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Abstract

Meshfree methods, which use linear combinations of radial basis functions (RBFs) to
construct approximations, have become popular for the numerical solution of partial
differential equations (PDEs).

The Wendland functions are a class of compactly supported, piecewise polynomial
RBFs which are important as they use the minimum degree polynomial for a specified
smoothness and their compact support leads to sparse linear systems.

A practical issue is the choice of scale to use for the RBFs. A small scale will lead to
a sparser and better conditioned linear system, but at the price of poor approximation
power. Conversely, a large scale will have better approximation power but at the price
of an ill-conditioned linear system.

We firstly consider a generalisation of the Wendland functions, which allows greater
freedom in the choice of parameters, and give sufficient and necessary conditions for
these functions to be positive definite, as well as classifying the native spaces generated.
We give closed form representations for and properties of the Wendland functions and
their Fourier transforms.

By an appropriate choice of scaling, we investigate the behaviour of the Wendland
functions as the smoothness parameter goes to infinity. This provides insights into the
selection of the parameters of the Wendland functions.

We then consider multiscale algorithms for the numerical solution of PDEs. These
construct the approximations over several levels, each level using a Wendland RBF with
a different scaling factor.

We present a theoretical and practical analysis of two multiscale algorithms for
Galerkin approximation of elliptic PDEs on bounded domains, including results on con-
vergence and condition numbers. Convergence is investigated in terms of the mesh
norm and the angles between subspaces. The issue of the supports of the RBFs overlap-
ping the boundaries is also considered in our stability analysis.

Finally we consider a multiscale algorithm for collocation approximation of elliptic
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PDEs and the Stokes problem on a bounded domain. We provide results on conver-
gence and condition numbers. For the Stokes problem, we use a divergence free RBF
constructed from the Wendland functions, since the Wendland functions are not diver-

gence free.
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Notation

|x] The largest integer < x

[x] The smallest integer > x

A Laplacian operator

n Outward unit normal vector

IN Set of natural numbers {1,2,3,...}

No Set of natural numbers including zero {0,1,2,3,...}
R Set of real numbers (—o0, c0)

Cks(Q) The Holder space with exponent k

pFy(;5x)  Generalised hypergeometric function

H™(Q) Sobolev space of order T

H™(0;div) Sobolev space of order T consisting of divergence-free functions
Hy(y) Struve function of order v

Jv(y) Bessel function of the first kind with order v

Ruyu(y) Lommel polynomials

Suv(y) Lommel function of the first kind

Tu(y) Chebyshev polynomial of the first kind of degree n
U, (y) Chebyshev polynomial of the second kind of degree n
Y, (v) Bessel function of the second kind with order v

f(2) Fourier transform of a function f € L;(IR%)

Fap(z) d-dimensional Fourier transform of a radial function ®(x) = ¢(]|x||2)
Go(y) Gaussian radial basis function with scale parameter ¢
Go(2) Fourier transform of Gy(y)

$or(y) Original Wendland function
Prr1(y) Missing Wendland function
Pua(y) Generalised Wendland function






Chapter One

Introduction

The Wendland functions are a class of piecewise polynomial compactly supported radial
basis functions with a user-specified smoothness parameter. The Wendland functions
were originally derived in Wendland [47], generating integer-order Sobolev spaces in
odd dimensions, and Sobolev spaces of order an integer plus a half in even dimensions.
These were then extended to generate integer-order Sobolev spaces also in even dimen-
sions in Schaback [38] (Schaback called these the “missing” Wendland functions). They
are uniquely defined for a given spatial dimension d and a smoothness parameter k (up
to a constant multiplier). All the Wendland functions are equal to zero outside [0,1].

The original Wendland functions are constructed with the minimal degree polyno-
mial for a given smoothness that gives rise to a d-dimensional positive definite function.
They are unique up to a multiplicative constant when k > 0. Another important prop-
erty is that for an odd space dimension d and for k a non-negative integer the Wendland
function is the reproducing kernel of a Hilbert space which is norm equivalent to the
Sobolev space H*T t¥(R¥) [51, Chapter 10].

Schaback [38] extended Wendland'’s original approach to cover the missing Wend-
land functions, which are the reproducing kernels of integer order Sobolev spaces in
even dimensions d. An important distinction between the original Wendland functions
and the missing Wendland functions is that the missing Wendland functions, whilst
still being compactly supported, now have logarithmic and square-root multipliers of
polynomial components. The support of the original and missing Wendland functions
isr € [0,1].

Generalised Wendland functions extend the original and missing Wendland func-
tions by allowing greater freedom in the range of permissible parameter values. They
were first considered in [38] and then studied further in [23]. Several conjectures regard-
ing the properties satisfied by the generalised Wendland functions were raised in [38]
and are confirmed in this thesis.

Radial basis functions have become increasingly important in recent years for solving

PDEs due to the computational advantages of a meshfree approach, as well as due to
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the sparse linear systems that result from a compactly supported radial basis function.

A practical issue that arises is that of which scale to use for the radial basis functions.
A small scale will lead to a sparse and consequently well-conditioned linear system, but
at the price of poor approximation power. Conversely, a large scale will have better
approximation power but at the price of an ill-conditioned linear system.

Many examples may naturally exhibit multiple scales, for example, constructing an
approximation for the height of the earth’s surface may suggest a “large scale” to be
used over desert regions and a “fine scale” over areas of high variability, such as the
Himalayas. It appears much more appropriate to allow different scales in different
regions. Of course, this comes at the price of having to select which scales to use in
which regions but this is not the topic of this thesis.

Hence it is of great interest to develop algorithms to allow approximation with the
use of multiple scales. Such a multiscale algorithm for interpolation was first proposed
in [14] and [37], but without any theoretical grounding. Theoretical convergence was
proven in the case of the data points being located on a sphere [25] and then extended
to interpolation and approximation on bounded domains in [53].

We can now list the contents and new contributions of this thesis.

Chapter 2 provides background material that will be required in the remainder of
the thesis.

Chapter 3 defines and gives closed form representations for and properties of the
generalised, original and missing Wendland functions. The new contributions in this

chapter are:

e The closed form representation for the original Wendland functions in Theorem

3.2 (due to Simon Hubbert).;
e The properties of the original Wendland functions in Lemmas 3.3 - 3.6;

e The closed form representation for the missing Wendland functions in Theorem

3.7.

Chapter 4 investigates properties and gives closed form representations for the
Fourier transform of the the generalised Wendland functions. The new contributions

in this chapter are:

e Sufficient and necessary conditions for the generalised Wendland functions to gen-

erate a d—dimensional positive definite function in Theorem 4.4;



e The asymptotic decay of the generalised Wendland functions in Theorem 4.5 and

their native spaces in Corollary 4.6;
e The Fourier transform “dimension drop” in Theorem 4.9;

e The closed form representations for the Fourier transform of the original Wend-
land functions in odd and even dimensions in Theorems 4.11 and 4.12. The proof

that several of the by ; coefficients are 0 in Theorem 4.12 is due to Simon Hubbert;

e The closed form representations for the Fourier transform of the missing Wend-

land functions in even dimensions in Theorem 4.13;

e Theorem 4.14 which states when the Fourier transform of the generalised Wend-

land functions is decreasing.

Chapter 5 considers the limiting behaviour of the generalised Wendland functions as
the smoothness parameter a goes to infinity. It is shown that the generalised Wendland
functions, with a change of variable, converge uniformly to a Gaussian on the real half-
line. We recall that the Gaussian radial basis function with scale parameter ¢ > 0, which

we denote by Gy(y), is given by
Go(y) :== e 0, yeR.

The results in this Chapter are used to give insights into the selection of the user-

specified parameters. The new contributions are:

e The value of the generalised Wendland functions at the origin and the area under

the generalised Wendland functions in Lemmas 5.1 and 5.2;

e The definition of the normalised equal area Wendland functions in Theorem 5.3

(due to Robert S. Womersley);

e The limit as &« — oo of the Fourier transform of the normalised equal area Wend-

land functions in Theorem 5.6;

e The limit as @« — co of the normalised equal area Wendland functions in Theorem
5.7. The proof of Theorem 5.7 was rewritten in a more concise style by Ian H.

Sloan.

Chapter 6 provides an overview of solving PDEs (with a single scale) with the Wend-
land functions, using both Galerkin approximation and collocation. The new contribu-

tions in this chapter are:
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e A L error bound between the true solution and our approximation when using
(single scale) Galerkin approximation for an elliptic PDE with Neumann and/or

Robin boundary conditions in Lemma 6.2;

e A L, error bound between the true solution and our approximation when using

(single scale) collocation approximation for an elliptic PDE in Lemma 6.3;

e A L error bound between the true solution and our approximation when using
(single scale) collocation approximation for the Stokes problem (on a bounded

domain) in Theorem 6.6.

Chapter 7 provides a theoretical and practical analysis of two multiscale algorithms
for Galerkin approximation of elliptic PDEs on bounded domains using Wendland func-
tions. We note that these two multiscale algorithms have been investigated before, see

[50]. The new contributions in this Chapter are:

e A proof that the approximation from the first multiscale Galerkin algorithm con-

verges linearly to the true solution, Lemma 7.1, Theorem 7.2 and Corollary 7.3;

e An upper bound on the condition number of the Galerkin approximation matrix is
in Theorem 7.4, due to Quoc Thong Le Gia, and an upper bound on the condition
number of the Galerkin approximation matrix from the first multiscale Galerkin

algorithm is in Theorem 7.5;

e A L, convergence analysis of the approximation from the second multiscale

Galerkin algorithm to the true solution is in Theorem 7.8;

e Section 7.4 presents numerical experiments using the two multiscale Galerkin al-
gorithms and then Section 7.5 provides an analysis of convergence of the experi-

ments. This was designed together with Robert S. Womersley.

Chapter 8 provides a theoretical and practical analysis of multiscale algorithms for
collocation of elliptic PDEs on bounded domains and the Stokes problem using Wend-

land functions. The new contributions in this Chapter are:

e A proof that the approximation from the multiscale symmetric collocation algo-
rithm for an elliptic PDE converges linearly to the true solution, Theorem 8.1 and

Corollaries 8.2 and 8.3;

e Numerical experiments with the multiscale symmetric collocation algorithm, Sec-

tion 8.1.1;



e A proof that the approximation from the multiscale symmetric collocation algo-
rithm for the Stokes problem converges linearly to the true solution, Theorem 8.5

and Corollary 8.6;

e We give lower bounds on the minimum eigenvalues and upper bounds on the
maximum eigenvalues of the multiscale symmetric collocation algorithm matrix
for the Stokes problem in Theorems 8.7 and 8.8. This immediately leads to upper
bounds on the condition number of the multiscale symmetric collocation algorithm

matrix for the Stokes problem in Theorem 8.9;

e Numerical experiments using the multiscale symmetric collocation approximation
to the Stokes problem are presented in Section 8.2.2. These were designed together

with Robert S. Womersley.

Finally, we mention that work from this thesis has been submitted or will appear in

the following publications:

e A.Chernih and S. Hubbert, Closed form representations and properties of the gen-
eralised Wendland functions, submitted to the Journal of Approximation Theory.

See Chapters 3 and 4.

e A. Chernih, I. H. Sloan and R. S. Womersley, Wendland functions with increasing
smoothness converge to a Gaussian, published online in Advances in Computa-

tional Mathematics. See Chapter 5.

e A. Chernih and Q. T. Le Gia, Multiscale methods with compactly supported radial
basis functions for Galerkin approximation of elliptic PDEs, published online in

IMA Journal on Numerical Analysis. See Chapters 6 and 7.

e A. Chernih and Q. T. Le Gia, Multiscale methods with compactly supported radial
basis functions for the Stokes problem on bounded domains, submitted to Math.

Comp. See Chapters 6 and 8.

e A. Chernih and Q. T. Le Gia, Multiscale methods with compactly supported ra-
dial basis functions for elliptic partial differential equations on bounded domains,

ANZIAM Journal, Vol. 54, pages C137-C152, 2013. See chapters 6 and 8.






Chapter Two

Preliminaries

This chapter covers background material relating to function spaces, point sets, special
functions and other topics that will be required in the remainder of the thesis. This
will be presented here to provide a single point of reference should it be required, and
it will allow for a more direct presentation of the new results in later chapters. The

experienced reader may decide to skip this chapter.

2.1 Radial functions

A function @ : R — R is said to be radial if there exists a function ¢ : [0,00) — R such
that ®(x) = ¢(||x|2) for all x € R?, where || - |2 denotes the usual Euclidean norm in

R?. Then we can define an RBF for a given centre x; € R? as

@;(x) == ¢([Ix — xi[|2).

With a given scaling factor § > 0, we then define a scaled radial basis function as

Ds(x) = 64 (H’:SHQ> . 2.1)

Note that we can extend these definitions for ® : R? x R? — R as

O(xy) = P(x—y) (2.2)
D5(x,y) = Ds(x—y). (2.3)

The native space Ng(IRY) of @ consists of all functions g € L(IR?) with

2

It = [, B0 00 < o
R! P(w)

where g(w) denotes the Fourier transform as defined by (4.1).
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2.2 Point sets

With a given domain () C R? and a finite point set X C (), we define the mesh norm
(also known as the fill distance) as
hxq = supmm lIx — xsz,
xeQ XE€X
which is a measure of the uniformity of the points in X with respect to (2. We will often
drop the subscripts and just write i when the point set and domain are known.

The separation radius is defined as

1 .
gx = 5 min [1x; — xk[2-

2.3 Sobolev spaces

For a given domain, (2 C R%, k € Ny, and 1 < p < oo, the Sobolev spaces W’;(Q) consist
of all u with weak derivatives D*u € L,(Q),|a| < k. The semi-norms and norms are

defined as

==

1
4
and |u[wy() <Z ID*ullf ) -

|ae| <k

“lwg(oy (2 ID%ull} )

|a]=k
For p = oo, these definitions become
ulw ) = sup [|[D*ul[L ) and [ullwkq) = sup [ID*ullL,(q)-
|a=k || <k
Let1 < p < o0,k € INg, and 0 < s < 1. Then we can define the fractional Sobolev spaces
WI’;JFS (Q)) as all u for which the norm defined by

p vr
e (e ))

1/p
. |D"‘ — D*u(y)|”
’“\w;f“(m = <|a k// d+ps dxdy

is finite. For the case p = 2, we write W (QQ) = H'(Q)).

We define vector-valued Sobolev spaces with p = 2 in the usual way as
H'(Q):=H'(Q) x...x H(Q),

with norm

1/2
[£l[er (o) - (ZHf]HHT ) : (2.4)
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The functions that we will be concerned with are defined on a bounded domain ()
with a Lipschitz boundary. As a result, there is an extension operator for functions de-
fined in Sobolev spaces which is presented in the following lemma. For further details,

we refer the reader to [40] and [10].

Lemma 2.1. Suppose QO C R? has a Lipschitz boundary. Then there is an extension
mapping € : HY(Q) — HTY(RY), defined for all non-negative integers T, satisfying
Esvlq =0 forallv e H'(Q) and

€50 e (rey < Cllol| e (0)-

In this thesis, C will denote a generic constant. Since we also have
[0l e ) < [|€50] pr(ra), this means that when we need to consider H'(Q)) norms,
we can use the H7(IRY)-norm instead. This is advantageous, since we then have for
g € H'(RY)

~ T
1813y = [ 18)P (1+ l3)" de. 5
R4

2.4 Sobolev and mesh norms on the boundary

We follow [18] to define Sobolev norms and the mesh norm on the boundary. We
assume that 002 C U]K:l Vi, where V; C R? are open sets. The sets V; are images of
CF* —diffeomorphisms

(p]‘:B—>V]‘,

where B = B(0,1) denotes the unit ball in R?*~'. If {w;} is a partition of unity with

respect to {V;}, then the Sobolev norms on d() can be defined as

K
Il oy = 2 101)© 5
]:

The mesh norm on the boundary can be defined as
h := max hr,
X, 000 1§]§K TJ,B/

with Tj := ¢; /(XN V;) C B.

2.5 Sampling Inequalities

We will need the following “sampling” inequalities, which are valid for both scalars and

vectors [32, 33, 52].
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Theorem 2.2. Let O C R? be a bounded domain with Lipschitz boundary. Let T > d/2. Let
X C Q) be a discrete set having mesh norm h sufficiently small. For each w € HT(Q) with

w|X = 0 we have for 0 < ¢ < T that
@l go () < Ch™ 7 ||w]| g () (2.6)

Theorem 2.3. Let T = k+s > d/2. Let Q C R? be a bounded domain having C** smooth
boundary. Let X C Q) be a discrete set with h sufficiently small. Then there is a positive
constant C such that for all w € H™(Q) with w|X = 0 we have for 0 < ¢ < T —1/2 that

0]l e o) < CHT 27 a0 | e ) 27)

2.6 Hypergeometric functions

We need to define the generalised hypergeometric function. Further details on gener-

alised hypergeometric functions can be found in [1] and [3].

Definition 2.4. The generalised hypergeometric function ,Fy(ay, ..., ap;by, ..., by x) is

' ‘ o 0 (ﬂl)n"'(ap)n xn
qu(al,...,ap,bl,...,bq,x) _EME'

where none of by, . .., by is a negative integer or zero and where

Fletn) o 2.8)

(C)p:=clc+1)---(c+n—-1) = T n>

denotes the Pochhammer symbol, with (c)o = 1. When p < q the series converges for all finite x
and defines an entire function. When p = q + 1 the series converges absolutely for |x| < 1, and

also at x = 1 if

9 p
Ebi—zﬂi > 0.

i=1 i=1
2.7 Positive definite functions

A continuous function f : RY — R is positive definite (some would say strictly positive

definite) if for any n distinct points xg, . ..,x, € R?, the quadratic form

Y ) e fxi

i=1j=1

is positive for all € = [ey,...,e,]T € R"\{0}.
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We also define a matrix-valued function ® : R? — IR"*" as being positive definite if it

is even, so ®(—x) = ®(x), symmetric, so ®(x) = ®(x)7, and satisfies

Y, v @ — ) >0,
jk=1

for all pairwise distinct x; € R? and all 7; € R" such that not all y; are vanishing.






Chapter Three

The Wendland radial basis functions

This chapter will review the Wendland radial basis functions.

Wendland functions were originally introduced in [47] and then more cases were
added in [38]. We will refer to the Wendland functions from [47] as the original Wendland
functions and the Wendland functions from [38] as the missing Wendland functions. A
thorough investigation of both types of Wendland functions in terms of hypergeometric
functions and other special functions is the focus of Hubbert [23]. We firstly define
the generalised Wendland functions in Section 3.1, and then the original and missing
Wendland functions in Sections 3.2 and 3.3, which are special cases of the generalised

Wendland functions, and then give properties and closed form representations of each.

3.1 The generalised Wendland functions

This section will present the generalised Wendland functions. These were first proposed

in [38] and then investigated in [23].

3.1.1 Definition
The generalised Wendland function is defined as follows.

Definition 3.1. With smoothness parameter « > 0, and p > —1, let

1

1
W/r S(l—s)V(SZ_YZ)afldS for 0<r<1,

Pua(r) == (3.1)

0 for r > 1.

The generalised Wendland functions are continuous on [0,o0). For a given space

dimension d, we can use (3.1) to generate a d—dimensional radial function as

D0 (x) = ua(lx]2), x € R (3.2)
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3.1.2 Wendland functions in terms of hypergeometric functions

Hubbert [23] starts with the integral representation (3.1) to express the generalised
Wendland functions in terms of Legendre functions. Equation (3.4) in [23] states that for

€ (0,1]

— r(.u"”l) _ 2\pta,—u H V+1. 1 1
¢y,a(r)—2y+ar(y+a+1) (L= o ( Soat P —ip+atil- ). (33)

Now we apply the following identity [1, 15.3.4]

oFi(a,b;¢;z) = (1 —z) "R ( —b;c; z 1) (3.4)

0 (3.3), which gives us, for r € [0,1], (since we recover the case of ¥ = 0 by right

continuity)

I(i+1 .
¢y,a(r)=zy+ar((z+a)+l)(l )it P(“ R 1—r) (35)

3.2 The original Wendland functions

The original Wendland functions are defined by (3.1) when a = k where k is a positive
integer with

u=1"=0:= EJ +k+1.
Note that this choice of ¢ is the minimum value that ensures that the resulting functions

are positive definite. Since ¢ = |4 +a| + 1 it follows immediately that for fixed d
{~nasa — oo, (3.6)

where x ~ y denotes asymptotic equality, that is, ; — 1. If we wish to use a different
support, this can be easily achieved through scaling the function argument: if ¢(r) has
support [0,1] then with the change of variable y = 6, ¥(y) := ¢ (%) has support [0, 4].

We now review the original derivation from [47] and important properties of the
original Wendland functions.

For a function ¢ such that t — ¢(t) t is in L1 (IR?), for r > 0 we define

(Z9) () = / Tt dt. (3.7)

With the truncated power functions defined as

ol (r) = (1-1), (3.8)



3.2 The original Wendland functions 15

with (x)4 := max(x,0), the original Wendland functions were first presented in [47] as
Pox =T, (3.9)

The original Wendland functions are constructed with the minimal degree polynomial
for a given smoothness that gives rise to a d-dimensional positive definite function. They
are unique up to a multiplicative constant when k > 0. From [20], we know that ¢/
is 2k times differentiable at zero, positive, strictly decreasing on its support and has the

form
Pox(r) = pr(r)(1 —r)T, (3.10)

where py is a polynomial of degree k. This representation also allows us to deduce that

the first £ + k — 1 derivatives of ¢y vanish at r =1, i.e.,
4’%{)(1):0, n=01,... 0+k-1 (3.11)

From [23], we also have the closed form representation

Eoo(9) . |
Gox(r) = Zkik'(l —r)ity gijﬂ. (2r)Fi (1 — 7). (3.12)
’ 1'20( k+j )

The following theorem gives a closed form representation for the original Wendland

functions ¢y (), expressed in powers of r.

Theorem 3.2. Let d be a fixed space dimension and k be a positive integer. In addition let

¢ > (d+ 2k +1)/2 be an integer. Then the function ¢y is given by

CVkokpipr 20 =
Pr(r) = ((Zlk)jgk)'f' j;:) (-1) <2k7€> < ]7; >r] for r € [0,1]. (3.13)

Proof. Applying the binomial theorem to (3.12) yields

1 . (];) k7'€+k+j n €+k+] k+n—j
(PZ,k(r) = Zk'k'z I+k+] 20 Z (_1) < n >7AJr J (3.14)
: ']:O( Y ) n=0
2k+0
= ) b, (3.15)
i=0

where, following some standard algebraic manipulation, the polynomial coefficients

(b;)?5" are given by

£+2k—j>
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12k1 i () i
T 2RI + 2k — i)l E(_z)];")@
- ]

T N G
RGP ]><]>

where, in the final line we have employed the following formula from [21, 8.339.2], for

evaluation of the Gamma function at the half-integers

1\ V7 (2k)!

We can now employ the following identity [35, 4.2.10.13]

b ()-S5 @ e )

j
(A

where C;”’ denotes the Gegenbauer (or ultraspherical) polynomial of degree i and order

A (see [1, Chapter 22]). Setting x = 2 in the above identity yields
- k
i i\ () T(k—itl ! ,-
Z(-z)](.)jk = (12)(—1)12;}1/”" 2(0). (3.17)
LN T TR
For a non-negative integer i we have (see [1, Section 22.4]) that

20 /Al (A+ 1)

(A)
c (0) = il FO)T (—51)’

1

and so, using this identity, we can deduce that

=S
and thus we have

2k T (k=5
(=1) (€+2k—i)lil T (- T%)

- o)

_ () kK1t 2k + 0\ (5
N k+ 0\ i k)

O]

Another important property is that for an integer space dimension d and for k a

non-negative integer the function

K(x,y) = ¢ox(x—yl), xy€eR?, (3.18)
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is the reproducing kernel of a Hilbert space which is norm equivalent to the Sobolev

space H Stk (R%) [51, Chapter 10].

The native space Ng(R?) of ® consists of all functions g € L(R?) such that

5 2
Il = / B4 < o (3.19)
P(w)
d
We will also need that there exist two constants 0 < ¢; < ¢ such that their Fourier
transforms satisfy [51]
o (14 wlB) * < Bw) <ca (14 [wlf) ¥, weR. (320)

We give explicit formulae for the original Wendland functions for d = 3 and
k =1,2,...,5 in Table 3.1 where = denotes equality up to a positive constant factor.

The support of all the original Wendland functions is [0, 1].

k | Original Wendland function

1| gsa(r) = (1)t (4r +1)

2| ¢pap(r) = (1—1)% (35> + 18r + 3)

3| ¢s3(r) = (1—r)8(32r +25r2 + 8r +1)

4 | pea(r) = (1 —r)0(429r* + 450r° + 210r> + 50r + 5)

5| ¢75(r) = (1 —1r)12(2048r° +2697r* + 1644r° + 566r> + 1087 +9)

Table 3.1. The original Wendland functions ¢ (r) ford =3 andk=1,...,5.

3.2.1 Properties of the derivatives of the original Wendland functions

In this subsection we present several technical lemmas concerning derivatives of the

original Wendland functions, which we will need later.

Lemma 3.3. With spatial dimension d and smoothness parameter k = 2,3,... let @\ be the

original Wendland function. Then with x € RYand 1 <1, j <dandi# j, we have
9Py (x)[x=0 = 0.

Proof. We recall that the Wendland functions are piecewise polynomials with support

[0,1]. With Theorem 3.2, we can write
2k+/

Pox(r Z bir', [0,1] (3.21)
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where the first k odd coefficients {b2i+1}§‘20 vanish. With the chain rule, and with

x = (x1,...,%4) and r = ||x||2, we have

X;X; 1
0iiPri(x) = 72] <(P§2k)(r) — r(pél,()(r)) .

Using (3.21), this last expression becomes

xpx; (2 Atl
ai]‘q)g,k( = ] Z b; (i — 1 Z ib; ri2 ,
1
2k+¢
i x’ ( Y bir ) (3.22)

where (c), denotes the Pochhammer symbol. Now the first three coefficients {b;}3_; are

by = by =0
by = (2-2)b, =0
by = 0,

since the first k odd coefficients of the Wendland polynomial are zero and k > 2. Hence

2k+-£
aqu>[k = X X] Z b

and the result follows immediately. O

we can write

Lemma 3.4. With spatial dimension d and smoothness parameter k = 3,4, ... let O, be the

original Wendland function. Then with x € R* and 1 <i,j < d and i # j, we have
aijAZq)g,k(X)‘x:() =0.

Proof. Once again employing the chain rule gives

xix]-

;A @y x(x) = 2

1 7 12 15 15
x (q>£§3<r> B ) = S0+ S ) - el + Méi?(r)) .

With (3.21) we can rewrite this as

xjx; | 2+t ‘ 2%k+0
al]A q)gk ] Z b Z— 1_6—|— Z bi(i—4)51’l 6
i=5
2k+4-4 ‘ 2k+£ , 2k+£ , 2k+-£ ,
7Y bi(i—3)ar 0+ 12 Y bi(i—2)5r 0 =15 Y bi(i—1)r" O +15 ) ibir'°
= i=3 i=2 i=1
2%k+0
= bﬂ’lié
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Since b; = C(i)b;, the first k odd coefficients {EZiJrl}i‘(:O are zero. Then we can determine

other coefficients as

by = 30(by—by) =0
by = by(60—15(3)2 +12(2)5 — 7(1)4) =0
be = be(90 —15(5)2 + 12(4)3 — 7(3)4 + (1)) = 0.

Hence since k = 3,4, ..., we can write
) 2%+l .
aijA q)f,k(x) = XiX; Z bir'=°,
i=8

and the result follows immediately. O

Lemma 3.5. With spatial dimension d and smoothness parameter k = 2,3,... let @y be the

original Wendland function. Then with x € R? and 1 < j < d we have
0jiPr(x)[x=0 <0,
and is independent of j.

Proof. With the chain rule, and once again with x = (x1,...,x;) and r = ||x||2, we have

x?

2 1 @ 1
9 ®ux(x) = (cpé,k)(r) -~} (r)) 9L ().
With Lemma 3.3, the term in brackets is equal to zero when x = 0. Using (3.21) and
noting that the first k odd coefficients are zero, this last term becomes

1 1 20+k ) .
g () =Y i,
b —
=2
which means that the case of x = 0, which is equivalent to » = 0, reduces down to 2b;.

Now combining positive factors into a generic constant C, we have from Theorem 3.2

by = c(—1)k<]%>

(—DF
[(;—(k-1))
= C(-Df-1*1 <o,

where we have also used [21, 8.339.3]
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Lemma 3.6. With spatial dimension d and smoothness parameter k = 3,4,... let @\ be the

original Wendland function. Then with x € RY and 1 < j < d we have
9jjA* @y (%) |x=0 < O,
and is independent of j.

Proof. With the chain rule, and once again with x = (x1,...,x;) and r = ||x||2, we have

x2
a]']'Azq)g/k(X) = 1’%

1 7 12 15 15
< (0150 + 10500 = 2o + 3000 — o) + 20
1 2 3 3 3
7 <¢,,5k)(r) + ;sz%()(r) - 7245[5?;3( )+ 734515,213( ) — r4¢£1k)(f)>

With Lemma 3.3, the first term in the previous expression is equal to zero when x = 0.

As before, we can write the second term as a series
%t
i
) bir.
i=1

Since k > 3, b; = by = by = 0, equating coefficients gives

b, = by(—6+3(1),) =0

by = by(—12+3(3)2 —3(2); +2(1)4) =0,

which means we are left with
%ktl
Z bi 1"1_6.
i=6
Hence the case of x = 0, which is equivalent to r = 0, reduces down to by, which is
given by
bs = ((2)5 +2(3)s —3(4)3 + 3(5)2 — 18)bg = 1152bs.

As before, combining positive factors into a generic constant C and noting that

k =3,4,..., we have from Theorem 3.2

by = C(—1)k<’%>

(=1)*
I(3—(k=3))
= C(-Df-1D3<o0.
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3.3 The missing Wendland functions

The missing Wendland functions are defined by (3.1) when a« = k + % where k is a

non-negative integer with

=== V;lJ +k+1.

Schaback [38] extended Wendland'’s original approach to cover the missing Wend-
land functions, which are the reproducing kernels of integer order Sobolev spaces in
even dimensions d. An important distinction between the original Wendland functions
and the missing Wendland functions is that the missing Wendland functions, whilst
still being compactly supported, now have logarithmic and square-root multipliers of
polynomial components.

Schaback [38] proved that the missing Wendland functions, ¢, , 1 are of the form

r? r2
Pps1 (1) = Pek (2) L(r) + qex <2> S(r), (3.23)
where
o . o )
L(r) :=log (1 g 72> and S(r): V1—12, (3.24)

and pyx and g are polynomials. Whilst a closed form representation for ¢, , +1 (r) was
not given in [38], this can be achieved using the same techniques used in their paper.

We give the closed form representation in the following theorem.

Theorem 3.7. Let d be a given spatial dimension, k a non-negative integer and

= |(d+1)/2] +k+ 1. Then the missing Wendland functions are given by

Prjer 1 (r) = Pog () L(r) + Qux (*) S(1), (3.25)
where -
Pyi(r) := —Zkzl D < 'E ) s pt, (3.26)
T (k+1)2% 2 5 2+ 1) dyjn (7+3),
and
5] L5+
-+ j j_ j
Qui(r) := (k+ 1) 21 2‘1117 + 2 2,7 Z 13" (3.27)
with J ' /
= ey & (M)
. k 1 n n+] ntak—3 ( m
qi= (= < > i . , (3.28)
! Z j 2¢ mZ::o (5 +1),,
% /¢ di, 1 d
5 k=75 n+k—j+1,n+k
——" < > bk , (3.29)
! :Z_ 2n) 2¢(n + 1) dn+k—j+%,n+k+%
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I

Z ¢ dij 1 g jy3nrke!
qu — (_1)k Z < ) 2/ 23 JT 2, 2
’ n=(j—k)+ 2n+1 Zk (Tl + f)k dn+k—j+l,n+k+1

where .
]
dl',]' = H(Zm)
m=i

and L(r) and S(r) are given by (3.24).

(3.30)

Proof. We begin by applying the binomial theorem to (3.1), which with the change of

variable z := /s — 12, gives

4
(L

= (e

where
1—x2 "
gui(x) = / (2 +22)" 2 dz.
0

Integration by parts yields

k (—1)i71d (—1)kd%,k_%

k3 —ik—1 k—i
gni(r) =5(r) ) 27 (n+ i), L)+ m8n+k,o(7)-

i=1
From [38], we know that

2n+2 ,

S(x
Br10(0) = o 22 000(0) 4 )

2n+3°

In conjunction with

we obtain
gno(x) = S(x)p1a(x?)
&u-10(X) = L(x)p2n(x*) 4+ S(x)p3an-1(x?),
where
nood
Plf’l(r) e Zd ]+11’1 Vl_]/
j=0 %j+3n+1
T3
pan(r) = — i ",
and p
n i3 1
_ JtaMts n—j
r) =
P3n( ) ]'Z(:) d]+1,n+1

(3.31)

(3.32)

(3.33)

(3.34)
(3.35)
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Then (3.31), (3.33), (3.34) and (3.35) together lead us to

r ¢ ; k (_1)i71d 3_jk—1 i
Prs1(r) = S()k%{ Y (=1 <€> Y SRas i (1-r)"

T (k4 1)2-2 | 5 17E 2 (f+1),
=(4)
15] / <—1)kd1,k_l 2 15] / (—1>kdlk_l
+ <2> 2k : 21 2p1]+k( ) <2 1> k (: 23 2p3]+k(r )
j=0 \4/ G+ 0 \2f+1) 2K (j+3),
=(B) =(C)
L(r) 4] ( ¢ >(—1) dyy )
r(k+%)zk7% = 2j+1) 2k (]+ )k P2]+k+1

a : k(=1 s s —i
(4) = 2(—1)](‘f)_2( 2)1,(]."“ )

1 (—_1\k—n-1
= i(-l)j <£) P dn+% k. (1- rz)n
j=0 /=0 2k-n (1 + 1)
2 k—n
_ _ il
— (_1)k—1k . sz » (1 (_1)n+zd”+2k*% i ( 1)](j)
o r ) 2k—n j
o /=0 (j * 1)1{711
L .
(B) = 3 <£> (_1)kd%’k_%]+k dit1,j+k 2(j+k=i)
j=0 2j) G+ S di+%,j+k+%
‘ ,
_ 2 <€> (_1)kd%fk_% ]Zlf dj+kfn+1j+k an
j=0 Zj 2k(j + i n=0 d]Jrk n+2 ]+k+2
4 4 k
_ LzJ-‘-k r21 % (é) ( 1) d% k— % d]+k*i+1,j+k .
=0 j=(i-k); 2j) 2k(j+ 1)k ]+k*i+%,j+k+%

= \2+1) 2k (i+3), & dl““"“
- |
) LiJ < ¢ )(—1>"d;,k—;]i" Gjrknyivk 2
2 \2 1) 26 (j+3), Do dikontiitki
1

(— =1
[+ i lzz:J l ) (—1)F d%,k—% dj+k—i+%rf+k+%
‘ 2j+1) 2k (] + %)k Ajpk—it1,j+k+1 .

<D)_L§J( / )( 1)kd1k 1d1]+k+2 (k)
2+ 3), itk
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We have the following closed form representation of the missing Wendland functions

from [23, Corollary 4.6].

Theorem 3.8. Let d be a given space dimension and let k be a non-negative integer and define

(2k+€+1)

k+0+] .

ED for j=1,... k+1
¢

i = (—1)

Set
(—1)k+t 0(0+k)!
VT k=L 2k+ 1)1

Then the missing Wendland functions have the following representation

P(r >log<” “‘72) +Q<rw1—r2],

(= del_lJ +k+1 and A=

Prir1 = Atk

Vir

with the following cases:

o If { is even, then P and Q are polynomials of degree £ + 2k given by

£_q

2 1
p 042k +1 even) Ty 2
(1’) 14 Z 2j+1 P

]_

Q(r):VHZkl Z’Y]Uﬁ 2+2](> Zﬁeven '<1>],

where T, (r) denotes the Chebyshev polynomial of the ﬁrst kind of degree n, U,,(r) denotes
the Chebyshev polynomial of the second kind of degree n and where the adjusted coefficients

are given, respectively, by

lx(even) L <€+2k+1>< ‘-1 >
k=i ) \5 1)
and

even even g . g .
) = a )[‘I’<2+]+1>—‘P<2—]>+
¢ . ‘ .
¥ §+k+]+2 -¥ §+k+1_] , (3.36)

where Y (-) denotes the digamma function (see [1, 6.3.1]) defined by

¥(z) = . (3.37)

o If U is odd, then P is a polynomial of degree £ + 2k + 1 given by

A2k “éOdd) Z (0dd)
=1
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and Q is a polynomial of degree £ + 2k — 1 given by

-1
1 k1 1 < (o 1
Q(r) = % [E Vile—2+42; <r> - 25]( Dy <r> ]
=1 j=0

]

where the adjusted coefficients are given, respectively, by

(odd) [ L+2k+1 -1
T\ k- \ R )

(41 (+1
(ERURICI

T<“21+k+j+1) —‘I’(T+k+1—j>]. (3.38)

and

5(odd) o Dc(Odd)

]

We give explicit formulae for the missing Wendland functions ford =2 and k =0, 1

and 2 in Table 3.2. The support of all the missing Wendland functions is r € [0,1]. It is

k | Missing Wendland function

0 4)2,%(1’) =3r2L(r) + (2r> +1)S(r)

1] ¢ss (r) = —15r*(6 + r*)L(r) — (81r* + 2812 — 4)S(r)

2 | @y 5(r) = (945r° +2520r°)L(r) + (2561 +2639r° + 690r* — 13612 + 16)S(r)

Table 3.2. The missing Wendland functions ¢, 1 (r) ford=2andk=0,1,2.

proved in [38] that with £ = |41 | 4k + 1 and k being any non-negative half-integer, for

an integer dimension d the kernel

K(xy) = iy (Ix=yl), xyeR, (3.39)

is the reproducing kernel of a Hilbert space which is norm equivalent to the Sobolev

space H3TFH1(IRY).

Hereafter when we refer to the Wendland functions we will mean both the original

and missing Wendland functions. With k a non-negative integer and

(= E—FaJ—I—l

and r € [0,1], ¢, (r) with & = k an integer will denote the original Wendland functions

and ¢y, with ax = k + % will denote the missing Wendland functions.






Chapter Four

Fourier transform of the generalised

Wendland functions

This chapter will investigate the Fourier transform of the generalised Wendland func-
tions ¢, 4. Section 4.1 recalls the definition of the Fourier transform and states several
results that we will require later. Section 4.2 gives the Fourier transform of the gener-
alised Wendland functions ¢, .. Section 4.3 presents the native spaces generated by these
functions. Section 4.4 provides several important identities of the Fourier transform of
the generalised Wendland functions ¢, .. Section 4.5 provides closed form representa-
tions for the Fourier transform of the original Wendland functions ¢y, and Section 4.6
does the same for the missing Wendland functions ¢, , 1 Section 4.7 concludes with
several properties of the Fourier transform of the generalised Wendland functions ¢, 4.

For the moment, we deal with arbitrary # > —1 in the generalised Wendland func-

tions, until Theorem 4.4, which will enable us to be more precise about how to choose
1.
4.1 Fourier transforms

This section provides definitions and outlines some key properties. For further informa-

tion, we refer the interested reader to [41, 51].

4.1.1 Definitions and preliminaries

With the Fourier transform of f € L;(IRY) defined as

Fw) := (27)4 / F(x) e ™xdx, we R, 4.1)
R4

it is well known that the Fourier transform of a radial function ® € L;(R%) N C(R?) is

also radial and is given by ®(w) = F¢(||w||,) where

NI=

Fap(z) =z~ /0 o) vt Ji_1(zy) dy, (42)



28 Fourier transform of the generalised Wendland functions

and J,(y) denotes the Bessel function of the first kind with order v. In particular, we

have the following result.

Lemma 4.1.
1 0 _
Fap(0) i= ————< [ o)y ay. *3)
2 (g
Proof. With (4.2), we need to consider
. 1_d [® d
lim z 2/0 ¢(y)y2 ]y 1(zy)dy. (4.4)

Since we have [11, 10.14.4]
|x|”

Ju(x)| < W

1
’ Il2/ Z Y
v+1) reRv 2

we can see that the absolute value of the integrand (ignoring constants) in (4.4) is dom-

inated by
[p(y)ly* "

We know that ® € L;(IR%), which means that

| ey tdy < o,

and hence since the dominating function is integrable, we can apply the dominated con-
vergence theorem to interchange the limit and integral in (4.4), which with the limiting

form of the Bessel function [11, 10.7.3]

1

‘X’*V]V(x) — m

as x — 0,

gives the stated result. O

Lemma 4.1 also follows immediately from

vol(§d—1) foo
Fa¢(0) = (27r)74/2 /Rdcp(HxHZ)dx = (217(%5)‘”2)/0 r=1¢(r)dr,

where $%~1 is the unit sphere in R¥.
From the Fourier inversion theorem applied to radial functions, we know that if

® € Ly (RY) with ®(x) = ¢(||x||]2), ¢ : [0,00) = R, and if € L;(IRY), then

o) =y [ Faplz) 2 Iy 2) @5)

We also recall that if f € Li(IRY) is continuous at zero and positive definite then its

Fourier transform is in L;(R?) and is non-negative [41].
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For example, we can see that the Fourier transform of the Gaussian RBF is

~ 1 _
Gg(Z) - (219)% e

W
&
~

z € R.

We note that Gy(z) is the d—dimensional Fourier transform of

R? 5 x — exp (—8|x|3) .

4.2 Fourier transform of the generalised Wendland functions

This section will present the Fourier transform of the generalised Wendland functions
¢y, First we present a hypergeometric function identity, which we will then use to

derive the Fourier transform of the generalised Wendland functions ¢, 4.

Theorem 4.2. Let y > —1,0 > 0and d > 0. Then

T(p+1) ! pyita 4 oo (gl P _
2V+“T(V+oc+1)/0 (=) b (3 et L=y )y (zy) dy =

d+1 d+1 d+2 2
Cg”x d_11F2<+ —l—tx;'u+2+ —i—oc,'u+2+ +0€;—Z)/ z >0,

where
2T+ )T (44 +a)

Val(p+d+2a+1)
Proof. With (3.5) and (3.1) and re-parametrising the triangle

ch = (4.6)

{(y,t) : 0 <y <1y <t<1llas{(xs,x):0<x <10 <s <1}, we can see

that the left hand side of the equation in the Theorem statement is given by

11
1 2 2 a—1 d
za—lr(@//(l—ﬂ”f(t — )" i Ja_y(zy) dtdy
0y
1 11
— 20+4 d oya—1
Wo/o/x 21— x)Fs2 (1—2) ]g_l(zsx)dsdx.

From [21, 6.567.1], we have that

1
/ (1 =) T (bx) dx = 2¢T(u 4+ 1)b~ V], a(B), b >0,
0
which means we can simplify our expression to
1
—u atd _ M
z x*2(1—x) ]H%_l(zx) dx.
0

With the following identity [21, 6.569]
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1 _ F(IT(A+v+1)27va"
A 1 K
1—x)" =
[;x( a0 dY = o D A v+ D)
A+v+1 A+v+2 A+v+u+1l A+v+pu+2 a?
X 2P3 ( 2 7 2 /v+1l 2 7 2 7 4 7

u>0,A+v>-—1,

which is valid since y +1 > 0 and 2a +d —1 > —1 by assumption, the result follows

after applying the duplication formula for the Gamma function, namely

r(22) = 2\2;1F(z)1“ <z + ;) , @&7)

and noting that in our case, the ,F3 hypergeometric function simplifies down to a 1F>

since the first parameters in the numerator and denominator are equal. O

Substituting (3.5) into (4.2) we can see that we get exactly the integral on the left hand
side of the previous theorem, and hence this result also gives us the Fourier transform

of the generalised Wendland functions ¢, ., which we state next.
Theorem 4.3. The d-dimensional Fourier transform of the generalised Wendland functions ¢y, «,

withy > -1, 2 > 01is

2 YT Ty twog

d+1 d+1 d+2 2
fd%,a(Z):C;"”HFz( T + e +zxy+ i ; Z), z>0,

where C/" is given by (4.7).

Next, we determine for a given dimension d, the full range of parameters y and «

for which the function ¢, , generates a d-dimensional positive definite function.

Theorem 4.4. The generalised Wendland function ¢, . generates a positive definite function on
R? if and only if its parameters satisfy

d+1
yz—; + a.

Proof. This follows directly from [29] which proves that
1B (a;a—l— z,a+ T;—i) >0, z>0,
forb>2a>0,forb>a>1,orfor0<a<1,b>1. Itis also proven that this function
cannot be strictly positive for 0 < b <aora=1>5,0<a <1.
In our case, a = % +a > 0 since d > 0 and &« > 0 and hence necessary and
sufficient conditions reduce to b > a which means that

d+1
yzi—g + .
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As a result of Theorem 4.4, we will henceforth consider

d+1
=t (48)

with B a non-negative constant. We will consider the impact of different choices of § in
Section 5.3. Note that we have the following result, which is analogous to (3.6) for the

original and missing Wendland functions. With u defined by (4.8),

Yo~ asa — oo. (4.9)

4.3 Native Spaces

In this section, we examine the decay rate of the Fourier transforms of the generalised
Wendland functions to establish the nature of the reproducing kernel Hilbert space Nj,,,

whose reproducing kernel is the induced kernel

q)y,a(X/Y) = q)u,a(x -y)= ‘PWX(HX —vyl2) xye€ R (4.10)

Theorem 4.5. The d-dimensional Fourier transform of the generalised Wendland functions,

FaPpu, with u > o + 451 satisfies
F — —(d+2a+1)
iPua(z) =0 (z for z — co.

Proof. We need to show that for z > z,, there exist two positive constants, c3 and cy,
such that
3 < Zd+2a+1]:d¢;4,a(z) < ¢y (4.11)

From [13], we have the following asymptotic expansion for Fu¢,q(z) as z — oo and
larg(2)[ < 3
T(p+d+1+2a)
T(n)
F(p+d+142a) 7~ (wetist)
da+1 cos
r(ee) 2T

Z—d—2¢x—1 {1—|—O(Z_2)}

T d+1
- 2 (s 220)

Collecting terms not depending on z into constants c5, cg and cy gives the following

Fapua(z) =

_|_

+O(zl)}.

expression
A ig0(2) = 65 {1+0( )} + ezt T feosz— ) 06} @12)

Then for the upper bound, since cos(z) is bounded by 1 in absolute value, we can see

that for z > z,, there exists an €, > 0 such that

Zd+2¢x+1]_-d¢wx(z) S <C5+C6Za+d%l_}l> (1+€2)
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< <C5 + C(,) (1 + €2)
= C4/
which is positive since all its components are also positive. We proceed similarly for the

lower bound and we first consider the case where y = dzil + «. For z > z;, there exists

an €1 > 0 such that

zd+2”‘+1Fd¢W(z) > co5(1—€1) —ce(l+€1)
= (5 —C¢ — 61(C5 —|—C6)

=: (3.

For small enough €7, we see that c3 > 0 since

1 1
cs—ce = I'(p+d+2a+1 —
v ’{r(d;lﬂ) r(ﬂl;l+a)2(d¥1+“)1}

> 0.

Since the second term on the right hand side of (4.12) is decaying for u > dzil + a,
the existence of a lower bound in this case follows similarly. Setting zp := max(z1,z2)

completes the proof. O

With Theorem 4.5 and the asymptotic decay of functions in Sobolev spaces (see e.g.
[2]), we have the following result on the native spaces generated by the generalised

Wendland functions ¢, 4.

Corollary 4.6. Let d > 1 denote a fixed spatial dimension and «, > 0. The generalised
Wendland function Pin o ipa is reproducing in a Hilbert space which is isomorphic to the

Sobolev space H*++* (R).
With Theorem 4.5 and Corollary 4.6, we can state one more result.
Corollary 4.7. Every Sobolev space H(R?) with T > (d 4+ 1)/2 has a compactly supported
and radial reproducing kernel.
4.3.1 Norm equivalence for the scaled Wendland functions

This subsection will present an important result regarding norm equivalence between
the Sobolev spaces and the native spaces generated by the scaled generalised Wendland

functions.
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With scaling defined by (2.1) and where @ generates the native space H*(IR%), the
Fourier transform of ®;, ®;(w) = ®(éw), satisfies
s (1+0%|w|?) " < Ps(w) <o (1+|w]3) ", weR™ (4.13)
We also need norm equivalence as stated in the following lemma.

Lemma 4.8. For every 6 € (0,5,] and for all ¢ € H™(IR?), there exist constants 0 < c3 < ¢4
such that

c1ollglle; < [18llme(rey < €116~ "lIglle;-

1/2

Proof. The case §, < 1 was proven in [53] with ¢ig = ¢;/“ and ¢11 = Cé/ 2. To extend this

to the case where §, > 1, note that for 4 > 1 we have
_ T _ T
1+ [lwl3)" =672 (8% +*|wl3)" = 6, (1+(|lwl3)".
Together with (2.5), (4.13) and (3.19) we can see that

1813y = [ 18(@)]* 1+ [w|3)" dw
R) =

v

R4
6% [ 18(w)P (1+&|w]3) dw
R4

~ 2
> C7511_2T/ ‘g\(w)‘ dw
o D, (w)

> 6,7 |8lla,
For the upper bound, we can just use 6 > 1 directly to derive

181wy = [ 18@)P (1+ w]B)" dew
IRd

< [Ig@)P (1+8w]B) dw

RY
< csllglld,

using (4.13) and (3.19). Then setting c1g := c;/ 2min(1,5,7) and ¢y := cé/ 2 completes

the proof. O

4.4 Identities

4.4.1 Fourier transform dimension drop

Theorem 4.9. Let d be a given spatial dimension, let ¢, » be the generalised Wendland functions,
where y is given by (4.8) and « > 0. Then

Fapua(z) = Fa19, 4.1 (2). (4.14)
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Proof. A careful inspection of Theorem 4.3 reveals that the Fourier transform of the
generalised Wendland functions ¢, , is a function only of % + a and not of d and «

separately. Since

g—ka—g—k«x—kl
2 2 2

the d-dimensional Fourier transform of the generalised Wendland function ¢, , equals
the d — 1-dimensional Fourier transform of the generalised Wendland function ¢, , 11

O]

In particular, we can recursively apply the above formula and evoke (4.2) to deduce

that
‘Fd(l)ﬂ/“ (Z) = 'Fl()by,a+d%l (Z)
1
= Vz [ 9ari ) VII (zv)dy
2 rl
= \/;/0 ‘Pd%l_m,a_g_dz;l (v) cos(zy)dy, (4.15)

where we have used the fact that

I (t) = \/Zcos(t).

In a similar fashion we can also conclude that
Fibpa(z) = Fap, o a2(2)
1
= /O Puart2 (Y)Y Jo(zy)dy. (4.16)

We shall use both of these identities in the next section to derive explicit expressions for
the Fourier transforms of the original Wendland functions.

We will need one final result regarding the Fourier transform dimension drop.

Theorem 4.10. Let d be a given spatial dimension, let ¢, be the generalised Wendland func-
tions, where y is given by (4.8) and o > 0. Then

Fibpa(z) = Foa1¢, 41 (2).

Proof. This is proven in an identical fashion to Theorem 4.9. O
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4.5 Closed form representations for the Fourier transform of the

original Wendland functions

4.5.1 0Odd spatial dimensions d

We will consider the (original) Wendland functions ¢, for a given odd spatial dimen-
sion d, with smoothness parameter k and ¢ = % + k. We will make use of (4.15)
to derive a closed form representation for the d-dimensional Fourier transform by cal-
culating a 1—dimensional Fourier transform with a different value of the smoothness

parameter k.

Theorem 4.11. Let d be an odd space dimension, k a positive integer and let £ = (d +2k+1) /2.

The d—dimensional Fourier transform of the original Wendland function ¢y is given by

1)1 EIPr
J—"d(])g,k(z) = \/Zzauékﬂ [Sin(z) Z €J1+1 —|—COS Z IBT Z 133]], (4.17)

j=0

where the coefficients are given by

I A L (2 0 11 R e A T AN A== BN
A (S TE)] ,EO(_U< m )(24—1 > (4.18)

j - 0-2j-1 . mo
B = (—1)it12¢ '1(5 — 1) Z]: (—1)" (6 —2j— 1> (2 +j+Ll— 1>, (4.19)

(L—2j—1)! = m ‘-1
and .
-1y (DG4 E-1)!
Bsj=2""L! (=2 1)1 (4.20)
Proof. With (4.15), we have that
Fapr(z) \/>/ ¢00-1(y) cos(zy)dy. (4.21)

Using Theorem 3.2 we know that, on the unit interval, the function ¢, ,_; is a poly-

nomial of degree 3/ — 2. Specifically, (3.13) yields

e 4 T A
puat) = s T 0 (M) ()

3(-2

=: Codd Z bl,n ]/n/ (4.22)
n=0

where
e (=2)-1 (e — 1)t
odd == T (37 —2)!
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Then substituting (4.22) into (4.21) with the change of variable t := zy gives

2 BK 2 bln .
Fapoj(z) = odd z” - / t" cos(t

and hence we will need to consider integrals of the form

z
I = / trcos(t)dt, n=0,1,...,30 2.
0
Using integration by parts, this can be seen to satisfy the recurrence relation

I, = z"sin(z) + nz"!

cos(z) —n(n—1)I,_o,
which together with

I = —1+cos(z)+ zsin(z)

IO = Sil’l(Z),

gives

—

7]
I, = sin(z) { (=1)/ (n—2j + 1)z 2”2]}
j=0

1

R AR T SO I

=

o

where in the last line, (n -2 L%J) indicates that we have a constant term only for odd

powers n. Noting that the first k = £ — 1 odd coefficients of ¢y ¢_1(y) are equal to 0 gives
the expression

302 L] .
Fapex(z) = sin(z) Coaa Y, bin Z (n—2j+ 1)z 77!
n=0

s—2 |4 |25

COS ., P
+ Codd Z bin Y (=1 (n=2j)pjs12 7 " +Cota Y. brona(—1)" 1204 1)1z7>"

j=0

2

:=(B) =(C)

and now we simplify expressions (A)-(C) as follows.

L%;ZJ ( 1)] 30-2

(A) = Codd Z(:) 22]+1 Zébln Tl—2]—|—1)-
J= n=2zj

172 (—1)j 32

Codd ) T Y bia(n—2j+1)y
j=¢ n=2j
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1 Lt (=11 22
Coddﬁ _Z(:) 2 Zo bl,m+2j+2£(m + 1)2j+2£
= m=

_ (_z)gfl(g . 1)'€'i L%J_l (_1)j+€71

(3¢ —2)! z2¢ far z2j+1

@‘sz‘l(_l)m 302 Ml 4G O\T(m 4 2j+20+ 1)
— m+2j 420 (-1 T(m+1)
m=0
Ll-1

_ L% B,
- = Z2j+17

where we have also used the fact that the first ¢ + k — 1 derivatives at r = 1 of the
original Wendland functions ¢, are 0, as this property means that

2%+
Y bi(i—n+1),=0, n=0,...,0+k—1

i=n
Now we simplify expression (B) where we will again use that the first £ + k — 1 deriva-

tives at r = 1 of the original Wendland functions ¢, s are 0,

132 _1)i 32

(B) = Coad Z poTEs ) Z bl,n(”_zj)2j+l

=0 n=2j+1
1352 (—1) 30-2
= Coad ), T Y bia(n—2f)yn
j=—1 27 n=2j+1
L/;lJ iri—1 €=2j—1
1 "& (—1)/
Codd—57 3 % b1m2jr20-1(m +1)2j10¢
=0 z m=0
(—2) (-1 1 L&) (~1)it
BGl-2)1 2 E) 2/
K‘Zf‘l(_l)m,l 302 Mo € =1\ T(m +2j +20)
o’ m+2j+20—1 ‘-1 I'(m)
| 45
_ v Py
= ];) S+

Finally we simplify expression (C) to complete the proof.

L 2k+2/71 J

(C) = Codd Z b1,2n+1(—1)n+1(27l+1)!2_2n_2
n=~0—1
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2252
]

We note that the existence of this representation was mentioned in [44], however the

exact values of the coefficients were not given.

4.5.2 Even spatial dimensions d

In this section we assume that the space dimension d is even, i.e., where ¢ = % +k+1.
We will consider the (original) Wendland functions ¢, with smoothness parameter k.
We will make use of (4.16) to derive a closed form representation for the d-dimensional
Fourier transform by calculating a 2—dimensional Fourier transform with a different

value of the smoothness parameter k.

Theorem 4.12. Let d be an even space dimension, k a positive integer and let { = d /2 +k + 1.
The d—dimensional Fourier transform of the original Wendland function ¢y is given by
141 411

C V1,j+k+1 V2, i+k+1
Fageal2) = giain | b2) L e +h() L
= j=

152

+ (Jo(2) i () = i(2)Ho(2)) ) W] (423)

=0
with g
_oV=2p1(p —
Ceven = ( 2>(3€?€f)' 2)!/ (4.24)
2kl (_1)n(2k+z)(%) . )
Ce— (_ 152 n k n
M= (=1) 2],1;1 T [(2 ]+1)]} : (4.25)
. ‘2k+f ; 2k+£ n—1 n - 2
V2= (—1)]22’n§j(—1) ( ; )( p >[(2—]+1)]} , (4.26)
and .
3-1 . -2 2
T3 1= g(—l)Tzf“ <2k;r£>< p > { (D’Zl} , (4.27)

where H,(z) denotes the Struve function of order v (cf. [45, Chapter 10.4]).

Proof. In this setting we are again dealing with the family ¢, and we are able to use

(4.16) to deduce that
Fapox(z / Poe-2(y)ylo(zy) dy (4.28)
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Using Theorem 3.2 we know that, on the unit interval, the function ¢, ¢_, is a polynomial

of degree 3¢ — 4. Specifically, (3.13) yields

NI =N
poalr) = Coun X -0/(* T (7, )0 (4.29

j=0 ]
3(—4

=: Ceven 2 bz,]' yj/
=0

where
c . (=D -2)
even (3¢ —4)!

To calculate this integral, we will need the following identity [36, 1.8.1.5, p.37]

/01 xfJy(ax)dx = a # {(u+v—1)]o(a)sy—1v-1(a) — Jo—1(a)suu(a)},

where s, denotes the Lommel function (of the first kind). We collect some identities
for the Lommel functions which we will require - for further information, we refer the

reader to [45, Chapter 10.7].

sp20(2) = 2= {(p+1) =7} 5 (2), (4.30)
su-v(z) = suu(2), (4.31)
suu(z) = r<u+;> V2V H,(z), (4.32)
s10(z) = 1-Jo(2), (4.33)
s21(z) = z—2Ji(z2). (4.34)

Then substituting (4.29) into the right hand side of (4.28), with the identities mentioned

above, yields

304 ‘
Fapor(z) = Ceven Y bpjz /71 [j]o(z)sj,l(z)+]1(Z)Sj+1,0(z)} (4.35)
=0
34 p At by
= Ceven ]O(Z) Z F]Sj,l(z) +]1(Z) Z Zji,lstrl,O(z) ’ (436)
=0 =0

=(A) :=(B)
upon noting that J_1(z) = —J;1(z). To simplify this further, we will use (4.30) to derive
series representations for the two types of Lommel functions that appear in (4.35). Firstly

we define the following two functions

dp; = ﬁ ((2m)* —1) (4.37)
m=p+1
= ﬁ (2m —1)(2m +1) (4.38)
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and .
i

foi= I (2m)>.

m:p—&-%

(4.39)

Both d;,; and f,; are defined for either i odd and p being an integer, or i even and p

being a half-integer. Note that simply writing out the terms in both functions gives

d; = 2p+1)(2p+3)*2p+5)*---(i—2)%

fri = @p+1)%---12,

from which we can immediately see that

fp,i =i(2p+ 1)dp,i ,

(4.40)

which we will need later. We can now formulate the expressions that we need for the

Lommel functions. We need to separate these into two cases: when j is odd, and when

j is even. These follow from (4.30), (4.32), (4.33) and (4.34).

Lommel functions when j is odd

Z i—on—1 i1 77
sin(z) = Y (=177 dy 22+ ( 1)%5010]141()
n=1
% j—2n m 177'[
S]'+1/0(Z) = Z(_l) : fn+ j <_ ) 2 EfOJHO( )
=]

j—2n-1

sia(z) = (-1)7F d, 22 +2(-1)2d,

i) = DT 2 = (DA ().

mm

(A) = Z?ﬂ{i(l)lz jniz" 4+ (-1 1) jdojHi(z )}

(4.41)

(4.42)

(4.43)

(4.44)
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|25 vy b
— Lj 7 -1 D
B E 2 M) 0%{“” g fo,j} (4.46)
by j i
R L (D, (4.47)
evenj
with
o 2k+4e f”—“—‘n
’)/1/' = (—1)]71 bz, 27]’ (448)
] ngj "n— 2] +2
1 X ) T :
(-1)"2 n;j T (5 ]+1)]_} . (4.49)

This result can be simplified further as follows. We know that the first k = ¢ —2 odd
coefficients {bay+1 }m—o,. ¢ vanish so we consider 71,j for 2j —1 < 2¢ — 3. Furthermore
since the Pochhammer symbol appearing in (4.49) also vanishes when n = 2p when
p=0,...,j—1, we can express the coefficients 1 as the sum of polynomials in n of
degree 2j with coefficients h,, as follows

2k+4

mj = (1)1 L n—b;]Jrz[G —j+1)j}2
2k+¢ 2j

= (=1)""2% Y byu Y hun”
n=0 m=0
2k+1

) 2
= (=172 Y hy ¥ byun™
m=0 n=0

We also know that the first £ + k —1 = 2/ — 3 derivatives of ¢, ¢_, vanish at r = 1. In

view of this we can deduce that

3(—4
Y byun’ =0, p=0,1,...,20-3,
n=0

and hence

')’1,]':0/ for j:O,l,...,E—Z.

We proceed similarly for (B). With (4.42) and (4.44),

<mzﬂg{i<w?nwﬁi<nvgmm@

evenj n=1
3¢-4 4] by
o4 T =1 by,
= Y by Y (-1 fram 2+ S Ho(z) Y 3 (-1) 7 = fo,
j=0 n=0 7 2 oddj Z*

_ Zl;ifl {(—1)£f;,j]o(z)}

evenj
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| 2] b
Y2,j s izl 02
RO R (Y
= ZZ]—H 2 oddi Z]+1
b2 1)} 450
— Jo(2) Ezjﬁ (=D f1 - (4.50)
evenj
with
2k44
Yo = (—1) Z bonfrain
n=2j >
2kt 2k + ¢\ /1L n 2
— (=1)/2¥% —1)" 2 —
oy o () ()G
=2j
As with 71 ;, we can express 7, as
2k+4 2

T = (1)) bm[(% _j+1)]l
n=0
2 2k+-4
= (_1)] Z hm Z bZ,nnml
m=0 n=0
and hence

Y2;=0, for j=0,1,...,0-2

Combining the above results, once again noting that the first k odd coefficients b, ; are

0, completes the proof. O

Note that since there are positive powers of z in two of the sums in Theorem 4.12,
it is not immediately obvious that we achieve the asymptotic decay rate predicted by
Theorem 4.5. To investigate this, we will need to consider the first terms (j = 0) in the
first and third sums of Theorem 4.12. Using the asymptotic expansions of the Bessel and

Struve functions ([45]), we see that as z — o

_ 2 T -1
Jo(z) = — cos (z — Z> +0(z7)
J(@)Hi(z) ~ h()Ho(z) = 2/ 2 cos(z- 1) +0(E")
0 1 1 0 - T Tz 4 ’
which will mean that these two j = 0 components will cancel out asymptotically if
2
Tkl = 732k

With the definitions of 1, and 73, in (4.48) and (4.27) and noting that
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we can see this as follows

Yk = (—1) —
nky M2k
= (=) byori1 foori
2
= —;73,2k+1,

and hence the asymptotic decay of the Fourier transform in Theorem 4.12 agrees with

Theorem 4.5.

4.6 Closed form representation for the Fourier transform of the

missing Wendland functions

In this section, we consider the missing Wendland functions, so & = k + % where k € N
and we once again seek a closed form representation for the Fourier transform, in other

words, for
]:d4’%+k+1,k+%'
with an even spatial dimension d.

Theorem 4.13. Let d be an even spatial dimension, k a positive integer and { = d/2 +k + 1.

The d—dimensional Fourier transform of the missing Wendland function ¢, +1 is given by

e 5, 2]
2 1
Fabypi1(z) = \/;W[sin(z) ) §]1+1 + cos(z Z 'BT Z 'BT , (4.51)

=0

where B, Ba,j and B3 j are given by (4.18), (4.19) and (4.20) respectively.
Proof. With (4.14), we can see that
fd¢g+k+1,k+% - ‘Fd71¢g+k+1,k+1
- ]:d*14’d%+k+1+%,k+1/

which is just the d — 1-dimensional Fourier transform of the original Wendland function
with smoothness parameter k + 1 (since k is an integer). Since d — 1 is odd, the closed

form representation for this is given in Theorem 4.11, which gives the stated result. [

4.6.1 Integrals leading to the result

Since the standard texts on special functions (such as [21, 36]) do not contain the inte-

grals that we require for the Fourier transform of the missing Wendland functions, in
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this subsection we show that the Fourier transforms of the missing Wendland functions
in even spatial dimensions d are of the form stated in Theorem 4.13. This analysis may
in future lead to another closed form representation for the missing Wendland functions
by use of the inverse Fourier transform to recover the missing Wendland function.
From the form of the missing Wendland functions given in Section 3.3, and the
Fourier transform integral in (4.2), we can see that the Fourier transform will involve

integrals of the form

1
I, ;:/ x”ﬂx%]%_l(xt) dx, n>0
0

and

1
M, := / x*" arcsech (x) xg]%_l(xt) dx, n>0.
0

We will need to make use of the following two Bessel function integral identities ([21

6.683.6],[21, 6.683.4])

/0 * Ju(zsin) (sin0)" 1 (cos 0)*T1dO = 27T (0 + 1)z PV, 1 (2), (4.52)
and
/727 Ju(zsin8) (sin )" * (cos 0)* ' do = Sutoo—+1(2) (4.53)
0 Iz zy—lzv-ﬁ—ll“(‘u) : ’

First we consider I,,. With the substitution x = sin6, using sin?f = 1 — cos?6, then

expanding with the binomial theorem and using (4.52) we reach

1,1:/0
:/o

NN

(sin 9)2n+% cos? 0]%_1 (tsin6)do

NN

(sin 9)% (1 —cos?6)" cos? 0]4_, (tsin6)do

— i ( )2]+2]" <j+§> t_j_%]%Jerr%(t).

Now we know from [45, Chapter 9.6] that we can express a higher order Bessel function

in terms of lower order Bessel functions as
Jotm (Z) = ]v(Z)Rm,v (Z) — Jo—1 (Z)Rm—l,v—H (Z)/
where R, »(z) are the Lommel polynomials. Then since

B =y Zsine

Ja(z) = 2 cos(z)

7 TZ
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we can reach
2 & (n\ i (. 3\ . )
I, = \/;]Z(:)(—l)l <]_>21+21“ <] + 2> g2 {Rgﬂl%(z) sin(z) — R%ﬂ_l%(z) cos(z)} ,
(4.54)

which consists only of sin(z) and cos(z) terms multiplied by polynomials in z, as re-

quired. Note that there is no pure polynomial component in this expression.

We now consider M,. We can do this with integration by parts with
u = x*" arcsech(x) and dv = x%]%fl(xt) where we also need that [45]
Z0+1
[ elt)dz = = o t2).

Now we can integrate by parts, n times, using

N|—

d —
dx ( 21 arcsech(x)) = 2p x2n1 arcsech(x) — x2n=1 (1 B xz) )

and each time the boundary contribution is zero. So then in the end, we reach

1

M, = Z”n!t_"/o arcsech(x) x%“]%mfl(xt)dx
(S il T Y oon2jt 2\-1/2, 44j-1
+Y (-2 t ] m/o AT — x?) T 22t Jayja(xt)dx. (4.55)

j=1 m=n—j+2
Note that the second term in (4.55) can be handled in a similar fashion to I,, and hence
we need only concern ourself with the first term in (4.55). We apply integration by parts
again, and applying the second Bessel function identity stated above leads to (with

m:=d/2+n-1)
1 d 1 _ dypy
/0 arcsech(x)x2+”]%+n_1(xt)dx = —/O (1 —x2)"1/2x2Hn 1]%Jrn(xt)dx
= — /07 ]%Jrn(tsin(?) sin! 2" @ sin? 2" 2 9dg

= — /7 ]%Jrn(tsinf)) sin!~27" (1 — cos®6)"de
0

m ) m 4 .
= Y (-1t <] )]ngn(tsin 0) sin' ~27" 9 cos¥ 6d6
j=0

_ i(_l)m (m> S ot 51 (2) _
= j /) 25tn=1Zi+1/2T(d /2 4 n)
Now we recall the recurrence relation that we used earlier for the Lommel function of

the first kind

Sut2,0(2) = ZhH — {(n+ 1)% — vz} Suo(z),
in conjunction with s, , = s,,,, because then after j such iterations, we reach the Struve

function of order ‘12;1 +n — j which can also be expressed as

1 k+1/2)(%)—2k+n—1/2

Pt () =Yy () g
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and Y;,41(z) is also sin(z) and cos(z) multiplied by a polynomial. As a result, both I,
and M, are expressible in terms of sin(z) and cos(z) with polynomials in z, hence so is
a linear combination of I, and M, expressions, which provides some confirmation that
the Fourier transform of the missing Wendland functions in even spatial dimensions d

can be expressed in terms of sin(z), cos(z) and polynomials in z.

4.7 Properties

4.7.1 When is the Fourier transform strictly decreasing

Theorem 4.14. The Fourier transform of the generalised Wendland functions Fyyq(z) is

strictly decreasing if and only if its parameters satisfy

d+1
yzi—g + a4 1.

In particular, note that this value of  is one higher than the minimum required for positive

definiteness.

Proof. With the following identity [11, 16.3.1]

d a
G P (@31, b232) = (5o (a1 + by 41,62 +132)
applied to Theorem 4.3 yields
d —ZZCg'lX (dzil + oc)
—FaPual(z) =
(M ) (M )
d+1  — pu+d+1 p+d+2 2
><1F2< o tw Tt =7

and noting that C g “ > 0and z > 0 we only need to determine when the hypergeometric
function is strictly positive. This is identical to the proof of Theorem 4.4 except in this

case all the parameters are increased by one and the result follows. O



Chapter Five

Limit of the generalised Wendland

functions as &« — o

This chapter will present the limiting case of the generalised Wendland functions ¢, »
as & — oo,

In Figure 5.1, we can see the original Wendland functions ¢, in R3 fork=1,...,5,
where we have normalised the functions to have value 1 at the origin. One can clearly
see faster decay as a« = k increases, which suggests the need for a change of variable
when considering the limit as « approaches infinity.

Section 5.1 presents the change of variables that we will need to use to investigate the
limiting behaviour of the generalised Wendland functions. Section 5.2 presents the re-
sults as & — co. Section 5.3 considers the selection of the parameter u in the generalised

Wendland functions and Section 5.4 discusses the selection of scaling factors.

5.1 Generalised Wendland functions with a change of variable

We begin this section with two technical lemmas, which will be used in the change of

variable required to study the limiting behaviour of the generalised Wendland functions.

Lemma 5.1.
B I'(p+1)T(2a)
P1a(0) = ST (T (£ 20 £ 1)

(5.1)

Proof. To calculate ¢, ,(0) we need the value of the hypergeometric function in (3.5) at
the argument 1 (since it has argument 1 — r2). From [1, 15.1.20] we have the identity

I'(c)T(c—b—a)
I['(c—b)T(c—a)

oFi(a,b;¢c;1) = ,c#0,-1,-2,...,c—b—a>0. (5.2)

Applying (5.2) to (3.5) shows that

B T(p+1)T(a+1)
2t T(E+a+ T +a+1)

P (0)
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Figure 5.1. The (original) Wendland functions ¢gi(r) for ¢ = k+2and k = 1,...,5, nor-

malised to have value 1 at r = 0.

Using (4.7) twice — firstly for I'(5 +a + 1)I'(5 +a + 1) and then for I'(a)T (x + 1) —and
with several terms cancelling out in the numerator and denominator, we get the desired

result. O

We will also need the following result for the area under the generalised Wendland

functions ¢, 4.

Lemma 5.2.

_ 2 T(p+1)T(w+1)

I'(p+2a+2) (53)

/Ooo Pua(s)ds

Proof. This follows from (4.3) and Theorem 4.3 on setting d = 1 (noting that ¢, , has no
explicit d dependence). O

Now we can define what we will call normalised equal area generalised Wendland
functions. These are normalised generalised Wendland functions with a linear change
of variable (which depends on a and a positive real constant @) such that for a given
¢ all the normalised equal area generalised Wendland functions have area equal to

the area under exp(—dy?) over the real half-line. The value of ¢ can be chosen for
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the convenience of the user. We will denote the normalised equal area generalised

Wendland functions by ¢, .

Theorem 5.3. With ¢ an arbitrary positive real number, the normalised equal area Wendland

functions are given by

N R

pony) e ZOT@G 120 1) [ (77) for 0y < 6a(0),
1% ]f'(]/t—i—l)l“(ZtX) 0 for y > 5%“(19)

where o« > 0, p is given by (4.8) and

(p+20+1)T (a+ 1)
2VOT(a+1)

Proof. Normalisation follows from Lemma 5.1. We can verify that this definition gives

(5.5)

Oua(8) =

us the required area, with (5.3) and (5.1), as follows.

Oy (8) B (5%“(19) 1
/0 P (]/) dy = Pron (0) /0 P (1’) dr
L

2V/8
= /O exp(—9dy?) dy.

O]

In Figure 5.2 we plot the normalised equal area original Wendland functions ¢, for
d=3andk=1,...,5withd =1.
We emphasise that the normalised equal area Wendland functions satisfy both

P,2(0) =1 as well as
X 2
9nall = [ e dy,

where ¢ can be any constant.

We will also need the following results.
Lemma 5.4. With u given by (4.8) and « > min (%, 1, ,B) Then
4

Ve (5.6)

Proof. From [46] we have the double inequality

1-s
x < I'(x+s) <1
x+s - xT(x) —
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Figure 5.2. The normalised equal area Wendland functions ¥31(y), $a2(v), ¥s53(y), Yea(y),
W75(y) with « = 1 and exp(—y?).

for 0 < s <1and x > 0. With s = § and using I'(« + 1) = al'(«), this gives

(420 +1)T (a+3)

O (0
wal?) 2v0  T(a+1)
< (p+2a+1)
N PAVE
3 (4+30+p+2)
N 2Vt
< e
Vo
U
Lemma 5.5. Let 17 > 0. The function f : (0,00) — R defined by
[y +7)
=, >0, (5.7)
W)= —Fay ¥

is non-decreasing on (0, 00).

Proof. We provide a proof for the convenience of the reader. Consider F,(y) := log f, (v).

Since f,(y) > 0 and
dEl) 1 dfyW)
dy  fy) dy 7

we can consider the derivative of F,(y) since it will have the same sign as the derivative

of f,(v). Now

S oy -+) — ol
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where 1 is the digamma function with the series representation [1, 6.3.16]

1) = — G -1,-2,-3,...
Poly+1) = —7+ Z n+y y#

where 7 is the Euler-Mascheroni constant. This gives

dF

- ; (n+y) n+y+f7)

which converges and is positive on (0, %), since # > 0. O

5.2 Asymptotic behaviour as « —

In this section, we consider the limit of the (generalised) equal area Wendland functions
Yy as « — oo. Section 5.2.1 presents the limit of the generalised equal area Wendland
functions ¢, as & — oo. Section 5.2.2 provides some numerical results regarding the

convergence, including graphs of the differences with the limiting Gaussian.

5.2.1 Limiting case of the normalised equal area Wendland functions ¢, , as

x — o0

In this section we derive the limit of the normalised equal area Wendland functions 1, »

as & — co. We start with a convergence result for the Fourier transforms.

Theorem 5.6. Let ¢ be a positive real constant, o > min(%,l, B) and . be the normalised

equal area generalised Wendland functions defined by (5.4) and (5.5) with u given by (4.8). Then

lim Fyip,a(z) = Go(2) (5.8)

X—r 00

uniformly for z in an arbitrary bounded subinterval of the positive numbers.

Proof. Firstly we express the Fourier transform of ¢, , in terms of the Fourier transform
of ¢y «. Writing 6, for 4,,,(®) and using the transformation y = 7, gives, from (4.2),

O
fd‘/’y,a(z) = Zli% ' 1/1;4,&(]/)]/% ]gfl(zy) dy
0 2

2T ()T (p 4 20+ 1)z 56, 2 g
} T+ DI 2) J slr) 00" Ty )
21T (@) (1 + 20 + 1)217% 6,
(s + 1)T(20) (60 2)1 2

21T (a)T (e + 20+ 1)54 ,
- (3 + DT (24) (Fafpa) (9pa2). (5.9)
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Next we use Theorem 4.3 to write the Fourier transform of ¢, , in terms of a hypergeo-
metric function as
67 2751 (4 20 + 1)T(a)T(d + 24)
Fahual(z) = 12 y X
T (2a)T (E + tx) T(p+d+20+1)
d+1 d+20+1 p+d+2u+2 05,2
B < Pl g ptdt ] prdr a2, Gt ) (5.0

2 YT T T g

with 6,4 = 9;,4(?). Then the equivalent series representation is as follows

2\"

i = I'(d+2a+2n)T(u+20+ 1) (« 2\

Fapuale) = 278y 1 Tl 20 1006 e ()
iSO T(2a)T (e + 20+ 1+ d+2mT (w+ 4 +n) !

— 2% i Wy () 2y (5.11)
n 4 7
where
B I'(d+2a+2n)T(p+2a+1)T(a) ‘55&2”
T(20)T (4 + 20 +1+d +2n)T <zx+§+n) n!

To interchange the limit as « — oo and the infinite sum, we need to prove that this sum

(5.12)

is dominated by an absolutely convergent series (Lebesgue’s dominated convergence
theorem). Using (4.7) twice together with Lemma 5.4 and the bound [11, 5.6.8]

I'(x+a)

Tx4b) = o’ x>0b—a>1,a>0, (5.13)

we have for o > 1
242y (g +a+n+ %) D(p+2a+1) giean
T(a+3)T(p+2a+1+d+2n) n!
22T (44 3 4 n) T(3) g4
I (3)TGa+d+2n)  n!
sd+2nT (% + 3y n) e WESNESSY 512
T (3 23w+d+2n-1T (w + n) T (% + n) n!
Fst) o
T (304+2d+1 —l—n) n!
1 4\/& d+2n l
Vo n!

32 "
- (3) w

where for the inequalities above we used

I'(p+2a+1) < I'(3w)
I'(p+20+1+d+2n) — T'(Ba+d+2n)

wy ()

IN

IN
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and fora > 1
F(§+a+n+d) T(4+%+n)
< 7
Fe+3) = T(F)

both of which follow from Lemma 5.5.

n
The ratio test shows that ), R, (—%) is absolutely convergent. Therefore we can

take the limit as « — oo inside the infinite sum, giving

1 z22\"
lim Fdlpw ) =272 Z 1m wy (a (—4> .

n—r00 e 0
Using the following asymptotic result from [11]

r(x + a) a—b

e R (5.14)

we can see that

Jim w (@) = nlgs+n

and hence

lim Fyppa(z) = (28)°° i (_,j? )

n—r00

which proves pointwise convergence. Uniform convergence follows since the interval is

bounded. O
We are now ready to state the main result of this subsection.

Theorem 5.7. Let ¢ be a positive real constant, o > min(%, 1,B) and . be the normalised
equal area generalised Wendland functions ,, . defined by (5.4) and (5.5) with y given by (4.8).
Then

lim l/)y,x( ) = Gs(y) (5.15)

n—r00

with the convergence being uniform for y € [0,00).

Proof. It follows from (4.5) that for a fixed y

$ualy) — Goly)] = y'¢

IN

— /O ) | Fapua(z) — Go(z)]z " dz, (5.16)
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where we have used the following bound on the Bessel function [11, 10.14.4]

)| < ks, 02—

Bl , xeR.
o1 1) 2 *€

Since the right hand side of (5.16) is independent of y, the result follows if we can show
that
Dy, = / | Fapua(z) — Go(z)|z"1dz = 0 as a — co.
0

Now for arbitrary Z > 0 we have, because F;1,,, and é§ are non-negative,
Z R ) 0
Dy, < / | Fatpua(z) — Go(z)|z ' dz +/ Fahua(z) 2?1 dz —1—/ Go(z) 29 1dz
0 Z z
z A d—1 Z d—1
= /0 | Faua(z) — Go(z)|2z" " dz —1—/0 (Gﬁ(Z) - fdlpw(z)) z47 dz
—|—2/ Go(z) 241 dz
Z
V4 R o
< 2/ |\ Faua(z) — Glg(z)|zd_1dz+2/ Gy(z) z4-14dz, (5.17)
0 z

where we used the positivity of ;1 and Gy, and

[ @z @z = [T a =2 (5),
0 0

which follow from (4.3) with F; replaced by F L

Given an arbitrary € > 0, we now choose Z sufficiently large to ensure that

/ Go(z) 24 1dz < €
z 4

For the first term in (5.17), we note that from Theorem 5.6, the integrand converges to

zero uniformly for z in a bounded interval, thus there exists a1 € IR such that
z A d—1 €
|V Fipua(2) = Co@)z" T dz < § ¥ wzm,
0

and hence

€ €
Dlg,a < E + E =€
for all « > a1, which completes the proof. ]

An interpretation of Theorem 5.7 in terms of probability distributions is that

LI J S S (—yz) >0 (5.18)
a0 \2 7t O u (ﬁ) V2o P\l722 ) V= '
where the limit on the right hand side is the right half of the Gaussian probability

density with mean 0 and variance 2.
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We note that since

Sk (0) ~ ;\/g (5.19)

from (5.14), we could have used the right hand side of this expression instead of d;x(¢)
to define a change of variable to study the limiting case.

Since the original and missing Wendland functions are simply special cases of the
generalised Wendland functions, and there were no restrictions on « in Theorem 5.7,
this result will also hold for the original and missing Wendland functions.

We note that the similarity of the normalised (original) Wendland functions to a
Gaussian has been mentioned in [30] and of the normalised equal area (original) Wend-
land functions to a Gaussian in [15], in both cases for R® with k = 1. No theoretical

explanations were given for these observations.

5.2.2 Numerical results

In this section we present numerical results regarding the differences between the ap-
propriately scaled original and missing Wendland functions and the Gaussian limit es-
tablished in Theorem 5.7. We also consider an interpolation example using both the
original Wendland functions ¢, ;, normalised to have value 1 at the origin, and the nor-

malised equal area original Wendland functions .

Difference with the limiting Gaussian

Let the differences between the normalised equal area Wendland functions and the lim-

iting Gaussian be
Eri(y) = $ri(y) — exp(—9y?)
and let

€0k := sup [Egx(y)|,
y=0

Note that the change of variable used to define y,x depends on the parameter 9.
Figure 5.3 shows plots of E;x(y) with & = 1. The upper plots are ford =2 and k = 1.5
and k = 5.5 and the lower plots are for d = 3 and k = 2 and k = 6.

In the absence of theoretical rates of convergence, we show numerical results. Figure
5.4 shows e/ withd = 1fork=1,...,50and d = 3,5, 7 and 9 for the original Wendland
functions. Figure 5.5 shows €y, with ¢ =1 for k =0.5,...,49.5and d = 2, 4, 6 and 8 for

the missing Wendland functions. Since ¢ is just a scaling factor, the results do not vary
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Figure 5.3. E;(y) witha = 1and 0 <y < 6yx(1). Subplots (a) and (b) are for the missing
Wendland functions and subplots (c) and (d) are for the original Wendland functions.

in an essential way for different values of ¢.

In all cases, we see convergence of €/ to zero as the smoothness parameter k in-
creases. This is consistent with the theoretical convergence results. Note that €, is not
monotonically decreasing in k. We also remark that €/ is reached at different values of

y as k increases.
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Figure 5.4. €/ on a logarithmic scale with ¢ = 1, k = 1,...,50 and d = 3,5,7,9 for the

original Wendland functions.

An interpolation example

We consider an example, in which we show results obtained with both the Wendland
functions ¢y, normalised to have value 1 at the origin, and the normalised equal
area Wendland functions ¢, for different values of k. The aim of the example is to
approximate the 2-dimensional Franke-like function (the Franke function [16] rescaled
to [0,5]%). For k = 1,...,5 we consider interpolation, using the Wendland functions
¢¢ , normalised to have value 1 at the origin, and the normalised equal area Wendland
functions ¢, with @ = 2. We use 9 x 9 and 17 x 17 equally spaced grids as the

centres. The number of centres is thus n = 81 and n = 289. The L, error was estimated
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Figure 5.5. €/ on a logarithmic scale with ¢ =1,k = 0.5,...,49.5and d = 2,4,6,8 for the

missing Wendland functions.

using Gaussian quadrature with a 120 x 120 tensor product grid of Gauss-Legendre
points and the L. error was estimated by using a 360 x 360 equally spaced grid.
Table 5.1 shows the L, and L errors, as well as the 2-norm condition numbers of
the interpolation matrices. We also show the results with the limiting Gaussian of

exp(—2y?), denoted by k = .

We see from the right-hand part of Table 5.1 that once the argument is properly
scaled to give approximately constant effective support, increasing the smoothness has
remarkably little effect on the error. On the other hand the condition number increases

rapidly as the smoothness increases and is very large for the Gaussian limit. Taken
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together, these observations suggest that any benefit gained from the higher smoothness

is likely to be offset by the increased condition numbers of the matrices.

The results with the Wendland functions ¢,x, normalised to have value 1 at the
origin, are in the left-hand part of Table 5.1. We can see that the condition number
is decreasing as k increases, which is due to the decreasing magnitude of the non-zero
elements away from the diagonal. This is due to the fact that as k increases the Wendland
functions ¢, r, normalised to have value 1 at the origin, decay more rapidly with respect

to r, as illustrated in Figure 5.1.

RBF: ¢k RBEF: ¢y x
N | k | Ly error L error K L, error Le error K Amin ~ Amax
81 | 1| 225e-1 6.96e-1 | 1.71 | 1.89e-1 5.89e-1 |1.76el 1.55e-1 2.74
2 | 2.6le-1 7.95e-1 | 122 | 1.86e-1 5.78e-1 |3.14el 9.62e-2 3.02
3] 3.00e-1 890e-1 | 1.07 | 1.87e-1 5.79e-1 |4.96el 6.50e-2 3.22
4 | 3.36e-1 9.73e-1 | 1.02 | 1.87e-1 5.80e-1 |5.56el 5.98e-2 3.30
5 | 3.63e-1 1.03 1.01 | 1.87e-1 5.8le-1 | 6.37e1 5.29e-2 3.37
o 1.89e-1  5.89%e-1 |9.40el 4.03e-2 3.78
289 | 1 | 7.75e-2 2.26e-1 |4.87el| 8.20e-2 2.45e-1 |4.77¢2 2.25e-2 10.74
2 | 7.48e-2 2.00e-1 |5.64el| 7.98e-2 2.1le-1 |3.89e3 3.08e-3 11.97
3| 747e-2  1.98e-1 |3.00el | 7.88e-2 2.00e-1 |1.23e4 1.04e-3 12.78
4 | 759%-2 2.12e-1 | 1.24el| 7.71e-2 2.04e-1 |9.88e4 1.33e-4 13.09
51 775e-2 233e-1 | 6.85 | 7.6le-2 2.09-1 |3.77e5 3.55e-5 13.39
(o) 723e-2  1.90e-1 |2.13e9 7.04e-9 15.00

Table 5.1. Results from the example in Section 5.2.2 showing Ly and L« errors, 2-norm con-
dition numbers x and minimum and maximum eigenvalues (Amin and Amax) when using the
Wendland RBFs ¢y, normalised to have value 1 at the origin, and the normalised equal area

Wendland RBFs g with & = 2.

5.3 On the selection of the parameter y

We recall from (4.8) that u = d%l + & + B, where B is a non-negative constant. We are
now better able to understand the effect of choosing different values of B. For a given
spatial dimension d, higher values of B are equivalent to higher values of the smoothness
parameter «, and hence we will see faster decay of the generalised Wendland functions

as we select higher values of B. Consequently there appears little benefit to selecting
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B > 0, as this will lead to reduced overlap between the basis functions as well as higher

degree polynomials which will increase computational complexity.

5.4 Implications for selecting scaling parameters

In Figure 5.1 we saw that the (original) normalised Wendland functions exhibit faster
decay with respect to r as the smoothness parameter k increases. This suggests the
need for a change of variable, not only to have a well-defined limit as considered in
this paper, but perhaps also in practical applications. Without a change of variable,
in the case of interpolation we could have a nearly diagonal interpolation matrix and

consequently high errors between the interpolation points.

The number of interpolation points that fall within the support of an RBF is also
related to the stationary approach to interpolation (e.g. [12, Section 12.2]), in which the
goal is to keep the number of points in the support of each RBF approximately equal
across different sets of centres. However here it is not the centres that are changing, but

rather the basis functions that change with k.

In Figure 5.2 we saw the (original) normalised equal area Wendland functions,
whilst formally having support [0,d,,(«)] that is different for each k, appear nearly
identical. As a result, if the user wishes to compare the results using Wendland
functions of different smoothness, the normalised equal area Wendland functions may

be a more appropriate choice of RBE.

We saw in Section 5.2.2 that whilst the normalised equal area Wendland functions
with different k might appear comparable, and give similar accuracy, the increasing
support as k increases causes decreased sparsity of the interpolation matrix, and conse-
quently an increased condition number of the linear system. This leads us to conclude
that there may be little benefit from considering high values of the smoothness parame-

ter k.



Chapter Six

Solving PDEs with Wendland functions

This chapter will review theoretical results concerning the construction of approximate
solutions to elliptic PDEs and the Stokes problem with Wendland functions.

Section 6.1 covers approximation theory for Galerkin approximation, and Section 6.2
does the same in the case of collocation. This chapter should be viewed as operating in

a single scale (single level) framework.

6.1 Galerkin approximation for elliptic PDEs

6.1.1 PDEs with Neumann and/or Robin boundary conditions

In this section, we consider a second order PDE which has homogeneous Neumann
and/or Robin boundary conditions. For example, such a PDE with Neumann boundary

conditions is given by

Lu=f inQ, (6.1a)
Jdu
P 0 onoadQ), (6.1b)

where £ is a second order elliptic differential operator, n denotes the outward unit
normal vector and d() denotes the boundary of the domain Q) C R?. We now assume

that (Lu,u) is equivalent to ||u as in the case where £L = —A + I. The weak

12, ey
formulation is given by
a(u,v) = (f,0) 1,10y VYVEV, (6.2)
where V = H'(Q). We assume that £ and f are such that a(u,v) is a strictly coercive
and continuous bilinear form defined on V x V and f,v>L2(Q) is a continuous linear
form defined on V. By the Lax-Milgram theorem, (6.2) has a unique solution u € V. We
will also require u € H2(Q) with spatial dimension d < 3.
Galerkin approximation seeks to find an approximation to (6.2) in a finite dimen-
sional subspace Vy C V. In other words, the Galerkin approximation uy is the solution

of
Uy € Vy - LZ(LTN, Z)) = <f, U>L2(Q) Vv e Vy. (6.3)
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We will consider ) to be a bounded domain with a Lipschitz boundary, which means
that we can apply the extension operator to use norms in R? as stated in Lemma 2.1.
For further information on weak formulation of PDEs and Galerkin approximation, we
refer the reader to [7].

Since the PDE does not have Dirichlet boundary conditions, we can use the entire
Sobolev space H'(Q) rather than the subspace H'(Q) consisting of functions with zero
boundary values, which can occur with pure Dirichlet boundary conditions.

We will consider finite dimensional subspaces Vy C V of the form
Vn :=span{®(-—x;) : 1 <j< N},

where @ : RY — R is at least a C!-function and there are N centres {xi:1<j< N} In

this case our approximation takes the form
N
unN = ZC]q)( — X]'),
j=1
and the weak formulation with this approximation given by

a(in,v) = (f,v>L2(Q) Vv e Vy,

results in a linear system

Ajj = a(P(- —x;), P(- — x;)) (6.4)

and

We have the following result from [49].

Theorem 6.1. If u € H?(Q),d < 3, is the solution to the variational problem (6.2) and
uyn € Vy is the solution of (6.3), where Vy is generated with a point set X satisfying h < hy for
ho small enough and a kernel ® satisfying (3.20), then the error can be bounded by

[ =Nl ey < Chllullizq)-
Lemma 6.2. Consider the adjoint variational problem

a(v,w) =(8,0)1,q) VVEV. (6.5)
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If the adjoint problem satisfies the reqularity estimate
lwlliz (o) < CligllLy ), (6.6)
then we have the following error bound
1 — 1N |1y (0) < Chllu — tin || () < CH?[|ul p2(q)-
Proof. With 1)y as defined in (6.3), let w be the solution to the adjoint problem
a(v,w) = (u—1UN,0),q) YVEV,

and let the Galerkin approximation be given by @. Then since the bilinear form a(-,-) is

bounded, u € H*(Q), and with Theorem 6.1 we have, for @ € Vy,

[l — ﬁNH%Z(Q) = (u—in,u—1N), @)

a(u—in,w) =a(u— iy, w—0)

< Cllu—unl[mq) llw — @ g q)
< Chllu— Nl Wl )
< Chllu —unllg(q) |4 — Nl ),

where for the second last step, we use the regularity estimate (6.6) and the result follows

with another application of Theorem 6.1. O
We note that (6.6) is known to hold [7, p.139]

e if () has a smooth boundary and the problem has pure Dirichlet or pure Neumann

boundary conditions;

o if d =2 and () is convex and the problem has pure Dirichlet or pure Neumann

boundary conditions.

6.1.2 PDEs with Dirichlet boundary conditions

In this section we will consider a PDE with Dirichlet boundary conditions and we seek
error estimates similar to those in the previous section. For ease of description, we will

consider the following boundary value problem

—Au=f in(Q, (6.7a)

u=g onod), (6.7b)
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where A denotes the Laplacian in IR?. Nitsche [34] proposed minimising the functional
J(v — u) where

J(w) ::/|Vw|2—2/w(Vw-n)—|—,BN/w2,
Q a0 90

for all v € Vi with u being the solution of (6.7) and where n denotes the outward unit
normal vector and V the gradient operator. The parameter Sy > 0 depends only on the

subspace Vy. The approximation uy is given by

J(in —u) := viér%/fN J(v—u).

With f and g from (6.7), we can compute i since

J(v—u)=J(v)+J(u)—2 (/fv—l—/g(ﬁNvVv-n)).
Q 20

Then the variational form to approximate (6.7) becomes: find uy € Vy such that for all
veVy
ﬂD(LTN, U) = ED(U), (68)

where we use the subscript D to denote the Dirichlet boundary conditions and

ap(u,v) ::/Vu‘Vv—/U(Vu‘n)—/u(Vv-n)—i—ﬁN/uv (6.9a)
o}

o0 o) Q)

lp(v) = /fv— /g(VU-n) +/3N/Ug. (6.9b)
Q 90

a0
It can be shown that the variational form using Nitsche’s method leads to variational

consistency, in the sense that if u is sufficiently regular, then [5, p. 119]
ap(u,v) =lp(v), VYveVn.
If there exists a positive constant Cyy such that
Cn
HVUHHLQ(E)Q) S %HVUHLZ(Q), VZ) S VN, (610)
with J being the support of the radial basis functions, then selecting
c
pn =5, 6.11)
with ¢1 > 2C% will ensure that the bilinear form ap(-, -) is symmetric positive definite.

This choice of ¢y, will also ensure that ap is coercive on Vi since

ap(v,0) = |Vol2, o —2 [ (Vo -n)+ vl 60
Q) (002)
(@)
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2Cn
||VUH%2(Q) - WHUHLZ 20) [Vl Ly0) + Bnllo HL2 20)

1 2C%
31901+ (B = %52 ) 1ol 0y

v

v

where we have used the Cauchy-Schwarz and Friedrichs inequalities, (6.10) and

2xy < x2 + y?. We recall that the Friedrichs inequality [27] states that

[P <c (/W+/u2),
Q O Q)

for () being a bounded domain for which the Gauss-Green formula holds.

Continuity follows since
ap(w,0)] < [l ol ) + Cn/8 (Il uo | VHll )

)l ooy 192l oy ) + Brlitl ooy 2l

IN

[l ey [0l ) + € (112 LoV o)+

H”HLZ(Q)HVUHL2(Q)> + BNl ol L)

< Cllullmoyllollme), Yuo €Wy,

where we have used the Cauchy-Schwarz inequality, (6.10) and the Sobolev trace em-
bedding theorem.

Nitsche also proved that the optimal error estimates of Theorem 6.1 and Lemma 6.2
hold in this setting if, in addition to the requirement of selecting By satisfying (6.11),
there exists a s, € Vy such that for u € H?(Q), the following error bounds hold for
ke {0,1}

= sull ey < CH*|ull (6.12a)
4= sulltan) < ChS/Z*"llullem). (6.12b)
For the Wendland functions, this requirement is known to hold [49].

Note that the most challenging aspects of Nitsche’s method are the derivation of the

weak form and the selection of the stabilisation parameter fn. Both the weak form and

the choice of the parameter B depend on the PDE as well as the Dirichlet boundary

conditions.

6.2 Collocation

In this section, we consider symmetric collocation with Wendland functions for solv-

ing elliptic PDEs and symmetric collocation with Wendland functions for solving the
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classical stationary Stokes problem.

6.2.1 Symmetric collocation for elliptic PDEs
In this section we consider the following Dirichlet PDE
Lu(x) = f(x), x in Q, (6.13)

with
u(x) =g(x), x on 0Q), (6.14)

where O C R is a bounded C'"' domain (as defined in [19, p.94]) with a C**-boundary
dQ), with k € Np and s € [0,1). L is an elliptic second order differential operator of the
form

Lu = aif(x)Diju + b (x)Dju + c(x)u,

with coefficients a’/ € C°(Q)),b',c € L*®, where i,j = 1,...,d, defined on Q) C R4,
Suppose that ® is a kernel that satisfies condition (3.20) for some p =7 >2+4d/2.
This assumption ensures that we may apply £ to ® twice and still have a contin-
uous function. We choose interior and boundary point sets as X = X; U X, where
Xy ={x1,...,x,} CQand X = {x41,..., x5} C 0Q). We construct our approximation

u as
n

Z £2<I> —x] + Z a;d —xj), (6.15)

j=1 j=n+1
where the 2 subscript on £ indicates that this operator acts with respect to its second
argument.
Without loss of generality, we will only consider the case where the RBF centres
coincide with the collocation points. Then solving (6.13) and (6.14) by collocation on the

set X means to select u such that the collocation equations
Lu(x;) = Li(x) = f(x;), x € Xy, (6.16)
u(x)) = i(x) =g(x), x € X, 6.17)

are satisfied.

The resulting linear system is of the form
Ac =f,

where A is the collocation matrix

A= (6.18)

ABr, ABs,

Arc, A£82]
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with entries given by

Argy)y = LLP(XE)|x=xz=z %, j € X
Argy)ij = LOXE)|x=x,e=z,,%i € X1,8j € X
Apry)ii = L2®(X,8)|x=x,z=¢,, X € X2, 5 € X1
ABBy)i; = PG lexiz=g %0 §j € Xa-

The vector f consists of the entries f(x;), x; € X3, followed by g(x;), x; € X». We note
that u, 11 € H*(Q)). Under the assumption that the functionals {A4,..., AN} given by

Aj(u) = oo L(u) = (Lu)(x;), j=1,...,n

Aj(u) == oxgo(u)=u(x), j=n+1,...,N

are linearly independent, the symmetric collocation matrix is nonsingular and there
exists an unique approximation satisfying the collocation conditions (6.16) and (6.17)
[51, Section 16.3].

The error between the solution and the approximate solution depends on the mesh

norms of the interior and boundary centres, as given in the following lemma.

Lemma 6.3. Assume that the exact solution of (6.13) belongs to H™(Q)) with T > 2+d/2.
Let hy be the mesh norm of the interior collocation points X1 and hy be the mesh norm of the
boundary collocation points, let ® be a positive definite kernel satisfying (3.20) and let u be
the approximate solution obtained by symmetric collocation. Then we have the following error
bounds:

lu =il L0y < chf 2 {lu — il gee) < chi 2|l (),

and

lu = | Lya0) < Ch3~ 2|l — il e ).
Proof. From [19, Theorem 9.17], there exists a constant C (independent of u), such that
[ull g2y < CllLull,q)-
Since [|u||1,(q) < [[ullg2() and with [18], we have
L1 — Litl] Ly < Chi 2 |utl| e ),

which proves the first result. The second result is from [18, Theorem 3.10]. O
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6.2.2 Symmetric collocation for the Stokes problem

In this subsection we investigate symmetric collocation approximation with Wendland

compactly supported radial basis functions (RBFs) to solve the Stokes problem

—vAu+Vp = f in (), (6.19)
V-u = 0 in Q, (6.20)
u = g on J0), (6.21)

where the region Q C R?, the viscosity v, f: QO — R? and g : Q — RR¥ are given and we
seek an approximate solution to the velocity u : Q) — R? and the pressure p : Q — R.
Function spaces

First we define divergence-free approximation spaces in Q and in RY. With the diver-

genceof u: () — R? defined as

d
V-ou:= Za]-u] ,
j=1
we define
H'(O;div) :={u e H(Q): V-u=0},
and

~ I 2
H*(R% div) := {f € H' (R div) : /d | H(wﬁzuz (1+ Hw||%)T+1 dw < oo} ,

with norm R
- f(w)ll3 T+
f2 = (n d/Z/ DIz (1 4 110 12)™ deo.
H || T(]Rd;dlv) ( ) R HWH% ( HWHZ) w

We note that H” (R%; div) is a subspace of HY (R%; div). We will also need that for Q C R?

being a simply connected domain with C/7'! boundary for d = 2,3 and with > 0, there

exists a continuous operator
Egiv H'(Q);div) — ﬁT(Rd; div),

such that gdivu\ﬂ = u for all u € H(Q);div) [52, Proposition 3.8]. This operator is
defined as

Eqvu =V X ETu, (6.22)

where &s is the classical Stein extension operator defined in Lemma 2.1 and 7 is a
bounded operator 7 : H(();div) — H*"(Q) with T = k+ 6 for k € Np and 6 € [0,1]
[52, p. 3167].
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To measure the pressure, which is determined only up to a constant, we will use the

norm
T := inf T .
Pl e ) /r Inf I+l

Symmetric collocation approximation

We consider a single-scale approximant to the combined velocity and pressure vector

v:=(u,p): RY — R, following [31, 17, 52]. Then (6.19)-(6.21) become

d
(£5V>i = —vzaﬁvi+aivd+1 = fi in Q, (6.23)
j=1
d
Y 9j = 0 in Q, (6.24)
j=1
v, = g on 90, (6.25)

where 1 < i < d. We seek a meshfree, kernel-based collocation method with an an-
alytically divergence-free approximation space. We use the notation ¢, and ¢ to
denote the functions to be used in our matrix-valued kernel. We will mainly be inter-
ested in the case where both ¢, and ¢,_; are original Wendland functions which, for
a given spatial dimension 4, have native space norms equivalent to the Sobolev spaces

H™1(RY) and H™!(IRY), respectively. Their Fourier transforms satisfy

(14 [[w]3) 7™ < pra(wll2) < coen(T+ [|wl]3) 7, (6.26)
and
11+ [0l < Frallwla) < o1+ @™, (627)

and we define C; := min(c1r41,¢1,:-1) and C; := max(czr+1,¢2r-1). Then we define
the matrix-valued kernel
¥ .= : R — RE+HDx(@+1), (6.28)
0 4)”['71

where ®, 1 := (—=AIl + VVT)¢. 1, with I denoting the identity matrix. We note that
@, is also positive definite (cf. [31]) and hence due to the tensor product construction
of ¥, it is positive definite as well. This choice for ®; is known to lead to divergence-

free interpolants [31]. We also note that

@ (@) = (lolfl - ww”) pra(w). (6.29)

We will consider the case where the collocation points are the same as the RBF cen-

tres. We denote the interior centres by X; := {x1,...,xy} and the boundary centres
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by X» := {xn41,...,Xm} and their union by X = Xj U Xp, with mesh norms h; and
hy, respectively. Since (6.24) is automatically satisfied, this means that our approximant
and collocation conditions will consist of dN terms from (6.23) and d(M — N) terms
from (6.25). Then with £5 denoting the operator £° acting as a function of the second
argument, applied to rows of ¥, our approximant takes the form

Sxv(x) :ZZM,]- (ﬁg‘l’ X — Xj ) +Z Z a; ¥ (x =), (6.30)

d N
i=1j=1 i=1j=N+1

where the notation ¥; means column i of the matrix ¥. The coefficients i, 1<i<yd,

1 <j < M are determined by the collocation conditions

(cssxv(xj))i — filx), i<d j=1,...,N, (6.31)
(Sxv(x)); = &i(x)),

| /\

<d, j=N+1,...,M. (6.32)

From [17, 52], we know that if ¢riq,¢r—1 are positive definite and if

®..1 € WX(R?) N C?(IRY), then the native space of the kernel ¥ given by (6.28) is
N ( ) N¢T+l( ) X N¢T—1(Rd)l

with norm

€13 (RY)

6By o+ 150, e
ri 7 2
- (271)"”2/ Hf;‘ﬂ@ IC) P
R | lw[3¢e1(@w)  Pra(w)
where f = (fy, f,)T with f, : RY - R? and f, : R? — R. We recall that the generalised

w, (6.33)

interpolant satisfies [51, Chapter 16]
[Ev = SxEV|| nyre)y < 1€V arg (re)-

With (6.26) and (6.27), upon defining the extension operator for the velocity-pressure
vector v as

Ev = (Edwu, 5sp), (6.34)

where & is the classical Stein extension operator as defined in Lemma 2.1, then the

native space of our approximant given by (6.30) is
£ H'(O;div) x H1(Q) = N¢(R?) = H(R% div) x H1(RY).

Once again we can define interpolants with scaled kernels. In this case, we define the

matrix-valued kernel

Y5 := P10 0 : RY — RE+FDx(@+1), (6.35)
0 Pr-1,6
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where @15 := (—AL+ VV7)$,. 1,5 and the scaled basis functions are defined as in

(2.1). Then the native space of the kernel ¥; is given by

N‘Ya (]Rd) = Nq)r+],¢5 (]Rd) X N¢171,§ (]Rd)'

with norm
2 _ 2 2
HfH/\/Y&(Rd) = HquNq,Hw(w)‘i‘ pr”/\/%f]r&(w)
T 2 7 2
R A L e P
R wll3pri16(w)  ¢pr15(w)

We will need norm equivalence as stated in the following lemma.

Lemma 6.4. For every § € (0,0,] where ¢ry1 and ¢, generate H™V1(RY) and H*1(R?),
respectively, we have Ny,(R?) = Ng(RY) and for every f € Ng(R?) there exist positive
constants c15 and cq4 such that

1571l vy, (re) < Nl agerey < €167 11l gy ey

Proof. With f = (fy, f,)7, by using the same arguments as in Lemma 4.8, we have

e amin(L & ) fpllg, L we) < Wfollag, ey < c2r10" " HIfplly, o)

Similarly, we can show

C1,741 min(l, 5a_T_1) ‘|fu|"/\/;7+1,5 (R) < HquN’_TH (RY) < C2,T+15_T_1 Hqu'A/.T+1,5 (R¥)-
With  (6.36) and setting c¢15 = min(cyr_1,¢1041) min(1,6-7"!)  and
C16 := max(cy,r—1,C2,r+1), we get the final result. O

We require one further result from [43].

Theorem 6.5. Let m € INg and let Q C R? be a C" 1 smooth domain with outer normal vec-
tor n. For each f € H"(Q) and g € H"3/2(9Q) with [, g-ndS = 0, the nonhomogeneous
Stokes problem (6.19)-(6.21) has a unique solution u € H"*2(Q)) and p € H"1(Q) and

lulligeriy + Pl m < € (IElncey + Igllmanny ) (637)

Theorem 6.6. Let T > 2+ d/2. Assume that Q C RY is a bounded, simply connected region
with a CI11 boundary. Let £ € H™2(Q) and g € H'"V/2(9Q) satisfy [,,g ndS = 0.
Suppose the kernel ¥ is chosen such that Ny(R?) = HT(R% div) x HT"1(R?). Then the
approximation Sxv given by (6.30) to the Stokes problem (6.19)-(6.21) satisfies the error bound

v = Sxvlli,q) < ChT2||EV — SxEV| pgy (v (6.38)

where h := max(hy, hy) and the extension operator € is given by (6.34).
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Proof. With the definition of the Sobolev space norms in (2.4) and assuming that we
choose the representer for the pressure p such that ||p||g1 () = [|Pllm(q), and with

the notation Sxv = (Sx,,u, Sx,pp) gives

[v— SXVHLQ(Q) < flu— SX,M“HLZ(Q) +[lp — SX,pPHLz(Q)
< lu=Sxuullg) + P — Sxppllm)
= [lu=Sxuullge) + 1P = Sxppllm)/r

< ClI£% = £5Sxv]|Ly ) + lu = Sxuullgrzpa), (6.39)

where the last line follows from (6.37) applied to v — Sxv with m = 0. We now extend
the function v to £v € HT(RY) x H™1(R?) and note that the generalised interpolant
Sxv coincides with Sx€v. We now consider the two terms in the right hand side of

(6.39) separately. From (2.6) and [52], we have
125V — L8|y < Ch 2 [[EV — SxEV| py me)-
From (2.7), we have
lu — Sx,uullppr2a0) < Chy 2 [lu — Sxuul|pr(q)- (6.40)
Now we can write

[u—=Sxuullgrq) < [lu—Sxuullarq) + lp — Sxppllar10)

A

< ||Eqivu— SX,uEdiquﬁr(Rd;diV) +1Ep — Sx,pEsp |l pe-1(re)

S CHSV — SXSVHN-;:(]IW)/

and the stated result follows. O



Chapter Seven

Multiscale algorithms for Galerkin

approximation of elliptic PDEs

This chapter will cover theoretical results and numerical experiments regarding two

multiscale algorithms for Galerkin approximation of elliptic PDEs on bounded domains.

7.1 Framework

In this chapter, we will use (scaled) compactly supported radial basis functions to con-
struct multiscale approximate solutions to PDEs, that is, we form the solution over
multiple levels. We will work with a given domain Q C RR¥.

At each level i, we denote the mesh norm by /;. The selection of point sets with mesh
norms decreasing in a specific way will be one of the requirements for convergence of
our algorithms.

At each level, we will also require a scaled version of the kernel & : R? — R. For
our unscaled kernel we will use a Wendland compactly supported radial basis function.
With a (level-specific) scaling parameter § > 0, we can define the scaled kernels with
(2.1).

Appropriate selection of the scaling parameters will also prove to be one of the

important ingredients for convergence of our multiscale algorithms.

7.2 Multiscale Galerkin approximations

In this section, we consider a multiscale algorithm for constructing a Galerkin approxi-
mation where we use the residual from the previous level as the target for each subse-
quent level. We define the approximation at level i as u; := uy, with centres N; and the
approximation space at level i as V; := Vy,. The algorithm is given in Algorithm 1. The
bilinear form a(-, -) used in this algorithm is the unmodified bilinear form in the case of

a PDE with Neumann or Robin boundary conditions and the Nitsche’s method bilinear
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form ap(-,-) in the case of a PDE with Dirichlet boundary conditions.

Algorithm 1 Multiscale Galerkin approximation

Input n: number of levels

{Xi}!: the set of nested centres for each level i, with mesh norms at each level
given by h; satisfying cuh; < h; 11 < ph; with fixed u € (0,1),c € (0,1] and
hy sufficiently small
{6} : the scale parameters to use at each level, satisfying 6; = vh;, v a fixed
constant.

Set 1y = 0.

fori=1ton do

With the level-specific approximation subspace V; := span {®; (- — x),x € X;}

solve the Galerkin approximation given by
Find s; € V; : a(s;,0) = (f,0),(q) —a(li-1,0) Vo € Vi.
Update the solution according to
U, = Uj_1+5s;

end for
Output Approximate solution at level n, .

The error at level n, ¢, := u — u,.

The algorithm as stated uses the same bilinear form at each level and it is the approx-
imation space V; which changes. However the Nitsche’s method bilinear form ap(-,-)
will vary at each level since the value of C%; is proportional to 6~! and hence so is By.
This means that we will need to select the value of By corresponding to the last level
and to use this for all previous levels. This will also mean that we will need to know the
number of levels in advance.

Henceforth we will simply refer to the bilinear form as a(-,-). This should cause
no confusion as we have the same error bounds in both cases, as well as coercivity and
continuity, and the multiscale algorithm follows the same steps in both cases. We require

one more lemma before we can analyse the convergence of the multiscale algorithm.

Lemma 7.1. Let O C R? be a bounded domain with a Lipschitz boundary. Let ® be at least a
C! function and let D; be defined by (2.1) with scale factor 6;. Then for Algorithm 1 and for a
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given level i > 1, we have the following bound on the H'(Q)) error between subsequent levels.
leill ) < Cllei-1ll ().
where e; is defined in Algorithm 1.
Proof. We will firstly show that s; is the Galerkin approximation of ¢;_;. We have
a(s;,w) = <f,w>L2(Q) —a(u;_q,w), weV
= a(u,w)—a(ij_1,w)

= a(u—tj_1,w)

= a<ei—1/ ZU),

where we have used the variational form of the PDE and the linearity in the first argu-

ment of the bilinear form a(-, -). Hence on setting w = s; we obtain
a(e;_1 —si,s;) = 0.
Upon noting that ¢; = ¢;_1 — s;, it follows easily that
a(ej,e;) = a(ei_1,ei—1) —a(si, i),
and since the bilinear form a is continuous and coercive
Hez‘Hi{l(Q) + HSI'H%—F(Q) < C||€i71||%{1(0)/
from which the result follows. O

The following theorem and corollaries are our main results for the convergence of

the multiscale Galerkin approximation. For the error analysis, we will need the norm

Jully, := [ 1) (1+ 5 wl3) dew. 7.1
R4

As in Lemma 4.8, this norm satisfies
crzllulle; < flullpp ey < €186 |ully,- (7.2)

Theorem 7.2. Let QO C RY be a bounded domain with a Lipschitz boundary. Then for Algorithm

1 there exists a constant «1 > 0 such that

||85€i||‘Yi+1 < Déngsei_lH\{fi fOT’ i=1,2,...

where Ege; is the extension operator defined in Lemma 2.1 applied to e;. The constant w; satisfies

a1 < 1if in Algorithm 1 v is sufficiently small and y is sufficiently large.
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Proof. Using (7.1), we can write

IEseill3, —/|Ssel @)[2(1+ &2, ||w|2) dw =: (I + L),

]Rd
with
hi= [ (B (1 @ wlB) de,
IIWIIzSﬁ
12 = / ’5531< )|2 (1 + 51+1||(U||%) dw
lwll2> 51

dit1

Now we consider the first integral where we can use that d;11||w|2 < 1 and then Lem-

mas 6.2 and 4.8.

L < 2 / |Esei(w)|? dw

<
Jwll2= 5

< 2|Eseill],ge) < ClleillT, ) < Ch lleillinq)

IN

h 2
CH lealney < € (5) lEseialfy

= Cv? Hé’sei,ll\\yi,
where we have also used Lemma 7.1. For I, since J;,1||w||2 > 1, we have
(1+ 51+1 |w||%) < 2‘51+1 |wl|3 < 2(Sz+1 (1+ ||w%) .

Then again using Lemma 7.1 shows that

L < z+1||5531||H1 (R4) < C51+1|]ei||%{](m
5‘ 2
< Coallealfin <€ (%) Desealf 73)
1
< Cp? Hgsei—lqu-

Combining our results for I; and I, and now writing C; and C, for the two constants

appearing in the bounds of the expressions for I; and I, respectively, we have
1€seill,,, < (v72Ci+u’Co) [ Eseiall%,

and the result follows with

)1/2

Ky = (1/72C1 + 12Cy (7.4)
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Corollary 7.3. There exists a constant C3 > 0 such that
|u—tnll0) < Coagllull gy for n=1,2,... (7.5)
Thus u, resulting from Algorithm 1 converges linearly to u in the Ly-norm if &y < 1.

Proof. Using Lemmas 6.2 and 4.8 again, we can see that

lu =l = lleally) < Challenllmq

IN

ChnHSSenHHl(]Rd) <Ch, 5;&1 |55€n||\fn+1

A

Cl&senllw

n+17

since
h, - hy, < 1

Out1 Vhpyr T ocpv

Now we can apply Theorem 7.2 n times, and noting that 1y = 0, leads to

1t = Tl yry < Cocfl| sl < Coctl| sl oy < Cflla] e

7.2.1 Condition numbers

In this subsection, we present upper and lower bounds for the eigenvalues of the mul-
tiscale Galerkin algorithm. Since the Galerkin approximation matrix is symmetric and
positive definite, we know that the condition number is given by

Amax (A)

k(A) = Ao (A)”

(7.6)

where Amax(A) and Amin(A) denote the maximum and minimum eigenvalues of A with

entries given by (6.4).

Theorem 7.4. Let ® be a positive definite kernel generating H (R?) with T > d/2. Let
D; := ®(- — x;) and assume that there exists a constant c19 > 0, depending only on ® and Q),
such that

YT (F—c19G)y >0, YaecRY, (7.7)

which means that F — c19G is positive semi-definite and where
Fj = (@i, q>f>H1(Q) ’

Gij = (P q’j>Hl(1Rd) '
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Then the condition number of A can be bounded by

(A) < C (E]1X>4rzl

where the constant C is independent of the point set X.

Proof. Since v = YN ; ;®; and with the coercivity of a(-,-) and (7.7), we have
a(0,0) > Cllol = CYFY

> C7'Gy 2 Chuin(G)[17]3,

where Amin (G) is the minimum eigenvalue of G. From [50], we know that <<I>Z-, <I>]-> HI(RY)

is a radial function given by

Y (Xl', X]) = — (ACD) *CD(XZ' — X]) + D x CD(XZ' — X]‘),
where A again denotes the Laplace operator and x denotes convolution defined as
frglx) = [fly — y)dy. From [51, Theorem 12.3] we know that we can use Y
to derive a lower bound on the minimum eigenvalue of G. Then we have

Y(z) = (1+2]*) $*(2).

From [51, Theorem 10.35], we know that ®(z) > C||z|| 2" and hence Y(z) > C||z||~***2.
Then using [51, Theorem 12.3] we reach

)\min(G) > Cq4’r d— 2

With the continuity of a(-,-), [48, Theorem 14.2] and the non-negativity of norms, we

also have the following bound on the maximum eigenvalue

a(v,0) < Clollfq) < Cllolfn g = Cr' Gy
< Coy” II“er-
These two bounds, in conjunction with (7.6), complete the proof. O

We will consider (7.7) further with the scaled RBFs ®; := ®;(- — x;), where @ is the
C® Wendland function given by

Ds5(x) = (1— [IxD (32)|x]1® +25|x]|> + 8|x|| + 1), (7.8)

which is positive definite on R? [51]. Now since the support of the radial basis functions
is fixed, [|®il|;1(re) is fixed and is independent of the point set X and () and we can

express this as

27

9 2
11121 e //r( r) + 82 <(;ir(])5(r)> )drde. (7.9)
0 0
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In the case of the unit square, which will be used for the numerical experiments in
Section 7.4, note that || ®;||;1(q) is minimised when the RBF centre is located on a corner.
This can be easily verified since moving the centre in any direction (in (2) will keep the
original area inside () and lead to additional area being inside (2 and the integrand is

non-negative. Then we can then bound ||®;]|3,, Q) by

jr <¢§(r) + 42 (;4)5(7))2) drde
0

19 1211 (e (7.10)

k“\wm

[0l 0y >

N

where we have also used equations from [12, Appendix D].

This means that
. |DPi| 11 (re)
Y 1DPill gy —
As a result, if § < gx, which means that there is no overlap between the various RBFs
and F and G are diagonal, or if F and G are diagonally dominant, then (7.7) will hold
since then we know that positive diagonal entries will ensure at least positive semi-
definiteness. Whilst we have been unable to prove that (7.7) holds in full generality for
the unit square, it is supported by extensive numerical testing. The numerical experi-
ments in Section 7.4 also provide empirical evidence since Corollary 7.6 holds, which

depends on Theorem 7 .4.

We have the following theorem on the condition number of the multiscale algorithm.

Theorem 7.5. Let ® be a positive definite kernel generating H* (IR%). Then the condition number

of the Galerkin approximation matrices from Algorithm 1 can be bounded by

5 472
k(A) < C (qx) ) (7.11)

with a constant C > 0 independent of X and of the scaling parameter 6.

Proof. At each level, we now introduce the point set X/ = {x1/6,...,xm/d}, which
obviously has separation distance
qx
Ix/6 = 5

and since a(-, -) is bilinear, the Galerkin approximation matrix at each level is

Axs = (a(@s(,%),Ps(x;))

- (e2n(o () 0 (59)) -

Then the result follows with Theorem 7.4. O
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Corollary 7.6. If the point sets are quasi-uniform, which means that h;/q; is bounded above by
a constant, then the condition numbers of the Galerkin approximation matrices from Algorithm

1 are bounded above by a constant.

Proof. Algorithm 1 takes §; = vh; with a constant v > 1. With the assumption of quasi-

uniformity, hj < cqj and the result follows with Theorem 7.5. O

We note that since we only require the bilinear form a(-, -) to be continuous and co-
ercive, these theorems on the condition number will apply for PDEs with Robin and/or

Neumann boundary conditions as well as PDEs with Dirichlet boundary conditions.

7.3 Nested multiscale Galerkin approximations

In this section we will consider another multiscale Galerkin algorithm that was proposed
in [50]. This essentially extends Algorithm 1 and hence we can consider a PDE either
with or without Dirichlet boundary conditions. We refer to this as a nested multiscale
algorithm because it contains inner and outer iterations. We will also see that this has
a connection to multigrid methods from the finite elements literature. The details are
given in Algorithm 2.

From [50] we have the following theorem regarding convergence.

Theorem 7.7. Let u* denote the best approximation to u from Vi + ...+ V, with respect to the

norm || - || g qy)- Then there exists ¢ € (0,1) such that

" =il gy < lullnqy,
where 1k is the approximation from Algorithm 2.

Note however that this does not mean that we have linear convergence of the approx-
imation from Algorithm 2 to the true solution u. The convergence of the approximation

from Algorithm 2 to the true solution u is given in the following theorem.

Theorem 7.8. Let Q C RY be a bounded domain with Lipschitz boundary. Let ® be a kernel
generating H'(R?) and ®; be defined by (2.1) with scale factor 6;. Then for Algorithm 2 there

exist constants ay > 0 and C4 > 0 such that

~ K(n—1
it — sy liacay < Cao) ™V af ullipqy, K=12,...

with wq given by (7.4). The constants a1 and way satisfy oy < 1 and ay < 1 if in Algorithm 2 v
is sufficiently small and y is sufficiently large.
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Algorithm 2 Nested multiscale Galerkin approximation

Input K: number of outer levels
n: number of inner levels
{Xi}!,: the set of centres for each inner level i, with mesh norms at each inner
level given by h; satisfying cuh; < h; 1 < ph; with fixed u € (0,1),¢ € (0,1]
and h; sufficiently small
{6;}!; : the scale parameters to use at each inner level, satisfying ¢; = vh;,
v a fixed constant.
Set 1y = 0.
fork =0to K do
fori =1tondo
With the level-specific approximation subspace V; := span {®;(- — x),x € X;},

solve for the Galerkin approximation given by

Skn+i € Vi: a(skn-i-i/ ’U) = <f/ U>L2(Q) - a(ﬁkn—o—i—l/ ’U)

for all v € V;. Update the solution according to

Ukpti = Ukpri—1 T Sknti-

end for
end for
Output Approximate solution at level 1, i, (x4 1)

The error at level n(K + 1), e,k 11) := 4 — ty(k41)-

Proof. Since there are K + 1 outer iterations (since the outer level index starts at 0) and
n inner iterations, we have (K + 1)n iterations in total, of which K(n — 1) 4 n iterations
are with subsequently decreasing scale parameters for which we can use Theorem 7.2.
The remaining K iterations involve the subsequent error estimation for K > 0and i =1
since in this case, we have an increasing scale parameter for which Theorem 7.2 does
not apply. With the proof of Theorem 7.2, we can derive a similar result with increasing

scale parameters. In this case, we need to change the right hand side of (7.3) and the

dit1 2
Zifl) <
< S > =

Ky 1= (v‘zCl + “I/l_2C2

following line to

and then we can define

)2 (7.12)
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Note that ap > a; since y < 1 by definition and the constants are all positive which will
mean a lower rate of convergence as compared to Algorithm 1. The remainder of the
proof follows the same steps as the proofs of Corollary 7.3 and we leave the details to

the reader. O

Note that the original justification for proposing this nested multiscale algorithm was
that the errors from Algorithm 1 appeared to be dominated by a global behaviour, sug-
gesting the need to go back and fit on a coarse set of centres with a large support. This
is a similar idea used in the multigrid method in the finite element literature [7, Chap-
ter 6.3]. As stated in [12, Chapter 44.3], this additional outer iteration is known from
Kaczmarz iteration, which is frequently used in the multigrid literature as a smoother

[28, 24].

7.4 Numerical experiments

In this section, we present the results from applying the multiscale and nested multiscale

algorithms to various PDEs.

7.4.1 Multiscale Algorithm

In this subsection we consider two PDEs, the first without Dirichlet boundary conditions
and the second with Dirichlet boundary conditions.

The first problem is the Helmholtz-like equation with natural boundary conditions:

—Au+u = f in Q,
0

Eu = 0 on 90O.

We take Q) = [—1,1]2 and f(x,y) = cos(mx) cos(rty). The outer unit normal vector is

denoted by n. The exact solution is given by

COS(7TX ) COS( 7T
u(z,y) = ST o)

We again use the C® Wendland radial basis function given by (7.8). We used five
levels for the approximation, with equally spaced point sets at each level. The number
of points, N, and the mesh norms, &, are given in Table 7.1. We note that the mesh norms
decrease by almost exactly one half at each level and hence we select y = 3. The L, and
L errors and condition numbers (x) of the stiffness matrix are given in Table 7.2. The

L, error was estimated using Gaussian quadrature with a 300 x 300 tensor product grid
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Level 1 2 3 4 5
N 25 81 289 1089 4225
h 3.5e-1 | 1.75e-1 | 8.75e-2 | 4.37e-2 | 2.19e-2

Table 7.1. The number of equally spaced points used at each level and the associated mesh norm

for the multiscale Galerkin approximation example

of Gauss-Lobatto points and the L, error was estimated with the same tensor product

grid.

Level 1 2 3 4 5

5; 2 1 0.5 0.25 0.125
lejll2 | 8.00e-4 | 2.15e-4 | 1.06e-4 | 7.01e-5 | 5.18e-5
lejllos | 1.72e-3 | 7.27e-4 | 3.76e-4 | 2.15e-4 | 1.40e-4

Kj 1.61e+3 | 3.13e+3 | 4.16e+3 | 4.58e+3 | 4.71e+3

Table 7.2. The scaling factors, approximation errors and condition numbers of the stiffness

matrices for the multiscale Galerkin algorithm with Neumann boundary conditions

The second example uses the Poisson problem

—Au = f in Q,

u = 0 on 9O.

We take Q) = [—1,1]* and f(x,y) = sin(7x) cos (Fy). The exact solution is given by

sin(7rx) cos (&
u(xy) = 1.25712(2y)

We again use the C® Wendland function as the kernel, with the same 5 levels as for the

first example. To verify that (6.10) holds, we first check for the basis functions. For the

boundary norm, since () = [—1,1]2, without loss of generality, we consider the case
x = —1boundary of the domain only. Then we have boundary integrals of the form [12,
Appendix D]

J 2
s
2 _
V@l o, = [ () ay

-4

) 2
_ oo [ (v (16y® 7y AV
_5/<52 2 Tyt (1 5) dy
—0

6039695523846
11305
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For the interior, we have

IV®slt,iq) = 0

245342
4845 / do,
©

where © specifies the support of ¢ in () and hence this last expression is finite and does
not depend on §.

In practical applications, we need to select a value of By satisfying By > 2C%;/4. In
[22], it is proposed to estimate Cy/+/J as the maximum eigenvalue of the generalised

eigenvalue problem,

Bv = ADy, (7.13)
where
Bij = / (V®; - n) (VO; - n), (7.14)
200
and
Dy = [ Ve, v, (7.15)
O

where i and j run over the indices of all the radial basis functions with support over-
lapping the boundary. The extra calculation involved in this step is not significant since
the entries of B are required for the construction of the stiffness matrix and the set of
centres overlapping the boundary will generally be small compared to the entire set of
centres. The maximum eigenvalue can also be efficiently computed with a simultaneous

Rayleigh-quotient minimisation method [26].

Level 1 2 3 4 5
5; 2 1 05 0.25 0.125
lejll2 | 8.13e-3 | 1.45e-3 | 3.23e-4 | 8.22e-5 | 2.22e-5
lejlles | 1.06e-2 | 2.35e-3 | 6.50e-4 | 1.96e-4 | 5.96e-5
Kj | 5.63e+5 | 1.00e+6 | 8.06e+5 | 4.57e+5 | 2.37e+5

Table 7.3. The scaling factors, approximation errors and condition numbers of the stiffness

matrices for the multiscale Galerkin algorithm with Dirichlet boundary conditions

The results are in Table 7.3 and support the theoretical findings above. We note

that whilst [50] did not find convergence after the third level with a similar algorithm,
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this may be due to the approximations used to calculate the integrals, rather than the
algorithm itself. The potential for errors in integration to affect the performance of
Galerkin techniques are well known [42, 7]. To estimate the integrals, we used the
MATLAB functions quad2d and quad with an absolute tolerance value of 1e~ . We also
estimated the non-zero integration range both to speed up the calculations as well as
to reduce numerical error which can result if for example, we integrate over the entire

domain [—1,1]? whilst the function only has a very small support.

7.4.2 Nested multiscale algorithm

In this subsection, we consider the same example as in Section 7.4.1, however now with
Algorithm 2 with K = 2 and n = 2. We use the first two levels of the example described
in Section 7.4.1 as the inner iteration. We also use the same kernel. Our choice of K
and 7 leads to a 6 level algorithm. A similar example was considered in [50, Section 5],
however a lack of information regarding the exact approximation spaces used for the
inner and outer level iterations means we have not been able to compare our results.

The results from this 6 level nested algorithm are in Table 7.4.

Level 1 2 3 4 5 6
N 25 81 25 81 25 81
lejll2 | 8.00e-4 | 2.15e-4 | 2.05e-4 | 2.09e-4 | 1.99e-4 | 2.03e-4
lejllos | 1.72e-3 | 7.27e-4 | 4.33e-4 | 7.00e-4 | 4.17e-4 | 6.74e-4
ki | 1.6le+3 | 3.13e+3 | 1.6le+3 | 3.13e+3 | 1.6le+3 | 3.13e+3

Table 7.4. The number of centres, scaling factors, approximation errors and condition numbers

of the stiffness matrices for the nested multiscale Galerkin algorithm

The results indicate erratic convergence and approximation errors far inferior to
those using Algorithm 1. This is not surprising since Theorem 7.10 indicates conver-
gence of our approximation to the best approximation to u from V; + V, whilst in Algo-

rithm 1 our approximation is formed from V; + ... + Vs.

7.5 Analysis of convergence

In this section we will focus on estimation of the convergence and verifying approxi-
mation orders. Similarly to [53], we will also rewrite the convergence results in terms
of mesh norms, which is the usual form of convergence results for radial basis function

approximations [51, 12].
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7.5.1 Multiscale Galerkin algorithm

We consider Algorithm 1 with by = p and hj;q = ph;. Since p is a constant, we can

rewrite (7.4) as

X1 = C0H.
Then with Corollary 7.3 we have
leall Lo = llu =l y0) < Chyllull i (q). (7.16)
with
o = —logcy/ log . (7.17)

Hence we can either express our convergence in terms of an exponent of /1, or equiva-
lently af'.

It is of interest that the error bounds do not depend on the kernel used for the
approximation spaces. Typically with a kernel which generates H"(R?), we see error
bounds proportional to hT. Since our kernel for the error analysis generates H'(IRY),
we have hl. Henceforth, we analyse the convergence in terms of a;. We can calculate

estimates of w1, which we denote by &, as follows

o ||en||L2(Q)

in — 7 71 -

! HenleLz(Q)
C2 WE | C® WF

&, | 0128 | 0.268
&3 | 0318 | 0494
&4 | 0507 | 0.662
&5 | 0618 | 0.739

Table 7.5. The estimated convergence rates &1, using the results for the L, norm errors from

the first example in Section 7.4.1 with the C* and C® Wendland functions.

We can see that the estimated values of a; are higher with the C® Wendland func-
tion, which indicates that we should not necessarily expect faster convergence with a
smoother Wendland function and consequently we should not expect an error bound

proportional to h°.

7.5.2 Nested multiscale Galerkin algorithm

In this subsection, we will focus on considering convergence of the nested multiscale

Galerkin algorithm in terms of a; and a;. Note that a bound for the error at level
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n(K+1) in terms of the mesh norm at level n(K + 1), such as in (7.16), will not be
possible here because the mesh norm at level n(K 4 1) only depends on 7 and not on K.
In other words, increasing K has no effect on the final mesh norm.

An additional benefit of considering the nested multiscale algorithm is more esti-
mates of a1, particularly for repeated applications of the inner iterations (when K > 1).
Table 7.6 gives the estimates of a1 and a, from considering successive L, norm error
estimates in Section 7.4.2. Successive error estimates will be of the form

leillz, (o)
lei-1llz,)°
By definition of our nested multiscale algorithm, for i = n+41,2n 4 1,... we have an
estimate for &, and in all other cases, an estimate for 7.
Table 7.4.2 presents the estimated convergence rates a1, and &, using the results

for the L, norm errors from the example in Section 7.4.2.

Level | @&y, Aoy
2 0.268
3 0.953
4 1.021
5 0.954
6 1.022

Table 7.6. The estimated convergence rates a1, and y , using the results for the Ly norm errors

from the example in Section 7.4.2.

Interestingly, the difficulties with convergence, at least in this example, are not due
to ap which is seen to be less than 1 in all cases. This is empirical evidence of the effec-
tiveness of the smoothing nature of the inner iterations, in that after the inner iterations,
the errors are again of a global nature and hence a return to a coarse grid is justified.
Convergence is affected by the repeated application of the inner iterations for which «1 ,,
is always greater than 1. Empirically, this appears to suggest that the more localised
features have already been captured in the approximate solution.

This also implies that the angles between the approximation subspaces are close to
zero since the linear convergence rate in Theorem 7.7 can be bounded above by the angle

between the subspaces. This is covered next.
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Angles between subspaces

For our analysis of the convergence of the nested multiscale algorithm, we require the

following definition of the angle between subspaces.

Definition 7.9. Let H1 and Hy be closed subspaces of a Hilbert space H with U := Hq N Hy.
Then the angle 8 between Hq and H, is given by

cos 0 = sup {(u,v> cu € HonU*, 0 € Hon UL and ||ul], ||o]| < 1} .
It is well known [39, 9] that Algorithm 2 converges linearly in the following sense.

Theorem 7.10. Let u* be the best approximation to u from Vi + ...+ V; with respect to
| Il Let i be the approximation from Algorithm 2. Let 0; be the angle between V; and
ﬂi-‘:]-HVi. Then

[ =tk (o) < lullna),

where
n—1
2<1— l_Isin2 9]-.
j=1
This means that we need to estimate sin; to obtain upper bounds for the conver-
gence rate. We follow a similar approach to [4]. We firstly define modified sets of centres
as }?1 = Xj and
i—1
Xi=X\UUX;, i>2
j=1

and the corresponding approximation spaces as
V; = span {CID(;Z.(- —X),X € 521’} )

Then we need to find the supremum of the inner product of u € Viand v € A;ii1 where
K K
A = U Vi = span <I>5j.(- —Xj),X; € U Xi o,
j=i+1 j=i+1
with ||u|| = ||o|| = 1. With the matrix K112} given by
12 < Ko
K = (@ (=), @5 (- —x) ) xi € Kixe | Xy,
j=i+1
and with coefficient vectors u and v for u and v respectively, we seek the supremum of

uK {12}y, We also define matrices K{!} and K{% as

1 ~ ~
Kz{] } = <CI)&,,(- —XZ'),CD(SI,(- —X]')>,Xl' € XZ',X]' € X;,
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and

K K
Kl{]z} = <(I3(51.(-,X1‘),CD§].(-,X]‘)> ,X; € U Xj,X]‘ € U X]
j=i+1 j=i+1

Let the Cholesky decomposition of K be LlTL1. This is well-defined since K{!} is
strictly positive definite and symmetric. Then ||u||*> = uTLILiy and letting 1 = Ly
gives ||u[> = 979y. We can follow a similar approach with K{? which gives
|92 = y3y2 with K{2 = LIL, and 9, = Lov. However in this case since K%} is
the union of radial basis functions with (possibly) different scaling factors, we cannot
be sure that K{?} is positive definite. In our example, K{?} was always positive definite
and we do not dwell further on this. Sufficient conditions for an interpolation matrix
constructed with several scaling factors to be positive definite can be found in [6, (11)]
which also requires the Fourier transform of a Wendland function [8] to compute a lower
bound on the minimum eigenvalue as given in [51, Theorem 12.3].

Then we have

(u,v) = yTK{lz}v
— yTL{(Ll—l)TK{lz}Lz—lev

= 1My,

with M := (Ly DTKU2ML, 1. The supremum of the inner product is given by the largest
singular value of M. We denote this supremum by sin 5] and the results with {\71}?:1 are
in Table 7.7. We note that since X; C X;, singi is a lower bound on sin ;. We chose to
estimate sin §; since by removing nested centres from later levels, we had less difficulties

with singular matrices.

i 1 2 3 4
sinf; | 9.85e-3 | 2.68¢e-2 | 4.15e-2 | 6.99e-2

Table 7.7. The estimates of sin 6; with the approximation spaces {17,}15:1






Chapter Eight

Multiscale algorithms for collocation of

PDEs

This chapter will cover theoretical results and numerical experiments of several mul-
tiscale algorithms for collocation of elliptic PDEs and the Stokes problem on bounded

domains. We again denote the mesh norm at level i by h;.

8.1 Multiscale symmetric collocation of elliptic PDEs on

bounded domains

We formally state our multiscale algorithm for the symmetric collocation approximation
of (6.13) and (6.14), which is stated as Algorithm 3.
The following theorem and corollaries are our main results for the convergence of

the multiscale symmetric collocation algorithm.

Theorem 8.1. Let QO C RY be a bounded domain with Ck's-boundary. Let ® be a kernel
generating H*(RY) with T > 2+ d /2 and ®; be defined by (2.1) with scale factor 6;. Then for

Algorithm 3 there exists a constant az > 0 such that
||55€]'Hq>],+1 < 063”556];1”(1:.], fOl’ ] = 1,2,. ..

where Ese;j is the extension operator defined in Lemma 2.1 applied to the error at level j defined
in Algorithm 3. The constant ag satisfies a3 < 1 if in Algorithm 3 v is sufficiently small and u
is sufficiently large.

Proof. With (4.13), we can write

1 — T 1
I€seil,, < o [ IEe @) (148 llwlB) dw=: = (i + 1)
R4
with
— T
hi= [ 1&g (1+8allw]E) de,

< 1
leole<s
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Algorithm 3 Multiscale symmetric collocation approximation

Input n: number of levels
{X1,i, X2,i}!_: the interior and boundary collocation points for each level i,
with mesh norms at each level given by {hy;, hy;}! ; satisfying
cph; < hiyqy < ph;, where h; := max(hy ;, hy;), with fixed p € (0,1),c € (0,1]
and h, sufficiently small
{6;}; : the scale parameters to use at each level, satisfying

6 = 1/}_137(4+d)/(2ﬂ, where v is a fixed constant.

Setup=0,fo=f,%0 =48
fori =1tondo

With the scaled kernel ®;,, solve the unsymmetric collocation linear system

Lsi(x) = fisi(x) ¥V xe Xy,

si(x) = gi1(x) V xe€ Xy

Update the solution and residual according to

U, = Uj_1+Ss;
fi = fi-1—Ls;
8 = &i-1—5Si

end for
Output Approximate solution at level n, ii,.

The error at level n, e, := u — ,,.

b= [ IEey@)P (140} wl3)" o
2 sej(w allwlz) dw.
Hszztsjﬁ
Now we consider the first integral where we can use J;;1[|w|2 < 1 and then Lemma
6.3 and (4.13). This is valid since s; € V; is the approximate solution with symmetric

collocation of Le; 1 = f;j_1. Then we have

L o< 2 / Esei(w)[? dw

< 1
lol<s

IN

27 ||55€j||%2(]Rd) <C HejH%z(Q)

A

CH%* [lej-1l1Fr(qy

IN

ChIT 4577 Esej 113,
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< Cv|[Eseally,
where we have also used Lemma 6.3. For the second integral I, we note that

div1/6; = (l_qj+1/flj)1—(4+d)/(2r) < pl-(+d)/n),

and since 6;11[|wl[2 > 1, we have that
(1+3alwl3)” <298 wlF <292 (14 Blw]3)"
Then again using (4.13) shows that
Lo < 20 | Eseil3,

< 2Too T Eseja |G,

where in the second last step we have used that since the interpolant at X; to ¢; 1 is the
same as the interpolant to £se; 1 (both functions take the same values on X; C (), we

have

lejll ey = llej—1 — sjej—1llar(a)
= [|Esej—1 — sj€sej1| ur ()
< ||5S€j—1 - Sjgsej—lHHT(le)

< €O 1Esejn = siEsejal g, (o)
< C(SJ-_THgSej—lHNq,j(R")'

Combining our results for I; and I, and now writing Cs and Cg for the two constants

appearing in the bounds of the expressions for I; and I, respectively, we have that
I€seil,., < (v Cs/cs 127+ 0Co/cs) 1Esei a3,
and the result follows with
s = (V*ZTC5/68 + Vzrf4fdc6/C8)1/z.
O

Corollary 8.2. There exist constants C; > 0 and Cg > 0 such that for the solutions of the

multiscale symmetric collocation from Algorithm 3 we have the following error bounds
v =1, 0) < Cragllullgrqy for n=1,2,... (8.1)

and

lu =l 00) < Csasllullge) for j=mn,2,... (8.2)
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Thus u, resulting from Algorithm 3 converges linearly to u in the Ly-norm in ) and on oQ) if

az < 1.

Proof. We first consider the solution in (). Using Lemma 6.3 and (4.13) again, we can

see that
[u—tinll0p = llenllL, )
< Ch{2llenll (o)
< Chi~ 2(5mfl||85;en|]<1>”+1
< Cll&senllo,., < Cazllullo,
< Cagllullgra(ay,
since

= -2

h T

R80T = v R 2R T < v < ; ”1) <v T (en)* T
n+

With (6.3), the proof for the second result follows in an identical fashion. In this case
we need
hr 1/25 T < v T hT 1/2h T+1/2 < C( H)l/Z—T.

n+1

O]

Corollary 8.3. There exist constants Cg > 0 and Cy9 > 0 such that for the solutions of the

multiscale symmetric collocation algorithm we have the following error bounds
|u =l ) < Coazllullgrqy for n=1,2,... (8.3)

and

HM — ﬁnHLm(E)Q) S ClO(XgHuHHT(Q) fO}’ n = 1,2,. .. (84)

Thus i, resulting from Algorithm 3 converges linearly to u in the Le-norm in () and on oC) if

a3 < 1.

Proof. The proofs are very similar to the previous corollary and we only highlight the

differences in both cases. In (), we clearly have
[ = 1|1 () < CllLu — Litn|| 1,0

if we assume that the coefficients of £ are in, say, C2. Then from [18, Theorem 3.10] we
know that
L1 — Ls| 1) < Ch] "2 Jul| g
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and since

_ —2-d)2

yT2-d/25-1 _ -t he \° < Cley)T2-172

1n n+1 — v ]jl 1 —= (CV) s
n

the result follows. On d(), we need to use [18, Theorem 3.10]
lu =il 00) < Ch~2|lu — ]| () (8.5)

and that

e RS R T

8.1.1 Numerical experiments

In this section, we present the results from applying the symmetric collocation algo-

rithms to the following Poisson problem with Dirichlet boundary conditions from [12].

Vu(x,y) = —§7t2 sin(7rx) cos (ﬂ> , (xy) €Q:=10,1?
4 2
u(x,y) = sin(nx), (xy) el ={(x,y):0<x<1,y=0},
u(x,y) = 0, (x,y) €lp:=00\TI7.

The exact solution is given by

u(x,y) = sin(7tx) cos (%) .

We note that these same experiments, with different scaling parameters J; and point
sets, can be found in [12, Table 41.4] where convergence was observed essentially only
for several levels. This indicates the importance of the theoretical results given in this
chapter.

We again use the C® Wendland radial basis function given by (7.8) which is positive
definite on R? (cf. [51]). We used five levels for the approximation, with equally spaced
point sets at each level. The number of points, N, and the mesh norms, h, are given in
Table 8.1. We note that the mesh norms decrease by almost exactly one half at each level
and hence we select y = 1. There are also 4(v/N —1) equally spaced boundary centres.
For the scaling parameters, we note that m = d = 2 in this example and T = 4.5 (cf.

[51]). Algorithm 3 specifies that

o 71-(d+4)/(27)
5]‘ = Vh]-

with v constant. With the given value of 11 in Table 8.1, we select v such that §; = 2. This

gives v = 3.58 and we use this to generate the other ¢ values which are given along with
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Level 1 2 3 4 5
N 25 81 289 1089 4225

h 1.75e-1 | 8.755e-2 | 4.37e-2 | 2.19e-2 | 1.09e-2

Table 8.1. The number of equally spaced points used at each level and the associated mesh norm

for the numerical experiments

the L, and Lo errors and condition numbers (k) of the collocation matrices in Table 8.2.
The L, error was estimated using Gaussian quadrature with a 300 x 300 tensor product
grid of Gauss-Legendre points and the L., error was estimated with the same tensor

product grid.

Level 1 2 3 4 5

Wy 2 1.59 1.26 1 0.79
lejll2 | 3.32e-3 | 1.69e-4 | 1.50e-5 8.58e-7 3.94e-8
lejllo | 6.06e-3 | 8.52e-4 | 6.20e-5 5.80e-6 5.38e-7

Kj 1.18e+6 | 2.27e+8 | 4.23e+10 | 6.63e+12 | 1.32e+15

Table 8.2. The scaling factors, approximation errors and condition numbers of the collocation

matrices for the multiscale symmetric collocation algorithm example

8.2 Multiscale symmetric collocation approximation to the

Stokes problem

We can now formally state our multiscale algorithm for the symmetric collocation so-
lution of (6.19)-(6.21) which is stated as Algorithm 4. To simplify notation, we write
Siv = Sx,vand ¥; = ¥; and denote the mesh norms for the interior and boundary
collocation points at level i as h1; and h;; respectively.

We require a technical lemma regarding the error in the estimation of the velocity u.

Lemma 8.4. Let d = 3. Assume that u € H(Q; div) with T > 0 and let € 4, be defined by
(6.22). Then we have the following bound

/ Hﬁ'dlvun‘: szw < CHuHZ

Proof. With the definitions of the E div» €s and T operators, we have

‘Edwu ‘w X 85’7'u )H2

| |
/ HwHZ [Funtl.o, / P
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Algorithm 4 Multiscale symmetric collocation approximation to the Stokes problem

Input n: number of levels
Xi = {X,i, Xp,;}_;: the interior and boundary collocation points for each
level i, with mesh norms at each level given by {hy, hy;}! ; satisfying
cph; < hiy1 < ph;, where h; :== max(hy ;, hy ;) with fixed u € (0,1),c € (0,1]
and I sufficiently small
{6;}!; : the scale parameters to use at each level, satisfying J; = ﬁfl}f‘%/ (),

B is a fixed constant.
Set Mgv =0,fp =f, g0 = g.
fori=1tondo
With the scaled kernel ¥;, solve the symmetric collocation linear system

(ﬁSSiV(X)), = fimj(x), 1<j<d, xe Xy,
j

(SiV<X))]~ = gi_llj(x), 1< ] <d, xe X2,i-
Update the solution and residual according to
MiV = MZ'_1V + SZ'V
fl' = fi—l — ﬁSSiV
g = 8i-1—Siv

end for
Output Approximate solution at level n, M;,v

The error at level n, e, := v — M,,v.

IN

c 7o
]Rd
C||557-u||%2(]1{d)

CHSSTuH%—[l(]Rd)
CHT“H%p(Q)

ININ

IN

CllullZ, )
where we have also used that the £s and 7 operators are bounded (Lemma 2.1, [52]). O

The following theorem and corollary are our main results on the convergence of the

multiscale symmetric collocation algorithm for solving the Stokes problem.
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Theorem 8.5. Assume that Q) and f,g satisfy the smoothness assumptions of Theorem 6.6.
Suppose the kernel ¥ is chosen such that Ny (R?) = HT(R?; div) x H™'(IRY) and define the
scaled kernels by (6.35) with scale factor 6;. Then for Algorithm 4 there exists a constant oy such
that

1€ejllny,,, (re) < 24l €ej-1llng, (o), (8.6)

where w4 is a constant independent of the point sets X1, Xo, ... and € e; is the extension operator
for v defined in (6.34) applied to the error at level j defined in Algorithm 4. The constant ny
satisfies ay < 1 if in Algorithm 4 v is sufficiently small and y is sufficiently large.

Proof. With the notation £ej = (u — Mjgdivu, p—Mi&p)" = (gdiveu,j, Esey)T, (6.36),
(6.26) and (6.27), we have

o 2
Hgdiveu]’(w)u T+1
2 (14 8 wl3)
1 2
e *

A

1|12 =
||Ee] HN‘I’]-H (Rd) ~ Cl /

R4

+ Sl (Hé%ﬂuwné)T‘l]dw

=: L+ I,
with
e 2 _
Hgdiveu,j(w>H2 2 5 T+1 — ) » -1
L o= eR (1 + (5j+1|\w||2> + Esepj(w) (1 + i Hsz) dw,
lwlla< 52 ]
j+1
- N/\ 2 T
‘ 8diveu,]-(w)H2 ’ ’ T+1 — > 2 -1
L = / W (1 + 0741 Hw||2> +Esepj(w) (1 +oin HwHZ) dew.
2
lwlh>5L )
j+1

For I, we can use that ;,1||w||2 < 1, Lemmas 6.4 and 8.4 and Theorem 6.6 to yield

I

IN

C (H‘gdiveu,jH%z(Rd) + Hgsep,]'Hiz(]Rd))

C (llewsli2 i + llep 2,0y
7.21—4 2

ChJT ng]HN\y(le)
}_12'1'74

J 2
C5]2T+2 ‘|8ej_1 H./\/'Yj(]Rd)

IN

IN

IN

= Cl]‘B_2T_2 ||£e]'71 H?\[‘Yj (]Rd)’

where in the second last step we have used that since the interpolant at X; to e;_; is the

same as the interpolant to € e 1 (both functions take the same values on X; C (), we
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have

lejll () = llej-1 = Sjej-1llur(y
= ||Eej-1 — S;Eej_1]lur ()
<|[€ej-1—S;Eej 1|lyr(re
< Co T Eej - Si€ej-1llxy, (o)

< Co; | Eejallng (-

2

For I, since 67, |w||3 > 1, we have

T T T
(1+ 2 llwl) <276 )2 < (208, llwlB) <27 (1+6Fwl3)

and hence if #,0 < 1, we have

L < CV2T72||59]‘H§\/Y]_(W)

A

< C12}427_2H5ej71H?\/‘,]_(]Rdy
The result follows with

I, P _a\1/2
0y = (Cuﬁ 2T 2—|—C12‘142T 2) .

Corollary 8.6. There exist positive constants Ci3 and Ci4 such that

v —MyuvL,q) < Ciang (HUHHT(Q) + ||PHHH(Q)) for n=1,2,...
and
[u — Myul|g,a0) < Ciang (HuHHT(Q) + HPHHT—l(Q)) for n=1,2,...

Thus the multiscale approximation My v resulting from Algorithm 4 converges linearly to v in

the Lo—norm in () and on 0Q) if ay < 1.

Proof. With Lemma 6.4, Theorems 6.6 and 8.5 and recalling that Algorithm 4 specifies

that 5, = ﬁﬁ}l_w(rﬂ), we have

IN

V=MV < lleall

A

Chy 2 (| Eenll niy (e

IN

Cll€enl ny, _, (re)

IN

Cay [ €9 ]| sy, (re)
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IN

Cay [|EV|| nry (re)

VAN

ca (Il + Pl )

which proves the first result. For the second result, with (6.40) we can see that

[u—Mpul[,60) < [lu—Muullgrpa)

IN

Chy,*l[u = Myu e

< Chy %[ Eenll g me),

and the remainder of the proof is the same as for the first result. O

8.2.1 Condition numbers

In this section, we present upper and lower bounds for the eigenvalues of the multiscale
symmetric collocation algorithm for the Stokes problem. At each step of the multiscale
algorithm, we need to solve a linear system resulting from the collocation conditions

(6.31) and (6.32) on a set X = {xq,...,Xp}:
Asb = (f g)T.
The next theorem gives a lower bound on the minimum eigenvalue of A;.

Theorem 8.7. Suppose the kernel Y is defined by (6.28) and define the scaled kernel ¥ 5 by (6.35)
with a positive scaling factor 6. Then the smallest eigenvalue of the collocation matrix defined by

(6.31) and (6.32) can be bounded by

—d-2

Amin(As) = € ()7 g2,

: >2T+2

where the constant C is independent of the point set X.
Proof. We follow the proof of [18, Theorem 4.1]. We will adopt the functional notation

£ () (ﬁsv)i(x]-) for 1<j<N, 1<i<d,

(V) =

K vi(x)) for N4+1<j<M, 1<i<d.

We will use the superscript y to denote that the functional acts with respect to its second

argument. Then with € R we need to show that
a M 2742
X _d_—
Y. Y BijBiiGiiGh  ¥s(x—y)>C (%) %" 11813 (8.7)

ii/=1jk=1

With the inverse Fourier transform, the left hand side of (8.7) becomes
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i M
Yo ) BiiBiidiiCh Ys(x—y)

ii'=1jk=1

27'[ d/Z/ Z Zﬁl]ﬁz’k61]§/kT5( ) (x—y).w’dw

i