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Abstract

Meshfree methods, which use linear combinations of radial basis functions (RBFs) to

construct approximations, have become popular for the numerical solution of partial

differential equations (PDEs).

The Wendland functions are a class of compactly supported, piecewise polynomial

RBFs which are important as they use the minimum degree polynomial for a specified

smoothness and their compact support leads to sparse linear systems.

A practical issue is the choice of scale to use for the RBFs. A small scale will lead to

a sparser and better conditioned linear system, but at the price of poor approximation

power. Conversely, a large scale will have better approximation power but at the price

of an ill-conditioned linear system.

We firstly consider a generalisation of the Wendland functions, which allows greater

freedom in the choice of parameters, and give sufficient and necessary conditions for

these functions to be positive definite, as well as classifying the native spaces generated.

We give closed form representations for and properties of the Wendland functions and

their Fourier transforms.

By an appropriate choice of scaling, we investigate the behaviour of the Wendland

functions as the smoothness parameter goes to infinity. This provides insights into the

selection of the parameters of the Wendland functions.

We then consider multiscale algorithms for the numerical solution of PDEs. These

construct the approximations over several levels, each level using a Wendland RBF with

a different scaling factor.

We present a theoretical and practical analysis of two multiscale algorithms for

Galerkin approximation of elliptic PDEs on bounded domains, including results on con-

vergence and condition numbers. Convergence is investigated in terms of the mesh

norm and the angles between subspaces. The issue of the supports of the RBFs overlap-

ping the boundaries is also considered in our stability analysis.

Finally we consider a multiscale algorithm for collocation approximation of elliptic
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PDEs and the Stokes problem on a bounded domain. We provide results on conver-

gence and condition numbers. For the Stokes problem, we use a divergence free RBF

constructed from the Wendland functions, since the Wendland functions are not diver-

gence free.
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Chapter One

Introduction

The Wendland functions are a class of piecewise polynomial compactly supported radial

basis functions with a user-specified smoothness parameter. The Wendland functions

were originally derived in Wendland [47], generating integer-order Sobolev spaces in

odd dimensions, and Sobolev spaces of order an integer plus a half in even dimensions.

These were then extended to generate integer-order Sobolev spaces also in even dimen-

sions in Schaback [38] (Schaback called these the “missing” Wendland functions). They

are uniquely defined for a given spatial dimension d and a smoothness parameter k (up

to a constant multiplier). All the Wendland functions are equal to zero outside [0,1].

The original Wendland functions are constructed with the minimal degree polyno-

mial for a given smoothness that gives rise to a d-dimensional positive definite function.

They are unique up to a multiplicative constant when k > 0. Another important prop-

erty is that for an odd space dimension d and for k a non-negative integer the Wendland

function is the reproducing kernel of a Hilbert space which is norm equivalent to the

Sobolev space H
d+1

2 +k(Rd) [51, Chapter 10].

Schaback [38] extended Wendland’s original approach to cover the missing Wend-

land functions, which are the reproducing kernels of integer order Sobolev spaces in

even dimensions d. An important distinction between the original Wendland functions

and the missing Wendland functions is that the missing Wendland functions, whilst

still being compactly supported, now have logarithmic and square-root multipliers of

polynomial components. The support of the original and missing Wendland functions

is r ∈ [0, 1].

Generalised Wendland functions extend the original and missing Wendland func-

tions by allowing greater freedom in the range of permissible parameter values. They

were first considered in [38] and then studied further in [23]. Several conjectures regard-

ing the properties satisfied by the generalised Wendland functions were raised in [38]

and are confirmed in this thesis.

Radial basis functions have become increasingly important in recent years for solving

PDEs due to the computational advantages of a meshfree approach, as well as due to
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the sparse linear systems that result from a compactly supported radial basis function.

A practical issue that arises is that of which scale to use for the radial basis functions.

A small scale will lead to a sparse and consequently well-conditioned linear system, but

at the price of poor approximation power. Conversely, a large scale will have better

approximation power but at the price of an ill-conditioned linear system.

Many examples may naturally exhibit multiple scales, for example, constructing an

approximation for the height of the earth’s surface may suggest a “large scale” to be

used over desert regions and a “fine scale” over areas of high variability, such as the

Himalayas. It appears much more appropriate to allow different scales in different

regions. Of course, this comes at the price of having to select which scales to use in

which regions but this is not the topic of this thesis.

Hence it is of great interest to develop algorithms to allow approximation with the

use of multiple scales. Such a multiscale algorithm for interpolation was first proposed

in [14] and [37], but without any theoretical grounding. Theoretical convergence was

proven in the case of the data points being located on a sphere [25] and then extended

to interpolation and approximation on bounded domains in [53].

We can now list the contents and new contributions of this thesis.

Chapter 2 provides background material that will be required in the remainder of

the thesis.

Chapter 3 defines and gives closed form representations for and properties of the

generalised, original and missing Wendland functions. The new contributions in this

chapter are:

• The closed form representation for the original Wendland functions in Theorem

3.2 (due to Simon Hubbert).;

• The properties of the original Wendland functions in Lemmas 3.3 - 3.6;

• The closed form representation for the missing Wendland functions in Theorem

3.7.

Chapter 4 investigates properties and gives closed form representations for the

Fourier transform of the the generalised Wendland functions. The new contributions

in this chapter are:

• Sufficient and necessary conditions for the generalised Wendland functions to gen-

erate a d−dimensional positive definite function in Theorem 4.4;
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• The asymptotic decay of the generalised Wendland functions in Theorem 4.5 and

their native spaces in Corollary 4.6;

• The Fourier transform “dimension drop” in Theorem 4.9;

• The closed form representations for the Fourier transform of the original Wend-

land functions in odd and even dimensions in Theorems 4.11 and 4.12. The proof

that several of the b1,j coefficients are 0 in Theorem 4.12 is due to Simon Hubbert;

• The closed form representations for the Fourier transform of the missing Wend-

land functions in even dimensions in Theorem 4.13;

• Theorem 4.14 which states when the Fourier transform of the generalised Wend-

land functions is decreasing.

Chapter 5 considers the limiting behaviour of the generalised Wendland functions as

the smoothness parameter α goes to infinity. It is shown that the generalised Wendland

functions, with a change of variable, converge uniformly to a Gaussian on the real half-

line. We recall that the Gaussian radial basis function with scale parameter ϑ > 0, which

we denote by Gϑ(y), is given by

Gϑ(y) := e−ϑ y2
, y ∈ R.

The results in this Chapter are used to give insights into the selection of the user-

specified parameters. The new contributions are:

• The value of the generalised Wendland functions at the origin and the area under

the generalised Wendland functions in Lemmas 5.1 and 5.2;

• The definition of the normalised equal area Wendland functions in Theorem 5.3

(due to Robert S. Womersley);

• The limit as α → ∞ of the Fourier transform of the normalised equal area Wend-

land functions in Theorem 5.6;

• The limit as α → ∞ of the normalised equal area Wendland functions in Theorem

5.7. The proof of Theorem 5.7 was rewritten in a more concise style by Ian H.

Sloan.

Chapter 6 provides an overview of solving PDEs (with a single scale) with the Wend-

land functions, using both Galerkin approximation and collocation. The new contribu-

tions in this chapter are:
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• A L2 error bound between the true solution and our approximation when using

(single scale) Galerkin approximation for an elliptic PDE with Neumann and/or

Robin boundary conditions in Lemma 6.2;

• A L2 error bound between the true solution and our approximation when using

(single scale) collocation approximation for an elliptic PDE in Lemma 6.3;

• A L2 error bound between the true solution and our approximation when using

(single scale) collocation approximation for the Stokes problem (on a bounded

domain) in Theorem 6.6.

Chapter 7 provides a theoretical and practical analysis of two multiscale algorithms

for Galerkin approximation of elliptic PDEs on bounded domains using Wendland func-

tions. We note that these two multiscale algorithms have been investigated before, see

[50]. The new contributions in this Chapter are:

• A proof that the approximation from the first multiscale Galerkin algorithm con-

verges linearly to the true solution, Lemma 7.1, Theorem 7.2 and Corollary 7.3;

• An upper bound on the condition number of the Galerkin approximation matrix is

in Theorem 7.4, due to Quoc Thong Le Gia, and an upper bound on the condition

number of the Galerkin approximation matrix from the first multiscale Galerkin

algorithm is in Theorem 7.5;

• A L2 convergence analysis of the approximation from the second multiscale

Galerkin algorithm to the true solution is in Theorem 7.8;

• Section 7.4 presents numerical experiments using the two multiscale Galerkin al-

gorithms and then Section 7.5 provides an analysis of convergence of the experi-

ments. This was designed together with Robert S. Womersley.

Chapter 8 provides a theoretical and practical analysis of multiscale algorithms for

collocation of elliptic PDEs on bounded domains and the Stokes problem using Wend-

land functions. The new contributions in this Chapter are:

• A proof that the approximation from the multiscale symmetric collocation algo-

rithm for an elliptic PDE converges linearly to the true solution, Theorem 8.1 and

Corollaries 8.2 and 8.3;

• Numerical experiments with the multiscale symmetric collocation algorithm, Sec-

tion 8.1.1;
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• A proof that the approximation from the multiscale symmetric collocation algo-

rithm for the Stokes problem converges linearly to the true solution, Theorem 8.5

and Corollary 8.6;

• We give lower bounds on the minimum eigenvalues and upper bounds on the

maximum eigenvalues of the multiscale symmetric collocation algorithm matrix

for the Stokes problem in Theorems 8.7 and 8.8. This immediately leads to upper

bounds on the condition number of the multiscale symmetric collocation algorithm

matrix for the Stokes problem in Theorem 8.9;

• Numerical experiments using the multiscale symmetric collocation approximation

to the Stokes problem are presented in Section 8.2.2. These were designed together

with Robert S. Womersley.

Finally, we mention that work from this thesis has been submitted or will appear in

the following publications:

• A. Chernih and S. Hubbert, Closed form representations and properties of the gen-

eralised Wendland functions, submitted to the Journal of Approximation Theory.

See Chapters 3 and 4.

• A. Chernih, I. H. Sloan and R. S. Womersley, Wendland functions with increasing

smoothness converge to a Gaussian, published online in Advances in Computa-

tional Mathematics. See Chapter 5.

• A. Chernih and Q. T. Le Gia, Multiscale methods with compactly supported radial

basis functions for Galerkin approximation of elliptic PDEs, published online in

IMA Journal on Numerical Analysis. See Chapters 6 and 7.

• A. Chernih and Q. T. Le Gia, Multiscale methods with compactly supported radial

basis functions for the Stokes problem on bounded domains, submitted to Math.

Comp. See Chapters 6 and 8.

• A. Chernih and Q. T. Le Gia, Multiscale methods with compactly supported ra-

dial basis functions for elliptic partial differential equations on bounded domains,

ANZIAM Journal, Vol. 54, pages C137-C152, 2013. See chapters 6 and 8.





Chapter Two

Preliminaries

This chapter covers background material relating to function spaces, point sets, special

functions and other topics that will be required in the remainder of the thesis. This

will be presented here to provide a single point of reference should it be required, and

it will allow for a more direct presentation of the new results in later chapters. The

experienced reader may decide to skip this chapter.

2.1 Radial functions

A function Φ : Rd → R is said to be radial if there exists a function φ : [0, ∞) → R such

that Φ(x) = φ(‖x‖2) for all x ∈ Rd, where ‖ · ‖2 denotes the usual Euclidean norm in

Rd. Then we can define an RBF for a given centre xi ∈ Rd as

Φi(x) := φ(‖x− xi‖2).

With a given scaling factor δ > 0, we then define a scaled radial basis function as

Φδ(x) = δ−dφ

(
‖x‖2

δ

)
. (2.1)

Note that we can extend these definitions for Φ : Rd ×Rd → R as

Φ(x, y) = Φ(x− y) (2.2)

Φδ(x, y) = Φδ(x− y). (2.3)

The native space NΦ(R
d) of Φ consists of all functions g ∈ L2(Rd) with

‖g‖2
Φ :=

∫
Rd

|ĝ(ω)|2

Φ̂(ω)
dω < ∞,

where ĝ(ω) denotes the Fourier transform as defined by (4.1).
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2.2 Point sets

With a given domain Ω ⊆ Rd and a finite point set X ⊆ Ω, we define the mesh norm

(also known as the fill distance) as

hX,Ω := sup
x∈Ω

min
xj∈X
‖x− xj‖2,

which is a measure of the uniformity of the points in X with respect to Ω. We will often

drop the subscripts and just write h when the point set and domain are known.

The separation radius is defined as

qX :=
1
2

min
j 6=k
‖xj − xk‖2.

2.3 Sobolev spaces

For a given domain, Ω ⊆ Rd, k ∈N0, and 1 ≤ p < ∞, the Sobolev spaces Wk
p(Ω) consist

of all u with weak derivatives Dαu ∈ Lp(Ω), |α| ≤ k. The semi-norms and norms are

defined as

|u|Wk
p(Ω) =

(
∑
|α|=k
‖Dαu‖p

Lp(Ω)

) 1
p

and ‖u‖Wk
p(Ω) =

(
∑
|α|≤k
‖Dαu‖p

Lp(Ω)

) 1
p

.

For p = ∞, these definitions become

|u|Wk
∞(Ω) = sup

|α|=k
‖Dαu‖L∞(Ω) and ‖u‖Wk

∞(Ω) = sup
|α|≤k
‖Dαu‖L∞(Ω).

Let 1 ≤ p < ∞, k ∈N0, and 0 < s < 1. Then we can define the fractional Sobolev spaces

Wk+s
p (Ω) as all u for which the norm defined by

‖u‖Wk+s
p (Ω) :=

(
‖u‖p

Wk
p(Ω)

+ |u|p
Wk+s

p (Ω)

)1/p

|u|Wk+s
p (Ω) :=

(
∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)− Dαu(y)|p

‖x− y‖d+ps
2

dx dy

)1/p

is finite. For the case p = 2, we write Wτ
2 (Ω) = Hτ(Ω).

We define vector-valued Sobolev spaces with p = 2 in the usual way as

Hτ(Ω) := Hτ(Ω)× . . .× Hτ(Ω),

with norm

‖f‖Hτ(Ω) :=

(
d

∑
j=1
‖ f j‖2

Hτ(Ω)

)1/2

. (2.4)
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The functions that we will be concerned with are defined on a bounded domain Ω

with a Lipschitz boundary. As a result, there is an extension operator for functions de-

fined in Sobolev spaces which is presented in the following lemma. For further details,

we refer the reader to [40] and [10].

Lemma 2.1. Suppose Ω ⊆ Rd has a Lipschitz boundary. Then there is an extension

mapping ES : Hτ(Ω) → Hτ(Rd), defined for all non-negative integers τ, satisfying

ESv|Ω = v for all v ∈ Hτ(Ω) and

‖ESv‖Hτ(Rd) ≤ C‖v‖Hτ(Ω).

In this thesis, C will denote a generic constant. Since we also have

‖v‖Hτ(Ω) ≤ ‖ESv‖Hτ(Rd), this means that when we need to consider Hτ(Ω) norms,

we can use the Hτ(Rd)-norm instead. This is advantageous, since we then have for

g ∈ Hτ(Rd)

‖g‖2
Hτ(Rd) =

∫
Rd

|ĝ(ω)|2
(
1 + ‖ω‖2

2
)τ

dω. (2.5)

2.4 Sobolev and mesh norms on the boundary

We follow [18] to define Sobolev norms and the mesh norm on the boundary. We

assume that ∂Ω ⊆ ∪K
j=1Vj, where Vj ⊆ Rd are open sets. The sets Vj are images of

Ck,s−diffeomorphisms

ϕj : B→ Vj,

where B = B(0, 1) denotes the unit ball in Rd−1. If {wj} is a partition of unity with

respect to {Vj}, then the Sobolev norms on ∂Ω can be defined as

‖u‖p
Wµ

p (∂Ω)
:=

K

∑
j=1
‖(uwj) ◦ ϕj‖

p
Wµ

p (B)
.

The mesh norm on the boundary can be defined as

hX,∂Ω := max
1≤j≤K

hTj,B,

with Tj := ϕ−1
j (X ∩Vj) ⊆ B.

2.5 Sampling Inequalities

We will need the following “sampling” inequalities, which are valid for both scalars and

vectors [32, 33, 52].
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Theorem 2.2. Let Ω ⊆ Rd be a bounded domain with Lipschitz boundary. Let τ > d/2. Let

X ⊆ Ω be a discrete set having mesh norm h sufficiently small. For each w ∈ Hτ(Ω) with

w|X = 0 we have for 0 ≤ σ ≤ τ that

‖w‖Hσ(Ω) ≤ Chτ−σ‖w‖Hτ(Ω). (2.6)

Theorem 2.3. Let τ = k + s > d/2. Let Ω ⊆ Rd be a bounded domain having Ck,s smooth

boundary. Let X ⊆ ∂Ω be a discrete set with h sufficiently small. Then there is a positive

constant C such that for all w ∈ Hτ(Ω) with w|X = 0 we have for 0 ≤ σ ≤ τ − 1/2 that

‖w‖Hσ(∂Ω) ≤ Chτ−1/2−σ‖w‖Hτ(Ω). (2.7)

2.6 Hypergeometric functions

We need to define the generalised hypergeometric function. Further details on gener-

alised hypergeometric functions can be found in [1] and [3].

Definition 2.4. The generalised hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; x) is

pFq(a1, . . . , ap; b1, . . . , bq; x) :=
∞

∑
n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
,

where none of b1, . . . , bq is a negative integer or zero and where

(c)n := c(c + 1) · · · (c + n− 1) =
Γ(c + n)

Γ(c)
, n ≥ 1 (2.8)

denotes the Pochhammer symbol, with (c)0 = 1. When p ≤ q the series converges for all finite x

and defines an entire function. When p = q + 1 the series converges absolutely for |x| < 1, and

also at x = 1 if
q

∑
i=1

bi −
p

∑
i=1

ai > 0.

2.7 Positive definite functions

A continuous function f : Rd → R is positive definite (some would say strictly positive

definite) if for any n distinct points x1, . . . , xn ∈ Rd, the quadratic form

n

∑
i=1

n

∑
j=1

ε iε j f (xi − xj)

is positive for all ε = [ε1, . . . , εn]T ∈ Rn\{0}.
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We also define a matrix-valued function Φ : Rd → Rn×n as being positive definite if it

is even, so Φ(−x) = Φ(x), symmetric, so Φ(x) = Φ(x)T, and satisfies

n

∑
j,k=1

γT
j Φ(xj − xk)γk > 0,

for all pairwise distinct xj ∈ Rd and all γj ∈ Rn such that not all γj are vanishing.





Chapter Three

The Wendland radial basis functions

This chapter will review the Wendland radial basis functions.

Wendland functions were originally introduced in [47] and then more cases were

added in [38]. We will refer to the Wendland functions from [47] as the original Wendland

functions and the Wendland functions from [38] as the missing Wendland functions. A

thorough investigation of both types of Wendland functions in terms of hypergeometric

functions and other special functions is the focus of Hubbert [23]. We firstly define

the generalised Wendland functions in Section 3.1, and then the original and missing

Wendland functions in Sections 3.2 and 3.3, which are special cases of the generalised

Wendland functions, and then give properties and closed form representations of each.

3.1 The generalised Wendland functions

This section will present the generalised Wendland functions. These were first proposed

in [38] and then investigated in [23].

3.1.1 Definition

The generalised Wendland function is defined as follows.

Definition 3.1. With smoothness parameter α > 0, and µ > −1, let

φµ,α(r) :=


1

Γ(α) 2α−1

∫ 1

r
s (1− s)µ(s2 − r2)α−1ds for 0 ≤ r ≤ 1,

0 for r > 1.

(3.1)

The generalised Wendland functions are continuous on [0, ∞). For a given space

dimension d, we can use (3.1) to generate a d−dimensional radial function as

Φµ,α(x) := φµ,α(‖x‖2) , x ∈ Rd. (3.2)
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3.1.2 Wendland functions in terms of hypergeometric functions

Hubbert [23] starts with the integral representation (3.1) to express the generalised

Wendland functions in terms of Legendre functions. Equation (3.4) in [23] states that for

r ∈ (0, 1]

φµ,α(r) =
Γ(µ + 1)

2µ+αΓ(µ + α + 1)
(1− r2)µ+αr−µ

2F1

(
µ

2
, α +

µ + 1
2

; µ + α + 1; 1− 1
r2

)
. (3.3)

Now we apply the following identity [1, 15.3.4]

2F1(a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z
z− 1

)
(3.4)

to (3.3), which gives us, for r ∈ [0, 1], (since we recover the case of r = 0 by right

continuity)

φµ,α(r) =
Γ(µ + 1)

2µ+αΓ(µ + α + 1)
(1− r2)µ+α

2F1

(
µ

2
,

µ + 1
2

; µ + α + 1; 1− r2
)

. (3.5)

3.2 The original Wendland functions

The original Wendland functions are defined by (3.1) when α = k where k is a positive

integer with

µ = ` :=
⌊

d
2

⌋
+ k + 1.

Note that this choice of ` is the minimum value that ensures that the resulting functions

are positive definite. Since ` = b d
2 + αc+ 1 it follows immediately that for fixed d

` ∼ α as α→ ∞, (3.6)

where x ∼ y denotes asymptotic equality, that is, x
y → 1. If we wish to use a different

support, this can be easily achieved through scaling the function argument: if φ(r) has

support [0, 1] then with the change of variable y = δ r, ψ(y) := φ
( y

δ

)
has support [0, δ].

We now review the original derivation from [47] and important properties of the

original Wendland functions.

For a function φ such that t 7→ φ(t) t is in L1(R
d), for r ≥ 0 we define

(Iφ) (r) :=
∫ ∞

r
t φ(t)dt. (3.7)

With the truncated power functions defined as

φ{`}(r) := (1− r)`+, (3.8)
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with (x)+ := max(x, 0), the original Wendland functions were first presented in [47] as

φ`,k = I kφ{`}. (3.9)

The original Wendland functions are constructed with the minimal degree polynomial

for a given smoothness that gives rise to a d-dimensional positive definite function. They

are unique up to a multiplicative constant when k > 0. From [20], we know that φ`,k

is 2k times differentiable at zero, positive, strictly decreasing on its support and has the

form

φ`,k(r) = pk(r)(1− r)`+k
+ , (3.10)

where pk is a polynomial of degree k. This representation also allows us to deduce that

the first `+ k− 1 derivatives of φ`,k vanish at r = 1, i.e.,

φ
(n)
`,k (1) = 0, n = 0, 1, . . . , `+ k− 1. (3.11)

From [23], we also have the closed form representation

φ`,k(r) =
1

2k k!
(1− r)`+k

+

k

∑
j=0

(k
j)

(`+k+j
k+j )

(2r)k−j(1− r)j. (3.12)

The following theorem gives a closed form representation for the original Wendland

functions φ`,k(r), expressed in powers of r.

Theorem 3.2. Let d be a fixed space dimension and k be a positive integer. In addition let

` ≥ (d + 2k + 1)/2 be an integer. Then the function φ`,k is given by

φ`,k(r) =
(−1)k2kk!`!
(2k + `)!

2k+`

∑
j=0

(−1)j
(

2k + `

j

)( j−1
2
k

)
rj for r ∈ [0, 1]. (3.13)

Proof. Applying the binomial theorem to (3.12) yields

φ`,k(r) =
1

2k!k!

k

∑
j=0

(k
j)

(`+k+j
` )

2k−j
`+k+j

∑
n=0

(−1)n
(
`+ k + j

n

)
rk+n−j (3.14)

=:
2k+`

∑
i=0

biri, (3.15)

where, following some standard algebraic manipulation, the polynomial coefficients

(bi)
2k+`
i=0 are given by

bi =
1

2kk!

i

∑
j=0

(−2)j
(k

j)

(`+2k−j
` )

(
`+ 2k− j

i− j

)

=
`!k!

2k(`+ 2k− i)!i!

i

∑
j=0

(−2)j
(

2k− j
k

)(
i
j

)
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=
`!2k!

2k!k!(`+ 2k− i)!i!

i

∑
j=0

(−2)j
(k

j)

(2k
j )

(
i
j

)

=
`!2kΓ

(
k + 1

2

)
√

π(`+ 2k− i)!i!

i

∑
j=0

(−2)j
(k

j)

(2k
j )

(
i
j

)
,

where, in the final line we have employed the following formula from [21, 8.339.2], for

evaluation of the Gamma function at the half-integers

Γ
(

k +
1
2

)
=

√
π

4k
(2k)!

k!
, k ∈N0. (3.16)

We can now employ the following identity [35, 4.2.10.13]

i

∑
j=0

(−1)jxj
(

i
j

) (k
j)

(2k
j )

=
Γ
(
k− i + 1

2

)
i!

Γ
(
k + 1

2

) (
−x
4

)i

C(1/2+k−i)
i

(
1− 2

x

)
,

where C(λ)
i denotes the Gegenbauer (or ultraspherical) polynomial of degree i and order

λ (see [1, Chapter 22]). Setting x = 2 in the above identity yields

i

∑
j=0

(−2)j
(

i
j

) (k
j)

(2k
j )

=
Γ
(
k− i + 1

2

)
Γ
(
k + 1

2

) (−1)i i!
2i C(1/2+k−i)

i (0). (3.17)

For a non-negative integer i we have (see [1, Section 22.4]) that

C(λ)
i (0) =

2i

i!

√
πΓ
(
λ + i

2

)
Γ (λ) Γ

(
− i−1

2

) ,

and so, using this identity, we can deduce that

i

∑
j=0

(−2)j
(k

j)

(2k
j )

(
i
j

)
=

Γ
(
k− i−1

2

)√
π

Γ
(
k + 1

2

)
Γ
(
− i−1

2

) ,

and thus we have

bi = (−1)i `!2k

(`+ 2k− i)!i!
Γ
(
k− i−1

2

)
Γ
(
− i−1

2

)
= (−1)i 2kk!`!

(2k + `)!

(
2k + `

i

)(
k− i+1

2
k

)

= (−1)k+i 2kk!`!
(2k + `)!

(
2k + `

i

)( i−1
2
k

)
.

Another important property is that for an integer space dimension d and for k a

non-negative integer the function

K(x, y) = φ`,k(‖x− y‖), x, y ∈ Rd, (3.18)



3.2 The original Wendland functions 17

is the reproducing kernel of a Hilbert space which is norm equivalent to the Sobolev

space H
d+1

2 +k(Rd) [51, Chapter 10].

The native space NΦ(R
d) of Φ consists of all functions g ∈ L2(Rd) such that

‖g‖2
Φ =

∫
Rd

|ĝ(ω)|2

Φ̂(ω)
dω < ∞. (3.19)

We will also need that there exist two constants 0 < c1 ≤ c2 such that their Fourier

transforms satisfy [51]

c1
(
1 + ‖ω‖2

2
)−ρ ≤ Φ̂(ω) ≤ c2

(
1 + ‖ω‖2

2
)−ρ

, ω ∈ Rd. (3.20)

We give explicit formulae for the original Wendland functions for d = 3 and

k = 1, 2, . . . , 5 in Table 3.1 where ·
= denotes equality up to a positive constant factor.

The support of all the original Wendland functions is [0, 1].

k Original Wendland function

1 φ3,1(r)
·
= (1− r)4

+(4r + 1)

2 φ4,2(r)
·
= (1− r)6

+(35r2 + 18r + 3)

3 φ5,3(r)
·
= (1− r)8

+(32r3 + 25r2 + 8r + 1)

4 φ6,4(r)
·
= (1− r)10

+ (429r4 + 450r3 + 210r2 + 50r + 5)

5 φ7,5(r)
·
= (1− r)12

+ (2048r5 + 2697r4 + 1644r3 + 566r2 + 108r + 9)

Table 3.1. The original Wendland functions φ`,k(r) for d = 3 and k = 1, . . . , 5.

3.2.1 Properties of the derivatives of the original Wendland functions

In this subsection we present several technical lemmas concerning derivatives of the

original Wendland functions, which we will need later.

Lemma 3.3. With spatial dimension d and smoothness parameter k = 2, 3, . . . let Φ`,k be the

original Wendland function. Then with x ∈ Rd and 1 ≤ i, j ≤ d and i 6= j, we have

∂ijΦ`,k(x)|x=0 = 0.

Proof. We recall that the Wendland functions are piecewise polynomials with support

[0, 1]. With Theorem 3.2, we can write

φ`,k(r) =
2k+`

∑
i=0

bi ri, r ∈ [0, 1] (3.21)
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where the first k odd coefficients {b2i+1}k
i=0 vanish. With the chain rule, and with

x = (x1, . . . , xd) and r = ‖x‖2, we have

∂ijΦ`,k(x) =
xixj

r2

(
φ
(2)
`,k (r)−

1
r

φ
(1)
`,k (r)

)
.

Using (3.21), this last expression becomes

∂ijΦ`,k(x) =
xixj

r2

(
2k+`

∑
i=2

bi (i− 1)2 ri−2 −
2k+`

∑
i=1

i bi ri−2

)
,

=:
xixj

r2

(
2k+`

∑
i=1

b̄i ri−2

)
, (3.22)

where (c)n denotes the Pochhammer symbol. Now the first three coefficients {b̄i}3
i=1 are

b̄1 = b1 = 0

b̄2 = (2− 2)b2 = 0

b̄3 = 0,

since the first k odd coefficients of the Wendland polynomial are zero and k ≥ 2. Hence

we can write

∂ijΦ`,k(x) = xixj

(
2k+`

∑
i=4

b̄i ri−4

)
,

and the result follows immediately.

Lemma 3.4. With spatial dimension d and smoothness parameter k = 3, 4, . . . let Φ`,k be the

original Wendland function. Then with x ∈ Rd and 1 ≤ i, j ≤ d and i 6= j, we have

∂ij∆2Φ`,k(x)|x=0 = 0.

Proof. Once again employing the chain rule gives

∂ij∆2Φ`,k(x) =
xixj

r2

×
(

φ
(6)
`,k (r) +

1
r

φ
(5)
`,k (r)−

7
r2 φ

(4)
`,k (r) +

12
r3 φ

(3)
`,k (r)−

15
r4 φ

(2)
`,k (r) +

15
r5 φ

(1)
`,k (r)

)
.

With (3.21) we can rewrite this as

∂ij∆2Φ`,k(x) =
xixj

r2

[
2k+`

∑
i=6

bi(i− 5)6ri−6 +
2k+`

∑
i=5

bi(i− 4)5ri−6

−7
2k+`

∑
i=4

bi(i− 3)4ri−6 + 12
2k+`

∑
i=3

bi(i− 2)3ri−6 − 15
2k+`

∑
i=2

bi(i− 1)2ri−6 + 15
2k+`

∑
i=1

i biri−6

]

=:
2k+`

∑
i=1

b̃iri−6.
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Since b̃i = C(i)bi, the first k odd coefficients {b̃2i+1}k
i=0 are zero. Then we can determine

other coefficients as

b̃2 = 30(b2 − b2) = 0

b̃4 = b4(60− 15(3)2 + 12(2)3 − 7(1)4) = 0

b̃6 = b6(90− 15(5)2 + 12(4)3 − 7(3)4 + (1)6) = 0.

Hence since k = 3, 4, . . ., we can write

∂ij∆2Φ`,k(x) = xixj

2k+`

∑
i=8

b̃iri−8,

and the result follows immediately.

Lemma 3.5. With spatial dimension d and smoothness parameter k = 2, 3, . . . let Φ`,k be the

original Wendland function. Then with x ∈ Rd and 1 ≤ j ≤ d we have

∂jjΦ`,k(x)|x=0 < 0,

and is independent of j.

Proof. With the chain rule, and once again with x = (x1, . . . , xd) and r = ‖x‖2, we have

∂jjΦ`,k(x) =
x2

j

r2

(
φ
(2)
`,k (r)−

1
r

φ
(1)
`,k (r)

)
+

1
r

φ
(1)
`,k (r).

With Lemma 3.3, the term in brackets is equal to zero when x = 0. Using (3.21) and

noting that the first k odd coefficients are zero, this last term becomes

1
r

φ
(1)
`,k (r) =

2`+k

∑
i=2

i bi ri−2,

which means that the case of x = 0, which is equivalent to r = 0, reduces down to 2b2.

Now combining positive factors into a generic constant C, we have from Theorem 3.2

b2 = C(−1)k
( 1

2
k

)
= C

(−1)k

Γ( 1
2 − (k− 1))

= C(−1)k(−1)k−1 < 0,

where we have also used [21, 8.339.3]

Γ
(

1
2
− n

)
=
√

π
(−4)nn!
(2n)!

.
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Lemma 3.6. With spatial dimension d and smoothness parameter k = 3, 4, . . . let Φ`,k be the

original Wendland function. Then with x ∈ Rd and 1 ≤ j ≤ d we have

∂jj∆2Φ`,k(x)|x=0 < 0,

and is independent of j.

Proof. With the chain rule, and once again with x = (x1, . . . , xd) and r = ‖x‖2, we have

∂jj∆2Φ`,k(x) =
x2

j

r2

×
(

φ
(6)
`,k (r) +

1
r

φ
(5)
`,k (r)−

7
r2 φ

(4)
`,k (r) +

12
r3 φ

(3)
`,k (r)−

15
r4 φ

(2)
`,k (r) +

15
r5 φ

(1)
`,k (r)

)
+

1
r

(
φ
(5)
`,k (r) +

2
r

φ
(4)
`,k (r)−

3
r2 φ

(3)
`,k (r) +

3
r3 φ

(2)
`,k (r)−

3
r4 φ

(1)
`,k (r)

)
.

With Lemma 3.3, the first term in the previous expression is equal to zero when x = 0.

As before, we can write the second term as a series

2k+`

∑
i=1

bi ri−6.

Since k ≥ 3, b1 = b3 = b5 = 0, equating coefficients gives

b2 = b2(−6 + 3(1)2) = 0

b4 = b4(−12 + 3(3)2 − 3(2)3 + 2(1)4) = 0,

which means we are left with
2k+`

∑
i=6

bi ri−6.

Hence the case of x = 0, which is equivalent to r = 0, reduces down to b6, which is

given by

b6 = ((2)5 + 2(3)4 − 3(4)3 + 3(5)2 − 18)b6 = 1152b6.

As before, combining positive factors into a generic constant C and noting that

k = 3, 4, . . ., we have from Theorem 3.2

b6 = C(−1)k
( 5

2
k

)
= C

(−1)k

Γ( 1
2 − (k− 3))

= C(−1)k(−1)k−3 < 0.



3.3 The missing Wendland functions 21

3.3 The missing Wendland functions

The missing Wendland functions are defined by (3.1) when α = k + 1
2 where k is a

non-negative integer with

µ = ` :=
⌊

d + 1
2

⌋
+ k + 1.

Schaback [38] extended Wendland’s original approach to cover the missing Wend-

land functions, which are the reproducing kernels of integer order Sobolev spaces in

even dimensions d. An important distinction between the original Wendland functions

and the missing Wendland functions is that the missing Wendland functions, whilst

still being compactly supported, now have logarithmic and square-root multipliers of

polynomial components.

Schaback [38] proved that the missing Wendland functions, φ`,k+ 1
2

, are of the form

φ`,k+ 1
2
(r) = p`,k

(
r2

2

)
L(r) + q`,k

(
r2

2

)
S(r), (3.23)

where

L(r) := log
(

r
1 +
√

1− r2

)
and S(r) :=

√
1− r2, (3.24)

and p`,k and q`,k are polynomials. Whilst a closed form representation for φ`,k+ 1
2
(r) was

not given in [38], this can be achieved using the same techniques used in their paper.

We give the closed form representation in the following theorem.

Theorem 3.7. Let d be a given spatial dimension, k a non-negative integer and

` = b(d + 1)/2c+ k + 1. Then the missing Wendland functions are given by

φ`,k+ 1
2
(r) = P`,k

(
r2) L(r) + Q`,k

(
r2) S(r), (3.25)

where

P`,k(r) :=
(−1)kd 1

2 ,k− 1
2

Γ
(
k + 1

2

)
22k− 1

2

b `−1
2 c

∑
j=0

(
`

2j + 1

) d 1
2 ,j+k+ 1

2

d1,j+k+1
(

j + 3
2

)
k

rj+k+1, (3.26)

and

Q`,k(r) :=
1

Γ
(
k + 1

2

)
2k− 1

2

k−1

∑
j=0

q1,jrj +
b `2 c+k

∑
j=0

q2,jrj −
b `−1

2 c+k

∑
j=0

q3,jrj

 , (3.27)

with

q1,j := (−1)k−1
k−1

∑
n=j

(
n
j

)
(−1)n+j

dn+ 3
2 ,k− 1

2

2k−n

`

∑
m=0

(−1)m( `m)(m
2 + 1

)
k−n

, (3.28)

q2,j := (−1)k
b `2 c

∑
n=(j−k)+

(
`

2n

) d 1
2 ,k− 1

2

2k(n + 1)k

dn+k−j+1,n+k

dn+k−j+ 1
2 ,n+k+ 1

2

, (3.29)
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q3,j := (−1)k
b `−1

2 c

∑
n=(j−k)+

(
`

2n + 1

) d 1
2 ,k− 1

2

2k
(
n + 3

2

)
k

dn+k−j+ 3
2 ,n+k+ 1

2

dn+k−j+1,n+k+1
(3.30)

where

di,j :=
j

∏
m=i

(2m).

and L(r) and S(r) are given by (3.24).

Proof. We begin by applying the binomial theorem to (3.1), which with the change of

variable z :=
√

s2 − r2, gives

φ`,k+ 1
2
(r) =

1

Γ
(
k + 1

2

)
2k− 1

2

`

∑
j=0

(−1)j
(
`

j

)
g j

2 ,k(x), (3.31)

where

gn,k(x) :=
∫ √1−x2

0

(
x2 + z2)n

z2k dz. (3.32)

Integration by parts yields

gn,k(r) = S(r)
k

∑
i=1

(−1)i−1 dk+ 3
2−i,k− 1

2

2i (n + 1)i

(
1− r2)k−i

+
(−1)kd 1

2 ,k− 1
2

2k (n + 1)k
gn+k,0(r). (3.33)

From [38], we know that

gn+1,0(x) =
2n + 2
2n + 3

x2 gn,0(x) +
S(x)

2n + 3
.

In conjunction with

g0,0(x) = S(x)

g 1
2 ,0(x) =

1
2
(
S(x)− x2L(x)

)
,

we obtain

gn,0(x) = S(x)p1,n(x2) (3.34)

gn− 1
2 ,0(x) = L(x)p2,n(x2) + S(x)p3,n−1(x2), (3.35)

where

p1,n(r) :=
n

∑
j=0

dj+1,n

dj+ 1
2 ,n+ 1

2

rn−j,

p2,n(r) := −
d 1

2 ,n− 1
2

d1,n
rn,

and

p3,n(r) :=
n

∑
j=0

dj+ 3
2 ,n+ 1

2

dj+1,n+1
rn−j.
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Then (3.31), (3.33), (3.34) and (3.35) together lead us to

φ`,k+ 1
2
(r) =

S(r)

Γ
(
k + 1

2

)
2k− 1

2

{
`

∑
j=0

(−1)j
(
`

j

) k

∑
i=1

(−1)i−1dk+ 3
2−i,k− 1

2

2i
(

j
2 + 1

)
i

(
1− r2)k−i

︸ ︷︷ ︸
:=(A)

+
b `2 c

∑
j=0

(
`

2j

) (−1)kd 1
2 ,k− 1

2

2k(j + 1)k
p1,j+k(r2)︸ ︷︷ ︸

:=(B)

−
b `2 c

∑
j=0

(
`

2j + 1

) (−1)kd 1
2 ,k− 1

2

2k
(

j + 3
2

)
k

p3,j+k(r2)︸ ︷︷ ︸
:=(C)

}

− L(r)

Γ
(
k + 1

2

)
2k− 1

2

{ b `2 c
∑
j=0

(
`

2j + 1

) (−1)kd 1
2 ,k− 1

2

2k
(

j + 3
2

)
k

p2,j+k+1(r2)︸ ︷︷ ︸
:=(D)

}
.

Now we simplify expressions (A)-(D).

(A) =
`

∑
j=0

(−1)j
(
`

j

) k

∑
i=1

(−1)i−1dk+ 3
2−i,k− 1

2

2i
(

j
2 + 1

)
i

(
1− r2)k−i

=
`

∑
j=0

(−1)j
(
`

j

) k−1

∑
n=0

(−1)k−n−1dn+ 3
2 ,k− 1

2

2k−n
(

j
2 + 1

)
k−n

(
1− r2)n

= (−1)k−1
k−1

∑
i=0

r2i
k−1

∑
n=i

(
n
i

)
(−1)n+i

dn+ 3
2 ,k− 1

2

2k−n

`

∑
j=0

(−1)j(`j)(
j
2 + 1

)
k−n

.

(B) =
b `2 c

∑
j=0

(
`

2j

) (−1)kd 1
2 ,k− 1

2

2k(j + 1)k

j+k

∑
i=0

di+1,j+k

di+ 1
2 ,j+k+ 1

2

r2(j+k−i)

=
b `2 c

∑
j=0

(
`

2j

) (−1)kd 1
2 ,k− 1

2

2k(j + 1)k

j+k

∑
n=0

dj+k−n+1,j+k

dj+k−n+ 1
2 ,j+k+ 1

2

r2n

=
b `2 c+k

∑
i=0

r2i
b `2 c

∑
j=(i−k)+

(
`

2j

) (−1)kd 1
2 ,k− 1

2

2k(j + 1)k

dj+k−i+1,j+k

dj+k−i+ 1
2 ,j+k+ 1

2

.

(C) =
b `−1

2 c

∑
j=0

(
`

2j + 1

) (−1)kd 1
2 ,k− 1

2

2k
(

j + 3
2

)
k

j+k

∑
i=0

di+ 3
2 ,j+k+ 1

2

di+1,j+k+1
r2(j+k−i)

=
b `−1

2 c

∑
j=0

(
`

2j + 1

) (−1)kd 1
2 ,k− 1

2

2k
(

j + 3
2

)
k

j+k

∑
n=0

dj+k−n+ 3
2 ,j+k

dj+k−n+1,j+k+1
r2n

=
b `−1

2 c+k

∑
i=0

r2i
b `−1

2 c

∑
j=(i−k)+

(
`

2j + 1

) (−1)kd 1
2 ,k− 1

2

2k
(

j + 3
2

)
k

dj+k−i+ 3
2 ,j+k+ 1

2

dj+k−i+1,j+k+1
.

(D) =
b `2 c

∑
j=0

(
`

2j + 1

) (−1)kd 1
2 ,k− 1

2

2k
(

j + 3
2

)
k

d 1
2 ,j+k+ 1

2

d1,j+k+1
r2(j+k+1).
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We have the following closed form representation of the missing Wendland functions

from [23, Corollary 4.6].

Theorem 3.8. Let d be a given space dimension and let k be a non-negative integer and define

γj := (−1)j
(2k+`+1

k+`+j )

(`+j−1
` )

, for j = 1, . . . , k + 1.

Set

` =

⌊
d + 1

2

⌋
+ k + 1 and A`,k :=

(−1)k+1
√

π

` (`+ k)!
`+ k− 1

2 (`+ 2k + 1)!
.

Then the missing Wendland functions have the following representation

φ`,k+ 1
2
= A`,k

[
P(r) log

(
1 +
√

1− r2

1−
√

1− r2

)
+ Q(r)

√
1− r2

]
,

with the following cases:

• If ` is even, then P and Q are polynomials of degree `+ 2k given by

P(r) = r`+2k+1

`
2−1

∑
j=0

α
(even)
j T2j+1

(
1
r

)
,

Q(r) = r`+2k

[
1
`

k+1

∑
j=1

γjU`−2+2j

(
1
r

)
−

`
2−1

∑
j=0

β
(even)
j U2j

(
1
r

)]
,

where Tn(r) denotes the Chebyshev polynomial of the first kind of degree n, Un(r) denotes

the Chebyshev polynomial of the second kind of degree n and where the adjusted coefficients

are given, respectively, by

α
(even)
j :=

(
`+ 2k + 1
`
2 + k− j

)(
`− 1

`
2 − 1− j

)
,

and

β
(even)
j := α

(even)
j

[
Ψ
(
`

2
+ j + 1

)
−Ψ

(
`

2
− j
)
+

Ψ
(
`

2
+ k + j + 2

)
−Ψ

(
`

2
+ k + 1− j

)]
, (3.36)

where Ψ(·) denotes the digamma function (see [1, 6.3.1]) defined by

Ψ(z) =
Γ
′
(z)

Γ(z)
. (3.37)

• If ` is odd, then P is a polynomial of degree `+ 2k + 1 given by

P(r) = r`+2k+1

[
α
(odd)
0
2

+

`−1
2

∑
j=1

α
(odd)
j T2j

(
1
r

)]
,



3.3 The missing Wendland functions 25

and Q is a polynomial of degree `+ 2k− 1 given by

Q(r) = r`+2k

[
1
`

k+1

∑
j=1

γjU`−2+2j

(
1
r

)
−

`−1
2

∑
j=0

β
(odd)
j U2j−1

(
1
r

)]
,

where the adjusted coefficients are given, respectively, by

α
(odd)
j :=

(
`+ 2k + 1
`+1

2 + k− j

)(
`− 1
`−1

2 − j

)
,

and

β
(odd)
j := α

(odd)
j

[
Ψ
(
`+ 1

2
+ j
)
−Ψ

(
`+ 1

2
− j
)
+

Ψ
(
`+ 1

2
+ k + j + 1

)
−Ψ

(
`+ 1

2
+ k + 1− j

)]
. (3.38)

We give explicit formulae for the missing Wendland functions for d = 2 and k = 0, 1

and 2 in Table 3.2. The support of all the missing Wendland functions is r ∈ [0, 1]. It is

k Missing Wendland function

0 φ2, 1
2
(r) ·= 3r2L(r) + (2r2 + 1)S(r)

1 φ3, 3
2
(r) ·= −15r4(6 + r2)L(r)− (81r4 + 28r2 − 4)S(r)

2 φ4, 5
2
(r) ·= (945r8 + 2520r6)L(r) + (256r8 + 2639r6 + 690r4 − 136r2 + 16)S(r)

Table 3.2. The missing Wendland functions φ`,k+ 1
2
(r) for d = 2 and k = 0, 1, 2.

proved in [38] that with ` = b d+1
2 c+ k + 1 and k being any non-negative half-integer, for

an integer dimension d the kernel

K(x, y) = φ`,k+ 1
2
(‖x− y‖), x, y ∈ Rd, (3.39)

is the reproducing kernel of a Hilbert space which is norm equivalent to the Sobolev

space H
d
2+k+1(Rd).

Hereafter when we refer to the Wendland functions we will mean both the original

and missing Wendland functions. With k a non-negative integer and

` =

⌊
d
2
+ α

⌋
+ 1

and r ∈ [0, 1], φ`,α(r) with α = k an integer will denote the original Wendland functions

and φ`,α with α = k + 1
2 will denote the missing Wendland functions.





Chapter Four

Fourier transform of the generalised

Wendland functions

This chapter will investigate the Fourier transform of the generalised Wendland func-

tions φµ,α. Section 4.1 recalls the definition of the Fourier transform and states several

results that we will require later. Section 4.2 gives the Fourier transform of the gener-

alised Wendland functions φµ,α. Section 4.3 presents the native spaces generated by these

functions. Section 4.4 provides several important identities of the Fourier transform of

the generalised Wendland functions φµ,α. Section 4.5 provides closed form representa-

tions for the Fourier transform of the original Wendland functions φ`,k and Section 4.6

does the same for the missing Wendland functions φ`,k+ 1
2
. Section 4.7 concludes with

several properties of the Fourier transform of the generalised Wendland functions φµ,α.

For the moment, we deal with arbitrary µ > −1 in the generalised Wendland func-

tions, until Theorem 4.4, which will enable us to be more precise about how to choose

µ.

4.1 Fourier transforms

This section provides definitions and outlines some key properties. For further informa-

tion, we refer the interested reader to [41, 51].

4.1.1 Definitions and preliminaries

With the Fourier transform of f ∈ L1(R
d) defined as

f̂ (w) := (2π)−
d
2

∫
Rd

f (x) e−iw·x dx, w ∈ Rd, (4.1)

it is well known that the Fourier transform of a radial function Φ ∈ L1(R
d) ∩ C(Rd) is

also radial and is given by Φ̂(w) = Fdφ(‖w‖2) where

Fdφ(z) := z1− d
2

∫ ∞

0
φ(y) y

d
2 J d

2−1(z y)dy, (4.2)
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and Jν(y) denotes the Bessel function of the first kind with order ν. In particular, we

have the following result.

Lemma 4.1.

Fdφ(0) :=
1

2
d
2−1Γ

(
d
2

) ∫ ∞

0
φ(y) yd−1 dy. (4.3)

Proof. With (4.2), we need to consider

lim
z→0

z1− d
2

∫ ∞

0
φ(y) y

d
2 J d

2−1(z y)dy. (4.4)

Since we have [11, 10.14.4]

|Jν(x)| ≤ |x|ν
2νΓ(ν + 1)

, x ∈ R, ν ≥ −1
2

,

we can see that the absolute value of the integrand (ignoring constants) in (4.4) is dom-

inated by

|φ(y)|yd−1.

We know that Φ ∈ L1(R
d), which means that∫ ∞

0
|φ(y)|yd−1dy < ∞,

and hence since the dominating function is integrable, we can apply the dominated con-

vergence theorem to interchange the limit and integral in (4.4), which with the limiting

form of the Bessel function [11, 10.7.3]

|x|−ν Jν(x)→ 1
2νΓ(ν + 1)

as x → 0,

gives the stated result.

Lemma 4.1 also follows immediately from

Fdφ(0) = (2π)−d/2
∫

Rd
φ(‖x‖2)dx =

vol(Sd−1)

(2π)d/2

∫ ∞

0
rd−1φ(r)dr,

where Sd−1 is the unit sphere in Rd.

From the Fourier inversion theorem applied to radial functions, we know that if

Φ ∈ L1(R
d) with Φ(x) = φ(‖x‖2), φ : [0, ∞)→ R, and if Φ̂ ∈ L1(R

d), then

φ(y) = y1− d
2

∫ ∞

0
Fdφ(z) z

d
2 J d

2−1(yz)dz. (4.5)

We also recall that if f ∈ L1(R
d) is continuous at zero and positive definite then its

Fourier transform is in L1(R
d) and is non-negative [41].
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For example, we can see that the Fourier transform of the Gaussian RBF is

Ĝϑ(z) =
1

(2ϑ)
d
2

e−
z2
4ϑ , z ∈ R.

We note that Ĝϑ(z) is the d−dimensional Fourier transform of

Rd 3 x 7→ exp
(
−ϑ‖x‖2

2
)

.

4.2 Fourier transform of the generalised Wendland functions

This section will present the Fourier transform of the generalised Wendland functions

φµ,α. First we present a hypergeometric function identity, which we will then use to

derive the Fourier transform of the generalised Wendland functions φµ,α.

Theorem 4.2. Let µ > −1, α > 0 and d > 0. Then

Γ(µ + 1)
2µ+αΓ(µ + α + 1)

∫ 1

0

(
1− y2)µ+α

y
d
2 2F1

(
µ

2
,

µ + 1
2

; µ + α + 1; 1− y2
)

J d
2−1(zy)dy =

Cµ,α
d z

d
2−1

1F2

(
d + 1

2
+ α;

µ + d + 1
2

+ α,
µ + d + 2

2
+ α;− z2

4

)
, z > 0,

where

Cµ,α
d :=

2α+ d
2 Γ(µ + 1)Γ

(
d+1

2 + α
)

√
π Γ(µ + d + 2α + 1)

. (4.6)

Proof. With (3.5) and (3.1) and re-parametrising the triangle

{(y, t) : 0 ≤ y ≤ 1, y ≤ t ≤ 1} as {(xs, x) : 0 ≤ x ≤ 1, 0 ≤ s ≤ 1}, we can see

that the left hand side of the equation in the Theorem statement is given by

1
2α−1Γ(α)

1∫
0

1∫
y

(1− t)µ t
(
t2 − y2)α−1

y
d
2 J d

2−1(zy)dt dy

=
1

2α−1Γ(α)

1∫
0

1∫
0

x2α+ d
2 (1− x)µ s

d
2
(
1− s2)α−1

J d
2−1(zsx)ds dx.

From [21, 6.567.1], we have that∫ 1

0
xν+1 (1− x2)µ

Jν(bx)dx = 2µΓ(µ + 1)b−(µ+1) Jν+µ+1(b), b > 0,

which means we can simplify our expression to

z−α

1∫
0

xα+ d
2 (1− x)µ Jα+ d

2−1(zx)dx.

With the following identity [21, 6.569]
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∫ 1

0
xλ(1− x)µ−1 Jν(ax)dx =

Γ(µ)Γ(λ + ν + 1)2−νaν

Γ(ν + 1)Γ(λ + µ + ν + 1)

× 2F3

(
λ + ν + 1

2
,

λ + ν + 2
2

; ν + 1,
λ + ν + µ + 1

2
,

λ + ν + µ + 2
2

;− a2

4

)
,

µ > 0, λ + ν > −1,

which is valid since µ + 1 > 0 and 2α + d− 1 > −1 by assumption, the result follows

after applying the duplication formula for the Gamma function, namely

Γ(2z) =
22z−1
√

π
Γ(z)Γ

(
z +

1
2

)
, (4.7)

and noting that in our case, the 2F3 hypergeometric function simplifies down to a 1F2

since the first parameters in the numerator and denominator are equal.

Substituting (3.5) into (4.2) we can see that we get exactly the integral on the left hand

side of the previous theorem, and hence this result also gives us the Fourier transform

of the generalised Wendland functions φµ,α, which we state next.

Theorem 4.3. The d-dimensional Fourier transform of the generalised Wendland functions φµ,α,

with µ > −1, α > 0 is

Fdφµ,α(z) = Cµ,α
d 1F2

(
d + 1

2
+ α;

µ + d + 1
2

+ α,
µ + d + 2

2
+ α;− z2

4

)
, z ≥ 0,

where Cµ,α
d is given by (4.7).

Next, we determine for a given dimension d, the full range of parameters µ and α

for which the function φµ,α generates a d-dimensional positive definite function.

Theorem 4.4. The generalised Wendland function φµ,α generates a positive definite function on

Rd if and only if its parameters satisfy

µ ≥ d + 1
2

+ α.

Proof. This follows directly from [29] which proves that

1F2

(
a; a +

b
2

, a +
b + 1

2
;− z2

4

)
> 0, z > 0,

for b ≥ 2a ≥ 0, for b ≥ a ≥ 1, or for 0 ≤ a ≤ 1, b ≥ 1. It is also proven that this function

cannot be strictly positive for 0 ≤ b < a or a = b, 0 < a < 1.

In our case, a = d+1
2 + α > 0 since d > 0 and α > 0 and hence necessary and

sufficient conditions reduce to b ≥ a which means that

µ ≥ d + 1
2

+ α.
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As a result of Theorem 4.4, we will henceforth consider

µ :=
d + 1

2
+ α + β, (4.8)

with β a non-negative constant. We will consider the impact of different choices of β in

Section 5.3. Note that we have the following result, which is analogous to (3.6) for the

original and missing Wendland functions. With µ defined by (4.8),

µ ∼ α as α→ ∞. (4.9)

4.3 Native Spaces

In this section, we examine the decay rate of the Fourier transforms of the generalised

Wendland functions to establish the nature of the reproducing kernel Hilbert spaceNφµ,α ,

whose reproducing kernel is the induced kernel

Φµ,α(x, y) = Φµ,α(x− y) = φµ,α(‖x− y‖2) x, y ∈ Rd. (4.10)

Theorem 4.5. The d-dimensional Fourier transform of the generalised Wendland functions,

Fdφµ,α, with µ ≥ α + d+1
2 satisfies

Fdφµ,α(z) = Θ
(

z−(d+2α+1)
)

for z→ ∞.

Proof. We need to show that for z ≥ z0, there exist two positive constants, c3 and c4,

such that

c3 ≤ zd+2α+1Fdφµ,α(z) ≤ c4. (4.11)

From [13], we have the following asymptotic expansion for Fdφµ,α(z) as z → ∞ and

|arg(z)| < π
2

Fdφµ,α(z) =
Γ (µ + d + 1 + 2α)

Γ(µ)
z−d−2α−1 {1 + O(z−2)

}
+

Γ (µ + d + 1 + 2α)

Γ
(

d+1
2 + α

) z−(µ+α+ d+1
2 )

2(
d+1

2 +α)−1

{
cos

[
z− π

2

(
µ + α +

d + 1
2

)]
+ O(z−1)

}
.

Collecting terms not depending on z into constants c5, c6 and c7 gives the following

expression

zd+2α+1Fdφµ,α(z) = c5
{

1 + O(z−2)
}
+ c6zα+ d+1

2 −µ
{

cos(z− c7) + O(z−1)
}

. (4.12)

Then for the upper bound, since cos(z) is bounded by 1 in absolute value, we can see

that for z ≥ z2, there exists an ε2 > 0 such that

zd+2α+1Fdφµ,α(z) ≤
(

c5 + c6zα+ d+1
2 −µ

)
(1 + ε2)
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≤ (c5 + c6) (1 + ε2)

=: c4,

which is positive since all its components are also positive. We proceed similarly for the

lower bound and we first consider the case where µ = d+1
2 + α. For z ≥ z1, there exists

an ε1 > 0 such that

zd+2α+1Fdφµ,α(z) ≥ c5(1− ε1)− c6(1 + ε1)

= c5 − c6 − ε1(c5 + c6)

=: c3.

For small enough ε1, we see that c3 > 0 since

c5 − c6 = Γ(µ + d + 2α + 1)

 1

Γ
(

d+1
2 + α

) − 1

Γ
(

d+1
2 + α

)
2(

d+1
2 +α)−1


> 0.

Since the second term on the right hand side of (4.12) is decaying for µ > d+1
2 + α,

the existence of a lower bound in this case follows similarly. Setting z0 := max(z1, z2)

completes the proof.

With Theorem 4.5 and the asymptotic decay of functions in Sobolev spaces (see e.g.

[2]), we have the following result on the native spaces generated by the generalised

Wendland functions φµ,α.

Corollary 4.6. Let d ≥ 1 denote a fixed spatial dimension and α, β > 0. The generalised

Wendland function φ d+1
2 +α+β,α is reproducing in a Hilbert space which is isomorphic to the

Sobolev space H
d+1

2 +α
(
Rd).

With Theorem 4.5 and Corollary 4.6, we can state one more result.

Corollary 4.7. Every Sobolev space Hτ(Rd) with τ > (d + 1)/2 has a compactly supported

and radial reproducing kernel.

4.3.1 Norm equivalence for the scaled Wendland functions

This subsection will present an important result regarding norm equivalence between

the Sobolev spaces and the native spaces generated by the scaled generalised Wendland

functions.
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With scaling defined by (2.1) and where Φ generates the native space Hτ(Rd), the

Fourier transform of Φδ, Φ̂δ(ω) = Φ̂(δω), satisfies

c8
(
1 + δ2‖ω‖2

2
)−τ ≤ Φ̂δ(ω) ≤ c9

(
1 + δ2‖ω‖2

2
)−τ

, ω ∈ Rd. (4.13)

We also need norm equivalence as stated in the following lemma.

Lemma 4.8. For every δ ∈ (0, δa] and for all g ∈ Hτ(Rd), there exist constants 0 < c3 ≤ c4

such that

c10‖g‖Φδ
≤ ‖g‖Hτ(Rd) ≤ c11δ−τ‖g‖Φδ

.

Proof. The case δa ≤ 1 was proven in [53] with c10 = c1/2
7 and c11 = c1/2

8 . To extend this

to the case where δa > 1, note that for δ > 1 we have(
1 + ‖ω‖2

2
)τ

= δ−2τ
(
δ2 + δ2‖ω‖2

2
)τ ≥ δ−2τ

a
(
1 + δ2‖ω‖2

2
)τ

.

Together with (2.5), (4.13) and (3.19) we can see that

‖g‖2
Hτ(Rd) =

∫
Rd

|ĝ(ω)|2
(
1 + ‖ω‖2

2
)τ

dω

≥ δ−2τ
a

∫
Rd

|ĝ(ω)|2
(
1 + δ2‖ω‖2

2
)τ

dω

≥ c7δ−2τ
a

∫
Rd

|ĝ(ω)|2

Φ̂δ(ω)
dω

≥ c7δ−2τ
a ‖g‖2

Φδ
.

For the upper bound, we can just use δ > 1 directly to derive

‖g‖2
Hτ(Rd) =

∫
Rd

|ĝ(ω)|2
(
1 + ‖ω‖2

2
)τ

dω

≤
∫

Rd

|ĝ(ω)|2
(
1 + δ2‖ω‖2

2
)τ

dω

≤ c8‖g‖2
Φδ

,

using (4.13) and (3.19). Then setting c10 := c1/2
7 min(1, δ−τ

a ) and c11 := c1/2
8 completes

the proof.

4.4 Identities

4.4.1 Fourier transform dimension drop

Theorem 4.9. Let d be a given spatial dimension, let φµ,α be the generalised Wendland functions,

where µ is given by (4.8) and α > 0. Then

Fdφµ,α(z) = Fd−1φµ,α+ 1
2
(z). (4.14)
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Proof. A careful inspection of Theorem 4.3 reveals that the Fourier transform of the

generalised Wendland functions φµ,α is a function only of d
2 + α and not of d and α

separately. Since
d
2
+ α =

d− 1
2

+ α +
1
2

the d-dimensional Fourier transform of the generalised Wendland function φµ,α equals

the d− 1-dimensional Fourier transform of the generalised Wendland function φµ,α+ 1
2
.

In particular, we can recursively apply the above formula and evoke (4.2) to deduce

that

Fdφµ,α(z) = F1φµ,α+ d−1
2
(z)

=
√

z
∫ 1

0
φµ,α+ d−1

2
(y)
√

yJ− 1
2
(zy)dy

=

√
2
π

∫ 1

0
φ d+1

2 +α,α+ d−1
2
(y) cos(zy)dy, (4.15)

where we have used the fact that

J− 1
2
(t) =

√
2

πt
cos(t).

In a similar fashion we can also conclude that

Fdφµ,α(z) = F2φµ,α+ d−2
2
(z)

=
∫ 1

0
φµ,α+ d−2

2
(y)yJ0(zy)dy. (4.16)

We shall use both of these identities in the next section to derive explicit expressions for

the Fourier transforms of the original Wendland functions.

We will need one final result regarding the Fourier transform dimension drop.

Theorem 4.10. Let d be a given spatial dimension, let φµ,α be the generalised Wendland func-

tions, where µ is given by (4.8) and α > 0. Then

Fdφµ,α(z) = F2α−1φµ, d+1
2
(z).

Proof. This is proven in an identical fashion to Theorem 4.9.
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4.5 Closed form representations for the Fourier transform of the

original Wendland functions

4.5.1 Odd spatial dimensions d

We will consider the (original) Wendland functions φ`,k, for a given odd spatial dimen-

sion d, with smoothness parameter k and ` = d+1
2 + k. We will make use of (4.15)

to derive a closed form representation for the d-dimensional Fourier transform by cal-

culating a 1−dimensional Fourier transform with a different value of the smoothness

parameter k.

Theorem 4.11. Let d be an odd space dimension, k a positive integer and let ` = (d+ 2k+ 1)/2.

The d−dimensional Fourier transform of the original Wendland function φ`,k is given by

Fdφ`,k(z) =

√
2
π

1
zd+2k+1

[
sin(z)

b `2c−1

∑
j=0

β1,j

z2j+1 + cos(z)
b `−1

2 c
∑
j=0

β2,j

z2j +
b `−1

2 c
∑
j=0

β3,j

z2j

]
, (4.17)

where the coefficients are given by

β1,j :=
(−1)j+12`−1(`− 1)!`!

(`− 2j− 2)!

`−2j−2

∑
m=0

(−1)m
(
`− 2j− 2

m

)(m−1
2 + j + `

`− 1

)
, (4.18)

β2,j :=
(−1)j+12`−1(`− 1)!`!

(`− 2j− 1)!

`−2j−1

∑
m=0

(−1)m
(
`− 2j− 1

m

)(m
2 + j + `− 1

`− 1

)
, (4.19)

and

β3,j := 2`−1`!
(−1)j(j + `− 1)!
(`− 2j− 1)!j!

. (4.20)

Proof. With (4.15), we have that

Fdφ`,k(z) =

√
2
π

∫ 1

0
φ`,`−1(y) cos(zy)dy. (4.21)

Using Theorem 3.2 we know that, on the unit interval, the function φ`,`−1 is a poly-

nomial of degree 3`− 2. Specifically, (3.13) yields

φ`,`−1(y) = Codd

3`−2

∑
n=0

(−1)n
(

3`− 2
n

)( n−1
2

`− 1

)
yn

=: Codd

3`−2

∑
n=0

b1,n yn, (4.22)

where

Codd :=
(−2)`−1(`− 1)!`!

(3`− 2)!
.
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Then substituting (4.22) into (4.21) with the change of variable t := zy gives

Fdφ`,k(z) =

√
2
π
Codd

3`−2

∑
n=0

b1,n

zn+1

∫ z

0
tn cos(t)dt,

and hence we will need to consider integrals of the form

In :=
∫ z

0
tn cos(t)dt, n = 0, 1, . . . , 3`− 2.

Using integration by parts, this can be seen to satisfy the recurrence relation

In = zn sin(z) + nzn−1 cos(z)− n(n− 1)In−2,

which together with

I1 = −1 + cos(z) + z sin(z)

I0 = sin(z),

gives

In = sin(z)


b n

2 c

∑
j=0

(−1)j (n− 2j + 1)2j zn−2j


+

cos(z)
z


b n−1

2 c

∑
j=0

(−1)j (n− 2j)2j+1 zn−2j

+
(

n− 2
⌊n

2

⌋)
(−1)

n+1
2 n!,

where in the last line,
(
n− 2

⌊ n
2

⌋)
indicates that we have a constant term only for odd

powers n. Noting that the first k = `− 1 odd coefficients of φ`,`−1(y) are equal to 0 gives

the expression

Fdφ`,k(z) = sin(z) Codd

3`−2

∑
n=0

b1,n

b n
2 c

∑
j=0

(−1)j (n− 2j + 1)2j z−2j−1

︸ ︷︷ ︸
:=(A)

+
cos(z)

z
Codd

3`−2

∑
n=0

b1,n

b n
2 c

∑
j=0

(−1)j (n− 2j)2j+1 z−2j−1

︸ ︷︷ ︸
:=(B)

+ Codd

b 2k+`−1
2 c

∑
n=`−1

b1,2n+1(−1)n+1(2n + 1)!z−2n−2

︸ ︷︷ ︸
:=(C)

,

and now we simplify expressions (A)-(C) as follows.

(A) = Codd

b 3`−2
2 c

∑
j=0

(−1)j

z2j+1

3`−2

∑
n=2j

b1,n(n− 2j + 1)2j

= Codd

b 3`−2
2 c

∑
j=`

(−1)j

z2j+1

3`−2

∑
n=2j

b1,n(n− 2j + 1)2j
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= Codd
1

z2`

b `2 c−1

∑
j=0

(−1)j+`−1

z2j+1

`−2j−2

∑
m=0

b1,m+2j+2`(m + 1)2j+2`

=
(−2)`−1(`− 1)!`!

(3`− 2)!
1

z2`

b `2 c−1

∑
j=0

(−1)j+`−1

z2j+1

`−2j−1

∑
m=0

(−1)m
(

3`− 2
m + 2j + 2`

)(m−1
2 + j + `

`− 1

)
Γ(m + 2j + 2`+ 1)

Γ(m + 1)

=
b `2c−1

∑
j=0

β1,j

z2j+1 ,

where we have also used the fact that the first ` + k − 1 derivatives at r = 1 of the

original Wendland functions φ`,k are 0, as this property means that

2k+`

∑
i=n

b1,i (i− n + 1)n = 0, n = 0, . . . , `+ k− 1.

Now we simplify expression (B) where we will again use that the first `+ k− 1 deriva-

tives at r = 1 of the original Wendland functions φ`,k are 0,

(B) = Codd

b 3`−3
2 c

∑
j=0

(−1)j

z2j+2

3`−2

∑
n=2j+1

b1,n(n− 2j)2j+1

= Codd

b 3`−3
2 c

∑
j=`−1

(−1)j

z2j+1

3`−2

∑
n=2j+1

b1,n(n− 2j)2j+1

= Codd
1

z2`

b `−1
2 c

∑
j=0

(−1)j+`−1

z2j

`−2j−1

∑
m=0

b1,m+2j+2`−1(m + 1)2j+2`

=
(−2)`−1(`− 1)!`!

(3`− 2)!
1

z2`

b `−1
2 c

∑
j=0

(−1)j+`

z2j+1

`−2j−1

∑
m=0

(−1)m−1
(

3`− 2
m + 2j + 2`− 1

)(m
2 + j + `− 1

`− 1

)
Γ(m + 2j + 2`)

Γ(m)

=
b `−1

2 c
∑
j=0

β2,j

z2j+1 .

Finally we simplify expression (C) to complete the proof.

(C) = Codd

b 2k+`−1
2 c

∑
n=`−1

b1,2n+1(−1)n+1(2n + 1)!z−2n−2

=
Codd

z2`

b `−1
2 c

∑
j=0

(−1)j+`b1,2j+2`−1(2j + 2`− 1)!z−2j

=
(−2)`−1(`− 1)!`!

(3`− 2)!z2`

×
b `−1

2 c

∑
j=0

(−1)j+`−1

z2j

(
3`− 2

2j + 2`− 1

)(
j + `− 1
`− 1

)
(2j + 2`− 1)!
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=
b `−1

2 c

∑
j=0

β3,j

z2j .

We note that the existence of this representation was mentioned in [44], however the

exact values of the coefficients were not given.

4.5.2 Even spatial dimensions d

In this section we assume that the space dimension d is even, i.e., where ` = d
2 + k + 1.

We will consider the (original) Wendland functions φ`,k with smoothness parameter k.

We will make use of (4.16) to derive a closed form representation for the d-dimensional

Fourier transform by calculating a 2−dimensional Fourier transform with a different

value of the smoothness parameter k.

Theorem 4.12. Let d be an even space dimension, k a positive integer and let ` = d/2 + k + 1.

The d−dimensional Fourier transform of the original Wendland function φ`,k is given by

Fdφ`,k(z) =
Ceven

zd+2k+1

[
J0(z)

b `2 c−1

∑
j=0

γ1,j+k+1

z2j−1 + J1(z)
b `2 c−1

∑
j=0

γ2,j+k+1

z2j

+ (J0(z)H1(z)− J1(z)H0(z))
b `−1

2 c

∑
j=0

γ3,2j+2k+1

z2j−1

]
, (4.23)

with

Ceven :=
(−2)`−2`!(`− 2)!

(3`− 4)!
, (4.24)

γ1,j := (−1)j−122j
2k+`

∑
n=2j

(−1)n(2k+`
n )(

n−1
2
k )

n− 2j + 2

[ (n
2
− j + 1

)
j

]2
. (4.25)

γ2,j := (−1)j22j
2k+`

∑
n=2j

(−1)n
(

2k + `

n

)( n−1
2
k

)[ (n
2
− j + 1

)
j

]2
, (4.26)

and

γ3,j :=
π

2
(−1)

3j−1
2 2j+1

(
2k + `

j

)( j−1
2
k

)[(1
2

)
j+1

2

]2
, (4.27)

where Hν(z) denotes the Struve function of order ν (cf. [45, Chapter 10.4]).

Proof. In this setting we are again dealing with the family φ`,k and we are able to use

(4.16) to deduce that

Fdφ`,k(z) =
∫ 1

0
φ`,`−2(y)yJ0(zy)dy. (4.28)
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Using Theorem 3.2 we know that, on the unit interval, the function φ`,`−2 is a polynomial

of degree 3`− 4. Specifically, (3.13) yields

φ`,`−2(y) = Ceven

3`−4

∑
j=0

(−1)j
(

3`− 4
j

)( j−1
2

`− 2

)
yj (4.29)

=: Ceven

3`−4

∑
j=0

b2,j yj,

where

Ceven :=
(−1)`2`−2`!(`− 2)!

(3`− 4)!
.

To calculate this integral, we will need the following identity [36, 1.8.1.5, p.37]∫ 1

0
xµ Jν(ax)dx = a−µ

{
(µ + ν− 1)Jv(a)sµ−1,ν−1(a)− Jv−1(a)sµ,ν(a)

}
,

where sµ,ν denotes the Lommel function (of the first kind). We collect some identities

for the Lommel functions which we will require - for further information, we refer the

reader to [45, Chapter 10.7].

sµ+2,v(z) = zµ+1 −
{
(µ + 1)2 − ν2} sµ,ν(z), (4.30)

sµ,−ν(z) = sµ,ν(z), (4.31)

sν,ν(z) = Γ
(

ν +
1
2

)√
π 2ν−1Hν(z), (4.32)

s1,0(z) = 1− J0(z), (4.33)

s2,1(z) = z− 2J1(z). (4.34)

Then substituting (4.29) into the right hand side of (4.28), with the identities mentioned

above, yields

Fdφ`,k(z) = Ceven

3`−4

∑
j=0

b2,jz−j−1
[

jJ0(z)sj,1(z) + J1(z)sj+1,0(z)
]

(4.35)

= Ceven

[
J0(z)

3`−4

∑
j=0

b2,j

zj+1 j sj,1(z)︸ ︷︷ ︸
:=(A)

+J1(z)
3`−4

∑
j=0

b2,j

zj+1 sj+1,0(z)︸ ︷︷ ︸
:=(B)

]
, (4.36)

upon noting that J−1(z) = −J1(z). To simplify this further, we will use (4.30) to derive

series representations for the two types of Lommel functions that appear in (4.35). Firstly

we define the following two functions

dp,i :=

i−1
2

∏
m=p+1

(
(2m)2 − 1

)
(4.37)

=

i−1
2

∏
m=p+1

(2m− 1)(2m + 1) (4.38)



40 Fourier transform of the generalised Wendland functions

and

fp,i :=

i
2

∏
m=p+ 1

2

(2m)2. (4.39)

Both dp,i and fp,i are defined for either i odd and p being an integer, or i even and p

being a half-integer. Note that simply writing out the terms in both functions gives

dp,i = (2p + 1)(2p + 3)2(2p + 5)2 · · · (i− 2)2i

fp,i = (2p + 1)2 · · · i2,

from which we can immediately see that

fp,i = i(2p + 1)dp,i , (4.40)

which we will need later. We can now formulate the expressions that we need for the

Lommel functions. We need to separate these into two cases: when j is odd, and when

j is even. These follow from (4.30), (4.32), (4.33) and (4.34).

Lommel functions when j is odd

sj,1(z) =

j−1
2

∑
n=1

(−1)
j−2n−1

2 dn,j z2n + (−1)
j−1

2
π

2
d0,j H1(z) (4.41)

sj+1,0(z) =

j
2

∑
n= 1

2

(−1)
j−2n

2 fn+ 1
2 ,j z2n − (−1)

j−1
2

π

2
f0,j H0(z). (4.42)

Lommel functions when j is even

sj,1(z) =

j−1
2

∑
n= 1

2

(−1)
j−2n−1

2 dn,j z2n + 2 (−1)
j
2 d 1

2 ,j J1(z) (4.43)

sj+1,0(z) =

j
2

∑
n=0

(−1)
j−2n

2 fn+ 1
2 ,j z2n − (−1)

j
2 f 1

2 ,j J0(z). (4.44)

Let us consider (A) in (4.36). Using (4.41), (4.43) and (4.40) gives

(A) = ∑
oddj

b2,j

zj+1


j−1

2

∑
n=1

(−1)
j−2n−1

2 j dn,j z2n + (−1)
j−1

2
π

2
j d0,j H1(z)


+ ∑

evenj

b2,j

zj+1


j−1

2

∑
n= 1

2

(−1)
j−2n−1

2 j dn,j z2n + 2 (−1)
j
2 j d 1

2 ,j J1(z)


=

3`−4

∑
j=0

b2,j

b j
2 c

∑
n=1

(−1)n−1
f j+1

2 −n,j

j− 2n + 2
z−2n +

π

2
H1(z) ∑

oddj

{
(−1)

j−1
2

b2,j

zj+1 f0,j

}
+ J1(z) ∑

evenj

{
b2,j

zj+1 (−1)
j
2 f 1

2 ,j

}
(4.45)
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=
b 2k+`

2 c

∑
j=1

γ1,j

z2j +
π

2
H1(z) ∑

oddj

{
(−1)

j−1
2

b2,j

zj+1 f0,j

}
(4.46)

+ J1(z) ∑
evenj

b2,j

zj+1 (−1)
j
2 f 1

2 ,j (4.47)

with

γ1,j = (−1)j−1
2k+`

∑
n=2j

b2,n
f n+1

2 −j,n

n− 2j + 2
(4.48)

= (−1)j−122j
2k+`

∑
n=2j

(−1)n(2k+`
n )(

n−1
2
k )

n− 2j + 2

[ (n
2
− j + 1

)
j

]2
. (4.49)

This result can be simplified further as follows. We know that the first k = `− 2 odd

coefficients {b2m+1}m=0,...,`−2 vanish so we consider γ1,j for 2j− 1 ≤ 2`− 3. Furthermore

since the Pochhammer symbol appearing in (4.49) also vanishes when n = 2p when

p = 0, . . . , j− 1, we can express the coefficients γ1,j as the sum of polynomials in n of

degree 2j with coefficients hm as follows

γ1,j = (−1)j−122j
2k+`

∑
n=0

b2,n

n− 2j + 2

[ (n
2
− j + 1

)
j

]2

= (−1)j−122j
2k+`

∑
n=0

b2,n

2j

∑
m=0

hm nm

= (−1)j−122j
2j

∑
m=0

hm

2k+`

∑
n=0

b2,nnm.

We also know that the first `+ k− 1 = 2`− 3 derivatives of φ`,`−2 vanish at r = 1. In

view of this we can deduce that

3`−4

∑
n=0

b2,n np = 0, p = 0, 1, . . . , 2`− 3,

and hence

γ1,j = 0, for j = 0, 1, . . . , `− 2.

We proceed similarly for (B). With (4.42) and (4.44),

(B) = ∑
oddj

b2,j

zj+1


j
2

∑
n= 1

2

(−1)
j−2n

2 fn+ 1
2 ,j z2n − (−1)

j−1
2

π

2
f0,j H0(z)


+ ∑

evenj

b2,j

zj+1


j
2

∑
n=1

(−1)
j−2n

2 fn+ 1
2 ,j z2n − (−1)

j
2 f 1

2 ,j J0(z)


=

3`−4

∑
j=0

b2,j

b j
2 c

∑
n=0

(−1)n f j−2n+1
2 ,j z−2n−1 +

π

2
H0(z) ∑

oddj

{
(−1)

j−1
2

b2,j

zj+1 f0,j

}
− ∑

evenj

b2,j

zj+1

{
(−1)

j
2 f 1

2 ,j J0(z)
}
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=
b 2k+`

2 c

∑
j=0

γ2,j

z2j+1 +
π

2
H0(z) ∑

oddj

{
(−1)

j−1
2

b2,j

zj+1 f0,j

}
− J0(z) ∑

evenj

b2,j

zj+1

{
(−1)

j
2 f 1

2 ,j

}
, (4.50)

with

γ2,j = (−1)j
2k+`

∑
n=2j

b2,n f n−2j+1
2 ,n

= (−1)j22j
2k+`

∑
n=2j

(−1)n
(

2k + `

n

)( n−1
2
k

)[ (n
2
− j + 1

)
j

]2
.

As with γ1,j, we can express γ2,j as

γ2,j = (−1)j
2k+`

∑
n=0

b2,n

[ (n
2
− j + 1

)
j

]2

= (−1)j
2j

∑
m=0

hm

2k+`

∑
n=0

b2,nnm,

and hence

γ2,j = 0, for j = 0, 1, . . . , `− 2.

Combining the above results, once again noting that the first k odd coefficients b2,j are

0, completes the proof.

Note that since there are positive powers of z in two of the sums in Theorem 4.12,

it is not immediately obvious that we achieve the asymptotic decay rate predicted by

Theorem 4.5. To investigate this, we will need to consider the first terms (j = 0) in the

first and third sums of Theorem 4.12. Using the asymptotic expansions of the Bessel and

Struve functions ([45]), we see that as z→ ∞

J0(z) =

√
2

πz
cos

(
z− π

4

)
+ O(z−1)

J0(z)H1(z)− J1(z)H0(z) =
2
π

√
2

πz
cos

(
z− π

4

)
+ O(z−1),

which will mean that these two j = 0 components will cancel out asymptotically if

γ1,k+1 = − 2
π

γ3,2k+1.

With the definitions of γ1,j and γ3,j in (4.48) and (4.27) and noting that

2k+`

∑
n=2k+1

b2,n f n+1
2 −k−1,n

n− 2k
= 0,
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we can see this as follows

γ1,k+1 = (−1)k
2k+`

∑
n=2k+2

b2,n f n+1
2 −k−1,n

n− 2k

= (−1)k+1b2,2k+1 f0,2k+1

= − 2
π

γ3,2k+1,

and hence the asymptotic decay of the Fourier transform in Theorem 4.12 agrees with

Theorem 4.5.

4.6 Closed form representation for the Fourier transform of the

missing Wendland functions

In this section, we consider the missing Wendland functions, so α = k + 1
2 where k ∈ N

and we once again seek a closed form representation for the Fourier transform, in other

words, for

Fdφ d
2+k+1,k+ 1

2
,

with an even spatial dimension d.

Theorem 4.13. Let d be an even spatial dimension, k a positive integer and ` = d/2 + k + 1.

The d−dimensional Fourier transform of the missing Wendland function φ`,k+ 1
2

is given by

Fdφ`,k+ 1
2
(z) =

√
2
π

1
zd+2k+2

[
sin(z)

b `2c−1

∑
j=0

β1,j

z2j+1 + cos(z)
b `−1

2 c
∑
j=0

β2,j

z2j +
b `−1

2 c
∑
j=0

β3,j

z2j

]
, (4.51)

where β1,j, β2,j and β3,j are given by (4.18), (4.19) and (4.20) respectively.

Proof. With (4.14), we can see that

Fdφ d
2+k+1,k+ 1

2
= Fd−1φ d

2+k+1,k+1

= Fd−1φ d−1
2 +k+1+ 1

2 ,k+1,

which is just the d− 1-dimensional Fourier transform of the original Wendland function

with smoothness parameter k + 1 (since k is an integer). Since d− 1 is odd, the closed

form representation for this is given in Theorem 4.11, which gives the stated result.

4.6.1 Integrals leading to the result

Since the standard texts on special functions (such as [21, 36]) do not contain the inte-

grals that we require for the Fourier transform of the missing Wendland functions, in
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this subsection we show that the Fourier transforms of the missing Wendland functions

in even spatial dimensions d are of the form stated in Theorem 4.13. This analysis may

in future lead to another closed form representation for the missing Wendland functions

by use of the inverse Fourier transform to recover the missing Wendland function.

From the form of the missing Wendland functions given in Section 3.3, and the

Fourier transform integral in (4.2), we can see that the Fourier transform will involve

integrals of the form

In :=
∫ 1

0
x2n
√

1− x2x
d
2 J d

2−1(xt)dx, n ≥ 0

and

Mn :=
∫ 1

0
x2n arcsech(x) x

d
2 J d

2−1(xt)dx, n ≥ 0.

We will need to make use of the following two Bessel function integral identities ([21,

6.683.6],[21, 6.683.4])∫ π
2

0
Jµ(z sin θ) (sin θ)µ+1 (cos θ)2ρ+1 dθ = 2ρΓ(ρ + 1)z−ρ−1 Jρ+µ+1(z), (4.52)

and ∫ π
2

0
Jµ(z sin θ) (sin θ)1−µ (cos θ)2ρ+1 dθ =

sµ+v,v−µ+1(z)
2µ−1zv+1Γ(µ)

. (4.53)

First we consider In. With the substitution x = sin θ, using sin2 θ = 1 − cos2 θ, then

expanding with the binomial theorem and using (4.52) we reach

In =
∫ π

2

0
(sin θ)2n+ d

2 cos2 θ J d
2−1(t sin θ)dθ

=
∫ π

2

0
(sin θ)

d
2
(
1− cos2 θ

)n
cos2 θ J d

2−1(t sin θ)dθ

=
n

∑
j=0

(−1)j
(

n
j

) ∫ π
2

0
J d

2−1(z sin θ) (sin θ)
d
2 (cos θ)2(j+ 1

2 )+1 dθ

=
n

∑
j=0

(−1)j
(

n
j

)
2j+ 1

2 Γ
(

j +
3
2

)
t−j− 3

2 J d
2+j+ 1

2
(t).

Now we know from [45, Chapter 9.6] that we can express a higher order Bessel function

in terms of lower order Bessel functions as

Jv+m(z) = Jv(z)Rm,v(z)− Jv−1(z)Rm−1,v+1(z),

where Rm,v(z) are the Lommel polynomials. Then since

J 1
2
(z) =

√
2

πz
sin(z)

J−1
2
(z) =

√
2

πz
cos(z)
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we can reach

In =

√
2
π

n

∑
j=0

(−1)j
(

n
j

)
2j+ 1

2 Γ
(

j +
3
2

)
t−j−2

{
R d

2+j, 1
2
(z) sin(z)− R d

2+j−1, 3
2
(z) cos(z)

}
,

(4.54)

which consists only of sin(z) and cos(z) terms multiplied by polynomials in z, as re-

quired. Note that there is no pure polynomial component in this expression.

We now consider Mn. We can do this with integration by parts with

u = x2n arcsech(x) and dv = x
d
2 J d

2−1(xt) where we also need that [45]∫
zv+1 Jv(tz)dz =

zv+1

t
Jv+1(tz).

Now we can integrate by parts, n times, using

d
dx
(
x2n arcsech(x)

)
= 2n x2n−1 arcsech(x)− x2n−1 (1− x2)− 1

2 ,

and each time the boundary contribution is zero. So then in the end, we reach

Mn = 2nn!t−n
∫ 1

0
arcsech(x) x

d
2+n J d

2+n−1(xt)dx

+
n−1

∑
j=1

(−1)jt−j2j−1
n

∏
m=n−j+2

m
∫ 1

0
x2n−2j+1(1− x2)−1/2x

d
2+j−1 J d

2+j−1(xt)dx. (4.55)

Note that the second term in (4.55) can be handled in a similar fashion to In and hence

we need only concern ourself with the first term in (4.55). We apply integration by parts

again, and applying the second Bessel function identity stated above leads to (with

m := d/2 + n− 1)∫ 1

0
arcsech(x) x

d
2+n J d

2+n−1(xt)dx = −
∫ 1

0
(1− x2)−1/2x

d
2+n−1 J d

2+n(xt)dx

= −
∫ π

2

0
J d

2+n(t sin θ) sin1− d
2−n θ sind+2n−2 θdθ

= −
∫ π

2

0
J d

2+n(t sin θ) sin1− d
2−n θ(1− cos2 θ)mdθ

=
m

∑
j=0

(−1)j+1
(

m
j

)
J d

2+n(t sin θ) sin1− d
2−n θ cos2j θdθ

=
m

∑
j=0

(−1)j+1
(

m
j

) s d−
2 +n+j,j−n+ 1−d

2
(z)

2
d
2+n−1zj+1/2Γ(d/2 + n)

.

Now we recall the recurrence relation that we used earlier for the Lommel function of

the first kind

sµ+2,v(z) = zµ+1 −
{
(µ + 1)2 − v2} sµ,v(z),

in conjunction with sµ,−v = sµ,v, because then after j such iterations, we reach the Struve

function of order d−1
2 + n− j which can also be expressed as

Hn+ 1
2
(z) = Yn+ 1

2
(z) +

1
π

n

∑
k=0

Γ(k + 1/2)( z
2 )
−2k+n−1/2

Γ(n + 1− k)
,
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and Yn+1(z) is also sin(z) and cos(z) multiplied by a polynomial. As a result, both In

and Mn are expressible in terms of sin(z) and cos(z) with polynomials in z, hence so is

a linear combination of In and Mn expressions, which provides some confirmation that

the Fourier transform of the missing Wendland functions in even spatial dimensions d

can be expressed in terms of sin(z), cos(z) and polynomials in z.

4.7 Properties

4.7.1 When is the Fourier transform strictly decreasing

Theorem 4.14. The Fourier transform of the generalised Wendland functions Fdφµ,α(z) is

strictly decreasing if and only if its parameters satisfy

µ ≥ d + 1
2

+ α + 1.

In particular, note that this value of µ is one higher than the minimum required for positive

definiteness.

Proof. With the following identity [11, 16.3.1]

d
dz 1F2 (a1; b1, b2; z) =

a1

b1 b2
1F2 (a1 + 1; b1 + 1, b2 + 1; z)

applied to Theorem 4.3 yields

d
dz
Fdφµ,α(z) =

−2zCµ,α
d

(
d+1

2 + α
)

(
µ+d+1

2 + α
) (

µ+d+2
2 + α

)
× 1F2

(
d + 1

2
+ α;

µ + d + 1
2

+ α,
µ + d + 2

2
+ α;− z2

4

)
,

and noting that Cµ,α
d > 0 and z > 0 we only need to determine when the hypergeometric

function is strictly positive. This is identical to the proof of Theorem 4.4 except in this

case all the parameters are increased by one and the result follows.



Chapter Five

Limit of the generalised Wendland

functions as α→ ∞

This chapter will present the limiting case of the generalised Wendland functions φµ,α

as α→ ∞.

In Figure 5.1, we can see the original Wendland functions φ`,k in R3 for k = 1, . . . , 5,

where we have normalised the functions to have value 1 at the origin. One can clearly

see faster decay as α = k increases, which suggests the need for a change of variable

when considering the limit as α approaches infinity.

Section 5.1 presents the change of variables that we will need to use to investigate the

limiting behaviour of the generalised Wendland functions. Section 5.2 presents the re-

sults as α→ ∞. Section 5.3 considers the selection of the parameter µ in the generalised

Wendland functions and Section 5.4 discusses the selection of scaling factors.

5.1 Generalised Wendland functions with a change of variable

We begin this section with two technical lemmas, which will be used in the change of

variable required to study the limiting behaviour of the generalised Wendland functions.

Lemma 5.1.

φµ,α(0) =
Γ(µ + 1)Γ(2α)

2α−1Γ(α)Γ(µ + 2α + 1)
. (5.1)

Proof. To calculate φµ,α(0) we need the value of the hypergeometric function in (3.5) at

the argument 1 (since it has argument 1− r2). From [1, 15.1.20] we have the identity

2F1(a, b; c; 1) =
Γ(c)Γ(c− b− a)
Γ(c− b)Γ(c− a)

, c 6= 0,−1,−2, . . . , c− b− a > 0. (5.2)

Applying (5.2) to (3.5) shows that

φµ,α(0) =
Γ(µ + 1) Γ(α + 1

2 )

2µ+α Γ( µ
2 + α + 1

2 ) Γ( µ
2 + α + 1)

.
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Figure 5.1. The (original) Wendland functions φ`,k(r) for ` = k + 2 and k = 1, . . . , 5, nor-

malised to have value 1 at r = 0.

Using (4.7) twice – firstly for Γ( µ
2 + α + 1

2 )Γ(
µ
2 + α + 1) and then for Γ(α)Γ

(
α + 1

2

)
– and

with several terms cancelling out in the numerator and denominator, we get the desired

result.

We will also need the following result for the area under the generalised Wendland

functions φµ,α.

Lemma 5.2. ∫ ∞

0
φµ,α(s)ds =

2α Γ(µ + 1) Γ(α + 1)
Γ(µ + 2α + 2)

. (5.3)

Proof. This follows from (4.3) and Theorem 4.3 on setting d = 1 (noting that φµ,α has no

explicit d dependence).

Now we can define what we will call normalised equal area generalised Wendland

functions. These are normalised generalised Wendland functions with a linear change

of variable (which depends on α and a positive real constant ϑ) such that for a given

ϑ all the normalised equal area generalised Wendland functions have area equal to

the area under exp(−ϑy2) over the real half-line. The value of ϑ can be chosen for
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the convenience of the user. We will denote the normalised equal area generalised

Wendland functions by ψµ,α.

Theorem 5.3. With ϑ an arbitrary positive real number, the normalised equal area Wendland

functions are given by

ψµ,α(y) :=
2α−1Γ(α)Γ(µ + 2α + 1)

Γ(µ + 1)Γ(2α)

 φµ,α

(
y

δµ,α(ϑ)

)
for 0 ≤ y ≤ δµ,α(ϑ),

0 for y > δµ,α(ϑ)
, (5.4)

where α > 0, µ is given by (4.8) and

δµ,α(ϑ) :=
(µ + 2α + 1) Γ

(
α + 1

2

)
2
√

ϑ Γ(α + 1)
. (5.5)

Proof. Normalisation follows from Lemma 5.1. We can verify that this definition gives

us the required area, with (5.3) and (5.1), as follows.∫ δµ,α(ϑ)

0
ψµ,α(y)dy =

δµ,α(ϑ)

φµ,α(0)

∫ 1

0
φµ,α(r)dr

=

√
π

2
√

ϑ

=
∫ ∞

0
exp(−ϑy2)dy.

In Figure 5.2 we plot the normalised equal area original Wendland functions ψ`,k for

d = 3 and k = 1, . . . , 5 with ϑ = 1.

We emphasise that the normalised equal area Wendland functions satisfy both

ψµ,α(0) = 1 as well as

‖ψµ,α‖1 =
∫ ∞

0
e−ϑy2

dy,

where ϑ can be any constant.

We will also need the following results.

Lemma 5.4. With µ given by (4.8) and α ≥ min
(

d
2 , 1, β

)
. Then

δµ,α(ϑ) ≤
4
√

α√
ϑ

. (5.6)

Proof. From [46] we have the double inequality(
x

x + s

)1−s

≤ Γ(x + s)
xs Γ(x)

≤ 1,
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Figure 5.2. The normalised equal area Wendland functions ψ3,1(y), ψ4,2(y), ψ5,3(y), ψ6,4(y),

ψ7,5(y) with α = 1 and exp(−y2).

for 0 < s < 1 and x > 0. With s = 1
2 and using Γ(α + 1) = αΓ(α), this gives

δµ,α(ϑ) =
(µ + 2α + 1)

2
√

ϑ

Γ
(
α + 1

2

)
Γ(α + 1)

≤ (µ + 2α + 1)
2
√

α ϑ

≤

(
d
2 + 3α + β + 2

)
2
√

α ϑ

≤ 4
√

α√
ϑ

.

Lemma 5.5. Let η > 0. The function fη : (0, ∞)→ R defined by

fη(y) :=
Γ(y + η)

Γ(y)
, y > 0, (5.7)

is non-decreasing on (0, ∞).

Proof. We provide a proof for the convenience of the reader. Consider Fη(y) := log fη(y).

Since fη(y) > 0 and
d Fη(y)

dy
=

1
fη(y)

d fη(y)
dy

,

we can consider the derivative of Fη(y) since it will have the same sign as the derivative

of fη(y). Now
d Fη(y)

dy
= ψ0(y + η)− ψ0(y),
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where ψ0 is the digamma function with the series representation [1, 6.3.16]

ψ0(y + 1) = −γ +
∞

∑
n=1

y
n(n + y)

, y 6= −1,−2,−3, . . .

where γ is the Euler-Mascheroni constant. This gives

d Fη(y)
dy

=
∞

∑
n=0

η

(n + y)(n + y + η)
,

which converges and is positive on (0, ∞), since η > 0.

5.2 Asymptotic behaviour as α→ ∞

In this section, we consider the limit of the (generalised) equal area Wendland functions

ψµ,α as α → ∞. Section 5.2.1 presents the limit of the generalised equal area Wendland

functions ψµ,α as α → ∞. Section 5.2.2 provides some numerical results regarding the

convergence, including graphs of the differences with the limiting Gaussian.

5.2.1 Limiting case of the normalised equal area Wendland functions ψµ,α as

α→ ∞

In this section we derive the limit of the normalised equal area Wendland functions ψµ,α

as α→ ∞. We start with a convergence result for the Fourier transforms.

Theorem 5.6. Let ϑ be a positive real constant, α > min( d
2 , 1, β) and ψµ,α be the normalised

equal area generalised Wendland functions defined by (5.4) and (5.5) with µ given by (4.8). Then

lim
α→∞
Fdψµ,α(z) = Ĝϑ(z) (5.8)

uniformly for z in an arbitrary bounded subinterval of the positive numbers.

Proof. Firstly we express the Fourier transform of ψµ,α in terms of the Fourier transform

of φµ,α. Writing δµ,α for δµ,α(ϑ) and using the transformation y = r δµ,α gives, from (4.2),

Fdψµ,α(z) = z1− d
2

∫ δµ,α

0
ψµ,α(y) y

d
2 J d

2−1(zy)dy

=
2α−1Γ(α)Γ(µ + 2α + 1)z1− d

2 δµ,α

Γ(µ + 1)Γ(2α)

∫ 1

0
φµ,α(r)

(
r δµ,α

) d
2 J d

2−1(z r δµ,α)dr

=
2α−1Γ(α)Γ(µ + 2α + 1)z1− d

2 δ
1+ d

2
µ,α

Γ(µ + 1)Γ(2α)(δµ,α z)1− d
2

(
Fdφµ,α

)
(δµ,α z)

=
2α−1Γ(α)Γ(µ + 2α + 1)δd

µ,α

Γ(µ + 1)Γ(2α)

(
Fdφµ,α

)
(δµ,αz). (5.9)
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Next we use Theorem 4.3 to write the Fourier transform of ψµ,α in terms of a hypergeo-

metric function as

Fdψµ,α(z) =
δd

µ,α 2−
d
2 Γ(µ + 2α + 1)Γ(α)Γ(d + 2α)

Γ(2α)Γ
(

d
2 + α

)
Γ(µ + d + 2α + 1)

×

1F2

(
d + 1

2
+ α;

µ + d + 2α + 1
2

,
µ + d + 2α + 2

2
;−

δ2
µ,αz2

4

)
, (5.10)

with δµ,α = δµ,α(ϑ). Then the equivalent series representation is as follows

Fdψµ,α(z) = 2−
d
2

∞

∑
n=0

Γ(d + 2α + 2n)Γ(µ + 2α + 1)Γ(α)

Γ(2α)Γ(µ + 2α + 1 + d + 2n)Γ
(

α + d
2 + n

) δd+2n
µ,α

(
− z2

4

)n

n!

= 2−
d
2

∞

∑
n=0

wn(α)

(
− z2

4

)n

, (5.11)

where

wn(α) :=
Γ(d + 2α + 2n)Γ(µ + 2α + 1)Γ(α)

Γ(2α)Γ(µ + 2α + 1 + d + 2n)Γ
(

α + d
2 + n

) δd+2n
µ,α

n!
. (5.12)

To interchange the limit as α → ∞ and the infinite sum, we need to prove that this sum

is dominated by an absolutely convergent series (Lebesgue’s dominated convergence

theorem). Using (4.7) twice together with Lemma 5.4 and the bound [11, 5.6.8]

Γ(x + a)
Γ(x + b)

≤ 1
xb−a , x > 0, b− a ≥ 1, a ≥ 0, (5.13)

we have for α ≥ 1

wn(α) =
2d+2nΓ

(
d
2 + α + n + 1

2

)
Γ(µ + 2α + 1)

Γ
(
α + 1

2

)
Γ(µ + 2α + 1 + d + 2n)

δd+2n
µ,α

n!

≤
2d+2nΓ

(
d
2 +

3α
2 + n

)
Γ(3α)

Γ
( 3α

2

)
Γ(3α + d + 2n)

δd+2n
µ,α

n!

=
2d+2nΓ

(
d
2 +

3α
2 + n

)
23α−1Γ

( 3α
2

)
Γ
( 3α+1

2

)
Γ
( 3α

2

)
23α+d+2n−1Γ

(
3α+d

2 + n
)

Γ
(

3α+d+1
2 + n

) δd+2n
µ,α

n!

=
Γ
( 3α+1

2

)
Γ
(

3α+d+1
2 + n

) δd+2n
µ,α

n!

≤ 1( 3α
2

) d
2+n

(
4
√

α√
ϑ

)d+2n 1
n!

=

(
32
3ϑ

) d
2+n 1

n!
=: Rn,

where for the inequalities above we used

Γ(µ + 2α + 1)
Γ(µ + 2α + 1 + d + 2n)

≤ Γ(3α)

Γ(3α + d + 2n)
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and for α ≥ 1
Γ
(

d
2 + α + n + 1

2

)
Γ
(
α + 1

2

) ≤
Γ
(

d
2 +

3α
2 + n

)
Γ
( 3α

2

) ,

both of which follow from Lemma 5.5.

The ratio test shows that ∑n Rn

(
− z2

4

)n
is absolutely convergent. Therefore we can

take the limit as α→ ∞ inside the infinite sum, giving

lim
α→∞
Fdψµ,α(z) = 2−

d
2

∞

∑
n=0

lim
α→∞

wn(α)

(
− z2

4

)n

.

Using the following asymptotic result from [11]

Γ(x + a)
Γ(x + b)

∼ xa−b, (5.14)

we can see that

lim
α→∞

wn(α) =
1

n!ϑ
d
2+n

and hence

lim
α→∞
Fdψµ,α(z) = (2ϑ)−

d
2

∞

∑
n=0

(
− z2

4ϑ

)n

n!

= (2ϑ)−
d
2 e−

z2
4ϑ

= Ĝϑ(z),

which proves pointwise convergence. Uniform convergence follows since the interval is

bounded.

We are now ready to state the main result of this subsection.

Theorem 5.7. Let ϑ be a positive real constant, α > min( d
2 , 1, β) and ψµ,α be the normalised

equal area generalised Wendland functions ψµ,α defined by (5.4) and (5.5) with µ given by (4.8).

Then

lim
α→∞

ψµ,α(y) = Gϑ(y) (5.15)

with the convergence being uniform for y ∈ [0, ∞).

Proof. It follows from (4.5) that for a fixed y

|ψµ,α(y)− Gϑ(y)| = y1− d
2

∣∣∣∣∣
∫ ∞

0

(
Fdψµ,α(z)− Ĝϑ(z)

)
z

d
2 J d

2−1(yz)dz

∣∣∣∣∣
≤ 21− d

2

Γ( d
2 )

∫ ∞

0
|Fdψµ,α(z)− Ĝϑ(z)|zd−1 dz, (5.16)
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where we have used the following bound on the Bessel function [11, 10.14.4]

|Jv(x)| ≤
| x2 |v

Γ(v + 1)
, v ≥ −1

2
, x ∈ R.

Since the right hand side of (5.16) is independent of y, the result follows if we can show

that

Dϑ,α :=
∫ ∞

0
|Fdψµ,α(z)− Ĝϑ(z)|zd−1 dz→ 0 as α→ ∞.

Now for arbitrary Z > 0 we have, because Fdψµ,α and Ĝϑ are non-negative,

Dϑ,α ≤
∫ Z

0
|Fdψµ,α(z)− Ĝϑ(z)|zd−1 dz +

∫ ∞

Z
Fdψµ,α(z) zd−1 dz +

∫ ∞

Z
Ĝϑ(z) zd−1 dz

=
∫ Z

0
|Fdψµ,α(z)− Ĝϑ(z)|zd−1 dz +

∫ Z

0

(
Ĝϑ(z)−Fdψµ,α(z)

)
zd−1 dz

+2
∫ ∞

Z
Ĝϑ(z) zd−1 dz

≤ 2
∫ Z

0
|Fdψµ,α(z)− Ĝϑ(z)|zd−1 dz + 2

∫ ∞

Z
Ĝϑ(z) zd−1 dz, (5.17)

where we used the positivity of Fdψ`,k and Ĝα, and∫ ∞

0
Fdψ`,k(z) zd−1 dz =

∫ ∞

0
Ĝα(z) zd−1 dz = 2

d
2−1Γ

(
d
2

)
,

which follow from (4.3) with Fd replaced by F−1
d .

Given an arbitrary ε > 0, we now choose Z sufficiently large to ensure that∫ ∞

Z
Ĝϑ(z) zd−1 dz <

ε

4
.

For the first term in (5.17), we note that from Theorem 5.6, the integrand converges to

zero uniformly for z in a bounded interval, thus there exists α1 ∈ R+ such that∫ Z

0
|Fdψµ,α(z)− Ĝϑ(z)|zd−1 dz <

ε

4
∀ α ≥ α1,

and hence

Dϑ,α <
ε

2
+

ε

2
= ε

for all α ≥ α1, which completes the proof.

An interpretation of Theorem 5.7 in terms of probability distributions is that

lim
α→∞

1√
2 π σ

φ̃µ,α

(
y

δµ,α
( 1

2σ2

)) =
1√

2 π σ
exp

(
− y2

2σ2

)
, y ≥ 0 (5.18)

where the limit on the right hand side is the right half of the Gaussian probability

density with mean 0 and variance σ2.
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We note that since

δ`,k(ϑ) ∼
3
2

√
α

ϑ
, (5.19)

from (5.14), we could have used the right hand side of this expression instead of δ`,k(ϑ)

to define a change of variable to study the limiting case.

Since the original and missing Wendland functions are simply special cases of the

generalised Wendland functions, and there were no restrictions on α in Theorem 5.7,

this result will also hold for the original and missing Wendland functions.

We note that the similarity of the normalised (original) Wendland functions to a

Gaussian has been mentioned in [30] and of the normalised equal area (original) Wend-

land functions to a Gaussian in [15], in both cases for R3 with k = 1. No theoretical

explanations were given for these observations.

5.2.2 Numerical results

In this section we present numerical results regarding the differences between the ap-

propriately scaled original and missing Wendland functions and the Gaussian limit es-

tablished in Theorem 5.7. We also consider an interpolation example using both the

original Wendland functions φ`,k, normalised to have value 1 at the origin, and the nor-

malised equal area original Wendland functions ψ`,k.

Difference with the limiting Gaussian

Let the differences between the normalised equal area Wendland functions and the lim-

iting Gaussian be

E`,k(y) := ψ`,k(y)− exp(−ϑy2)

and let

ε`,k := sup
y≥0
|E`,k(y)| ,

Note that the change of variable used to define ψ`,k depends on the parameter ϑ.

Figure 5.3 shows plots of E`,k(y) with ϑ = 1. The upper plots are for d = 2 and k = 1.5

and k = 5.5 and the lower plots are for d = 3 and k = 2 and k = 6.

In the absence of theoretical rates of convergence, we show numerical results. Figure

5.4 shows ε`,k with ϑ = 1 for k = 1, . . . , 50 and d = 3, 5, 7 and 9 for the original Wendland

functions. Figure 5.5 shows ε`,k with ϑ = 1 for k = 0.5, . . . , 49.5 and d = 2, 4, 6 and 8 for

the missing Wendland functions. Since ϑ is just a scaling factor, the results do not vary
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(a) d = 2, k = 1.5 (b) d = 2, k = 5.5

(c) d = 3, k = 2 (d) d = 3, k = 6

Figure 5.3. E`,k(y) with α = 1 and 0 ≤ y ≤ δ`,k(1). Subplots (a) and (b) are for the missing

Wendland functions and subplots (c) and (d) are for the original Wendland functions.

in an essential way for different values of ϑ.

In all cases, we see convergence of ε`,k to zero as the smoothness parameter k in-

creases. This is consistent with the theoretical convergence results. Note that ε`,k is not

monotonically decreasing in k. We also remark that ε`,k is reached at different values of

y as k increases.
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(a) d = 3 (b) d = 5

(c) d = 7 (d) d = 9

Figure 5.4. ε`,k on a logarithmic scale with ϑ = 1, k = 1, . . . , 50 and d = 3, 5, 7, 9 for the

original Wendland functions.

An interpolation example

We consider an example, in which we show results obtained with both the Wendland

functions φ`,k, normalised to have value 1 at the origin, and the normalised equal

area Wendland functions ψ`,k for different values of k. The aim of the example is to

approximate the 2-dimensional Franke-like function (the Franke function [16] rescaled

to [0, 5]2). For k = 1, . . . , 5 we consider interpolation, using the Wendland functions

φ`,k, normalised to have value 1 at the origin, and the normalised equal area Wendland

functions ψ`,k with ϑ = 2. We use 9 × 9 and 17 × 17 equally spaced grids as the

centres. The number of centres is thus n = 81 and n = 289. The L2 error was estimated
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(a) d = 2 (b) d = 4

(c) d = 6 (d) d = 8

Figure 5.5. ε`,k on a logarithmic scale with ϑ = 1, k = 0.5, . . . , 49.5 and d = 2, 4, 6, 8 for the

missing Wendland functions.

using Gaussian quadrature with a 120 × 120 tensor product grid of Gauss-Legendre

points and the L∞ error was estimated by using a 360 × 360 equally spaced grid.

Table 5.1 shows the L2 and L∞ errors, as well as the 2-norm condition numbers of

the interpolation matrices. We also show the results with the limiting Gaussian of

exp(−2 y2), denoted by k = ∞.

We see from the right-hand part of Table 5.1 that once the argument is properly

scaled to give approximately constant effective support, increasing the smoothness has

remarkably little effect on the error. On the other hand the condition number increases

rapidly as the smoothness increases and is very large for the Gaussian limit. Taken
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together, these observations suggest that any benefit gained from the higher smoothness

is likely to be offset by the increased condition numbers of the matrices.

The results with the Wendland functions φ`,k, normalised to have value 1 at the

origin, are in the left-hand part of Table 5.1. We can see that the condition number

is decreasing as k increases, which is due to the decreasing magnitude of the non-zero

elements away from the diagonal. This is due to the fact that as k increases the Wendland

functions φ`,k, normalised to have value 1 at the origin, decay more rapidly with respect

to r, as illustrated in Figure 5.1.

RBF: φ`,k RBF: ψ`,k

N k L2 error L∞ error κ L2 error L∞ error κ λmin λmax

81 1 2.25e-1 6.96e-1 1.71 1.89e-1 5.89e-1 1.76e1 1.55e-1 2.74

2 2.61e-1 7.95e-1 1.22 1.86e-1 5.78e-1 3.14e1 9.62e-2 3.02

3 3.00e-1 8.90e-1 1.07 1.87e-1 5.79e-1 4.96e1 6.50e-2 3.22

4 3.36e-1 9.73e-1 1.02 1.87e-1 5.80e-1 5.56e1 5.98e-2 3.30

5 3.63e-1 1.03 1.01 1.87e-1 5.81e-1 6.37e1 5.29e-2 3.37

∞ 1.89e-1 5.89e-1 9.40e1 4.03e-2 3.78

289 1 7.75e-2 2.26e-1 4.87e1 8.20e-2 2.45e-1 4.77e2 2.25e-2 10.74

2 7.48e-2 2.00e-1 5.64e1 7.98e-2 2.11e-1 3.89e3 3.08e-3 11.97

3 7.47e-2 1.98e-1 3.00e1 7.88e-2 2.00e-1 1.23e4 1.04e-3 12.78

4 7.59e-2 2.12e-1 1.24e1 7.71e-2 2.04e-1 9.88e4 1.33e-4 13.09

5 7.75e-2 2.33e-1 6.85 7.61e-2 2.09e-1 3.77e5 3.55e-5 13.39

∞ 7.23e-2 1.90e-1 2.13e9 7.04e-9 15.00

Table 5.1. Results from the example in Section 5.2.2 showing L2 and L∞ errors, 2-norm con-

dition numbers κ and minimum and maximum eigenvalues (λmin and λmax) when using the

Wendland RBFs φ`,k, normalised to have value 1 at the origin, and the normalised equal area

Wendland RBFs ψ`,k with ϑ = 2.

5.3 On the selection of the parameter µ

We recall from (4.8) that µ = d+1
2 + α + β, where β is a non-negative constant. We are

now better able to understand the effect of choosing different values of β. For a given

spatial dimension d, higher values of β are equivalent to higher values of the smoothness

parameter α, and hence we will see faster decay of the generalised Wendland functions

as we select higher values of β. Consequently there appears little benefit to selecting
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β > 0, as this will lead to reduced overlap between the basis functions as well as higher

degree polynomials which will increase computational complexity.

5.4 Implications for selecting scaling parameters

In Figure 5.1 we saw that the (original) normalised Wendland functions exhibit faster

decay with respect to r as the smoothness parameter k increases. This suggests the

need for a change of variable, not only to have a well-defined limit as considered in

this paper, but perhaps also in practical applications. Without a change of variable,

in the case of interpolation we could have a nearly diagonal interpolation matrix and

consequently high errors between the interpolation points.

The number of interpolation points that fall within the support of an RBF is also

related to the stationary approach to interpolation (e.g. [12, Section 12.2]), in which the

goal is to keep the number of points in the support of each RBF approximately equal

across different sets of centres. However here it is not the centres that are changing, but

rather the basis functions that change with k.

In Figure 5.2 we saw the (original) normalised equal area Wendland functions,

whilst formally having support [0, δ`,k(α)] that is different for each k, appear nearly

identical. As a result, if the user wishes to compare the results using Wendland

functions of different smoothness, the normalised equal area Wendland functions may

be a more appropriate choice of RBF.

We saw in Section 5.2.2 that whilst the normalised equal area Wendland functions

with different k might appear comparable, and give similar accuracy, the increasing

support as k increases causes decreased sparsity of the interpolation matrix, and conse-

quently an increased condition number of the linear system. This leads us to conclude

that there may be little benefit from considering high values of the smoothness parame-

ter k.



Chapter Six

Solving PDEs with Wendland functions

This chapter will review theoretical results concerning the construction of approximate

solutions to elliptic PDEs and the Stokes problem with Wendland functions.

Section 6.1 covers approximation theory for Galerkin approximation, and Section 6.2

does the same in the case of collocation. This chapter should be viewed as operating in

a single scale (single level) framework.

6.1 Galerkin approximation for elliptic PDEs

6.1.1 PDEs with Neumann and/or Robin boundary conditions

In this section, we consider a second order PDE which has homogeneous Neumann

and/or Robin boundary conditions. For example, such a PDE with Neumann boundary

conditions is given by

Lu = f in Ω, (6.1a)

∂u
∂n

= 0 on ∂Ω, (6.1b)

where L is a second order elliptic differential operator, n denotes the outward unit

normal vector and ∂Ω denotes the boundary of the domain Ω ⊆ Rd. We now assume

that 〈Lu, u〉 is equivalent to ‖u‖2
H1(Rd)

, as in the case where L = −∆ + I. The weak

formulation is given by

a(u, v) = 〈 f , v〉L2(Ω) ∀ v ∈ V, (6.2)

where V = H1(Ω). We assume that L and f are such that a(u, v) is a strictly coercive

and continuous bilinear form defined on V × V and 〈 f , v〉L2(Ω) is a continuous linear

form defined on V. By the Lax-Milgram theorem, (6.2) has a unique solution u ∈ V. We

will also require u ∈ H2(Ω) with spatial dimension d ≤ 3.

Galerkin approximation seeks to find an approximation to (6.2) in a finite dimen-

sional subspace VN ⊆ V. In other words, the Galerkin approximation ũN is the solution

of

ũN ∈ VN : a(ũN , v) = 〈 f , v〉L2(Ω) ∀ v ∈ VN . (6.3)
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We will consider Ω to be a bounded domain with a Lipschitz boundary, which means

that we can apply the extension operator to use norms in Rd as stated in Lemma 2.1.

For further information on weak formulation of PDEs and Galerkin approximation, we

refer the reader to [7].

Since the PDE does not have Dirichlet boundary conditions, we can use the entire

Sobolev space H1(Ω) rather than the subspace H̊1(Ω) consisting of functions with zero

boundary values, which can occur with pure Dirichlet boundary conditions.

We will consider finite dimensional subspaces VN ⊆ V of the form

VN := span
{

Φ
(
· − xj

)
: 1 ≤ j ≤ N

}
,

where Φ : Rd → R is at least a C1-function and there are N centres {xj : 1 ≤ j ≤ N}. In

this case our approximation takes the form

ũN =
N

∑
j=1

cjΦ(· − xj),

and the weak formulation with this approximation given by

a(ũN , v) = 〈 f , v〉L2(Ω) ∀ v ∈ VN ,

results in a linear system

Ac = f,

where the entries of the stiffness matrix are given by

Aij = a(Φ(· − xi), Φ(· − xj)) (6.4)

and

fi =
∫
Ω

f (x)Φ(x− xi)dx.

We have the following result from [49].

Theorem 6.1. If u ∈ H2(Ω), d ≤ 3, is the solution to the variational problem (6.2) and

ũN ∈ VN is the solution of (6.3), where VN is generated with a point set X satisfying h ≤ h0 for

h0 small enough and a kernel Φ satisfying (3.20), then the error can be bounded by

‖u− ũN‖H1(Ω) ≤ Ch‖u‖H2(Ω).

Lemma 6.2. Consider the adjoint variational problem

a(v, w) = 〈g, v〉L2(Ω) ∀ v ∈ V. (6.5)
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If the adjoint problem satisfies the regularity estimate

‖w‖H2(Ω) ≤ C‖g‖L2(Ω), (6.6)

then we have the following error bound

‖u− ũN‖L2(Ω) ≤ Ch‖u− ũN‖H1(Ω) ≤ Ch2‖u‖H2(Ω).

Proof. With ũN as defined in (6.3), let w be the solution to the adjoint problem

a(v, w) = 〈u− ũN , v〉L2(Ω) ∀ v ∈ V,

and let the Galerkin approximation be given by w̃. Then since the bilinear form a(·, ·) is

bounded, u ∈ H2(Ω), and with Theorem 6.1 we have, for w̃ ∈ VN ,

‖u− ũN‖2
L2(Ω) = 〈u− ũN , u− ũN〉L2(Ω)

= a(u− ũN , w) = a(u− ũN , w− w̃)

≤ C‖u− ũN‖H1(Ω) ‖w− w̃‖H1(Ω)

≤ Ch‖u− ũN‖H1(Ω) ‖w‖H2(Ω)

≤ Ch‖u− ũN‖H1(Ω) ‖u− ũN‖L2(Ω),

where for the second last step, we use the regularity estimate (6.6) and the result follows

with another application of Theorem 6.1.

We note that (6.6) is known to hold [7, p.139]

• if Ω has a smooth boundary and the problem has pure Dirichlet or pure Neumann

boundary conditions;

• if d = 2 and Ω is convex and the problem has pure Dirichlet or pure Neumann

boundary conditions.

6.1.2 PDEs with Dirichlet boundary conditions

In this section we will consider a PDE with Dirichlet boundary conditions and we seek

error estimates similar to those in the previous section. For ease of description, we will

consider the following boundary value problem

−∆u = f in Ω, (6.7a)

u = g on ∂Ω, (6.7b)
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where ∆ denotes the Laplacian in Rd. Nitsche [34] proposed minimising the functional

J(v− u) where

J(w) :=
∫
Ω

|∇w|2 − 2
∫

∂Ω

w (∇w · n) + βN

∫
∂Ω

w2,

for all v ∈ VN with u being the solution of (6.7) and where n denotes the outward unit

normal vector and ∇ the gradient operator. The parameter βN > 0 depends only on the

subspace VN . The approximation ũN is given by

J(ũN − u) := inf
v∈VN

J(v− u).

With f and g from (6.7), we can compute ũN since

J(v− u) = J(v) + J(u)− 2

∫
Ω

f v +
∫

∂Ω

g (βNv−∇v · n)

 .

Then the variational form to approximate (6.7) becomes: find ũN ∈ VN such that for all

v ∈ VN

aD(ũN , v) = `D(v), (6.8)

where we use the subscript D to denote the Dirichlet boundary conditions and

aD(u, v) :=
∫
Ω

∇u · ∇v−
∫

∂Ω

v (∇u · n)−
∫

∂Ω

u (∇v · n) + βN

∫
∂Ω

uv (6.9a)

`D(v) :=
∫
Ω

f v−
∫

∂Ω

g (∇v · n) + βN

∫
∂Ω

vg. (6.9b)

It can be shown that the variational form using Nitsche’s method leads to variational

consistency, in the sense that if u is sufficiently regular, then [5, p. 119]

aD(u, v) = `D(v), ∀ v ∈ VN .

If there exists a positive constant CN such that

‖∇v · n‖L2(∂Ω) ≤
CN√

δ
‖∇v‖L2(Ω), ∀ v ∈ VN , (6.10)

with δ being the support of the radial basis functions, then selecting

βN =
c12

δ
, (6.11)

with c12 > 2C2
N will ensure that the bilinear form aD(·, ·) is symmetric positive definite.

This choice of c12 will also ensure that aD is coercive on VN since

aD(v, v) = ‖∇v‖2
L2(Ω) − 2

∫
∂Ω

v (∇v · n) + βN‖v‖2
L2(∂Ω)
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≥ ‖∇v‖2
L2(Ω) −

2CN

δ1/2 ‖v‖L2(∂Ω)‖∇v‖L2(Ω) + βN‖v‖2
L2(∂Ω)

≥ 1
2
‖∇v‖2

L2(Ω) +

(
βN −

2C2
N

δ

)
‖v‖2

L2(∂Ω)

≥ C‖v‖2
H1(Ω), ∀ v ∈ VN ,

where we have used the Cauchy-Schwarz and Friedrichs inequalities, (6.10) and

2xy ≤ x2 + y2. We recall that the Friedrichs inequality [27] states that

∫
Ω

|u|2 ≤ C

∫
Ω

|∇u|2 +
∫

∂Ω

|u|2
 ,

for Ω being a bounded domain for which the Gauss-Green formula holds.

Continuity follows since

|aD(u, v)| ≤ |u|H1(Ω)|v|H1(Ω) + CN/δ
(
‖v‖L2(∂Ω)‖∇u‖L2(Ω)+

‖u‖L2(∂Ω)‖∇v‖L2(Ω)

)
+ βN‖u‖L2(∂Ω)‖v‖L2(∂Ω)

≤ |u|H1(Ω)|v|H1(Ω) + C
(
‖v‖L2(Ω)‖∇u‖L2(Ω)+

‖u‖L2(Ω)‖∇v‖L2(Ω)

)
+ βN‖u‖L2(Ω)‖v‖L2(Ω)

≤ C‖u‖H1(Ω)‖v‖H1(Ω), ∀ u, v ∈ VN ,

where we have used the Cauchy-Schwarz inequality, (6.10) and the Sobolev trace em-

bedding theorem.

Nitsche also proved that the optimal error estimates of Theorem 6.1 and Lemma 6.2

hold in this setting if, in addition to the requirement of selecting βN satisfying (6.11),

there exists a su ∈ VN such that for u ∈ H2(Ω), the following error bounds hold for

k ∈ {0, 1}

‖u− su‖Hk(Ω) ≤ Ch2−k‖u‖H2(Ω), (6.12a)

‖u− su‖Hk(∂Ω) ≤ Ch3/2−k‖u‖H2(Ω). (6.12b)

For the Wendland functions, this requirement is known to hold [49].

Note that the most challenging aspects of Nitsche’s method are the derivation of the

weak form and the selection of the stabilisation parameter βN . Both the weak form and

the choice of the parameter βN depend on the PDE as well as the Dirichlet boundary

conditions.

6.2 Collocation

In this section, we consider symmetric collocation with Wendland functions for solv-

ing elliptic PDEs and symmetric collocation with Wendland functions for solving the



66 Solving PDEs with Wendland functions

classical stationary Stokes problem.

6.2.1 Symmetric collocation for elliptic PDEs

In this section we consider the following Dirichlet PDE

Lu(x) = f (x), x in Ω, (6.13)

with

u(x) = g(x), x on ∂Ω, (6.14)

where Ω ⊆ Rd is a bounded C1,1 domain (as defined in [19, p.94]) with a Ck,s-boundary

∂Ω, with k ∈ N0 and s ∈ [0, 1). L is an elliptic second order differential operator of the

form

Lu = aij(x)Diju + bi(x)Diu + c(x)u,

with coefficients aij ∈ C0(Ω̄), bi, c ∈ L∞, where i, j = 1, . . . , d, defined on Ω ⊆ Rd.

Suppose that Φ is a kernel that satisfies condition (3.20) for some ρ = τ > 2 + d/2.

This assumption ensures that we may apply L to Φ twice and still have a contin-

uous function. We choose interior and boundary point sets as X = X1 ∪ X2 where

X1 = {x1, . . . , xn} ⊆ Ω and X2 = {xn+1, . . . , xN} ⊆ ∂Ω. We construct our approximation

ũ as

ũ =
n

∑
j=1

αjL2Φ(· − xj) +
N

∑
j=n+1

αjΦ(· − xj), (6.15)

where the 2 subscript on L indicates that this operator acts with respect to its second

argument.

Without loss of generality, we will only consider the case where the RBF centres

coincide with the collocation points. Then solving (6.13) and (6.14) by collocation on the

set X means to select ũ such that the collocation equations

Lu(xj) = Lũ(xj) = f (xj), xj ∈ X1, (6.16)

u(xj) = ũ(xj) = g(xj), xj ∈ X2, (6.17)

are satisfied.

The resulting linear system is of the form

Ac = f,

where A is the collocation matrix

A =

ALL2 ALB2

ABL2 ABB2

 , (6.18)
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with entries given by

(ALL2)ij = LL2Φ(x, ξ)|x=xi ,ξ=ξ j , xi, ξ j ∈ X1

(ALB2)ij = LΦ(x, ξ)|x=xi ,ξ=ξ j , xi ∈ X1, ξ j ∈ X2

(ABL2)ij = L2Φ(x, ξ)|x=xi ,ξ=ξ j , xi ∈ X2, ξ j ∈ X1

(ABB2)ij = Φ(x, ξ)|x=xi ,ξ=ξ j , xi, ξ j ∈ X2.

The vector f consists of the entries f (xi), xi ∈ X1, followed by g(xi), xi ∈ X2. We note

that u, ũ ∈ Hτ(Ω). Under the assumption that the functionals {λ1, . . . , λN} given by

λj(u) := δxj ◦ L(u) = (Lu)(xj), j = 1, . . . , n

λj(u) := δxj ◦ (u) = u(xj), j = n + 1, . . . , N

are linearly independent, the symmetric collocation matrix is nonsingular and there

exists an unique approximation satisfying the collocation conditions (6.16) and (6.17)

[51, Section 16.3].

The error between the solution and the approximate solution depends on the mesh

norms of the interior and boundary centres, as given in the following lemma.

Lemma 6.3. Assume that the exact solution of (6.13) belongs to Hτ(Ω) with τ > 2 + d/2.

Let h1 be the mesh norm of the interior collocation points X1 and h2 be the mesh norm of the

boundary collocation points, let Φ be a positive definite kernel satisfying (3.20) and let ũ be

the approximate solution obtained by symmetric collocation. Then we have the following error

bounds:

‖u− ũ‖L2(Ω) ≤ chτ−2
1 ‖u− ũ‖Hτ(Ω) ≤ chτ−2

1 ‖u‖Hτ(Ω),

and

‖u− ũ‖L2(∂Ω) ≤ Chτ−1/2
2 ‖u− ũ‖Hτ(Ω).

Proof. From [19, Theorem 9.17], there exists a constant C (independent of u), such that

‖u‖H2(Ω) ≤ C‖Lu‖L2(Ω).

Since ‖u‖L2(Ω) ≤ ‖u‖H2(Ω) and with [18], we have

‖Lu−Lũ‖L2(Ω) ≤ Chτ−2
1 ‖u‖Hτ(Ω),

which proves the first result. The second result is from [18, Theorem 3.10].
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6.2.2 Symmetric collocation for the Stokes problem

In this subsection we investigate symmetric collocation approximation with Wendland

compactly supported radial basis functions (RBFs) to solve the Stokes problem

−ν∆u +∇p = f in Ω, (6.19)

∇ · u = 0 in Ω, (6.20)

u = g on ∂Ω, (6.21)

where the region Ω ⊆ Rd, the viscosity ν, f : Ω→ Rd and g : Ω→ Rd are given and we

seek an approximate solution to the velocity u : Ω→ Rd and the pressure p : Ω→ R.

Function spaces

First we define divergence-free approximation spaces in Ω and in Rd. With the diver-

gence of u : Ω→ Rd defined as

∇ · u :=
d

∑
j=1

∂juj ,

we define

Hτ(Ω; div) := {u ∈ Hτ(Ω) : ∇ · u = 0} ,

and

H̃τ(Rd; div) :=

{
f ∈ Hτ(Rd; div) :

∫
Rd

‖f̂(ω)‖2
2

‖ω‖2
2

(
1 + ‖ω‖2

2
)τ+1

dω < ∞

}
,

with norm

‖f‖2
H̃τ(Rd;div) := (2π)−d/2

∫
Rd

‖f̂(ω)‖2
2

‖ω‖2
2

(
1 + ‖ω‖2

2
)τ+1

dω.

We note that H̃τ(Rd; div) is a subspace of Hτ(Rd; div). We will also need that for Ω ⊆ Rd

being a simply connected domain with Cdτe,1 boundary for d = 2, 3 and with τ ≥ 0, there

exists a continuous operator

Ẽdiv : Hτ(Ω; div)→ H̃τ(Rd; div),

such that Ẽdivu|Ω = u for all u ∈ Hτ(Ω; div) [52, Proposition 3.8]. This operator is

defined as

Ẽdivu := ∇× EST u, (6.22)

where ES is the classical Stein extension operator defined in Lemma 2.1 and T is a

bounded operator T : Hτ(Ω; div) → Hτ+1(Ω) with τ = k + θ for k ∈ N0 and θ ∈ [0, 1]

[52, p. 3167].
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To measure the pressure, which is determined only up to a constant, we will use the

norm

‖p‖Hτ(Ω)/R := inf
c∈R
‖p + c‖Hτ(Ω).

Symmetric collocation approximation

We consider a single-scale approximant to the combined velocity and pressure vector

v := (u, p) : Rd → Rd+1, following [31, 17, 52]. Then (6.19)-(6.21) become(
LSv

)
i

:= −ν
d

∑
j=1

∂jjvi + ∂ivd+1 = fi in Ω, (6.23)

d

∑
j=1

∂jvj = 0 in Ω, (6.24)

vi = gi on ∂Ω, (6.25)

where 1 ≤ i ≤ d. We seek a meshfree, kernel-based collocation method with an an-

alytically divergence-free approximation space. We use the notation φτ+1 and φτ−1 to

denote the functions to be used in our matrix-valued kernel. We will mainly be inter-

ested in the case where both φτ+1 and φτ−1 are original Wendland functions which, for

a given spatial dimension d, have native space norms equivalent to the Sobolev spaces

Hτ+1(Rd) and Hτ−1(Rd), respectively. Their Fourier transforms satisfy

c1,τ+1(1 + ‖ω‖2
2)
−τ−1 ≤ φ̂τ+1(‖ω‖2) ≤ c2,τ+1(1 + ‖ω‖2

2)
−τ−1, (6.26)

and

c1,τ−1(1 + ‖ω‖2
2)
−τ+1 ≤ φ̂τ−1(‖ω‖2) ≤ c2,τ−1(1 + ‖ω‖2

2)
−τ+1, (6.27)

and we define C̄1 := min(c1,τ+1, c1,τ−1) and C̄2 := max(c2,τ+1, c2,τ−1). Then we define

the matrix-valued kernel

Ψ :=

Φτ+1 0

0 φτ−1

 : Rd → R(d+1)×(d+1), (6.28)

where Φτ+1 := (−∆I +∇∇T)φτ+1, with I denoting the identity matrix. We note that

Φτ+1 is also positive definite (cf. [31]) and hence due to the tensor product construction

of Ψ, it is positive definite as well. This choice for Φτ+1 is known to lead to divergence-

free interpolants [31]. We also note that

Φ̂τ+1(ω) =
(
‖ω‖2

2I−ωωT
)

φ̂τ+1(ω). (6.29)

We will consider the case where the collocation points are the same as the RBF cen-

tres. We denote the interior centres by X1 := {x1, . . . , xN} and the boundary centres
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by X2 := {xN+1, . . . , xM} and their union by X = X1 ∪ X2, with mesh norms h1 and

h2, respectively. Since (6.24) is automatically satisfied, this means that our approximant

and collocation conditions will consist of dN terms from (6.23) and d(M − N) terms

from (6.25). Then with LS
2 denoting the operator LS acting as a function of the second

argument, applied to rows of Ψ, our approximant takes the form

SXv(x) =
d

∑
i=1

N

∑
j=1

αi,j

(
LS

2 Ψ
(
x− xj

))
i
+

d

∑
i=1

M

∑
j=N+1

αi,jΨ
(
x− xj

)
i , (6.30)

where the notation Ψi means column i of the matrix Ψ. The coefficients αi,j, 1 ≤ i ≤ d,

1 ≤ j ≤ M are determined by the collocation conditions(
LSSXv(xj)

)
i

= fi(xj), 1 ≤ i ≤ d, j = 1, . . . , N, (6.31)(
SXv(xj)

)
i = gi(xj), 1 ≤ i ≤ d, j = N + 1, . . . , M. (6.32)

From [17, 52], we know that if φτ+1, φτ−1 are positive definite and if

Φτ+1 ∈W2
1 (R

d) ∩ C2(Rd), then the native space of the kernel Ψ given by (6.28) is

NΨ(R
d) = NΦτ+1(R

d)×Nφτ−1(R
d),

with norm

‖f‖2
NΨ

(Rd) = ‖fu‖2
NΦτ+1 (R

d) + ‖ fp‖2
Nφτ−1 (R

d)

= (2π)−d/2
∫

Rd

[
‖f̂u(ω)‖2

2

‖ω‖2
2φ̂τ+1(ω)

+
| f̂p(ω)|2

φ̂τ−1(ω)

]
dω, (6.33)

where f = (fu, fp)T with fu : Rd → Rd and fp : Rd → R. We recall that the generalised

interpolant satisfies [51, Chapter 16]

‖Ev− SXEv‖NΨ(Rd) ≤ ‖Ev‖NΨ(Rd).

With (6.26) and (6.27), upon defining the extension operator for the velocity-pressure

vector v as

Ev :=
(
Ẽdivu, ES p

)
, (6.34)

where ES is the classical Stein extension operator as defined in Lemma 2.1, then the

native space of our approximant given by (6.30) is

E : Hτ(Ω; div)× Hτ−1(Ω)→ NΨ(R
d) = H̃τ(Rd; div)× Hτ−1(Rd).

Once again we can define interpolants with scaled kernels. In this case, we define the

matrix-valued kernel

Ψδ :=

Φτ+1,δ 0

0 φτ−1,δ

 : Rd → R(d+1)×(d+1), (6.35)
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where Φτ+1,δ := (−∆I +∇∇T)φτ+1,δ and the scaled basis functions are defined as in

(2.1). Then the native space of the kernel Ψδ is given by

NΨδ
(Rd) = NΦτ+1,δ(R

d)×Nφτ−1,δ(R
d),

with norm

‖f‖2
NΨδ

(Rd) = ‖fu‖2
NΦτ+1,δ (R

d) + ‖ fp‖2
Nφτ−1,δ (R

d)

= (2π)−d/2
∫

Rd

[
‖f̂u(ω)‖2

2

‖ω‖2
2φ̂τ+1,δ(ω)

+
| f̂p(ω)|2

φ̂τ−1,δ(ω)

]
dω. (6.36)

We will need norm equivalence as stated in the following lemma.

Lemma 6.4. For every δ ∈ (0, δa] where φτ+1 and φτ−1 generate Hτ+1(Rd) and Hτ−1(Rd),

respectively, we have NΨδ
(Rd) = NΨ(Rd) and for every f ∈ NΨ(Rd) there exist positive

constants c15 and c16 such that

c1/2
15 ‖f‖NΨδ

(Rd) ≤ ‖f‖NΨ(Rd) ≤ c1/2
16 δ−τ−1‖f‖NΨδ

(Rd).

Proof. With f = (fu, fp)T, by using the same arguments as in Lemma 4.8, we have

c1,τ−1 min(1, δ−τ−1
a )‖ fp‖Nψτ−1,δ (R

d) ≤ ‖ fp‖Nψτ−1 (R
d) ≤ c2,τ−1δ−τ−1‖ fp‖Nψτ−1,δ (R

d).

Similarly, we can show

c1,τ+1 min(1, δ−τ−1
a )‖fu‖N

τ+1,δ (R
d) ≤ ‖fu‖N

τ+1 (R
d) ≤ c2,τ+1δ−τ−1‖fu‖N

τ+1,δ (R
d).

With (6.36) and setting c15 := min(c1,τ−1, c1,τ+1)min(1, δ−τ−1) and

c16 := max(c2,τ−1, c2,τ+1), we get the final result.

We require one further result from [43].

Theorem 6.5. Let m ∈N0 and let Ω ⊆ Rd be a Cm+1,1 smooth domain with outer normal vec-

tor n. For each f ∈ Hm(Ω) and g ∈ Hm+3/2(∂Ω) with
∫

∂Ω g · n dS = 0, the nonhomogeneous

Stokes problem (6.19)-(6.21) has a unique solution u ∈ Hm+2(Ω) and p ∈ Hm+1(Ω) and

‖u‖Hm+2(Ω) + ‖p‖Hm+1(Ω)/R ≤ C
(
‖f‖Hm(Ω) + ‖g‖Hm+3/2(∂Ω)

)
. (6.37)

Theorem 6.6. Let τ > 2 + d/2. Assume that Ω ⊆ Rd is a bounded, simply connected region

with a Cdτe,1 boundary. Let f ∈ Hτ−2(Ω) and g ∈ Hτ−1/2(∂Ω) satisfy
∫

∂Ω g · n dS = 0.

Suppose the kernel Ψ is chosen such that NΨ(Rd) = H̃τ(Rd; div) × Hτ−1(Rd). Then the

approximation SXv given by (6.30) to the Stokes problem (6.19)-(6.21) satisfies the error bound

‖v− SXv‖L2(Ω) ≤ C h̄τ−2‖Ev− SXEv‖NΨ(Rd), (6.38)

where h̄ := max(h1, h2) and the extension operator E is given by (6.34).



72 Solving PDEs with Wendland functions

Proof. With the definition of the Sobolev space norms in (2.4) and assuming that we

choose the representer for the pressure p such that ‖p‖H1(Ω)/R = ‖p‖H1(Ω), and with

the notation SXv = (SX,uu, SX,p p) gives

‖v− SXv‖L2(Ω) ≤ ‖u− SX,uu‖L2(Ω) + ‖p− SX,p p‖L2(Ω)

≤ ‖u− SX,uu‖H2(Ω) + ‖p− SX,p p‖H1(Ω)

= ‖u− SX,uu‖H2(Ω) + ‖p− SX,p p‖H1(Ω)/R

≤ C‖LSv−LSSXv‖L2(Ω) + ‖u− SX,uu‖H3/2(∂Ω), (6.39)

where the last line follows from (6.37) applied to v− SXv with m = 0. We now extend

the function v to Ev ∈ H̃τ(Rd) × Hτ−1(Rd) and note that the generalised interpolant

SXv coincides with SXEv. We now consider the two terms in the right hand side of

(6.39) separately. From (2.6) and [52], we have

‖LSv−LSSXv‖L2(Ω) ≤ Chτ−2
1 ‖Ev− SXEv‖NΨ(Rd).

From (2.7), we have

‖u− SX,uu‖H3/2(∂Ω) ≤ Chτ−2
2 ‖u− SX,uu‖Hτ(Ω). (6.40)

Now we can write

‖u− SX,uu‖Hτ(Ω) ≤ ‖u− SX,uu‖Hτ(Ω) + ‖p− SX,p p‖Hτ−1(Ω)

≤ ‖Ẽdivu− SX,uẼdivu‖H̃τ(Rd;div) + ‖E p− SX,pES p‖Hτ−1(Rd)

≤ C‖Ev− SXEv‖NΨ(Rd),

and the stated result follows.



Chapter Seven

Multiscale algorithms for Galerkin

approximation of elliptic PDEs

This chapter will cover theoretical results and numerical experiments regarding two

multiscale algorithms for Galerkin approximation of elliptic PDEs on bounded domains.

7.1 Framework

In this chapter, we will use (scaled) compactly supported radial basis functions to con-

struct multiscale approximate solutions to PDEs, that is, we form the solution over

multiple levels. We will work with a given domain Ω ⊆ Rd.

At each level i, we denote the mesh norm by hi. The selection of point sets with mesh

norms decreasing in a specific way will be one of the requirements for convergence of

our algorithms.

At each level, we will also require a scaled version of the kernel Φ : Rd → R. For

our unscaled kernel we will use a Wendland compactly supported radial basis function.

With a (level-specific) scaling parameter δ > 0, we can define the scaled kernels with

(2.1).

Appropriate selection of the scaling parameters will also prove to be one of the

important ingredients for convergence of our multiscale algorithms.

7.2 Multiscale Galerkin approximations

In this section, we consider a multiscale algorithm for constructing a Galerkin approxi-

mation where we use the residual from the previous level as the target for each subse-

quent level. We define the approximation at level i as ũi := ũNi with centres Ni and the

approximation space at level i as Vi := VNi . The algorithm is given in Algorithm 1. The

bilinear form a(·, ·) used in this algorithm is the unmodified bilinear form in the case of

a PDE with Neumann or Robin boundary conditions and the Nitsche’s method bilinear
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form aD(·, ·) in the case of a PDE with Dirichlet boundary conditions.

Algorithm 1 Multiscale Galerkin approximation

Input n: number of levels

{Xi}n
i=1: the set of nested centres for each level i, with mesh norms at each level

given by hi satisfying cµhi ≤ hi+1 ≤ µhi with fixed µ ∈ (0, 1), c ∈ (0, 1] and

h1 sufficiently small

{δi}n
i=1 : the scale parameters to use at each level, satisfying δi = νhi, ν a fixed

constant.

Set ũ0 = 0.

for i = 1 to n do

With the level-specific approximation subspace Vi := span {Φδi(· − x), x ∈ Xi}

solve the Galerkin approximation given by

Find si ∈ Vi : a(si, v) = 〈 f , v〉L2(Ω) − a(ũi−1, v) ∀ v ∈ Vi.

Update the solution according to

ũi = ũi−1 + si.

end for

Output Approximate solution at level n, ũn.

The error at level n, en := u− ũn.

The algorithm as stated uses the same bilinear form at each level and it is the approx-

imation space Vi which changes. However the Nitsche’s method bilinear form aD(·, ·)

will vary at each level since the value of C2
N is proportional to δ−1 and hence so is βN .

This means that we will need to select the value of βN corresponding to the last level

and to use this for all previous levels. This will also mean that we will need to know the

number of levels in advance.

Henceforth we will simply refer to the bilinear form as a(·, ·). This should cause

no confusion as we have the same error bounds in both cases, as well as coercivity and

continuity, and the multiscale algorithm follows the same steps in both cases. We require

one more lemma before we can analyse the convergence of the multiscale algorithm.

Lemma 7.1. Let Ω ⊆ Rd be a bounded domain with a Lipschitz boundary. Let Φ be at least a

C1 function and let Φj be defined by (2.1) with scale factor δj. Then for Algorithm 1 and for a
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given level i > 1, we have the following bound on the H1(Ω) error between subsequent levels.

‖ei‖H1(Ω) ≤ C‖ei−1‖H1(Ω),

where ei is defined in Algorithm 1.

Proof. We will firstly show that si is the Galerkin approximation of ei−1. We have

a(si, w) = 〈 f , w〉L2(Ω) − a(ũi−1, w), w ∈ Vi

= a(u, w)− a(ũi−1, w)

= a(u− ũi−1, w)

= a(ei−1, w),

where we have used the variational form of the PDE and the linearity in the first argu-

ment of the bilinear form a(·, ·). Hence on setting w = si we obtain

a(ei−1 − si, si) = 0.

Upon noting that ei = ei−1 − si, it follows easily that

a(ei, ei) = a(ei−1, ei−1)− a(si, si),

and since the bilinear form a is continuous and coercive

‖ei‖2
H1(Ω) + ‖si‖2

H1(Ω) ≤ C‖ei−1‖2
H1(Ω),

from which the result follows.

The following theorem and corollaries are our main results for the convergence of

the multiscale Galerkin approximation. For the error analysis, we will need the norm

‖u‖2
Ψj

:=
∫

Rd

|û(ω)|2
(

1 + δ2
j ‖ω‖2

2

)
dω. (7.1)

As in Lemma 4.8, this norm satisfies

c17‖u‖Ψj ≤ ‖u‖H1(Rd) ≤ c18δ−1
j ‖u‖Ψj . (7.2)

Theorem 7.2. Let Ω ⊆ Rd be a bounded domain with a Lipschitz boundary. Then for Algorithm

1 there exists a constant α1 > 0 such that

‖ESei‖Ψi+1 ≤ α1‖ESei−1‖Ψi for i = 1, 2, . . .

where ESei is the extension operator defined in Lemma 2.1 applied to ei. The constant α1 satisfies

α1 < 1 if in Algorithm 1 ν is sufficiently small and µ is sufficiently large.
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Proof. Using (7.1), we can write

‖ESei‖2
Ψi+1

=
∫

Rd

|ÊSei(ω)|2
(
1 + δ2

i+1‖ω‖2
2
)

dω =: (I1 + I2) ,

with

I1 :=
∫

‖ω‖2≤ 1
δi+1

|ÊSei(ω)|2
(
1 + δ2

i+1‖ω‖2
2
)

dω,

I2 :=
∫

‖ω‖2≥ 1
δi+1

|ÊSei(ω)|2
(
1 + δ2

i+1‖ω‖2
2
)

dω.

Now we consider the first integral where we can use that δi+1‖ω‖2 ≤ 1 and then Lem-

mas 6.2 and 4.8.

I1 ≤ 2
∫

‖ω‖2≤ 1
δi+1

|ÊSei(ω)|2 dω

≤ 2 ‖ESei‖2
L2(Rd) ≤ C ‖ei‖2

L2(Ω) ≤ Ch2
i ‖ei‖2

H1(Ω)

≤ C h2
i ‖ei−1‖2

H1(Ω) ≤ C
(

hi

δi

)2

‖ESei−1‖2
Ψi

= Cν−2 ‖ESei−1‖2
Ψi

,

where we have also used Lemma 7.1. For I2, since δi+1‖ω‖2 ≥ 1, we have

(
1 + δ2

i+1‖ω‖2
2
)
≤ 2δ2

i+1‖ω‖2
2 ≤ 2δ2

i+1
(
1 + ‖ω2

2
)

.

Then again using Lemma 7.1 shows that

I2 ≤ 2δ2
i+1‖ESei‖2

H1(Rd) ≤ Cδ2
i+1‖ei‖2

H1(Ω)

≤ Cδ2
i+1‖ei−1‖2

H1(Ω) ≤ C
(

δi+1

δi

)2

‖ESei−1‖2
Ψi

(7.3)

≤ Cµ2‖ESei−1‖2
Ψi

.

Combining our results for I1 and I2 and now writing C1 and C2 for the two constants

appearing in the bounds of the expressions for I1 and I2 respectively, we have

‖ESei‖2
Ψi+1
≤
(
ν−2C1 + µ2C2

)
‖ESei−1‖2

Ψi
,

and the result follows with

α1 :=
(
ν−2C1 + µ2C2

)1/2
. (7.4)
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Corollary 7.3. There exists a constant C3 > 0 such that

‖u− ũn‖L2(Ω) ≤ C3αn
1‖u‖H1(Ω) for n = 1, 2, . . . (7.5)

Thus ũn resulting from Algorithm 1 converges linearly to u in the L2-norm if α1 < 1.

Proof. Using Lemmas 6.2 and 4.8 again, we can see that

‖u− ũn‖L2(Ω) = ‖en‖L2(Ω) ≤ Chn‖en‖H1(Ω)

≤ Chn‖ESen‖H1(Rd) ≤ C hn δ−1
n+1‖ESen‖Ψn+1

≤ C‖ESen‖Ψn+1 ,

since
hn

δn+1
=

hn

νhn+1
≤ 1

cµν
.

Now we can apply Theorem 7.2 n times, and noting that ũ0 = 0, leads to

‖u− ũn‖L2(Ω) ≤ Cαn
1‖ESu‖Ψ1 ≤ Cαn

1‖ESu‖H1(Rd) ≤ Cαn
1‖u‖H1(Ω).

7.2.1 Condition numbers

In this subsection, we present upper and lower bounds for the eigenvalues of the mul-

tiscale Galerkin algorithm. Since the Galerkin approximation matrix is symmetric and

positive definite, we know that the condition number is given by

κ(A) =
λmax(A)

λmin(A)
, (7.6)

where λmax(A) and λmin(A) denote the maximum and minimum eigenvalues of A with

entries given by (6.4).

Theorem 7.4. Let Φ be a positive definite kernel generating Hτ(Rd) with τ > d/2. Let

Φi := Φ(· − xi) and assume that there exists a constant c19 > 0, depending only on Φ and Ω,

such that

γT (F− c19G) γ ≥ 0, ∀ α ∈ RN , (7.7)

which means that F− c19G is positive semi-definite and where

Fi,j =
〈
Φi, Φj

〉
H1(Ω)

,

Gi,j =
〈
Φi, Φj

〉
H1(Rd)

.
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Then the condition number of A can be bounded by

κ(A) ≤ C
(

1
qX

)4τ−2

,

where the constant C is independent of the point set X.

Proof. Since v = ∑N
i=1 γiΦi and with the coercivity of a(·, ·) and (7.7), we have

a(v, v) ≥ C‖v‖2
H1(Ω) = CγTFγT

≥ CγTGγ ≥ Cλmin(G)‖γ‖2
2,

where λmin(G) is the minimum eigenvalue of G. From [50], we know that
〈
Φi, Φj

〉
H1(Rd)

is a radial function given by

Υ
(
xi, xj

)
:= − (∆Φ) ? Φ(xi − xj) + Φ ? Φ(xi − xj),

where ∆ again denotes the Laplace operator and ? denotes convolution defined as

f ? g(x) :=
∫

f (y)g(x − y)dy. From [51, Theorem 12.3] we know that we can use Υ̂

to derive a lower bound on the minimum eigenvalue of G. Then we have

Υ̂(z) =
(
1 + ‖z‖2) Φ̂2(z).

From [51, Theorem 10.35], we know that Φ̂(z) ≥ C‖z‖−2τ and hence Υ̂(z) ≥ C‖z‖−4τ+2.

Then using [51, Theorem 12.3] we reach

λmin(G) ≥ Cq4τ−d−2
X .

With the continuity of a(·, ·), [48, Theorem 14.2] and the non-negativity of norms, we

also have the following bound on the maximum eigenvalue

a(v, v) ≤ C‖v‖2
H1(Ω) ≤ C‖v‖2

H1(Rd) = CγTGγ

≤ Cq−d
X ‖γ‖

2
2.

These two bounds, in conjunction with (7.6), complete the proof.

We will consider (7.7) further with the scaled RBFs Φi := Φδ(· − xi), where Φ is the

C6 Wendland function given by

Φ5,3(x) = (1− ‖x‖)8
+

(
32‖x‖3 + 25‖x‖2 + 8‖x‖+ 1

)
, (7.8)

which is positive definite on R2 [51]. Now since the support of the radial basis functions

is fixed, ‖Φi‖H1(Rd) is fixed and is independent of the point set X and Ω and we can

express this as

‖Φi‖2
H1(Rd) =

2π∫
0

δ∫
0

r

(
φ2

δ(r) + δ2
(

d
dr

φδ(r)
)2
)

dr dθ. (7.9)
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In the case of the unit square, which will be used for the numerical experiments in

Section 7.4, note that ‖Φi‖H1(Ω) is minimised when the RBF centre is located on a corner.

This can be easily verified since moving the centre in any direction (in Ω) will keep the

original area inside Ω and lead to additional area being inside Ω and the integrand is

non-negative. Then we can then bound ‖Φi‖2
H1(Ω)

by

‖Φi‖2
H1(Ω) ≥

π
2∫

0

δ∫
0

r

(
φ2

δ(r) + δ2
(

d
dr

φδ(r)
)2
)

dr dθ

=
1
4
‖Φi‖2

H1(Rd), (7.10)

where we have also used equations from [12, Appendix D].

This means that

ρi :=
‖Φi‖H1(Rd)

‖Φi‖H1(Ω)
≤ 2.

As a result, if δ ≤ qX, which means that there is no overlap between the various RBFs

and F and G are diagonal, or if F and G are diagonally dominant, then (7.7) will hold

since then we know that positive diagonal entries will ensure at least positive semi-

definiteness. Whilst we have been unable to prove that (7.7) holds in full generality for

the unit square, it is supported by extensive numerical testing. The numerical experi-

ments in Section 7.4 also provide empirical evidence since Corollary 7.6 holds, which

depends on Theorem 7.4.

We have the following theorem on the condition number of the multiscale algorithm.

Theorem 7.5. Let Φ be a positive definite kernel generating Hτ(Rd). Then the condition number

of the Galerkin approximation matrices from Algorithm 1 can be bounded by

κ(A) ≤ C
(

δ

qX

)4τ−2

, (7.11)

with a constant C > 0 independent of X and of the scaling parameter δ.

Proof. At each level, we now introduce the point set X/δ = {x1/δ, . . . , xM/δ}, which

obviously has separation distance

qX/δ =
qX

δ
,

and since a(·, ·) is bilinear, the Galerkin approximation matrix at each level is

AX,δ =
(
a(Φδ(·, xi), Φδ(·, xj))

)
=

(
δ−2da

(
Φ
(
· − xi

δ

)
, Φ
( · − xj

δ

)))
= δ−2dAX/δ,1.

Then the result follows with Theorem 7.4.
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Corollary 7.6. If the point sets are quasi-uniform, which means that hj/qj is bounded above by

a constant, then the condition numbers of the Galerkin approximation matrices from Algorithm

1 are bounded above by a constant.

Proof. Algorithm 1 takes δj = νhj with a constant ν > 1. With the assumption of quasi-

uniformity, hj ≤ cqj and the result follows with Theorem 7.5.

We note that since we only require the bilinear form a(·, ·) to be continuous and co-

ercive, these theorems on the condition number will apply for PDEs with Robin and/or

Neumann boundary conditions as well as PDEs with Dirichlet boundary conditions.

7.3 Nested multiscale Galerkin approximations

In this section we will consider another multiscale Galerkin algorithm that was proposed

in [50]. This essentially extends Algorithm 1 and hence we can consider a PDE either

with or without Dirichlet boundary conditions. We refer to this as a nested multiscale

algorithm because it contains inner and outer iterations. We will also see that this has

a connection to multigrid methods from the finite elements literature. The details are

given in Algorithm 2.

From [50] we have the following theorem regarding convergence.

Theorem 7.7. Let u∗ denote the best approximation to u from V1 + . . . + Vn with respect to the

norm ‖ · ‖H1(Ω). Then there exists c ∈ (0, 1) such that

‖u∗ − ũ‖H1(Ω) ≤ cK‖u‖H1(Ω),

where ũK is the approximation from Algorithm 2.

Note however that this does not mean that we have linear convergence of the approx-

imation from Algorithm 2 to the true solution u. The convergence of the approximation

from Algorithm 2 to the true solution u is given in the following theorem.

Theorem 7.8. Let Ω ⊆ Rd be a bounded domain with Lipschitz boundary. Let Φ be a kernel

generating H1(Rd) and Φj be defined by (2.1) with scale factor δj. Then for Algorithm 2 there

exist constants α2 > 0 and C4 > 0 such that

‖u− ũn(K+1)‖L2(Ω) ≤ C4α
n+K(n−1)
1 αK

2 ‖u‖H1(Ω), K = 1, 2, . . .

with α1 given by (7.4). The constants α1 and α2 satisfy α1 < 1 and α2 < 1 if in Algorithm 2 ν

is sufficiently small and µ is sufficiently large.
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Algorithm 2 Nested multiscale Galerkin approximation

Input K: number of outer levels

n: number of inner levels

{Xi}n
i=1: the set of centres for each inner level i, with mesh norms at each inner

level given by hi satisfying cµhi ≤ hi+1 ≤ µhi with fixed µ ∈ (0, 1), c ∈ (0, 1]

and h1 sufficiently small

{δi}n
i=1 : the scale parameters to use at each inner level, satisfying δi = νhi,

ν a fixed constant.

Set ũ0 = 0.

for k = 0 to K do

for i = 1 to n do

With the level-specific approximation subspace Vi := span {Φi(· − x), x ∈ Xi},

solve for the Galerkin approximation given by

skn+i ∈ Vi : a(skn+i, v) = 〈 f , v〉L2(Ω) − a(ũkn+i−1, v)

for all v ∈ Vi. Update the solution according to

ũkn+i = ũkn+i−1 + skn+i.

end for

end for

Output Approximate solution at level n, ũn(K+1)

The error at level n(K + 1), en(K+1) := u− ũn(K+1).

Proof. Since there are K + 1 outer iterations (since the outer level index starts at 0) and

n inner iterations, we have (K + 1)n iterations in total, of which K(n− 1) + n iterations

are with subsequently decreasing scale parameters for which we can use Theorem 7.2.

The remaining K iterations involve the subsequent error estimation for K > 0 and i = 1

since in this case, we have an increasing scale parameter for which Theorem 7.2 does

not apply. With the proof of Theorem 7.2, we can derive a similar result with increasing

scale parameters. In this case, we need to change the right hand side of (7.3) and the

following line to (
δi+1

δi

)
≤ µ−2,

and then we can define

α2 :=
(
ν−2C1 + µ−2C2

)1/2
. (7.12)
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Note that α2 > α1 since µ < 1 by definition and the constants are all positive which will

mean a lower rate of convergence as compared to Algorithm 1. The remainder of the

proof follows the same steps as the proofs of Corollary 7.3 and we leave the details to

the reader.

Note that the original justification for proposing this nested multiscale algorithm was

that the errors from Algorithm 1 appeared to be dominated by a global behaviour, sug-

gesting the need to go back and fit on a coarse set of centres with a large support. This

is a similar idea used in the multigrid method in the finite element literature [7, Chap-

ter 6.3]. As stated in [12, Chapter 44.3], this additional outer iteration is known from

Kaczmarz iteration, which is frequently used in the multigrid literature as a smoother

[28, 24].

7.4 Numerical experiments

In this section, we present the results from applying the multiscale and nested multiscale

algorithms to various PDEs.

7.4.1 Multiscale Algorithm

In this subsection we consider two PDEs, the first without Dirichlet boundary conditions

and the second with Dirichlet boundary conditions.

The first problem is the Helmholtz-like equation with natural boundary conditions:

−∆u + u = f in Ω,
∂

∂n
u = 0 on ∂Ω.

We take Ω = [−1, 1]2 and f (x, y) = cos(πx) cos(πy). The outer unit normal vector is

denoted by n. The exact solution is given by

u(x, y) =
cos(πx) cos(πy)

2π2 + 1
.

We again use the C6 Wendland radial basis function given by (7.8). We used five

levels for the approximation, with equally spaced point sets at each level. The number

of points, N, and the mesh norms, h, are given in Table 7.1. We note that the mesh norms

decrease by almost exactly one half at each level and hence we select µ = 1
2 . The L2 and

L∞ errors and condition numbers (κ) of the stiffness matrix are given in Table 7.2. The

L2 error was estimated using Gaussian quadrature with a 300× 300 tensor product grid
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Level 1 2 3 4 5

N 25 81 289 1089 4225

h 3.5e-1 1.75e-1 8.75e-2 4.37e-2 2.19e-2

Table 7.1. The number of equally spaced points used at each level and the associated mesh norm

for the multiscale Galerkin approximation example

of Gauss-Lobatto points and the L∞ error was estimated with the same tensor product

grid.

Level 1 2 3 4 5

δj 2 1 0.5 0.25 0.125

‖ej‖2 8.00e-4 2.15e-4 1.06e-4 7.01e-5 5.18e-5

‖ej‖∞ 1.72e-3 7.27e-4 3.76e-4 2.15e-4 1.40e-4

κj 1.61e+3 3.13e+3 4.16e+3 4.58e+3 4.71e+3

Table 7.2. The scaling factors, approximation errors and condition numbers of the stiffness

matrices for the multiscale Galerkin algorithm with Neumann boundary conditions

The second example uses the Poisson problem

−∆u = f in Ω,

u = 0 on ∂Ω.

We take Ω = [−1, 1]2 and f (x, y) = sin(πx) cos
(

π
2 y
)
. The exact solution is given by

u(x, y) =
sin(πx) cos

(
π
2 y
)

1.25π2 .

We again use the C6 Wendland function as the kernel, with the same 5 levels as for the

first example. To verify that (6.10) holds, we first check for the basis functions. For the

boundary norm, since Ω = [−1, 1]2, without loss of generality, we consider the case

x = −1 boundary of the domain only. Then we have boundary integrals of the form [12,

Appendix D]

‖∇Φδ · n‖2
L2(∂Ω) =

δ∫
−δ

(
∂φδ

∂y

)2

dy

= δ2
δ∫
−δ

(
22y
δ2

(
16y2

δ2 +
7y
δ

+ 1
)(

1− y
δ

)7
)2

dy

=
603969552384δ

11305
.
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For the interior, we have

‖∇Φδ‖2
L2(Ω) = δ2

∫
Θ

δ∫
0

r
(

d
dr

φδ(r)
)2

drdθ

= δ2
∫
Θ

δ∫
0

r
(

22r
δ2

(
16r2

δ2 +
7r
δ
+ 1
)(

1− r
δ

)7
)2

drdθ

=
2453δ2

4845

∫
Θ

dθ,

where Θ specifies the support of φ in Ω and hence this last expression is finite and does

not depend on δ.

In practical applications, we need to select a value of βN satisfying βN > 2C2
N/δ. In

[22], it is proposed to estimate CN/
√

δ as the maximum eigenvalue of the generalised

eigenvalue problem,

Bv = λDv, (7.13)

where

Bij =
∫

∂Ω

(∇Φi · n)
(
∇Φj · n

)
, (7.14)

and

Dij =
∫
Ω

∇Φi · ∇Φj, (7.15)

where i and j run over the indices of all the radial basis functions with support over-

lapping the boundary. The extra calculation involved in this step is not significant since

the entries of B are required for the construction of the stiffness matrix and the set of

centres overlapping the boundary will generally be small compared to the entire set of

centres. The maximum eigenvalue can also be efficiently computed with a simultaneous

Rayleigh-quotient minimisation method [26].

Level 1 2 3 4 5

δj 2 1 0.5 0.25 0.125

‖ej‖2 8.13e-3 1.45e-3 3.23e-4 8.22e-5 2.22e-5

‖ej‖∞ 1.06e-2 2.35e-3 6.50e-4 1.96e-4 5.96e-5

κj 5.63e+5 1.00e+6 8.06e+5 4.57e+5 2.37e+5

Table 7.3. The scaling factors, approximation errors and condition numbers of the stiffness

matrices for the multiscale Galerkin algorithm with Dirichlet boundary conditions

The results are in Table 7.3 and support the theoretical findings above. We note

that whilst [50] did not find convergence after the third level with a similar algorithm,
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this may be due to the approximations used to calculate the integrals, rather than the

algorithm itself. The potential for errors in integration to affect the performance of

Galerkin techniques are well known [42, 7]. To estimate the integrals, we used the

MATLAB functions quad2d and quad with an absolute tolerance value of 1e−10. We also

estimated the non-zero integration range both to speed up the calculations as well as

to reduce numerical error which can result if for example, we integrate over the entire

domain [−1, 1]2 whilst the function only has a very small support.

7.4.2 Nested multiscale algorithm

In this subsection, we consider the same example as in Section 7.4.1, however now with

Algorithm 2 with K = 2 and n = 2. We use the first two levels of the example described

in Section 7.4.1 as the inner iteration. We also use the same kernel. Our choice of K

and n leads to a 6 level algorithm. A similar example was considered in [50, Section 5],

however a lack of information regarding the exact approximation spaces used for the

inner and outer level iterations means we have not been able to compare our results.

The results from this 6 level nested algorithm are in Table 7.4.

Level 1 2 3 4 5 6

N 25 81 25 81 25 81

‖ej‖2 8.00e-4 2.15e-4 2.05e-4 2.09e-4 1.99e-4 2.03e-4

‖ej‖∞ 1.72e-3 7.27e-4 4.33e-4 7.00e-4 4.17e-4 6.74e-4

κj 1.61e+3 3.13e+3 1.61e+3 3.13e+3 1.61e+3 3.13e+3

Table 7.4. The number of centres, scaling factors, approximation errors and condition numbers

of the stiffness matrices for the nested multiscale Galerkin algorithm

The results indicate erratic convergence and approximation errors far inferior to

those using Algorithm 1. This is not surprising since Theorem 7.10 indicates conver-

gence of our approximation to the best approximation to u from V1 + V2 whilst in Algo-

rithm 1 our approximation is formed from V1 + . . . + V5.

7.5 Analysis of convergence

In this section we will focus on estimation of the convergence and verifying approxi-

mation orders. Similarly to [53], we will also rewrite the convergence results in terms

of mesh norms, which is the usual form of convergence results for radial basis function

approximations [51, 12].
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7.5.1 Multiscale Galerkin algorithm

We consider Algorithm 1 with h1 = µ and hj+1 = µhj. Since µ is a constant, we can

rewrite (7.4) as

α1 = c20µ.

Then with Corollary 7.3 we have

‖en‖L2(Ω) := ‖u− ũn‖L2(Ω) ≤ Ch1−σ
n ‖u‖H1(Ω), (7.16)

with

σ := − log c20/ log µ. (7.17)

Hence we can either express our convergence in terms of an exponent of hn or equiva-

lently αn
1 .

It is of interest that the error bounds do not depend on the kernel used for the

approximation spaces. Typically with a kernel which generates Hτ(Rd), we see error

bounds proportional to hτ. Since our kernel for the error analysis generates H1(Rd),

we have h1
n. Henceforth, we analyse the convergence in terms of α1. We can calculate

estimates of α1, which we denote by α̃1, as follows

α̃1,n :=
‖en‖L2(Ω)

‖en−1‖L2(Ω)
.

C2 WF C6 WF

α̃1,2 0.128 0.268

α̃1,3 0.318 0.494

α̃1,4 0.507 0.662

α̃1,5 0.618 0.739

Table 7.5. The estimated convergence rates α̃1,n using the results for the L2 norm errors from

the first example in Section 7.4.1 with the C2 and C6 Wendland functions.

We can see that the estimated values of α1 are higher with the C6 Wendland func-

tion, which indicates that we should not necessarily expect faster convergence with a

smoother Wendland function and consequently we should not expect an error bound

proportional to hτ.

7.5.2 Nested multiscale Galerkin algorithm

In this subsection, we will focus on considering convergence of the nested multiscale

Galerkin algorithm in terms of α1 and α2. Note that a bound for the error at level
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n(K + 1) in terms of the mesh norm at level n(K + 1), such as in (7.16), will not be

possible here because the mesh norm at level n(K + 1) only depends on n and not on K.

In other words, increasing K has no effect on the final mesh norm.

An additional benefit of considering the nested multiscale algorithm is more esti-

mates of α1, particularly for repeated applications of the inner iterations (when K > 1).

Table 7.6 gives the estimates of α1 and α2 from considering successive L2 norm error

estimates in Section 7.4.2. Successive error estimates will be of the form

‖ei‖L2(Ω)

‖ei−1‖L2(Ω)
.

By definition of our nested multiscale algorithm, for i = n + 1, 2n + 1, . . . we have an

estimate for α2 and in all other cases, an estimate for α1.

Table 7.4.2 presents the estimated convergence rates α̃1,n and α̃2,n using the results

for the L2 norm errors from the example in Section 7.4.2.

Level α̃1,n α̃2,n

2 0.268

3 0.953

4 1.021

5 0.954

6 1.022

Table 7.6. The estimated convergence rates α̃1,n and α̃2,n using the results for the L2 norm errors

from the example in Section 7.4.2.

Interestingly, the difficulties with convergence, at least in this example, are not due

to α2 which is seen to be less than 1 in all cases. This is empirical evidence of the effec-

tiveness of the smoothing nature of the inner iterations, in that after the inner iterations,

the errors are again of a global nature and hence a return to a coarse grid is justified.

Convergence is affected by the repeated application of the inner iterations for which α̃1,n

is always greater than 1. Empirically, this appears to suggest that the more localised

features have already been captured in the approximate solution.

This also implies that the angles between the approximation subspaces are close to

zero since the linear convergence rate in Theorem 7.7 can be bounded above by the angle

between the subspaces. This is covered next.
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Angles between subspaces

For our analysis of the convergence of the nested multiscale algorithm, we require the

following definition of the angle between subspaces.

Definition 7.9. Let H1 and H2 be closed subspaces of a Hilbert space H with U := H1 ∩H2.

Then the angle θ between H1 and H2 is given by

cos θ = sup
{
〈u, v〉 : u ∈ H1 ∩U⊥, v ∈ H2 ∩U⊥ and ‖u‖, ‖v‖ ≤ 1

}
.

It is well known [39, 9] that Algorithm 2 converges linearly in the following sense.

Theorem 7.10. Let u∗ be the best approximation to u from V1 + . . . + Vj with respect to

‖ · ‖H1(Ω). Let ũ be the approximation from Algorithm 2. Let θj be the angle between Vj and

∩k
i=j+1Vi. Then

‖u∗ − ũK‖H1(Ω) ≤ cK‖u‖H1(Ω),

where

c2 ≤ 1−
n−1

∏
j=1

sin2 θj.

This means that we need to estimate sin θj to obtain upper bounds for the conver-

gence rate. We follow a similar approach to [4]. We firstly define modified sets of centres

as X̃1 = X1 and

X̃i = Xi\
i−1⋃
j=1

Xj, i ≥ 2,

and the corresponding approximation spaces as

Ṽi = span
{

Φδi(· − x), x ∈ X̃i

}
.

Then we need to find the supremum of the inner product of u ∈ Ṽi and v ∈ Ai+1 where

Ai+1 =
K⋃

j=i+1

Ṽj = span

Φδj(· − xj), xj ∈
K⋃

j=i+1

X̃j

 ,

with ‖u‖ = ‖v‖ = 1. With the matrix K{12} given by

K{12}
i,j =

〈
Φδi(· − xi), Φδj(· − xj)

〉
, xi ∈ X̃i, xj ∈

K⋃
j=i+1

X̃j,

and with coefficient vectors µ and ν for u and v respectively, we seek the supremum of

µK{12}ν. We also define matrices K{1} and K{2} as

K{1}ij =
〈

Φδi(· − xi), Φδj(· − xj)
〉

, xi ∈ X̃i, xj ∈ X̃i,
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and

K{2}ij =
〈

Φδi(·, xi), Φδj(·, xj)
〉

, xi ∈
K⋃

j=i+1

X̃j, xj ∈
K⋃

j=i+1

X̃j.

Let the Cholesky decomposition of K{1} be LT
1 L1. This is well-defined since K{1} is

strictly positive definite and symmetric. Then ‖u‖2 = µTLT
1 L1µ and letting γ1 = L1µ

gives ‖u‖2 = γT
1 γ1. We can follow a similar approach with K{2} which gives

‖v‖2 = γT
2 γ2 with K{2} = LT

2 L2 and γ2 = L2ν. However in this case since K{2} is

the union of radial basis functions with (possibly) different scaling factors, we cannot

be sure that K{2} is positive definite. In our example, K{2} was always positive definite

and we do not dwell further on this. Sufficient conditions for an interpolation matrix

constructed with several scaling factors to be positive definite can be found in [6, (11)]

which also requires the Fourier transform of a Wendland function [8] to compute a lower

bound on the minimum eigenvalue as given in [51, Theorem 12.3].

Then we have

〈u, v〉 = µTK{12}ν

= µTLT
1 (L

−1
1 )TK{12}L−1

2 L2ν

= γT
1 Mγ2,

with M := (L−1
1 )TK{12}L−1

2 . The supremum of the inner product is given by the largest

singular value of M. We denote this supremum by sin θ̃j and the results with {Ṽi}5
i=1 are

in Table 7.7. We note that since X̃i ⊆ Xi, sin θ̃i is a lower bound on sin θi. We chose to

estimate sin θ̃i since by removing nested centres from later levels, we had less difficulties

with singular matrices.

i 1 2 3 4

sin θ̃i 9.85e-3 2.68e-2 4.15e-2 6.99e-2

Table 7.7. The estimates of sin θ̃i with the approximation spaces {Ṽi}5
i=1.





Chapter Eight

Multiscale algorithms for collocation of

PDEs

This chapter will cover theoretical results and numerical experiments of several mul-

tiscale algorithms for collocation of elliptic PDEs and the Stokes problem on bounded

domains. We again denote the mesh norm at level i by hi.

8.1 Multiscale symmetric collocation of elliptic PDEs on

bounded domains

We formally state our multiscale algorithm for the symmetric collocation approximation

of (6.13) and (6.14), which is stated as Algorithm 3.

The following theorem and corollaries are our main results for the convergence of

the multiscale symmetric collocation algorithm.

Theorem 8.1. Let Ω ⊆ Rd be a bounded domain with Ck,s-boundary. Let Φ be a kernel

generating Hτ(Rd) with τ > 2 + d/2 and Φj be defined by (2.1) with scale factor δj. Then for

Algorithm 3 there exists a constant α3 > 0 such that

‖ESej‖Φj+1 ≤ α3‖ESej−1‖Φj for j = 1, 2, . . .

where ESej is the extension operator defined in Lemma 2.1 applied to the error at level j defined

in Algorithm 3. The constant α3 satisfies α3 < 1 if in Algorithm 3 ν is sufficiently small and µ

is sufficiently large.

Proof. With (4.13), we can write

‖ESej‖2
Φj+1
≤ 1

c8

∫
Rd

|ÊSej(ω)|2
(

1 + δ2
j+1‖ω‖2

2

)τ
dω =:

1
c8

(I1 + I2)

with

I1 :=
∫

‖ω‖2≤ 1
δj+1

|ÊSej(ω)|2
(

1 + δ2
j+1‖ω‖2

2

)τ
dω,
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Algorithm 3 Multiscale symmetric collocation approximation

Input n: number of levels

{X1,i, X2,i}n
i=1: the interior and boundary collocation points for each level i,

with mesh norms at each level given by {h1,i, h2,i}n
i=1 satisfying

cµh̄i ≤ h̄i+1 ≤ µh̄i, where h̄i := max(h1,i, h2,i), with fixed µ ∈ (0, 1), c ∈ (0, 1]

and h1 sufficiently small

{δi}n
i=1 : the scale parameters to use at each level, satisfying

δi = νh̄1−(4+d)/(2τ)
i , where ν is a fixed constant.

Set ũ0 = 0, f0 = f , g0 = g.

for i = 1 to n do

With the scaled kernel Φδi , solve the unsymmetric collocation linear system

Lsi(x) = fi−1(x) ∀ x ∈ X1,i

si(x) = gi−1(x) ∀ x ∈ X2,i.

Update the solution and residual according to

ũi = ũi−1 + si

fi = fi−1 −Lsi

gi = gi−1 − si

end for

Output Approximate solution at level n, ũn.

The error at level n, en := u− ũn.

I2 :=
∫

‖ω‖2≥ 1
δj+1

|ÊSej(ω)|2
(

1 + δ2
j+1‖ω‖2

2

)τ
dω.

Now we consider the first integral where we can use δj+1‖ω‖2 ≤ 1 and then Lemma

6.3 and (4.13). This is valid since sj ∈ Vj is the approximate solution with symmetric

collocation of Lej−1 = f j−1. Then we have

I1 ≤ 2τ
∫

‖ω‖2≤ 1
δj+1

|ÊSej(ω)|2 dω

≤ 2τ ‖ESej‖2
L2(Rd) ≤ C ‖ej‖2

L2(Ω)

≤ C h2τ−4
1,j ‖ej−1‖2

Hτ(Ω)

≤ Ch2τ−4
1,j δ−2τ

j ‖ESej−1‖2
Φj
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≤ Cν−2τ ‖ESej−1‖2
Φj

,

where we have also used Lemma 6.3. For the second integral I2, we note that

δj+1/δj = (h̄j+1/h̄j)
1−(4+d)/(2τ) ≤ µ1−(4+d)/(2τ),

and since δj+1‖ω‖2 ≥ 1, we have that(
1 + δ2

j+1‖ω‖2
2

)τ
≤ 2τδ2τ

j+1‖ω‖2τ
2 ≤ 2τµ2τ−4−d

(
1 + δ2

j ‖ω‖2
2

)τ
.

Then again using (4.13) shows that

I2 ≤ 2τ c9 µ2τ−4−d‖ESej‖2
Φj

≤ 2τ c9 µ2τ−4−d‖ESej−1‖2
Φj

,

where in the second last step we have used that since the interpolant at Xj to ej−1 is the

same as the interpolant to ESej−1 (both functions take the same values on Xj ⊆ Ω), we

have

‖ej‖Hτ(Ω) = ‖ej−1 − sjej−1‖Hτ(Ω)

= ‖ESej−1 − sjESej−1‖Hτ(Ω)

≤ ‖ESej−1 − sjESej−1‖Hτ(Rd)

≤ Cδ−τ−1
j ‖ESej−1 − sjESej−1‖NΦj (R

d)

≤ Cδ−τ
j ‖ESej−1‖NΦj (R

d).

Combining our results for I1 and I2 and now writing C5 and C6 for the two constants

appearing in the bounds of the expressions for I1 and I2 respectively, we have that

‖ESej‖2
Φj+1
≤
(

ν−2τC5/c8 + µ2τ−4−dC6/c8

)
‖ESej−1‖2

Φj
,

and the result follows with

α3 :=
(

ν−2τC5/c8 + µ2τ−4−dC6/c8

)1/2
.

Corollary 8.2. There exist constants C7 > 0 and C8 > 0 such that for the solutions of the

multiscale symmetric collocation from Algorithm 3 we have the following error bounds

‖u− ũn‖L2(Ω) ≤ C7αn
3‖u‖Hτ(Ω) for n = 1, 2, . . . (8.1)

and

‖u− ũn‖L2(∂Ω) ≤ C8αn
3‖u‖Hτ(Ω) for j = n, 2, . . . (8.2)
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Thus ũn resulting from Algorithm 3 converges linearly to u in the L2-norm in Ω and on ∂Ω if

α3 < 1.

Proof. We first consider the solution in Ω. Using Lemma 6.3 and (4.13) again, we can

see that

‖u− ũn‖L2(Ω) = ‖en‖L2(Ω)

≤ Chτ−2
1,n ‖en‖Hτ(Ω)

≤ Ch̄τ−2
n δ−τ

n+1‖ESen‖Φn+1

≤ C ‖ESen‖Φn+1 ≤ Cαn
3‖u‖Φ1

≤ Cαn
3‖u‖Hτ+1(Ω),

since

h̄τ−2
n δ−τ

n+1 = ν−τ h̄τ−2
n h̄−τ+2+d/2

n+1 ≤ ν−τ

(
h̄n

h̄n+1

)τ−2

≤ ν−τ(cµ)2−τ.

With (6.3), the proof for the second result follows in an identical fashion. In this case

we need

hτ−1/2
2,n δ−τ

n+1 ≤ ν−τ h̄τ−1/2
n h̄−τ+1/2

n+1 ≤ C(cµ)1/2−τ.

Corollary 8.3. There exist constants C9 > 0 and C10 > 0 such that for the solutions of the

multiscale symmetric collocation algorithm we have the following error bounds

‖u− ũn‖L∞(Ω) ≤ C9αn
3‖u‖Hτ(Ω) for n = 1, 2, . . . (8.3)

and

‖u− ũn‖L∞(∂Ω) ≤ C10αn
3‖u‖Hτ(Ω) for n = 1, 2, . . . (8.4)

Thus ũn resulting from Algorithm 3 converges linearly to u in the L∞-norm in Ω and on ∂Ω if

α3 < 1.

Proof. The proofs are very similar to the previous corollary and we only highlight the

differences in both cases. In Ω, we clearly have

‖u− ũn‖L∞(Ω) ≤ C‖Lu−Lũn‖L∞(Ω)

if we assume that the coefficients of L are in, say, C2. Then from [18, Theorem 3.10] we

know that

‖Lu−Ls‖L∞(Ω) ≤ Chτ−2−d/2
1 ‖u‖Hτ(Ω)
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and since

hτ−2−d/2
1,n δ−τ

n+1 = ν−τ

(
h̄n

h̄n+1

)τ−2−d/2

≤ C(cµ)τ−2−d/2,

the result follows. On ∂Ω, we need to use [18, Theorem 3.10]

‖u− ũ‖L∞(∂Ω) ≤ Chτ−d/2
2 ‖u− ũ‖Hτ(Ω), (8.5)

and that

hτ−d/2
2,n δ−τ

n+1 ≤ ν−τ h̄τ−d/2
n h̄−τ+d/2

n+1 ≤ C(cµ)−τ+d/2.

8.1.1 Numerical experiments

In this section, we present the results from applying the symmetric collocation algo-

rithms to the following Poisson problem with Dirichlet boundary conditions from [12].

∇2u(x, y) = −5
4

π2 sin(πx) cos
(πy

2

)
, (x, y) ∈ Ω := [0, 1]2,

u(x, y) = sin(πx), (x, y) ∈ Γ1 := {(x, y) : 0 ≤ x ≤ 1, y = 0},

u(x, y) = 0, (x, y) ∈ Γ2 := ∂Ω \ Γ1.

The exact solution is given by

u(x, y) = sin(πx) cos
(πy

2

)
.

We note that these same experiments, with different scaling parameters δi and point

sets, can be found in [12, Table 41.4] where convergence was observed essentially only

for several levels. This indicates the importance of the theoretical results given in this

chapter.

We again use the C6 Wendland radial basis function given by (7.8) which is positive

definite on R2 (cf. [51]). We used five levels for the approximation, with equally spaced

point sets at each level. The number of points, N, and the mesh norms, h, are given in

Table 8.1. We note that the mesh norms decrease by almost exactly one half at each level

and hence we select µ = 1
2 . There are also 4(

√
N − 1) equally spaced boundary centres.

For the scaling parameters, we note that m = d = 2 in this example and τ = 4.5 (cf.

[51]). Algorithm 3 specifies that

δj = νh̄1−(d+4)/(2τ)
j

with ν constant. With the given value of h1 in Table 8.1, we select ν such that δ1 = 2. This

gives ν = 3.58 and we use this to generate the other δ values which are given along with
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Level 1 2 3 4 5

N 25 81 289 1089 4225

h̄ 1.75e-1 8.755e-2 4.37e-2 2.19e-2 1.09e-2

Table 8.1. The number of equally spaced points used at each level and the associated mesh norm

for the numerical experiments

the L2 and L∞ errors and condition numbers (κ) of the collocation matrices in Table 8.2.

The L2 error was estimated using Gaussian quadrature with a 300× 300 tensor product

grid of Gauss-Legendre points and the L∞ error was estimated with the same tensor

product grid.

Level 1 2 3 4 5

δj 2 1.59 1.26 1 0.79

‖ej‖2 3.32e-3 1.69e-4 1.50e-5 8.58e-7 3.94e-8

‖ej‖∞ 6.06e-3 8.52e-4 6.20e-5 5.80e-6 5.38e-7

κj 1.18e+6 2.27e+8 4.23e+10 6.63e+12 1.32e+15

Table 8.2. The scaling factors, approximation errors and condition numbers of the collocation

matrices for the multiscale symmetric collocation algorithm example

8.2 Multiscale symmetric collocation approximation to the

Stokes problem

We can now formally state our multiscale algorithm for the symmetric collocation so-

lution of (6.19)-(6.21) which is stated as Algorithm 4. To simplify notation, we write

Siv = SXi v and Ψi = Ψδi and denote the mesh norms for the interior and boundary

collocation points at level i as h1,i and h2,i respectively.

We require a technical lemma regarding the error in the estimation of the velocity u.

Lemma 8.4. Let d = 3. Assume that u ∈ Hτ(Ω; div) with τ > 0 and let Ẽdiv be defined by

(6.22). Then we have the following bound

∫
Rd

∥∥∥̂̃Edivu(ω)
∥∥∥2

2

‖ω‖2
2

dω ≤ C‖u‖2
L2(Ω).

Proof. With the definitions of the Ẽdiv, ES and T operators, we have

∫
Rd

∥∥∥̂̃Edivu(ω)
∥∥∥2

2

‖ω‖2
2

dω =
∫

Rd

∥∥∥ω× ÊST u(ω)
∥∥∥2

2

‖ω‖2
2

dω
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Algorithm 4 Multiscale symmetric collocation approximation to the Stokes problem

Input n: number of levels

Xi := {X1,i, X2,i}n
i=1: the interior and boundary collocation points for each

level i, with mesh norms at each level given by {h1,i, h2,i}n
i=1 satisfying

cµh̄i ≤ h̄i+1 ≤ µh̄i, where h̄i := max(h1,i, h2,i) with fixed µ ∈ (0, 1), c ∈ (0, 1]

and h̄1 sufficiently small

{δi}n
i=1 : the scale parameters to use at each level, satisfying δi = βh̄1−3/(τ+1)

i ,

β is a fixed constant.

Set M0v = 0, f0 = f, g0 = g.

for i = 1 to n do

With the scaled kernel Ψi, solve the symmetric collocation linear system(
LSSiv(x)

)
j

= fi−1,j(x), 1 ≤ j ≤ d, x ∈ X1,i

(Siv(x))j = gi−1,j(x), 1 ≤ j ≤ d, x ∈ X2,i.

Update the solution and residual according to

Miv = Mi−1v + Siv

fi = fi−1 −LSSiv

gi = gi−1 − Siv

end for

Output Approximate solution at level n, Mnv

The error at level n, en := v−Mnv.

≤ C
∫

Rd

∥∥∥ÊST u(ω)
∥∥∥2

2
dω

= C‖EST u‖2
L2(Rd)

≤ C‖EST u‖2
H1(Rd)

≤ C‖T u‖2
H1(Ω)

≤ C‖u‖2
L2(Ω),

where we have also used that the ES and T operators are bounded (Lemma 2.1, [52]).

The following theorem and corollary are our main results on the convergence of the

multiscale symmetric collocation algorithm for solving the Stokes problem.
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Theorem 8.5. Assume that Ω and f, g satisfy the smoothness assumptions of Theorem 6.6.

Suppose the kernel Ψ is chosen such that NΨ(Rd) = H̃τ(Rd; div)× Hτ−1(Rd) and define the

scaled kernels by (6.35) with scale factor δj. Then for Algorithm 4 there exists a constant α4 such

that

‖Eej‖NΨj+1 (R
d) ≤ α4‖Eej−1‖NΨj (R

d), (8.6)

where α4 is a constant independent of the point sets X1, X2, . . . and Eej is the extension operator

for v defined in (6.34) applied to the error at level j defined in Algorithm 4. The constant α4

satisfies α4 < 1 if in Algorithm 4 ν is sufficiently small and µ is sufficiently large.

Proof. With the notation Eej = (u−MjẼdivu, p − MjES p)T = (Ẽdiveu,j, ESep,j)
T, (6.36),

(6.26) and (6.27), we have

‖Eej‖2
NΨj+1 (R

d) ≤ C̄1

∫
Rd

[∥∥∥˜̂Ediveu,j(ω)
∥∥∥2

2

‖ω‖2
2

(
1 + δ2

j+1‖ω‖2
2

)τ+1

+
∣∣∣ÊSep,j(ω)

∣∣∣2 (1 + δ2
j+1‖ω‖2

2

)τ−1
]

dω

=: I1 + I2,

with

I1 :=
∫

‖ω‖2≤ 1
δj+1

[∥∥∥˜̂Ediveu,j(ω)
∥∥∥2

2

‖ω‖2
2

(
1 + δ2

j+1‖ω‖2
2

)τ+1
+ ÊSep,j(ω)

(
1 + δ2

j+1‖ω‖2
2

)τ−1
]

dω,

I2 :=
∫

‖ω‖2≥ 1
δj+1

[∥∥∥˜̂Ediveu,j(ω)
∥∥∥2

2

‖ω‖2
2

(
1 + δ2

j+1‖ω‖2
2

)τ+1
+ ÊSep,j(ω)

(
1 + δ2

j+1‖ω‖2
2

)τ−1
]

dω.

For I1, we can use that δj+1‖ω‖2 ≤ 1, Lemmas 6.4 and 8.4 and Theorem 6.6 to yield

I1 ≤ C
(
‖Ediveu,j‖2

L2(Rd) + ‖ESep,j‖2
L2(Rd)

)
≤ C

(
‖eu,j‖2

L2(Ω) + ‖ep,j‖2
L2(Ω)

)
≤ Ch̄2τ−4

j ‖Eej‖2
NΨ(Rd)

≤ C
h̄2τ−4

j

δ2τ+2
j
‖Eej−1‖2

NΨj (R
d)

= C11β−2τ−2‖Eej−1‖2
NΨj (R

d),

where in the second last step we have used that since the interpolant at Xj to ej−1 is the

same as the interpolant to Eej−1 (both functions take the same values on Xj ⊆ Ω), we
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have

‖ej‖Hτ(Ω) = ‖ej−1 − Sjej−1‖Hτ(Ω)

= ‖Eej−1 − SjEej−1‖Hτ(Ω)

≤ ‖Eej−1 − SjEej−1‖Hτ(Rd)

≤ Cδ−τ−1
j ‖Eej−1 − SjEej−1‖NΨj (R

d)

≤ Cδ−τ−1
j ‖Eej−1‖NΨj (R

d).

For I2, since δ2
j+1‖ω‖2

2 ≥ 1, we have(
1 + δ2

j+1‖ω‖2
2

)τ
≤ 2τδ2τ

j+1‖ω‖)22τ ≤
(

2δ2
j+1‖ω‖2

2

)τ
≤ 2τµ2τ

(
1 + δ2

j ‖ω‖2
2

)τ
,

and hence if µ, δ ≤ 1, we have

I2 ≤ Cµ2τ−2‖Eej‖2
NΨj (R

d)

≤ C12µ2τ−2‖Eej−1‖2
NΨj (R

d).

The result follows with

α4 :=
(
C11β−2τ−2 + C12µ2τ−2)1/2

.

Corollary 8.6. There exist positive constants C13 and C14 such that

‖v−Mnv‖L2(Ω) ≤ C13αn
4

(
‖u‖Hτ(Ω) + ‖p‖Hτ−1(Ω)

)
for n = 1, 2, . . .

and

‖u−Mnu‖L2(∂Ω) ≤ C14αn
4

(
‖u‖Hτ(Ω) + ‖p‖Hτ−1(Ω)

)
for n = 1, 2, . . .

Thus the multiscale approximation Mnv resulting from Algorithm 4 converges linearly to v in

the L2−norm in Ω and on ∂Ω if α4 < 1.

Proof. With Lemma 6.4, Theorems 6.6 and 8.5 and recalling that Algorithm 4 specifies

that δn = βh̄1−3/(τ+1)
n , we have

‖v−Mnv‖L2(Ω) ≤ ‖en‖L2(Ω)

≤ Ch̄τ−2
n ‖Een‖NΨ(Rd)

≤ C‖Een‖NΨn+1 (R
d)

≤ Cαn
4‖Ev‖NΨ1 (R

d)
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≤ Cαn
4‖Ev‖NΨ(Rd)

≤ Cαn
4

(
‖u‖Hτ(Ω) + ‖p‖Hτ−1(Ω)

)
,

which proves the first result. For the second result, with (6.40) we can see that

‖u−Mnu‖L2(∂Ω) ≤ ‖u−Mnu‖H3/2(∂Ω)

≤ Chτ−2
2,n ‖u−Mnu‖Hτ(Ω)

≤ Ch̄τ−2
n ‖Een‖NΨ(Rd),

and the remainder of the proof is the same as for the first result.

8.2.1 Condition numbers

In this section, we present upper and lower bounds for the eigenvalues of the multiscale

symmetric collocation algorithm for the Stokes problem. At each step of the multiscale

algorithm, we need to solve a linear system resulting from the collocation conditions

(6.31) and (6.32) on a set X = {x1, . . . , xM}:

Aδb = (f g)T.

The next theorem gives a lower bound on the minimum eigenvalue of Aδ.

Theorem 8.7. Suppose the kernel Ψ is defined by (6.28) and define the scaled kernel Ψδ by (6.35)

with a positive scaling factor δ. Then the smallest eigenvalue of the collocation matrix defined by

(6.31) and (6.32) can be bounded by

λmin(Aδ) ≥ C
(qX

δ

)2τ+2
q−d−2

X ,

where the constant C is independent of the point set X.

Proof. We follow the proof of [18, Theorem 4.1]. We will adopt the functional notation

ξi,j(v) :=


(
LSv

)
i (xj) for 1 ≤ j ≤ N, 1 ≤ i ≤ d,

vi(xj) for N + 1 ≤ j ≤ M, 1 ≤ i ≤ d.

We will use the superscript y to denote that the functional acts with respect to its second

argument. Then with β ∈ RdM, we need to show that

d

∑
i,i′=1

M

∑
j,k=1

βi,jβi′,kξi,jξ
y
i′,kΨδ(x− y) ≥ C

(qX

δ

)2τ+2
q−d−2

X ‖β‖2
2. (8.7)

With the inverse Fourier transform, the left hand side of (8.7) becomes
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d

∑
i,i′=1

M

∑
j,k=1

βi,jβi′,kξi,jξ
y
i′,kΨδ(x− y)

= (2π)−d/2
∫

Rd

d

∑
i,i′=1

M

∑
j,k=1

βi,jβi′,kξi,jξ
y
i′,kΨ̂δ(ω)eI(x−y)·ω, dω

where I2 = −1. Now we define a second scaled kernel Ψa by (6.35) with 0 < a ≤ 1 and

a ≤ δ. Recalling that φτ−1 satisfies (6.27) gives

φ̂τ−1,δ(ω) = φ̂τ−1(δω) ≥ c1,τ−1
(
1 + ‖δω‖2

2
)−τ+1

= c1,τ−1

( a
δ

)2τ−2
(( a

δ

)2
+ ‖aω‖2

2

)−τ+1

≥ c1,τ−1

( a
δ

)2τ−2 (
1 + ‖aω‖2

2
)−τ+1

≥ c1,τ−1

c2,τ−1

( a
δ

)2τ−2
φ̂τ−1,a(ω).

Since φτ+1 satisfies (6.26) and with (6.29), we proceed similarly to get

Φ̂τ+1,δ(ω) =
(
‖ω‖2

2I−ωωT
)

φ̂τ+1(δ‖ω‖2)

≥ c1,τ+1

( a
δ

)2τ+2 (
‖ω‖2

2I−ωωT
)(( a

δ

)2
+ ‖aω‖2

2

)−τ−1

≥ c1,τ+1

( a
δ

)2τ+2 (
‖ω‖2

2I−ωωT
) (

1 + ‖aω‖2
2
)−τ−1

≥ c1,τ+1

c2,τ+1

( a
δ

)2τ+2 (
‖ω‖2

2I−ωωT
)

φ̂τ+1(a‖ω‖2)

=
c1,τ+1

c2,τ+1

( a
δ

)2τ+2
Φ̂τ+1,a(ω).

Since a/δ < 1, we have the following bound on Ψ̂δ

Ψ̂δ(ω) ≥ c
( a

δ

)2τ+2
Ψ̂a(ω),

and hence

d

∑
i,i′=1

M

∑
j,k=1

βi,jβi′,kξi,jξ
y
i′,kΨδ(x− y) ≥ c

( a
δ

)2τ+2 d

∑
i,i′=1

M

∑
j,k=1

βi,jβi′,kξi,jξ
y
i′,kΨa(x− y).

If we select a = qX ≤ 1 such that we need only consider entries of the quadratic form

corresponding to equal centres, with the definition of the scaled kernel, this reduces to

d

∑
i,i′=1

M

∑
j,k=1

βi,jβi′,kξi,jξ
y
i′,kΨδ(x− y)

≥ c
(qX

δ

)2τ+2
q−d

X

d

∑
i=1

 N

∑
j=1

β2
i,j

− ∑
j={1:d}\i

q−6
X ∂jj∆2φτ+1(0)− q−2

X ∂iiφτ−1(0)

+

M

∑
j=N+1

β2
i,j

− ∑
j={1:d}\i

q−2
X ∂jjφτ+1(0)

 ,
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since for interior centres we have

ξi,jξ
y
i′,kΨ(x− y)|j=k =

 −ν2 ∑j=1:d\i ∂jj∆2φτ+1(0)− ∂iiφτ−1(0) for i = i′,

−ν2∂ii′∆2φτ+1(0)− ∂ii′φτ−1(0) = 0 for i 6= i′,
(8.8)

with Lemmas 3.3 and 3.4. Similarly for the boundary centres

ξi,jξ
y
i′,kΨ(x− y)|j=k =

 −∑j=1:d\i ∂jjφτ+1(0) for i = i′,

−∂ii′φτ+1(0) = 0 for i 6= i′.
(8.9)

Then the result follows as

d

∑
i=1

M

∑
j,k=1

βi,jβi,kξi,jξ
y
i,kΨδ(x− y) ≥ c c̃

(qX

δ

)2τ
q−d−2

X ‖β‖2
2,

with Lemmas 3.5 and 3.6 which give

c̃ := min
1≤i≤d

− ∑
j={1:d}\i

q−4
X ∂jj∆2φτ+1(0)− ∂iiφτ−1(0),− ∑

j={1:d}\i
∂jjφτ+1(0)


≥ min

1≤i≤d

− ∑
j={1:d}\i

∂jj∆2φτ+1(0)− ∂iiφτ−1(0),− ∑
j={1:d}\i

∂jjφτ+1(0)


= min

(
−

d

∑
j=2

∂jj∆2φτ+1(0)− ∂11φτ−1(0),−
d

∑
j=2

∂jjφτ+1(0)

)
,

since φτ+1 is a radial function and ∂iiφτ+1(0) is independent of i from Lemma 3.5.

Our next result bounds the maximum eigenvalue λmax(Aδ).

Theorem 8.8. Suppose the kernel Ψδ is defined as in Theorem 8.7. Then if we assume that

M ≤ Ch̄−d, (8.10)

where M denotes the number of (interior and boundary) centres, then the largest eigenvalue of

the collocation matrix constructed with Ψδ defined by (6.31) and (6.32) can be bounded by

λmax(Aδ) ≤ C δ−d−2 h̄−d,

if δ ≥ 1 and by

λmax(Aδ) ≤ C δ−d−6 h̄−d,

if δ < 1, where the constants C are independent of the point set X.

Proof. Using the notation from Theorem 8.7, together with Gershgorin’s theorem, we

have

|λmax(Aδ)− ξi,jξ
y
i,jΨδ(x, x)| ≤

d

∑
i′=1

M

∑
k=1

i′ 6=i,k 6=j

|ξi,jξ
y
i,kΨδ(x, y)|, 1 ≤ i ≤ d
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which since Ψ is positive definite, using (8.10), Lemmas 3.5 and 3.6, the definition of the

scaled kernels and (8.8) and (8.9), if δ ≥ 1

λmax(Aδ) ≤ dM‖ξi′,·ξ
y
i,·Ψδ(·, ·)‖L∞(Ω×Ω)

≤ C d h̄−d max

(
−

d

∑
j=2

∂jj∆2φτ+1,δ(0)− ∂11φτ−1,δ(0),−
d

∑
j=2

∂jjφτ+1,δ(0)

)

≤ C d h̄−dδ−d−2 max

(
−

d

∑
j=2

∂jj∆2φτ+1(0)− ∂11φτ−1(0),−
d

∑
j=2

∂jjφτ+1(0)

)
,

where in the last step we have used that

∂jj∆2φτ+1,δ(0) = δ−d∂jj∆2δ−6φτ+1(0) ≤ δ−d−2∂jj∆2φτ+1(0),

since δ ≥ 1. If δ < 1, we have

λmax(Aδ) ≤ dM‖ξi′,·ξ
y
i,·Ψδ(·, ·)‖L∞(Ω×Ω)

≤ C d h̄−dδ−d−6 max

(
−

d

∑
j=2

∂jj∆2φτ+1(0)− ∂11φτ−1(0),−
d

∑
j=2

∂jjφτ+1(0)

)
,

where in the last step we have used, for example, that

∂11φτ+1,δ(0) = δ−d∂11δ−2φτ+1(0) ≤ δ−d−6∂11φτ+1(0),

which completes the proof.

We note that (8.10) will hold if, for example, the dataset is quasi-uniform, which

means that hj/qj is bounded above by a constant.

Now with (7.6) and Theorems 8.7 and 8.8, we obtain the following theorem where

we write qj := qXj .

Theorem 8.9. Suppose the kernel Ψδ is defined as in Theorem 8.7. Then the condition number

of the multiscale symmetric collocation matrix in Algorithm 4 is level-dependent and is bounded

by

κj ≤ C

(
h̄j

qj

)2τ−d

h̄
− 3

τ+1 (2τ−d)−d
j ,

if δ ≥ 1 and by

κj ≤ C

(
h̄j

qj

)2τ−d

h̄
− 3

τ+1 (2τ−d−4)−d−4
j ,

if δ < 1. In the case of quasi-uniform datasets and hj ≤ 1, these reduce to

κj ≤ C h̄−2τ
j .

Proof. The first two results follows with δj = βh̄1−3/(τ+1)
j and (7.6) and Theorems 8.7

and 8.8. If the datasets are quasi-uniform, which means that hj/qj is bounded above by

a constant, the final result follows by simplifying the first two expressions.
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8.2.2 Numerical experiments

In this section, we present the results from applying the multiscale algorithm described

in Algorithm 4 with Ω = [0, 1]2 and ν = 1 to the Stokes problem with exact solution

given by

u(x1, x2) =

 2 cos(5x1) cos(2x2)

5 sin(5x1) sin(x2)

 ,

p(x1, x2) = sin(3x1) sin(3x2) + C.

This gives

f(x1, x2) =

 58 cos(5x1) cos(2x2) + 3 cos(3x1) sin(3x2)

145 sin(5x1) sin(2x2) + 3 sin(3x1) cos(3x2)


and g equal to the restriction of u(x) to ∂Ω.

We use the C8 Wendland radial basis function given by

φ6,4(‖x‖) = (1− ‖x‖)10
+ (429‖x‖4 + 450‖x‖3 + 210‖x‖2 + 50‖x‖+ 5),

which is positive definite on R2 and generates the Sobolev space H5.5(R2) [51]. We use

the same kernel for both φτ+1 and φτ−1. Consequently, in this case τ = 4.5. Since d = 2,

our approximate solution takes the form

SXv(x) =
N

∑
j=1

α1,j


ν∂22∆φτ+1(‖x− xj‖2)

−ν∂12∆φτ+1(‖x− xj‖2)

−∂1φτ−1(‖x− xj‖2)

+
M

∑
j=N+1

α1,j


−∂22φτ+1(‖x− xj‖2)

∂12φτ+1(‖x− xj‖2)

0



+
N

∑
j=1

α2,j


−ν∂12∆φτ+1(‖x− xj‖2)

ν∂11∆φτ+1(‖x− xj‖2)

−∂2φτ−1(‖x− xj‖2)

+
M

∑
j=N+1

α2,j


∂12φτ+1(‖x− xj‖2)

−∂11φτ+1(‖x− xj‖2)

0

 .

We used five levels for the approximation, with N equally spaced points for the interior

point sets and 4(
√

N − 1) equally spaced boundary centres. The number of interior

points, Nj, the number of boundary points, Mj − Nj, and the maximum mesh norms at

each level, h̄j, are given in Table 8.3. We note that the (maximum) mesh norms decrease

by one half at each level and hence we select µ = 1
2 . For the scaling parameters, since

τ = 4.5, Algorithm 4 specifies that

δj = βh̄2.5/5.5
j

with β constant. With the given value of h̄1 in Table 8.3, we select β such that δ1 = 10.

This gives β = 18.779 and we use this to generate the other δ values which are given
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Level 1 2 3 4 5

N 25 81 289 1089 4225

M− N 16 32 64 128 256

h̄ 1/4 1/8 1/16 1/32 1/64

Table 8.3. The number of interior and boundary points used at each level and the maximum

mesh norm at each level for the multiscale symmetric collocation Stokes problem example

along with the L2 and L∞ errors and condition numbers (κ) collocation matrix in Table

8.4. The L2 error was estimated using Gaussian quadrature with a 300 × 300 tensor

product grid of Gauss-Legendre points and the L∞ error was estimated with the same

tensor product grid. We used MATLAB for the calculations and worked with double

precision.

Level 1 2 3 4 5

δj 10 7.29 5.33 3.89 2.84

‖eu,j‖L2(Ω) 1.59e-02 6.50e-04 3.27e-05 1.65e-06 1.03e-07

‖eu,j‖L∞(Ω) 2.74e-02 2.23e-03 1.46e-04 8.27e-06 4.58e-07

‖∇ep,j‖L2(Ω) 1.11e+00 1.22e-01 1.24e-02 2.56e-03 5.61e-04

‖∇ep,j‖L∞(Ω) 4.21e+00 3.34e-01 1.05e-01 3.65e-02 1.21e-02

κj 1.27e+09 7.77e+11 2.57e+14 6.88e+16 1.67e+19

Table 8.4. The scaling factors, approximation errors and condition numbers of the collocation

matrices for the multiscale symmetric collocation Stokes problem example

Finally we note that from Theorem 8.9, the expected numerical order of the condition

number is 2τ = 9 for this example. In Table 8.5, we present the observed numerical order

of the condition number, which is computed as

−
log κj+1

κj

log hj+1
hj

.

Level 1 2 3 4 5

Order 9.26 8.37 8.06 7.92

Table 8.5. The observed order for the condition numbers for the multiscale symmetric collocation

Stokes problem example
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