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Abstract

This thesis presents the case of dynamically and adaptively learning signatures for
network intrusion detection using genetic based machine learning techniques. The
two major criticisms of the signature based intrusion detection systems are their
i) reliance on domain experts to handcraft intrusion signatures and ii) inability
to detect previously unknown attacks or the attacks for which no signatures are
available at the time.

In this thesis, we present a biologically-inspired computational approach to address
these two issues. This is done by adaptively learning maximally general rules, which
are referred to as signatures, from network traffic through a supervised learning
classifier system, UCS. The rules are learnt dynamically (i.e., using machine intelli-
gence and without the requirement of a domain expert), and adaptively (i.e., as the
data arrives without the need to relearn the complete model after presenting each
data instance to the current model). Our approach is hybrid in that signatures for
both intrusive and normal behaviours are learnt. The rule based profiling of normal
behaviour allows for anomaly detection in that the events not matching any of the
rules are considered potentially harmful and could be escalated for an action.

We study the effect of key UCS parameters and operators on its performance and
identify areas of improvement through this analysis. Several new heuristics are
proposed that improve the effectiveness of UCS for the prediction of unseen and
extremely rare intrusive activities. A signature extraction system is developed that
adaptively retrieves signatures as they are discovered by UCS. The signature ex-
traction algorithm is augmented by introducing novel subsumption operators that
minimise overlap between signatures. Mechanisms are provided to adapt the main
algorithm parameters to deal with online noisy and imbalanced class data.

The performance of UCS, its variants and the signature extraction system is mea-
sured through standard evaluation metrics on a publicly available intrusion detection
dataset provided during the 1999 KDD Cup intrusion detection competition. We
show that the extended UCS significantly improves test accuracy and hit rate while
significantly reducing the rate of false alarms and cost per example scores than the
standard UCS. The results are competitive to the best systems participated in the
competition in addition to our systems being online and incremental rule learners.
The signature extraction system built on top of the extended UCS retrieves a magni-
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tude smaller rule set than the base UCS learner without any significant performance
loss.

We extend the evaluation of our systems to real time network traffic which is cap-
tured from a university departmental server. A methodology is developed to build
fully labelled intrusion detection dataset by mixing real background traffic with at-
tacks simulated in a controlled environment. Tools are developed to pre-process
the raw network data into feature vector format suitable for UCS and other related
machine learning systems. We show the effectiveness of our feature set in detecting
payload based attacks.
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Chapter 1

Motivation

1.1 Computer Security

With the evolution of computer networks, computer security has also evolved from

securing giant mainframes in the past to securing large scale unbounded computer

networks. The nature of threat has changed from physical infiltration and password

breaking to computer viruses, self propagating and self replicating worms, backdoor

software, trojan horses, script kiddies, computer criminals and terrorists to name

but a few (UPI 2008).

The need for computer security has become even critical with the proliferation of

information technology in every day life. Businesses and critical services are be-

coming increasingly reliant on computer networks and Internet. The increase in

dependability on computer systems and the corresponding risks and threats has

revolutionised computer security technologies. New concepts and paradigms are

being adopted, new tools are being invented and security conscious practices and

policies are being implemented. Vendors and users are equally taking the nature

of threat seriously and strengthening their defenses. The latest FBI/CSI survey1

1An annual joint survey of computer security incidents by USA’s Federal Bureau of Investiga-

tions and Computer Security Institute.
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shows that 34 percent of the respondent organisations spent more than 5 percent of

their total information technology (IT) budget on security in 2006 (Gordon, Loeb,

Lucyshyn, and Richardson 2006).

Despite the increase in security arsenal and awareness, however, the threat has nei-

ther being eliminated nor mitigated. In fact, computer crimes have become more

organised and sophisticated as the intents and motives of these crimes are chang-

ing from mere fun and bragging to high financial gains, information gathering for

information warfare and terrorism. The 2006 E-crime watch survey reported an

overall loss of 740,000 US Dollars in 2006 vs. 507,000 US Dollars in 2005 (Survey

2006), despite the decrease in number of security incidents from 86 in 2005 to 34

in 2006. IT security has emerged as the second most critical security challenge for

organisations in 2007, according to EDUCAUSE (Camp and Deblois 2007).

There are various reasons behind this aggravation of attacks and threats. A primary

reason is that network protocols and Internet was never developed with security in

mind. Additionally, building absolutely secure systems of this magnitude is unlikely

anyway due to the complexity of these systems and likelihood of human errors in im-

plementing these systems. As an example, the Computer Emergency and Response

Team (CERT) reported 2,874 software vulnerabilities for the first two quarters of

2005 (CERT Coordination Center 2005). A vulnerability can be quite damaging;

Blaster worm (CERT Coordination Center 2003) that infected at least 100,000 Mi-

crosoft Windows machines in 2003 was launched within 15 days of discovery of a

buffer overflow vulnerability in the RPC interface of Microsoft Windows. To further

complicate matters, the level of skills required to carry out computer crimes have

decreased with the increase in easily available automated attack tools. These trends

show that the computer security problem is there to stay for at least many decades

to come.
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1.1.1 The Role of Intrusion Detection

The field of computer security is vast and can be classified under various domains

including but not limited to cryptography, authentication, access control, perime-

ter security, intrusion detection, forensics and auditing, risk and vulnerability as-

sessment. The basic purpose is to serve the fundamental criteria of assuring the

confidentiality, integrity and availability of all components of a computer system.

A computer system can be protected from the threats it faces using many techniques;

for example, by implementing risk and vulnerability assessment schemes and tools

to avoid threats in the first place and then by using a prevention system, such as

firewalls and anti virus software, to stop well known threats and attacks. However,

defense in depth principle requires that a good security mechanism be complemented

with an Intrusion Detection System (IDS) in order to monitor security breaches

when other prevention systems are evaded. IDS is defined by Denning (Denning

1987) as a system that aims to detect a wide range of security violations ranging

from attempted break-ins by outsiders to system penetrations and abuses by insiders.

Denning provided four important factors necessitating the use of intrusion detection

systems, underlining the fact that replacing existing systems with security flaws

is infeasible and developing absolutely secure systems is almost impossible. This

assertion is still valid after almost two decades and probably will remain applicable

in the future given the evolving nature of threats.

Intrusion detection systems can be classified in various ways (e.g., based on the

protected system or the detection principle). An IDS can be host based, network

based or hybrid protecting both networks and hosts. The two basic approaches to

intrusion detection are misuse based detection and anomaly based detection. The

former deals with intrusions by looking for known patterns of attacks in protected

system activities, while the latter models the normal behaviour of a system and flags

deviations from normal as anomalous.

One of the major challenges in the intrusion detection domain is the identification of
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novel attacks. Anomaly based systems use various techniques to address this prob-

lem; for example, statistical models profile users and system behaviours using event

histories and audit logs; probabilistic models use prior and posterior distributions

to predict abnormal events; classification models learn decision boundaries based

on the training data to distinguish future intrusive behaviour from that of the nor-

mal; time and frequency models use the rate and number of events to point out the

anomalous behaviour and so on. While these techniques are aimed at detecting most

of the unknown attacks, there is hardly any defence to ward off zero-day attacks and

there are a few schemes that are implemented in real world security systems. This

is either because of the sensitivity of these techniques which often bury true alerts

under the myriad of false alarms or that they require intensive processing or simply

because new attacks are too covert and innocent to be detected.

On the other hand, misuse detection approaches generally rely on rules, or so called

signatures, for known intrusions. They are considered efficient and are used in most

real time systems as they need less processing resources. The rules however need to

be updated persistently in order to cope with the ever changing attacks and threats

to the information system. Currently, rule creation and update is mainly a manual

process (Roesch 1999; Paxson 1998). Thus signature based models suffer from the

delay between updating the signatures and new attacks. Very often by the time

signatures are made available, the damage had already been done.

A hybrid approach is to combine the strengths of both approaches in a single frame-

work. Despite the fact that many researchers believe in the effectiveness of hybrid

approaches (Axelsson 2000; Bace and Mell 2001; Kemmerer and Vigna 2002), most

practical intrusion detection systems remain signature based and a handful with

anomaly based components (Vigna and Kemmerer 1999). Our choice therefore,

is to use a hybrid approach which is self sufficient in learning attack signatures,

dynamically, profiling normal traffic and updating the model accordingly.

In summary, adaptability, or in other words reacting to a changing threat environ-

ment, is a key requirement for modern intrusion detection systems. It is obvious
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from the exponential growth of the enabling technologies and the increasing demand

in the autonomy and mobility of these systems that traditional techniques of deal-

ing with the protection of these systems will not suffice and we need alternative

approaches that can adapt to these drifting concepts over time.

1.2 Problem Formulation

In this thesis, we attempt to address the problem of dynamically and adaptively

learning interpretable rules or signatures that can classify the intrusive and normal

behaviour from live network traffic with minimal involvement of human experts.

1.2.1 Approach

We take a biologically-inspired machine learning approach to this problem. Systems

found in Nature, often referred to as complex adaptive systems, are highly robust

and resilient that can adapt to environmental changes and constantly evolve their

states for their betterment. The study of adaptation in natural systems is the

basic theme of complex adaptive systems theory. It generally refers to the ability

of an organism to survive in a new environment by accommodating changes in

the environment (Holland 1975) (for example, acclimatisation of species from hot

weather to cold weather). Natural systems achieve adaptation in various ways such

as by promoting biological diversity. Computational complex adaptive system based

approaches mimic these natural models to achieve similar objectives in man-made

systems.

Thus our approach to learning signatures for intrusion detection is based on a

genetic-based machine learning technique called Learning Classifier Systems (LCS)

(Holland, Booker, Colombetti, Dorigo, Goldberg, Forrest, Riolo, Smith, Lanzi, Stolz-

mann, et al. 2000). LCS are parallel production systems that have been designed

to exploit the implicit parallelism of genetic algorithms (Goldberg 1989). Genetic
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algorithms are implicitly parallel meta-heuristic search procedures that are inspired

by the natural evolutionary process. The strength of LCS lies in its ability to adapt

to changes in the environment.

There are three key features which make LCS quite promising within the intrusion

detection domain.

• LCS are rule-based learners that employ genetic algorithms as their gener-

alisation mechanism to learn accurate, maximally general and interpretable

rules. The rule based representation allows domain experts to understand the

evolved knowledge. Further the rules can be easily ported to existing signature

based intrusion detection systems.

• LCS learn incrementally (i.e., they update their knowledge after seeing each

input instance) but without needing to re-evaluate the whole model or to keep

data instances in memory, a traditional approach to incremental learning.

Thus they suit the streaming data requirements where the data is considered

virtually lost after seeing it once.

• Various representations and learning schemes can be incorporated into LCS

with ease, allowing to build prototype intrusion detection systems around its

framework.

All of these characteristics are highly desirable from intrusion detection viewpoint.

In this thesis, we analyse and extend UCS, a supervised LCS (Bernadó-Mansilla

and Garrell 2003), for intrusion detection. Several key challenges posed to UCS

by the intrusion detection domain are highlighted and mechanisms are provided to

address them. A framework is proposed for dynamically and adaptively extracting

signatures of normal and anomalous behaviour from network traffic (extendable to

other audit sources) discovered adaptively by UCS.

We take the rule based approach because signature based intrusion detection sys-

tems are considered most efficient in real world implementations as they require
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less computational resources and produce fewer false alarms than anomaly based

intrusion detection systems. Moreover, rules provide an intuitive way for experts

to interact with the learnt knowledge and understand the nature of intrusions. Dy-

namically learning signatures is an important problem in intrusion detection that

has not received much attention. As Axelsson (Axelsson 2000) noted in his famous

survey of intrusion detection systems:

The lack of detectors in the signature self-learning class is conspicuous,

particularly since detectors in this class would probably prove useful,

combining as they do the advantages of self-learning systems - they do

not have to perform the arduous and difficult task of specifying intrusion

signatures - with the detection efficiency of signature based systems.

The two main criticisms of signature based intrusion detection systems are their in-

ability to detect novel attacks and hard to maintain signature bases. The signatures

are mainly created manually by domain experts and are usually updated only after

new intrusions had compromised the security of protected systems.

We place our focus on addressing these two issues using a signature based hybrid

detection approach. Firstly, rules are used to detect intrusive activities, as gener-

ally done by signature based systems, as well as for profiling normal behaviours.

Secondly, the goal is to learn these rules automatically from live network/host ac-

tivities (i.e., using machine intelligence without the need of domain experts; albeit

for labelling sufficient training instances), and adaptively (i.e., as the data arrives

without the need to relearn the complete model after presenting each data instance

to the current model). This could also facilitate the dynamic updates of rule bases

without delays. In current signature based systems, an activity that does not trigger

an alert is considered normal. We aim to complement this by learning signatures

for legitimate activities along with malicious ones. Any instance not matching both

profiles is considered potentially harmful and thus could be escalated to the security

supervisor for appropriate action.
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We evaluate the algorithms developed in this thesis on a benchmark intrusion detec-

tion dataset used in the 1999 KDD Cup competition. This data is extracted from a

simulated traffic dump on a real network. A standard confusion matrix approach is

used to report the accuracy achieved by the developed systems. Further, a cost per

example score is measured for each classification model using a given cost matrix.

Both of these measures are used in the KDD Cup competition to rank the partici-

pating systems. In addition to these two measures, we also report false alarm rate,

hit rate and the number of rules or signatures learnt by the tested systems.

Despite its usefulness, the KDD Cup dataset has some limitations. Some researchers

have argued its inappropriateness for training machine learning algorithms (Sabh-

nani and Serpen 2004), while others have pointed out its staleness. But a major

problem when using the KDD Cup dataset is that it does not provide access to

raw network data and one has to stick with the provided set of features. This is

not a problem for those techniques focusing on improving their prediction accuracy

on the given test set. But for those systems that intend to address the intrusion

detection problem in general and not limited to this dataset, it poses an inherent

limitation and require developing tools that can independently preprocess network

data in the required format for the detection engine or learning algorithms. Conse-

quently, to overcome this problem we develop a new methodology to build labelled

datasets from real network traffic. This involves capturing real network data from

a university departmental server and mixing it with attacks that are simulated in a

controlled environment. A state-of-the art signature based IDS is used to label this

data and tools are developed to process the raw data into feature vector format.

This processing is done offline because the intrusive traffic cannot be generated on a

live network; however the tool can be extended easily for real time implementation.

Finally, the algorithms presented in this thesis are tested on the real dataset using

the same evaluation metrics as those used for the KDD Cup dataset.
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1.2.2 Research Questions

The basic research question arising from the problem statement that this thesis is

trying to answer is:

Can we adaptively and efficiently learn effective signatures from live network activ-

ities, using evolutionary learning classifier systems, which can be used to classify

intrusions and normal behaviour of the monitored system?

There are several sub questions that arise from the approach taken to address the

problem:

• How effective are LCS, in particular UCS, in classifying intrusions and normal

events from network traffic and/or other audit sources?

• Can UCS be extended to improve its accuracy and false alarm rate when tested

with intrusion data to a satisfactory level?

• Can UCS evolve effective and compact rule sets in real-time that can be used

in signature based intrusion detection systems?

• How can we evaluate the performance of supervised learning algorithms, such

as UCS, for intrusion detection?

1.3 Thesis Contributions

This thesis contributes to both the genetic based machine learning and intrusion

detection fields in the following ways.

• Analysis and extension of UCS for intrusion detection - The use of

learning classifier systems, specifically UCS, has not been previously explored

for intrusion detection and ours is the first attempt to study their usefulness

for this domain.
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The effects of several key UCS parameters on its performance are analysed us-

ing the KDD Cup dataset. In particular, the effects of population size, genetic

search, related operators and the covering operator on UCS performance are

analysed.

A fixed covering interval heuristic is introduced to better guide the genetic

search in finding the maximally general rule sets in UCS.

Distance-metric based prediction - We bring to light the problem of

coverage gaps in the test feature spaces in UCS and introduce a distance-metric

based approach for dealing with this case.

Strategies to deal with imbalance class distribution - The perfor-

mance of UCS is analysed in the presence of noise and class imbalance in the

data. Several modifications including a new accuracy function, techniques for

adapting the rate of applying the GA, class-sensitive deletion and cost-sensitive

prediction techniques are introduced to address the class imbalance problem

in UCS. These techniques are compared comprehensively with existing ones

and their generalisation advantage is shown on synthetic datasets.

Finally, the performance of the extended UCS is evaluated using the KDD

Cup dataset and results are compared against the baseline setup.

• A framework for real-time signature extraction - A new algorithm is

introduced to extract maximally general rules learnt by UCS during its adap-

tive discovery process. The algorithm is validated using learning bounds from

existing LCS theory. New generalisation operators are introduced that can

modify rule boundaries to resolve overlaps and redundancies among the sig-

natures.

Adaptive tuning of the signature extraction algorithm’s param-

eters for noisy and imbalance class problems - The performance of sig-

nature extraction algorithm is analysed in the presence of noise and class

imbalance through synthetic datasets. Control mechanisms are introduced to

adapt important algorithm parameters to deal with these problems.
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Finally, the signature extraction system is evaluated on the KDD Cup dataset

and its performance is compared with UCS, extended UCS and another offline

rule reduction algorithm that we implemented in UCS.

• A methodology to build intrusion data for supervised learning al-

gorithms - A new methodology is developed to evaluate UCS, the signature

extraction system and their variants, with real data captured from a university

departmental server. Intrusion traffic is generated by simulating hundreds of

attacks tailored to trigger alerts in a state-of-the art signature based intrusion

detection system. The captured traffic is mixed with the attack traffic to build

the raw dataset. A detailed analysis of the raw data is provided. Tools are de-

veloped to process this raw network traffic into feature vectors. The developed

algorithms are evaluated with the constructed dataset.

1.4 Thesis Structure

The rest of this thesis is structured as follows: In Chapter 2, we set out the context

of the problem and provide a summary of the related literature. The first half of

the chapter covers background materials on intrusion detection, traditional machine

learning with emphasis on rule induction algorithms and genetic based machine

learning. The latter half covers existing work related to our proposed approaches.

In particular, we survey existing hybrid approaches, rule learning approaches and

nature-inspired computational approaches applied to intrusion detection.

In Chapter 3, the KDD Cup dataset is introduced and the details about its feature

set, attack types and class distributions are presented. We also highlight the ad-

vantages and criticisms of this dataset. Next, the experimental methodology and

evaluation metrics used in this thesis are explained in detail and a baseline perfor-

mance of UCS is established on the KDD Cup dataset.

In Chapter 4, we analyse different effects of key UCS components on its perfor-
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mance and propose modifications to improve upon the baseline performance. A

distance metric based prediction technique is introduced to handle uncovered test

cases in UCS. The performance of UCS in the presence of imbalance class datasets

is studied in detail and different strategies to handle class imbalance in UCS are

compared comprehensively. Finally, the extended UCS is evaluated using the KDD

Cup dataset.

In Chapter 5, an algorithm to extract effective generalisations evolved by UCS in

real-time is presented. The performance of the signature extraction system is anal-

ysed in noisy and imbalanced class environments and mechanisms for the online

adaptation of its parameters are presented. At the end of the chapter, adaptive

and non-adaptive versions of the signature extraction systems are evaluated on the

KDD Cup dataset and their performance is compared with UCS and another rule

reduction algorithm implemented in UCS.

In Chapter 6, we develop a methodology for evaluating UCS and other systems pro-

posed in this thesis with real network traffic and simulated attacks. The motivation

of developing such a methodology is discussed and a detailed analysis of the cap-

tured traffic and the dataset built from this traffic is presented. Finally, the baseline

UCS, extended UCS and the signature extraction system developed in the previous

chapters are evaluated with the dataset built in this chapter.

In Chapter 7, we summarise our contributions in this thesis, point out the limitations

of our work and discuss the future directions that stem from this work.



Chapter 2

Background and Related Work

Part of this work is based on Shafi, K. and H. A. Abbass (2007a). Biologically-

inspired Complex Adaptive Systems approaches to Network Intrusion Detection.

Information Security Technical Report 12 (4), Elsevier, 209–217.

2.1 Chapter Objectives

This chapter sets the context of the thesis and provides a brief introduction to in-

trusion detection and different approaches to deal with this problem. Our goal is to

provide both anomaly and misuse (i.e., hybrid) intrusion detection by learning rules

of normal and abnormal behaviour. We take a Genetic Based Machine Learning

(GBML) approach to adaptively learn effective rules of normal and abnormal ac-

tivities from network traffic. Therefore, we provide a brief background on machine

learning with emphasis on rule induction and GBML algorithms. A review of the

work in the intrusion detection domain related to our approach is also presented.

Specifically, brief surveys of techniques that use a hybrid detection principle, ma-

chine learning to generate rules for intrusion detection and nature-inspired machine

learning approaches for dealing with intrusion detection are presented.
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2.2 Intrusion Detection

Intrusion detection was identified promptly as an important area of computer se-

curity when computer professionals started to realise the significance of protecting

computer systems. The basic purpose of intrusion detection is to classify illegitimate

and malicious activities into a computer system, which aim to gain unauthorised ac-

cess, gather crucial information about the system (i.e., to compromise systems confi-

dentiality) or simply disrupt the normal operation (i.e., to compromise integrity and

availability of the system and services it is providing), from the normal operation

(Bace and Mell 2001).

The work on intrusion detection dates back to the early 1980’s when James Anderson

published his work on the importance of audit trails to detect misuse and identify

user behaviour (Anderson 1980). The idea of an Intrusion Detection System (IDS)

was first introduced formally by (Denning 1987) based on her work on a government

project. These two seminal works are the basis of the current state of IDS research.

A history and evolution of intrusion detection systems can be found in (Kemmerer

and Vigna 2002; Bruneau 2001).

2.2.1 Approaches to Intrusion Detection

Intrusion detection approaches can be classified in several different ways. A detailed

taxonomy and classification can be found in (Axelsson 2000). Here we concentrate

on four aspects of intrusion detection techniques.

• Detection Principles - The two fundamental detection principles in intrusion

detection are misuse and anomaly detection. The former detects intrusions by

matching patterns or signatures of known attacks and vulnerabilities while the

latter by flagging deviations from normal behaviour. As discussed in the pre-

vious chapter, the aim of the anomaly based techniques is to detect previously

unseen attacks. The underlying assumption driving these techniques is that
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malicious activities has substantially different characteristics than the normal

activities and thus can be detected by monitoring deviations from the profiles

built from normal traffic. In practice, however, this simple assumption does

not always work as the normal behavior patterns change over time giving rise

to false alarm rates. In addition, attackers often conceal their activities by

adapting to normal profiles used by anomaly techniques. The biggest chal-

lenge for signature based techniques is to keep up with the evolving nature

of attacks. Given that these signatures are often hand crafted by the domain

experts, this becomes a bottleneck for these techniques. A third way is to

combine the strengths of both misuse and anomaly detection techniques into

a hybrid approach. One way this can be done is by providing the hybrid detec-

tion through signatures of malicious as well as normal traffic. This particular

area has received little attention and is the concentration of this thesis.

• Detection Locale - The detection can be performed on host or network

level. Host based systems audit host logs, system calls and file systems etc.,

whereas the network based systems consider network traffic as the main source

of audit data. A hybrid approach is to use both host and network based

audit sources for the detection of illegitimate activities. Machine learning

techniques can play a vital role in detecting from hybrid sources. Since these

techniques mostly work with pre-process data, they can easily generalise to

different source of information. However, it would be important to tune the

bias of such techniques to deal with different pieces of information, even though

it is provided in a similar format. An ensemble of learning machines would

be a better choice in such situations, where disparate information is fed to

corresponding expert algorithms and the final outcome is determined by some

sort of a gating mechanism.

• Detection Time - Intrusion detection can be performed in real-time or of-

fline. The real-time systems aim to detect intrusions in the flow of network

traffic or during live host based activities. Offline systems operate on the col-

lected traces and logs in the past and aid in forensic testing and other related
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domains. Both techniques have their own merits. Generally speaking, an in-

trusion detection system is supposed to perform in real-time so that protection

can be provided before the damage occurs. Real-time detection, however, is

challenging, especially for anomaly based systems that often use sophisticated

machine learning and artificial intelligence techniques that are computation-

ally expensive and does not scale well with high speed data. It is thus essential

to drive these techniques towards better scalability in addition to achieving

high precision.

• Learning Ability - Intrusion detection systems can be pre-programmed such

as in the form of hand-crafted signature bases, expert-drafted detection poli-

cies or pre-built statistical profiles. Other systems use machine learning and

other artificial intelligence techniques to learn signatures, policies and profiles

automatically from a training dataset and then generalise to predict future

intrusions. Anomaly detection techniques inherently use different learning

mechanisms. It would be ideal to completely automate the process of signa-

ture generation for misuse detection systems and would give them the flexibil-

ity to adapt to changing environment without human intervention. The work

presented in this thesis is a step towards this approach.

2.2.2 Challenges in Intrusion Detection

It is obvious from the evolving nature of threats and attacks against the computing

infrastructure that the job of intrusion detection systems is far from over. The

two key desirable characteristics that exist among others is the effectiveness and

adaptability of intrusion detection systems.

• Effectiveness - corresponds to the ability of an intrusion detection system to

detect attacks accurately without raising too many false alarms. High number

of false alarms can overly burden human operators, bury the actual attacks

under them or crash the system. It is important to note, however, that there
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is always a tradeoff between the detection rate and the false alarm rate (see

e.g. (Mahoney 2003)). An IDS can be fine tuned to produce less number

of false alarms but only at the cost of increased number of false negatives

(i.e., by missing the actual attacks); conversely, it can be made general to

cover more attacks but only at the cost of increased number of false alarms.

In addition, the efficiency of an intrusion detection system also contributes

to determining its effectiveness. Efficiency is often measured by the cost of

learning and updating a detection model and the cost of actual detection in

terms of both time and resources.

• Adaptability - corresponds to the ability of an intrusion detection system to

perpetually learn changes in the environment over time and adjust to them

accordingly. Adaptability is a major challenge and arguably the most desired

characteristic for an IDS. Generally, achieving adaptability automatically is a

harder problem for misuse detection systems which rely on a manual creation

of signatures. Anomaly detection systems by definition look for novel attacks

but they also need to adapt their learnt models of normal behaviour relative

to changes in the environment.

2.3 Machine Learning

Machine learning is a field of artificial intelligence (AI) that is concerned with

constructing programs that can improve their behaviour with experience (Mitchell

1997). In general, machine learning algorithms aim to find a functional mapping,

also referred to as a concept or a target hypothesis, between a given input or feature

space and an output or label space. The input space is often represented in the form

of a set of instances, where each instance consists of a set of features or attributes.

The task of a machine learning algorithm is to find the target class each instance

belongs to. For example, in an intrusion detection task, the instances may represent

the network connection records or host log entries and the set of features could be
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the types of protocols and services in a packet header or the source and type of an

event in a log file respectively. The goal of a machine learning algorithm (at least

from a classification viewpoint) would be then to assign an attack or normal class

to each instance. Usually, supervised machine learning algorithms require training

with already labelled data before they could assign labels to test or future instances.

There are several ways in which machine learning techniques can be applied to

intrusion detection problems. For instance, they can be used

• to automatically generate signatures or rules for misuse or signature based

intrusion detection systems,

• in building and extracting interesting features that improve the effectiveness

of existing detection systems, and

• to learn the normal behaviour of a protected system or its users in an anomaly

detection context.

A variety of machine learning algorithms have been proposed which can be cate-

gorised in several different ways such as based on the inference technique they em-

ploy (Michalski, Carbonell, and Mitchell 1986). Below we provide a brief discussion

of common machine learning methods.

• Inductive Learning - Inductive learning methods attempt to find the most

general hypothesis that best fits the given training data. They do not use any

prior knowledge about the given hypothesis space and learn by exploiting the

statistical properties of the data. Inductive learning methods include decision

tree learners, conditional rule learners, inductive logic programming and neural

networks.

• Analytical Learning - Analytical learning methods use deductive inference.

In addition to the training examples, they use background domain knowledge
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to deduce generalised hypotheses. In contrast to some inductive learning meth-

ods such as inductive logic programming, that use prior background knowledge

to enrich instance description, analytical learning methods use this knowledge

to reduce the hypothesis search space. An example of analytical learning meth-

ods is explanation based learners such as those presented in (Mitchell, Keller,

and Kedar-Cabelli 1986).

A hybrid approach is to combine the strength of both inductive and analytical

learning techniques to minimise the reliance on both prior background knowl-

edge and training. Knowledge Based Artificial Neural Network (KBANN) is

an example of such a hybrid approach.

• Instance Based Learning - Instance based learning methods are localised

by definition. Instead of learning a generalised hypothesis of the feature space,

they learn by memorisation of the training data. Any new instance is assigned

a target function value of the closest category. The distances are usually

measured in the Euclidean space. Instance based learning methods include

case based reasoning and k-nearest neighbours.

• Bayesian Learning - Bayesian methods provide a probabilistic approach to

learning. They combine prior knowledge of probability distributions of the

candidate hypotheses with the observed data to determine the posterior prob-

ability of target hypotheses. Thus they can be applied inherently to problems

whose output require probabilistic predictions. They also provide a framework

for analysing the bias of other algorithms that do not deal directly with proba-

bilities. The näıve Bayes classifier is an effective algorithm that uses Bayesian

reasoning.

2.3.1 Rule Induction Algorithms

Rules are considered as one of the most expressive and human readable form for

representing a learnt hypothesis (Mitchell 1997). In general, the rule-based models
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are represented as a set of if-then rules in a disjunctive normal form (DNF), where

each rule has an antecedent, consisting of a conjunction of conditions imposed on

attribute values, and a consequent specifying the predicted class of the matching

instances.

Many rule induction algorithms exist in the literature at present. Sequential covering

algorithms are one of the most widely used approach to learn disjunctive sets of rules

(Mitchell 1997). This family of algorithms are sometimes also referred to as the

separate-and-conquer algorithms. In the simplest form, these algorithms iteratively

learn one rule at a time with high accuracy and low coverage (i.e., a rule which

covers maximum number of target class instances with minimum number of other

class instances). Then the instances covered by this rule are removed from the data

set and the process is repeated until all the data is covered. The outcome of the

algorithm is a set of rules that can be ordered in terms of rule accuracy so that the

most accurate rules are considered first when predicting the class of a new instance.

A possible way that this type of algorithms can be classified is the direction of rule

search, which can be either specific-to-general or general-to-specific. The specific-to-

general techniques, such as (Domingos 1995), start with the most specific rule (i.e., a

rule that does not match any instance) and then generalise progressively by covering

instances of the target class. These algorithms scale poorly with increasing number

of features. The general-to-specific techniques, such as AQ (Michalski 1969), CN2

(Clark and Niblett 1989) and IREP (Furnkranz and Widmer 1994), begin their

search with the most general rule and then specify its conditions to improve its

performance over the training set.

Another way of distinguishing the sequential covering class of algorithms is based

on the pruning techniques they use to reduce the generalisation error of the learned

rule sets.

A variation of the sequential covering algorithm is to learn rules for only the most

interesting class, for example the attack classes in an intrusion detection context,
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and use a default rule for the prevalent class in the data.

Association rule learning (Agrawal and Srikant 1994) is another popular approach

that is used to discover interesting patterns in databases. In a strict sense, associa-

tion rule induction is considered different from classification rule induction methods.

Association rule learning algorithms first find large sets of items that support a min-

imum number of transactions in a database and then generate rules from these large

itemsets which have a minimum confidence level.

An indirect way of rule induction is to first learn a classification model through a

non-rule-based approach such as decision trees or support vector machines and then

generate rules from these output models (Quinlan 1987; Burges 1996).

2.4 Genetic-Based Machine Learning

In this section, we will focus on the specific machine learning paradigm used in

this thesis (i.e., GBML). GBML approaches employ evolutionary computation (EC)

techniques as their learning mechanism to search the hypotheses space (Michalewicz

1996).

EC techniques are meta-heuristic search techniques which loosely imitate the process

of natural evolution by simulating principles of natural selection and reproduction.

Similar to natural systems, which evolve over many generations to adapt to their en-

vironments using natural selection, reproduction and diversification, EC techniques

evolve a set of candidate solutions to adapt to the requirements of a problem. EC

techniques have been applied to various machine learning tasks including function

approximation, learning sets of rules for classification and control problems, and

optimising the parameters of other machine learning algorithms such as neural net-

works, decision trees and support vector machines.

Traditionally, evolutionary algorithms are classified under four categories, that are,

Evolutionary Strategies (ES) (Rechenberg 1973), Evolutionary Programming (EP)
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(Fogel 1964), Genetic Algorithms (GAs) (Holland 1975) and Genetic Programming

(GP) (Koza 1992). GAs are the most widely used and popular evolutionary algo-

rithms (Jones 1998) and are an integral part of learning classifier systems - the type

of GBML techniques we are concerned with in this thesis.

2.4.1 Genetic Algorithms

Unlike specific-to-general or general-to-specific approaches, GA search large hypoth-

esis spaces by first randomly generating a collection of hypotheses (i.e., individuals),

referred to as a population. It then iteratively selects the best individuals from this

population and reproduce the next generation of individuals by crossing over and

mutating the individuals in the selected subset. The selection of best individuals is

performed stochastically according to some desired performance measure, denoted

as the fitness of the individual.

Figure 2.1 illustrates a pseudo code for a canonical GA (Goldberg 1989). Each in-

dividual in a population of hypotheses is traditionally represented as a bit string,

referred to as a Chromosome, where each bit in the chromosome is called a Gene.

The selection procedure chooses individuals from the population for reproduction

proportional to their fitness. Several selection procedures have been proposed in

the literature; among the most commonly known are roulette wheel and tourna-

ment selection (Goldberg and Deb 1991). The crossover and mutation operators

create offspring by mixing and altering the genes of parents respectively. Similar to

selection, crossover and mutation can be performed in several different ways.

GA are implicitly parallel and have proven robust in many fields of applications.

The success of GA is often explained by the building block hypothesis (Goldberg

1989) which in turn is built on Holland’s schema theorem (Holland 1975). A schema

is defined as a template that matches a subset of all possible input states. For

instance, the schema 1##1 describes a subset of 4 strings that must have a 1 at

position 1 and 4 in a set of all possible 4 bit binary strings. The # sign represents
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the don’t care symbol or wild card. The schema order is defined as the number of

non-don’t care bits in a given schema. The schema theorem states that the num-

ber of short, low-order and above average fitness schemata increases in successive

generations. Goldberg termed these short, low order and above average schemata

as building blocks and proposed that these schemata receive exponentially increas-

ing trials in the subsequent generations of a classic GA whereas the below fitness

schemata receive exponentially decreasing trials.

Figure 2.1: Pseudo code for a simple Genetic Algorithm

t ← 0

Initialise P (t)

Evaluate P (t)

while Stopping condition is not true do

t ← t + 1

´P (t) ← Select a parent population from P (t)

Apply crossover to ´P (t)

Apply mutation to ´P (t)

Evaluate ´P (t)

P (t + 1) ← Replacement (P (t), ´P (t))

end while

return Best individual of P (t)

2.4.2 Learning Classifier Systems

Learning Classifier Systems (LCS) are described as GBML systems by (Goldberg

1989). LCS are rule based production systems that use GA for rule discovery and

traditional machine learning techniques like reinforcement or supervised learning to

evaluate the fitness of rules. The rules in LCS are referred to as classifiers, thus the

name Classifier Systems.
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There are two common approaches to LCS. Pittsburgh style LCS represent complete

rule sets as an individual classifier. GABIL (De Jong and Spears 1991) and more

recently GAssist (Bacardit and Butz 2004) belong to this category of LCS. Michigan

style LCS on the other hand consider each individual rule as a classifier. It is the

latter approach which we are concerned with in this thesis and will refer to it as

LCS from hereon.

LCS combine a sequential covering algorithm with a GA based search technique

to learn rules in a disjunctive normal form. The GA module empowers LCS to

adaptively learn new rules as well as provide generalisation mechanism that enables

the system to classify future cases. LCS are not merely rule learners but they also

provide an interface with live environments where data can be received continuously

and processed using the learnt knowledge of the system. Further, LCS are incre-

mental and online rule learners, which means they update their classification model

after seeing each data instance and without storing the instance in the memory.

These powerful features make LCS an interesting approach to be used for intrusion

detection.

LCS were originally introduced by Holland in 1975 (Holland 1975) and later sim-

plified and revised in (Holland and Reitman 1978). Stewart Wilson’s XCS (Wilson

1995) is considered the current state-of-the art LCS. A main difference between XCS

and its older counterparts is the evaluation of rule fitness which is based directly

on the accuracy of rules instead of the rules’ strength as used previously. This ma-

jor shift allowed XCS to overcome several weaknesses of the strength based LCS

(Kovacs 2000). XCS incorporates temporal-difference learning in its framework and

thus suits reinforcement learning problems, although we note that it has also been

applied to supervised learning tasks, among others (Bernadó-Mansilla, Llorà, and

Guiu 2002). Recently UCS, a very close variant of XCS, has been introduced for

specifically supervised learning tasks. In this thesis, our focus is on this LCS, thus

we give a description of UCS in the following section, highlighting its differences

from XCS.
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2.4.3 A Supervised LCS

UCS (sUpervised Classifier System) (Bernadó-Mansilla and Garrell 2003; Bernadó-

Mansilla 2002) is an LCS derived from XCS. Both use the same classifier represen-

tation and a niche Genetic Algorithm (GA) (Goldberg 1989) as their search mech-

anism. The fitness of individuals (classifiers) in the population is based on their

accuracy. UCS is specifically designed for classification tasks and benefits directly

from known labels during training. In contrast, XCS uses a reinforcement learning

approach and can be used in single or multi-step tasks. It receives an immediate

or delayed reward from the environment upon predicting an action or a label for

an input state. Consequently, the classifier parameters in XCS and UCS are up-

dated according to their respective learning schemes. In the following subsection, a

discussion of several key UCS components and their operations is provided.

2.4.3.1 Classifier Representation

UCS, like XCS, evolves a population (a set of rules denoted as [P ]) of rules in DNF

representation called classifiers. Each classifier consists of two parts; a condition

and an action or the label of the predicted class. The condition is essentially a

conjunction of predicates, where each predicate can be coded using one of several

available representations. The original XCS was mainly applied to binary tasks and

used a ternary representation of the form {0,1,#}, where # represents the don’t care

symbol meaning it can match either of the input values. Wilson later on introduced

an interval based representation for dealing with continuous value variables (Stewart

W. Wilson 2000; Wilson 2001b); some variations of which are proposed in (Stone

and Bull 2003; Dam, Abbass, and Lokan 2005). Using the interval representation,

each predicate takes the form (li, ui), where li and ui corresponds to the lower and

upper bounds of each interval. An interval predicate matches a continuous input

value if it lies between the lower and upper bounds of that interval. The handling

of unordered attributes has not been mentioned explicitly in the literature. Usually,
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such attributes can be coded using a binary string where each bit in the string

corresponds to a specific category of the unordered attribute or by mapping the

categories to integral values.

Given the flexible framework of both LCS, various other non-symbolic representa-

tions have been used for coding the classifiers including S-expressions (Lanzi 1999),

kernel functions (Butz 2005) and neural networks (Dam, Abbass, Lokan, and Yao

2008). In this thesis, however, we will stick to the symbolic representations described

above.

2.4.3.2 Classifier Parameters

In addition to the condition and action, each classifier has a set of parameters that

are used for keeping various statistics and measuring rule’s confidence. The main

classifier parameters listed below are essentially a subset of XCS parameters.

• accuracy - The accuracy (acc) is a measure of the correctness of a rule.

• fitness - The fitness (F ) of a rule in UCS is a direct function of rule’s accuracy.

• experience - The experience (exp) is a count of the number of times a classifier

matches an input instance.

• numerosity - The numerosity (num) of a classifier corresponds to the number

of its copies in the population.

• niche size - The niche size (ns) is an average of correctset (described in the

next section) sizes to which a classifier has belonged. It is similar to the action

set size (as) parameter in XCS.

The prediction and prediction error parameters used in XCS are not required in

UCS.
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2.4.3.3 System Parameters

An additional set of parameters are used in UCS to control the operation of different

components in the system. Similar to classifier parameters, UCS inherits its system

level parameters from XCS. These parameters can be divided into following three

sets:

• Covering parameters - Covering (detailed in the next section) is applied

in UCS to create new rules at the time of system initialisation or when no

matching rules are found for an input feature vector. The specificity of the new

covering rules is controlled by a parameter P# that represents a user-defined

probability of including don’t cares (#) in a rule’s condition. A higher P#

value means more general rules. In the case of numeric attributes, specificity

(width) of initial covering intervals is controlled by r0.

• Learning parameters - The learning parameters in UCS are used when

updating classifier parameters described in the previous section. Parameter

acc0 refers to an optimum rule accuracy. Any rule above this threshold is

considered 100% accurate. Parameter ν relates rule’s fitness to its accuracy

(more discussion to follow). Finally, there are two more parameters α and β

that are used only when fitness sharing is applied in UCS in which case they

act as accuracy discount factor and system learning rate respectively.

• GA parameters - There are several GA parameters that include the usual

crossover and mutation probabilities, population size and selection related

parameters. Other parameters include θga - a threshold to control the rate

of applying GA to individual niches (or correctsets), θsub - a rule’s experience

threshold above which a rule is allowed to subsume another rule provided

certain other conditions are met, θdel - another experience threshold below

which rules with low fitness are discounted for deletion and δ - a deletion

discount factor.
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2.4.3.4 Operation

Both XCS and UCS interact with the environment in a similar fashion. An instance

is presented to UCS in a standard feature vector format, where each feature can

be of discrete, continuous or nominal type. There are two distinct phases in which

an instance can be processed; namely training and test phases. Traditionally, these

two phases have been referred to as explore and exploit, respectively, in LCS jargon.

Figure 2.2 depicts the interaction of different components and a typical working

cycle of UCS in both phases.

During training, UCS learns from the labelled examples incrementally in a super-

vised mode. In each iteration, an instance is presented to the system and a matchset

[M ] is built of all the matching classifiers in [P ]. A classifier matches an instance only

if all of its conditions satisfy the corresponding feature values of the input instance.

The parameters of all classifiers participating in [M ] are then updated as explained

in §2.4.3.5. Those classifiers in [M ] that predict the same class as the label of the

current input example form the correctset [C] (equivalent of actionset [A] in XCS).

If [C] is empty, then the covering operator is used to create a new matching rule

with the same class as the label of the matched example. Note that this is different

from XCS, where parameter update is carried out in [A] and the covering operator

is used to create a rule for every class not present in [M ]. The covering classifier is

generated by creating a matching condition for every attribute of the current input

instance according to its respective representation discussed above. Finally, GA is

applied to [C] as explained in §2.4.3.6.

During the test phase, the learning and induction processes do not take place and

the system predicts a test case using the population of classifiers it has evolved

during training. For each test input, [M ] is formed as usual and a system prediction

for each class (Pc) is calculated as a fitness-weighted vote:

Pc =
∑

cli∈[M ]

γ · F · num
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(a) Training Phase

(b) Test Phase

Figure 2.2: A typical UCS working cycle.
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where F is the classifier fitness and γ is a discount factor given by:

γ =





0.01 if exp < 10

1 otherwise

The class label with the highest prediction vote is selected as the output.

2.4.3.5 Parameter Update

Unlike XCS, where only classifiers participating in [A] get updated, parameters in

UCS are updated in [M ]. First, a classifier’s exp is incremented by one. Next, the

accuracy is calculated as the proportion of correctly classified examples matched by

a classifier:

acc =
number of correctly classified examples

experience

This is different from XCS, where the accuracy of a classifier is calculated inversely

proportional of its prediction error. Finally fitness is calculated as a function of

accuracy given by:

F = (acc)ν

where ν is a constant that controls the slope of the curve.

Originally, fitness sharing was not tested in UCS but was pointed out as a potential

extension. A recent work by (Orriols-Puig and Bernadó-Mansilla 2006a) investigated

the use of fitness sharing. In fitness sharing, the fitness update is done similar to

XCS. First a new accuracy κ is calculated for each classifier participating in [C] as

follows:

κcl∈[C] =





1 if acc > acc0

α(acc/acc0)
ν otherwise

where acc0 is a user-defined accuracy threshold (usually set to 0.999 for noise free

problems) above which a classifier is considered accurate and α is the rate of dis-
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tinction between accurate and inaccurate classifiers. Also note that κ is set equal

to 0 for those classifiers not belonging to [C] in a [M ].

Next, a relative accuracy κ́ is calculated as:

κ́ =
κcl · numcl∑

cli∈[M ] κcli · numcli

In addition to the above updates, the niche size parameter ns is updated every time

a classifier is included in [C].

2.4.3.6 GA Component

UCS adopts the search and generalisation mechanism from XCS as it also uses a

niche GA. The GA is applied in [C] when the time elapsed since the last application

of GA in [C] exceeds a user-defined threshold θGA.

During GA process, two parents from [C] are selected stochastically, in proportion

to their fitness. The two most commonly used selection schemes are roulette-wheel

selection and tournament selection. Two offspring are generated by probabilistically

reproducing, crossing over and mutating the parents. In crossover, the genetic ma-

terials of two offspring (i.e., the rule conditions) are exchanged. Similar to selection

schemes any of the crossover techniques can be applied (e.g., single-point, two-point

or uniform crossover). The interval predicates for real representations can be crossed

over either at the boundaries or within. Likewise, mutation is applied to individual

offspring based on a user-defined mutation probability. In mutation, the values of

classifier predicates are changed by a small step probabilistically according to their

respective representation.

The resultant offspring are first checked to see if they can be subsumed by their par-

ents (i.e., if the parents are more general than children in all attributes), sufficiently

experienced and accurate then the numerosity of the parents is incremented by one

and the children are discarded; otherwise children are inserted in the population. If

the insertion of the new classifier causes the population size to exceed its user de-
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fined maximum threshold, then a classifier is deleted stochastically to create room

for a new one. For a higher fitness pressure and to keep a balance between the size

of all niches, deletion of classifiers is biased towards those with lower fitness and

larger niche sizes. The deletion vote for each classifier is computed as follows:

dv =





ns · num · F
F

if exp > θdel and F < δF

ns · num otherwise

where F is the average fitness of the population.

2.4.3.7 Macro Classifiers

Both XCS and UCS are implemented using macroclassifiers (Wilson 1995), which

extend classifiers with the numerosity parameter that indicates the number of virtual

classifiers that a macroclassifier represents. This is an implementation technique

which can speed up the processing time considerably by removing the need to process

identical classifiers.

2.4.4 Other Uses of GBML

Although LCS are considered the main stream GBML systems, the scope of GBML

systems has grown with the increase in the application of evolutionary algorithms

as search techniques in various contexts. For instance evolutionary algorithms have

been used in evolving artificial neural networks (Abbass 2002; Yao and Liu 1997), in-

ducing decision trees (Cantu-Paz and Kamath 2003), clustering (Maulik and Bandy-

opadhyay 2000) and so on. There are many variations of rule induction algorithms

based on GA and other evolutionary algorithms including (Bonarini 1996; Freitas

1999; Chiu and Hsu 2005).
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2.5 Related Work

In this section we review some of the prominent work related to our approach.

2.5.1 Hybrid Approaches

Hybrid intrusion detection systems incorporate both misuse and anomaly detection

approaches. These systems generally attempt to complement signature based misuse

detection with anomaly detection techniques to detect novel attacks for which no

signatures are available. Since anomaly detection techniques are prone to high false

alarm rates the systems are designed generally in stages or hierarchies, so that

anomaly detection module is used only when needed.

NIDES (Next-Generation Intrusion Detection Expert System) (Anderson, Frivold,

and Valdes 1995) is a host based IDS that employs a statistical anomaly detection

component and a rule base component for detecting known attacks. User profiles

are created using the short and long term behaviour of the user’s activities and are

updated regularly. Rule creation and update are manual processes but can be carried

out while the system is in operation. The processed audit records from the target

hosts are sent to the statistical and signature analysis modules simultaneously. A

resolver filters out redundant alarms before prompting the users through email or

popup windows.

EMERALD (Event Monitoring Enabling Responses to Anomalous Live Distur-

bances) (Porras and Neumann 1997) is a large scale intrusion detection framework,

which combines statistical anomaly detection models with a signature based mis-

use detection engine. The signature base is a forward chaining production expert

system called P-Best. The rules are first written in a proprietary specification lan-

guage, which are then translated into a C language expert program. The anomaly

detection engine called eBayes uses Bayesian inference. eBayes work on sessions

rather than individual connections; a group of TCP connections within a short time
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is considered a session. It models the probability of occurrence of attribute value

pairs and then classifies sessions using näıve bayes inference based on the observed

values.

(Lee, Stolfo, Chan, Eskin, Fan, Miller, Hershkop, and Zhang 2001) extended their

data mining framework for building intrusion detection models in real time. They

combined algorithms for anomaly detection to complement misuse based detection

in the same framework. One of the methods they used is artificial anomaly genera-

tion. In this method, artificial anomalies are introduced at the edges of the sparse

regions to avoid creating overgeneral rules. The rules are then created for normal

events, known attacks and unknown intrusions (i.e., artificial anomalies). They also

tried a clustering technique for unsupervised learning in their framework. The fea-

ture extraction module developed earlier (Lee and Stolfo 2001) is decomposed to

extract different levels of features as required to speed up this process for real time

application.

ADAM (Audit Data Analysis and Mining) (Barbara, Wu, and Jajodia 2001) is

a two stage system; the first stage is a rule mining stage that creates a network

traffic profile in the form of association rules based on attack free training data.

Another component of this stage, fed with training data including attacks along

with the normal profile rules, generates attack rules dynamically (i.e., over a pre-

specified window size). A third component of this stage extracts other features from

the training data. The outputs of the last two components (i.e., attack rules and

extracted features) are used as a training set for the second stage - a classifier based

on pseudo-Bayes estimators. The purpose of the classifier is to further analyse the

attacks’ predictions before passing it onto the security expert. Training is done

offline. During testing, the same process is repeated except that normal profiles are

not computed. The dynamic miner generates suspicious rules based on the itemsets

that do not match the normal profiles created during training and pass them to the

classifier along with the extracted features. The classifier then decides finally if the

suspicious events are attacks; in which case an alert is generated. Note that our



CHAPTER 2. BACKGROUND AND RELATED WORK 35

framework is also multi-stage, however our first stage is a signature based stage that

contain both normal and attack signatures. We also treat events not matching with

any of these rules as suspicious and send them to the next stage classifier which is

an LCS.

SPADE (Statistical Packet Anomaly Detection Engine), originally developed as a

module in SPICE (Stealthy Portscan and Intrusion Correlation Engine) (Staniford

2002), is an anomaly detection plug-in for Snort (Roesch 1999), an open source, real

time and popular signature based intrusion detection system. SPADE is a frequency

based approach; it keeps track of the number of occurrences of specific packet fields

and constructs a joint probability model of different field combinations such as des-

tination IP/port. However, SPADE is not used for learning new signatures and the

process of signature update for Snort remains manual.

MINDS (Minnesota INtrusion Detection System) (Ertoz, Eilertson, Lazarevic, Tan,

Kumar, Srivastava, and Dokas 2004) is a network level anomaly detection system

that also incorporates a signature component. The input to the system is the packet

header information captured through Cisco’s NetFlow tool every 10 minutes and

stored in a flat file. This data is first filtered to remove uninterested connections (e.g.,

transactions to/from trusted sources). Next, a feature extraction module extracts

features very similar to the work of (Lee and Stolfo 2001). This featured vector

is then passed through a signature base module to check for known attacks. The

remaining data is sent to an anomaly detection module which assigns an anomaly

score to each connection based on a Shared Nearest Neighbour (SNN) clustering

approach (Ertoz, Steinbach, and Kumar 2002). The output of the anomaly detection

module is sent to a security expert, who can create new signatures after performing

analysis of the interesting alerts. Note that intrusion detection is near real time and

not instantaneous. Further, the number of alarms generated from each 10 minutes

data is in thousands. In addition, the new signature creation is still a manual

process.

(Martin and Sewani 2004) applied a multi-level detection approach for offline host
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based intrusion detection. They built user profiles using user commands entered

on Unix command line interface. A fuzzy rule-based expert system is used to first

reduce the set of commands for each user. In the second step, k-means clustering

is applied on the reduced command set followed by a Learning Vector Quantization

(LVQ) technique to refine these clusters.

As noted earlier, despite its potential, hybrid modelling is still a less explored area.

Not all of the systems discussed above are network level; others plug-in separate

anomaly modules into existing rule based systems that rely on manual signature

creation and update. Our focus on the other hand is to develop online (i.e., in real

time or using a single-pass through the data) profiles of both attacks and normal

activities. As opposed to many other hybrid systems, our emphasis is on creating

rules dynamically. Problems of intrusion detection can be approached in many dif-

ferent ways. Given the nature of the threat, diversity in the detection methodology

is essential. Our approach based on GBML adds another defence mechanism against

intruders.

2.5.2 Rule based Approaches

Automatic rule learning for intrusion detection is an active area of research. Many

machine learning techniques are applied to the problem of intrusion detection, how-

ever, there are few that emphasise on automatic rule learning and a fewer that learn

rules online (i.e., in a single-pass). Here, we detail some of the prominent techniques

for learning rules; specifically for intrusion detection.

RIPPER (Repeated Incremental Pruning to Produce Error Reduction) (Cohen 1995)

is a sequential covering based rule learner, extended from IREP (Incremental Re-

duced Error Pruning) (Furnkranz and Widmer 1994), that has been used by several

researchers for learning rules for intrusion detection. The RIPPER algorithm works

by breaking the training dataset into two sets; a growing set and a pruning set. It

learns a single rule at a time by greedily adding conjunctions to its condition part
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that maximise information gain until the rule covers no negative examples from the

growing set. The rule is then pruned immediately by minimising its generalisation

error over the prune set. The rule discovery is stopped using Minimum Description

Length (MDL) principle (i.e., when the MDL of the current rule set exceeds a mini-

mum user-defined threshold). The ruleset is further optimised by replacing existing

rules with their variants such that the new rules minimise the generalisation error

of the entire rule set over the prune set.

Apriori (Agrawal and Srikant 1994) learns association rules by mining the frequent

episodes and has also been used for intrusion detection by many researchers.

(Ramesh and Mahesh 2001) proposed a framework to learn rules in two stages. First,

the sequential covering algorithm is used to learn highly accurate P rules indicating

the presence of a target class. Two rules for every distinct value of all categorical

attributes in a feature vector are generated that take the form R1: (A = v) ? C

and R2: (A != v) ? C, where C denotes the target class. Multiple ranges are used

to cover continuous variables. The strength of each rule is calculated in terms of its

coverage and accuracy on the subset they are generated from. The strongest rule

is then selected and the examples it covers are removed from the training set. This

procedure is repeated with the reduced set at each step until the best rule’s strength

remains above a minimum user-defined accuracy and coverage thresholds. In the

second stage, rules classifying the negation of the target class (!C) are learnt on the

subset covered collectively by all positive rules. A score is calculated for each rule

based on its statistical significance on the training data. This score is also weighted

by a cost matrix (note that a score here is not a probability). During testing, the

conflict between P and N rules is resolved based on this score.

(Mahoney and Chan 2003b) introduced a randomised rule generation algorithm

which they called LERAD (Learning Rules for Anomaly Detection). LERAD gen-

erates simple if then conditional rules similar to association rules. It first randomly

selects a pair of instances (an attribute vector based on TCP streams) from a subset

sampled randomly from the training data. It then searches and randomly orders
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k matching attributes between the pair. The first attribute among the sorted at-

tributes becomes the consequent of the rule and the rest are taken as antecedents.

The generated rule set is then pruned by first discarding redundant rules (i.e., the

rules having the same consequents) with lower scores on the sample data and rules

which perform poorly on the full training set (i.e., rules having a higher number of

unique attribute values) towards the end of training. Note that rules are not learnt

incrementally and require two passes through the training data. During testing a

rule fires if the antecedent matches the test instance but the consequent does not.

Recently, this system is extended also to learn rules from system call sequences

(Tandon and Chan 2005).

(Maloof 2003) extended the AQ11 algorithm, the incremental version of the sequen-

tial covering based AQ algorithm to AQ11-PM (i.e., AQ11 with partial memory).

AQ11 is a memory less system that learns rules incrementally but suffers from or-

dering problems. AQ11-PM keeps a memory of representative examples derived

from past experience; the representative examples are those which contribute to the

evolution of concepts or in other words that lie near concept boundaries. As new

rules are learnt, some of the old examples are forgotten when they no longer enforce

boundary conditions. Similarly old instances are removed from the memory over a

window whose size is adjusted dynamically.

JAM (Stolfo, Fan, Lee, Prodromidis, and Chan 2000) and ADAM (Barbara, Wu,

and Jajodia 2001) mine association rules from the training data and then use them

to detect intrusions in the test data. The former works in a misuse detection mode

while the latter in the anomaly detection mode.

Some other researchers have explored the application of meta-classification algo-

rithms in the intrusion detection domain. Among others (Sabhnani and Serpen

2003) developed a multi-classifier model using three of the nine best performing

pattern recognition and machine learning algorithms such as neural networks, clus-

tering techniques and decision trees and applied it to the 1999 KDD Cup data.

(Giacinto, Roli, and Didaci 2003) divided connection records in KDD Cup dataset
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into six categories based on different network services. Three dedicated classifiers,

each relating to a different feature subset of the KDD Cup dataset, are then ap-

plied to these service modules. The best performing classifiers are fused to classify

intrusions using different voting methods. They reported that the majority voting

method performed the best among all methods.

2.5.3 Nature-Inspired Approaches

Nature inspired approaches, including the GBML techniques discussed above, are

being applied to various domains of computer security including cryptology, secure

protocol design and intrusion detection. Techniques like Genetic Algorithms, Ge-

netic Programming, Artificial Immune Systems and Swarm Intelligence are used for

the detection of attack patterns, adaptively learning rules from network traffic and

implementing the overall frameworks of intrusion detection and response systems.

Below we present a brief survey of some of the work in this area with a focus on the

intrusion detection problem.

2.5.3.1 GA Based Approaches

The use of GA based approaches for intrusion detection problems is not entirely

new. In fact, in 1990 (Heady, Luger, Maccabe, and Servilla 1990) proposed an of-

fline network anomaly detection system architecture using Holland’s strength based

classifier system described in (Booker, Goldberg, and Holland 1990). They proposed

to use classifier system rules for profiling the normal network traffic. However, they

did not provide any results on the evaluation of such a system.

(Ludovic 1998) developed a tool called GASSATA (Genetic Algorithms for Simplified

Security Audit Trail Analysis) for audit trail analysis in the misuse detection context.

GASSATA works in offline mode and uses a GA to search for a binary hypotheses

vector H, where each binary value indicates an occurrence or absence of an attack,

from an attacks-events matrix built from the observed data in an audit trail. The
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objective of GA is to maximise R×H where R is a weight vector that signifies the

risk associated with the particular attacks involved.

NEDAA (Network Exploitation Detection Analyst Assistant) (Sinclair, Pierce, and

Matzner 1999) is a network level intrusion detection system that used GA among

other machine learning techniques for offline rule learning which can then be used in

signature bases of the real time IDS. They modelled source/destination IP/Ports and

the protocol values in the IP packet header. Each chromosome consisted of 29 genes

corresponding to the modelled features. Random rules are generated first to create

a population which are then trained on labelled data using genetic operators and a

fitness function which drives them to accurate attack detection. Rules matching the

intrusion patterns in the training dataset get higher fitness values. The algorithm

is augmented with a variation of crowding technique based on hamming distance

metric to promote diversity in the rule sets.

(Helmer, Wong, Honavar, and Miller 2002) used GA based search to reduce the rule

set size learnt by RIPPER using system call traces. Each attribute in the feature

vector represented a system call sequence and was encoded in binary. A standard

GA with rank based selection was used then to select a feature subset among the

rules learnt by RIPPER. A weighted sum of rule accuracy, number of conditions and

attributes in each rule was used as the fitness function of each individual. By using

this technique, they were able to reduce the number of attributes used in feature

vectors from 1832 to 840.

(Chittur 2002) applied a GA on the 10% of the KDD dataset to evolve best fit rules

based on the accuracy of predicting anomalous connections from the normal. They

used Ephemeral Random Constants to assign weights to individual attributes in the

dataset.

(Gomez and Dasgupta 2002a) used adaptive-parameter genetic algorithm with spe-

cial genetic operators (gene addition and deletion) to evolve fuzzy classifiers and

applied it to the KDD Cup dataset. The rules for Denial of Service (DOS) attacks
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in the dataset were evolved independently of the other attacks because of the high

number of instances belonging to DOS category. They showed equivalent perfor-

mance to traditional machine learning algorithms in all categories and improved

performance in one of the categories.

(Pillai, Eloff, and Venter 2004) manually created a rule set from the network con-

nections and then used GA to evolve new rules to detect novel intrusions in the

network traffic.

Several other researchers have explored the use of GA for intrusion detection prob-

lems in various contexts. However, here we restrict overselves to the brief overview

of GA approaches presented above in the rule based context.

2.5.3.2 Artificial Immune Systems

Natural immune systems provide an intuitive metaphor for applying nature-inspired

computation to the intrusion detection problem. Artificial Immune Systems (AIS)

are learning algorithms that attempt to mimic some of the processes found in natural

immune systems.

In a typical AIS based intrusion detection system (Hofmeyr and Forrest 1999; Kim

and Bentley 2001), the normal behaviour is considered as self and the intrusive

behaviour as non-self. Initially, the detectors or patterns of network traffic or the

host activities are randomly generated to mimic the generation of T cells. During

training, the negative selection process occurs where these detectors are exposed

to the normal events and any matching detectors are removed from the detector

sets. The remaining detectors are then used to detect the abnormal behaviour. The

detectors which correctly match the anomalous behaviour are memorised for future

use. These detectors also go under the clonal selection process which is simulated

using a GA.

AIS resembles with LCS in many respects (Forrest and Hofmeyr 1999). Similar
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to LCS, a typical AIS also uses genetic operators for learning self and non-self be-

haviour. Usually these profiles are learnt in the form of binary strings that represent

network packets or host processes. These binary strings can actually be considered

a form of if-then rules as used in LCS.

Various researchers have used AIS based approaches for intrusion detection problems

due to the similarities between the two domains. (Dasgupta 1998) and (Aickelin,

Greensmith, and Twycross 2004) provide a good review of the field. Many early

researchers have provided frameworks for host and network based intrusion detection

systems such as (Forrest, Hofmeyr, Somayaji, Longstaff, et al. 1996; Dasgupta 1999;

Kim and Bentley 2001). Recent research is concentrating on the advanced features

of natural immune systems benefiting from the advances in the biological research of

immune systems, among others (Aickelin, Bentley, Cayzer, Kim, and McLeod 2003;

Kim, Greensmith, Twycross, and Aickelin 2005).

2.5.3.3 Swarm Intelligence

Swarm Intelligence (SI) is yet another example of the powerful phenomenon of learn-

ing and adaptation observed in many natural systems (mainly social insects and

birds) that have got the attention of recent research. A swarm is defined as a set

of (mobile) agents which are liable to communicate directly or indirectly (by acting

on their local environment) with each other, and which collectively carry out a dis-

tributed problem solving (Hoffmeyer 1994). The individual agents themselves are

simple entities that interact with other agents using simple rules, yet overall they

emerge as completely self-organised systems. Moreover, these systems work in a

completely distributed and decentralised manner which makes these systems quite

robust against environmental changes. Common examples of such natural systems

include colonisation of ants, flocking behaviour of many bird species and emergence

of belief systems in human social networks.

In a computing environment, software mobile agents emulate the behaviour of social
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insects. They perform different tasks such as finding the shortest path between two

nodes on a computer network. To achieve the tasks, agents communicate with each

other using the electronic version of pheromone (e.g., by registering information

about the number of remaining hops to a destination host on an intermediate router).

SI is relatively a new area of study in computer science. Nonetheless, quite a few

intrusion detection schemes have already been proposed using swarm behaviour

metaphors. In (Foukia and Hassas 2004; Foukia 2005) a mobile agent based intrusion

detection and response system (IDRS) is proposed using the AIS and SI approaches.

The detection part of the system is based on a self non-self AIS (see §2.5.3.2) where

mobile intrusion detection agents (IDAs) take the role of T cells and travel around

the network to detect intrusive behaviour using the sequence of events such as system

calls. The response part of the system is based on ants behaviour. Similar to ants,

the intrusion response agents (IRAs) roam in the network to find an attacked node

and perform a countermeasure for that attack. Analogous to ants, IRAs rely on an

electronic pheromone, build and deposited by IDAs upon detecting an intrusion, to

locate the infested host. The electronic pheromone comprises of different information

related to the detected events; for example, the information about the type and

severity of an attack.

In other works, (Dozier, Brown, Hurley, and Cain 2004) used Particle Swarm Op-

timization (PSO) to simulate hackers in order to provide vulnerability assessment

of an AIS based IDS. (Tsang and Kwong 2005) used ant colony based clustering

models for unsupervised classification in distributed IDS architectures.

2.6 Summary and Way Forward

This chapter covers concepts related to the scope of this thesis; namely intrusion

detection, machine learning, rule induction and nature-inspired machine learning

techniques. The basic approaches and challenges faced by the intrusion detection

domain are highlighted and the motivations for opting hybrid intrusion detection
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approach are spelled out. An overview of traditional machine learning techniques

with the emphasis placed on the rule induction algorithms is provided. Special

attention is given to genetic based machine learning and the working of genetic

algorithms is elaborated. We highlighted the main differences between two state-of-

the art learning classifier systems and provided a detailed description of UCS and

its working principle.

A literature review of existing techniques relating to our work in this thesis is pre-

sented. In particular, we looked at some of the work on hybrid intrusion detection,

automatic rule learning for intrusion detection and nature-inspired computational

approaches for intrusion detection.

After setting out the context of the problem and presenting some of the relevant

work in this chapter, we move on to investigate the performance of UCS in the next

chapter.



Chapter 3

Experimental Setup

Part of this work has previously appeared in Dam, H. H., K. Shafi, and H. A. Abbass

(2005). Can Evolutionary Computation Handle Large Datasets? A Study into

Network Intrusion Detection. In Proceedings of the 18th Australian Joint Conference

on Artificial Intelligence, Lecture Notes in Computer Science (LNCS), 3809, pp.

1092–1095. Springer).

3.1 Chapter Objectives

In this chapter, we introduce the 1999 KDD Cup benchmark intrusion detection

dataset, the experimental methodology and metrics used for the evaluation of the

proposed algorithms, and establish a baseline performance of UCS, a GBML system

introduced in the last chapter, by evaluating it through the KDD Cup dataset.

3.2 KDDCUP Datasets

In 1998, the MIT Lincoln Lab under the DARPA and US Air Force Research Labs

(AFRL) sponsorship conducted the first Intrusion Detection Evaluation (IDEVAL)
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program. The two main objectives of the exercise were to evaluate intrusion detec-

tion approaches by analysing their weaknesses and strengths against a wide range

of attacks and to promote future research providing a common, security and privacy

concerns free, testing platform in the form of a data corpus (Haines, Lippmann,

Fried, Tran, Boswell, and Zissman 2001). The corpus collected during this program

was later made public and provides a benchmark for the evaluation of intrusion

detection systems. The traffic was generated on a simulated network resembling

a portion of typical AFRL network and collected through tcpdump network snif-

fer (Jacobson, Leres, and McCanne 1989). The training data was developed from

seven weeks of simulated traffic and audit records and included twenty-four attack

types. The test data was developed from another two weeks of traffic and contained

additional fourteen attack types not present in the training data.

KDD Cup is an annual Data mining and Knowledge Discovery competition organ-

ised by ACM SIGKDD. The focus of the 1999 KDD Cup (Hettich and Bay 1999)

was intrusion detection and the task was to build a predictive classification model

that can distinguish between good (i.e., normal) and bad (i.e., attack) connections.

The datasets used for the KDD Cup, originally provided by (Stolfo, Fan, Lee, Pro-

dromidis, and Chan. 2000), are derived from the IDEVAL data mentioned above.

The raw traffic dump collected from simulated traffic was converted into unique

connection records. A connection here corresponds to a time-stamped session of

data transfer between two computers, in the form of network packets, using a speci-

fied protocol. The training dataset consists of approximately five million connection

records extracted from seven weeks of traffic dump. The test set yielded approx-

imately 0.3 million connection records extracted from the additional two weeks of

traffic dump. A ten percent version of the training dataset is also provided which

contains almost half a million records with similar class distribution as the orig-

inal KDD dataset. We will refer to these two datasets as 10% and full datasets

respectively.

These two datasets are used frequently by researchers working in the domain of
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intrusion detection. In particular, the KDD Cup dataset is used predominantly by

the researchers working with classification algorithms such as (Sabhnani and Serpen

2003; Ramesh and Mahesh 2001). In the following sections, we present a detailed

description of its features and related statistics.

3.2.1 Features

Each connection record in the KDD Cup dataset is a labelled feature vector consist-

ing of forty-one features in total. These include 9 basic or intrinsic features, nine

temporal or time-based traffic features, ten statistical or host-based traffic features

and thirteen content-based traffic features (Lee and Stolfo 2001).

Table 3.1: Intrinsic features in KDD Cup data.

Feature Name Description Type

duration length of the connection in seconds continuous

protocol type type of protocol, e.g. tcp, udp, etc. nominal

service network service on the destination, e.g.,

http, telnet, etc.

nominal

src bytes number of data bytes from source to des-

tination

continuous

dst bytes number of data bytes from destination to

source

continuous

flag normal or error status of the connection nominal

land 1 if connection is from/to the same

host/port; 0 otherwise

binary

wrong fragment number of “wrong” fragments continuous

urgent number of urgent packets continuous
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The basic features are related to fields in the network packet headers and session

timeouts. These features could help in identifying attacks that target protocol and

service vulnerabilities. Table 3.1 lists the intrinsic features along with their descrip-

tion and value types.

Table 3.2: Time-based traffic features in KDD Cup data.

Feature Name Description Type

count number of connections to the same host

as the current connection in the past two

seconds

continuous

serror rate % of same host connections that have

“SYN” errors

continuous

rerror rate % of same host connections that have

“REJ” errors

continuous

same srv rate % of same host connections to the same

service

continuous

diff srv rate % of same host connections to different

services

continuous

srv count number of connections to the same service

as the current connection in the past two

seconds

continuous

srv serror rate % of same service connections that have

“SYN” errors

continuous

srv rerror rate % of same service connections that have

“REJ” errors

continuous

srv diff host rate % of same service connections to different

hosts

continuous
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The time-based traffic features are constructed particularly to detect high volume

fast rate DOS1 attacks based on the number of connections made to the same des-

tination host or service in the past two seconds. These are listed in Table 3.2.

Table 3.3: Host-based traffic features in KDD Cup data.

Feature Name Description Type

dst host count number of connections to the same

host in the past 100 connections

continuous

dst host serror rate % of connections that have “SYN”

errors

continuous

dst host rerror rate % of connections that have “REJ”

errors

continuous

dst host same srv rate % of connections to the same service continuous

dst host diff srv rate % of same host connections to differ-

ent services

continuous

dst host srv count number of connections to the same

service in the past 100 connections

continuous

dst host srv serror rate % of same service connections that

have “SYN” errors

continuous

dst host srv rerror rate % of same service connections that

have “REJ” errors

continuous

dst host srv diff host rate % of same service connections to dif-

ferent hosts

continuous

dst host same src port rate % of connections from the same

source port

continuous

1attack types are discussed in the next section
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Similar to time-based features, host-based traffic features capture the number of

connections to the same host, port or service by a destination host in the past 100

connections. Their main target is slow scanning Probe attacks. These are listed in

Table 3.3.

Table 3.4: Content-based traffic features in KDD Cup data.

Feature Name Description Type

hot hot indicators e.g., access to system di-

rectories, creation, and execution of pro-

grams, etc.

continuous

num failed logins number of failed login attempts continuous

logged in 1 if successfully logged in; 0 otherwise binary

num compromised number of compromised states on the des-

tination host (e.g., file/path “not found”

errors, and “Jump to” instructions, etc.)

continuous

root shell 1 if root shell is obtained; 0 otherwise binary

su attempted 1 if “su root” command attempted; 0 oth-

erwise

binary

num root number of “root” accesses continuous

num file creations number of file creation operations continuous

num shells number of shell prompts continuous

num access files number of operations on access control

files

continuous

num outbound cmds number of outbound commands in an ftp

session

continuous

is host login 1 if the login belongs to the “host” list; 0

otherwise

binary

is guest login 1 if the login is a “guest” login; 0 otherwise binary
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The content-based traffic features are constructed using domain knowledge. Their

aim is to detect stealthy U2R and R2L attacks by monitoring statistics manifested

in the audit logs or in the payload section of the packets. Content based features

are listed in Table 3.4.

3.2.2 Attack Types

Each connection record in the data is labelled either as normal or as an attack. There

is a total of thirty-nine intrusion types including both training and test datasets. All

of these types can be classified into four major categories (Kendall 1999) described

in the following sections.

3.2.2.1 Probe

The probe attacks are carried out usually for reconnaissance purposes; for instance,

a network can be probed to gather information about the types and number of

computers connected to a network, a host can be probed to find out the types of

installed services or the types of user accounts configured on it. Attackers usually

use probing prior to launching an actual attack to scan a large number of machines

and services. Various techniques are used for probing such as brute force pinging of

IP addresses, testing of open ports by sending connection requests and so on.

3.2.2.2 Denial Of Service (DOS)

DOS attacks are targeted at disrupting a normal service or completely making it

unavailable for normal usage. For example, a web service can be denied access to

legitimate users if the server is flooded with unfinished connection requests or if

it is crashed altogether by exploiting some bug in its implementation. A variety

of known DOS attacks exist that use different mechanisms of operation; such as,

taking advantage of vulnerabilities or implementation bugs in network protocols or
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Table 3.5: Attack types in KDD Cup data and their categorisation

Category Attack Types

Probe ipsweep, mscan, nmap, portsweep, satan, saint

DOS apache2, back, land, mailbomb, neptune, pod, pro-

cesstable, smurf, teardrop, udpstorm

U2R buffer overflow, loadmodule, perl, ps, rootkit, sqlat-

tack, xterm

R2L ftp write, guess passwd, httptunnel, imap, multihop,

named, phf, sendmail, snmpgetattack, snmpguess,

spy, warezclient, warezmaster, worm, xlock, xsnoop

services at end hosts, choking the computing or memory resources with high volumes

of traffic or requests.

3.2.2.3 User to Root (U2R)

In these types of attacks the aim of the attacker is to gain illegal access to the

super-user or administrative account privileges to abuse resources or to get access

to classified documents. First, the attacker gains access to a normal user account

by sniffing passwords or other social engineering techniques and then exploits a

vulnerability, implementation bug or administrative discrepancies to obtain super-

user access.

3.2.2.4 Remote to Local (R2L)

R2L (also called Remote to User) attacks provide illegal access to an attacker, who

has access to send packets to a remote network, to the local users accounts. A basic

type of R2L attacks is the brute force password guessing attack, where an attacker

tries to crack an easy password by hit and trial or through running automated scripts.
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More sophisticated attacks involve software vulnerability exploitation or multi-step

attacks where an attacker first installs a sniffing tool to capture passwords and other

user information before penetrating into the system.

A complete listing of all the attacks used in the KDD Cup data placed under the

above mentioned four categories is given in Table 3.5.

3.2.2.5 Label Inconsistency

The KDD Cup official website states that the datasets contain a total of 24 training

attack types, with an additional 14 types in the test data only (Hettich and Bay

1999). However, our calculations show that there is a total of 39 attacks in both

datasets. The training dataset contains 22 of them and the test dataset contains an

additional 17 attacks not present in the training dataset.

Another inconsistency is found in the categorisation of httptunnel attack, which only

exists in the test dataset. In the KDD Cup competition, this is categorised as a U2R

attack (Elkan 2000), while actually this is an R2L type of attack (Kendall 1999).

This has a significant impact on the class distribution of the rarest classes in the test

dataset (refer to Table 3.6), since the scoring procedure maps attack types to their

respective categories, as is done in this thesis (see §3.3.1). Thus in our experiments

we have mapped httptunnel as an R2L attack.

Other researchers have also found some inconsistencies in the data; such as, (Ramesh

and Mahesh 2001; Levin 2000). (Ramesh and Mahesh 2001) found problems in the

labelling of the test dataset which was later corrected. They have also reported 39

attack types (as shown by our calculations) in their work.

As a side note, it is worth mentioning that R2L attacks are sometimes referred to

as Remote to User attacks which should not be confused with User to Root (U2R)

type of attacks.
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3.2.2.6 Class Distribution

Table 3.6 shows the number of instances in the full and 10 percent training datasets

as well as the test dataset along with their respective percentages. All attack types

are mapped to their respective categories while the non-intrusive instances are la-

belled as normal. Note that mapping httptunnel attack to R2L reduces the number

of U2R instances from 228 to 70 and increases the R2L instances from 16189 to

16347.

Table 3.6: Class distribution in KDD Cup datasets

Full Training Dataset 10 % Training Dataset Test Dataset

Class No. %age No. %age No. %age

Normal 972,780 19.86 97,277 19.69 60,593 19.48

Probe 41,102 0.84 4,107 0.83 4,166 1.34

DOS 3,883,370 79.28 391,458 79.24 229,853 73.9

U2R 52 0.001 52 0.01 70 0.02

R2L 1,126 0.023 1,126 0.23 16,347 5.26

Total 4,898,430 494,020 311,029

3.2.3 Advantages and Criticism

Intrusion detection is a practical problem which requires the development of tech-

niques that can be deployed in securing real systems. Obviously, this implies that in-

trusion detection techniques be evaluated on real world data. Unfortunately, scarcity

of such test data is one of the major issues in intrusion detection research. Not that

there is a shortage of network traffic or host logs and events, but the privacy and se-

crecy issues make such data collection a difficult exercise. Even if such data could be

obtained with restrictions; making it available for general access is often not possi-

ble. Furthermore, collecting data from a production environment also raises concern
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about its normalcy and labelling. For example, most anomaly detection systems re-

quire training with an attack free data, however, this may not be guaranteed when

the data is collected from a real network. Such data also needs to be labelled for

training most of the misuse detection systems. Manually labelling a huge amount of

data is next to impossible and is also error prone. Automatically labelling the data

also carries the risk of wrong labelling. Intrusion detection evaluation thus is also a

hot research issue in the domain.

The DARPA and KDD Cup datasets overcome these difficulties as they are pub-

licly available, fully labelled and do not raise any privacy concerns. Further, using

these dataset the results of individual algorithms can be compared with that of

already published results. Another advantage of the KDD Cup dataset is that it

is provided in a ready-made feature vector format suitable for most classification

algorithms. This eliminates the need for dealing with binary traffic dumps used in

the DARPA datasets. This, however, also puts an inherent limitation on the perfor-

mance of intrusion detection systems that are evaluated using these datasets only;

since they have to stick with the provided feature set and they do not guarantee

similar performance if tested with real data.

Traditionally, machine learning techniques have shown poor performance on the two

very rare classes of attacks (i.e., U2R and R2L) in the KDD Cup dataset. Some

researchers have attributed this to the dissimilar probability distribution of classes in

the training and test datasets (Ramesh and Mahesh 2001; Levin 2000). (Sabhnani

and Serpen 2004) has argued that the KDD Cup datasets should not be used to

train machine learning algorithms for the two rare classes (i.e., U2R and R2L) in

the misuse detection context because the target hypotheses in training and test

datasets are dissimilar. However, it is worth noting that the presence of previously

unknown attacks is one of the major challenges of intrusion detection research and

the machine learning algorithms targeting this domain should be able to deal with

such variations.

In addition to the above, the KDD Cup dataset is also criticised for being outdated
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because of the changes in computing and networking technologies and increased

sophistication of attacks since it was created. Despite that, the taxonomy used to

classify attack types in DARPA evaluation remains relevant today regardless of the

modernisation of attacking methods. Nevertheless, as discussed above, this data

provides an easy access and a common platform for IDS evaluation and is being

extensively used in the intrusion detection research.

3.2.4 Complexity

The KDD Cup dataset poses interesting challenges from machine learning viewpoint.

The first obvious observation is the severe class imbalance in the training datasets.

One attack category (i.e., Probe) is very rare and is only 0.84% of the whole dataset;

whereas two other attack classes (i.e., U2R and R2L) are severely rare and constitute

only 0.001% and 0.02% of the full training dataset, respectively. Generally, machine

learning algorithms assume equal distribution of the classes which can lead to a

bias towards majority class in case of imbalanced class distribution. This problem

becomes even pronounced for online (single-pass) learners, like LCS, which do not

learn in a batch mode. Additionally, the class distribution in the test dataset is

different from the training dataset (e.g., the R2L class, which is only 0.02% of the

training, amount to 5.2% of the test dataset). Subsequently, a poor generalisation of

this class in training can significantly affect the performance of a learner on the test

data. Another difficulty of the data is the highly overlapped classes; many records

belonging to different classes differ only in very few attributes, thus making the

problem hard for generalisation. These problems together with a large search space

make the KDD dataset a challenging problem for machine learning algorithms.
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3.3 Methodology

Our approach for evaluating UCS for intrusion detection is to test it on the KDD

dataset using appropriate parameter settings and then analyse the results to identify

problem areas which are then addressed in the subsequent chapters. This section

explains the setup used for the experiments.

In our experiments, UCS is trained using the pre-processed KDD training dataset

and then the learnt model (i.e., the rule set) at the end of each training pass is

used for the classification of the test dataset. Note that we train UCS using only a

single-pass through the data, unlike traditional batch learning systems. Although

multiple passes can be made through the training data, in this thesis however, our

focus is on learning rules in real time. Since UCS is a stochastic algorithm, each

experiment is repeated 30 times with a different seed and results are averaged over

all runs.

In our UCS implementation, each feature type (i.e., real, integer, binary and nom-

inal) in the KDD dataset is handled independently according to its respective rep-

resentation as discussed in §2.4.3.1. In these experiments, UCS is trained using the

10% pre-processed dataset and then tested on the provided test set. As mentioned,

10% dataset consists of half a million records and maintains almost the same class

distribution as the full dataset.

3.3.1 Data Pre-Processing

Features in the KDD dataset have mixed data types (i.e., continuous, discrete and

nominal) with a highly skewed distribution of values. The data was pre-processed

as follows:

• All attack types were mapped to their respective categories and given an in-

teger value, i.e., Probe=1, DOS=2, U2R=3 and R2L=4. Normal connections
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were mapped to 0.

• All binary attributes were left as is.

• All continuous value attributes with a range greater than 1 were scaled linearly

between 0 and 1. Except src bytes and dst bytes attributes, which were scaled

logarithmically because of their very large ranges.

• There are three nominal attributes; protocol type attribute has only three cat-

egories and is thus treated using the sparse representation discussed in §2.4.3.

The other two attributes (i.e., service and flag) have 70 and 11 categories

respectively. To avoid inflating the classifier length these were mapped to in-

teger values from 0 to N -1, where N corresponds to the number of categories

in an attribute.

Two attributes, num outbound cmds and is host login, which have zero values all

over the data are removed from the datasets, leaving the number of attributes to 39

from 41.

3.3.2 Evaluation Metrics

The contestants of the 1999 KDD Cup were evaluated on two measures. First, the

classification accuracy for each class was reported by using the standard confusion

matrix approach. A confusion matrix is an n× n square matrix where n represents

the number of classes, which summarises the errors made by a classification model.

It is calculated by comparing the actual class labels in the test set with that of the

predicted ones by a classifier.

Second, a cost per example (CPE) score was assigned to each classification model

using a cost matrix (given in Table 3.7) based on the rarety of the classes. The cost

per example score is computed by multiplying the cost and confusion matrices and

dividing the sum of the resultant matrix by the total number of test instances. A
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lower cost-based score means better classification model. In the results, we will also

use these two measures to report the accuracy of different classification models.

Table 3.7: Cost matrix used for scoring intrusion detection techniques in the KDD Cup

competitions.

Normal Probe DOS U2R R2L

Normal 0 1 2 2 2

Probe 1 0 2 2 2

DOS 2 1 0 2 2

U2R 3 2 2 0 2

R2L 4 2 2 2 0

In addition, false alarm rate and hit rate are two other measures that are used

commonly in the intrusion detection domain to measure the performance of an IDS.

False alarms refer to the benign activities reported as intrusions by an IDS whereas

hits refer to the true intrusions flagged by an IDS regardless of their particular type.

Table 3.8 illustrates the calculation of these two measures along with the overall

accuracy using confusion matrix.

Table 3.8: Confusion matrix for a two-class problem and evaluation metrics.

accuracy = a+d
a+b+c+d

false alarm rate = b
a+b

hit rate = d
c+d

Predicted

Normal Attack

A
ct

u
al Normal a b

Attack c d

Table 3.9 shows the confusion matrix and other related measures achieved by the

winner of the 1999 KDD Cup. Note that in these results httptunnel attacks are

labelled as U2R as opposed to R2L (see §3.2.2.5).
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In our experiments, we will also report the number of rules evolved by each classifi-

cation model and their overall coverage of the test feature space. These factors give

an indication of the model complexity and the generalisation ability.

Table 3.9: Performance of 1999 KDD Cup Winner.

Confusion Matrix

Predicted

Normal Probe DOS U2R R2L Accuracy

A
ct

u
al

Normal 60262 243 78 4 6 99.50%

Probe 511 3471 184 0 0 83.30%

DOS 5299 1328 223226 0 0 97.10%

U2R 168 20 0 30 10 13.20%

R2L 14527 294 0 8 1360 8.40%

Other Performance Measures

Overall Accuracy = 92.71%

False alarm rate = 0.55%

Hit rate = 91.81%

Cost per example = 0.2331

3.3.3 UCS Parameter Settings

There are quite a few UCS parameters that need external setting as discussed in

§2.4.3. To ensure the best performance, we used the best practice parameter settings

to suit the KDD dataset. Several studies have looked into the effect of different

parameters on the performance of XCS and have recommended appropriate settings.

Since UCS parameters are essentially a subset of the XCS parameters with only

few differences, same settings can be applied to UCS. (Butz, Kovacs, Lanzi, and
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Wilson 2004b) identified two important challenges namely covering challenge and

schema challenge to guarantee the application of right fitness pressure to evolve

accurate and general rule sets in XCS. The covering challenge requires that classifiers

are initialised with high enough generality to overcome the cover-delete cycle that

can be triggered if the population is too specific in the beginning, in which case,

useful classifiers start getting deleted quickly to give room to newly created covering

classifiers. On the other hand, the schema challenge requires that the classifiers

are specific enough for GA to work properly. Together, these two challenges can

be met by appropriately setting the value of P#, for binary and nominal attributes

and r0 for continuous attributes (see §2.4.3.1 for details). (Butz and Goldberg 2003)

also derived a reproductive opportunity bound which states that the population size

(N) should grow exponentially in problem difficulty and polynomially in the string

length (i.e., the number of features). Note that the exact formulation of problem

difficulty and schema order is not always possible in many real world problems and

thus estimated values are used in such cases.

In the following experiments we set P# = 0.6 and r0 = 0.4 as used by (Bacardit

and Butz 2004) in their data mining exercise . As for the population size they used

N=6400, however, taking account of Stewart Wilson’s recommendations we increase

the population size to 8000 in our experiments (Wilson 2005). Wilson also recom-

mended to increase the values of θsub and θdel by a factor of 10 so that the majority

class classifiers get sufficient online experience before they can be considered for sub-

sumption or deletion (Wilson 2005). The covering operator is used as described by

Wilson in (Wilson 2001b). Both the covering threshold r0 and mutation threshold

m0 are set in a problem independent way as a percentage of feature values. Pro-

portionate selection is used in the GA procedure which has shown to evolve more

compact solutions in XCS (Kharbat, Bull, and Odeh 2005). The actionset subsump-

tion is also turned off according to Wilson’s suggestion (Wilson 2005). The rest of

the parameters are set as given in (Butz 2004), except the UCS specific parameters

which are set according to (Bernadó-Mansilla and Garrell 2003). A complete listing

of the parameter settings is given below:
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α = 0.1, β = 0.2, δ = 0.1, υ = 10, χ = 0.8, µ = 0.04, m0 = 0.2, r0 = 0.4, θGA = 50,

θsub=200, θdel = 200, N = 8000, acc0 = 0.99, GASubsumption=YES,

ASSubsumption=NO

The same parameter settings will be used in all the experiments throughout this

chapter unless otherwise stated explicitly.

3.3.4 UCS Implementation

UCS and all other algorithms developed in this thesis are implemented in C++

programming language and compiled on a Red Hat Linux gcc 3.2.2 compiler. All

experiments in this thesis (unless otherwise mentioned) are run on a high perfor-

mance parallel computing Linux Beowulf cluster with 152 dual 3GHz Pentium-IV

computing nodes maintained by Australian ac3 super-computing facilities.

3.4 Baseline UCS Performance

We begin our investigations with the original UCS as described in (Bernadó-Mansilla

and Garrell 2003). Table 3.10 summarises the performance of UCS on the KDD

dataset. The tabular at the top shows the average confusion matrix along with

percentage accuracies and their standard deviations from the mean for each class.

The middle tabular shows the average number of rules evolved by UCS, along with

their variances, for each class at the end of training runs. Note that the number of

rules are rounded to their nearest integer for better readability. The bottom tabular

provides the score for the other evaluation metrics discussed above.

The results show that overall, UCS performance is worse than the top entries in the

KDD Cup competition. UCS achieves lower accuracy on almost all of the classes

in comparison to the winner of the KDD Cup (see Table 3.9). It also generates

significantly higher number of false positives which suggests that UCS is evolving
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Table 3.10: Baseline UCS performance on the KDD Cup dataset.

Confusion Matrix

Predicted

Normal Probe DOS U2R R2L Accuracy

A
ct

u
al

Normal 59062.30 434.80 396.23 356.47 343.20 97.47(0.36%)

Probe 418.73 2548.47 390.83 432.33 375.63 61.17(9.22%)

DOS 12282.03 7273.80 195674.20 7271.00 7351.97 85.13(7.89%)

U2R 34.47 7.33 8.10 10.57 9.53 15.10(4.87%)

R2L 14919.63 374.57 279.03 266.77 507.00 3.10(1.58%)

Number of Rules

Normal Probe DOS U2R R2L Overall

6068(64) 510(24) 916(53) 105(8) 180(13) 7779(15)

Other Performance Measures

Average accuracy = 82.89(5.85)%

False alarm rate = 2.53(0.36)%

Hit rate = 88.96(2.05)%

Cost per example = 0.41(0.10)

a high number of overgeneral rules for the Normal class. Although the overall

hit rate is around 89%, the cost per example score is much higher because of the

misclassifications within the attack types. Also note that UCS performs poorly on

the two rare classes (i.e., U2R and R2L).

Interestingly, the evolved number of rules remain near the maximum population size

limit at the end of the training run. This suggests that UCS is having difficulty in

converging to an optimal representation. Overall the rule population is dominated

by the Normal class rules that accounts for almost 78% of the total population. This
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is counter-intuitive as one would expect the DOS class rules to have the highest pro-

portion in the population, given its majority in the training set. However, this is the

nature of intrusion detection problem where the attackers try to hide their intrusive

activities under the normal activities to make their detection hard. If normal ac-

tivities are scattered all over the search space, a greater number of rules would be

required to cover them; especially using the hyper-rectangular rule representation

as used by UCS. Fortunately, UCS is able to maintain rules for rare classes despite

their extremely small representation in the training set.

3.5 Summary and Way Forward

This chapter provided a detailed introduction to the KDD Cup dataset used as a

benchmark in intrusion detection research. The advantages and criticisms of using

this dataset are discussed. The experimental methodology, including evaluation

metrics, experimental setup and parameter settings, used in this and the following

chapters are presented.

One of the objectives of this chapter was to establish the effectiveness of UCS for

the intrusion detection domain. We conducted this feasibility study by evaluating

UCS on the KDD Cup dataset. UCS achieved an overall accuracy of around 83% in

a single training pass. It produced a false alarm rate of 2.53% and cost per example

score of 0.41. The number of rules evolved by UCS also remains near the maximum

population size limit, signifying the existence of a memorisation phenomenon.

In the next chapter, we will analyse some of the key components and parameters in

UCS to identify issues that led to the inferior UCS performance on the KDD Cup

dataset.



Chapter 4

Extending UCS for Intrusion

Detection

Part of this work has previously appeared in

Shafi, K., H. A. Abbass, and W. Zhu (2006b). The Role of Early Stopping and

Population Size in XCS for Intrusion Detection. In Proceedings of the 6th Interna-

tional Conference on Simulated Evolution and Learning, Lecture Notes in Computer

Science (LNCS), 4247, pp. 50–57. Springer, and

Shafi, K., T. Kovacs, H. A. Abbass, and W. Zhu (In Press). Intrusion Detection

with Evolutionary Learning Classifier Systems. Natural Computing , Springer

4.1 Chapter Objectives

In the last chapter, UCS was tested on the KDD Cup dataset and the baseline

evaluation metrics achieved by it were presented. In this chapter, we analyse key

UCS operators in details, identify several issues that contribute to UCS’s inferior

performance and propose modifications that significantly improve the baseline UCS

performance on key evaluation metrics using the KDD Cup dataset.
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4.2 Effect of Different Operators on the System

Performance

In this section, we attempt to understand the underlying reasons for the inferior

UCS performance by analysing its important parameters and search mechanisms.

4.2.1 The Effect of Population Size

The maximum population size is an important factor in determining the learning

complexity of the LCS. Difficult problems with high dimensions and oblique clas-

sification boundaries need a higher number of rules to cover the space. (Butz and

Goldberg 2003) derived a reproductive opportunity bound for XCS and suggested

that the population size bound needs to be satisfied to ensure that the GA will

get enough reproduction opportunities for each niche representative before it gets

deleted from the population. Simply put, the bound guards against the deletion

of good classifiers from the population by increasing the maximum population size

according to problem difficulty.

Ironically, increasing the population size can significantly increase the learning time

and may still not result in a significant improvement in system performance. In

this section, we analyse this trade-off by experimenting with different population

sizes. To test our hypothesis, we run UCS with the same setup (i.e., using the same

parameters) as used for the baseline experiments but with increasing population

sizes.

Table 4.1 provides a summary of UCS performance with varying population sizes on

the KDD Cup dataset. The top tabular compares the mean per class accuracy along

with their standard deviations for each of the five different population sizes repre-

sented by N . The bottom tabular shows other key performance metrics achieved

by UCS for each of the population sizes along with the mean CPU time taken by

each system to complete an experiment. A one-way analysis of variance (ANOVA)
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Table 4.1: UCS Performance on KDD Cup dataset with varying population sizes.UCS

Performance on KDD Cup dataset with varying population sizes. N stands for population

size. Numbers in parentheses show standard deviation from the mean.

Class Accuracy

N Normal Probe DOS U2R R2L

1000 89.21(5.29) 21.07(0.94) 23.81(3.99) 18.24(4.81) 7.34(6.18)

5000 96.53(0.93) 35.84(8.46) 78.69(6.73) 16.76(5.12) 2.80(1.24)

10000 97.83(0.37) 66.37(2.20) 93.29(5.70) 14.81(4.88) 3.21(1.47)

15000 98.10(0.33) 67.35(0.98) 95.78(3.46) 14.29(3.92) 3.96(2.02)

20000 98.10(0.31) 67.14(1.31) 96.65(0.26) 14.05(5.19) 3.86(1.76)

Number of Rules

N Normal Probe DOS U2R R2L Overall

1000 885(8) 18(3) 58(6) 11(3) 7(3) 980(5)

5000 3889(49) 303(18) 517(31) 69(6) 102(9) 4880(11)

10000 7573(81) 605(18) 1177(69) 128(10) 222(16) 9704(19)

15000 11430(94) 813(27) 1779(76) 174(11) 315(20) 14510(22)

20000 15226(168) 923(29) 2520(151) 223(12) 375(17) 19267(29)

Other Performance Measures

N Avg Accuracy FA Rate Hit Rate CPE Time

1000 35.64(3.05) 10.79(5.29) 77.04(1.58) 1.21(0.05) 16.57(0.19)

5000 77.59(5.00) 3.47(0.93) 87.66(2.05) 0.50(0.09) 84.10(0.88)

10000 89.07(4.24) 2.17(0.37) 90.81(1.53) 0.30(0.08) 178.71(1.75)

15000 91.00(2.54) 1.90(0.33) 91.27(0.87) 0.27(0.04) 238.49(15.34)

20000 91.64(0.23) 1.90(0.31) 91.49(0.56) 0.26(0.01) 286.96(3.27)
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Figure 4.1: Multiple group comparison of key performance metrics achieved by UCS

with increasing population sizes using ANOVA. The system with the highest population

is highlighted and vertical rule lines are drawn to compare its significance with other

methods. The intervals that are completely disjoint (plotted in bold) are significantly

different.
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test is also carried out between these results achieved by UCS to determine their

statistical significance. In addition, a multiple comparison of ANOVA estimates is

performed using Tukey-Kramer test at 95% significance level to determine which

group of means is significantly different. Figure 4.1 shows the comparison result

for each of the five evaluation metrics. The x-axis on each graph represents the

corresponding measures for each evaluation metric. The horizontal bars show com-

parison intervals and the ª symbol represents the corresponding means. Two means

are significantly different at the given significance level if their intervals are com-

pletely disjoint. The intervals plotted in bold are statistically different from the

selected interval highlighted through vertical rules.

The results indicate that the average test accuracy increases significantly as the

population size is increased from 1000 to 15000. However, there is no further sig-

nificant improvement in the accuracy with increase in the population size. Also,

the main improvement is obtained through the better performance of UCS in the

three most prevalent classes. The false alarm rate, hit rate and CPE scores show a

similar trend. The time statistics, however, show almost a linear increase in CPU

time when growing the population size.
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Figure 4.2: Evolution of macroclassifiers in UCS during training with varying population

sizes on the KDD Cup dataset. Y-axis shows the percentage of macroclassifiers.
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The middle tabular in Table 4.1 shows the number of rules evolved by UCS for

each class for each population size. It can be seen that, despite the increase in

the population sizes, UCS does not show any sign of population convergence and

the post training number of rules reach the maximum limit. This effect is clearly

depicted in Figure 4.2. The curves represent the number of rules evolved by UCS and

are normalised to their respective maximum population sizes. For each population

size, the number of macroclassifiers quickly fill in the maximum allowable limit and

stay at this level throughout the training run.

The empirical results suggest that only increasing the population size might not lead

the system to converge on a simpler representation. In addition, we observed that

the system performance does not improve with an increase in the population size

after reaching a maximum level. Similar observations were made by (Orriols-Puig

and Bernadó-Mansilla 2006b) for XCS. In fact, a further increase in population size

could even lead to the overfitting of training data. On the other hand, we saw

that the system run time increases linearly with an increase in the population size.

Therefore, a trade-off can be made between the maximum population size and the

computational cost without a significant amount of loss in accuracy.

4.2.2 The Effect of Evolutionary Search

There are two ways in which new rules are induced in UCS: through covering and/or

GA operations. In this section, we analyse the GA operators to see how they

affect UCS’s performance. In the following section, we will look at the operation of

covering.

In an ideal situation, the covering occurs only minimally and at the start of a

training run. Genetic search then discover new useful rules and drives the system

to evolve a compact and maximally general rule set for the problem. If, however,

nearly the entire rule population is needed to represent a solution the system can

enter a cover-delete cycle in which an unmatched input triggers covering, which
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results in the deletion of an existing rule to make room for the covering rule, which

in turns results in a new unmatched input. One way of addressing this problem is

to increase the maximum population size so that GA can get enough reproduction

opportunities. But increasing population size might not necessarily overcome this

problem, as observed in the last section, and can significantly increase the processing

times.

To provide a baseline, we ran UCS without the genetic algorithm. In these systems,

rules are generated solely by covering. Note that without GA search, UCS essentially

becomes a memorisation system that does not provide any explicit generalisation

ability. The only generalisation in this case comes through the random generation of

the covering predicates that remain static after their creation. The fitness of these

covering rules is updated as they match and predict some training instances without

changing their decision boundaries.

Genetic search in UCS consists of two generative operators: crossover and mutation.

In order to continue our investigation, we also evaluated UCS with crossover alone

or mutation alone. We used the same setup (i.e., the same parameter settings and

experimental methodology) for these experiments as in the baseline experiments

(§3.4) except that the different evolutionary operators were disabled alternatively.

The results of running UCS with different evolutionary operators on the KDD Cup

dataset are presented in Table 4.2. The No GA system refers to UCS with the

GA component completely deactivated. No Mut refers to the system without the

mutation operator while the rest of GA operations are activated. Likewise, No

XO refers to the system running without crossover. For comparison and better

readability, the baseline results are also listed. Similar tests of significance are

performed for the key performance metrics as was done in the last section. Figure 4.3

graphically shows the means along with the confidence intervals of overall accuracy,

false alarm rate, hit rate and CPE.

From the results, it can be seen that UCS without GA (i.e., No GA) performs best
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in terms of the overall accuracy, hit rate and CPE score among all the systems.

It significantly improves the baseline test accuracy on Probe, DOS and R2L attack

classes. It also evolves the smallest number of rules overall among the three systems.

The system without crossover (i.e., No XO) performs worst in terms of test accuracy

and evolves the largest number of rules among the three systems. However, its

performance degradation in comparison to the baseline system is not statistically

significant.

Table 4.2: Effect of evolutionary search in UCS when evaluated with KDD Cup dataset.

Class Accuracy

System Normal Probe DOS U2R R2L

Baseline 97.47(0.36) 61.17(9.22) 85.13(7.89) 15.10(4.87) 3.10(1.58)

No GA 97.43(0.34) 67.30(1.33) 96.87(0.22) 16.76(4.04) 5.94(1.77)

No Mut 97.53(0.48) 65.70(3.78) 88.49(8.86) 15.33(5.59) 4.17(2.51)

No XO 96.69(1.77) 53.75(10.67) 81.57(4.36) 15.67(4.68) 3.86(2.34)

Number of Rules

System Normal Probe DOS U2R R2L Overall

Baseline 6068(64) 510(24) 916(53) 105(8) 180(13) 7779(15)

No GA 2837(45) 326(11) 463(14) 37(1) 102(5) 3764(54)

No Mut 3631(89) 331(15) 443(23) 35(2) 93(7) 4533(88)

No XO 6036(68) 479(24) 851(49) 103(7) 173(13) 7640(23)

Other Performance Measures

System Avg Accuracy FA Rate Hit Rate CPE

Baseline 82.89(5.85) 2.53(0.36) 88.96(2.05) 0.41(0.10)

No GA 91.79(0.21) 2.57(0.34) 92.52(0.82) 0.25(0.01)

No Mut 85.49(6.57) 2.47(0.48) 90.34(2.46) 0.36(0.12)

No XO 80.04(3.31) 3.31(1.77) 88.84(1.37) 0.46(0.06)
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Figure 4.3: Multiple group comparison of key performance metrics achieved by UCS

with different evolutionary operators using ANOVA. The baseline system is highlighted

and vertical rule lines are drawn to compare its significance with other methods. The

intervals that are completely disjoint (plotted in bold) are significantly different.

We also observe that the system with crossover alone (i.e., No Mut) produces the

most unstable results characterised by the larger standard deviation figures while

the No GA system understandably is the most stable, as the rule population is not

being modified by the GA.

Figure 4.4 shows the evolution of rules in the three systems as they train on the

KDD Cup dataset. The No GA system curve shows a growing trend throughout

the training run which suggests that covering is ongoing in this system and it could

not find a stable representation for the training data. The curves for the other

two systems show similar trends, although the system with mutation alone evolves
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Figure 4.4: Number of macroclassifiers evolved by UCS using different evolutionary

operators on the KDD Cup dataset.

much lower number of rules and have higher variations as also confirmed by the

numerical results presented in the tables above. The number of rules for the system

with mutation stays near the maximum population size suggesting the mutation

continues to introduce changes in rule boundaries while the crossover alone will

result eventually in a fixed population.

4.2.2.1 Discussion

Empirical evidences in this section suggest that UCS performs better in the absence

of GA for the KDD Cup dataset. The question therefore is; is the system with no GA

a better alternative? As mentioned above, UCS without the GA rule discovery and

generalisation mechanisms merely acts as a memorisation system and at the very

best a lookup table. It is therefore not interesting at all from a machine learning

perspective. (Kovacs and Kerber 2006) showed that their version of XCS without

GA can achieve 100% performance on small noise-free binary problems although

they suggested it would not scale well to harder problems (particularly in terms of

generalisation). This approach was not intended as a practical alternative to genetic

search, but does provide a useful baseline and is much easier to analyse.
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The results also clearly show that the genetic search and primarily mutation operator

is the main cause of bloat in the rule population. A close look at the rule population

tells us that many rules belonging to different classes overlap in many dimensions

(i.e., they match in many attributes and vary in a few). Such rules may contribute

little to the accuracy of the system and hence they are undesirable. However, it is

difficult to avoid generating such rules when a high-dimensional real-valued space is

searched by a stochastic method such as a GA, which generates and tests variations

to existing rules. To complicate matters, such rules cannot be removed by the

subsumption operator since their conditions do not logically subsume each other (at

least not in a pair-wise manner).

Genetic search is difficult in this situation because the training set is sparse compared

to the real-valued representation. Consequently making a small generalisation of an

existing classifier, which may represent a step in the right direction, may not result

in any additional inputs being matched. In other words, the fitness gradient of

generalisation is a step function, and (partially) flat fitness landscapes are difficult

to search.

Furthermore, in high-dimensional real-valued spaces, the GA’s generation of redun-

dant and similar rules can easily reach the maximum population size. When this

occurs, cover-delete cycles start. This phenomenon results in a lower accuracy and

a less consistent performance. Larger population sizes also increase run-times. Fi-

nally, cover-delete cycles prevent the system from finding compact representations

of the problem.

In short, the tendency to find many partly-overlapping rules in high-dimensional

real-valued spaces can stall genetic search and is thus a general and serious prob-

lem for learning classifier systems. The study in this section suggests that genetic

operators need to be guided appropriately to achieve a better performance.

In the next section, we will investigate the effect of the covering operator on perfor-

mance and introduce a simple heuristic to guide genetic search by fixing the initial
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covering intervals. In the next chapter, we will introduce a novel mechanism for

extracting the optimal rules discovered by UCS during its learning. The extraction

system allows to control the genetic search by exploring only those spaces where an

optimal representation has not been found.

4.2.3 The Effect of Covering Operator

Recall that a classifier is created during training using the covering operator in UCS

whenever [C] is found empty, or in other words when no matching classifiers are

found for a problem instance in the current population of classifiers.

During covering, the continuous valued features are covered by creating an inter-

val around the current state of the input. The maximum width of this interval

is controlled by a user-defined parameter r0, which can be taken as a fraction of

the feature range for a problem-independent representation. The upper and lower

bounds of the intervals are then chosen uniform randomly from the range defined

by this threshold.

As the random numbers are drawn from a uniform distribution, the intervals can

be large or small. Classifiers with intervals which are too large will be overgeneral.

Classifiers with intervals which are too small are likely to be redundant as described

above. The optimal size of interval naturally depends on the problem and on what

rules already exist. Since most of the features in the KDD dataset are continuous,

in this section we investigate the effect of the size of the covering intervals. Our

heuristic is to fix the initial covering interval instead of choosing it randomly. The

schema and covering challenges identified by (Butz, Kovacs, Lanzi, and Wilson

2004b) imply that the setting of a correct initial covering interval is crucial for the

proper working of the genetic search. We believe using the fixed covering technique

should provide a better control for determining the search direction.

We experimented with various fixed covering interval sizes, rather than drawing them

from a uniform distribution. Note that mutation is still able to modify intervals to
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more appropriate values; it is only the initial value which is fixed.

Table 4.3 provides a comparison of performance metrics for different fixed covering

intervals as is done in the previous tables. The top tabular presents per class ac-

curacies and the bottom tabular provides other key evaluation measures achieved

by UCS. Again the same baseline setup was used for these experiments except that

the initial covering intervals were generated using one of the given fixed interval

thresholds. A multiple analysis of variance for each class and overall between all

systems is also carried out and shown in Figure 4.5.

We can observe that for the two rarest classes (i.e., U2R and R2L) lower values

of fixed covering intervals are better. For interval size of 0.2, UCS achieves the

best U2R accuracy of 19.10% and 8.30% for R2L with an interval size of 0.1. The

accuracy on these two rare classes start decreasing with the increase in the interval

length. This indicates that a higher generalisation pressure for these two classes has

a relatively higher deteriorating effect in terms of test accuracy. For the other three

classes there is an optimum between intervals of size 0.3 to 0.6. For these classes very

low intervals are suboptimal for UCS. Overall the fixed covering heuristic improves

baseline UCS performance significantly using a fixed interval size range of 0.3-0.6.

The optimum interval size is around 0.4 where UCS achieves better overall accuracy

than baseline system and also reduces the false alarm rate to 0.93% on average from

a high 2.53%. It also achieves a cost per example score of 0.27 in comparison to the

baseline score of 0.41.

In UCS, search is carried out mainly from specific to general rules because overgen-

eral rules have lower fitness and thus reproduce little. Thus, it makes sense that

seeding UCS with small initial intervals is better, as they can then carry out their

specific to general search. The best value for the covering interval is clearly prob-

lem dependent, although there is a strong suggestion that lower values are generally

better for overall accuracy and we would take this as a heuristic for setting intervals

on other, similar problems. In future we intend to investigate further the dynamics

of the covering operator and a problem independent way of setting this value (refer
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Table 4.3: Effect of fixed covering interval sizes on UCS Performance.

Class Accuracy

CI Size Normal Probe DOS U2R R2L

Baseline 97.47(0.36) 61.17(9.22) 85.13(7.89) 15.10(4.87) 3.10(1.58)

0.1 89.81(4.92) 29.31(4.74) 72.25(12.57) 18.62(5.61) 8.30(4.90)

0.2 98.06(0.24) 59.66(14.04) 83.84(3.17) 19.10(4.29) 2.89(1.24)

0.3 98.91(0.33) 68.48(0.59) 96.39(0.17) 13.38(4.32) 2.58(1.84)

0.4 99.07(0.52) 68.06(0.48) 96.02(2.60) 7.19(3.55) 0.79(0.99)

0.5 98.49(0.04) 68.29(1.16) 96.10(2.59) 4.76(1.47) 0.15(0.05)

0.6 98.51(0.02) 68.76(0.72) 96.52(0.23) 3.86(1.88) 0.14(0.22)

0.7 98.58(0.04) 65.09(2.18) 94.01(4.51) 2.12(1.30) 0.06(0.11)

0.8 98.63(0.05) 63.44(2.98) 96.52(0.17) 2.43(1.64) 0.02(0.02)

0.9 98.66(0.12) 45.69(14.25) 96.70(0.08) 0.45(0.92) 0.00(0.00)

1.0 94.50(5.54) 0.61(1.94) 96.98(0.15) 0.00(0.00) 0.00(0.00)

Other Performance Measures

CI Size Avg Accuracy FA Rate Hit Rate CPE

Baseline 82.89(5.85) 2.53(0.36) 88.96(2.05) 0.41(0.10)

0.1 71.72(9.24) 10.19(4.92) 88.97(3.63) 0.58(0.17)

0.2 82.02(2.32) 1.94(0.24) 88.91(1.32) 0.43(0.04)

0.3 91.55(0.19) 1.09(0.33) 90.97(0.15) 0.27(0.01)

0.4 91.22(1.95) 0.93(0.52) 90.18(2.39) 0.27(0.04)

0.5 91.13(1.92) 1.51(0.04) 90.06(2.39) 0.28(0.04)

0.6 91.45(0.17) 1.49(0.02) 90.30(0.22) 0.27(0.00)

0.7 89.56(3.34) 1.42(0.04) 87.81(4.17) 0.31(0.07)

0.8 91.40(0.14) 1.37(0.05) 90.01(0.18) 0.27(0.00)

0.9 91.30(0.19) 1.34(0.12) 89.99(0.10) 0.27(0.00)

1.0 90.08(1.04) 5.50(5.54) 91.11(1.13) 0.29(0.01)
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Figure 4.5: Multiple group comparison of key performance metrics achieved by UCS with

varying fixed covering thresholds using ANOVA. The system with the optimum interval

size (CI = 0.3) is highlighted and vertical rule lines are drawn to compare its significance

with other methods. The intervals that are completely disjoint (plotted in bold) are

significantly different.

4.3 Strategies to Deal with Uncovered Test Cases

In this section, we highlight another important issue related to the test set perfor-

mance of UCS. As discussed in §2.4.3.4, test cases are predicted in UCS by calcu-

lating a fitness-weighted average of all the matching classifiers. However, it is not

clear from the literature what happens when there is no matching classifier found
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in the population for a test instance. For problems like intrusion detection, such

situations can arise frequently (e.g., because of new types of attacks not found in

the training data). This problem can further escalate when the system has difficulty

in converging to an optimal representation (i.e., in the presence of cover-delete cycle

discussed above).

A simple solution in this situation is to randomly select a class among the possible

classes - the undocumented strategy used currently in UCS. Given N classes, the

expected accuracy of uniform random prediction would be 1/N . However, we can do

better than random classification and introduce a distance-metric-based classifica-

tion for such cases. Upon encountering a test instance for which there is no matching

classifier in the current population, we instead choose the nearest matching classifier

based on the shortest distance D from the input, where D is calculated as follows:

D =
n∑

i=1

di

where di is the distance between the ith attribute of an input and the corresponding

condition interval of a classifier, and n is the total number of attributes.

For continuous value attributes, di is calculated as follows:

di =





0 if li ≤ xi ≤ ui

li − xi if li > xi

xi − ui if xi > ui

where xi is the ith attribute of the input instance, and ui and li are the upper and

lower bounds of the ith interval of a classifier respectively.

For discrete value attributes, di is calculated as follows:

di =





0 if ci = xi | ci = #

1 otherwise

where ci is ith predicate of the rule and # is the symbol used for a don’t care. For
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nominal attributes, di is calculated as:

di =
m∑

j=1





1 if xi = 1 & cij = 0

0 otherwise

where m is the number of categories in a nominal attribute and cij is the jth category

of the ith attribute.

In addition to the distance metric another option could be to use a default rule for the

uncovered test cases (i.e., to choose a pre-selected default class upon encountering

an uncovered test instance). The use of a default rule is common practice in many

machine learning systems that use rule sets as ordered decision lists e.g. RIPPER

(Cohen 1995), CN2 (Clark and Niblett 1989) and AQ15 (Michalski, Mozetic, Hong,

and Lavrac 1986). All of these methods use majority class in the training as their

default class. Note, that the premise of using a default rule in these systems is to

reduce the rule set size by avoiding to learn rules for most prevalent class. Our

objective in contrast is to learn a complete map of the problem (i.e., rules for both

normal and attack classes).

In this section, we run UCS independently with these three prediction approaches

and evaluate their performance on the KDD Cup dataset. For the default class

experiments, we also choose the majority class in training, which corresponds to

DOS in the KDD dataset.

Table 4.4 provides a comparison of three approaches; namely random guess, default

class and distance metric, to predict uncovered cases in the KDD Cup dataset. The

first column of the top tabular shows the percentage of uncovered cases as a fraction

of total test instances whereas the right three columns present the percentage of

correct predictions by each of the three techniques respectively. The experiments

with distance metric and default class modifications were run using the same setup

as used for the baseline experiments 3.4 except that the uncovered test cases are now

predicted using either distance metric or the default class. Each of these two sys-

tems are compared against the baseline or random guess technique using a pairwise

student ttest at 99% significance level. A N is used if either of the two systems (i.e.,
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Table 4.4: UCS Performance on KDD Cup dataset using Distance Metric.

Comparison of Three Strategies to Predict Uncovered Cases

Class UnCovered Random Guess Default Class Distance Metric

Normal 2.74(0.39) 19.77(0.98) 0.00(0.00)♦ 86.48(8.01)¨
Probe 44.99(8.41) 19.97(0.90) 0.00(0.00)♦ 45.32(9.01)¨
DOS 15.82(9.72) 19.91(0.28) 100.00(0.00)¨ 80.54(22.23)N
U2R 56.95(4.92) 20.17(6.45) 0.00(0.00)♦ 19.95(6.52)

R2L 7.71(4.89) 19.76(1.35) 0.00(0.00)♦ 14.20(11.14)

Overall 13.24(7.18) 19.92(0.26) 81.98(14.02)N 77.37(20.06)N

Overall Class Accuracy

Class Random Guess Default Class Distance Metric

Normal 97.47(0.36) 96.93(0.42) M 99.30(0.32)¨
Probe 61.17(9.22) 52.18(10.47) 73.21(7.38)¨
DOS 85.13(7.89) 97.79(0.74)N 95.77(3.33)N
U2R 15.10(4.87) 3.76(3.80) M 15.05(5.33)

R2L 3.10(1.58) 1.58(1.03) M 2.63(1.19)

Other Performance Measures

Class Random Guess Default Class Distance Metric

Avg Accuracy 82.89(5.85) 91.94(0.60) 91.24(2.47)

FA Rate 2.53(0.36) 3.07(0.42) 0.70(0.32)

Hit Rate 88.96(2.05) 92.13(0.87) 90.07(2.84)

CPE 0.41(0.10) 0.26(0.02) 0.27(0.05)
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default class or distance metric) are significantly better than the baseline system. A

¨ shows that one of the two systems is significantly better than both the baseline

as well as the other system. Similarly, a M denotes that either of the two systems is

significantly worse than the baseline system. A ♦ denotes that the selected system

is significantly worse than both the baseline as well as the other system.
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Figure 4.6: Multiple group comparison of key performance metrics achieved by UCS

with different prediction strategies for uncovered test cases using ANOVA. The system

with distance metric prediction is highlighted and vertical rule lines are drawn to compare

its significance with other methods. The intervals that are completely disjoint (plotted in

bold) are significantly different.

First note that 13.24% of the test cases are not covered by the UCS post training

populations. This is significantly high and amounts to around 41,000 test instances

on average. As expected, picking a class uniform randomly for these instances gets
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an accuracy of around 20%. Using the majority training class as a default class

gives an overall accuracy of around 82% which is the best among the three methods.

This essentially happens because the selected default class (i.e., DOS) is also the

majority in the test set. In fact, the 15% uncovered cases of the DOS class accounts

for around 89% of the total uncovered cases. Although the default class achieves

best overall accuracy, it cannot predict cases belonging to any of the other classes.

Moreover, choosing a default class pre-hand may not always be easy and can be

misleading in other situations (e.g., when the default class is not a majority in the

test set).

The distance metric based prediction on the other hand gets around 77% of the

uncovered cases correct on average. It significantly improved accuracy than random

prediction on 3 out of the 5 classes (i.e, Normal, Probe and DOS). On the two rare

classes (i.e., U2R and R2L) there is no significant difference between the accuracies

achieved by the two systems.

The middle tabular in Table 4.4 provides a comparison of overall accuracy on each

class (i.e., including covered and uncovered cases) achieved by the three different

methods that seems consistent with the results in the first tabular. The bottom tab-

ular summarises the performance of three strategies on other key measures. Figure

4.6 shows a multiple comparisons of statistical significance among the three systems

as has been done in earlier experiments. UCS with the distance metric significantly

improves the overall baseline performance. It has also reduced the false alarm rate

significantly from 2.53% to 0.7% and the cost per example score from 0.41 to 0.27.

We hypothesise that the distance metric introduces a bias for the following reason.

Classes with more training set instances, and particularly those which occupy a

greater volume of the instance space, are more likely to have low-distance rules for

any given point in the test set. There should thus be a bias towards them. Of

course the degree to which this bias improves generalisation depends on the extent

to which decision boundaries generated from the training set match those in the test

set. However, we should in general expect to see increased accuracy on the more
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common classes and decreased accuracy on the less common ones. This hypothesised

bias fits the observed decrease in accuracy on the less common U2R and R2L classes

and the common DOS and Normal classes, whereas the performance on the Probe

class is around average which sits between the two levels of prevalence.

Given the supporting empirical evidence we believe that the distance metric method

is a more appropriate way of making classifications on the test set than choosing

a class randomly. Consequently, we recommend that it be adopted as a standard

component of the XCS and UCS algorithms.

4.4 Strategies to Deal with Imbalanced Classes

In previous sections, we highlighted several factors that contribute to UCS perfor-

mance, specifically on the KDD Cup dataset. We observed that the UCS perfor-

mance significantly improves upon its baseline performance on Normal, Probe and

DOS classes by increasing the population size, using a smaller fixed covering interval

size and introducing a distance metric based prediction strategy for the uncovered

test instances. None of the above techniques were, however, able to improve the

performance on two very rare classes U2R and R2L. In fact, in some instances the

accuracy on these two classes was worse than the baseline performance. Thus in this

section we sought to investigate UCS’s performance more profoundly on imbalanced

class problems.

Imbalanced class distribution is an important challenge for data miners that exist

in many real world domains. Since most classification algorithms assume an equal

prior distribution of classes, their prediction models are generally biased towards

the majority class. This has prompted research on analysing and addressing this

problem in different ways ranging from varying the sampling rate of training data

(Japkowicz 2002), making the classifiers cost sensitive (Drummond and Holte 2003)

to boosting techniques (Joshi, Kumar, and Agarwal 2001). LCS, in particular XCS

and UCS, have also been shown to be biased towards majority class in high class
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imbalance environments. In this section, we discuss and compare different strategies

to deal with class imbalance issues in UCS.

(Orriols-Puig and Bernadó-Mansilla 2006b) and (Orriols-Puig and Bernadó-Mansilla

2006a) have also studied XCS and UCS on imbalanced binary multiplexer problems

in, respectively. In an earlier study, (Orriols-Puig and Bernadó-Mansilla 2005) anal-

ysed the performance of UCS on an imbalanced checkerboard problem. It was shown

that as the imbalance level increases, overgeneral classifiers covering the whole fea-

ture space take over XCS/UCS populations. This is because overgeneral rules be-

come fitter as they match fewer minority class instances at higher imbalance levels.

The following sections discuss different schemes to handle class imbalance in UCS.

4.4.1 Fitness Sharing

Fitness sharing has been shown to play an important role in the performance im-

provement of LCS, particularly dealing with the bias towards strong overgeneral

rules (Bull and Hurst 2002; Wilson 1987). The original version of UCS did not im-

plement the fitness sharing scheme. Recently, (Orriols-Puig and Bernadó-Mansilla

2006a) extended UCS by implementing fitness sharing similar to XCS. Under the

fitness sharing scheme, the fitness of a rule is computed relative to the fitness of other

rules participating in the same niche (i.e., the correctset - see §2.4.3.5 for details).

The advantages of the fitness sharing scheme were demonstrated on some binary

problems. In specific, UCS with fitness sharing was shown to outperform UCS with-

out fitness sharing on high levels of class imbalance in a binary multiplexer problem.

4.4.2 Biased Accuracy Function

Recall from Section 2.4.3.5 that the fitness of rules in UCS (without fitness sharing)

is computed as a direct function of accuracy. This causes a bias towards majority

class rules because the accuracy in turn is calculated as a ratio between the correctly
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classified instances and total matches. Consequently, GA tends to evolve overgeneral

rules as class imbalance increases. In (Orriols-Puig and Bernadó-Mansilla 2005), it

was shown that a fitness function based on class-sensitive accuracy can discourage

the evolution of strong overgeneral rules in UCS. The class-sensitive accuracy is

calculated using Equation 4.1, where Ce corresponds to the number of classes a

classifier is experienced in, C is the total number of classes, expi and acci are the

experience and accuracy of a classifier in class i respectively. They showed that

in imbalanced checkerboard problems, with the new accuracy measure, UCS can

handle an imbalance level of up to 5 (i.e., when the ratio of imbalance between the

two classes is 1:32).

acc =
1

Ce

C∑

i=1|expi>0

acci (4.1)

A side effect of the class-sensitive accuracy measure is that it does not discriminate

between a completely overgeneral rule and a rule which is slightly overgeneral and

hence discounts both rules equally. This could become a serious pitfall for such

accuracy measure, especially in noisy or multi class problems. To overcome this

problem, Orriols et al. introduced a weight term wi on the right-hand side of Equa-

tion 4.1. The weighted accuracy is applied to only those classifiers which have an

experience greater than a threshold (θacc) in one class and experiences lower than

θacc in other classes, where θacc is again a user-defined parameter and is sensitive to

problem complexity.

To overcome these problems, we introduce a new accuracy measure which is based

on the rate of misclassifications and frequency of input examples in each class. The

new accuracy function that we refer to as class-distributive accuracy is calculated

as:

acc =

expp∑C
i=1 expi

·
∑C

i=1 Ii

Ip

∑C
i=1

[
expi∑C

j=1 expj
·

∑C
j=1 Ij

Ii

] (4.2)

where C is the number of classes, expp corresponds to the experience of a classifier

in the class it is predicting and Ip is the frequency of instances of the predicted class
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received so far by the system. The idea behind the class-distributive accuracy is

to give more weight to the minority class rules. Since, the number of examples are

calculated online, the parameter estimation reaches near equilibrium as more data

arrives to the system.

4.4.3 GA rate Adaptation

GA provides generalisation mechanism in UCS and we studied the effect of different

genetic operators above (see §4.2.2). UCS uses a niche GA, which implies that it

allocates exploration resources according to the occurrence probabilities of different

niches. As the class imbalance increase in the training data, the GA is applied

more often to the correct sets belonging to the majority class rules. The overgeneral

rules predicting majority class get more reproduction opportunities and also become

fitter using the standard accuracy function discussed above and eventually takeover

the whole population. One way to address this problem is to balance the rate of

applying the among different niches according to their distribution in the training

data.

(Orriols-Puig and Bernadó-Mansilla 2006b) proposed adaptive tuning of the learning

rate (β) and the rate of applying GA to an action set (θga) to deal with imbalance

class problems in XCS. In contrast, UCS with a fitness sharing scheme is said to

be less sensitive to parameter tuning (Orriols-Puig and Bernadó-Mansilla 2006a).

The adaptation approach presented in (Orriols-Puig and Bernadó-Mansilla 2006b)

works by first detecting an oscillating classifier based on the fluctuating prediction

values and then measuring a niche level imbalance through the classifier experience

in two classes. The algorithm uses a few new user-defined parameters to adapt

θga. It was unclear to us how it can be extended to UCS and multi-class problems.

Consequently, in this work we use our own mechanisms to adapt θga. Our approach

is to update the GA rate at every discovery step. Here, we present two mechanisms;

the first mechanism keeps a record of the global class imbalance level by counting

the frequency of input examples for each class. The equation for adapting θga is
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given below:

θgat = C · θga · Ia∑C
i=1 Ii

(4.3)

where C is the number of classes, Ia is the current number of instances belonging to

the class of the current example. We denote this scheme as the global θga adaptation.

The other mechanism is similar to the approach presented in (Orriols-Puig and

Bernadó-Mansilla 2006b) in that it measures the imbalance level locally (i.e., based

on the classifier experience). But unlike their approach, our method does not require

any user-defined thresholds and is applied to all correct sets. The local θga rate is

adapted using the following equation:

θgat = C · θga ·
∑

cli∈[C] expa∑
cli∈[C] exp

(4.4)

where expa corresponds to the experience of a classifier in the class of the current

example and exp is the sum of experiences in all classes. As noted in (Orriols-Puig

and Bernadó-Mansilla 2006b), the local measure of imbalance is preferable because

it is more likely to identify scarce unbalanced niches in otherwise balanced class

problems.

4.4.4 Experiments with Imbalanced Checkerboard

In this section, we compare different schemes for handling class imbalance in UCS on

a two dimensional, real-valued and binary class synthetic dataset; the checkerboard.

The checkerboard dataset is relatively easy to analyse as data points and the evolved

rules can be visually examined. Furthermore, checkerboard problem also suits the

hyper planer rule representation used in UCS. Nonetheless, it is still a difficult

problem because of interleaving class boundaries (Bernadó-Mansilla and Ho 2005).

The dataset is created by uniformly sampling instances from a space bounded by

[0,1] in both x and y dimensions and then choosing the class according to their

respective coordinates. The complexity C of the dataset can be controlled by the

number of class boundaries in each dimension. Further, varying levels of imbalance
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can be introduced in one of the classes by changing the probability of sampling.

Figure 4.7 shows a checkerboard dataset with 5000 instances and C = 4.
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Figure 4.7: An example checkerboard dataset.

The datasets in these experiments are built similar to (Orriols-Puig and Bernadó-

Mansilla 2005). However, our version of checkerboard is online (i.e., we generate

data instances on the fly instead of feeding fixed samples in batch). Online training

suits the requirement of a real time environment and avoids biases due to fixed errors

and fixed example positions in noisy and imbalanced datasets. The test set consists

of another 10000 instances randomly sampled from the same feature space. The test

set is scanned during online training to ensure no test example is used for training

the algorithms. To make the checkerboard imbalanced, the instances are sampled

as usual, however to maintain the imbalance between the two classes, the minority

class instances are sampled with a probability equal to the imbalance level given by

1/2i, where i is a monotonically increasing integer representing the imbalance level.

In Tables 4.5, 4.6 and 4.7, we compare the test set accuracies achieved by UCS using
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different strategies discussed above on increasing levels of imbalanced checkerboard

problems. UCSs corresponds to UCS with fitness sharing, UCSns to UCS with-

out fitness sharing, UCSx+wcs to UCS with and without fitness sharing plus the

weighted class sensitive accuracy and UCSx+cda to UCS with and without fitness

sharing plus the class distributive accuracy discussed above. Each of these systems

is run with a fixed GA threshold and the two proposed adaptive mechanisms on

9 imbalance levels along with the balanced checkerboard. The results are averages

over 30 independent runs.

The same parameter setting as described in §3.4 is used for UCS except the following

changes θGA = 25, θdel = 20, θsub = 20, N = 800, which are set as in (Orriols-Puig

and Bernadó-Mansilla 2005) for the checkerboard problem. Also, UCS was trained

using a single-pass of 200,000 instances in these experiments before being evaluated

on the test set.

Figure 4.8 shows a multiple comparison using ANOVA between the minority class

accuracies achieved by UCS using different techniques to handle class imbalance.

For i <= 2, almost all systems achieve near optimal performance and thus we do

not show comparisons for i = 0 and i = 1. The x-axis on each graph represents

the percentage of minority class accuracy achieved by each system listed on the

y-axis. The horizontal bars show comparison intervals and the ª symbol represents

mean accuracy. The method with the highest mean accuracy is highlighted in each

graph and vertical rule lines are drawn to compare its significance against all other

methods. The methods with disjoint intervals are plotted in bold.

The results show that the performance of UCSns on minority class drops to zero

percent for i > 3. The adaptation of θga significantly improves the performance and

for i = 4 UCSns achieves almost 50% minority class accuracy with global GA rate

adaptation. But this also does not help with further increase in imbalance. On the

other hand, UCSs performs well and reaches around 63% minority class accuracy

at i = 6. Also we note that the θga adaptation has little significant impact on the

performance of UCSs and the accuracy drops to zero with or without θga adaptation
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Table 4.5: Comparison of UCSs and UCSns with and without θga adaptation. See text

for the explanation of symbols and notations used for significance tests and system names.

No θga Adaptation Local θga Adaptation Global θga Adaptation

I Class 0 Class 1 Overall Class 0 Class 1 Overall Class 0 Class 1 Overall

U
C

Sn
s

0 99.97 100.00 100.00 99.93 100.00 100.00 99.95 100.00 100.00

1 100.00 99.92 99.96 100.00 99.60 99.97 100.00 99.90 99.95

2 100.00 99.19 99.67 100.00 98.78 99.40 100.00 99.35 99.83

3 100.00 96.59 98.23 100.00 97.30 98.60 100.00 98.20 99.20

4 100.00 2.20 51.07 100.00 19.28 59.63 100.00 46.37 73.17

5 100.00 0.14 50.03 100.00 0.56 50.27 100.00 1.04 50.43

6 100.00 0.00 50.00 100.00 0.01 50.00 100.00 0.10 50.03

7 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00 50.00

8 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00 50.00

9 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00 50.00

U
C

Ss

0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1 100.00 99.96 99.97 100.00 99.96 100.00 100.00 99.99 100.00

2 100.00 99.34 99.80 100.00 99.15 99.63 100.00 99.56 99.90

3 100.00 96.49 98.20 100.00 96.94 98.47 100.00 97.91 98.87

4 100.00 85.29 92.60 100.00 89.81 94.83 100.00 87.92 93.97

5 100.00 62.62 81.27 100.00 74.27 87.17 100.00 75.10 87.50

6 100.00 41.77 71.00 100.00 45.70 72.87 100.00 44.08 72.07

7 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00 50.00

8 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00 50.00

9 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00 50.00
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Table 4.6: Comparison of UCSs+wcs and UCSns+wcs with and without θga adaptation.

See text for the explanation of symbols and notations used for significance tests and system

names.

No θga Adaptation Local θga Adaptation Global θga Adaptation

I Class 0 Class 1 Overall Class 0 Class 1 Overall Class 0 Class 1 Overall

U
C

Sn
s+

w
cs

0 99.90 100.00 100.00 99.89 99.90 100.00 99.97 99.93 100.00

1 99.99 99.80 99.93 100.00 99.80 99.93 99.96 99.95 100.00

2 100.00 99.49 99.83 99.96 99.23 99.73 99.97 99.77 99.90

3 100.00 97.75 98.80 99.96 98.08 98.90 99.97 98.60 99.23

4 100.00 91.06 95.47 100.00 93.33 96.60 100.00 94.93 97.40

5 100.00 70.93 85.53 100.00 79.71 89.93 100.00 79.44 89.80

6 100.00 33.30 66.67 100.00 45.40 72.67 100.00 47.44 73.83

7 100.00 10.21 55.07 100.00 17.33 58.60 100.00 18.29 59.13

8 100.00 0.74 50.37 100.00 3.56 51.67 100.00 4.71 52.40

9 100.00 0.00 50.00 100.00 0.02 50.00 100.00 0.03 50.00

U
C

Ss
+

w
cs

0 96.71 99.53 98.10 96.03 98.45 97.30 98.47 99.92 99.23

1 99.97 99.97 99.93 99.12 99.85 99.50 99.73 99.97 99.90

2 100.00 98.48 99.37 99.96 99.51 99.73 100.00 99.79 99.97

3 99.93 98.47 99.30 99.97 98.49 99.13 100.00 98.93 99.47

4 100.00 96.18 98.07 100.00 96.45 98.23 99.97 96.21 98.17

5 100.00 85.68 92.73 100.00 89.69 94.73 100.00 89.92 94.87

6 100.00 64.97 82.50 100.00 68.78 84.40 100.00 73.52 86.73

7 100.00 47.77 73.87 100.00 47.72 73.83 100.00 51.11 75.57

8 100.00 32.49 66.20 100.00 31.65 65.87 100.00 30.36 65.17

9 100.00 14.92 57.53 100.00 18.05 58.97 100.00 16.27 58.17
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Table 4.7: Comparison of UCSx+cda with and without θga adaptation. See text for the

explanation of symbols and notations used for significance tests and system names.

No θga Adaptation Local θga Adaptation Global θga Adaptation

I Class 0 Class 1 Overall Class 0 Class 1 Overall Class 0 Class 1 Overall

U
C

Sn
s+

cd
a

0 100.00 99.96 100.00 100.00 99.99 100.00 100.00 100.00 100.00

1 100.00 99.99 100.00 100.00 99.93 100.00 99.97 100.00 100.00

2 99.99 99.76 99.97 99.97 99.83 99.97 100.00 100.00 100.00

3 100.00 99.12 99.70 100.00 99.57 99.87 100.00 99.76 99.97

4 100.00 97.49 98.77 100.00 98.53 99.10 100.00 98.38 99.07

5 100.00 90.63 95.17 99.93 94.35 96.97 99.96 95.17 97.43

6 99.67 70.82 85.20 99.93 82.55 91.17 99.90 81.69 90.73

7 99.60 39.76 69.57 99.49 56.24 77.73 99.69 61.51 80.50

8 99.14 18.75 58.90 99.27 33.96 66.57 99.50 31.58 65.47

9 99.67 8.17 53.87 99.40 13.18 56.33 99.57 13.35 56.50

U
C

Ss
+

cd
a

0 99.93 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1 100.00 99.97 100.00 99.99 99.90 100.00 99.97 100.00 99.97

2 99.96 99.93 99.97 100.00 99.73 100.00 99.99 99.90 100.00

3 100.00 99.19 99.80 100.00 99.19 99.60 100.00 99.56 99.87

4 99.97 97.74 98.87 100.00 98.03 99.07 100.00 98.03 98.90

5 100.00 92.36 96.20 100.00 93.29 96.57 99.97 93.67 96.70

6 100.00 71.33 85.70 99.97 79.53 89.80 100.00 80.34 90.07

7 99.97 44.18 72.13 100.00 55.15 77.43 99.90 55.47 77.77

8 99.97 23.50 61.77 100.00 29.45 64.80 100.00 30.92 65.47

9 100.00 9.89 54.97 100.00 16.31 58.23 100.00 15.43 57.70
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Figure 4.8: Multiple group comparison of minority class test accuracies achieved by UCS

with various strategies to deal with class imbalance using ANOVA. X-axis represents the

percentage of test set minority class accuracies achieved by each system listed on Y-axis.

See text for the explanation of system names. The system with best mean is highlighted

and vertical rule lines are drawn to compare its significance with other methods. The

intervals that are completely disjoint are significantly different.

for i > 6. UCS with both biased accuracy functions perform consistently well.

Fitness sharing significantly improves the performance of UCS with class sensitive

accuracy but it does not have a significant impact on UCS with class distributive

accuracy. The adaptation of θga does not seem to improve the accuracy of these

systems significantly, although we note that systems with global θga adaptation

methods almost always achieve higher mean accuracy than local θga adaptation. The

better performance of global θga adaptation could be due to the uniform random

sampling of feature space in these problems. However, local θga adaptation seems

to be a better choice to measure the imbalance at niche level. Finally, we note that

UCS with class distributive accuracy has the highest mean accuracy in almost all

imbalance levels except i = 9.

From this analysis, we conclude that UCS with fitness sharing, local θga adaptation

and class distributive accuracy is the best combination of strategies to deal with

class imbalance in UCS without loosing the performance in balanced datasets.
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4.4.5 Experiments with KDD Cup Dataset

In this section, we rerun UCS implemented with the class-distributive accuracy,

local θga adaptation and fitness sharing on KDD Cup dataset. Table 4.8 presents

the evaluation metrics achieved by the modified UCS system on the KDD Cup

dataset. The bold figures represent statistically significant improvement over the

baseline results using a t-test at 99% significance level. Likewise, the figures in

italics represent significantly worse results. The figures in plain are not statistically

different.

Table 4.8: UCS Performance on KDD Cup dataset with class-distributive accuracy, local

θga adaptation and fitness sharing. Numbers in bold are significantly better and those in

italics are significantly worse than the baseline UCS.

Class Accuracy

Normal Probe DOS U2R R2L

97.28(0.51) 63.86(6.06) 93.04(6.46) 14.49(3.85) 4.50(2.59)

Number of Rules

Normal Probe DOS U2R R2L Overall

6174(62) 476(21) 846(52) 104(9) 178(12) 7778(16)

Other Performance Measures

Avg Accuracy FA Rate Hit Rate CPE

88.79(4.82) 2.68(0.41) 91.31(1.88) 0.30(0.09)

Although the modified UCS achieves significantly better accuracy on the DOS and

R2L classes and overall than the baseline UCS, the gain in rare classes is not that

significant unfortunately. The two most rare classes (i.e., U2R and R2L) have a very

poor representation in the training data (an imbalance ration of almost 1/7,500 for
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U2R and 1/347 for R2L with respect to the majority DOS class). Under such sparse

representation this becomes a very hard generalisation problem for LCS with the

given knowledge representation. Such lower representation might even be considered

as noise. In real world scenarios however, the percentage of intrusive activities is

much higher than that given in the KDD Cup or DARPA datasets (McHugh 2000).

Referring back to the results, the Normal class accuracy has also not improved

at all with the new modifications and thus the false alarm rate remains high at

2.68%. However, the cost per example score has reduced from 0.41 to 0.30 which is

a significant improvement. Also note that UCS with imbalanced class modifications

evolves significantly lesser number of rules in all the classes except Normal.

4.4.6 Class-sensitive Deletion

The deletion procedure in UCS stochastically removes less fit classifiers from the

population because the number of classifiers in the population can not exceed a

predefined maximum population size limit. As discussed in §2.4.3.5 the deletion of

the classifiers is biased towards the larger niche sizes to keep a balance of rules in

all niches. However, it is possible that some classes have smaller niche sizes despite

the fact that they are more prevalent in the dataset.

In all of the experiments reported in the preceding sections, we observed that UCS

evolves most number of rules for the Normal class which are far higher than the

number of rules evolved for any of the other classes. To address this issue, we aug-

mented the current deletion scheme by a class distribution factor. Before deleting

a rule, we estimate a class distribution in the current rule population. Deletion of

rules is then biased towards the classes with higher number of rules in the population

than the other classes. The new deletion procedure becomes:

dv =





ns · num · F
F
·D[cl.a] if exp > θdel and F < δF

ns · num ·D[cl.a] otherwise
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where cl.a corresponds to the action or predicted label of the classifier for which the

deletion vote is being calculated and D is a vector that keep current distribution

of classifiers for each class. Note that the class distributive bias is in addition to

the bias towards large niches. The objective of this heuristic is to maintain the

population diversity in imbalanced class environments.

4.4.7 Cost-sensitive Prediction

Cost based classification is another technique that is employed to reduce general-

isation error of a classifier in imbalanced class problems (Elkan 2001) (Japkowicz

2002). (Butz, Kovacs, Lanzi, and Wilson 2004b) showed, for a balanced multiplexer

problem, that using a biased reward function can considerably improve the conver-

gence rate in XCS. Given severe class imbalance in KDD Cup data we introduced

a cost-sensitive prediction method in UCS in attempt to improve the accuracy on

very rare classes.

Usually the cost for misclassifying classes in a particular problem is decided by

domain experts. In our experiments, we used the cost matrix provided with the

KDD Cup dataset (see §3.3.2) for this purpose. The cost sensitive prediction works

as follows. First, a prediction array is calculated as usual from all the classifiers

that match the current test example and the best class is chosen with the highest

prediction value. Next, all other prediction values are normalised to the maximum

prediction value. If a prediction falls within a threshold of the maximum prediction

it is considered as a competing class. Finally, the class that would incur the highest

misclassification cost according to the given cost matrix is chosen as the predicted

label of the example. Mathematically, the function can be described as:

Cc =





max(PA(i)) : PA(i) ≥ θc

max(CM(i, j)) : i, j ∈ [1,m]

where Cc is the predicted class, PA is the prediction array, θc is the threshold for
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choosing a competing class, CM is the cost matrix and m is the number of competing

classes having a prediction value under θc of the maximum prediction.

The results of running UCS with class-sensitive deletion and cost-sensitive prediction

are given in Table 4.9. The baseline parameter settings is used for these experiments

also except that the two modifications mentioned here were incorporated in the

framework. The value of θc is set to 0.1 for these experiments.

Table 4.9: UCS Performance on KDD Cup dataset with class-sensitive deletion and cost

sensitive prediction. Numbers in bold are significantly better and those in italics are

significantly worse than the baseline UCS.

Class Accuracy

Normal Probe DOS U2R R2L

97.08(0.41) 67.27(1.32) 96.07(0.72) 16.38(5.83) 4.96(2.04)

Number of Rules

Normal Probe DOS U2R R2L Overall

5027(41) 808(15) 1299(37) 261(16) 389(16) 7785(21)

Other Performance Measures

Avg Accuracy FA Rate Hit Rate CPE

91.08(0.55) 2.92(0.42) 91.75(0.77) 0.27(0.01)

The two modifications significantly improve the baseline UCS accuracy on all attack

classes but not on the Normal class. Especially on the DOS class, we gain around

10% and on Probe class around 6% improvement. Overall, UCS achieves around

91% accuracy against 82% baseline accuracy. Also note that these results are far

more stable than the baseline UCS results. The modified UCS also achieves a cost

per example score of 0.27 in comparison to 0.41 baseline score. However, the false

alarm rate is higher than the corresponding baseline rate.
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The effect of using class-sensitive deletion can be seen by the number of rules evolved

by UCS shown in the middle tabular. Note that rule allocation is much balanced

than the baseline rule allocation. The number of rules for Normal class has been re-

duced by around 1000 rules on average and similarly all other classes get significantly

higher proportion of rules.

4.5 Putting it All Together

In this section, we evaluate UCS with all the modifications proposed in the preceding

sections on the KDD Cup dataset. We refer to this version of UCS as the extended

UCS and shall denote it as UCSx from hereon. To summarise UCSx includes the

following modifications:

• fixed covering as described in §4.2.3 with a covering interval size of 0.3,

• fitness sharing as described in §4.4.1,

• Class-distributive accuracy function as described in §4.4.2,

• local θga adaptation as described in §4.4.3,

• class-sensitive deletion as described in §4.4.6 and

• cost-sensitive prediction as described in §4.4.7 with θc=0.1.

In the experiments, we use the same methodology and baseline parameter settings

as described in §3.4.

Table 4.10 replicates the baseline UCS results presented in Table 3.10 for UCSx.

First note that UCSx achieves significantly better accuracy on all classes except R2L

where its accuracy is not significantly different than the baseline system. Overall

UCSx improves the baseline accuracy by almost 10% to 92.03%. The accuracy

achieved by UCSx is also better than all other systems with individual modifications

except R2L where its performance is not significantly better than other systems.



CHAPTER 4. EXTENDING UCS FOR INTRUSION DETECTION 102

UCSx also achieves a false alarm rate of 0.62% improved from a high 2.53% using

the baseline system. Also note that the modified UCS produces much more stable

outcome than the baseline system.

Both modified UCS and baseline systems evolved almost the same number of rules

overall. Although the number of rules are better balanced class-wise in modified

UCS due to the class-sensitive deletion.

Table 4.10: Extended UCS (UCSx) performance on KDD Cup dataset. The numbers in

bold are significantly better and those in italics are significantly worse than the baseline

UCS at 99% confidence level using a pairwise t-test.

Confusion Matrix

Predicted

Normal Probe DOS U2R R2L Accuracy

A
ct

u
al

Normal 60214.83 180.57 118.13 47.60 31.87 99.38(0.07%)

Probe 757.53 3139.60 253.57 12.70 2.60 75.36(0.76%)

DOS 6928.20 438.50 222423.30 6.40 56.60 96.77(0.14%)

U2R 48.97 1.07 0.37 15.07 4.53 21.52(4.19%)

R2L 15649.30 204.83 15.37 19.13 458.37 2.80(1.67%)

Number of Rules

Normal Probe DOS U2R R2L Overall

5384(33) 527(17) 1246(27) 204(11) 259(14) 7620(21)

Other Performance Measures

Overall Accuracy = 92.03(0.14)%

False alarm rate = 0.62(0.07)%

Hit rate = 90.66(0.16)%

Cost per example = 0.26(0.00)
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The single-pass UCSx still lacks in achieving performance equivalent to the KDD

Cup winner (see Table 3.9). However, it is much better placed in comparison to the

baseline UCS. The published results provide a benchmark performance for the KDD

dataset. We, however, acknowledge that a direct comparison with these results is

unfair because the participants of the competition did not have access to test labels.

Moreover, the number of instances for two of the classes (i.e., U2R and R2L) in

our case are different from the original test set (see §3.2.2.5). Nonetheless, we

emphasise that UCS is a single-pass and incremental rule-based learner. All of these

characteristics are very interesting from a real time intrusion detection viewpoint.

UCSx achieves competitive performance using a single-pass through the KDD data

which is quite encouraging.

4.6 Summary and Way Forward

We identified several issues relating to UCS performance on the KDD Cup dataset

and proposed modifications to address them individually. In particular,

• We analysed UCS performance with increasing population sizes and found that

increasing the population size does not result in any significant improvement

in the test set accuracy after reaching a maximum. The number of macro clas-

sifiers also stays near the maximum limit showing no sign of convergence even

with larger population size limits. Increasing the population size, however,

results in a linear increase in run time. We concluded that a lower population

size can thus be traded off with some loss of performance.

• We analysed the effect of evolutionary and covering search operators on the

system performance. It was observed that without genetic search both sys-

tems could achieve reasonable accuracy overall and thus the search methods

need modifications to deal with this kind of search space. We introduced a

simple heuristic to do so by using fixed covering intervals of various sizes and
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obtained significant improvements in performance by adapting this parameter.

This is necessarily problem-dependent and time-consuming but we have both

empirical evidence and theoretical justification for the heuristic of using small

intervals in covering. We conclude that genetic search with this representa-

tion faces serious challenges in the type of high-dimensional real-valued space

encountered here. Our optimisation of the covering interval helped somewhat

but a more general and effective solution is needed. In next chapter we will

introduce a new system to better control the genetic search.

• We brought to light the issue of coverage gaps in test spaces and introduced

a distance-metric based technique for predicting test instances (such as novel

attacks) that are not covered by evolved population of rules. The distance

based technique significantly improved UCS performance in uncovered search

spaces and thus overall. It also reduced high false alarm rate of baseline UCS to

an acceptable level. We recommended it be adopted as the standard approach

in both XCS and UCS instead of using a random prediction.

• We analysed UCS performance in the presence of imbalanced classes and com-

prehensively compared several strategies to deal with class imbalance issue

in UCS. We also proposed a new accuracy function, techniques to adapt GA

rate, class-sensitive deletion and cost-sensitive prediction techniques to better

handle class imbalance in UCS. Together all these modifications significantly

improved UCS performance on several key evaluation metrics when tested with

the KDD Cup dataset.

The performance of the modified UCS, although not better, is competitive with the

performance of KDD Cup winner. But UCS learns in a single-pass and incrementally

without needing to update the entire model after seeing a new instance, a common

approach in most traditional incremental learners. In addition, UCS adaptively

evolves classification models that are highly expressive in the form of interpretable

if-then rules. All these characteristics are ideal for real time intrusion detection and

thus give UCS an edge over traditional batch learning algorithms.
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We note that UCS has difficulty in converging to a smaller representation and that

the genetic search needs better control. We delve into this issue in the next chapter

and present an algorithm to actively retrieve generalisations learnt by UCS during

its operation.





Chapter 5

Real Time Signature Extraction

From UCS

Part of this work is based on

Shafi, K., H. A. Abbass, and W. Zhu (2007). Real Time Signature Extraction

From A Supervised Classifier System. In Proceeding of the IEEE Congress on

Evolutionary Computation, CEC 2007, 25-28 Sept., 2007, pp. 2509–2516. and

Shafi, K. and H. A. Abbass (2008b). An Adaptive Genetic-Based Signature Learning

System for Intrusion Detection. Expert Systems With Applications , Elsevier, Under

Review.

5.1 Chapter Objectives

One of the key strengths of UCS is interpretability of its learned hypotheses in the

form of simple if-then rules or classifiers. However, a large number of these rules may

be needed to describe a hypothesis and this number could grow with the problem

complexity. This may happen due to various reasons (e.g., representational issues of

the rules and the ability of the evolutionary search to find multiple generalisations).
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Too many rules in turn reduce the readability of the evolved knowledge rendering

it difficult to comprehend by the human experts, the potential beneficiaries of this

learned knowledge in real world problems. In addition, the processing time could

increase exponentially with the rise in the number of rules, which is a major issue

for time critical applications like intrusion detection.

There has been some efforts recently in compacting the post training rule sets in

XCS. However, many recent data mining applications, including network intrusion

detection, require dealing with data as it arrives. In this chapter, we present an

algorithm to extract the effective generalisations learnt by UCS in real time (i.e.,

during its online learning operations). The outcomes of the algorithm are a reduced

set of optimal rules (that we refer to as signatures) extracted in real time (i.e., with-

out post processing the UCS population), improved processing time, better control

over evolutionary search and an auto termination mechanism for batch learning

problems.

In this chapter, we first briefly summarise existing techniques for XCS rule com-

paction. Next, we describe the signature extraction algorithm in detail and present

its pseudo-code. The empirical validation of the algorithm is provided under theo-

retical learning time bounds on a synthetic binary problem. The algorithm is then

extended for continuous attributes and its performance is analysed in noisy and im-

balanced class problems using a real-valued synthetic dataset. Mechanisms for the

online adaptation of algorithm’s parameters are proposed to cope with class noise

and imbalance. Finally, the signature extraction system is evaluated on the KDD

Cup dataset and its performance is compared with the baseline and modified UCS

systems developed in the last chapter.

5.2 Related Work

In his pioneering work, (Wilson 1995) pointed to the rule set reduction as one of

the potential techniques to improve XCS efficiency. He suggested two methods; first
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the use of generality favoured fitness function when the prediction error is below

a threshold, and second condensing the population to remove unnecessary classi-

fiers. Condensation is applied once the system has evolved the optimal population

by switching off the mutation and crossover operators and letting the selection,

subsumption and deletion operators work. Later on, (Kovacs 1997) extended this

work and introduced measures for automatically triggering the condensation pro-

cess and terminating the algorithm. Condensation can be quite sensitive to problem

complexity and requires a long user-defined delay before it can be triggered. He

also proposed a subset extraction method to obtain optimal populations from the

XCS evolved populations. However, the subset extraction may not scale well with

increasing problem sizes as the number of subsets to consider for extraction (2n)

increase exponentially for the larger problems. Wilson later introduced Compact

Ruleset Algorithm (CRA) for XCS (Wilson 2001a). CRA works by post processing

XCS population to find a minimal set of rules that achieve close to 100% accuracy

on the training set. The introduction of CRA sparked some research in this area

and few variants of CRA have since been proposed. They include modified CRA

(Fu and Davis 2002), CRA2 (Dixon, Corne, and Oates 2003) and modifications of

CRA and CRA2 by (Wyatt, Bull, and Parmee 2004).

All of the rule reduction techniques mentioned above post process the XCS pop-

ulations (i.e., XCS is run for a predefined number of iterations and then the final

evolved population is pruned using the training set). The concentration of these

algorithms is to find a subset of the post training rule population that performs

equivalent to the actual population on the training set. Our method in contrast ex-

tracts signatures in real time as they are learnt. Almost all rule reduction algorithms

reported in the literature are applied to XCS. Due to the similarity between the two

systems, these algorithms could be extended to UCS. Nonetheless, our algorithm is

the first, in addition of being real time, to report on signature extraction in UCS.

We also extend Dixon’s CRA2 algorithm to UCS for comparison with our algorithm

which is discussed next.
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5.3 A Real Time Signature Extraction Algorithm

for UCS

Most machine learning algorithms are concerned with learning a generalised hy-

pothesis from a sample of input space which can then be applied to accurately

predict future cases. According to Wilson’s generalisation hypothesis, the evolution-

ary search in XCS is responsible for providing generalisation (Wilson 1998). The

same system dynamics applies to UCS as well, as it uses the same evolutionary

search processes. Selection pressure drives the population towards generality while

the subsumption and deletion processes counter balance this pressure and drive the

system towards evolving an optimal or maximally general population (Butz, Kovacs,

Lanzi, and Wilson 2004b). The end result is a compact population which contains

the maximally general classifiers among others. Convergence to a smaller rule set,

however, does not occur quickly and requires that the system be run for a large

number of iterations even after reaching the optimal performance. Moreover, the

end population is not minimal (i.e., it always contain many classifiers that are not

part of the optimal population).

5.3.1 An Overview of the Algorithm

The aim of our algorithm is to automatically detect the presence of optimal classi-

fiers as they are discovered by UCS and terminate the search process as soon as a

complete maximally general solution is found. Figure 5.1 shows a block diagram of

the proposed system. We will refer to this system as UCSSE for UCS with real time

Signature Extraction system.

The signature set [S] in UCSSE is essentially a subset of [P ] consisting of optimal

classifiers extracted during the operation of UCS. An input from the environment

is first presented to [S] whereby [M ] is generated using the current input label and

the accuracy of the signatures participating in [M ] are updated similar to UCS (see
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Figure 5.1: UCS with Real time Signature Extraction System (UCSSE).

§2.4.3.5). The discovery component of UCS (i.e., the GA) however is bypassed when

the system is run through [S]. Thus signatures do not preserve the numerosity, fit-

ness and nichesize parameters of UCS. An input is escalated to UCS only if no cover

is available in [S], in which case standard UCS takes over and runs its performance

and discovery components using [P ] for a certain number of trials. Meanwhile, the

extraction process of accurate and experienced classifiers from [P ] to [S] is triggered

periodically.

Initially [S] is empty and system runs mainly through [P ] getting enough exploration

opportunities. The operation is shifted gradually to [S] as it starts getting populated.

The transition completes when the system discovers the best map of the input

space and the control is transferred to [S] in which case the evolutionary search is

completely halted and the system is made to run from [S]. A pruning step in [S] is

carried out when the average experience of the signatures in [S] reaches a threshold.

In the pruning step, all inaccurate and below average signatures are deleted from

[S]. If deletion causes a covering gap, control is handed back to [P ] and the process

is repeated until the system stabilises to run from [S], at which point the learning

process can be terminated. The complete pseudo-code for the algorithm is given

below.

To understand the significance of the proposed system, imagine an always “on”

intrusion detection system which identifies illegitimate activities in a production
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network. The signatures learned from UCS can work as a first line of defence in

such an environment. As new intrusions emerge, the system could adapt by learning

new signatures using the main UCS application. In a steady state condition one

would expect most of the inputs being covered by signatures and the genetic search

of UCS only being invoked when there is an indication of a concept change in the

environment. As for offline data mining applications, there is a tradeoff between

choosing a compact model with some loss of generalisation accuracy and having a

large rule set which could exponentially increase processing times and reduce the

comprehensibility of the model.

5.3.2 Pseudo-Code

Before presenting the pseudo-code of the algorithm we list important variables along

with their descriptions.

• N[P ]: Number of standard UCS explore trials since the last extraction step.

• Text : Number of time steps since the last extraction step.

• Topt: Minimum number of time steps for which control is switched to UCS

when a [M ] through [S] is found empty.

• θxacc, θxexp: Accuracy and experience thresholds for extracting a signature to

[S].

• C: A constant positive integer used in controlling the deletion experience

threshold in [S]. Deletion in [S] occurs when average set experience exceeds

C.θxexp.

• θdacc, θdexp: Accuracy and experience thresholds for deleting a signature from

[S].

The pseudo-code of the algorithm is given below following the convention used in

(Butz and Wilson 2002).
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5.3.2.1 RUN EXPERIMENT

The main routine of the algorithm is given in Procedure 1 and adds few additional

steps to the main loop of the standard UCS algorithm (Butz and Wilson 2002). At

each time step [P ] is scanned for optimal rules provided the extraction criteria are

satisfied. If [S] is non-empty, [M ] is formed out of [S] as usual and signatures’ param-

eters (i.e., accuracy and experience) are updated accordingly. In case no matching

signature is found, the system runs standard UCS explore cycles for Topt time steps.

The Exploit or test phase works similarly except that there is no extraction or UCS

learning during this phase and a class with the highest vote among the matching

signatures is predicted. The vote is calculated solely on the aggregative accuracy

of the matching signatures. If no matching signature is found, then the class is

predicted using [P ] as usual (see §2.4.3.4).

Procedure 1 RUN EXPERIMENT

1: foreach input situation σ do

2: [S] ← EXTRACT SIGNATURES out of [P ]

3: if [S] 6= ∅ then

4: [M ] ← GENERATE MATCH SET out of [S] using σ

5: if [M ] 6= ∅ then

6: act ← SELECT ACTION according to σ

7: UPDATE SET [M ] according to act

8: else

9: switch to standard UCS for next Topt time steps

10: end if

11: else

12: run a standard UCS trial

13: end if

14: end for
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5.3.2.2 EXTRACT SIGNATURES

The extraction from [P ] to [S] is triggered after a sufficient number of trials since the

last extraction has occurred and there has been at least one standard explore cycle

during this time. This ensures that the population is not scanned unnecessarily

and the extraction step takes place only when the population contains at least some

newly discovered optimal classifiers. In addition, a pruning procedure in [S] is

invoked if the average set experience exceeds a multiple of θxexp. Procedure 2 shows

the pseudo-code.

Procedure 2 EXTRACT SIGNATURES ([P ])

1: if N[P ] ≥ 1 ∧ Text ≥ Topt then

2: foreach classifier cl in [P ] do

3: if cl IS QUALIFIED FOR INSERTION then

4: INSERT cl in SIGNATURE SET

5: end if

6: end for

7: end if

8: if [S].experience ≥ C.θxexp then

9: PRUNE SET [S]

10: end if

5.3.2.3 IS QUALIFIED FOR INSERTION

Any classifier with experience greater than θxexp and accuracy greater than θxacc

is considered qualified for insertion in [S] as a signature. The rationale is that

those classifiers matching sufficiently large number of examples without much loss

of generalisation error are more likely to be maximally general and will have a better

accuracy estimation. Procedure 3 shows the pseudo-code.
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Procedure 3 IS QUALIFIED FOR INSERTION ( cl )

1: if cl.accuracy > θxacc ∧ cl.experience > θxexp then

2: return true

3: else

4: return false

5: end if

5.3.2.4 INSERT IN SIGNATURE SET

For a higher generalisation pressure, a signature is checked for either way subsump-

tion when inserted in [S]. If the qualified classifier to be inserted in [S] is logically

subsumed by an existing member of [S] (i.e., all of its condition predicates are equal

to or more specific than the existing one) it is not inserted in [S]. On the other hand,

any of the existing classifiers subsumed by the new classifier are deleted from [S] and

the new more general classifier is inserted in [S] as a signature. The pseudo-code is

given in Procedure 4.

Procedure 4 INSERT IN SIGNATURE SET (qcl)

1: subsumed = false

2: foreach classifier cl in [S] do

3: if cl SUBSUMES qcl then

4: subsumed = true

5: else if qcl SUBSUMES cl then

6: DELETE cl

7: end if

8: end for

9: if subsumed = false then

10: ADD qcl TO SET

11: end if
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5.3.2.5 PRUNE SET

Since the algorithm is tuned to extract optimal classifiers as soon as they are evolved

by UCS, it is likely that the rules which meet the extraction criteria but are actually

slightly overgeneral or less than maximally general are extracted to [S]. In this case,

[S] can contain many rules which over time become inaccurate as they start matching

more instances of other classes or the rules which are less experienced as they match

fewer instances than the maximally general classifiers. To overcome this issue we

can either constrict the extraction criteria by increasing extraction thresholds or

introduce a periodic pruning routine which cleans [S] from such classifiers. Since,

the former approach can unnecessarily delay the retrieval of optimal rules we adopt

the latter approach of greedy extraction and periodic pruning in [S].

Procedure 5 PRUNE SET ( [S] )

1: foreach classifier cl in [S] do

2: if cl.accuracy < θdacc then

3: DELETE cl

4: end if

5: end for

6: SORT [S] according to experience

7: for i = 1 to i < [S].size do

8: prevExperience ← S[i− 1].experience

9: currExperience ← S[i].experience

10: if prevExperience/currExperience < θdexp then

11: cutoff ← i

12: end if

13: end for

14: for i = cutoff to i < [S].size do

15: DELETE classifier

16: end for
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The pseudo-code for the pruning procedure is given in Procedure 5. During pruning

all classifiers that have an accuracy below θdacc are deleted from [S]. Next, [S] is

sorted in a descending order of classifiers’ experience. A ratio between the experience

of each consecutive pair is then calculated. If this ratio exceeds θdexp, all remaining

signatures are deleted from [S]. Note that every time a new classifier is extracted to

[S] from [P ], the experience of all signatures is reset to zero (not shown in Procedure

2). This ensures that all signatures are weighted equally when being considered for

deletion.

Clearly, the deletion accuracy threshold used for pruning inaccurate classifiers is

quite subjective and cannot be determined in advance for problems where the opti-

mal classification accuracy is not known due to noise and other complexities. Simi-

larly the deletion procedure for inexperienced classifiers would also bias the deletion

of minority class classifiers in environments where the classes are not equally dis-

tributed. We will analyse these problems in more detail in §5.5 and will consequently

present alternate mechanisms in §5.6.

5.3.3 Validation of the Algorithm

The underlying assumptions of the signature extraction algorithm are that UCS is

able to evolve optimal rules during its search process and that these optimal rules or

signatures can be extracted from the population successfully. Given that UCS can

discover optimal rules, the decision to choose extraction time appropriately becomes

critical for proper operation of the algorithm. The other important decision in the

signature extraction process is that of switching from [P ] to [S] and back at right

times. That is to decide how many search opportunities should be given to LCS that

will be enough to evolve an optimal representation of the problem. Both of these

decisions can be controlled by the Topt parameter. To reiterate, Topt corresponds to

the number of time steps the control is switched to the normal UCS when [M ] out of

[S] is found empty. It tries to find a balance between providing enough exploration

opportunities to the classifier system using [P ] and switching back to [S] as soon as
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the signatures are discovered and extracted to [S]. Ideally, we would like to run the

search process using [P ] for the duration of finding at least one optimal classifier

before carrying out an extraction process and switching back to [S]. Hence Topt

can be formulated as the sum of the expected time to discover an optimal classifier

and the expected time it will be evaluated θxexp times. (Butz, Kovacs, Lanzi, and

Wilson 2004a) provided a time bound for finding an optimal classifier by XCS using

a domino convergence model. They showed that the learning time in XCS scales

polynomially in problem length and exponentially in problem complexity1. Using

their insights, we can derive the bounds for Topt as follows:

Given that

Topt = E(Time to generate an optimal classifier)+

E(Time to evaluate an optimal classifier θxexp times)
(5.1)

From (Butz, Kovacs, Lanzi, and Wilson 2004a), for an equally probable input dis-

tribution, the time bound to generate an optimal classifier is given by:

E(Time to generate an optimal classifier) =

1

P (generation of an optimal classifier)
<

n2o+s([P ])l

µ(1− µ)l−1

(5.2)

where n is the number of classes, o is the schema order, s([P ]) is the average speci-

ficity of the population, l is the length of the string and µ is the mutation rate.

Considering an equally probable distribution, the expected time that this classifier

will match an input θxexp times is given by:

E(Time to match θxexp times)=

1

P (matching an input by the optimal classifier θxexp times)

=
N

N/2o
.θxexp = 2oθxexp

(5.3)

1Since evolutionary dynamics in both XCS and UCS, which are the basis for time bound com-

putation, are similar we argue that the same bounds can be applied to both systems. Further UCS

has generally been shown to converge faster than XCS, thus the derived bounds only provide an

upper bound for UCS.



CHAPTER 5. REAL TIME SIGNATURE EXTRACTION FROM UCS 119

where N is the total number of instances in the feature space.

Substituting Equation 5.3 and the adjusted time bound ( O(l2o+n) ) for generating

an optimal classifier from (Butz, Kovacs, Lanzi, and Wilson 2004a) in Equation 5.4,

the expected time to generate an optimal classifier becomes:

E(Time to generate an optimal classifier)

<
n2o+s([P ])l

µ(1− µ)l−1
+ 2oθxexp < l2o+n + 2oθxexp

= γ(l2o+n + 2oθxexp)

(5.4)

where γ is a constant between 0 and 1. To test the validity of the above expression

we experimented with the binary multiplexer problem of length 6, 11, 20 and 37.

The theoretical values of Topt can be calculated by substituting the values of l and o

in Equation 5.4 for each of the above mentioned lengths of multiplexer and keeping

γ=1. This gives us values of 352, 1024, 3200 and 10752 for 6, 11, 20 and 37 bit mul-

tiplexer respectively. The experimental values are obtained by recording the actual

time when a member of the best action map (BAM) (Bernadó-Mansilla and Garrell

2003) is found with an experience equal to θxexp (set to 20 for these experiments)

for different lengths of multiplexer.

Figure 5.2 shows a comparison between the theoretical and empirical bounds. Both

curves show a similar increasing trend, although the difference between the two

bounds increases with the increase in the number of bits to be specified or the

schema order. This can be expected as we are using higher population sizes and

higher P# values for higher length multiplexer, in contrast to the theoretical bound

which are derived assuming same parameter values for all lengths. The value of Topt

can be tuned using γ. A value of γ closer to 1 could delay the extraction process

and thus increase the processing time. On the other hand, a value closer to 0 could

lead to early switching to [S] thereby losing important exploration opportunities to

discover optimal rules.
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Figure 5.2: Theoretical and experimental bounds for Topt in the binary multiplexer

problem.

5.3.4 Guidelines for Setting Parameters

The signature extraction algorithm presented in this section introduces a few new

parameters that need to be set externally; namely Topt, C, θxacc, θdacc, θxexp, and

θdexp. In the previous section we discussed the criticality of Topt and the guidelines

for setting its value for binary problems with known complexity. Also the trade-off

between a higher and lower value is described. More generally, Equation 5.4 suggests

that the value of Topt should increase linearly in problem length and exponentially in

problem complexity. The parameter C as a multiple of θxexp ensures that signatures

have been evaluated long enough before [S] can be pruned. We found a value

between 5 and 10 is suitable for C. θdexp refers to the threshold of ratio between

the experiences of a pair of classifiers in a experience wise sorted [S]. To avoid a

very strong deletion pressure towards specific classifiers, θdexp can be set between

0.5 to 0.7. The other three parameters (i.e., θxacc, θdacc, θxexp) are more sensitive

to problem characteristics. For noise-free, equal class distribution problems these

parameter could be set equal to the existing UCS parameters (i.e., acc0 and θdel).

In §5.6 we will provide mechanisms for the online adaptation of these parameters.
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5.3.5 Experiments with Multiplexer Problem

XCS and UCS dynamics are well studied on binary problems, especially the multi-

plexer problem. It is a good starting platform where we can take guidelines from

the developed theory and analyse the dynamics of our algorithm with ease. In this

section we test UCSSE with 11, 20 and 37 bit multiplexer problems.

For UCS we used the same parameter settings as described in §4.4.4 except the

population size and P# which were varied with the problem length. The values of N

and P# used in different experiments are given in the captions of the corresponding

plots. Also, to speed up convergence, each run was bootstrapped with a random

initial population and an initial P# value of 0.8. For UCSSE parameters, we used

C = 10 and θprun = 0.9. Topt was calculated using the respective o and l values for

each multiplexer problem and setting γ = 0.65.

Figures 5.3(a), 5.4(a) and 5.5(a) show a comparison between UCS and UCSSE for

the three multiplexer problems. The performance (i.e., rate of correct classifica-
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Figure 5.3: 11 Multiplexer with and without real time signature extraction. N=800,

P#=0.45, Trials=30000
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Figure 5.4: 20 Multiplexer with and without real time signature extraction. N=2000,

P#=0.55, Trials=100000
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Figure 5.5: 37 Multiplexer with and without real time signature extraction. N=5000,

P#=0.65, Trials=1000000
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tions), Best Action Map (BAM)2 (i.e., percentage of accurate and maximally general

classifiers in the population) and macro population curves are plotted for each mul-

tiplexer. Figures 5.3(b), 5.4(b) and 5.5(b) show the corresponding transition curves

for UCSSE. Y-axis shows the percentage of trials through [S] and [P ] in a window

of last 50 trials. Curves are averaged over 30 runs. Note that the performance

curves overlap for both systems, showing no performance degradation. The BAM

curves also closely follow except a small delay in the case of UCSSE. This is because

UCSSE alternates between [P ] and [S] based operations and since UCS with signa-

ture extraction does not get as many exploration opportunities as the standard UCS

does, BAM is fully discovered a little later than the standard UCS run. Moreover,

the BAM curves for UCSSE shows the stair case behaviour indicating the signature

extraction steps from [P ] to [S]. Also it can be seen from the transition curves that

the control shifts completely to [S] as soon as all the optimal classifiers get extracted

to [S].

Table 5.1: Number of rules evolved and CPU time used by UCS and UCSSE in the

Multiplexer problem. Numbers in bold are significantly better at 99% significance level

using a pair-wise ttest.

Number of Rules CPU Time (secs)

Problem UCS UCSSE UCS UCSSE

MUX11 58.53(6.61) 31.53(2.22) 3.57(0.20) 2.43(0.21)

MUX20 201.7(9.35) 65.73(3.97) 46.89(2.57) 35.43(4.28)

MUX37 753.2(31.05) 139.9(8.59) 3575.35(458.07) 2645.50(377.68)

Table 5.1 shows the average number of rules numerically at the end of the run

evolved by each system and the CPU time in seconds used by both systems along

with corresponding standard deviations in parentheses. The values in bold are

significantly better than the other system at a 99% significance level using a pair-

2an alternate measure of system’s performance (Bernadó-Mansilla and Garrell 2003).
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wise ttest. Notice that the number of rules in [S] are higher than the BAM. For

example, the 11 bit multiplexer can be represented by exactly 16 maximally general

rules, which have only 4 specified bits, 3 of which are the address bits. However,

this is considering that a unique map of the problem is available. In the case of

the 11 multiplexer problem, a don’t care bit can occur in one of the address bits

position while two bits can be specified in the data bits and still the classifier can

be as maximally general and accurate as its counterparts. The signature extraction

algorithm does not distinguish between overlapping maximally general classifiers

and hence extracts all maximally general classifiers discovered by the system. This

in a sense is advantageous since a completely non-overlapping solution is not always

desired (Kovacs 2002). Also, the CPU time results show the reduction in processing

time improves with the increase in the string length. UCSSE time can be further

reduced if the system is stopped when it completely switches to signature based

operation.

5.4 Signature Extraction in Real Valued Prob-

lems

Unlike binary problems where search space can often be enumerated, continuous val-

ued problems pose unprecedented search spaces and finding precise decision bound-

aries for even simple problems can be hard. Furthermore, the evolutionary search

can produce many overlapping generalisations making the population convergence

even more difficult as we saw in the case of KDD Cup dataset in the last chapter.

In Wilson’s own words:

“... The search processes (crossover and mutation) result in a huge num-

ber of candidate “better” classifiers, which are only very slowly either

eliminated or emphasised. Furthermore, since the dataset occupies only

a minuscule fraction of the input space, many different accurate gen-
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eralisations are possible. They overlap only partially, so the GA and

subsumption mechanisms have difficulty eliminating the less general of

them. Fortunately, however, a small number of classifiers sufficient to

accurately process the dataset are evolved, among all others,...” (Wilson

2001a)

This has a direct implication for UCSSE which is designed to extract all maximally

general rules without distinguishing any overlap between them. Consequently, to

overcome this problem we introduce two new subsumption mechanisms in an at-

tempt to reduce overlap between signatures as they are discovered and inserted in

[S].

5.4.1 Modified Subsumption Operator

The first technique that we called modified subsumption extends the standard sub-

sumption procedure of UCS. The modified subsumption operator is introduced in the

insertion routine of signature extraction algorithm (Procedure 4). The pseudo-code

for the modified subsumption operator is given below, where LB and UB correspond

to the lower and upper bounds of an interval predicate respectively and cla refers to

the subsuming classifier: The objective of the modified subsumption operator is to

minimise overlap between rules by slightly relaxing the subsumption conditions. In

the original subsumption operation, a classifier which is sufficiently experienced and

accurate can only subsume another classifier if the subsuming classifier completely

encapsulates the other classifier. The modified subsumption allows a classifier to

subsume the other if overlap between them is within a range specified by θsubrange.

5.4.2 The Expand and Contract Operators

One of the limitations of the modified subsumption operator is that it caters only

for overlapping between those signatures belonging to the same class and does not
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Procedure 6 SUBSUMES (cla,clb)

1: if cla.class 6= clb.class then

2: return false

3: end if

4: foreach interval in cla do

5: if cla.LB > clb.LB ∧ cla.UB < clb.UB then

6: return false

7: else if (cla.LB − clb.LB) > θsubrange ∨ (cla.UB − clb.UB) < −θsubrange then

8: return false

9: end if

10: end for

11: return true

consider overlaps between opposite classes. Also when an overlap is found which

falls in the subsumption bounds, the more specific rule is simply deleted even if this

opens a covering gap in [S] as we observed in the last section.

In this section, we present two new operators, expand and contract, in order to

address these two issues; namely, the reduction of covering gaps and the resolution

of overlap between opposing classes in signatures. These operations can be applied

when inserting a new signature in [S] or using other schemes (e.g., when the average

experience of [S] exceeds a threshold or in a matchset). Here, we present the pseudo-

code and explanation of the new insert procedure along with other related functions.

5.4.2.1 INSERT IN SIGNATURE SET

Every time a new signature is found and inserted in [S], it is first scanned against

each signature of the opposite class in [S]. If an overlap is found between any two

signatures, the one with lower accuracy and lower experience is contracted to resolve

the overlap. Next the signature being inserted is scanned against each existing

signature with the same class prediction. If an overlap is found which cannot be
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Procedure 7 INSERT IN SIGNATURE SET (qcl)

1: subsumed = false

2: foreach cl in [S] do

3: if qcl.class 6= cl.class then

4: if DOES OVERLAP (qcl, cl) then

5: DISJOIN (qcl, cl)

6: end if

7: end if

8: end for

9: foreach cl in [S] do

10: if qcl.class == cl.class then

11: if cl SUBSUMES qcl then

12: subsumed = true

13: break

14: else if qcl SUBSUMES cl then

15: DELETE cl

16: continue

17: else if DOES OVERLAP (qcl, cl) then

18: subsumed = MERGE (qcl, cl)

19: if subsumed then

20: break

21: end if

22: end if

23: end if

24: end for

25: if subsumed = false then

26: ADD qcl TO [S]

27: end if
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resolved by traditional subsumption operator, one of the signatures is expanded to

subsume the other (see §5.4.2.4 for more details). Pseudo-code for the updated

insertion procedure is given in Procedure 7.

5.4.2.2 DOES OVERLAP

The two hyperrectangles are considered overlapping if they overlap in all of their

dimensions. Since the hyperrectangles represented by interval based coding of the

classifier’s condition are axes parallel hyperplane, finding overlap between them is

much easier. Figure 5.6 shows different ways in which the two intervals can overlap

(Foley 1995). The two intervals are clearly disjoint in the first two cases (Figures

5.6(a), 5.6(b)) and overlap in the later four cases (Figures 5.6(c) - 5.6(f)). Conse-

quently this procedure returns true if all intervals of the two signatures or hyper-

rectangles overlap in any combination of the above mentioned four ways. (Note: if

all intervals of a hyperrectangle fall within the other then it is considered a common

subsumption case).

(a) (b) (c) (d)

(e) (f)

Figure 5.6: Different ways in which two intervals can overlap.

5.4.2.3 DISJOIN

This procedure is used to resolve the overlap between two signatures whose class

prediction does not match. First, the rule with the lower accuracy of the two is

selected for contraction. If both rules are equally accurate, then the one with lower

experience is contracted. Next, the predicate that should be clipped is determined
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by sorting all dimensions according to their respective overlap distances. All interval

values are first normalised so that every attribute is weighted equally regardless of

its range. Then the dimension or the allele with the minimum overlap is chosen

for contraction. Finally, the selected interval’s upper or lower bounds are adjusted

to resolve the overlap depending upon the overlap type shown in Figure 5.6(c) -

5.6(f). The overlap distance of an interval lying completely within the other interval

(5.6(f), considering the lower interval belongs to the contracted condition) is set to

infinity (i.e., the bounds are not clipped). In all other cases one of the bounds of the

selected interval is moved in the direction of minimum change, such that no portion

of the contracted interval lies within the bounds of the other interval.

5.4.2.4 MERGE

Two overlapping signatures predicting the same class are merged provided the over-

lapping volume of at least one of the hyperrectangles, formed by the signature condi-

tions, with respect to its total volume exceeds a threshold (θol). Thus, the expansion

process is essentially controlled by (θol). The higher the value of (θol) the more con-

servative is the expansion operator. During merging the ratios of the overlapping

volumes are first calculated. The condition which has greater portion of its volume

in the overlap with respect to its total volume is merged into the other condition.

In other words, the larger condition’s upper and lower bounds for each interval are

expanded to completely encapsulate the smaller one.

5.4.3 Experiments with Checkerboard

In this section, we evaluate the performance of UCSSE extended with the above

mentioned operators on the checkerboard problem (see §4.4 for the description of

checkerboard problem). Similar to binary multiplexer problems that facilitated val-

idation of the algorithm, the two-dimensional checkerboard provides a test bench

with real valued data where the dynamics of the algorithm with the new operators
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can be analysed visually by plotting the extracted signatures.

To ensure a fair comparison between UCS and UCSSE we also implemented Dixon’s

rule reduction algorithm (Dixon, Corne, and Oates 2003) to clean the post training

rule populations evolved by UCS. This algorithm has shown to be a magnitude faster

than Wilson’s rule reduction algorithm (Wilson 2001a) while achieving equivalent

performance in terms of test accuracy. The actual algorithm is proposed and tested

for XCS but could be extended for UCS. It works in two steps; in the first step the so

called non-qualified classifiers (i.e., rules with low experience, high prediction error

and low prediction) are removed from the population. In our implementation, the

prediction and prediction error parameters are replaced with the accuracy parameter

in UCS. Thus the rules with low experience and low accuracy are considered non-

qualified. In the second step, [M ] and [C] are formed for each training example as in

the standard explore phase of UCS. The classifier with the highest prediction in each

[C] is marked as useful. Again we used accuracy in place of prediction to identify

useful classifiers in UCS. Once the whole training set is processed, the classifiers not

marked as useful are removed from the population and the resultant rule set is used

to predict the test cases.

For UCS the same parameter settings has been used as described in §4.4. UCSSE

parameters were set as follows:

Topt = 1200, C = 10, θxacc = 0.99, θxexp = 100, θdacc = 0.97, θdexp = 0.5.

In addition, for experiments with the modified subsumption operator, θsubrange was

set to 0.015 and for expand and contract operators θol was set to 0.9. Since the

relationship of Equation 5.4 cannot be directly used for real valued problems, we

chose a moderate value for Topt for these experiments using the general heuristics

drawn in §5.3.3 and §5.3.4. The extraction thresholds are set higher in the absence of

any noise to ensure only optimal classifiers are selected as signatures. The deletion

thresholds are slightly relaxed so that signatures with minor overlaps are not deleted

unnecessarily. Similarly, the overlap ranges are set rather conservatively to avoid
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excessive generalisation pressure.

For Dixon’s rule reduction algorithm any classifiers with experience less than 20 and

accuracy less than acc0 is considered as non-qualified.

In the experiments, we compare the performance of three systems (i.e., UCS, UCS

with Dixon’s rule reduction algorithm, referred to as UCSD, and UCSSE). The

results are averaged over 30 runs. Statistical significance is tested using a pair-wise

t-test at a significance level of 99%. A N is used if UCSD or any variant of UCSSE

is significantly better (higher in accuracy and coverage and lower in the number of

rules) than UCS. A ¨ shows that UCSD or any of the UCSSE variant is significantly

better than both UCS and the other systems. Similarly a M denotes that UCSD or

UCSSE is significantly worse (lower in accuracy and coverage and higher in number

of rules) than UCS. A ♦ denotes that UCSD or UCSSE is worse than the other two

systems. We will use the same methodology to compare these three systems through

out rest of the experiments in this chapter unless stated otherwise.

Using a non-overlapping representation, 16 rules are needed to represent the checker-

board problem. However, as discussed above, exact class boundaries of the form

(0.000-0.250),(0.000-0.250)⇒ Class 0 may not be learnt by UCS. This in turns im-

plies that at all times [S] will contain classifiers which will either partially overlap

with adjoining opposite classes (e.g., (0.01-0.251),(0.00-0.250) ⇒ Class 0) or clas-

sifiers which are not exactly maximally general (e.g., (0.00-0.249),(0.00-0.250) ⇒
Class 0). Nonetheless, UCSSE retrieves near optimal number of rules with both

rule compression operators introduced above.

Table 5.2 presents a comparison of the accuracy achieved on the test set and the

number of rules evolved by UCS and the rule set sizes achieved by UCSD and

both versions of UCSSE on the checkerboard problem. It also shows the percentage

coverage achieved by the rule set of each system on the test set. There are a

few observations about these results. First, we note that both versions of UCSSE

retrieve significantly less number of rules than UCS. In fact, UCSSE using expand
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and contract operators, retrieves 16.10 rules on average which is almost equal to

the bare minimum number of rules needed to represent this problem. The system

with the modified subsumption operator also performs equivalently and retrieves

significantly less number of rules than both UCS and UCSD. UCSSE with expand

and contract operators also retrieves 100% test accuracy which is the same as UCS.

The system with modified subsumption operator however loses some accuracy and

achieves 99.03% on average which is still better than the accuracy achieved by

UCSD.

Table 5.2: Comparison of test accuracy, number of rules and rule coverage between UCS,

UCSD and UCSSE on checkerboard problem. MS refers to Modified Subsumption and

EC refers to Expand and Contract operators used in UCSSE. See text for the explanation

of notations used in the significance tests.

System Class 0 Class 1 Overall

A
cc

u
ra

cy
(%

)

UCS 99.97(0.18) 100.00(0.00) 100.00(0.00)

UCSD 96.06(4.15)♦ 97.32(3.51)♦ 96.67(2.72)♦

UCSSE(MS) 99.23(0.39) 99.29(0.22) 99.03(0.18)

UCSSE(EC) 99.96(0.18) 100.00(0.00) 100.00(0.00)

R
u
le

s

UCS 43.83(10.23) 45.37(8.88) 89.20(13.34)

UCSD 9.77(1.61)N 10.70(1.93)N 20.47(2.70)N

UCSSE(MS) 8.17(1.21)N 8.40(1.47)N 16.56(2.39)N

UCSSE(EC) 8.03(0.40)¨ 8.07(0.36)¨ 16.10(0.47)¨

C
o
v
e
ra

g
e

(%
)

UCS 99.98(0.06) 99.96(0.09) 99.97(0.06)

UCSD 92.23(8.18)♦ 94.82(6.64)♦ 93.53(5.12)♦

UCSSE(MS) 98.95(1.43)M 99.51(0.89)M 99.23(1.03)M

UCSSE(EC) 98.72(0.03)M 99.05(0.02)M 98.88(0.02)M

The decision boundaries realised by UCSSE using both compression operators are

shown in Figure 5.7. The rule set obtained using expand and contract operators
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Figure 5.7: Decision boundaries retrieved by UCSSE in checkerboard problem using

compression operators. Solid lines represent the actual class boundaries and dashed lines

show the boundaries obtained using signatures.
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Figure 5.8: Transition from [P ] to [S] in checkerboard problem (2000000 training trials).
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match very closely to the actual class boundaries with virtually no overlapping and

covering almost the whole feature space without leaving any gaps. While the de-

cision boundaries achieved with the modified subsumption operator are also close

to optimal albeit with more covering gaps and overlap. Figure 5.8 shows the cor-

responding load variation on [S] and [P ] for both operators respectively. It can

be seen that using the expand and contract operators signatures almost completely

take over the control around 500000 trials on average. While the load curves for

the modified subsumption operator oscillate heavily showing the extract-delete cycle

that occurs due to the covering gap and strong deletion pressure in the signature

set.

Table 5.3 shows a comparison of average CPU time used by each system in a single

run. It can be seen that UCSSE with expand and contract operators significantly

performs better than all other systems. UCSD proves to be the most expensive

system as it makes two passes through the data to post prune UCS population.

Given its better performance, we decided to choose expand and contract operators

for compression in signatures. From hereon UCSSE will refer to the system with

the expand and contract operator and will be used for the rest of the experiments.

Table 5.3: Comparison of CPU time between UCS, UCSD and UCSSE on checkerboard

problem. The numbers are rounded to the nearest integer. See text for the explanation of

notations used in the significance tests.

Time (secs)

UCS UCSD UCSSE(MS) UCSSE(EC)

22(1) 32(1)♦ 17(2)N 14(2)¨
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5.5 Signature Extraction in Noisy and Imbalanced

Class Environments

Noise, among other peculiarities, is a common characteristic of many real world data

mining problems. It is generally defined as an unwanted distortion that affects the

quality of a signal. From a classification viewpoint, noise refers to the distortion

or error in attribute values or in the classification signs, i.e., the class of a data

instance. In the real world, noise can be caused by various reasons such as wrong

labeling by human experts or missing or wrong attribute readings due to sensor

malfunctioning. Regardless, the noise can affect the predictiveness of a classification

algorithm. (Quinlan 1986) showed that the noise due to classification errors is more

significant than the attributive noise for the rule-based concept learning systems.

Noise plays an important role in determining the performance of intrusion detection

systems. Specifically, intrusion detection systems can generate a high number of false

alarms in the presence of noise. In this section, we look at the effect of classification

noise on the performance of UCSSE using a test problem (i.e., noisy checkerboard).

Many earlier researchers have looked into the effect of noise on machine learning al-

gorithms and the ways of addressing this issue such as (Angluin and Laird 1988)(Aha

1992). GAs are generally considered robust in noisy environments (Miller and Gold-

berg 1996). Some researchers have looked at the effects of noise and its remedies in

XCS such as, (Butz, Sastry, and Goldberg 2005). Nonetheless, the objective of this

work is to analyse and improve the performance of the proposed signature extraction

system in noisy environments.

5.5.1 Experiments with Noisy Checkerboard

The effect of noise is generally studied by simulating noise in the data (e.g., by

introducing random classification errors according to some distribution (Angluin

and Laird 1988)). Following this practice, we simulate noise by introducing False
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Positives (FP) and False Negatives (FN) in the checkerboard problem. To create

a noisy-checkerboard, the data instances are sampled online from the feature space

randomly as usual and assigned a class 0 or 1 depending on their respective coor-

dinates on the checkerboard. An FP or FN is introduced by inverting the correct

class of an instance randomly based on the noise level η. Four different noisy envi-

ronments are created with varying degrees of noise in one or both classes. These are

listed in Tables 5.4 and 5.5. Figure 5.9 shows a dataset with 5000 instances, 20%

FP rate and 20% FN rate.
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Figure 5.9: Checkerboard with 20% FP and 20% FN. N shows FP and ¥ shows FN.

Let us first look at the behaviour of UCS in the presence of noise. Referring to

Tables 5.4 and 5.5, it can be seen that UCS performance with noisy training data

is quite impressive. The test set accuracy does not degrade proportional to the

increasing noise levels. Given a uniform distribution of noise, the expected accuracy

on a class with 10% noise is 90% at most. However UCS performs far better thanks

to its fitness weighted voting policy during prediction. Contrary to test accuracy

which is not effected severely, the number of rules evolved by UCS grows quickly

with increasing levels of noise.
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The small accuracy degradation with noisy training data (98.24% on noisy class with

20% FP rate) can be understood by examining the post training rule population

evolved by UCS. As the noise level increases in the training data, the number of

rules covering the wrong labels starts increasing (see Figure 5.10).

Table 5.4: Comparison of number of rules and their test set coverage between UCS,

UCSD and UCSSE on the four noisy checkerboard problems.

N Class 0 Class 1 Overall %Coverage

U
C

S

10% FP 0% FN 100.77 63.60 164.37 99.98

10% FP 10% FN 115.40 114.40 229.80 99.98

20% FP 0% FN 99.83 77.57 177.40 99.98

20% FP 20% FN 135.60 134.53 270.13 99.99

U
C

S
D

10% FP 0% FN 1.20 10.03 11.23 47.61

10% FP 10% FN 1.27 1.17 2.43 7.28

20% FP 0% FN 0.33 10.03 10.37 46.75

20% FP 20% FN 0.17 0.13 0.30 0.76

U
C

S
S
E

10% FP 0% FN 0.00 8.00 8.00 48.30

10% FP 10% FN 0.00 0.03 0.03 0.13

20% FP 0% FN 0.00 7.77 7.77 47.81

20% FP 20% FN 0.00 0.00 0.00 0.00

These rules also become fitter with increasing noise level since they start matching

a greater number of examples with wrong labels. On the other hand, the fitness

of the most numerous rules covering the correct labels in the noisy data decreases

with the increasing noise. Consequently, the rules with wrong labels start winning

more often during testing thereby impairing the accuracy on the noise-free test set.

Moreover, the average specificity of the rules covering the class with noise increases

with the rate of noise (i.e., UCS allocates rules more conservatively in the presence

of noise). This also explains the increase in the number of rules for classes with noisy
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Table 5.5: Comparison of test set accuracy achieved by UCS, UCSD and UCSSE on the

four noisy checkerboard problems.

N Class 0 Class 1 Overall

U
C

S

10% FP 0% FN 99.76 100.00 100.00

10% FP 10% FN 99.89 99.83 99.97

20% FP 0% FN 98.24 100.00 99.00

20% FP 20% FN 99.38 99.63 99.40

U
C

S
D

10% FP 0% FN 53.48 94.07 73.73

10% FP 10% FN 53.58 53.67 53.57

20% FP 0% FN 50.60 95.62 73.10

20% FP 20% FN 50.58 50.18 50.40

U
C

S
S
E

10% FP 0% FN 99.31 100.00 99.83

10% FP 10% FN 99.89 99.83 99.97

20% FP 0% FN 97.45 100.00 98.77

20% FP 20% FN 99.38 99.63 99.40

training data. When the rate of noise is the same in both classes, the fitness and

generality of rules for both classes are affected equally and hence the test accuracy

improves in comparison to a single class noise case.

Next, we look at the performance of UCSD and UCSSE in the presence of noise.

Looking at Table 5.4, it can be seen that both UCSD and UCSSE have difficulty in

preserving rules for the noisy classes3. To understand the reasons we again refer to

the post training UCS rule populations. According to the generality hypothesis of

XCS (and hence UCS), the most numerous rules are also the most consistent as well

as maximally general rules. They are also the main contributors towards the test

prediction. Table 5.6 shows the most numerous rules evolved by UCS at the end of

3We do not provide significance tests for these results since both systems could not retrieve a

representation for the noisy classes.
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(a) Training set with 10% FP rate (b) Training set with 20% FP rate

Figure 5.10: UCS rules covering the non-noisy data (class 1) and the FP. The space

covered by rules is plotted in transparent. The strength of the shade corresponds to the

level of overlapping between rules. Solid lines represent true class boundaries and dotted

lines represent the boundaries realised by the rules.

a typical training run for the checkerboard with 20% FP rate. Table 5.5 shows the

accuracy achieved by the three systems on the test set.

It can be seen that the accuracy of these good rules is dictated by the amount

of noise in the training data. Since the extraction accuracy (θxacc) in UCSSE is

set pre-hand to a very high level (99%), there would be no classifiers in the UCS

population to be extracted at this high threshold level in the presence of noise in the

training data. Similarly the deletion accuracy (θdacc) is set crisply to a high 97%.

Even if some signatures could be extracted by lowering the extraction experience

(θxexp) threshold, they will get deleted by the signature deletion routine which is

invoked when the average experience in [S] exceeds a threshold (see §2). UCSD has

a similar problem and a high accuracy threshold for removing non-qualified classifiers

removes all good rules from the population. It is not clear from the literature as

to how the algorithm should be modified to handle noise in the data. In §5.6 we

will present mechanisms for improving the robustness of signatures in the presence

of noise in the training data with the help of online adaptation of extraction and
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deletion thresholds. For a fair comparison, we will also use dynamic thresholds in

UCSD.

Table 5.6: The list of most numerous rules evolved by UCS in the checkerboard problem

with 20% FP. I1 and I2 correspond to the two interval predicates, C to Class, A to Accuracy

and N to Numerosity of the rules. Class 0 contains 20% noise in training.

I1 I2 C A N

[0.50492− 0.73977] [0.49838− 0.74401] 0 0.811 23

[0.50449− 0.74643] [0.00000− 0.25378] 0 0.787 22

[0.25257− 0.50204] [0.75579− 1.00000] 0 0.871 22

[0.00000− 0.23996] [0.00000− 0.24328] 0 0.825 20

[0.75051− 0.99544] [0.25878− 0.49544] 0 0.822 16

[0.75051− 1.00000] [0.25878− 0.49544] 0 0.846 15

[0.04894− 0.24834] [0.50423− 0.75177] 0 0.800 11

[0.50449− 0.75547] [0.00000− 0.25378] 0 0.782 10

[0.24684− 0.47185] [0.25185− 0.50507] 0 0.831 10

[0.00000− 0.24641] [0.74945− 1.00000] 1 0.999 42

[0.50366− 0.75159] [0.75180− 1.00000] 1 0.994 38

[0.00000− 0.24881] [0.25242− 0.49941] 1 1.000 38

[0.74711− 1.00000] [0.50015− 0.74900] 1 0.992 36

[0.25240− 0.50181] [0.00000− 0.24746] 1 0.992 32

[0.75159− 1.00000] [0.00000− 0.24658] 1 1.000 28

[0.51020− 0.75041] [0.25589− 0.48715] 1 0.997 20

[0.51020− 0.75041] [0.25589− 0.49410] 1 1.000 13

The accuracy of UCSD on noisy classes is almost equal to 50%, which corresponds

to the random guess used by UCSD (similar to UCS) in predicting a class when

no matching rules are found in the population. Interestingly, the test set accuracy

achieved by UCSSE is almost similar to that of UCS in all of the four noisy problems
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despite the fact that UCSSE is unable to extract signatures in the presence of noise.

Recall that in UCSSE a data instance is first presented to [S] and if no match is

found then the control is passed to a standard UCS which builds [M ] using [P ].

This scheme might undermine the model’s comprehensibility if too many inputs are

being processed by the UCS population. On the contrary, it provides a graceful fall

back mechanism and can be advantageous in real-time intrusion detection where

concepts can change over time. This is the direction towards which we are trying to

drive our application (as explained in §5.3).

Figure 5.11: Decision boundaries realised by signatures in noisy checkerboard (10% FP

rate).

The empirical evidence in this section shows that to retrieve signatures in noisy envi-

ronments, the extraction and deletion accuracy thresholds of the signature extraction

algorithm must be adjusted adaptively according to noise in the input signal. We

will address this problem in the next section.

5.5.2 Experiments with Imbalanced Checkerboard

We studied the effect of class imbalance on the performance of UCS in the last chap-

ter (see §4.4), and compared several strategies to deal with this problem in UCS.

Intrusion detection is inherently an imbalanced class problem where rare attacks
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exist among the prevalent normal activities. In this section, we analyse the perfor-

mance of UCSSE on the imbalanced checkerboard problem introduced in the last

chapter. In these experiments, we used the class-distributive accuracy along with

fitness sharing and local θga adaptation in UCS as they showed better performance

in imbalanced environments.

Tables 5.7 and 5.8 present a comparison using test accuracy, number of rules and

the test set coverage between UCSD and UCSSE on imbalanced checkerboard prob-

lems. The results show that UCSD performs significantly better than UCSSE on all

imbalance levels except i = 1. It is also getting almost the right number of minority

class rules and slightly higher majority class rules on imbalance levels i ≤ 7. On

Table 5.7: Comparison of test accuracy achieved by UCSD and UCSSE with UCS on

imbalanced checkerboard problems.

Test Accuracy (%)

UCSD UCSSE

I Class 0 Class 1 Overall Class 0 Class 1 Overall

1 99.69 99.63 99.63♦ 100.00 99.93 100.00

2 99.73♦ 99.46 99.73 100.00 98.44♦ 99.20♦

3 98.92 98.89 99.00 100.00 94.55♦ 97.27♦

4 99.01♦ 97.06M 98.03M 100.00 84.45♦ 92.27♦

5 98.41♦ 92.75 95.60M 100.00 68.92♦ 84.37♦

6 97.81♦ 78.54 88.17 99.99 46.09♦ 73.10♦

7 97.40♦ 55.92 76.73 99.93 23.91♦ 61.87♦

8 97.97♦ 35.56¨ 66.83 100.00 1.73♦ 50.83♦

9 97.98♦ 17.63 57.93 100.00 1.86♦ 50.93♦

the other hand, UCSSE is still having problems in retrieving signatures and it could

not retrieve any minority class rules for i ≥ 6 and for this reason we do not conduct

the test of significance for number of rules and percentage coverage. The inabil-
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ity of UCSSE to extract signatures at higher imbalance levels can be attributed to

the fixed extraction experience threshold (θxexp). At higher imbalance levels the

rules predicting the minority class become low in experience and hence they are not

extracted to signatures.

This is a similar problem that we encountered for accuracy thresholds in noisy

problems. In addition, the deletion procedure (Procedure 5) for removing the in-

experienced classifiers from [S] also biases the deletion of minority class rules as

discussed before. To fix the latter issue, we modified Procedure 5 such that the

rules for each class are now sorted in a decreasing order of experience independent

of other classes and the pair-wise experience ratio is calculated separately for each

class. In the next section, we will provide some mechanisms for the adaptation of

experience and accuracy thresholds. We hope this would allow UCSSE to perform

better in problems that have noise and class imbalance.

5.6 Online Adaptation of Extraction and Deletion

Thresholds

In the presence of noise or imbalance class distribution in the training data, the

accuracy of a classification algorithm is expected to drop, as we experienced in the

last two sections for UCS. In addition, it is often not possible to determine apriori

the best possible accuracy that a classification algorithm can achieve on a real world

problem. For these reasons, setting the extraction and deletion thresholds manu-

ally in UCSSE is not an appropriate strategy for effective signature extraction. In

this section, we discuss some techniques for the online adaptation of these parame-

ters. The control mechanisms together with the earlier mentioned changes improve

UCSSE performance significantly in the two studied problems (i.e., noise and class

imbalance).

The block diagram of UCSSE control scheme for the online adaptation of extraction
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Table 5.8: Comparison of number of rules and test set coverage, achieved by UCSD and

UCSSE, with UCS on imbalanced checkerboard problems.

Number of Rules

UCSD UCSSE

I Class 0 Class 1 Overall Class 0 Class 1 Overall

1 8.90 8.57 17.47 7.50 7.97 15.47

2 9.73 8.63 18.37 7.63 4.13 11.77

3 10.37 8.83 19.20 7.77 2.77 10.53

4 12.03 8.93 20.97 8.60 2.30 10.90

5 13.47 9.43 22.90 10.20 0.87 11.07

6 15.57 10.47 26.03 12.47 0.63 13.10

7 15.30 8.77 24.07 11.30 0.00 11.30

8 12.93 5.63 18.57 4.43 0.00 4.43

9 10.07 2.30 12.37 7.87 0.00 7.87

Test Set Coverage (%)

1 99.13 99.05 99.09 92.31 98.04 95.18

2 99.43 98.87 99.15 94.06 51.15 72.61

3 97.75 98.39 98.07 88.82 37.51 63.17

4 97.94 96.46 97.20 84.67 37.65 61.16

5 96.96 93.18 95.07 80.59 33.04 56.81

6 95.58 89.50 92.54 81.90 48.05 64.98

7 95.02 89.45 92.24 85.61 64.42 75.02

8 96.05 89.27 92.66 100.00 98.10 99.05

9 96.00 92.36 94.18 100.00 97.88 98.94



CHAPTER 5. REAL TIME SIGNATURE EXTRACTION FROM UCS 145

Figure 5.12: Adaptive control for extraction and deletion thresholds in UCSSE.

and deletion accuracies is shown in Figure 5.12. First, let us look at the adaptation

of accuracy thresholds (i.e., θxacc, θdacc). In §5.5.1 we observed that the accuracy of

optimal rules in UCS drops in proportion to the noise level in the data. Since the level

of noise is not known apriori in most problems, the extraction and deletion accuracy

thresholds in UCSSE should be adapted during learning. A simple procedure to

adapt the extraction accuracy is given in Procedure 8.

Procedure 8 UPDATE EXTRACTION ACCURACY

1: θxacc ← acc0

2: foreach Class c do

3: ∆ = GET SUPPLY ACCURACY(c)

4: if ∆ > [S]c.accuracy then

5: θxacc[c] = ∆

6: end if

7: end for

At each extraction step the update procedure looks for the most accurate rule in

[P ] that has enough experience (> θxexp) to be extracted as a signature. If this

accuracy value (referred to as Supply Accuracy) is higher than the average accuracy

in [S] then θxacc is adjusted to the new value. Notice that the accuracy for each

class is computed independently. This allows the handling of varying levels of noise

in different classes. Similarly, the deletion accuracy threshold θdacc is adjusted at
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each deletion step as follows:

θdacc(c) = [S]c.accuracy −∆c (5.5)

where ∆ varies between [0,[S].accuracy] based on the error signal between the de-

sired [S] based trials and the current feedback (i.e., the number of [S] based trials

since the last deletion step). Note that error here corresponds to the set point error

(as commonly used in controller notations) and it has nothing to do with the classi-

fication error. Initially, when [S] is empty, all inputs are sent to the standard UCS

and the error is maximum, hence ∆ is set to a minimum. The error starts dropping

as the signatures are extracted to [S] and some of the inputs are blocked by the

signatures. Accordingly, ∆ is increased based on the controller response. Since we

are dealing with a single independent variable, the response can be given by a sim-

ple linear relationship of the form y = f(x), where y corresponds to the controlled

parameter and x is the current error signal. To gain control over the rate of change

of the controlled parameter, f(x) can be modeled as a simple linear exponential

function. Figure 5.13 shows such a response curve with f(x) = 1/ expax. For an

upper and lower bound of the controlled parameter the function can be written as:

y = ymin + (1/ expax−1/ expxmax)
ymax − ymin

‖1/ expxmax −1/ expxmin‖
where ymin and ymax corresponds to the lower and upper bounds of the controlled

parameter respectively and the error range is given by xmin and xmax.
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Figure 5.13: Exponential response of the controller.

Other schemes for adapting these parameters are possible and various other tech-

niques were tried, however, the update combination mentioned above yielded the
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best outcome in terms of the test set accuracy and work load convergence.

Table 5.9: Comparison of performance of UCSD and UCSSE with UCS on noisy checker-

board problems. UCSSE was run with accuracy thresholds adaptation and UCSD used

average accuracy thresholds. N corresponds to the noise level; 1=10% FP 0% FN , 2=10%

FP 10% FN, 3=20% FP 0% FN, 4=20% FP 20% FN. See text for the explanation of no-

tations used in significance tests.

Test Accuracy (%)

UCSD UCSSE

N Class 0 Class 1 Overall Class 0 Class 1 Overall

1 97.10M 99.45M 98.20♦ 99.36 99.53M 99.53M

2 98.57♦ 98.83♦ 98.67♦ 99.70 99.93 99.93

3 95.92♦ 99.38M 97.70♦ 99.40¨ 99.13M 99.23

4 95.43♦ 96.80♦ 96.07♦ 99.14 99.26 99.17

Number of Rules

1 33.20N 11.20N 44.40N 8.67¨ 8.47¨ 17.13¨

2 32.27N 32.87N 65.13N 8.77¨ 9.10¨ 17.87¨

3 33.10N 13.57N 46.67N 8.63¨ 8.57¨ 17.20¨

4 30.13N 32.07N 62.20N 9.07¨ 9.33¨ 18.40¨

Test Set Coverage (%)

1 99.92 99.91M 99.91M 99.20 97.50M 98.35

2 99.94 99.91M 99.93M 98.43 99.55♦ 98.99♦

3 99.88 99.82M 99.85M 99.16 99.05 99.10

4 99.93M 99.88 99.90M 97.79♦ 99.20 98.49♦

Table 5.9 compares the test accuracy, number of rules and rules coverage of UCSSE

run with the adaptation of the extraction and deletion accuracy thresholds and

UCSD on the 4 noisy checkerboard problems. For UCSD, we computed the average

accuracy for both classes independently at the end of each training run and used

this for the removal of non-qualified classifiers. The comparison is made between the
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performance of these two systems and UCS, as in Table 5.2, without showing the

statistics for UCS. Notice that UCSSE is able to retrieve the approximately correct

number of signatures in all four noisy problems which are also significantly less than

both UCS and UCSD. It also achieves more than 99% accuracy in all four problems

with a high test set coverage. The correctness of signatures is further verified by

Figures 5.14 and 5.15, which show the decision boundaries realised by signatures

and the load transition curves in the four noisy problems respectively.

(a) Training set with 10% FP rate (b) Training set with 20% FP rate

(c) Training set with 10% FP and 10% FN

rates

(d) Training set with 20% FP and 20% FN

rates

Figure 5.14: Decision boundaries obtained by signatures using adaptive online control

of UCSSE parameters in noisy checkerboard problems.

Similar to the adaptation of accuracy thresholds in noisy environments, the con-

trol of extraction experience threshold is needed in the imbalanced class problems.
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Since the experience of the minority class rules decrease with the increase in class
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(a) Training set with 10% FP rate
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(b) Training set with 20% FP rate
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(c) Training set with 10% FP and 10% FN

rates
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(d) Training set with 20% FP and 20% FN

rates

Figure 5.15: Transition from [P ] to [S], 2000000 trials (30 runs average) using adaptive

online control of UCSSE parameters.

imbalance, fixing θxexp can hinder the extraction of minority class signatures in such

scenarios. Again to cater for the streaming input data, θxexp in UCSSE is adapted

similar to that of global θga adaptation in UCS (Equation 5.6), except that the rate

of imbalance is measured over a window, i.e., from one extraction step to another.

θxexpt = C · θxexp · Ia∑C
i=1 Ii

(5.6)

Tables 5.10 and 5.11 replicate the results of §5.5.2 with UCSSE run with both

adaptive accuracy and experience controls and UCSD with the deletion accuracy
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threshold adjustment described above. With the help of the adaptation schemes,

UCSSE extracts significantly lower number of signatures than UCS on all imbalance

levels and UCSD on imbalance levels 3-5. It also improves (based on a pair-wise t-

test at 99% confidence level) its accuracy in comparison to UCSSE without adaptive

controls (Table 5.7). Although the test accuracy it achieves is less than the test

accuracy achieved by UCS and UCSD for i ≥ 3, we need to keep in mind that this

can happen in real-time classification because an early extraction of a classifier over

another would change the performance of the system. In comparison, an offline

system such as UCSD has an advantage that it waits till the end (notice that “end”

does not really exist in real time systems) before it extracts the rules. Nevertheless,

the performance of UCSSE is not practically far from UCS or UCSD.

Table 5.10: Comparison of test accuracy, achieved by UCSD and UCSSE, with UCS

on imbalanced checkerboard problems. UCSSE was run with accuracy and experience

thresholds adaptation and UCSD used average accuracy thresholds. See text for the

explanation of notations used in significance tests.

Test Accuracy (%)

UCSD UCSSE

I Class 0 Class 1 Overall Class 0 Class 1 Overall

1 99.99 99.60 99.83 99.93 99.67 99.87

2 99.80 99.47 99.70M 99.93 98.99♦ 99.53M

3 99.96 98.72 99.37 99.73 97.48♦ 98.57♦

4 99.73 96.99M 98.43M 99.83 93.96♦ 96.77♦

5 99.50 93.42 96.30 99.43 80.60♦ 89.97♦

6 99.23M 79.55 89.37 99.73 53.72♦ 76.70♦

7 98.07M 59.82¨ 78.90 99.30 26.72♦ 63.03♦

8 98.07M 37.16¨ 67.63¨ 99.53 9.09♦ 54.40♦

9 97.75M 18.73 58.33 99.03 3.38♦ 51.10♦
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Table 5.11: Comparison of of number of rules and test set coverage, achieved by, UCSD

and UCSSE on imbalanced checkerboard problems.

Number of Rules

UCSD UCSSE

I Class 0 Class 1 Overall Class 0 Class 1 Overall

1 9.67N 9.30N 18.97N 9.57N 8.27¨ 17.83N

2 10.27N 9.27N 19.53N 10.43N 8.37N 18.80N

3 11.67N 9.67N 21.33N 9.03¨ 8.40N 17.43¨

4 13.17N 10.57N 23.73N 9.23¨ 8.53¨ 17.77¨

5 14.63N 11.13N 25.77N 13.43N 9.17¨ 22.60¨

6 16.03¨ 12.27N 28.30¨ 28.33N 6.87¨ 35.20N

7 15.63¨ 11.40N 27.03N 19.33N 5.30¨ 24.63N

8 13.00N 7.17¨ 20.17¨ 10.17N 17.77N 27.93N

9 10.07N 3.40¨ 13.47¨ 4.20¨ 20.93 25.13N

Test Set Coverage (%)

1 99.81M 99.80M 99.80M 99.26 95.79M 97.52♦

2 99.84M 99.43M 99.63M 98.45♦ 93.53M 95.99♦

3 99.82M 99.09M 99.46M 97.00♦ 87.54♦ 92.27♦

4 99.85M 97.76M 98.81M 95.53♦ 83.98♦ 89.76♦

5 99.71M 95.86M 97.78M 92.28♦ 76.28♦ 84.28♦

6 98.53M 91.95M 95.24M 95.26♦ 71.51♦ 83.38♦

7 96.60M 91.68M 94.14M 90.24M 74.25♦ 82.24♦

8 96.83M 91.35M 94.09M 91.44M 85.08M 88.26♦

9 96.27M 93.36M 94.82M 91.32M 89.49M 90.40M
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5.7 Experiments with KDD Cup Data

5.7.1 Setup

In this section, we will evaluate different versions of UCSSE, developed in this chap-

ter, on the KDD Cup dataset and compare their performance with UCS and UCSD.

Also in order to see the effect of changes made to UCS in the last chapter we run

both UCSSE and UCSD with the baseline UCS setup and UCSx (Extended UCS)

setup as described in §4.5. In the result tables and the following discussion, the

systems run with extended setup are referred to as UCSxD and UCSxSE in order

to distinguish them from those run using the baseline setup.

For UCS, the same baseline parameter settings are used as listed in §3.4 and for

UCSx same as the setup described in §4.5. In UCSD per class average accuracy

calculated from post training population is used to identify the unqualified classifiers

in the population. And for UCSSE the two external parameters are set to Topt = 5000

and θol = 0.4. Both of these parameters are changed to suit the increased length

of the input. A higher Topt value allows UCS to get increased exploration time

to evolve better classifiers. A lower θol value allows to handle major overlaps in a

higher dimensional space. Also the expand and contract operators are extended for

accommodating the binary and nominal variables in the KDD Cup dataset. This

extension would generalise the algorithm to most real-world datasets that often

are characterised by mixed attributes. Similar to Chapter 4, a single-pass through

the KDD data was made to train all the systems in order to emulate a real time

environment.

The results on the KDD Cup data are given in Tables 5.12 - 5.23. The numbers

are averages of 30 independent runs while the corresponding standard deviations

for means are shown in parenthesis. First, we compare three versions of UCSSE

developed in the above sections (i.e., UCSSE without adaptive control of parameters,

UCSSE+AC with adaptive control of accuracy thresholds and UCSSE+AEC with
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the adaptive control of both accuracy and experience thresholds). We use the same

significance testing scheme for comparing these systems as used for UCS, UCSD

and UCSSE in the previous experiments, except that the two adaptive versions of

UCSSE are compared against the non-adaptive baseline UCSSE run without any

threshold adaptation. Next, the best UCSSE version are compared with UCS and

UCSD. The same set of experiments are repeated with extended UCS (UCSx) setup.

5.7.2 Experiments with Baseline UCS

Table 5.12 shows different statistics of the signatures retrieved by the three versions

of UCSSE built on the baseline UCS setup. The number of signatures in the top

tabular show that both UCSSE and UCSSE+AC remain unable to recover any

signatures for all three rare classes. This is inline with our analysis on the checkboard

problems discussed above. UCS would have difficulty in learning rules for these

classes given their small representation in the population. Furthermore, the more

accurate rules belonging to rare classes would tend to have lower experience. In the

absence of an adaptive threshold control UCSSE will keep searching for signatures

with high experience and accuracy which might not be learnt by UCS for the above

mentioned reasons. The adaptation of both parameters significantly improve this

situation. UCSSE+AEC retrieves a significantly higher number of signatures overall

than the other two versions but it manages to extract signatures for the rare classes

that provide a better coverage of the test set, presented in the middle tabular. This

suggests that a tradeoff exists between the two choices. By using very high crisp

values for accuracy and experience, no signatures might by obtained for rare and

difficult to learn classes. On the other hand, relaxing the thresholds could raise the

number of signatures in other classes.

The bottom tabular shows the average generality of signature set at the end of

training runs in each system which hovers around 25% for all the classes. The gen-

erality of each rule is calculated by summing the normalised value of each predicate

and then dividing by the total number of attributes. The signatures retrieved by
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UCSSE+AEC show almost similar average generality for each class and the results

are much more stable than the other two systems. UCSSE and UCSSE+AC have a

better generalisation in the Normal class but this does not relate proportionally to

the generalisation accuracy (shown in Table 5.13).

Table 5.12: Comparison of different signature statistics between adaptive and non-

adaptive UCSSE versions on the KDD Cup dataset. See text for the explanation of

system names.

Number of Signatures

Class UCSSE UCSSSE+AC UCSSE+AEC

Normal 193(32) 185(31) 959(122)♦

Probe 1(2) 1(1) 342(24)♦

DOS 157(44) 157(37) 241(94)♦

U2R 0(0) 0(0) 32(3)♦

R2L 0(0) 0(0) 94(15)♦

Overall 351(48) 343(51) 1669(157)♦

Test Set Coverage

Normal 85.86(4.17) 85.66(4.09) 92.15(2.18)¨

Probe 1.98(1.76) 1.42(1.36) 60.26(1.35)¨

DOS 80.59(5.89) 81.98(5.20) 90.54(7.28)¨

U2R 6.91(4.80) 6.33(4.83) 29.00(6.89)¨

R2L 76.50(14.53) 77.37(15.85) 88.81(6.40)¨

Overall 80.33(4.39) 81.36(4.30) 90.34(5.23)¨

Average Generality

Normal 27.51(0.89) 27.84(1.27) 26.07(0.44)♦

Probe 16.40(11.46) 18.75(10.02) 24.80(0.18)

DOS 24.73(1.66) 25.93(1.41) 25.57(0.65)

U2R 0.00(0.00) 0.00(0.00) 24.66(0.60)¨

R2L 0.00(0.00) 0.00(0.00) 25.10(0.34)¨
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The top tabular in Table 5.13 presents the test set accuracy achieved by different

versions of UCSSE. All three versions of UCSSE achieve better overall accuracy

than the baseline UCS system. UCSSE and UCSSE+AC however remain unable to

retrieve any signatures as discussed above for the three minority classes (i.e., Probe,

U2R and R2L). Their performance in these classes thus, can solely be attributed

to the UCS population, although some coverage from other class signatures would

cause the accuracy to deteriorate from that of the baseline setup. UCSSE+AEC

outperforms the other two versions on all classes on average, however it only does

significantly better on the Probe class and overall at 99% significance level. It is

also able to retrieve signatures for all the classes including the very rare ones. These

results show the usefulness of adaptive parameter control in UCSSE.

Table 5.13: Comparison of test accuracy and other performance measures between dif-

ferent versions of UCSSE on the KDD Cup dataset. See text for the explanation of system

names.

Test Accuracy (%)

Class UCSSE UCSSE+AC UCSSE+AEC

Normal 96.60(3.04) 97.31(0.40) 97.45(0.37)

Probe 55.76(10.64) 58.52(11.00) 67.80(1.02)¨

DOS 94.81(3.74) 95.02(3.51) 96.34(1.04)

U2R 15.24(5.46) 14.38(5.64) 17.67(4.51)

R2L 4.41(2.89) 3.56(2.11) 4.82(1.72)

Overall 89.87(2.87) 90.07(2.56) 91.47(0.92)¨

Other Performance Measures

Measure UCSSE UCSSE+AC UCSSE+AEC

FA Rate (%) 3.40(3.10) 2.69(0.41) 2.55(0.37)

Hit Rate (%) 91.75(1.38) 91.61(1.20) 91.68(0.46)

CPE 0.28(0.05) 0.28(0.05) 0.26(0.02)
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The bottom tabular in Table 5.13 shows a comparison of other key performance

measures achieved by each of the three versions of UCSSE using the baseline UCS

setup. The results show that UCSSE+AEC achieves lower false alarm rate and cost

per example scores on average. However, the results are not statistically significant

than the other two systems. But note that UCSSE performance is backed up by

a much better signature coverage than the other two versions where no signatures

could be retrieved for the rare classes.

Table 5.14 shows the CPU time in minutes taken by the three systems during a

single training and testing pass through the KDD Cup dataset. The CPU time,

in these and following experiments, is calculated using the standard Linux times

function which does not include any time spent waiting for I/O or when some other

process is running. The time spent in training a system corresponds to a single-pass

through the training data while UCS works in an exploration mode (see §2.4.3),

whereas the evaluation time corresponds to the exploitation phase during which

each test instance is labelled using the evolved population or signatures.

Table 5.14: Comparison of CPU time in minutes between adaptive and non-adaptive

UCSSE versions on the KDD Cup dataset.

Time UCSSE UCSSE+AC UCSSE+AEC

Training 27.21(1.94) 22.86(6.91) 27.57(1.26)

Evaluation 10.35(2.06) 11.00(2.46) 11.62(2.35)

Total 37.56(3.08) 33.86(6.58) 39.19(2.55)

As shown almost all systems use a similar amount of CPU time during both train-

ing and testing. UCSSE+AC is the fastest, mainly because of the faster training

time, among the three systems on average but the numbers are not statistically

significant. Interestingly, UCSSE with online adaptive control of both accuracy and

experience thresholds takes almost the same time to process the KDD data as the

non-adaptive version despite the extra processing steps involved in the computation
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of online adaptation. This can be attributed to the better coverage of the search

space achieved by the adaptive version. A higher coverage of the search space obvi-

ously allows the signature set to filter more instances and thus avoids unnecessary

discovery cycles of the UCS.

Tables 5.15, 5.16 and 5.17 present a comparison between UCS, UCSD and UCSSE

(with online adaptive control of both the extraction and deletion thresholds) similar

to the comparison of UCSSE variants. The performance of UCSD and UCSSE is

compared with the baseline UCS in these results.

Table 5.15 presents the rule statistics for the three systems. First of all note that

both UCSD and UCSSE significantly reduce the number of rules on all classes than

UCS. UCSD performs significantly better in terms of number of rules than both

UCS and UCSSE.

Overall UCSD achieves 4 times less number of rules than UCSSE, while UCSSE

retrieves almost 5 times less number of rules than the standard UCS. However,

similar to the two other UCSSE variants, UCSD could not obtain any rules for U2R

class. Thus the UCSD prediction for the U2R class essentially becomes a random

guess since it does not have a fall back mechanism similar to UCSSE. Also note that

UCSD is a post training rule processing system while UCSSE retrieves signatures

in real time.

UCSSE also achieves significantly better test set coverage on the majority DOS

class, Probe and overall than both other systems (although the overall improvement

is not statistically significant). It however provides significantly less coverage and

generality on the Normal class. UCSD also achieves significantly higher generality

on the Normal class. Contrary to the expectation however, this reduces its gener-

alisation performance on the test set (Table 5.16 discussed next). Although all the

systems achieved similar mean rule set generalities, UCSSE rule sets are relatively

more specific than the other two systems. But, as discussed next, both systems

achieve poor performance in terms of test set accuracy and other related measures.
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This indicates that the baseline UCS is lacking the right fitness pressure towards

optimal generality for this dataset.

Table 5.15: Comparison of different signature statistics between UCS, UCSD and UCSSE

(with adaptive parameter control) on the KDD Cup data.

Number of Rules

Class UCS UCSD UCSSE+AEC

Normal 6068(63) 342(19)¨ 959(122)N

Probe 510(24) 30(3)¨ 342(24)N

DOS 916(52) 59(7)¨ 241(94)N

U2R 105(8) 0(0)¨ 32(3)N

R2L 180(13) 8(2)¨ 94(15)N

Overall 7779(15) 439(20)¨ 1669(157)N

Test Set Coverage

Normal 97.26(0.38) 95.10(0.53)M 92.15(2.18)♦

Probe 55.01(8.27) 48.88(10.35)♦ 60.26(1.35)¨

DOS 84.18(9.55) 83.11(10.02) 90.54(7.28)¨

U2R 43.05(4.83) 24.10(4.28)♦ 29.00(6.89)M

R2L 92.29(4.81) 88.29(5.19)M 88.81(6.40)

Overall 86.76(7.06) 85.25(7.47) 90.34(5.23)

Average Generality

Normal 25.99(0.14) 27.61(0.35)¨ 26.07(0.44)

Probe 24.64(0.26) 24.47(0.45) 24.80(0.18)

DOS 25.09(0.27) 25.37(0.29) 25.57(0.65)

U2R 25.30(0.28) 25.30(0.28) 24.66(0.60)♦

R2L 25.45(0.27) 25.08(1.30) 25.10(0.34)M

Figures 5.16 - 5.18 graphically present rule sets obtained by three systems at the end

of a training pass. The x-axis represents the experience of rules normalised to the
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Figure 5.16: A graphical representation of the rules evolved by UCS for KDD Cup

dataset. Each rule in the population is represented by a circle with a radius proportional

to its generality.
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Figure 5.17: A graphical representation of the rules obtained by UCSD for KDD Cup

dataset. Each rule is represented by a circle with a radius proportional to its generality.

Note that UCSD was unable to recover any rule for U2R class in these experiments.
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Figure 5.18: A graphical representation of the signatures extracted by UCSSE using

UCS as a base learner for the KDD Cup dataset. Each signature in the signature set is

represented by a circle with a radius proportional to its generality.
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maximum experience in the respective classes, y-axis represents the accuracy of the

system and each circle on the graph represents a rule in the corresponding rule set.

The thickness of the circle represents a rule’s generality normalised to the maximum

generality. First of all, we may notice that the UCS population contains many

inexperienced classifiers at various accuracy levels. This can happen because of the

minimum deletion experience threshold which allows such rules to remain in the

population until they have been evaluated a sufficient number of times. For the rare

classes, however, the UCS population also contains experienced rules that are highly

inaccurate as well. This can happen because a single user-defined deletion threshold

is applied to all the classes regardless of their distribution in the training. Both

UCSD and UCSSE are able to eliminate such rules from the population. Dixon’s

rule reduction in UCSD is applied after completely training UCS on the dataset,

thus it gets better parameter estimates for pruning. UCSSE achieves a similar effect

in real time albeit with higher number of rules than UCSD. Since UCSSE is meant

to work in real time, the pruning routine in UCSSE, that removes inexperienced and

inaccurate signatures from the rule set, is invoked only after certain conditions are

met (see §5.3) and not at the end of a training run. Further the UCSSE extraction

and deletion parameters are adapted on a per class basis. The rare class signatures

are evaluated far fewer times and thus are eliminated only slowly. This can be

advantageous at times (for instance, UCSD did not manage to obtain any U2R

rules, while UCSSE did).

The upper tabular in Table 5.16 presents a comparison using the test set accuracy

achieved by UCSD and UCSSE with the baseline UCS setup on the KDD Cup

dataset. UCSSE achieves significantly better accuracy on all classes than both UCS

and UCSD except Normal and U2R classes where the performance is not significantly

different. The lower tabular shows a comparison of other key performance measures

between the three systems. Again UCSSE outperforms UCSD on all measures and

UCS on all measures except false alarm rate where there is no significant difference

between the two systems.
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Table 5.17 shows a comparison of CPU time taken by the three systems. In addition

to the training and evaluation time, time taken by UCSD to post process the UCS

population is also reported. The post processing step in UCSD adds an overhead

on the training time of UCS, however, this is compensated during the evaluation

where UCSD processes the test set a magnitude faster than UCS. Overall UCSSE

consumes around 3.5 times lower processing time than UCS and 2.8 times than

UCSD. This corresponds to almost 2215 instances per second in comparison to 630

and 807 instances per second processed by UCS and UCSD respectively. This is a

notable performance by UCSSE in that it improves the processing time with a better

generalisation performance on the test set and with a magnitude smaller number of

rules.

Table 5.16: Comparison of test accuracy and other performance measures between UCS,

UCSD and UCSSE (with adaptive parameters) on the KDD Cup data.

Test Accuracy (%)

Class UCS UCSD UCSSE+AEC

Normal 97.47(0.35) 95.93(0.41)♦ 97.45(0.37)

Probe 61.17(9.06) 58.21(8.64) 67.80(1.02)¨

DOS 85.13(7.76) 84.50(8.07) 96.34(1.04)¨

U2R 15.10(4.79) 15.29(4.67) 17.67(4.51)

R2L 3.10(1.56) 3.42(1.31) 4.82(1.72)¨

Overall 82.83(5.75) 82.03(5.99) 91.47(0.92)¨

Other Performance Measures

Measure UCS UCSD UCSSE+AEC

FA Rate (%) 2.53(0.36) 4.07(0.42)♦ 2.55(0.37)

Hit Rate (%) 88.96(2.05) 89.05(2.04) 91.68(0.46)¨

CPE 0.41(0.10) 0.42(0.11) 0.26(0.02)¨
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Table 5.17: Comparison of CPU time in minutes between UCS, UCSD and UCSSE (with

adaptive parameters) on the KDD Cup dataset.

Time UCS UCSD UCSSE+AEC

Training 94.73(2.26) 94.73(2.26) 27.57(1.26)¨

Post-processing 0.00(0.00) 10.56(0.72)♦ 0.00(0.00)

Evaluation 42.89(1.10) 2.27(0.13)¨ 11.62(2.35)N

Total 137.62(3.29) 107.56(2.59)N 39.19(2.55)¨

5.7.3 Experiments with Extended UCS

In this section, we evaluate UCSSE and UCSD (referred to as UCSxSE and UCSxD)

using the extended UCS setup (UCSx) developed in the last chapter. Table 5.18

compares the signature related statistics between the non-adaptive and adaptive

versions of UCSxSE. As shown, all three systems significantly reduce the number

of signatures retrieved in comparison to the baseline UCS setup, while achieving a

better test coverage and mean generality. UCSxSE and UCSxSE+AC however are

still not able to retrieve any rules for the U2R class, mainly because of very poor

representation of this class in the training set (only 52 instances out of half a million

records). The version with the experience threshold adaptation does a good job in

retrieving signatures in this scenario.

Also notice that the average generality of signatures has improved by almost 10%

without any loss of generalisation accuracy (discussed next). This is a significant

improvement from previous results and indicates a better fitness pressure towards

generalisation through the modifications made in the baseline UCS setup. Again the

average generality for all the classes is around the same mark while UCSSE+AEC

achieving slightly better generalisation in some of the classes.
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Table 5.18: Comparison of different signature statistics between adaptive and non-

adaptive UCSxSE versions on the KDD Cup dataset. See text for the explanation of

system names.

Number of Signatures

Class UCSxSE UCSxSE+AC UCSxSE+AEC

Normal 125(12) 125(13) 272(54)♦

Probe 3(1) 4(1) 129(8)♦

DOS 24(6) 24(4) 60(15)♦

U2R 0(0) 0(1) 24(2)♦

R2L 0(0) 2(1)M 25(14)♦

Overall 153(14) 155(16) 510(63)♦

Test Set Coverage

Normal 92.51(1.13) 92.73(1.31) 91.56(4.69)

Probe 8.65(2.52) 9.09(2.73) 63.78(1.66)¨

DOS 96.82(4.13) 95.65(5.59) 94.34(11.56)

U2R 22.52(4.69) 23.62(5.79) 34.33(15.46)¨

R2L 88.27(3.07) 90.76(2.15)N 87.44(13.69)

Overall 94.33(3.12) 93.65(4.21) 93.01(8.43)

Average Generality

Normal 35.94(0.32) 36.08(0.21) 35.68(0.29)

Probe 33.39(1.81) 33.47(1.78) 34.32(0.31)

DOS 35.95(1.06) 36.33(0.85) 35.81(0.66)

U2R 0.00(0.00) 3.70(11.70) 33.91(0.51)¨

R2L 6.90(14.56) 34.33(1.29)N 35.19(0.47)N

Table 5.19 replicates the results of Table 5.13 with the UCSx setup. The top tabular

shows a comparison of test accuracy while the bottom tabular shows a comparison

of other performance measures. In these experiments all three versions of UCSxSE

achieve similar accuracy on all classes. The performance of UCSxSE+AEC has im-
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proved significantly from the previous one and it achieves a better overall accuracy

with more than 3 times less number of signatures than its predecessor (i.e., the one

run with the baseline UCS setup). Again these results show the advantage of adap-

tive control of parameters in UCSSE. In addition, the better UCSxSE performance

indicate that UCSx is discovering more effective generalisations than baseline UCS.

The bottom tabular presents the corresponding additional performance measures.

Similar to the results with the baseline UCS setup, there is no significant difference

between all measures achieved by the three systems except the false alarm rate where

both adaptive versions of UCSxSE perform worse than the non-adaptive version.

Table 5.19: Comparison of test accuracy, number of rules and rule coverage between

different versions of UCSxSE on the KDD Cup dataset. See text for the explanation of

system names.

Test Accuracy (%)

Class UCSxSE UCSxSE+AC UCSxSE+AEC

Normal 99.39(0.25) 99.09(0.36)M 99.16(0.26)M

Probe 75.04(1.06) 75.03(1.20) 75.54(0.81)

DOS 96.73(0.04) 96.73(0.03) 96.73(0.06)

U2R 21.43(5.24) 20.62(3.68) 21.33(4.96)

R2L 3.18(1.81) 4.24(1.82) 2.59(1.94)

Overall 92.00(0.00) 92.00(0.00) 92.00(0.00)

Other Performance Measures

Measure UCSxSE UCSxSE+AC UCSxSE+AEC

FA Rate (%) 0.61(0.25) 0.91(0.36)M 0.84(0.26)M

Hit Rate (%) 90.66(0.13) 90.74(0.13) 90.68(0.16)

CPE 0.26(0.00) 0.25(0.00) 0.26(0.00)

Table 5.20 shows the CPU time used by the three UCSxSE versions. Similar to
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the results with baseline UCS setup there is no significant difference between the

processing time utilised by these systems. However, note that the processing time

of these systems has significantly improved (around 1.5 times) from the versions

run with baseline UCS setup. The main reduction in the time has come through

improvement in the training time. This shows that an improvement in the gener-

alisation ability of the base learner would further reduce the time for learning the

signatures.

Table 5.20: Comparison of CPU Time between different versions of UCSxSE on the

KDD Cup dataset.

Time UCSxSE UCSxSE+AC UCSxSE+AEC

Training 13.34(0.80) 12.87(1.29) 13.36(0.68)

Evaluation 10.67(1.38) 10.92(1.82) 12.02(3.03)

Total 24.01(1.49) 23.79(2.71) 25.38(2.98)

Finally, we compare the performance of the extended UCS with that of UCSxD

and UCSxSE with adaptive parameters control. Table 5.21 shows a comparison of

post training rule statistics in the three systems. First, note that UCSxSE retrieves

almost same number of signatures as those obtained by UCSxD and thus achieves

almost 15 times reduction in UCSx rule set sizes. This is a significant improvement

by UCSxSE from UCSSE, where UCSD obtained 4 times better compaction than

UCSSE. The number of rules for UCSxD has actually increased than UCSD given

better generalisation of UCSx. This shows the advantage of having the expand and

contract operators in the signature extraction systems. UCSD on the other hand

does not have any subsumption mechanism and would tend to obtain higher number

of rules with improved UCS performance.

The test set coverage of all three systems has also improved significantly from the

baseline versions. UCSx covers more than 98% of the test cases in comparison to 85%

covered by UCS. Furthermore, the higher test set coverage has actually improved
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the test set accuracy for all three systems (discussed next). The average generality

of post training rule sets has also improved by almost 10% in all systems. UCSxSE

achieves a significantly better average generalisation in all classes in contrast to

UCSSE that retrieved more specific signatures than the other two systems. This

shows that UCSSE adapts well to the generalisation ability of the base learner.

Table 5.21: Comparison of different rule statistics between UCSx, UCSxD and UCSxSE

(with adaptive parameter control) on the KDD Cup data.

Number of Rules

Class UCSx UCSxD UCSxSE+AEC

Normal 5384(33) 386(12)N 272(54)¨

Probe 527(17) 43(2)¨ 129(8)N

DOS 1246(27) 61(3)N 60(15)N

U2R 204(11) 4(1)¨ 24(2)N

R2L 259(14) 13(2)¨ 25(14)N

Overall 7620(21) 508(12)N 510(63)N

Test Set Coverage

Normal 99.12(0.26) 97.14(0.33)M 91.56(4.69)♦

Probe 65.59(1.00) 61.64(0.86)♦ 63.78(1.66)M

DOS 98.82(0.48) 98.48(0.58) 94.34(11.56)

U2R 60.19(3.17) 40.76(4.33)M 34.33(15.46)M

R2L 97.64(1.03) 94.75(2.61)M 87.44(13.69)♦

Overall 98.36(0.39) 97.52(0.47)M 93.01(8.43)♦

Average Generality

Normal 34.62(0.10) 35.22(0.21)N 35.68(0.29)¨

Probe 33.81(0.12) 33.65(0.38) 34.32(0.31)¨

DOS 34.01(0.31) 34.66(0.58)N 35.81(0.66)¨

U2R 34.25(0.15) 33.48(1.03) 33.91(0.51)

R2L 34.17(0.33) 33.89(1.04) 35.19(0.47)¨
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Figures 5.19 - 5.21 graphically represent the rule sets obtained by the three systems

at the end of typical training runs, similar to Figures 5.16 - 5.18. As can be seen

UCSx evolves much higher number of rules for the rare classes as compared to the

baseline UCS. Also note that for Probe and R2L classes, there are almost no rules

with high experience and very low accuracy as was the case with UCS. For U2R class,

although the number of accurate rules has increased but there are still too many

experienced and inaccurate classifiers in the population. As pointed out earlier, given

only 52 training instances, this class becomes very hard for evolving effective rules.

The graphs for UCSxD and UCSxSE show similar trends as UCSD and UCSSE.

Note that UCSxD is able to obtain rules for the U2R class from UCSx. The higher

generalisation in the signature set allows UCSSE to achieve better compactness as

more optimally general rules could subsume the specific ones.
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Figure 5.19: A graphical representation of the rules evolved by UCSx for KDD Cup

dataset. Each rule in the population is represented by a circle with a radius proportional

to rule’s generality.
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Figure 5.20: A graphical representation of the rules obtained by post pruning UCSx

population using Dixon’s rule reduction algorithm for KDD Cup dataset. Each rule in the

pruned population is represented by a circle with a radius proportional to rule’s generality.
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Figure 5.21: A graphical representation of the signatures extracted online by UCSxSE

using UCSx as a base learner for KDD Cup dataset. Each signature in the signature set

is represented by a circle with a radius proportional to rule’s generality.
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Table 5.22 replicates the results of Table 5.16 for UCSx setup. In contrast to the

results with the baseline UCS setup, there is no significant difference between the

performance of these three systems in terms of test accuracy (upper tabular). This

is still a positive outcome since both UCSxD and UCSxSE achieve that with almost

15 times less number of rules than UCSx. Note that as the UCS confidence builds up

with all the modifications, UCSxSE starts retrieving better and compact represen-

tations. The bottom tabular presents a comparison of other performance measures

achieved by the three systems using UCSx setup. All systems perform at par on hit

rate and CPE score metrics. Both UCSxD and UCSxSE, however, produce signifi-

cantly higher numbers of false alarms than UCSx, with UCSxD producing the worst

figures.

Table 5.22: Comparison of test accuracy, number of rules and rule coverage between

UCSx, UCSxD and UCSxSE (with adaptive parameters) on the KDD Cup data.

Test Accuracy (%)

Class UCSx UCSxD UCSxSE+AEC

Normal 99.38(0.07) 98.63(0.36)♦ 99.16(0.26)M

Probe 75.36(0.74) 75.81(1.42) 75.54(0.81)

DOS 96.77(0.14) 96.95(0.06)¨ 96.73(0.06)

U2R 21.52(4.12) 7.43(5.04)♦ 21.33(4.96)

R2L 2.80(1.64) 2.55(1.84) 2.59(1.94)

Overall 92.00(0.00) 92.00(0.00) 92.00(0.00)

Other Performance Measures

Measure UCSx UCSxD UCSxSE+AEC

FA Rate (%) 0.62(0.07) 1.37(0.37)♦ 0.84(0.26)

Hit Rate (%) 90.66(0.16) 90.72(0.15) 90.68(0.16)

CPE 0.26(0.00) 0.26(0.00) 0.26(0.00)
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Table 5.23 replicates the results of Table 5.17 for the UCSx setup. UCSxSE improves

the margin on processing time among the three systems as it reduces the processing

time by almost 5 and 3.5 times than UCSx and UCSxD respectively. This corre-

sponds to almost 3421 instances processed per second. Also note that the processing

times of both UCSx and UCSxD has improved from that of the baseline setup which

now can process around 700 and 938 instances per second respectively. Note that

the savings in computational time is achieved with the help of smaller rule sets and

avoiding unnecessary discovery cycles. As the coverage of signatures improve over

time, we could expect more savings in the computational time. UCSSE, as well as

UCS, can still benefit from better implementation techniques such as rule indexing

and hashing in further improving the processing time for real time deployment.

Table 5.23: Comparison of CPU time between UCSx, UCSxD and UCSxSE on the KDD

Cup dataset.

Time UCSx UCSxD UCSxSE+AEC

Training 71.54(2.46) 71.47(2.37) 13.36(0.68)¨

Post-Processing 0.00(0.00) 17.62(0.56)♦ 0.00(0.00)

Evaluation 52.58(2.90) 3.48(0.18)¨ 12.02(3.03)N

Total 124.12(4.84) 92.57(2.74)N 25.38(2.98)¨

Empirical evidences in this section demonstrate the usefulness of the signature ex-

traction system for the intrusion detection problem. UCSSE with extended UCS

setup is able to retrieve almost 1500% lesser number of rules with greater gener-

ality in real time. This allows almost 500% savings in the processing time which

could improve over time. The results also implicate the adaptation of extraction and

deletion thresholds for the proper operation of UCSSE. More sophisticated adaptive

operators could lead to further improvement in the performance of UCSSE. Also

note that the Dixon’s rule reduction algorithm is applied after completely training

the UCS population and hence is expected to perform better than UCSSE. UCSSE
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despite operating in real time performs competitively.

5.8 Comparison with Published Results

In this section, we compare the results of UCSx and UCSxSE with some represen-

tative results published in literature on the 1999 KDD Cup dataset. The results of

nine machine learning techniques, along with UCSx and UCSxSE, are presented in

Table 5.24. The first two rows refer to techniques used by the winner and runners up

of the 1999 KDD Cup respectively. The next seven techniques are published after

the contest and are considered among the best in their respective fields. Although

many other approaches exist in the literature that have used the KDD Cup dataset

for their evaluation, there are few that have reported their results on the full test

dataset.

All evaluation metrics are reported for the methods that have provided the resul-

tant confusion matrices. In all other cases, results are extracted directly from the

given references. A “-” is placed where the results are not available. One of the

methods mapped the problem as a binary classification task (GP Ensemble), while

another reported only the false alarm rate and hit rate (Fuzzy Classifier + GA).

All techniques are also compared on four salient features that are relevant to our

algorithms. A hybrid detection type means that models for both Normal and attack

classes are learnt by the system.

As can be seen there is no single technique that performs the best in all of the evalu-

ation criteria and a tradeoff seems inevitable among different performance measures.

Both UCSx and UCSxSE show comparable, even competitive, performance in all

measures, especially when compared with the genetic based systems. The main dif-

ferentiator in terms of the applicability of these methods in real world settings is

their ability to process data streams without the requirement of storing the data for

batch learning. In this respect, UCSx and UCSxSE stand out as the only methods

that are capable of processing the data in a single-pass.
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5.9 Summary and Way Forward

In this chapter, we have have attempted to address the issue of compression in the

UCS rule sets. Our approach is fundamentally different than existing approaches and

our aim is to retrieve optimal generalisations learnt by UCS in real time (i.e., during

its discovery operation). An algorithm is presented for real time signature extraction

in UCS, named UCSSE. The signature extraction mechanism is implemented on

top of the existing UCS framework. This allows the system to use the extracted

signatures during its operation and the evolutionary search is invoked only when no

signatures are found for an input. Thus providing a better control over evolutionary

search, faster processing times and considerably compact rule sets.

The validity of the algorithm is verified using the learning time bound theory of XCS

and the algorithm is tested on two benchmark test problems used in LCS research.

On the binary multiplexer and real-valued checkerboard problems, the algorithm is

able to retrieve all optimal generalisations in real time.

To minimise redundancy among the retrieved signatures, two new operators are

introduced that can handle major overlaps between the same class and opposite

class rules. The analysis of the algorithm is extended to noisy and imbalanced class

problems and subsequently control mechanisms for online adaptation of signature

extraction thresholds are provided. With the adaptive threshold control of accuracy

parameters, UCSSE is able to retrieve near optimal decision boundaries for noisy

checkerboard problems.

Finally, different versions of UCSSE are evaluated on the KDD Cup dataset based

on the baseline and extended UCS setups developed in the last chapter. In all cases,

UCSSE with adaptive parameter control achieves test set accuracy which is at par

or better than UCS. It does so with a significantly fewer number of rules. When

run with the extended UCS it reduces the rule set size by 15 times than the original

algorithm, without any degradation in test accuracy and consumes 5 times lesser

CPU time.
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We also extended a recent rule reduction algorithm for XCS to UCS and compared its

performance with UCSSE. The rule reduction algorithm suffers when there is noise

in the data because it also uses preselected fixed thresholds to prune post training

rule sets. To fix this problem thresholds are replaced with per class average rule

set accuracy. In noisy checkerboard problems, UCSSE performs better than both

UCS and UCSD in the number of rules while achieving equivalent test set accuracy.

In imbalanced checkerboard problems, UCSD performs better than UCSSE and

achieves higher accuracy. UCSSE still faced some difficultlies in retrieving signatures

at higher imbalance levels. On the KDD Cup data UCSD achieves significantly fewer

number of rules than UCSSE when run with baseline UCS, however it does so at

the cost of some accuracy loss. The modified UCSSE catches up with UCSD and

there is no significant difference in the performance of both systems. It is important

to note that UCSD has an edge since it post prunes the trained UCS population

whereas UCSSE works in real time (i.e., as the rules are being discovered) and still

provides competitive performance overall.

At the end, the performance of both UCS and UCSSE with extended setup are

compared with some of the most representative published results.

In conclusion, UCSSE provides a framework for the active retrieval of generalisa-

tions, outputs compact representations and provides faster processing times than the

standard UCS. It also provides a mean to control the evolutionary search process in

UCS. Although the system is built on top of UCS, which is the focus of this thesis, it

can easily be extended to XCS and possibly other LCS. The framework is developed

while keeping in view the requirements of real time intrusion detection and thus

can be prototyped into an intrusion detection system with some extensions (e.g., by

incorporating active learning mechanisms with a security supervisor’s feedback).

In the next chapter, we will evaluate the signature extraction system developed in

this chapter along with the standard and extended UCS developed in the last chapter

with real network traffic. We will also develop tools to automate the processing of

real network traffic into the representation suitable for UCS and UCSSE systems.



Chapter 6

Evaluation with Real Network

Traffic

6.1 Chapter Objectives

In the last two chapters we used the 1999 KDD Cup datasets for the evaluation of

UCS and UCSSE respectively. As mentioned, these datasets are derived from several

weeks of network traffic dumps and host logs which were obtained by simulating

background traffic and attacks in an isolated networking environment as part of

the 1998 DARPA IDEVAL program. Traditionally, the computer security research

community has used the DARPA datasets for the evaluation of their systems whereas

the KDD research community interested in the evaluation of their techniques for

intrusion detection problem has concentrated on the KDD Cup datasets.

Despite their usefulness the DARPA datasets have been shown to contain simula-

tion artefacts and other problems by some researchers (Mahoney and Chan 2003a;

McHugh 2000). Likewise, some researchers have argued the inappropriateness of

training machine learning algorithms with the KDD Cup dataset (Sabhnani and

Serpen 2004). It is unknown, however, what effect could these artefacts have on the

KDD Cup datasets as most of the fields causing these artefacts in DARPA datasets
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are packet header values (e.g., IP Time To Live (TTL) or source IP addresses) and

are not directly used in the KDD Cup datasets. The DARPA datasets are also

considered somewhat outdated because of the developments in the networking tech-

nologies and the evolution of attacks in response to these improvement, since the

dataset was created.

Furthermore, a major limitation in using the KDD Cup datasets is the inaccessibility

to the actual logged data. KDD Cup datasets were built by applying association

rule mining algorithms that were tuned to extract certain features which the authors

of these datasets considered useful for the detection of intrusions in the DARPA

datasets. Subsequently, the intrusion detection techniques that used these datasets

for their evaluation had to stick with the provided feature set and at best could

minimise the number of features, in the given set, that would maximise information

gain. This might suffice for the general classification tasks where the main concern

for machine learning algorithms is to improve their prediction accuracy on the given

test set. But for the systems that intend to address the intrusion detection problem

in general and not limited to this dataset, it poses an inherent limitation which must

be overcome by developing tools that can independently preprocess network data in

the required format for the detection engine or learning algorithms.

Consequently, in this chapter we develop our own methodology to address these

issues and evaluate the systems presented in the last chapters with real network

data. To overcome the problem of staleness and simulation artefacts in the above

mentioned datasets, we capture real background traffic on a university departmental

server over several weeks. We simulate hundreds of modern day attacks that trigger

Snort, a state-of-the art intrusion detection system, signatures.

Another hurdle in preparing datasets from raw network data is the preprocessing

step. Most machine learning algorithms accept data in the form of feature vectors.

Furthermore, supervised learning algorithms require that data is labelled to train

and subsequently evaluate their performance. We develop tools to extract features

from these packet traces and perform a packet to feature vector translation. We
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show the effectiveness of these features empirically using several subsets of the main

dataset. We used Snort intrusion detection system to label the feature vectors

extracted from these datasets.

Although the presented methodology is used for testing UCS and the signature

extraction system presented in the last chapters, it can be used for the evaluation

of any other machine learning systems that require feature vector representation.

Eventually, we evaluate the systems developed in the previous chapters on the new

dataset and provide a detailed analysis of results. Our objective is to show the ef-

fectiveness of UCS and UCSSE in automatically learning signatures from real data

that can potentially be replaced by the manually created signatures in the signature-

based intrusion detection systems. The methodology developed for collecting and

preprocessing the network data complements our learning algorithms in building a

prototype intrusion detection system based on evolutionary learning classifier sys-

tems.

6.2 Related Work

Due to the limitations posed by a few publicly available intrusion detection eval-

uation benchmark datasets, many alternative approaches have been proposed for

evaluating intrusion detection techniques, especially for network based intrusion

detection systems (NIDS). Broadly these techniques can be classified into three cat-

egories based on the method of traffic generation; those that simulate or emulate

legitimate and malicious traffic or the ones that replay captured traces mixing them

with simulated attack traffic. Below is a brief summary of some of the works that

used such techniques.

(Mahoney 2003) collected live network traffic on a university departmental server for

several weeks and later mixed it with the DARPA traffic dumps, by modifying the

timestamps, to test his network anomaly detection system. Some other researchers
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have used Mahoney’s tools to mix DARPA traffic with the background traffic col-

lected from their own private networks (Hwang, Cai, Chen, and Qin 2007). (Jung,

Paxson, Berger, and Balakrishnan 2004) collected traces from two qualitatively dif-

ferent sites to evaluate their Threshold Random Walk algorithm for detecting fast

network port scans. (Luo and Marin 2004) collected background traffic traces from

a university departmental server and then built statistical models of several TCP

based application level protocols from the captured traces. They simulated back-

ground traffic using these statistical models in a network simulator. (Sommers,

Yegneswaran, and Barford 2005) created a tool named Trident which can simulate

realistic traffic in a laboratory environment by replacing the payloads and other

characteristics of simulated traffic with realistic values from collected traces. Realis-

tic traces were collected from a gateway router. They also augmented their tool for

simulating malicious traffic by replaying the attack traffic in DARPA datasets. (An-

tonatos, Anagnostakis, and Markatos 2004) developed a traffic generation tool that

could emulate background traffic with several application protocols with a control on

detail levels. (Massicotte, Gagnon, Labiche, Briand, and Couture 2006) emulated a

network environment using virtual network infrastructure and used several publicly

available exploit tools and mutants to build a fully documented dataset consisting

of thousands of attacks. The dataset did not however contain any background traf-

fic. Some researchers have also opted to use data collected at white hat hackers

conferences, such as DefCon (Almgren and Jonsson 2004).

The focus of most of these techniques is to evaluate existing open source (and in

some cases commercial) industry standard NIDS by generating customised work-

loads. These intrusion detection systems, such as Snort and Bro, are designed

to work with raw network traffic and integrate tools like network sniffers in their

frameworks. Consequently, the testbeds developed to evaluate these systems have

concentrated on effective traffic generation methods without worrying about the

representation or labelling issues. Machine learning techniques on the other hand

generally require data in a structured format. Our approach, presented in this chap-

ter, is thus to extend these methodologies to generate intrusion detection datasets
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in machine learning suitable format.

6.3 A Methodology to Build Intrusion Detection

Dataset

The main steps in the proposed methodology are depicted in Figure 6.1 that involve

obtaining background traffic from a real active network, obtaining attack traffic

through simulation and feature extraction and assignment of labels by replaying the

collected traces through an existing NIDS and customised tools to construct feature

vectors from the raw network packets. Each of the steps is discussed in the following

sections.

6.3.1 Collection of Real Background Traffic

The background traffic is needed to learn normal behaviour of the protected system

so that any future anomalous activities can be detected. On the other hand, misuse

detection algorithms are generally only concerned with learning the attack patterns.

Nonetheless, inclusion of background traffic is important for two reasons; first, the

patterns of illegitimate activities cannot be learnt in isolation as they are embedded

in the normal traffic and second, the algorithms that learn attack patterns can

complement their strengths by learning patterns of normal activities and in turn

providing anomaly detection.

The advantage of collecting such traffic in a controlled environment, such as that

used by DARPA IDEval program, is that normal activities can easily be labelled,

as the intent and timing of each activity is known in advance. Such an exercise,

however, is expensive and does come with unwanted side effects (such as those found

in DARPA dataset). Thus it is preferable to collect real background traffic from a

private network using commonly available network sniffers. This however should not
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be a limitation in principle as some real network traces are publicly available through

the Internet, such as http://ita.ee.lbl.gov/html/traces.html and https://

www.openpacket.org/. It is important to note that the collection of real background

traffic poses its own privacy and security concerns and always carries the risk of

wrong labelling.

Figure 6.1: Steps involved in building a labelled intrusion detection dataset.

6.3.2 Simulation of Attacks

The next step in the phase of preparing the dataset is the induction of modern

day attacks in the background traffic. In the DARPA IDEval program, the attack

generation process was carried out by using publicly available hacking tools and

developing new attack scripts for several known exploits. To simplify this task, IDS

penetration testing tools can be used to generate attacks locally (i.e., without the
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need of simulating the attacks on a stand-alone network). This is a far cheaper and

safer method of executing the attack traffic without the need for disrupting the live

network traffic or physically building a network for the emulation of attacks.

Many such open source tools exist, such as Mucus (Mutz, Vigna, and Kemmerer

2003), FTester (Barisani 2003) and fpg (Geschke 2004). The purpose of these tools

is to generate attack packets that trigger alerts using a signature based IDS, such

as Snort. Other exploitation tools that can simulate a wider variety of attacks,

such as Metasploit (Team 2006), can also be used. However, there is less flexibility

in the latter case as the detection of all types of attacks may not be guaranteed.

Another possibility is to use online available repositories of attack traces, such as

http://lobster.ics.forth.gr/traces/. Although in order to mix well, these

traces will need to be modified according to the setup where the background traffic

is collected.

6.3.3 Feature Extraction

Feature extraction is an additional step in the processing of raw network traffic or

audit data in order to apply data mining techniques to it. Most machine learning

algorithms are designed to process data in a feature vector format, where each record

consists of a set of feature values and possibly a label for training purposes.

The choice of representation can have a significant impact on learning algorithms

(Filippone, Camastra, Masulli, and Rovetta 2008). Careful feature selection is thus

critical for improving the performance of machine learning algorithms. Direct ac-

cess to raw network data and developing customised feature extraction tools allow

incorporating domain knowledge and choosing an appropriate representation for a

particular algorithm.

Signature based IDS, such as Snort, mainly use two types of features in their signa-

tures; namely, payload and non-payload based features. The non-payload features

are primarily extracted directly from the packet headers such as destination service
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or indirectly such as state of a connection or direction of traffic flow. The payload

features include unique strings in ASCII or hexadecimal, regular expressions and

other supporting features to locate the position of a pattern in the payload. These

signatures are created manually by the domain experts who may take several hours

to days before coming up with effective intrusion patterns.

To automate the process of feature extraction several factors need consideration,

such as the type of attacks to be detected and processing time. Several open source

tools exist that can process binary data into human readable format (e.g., Unix

based utility ipsumdump). However, these tools need to be extended for feature

extraction process. Generally, the packet based features can be extracted relatively

easily by parsing the packet header and using other techniques such as reassembling.

It is much more challenging, however, to extract payload features that would lead to

intelligent learning of similar patterns as used in the hand-made signatures. Besides,

this would require an intense processing that may not be feasible for real time

operation of a learning algorithm. Nevertheless, other more general payload based

features such as byte frequency distribution (Wang and Stolfo 2004) could be used

for payload modelling. In addition, frequency and time based features, such as those

used in the KDD Cup dataset, may also be calculated by replaying the traffic on

the actual capture timescale using tools like TCPReplay (Turner and Bing 2005).

6.3.4 Labelling

The final step in the preparation of the dataset is record labelling. Labelling is

required for training and evaluation of supervised learning algorithms. Manually

labelling large volumes of network data is next to impossible and thus a major

hurdle in building intrusion detection datasets.

In DARPA’s IDEval program, the participants were provided with a list of time

stamps pointing to exactly when a particular attack commenced in the simulated

traffic and the length of time it lasted. Since all other traffic was simulated in a
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controlled environment, it was considered benign. Subsequently the labels used in

the KDD Cup data were assigned using these time stamps.

Since attacks in the adopted methodology are simulated using existing IDS signa-

tures; labelling attack traffic is straight forward and requires matching given alert

messages in the signatures with the IDS generated log. To ensure the correct-

ness of attacks, records corresponding to unsuccessful detections could be discarded.

The background traffic could be labelled similarly by replaying the captured trace

through a signature based IDS using the most up-to-date signature bases. The

traces could be replayed using the actual time stamps or in a fast mode. Since the

intrusion detection systems log only the intrusive activities detected through their

signatures, default rules can be added to the signature chains to log every normal

transaction as well. The feature vector output from the reassembling and feature

extraction module can then be assigned labels by comparing time stamps or other

session IDs from the IDS logs.

6.4 A Data Building Exercise

In this section we build a dataset using the methodology described in the last section.

6.4.1 Background Traffic Collection

Ideally, we would like to collect university wide network traffic on large university

servers. Due to administrative reasons and privacy and security concerns, however,

we had to limit the collection of traffic to one of the School of ITEE servers at our

university. The server named Seal can be accessed via http://www.itee.adfa.

edu.au, is wired on a 10 MB local Ethernet network and is connected to the outside

world via a university gateway router. Seal runs a few well-known services including

Web, Mail, SSH, DNS and SQL servers on a Sun Microsystems platform (Please refer

to 7.4 for an explanation of abbreviations). The web server hosts hundreds of web
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pages linked through the school website and it is the main source of attracting outside

traffic. The mail server runs SMTP and POP3 protocols and provides remote access

to a few mail accounts through the POP3 server. The other two services, especially

SQL, are rarely accessed from outside the network.

We collected traffic on Seal over the whole month of March of 2008 and the first week

of April, excluding the weekends and public holidays during which data collection

was not available. Packet capturing was limited to a maximum of 200,000 packets

per day due to space limitations on the server. Since all simulated attacks (described

later) were directed to the Seal server from external networks, we filtered out all local

and non-IP traffic including the broadcast and multicast packets using tcpdump’s

capture filters.

The size of the captured network traffic amounted to almost 3 gigabytes with around

3.8 million packets captured in total. Table 6.1 below provides the detailed break-

down of the captured packets according to their respective transport and application

layer protocols.

The statistics clearly show that the majority of traffic belong to TCP with Web

service constituting the bulk of the log. Among the other TCP based services

SMTP and POP3 are the only two protocols that have some notable activities. This

is expected given the server is hosting Web and Mail servers. Also, almost no DNS

traffic is observed as we filtered out all inside traffic to the server. The limited SSH

activities also show that there are not many users accessing their accounts from

the external network. The traffic to other services can be considered suspicious

or unwanted (e.g., Seal does not host an FTP server and thus attempts of FTP

connections are most likely part of a scanning activity). Further, there is only a

very small percentage of UDP and ICMP based traffic in comparison to the TCP

traffic.

Note that the traffic statistics shown in Table 6.1 are for the complete capture.

To build the connection records we used various filtering techniques, discussed in
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Section 6.4.3, which reduced the size of the data.

Table 6.1: Protocol-wise breakdown of the traffic captured on Seal

Protocol Service Packets Percentage

TCP 3780991 99.505

FTP 1092 0.029

SSH 1468 0.039

SMTP 82682 2.176

DNS 19 0.001

HTTP 3693141 97.193

POP3 2325 0.061

Others 264 0.007

UDP 14390 0.379

DNS 14256 0.375

Others 134 0.003

ICMP 4426 0.116

Total 3799807

6.4.2 Simulation of Attacks

The attack simulation task is carried out using a Snort penetration testing tool,

Mucus (Mutz, Vigna, and Kemmerer 2003). Below we provide a brief introduction

to Snort and Mucus.

6.4.2.1 Snort

Snort is an open source signature based intrusion detection system that is used in

production networks around the Globe. Snort signatures are developed by domain
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experts when new attacks or exploits are discovered. Currently, Snort rule base

consists of more than 8000 rules that look for thousands of attacks or their variations.

In addition, Snort uses several pre-processor modules that detect various packet level

anomalies.

Snort rules are created following a simple, lightweight rule description language.

Figure 6.2 shows the Snort rule syntax with an example rule. This rule matches

any packet that is sent from any IP address not belonging to the protected network

and is destined to port 0 on the protected machine regardless of the state of the

connection. An alert is generated if this rule gets fired and a bad traffic message is

logged.

Figure 6.2: Syntax of Snort signatures

Snort uses around 40 main features in its rules whose values can be specified by

Snort keywords. The features are of two types: payload and non-payload based

features. Payload features look for specified patterns in the data portion of the

packets; for example, the content feature specify an ASCII or hexadecimal string to

be searched in the payload and depth specifies the number of bytes to be searched

for a given content pattern. The non-payload features specify the header values and

other connection related information; for example, the dsize feature allows matching

a specified length of the packet payload and flow specifies the state and direction of

a connection. Some of the features additionally use modifiers or operators to further

identify certain conditions to match.
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6.4.2.2 Mucus

Mucus is a Unix/Linux based tool written in Perl1. Mucus simulates attack traffic

by parsing the Snort intrusion detection signatures and then generating customised

network packets that match Snort signatures and eventually trigger Snort alerts.

Multiple instances of the same attack can also be generated whereby Mucus ran-

domises the source/destination IP addresses and other packet fields not specified

in the rule or that have don’t care values (e.g., port any). Mucus can translate

most of the Snort keywords successfully, however, it does have certain limitations

when parsing more complex rules such as those rules with high number of mixed

conditions. Consequently in our simulation, each attack generated by Mucus was

tested syntactically using the Snort’s detection engine for its correctness. Another

advantage of Mucus is that it can simulate stateful TCP attacks. The stateful in-

trusion detection systems, such as Snort, can simply ignore the out-of-band attacks.

The stateful attacks require that a connection via the TCP three-way handshake is

established between the attacking and targeted machines before the actual attack

packets can be transferred between the two hosts. Mucus can be configured to sim-

ulate such attacks, thus ensuring that those Snort rules with the flow keyword are

activated.

To simulate attacks, Mucus was configured to send packets through the local network

adapter to the Seal’s IP address. Snort was turned on with its default configuration

with all the relevant rule bases and preprocessors. At the completion of the simu-

lation, the alerts generated by Snort are compared with the rules used to generate

these attacks. To ensure the validity of the attacks, the rules that did not trigger

an alert are excluded from the simulation list. Finally, the attacks are regenerated

using the corrected list of rules and the resultant network traffic generated by this

activity was captured using the tcpdump program.

1The original Mucus code was written in 2004 and did not support most new Snort keywords.

We used an updated version hosted under the Bleeding Threat project (Gregory 2005)
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6.4.2.3 The Attacks

After filtering the traffic captured on Seal, the only two active TCP services left

in the data are HTTP and POP3. Hence we selected rules relating to these two

services from the Snort rule base for generating attacks. In particular, rules from

web-cgi, web-php, web-misc and pop3 rule bases of Snort were selected. It makes

sense, since injecting other attacks could lead to a simulation artefact where the

attacks not belonging to these two services could easily be identified based on a

single distinguishing feature (e.g., the destination service).

There is only very little UDP activity on Seal as shown by Table 6.1. Thus, there

was not much choice for UDP based attacks that can be injected into the Seal

traffic. Therefore, we chose UDP attacks that can be directed towards any service

and modified the attack rules to generate traffic directed towards the destination

ports seen in our collected trace. The ICMP based attacks were chosen similar to

UDP attacks.

About 500 Snort rules were used to generate the attacks. Only a single instance

of attack was generated per rule. Although multiple instances per attack can be

generated, this could reduce the covertness of the attacks making it easier for the

algorithm to detect. Almost all of the simulated attacks are content based attacks

and can be classified under the DOS, U2R or R2L categories used in the KDD Cup

datasets. The flooding type DOS attacks, such as smurf and syn-flood, that aim

to consume target host or network bandwidth were not simulated. Once launched,

there is little intrusion detection systems can do about such attacks other than

silently discarding packets to a certain extent. In addition, slow probing, or scanning,

attacks that require keeping statistics for connections on host or service levels are

also not included. These attacks cannot be simulated using tools like Mucus and

require mixing up with real background traffic. They are also hard to label, since

Snort uses various thresholds that need to be tuned to detect such attacks.
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6.4.3 Feature Extraction

Most of the features in the KDD Cup data were built using the association rule

mining algorithms. These features are aimed at detecting the attacks found in the

DARPA datasets. For instance, to detect flooding type DOS attacks, time based

features were extracted on host and service levels that captured the intensity of

traffic on target hosts in a given time window. Similarly, statistical features were

extracted that captured possible reconnaissance activities on target hosts. Since

most of simulated attacks are content based and are specifically tailored to trigger

Snort alerts, similar features as used by Snort rules in detecting these attacks should

be extracted ideally. This is not a problem for the non-payload based features which

can either be extracted directly from packet headers or by reassembling the sessions

between communicating hosts. Payload based features, however, need improvisation

as Snort is a pattern matching system whereas machine learning algorithms work

on feature spaces to learn generalised hypotheses.

We extended Mahoney’s tcpdump extraction program (Mahoney 2003), used in the

first stage of ALAD, to extract features from attack and background traffic trace

files, stored in a tcpdump format. The program sequentially reads each binary file,

reassembles TCP sessions and extracts packet level information including packet

header and payload in a human readable ASCII format. We modified the original

code written for DARPA IDEVAL traffic dumps to handle the Seal traffic in the

correct byte order. Further, the original code restricted the payload extraction to

the first 1000 bytes, which was also removed. Finally, functions to handle UDP and

ICMP traffic and calculate the payload based features on the fly were added.

Since all the attacks are directed from external networks to the server, the tool

filters out all out going packets from Seal. It also filters out traffic to non well-

known services (i.e., the packets with a destination port greater than 1023). Further,

to extract connection related features, the TCP sessions are reassembled and the

state of each connection is tracked. Only the TCP data packets that belong to

an established stream are used in building the records, while the UDP and ICMP
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Table 6.2: Payload features extracted from real background traffic and simulated attacks.

Feature Name Description

WCount Number of complete words in the payload sepa-

rated by whitespace or other special characters

HotWords Number of hot words in the payload given a list

of words (e.g., root, login)

MaxWLen Length of the longest word in the payload

LowAlpha Percentage of upper case letters in the payload

UppAlpha Percentage of lower case letters in the payload

Numeric Percentage of digits in the payload

WSpc Percentage of white spaces in the payload

Control Percentage of control characters in the payload

such as line feed and carriage return

Reserve Percentage of reserved characters such as @, $

Unsafe Percentage of unsafe (URI) characters in the

payload such as %,

NonPrint Percentage of non-printable (> ASCII 0x7E)

characters in the payload

Others Percentage of other characters in the payload

that do not fall into one of the above categories

packets are logged regardless of the direction of flow or the state of the connection.

Next, the summarised packet information is converted to a feature vector format by

extracting feature values from the packet summary.

The extended tool is able to extract tcpdump time stamp, all of the IP header

fields as well as the fields from the TCP, UDP and ICMP headers, including TCP

flags, sequence/acknowledgement numbers, source/destination port numbers and

the ICMP ID, type, code and sequence numbers. A flow feature is added in each
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record, similar to Snort, that tells the direction of a connection (i.e., from internal

to external network or vice-versa). In addition, 12 other features are extracted from

the payload section of the packets listed in Table 6.2.

As can be seen all of the attributes correspond essentially to the percentages of

ASCII characters categorised under different features. Most payload based attacks

attempt to exploit buffer overflows in software using various techniques, such as

illegal characters in URL, long strings or a specific combination of unsafe characters.

Therefore, we expect these features to provide good information gain against such

attacks. Some further analysis on the relationship between these features and the

obtained labels is provided in §6.4.5.

Although additional features could be built such as those used in the KDD Cup

datasets, our primary objective is to demonstrate the usefulness of the methodology

and develop extensible tools that can complement in evaluating our systems. Besides

the presented features can be easily calculated on the fly without needing to revisit

the data or spending long time in the pre-processing. This could be beneficial,

especially, for the algorithms that aim to detect and learn intrusion patterns online

(i.e., in single-pass or real time), such as those developed in the last two chapters.

6.4.4 Labelling

In order to label background traffic collected through Seal, Snort was run in the

read mode with all of its detection modules and rule bases turned on. Specifically,

we turned on Snort’s Stream 5 pre-processor that can rebuild and keep track of

TCP streams to detect stateful attacks. Since Snort only alerts on attack traffic, we

introduced a set of default rules at the end of Snort rule chains. Thus if a packet

did not trigger any attack alerts it was logged as Normal. The default rules match

only the data packets which belonged to an established TCP stream. Control pack-

ets such as those used in TCP connection establishment and termination were not

logged. The UDP and ICMP packets were logged independent of the state of the
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connection. This matched the configuration used in the feature extraction module

described above. Finally, the feature vectors generated from the background traffic

were labelled by comparing the time stamps and packet IDs from both the Snort

alert logs and the feature vectors.

The attack vectors were labelled in a similar way to the labelling of the background

traffic. Snort alert logs were compared with the alert messages specified in the rules

used for generating the attacks. In some cases, Snort generated multiple alerts for

a single attack. In other cases, Snort did not raise an alarm because the signatures

generated by Mucus were malformed and attacks did not launch successfully. In

the former case, we chose the alert messages specified in the rule to be the label

while the traffic that did not trigger alerts was simply removed from the trace.

Stateful TCP attacks were labelled using the same procedure as described above for

the background traffic. The first word of each alert message was used as the label

names, this essentially corresponds to the name of rule base used for the generation

of attacks (e.g., DOS, DNS, WEB-CGI).

6.4.5 Putting it All Together

The overall process of data preparation is depicted in Figure 6.3. Several weeks

of real traffic captured on a university departmental server is replayed using Snort

IDS as well as a feature extraction program. The feature extraction program per-

forms the reassembling of TCP streams and transforms the binary data from the

network packet structure to a readable text format. Features are extracted from this

summarised information and connection records are converted to the feature vector

format. The feature vectors are labelled using the Snort alert logs and added to the

data corpus.

The attacks are simulated using Mucus which generates attack traffic tailored to
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Figure 6.3: Overview of data preparation

activate Snort intrusion detection rules. The attack traffic is processed to labelled

feature vectors in a similar fashion as we described for the background traffic. The

attack records are then added to the same data corpus.

The final dataset consists of almost 100,000 records including more than 3000 at-

tack records. The difference in the number of captured packets and the number of

records is mainly due to the filtering out of the TCP control packets and limiting the

detection to the inbound traffic. Table 6.3 provides the complete class distribution

in the final dataset.

As can be seen, most records (97.26%) built from the traffic collected at Seal expect-

edly belongs to the normal traffic. The background traffic however is not completely

clean. Out of the remaining instances, 0.5% are flagged by the Snort preprocessor

modules labelled as DECODER in the above table. Preprocessor alerts are trig-

gered normally due to protocol anomalies among other reasons and can produce

unwanted alerts generated because of protocols implementation related issues. The

highest number of Snort alerts are triggered by the WEB-MISC rule base which

includes signatures for various potentially dangerous Web activities such as those

related to the crawlers used by search engines. Also note that almost all of the Snort

alerts correspond to the TCP based packets with no UDP related alerts and only 21

ICMP related alerts. There could be more attacks in the normal traffic which are

not detected by Snort (e.g., we observed many ICMP packets which are most likely
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Table 6.3: Class distribution in the dataset built from captured traffic and simulated

attacks.

Label Seal Mucus Total Percentage

DNS 0 5 5 0.005

DOS 0 3 3 0.003

DECODER 507 4 511 0.525

EXPLOIT 0 13 13 0.013

ICMP 21 17 38 0.039

NORMAL 94250 0 94250 96.771

POP3 0 21 21 0.022

RPC 0 77 77 0.079

SCAN 0 4 4 0.004

WEB-CGI 38 172 210 0.216

WEB-MISC 2031 149 2180 2.238

WEB-PHP 51 32 83 0.085

Total 96898 497 97395

a part of some scanning activities and are not flagged by Snort). Conversely, Snort

could have also falsely labelled a normal packet as an attack (e.g., as in the case of

WEB-MISC alerts).

In our experiments later in this chapter, we used only TCP based records which

account for more than 99% of the data. The UDP related records are removed

because there are not many simulated UDP attacks and the few attacks could be

detected because of the destination port artefact. The ICMP records are removed

since many of its connections labelled as normal by Snort were suspicious. Note that

the removal of non-TCP records is a data collection constraint and not a limitation of

the methodology to generate the dataset. We will refer to this as TCP dataset. The

TCP dataset consists of five classes (i.e., NORMAL, POP3, WEB-CGI, WEB-MISC
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and WEB-PHP) and amounted to around 90,000 records. Each record consisted of

20 features which include 8 features extracted from the packet headers (namely,

IP header length, IP datagram length, fragment id, TTL, source and destination

port numbers, TCP sequence and acknowledgement numbers and the length of data

portion in the packet) and 12 payload based features listed in Table 6.2 above. Note

that there were 13 more non-payload based features in the full dataset, but they

were removed either because their values remained constant over the whole dataset

or they contained sensitive information such as the IP addresses.

6.5 Comparison with the KDD Cup dataset

The network dump used for constructing the KDD Cup dataset consisted of both

internal and external traffic and involved more than one internal host. This allowed

many short duration communication sessions between host. The Seal dataset is built

from the traffic captured on a single server with many long duration connection

sessions. This is also the reason for the difference in the number of services used in

both datasets.

The KDD Cup dataset has 41 features many of which were constructed offline using

data mining techniques. The Seal dataset contains 33 features, all of which can be

built online and do not require any windowing techniques. It, however, does require

session tracking which is an essential part of modern intrusion detection systems.

The KDD Cup dataset contains 38 attacks in total all of which can be categorised

under 4 categories. The Seal dataset contains a wide variety of attacks, around 500

in total, which are classified under 11 different categories. Most of the attacks in

the Seal dataset are payload based and are targeted towards end host applications.

The KDD Cup dataset, in contrast, contains very few payload based attacks.

The KDD Cup dataset is characterised with high class imbalance and two of the

attack classes are extremely rare. However, there is apparently no sign of noise in
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the data except minor labelling inconsistencies which can be rectified. The Seal

dataset also contains very high class imbalance. In fact, all of its attack classes are

extremely rare in the dataset. Also note that in the KDD dataset, DOS attacks are

the majority class in training whereas in the Seal dataset, the Normal class is the

majority class. We believe this is more appropriate and nearer to real situations

where normal activities are predominant and attacks are usually rare. Although not

definitive, the Seal dataset may contain noise due to labelling errors.

Finally, the KDD Cup dataset was developed in 1999 with a 1998 simulated traffic

dump whereas the Seal dataset is built in 2008. Although, we do not claim that

our dataset is better suited to study intrusion detection problems, there are some

advantages in using the methodology developed to build the dataset.

6.6 Evaluation

In this section, we evaluate the performance of the baseline UCS, UCSx developed

in Chapter 4 and UCSSE with adaptive parameter control developed in Chapter 5

on the TCP dataset described above.

6.6.1 Methodology

In the experiments conducted in the last two chapters we had access to separate

training and test datasets provided during the KDD Cup competition. In these ex-

periments, we used a standard cross-validation technique for evaluating the systems.

The performance of each system on the TCP dataset described above is measured

using a 5-fold cross-validation test. The dataset was divided into 5 stratified and

disjoint train/validate samples. Then each system was trained and tested on every

fold using 6 different seeds. Thus all the results are averages of 30 independent runs.

Notice, however, that a single training pass is used still to train all the systems in

order to simulate a real time environment. The rest of the setup including parame-
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ter settings is the same as that used in the experiments of Chapter 5. The UCSSE

results correspond to the fully adaptive version developed in the last chapter (i.e.,

with both accuracy and experience threshold controls).

In the result tables, each of the two systems (i.e., UCSD and UCSSE) are compared

against UCS. Similar to Chapter 5, two sets of experiments are conducted: one with

the baseline UCS setup and the other with the extended UCS setup (i.e., UCSx).

The results are also presented in a similar manner as in Chapter 5. First, statistics

related to the rule sets of each system are shown along with the rule generalisation

figures used to graphically represent the rule sets. Then per class and overall test

accuracy, false alarm rate and hit rate for each system are reported. The cost per

example score (CPE) is not reported in these results as no cost matrix was defined

for these problems. Consequently, the cost based prediction technique introduced

in Chatper 4 is not used in the UCS setups. The significance testing scheme is

also the same as that used in previous chapters (i.e., the performance of UCSD and

UCSSE is compared with that of UCS and the significantly better or worse systems

are highlighted).

6.6.2 Experiments

Table 6.4 shows statistics related to rule sets obtained by UCS, UCSD and UCSSE

for the TCP dataset. Similar to the baseline UCS results for the KDD Cup dataset,

UCS nearly uses the maximum population size limit and evolves more than 7000

rules. The number of rules evolved are proportional to the class distribution in the

training set. Both UCSD and UCSSE achieve significant reduction in the number of

rules and obtain more than 31 and 27 times smaller rule sets than UCS respectively.

UCSD, however, could not obtain any rule for the POP3 class. UCSSE on the other

hand retrieves signatures for all the classes. However its overall coverage of the

validation set is significantly lower than the other two systems. The bottom tabular

shows the average generality of the rule sets obtained by each system. Both UCSD

and UCSSE show a similar trend and obtain significantly higher generalised rule for
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the two majority classes (i.e., NORMAL and WEB-MISC classes), while retrieving

significantly specific rules for the other classes.

Table 6.4: Comparison of different signature statistics between UCS, UCSD and UCSSE

(with adaptive parameter control) the TCP dataset.

Number of Rules

Class UCS UCSD UCSSE

NORMAL 5373(115) 192(22)N 86(16)¨

POP3 90(6) 0(0)¨ 14(1)N

WEB-CGI 273(11) 7(3)¨ 42(7)N

WEB-MISC 1305(90) 27(5)¨ 103(78)N

WEB-PHP 141(10) 1(1)¨ 20(7)N

Overall 7181(35) 226(23)¨ 265(81)N

Test Set Coverage

NORMAL 99.74(0.06) 97.79(0.99)M 87.24(4.63)♦

POP3 44.17(23.88) 1.67(6.24)♦ 48.33(23.21)

WEB-CGI 97.30(2.86) 82.06(7.00)♦ 87.22(3.34)M

WEB-MISC 99.25(0.43) 86.03(11.15)M 75.82(11.62)♦

WEB-PHP 94.09(6.44) 79.91(14.16)M 80.86(12.84)M

Overall 99.70(0.05) 97.42(1.09)M 86.94(4.72)♦

Average Generality

NORMAL 40.43(0.40) 44.09(0.74)N 45.82(1.06)¨

POP3 37.01(0.69) 37.01(0.69) 32.05(1.12)♦

WEB-CGI 35.54(0.85) 34.61(1.61)M 34.07(0.84)M

WEB-MISC 39.47(1.22) 41.78(2.75)N 40.81(2.53)N

WEB-PHP 36.47(0.58) 36.33(3.12) 33.47(0.99)♦

Figures 6.4 - 6.6 graphically show the post training rule sets obtained by the three

systems. Generally, all three systems get rules with higher generality for better
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Figure 6.4: A graphical representation of the rules evolved by UCS for the TCP dataset.

Each rule in the population is represented by a circle with a radius proportional to rule’s

generality.
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Figure 6.5: A graphical representation of the rules obtained by UCSD for the TCP

dataset. Each rule in the pruned population is represented by a circle with a radius

proportional to rule’s generality. Note that UCSD was unable to recover any rule for

POP3 class in these experiments.
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Figure 6.6: A graphical representation of the signatures extracted by UCSSE using UCS

as a base learner for the TCP dataset. Each signature in the signature set is represented

by a circle with a radius proportional to rule’s generality.
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represented classes in the training data. This can be expected given the opportunity

based reproduction scheme used in UCS. UCS evolves most number of rules for the

NORMAL class (Figure 6.4(a)) and with the highest generality among all classes.

The majority of these rules, however, are very low in experience. Moreover, the

accuracy of NORMAL class rules might not reflect their overgenerality as the number

of attack class instances are highly rare in the dataset. For instance, a rule matching

a high number of NORMAL class instances with HTTP destination service may

still be highly accurate if it also covered all of the WEB-PHP attack instances.

Nevertheless, UCS does evolve some highly experienced and accurate rules for the

NORMAL class. For the second most prevalent class in the dataset (i.e., WEB-

MISC), UCS evolves a high number of rules as well. Unlike NORMAL class rules,

however, the majority of the WEB-MISC rules have low accuracy (Figure 6.4(d))

and there are a fewer rules with high experience and high accuracy. The quality

of rules for the rest of the three classes (i.e., POP3, WEB-CGI and WEB-PHP) is

quite poor. For POP3 and WEB-PHP, almost all high experience rules have very

low accuracies, while for the WEB-CGI class, there are a few rules with average

experience and accuracy.

Figure 6.5 shows a typical rule set obtained after pruning the post training popula-

tion of UCS using Dixon’s rule set reduction algorithm. As expected, UCSD retains

classifiers that have above average accuracies and sufficient experience. It could not

obtain any POP3 rules as UCS faces difficulties in learning optimal rules for this

most rare class in the dataset. On the other hand, UCSSE is able to retrieve a few

accurate and experienced rules for the POP3 class. This shows another advantage

of real time signature extraction; i.e., it can avoid the forgetting problem by ex-

tracting good rules to a signature base as soon as they are discovered and before

being replaced by overgeneral rules of the prevalent classes. Likewise, UCSSE is

able to retrieve good rules in all other classes. Further the signatures extracted by

UCSSE are relatively more general and higher in experience in comparison to the

rules obtained by UCSD in all classes.
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Table 6.5 shows a comparison of UCS, UCSD and UCSSE run with the baseline

UCS setup on the TCP dataset. As can be seen, UCSSE achieves significantly

better accuracy than UCS on all attack classes except POP3 attacks where the mean

accuracy is better than UCS but is not statistically significant. In fact, UCSSE also

performs better than UCSD on three of the four attack classes (i.e., POP3, WEB-

MISC and WEB-PHP). It, however, performs poorer than both the systems on

the NORMAL class and thus overall because of the sheer majority of NORMAL

instances in the dataset.

The lower tabular shows the false alarm and hit rates for the three systems. Both

UCSD and UCSSE achieve significantly higher hit rates but only at the cost of sig-

nificantly higher rates of false alarms than the baseline UCS, highlighting a tradeoff

between the size of rule sets and the generalisation accuracy.

Table 6.5: Comparison of test accuracy and other performance measures between UCS,

UCSD and UCSSE (with adaptive parameters) on the TCP dataset.

Test Accuracy (%)

Class UCS UCSD UCSSE

NORMAL 99.97(0.08) 97.87(1.17)M 96.25(2.50)♦

POP3 50.83(26.21) 19.17(23.88)♦ 56.67(21.34)

WEB-CGI 34.42(20.06) 55.03(9.49)N 54.68(16.71)N

WEB-MISC 1.05(0.67) 30.90(18.59)N 45.14(19.95)¨

WEB-PHP 3.79(4.50) 5.25(6.37) 12.03(8.99)¨

Overall 97.00(0.00) 95.97(0.80)M 94.77(1.91)♦

Other Performance Measures

Measure UCS UCSD UCSSE

FA Rate (%) 0.21(0.04) 2.20(1.16)M 4.25(3.77)♦

Hit Rate (%) 8.94(4.38) 46.50(18.23)N 53.47(14.71)N
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Table 6.6 presents a comparison of average CPU time in minutes used by the three

systems on the TCP dataset. These experiments are also run on the same high

performance computing machines as the KDD Cup experiments. Similar to KDD

Cup results, UCSSE achieves significant reduction in training and thus overall CPU

time. However, the margin of reduction is not as big as for the KDD Cup data. This

is mainly because of the difference in the two dataset sizes both in terms of number of

records and features. A similar behaviour was observed in §5.3.5 where the difference

in CPU time consumed by UCSSE and UCS improved with the increase in input

length.

UCSSE took around 14.5 minutes on average to process the whole dataset. This cor-

responds to more than 6000 records per minute. Recall that the raw data captured

from the Seal server and generated by Mucus amounted to around 3 gigabytes or 24

gigabits. The tool that we developed to preprocess the raw data into feature vector

format took around 6 minutes to translate this data into connection records on a

Pentium-IV machine with a processor speed of 1.70 GHz, 512 MB RAM and run-

ning Linux (kernel 2.6) operating system. This corresponds to around 66 megabits

of binary packet data per second. UCSSE processed the same data in 14.5 minutes

which correspond to around 27 megabits of binary data per second2. This is still

faster than the 10 megabit Ethernet where the background data is captured. Al-

though the bandwidth utilisation on local area networks varies from organisation

to organisation, it has been shown that the average network bandwidth utilisation

on the Internet is around 40-50% (TeleGeography 2008). Taking these figures as

a general guideline and the above mention estimation of the time bounds, UCSSE

should be able to handle network traffic with 50 megabits per second. This capac-

ity can be improved easily by optimising the current experimental implementation

of the tools and incorporating hashing based rule matching algorithms. However,

the performance of the systems would need to be tested in a real environment for

guaranteeing the estimated rates.

2Note that UCSSE was run on a much faster machine in comparison to the preprocessing tool.
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Table 6.6: Comparison of CPU time in minutes between between UCS, UCSD and

UCSSE on the TCP dataset.

Time UCS UCSD UCSSE

Training 18.10(0.78) 18.10(0.64) 14.01(1.53)¨

Post Process 0.00(0.00) 2.70(0.34)♦ 0.00(0.00)

Evaluation 2.85(0.12) 0.10(0.01)¨ 0.49(0.16)N

Total 20.95(0.88) 20.86(0.88) 14.49(1.63)¨

The next set of tables (Tables 6.7 - 6.9) present the results of the experiments run

with the extended UCS setup referred to as UCSx on the TCP dataset. The results

are tabulated using the same format as for the above set of experiments except that

the performance of UCSx is compared with that of UCSxD and UCSxSE.

Table 6.7 compares the rule set statistics of the three systems. Note that UCSx

evolves a higher number of rules overall but balances the rule allocation between

different classes better than UCS. This is in line with the results on the KDD Cup

dataset. UCSxSE retrieves almost half the number of signatures than UCSxD.

This is in contrast to the previous results where UCSD obtained smaller rule sets

on average than UCSSE. UCSxD obtains almost double the number of rules than

UCSD as it extracts higher number of rules for both NORMAL and WEB-MISC

classes. This shows that UCSx is achieving better estimates for the rule parameters

of these two classes in comparison to UCS. However, UCSx achieves a lower test

accuracy (Table 6.8, discussed later in this section) on the NORMAL class than

UCS. It suggests that UCSx evolves more overgeneral rules for the NORMAL class

than UCS. UCSxD similar to UCSD also fails to recover any POP3 rules. UCSxSE

retrieves more than 34 times less number of rules than UCSx and thus improves

its reduction from UCSSE. But the reduction in rule has only come at the cost of

significantly lower test coverage on almost all classes.

The average rule set generality, shown in the bottom tabular, for all three systems
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Table 6.7: Comparison of different rule statistics between UCSx, UCSxD and UCSxSE

on the TCP dataset.

Number of Rules

Class UCSx UCSxD UCSxSE

NORMAL 4826(82) 421(44)N 88(30)¨

POP3 231(14) 0(0)¨ 13(1)N

WEB-CGI 408(18) 16(3)¨ 51(13)N

WEB-MISC 1584(76) 106(22)N 54(38)¨

WEB-PHP 278(15) 9(2)N 9(7)N

Overall 7328(23) 552(52)N 215(51)¨

Test Set Coverage

NORMAL 99.61(0.06) 98.19(0.26)M 81.12(5.30)♦

POP3 41.67(26.87) 2.50(7.50)♦ 47.50(31.19)

WEB-CGI 97.06(2.43) 85.16(5.69)M 84.13(5.68)M

WEB-MISC 99.22(0.41) 95.05(1.75)M 51.61(13.86)♦

WEB-PHP 93.09(6.97) 79.41(12.33)M 72.09(14.78)M

Overall 99.57(0.06) 98.04(0.26)M 80.39(5.32)♦

Average Generality

NORMAL 39.50(0.37) 43.16(0.70)N 45.18(1.24)¨

POP3 38.58(0.37) 38.58(0.37) 31.60(1.03)♦

WEB-CGI 36.67(0.59) 35.43(1.03)M 34.04(1.03)♦

WEB-MISC 37.10(0.64) 38.30(1.02)N 37.85(1.60)N

WEB-PHP 37.84(0.40) 36.72(1.35)M 34.90(2.47)♦

follow the same trend as in the case of baseline UCS setup except that the rule sets

with the UCSx setup are slightly more specific.

Figures 6.7 - 6.9 graphically show the rule sets obtained by each system for different

classes. Starting with the UCSx rule sets, it can be seen that UCSx is evolving much
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Figure 6.7: A graphical representation of the rules evolved by UCSx for the TCP dataset.

Each rule in the population is represented by a circle with a radius proportional to rule’s

generality.
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Figure 6.8: A graphical representation of the rules obtained by UCSxD for the TCP

dataset. Each rule in the pruned population is represented by a circle with a radius

proportional to rule’s generality. Note that UCSxD was unable to recover any rule for

POP3 class in these experiments.
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Figure 6.9: A graphical representation of the signatures extracted by UCSxSE using

UCSx as a base learner for the TCP dataset. Each signature in the signature set is

represented by a circle with a radius proportional to rule’s generality.
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higher number of rules with better accuracy and higher experience than the baseline

UCS (see Figure 6.4) for all classes except POP3 where the results are not different

from UCS. A significant improvement can be seen especially for all the attack classes.

For instance, UCS could not evolve any highly experienced and accurate rules for

WEB-PHP but UCSx evolves quite a few such rules. Similarly, most of WEB-MISC

rules in UCS were low in experience and accuracy. This situation has almost reversed

in UCSx rule sets. UCSxD and UCSxSE rule sets are improved accordingly as both

systems now obtain a higher number of accurate and experienced rules. UCSxD

could not obtain any rules for the POP3 class as UCSD. This can be understood

as UCS or UCSx both do not contain any accurate and experienced rules for these

two classes in their post training populations. UCSxSE retrieves rules for all the

classes including POP3 similar to UCSSE. However UCSxSE achieves a much lower

test coverage. We hypothesise that this occurs because of the higher generalisation

pressure caused by the deletion operation in the signature set. As the rule estimates

in UCS population improve, this drives the adaptive deletion thresholds to higher

values, consequently deleting more signatures and opening covering gaps.

Table 6.8 presents a comparison of test set accuracy and other performance measures

achieved by UCSx, UCSxD and UCSxSE. First, notice that the test accuracy of all

UCSx based systems has improved significantly on all of the attack classes except

UCSxD which performs worst on the POP3 class. But the accuracy on the majority

NORMAL class has dropped up to 2 to 3% in all systems in comparison to the UCS

based systems. One of the reasons for this loss of accuracy could be an effect of

the modified accuracy function introduced in Chapter 4, which is biased towards

the minority class instances but might deteriorate majority class performance when

there is noise in the data. In the KDD Cup data there was no sign of explicit

noise and thus the extended UCS performed better overall than the baseline UCS.

Nonetheless, it is encouraging that the accuracy on the minority or attack classes

have significantly improved. The performance of UCSxSE seems to be coherent with

the previous results except that it only performs significantly better on the WEB-

CGI, class whereas on other attack classes the mean accuracies are better than the
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other two systems but these numbers are not statistically significant.

Table 6.8: Comparison of test accuracy and other performance measures between UCS,

UCSD and UCSSE (with adaptive parameters) on the TCP dataset.

Test Accuracy (%)

Class UCSx UCSxD UCSxSE

NORMAL 97.65(0.55) 97.39(0.76) 93.30(3.55)♦

POP3 75.00(19.36) 0.00(0.00)♦ 81.67(19.29)

WEB-CGI 44.12(14.11) 57.34(13.62)N 72.20(6.77)¨

WEB-MISC 62.46(6.20) 58.46(7.71) 60.04(7.60)

WEB-PHP 14.98(10.32) 19.88(13.39) 19.86(10.49)

Overall 96.53(0.50) 96.23(0.67) 92.57(3.29)♦

Other Performance Measures

Measure UCSx UCSxD UCSxSE

FA Rate (%) 2.37(0.48) 2.66(0.77) 6.60(3.62)♦

Hit Rate (%) 68.03(5.39) 65.56(7.20) 69.20(6.72)

The bottom tabular shows a comparison on two other performance measures. Al-

though UCSxSE achieves a higher mean hit rate than the other two systems, the

numbers are not statistically significant. All of the systems, however, have achieved

significantly improved hit rates than the baseline versions, especially UCSx which

improves the hit rate by almost 60%. On the other hand, the false alarm rate has

worsened in all the systems suggesting that a tradeoff exists between the two perfor-

mance measures. In summary, UCSxSE performs equivalent to both other systems

with a 34 times reduction in the rule set size achieved in real time.

Table 6.9 shows a comparison of average CPU time, in minutes, taken by the three

systems on the TCP dataset. Again UCSxSE uses significantly less amount of time

than the other two systems. In comparison to the baseline UCS based systems the
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Table 6.9: Comparison of CPU time between UCSx, UCSxD and UCSxSE (with adaptive

parameters) on the TCP dataset.

Time UCSx UCSxD UCSxSE

Training 20.31(1.87) 20.38(1.81) 16.64(2.12)¨

Post Process 0.00(0.00) 2.35(0.19)♦ 0.00(0.00)

Evaluation 2.54(0.14) 0.19(0.02)¨ 0.62(0.13)N

Total 22.85(2.00) 22.92(0.90) 17.26(2.22)¨

processing time has increased in all the systems. This is contrary to the KDD Cup

results where UCSx based systems significantly improved the processing times from

the baseline systems. This can be expected as UCSx evolves around 200 more rules

than the baseline UCS for the TCP dataset. UCSxSE uses more computation time

since it achieves poorer coverage than UCSSE on this dataset and thus has to shift

to UCSx rule sets, more often increasing the processing cost.

Nonetheless, using the same time calculations as discussed for the baseline results

UCSxSE can process 23 megabits of raw data per second. This is 4 megabits per

second less than UCSSE, but with a significant improvement in the detection of all

attack classes.

Tables 6.10 and 6.11 show some of the experienced and accurate signatures learnt

by UCSSE and UCSxSE respectively from the TCP dataset. In these tables, the

actual interveral sizes for attributes with large numerical values such as tcpack and

tcpseq are rounded for better readability. Closely looking at these rules suggest that

they overlap in several attributes, however the ranges for each attributes differ for

different classes. For instance, Normal class rules have destination port ranges in

80s and 90s whereas for POP3 these ranges reach to 110 which is the destination

port number for this service. There might have been some artefacts introduced by

Mucus attack traffic. For instance, all of the WEB-MISC rules show a ttl range of

30 to 141 and quite low ttl values in other cases. Moreover, the rules evolved by
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UCSxSE seem more specific than UCSSE rules.

Also note that almost 500 Snort signatures are used to generate the attacks in the

dataset. In addition, Snort used more signatures to label suspicious activities in the

background traffic. Both UCSSE and UCSxSE learnt 179 and 127 signatures on

average for all attack classes (265 and 215 including the NORMAL class signatures)

respectively, which are almost half of Snort signatures. Both systems achieved an

average hit rate of 53.47% and 69.20% respectively.
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Table 6.10: Signatures obtained by UCSSE from TCP dataset. Condition corre-

sponds to rule’s antecedent, Class corresponds to rule consequent and A stands for

Accuracy. Attributes with large numbers, such as tcpack and tcpseq, are rounded

for better readability.

Condition Class A

(iplen leq 708) and (3620 leq fragid geq 65500) and (30 leq

ttl geq 144) and (29000 leq src port geq 65500) and (dest port

leq 110) and (tcpack geq 1090000000.00) and (payloadlen leq

782) and (wcount leq 149) and (maxwordl leq 122) and (0.28 leq

lalpha geq 0.88) and (ualpha leq 0.45) and (numeric leq 0.26) and (wspc

leq 0.12) and (cont leq 0.21) and (0.09 leq resv geq 0.32) and (unsafe leq

0.25) and (nonprint leq 0.28) and (others leq 0.09)

NORMAL 1

(iplen leq 1017) and (30 leq ttl geq 168) and (dest port

leq 84) and (tcpseq leq 3720000000.00) and (tcpack geq

873000000.00) and (payloadlen leq 782) and (wcount leq

195) and (maxwordl leq 82) and (0.36 leq lalpha geq 0.89) and (0.03 leq

ualpha geq 0.39) and (numeric leq 0.40) and (wspc leq 0.15) and (cont

leq 0.08) and (0.02 leq resv geq 0.14) and (unsafe leq 0.19) and (nonprint

leq 0.00) and (others leq 0.22)

NORMAL 1

(iplen leq 1168) and (fragid leq 27300) and (39 leq ttl geq

135) and (dest port leq 85) and (873000000.00 leq tcpack

geq 3330000000.00) and (payloadlen leq 965) and (wcount leq

145) and (maxwordl leq 78) and (0.29 leq lalpha geq 0.92) and (ualpha

leq 0.38) and (numeric leq 0.34) and (wspc leq 0.31) and (cont leq

0.08) and (0.05 leq resv geq 0.42) and (unsafe leq 0.14) and (nonprint

leq 0.19) and (others leq 0.54)

NORMAL 1

(iplen leq 1017) and (30 leq ttl geq 144) and (29000 leq src port geq

65500) and (dest port leq 98) and (tcpseq geq 469000000.00) and (tcpack

geq 1090000000.00) and (payloadlen leq 1279) and (wcount leq

144) and (maxwordl leq 95) and (0.36 leq lalpha geq 0.89) and (ualpha

leq 0.45) and (numeric leq 0.26) and (wspc leq 0.26) and (cont leq

0.07) and (resv leq 0.23) and (unsafe leq 0.36) and (nonprint leq

0.28) and (others leq 0.36)

NORMAL 1

(iplen leq 776) and (fragid leq 46500) and (30 leq

ttl geq 168) and (dest port leq 84) and (tcpseq geq

1550000000.00) and (payloadlen leq 1047) and (wcount leq

216) and (maxwordl leq 112) and (0.23 leq lalpha geq 0.75) and (ualpha

leq 0.19) and (0.02 leq numeric geq 0.40) and (wspc leq 0.16) and (cont

leq 0.19) and (resv leq 0.15) and (unsafe leq 0.17) and (nonprint leq

0.29) and (others leq 0.24)

NORMAL 1

Continued on next page
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Table 6.10 – continued from previous page

Condition Class A

(iplen leq 624) and (fragid leq 12500) and (ttl leq 10) and (23900

leq src port geq 65500) and (dest port leq 110) and (tcpseq leq

196000000.00) and (tcpack leq 917000000.00) and (payloadlen leq

298) and (wcount leq 111) and (maxwordl leq 160) and (0.08 leq

lalpha geq 0.23) and (0.04 leq ualpha geq 0.37) and (numeric

leq 0.09) and (wspc leq 0.19) and (cont leq 0.31) and (resv leq

0.41) and (unsafe leq 0.35) and (0.14 leq nonprint geq 0.64) and (others

leq 0.27)

POP3 1

(iplen leq 967) and (fragid leq 19000) and (ttl leq 55) and (36500

leq src port geq 63400) and (dest port leq 110) and (tcpseq leq

1450000000.00) and (tcpack leq 790000000.00) and (payloadlen leq

908) and (wcount leq 161) and (maxwordl leq 147) and (0.03 leq lal-

pha geq 0.48) and (ualpha leq 0.29) and (numeric leq 0.33) and (wspc

leq 0.20) and (cont leq 0.48) and (resv leq 0.12) and (unsafe leq

0.17) and (0.42 leq nonprint geq 0.79) and (others leq 0.09)

POP3 1

(iplen leq 149) and (fragid leq 12600) and (ttl leq 26) and (25600

leq src port geq 65500) and (dest port leq 110) and (tcpseq leq

212000000.00) and (tcpack leq 854000000.00) and (payloadlen leq

459) and (wcount leq 133) and (maxwordl leq 53) and (lalpha leq

0.47) and (ualpha leq 0.30) and (numeric leq 0.15) and (wspc leq

0.03) and (cont leq 0.27) and (resv leq 0.38) and (0.02 leq unsafe geq

0.17) and (0.47 leq nonprint geq 0.73) and (others leq 0.29)

POP3 1

(iplen leq 191) and (fragid leq 11400) and (ttl leq 60) and (36000

leq src port geq 65500) and (dest port leq 82) and (tcpseq leq

970000000.00) and (tcpack leq 1140000000.00) and (payloadlen leq

69) and (wcount leq 135) and (maxwordl leq 139) and (lalpha leq

0.37) and (ualpha leq 0.38) and (0.21 leq numeric geq 0.49) and (wspc

leq 0.31) and (cont leq 0.18) and (resv leq 0.30) and (unsafe leq

0.25) and (nonprint leq 0.58) and (others leq 0.03)

WEB-CGI 0.68

(iplen leq 191) and (fragid leq 11400) and (ttl leq 60) and (36000

leq src port geq 65500) and (dest port leq 82) and (tcpseq leq

970000000.00) and (tcpack leq 1140000000.00) and (payloadlen leq

351) and (wcount leq 135) and (maxwordl leq 139) and (lalpha leq

0.32) and (ualpha leq 0.38) and (0.21 leq numeric geq 0.49) and (wspc

leq 0.31) and (cont leq 0.18) and (resv leq 0.30) and (unsafe leq

0.25) and (nonprint leq 0.33) and (others leq 0.02)

WEB-CGI 0.74

(iplen leq 191) and (fragid leq 11400) and (ttl leq 60) and (36000

leq src port geq 65500) and (dest port leq 82) and (tcpseq leq

970000000.00) and (tcpack leq 1140000000.00) and (payloadlen leq

69) and (wcount leq 135) and (maxwordl leq 139) and (lalpha leq

0.32) and (ualpha leq 0.38) and (0.21 leq numeric geq 0.49) and (wspc

leq 0.31) and (cont leq 0.18) and (resv leq 0.30) and (unsafe leq

0.25) and (nonprint leq 0.33) and (others leq 0.02)

WEB-CGI 0.63

Continued on next page
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Table 6.10 – continued from previous page

Condition Class A

(iplen leq 191) and (fragid leq 11400) and (ttl leq 60) and (36000

leq src port geq 65500) and (dest port leq 82) and (tcpseq leq

970000000.00) and (tcpack leq 1140000000.00) and (payloadlen leq

351) and (wcount leq 135) and (maxwordl leq 139) and (lalpha leq

0.32) and (ualpha leq 0.38) and (0.21 leq numeric geq 0.49) and (wspc

leq 0.31) and (cont leq 0.18) and (resv leq 0.30) and (unsafe leq

0.25) and (nonprint leq 0.33)

WEB-CGI 0.69

(iplen leq 254) and (fragid leq 56000) and (30 leq ttl geq 141) and (10600

leq src port geq 65500) and (dest port leq 84) and (tcpseq

geq 755000000.00) and (payloadlen leq 782) and (wcount leq

187) and (maxwordl leq 147) and (0.41 leq lalpha geq 0.74) and (0.08 leq

ualpha geq 0.26) and (numeric leq 0.44) and (wspc leq 0.43) and (cont

leq 0.31) and (resv leq 0.32) and (nonprint leq 0.03) and (others leq 0.33)

WEB-MISC 0.54

(iplen leq 254) and (30 leq ttl geq 141) and (dest port leq 84) and (tcpseq

geq 1450000000.00) and (tcpack geq 298000000.00) and (payloadlen leq

782) and (wcount leq 187) and (maxwordl leq 147) and (0.60 leq lal-

pha geq 0.74) and (ualpha leq 0.26) and (numeric leq 0.44) and (wspc

leq 0.43) and (cont leq 0.31) and (resv leq 0.32) and (nonprint leq

0.03) and (others leq 0.33)

WEB-MISC 0.54

(iplen leq 254) and (fragid leq 56000) and (30 leq ttl geq

141) and (dest port leq 84) and (tcpseq geq 1450000000.00) and (tcpack

geq 298000000.00) and (payloadlen leq 782) and (wcount leq

187) and (maxwordl leq 147) and (0.60 leq lalpha geq 0.74) and (ualpha

leq 0.26) and (numeric leq 0.44) and (wspc leq 0.43) and (cont leq

0.49) and (resv leq 0.32) and (nonprint leq 0.03) and (others leq 0.33)

WEB-MISC 0.58

(iplen leq 254) and (30 leq ttl geq 141) and (src port leq

48200) and (dest port leq 84) and (tcpseq geq 755000000.00) and (tcpack

geq 299000000.00) and (payloadlen leq 782) and (wcount leq

187) and (maxwordl leq 147) and (0.55 leq lalpha geq 0.74) and (ualpha

leq 0.26) and (numeric leq 0.44) and (wspc leq 0.43) and (cont leq

0.31) and (resv leq 0.32) and (nonprint leq 0.03) and (others leq 0.17)

WEB-MISC 0.56

(iplen leq 254) and (fragid leq 56000) and (30 leq ttl geq

141) and (dest port leq 84) and (tcpseq geq 1450000000.00) and (tcpack

geq 298000000.00) and (payloadlen leq 782) and (wcount leq

187) and (maxwordl leq 147) and (0.60 leq lalpha geq 0.74) and (ualpha

leq 0.26) and (numeric leq 0.44) and (wspc leq 0.43) and (cont leq

0.49) and (resv leq 0.32) and (nonprint leq 0.09) and (others leq 0.33)

WEB-MISC 0.57

Continued on next page
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Table 6.10 – continued from previous page

Condition Class A

(iplen leq 491) and (fragid leq 15800) and (ttl leq 3) and (16300

leq src port geq 40800) and (dest port leq 92) and (tcpseq leq

712000000.00) and (tcpack leq 682000000.00) and (payloadlen leq

205) and (wcount leq 79) and (maxwordl leq 31) and (0.09 leq lalpha

geq 0.49) and (0.15 leq ualpha geq 0.42) and (0.07 leq numeric geq

0.38) and (wspc leq 0.07) and (cont leq 0.30) and (0.03 leq resv geq

0.26) and (unsafe leq 0.15) and (nonprint leq 0.19) and (others leq 0.18)

WEB-PHP 0.31

(iplen leq 491) and (fragid leq 15800) and (16300 leq src port geq

43600) and (dest port leq 83) and (tcpseq leq 712000000.00) and (tcpack

leq 682000000.00) and (payloadlen leq 205) and (wcount leq

79) and (maxwordl leq 31) and (0.09 leq lalpha geq 0.49) and (0.15

leq ualpha geq 0.42) and (0.07 leq numeric geq 0.38) and (wspc leq

0.07) and (cont leq 0.30) and (0.03 leq resv geq 0.26) and (unsafe leq

0.15) and (nonprint leq 0.19) and (others leq 0.18)

WEB-PHP 0.24

(iplen leq 222) and (fragid leq 4077) and (ttl leq 27) and (39600

leq src port geq 60900) and (dest port leq 110) and (tcpseq leq

1100000000.00) and (tcpack leq 83100000.00) and (payloadlen leq

613) and (wcount leq 66) and (maxwordl leq 45) and (0.18 leq lalpha

geq 0.28) and (ualpha leq 0.52) and (numeric leq 0.50) and (wspc

leq 0.45) and (cont leq 0.46) and (resv leq 0.15) and (unsafe leq

0.35) and (nonprint leq 0.04) and (others leq 0.17)

WEB-PHP 0.22

(iplen leq 610) and (fragid leq 8965) and (ttl leq 46) and (49300

leq src port geq 65500) and (dest port leq 99) and (tcpseq leq

1700000000.00) and (tcpack leq 1430000000.00) and (payloadlen leq

384) and (wcount leq 137) and (maxwordl leq 67) and (0.06 leq lalpha geq

0.38) and (0.15 leq ualpha geq 0.38) and (numeric leq 0.31) and (wspc

leq 0.36) and (0.02 leq cont geq 0.40) and (resv leq 0.26) and (unsafe leq

0.24) and (nonprint leq 0.38) and (others leq 0.09)

WEB-PHP 0.5
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Table 6.11: Signatures obtained by UCSxSE from TCP dataset. A stands for

Accuracy.

Condition Class A

(iplen leq 777) and (ttl leq 189) and (5328 leq src port geq 56000) and

(dest port leq 110) and (tcpseq geq 646000000.00) and (payloadlen leq

897) and (wcount leq 130) and (maxwordl leq 65) and (0.29 leq lalpha

geq 0.92) and (ualpha leq 0.40) and (numeric leq 0.33) and (wspc leq

0.15) and (cont leq 0.12) and (0.11 leq resv geq 0.15) and (unsafe leq

0.37) and (nonprint leq 0.33) and (others leq 0.34)

NORMAL 0.88

(iplen leq 777) and (ttl leq 189) and (5328 leq src port geq 56000)

and (dest port leq 110) and (tcpseq leq 3330000000.00) and (tcpack geq

1150000000.00) and (payloadlen leq 897) and (wcount leq 130) and (max-

wordl leq 65) and (0.29 leq lalpha geq 0.92) and (ualpha leq 0.40) and

(numeric leq 0.33) and (wspc leq 0.15) and (cont leq 0.12) and (0.11 leq

resv geq 0.15) and (unsafe leq 0.37) and (nonprint leq 0.33) and (others

leq 0.34)

NORMAL 0.71

(iplen leq 639) and (39 leq ttl geq 141) and (15100 leq src port geq 63200)

and (dest port leq 110) and (1210000000.00 leq tcpseq geq 3840000000.00)

and (1500000000.00 leq tcpack geq 4100000000.00) and (payloadlen leq

744) and (wcount leq 193) and (maxwordl leq 73) and (0.32 leq lalpha geq

0.80) and (0.09 leq ualpha geq 0.64) and (numeric leq 0.26) and (wspc

leq 0.30) and (cont leq 0.26) and (resv leq 0.16) and (unsafe leq 0.31) and

(nonprint leq 0.03) and (others leq 0.41)

NORMAL 0.93

(iplen leq 455) and (fragid leq 29400) and (fragfollows: 0) and (37

leq ttl geq 139) and (37600 leq src port geq 65500) and (dest port leq

85) and (75900000.00 leq tcpseq geq 4010000000.00) and (tcpack leq

2590000000.00) and (payloadlen leq 744) and (wcount leq 178) and (max-

wordl leq 24) and (0.36 leq lalpha geq 0.69) and (ualpha leq 0.44) and

(numeric leq 0.08) and (0.02 leq wspc geq 0.20) and (0.01 leq cont geq

0.11) and (resv leq 0.36) and (unsafe leq 0.20) and (nonprint leq 0.32)

and (others leq 0.34)

NORMAL 0.76

(iplen leq 639) and (ttl leq 189) and (src port leq 33500) and (dest port

leq 110) and (tcpack leq 2840000000.00) and (payloadlen leq 696) and

(wcount leq 130) and (maxwordl leq 92) and (0.21 leq lalpha geq 0.78)

and (ualpha leq 0.44) and (0.03 leq numeric geq 0.40) and (wspc leq 0.15)

and (cont leq 0.38) and (resv leq 0.15) and (unsafe leq 0.26) and (nonprint

leq 0.08) and (others leq 0.39)

NORMAL 1

(iplen leq 291) and (fragid leq 15500) and (fragfollows: 0) and (ttl leq 76)

and (37400 leq src port geq 65500) and (dest port leq 110) and (tcpseq leq

1620000000.00) and (tcpack leq 1460000000.00) and (payloadlen leq 106)

and (wcount leq 122) and (maxwordl leq 111) and (lalpha leq 0.35) and

(ualpha leq 0.17) and (numeric leq 0.25) and (wspc leq 0.34) and (cont

leq 0.20) and (resv leq 0.33) and (unsafe leq 0.31) and (0.36 leq nonprint

geq 0.81) and (others leq 0.40)

POP3 1

Continued on next page
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Table 6.11 – continued from previous page

Condition Class A

(iplen leq 92) and (fragid leq 22000) and (ttl leq 58) and (35200

leq src port geq 60300) and (dest port leq 110) and (tcpseq leq

1430000000.00) and (tcpack leq 161000000.00) and (payloadlen leq 151)

and (wcount leq 84) and (maxwordl leq 111) and (lalpha leq 0.20) and

(ualpha leq 0.58) and (numeric leq 0.24) and (wspc leq 0.10) and (cont

leq 0.22) and (resv leq 0.13) and (unsafe leq 0.30) and (0.04 leq nonprint

geq 0.65) and (others leq 0.19)

POP3 1

(iplen leq 288) and (fragid leq 6406) and (ttl leq 51) and (35200 leq

src port geq 61600) and (dest port leq 110) and (tcpseq leq 581000000.00)

and (tcpack leq 461000000.00) and (payloadlen leq 627) and (wcount leq

119) and (maxwordl leq 133) and (lalpha leq 0.51) and (ualpha leq 0.43)

and (0.10 leq numeric geq 0.60) and (wspc leq 0.37) and (cont leq 0.41)

and (0.03 leq resv geq 0.16) and (0.03 leq unsafe geq 0.33) and (nonprint

leq 0.26) and (others leq 0.10)

WEB-CGI 0.74

(iplen leq 102) and (fragid leq 322) and (ttl leq 80) and (src port leq

29700) and (dest port leq 107) and (tcpseq leq 1670000000.00) and (tcpack

leq 682000000.00) and (payloadlen leq 114) and (wcount leq 137) and

(maxwordl leq 139) and (lalpha leq 0.51) and (0.09 leq ualpha geq 0.38)

and (numeric leq 0.27) and (wspc leq 0.24) and (cont leq 0.25) and (resv

leq 0.37) and (unsafe leq 0.14) and (nonprint leq 0.32) and (others leq

0.21)

WEB-CGI 0.7

(iplen leq 623) and (fragid leq 15100) and (fragfollows: 0) and (ttl leq 17)

and (34300 leq src port geq 61100) and (dest port leq 106) and (tcpseq

leq 71100000.00) and (tcpack leq 1500000000.00) and (payloadlen leq 177)

and (wcount leq 148) and (maxwordl leq 88) and (0.06 leq lalpha geq 0.22)

and (ualpha leq 0.51) and (0.06 leq numeric geq 0.57) and (wspc leq 0.15)

and (cont leq 0.43) and (resv leq 0.42) and (unsafe leq 0.13) and (nonprint

leq 0.24) and (others leq 0.26)

WEB-CGI 0.97

(iplen leq 623) and (fragid leq 17600) and (fragfollows: 0) and (ttl leq 17)

and (34300 leq src port geq 61100) and (dest port leq 106) and (tcpseq

leq 71100000.00) and (tcpack leq 1500000000.00) and (payloadlen leq 177)

and (wcount leq 148) and (maxwordl leq 33) and (0.06 leq lalpha geq 0.22)

and (ualpha leq 0.51) and (0.06 leq numeric geq 0.57) and (wspc leq 0.15)

and (cont leq 0.43) and (resv leq 0.42) and (unsafe leq 0.13) and (nonprint

leq 0.24) and (others leq 0.26)

WEB-CGI 0.97

(iplen leq 317) and (25600 leq fragid geq 56400) and (fragfollows: 0) and

(11 leq ttl geq 103) and (35800 leq src port geq 65500) and (dest port leq

94) and (tcpseq geq 1740000000.00) and (tcpack leq 1900000000.00) and

(payloadlen leq 270) and (wcount leq 38) and (maxwordl leq 25) and (0.58

leq lalpha geq 0.78) and (0.02 leq ualpha geq 0.19) and (numeric leq 0.48)

and (wspc leq 0.08) and (cont leq 0.09) and (resv leq 0.30) and (unsafe

leq 0.33) and (nonprint leq 0.38) and (others leq 0.32)

WEB-MISC 0.66

Continued on next page
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Condition Class A

(iplen leq 277) and (18800 leq fragid geq 56400) and (fragfollows: 0) and

(11 leq ttl geq 112) and (35800 leq src port geq 65500) and (dest port

leq 94) and (tcpseq geq 1740000000.00) and (444000000.00 leq tcpack

geq 2640000000.00) and (payloadlen leq 270) and (wcount leq 82) and

(maxwordl leq 25) and (0.58 leq lalpha geq 0.78) and (0.02 leq ualpha geq

0.19) and (numeric leq 0.33) and (wspc leq 0.08) and (cont leq 0.09) and

(resv leq 0.30) and (unsafe leq 0.33) and (nonprint leq 0.38) and (others

leq 0.25)

WEB-MISC 0.74

(iplen leq 852) and (fragid leq 34800) and (fragfollows: 0) and (67 leq

ttl geq 124) and (6938 leq src port geq 62100) and (dest port leq 98)

and (910000000.00 leq tcpseq geq 2490000000.00) and (322000000.00 leq

tcpack geq 3050000000.00) and (payloadlen leq 569) and (wcount leq 51)

and (maxwordl leq 143) and (0.25 leq lalpha geq 0.85) and (ualpha leq

0.20) and (0.02 leq numeric geq 0.27) and (wspc leq 0.35) and (cont leq

0.33) and (0.02 leq resv geq 0.33) and (unsafe leq 0.03) and (nonprint leq

0.30) and (others leq 0.10)

WEB-MISC 0.9

(iplen leq 563) and (31700 leq fragid geq 65500) and (38 leq ttl geq

56) and (45100 leq src port geq 65500) and (dest port leq 96) and

(426000000.00 leq tcpseq geq 1370000000.00) and (804000000.00 leq tc-

pack geq 1870000000.00) and (payloadlen leq 274) and (wcount leq 38)

and (maxwordl leq 139) and (0.32 leq lalpha geq 0.70) and (ualpha leq

0.30) and (numeric leq 0.16) and (wspc leq 0.13) and (0.04 leq cont geq

0.26) and (0.02 leq resv geq 0.32) and (unsafe leq 0.19) and (nonprint leq

0.33) and (others leq 0.30)

WEB-MISC 0.86

(iplen leq 650) and (fragid leq 15800) and (fragfollows: 0) and (ttl leq 43)

and (16100 leq src port geq 50300) and (dest port leq 86) and (tcpseq leq

186000000.00) and (tcpack leq 185000000.00) and (payloadlen leq 292)

and (wcount leq 89) and (maxwordl leq 113) and (lalpha leq 0.57) and

(0.21 leq ualpha geq 0.36) and (0.02 leq numeric geq 0.23) and (0.01 leq

wspc geq 0.28) and (cont leq 0.46) and (resv leq 0.28) and (unsafe leq

0.44) and (nonprint leq 0.08) and (others leq 0.21)

WEB-PHP 0.45

(iplen leq 220) and (fragid leq 9264) and (ttl leq 1) and (9117 leq src port

geq 57000) and (dest port leq 80) and (tcpseq leq 297000000.00) and (tc-

pack leq 151000000.00) and (payloadlen leq 63) and (wcount leq 81) and

(maxwordl leq 54) and (0.30 leq lalpha geq 0.53) and (ualpha leq 0.27) and

(numeric leq 0.27) and (0.02 leq wspc geq 0.34) and (cont leq 0.31) and

(resv leq 0.27) and (unsafe leq 0.11) and (nonprint leq 0.11) and (others

leq 0.05)

WEB-PHP 0.83
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6.7 Chapter Summary

In this chapter, UCS, its variants and the signature extraction system developed in

the previous chapters are evaluated with real network traffic data mixed with sim-

ulated attacks. We highlighted several difficulties in evaluating supervised machine

learning algorithms for intrusion detection with real data and subsequently devised

a methodology for the evaluation of our algorithms.

The dataset is built by capturing real network traffic on a university departmental

server over several weeks, mixing it with attack traffic simulated in a controlled en-

vironment, processing the raw network traffic into session records, extracting packet

level information to represent the data in the feature vector format and assigning la-

bels to each record using an up-to-date signature-based intrusion detection system.

After filtering, the final dataset consisted of nearly 100,000 fully labelled records

obtained from processing 3 gigabytes of raw network traffic and included several

hundred attack vectors categorised under 4 attack types.

Finally, three systems (i.e., UCS, UCSD and UCSSE) with both the baseline and

extended UCS setups are evaluated on the preprocessed dataset and the correspond-

ing results are presented. Using the baseline UCS setup, UCSSE achieves 27 times

reduction in the rule set size and extracts around 265 signatures on average including

both normal and attack traffic rules. UCSSE also significantly improves the hit rate

from around 9% achieved by UCS to 54%. However, UCSSE generates significantly

higher false alarms than the baseline UCS. The time calculation shows that UCSSE

can handle a traffic of around 27 megabits per second. Using the extended UCS

setup UCSSE further improves and achieves around 34 times reduction on average

in UCS rule sets. It also improves the hit rate to almost 70% albeit the much higher

false alarm rate. Thus there seems to be a tradeoff between the attack detection

rate and the false alarm rate using UCSSE.

The methodology adopted in this chapter to evaluate the developed algorithms pro-

vides good estimation of the performance of the algorithms. However, it is desirable
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to evaluate the system with much larger datasets collected from busier networks.

In addition, we note that although the dataset used in this testing is built from

real network traffic, the evaluation is done offline. A human in the loop strategy

could be adopted to deploy these algorithms in operational networks that are often

monitored by security supervisors.



Chapter 7

Conclusions

The detection of intrusions in network traffic flows and host activities is a challenging

task. The nature of intrusive behaviour is co-evolving with the pervasiveness of

computing technologies and our growing reliance on their use. In order to deal

with inherent challenges, such as the ever changing environment and increasing

levels of threats, we clearly need different perspectives and alternative approaches

to secure our systems - the approaches that can adapt to drifting concepts and

provide resilience when the systems are targeted.

In this thesis, we attempt to address the problem of dynamic and adaptive signature

learning for intrusion detection from live network traffic. We use a nature-inspired

machine learning approach to address this problem. The highly complex systems

found in nature are extremely robust and resilient systems that can adapt to envi-

ronmental changes and constantly evolve their states for their betterment. Nature

inspired computational techniques borrow concepts from these systems and try to

provide robust and adaptive solutions to hard problems like intrusion detection.

We have developed a system to extract signatures in real time discovered by a

genetic-based machine learning system, UCS, which works as a base learner in

the framework. We have independently analysed the performance of UCS with

intrusion data built from simulated network traffic and attacks, and subsequently
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proposed several modifications to extend the standard UCS algorithm that have

significantly improved the quality of the evolved rule sets. Our framework allows

for both anomaly and misuse based intrusion detection using a signature based ap-

proach. The signatures for both normal and intrusive events are learnt dynamically

and adaptively. We have also devised a methodology to generate labelled data from

a combination of real network traffic and simulated attacks that can be used to eval-

uate supervised learning algorithms, such as UCS, aimed at the problem of intrusion

detection.

Below we provide a summary of contributions in this thesis and the future work

that stems from this work.

7.1 Summary of Contributions

This thesis contributed to two fields: intrusion detection and genetic based machine

learning. This section provides a summary of these contributions.

• Analysis and extension of UCS for intrusion detection - We started by

studying the effect of several key UCS parameters on its performance using

a publicly available benchmark intrusion detection dataset. We experimented

with increasingly large population sizes and established that a compromise

could be made by choosing lower population sizes for only a small loss in

system performance.

We looked at the effect of genetic operators on system performance and noted

that genetic search has difficulties in finding optimal solutions. The UCS

performance is analysed by alternatively deactivating crossover and mutation

operators and it was observed that the system with mutation alone performed

worst of all. The reasonable performance of UCS without the genetic search

suggested that the search operators need modifications when dealing with

multi-dimensional real-valued spaces posed by the intrusion data.



CHAPTER 7. CONCLUSIONS 229

A simple heuristic for fixing covering interval sizes is introduced for real-valued

attributes that significantly improved UCS performance on the KDD Cup

dataset. The heuristic is tested empirically with varying interval sizes and it

is found that an optimal range of covering intervals exist that can provide a

better starting point for genetic search in UCS.

Distance-metric based prediction - The problem of coverage gaps in

test feature spaces is highlighted and a distance-metric based approach is in-

troduced for predicting uncovered test cases in UCS. The distance based tech-

nique significantly improved UCS performance on the test data and reduced

the number of false alarms generated by UCS to a reasonable level. We recom-

mend it be adopted as the standard approach in both XCS and UCS replacing

the current purely random prediction approach used for such cases.

Strategies to deal with imbalance class distribution - The perfor-

mance of UCS under imbalanced and noisy training data is analysed using

synthetic datasets. Both of these problems exists in the data to be classified

for intrusions and thus it is critical to deal with them to improve the effec-

tiveness of UCS for intrusion detection. We introduced techniques to address

these problems and comprehensively compared them with existing techniques.

In particular, a new accuracy function, techniques for adapting the applica-

tion of the GA rate, a class-sensitive deletion technique and cost-sensitive

prediction are introduced in UCS. The class distribution in these techniques is

calculated and updated online. We showed that our techniques perform better

than existing techniques on synthetic imbalanced class problems.

Altogether, the fixed covering heuristic, distance metric based prediction and

new strategies to deal with class imbalance significantly improved the UCS

accuracy on the KDD Cup dataset. They also significantly reduced the false

alarm rate to a reasonable range.

• A framework for real-time signature extraction - We developed a new

algorithm to extract optimal rules learnt by UCS during its adaptive discov-
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ery process. The signature extraction mechanism is implemented on top of

the existing UCS framework. This allows the system to use the extracted sig-

natures during its operation and the evolutionary search is invoked only when

no signatures are found for an input.

Furthermore, novel subsumption operators are introduced to resolve overlap-

ping and redundancies among the signatures. The new operators provide

better signature coverage and more compact signature sets.

Adaptive tuning of the signature extraction algorithm’s param-

eters for noisy and imbalance class problems - The performance of the

signature extraction algorithm is analysed in the presence of noise and class

imbalance in the data similar to the analysis carried out with UCS. Subse-

quently, mechanisms were introduced to adapt crucial algorithm parameters

according to noise and imbalance levels in the data calculated online from the

streaming data. The adaptive tuning of the parameters significantly improves

the performance of the algorithm.

The signature extraction algorithm allows better control over evolutionary

search in UCS, faster processing times and considerably more compact rule

sets. The framework also provides a means to practically implement UCS in

a real-time IDS setting.

The signature extraction system is evaluated on the KDD Cup dataset and pro-

vides a magnitude smaller rule sets than the standard UCS. We also compared

its performance with another state-of-the art offline rule reduction algorithm.

Our algorithm, despite being single-pass, performs competitively. The perfor-

mance of the algorithm further improves when it is run using the extended

UCS that we developed during our analysis.

• A methodology to build intrusion data for supervised learning algo-

rithms - In order to evaluate UCS and the signature extraction algorithms

with real intrusion data, a new methodology is devised to build otherwise

scarce evaluation data for intrusion detection systems. This is done by cap-
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turing real network traffic on a university departmental server over a whole

month and mixing it with attack traffic that is generated in a simulated envi-

ronment.

Tools are developed to process the raw network traffic into feature vectors by

reassembling protocol sessions, extracting information from the packet pay-

load sections and assigning labels to them using the Snort intrusion detection

system.

Finally, the algorithms developed for learning signatures are evaluated on this

dataset and insights into the resultant rules and their performance are pro-

vided.

7.2 Limitations

There are a number of limitations in our work.

• The rule learning systems developed in this thesis do not provide feature

learning or feature selection procedures and rely on features provided to them

through domain knowledge or other means. Consequently the quality of rules

learnt by these systems could be biased by the quality of the provided features.

Nonetheless, the extended UCS and signature extraction systems performed

well on the realistic dataset, developed in Chapter 6, with some basic features

extracted from the packet payloads.

• Although the system is aimed at learning signatures in real-time, its testing

has been done offline. Testing in a real environment is prohibitive due to

security and privacy concerns or can prove expensive in case of building a

stand alone environment for emulation. Nonetheless, the datasets used during

evaluation have been built from the real network traffic traces. We cannot,

however, claim that the performance of our system will be the same when

deployed in real networks.
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• The real traffic collected for the evaluation of our systems is not representative

of large scale computer networks. But we were constrained in collecting this

data due to security and privacy concerns and unavailability of large scale

traffic collection infrastructure.

• Although we have attempted to take care of any induced biases when simu-

lating attacks, it can not be guaranteed absolutely.

7.3 Future Work

This is a first attempt in applying learning classifier systems to the intrusion detec-

tion domain. Several directions can be taken to extend this work. Further, there are

still open questions with regards to improving LCS performance for this and other

related domains.

• The next logical step is to integrate the developed signature extraction system

with existing open-source signature based intrusion sensors such as Snort.

This requires developing an interface between the signature extraction system

and Snort that would unify the signature language between the two systems,

integrate feature extraction procedures with Snort, escalate unmatched traffic

patterns to the signature learning system and automatically update Snort’s

signature bases.

• The number and quality of features play an important role in learning effective

signatures. The current feature set can be extended to improve detection

accuracy and the coverage of signatures. Furthermore, the search space can

be minimised by selecting only those relevant features that are effective in

detecting certain types of attacks. A distributed multi-agent system based

approach can be taken to model the system where each agent could learn

signatures locally for a specific type of activity (e.g., a particular protocol

or host activities running on a particular operating system) or specialise on
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a particular subset of features. Furthermore, the response of the security

supervisor on generated alerts can be fed back into the signature learning

system to reduce reliance on labelled training data. An architecture of such a

system was proposed in (Shafi, Abbass, and Zhu 2006).

• A related issue that needs further work is the processing speed of learning

classifier systems. Since the rule matching process in LCS accounts for most

of its run time, state-of-the art rule matching algorithms, such as those used

in (Llorà and Sastry 2006), can be implemented in LCS to further improve its

processing speeds.

• In this thesis, we have concentrated on learning signatures from network traf-

fic. This can be extended to learn rules from security logs and other host

based activities. It would be nice to evaluate the developed systems with data

collected from such sources (e.g., system call traces).

• There has been a great deal of research in the field of genetic algorithms

recently and many improved algorithms and new genetic operators have been

proposed (Goldberg 2002). The performance of the base learner system for

signature extraction can benefit from these advances in the research. The ideas

can also be borrowed from other related evolutionary algorithm fields such as

evolutionary strategies to better guide the search operators used in current

LCS.

• Our analysis of the covering operator and the use of a fixed covering intervals

heuristic suggested that an appropriate initialisation of covering classifiers can

have a significant impact on directing the search for better rules in UCS. In

the future, we intend to investigate and incorporate a problem independent

way to adapt this parameter in UCS. One way to approach this problem is

by calculating the entropy of the data stream for every attribute and then

choosing the initial covering intervals based on the relative entropy values

among different attributes.
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• In this work, we have focused our research on UCS. The signature extraction

system is easily extendable to XCS and to other classifier systems. In fact, the

concept of real time signature extraction presented here can be extended to

many concept learning systems not only limited to rule learners. For example,

it can be extended to extract the generalisations learnt from an ensemble of

neural networks during learning.

7.4 Closing Remarks

Like many other real-world problems, there is no silver bullet for intrusion detection

problems (Humphries, Ragsdale, Carver Jr, Hill, and Pooch 2000). In this thesis,

we have concentrated on an important class of problems in the intrusion detection

domain; that is, the adaptive learning of normal and intrusive behaviour signatures

from a network traffic flow. We have proposed and implemented a framework for

automatic and adaptive discovery of signatures from network activities using nature-

inspired computational techniques. We do not pretend to have solved this problem

but built a platform that can provide such capabilities. Extensive reevaluation

and refinement of the proposed methods would lead to an autonomous and fully

operational intrusion detection system. We believe this work will provide interesting

insights for future research in this field.



Appendix

Table 1: Abbreviations for various network protocols seen in the real traffic.

IP Internet Protocol

ICMP Internet Control Message Protocol

IMAP Internet Mail Access Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

DNS Domain Name Service

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Socket Layer

POP3 Post Office Protocol

NetBios Network Basic Input/Output System

SMTP Simple Mail Transfer Protocol

SSH Secure Shell
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