both are integers.

Similar to the proof in Appendix A.4.1, for all integers kb ∈ [0, L), each b[i] appears at

mb[xb][yb] where:

yb = b i+kbC
L c = b i+kb∗(2t+r)

2t−1 c = kb + b i+kb∗(r+1)
2t−1 c

xb = (i+ kbC) mod L

=⇒ b i+kbC
L c ∗ L+ xb = i+ kbC

=⇒ (kb + b i+kb∗(r+1)
2t−1 c) ∗ (2t− 1) + xb = i+ kb ∗ (2t+ r)

=⇒ xb = i+ kb ∗ (r + 1)− (2t− 1)b i+kb∗(r+1)
2t−1 c

Similarly, for all integers kc ∈ [0, L), each c[j] appears at mc[x][y] where:

yc = C − 1− b j+kcC
L c = C − 1− kc − b j+kc∗(r+1)

2t−1 c

xc = (j + kcC) mod L

=⇒ xc = j + kc ∗ (r + 1)− (2t− 1)b j+kc∗(r+1)
2t−1 c

If (b[i], c[j]) appears in the same copyset, we have


xb = xc

yb = yc

. Hence,


i+ kb ∗ (r + 1)− (2t− 1)b i+kb∗(r+1)

2t−1 c = j + kc ∗ (r + 1)− (2t− 1)b j+kc∗(r+1)
2t−1 c

kb + b i+kb∗(r+1)
2t−1 c = C − 1− kc − b j+kc∗(r+1)

2t−1 c
=⇒


b i+kb∗(r+1)

2t−1 c − b j+kc∗(r+1)
2t−1 c = i+kb∗(r+1)

2t−1 − j+kc∗(r+1)
2t−1

b i+kb∗(r+1)
2t−1 c+ b j+kc∗(r+1)

2t−1 c = 2t+ r − 1− (kb + kc)

(A.9)

When r = −1, i.e., C = L, Simultaneous equations A.9 for (kb, kc) become
b i
2t−1c − b

j
2t−1c = i

2t−1 −
j

2t−1

b i
2t−1c+ b j

2t−1c = 2t− 2− (kb + kc)

, which has only one valid equation for (kb, kc).

As a result, for certain b[i] and c[j], there are multiple valid solutions for (kb, kc). For ex-
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ample, let i = j = 0, then there are 2t − 1 possible solutions as in Equation A.10. Thus,

r 6= −1. 
kb = 0

kc = 2t− 2


kb = 1

kc = 2t− 3


......

......


kb = 2t− 2

kc = 0

(A.10)

When r = 0, i.e., C = L+ 1, Simultaneous equations A.9 for (kb, kc) become:
b i+kb
2t−1c − b

j+kc
2t−1 c = i+kb

2t−1 −
j+kc
2t−1

b i+kb
2t−1c+ b j+kc

2t−1 c = 2t− 1− (kb + kc)

(A.11)

There exists at least two distinct solutions of (kb, kc) for certain combinations of (i, j).

For example, when i = 0, j = 1, Equation A.11 has two distinct solutions as shown in

Equation A.12. Thus, r 6= 0. 
kb = 0

kc = 2t− 2


kb = t

kc = t− 1

(A.12)

When r = 1, i.e., C = L+ 2, Simultaneous equations A.9 for (kb, kc) become:
b i+2kb
2t−1 c − b

j+2kc
2t−1 c = i+2kb

2t−1 −
j+2kc
2t−1

b i+2kb
2t−1 c+ b j+2kc

2t−1 c = 2t− (kb + kc)

(A.13)

Similarly, we use proof by contradiction to prove that Simultaneous equations A.13

have at most one solution for (kb, kc), given any valid value of i, j and t. Assume there

are two solutions, i.e. (kb1, kc1) and (kb2, kc2), such that kb1 6= kb2 and kc1 6= kc2, then we

have:

(b i+ 2kb2
2t− 1

c − b i+ 2kb1
2t− 1

c)− (bj + 2kc2
2t− 1

c − bj + 2kc1
2t− 1

c)

=
2(kb2 − kb1)

2t− 1
− 2(kc2 − kc1)

2t− 1

(A.14)

(b i+ 2kb2
2t− 1

c − b i+ 2kb1
2t− 1

c) + (bj + 2kc2
2t− 1

c − bj + 2kc1
2t− 1

c)

= −(kb2 − kb1)− (kc2 − kc1)
(A.15)

Similarly, when r = 1, we have


i+ 2kb1 ≡ j + 2kc1 mod (2t− 1)

i+ 2kb2 ≡ j + 2kc2 mod (2t− 1)

=⇒ 2(kb2 − kb1) ≡ 2(kc2 − kc1) mod (2t− 1)

=⇒ (2(kb2 − kb1) = 2(kc2 − kc1)± n ∗ (2t− 1), where n ≥ 0.
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Let kb1 < kb2. Since ∀k ∈ [0, 2t − 1), thus


0 < 2(kb2 − kb1) < 2(2t− 1)

−2(2t− 1) < 2(kc2 − kc1) < 2(2t− 1)

.

Moreover, since both 2(kb2− kb1) and 2(kc2− kc1) are even numbers, while (2t− 1) is odd,

Then n must be even. Therefore, we have Equation A.16, wherein n ∈ {0, 2}.

2(kb2 − kb1) = 2(kc2 − kc1) + n ∗ (2t− 1) (A.16)

When n = 0, i.e. kb2 − kb1 = kc2 − kc1 > 0, then kc1 < kc2. However, the following

equation contradicts Equation A.15. Thus, n 6= 0.
(b i+kb2

2t−1 c − b
i+kb1
2t−1 c) + (b j+kc2

2t−1 c − b
j+kc1
2t−1 c) ≥ 0

−(kb2 − kb1)− (kc2 − kc1) < 0

.

When n = 2, we have


−(2t− 1) < kc2 − kc1 < 0

(kb2 − kb1) = (kc2 − kc1) + (2t− 1)

=⇒ kb2−kb1
2t−1 −

kc2−kc1
2t−1 = 1.

From Equation A.14:

(b i+2kb2
2t−1 c − b

i+2kb1
2t−1 c)− (b j+2kc2

2t−1 c − b
j+2kc1
2t−1 c) = 2(kb2−kb1

2t−1 −
kc2−kc1
2t−1 ) = 2.

Moreover, since kb < L, let kb = L−s = 2t−1−s, wherein s ≥ 1. Since i ≤ C−1 = 2t,

we have: b i+2kb
2t−1 c ≤ b

2t+4t−2−2s
2t−1 c = 3 + b−2s−1

2t−1 c < 3. Thus, b i+2kb
2t−1 c ∈ {0, 1, 2}. Similarly,

b j+2kc
2t−1 c ∈ {0, 1, 2}. Therefore,



b i+2kb2
2t−1 c − b

i+2kb1
2t−1 c ∈ {−2,−1, 0, 1, 2}

b j+2kc2
2t−1 c − b

j+2kc1
2t−1 c ∈ {−2,−1, 0, 1, 2}

(b i+2kb2
2t−1 c − b

i+2kb1
2t−1 c)− (b j+2kc2

2t−1 c − b
j+2kc1
2t−1 c) = 2

kb2 > kb1, kc2 < kc1

=⇒


b i+2kb2

2t−1 c − b
i+2kb1
2t−1 c = 0

b j+2kc2
2t−1 c − b

j+2kc1
2t−1 c = −2

, or


b i+2kb2

2t−1 c − b
i+2kb1
2t−1 c = 1

b j+2kc2
2t−1 c − b

j+2kc1
2t−1 c = −1

, or


b i+2kb2

2t−1 c − b
i+2kb1
2t−1 c = 2

b j+2kc2
2t−1 c − b

j+2kc1
2t−1 c = 0

.

That is, (b i+2kb2
2t−1 c − b

i+2kb1
2t−1 c) + (b j+2kc2

2t−1 c − b
j+2kc1
2t−1 c) ∈ {−2, 0, 2}. Let n ∈ {−1, 0, 1}.

Therefore, (b i+2kb2
2t−1 c − b

i+2kb1
2t−1 c) + (b j+2kc2

2t−1 c − b
j+2kc1
2t−1 c) = 2n.

Simultaneous equations A.14 and A.15 become


(kb2 − kb1)− (kc2 − kc1) = 2t− 1

−(kb2 − kb1)− (kc2 − kc1) = 2n
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=⇒


kb2 − kb1 = t− n− 1/2

kc2 − kc1 = −t− n+ 1/2

However, since ∀k are integers, (kb2− kb1) or (kc2− kc1) cannot be non-integers. That

is to say, when r = 1, there does not exist two distinct solutions (kb1, kc1) and (kb2, kc2)

for any two nodes b[i] and c[j]. Hence, when L is an odd number and C = L + 2, any

combination of (b[i], c[j]) appear together in at most one copyset.

A.5 Proof of Lemma 5

Proof. Given any two copysets, i.e. (a[i1], b[j1], c[k1]) and (a[i2], b[j2], c[k2]). According to

Lemma 2, all the possible solutions are:
i1 6= i2

j1 6= j2

k1 6= k2

, or


i1 = i2

j1 6= j2

k1 6= k2

, or


i1 6= i2

j1 = j2

, or


i1 6= i2

k1 = k2

.

Moreover, according to Lemma 4, if j1 = j2, then k1 6= k2. Conversely, if k1 = k2, then

j1 6= j2. Therefore, the solutions presented above become:
i1 6= i2

j1 6= j2

k1 6= k2

, or


i1 = i2

j1 6= j2

k1 6= k2

, or


i1 6= i2

j1 = j2

k1 6= k2

, or


i1 6= i2

j1 6= j2

k1 = k2

.

As can be seen, in any one solution, there is at most one common node. That is to

say, any two copysets share at most one common node.

A.6 Proof of Lemma 6

Proof. Since C is the smallest odd number greater than L, for all integers t > 0, we

have


L = 2t− 1

C = 2t+ 1

, or


L = 2t

C = 2t+ 1

. In any case, L and C are co-prime. According

to Lemma 3, every node appears once in every row of the matrix, in which there are L

rows. Since nodes from different rows cannot form a copyset, thus each node belongs to

L distinct copysets.
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For each copyset that the node ni belongs to, there are R − 1 other distinct nodes.

Moreover, according to Lemma 5, any two of these copysets share at most one common

node. Hence, the shared node can only be ni. Therefore, these copysets contain L∗(R−1)

distinct nodes other than ni. Since S = L ∗ (R− 1), thus each node shares copysets with

S other distinct nodes.
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