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Abstract

The theory of dynamic equations on time scales provides an important bridge be-
tween the fields of differential and difference equations. It is particularly useful in
describing phenomena that possess a hybrid continuous—discrete behaviour in their
growth, like many temperate—zone insect populations and crops. A dynamic equa-
tion on a time scale is a generalised ‘two—in—one’ model, it serves as a differential
equation for purely continuous domains and as a difference equation for purely dis-
crete ones.

The field of “dynamic equations on time scales” is about 20 years old. As such,
much of the basic (yet very important) linear theory has been established, however
the non-linear extensions are yet to be fully developed. This thesis aims to fill
this gap by providing the foundational framework of non-linear results from which
further lines of inquiry can be launched.

This thesis answers several important questions regarding the qualitative and
quantitative properties of solutions to non—linear dynamic equations on time scales.

Namely,
(i) When do solutions exist?
(ii) If solutions exist, then are they unique?
(iii) How can such solutions be closely approximated?
(iv) How can we explicitly solve certain problems to extract their solutions?

The methods employed to address the above questions include: dynamic inequal-
ities; iterative techniques and the method of successive approximations; and the fixed

point approaches of Banach and Schauder.
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Chapter 1

Introduction

1.1 Historical development of the theory

The study of dynamic equations on time scales was initiated by S. Hilger (1988)
when he introduced the concept and calculus of measure chains in his attempt to
unify mathematical analyses of continuous and discrete dynamics, see [45]. Dynamic
equations describe the ideas of continuous and discrete mathematics through a single
type of equation that could be equally useful to model processes defined on continu-
ous domains, discrete domains or both at the same time. This means that dynamic
equations present a hybrid framework of continuous and discrete dynamic modelling.
This hybrid framework serves as a differential equation when the time scale is con-
nected and as a difference equation when the time scale is the set of integers. For
this reason, the equations involved are termed as dynamic equations on time scales.

There has been wide research in the field of dynamic equations on time scales. A
systematic development of dynamic systems on time scales initiated by Hilger [45]
was considered later in a monograph [54] and a few articles comprising time scale
inequalities [1], exponential functions on time scales [21], boundary value problems
[7] and linear dynamic equations [20], revealing several lines of further investigation.
A more comprehensive collection of ideas including the time scale calculus, the linear
and some non-linear theory and the dynamic inequalities was presented in [19]. This
book has been the major source of literature in this work. There has been further
advancement related to dynamic equations on time scales gathered in [22]. These

advancements have been on: nabla dynamic equations [10]; lower and upper solutions
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to boundary value problems [8]; self-adjoint equations with mixed derivatives [61];
measure theory [18]; positive solutions of boundary value problems [9], [13]; higher
order dynamic equations [36]; boundary value problems on infinite intervals [4];
symplectic systems [33], [48], [47]; oscillatory and non-oscillatory dynamic equations

on time scales [23], [37], [89]; and impulsive dynamic equations [15], [29], [39].

1.2 Applications

The above advancements suggest some open areas for a unified analytic approach.
For instance: dynamic modelling of ecological systems [27], [85]; analysis of various
complex dynamic models regarding social and economic systems [68], [62]; dynamic
modelling using neural networks for natural and artificial intelligent systems [28],
[49], [56], [58], [57], [76]; modelling of phenomena undergoing pulsations or time-
delay effects [53], [73]; modelling describing behaviours regarding changes in popula-
tion dynamics [74], [77], [82]; and dynamic models regarding epidemic diseases and
their outcomes and control [90].

The above ideas open new horizons for analysis and modelling of various types
of phenomena having hybrid structure and attracted researchers from all over the
world to take interest into this relatively young area of applied mathematics. As a
result, analogues of many ideas from differential and difference calculus have been
developed into the time scale setting. Naturally, this led to the development of
mathematical modelling involving dynamic equations on time scales as a more gen-
eralised and flexible mode of understanding physical phenomena through a single

type of equation.

1.3 Contribution of this work

So far researchers in the field of dynamic equations on time scales have developed
a profound linear theory. This work contributes to the non-linear theory by estab-
lishing properties of solutions to non-linear dynamic equations on time scales. The
properties explored include: non-multiplicity of solutions; successive approximations
of solutions via classical methods; and existence and uniqueness of solutions using

fixed point theory, as well as the method of upper and lower solutions within the
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time scale setting. In addition, methods are provided to solve non-linear dynamic
equations on time scales by separation of variables and by substitution. Thus, the
current work will be of interest for theoretical and applied mathematicians as well
as for graduate students having some background in ordinary differential equations

and functional analysis.

1.3.1 Publications arising from this work

A number of results herein have been published in [82] and [83]. Another set of

results [87] has been submitted for publication.

1.4 Literature review

Since this work examines properties of solutions to non-linear first order dynamic
equations on time scales, several pieces of literature regarding solutions of first and
second order initial and boundary value problems have been studied. These include
books and articles on existence and uniqueness of solutions using fixed point meth-
ods, such as [2], [32], [34], [43], [44], [78]; using degree theory or maximum principles
[65], [81]; using dynamic inequalities [79]; and using approximation methods [38],
[52]. In addition, properties like multiplicity/non-multiplicity of solutions [80] and
boundedness and uniqueness of solutions to dynamic equations on time scales [66]
have also been studied. Considering [45], [19] and [22] as primary sources, investi-
gation has been carried out for existence and uniqueness of solutions to first order
non-linear (delta) dynamic initial value problems using fixed point methods and the
classical method of successive approximations and for (nabla) dynamic equations

using the method of upper and lower solutions.

1.5 The main idea

This work concerns first order dynamic equations of the type
x? = f(t,x), (1.5.1)
x? = f(t,x%), (1.5.2)
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and of the type
zvV = f(t, ). (1.5.3)

The symbols A and 57 used above carry the ‘feature’ of a derivative in the time
scale setting. The only difference between these two is of the forward and backward
movement of a point in the time scale. Thus, results involving functions allowing
advancement to the ‘right’ of a point in the time scale will be discussed in terms of a
dynamic equation of the type (1.5.1) or (1.5.2) called ‘delta equations’. Results are
produced considering these IVPs as n—dimensional systems for n > 1.

On the other hand, results involving functions carrying the feature of backward
movement will be produced discussing (1.5.3) called a ‘nabla equation’, which is a
scalar dynamic IVP as it involves scalar functions  and f. See notation on page
145.

While equations (1.5.1) and (1.5.2) look similar, they are actually different. For
example: if

f(t,x) =t +x,

then, using the Simple Useful Formula in Theorem A.3.2(4), we obtain

x2 = f(t,x°) = t+x°

= t+ px® +x

= px® 4+ £(t,x)

= uf(t,x7) + £(t,x).
This yields

f(t,x)
f(t,x7) = ——=.
(tx7) = 7= .

Here u is the graininess function defined in (A.1.1), such that u # 1.

1.6 Development and organisation

This thesis is organised in the following manner.
In Chapter 2, we discuss non—multiplicity of solutions to dynamic initial value

problems involving delta equations. Our results in this chapter use a generalised

16



uniform Lipschitz condition and Gronwall’s inequality in the context of time scales.
The ideas presented in the chapter will be used in many other results in the following
chapters. Results are also presented using other conditions in the absence of the
Lipschitz condition. Examples have been provided to reinforce results. The non-
multiplicity of solutions leads to further investigations like existence, uniqueness and
smoothness of solutions. These properties have been explored and discussed in the

following chapters.

In Chapter 3, we use classical methods of constructing approximate solutions to
the IVPs involving delta equations, within a subset of a time scale interval as well as
in the entire interval, following the Picard Lindel6f approach. The results have been
established considering the initial approximation as a continuous function of time.
We have used the Lipschitz condition and the Weierstrass test as important tools to
prove our results in this chapter. Existence and uniqueness results have also been
presented considering our IVP as the limit of a sequence of IVPs, with the help of
Arzela—Ascoli theorem, while the Lipschitz condition is not used. The results have

been reinforced with examples and extended to higher order dynamic equations.

In Chapter 4, the existence and uniqueness of solutions of the IVPs involving
delta equations has been established using the Banach’s fixed point theorem. We
prove these results by defining new ways of measuring distances using the exponential
functions and, hence. constructing Banach spaces on the time scale platform. Doing
this, we have been able to eliminate some previously established restrictions on the
existence of unique solutions to our dynamic IVPs. We also discuss a special case of
our results in this chapter, where thev have been applied within certain balls using
the local Banach theory. Moreover. The unique solutions established through our
results have been shown to be Lipschitz continuous with respect to the initial value.

The results in this chapter have also been extended to higher order equations.

Chapter 5 consists of existence results for nabla initial value problems. To work
with these equations, the time scale calculus regarding the nabla derivative and the
nabla integral has been discussed and the IVPs have been redefined. The results in
this chapter are obtained using the method of lower and upper solutions and provide
a way of ‘locating’ solutions to the given IVPs within the range defined by lower and

upper solutions. The Arzela-Ascoli theorem and Schauder’s fixed point theorem
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have been used as the main tools to prove our results in this chapter.

In Chapter 6, we present explicit solutions to some non-linear delta equations
employing methods of separation of variables and solution by substitution. The
ideas provide novel ways of solving non-linear dynamic equations extending ideas
from the theory of differential equations.

The thesis is concluded with some open problems and questions for further re-
search.

An explanation of notation along with some preliminary aspects of time scale
calculus used in this work is provided in Appendix A at the end of the thesis.
The time scale calculus includes definitions and properties of forward and backward
movement functions in the time scale, continuity, delta and nabla differentiation,
delta and nabla integration, the chain rule and the special functions. The above
concepts have been explained with the help of ample examples using a variety of
time scales. Results regarding unique solutions of linear dynamic equations have

been presented and non-linear forms of dynamic equations have been introduced.
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Chapter 2

The non—multiplicity of

solutions

2.1 Introduction

In this chapter, we explore the “non—multiplicity” of solutions to first order dynamic
initial value problems on time scales. We discuss conditions under which these IVPs

have either one solution or no solution at all.

The multiplicity and non—multiplicity of solutions to dynamic initial value prob-
lems is mathematically interesting for both theoretical and practical purposes. The
initial condition and the function f play a vital role in determining whether a given
IVP has at least one solution, at most one solution, exactly one solution or no solu-

tion. For example, consider the dynamic IVP

A =2 ; 1, for all t € (0, 00)T; (2.1.1)

z(0) = 1. (2.1.2)

Note that there are infinite number of solutions z(t) = 1+ ct, where c is an arbitrary
constant, to the above IVP for all ¢t € (0,00)T. However, if we change the initial
condition to z(0) = 0, then there is no solution. On the other hand, an initial

condition z(1) = 1 would result in only one solution corresponding to ¢ = 0.
z+1

Similarly, if we change the function f to , for all t € (0, 00)T, then (2.1.1),
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(2.1.2) takes the form

z+1
= , for all ¢ € (0, co0)T; (2.1.3)

z(0) = L. (2.1.4)

Solutions to (2.1.3) would be of the form z(t) = —1 + ct, where c is an arbitrary
constant, and would not satisfy (2.1.4).

Thus, a change in the initial condition or the function f can change the multi-
plicity of solutions to an IVP.

In real life problems, it may not be possible to change the initial or prevailing
states of a problem modelled by a dynamic equation. If we know a priori that a
mathematical formulation of a physical system is an initial value problem that has
either one solution or no solution, then the ‘existence’ of a solution to the system
would guarantee its uniqueness. In this way, the property ‘one solution or no solution’
of an initial value problem forms a basic stepping stone to explore further properties.
This property is termed as the non—multiplicity of solutions.

Most of the ideas in our results have gained inspiration from the non-linear theory
of ordinary differential equations. Analogues of these ideas have been transformed
to the time scale setting and add to the non-linear theory of dynamic equations on

time scales.

2.1.1 The main objective

Let tg,a € T and a > to. Let [to,to + a]r be an arbitrary interval in T and D C
R™. Consider a right-Hilger—continuous (see Definition A.2.2), possibly non-linear
function f : [to,to + a]f x D — R". That is, f maps elements of [tg,to + a]% x D to
R"™ for n > 1.

Let xg be a point of R™. Consider the initial value problems

x? = f(t,x), for all t € [to, to + a]¥; (2.1.5)
x(to) = Xo, (2.1.6)
and
x® = f(t,x%), for all t € [to, to + a]; (2.1.7)
x(to) = Xo- (2.1.8)
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The main aim of this chapter is to answer the question:

Under what conditions do the systems (2.1.5), (2.1.6) and (2.1.7), (2.1.8) of dy-
namic IVPs have, at most, one solution? That is, when do these IVPs have either

one solution, or no solution at all?

Some of our results in this chapter concern a so called scalar dynamic IVP which
is a special case of (2.1.5), (2.1.6) or (2.1.7), (2.1.8) considering R"™ for n = 1. Thus,
for a right-Hilger—continuous scalar function f : [to,to + a]f x D — R, the scalar

dynamic IVP of the first type will be

2 = f(t,z), for all ¢ € [to,to + a]F; (2.1.9)

.’L‘(to) = Iy, (2.1.10)

and of the second type will be of the similar form with = replaced by z? in the right

hand side of (2.1.9).

2.1.2 What we mean by a solution

The following definitions describe solutions to the dynamic IVPs (2.1.5), (2.1.6) and
(2.1.7), (2.1.8).

Definition 2.1.1 Let D C R™. A solution of (2.1.5), (2.1.6) on [to,to + alT is a
function X : [to, to+a]r — R™ such that: the points (t,x(t)) € [to,to+alr x D; x(t) is
delta differentiable with x2(t) = £(¢,x(t)) for each t € [to, to + a]%; and x(to) = Xo.

O

Definition 2.1.2 Let D C R®. A solution of (2.1.7), (2.1.8) on [to,to + a|T is a
function x : [to, to+a]t — R™ such that: the points (t,x(t)) € [to, to+a]T x D; x(t) is
delta differentiable with x2(t) = £(t,x7(t)) for each t € [to,to + a]f; and x(to) = Xo.

O

The following preliminary lemmas give equivalence of the dynamic IVPs (2.1.5),
(2.1.6) and (2.1.7), (2.1.8) with delta integral equations of the form (A.7.5) and

(A.7.6) respectively. Delta integral equations are more convenient to work with.
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Lemma 2.1.3 Consider the dynamic IVP (2.1.5), (2.1.6). Letf : [to,to+ali x D —
R™ be a right-Hilger-continuous function. A function x solves (2.1.5), (2.1.6) on
[to, to + a|T if and only if it solves the delta integral equation

t
x(t) = /t f(s,x(s)) As+ xo, for all t € [to,to + a]T. (2.1.11)

0
Proof: Let x be a solution of (2.1.5), (2.1.6) on [to,to + a]r. Then x is delta
differentiable on [to, to + af by Definition 2.1.1, and so is continuous on [to, to + alf.

Moreover, x satisfies
x2(t) = f(t, x(t)), for all t € [to,to + a]F. (2.1.12)
We delta integrate both sides of (2.1.12) over [to, t|T obtaining

t t
/ x?(s) As = / f(s,x(s)) As, for all t € [to, to + alr.
to to
The right hand side of the above equation is well defined as, by Theorem A.5.2,
right-Hilger—continuous functions are always delta integrable. Delta integrating the
left hand side, we obtain
t
x(t) —x(to) = [ £(s,x(s)) As, for all ¢ € [to, to + aT.
to
Using (2.1.6), we obtain
t
x(t) = xo0 + / f(s,x(s)) As, for all t € [to,to + a]T.

to
Hence, x is a solution to (2.1.11).
Conversely, let x satisfy (2.1.11). Then by delta differentiating (2.1.11), we obtain
x2(t) = f(t,x(t)),  for all t € [to, to + a]f. (2.1.13)
It is also evident from (2.1.11) that
x(to) = Xop.

Hence x satisfies (2.1.6). Moreover, since x is continuous on [to, %o + a]f and f is
right-Hilger—continuous on [to,to + a]§ x D, x® is rd-continuous on [to, to + a)k
such that x(t) € D. Thus, x is a solution of (2.1.5), (2.1.6) such that the points
(t,x(t)) € [to, to + a]T x D.
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Lemma 2.1.4 Consider the dynamic equations (2.1.7), (2.1.8). Letf : [to, to+af X
D — R"™ be a right-Hilger—continuous function. Then a function x solves (2.1.7),

(2.1.8) on [to, to + a]T if and only if it solves the delta integral equation

x(t) = /tt f(s,x%(s)) As + xo, for allt € [to,to+alr.  (2.1.14)

0

Proof: The proof is similar to that of Lemma 2.1.3 and is omitted.

d

Remark 2.1.5 We note that Lemma 2.1.3 and Lemma 2.1.4 also hold for f being
continuous, as all continuous functions are right—Hilger-continuous and are delta

integrable (see Theorem A.5.2).

2.1.3 Approach and organisation

The techniques employed to answer the question in Subsection 2.1.1 involve the
introduction and formulation of appropriate dynamic inequalities. The inequalities
are extensions and refinements from the theory of ordinary differential equations to
the more general time scale environment.

Many results in this chapter are proved through applications of the Lipschitz
condition and Gronwall’s inequality. In some results, we use modifications of the
Lipschitz condition that are formed using ideas from ordinary differential equations
with suitable transformations according to the requirements of the time scale calcu-
lus.

In this section, we establish foundational definitions and lemmas regarding solu-
tions to the IVP (2.1.5), (2.1.6), the IVP (2.1.7), (2.1.8) and the IVP (2.1.9), (2.1.10).
Our results in this chapter are organised in the following manner.

In Section 2.2, we extend the ideas of Lipschitz for non—multiplicity results from
ordinary differential equations to the generalised time scale platform using the well-
known Lipschitz condition [19, Definition 8.14(iv)] and Gronwall’s inequality [19,
Theorem 6.4]. We also develop non-multiplicity results using modifications of Lips-
chitz condition.

In Section 2.3, we establish a Peano criterion [2, p.10] on an arbitrary time scale
T to obtain non—multiplicity results for (2.1.9), (2.1.10) for cases where the Lipschitz

criteria do not work.

23



2.2 Lipschitz criteria on T

The following definition will be referred to as the uniform Lipschitz condition for
f on [to,to + a]f x D. The uniform Lipschitz condition will be a fundamental tool
to establish results regarding existence and/or uniqueness of solutions to dynamic
initial value problems in this work. The idea comes from [19, Definition 8.14(iv)],

[16, p.151] and [51, Definition 8.8].

Definition 2.2.1 The uniform Lipschitz condition

Let D CR™ and f : [to, to+alf x D — R™. If there exists a constant L > 0 such that

I£(t,p) — £(t,a)ll < Lilp —qll, for all (t,p), (t,q) € [to,to +alt x D, (2.2.1)

then we say f satisfies a uniform Lipschitz condition on [to,to + a)f x D.
O

If f satisfies the uniform Lipschitz condition (2.2.1) on [tg, o+ a]f x D then f is said
to be Lipschitz continuous on [to,to + a)f x D. Any value of L satisfying (2.2.1) is
called a Lipschitz constant for f on [to,to + a)f x D.

Classically, the Lipschitz constant L in (2.2.1) is independent of x and ¢ but may,
in general, depend on the domain [tg, o +alf x D [42, p.6]. It is not easy, in general,
to identify if a function satisfies the Lipschitz continuity in a given domain. However,
if [to, to + a]f x D is convex and f is a smooth function on [tg, to + a]f x D, then the
following theorem [17, p.22], [30, p.248], [2, Lemma 3.2.1] is helpful to identify if a

given function satisfies a Lipschitz condition on [tg, to + alf x D.

Theorem 2.2.2 Let b > 0. Let tg € T and xo € R™. Consider a function f defined

on a rectangle of the type
R* = {(t,p) € T* x R" : ¢ € [to, to + alf, [P — xol < b}, (2.2.2)

or on an infinite strip of the type

Sk = {(t,p) € T* x R" : t € [to,to + a]}, [p| < o0} (2.2.3)
8f(t) p) : : ) ] K K ;
If o exists for alli =1,2,--- ., and is continuous on R* (or S*), and there is
Pi
a constant K > 0 such that for all (t,p) € R® (or §*), we have
of(t,p) <K, foralli=1,2,--, (2.2.4)
opi
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then £ satisfies a Lipschitz condition on R* (or S*) with Lipschitz constant K = L.

Proof: For a proof see 2, Lemma 3.2.1].
0O

, f(¢, ,
Remark 2.2.3 Note in the above theorem that M is the slope of the tangent

Opi
line at any point (t,p) in R* or S* in the direction of the i—th component of p.
Therefore, if the rate of change of £(t, p) is bounded at all points (t,p) and the line
joining any two points (t, p), (t,q) can not have a slope steeper than a certain positive

number K, then £ remains within £K(p — xo) for R* and within £Kp for S*.
d

Remark 2.2.4 Also note that the inequality (2.2.4) is a sufficient condition for the
Lipschitz condition (2.2.1) to hold for all £ that have bounded partial derivatives with

respect to the second argument on R* or §%.

O

The following is a corollary of Gronwall’s inequality [19, Corollary 6.6] in the
time scale setting. Historically, Gronwall’s inequality has been widely used as a tool
to prove existence and uniqueness of solutions to initial value problems. We use this
result to prove non—multiplicity of solutions to the IVPs (2.1.5), (2.1.6) and (2.1.7),

(2.1.8) in this chapter and in many other results in latter chapters.

Corollary 2.2.5 Let t; € T and z € Cpg(T). Let 1 : T — (0,00) withl € R*. If z

and | satisfy

t
z(t) < /t 1(s)z(s) As forall t€T,

then

2(t) <0, forallt e T. (2.2.5)
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Now we present our first result regarding non—multiplicity of solutions to the
dynamic IVP (2.1.5), (2.1.6), using the above corollary, when the rate of change in f
is bounded by a positive constant. The result is an extension of Lipschitz’s classical
non-multiplicity result from ordinary differential equations, see [2, Theorem 1.2.4],

(25, Theorem 3.4] and [16, p.152], to the time scale setting.

Theorem 2.2.6 Let D C R™ and f : [to,to + a]f x D — R™ be a right-Hilger-

continuous function. If there exists a constant L > 0 such that

I£(t,p) — £(t, Il < L |p - qll, for all (t,p), (t,q) € [to,t0 + alf x D; (2.2:6)

then the IVP (2.1.5), (2.1.6) has, at most, one solution, x, such that x(t) € D for
all t € [to, to + alr-

Proof: Let x,y be two solutions of (2.1.5), (2.1.6) with x(¢) € D and y(t) € D for
all t € [to,to + a]r. We show that x =y on [to, to + ar.

By Lemma 2.1.3, we have

¢
x(t) = x0 + / f(s,x(s)) As, for all t € [to,to + a]T

to

t
and y(t) = x¢ +/ f(s,y(s)) As, for all t € [to, to + alT-
to

Then for all ¢ € [to, to + a]T, we have

Ix() - y(®)] < / 1£(s, %(5)) — £(5,y(5))]| As

t
<L | [x(s) —y(s)ll As,
to

where we have used (2.2.6) in the last step. Applying Corollary 2.2.5, taking I(t) := L
and z(t) := ||x(t) — y(¢)|| for all t € [to, to + a]T, we obtain

||X(t) — y(t)H <0, forallt € [to, to + a]-ﬂ-.

But ||x(t) — y(t)|| is non—negative for all t € [to,to + a]r. Thus, x(¢) = y(¢) for all
te [to,to + a]']r.

O

Note that the result in [83, Theorem 3.2] is a special case of the above result

where I(t) := L, a constant function for all ¢ € [to, to + a]T.
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Corollary 2.2.7 The above theorem also holds if f has continuous partial derivatives

. ] f
with respect to the second argument and there exists K > 0 such that 9 g’ P) \ <K
P

In that case, f satisfies the Lipschitz condition 2.2.6 on [to,to+alf x D with L := K
by Theorem 2.2.2.

d

Example 2.2.8 Let D := {p € R? : ||p|| < 2}, where p = (p1,p2). Consider the
1vp

A =f(t,x) = (14 22,12 + z3), for all t € [0,1]F;

x(0) = (1,0).

We claim that this dynamic IVP has, at most, one solution, x, such that |x(¢)| < 2
for allt € [0,1].

Proof: We show that f(t,p) := (1 + p?, t> + po) satisfies the conditions of Theorem
2.2.6 for all (t,p) € [0,1)F x D.
Note that for p = (p1,p2) € D, we have p? +p3 < 4. Thus, |p1| < 2 and |p2| < 2.

1. f is right-Hilger-continuous on [0,1]% x D: We note that the composition
function g(t) := (1 + (x1(t))?,t? + z2(t)) is rd—continuous for all ¢ € [0, 1]r.

Thus, our f is right-Hilger—continuous on [0, 1)§ x D;

2. f is Lipschitz continuous on [0,1]% x D: We note that for all ¢t € [0,1]§ and

(p1,p2) € D, we have

H “ = |(2p1,0)]| = |2p1] < 4.

Similarly, we obtain

| o | =1 =1

Thus, employing Corollary 2.2.7, we have (2.2.6) holding for L = 4.

Hence, all conditions of Theorem 2.2.6 are satisfied and we conclude that our example

has, at most, one solution, x(t) € D, for all t € [0, 1].
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Our next result concerns the scalar dynamic IVP (2.1.9), (2.1.10) when a right—
Hilger—continuous scalar function f satisfies a one-sided Lipschitz condition defined

as follows.

Definition 2.2.9 Let D C R and f : [to,to + a]f X D — R be right-Hilger—

continuous. If there exists L > 0 such that, for all p > q, the inequality
ft,p) = f(t,q9) <Llp—4q),  forall(t,p),(t,q) € [to,to+alf x D  (2.2.7)
holds, then f is said to satisfy a one-sided Lipschitz condition on [to, to + a]f x D.

O

In the light of the above definition, we can establish a corollary of Theorem 2.2.2
to obtain a sufficient condition for a function f to satisfy the one-sided Lipschitz

condition 2.2.7 on [tg, to + a]F x D.

Corollary 2.2.10 Let a,b > 0. Let tg € T and o € R. Consider a function f
defined either on R® (or S*). If of(t,p)

erists for alli = 1,2, - ., and is continuous

Op;
on R* (or S*), and there is a constant K > 0 such that for all (t,p) € R* (or S*),
we have
0f(t,p) <K, foralli=1,2,---, (2.2.8)
Op;

then f satisfies the one-sided Lipschitz condition 2.2.7 on R* (or S*) with Lipschitz
constant K = L.

Proof: The proof is similar to that of [2, Lemma 3.2.1] except that __Bfét,p ) is

considered bounded above by L = K.

O

Remark 2.2.11 The above theorem shows that if the rate of change of f(t,p) is
bounded above at all points (t,p) and the line joining any two points (t,p), (t,q) can
not have a slope steeper than a certain positive number K, then f remains below the

line K(p — zo) for R* and below the line Kp for S*.
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Our next theorem is a time scale extension of [2, Theorem 1.2.5] and is a non-

multiplicity result when f satisfies a one-sided Lipschitz condition on [to, to+a]f X D.

Theorem 2.2.12 Let D C R and f : [to,to + alf X D — R be right-Hilger-
continuous. If there exists a constant L > 0 such that the inequality (2.2.7) holds for
D > q, then the IVP (2.1.9), (2.1.10) has, at most, one solution, x, with x(t) € D
for all t € [to,to + alT.

Proof: Let t1,t2 € (fo,to + a|r and ¢ > t;. There are two cases to consider. In

both cases, our argument is of the proof by contradiction style.

Case 1: Without loss of generality we assume solutions z,y with z(t) € D and
y(t) € D for all t € [to, to + a]r, that satisfy
z(t) = y(t), for all t € [to,t1]T C [to, t2]T, (2.2.9)

and z(t) < y(t), for all te (t1,t2]r- (2.2.10)

Therefore, for t € (t1,t2]T, we have from Lemma 2.1.3

t
u(t) — x(t) = / (F(5,9()) = (5, 2(s))) As

1

<I / (u(s) - x(s)) As,

1

where we have used (2.2.7) in the last step. Applying Corollary 2.2.5, taking I(t) := L
and z(t) := y(t) — z(t), we obtain
y(t) —z(t) <0, for all t € (t1, ta]T,

which is a contradiction to (2.2.10).

Case 2: If, z, y satisfy z(t) € D and y(t) € D for all t € [to, to + a]T, With

z(t) = y(t), forall t€ [to,t1]r C [to, t2]T,

and x(t) > y(t), for all t € (t1,t2], (2.2.11)
then, using (2.2.7), we have, for all t € (t1,t2]T,

2(t) - y(t) = / (f(s,2(5)) = f(5,4(5))) As

t
t1

t
<L / (2(s) - (s)) As.

1
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Again applying Corollary 2.2.5, taking [(¢) := L and z(t) := z(t) — y(t), we have
:It(t) — y(t) <0, forall te (tl, tz]']r,

which is a contradiction to (2.2.11). Hence, z(t) — y(t) = 0 for all t € [to, to + a]T-
Thus, z(t) = y(t) for all ¢ € [to, to + alr.

O

Note that the above result is more flexible than Theorem 2.2.6 which requires an
upper as well as a lower bound on the change in f for the existence of non—multiple

solutions to (2.1.9), (2.1.10).

Corollary 2.2.13 The above theorem also holds if f has continuous partial deriva-
of(t

tives with respect to the second argument and there exists K > 0 such that —fé—z—;i) <

K. In that case, f satisfies the one—sided Lipschitz condition on S® with L := K by

Corollary 2.2.10.

d

Remark 2.2.14 The above corollary weakens the condition of Corollary 2.2.7 for
a smooth function f on R® or S® and the existence of an upper bound on 5; is
sufficient for (2.2.7) to exist on [to,to + a)f x D.

a

Our further results concern the non—multiplicity of solutions to the dynamic IVPs
(2.1.5), (2.1.6) and (2.1.7), (2.1.8) which Theorem 2.2.6 or Corollary 2.2.10 do not
directly apply to.

In the next result, we consider a positive constant L such that —2L € R*. That
is, 1 —2uL > 0. This is possible if we can choose L large enough such that the
step size, u(t), can be made smaller than % for all t € [to,to + a]r or vice versa.
We employ this condition to prove the non—multiplicity of solutions to the vector
dynamic IVP (2.1.7), (2.1.8), within a domain D C R™ by constructing a modified

one-sided Lipschitz condition. This result has gained inspiration from [2, Theorem

3.2.2] for ordinary differential equations.
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Theorem 2.2.15 Let D C R"™ and f : [to,to + a]f x D — R" be right-Hilger—
continuous. If there exists a positive constant L > 0 with —2L € R* such that £

satisfies the condition

(£(t,p) —f(t,q),p—aq) < L [lp—ql? (2.2.12)
for all (t,p), (t,q) € [to,to + a]F X D,

then the IVP (2.1.7), (2.1.8) has, at most, one solution x, with x(t) € D for all
t € [to,to + a]T.

Proof: Let x and y be two solutions of (2.1.7), (2.1.8), with x(¢) € D and y(t) € D
for all ¢ € [tg, to + a]r. Consider

u(t) := ||x(t) —y(@)||?,  for all t € [to,to + ar-

We show that v =0 on [to, to + a|t and so x and y are the same function.
Using the product rule (Theorem A.3.5(3)) and the simple useful formula (SUF,
Theorem A.3.2(4)) for all ¢ € [to, to + a]f, we have

vA(t) = (x2(t) — y2 (1), x(t) — (1)) + (x7(8) = y°(£),x2(t) = y2 (D))
= (x2(t) — y2 (), x°(t) — w(B)x2(t) = 7 (&) + p(O)y>(2))
+(x7() = y7(£), x2 (1) — y2 (1))
= 2(xA(t) -y (1), X7 (t) — y7 (1) + (X2 () = y2 (1), —u() (%2 (8) = y2(@))
= 2(x(t) -y (1), x7(t) — y° (1)) — u(@®) x> () = y2O)I1?
< 2(xA(t) — y2 (), x7(8) - y° (1)
= 2(f(t,x7(t)) — £(t,¥° (1)), x7(t) —y°(£))
< 2L|x7(t) -y ()|
= 2007 (1),
where we have used (2.2.12) in the second last step.

Thus,
VvA(t) <2007 (t),  for all t € [to, to + alf.

Rearranging, we obtain
V2 (t) — 2LV (t) <0, for all t € [to, to + al%. (2.2.13)
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Since —2L € R*, we use e_y1(t,ty) as an integrating factor in (2.2.13). Thus, we

obtain
v2(t)e—ar(t,t0) — 2Le_ar(t,t0)v° (t) <0,  for all ¢ € [to, to + alf
Using the product rule (Theorem A.3.5(3)) again, we have
[v(t)e—ar(t, to)]® <0,  for all t € [to, to + alf. (2.2.14)

We note that v(t)e_a1(¢,t0) is non—increasing for all ¢t € [tg,to + a]r. Since
v(to) = 0 and e_o(t,tp) > O for all ¢t € [to,to + a]r, we have v(t) < 0 for all
t € [to,to + a]r. But v is non—negative on [to,to + a]r. Thus v(t) = 0 for all
t € [to,to + a]r. Hence, x(t) = y(¢) for all ¢ € [to, to + alT.

O

From the above results we note that (f(¢,p) — f(¢,q),p — q) is the product of
variation in f with respect to p and variation in p itself and (2.2.12) provides an
upper bound on this product for non-multiple solutions of (2.1.7), (2.1.8). From
another result (see [79, Theorem 2.5] considering R = 0 and M = 1 in the boundary
condition (3) in which case it becomes an initial condition) the non—multiplicity of
(2.1.5), (2.1.6) is ensured for a negligibly small p if the above product is strictly
positive. In that case, the IVP (2.1.5), (2.1.6) and (2.1.7), (2.1.8) can be treated
as ODEs. Thus, for sufficiently large L (or T = R), the non-multiple solutions of
(2.1.5), (2.1.6) and (2.1.7), (2.1.8) exist for 0 < {f(t,p) —f(t,q),p — q) < L||p — q||?
for all t € [to, to + a|T-

Also, for sufficiently small y, the above result restricts the non-multiplicity of
solutions of (2.1.7), (2.1.8) to small variations in p producing small variations in f
no matter how large L is, in a restricted domain.

The following example illustrates Theorem 2.2.15.

Example 2.2.16 Let D := [-1,1] and L; > 0 be a constant. Then L; € R*T.
Consider the scalar dynamic IVP

2% = f(t,2%) = L2’ + —,  Jorallt€[0,1)F  (2215)
z(0) = 0. (2.2.16)
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We claim that this dynamic IVP has, at most, one solution, x, such that z(t) € D
for all t € [0,1]T.

Proof: We prove our claim by showing that f(¢,p) := —Lip+ satisfies the

1
er,(t,0)
conditions of Theorem 2.2.15 for L := Ly, for all (¢,p) € [0,1]% x D.

(1) f is right-Hilger—continuous on [0, 1]% x D: We note that for all ¢ € [0, 1]%, the

functions and z7(t) are rd—continuous. Therefore, the composition

1
€L, (t, 0)
function g¢(t) := —L127(¢t) +

1
is rd—conti for all ¢ € [0, 1]r. Thus
. (.0) is rd—continuous for a. [0, 1] u
our f is right-Hilger—continuous on [0, 1] x D;

(2) f satisfies (2.2.12) on [0,1]% x D: We note that for all ¢t € [0,1]% and p,q €

[~1, 1], we have

(ft,p) = £(t,) (p—q) = —L1 (p—q)*

< L1 |p—q|I*.

Hence (2.2.12) holds for f. Thus, (2.2.15), (2.2.16) satisfies all conditions of Theorem
2.2.15 and so, has, at most, one solution, z, with z(t) € D for all t € [0, 1]5. In fact,

(2.2.15), (2.2.16) is linear and so, by Theorem A.7.7, has a unique solution given by

t
er, (t, 0) ’

z(t) = for all ¢ € [0,1]r.

O

Corollary 2.2.17 Let D C R and f : [to,to + a]f x D — R be right-Hilger-

continuous. If f satisfies

(f(t’p) - f(t7 Q))(p - q) S 0) fOT‘ CL” (tap)a (ta Q) € [t07t0 + a]%' X D) (2217)

then the IVP (2.1.9), (2.1.10) has, at most, one solution x with x(t) € D for all

t € [to, to + alT-

Proof: If (2.2.17) holds then Theorem 2.2.15 holds for L = 0.
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The next corollary concerns the non-multiplicity of solutions to the scalar dy-

namic IVP

z® = f(t,z°), for all ¢ € [to, to + alf; (2.2.18)

z(to) = xo, (2.2.19)
using Theorem 2.2.15.

Corollary 2.2.18 Let D C R and f : [to,to + a]f x D — R be right-Hilger—

continuous. If f satisfies

(f(t,p) — f(t,9))(p—q) <0, for all (t,p), (t,q) € [to,to + a]F x D, (2.2.20)

then the IVP (2.2.18), (2.2.19) has, at most, one solution z with z(t) € D for all
te [to,t() + a]']r.

Proof: If (2.2.20) holds then Theorem 2.2.15 holds for (2.2.18), (2.2.19) for L = 0.
0O

Note that the above two corollaries hold only for sufficiently large u.
The following example illustrates Corollary 2.2.18.

Example 2.2.19 Let D := (0,00) and f : [0,1)% x (0,00) — R. Consider the
dynamic IVP

z2 = f(t,z%) = tag for all t € [0, 1]%; (2.2.21)

z(0) = 1.

We claim that this IVP has, at most, one solution z such that z(t) > 0 for all
t e [O, 1]’11‘.

3
Proof: We prove our claim by showing that Corollary 2.2.18 holds for f(¢,u) := t—2
u

for all (¢,u) € [0,1]% x (0, 00).

(a) f is right-Hilger—continuous on [0, 1% x (0, 00): We note that the composition
t3
function k(t) := ———5 is rd—continuous for all ¢ € [0,1]r. So our f is

(z7(1))?

right—Hilger—continuous on [0, 1]§ x (0, c0);
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(b) f satisfies (2.2.20) on [0,1]% x (0,00): We note that for all (¢,u), (t,v) €

[0,1]% x (0, 00), we have

(F(tu) = F(t,0))(u—1v) = & (i - —1—) (u—v)

u 02

2 2
3 [V —U
= (W)“‘"")

3 (v + u)(u — v)?
h uv?

<0.

Hence, (2.2.20) holds for f and f satisfies all conditions of Corollary 2.2.18. Thus

the given IVP has, at most, one solution, z, with z(t) € (0, c0) for all ¢ € [0, 1]r.
U

We observe from (2.2.20) and from the above example that for any p, ¢ with
P 2> ¢, the inequality (2.2.20) yields

f(t)p) - f(t’ q) < 0’ for all (ta p)a (t, q) € [to, to+ a’]"lﬁlj‘ x D.

Thus, f will be non-increasing in the second argument on [to, ty + a]f x D.

In the next section, we show that, for non-increasing functions on [to, to+alf x D,
the non—multiplicity of solutions to (2.1.9), (2.1.10) may hold without the Lipschitz
condition holding on [to, to + a]§ X D.

The next theorem concerns the non-multiplicity of solutions to the IVP (2.1.7),
(2.1.8) within a domain D C R"™. Here f, which is a vector valued function, assumes
a restriction that apparently depends on the graininess function u. However, we will
prove in the following theorem that this dependence is removable. We note that this
is a more generalised result for non—multiplicity of solutions to (2.1.7), (2.1.8) then

Theorem 2.2.15 and the condition that ‘L’ be large is no more necessary.

Theorem 2.2.20 Let D C R" and let f : [to, to + a]f x D — R™ be a right-Hilger-
continuous function, with [to,to + a|f x D. If there exist positive constants L, 3,7,

such that B =~ L for v > 2, such that f satisfies

L
|£(t,p) — £(t,q)ll < m”p -4, (2.2.22)
fO’)" all (ta p)a (ta q) € [t07 to + a]"]% X D7
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then the IVP (2.1.7), (2.1.8) has, at most, one solution, x, with x(t) € D for all
t € [to,to + a]']r.

Proof: Consider x(t) and y(t) as two solutions of (2.1.7), (2.1.8) with x(¢) € D and
y(t) € D for all t € [to,to + a]T. Let

w(t) == ||x(t) — y(t)||%, for all t € [to, to + aT-

We show that w = 0 on [tg, to + a|t, and so x(t) = y(¢) for all t € [to, to + a]T-
Using the product rule, Theorem A.3.5(3), and the identity (4) of Theorem A.3.2
for all t € [to,to + a)f, we have

wB(t) = (x2(8) —y2 (1), x(8) = ¥(8) + (x7() — ¥7(8), x2 (1) = y2(2))
= (x2(t) = y2(8), x7(t) — p(6)x2 () = y° (1) + &)y > ()
+HxI(t) — y° (1), x2(t) — y2(2))
= 2(x2(t) —y2(2), x7(t) = y7 (1)) + (x2() = y2 (2), —u @) (x() —y2 (1)
= 2(x2(t) —y2 (1), x° () — y° (1)) - n(@®)[x*(¢) - y2 @)II?
< 2(x2(t) - y2(1),x7(8) —~ y° (1))

= 2(f(t,x°(2)) — £(¢,y° (1)), x (1) — y°(2))

2L
< —2Z  Ix9(t) — yO(8) ||, 2.2.23
1+u(t);6” () -y’ @)l ( )
where we used (2.2.22) in the last step. We also note that for 5 > 0, we have
1 t,t
_ es(t,to) for all t € [to, to + alT- (2.2.24)

1+ pu(t) B e3(t,to)

Thus, for all t € [to, to + a|T, the inequality (2.2.23) takes the form
2L t

wA(t) < Ueﬂ(t’ 0)
eﬁ(ta tO)

2L es(t, to)
e%(ta tO)

1% () — y? ()|
WO (). (2.2.25)

Since 8 = v L and v > 2, the inequality (2.2.25) can be written as

IB €s (ta tO) Ww° (t)

A
Wi () = e5(%, to)

for all ¢ € [to,to + alF.

Rearranging, we obtain

,8 eﬂ(ta tO)

Ay
W = )

wo(t) <0, for all t € [to, to + a]F.
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Since eg(t, tg) > 0, we further obtain

wit) B
eg(t, to) eg(t, to)

wi(t) <0, for all t € [to, to + a]T-

Again using the product rule (Theorem A.3.5(3.)), the above inequality reduces to

[ w(t)
eﬁ(t’ to)

A
J <0, for all t € [to, o + a]F-

w(t) . .
Thus ealt.to) is non-increasing in [to, to+a]t. Hence w(t) < 0 for all ¢ € [to, to+a]T.
s V0
But w(tp) = 0, and w is non-negative on [tg, ¢y + a|t. Hence, w = 0 on [to, to + a]T.

This means that x(t) = y(t) for all ¢ € [to, to + a]T.

a

Example 2.2.21 Let D = [1,00). Let L = 1 and 8 = 3. Consider the dynamic
I1vP
e3(t,0) Inz

e3(t,0)
z(0) = 1. (2.2.27)

® = f(t,z) = t e [0,1]r; (2.2.26)

We claim that the above IVP has, at most, one solution x such that z(t) € [1,00)
for all t € [0,1]T.

Proof: We show that f satisfies all conditions of Theorem 2.2.20.

(a) f is right-Hilger—continuous on [0,1]% x D: We note that e3(t,0) and e§(t,0)

are rd—continuous for all ¢ € [0,1]y. Thus, the composition function h(t) :=

e3(t,0) In z(t)
e3(t,0)

right-Hilger—continuous in [0, 1]§ x D;

will be rd—continuous for all ¢ € [0,1]r. Therefore, our f is

(b) f satisfies condition (2.2.22) on [0, 1]5x D: We first show that for all p € [1, 00),

the function
r(p) :==1Inp
is Lipschitz continuous with Lipschitz constant L = 1. Note that for p > 1

or
Op

e
p
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Hence, by Theorem 2.2.2, r satisfies a Lipschitz condition on [, 00) with Lip-

schitz constant L = 1. Thus, we have

|lnp—Ing| < |p—gq| forall p,qe€[l,00). (2.2.28)

Next, we show that the condition (2.2.22) is satisfied for all (t,p), (t,q) €
[0,1]% x D. Note that

L eg(t, 0)

|f(tap) - f(t’ Q)| = eg(t, 0)

|lnp—1Ing|,  forall (¢,p),(t q) € [0,1]x X D.

From (2.2.24), we obtain,

|f(t,p) — f(t,9)| = |lnp—1Ing|,  for all (¢,p),(t,q) € [0,1]% x D.

1
1+ 3u(t)

Thus, using (2.2.26), and (2.2.28), we obtain

1
— f(t < — |p—- T % D.
[f(t,p) = f(tg)| < T+3u@ P dh  forall(tp)(tq) €0 1]z
Hence f satisfies (2.2.22) for all ¢ € [0, 1]r.

We note that f satisfies all conditions of Theorem 2.2.20. Therefore, the given IVP

has, at most, one solution, x, with z(t) € [1, c0) for all t € [0, 1]r.

2.3 Peano criterion on T

This section comprises a result regarding the non—multiplicity of solutions to the
IVP (2.1.9), (2.1.10) in the absence of the Lipschitz condition (2.2.6) or any of its
modifications defined in the previous section.

It has been discussed above that the non-multiplicity of (2.1.9), (2.1.10) is en-
sured if a right-Hilger—continuous function f : [tg, to +a]% x D — R satisfies (2.2.20),
in which case, f will be non-increasing on [tg, to + a]§ x D. In the following result,
we prove the converse using classical method. That is, we prove that the non—
multiplicity of solutions to (2.1.9), (2.1.10) holds for every right-Hilger—continuous
function f that is non-increasing in the second argument on [tg,to + a]§ x D. The

result is an extension of [2, Theorem 1.3.1] to time scales.
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Theorem 2.3.1 Let D C R and f : [to,to + a]f x D — R be a right-Hilger-

continuous function. If, for all p < q, f satisfies the inequality

f@t.p) = f(t,q),  forall (t,p),(t,q) € [to,to + alf x D; (2.3.1)

then the dynamic IVP (2.1.9), (2.1.10) has, at most, one solution, x, such that
z(t) € D for all t € [to, to + alr.

Proof: Let t1,t3 € (to,to + a]r with t3 > ¢;.
Without loss of generality we assume z and y as two solutions of (2.1.9), (2.1.10)

with z(t) € D and y(t) € D for all ¢ € [to, o + a]r. Let
r(t) = z(t) — y(t), for all t € [to, to + aT. (2.3.2)

We note that r(tp) = 0. Assume r(¢) # 0 for all t € (to, to + a]r. We consider two
cases. In each case we use proof by contradiction.

Case 1: Assume

’l"(t) =0, forall te [to,tl]’]r C [to,tz]']r, (233)

and r(t) < 0, for all t € (¢1,t2]T. (2.3.4)

So, z(t) < y(t) for all t € (t1,t2]r, and since f is non—increasing in the second

argument on [tg,to + a|f x D, we have
ft,z(t) > f(t,y(2)), for all t € [to, t2]T- (2.3.5)
Thus, for all ¢ € [to, t2]5, we have
rf(t) = 28(t) - 2 (),

= f(t, (1)) — f(t,y(t))

2 0,

and so r is non—decreasing in [tg,t2]r. Combining this with (2.3.3), we note that

r > 0 on [tg, t2)r and this contradicts (2.3.4).

Case 2: Now, assume

r(t) = 0, forall t € [to,t1]r C [to, talT, (2.3.6)

and T(t) >0, forall te (tl,tZ]T- (2.3.7)
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Then, z(t) > y(t) for all t € (¢;,ts)r, and since f is non—increasing in its second

variable on [to, o + a]% x D, we have

Ft,z@) < f(t,y@), for all t € [to, tor. (2.3.8)
This yields, for all ¢ € [to, to)%
ri(t) = 28() - v* (),

= f(t,2(8) - £(ty(2))

<0,

and so r is non-increasing in [to,t2]r. Combining this with (2.3.6), we note that
r <0 on [to, t2]r and this contradicts (2.3.7).

Thus, r(t) = 0 for all ¢ € [to, to + a]r. Hence, z(t) = y(t) for all t € [to, to + alT-
ad

The above result can also be obtained from Theorem 2.2.12 provided L = 0.

Now we consider an example to illustrate the above theorem.
Example 2.3.2 Let D = [0,00). Consider the IVP

g =t—2*3  forallte 0,15

z(0) = 0.

We claim that this IVP has, at most, one solution, x, such that z(t) € [0,00) for all
t € [0,1]r.

Proof: We show that f satisfies the conditions of Theorem 2.3.1 on [0, 1]§ x D.

(i) f is right-Hilger—continuous on [0,1]% x D: We note that the composition
function I(t) := t — (z(t))?/® is rd—continuous for all ¢ € [0,1]y. Thus, f is

right—Hilger—continuous in [0, 1}§ x D;

(i) f is non—increasing in [0,1]% x D: Note that for all p < q we have —p*/3 >
~q%/3. Therefore, for all (t,p), (t,q) € [0,1]% x D, we have

flt,p) =t—p** >t —g*% = f(t,q).
Hence f is non—increasing in p on [0, 1% x D.
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We note that the given IVP satisfies both conditions of Theorem 2.3.1 and so, has,
at most, one solution z(t) € [—1,0] for all ¢ € [0, 1].

O

We note that Theorem 2.3.1 provides a sufficient condition for the non—multiplicity
of solutions to the scalar dynamic IVP (2.1.9), (2.1.10) on [tg,to + alf x D. In the
next chapter we will extend the above result to prove that the system (2.1.5), (2.1.6)
has a unique solution when the Lipschitz condition (2.2.6) is and is not satisfied.

In this chapter, we presented results that identified conditions under which the
systems (2.1.5), (2.1.6) and (2.1.7), (2.1.8) or the scalar IVPs (2.1.9), (2.1.10) and
(2.2.18), (2.2.19) have either one solution or no solution at all. In the next chapter, we
extend our discussion to existence of solutions to the above IVPs using the classical

method of constructing successive approximations converging to a unique limit.
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Chapter 3

Successive approximation of

solutions

3.1 Introduction

In this chapter, we explore the existence and uniqueness of solutions to first order
non-linear dynamic initial value problems using classical methods. Our approach
involves constructing sequences of functions that converge to a unique solution to
the problem under consideration.

The method of successive approximations is a powerful tool for gaining existence
and computation of solutions to initial and boundary value problems. This method
is explicitly developed, for the first time, in the time scale setting in this work and
is used to prove several new existence theorems. The results are extended to n-th
order dynamic equations. We also provide some interesting examples illustrating the
new results.

Liouville and Picard’s work on the method of successive approximation has been
a key to analyse and establish the existence of unique solutions to non-linear initial
and boundary value problems for ODEs and dates back to the nineteenth century
[60, p.444]. Generally speaking, the method attempts to solve an equation of the
kind

x = F(x),

where F is a continuous function. The approximation procedure starts from an initial
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value xo and then employing the successive iterations as a sequence of functions
defined by

Xn+1 = F(xp,), for n=20,1,2---.

A set of assumptions is then developed to assert that x, converges to some function
®. In addition, ® is proved to be the unique solution to the given equation, with a
small error estimated for ||x, — ®|| for all n > 0.

We consider a first order non-linear delta IVP and use the above method to
establish a set of iterations that successively converge to a function, ®, and prove
that ® is the unique solution of the IVP. Traditionally, the method involves taking
the initial approximation to be a constant which is usually the initial value. In this
chapter, we develop a generalised method of successive approximations in which the

initial approximation is a continuous function of ¢, where ¢t € T.

3.1.1 The main objective

Let [to,to + alr be a closed and bounded interval in T and x¢ be a point in R".

Consider the rectangle
R = {(t,p) € T" x R" : t € [to, o + a]%, ||p — X, < b} (3.1.1)

and a right—Hilger—continuous function f : R* — R".
In this chapter we explore the existence and uniqueness of solutions to the dy-

namic initial value problem

x? = f(t,x), for all t € [to, to + a)F; (3.1.2)

x(to) = Xo (3.1.3)

using the method of successive approximations.
In contrast to the question of “non—multiplicity of solutions” answered in Chapter

2, this chapter answers the following questions:

1. Under what conditions does the dynamic IVP (3.1.2), (3.1.3) have a unique

solution?
2. Under what conditions can we closely approximate that solution?
3. Can we always construct sequences that converge to a unique solution?
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3.1.2 Methodology and organisation

The methodology to answer the above questions involves the introduction and formu-
lation of the method of successive approximations (originally from ordinary differen-
tial equations) to the time scale setting forming an analogue of the Picard-Lindelof
theorem (6, Theorem 8.1], [30, pp. 200-205], [51, Theorem 8.13], [24, pp.314-325],
[69, pp. 48-50].

To apply the method of successive approximations, we will use the Lipschitz
condition (see Definition 2.2.1) along with the Weierstrass test [26, p.266], [72, p.600].
The Lipschitz condition has been an important tool to determine the existence of
solutions as unique limit of iterative procedures.

We note from Theorem 2.2.2 that the Lipschitz condition holds for functions
having continuous partial derivatives in a given domain. However, we observed
in Example 2.2.19 and Example 2.3.2 that the partial derivatives of non-increasing
functions were not defined at 0. The uniqueness of a solution, if it exists, is, however,
guaranteed by Theorem 2.3.1. Indeed, functions whose partial derivatives are not
defined at a certain point may have infinitely many solutions through that point.

This is further illustrated in the following example.

Example 3.1.1 Let a,b € T with b > a. Define
Ut :={(t,p) e T" xR : t € [a,b]}, |p| <oo}.
Consider the initial value problem

Y2 = 3y2/3 for all t € [a, b]F; (3.1.4)

y(0) = 0. (3.1.5)
Then we note that f(t,y) = 3y2/ 3 is right-Hilger—continuous everywhere in U" for

all t € [a,b]t. However, its partial derivative

of _ 2
oy  yf3

is not defined at y = 0. Thus we cannot apply Theorem 2.2.2 to identify a Lipschitz
constant for f(t,y) for all (t,y) € U".
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Now consider a right—dense point ¢t = k > 0 and define

0; —-o00o <t <k,
$*(t) =
(t — k)3, k<t<oo.

Then ¢*(t) satisfies y® = 3y2/3 for all t € (—o0, 00) for all k > 0. In addition, y =0

is a solution to the above problem.
O

The above example suggests that in the absence of continuous partial derivatives of
f, a dynamic IVP may have a solution.

In this chapter, we present existence results by constructing successive approxi-
mations that converge to a unique solution of (3.1.2), (3.1.3), using Lipschitz conti-
nuity as a sufficient condition for our proof. Then we develop an interesting example
to show that in the absence of the Lipschitz condition the successive iterations may
not converge to a unique limit, but a solution may exist. Moreover, we present an-
other result that ensures the existence of a solution to (3.1.2), (3.1.3) as a unique
limit of uniformly convergent sequences without using the Lipschitz condition.

This chapter is organised as follows. The next section, Section 3.2, explains the
main characteristics of the Picard-Lindel6f theorem on the time scale platform and
a few preliminaries for the main results.

In Section 3.3, we establish a Picard-Lindeldf theorem on T locally. That is,
we construct iterations that converge to a unique solution of (3.1.2), (3.1.3) within
a small rectangle. We reinforce our findings with interesting examples and prove
that Picard theorem provides a sufficient condition for the convergence of successive
approximations to a unique solution.

In Section 3.4, we extend our results so that the Picard iterations globally con-
verge to a unique solution of (3.1.2), (3.1.3) on an infinite strip.

In Section 3.5, we present a special case of local existence of solutions within an
n—sphere considering the initial value lying within another smaller n—sphere.

In Section 3.6, we develop Peano’s existence theorem in the time scale setting
using the method of successive approximations to ensure the existence of at least

one solution of (3.1.2), (3.1.3) that lies within a small rectangle.
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Finally, in Section 3.7, we extend our results to higher order dynamic equations.
Most of our results in Section 3.2, Section 3.3 and Section 3.4 have been published,

see [83, pp.66-79, 84].

3.2 Picard-Lindelof Theorem on T

In this section, we construct an analogue of the Picard-Lindel6f theorem [6, Theorem
8.1], [30, pp.200-205], [51, Theorem 8.13], [24, pp.314-325], [69, pp. 48-50] on the
platform of the time scale calculus.

Let a be a point in [t, to+a]t to be made explicit a little later such that tg < a <
a. We prove that (3.1.2), (3.1.3) has a unique solution in a closed neighbourhood of
to within a subinterval [to,to + a]r C [to,to + a]r as well as over the entire interval
[to, to + alT.

Define

R:={(t,p) e Tx R" : t € [to, o + al1, ||p — Xl < b}. (3.2.1)

Note that R is an extension of R", as it contains all points ¢ € [to, o + a]T.

We construct successive approximations of solutions to (3.1.2), (3.1.3) in a right
neighbourhood of the point (tp,%g) € R and show that these approximations con-
verge to a unique limit which is the solution to (3.1.2), (3.1.3) on [to, to + a]r-

Let ® be a solution of the IVP (3.1.2), (3.1.3). Then, by Definition 2.1.1, &
is delta differentiable on [to,to + a]f and the points (¢, ®(t)) are in R for all ¢ €
[to, to + a]r. Since f is right-Hilger—continuous on R", it follows from Lemma 2.1.3
that

¢
() = 2o + /to £(s,8(s)) As,  for all £ € [to, to + alr. (3.2.2)

We consider a sequence of functions ®¢, @1, @2, - - - such that ® is defined on [to, to+

alr for all k =1,2,---. Let ®o be a continuous function on [tg, o + a]r. Proceeding
in an inductive manner, we define the (k + 1)th iteration, for each k =0,1,2,---, as
follows:
t
Pp11(t) :=x0 + /to f(s, ®r(s)) As, for all t € [to,to + a]T. (3.2.3)
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The right-Hilger—continuity of f on R* implies that f is bounded on R*. Let M > 0

be a constant that bounds f on R*. Then we have

If(t, p)| <M,  for all (¢,p) € R". (3.2.4)
Furthermore, let
@ := min {a, i} . (3.2.5)
M
We establish successive approximations to solutions of (3.1.2), (3.1.3) on [to,to +
a]t C [to, to + a]r. The above choice of « is appropriate for this purpose in the sense

that o < a and for a solution @ of (3.1.2), (3.1.3) to lie within the region R for all
t € [to, to + o], we should have

t
[®(t) — 0| < / I£(s, @(s))|| As < M(t—to) <b,
to
which is satisfied if
a=t—ty<b/M, for all ¢ € [to, to + a]T. (3.2.6)

Now if the sequence {®x} converges uniformly to a continuous function ® on
[to, to+ a]T such that the point (¢, ®x(t)) € R for all t € [to, to+ a]T, then we may ex-
pect that as k — oo, ® would be our desired solution. In this way, ®;, &2, &3, , Pk, -

as defined in (3.2.3) would be successive approximations to (3.2.2).

Hence, we show the following:

(a) Each @ exists as a continuous function on [to, to + o] such that the graph of

(t, @k(t)) lies in R for all t € [to,to + a]'][';

(b) @ converges to ® uniformly on [t, to + o]t and there exists an error bound on
|®x — @|| on [to,to + a]r. That is, for each £ = 0,1,2,-- -, there is a positive

constant £ such that
”q)k(t) — @(t)” < e, forallte [t(), to + a]']r;

(c) ® is the unique solution to (3.1.2), (3.1.3) on [to, to + .

We address the above points in two steps: existence of ®, as continuous functions
on [to,to + a]r, which responds to (a); and the approximation of ®; to a unique

solution, ®, of (3.1.2), (3.1.3) with a small error, which covers (b) and (c).

48



3.2.1 Existence of successive approximations as continuous func-

tions

In this section, we present our first result which assures that each of the ®;.®,, - --

is well defined and continuous on the interval [to, o + a]r.

Lemma 3.2.1 Let f: R* — R" be right-Hilger—continuous. If ®q is continuous on

[to, to + a]T such that
”‘I)()(t) - Xo” < b, forallt e [to, to + a]—;, (3.2.7)

then the successive approzimations, @y, defined in (3.2.3) erist as continuous func-

tions on [to, to + a1 such that the points (t, ®x(t) € R, for allt € [to.to + a]T.

Proof: Since f is right-Hilger—continuous on R", we note from (3.2.3) that each &
is well defined on [to,to + a]7. We show that each ®; is continuous on [tg, to + a]t

and satisfies
|®x(t) — x| < b, for all t € [to,to + alT, (3.2.8)

so that the graph of (¢, ®x(t)) lies in R for all ¢ € [to, to + .

We begin with the initial approximation ®¢. By assumption, ®¢ exists as a
continuous function on [¢g, to+a|r and satisfies (3.2.7). Thus, the point (t, ®o(t)) € R
for all t € [to, to + &]T.

It follows from (3.2.3) that the next iteration will be

t
®,(t) :=xo +/ f(s, @o(s)) As, for all t € [to, to + o]~. (3.2.9)

to

Let us define the function
Fo(t) := f(t, o(t)), for all t € [to.to + Q.

Since f is right-Hilger—continuous on R*, we have F( rd—continuous on [to. to + a]%
and, hence, on [tg, tp + a]%. Thus, we can write
t
®,(t) =x0 + / Fo(s) As, for all t € [to, to + a]~.

to

Hence ®, is continuous on [to, to + af~.
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We also note that using (3.2.4), we can re-write (3.2.9), for all ¢ € [to, to + o],

1®1(t) — xo|) < / 1£(s, @o(s))]| As
< M(t—-t)

< b,

where we used (3.2.6) in the second last step. Hence (3.2.8) is satisfied for ®; and
the point (¢, ®1(t)) € R for all t € [to,to + .

We assume that the assertion is true for ®5, @3, -- - , ®, and, by induction, show
that it holds for ®x;.

Since ®;, are continuous on [to,tp + a]r and the points (¢, ®x(t)) € R for all

t € [to, to + a]T, the function
Fi(t) = £(2, Bx(2))

exists and is rd—continuous for all ¢ € [to, to + a]f. Thus, the function @, defined

by
t

Ory1(t) == %0 -I-/ Fi(s) As

to

exists as a continuous function for all t € [to, to + a]r. Thus, for all ¢t € [to, to + o],

we have

|®xs1() - xo]| < / 1£(s, Bx(s))]] As
< M(t — to)

< b

Hence &, also satisfies (3.2.8) such that the point (¢, ®r41(t)) € R for all t €
[to, to + Ot]']r.
Thus, by induction, each ®j exists as a continuous function on [to,to + |t and

the points (¢, ®x(t)) € R for all [to, to + aT.
0O

In the next section, we show that the successive approximations ®; converge on
[to, to + T to a unique solution & defined in (3.2.2) and an error bound exists for

each ®; on [to, to + aT.
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3.3 Local existence of solutions

We now present sufficient conditions for the existence of a unique solution, ®, to the
system (3.1.2), (3.1.3) on the interval [to,to + o1 C [to, to + a|t. For this reason,
this theorem is termed as the local ezistence theorem. To prove this result, we need
the following lemma due to Lin and Xiang [59, Theorem 3.2] and the Weierstrass

test [26, p.266], [72, p.600).

Lemma 3.3.1 Let h : R — R be a continuous and non-decreasing function. If

t1,t2 € T with t; < ty then

/ " hit) At < / * bt de. (3.3.1)

1 t1

O

The Weierstrass test is a theorem which gives a sufficient condition for the uni-
form convergence of a series of functions by comparing it with an appropriate series

of non—negative constants.

Theorem 3.3.2 Weierstrass test
Suppose {g;} is a sequence of real-valued functions defined on a set A, and that there

erists a sequence of non—negative constants K; such that
lgi(z)] < K; foralli>1 and all z € A.

Suppose further that the series ) 2, K; converges. Then, the series Y oo, gi(x)

converges uniformly on A.

d

The following theorem gives sufficient conditions for the existence of a unique

solution to (3.1.2), (3.1.3).

Theorem 3.3.3 The local existence theorem

Consider the rectangle R* and letf : R* — R be a right—Hilger—continuous function.
If:
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(a) ®¢ is continuous on [to,to + a]r such that

|®o(t) — %0l < b, for all t € [to,to + aT;

(b) there exists L > 0 such that f satisfies
I£(t,p) —f(t, Q)| <L |lp—dll,  forall(t,p) (t,a) € R*, (3.3.2)

then the sequence {®r} generated by (3.2.3) converges uniformly on the compact

interval

b
[to, to + o]t = [to, to + min {a, —J\_/I_}] .
to the unique solution ® of the IVP (3.1.2), (3.1.3). Furthermore, the following error

estimate holds for allk =0,1,-- -,
|®x(t) — B(t)|| < N el%%;, for all t € [to,to + 2T, (3.3.3)
where MaXe |ty tg+aly || P1(2) — Po(t)| = N.
Proof: Let t € [tg, to + o|r. We write ® as
Oi(t) = o(t) + (P1(t) — Po(t)) + (D2(t) — 1(t)) + -+ - + (Bi(t) — Pe-1(2))

k
< Bo(t) + Y 1®i(t) — Dia(t)]
i=1

< Bo(t) + ) [1®i(t) — Dia (D). (3.3.4)
i=1

That is, ®x(t) is a partial sum of the series Y 2, [[®i(t) — ®i—1(t)| for all t €
[to, to+a]r. Hence, if we show that the right hand side of (3.3.4) converges absolutely
and uniformly in the interval [tg,tp + o1 to some function ®, then & will be the
uniform limit of {®x(t)} for all t € [to, to + o], for all k =1,2,---. We estimate the
terms || ®;(t) — ®;—1(¢)| in (3.3.4) for all t € [to, to + .

We split the proof into parts to explain various elements explicitly.
(a) Uniform convergence of ® on [to,to + a]T:

We know from our assumption on 9 and Lemma 3.2.1 that each ®; exist as
continuous functions such that the points (¢, ®x(t)) € R for all t € [to,to + |-
Thus, ® are bounded on [to,to + o for all k =0,1,2,---. Let N > 0 such that

max  [|®1(t) — Po(t)|| = N. (3.3.5)
t€[to, to+or
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Using (3.2.3), (3.3.2) and (3.3.5), we can write for all ¢t € [to, to + a]T,

122(8) = 21l < [ [I£(s, @1(s)) — £(s, Ro(s))]| As

t
<L [ 110 - 20(s)] As
t

<LN As
to

= L N(t—t).

We will prove by induction on ¢ that for all ¢ = 1,2, - -, the inequality

[L(t — to)]*”

12:(6) = @1 (6)] < N —,

for all t € [to, %0 + o]T (3.3.6)

holds.

We have shown that (3.3.6) is true for ¢ = 1,2. We assume that it also holds for
some ¢ = m > 1 and show that it holds for ¢ = m + 1 by induction. It follows from

(3.2.3), (3.3.2) and our assumption that, for all ¢ € [to, to + a]T,

1®mss(t) — Bm()] < / 1£(5, Brm(s)) — £(5, By ()] As

t
S L [[®m(s) = Pm-ar(s)] As

to

(D = !
N (m —01)!

t o IL(s —to)]™ !
sL to N (m —01)!
= (r]r\j - T)! /to (5= to)™" ds

NL™ (t—ty)™
(m —1)! m

_ NIL(E - to)]™
m!

<L As

to

ds

Y

where we have used (3.3.6) and Lemma 3.3.1 in the third and fourth steps respec-

tively. Thus the inequality (3.3.6) holds for all 7 > 1.
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Next, we show that the series Y o0, ||®;(t) — ®;—1(t)|| converges uniformly for all

[to, to + a]r. We note from (3.3.6) that for all ¢ € [tg, to + o]1, we have
L(t — to)]"!
S 19:(6) ~ Bia(Bl < N >
i=1
c- [L(t —to)]"
1=0
=Ny [L,O"] , (3.3.7)
i!
i=0

which converges to N eX®. Hence, by the Weierstrass test, > oo ||(®i(t) — ®i—1(t))|l
converges uniformly for all ¢ € [to,to + a]r. Consequently, each ®j converges uni-

formly on [to,to + a]r. Thus, there exists a function, ®, on [to, to + ]t such that
klim Oi(t) = ©(2), for all t € [to, to + - (3.3.8)
—00

(b) The error estimate for || & — P||:
We note from (3.3.4) that

k
Op(t) = Do(t) + Y _(Bi(t) — ®i1(t)),  for all ¢ € [to, o + alr.
Therefore, as kK — oo, we have
O(t) = Do(t) + i@’(t) —®,_41(t)), for all ¢ € [to,to + ar. (3.3.9)
Thus, for all t € [to, to + a]T, we have

12x(®) — @Ol < D 1(u(t) — Di-a(®))l

1=k+1

i N[Lao]t

i!

IA

i=k+1
o .
Lalitk
- N Z [ : a] .
P (t+k)!
Using the identity ¢!k! < (i + k)!, the above inequality reduces to

La]z+k

|2x() — @) < N Z o
La Lot
_ yl k!] ;[ﬂ]

Laolk S [Lalt
N[k! Z[ .']

2!

1=

= Nel%,
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where

€k 1= , foral k=1,2,---. (3.3.10)

As the right hand side of (3.3.10) is convergent, so is the left hand side. Hence, for

all k=1,2,---, we have
|k (t) — @(t)|| < Nele,,  for all t € [to, to + alr. (3.3.11)
Thus, @i satisfy (3.3.3), which gives an error bound on ||®(t) — ®(t)|| for all

t € [to, to + ar.

(c) The limit function ® is a solution:

To show that @ is a solution to the IVP (3.1.2), (3.1.3), we show that:
(i) @ is continuous on [ty, tg + ]r;
(ii) the point (¢, ®(t)) € R for all t € [to, to + a]r;

(iii) @ satisfies (3.2.2) on [to,to + a]r. That is

¢
®(t) =x¢ +/ f(s, ®(s)) As, for all t € [to,to + o]r.  (3.3.12)
to

For (i), we note that for ¢1,t3 € [to, to + ¢]t, we have from (3.2.3)

ta
1Bk (t2) — Bepa(t2)]| = / (s, Bi(s)) As
1
< M|t2 - t1|.

Thus, letting £ — oo, we obtain from (3.3.8),
||q)(t2) — @(tl)” < Mltz - tll, for all t1,to € [to, to + Oz]']r.

Replacing tp with t in the above inequality, where ¢ € (¢1 — 9, t1 + )1 for some § > 0,

we note that for each € > 0 and ¢ := §(¢) = %, we have

|®(t) — ®(t1)| <€  whenever te€ (t; —4,t1 + )T

Hence, ® is continuous on [t, to + aT.
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For (ii), we show that the graph of (¢, ®(t)) lies in R for all ¢ € [to, to + a]r. For
this we let k — oo in (3.2.8). This yields

1®(t) — xo|| < M|t —to| < b, for all t € [to,to + a]T.

Hence the point (¢, ®(t)) € R for all t € [to, 2o + a]r.

For (iii), we show that ®(t) satisfies (3.3.12) for all ¢ € [to, to + o]r. For this we
show that our approximations (3.2.3) converge uniformly to (3.3.12) within [to, to +
o). We have seen in (3.3.8) that the left hand side of (3.2.3) converges to the left
hand side of (3.3.12) in [to, to+ 1. Therefore, we only need to prove the convergence
for the right hand sides of these equations. Thus, we show that as k — oo,

¢ t
f(s,®r(s)) As— [ f(s,®(s)) As, for all t € [to,to + ofr. (3.3.13)
to to

We note that for all ¢t € [to,to + 1, we have

< I£(s, Bk (s)) — £(s, ®(s))|| As

t
< L[ |®k(s) = 2(s)l| As
to

/t:f(S, Pr(s)) As —/t: f(s,®(s)) As

t
L [ Nel@g, As
to

< LNeM%e(t —to),

IA

where we have used (3.3.11) in the second last step. We further note from (3.3.10)

that € — 0 as k — oo. Therefore, as k — 00, we obtain

t t
f(s, ®r(s)) As — / f(s,®(s)) As|— 0, for all t € [to,to + a]r-
¢

to 0

Hence

t ¢
f(s, Pr(s)) As — | f(s,®(s)) As, for all ¢ € [to,t0 + o|T-

to to

(d) @ is unique
We assume that ¥(t) is another solution of (3.1.2), (3.1.3) such that the point
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(t,¥(t)) € R for all t € [to,to + ]r- Then from (3.3.12), we obtain for all t €
[to, to + alr,

@) =@ < /t 1£(s, @(s)) — f(s, ¥ (s))]| As

t
<L [2(s) - ¥(s)|| As,
to
where we have used (3.3.2) in the last step. Applying Corollary 2.2.5 of Gronwall’s
inequality taking z(t) := ||®(t) — ¥(¢)|| and L(¢t) := L with g(¢t) = 0 for all ¢t €

[to, to + @]T, we obtain
|®(t) — ¥(¢)|| =0, for all ¢ € [to, to + a]T.
Thus ®(t) = ¥(t) for all t € [to, to + a]r. This completes the proof.

g

Remark 3.3.4 In Theorem 3.3.3 we note that the simplest choice of the initial
approzimation o would be a constant function. Given the initial condition x(ty) =
X0, where xg € R™ is fixed, one can choose ®y = xo as a special case of the initial
approzimation. The corresponding result will be a special case of Theorem 3.3.3.

The result can be viewed in [83, pp.67-72].

O

Corollary 3.3.5 Theorem 3.3.3 also holds if £ has continuous partial derivatives
of

p

with respect to the second argument on R" and there exists K > 0 such that <

K. In that case, by Theorem 2.2.2, f satisfies (4.4.1) for L := K.

We now present a few examples to illustrate Theorem 3.3.3.

The following example considers the initial approximation ®¢(t) to be a quadratic
function of t. The successive iterations, converging to a unique solution, are then
generated from (3.2.3). A small error is also estimated between the 5th iteration

and the solution.
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Example 3.3.6 Consider the rectangle
R:={(t,p) e TxR:te[0,1]r,|p| <1} (3.3.14)
We consider the scalar initial value problem

z® = f(t,z) = t = + cosz, for allt € [0, a]F; (3.3.15)

z(0) = 0. (3.3.16)

Assume the initial approzimation to be ¢o(t) = t2 for all t € [0, 1]r. We claim that,
for some o € T such that 0 < a < 1, the sequence {¢r} generated by the Picard
iterative scheme (3.2.3) converges on an interval [0, o, to the unique solution, @,

of (3.3.15), (3.3.16) such that the point (t,¢(t)) € R for all t € [0, a]T.

Proof: We show that the given IVP satisfies all conditions of Theorem 3.3.3. Con-
sider

R* :={(t,p) e T" xR :t € [0,1]F, |p| < 1}.
We show the following:

(a) f is right-Hilger—continuous on R": Since ¢ is rd—continuous on [0, 1|, the
composition function g(t) := ¢ z(t)+ cos z(t) is rd—continuous for all ¢ € [0, 1}5.

Hence our f is right—Hilger—continuous on R*.

(b) f is bounded on R": Note that for all (¢,p) € R",

|f(t,p)| = |t p+cosp |

<|tp|+]|cosp|

IA

[tllp|+1
2.

IA

Thus, f is bounded by M := 2.
(c) f is Lipschitz continuous on R": We also note that for all (t,p) € R* we have
0
’ 8_;; = |t—sinp |

< |t|+|sinp |

< 2.
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Hence, by Corollary 3.3.5, our f is Lipschitz continuous with Lipschitz constant
L := 2, which satisfies condition (b) of Theorem 3.3.3. We also note that, with
M = 2 and for [0, o]t C [0, 1]t, we obtain from (3.2.5)

1 1
= i 1 — = —, LI,
« mln{ ,2} 2 (3.3.17)

Thus, the maximum interval of convergence for {¢x} is [0,1/2]r.

(d) ¢x is convergent on [0,1/2]r: We note that ¢o(t) = t? is continuous, and so is
rd—continuous for all ¢ € [0,1]r and hence for all ¢t € [0,1/2]r. Thus, for all

t € [0,1/2]t we have, by assumption

[60(t) — zo| = |¢o(t)] = [t*] < 1/4 < 1,
which satisfies condition (a) of Theorem 3.3.3.

Hence, applying Theorem 3.3.3, the successive approximations ¢x(t) given by

brra(t) = o+ /0 £(5, dx(s)) As
- /o (5 dx(s) + cos(@x(s))) As

converge uniformly to a unique solution ¢(t) for all ¢ in the optimal interval of
convergence [0,1/2]r.

It is easy to note that for all ¢ € [0,1/2], we have

41(6) = [ (s60(5) + cos(en(s)) s
= /t(s?’ + cos(s?))As
0
< /t(s?’ + cos(s?))ds
0

where we have used Lemma 3.3.1 in the last step. We note that for all t € [0,1/2]r,

the above inequality further reduces to

o1(t) < /Ot(s3 + 1)ds
!

= —+t
4+
33

< —.
~ 64
59



Thus, for all t € [0,1/2|T, we have

|$1(t) — do(t)] <

Hence, N = 49/64 and so, as k — oo, the error estimate between the kth approxi-

mation and the solution will be

6e(t) — 6(1)] < Dele ¢ forall t € [0,1/2r,

~ 64
where
. [Lalk
€ =y
Since a = 1, @« = 1/2 and L = 2, we note that for k = 5, we obtain
1
€5 = a = .008.

Hence, the error estimate between the fifth approximation and the solution will be
49
|p5(t) — P(t)] < ae(.OOS) = .02, for all t € [0,1/2]T.
g

Our next example takes the initial approximation ¢g to be linear, with successive
iterations developed from (3.2.3). The example shows convergence of these iterations
to a unique solution with very small error estimate between the 10th iteration and

the solution.
Example 3.3.7 Let the rectangle R be defined by

R:={(t,p) e TxR:te 0,1y, |p—1] <1} (3.3.18)
Consider the initial value problem using the Riccati equation

® = t+ 2?2, for all t € [0,1]; (3.3.19)

z(0) = 1. (3.3.20)
Choosing the first approzimation to be
do(t):=t+1  forallte[0,1], (3.3.21)
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we claim that the sequence of functions ¢, generated by (3.2.3) converges on the
interval [0,1/5]r to the unique solution ¢ of the IVP (3.3.19), (3.3.20) such that the
point (t,¢(t)) € R for all t € [0,1/5]r.

Proof: We prove that the given IVP satisfies the conditions of Theorem (3.2.3). We
note from (3.3.18) that

R¥:={(t,p) eT"xR:t€0,1)5|p—1] < 1}.
We prove the following;:

(i) f is right-Hilger—continuous on R*: We note that the composition function
k(t) := t+ (p(t))? is rd—continuous for all ¢ € [0,1]y. Thus our f is right—

Hilger—continuous on R*;

(ii) f is bounded on R": We note that p < 2. Therefore, for all t € [0, 1]%, we have
fE&PI=lt+p" [<It+p° [<1+4=5.

Thus, f is bounded by M =5 for all t € [0, 1]r. Thus, for an interval [0, o] C
1

b
< — = —-
[0, 1], we have a < i
(iii) f is Lipschitz—continuous on R"*: Note that for p < 2, we have

‘ 8fgap) ‘: 12p | < 4, for all t € [0, 1]F.
D

Thus, by Corollary 3.3.5, f is Lipschitz continuous with Lipschitz constant
L =4,

(iv) ¢ is convergent on [0,1/5]r: We note that ¢o(t) =t + 1 is continuous for all
t € [0,1/5)t and

|po(t) —zo|=t+1-1|=|t| <1/5<1, for all ¢t € [0,1/5]r.
Thus, by Theorem 3.3.3, the successive approximations given by
Br+1(t) == zo + /Otf(s, or(s)) As
=1+ /Ot(s + #%(s)) As (3.3.22)
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converge uniformly to a unique solution, and have the optimal interval of con-
vergence as [0,1/5]r. Thus, for all ¢t € [0,1/5]r, the next approximation will
be

bi(t) =1+ /O (s + 63(s)) As

t
= 1+/(32+3s+1) As,
0

3

3., t
<l+t+-24—,
S1+t+5t7+

where we have used Lemma 3.3.1 in the second last step. Thus, for all t €
[Oa 1/5]T’
3, t
[@1(8) = do(®)] = |1+t + 5t + 5 -1t
t3

32
< |2
<[3#)+ |3
< -08.

+

Thus, N = -08 for o = 1/5. Hence, with L = 4 and choosing k = 10, we obtain

10
= % =3x107%.

Therefore, for all ¢t € [0,1/5]t, the error estimate between the 10th approxi-

€10

mation and the solution will be

|¢10(t) —o(t)| < NeLo‘elo <6 X 1079,

O

In the next section, we further discuss the convergence of successive approxi-
mations to unique solutions in the light of an example that has been discussed by
researchers for the ODE case (see [63, pp. 628-632], [69, pp 51-52]). Of interest
is the relationship between the convergence of Picard iterations and uniqueness of

solutions. We discuss the case in the time scale setting.

3.3.1 Convergence of successive approximations and uniqueness of

solution

In this section, we consider a time scale transformation of [69, pp. 51-52]. We
search answers to the following questions regarding our local existence results in the

previous section:
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e Is the right-Hilger—continuity of f sufficient to ensure that the sequence (or

subsequences) of successive approximations actually converge to a solution?

e If the successive approximations do not converge, can we still have a solution

of a dynamic

IVP?

e Can we always construct sequences (or subsequences) by successive approxi-

mation that converge to a unique solution of a dynamic IVP?

The answers to the first and the third question are ‘no’ and for the second question

is ‘yes’. To see how, we look at the following example.

Example 3.3.8 Consider a continuously delta differentiable function

[0,00) such that

6(0) = 0;
6(t) > 0, for allt € (0,1]T;

and  0°(t) >0,  forallte (0,1)%

Let f: (0,1]F — R be defined by

f(tap) =

¢

0, forallt =0, —oco0 < p < o0
02 (t), for allt € (0,1]%, p < 0;
A 62 (t) .
6-(t) — Wp, for all t € (0,1]%, 0 < p < 0(¢);
L 0, for all t € (0,1]%, p > 6(2).

Consider the scalar dynamic IVP

2 = f(t,z), for all t € (0,1]%;

z(0) = 0.

We claim that the successive approzimations defined by

do not converge to

$o(t) = 0;
brra(t) = /0 £(5, d(s)) As

a unique limit for 0 <t < 1.
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t
Proof: We note that if z(t) := -0(7)—, then from (3.3.23), we have z(0) = 0. Further-

more, we note from (3.3.26) that

ft,z)=f (t, 9(2t)> = 9A2(t) =z(t), forallte (0,1]%.
Thus, z(t) := @ is a solution to (3.3.27), (3.3.28).

Next we note that 6 is delta differentiable and for any continuous function p, it
follows from (3.3.26) that our f is right-Hilger—continuous on (0, 1] x R. We show
that the sequence (or subsequences) of successive approximations do not converge
to the above solution. Note that, from (3.3.29), that for all ¢t € (0,1]r, the first

iteration will be of the form,
t
h1(®) = [ £600(5)) s
t
= [ 1(0) s
0

= tGA(t) As
0
= 0(¢).

The second iteration will, therefore, be, for all ¢t € (0, 1]
t
6a(6) = [ 1. 61(5) As
t
= [ 5,00 as
0

= tAs—eA(S) s) As
_/09() G 00e) A

= 0.
Hence, ¢3(t) = ¢1(t) = 6(t), for all t € (0, 1]r. In this way, we will have
dok(t) =0 and  ¢opt1(t) =0(2), for all t € (0, 1]r. (3.3.31)

Thus, ¢ does not converge to a unique limit in (0, 1] in general. We further note
from (3.3.31) that f(t,0) # 0 and f(¢,0(t)) # 6°(t) for all t € (0,1]r. Hence, we

conclude that
e the two subsequences converge, but not to the same limit;

e neither of the limits of the subsequences are solutions to our problem.
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The above example also shows that

e the right-Hilger—continuity of f alone is not sufficient to ensure that the se-
quence (or subsequences) of the successive approximations actually converge

to a solution.

e the Picard-Lindel6f theorem provides only a sufficient condition for the suc-

cessive approximations to converge to a unique solution.

3.4 Global existence of solutions

The result presented in Theorem 3.3.3 restricts the domain of solution for points that
lie within a small interval containing to in [to, to + a]r. For this reason, we call it the
local existence theorem. If a function ®(t) solves the initial value problem (3.1.2),
(3.1.3) for all t € [to,to + a]T, then we say that the solution exists non-locally. In
this section, we present a result that guarantees convergence of iterations (3.2.3) to
a non-local solution of the system (3.1.2), (3.1.3) and we call it the global ezistence
theorem.

In our next result, the global existence theorem, we show that if f satisfies a

Lipschitz condition on the infinite strip
S*:={(t,p) € T" x R™ : t € [to, to + a]}, ||p| < oo},
then the solution exists in the entire interval [to, to + ar.

Theorem 3.4.1 (The global existence theorem)
Let f be a right-Hilger-continuous function on S*. If:

(a) there exists L > 0 such that £ satisfies

Ift, p) —f(t,aq) | < Lllp—al,  forall(t,p),(tq) € R (34.1)

(b) @ is continuous on [to,to + a]T,

then the sequence {®r(t)} generated by the Picard iterative scheme (3.2.3) exists in
the entire interval [to,to + a]r and converges to the unique solution ® of the IVP

(3.1.2), (3.1.3), on [to, to + a]r, with the error estimate
|®x(t) — ®(t)|| < Nel%e,  for allt € [to, to + alr, (3.4.2)
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where N = maXye(ty to+ajy [|P1(t) — o(t)]-

Proof: We refer to the proof of Theorem 3.3.3 and follow similar steps.

1. Uniform convergence of ®y, on [to, to + alT:
We consider the successive approximations defined in (3.2.3) for all ¢ € [to, to+
alr. By assumption ®¢(t) exists as a continuous function for all ¢ € [to, to+a]T
and is, therefore, bounded for all ¢t € [to,to + a]r. Since f is right-Hilger-
continuous on S*, f(t,®o(t)) is bounded for all ¢ € [to,to + a]f. Thus, there
exists M7 > 0 such that

|£(t, @o(2))|| < M, for all ¢ € [to, to + alF. (3.4.3)

Thus, using (3.2.3), we obtain, for all ¢ € [to, to + a]T,

1:1(t) — %ol < / 1£(s, B (s))]] As
< Mi(t —to)

= Mla. (3.4.4)

Consider the successive approximations defined in (3.2.3). Then, by induction,
as proved in Lemma 3.2.1, each ®; exists as a continuous function on [to, to +
ajr. Also, for k = 2,3, -, an expression for ®;(t) can be written as in (3.3.4).

Thus, for all [to, o + a]§, we can write
o0
i(t) < Do(t) + ) 19:(t) = Bia ()] (3-4.5)
i=1
Using (3.4.4), we have, for all [to, to + a}7,
o0
1@k (t) — %ol < 1®o(t) = xoll + Y ®:(t) — Dia (D). (3.4.6)
=1
Since ®; and ®; are continuous on [tg, to + a]T, the assumption
|®1(t) — ‘I’o(t)” < N, for all t € [to,to + a]']r (3.4.7)

is well-defined. Hence, we can write (3.4.6) as

1B4() — xoll < [[@o(t) = B1(B)]l + [181(2) — x0ll + D 12i(t) — @i-1 (D)
i=1

< N+ M(t —to) + Z |®:(t) — ®i—1(2)]- (3.4.8)

i=1
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By induction, as obtained in the proof of Theorem 3.3.3, the error inequality

(3.3.6) also holds for all ¢ € [to, to + a]T and so, for all 7 > 1, we have

[L(t = to)]*~!
(e —1)!

Thus, the series Y ;o [|®;(t) — ®i—1(t) converges to Ner®. In this way, the

|Di(t) — ®i—1(t)|| < N for all ¢t € [to,to + a]r. (3.4.9)

right hand side of (3.4.5) is convergent. Therefore, by Weierstrass test, the left

hand side is also convergent. Hence, there exists a function ® such that

Or(t) — B(2), for all ¢t € [to, to + a]T. (3.4.10)

Moreover, using (3.4.9), we can re-write (3.4.8), for all ¢ € [to,to + a]T, as,

1®k(t) —%oll < N+ Mia+ N> _ [ ®i(t) — ®i1(t)]
=1
(La)*1
=1
(La)*
0!

o0
< N+M1a+NZ
=1

o0
=N+ Ma+N Z
i=0
< N + Mja+ Ne*®

= Mja+ N(ef® +1).

Define b := Mja + N(e*® +1). Then, we obtain
| ®x(t) — x0]| < b, for all ¢ € [to, to + a]T. (3.4.11)

Thus, the points (t, ®(t)) € R for all t € [to, to + a]T-

. The error estimate on || Py — P||:
The error estimate for ||®x(t) — ®(¢)| is given by the inequality (3.4.9) using
[La]*

(3.2.3) for all ¢ € [to, to + a]r. It follows that, for € := N where k > 1, we

have, for all t € [to, to + a]T, we have
1©x(2) — @(1)]| < Nete,
which gives an error bound on ||®x(t) — ®(t)|| for all ¢t € [to, to + alT.

. The limit function ® is the unique solution:
We show that: ® is continuous on [to, to + a]1; the graph of (¢, ®(t)) lies within
R for all t € [to, to + a]T; P satisfies (3.2.2); and @ is unique.

67



The continuity of ® is the same as proved in part(c(i)) of the proof for Theorem
3.3.3, with o replaced with a. It follows from (3.4.10) and (3.4.11) that as

k — oo, we have
|®(t) — %ol < b, for all t € [to, to + aT.

Thus, the point (¢, ®(t)) € R for all t € [to, to + alT.

We also note from (3.4.10) that the left hand side of (3.2.3) converges to the
left hand side of (3.2.2). The proof for the right hand sides is the same as
shown in the proof (c(iii)) of Theorem 3.3.3, replacing o by a. Hence for all

t € [to,to + a]T, we have

/t f(s,Pr(s)) As — tf(s, O(s)) As, for all t € [to,to + alr.
¢

0 to

The uniqueness of solution also follows in the same way as proved in (d) of

Theorem 3.3.3.

This completes the proof and a unique solution exists for IVP (3.1.2), (3.1.3) in the

entire interval [to, to + a|T.
O

The above theorem is a generalisation of the global existence theorem [83, The-
orem 4.13] in which ®¢(t) was a scalar and was taken to be the initial value xq.
Thus, the bound b on ||®x(t) —xo|| in the above theorem includes an additional term

N + Ma.

Corollary 3.4.2 Theorem 3.4.1 also holds if £ has continuous partial derivatives
with respect to the second argument on S* and there exists K > 0 such that

K. In that case, by Theorem 2.2.2, f satisfies (4.4.1) for L := K.

<
Op|| —

g

The following example is an extension of Example 3.3.7, illustrating the existence

of solution to the IVPs (3.3.19), (3.3.20) in the entire interval [0, 1].
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Example 3.4.3 We re—consider Example 3.3.7 and the Riccati initial value problem

(3.3.19), (3.3.20). Define the infinite strip
S:={(t,p) e TxR:t€[0,1]r,|p| < oo}, (3.4.12)

We have the first approzimation to be a continuous function ¢o(t) :==t + 1 for all
t € [0,1)]r. We claim that the sequence of functions ¢, generated by the Picard
iterative scheme (3.2.3) converges to the unique solution ¢ of (3.3.19), (3.3.20) such
that the point (t,¢(t)) € R for all t € [0, 1], where

R={(t,p) eTxR:te (0,17 |p—1] <9} (3.4.13)

Proof: We show that (3.3.19), (3.3.20) satisfies all conditions of Theorem 3.4.1.

Note that in this case
St = {(t,p) e T* xR : t € [0,1]%, |p| < oc}.
We show the following:

(2) f is right—Hilger—continuous on S*: We proved the right-Hilger—continuity of
f in R in Example 3.3.7. By the same arguments f is right-Hilger—continuous

on S%;

(#1) f is Lipschitz continuous on S*: Note that, for all t € [0, 1]t, we have

|£(t, ¢o(t))] = |t + &5(2)]
= |t+ (t+ 1)
< |t} +3Jt +1

< 5.

ThuS, M1 = 5.

We also note from Example 3.3.7 that

3

t
01(t) <1+t+ gtz + ‘g, forallt € [0, 1]'}{'.

Therefore, for all ¢t € [0, 1]T, we have

t3

3

3

1(6) — 2u(0)] < |37

11

< —.
+ - 6
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Thus, N = 11/6.

Using (3.4.11) and the values of a, M, N, we note that the minimum integral
value of b for which L > 0is b = 9. Thus, choosing b = 9, we obtain a Lipschitz
constant L = .16 for f.

(131) @y are convergent on [0, 1]7: By Theorem 3.4.1, the successive approximations

given by
t
besa(t) = o + / F(s, u(s)) As
0

- 1+/0 (s + 82(s)) As,

converge to a unique solution ¢ for all ¢ € [0, 1]t such that the point (¢, #(t)) €
R. Hence, with M; = 5,L = .16 and N = 11/6, if we choose k = 5, we obtain

[.16]°
5!

€5 = =1x 1075,

Therefore, the error estimate between the 5-th approximation and the solution

will be

11
|p5(t) — B(t)| < Fe-lﬁ(l x 107%) =3 x 1077,  forall t € [0, 1]r.
0

In the next section, we present a time scale transformation of a theorem of Keller
[50, Chapter 1] from ordinary differential equations, applying ideas from Theorem

3.4.1.

3.5 Keller’s existence theorem on T

In this section, we present another existence result employing the method of succes-
sive approximations using ideas from [50, Chapter 1]. We consider a dynamic initial
value problem with the initial value in an n—sphere of radius r for some » > 0. We
also consider a right—Hilger—continuous function f defined on a larger sphere.

Let r,M > 0 and t a point in an arbitrary compact interval [to,to +a]r C T. Let
Ao € R" and define

Ny(Ao) = {p:[lp — Aol <7} (3.5.1)
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and
P, a(Ao) := {(t,p) : t € [to,t0 + a]T and ||p — Ao|| <7+ M(t —t0)}.(3.5.2)
Consider the vector dynamic IVP

x? = f(t,x), for all t € [to, to + alF; (3.5.3)

x(to) = xp. (3.5.4)

Then the following theorem guarantees a unique solution to the IVP (3.5.3),

(3.5.4) in P,-’M (Ao)

Theorem 3.5.1 Let Ag € R™ and x9 € N,(Ap). Consider positive constants
r,M,N such that (3.5.1) and (3.5.2) hold. Let f : P,p(Ag) — R" be a right-

Hilger—continuous function. If:

(7) f satisfies
£, p)I <M, for all (t,p) € Pra(Ao); (3.5.5)

(72) there exists a constant L > 0 such that

I£(t,p) —£(t, @)l S L [[p—qll, for all (¢,p), (¢ q) € Pr,m(Ao); (3.5.6)

(#41) the initial approrimation ®¢ is continuous on [to,to + a|T such that

|Do(t) — Aol < T + M(t — to), for all t € [to, to + alT, (3.5.7)

then the successive approzimations defined by

¢
D 1(t;%0) 1= X0 +/ f(s, Pr(s;x0)) As, forallt€ [to,to+a]r (3.5.8)
to

converge uniformly on [to, to + a]T to the unique solution, x := x(t,Xo), of the dy-

namic IVP (3.5.3), (3.5.4) such that the point (t,x(t,%0)) € Prap(Ao), with the

error estimate
@k (t;x0) — ®o(t;x0)|| < Qelley, for all t € [to,to + a]lT, (3.5.9)

where Q ‘= MaXie(tg,to+alr 'I(pl(t, X()) - QO(t7 XO)”
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Proof: As before, we divide the proof into smaller sections for the purpose of clarity.

We show the following:
(a) {®x} is uniformly convergent on [to, to + alr:
We first show that @4 are uniformly continuous on [t, ¢ty + alt for all k > 0
such that the points (t, ®x(t;x0)) € Py a(Ao) for all t € [to, to + a]r. Next we
show that the sequence {®x} converges to the unique solution ® in P, ps(Ao).
Note that f is right—Hilger—continuous on P, r(Ao) and, by assumption, ®¢
is continuous on [to, to + a]r such that (3.5.7) holds. It follows by Lemma 3.2.1

that @, are continuous on [to, ¢y + a|r for all k£ > 0.

Next, we show that each ®j satisfies
l|¢)k(t;X0) —Ag|| <r+ M(t - to), for all t € [t(),to + a]']r, (3.5.10)

so that the points (¢, @x(t;x0)) € Py am(Ay) for all t € [to, to + a]r. We prove
this by induction on k. We note from (3.5.7) that (3.5.10) holds for k£ = 0.
Next we assume that (3.5.10) holds for some k =i > 0, so that

|®:(t;%0) — Ao <7+ M(t — to), for all t € [to, to + a]r.
Using (3.5.1), (3.5.5) and (3.5.8), we obtain, for all t € [to, to + a]T,

t
1®541(t x0) — Aol < x0 — Aol| + / 1£(s, Bi(s5%0)) | As
to

< r+ M(t - to).

Hence (3.5.10) is true for ¢ = k + 1, and so, holds in general. Thus, the points
(t, Pr(t;x0)) € PT,M(A()) for all t € [to,t0 + alt.

Finally, it will be sufficient to show that, for all ¢ € [to, to + a]r, the estimate

[L(t — to)]*!
]

holds. We prove the above inequality by induction on k, Note that, from (4i3),

|®x(t;%0) — Pr-1(t;%0)]| < Q (3.5.11)

(3.5.11) holds for k = 1 for all ¢ € [to, to + a]r. For k = 2, we note from (3.5.8)
that, for all ¢ € [to, to + alT,

t
[ ®2(t;x0) — @1(t;x0)|| < [ [£(s, P1(s;%0)) — £(s, Po(s;%0))|| As
to

t
< L | [ ®1(s;%0) — Po(s;x0)|| As
to

< QL(t - tO)a
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where we have used (3.5.6) in the second last step. Thus, (3.5.11) is true for
k = 1,2. We assume that (3.5.11) holds for some k = 7 > 1 and note that
using Lemma 3.3.1, (3.5.6) and (3.5.11), we obtain

t
[@ir1(t;x0) — i(t;x0)[| < [ [I£(s, Bi(s;%0)) — £(5, Di1(s;%0))|| As
to
t

S L[ [[®i(s;x0) — ©i—1(s5%0)|| As

to

b [L(s — to)]" !
= QL/tO G- 1) As

L[L(s — o))t
= QL /to (i._ 1)' as
<Q [L(t ; to)]l_

Thus the inequality (3.5.11) holds for all i. We also note that, for all ¢t €

[to, to + a]T, the series

Z”(I)i(t;xﬂ) ®;,_1(t;x0)|| < Q E i(_s_)_]
=1
< Qz[—L——” 512

We note that the right hand side of (3.5.12) is convergent and so the left hand
side is also convergent applying the Weierstrass test. Therefore, we conclude
that ®; converges uniformly on [tg,to + a|r to some function ®. The error

estimate for ||®y — ®| is obtained in the same way as in the proof (part (3))
_ Lt —to)]*

i such that

of Theorem 3.4.1. Thus, for all £ > 0, there exists ¢; :=

@k (t; x0) — B(t;x0)|| < Qellttlle for all t € [to, to + alr, (3.5.13)

and so,
& (t;x0) — P(t;%0) as k — oo, for all t € [to, to + alT- (3.5.14)
The limit function ® is a solution to (3.5.3), (3.5.4):

We note that since f is right—Hilger—continuous on P pr(Ap), we have ® a
solution of (3.5.3), (3.5.4) if and only if ® satisfies the delta integral equation

t
®(t;x0) = Xo +/ f(s;D(s;%0)), for all ¢ € [to,to + a]r. (3.5.15)

to
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We note that ®(¢;xo) is a continuous function for all t € [to, to + a]t, such that
the point (¢, ®(¢;x0)) € Pra(Ag). The proof being the same as in proof(c)(i)
of Theorem 3.3.3 and is omitted.

Next we show that (3.5.8) converges to (3.5.15). We have already proved in
(3.5.14) that the left hand side of (3.5.8) converges to the left hand side of
(3.5.15). Therefore, we only need to prove that

t ¢
/ f(s, Pr(s;x0)) As— [ f(s,P(s;%0)) As, for all ¢ € [to, to + a|T-
¢

0 to

Note that, for all ¢ € [to, to + a|t, we obtain

t t
/ (s, Bi(s; %0)) As — / £(s, B(s; x0)) As
to to
t

< I£(s, ®i(s;x0)) — £(s, D(s;%0))|| As
to
t
<L |®x(s;%0) — ®(s;%0)|| As
to

t
< LQeL(t_tO) €x As
to

< LQeEey (¢ —ty),

where we have used (3.5.13) in the second last step. Since ¢, — 0 as k — oo,

we have,

/t £(s, B(s;%0)) As— [ f(s,®(s;x0)) As

0 to

— 0 for all t € [to,to + aT-

Hence

¢ t
/ f(s,®r(s;x0)) As — [ f(s,®(s;%0)) As for all t € [to, to + a]T.
¢

0 to

(c) ® is unique

The proof is exactly the same as in part (d) of the proof of Theorem 3.3.3 and

is therefore omitted.

O

Corollary 3.5.2 Theorem 3.5.1 also holds if f has continuous partial derivatives

with respect to the second argument on Py p(Ag)and there exists K > 0 such that

of
op

< K. In that case, f satisfies (4.4.1) for L := K by Theorem 2.2.2.
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3.6 Peano’s existence theorem on T

In previous sections, we discussed the existence of solution to the dynamic IVP
(3.1.2), (3.1.3) as the unique limit of successive approximations to the solution when a
right-Hilger—continuous function f satisfied a Lipschitz condition on a given compact
domain R". In this section, we prove that, in the absence of the Lipschitz condition,
the IVP (3.1.2), (3.1.3) has a solution which is the uniform limit of a sequence of

solutions to the system of IVPs

x2 = fi(t,xz), for all t € [to, to + alF; (3.6.1)

x(tr) = Xx, (3.6.2)
where k£ > 1 such that
tx = to € T, and X — Xg as k — oo. (3.6.3)

More precisely, we consider a sequence of right—Hilger—continuous functions fi, fa, - - - , fi

defined on R” such that the uniform limit
klim fi(t, p) = £(¢t, p), for all (¢t,p) € R" (3.6.4)
—00

exists. Denote by {®,(t)} a sequence of continuous functions and {®4;)(t)} as a
subsequence for all ¢t € [to,to + alr. We show in our next result that the above

subsequence has a uniform limit, ®, which is a solution to the limit problem

x?® = f(t,x), for all t € [to, to + a|F; (3.6.5)
x(to) = Xo- (3.6.6)

We further show that if ® is unique then ® will be the uniform limit of the sequence

{‘I’k(t)} forallt € [to,to + CL]']I‘.

Definition 3.6.1 [51, p.346]
Let t be a point in [to, to + alr € T. A family of functions x; defined on [to, o + alT
is said to be equicontinuous if, for every € > 0, there exists § := §(€) > 0 such that

foralli=1,2,3, -,
xi(t) = x:i(s)]] <€, whenever s € (t—d,t+ &)t for allt,s € [to, o + alt-
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Remark 3.6.2 [{2, p.5]

Let x : S C T — R" be arbitrary. Consider a family of functions x; uniformly
Lipschitz continuous on S. That is, there exists L > 0 such that for all i > 1, we
have

Ixi(t) — xi(s)|| < Lit — s}, for allt,s € S.

Then x; are equicontinuous on S.

Lemma 3.6.3 [4/2, p.3]
Consider a compact set E and a family of continuous functions x; such that x; are
uniformly convergent on E. Then x; are uniformly bounded and equicontinuous in

E.

O

The next theorem, called the Arzela—Ascoli Theorem (sometimes written as Ascoli—
Arzela Theorem) [31], [51, Theorem 8.26], [16, p.178|, will be useful in some impor-
tant results in this and the next chapter to establish uniform convergence of compact

maps.

Theorem 3.6.4 Arzela—Ascoli Theorem
Consider a family of uniformly bounded and equicontinuous functions x1,Xsa,- - de-
fined on a compact set E, C R". Then, there exists a subsequence X;(1), X;(2)," "

that converges uniformly on E, for alli=1,2,---.

Remark 3.6.5 [42, p.4]
If the uniformly convergent subsequences X;(1), X;(2),* -+ tn Theorem (3.6.4) converge

to the same limit, ®, then
x; — , foralli=1,2,---.
d

Theorem 3.6.6 Consider a sequence {fi} of right—Hilger—continuous functions fj :

R* — R™ such that (3.6.4) holds. We show the following:
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(a) If, for allk =1,2,---, Ok is a solution to (3.6.1), (3.6.2) on [to, to + a]T, then

the subsequence @1y, P2y, s uniformly convergent on [to, to + alT;
(b) if we denote the limit of this uniformly convergent subsequence by
o(t) = kli_’rgo Driy (2), for all t € [to,to + aT, (3.6.7)
then ® will be a solution to (3.6.5), (3.6.6) on [to,to + a|T;
(c) if ®(t) is the unique solution of (3.6.5), (3.6.6) for all t € [to,to + a]T, then

&(t) = lim @(t),  for allt € [to,to + alr. (3.6.8)

Proof: (a) We show that the subsequence {@k(i)} is uniformly convergent to ® on
[to, to + a]T:

We note that {fx} is a sequence of right—Hilger—continuous functions, converging
to a limit f uniformly on the compact set R*. Hence, fi are uniformly bounded on

R*. Thus, there exists K > 0 such that for all k > 1

Ife(t, Pl < K, for all (¢, p) € R". (3.6.9)
Since ®(t) is a solution to (3.6.1), (3.6.2) for all k£ > 1, we have from (3.6.9)

|22 (t)|| < K, for all ¢ € [to, to + alF-

Hence, by Theorem 2.2.2, ®,, are Lipschitz continuous with Lipschitz constant K for
all £ > 1, and by Remark 3.6.2, ® are equicontinuous on [tg, %y + alr. Thus, for

every € > 0, there exists 0 := % such that for all ¢, s € [to, to + a|T, we have
|k (t) — Bi(s)]| <€ whenever |t — s| < 6.

Therefore, by Theorem 3.6.4, there exists a subsequence ®(;) which is uniformly

convergent on [tg,to + a|r for all £ > 1. Hence, by our assumption on &, we have
Bpy(t) > @) for all ¢ € [to,to + alr (3.6.10)

(b) We show that @ is a solution to (3.6.5), (3.6.6):
By Lemma 2.1.3, ® will be a solution to (3.6.5), (3.6.6) if and only if it solves

the delta integral equation

¢
(t) = xo + / f(s,®(s)) As, for all ¢ € [to, to + alT. (3.6.11)

to
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Since @y is a solution to (3.6.1), (3.6.2), ®y(;) will be a solution to (3.6.1), (3.6.2)
corresponding to the k(7)-th equation. Thus, by Lemma 2.1.3, for all ki > 1, @)

satisfies the delta integral equation
iy (t) = Xp(a) + /tt fi(i) (s, 8(s)) As, for all t € [to, to + alT- (3.6.12)
0
Since R" is compact and fy — f uniformly on R", we have
£y (t, x) — £(t,%), for all (¢,x) € R".

Similarly, from (3.6.3) and (3.6.2), we have ty;y — to and x(tx(;)) =: Xg(;) — Xo for
all k(i) > 1. Thus, we have the right hand side of (3.6.12) convergent to the right
hand side of (3.6.11) and by (3.6.10), the left hand side of (3.6.12) also converges to
the left hand side of (3.6.11). Thus, ® satisfies (3.6.11). By Remark (3.6.5), & — ®
and ®(t) is a solution to (3.6.8) for all ¢ € [to,to + alT.

(c) ® is the unique solution of (3.6.5), (3.6.6):

Note that, from (b) above, ®(t) is a solution to (3.6.8) for all ¢t € [to,to + a]r and
s0, is a continuous function. Also, ®; is a solution to (3.6.1), (3.6.2) on [to, %o + a|T
and the point (¢, ®x(t)) € R for all ¢t € [to,to + a]r. Thus, as k — oo, the graph
(t,®(t)) € R for all t € [to,to + a]r. It is already proved that ® satisfies (3.6.11).
Thus, ® is continuous on [to,to + a]r. The uniqueness of & is proved in the same

way as in the proof (d) of Theorem 3.3.3 and is omitted. This completes the proof.
O

Now, we present the main result of this section. This result is an extension of
[42, pp.10-11] to the time scale setting and guarantees the existence of solutions
to (3.6.5), (3.6.6) in the absence of Lipschitz condition. In this way, the result is
more flexible for the existence of a solution to (3.6.5), (3.6.6) than Theorem 3.3.3.

However, it does not guarantee the uniqueness of solutions.

Theorem 3.6.7 Peano’s existence theorem on T
Let £ : R® — R"™ be a right-Hilger—continuous function. If there exists tp < o < a

such that

) b
o := min {a, M} , (3.6.13)
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then the IVP (3.1.2), (3.1.3) has at least one solution in the interval [to, to + ol C
[to, to + Cl]'][‘.

Proof: We first approximate f uniformly on R* by a sequence of right—Hilger con-
tinuous functions {fi} such that f : R — R", for each k = 1,2,---. Let ¥(s) be a
real-valued smooth function defined for all s > 0 such that ¥(s) > 0 for 0 < s < 1;
and 9(s) = 0 for s > 1. Then, by [42, p.6], there exists a constant ¢ > 0 depending

on 9 (s) and the dimension n, such that for every e > 0, we have foralli = 1,2,--- ,n
o o
c e_"/ / Y(e7?||x — p||?) dp; = 1, for all (t,p) € R",
—00 —00
where ||x|| = (3 |2*[>)Y/2. So if, for all i = 1,2, --- , n, we define

£(t,%) 1= c € / / £(t, p)ub(e~2|lx — p||2) dpi, (3.6.14)
—00 —00
for all (¢t,p) € R",

then for each i = 1,2, --- ,n we have

o« o«
£o(t,%) = c " f / £t x — p)o(e2pl?) dps,  (3.6.15)
—o0 —o0
for all (¢t,p) € R".
We note from [42, p.6] that as € — 0,

fi — f, uniformly on R". (3.6.16)

Thus, there exits M > 0 such that ||fi|| < M, for all k = 1,2, - - -. Furthermore, {f;}
has continuous partial derivatives of all orders with respect to z1,z2,--- , Tk, and is

uniformly Lipschitz continuous.

Hence, {f;} satisfies the conditions of Theorem 3.3.3. Thus, ®; will be solutions

to the family of dynamic IVP (3.6.1), (3.6.2) in the compact interval
[to, to + a] = lto, to + min {a, %}] .
for all k > 1. Moreover, ®; are equicontinuous and for all k¥ > 1,
”‘I)k(t) —xol| £b, forallt € [to,to + a]T. (3.6.17)

Furthermore, since f;, — f on R* by (3.6.16), Theorem 3.6.6 applies, and so we
have ®(t) — ®(t) uniformly for all ¢ € [to, to + a]r and ®(t) is a solution to (3.6.5),
(3.6.6) for all t € [to, %o + a]r and so for all t € [to, to + a]T-
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Next, we show that the point (¢, ®(t)) € R. This is evident by the convergence

of @ in (3.6.17). Hence, as k — oo, we obtain
|®(t) — xo|| < b, for all t € [to, to + .
Thus, the graph of the point (¢, ®(t)) lies entirely in R and the theorem is proved.

d

3.7 Higher order equations

This section extends the ideas in Theorem 3.3.3 to equations of order n following
[30, pp.258-260].
Let T be an arbitrary time scale. Consider a a set of continuous functions x :

[to,to + a]r — R™. That is x = (21,2, ,Zn), such that

2 n—2 n—1
T = To =22 13 =R By = 2D Tp = i (3.7.1)

Here z2 is the generalised derivative of z. If we delta—differentiate the above system

of equations, we obtain a set of first order dynamic equations

P = 1z
T8 = x3;
(3.7.2)
x,,?_l = In;
ZL',,? = fn(taxlax%"' ,ZCn) —_—fn(t,X).
Consider
R ={(t,p) e T* xR :t € [to,to +al}, ||p— Al < b} (3.7.3)
for all a,b > 0, and tg,t90+a € T.
Let f : R® — R™ be a right—Hilger—continuous function of 1 + n variables.
We consider the system of n—th order dynamic equations
2" = f(t,z, 25, ,xAn_l), for all t € T™; (3.7.4)
(%) (to) = As, (3.7.5)
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where ¢ = 1,2,---. Under the assumption (3.7.1) and (3.7.2) this system can be

reduced to
x® = f(t,x), forallte T (3.7.6)
x(ty) = A, (3.7.7)

where A = (Al, A2, cee ,An).
If the system (3.7.4), (3.7.5) has a solution ®(t) for all ¢ € [tg, to + a]T C [to,to +

alr, then

¢ = (¢17¢27 T 7¢'n) = (¢7 ¢A7 ¢A27 e ’¢A"—1), (378)

where ¢, ¢2, ¢A2, e ,d)A"-l are the respective solutions for the system (3.7.2). The
following result guarantees the existence of a unique solution of (3.7.4), (3.7.5) in
R".

Theorem 3.7.1 Let f, defined in (3.7.2) be a right—Hilger—continuous function on

R"*. If f, satisfies the conditions that:

(a) there exists L1 > 0 such that

1fn(t, %) = fa(t, ¥)I| < Lilix =y for all (t,x), (t,y) € RY;  (3.7.9)

(b) the initial approzimation, ®o(t) = (do(t), #§(t), -+, 8"7(1)), where ¢0Ak(t)
are the initial approrimations to ¢1,¢2, - ,¢n for k =0,1,--- ,n —1, is con-

tinuous for all t € [to,to + alt such that
|®o(t) — Al < b, for all t € [to, to + aT, (3.7.10)

then the sequence {®(t)} generated by the Picard iterative scheme (3.2.3) converges

on the compact interval

) b
[to, to + Oz]']y = lto, to + min {a, ]—VI_}LT
to the unique solution ®(t) of n-th order IVP (3.7.6), (3.7.7) for all't € [to, 0+ c]T.

The error estimate
|®k(t) — (1) < N i,  fork=0,1,2,- (3.7.11)

also holds for all t € [tg,to + a]r, where N = maXycfy; to+ajr || P1(2) — Po(t)]]-
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Proof: We show that f satisfies the conditions of Theorem 3.3.3.

(i) f is bounded on R":

Since f is right—Hilger—continuous on R", there exists K > 0 such that

Ifa(tP)II < K,  forall (¢,p) € R". (3.7.12)

Using the above inequality along with (3.7.2) for all (¢, p) € R*, we obtain for
allt € [to,to + a]']r,

-1

Hf(t7 p)“ = ||f(t,p,pA,--- ’pA"
ol

)
= |lp
= (Ipf P+ 152 + - + [pp )2

= (Ip2? + Ips* + -~ + 1 Fn(t, D) IP) M,

< (1 + Ip2l® + -+ + [pal® + 1 a2, P)IP)
< lpll + [/ Pl

< [|Afl+b+ K,

where we used (3.7.3) in the last step. Thus, for M := ||A|| + b+ K, we have
|£(t,x)|| < M for all t € [to, o + ] such that the point (¢,x) € R*. Thus, our
f is bounded on RF.

(ii) f is Lipschitz continuous on R":

We note from (3.7.4), (3.7.5) that for all (¢,p), (t,q) € R"

£, p) — £(, 9)
= [p® - a®|
= (02 pp) — (a1 a2 »an)ll
= |(p2,p3, -+, fn(t,P)) — (q2,43, -, fu(t, @)l
= [(p2 — 42) + (p3 = 43)* + -+~ + (fult,P) — falt, @))*]"/?
< [lpr— @) + (P2 — @2)* + (ps — g3)* + - + (fa(t, P) — fn(t, @))*]"/?
<[ —@)*+ (P2 — @)+ (p3 —g3)° + -+
+L[(pr — @1)* + (2 — @2)* + -+ + (Pn — @n)°]] 2
= [(1+ L1)((pr — q1)* + (p2 — @2)* + -+ + (on — @)
= [1+ L1)"?|p - ql.-
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Hence f satisfies the Lipschitz condition (3.3.2), with Lipschitz constant L :=
[1 + L1]1/2.

O

Corollary 3.7.2 Theorem 8.7.1 also holds if £ has continuous partial derivatives

with respect to the second argument on R" and there exists K > 0 such that 5
p

K. In that case, by Theorem 2.2.2, f satisfies (4.4.1) for L := K.

<

O

The proofs for the continuity and convergence of ®x, for k = 1,--- , n follow from
the continuity and convergence of @1, ¢2, -, ¢n on [to, to + a]t. The uniqueness of
the solution ® defined in (3.7.8) follows from the uniqueness of its components. Hence
f satisfies all conditions of Theorem 3.3.3, and the dynamic IVP (3.7.6), (3.7.7) has
a unique solution ®(t) such that the point (¢, ®(t)) € R for all t € [to, to + .

In this chapter, we presented results regarding existence of solutions to the sys-
tems (2.1.5), (2.1.6) and the scalar IVP (2.1.9), (2.1.10) as the unique limit of suc-
cessive approximations to the above IVPs. In the next chapter, we use analytical
approach to extend our results in this chapter to the entire space R™ using Banach’s

fixed point theory.

83



84



Chapter 4

Existence results using Banach’s

fixed point theory

4.1 Introduction

This chapter comprises more results on the existence and uniqueness properties of
solutions to first order non-linear dynamic initial value problems. The results in this
chapter are obtained with a more modern approach in contrast to the classical meth-
ods used in Chapter 4. Instead, we use analytical methods and construct a weighted
Banach space in the time scale setting using the exponential function and establish
existence and uniqueness results using Banach’s fixed point theorem. Furthermore,
we establish Lipschitz continuity of solutions with respect to the initial state. We
also establish local version of Banach’s principle in the time scale setting. Finally,
we extend our results to a generalised Banach space as well as to dynamic equations
of higher order. Major results in this chapter have been published in [82].

The Banach fixed point theorem (also known as the contraction mapping the-
orem) has been widely used as an important tool to determine the existence and
uniqueness of solutions of initial value problems defined on complete metric spaces.
It uses the property that contractive maps in metric spaces have fixed points and
guarantees the uniqueness of those fixed points. Moreover, it provides an iterative

technique to accurately obtain those fixed points of contractive maps [41, p.9].

We construct certain metrics and norms that are suitable to the time scale setting
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and establish a Banach space with respect to these metrics and norms. Using these
metrics and norms we define contractive maps on our Banach space that yield fixed
points as solutions to our IVPs. The next section classifies the concerned IVPs and

their domains that will be later used to construct the required Banach space.

4.1.1 The main objective

Consider the time scale interval [to,to + a]r, where to € T and a > 0. Consider a
right—Hilger—continuous function f : [to, ¢ + alf x R® — R™. Let xo € R™.

Our results in this chapter concern the IVPs

x® = f(t,x), for all t € [to, to + a]%; (4.1.1)
x(to) = Xo; (4.1.2)
and
x? = f(t,x%), for all t € [to,to + a]}; (4.1.3)
x(to) = Xo. (4.1.4)

The main aim of this chapter is to answer the questions:

1. Under what conditions do the dynamic IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4)

have a unique solution by applying Banach’s fixed—point theory?
2. Can we extend the above results to a generalised Banach space?

3. What is the behaviour of solutions to the above IVPs with respect to their

initial state?

Consider the space C([to, to + a]T; R™) of all continuous functions on [ty, to + a|T.
Our results show that the IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4) have unique
solutions in C([to,to + a]T;R™) and also within certain balls of C([to, o + a]T;R").
We further prove that these solutions are smooth with respect to their initial state.

We apply our ideas to a generalised Banach space and to systems of higher order.

4.1.2 Methodology and organisation

Through the application of a novel definition of measuring distance in normed and

metric spaces on the time scale platform, we obtain a significant range of qualitative
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information about the solutions to (4.1.1), (4.1.2) and (4.1.3), (4.1.4). We apply
Banach’s principle to prove the existence and uniqueness of solutions of the above
vector dynamic IVPs. The analysis takes place in the setting of a complete metric
space. These new results significantly improve those of Hilger [45, Theorem 5.5] and
also provide nice estimates on the rate of convergence of “approximating iterations”
to the solution of the above IVPs using Banach’s Theorem.

Our work in this chapter is organised as follows. In the next section, we review
the definition of a contractive map and Banach’s fixed—point theorem.

In Section 4.3, we introduce a novel “weighted” metric and “weighted” norm
derived from the usual sup—metric and sup—norm. This new metric has been con-
structed in the time scale setting using the exponential function e,(t,to), where p is
a regressive function and t € [to,tp + a]r. This establishes a sufficient background
to construct a new Banach space to apply Banach’s Theorem for the existence and
uniqueness of solutions to the dynamic IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4). The
construction of a new metric and norm has enabled us to use the Lipschitz condition
without any other conditions imposed on the Lipschitz constant [45, Theorem 5.5].

In Section 4.4, we establish existence and uniqueness results for the above IVPs
and illustrate the results with examples.

In Section 4.5, we extend our results to a generalised Banach space.

In Section 4.6, we present results about local existence of unique solutions for
the above IVPs.

In Section 4.7, we establish Lipschitz continuity of solutions to the IVPs (4.1.1),
(4.1.2) and (4.1.3), (4.1.4) within certain balls.

Finally, in Section 4.8, we extend our results to higher order dynamic equations

on time scales.

4.2 The Banach fixed point theorem

We begin with the definition of a contractive map in a metric space [41, p.9].

Definition 4.2.1 Contractive map

Let (X,d) be a complete metric space. A map F : X — X is called contractive if
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there ezists a constant 0 < a < 1 such that
d(F(z), F(y)) < a d(z,y), forall z,y € X. (4.2.1)
The number o is called the contraction constant for F in (X, d).

O

For any given 2 € X, we define the iterated function sequence {F*(x)} recursively

by:

FO(z) = z; (4.2.2)

and  F'*l(z) := F[F'(2))]. (4.2.3)

We now present Banach'’s fixed—point theorem (without proof, see [34, Theorem 1.1],
[40, Theorem 2.1}, [51, Theorem 7.5]) which ensures the existence of a fixed point of
F and the convergence of the sequence {F'} in (X, d) to that fixed point.

Theorem 4.2.2 Banach’s fixed point theorem
Let (X,d) be a complete metric space and F : X — X be a contractive map. Then
there erists a unique fized point u of F' in X. Moreover, for any x € X the iterated

sequence {F*(z)} converges to the fized point u, that is,

F'(z) — u, forallz € X.
O

Our focus is on the contraction condition (4.2.1) on F' in Banach’s fixed—point the-
orem. We begin with an arbitrary x € X and using Banach’s Theorem, establish an
‘error’ estimate between the ith iteration F* and the fixed point u, for all ¢ > 1, as

al

d(Fiz,u) < T d(z,Fz), forall z € X, (4.2.4)

-«

which depends on the contraction constant « and the initial displacement d(z, Fz).
We further note that a map may be contractive under one particular definition

of metric and not with respect to a different metric. Consider the following example.
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Example 4.2.3 Let (M,d) be the metric space with the usual Euclidean metric
d(z,y) == |z —y|, forallz,ye M CR

and (N, d*) be another metric space with metric

_ lu — |
CJutof

d*(u,v) : for all u,v € N C R,

where |u+wv| #0. Let T be a map defined on both (M,d) and (N, d*) by T(p) := p?.
We note that if 0 < |z + y| < 1 then for all z,y € M, we have

d(Tz,Ty) = |Tz - Ty| = |2* - ¢*| < |z — y| = d(=,y).
Thus T 1is a contractive map in M for all x,y such that 0 < |z + y| < 1. On the

other hand, for all u,v € N such that |u+ v| > 0, we have

Tu—Tov]  |u2—0?] _|[u2—0?| |u—v|

&* (T, Tv) = - _ -
(Tw, T) |Tu+Tv|  u2+02 (u+v)?2  |u+]

d*(u,v).
Hence T is not a contractive map in N.

O

The above example suggests that if we construct a suitable metric defined on X
then the contraction condition may exist even for maximal class of F' on X with
minimum conditions imposed. Therefore, we establish our results in this chapter on
the basis of a suitably defined metric and a norm to construct a Banach space in the
time scale setting that offers a suitable platform for the existence of solutions to the

dynamic IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4).

4.3 Construction of a Banach space in T

In this section, we first introduce a novel metric (and norm) in the time scale set-
ting using a suitable exponential function (see Definition A.6.3). This metric and
norm are named as the ‘G—metric’ and the ‘G-norm’ respectively. These are defined
below along with the well-known sup—metric and sup—norm. This is followed by

construction of a Banach space using the so called f—metric and S—norm.
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Definition 4.3.1 Let || - || denote the Fuclidean norm on R™. Let 8 > 0 be a
constant. We couple the space of all continuous functions C([to,to + alr;R"™) with

the B-metric, dg(x,y), defined as

[x(t) =y @)l
dag(x,y) := sup ——————, 4.3.1
st6y) teftoto+ar  €8(E to) ( )
for all t € [to,to + a]r and x,y € C([to, to + al1; R™);
or the sup-metric, do(x,y) defined as
do(x,y) == sup [|x(t) —y (@)l (4.3.2)

tE[to,to-i—a]']r
for all t € [to,to + a]T and x,y € C([to, to + a]T; R").

We will also consider C([to, to + alr; R™) coupled with the B—norm, || - ||3, defined as

=)l

X|g == , (4.3.3)
” “ﬂ t€lto,to+alT 6ﬂ(t,t0)
for all t € [to,to + a]T and x € C([to, to + a]T; R™);
or the sup—norm, ||x|jo, defined as
Ixllo :== sup [Ix(9)]], (4.3.4)
tE[to,to+a]']r
for all t € [to, to + a]r and x € C([to, to + a]T; R™).
U

The above definitions of dg and || - ||g are new generalisations of Bielecki’s metric
and norm [[34], pp. 25-26], [[35], pp. 153-155] in the time-scale environment. The

following Lemma describes some important properties of dg and || - ||.

Lemma 4.3.2 If 3 > 0 is a constant then:
(1) C([to,to + a]T;R™) is a vector (linear) space over R;
(2) |- g is @ norm and is equivalent to the sup-norm || - ||o;
(3) (C([to,to + a]T;R™), || - ) is a Banach space;
(4) (C([to,to + a]T;R™),dg) is a metric space.
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Proof: (1) We show that C([to,to + a]T; R™) is a vector space over R. Note that
elements of C([to, o + alT;R") are continuous functions. Hence C([to,to + alT;R™)
1s closed under addition and scalar multiplication. Therefore, 1x = x for all x €
C([to, to + a]T; R™). The commutative and associative laws also hold with respect to
addition for continuous functions. The zero vector, 0, exists as the additive identity
and for all x € C([to,to + a]T;R"), —x will be the additive inverse. Furthermore,
distributive laws hold for scalar multiplication over vector addition, and for vector
multiplication over scalar addition for continuous functions for the scalar field R.

That is, for all u,v € C([to, to + a]T; R") and )\, v € R, we have
A(u+v) = du+ v
(A4+v)u = Au+rvu
A(vu) = (Av)u.

Hence, C([to,to + a|T; R™) is a vector space over R.

(2) We show that || - ||g is a norm and is equivalent to the sup—norm | - |o. We
note that B3 € Cpq([to, to + alT; R™) as any constant function is always rd—continuous.
Since p > 0, we have 1+ u(t)B > 0 for all t € [to,to + a]r. Therefore, B € R (see
Definition A.6.1). Thus, eg(t,to) > 0 for all t € [to,to+alr (see Theorem A.6.4(9)).
It follows that for each x,y € C([to, to + alT;R™) we have

(a) ||x|lg > 0 and ||x||g = 0 if and only if x =0.

(b) for A€ R and x € C([to,to + a]T;R"),

[ Al
| Ax[lg = —
12xlls tefto,to+ajr €8(E t0)
x|
= [\l sup ——=
tefto,to+ajr €8(t t0)
= [M[xllg,
and for all x,y € C([to,to + a]T; R"),
|x + ¥l
X+Ylg = —_—
” ”ﬂ t€[to,to+a]'ﬂ' eﬁ(t’ tO)
|1l Iyl
< sup + ——
teltorto+ajr €86 20)  telto to+aly €8(E t0)
= [xllg + lylls-
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Thus || - || is @ norm and (C([to, to + a]T; R™), || - |l8) is a normed space.
Next we show that the B—-norm, || - ||, is equivalent to the sup—norm, || - ||o. For

this, we show that there ezist positive constants k and K such that
kllzoll < llzllg < Klz]lo- (4.3.5)

Since B > 0 we have eg(to + a,tg) > 1. Hence, choosing k = 1/eg(to + a,tp) and
K =1, we obtain

||£L‘0“
- S T S Zilo-

Hence the B—norm and the sup—norm are equivalent.

(3) We show that (C([to,to + a]T;R™),| - ||3) is a Banach space. For this, we show
that (C([to,t0 + a]T;R™), | - ||g) is complete by showing that every Cauchy sequence
in (C([to, to +a]T; R™), || - ||3) converges to a function in C([to, to +a]T;R™). Let x;(¢)
be a Cauchy sequence in C([to, to + a]T;R™). This means that for every € > 0 there
is a positive integer N, such that

1% (t) — %, (@)l <

for all i,7 > N, for all ¢ t .
estito) €, or all 4,7 > N, or all t € [to, to + aT

It follows that the sequence x;(t) is uniformly convergent for all ¢ € [ty, to+a]r. Since
x; is continuous for all 4, it converges to a continuous function in C([t, to + a]T; R™).

Hence taking x; — x as j — oo, we obtain

lim [x:(8) — %, = [%:(8) — ()] < ¢, for all i > N, for t € [tg, to + aT.

j—o0 eg(t, to) eﬂ(t, to)

Therefore, x; converges to a point in C([t,to + a]r; R™). Since x; is a Cauchy se-
quence, (C([to,to + alT; R™), || - ||3) is a complete normed vector space and, hence, a

Banach space by [51, Theorem 7.4].
(4) Finally, we show that (C([to, to+a]T; R™), dg) is a metric space. This is trivial, as

by (4.3.1) and (4.3.3), dg is the metric induced by ||-|| 3. Hence (C([to, to+a]; R™), dg)

is a complete metric space.
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4.4 Existence and uniqueness of solutions

This section consists of results about the existence of unique solutions to the dynamic
IVPs of the type (4.1.1), (4.1.2) and (4.1.3), (4.1.4) using ideas from Section 4.2.
We note that a right-Hilger—continuous function f is always delta integrable (see
Theorem A.5.2) and so, from Lemma 2.1.3, a solution of the form (2.1.11) is well-
defined for the IVP (4.1.1), (4.1.2). In fact, we will prove that given a Lipschitz
condition on f, such a solution always exists and is unique.

Let Crq([to, to+a]r; R™) be the space of all rd—continuous functions on [to, to+a]r.

The following result concerns the dynamic IVP (4.1.1), (4.1.2).

Theorem 4.4.1 Let f : [ty,to + a)f x R® — R" be right-Hilger-continuous. If there

exists a positive constant L such that

I£(t,p) — £(t, Q)| <L |p—al, for all (t,p), (t,q) € [to, to + a]f x R”, (4.4.1)

then the dynamic IVP (4.1.1), (4.1.2) has a unique solution x € C([to, to + a]T; R™).
In addition, if a sequence of functions y; is defined inductively by choosing any
yo € C([to, to + a]T; R™) and setting
t
vir1(t) =x0+ | f(s,yi(s)) As, for all t € [to,to + alr, (4.4.2)
to
then the sequence y; converges uniformly on [to,to + a]t to the unique solution x of

(4.1.1), (4.1.2). Furthermore, x® € Crq([to, to + ali; R™).

Proof: We note that (4.4.2) is well defined as f is right-Hilger—continuous. Let
L > 0 be the constant defined in (4.4.1). Define 8 := Ly where v > 1 is an arbitrary
constant. Consider the complete metric space (C([to, to + a]T; R"),ds). Let

[Fy](t) == xo + /tf(s,y(s)) As, for all t € [to,to + a]T. (4.4.3)

to
Since f is right-Hilger—continuous on [to, to + al§ x R™, we have [Fy] € C([to,to +
a]T; R") for every y € C([to, to + a]r; R™). Further, [Fy](to) = xo € R". Hence,

F : C([to, to + a]r; R™) — C([to, to + a]T; R™).

According to Lemma, 2.1.3, fixed points of F will be solutions to the dynamic IVP

(4.1.1), (4.1.2). We prove that there exists a unique, continuous function x such that
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Fx = x. To do this, we show that F is a contractive map with contraction constant

a =1/ < 1 so that Banach’s Theorem applies.

Let p,q € C([to, to + a]T;R™). Using (4.3.1), we note that
IFp(t) — Fq(®)|

dg(Fp,Fq) := sup
ﬂ( ) tE[to,to+a]-ﬂ- 6,3 (ta tO)
1 t
< sw [ 1£(5,p(5)) ~ £(5, a()] As]
te(to,to+alr LEB (t,t0) to
t
< suwp [ Lip(s) - a(s)| As},
tE[to,to-i—a]']r eﬂ (t’ to) to

where we used (4.4.1) in the last step. We can rewrite the above inequality as

1 t Ip(s) —als)|l
dg(Fp,Fq) < sup Leg(s, to) sup As| .
B( ) t€[t0,t0+a]1r [66 (t7 to) to s SE[to,to-{-a]T eﬂ(sﬁ t())

Again using (4.3.1) and employing Theorem A.6.4(7) with L/ =1/y=a < 1, we

obtain
dg(p, Q) 1 ’
dg(Fp,Fq) < ——— sup Bes(s,ty) As
sl ) Y teftototar LEB(E:20) St (s to)
ds(p,q) [ 1 }
= ————~  sup ——(eg(t,tg) — 1
Y teftoto+alr LEB(E tO)( sltto) = 1)
p _
S, [
Y t€[to,to+alt L €s (t’ t())
_ ds(p,q) [ B 1 l
¥ eg(to + a, to)
<a dﬂ(p) q)v

where 0 < a < 1. Thus, F satisfies (4.2.1) and is a contractive map and so, Ba-
nach’s Theorem applies. Therefore, there exists a unique fixed point x of F in
C([to, to + a]r; R™). Banach’s Theorem also yields that the sequence y; defined in
(4.4.2) converges uniformly in the S—norm, | -||g, and so, also in the sup—norm, ||- |,

to that fixed point x in C([to,to + a]T; R™). This completes the proof.

O

Corollary 4.4.2 Theorem 4.4.1 also holds if f has continuous partial derivatives
with respect to the second argument on [to, to + a]T X R™ and there exists K > 0 such

f
0 < K. In that case, f satisfies (4.4.1) for L := K.

p

that
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Proof: The proof is the same as for Theorem 2.2.2 and is omitted.

Remark 4.4.3 Theorem 4.4.1 has two important outcomes:

1. it eliminates the condition

La<1

imposed in [45, Theorem 5.5] for the ezistence of a unique solution of dynamic
IVP of the type (4.1.1), (4.1.2). The use of S-metric, dg, in the proof of

Theorem 4.4.1 demonstrates that this condition is not needed;

2. it gives a nice estimate on the rate of convergence of iterates (4.4.2) using
(4.2.4). This means that if x,yo € C([to, to + a]T;R"), then, for B :=yL with
v > 1, we have, from (4.2.4)

—1

dﬁ(Fiyo,X) S 1 ’_y,y_l dﬁ(y07Fy0)

Using the definition of dg in (4.3.1) with the fact that eg(t,to) > 0 for all t,
we note that

1 ; [Ftyo — x||
———— sup |Fyo—x[| < sup —F——
€g (to + a, to) t€[to,to+alr t€(to,to+alr €8 (t, o)

-1

T sup lyo— Fy,ll.
1—vy t€fto,to+alr

IA

Using (4.3.4), we obtain
—i

y
1_—7_1”)’0 — Fyqllo-

IF*y0 — x[lo < eglto + a, to)
If we choose v :=i/La, then the rate of convergence may be given by

‘ La\® i
iyo —x|lo < e La — Fyollo;
IF*yo — x[lo < e (to + a, o) ( - ) — 72 I¥o —Follo

3. there is no need for “extension” of a solution, as the result guarantees existence

over the entire interval [to, to + alT.
O
The following example demonstrates Theorem 4.4.1 with the help of a scalar
dynamic IVP.
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Example 4.4.4 Consider the scalar dynamic IVP
z® =20z + 5]V +t,  for allt € [to, to + alf; (4.4.4)
z(to) = xo. (4.4.5)
We claim that this dynamic IVP has a unique solution, z, such that x € C([to,to +

a|t; R).

Proof: We prove that the given IVP satisfies the conditions of Theorem 4.4.1. Note
that
F(t,p) = 2[p* + 5]/ + t, for all (t,p) € [to,to + a|f X R.

We observe that

(i) The function f is right—Hilger—continuous on [to,to + a]f x R: We note that
the composition function g(t) := 2[(z(t))? + 5]'/2 + ¢ will be rd—continuous for

all t € [to, to + a]f. Hence, f is right-Hilger—continuous on [to, to + a]f x R.

(ii) f is Lipschitz continuous on [to, to+a]% xR: We note that for all ¢t € [to, to+alf,

we have
oftt,p) | _|__2p
op [p2 +5]1/2 |~ 7
where we used W < 1 above. Hence, applying Corollary 4.4.2, we

note that f is Lipschitz continuous in the second argument on [tg, to + a]f x R

with Lipschitz constant L = 2.

From (i) and (ii) above, we note that all conditions of Theorem 4.4.1 are satisfied.
Thus, the dynamic IVP (4.4.4), (4.4.5) has a unique solution, z, such that = €
C([to, to + a]T; R).

d
Example 4.4.5 Consider the strip
§*:={(t,p) : t € [-1,1]f, |p| < o0}
and the scalar dynamic IVP
z® = t+2cosz, for all t € [-1, 1] (4.4.6)
2(-1) = 5. (4.4.7)
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We claim that this dynamic IVP has a unique solution, z, with domain [—1,1]r.

Proof: We show that the given IVP satisfies the conditions of Theorem 4.4.1. Note
that f(t,p) =t + 2cosp for all (t,p) € S*.

(i) The function f is right-Hilger—continuous on S*: Note that the composition
function k(t) := t + 2 cos z(t) will be rd—continuous for all ¢ € [~1,1]t. Hence,

our f will be right-Hilger—continuous on S*.

(i) f is Lipschitz continuous on S*: We also note that for all (¢, p) € S*, we have

}m'=|—2sinp|§2.
Op

Hence, by Theorem 2.2.2, f is Lipschitz continuous in the second argument on

S* with Lipschitz constant L = 2.

Thus, all conditions of Theorem 4.4.1 are satisfied and the dynamic IVP (4.4.6),

(4.4.7) has a unique solution, z, such that dom z = [-1, 1]t

O

Example 4.4.6 Let x = (z1,z2) and a > 0. Let f : [0,a]f x R? — R2. Consider
the dynamic IVP

x2 = (t+2z1,t — 1), for all t € [0, a]%; (4.4.8)

x(0) = 0 = (0,0). (4.4.9)

We claim that the above dynamic IVP has a unique solution, x, such that x €

C([0,1]1; R?).

Proof: We show that the IVP (4.4.8), (4.4.9) satisfies the conditions of Theorem
4.4.1. Note that

f(t,p) = (t + 2p1,t — p2), for all (¢,p1), (t,p2) € [0,a]F X R.

(i) The function f is right-Hilger—continuous on [0, 1)% x R?: Note that the com-
position functions g(t) := t+ 2z;(t) and k(t) := t — z2(t) will be rd-continuous

for all t € [0, 1]1. Therefore, our f is right-Hilger—continuous on [0, aJ§ x R2.
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(4) f is Lipschitz continuous on [0, al§ x R%: We also note that for p = (p1,p2),

we have, for all t € [0, a]%,

HED) | 0=
and
'Q%” =1(0,-1)|l = 1.

Hence, by Corollary 4.4.2, f satisfies a uniform Lipschitz condition on [0, a]% x

R2, with Lipschitz constant L = 2.

Thus all conditions of Theorem 4.4.1 are satisfied and the dynamic IVP (4.4.8),
(4.4.9) has a unique solution, x € C([0, a]t; R?).

d

Our next theorem concerns the existence of solutions to the dynamic IVP (4.1.3),
(4.1.4) using Banach’s fixed—point theorem. We note from Lemma 2.1.4 that a
solution of the form (2.1.14) is well-defined for (4.1.3), (4.1.4). We define a modified
Lipschitz condition for f that guarantees a unique solution to (4.1.3), (4.1.4) using

(2.1.14).

Theorem 4.4.7 Let f : [to,t0 + a]f x R®™ — R" be a right-Hilger—continuous func-
tion. Let L > 0 be a constant. If there exists v > 1 with B := L7y such that f

satisfies

(L+p@®)B)|EE,p) — £(t,a)ll < Lip —all, (4.4.10)

for all (t,p), (t,q) € [to, to + a]f x R",

then the dynamic IVP (4.1.3), (4.1.4) has a unique solution, x, such that x €
C([to, to + a]1;R™). In addition, if a sequence of functions z; is defined inductively
by choosing any zg € C([to, to + a]T; R™) and setting
t
zi+1(t) :=x0 + / f(s, 2] (s)) As, for all t € [to, to + alT, (4.4.11)

to

then the sequence z; converges uniformly on [to,to + a|r to the unique solution x of

(4.1.3), (4.1.4). Purthermore, x® € Cpq([to, to + al%; R™).
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Proof: We note that (4.4.11) is well-defined, as f is right-Hilger—continuous. Con-
sider the complete metric space (C([to, to + a]T;R™),dg). Let L > 0 be the constant
defined in (4.4.10) such that 3 := Ly, where v > 1 is an arbitrary constant. Define,
for all z € C([to,to + a]T; R"),
t
[Fz](t) := xo + »/to f(s,279(s)) As, for all ¢ € [to, to + a]T. (4.4.12)
Since f is right-Hilger—continuous on [to, ¢ + alf x R™, we have [Fz] € C([to, to +
a|r; R™) for all z € C([to, to + a]1; R™). Further, [Fz](to) = x¢. Hence,

F: C([to,to + a]T;R”) — C([to,to + a]T;R”).

Thus, according to Lemma 2.1.4, fixed points of F will be solutions to the dynamic
IVP (4.1.3), (4.1.4). We prove that there exists a unique, continuous function x
such that Fx = x. To do this, we show that F is a contractive map with contraction
constant o = 1/ < 1 so that Banach’s Theorem applies.

Let p,q € C([to, to + a]T; R™). Employing (4.3.1), we have

[Fp(t) — Fa(?)||

dg(Fp,Fq) := sup
ﬂ( ) t€lto,to+alr eﬂ(t7 tO)
1 t
< sup [ 1£(s, 7 () — £(s,°(5))] As]
tefto,to+alr LEA(E t0) St
< o [ [ g -l s
T teftototalr LEB(E t0) Ji, 1+ 1B ’

where we used (4.4.10) in the last step. Moreover, we note from Theorem A.6.4(2)
that

1 _ eg(t, to)

= , forall t € T. (4.4.13)
1 + :u'(t)lg 6%(t, tO)

Using this property of the exponential function, eg(t,to) in this case, and the as-

sumption 3 = L, our further computations take the form

1 tL eg(s, to) - -
dg(Fp,Fq) <  sup Ip?(s) —q°(s)| As
s(Fp.Fa) te[to,to+alT [e[;(t, to) Jto eg(S,to)

1 1 ‘ p’(s) —q’(s)
< — sup Beg(s,to)  sup “ (0)( o) As
Y teftoto+alr | €8(10) Jio seltototar  €plS To
1 1 N
= — dg(p,q) sup {—— eg (s, to) As]
Y IB( , tG[to,t0+a]'[ 6ﬂ (t’ to) to “ ,
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where we used (4.3.1) and Theorem A.6.4(7) in the last step. Thus, we obtain

ds(Fp,Fq) < = ds(p,q) sup [gg(i—to)(eg(t,to)—l)]

t€[to,to+alT

ds(p,q) [1 - m]

< = dg(p,q),

R|= Q= 2=

where 1/y = a < 1. Thus, our F satisfies (4.2.1) and is a contractive map. Thus,
Banach’s Theorem applies and there exists a unique fixed point x of F in C([to, to +
a]r;R™). Banach’s Theorem also yields that the sequence z; defined in (4.4.11)
converges uniformly to x in the S—norm, || - ||g, and in the sup-norm, || - |jo, to that

fixed point x. This completes the proof.

d
Example 4.4.8 Consider the dynamic IVP
1
® = T o000 sin z°, for all t € [0, 1]7; (4.4.14)
z(0) = 0. (4.4.15)

We claim that the above dynamic IVP has a unique solution z € C([0,1]t;R).

Proof: We show that the IVP (4.4.14), (4.4.15) satisfies the conditions of Theorem
4.4.7. Note that

1 .
f(t, p) = m sin p, fOI‘ all (t,p) € [0, 1]!’]}1 X R.

(i) The function f is right-Hilger—continuous on [0,1]% x R: We note that the

composition function g(t) := sin 27(¢) will be rd—continuous for all

1
1+ 2u(t)
t € [0, 1]r. Hence, our f will be right-Hilger—continuous on [0, 1] x R.

(ii) f satisfies (4.4.10): Note that for all t € [0, 1]%, we have

)~ ft,9)] = | |sinp — singl. (4.4.16)

1
T+2u(t)
Note that sin z has continuous partial derivatives on R, which are bounded by
L, = 1. Thus, sinz is Lipschitz continuous by Theorem 2.2.2 with Lipschitz
constant L; = 1 and we can re-write (4.4.16), for all t € [0, 1]T, as

1

60 = 169 <|

llp—q!-
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Hence, all conditions of Theorem 4.4.7 are satisfied and the given dynamic IVP has

a unique solution, z € C([0, 1]; R).

4.5 Generalisations

In this section, we reconsider Theorem 4.4.1 and Theorem 4.4.7 and show that the
results hold for a generalised Banach space.

Let X be a Banach space. Consider a function f defined on T* x X. Then the
following definition describes the right-Hilger—continuity of f : T x X — X.

Definition 4.5.1 Consider an arbitrary time scale T. A function £ : TF x X — X
having the property that f is continuous at each (t,x) where t is right-dense; and

the limits

lim (s, and lim f(t,y
(8,y)—(t7,x) () y—x (t:3)

both exist and are finite at each (t,x) where t is left-dense, is said to be right—Hilger—

continuous on TF x X.

ad

In the following results of this section, || - ||x represents the norm associated

with the Banach space X. The next definition ([19, Definition 8.14]) describes the
Lipschitz continuity of f on [to,to + a]f X< X.

Definition 4.5.2 Let f : [to,to + alf x X — X. If there exists a constant L > 0

such that

I£(t,p) — £(¢, @)llx < Lllp —dllx, (4.5.1)
fOT‘ all (t7 p)7 (t7 q) € [t07t0 + a]"IT‘ X X,

then we say f satisfies a uniform Lipschitz condition on [to, to+alEx X. The smallest

value of L satisfying (4.5.1) is called a Lipschitz constant for f on [to,to + a]f x X.

d
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Let xo be a point of X. Consider a right—Hilger—continuous non-linear function

f : [to,to + alf x X — X and the generalised initial value problems

x2 = f(t,x), for all t € [to, to + a]F; (4.5.2)
x(to) = Xo, (4.5.3)
and
x® = f(t,x%),  for all t € [to, to + a]%; (4.5.4)
x(to) = Xo. (4.5.5)

The following definitions describe solutions of the generalised IVPs (4.5.2), (4.5.3)
and (4.5.4), (4.5.5).

Definition 4.5.3 A solution of (4.5.2), (4.5.3) is a function x : [to,to + a]r — X
such that: the points (t,x(t)) € [to,to + a|t X X; x(¢) is delta differentiable with
xA(t) = £(t,x(t)) for each t € [to,to + al%; and x(to) = Xo.

O

Definition 4.5.4 A solution of (4.5.4), (4.5.5) is a function x : [to,to + a]r — X
such that: the points (t,x(t)) € [to,to + alr X X; x(t) is delta differentiable with
xA(t) = £(t,x°(t)) for each t € [to,to + a)%; and x(to) = Xo.

0

The following two lemmas establish the equivalence of the dynamic IVPs (4.5.2),
(4.5.3) and (4.5.4), (4.5.5) as delta integral equations in X. The proofs being similar

to Lemma 2.1.3 and Lemma 2.1.4 have been omitted.

Lemma 4.5.5 Consider the dynamic IVP (4.5.2), (4.5.3). Letf : [to,to+alf x X —
X be a right-Hilger-continuous function. Then a function x solves (4.5.2), (4.5.3)
if and only if it satisfies

x(t) = /tt f(s,x(s)) As+ xo, for allt € [to,to+alr.  (4.5.6)

0

O
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Lemma 4.5.6 Consider the dynamic equations (4.5.4), (4.5.5). Letf : [to, to+a)f x
X — X be a right-Hilger—continuous function. Then a function x solves (4.5.4),
(4.5.5) if and only if it satisfies the delta integral equation
t
x(t) = / f(s,x7(s)) As + xq, for all t € [to, to + alt- (4.5.7)
to

O

Remark 4.5.7 Lemma 4.5.5 and lemma 4.5.6 also hold for f being continuous,

as all continuous functions are right-Hilger—continuous and are delta integrable by

Theorem A.5.2.
O

The following theorem is an extension of Theorem 4.4.1 to the generalised Banach
space X. It also partially extends ideas in [19, Theorem 8.16] in the sense that it
proves the existence of a unique solution on the (entire) compact interval [to, to+a]T.
However, the result does not consider the other half of the interval [ty — a, to|T for

which the Lipschitz continuity of f is not a sufficient condition ([19, p.323]).

Theorem 4.5.8 Let f : [to,to + a]f x X — X be right-Hilger—continuous. If there

ezists a positive constant L such that

If(t,p) — f(t,a)llx < L [lp—dllx, (4.5.8)

for all (t,p), (t:q) € [to,to + alf x X,

then the dynamic IVP (4.5.2), (4.5.3) has a unique solution x € C([to, to + a]T; X).
In addition, if a sequence of functions y; is defined inductively by choosing any
yo € C([to, to + alT; X) and setting
t
yi+1(t) = Xo +/ f(s,yi(s)) As,  for allt € [to, to + alT, (4.5.9)
to
then the sequence y; converges uniformly on [to,to + a]r to the unique solution x of

(4.5.2), (4.5.3). Furthermore, x? € Crq([to, to + alf; X).

Proof: Since X is a Banach space, X is a complete metric space. As proved in

Theorem 4.4.1, the map F defined by (4.4.3) will be contractive in C([to, to+a]T; X).
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Thus, Banach Contraction Principle holds for F [41, Theorem 1.1] and F has a unique
fixed point x in C([to, to + a]r; X) such that, for all y € C([to, to +alr; X)and ¢ 2> 1,
the sequence y; defined by

t
yisa(t) = / £(s,yi(s)) As + xo, for all ¢ € [to, to+ ]y (4.5.10)
t

0
converges uniformly in the S—norm, | - ||g, and the sup—norm, | - ||o, to that fixed
point x in C([to,t0 + a]T; X) and x will be a solution to (4.1.1), (4.1.2) by Lemma
4.5.5.

O

Theorem 4.5.9 Letf : [to, to+alf x X — X be a right-Hilger-continuous function.
Let L > 0 be a constant. If there exists v > 1 with B := Ly such that £ satisfies

(1+pu(@®)B)IfE p) — £(t,d)lx < Lip—dlx, (4.5.11)

for all (¢, p), (t,q) € [to,to + a|f X X,

then the dynamic IVP (4.5.4), (4.5.5) has a unique solution, x, such that x €
C([to,to + a]1; X). In addition, if a sequence of functions z; is defined inductively
by choosing any zo € C([to, to + a]rT; X) and setting
t
zi+1(t) :=Xo +/ f(s,27(s)) As, for all t € [to, to + alT, (4.5.12)
to
then the sequence z; converges uniformly on [to,to + a|T to the unique solution x of

(4.5.4), (4.5.5). Furthermore, x* € Crq([to,to + af; X).

Proof: The proof is the same as for Theorem 4.5.8, as from Theorem 4.4.7, F defined
by (4.4.12) will be contractive in C([to,to + a]r; X) and, so, Banach Contraction
Principle holds for F by [41, Theorem 1.1].

O

We note that Theorem 4.5.8 and Theorem 4.5.9 ensure the existence and unique-
ness of solutions to the first order non-linear IVPs of the form (4.5.2), (4.5.3) and
(4.5.4), (4.5.5) in the entire span of Banach spaces of continuous functions defined
on [tg,to+ a]r. In this way, these results are stronger as compared to Theorem 4.4.1

and Theorem 4.4.7 which confine the solutions to the space R".
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In the next section, we take a reverse approach and explore existence and unique-
ness of solutions within smaller subsets of X employing the local version of Banach’s

fixed point theory.

4.6 Local Banach theory

The Banach principle introduced the ideas of unique fixed points of contractive maps
in metric spaces no matter how large they are. However, not all maps are contractive
for an entire space but they may be contractive within a small subset usually consid-
ered as a ball in a metric space. Such maps are called locally contractive maps [34,
pp.10-11]. In order that locally contractive maps can be utilised for having fixed
points within a ball in a metric space, there exists a local version of the Banach

theorem presented as the following corollary [34, Corollary 1.2].

Corollary 4.6.1 Let (X,d) be a complete metric space containing an open ball hav-

ing centre xo and radius r. That is, there exists
B (z0) :={z € X :d(z,z0) <7} C X. (4.6.1)

Let F : By(z9) — X be a contractive map with a positive number a < 1 as the

contraction constant. If
d(Fzo,z0) < (1 — a)r, (4.6.2)
then F has a unique fized point in B,(xo).

O

The next results concerns the existence and uniqueness of solutions to dynamic

equations (4.1.1), (4.1.2) within certain balls using the local Banach corollary.

Theorem 4.6.2 Let M > 0 and define
RF := {(t,p) : t € [to,to + a]F and ||p — xo| < M}.

Consider a right—Hilger—continuous function f : R — R". If:
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1. there exists a positive constant L such that

£, p) — £(t,Q)ll < Llp —aql, for all (¢,p),(t,q) € R";  (4.6.3)

2. the inequality

to+a M
f(s,xo)|| As < 4.6.4
/to 1£(s, x0) T (4.6.9)

holds,

then the dynamic IVP (4.1.1), (4.1.2) has at least one solution x on [to,to + alT,

with a unique solution satisfying

M
dr(x, < —. 4.6.5
£(X; Xo) er(to + a, o) (4.6.5)
Proof: Choose R > 0 such that
Rer(to+a,to) = M. (4.6.6)

Let dp satisfy (4.3.1) for 3 = L. Consider the complete metric space (C([to, to +
a|t;R™),dr) and an open ball Br(xo) C C([to, to + a]T; R™) defined by

BR(XO) = {X € C([to, to + a]T;Rn) : dL(X, Xo) < R}, (4.6.7)
with an operator F : Br(x0) — C([to, to + a]1;R"™) defined by

[Fx](t) := /tt f(s,x(s)) As+ xo, for all t € [to, to + alT. (4.6.8)

We show that F is a contractive map with a contraction constant a < 1. We also

show that F satisfies (4.6.2) and, so, by Corollary 4.6.1, has a unique fixed point in
B R(XO)-
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Let u,v € Bg(xg). Then, using (4.3.1) together with (4.6.3), we can write

N O R 220
teftoto+aly  €L(t t0)
1 t
< sw | [ 16, u0e) - H v(e)l A
teftoto+alr LEL(E t0) Jio
- ;
< sup L||u(s) —v(s AS]
t€(to,to+alr Ler(t, to) to u(s) @
i 1 t -
< sup Ley(s,to) sup lu(s) ~ v(s)] As
t€fto,to+alt _eL(tv tO) to s€[to,to+alr eL(‘g’tU)
1 t
= dr(u,v sup [ Ley(s,t As}
)te[to,to+a]1r eL(t, to) Ji, (s, to)

1
= dr(u,v sup [ er(t,tg) — 1 } ,
L( ) t€(to,to+alr eL(t7 tO) ( L( 0) )

where we used Theorem A.6.4(7) in the last step. Thus, our computations reduce to

1
dr(Fu,Fv) < dg(u,v sup {1 - }
( ) (%) t€[to,to+alr er(t,to)

= o) |1 |

Letting

1
= 1 - =, . I\ 4-6.9
. e2(to + a,%0) (4.6.9)

we note

dr(Fu,Fv) < adr(u,v)

and so F is a contractive map. We further note that er(to+a,to) > 0. Using (4.6.4),
(4.6.6) and (4.6.8), we obtain, for all t € [to, to + a]r,

| F(x0) — Xol|
dr(F(x0),X0) =  sup
i (xo) 0) t€(to,to+alr er(t, to)

s [ ol
= sup ——/ f(s,xo s]
teltototalr LeL(tt0) Ji,

M [ 1 }
sup
leL(to + a,t0)]? tefto,to+alr LEL(E:%0)

A

M [ 1 }
"~ ler(to + a,t0)]? LeL(to + a,to)
< M

- [eL(to + a, to)]2

. R

— [er(to + a,t0)]

= (1-0o)R,
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where we used (4.6.9) in the last step. Hence, all conditions of the local Banach
corollary are satisfied. Thus, F has a unique fixed point x € B R(X0). Therefore the

dynamic IVP (4.1.1), (4.1.2) has a unique solution in Bg(xo).

ad
We now present an example to illustrate Theorem 4.6.2.
Example 4.6.3 Consider
R*:={(t,p): t €[0,1/2], |p| <1}.
Consider the scalar dynamic IVP
2 = f(t,x) = 2 +t+0(t), forallte[0,1/2)%; (4.6.10)
z(0) = 0. (4.6.11)

We claim that, for [e2(1/2,0)]? < 4, the above dynamic IVP has a unique solution,

z, such that |z(t)] < for all t € [0,1/2]r.

1
62(1/2a0)
Proof: We show that the given IVP satisfies the conditions of Theorem 4.6.2.

(i) The function f is right—Hilger—continuous on R": We note that the composi-

tion function k(t) := (z(t))? +t+o(t) is rd-continuous for all ¢ € [0,1/2]r and

so, our f is right—Hilger—continuous on RF.
(ii) f is Lipschitz continuous on R®: We note that for all (¢,p) € R® we have
of (t
‘M‘ = |2p| < 2.
Op

Thus, by Theorem 2.2.2, f satisfies a Lipschitz condition on R* with Lipschitz

constant L = 2.

(iii) f satisfies (4.6.4): Note that, for all ¢ € [0, 1/2]t, we obtain using [19, Example
1.25]

1/2 1/2
/ |f(s,0)|As=/ (s + 0(s)) As
0 0
= 1/4,

which satisfies (4.6.4) for [e2(1/2,0)]? < 4. So, by Theorem 4.6.2, the given IVP has

1
a unique solution z such that |z(t)| < —=—=— for all ¢ € [0, 1/2]r.

62(1/2’0)
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4.7 Lipschitz continuity of solutions

In this section, we prove results about the smoothness of solutions to the dynamic
IVPs (4.1.1), (4.1.2) and (4.1.3), (4.1.4), brought forward under the conditions of
Theorem 4.4.1, with respect to their initial state.

Let x(t; A) denote the solution of (4.1.1), (4.1.2) with xo = A. We show that
x(t; A) is Lipschitz continuous in A. That is, there exists a function K (t) > 0 for
all t € [to, to + a]r such that for all A, B € C([to,to + a]t; R") satisfying (4.1.2), we

have
Ix(t; A) —x(t; B)|| < K(t)|A —BJ, forallte [to, to + alT- (4.7.1)

Theorem 4.7.1 Let the condition of Theorem 4.4.1 hold. If x(t; A) is the unique
solution to the IVP (4.1.1), (4.1.2), then x(t; A) is Lipschitz continuous in A, for
all t € [to,to + a]r. More explicitly, if there exist A, B satisfying (4.1.2) then

Ix(¢; A) —x(t;B)|| < er(t,to)|A — B, forallt€ [to,to +a]y.- (4.7.2)

Proof: Let x(t; A),x(t; B) be solutions to (4.1.1), (4.1.2) corresponding to xg = A

and xo = B, respectively. Then, from Lemma 2.1.3, we obtain for all ¢t € [to, to +alT,
Ix(t; A) —x(¢; B)|| < [|A - BJ| + /t: I£(s;x(s; A)) — £(s;x(s; B))|| As,
<IA-BI+L [ IxsA) - xeB) As (079
0
where we used (4.4.1) above. Let us define, for all A, B € R",

¢
r(t) = [ |x(s;A) —x(s;B)| As, for all t € [to, to + aT.
to

Then from inequality (4.7.3), we obtain
rA(t) — Lr(t) < ||[A = B|,  for all t € [to, o + a5 (4.7.4)

Since L > 0, we have 1+ uL > 0, where 4 is the graininess function on [to, ty + alt.
Hence L € R*, and er(t,t9) > 0 (Theorem A.6.4(9)) for all t € [to, to + a]r.
Simplifying (4.7.4) by taking €9 (t,t0) as the integrating factor, we obtain

r2(t)er(t, to) — LeL(t, to)r(t) < |A — B

< , for all t € [to, to + a]F-
er(t to)ed (¢ to) g (t, to)
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Applying [19, Theorem 1.20(v), Theorem 2.35], we have, for all A, B € R,
A
[RUMpLES

eL(t, to) - 6E(t, to) ’
An integration from tg to ¢ on both sides yields, for all ¢ € [to, to + a]T,

r(t) |
<IA-B| [ —— A
ettt = Bl | gy A0
_ ||[A-B] 1
- -L eL(t, to) 1 AS’

1- eL(t, to)

where we have used Theorem A.6.4(8) in the second last step. Therefore, from

for all t € [to, to + a]F.

(4.7.4), we obtain, for all t € [to, to + aT,

eL(t) tO) -1

Ix(t;4) — x(t B - £ (L0

)1a-Bl<]a-BI,
which gives (4.7.2).
0

Theorem 4.7.1 shows that the change in the solution x(¢; A) of (4.1.1), (4.1.2)
with respect to the initial state is bounded by a continuously differentiable function
K(t) := er(t,to). That is, the solution stays between the lines +ey (¢, a)(A — B) for
all t € [tg,to + a], and so, is stable with respect to the initial state.

The above result partially strengthens the ideas in [54, Theorem 2.6.1], however,
it removes the restriction Ly < 1 and adds smoothness to the solution with respect
to the initial state.

The next theorem concerns the Lipschitz continuity of solutions to the dynamic
IVP (4.1.3), (4.1.4). We show that the unique solution of these IVPs satisfies (4.7.1),
with Lipschitz constant K := eg(to + a,to) under the S—norm defined in (4.3.3).

Theorem 4.7.2 Consider the dynamic IVP (4.1.3), (4.1.4) and let the condition of
Theorem 4.4.7 hold. If x(t; A) is the unique solution to (4.1.3), (4.1.4), then x(t; A)
is Lipschitz continuous with respect to A, under the B—norm, with Lipschitz constant
eg(to + a,to). That is, for any positive constant 3 such that 8 := Ly fory > 1, and
for all A, B satisfying (4.1.4),

Ix(t: A) = x(6:B) g < eslto +a,to)|A — Bllg, (4.7.5)

for all t € [to,to + alr.

110



Proof: Since x(t; A),x(t; B) solve (4.1.3), (4.1.4) for all ¢t € [to,to + a]r, we can
write, from Lemma 2.1.2 and (4.3.3),

[x(t; A) — x(t;B)]|g
Ix(t; A) — x(t; B)]

= sup
te[to,to+alr es(t, to)
1 r rt
< sup / f S,XU S,A —f S,XG S,B As+ A —B
P i) L, X (5 A) ~ £, x (s B))] As + |A - B
< o s | L x(s;4) ~ % (5B As| + A B
- 3 — X (S; S _
t€fto,to+alr es(t, to) | to 1 + u(s)B ] B
1 -/t |IXU(S;A) —XU(S’B)“ -
e ) |, et 21 As| + |A - B,
teftototalr €6 10) | Je, 5(s, to) (5. ) _ I ls

where we used the identity (4.4.13) in the last step. Further using (4.3.3) and
Theorem A.6.4(7) with 8 = L+, the above computations take the form

lIx(t; A) —x(t;B)llg

1
< sup
tefto,to+alr €6(t:t0)

As| + ”A - B”B

t o o
x%(s;A) —x%(s; B
/Leg(s,to) sup %7 G) " ( i
to s€lto,to+alt CB(S, 0)

1 1 t
= = |Ix(t; A) —x(t;B)[lg  sup [—— eg (s, to) As] + [|A — Bl|g,

i te[to,to+a]'n' eﬁ(t’ t()) to
1 1
= — ||x(t;A) — x(¢; B sup {1— }+ A-B
S Ix(2; A) —x( )”ﬂte[to,to+a]1r e5(t,%0) I s
1
< t;A) —x(t; B l- — A — B|j3,
< Ix(6 A) = x(tB)ls |1 - s | 1A~ Bl

where we used v > 1 in the last step. A rearrangement of the above inequality yields
Ix(t; A) — x(¢;B)|lg < es(to + a, to)||A — Bl|g, for all ¢ € [to, 0 + a]T.

Hence x(t; A) is Lipschitz continuous in A in the f-norm, with Lipschitz constant
eg(to + a,to). Thus, a variation in x(t; A) is bounded by the lines +eg(to + a, o).

This completes the proof.

g

In our next result, we consider the n-sphere N.(Ag) defined in (3.5.1) and the
n + 1-sphere P, pr(Ao) defined in (3.5.2). We assume that A € N;(Ag). Then the
following theorem guarantees a unique solution to the dynamic IVP (4.1.1), (4.1.2)

in P, ar(Ao). Moreover, the result also ensures the existence of continuous partial
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derivatives of the solution with respect to the initial value xg = A in the n-sphere

N, (Ao).

Theorem 4.7.3 Consider the vector Ag € R™ and positive constants r, M such that

(3.5.1) and (3.5.2) hold. Let f : P, p(Ag) — R" be right-Hilger—continuous. If
of(t, p)
ox
(4.1.1), (4.1.2) has a unique solution x(t; A) for all (t,x) € P, pr(Ao). Furthermore,
ox(t; A)

oA "’

exist and are continuous for all (t,p) € P, p(Ag), then the dynamic IVP

the partial derivatives of the solution, are also continuous in A for all

A € N,(Ap) for all t € [to,to + alT.

Proof: We know from Theorem 4.4.3, that a unique solution to the system (3.1.2),
(3.1.3), which is the same as (4.1.1), (4.1.2) exists in Py p(Aop). Let us call this
solution x(t; A). So, we only show that this solution x(¢; A) has continuous partial

derivatives with respect to the initial value A for all (¢,x) € P, p(Ap). That is,
ox(t; A)

we show that EYN

exists and is continuous in A for all A € N,(Ap) for all
t e [to,to + G]T.

We note, from Theorem 4.7.1, that x(t; A) satisfies a uniform Lipschitz condition
€

er(t, o)

in A. Thus, from [42, p.3], for every € > 0, we can define a § = §(¢) := for

which
[x(t; A) —x(¢; B)[| <, whenever |A — B|| < 4.

Let q := (0,0,---,0,1,0,---,0)T € R™ be the k~th unit vector. Then for an arbi-
trarily small 6 > 0 we define B = A + dq. Using Taylor’s theorem [75, p.624], we

obtain
Ox(HA) | _ 1, IXEGA +da) —x(A)]
0A | -0 5

< lim —
= 5500
= er(t, to),

whenever |A — BJ| <4.

ox(t;A) . .
Thus A exist and are rd—continuous for all ¢ € [to,to + a]r for all A €

N,(Aop). This completes the proof.
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4.8 Dynamic equations of higher order

The ideas of Section 4.3 can be extended to higher-order equations. Consider x to

be a continuously differentiable vector function of order n, where n = 1,2,---. That
is, x = (z1,22, -+, zn). We define the k-th derivative of z as
Ak A1 A
= =z 1=, forall k=1,2,--- ,n,
and define z1, s, -+, z, as follows:
Ty =1 g =22 13:= xA2; R N R :vAn_2; Tn =227, (4.8.1)

If we delta—differentiate the above system of equations, we obtain a set of first order

dynamic equations

:ElA = T9,
5 = 3;
(4.8.2)
xﬁ_l = Tn;
s = 22" =f(t,xy, 29, ,xn) = £(2,%). (4.8.3)
Now consider the dynamic initial value problem
xAF = f(t,x, :I:A,:vAz, e ,xAk_l), for all ¢ € [to, to + a]F; (4.8.4)
z(a) = Ap;5®(a) = Agi - ;2 () = Ag, (4.8.5)
where A; € R. Then this system can be written as
x?® = f(t,x), for all t € [to, to + a]T; (4.8.6)
x(a) = A’ where A= (A17 e ’A’n)a (487)

which is the same as (4.1.1), (4.1.2). Any continuous and n-times delta differentiable
function x satisfying (4.1.1), (4.1.2) will be a solution to the dynamic IVPs (4.8.4),
(4.8.5).

Similarly, if we define o(b) := o(b); and o**1(b) := o(c®(®)) forall k =1, .., n,

then any rd—continuous function z that is n times delta differentiable on a time scale
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interval [a, 0™ (b)]r and satisfies the dynamic IVP

xA" = f(t, x",:cA,:cA2, e ,a:Ak—l), for all t € [to, to + a]’; (4.8.8)

z(a) = Ap;28(a) = Ag;- 5227 (a) = A4 (4.8.9)
will be a solution to this equation.

We now present our results for the higher order dynamic IVPs (4.8.4), (4.8.5) as

follows.

Theorem 4.8.1 Let f : [to,to + alf x R® — R be a right-Hilger—continuous func-
tion, and L* > 0 be a fired number. If, for all p,q € R", f satisfies

I£(t, p) — £(t,@)|* < Li[(p1 — ¢1)* + - + (P — @), (4.8.10)

for all t € [to, to + alF,
then the IVP (4.8.4), (4.8.5) has a unique solution.

Proof: We show that f satisfies the Lipschitz condition (4.4.1) and Theorem 4.4.1
applies.
Consider p,q € R™, then for all t € [to, to + a]§, we can write from (4.8.4)

1£(t, p) — £(¢, )
= |p® - q°|
= (P2 pR) — (g a8+ )l
= ||(p2,p3, "+, £(t, p1,P2, -+, Pn)) — (92,03, - E(t 01,92, -, @),
[(p2 — @2)® + (ps — a3)* + - + |£(t, p1, D2, -+ , Pn) — £(t, a1, G2, - gn) [7]/2
<[(pr— )+ @2 — @)+ -+ (o — )* + |£(t,P) — £(t, @)/
<[pr—a)?+ @2— @)+ -+ (Pn— @)’

+Li[(p1 — q1)% + (P2 — @2)2 + -+ + (P — gn)?]]M?
= [1+L1)((p1 — @) + (P2 — @)% + -+ + (P — gn)*])]M/?

= (14 L1]"*|p —dl|.

Hence, f satisfies (4.4.1) with Lipschitz constant L := [1 + L;]*2. Thus, by Theorem
4.4.1, the IVP (4.8.6), (4.8.7) has a unique solution. In other words, the IVP (4.8.4),

(4.8.5) has a unique solution.

114



The next theorem concerns the uniqueness of solution to the dynamic IVP (4.8.8),

(4.8.9).

Theorem 4.8.2 Let f : [to, g + a]f x R® — R™ be a right-Hilger—continuous func-
tion, and Ly > 0 be a fived number. If there exists 8 = yLa, where v > 1, such that,
for all p,q € R", f satisfies

ﬁw[(pl - QI)2 + 4t (pn - Qn)z]a (4'8'11)

for all t € [to, to + alT,

[£(t,p) — £(t,q)]* <

then the IVP (4.8.8), (4.8.9) has a unique solution.

Proof: We show that f satisfies (4.4.10) and Theorem 4.4.7 applies. In this case,

we define the components z1,--- ,z, of x as
2 n—2 n—1
Ty :=12%; z9:=12°; z3:=22 - zpy =22 1y = 2P , (4.8.12)
and delta—differentiate the above equations taking z° = (z 0 )2 (see Theorem

A.3.11). Thus, we obtain

a:lA = :IJOA;
£E2A = I3,
(4.8.13)
z'r?—l = Tn;
:l:$ = 2" = f(t, 21,22, -+ ,zn) = f(¢,x). (4.8.14)

Then for any p, q € R having components as in (4.8.12), we have from (4.8.14),

1£t, p) — £t @)l = 110", p3s - £t o102, Pn)) — (@ a3, £(, 1,2, 1 4n)),
= (0" -+ (s —as)? + -+ (£(t,P) — £(t, @))% |72
<10 - P+ —a)?+ P2~ @)+ (03— )2+ .+ (Pn — gn)’
+(£(t, p) — £(t,@))* /2
<@ -+ -+ (P2 @)+ + (on — gn)?

2 ) — )% 112
+m[(p1—q1)2+(p2 g2)"+ -+ (pn—aqn)°] |77,
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where we used (4.8.11) above. Thus, our further computations take the form

I£(t ) — £t @)l = (B3 — g )2 +
(1 + MW) [(p1 = q1)* + (P2 — @)? + - + (pn — an)*] ]

<@ -+
(1 + p(t)B)? + Ly)V/?

1/2

1+ u(t)s (01— @1)? + (P2 — @2)2 + - + (pn — a0)*]?
< P1A - (I1A | + )
2 1/2
(a+ ”1 +ﬁ:(t;_ L2) [(p1 — 1)+ (P2 — @2)2 + -+ + (pn — )]/
1 L 1/2
=|p{" - l( ﬂhi)(t;; 2) Ip —dl
Let
a=|p" —af" |.
Then the above inequality becomes
1+ pu(t)B)? + Ly)Y/?
If(tp) — £ )] < o+ | LEAOPEEE g
(14 p(t)B)% + Ly)*/?
<o llp—qll+i 1+ 18 Ip —dl
o 1+pu@)B 1+ ] (A +p®)8)? +L2)1/2|H _q]
- T+ u(®)] poan

Hence, f satisfies (4.4.10) with
L:=all+u(t)8] + [(1 + p(8)B8)* + L2)'?|,

where o = | p?° — qi’A |. Thus, by Theorem 4.3.6, the IVP (4.8.8), (4.8.9) has a

unique solution.
a

In this chapter, we presented results regarding existence of solutions to the sys-
tems (2.1.5), (2.1.6) and (2.1.7), (2.1.8) and also to the scalar IVP (2.1.9), (2.1.10)
using Banach’s fixed point theory and its applications. In the next chapter, we re-
place the above IVPs by another scalar IVP involving nabla equations and explore
existence of solutions within a defined location, using the method of lower and upper

solutions, employing Schauder’s approach from ordinary differential equations.
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Chapter 5

Existence results using lower

and upper solutions

5.1 Introduction

So far we have examined the existence and uniqueness of solutions to first order non—
linear dynamic initial value problems involving delta equations. We used methods
from classical analysis, such as successive approximations, and employed ideas from
fixed point theory, such as Banach’s fixed point theorem. In this chapter we consider

the nabla equation

gV = f(t,z), forallte [0,a].rT,

subject to an initial condition and examine: the existence and uniqueness of solu-
tions to the above initial value problem employing Schauder’s fixed point theorem:;
restriction of solutions within known regions defined by [0, a]r, an upper solution,
u, and a lower solution, /, on [0,a]r. We also establish successive approximations
of solutions via lower and upper solutions to an initial value problem involving the
above nabla equation.

It had been shown in [12] and [11] that the existence results involving lower
and upper solutions for boundary value problems on time scales can be proved with
less restrictions using nabla equations than using delta equations. By a similar
argument, we prove our results using nabla equations to allow the solution to assume

maximal values at the right end point of a given interval of existence, (I, u], using the
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maximum principle. In this way, our existence results are different both in context
and methodology from results proved in Chapter 3 and Chapter 4 for first order
dynamic IVPs.

Our method of employing lower and upper solutions using the maximum principle
to obtain existence and uniqueness of solutions to the IVP (5.1.1), (5.1.2) also make
our results in this chapter different in context and methodology from those proved
in [54, Theorem 4.1.2].

The results follow some notions of La Salle [55] extended to the time scale setting.
In this way, our results exhibit a broader span of modelling a system described as a
first order initial value problem, no matter if the system has a discrete or a continuous

domain or a hybrid of both.

5.1.1 The main objective

We consider a left-Hilger—continuous non-linear function (see Definition A.2.6) f :
[0,a)cT X% [I,u] C R? — R, where [,u are continuous on [0,a]r = [0,a] N T for an
arbitrary time scale T.

Consider the scalar initial value problem
zV = f(t, ), for all ¢t € [0, a], T; (5.1.1)
2(0) = 0. (5.1.2)
Here zV is the ‘nabla’ derivative of z introduced in [13, p.77].

The main aim of this chapter is to answer the following questions:

1. Under what conditions does the dynamic IVP (5.1.1), (5.1.2) have a solution?

2. Under what conditions does (5.1.1), (5.1.2) have solutions lying within the
interval [l,u], where /,u are known to be (respectively) the lower and upper

solutions to the IVP (5.1.1), (5.1.2)?

3. Under what conditions do ! and u approximate solutions to (5.1.1), (5.1.2)

with an error estimate on the i—th approximation?

Our results show that given u,! the upper and lower solutions to the IVP (5.1.1),
(5.1.2) the IVP has at least one solution which is bounded above by u and is bounded
below by I. We apply our ideas to establish non-negative solutions to (5.1.1), (5.1.2).
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5.1.2 Methodology and organisation

Our results in this chapter use the method of lower and upper solutions. The moti-
vation for using upper and lower solutions in our results was developed due to the
wide use of this method to establish existence results for a variety of first and sec-
ond order initial and boundary value problems, see [3], [7], [8], [11], [12], [13], [19],
[22], [86] and the references therein. We use this method to determine: existence
of solutions to the IVP (5.1.1), (5.1.2); and establishing successive approximations
converging to a solution of the above IVP.

This chapter is organised in the following manner. In Section 5.2, we define lower
and upper solutions to the dynamic IVP (5.1.1), (5.1.2) and establish the existence
and uniqueness of solutions to (5.1.1), (5.1.2) within the lower and upper solutions
to (5.1.1), (5.1.2).

In Section 5.3, we show that [(¢),u(t) are zero approximations to solutions of
(5.1.1), (5.1.2) established in Section 5.2, for all ¢t € [0,a]r. We also prove that an
upper bound exists on the error of the i—th approximation on [0, a]t which approaches

to zero for a unique solution.

5.2 Existence results

We prove that the dynamic IVP (5.1.1), (5.1.2) has a solution on [0, a]r that lies
within the interval [I, u], where [(t), u(t) act respectively as lower and upper solutions
to (5.1.1), (5.1.2) for all t € [0, a]r, using Schauder’s fixed point theorem.

We begin with some preliminary ideas that will be used to prove the main results.

Definition 5.2.1 Lower and upper solutions

Let [, u be nabla differentiable functions on [0,a]cT. We call I a lower solution to
(5.1.1), (5.1.2) on [0,a]r f
V() < f(41@),  forallt €0, a]xT; (5.2.1)
1(0) = 0. (5.2.2)
Similarly, we call u an upper solution to (5.1.1), (5.1.2) on [0,a]r if
wV(t) 2 f@t,u(t),  forallte[0,alxT; (5.2.3)
u(0) = 0. (5.2.4)
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Definition 5.2.2 Let D C R. A solution of (5.1.1), (5.1.2) is a function z :
[0,al T — R such that: the points (¢, z(t)) € [0,a)x1 X D; z(t) is nabla differentiable
with xV (t) = f(t,z(t)) for each t € [0,al. 1; and x(0) = 0.

O

All 1d—continuous functions are nabla integrable [19, Theorem 8.45]. The follow-
ing lemma establishes equivalence of the IVP (5.1.1), (5.1.2) as nabla integral equa-
tions. The result is nabla—equivalent of Lemma 2.1.3 for the ‘delta’ case. Therefore,

the proof is omitted.

Lemma 5.2.3 Let D C R. Consider the dynamic IVP (5.1.1), (5.1.2). Let f :
[0,a]xT X D — R be a left-Hilger—continuous function. Then a function x solves

(5.1.1), (5.1.2) if and only if it satisfies the nabla integral equation

z(t) =/0 f(s,z(s)) vs, for all t € [0, a]r. (5.2.5)
g

The following definition and the next two theorems are the keys to our proof for

the existence of solutions to (5.1.1), (5.1.2).

Definition 5.2.4 [88, p.54] Let U,V be Banach spaces and F : ACU — V. We

say F is compact on A if:
e F' is continuous on A;

e for every bounded set B of A, F(B) is relatively compact in V.
O

The next theorem is another form of the Arzela—Ascoli theorem [64, Theorem
1.3] stated in Chapter 3, see Theorem 3.6.4. This form is more suitable for our

results in this chapter.

Theorem 5.2.5 Arzela—Ascoli theorem on T
Let D C C([a,blr;R). Then D is relatively compact if and only if it is bounded and

equicontinuous.
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Theorem 5.2.6 Schauder’s Fixed Point Theorem
Let X be a normed linear space and D be a closed, bounded and convex subset of X .

If F: D — D is a compact map then F has at least one fized point.

Define an infinite strip
Sk :=A{(t,p) : t € [0,a]x,1, and — 00 < p < 0}.

Let g : S¢ — R be a left-Hilger—continuous function. Our next theorem concerns

the existence of solutions to the initial value problem

zV = g(t,x), for all t € [0, al.T; (5.2.6)

z(0) =0 (5.2.7)
in S,. We prove this result by using Schauder’s Theorem.

Theorem 5.2.7 Consider the initial value problem (5.2.6), (5.2.7) with g left—Hilger—
continuous on Sg. If g is uniformly bounded on Sy then (5.2.6), (5.2.7) has at least

one solution, x, such that the point (t,z(t)) lies in the infinite strip
S = {(t,p) : t € [0,a]T, and — o0 < p < o0}.
Proof: From Lemma 2.1.3, a solution of (5.2.6), (5.2.7) is given by
z(t) == /Otg(s,x(s)) v S, for all ¢t € [0, a]T. (5.2.8)
Since g is uniformly bounded on S, there exists M > 0 such that
lg(t,p)| < M, for all (t,p) € Sk. (5.2.9)

Define K := Ma and consider the Banach space (C([0, a];R), |-|o) [82, Lemma 3.3].
Let D c C([0,a]t;R) defined by

D := {z € C([0,a]T; R); |z]o < K}.

Then D is closed, bounded and convex. We show that a compact map F': D — D

exists and Schauder’s Theorem applies.
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Define

(Fa(t) = /0 o(s,2(s)) Us, forallte[0,alp (5.2.10)

Note that F is well defined on C([0, a]T; R) as g is left—Hilger—continuous on Sk.
We show that F' : D — D is a compact map. For this, we show that the following
properties hold for F':

(i) F is continuous on D;
(ii) for every bounded subset B of D, F(B) is relatively compact in C([0, a]T;R),

and verify Definition 5.2.4.

To show that F' is continuous on D, we define
Bk(0):={peR:|p| < K}.

Note that Bg(0) is closed and bounded and hence compact in R. Therefore, g is
bounded and uniformly left-Hilger—continuous on [0, al, 1 X B (0). Thus, for a given
€1 > 0 there exists a ;1 = d1(e1) such that for (¢, 1), (¢, z2) € [0,a].1 X Bg(0), we

have
lg(t,21) — g(t, z2)| < €1 whenever |z — z2| < 41. (5.2.11)

Let x; be a convergent sequence in D with x; — z for all <. Then for every é; > 0

there exists N > 0 such that
|z; — x| < 61, for all 2 > N.

We show that the sequence F; := Fz; is uniformly convergent in R. Let ¢ := €1a.
We note that

|Fz;, — Fz|p = sup |Fzi(t) — Fz(t)|
te(0,a]T

< sup
te[0,a]T

/0 (9(5,7:(5)) — 9(5,2(5))) 7 s

< sup
te[0,alT

/0 19(s, 7:(s)) — g(s,2(5))] Vs

< €1a whenever |z; — z| < §;

€0,
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for all ¢ > N. Thus F; are uniformly convergent on D and hence are uniformly
continuous on D.
We show that F': D — D: Note that for all z € D, we have

|Fzlo := sup |Fz(t)|
tG[O,a]T

t
sup /0 9(s,2(s))| ¥ s

te(0,a]r
Ma

IN

IA

K. (5.2.12)

Thus, F is in D.

Next, we show that for every bounded subset B of D, F(B) is relatively compact
in C[0, a]t using the Arzela—Ascoli Theorem.

Let B be an arbitrary bounded subset of D. Assume x € B. Then we note from
(5.2.12) that we have |Fz|o < K for all t € [0,a]r. Thus F is uniformly bounded on
B.

We also note that for any given € > 0 we can define § := % and for t1,t2 € [0, alT,

we obtain

|[Fz](t1) — [Fz](t2)| =

/ o(5,7(s)) Vs

ta
< / l9(s.2(s))| 75
< M |ty —to]
< €

whenever |t; — t2| < 6. Hence, F is equicontinuous. By the Arzela-Ascoli Theorem,
F(B) is relatively compact in C([a, b]r; R).

From (i) and (ii) above, we note that F : D — D is a compact map. We also
note that F satisfies the conditions of Schauder’s Theorem and, so, has at least one
fixed point in D given by (5.2.8). Hence, (5.2.6), (5.2.7) has at least one solution, z,
such the point (¢,z(t)) € S.

O

The above result ensures existence of a solution to (5.2.6), (5.2.7) when the function

g is bounded in an infinite domain S, and considers this as a sufficient condition for
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the existence of a solution to the above IVP in the infinite domain S,. However, the
result does not ensure the existence if the domain is restricted.

In the next result, we strengthen the above condition by restricting the solution
to (5.2.6), (5.2.7) within a lower and an upper solution to (5.1.1), (5.1.2). Hence we

prove the existence of a solution to (5.1.1), (5.1.2) within the region
Ry = {(t,p) te [Ov a]n,’ﬂ'v and l(t) <p< u(t)}a

where [, u are, respectively, lower and upper solutions to (5.1.1), (5.1.2). To prove
this, we define a modified function g in terms of f in (5.1.1) and prove that g is
uniformly bounded and use Theorem 5.2.7. We also prove that the solution, z, to
the IVP (5.2.6), (5.2.7) satisfies I(t) < z(t) < u(t) for all ¢t € [0, a]T, so that z must
also be a solution to the original unmodified problem (5.1.1), (5.1.2).

Theorem 5.2.8 Let f : R, — R be a left-Hilger—continuous function. Ifl,u are, re-
spectively, lower and upper solutions to (5.1.1), (5.1.2), then the IVP (5.1.1), (5.1.2)
has at least one solution, x, such that I(t) < z(t) < u(t) for all t € [0,aT.

Proof: Consider the IVP (5.2.6), (5.2.7), where g(t,p) is defined on S, such that

for all t € [0, a),T,

( f&,UE) + 1 +l((lt()t)__pp)2, when p < I(t);
g(t,p) = ¢ f(t,p), when I(£) < p<u(t); (5.2.13)
£t u(t)) — — 2= when p > u(t).

( 1+ (p— u(t)?’
We first show that g is left—Hilger—continuous and uniformly bounded on S, and
Theorem 5.2.7 applies.
Note that f is left—Hilger—continuous on the compact region R, and so it is
bounded on R,. Thus, there exists M; > 0 such that | f(¢, p)| < Mj for all (¢,p) € Rx.
We also note that for I(t) > p € R, we have

I(t)—p
1+ (I(t) — p)?

<1, for all ¢t € [0, a|T,

and so
I(t) —p
1+ (U(t) — p)?

f(&, )+ ! <1+ My, for all t € [0, a)x, -
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Define M := 1+ M;. Then from (5.2.13), we obtain
lg(t,p)| < M, for all (¢t,p) € Sk. (5.2.14)

Hence g is uniformly bounded on S.. In addition, the left-Hilger-continuity of f
on R, and the ld—continuity of /,u,p on [0,a]r shows that the right hand side of
(5.2.13) is left-Hilger—continuous on Sy and, so, we have g left—Hilger—continuous on
Sk. By Theorem 5.2.7, the modified IVP (5.2.6), (5.2.7) has a solution, «, such that
the graph (t,z(t)) € S for all t € [0, a]T.

Next, we prove that I(t) < z(t) < u(t) for all ¢ € [0,a]r. We split the inequality
I(t) < z(t) < u(t) into two parts and first show that

I(t) < z(t), for all ¢t € [0, a]T, (5.2.15)

using the contradiction method.
Let r(t) := {(t) — z(t) for all ¢t € [0,a]r. Assume there exists a point ¢; € [0, a|t
such that I(t1) > z(t1). Note that ¢; # 0 as z(0) = 0 = [(0) from (5.1.2) and (5.2.2).

Without loss of generality, we may assume that

= t 5.2.16
r(t1) = tér[%)a;]:TT( ) >0. ( )

Thus, 7(t) is non—decreasing at ¢ = ¢; and, so, 7V (¢;) > 0.
On the other hand, since z(¢;) < I(¢;) we note that using (5.2.6), (5.2.13) and
(5.2.1), we obtain

0 < Tv(tl) = lV tl) — :L‘V(tl)

(
= IV (t1)) — g(t1, z(t1))
l(tl) — iL‘(tl)
( () - a(t)?
v (

= 19(12)) — (b1, 1(t0)) — -
tl)) - f(thl(tl))

/\

IA

0,

which is a contradiction. Hence I(t) < z(t) for all ¢ € [0, alr.

It is very similar to show that u(t) > z(t) for all ¢ € [0, a]r as in the above case.

We omit the details.
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Thus, we have I(t) < z(t) < u(t) for all t € [0, a]r. Hence, from (5.2.13), z(t) is
a solution to (5.1.1), (5.1.2) for all ¢ € [0, a]y. This completes the proof.

g
The following example illustrates the above theorem.
Example 5.2.9 Consider the Riccati initial value problem
zV(t) = f(t,z) = 2% - t, for allt € [0,1],T; (5.2.17)
z(0) = 0. (5.2.18)

We claim that there erists at least one solution, x, to the above IVP such that

—t <z(t) <t forallt € [0,1]r.

Proof: We note that the right hand side of (5.2.17) is a composition of a continuous
function ¢ and a continuous function 22 and hence, is continuous on [0, 1] x R. So
our f is left-Hilger—continuous on [0, 1], X R.
Let us define
I(t) == —t, for all ¢t € [0, 1]T.
Then we note that [(0) = 0 and [V (t) = —1 for all ¢t € [0, 1]y. We further note that

for all ¢t € [0, p(1)]T, we have

1) = £ —t
-1

v

= IV (b).

Thus, our ! satisfies (5.2.1), (5.2.2) and is a lower solution to (5.2.17), (5.2.18).

In a similar way, the function u(t) := ¢ is an upper solution to (5.2.17), (5.2.18)
for all ¢t € [0, 1]7.

By Theorem 5.2.8, there is at least one solution, z, to (5.2.17), (5.2.18) such that
—t <z(t) <tforall t €[0,1]r.

d

Our next result gives a sufficient condition for uniqueness of solution to (5.1.1),
(5.1.2). We show that the solution, z, of the above IVP established in Theorem 5.2.8
is the only solution satisfying I(t) < z(t) < u(t) for all t € [0, a]T.

126



Theorem 5.2.10 Let f be left-Hilger—continuous on R.. Assume l.u are, respec-
tiely, lower and upper solutions of (5.1.1), (5.1.2). If there erxists L > 0 such that
f satisfies

|f(t.p) — f(t. @)l < Llp—gq|,  for all (¢.p),(t.q) € Rx. (5.2.19)
then the solution = of (5.1.1), (5.1.2) brought forward under the conditions of The-

orem 5.2.8 is the unique solution satisfying I(t) < z(t) < u(t) for all t € [0, a]~.

Proof: Let .y be two solutions to (5.1.1), (5.1.2). Then, using (5.2.5). we obtain
for all t € [0, o],

t
l2(t) — y(8)] < /0 £(5.2()) — F(s.9(s))] T's
t
<I /o 12(s) - y(s)| Vs, (5.2.20)

where we employed (5.2.19) in the last step.
Define
r(t) == |z(t) — y(t)]. for all t € [0, a]r.

Note that, L > 0 and so L € £ [12. p.225]. Applying Gronwall’s inequality concern-
ing nabla derivatives [12, Theorem 2.7] (taking f(¢) = 0 and p(¢t) = L) to (5.2.20),
we obtain

r(t) <0, for all t € [0, a]~.

But 7(¢) = |z(t) — y(t)| and so, is non—negative for all t € [0, a]z. Thus, z(t) = y(t)
for all t € [0, a]~.

O

The next theorem is nabla equivalent of Theorem 2.2.2 for a scalar function f

and provides a sufficient condition for f to satisfy (5.2.19). The proof is, therefore,

omitted.
Theorem 5.2.11 Let b > 0. Consider a function f defined on a rectangle of the
type

R.:={(t.p) e Te xR:t€ [0, a]x.7: |p| < b}, (5.2.21)
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or on an infinite strip of the type

Sk :={(t,p) € Tx xR:t €[0,a]xT, |p| < oo} (5.2.22)

of(t,p) . . . . .

If 9p exists for all i =1,2,--- ., and is continuous on Ry (or S), and there is

i
a constant K > 0 such that for all (¢t,p) € Ry (or Sk), we have

t

“ 0f(t:p) H <K, foralli=1,2,--- (5.2.23)
Opi

then f satisfies a Lipschitz condition on Ry (or Si) with Lipschitz constant K = L.
]
The following example illustrates Theorem 5.2.10 using Theorem 5.2.11.

Example 5.2.12 Consider (5.2.17), (5.2.18). We claim that x is the unique solu-
tion of (5.2.17), (5.2.18) such that —t < z(t) <t for all t € [0, 1]T.

Proof. We note from (5.2.17) that f(¢,p) = p? —t for all ¢t € [0, 1], . Thus, for all
t € [0,1].,, We can write

of
| = < 2.
}ap‘ [2p] <2

Thus, f has bounded partial derivatives in [0, 1], % [—t,t] and, by Theorem 5.2.11,
satisfies (5.2.19) with L = 2. Therefore, the solution z of (5.2.17), (5.2.18) estab-
lished in Example 5.2.9 is unique by Theorem 5.2.10.

O

The next corollary establishes existence of a unique, non—negative and bounded

solution of the IVP (5.1.1), (5.1.2) on [0, a]T.

Corollary 5.2.13 Let f : R, — R be a left-Hilger—continuous function satisfying
(5.2.19). Let l,u be lower and upper solutions to (5.1.1), (5.1.2). Ifl(t) = 0 for all
t € [0,alt, then the IVP (5.1.1), (5.1.2) has a unique, bounded and non-negative

solution, z(t), for all t € [0, a]T.

Proof: The proof follows from Theorem 5.2.10, as 0 < z(t) < u(t) for all ¢t € [0, a]t.

The following example illustrates the above corollary.
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Example 5.2.14 Consider the dynamic initial value problem

zV(t) = f(t,z) == p(t) + 2%, for allt € [0,1]p1; (5.2.24)

z(0) = 0. (5.2.25)

We claim that the above IVP has a unique solution x such that 0 < z(t) < 1 for all
te [O, 1}r.

Proof: Note that f(t,p) = p(t) + p> for all (¢,p) € [0,1]. T x R. Since p(t) and p?
are everywhere ld—continuous functions and so is their composition, our f is left—

Hilger—continuous on [0, 1], T x R. We define
I(t):=0, and u(t):=t%, for all t € [0,1]r.
Then we note that I(¢) < u(t) for all t € [0, a]r with {(0) = 0 = u(0).

It is evident that [ satisfies (5.2.1) and so, is a lower solution to (5.2.24), (5.2.25).
We also note that, for all ¢t € [0, 1]t

f(tu(t)) = p(t) +t°
< p(t)+t

= uV(t).

Thus, our u satisfies (5.2.3) and is an upper solution to (5.2.24), (5.2.25). By Theo-
rem 5.2.8, there exists a solution, z, to (5.2.24), (5.2.25) such that 0 < z(t) < t2 < 1,

for all t € [0, 1]T.

Moreover, for all t € [0, 1], we have
lg‘ = [3p?| < 3t* < 3.
op

Thus, f has bounded partial derivatives in [0, 1]t x [0,1] and satisfies (5.2.19) for
L = 3 by Theorem 5.2.11. From Corollary 5.2.13, z is the unique solution to (5.2.24),

(5.2.25) such that 0 < z(t) < 1 for all t € [0, 1]T.
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5.3 Approximation results

In this section, we establish conditions under which lower and upper solutions to
(5.1.1), (5.1.2) approximate the existing solutions of (5.1.1), (5.1.2). We also estab-
lish error estimates on he ¢th approximation.
Let f : R — R be left-Hilger—continuous. Define F' : C([0, a]r; R) — C([0, a]T; R)
by
t
[Fp|(t) = / f(s,p(s)) Vs, for all t € [0, a].
0

Then F is well-defined on C([0, a|r;R). Under the conditions of Theorem 5.2.8, a
fixed point z of F' will be a solution to (5.1.1), (5.1.2) such that I(t) < z(t) < u(t)
for all t € [0, a]r, where [, u are, respectively, lower and upper solutions of (5.1.1),
(5.1.2).

Consider an iterative scheme defined as

(FO](4) = [Fpl(t) = /0 fs.p() Us, forallte[0,an  (5.3.1)
F':= F[F"!),, foralli>1. (5.3.2)

It had been shown in [83, pp.78-79] that, in general, the continuity of a function f
alone is not sufficient for a sequence or subsequences of successive approximations to
converge to a solution on a compact rectangle. In our next result, we show that the
successive approximations defined in (5.3.1), (5.3.2) provide a sequence of functions
that converge to a solution to (5.1.1), (5.1.2).

We assume f to be non—decreasing on R, and prove that if z is a solution to
(5.1.1), (5.1.2) such that I(t) < z(t) < u(t) for all t € [0, a]r, then I(t) and u(t)
approximate z(t) for all t € [0, a]y. We also show that an upper bound on the error
of the ith approximation will be [F'u](t) — [F](¢) for all ¢ € [0, ar.

The next definition describes zero approximation to the solution of (5.1.1), (5.1.2)

(see [55, p.724] for the ODE case).

Definition 5.3.1 Let = be a solution to (5.1.1), (5.1.2) andy : T — R be a ld-
continuous function. We call y(t) a zero approzimation to z(t) for all t € [0, a]r if,

{F'y} converge uniformly to z on [0, alt.
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Theorem 5.3.2 Let f : R, — R be left-Hilger-continuous and l,u are lower and
upper solutions to (5.1.1), (5.1.2). If f is non—decreasing in the second variable on

R, that is, for p < q, we have

f(t,p) < f(t,q),  forall (¢,p), (t,q) € Rg; (5.3.3)

then l(t) and u(t) will be the zero approzimations to a solution z of (5.1.1), (5.1.2)
for all t € [0, a]t.

Moreover, for m,n >0, the sequence F* given by (5.3.1), (5.3.2) satisfies
[F™(t) < [F™H(#) < [FPT)(t) < [F™u)(t), for allt e [0,a]r. (5.34)

Proof: We show that I(t),u(t) satisfy Definition 5.3.1 and (5.3.4) holds for all
t e [0, a]']r.
We note from (5.3.1) that for p = u, we obtain for all ¢ € [0, a]. T

[Fu)(t) = / F(s,u(s)) Vs

< /0 u9(s) Vs
= u(t). (5.3.5)

Similarly, for p = [, we obtain
I(t) < [Fl(t) for all ¢t € [0, a]T. (5.3.6)

Since f is non—decreasing in the second argument and is left-Hilger-continuous on

R, it follows from (5.3.6), (5.3.3) and (5.3.1) that, for all ¢ € [0, a]r
t
P = (P = | fs.19) v

< / £(s,[FU(s)) vs
= [FH(). (5.3.7)

Proceeding in this way, we obtain
[FI|(t) < [FN)(t) < [F() < [FP(t) <---,  forallte[0,d]r. (5.3.8)

Note that, the sequence {F*l} is non-decreasing.
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In a similar way, using (5.3.3), (5.3.1) and (5.3.5), we obtain
[Ful(t) > [Flu](t) > [F?u](t) >---,  forall t € [0,alr. (5.3.9)

Now since I(t) < u(t) for all t € [0, al,, we can write using (5.3.8) and (5.3.9)
that for all t € [0, a]T

[F™](t) < [F"Hl](t) < [F"+1u](t) < [F™u](%). (5.3.10)
We further note that
[F'1](0) = 0 = [Fu)(0). (5.3.11)

We show that the sequence {Fl} converges uniformly to the fixed point z (z(0) =
0).
Define
r(t) := [Fu](t) — [FI](2), for all ¢ € [0, a]T.

Note that, 7(t) > 0 for all ¢ € [0,a]r. Since f is non—decreasing in the second

argument on R,, it follows from (5.3.1) that
rV(t) = f(t,u(t)) — (1)) >0, for all t € [0, a]r.
It is clear from (5.3.10) that for n > m > 0, we have
[F™](2) < [F™)(2) < [Fu](2),
and for n < m, we have
[F™](t) < [F™u](t) < [Fu](2)-
Hence for any m,n > 0, we have the inequality
[F™)(t) < [F™M)(#) < [F™T)(t) < [F™u(t), for all t € [0, alr.

The boundedness and equicontinuity of each F*! can be established in the same way
as in Theorem 5.2.7.
Hence, as i — oo, {F*} converges uniformly on [0, a]r to a fixed point z. Simi-

larly, { F'u} converges uniformly on [0, a]t to a fixed point z. Thus I(t) and u(t) are
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zero approximations to z(t) with ri(t) := [F'u(t) — [F*l](t) as an upper bound on
the error of the i-th approximation for all ¢t € [0, a]r.
If the solution is unique, then r*(t) — 0 for all 4 > 1 for all ¢ € [0, a]r. This

completes the proof.

d

Example 5.3.3 Consider the dynamic IVP
zV(t) = f(t,x) = 2° — ¢, for all t € [0, 1], T; (5.3.12)
z(0) = 0. (5.3.13)

We claim that I(t) = —t and u(t) =t are zero approzimations for (5.2.17), (5.2.18)
for allt € [0,1]t. Moreover, for all t € [0, 1]7, the sequence F* given by

t
FOt) = [Fa)(t) = / (2 - 5) Vs
0
F' := F[F'7), for alli > 1.

satisfies (5.3.4) for any m,n > 0.

Proof We note that f(t,p) = p> —t for all (¢,p) € [0,1]1 x R. Since ¢t and p®
are everywhere ld—continuous functions and so is their composition, our f is left—

Hilger—continuous on [0, 1], x R. We further note that /(0) = 0 = u(0) and for all

te [0, ].],9,'1[‘

F1() = =t +1)
-1
= IV ().

v

Thus, [ satisfies (5.2.1) and so, is a lower solution to (5.3.12), (5.3.13). In a similar
way, we have u satisfying (5.2.3) and so, is an upper solution to (5.3.12), (5.3.13). By
Theorem 5.2.8, there exists a solution, z, to (5.3.12), (5.3.13) such that —t < z(¢t) <*¢,

for all t € [0, 1]T.

Next, we note that for p < g, we have

f(tap) = p3 —t S q3 —t= f(ty Q)v fOI‘ all (t7p)7 (ty Q) € [07 l]n,']I' X [—t,t].
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Thus, f is non—decreasing with respect to the second argument on [0, 1}y x [—t,1]
and so, by Theorem 5.3.2, the functions —t and ¢ are zero approximations to the
solution z of (5.2.17), (5.2.18). We further note that for z = I, we have for all
t € [0,1)r

(FU(t) = /0 (s +5) Vs

v
&

This leads to (5.3.7) and then to (5.3.8). We obtain (5.3.9) in a similar way. Thus,
(5.3.4) holds for any m,n > 0.
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Chapter 6
Some explicit solutions

6.1 Introduction

In this chapter, we present some techniques for extracting explicit solutions for var-
ious types of first order non-linear dynamic initial value problems. We do this by
developing the separation of variables approach and extracting solutions by substitu-
tion. The separation of variables for dynamic equations on time scales is developed
with the help of the chain rule defined in Theorem A.3.11.

Consider a point tg € T where T is an arbitrary time scale and fix o € R.
Assume z is delta differentiable on T® and f : T x R — R is a right-Hilger—
continuous function.

We consider the first order scalar dynamic equations of the types

2 = f(t,z), (6.1.1)
™ = f(t,z°), (6.1.2)
® = f(t,z,2), (6.1.3)

for all t € T*, subject to an initial condition z(to) = zo.

To obtain explicit solutions for dynamic initial value problems of the above types,
we manipulate ideas from ordinary differential equations into the time scale setting.

This chapter is organised in the following manner.

In Section 6.2, we introduce separation of variables approach in the time scale
setting. We do this using the chain rule defined in Theorem A.3.11 for the gener-
alised dynamic equation (6.1.3). The method involves splitting the right hand side
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of (6.1.3) into a quotient of a function of ¢ and a function of z,z” under certain
conditions. The resultant equation comes out to be a separable equation. Examples
including various types of dynamic IVPs solved using the separation of variables
method have been provided.

Section 6.3 includes solutions by substitution manipulating ideas from ordinary
differential equations and transforming them into the time scale setting. Examples

are provided to reinforce the results.

6.2 The separation of variable approach

In this section, we give the definition of a separable dynamic equation and methods
for its solution. The chain rule given by (A.3.7) will be the key tool to separate the
variables in dynamic equations on time scales.

The following definition and result has been published in [82, p.3521].

Let T be any arbitrary time scale and f : T x R? — R be right-Hilger-
continuous. If we can split the right hand side of (6.1.3) as a quotient of a rd-
continuous function g(t) and a continuous function h(z, %) then we can define (6.1.3)

as a separable equation as follows.

Definition 6.2.1 Let g : T — R be rd—continuous and h : R?> — R be a continuous

function. An equation of the form (6.1.3) will be called separable if we can write

8 = f(t,z,2°) = h(agv(ta):‘f)’ for all t € T". (6.2.1)

The next theorem provides a method to solve an equation of the form (6.2.1) with

the help of the chain rule in Theorem A.3.7.

O
Theorem 6.2.2 Consider the initial value problem
® = f(t,z,2°) = 9(t) for all t € T, (6.2.2)
¥ h(:L', xa) ? )
m(to) = Xyp. (623)
If there exists a continuously differentiable real valued function H, such that
1
/ H'[z + k(z° — )] dk = h(z,z7), forallt €T, (6.2.4)
0
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then, the IVP (6.2.2), (6.2.3) has an implicit solution, given by
t
H(z(t)) = / g(s) As+ H(zo), forallteT. (6.2.5)
to

The solution can be ezplicitly obtained if H is globally one-to-one.

Proof: Consider (6.2.2). We separate the variables and obtain
h(z(t),z°(t))z?(t) = g(t),  for all t € T*. (6.2.6)
Using (6.2.4), we replace h in the above expression and write
1
/ H'[z(t) + k(2% (t) — o(t)] dk - 22(8) = g(t),  forallt € T, (62.7)
0
which yields
1
/ H'[z(t) + ku(t)] dk - z2(t) = g(t), for all ¢t € T".
0
By the chain rule (A.3.7) we obtain
[H(z(t))® = g(t), forallte T~

Finally, taking the delta integral of both sides in the above expression and incorpo-

rating (6.2.3) we obtain (6.2.5).

]
The above result is illustrated by the following examples.
Example 6.2.3 Let o be a positive constant. Then a € R, see (A.6.2).
Consider the dynamic IVP
A= sing(t,0) orallt e T, 6.2.8
a — $2 + :L'l‘a + (xo.)27 f ! ( )
z(0) = 1. (6.2.9)
We claim that this IVP is separable and has solution
_q 1/3
z(t) = [—(coso‘(t7 0)—1)+ IJ , forallt € T. (6.2.10)
o
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Proof Consider

g(t) := singy(t,0), and  h(v,07) = v + 007 + (v7)2,
Then, by assumption, our g and h are well defined. Choose

H(v) = 8, andso  H'(v) = 322
We note that
1 1
/ H'[z + k(z® — 2)] dk = / 3[z + k(27 — o)? dk
0 0

1
=3 [xz +z(z? —z) + g(x” —z)?
= (29)% + 227 + 2

= h(z,z%).

Hence, the given dynamic IVP is separable and, by Theorem 6.2.2, has solution given

by (6.2.5). Thus, for all t € T, we obtain
t
H(z(t)) = (2(2))® = / Sing(s,0) As + 1
0
= = (cosa(t,0) = 1) +1.

Since z3 is one-to—one, the above equation yields (6.2.10).

d
Example 6.2.4 Let p € R*. Consider the dynamic IVP
B = ipfg’ for all t € [0, 00)T;
z(0) = 1.
We claim that this IVP is separable and has solution, x, given by
(z(t)? = ;—)(ep(t, 0)—1)+1,  forallte [0,00)T. (6.2.11)

Proof: Define H(v) = v2. Then, we have H'(v) = 2v = h(v), for all v. We also note
that

1 1
/H’[zc+k(x”—x)] dk=/ 2z + k(a” — )] dk
0 0
=z+z°

= h(z,z%).
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Hence, the given dynamic IVP is separable and, by Theorem 6.2.2, has solution given
by (6.2.5). Thus, for all ¢ € [0, 00)T, we have

H(z(t)) = z2(t) = /t ep(s,0) As+1, for all t € [0, 00)T.
0

This gives
(z(t)? = (ep(t 0)—-1)+1, for all ¢t € [0, 00)T.

6.3 Solution by substitution

In this section, we solve some dynamic equations by reducing them to linear equations
by appropriate substitutions. The following theorem provides a generalised method

to solve a dynamic equation by substitution. A special case is followed thereafter.

Theorem 6.3.1 Letp € R. Let x : T — R be delta differentiable and g : R — R be
continuously differentiable. If f : T — R is rd—continuous, then a dynamic equation

of any of the forms

{/01 g’z + ku(t)z?] dk} z® +p(t)g(z) = f(t), (6.3.1)
for all t € T%;
{Al g’[x + k'/.l:(t):z;A] dk‘} :EA +p(t)g(a:") _ f(t), (632)

for allt € T*
can be solved as a linear dynamic equation.

Proof: From the chain rule, we note that the delta derivative of the composition

function g(z) can be obtained as
B = o220 =220 [ olol)+ bu()s(O) b, forall 1€ T
Thus, the above dynamic equations (6.3.1) and (6.3.2) can be written as

[g()]® + p(t)g(z) = f(t), forallteTH (6.3.3)

and [g(:v)]A + p(t)g(z?) = f(t), for all t € T*. (6.3.4)
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If we substitute u = g(z) above, then these equations would result in linear equations

in u of the form

u® + pt)u = f(t), for all t € T*

or  uf +p)u’ = f(t), for all t € T".

The above equations are linear by Definition A.7.5 and can be solved using (A.7.14)
and (A.7.15).

A backward substitution into (6.3.3) (or (6.3.4)) would yield the solution of
(6.3.1) (or (6.3.2)).

The following corollary is a special case of Theorem 6.3.1.

Corollary 6.3.2 Letp € R. Let x : T* — R be delta differentiable and g : R — R be
continuously differentiable. If f : T — R is rd—continuous, then a dynamic equation

of the form
n—1
{ > x’“(x")""l*’“} ™ 4 p(t)z" = f(t),  forallt€T"® (6.3.5)
k=0
can be solved as a linear dynamic equation.
Proof: Note that, for all n =1,2,---, we obtain from [19, p.337]
n—1
(xn)A — .’I:A Z xk(xa)n—l—k_
k=0
Thus, (6.3.5) would take the form
(™2 + p(t)z™ = f(t),  for all t € T*. (6.3.6)

A substitution u = z™ in the above equation would then result in a linear equation
in u and can be solved using (A.7.14). A backward substituion into (6.3.6) would
yield a solution for z. In this way, any dynamic equation of the form (6.3.5) can be

solved by the above substitution.
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Example 6.3.3 Consider the initial value problem

212 +t
A _ )
2= =~ gt for all t € T%; (6.3.7)
z(0) = 1. (6.3.8)

We claim that the above system has an implicit solution

(2())? = Zeg(t, 0~ ;11 for allt €. (6.3.9)

Proof: We note that (6.3.7) can be written as
(z 4 2%)z? = 222 + ¢, for all t € T,
which can further be reduced to
(z%)? — 222 = ¢, for all t € T*".

Using Corollary 6.3.2, we substitute 2 = u and note that (6.3.7), (6.3.8) takes the

form

u® =2u+t,  forallteT" (6.3.10)

u(0) = 1. (6.3.11)

From (A.7.10) we note that (6.3.10) is linear. Since 1+ 2u > 0, we have 2 € R*.
Thus, the solution of the IVP (6.3.10), (6.3.11) will be given by (A.7.14) as

t
u(t) = ea(t,0) +/0 s ea(t,o(s)) As.

We further note that using Theorem A.6.4(8), the above solution can be simplified,

for all t € T, as follows.

u(t) = ea(t,0) +/0 eg(z, ) As

= es(t,0) — %/Ots [ezzjt)}A As

= ex(t0) - 3 ['ﬁ 0- /o T AS} ’
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where we used (A.5.4) in the last step. This yields, for all t € T

u(t) = ea(t,0) — {“%/otgﬁ—a As}

et - (i - =i )]

t 1 1
= 62(t, 0) — 5 - Z + Zez(t, 0)
1

B! t
= Z€Q(t, O) - § - Z

2

Since z? is not globally one-to-one in R, the backward substitution u = 2 in the

above equation yields the implicit solution
) t 1
2 = — _—— = -
(z(t)) 462(t, 0) L for all t € T,

by Theorem 6.2.2.
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Chapter 7

Conclusions and open problems

This work presented a series of results regarding non-multiplicity, existence, unique-
ness and successive approximations to solutions of first order dynamic equations on
time scales that can model non-linear phenomena of a hybrid stop-start nature.

The field of dynamic equations on time scales was introduced in 1988 [45] and has
gained a lot of attention in recent years, particularly, in the non—linear theory. Most
investigations have been on boundary value problems on time scales while many
areas of initial value problems have yet to be discovered.

Our results considered initial value problems, mostly with fixed initial conditions.
This can be further extended considering periodic initial conditions and also with
conditions that are continuous functions of t. We presented such a case in Chapter
4 regarding successive approximations to solutions of vector dynamic IVPs.

Extending Roger’s ideas from ordinary differential equations [70, pp.609-611] to

the time scale setting, we can establish the non-multiplicity of solutions to the scalar

dynamic IVP

2 = f(t,x), for all ¢ € [0, a]r; (7.0.1)

z(0) = 0, (7.0.2)

Let D C R. Define

Rf :={(t,u) : t € (0,a]r and u € D}.

Then the following conjecture can be investigated.
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Proposition 7.0.4 Let f : R® — R be right-Hilger—continuous. If there erists a
. . . 1
positively regressive function p(t) := —— for allt € (0,alr such that f satisfies the

to(t)

conditions
(@) [f(tu) = f@v)| < p()|u—v|, for all (,u),(t,v) € R*;

(b) f(t,z) = o(p(t)ep(t,0)) for allt € (0,alr. That is, for a given 0 < € < 1/2 we
have

f(t,x) =€ p(t)ep(t,0) for all t € (0, a]T;

then the IVP (7.0.1), (7.0.2) has, at most, one solution z : [0, alr — R, with 2(t) € D
for all t € [0, alr.

It will be interesting to investigate existence of solutions of singular and non-
singular initial value problems on time scales. Singular initial value problems have
important applications in industry that display a hybrid structure [84].

The Banach space constructed in Chapter 3 also provides a platform to in-
vestigate solutions of initial value problems extended to the entire neighbourhood
[to — a,to + a]t of a point ¢ty € T or within a smaller interval [ty — a, to + a]r C

[to —a,to+ G,]T.
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Appendix A

Notation and fundamentals

This appendix explains notation used in this work, basic ideas and definitions of

time scale calculus and some preliminary results.

A.1 Notation
Throughout these pages, we will follow the notation given below.
e T denotes an arbitrary time scale, which is a closed, non—empty subset of R.

e [a,b|r — an interval in T with b > a.

f = (f1, fe, -, fn) — an n—dimensional veiy:tor function.

e x = (x1,%2, - ,Zn) — an n—dimensional vector function.

f — a scalar function.

T — a scalar function.

e All other bold faced letters refer to an element in R", otherwise they refer the

element to be in R.
e X =xoo0.

x2 — the delta derivative of x.

zV — the nabla derivative of z.
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e (a,b), where a,b € R™ — the usual Euclidean inner product on R".
e || - || - the Euclidean norm on R™.

e For any ty € T, we will write e;(-,t9) = e(+, to).

A.2 Basic time scale calculus

Definition A.1.1 The time scale

A time scale, denoted by T, may be any non—empty closed subset of R. For example,
R,Z",[-1,0)U[1,2] and {z €R:|z|<1}U{n/2:n € N}
are examples of time scales.

d

Graphically, we can think of the points on a time scale to be as shown in Figure

Al

Figure A.1:

An arbitrary time scale may or may not be connected. The notion of connectivity
of points in a time scale is described in terms of the forward and backward jump

operators defined as follows:

Definition A.1.2 The forward and backward jump operators

Let T be an arbitrary time scale and t be a point in T. The forward jump operator,

o(t) : T — T, is defined as
o(t):=inf{s € T:s >t} for allt € T.

In a similar way, we define the backward jump operator, p(t) : T — T, as
p(t) :=sup{s € T:s < t}, for allt € T.
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Thus, in Figure A.1, we note that 0(A) = A while ¢(B) = C. Similarly
p(F) = E = p(E). In this way, the forward and backward (or right and left)
jump operators declare whether a point in a time scale is discrete and give the
direction of discreteness of the point. The following table describes the left— and

right—discreteness of a point ¢ in an arbitrary time scale T.

Point Description
right—dense o(t)=t
right-scattered o(t)>t
left—dense p(t) =t
left—scattered p(t) <t

isolated p(t) <t <o(t)

dense p(t) =t=o0(t)

The ‘step size’ at each point of a time scale is given by the forward graininess

function, u(t), or the bac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>