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Abstract 

The theory of dynamic equations on time scales provides an important bridge be-

tween the fields of differential and difference equations. It is particularly useful in 

describing phenomena that possess a hybrid continuous-discrete behaviour in their 

growth, like many temperate-zone insect populations and crops. A dynamic equa-

tion on a time scale is a generalised 'two-in-one' model, it serves as a differential 

equation for purely continuous domains and as a difference equation for purely dis-

crete ones. 

The field of "dynamic equations on time scales" is about 20 years old. As such, 

much of the basic (yet very important) linear theory has been established, however 

the non-linear extensions are yet to be fully developed. This thesis aims to fill 

this gap by providing the foundational framework of non-linear results from which 

further fines of inquiry can be launched. 

This thesis answers several important questions regarding the qualitative and 

quantitative properties of solutions to non-finear dynamic equations on time scales. 

Namely, 

(i) When do solutions exist? 

(ii) If solutions exist, then are they unique? 

(iii) How can such solutions be closely approximated? 

(iv) How can we explicitly solve certain problems to extract their solutions? 

The methods employed to address the above questions include: dynamic inequal-

ities; iterative techniques and the method of successive approximations; and the fixed 

point approaches of Banach and Schauder. 

ai-
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Chapter 1 

Introduction 

1.1 Historical development of the theory 

The study of dynamic equations on time scales was initiated by S. Hilger (1988) 

when he introduced the concept and calculus of measure chains in his attempt to 

unify mathematical analyses of continuous and discrete dynamics, see [45]. Dynamic 

equations describe the ideas of continuous and discrete mathematics through a single 

type of equation that could be equally useful to model processes defined on continu-

ous domains, discrete domains or both at the same time. This means that dynamic 

equations present a hybrid framework of continuous and discrete dynamic modelling. 

This hybrid framework serves as a differential equation when the time scale is con-

nected and as a difference equation when the time scale is the set of integers. For 

this reason, the equations involved are termed as dynamic equations on time scales. 

There has been wide research in the field of dynamic equations on time scales. A 

systematic development of dynamic systems on time scales initiated by Hilger [45 

was considered later in a monograph [54] and a few articles comprising time scale 

inequalities [1], exponential functions on time scales [21], boundary value problems 

Y] and linear dynamic equations [20], revealing several lines of further investigation. 

A more comprehensive collection of ideas including the time scale calculus, the linear 

and some non-linear theory and the dynamic inequalities was presented in [19]. This 

book has been the major source of literature in this work. There has been further 

advancement related to dynamic equations on time scales gathered in [22]. These 

advancements have been on: nabla dynamic equations [10]; lower and upper solutions 



to boundary value problems [8]; self-adjoint equations with mixed derivatives [61]; 

measure theory [18]; positive solutions of boundary value problems [9], [13]; higher 

order dynamic equations [36]; boundary value problems on infinite intervals [4]; 

symplectic systems [33], [48], [47]; oscillatory and non-oscillatory dynamic equations 

on time scales [23], [37], [89]; and impulsive dynamic equations [15], [29], [39 

1.2 Applications 

The above advancements suggest some open areas for a unified analytic approach. 

For instance: dynamic modelling of ecological systems [27], [85]; analysis of various 

complex dynamic models regarding social and economic systems [68], [62]; dynamic 

modelling using neural networks for natural and artificial intelhgent systems [28], 

49], [56], [58], [57], [76]; modelHng of phenomena undergoing pulsations or time-

delay effects [53], [73]; modelling describing behaviours regarding changes in popula-

tion dynamics [74], [77], [82]; and dynamic models regarding epidemic diseases and 

their outcomes and control [90 . 

The above ideas open new horizons for analysis and modelling of various types 

of phenomena having hybrid structure and attracted researchers from all over the 

world to take interest into this relatively young area of applied mathematics. As a 

result, analogues of many ideas from differential and difference calculus have been 

developed into the time scale setting. Naturally, this led to the development of 

mathematical modelling involving dynamic equations on time scales as a more gen-

erahsed and flexible mode of understanding physical phenomena through a single 

type of equation. 

1.3 Contribution of this work 

So far researchers in the field of dynamic equations on time scales have developed 

a profound Hnear theory. This work contributes to the non-linear theory by estab-

Hshing properties of solutions to non-linear dynamic equations on time scales. The 

properties explored include: non-multiplicity of solutions; successive approximations 

of solutions via classical methods; and existence and uniqueness of solutions using 

fixed point theory, as well as the method of upper and lower solutions within the 



time scale setting. In addition, methods are provided to solve non-linear dynamic 

equations on time scales by separation of variables and by substitution. Thus, the 

current work will be of interest for theoretical and applied mathematicians as well 

as for graduate students having some background in ordinary differential equations 

and functional analysis. 

1.3.1 Publications arising from this work 

A number of results herein have been published in [82] and [83]. Another set of 

results [87] has been submitted for publication. 

1.4 Literature review 

Since this work examines properties of solutions to non-linear first order dynamic 

equations on time scales, several pieces of literature regarding solutions of first and 

second order initial and boundary value problems have been studied. These include 

books and articles on existence and uniqueness of solutions using fixed point meth-

ods, such as [2], [32], [34], [43], [44], [78]; using degree theory or maximum principles 

65], [81]; using dynamic inequalities [79]; and using approximation methods [38], 

52]. In addition, properties like multipHcity/non-multiphcity of solutions [80] and 

boundedness and uniqueness of solutions to dynamic equations on time scales [66 

have also been studied. Considering [45], [19] and [22] as primary sources, investi-

gation has been carried out for existence and uniqueness of solutions to first order 

non-linear (delta) dynamic initial value problems using fixed point methods and the 

classical method of successive approximations and for (nabla) dynamic equations 

using the method of upper and lower solutions. 

1.5 The main idea 

This work concerns first order dynamic equations of the type 

x^ = f(i,x), (1.5.1) 

(1.5.2) 



and of the type 

xV = f{t,x). (1.5.3) 

The symbols A and V used above carry the 'feature' of a derivative in the time 

scale setting. The only difference between these two is of the forward and backward 

movement of a point in the time scale. Thus, results involving functions allowing 

advancement to the 'right' of a point in the time scale will be discussed in terms of a 

dynamic equation of the type (1.5.1) or (1.5.2) called 'delta equations'. Results are 

produced considering these IVPs as n-dimensional systems for n > 1. 

On the other hand, results involving functions carrying the feature of backward 

movement will be produced discussing (1.5.3) called a 'nabla equation', which is a 

scalar dynamic IVP as it involves scalar functions x and / . See notation on page 

145. 

While equations (1.5.1) and (1.5.2) look similar, they are actually different. For 

example: if 

f(t,x) : = i + x, 

then, using the Simple Useful Formula in Theorem A.3.2(4), we obtain 

x^ = f(i,x^) = t + x^ 

= t + /iX^ + X 

= /ix^ + f(i,x) 

= / i f ( i ,x^)+f( i ,x) . 

This yields 

l-ii 
Here /i is the graininess function defined in (A. 1.1), such that ^ ^ 1. 

1.6 Development and organisation 

This thesis is organised in the following manner. 

In Chapter 2, we discuss non-multiplicity of solutions to dynamic initial value 

problems involving delta equations. Our results in this chapter use a generalised 



uniform Lipschitz condition and Gronwall's inequality in the context of time scales. 

The ideas presented in the chapter will be used in many other results in the following 

chapters. Results axe also presented using other conditions in the absence of the 

Lipschitz condition. Examples have been provided to reinforce results. The non-

multipHcity of solutions leads to further investigations hke existence, uniqueness and 

smoothness of solutions. These properties have been explored and discussed in the 

following chapters. 

In Chapter 3, we use classical methods of constructing approximate solutions to 

the IVPs involving delta equations, within a subset of a time scale interval as well as 

in the entire interval, following the Picard Lindel5f approach. The results have been 

established considering the initial approximation as a continuous function of time. 

We have used the Lipschitz condition and the Weierstrass test as important tools to 

prove our results in this chapter. Existence and uniqueness results have also been 

presented considering our IVP as the limit of a sequence of IVPs, with the help of 

Arzela-Ascoli theorem, while the Lipschitz condition is not used. The results have 

been reinforced with examples and extended to higher order dynamic equations. 

In Chapter 4, the existence and uniqueness of solutions of the IVPs involving 

delta equations has been established using the Banach's fixed point theorem. We 

prove these results by defining new wa -̂s of measuring distances using the exponential 

functions and, hence, constructing Banach spaces on the time scale platform. Doing 

this, we have been able to eliminate some previously established restrictions on the 

existence of unique solutions to our dynamic IVPs. We also discuss a special case of 

our results in this chapter, where they have been applied within certain balls using 

the local Banach theory. Ivloreover. The unique solutions established through our 

results have been shown to be Lipschitz continuous with respect to the initial value. 

The results in this chapter have also been extended to higher order equations. 

Chapter 5 consists of existence results for nabla initial value problems. To work 

with these equations, the time scale calculus regarding the nabla derivative and the 

nabla integral has been discussed and the IVPs have been redefined. The results in 

this chapter are obtained using the method of lower and upper solutions and provide 

a way of 'locating' solutions to the given IVPs within the range defined by lower and 

upper solutions. The Arzela-Ascoli theorem and Schauder's fixed point theorem 



have been used as the main tools to prove our results in this chapter. 

In Chapter 6, we present explicit solutions to some non-linear delta equations 

employing methods of separation of variables and solution by substitution. The 

ideas provide novel ways of solving non-linear dynamic equations extending ideas 

from the theory of differential equations. 

The thesis is concluded with some open problems and questions for further re-

search. 

An explanation of notation along with some preliminary aspects of time scale 

calculus used in this work is provided in Appendix A at the end of the thesis. 

The time scale calculus includes definitions and properties of forward and backward 

movement functions in the time scale, continuity, delta and nabla differentiation, 

delta and nabla integration, the chain rule and the special functions. The above 

concepts have been explained with the help of ample examples using a variety of 

time scales. Results regarding unique solutions of linear dynamic equations have 

been presented and non-linear forms of dynamic equations have been introduced. 



Chapter 2 

The non—multiplicity of 

solutions 

2.1 Introduction 

In this chapter, we explore the "non-multipHcity" of solutions to first order dynamic 

initial value problems on time scales. We discuss conditions under which these IVPs 

have either one solution or no solution at all. 

The multiphcity and non-multiplicity of solutions to dynamic initial value prob-

lems is mathematically interesting for both theoretical and practical purposes. The 

initial condition and the function f play a vital role in determining whether a given 

rVP has at least one solution, at most one solution, exactly one solution or no solu-

tion. For example, consider the dynamic IVP 

x-1 for alH G (0,CX))T; (2.1.1) 

x(0) = 1. (2.1.2) 

Note that there are infinite number of solutions x(t) = 1 + ct, where c is an arbitrary 

constant, to the above IVP for all i G (0, OO)T. However, if we change the initial 

condition to x(0) = 0, then there is no solution. On the other hand, an initial 

condition x(l) = 1 would result in only one solution corresponding to c = 0. 
X -¡-1 

Similarly, if we change the function / to —-—, for all t E (0, oo)j, then (2.1.1), Jy 



(2.1.2) takes the form 

Tj 
2̂ (0) = 1. (2.1.4) 

Solutions to (2.1.3) would be of the form x{t) = —1 + ct^ where c is an arbitrary 

constant, and would not satisfy (2.1.4). 

Thus, a change in the initial condition or the function / can change the multi-

plicity of solutions to an IVP. 

In real life problems, it may not be possible to change the initial or prevailing 

states of a problem modelled by a dynamic equation. If we know a priori that a 

mathematical formulation of a physical system is an initial value problem that has 

either one solution or no solution, then the 'existence' of a solution to the system 

would guarantee its uniqueness. In this way, the property 'one solution or no solution' 

of an initial value problem forms a basic stepping stone to explore further properties. 

This property is termed as the non-multiplicity of solutions. 

Most of the ideas in our results have gained inspiration from the non-linear theory 

of ordinary differential equations. Analogues of these ideas have been transformed 

to the time scale setting and add to the non-linear theory of dynamic equations on 

time scales. 

2.1.1 The main objective 

Let to, a 6 T and a > to. Let [to, to H- a]T be an arbitrary interval in T and D Ç 

R^. Consider a right-Hilger-continuous (see Definition A.2.2), possibly non-Hnear 

function f : [to,to + a]jXD—^MP. That is, f maps elements of [to, to + a]j x D to 

R'̂  for n > 1. 

Let xo be a point of R^. Consider the initial value problems 

x^ = f (i, x), for all t e [to, to + a]f ; (2.1.5) 

x(io) = xo, (2.1.6) 

and 

x^ = f{t, x^), for all t e [to, to + (2.1.7) 

x(io) = XQ. (2.1.8) 



The main aim of this chapter is to answer the question: 

Under what conditions do the systems (2.1.5), (2.1.6) and (2.1.7), (2.1.8) of dy-

namic IVPs have, at most, one solution? That is, when do these IVPs have either 

one solution, or no solution at all? 

Some of our results in this chapter concern a so called scalar dynamic IVP which 

is a special case of (2.1.5), (2.1.6) or (2.1.7), (2.1.8) considering R'̂  for n = 1. Thus, 

for a right-Hilger-continuous scalar function / : [to,to + a]j x jD ^ R, the scalar 

dynamic IVP of the first type will be 

x^ = f{t,x), 

x{to) = Xo, 

for all t e [to,to a T' (2.1.9) 

(2.1.10) 

and of the second type will be of the similar form with x replaced by x^ in the right 

hand side of (2.1.9). 

2.1.2 What we mean by a solution 

The following definitions describe solutions to the dynamic IVPs (2.1.5), (2.1.6) and 

(2.1.7), (2.1.8). 

Definition 2.1.1 Let D CW. A solution of (2.1.5), (2.1.6) on [to,to + a]T is a 

function X : [to, + —̂  ^^ such that: the points {t, x(i)) G [to, to + î lT x D; x(i) is 

delta differentiate with x^(i) = f{t,x{t)) for each t G [̂ 0,̂ 0 + î lx/ ^(^o) = xq. 

• 

Definition 2.1.2 Let D QW. A solution of (2.1.7), (2.1.8) on [to,to + a]T is a 

function X : [to, + ^ ^^ such that: the points {t, x(i)) € [to, to + a]j x D; x(i) is 

delta differentiable with x^(i) = i{t, x'^(i)) for each t G [to, h + a]^; and x(io) = xq. 

• 

The following preliminary lemmas give equivalence of the dynamic IVPs (2.1.5), 

(2.1.6) and (2.1.7), (2.1.8) with delta integral equations of the form (A.7.5) and 

(A.7.6) respectively. Delta integral equations are more convenient to work with. 



Lemma 2.1.3 Consider the dynamic IVP (2.1.5), (2.1.6). Letf : [to,to + a]^x D 

W^ be a right-Hilger-continuous function. A function x solves (2.1.5), (2.1.6) on 

to, to a ] j if and o n l y if it solves the delta integral equation 

x(i) = [ f(s ,x(s)) As + xo, 
J to 

f o r all t e [to, to + a\r. (2.1.11) 

Proof : Let x be a solution of (2.1.5), (2.1.6) on [to,to + a]T. Then x is delta 

differentiable on [to, t o a ] j by Definition 2.1.1, and so is continuous on [to, to + a 

Moreover, x satisfies 

K, T-

x^(í) = f ( í ,x( í ) ) , for all t e [io? + • (2.1.12) 

We delta integrate both sides of (2.1.12) over obtaining 

/ x^(s) As = f(s,x(5)) As, for all t G [to, to + a]T-
Jto Jto 

The right hand side of the above equation is well defined as, by Theorem A.5.2, 

right-Hilger-continuous functions are always delta integrable. Delta integrating the 

left hand side, we obtain 

x ( i ) - x ( t o ) = [ f(5,x(s)) As, 
Jto 

Using (2.1.6), we obtain 

x(i) = x o + / f (s ,x(s)) As, 
Jto 

Hence, x is a solution to (2.1.11). 

for all t 6 [to, to + a\j. 

for all t e [to,to-\- ajx. 

Conversely, let x satisfy (2.1.11). Then by delta differentiating (2.1.11), we obtain 

x^(i) = f{t, x(i)), for all t e [to, to + a (2.1.13) 

It is also evident from (2.1.11) that 

x(io) = x o . 

Hence x satisfies (2.1.6). Moreover, since x is continuous on [to, to + and f is 

right-Hilger-continuous on [to, to + x D, x^ is rd-continuous on [to, to + a ] j 

such that x(i) € D. Thus, x is a solution of (2.1.5), (2.1.6) such that the points 

(i,x(i)) G [to,to-{-a]T X D. 



Lemma 2.1.4 Consider the dynamic equations {2.1.7), (2.1.8). Letf : [to,to + a]jX 

D W^ be a ñght-Hilger-continuous function. Then a function x solves (2.1.7), 

(2.1.8) on [to, to + a]j if and only if it solves the delta integral equation 

x(i) = f f(s,x^(s)) As + xo, for allte[to,to-\-a]T. (2.1.14) 
J to 

Proof: The proof is similar to that of Lemma 2.1.3 and is omitted. 

• 
Remark 2.1.5 We note that Lemma 2.1.3 and Lemma 2.1.4 also hold for f being 

continuous, as all continuous functions are right-Hilger-continuous and are delta 

integrable (see Theorem A.5.2). 

2.1.3 Approach and organisation 

The techniques employed to answer the question in Subsection 2.1.1 involve the 

introduction and formulation of appropriate dynamic inequalities. The inequahties 

are extensions and refinements from the theory of ordinary differential equations to 

the more general time scale environment. 

Many results in this chapter are proved through appHcations of the Lipschitz 

condition and Gronwall's inequality. In some results, we use modifications of the 

Lipschitz condition that are formed using ideas from ordinary differential equations 

with suitable transformations according to the requirements of the time scale calcu-

lus. 

In this section, we establish foundational definitions and lemmas regarding solu-

tions tothelVP (2.1.5), (2.1.6), thelVP (2.1.7), (2.1.8) and thelVP (2.1.9), (2.1.10). 

Our results in this chapter are organised in the following manner. 

In Section 2.2, we extend the ideas of Lipschitz for non-multiplicity results from 

ordinary differential equations to the generahsed time scale platform using the well-

known Lipschitz condition [19, Definition 8.14(iv)] and Gronwall's inequality [19, 

Theorem 6.4]. We also develop non-multiplicity results using modifications of Lips-

chitz condition. 

In Section 2.3, we establish a Peano criterion [2, p. 10] on an arbitrary time scale 

T to obtain non-multiphcity results for (2.1.9), (2.1.10) for cases where the Lipschitz 

criteria do not work. 



2.2 Lipschitz criteria on 

The following definition will be referred to as the uniform Lipschitz condition for 

f on [to, to + a\j X D. The uniform Lipschitz condition will be a fundamental tool 

to establish results regarding existence and/or uniqueness of solutions to dynamic 

initial value problems in this work. The idea comes from [19, Definition 8.14(iv)], 

16, p.151] and [51, Definition 8.8 . 

Definition 2.2.1 The uniform Lipschitz condition 

Let D CMP' and f : [to, ^o + ^ ^ there exists a constant L > 0 such that 

| | f ( i , p ) - f ( i , q ) | | < L | | p - q | | , /or an( i ,p ) , ( i ,q ) e [to,to + a]li x D , (2.2.1) 

then we say f satisfies a uniform Lipschitz condition on [to, to + a]j x D . 

• 

If f satisfies the uniform Lipschitz condition (2.2.1) on [to,to + a ] j X D then f is said 

to be Lipschitz continuous on [to, to + x D . Any value of L satisfying (2.2.1) is 

called a Lipschitz constant for f on [to, to + x D. 
Classically, the Lipschitz constant L in (2.2.1) is independent of x and t but may, 

in general, depend on the domain [to, to + a]^ x D [42, p.6]. It is not easy, in general, 

to identify if a function satisfies the Lipschitz continuity in a given domain. However, 

if [to, to + a\j X D is convex and f is a smooth function on [to, to + a]^ x D, then the 

following theorem [17, p.22], [30, p.248], [2, Lemma 3.2.1] is helpful to identify if a 

given function satisfies a Lipschitz condition on [to, ̂ o + î ]? ^ 

Theorem 2.2.2 Let h> 0. Let to eJ and xq eW^. Consider a function f defined 

on a rectangle of the type 

R'^ := {{t,p) e J ' ^ x W : t e [io,io + a ] i , | | p - x o | | < b}, (2.2.2) 

or on an infinite strip of the type 

:= {{t, p) eT" xW :te [to, to + ||p|| < oo}. (2.2.3) 

If ^^ exists for alii = 1 , 2 , -' • ., and is continuous on (or S'^), and there is 
dpi 

a constant K >0 such that for all ( t , p ) e R*^ (or S'^), we have 

d i i t , p ) 
dpi 

< K , for alii = 1 , 2 , - , 

24 

(2.2.4) 



then f satisfies a Lipschitz condition on (or S'^) with Lipschitz constant K = L. 

Proof: For a proof see [2, Lemma 3.2.1 . 

• 
/ J N 

Remark 2.2.3 Note in the above theorem that ——- is the slope of the tangent 
dpi 

line at any point (i, p) in R^ or S'^ in the direction of the i-th component of p. 

Therefore, if the rate of change o / f ( i , p) is bounded at all points (i, p) and the line 

joining any two points (i, p), {t, q) can not have a slope steeper than a certain positive 

number K, then f remains within ± K ( p — XQ) for R^ and within dbiip for S"̂ . 

• 

Remark 2.2.4 Also note that the inequality (2.2.4) is a sufficient condition for the 

Lipschitz condition (2.2.1) to hold for all f that have bounded partial derivatives with 

respect to the second argument on R^ or S*^. 

• 

The following is a corollary of Gronwall's inequality [19, Corollary 6.6] in the 

time scale setting. Historically, Gronwall's inequality has been widely used as a tool 

to prove existence and uniqueness of solutions to initial value problems. We use this 

result to prove non-multiplicity of solutions to the IVPs (2.1.5), (2.1.6) and (2.1.7), 

(2.1.8) in this chapter and in many other results in latter chapters. 

Corollary 2.2.5 Let ti eT and z e C^d(T). Letl:T (0,oo) with I e 11+. If z 

and I satisfy 

-t 
z{t) < [ l{s)z{s) As for all t G T, 

Jti 

then 

z{t) < 0, for all t e T. (2.2.5) 

• 



Now we present our first result regarding non-multiplicity of solutions to the 

dynamic IVP (2.1.5), (2.1.6), using the above corollary, when the rate of change in f 

is bounded by a positive constant. The result is an extension of Lipschitz's classical 

non-multiplicity result from ordinary differential equations, see [2, Theorem 1.2.4], 

25, Theorem 3.4] and [16, p.152], to the time scale setting. 

T h e o r e m 2.2.6 Let D <Z W and i \ [to, to + a]^ x D ^ W be a right-Hilger-

continuous function. If there exists a constant L > 0 such that 

| | f(t, p) - f ( i , q)II < L Hp - q||, for all ( i , p) , ( i , q) G [to, to + a] f x D-, (2.2.6) 

then the IVP (2.1.5), (2.1.6) has, at most, one solution, x, such that x(i) G D for 

all i G toito a J. 

Proof: Let x , y be two solutions of (2.1.5), (2.1.6) with x(i) G D and y{t) G D for 

all t G [to, to + We show that x = y on [to, to + a]T. 

By Lemma 2.1.3, we have 

x(t) = xo + / f(s ,x(5)) As, for all t G [to, to + a 
Jto 

't 

T 

and y{t) = x q + / f(s, y(s)) As, for all t G [to, to + a]T-
Jto 

Then for ali t e [io, ̂ o + <̂ ]t? we have 

||x(i)-y(i)|| < r|| f ( s ,x ( s ) ) - f ( s ,y (s ) )|| As 
Jto 

< l Ì ||x(s)-y(5)|| A5, 
Jto 

where we have used (2.2.6) in the last step. Applying Corollary 2.2.5, taking l{t) := L 

and z{t) : = ||x(i) — y(i)|| for ali t G [io? to + ajx, we obtain 

|x(i) - y{t) Il < 0, for ali t G [io, to + a\j. 

But ||x(i) - y(i)|| is non-negative for ali t G [to,to + à\j. Thus, x(i) = y(i) for ali 

t G [io,^o + d T-

• 

Note that the result in [83, Theorem 3.2] is a special case of the above result 

where l{t) := L, a constant function for all t e [to,to + a T-



Corollary 2.2.7 The above theorem also holds i f i has continuous partial derivatives 
di{t, p) 

dp < K. with respect to the second argument and there exists K > 0 such that 
In that case, f satisfies the Lipschitz condition 2.2.6 on [to, to-\-a]j x D with L := K 
by Theorem 2.2.2. 

• 

Example 2.2.8 Let D := {p e R^ : ||p|| < 2}, where p = Consider the 
IVP 

x^ = f (i, x) = (1 + xl, t^ + X2), for all t e [0,1]^; 
x(0) = (1,0). 

We claim that this dynamic IVP has, at most, one solution, x, such that ||x(i)|| < 2 
for all t G [0, l ] j . 

Proof: We show that f(i, p) (1 t +P2) satisfies the conditions of Theorem 
2.2.6 for all {t,p) e [0, x D. 

Note that for p = {pi,p2) ^ D, we have P1+P2 < 4. Thus, \pi\ < 2 and \p2\ < 2. 

1. f is right-Hilger-continuous on [0, l]j x D: We note that the composition 
function g{t) := (1 + + X2{t)) is rd-continuous for all t € [0, 1]t. 
Thus, our f is right-Hilger-continuous on [0,1]^ x D] 

2. f is Lipschitz continuous on [0, x D: We note that for all t 6 [ 0 , a n d 
(PI5P2) ^ D, we have 

di 
dpi 

Similarly, we obtain 
df 

dp2 

(2pi,0)|| = |2pi| < 4 . 

(0,1)11 = 1. 

Thus, employing Corollary 2.2.7, we have (2.2.6) holding for L = A. 

Hence, all conditions of Theorem 2.2.6 are satisfied and we conclude that our example 
has, at most, one solution, x(i) 6 D, for all t 6 [0, 1]t-

• 



Our next result concerns the scalar dynamic IVP (2.1.9), (2.1.10) when a right-

Hilger-continuous scalar function / satisfies a one-sided Lipschitz condition defined 

as follows. 

Definition 2.2.9 Let D C R and f : [to,to + a]j x D R be right-Hilger-

continuous. If there exists L > 0 such that, for all p > q, the inequality 

f{t,p) - fit.q) < Lip - q), for all {t,p), {t,q) 6 [to,to + a]^ x D (2.2.7) 

holds, then f is said to satisfy a one-sided Lipschitz condition on [to, to + a\j x D. 

• 

In the Hght of the above definition, we can establish a corollary of Theorem 2.2.2 

to obtain a sufficient condition for a function / to satisfy the one-sided Lipschitz 

condition 2.2.7 on [to, to + a]! x D. 

Corollary 2.2.10 Let a, 6 > 0. Let to ^ T and xo G M. Consider a function f 
f) f (4- ^ 

defined either on R'^ (or S'^). If—— exists for alii = 1,2, • • • ., and is continuous 

on R^ (or S'^), and there is a constant K > 0 such that for all {t,p) e (or S'^), 

we have 

for alii = 1,2,'" , (2.2.8) OPi 
then f satisfies the one-sided Lipschitz condition 2.2.7 on R'^ (or S'^) with Lipschitz 

constant K = L. 

il -f (4- \ 
Proof: The proof is similar to that of [2, Lemma 3.2.11 except that — ' is op 
considered bounded above hy L = K. 

• 

Remark 2.2.11 The above theorem shows that if the rate of change of f{t,p) is 

bounded above at all points {t,p) and the line joining any two points {t,p), {t, q) can 

not have a slope steeper than a certain positive number K, then f remains below the 

line K{p — xo) for R'^ and below the line Kp for S'^. 

• 



Our next theorem is a time scale extension of [2, Theorem 1.2.5] and is a non-

multipHcity result when / satisfies a one-sided Lipschitz condition on [io, to-\-a]j x D, 

Theorem 2.2.12 Let D C R and f : [to,to + a]^ x D -> R be right-Hilger-

continuous. If there exists a constant L > 0 such that the inequality (2.2.7) holds for 

p > q, then the IVP (2.1.9); (2.1.10) has, at most, one solution, x, with x{t) G D 

for all t e [to? + 

Proof: Let ti,t2 G {to, to + ajx and ¿2 > ^i- There are two cases to consider. In 

both cases, our argument is of the proof by contradiction style. 

Case 1: Without loss of generahty we assume solutions x,y with x(t) e D and 

y{t) E D for all t E [¿o? ô + î Jx? that satisfy 

x{t) = y{t), for all t G [to,ti]j C [io,i2]T, (2.2.9) 

and x{t) < y{t), for all i G (ii,i2]T- (2.2.10) 

Therefore, for t G {ti,t2]T, we have from Lemma 2.1.3 

y{t) - x{t) = i\f{s, y(s)) - f(s, x(s))) As 
Jti 

<L i {y{s) - x{s)) As, 
Jti 

where we have used (2.2.7) in the last step. Applying Corollary 2.2.5, taking l{t) := L 

and z{t) := y{t) - x{t), we obtain 

y{t) - x(t) < 0, for all t G (ii, t2]T, 

which is a contradiction to (2.2.10). 

Case 2: If, x, y satisfy x{t) G D and y{t) G D for all t G [¿o, to + «It, with 

x{t) = y{t), for all t G C 

and x{t) > y{t), for all t e {ti,t2]T, 

then, using (2.2.7), we have, for all t G (ii,i2]T, 

x{t) - y{t) = i\f{s, x{s)) - f{s, y{s))) As 
Jti 

< L [ {x{s)-y{s)) As. 
Ju 

(2.2.11) 



Again applying Corollary 2.2.5, taking l{t) := L and z{t) := x{t) - y{t), we have 

^{t)-y{t)<o, for all te{ti,t2]T, 

which is a contradiction to (2.2.11). Hence, x{t) - y(t) = 0 for all t € [to, to + aji-

Thus, x{t) = y{t) for all t G [to, to + ajx-

• 

Note that the above result is more flexible than Theorem 2.2.6 which requires an 

upper as well as a lower bound on the change in / for the existence of non-multiple 

solutions to (2.1.9), (2.1.10). 

Corollary 2.2.13 The above theorem also holds if f has continuous partial deriva-
O r / I \ 

tives with respect to the second argument and there exists K > 0 such that —— < 
op 

K. In that case, f satisfies the one-sided Lipschitz condition on S'^ with L := K by 

Corollary 2.2.10. 

• 

Remark 2.2.14 The above corollary weakens the condition of Corollary 2.2.7 for 
^ J" a smooth function f on or S'^ and the existence of an upper bound on — is 
op 

sufficient for (2.2.7) to exist on [to, to a]j x D. 

• 

Our further results concern the non-multiplicity of solutions to the dynamic IVPs 

(2.1.5), (2.1.6) and (2.1.7), (2.1.8) which Theorem 2.2.6 or Corollary 2.2.10 do not 

directly apply to. 

In the next result, we consider a positive constant L such that —2L e iV'. That 

is, 1 - 2/iZ/ > 0. This is possible if we can choose L large enough such that the 

step size, fi{t), can be made smaller than ^ for all t 6 [toĵ o + <I]t or vice versa. 
2L/ 

We employ this condition to prove the non-multiplicity of solutions to the vector 

dynamic IVP (2.1.7), (2.1.8), within a domain i ) C R'̂  by constructing a modified 

one-sided Lipschitz condition. This result has gained inspiration from [2, Theorem 

3.2.2] for ordinary diff'erential equations. 



Theorem 2.2.15 Let D C W and f : [to, to + x D W be nght-Hilger-

continuous. If there exists a positive constant L > 0 with — 2L G such that f 

satisfies the condition 

( f ( t , p ) - f ( i , q ) , p - q ) < L | | p - q f , (2.2.12) 

for all {t, p), {t, q) € [to, to + a]j x D, 

then the IVP (2.1.7), (2.1.8) has, at most, one solution x, with x(i) G D for all 

t G [to, to + a]T. 

Proof: Let x and y be two solutions of (2.1.7), (2.1.8), with x(i) 6 D and y(t) G D 

for all t e [to, + ¿̂ Jt- Consider 

v{t) := ||x(i) - y(i)|p, for all t G [to, to + a]T. 

We show that = 0 on [io? ¿0 + ^Jt and so x and y are the same function. 

Using the product rule (Theorem A.3.5(3)) and the simple useful formula (SUF, 

Theorem A.3.2(4)) for all t G [to, to + a]j, we have 

v'^it) = i^Ht) - yHt)Mt) - y{t)) + (x-(i) - y^(i),x^(i) - y^it)) 

= (x^(i) - y^itu^t) - - y'^it) + 

= 2{x^(i) - y ^ ( i ) , x - ( i ) - y - ( i ) ) + {x^(i) - y^(i),-/i(i)(x^(i) - y^(t))) 

= 2(x^(i) - y ^ ( i ) , x - ( i ) - y - ( i ) ) -/.(i)llx^(i) - y ^ ( i ) f 

= 2(f( i ,x-( i ) ) - f ( i , y ^ ( i ) ) , x - ( i ) - y - ( i ) ) 

= 2Lv''{t), 

where we have used (2.2.12) in the second last step. 

Thus, 

v^{t) < 2Lv''{t), for all t G [to, to + . 

Rearranging, we obtain 

v^{t)-2Lv''{t) <0, for all te [to,to-\- a]f (2.2.13) 



Since - 2 L 6 we use e_2L(i,io) as an integrating factor in (2.2.13). Thus, we 

obtain 

v^{t)e-2L{t, to) - 2Le_2L(i, to)v''{t) < 0, for all t 6 [to, to + a 

Using the product rule (Theorem A.3.5(3)) again, we have 

v{t)e-2L{t, to)]^ < 0, for all t e [io, to + a\j. (2.2.14) 

We note that v{t)e-2Lit,to) is non-increasing for all t e [¿0,̂ 0 + Since 

v{to) = 0 and e-2L{t,to) > 0 for all t E [to, to + ajx, we have v{t) < 0 for all 

t E + But V is non-negative on [to, to + a]-!. Thus v(t) = 0 for all 

t 6 [to, to + ajx- Hence, x(i) = y(t) for all t e [to, to + a]T. 

• 

Prom the above results we note that (f(i, p) — f(i, q),p — q) is the product of 

variation in f with respect to p and variation in p itself and (2.2.12) provides an 

upper bound on this product for non-multiple solutions of (2.1.7), (2.1.8). Prom 

another result (see [79, Theorem 2.5] considering R = 0 and M = 1 in the boundary 

condition (3) in which case it becomes an initial condition) the non-multiplicity of 

(2.1.5), (2.1.6) is ensured for a negligibly small ^ if the above product is strictly 

positive. In that case, the IVP (2.1.5), (2.1.6) and (2.1.7), (2.1.8) can be treated 

as ODEs. Thus, for sufficiently large L (or T = R), the non-multiple solutions of 

(2.1.5), (2.1.6) and (2.1.7), (2.1.8) exist for 0 < (f(i, p ) - f ( i , q), p - q) < L||p - q ^ 

for all t e [to,to + a T-

Also, for sufficiently small /i, the above result restricts the non-multiplicity of 

solutions of (2.1.7), (2.1.8) to small variations in p producing small variations in f 

no matter how large L is, in a restricted domain. 

The following example illustrates Theorem 2.2.15. 

Example 2.2.16 Let D : = [ -1 ,1] and Li > 0 be a constant. Then Li e . 

Consider the scalar dynamic IVP 

1 

a;(0) = 0 . 

eLi(i,0)' 
for all t e [0, l ] i ; (2.2.15) 

(2.2.16) 



We claim that this dynamic IVP has, at most, one solution, x, such that x{t) G D 

for all t e [0, 1]t. 

Proof: We prove our claim by showing that f(t,p) := —Lip-\ r 

conditions of Theorem 2.2.15 for L := Li, for all {t,p) e [0,1]^ x D. 

satisfies the 

(1) / is right-Hilger-continuous on [0, x D: We note that for all t G [0,1]^, the 

functions ^ and x^{t) are rd-continuous. Therefore, the composition 

function g{t) := —Lix^{t) + is rd-continuous for all i G [0, 1]t- Thus 
eLi(t,0) 

our / is right-Hilger-continuous on [0,1]^ x D; 

(2) / satisfies (2.2.12) on [0,1]$ x D: We note that for all t G [0,1]^ and p,q e 

•1,1], we have 

{f{t,p)-f{t,q)){p-q) = -Li {p-qf 

< Li \\p-qf. 

Hence (2.2.12) holds for / . Thus, (2.2.15), (2.2.16) satisfies all conditions of Theorem 

2.2.15 and so, has, at most, one solution, x, with x{t) G D for all t G [0,1]^. In fact, 

(2.2.15), (2.2.16) is linear and so, by Theorem A.7.7, has a unique solution given by 

x{t) = 
eL,(i,0)' 

for all t G [0, 1]t. 

• 

Corollary 2.2.17 Let D <Z R and f : [to, to + a]!^ x D 

continuous. If f satisfies 

be right-Hilger-

{f{t,p) - f{t,q))ip -q)<0, for all {t,p), {t,q) G [to, to + a]f x D, (2.2.17) 

then the IVP (2.1.9), (2.1.10) has, at most, one solution x with x{t) G D for all 

t G [to, to + ajT-

Proof: If (2.2.17) holds then Theorem 2.2.15 holds for L = 0. 

• 



The next corollary concerns the non-multiplicity of solutions to the scalar dy-

namic IVP 

x{tQ) = XQ, 

for all t e [to, + CL T' (2.2.18) 

(2.2.19) 

using Theorem 2.2.15. 

Corollary 2.2.18 Let D C R and f : [to, to + a]!^ x D 

continuous. If f satisfies 

be right-Hilger-

{f{t.p)-f{t.q)){p-q)<0, forall{t,p),it,q) e [to, to + x (2.2.20) 

then the IVP (2.2.18), (2.2.19) has, at most, one solution x with x{t) E D for all 

t € [̂ 0? to + 

Proof: If (2.2.20) holds then Theorem 2.2.15 holds for (2.2.18), (2.2.19) for L = 0. 

• 
Note that the above two corollaries hold only for sufficiently large ¡JL. 

The following example illustrates Corollary 2.2.18. 

Example 2.2.19 Let D (0, oo) and f : [0,1]^ x (0, oo) ^ R. Consider the 

dynamic IVP 

t^ 
TTT, for all t e 

^ (2.2.21) 
rr(0) = 1. 

We claim that this IVP has, at most, one solution x such that x{t) > 0 for all 

te[0,l T' 

Proof: We prove our claim by showing that Corollary 2.2.18 holds for / ( i , u) := 

for all {t,u) e [0, l]f X (0,oo). 

(a) / is right-Hilger-continuous on [0,1]^ x (0, oo): We note that the composition 

function k{t) := . is rd-continuous for all i G [0, 1]t- So our / is 

right-Hilger-continuous on [0,1]^ x (0, oo); 



(b) / satisfies (2.2.20) on [0,1]^ x (0,oo): We note that for all {t,u),{t,v) 6 

0,1]^ X (0, oo), we have 

{fit, u) - fit, v)){u -

< 0. 

\ U^v"^ J 
{u — v) 

+ u){u - vy' 
y2y2 

Hence, (2.2.20) holds for / and / satisfies all conditions of Corollary 2.2.18. Thus 

the given IVP has, at most, one solution, x, with x{t) G (0, oo) for all t e [0, 1]t-

• 
We observe from (2.2.20) and from the above example that for any p,q with 

p> q, the inequahty (2.2.20) yields 

f{t,p) - fit, q) < 0, for all {t,p), (t, q) G [to, to + a]? x D. 

Thus, / will be non-increasing in the second argument on [to, toa]j x D. 

In the next section, we show that, for non-increasing functions on [to, to+a\j x D, 

the non-multiphcity of solutions to (2.1.9), (2.1.10) may hold without the Lipschitz 

condition holding on [to,to-\- a]j x D. 

The next theorem concerns the non-multiphcity of solutions to the IVP (2.1.7), 

(2.1.8) within a domain D CW^. Here f, which is a vector valued function, assumes 

a restriction that apparently depends on the graininess function ¡JL. However, we will 

prove in the following theorem that this dependence is removable. We note that this 

is a more generalised result for non-multiplicity of solutions to (2.1.7), (2.1.8) then 

Theorem 2.2.15 and the condition that 'L' be large is no more necessary. 

Theorem 2.2.20 Let D CW and let f : [to, to + a]^! x D ^ W be a right-Hilger-

continuous function, with [to, to + x D. If there exist positive constants 

such that ¡3 = J L for 7 > 2, such that f satisfies 

p - q (2.2.22) 

for all {t, p), {t, q) G [to, to + x D, 



then the IVP (2.1.7), (2.1.8) has, at most, one solution, x, with x(i) 6 D for all 

t ^ [̂Oi + iljT-

Proof: Consider x{t) and y{t) as two solutions of (2.1.7), (2.1.8) with x(i) G D and 
y{t) e D for all t G [to, to + a]j. Let 

uj{t) := ||x(i) - y(i)|p, for all t e [to, to + ajx-

We show that a; = 0 on [to, to + a]T, and so x(i) = y{t) for all t e [to? to + a]T-
Using the product rule. Theorem A.3.5(3), and the identity (4) of Theorem A.3.2 

for all i G [to? + î lii have 

= (x^(i) - y^(i),x<'(t) - - y-'ii) +/.(i)y^(i)> 

= 2{x^(i) - y^'itWit) - y-(i)) + {x^(i) - -Ai(i)(x^(t) - y^(i))> 

= 2(x^(i) - y^tU^it) - y'{t)} - M(t)l|x (̂i) - y^(i) 

< 2(x^(i)-y^(t),x-(i)-y-(t)> 

= 2{f(i,x''(i)) - f(i,y''(i)),x''(i) - y^t)) 
< 1 + M(i) P 

where we used (2.2.22) in the last step. We also note that for /3 > 0, we have 
1 e^(i,io) 

(2.2.23) 

Thus, for all t e [io,io + i]t, the inequality (2.2.23) takes the form 

(2.2.24) 

_ 2Lef3{t,to) 
uj^it). 

Since (3 = J L and 7 > 2, the inequality (2.2.25) can be written as 

^A(̂ ) < for all t e [to, to + a 

(2.2.25) 

Rearranging, we obtain 

- < 0, for all t e [to, to + a 
ep(t,to) 

T' 



Since (i, io) > 0, we further obtain 

Lj^^it) < 0, for all t G [to, to + a 

Again using the product rule (Theorem A.3.5(3.)), the above inequality reduces to 

< 0, for all t e [io, to + a]j. 

T-Uj(t) Thus — is non-increasing in [io, io + ^lx- Hence u;{t) < 0 for ali te [io, ô + a e/3 (i, io) 
But LU{TO) = 0, 8ind LJ is non-negative on [io, io + a]T- Hence, cj = 0 on [io, io + CL]J' 
This means that x(i) = y(i) for ali te [io, io + ^Jt-

• 

Example 2.2.21 Let D = [l,oo). Let L = 1 and P = 3. Consider the dynamic 
IVP 

e3(i, 0) Inx 
eUt.O) ' i G [0, 1]T; 

a:(0) = 1. 
(2.2.26) 
(2.2.27) 

We claim that the above IVP has, at most, one solution x such that x(t) e [1, oo) 
for all t e [0, 1]t. 

P roof : We show that / satisfies all conditions of Theorem 2.2.20. 

(a) / is right-Hilger-continuous on [0, l ] j x D: We note that e3(i, 0) and e^{t,0) 
are rd-continuous for all i e [0, 1]T- Thus, the composition function h{t) := 
63(^,0) Inx(i) ^^ rd-continuous for all i G [0, l l j . Therefore, our / is e^(i,0) 
right-Hilger-continuous in [0,1]^ x D; 

(b) / satisfies condition (2.2.22) on [0, l ] jXD: We first show that for allp G [1,00), 

the function 
r{p) := Inp 

is Lipschitz continuous with Lipschitz constant L = 1. Note that for p > 1 
dr 1 
dp P 



Hence, by Theorem 2.2.2, r satisfies a Lipschitz condition on [1, oo) with Lip-

schitz constant L = 1. Thus, we have 

Inp-\nq\ <\p-q\ for all p, gi e [1, oo). (2.2.28) 

Next, we show that the condition (2.2.22) is satisfied for all it,p),{t,q) G 

0,1]^ X D. Note that 

f{t.v)-fit, q) ej(i,0) \np - In^l, for all (i,p), (i, q) e [0,1]^ x D. 

Prom (2.2.24), we obtain, 

1 f{t,p)-f{t,q) Inp - In^l, for all (i,p), (i, q) G [0, l]f x D. 
1 + 3/x(i) 

Thus, using (2.2.26), and (2.2.28), we obtain 

Hence / satisfies (2.2.22) for all t e [0, 1]t. 

We note that / satisfies all conditions of Theorem 2.2.20. Therefore, the given I VP 

has, at most, one solution, x, with x{t) 6 [1, oo) for all t e [0, 1]t. 

• 

2.3 Peano criterion on T 

This section comprises a result regarding the non-multiplicity of solutions to the 

IVP (2.1.9), (2.1.10) in the absence of the Lipschitz condition (2.2.6) or any of its 

modifications defined in the previous section. 

It has been discussed above that the non-multiphcity of (2.1.9), (2.1.10) is en-

sured if a right-Hilger-continuous function / : [to, tQ + a ] j X D - ^ R satisfies (2.2.20), 

in which case, / will be non-increasing on [to, to + a];f x D. In the following result, 

we prove the converse using classical method. That is, we prove that the non-

multiphcity of solutions to (2.1.9), (2.1.10) holds for every right-Hilger-continuous 

function / that is non-increasing in the second argument on [to,to-\- a]j x D. The 

result is an extension of [2, Theorem 1.3.1] to time scales. 



Theorem 2.3.1 Let D Q R and f : [to, to + a]!^ x D R be a right-Hilger-

continuous function. I f , for all p < q, f satisfies the inequality 

f{t,p)> f{t,q), for all {t,p), {t,q) e [to,to + a]^ x D; (2.3.1) 

then the dynamic IVP (2.1.9), (2.1.10) has, at most, one solution, x, such that 

x{t) e D for all t 6 [to, to + a]j. 

Proof: Let ti,t2 e {to, to + a]T with t2 > ti. 

Without loss of generahty we assume x and y as two solutions of (2.1.9), (2.1.10) 

with x{t) € D and y{t) G D for all t G [io, ̂ o + CLIJ. Let 

r{t) := x(t)-y{t), for all t e [to,to-\- a T- (2.3.2) 

We note that r{to) = 0. Assume r{t) i- 0 for all t 6 {to, to + a]T. We consider two 

cases. In each case we use proof by contradiction. 

Case 1: Assume 

r{t) = 0, for all t G [io,ii]T C [io,i2lT, 

and r{t) < 0, for all t G (^1,̂ 2 T-

(2.3.3) 

(2.3.4) 

So, x{t) < y{t) for all t G {ti,t2\T, and since / is non-increasing in the second 

argument on [to, ô + a]^ x D, we have 

f{t, x{t)) > f{t, y{t)), for all t G [to, i2]T- (2.3.5) 

Thus, for all t G [to, t2]j, we have 

= i{t,x{t)) - i{t,y(t)) 

> 0 , 

and so r is non-decreasing in [to5t2lT- Combining this with (2.3.3), we note that 

r > 0 on [to,t2]T and this contradicts (2.3.4). 

Case 2: Now, assume 

and 

r{t) = 0, for all t G [io,ti]T C 

r{t) > 0, for all t G {ti,t2 T-

(2.3.6) 

(2.3.7) 



Then, x{t) > y{t) for all t e (ii,i2]T, and since / is non-increasing in its second 
variable on [to,to + a\j x D, we have 

fit, x{t)) < fit, y{t)), for all t G [to, talx- (2.3.8) 

This yields, for all t 6 [to 5 

= f{t,xit))-f{t,y{t)) 
< 0, 

and so r is non-increasing in [io)t2]T- Combining this with (2.3.6), we note that 
r < 0 on [^05^2]! and this contradicts (2.3.7). 

Thus, r{t) = 0 for all t 6 [to, to + a]j. Hence, x{t) = y{t) for all t e [to? to + 
• 

The above result can also be obtained from Theorem 2.2.12 provided L = 0. 
Now we consider an example to illustrate the above theorem. 

Example 2.3.2 Let D = [0,cx)). Consider the IVP 

x^ = t - x^/^, for all t € [0,1]^; 
j;(0) = 0. 

We claim that this IVP has, at most, one solution, x, such that x{t) e [0, 00) for all 
t e [0, 1]T. 

Proof: We show that / satisfies the conditions of Theorem 2.3.1 on [0,1]^ x D. 
(i) / is right-Hilger-continuous on [0,1]if x D\ We note that the composition 

function l{t) := t — is rd-continuous for all t € [0, 1]t. Thus, / is 
right-Hilger-continuous in [0,1]^ x D; 

(ii) / is non-increasing in [0,1]^ x D: Note that for all p < ^ we have — > 
-q^/^. Therefore, for all (t,p), {t,q) e [0, x D, we have 

Hence / is non-increasing in p on [0,1]^ x 



We note that the given IVP satisfies both conditions of Theorem 2.3.1 and so, has, 

at most, one solution x{t) G [—1,0] for alH G [0, 1]T-

• 

We note that Theorem 2.3.1 provides a sufficient condition for the non-multipHcity 
of solutions to the scalar dynamic IVP (2.1.9), (2.1.10) on [to, to + a]if x D. In the 
next chapter we will extend the above result to prove that the system (2.1.5), (2.1.6) 
has a unique solution when the Lipschitz condition (2.2.6) is and is not satisfied. 

In this chapter, we presented results that identified conditions under which the 
systems (2.1.5), (2.1.6) and (2.1.7), (2.1.8) or the scalar IVPs (2.1.9), (2.1.10) and 
(2.2.18), (2.2.19) have either one solution or no solution at all. In the next chapter, we 
extend our discussion to existence of solutions to the above IVPs using the classical 
method of constructing successive approximations converging to a unique limit. 





Chapter 3 

Successive approximation of 

solutions 

3.1 Introduction 

In this chapter, we explore the existence and uniqueness of solutions to first order 

non-linear dynamic initial value problems using classical methods. Our approach 

involves constructing sequences of functions that converge to a unique solution to 

the problem under consideration. 

The method of successive approximations is a powerful tool for gaining existence 

and computation of solutions to initial and boundary value problems. This method 

is explicitly developed, for the first time, in the time scale setting in this work and 

is used to prove several new existence theorems. The results are extended to n-th 

order dynamic equations. We also provide some interesting examples illustrating the 

new results. 

Liouville and Picard's work on the method of successive approximation has been 

a key to analyse and establish the existence of unique solutions to non-linear initial 

and boundary value problems for ODEs and dates back to the nineteenth century 

60, p.444]. Generally speaking, the method attempts to solve an equation of the 

kind 

x = F(x), 

where F is a continuous function. The approximation procedure starts from an initial 



value xo and then employing the successive iterations as a sequence of functions 

defined by 

Xn+i := F(xn), for n = 0,1,2, • • • . 

A set of assumptions is then developed to assert that x̂ ^ converges to some function 

In addition, $ is proved to be the unique solution to the given equation, with a 

small error estimated for llx̂ j, — $11 for all n > 0. 

We consider a first order non-linear delta IVP and use the above method to 

establish a set of iterations that successively converge to a function, and prove 

that $ is the unique solution of the IVP. Traditionally, the method involves taking 

the initial approximation to be a constant which is usually the initial value. In this 

chapter, we develop a generalised method of successive approximations in which the 

initial approximation is a continuous function of t, where i € T. 

3.1.1 The main objective 

Let [to, to + A]T be a closed and bounded interval in T and XQ be a point in R^. 

Consider the rectangle 

R" = eT^xW-.te [to,to + a]^, IIP-XQII < b} (3.1.1) 

and a right-Hilger-continuous function f : R'̂  ^ R ^ . 

In this chapter we explore the existence and uniqueness of solutions to the dy-

namic initial value problem 

x ^ = f (i, x), for all t e [to, to + (3.1.2) 

x(io) = xo (3.1.3) 

using the method of successive approximations. 

In contrast to the question of "non-multiphcity of solutions" answered in Chapter 

2, this chapter answers the following questions: 

1. Under what conditions does the dynamic IVP (3.1.2), (3.1.3) have a unique 

solution? 

2. Under what conditions can we closely approximate that solution? 

3. Can we always construct sequences that converge to a unique solution? 



3.1.2 Methodology and organisation 

The methodology to answer the above questions involves the introduction and formu-

lation of the method of successive approximations (originally from ordinary differen-

tial equations) to the time scale setting forming an analogue of the Picard-Lindelof 

theorem [6, Theorem 8.1], [30, pp. 200-205], [51, Theorem 8.13], [24, pp.314-325], 

69, pp. 48-50 . 

To apply the method of successive approximations, we will use the Lipschitz 

condition (see Definition 2.2.1) along with the Weierstrass test [26, p.266], [72, p.600 . 

The Lipschitz condition has been an important tool to determine the existence of 

solutions as unique hmit of iterative procedures. 

We note from Theorem 2.2.2 that the Lipschitz condition holds for functions 

having continuous partial derivatives in a given domain. However, we observed 

in Example 2.2.19 and Example 2.3.2 that the partial derivatives of non-increasing 

functions were not defined at 0. The uniqueness of a solution, if it exists, is, however, 

guaranteed by Theorem 2.3.1. Indeed, functions whose partial derivatives are not 

defined at a certain point may have infinitely many solutions through that point. 

This is further illustrated in the following example. 

Example 3.1.1 Let a,b eT with b > a. Define 

U'^ := {{t,p) G T'̂  X M : te [a,6]Ç, \p\ < oo} 

Consider the initial value problem 

y^ = Sy^^ for all t e [a, b 

y{0) = 0. 

T' (3.1.4) 

(3.1.5) 

Then we note that f{t,y) = is right-Hilger-continuous everywhere in V^ for 

all t e [a,b]j. However, its partial derivative 

dy 2/1/3 

is not defined at y = Thus we cannot apply Theorem 2.2.2 to identify a Lipschitz 

constant for f{t, y) for all (i, y)eU^. 



Now consider a right-dense point t = k>0 and define 

0; -00 < t < k , 

c^Ht) ••= < 

(t-k)^; k<t<oo. 

Then (̂ (̂i) satisfies y^ = Sy /̂s for all t e ( -00, 00) for all A: > 0. In addition, y = 0 

is a solution to the above problem. 

• 
The above example suggests that in the absence of continuous partial derivatives of 

/ , a dynamic I VP may have a solution. 

In this chapter, we present existence results by constructing successive approxi-

mations that converge to a unique solution of (3.1.2), (3.1.3), using Lipschitz conti-

nuity as a sufficient condition for our proof. Then we develop an interesting example 

to show that in the absence of the Lipschitz condition the successive iterations may 

not converge to a unique limit, but a solution may exist. Moreover, we present an-

other result that ensures the existence of a solution to (3.1.2), (3.1.3) as a unique 

limit of uniformly convergent sequences without using the Lipschitz condition. 

This chapter is organised as follows. The next section. Section 3.2, explains the 

main characteristics of the Picard-Lindelof theorem on the time scale platform and 

a few preliminaries for the main results. 

In Section 3.3, we establish a Picard-Lindelof theorem on T locally. That is, 

we construct iterations that converge to a unique solution of (3.1.2), (3.1.3) within 

a small rectangle. We reinforce our findings with interesting examples and prove 

that Picard theorem provides a sufficient condition for the convergence of successive 

approximations to a unique solution. 

In Section 3.4, we extend our results so that the Picard iterations globally con-

verge to a unique solution of (3.1.2), (3.1.3) on an infinite strip. 

In Section 3.5, we present a special case of local existence of solutions within an 

n-sphere considering the initial value lying within another smaller n-sphere. 

In Section 3.6, we develop Peano's existence theorem in the time scale setting 

using the method of successive approximations to ensure the existence of at least 

one solution of (3.1.2), (3.1.3) that lies within a small rectangle. 



Finally, in Section 3.7, we extend our results to higher order dynamic equations. 

Most of our results in Section 3.2, Section 3.3 and Section 3.4 have been published, 

see [83, pp.66-79, 84 

3.2 Picard-Lindelof Theorem on T 

In this section, we construct an analogue of the Picard-Lindelof theorem [6, Theorem 

8.1], [30, pp.200-205], [51, Theorem 8.13], [24, pp.314-325], [69, pp. 48-50] on the 

platform of the time scale calculus. 

Let a be a point in [to, to be made exphcit a little later such that to < a < 

a. We prove that (3.1.2), (3.1.3) has a unique solution in a closed neighbourhood of 

to within a subinterval [io, ̂ o + <̂ ]t Q [̂ o, to + o]t as well as over the entire interval 

to, to + a]T. 

Define 

R := { ( i ,p) e J x W : t e [to,to + a]j, ||p-Xo|| < 6}. (3.2.1) 

Note that R is an extension of R*^, as it contains all points t e [to, to + a]T-

We construct successive approximations of solutions to (3.1.2), (3.1.3) in a right 

neighbourhood of the point (to?xo) 6 R and show that these approximations con-

verge to a unique limit which is the solution to (3.1.2), (3.1.3) on [to, to + a]T. 

Let $ be a solution of the IVP (3.1.2), (3.1.3). Then, by Definition 2.1.1, $ 

is delta differentiable on [to, to + ajif and the points {t,^{t)) are in R for all t 6 

to, to + a]T. Since f is right-Hilger-continuous on R'̂ , it follows from Lemma 2.1.3 

that 

= xo-\- [ f (s, $(s)) As, for all t e [to, to + 0]^. (3.2.2) 
Jto 

We consider a sequence of functions ^i? • • • such that ^k is defined on [io, ¿0 + 

a]T for all A; = 1,2, • • •. Let $0 be a continuous function on [io, to + ajx- Proceeding 

in an inductive manner, we define the {k -h l)th iteration, for each k = 0,1,2, • - •, as 

follows: 

^k+i{t) xo + [ f(5, cE)fc(s)) As, for all t e [to, to + a]T. (3.2.3) 
Jto 



The right-Hilger-continuity of f on R*̂  implies that f is bounded on R^. Let M > 0 

be a constant that bounds f on R^. Then we have 

f(i,p)|| < M , for all (i,p) ei? ' ' . 

Furthermore, let 

a := mm < a, M 

(3.2.4) 

(3.2.5) 

We establish successive approximations to solutions of (3.1.2), (3.1.3) on [tô ô + 

^ [̂ 0? + The above choice of a is appropriate for this purpose in the sense 

that a < a and for a solution $ of (3.1.2), (3.1.3) to lie within the region R for all 

t ^ [̂ 0, + we should have 

^(^)-xo||< [ ||f(5,$(s))|| As<M{t-to)<b, 
Jtn 

which is satisfied if 

a = t- to< h/M, for all t 6 [to,̂ o + (3.2.6) 

Now if the sequence {^k} converges uniformly to a continuous function ^ on 

to, to-\-a]j such that the point (i, ^fc(^)) ^ R for all t 6 [to, to + a]T, then we may ex-

pect that as A: —> oo, $ would be our desired solution. In this way, • • • ? f̂c? • 

as defined in (3.2.3) would be successive approximations to (3.2.2). 

Hence, we show the following: 

(a) Each exists as a continuous function on [to, to + a]f such that the graph of 

{t, lies in R for all t e [to,toa]j-, 

(b) converges to $ uniformly on [to, to + a]j and there exists an error bound on 

— $11 on [to? io + Ci]T- That is, for each /c = 0,1,2, • • •, there is a positive 

constant £k such that 

- $(i)|| < for all t e [to, to + a]T; 

(c) is the unique solution to (3.1.2), (3.1.3) on + 

We address the above points in two steps: existence of ^k as continuous functions 

on [to, to + a]T, which responds to (a); and the approximation of to a unique 

solution, of (3.1.2), (3.1.3) with a small error, which covers (b) and (c). 



3.2.1 Existence of successive approximations as continuons func-

tions 

In this section, we present our first result which assures that each of the ^ i . • • • 

is well defined and continuous on the interval [ÎOT^O + C^IT-

Lemma 3.2.1 Let f : R*^ 

^Oî + ûîIt such that 

he right-Hilger-œntinuous. If ^o is œntinuous on 

^oW-xoll <b, for all t e [tor + cth: (3.2.7) 

then the successive approximations, ^k? defined in (3.2.3) exist as continuous func-

tions on [TO, to + Q]X such that the points {t. ^ R: for all t E [TO- to + Q ] t . 

Proof: Since f is right-Hilger-continuous on R^, we note from (3.2.3) that each ^k 

is well defined on [to, to H- a]T- We show that eax;h ^^ is continuous on [¿0:̂ 0 + ck 

and satisfies 

— xoll ^ for alH e [to, to + Q]t? (3.2.8) 

so that the graph of {t, lies in R for all i € [ior to + Q]t. 

We begin with the initial approximation ^o- By assumption, exists as a 

continuous function on [to, io+a]T and satisfies (3.2.7). Thus, the point {t, ^o{t)) ^ R 

for allte [to; io + oc]t-

It foUows from (3.2.3) that the next iteration will be 

^ i ( i ) xo + / f (5, ^0(5)) As, for all Í G [to, to + a 
Jto 

(3.2.9) 

Let us define the fimction 

F o ( i ) : = f{t, ^o{t)), for al l t e [to, to + a j r . 

Since f is right-Hilger-continuous on i?'^, we have Fq rd-continuous on [to, to + a]^ 

and, hence, on [to, to + ajÇ. Thus, we can write 

= xo + / Fo(s) As, for all Í e [to, to + a 
Jto 

Hence is continuous on [ÍQ, to + a 



We also note that using (3.2.4), we can re-write (3.2.9), for all t € [to, to + a]j, 

as 

||^i(i)-xo|| < [ ||f(s,$o(5))|| A5 
J to 

< M{t - to) 

< b, 

where we used (3.2.6) in the second last step. Hence (3.2.8) is satisfied for and 

the point (i, ^i ( i ) ) G R for all t G [to, to + ajx-

We assume that the assertion is true for $2, •'' ? and, by induction, show 

that it holds for ^k+i-

Since ^k are continuous on + c^h and the points {t,^k{t)) G R for all 

t ^ [io5 + the function 

Fk{t) := f{t,^k{t)) 

exists and is rd-continuous for all t e [̂ 0,̂ 0 + Q̂ IT- Thus, the function ^k+i defined 

by 

^k+i{t) :=xo+ [ Fk{s) As 
Jto 

exists as a continuous function for all t e [to, to + «̂ ¡T- Thus, for all t e [to? to + a]T, 

we have 

$fc+l(t)-Xo|| < [ ||f(5,^fc(s))|| As 
Jto 

< M{t - to) 

< b. 

Hence ^k+i also satisfies (3.2.8) such that the point ( t , € R for all t € 

to, to + oi\j. 
Thus, by induction, each ^k exists as a continuous function on [to, to + a]T and 

the points (t, ^fc(t)) € R for all [to, to + a j i . 

• 
In the next section, we show that the successive approximations converge on 

to, to + Q;]T to a unique solution $ defined in (3.2.2) and an error bound exists for 

each on [to, to + Oi]j:. 



3.3 Local existence of solutions 

We now present sufficient conditions for the existence of a unique solution, to the 

system (3.1.2), (3.1.3) on the interval [to, to + ajx C [io,io + a]T. For this reason, 

this theorem is termed as the local existence theorem. To prove this result, we need 

the following lemma due to Lin and Xiang [59, Theorem 3.2] and the Weierstrass 

test [26, p.266], [72, p.600;. 

Lemma 3.3.1 Let : R ^ R 6e a continuous and non-decreasing function. If 

ii, ¿2 € T with ti < t2 then 

rt2 rt2 
/ h{t) At< h{t) dt. (3 .3.1) 

Ju Ju r

'Ì2 rt2 
h{t) At< il Jtl 

• 

The Weierstrass test is a theorem which gives a sufficient condition for the uni-

form convergence of a series of functions by comparing it with an appropriate series 

of non-negative constants. 

Theorem 3.3.2 Weierstrass test 

Suppose {gi} is a sequence of real-valued functions defined on a set A, and that there 

exists a sequence of non-negative constants Ki such that 

gi{x)\ < Ki for alli>\ and all x e A. 

Suppose further that the series Yl^i^i converges. Then, the series 

converges uniformly on A. 

• 

The following theorem gives sufficient conditions for the existence of a unique 

solution to (3.1.2), (3.1.3). 

Theorem 3.3.3 The local existence theorem 

Consider the rectangle R^ and let f : —>• R" 6e a right-Hilger-continuous function. 

If: 



(a) $0 continuous on [to, to + a j j such that 

-xol l < 6, 

(6) there exists L > 0 such that f satisfies 

for all t e [to,to + ajx; 

f ( í , p ) - f ( í , q ) | | < L | | p - q | | , / o ra / / ( í , p ) , ( í , q ) (3.3.2) 

then the sequence {^A;} generated by (3.2.3) converges uniformly on the compact 

interval 

to,to + ah = to,to + mm < a, 
M T 

to the unique solution^ of the IVP (3.1.2), (3.1.3). Furthermore, the following error 

estimate holds for a// /c = 0,1, • • •, 

- < N e^^efc, for all t e [to, to + a]T, (3.3.3) 

where ll^i(i) - ^o{t)\\ = N. 

Proof: Let t e [to,to + oIj. We write ^k as 

= Mt) + (^i(i) - Mt)) + (^2(t) - + •••• + (Mt) - ^k-i{t)) 

Z=1 
oo 

(3.3.4) 
i=l 

That is, is a partial sum of the series ^ ^ ^ - for all t e 

to, to+Oi]j. Hence, if we show that the right hand side of (3.3.4) converges absolutely 

and uniformly in the interval [to, to + a] j to some function then $ will be the 

uniform Hmit of for all t e [to,to + a]T, for all /c = 1,2, • • •. We estimate the 

terms - in (3.3.4) for all t G [to, to + a]j. 

We split the proof into parts to explain various elements explicitly. 

(a) Uniform convergence of ^k on [to,to-\-a t : 

We know from our assumption on and Lemma 3.2.1 that each ^k exist as 

continuous functions such that the points (t,^k{t)) ^ R for all t G [̂ 0,̂ 0 + a 

Thus, are bounded on [to, to -(- ajx for all /c = 0,1,2, • • •. Let N > 0 such that 

T-

max ||$i(i) -
te[to,to+a]j 

= N. (3.3.5) 



Using (3.2.3), (3.3.2) and (3.3.5), we can write for all t € [to, to + alx. 

M t ) - ^ i { t ) \ \ < \\f{s,^i{s))-f{s,^o{s))\\ As 
Jto 

< L / ||$i(s)-$o(s)|| As 
Jtn 'to 

< L N [ As 
Jto 

= L N { t - t o ) . 

We will prove by induction on i that for alH = 1,2, • • •, the inequality 

L{t - to) i - l 

i i - l ) \ ' 
for alHG [io,io + <̂ ]T (3.3.6) 

holds. 

We have shown that (3.3.6) is true for i = 1,2. We assume that it also holds for 

some i — m > 1 and show that it holds for i = m + 1 by induction. It follows from 

(3.2.3), (3.3.2) and our assumption that, for all t G [to, to + a j j . 

Jto 

< l J ll^m(s) -^m-l(s)|| As 

Jtn 

Jtn 

N 

N 

{ m - l ) \ 

L{s - to)r-^ 

{ m - l ) \ 

N ^^ - / (s - io ) " -^ 
• Jtn 

NL"^ ( t - t o ) 

As 

ds 

ds 

{m — 1)! m 

N[L{t - to)] 

ml 

where we have used (3.3.6) and Lemma 3.3.1 in the third and fourth steps respec-

tively. Thus the inequality (3.3.6) holds for alH > 1. 



Next, we show that the series ^ ^ ^ - converges uniformly for all 

to, to + a]j. We note from (3.3.6) that for all t G [to, to + a\j, we have 
oo oo r ^ / Mi—1 

i= l i=l 
oo 

i=0 
oo 

( z - 1 ) ! 

L{t - to) 
i\ 

La 

i=0 i\ ' 
(3.3.7) 

which converges to N e^". Hence, by the Weierstrass test, " ^i-i(^)) 

converges uniformly for all t E [io,to + Q̂ JT- Consequently, each ^^ converges uni-

formly on [to, to + QJT. Thus, there exists a function, on [to, to + Q;]T such that 

lim ^k{t) = ^{t), for all t e [io, ¿0 + Q̂ JT-
fc—»oo 

(3.3.8) 

T-

(b) The error estimate for — $ 

We note from (3.3.4) that 
k 

^kit) = Mt) + Y l ^ H t ) - for all t e [to, to + a 
i=l 

Therefore, as k oo, we have 
oo 

= + ~ ^ i - iW) ' for all t e [to, to + a]T. (3.3.9) 
i=l 

Thus, for all i 6 [to, to + ajx, we have 

i=k+l 
oo 

^ E 
> N\La 

i=k+l 
oo 

2! 

= ^ E r ^ io 
La i+k 

^ {i + k)\' 1=1 ̂  ' 
Using the identity i\k\ < (i + A;)!, the above inequahty reduces to 

oo La i+k 

ilk! 

= N 

< N 

i=l 

La]^ ^ [La 

1=1 

La 

= Ne^^ek, 

U oo XT ^ La 

i=0 
La. 



where 

k\ ' 
for all /c = 1, 2, • • • . (3.3.10) 

As the right hand side of (3.3.10) is convergent, so is the left hand side. Hence, for 

all fc = 1,2, • • •, we have 

^k{t) - $(011 < for all t e [io, ̂ o + alx- (3.3.11) 

Thus, satisfy (3.3.3), which gives an error bound on - $(011 for all 

t G ¿0) ¿0 + Cklx-

(c) The limit function ^ is a solution: 

To show that $ is a solution to the IVP (3.1.2), (3.1.3), we show that: 

(i) $ is continuous on [to, ̂ o + 

(ii) the point (i, ^(t)) G R for all t e [¿o, h + ajx; 

(iii) $ satisfies (3.2.2) on [io,io + «]¥• That is 

= xo + / f (s, $(5)) As, for all t 6 [to, to + q;]t. (3.3.12) 
Jto 

For (i), we note that for ii, t2 e [io, h + o]t, we have from (3.2.3) 

'¿2 

Jti 
As 

< Mt2-ti . 

Thus, letting A; ^ 00, we obtain from (3.3.8), 

$(^2) - $(ii)|| < M\t2 - ill, for all ¿1,̂ 2 € [¿0,̂ 0 + ce T-

Replacing t2 with t in the above inequality, where i G (ti — ti + (̂ )t for some ^ > 0, 

we note that for each e > 0 and 5 5ie) = we have 
^ ^ M 

- $(ii)|| < e whenever t e {ti - 5, ti + S)t. 

Hence, $ is continuous on [to, to + 



For (ii), we show that the graph of (i, ̂ (t)) lies in R for all t e [to? ô + Q̂ It- For 

this we let A; oo in (3.2.8). This yields 

^(t) - xoll < M\t -to\ <b, for all t e [to, to + a]T 

Hence the point {t,^{t)) e R for all t e [to,to + a]j. 

For (iii), we show that ^{t) satisfies (3.3.12) for all t e [to, to + ajx- For this we 

show that our approximations (3.2.3) converge uniformly to (3.3.12) within [to, to + 

qJt- We have seen in (3.3.8) that the left hand side of (3.2.3) converges to the left 

hand side of (3.3.12) in [to, to+a] j . Therefore, we only need to prove the convergence 

for the right hand sides of these equations. Thus, we show that as /c oo, 

r f (s, $fc(5)) A s ^ i / ( s , $(5)) As, for all t 6 [to, to + ajx. (3.3.13) 
J to J to 

We note that for all i G [to? ô + we have 

As- ffis,^{s)) As < f\\f{s,^k{s))-ns,Hs))\\As 
J to J to J to 

< L \\^k{s) - Hs)\\ As 
Jtn 

< L /Ve^^efc As 
Jto 

where we have used (3.3.11) in the second last step. We further note from (3.3.10) 

that efc ̂  0 as /c 00. Therefore, as k ^ 00, we obtain 

.La 

ff{s,^k{s)) As- fns,^s)) As Jto Jto 
0, for all t e [to,to a h . 

Hence 

i f(s, As / f(s, $(s)) As, for all t e [to, to + a]T. 
Jto Jto 

(d) $ is unique 

We assume that ^( i ) is another solution of (3.1.2), (3.1.3) such that the point 



G R for all t € [¿0,̂ 0 + «¡T- Then from (3.3.12), we obtain for all t G 

+ « I T , 

m - ' ^ m < ms.^s))-f{s,^{sm As 
Jto 

< L / | | $ ( S ) A S , 
J to 

where we have used (3.3.2) in the last step. Applying Corollary 2.2.5 of Gronwall's 

inequality taking z{t) := \\^{t) - and L{t) := L with g{t) = 0 for all t e 

to, io + we obtain 

- ^(i)|| = 0, for all t e [io,io + «IT-

Thus ^{t) = ^ ( i ) for all t 6 [to, to + q]T. This completes the proof. 

• 

Remark 3.3.4 In Theorem 3.3.3 we note that the simplest choice of the initial 

approximation would be a constant function. Given the initial condition x(io) = 

xo, where XQ G M" is fixed, one can choose = XQ as a special case of the initial 

approximation. The corresponding result will be a special case of Theorem 3.3.3. 

The result can be viewed in [83, pp.67-72]. 

• 

Corollary 3.3.5 Theorem 3.3.3 also holds if f has continuous partial derivatives 
di 

with respect to the second argument on R^ and there exists K > ^ such that — < 

K. In that case, by Theorem 2.2.2, f satisfies (4.4.1) for L := K. 
dp 

• 

We now present a few examples to illustrate Theorem 3.3.3. 

The following example considers the initial approximation to be a quadratic 

function of t. The successive iterations, converging to a unique solution, are then 

generated from (3.2.3). A small error is also estimated between the 5th iteration 

and the solution. 



Example 3.3.6 Consider the rectangle 

R := {{t,p) G T X R : i G [0, 1]t, \P\ < !}• (3.3.14) 

We consider the scalar initial value problem 

x^ = /(i, x) = t x-\- cosrr, for all t 6 [0, a]^; 

x(0) = 0. 

(3.3.15) 

(3.3.16) 

Assume the initial approximation to he (j)Q{t) = t^ for all t e [0, 1]t- We claim that, 

for some a G T such that 0 < a < 1, the sequence {(^fc} generated by the Picard 

iterative scheme (3.2.3) converges on an interval [0, to the unique solution, (j), 

of (3.3.15), (3.3.16) such that the point {t,^{t)) G R for all t G [0,a]T. 

Proof: We show that the given IVP satisfies all conditions of Theorem 3.3.3. Con-

sider 

i?« {(t,p) G T'̂  X R : i G [0,1]$, \p\ < 1}. 

We show the following: 

(a) / is right-Hilger-continuous on R'̂ : Since t is rd-continuous on [0, 1]t, the 

composition function g{t) := t x{t)-\-cosx{t) is rd-continuous for all t G [0,1 

Hence our / is right-Hilger-continuous on R*̂ . 

(b) / is bounded on R'^: Note that for all {t,p) G R'^, 

K T-

f(t,p) t p + cos p 

< \ t p \ + \ cosp 

< u I lp1 + 1 

< 2. 

Thus, / is bounded by M := 2. 

(c) / is Lipschitz continuous on R^: We also note that for all {t,p) G R'^ we have 

df 
dp 

t — sinp 

< I i I + I sinp 

< 2. 



Hence, by Corollary 3.3.5, our / is Lipschitz continuous with Lipschitz constant 

L := 2, which satisfies condition (6) of Theorem 3.3.3. We also note that, with 

M = 2 and for [0, AJX Q [0, 1]T, we obtain from (3.2.5) 

a = m i n { l , i } = i . 

Thus, the maximum interval of convergence for {(pk} is [0, l/2]x. 

(3.3.17) 

(d) is convergent on [0, 1/2]T: We note that 0O(I) = t^ is continuous, and so is 

rd-continuous for all t E [0, 1]T and hence for all t G [0, l/2]j. Thus, for all 

t € [0, l/2]x we have, by assumption 

= \Mt)\ = < 1/4 < 1, 

which satisfies condition (a) of Theorem 3.3.3. 

Hence, applying Theorem 3.3.3, the successive approximations given by 

(/)fc+i(t) := X0+ [ /(s,0fc(5)) As 
Jo 

= [ (s (/)fc(s) +cos(</)fc(s))) As 
Jo 

converge uniformly to a unique solution (/)(i) for all t in the optimal interval of 

convergence [0,1 / 2] t • 

It is easy to note that for alH 6 [0, l/2]x, we have 

M t ) = f (5(/>o(s) + cos((/)o(s)) As Jo 

= / (s^+ cos(s^))As 
Jo 

< / (s^ + cos(s^))i/s 
Jo 

where we have used Lemma 3.3.1 in the last step. We note that for all t € [0,1/2 

the above inequality further reduces to 

-t 

T , 

M^) < ( + Jo 

< 
64' 

59 



Thus, for all t 6 [0, 1/2]T, we have 

64 
33 1 

< h -- 64 4 
49 
64 

Hence, N = 49/64 and so, as A: oo, the error estimate between the kth approxi-

mation and the solution will be 

49 r 

Mt) - <t>{t)\ < ZT^ fo^ all ^ ^ V2]T, o4 

where 
La 

k\ 

Since a = 1, a = 1/2 and L = 2, we note that for /c = 5, we obtain 

= I = .008. 

Hence, the error estimate between the fifth approximation and the solution will be 

49 
(t)5(t) - < ;7Te(.008) = .02, for all t e [0, 1/2]t. 

64 

• 

Our next example takes the initial approximation ^o to be Hnear, with successive 

iterations developed from (3.2.3). The example shows convergence of these iterations 

to a unique solution with very small error estimate between the 10th iteration and 

the solution. 

Example 3.3.7 Let the rectangle R he defined by 

R : = {(t^p) E T X M : I E [0, 1]T, \P - M < 1} 

Consider the initial value problem using the Riccati equation 

x^ = t + x^, for all t e [0, 1]T; 

a;(0) = 1. 

Choosing the first approximation to be 

(¡)Q{t) := T + 1 for all t € [0, 1]T, 

(3.3.18) 

(3.3.19) 

(3.3.20) 

(3.3.21) 



we claim that the sequence of functions generated by (3.2.3) converges on the 

interval [0, 1/5]t to the unique solution (f) of the IVP (3.3.19), (3.3.20) such that the 

point (t, (/)(i)) e R for all t e [0, 1/5]t. 

Proof: We prove that the given IVP satisfies the conditions of Theorem (3.2.3). We 

note from (3.3.18) that 

R" := {{t,p) eJ'^ xR:te[0,1]^, \p - l\ < 1}. 

We prove the following: 

(i) / is right-Hilger-continuous on i?'̂ : We note that the composition function 

k{t) := t (p(t))^ is rd-continuous for all i € [0, IJt- Thus our / is right-

Hilger-continuous on R'̂  ; 

(ii) / is bounded on R'^: We note that p < 2. Therefore, for all t € [0,1]^, we have 

f(t,p)l = lt-hp^ I < | + I < 1 + 4 = 5. 

Thus, / is bounded by M = 5 for alH G [0, 1]t. Thus, for an interval [0, a]j C 

0, 1]t, we have a < — = 
M 5 

(iii) / is Lipschitz-continuous on R'̂ : Note that for p < 2, we have 

df(t,p) 
dp 

2p I < 4, for all i G [0,1 

Thus, by Corollary 3.3.5, / is Lipschitz continuous with Lipschitz constant 

L = 4; 

(iv) (j)k is convergent on [0, 1/5]t: We note that 0o(i) = t + l is continuous for all 

t e [0, 1/5]t and 

_ = + 1 _ i| = \t\ < 1/5 < 1, for all t € [0, 1/5]t. 

Thus, by Theorem 3.3.3, the successive approximations given by 

(pk+iit) := a:o+ [ /(s,0fc(s)) As 
Jo 

= 1 + i\s + <t>lis)) 
Jo 

As (3.3.22) 



converge uniformly to a unique solution, and have the optimal interval of con-

vergence as [0, 1/5]T. Thus, for all t G [0, 1/5]T, the next approximation will 

be 

M t ) = 1 + + A s 
Jo 

= 1 + [ (5=̂  + 35 + 1) As, 
Jo 

3 o t̂  

where we have used Lemma 3.3.1 in the second last step. Thus, for all t e 

0,1/5 T, 
3 9 t̂  

< 

< -08. 

+ — + 3 

Thus, N = -08 for a = 1/5. Hence, with L = A and choosing k = 10, we obtain 
(4/5)10 

eio = 10! 
= 3 X 10~°. 

Therefore, for all t G [0, 1/5]T, the error estimate between the 10th approxi-

mation and the solution will be 

M t ) - < Ne^^'eio < 6 X 10"^ 

• 
In the next section, we further discuss the convergence of successive approxi-

mations to unique solutions in the light of an example that has been discussed by 

researchers for the ODE case (see [63, pp. 628-632], [69, pp 51-52]). Of interest 

is the relationship between the convergence of Picard iterations and uniqueness of 

solutions. We discuss the case in the time scale setting. 

3.3.1 Convergence of successive approximations and uniqueness of 

solution 

In this section, we consider a time scale transformation of [69, pp. 51-52]. We 

search answers to the following questions regarding our local existence results in the 

previous section: 



• Is the right-Hilger-continuity of / sufficient to ensure that the sequence (or 

subsequences) of successive approximations actually converge to a solution? 

• If the successive approximations do not converge, can we still have a solution 

of a dynamic IVP? 

• Can we always construct sequences (or subsequences) by successive approxi-

mation that converge to a unique solution of a dynamic IVP? 

The answers to the first and the third question are 'no' and for the second question 

is 'yes'. To see how, we look at the following example. 

Example 3.3.8 Consider a continuously delta differentiable function 6 : [0, 1]T ^ 

0, oo) such that 

Let f : (0, 

0(0) = 0; 

e{t) > 0, for all t e (0, 1]T; 

and e^{t) > 0, for all t G (0,1]^. 

M be defined by 

0, for all t = 0, —oo < p < oo; 

oHt). for all t e (0,1]^, p < 0; 

oHt) 0^{t) - -J^p, for all t 6 (0, 0 < p < ^(i); 

0, for allte (0,1]^, p > e{t). 

Consider the scalar dynamic IVP 

x^ = fit, x), for all t e (0,1]^; 

x(0) = 0. 

We claim that the successive approximations defined by 

M t ) = 0; 

(/>fc+i(i) := / f{s,Ms)) As 
Jo 

do not converge to a unique limit for 0 < i < 1. 

(3.3.23) 

(3.3.24) 

(3.3.25) 

(3.3.26) 

(3.3.27) 

(3.3.28) 

(3.3.29) 

(3.3.30) 



^^ = ^ = for a n t e (0,1 

Proof : We note that if x{t) : = then from (3.3.23), we have x(0) = 0. Further-

more, we note from (3.3.26) that 

f{t,x) = f(t, 

Thus, x{t) := ^ is a solution to (3.3.27), (3.3.28). 
Zi 

Next we note that Q is delta difFerentiable and for any continuous function p, it 

follows from (3.3.26) that our / is right-Hilger-continuous on (0,1]^ x R. We show 

that the sequence (or subsequences) of successive approximations do not converge 

to the above solution. Note that, from (3.3.29), that for all t 6 (0, 1]T, the first 

iteration will be of the form, 
»t 

01 (i) = [ fis,Ms))As 
Jo 

= ffis,0)As 
Jo 

= [ e^{t) As 
Jo 

= 0{t). 

The second iteration will, therefore, be, for all t G (0, 1]T 

Jo 

= f{s,e{s)) As 
Jo 

= 
Jo e{s) 0{s) As 

= 0. 

Hence, 4>3{t) = (l)i(t) = for all t e (0, 1]T- In this way, we will have 

(t>2k{t)=0 and (t>2k+i{t) = 0{t), for a l H E (0, 1]T. (3.3.31) 

Thus, (pk does not converge to a unique hmit in (0, 1]T in general. We further note 

from (3.3.31) that / ( t , 0 ) ^ 0 and f{t,e{t)) + for all t G (0, 1]T. Hence, we 

conclude that 

• the two subsequences converge, but not to the same limit; 

• neither of the limits of the subsequences are solutions to our problem. 



The above example also shows that 

• the right-Hilger-continuity of / alone is not sufficient to ensure that the se-

quence (or subsequences) of the successive approximations actually converge 

to a solution. 

• the Picard-Lindelof theorem provides only a sufficient condition for the suc-

cessive approximations to converge to a unique solution. 

3.4 Global existence of solutions 

The result presented in Theorem 3.3.3 restricts the domain of solution for points that 

He within a small interval containing to in [io, to + a]T. For this reason, we call it the 

local existence theorem. If a function ^{t) solves the initial value problem (3.1.2), 

(3.1.3) for all t e [ioj^o + then we say that the solution exists non-locally. In 

this section, we present a result that guarantees convergence of iterations (3.2.3) to 

a non-local solution of the system (3.1.2), (3.1.3) and we call it the global existence 

theorem. 

In our next result, the global existence theorem, we show that if f satisfies a 

Lipschitz condition on the infinite strip 

S'^ := {{t,p) eT'^ xW :te [to, to + a]Ç, ||p|| < oo}, 

then the solution exists in the entire interval [to, to + a]j. 

Theorem 3.4.1 (The global existence theorem) 

Let f be a right-Hilger-continuous function on S'^. If: 

(а) there exists L > 0 such that f satisfies 

||f(i, p) - f{t, q) II < L||p - q||, for all (i, p), (i, q) G R"; (3.4.1) 

(б) $0 is continuous on [to, to + a]T; 

then the sequence generated by the Picard iterative scheme (3.2.3) exists in 

the entire interval [ioj^o + and converges to the unique solution ^ of the IVP 

(3.1.2); (3.1.3); on [to, to H-aji-, with the error estimate 

- ^(i)|| < Ne^^ek, for all t 6 [to, to + ajx, (3.4.2) 



where N = mo^t^^toM+ah ll^iW " 

Proof : We refer to the proof of Theorem 3.3.3 and follow similar steps. 

1. Uniform convergence of on [to, to + ajx: 

We consider the successive approximations defined in (3.2.3) for all t € + 

ajx- By assumption ^o{t) exists as a continuous function for all t € [to, to + a]j 

and is, therefore, bounded for all t G [̂ 0,̂ 0 + Since f is right-Hilger-

continuous on f{t,^o{t)) is bounded for all t e [to, to + a]^. Thus, there 

exists Ml > 0 such that 

for all t e [to,to + a]f (3.4.3) 

Thus, using (3.2.3), we obtain, for all t e [to, to + a]T, 

Jtn 
< Mi{t-to) 

= Mia. (3.4.4) 

Consider the successive approximations defined in (3.2.3). Then, by induction, 

as proved in Lemma 3.2.1, each ^k exists as a continuous function on [to, to + 

ajx" Also, for /c = 2,3, • • •, an expression for can be written as in (3.3.4). 

Thus, for all [to, to + we can write 

oo 

i=l 
Using (3.4.4), we have, for all [to, to + 

oo 

Mt) - xoll < \\^o{t) - xoll + WMi) - ^ i - l W 

(3.4.5) 

(3.4.6) 
i=l 

Since $0 and are continuous on [to, to + ajx, the assumption 

for all t e [to, to + «It (3.4.7) 

is well-defined. Hence, we can write (3.4.6) as 
oo 

Mt) - xoll < ll^o(i) - ^l{t)\\ + W^lit) - xoll + W -
i=l 

oo 

< AT + Mi{t -to) + Yl W - W (3.4.8) 
i=l 



By induction, as obtained in the proof of Theorem 3.3.3, the error inequaUty 

(3.3.6) also holds for all t e + î Jx and so, for alH > 1, we have 

[L{t - io)]^-^ 
for all t e [to, to + a\j, (3.4.9) 

( i - 1 ) ! 

Thus, the series \\^i{t) - ^i-i{t) converges to In this way, the 

right hand side of (3.4.5) is convergent. Therefore, by Weierstrass test, the left 

hand side is also convergent. Hence, there exists a function $ such that 

^k{t) ^(i), for all t e [to, to + a]T. (3.4.10) 

Moreover, using (3.4.9), we can re-write (3.4.8), for all t G [¿0,̂ 0 + a]T, as, 
00 

{Lay-' 
i=l 
00 

i=0 ^ ' 
< N-\- Mia + A^e^" 

Define b := Mia + + 1). Then, we obtain 

^k{t) - xoll < b, for all t G [to, to + a\j. (3.4.11) 

Thus, the points (i, ^k{t)) G R for all i G [to,to + a]j. 

2. The error estimate on — 

The error estimate for \\ k̂{t) - is given by the inequality (3.4.9) using 

(3.2.3) for all t G [to, to + a]j. It follows that, for ê  

have, for all i G [to,to + a]^, we have 

La 
k\ 

where fc > 1, we 

which gives an error bound on — ^{t)\\ for all t G [to, to + a]T. 

3. The limit function $ is the unique solution: 

We show that: $ is continuous on [to, to + «¡t; the graph of {t, ^(t)) lies within 

R for all t G [to, to + î lx; ^ satisfies (3.2.2); and $ is unique. 



The continuity of $ is the same as proved in part(c(i)) of the proof for Theorem 

3.3.3, with a replaced with a. It follows from (3.4.10) and (3.4.11) that as 

fc ^ oo, we have 

^ ( i ) - xo l l <6 , for all t 6 [to t̂o + a]T-

Thus, the point (i, ^{t)) e R for all t e [to,to + a]j. 

We also note from (3.4.10) that the left hand side of (3.2.3) converges to the 

left hand side of (3.2.2). The proof for the right hand sides is the same as 

shown in the proof (c(iii)) of Theorem 3.3.3, replacing a by a. Hence for all 

t ^ [̂ 0, + we have 

i f(s,$fc(s)) A s [ for a l H e [io,io + alT-
J to J to 

The uniqueness of solution also follows in the same way as proved in (d) of 

Theorem 3.3.3. 

This completes the proof and a unique solution exists for IVP (3.1.2), (3.1.3) in the 

entire interval [to, to a] j. 

• 

The above theorem is a generalisation of the global existence theorem [83, The-

orem 4.13] in which was a scalar and was taken to be the initial value xo-

Thus, the bound b on — xo|| in the above theorem includes an additional term 

N + Ma. 

Corollary 3.4.2 Theorem 3.4-1 also holds iff has continuous partial derivatives 
di 

with respect to the second argument on S'^ and there exists K > 0 such that — < 

K. In that case, by Theorem 2.2.2, f satisfies (4.4.1) for L := K. 
dp 

• 

The following example is an extension of Example 3.3.7, illustrating the existence 

of solution to the IVPs (3.3.19), (3.3.20) in the entire interval [0, i; 



Example 3.4.3 We re-consider Example 3.3.1 and the Riccati initial value problem 

(3.3.19), (3.3.20). Define the infinite strip 

S := {{t,p) G T X R : Í e [0, 1]t, \P\ < oo}, (3.4.12) 

We have the first approximation to be a continuous function (/>o(i) := t 1 for all 

t 6 [0, 1]t- We claim that the sequence of functions (¡)k generated by the Picard 

iterative scheme (3.2.3) converges to the unique solution (f) of (3.3.19), (3.3.20) such 

that the point {t, 0(i)) G R for all t € [0, 1]t, where 

R := {{t,p) € T X R : t G [0, 1]t, |p - 1| < 9}. (3.4.13) 

Proof: We show that (3.3.19), (3.3.20) satisfies all conditions of Theorem 3.4.1. 

Note that in this case 

S'^ := {{t,p) € T'̂  X R : Í e [0,1]^, \p\ < oc}. 

We show the following: 

(i) f is right-Hilger-continuous on S'^: We proved the right-Hilger-continuity of 

/ in R'̂  in Example 3.3.7. By the same arguments / is right-Hilger-continuous 

on 

(ii) f is Lipschitz continuous on 5'̂ : Note that, for alH G [0, 1]t, we have 

\f{t,Mm = \t + 4>oit)\ 

< 5. 

Thus, Ml = 5. 

We also note from Example 3.3.7 that 

3 
for all t e [0,1 

Therefore, for alH G [0, 1]t, we have 

3 2 t^ 11 < + < 
2 + 3 - 6 



Thus, AT = 11/6. 

Using (3.4.11) and the values of a, Mi, AT, we note that the minimum integral 

value of b for which L > 0 is 6 = 9. Thus, choosing 6 = 9, we obtain a Lipschitz 

constant L = .16 for / . 

(iii) are convergent on [0, 1]t: By Theorem 3.4.1, the successive approximations 

given by 

(pk+iit) := X0+ ( i{s,(t)k{s)) As 
Jo 

= 1 + / (s + cPlis)) As, 
Jo 

converge to a unique solution </) for all t G [0, 1]t such that the point (t, (pit)) G 

R. Hence, with Mi = 5, L = .16 and N = 11/6, if we choose A; = 5, we obtain 

= 
.16 
5! 

= 1 X 10"^ 

Therefore, the error estimate between the 5-th approximation and the solution 

will be 

11 
(t)5(t) - (l){t)\ < -^e-^^il X 10"^) = 3 X 10"^ for all t 6 [0, 1]t. 

6 

• 
In the next section, we present a time scale transformation of a theorem of Keller 

50, Chapter 1] from ordinary differential equations, applying ideas from Theorem 

3.4.1. 

3.5 Keller's existence theorem on T 

In this section, we present another existence result employing the method of succes-

sive approximations using ideas from [50, Chapter 1]. We consider a dynamic initial 

value problem with the initial value in an n-sphere of radius r for some r > 0. We 

also consider a right-Hilger-continuous function f defined on a larger sphere. 

Let r, M > 0 and t a point in an arbitrary compact interval [to, ̂ o + ^ T. Let 

Ao € R"" and define 

Nr{Ao) := { p : | | p - A o | | < r } (3.5.1) 



and 

Pr,M(Ao) := {(i,p) : t e [to, to + a]? and ||p-Ao|| < r + M(i - io)}-(3.5.2) 

Consider the vector dynamic IVP 

x"̂  = f(t, x), for all t e [to, to + a 

x(io) = XQ. 
T5 (3.5.3) 

(3.5.4) 

Then the following theorem guarantees a unique solution to the IVP (3.5.3), 

(3.5.4) in Pr-,M(Ao). 

Theorem 3.5.1 Let AQ 6 M̂  and XQ G Nr(AQ). Consider positive constants 

r,M,N such that (3.5.1) and (3.5.2) hold. Let f : Pr,M(Ao) ^ M^ he a right-

Hilger-continuous function. If: 

(i) f satisfies 

f(t,p)|| < M, for all (i,p) € Pr,M(Ao); (3.5.5) 

(ii) there exists a constant L > 0 such that 

f(I ,p)-f(I ,q)|| < L ||p-q||, / O R A / / ( I , p ) , ( I , q ) € P . , M ( A O ) ; (3.5.6) 

(Hi) the initial approximation continuous on [to, to + a\j such that 

|$O(I) - Aoll < R + M{t - to), for all t G [to, to + AJJ, (3.5.7) 

then the successive approximations defined by 

^k+i{t-, xo) xo + [ f(s, XQ)) AS, for all t 6 [to, to + AJI (3.5.8) 
J to 

converge uniformly on [iô ô + ^̂ Ix to the unique solution, x := x(i, XQ), of the dy-

namic IVP (3.5.3), (3.5.4) such that the point (i,x(i,xo)) G Pr,M(Ao), with the 

error estimate 

xo) - ^o{t] xo) II < Qe^^^-^'hk, for all t e [to, to + ajx, (3.5.9) 

where Q := maxte[£o,io+a]T ll^i(^;xo) - ^o(i;xo) 
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Proof: As before, we divide the proof into smaller sections for the purpose of clarity. 

We show the following: 

(a) {^k} ¿s uniformly convergent on [to^to + a]-!-: 

We first show that ^k are uniformly continuous on [to, to + a]j for all fc > 0 

such that the points (i, € Pr,M(Ao) for all t 6 [to, to + ajx- Next we 

show that the sequence { ^ k } converges to the unique solution $ in Pr,M(Ao)-

Note that f is right-Hilger-continuous on Py.^M(Ao) and, by assumption, 

is continuous on [to, to + ajx such that (3.5.7) holds. It follows by Lemma 3.2.1 

that ^k are continuous on [to, to + a\T for all /c > 0. 

Next, we show that each ^k satisfies 

|$it(t;xo) - Aoll < r + M{t - to), for all t e [to, to + a]T, (3.5.10) 

so that the points ^ Pr,M(Ao) for all t e [to, to + a]j. We prove 

this by induction on k. We note from (3.5.7) that (3.5.10) holds for k = 0. 

Next we assume that (3.5.10) holds for some k = i > 0, so that 

|$j(i;xo) - Aoll < r + M{t - to), for all t € [to, to + ajx-

Using (3.5.1), (3.5.5) and (3.5.8), we obtain, for all t e [to, to + a]T, 

|^i+i(i;xo) - Aoll < ||xo-Ao||+ [ ||f(s, ^¿(s; xo))|| As 
J to 

< r + M{t-to). 

Hence (3.5.10) is true ioi i = k + 1, and so, holds in general. Thus, the points 

{t, XQ)) G Pr ,M(Ao) for all t e [to, to + AJX. 

Finally, it will be sufficient to show that, for all t e [to,to + the estimate 

[L{t - to)]^-' 
(3.5.11) 

( f c - 1 ) ! 

holds. We prove the above inequality by induction on k. Note that, from (iii), 

(3.5.11) holds ior k = 1 for all t e [to, to + a\j. For k = 2, we note from (3.5.8) 

that, for all t e [to, to + ajx, 

$2 ( i ; xo ) -^ i ( i ; xo )|| < [ ||f(5,$i(s ;xo))-f(s ,^o(s;xo))|| As 
Jto 

< L ||$i(s;xo)-^o(5;xo)|| As 
Jto 

< QL{t - to). 



where we have used (3.5.6) in the second last step. Thus, (3.5.11) is true for 

A; = 1,2. We assume that (3.5.11) holds for some k = i > I and note that 

using Lemma 3.3.1, (3.5.6) and (3.5.11), we obtain 

$ i+ i ( i ;xo ) -$ i ( i ;xo )|| < [ ||f(s, ̂ ¿(s;xq)) - f(s, xo))|| As 
Jto 

< L I ||$i(s;xo) - ^¿_i(5;xo)|| As 
J to 

< QL i 
Jtn 

[L(s - io ) ] ' - ' 

< QL i 
J to 

to ii - 1)! 

( ¿ - 1 ) ! 

As 

ds 

< Q 
Lit - to) 

ii 

Thus the inequality (3.5.11) holds for all i. We also note that, for all t e 

to, to + alx, the series 

i=l i=l 

oo 
z! 

L(s - to) 
(3.5.12) 

2=0 

We note that the right hand side of (3.5.12) is convergent and so the left hand 

side is also convergent applying the Weierstrass test. Therefore, we conclude 

that converges uniformly on [to, to + a j j to some function The error 

estimate for ~ 1̂1 is obtained in the same way as in the proof (part (3)) 
[ L ( i - i o ) ] ^ of Theorem 3.4.1. Thus, for all k >0, there exists ê  := 

k\ 
such that 

$fc(i;xo) - ^(i;xo)|| < for all t e [io,to + a]T, (3.5.13) 

and so. 

xo) ^ ^(t- xo) as fc —> oo, for all t e [io, io + ajx. (3.5.14) 

(b) The limit function ^ is a solution to (3.5.3), (3.5.4): 

We note that since f is right-Hilger-continuous on P^^m(Ao), we have $ a 

solution of (3.5.3), (3.5.4) if and only if ^ satisfies the delta integral equation 

$ ( t ; x o ) = x o + [ f (s ;$(s;xo) ) , for alH e [to, to + ajx. (3.5.15) 
J to 



We note that XQ) is a continuous function for all te[to,to + A]T, such that 

the point (I, XQ)) G PR.,M(Ao). The proof being the same as in proof(c)(i) 

of Theorem 3.3.3 and is omitted. 

Next we show that (3.5.8) converges to (3.5.15). We have already proved in 

(3.5.14) that the left hand side of (3.5.8) converges to the left hand side of 

(3.5.15). Therefore, we only need to prove that 

Í f(5,$fc(5;xo)) A s / /(s,$(s ;xo)) As, for alH € [to, ô + ^IT-
Jto Jto 

Note that, for all t € [to, to + ajx, we obtain 

Í f(s,$fc(s;xo)) As- Í f (s ,$(s;xo)) As 
Jto Jto 

< [ ||f(s,$fc(5;xo))-f(s,$(s;xo))|| As 
Jto 

< L ||$fc(s;xo) - ^(5;xo)|| As 
Jto 

< LQe^(^-^o) [ Ek As 
Jto 

< (t-to), 

where we have used (3.5.13) in the second last step. Since ê  0 as /c oo, 

we have. 

Í f(s,<&it(s;xo)) As- Í / ( s ,$(s ;xo) ) As 
Jto Jto 

0 for all t G [to, to + ajx-
'to 

Hence 

i f (s, ^kis; X O ) ) As ^ i f{s, $(s; XQ) ) A S for all t G [to, to + AJX-
Jto Jto 

(c) ^ is unique 

The proof is exactly the same as in part (d) of the proof of Theorem 3.3.3 and 

is therefore omitted. 

• 

Corollary 3.5.2 Theorem 3.5.1 also holds if i has continuous partial derivatives 

with respect to the second argument on there exists K > 0 such that 

< K. In that case, f satisfies (4.4.1) for L := K by Theorem 2.2.2. 
dp 

• 



3.6 Peano's existence theorem on 

In previous sections, we discussed the existence of solution to the dynamic IVP 

(3.1.2), (3.1.3) as the unique limit of successive approximations to the solution when a 

right-Hilger-continuous function f satisfied a Lipschitz condition on a given compact 

domain R'̂ . In this section, we prove that, in the absence of the Lipschitz condition, 

the IVP (3.1.2), (3.1.3) has a solution which is the uniform hmit of a sequence of 

solutions to the system of IVPs 

x"^ = Xfc), for all t e [io, to + CL 

X(ifc) = Xfc, 

T' (3.6.1) 

(3.6.2) 

where k > 1 such that 

tk ^ to E T, and x^ ^ xq as k OO. (3.6.3) 

More precisely, we consider a sequence of right-Hilger-continuous functions fi, f2, • •' 5 ffc 

defined on R'̂  such that the uniform limit 

lim fk{t, p) = f (i, p), for all (i, p) € fc—»•oo (3.6.4) 

exists. Denote by {^k{t)} a sequence of continuous functions and {^^^{t)} as a 

subsequence for all t G [̂ 0,̂ 0 + O]T- We show in our next result that the above 

subsequence has a uniform limit, which is a solution to the hmit problem 

x^ = f(t, x), for all te[to,to-\- a]x; 

x(io) = XQ. 

(3.6.5) 

(3.6.6) 

We further show that if $ is unique then $ will be the uniform hmit of the sequence 

{^K(T)} for alH 6 [̂ 0,̂ 0 + O]T-

Definition 3.6.1 [51, p.346] 

Let t be a point in [to,to a\j CT. A family of functions Xj defined on [to, to + a] j 

is said to be equicontinuous i f , for every e > 0, there exists 5 \= 5{e) > ^ such that 

for a// z = 1,2,3, • • •, 

i{t) - Xi(s)|| < e, whenever s e {t - S,t + S)j for all t,s e [to, to + a]j. 



Remark 3.6.2 [42, p.3] 

Let X : 5 C T —> R'̂  6e arbitrary. Consider a family of functions Xj uniformly 

Lipschitz continuous on S. That is, there exists L > 0 such that for all i > 1, we 

have 

|xi(i) - Xi(s)|| < L\t - s|, for all t,s e S. 

Then Xj are equicontinuous on S. 

• 

Lemma 3.6.3 [42, p. 3] 

Consider a compact set E and a family of continuous functions Xj such that Xj are 

uniformly convergent on E. Then x^ are uniformly hounded and equicontinuous in 

E. 

• 

The next theorem, called the Arzela-Ascoli Theorem (sometimes written as Ascoli-

Arzela Theorem) [31], [51, Theorem 8.26], [16, p.l78], will be useful in some impor-

tant results in this and the next chapter to establish uniform convergence of compact 

maps. 

Theorem 3.6.4 Arzela-Ascoli Theorem 

Consider a family of uniformly bounded and equicontinuous functions xi, X2, • • • de-

fined on a compact set C R^. Then, there exists a subsequence Xj(2), •'" 

that converges uniformly on En for all i = 1,2, • • •. 

Remark 3.6.5 [42, p.4] 

If the uniformly convergent subsequences in Theorem (3.6.4) converge 

to the same limit, then 

Xi for o// 2 = 1,2, • • • . 

• 

Theorem 3.6.6 Consider a sequence {f^} of right-Hilger-continuous functions ffc : 

^ ^n gŷ f̂̂  (3.6.4) holds. We show the following: 



(a) I f , for all k = 1,2, , ^k is a solution to (3.6.1), (3.6.2) on [to, ô + ^^IT? then 

the subsequence ^ f c ( i ) , is uniformly convergent on [to, to + cl\t}' 

(h) if we denote the limit of this uniformly convergent subsequence by 

^{t) = lim ^k(i){t), for all t € [to, to + ajx, 
k—^oo ^ ' 

then ^ will be a solution to (3.6.5), (3.6.6) on [to,io + 

(3.6.7) 

(c) i f ^ { t ) is the unique solution of (3.6.5), (3.6.6) for all t G [to, to + a ] j , then 

= lim for all t G [to, to + a ] j . (3.6.8) 
fc—>oo 

Proof : (a) We show that the subsequence is uniformly convergent to $ on 

to, to + a j i : 

We note that {f^} is a sequence of right-Hilger-continuous functions, converging 

to a limit f uniformly on the compact set R'^. Hence, f̂  are uniformly bounded on 

R'^. Thus, there exists K > 0 such that for all k > 1 

||ffc(t,p)|| < K, for all ( i ,p) e R''. (3.6.9) 

Since ^k(t) is a solution to (3.6.1), (3.6.2) for all k >1, we have from (3.6.9) 

< K, for all t e [to, to + . 

Hence, by Theorem 2.2.2, ^k are Lipschitz continuous with Lipschitz constant K for 

all k > 1, and by Remark 3.6.2, ^k are equicontinuous on [to, to + a]T. Thus, for 

every e > 0, there exists ^ ^ ^̂ ^̂  ^̂ ^ t,s e [to, to + «JT, we have 

\^k{t) — < whenever — 5| < S. 

Therefore, by Theorem 3.6.4, there exists a subsequence which is uniformly 

convergent on [to, to a] j for all fc > 1. Hence, by our assumption on we have 

^k(i){t) ^{t) for all t e [to, to + a\j (3.6.10) 

(6) We show that $ is a solution to (3.6.5), (3.6.6): 

By Lemma 2.1.3, ^ will be a solution to (3.6.5), (3.6.6) if and only if it solves 

the delta integral equation 

= xo + r f (5, $(5)) A5, for all t G [to, to + ajx- (3.6.11) 
Jto 



Since ^k is a solution to (3.6.1), (3.6.2), ^^(i) will be a solution to (3.6.1), (3.6.2) 

corresponding to the /c(2)-th equation. Thus, by Lemma 2.1.3, for all /c, z > 1, 

satisfies the delta integral equation 

^k{i){t) = + i fk{i){s,^{s)) A5, for all t G [to,to + a]T. (3.6.12) 
Jto 

Since R"̂  is compact and ffc f uniformly on we have 

ikii){t, x) f (i, x), for all (i, x) 6 

Similarly, from (3.6.3) and (3.6.2), we have tk({) to and X(IJT(I ) ) =: Xk(i) XQ for 

all k{i) > 1. Thus, we have the right hand side of (3.6.12) convergent to the right 

hand side of (3.6.11) and by (3.6.10), the left hand side of (3.6.12) also converges to 

the left hand side of (3.6.11). Thus, $ satisfies (3.6.11). By Remark (3.6.5), $ 

and is a solution to (3.6.8) for all t e [to, to + a]T. 

(c) $ is the unique solution of (3.6.5), (3.6.6): 

Note that, from (b) above, ^{t) is a solution to (3.6.8) for all t G + ô It and 

so, is a continuous function. Also, ^k is a solution to (3.6.1), (3.6.2) on [to, to + a]T 

and the point {t,^K{t)) € R for all t € [̂ 0,̂ 0 + O]T- Thus, as fc oo, the graph 

(i, G R for all t e [¿0,̂ 0 + o]j. It is already proved that $ satisfies (3.6.11). 

Thus, $ is continuous on [¿0,̂ 0 + The uniqueness of $ is proved in the same 

way as in the proof (d) of Theorem 3.3.3 and is omitted. This completes the proof. 

• 
Now, we present the main result of this section. This result is an extension of 

42, pp. 10-11] to the time scale setting and guarantees the existence of solutions 

to (3.6.5), (3.6.6) in the absence of Lipschitz condition. In this way, the result is 

more flexible for the existence of a solution to (3.6.5), (3.6.6) than Theorem 3.3.3. 

However, it does not guarantee the uniqueness of solutions. 

Theorem 3.6.7 Peano's existence theorem on T 

Let {: R*^ W^ be a right-Hilger-continuous function. If there exists to < a < a 

such that 

a := min , (3.6.13) 



then the IVP (3.1.2), (3.1.3) has at least one solution in the interval [to, to + a\j C 

.̂ 05 to + ajT-

Proof: We first approximate f uniformly on R*̂  by a sequence of right-Hilger con-

tinuous functions {f^} such that f^ : ^ R^, for each k = 1,2, • • •. Let ^(s) be a 

real-valued smooth function defined for all s > 0 such that ip{s) > 0 for 0 < s < 1; 

and iIj{s) = 0 for S > 1. Then, by [42, p.6], there exists a constant c > 0 depending 

on ^(s) and the dimension n, such that for every e > 0, we have for alH = 1,2, • • • , n 

/

oo poo 

• • • / - p f ) dpi = 1, for all {t,p) e R", 
-oo J—oo where ||x|| = ( ^ So if, for alH = 1, 2, • • • , n, we define 

/

oo poo 

-OO J — oo for all {t, p) € i?", 

(3.6.14) 

then for each i = 1,2, - • • , n we have 

/

OO roo 

-OO J—OO 

(3.6.15) 

for all {t, p) € i?". 

We note from [42, p.6] that as 6 ^ 0, 

ffc —̂  f, uniformly on R'^. (3.6.16) 

Thus, there exits M > 0 such that ||ffc|| < M, for all /c = 1, 2, • • •. Furthermore, {ffc} 

has continuous partial derivatives of all orders with respect to xi, 0:2, • • • and is 

uniformly Lipschitz continuous. 

Hence, {f^} satisfies the conditions of Theorem 3.3.3. Thus, ^^ will be solutions 

to the family of dynamic IVP (3.6.1), (3.6.2) in the compact interval 

b ' 
to, to + Oí to, to + min < a. 

M T 

(3.6.17) 

for all A; > 1. Moreover, are equicontinuous and for all fc > 1, 

- xoll < b, for alH e [to, to + 

Furthermore, since f^ f on R'̂  by (3.6.16), Theorem 3.6.6 applies, and so we 

have uniformly for all t e [to, to + ^It and is a solution to (3.6.5), 

(3.6.6) for a l l í e [to, + a]T and so for alH e [to, to + ajx-
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Next, we show that the point (t, G R. This is evident by the convergence 

of in (3.6.17). Hence, as /c oo, we obtain 

- xoll < 6, for all t e [to, to-\- a . 

Thus, the graph of the point (i, ̂ {t)) lies entirely in R and the theorem is proved. 

• 

3.7 Higher order equations 

This section extends the ideas in Theorem 3.3.3 to equations of order n following 

30, pp.258-260 . 

Let T be an arbitrary time scale. Consider a a set of continuous functions x : 

to, to + a]T ^ That is x = {xi,x2: • • • , Xn), such that 

Xi := x; X2 := x"^', X3 := x^ • • ^Xn-i X \ Xn •= x . (3.7.1) 

Here x^ is the generahsed derivative of x. If we delta-differentiate the above system 

of equations, we obtain a set of first order dynamic equations 

rrf = X2\ 
X2 = X3] 

(3.7.2) 

Consider 

R" = {(i, p) 6 T'̂  X R : t e [to, to + , Hp - A|| < b} (3.7.3) 

for all a, 6 > 0, and to, to-\- a eT. 

Let f : —> R'̂  be a right-Hilger-continuous function of 1 + n variables. 

We consider the system of n-th order dynamic equations 

= f (i, - , for all t e T'̂ ; 
n - l . 

{x'^)'(io) = A,, 

(3.7.4) 

(3.7.5) 



where i = 1,2, Under the assumption (3.7.1) and (3.7.2) this system can be 

reduced to 

x ^ = f ( i ,x ) , for alHeT'^; 

x(io) = A, 

(3.7.6) 

(3.7.7) 

where A = (Ai, A2, • • • , An). 

If the system (3.7.4), (3.7.5) has a solution for all t G [to, ^o + «¡T ^ [^o, + 

a T, then 

^ = ((̂ 1, 02, • • • , <t>n) ••= • • • , (3.7.8) 

where (/>, (j)̂ ,̂ • • • , ^ are the respective solutions for the system (3.7.2). The 

following result guarantees the existence of a unique solution of (3.7.4), (3.7.5) in 

Theorem 3.7.1 Let fn defined in (3.7.2) be a right-Hilger-continuous function on 

R^. If fn satisfies the conditions that: 

(a) there exists Li > 0 such that 

||/n(i,x) - /n( i ,y)|| < i^i||x-y|| for all ( i ,x ) , ( i ,y ) 6 (3.7.9) 

(b) the initial approximation, 

^o(t) = where -^o'^'if) 

are the initial approximations ¿0 02,' • • ,(t>n for fc = 0,1, • • • , n — 1, is con-

tinuous for all i G [to, + ajir such that 
|$o(i)-A|| <6 , for all t e [io, to + a]T, (3.7.10) 

then the sequence {^kit)} generated by the Picard iterative scheme (3.2.3) converges 

on the compact interval 

b ' 
to,to + a\j = to, to + min < a. M T 

to the unique solution ofn-th order IVP (3.7.6), (3.7.7) for all t G [io,io + Qi]T-

The error estimate 

ll^fc(i) - ^t)\\ < N for k = 0 , 1 , 2 , - ( 3 . 7 . 1 1 ) 

also holds for all t e [to, to + ajx, where N = max£e[io,io+a]T ll^i(^) " ^o(i) 



Proof: We show that f satisfies the conditions of Theorem 3.3.3. 

(i) f is bounded on R'^: 

Since / is right-Hilger-continuous on there exists K > 0 such that 

||/n(i,p)|| < K, for all (i,p) E R". (3.7.12) 

Using the above inequality along with (3.7.2) for all (i, p) 6 R'^, we obtain for 

all t e [to? to + a]T, 

< IIpII + ll/n(i,p)| 

< ||A|| + 

where we used (3.7.3) in the last step. Thus, for M := || A|| + 6 + i i , we have 

|f(i,x)|| < M for all t 6 [¿0,̂ 0 + Oi] such that the point (i ,x) G R*^. Thus, our 

f is bounded on R'^. 

(ii) f is Lipschitz continuous on R'^: 

We note from (3.7.4), (3.7.5) that for all (i,p), (i,q) e R'̂  

f ( i ,p ) - f ( i ,q )|| 

P ^ - q ^ l l 

, /n(i ,P)) - (^2,93,-•• ,/n(i,q))| 

{P2 - q2? + (P3 - ^3)' + • • • + (/n(i, P ) - /n(i, q ) ) ' ] ' / ' 

< [{Pl - qi? + {P2 - q2f + (P3 - 93)' + • • • + (/n(i, P) - /n(i, q))' 

< [{pi - qif + {P2 - q2f + (P3 - qzf + • • • 

+L[{j)i - qif + (P2 - 92)^ + • • • + (Pn -

[(1 + Li)((pi - qif + (P2 - q2? + • • • + (Pn - ^n)'])^'/' 

1/2 



Hence f satisfies the Lipschitz condition (3.3.2), with Lipschitz constant L := 

• 

Corollary 3.7.2 Theorem 3.7.1 also holds i f f has continuous partial derivatives 
df with respect to the second argument on and there exists K > 0 such that " 
dp 

< 

K. In that case, by Theorem 2.2.2, f satisfies (4.4.1) for L := K. 

• 

The proofs for the continuity and convergence of for /c = 1, • • • , n follow from 

the continuity and convergence of (̂ 2, • • • , on [to, to + ajy. The uniqueness of 

the solution ^ defined in (3.7.8) follows from the uniqueness of its components. Hence 

f satisfies all conditions of Theorem 3.3.3, and the dynamic IVP (3.7.6), (3.7.7) has 

a unique solution ^{t) such that the point (i, ^{t)) € R for all t e [to, ̂ o + Qi. • 

In this chapter, we presented results regarding existence of solutions to the sys-

tems (2.1.5), (2.1.6) and the scalar IVP (2.1.9), (2.1.10) as the unique limit of suc-

cessive approximations to the above IVPs. In the next chapter, we use analytical 

approach to extend our results in this chapter to the entire space R'̂  using Banach's 

fixed point theory 





Chapter 4 

Existence results using Banach's 

fixed point theory 

4.1 Introduction 

This chapter comprises more results on the existence and uniqueness properties of 

solutions to first order non-linear dynamic initial value problems. The results in this 

chapter are obtained with a more modern approach in contrast to the classical meth-

ods used in Chapter 4. Instead, we use analytical methods and construct a weighted 

Banach space in the time scale setting using the exponential function and establish 

existence and uniqueness results using Banach's fixed point theorem. Furthermore, 

we establish Lipschitz continuity of solutions with respect to the initial state. We 

also establish local version of Banach's principle in the time scale setting. Finally, 

we extend our results to a generalised Banach space as well as to dynamic equations 

of higher order. Major results in this chapter have been published in [82 . 

The Banach fixed point theorem (also known as the contraction mapping the-

orem) has been widely used as an important tool to determine the existence and 

uniqueness of solutions of initial value problems defined on complete metric spaces. 

It uses the property that contractive maps in metric spaces have fixed points and 

guarantees the uniqueness of those fixed points. Moreover, it provides an iterative 

technique to accurately obtain those fixed points of contractive maps [41, p.9 . 

We construct certain metrics and norms that are suitable to the time scale setting 



and establish a Banach space with respect to these metrics and norms. Using these 

metrics and norms we define contractive maps on our Banach space that yield fixed 

points as solutions to our IVPs. The next section classifies the concerned IVPs and 

their domains that will be later used to construct the required Banach space. 

4.1.1 The main objective 

Consider the time scale interval [to, to + a]T, where to e T and a > 0. Consider a 

right-Hilger-continuous function f : [to, to + x R^ ^ R^. Let XQ 6 R"". 

Our results in this chapter concern the IVPs 

x^ = f(i,x), for all t e [to, to + a]^; (4.1.1) 

x(io) = xo; (4.1.2) 

and 

x^ = f(i, x^), for all t e [to, to + ; (4.1.3) 

x(io) = xo. (4.1.4) 

The main aim of this chapter is to answer the questions: 

1. Under what conditions do the dynamic IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4) 

have a unique solution by applying Banach's fixed-point theory? 

2. Can we extend the above results to a generalised Banach space? 

3. What is the behaviour of solutions to the above IVPs with respect to their 

initial state? 

Consider the space C{[to, to + a]T; R^) of all continuous functions on [to, to + ajj. 

Our results show that the IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4) have unique 

solutions in C{[to,to + a]T;R^) and also within certain balls of C{[to,to + a]T;R^). 

We further prove that these solutions are smooth with respect to their initial state. 

We apply our ideas to a generalised Banach space and to systems of higher order. 

4.1.2 Methodology and organisation 

Through the apphcation of a novel definition of measuring distance in normed and 

metric spaces on the time scale platform, we obtain a significant range of qualitative 



information about the solutions to (4.1.1), (4.1.2) and (4.1.3), (4.1.4). We apply 

Banach's principle to prove the existence and uniqueness of solutions of the above 

vector dynamic IVPs. The analysis takes place in the setting of a complete metric 

space. These new results significantly improve those of Hilger [45, Theorem 5.5] and 

also provide nice estimates on the rate of convergence of "approximating iterations" 

to the solution of the above IVPs using Banach's Theorem. 

Our work in this chapter is organised as follows. In the next section, we review 

the definition of a contractive map and Banach's fixed-point theorem. 

In Section 4.3, we introduce a novel "weighted" metric and "weighted" norm 

derived from the usual sup-metric and sup-norm. This new metric has been con-

structed in the time scale setting using the exponential function ep{t, to), where p is 

a regressive function and t e [to,to + a]f. This estabhshes a sufiicient background 

to construct a new Banach space to apply Banach's Theorem for the existence and 

uniqueness of solutions to the dynamic IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4). The 

construction of a new metric and norm hgts enabled us to use the Lipschitz condition 

without any other conditions imposed on the Lipschitz constant [45, Theorem 5.5 . 

In Section 4.4, we establish existence and uniqueness results for the above IVPs 

and illustrate the results with examples. 

In Section 4.5, we extend our results to a generalised Banach space. 

In Section 4.6, we present results about local existence of unique solutions for 

the above IVPs. 

In Section 4.7, we establish Lipschitz continuity of solutions to the IVPs (4.1.1), 

(4.1.2) and (4.1.3), (4.1.4) within certain balls. 

Finally, in Section 4.8, we extend our results to higher order dynamic equations 

on time scales. 

4.2 The Banach fixed point theorem 

We begin with the definition of a contractive map in a metric space [41, p.9 

Definition 4.2.1 Contractive map 

Let (X, d) be a complete metric space. A map F : X ^ X is called contractive if 



there exists a constant 0 < a < 1 such that 

d{F(x), F{y)) < a d{x, y), for all x,y e X. (4.2.1) 

The number a is called the contraction constant for F in (X, d). 

• 

For any given x e X^ we define the iterated function sequence recursively 

by: 

F^{x) := x; (4.2.2) 

and F'+\x) F[F\x)]. (4.2.3) 

We now present Banach's fixed-point theorem (without proof, see [34, Theorem 1.1], 

40, Theorem 2.1], [51, Theorem 7.5]) which ensures the existence of a fixed point of 

F and the convergence of the sequence {F^} in (X, d) to that fixed point. 

Theorem 4.2.2 Banach's fixed point theorem 

Let (X, d) be a complete metric space and F : X X be a contractive map. Then 

there exists a unique fixed point u of F in X. Moreover, for any x ^ X the iterated 

sequence {F^(a:)} converges to the fixed point u, that is, 

F\x) u, for all x e X. 

• 

Our focus is on the contraction condition (4.2.1) on F in Banach's fixed-point the-

orem. We begin with an arbitrary x e X and using Banach's Theorem, estabhsh an 

'error' estimate between the ith iteration and the fixed point û  for alH > 1, as 

a ' 
diF'x, u) < d{x, Fx), for all x e X , (4.2.4) 

1 — a 

which depends on the contraction constant a and the initial displacement d{x, Fx). 

We further note that a map may be contractive under one particular definition 

of metric and not with respect to a different metric. Consider the following example. 



Example 4.2.3 Let (M, d) he the metric space with the usual Euclidean metric 

d{x,y) \=\x - y\, for all x,y e M 

and (N, d*) be another metric space with metric 

d*{u,v) := 
u — V 

u-\- V 
for all u,v e N C M, 

where + Let T he a map defined on hoth (M, d) and {N, d*) hy T{p) : 

We note that ifO<\x + y\<l then for all x,y e M, we have 

d{Tx,Ty) = \Tx - Ty\ = - <\x-y\ = d{x,y). 

Thus T is a contractive map in M for all x, y such that 0 < \x y\ < 1. On the 

other hand, for all u,v ^ N such that \u-\- v > 0, we have 

Tu-Tv 
d*{Tu,Tv) = 

Hence T is not a contractive map in N. 

u^ - i»̂  u — V > - — = d*{u, v). 

• 

The above example suggests that if we construct a suitable metric defined on X 

then the contraction condition may exist even for maximal class of F on X with 

minimum conditions imposed. Therefore, we establish our results in this chapter on 

the basis of a suitably defined metric and a norm to construct a Banach space in the 

time scale setting that offers a suitable platform for the existence of solutions to the 

dynamic IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4). 

4.3 Construction of a Banach space in T 

In this section, we first introduce a novel metric (and norm) in the time scale set-

ting using a suitable exponential function (see Definition A.6.3). This metric and 

norm are named as the '/^-metric' and the '/?-norm' respectively. These are defined 

below along with the well-known sup-metric and sup-norm. This is followed by 

construction of a Banach space using the so called /^-metric and /?-norm. 



Defini t ion 4.3.1 Let || • || denote the Euclidean norm on R^. Let (3 > 0 be a 

constant We couple the space of all continuous functions C([to,to + «¡t;!^^) 

the P-metric, defined as 

x ( i ) - y ( i ) : d/3(x,y) := sup X"̂  / \ ? 
te[to,to+a]j e/3(i,io) 
for all t e [to, to + a]T and x , y e C([to, to + a]j; R'̂ ); 

(4.3.1) 

or the sup-metric, do{x.,y) defined as 

cio(x,y) := sup | | x ( i ) - y ( i ) 
te[to,to+a]f 
for all t G [io? io + ii]T and x, y G C{[to, to + aji; 

(4.3.2) 

We will also consider C{\to,to + a]T; M'^) coupled with the p-norm, || • defined as 

x(i) 
X 0 := sup 

te[to,to+a]j ^l3[t,to) 
for all t e [to, to + a]T and x € C([io, to + a]T; 

(4.3.3) 

or the sup-norm, ||x||o, defined as 

x||o := sup ||x(i)||, 
i€[io,io+a]T 
for all t € [to, to + a]T and x G C([io, ô + ^^Jt; 

(4.3.4) 

• 

The above definitions of dp and || • are new generalisations of Bielecki's metric 

and norm [[34], pp. 25-26], [[35], pp. 153-155] in the time-scale environment. The 

following Lemma describes some important properties of dp and || • 

L e m m a 4.3.2 If P > 0 is a constant then: 

(1) C{[to,to a vector (linear) space overR; 

(2) II • 11/5 is a norm and is equivalent to the sup-norm || • ||o; 

(3) {C{\to^to + II • II/3) is a Banach space; 

(4) {C{[to,to + a]T;R^),(i/5) is a metric space. 



Proof: (1) We show that C{[to,to + is a vector space over R. Note that 

elements of C{[to,to + ajx; M^) are continuous functions. Hence C{[to, to + ajj; M'^) 

is closed under addition and scalar multiplication. Therefore, Ix = x for all x 6 

^'([^05^0 + The commutative and associative laws also hold with respect to 

addition for continuous functions. The zero vector, 0, exists as the additive identity 

and for all x € C{[to,to + —x will be the additive inverse. Furthermore, 

distributive laws hold for scalar multiplication over vector addition, and for vector 

multiplication over scalar addition for continuous functions for the scalar field R. 

That is, for all u, v e C([io, ô + o,nd X.v e R, we have 

A(u H- v) = Au + Av 

(A + i/)u = Au + z/u 

A(i/u) = (Ai/)u. 

Hence, C{[to,to + a]T;R^) is a vector space overR. 

(2) We show that || • ||/3 is a norm and is equivalent to the sup-norm || • ||o. We 

note that (3 G Crd([io5 ^o+ o^s any constant function is always rd-continuous. 

Since fi > 0, we have 1 + > 0 for all t e [to, ô + o]t- Therefore, (3 G (see 

Definition A.6.1). Thus, e0{t,to) > 0 for allt G + (see Theorem 

It follows that for each E C{[to, to + a ] w e have 

(a) ||x||/3 > 0 and ||x||/5 = 0 if and only ifx = 0. 

(b) /or A e R and x € C{[to,to + a]T;R''), 

Ax 11/5 = sup 
Ax 

X 

and for all x,y G C{[to,to-h a]T;W), 

x + y||/3 = sup 
x + y 

te[to,to+a]j e/?(i,io) 
X 

< sup + sup 
te[to,to+a]r epit, to) te[to,to+a]j ^/^(i, ^o) 

i3 + \\yh-



Thus II • \\p is a norm and {C{[to,to + || • H/j) is a normed space. 

Next we show that the (3-norm, || • is equivalent to the sup-norm, || • ||o. For 

this, we show that there exist positive constants k and K such that 

l̂l̂ oll < W^Wp < -^Ikllo- (4.3.5) 

Since /3 > 0 we have e^ito + a, to) > 1- Hence, choosing k = l/e/3(io + a, to) and 

K = 1, we obtain 
XQ < X /3< e/5(io + a,io) 

Hence the P-norm and the sup-norm are equivalent. 

X 

(3) We show that {C{[to,to + || • H/j) is a Banach space. For this, we show-

that {C([to,to + ajx'jM'̂ ), II • II/5) is complete by showing that every Cauchy sequence 

in + II • \\p) converges to a function in C([io, ô H-^Jt; Let Xi(i) 

be a Cauchy sequence in C([io, to + a]T;M^). This means that for every e > 0 there 

is a positive integer N^ such that 

< e, for all i,j > Ne, for all t € [to, to + a T-
efsit, to) 

It follows that the sequence Xi(i) is uniformly convergent for all t e [to? to+a\j. Since 

Xj is continuous for all z, it converges to a continuous function in C{[to,to-\- a\j', M^). 

Hence taking x^ x as j —00, we obtain 

Xi{t) - Xj(t)|| _ ||Xt(t) - x(t) lim < e, for all i > Ne, for t e [to, ̂ o + cl T-j^oo e^{t,to) epit^to) 

Therefore, x̂  converges to a point in C{[to,to + Since x̂  is a Cauchy se-

quence, {C{[to,to + a]T;R'^), || • \\p) is a complete normed vector space and, hence, a 

Banach space by [51, Theorem 7.4]. 

(4) Finally, we show that (C([io, + d/s) is a metric space. This is trivial, as 

by (4.3.1) and (4.3.3), ci/j is the metric induced by ||-||/5. Hence (C([io, î '̂ ), c?/?) 

is a complete metric space. 

• 



4.4 Existence and uniqueness of solutions 

This section consists of results about the existence of unique solutions to the dynamic 

IVPs of the type (4.1.1), (4.1.2) and (4.1.3), (4.1.4) using ideas from Section 4.2. 

We note that a right-Hilger-continuous function f is always delta integrable (see 

Theorem A.5.2) and so, from Lemma 2.1.3, a solution of the form (2.1.11) is well-

defined for the IVP (4.1.1), (4.1.2). In fact, we will prove that given a Lipschitz 

condition on f, such a solution always exists and is unique. 

Let CVd([io, io+a]T; IR'̂ ) be the space of all rd-continuous functions on [to, to-\-a]j. 

The following result concerns the dynamic IVP (4.1.1), (4.1.2). 

Theorem 4.4.1 Let f : [to, to + a]^ x R'̂  ^ R^ be right-Hilger-continuous. If there 

exists a positive constant L such that 

||f(t, p) - f(i, q)|| < L HP - q||, for all (i, p), {t, q) G [io, to + aj^ x R^, (4.4.1) 

then the dynamic IVP (4.1.1), (4.1.2) has a unique solution x G C([io, ô + ajx; I^^)-

In addition, if a sequence of functions yi is defined inductively by choosing any 

yo G C{[to,to + ajxjR'^) and setting 

yi+i(i) := xo + / f(s,yi(s)) As, for all t G [to, to + aji, (4.4.2) 
J to 

then the sequence yi converges uniformly on [io, to + a]^ to the unique solution x of 

(4.1.1), (4.1.2). Furthermore, x^ 6 io + aJi; 

Proof : We note that (4.4.2) is well defined as f is right-Hilger-continuous. Let 

L > 0 be the constant defined in (4.4.1). Define (3 Lj where 7 > 1 is an arbitrary 

constant. Consider the complete metric space {C{[to,to + ajx; R^), ci/̂ ). Let 

Fy](i) Xo + [ f (s ,y(s)) As, for all t G [io,h + air-
Jto 

(4.4.3) 

Since f is right-Hilger-continuous on [¿0,̂ 0 + «IT X we have [Fy] G C{[to,to + 

A]T; M^) for every y G C{[to, to + AJX; R"")- Further, [Fy](io) = XQ G R^. Hence, 

According to Lemma 2.1.3, fixed points of F will be solutions to the dynamic IVP 

(4.1.1), (4.1.2). We prove that there exists a unique, continuous function x such that 



F x = X. To do this, we show that F is a contractive map with contraction constant 

a = l / 7 < l s o that Banach's Theorem appHes. 

Let p ,q G C([io,io + ajx;!^''). Using (4.3.1), we note that 

Fp(i) - Fq(i) 
ii/5(Fp,Fq) := sup 

ie[io,io+a]T 

< sup 
i€[io,io+a]T 

< sup 

ep{t,to) 

r||f(5,p(s))-f(s,q(5))|| As 

I 1 r^ 1 — — / L||p(5)-q(5)|| As , 

where we used (4.4.1) in the last step. We can rewrite the above inequahty as 

1 ^ ^ P(5) - q(s) I , 

Again using (4.3.1) and employing Theorem A.6.4(7) with L/^ = I/7 = a < 1, we 

dp{Fp,Fq) < sup 
t€[io,io+a]T 

obtain 

sup 

7 t€[io,io+a]T 

= sup 
7 te[io,io+a]T 

1 r̂  1 
/ Pe/3{s,to) As 

to) J to 

7 

_e/3(i, to) 

1 -

( e ^ ( i , i o ) - l ) 

ep{to + a, to). 

where 0 < a < 1. Thus, F satisfies (4.2.1) and is a contractive map and so, Ba-

nach's Theorem applies. Therefore, there exists a unique fixed point x of F in 

C{[tQ^to + Banach's Theorem also yields that the sequence y^ defined in 

(4.4.2) converges uniformly in the ^-norm, || • and so, also in the sup-norm, || • ||o, 

to that fixed point x in C([io, ô + ¿^Jt; i^^)- This completes the proof. 

• 

Corollary 4.4.2 Theorem 4-4-^ ol^o holds if i has continuous partial derivatives 

with respect to the second argument on [to,to-\- a\j x R'̂  and there exists K > 0 such 
di 

that — < K. In that case, f satisfies (4.4.1) for L := K. 
dp 



Proof: The proof is the same as for Theorem 2.2.2 and is omitted. 

• 

Remark 4.4.3 Theorem has two important outcomes: 

1. it eliminates the condition 

La<l 

imposed in [45, Theorem 5.5] for the existence of a unique solution of dynamic 

IVP of the type (4.1.1), (4.1.2). The use of (3-metric, dp, in the proof of 

Theorem demonstrates that this condition is not needed; 

2. it gives a nice estimate on the rate of convergence of iterates (4.4.2) using 

(4.2.4). This means that i /x , yo G C{[to, to + then, for (3 := jL with 

7 > 1, we have, from (4.2.4) 

7' " 
7 

Using the definition of dp in (4.3.1) with the fact that ep{t,to) > 0 for all t, 

we note that 

e(3{to + a,to) te[to,to+a]j 
sup ||FVo - x|| < sup FVo - X 

£€[io,io+a]T 

< 7 
1 - 7 - 1 sup ||yo - Fyo 

te[tQ,to+a]j 

7 

Using (4.3.4), we obtain 

| fVo -x||o < ep{to + a, to) ^ ^ ||yo - Fyp 

If we choose 7 : = i/La, then the rate of convergence may be given by 

F'yo-x||o <e±{to-\-a,to) 
fLa 
V ^ i — La yo - F y o l l o ; 

3. there is no need for "extension" of a solution, as the result guarantees existence 

over the entire interval [to, + cl T' 

• 

The following example demonstrates Theorem 4.4.1 with the help of a scalar 

dynamic IVP. 



Example 4.4.4 Consider the scalar dynamic IVP 

x{to) = XQ. 

x"^ = 2[x^ + 5]'/^ + t, for all t G [to, to + a]^; (4.4.4) 

(4.4.5) 

We claim that this dynamic IVP has a unique solution, x, such that x G C{[to,tQ + 

a]T;M). 

Proof: We prove that the given IVP satisfies the conditions of Theorem 4.4.1. Note 

that 

f{t,p) = 2[p2 + +1, for all (i,p) G [to, to + «It x 

We observe that 

(i) The function f is right-Hilger-continuous on [to, to + a]j x R: We note that 

the composition function g{t) := 2[{x{t))'^ + + 1 will be rd-continuous for 

all t e [to, to + cl\t- Hence, / is right-Hilger-continuous on [to, to + a]j x R. 

(ii) / is Lipschitz continuous on [to, to+a]j xR: We note that for all t G [to, to+a]^, 

we have 
dfit,p) 

dp 
2p 

[p2 + 5]l/2 <2 , 

where we used P r o 11/o above. Hence, applying Corollary 4.4.2, we 

note that / is Lipschitz continuous in the second argument on [to, to + a T X 

with Lipschitz constant L = 2. 

Prom (i) and (ii) above, we note that all conditions of Theorem 4.4.1 are satisfied. 

Thus, the dynamic IVP (4.4.4), (4.4.5) has a unique solution, x, such that x G 

C([to,to + a]T;R). 

• 
Example 4.4.5 Consider the strip 

5 ' ' := { ( i , i ) ) : i e [-1,1)5, H < o o } 

and the scalar dynamic IVP 

x^ = t + 2 cos x, for all t G -1,1 K. T' 
TT 

(4.4.6) 

(4.4.7) 



We claim that this dynamic IVP has a unique solution, x, with domain [—1, 1]T. 

Proof: We show that the given IVP satisfies the conditions of Theorem 4.4.1. Note 

that f{t,p) = t + 2cosp for all {t,p) € S'^. 

(i) The function f is right-Hilger-continuous on S'^: Note that the composition 

function k{t) := i + 2 cos x{t) will be rd-continuous for all t e [ - 1 , IJT- Hence, 

our / will be right-Hilger-continuous on 

(ii) / is Lipschitz continuous on S'^: We also note that for all {t,p) G S'^, we have 

df{t,p) 
dp 

- 2 s i n p < 2. 

Hence, by Theorem 2.2.2, / is Lipschitz continuous in the second argument on 

S'^ with Lipschitz constant L = 2. 

Thus, all conditions of Theorem 4.4.1 are satisfied and the dynamic IVP (4.4.6), 

(4.4.7) has a unique solution, x, such that dom x = [—1, 1]T 

• 

Example 4.4.6 Let x = {xi^X2) and a > 0. Let f : [0,a]j x R^ 

the dynamic IVP 

K^ = (t-\-2xi,t - X2), forallte[0,a]j; 

x(0) = 0 = (0,0). 

'. Consider 

(4.4.8) 

(4.4.9) 

We claim that the above dynamic IVP has a unique solution, x, such that x G 

C([0,1]t;M2). 

Proof: We show that the IVP (4.4.8), (4.4.9) satisfies the conditions of Theorem 

4.4.1. Note that 

i{t, p) = {t + 2pi, i - P2), for all {t,pi), {t,p2) G [0, a]^ x R. 

{i) The function f is right-Hilger-continuous on [0, l]j x R^: Note that the com-

position functions g{t) := t-\-2xi{t) and k{t) := t-X2{t) will be rd-continuous 

for all t e [0, 1]T- Therefore, our f is right-Hilger-continuous on [0, x R^. 



{ii) f is Lipschitz continuous on [0, x R^: We also note that for p = (̂ >1,̂ 2)5 

we have, for all t G [0, a K T ' 

d{{t, p) 

and 

dpi 

df{t, p) 

dp2 

(2,0)11=2, 

(0,-1)11 = 1. 

Hence, by Corollary 4.4.2, f satisfies a uniform Lipschitz condition on [0, a 

R^, with Lipschitz constant L — 2. 

T X 

Thus all conditions of Theorem 4.4.1 are satisfied and the dynamic IVP (4.4.8), 

(4.4.9) has a unique solution, x € C([0, ajx; R^). 

• 

Our next theorem concerns the existence of solutions to the dynamic IVP (4.L3), 

(4.L4) using Banach's fixed-point theorem. We note from Lemma 2.1.4 that a 

solution of the form (2.1.14) is well-defined for (4.1.3), (4.1.4). We define a modified 

Lipschitz condition for f that guarantees a unique solution to (4.1.3), (4.1.4) using 

(2.1.14). 

Theorem 4.4.7 Let f : [̂ 0,̂ 0 + ô lf x R'̂  —> R^ he a right-Hilger-continuous func-

tion. Let L > 0 be a constant. If there exists 7 > 1 with /? := L7 such that f 

satisfies 

(l + Mi)^)||f(t,p)-f(i,q)|| < L||p-q||, 

for all (i, p), (i, q) 6 [to, to + cl. 

(4.4.10) 

then the dynamic IVP (4.1.3)^ (4.1.4) has a unique solution, x, such that x 6 

C{[to,to + a]T;R^). In addition, if a sequence of functions Zi is defined inductively 

by choosing any zq 6 C([io, ^o + i^'^) Q-nd setting 

Zi+i(t) := xo + [ f (s, zf (s)) As, for all t e [to, to + ajx, (4.4.11) 
Jto 

then the sequence zi converges uniformly on [to, to + ajx to the unique solution x of 

(4.1.3), (4.1.4). Furthermore, x ^ G Crd{[to^to + 



Proof: We note that (4.4.11) is well-defined, as f is right-Hilger-continuous. Con-

sider the complete metric space {C{[to,toa]¡3). Let L > 0 be the constant 

defined in (4.4.10) such that (5 := L 7 , where 7 > 1 is an arbitrary constant. Define, 

for all z e C{[to, to + oJt; W), 

Fz](i) := xo + [ f(5, z^(s)) As, for all t e [to, to + 0]^. (4.4.12) 
J to 

Since f is right-Hilger-continuous on [to, to + x W ,̂ we have [Fz] 6 C{[to,to + 

a TiM"") for all z € C{[to,to + a]T;R^). Further, [Fz](io) = xq. Hence, 

Thus, according to Lemma 2.1.4, fixed points of F will be solutions to the dynamic 

IVP (4.1.3), (4.1.4). We prove that there exists a unique, continuous function x 

such that Fx = x. To do this, we show that F is a contractive map with contraction 

constant a = I / 7 < 1 so that Banach's Theorem applies. 

Let p , q G C{[to,to + Employing (4.3.1), we have 

Fp{t) - Fqit) 
oi/3(Fp,Fq) sup 

iG[io,io+a]T 

< sup 
te[to,to+a]j 

< sup As .epit^to) Jto 1 + 

where we used (4.4.10) in the last step. Moreover, we note from Theorem A.6.4(2) 

that 

ep{t,to) for all t e T. (4.4.13) 

Using this property of the exponential function, ep{t,to) in this case, and the as-

sumption 13 = our further computations take the form 

1 f^Lep{s,to) 
c/^(Fp,Fq) < sup 

te[to,to+a]j 
p^Cij-q^C.)!! As 

< — sup 
7 te[to,io+a]T 

ep{t,to) Jto 

— / Pep{s,to) sup As 
t, to) J to se[to,to+a]T e/jVS^co; 

= - dp{p,(i) sup 
7 te[to,to+a]j e/3{t,to) Jto 
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ef{s,to) As 



where we used (4.3.1) and Theorem A.6.4(7) in the last step. Thus, we obtain 

ci/3(Fp,Fq) < - d/5(p,q) sup 
7 ie[io,io+a]T 

= - dp{p,q) 
7 

< -
7 

1 -
+ a, to). 

where I / 7 = a < 1. Thus, our F satisfies (4.2.1) and is a contractive map. Thus, 

Banach's Theorem apphes and there exists a unique fixed point x of F in C([to,to + 

a i-'jM'̂ ). Banach's Theorem also yields that the sequence Zj defined in (4.4.11) 

converges uniformly to x in the /?-norm, || • and in the sup-norm, || • ||o, to that 

fixed point x. This completes the proof. 

• 
Example 4.4.8 Consider the dynamic I VP 

1 
= 

1 + 2fi{t) 
x(0) = 0. 

sinx'^, for all te [0,1 T' (4.4.14) 

(4.4.15) 

We claim that the above dynamic IVP has a unique solution x G C([0, 1]t;M). 

Proof: We show that the IVP (4.4.14), (4.4.15) satisfies the conditions of Theorem 

4.4.7. Note that 

f{t,p) = Y T p l ^ sinp, for all (i,p) G [0,1]? x R. 

(i) The function f is right-Hilger-continuous on [0, l]if x R: We note that the 

composition function g{t) := J l j l ^ " ^ ^̂ ^̂  rd-continuous for all 

t € [0, 1]t. Hence, our / will be right-Hilger-continuous on [0,1 

(ii) / satisfies (4.4.10): Note that for all t 6 [0, l] j , we have 

1 

T X 

f{t,p)-f{t,q) smp — smq (4.4.16) 
1 + 2ii{t) 

Note that sin x has continuous partial derivatives on R, which are bounded by 

Li = 1. Thus, sin a; is Lipschitz continuous by Theorem 2.2.2 with Lipschitz 

constant Li = 1 and we can re-write (4.4.16), for all t 6 [0, 1]T, as 

1 
i{t.p)-f{t,q)\ < 1 + 2n{t) 

p-q 



Hence, all conditions of Theorem 4.4.7 are satisfied and the given dynamic IVP has 

a unique solution, x € C([0, 

• 

4.5 Generalisations 

In this section, we reconsider Theorem 4.4.1 and Theorem 4.4.7 and show that the 

results hold for a generalised Banach space. 

Let X be a Banach space. Consider a function f defined on T'̂  x X. Then the 

following definition describes the right-Hilger-continuity of f : T'̂  x X ^ X. 

Definition 4.5.1 Consider an arbitrary time scale T. A function f x X ^ X 

having the property that f is continuous at each {t, x) where t is right-dense; and 

the limits 

lim f(5,y) and l imf( i ,y) 

both exist and are finite at each (i, x) where t is left-dense, is said to be right-Hilger-

continuous onT'^ x X. 

• 

In the following results of this section, || • ||x represents the norm associated 

with the Banach space X. The next definition ([19, Definition 8.14]) describes the 

Lipschitz continuity of f on [to^to a]j x X. 

Definition 4.5.2 Let f : [to, to + a]j x X X. If there exists a constant L > 0 

such that 

||f(i,p)-f(i,q)||x < L | |p-q | |x, (4.5.1) 

for all {t, p), (i, q) G [to, to -f a]^ x X, 

then we say f satisfies a uniform Lipschitz condition on [io, to-\-a]jXX. The smallest 

value of L satisfying (4.5.1) is called a Lipschitz constant for f on [to, to + a]if x X. 

• 



Let xo be a point of X. Consider a right-Hilger-continuous non-linear function 

f : + o] J X X X and the generalised initial value problems 

X = f (t, x), for all t e [to, to + 

x(io) = Xo, 

(4.5.2) 

(4.5.3) 

and 

x^ = f (i, x^), for all t € [to, to + a]^; 

x(io) = XQ. 

(4.5.4) 

(4.5.5) 

The following definitions describe solutions of the generalised IVPs (4.5.2), (4.5.3) 

and (4.5.4), (4.5.5). 

Definition 4.5.3 A solution of (4.5.2), (4.5.3) is a function x : [to, to + a]T ^ 

such that: the points (i, x(i)) G + o]j x X; x(i) is delta differentiable with 

x^(i) = f(i, x(i)) for each t G [to, to + a]j; and x(io) = xq. 

• 

Definition 4.5.4 A solution of (4.5.4), (4.5.5) is a function x : [to, to + a]T ^ X 

such that: the points {t,x{t)) G [to, to + a]^ x X; x(i) is delta differentiable with 

= i(t,x.^(t)) for each t G [to, to + a]f; and x(to) = xq. 

• 

The following two lemmas establish the equivalence of the dynamic IVPs (4.5.2), 

(4.5.3) and (4.5.4), (4.5.5) as delta integral equations in X. The proofs being similar 

to Lemma 2.1.3 and Lemma 2.1.4 have been omitted. 

Lemma 4.5.5 Consider the dynamic IVP (4.5.2), (4.5.3). Leti : [to,to-\-a]jX X — 

X be a right-Hilger-continuous function. Then a function x solves (4.5.2), (4.5.3) 

if and only if it satisfies 

(t) = [ f(5,x(s)) As + xo, 
Jto 

for all t G [to, to + a]i. (4.5.6) 

• 



Lemma 4.5 .6 Consider the dynamic equations (4.5.4), (4.5.5). Letf : + 

X X be a right-Hilger-continuous function. Then a function x solves (4.5.4), 

(4.5.5) if and only if it satisfies the delta integral equation 

x(i) = Í f (s, x'^(s)) As + xo, for all t G [to, h + a 
Jto 

T- (4.5.7) 
• 

Remark 4 .5 .7 Lemma >^.5.5 and lemma J^.5.6 also hold for f being continuous, 

as all continuous functions are right-Hilger-continuous and are delta integrable by 

Theorem A.5.2. 

• 

The following theorem is an extension of Theorem 4.4.1 to the generalised Banach 

space X . It also partially extends ideats in [19, Theorem 8.16] in the sense that it 

proves the existence of a unique solution on the (entire) compact interval [to, ̂ o + î lT-

However, the result does not consider the other half of the interval [to — a, to]j for 

which the Lipschitz continuity of f is not a sufficient condition ([19, p.323]). 

Theorem 4.5.8 Let f : [to,to + a]j x X X be right-Hilger-continuous. If there 

exists a positive constant L such that 

||f(i,p)-f(i,q)|U < L ||p-q||x, (4.5.8) 

for all {t, p), (i, q) G [to, TO + O]T x X, 

then the dynamic IVP (4.5.2), (4.5.3) has a unique solution x G C([to,to + o]r,X). 

In addition, if a sequence of functions yi is defined inductively by choosing any 

yo ^ C'([to, to + ajx; X) and setting 

't 
yi+i(t) Xo H- / f(5,y¿(5)) As, /or a//1 6 [to, to + a]T, 

Jto 

(4.5.9) 

then the sequence yi converges uniformly on [to, to + a]T to the unique solution x of 

(4.5.2), (4.5.3). FuHhermore, x^ G Crd([to,to + a]f ;X). 

Proof: Since X is a Banach space, X is a complete metric space. As proved in 

Theorem 4.4.1, the map F defined by (4.4.3) will be contractive in C([to, to + a]T; 



Thus, Banach Contraction Principle holds for F [41, Theorem 1.1] and F has a unique 

fixed point x in C([io, ô + X) such that, for all y 6 C{[to, to + ajx; X) and i > 1, 

the sequence yi defined by 

yi+i{t)= [ f(5,y¿(5)) As + xo, for allí G [to,¿o + ak (4.5.10) 

J to 
converges uniformly in the /?-norm, || • ||/3, and the sup-norm, || • ||o, to that fixed 

point X in C{[tQ,to + a\T]X) and x will be a solution to (4.1.1), (4.1.2) by Lemma 

4.5.5. 

• 

Theorem 4.5.9 Leti : [to,to + a\jX X X be a right-Hilger-continuous function. 

Let L > 0 6e a constant. If there exists 7 > 1 with (3 := L7 such that f satisfies 

(l + /i(í)/5)||f(í,p)-f(í,q)||x < L\\p-q\\x, (4.5.11) 

for all (Í, p), (Í, q) e [to, to + a\j x X, 

then the dynamic IVP (4.5.4), (4.5.5) has a unique solution, x, such that x 6 

C{[to,to + a\j;X). In addition, if a sequence of functions Zi is defined inductively 

by choosing any ZQ 6 C([to, ô + Í̂ JT; cL'^d setting 

Zi+i{t) xo + [ f(s,zf(s)) As, for all t € [to, to + ajx, (4.5.12) 
Jto 

then the sequence zi converges uniformly on [to, to + a]T to the unique solution x of 

(4.5.4), (4.5.5). Furthermore, x^ e Crd{[tQ,'toa]j\X). 

Proof: The proof is the same as for Theorem 4.5.8, as from Theorem 4.4.7, F defined 

by (4.4.12) will be contractive in C([to,to + aJT;^) and, so, Banach Contraction 

Principle holds for F by [41, Theorem 1.1]. 

• 

We note that Theorem 4.5.8 and Theorem 4.5.9 ensure the existence and unique-

ness of solutions to the first order non-linear IVPs of the form (4.5.2), (4.5.3) and 

(4.5.4), (4.5.5) in the entire span of Banach spaces of continuous functions defined 

on [to, to H- a]T- In this way, these results are stronger as compared to Theorem 4.4.1 

and Theorem 4.4.7 which confine the solutions to the space R^. 



In the next section, we take a reverse approach and explore existence and unique-

ness of solutions within smaller subsets of X employing the local version of Banach's 

fixed point theory. 

4.6 Local Banach theory 

The Banach principle introduced the ideas of unique fixed points of contractive maps 

in metric spaces no matter how large they are. However, not all maps are contractive 

for an entire space but they may be contractive within a small subset usually consid-

ered as a ball in a metric space. Such maps are called locally contractive maps [34, 

pp. 10-11]. In order that locally contractive maps can be utilised for having fixed 

points within a ball in a metric space, there exists a local version of the Banach 

theorem presented as the following corollary [34, Corollary 1.2 . 

Corollary 4.6.1 Let {X,d) be a complete metric space containing an open ball hav-

ing centre XQ and radius r. That is, there exists 

Br{xo) •.= {xeX : d{x,xo) <r}CX. (4.6.1) 

Let F : Br{xo) X he a contractive map with a positive number a < 1 as the 

contraction constant. If 

d{Fxo,xo) < ( l - a ) r , (4.6.2) 

then F has a unique fixed point in Br{xQ). 

• 

The next results concerns the existence and uniqueness of solutions to dynamic 

equations (4.1.1), (4.1.2) within certain balls using the local Banach corollary. 

Theorem 4.6.2 Let M > 0 and define 

R'^ :={{t,p) :te [to,to-\-a]^ and ||p-xo|| < M} . 

Consider a right-Hilger-continuous function f : —» R". If: 



1. there exists a positive constant L such that 

f ( i , p ) - f ( i , q ) || < L||p-q||, forall{t,p),{t,q)eR''', (4.6.3) 

2. the inequality 

rto+a 

Jto 
f(s,xo)|| As < 

M 

^lito + CL: to) 
(4.6.4) 

holds, 

then the dynamic IVP (4.1.1), (4.1.2) has at least one solution x on [to,to + a]j, 

with a unique solution satisfying 

dL(x,Xo) < 
M 

eiito + CL.to)' 
(4.6.5) 

Proof : Choose R> 0 such that 

R eL{to-\-a,to) = M. (4.6.6) 

Let dL satisfy (4.3.1) for (3 = L. Consider the complete metric space (C([io,io + 

and an open ball Br{^o) C C{[to,to + a]T;M'^) defined by 

^ß(xo) := { x G C{[to,to + alr,^"") : iiL(x,Xo) < Ä } , (4.6.7) 

with an operator F : Br{-xo) ^ C([io5 ̂ o + «^¡t; I^^) defined by 

Fx (t) := / f ( 5 , x (s ) ) As + xo, for all t e [to? to + a 
Jto 

T- (4.6.8) 

We show that F is a contractive map with a contraction constant a < 1. We also 

show that F satisfies (4.6.2) and, so, by Corollary 4.6.1, has a unique fixed point in 

Bnixo). 



L e t u , v € ^ ^ ^ ( x o ) . T h e n , u s i n g ( 4 . 3 . 1 ) t o g e t h e r w i t h ( 4 . 6 . 3 ) , w e c a n w r i t e 

d L ( F u , F v ) : = s u p ^ ^ ^ ^ 

< s u p 
i€[to , io+a]T 

< s u p 
iS[io,to+a]T 

< s u p 

te[to,to+a]j eL(i,io) 

L e L { s , t o ) s u p ' \ / / A g 

= rfL(u,v) s u p 
i€[to, io+a]T 

= i / L ( u , v ) s u p 
i€[ io , io+a]T 

• ( e L ( i , i o ) - l ) 

w h e r e w e u s e d T h e o r e m A . 6 . 4 ( 7 ) i n t h e l a s t s t e p . T h u s , o u r c o m p u t a t i o n s r e d u c e t o 

1 
d L ( F u , F v ) < d L ( u , v ) s u p 

t€[to,io+a]T 
1 -

e L ( i , t o ) . 

L e t t i n g 

= c ? l ( u , V ) 

a : = l -

1 -

( 4 . 6 . 9 ) 
e i i t Q + a , t o ) ' 

w e n o t e 

( ¿ L ( F U , F v ) < a c ? L ( u , v ) 

a n d s o F is a c o n t r a c t i v e m a p . W e f u r t h e r n o t e t h a t e L ( i o + a , i o ) > 0 . U s i n g ( 4 . 6 . 4 ) , 

( 4 . 6 . 6 ) a n d ( 4 . 6 . 8 ) , w e o b t a i n , f o r a l l t 6 [ic^o + ^Jt, 

F ( x o ) - x o 

= s u p 
ie[to , io+a]T 

M 
< 

to+a 

< 

e x ( t o + a, to)V 

M 

eiito + a, M)? 

M 

e L i t o + a , M)? 

R 

eL{t,to) JtQ 

s u p 

f ( 5 , X o ) | | A 5 

1 

eL{to + a , to). 

eiito + a, to) 

= (1 - a)R, 



where we used (4.6.9) in the last step. Hence, all conditions of the local Banach 

corollary are satisfied. Thus, F has a unique fixed point x 6 Br{^o). Therefore the 

dynamic IVP (4.1.1), (4.1.2) has a unique solution in ^^^(xo). 

• 
We now present an example to illustrate Theorem 4.6.2. 

Example 4.6.3 Consider 

Consider the scalar dynamic IVP 

x^ = f(t,x) = x^ + t + (j{t), for all te [0,1/2]^; 

:z:(0) = 0. 

(4.6.10) 

(4.6.11) 

We claim that, for [e2(l/2,0)]^ < 4, the above dynamic IVP has a unique solution, 
1 

X, such that |x(i)| < for all t 6 [0,1/2 T-62(1/2,0) 

Proof: We show that the given IVP satisfies the conditions of Theorem 4.6.2. 

(i) The function f is right-Hilger-continuous on R'^: We note that the composi-

tion function k{t) {x{t))'^ +1 + a(t) is rd-continuous for all t 6 [0, 1/2]t and 

so, our / is right-Hilger-continuous on 

(ii) / is Lipschitz continuous on We note that for all (i,p) 6 R'^ we have 

df{t,p) 
dp 

2p < 2. 

Thus, by Theorem 2.2.2, / satisfies a Lipschitz condition on R'̂  with Lipschitz 

constant L = 2. 

(iii) / satisfies (4.6.4): Note that, for all t e [0, 1/2]T, we obtain using [19, Example 

1.25 
•1/2 P1/2 

/ 1/(5,0)1 As = / (5 + a (5 ) )As 
JQ Jo 

= 1/4, 

which satisfies (4.6.4) for [62(1/2,0)]^ < 4. So, by Theorem 4.6.2, the given IVP has 
1 a unique solution x such that \x{t)\ < 

62(1/2,0) 
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for all t e [0,1/2 T-



4.7 Lipschitz continuity of solutions 
In this section, we prove results about the smoothness of solutions to the dynamic 
IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4), brought forward under the conditions of 
Theorem 4.4.1, with respect to their initial state. 

Let x(I; A) denote the solution of (4.1.1), (4.1.2) with XQ = A. We show that 
x(i; A) is Lipschitz continuous in A. That is, there exists a function K{t) > 0 for 
all t e [to, to + a]T such that for all A , B G C{[to,to + aJilM^) satisfying (4.1.2), we 
have 

| | x ( i ; A ) - x ( i ; B ) | | < X(i) | |A - B||, for alH e [to, ô + a]T- (4.7.1) 

T h e o r e m 4.7.1 Let the condition of Theorem 44-1 hold. / / x ( i ; A) is the unique 
solution to the IVP (4.1.1), (4.1.2), then x(i; A) is Lipschitz continuous in A, for 
all t E [to,io + CL]T- More explicitly, if there exist A, B satisfying (4.1.2) then 

|x(i; A ) - x ( i ; B ) | | < eL(i,io)||A - B||, for all te [to,toa\j. (4.7.2) 

Proof : Let x(i; A), x(i; B) be solutions to (4.1.1), (4.1.2) corresponding to XQ = A 
and XQ = B, respectively. Then, from Lemma 2.1.3, we obtain for all t € [io, + 

| x ( i ; A ) - x ( i ; B ) | | < ||A - B|| + [ | |f(s;x(s; A)) - f(s ;x(s;B)) | | As, 
Jto 

< | | A - B | | H - L / | | X ( S ; A ) - X ( 5 ; B ) | | AS, (4.7.3) 
Jto 

where we used (4.4.1) above. Let us define, for all A, B 6 W ,̂ 

r(t) := / ||x(s; A) - x(s;B)| | As, for alH G [to, ô + 
Jtn 

Then from inequality (4.7.3), we obtain 

r^{t) - Lr{t) < IIA - B||, for all t G [to,io + «It- (4.7.4) 

Since L > 0, we have 1 + /nL > 0, where fj, is the graininess function on [to, io + «IT-
Hence L 6 and eL{t,to) > 0 (Theorem A.6.4(9)) for all t 6 [to, to + a]T. 

Simplifying (4.7.4) by taking eJ(i,io) as the integrating factor, we obtain 
r^(t)eL{t,to) - LeL{t,to)r{t) 

eL{t,to)el{t,to) < A - B 
el{t,to) ' 
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for all t e [to, + a 



Applying [19, Theorem 1.20(v), Theorem 2.35], we have, for all A , B € M"", 

r(t) ^^ 
_eL{tM). 

< A - B for all te \to,to + a 
el{t,to) ' 

An integration from to to t on both sides yields, for all te [to,tQ + 

eUt^to) J to ^L^S, 
A - B 

-L eUt^to) 
- 1 

1 - eL(i, to) A - B 
-LeL{t, to) 

where we have used Theorem A.6.4(8) in the second last step. Therefore, from 

(4.7.4), we obtain, for all t e [to^to + 

||A-B|| < ||A-B||, 

which gives (4.7.2). 

• 
Theorem 4.7.1 shows that the change in the solution x(i;A) of (4.1.1), (4.1.2) 

with respect to the initial state is bounded by a continuously differentiable function 

K(t) := eiit^ to). That is, the solution stays between the lines — B) for 

all t e [to,to-\- a], and so, is stable with respect to the initial state. 

The above result partially strengthens the ideas in [54, Theorem 2.6.1], however, 

it removes the restriction L/i < 1 and adds smoothness to the solution with respect 

to the initial state. 

The next theorem concerns the Lipschitz continuity of solutions to the dynamic 

IVP (4.1.3), (4.1.4). We show that the unique solution of these IVPs satisfies (4.7.1), 

with Lipschitz constant K := ep{to + a, to) under the /?-norm defined in (4.3.3). 

Theorem 4.7.2 Consider the dynamic IVP (4.1.3), (4.1.4) and let the condition of 

Theorem hold. / /x(i; A) is the unique solution to (4.1.3), (4.1.4), thenx(t]A) 

is Lipschitz continuous with respect to A, under the p-norm, with Lipschitz constant 

ep{to + a, to). That is, for any positive constant f5 such that ¡3 := Lj for 7 > 1, and 

for all A, B satisfying (4.1.4), 

x(i;A)-x(i;B)||^ < 6/5(̂ 0 + a, io)||A - B||̂ , (4.7.5) 

for all t e [to,to-\- a]j. 



Proof: Since x(i; A), x(i; B) solve (4.1.3), (4.1.4) for all t 6 [to, to + ajx, we can 

write, from Lemma 2.1.2 and (4.3.3), 

x(i;A)-x(i;B)||;5 

sup x ( i ;A) - x ( sup 
e/3(i, to) 

I - « + 

sup 
te[to,to+a]j 

1 sup 
te[to,to+a]j Jto 

r n + 

sup 
ie[to,to+a]T 

1 \ sup 
ie[to,to+a]T to) Jto 

[ ||f(s,x^(s;A))-f(5,x^(5;B))|| A s + | | A -
Jto 

= sup 
t€[to,to+a]T ^(3{t,to) 

[ Lep{s,to) 
Jtn 

x^(5;A) -x^(s;B)|| As 

As x^(s;A) - x ^ ( s ; B ) 

B 

+ I A - B 

+ A - B 
'to e^p{s,to) 

where we used the identity (4.4.13) in the last step. Further using (4.3.3) and 

Theorem A.6.4(7) with ¡3 = Lj, the above computations take the form 

x(t;A)-x(t ;B)||^ 

^ sup I [ Le(3{s,to) 
Jto 

sup 
se[to,to+d\f 

x^(s;A) - x ^ ( s ; B ) As 

7 
1 
7 

x(i; A) — x(i; B)||̂  sup 
t^[to,to+a]j 

x(i; A) — x(i; B)||/j sup 

1 

_ef3{t, uoj ji^ 

1 - ^ 

+ A - B 

+ A - B 

< ||x(i;A) -x(i;B)||^ 1 -

ef3{t, to)_ 

+ A - B 

+ A - B 

epito + a , t o ) . 

where we used 7 > 1 in the last step. A rearrangement of the above inequality yields 

|x(i; A) - x(i;B)||/3 < 6/5(̂ 0 + a,io)||A - B||/3, for all t € [to, to + a]j. 

Hence x(i; A) is Lipschitz continuous in A in the /?-norm, with Lipschitz constant 

ep{to + a, to). Thus, a variation in x(i; A) is bounded by the lines ±e^{to + a, to). 

This completes the proof. 

• 

In our next result, we consider the n-sphere NR{Aq) defined in (3.5.1) and the 

n + 1-sphere Pr,M(Ao) defined in (3.5.2). We assume that A 6 NR (Aq). Then the 

following theorem guarantees a unique solution to the dynamic IVP (4.1.1), (4.1.2) 

in Pr,M(Ao). Moreover, the result also ensures the existence of continuous partial 



derivatives of the solution with respect to the initial value xq = A in the n-sphere 

iVr(Ao). 

Theorem 4.7.3 Consider the vector Aq G M'̂  and positive constants r, M such that 

(3.5.1) and (3.5.2) hold. Let f : Pr^M(Ao) ^ be right-Hilger-continuous. If 
o o /1 \ 
——- exist and are continuous for all (i, p) 6 Pr,M(Ao), then the dynamic IVP 

(4.1.1), (4.1.2) has a unique solution x(i; A) for all (i, x) G Pr-,M(Ao). Furthermore, 
Qx.lt- A) 

the partial derivatives of the solution, —^^^—, are also continuous in A for all dA 
A G Nr{Ao) for all t G [TO, h + a T' 

Proof: We know from Theorem 4.4.3, that a unique solution to the system (3.1.2), 

(3.1.3), which is the same as (4.1.1), (4.1.2) exists in P^,M(AO). Let us call this 

solution x(i; A). So, we only show that this solution x(i; A) has continuous partial 

derivatives with respect to the initial value A for all (i, x) G Pr,M(Ao). That is, 
ax(i; A) 

we show that dA 
exists and is continuous in A for all A G NR(Aq) for all 

t G [to, to + AJX-

We note, from Theorem 4.7.1, that x(i; A) satisfies a uniform Lipschitz condition 

in A. Thus, from [42, p.3], for every e > 0, we can define sl S = S{e) := eiit.to) 
for 

which 

x(i; A) - x(t;B)|| < e, whenever ||A - B|| < S. 

Let q := (0,0, • • • , 0,1,0, • • • , 0)^ G W^ be the k-th unit vector. Then for an arbi-

trarily small S > 0 we define B = A + Jq. Using Taylor's theorem [75, p.624], we 

obtain 

ax(t;A) 
dA 

= lim 
<5̂ 0 

x(i; A + iq) - x(i; A) 

< l im- , 
5-^0 5 

= eL{t,to), 

whenever ||A — B|| < <5. 
dxit' A) 

Thus — — - exist and are rd-continuous for all t e Ho, to + ah for all A G 
dA 

NR(Aq). This completes the proof. 

• 



4.8 Dynamic equations of higher order 

The ideas of Section 4.3 can be extended to higher-order equations. Consider x to 

be a continuously differentiable vector function of order n, where n = 1,2, • • •. That 

is, X = {xi,x2r ' • ) ^n)- We define the k-th derivative of x as 

A^ r A'^-hA X := X 1 for all A; = 1,2, • • • ,n, 

and define xi , X2, • • • ,Xn as follows: 

xi:=x; X2:=x^; X3 : = x ^ V • • ; ^ n - i Xn := x^" \ (4.8.1) 

If we delta-differentiate the above system of equations, we obtain a set of first order 

dynamic equations 

x f = X2; 

X2 = 3:3; 

^n—l — ^n'l 

(4.8.2) 

x^ = x^" = f { t ,x i ,x2 , ' - - = f ( i ,x) . (4.8.3) 

Now consider the dynamic initial value problem 

x ^ ' = foralHG [̂ 0,̂ 0 + a ] ? ; (4-8.4) 

x{a) = Ai;x^{a)=A2;'-- = Ak, (4.8.5) 

where Ak G R. Then this system can be written as 

x ^ = f (Í, x), for all t e [to, to + a]f; (4.8.6) 

x(a) = A, where A = (Ai, • • • , An), (4.8.7) 

which is the same as (4.1.1), (4.1.2). Any continuous and n-times delta differentiable 

function X satisfying (4.1.1), (4.1.2) will be a solution to the dynamic IVPs (4.8.4), 

(4.8.5). 

Similarly, if we define := a{b); and C7{a^{b)) for all k = 1, ..,n, 

then any rd-continuous function x that is n times delta differentiable on a time scale 



interval [a,a^{b)]j and satisfies the dynamic IVP 

x ^ ' = for a l H e [io,io + a 

x{a) = = A2;-- - = Ak 

T' (4.8.8) 

(4.8.9) 

will be a solution to this equation. 

We now present our results for the higher order dynamic IVPs (4.8.4), (4.8.5) as 

follows. 

Theorem 4.8.1 Let f : [iô ô + î lx x R'̂  ^ R^ be a right-Hilger-continuous func-

tion, and L* > 0 be a fixed number. If, for all p, q G R'̂ , f satisfies 

(4.8.10) f(i, p) - f(i, q)f < Li[(pi - qif + • • • + (Pn - Qn? 

for all t G [to? + 

then the IVP (4.8.4), (4.8.5) has a unique solution. 

Proof: We show that f satisfies the Lipschitz condition (4.4.1) and Theorem 4.4.1 

applies. 

Consider p, q G R^, then for all t e [io, to + , we can write from (4.8.4) 

f ( i , p ) - f ( i , q )|| 
P ^ - q ^ l l 

{P2 - q2f + {PZ - qzf + •• + ||f(i,Pl,P2, • • • ,Pn) -

< [{pi - qi? + {P2 - q2? + •••• + (Pn - + ||f(i, p) " f(i, q ) f 

< [{Pl - qi? + {P2 - q2f + •••. + (Pn - qn? 

1/2 

+Li[(pi - qif + (P2 - q2f + • • • + (Pn - qn)' 1/2 

(1 + Li)((pi - qif + (P2 + {Pn - qn?]) 

1 + p - q 

1/2 

Hence, f satisfies (4.4.1) with Lipschitz constant L := [1 + Li]^/^. Thus, by Theorem 

4.4.1, the IVP (4.8.6), (4.8.7) has a unique solution. In other words, the IVP (4.8.4), 

(4.8.5) has a unique solution. 



The next theorem concerns the uniqueness of solution to the dynamic IVP (4.8.8), 

(4.8.9). 

Theorem 4.8.2 Let f : [to, to + a]^ x R" ^ R'̂  6e a right-Hilger-continuous func-

tion, and L2 > 0 be a fixed number. If there exists p = 7L2, where 7 > 1, such that, 

for all p ,q € R'^, f satisfies 

; f ( i ,p ) - f ( t ,q ) ]2 < L2 
(1 + K t W 
for all t e [to, + CL 

{Pi-qif + --- + {Pn-qn)% (4.8.11) 

T; 

then the IVP (4.8.8), (4.8.9) has a unique solution. 

Proof: We show that f satisfies (4.4.10) and Theorem 4.4.7 appHes. In this case, 

we define the components xi, • • • , Xn oi x as 

x i : = x ' ' ; 0:3 := rr^"; • • • ; x^- i Xn ••= x^'" \ (4.8.12) 

and delta-differentiate the above equations taking x^^ \= {x o a)^ (see Theorem 

A.3.11). Thus, we obtain 

n - 2 

X-^ — X 5 

A X2 = Xz] 

^n-1 ~ 
,A A X^ = X^ = ,Xn) = f(i ,x), 

(4.8.13) 

(4.8.14) 

Then for any p, q e R'̂  having components as in (4.8.12), we have from (4.8.14), 

f ( i , p ) - f ( i , q ) 

{pf - q f ? + (P3 - 93)' + •••. + (f(i, p) - f(t, q) ) ' 

- q f ? + ipi - qif + fe - q2f + (P3 - 93)' + • • • . + {pn - qnf 

+ ( f ( i , p ) - f ( i , q ) ) 2 1/2 

< [ [pf - q f f + - q^f + fe - q2Y + •••. + (Pn - qn)' 
L2 

(1 + m P Y 
\pi - qi? + {P2 - q2f + • • • + (Pn - qn)' 

115 

1/2 



where we used (4.8.11) above. Thus, our further computations take the form 

f ( i ,p ) - f ( i ,q )|| = M ) ' + 

1 + 
L2 \ 

(i + M ^ W , 
(Pi - qi? + {P2 - q^f + • • • + (Pn - qui 1/2 

< 

< | p f 1 + 

1+ 

- qi) + (P2 - + • • • + {pn - qn) 

{Pl - qi? + (P2 - + • • • + (Pn - ^n)' 1/2 

1 + ^l{t)(5 p - q 

Let 

a Pi -11 

Then the above inequahty becomes 

p - q | 

< a p - q|| + 

1 + fi{t)P 

a 
1 + 

p - q 
p - q 

1 + fi{t)l3 

Hence, f satisfies (4.4.10) with 

L := a|l + fi{t)(3\ + |((1 + + L^f' 

where a = \ v t - ql^ |. Thus, by Theorem 4.3.6, the IVP (4.8.8), (4.8.9) has a 

unique solution. 

• 
In this chapter, we presented results regarding existence of solutions to the sys-

tems (2.1.5), (2.1.6) and (2.1.7), (2.1.8) and also to the scalar IVP (2.1.9), (2.1.10) 

using Banach's fixed point theory and its appHcations. In the next chapter, we re-

place the above IVPs by another scalar IVP involving nabla equations and explore 

existence of solutions within a defined location, using the method of lower and upper 

solutions, employing Schauder's approach from ordinary differential equations. 



Chapter 5 

Existence results using lower 

and upper solutions 

5.1 Introduction 

So far we have examined the existence and uniqueness of solutions to first order non-

linear dynamic initial value problems involving delta equations. We used methods 

from classical analysis, such as successive approximations, and employed ideas from 

fixed point theory, such as Banach's fixed point theorem. In this chapter we consider 

the nabla equation 

x^ = / ( i , a:), for all t G [0, a j ^ j , 

subject to an initial condition and examine: the existence and uniqueness of solu-

tions to the above initial value problem employing Schauder's fixed point theorem; 

restriction of solutions within known regions defined by [0, a]x, an upper solution, 

u, and a lower solution, /, on [0, ajx- We also establish successive approximations 

of solutions via lower and upper solutions to an initial value problem involving the 

above nabla equation. 

It had been shown in [12] and [11] that the existence results involving lower 

and upper solutions for boundary value problems on time scales can be proved with 

less restrictions using nabla equations than using delta equations. By a similar 

argument, we prove our results using nabla equations to allow the solution to assume 

maximal values at the right end point of a given interval of existence, [/, ̂ ¿], using the 



maximum principle. In this way, our existence results are different both in context 

and methodology from results proved in Chapter 3 and Chapter 4 for first order 

dynamic IVPs. 

Our method of employing lower and upper solutions using the maximum principle 

to obtain existence and uniqueness of solutions to the IVP (5.1.1), (5.1.2) also make 

our results in this chapter different in context and methodology from those proved 

in [54, Theorem 4.1.2 . 

The results follow some notions of La Salle [55] extended to the time scale setting. 

In this way, our results exhibit a broader span of modelling a system described as a 

first order initial value problem, no matter if the system has a discrete or a continuous 

domain or a hybrid of both. 

5.1.1 The main objective 

We consider a left-Hilger-continuous non-linear function (see Definition A.2.6) / : 

X C M̂  ^ M, where /,̂ ¿ are continuous on [0,a]T = [0, a] n T for an 

arbitrary time scale T. 

Consider the scalar initial value problem 

xV = f{t, x), for all t e [0, (5.1.1) 

x(0) = 0. (5.1.2) 

Here x^ is the 'nabla' derivative of x introduced in [13, p.77]. 

The main aim of this chapter is to answer the following questions: 

1. Under what conditions does the dynamic IVP (5.1.1), (5.1.2) have a solution? 

2. Under what conditions does (5.1.1), (5.1.2) have solutions lying within the 

interval where /,̂ ¿ are known to be (respectively) the lower and upper 

solutions to the IVP (5.1.1), (5.1.2)? 

3. Under what conditions do I and u approximate solutions to (5.1.1), (5.1.2) 

with an error estimate on the i-th approximation? 

Our results show that given u, I the upper and lower solutions to the IVP (5.1.1), 

(5.1.2) the IVP has at least one solution which is bounded above by u and is bounded 

below by 1. We apply our ideas to establish non-negative solutions to (5.1.1), (5.1.2). 



5.1.2 Methodology and organisation 

Our results in this chapter use the method of lower and upper solutions. The moti-

vation for using upper and lower solutions in our results was developed due to the 

wide use of this method to establish existence results for a variety of first and sec-

ond order initial and boundary value problems, see [3], [7], [8], [11], [12], [13], [19], 

22], [86] and the references therein. We use this method to determine: existence 

of solutions to the IVP (5.1.1), (5.1.2); and establishing successive approximations 

converging to a solution of the above IVP. 

This chapter is organised in the following manner. In Section 5.2, we define lower 

and upper solutions to the dynamic IVP (5.1.1), (5.1.2) and establish the existence 

and uniqueness of solutions to (5.1.1), (5.1.2) within the lower and upper solutions 

to (5.1.1), (5.1.2). 

In Section 5.3, we show that l{t),u{t) are zero approximations to solutions of 

( 5 . 1 . 1 ) , ( 5 . 1 . 2 ) established in Section 5 .2 , for all t G [0, a]T. We also prove that an 

upper bound exists on the error of the z-th approximation on [0, a]T which approaches 

to zero for a unique solution. 

5.2 Existence results 

We prove that the dynamic IVP (5.1.1), (5.1.2) has a solution on [0, a]T that lies 

within the interval [l,u], where ¿(i), u{t) act respectively as lower and upper solutions 

to (5.1.1), (5.1.2) for all t e [0, a]T, using Schauder's fixed point theorem. 

We begin with some prehminary ideas that will be used to prove the main results. 

Definition 5.2.1 Lower and upper solutions 

Let l,u be nahla differentiable functions on [0,a]«;,T- call I a lower solution to 

(5.1.1), (5.1.2) on [0,a]T if 

l^{t) < fit, l{t)), for all t e [0, a]«,T; (5.2.1) 

/(O) = 0. (5.2.2) 

Similarly, we call u an upper solution to (5.1.1), (5.1.2) on [0,a]T if 

u'^it) > fit, uit)), for all t e [0, a]«,T; (5.2.3) 

uiO) = 0. (5.2.4) 



Definition 5.2.2 Let D C R. A solution of (5.1.1), (5.1.2) is a function x : 

0? ^ such that: the points (t, x{t)) e [0, x D; x{t) is nabla differentiable 

with x^(i) = / ( t , x{t)) for each t € [0, aj^^f/ and a;(0) = 0. 

• 

All Id-continuous functions are nabla integrable [19, Theorem 8.45]. The follow-

ing lemma establishes equivalence of the IVP (5.1.1), (5.1.2) as nabla integral equa-

tions. The result is nabla-equivalent of Lemma 2.1.3 for the 'delta' case. Therefore, 

the proof is omitted. 

Lemma 5.2.3 Let D C R. Consider the dynamic IVP (5.1.1), (5.1.2). Let f : 

0, al^j X D R be a left-Hilger-continuous function. Then a function x solves 

(5.1.1), (5.1.2) if and only if it satisfies the nabla integral equation 

t 
(5.2.5) 

0 

• 
x{t)= [ f{s,x{s)) vs, 

Jo 

The following definition and the next two theorems are the keys to our proof for 

the existence of solutions to (5.1.1), (5.1.2). 

Definition 5.2.4 [88, p.54] Let C7, V be Banach spaces and F : A CU V. We 

say F is compact on A if: 

• F is continuous on A; 

• for every bounded set B of A, F{B) is relatively compact in V. 

• 

The next theorem is another form of the Arzela-Ascoli theorem [64, Theorem 

1.3] stated in Chapter 3, see Theorem 3.6.4. This form is more suitable for our 

results in this chapter. 

Theorem 5.2.5 Arzela-Ascoli theorem on T 

Let D C C([a, b]j; R). Then D is relatively compact if and only if it is bounded and 

equicontinuous. 



Theorem 5.2.6 Schauder's Fixed Point Theorem 

Let X be a normed linear space and D be a closed, bounded and convex subset of X. 

If F : D D is a compact map then F has at least one fixed point. 

• 

Define an infinite strip 

Sk '•= {{iiV) : i e [0, and - oo < p < oo}. 

Let ^ : — R be a left-Hilger-continuous function. Our next theorem concerns 

the existence of solutions to the initial value problem 

= g{t, x), for all t G [0, 

x(0) = 0 

in We prove this result by using Schauder's Theorem. 

(5.2.6) 

(5.2.7) 

Theorem 5.2.7 Consider the initial value problem (5.2.6), (5.2.7) withg left-Hilger-

continuous on SK- If g is uniformly bounded on then (5.2.6), (5.2.7) has at least 

one solution, x, such that the point {t,x{t)) lies in the infinite strip 

S := {{t,p) : i e [0, a]-!, and — oo < p < oo}. 

Proof: Prom Lemma 2.1.3, a solution of (5.2.6), (5.2.7) is given by 

x{t) := [ g{s,x{s)) s, for alH G [0, a]T. 
Jo 

Since g is uniformly bounded on S^, there exists M > 0 such that 

(5.2.8) 

g{t,p)\<M, for all {t,p) e S^. (5.2.9) 

Define K := Ma and consider the Banach space (C([0, a]j; R), | • |o) [82, Lemma 3.3 

Let D C C([0,a]T;R) defined by 

D : = { x e C([0,a]T;R); k|o < K}-

Then D is closed, bounded and convex. We show that a compact map F : D D 

exists and Schauder's Theorem applies. 



Define 

Fx]{t):= [ g(s,x(s)) V 5 , for a lU e [0,a]T. (5.2.10) Jo 
Note that F is well defined on C([0, a]T;M) as ^ is left-Hilger-continuous on 5«. 

We show that F : D ^ D is a. compact map. For this, we show that the following 
properties hold for F: 

(i) F is continuous on 

(ii) for every bounded subset B of D^ F{B) is relatively compact in C([0, a]T;M), 

and verify Definition 5.2.4. 
To show that F is continuous on D, we define 

BK{0) : = { p e R : \p\ < K}. 

Note that BxiO) is closed and bounded and hence compact in R. Therefore, g is 
bounded and uniformly left-Hilger-continuous on [0, al^^j x Bk{0). Thus, for a given 
ei > 0 there exists a = (5i(ei) such that for {t,xi), (i, 0:2) 6 [0, x we 
have 

g{t,xi) -g{t,X2)\ < ei whenever \xi - X2\ < Si. (5.2.11) 

Let Xi be a convergent sequence in D with xi ^ x for all i. Then for every (5i > 0 
there exists N > 0 such that 

Xi — x\ < for all i> N. 

We show that the sequence Fi := Fxi is uniformly convergent in E. Let eo := e\a. 
We note that 

Fxi — FX\Q = s u p \Fxi{t) — Fx{t) 
t€[0,a]j 

t 
< sup 

te[0,a]j 
{g{s,Xi{s)) - g{s,x{s))) \7 s 

Jo 
< sup 

i€[0,a]T 

< eia whenever \xi — x\ < 61 
= eo, 



for all i > N. Thus Fi are uniformly convergent on D and hence are uniformly 

continuous on D. 

We show that F : D ^ D: Note that for all x e D, we have 

Fx\o := s u p \ F x { t ) 
te[o,a]T 

< sup [ |î (5,a;(s))| V 
teiO.alT i€[0,a]T 

< Ma 

= K . 
(5.2.12) 

Thus, F is in D. 

Next, we show that for every bounded subset B of D, F{B) is relatively compact 

in C[0, a]T using the Arzela-AscoU Theorem. 

Let S be an arbitrary bounded subset of D. Assume x e B. Then we note from 

(5.2.12) that we have |Fa:|o < K for alH G [0, a]T- Thus F is uniformly bounded on 

B . 

We also note that for any given e > 0 we can define ^ ^ ^^^ ̂ r̂ ti,t2 6 [0, a i 5 
we obtain 

Fx](ii) - [Fx](i2) 

< 

rt2 

Jti 

rt2 

Ju 

V 5 

VS 

< M |ti - t 2 

< e 

whenever \ti — ¿2! < Hence, F is equicontinuous. By the Arzela-Ascoli Theorem, 

F{B) is relatively compact in C([a, 6]t;M). 

From (i) and (ii) above, we note that F : D D is a compact map. We also 

note that F satisfies the conditions of Schauder's Theorem and, so, has at least one 

fixed point in D given by (5.2.8). Hence, (5.2.6), (5.2.7) has at least one solution, x, 

such the point (i, x{t)) G S. 

• 

The above result ensures existence of a solution to (5.2.6), (5.2.7) when the function 

g is bounded in an infinite domain and considers this as a sufficient condition for 



the existence of a solution to the above IVP in the infinite domain S^. However, the 

result does not ensure the existence if the domain is restricted. 

In the next result, we strengthen the above condition by restricting the solution 

to (5.2.6), (5.2.7) within a lower and an upper solution to (5.1.1), (5.1.2). Hence we 

prove the existence of a solution to (5.1.1), (5.1.2) within the region 

Rk '•= {{t,p) : t e [0,a]«,T, and l{t) <p< u(t)}, 

where l,u are, respectively, lower and upper solutions to (5.1.1), (5.1.2). To prove 

this, we define a modified function g in terms of / in (5.1.1) and prove that g is 

uniformly bounded and use Theorem 5.2.7. We also prove that the solution, x, to 

the IVP (5.2.6), (5.2.7) satisfies l{t) < x(t) < u{t) for all t e [0,a]T, so that x must 

also be a solution to the original unmodified problem (5.1.1), (5.1.2). 

Theorem 5.2.8 Let f : R^^^ be a left-Hilger-continuous function. Ifl,u are, re-

spectively, lower and upper solutions to (5.1.1), (5.1.2), then the IVP (5.1.1), (5.1.2) 

has at least one solution, x, such that l{t) < x{t) < u{t) for all t 6 [0, ajx-

Proof: Consider the IVP (5.2.6), (5.2.7), where g{t,p) is defined on such that 

for all i 6 [0, a]«j , 

m-p 
f{t.l{t)) + 

i + m - p r 
when p < l{t)] 

when/(i) <p<u{t); (5.2.13) 

We first show that g is left-Hilger-continuous and uniformly bounded on 5« and 

Theorem 5.2.7 applies. 

Note that / is left-Hilger-continuous on the compact region R ,̂ and so it is 

bounded on R^. Thus, there exists Mi > 0 such that \f{t,p)\ < Mi for all {t,p) e Rk-

We also note that for l{t) > p 6 R, we have 

m - P 

and so 

fit, I) + 

1 + m -

m-P 
i+m-p)' 

< 1, for all t e [0, a]T, 

< 1 + Mi, for alHG [0,a]^,T-
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Define M := 1 + Mi. Then from (5.2.13), we obtain 

for all e S^. (5.2.14) 

Hence g is uniformly bounded on S^. In addition, the left-Hilger-continuity of / 

on R^ and the Id-continuity of l,u,p on [0,a]j shows that the right hand side of 

(5.2.13) is left-Hilger-continuous on S^ and, so, we have g left-Hilger-continuous on 

By Theorem 5.2.7, the modified IVP (5.2.6), (5.2.7) has a solution, x, such that 

the graph {t,x{t)) 6 S for all t e [0,a]T. 

Next, we prove that l(t) < x{t) < u{t) for all t G [0,a]j. We split the inequality 

l{t) < x{t) < u{t) into two parts and first show that 

l{t) < x(t), for all t e [0,a]T, (5.2.15) 

using the contradiction method. 

Let r{t) := l{t) — x{t) for all t € [0, ajx- Assume there exists a point ti G [0, ajx 

such that l{ti) > x{ti). Note that ^ 0 as 3;(0) = 0 = /(O) from (5.1.2) and (5.2.2). 

Without loss of generahty, we may assume that 

r(ti) = max r(t) > 0. 
ie[0,a]Tr 

(5.2.16) 

Thus, r{t) is non-decreasing at t = ti and, so, r^{ti) > 0. 

On the other hand, since x{ti) < l{ti) we note that using (5.2.6), (5.2.13) and 

(5.2.1), we obtain 

< 0, 

which is a contradiction. Hence l{t) < x{t) for all te [0, ajj. 

It is very similar to show that u{t) > x{t) for all t 6 [0, ajj as in the above case. 

We omit the details. 



Thus, we have l{t) < x{t) < u(t) for all t e [0,a]T. Hence, from (5.2.13), x{t) is 

a solution to (5.1.1), (5.1.2) for all t 6 [0,a]j. This completes the proof. 

• 
The following example illustrates the above theorem. 

Example 5.2.9 Consider the Riccati initial value problem 

x^{t) = fit, x) := x^ - t, for all t 6 [0, 1]«,t; 

x(0) = 0. 

(5.2.17) 

(5.2.18) 

We claim that there exists at least one solution, x, to the above IVP such that 

-t < x{t) < t for all t e [0, 1]T. 

Proof: We note that the right hand side of (5 .2 .17 ) is a composition of a continuous 

function t and a continuous function x'^ and hence, is continuous on [0, 1]T X R. SO 

our / is left-Hilger-continuous on [0, X 

Let us define 

l{t) := - i , for all t G [0, 1]t. 

Then we note that /(O) = 0 and l^{t) = - 1 for all t e [0, IJT- We further note that 

for all t G [0, p(1)]T5 we have 

fitJit)) =t^-t 

> - 1 

= l^it). 

Thus, our I satisfies (5.2.1), (5.2.2) and is a lower solution to (5.2.17), (5.2.18). 

In a similar way, the function u{t) := t is an upper solution to (5.2.17), (5.2.18) 

for all i G [0,1 T-

By Theorem 5.2.8, there is at least one solution, x, to (5.2.17), (5.2.18) such that 

-t < x{t) < t for all t e [0, 1]T. 

• 
Our next result gives a sufficient condition for uniqueness of solution to (5.1.1), 

(5.1.2). We show that the solution, x, of the above IVP established in Theorem 5.2.8 

is the only solution satisfying l{t) < x{t) < u{t) for all t 6 [0, ajj-



Theorem 5.2.10 Let f be left-Hilger-continuous on Assume l.u are. respec-

tively, lower and upper solutions of (5.1.1),. (5.1.2). If there exists L > 0 such that 

f satisfies 

f{t,p) - f{t, q)\ < L\p - q\, for all (t,p), {t, q) € R^, (5.2.19) 

then the solution x of (5.1.1), (5.1.2) brought forward under the conditions of The-

orem 5.2.8 is the unique solution satisfying l{t) < x{t) < u(t) for all t e [0, a]x. 

Proof: Let x.y be two solutions to (5.1.1), (5.1.2). Then, using (5.2.5). we obtain 

for all i e iO, ah. 

X {t)-y{t)\ < f\f{s,x{s))-f{s,y{s))\ V 
Jo 

< L I |2:(s) -y{s)\ (5.2.20) 

where we employed (5.2.19) in the last step. 

Define 

r(t) := |x(i) - y{t)l for all i G [0,a 

Note that, L > 0 and so L G [12. p.225]. Applying Gronwall's inequality concern-

ing nabla derivatives [12, Theorem 2.7] (taking f{t) = 0 and p{t) = L) to (5.2.20), 

we obtain 

r(t) < 0 . for aU i G [O^a]-. 

But r{t) = \x{t) - ?/(i)| and so. is non-negative for all i G [0, a]-. Thus, x{t) = y{t) 

for all i G [0, a]T. 

• 

The next theorem is nabla equivalent of Theorem 2.2.2 for a scalar function / 

and provides a sufficient condition for / to satisfy- (5.2.19). The proof is, therefore, 

omitted. 

Theorem 5.2.11 Let b > 0. Consider a function f defined on a rectangle of the 

type 

Rk '= {{t.p) G T« X R : i G [0, a]«.T, \p\ < b} (5.2.21) 



or on an infinite strip of the type 

Sk := {{t,p) eT^xR:te [0,a]^,T, \p\ < 00}. (5.2.22) 

If —— exists for alii = 1,2, • and is continuous on R^ (or S^), and there is 

a constant K > 0 such that for all {t,p) e R^ (or S^), we have 

dfit,p) 
dpi 

<K, for all 1 = 1,2, (5.2.23) 

then f satisfies a Lipschitz condition on R^ (or S^) with Lipschitz constant K = L. 

• 

The following example illustrates Theorem 5.2.10 using Theorem 5.2.11. 

Example 5.2.12 Consider (5.2.17), (5.2.18). We claim that x is the unique solu-

tion of (5.2.17), (5.2.18) such that -t < x(t) < t for all t 6 [0, 1]T. 

Proof . We note from (5.2.17) that f{t,p) = p^ - t for all t e [0, 1]«,t- Thus, for all 

t 6 [0,1]«,T? we can write 
af 

2p < 2. 
dp 

Thus, / has bounded partial derivatives in [0, l]«;,! x [—t̂ t] and, by Theorem 5.2.11, 

satisfies (5.2.19) with L = 2. Therefore, the solution x of (5.2.17), (5.2.18) estab-

lished in Example 5.2.9 is unique by Theorem 5.2.10. 

• 

The next corollary establishes existence of a unique, non-negative and bounded 

solution of the IVP (5.1.1), (5.1.2) on [0, a T-

Corollary 5.2.13 Let f : R ̂  —> M. be a left—Hilger—continuous function satisfying 

(5.2.19), Let l,u he lower and upper solutions to (5.1.1), (5.1.2). If l{t) = 0 for all 

t e [0, a]T, then the IVP (5.1.1), (5.1.2) has a unique, bounded and non-negative 

solution, x{t), for all i G [0, a T' 

Proof: The proof follows from Theorem 5.2.10, as 0 < x{t) < u{t) for all t e [0, a]T. 

The following example illustrates the above corollary. 



Example 5.2.14 Consider the dynamic initial value problem 

^^{i) = fit^ •= P{t) + for all Í G [0,1 

a;(0) = 0. 

(5.2.24) 

(5.2.25) 

We claim that the above I VP has a unique solution x such that 0 < x{t) < 1 for all 

T E [ 0 , 1 ] T . 

Proof: Note that f{t,p) = p{t)p^ for aU {tp) e [0, X R. Since p{t) and p^ 

are everywhere Id-continuous functions and so is their composition, our / is left-

Hilger-continuous on [0, x M. We define 

l{t) := 0, and u{t) := t^, for all t e [OA 

Then we note that l{t) < u{t) for all t e [0, a]j with Z(0) = 0 = i/(0) 

It is evident that I satisfies (5.2.1) and so, is a lower solution to (5.2.24), (5.2.25). 

We also note that, for ailH e [0, 1]t 

f{t,u{t)) = p{t)+t^ 

< p{t) +1 

= u'^it). 

Thus, our u satisfies (5.2.3) and is an upper solution to (5.2.24), (5.2.25). By Theo-

rem 5.2.8, there exists a solution, x, to (5.2.24), (5.2.25) such that 0 < x{t) < < 1, 

for all t e [0, 1]T. 

Moreover, for all t G [0, 1]T, we have 

df 
dp 3 r < 3 r < 3. 

Thus, / has bounded partial derivatives in [0, 1]T X [0,1] and satisfies (5.2.19) for 

= 3 by Theorem 5.2.11. From Corollary 5.2.13, x is the unique solution to (5.2.24), 

(5.2.25) such that 0 < x{t) < 1 for alH G [0, 1]T. 

• 



5.3 Approximation results 

In this section, we establish conditions under which lower and upper solutions to 

(5.1.1), (5.1.2) approximate the existing solutions of (5.1.1), (5.1.2). We also estab-

lish error estimates on he zth approximation. 

Let / : K ^ R be left-Hilger-continuous. Define F : C([0, a\r, M) ^ C([0, a]r, M) 

by 

'Fp\{t) = / /(s,_p(s)) V <5, for all t e [0,a]T. 
Jo 

Then F is well-defined on C([0, a]T;M). Under the conditions of Theorem 5.2.8, a 

fixed point x oi F will be a solution to (5.1.1), (5.1.2) such that l{t) < x{t) < u{t) 

for all t e [0, a]T, where l,u are, respectively, lower and upper solutions of (5.1.1), 

(5.1.2). 

Consider an iterative scheme defined as 

F^p]{t) := [Fp](t) = [ / (s,p(s)) V5 , for alH e [0,a]T; (5.3.1) 
Jo 

for all i > 1. (5.3.2) F' := F\F 

It had been shown in [83, pp.78-79] that, in general, the continuity of a function / 

alone is not sufiicient for a sequence or subsequences of successive approximations to 

converge to a solution on a compact rectangle. In our next result, we show that the 

successive approximations defined in (5.3.1), (5.3.2) provide a sequence of functions 

that converge to a solution to (5.1.1), (5.1.2). 

We assume / to be non-decreasing on R^ and prove that if x is a solution to 

(5.1.1), (5.1.2) such that l{t) < x{t) < u{t) for all t G [0,a]T, then l{t) and u{t) 

approximate x{t) for all t G [0, a]j. We also show that an upper bound on the error 

of the 2th approximation will be [F'^u]{t) — [F'^l]{t) for all t G [0, a]T. 

The next definition describes zero approximation to the solution of (5.1.1), (5.1.2) 

(see [55, p.724] for the ODE case). 

Definition 5.3.1 Let x be a solution to (5.1.1), (5.1.2) and y : T R be a Id-

continuous function. We call y{t) a zero approximation to x{t) for all t G [0, a]T if, 

{F'^y} converge uniformly to x on [0, a]T. 



Theorem 5.3.2 Let f : R^ W be left-Hilger-continuous and I, u are lower and 
upper solutions to (5.1.1), (5.1.2). If f is non-decreasing in the second variable on 
R^, that is, forp < q, we have 

f{t,P) < f{t,q), for all {t,p\ {t,q) G (5.3.3) 

then l{t) and u{t) will be the zero approximations to a solution x of (5.1.1), (5.1.2) 
for all t e [0, a]j. 

Moreover, for m,n > 0, the sequence F^ given by (5.3.1), (5.3.2) satisfies 

Fn]{t) < < [F''+\]{t) < [F^^KO, for all t e [0,a]T. (5.3.4) 

Proof: We show that l{t),u{t) satisfy Definition 5.3.1 and (5.3.4) holds for all 

t e [0, a\j. 

We note from (5.3.1) that for p = u, we obtain for all t G [0, aj^j 

Fu]{t) = f{s,u{s)) V5 
Jo 

< [ U^{s)) V5 
Jo 

= u{t). (5.3.5) 

Similarly, for p = we obtain 

l{t) < [Fl]{t) for all t e [0, a]j (5.3.6) 

Since / is non-decreasing in the second argument and is left-Hilger-continuous on 

i?«, it follows from (5.3.6), (5.3.3) and (5.3.1) that, for all t e [0,a]T 

JO 

< [ f{s,[Fl]{s)) S7s 
Jo 

= [F'ilW- (5.3.7) 

Proceeding in this way, we obtain 

Fl]{t) < [FH]{t) < [F'^l]{t) < < • • • , for alH e [0, aji. (5.3.8) 

Note that, the sequence {FH} is non-decreasing. 



In a similar way, using (5.3.3), (5.3.1) and (5.3.5), we obtain 

Fu]{t) > [F\]{t) > [ F \ ] ( i ) > .. • , for alH 6 [0, a]T. (5.3.9) 

Now since l{t) < u{t) for all t G [0, a]«;, we can write using (5.3.8) and (5.3.9) 
that for all t e [0, a l j 

(5.3.10) 

We further note that 

F/](0) = 0 = [Fi/](0). (5.3.11) 

We show that the sequence {F'^l} converges uniformly to the fixed point x (a;(0) = 
0). 

Define 
r(t) := [Fu](t) - [Fl]{t), for all t € [0, a T-

Note that, r(t) > 0 for all t e [0,a]T. Since / is non-decreasing in the second 
argument on J?^, it follows from (5.3.1) that 

rV(i) = f(t, u(t)) - f{t, l{t)) > 0, for all t G [0, a\T. 

It is clear from (5.3.10) that for n > m > 0, we have 

and for n < m, we have 

F'^mt) < [F'^ulit) < 

Hence for any m, n > 0, we have the inequality 

[Fn]{t) < < [F^'+^ulit) < for all t € [0,a]T. 

The boundedness and equicontinuity of each F^l can be estabUshed in the same way 
as in Theorem 5.2.7. 

Hence, as z oo, {F^l} converges uniformly on [0, a]T to a fixed point x. Simi-
larly, {F^u} converges uniformly on [0, a\j to a fixed point x. Thus l{t) and u{t) are 



zero approximations to x { t ) with r \ t ) := [F^u\{t) - [ F H ] { t ) as an upper bound on 

the error of the i—th. approximation for all t G [0, alj. 

If the solution is unique, then 0 for alH > 1 for all t € [0, ajj. This 

completes the proof. 

• 

Example 5.3.3 Consider the dynamic I VP 

W = f i t , oc) := x^ - t , f o r all i G [0,1 

rr(0) = 0. 

(5.3.12) 

(5.3.13) 

We claim that l { t ) = - t and u { t ) = t are zero approximations /or (5.2.17), (5.2.18) 
f o r all t e [0, 1]t. Moreover, f o r all t G [0, 1]T, the sequence F^ given by 

't 
FO(i) [Fx](i) = [ ( x ^ - s ) Vs 

Jo 
F' F\F f o r all i > l . 

s a t i s f i e s (5.3.4) f o r any m , n > 0 . 

Proof We note that f { t , p ) = p^ - t for all { t , p ) e [0, X R. Since t and p^ 

are everywhere Id-continuous functions and so is their composition, our / is left-

Hilger-continuous on [0, X R. We further note that /(O) = 0 = u { 0 ) and for all 

t e [0,1]«,T 

f { t , l { t ) ) = - t i t ' - h i ) 

> - 1 

Thus, I satisfies (5.2.1) and so, is a lower solution to (5.3.12), (5.3.13). In a similar 

way, we have u satisfying (5.2.3) and so, is an upper solution to (5.3.12), (5.3.13). By 

Theorem 5.2.8, there exists a solution, x , to (5.3.12), (5.3.13) such that - t < x { t ) < t , 

for all t e [0, 1]T. 

Next, we note that for p < q , w e have 

f { t , p ) = p ^ - t < q ^ - t = f i t , q ) , for all (i, q) 6 [0, 1]«,t x [-i, t 



Thus, / is non-decreasing with respect to the second argument on [0, 1]t,« x [ - t , t 

and so, by Theorem 5.3.2, the functions -t and t are zero approximations to the 

solution X of (5.2.17), (5.2.18). We further note that for x = we have for all 

i 6 [0,1 T 

Fl]{t) = + 
Jo '0 

> -t 

= m 

This leads to (5.3.7) and then to (5.3.8). We obtain (5.3.9) in a similar way. Thus, 

(5.3.4) holds for any m, n > 0. 

• 



Chapter 6 

Some explicit solutions 

6.1 Introduction 

In this chapter, we present some techniques for extracting expHcit solutions for var-

ious types of first order non-hnear dynamic initial value problems. We do this by 

developing the separation of variables approach and extracting solutions by substitu-

tion. The separation of variables for dynamic equations on time scales is developed 

with the help of the chain rule defined in Theorem A.3.11. 

Consider a point io ^ T where T is an arbitrary time scale and fix XQ 6 M. 

Assume x is delta differentiable on T'̂  and / : T'̂  x E R is a right-Hilger-

continuous function. 

We consider the first order scalar dynamic equations of the types 

= (6.1.1) 
= (6.1.2) 

= (6.1.3) 

for all t e T'̂ , subject to an initial condition x(to) = XQ. 

To obtain explicit solutions for dynamic initial value problems of the above types, 

we manipulate ideas from ordinary differential equations into the time scale setting. 

This chapter is organised in the following manner. 

In Section 6.2, we introduce separation of variables approach in the time scale 

setting. We do this using the chain rule defined in Theorem A.3.11 for the gener-

ahsed dynamic equation (6.1.3). The method involves splitting the right hand side 



of (6.1.3) into a quotient of a function of t and a function of x.x"" under certain 

conditions. The resultant equation comes out to be a separable equation. Examples 

including various types of dynamic IVPs solved using the separation of variables 

method have been provided. 

Section 6.3 includes solutions by substitution manipulating ideas from ordinary 

differential equations and transforming them into the time scale setting. Examples 

are provided to reinforce the results. 

6.2 The separation of variable approach 

In this section, we give the definition of a separable dynamic equation and methods 

for its solution. The chain rule given by (A.3.7) will be the key tool to separate the 

variables in dynamic equations on time scales. 

The following definition and result has been published in [82, p.3521 . 

Let T be any arbitrary time scale and / : T'̂  x R^ ^ R be right-Hilger-

continuous. If we can split the right hand side of (6.1.3) as a quotient of a rd-

continuous function g{t) and a continuous function h{x, x^) then we can define (6.1.3) 

as a separable equation as follows. 

Definition 6.2.1 Let ^ : T ^ R he rd-continuous and h ^^ be a continuous 

function. An equation of the form (6.1.3) will be called separable if we can write 

x^ = fit, X, x^) = ^^j^l^y for all t e T^ (6.2.1) 

The next theorem provides a method to solve an equation of the form (6.2.1) with 

the help of the chain rule in Theorem A.3.7. 

• 
Theorem 6.2.2 Consider the initial value problem 

x^ = fit, X, X-) = for all t € T«; (6.2.2) 

xito) = XQ. (6.2.3) 

If there exists a continuously differentiable real valued function H, such that 

[ H'[x + - x)] dk = hix, x^), for all t e T, (6.2.4) 
Jo 



then, the IVP (6.2.2), (6.2.3) has an implicit solution, given by 

H{x{t)) = [ g{s) As + ^(xo), for all t G T. (6.2.5) 
J to 

The solution can he explicitly obtained if H is globally one-to-one. 

Proof : Consider (6.2.2). We separate the variables and obtain 

(6.2.6) 

(6.2.7) 

/i(x(i), = g{t), for all t G T'^. 

Using (6.2.4), we replace h in the above expression and write 

[ H'[x{t) + kix'^it) - x(i))] dk • x^{t) = g{t), for all t G T'̂ , 
Jo 

which yields 

[ H'[x{t) + kfi{t)] dk • x^{t) = g{t), for all t 6 T'^. 
Jo 

By the chain rule (A.3.7) we obtain 

H{x(t))]^ = g{t), for all t e T'^. 

Finally, taking the delta integral of both sides in the above expression and incorpo-

rating (6.2.3) we obtain (6.2.5). 

• 

The above result is illustrated by the following examples. 

E x a m p l e 6.2.3 Let a be a positive constant. Then a G 71'^, see (A.6.2). 

Consider the dynamic IVP 

sina(i, 0) 

a:(0) = 1. 

for all t G T; (6.2.8) 

(6.2.9) 

We claim that this IVP is separable and has solution 

1/3 

x{t) = 
- 1 

a (cOSa(i, 0) - 1 ) + 1 for all t G T. (6.2.10) 



Proof Consider 

g{t) := siiLait, 0), and h { v , v"") = v^ + vv"" + (i;^) 

Then, by assumption, our g and h are well defined. Choose 

H { v ) = v^, and so H \ v ) = 

We note that 

[ H'[x + k { x ' ' - x ) ] d k = [ S[x + kix"" - x)]'^ dk 
Jo Jo 

x ' ^ x i x " " - x) + - { x " " - x f 
o 

= 3 

= (x^'f + xx"" + ir̂  

= hix^x""). 

Hence, the given dynamic IVP is separable and, by Theorem 6.2.2, has solution given 

by (6.2.5). Thus, for all i 6 T, we obtain 

H{x{t)) = {x{t)f = [ s m a { s , 0 ) A s + 1 
Jo 
- 1 

= — ( c o s a ( i , 0 ) - l ) + l. 
a 

Since x^ is one-to-one, the above equation yields (6.2.10). 

Example 6.2.4 Let p e TZ'^. Consider the d y n a m i c I V P 

x ^ = ^ e M I ^ for a l l t e [ 0 , oo)r, 
x + x^ 

a;(0) = 1. 

W e claim that this I V P is separable and has solution, x , given by 

{x{t)f = -(EP(I, 0) - 1) + 1, for all t e [0, OO)T. 

• 

(6.2.11) 

Proof: Define H ( v ) = v"^. Then, we have II'(v) = 2v = h{v), for all v . We also note 

that 

[ H'lx + kix''-x)] d k = [ 2 [ x ^ k { x ' ' - x ) 
Jo Jo 

d k 

= x + x"" 



Hence, the given dynamic IVP is separable and, by Theorem 6.2.2, has solution given 

by (6.2.5). Thus, for all t e [0, OO)T, we have 

H{x{t))=x'^{t)= [ ep(s,0)As + l, for alH G [0, OO)T. 
Jo 

This gives 

= i ( E P ( I , 0 ) - 1 ) + 1, f o r a l l t E [0 ,OO)T . p 

• 

6.3 Solution by substitution 

In this section, we solve some dynamic equations by reducing them to linear equations 

by appropriate substitutions. The following theorem provides a generalised method 

to solve a dynamic equation by substitution. A special case is followed thereafter. 

Theorem 6.3.1 Letpe U. Letx:T'^ he delta differentiable and g be 

continuously differentiable. / / / : T ^ R is rd-continuous, then a dynamic equation 

of any of the forms 

g'[x-\-kfi{t)x^] dk^x^+p{t)g{x) = /(i). 

for all t e T"; 

+ dk^x^-\-p{t)g{x'') = fit), 

(6.3.1) 

(6.3.2) 

for all t e T'^ 

can be solved as a linear dynamic equation. 

Proof: From the chain rule, we note that the delta derivative of the composition 

function g{x) can be obtained as 

= {g o x)^{t) = x^{t) g'[xit) + kf,{t)x^{t)] dk, for all t € 
Jo 

Thus, the above dynamic equations (6.3.1) and (6.3.2) can be written as 

[g{x)f + p{t)g{x) = fit), for all t e T^ (6.3.3) 

and [^(rr)]^ + = / W , for all t e T^ (6.3.4) 



If we substitute u = g(x) above, then these equations would result in linear equations 

in u of the form 

u^ + p(t)u = f{t), for all t e T'̂  

or u^ +p{t)u'' = f{t), for all t e T'̂ . 

The above equations are hnear by Definition A.7.5 and can be solved using (A.7.14) 

and (A.7.15). 

A backward substitution into (6.3.3) (or (6.3.4)) would yield the solution of 

(6.3.1) (or (6.3.2)). 

• 

The following corollary is a special case of Theorem 6.3.1. 

Corollary 6.3.2 Letp eU. Letx:T'^ -^R be delta differentiable andg :R^Rbe 
continuously differentiable. // / : T —> R is rd-continuous, then a dynamic equation 
of the form 

n-l ^ 
Y, x^^x'^y-^-^ I rr^ + pifi^x"" = f{t), for all t e T'̂  (6.3.5) 

,fc=o J 

can be solved as a linear dynamic equation. 

Proof: Note that, for all n = 1,2, • • •, we obtain from [19, p.337 
n - l 

k=0 
Thus, (6.3.5) would take the form 

(x^)^ + p{t)x'' = /(t) , for all t e T'̂ . (6.3.6) 

A substitution u = x'^ in the above equation would then result in a linear equation 

in u and can be solved using (A.7.14). A backward substituion into (6.3.6) would 

yield a solution for x. In this way, any dynamic equation of the form (6.3.5) can be 

solved by the above substitution. 

• 



Example 6.3.3 Consider the initial value problem 

2J»2 I J-
x^ = for allteJ"-, 

a:(0) = 1. 

We claim that the above system has an implicit solution 

{x{t)f = 0) - ^ - i for all t e T. 

(6.3.7) 

(6.3.8) 

(6.3.9) 

Proof: We note that (6.3.7) can be written as 

{x + = 2x^ + t, for all t G T'^, 

which can further be reduced to 

{x'^)^ - 2x^ = i, for all t G T'^. 

Using Corollary 6.3.2, we substitute x^ = u and note that (6.3.7), (6.3.8) takes the 

form 

= 2̂ ¿ + i, for all t e T'' 

i/(0) = 1. 

(6.3.10) 

(6.3.11) 

From (A.7.10) we note that (6.3.10) is linear. Since 1 + > 0, we have 2 G 7^+. 

Thus, the solution of the IVP (6.3.10), (6.3.11) will be given by (A.7.14) as 

u(t) = e2{t,0)+ [ se2{t,a{s)) As. 
Jo 

We further note that using Theorem A.6.4(8), the above solution can be simplified, 

for all i G T, as follows. 

^ 0 = ^2(^,0)+ [ -
Jo 
1 f 

e^{s,t) 
As 

- 2 
1 A 

62(5, 
As 

= e2{t,0)-- le2{t,t) 
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where we used (A.5.4) in the last step. This yields, for all i € T 

u(t) = e 2 ( t , 0 ) - -

= e 2 ( f , 0 ) - i 

- i 2 Jo 
- 2 

As 

t+-
\e2{t,t) e2(0,i) / J 

Since is not globally one-to-one in R, the backward substitution u 

above equation yields the implicit solution 

{x{t))^ = 762(^,0) - ^ - 7 , for all t e T, 

= in the 

by Theorem 6.2.2. 

• 



Chapter 7 

Conclusions and open problems 

This work presented a series of results regarding non-multiplicity, existence, unique-

ness and successive approximations to solutions of first order dynamic equations on 

time scales that can model non-linear phenomena of a hybrid stop-start nature. 

The field of dynamic equations on time scales was introduced in 1988 [45] and has 

gained a lot of attention in recent years, particularly, in the non-linear theory. Most 

investigations have been on boundary value problems on time scales while many 

areas of initial value problems have yet to be discovered. 

Our results considered initial value problems, mostly with fixed initial conditions. 

This can be further extended considering periodic initial conditions and also with 

conditions that are continuous functions of t. We presented such a case in Chapter 

4 regarding successive approximations to solutions of vector dynamic IVPs. 

Extending Roger's ideas from ordinary differential equations [70, pp.609-611] to 

the time scale setting, we can establish the non-multiplicity of solutions to the scalar 

dynamic IVP 

= f{t, x), for all t e [0, a]T; (7.0.1) 

x(0) = 0, (7.0.2) 

Let D CR. Define 

R'^ := {{t, u) :te (0, a]j and u e D} 

Then the following conjecture can be investigated. 



Proposition 7.0.4 Let f : R'^ R be right-Hilger-continuous. If there exists a 

positively regressive function p{t) := ^^^ for all t e (0, a\j such that f satisfies the 

conditions 
ta{t) 

(a) \f{t,u)-f{t,v)\<p{t)\u-vl for all (t,u),{t,v) e R'^; 

{b) f{t^x) = o{p(t)ep{t,0)) for all t G (0,aj j . That is, for a given 0 < e < 1/2 we 

have 

f{t^ x) = e p{t)ep{t^ 0) for all t e (0, ajx; 

then the IVP (7.0.1), (7.0.2) has, at most, one solution x : [0, a j j R, with x{t) € D 

for all t E [0, a]j. 

It will be interesting to investigate existence of solutions of singular and non-

singular initial value problems on time scales. Singular initial value problems have 

important applications in industry that display a hybrid structure [84]. 

The Banach space constructed in Chapter 3 also provides a platform to in-

vestigate solutions of initial value problems extended to the entire neighbourhood 

to — a, to + of a point to E: T or within a smaller interval [to — a, io + Q̂ Jt ^ 

to — a, to + 



Appendix A 

Notation and fundamentals 

This appendix explains notation used in this work, basic ideas and definitions of 

time scale calculus and some preliminary results. 

A . l Notation 

Throughout these pages, we will follow the notation given below. 

• T denotes an arbitrary time scale, which is a closed, non-empty subset of R. 

• [a, 6]T - an interval in T with b > a. 

• f = (/i, /2, • • • , /n) - an n-dimensional vector function. 

• :x. = {xi,x2, - • • , Xn) - an n-dimensional vector function. 

• / - a scalar function. 

• X - a. scalar function. 

• All other bold faced letters refer to an element in R^, otherwise they refer the 

element to be in R. 

• x'̂  = X o cr. 

• x^ - the delta derivative of x. 

• x^ - the nabla derivative of x. 



• (a, b), where a, b 6 R^ - the usual Eudidean inner product on R"̂ . 

• II • II - the Eudidean norm on R^. 

• For any to e T, we will write ei(-,io) = 

A.2 Basic time scale calculus 
Definition A. 1.1 The time scale 
A time scale, denoted by T, may be any non-empty closed subset ofR. For example, 

R, Z+, [-1,0] U [1,2] and {x € R : |j:| < 1} U {n/2 : n € N} 

are examples of time scales. 
• 

Graphically, we can think of the points on a time scale to be as shown in Figure 
A.l. 

• » 
A B C D E F G 

Figure A.l: 

An arbitrary time scale may or may not be connected. The notion of connectivity 
of points in a time scale is described in terms of the forward and backward jump 
operators defined as follows: 

Definition A.1.2 The forward and backward jump operators 
Let T be an arbitrary time scale and t be a point in T. The forward jump operator, 
a{t) : T T, is defined as 

a{t) := inf{s eT:s>t}, for all t e T. 

In a similar way, we define the backward jump operator, p{t) : T ^ T, as 

p{t) := sup{s e T : s < t}, for all t € T. 



Thus, in Figure A.l, we note that o-{A) = A while (J{B) = C. Similarly 

p{F) = E = p { E ) . In this way, the forward and backward (or right and left) 

jump operators declare whether a point in a time scale is discrete and give the 

direction of discreteness of the point. The following table describes the left- and 

right-discreteness of a point t in an arbitrary time scale T. 

Point Description 

right-dense a{t) = t 

right-scattered a{t) > t 

left-dense p{t) = t 

left-scattered pit) < t 

isolated p{t) < t < a(t) 

dense p{t) = t = a{t) 

The 'step size' at each point of a time scale is given by the forward graininess 

function, or the backward graininess function, z/(i), defined respectively as 

:= a{t) - t for all t € T; 

i / { t ) t - p{t) for all t G T. 

(A.1.1) 

(A.1.2) 

If T has a left scattered maximum value mi, then we define T'̂  := T\ mi, otherwise 

T'̂  := T. The right scattered minimum of T is defined in a similar way and if we 

denote it by m2 then we define T« T \ m2, otherwise T« T. 

We consider some examples of time scales with corresponding values of a{t) and 

p{t) accompanied by their graphs. 

Example A. 1.3 Define 

T h e n , we have a{t) = ^^^^ = ^^^ ^ ^ = for a l l t e J 

and the graph of T is linear as shown in the f o l l o w i n g f i g u r e . 



a(t) = t + 1/2 
4.5 
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3 
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0 • •• 

Figure A.2: The graph of T = n/2 

Example A. 1.4 Define 

T : = { V n : n e N o } . 

Then, we have a(t) = ^/n+l = VWTl, for all t eT. Hence, fi{t) = y/f^ + 1 - t, 

for all t and the graph of T is non-linear as shown below. 

3 

2.5 

2 

1.5 

1 

0.5 

0 

o(t) = (t̂ 2 + 

T" % : " 

" ^ ia-i '•i.-ji v-.vU-.- -Si 

»ti V ^ J 

0.5 1.5 2.5 

Figure A.3: The graph of T = y ^ 

Example A. 1.5 Define 

Then, we have a{t) = = qt, for all t e T. Hence, ^{t) = {q- l)t, for all t e T. 

The graph below shows T taking q = 2. 



Figure A.4: The graph of T = for g = 2 

Example A. 1.6 Define 

oo 
T = Pa^f, := IJ [k{a + 6), k{a + 6) + a 

fc=o 

Then, for all t eT, we have 

a{t) = 
it if te + + b) + a) 

t + b if te U?lo + b)-\-a. 

Thus, for all t eT, we obtain 

0 if te + + b) + a) 

b if te U ^ o + b) + a. 

The graph of T taking a = l and b = 2 is given below. 



Figure A.5: The graph of T = Pi,2 

Example A. 1.7 Define 

T : n G N | U {1} 

Then we have 

a{t) = 2-+1 = , for all t G T. 

Hence, the step size becomes 

l_i{t) = t ^ - t = i ^ ) , for all t € T. 

The graph of T taking n = 2 is as follows: 



a(t)= 1̂ (̂2/3) 
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Figure A.6: The graph of T = forn = 2 

Example A.1.8 Consider the Cantor set C := f l ^ o where Co = [0,1] and each 

of the remaining Ci where i = 1- • - k is obtained successively by removing the open 

middle third interval of Ci-i. Hence Ci C Ci-i for all i. Thus 

Ci = [0,1/3] U [2/3,1 

C2 = [0,1/9] U [2/9,1/3] U [2/3,7/9] U [8/9,1 

In this way, the Cantor set being the intersection of all Ck is non-empty and closed. 

Let T = C. Note that for Ci there are three subdivisions of the interval [0,1 

and each dividing point t is the sum of ci/3, where ci G {0,1,2}. For C2 there are 
C\ C2 

nine subdivisions of [0,1] and each dividing point t is the sum of — + where 
o y 

CI,C2G{0,1,2}. 

In this way, for each Ci, there are 3^ subdivisions of [0,1] and each dividing point 

t can be expressed as the ternary expansion [I4, p.22] [71, p40] 

00 

i - V - where Ci G {0,1,2} for all i. 

i=l 

Thus, ift is the 'inner' end point of an interval in T (the end points except 0, I j , 

then t is either right-scattered or left-scattered. 

In the earlier case, for each Ci we have 

for all t e Ci, 



and in the latter case we have 

p{t)=t-^, for allte Ci, 

and so i^it) = = u(t) for all t e Ci. Note that for all other t in Ci we have 

p(t) = t = a{t). Hence there are no isolated points in T. 

• 

A.2 Continuity in time scales 

Continuity of a function at a point t eT depends on the appearance of i as 'right-

dense' {t = a{t)) or 'left-dense' (i = p{t)). Thus, for any i € T, a right-dense-

continuous (usually written as rd-continuous) function is defined as follows. 

Definition A.2.1 The right-dense continuity 

Assume k : T R^. We define k as right-dense continuous or rd-continuous if 

lim k(s) = k(i), for allteT 

where t is right-dense and 

lim k(s) 

exists and is finite for all t ^ T where t is left-dense. The set of all rd-continuous 

function on T is denoted by 

• 

The next definition due to Hilger [45, p.39] describes the so-called right-Hilger-

continuous function f (i, x) where the ordered n-pair {t, x) € T x R'̂ . This is a more 

generalised definition and we have introduced this particular term for functions of 

several variables, to avoid confusion with rd-continuous functions of one variable. 

Definition A.2.2 The right-Hilger-continuity 

Consider an arbitrary time scale T. A function f : T'̂  x R^ R'̂  having the property 

that f is continuous at each (i, x) where t is right-dense; and the limits 

lim f(5,y) and l imf( i ,y) 
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both exist and are finite at each (i, x) where t is left-dense, is said to be right-Hilger-

continuous on T'̂  x R'^. 

• 

Remark A.2 .3 It should be noted that we will write f defined above as rd-continuous 

if it is a function of t only, that is, f{t, x) = g{t) for all t e l . 

• 

Remark A.2 .4 It can also be seen that a right-Hilger-continuous function f will 

be continuous i / f ( i , x ) = h(x) for all t eT. 

• 

Definition A.2.5 The left-dense continuity 

Let T be an arbitrary time scale. A function / : T ^ R 25 said to be Id-continuous if 

it is continuous at each i G T that is left dense and / ( s ) exists and is finite 

at each i 6 T that is right dense. 

• 

From the above definitions, we note that all continuous functions are rd- and 

Id-continuous [19, Theorem 1.60, Definition 8.43 . 

As for right-Hilger-continuous functions, the term 'left-Hilger-continuous' is 

used in equivalence with the term 'Id-continuous' for a function of two or more 

variables, the first of which should be from an arbitrary time scale. 

Definition A.2.6 The left-Hilger-continuity 

Let T be an arbitrary time scale. A mapping f : [a, x R R is called left-Hilger 

continuous if: f is continuous at each {t, x) where t is left-dense; and the limits 

lim f{s,y) and \im f{t,y) 

both exist and are finite at each (i, x) where t is right-dense. 

• 



Remark A.2.7 Remarks A.2.3 and A.2.4 also hold for left-Hilger-continuous and 

Id-continuous functions. 

• 

Example A.2.8 The following functions are left-Hilger-continuous: 

(a) Consider f{t,p) := tp^, where t e T^ and p e R. Note that the composition 

function t{x{t))^ will be Id-continuous on T^ xR. Therefore, by definition, f 

is left-Hilger-continuous on T^ x R; 

(b) Consider f{t,p) := \np, where t e T^ and p G [0,k] where k > 0 is a 

continuous function. Note that the composition function t^ lnx{t) will be Id-

continuous on T«;. Therefore, fit^p) is left-Hilger-continuous for all {t,p) 6 

T« X [0,/c]; 

(c) Consider f{t,p) := — e^, where t G (—1,0]T and p G [0, oo). Note that the 
1 

composition function ^ ^ ^ exp[x(i)] will be Id-continuous for allt E (—1, 

Therefore, our f is left-Hilger-continuous on (—1,0]«;,t x [OJOo)/ 

(d) Consider f{t,p) := p(t) -\-p, where t 6 [0, 1]T andp € R. Then the composition 

function p{t) + x{t) will be Id-continuous for all t e [0, 1]k,t- Therefore, our f 

is left-Hilger-continuous on [0, 1]k,t x R-

• 

A.3 The delta and nabla derivatives 

Definition A.3.1 Fix t G T'", and let x : T ^ R". Define a to be the vector (if it 

exists) with the property that given e > 0 there is a neighbourhood U of t, that is, 

U = (^t-S,t-\-S)nT for some S > 0, such that 

(x(a(t)) - x(s)) - a(a(t) - s)| < eja(t) - sfjor all s e U. (A.3.1) 

We call a the delta derivative ofx{t) and denote it by for all i G T'̂ . Ifx^{t) 

exists for all t eT'^ then we say that x is delta differentiable on T. 

• 



Theorem A.3.2 Assume that k : T ^ R^ and let t 6 T'". 

1. If\iis delta differentiable at t then k is continuous at t. 

2. If k is continuous at t and t is right-scattered then k is delta differentiable at 

t with 

= i^^^ly^, forallteJ^ 

where k^ = k o a. 

3. If k. is delta differentiable and t is right-dense then 

k^ (i) = lim - , for all t e l . 
s^t t — S 

4. Ifkis delta differentiable at t then 

= k(i) + fi{t)k^(t), for all t G T'̂ . 

The above identity is often called the Simple Useful Formula and will be referred 

to as SUF in this work. 

• 

We illustrate the above ideas in two simple examples. 

Example A.3.3 Consider an arbitrary time scale T and define x(t) := t for all 

teT. We claim that x^{t) = 1 for all t e T'̂ . 

Proof : If t is right-scattered, then using Theorem A.3.2(2), we note that 

= = 1, for all t e T'̂ . (A.3.2) 
— t 

On the other hand, if t is right-dense, then using Theorem A.3.2(3), we again obtain 

= 1 for all t e T. 

• 

Example A.3.4 Consider T := {y/n : n G No}. We claim that 

= (y/c7{ty + 1 - + i), for all t e T«̂ . 



Proof: Using Example A.1.4 and applying Theorem A.3.2(2), we obtain the delta 

derivative of x for all t eT'^ as follows: 

^ a{cr{t)) - a{t) 
cr{t) 

Kt) 
^ y/ajt)'^ + 1 - V f T T 

VWTi-t 
^ y^ajty + 1 - y w + i ^ V^Ti + t 

VWTT-t VWTT + t 
= + 1 - + t). 

• 
The next theorem [19, Theorem 1.20] provides some basic identities to obtain the 

delta derivatives of some delta differentiable maps defined on T'̂ . These identities 

have played a fundamental HpconinArole in our computations in this work and will 

be referred frequently. 

Theorem A.3.5 Let x, y be defined on an arbitrary time scale T. / / x , y are delta 

differentiate on T'̂ , then the following identities hold for x ,y ; 

(1) The sum rule: x + y delta differentiable on T'̂  such that 

(x + y)^{t) = + y^{t), for all t 6 

(2) The scaler multiplication rule: for any constant X, Ax is delta differentiable on 

T'" such that 

(Ax)^(i) = Ax^(i), for all t € T'̂ . 

(3) The product rule: xy is delta differentiable on T'̂  such that for all t € T'̂ , 

(xy)^(i) = x^(i)y(i) + x-(i)y^(i) 

(4) The inverse rule: Define 1/x as (1/xi, 1/^2, • • • ,1/xn) where Xi ^ 0 for all 

i = 1'' -n. Then 1/x is delta differentiable on T'̂  such that 

( x ) 

provided (x(i)x'^(i)) ^ 0 for all t eT*^. Here {x(i)x^(i)) is the usual Euclidean 

inner product of x and x^ on R^, 



(5) The quotient rule: x/y is delta differentiable on T'̂  such that 

\y) WW» ' 
provided {y{t)y''{t)) ^ 0 for all t G T'^. 

• 
The above theorem provides the most powerful tools to simplify delta differenti-

ation. To show this, we consider the following examples. 

Example A.3.6 Letx :T -^Rhe defined by x{t) := t^ and y : T R be defined 

by y(t) l/t^ for allteT\ {0}. We claim that 

x^it) + t (7{t) + cr(i)2, for all t e T'̂  

and 

Proof: Applying the product rule (Theorem A.3.5 (3)) and [19, Example 1.25], we 
obtain for all t e T'̂  

x^{t) = t^ + {ta{t))a{t) 

= t'^ + t a{t)-\-a{tf. (A.3.3) 

Similarly, applying the inverse rule (Theorem A.3.5 (4)), and using [19, Example 

1.25] we obtain for all {0} 

\ ty 
z i i T 
tMt)^ 

{t + a{t) 
(A.3.4) ita{t)r ' 

• 
We also note from the above example how for T = R the delta derivative behaves 

as the ordinary derivative, as for T = R, we have a{t) = t and so (A.3.3) yields 

x^(t) = 3̂ 2 and (A.3.4) yields y'{t) = -2/t^ for alU G T \ {0}. 



Example A.3.7 Consider the time scale defined in Example A. 1.3, that is, T 

: n e Noj with a{t) = t + 1/2. Define x:T -^R as 

x{t) := ta(t), for all t G T. 

Then using the product rule in Theorem A.3.5{^), we obtain for all t eT'^ 

xHt) = (Mt))^ 

= a{t)il + a{t)^) 

= 2a{t) 

= 2i + l. 

• 

We can obtain results for the delta derivative of the generahsed function x{t) = 

{t — a)'^ [19, Theoerem 1.24], where a is a constant and n eN. This is shown in the 

following theorem. 

Theorem A.3.8 Let T be a generalised time scale and t eT. Let a be a constant. 

If there exist x,y :T ^R such that x{t) := {t - a)^ and y{t) := (t - for some 

n, m G N then 
n-l 

^^{t) = - a)\a{t) - for all t e T'^; 
k=0 

m—1 

X (A.3.5) 

y^{t) = - for all t e T'̂ , (A.3.6) 
fc=0 

provided {t — a){a{t) — a) ^ 0 for all t eT. 

• 

Definition A.3.9 The nabla derivative 

Let X :T ^R and t eT^. Define A to be the number (if it exists) with the property 

that given e > 0 there is a neighbourhood N of t with 

[x{p{t)) - a;(5)] - A[p(i) - s]| < e\p{t) - s|, for all s e N. 

We call X the nabla-derivative of x{t) and denote it by x^{t) for all i € T«. 

exists for all t eT^ then we say that x is nabla differentiable on T. 



The nabla-derivative has similar properties to delta-derivative for T = M and 

T = Z. In the former case, we have x^(t) = x'{t) and for the latter case, we have 

x^{t) = x{t)-x{t-l). For a generalised time scale, the properties of nabla-derivative 

can be seen through the following theorem. 

Theorem A.3.10 Let T be an arbitrary time scale and a function h : T^ ^ R. 

Then the following hold for all t e T^: 

1. if h is nabla differentiable at t, then h is continuous at t; 

2. if h is continuous at t and t is left-scattered, then h is nabla differentiable at 

t and 

Kf) ' 

3. If t is left-dense, then h is nabla differentiable at t defined by 

h{t) - h{s) h^{t) := lirus^t 
t-s 

provided the limit on the right hand side exists and is finite; 

4' if h is nabla differentiable at t then 

hP{t) := h{t)-v{t)h^{t). 

• 

For more details on nabla-derivatives, see [13, pp.77-81] and [19, Chapter 1, 

Chapter 8 . 

The next theorem [67, Theorem 1], [19, Theorem 1.90] presents a generalised 

form of the chain rule in the time scale setting. 

Theorem A.3.11 Let x be a delta differentiable function. If there exists 

a continuously differentiable function y : R ^ R then yoxiT^R will be delta 

differentiable defined by 

(y o x)^{t) = := x^{t) [ y\x{t) + kii{t)x^{t)] dk, (A.3.7) 
J 0 

for all t e T". 

• 



A.4 The delta and nabla integrals 

In Section 2.4, we described that the derivative of a function defined on a time scale 

is called delta-derivative. Likewise, the anti-derivative of a function in the time scale 

setting is termed as the delta integral and the process is called delta-integration. 

Definition A.5.1 Let T he an arbitrary time scale andi : T'̂  ^ R'^. 7 / = j(i) 

then we define the delta integral of j by 

'i I j{s)As = 3{t)-J{a). (A.5.1) 

• 

If T = R then 

while if T = Z then 

[ i{s)As= [ 3{s)ds, 
J a J a 

L ' j ( s )As = S^Mi«)-

It should be noted that all rd-continuous functions are delta integrable [19, The-

orem 1.74 . 

Let C(T; R'̂ ) denote the space of all continuous functions on T. The following 

theorem describes the existence of an anti-derivative of a right-Hilger-continuous 

function defined on T'̂  x R'^, where T an arbitrary time scale. 

Theorem A.5.2 Let f : T'̂  x R^ ^ R'" and to e T. I f f is right-Hilger-continuous 

on T'" X R'" then there exists a function F : C(T; R^) C(T; R^) called the delta 

integral of f such that 

"t 
Fx (t) := [ f(s,x(s)) As, for all t € T. (A.5.2) 

Jto 

• 

The next theorem provides important identities for delta-integration of right-

Hilger-continuous functions and will be frequently used in our work. This is a more 

generalised extension of [19, Theorem 1.77 (i) - (iv), (vii)] in the light of Remark 

A.2.3. 



Theorem A.5.3 Let a,6, c G T and A 6 R. / / f , g are right-Hilger-continuous on 

T X R̂ ^ then the following identities hold for all (i,x) eT xW^: 

(¿) Xf[f{t,x) + g(i,x)] At = l ' i ( t , x ) At + l ' g ( t , x ) ] At; 

( « ) L'[Af](t,x) At = A l ' f ( t , x ) At; 

(in) l'{(t,x) A i = - / ; f ( i , x ) Ai ; 

(iv) I' {(t, X) Ai = f(t, x) Ai + I' f(i, x) Ai ; 

(,;) / ; f ( i , x ) Af = 0; 

(vi) if, for all (i,x) 6 [a,b)T x R", we have ||f(i,x)|| < ||g(i,x)||, then 

[ fit,x) At <( g{t,x) At, /or on (i,x) € [a, 6)t X K"; 
J a J a 

(viz) if, for all (i,x) G [a,b)j x R, we have f(i,x) > 0, then 

i f (i, x) At > 0, for all {t, x) G [a, b)j x R .̂ 
J a 

Proof: The proof is similar to that of [19, Theorem 1.77 (i)-(iv), {vii)] and is, 

therefore, sketched only for part {i). 

We note that f, g are right-Hilger-continuous on T x R .̂ Thus, by Theorem 

A.5.2, f, g possess antiderivatives F, G defined by (A.5.2). By the sum rule. Theorem 

A.3.5(l), we obtain for all t G T'̂  

= f(i,x(i))+g(i,x(i)). 

Thus, F + G will be an antiderivative of f + g. Therefore, for all i G T, we obtain 

j \ f { t M t ) ) + g(^.xW)] At = [F + G](x)(6) - [F + G](x)(a) 
Fx] {b) - [Fx] (a) + [Gx] (6) - [Gx] (a) 

= [ f(t,x) At+ [ g(i,x) At 
J a J a 

• 



Example A.5.4 Let T be an arbitrary time scale. Consider the functions u{t) := 

t -]- (J {t) and v(t) := ! ^ for all t e T \ {0}. IVe claim that u,v are delta 

integrable and find their anti-derivatives. 

Proof: We note that the composition functions t H- aCt) and ^ 
[ta(t)y 

continuous for alH 6 T \ {0}. So our u,v are delta integrable [19, Theorem 1.74]. 

Fix to G T. Then using (A.5.1) and [19, Example 1.25], we note that for all t € T, 

i ^¿(s) As = i s-i-a{s)As 
Jtn Jtn 'to 

= t ' - tl 

Similarly, since t a(t) ^ 0 for alH G T \ {0}, using Example A.3.6, we obtain for 

alH 6 T \ {0} 

^^ s + a(s) 
i v{s) As = i 

Jto Jti to (Ms))' 
1 _ 1 
tl-t' 

As 

{t to) 2 • 

• 

The following theorem provides two important identities, integration by parts, 

that hold for any rd-continuous functions /c,r defined on T, where a, 6 G T. [19, 

Theorem 1.77 

Theorem A.5.5 Define [a,6]t := [a^b] flT, where T is an arbitrary time scale. Let 

k^r be rd-continuous on T. Then the following identities hold. 

t k^'ity^it) At = [kr]{b) - [kr]{a) - f k^{t)r{t) At', (A.5.3) 
J a J a 

r k{t)r^{t) At = [kr]{b) - [kr]{a) - f k^(tY{t) At. (A.5.4) 
J a J a 

• 

The improper integral of a right-Hilger-continuous function is defined as follows. 

The idea is due to [19, p.30 . 



Definition A.5.6 Let to e T with supT = CXD. If i is a right-Hilger-continuous 

function defined on [io?oo) x then the improper integral o/f will be 

roo rb 
/ f(t,x) At := lim / f(i ,x) At, for all t e [to,oo)j, 

J to J to 

provided the limit on the right hand side exists. In that case, we say that the improper 

integral converges. If the limit does not exist then we say that the improper integral 

diverges. 

• 

The next theorem [19, Theorem 1.79] will be useful in our results in this work. 

Theorem A.5.7 Assume a, 6 6 T. If k is rd-continuous on T, then the following 

identities describe equivalence of the delta integral of k: 

• For T = R, 

/ k{t) At= k(t) dt, for all t € T; 
J a J a 

• For [a, b]j = [a, 6] fl T consisting of isolated points, we obtain for allt eT 

f k{t) At = < 
J a 

ifa<b-

0, if CL = b; 

ifa>b. 

• 

The nabla integral can be defined in a similar way as delta integral. 

Definition A.5.8 The nabla anti-derivative 

Let h : T ^ R. A function H : T ^ R will be a nabla anti-derivative of h if 

H^{t) = h{t) holds for all t e T^. Let to e T with to < t then the Cauchy nabla 

integral of h is defined as 

i\(s) \7s:=H{t)-H{to), forallteT. 
Jto 

• 



A.6 Special functions 

The following functions provide a deeper understanding of the time scale calculus 

and are called special functions. 

Definition A.6.1 [19, p.58] Consider a function p :T ^R. If p is rd-continuous 
on T and 1 0 for all t eT, then p is called a regressive function. 

• 

Here ¡i is the graininess function defined in (A. 1.1). The set of all regressive 

functions on T is defined as 

n : = { p e Crd{T', R) : 1 + p(t)fx{t) ^ 0, for all t € T}. (A.6.1) 

The inequality l-hp{t)ii(t) 0 yields two possibilities, which form a partitioning 

of 1Z into two sets. The set of positively regressive functions, and the set of 

negatively regressive functions, . These are defined as: 

7^+ {p G CrdO^; R) : 1 + pit)fi{t) > 0, for all t € T}, (A.6.2) 

and 

n- := {p e Crdi^; R) : 1 + p{t)fi{t) < 0, for all t € T}. (A.6.3) 

The elements of are closed under the operations © and © and hold the following 

properties. [19, pp. 58-59 

Theorem A.6.2 letp,q:T^ R. Ifp, q ETZ, then the following properties hold for 

(a) peq = p + q-\- ^ipq; 

(b) = 

(c) p e q = p e i e q ) = Y ^ ^ ' 1 " I " [iq 
(d) pep = 0; 

(e) e{ep) = p; 



( / ) e{peq) = qQp; 

(g) e{p®q) = {ep)®{eq) 

• 

Definition A.6.3 Fix to e T and assume p eTZ. The exponential function denoted 

by ep{',to) [45], [46] is defined as 

exp + 
K s ) 

where Log is the principal logarithm function. 

f o r t e J , IJ, = 0 ; 

As , /or i G T, M > 0, 

(A.6.4) 

• 

We also note that ep{t,to) is an increasing function if p{t) > 0 for alH e T and 

is a decreasing function if p{t) < 0 for alH G T [46, Theorem 7]. Further properties 

of the exponential function [46], [19, Theorem 2.35, Theorem 2.36] are shown in the 

following theorem and will be used in further work. 

Theorem A.6.4 Let p,q : T ^ R. I f p,q e IZ, then the following properties hold 

for all t , s , r G T.-

(1) eo(i,s) = l = ep{t,t); 

( 2 ) s) = ep{a{t), s) = { l + fi{t)pit))ep{t, s); 

(3) = eep{t, s) = ep{s,t); 
ep(t,s) 

( 4 ) ep(t,s)ep(s,r) = ep(t,r); 

( 5 ) ep(t, s)eg(t, s) = epeg(t, s); 

( 7 ) e^(t,s)=p(t)ep(t,s); 

(8) 
_ep(t, s)_ 

P i t ) . 

e i ( t , s ) ' 



(9) Ifpen+ then ep(t, to) > 0 for all t e T. 

• 

The following definitions and theorem due to [19, Definition 3.25, Lemma 3.26 

will be useful in many examples of our results. 

Definition A.6.5 Let to ^ T Q'f^d p ^ TZ. If ep{t,to) is the exponential function, 

then the trigonometric functions in the time scale setting are defined as follows: 

/J. J. \ eip{t^to) + e-ip{t,to) cosp{t,to) := ; 

• eip{t,to) - e-ip{t,to) smp(t,toj , 

where i = 

• 

Theorem A.6.6 Fix to eT and p be rd-continuous. If -/ip^ G 1Z, then the follow-

ing properties hold for all t eT'^ 

(iv) sin^(i, to) = pit) coSp(i, to); 

(?;) cos^{t,to) = -p{t)smp{t,to); 

• 

A.7 Dynamic equations on time scales 

Prom the above sections, we are familiar with the idea of right- and left-Hilger-

continuity of a function f = f(t,x) where f : T'̂  x R'̂  R^. 

Definition A.7.1 Let f : T'" x R^^ ^ R'" be nght-Hilger-continuous. A delta 

differential equation of the form 

x^ = f (i, X, x^), for all t e T'̂  (A.7.1) 

is a generalised first order delta equation on time scales. 

• 



A solution of (A.7.1) will be a delta differentiable function y that satisfies (A.7.1). 

For a right-Hilger-continuous function f : T'̂  x R'̂  R"̂  a dynamic equation of 

any of the forms 

x^ = f(i ,x) , for all t e T'̂ ; (A.7.2) 

x^ = f(i, x'"), for all t e T'̂ , (A.7.3) 

is also a first order delta equation on time scales and is a special case of (A.7.1). 

Definition A.7.2 Let f : T'" x R^^ R^ be a right-Hilger-continuous function. 

An equation of the form 

x(i) = J f(s,x(5),x^) As, for allteT (A.7.4) 

is called the generalised delta integral equation. 

• 
A solution to (A.7.4) will be a rd-continuous function y that satisfies (A.7.4). 

The delta integral equations corresponding to (A.7.2) and (A.7.3) will, therefore, 

be of the form 

x(i) = J f(s,x(s)) As, for alH G T (A.7.5) 

and 

x(i) = J f(s,x^) As, for all t e T. (A.7.6) 

Definition A.7.3 Let / : T«; x R^ ^ R 6e left-Hilger-continuous. A nabla differ-

ential equation of the form 

x'^ = f{t, X, xP), for all t G T« (A.7.7) 

is a generalised first order scalar nabla equation on time scales. 

• 

A solution of (A.7.7) will be a nabla differentiable function y that satisfies (A.7.7). 

For a left-Hilger-continuous function / : T« x R R a dynamic equation of the 

form 

x"^ = f{t,x), f o ra lHeT^; (A.7.8) 

is also a first order nabla equation on time scales and is a special case of (A.7.7). 
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Definition A.7.4 Let f : T^ x R R be a left-Hilger-continuous function. A 

dynamic equation of the form 

X it) = J /(5, a;(5)) V 5, for allteT (A.7.9) 

is called a nabla integral equation. 

• 

A solution to (A.7.9) will be a Id-continuous function y that satisfies (A.7.9). 

A.7 .1 Linear dynamic equations 
In this section, we present some ideas about the linear first order dynamic equations 

on time scales. These ideas will be used in many examples constructed in this work. 

Definition A.7.5 Let t be a point in an arbitrary time scale T and x : T —̂  R'̂  be 

delta differentiable. Moreover, let p : T ^ R and k : T ^ R ' ^ . Consider the first 

order dynamic IVPs of the form 

x^ = p(i)x + k(t), for all t e T'̂ ; (A.7.10) 
x(io) = xo, (A.7.11) 

and 

x^ = -p{t)ie + k(i), for all t e T'̂ ; (A.7.12) 
x(io) = xo. (A.7.13) 

The dynamic equations of the type (A.7.10) and (A.7.12) are called linear dynamic 

equations and so the above IVPs are called linear dynamic IVPs. 

• 

The hnear dynamic equations (A.7.10) and (A.7.12) will be non-homogeneous 

if k ( i ) ^ 0 for some t e T. Otherwise they will be homogeneous hnear dynamic 

equations. The following theorems [ 1 9 , p . 7 7 ] provide solutions to the above Hnear 

first order initial value problems. 



Theorem A.7.6 Consider the dynamic IVP (A.7.10); (A.7.11). IfpeU, then the 

unique solution to (A.7.10); (A.7.11) will he given by 

x(i) = xoep(i, to) + [ k(s)ep(i, a{s)) As, for all t € T. (A.7.14) 
Jtn 

• 
Theorem A.7.7 Consider the dynamic IVP (A.7.12), (A.7.13). If p G U, then the 

unique solution to (A.7.12), (A.7.13) will be given by 

x(t) = xoep(io,i) + [ k{s)ep{s,t) As, for all t G T. (A.7.15) 
Jtn 

• 
The following remarks indicate two important properties, the delta derivatives 

of two exponential functions, and are used extensively in this work. For details, see 

19] [5 . 

Remark A.7.8 The exponential function ep{t, to) is the unique solution to the linear 

dynamic IVP 

x^ = p{t)x] for all t e T, 

x(to) = 1. 

• 

Remark A.7.9 In the light of Theorem A.6.2, we note that e©p(i, io) will be the 

unique solution of the dynamic IVP 

x^ = for all t G T, 

x{to) = 1. 

• 

A.7.2 The non-linear dynamic equations 

The dynamic equations of the form (A.7.1), (A.7.2), (A.7.3) are said to be non-hnear 

if f is a non-Hnear function in the second argument on T'̂  x R^^ (for (A.7.1)) or on 

T'" X R'" (for (A.7.2) and (A.7.3)). 
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