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Abstract

Let G be a compact Lie group and let π be an irreducible representation of

G of highest weight λ. We study the operator-valued Fourier transform of the

product of the j-function and the pull-back of π by the exponential mapping.

We show that the set of extremal points of the convex hull of the support of

this distribution is the coadjoint orbit through λ + δ. The singular support

is furthermore the union of the coadjoint orbits through λ + wδ, as w runs

through the Weyl group.

Our methods involve the Weyl functional calculus for noncommuting op-

erators, the Nelson algebra of operants and the geometry of the moment set

for a Lie group representation. In particular, we re-obtain the Kirillov-Duflo

correspondence for compact Lie groups, independently of character formulae.

We also develop a “noncommutative” version of the Kirillov character formula,

valid for noncentral trigonometric polynomials. This generalises work of Caz-

zaniga, 1992.
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Chapter 1

Introduction

LetG be a semisimple compact connected Lie group and let g be its Lie algebra.

We fix a Cartan subalgebra t and we write g∗ and t∗ for the vector space duals

of g and t respectively. We denote by δ half-the-sum of the positive roots.

The inverse Fourier transform of Liouville measure on a coadjoint orbit of

G in g∗ is an invariant eigendistribution with respect the universal enveloping

algebra of g acting as differential operators and thus defines an analytic function

on G · tr, where tr denotes the set of regular elements of t, which is given

explicitly by a well-known formula of Harish-Chandra [20, Theorem 2].

If λ ∈ t∗ is such that λ− δ is a dominant integral weight then the Kirillov

character formula [27] asserts that the inverse Fourier transform of Liouville

measure on the coadjoint orbit through λ equals the product of the pull-back

to the Lie algebra by the exponential mapping of the character of the unitary

irreducible representation of G of highest weight λ − δ and the so-called “j-

function”, which is the analytic square-root of the Jacobian of the exponential

map (chosen so that j(0) = 1). This relates the formula of Harish-Chandra

[20, Theorem 2] above to the Weyl character formula.

Extending the work of Cazzaniga [12] for SU(2), we develop in the sequel a

“non-commutative” generalisation of this fact: we show that the distributional

Fourier transform of the product of the j-function and the pull-back of an arbi-

trary matrix coefficient of a unitary irreducible representation of G of highest
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weight λ is a finite linear combination of derivatives in the root, toral and radial

directions applied to a measure supported on the convex hull of the coadjoint

orbit through λ+δ and invariant under the coadjoint action of G; furthermore,

the singular support of this distribution is a finite union of coadjoint orbits,

namely of those through the orbits of λ + w · δ as w runs through the Weyl

group, and every point in this set is a singularity of this distribution for some

choice of matrix coefficient. This result can be seen as a new demonstration of

the orbit correspondence for compact Lie groups, insofar as the “outermost”

member of this union is the orbit through λ+ δ, independently of the Kirillov

formula. We also show that each point in the convex hull of the coadjoint orbit

through λ + δ there is a matrix coefficient for which the above distribution is

supported at that point. An earlier version of these results was published in

[15].

Our proofs make fundamental use of an explicit formula of Edward Nelson

[35] for the Weyl functional calculus of a d-tuple of self-adjoint operators on a

finite dimensional Hilbert space as well as his construction of a certain com-

mutative Banach algebra of “operants” the spectrum of which describes the

support of the Weyl calculus distribution. It will be shown that the support

of the Weyl calculus of the infinitesimal generators of a unitary representation

of a compact Lie group is contained in the image of the moment map of the

representation [4, 44]. This is the starting point of our investigations. Our

results then follow from structural and analytic properties of Nelson’s formula

and as consequences of spectral properties of the Weyl calculus and numerical

range techniques. The two streams will be developed independently in the

exposition.

In Chapter 2 we collect the necessary background from the theory of numer-

ical ranges and spectra in Banach algebras from various sources in the literature

[8, 2, 10]. We introduce the concept of an operating algebra [2] which will be

used later to motivate and describe Nelson’s algebra of operants (Section 3.2).

In Chapter 3 is a unified exposition of the theory of the Weyl functional cal-
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culus for noncommutative self-adjoint operators following the original sources

[3, 35, 41], but expressed in the generality of hermitian elements of Banach

algebras.

Chapter 4 contains our version of Nelson’s proof of an explicit formula

for the Weyl calculus for hermitian matrices. While Nelson’s statement was

concerned only with the calculus of a basis of the Lie algebra u(n), the same

expression is valid for arbitrary d-tuples of hermitian matrices. We also include

a generalisation to arbitrary d-tuples of complex matrices due to B. Jefferies

[23].

Chapter 6 and Chapter 7 bring together the techniques of the previous

chapters to derive the new results discussed above.

As techniques from numerical ranges and the Weyl functional calculus [3]

are not commonly used in the orbit method, we include for the sake of complete-

ness proofs of some known results in these areas, when indicated formulating

results and their proofs in greater generality than the versions found in the

literature.
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Chapter 2

The Numerical Range

In this chapter we review some elementary notions from the theory of numerical

ranges and some of its consequences [2], collecting those results which will be

used in the sequel. We assume some familiarity with the rudiments of C∗-

algebra theory, which can be found in [14].

In Section 2.1 we derive a criterion (Theorem 2.1.5) for an element of a

Banach algebra to be hermitian in terms of the reality of its numerical range.

This will be used in Chapter 6 in the case of the infinitesimal generators of a

unitary representation of a compact Lie group. The main result of Section 2.2 is

the coincidence between numerical range and the convex hull of the spectrum,

in the setting of C∗-algebras (Corollary 2.2.8).

In Section 2.3 an introduction Albrecht’s theory [2] of operating algebras

is given, generalising ideas of Nelson [35] to wider families of functional calculi

and facilitating a strengthening of some of the results of Section 2.2. This

theory will be used in the next chapter to describe the algebra of operants.

2.1 Numerical Range and Hermitian Elements

Let R be a complex unital Banach algebra with unit 1R and let R∗ be the dual

space of continuous linear functionals on R.
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By the Hahn-Banach theorem the following set is not void,

D(R, 1) := {f ∈ R∗ : f(1R) = 1 = ‖f‖}.

This enables us to make the next

Definition 2.1.1 Let x = (x1, . . . , xd) ∈ Rd. The numerical range of x with

respect to R is the set VR(x) := {(f(x1), . . . , f(xd)) | f ∈ D(R, 1)}.

We note that if R is a C∗-algebra then D(R, 1) is exactly the set of states of

R.

Let H be a Hilbert space and denote by L(H) the algebra of bounded linear

operators on H. It is well-known that the defining representation is the only

irreducible representation of L(H); hence, by the GNS construction, the pure

states of L(H) are exactly the set of functionals φ :L(H) → C of the form

φ(x) := 〈xu, u〉 (x ∈ L(H)) for some fixed unit vector u ∈ H.

Let A ⊆ Cn. We write coA for the convex hull of A. By the preceeding

discussion and the Krein-Milman theorem, we immediately have the following

Theorem 2.1.2 Let R = L(H) and let x = (x1, . . . , xd) ∈ Rd. Then

VL(H)(x) := co {(〈x1u, u〉, . . . , 〈xdu, u〉) : u ∈ H, ‖u‖ = 1}. (2.1)

We see below that some of the obvious properties of VL(H)(x) have a more

general validity.

Lemma 2.1.3 Let T :Cd→ Cd be a linear mapping. Let x = (x1, . . . , xd) ∈
Rd. Then VR(Tx) = TVR(x).

Proof: For each x = (x1, . . . , xd) ∈ Rd, define a mapping Φ(x) :D(R, 1)→Cd

given by Φ(x)f := (f(x1), . . . , f(xd)). Then VR(x) = Φ(x)D(R, 1). On

representing T as a matrix with complex entries, it is easily verified that
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Φ(Tx) = TΦ(x). Then

VR(Tx) = Φ(Tx)D(R, 1)

= TΦ(x)D(R, 1)

= TVR(x)

as required. ¦

Theorem 2.1.4 ([8], Theorem 1.2.3) Let x = (x1, . . . , xd) ∈ Rd. The nu-

merical range VR(x) is a compact, convex subset of Cd.

Proof: See [8], Theorem 3, Chapter 1, Section 2. ¦

An element x = (x1, . . . , xd) ∈ Rd satisfying the following equivalence will

be called hermitian.

Theorem 2.1.5 Let x = (x1, . . . , xd) ∈ Rd. Then VR(x) ⊆ Rd if and only if

‖eiξ·x‖ = 1 for all ξ ∈ Rd.

A statement and proof of Theorem 2.1.5 in the case d = 1 can be found

in [8], Lemma 2, Chapter 2, Section 5. We observe that if VR(x) ⊆ Rd then

VR(xj) ⊆ R for each 1 ≤ j ≤ d, from which it follows that VR(λ1x1 + · · · +
λdxd) ⊆ R for all λ1, . . . , λd ∈ R. Hence, it suffices to prove Theorem 2.1.5 in

the case d = 1 case. We do this after a sequence of lemmas, which are proved

in [8]. We include proofs of these for completeness.

Fix x ∈ R and let µ := max{Re f(x) : f ∈ D(R, 1)}. We note that

µ ≥ ‖x‖.

Lemma 2.1.6 For all ξ > 0 and y ∈ R,

‖(1− ξx)y‖ ≥ (1− ξµ)‖y‖.

Proof: By the properties of the norm ‖ · ‖, it suffices to consider y ∈ R with

‖y‖ = 1. Let f ∈ R∗ such that f(y) = 1 = ‖f‖. Then,

Re f((1− ξx)y) ≤ ‖f‖‖(1− ξx)y‖ = ‖(1− ξx)y‖.
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Setting g(y′) := f(y′y) for all y′ ∈ R, we have g ∈ D(R, 1) and hence,

Re f((1− ξx)y) = Re (f(y))− ξRe f(xy)

= 1− ξRe g(x)

≥ 1− ξµ

from which the lemma follows. ¦

Lemma 2.1.7 ([8], Lemma 1.2.5) µ = limξ→0+
1
ξ
{‖1 + ξx‖ − 1}.

Proof: For f ∈ D(R, 1),

f(x) =
1

ξ
{f(1 + ξx)− 1}.

Hence,

Re f(x) =
1

ξ
{Re f(1 + ξx)− 1}

≤ 1

ξ
{‖f(1 + ξx)‖ − 1}

≤ 1

ξ
{‖f‖‖1 + ξx‖ − 1}

=
1

ξ
{‖1 + ξx‖ − 1}

from which it follows that

Re f(x) ≤ infξ>0
1

ξ
{‖1 + ξx‖ − 1}.

Therefore,

µ ≤ infξ>0
1

ξ
{‖1 + ξx‖ − 1} (2.2)

as the left-hand-side does not depend on ξ.

By Lemma 2.1.6, for ξ sufficiently small,

‖1 + ξx‖ ≤ (1− ξµ)−1‖1− ξ2x2‖
≤ (1− ξµ)−1(1 + ξ2‖x‖2)
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and after some manipulation,

1

ξ
{‖1 + ξx‖ − 1} ≤ µ+ ξ‖x‖2

1− ξµ
. (2.3)

By (2.3), on taking limits,

limξ→0+

1

ξ
{‖1 + ξx‖ − 1} ≤ µ. (2.4)

The lemma now follows by (2.2) and (2.4). ¦

Lemma 2.1.8 ([8], Lemma 1.3.4) For every x ∈ R,

max{Re f(x) : f ∈ D(R, 1)} = sup{1

ξ
log ‖ exp(ξx)‖ : ξ > 0}.

Proof: Fix x ∈ R and set λ(ξ) := ‖exp(ξx)‖ − ‖1 + ξx‖. When ξ ∈ [0, 1],

|λ(ξ)| =
∣∣‖exp(ξx)‖ − ‖1 + ξx‖

∣∣

≤ ‖ exp(ξx)− (1 + ξx)‖

= ‖
∞∑
n=2

ξnxn

n!
‖

≤
∞∑
n=2

ξn‖x‖n
n!

≤ e‖x‖ξ2

For t > 0 we have the inequality log t ≥ t−1
t

which implies

sup{1

ξ
log ‖ exp(ξx)‖ : ξ > 0} ≥

1
ξ
{‖1 + ξx‖ − 1}+ 1

ξ
λ(ξ)

‖1 + ξx‖+ λ(ξ)
,

the right-hand-side of which converges to µ as ξ → 0+.

An induction based on Lemma 2.1.6 shows that

‖(1− ξµ)ny‖ ≥ (1− ξx)n‖y‖

for all y ∈ R and n ∈ N, whenever 1 − ξµ ≥ 0. On replacing ξ with ξ/n and

taking limits,

‖ exp(−ξx)y‖ ≥ exp(−ξµ)‖y‖.
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Setting y := exp(ξx), we have

‖ exp(ξx)‖ ≤ exp(ξµ)

from which it follows that

sup{1

ξ
log ‖ exp(ξx)‖ : ξ > 0} ≤ µ.

¦

We are now ready to prove Theorem 2.1.5.

Proof of Theorem 2.1.5: We have VR(x) ⊆ R if and only if

max{Re f(ix) : f ∈ D(R, 1)} = max{Re f(−ix) : f ∈ D(R, 1)}
= 0.

Hence, by Lemma 2.1.8,

log ‖ exp(iξx)‖ = 0 for all ξ ∈ R

and the theorem follows. ¦

2.2 Spectra and Numerical Ranges

Let x = (x1, . . . , xd) ∈ Rd. In this section, following [8], we investigate the

relationship between VR(x) and the spectrum σR(x) of x in R, as defined below.

In particular, we show (Corollary 2.2.8) that when R is a unital C∗-algebra

the convex hull of σR(x) coincides with VR(x) .

Definition 2.2.1 Let x = (x1, . . . , xd) ∈ Rd. The two sets

σLR(x) := {λ ∈ Cd :
∑
i

R · (λi1R − xi) 6= R}

9



and

σRR(x) := {λ ∈ Cd :
∑
i

(λi1R − xi) ·R 6= R}

are called respectively the left spectrum and the right spectrum of x with respect

to R. The set σR(x) := σLR(x)∩ σRR(x) is called the spectrum of x with respect

to R.

The following lemma is easily verified.

Lemma 2.2.2 Let T :Cn → Cn be a bijective linear mapping and let x =

(x1, . . . , xd) ∈ Rd. Then

σR(Tx) = TσR(x).

The following result can be found in [8], Theorem 12, Chapter 1, Section

2. We include the proof for completeness.

Theorem 2.2.3 ([8], Theorem 1.2.12) Let x = (x1, . . . , xd) ∈ Rd. Then

coσR(x) ⊆ VR(x).

Proof: Let λ ∈ σLR(x) and J =
∑

i R · (λi1R − xi). Then J  R. We

show that also J̄  R. Let η ∈ J̄ and suppose that ‖1R − η‖ < 1. Then

{sn :=
∑n

k=1(1− η)k} is a Cauchy sequence in R. Let s := lim sn ∈ R. Now,

s− sη = (1R − η)s = s− 1R

and hence sη = 1R. Therefore, 1R ∈ J which is false; hence ‖1R − η‖ ≥ 1 for

all η ∈ J . In particular, 1R is not in J̄ . Hence, by the Hahn-Banach theorem,

there exists f ∈ D(R, 1) such that f(J̄) = 0, and we have f(λi1R − xi) = 0

from which it follows that f(xi) = λi for all i. Therefore λ ∈ VR(x). The

argument for λ ∈ σRR(x) is analogous. The result now follows from Theorem

2.1.4. ¦

Following [8], we will denote the set of all algebra norms p equivalent to the

given norm by N . We write V
(p)
R (x) for the numerical range of x with respect

to p.
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Lemma 2.2.4 ([8], Lemma 1.2.7) Let S be a bounded multiplicative semi-

group in R containing the unit 1R. Then there exists p ∈ N such that p(s) ≤ 1

for all s ∈ S.

Proof: For arbitrary x ∈ R let q(x) := sup{‖sx‖ : s ∈ S} and define

p(x) := sup{q(xy) : y ∈ R, q(y) ≤ 1}.

It is straightforward to verify that p ∈ N and satisfies the required condition.

¦

We recall the spectral radius ρ(x) of an element x ∈ R, given by the

following well-known equivalence [13],

ρ(x) = lim
n→∞

‖xn‖ 1
n = max{|λ| : λ ∈ σR(x)}.

The following two results appear in [8], but we include proofs for the sake

of completeness.

Lemma 2.2.5 ([8], Lemma 1.2.8) Let x1, . . . , xn ∈ R be pairwise commut-

ing elements. For each ε > 0 there exists p ∈ N such that

p(xk) < ρ(xk) + ε

for k = 1, . . . , n.

Proof: Choose ε > 0. Define yk = xk

ρ(xk)+ε
for k = 1, . . . , n. We have

ρ(yk) = lim
n→∞

‖ynk‖
1
n

=
1

ρ(xk) + ε
lim
n→∞

‖xnk‖
1
n

=
ρ(xk)

ρ(xk) + ε

< 1

for each k. Hence, in particular, there exists M1, . . . ,Mn > 0 such that ‖ylk‖ <
Mk for k = 1, . . . , n and all l > 0, and it follows that the multiplicative

11



semigroup S generated by the yk is bounded. Therefore, by Lemma 2.2.4 there

is a p ∈ N for which p(yk) ≤ 1 for all k. The required result follows. ¦

For the next result, we will need the following theorem about convex sets.

Theorem 2.2.6 ([26], Theorem 1.2.10) Let X, Y ⊆ Cn be disjoint, non-

empty, closed convex sets at least one of which is compact. Then there exists

a, b ∈ R and a continuous linear functional ρ on Cn such that

Re ρ(w) ≤ a < b ≤ Re ρ(z)

for all w ∈ X and z ∈ Y .

Theorem 2.2.7 ([8], Theorem 1.2.13) Let x = (x1, . . . , xd) ∈ Rd be a d-

tuple of commuting elements. Then

coσR(x) =
⋂
p∈N

V
(p)
R (x).

Proof: By Theorem 2.2.3,

coσR(x) ⊆
⋂
p∈N

V
(p)
R (x).

Suppose α ∈ Cd\coσR(x). By Theorem 2.2.6 we can find r ∈ R and a non-zero

linear functional φ on Cd such that

Reφ(ζ) < r < Reφ(α)

for all ζ ∈ coσR(x). Let T be an invertible d×dmatrix with first row (t1, . . . , td)

determined by the requirement φ(ζ) = t1ζ1 + · · ·+ tdζd for all ζ = (ζ1, . . . , ζd) ∈
Cd. If ζ ∈ σR(T−1x) then

Re ζ1 < r < Reβ1

where β = (β1, . . . , βd) := T−1α. Hence, by the compactness of σR(x), there

is an open polydisc D ⊆ Cd with σR(T−1x) ⊆ D but T−1α ∈ Cd \ D. More

precisely, we can find c1, . . . , cd ∈ C and R1, . . . , Rd > 0 such that

|λi − ci| < ri

12



for all λ = (λ1, . . . , λd) ∈ σR(T−1x) and i = 1, . . . , d. Let y = (y1, . . . , yd) :=

T−1(x). We have,

ρ(yi − ci) = max {|λ| : λ ∈ σR(yi − ci)}
= max {|λ− ci| : λ ∈ σR(yi)}
< ri.

Employing Lemma 2.2.5 we have p ∈ N satisfying p(yi − ci) < Ri from which

it follows that V
(p)
R (T−1x) ⊆ D. Hence T−1α ∈ Cd \V (p)

R (T−1x) and by Lemma

2.1.3 α ∈ Cd \ V (p)
R (x). This completes the proof. ¦

As the norm on C∗-algebras is unique, we have the following

Corollary 2.2.8 Suppose that R is a unital C∗-algebra and let x = (x1, . . . , xd) ∈
Rd be a d-tuple of pairwise commuting elements. Then

VR(x) = coσR(x).

Let πi :Cd→C be the coordinate projection πi(z) = zi (i = 1 . . . , d).

Definition 2.2.9 Let x = (x1, . . . , xd) ∈ Rd and let y ∈ R. The local resol-

vent ρR(y;x) of y with respect to x and R is the set of points z ∈ Cd for which

there exists an open neighbourhood U of z and functions u1, . . . , ud holomorphic

on U such that

y =
d∑
i=1

(πi1R − xi)ui

on U . The local spectrum σR(y;x) of y with respect to x and R is the set

Cd \ ρR(y;x).

For each z ∈ Cd, let Oz(R) denote the algebra of R-valued functions holo-

morphic in an open neighbourhood of z [13]. The following alternative char-

acterization of left and right spectra is well-known.

Theorem 2.2.10 Let x = (x1, . . . , xd) ∈ Rd. Then

σLR(x) := {z ∈ Cd :
∑
i

Oz(R) · (πi1R − xi) 6= Oz(R)}
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and

σRR(x) := {z ∈ Cd :
∑
i

(πi1R − xi) · Oz(R) 6= Oz(R)}.

Proof: See Lemme 1 in Chapter 1, Section 4 of [10]. ¦

Lemma 2.2.11 Suppose that R is a commutative unital complex Banach al-

gebra with unit 1R. Let x = (x1, . . . , xd) ∈ Rd. Then

σR(x) = σR(1R; x).

Proof: Immediate from Theorem 2.2.10 and definitions. ¦

Proposition 2.2.12 Let x = (x1, . . . , xd) ∈ Rd be a d-tuple of pairwise com-

muting elements and let B be a commutative subalgebra of R containing 1R, x1, . . . , xd.

Then

σB(x) = σR(x).

Proof: Clearly, σR(x) ⊆ σB(x). For the reverse inclusion, we note that

σB(1R;x) ⊆ σR(x) and apply Lemma 2.2.11. ¦

Let D be a unital complex Banach algebra with unit 1D. For the remainder

of this section we fix x = (x1, . . . , xd) ∈ Rd. Let E denote the linear span of

1R and x1, . . . , xd. Let φ :E→D be a linear mapping satisifying ‖φ‖ = 1 and

φ(1R) = 1D. We write φ(x) for the d-tuple (φ(x1), . . . , φ(xd)). The following

lemma will prove important in the sequel.

Lemma 2.2.13 ([2], Lemma 5.3) The inclusion,

VD(φ(x)) ⊆ VR(x)

holds with equality if φ is an isometry.

Proof: Let f ∈ D(D, 1). We have ‖f ◦ φ‖ ≤ ‖f‖‖φ‖ = 1 and equality follows

from the fact (f ◦ φ)(1R) = 1. Hence, the Hahn-Banach theorem applies and

there exists a functional in D(R, 1) that agrees with f ◦φ on E. If g ∈ D(R, 1)

and φ is an isometry then g ◦ φ−1 ∈ D(D, 1). ¦
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Corollary 2.2.14 Let x = (x1, . . . , xd) ∈ Rd and suppose that D is a subalge-

bra of R endowed with the norm of R and containing 1R, x1, . . . , xd. Then

VD(x) = VR(x).

Corollary 2.2.15 Suppose that R is a C∗-algebra. Then

coσD(φ(x)) ⊆ VR(x) (2.1)

with equality if φ is an isometry.

Proof: By Theorem 2.2.8

coσD(φ(x)) =
⋂
p∈N

V
(p)
D (φ(x))

and by Lemma 2.2.13, V
(p)
D (φ(x)) ⊆ V

(p)
R (x) with equality if φ is an isometry.

Since
⋂
p∈N V

(p)
R (x) ⊆ VR(x), the result follows. ¦

The next theorem shows that when R is a C∗-algebra and x = (x1, . . . , xd)

is a d-tuple of commuting elements, VR(x) coincides with the numerical range

of x with respect to the closed commutative C∗-subalgebra of R generated by

1R, x1, . . . , xd.

Theorem 2.2.16 ([2], Corollary 5.5) Suppose that R is a unital C∗-algebra.

Let x = (x1, . . . , xd) ∈ Rd be a d-tuple of pairwise commuting elements. Then

coσD(φ(x)) ⊆ VD(φ(x)) ⊆ VR(x) = coσB(x) = coσR(x)

where φ(x) := (φ(x1), . . . , φ(xd)) and B is any commutative C∗-subalgebra of

R containing 1R, x1, . . . , xd.

Proof: By Theorem 2.2.3 and Theorem 2.1.4 we have the first inclusion;

the second inclusion follows from Lemma 2.2.13; by Corollary 2.2.14 we have

VR(x) = VB(x) and by Corollary 2.2.8 it follows that VR(x) = coσR(x). By

Proposition 2.2.12, σB(x) = σR(x). This completes the proof. ¦
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2.3 Operating Algebras

In the following, let E be any vector subspace of R and let D be a commutative

complex unital Banach algebra with unit 1D. Let φ :E→D be a one-to-one

linear mapping and denote by 〈φ(E)〉 the subalgebra of D generated by φ(E).

Let Sn be the symmetric group of order n.

Definition 2.3.1 ([2]) A commutative complex unital Banach D is called an

operating algebra with respect to E and R if there exists a one-to-one linear

mapping φ :E→D such that 〈φ(E)〉 is dense in D and a continuous linear map-

ping Sym
(D, φ)
R : D→R determined uniquely by the conditions Sym

(D, φ)
R (1D) =

1R and

Sym
(D, φ)
R (y1, . . . yn) :=

1

n!

∑
σ∈Sn

φ−1yσ(1) · · ·φ−1yσ(n) (2.1)

for all y1, . . . , yn ∈ 〈φ(E)〉, n ∈ N.

Let S(E) be the symmetric algebra of E and let ˆ:E→S(E) be the canon-

ical inclusion mapping. It is well-known that any α ∈ S(E) can be written in

the form,

α = a+
n∑
i=1

x̂
(i)
j1
· · · x̂(i)

ji
, (2.2)

where a ∈ C, n, j1, . . . , jn ∈ N and x
(j)
k ∈ E.

It can be checked [35] that the formula

‖α‖S(E) := inf {|a|+
n∑
i=1

‖x(i)
j1
‖R · · · ‖x(i)

ji
‖R}, (2.3)

where the infimum is taken over all representations of α of the form (2.2)

defines an algebra norm on S(E). The completion of S(E) with respect to this

norm is a commutative Banach algebra which we denote S̄(E). For simplicity

of notation, we write Sym
(E)
R for Sym

(S̄(E), )̂
R .

Lemma 2.3.2 The complete symmetric algebra S̄(E) is an operating algebra

with respect to E and R.
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Proof: As the right-hand-side of (2.1) is symmetric and multilinear, the

map Sym
(E)
R is defined on S(E) with Sym

(E)
R a = a for all a ∈ C. Since

‖Sym(E)
R α‖R ≤ ‖α‖S̄(V ), Sym

(E)
R has a unique continuous extension to S̄(V ).

¦

Proposition 2.3.3 ([2], Proposition 3.3) Every operating algebra D with

respect to E and R is isometrically isomorphic to the completion of a quotient

of S(E) endowed with some algebra norm.

Proof: Suppose that D admits a mapping Sym
(D, φ)
R as above. By the uni-

versal property of the symmetric algebra, there exists an algebra homomor-

phism hD :S(E)→D such that hD(x̂) = φ(x). Setting ρD(α) := ‖hD‖ for all

α ∈ S(E), we have a submultiplicative seminorm on S(E) and an induced al-

gebra norm on the quotient S(E)/ρ−1(0), which is isomorphic to 〈φ(E)〉 since

ρ−1(0) = kerh, and it follows that the completion of S(E)/ρ−1(0) is isometri-

cally isomorphic to D.

Conversely, since T := Sym
(S(E), )̂
R is symmetric and multilinear it is well-

defined on S(E). If ρ is a submultiplicative seminorm on S(E) with respect

to which T is continuous, then we have a unique continuous mapping on the

completion of S(E)/ρ−1(0) with respect to ρ. ¦

Lemma 2.3.4 ([2], Lemma 5.1) Suppose that x = (x1, . . . , xd) ∈ Rd is a d-

tuple of pairwise commuting elements and let D be an operating algebra. Then

σR(x) ⊆ σD(φ(x)).

Proof: Suppose that λ ∈ Rd−σD(φ(x)). Then there exist u1, . . . , ud ∈ D such

that,

(φ(x1)− λ11D)u1 + · · ·+ (φ(xd)− λd1D)ud = 1D. (2.4)

As Sym
(D, φ)
R is a unital homomorphism, applying it to both sides of (2.4) gives

λ ∈ Rd \ σR(x). ¦
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In the setting of operating algebras we obtain the following strengthening

of Theorem 2.2.16:

Theorem 2.3.5 ([2], Theorem 5.7) Suppose that R is a C∗-algebra. Let

x = (x1, . . . , xd) ∈ Rd is a d-tuple of pairwise commuting elements. Let D be

an operating algebra. Then

coσD(φ(x)) = VD(φ(x)) = VR(x) = σB(x) = coσR(x)

where B is an arbitrary C∗-subalgebra of R containing 1R, x1, . . . , xd.

Proof: This follows immediately from Lemma 2.3.4, Theorem 2.2.16 and the

fact that σB(x) ⊆ σR(x). ¦
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Chapter 3

The Algebra of Operants

The Nelson algebra of operants [35] is a generalisation of the symmetric algebra

of a vector space to the context of commutative Banach algebras that incor-

porates spectral theory in a canonical fashion. It was originally introduced

as part of framework facilitating a rigorous interpretation of Feynman’s oper-

ational calculus [19]. We give a mathematical motivation of its construction

with the observations below.

In Section 3.1 we describe the theory of the Weyl functional calculus for a

d-tuple of hermitian elements of a Banach algebra. This formulation is more

general than the original expositions [41, 3, 35] which concern self-adjoint op-

erators on a Hilbert space. We make use here of some results of the previous

chapter. In Chapter 4 we will give an explicit formula for the Weyl calculus

for hermitian matrices which will used in a fundamental way in the sequel.

In Section 3.2, Nelson’s algebra of operants is introduced. We construct it

with the view that its spectrum should coincide with the support of the Weyl

calculus of its generators, and that it must, in a sense to be made more pre-

cise, be canonical among all operating algebras having this property (Theorem

3.2.4). This feature will be used in Chapter 6 to derive the orbit correspon-

dence for compact Lie groups in a manner which is independent of Kirillov’s

character formula.

For a more general approach, using Clifford analysis, to the Weyl calculus
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for a d-tuple A = (A1, . . . , Ad) of possibly unbounded operators on a Hilbert

space subject to the condition that ξ1A1 + · · · ξdAd is real for all ξ ∈ Rd, there

is the seminal paper of Jefferies et. al. [25] and the monograph of Jefferies [23].

3.1 The Weyl Functional Calculus

Let R and D be Banach algebras with units 1R and 1D respectively. Let

x = (x1, . . . , xd) ∈ Rd be a hermitian element and let E be the vector subspace

of R spanned by 1R, x1, . . . , xd. Let φ :E→D be a linear mapping with ‖φ‖ = 1

and φ(1R) = 1D. By Lemma 2.2.13, φ(x) is a hermitian element of D. Hence,

for any function f :Rd→C with integrable Fourier transform f̂ , the following

D-valued Bochner integral converges:

f
(D, φ)
R (x) :=

∫

Rd

f̂(λ)eiλ·φ(x) dλ.

Here the Fourier transform f̂ and the normalisation of Lebesgue measure dx

are chosen exactly so that when R = D = C and φ is the identity mapping id

then f(x) := f
(C, id)
C (x) has the usual meaning.

Let S(Rd) be the Schwartz space [22] of rapidly decreasing functions on Rd.

The mapping W
(D, φ)
R (x) given by 〈W (D, φ)

R (x), f〉 := f
(D, φ)
R (x) for all f ∈ S(Rd)

is continuous and linear on S(Rd), and hence defines a D-valued tempered

distribution.

Definition 3.1.1 The D-valued tempered distribution W
(D, φ)
R (x) is called the

Weyl calculus of x with respect to D and φ.

Let id be the identity mapping on R. We write WR(x) for W
(R, id)
R (x).

The following lemma is proved in [41] using the Trotter product formula,

for bounded self-adjoint operators on a Hilbert space. As every C∗-algebra is

isometrically isomorphic to a closed subalgebra of bounded operators on some

Hilbert space, we are able to state this lemma in slightly more generality.
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Lemma 3.1.2 ([41], p.92) Suppose that D is a unital C∗-algebra and let

x1, x2 be hermitian elements of D. Then

‖ exp(x1 + ix2)‖ ≤ ‖ expx1‖.

For z = (z1, . . . , zd) ∈ Cd, let =z := (=z1, . . . ,=zd) and <z := (<z1, . . . ,<zd).
The Hahn-Banach theorem ensures that there are sufficiently many linear

functionals to obtain the following vector-valued extension of the usual Paley-

Wiener theorem [22].

Theorem 3.1.3 (Paley-Wiener) An R-valued tempered distribution u on

Rd has compact support if and only if u is the Fourier transform of an an-

alytic function e :Cd→R for which there exists constants C ≥ 0, s ≥ 0 such

that ‖e(ζ)‖R ≤ C(1 + |ζ|)ser|=ζ| for all ζ ∈ Cd.

Proof: See [22]. ¦

Theorem 3.1.4 Suppose that D is a unital C∗-algebra. Then the distribution

W
(D, φ)
R (x) has compact support.

Proof: We verify that the entire function e(z) := exp(i〈z, φ(x)〉), for z ∈ Cd

satisfies the estimate required by Theorem 3.1.3. We have,

‖ exp i〈z, φ(x)〉‖ = ‖ exp (〈=z, φ(x)〉 − i〈<z, φ(x)〉)‖
≤ ‖ exp〈=z, φ(x)〉‖
≤ exp ‖〈=z, φ(x)〉‖
≤ exp |=z|‖φ(x)‖
≤ exp |=z|‖x‖

¦

Let C∞(Rd) be the space of infinitely differentiable C-valued functions on

Rd.
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Corollary 3.1.5 Suppose that D is a unital C∗-algebra. Then W
(D, φ)
R (x) ex-

tends uniquely to a distribution on C∞(Rd).

3.1.1 A Characterisation

The following theorem gives a characterisation of the Weyl calculus distribution

by its values on polynomials.

Theorem 3.1.6 ([3], Theorem 2.8) Suppose that R is a unital C∗-algebra

and let the monomial p :Rd → R be given by p(λ1, . . . , λd) := λk11 · · ·λkd
d for

k1, . . . , kd ∈ N. Then WR(x) is the unique R-valued distribution such that

〈WR(x), p〉 =
k1! · · · kd!

k!

∑
π

xπ(1) · · · xπ(k)

where k = k1 + · · · + kd and π runs over the set of all maps from {1, . . . , k}
into {1, . . . , d} that assume the value j exactly kj times for j = 1, . . . , d.

We prove Theorem 3.1.6 after recalling some well-known facts from distri-

bution theory, which we prove in the vector-valued setting.

Lemma 3.1.7 ([3], Lemma 2.6) Suppose that f ≡ 1 on Rd and let u be a

compactly supported D-valued distribution on Rd. Then 〈u, f〉 = û(0) where û

denotes the Fourier transform of u.

Proof: Let θ ∈ C∞c (Rd) be identically equal to 1 in a neighbourhood of zero.

For ε > 0 define θε(x) := θ(εx). Since û is an analytic function,

〈u, θε〉 = 〈û, θ̌ε〉
=

∫

Rd

û(ξ)θ̂ε(−ξ) dξ

=
1

εn

∫

Rd

û(ξ)θ̂(−ξ
ε
)dξ.

As
1

εn

∫

Rd

θ̂(−ξ
ε
)dξ = θ(0) = 1
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for all ε > 0, it follows that

〈u, f〉 = lim
ε→0
〈u, θε〉

= û(0).

¦

Let p be a polynomial in d variables over C. Define the differential operators

∂
∂ξ

:= ( ∂
∂ξ1
, . . . , ∂

∂ξd
) and p(i ∂

∂ξ
) := p(i ∂

∂ξ1
, . . . , i ∂

∂ξd
).

Theorem 3.1.8 ([3], Lemma 2.7) Let u be a D-valued distribution with com-

pact support on Rd. Then

〈u, p〉 = p(i
∂

∂ξ
)û(0).

Proof: Let f ≡ 1 on supp u.Then

〈u, p〉 = 〈u, pf〉 = 〈pu, f〉 = (pu)̂ (0) = p(i
∂

∂ξ
)û(0).

¦

We are now ready to prove Theorem 3.1.6.

Proof of Theorem 3.1.6: By Theorem 3.1.8,

〈WR(x), p〉 =

(
p(i

∂

∂ξ
) exp(−iξ · x)

)
(0)

=
1

k!

(
∂k1+···+kd

∂ξk11 · · · ∂ξkd
d

(ξ1x1 + · · · ξdxd)k
)

=
k1! · · · kd!

k!

∑
π

xπ(1) · · · xπ(k)

as required. ¦

The symmetry properties of operating algebras (Section 2.3) come into play

in the next definition.
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Corollary 3.1.9 Suppose that D is a commutative unital C∗-algebra which is

also an operating algebra with respect to E and R, φ is one-to-one, and that

〈φ(E)〉 is dense in D. Then

〈WR(x), f〉 = Sym
(D, φ)
R 〈W (D, φ)

R (x), f〉

for all f ∈ C∞(Rd).

Proof: By Theorem 3.1.6, if p(λ1, . . . , λd) := λk1 · · ·λkd then

〈W (D, φ)
R (x), p〉 =

(
p(i

∂

∂ξ
) exp(−iξ · φ)(x)

)
(0)

=
1

k!

∂k1+···kd

∂ξk1 · · · ∂ξkd
(ξ1φ(x1) + · · · ξdφ(xd))

k

= φ(x1)
k1 · · ·φ(xd)

kd

Hence

Sym
(D, φ)
R 〈W (D, φ)

R (x), p〉 = Sym
(D, φ)
R φ(x1)

k1 · · ·φ(xd)
kd

= 〈WR(x), p〉.

The last equality follows from Theorem 3.1.6. Hence, by linearity, the distri-

butions WR(x) and Sym
(D, φ)
R ◦W (D, φ)

R (x) agree for all polynomials and hence

for all f ∈ C∞(Rd). This completes the proof. ¦

Corollary 3.1.10 Suppose that f ∈ C∞(Rd) and for some g ∈ C∞(Rd), d′ <

d, f(ξ1, . . . , ξd) = g(ξ1, . . . , ξd′) for all ξ1, . . . , ξd ∈ R. Then

〈WR(x), f〉 = 〈WR(x′), g〉

where x′ = (x1, . . . , xd′).

3.1.2 Spectral Properties

Recall that the Gelfand spectrum σ(D) of the commutative Banach algebra

D is the set of continuous non-zero multiplicative linear functionals on D,
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endowed with the weak* topology. By Theorem 2.2.3 these functionals are

necessarily real-valued on hermitian elements.

The argument for the following proposition comes from the proof of [35,

Theorem 8].

Proposition 3.1.11 (“Spectral Mapping”) Let D be a commutative Ba-

nach algebra. Let ψ ∈ σ(D). Then for any f ∈ S(Rd),

ψ(〈W (D, φ)
R (x), f〉) = (f ◦ ψ ◦ φ)(x).

Proof: By Fourier inversion and the properties of the Bochner integral, since

ψ ∈ σ(D),

(f ◦ ψ ◦ φ)(x) =

∫

Rd

f̂(λ)eiλ·(ψ◦φ)(x) dλ

=

∫

Rd

f̂(λ)ψ(eiλ·φ(x))dλ

= ψ

(∫

Rd

f̂(λ)eiλ·φ(x)dλ

)

= ψ(〈W (D, φ)
R (x), f〉).

¦

Lemma 3.1.12 Let f1, f2 ∈ S(Rd). Then

〈W (D, φ)
R (x), f1f2〉 = 〈W (D, φ)

R (x), f1〉〈W (D, φ)
R (x), f2〉.

Proof: Since D is commutative,

〈W (D, φ)
R (x)f1, f2〉 =

∫
(f1f2)̂ (λ)eiλ·φ(x) dλ

=

∫
f̂1 ∗ f̂2(λ)eiλ·φ(x) dλ

=

∫ ∫
f̂1(λ− t)f̂2(t)e

i(λ−t)·φ(x)eit·φ(x) dλdt

=

∫
f̂1(λ)eiλ·φ(x) dλ

∫
f̂2(λ)eiλ·φ(x) dλ

= 〈W (D, φ)
R (x), f1〉〈W (D, φ)

R (x), f2〉
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which completes the proof. ¦

Let Ω ⊆ Rd be an open set and write W
(D, φ)
R (x)|Ω for the restriction of the

distribution W
(D, φ)
R (x) to the space C∞(Ω) of test functions supported on Ω.

The proof of the next theorem is based on an argument in the proof of [35,

Theorem 8].

Theorem 3.1.13 Suppose that D is a unital commutative C∗-algebra. Let Ω

be an open subset of Rd. Then

suppW
(F, φ)
R (x)|Ω = σF(φ(x)) ∩ Ω

where F is any closed subalgebra of D containing 1D, φ(x1), . . . , φ(xd).

Proof: We identify the spectrum σF(φ(x)) of φ(x) in F with the set {(ψ ◦
φ)(x)|ψ ∈ σ(F)} and recall that σF(φ(x)) is a compact subset of Rd.

Hence if λ ∈ σF(φ(x)) then (ψ ◦ φ)(φ(x)) = λ for some ψ ∈ σ(F). If

λ /∈ suppW
(F, φ)
R (x) then there exists f ∈ S(Rd) with 〈W (F, φ)

R (x), f〉 = 0 such

that,

0 6= f(λ) = (f ◦ ψ ◦ φ)(x) = ψ(〈W (F, φ)
R (x), f〉) = ψ(0) = 0,

which is a contradiction. Therefore σF(φ(x)) ⊆ suppW
(F, φ)
R (x) and it follows

that σF(φ(x)) ∩ Ω ⊆ suppW
(F, φ)
R (x)|Ω.

For the reverse inclusion, suppose that λ ∈ suppW
(F, φ)
R (x) but λ /∈ σF(φ(x)).

Then since σF(φ(x)) is compact we can find f ∈ S(Rd) such that f(λ) 6= 0,

〈W (F, φ)
R (x), f〉 6= 0 and f vanishes on σF(φ(x)). Then for all ψ ∈ σ(F),

ψ(〈W (F, φ)
R (x), f〉) = (f ◦ ψ ◦ φ)(x) = 0

from which it follows that 〈W (F, φ)
R (x), f〉 is in the radical of F and that

lim
n→∞

‖〈W (F, φ)
R (x), f〉n‖ 1

n = 0.

We show that 〈W (F, φ)
R (x), f〉 = 0. Choose g ∈ S(Rd) such that g(σF(φ(x))) =
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{0} and g(supp f) = {1}. Then for all m > 0,

‖〈W (F, φ)
R (x), f〉‖ = ‖〈W (F, φ)

R (x), gmf〉‖
≤ ‖〈W (F, φ)

R (x), g〉‖m‖〈W (F, φ)
R (x), f〉‖

and repeating the argument above with g in place of f we have that 〈W (F, φ)
R (x), g〉

is in the radical of F and hence that ‖〈W (F, φ)
R (x), g〉‖m < 1 for some m. This

implies that 〈W (F, φ)
R (x), f〉 = 0 which is a contradiction. Hence suppW

(F, φ)
R (x)|Ω ⊆

σF(φ(x)) ∩ Ω and the result follows. ¦

Lemma 3.1.14 Let x = (x1, . . . , xd) be a d-tuple of hermitian elements of R.

All derivatives of the entire function exp iξ · x are bounded as functions of ξ,

for ξ ∈ Rd.

Proof: See Lemma on p.94 of [41]. ¦

Corollary 3.1.15 Let p :Rd→C be a polynomial. Then

〈W (D, φ)
R (x), fp〉 = 〈W (D, φ)

R (x), f〉〈W (D, φ)
R (x), p〉

for all f ∈ S(Rd).

Proof: By Lemma 3.1.14 we can apply integration by parts to obtain,

〈W (D, φ)
R (x), fp〉 =

∫

Rd

(fp)̂ (ξ)eiξ·φ(x) dξ

=

∫

Rd

p

(
i
∂

∂ξ

)
f̂(ξ)eiξ·φ(x) dξ

=

∫

Rd

f̂(ξ)

[
p

(
−i ∂
∂ξ

)
eiξ·φ(x)

]
dξ

= 〈W (D, φ)
R (x), f〉〈W (D, φ)

R (x), p〉

where the last equality follows by the same argument as in the proof of Corol-

lary 3.1.9 ¦
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Alternatively, Corollary 3.1.15 can be seen as a consequence of Lemma

3.1.12 and the continuity of W
(D, φ)
R (x).

Let I := I(D, φ) = {y1 ∈ D |Sym(D, φ)
R (y1y2) = 0 for all y2 ∈ D}. Then I

is a closed ideal of D. Set D′ := D/I and let φ′ :E→D be the map induced

by φ.

Lemma 3.1.16 If D is an operating algebra with respect to E and R then D′

is also an operating algebra with respect to E and R.

Proof: Clearly φ′(1R) = 1D′ and 〈φ′(E)〉 is dense in D′. Since Sym
(D, φ)
R

vanishes on I, the map Sym
(D′, φ)
R is well-defined and has all the properties

required by Definition 2.3.1. ¦

The following theorem is a consequence of general facts about non-analytic

functional calculi of operators [2, Theorem 5.10]; our proof is based on an

argument of Nelson [35, Theorem 8], from which the restriction property (3.1)

can be more easily observed.

Theorem 3.1.17 ([2], Theorem 5.10; [35], Theorem 8) Suppose that D

is an unital commutative C∗-algebra and an operating algebra with respect to

E and R. Let Ω be an open subset of Rd. Then

suppW
(D′, φ′)
R (x)|Ω = suppWR(x)|Ω = σD′(φ

′(x)) ∩ Ω. (3.1)

Proof: Since ‖φ′‖ = 1, the distribution W
(D′, φ)
R (x) is well-defined. The equal-

ity suppW
(D′, φ′)
R (x)|Ω = σD′(φ

′(x)) ∩ Ω follows from Theorem 3.1.13. Let

λ ∈ suppWR(x)|Ω. Then for every neighbourhood U of λ with U ⊆ Ω there

exists f ∈ S(Ω) such that supp f ⊆ U and 〈WR(x), f〉 6= 0. Since WR ≡
Sym

(D′, φ′)
R ◦W (D′, φ′)

R by Corollary 3.1.9, it follows that 〈W (D′, φ′)
R (x), f〉 6= 0.

Hence suppWR(x)|Ω ⊆ suppW
(D′, φ′)
R (x)|Ω.

Suppose that λ ∈ σD′(φ
′(x)) ∩ Ω but λ /∈ suppWR(x)|Ω. Then there ex-

ists f ∈ S(Ω) such that f(λ) 6= 0 and 〈WR(x), fp〉 = 0 for all d-variable
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polynomials p :Rd→C. By Corollary 3.1.15,

∫

Rd

(fp)̂ (λ)eiλ·x dλ = Sym
(D, φ)
R

∫

Rd

(fp)̂ (λ)eiλ·φ(x) dλ

= Sym
(D, φ)
R (〈W (D, φ)

R (x), f〉〈W (D, φ)
R (x), p〉)

= 0

and it follows that Sym
(D, φ)
R (〈W (D, φ)

R (x), f〉 y) = 0 for all y ∈ D. Thus

〈W (D′, φ′)
R (x), f〉 = 0. Since λ ∈ σD′(φ

′(x)) we can find ψ ∈ σ(D′) such that

(ψ ◦W (D′, φ′)
R (x))f = (f ◦ ψ ◦ φ′)(x)

= f(λ)

6= 0

which implies that 〈W (D′, φ′)
R (x), f〉 6= 0, a contradiction. Therefore, σD′(φ

′(x))∩
Ω ⊆ suppWR(x)|Ω. This completes the proof. ¦

3.2 A Canonical Quotient Operating Algebra

Suppose that V is a normed vector subspace of R containing 1R. As in Section

(2.3), denote by S(V ) the symmetric algebra of V and by S̄(V ) be the com-

pletion of S(V ) with respect to norm (2.3). Let ˆ:V → S̄(V ) be the canonical

inclusion mapping.

Definition 3.2.1 Let I = I(V ) := {α ∈ S̄(V ) |Sym(V )
R (αβ) = 0 for all β ∈

S̄(V )}. The quotient A = A(V ) := S̄(V )/I is called the Nelson algebra of

operants over V .

Let ˜:V →A be the canonical projection.

Lemma 3.2.2 1̃R = 1A.
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Proof: The unit inA is clearly the image of 1 ∈ C. However, for any α ∈ S(V ),

Sym
(V )
R (1− 1̂R)α = Sym

(V )
R (α− 1̂Rα)

= Sym
(V )
R α− Sym

(V )
R 1̂Rα

= 0.

By continuity, Sym
(V )
R (1− 1̂R)α = 0 for all α ∈ S̄(V ). The result follows. ¦

Lemma 3.2.3 The maps ˆ:E→S(E) and ˜:E→A(E) are isometries. Fur-

thermore, ‖ˆ‖ = ‖˜‖ = 1.

Proof: By equation (2.3), ‖t̂‖S(V ) ≤ ‖t‖R. However, since t̂ is a homogeneous

element of degree one in S(V ), t̂ must have the form t̂ = λ1t̂1 + · · · + λnt̂n

for some choice of λ1, . . . , λn ∈ C, not necessarily unique. By the triangle

inequality, ‖t‖R ≤ |λ1|‖t1‖R + · · · + |λn|‖tn‖R. Hence ‖t̂‖S(V ) ≥ ‖t‖R and

it follows that ‖t̂‖S(V ) = ‖t‖R. Now ‖t̃‖A = infi∈I ‖t̂ + i‖S̄(V ) ≤ ‖t̂‖S(V ) +

infi∈I ‖i‖S̄(V ) = ‖t‖R. Also, ‖t‖R = ‖Sym(V )
R t̃‖R ≤ ‖t̃‖A. Therefore, ‖t̃‖R =

‖t̃‖A.

We have,

‖˜‖ = sup{‖t̃‖A : t ∈ V, ‖t‖R = 1} = sup{‖t̃‖R : t ∈ V, ‖t‖R = 1} = 1.

Similarly, ‖ˆ‖ = 1. This completes the proof. ¦

We thus have the following

Theorem 3.2.4 ([35], Theorem 8) Suppose that R is a unital C∗-algebra.

Let Ω be an open subset of Rd. Then A(E) is the freest quotient operating

algebra with respect to E and R such that

suppW
(S̄(E), )̃
R (x)|Ω = suppWR(x)|Ω = σA(x̃) ∩ Ω. (3.1)

Proof: By Lemma 2.3.2, S̄(E) is an operating algebra with respect to E and

R, hence by Lemma 3.1.16 A is an operating algebra with respect to E and
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R. Since ‖˜‖ = 1, the distribution W
(A(E), )̃
R (x) is defined and equality (3.1)

follows from Theorem 3.1.17. As by Proposition 2.3.3 all operating algebras

with respect to E and R are completions of quotients of S(E) for some norm,

it follows that A is the freest (E, R)-operating algebra for which (3.1) holds.

¦

Example 3.2.5 Let A =


 1 0

0 −1


. Set E := SpanC{I, A}. Then S(E) ∼=

C[A]. Since A2 − I = 0 and Sym := Sym
(E)

L(C2) is a homomorphism we have

(Â2 − Î)S̄(E) ⊆ I(E). On the other hand, if c0Î + c1Â + · · · + cnÂ
n ∈ I(E)

then

c0I + c1A+ · · ·+ cnA
n = Sym(c0Î + c1Â+ · · · cnÂn)

= 0

and it follows that I(E) = (1− Î)S̄(E) + (Â2 − Î)S̄(E) by continuity.

Suppose that φ ∈ σ(S̄(E)). Then in particular φ(I(E)) = {0}, or equiva-

lently φ(1 − Î) = φ(Â2 − I) = 0; hence φ(Î) = 1 and φ(A) = {−1, 1}, and it

follows that σ(Â) = {−1, 1}.
However, for f ∈ S(R) we have

〈WL(C2)(A), f〉 =

∫

R
f̂(ξ)eiξA dξ

=


 f(1) 0

0 f(−1)




and it follows that suppWL(C2)(A) = {−1, 1}. Hence we have shown that

σ(A) = suppWL(C2)(A).

Let V be a finite dimensional complex normed vector space.

Lemma 3.2.6 ([35], Theorem 1) The spectrum σ(S̄(V )) of the complete sym-

metric algebra S̄(V ) of V is homeomorphic to a subset of the unit ball in V ∗.
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Proof: Observing that the compact set σ(S(V )) and the unit ball in V ∗ are

Hausdorff spaces, it suffices to exhibit a continuous bijection between them.

Define ψ : σ(S(V ))→V ∗ by ψ(φ)(v) := φ(v̂) for all v ∈ V . Since ‖v‖ = ‖v̂‖ for

all v ∈ V and ‖φ‖ ≤ 1 we have that ‖ψ(φ)‖ ≤ 1 for all φ ∈ σ(S(V )) and hence

that ψ maps into the unit ball in V ∗. Now suppose that ψ(φ) = ψ(φ1). Then

φ(Ã) = φ1(Ã) for all A ∈ V . Therefore, φ and φ1 agree on S0(V ). However,

since ‖φ‖, ‖φ1‖ ≤ 1, it follows that φ = φ1. Thus ψ is a bijection. Suppose

that φn → φ in σ(S(V )). Then,

‖ψφn − ψφ‖ = sup
‖A‖=1

‖(ψφn − ψφ)(A)‖

= sup
‖A‖=1

‖φn(Ã)− φ(Ã)‖

≤ ‖φn − φ‖

and it follows that ψφn → ψφ. Therefore ψ is continuous; this completes the

proof. ¦

Corollary 3.2.7 The spectrum σ(A) of the algebra A of operants over V is

homeomorphic to a closed subset of the unit ball in V ∗.

In the remainder of this chapter we determine the spectrum σA(x̃) in the

case R = V = L(H) is the algebra of bounded linear operators on a Hilbert

space H. The following “lower bound” is due to E. Nelson.

Theorem 3.2.8 ([35], Theorem 5) Let A = (A1 . . . , Ad) be a d-tuple of

bounded linear operators on a Hilbert space H and define for each u ∈ H
such that ‖u‖ = 1, Eu ∈ L(H) given by Eu(v) := (u, v)u for all v ∈ H. Then

{(Au, u) : ‖u‖ = 1, Eu ∈ SpanC{A1, . . . , Ad}} ⊆ σA(Ã) (3.2)

where (Au, u) := ((A1u, u), . . . , (Adu, u)).

Proof: Fix u ∈ H with ‖u‖ = 1. We note that E2 = E and by the Cauchy-

Schwartz inequality ‖E‖ = sup‖v‖=1 ‖Ev‖ = sup‖v‖=1 |(u, v)| ≤ 1 from which it

follows that ‖E‖ = 1, since ‖E‖ = |(u, v)| = 1.
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We show that the map ψ : S̄(L(H))→C given by

ψ(α) = lim
m→∞

(u, T (Ẽmα)u) (3.3)

for all α ∈ S̄(L(H)) is well-defined, vanishes on I and consequently induces a

unique functional in σ(A) sending Ã to (Au, u) for all A ∈ L(H).

Let A1, . . . , Am ∈ L(H). Of the (m + n)! terms in the expansion of

TẼmÃ1 · · · Ãn exactly m!n!Cm−n
n have at least one E before and after each

Ai; therefore, the proportion of terms not of this form can be made arbitrarily

small for m sufficiently large and we have,

lim
n→∞

TẼmÃ1 · · · Ãn := T (EA1E)˜· · · (EAnE)˜

= (u,A1u) · · · (u,Anu)E.

Since the linear span of terms of the form Ã1 · · · Ãn is dense in S̄(L(H)) and

‖TẼmα‖ ≤ ‖Ẽmα‖ ≤ ‖α‖ for each m > 0 and α ∈ S(L(H)), it follows that ψ

is well-defined. Clearly if α ∈ I then TẼmα = 0, so ψ factors through to A. ¦
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Chapter 4

A Formula for the Weyl

Calculus

LetH be an n-dimensional Hilbert space and let A := (A1, . . . , Ad) be a d-tuple

of bounded operators on H. In this chapter we determine the Weyl calculus

WL(H)(A) of A, under special circumstances.

In Section 4.1 we verify Nelson’s explicit formula (Theorem 4.1.1) forWL(H)(A)

when the d-tuple A consists of hermitian matrices, by-passing the intricate ar-

gument involving recurrence relations and induction that appears in [35]. This

will be used in fundamental way in the sequel. We show in Section 4.2 that this

formula is a special case of a more general expression due to B. Jefferies [23],

valid for any d-tuple A of arbitrary complex matrices. It would be interesting

to see how the results of Chapter 6 concerning unitary representations of com-

pact Lie groups may generalise to non-unitary representations using Jefferies’

formula.

4.1 Nelson’s Formula for Hermitian Matrices

Define Σn := {u ∈ H : ‖u‖ = 1} and let ν denote the unitarily invariant

probability measure on Σn. Define the joint numerical range map,

WA : Σn→Rd : u 7−→ (〈A1u, u〉, . . . , 〈Adu, u〉)
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and set µA := ν ◦W−1
A . Choose a basis of H so that the Aj are represented

by matrices. Let ∂
∂x1
, . . . , ∂

∂xd
be the operators of partial differentiation on Rd.

Define A · ∂
∂x

= A1
∂
∂x1

+ · · · + Ad
∂
∂xd

. For any matrix differential operator M

acting on the space of distributions on C∞c (Rd) we denote by φj(M) the sum

of the principal minors of M of order j.

Theorem 4.1.1 ([35], Theorem 9) Let A := (A1, . . . , Ad) be a d-tuple of

bounded self-adjoint operators on a n-dimensional Hilbert space H. The Weyl

calculus for A is given by

WL(H)(A) =
n−1∑

k=0

n−k−1∑
j=0

j∑
m=0

(−1)j+k+m+1


 j

m


 (n− 1)!

(n− 1− j +m)!
×

(
A · ∂

∂x

)k

φn−j−k−1(A · ∂
∂x

)(
∂

∂x
· x)mµA.

(4.1)

Corollary 4.1.2 Suppose that A := (A1, . . . , Ad) is a basis of the vector space

of bounded self-adjoint operators on H. Then,

suppWL(H)(A) = {(〈A1u, u〉, . . . , 〈Adu, u〉) : u ∈ H, ‖u‖ = 1}.

Proof: By Theorem 4.1.1,

suppWL(H)(A) ⊆ {(〈A1u, u〉, . . . , 〈Adu, u〉) : u ∈ H, ‖u‖ = 1}.

The reverse inclusion follows from Theorems 3.2.8 and Theorem 3.2.4. ¦

We present below our version of E. Nelson’s proof of Theorem 4.1.1.

As a preliminary step, we derive a closed form for the exponential map of

U(n), exp : u(n) −→ U(n). Let,

cn−1(M) :=

∫

Σn

exp〈Mu, u〉 dν(u)

and

ck(M) :=
n−k−1∑
j=0

(−1)j+kφn−j−k−1(M)
∂j

∂tj
tn−1cn−1(tM)|t=1. (4.2)

We have the following
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Lemma 4.1.3 Let D = diag(λ1, . . . , λn), where the λi ∈ R. Then

eiD =
n−1∑

k=0

ck(iD)(iD)k.

Corollary 4.1.4 Let M be an n× n hermitian matrix. Then

eiM =
n−1∑

k=0

cj(iM)(iM)k.

Proof: Let M = U∗DU be the unitary decomposition of M . Then,

eiM = U∗eiDU

= U∗
(
n−1∑

k=0

ck(iD)(iD)k

)
U

=
n−1∑

k=0

ck(iD)(iM)k

=
n−1∑

k=0

ck(iM)(iM)k

where the last equality is an immediate consequence of our definitions and the

unitary invariance of the inner product 〈 , 〉. ¦

We now devote the remainder of this section to the proof of the Lemma 4.1.3.

Lemma 4.1.5 Let λ1, . . . , λn ∈ R. Then

eλn

∫ 1

0

∫ 1−wn−1

0

· · ·
∫ 1−wn−1−···−w2

0

exp(
n−1∑
j=1

(λj − λn)wj) dw1 · · · dwn−1

=
n∑
j=1

eλj

∏
j 6=k(λj − λk)

. (4.3)

Proof: Observe that,

eλ2

∫ 1

0

e(λ1−λ2)w1 dw1 =
eλ1

λ1 − λ2

+
eλ2

λ2 − λ1
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Hence (4.3) is true when n = 2. Assume that the identity holds for n > 2.

Then

eλn+1

∫ 1

0

∫ 1−wn

0

· · ·
∫ 1−wn−wn−2−···−w2

0

exp(
n∑
j=1

(λj − λn+1)wj) dw1 · · · dwn

=
eλn+1

λ1 − λn+1

∫ 1

0

∫ 1−wn

0

· · ·
∫ 1−wn−···−w3

0

exp

(
n∑
j=1

(λj − λn+1)wj

)
|1−wn−···w2
0 dw2 · · · dwn

=
eλn+1

λ1 − λn+1

∫ 1

0

∫ 1−wn

0

· · ·
∫ 1−wn−···−w3

0

exp(
n∑
j=2

(λj − λ1)wj)

− exp(
n∑
j=2

(λj − λn+1)wj) dw2 · · · dwn

=
1

λ1 − λn+1

n∑
j=1

eλj

∏
j 6=k<n+1(λj − λk)

− 1

λ1 − λn+1

n+1∑
j=2

eλj

∏
j 6=k>1(λj − λk)

=
eλ1

∏
j 6=1(λ1 − λj)

+
eλn+1

∏
k 6=n+1(λn+1 − λk)

+

n∑
j=2

eλj

λ1 − λn+1

(
1∏

j 6=k,1<k<n+1(λj − λk)

)(
1

λj − λ1

− 1

λj − λn+1

)

=
n+1∑
j=1

eλj

∏
j 6=k(λj − λk)

and hence the identity (4.3) follows by induction. ¦

Lemma 4.1.6 Let D be diagonal matrix with distinct entries λ1, . . . , λn ∈ R.

Then

cn−1(D) =
n∑

k=1

eλk

∏
j 6=k(λk − λj)

.

Proof: Let ∆n = {(w1, . . . , wn) ∈ Rn|wi ≥ 0,
∑
wi = 1}.

cn−1(D) =

∫

Σn

exp

(
n∑
j=1

λj|uj|2
)
dν(u)

=

∫

Cn

χΣn(u)exp

(
n∑
j=1

λj|uj|2
)
du1 · · · dun

=

∫

Rn
+

∫

Tn

χSn−1(|u|)exp

(
n∑
j=1

λj|uj|2
)
|u1|d|u1|dθ1 · · · |un|d|un|dθn
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=
(2π)n

2n

∫

Rn
+

χSn−1(|u|)exp

(
n∑
j=1

λj|uj|2
)
d|u1|2 · · · d|un|2

=

∫

Rn
+

χ∆n(w)exp

(
n∑
j=1

λjwj

)
dw1 · · · dwn

= eλn

∫ 1

0

∫ 1−wn−1

0

· · ·
∫ 1−wn−1−···−w2

0

exp

(
n∑
j=1

(λj − λn)wj

)
dw1 · · · dwn−1

=
n∑

k=0

eλk

∏
j 6=k(λk − λj)

For a proof of the last equality, see the appendix. ¦

We are now ready to prove Lemma 4.1.3.

Proof of Lemma 4.1.3: First assume that the λi are distinct. Then by

Cramer’s rule the system of linear equations,

eλ1 = g0 + g1λ1 + · · ·+ gn−1λ
n−1
1

...

eλn = g0 + g1λn + · · ·+ gn−1λ
n−1
n

for (g0, . . . , gn−1) ∈ Rn, has a unique solution given by

gk(λ1, . . . , λn) =
(−1)n−k−1

∏
j 6=k(λk − λj)

∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−1
1 λk+1

1 · · · λn−1
1 eλ1

...

1 λn · · · λk−1
n λk+1

n · · · λn−1
n eλn

∣∣∣∣∣∣∣∣∣

for k = 0, . . . , n− 1. It follows that

eiD =
n−1∑

k=0

gk(iD)(iD)k.
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However

gn−1(D) = | 1 λi · · · λn−2
i eλi|/| 1 λi · · · λn−2

i λn−1
i |

=
n∑

k=1

(−1)n+k−2eλk

∏

i<j,i,j 6=k
(λj − λi)

∏
i<j

(λj − λi)
−1

=
n∑

k=1

(−1)n+k−2eλk

n∏

j=k+1

(λj − λk)
k−1∏
j=1

(λk − λj)
−1

=
n∑

k=1

eλk

n∏

j=k+1

(λj − λk)
k−1∏
j=1

(λk − λj)
−1

=
n∑

k=1

eλk

∏

j 6=k
(λk − λj)

−1

= cn−1(D).

Hence, to prove that gk(D) = ck(D) for 1 ≤ k ≤ n− 1 it suffices to show that

the gk satisfy the same recurrence (4.2) as the ck. To this end, observe that

on expanding the numerator of tn−1gn−1(tλ1, . . . , tλn) along the last column

we get that the coefficient of (−1)k+jeλjV −1
n , where Vn is the Vandermonde

determinant in λ1 . . . , λn, in the right hand side of (4.2) is given by,

(
n−k−1∑

l=0

(−1)lφn−k−l−1(D)λlj

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λn−2
1

...

1̂ λ̂j · · · λ̂n−2
j

...

1 λn · · · λn−2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=




∑
l1<···<ln−k−1,

lν 6=j

λl1 · · ·λln−k−1




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λn−2
1

...

1̂ λ̂j · · · λ̂n−2
j

...

1 λn · · · λn−2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−1
1 λk+1

1 · · · λn−1
1

...

1̂ λ̂j · · · λ̂k−1
j λ̂k+1

j · · · λ̂n−1
j

...

1 λn · · · λk−1
n λk+1

n · · · λn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.4)

The last equality is a well known identity (see [36, p.93]).

Now (4.4) is the coefficient of (−1)k+jeλjV −1
n in the expansion of gk(λ1, . . . , λn)

along the last column and it follows that ck(D) = gk(D) for all k when D has

distinct eigenvalues.

Now assume that D has possibly repeated eigenvalues. Since
∑
λj|uj|2

remains bounded as u ranges over Σn it follows from the dominated convergence

theorem that the integral,

cn−1(M) =

∫

Σn

exp(
∑

λj|uj|2) dν(u),

is continuous in λ = (λ1, . . . , λn). Similarly, since

∂j

∂tj

∫

Σn

exp(
∑

tλj|uj|2) dν(u)

=

∫

Σn

∂j

∂tj
exp(

∑
tλj|uj|2) dν(u)

=

∫

Σn

(
n∑
j=0

λj|uj|2
)j

exp(
∑

tλj|uj|2) dν(u)

≤ M

∫

Σn

exp(
∑

tλj|uj|2) dν(u)

it follows that the ck (1 ≤ k ≤ n− 1) are continuous in D. Hence, the lemma

follows upon approximating D by diagonal matrices with distinct eigenvalues

and taking limits of the identity that we have already established. ¦
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We now prove Theorem 4.1.1.

Proof of Theorem 4.1.1: Observe that,

cn−1(ξ · A) =

∫

Σn

e〈iξ·Au,u〉 dν(u)

=

∫

Rd

ei〈x,ξ〉 dµA(x)

= µ̌A(ξ).

Applying the Leibniz rule for the derivative of a product, when k < n− 1,

ck(ξ · A) =
n−k−1∑
j=0

(−1)j+kφn−j−k−1(ξ · A)
∂j

∂tj
tn−1cn−1(tξ · A)|t=1

=
n−k−1∑
j=0

(−1)j+kφn−j−k−1(ξ · A)

j∑
m=0


 j

m


 (n− 1)!

(n− j +m− 1)!

∂m

∂tm
cn−1(tξ · A)|t=1

=
n−k−1∑
j=0

(−1)j+kφn−j−k−1(ξ · A)

j∑
m=0


 j

m


 (n− 1)!

(n− j +m− 1)!
c
(m)
n−1(ξ · A)(ξ · A)m

=
n−k−1∑
j=0

(−1)j+kφn−j−k−1(ξ · A)

j∑
m=0


 j

m


 (n− 1)!

(n− j +m− 1)!
µ̌

(m)
A (ξ)ξm

=
n−k−1∑
j=0

(−1)j+kφn−j−k−1(ξ · A)

j∑
m=0


 j

m


 (n− 1)!

(n− 1− j +m)!
(ξ · ∂

∂ξ
)mµ̌A(ξ)

Since (ξjf(ξ))̂ (x) = i ∂f̂
∂xj

(x) for all f ∈ S(Rd) it follows that,

(φk(iξ · A)µ̌A(ξ))̂ = −φk(A · ∂
∂x

)µA.

Furthermore,

[(ξ · ∂
∂ξ

)µ̌A(ξ)]̂ = −
(
∂

∂x
· x

)
µA.

By Corollary 4.1.4

eiξ·A = c0(iξ · A) + c1(iξ · A)(iξ · A) + · · ·+ cn−1(iξ · A)(iξ · A)n−1
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for all ξ ∈ Rd. Therefore,

(eiξ·A)̂ =
n−1∑

k=0

(
A · ∂

∂x

)k

[ck(iξ · A)]̂

=
n−1∑

k=0

n−k−1∑
j=0

j∑
m=0

(−1)j+k+m+1


 j

m


 (n− 1)!

(n− 1− j +m)!

(
A · ∂

∂x

)k

φn−j−k−1

(A · ∂
∂x

)(
∂

∂x
· x)mµA.

¦

Example 4.1.7 Let d = 3 and set

A1 =


1 0

0 −1


 , A2 =


0 1

1 0


 , A3 =


 0 i

−i 0


 .

These are called the “Pauli spin matrices” and iA1, iA2, iA3 define a basis for

the Lie algebra su(2) (see Chapter 5). We verify Theroem 4.1.1 in this case.

For all ξ ∈ R3, let |ξ| :=
√
ξ2
1 + ξ2

2 + ξ2
3 . Since 1

2
(AjAk + AkAj) = δjkI for

j, k = 1, 2, 3 where δij is the Kronecker delta and I is the 2×2 identity matrix,

we have (ξ · A)2 = |ξ|2 I for all ξ ∈ R3 and by power-series expansion,

exp(iξ · A) = cos |ξ| I +
sin |ξ|
|ξ| iξ · A.

Now,

(
ξ · ∂

∂ξ

)
sin |ξ|
|ξ| = |ξ| d

d|ξ|
(

sin |ξ|
|ξ|

)

=
|ξ| cos |ξ| − sin|ξ|

|ξ|
= cos |ξ| − sin|ξ|

|ξ| .

Taking Fourier transforms of both sides we obtain

(cos |ξ|)̂ = ν −
(
∂

∂ξ
· ξ

)
ν

42



where ν is the unitarily invariant probability measure on the unit sphere S2 ⊆
R3. Thus,

WL(C2)(A) = (exp(iξ · A))̂ = ν I −
(
∂

∂x
· x

)
νI −

(
σ · ∂

∂x

)
ν.

On the other hand, for u = (u1, u2) ∈ C2 we have

〈A1u, u〉 = 2<(ū1u2),

〈A2u, u〉 = 2=(ū1u2),

and

〈A3u, u〉 = |u1|2 − |u2|2.

When |u1|2 + |u2|2 = 1,

|WA(u)|2 =
3∑

k=1

〈Aku, u〉2

= (|u1|2 + |u2|2)2

= 1.

Therefore WA(Σ2) ⊆ S2 and by rotation invariance we have WA(Σ2) = S2.

Hence, suppµA = S2 and by the definition of µA and its invariance under

rotations, it follows that µA agrees with ν, the uniform density probability

measure on S2.

4.2 The Jefferies Formula for Arbitrary Ma-

trices

Let M be an n×n matrix over C. Denote by pM the characteristic polynomial

of M , defined by pM(z) := det(M − zI) for all z ∈ C.

By the Riesz functional calculus [13], we have the representation

eiM =
1

2πi

∫

C

eiζ(ζI −M)−1 dζ (4.1)
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where C is any simple closed curve in C which surrounds the set of eigenvalues

of M , which we denote by σ(M). Following [24] (see also [23]), we determine

an expression for the resolvent (ζI −M)−1 of the form

(ζI −M)−1 = α0(M, ζ) + α1(M, ζ)M + · · ·+ αn−1(M, ζ)Mn−1

for all ζ ∈ C \ σ(M), to thereby obtain a more general version of Theorem

4.1.1, valid for d-tuples of arbitrary complex matrices.

Let H be an n-dimensional Hilbert space and A = (A1, . . . , Ad) be a d-

tuple of bounded operators on H. We choose a basis of H so that the Aj are

represented by matrices. Define a tempered, complex-valued distribution TA

given by the Fourier transform of the uniformly bounded function

ξ 7−→ in(n− 1)!

(2π)d+1

∫

C(ξ)

eiz

p〈A, ξ〉(z)
dz, ξ ∈ Rd (4.2)

where for every ξ ∈ Rd, C(ξ) is a simple closed curve containing σ(〈A, ξ〉) in

its interior.

Theorem 4.2.1 ([23], Theorem 5.10) Let A = (A1, . . . , Ad) be a d-tuple of

bounded operators on an n-dimensional Hilbert space H satisfying the spectral

condition

σ(〈A, ξ〉) ⊆ R (4.3)

for all ξ ∈ Rd. Then there exist numbers C > 0 and r > 0 such that

‖ei〈A, ξ〉‖ ≤ C(1 + |ζ|)n−1er|Im ζ|

for all ζ ∈ Cn.

We have the following

Corollary 4.2.2 ([23], Corollary 5.11) Let A = (A1, . . . , Ad) be a d-tuple

of bounded operators on an n-dimensional Hilbert space H and satisfying spec-

tral condition (4.3). Then Weyl calculus for A is defined, has compact support
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and is given by the expression

WL(H)(A) =
n−1∑

k=0

n−k−1∑
j=0

j∑
m=0

(−1)j+k+m+1


 j

m


 1

(n− 1− j +m)!
×

(
A · ∂

∂x

)k

φn−j−k−1(A · ∂
∂x

)(
∂

∂x
· x)mTA.

(4.4)

Proof: If f ∈ S(Rd) then we have also f̂ ∈ S(Rd) [22] and hence by Theorem

4.2.1 and the bound (4.2.1), ‖ei〈A, ξ〉‖L(H)|f̂ | ≤ C(1 + |ξ|)−n−1. As

∫

R
(1 + |ξ|)−n−1 dξ < ∞,

it follows that the tempered distribution WL(H)(A) is defined. By the Paley-

Wiener theorem, since WL(H)(A) is the Fourier transform of the analytic func-

tion e(ζ) := ei〈A, ξ〉 (ζ ∈ Cd), it is compactly supported.

For each ξ ∈ Rd, let a0(〈A, ξ〉), . . . , an(〈A, ξ〉) be the coefficients of the

characteristic polynomial of 〈A, ξ〉. The following identity is easily verified by

the Cayley-Hamilton theorem,

p〈A, ξ〉(ζ)I = (ζI −M)
n−1∑

k=0

(
n−k−1∑
j=0

aj+k+1(〈A, ξ〉)ζj
)
〈A, ξ〉k.

By (4.1) it follows that

ei〈A, ξ〉 =
1

2πi

n−1∑

k=0

(
n−k−1∑
j=0

aj+k+1(〈A, ξ〉)
∫

C

eiζζj

p〈A, ξ〉
dζ

)
(〈A, ξ〉)k

where C is any simple closed curve in C containing σ(〈A, ξ〉) in its interior. If

t ∈ R is chosen so that C also contains tσ(〈A, ξ〉),
∫

C

eitζ(iζ)j

p〈A, ξ〉(ζ)
dζ =

∂j

∂tj

∫

C

eitζ

p〈A, ξ〉(ζ)
dζ

=
∂j

∂tj
tn−1

∫

C

eiζ

pt〈A, ξ〉(ζ)
dζ
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and using Leibniz’s formula for the differentiation of products we obtain

ei〈A, ξ〉 =
1

2πi

n−1∑

k=0

〈A, ξ〉k
n−k−1∑
j=0

i−jaj+k+1(〈A, ξ〉)

×
j∑

m=0


 j

m


 (n− 1)!

(n− 1− j +m)!

[
∂m

∂tm

∫

C

eiz

pt〈A, ξ〉(z)
dz

]

t=1

.

(4.5)

The formula (4.4) now follows on taking Fourier transforms of both sides of

(4.5), noting that ∂
∂t
ŤA(tξ)|t=1 = (ξ· ∂

∂ξ
)ŤA(ξ), and as(〈A, ξ〉) = (−1)sφn−s(〈A, ξ〉)

for s = 0, 1, . . . , n− 1. ¦

In [23], Corollary. 5.11, it is also shown that if the d-tuple A = (A1, . . . , Ad)

satisfies

σ(〈A, ξ〉) ⊆ R (4.6)

for all ξ ∈ Rd, then the distribution WA has compact support contained in the

rectangle [−‖A1‖, ‖A1‖]× · · · × [−‖Ad‖, ‖Ad‖].
Observe that if M is a diagonal matrix with distinct entries λ1, . . . , λn and

C is a simple closed curve in C surrounding σ(M),

∫

C

eiζ

pM(ζ)
dz =

∫

C

eiζ

(λ1 − ζ) · · · (λn − ζ)
dζ

=
n∑

k=1

1∏
j 6=k(λk − λj)

∫

C

eiζ

ζ − λk
dζ

=
n∑

k=1

eiλk

∏
j 6=k(λk − λj)

and hence by Lemma 4.1.6 the two formulas (4.1) and (4.4) agree in the case

of hermitian matrices.

Let ν be the unitarily invariant probability measure on the unit sphere Σ

in Cn. More generally we have

Proposition 4.2.3 ([24]) Let M be a normal n×n matrix. Let U be a simply

connected open subset of C containing coσ(M). Let f :U→C be an analytic
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function. Then for any simple closed curve C in U containing σ(M) in its

interior,

1

2πi

∫

C

f(ζ)

pM(ζ)
dζ =

(−1)n

(n− 1)!

∫

Σ

f (n−1)(〈Mu, u〉) dν(u). (4.7)
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Chapter 5

Lie Groups and Lie Algebras

In this chapter, we present a streamlined exposition of basic Lie theory, con-

centrating only upon those results which will be used in the sequel. All of these

facts and their proofs can found in the standard references [39] or [42].

5.1 Basic Structures

Definition 5.1.1 A topological group G is called a (real) Lie group if it is

endowed with the structure of a real analytic manifold for which the group

operations are morphisms of analytic manifolds.

It was shown in 1952 by Gleason, Montgomery and Zippen that every locally

Euclidean topological group admits a unique Lie group structure compatible

with its topological structure [32].

Example 5.1.2 The group GL(n,R) of invertible n×n matrices real matrices

inherits the Euclidean topology from its canonical embedding in Rn2
; the deter-

minant defines a continuous function from GL(n, R) into R; hence, GL(n, R)

is an open set and in particular an analytic manifold. Since the group opera-

tions are given component-wise by rational functions of the matrix entries, it

follows that GL(n, R) is a Lie group. In a similar fashion, it can be shown that

for any finite dimensional real or complex vector space V , the group GL(V ) of
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automorphisms of V can be endowed with a Lie group structiure.

Many more examples of Lie groups are furnished by the following classical

Theorem 5.1.3 (Cartan) Every closed subgroup of a Lie group is a Lie group

in a unique way.

In what follows, we assume that G is a Lie group with identity element

e. For each g ∈ G we define the conjugation mapping cg :G→ G given by

cg(h) := ghg−1 for all h ∈ G. Since cg is analytic and fixes e, the tangent map

dcg of cg at the identity e is an automorphism of the tangent space TeG of G

at e. Since TeG is a finite-dimensional vector space, we can make the following

Definition 5.1.4 The mapping Ad :G→GL(TeG) given by Ad(g) := dcg for

all g ∈ G is called the adjoint representation of G on TeG.

Definition 5.1.5 A complex-valued function f on TeG is G-invariant or Ad-

invariant if it is stable under the the adjoint representation Ad, i.e. f(Ad(g)X) =

f(X) for all g ∈ G and all X ∈ TeG.

Since GL(TeG) is open, the tangent map dAd of Ad at the identity e is a

linear mapping from TeG into the space EndTeG of endomorphisms of TeG

and we denote it by ad.

Definition 5.1.6 The mapping ad :TeG→EndTeG defined by ad := dAd is

called the adjoint representation of TeG on EndTeG.

Equipped with the Lie bracket [ · , · ] given by

[X, Y ] := ad(X)Y

for all X, Y ∈ TeG, the vector space TeG inherits the structure of a non-

associative algebra over R.

Definition 5.1.7 The pair (TeG, [ · , · ]) is called the Lie algebra of G.
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In the sequel, we denote the Lie algebra of G by g. The proposition below

shows that the association of a Lie algebra g to a given Lie groupG is functorial.

Proposition 5.1.8 Let G and H be Lie groups with Lie algebras g and h

respectively. Suppose that φ :G→H is a morphism of Lie groups. Then the

tangent map dφ : g→h of φ at the identity e ∈ G is a morphism of Lie algebras.

It follows by Proposition 5.1.8 that when H is a Lie subgroup of G then h is a

Lie subalgebra of g.

Let F denote either R or C. We write gl(n, F) for the Lie algebra of

GL(n, F) and we denote by Matn(F) the vector space of n× n matrices with

entries in F.

Example 5.1.9 Suppose that G is a Lie subgroup of GL(n, F). Let X ∈ g

and let α :R→G be any curve in G corresponding to X, i.e. α(0) = I and

α′(0) = X. Then for each g ∈ G, by the Leibniz rule,

Ad(g)X =
d

dt
gα(t)g−1|t=0 = gα′(0)g−1 = gXg−1,

independently of α, and for all X, Y ∈Matn F,

[X, Y ] = ad(X)Y =
d

dt
Ad(α(t)Y α(t)−1|t=0

= α′(0)Y + Y
d

dt
α(t)−1|t=0 = XY − Y X. (5.1)

If X ∈ MatnF, we write XT for the matrix transpose of X. We denote by

X̄T the conjugate transpose X∗ of X.

Example 5.1.10 Let U(n) denote the group of unitary matrices of order n.

Since each column of a unitary matrix has unit norm, it follows that U(n) is

homeomorphic to a subset of the product of n copies of S2n−1. In particular,

the group U(n) is closed in GL(n, C) and hence by Theorem 5.1.3 inherits a

Lie group structure. We denote by u(n) the Lie algebra of U(n). If α is a

curve in G corresponding to the matrix X ∈ u(n), we differentiate the equation

α(t)α(t)∗ = I at t = 0 to obtain,

X∗ +X = 0. (5.2)
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Hence, the Lie algebra u(n) contains all skew-hermitian matrices. Conversely,

suppose that X satisfies equation (5.2). Define α(t) := etX for all t ∈ R. Then

α(0) = I and α′(0) = x. By (5.2) we have,

(tX∗)n = (−tX)n

for all t ∈ R and n ∈ N. Hence,

etX
∗

= e−tX

and since etX
∗

= (etX)∗, it follows that (etX)∗etX = I. Thus, the Lie alge-

bra u(n) is the vector space of skew-hermitian matrices equipped with the Lie

bracket (5.1).

Example 5.1.11 Let SU(n) denote the subgroup of U(n) consisting of those

matrices with determinant unity; this is an open connected component of U(n)

and hence a Lie group. In view of Example 5.1.10, using the identity

det eA = eTr A,

we determine that the Lie algebra su(n) of SU(n) is the vector space of traceless

skew-hermitian matrices equipped with the Lie bracket (5.1).

Definition 5.1.12 A one-parameter subgroup of G is a morphism of analytic

manifolds from the additive Lie group R into G.

The following theorem is proved using the theory of differential equations.

Theorem 5.1.13 Suppose that X ∈ g. Then there is a unique one-parameter

subgroup α :R→G with α(0) = e and α′(0) = X.

We denote by αX the one-parameter subgroup corresponding to X.

Definition 5.1.14 The mapping exp : g→G defined by

exp X := αX(1)

for all X ∈ g is called the exponential map of G.

51



Example 5.1.15 Suppose that G is a Lie subgroup of GL(n, C). Then for

any X ∈ g, αX(1) := etX (t ∈ R) is a one-parameter subgroup of G. Hence, by

uniqueness, it follows that the map exp is just the ordinary matrix exponential.

The following proposition plays an important role in the next chapter.

Theorem 5.1.16 Let G and H be Lie groups with Lie algebras g and h re-

spectively. The following diagram is commutative,

G
φ−−−→ H

exp

x
xexp

g
dφ−−−→ h

where dφ denotes the tangent map of φ at the identity e ∈ G.

Theorem 5.1.17 The exponential map exp : g→G is a local diffeomorphism

at 0 ∈ g.

Theorem 5.1.18 Suppose that G is a connected compact Lie group. Then the

exponential map exp is a surjection.

Definition 5.1.19 The j-function of G is given by

j(X) := det1/2

(
sinh ad(X/2)

ad(X/2)

)
.

We next develop a theory of integration on the Lie group G.

Definition 5.1.20 The left-translation of G by the element g ∈ G is the map

Lg :G→G given by Lg(h) := gh for all h ∈ G.

A right-translation of G is defined similarly.

Theorem 5.1.21 There exists a positive measure dg on G which is invariant

under left-translations. Moreover, the measure dg is unique up to multiplication

by a complex number.

The measure dg is called Haar measure on G.
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Theorem 5.1.22 The total of mass of Haar measure dg is finite if and only

if G is compact.

If G is compact, we assume that Haar measure dg is normalised to have

total mass unity.

Theorem 5.1.23 Suppose that G is compact. Then the Haar measure dg is

invariant under left-translations, right-translations and inversion, i.e.,

∫

G

f(hg) dg =

∫

G

f(gh) dg =

∫

G

f(g−1) dg =

∫

G

f(g) dg

for all h ∈ G and any Borel measurable function f on G.

Let dX be Lebesgue measure on g and let U ⊆ g be a neighbourhood of

0 ∈ g on which the exponential map exp : g→G is a diffeomorphism. For any

complex-valued, Borel measurable function f on G with compact support in

expU we have ∫

G

f(g) dg =

∫

U

f(expX)J(X) dX

where J is the Jacobian determinant of exp.

Theorem 5.1.24 For all X ∈ g,

J(X) = |j(X)|2 = det

(
1− e−adX

adX

)
.

The quantity j will play an important role in the sequel.

5.2 Representations

Let H be a Hilbert space and let B(H) denote the group of bounded linear

operators on H with bounded inverse, endowed with the norm topology.

Definition 5.2.1 A representation (π, H) of G is a pair consisting of a Hilbert

space H and a homomorphism π :G→B(H) with the property that the mapping

of G×H into H given by (g, v) 7→ π(g)v is continuous.
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The representation (π, H) of G is called irreducible if there are no proper

non-zero closed subspaces of H which are invariant under the action of the set

π(G) of operators; it is unitary if π(g) is a unitary operator for each g ∈ G.

We will often denote the representation (π, H) simply by π. The dimen-

sion dimπ of π is the dimension of H. If for all g ∈ G, π(g) is the identity

mapping on H then π is called the defining representation on H.

Lemma 5.2.2 Let (π, H) be a finite dimensional representation of G. Then

the mapping π :G→GL(H) is a morphism of Lie groups.

Theorem 5.2.3 Suppose that G is compact and π is an irreducible represen-

tation of G. Then π is finite dimensional.

Definition 5.2.4 An intertwining operator for two finite dimensional repre-

sentations (π, H) and (π′, H′) of G is a linear mapping T :H→H′ such that

T ◦ π = π′ ◦ T .

Two representations are equivalent if there is a bijective intertwining op-

erator between them. If the representation (π, H) is finite-dimensional then it

is equivalent to the representation (π′, H′) if for each g ∈ G there exist bases

of H and H′ with respect to which the operators π(g) and π′(g) have identical

matrix representations.

Lemma 5.2.5 (Schur) Let (π, H) and (π′, H) be two irreducible represen-

tations of G. Then they are equivalent if their set of intertwining operators

coincides with the set of scalar multiples of the identity; otherwise, they have

no non-zero intertwining operators.

Let 〈·, ·〉 denote the inner product on H. Then whenever G is compact we

can define a new inner product on H by,

(v, v′) :=

∫

G

〈gv, gv′〉 dg

for all u, v ∈ H. Since dg is invariant under right-translations, (gu, gv) = (u, v)

for every g ∈ G.
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In essence we have proved the following

Theorem 5.2.6 Suppose that G is compact and that (π, H) is a representation

of G. Then there exists an inner product on H with respect to which π is

unitary.

Theorem 5.2.7 Let (π, H) be a finite dimensional unitary representation of

G. Then there is a finite direct sum decomposition of Hilbert spaces,

H =
⊕

Hi

so that for each i, the representation (π|Hi
, Hi) is irreducible.

Corollary 5.2.8 Suppose that G is compact. Then every finite dimensional

representation of G admits a decomposition as a finite direct sum of irreducible

representations of G.

Definition 5.2.9 The character χπ of a finite dimensional representation (π, H)

of G is a complex-valued function on G given by χπ(g) := Tr π(g) for all g ∈ G.

The next theorem shows that the character separates non-equivalent rep-

resentation.

Theorem 5.2.10 Suppose that G is compact. Then two finite-dimensional

representations (π, H) and (π′, H′) of G are equivalent if and only if χπ = χπ′.

Definition 5.2.11 A matrix coefficient f = fπu, v of a finite-dimensional uni-

tary representation (π, H) of G is a complex-valued function on G of the form

f(g) = 〈π(g)u, w〉 for some u, v ∈ H.

We denote by C(G)π the linear span of the matrix coefficients of π.

Theorem 5.2.12 Suppose that G is compact and let π and π′ be equivalent

irreducible representations of G. Then C(G)π = C(G)π′.
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Theorem 5.2.13 (Schur Orthogonality) Suppose that G is compact. Let

(π,H) and (π′,H′) be a unitary irreducible representation of G. Then for any

u, v ∈ H and u′, v′ ∈ H,

∫

G

fπu,v(g)f
π′
u′,v′(g) dg =





(dim π)−1〈u, u′〉〈v, v′〉, π ∼ π′

0, π � π′.

Denote by Ĝ the set of equivalence classes of finite-dimensional irreducible

representations of G.

Theorem 5.2.14 Suppose that G is compact. The space L2(G, dg) decom-

poses as the Hilbert sum,

L2(G) =
⊕̂

[π]∈ bG
C(G)π.

5.3 Compact Lie Groups

Unless indicated otherwise, in this section we assume that G is compact and

connected.

5.3.1 Tori

Let T denote the torus R/Z.

Theorem 5.3.1 Suppose that G is commutative. Then G is Lie group iso-

morphic to Tk.

Remark: When G is commutative but not necessarily connected it can be

shown that there is a Lie group isomorphism between G and Tk × F for some

finite abelian group F and some k ∈ N.

The Lie algebra g is commutative if [g, g] = 0.

Definition 5.3.2 A maximal torus T in G is a maximal connected commuta-

tive Lie subgroup of G.
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Maximal tori in compact Lie groups exist by virtue of the following

Theorem 5.3.3 Suppose that T is a connected subgroup of G with Lie algebra

t. Then T is a maximal torus if and only if t a maximal commutative subalgebra

of g.

Theorem 5.3.4 Suppose that T and T ′ are maximal tori in G with Cartan

subalgebras t and t′ respectively. Then for some g ∈ G, gTg−1 = T ′ and

Ad (g)t = t′. Furthermore, for every element g ∈ G there exists a maximal

torus T in G with g ∈ T .

It follows from Theorem 5.3.4 that G =
⋃
g∈G gTg

−1 and g = Ad(G)t, where

T is a maximal torus of G with Lie algebra t.

Example 5.3.5 Suppose that G = U(n). We can choose a maximal torus

T := {diag(eiθ1 , . . . , eiθn) : θi ∈ R}

with corresponding Cartan subalgebra

t := {diag(iθ1, . . . , iθn) : θi ∈ R}.

Then Theorem 5.3.4 is the familiar fact that every hermitian matrix is unitarily

equivalent to a diagonal matrix.

5.3.2 Roots and Weights

We denote by gC the complexification of the Lie algebra g, i.e. the vector space

g ⊗R C equipped with the C-linear extension of the Lie bracket [ , ]. For any

representation π of G, we identify the map dπ with its C-linear extension to

gC. Let V be a vector space. We write V ∗ for the vector space dual of V . In

the following, t is a fixed Cartan subalgebra of g.

Definition 5.3.6 A weight of a finite dimensional representation (π, H) of G

is a functional λ ∈ t∗C for which there is a non-zero vector v ∈ H such that

dπ(H)v = λ(H)v (5.1)
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for all H ∈ t. The subspace of H consisting of all vectors v for which equation

(5.1) holds is the weight space Hλ of λ.

We denote the set of weights of π by Λ(π) = Λ(π, t).

Theorem 5.3.7 Let (π, H) be a finite dimensional representation of G. Then

Λ(π) is a finite subset of it∗ and there is the weight space decomposition,

H =
⊕

λ∈Λ(π)

Hλ.

Furthermore, Hλ and Hµ are orthogonal whenever λ 6= µ.

The multiplicity of the weight λ in H is the dimension of Hλ.

Definition 5.3.8 The Killing form of g is the bilinear form B : g×g→R given

by B(X, Y ) := Tr (adX ◦ ad Y ) for all X, Y ∈ g.

It can be shown that the Killing form B is the unique bilinear form on g,

up to multiplication by a scalar.

Definition 5.3.9 The Lie algebra g is called simple if it is not commutative

and it contains no proper non-zero ideals; it is semisimple if it is the direct

sum of simple ideals. The Lie group G is simple (resp. semisimple) if its Lie

algebra g is simple (resp. semisimple).

Theorem 5.3.10 The Killing form B is negative definite if and only if the

Lie algebra g is compact and semisimple.

The conjugation map τ : gC→gC is given by τ(X ⊗ z) := X ⊗ z̄. The form,

(X, Y ) := −B(X, τY )

defines a positive definite inner product on gC. We also use the notation ( , )

for the dual inner product on g∗C.

For the remainder of this section, we assume that G is compact, connected

and semisimple.
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Definition 5.3.11 A root (resp. root space) of g with respect to t is a non-

zero weight (resp. weight space) of the adjoint representation.

We denote the set of roots of g by R = R(g, t) and we write gα for the root

space corresponding to α ∈ R.

Corollary 5.3.12 The root space decomposition

gC = tC
⊕
α∈R

gα

is orthogonal with respect to the inner product ( , ).

Lemma 5.3.13 If α ∈ R then −α ∈ R. Furthermore, g0 = tC and for all

non-zero roots α ∈ R, dim gα = 1.

For α ∈ R, we define a reflection sα ∈ End(it∗) given by

sα(λ) = λ− 2
(λ, α)

(α, α)
α

for all λ ∈ it∗.

Definition 5.3.14 The Weyl group of (g, t) is the subgroup W of GL(it∗)

generated by the reflections sα for all α ∈ R.

Theorem 5.3.15 The Weyl group W is finite.

Theorem 5.3.16 Let (π, H) be an irreducible representation of G. Then the

Weyl group W permutes the set Λ(π) of weights and moreover, dimHλ =

dimHw(λ) for all λ ∈ Λ(π) and all w ∈W .

Since every root α ∈ R is non-zero, the set it \⋃
α∈R kerα is a complement

of hyperplanes and consists of finitely many connected components, the Weyl

chambers all of them convex. We chose one of them, the positive Weyl

chamber, and denote it by C. The hyperplanes kerα, are the walls of the

Weyl chambers.

We say a root α ∈ R is positive if α(H) > 0 for all H ∈ C. We denote the

set of positive roots by R+.
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Definition 5.3.17 Let (π, H) be a finite dimensional representation of G. A

highest weight vector for π is a non-zero vector v ∈ H such that dπ(tC) ⊆ Cv
and dπ(X)v = 0 for all X ∈ gα and all α ∈ R+.

Theorem 5.3.18 Let (π, H) be an irreducible representation of G. Then there

exists a unique weight λ ∈ Λ(π) such that Hλ = Cv where v is a highest weight

vector for π.

Definition 5.3.19 The highest weight λ ∈ Λ(π) of a representation π of G is

the weight λ of the highest vector v of π.

Lemma 5.3.20 Two irreducible representations of G have identical highest

weights if and only if they are equivalent.

Theorem 5.3.21 The set weights Λ(π) is contained in the convex hull co (W ·λ)

of the Weyl orbit W · λ of the highest-weight λ.

Definition 5.3.22 The weight lattice of g with respect to t is the set

P := {λ ∈ it∗ : 2
(λ, α)

(α, α)
∈ Z, for all α ∈ R}.

A weight λ ∈ P is dominant if it belongs to the closure of the positive

Weyl chamber C. We denote the set of dominant weights by Λ+.

Theorem 5.3.23 The assignment of the highest weight of an equivalence class

of irreducible representations of G is a bijection of Ĝ onto Λ+.

Theorem 5.3.24 There exists a subset Π of R+ which is a basis for it∗ and is

such that every root in R+ can be expressed as a positive integral combination

of the roots in Π

The set Π = Π(g, t) is called the set of simple roots of (g, t).

Theorem 5.3.25 Let π be an irreducible representation of G with highest

weight λ0. For every λ ∈ Λ(π) we have

λ = λ0 −
∑
αi∈Π

niαi (5.2)
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for some choice of positive integers ni.

By Theorem 5.3.25, we can define a partial order on the set P by λ º λ′ if

and only if λ− λ′ is a positive integral combination of simple roots.

5.3.3 Weyl’s Formulas

The sign function sgn on W is defined so that sgn(w) equals 1 for every w ∈ W
which is a product of an even number of reflections and −1 otherwise.

We define the functional δ ∈ it∗ by,

δ :=
1

2

∑

α∈R+

α.

Definition 5.3.26 The Weyl denominator function ∆ : g→C is given by

∆(X) :=
∑
w∈W

sgn(w)ewδ(X)

for all X ∈ t.

Define Φ+ := {α ∈ t∗ : iα ∈ R+}. The function ∆ can be expressed in the

following alternative form,

Theorem 5.3.27 For all H ∈ t,

∆(H) :=
∏

α∈Φ+

2 sin(α(H)/2).

Definition 5.3.28 An element X ∈ g is regular if ∆(X) 6= 0.

We denote by greg the set of regular elements of g.

Theorem 5.3.29 The set greg is open and dense in g. Furthermore, greg =
⋃
g∈GAd(g)t

reg.

The following decomposition of Lebesgue measure dX on g will be useful

in the next chapter.
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Theorem 5.3.30 (Weyl integration formula) Let f be a complex-valued

Borel measurable function on g. Then

∫

g

f(X) dX =
1

|W |
∫

G

∫

t

f(Ad(g)H)
∏

α∈Φ+

α(H)2 dHdg,

where |W | denotes the order of the Weyl group W .

Theorem 5.3.31 (Weyl character formula) Let π be an irreducible repre-

sentation of G with highest weight λ. The character χπ is given by

χπ(expH) =

∑
w∈W sgn(w)ew(λ+δ)(H)

∆(H)

for all H ∈ treg.

Corollary 5.3.32 (Weyl dimension formula) Let π be an irreducible rep-

resentation of G with highest weight λ. Then the dimension of π is given by

dimπ =
∏

α∈R+

(λ+ δ, α)

(δ, α)
.

5.3.4 Kirillov Character Formula

Definition 5.3.33 The coadjoint representation Ad∗ :G→ GL(g∗) of a Lie

group G is given for each g ∈ G by 〈Ad∗(g)(λ), X〉 = 〈λ, Ad(g−1)X〉 for all

X ∈ g and all λ ∈ g∗.

We define the mapping ad∗ : g→gl(g∗) by ad∗ := dAd∗, i.e. 〈ad∗(X)ξ, · 〉 =

−〈ξ , ad( · )X〉 for all X ∈ g and all ξ ∈ g∗. We denote by Oλ the orbit of

the functional λ ∈ g∗ under the coadjoint representation Ad∗, i.e. Oλ :=

{Ad∗(g)λ | g ∈ G}. We call Oλ the coadjoint orbit of λ.

By Theorem 5.3.4, every coadjoint orbit of G is the orbit of some functional

λ ∈ t∗.

A proof of the following theorem is in [9].

Theorem 5.3.34 The intersection of Oλ with the dual of the Cartan subalge-

bra t∗ is the Weyl group orbit W · λ of λ.
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Definition 5.3.35 A symplectic manifold is a pair (M, ω) consisting of a

smooth manifold M and a closed, non-degenerate 2-form ω.

Symplectic manifolds are necessarily even-dimensional.

Definition 5.3.36 Let G be a Lie group and let O be a coadjoint orbit of G.

The Kirillov-Kostant-Souriau form ωO on O is given by ωO(ξ)(ad∗(X)ξ, ad∗(Y )ξ) :=

〈ξ, [X, Y ]〉 for all X, Y ∈ g and all ξ ∈ g∗.

Theorem 5.3.37 Let G be a Lie group and let O be a coadjoint orbit of G.

The form ωO induces a symplectic structure on O.

Definition 5.3.38 Let G be a Lie group and let the dimension of the orbit O
be 2d. The Liouville measure µO is given by µO := 1

d!
ωO ∧ · · · ∧ ωO (d times).

For X ∈ g define,

Fλ(X) :=

∫

Oλ

eif(X) dµOλ
(f).

An element λ ∈ t∗ is regular if iλ does not lie on a wall of a Weyl chamber

in it∗. By G-invariance, the function Fλ is clearly determined by its values on

t.

Theorem 5.3.39 (Harish-Chandra) Let λ ∈ t∗ be a regular element. Then

Fλ(H) =
∏
α∈R+

1

α(H)

∑
w∈W

sgn(w)eiwλ(H) (5.3)

for all regular H ∈ t∗.

Proof: See [7], Corollary 7.25. ¦

The volume vol(Oλ) of the symplectic manifold (Oλ, ωOλ
) is the limit of

Fλ(H) as H tends 0 and can be computed when λ is regular.

Theorem 5.3.40 Let λ ∈ t∗ be a regular element. Then

vol (Oλ) =
∏

α∈R+

(iλ, α)

(δ, α)
.
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Proof: See [7], Proposition 7.26. ¦

Hence, for a representation of G of highest weight iλ we have dim π =

volOλ+δ.

Theorem 5.3.41 The j-function is a G-invariant function and is given by,

j(H) =
∏
α∈R+

2 sin(α(H)/2)

α(H)

for all H ∈ t.

Proof: See ([21], Chap 5, Theorem 1.10). ¦

The following corollary follows immediately from Theroem 5.3.27 and The-

orem 5.3.39,

Corollary 5.3.42 Fδ = j.

By the Weyl character formula, we have the following remarkable general-

isation,

Theorem 5.3.43 (Kirillov, [28]) Let π be a unitary irreducible representa-

tion of G with highest weight iλ. Then

j(X)χπ(expX) =

∫

Oλ+δ

eiβ(X) dµλ+δ(β) (5.4)

for all X ∈ g.

In the next chapter, will shall prove (5.4) independently of the Weyl char-

acter formula.
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Chapter 6

Convexity and Irreducible

Representations

Let G be a real, semisimple, compact and connected Lie group with Lie algebra

g. Let X := (X1, . . . , Xd) be any basis of g which is orthogonal with respect

to the Killing form and such that for some 0 < l ≤ d, X ′ := (X1, . . . , Xl) is a

basis of a Cartan subalgebra of g which we fix and denote by t. Let W be the

Weyl group. Let (π,H) be a unitary irreducible representation of G of highest

weight λ. We write dπ for the Lie derivative of π. In this chapter we study the

support of the Weyl calculus of 1
i
dπ(X) := (1

i
dπ(X1), . . . ,

1
i
dπ(Xd)).

The main result of Section 6.1 (Theorem 6.1.16) is that the convex hull of

the support of the Weyl calculus of 1
i
dπ(X) is the convex hull of the coadjoint

orbit through λ and characterises the representation π.

The results of Section 6.2 interpret the δ-shift in the representation theory of

compact Lie groups in terms of convex geometry. We also show that the convex

hull of the support of the Fourier transform of the product of the j-function

and the pull-back of an arbitrary matrix coefficient of the π equals the convex

hull of the coadjoint orbit through λ + δ, and that the singular support is a

finite union of orbits, also characterising the representation. This in particular

gives a new demonstration of the orbit correspondence for compact Lie groups

[28, 17].
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An earlier version of these results appears in [15].

6.1 Spectra and Matrix Coefficients

Let g∗ be the dual of g. Let λ1, . . . , λn ∈ t∗ be the weights of π. Denote by

p : g∗→ t∗ the canonical projection of g∗ onto t∗, i.e. p(ξ) := ξ|t∗ for all ξ ∈ g∗.

We writeWπ(X) forWL(H)(
1
i
dπ(X)). Let Iπ := {1

i
〈dπ( · )u, u〉 | u ∈ H, ‖u‖ = 1}.

The set Iπ is known as the moment set of π in the literature and has been

studied for a variety of classes of Lie groups [43, 44, 4, 34, 38, 31, 6, 1].

Theorem 6.1.1 ([4, 44]) Let π be an irreducible representation of G of high-

est weight λ. If the set {λ − wλ : w ∈ W} does not contain a root then

Iπ = coOλ; otherwise, Iπ is not convex and Iπ ( Oλ.

WhenG = SU(n) and (π, H) is the defining representation, the moment set

Iπ is a single coadjoint orbit by the invariance properties of the inner product

of H.

By Theorem 4.1.1 we have

Theorem 6.1.2 suppWπ(X) ⊆ Iπ.

We have as a consequence of Corollary 4.1.2,

Theorem 6.1.3 Suppose that π is the defining representation. Then

suppWπ(X) = Iπ.

Lemma 6.1.4 p(Iπ) = co {λ1, . . . , λn}.

Proof: For all H ∈ t and v ∈ H with ‖u‖ = 1,

〈 dπ(H)v, v〉 =
n∑
j=1

〈 iλj(H)vj, vj〉,

where v1, . . . , vn are the components of v in the orthogonal decomposition of

H into weight spaces. Since
∑〈vj, vj〉 = 1 we have p(Iπ) ⊆ co {λ1, . . . , λn}.
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Let t1λ1 + · · · + tnλn be a convex combination of the weights λi. For j =

1, . . . , n let vj be a weight vector corresponding to λj with ‖vj‖ = 1 and set

v =
√
t1v1 + · · · +√

tnvn. Then ‖v‖ = 1 and 〈dπ( · )v, v〉 = t1λ1 + · · · + tnλn.

This shows that co {λ1, . . . , λn} ⊆ p(Iπ). Hence p(Iπ) = co {λ1, . . . , λn} as

required. ¦

Corollary 6.1.5 co suppWπ|T (X ′) = co (W · λ).

Proof: Clearly Iπ|T = p(Iπ). In view of Lemma 6.1.4, the result now fol-

lows from Theorem 2.3.5 and Theorem 2.1.2, and the fact that λ1, . . . , λn ∈
co (W · λ). ¦

Lemma 6.1.6 Oλ ⊆ Iπ.

Proof: Since Iπ is invariant under Ad∗ and Oλ ∩ t∗ = W · λ, the statement

follows from the containment W · λ ⊆ Iπ. ¦

For any ξ ∈ g∗ and g ∈ G we write g · ξ for Ad∗(g)ξ.

Lemma 6.1.7 G · co {λ1, . . . , λn} = coOλ

Proof: Define D := co {λ1, . . . , λn}. We have

G ·D = G · coW · λ ⊆ coG · λ = coOλ.

Conversely, let eλ be a highest weight vector with ‖eλ‖ = 1. Then 〈dπ( · )eλ, eλ〉 =

λ( · ) and

p(coOλ) = co p(Oλ) ⊆ co p(Iπ) = coD = D.

Since t∗ ∩ co (Oλ) = p(coOλ), we have coOλ ⊆ G ·D and the result follows. ¦

By Lemma 2.1.3, the numerical range VL(H)(
1
i
dπ(X)) does not depend on

the choice of orthogonal basis X; we write Vπ for VL(H)(
1
i
dπ(X)).

Theorem 6.1.8 Vπ = coOλ.

67



Proof: We have Iπ = G · (Iπ ∩ t∗) ⊆ G · p(Iπ) = coOλ where the last equality

follows from Lemma 6.1.4 and Lemma 6.1.7. By Lemma 6.1.6 we have coOλ ⊆
co Iπ. Hence co Iπ = coOλ and the result follows from Theorem 2.1.2. ¦

For all Y ∈ g and g ∈ G we write g · Y for Ad(g)Y .

Lemma 6.1.9 suppWπ(X) = G · suppWπ(X).

Proof: Suppose that ξ ∈ g∗ \ suppWπ(X). Then there exists φ ∈ S(g∗) such

that φ is nonvanishing in a neighbourhood of ξ and 〈Wπ(X), φ〉 = 0. Let

g ∈ G. Set φ̃ := φ ◦ Ad∗(g−1). Then φ̃ ∈ S(g∗) and φ̃ is nonzero near g · ξ.
Now,

〈Wπ(X), φ̃〉 =

∫

g

φ̂(g ·X)edπ(X) dX

=

∫

g

φ̂(X)edπ(g−1·X) dX

= π(g−1)

∫

g

φ̂(X)edπ(X) dXπ(g)

= π(g−1)〈Wπ(X), φ〉π(g)

= 0.

Hence g·ξ ∈ g∗\suppWπ(X) and it follows that G·suppWπ(X) ⊆ suppWπ(X).

The reverse inclusion is clear. This completes the proof. ¦

Similarly we have

Lemma 6.1.10 sing suppWπ(X) = G · sing suppWπ(X).

Theorem 6.1.11 suppWπ(X) = G · suppWπ|T (X ′).

Proof: Let ε > 0. Define gε := t ⊕ (−ε, ε)Xd′+1 ⊕ (−ε, ε)Xd where (−ε, ε)
denotes the open interval {x ∈ R : −ε < x < ε}. By Theorem 3.2.4

g∗ε ∩ suppWπ(X) = suppWπ(X)|g∗ε . (6.1)
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Taking limits of both sides of (6.1) as ε approaches 0 and applying and Lemma

3.1.10 we have

t∗ ∩ suppWπ(X) = suppWπ(X)|t∗ = suppWπ|T (X ′)

and the result follows. ¦

Let A be a subset of Rd. The set of extremal points of A, denoted ExtA,

is the collection of points in A that are not contained in any open interval the

end-points of which lie in A.

Lemma 6.1.12 ([4], Lemme 15) Ext co {λ1 . . . , λn} = W · λ.

Corollary 6.1.13 Ext coOλ = Oλ.

Proof: We have

t∗ ∩ coOλ ⊆ p(coOλ)

= co p(Oλ)

⊆ co p(Iλ)

= co {λ1. . . . , λn}

and the result follows from Lemma 6.1.12 on observing that Ext coOλ is in-

variant under the coadjoint action. ¦

Let p be a nonzero polynomial in d variables with complex coefficients and

define the associated differential operator p(i ∂
∂ξ

) := p(i ∂
∂ξ1
, . . . , i ∂

∂ξd
). We will

need the following well-known theorem from distribution theory.

Theorem 6.1.14 ([22], Theorem 7.3.9) Let u be a scalar-valued distribu-

tion on Rd with compact support. Then

co sing suppu = co sing supp p(i
∂

∂ξ
)u. (6.2)

Corollary 6.1.15 Oλ ⊆ sing suppWπ(X).
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Proof: Clear from Lemma 6.1.12 and Theorem 4.1.1. ¦

We give three proofs of the next result, utilising the various techniques of

the previous chapters.

Theorem 6.1.16 co suppWπ(X) = coOλ.

Proof: By Corollary 6.1.11

co suppWπ(X) = co G · suppWπ|T (X ′)

⊇ G · co suppWπ|T (X ′)

= G · Vπ|T

where the last equality follows from Theorem 2.3.5. By Theorem 6.1.8, Vπ|T =

co {λ1, . . . , λn} and we have co suppWπ(X) ⊇ coOλ by Lemma 6.1.7. By

Theorem 2.2.3, co suppWπ(X) ⊆ Vπ and the reverse inclusion follows. This

completes the proof.

Second proof. Let E := SpanC{I, 1
i
dπ(X1), . . . ,

1
i
dπ(Xd)}. By Lemma

3.2.3, the map :̃E→A(E) is an isometry and hence

coσA(E)(
1

i
dπ(X)) = Vπ

by Corollary 2.2.15. By Theorem 3.2.4 and Theorem 6.1.8 we have the required

result.

Third proof. By Theorem 4.1.1 and Theorem 6.1.8, co suppWπ(X) ⊆ coOλ.

By Corollary 6.1.15, coOλ ⊆ co suppWπ(X). Hence co suppWπ(X) = coOλ.

¦

6.2 Convexity and the δ-shift

As in Section 5.3.2, let Λ(π) denote the set of weights λ1, . . . , λn of the repre-

sentation π and let ∆ be the set of roots of G. The following proposition is a

special case of Lemma 7.1 of [40].
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Proposition 6.2.1 ([40], Lemma 7.1) Let S ⊆ Λ(π). If λi1−λi2 /∈ ∆ when-

ever λi1 , λi2 ∈ S then

S ⊆ Iπ ∩ t∗.

For η ∈ g∗, let µη denote Liouville measure on Oη. We write µπ for µ 1
i
dπ(X),

the canonical measure on Iπ, as defined in Section 4.1.

Corollary 6.2.2 Let π be a unitary irreducible representation of G of highest

weight λ. Then suppµδ ∗ µπ is not convex if and only if Oλ ( coOδ, and µδ

is the unique G-invariant measure up to normalisation which convolved with

µπ yields a measure with convex support for all but minimal finite number of

λ in the highest weight lattice. Furthermore, if suppµδ ∗ µπ is convex then

suppµδ ∗ µπ = coOλ+δ.

Proof: Since µδ and µπ are positive measures, we have that suppµδ ∗ µπ =

suppµδ + suppµπ. Since

Ext (Oδ + Iπ) ⊆ Ext (Ext coOδ + Ext co Iπ)

= Ext (Oδ +Oλ)

= Oλ+δ

it follows by Ad∗(G)-invariance that wheneverOδ+Iπ is convex then necessarily

Oδ + Iπ = coOλ+δ.

Suppose that Oλ ( coOδ. Then since Ext co Iπ = Oλ, it follows that for

any η ∈ Iπ and g ∈ G

(g · δ − η, g · δ − η) ≥ (δ, δ)− (λ, λ) > 0.

Hence, 0 /∈ Oδ + Iπ and in particular Oδ + Iπ is not convex.

On the other hand, suppose that coOδ = Oλ or Oλ 6⊂ coOδ. If w ∈ W

denotes the reflection through the hyperplane orthogonal to the root α ∈ R

then δ − wδ = α. In view of Proposition 6.2.1, implies that Oδ + Iπ must be

convex.
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By Corollary 6.2.2, the notorious δ-shift in representation theory can be

interpreted as a geometric procedure that “minimises” the non-convexity of

the support of the measure µπ.

Recall that the singular support sing suppu of a distribution u is the com-

plement of the largest open set on which u corresponds to a smooth function.

Corollary 6.2.3 sing suppµδ ∗ µπ =
⋃
w∈W Oλ+wδ.

Proof: Clearly, for all w ∈ W , the points W · (λ + wδ) are singularities of

µδ ∗ µπ. By Proposition 6.2.1, the convolution µδ|t∗ ∗ µπ|t∗ is smooth at all

other points. Hence, the result follows by Ad∗(G)-invariance and the fact that

(µδ ∗ µπ)|t∗ = µδ|t∗ ∗ µπ|t∗ ¦

Identifying the Lie algebra g with RdimG, let ĵ denote the distributional

Fourier transform of the j-function. By Theorem 4.1.1 and commutation rela-

tions, the following is immediate,

Theorem 6.2.4 The entries of ĵ ∗Wπ(X) are polynomials in derivatives in

the root, toral and radial directions applied to the measure µδ ∗ µπ.

Theorem 6.2.4 and some of its consequences will be discussed in more detail

in the following chapter.

Theorem 6.2.5 sing supp ĵ ∗Wπ(X) =
⋃
w∈W Oλ+wδ.

Proof: By Theorem 4.1.1 and Proposition 6.2.1, sing supp ĵ∗Wπ(X) ⊆ ∪w∈WOλ+wδ.

By Corollary 6.1.15, Oλ ⊆ suppWπ(X) ⊆ coOλ. Since Ext (coOλ) = Oλ, the

reverse inclusion follows. ¦

Theorem 6.2.6 ([22], Theorem 4.3.3) Let u1, u2 be compactly supported

distributions on Rd. Then

co suppu1 ∗ u2 = co suppu1 + co suppu2. (6.1)
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Lemma 6.2.7 coOλ+δ = coOλ + coOδ.

Proof: We have,

Ext (coOλ + coOδ) ⊆ Ext (Ext coOλ + Ext coOδ)

= Ext (Oλ +Oδ)

= Oλ+δ.

Therefore, by the Krein-Milman theorem, coOλ+δ = coOλ = coOδ. Since the

coadjoint orbits of G are compact and the convex hull of a closed set is closed,

the result follows. ¦

Theorem 6.2.8 co suppĵ ∗Wπ(X) = coOλ+δ.

Proof: This is immediate from Theorem 6.2.6 and Theorem 6.1.16.

Second proof. Since suppµδ ∗ µπ ⊆ coOλ+δ we have supp ĵ ∗ Wπ(X) ⊆
coOλ+δ by Theorem 4.1.1. By Corollary 6.1.15, Oλ ⊆ suppWπ(X) and it

follows that Oλ+δ ⊆ supp ĵ ∗Wπ(X) which establishes the reverse inclusion. ¦

Insofar as Ext coOλ+δ = Oλ+δ, Theorem 6.2.8 yields what can be thought

of as a procedure inverse to geometric quantisation, but which is independent

of the Kirillov formula.
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Chapter 7

A Non-Commutative

Kirillov-type Formula

According to the Kirillov character formula, the Fourier transform of the prod-

uct of the j-function character of an irreducible representation π of a compact

Lie group G coincides with the Liouville measure of the coadjoint orbit through

λ+ δ, where λ is the highest weight of π.

In this chapter, we show that this formula admits a noncommutative ex-

tension in the sense that the Fourier transform of the product of j and an

arbitrary matrix coefficient of π is a distribution having the form of a linear

combination of derivatives in root, toral and radial directions of the Lie alge-

bra g applied to a measure supported inside the convex hull the coadjoint orbit

through λ+ ρ, with singularities lying inside a finite union of coadjoint orbits

(Theorem 7.3.1). These results strengthen and generalise work of Cazzaniga

[12] concerning SU(2).

7.1 The SU(2) Case

The group SU(2) consists of all matrices g of the form g =


 α β

−β̄ ᾱ


 where

α, β ∈ C and satisfy the condition |α|2 + |β|2 = 1. The Lie algebra su(2)
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consists of all traceless skew-hermitian matrices of order 2 and we fix for it a

basis iσ = (iσ1, iσ2, iσ3) given by,

σ1 =


1 0

0 −1


 , σ2 =


 0 i

−i 0


 , σ3 =


0 1

1 0


 .

In particular, the C-span of σ1 determines a Cartan subalgebra of su(2) which

we fix and denote by t. The roots are given by αj(iξσ1) := 2(−1)j−1ξ for all

ξ ∈ R and j = 1, 2. The Weyl group is the symmetric group S2 of order 2.

By means of the basis σ, we identify su(2) with R3 and t with R. The direc-

tional derivatives ∂
∂x1
, ∂
∂x2
, ∂
∂x3

in the coordinate directions of R3 correspond to

operators of differentiation in the root directions and the single toral direction

respectively of the Lie algebra su(2). We denote the derivative in the radial

direction of R3 by ∂
∂r

, i.e. r ∂
∂r

= x· ∂
∂x

where r = (x2
1+x2

2+x2
3)

1
2 . For X ∈ su(2),

let ‖X‖ denote the euclidean norm of X as a vector in R3.

We identify su(2) with the dual su(2)∗ by means of the form −Tr(X ·).
Observing that

‖X‖2 = −1

2
Tr(X2) = detX , (7.1)

it follows from the invariance of det that the coadjoint orbits of SU(2) are

spheres.

For a non-negative integer λ ∈ N, denote by Hλ the vector space of single-

variable complex polynomials f of degree at most λ, i.e. f(z) =
∑λ

j=0 ajz
j for

a1, . . . , aλ ∈ C and define the mapping π(λ) :SU(2)→End(Hλ) given by

(π(λ)(g)f)(z) := (βz + ᾱ)λf

(
αz − β̄

βz + ᾱ

)
.

We have the following

Theorem 7.1.1 The set of mappings {π(λ) : λ ∈ N} is a complete set of

representatives for the equivalence classes of unitary irreducible representations

of SU(2). Furthermore, the representation π(λ) has highest weight λ.

By Theorem 5.3.41, the j-function of SU(2) is given by

j(X) =
sin ‖X‖
‖X‖
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and the Fourier transform ĵ coincides with the unitarily invariant probability

measure ν on the unit sphere S2 ⊆ R3. Let B denote the convolution algebra

generated by the measure ν. We denote by Bλ the ball in R3 of radius λ

centred at the origin, i.e. Bλ := {X ∈ R3 : ‖X‖ ≤ λ}, and we write ∂Bλ for

its boundary.

Theorem 7.1.2 (Cazzaniga) For each λ ∈ N, the matrix-entries of the dis-

tribution ĵ ∗Wπ(λ)(σ) are polynomial in the differential operators ∂
∂x1
, ∂
∂x2
, ∂
∂x3

and ∂
∂r

applied to members of the algebra B. Moreover,

supp ĵ ∗Wπ(λ)(σ) ⊆ Bλ+1

and

sing supp ĵ ∗Wπ(λ)(σ) ⊆
bλ+1

2
c⋃

j=0

∂B(λ+1−2j).

Proof: See [12]. ¦

By the results of the previous chapter, we have the following strengthening

of Theorem 7.1.2.

Theorem 7.1.3 For each λ ∈ N, the matrix entries of the distribution ĵ ∗
Wπ(λ)(σ) are polynomial in the differential operators ∂

∂x1
, ∂
∂x2
, ∂
∂x3

and ∂
∂r

applied

to the measure µδ ∗ µπ(λ). Moreover,

co supp ĵ ∗Wπ(λ)(σ) = Bλ+1 (7.2)

and

sing supp ĵ ∗Wπ(λ)(σ) = ∂Bλ−1 ∪ ∂Bλ+1. (7.3)

Proof: The first statement follows directly from Theorem 4.1.1 and the easily

verified fact that
∂

∂x
· x = r

∂

∂r
+ 3I.

Choosing a normalisation of of the metric on su(2)∗ so that the length of δ is

unity, we can replace r ∂
∂r
µδ with ∂

∂r
µδ. The equalities (7.2) and (7.3) follow

from Theorem 6.2.8 and Theorem 6.2.5 respectively. ¦
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7.2 The SU(n) Case

The Lie algebra su(n) consists of traceless skew-hermitian matrices of order n.

Let Eij denote the n×n matrix with 1 in the (i, j)-th position. We fix a basis

iσ = (iσ1, . . . , iσn2−1) of su(n) given by σj = Ejj − Enn for 1 ≤ j ≤ n − 1,

σn+j+k−2 = iEjk − iEkj for 1 ≤ j 6= k ≤ n − 1 and σ(n
2
+1)(n−1)+j+k−1 =

Ejk + Ekj for 1 ≤ j 6= k ≤ n − 1. The C-span of σ1, . . . , σn−1 determines a

Cartan subalgebra which we denote by t. By means of this basis, we identify

t with Rn−1. Then the roots are given by αjk(ξ) = ξj − ξk for ξ ∈ Rn−1 and

j 6= k. We also identify su(n) with Rn2−1 and denote by ‖X‖ the euclidean

norm of the coordinates of X ∈ su(n). The choice of positive Weyl chamber

C := {ξ ∈ t : ξj − ξj+1, 1 ≤ j < n} corresponds to the choice of positive roots

{αjk : j < k}. The sum of the positive roots is given by 2δ =
∑n

j=1(n−2j+1)ξj

and the set of dominant weights P consists of (n − 1)-tuples (ξ1, . . . , ξn−1)

satisfying ξj+1 > ξj for all 1 ≤ j < n. The Weyl group is Sn.
The derivatives ∂

∂x1
, . . . , ∂

∂xn2−1
in coordinate directions of Rn2−1 correspond

to operators of differentiation in the root and toral directions of su(n). We

denote the radial derivative by ∂
∂r

.

As in the SU(2) case above, the dual su(n)∗ can be identified with su(n)

by the trace form −Tr(X·). We write Oλ for the coadjoint orbit through

λ ∈ su(n)∗. We have

Theorem 7.2.1 Let π be a unitary irreducible representation of SU(n) of

highest weight λ. The matrix entries of the distribution ĵ ∗ Wπ(X) lie in

the vector space spanned by the measure µδ ∗ µπ and the differential operators

∂
∂x1
, . . . , ∂

∂xn2−1
and r ∂

∂r
. Moreover,

co supp ĵ ∗Wπ(σ) = Oλ+δ (7.1)

and

sing suppĵ ∗Wπ(σ) =
⋃
w∈Sn

Oλ+wδ. (7.2)
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Proof: The first statement follows directly from Theorem 4.1.1 and the fact

that
∂

∂x
· x = r

∂

∂r
+ (n2 − 1)I.

The equalities (7.1) and (7.2) follow from Theorem 6.2.8 and Theorem 6.2.5

respectively. ¦

7.3 A Formula for Compact Lie Groups

Let G be a semisimple connected compact Lie group and let X be any basis

of the Lie algebra g of G which is orthogonal with respect to the Killing form.

We can thereby identify g with a Euclidean space and consider the coordinate

derivatives in that space as derivatives in the directions of the roots and toral

directions.

If dim g = d then commutation relations imply that

∂

∂x
· x = r

∂

∂r
+ dI (7.1)

where ∂
∂r

denotes the radial derivative in Rn and for the right choice of metric

we have the following generalisation of the above result,

Theorem 7.3.1 Let π be a unitary irreducible representation of compact semisim-

ple connected Lie group G with highest weight λ. The matrix entries of the

distribution ĵ ∗Wπ(X) are polynomial in the differential operators ∂
∂x1
, . . . , ∂

∂xd

and r ∂
∂r

applied to the measure µδ ∗ µπ. Moreover,

co supp ĵ ∗Wπ(X) = coOλ+δ (7.2)

and

sing supp ĵ ∗Wπ(X) =
⋃
w∈W

Oλ+wδ. (7.3)

Proof: The first statement follows directly from Theorem 4.1.1 and 7.1.

∂

∂x
· x = r

∂

∂r
+ dI.
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The equalities (7.2) and (7.3) follow from Theorem 6.2.8 and Theorem 6.2.5

respectively. ¦

Since the measure µπ is uniform, the entries of ĵ∗Wπ(X) are also expressible

in form Dij ·µδ ∗µλ where Dij is a polynomial in the derivatives ∂
∂x1
, . . . , ∂

∂xn2−1

and ∂
∂r

, of order at most that determined by Nelson’s formula as in the theorem

above, and µλ is the Liouville measure on the orbit Oλ. It is an intersting open

problem to determine D as well as suppD · µδ ∗ µλ.
For λ ∈ t∗, denote by eλ the point-mass at λ and let µpλ represent the

orthogonal projection of µλ onto t∗. We write t∗+ for the image of the positive

Weyl chamber. We have the following theorem,

Theorem 7.3.2 ([16], Theorem 3.4) Let λ, λ′ ∈ t∗ be regular elements. Then

µλ ∗ µλ′ =

∫

t∗+

φ(λ, λ′, λ′′)µλ′′dλ′′

where

φ(λ, λ′, λ′′) =
∑
w∈W

sgn ewλ ∗ µpλ′(λ′′)

for all λ′′ ∈ t∗+.

Corollary 7.3.3 ([16], Corollary 3.5) Let λ, λ′ ∈ t∗ be regular elements and

suppose that λ+ coWλ ⊆ t∗+. Then φ(λ, λ′, λ′′) = eλ ∗ µpλ′(λ′′) for all λ′′ ∈ t∗+.

Corollary 7.3.3 can give upper bounds for suppD · µδ ∗ µλ when λ is large.

This is the subject of a future work.

The expression of Theorem 4.1.1 is non-unique; in another direction, we

have two alternatives expressions discussed below. Let M be an n×n hermitian

matrix and denote by Pj(M) the homogoneous component of degree j in the

expansion of det(I − A). Let Σn denote the unit sphere in Cn and write ν for

the unitary invariant probability measure on Σn.

Theorem 7.3.4 ([18]) Let A be an n×n hermitian matrix. For 1 ≤ j, k ≤ n,

(eA)jk =
1

γ(r)

r∑
j=0

Pj(A)
dn−j

dsr−j

(
sn

∫

Σn

ujūke
s〈Au, ū〉 dν(u)

)∣∣∣∣
s=1

.
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Let σ be a basis of the vector space of n× n hermitian matrices as above.

Then if A is such a matrix we write e write A = 1
2
ξ · σ. We also have,

Theorem 7.3.5 ([30]) Let A be an n× n hermitian matrix. Then

eiA =
1

n
K(ξ)I − i

∂

∂ξ
K(ξ) · λ

where K(ξ) := Tr eiA.

Let Cj(ξ) := TrAj. The following formula also appears in [30]:

Aj =
Cj
n
I +

1

j

∂

∂ξ
Cj+1(ξ) · λ. (7.4)

for j = 1, . . . , n− 1.

Substituting equation (7.4) into the proof of formula (4.1) facilitates the

extraction of explicit forms for the matrix coefficients of the Weyl calculus

without having to calculuate high-powers of hermitian matrices. Expressions

for the Cj are computed in [30] for n = 2, 3, 4, but it is not clear how the

methods involved in these computations can be generalised.
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série discrète holomorphe, C. R. Acad. Sci. Paris Sér. I Math., 313, (1991),

711–714.

[39] M.R. Sepanski, Compact Lie groups, Graduate Texts in Mathematics,

235, Springer, New York, 2007.

[40] R. Sjamaar, Convexity properties of the moment mapping re-examined,

Adv. Math., 138, 1998, 1, 46–91.

[41] M.E. Taylor, Functions of several self-adjoint operators, Proc. Amer.

Math. Soc., 19 (1968), 91–98.

84



[42] V.S. Varadarajan, Lie groups, Lie algebras, and their Representations,

Graduate Texts in Mathematics, 102, Springer-Verlag, New York, 1984.

[43] N. J. Wildberger, Convexity and unitary representations of nilpotent

Lie groups, Invent. Math., 98, (1989), 281–292.

[44] N.J. Wildberger, The moment map of a Lie group representation,

Trans. Amer. Math. Soc., 330 (1992), 257–268.

85


	Title page - Functional Calculus and Coadjoint Orbits
	Abstract
	Acknowledgements
	Table of Contents

	Chapter 1 - Introduction
	Chapter 2 - The Numerical Range
	Chapter 3 - The Algebra of Operants
	Chapter 4 - A Formula for the Weyl Calculus
	Chapter 5 - Lie Groups and Lie Algebras
	Chapter 6 - Convexity and Irreducible Representations
	Bibliography

