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Abstract 

The Vehicle Routing Problem (VRP) is considered to be a complex and high-level set 

of various routing problems. One of its important variants is the Dynamic Vehicle 

Routing Problem (DVRP), in which not all customers are known in advance, but are 

revealed as the system progresses. Consequently, DVRP applications are seen to operate 

on a dynamic basis in various real-life systems. Like the classical VRP, as DVRP is an 

NP-hard optimization problem, so optimization techniques that have the capability to 

produce high quality solutions under time limitations, i.e. metaheuristics, are the most 

suitable and applicable techniques to be used to find good solutions for them. 

This thesis aims to find good solutions for DVRP by using a Genetic Algorithm 

(GA) enhanced by five proposed modifications, including the initial population for the 

first time slice and/or other time slices, the selection process, the swap mutation and the 

detection and management processes of the Local Optimal Condition (LOC). Through 

experiments, it is clear that these improvements enhance the GA’s ability to solve 

DVRP. Also, based on the quality of its generated solutions, with regard to its best and 

average results, the enhanced GA is competitive and out-performs previously published 

DVRP systems. 

To date, a time-based evaluation approach has been used to evaluate DVRP 

systems. However, as all DVRP systems are run for a specified amount of time for each 

time slice, another objective of this research is to propose a fair evaluation approach 

whereby four evaluation approaches, including generations, raw fitness, weighted 

fitness and distance calculations, are tested as alternatives. Of these, as the weighted 

fitness evaluation technique has the lowest standard deviation, it is the most stable for 

use, regardless of a running system’s specifications and power requirements. Overall, 

based on its results from both the time-based and weighted fitness evaluation 

approaches, the modified GA is better than previously published algorithms.  
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Chapter 1 

Introduction 

 

he Dynamic Vehicle Routing Problem (DVRP) is one of the important variants of 

the Vehicle Routing Problem (VRP), which is a complex type of routing problem 

that involves determining an efficient set of multiple routes for a fleet of vehicles that 

start and end at a central depot, so as to service a given set of customers. The purpose of 

this thesis is to focus on solving the DVRP using an enhanced Genetic Algorithm (GA). 

This chapter introduces the research motivations, provides a short background to the 

research topic and then describes the problem, research objectives and contributions. 

Finally, an overview of the thesis organization and its contents are given. 

1.1 Background and Motivations 

In the last few decades, peoples’ lives have been greatly improved due to advances in 

transportation and logistics, which are important because their costs constitute a 

significant percentage of the total cost of any product. In fact, a company usually spends 

more than 20% of a product’s value on transportation and logistics (Hoff et al., 2008). 

Furthermore, the transportation system itself is a sector worthy of consideration, 

because its volume and impact on society continue to increase daily (Hosny, 2010). 

Nevertheless, it also produces negative impacts, such as congestion, noise, pollution 

and/or accidents (Hosny, 2010). Efficient automated vehicle routing systems using 

computerized optimization tools can help to minimize these negative impacts, as well as 

costs, because by reducing mileage they can improve the efficiency of both a driver and 

vehicle. In addition, they can improve customer service, reduce carbon emissions, and 

decrease administrative costs (Hosny, 2010). As a result, the study of routing problems, 

which are complex problems relating to real-life systems, such as feeder, courier and 

medical emergency services, has increased tremendously during the last few decades 

(Laporte, 2009).  

One of the simplest and most common routing problems is the Travelling 

Salesman Problem (TSP), which is an old and well-studied problem in computer science 

T 
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(Applegate et al., 2006). In it, given a set of cities, a salesman must visit each city once 

and return to the starting city. Its objective is to minimize the total distance travelled in 

a single trip. It is a non-deterministic polynomial hard (NP-hard) combinatorial 

optimization problem (Gutin et al., 2002). Thus, the running time required for any 

algorithm to solve the TSP increases exponentially with the number of cities. 

The VRP is a more complex and higher-level type of routing problem than the 

TSP (Dantzig and Ramser, 1959). However, the two problems are closely related 

because the basic VRP involves determining an efficient set of multiple TSP routes for 

a fleet of vehicles, that all start and end at a central depot, to serve a given set of 

customers. It is an NP-hard combinatorial optimization problem which has been studied 

for over fifty years due to its importance and complexity (Laporte, 2009). There are 

various techniques for solving it, which can be categorized into three main types: exact, 

heuristics and metaheuristics. 

Actually, the VRP is considered to be a broad class of routing problems, as it has 

several variants, such as the Capacitated VRP (CVRP), VRP with Time Windows 

(VRPTW), Stochastic VRP (SVRP), VRP with Pickup and Delivery (VRPPD), Multiple 

Depot VRP (MDVRP) and DVRP (Laporte, 2009). 

1.2 Problem Description 

One of the most important variants of the VRP is the DVRP. Unlike the static VRP, in 

the DVRP not all customers are known in advance, but are revealed as the system 

progresses (Montemanni et al., 2005). Thus, DVRP applications are frequently seen in 

various real-life systems that operate on a dynamic basis, such as supply and 

distribution companies, and taxi cabs, emergency and courier services. 

Similar to the VRP, the DVRP is an NP-hard optimization problem, so 

optimization techniques that are capable of producing high-quality solutions within a 

limited time, i.e., metaheuristics, are very useful in finding a solution for them. Such 

techniques include the Ant Colony System (ACS) (Montemanni et al., 2005), GA 

(Hanshar and Ombuki-Berman, 2007), Tabu Search (TS) (Hanshar and Ombuki-

Berman, 2007), Variable Neighbour Search (VNS) (Khouadjiaa et al., 2012) and 

Particle Swarm (PS) (Khouadjiaa et al., 2012). 
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1.3 Research Objectives and Contributions 

The main objective of this research is to find good solutions for the DVRP using 

an enhanced GA. To enhance the GA, modifications to its processes for determining the 

initial population for the first time slice and/or other time slices, selection, swap 

mutation and the detection and management of the Local Optimal Condition (LOC) are 

proposed.  

To date, a time-based approach, in which a DVRP system is run for a specified 

amount of time for each time slice to solve the problem, has been used to evaluate the 

system (Montemanni et al., 2005; Hanshar and Ombuki-Berman, 2007; Runka, 2008). 

Another objective of this research is to propose a new, fair and non-system-dependent 

approach for evaluating DVRP systems, in which four alternatives include generations, 

raw fitness, weighted fitness, and distance calculations, are tested. 

1.4 Computational Environment 

All algorithmic implementations presented in this thesis are programmed in C++ 

using Microsoft Visual Studio 2008, and all computational experiments were carried out 

using an Intel (R) Core i7 CPU, 2.80 GHz machine with 4 GB RAM and under a 

Windows 7 64-bit operating system. The developed algorithms were tested on published 

DVRP benchmark data. 

1.5 Thesis Organization 

This thesis is organized in the following 5 chapters. 

• Chapter 1: Introduction 

• Chapter 2: Background Study 

• Chapter 3: System Design, Implementation and Preliminary Experiments 

• Chapter 4: Advanced Experimental Studies 

• Chapter 5: Conclusions and Future Research Directions 

Chapter 1 provides a brief background to the research topic, describes the 

problem, and presents the research objectives, contributions and organization of this 

thesis. 
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Chapter 2 consists of two parts. The first describes the VRP, starting with the 

TSP and followed by VRP and its variants, while focusing on the DVRP, and the 

second introduces some of the solution techniques proposed for the VRP and DVRP. 

Chapter 3 describes how the DVRP is handled in this thesis and how it is solved 

using the enhanced GA. Also, the preliminary experimental results are presented and a 

time-based comparison with the previously published algorithms is also provided.  

Chapter 4 provides a detailed discussion of the effects of the proposed 

modifications to the GA. It also demonstrates the effects of the proposed GA 

modifications for improving and increasing diversity and escaping from local optima. 

Then it presents four proposed approaches for evaluating DVRP systems, from which a 

new evaluation approach is determined. A comparison with previously published 

algorithms, based on the new evaluation approach, is also provided. 

Chapter 5 summarizes the main research findings and conclusions, together with 

possible future research directions. 
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Chapter 2 

Background Study 

 
he purpose of this research is to focus on solving the Dynamic Vehicle Routing 

Problem (DVRP), which is a member of the large Vehicle Routing Problem 

(VRP) family, by using an enhanced Genetic Algorithm (GA). The first part of this 

chapter describes the Travelling Salesman Problem (TSP), and the VRP and its variants, 

focusing on the DVRP. Then, some of the solution techniques that have been proposed 

for VRPs, including the DVRP, are mentioned. 

2.1 Routing Problems  

Routing problems are complex problems that relate to transportation networks, 

including such real-life systems as feeder, courier and medical emergency services. 

Their importance comes from the fact that any product’s transportation cost constitutes 

a significant percentage of its total cost. In fact, a company usually spends more than 

20% of a product’s value on transportation and logistics (Hoff et al., 2008). In addition, 

a transportation network is itself a significant sector, as its volume and impact on 

society continue to increase daily (Hosny, 2010). 

In the subsequent parts of this section, several routing problems are discussed. 

2.1.1 Travelling Salesman Problem (TSP) 

The TSP is an old and well-studied problem in computer science, in which a salesman 

must visit each of a given number of cities once, and then return to the city from which 

he/she started (Applegate et al., 2006). Its objective is to minimize the total travel cost 

incurred by specifying a single route that determines the most efficient order to achieve 

this task, while using only one vehicle with no further capacity restriction. 

More formally, a routing problem such as the TSP can be structured as a 

complete graph, G(V, E), with a cost matrix, C (Cormen et al., 2001; Hahsler and 

Hornik, 2007; Montemanni et al., 2005), given that: 

T 
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• V = {v0, v1, v2,...., vn} is a set of vertices (nodes) that represents the starting 

location (0) and cities to be visited (1, . . . , n); 

• E = {(vi, vj) | 0 ≤ i, j ≤ n, i ≠ j, vi, vj ∈ V} is a set of edges (arcs) between the 

vertices called the roads where each edge is associated with a cost (time and/or 

distance); and 

• C = (cij) is a cost matrix, where if i = j, cij = 0, and if the problem is 

symmetrical, cij = cji. Also, the triangle inequality is generally assumed to hold, 

that is, cij ≤ (cik + ckj) (0 ≤ i,j,k ≤ n). 

For the TSP, a route could be defined as a vector, R = (v0, v1, ..., vk+1), where v0 

= vk+1 and 0 ≤ k ≤ n. The first restriction, v0 = vk+1, ensures that the route starts and ends 

at the same location (Applegate et al., 2006) and the goal is to minimize  ∑ 𝑐𝑗,𝑗+1
𝑘
𝑗=0 . 

A TSP may be symmetric or asymmetric. In most cases, as the distance between 

two nodes (for example, A to B or B to A) in a TSP network is the same in both 

directions, it is called a symmetric TSP (STSP), but otherwise, an asymmetric TSP 

(ATSP) (Cormen et al., 2001; Gutin et al., 2002; Glover et al., 2001; Gutin and Punnen, 

2004; Hahsler and Hornik, 2007). Figure 2.1 shows an example of a TSP. 

 

Figure 2.1: Example of a TSP (S: Source) 

As the TSP is a non-deterministic polynomial hard (NP-hard) combinatorial 

optimization problem, it is likely that the worst-case of running time for any algorithm 

for solving it increases exponentially with the number of cities involved (Grover, 1992; 

Dorigo and Gambardella, 1997; Gutin et al., 2002; Punnen et al., 2003; Gutin and 

Punnen, 2004). 

 

1 
2 

4 

3 

S 
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2.1.2 Vehicle Routing Problem (VRP) 

The VRP is a generalization of the TSP, that may also be called a multiple TSP (m-

TSP), which has more than one salesman, where m ≥ 1, defines the number of vehicles 

or fleet size (Bektas, 2006). 

It is a more complex and higher-level type of routing problem than the TSP, 

although the two are closely related, and is also one of the most important combinatorial 

optimization problems. The basic VRP involves determining an efficient set of multiple 

TSP routes, that all start and end at a central depot, for a fleet of vehicles that intends to 

serve a given set of customers (Dantzig and Ramser, 1959). All customers should be 

visited once by only one vehicle, and typically, as a single route may exceed a given 

length or travel time, there is therefore a need for multiple routes (Cordeau et al., 2005; 

Hinton, 2010; Gendreau et al., 2002; Hosny, 2010; Laporte, 2009). 

The objective of the VRP, is to minimize the route length, service cost, travel 

time, number of vehicles and/or a combination of these depending on the particular 

application (Dantzig and Ramser, 1959). It aims to serve a set of customers with 

specific demands using a fleet of vehicles while minimizing the times taken and/or 

distances travelled. A VRP solution has some specific constraints, which may include 

that every customer must be served by only one vehicle (Gendreau et al., 2002; Cordeau 

et al., 2005). As the VRP is an NP-hard problem which is both important and complex, 

during the last few decades, researchers have been paying more attention to solve it 

(Cordeau et al., 2005; Hinton, 2010; Gendreau et al., 2002; Hosny, 2010; Laporte, 

2009). 

The VRP can be modelled in the same way as the TSP in the previous section. 

The quantity of goods, qi, requested by each customer, i (where i > 0), is associated 

with its corresponding vertex (1, . . . , n), while the starting location of the vehicles is 

node 0 (the depot) (Montemanni et al., 2005). If the set of vehicle routes = {VR1, . . . , 

VRm} is a partition of VR into m vehicle routes that serve all customers, the 

cost/distance traveled for a given vehicle route, VRi = {v0, v1, . . . , vk+1}, where vj ∈ V 

and the depot vk+1 = v0, is given by: 

                              𝐶𝑜𝑠𝑡 (𝑉𝑅𝑖) =  ∑ 𝑐𝑗,𝑗+ 1,                                   𝑘+1
𝑗=0                                  (2.1) 

and the overall solution cost, S, is 
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                           𝑆 =  ∑ 𝐶𝑜𝑠𝑡(𝑉𝑅𝑖).                                          𝑚
𝑖=1                                   (2.2) 

In general, the VRP aims to minimize the overall cost of the solution using m 

vehicles under the following constraints: 

• each vehicle starts from and returns to the depot; and 

• each customer is served once by only one vehicle. 

Figure 2.2 shows a small example of a VRP. 

 
Figure 2.2: Example of a VRP with 10 customers and 2 vehicles 

2.1.2.1 VRP Variants 

The VRP is actually considered to be a broad class of routing problems and is composed 

of many variants that may require modifications of the definition given in the previous 

section. This section provides an overview of the most common variants. It is also 

possible that two or more can be combined to form more complex VRP variants. 

a) Capacitated VRP (CVRP)  

The CVRP is both the most common and basic variant of the VRP. It has the additional 

constraint that each vehicle within the fleet has a specific carrying capacity for a 

commodity, and thus the sum of the customers’ demands that it serves along any route 

assigned to it must be less than, or equal to, its capacity, Q (Takes, 2010; Ralphs et al., 

2003). 
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It can be further classified as homogeneous and heterogeneous. In a 

homogeneous (uniform fleet) CVRP, each vehicle has the same capacity, Q. To ensure 

that all vehicles are sufficiently large; the demand of any customer is never greater than 

the capacity of any vehicle, that is, qi ≤ Q (1 ≤ i ≤ n). Also, the total demands of all 

customers cannot be greater than the total capacities of all vehicles, that is, (∑ 𝑞𝑖)  ≤𝑛
𝑖=1

𝑚 ∗  𝑄 (Toth and Vigo, 2001b). An example of this type of system is shown in Figure 

2.3. 

 
Figure 2.3: Example of homogeneous CVRP 

The heterogeneous (mixed fleet) CVRP is composed of different vehicle types, 

each with its own capacity, and the demand of any customer is never greater than the 

capacity of the largest vehicle, i.e., qi ≤ Qmax (1 ≤ i ≤ n). Restrictions similar to the ones 

defined above for the homogeneous CVRP, are also applied to the heterogeneous CVRP 

(Toth and Vigo, 2001b). An example is shown in Figure 2.4. 

 
Figure 2.4: Example of heterogeneous CVRP 
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b) VRP with Time Windows (VRPTW)  

The VRPTW is an extension of the traditional VRP, in which there is the additional 

restriction that customer i has to be served within a scheduling horizon, called a time 

window, [si, ei], where si is the start time and ei the end time for serving customer i, for 

which definitions of the feasibility constraints of the VRP are extended (Cordeau et al., 

2001; Bräysy, 2003). 

c) Stochastic VRP (SVRP) 

The SVRP is an extension of the traditional VRP, in which some or all of the variables 

or properties of the VRP are random (Takes, 2010). Examples for the SVRP include 

(Bianchi et al., 2006; Van Woensel et al., 2008; Secomandi and Margot, 2009): 

• a customer may be present only with a certain probability; 

• a customer has a certain random demand; and 

• a random factor can be incorporated into the customer’s demand or service time. 

 

d) VRP with Pickup and Delivery (VRPPD) 

The VRPPD is an extension of the traditional VRP in which goods are transported from 

pickup to delivery points. Such a problem needs to be solved in real-life situations and 

is usually much more complicated than the classical VRP; for example, in practice 

goods not only need to be taken from the depot to the customers, but are also picked up 

from a set of customers and are brought back to the depot (Takes, 2010). 

A similar variant is the VRP with Backhauls (VRPB) which is, in essence, the 

same as the VRPPD except that it has the critical restriction that all goods must be 

delivered before any goods can be picked up, because the vehicle is full, that is, ‘Last-

In, First-Out’ (LIFO) (Dethloff, 2001; Crispim and Brandao, 2001). 

e) Multiple Depot VRP (MDVRP) 

The MDVRP is an extension of the traditional VRP in which there is more than one 

depot from which vehicles can start and terminate their routes. For instance, as large 

companies such as those in the gas industry and emergency services, have more than 

one depot, it is common that their goal is to minimize the total travel cost of their 

vehicles (Ombuki-Berman and Hanshar, 2009). 
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The MDVRP can further be classified as a fixed or non-fixed destination 

problem. In the former, each vehicle starts and terminates its route at the same depot, 

whereas in the latter, vehicles start and terminate at different depots (Ho et al., 2008; 

Surekha and Sumathi, 2011), as shown in Figure 2.5. 

 
Figure 2.5: Example of MDVRP 

2.1.2.2 Dynamic Vehicle Routing Problem (DVRP) 

As this thesis focuses on solving the DVRP, it is considered in more detail in this 

section. 

The DVRP is an extension of the traditional VRP, in which not all the customers 

are known in advance, but are revealed as the system progresses. Thus, system routes 

must be changed to consider new customers (Kilby et al., 1998). 

Consequently, the DVRP is applicable to many real-life problems that operate 

on a dynamic basis, whereby vehicles leave their depots before all customers are 

known. A short review of the main applications that motivate research in the field of the 

real-time/dynamic VRP are (Montemanni et al., 2005; Hanshar and Ombuki-Berman, 

2007; Cre´Put et al., 2011; Larsen, 2000; Ghiani et al., 2003; Gendreau and Potvin, 

1998; Pillac et al., 2011): 
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• Supply and distribution companies: in seller-managed systems, as the actual 

demand quantity may be uncertain, some customers might run out of stock and 

have to be served urgently. 

• Taxi cab services: their percentage of dynamic customers is very high because 

only a few are known before each taxi cab leaves its station to begin its duty. 

• Emergency services: these include police, fire fighting and ambulance services, 

for which the percentage of dynamic customers is also very high, and sometimes 

the problem is purely dynamic because all the customers are unknown and arrive 

in real time. 

• Courier services: as national/international express mail services offer to pick up 

packages and/or mail at certain locations and deliver them safely to other 

locations, they must respond to customer requests in real time. 

• Rescue and repair service companies: these usually involve utility firms which 

deal with problems such as car breakdowns and electricity, gas and water faults, 

and must respond to customer requests for maintenance and/or repair of 

vehicles/facilities in a short time. 

• Dynamic dial-a-ride systems: these deal with customers and/or goods that must 

be picked-up at one location and taken to another; for example, the 

transportation of elderly and disabled people. 

The objective to be optimized is often a combination of different measures 

which depend on the nature of the system. Also, the DVRP inherits the classical 

objectives defined in the conventional VRP (Larsen, 2000; Larsen et al., 2008; Pillac et 

al., 2011). 

Figure 2.6 shows an example of the DVRP, where bold arrows show completed 

route segments (that contain already committed customers), normal arrows represent 

planned routes (that contain serviceable customers), dashed arrows represent new route 

segments, circles represent known customers’ orders, and rectangles represent new 

customers’ orders.  
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Figure 2.6: Example of DVRP with two vehicles, 8 known customers’ orders and 2 

new customers’ orders 

The main difference between static and dynamic VRP, is that as in the latter new 

orders arrive when the working day has already started, it is thus necessary to 

dynamically change the optimization problem (Montemanni et al., 2005). Therefore, the 

DVRP can be modelled as a sequence of static VRP instances which contain all the 

customers known at that time but not yet served. The ratio of the known to unknown 

customers when the system starts is called the degree of dynamism (dod) (Kilby et al., 

1998; Pillac et al., 2011; Larsen et al., 2002): 

              𝑑𝑜𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑐 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 (𝑘𝑛𝑜𝑤𝑛 𝑖𝑛 𝑎𝑑𝑣𝑎𝑛𝑐𝑒)
𝐴𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

                              (2.3) 

where the dod ∈ [0, 1]. If the dod is 0, all requests are known in advance 

(completely static problem) while, if it is 1, no requests are known in advance 

(completely dynamic problem) (Khouadjiaa et al., 2012; Kilby et al., 1998; Larsen et 

al., 2002; Pillac et al., 2011). 

As well as the basic VRP data, the DVRP requires the following three types of 

data (Kilby et al., 1998; Montemanni et al., 2005): 

1. the working day that determines the available time to serve all customers; 

2. an available time that determines when the customer enters the system as it is 

assumed that nothing is known about the task until its available time comes; and 



Chapter 2                                                                                                                                      Background Study 
 

        14  
  

3. a duration of time that will be spent serving each customer. 

Also, the vehicle must be dispatched in time to make its visits and return to the 

depot before the depot closes. It will wait at its last committed customer unless the 

‘return home’ rule happens, which only occurs in the following two situations 

(Montemanni et al., 2005; Khouadjiaa et al., 2012):  

• all customers have been served; or  

• a vehicle has used all its capacity. 

The DVRP variant considered in this thesis was originally proposed by Kilby et 

al. (1998) and was then modified by Montemanni et al. (2005). It is based on the idea of 

dividing the working day, T, into nts time slices with 𝑇
𝑛𝑡𝑠

 length, so that any new 

customer’s order that arrives during a time slice is postponed to the end of it (Kilby et 

al., 1998). During each time slice, a problem very similar to a static VRP, but with 

vehicles that might have different capacities and starting locations, is created and then 

optimization is carried out (Montemanni et al., 2005). 

While solving the DVRP, two times are used. The first is the cutoff time, Tco, 

which is a parameter defined by the user that is expressed as a fraction of the working 

day T which used to determine the dod. As mentioned before, in this DVRP model, all 

customers have an associated ‘available time’; and each customer that has an arrival 

time greater than the Tco is interpreted as being one that arrived the day before and was 

not serviced. (Kilby et al., 1998; Montemanni et al., 2005; Hanshar and Ombuki-

Berman, 2007). 

The second time is the advanced commitment time, Tac, which is the commit 

horizon, and is also expressed as a fraction of the working day, T (Kilby et al., 1998; 

Montemanni et al., 2005; Hanshar and Ombuki-Berman, 2007). In practice, as an order 

has to be committed to a driver at least Tac seconds prior to the planned time of 

departure from the last location visited, a Tac of zero seconds means that all decisions 

are committed at the last possible moment. After each time slice, the solution is chosen 

and customers with processing times that start within the next 𝑇
𝑛𝑡𝑠

+ 𝑇𝑎𝑐 seconds are 

committed to their respective vehicles. 
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Therefore, in each time slice, a given customer may be in one of the following 

three states (Runka, 2008; Hanshar and Ombuki-Berman, 2007): 

• not serviceable, that is, not included in the routing scheme because he/she is not 

known a priori; 

• serviceable, that is included in the routing scheme and does not have a fixed 

position in the routing scheme; or 

• committed, that is already served, and so has a fixed position in the routing 

scheme. 

Moreover, in contrast to the VRP, for the DVRP the solution(s) obtained from 

the previous time slice(s) can be used as an initial population for the next time slice(s). 

2.2 Solution Techniques 

There are many techniques for solving routing problems. Some of these techniques are 

exact methods that guarantee to find the optimal, exact and best solution given 

sufficient time, and others are approximation techniques (heuristics and metaheuristics) 

which produce good solutions in a reasonable amount of time, although there is no 

guarantee of achieving optimality. 

These techniques can be categorized into three main types: exact, heuristics-

based, and metaheuristics-based. 

2.2.1 Exact Methods 

Generally, exact methods attempt to obtain the exact, and thus the best solution to a 

given problem. As both the TSP and VRP are NP-hard problems, there is no known 

exact method that works well for solving every one of their instances (Takes, 2010; 

Hosny, 2010). In other words, they might take an arbitrarily large time to obtain an 

optimal solution. 

The most well-known exact methods are Branch and Bound (B&B) and Branch 

and Cut (B&C) (Toth and Vigo, 2001a; Fukasawa et al., 2006) while many others have 

also been proposed in the literature (Christofides et al., 1981; Laporte and Nobert, 

1987). 
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In general, as exact methods search among all the possible solutions to a 

problem, they are usually prohibitive for large problems, which limits in their 

applicability in comparison to heuristic-based and metaheuristic-based methods. 

2.2.2 Heuristic-based Methods 

Although heuristic methods do not guarantee to obtain the best solution, they are able to 

find a good solution in a reasonable time. Most of those used to solve the VRP are 

derived from the TSP (Laporte, 1992).  

Heuristic methods can be classified into the following three main categories, that 

are based on their nature. 

1) Construction algorithms are those in which the solution starts with an empty 

route, which is then constructed by including customers, usually one at a time, 

until a complete tour is developed, while trying to keep the total cost as low as 

possible. The most well-known algorithms in this category are Nearest 

Neighbour Insertion (NNI) and Clarke and Wright’s Savings algorithm (CWS) 

(Clark and Wright, 1964; Hahsler and Hornik, 2007; Laporte, 1992; He et al., 

2010). 

2) Improvement algorithms are those which construct a solution and then try to 

improve it by searching for a more efficient one. The most well-known 

algorithms in this category are r-Opt local searches (2-Opt and 3-Opt) (Bräysy 

and Gendreau, 2005; Hahsler and Hornik, 2007) and Iterated Lin-Kernighan 

(ILK) (Helsgaun, 2000). 

3) Two-phase heuristics are those which work to find a solution through two 

different phases, such as clustering and routing (Taillard et al., 1996; Shen et al., 

2010). 

2.2.3 Metaheuristic-based Methods 

As the classical heuristic methods that were mentioned briefly in the previous section 

perform limited searching; they can become stuck in local optimal conditions. In 

contrast, metaheuristics are used to minimize the probability of this happening, and so 

try to reach a global optimal solution (Osman and Kelly, 1996). In this section, some 

metaheuristics methods that have been successfully applied to the VRP are discussed. 



Chapter 2                                                                                                                                      Background Study 
 

        17  
  

Metaheuristics are a set of concepts that can be used to guide other heuristics to 

find their way out of a local optimal solution, by continuing the search for better areas 

of the solution space, and thereby try to reach a global optimal solution (Osman and 

Laporte, 1996; Manfrin, 2004). In the literature, many criteria for classifying 

metaheuristics have been proposed (Stützle, 1998), with a useful one being to consider 

the number of solutions used at the same time. In this way, metaheuristics can be 

classified into ‘single-point’ and ‘population-based’; in other words, at any particular 

time, whether the algorithm works on a single solution or population (Manfrin, 2004; 

Talbi, 2009) i.e., 

i. Single-point search Metaheuristic algorithms which work on a single solution, 

and which are also called trajectory methods, encompass local search-based 

metaheuristics, such as Tabu Search (TS) and Simulated Annealing (SA). 

ii. Population-based search Metaheuristic algorithms which perform search 

processes by describing the evolution of a set of points in the search space at the 

same time, such as Ant Colony Optimization (ACO) and GA. 

More details of the main metaheuristic algorithms that have been applied to the 

VRP are provided in the following. 

a) Greedy Randomized Adaptive Search Procedure (GRASP) 

GRASP is a single-point multi-start local search metaheuristic algorithm. The GRASP 

methodology was proposed by Feo and Resende (1995). It is obvious from its name that 

it is a randomized greedy metaheuristic technique which generates different starting 

solutions for applying a local search (Feo and Resende, 1995; Dorigo and Stützle, 

2004). 

It is an iterative metaheuristic, in which each iteration consists of two main 

phases: construction and local search. In the construction phase, initial solutions are 

constructed by a construction heuristic that is based on a greedy technique, then GRASP 

tries to improve the obtained solutions by a local search (Dorigo and Stützle, 2004).  

In general, although GRASP is based on some simple greedy techniques, it 

includes some randomization to diversify the search of the solution space and is applied 

many times to increase the likelihood of identifying a good-quality solution (Contardo 

et al., 2011; Talbi, 2009). 
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b) Simulated Annealing (SA) 

SA is a single-point generic probabilistic metaheuristic algorithm, and is commonly said 

to be the most popular metaheuristic. It was first described by Kirkpatrick et al. (1983) 

and is based on the work of Metropolis et al. (1953). It is one of the first algorithms that 

incorporates an explicit local optimal escaping strategy (Van Laarhoven and Aarts, 

1987) and has been used to solve various combinatorial optimization problems 

(Manfrin, 2004).  

The idea behind it is the annealing process of solids, such as metal and glass, 

which effectively minimize the energy of a system by using slow cooling until its atoms 

reach a stable state. It has an annealing schedule, a critical issue for solving a problem, 

that includes the initial temperature and the rate at which it is reduced (Van Laarhoven 

and Aarts, 1987; Czech and Czarnas, 2002). 

SA starts with a certain feasible solution to a problem, which it then tries to 

optimize using a method analogous to the annealing of solids. To do this, a neighbour of 

a current solution is generated using an appropriate method and its cost (fitness) 

calculated. If this new solution is better than the current one, it is fully accepted; 

otherwise, it is accepted with a certain probability (Chiang and Russell, 1996; Talbi, 

2009). 

While SA is running, as the temperature is gradually reduced, the probability of 

the acceptance of low-quality solutions becomes very small. Therefore, high 

temperatures allow a better exploration of the search space and lower ones allow the 

fine tuning of a good solution. This process is repeated until the temperature approaches 

zero or no further improvement can be achieved (Takes, 2010; Hanshar and Ombuki-

Berman, 2007). 

c) Tabu Search (TS) 

TS is a single-point metaheuristic algorithm proposed by Fred Glover (1977) and is one 

of the most successful algorithms for solving routing problems. Its basic idea is to use a 

search-space history to escape from local minima, and thereby implements an 

exploration strategy (Manfrin, 2004). 
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Although it is like SA in that it can ‘intelligently’ explore the search space in an 

attempt to escape a local optima trap, it has the following three main differences 

(Manfrin, 2004): 

1. it accepts moves that improve the objective function; 

2. it searches for the best solution in the current neighbourhood before applying the 

replacement criterion; and 

3. it uses a short-term memory, called a tabu list, to record solutions that have been 

visited recently during the search, which are then prohibited from re-exploring. 

TS is based on a best-improvement local search and uses short term memory 

(tabu list) to escape from local minima and to avoid cycles (repeating the same sequence 

of moves). The size of the tabu list is an issue for TS, as with small tabu lists the search 

will concentrate on small search spaces. On the opposite hand, large tabu lists force the 

search process to explore larger regions, because it forbids revisiting a higher number of 

solutions (Manfrin, 2004; Talbi, 2009). 

d) Variable Neighbourhood Search (VNS) 

VNS is a single-point metaheuristic algorithm proposed by Mladenovic and Hansen 

(1997), which tries to escape from local optima by systematically changing 

neighbourhoods (Khouadjiaa et al., 2012; Talbi, 2009). 

It explores a distant neighbourhood of the current solution and then tries to move 

from the current solution to a new one, if and only if, an improvement is available. 

Thus, it systematically exploits neighbourhood changes by both searching for local 

minima and escaping from the valleys which contain them (Khouadjiaa et al., 2012; 

Hansen et al., 2010; Talbi, 2009). 

The VNS strategy is motivated by the following three principles (Hansen et al., 

2010; Brownlee, 2011): 

• the local minima of different neighbourhood structures may not be the same;  

• a global minimum is a local minimum for all possible neighbourhood structures; 

and 

• for a problem, the local minima are relatively close to the global minima. 
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e) Large Neighbourhood Search (LNS) 

LNS is a single-based metahuristic algorithm that was proposed by Shaw (1997) and 

can be defined as a combination of destroy and repair methods (Shaw, 1998). A destroy 

method destructs part of the current solution, while a repair method rebuilds the 

destroyed solution (Pisinger and Ropke, 2010). 

LNS takes advantage of the expressiveness of Constraint Programming (CP) and 

the speed of Local Search (LS); its working principle is to maintain a candidate solution 

through out the search, that is not violating any constraint but that may not be optimal 

(or not known to be) (Ropke and Pisinger, 2006). 

There is an extended version of LNS that is called Adaptive LNS (ALNS), 

which was proposed in (Ropke and Pisinger, 2006). ALNS extends the LNS algorithm 

by allowing multiple destroy and repair methods to be used within the same search. 

Thus, ALNS investigates multiple solutions (neighbourhoods) within the same search to 

reach better solutions (Pisinger and Ropke, 2010). 

f) Ant Colony Optimization (ACO) 

ACO is a population-based nature-inspired metaheuristic algorithm that can be 

considered as one of the newest metaheuristics for solving routing problems. Its basic 

idea was introduced by Dorigo (1992) and its biological basis is the communication 

established by ants when they seek food (Dorigo and Gambardella, 1997). 

ACO was inspired by the behaviour of real ants which are able to find the 

shortest paths between food sources and their nests. Initially, an ant explores the area 

surrounding its nest in a random manner until it reaches a food source before returning 

to its nest. During this process, it deposits pheromone trails which are later detected by 

the majority of ants which follow the paths most frequently used by others, an indirect 

communication which allows them to find the shortest paths between their nests and 

food sources (Dorigo, 1992; Gendreau et al., 2008). 

In an ACO implementation, the artificial ants must retain certain properties of 

real ants, each has a limited memory (tabu list) in which it can store both the partial 

paths it has followed and the cost of the links it has traversed, thereby building solutions 
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to its problem without entering a loop. However, artificial ants have the following major 

differences compared with real (natural) ones (Dorigo and Stützle, 2004): 

• they have some memory; 

• they are not completely blind; and  

• they live in an environment where time is discrete. 

ACO has three main components which are briefly explained below (Takes, 

2010; Talbi, 2009). 

1) Route construction determines how ants build a solution. They work in a parallel 

fashion with each ant designing all vehicles’ routes at the same time by choosing 

only one client at each iteration. 

2) Transition rule determines which customer is chosen next by each ant. 

3) Pheromone update is performed either during or after the building of a solution. 

It includes an evaporation process in which the pheromone concentrations of all 

the solutions, except the best, are decreased, and that of the best is increased. 

 

g) Particle Swarm Optimization (PSO) 

PSO is a population-based nature-inspired metaheuristic algorithm proposed by 

Kennedy and Eberhart (1995), and its biological basis is the simplification of social 

behaviour simulations of birds flocking and fish schooling (Kennedy and Eberhart, 

1995). 

In PSO, each single solution (e.g., a bird) in the search space is called a particle 

which has a fitness value, evaluated by the fitness function of the problem to be 

optimized, and a velocity which directs its flying (Talbi, 2009). Particles are initially 

placed at random positions in the search space and then each adjusts its strategy of 

flying in the search space according to both its own and its peers’ flying experiences to 

discover better positions (Kennedy et al., 2001; Clerc, 2006; Brownlee, 2011). 

2.2.3.1 Genetic Algorithm (GA) 

As this thesis focuses on solving the DVRP using a GA, the GA is reviewed in more 

detail in this section. 



Chapter 2                                                                                                                                      Background Study 
 

        22  
  

The GA is a population-based, nature-inspired metaheuristic that became 

popular through the work of Holland in the early 1970s. Although his book “Adaptation 

in Natural and Artificial Systems (1975)”, was built upon Fraser’s work (1957), and 

Fraser and Burnell (1970). It is one of the most popular metaheuristics for solving 

various combinatorial optimization problems, in particular, NP-hard problems. The idea 

behind it is to combine candidate individuals from the current population by applying 

crossover and mutation processes to try to create new enhanced individuals (Mitchell, 

1998). Figure 2.7 shows an overview of the GA processes.   

 
Figure 2.7: Overview of GA processes 

A critical issue in the GA is encoding, which determines how to represent the 

problem in a chromosome form that a computer system can process to solve a given 

problem. There are many ways of encoding, e.g., encoding values as real or integer 

numbers, and the used method usually depends on the problem to be solved (Mitchell, 

1998; Sivanandam and Deepa, 2008). Two different GA methods for encoding are 

described below. 
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• Binary encoding 

Binary encoding is the most common encoding method and was first used in the GA 

because of its simplicity. In it, the chromosome consists of a string of bits, 0 or 1 

(Sivanandam and Deepa, 2008; Mitchell, 1998), as shown in Figure 2.8. 

1 0 0 1 0 1 

Figure 2.8: Example of binary encoding 

However, it is often not suitable, especially for problems with more than two 

variables, such as scheduling and routing problems. 

• Permutation encoding 

Permutation encoding is used in optimization problems which involve sorting a list or 

putting things in the right order, such as routing problems. In it, every chromosome 

consists of a string of values that represents the sequence of positions (Sivanandam and 

Deepa, 2008; Mitchell, 1998). Figure 2.9 shows a permutation encoding example for a 

TSP instance of six customers (1, 2, 3, 4, 5 and 6). 

1 5 2 6 3 4 

Figure 2.9: Example of permutation encoding 

In this thesis, the DVRP, which is a routing problem, is solved, so the right order 

is important to get a better solution, hence the permutation encoding is used. For it, the 

chromosome contains all the customers to be served. It can be interpreted as the order in 

which a vehicle must visit all clients, assuming the same vehicle performs all trips in 

turn. However a split method is used on it to determine where a new vehicle must be 

created to serve the next customers. Prins used a splitting procedure to split optimally 

any sequence into trips and to thus recover the corresponding VRP solution (Prins, 

2001; Prins, 2004). In this thesis, a simple splitting method is used, as it takes less time 

than Prins’s splitting procedure. This simple splitting procedure is illustrated in Chapter 

3 (Section 3.3.1). 

A GA population contains a specific number of individuals (population size); 

each called a chromosome which consists of a string of genes. For the VRP, each gene 
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often represents a customer that a vehicle will visit and the chromosome determines the 

sequence in which that vehicle will visit all customers (Weise, 2009). 

The GA begins solving a problem by creating an initial population using a 

random and/or heuristic construction technique. Then, each chromosome in this 

population is evaluated to obtain its fitness function value which is used to quantify the 

optimality of each solution represented (Haupt and Haupt, 2004; Sivanandam and 

Deepa, 2008). 

When solving a problem, the GA involves three main processes (Takes, 2010; 

Baker and Ayechew, 2003), selection, crossover and mutation, as discussed in the 

following three sections. 

1. Selection Usually, this is the first process applied on a GA population. It 

determines how candidate individuals in the population are chosen for 

reproduction (crossover and mutation) and is derived by the chromosome fitness 

that allows the fittest chromosomes to survive. The following are different 

selection methods. 

 

• Roulette Wheel Selection (RWS) 

RWS is used to select potentially useful solutions for recombination. In it, a 

chromosome’s chance of being selected is proportional to its fitness value in relation to 

its competitors’ fitness values; for example, if fi is the fitness of individual pi in 

population P, its probability of being selected is pi = 𝑓𝑖
∑ 𝑓𝑗𝑛
𝑗=1

 (Talbi, 2009; Sivanandam 

and Deepa, 2008). 

• Tournament Selection 

As tournament selection is the selection method used in this thesis, it is discussed in 

more detail in this section. It is a chromosome selection process for recombination and 

closely mimics the nature of a mating competition. It randomly chooses a small subset 

of a certain size, k, of chromosomes from the mating pool (whole population), called a 

tournament, from which a chromosome is selected. This process is repeated for every 

needed chromosome (Talbi, 2009; Hanshar and Ombuki-Berman, 2007; Sivanandam 

and Deepa, 2008); for example, a tournament set of size two is initially randomly drawn 
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from population P. Then, a defined constant parameter, ρ, which is the selection 

pressure that allows some less fit solutions to be selected, is used to control how biased 

the selection is towards the fitter chromosomes. The steps involved in normal 

tournament selection are (Hanshar and Ombuki-Berman, 2007): 

Step 1: randomly select a set of two from the population to fill the tournament 

set; 

Step 2: create a random number, r ∈ [0, 1]; and 

Step 3: if r <= selection threshold, select the fittest individual from the 

tournament to be used in reproduction 

   else randomly choose one of these chromosomes. 

2. Crossover This process determines how the current population of chromosomes 

(parents) are combined to create new chromosomes (children). Various 

crossover methods are described below. 

 

• One-point crossover 

The one-point crossover randomly selects one crossover point and then copies every 

gene before this point from the first parent chromosome and every gene after this point 

from the second parent chromosome (Talbi, 2009; Sivanandam and Deepa, 2008), and 

is applied mainly on binary encoding GAs. 

• Two-point crossover 

The two-point crossover randomly selects two crossover points and then interchanges 

the two parent chromosomes between them to create two new chromosomes (Talbi, 

2009; Sivanandam and Deepa, 2008), and is also applied mainly on binary encoding 

GAs. 

• Partially-Mapped Crossover (PMX) 

The PMX can be viewed as a two-point crossover extension to permutation encoding. 

To resolve the possible illegitimacy that may be caused by the simple two-point 

crossover, it uses a special mapping procedure (Talbi, 2009; Sivanandam and Deepa, 

2008). 
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• Best Cost Route Crossover (BCRC) 

As a modified version of the BCRC used in this thesis; it is discussed in more detail in 

this subsection. It was developed by Ombuki-Berman et al. (2006) and involves the 

following steps. 

 Step 1: choose the parents by using tournament selection (P1, P2). 

Step 2: randomly select a vehicle from each parent (v1, v2 respectively) which 

must contain uncommitted customers. 

 Step 3: remove v1’s and v2’s customers from P2 and P1 respectively. 

 Step 4: re-insert the customers that have been removed, to locations which 

minimize the overall cost of the entire route. If no re-insertion location for a particular 

customer can be found in an existing route, create a new route (Hanshar and Ombuki-

Berman, 2007) which is then added to the current parent chromosome so it can be tested 

for the re-insertion of upcoming customers. 

The BCRC is illustrated in Figure 2.10. In step 1, after selecting two parents (P1, 

P2), a route is randomly selected from each (v1 [3, 1, 7] and v2 [1, 9, 8]) and that v1 and 

v2 customers are removed from P2 and P1 respectively. In step 2, customers 1 and 3 are 

tested to be inserted in the best locations in P1 and P2 respectively. In steps 3 and 4, 

customers 9 and 1, and 8 and 7 are tested for insertion into the best locations in P1 and 

P2 respectively. However, as customer 7 has no available insertion, it is placed at the 

end of the chromosome. Finally, in step 5, the final newly combined vehicles are used 

to create new children chromosomes. 
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Figure 2.10: Example of BCRC  

3. Mutation This process determines how new children chromosomes are self-

modified through different mutation methods, such as insertion, reverse and 

swap. 

• Insertion 

Insertion mutation selects a gene from a random position in a chromosome and inserts it 

in a random position in the same chromosome (Haupt and Haupt, 2004; Sivanandam 

and Deepa, 2008; Mitchell, 1998), as illustrated in Figure 2.11. 
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9 2 3 8 1 6 7 5 4 

 

 

9 2 3 1 6 7 5 8 4 

Figure 2.11: Example of insertion mutation 

• Reverse 

Reverse mutation is sometimes called inversion mutation. It selects two random 

positions within a chromosome and then reverses (inverts) the genes between them 

(Haupt and Haupt, 2004; Hanshar and Ombuki-Berman, 2007; Sivanandam and Deepa, 

2008), as illustrated in Figure 2.12.  

 

9 2 3 8 1 6 7 5 4 

 

 

9 2 3 7 6 1 8 5 4 

Figure 2.12: Example of reverse mutation 

• Swap 

Swap mutation selects two positions at random and then swaps their genes (Haupt and 

Haupt, 2004; Mitchell, 1998; Sivanandam and Deepa, 2008), as illustrated in Figure 

2.13. 

 

 

 

 

 

Two random positions selected 

Genes string between these two positions inverted 

One random position for selection 

One random position for insertion 
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9 2 3 8 1 6 7 5 4 

 

 

9 2 3 7 1 6 8 5 4 

Figure 2.13: Example of swap mutation 

The GA can also use an elitist strategy in which a set of the best solutions is 

carried from the current generation to the next one (Sivanandam and Deepa, 2008; 

Hanshar and Ombuki-Berman, 2007). This allows elite solutions to propagate from 

generation to generation and ensures that the best solution does not deteriorate over 

time. 

2.3 Chapter Summary 

In this chapter, an introduction to the TSP and the VRP and its variants, 

including the DVRP, as well as different techniques for solving routing problems, has 

been presented. Based on the literature reviewed, it is clear that the DVRP is an 

important routing problem applicable to many real-life problems that operate on a 

dynamic basis. In the next chapter, a modified GA (which aims to solve the DVRP) is 

proposed. 

Two random positions selected 

Two genes in these positions swapped 
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Chapter 3 

System Design, Implementation and Preliminary 

Experiments 

 
his thesis focuses on solving the Dynamic Vehicle Routing Problem (DVRP) 

using a modified Genetic Algorithm (GA). In this chapter the architecture of the 

adopted GA-based approach is described and solutions to DVRP benchmark problems 

are reported and compared with state-of-the-art algorithms. 

3.1 Modified Genetic Algorithm (GA)-based DVRP 

The DVRP solution approach used in this thesis comprises the two subsystems as 

follows: 

1. The event manager subsystem controls and determines both the system and 

problem flows by creating a static VRP-like instance for each time slice through 

receiving, adding new customers and then committing the expected customers to 

their respective vehicles. Therefore, it manages all the inputs to and the outputs 

from the environment and coordinates the working of the GA. 

2. The GA optimization subsystem handles the solution and optimization process. 

It executes the GA to solve a given static VRP-like instance generated by the 

event manager subsystem for each time slice. The GA tries to find the best 

solution for each given problem until the stopping condition is met and then 

reports it. 

The first subsystem is the same as that used in (Montemanni et al., 2005; 

Hanshar and Ombuki-Berman, 2007; Runka, 2008), but the second subsystem differs as 

it uses a modified GA that tries to increase the diversity in an attempt to reach optimal 

solutions.  

The proposed system structure is illustrated in Figure 3.1, and its subsystems are 

described in more detail in Sections 3.2 and 3.3 respectively. 

T 
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Figure 3.1: Architecture of GA-based DVRP system 

3.2 Event Manager Subsystem 

The event manager is a subsystem which manages the DVRP by subdividing it into a 

series of static VRP-like instances. Therefore, it keeps track of simulation times, 

customers’ states and committed vehicles’ routes, as well as globally static information, 

such as a user’s parameters and GA parameters. The event manager pseudo-code is 

presented in Figure 3.2. 

The event manager begins by solving the DVRP by initializing the problem 

parameters, such as: T, nts, Tac and Tco and GA parameters such as the percentage of 

crossover and mutation. Then, all customers with available times greater than Tco are 

considered and assigned an initial static VRP-like instance (an initial distribution for the 

known customers that determines they must be visited to try to find a solution for the 

problem). Each instance is passed to the GA subsystem which solves the problem and 

returns an optimized solution. Then, the event manager uses this optimized solution to 

update the dynamic problem state. Each customer served in the static routing solution 

before the end of the next time slice is considered to be committed, that is, customers 

with processing times that start within the next ( 𝑇
𝑛𝑡𝑠

+  𝑇𝑇𝑎𝑐) seconds must be committed 

to their respective vehicles. Therefore, this position in all subsequent static problems is 

fixed. Then, the event manager continues its loop to create static problems for the 

Not serviced customers Committed customers 

Event manager subsystem 

Genetic Algorithm (GA) 
optimization subsystem 

Static VRP-like instance 

Generate 

Run 

Generate static 
solution 

Place orders Commit orders 
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remaining DVRP customers, based on the simulation time and the dynamic problem 

state, and continues until all customers have been committed. 

 
Figure 3.2: Pseudo-code for event manager subsystem 

Here as an example of the event management subsystem process (Figure 3.2). It 

is an instance for the first three time slices in c50, one of the benchmark problems. For 

Step 1, in the first time slice, the simulation time is 0 and customers with available 

times of more than T * 0.5 = 351 * 0.5 = 175.5 are considered as an initial problem. 

Therefore, the first time-slice problem customers are 24, 25, 26, 27, 28, 29, 30, 31, 32, 

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 and 50 (Step 2 and 3). 

Then, this problem is solved by the GA (the solution process is described in the next 

subsection). Note that, in the c50 problem, all vehicles have the same capacity of 160. 

Now, we assume that the best chromosome for solving the first time-slice problem is 

[27, 48, 26, 31, 28, 36, 35, 29, 32, 46, 38, 49, 50, 34, 30, 39, 33, 45, 44, 37, 43, 24, 25, 

41, 40, 42, 47]. This chromosome has three vehicles: Veh1 [27, 48, 26, 31, 28, 36, 35, 

29, 32, 46] with an actual load of 110; Veh2 [38, 49, 50, 34, 30, 39, 33, 45, 44, 37] with 

an actual load of 160; and Veh3 [43, 24, 25, 41, 40, 42, 47] with an actual load of 121 

Step 1: Time := 0; 

Step 2: Create static VRP-like instance for initial pending customers := customers that are known from 

the previous day (customers with availability time > Tco); 

Step 3: StaticProb := VRP-like instance; 

Step 4: Vehicles starting positions are set at the depot; 

Step 5: While (Potentially serviceable customers still remain OR current time < Tco) 

5.1) Solution := GAsubsystem (StaticProb); 

5.2) CommitCustomers (current time + Tts + Tac , StaticProb customers, solution); 

5.3) StaticProb := RemainingCustomers in StaticProb customers ∪ customers appeared in the last 

  𝑇𝑇
𝑛𝑛𝑡𝑡𝑡𝑡  

 seconds; 

5.4) Time := Time + Tts ; 

5.5) Update (Vehicles current positions, capacities, travel times); 

End While 
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(Step 5.1). As the starting location of these vehicles is the depot [0] (initialized in Step 

2), the calculated Euclidean distances from the depot to their next locations 27, 38 and 

43 for Veh1, Veh2 and Veh3, are 8, 15.81 and 34.655 respectively. Note that, in the c50 

problem, each customer has time duration to be served of 15. Thus, Veh1, Veh2 and 

Veh3 have current times after servicing customers 27, 38 and 43 of (8 + 15 = 23), (15.81 

+ 15 = 30.81) and (34.655 + 15 = 49.655) respectively. To check if it is possible to 

commit more customers to any vehicle, the vehicles’ times are compared with the 

current time-slice commitment time, that is, (current simulation time +  𝑇
𝑛𝑡𝑠

 +  𝑇𝑇𝑎𝑐) = 

0 + 351
25

 + (0.01 * T) = 0 + 14.04 + 0.01 * 351 = 17.55 (Step 5.2). As all the vehicles 

have times greater than the commitment time, it is not possible to commit more 

customers. Finally, Veh1, Veh2 and Veh3, are assigned codes of -1, -2 and -3 

respectively. Now, the system updates the Veh1, Veh2 and Veh3 data so that their current 

locations are 27, 38 and 43 and their updated capacities are 145, 145 and 149 

respectively (Step 5.5). 

In the second time slice, new customers 1, 2, 3, 4 and 5 appear, as they have 

available times of 1, 4, 9, 12 and 12 respectively ∈ [the current simulation time, the 

current simulation time + 𝑇
𝑛𝑡𝑠

] = [0, 14.04] and the simulation time is updated to 14.04 

(Step 5.3). After solving the second time-slice problem, we assume that the best 

chromosome is [-1, 48, 26, 31, 28, 3, 36, 35, 29, 2, 1, 32, -2, 50, 34, 30, 39, 33, 45, 49, 

5, -3, 24, 25, 41, 40, 42, 44, 37, 4, 47, 46]. Again, this chromosome has three vehicles: 

Veh1 [48, 26, 31, 28, 3, 36, 35, 29, 2, 1, 32] with an actual load of 143; Veh2 [50, 34, 30, 

39, 33, 45, 49, 5] with an actual load of 141; and Veh3 [24, 25, 41, 40, 42, 44, 37, 4, 47, 

46] with an actual load of 149 (Step 5.1). Firstly, the system checks if it is possible to 

commit more customers to the vehicles, by comparing the vehicles’ times with the 

current time-slice commitment time updated to 31.59 (14.04 + 14.04 + 3.51) (Step 5.2). 

As only Veh1 and Veh2 have times less than the current time-slice commitment time, 

customers 48 and 50 will be committed to them and their times are updated to 46.60 (23 

+ 8.60 + 15) and 56.99 (30.81 + 11.18 + 15) respectively. After comparing the updated 

vehicle times, it is clear that it is not possible to commit more customers to any vehicle. 

Now the system updates the data of Veh1, Veh2 and Veh3, with their current locations, 

which are 48, 50 and 43, and their updated capacities of 128, 135 and 149 respectively 

(Step 5.5). 
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In the third time slice, new customers 6 and 7 appear, as they have available 

times of 16 and 21 respectively ∈ [the current simulation time, the current simulation 

time + 𝑇
𝑛𝑡𝑠

] = [14.04, 28.08] and the simulation time is updated to 28.08 (Step 5.3). After 

solving the third time-slice problem, the best chromosome is [-1, 26, 31, 28, 3, 36, 35, 

29, 2, 1, 32, -2, 34, 30, 39, 33, 45, 49, 5,-3, 7, 24, 25, 6, 46, 37, 44, 42, 40, 41, 4, 47] 

which has four vehicles: Veh1 [26, 31, 28, 3, 36, 35, 29, 2, 1, 32] with an actual load of 

126; Veh2 [34, 30, 39, 33, 45, 49, 5] with an actual load of 131; Veh3 [7, 24, 25, 6] with 

an actual load of 72; and a new vehicle Veh4 [46, 37, 44, 42, 40, 41, 4, 47] with an 

actual load of 111, which is created because Veh3’s load is too large (greater than its 

remaining capacity) (Step 5.1). Firstly, the new vehicle’s time is assigned the current 

time-slice time + 𝑇𝑇𝑎𝑐 = (28.08 + 3.51) = 31.59 and its start location is the depot [0]. 

Then, the system checks if it is possible to commit customers to their respective 

vehicles by comparing the vehicles’ times with the current time-slice commitment time 

which is updated to 45.63 (28.08 + 14.04 + 3.51). As Veh4 has a time of less than the 

current commitment time, it can commit customer 46. Therefore, vehicle Veh4’s time is 

updated to 48.826 (Veh4 time = 31.59 + Euclidean distance (depot [0], customer 46) = 

2.236 + customer 46’s duration = 15) and it is assigned the code -4. Then, when the 

system checks the vehicles’ times, it is clear that it is not possible to commit more 

customers to them, as they all have times greater than the third time-slice commitment 

time. Now the system updates the Veh1, Veh2 and Veh3, Veh4 data so that their current 

locations are 48, 50, 43 and 46 and their updated capacities are 128, 135,149 and 155 

respectively (Step 5.5). These processes are repeated until there is no serviceable 

customer remaining, or the current time is greater than Tco. 

3.3 GA Optimization Subsystem 

In this thesis, the developed GA is based on Hansher and Ombuck-Berman (2007)’s 

GA, but some improvements to increase both its diversity and capability to escape from 

local optima are proposed (these modifications are presented in bold in Figure 3.3), 

including:  

1. modifications to the initial population for the first time slice and/or other time 

slices;  

2. a variant GA selection process;  

3. a variant swap mutation; and  



Chapter 3                                          System Design, Implementation and Preliminary Experiments 
 

     35  
  

4. a Local Optimal Condition (LOC) detection strategy. 

The initial population for the first time slice and/or other time slices are created 

using both random and heuristic procedures. The proposed modification of the selection 

process allows the not-the-fittest chromosome to be selected to try to increase the 

diversity. The swap mutation modification provides more variations in the mutated 

chromosome which again increases diversity, while the LOC detection strategy allows 

the GA to try to escape from local optima by increasing diversity when such a condition 

is detected. 

The GA optimization subsystem handles the solution and optimization processes 

for generating static VRP-like instances using a GA algorithm, and is repeated several 

times over a discrete series of time slices that are managed and coordinated by the event 

manager subsystem. A GA flow diagram is presented in Figure 3.3. It shows the 

proposed modifications in bold font. To summarise, once an initial population is 

created, its chromosomes are evaluated to be assigned their corresponding fitness and 

then a new empty population is created for the next generation. The current population 

is used to fill the new empty population by selecting two old chromosomes (parents), 

and a reproductive process (crossover and mutation) is used to create two new 

chromosomes (children) which are then evaluated. After evaluating the new 

chromosomes, the stopping condition is checked; if it is met, the GA halts and reports 

the best-found solution, whereas if it is not, the new population is checked. If this new 

population is not complete, the processes (selection, crossover and mutation) are 

repeated, otherwise a new empty population is created for the next generation, and to fill 

it, the current population is used as the new old population to generate a new new 

population. These processes are repeated until the stopping condition is met. 
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Figure 3.3: GA flow diagram (modified methods are shown in bold font) 

3.3.1 GA chromosome encoding and decoding 

As mentioned in the previous chapter, chromosome encoding is a critical issue in any 

GA implementation. Therefore, the DVRP must be represented in a chromosome to 

which it is possible and easy to apply genetic operations, such as crossover and/or 
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mutation. As the DVRP is a routing problem, and as it is necessary to have the right 

order to obtain better solutions, permutation encoding is used. For the DVRP, at any 

time, there may exist customers that have been served, others that have not yet been 

served (serviceable) and a remaining set that are not serviceable, but that must be 

inserted into the system. 

In this thesis, the chromosome representation that is used consists of two types 

of genes: one with a positive integer value which represents a single customer (who has 

yet to be committed to a vehicle); and one with a negative integer value which 

represents a vehicle that has a set of customers that have already been served and 

committed to it (customers with fixed positions). This chromosome representation 

follows Hansher and Ombuki-Berman (2007)’s approach and an example is shown in 

Figure 3.4. 

3 5 -1 7 6 -2 8 9 4 1 

Figure 3.4: Example of chromosome representation  

The chromosome representation encodes both existing vehicles’ routes and new 

customers’ orders. For this representation’s decoding process, when a negative integer 

is encountered, it is looked up in a list of committed vehicles (vehicles that already have 

committed customers) which maps to a list of already committed customers and an 

existing vehicle (Hanshar and Ombuki-Berman, 2007). The chromosome decoding 

process creates new vehicles under two conditions: 

1) the chromosome representation starts with a positive value; and/or 

2) the current vehicle will violate its capacity constraint if a new customer is 

added. 

Here, a chromosome decoding process is illustrated, that is based on the 

chromosome representation example shown in Figure 3.4. This chromosome has seven 

new customers’ orders, represented by positive integers, and two vehicles, represented 

by negative integers, which already have a set of customers committed to them. The 

chromosome decoding process begins by encountering a positive integer, and thus, a 

new vehicle (VehA) is created (the first condition). This vehicle adds both customers’ 

orders 3 and 5 to its scheduled route (assuming that this new vehicle (VehA) has 
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sufficient capacity for both) and then a negative integer is encountered (as mentioned 

before, this negative integer represents an existing vehicle). This means that additions to 

VehA cannot be accepted and Veh1 (represented by the negative integer) will add 

customers’ orders to its scheduled route if possible. As we assume that Veh1 

(represented by −1) has sufficient capacity, both customers’ orders 7 and 6 are added to 

its scheduled route. Again, a negative integer is encountered and, this time, as we 

assume that Veh2 (represented by -2) has capacity for only customers’ orders 8, 9 and 4, 

only they are added to its scheduled route. Now, because customer’s order 1 would 

violate the capacity constraints of Veh2, it is necessary that a new vehicle, VehB, is 

created, which would then accept customer’s order 1 as its only order (the second 

condition). 

3.3.2 Fitness Evaluation 

Each chromosome is evaluated by considering its customers’ order in its chromosome 

representation. Therefore, the chromosome fitness function can be defined as 

                             𝐹𝑖𝑡𝑡𝑛𝑛𝑒𝑡𝑡𝑡𝑡 (𝐷𝑉𝑅𝑃)  =  ∑ 𝐶𝑜𝑡𝑡𝑡𝑡(𝑉𝑅𝑖).                                                   𝑚
𝑖=1  (3.1) 

where VR is the set of routes. 

3.3.3 Initial Population 

Each time slice requires an initial population for the GA which can be created randomly 

from the problem customers’ permutations or by using a greedy or heuristic technique. 

In this thesis, both random and heuristic procedures are used to create each time-slice 

initial population, as in the following subsections. 

a) Initial population for the first time slice  

20% of the initial population is created on a heuristic basis as follows:  

a) create a set of vehicles = 𝑐𝑒𝑖𝑙𝑖𝑛𝑛𝑔 �𝑆𝑢𝑚 𝑜𝑓 𝑐𝑢𝑡𝑜𝑚𝑒𝑟𝑠′𝑑𝑒𝑚𝑎𝑛𝑑𝑠
𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

�; 

b) create a set of random permutations for the static VRP-like instance 

customers; and 
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c) insert the created permutations one by one in the best locations in the set 

of empty created vehicles and ensure that, 90% of insertions do not 

violate any vehicle’s capacity, otherwise ignore the capacity constraint. 

The remaining 80% of the initial population is created randomly. 

b) Initial population for other time slices 

Regarding the initial population for the other time slices, 10 % of the initial population 

is created in the same manner as the 20% subset for the first time slice in the previous 

section. Then, another 10% of the initial population is created using the best 

chromosome from the previous time slice as follows: 

a) create a set of random permutations of the current time slice’s new 

customers; and  

b) insert the created permutations one by one in the best locations, and once 

again, 90% of the time consider capacities, otherwise don’t. 

The remaining 80% of the initial population is created randomly. 

3.3.4 Selection 

This process determines how candidate individuals in the population are chosen for the 

reproductive process (crossover and mutation). In this thesis, tournament selection is 

used with a modification to allow the low quality individuals. This is intended to 

increase the diversity in order to reach a global optimal solution. The steps involved in 

normal tournament selection are described in the mutation section in the previous 

chapter section 2.2.3.1 (Sivanandam and Deepa, 2008), and are shown in Figure 3.5(a). 

In the modified tournament selection, in step 3, after generating a random value (r), if r 

≥ selection threshold (ρ), the not-the-fittest chromosome is chosen. This approach is 

intended to increase the diversity and is illustrated in Figure 3.5(b). 
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Figure 3.5(a): Original tournament selection 

 

 
Figure 3.5(b): Modified tournament selection 

3.3.5 Crossover 

This process determines how the current population chromosomes, parents, are 

combined to create new chromosomes, children. In this thesis, a modification of the 

GA population 
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Best Cost Route Crossover (BCRC), which was firstly developed by Ombuki-Berman et 

al. (2006) is used as shown in Figure 3.6(a). The steps involved in the normal BCRC are 

described in the crossover section in the previous chapter, while in the modified BCRC, 

in step 4, a random number r ∈ [0, 1] is used. The modified BCRC is illustrated in 

Figure 3.6(b). The effect of this, is to sometimes generate poorer children, with once 

again, the aim of increasing diversity. 

 

 

Figure 3.6(a): Original BCRC 

Select two chromosomes (P1, P2) 

Randomly selects v1 and v2 from P1 and 
P2 respectively 

Delete v1 and v2 customers from P2 and 
P1 respectively 

Insert v1 and v2 customers into p2 
and p1 respectively in best 
locations regarding capacity 
constraint 
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Figure 3.6(b): Modified BCRC 

In this approach, the cost of inserting a customer (c) between two consecutive 

customers (a, b) is calculated as 

                           𝐶𝑜𝑡𝑡𝑡𝑡𝑐,𝑎,𝑏 = 𝐷𝑖𝑡𝑡𝑡𝑡(𝑐,𝑎) +  𝐷𝑖𝑡𝑡𝑡𝑡(𝑐, 𝑏) −  𝐷𝑖𝑡𝑡𝑡𝑡(𝑎, 𝑏)                                (3.2) 

3.3.6 Mutation 

This process determines how children are self modified in this thesis, the following two 

different mutations are used by the GA. 

• Reverse (Inversion) (Sivanandam and Deepa, 2008) selects two cut-points along 

a chromosome’s length and reverses the genes between them. 
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• Swap (Interchange) (Sivanandam and Deepa, 2008) selects two genes and swaps 

them. In this thesis, a modified swap is used in order to try to generate more 

variations and, thus, increase the GA’s diversity. 

1. Step 1: creates two different random integers (r ∈ [0, chromosome 

length]) and obtains the difference. 

2. Step 2: That difference is then the number of times it randomly swaps 

two genes, as in the original swap. 

 In this thesis, an elitist strategy, in which a set of the best solutions is passed 

over to the next generation(s), is used (Sivanandam and Deepa, 2008; Hanshar and 

Ombuki-Berman, 2007). It allows elite solutions to spread from one generation to the 

next, thereby ensuring that the best solution does not suffer over time. 

3.3.7 Local Optimal Condition (LOC) 

In this thesis, another strategy for enhancing the GA’s performance is proposed. In it, 

when a LOC is detected, the GA tries to escape from it by increasing the crossover 

threshold, which produces more randomization; this can help the GA to reach a better 

and globally optimal solution. Figure 3.7 shows how randomization in LOC would help 

GA to escape from area (A) that contains a local optimal solution, to area (B) that 

contains the global one. 

 
Figure 3.7: How LOC could help GA to escape from local optimal 

In implementing this strategy, if the GA subsystem obtains the same best 

chromosome in ten consecutive generations, it is considered to be stuck in a LOC. If the 

 

A B 
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system detects this LOC, it decreases the crossover threshold by 90% and, if the 

crossover threshold becomes less than 0.1, it resets it to its default value. 

3.4 Experimental Results and Discussion 

This section discusses the results obtained from using the GA described in section 3.3 to 

solve well-known DVRP benchmark problems (Kilby et al., 1998; Montemanni et al., 

2005; Hanshar and Ombuki-Berman, 2007) that are derived from three separate VRP 

sources, namely, Christophides and Beasley (Christophides and Beasley, 1984) (7 

instances), Taillard (13 instances) (Taillard, 1994) and Fisher et al. (2 instances) (Fisher, 

1995). The proposed system was coded in Microsoft C++ on a 2.8GHz/4GB Intel Core 

i7 machine. 

3.4.1 GA and DVRP Parameters 

The GA subsystem parameter values are shown in Table 3.1. For the time-based runs, 

for consistency with previous research, the maximum number of generations is set to 

1000. However, if the time step does not complete 1000 generations before 30 seconds, 

the optimization is halted, the best solution found is reported, and the next time step 

begun.  

Table 3.1: Values of the parameters 

Parameter Value 

Heuristic initial population 20 % 

Random initial population 80 % 

Number of time slices (nts) 25 

Cutoff time (Tco) (0.5) T 

Advanced commitment time (Tac) (0.01) T 

Processing time 30 seconds 

Population size 50 

Tournament selection pressure (ρ) 0.80 

Crossover rate 0.90 

Initial crossover threshold 1.0 

Mutation rate 0.1 

Elitism percentage 2 % 
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3.4.2 Comparison of Proposed GA-based DVRP (Time-based) 

A comparison of the solution quality, in terms of minimizing the travel distances of the 

proposed GA-based DVRP system, Montemanni et al.’s ACS (Montemanni et al., 

2005), Hanshar and Ombuki-Berman’s TS, GA (Hanshar and Ombuki-Berman, 2007), 

Khouadjiaa et al.’s Variable Neighbour Search (VNS) with a local search and Particle 

Swarm Optimization (PSO) with a local search (Khouadjiaa et al., 2012) was 

performed. Note that ACS (Montemanni et al., 2005) has been coded in ANSI C, and all 

the tests have been carried out on a 1.5 GHz with 256 MB Intel Pentium 4 machine, GA 

and TS (Hanshar and Ombuki-Berman, 2007) have been coded in Java 1.5.0, and run on 

an 2.8 GHz with 512 MB memory Intel Pentium 4 machine, while PSO (Khouadjiaa et 

al., 2012) has been run on an Intel Xeon 3 GHz with 2 GB memory and VNS 

(Khouadjiaa et al., 2012) has been coded in Java 1.5.0, and runs on an Intel Core 2 

Quad 2.6 GHz machine with 4 GB memory. 

Table 3.2 gives the best and average distances of this comparison, and the 

numerical results demonstrate that the proposed GA-based DVRP finds 14 out of 21 

new best solutions (in this table and the following tables, the bold and shaded entries 

indicate the best solutions). The best solutions and averages for the proposed GA-based 

DVRP system are taken over 25 runs, for ACS over 5 runs (Montemanni et al., 2005), 

for TS and GA over 10 runs (Hanshar and Ombuki-Berman, 2007), and for PSO and 

VNS over 30 runs (Khouadjiaa et al., 2012). 
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Table 3.2: Comparison of systems  

 

This thesis uses an evaluation technique, based on Elsayed et al. (2010), that 

judges systems’ performances by assigning them a score for a given test problem. For it, 

the system which obtains the best solution is assigned a score of ‘1.0’, and the others 

assigned fractional scores (between 0.0 and 1.0). 
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 In judging system i in terms of its solution to test problem j, where J is a set of 

test problems, Fij is defined as the actual fitness, and BFj = min (Fij) and WFj = max 

(Fij) are defined as the overall best and worst fitness values for test problem j 

respectively, and system i's score for test problem j is 

                            𝑆𝑖𝑗 = �1 −  | 𝐹𝑖𝑗− 𝐵𝐹𝑗|
𝑎 (�𝐵𝐹𝑗− 𝑊𝐹𝑗�) 

�
𝑝

                                                                    (3.3) 

where 𝑎 ≥ 1 and 𝑝 > 1. A value of 𝑎 > 1 will differentiate between the worst 

solutions by having a small positive value for Sij, while a higher value of p will place 

greater emphasis on good solutions, and in this study, a is set to 1.1 and p to 2, as in 

(Elsayed et al., 2010).  

 In a similar way to how scores for averages were calculated, the final score for 

system i can be calculated from Elsayed et al. as 

                            𝑆𝑖𝑗 =  𝜗 ∑ 𝑆𝑖𝑗𝑏𝑒𝑠𝑡
𝐽
𝑗=1 +  (1 −  𝜗)∑ 𝑆𝑖𝑗

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐽
𝑗=1                                     (3.4) 

where 𝐹𝑆𝑖𝑗 is the final score for system i for test problem j, 𝑆𝑖𝑗𝑏𝑒𝑠𝑡 is the score 

based on the best solutions, 𝑆𝑖𝑗
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is the score based on the average values and 𝜗 is a 

constant ∈ [0, 1]. A higher value of 𝜗 (1 or close to 1), will place greater emphasis on 

the best solutions, which is appropriate when the study is interested in only the best 

fitness value, while a lower value of 𝜗 (0 or close to 0) will emphasise average solutions 

which is appropriate when the study is interested in a number of good alternative 

solutions (Elsayed et al., 2010). In this study, 𝜗 = (0, 0.5, and 1.0) are assessed in order 

to achieve different balances between the best and average results. The overall score 

(𝑂𝑆𝑖) for each system (i) can then be calculated by 

                           𝑂𝑆𝑖 =  ∑ 𝐹𝑆𝑖𝑗𝑗                                                                                                   (3.5) 

Table 3.3 shows the previous comparison by applying Elsayed et al. (2010)’s. 
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Table 3.3: Comparison of systems (time-based) based on Elsayed et al. (2010) 

𝝑 Ant System Tabu DVRP-GA DAPSO VNS 
Proposed GA-based 

DVRP 

0 1.35 8.63 12.06 8.72 8.02 19.52 
0.5 1.40 8.55 14.30 6.79 6.59 19.45 
1.0 1.46 8.47 16.53 4.86 5.17 19.37 

In Table 3.3, it is clear that the proposed GA-based DVRP is the best, as it 

obtains the best scores for all 𝜗 values. 

3.5 Chapter Summary 

This chapter introduced and described the GA processes for handling and solving 

DVRPs. Also, modifications were proposed to improve its solutions by increasing 

diversity and escaping from local optima. From the preliminary experimental results 

discussed in this chapter, it is clear that the proposed modifications enhance the GA. 

The next chapter examines how the GA’s proposed modifications enhance its 

performance in solving DVRPs, and a new evaluation approach for evaluating DVRP 

systems is also proposed. 
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Chapter 4 

Advanced Experimental Studies 

 

his chapter demonstrates how the proposed modifications of the Genetic 

Algorithm (GA) that were described in the previous chapter, enhance its capability 

to solve DVRPs. Also, t-test is performed to compare the proposed modifications.  To 

date, to evaluate a DVRP system, a time-based evaluation approach based on its 

specifications and power has been used. Thus a new, fair and non-system-dependent 

approach for evaluating DVRP systems is needed. To this end, therefore four 

alternatives, including generations, raw fitness, weighted fitness and distance 

calculations, are tested in this chapter. 

4.1 Experimental Setup 

To enhance the GA, modifications of the initial population for the first time slice and 

those of the other time slices, the GA selection process, the swap mutation and Local 

Optimal Condition (LOC) detection have been proposed. Therefore, six GA systems, 

i.e., the original system (without any modification) and the five mentioned above, have 

been coded and their solutions to DVRP benchmark problems compared (Kilby et al., 

1998; Montemanni et al., 2005; Hanshar and Ombuki-Berman, 2007), as follows. 

1) The first GA (original) is a GA-based system for which the initial populations of 

all time slices are randomly created, and uses a regular tournament selection 

process and reverse mutation. It is thus the same as Hansher and Ombuki-

Berman (2007)’s GA. 

2) The second GA (first pop) is the same as the first, except that the first time 

slice’s initial population is created with the modification described in the 

previous chapter (Section 3.3.3 (a)). 

3) The third GA (all pop) is the same as the second, except that all initial 

populations for all time slices, are created by the modification described in the 

previous chapter (Section 3.3.3 (b)). 

T 
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4) The fourth GA (selection) is the same as the third, except that the modified 

selection process described in the previous chapter (Section 3.3.4) is added. 

5) The fifth GA (mutation) is the same as the fourth, except that the modified swap 

mutation described in the previous chapter (Section 3.3.6) is added. 

6) The sixth GA (LOC) is the same as the fifth, except that the LOC detection 

described in the previous chapter (Section 3.3.5) is added. 

4.2 Experimental Results 

In this section we discuss the results of the experiments. 

4.2.1 Comparing “original” with Hanshar and Ombuki-Berman (2007)’s GA 

Table 4.1 shows a comparison of the first GA and Hanshar and Ombuki-Berman 

(2007)’s GA for solving DVRP benchmark problems. In this table and the following 

tables, the bold shaded entries indicate the best results. The tables show distances best, 

average and standard deviation (Std. Dev.). The results are based on 25 runs for all 

systems. 
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Table 4.1: Comparison of solutions obtained by “original” system and DVRP-GA 

(Hanshar and Ombuki-Berman, 2007)  

Problem 
Random all time slices init. pop. DVRP-GA 

(Hanshar and Ombuki-Berman, 2007) 
Best Average Std. Dev. Best Average 

c50 567.61 597.37 17.7287 570.89 593.42 
c75 964.80 1007.46 25.0884 981.57 1013.45 

c100 961.63 1016.70 28.7653 961.10 987.59 
c100b 878.02 917.48 21.2956 881.92 900.94 
c120 1310.99 1462.70 86.1194 1303.59 1390.58 
c150 1451.66 1590.02 68.0869 1348.88 1386.93 
c199 1891.38 2081.22 81.9489 1654.51 1758.51 

tai75a 1782.37 1894.26 64.1248 1783 1856.66 
tai100a 2249.83 2520.29 80.23 2232.71 2295.61 
tai150a 3955.99 4399.98 263.406 3328.85 3501.83 
tai75b 1443.40 1584 79.8478 1464.56 1527.77 

tai100b 2125.10 2281.82 91.2819 2147.70 2215.39 
tai150b 3415.43 3909.89 214.837 2933.40 3115.39 
tai75c 1451.85 1523.94 42.2857 1440.54 1501.91 
tai100c 1570.33 1653.85 57.3417 1541.28 1622.66 
tai150c 2658.85 2951.87 159.028 2612.68 2743.55 
tai75d 1411.02 1452.32 21.7869 1399.83 1422.27 

tai100d 1831.62 1977.14 77.1879 1834.60 1912.43 
tai150d 3072.24 3221.06 108.715 2950.61 3045.16 

f71 290.62 307.76 6.72513 301.79 309.94 
f134 15964.90 16839.50 436.628 15528.80 15986.80 
Sum 51249.64 55190.63 2032.459 49202.70 51088.80 

Average 2440.46 2628.13 96.783763 2342.99 2432.80 

Table 4.2 shows a summary of the results obtained by the first GA-based system 

and Hanshar and Ombuki-Berman (2007)’s DVRP-GA. It shows the number of times 

each system is best in the ‘Best’ and ‘Average’ columns in Table 4.1, and the calculated 

percentage differences. 

Table 4.2: Summary of comparison of solutions obtained by “original” system and 

Hanshar and Ombuki-Berman (2007)’s DVRP-GA 

System Best Average 
Random all time slices init. pop. 8 2 
DVRP-GA (Hanshar and Ombuki-Berman, 2007)  13 19 
% Deviation -3.99 % -7.4 % 
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Although these systems are identical, there is a small difference that could be 

due to random effects, differing computer power or implementation efficiencies, such as 

programming languages. 

In the remainder of this chapter, comparisons are made between the first GA-

based system and the modified systems, to demonstrate how the proposed modifications 

affect the performance of the GA. 

4.2.2 Comparing “original” with “first pop” 

Table 4.3 shows a comparison of the distances bests and averages of the first and 

second systems. 

Table 4.3: Comparison of “original” and “first pop” 

Problem 
Random all time slices init. pop.  Modified init. pop. 

Best Average Std. Dev. Best Average Std. 
Dev. 

c50 567.61 597.37 17.73 559.57 599.78 17.73 
c75 964.80 1007.46 25.09 966.60 1004.85 23.40 

c100 961.63 1016.70 28.77 953.94 998.80 28.93 
c100b 878.02 917.48 21.30 863.46 923.31 45.85 
c120 1310.99 1462.70 86.12 1325.72 1441.69 86.56 
c150 1451.66 1590.02 68.09 1425.29 1483.51 41.89 
c199 1891.38 2081.22 81.95 2017.79 2150.48 95.04 

tai75a 1782.37 1894.26 64.12 1760 1892.23 69.16 
tai100a 2249.83 2520.29 80.23 2249.22 2414.71 83.82 
tai150a 3955.99 4399.98 263.41 3835.36 4372.15 260.79 
tai75b 1443.40 1584 79.85 1465.58 1562.59 59.94 

tai100b 2125.10 2281.82 91.28 2148.29 2273.74 71.04 
tai150b 3415.43 3909.89 214.84 3510.27 3742.42 155.62 
tai75c 1451.85 1523.94 42.29 1446.06 1512.30 42.04 
tai100c 1570.33 1653.85 57.34 1558.67 1634.30 61.46 
tai150c 2658.85 2951.87 159.03 2682.77 2965.98 146.00 
tai75d 1411.02 1452.32 21.79 1405.70 1452.24 19.85 

tai100d 1831.62 1977.14 77.19 1808.95 1942.74 72.01 
tai150d 3072.24 3221.06 108.72 3055.13 3232.48 110.45 

f71 290.62 307.76 6.73 291.90 307.23 7.66 
f134 15964.90 16839.50 436.63 15504.60 16740.10 524.58 
Sum 51249.64 55190.63 2032.46 50834.87 54647.63 2023.81 

Average 2440.46 2628.13 96.78 2420.71 2602.27 96.37 

Table 4.4 shows a summary of the comparison of the two systems’ solutions 

which provides counts of the times they obtain the best results in the ‘Best’ and 
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’Average’ columns in Table 4.3 and the calculated percentage differences between 

them. 

Table 4.4: Summary of comparison of “original” and “first pop” 

System Best Average Remarks 
Random all time slices init. pop. 8 5 --- 
Modified init. Pop.  13 16 Better 
% Deviation - 0.81 % - 0.98 % --- 

In summary, Table 4.4 shows that the second system improves the first system 

solutions by 0.81% and 0.98% in the best and average results respectively; in particular, 

it finds 13 of 21 new best solutions and 16 of 21 better averages. This slight increase 

could be because the second system only modifies the initial population for the first 

time slice. 

4.2.3 Comparing “all pop” with The Previous Systems 

Table 4.5 shows a comparison of the distances bests and averages for all three systems. 

Table 4.5: Comparison of “all pop” with the previous systems 

 

Best Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev.
c50 567.61 597.37 17.73 559.57 599.78 17.73 556.79 609.62 23.84
c75 964.80 1007.46 25.09 966.60 1004.85 23.40 961.70 993.42 18.98

c100 961.63 1016.70 28.77 953.94 998.80 28.93 937.03 988.28 22.03
c100b 878.02 917.48 21.30 863.46 923.31 45.85 870.18 911.06 19.17
c120 1310.99 1462.70 86.12 1325.72 1441.69 86.56 1307.50 1450.77 93.40
c150 1451.66 1590.02 68.09 1425.29 1483.51 41.89 1320.17 1389.72 32.40
c199 1891.38 2081.22 81.95 2017.79 2150.48 95.04 1694.37 1773.86 41.14

tai75a 1782.37 1894.26 64.12 1760 1892.23 69.16 1776 1871.02 60.49
tai100a 2249.83 2520.29 80.23 2249.22 2414.71 83.82 2208.42 2318.47 73.19
tai150a 3955.99 4399.98 263.41 3835.36 4372.15 260.79 3362.79 3491.18 113.40
tai75b 1443.40 1584 79.85 1465.58 1562.59 59.94 1462.78 1563.85 58.52

tai100b 2125.10 2281.82 91.28 2148.29 2273.74 71.04 2135.24 2265.43 64.64
tai150b 3415.43 3909.89 214.84 3510.27 3742.42 155.62 2996.84 3181.82 75.62
tai75c 1451.85 1523.94 42.29 1446.06 1512.30 42.04 1465.68 1512.75 31.71

tai100c 1570.33 1653.85 57.34 1558.67 1634.30 61.46 1526.55 1597.82 43.23
tai150c 2658.85 2951.87 159.03 2682.77 2965.98 146.00 2667.79 2876.28 109.10
tai75d 1411.02 1452.32 21.79 1405.70 1452.24 19.85 1400.38 1443.10 26.79

tai100d 1831.62 1977.14 77.19 1808.95 1942.74 72.01 1741.92 1920.42 67.73
tai150d 3072.24 3221.06 108.72 3055.13 3232.48 110.45 2984.87 3143.87 98.58

f71 290.62 307.76 6.73 291.90 307.23 7.66 291.90 307.89 7.13
f134 15964.90 16839.50 436.63 15504.60 16740.10 524.58 15552 16125.90 323.60
Sum 51249.64 55190.63 2032.46 50834.87 54647.63 2023.81 49220.90 51736.52 1404.69

Average 2440.46 2628.13 96.78 2420.71 2602.27 96.37 2343.85 2463.64 66.89

Problem
Random all time slices init. pop.  Modified init. pop.  Modified all init. pop.
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Table 4.6 shows a summary of the comparison of the three systems’ solutions in 

Table 4.5. 

Table 4.6: Summary of comparison of “all pop” with the previous systems  

System Best Average Remarks 
Random all time slices init. pop. 4 1 --- 
Modified init. Pop. 4 4 --- 
Modified all init. pop. 13 16 Best 
% Deviation -3.17% -5.33% --- 

Table 4.6 shows that the third system improves the second system’s solutions by 

3.17% and 5.33% for the best and average results respectively and, thus, improves the 

first system’s DVRP solutions by much more than the second system presumably 

because it modifies the initial populations for all time slices. Also, it finds 13 of 21 new 

best solutions and 16 of 21 better averages. 

4.2.4 Comparing “selection” with The Previous Systems 

Table 4.7 shows a comparison of the distances bests and averages for all four systems. 
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Table 4.7: Comparison of “selection” with the previous systems 

 

Table 4.8 shows a summary of the comparison of the four systems’ solutions 

given in Table 4.7. 

Table 4.8: Summary of comparison of “selection” with the previous systems  

System Best Average Remarks 
Random all time slices init. pop. 2 1 --- 
Modified init. Pop. 2 1 --- 
Modified all init. pop. 5 7 --- 
Modified selection 13 12 Best 
% Deviation -1.24% -0.09% --- 

Table 4.8 shows that the fourth system improves the third system’s solutions by 

1.24% and 0.09% for the best and average results respectively. Although these 

improvements are not as large as the previous ones, the best improved more than the 

average; it finds 13 of 21 new best solutions and 12 of 21 better averages. 

 

 

Best Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev.
c50 567.61 597.37 17.73 559.57 599.78 17.73 556.79 609.62 23.84 563.51 599.85 14.25
c75 964.80 1007.46 25.09 966.60 1004.85 23.40 961.70 993.42 18.98 957.38 995.45 18.72

c100 961.63 1016.70 28.77 953.94 998.80 28.93 937.03 988.28 22.03 935.50 978.60 21.67
c100b 878.02 917.48 21.30 863.46 923.31 45.85 870.18 911.06 19.17 875.08 908.14 16.54
c120 1310.99 1462.70 86.12 1325.72 1441.69 86.56 1307.50 1450.77 93.40 1278.23 1398.50 57.88
c150 1451.66 1590.02 68.09 1425.29 1483.51 41.89 1320.17 1389.72 32.40 1322.08 1371.06 32.73
c199 1891.38 2081.22 81.95 2017.79 2150.48 95.04 1694.37 1773.86 41.14 1672.02 1739.47 34.48

tai75a 1782.37 1894.26 64.12 1760 1892.23 69.16 1776 1871.02 60.49 1738.47 1889.96 55.92
tai100a 2249.83 2520.29 80.23 2249.22 2414.71 83.82 2208.42 2318.47 73.19 2208.33 2294.05 64.75
tai150a 3955.99 4399.98 263.41 3835.36 4372.15 260.79 3362.79 3491.18 113.40 3348.77 3479.91 71.33
tai75b 1443.40 1584 79.85 1465.58 1562.59 59.94 1462.78 1563.85 58.52 1468.95 1554.67 45.80

tai100b 2125.10 2281.82 91.28 2148.29 2273.74 71.04 2135.24 2265.43 64.64 2147.34 2270.39 65.72
tai150b 3415.43 3909.89 214.84 3510.27 3742.42 155.62 2996.84 3181.82 75.62 2999.81 3163.97 116.52
tai75c 1451.85 1523.94 42.29 1446.06 1512.30 42.04 1465.68 1512.75 31.71 1456.50 1504.46 36.88

tai100c 1570.33 1653.85 57.34 1558.67 1634.30 61.46 1526.55 1597.82 43.23 1526.19 1608.78 55.75
tai150c 2658.85 2951.87 159.03 2682.77 2965.98 146.00 2667.79 2876.28 109.10 2583.57 2892.97 129.87
tai75d 1411.02 1452.32 21.79 1405.70 1452.24 19.85 1400.38 1443.10 26.79 1400.38 1434.42 22.81

tai100d 1831.62 1977.14 77.19 1808.95 1942.74 72.01 1741.92 1920.42 67.73 1789.47 1936.21 78.43
tai150d 3072.24 3221.06 108.72 3055.13 3232.48 110.45 2984.87 3143.87 98.58 2915.69 3091.72 83.73

f71 290.62 307.76 6.73 291.90 307.23 7.66 291.90 307.89 7.13 288.30 309.43 7.68
f134 15964.90 16839.50 436.63 15504.60 16740.10 524.58 15552 16125.90 323.60 15135.80 16269.40 510.05
Sum 51249.64 55190.63 2032.46 50834.87 54647.63 2023.81 49220.90 51736.52 1404.69 48611.37 51691.41 1541.52

Average 2440.46 2628.13 96.78 2420.71 2602.27 96.37 2343.85 2463.64 66.89 2314.83 2461.50 73.41

Problem
Random all time slices init. pop.  Modified init. pop.  Modified all init. pop. Modified selection
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4.2.5 Comparing “mutation” with The Previous Systems 

Table 4.9 shows a comparison of the fifth and the previous four systems, while Table 

4.10 presents a summary. 

Table 4.9: Comparison of “mutation” with the previous systems  
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Table 4.10: Summary of comparison of “mutation” with the previous systems  
System Best Average Remarks 

Random all time slices init. pop. 2 0 --- 
Modified init. Pop. 1 1 --- 
Modified all init. pop. 3 2 --- 
Modified selection 7 7 --- 
Swap mutation 11 11 Best 
% Deviation - 0.38 % - 0.18 % --- 

In summary, Table 4.10 shows that the fifth system only slightly improves the 

fourth system’s solutions, by 0.38% and 0.18% for the best and average results 

respectively, however it obtains 11 of 21 new best solutions and 11 of 21 better 

averages. 

4.2.6 Comparing “LOC” System with The Previous Systems 

Table 4.11 shows the comparison of it and the previous five systems, while Table 4.12 

presents a summary of this comparison. 

  



Chapter 4                                                                                                          Advanced Experimental Studies 
 

      58  
  

Table 4.11: Comparison of all systems  
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Table 4.12: Summary of comparison of all systems  

System Best Average Remarks 
Random all time slices init. pop. 0 0 --- 
Modified init. Pop. 0 1 --- 
Modified all init. pop. 3 0 --- 
Modified selection 5 1 --- 
Swap mutation 4 3 --- 
Proposed GA-based DVRP 13 16 Best 
% Deviation - 0.90 % - 1.84 % --- 

Table 4.12 shows that the sixth system improves the fifth system’s solutions by 

0.90% and 1.84% for the best and average results respectively. Therefore, the sixth 

system improves the previous system more in terms of solution averages. It finds 13 of 

21 new best and 16 of 21 better average solutions. It is also notable that the original 

system (the first system with no modifications) no longer has any best solution in the 

best or average results.  

From the previous results, the third system, in which the initial populations for 

all the time slices are modified, achieves the largest improvement in solving the DVRP 

benchmark problems, followed by the system that modifies the selection process in the 

‘Best’ results and the final system that uses LOC detection in the ‘Average’ results. This 

could be interpreted as being, because the selection process drives the local search 

more, while the LOC strategy more effectively aids exploration. 

In more detail, for several problems, the third system has the greatest effect, 

especially for solving large uniform ones, such as c150 and c199, and large distributed 

cluster ones, such as tai150a and tai150b. Therefore, creating an initial population using 

both random and heuristic procedures enhances GA. 

To confirm the above observations, Table 4.13 shows an overall comparison of 

these systems using the metric of Elsayed et al. (2010). 

Table 4.13: Comparison of systems (time-based) based Elsayed et al. (2010) 

δ 
Rand all 

time slices 
init. pop. 

Modified 
init. pop. 

Modified all 
init. pop. 

Modified 
selection 

Swap 
mutation 

Proposed 
GA-based 

DVRP 
0 1.73 3.91 10.04 12.63 12.29 18.66 
1 2.64 2.98 9.30 10.46 12.93 16.13 

0.5 2.18 3.44 9.67 11.54 12.61 17.40 
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In Table 4.13, it is clear that the proposed GA-based DVRP performs best, as it 

obtains the best scores for all 𝜗 values. However the third system (that modifies the 

initial population for all time slices) achieves the greatest improvement in the DVRP 

solutions. 

4.2.7 Statistical Testing 

In order to be able to compare our results accurately, we have also performed 

statistical significance tests. Two-sided t-tests have been is performed with a confidence 

level of 95%. In the next two Tables (4.14 and 4.15), a cell is marked with “+” sign if a 

system is significantly better “-“ if it is significantly worse, and is blank if there is no 

significant difference. 

Table 4.14: t-test significance results between each system and its previous 
system 

Problem Sys. 1-Sys. 2 Sys. 2-Sys. 3 Sys. 3-Sys. 4 Sys. 4-Sys. 5 Sys. 5-Sys. 6 
c50      
c75      
c100 +     

c100b      
c120   +   
c150 + + +   
c199 - + +  + 

tai75a     + 
tai100a + +    
tai150a  +    
tai75b      
tai100b     + 
tai150b + +    
tai75c      

tai100c  +    
tai150c  +    
tai75d      
tai100d      
tai150d  + +  + 

f71      
f134  +   + 

Sig. Diff. +3 +9 +4 0 +5 

Table 4.14 shows t-test results for comparing each system with its previous one. 

Here “Sig. Diff.” shows the significance difference for each system in this comparison. 

The third system, in which the initial populations for all the time slices are modified, 

obtains the greater number of significance, while the fifth system does not provide any 

significance in this comparison. 
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Table 4.15: t-test significance results between each system and the first 
system 

Problem Sys. 1-Sys. 2 Sys. 1-Sys. 3 Sys. 1-Sys. 4 Sys.1 -Sys. 5 Sys. 1-Sys. 6 
c50  -    
c75  +  + + 
c100 + + + + + 

c100b     + 
c120   + + + 
c150 + + + + + 
c199 - + + + + 

tai75a     + 
tai100a + + + + + 
tai150a  + + + + 
tai75b      
tai100b     + 
tai150b + + + + + 
tai75c      
tai100c  + + + + 
tai150c    + + 
tai75d   + + + 
tai100d  +   + 
tai150d  + + + + 

f71      
f134  + + + + 

Sig. Count 3 10 11 13 17 
Increase of Sig. +3 +7 +1 +2 +4 

Table 4.15 shows t-test results for comparing each system with the first one. 

Here “Increase of Sig.” shows how each system differs from its previous system in its 

comparison with the first system. The third system shows the biggest improvement over 

its previous system. While the sixth system (the final proposed system) obtains the 

greater number of significance, and the third system gets the lowest value in this 

comparison. It is clear that the final system improves the original GA. This is because of 

its mechanisms to improve the GA diversity and to escape from the local optimal 

solutions.  

4.3 Proposed Evaluation Approach 

In this research, a new evaluation approach is proposed for DVRP systems. To date, a 

time-based evaluation approach, in which all DVRP systems are run for a specific 

amount of time, such as 1 minute (Montemanni et al., 2005) or 30 seconds (Hanshar and 

Ombuki-Berman, 2007; Runka, 2008) for each time slice, has been used to evaluate 

DVRP systems. However, a time-based evaluation approach is biased as it is based on 
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its running system’s specifications and power, whereas because the proposed evaluation 

approach does not, it should be fairer than the time-based evaluation approach. 

4.3.1 Experiments for Proposed Evaluation Approach  

As mentioned before, the new evaluation approach should be fair, as it should not 

depend on the running system’s specifications and power. With this in mind, the 

following four evaluation approaches are tested.  

a) Generations This approach is used in many GA implementations as a stopping 

condition. It counts the number of generations in each time slice, regardless of 

the problem’s size. For its implementation, the average number of generations 

required to solve each time-slice problem is calculated by using a variable called 

generationsSum, that is, the total number of generations in each time slice.  

b) Raw Fitness Evaluation This is the main process for evaluating the proposed 

solution presented by each chromosome. It counts the number of fitness 

evaluations in each time slice by using a variable called rawFitnessEvalSum, 

that is, the total number of fitness evaluations in each time slice, which is 

increased by 1 when ever chromosome fitness is evaluated. 

c) Weighted Fitness Evaluation This approach counts both the number of complete 

fitness evaluations and a weighted fitness due to any partial fitness evaluation 

By using a variable called weightedFitnessEvalSum, that is, the total number of 

fitness evaluations in each time slice, which is increased by 1 when a complete 

chromosome fitness is evaluated. However, when a distance is calculated once 

in the mutation and/or crossover process, weightedFitnessEvalSum is increased 

by a fraction equal to ( 1
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠

). More specifically, if a 

chromosome of a vehicle with 2 customers, 3 distance calculations (number of 

customers + number of vehicles) are needed to evaluate its complete fitness, i.e., 

the depot to c1, c1 to c2 and c2 to the depot (Fitness evaluation calculations) are 

equal to 3, while if a customer is tested once to be inserted in a position (i.e., in 

the crossover process), a fraction equal to 1
3
 is added to weightedFitnessEvalSum. 

d) Distance Calculation This is a component of evaluating the proposed solutions 

in each chromosome. It counts the number of distance calculations performed as 

this reflects the problem size in each time slice; for example, if a chromosome of 
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a vehicle has 2 customers, 3 distance calculations are needed to assess its fitness, 

i.e., the depot to c1, c1 to c2, c2 to the depot. For implementation, the average 

number of distance calculations is calculated to solve each time-slice problem 

using a variable called distanceCalcSum, that is, the total number of distance 

calculations in each time slice. 

These variants are assessed using the GA parameters values shown in Table 

4.16. The DVRP model is the same as that in the previous chapter, where nts is set to 25, 

Tco to 0.5 of a working day and Tac to 0.01 of the working day (Hanshar and Ombuki-

Berman, 2007). The GA systems are run over 30 seconds as the time-slice processing 

time and, after 30 seconds, the optimization is halted and the averages of the 

generations, raw fitness evaluations, weighted fitness evaluations and distance 

calculations performed, as well as the averages for each evaluation approach are 

reported. 

Table 4.16: GA parameters values 

Parameter Value 

Processing time 30 seconds 

Population size 50 

Tournament selection pressure (ρ) 0.80 

Crossover rate 0.90 

Initial crossover threshold 1.0 

Mutation rate 0.1 

Elitism percentage 2 % 

Table 4.17 shows the minimum, maximum, average and standard deviations for 

the averages of each evaluation approach with regard to the DVRP benchmark 

problems, after 30 seconds. 
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Table 4.17: Averages after 30 seconds for four proposed evaluation approaches  
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For each proposed evaluation approach, the required time for running the 

system, that is, 30 seconds of the average score of each evaluation approach, was 

calculated by multiplying each run’s generations, raw fitness, weighted fitness and 

distance calculation values by 30
𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

. For example, each value in Generations was 

divided by 98.92. Table 4.18 shows the proposed four evaluation approaches using this 

method. 

Table 4.18: Comparison of averages of four proposed evaluation approaches’ 
running times 
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In Table 4.18, the standard deviations for the generations, raw fitness 

evaluations, weighted fitness evaluations and distance calculations are 1.66, 1.92, 1.31 

and 1.52 respectively. Therefore, as the weighted fitness evaluation approach has the 

lowest standard deviation, it is the most stable evaluation method regardless of the 

running system’s specifications and power. 

As the average number of weighted fitness evaluations obtained in 30 seconds 

(38870.16) can be rounded up to the nearest 10,000, i.e., 40,000, it is proposed that 

DVRPs should be tested on the assumption that 40,000 weighted fitness evaluations 

(WFE) are calculated in each time slice. Therefore, the total number of WFEs for each 

problem is 40,000 (WFEs in each time slice) * 25 (time slices) = 1,000,000 WFEs. 

4.3.2 Comparison of Proposed GA-based DVRP (WFE-based) 

A comparison of solution quality, in terms of minimizing travel distances of the 

proposed GA-based DVRP system by a 40,000 WFE budget, with Montemanni et al. 

(2005)’s Ant Colony System (ACS), Hanshar and Ombuki-Berman (2007)’s Tabu 

Search (TS) and GA, Khouadjiaa et al. (2012)’s Variable Neighbour Search (VNS) with 

a local search and Particle Swarm Optimization (PSO) with a local search was 

conducted. 

Table 4.19 shows the best and average distances of the proposed GA-based 

DVRP system (WFE-based), where the bold shaded entries indicate the best solutions. 

Table 4.19 shows the numerical results from this comparison; the proposed GA-based 

DVRP finds 17 of 21 new best solutions and 16 of 21 better averages. These bests and 

averages are taken over 25 runs, while those of the ACS are over 5 runs (Montemanni et 

al., 2005), of the TS and GA are over 10 runs (Hanshar and Ombuki-Berman, 2007), 

and of the PSO and VNS are over 30 runs (Khouadjiaa et al., 2012). 
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Table 4.19: Comparison of systems (WFE-based) 
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Table 4.20 shows a comparison of the systems based on the previous metric of 

Elsayed et al. (2010). 

Table 4.20: Comparison of systems (WFE-based) based Elsayed et al. (2010) 

𝝑 Ant 
system Tabu DVRP-GA PSO VNS Proposed GA-

based DVRP 
0 1.34 7.95 15.32 4.60 4.83 19.58 
1 1.16 8.15 12.99 6.20 5.97 19.87 

0.5 0.97 8.35 10.66 7.80 7.11 20.17 

In Table 4.20, it is clear that the proposed GA-based DVRP performs best, as it 

obtains the best scores for all 𝜗 values. 

4.4 Chapter Summary 

In this chapter, the proposed GA modifications have been introduced and demonstrated 

in detail, and from the experimental results, it is clear that they enhance the GA. Also, 

four new approaches for evaluating DVRP systems were tested, from which one was 

selected as the best-performing method. This new approach, weighted fitness 

evaluations (WFE), is fairer than the previously used approach (time-based), as it does 

not depend on its running system’s specifications and power. 

The research conclusions, and some proposed future research work, are 

presented in the next chapter. 
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Chapter 5 

Conclusions and Future Research Directions 

 

his chapter summarizes the research carried out in this thesis, provides its 

conclusions, and suggests future research directions. 

5.1 Research Summary 

In this study, the Dynamic Vehicle Routing Problem (DVRP) was addressed by a 

Genetic Algorithm (GA)-based system that was enhanced by five proposed 

modifications: creation of the initial population for the first time slice and/or other time 

slices using both random and heuristic procedures; changing the selection process to 

allow the not-the-fittest chromosome to be selected, and thereby, increase diversity; 

altering the swap mutation to produce more variations in the mutated chromosome to, 

again, increase diversity; and, finally, a Local Optimal Condition (LOC) detection 

strategy, which allows the GA to try to escape local optima by increasing diversity 

when such a condition is detected. Subsequently, six GA-based systems were 

considered and compared by solving DVRP benchmark problems. 

To date, a time-based evaluation approach has been used to evaluate DVRP 

systems. In this thesis, four new evaluation approaches, generations, raw fitness, 

weighted fitness and distance calculations, were proposed and tested. Also, a 

comparison with the previous published systems was conducted, based on the new 

proposed evaluation approach. 

5.2 Conclusions 

A comparison of the solutions obtained to the DVRP problems by the enhanced GA and 

previously published systems (Montemanni et al., 2005; Hanshar and Ombuki-Berman, 

2007; Khouadjiaa et al., 2012) was performed (time-based). Based on the qualities of 

the solutions, the enhanced GA was competitive and out-performed the others regarding 

the best and average results, and in particular, found 14 of 21 new best solutions.  

T 
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Of those proposed evaluation approaches, the weighted fitness evaluation 

(WFE) approach, which is based on running the DVRP system for 40,000 weighted 

fitness evaluations in each time slice, had the lowest standard deviation; it was thus the 

most stable evaluation approach regardless of the running system’s specifications and 

power. Also, a comparison of the solutions obtained to DVRP problems by the 

enhanced GA and previously published systems was performed (WFE-based). Again, 

the enhanced GA was determined to have out-performed the other systems in terms of 

best and average results, as the numerical results from this comparison showed that the 

proposed GA-based DVRP found 17 of 21 new best solutions and 16 of 21 better 

averages. Also, it is reasonable that those results (WFE-based) could be compared with 

any proposed DVRP system in the future. 

5.3 Future Research Directions 

There are various possible future research directions for extending the research carried 

out in this thesis, including: 

• parametric analysis of the system. 

• test  each enhancement on its own, comparing each against the same base case 

• creating the initial population with some intelligent guidance with various 

degrees of randomness. 

• using local search, like 2-Opt, as a mutation, instead of reverse and/or swapping 

mutations. 

• solving a large set of real-world problem applications; 

• considering more complex objective functions and fitness evaluation criteria; 

• taking into consideration the minimizing of the number of vehicles and road 

balance while solving the problem; for example, considering the ratio of a 

vehicle’s actual load to its capacity, and then balancing the ratios of all vehicles; 

• considering more complex dynamic scenarios, such as introducing a customer 

time-window variable into the DVRP; and 

• considering pairing the GA with local search techniques, such as the 2-opt local 

search and/or other metaheuristic techniques, such as Ant Colony Optimization 

(ACO). 
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