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Abstract

Uncertainty is inherent in many important applications, such as data integration,

environmental surveillance, location-based services (LBS), global positioning sys-

tem (GPS), sensor monitoring, radio-frequency identification (RFID) and moving

objects management. In recent years, we have witnessed significant research ef-

forts devoted to producing probabilistic database management systems, and many

important queries are re-investigated in the context of uncertain data models. Ef-

ficient algorithms are strongly demanded in these applications to analyze spatial

uncertain data.

This thesis studies four fundamental problems to analyze spatial uncertain data

by proposing efficient query processing algorithms. These problems include (1) find

top k influential facilities, (2) identify top k dominating objects, (3) range search

on uncertain trajectories, and (4) top k similarity join.

Firstly, we study the problem of finding top k most influential facilities over a

set of uncertain objects, which is an important and fundamental spatial query in

the above applications. Based on the maximal utility principle, we propose a new

ranking model to identify the top k most influential facilities, which carefully cap-

tures influence of facilities on the uncertain objects. By utilizing two uncertain ob-

ject indexing techniques, R-tree and U -Quadtree, effective and efficient algorithms

are proposed following the filtering and verification paradigm, which significantly
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improves the performance of the algorithms in terms of CPU and I/O costs. To

effectively support uncertain objects with a large number of instances, we further

develop randomized algorithms with accuracy guarantee.

Secondly, we study the problem of top k dominating query on multi-dimensional

uncertain objects, which is an essential method in the multi-criteria decision anal-

ysis when an explicit scoring function is not available. Particularly, we formally

introduce the top k dominating model based on the state-of-the-art top k semantic

over uncertain data. We also propose effective and efficient algorithms to identify

the top k dominating objects. Novel pruning techniques are proposed by utiliz-

ing the spatial indexing and statistic information, which significantly improve the

performance of the algorithms by reducing CPU and I/O costs.

Thirdly, we investigate the problem of range search on uncertain trajectories

by assuming uncertain trajectories are modeled by the popular Markov Chains. In

particular, we propose a general framework for range search on uncertain trajecto-

ries following the filtering and refinement paradigm where summaries of uncertain

trajectories are constructed to facilitate the filtering process. Moreover, statistics

based and partition based filtering techniques are developed to enhance the filtering

capabilities.

Finally, we investigate the problem of top k similarity join over multi-valued ob-

jects. We apply two types of quantile based distance measures, ϕ-quantile distance

and ϕ-quantile group-base distance, to explore the relative instance distribution

among the multiple instances of objects. Then, following a filtering and refine-

ment framework, efficient and effective techniques to process top k similarity joins

over multi-valued objects are developed. Novel distance, statistic and weight based

pruning techniques are proposed to speed up the computation.
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Chapter 1

Introduction

Database systems are widely used today. Almost every information system con-

tains one or more databases, and almost every commercial product is based on

database system. From a traditional perspective, databases are used to store

precise values. However, uncertain data are inherent in many applications such

as environmental surveillance, market analysis, sensor network monitoring, radio-

frequency identification (RFID), location-based services (LBS), and moving object

management. The uncertain data in those applications are generally caused by data

randomness and incompleteness, limitation of measuring equipment, delayed data

updates, etc. Recently, considerable research efforts have been devoted into the

field of uncertainty-aware spatial query processing such that the uncertainty of the

data can be effectively and efficiently tackled. Thus, many query types have been

reinvestigated under the uncertain semantics, including query evaluation [DS07],

aggregate queries [BDJ+07], spatial joins [CSP+06], top k queries [SIC07], sky-

line queries [PJLY07, LZZC11], dominating queries [LC09b, ZLZ+10a], near-

est neighbor queries [CKP04], reverse nearest neighbor queries [CLW+10], range

queries [TXC07, ZZLL12], etc.

1
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This thesis focus on developing efficient solution to spatial queries on uncertain

database. In particular, the following four problems are comprehensively investi-

gated:

1) Find Top k Influential Facilities.

2) Identify Top k Dominating Objects.

3) Range Search on Uncertain Trajectories.

4) Top k Similarity Join

In this chapter, we first motivate the problems, and unveil the challenges to each

of them, respectively, in four subsections. Then, we explain the major contributions

of our solutions and how the whole thesis is organized.

1.1 Motivations

1.1.1 Find Top k Influential Facilities

Bichromatic reverse nearest neighbor (BRNN) query has been extensively studied

as an important spatial operator ever since it was introduced in [KM00] due to a

wide spectrum of applications such as decision support, profile-based marketing,

resource allocation, etc. Informally, given a set F of facilities (e.g., gas station,

supermarket and warehouse) and a set of O of objects (e.g., car, person), the in-

fluence of a particular facility F can be evaluated by the number of bichromatic

reverse nearest neighbors of F , e.g., the number of objects whose nearest neigh-

bors are F regarding F . Intuitively, it is desirable to identify the most influential

facilities for various reasons such as resource allocation and decision making. Mo-

tivated by this, some existing work (e.g., [XZKD05]) proposed efficient algorithms
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to identify the influential facilities, in which they assume the location of an object

or facility is precisely described by a spatial point. As shown in Figure 1.1(a), we

can calculate the influence score (e.g., the number of reverse nearest neighbors ) for

each facility, where F1, F2 and F3 have scores 1, 2 and 0 respectively. Nevertheless,

in many applications the location of an object may be uncertain due to various

reasons such as data randomness and incompleteness, the limitation of measuring

equipment, delay or loss of data updates and privacy preservation. Following are

two motivating examples.

A

C
B

F

(a) A set of Objects and Facilities

F1

a2

c1

b1

b2

F2

F3

a1

F1

c1

b1

F2

F3

a1

(b) A set of Uncertain Objects and Facilities

Figure 1.1: Influential Facilities Example

Motivating Examples. In some warehouse management systems, the RFID tags

are attached to the items and their current locations can be obtained by RFID

readers. Since the RFID reading may be noisy due to the sensitivity of the low

cost readers to various environmental factors such as interference from nearby metal

objects and contention among tags, the location of an object may be modeled as

an uncertain object which is described by multiple instances. For instance, in

Figure 1.1(b), the item A may appear at two positions a1 and a2 with the same

probability. The facilities in Figure 1.1(b) represent the dispatching points for

various items. Suppose an item will be delivered to the closest dispatch point. For

a proper resource (e.g., labor, truck) allocation, the manager may want to know
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the k dispatching points with the highest influences (workload).

Another example application is the location based service (LBS). The location

of a mobile user can be described as an uncertain object, since her/his location may

be derived based on the nearest contour lines of user’s possible locations regarding

the nearby towers. In Figure 1.1(b), the mobile users are uncertain objects and su-

permarkets correspond to the facilities. Suppose that users tend to visit the nearby

supermarket, it is meaningful to find the top k most promising supermarkets, i.e.,

supermarkets which influence the largest number of users.

Challenges. Motivated by the above examples, it is desirable to study the problem

of finding top k most influential facilities over uncertain objects. The challenges

are three-fold.

Firstly, unlike the traditional spatial database in which an object only con-

tributes to the influence score of one facility1, it is non-trivial to evaluate the

influence of a facility because of the existence of multiple instances. As shown

in Figure 1.1(b), the uncertain object A may be influenced by both F2 and F3.

Therefore, when we rank the influences of the facilities, it is desirable to propose

new model to capture the uncertainty of the uncertain objects.

The second challenge is the efficiency of the algorithm. Computing the top k

most influential facilities over uncertain objects is much more complicated than that

of traditional objects (points). Although our new model can avoid enumerating all

possible worlds, the computation cost is still expensive if we conduct the calculation

in a straightforward way due to the existence of multiple instances of uncertain

objects.

The third challenge arises from the possible massive number of instances in

each uncertain object. In many applications, the uncertainty of an object may

1Suppose the ties are broken arbitrarily if there are multiple nearest facilities for an object.
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be described by a continuous probability density function, and it is a common

practice to discretize the continuous distribution by sampling method. As shown

in [TXC07], a large number of instances are necessary to properly capture the

probability distribution of the uncertain objects. On the other hand, the Monte-

Carlo simulation has been widely applied to tackle the complicated correlation

among uncertain objects in many recent works (e.g., [JXW+08]), and hence each

uncertain object will be represented by a set of sampled instances. Consequently,

it is desirable to develop efficient randomized algorithms based on samples of the

uncertain objects.

1.1.2 Identify Top k Dominating Objects

Ranking query is an essential analytic method which focuses on retrieving the top

k most important answers from massive quantity of data according to an user’s

preference. In many applications, users need to make decision against multiple

features of the objects. For instance, cost, comfort, safety, and fuel economy may be

some of the main criteria we consider when purchasing a car. Therefore, each object

can be described by a point in a multi-dimensional space where each dimension

corresponds to a particular selection feature. If there is a scoring (utility) function

(e.g., additive linear function) which can quantify the preference of a user, objects

can be immediately ranked based on their corresponding scores. However, in many

scenarios users cannot find a proper scoring function due to various reasons such

as the lack of domain knowledge. By utilizing the dominance relationship, the

top k dominating query provides a simple and intuitive way to rank objects

when an explicit scoring function is not available. The dominance relationship

has been widely used in the multi-criteria decision analysis where an object A

dominates another object B if A is not worse than B on every dimension and A
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is strictly better than B on at least one dimension. The goodness of an object A,

namely dominance score, can be naturally measured by the number of other objects

dominated by A in a set of objects, and the top k objects with highest dominance

scores are returned as the top k dominating objects.

A

B

D

C

(a) Certain Objects

a1

b2

d1

c2

(b) Uncertain Objects

d2

a2b1

c1

A
B

C

D

Figure 1.2: Certain Objects and Uncertain Objects

Example 1.1. As shown in Figure 1.2(a), there is a set O of 4 objects (points).

The dominance score of the object A is 2 which is the number of other points within

the shaded region. Similarly, the dominance scores of B, C and D are 0, 0 and 1

respectively. Therefore, the results of the top 2 dominating query on O are A and

D.

Motivation. In many applications such as data integration, environmental surveil-

lance, location based service, the uncertainty is inherent due to many factors includ-

ing limitation of measuring equipments, probabilistic model based data integration,

noise, delay or loss of data updates, etc. Consequently, the data in the above appli-

cations are usually described by probabilistic model (i.e., uncertain objects) instead

of deterministic points in a multi-dimensional space where an uncertain object may

be described by probabilistic density function or a set of instances (points). For

example, in the meteorology system, sensors collect the temperature and relative

humidity at a large number of sites. The readings may be uncertain due to the
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noise or the limit of the sensor reader. Another example is the performance eval-

uation of NBA players. A player attends multiple games and statistics (e.g. score

and #rebounds) of each game are recorded. Consequently, the performance of a

player may be naturally modeled as an uncertain object where each record corre-

sponds to an instance. In these applications, the top k dominating query plays an

important role in multi-criteria decision analysis when the scoring function is not

available. For instance, users may identify the top k risky observation sites in the

meteorology system, or find the top k valuable players based on their game-by-game

performance. Due to the inherent differences between uncertain data and tradi-

tional data, many important queries are re-investigated in the context of uncertain

data models. These motivate us to study the problem of the top k dominating

query on uncertain data.

Challenges. The main challenges of the problem are two-fold. Firstly, we need

to develop a model to properly identify the top k dominating objects. Secondly,

efficient computation algorithm is required to support the new top k dominating

query on uncertain data.

As shown in Figure 1.2(b), each uncertain object may consist of multiple in-

stances (points) , and each instance will appear with a particular probability. For

example, the uncertain object A consists of two instance a1 and a2. Due to the

existence of multiple instances of the uncertain objects, it is non-trivial to mea-

sure the number of other uncertain objects dominated by an uncertain object (i.e.,

dominance score) since the traditional dominance relationship is defined against

two points. Intuitively, we can derive the dominance score of an instances u based

on the probability mass of the instances which are dominated by u. Then the

problem of the top k dominating query can be mapped to the problem of the

top k query on uncertain data since each multi-dimensional uncertain object cor-
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responds to a score distribution based on the dominance score and appearance

probabilities of their instances. The problem of the top k query on uncertain

data has been extensively studied in recent years, and many models are proposed

such as expected score, U-topk[SIC07], U-kranks [SIC07], PT-k [HPZL08b], Global-

top k [ZC08], expected rank [CLY09], c-Typical-Topk [GZM09], and parameterized

ranking [LSD11]. Particularly, as shown in [LSD11] the parameterized ranking

function can unify other popular ranking semantics, and hence it is widely used as

the de facto top k semantics for uncertain data. Although there are some existing

work [LC13, LC09b, ZLZ+10a] investigating the top k dominating query on uncer-

tain data, none of them supports the parameterized ranking semantics. Moreover,

as shown in [CLY09] the top k semantics adopted in [LC13, LC09b, ZLZ+10a] can-

not properly capture the ranking of both probabilities and values. Therefore, it

is desirable to formally define the top k dominating query on multi-dimensional

uncertain objects, and develop efficient and effective algorithms to identify top k

dominating uncertain objects.

1.1.3 Range Search on Uncertain Trajectories

With the rapid development of positioning technologies such as radio frequency

identification (RFID), wireless sensor networks, smart-phone, radar, satellite and

global positioning system (GPS), massive spatio-temporal data has been mount-

ing up. Due to physical and resource limitations of the data collection devices, it

is infeasible to continuously capture the location of a moving object (e.g., vehicle,

people, animal and iceberg) for each point of time, and hence the uncertainty arises

between two subsequent discrete observations. For instance, to save the energy and

the communication cost, a taxi may report its location at a low frequency [ZZXZ12].

The time period between two check-in positions might be long in Geo-social appli-
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cations such as bike routes2 and tourist routes3 [NZE+13]. Consequently, a large

volume of spatio-temporal data with low sampling rate is described by uncertain

trajectories where the possible locations of a moving object between two subsequent

observations are captured by a time-dependent random variable (i.e., a stochastic

process).

Figure 1.3: Uncertain Trajectory Example

Therefore, we investigate the problem of range search on uncertain trajectories,

which is critical to make sense of uncertain trajectories in many key applications

such as environment monitoring, location based service, traffic management, and

national security. Informally, we aim to retrieve a set of moving objects (trajecto-

ries) which consistently appear within a given area with high probabilities during

a particular time period. Below are two motivation examples for range search on

uncertain trajectories.

Motivation Examples. In Figure 1.3, an iceberg is observed at times t1 and t10 by

satellite or radar systems, while its precise location is unknown at a time t ∈ (t1, t10)

due to the resource limitation. Fortunately, according to the knowledge of nearby

ocean currents as well as the historical iceberg trajectory data, an expert can derive

2http://www.bikely.com/
3http://www.everytrail.com/
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possible locations of this iceberg based on Markov Chain model [EKM+12b]. To

choose a particular region for setting up an oil platform or deploying a major mili-

tary excises, we may need to evaluate to what degree a region (e.g, R in Figure 1.3)

is affected by icebergs during a certain period in history.Since the location of an

iceberg might be uncertain, we can ignore an iceberg at time t if the likelihood of

this iceberg falling in the region R is smaller than a given threshold θ (0 < θ ≤ 1).

Moreover, we may only be interested in the icebergs which consistently (say, at

least η times) appear within the region with probability at least θ, which is the

range search on uncertain trajectories. Similarly, in the study of wild animal mi-

gration, the range search on uncertain trajectories can help scientists to evaluate

the importance of a region during a period of time, where locations of a tagged

animal can be observed by wireless RFID sensors from time to time.

Challenges. Same as [EKM+12b, EKM+12a, NZE+13, XGC+13], we assume the

uncertain trajectories are described by Markov Chain model because it has solid

theoretical foundation and rich applications. A straightforward approach for the

problem of range search on uncertain trajectories is to calculate the appearance

probability of each moving object o at each time within the query time interval, and

count the number of times in which o appears within the search region with prob-

ability at least θ. Then an object is qualified if the number of accumulated times

exceeds a duration threshold η. However, as reported in [EKM+12a], the computa-

tion is still very expensive although efficient algorithm is developed in [EKM+12b].

Then, it is desirable to develop efficient and effective indexing and pruning algo-

rithms to reduce the computations.
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1.1.4 Top k Similarity Join

The need of similarity join over multi-valued objects stems from many important

applications. In geographic information system (GIS), a group of simple spatial

objects may be evaluated as a whole [KN96, RSV01]. For instance, to evaluate

a community, a real estate development company may model it as a multi-valued

object and each instance corresponds to a property with some feature values such

as property price, household income, distance to beach, distances to living facilities,

etc. A top k similarity join may be issued to identify the most similar communities

from two large cities or from two countries, such that the price fluctuation of one

community could be used as a mirror to the management of another one. Similarly,

in sports, the performance of a player may be described by her game-to-game

statistics in various games. So each player could be represented by a multi-valued

object where each instance corresponds to her statistics, such as heights and number

of trials in high-jump, in a particular game she attended. A similarity join over

two sets of players may help to retrieve players with similar performances. Hence,

the successful career path of one player provides a prediction of the success of her

counterpart in coming competitions.

Similarity join is also a fundamental and crucial analyzing tool in internet and

web information systems. In online shopping systems, it is interesting to retrieve

similar pairs of shops or sellers where a shop or seller is modeled by a set of retail

items with various features including item type and price range. Here a shop or

seller could be modeled as a multi-valued object where each instance corresponds

to a retail item. Identifying similar communities from online social networks is

another important application of similarity join over multi-valued objects where

one community (modeled as a multi-valued object) consists a set of individuals

(instances) [WQWZ09, MBJ13].
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Motivation Examples. The existing model for handling similarity joins over

objects with multiple instances follows the probabilistic semantics on uncertain

objects [CSP+06, KKPR06, LS08] and aims to capture relative instance distribu-

tion among objects with multiple instances. Nevertheless, uncertain objects are

inherently different than multi-valued objects. Instances of an uncertain object are

mutually exclusive which means at most one instance can appear at a particular

time, while all the values/instances of a multi-valued object must occur simulta-

neously at any time. Moreover, as shown in [ZLC+10], models based on uncertain

semantics cannot always capture the relative distributions of multi-valued objects.

Take the example in Figure 1.4. For simplicity we assume multi-valued object U1

has only one instance with the value (score) of 10, while multi-valued objects V1

and V2 both have m instances spread between 9.0 to 9.99 as depicted in Figure

1.4(a). Each instance from the same object takes the same weight. Suppose we

want to retrieve the top-1 similarity join result from {U1} and {V1, V2}, namely,

retrieve the more similar one from V1 and V2 to U1. Following the possible world

semantics, it is easy to verify that both V1 and V2 have the same probability, 1
2
,

to be the most similar one to U1 if Euclidean distance is used as the similarity

metrics. We permute the distribution in Figure 1.4(a) to the distribution in Figure

1.4(b), V1 and V2 still have the same probability. This example demonstrates that

the probabilistic approaches following the possible world semantics are not able to

capture the relative distributions of instances. Another direct solution is to utilize

simple aggregates such as average. Nevertheless, such a simple aggregate will have

the same problem as pointed above regarding Figure 1.4.

The example in Figure 1.4 demonstrates that the existing probabilistic model

and simple aggregates may be insensitive to relative distributions of object in-

stances. Quantiles [YMT06] provide a succinct summary of data distributions and
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9.0
Score

10.0

     m/2 m m/2

9.99

U1 V1 V2

(a)

9.0
Score

10.0

     m/2 m m/2

9.99

(b)

Figure 1.4: Motivating Example

is less sensitive to outliers.

Challenges. While the similarity between two conventional d-dimensional objects

only involves two single points, identifying the most similar object pairs among

multi-valued object sets involves multiple instances per object. Therefore, it is

highly desirable to consider the relative instance distributions among multi-valued

objects so that the similar pairs can be effectively retrieved. ϕ-quantile distance and

ϕ-quantile group-base distance are first used for capturing instance distributions

of multi-valued objects in [ZLC+10]. [ZLC+10] studies k-nearest neighbors (KNN)

queries over multi-valued objects. Given a multi-valued query object Q and a set

of multi-valued objects U , a KNN query retrieves k objects from U with smallest

quantile-based distance to Q. An immediate way to solve our problem can be

conducted as follows. For each object U ∈ U (or V ∈ V), we compute its KNN in

V (or U) using the techniques in [ZLC+10], and then select k most similar pairs

based on the union of KNN results. Nevertheless, this involves the computation

of KNN for each object in U (or each object in V). Clearly, not every object in

U (or V) will be involved in the top k pairs since k is usually much smaller than
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min{|U|, |V|}. Consequently, it is desirable to develop a set of novel, efficient,

effective pruning techniques to prevent such redundant computation.

1.2 Contributions

In summary, we make the following contributions for the four problems studied in

this thesis.

Find Top k Influence Facilities.

• Based on the maximal utility principle, we propose a new model to evaluate

the influences of the facilities over a set of uncertain objects.

• Efficient R-tree and U -Quadtree based algorithms are presented following the

filtering and verification paradigm. Novel pruning techniques are proposed

to significantly improve the performance of the algorithms by reducing the

number of uncertain objects and facilities in the computation.

• Efficient randomized techniques are proposed to provide approximate solution

with accuracy guarantee.

• Comprehensive experiments demonstrate the effectiveness and efficiency of

our techniques.

Identify Top k Dominating Objects.

• We present a general framework for the range search on uncertain trajecto-

ries following the filtering-and-refinement paradigm, where summaries of the

objects are constructed to facilitate the filtering process.

• We propose effective and efficient top k dominating computation algorithms

on multi-dimensional uncertain objects based on novel pruning techniques.
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• We further improve the performance of the algorithm by utilizing statistics

information of the uncertain objects.

• Comprehensive experiments on real and synthetic datasets demonstrate the

efficiency and scalability of our techniques.

Range Search on Uncertain Trajectories.

• We formally define the problem of range search on uncertain trajectories.

• We present a general framework for the range search on uncertain trajecto-

ries following the filtering-and-refinement paradigm, where summaries of the

objects are constructed to facilitate the filtering process.

• A simple and effective filtering technique is proposed based on statistics in-

formation of the uncertain trajectories.

• A partition based filtering technique is developed to further enhance the

filtering capabilities. Effective summary construction algorithm is proposed

based on some important observations.

• Comprehensive experiments on real-life and synthetic datasets demonstrate

the effectiveness and efficiency of our techniques.

Top k Similarity Join

• We formalize the problem of top k similarity join over multi-valued objects,

regarding two types of quantile-based distance metrics.

• Efficient and effective algorithms are developed to compute the top k sim-

ilarity join results over two sets of multi-valued objects based on quantile-

based distance metrics. Particularly, we propose novel and efficient distance,
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statistic and weight based pruning techniques to significantly speed up the

computation.

• Comprehensive experiments are conducted on both real and synthetic data

to demonstrate the efficiency and effectiveness of our techniques. It also

demonstrates that the techniques developed in this thesis are up to 2 orders of

magnitude more efficient than naively applying KNN techniques in [ZLC+10].

1.3 Thesis Organization

We organize the rest of the thesis as follows. We study the four aforementioned

problems in four chapters. Before delving into the details of our solutions, a sur-

vey of previous work on uncertain spatial queries and its variants are presented in

Chapter 2. Then for each of the problem, we present the problem definition, prelim-

inaries, proposed solution, empirical studies and summary in individual chapters.

Chapter 3 investigates the problem of finding top k most influential spatial facilities

over uncertain objects, Chapter 4 studies the problem of identifying top k domina-

tion objects over uncertain data, Chapter 5 discusses the problem of range search

on uncertain trajectories, and Chapter 6 presents the approach to solve top k sim-

ilarity join problem. Finally, Chapter 7 concludes the thesis and present feasible

future work. Specifically, each chapter is structured as follows.

Chapter 2 provides a literature review of the existing work related to the four

problems studied in this thesis. We introduce current uncertain models and query

techniques in four parts.

• Uncertainty Models

• Probabilistic Queries
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• Indexing Uncertain Objects

• Uncertain Trajectories

In Chapter 3, we study the problem of finding top k most influential spatial

facilities over uncertain objects. We first formally define the problem based on the

possible world semantics. Then, we propose a new ranking model to identify the top

k most influential facilities based on the maximal utility principle. Thirdly, effective

and efficient exact algorithms are proposed following the filter and verification

paradigm by utilizing two uncertain uncertain indexing techniques, R-tree and U -

Quadtree. Afterwards, randomized algorithms are further developed to efficiently

support uncertain objects with a large number of instances, and the accuracy is

guaranteed. Finally, the performance evaluation is reported and analyzed.

In Chapter 4, we study the problem of top k domination query on multi-

dimension uncertain objects. We first formally introduce the top k dominating

model and define the problem based on parameterized ranking function. Sec-

ondly, we propose effective and efficient algorithm following filtering and verification

paradigm by utilizing the spatial indexing and statistic information. Finally, com-

prehensive experiments on real and synthetic datasets demonstrate the effectiveness

and efficiency of the techniques.

In Chapter 5, we study the problem of range search on uncertain trajectories.

We first formally introduce the uncertain trajectories modeled by Markov Chains

and give the problem definition. Then, a general framework for range search on

uncertain trajectories following the filtering-and-refinement paradigm is proposed.

Thirdly, we propose the technique to facilitate the filtering process by utilizing

summaries of uncertain trajectories. Moreover, we develop statistics based and

partition based filtering techniques to enhance the filtering capabilities. The effec-

tiveness and efficiency of the proposed techniques are empirically evaluated in the
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end.

In Chapter 6, we study the problem of top k similarity join problem over multi-

value objects based on a ϕ-quantile distance. We first formalize the problem of

top k similarity join over multi-valued objects, regarding two types of quantile-

based distance metrics, respectively. Then, efficient and effective algorithms with

distance, statistic and weight based pruning techniques are developed to compute

the top k similarity join results over two sets of multi-valued objects based on

quantile-based distance metrics. Comprehensive experiments are conducted on

both real and synthetic data to demonstrate the efficiency and effectiveness of our

techniques.

Chapter 7 finally summarizes this thesis and provides a number of feasible

directions for future studies.



Chapter 2

Related Work

This chapter provides a non-exhaust review of the existing literature related to

spatial queries on uncertain database. More specifically, we first give a brief in-

troduction of models for uncertain data in Section 2.1. Next, we summarize ex-

isting techniques on various probabilistic query types in Section 2.2 followed by

an overview of the exist techniques on indexing uncertain objects in Section 2.3.

Finally, we present the related work on uncertain trajectories in Section 2.4.

2.1 Uncertainty Models

Uncertainty is (almost) everywhere, which is often caused by the limited perception

and understanding of reality as well as can be inherent in nature. As an exam-

ple, consider a meteorology system that monitors the temperatures, humidity, UV

indexes in a large number of regions. The corresponding readings are taken by sen-

sors in local areas, and transmitted to a central database periodically (e.g. every

10 minutes). The database content may not exactly reflect the current atmospheric

status and the actual temperature in a region may have changed after the last time

to measure them. Also, some sensors may not get precise data due to the sake of

19
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energy conservation. The uncertainty in the above examples is caused by delayed

data updates, sources of imprecision include data randomness, limitation of mea-

suring equipments, and so on. Therefore, information retrieval directly based on

uncertain data is meaningless, since the result does not have any quality guarantees.

Consider another example that the query “find the clients currently in a special

area”. Returning the objects whose previous reported positions satisfy the query is

inadequate, because many objects may have entered or left the search region since

they contacted the server last time. The uncertainty of an object can be specified

by three models: fuzzy model [GUP06], evidence-oriented model [Lee92, LSS96]

and probabilistic model [SBHW06]. In this thesis we focus on probabilistic models

since it is is not only the most widely used but also it is the only model adopted

in existing DBMSs for uncertainty analysis.

Recently, the possible world semantics [IJ84, AKG87, AKG91, SBHW06] are

widely used to model uncertainty. A possible world is a possible snapshot that may

be observed and carries an existence probability. A possible world contains a set

of instances of uncertain objects, and at most one instance per object in a possible

world. A comprehensive study of possible world semantics is investigated in [SIC07,

HPZL08a, YLKS08], and the formal definition of possible world semantics is given

below.

Given a set of uncertain objects U = {U1, . . . , Un}, each uncertain object con-

sists of a set of instances. By assuming all objects are independent, a possible world

W = {u1, . . . , un} is a set of instances with one instance from each uncertain ob-

ject. The probability of W to appear is P (W ) =
∏n

i=1 pui
. LetW = {W1, . . . ,Wm}

be the set of all possible worlds, then
∑

W∈W P (W ) = 1. An uncertain object

may be described by either a continuous or a discrete case. In continuous cases,

an uncertain object U may be described by a probability density function (PDF)
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fU such that
∫
u∈U fU(u)du = 1; Nevertheless, in many applications PDFs are not

always available. Instead, an uncertain object U is represented by a set of instances

such that each instance u ∈ U has a probability P (u) to appear. Such a repre-

sentation is also referred as a discrete case, has the property that 0 < P (u) ≤ 1

and
∑

u∈U P (u) = 1. In this thesis, we focus on discrete case, because we can

discretize a continuous probability density function (PDF) of an uncertain object

by sampling methods.

2.2 Probabilistic Queries

We review existing work on important probabilistic queries in this subsection.

2.2.1 Top k Queries

With the emergence of many recent important and novel applications involving

uncertain data, there has been a great deal of research attention dedicated to this

field. Particularly, top k queries are important in analyzing uncertain data. Unlike

a top k query over certain data which returns the k best alternatives according

to a ranking function, a top k query against uncertain data has inherently more

sophisticated semantics.

Soliman et al. [SIC07] first relate top k queries with uncertain data. They define

two types of important queries - U-Topk and U-kRank, regarding discrete cases.

• U-Topk returns a set of k records which as a whole have the highest probabil-

ity to be the top k results in all possible worlds. Let D be an uncertain data

set with possible worlds space W = {W1, . . . ,Wn}. Let T = {T1, . . . , Tm} be

a set of k-length record vectors, where for each Ti ∈ T : (1) records of Ti are

ordered according to scoring function F , and (2) Ti is the top k answer for a
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non empty set of possible worlds W (Ti) ⊆ W . A U-Topk query, based on F ,

returns T ∗ ∈ T , where T ∗ = argmaxTi∈T (
∑

w∈W (Ti)
P (w)).

• U-kRank retrieves k ordered records where the i-th record has the highest

probability of ranking in the i-th position among all possible worlds. Let D

be an uncertain data set with possible worlds space W = {W1, . . . ,Wn}. For

i = 1, . . . , k, let {x1
i , . . . , x

m
i } be a set of records, where each record xj

i appears

at rank i in a non empty set of possible worlds W (xj
i ) ∈ W based on scoring

function F . A U-kRanks query, based on F, returns {x∗
i |i = 1, . . . , k}, where

x∗
i = argmaxxj

i
(
∑

w∈W (xj
i )
P (w)).

Following, a large amount of work has been dedicated to top k queries with

different semantics.

Threshold based top k queries defined by Hua et al. [HPZL08b] aim to retrieve

all records whose probability of being top k results in all possible worlds is no less

than a given probability threshold. A probabilistic threshold top k query (PT-k)

on an uncertain table T consists of a top k query Q and a probability threshold

p(0 < p ≤ 1). For each possible world W , Q is applied and a set of k tuples Qk(W )

is returned. For a tuple t ∈ T , the top k probability of t is the probability that t

is in Qk(W ) in all W ∈ W , that is,

PrkQ,T (t) =
∑

W∈W,t∈Qk(W )

Pr(W )

When Q and T are clear from context, PrkQ,T (t) is written as Prk(t) for the interest

of simplicity. Then, the answer set to a PT-k query is the set of all tuples whose

top k probability values are at least p, that is,

Answer(Q, p, T ) = {t|t ∈ T,PrkQ,T (t) ≥ p}.

Then, techniques to efficiently compute the answer set for a PT-k query on an

uncertain table were proposed in [HPZL08b].
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Global-Topk semantics in probabilistic relations was proposed in [ZC08], which

return k highest-ranked tuples according to their probability of being in the top k

answers in possible worlds. The Global-Topk Probability and Global-Topk Answer

Set over Probabilistic Relation was defined.

• Global-Topk Probability: Assume a probabilistic relation Rp = ⟨R, p, C⟩, a

non-negative integer k and an injective scoring function s over Rp. For any

tuple t in R, the Global-Topk probability of t, denoted by PRp

k,s (t), is the sum

of the probabilities of all possible worlds of Rp whose top k answer contains

t.

PRp

k,s (t) =
∑

W∈pwd(Rp),t∈topk,s(W )

Pr(W ).

• Global-Topk Answer Set over Probabilistic Relation: Given a probabilistic

relation Rp = ⟨R, p, C⟩, a non-negative integer k and an injective scoring

function s over Rp, a top k answer in Rp under s is a set T of tuples such

that

1. T ⊂ R;

2. If |R| < k, T = R, otherwise |T | = k;

3. ∀t ∈ T , ∀t′ ∈ R− T , PRp

k,s (t) ≥ PRp

k,s (t
′).

Then, efficient algorithms for evaluating top k queries under the Global-Topk se-

mantics are proposed in [ZC08].

Expected rank is proposed to use for answering top k queries on uncertain data

by Cormode et al. in [CLY09]. They define a set of properties for ranking tuples.

These properties naturally hold on certain data but are missed by some top k

definitions on uncertain data.



24 Chapter 2. Related Work

• Exact-k [ZC08]. The top k list should contain exactly k items. Let Rk be

the set of tuples (associated with their ranks) in the top k query result. If

|D| ≥ k, then |Rk| = k.

• Containment. The top (k + 1) list should contain all items in the top k. For

any k, Rk ⊂ Rk+1.

• Unique ranking. Within the top k, each reported item should be assigned

exactly one position: the same item should not be listed multiple times within

the top k. Let rk(i) be the identity of the tuple from the input assigned rank i

in the output of the ranking procedure. The unique ranking property requires

that ∀i ̸= j, rk(i) ̸= rk(j).

• Value invariance. The scores only determine the relative behavior of the

tuples: changing the score values without altering the relative ordering should

not change the top k. Let D denote the relation which includes score values

v1 ≤ v2 ≤ . . .. Let s′i be any set of score values satisfying v′1 ≤ v′2 ≤ . . ., and

define D′ to be D with all scores vi replaced with v′i. The value invariance

property requires that Rk(D) = Rk(D′) for any k.

• Stability [ZC08]. Making an item in the top k list more likely or more im-

portant should not remove it from the list. In the tuple-level model, given

a tuple ti = (vi, p(ti)) from D, if we replace ti with t↑i = (v↑i , p(t
↑
i )) where

v↑i ≥ vi, p(t
↑
i ) ≥ p(ti), then

ti ∈ Rk(D)⇒ t↑i ∈ Rk(D′),

where D′ is obtained by replacing ti with t↑i in D. For the attribute-level

model, the statement for stability remains the same but with t↑i defined as

follows. Given a tuple ti whose score is a random variable Xi, we obtain t↑i
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by replacing Xi with a random variable X↑
i that is stochastically greater or

equal than [SS94] Xi, denoted as X↑
i ≽ Xi.

They initially indicate a simple approach to get top k objects is to just compute the

expected score of each tuple, and rank by this score, then take the top k. However,

this is very dependent on the values of the scores: consider a tuple which has very

low probability but a score that is orders of magnitude higher than othersthen it

gets propelled to the top of the ranking, since it has the highest expected score,

even though it is unlikely. But if this score is reduced to being just greater than

the next highest score, the tuple will drop down the ranking. It therefore violates

value invariance and ignores all the correlation rules completely in the tuple-level

mode. Therefore, they study the score distribution, and then propose expected

rank ranking method to typical answer top k queries on uncertain data:

Definition 2.1. The rank of a tuple ti in a possible world W is defined to be the

number of tuples whose score is higher than ti (so the top tuple has rank 0), i.e.,

rankW (ti) = |{tj ∈ W |vj > vi}|

By presenting the score distribution of all top k vectors, the users are able

to choose among all results along the score-probability dimensions. Instead of

displaying distributions of all potential top k vectors, the authors also propose to

provide a number of typical vectors that effectively sample this distribution.

Finally, Li et al. [LSD09, LSD11] propose a unified approach to top k ranking

in uncertain databases, based on parameterized ranking functions (PRFs), which

could generalize many of the previously proposed ranking functions by setting

weight function:

Definition 2.2. Let ω : T × N → C be a weight function that maps a tuple-rank

pair to a complex number. The parameterized ranking function (PRF), Υω : T → C
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in its most general form is defined to be:

Υω(t) =
∑

pw:t∈pw

ω(t, rpw(t)) · Pr(pw)

=
∑

pw:t∈pw

∑
i>0

ω(t, i)Pr(pw ∧ rpw(t) = i)

=
∑
i>0

w(t, i) · Pr(r(t) = i)

A top k query returns the k tuples with the highest |Υω| values.

Then, depending on the actual function ω, different ranking functions with

diverse behaviors can be generated, such as:

• Ranking by probabilities: If ω(t, i) = 1, the result is the set of k tuples with

the highest probabilities [RDS07].

• Expected score: By setting ω(t, i) = score(t), we get the E-Score:

Υω(t) =
∑

pw:t∈pw

score(t)Pr(pw)

= score(t)Pr(t)

= E[score(t)]

• Probabilistic threshold Top k (PT(h)): If we choose ω(i) = δ(i ≤ h), i.e.,

ω(i) =


1, for i ≤ h

0, otherwise

, then the answer for PT(h) is gotten exactly.

• Uncertain rank-k (U-Rank): Let ωj(i) = δ(i = j), for some 1 ≤ j ≤ k.

We can see the tuple with largest Υωj
value is the rank-j answer in U-Rank

query [SIC07]. This allows us to compute the U-Rank answer by evaluating

Υωj
for all t ∈ T and j = 1, . . . , k.
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• Expected ranks (E-Rank): Let PRFl (PRF linear) be another special case of

the PRFω function, where wi = ω(i) = −i. The PRFl function bears a close

similarity to the notion of expected ranks. Recall that the expected rank of

a tuple t is defined to be:

E[rpw(t)] =
∑

pw∈PW

Pr(pw)rpw(t)

where rpw(t) = |pw| if ti /∈ pw. Let C denote the expected size of a possible

world. It is easy to see that: C =
∑n

i=1 pi due to linearity of expectation.

Then the expected rank of t can be seen to consist of two parts:

1. the contribution of possible worlds where t exists:

er1(t) =
∑
i>0

i× Pr(r(t) = i) = −Υ(t)

where Υ(t) is the PRFl value of tuple t.

2. the contribution of worlds where t does not exist:

er2(t) =
∑

pw:t/∈pw

Pr(pw)|pw|

= (1− p(t))(
∑
ti ̸=t

Pr(ti|t does not exist))

If the tuples are independent of each other, the following can be gotten:∑
ti ̸=t

Pr(ti|t does not exist) = (C = p(t))

Thus, the expected ranks can be computed.

They propose a polynomial time algorithm based on generating functions to

compute PRF. Consider the following generating function:

F i(x) = (
∏

t∈Ti−1

(1− Pr(t) + Pr(t) · x))Pr(ti) · x

=
∑
j≥0

cjx
j
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Therefore, the coefficient cj of x
j in the expansion of F i is exactly the probability

that ti is at rank j, i.e., cj = Pr(r(ti) = j), and F i contains at most i+ 1 non-zero

terms. This both can be observed from the form of F i above and also from the

fact that Pr(r(ti) = j) = 0 if j > i. Hence, F i can be expanded to compute the

coefficients in O(i2) time. This allows us to compute Pr(r(ti) = j) for ti in O(i2)

time; Υ(ti), in turn, can be written as follows:

Υ(ti) =
∑
j

ω(ti, j) · Pr(r(ti) = j) =
∑
j

ω(ti, j)cj

which can be computed in O(i2) time.

2.2.2 Nearest Neighbor Queries

Nearest neighbor (NN) query over uncertain data is one of the most flourishing

topic. Cheng et al. [CPK03, CKP04] are the first to tackle the probabilistic nearest

neighbor (PNN) query, whose aim is to determine probabilistic candidates for the

nearest neighbor of a given target along with corresponding probability values.

In [KKR07], Kriegel et al. show nearest neighbor queries are an important query

type for commonly used feature databases. Cheng et al. [CKP03] propose the

Constrained Nearest Neighbor Query (C-PNN), which returns the IDs of objects

whose probabilities are higher than some threshold, with a given error bound in

the answers. The C-PNN can be answered efficiently with probabilistic verifiers.

These are methods that derive the lower and upper bounds of answer probabilities,

so that an object can be quickly decided on whether it should be included in the

answer. Then they have developed three probabilistic verifiers, which can be used

on uncertain data with arbitrary probability density functions. Only objects with

probability no less than this threshold of being nearest neighbor of the query object

will be output.
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A KNN query has various applications in spatial databases. Consider, for ex-

ample, a set of points in two dimensions representing cities. A KNN query may be

issued to find “what are the k closest cities from a point p” Zhang et al. [ZLZ+10c]

employ a rank based approach to process probabilistic KNN query, where k closest

objects are returned according to their expected ranks.

It is important that answer probabilistic reverse nearest neighbor queries have

been proposed in [LC09a]. In their approach, they approximate the uncertain ob-

jects by circular regions whereas we approximate the uncertain objects by rectangu-

lar regions. Based on these circular regions, they propose some pruning techniques

to shortlist a set of candidate objects. At around the same time, Cheema et al.

[CLW+10] formalize PRNN query that is to retrieve the objects from the uncertain

data that have higher probability than a given threshold to be the RNN of an

uncertain query object. Recently, Bernecker et al. [BEK+11] propose a solution to

answer RKNN queries on uncertain data. They approximate the uncertain objects

by rectangular regions, propose new pruning rules, and present the techniques to

answer RKNN queries for k > 1. Their experimental results demonstrate that their

proposed approach is the most efficient approach till date.

Influential Facilities(Sites) Queries

Bichromatic reverse nearest neighbor query is first introduced by Korn et al. in

[KM00]. Given a set F of facilities and a set O of objects, the influence of a fa-

cility F can be measured by the number of objects whose nearest neighbors is F .

As one of its natural extension, the problem of finding top k influential facilities

(TkIS), is proposed in [XZKD05]. Instead of computing the set of BRNNs for a

given set of facilities, it returns the top k facilities with highest number BRNNs

(influences). They provide novel pruning techniques based on a new metric called
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minExistDNN , and found the top k most influential facilities by browsing trees

once systematically. Furthermore, [HWQ+11] found k locations from a set of candi-

date locations with the largest influence values according to a set of customers. On

the other hand, the problem of optimal-location is studied in [YWN11, WÖF+11],

aiming to find optimal area or location to set up a new facility such that it can

attract the greatest number of facilities.

In [ZHZZ12], Zheng et al. studies the problem of finding top k most influential

facilities over uncertain objects. They assume that each object is characterized by

multiple instances, and the facilities remain deterministic, and adopt the expected

rank [CLY09] as the ranking function to define the order of the facilities with

probabilistic influences. By viewing the influence of a facilities as its uncertain

attribute, they naturally adopt the expected rank to define the uncertain TkIS

query.

Given a set of facilities F , a set of uncertain objects U and a query region Q, all

facilities inside Q are considered as the candidate facilities, i.e., Cf = {f |f ∈ f},

and all objects influenced by candidate facilities as the candidate objects Cu =

{U |∃f ∈ Cf , U ∈ PRNN(f)}. A possible world W is obtained by independently

instantiating each uncertain object U to one of its possible instances u with the

probability of Pr(u). Then, for an uncertain object, all the instances which are

the reverse nearest neighbors of the same facility are equivalent with respect to

computing the influences. Therefore,those instances can be considered as a group

so that the total number of possible worlds will be reduced. For a particular

possible world W , the rank of a facility f ∈ Cf in W is defined to be the number

of candidate sites whose influence is greater than s, i.e.,

rW (f) = |{f ′ ∈ Cf |IW (f ′) > IW (f)}|

where IW (f) is the influence of facility s in possible world W . The expected rank
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of a facility is the expectation of its ranks across all possible worlds, i.e.,

er(f) =
∑
W∈W

rW (f)× Pr(W )

The smaller er(f) is, the higher f ranks. The formal definition is that given a

set of facilities S, a set of uncertain objects U , a query region Q, and a natural

number k, the uncertain top k influential facility query returns the top k facilities

in Q according to the expected rank semantics [CLY09].

Based on attribute-uncertain model, an uncertain object may be influenced

by multiple facilities instead of one as the deterministic case, so they use PRNN

search to get the probability mass function (pmf) of the influence of a facility,

and then compute expected rank of a facility across all possible worlds. They

propose a general filter-refine style approach which includes efficient PRNN search,

effective pruning schemes and divide-and-conquer based refinement to obtain the

query results.

2.2.3 Dominating Query

Top k dominating queries are introduced by Papadias et al. [PTFS05]. The query

retrieves the k points that dominate the largest number of other points. It selects

the most powerful objects by using the classical concept of dominance. Unlike

skyline query, the result does not necessarily contain skyline points.

Top k dominating queries are widely studied on certain data. Yiu et al. [YM07]

propose the CBT (cost-based traversal) algorithm to select the k points with the

highest dominating score values. The algorithm CBT traverses an aR-tree level by

level to calculate the bound score of the number of points dominated by a point in

an entry of aR-tree to prune the entry with lowest score. It shows the best overall

performance over aggregate R-tree. Yiu et al. also give an extensive study on
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the evaluation of top k dominating queries in [YM09]. They first propose a set of

algorithms that apply on indexed data, and then they investigate query evaluation

on data that are not indexed. They consider the dominance relationships between

points in all dimensional subspaces. In [TPM11], the authors study progressive

algorithms for top k dominating queries, where the user expresses an interest in a

subset of the available dimensions.

Recently, uncertain query processing has received an increasing attention in

many applications. Top k dominating query on uncertain data has been studied

in [LC09b, LC13]. They propose probabilistic top k dominating (PTD) query to

retrieve k uncertain objects that are expected to dynamically dominate the largest

number of uncertain objects. Zhang et al. [ZLZ+10a] formalize threshold-based

probabilistic top k dominating queries to overcome some inherent computational

deficiency in an exact computation. Nevertheless, none of them supports the pa-

rameterized ranking semantics [LSD09, LSD11]. Moreover, as shown in [CLY09]

the top k semantics adopted in [LC13, LC09b, ZLZ+10a] cannot properly capture

the ranking of both probabilities and values. Recently, Feng et al. investigate the

problem of probabilistic top k dominating query over sliding windows [FZGZ13].

However, they only consider the x-tuple uncertain model where each uncertain

object is represented by one instance with a particular appearance probability.

Techniques proposed in [LC09b, LC13, ZLZ+10a, FZGZ13] cannot be applied to

the top k dominating model proposed in Chapter 4 due to the inherent difference

of the models.

2.2.4 Skyline Operator

Börzsönyi et al. [BKS01] first investigate the skyline operator in the context of

databases and propose an SQL syntax for the skyline query. The problem of spatial
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skyline is first proposed in [SS06]. Given a set O of objects and a set Q of query

points, each object has |Q| derived spatial attributes, each of which is the distance

of the object to a query point in Q, and hence can be mapped to a point in |Q|-

dimensional space where |Q| is the number of query points in Q. Then the spatial

skyline regarding O and Q is the traditional skyline on |Q|-dimensional space.

Skyline analysis is very useful in multi-criteria decision making applications.

The work in [PJLY07] provides a first approach to probabilistic skyline compu-

tation. As an example, consider analyzing NBA players using multiple technical

statistics criteria. Ideally, we want to find the perfect player who can achieve the

best performance in all aspects. Unfortunately, such a player does not exist. The

skyline analysis here is meaningful since it discloses the trade-off between the mer-

its of multiple aspects. A player U is in the skyline if there exists no another

player V such that V is better than U in one aspect, and is not worst than U in all

other aspects. Skyline analysis on the technical statistics data of NBA players can

identify excellent players and their outstanding merits.

The concept of probabilistic skyline was proposed in [PJLY07], which address

two major challenges about skyline analysis and computation on uncertain data.

• Modeling Skylines on Uncertain Data: They introduce the probabilistic na-

ture of uncertain objects into the skyline analysis. They calculate the proba-

bility that one object dominates the other to compare the advantages between

two objects. Based on the probabilistic dominance relation, they propose the

notion of probabilistic skyline. The probability of an object being in the sky-

line is the probability that the object is not dominated by any other objects.

• Efficient Computation of Probabilistic Skylines: They develop two algorithms

to tackle the problem. The bottom-up algorithm computes the skyline prob-

abilities of some selected instances of uncertain objects, and uses those in-
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stances to prune other instances and uncertain objects effectively. The top-

down algorithm recursively partitions the instances of uncertain objects into

subsets, and prunes subsets and objects aggressively. The methods are ef-

ficient and scalable. As verified by the extensive experimental results, the

methods are tens of times faster than the straightforward method.

The definition of the skyline operator is given in [LYZZ07]. For a given data

set, the skyline operator returns all points in the data set which are not dominated

by other points. Therefore, all players that lie on the skyline may be considered

outstanding players. Most skyline analysis only use certain data in the form of the

mean performance of the different players. Given a set of d-dimensional points,

the skyline consists of the points, called ”skyline points”, which are not dominated

by another point. A point p = (p[1], p[2], . . . , p[d]) dominates another point q =

(q[1], q[2], . . . , q[d]) iff p[i] ≤ q[i] (for 1 ≤ i ≤ d) and there is at least one dimension

j such that p[j] < q[j]. The skyline computation (or the skyline operator) is crucial

to many multi-criteria decision making applications. A typical example is a list of

hotels, each of which contains two numerical attributes distance (say, to the beach)

and price, for on-line booking. Figure 2.1 shows a sample list. In this application,

the best choice to a client, who wants to spend holiday in the beach, may be as

close as possible to the beach while also cost effective. Consequently, the “best”

choices form the skyline are given in Figure 2.2.

However, the skyline operator and top k dominating queries rank objects in

different ways: skyline ranks objects in a “defensive” way and outputs the objects

which are not worse than any other objects in a given dataset, while a top k

dominating query ranks objects in an “assertive” way and provides the objects that

are better than the largest number of other objects. As pointed out in [YM09],

the benefit of using top k dominating queries is to assimilate the advantages of top
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Skyline computation has many applications including
multi-criteria decision making. In this paper, we study the
problem of selecting skyline points so that the number of
points, which are dominated by at least one of these sky-
line points, is maximized. We first present an efficient dy-
namic programming based exact algorithm in a -space.
Then, we show that the problem is NP-hard when the dimen-
sionality is or more and it can be approximately solved by
a polynomial time algorithm with the guaranteed approxi-
mation ratio . To speed-up the computation, an effi-
cient, scalable, index-based randomized algorithm is devel-
oped by applying the FM probabilistic counting technique.
A comprehensive performance evaluation demonstrates that
our randomized technique is very efficient, highly accurate,
and scalable.

dominates

distance
price

(see Figure 1(b)).

id dist (km) price ($)
p1 4 150
p2 3 110
p3 2.5 240
p4 2 180
p5 1.7 270
p6 1 195
p7 1.2 210

(a) Hotels

full skyline

Figure 2.1: Hotel Information

Skyline computation has many applications including
multi-criteria decision making. In this paper, we study the
problem of selecting skyline points so that the number of
points, which are dominated by at least one of these sky-
line points, is maximized. We first present an efficient dy-
namic programming based exact algorithm in a -space.
Then, we show that the problem is NP-hard when the dimen-
sionality is or more and it can be approximately solved by
a polynomial time algorithm with the guaranteed approxi-
mation ratio . To speed-up the computation, an effi-
cient, scalable, index-based randomized algorithm is devel-
oped by applying the FM probabilistic counting technique.
A comprehensive performance evaluation demonstrates that
our randomized technique is very efficient, highly accurate,
and scalable.
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price

dist price ($)
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(b) Skyline

full skyline

Figure 2.2: Skyline

k queries and the skyline operator. That is, the result size in a top k dominating

query is strictly controlled by k.

2.2.5 Range Query

The aim of range queries is to find all the objects in a given range. Because

the objects are uncertain, we cannot know their exact positions and their mem-

bership in the range. As shown in [TCX+05, TXC07], the range query may be

uncertain in some applications. For instance, in the location based service a query

point (e.g., a mobile device) may be represented by an uncertain object Q due

to the inaccuracy of the measurement. Then the uncertain range query is repre-

sented by an uncertain object Q, a query distance γ and a probabilistic threshold

θ; that is, find the uncertain objects whose appearance probabilities , denoted by

Papp(U,Q, γ), regarding Q and γ are not smaller than θ. Note that the distance

between two points x and y is denoted by δ(x, y). For continuous case, we have

Papp(U,Q, γ) =
∫
y∈Qr

∫
x∈UrΛδ(x,y)≤γ

Q.pdf(y) × U.pdf(x)dxdy. As to the discrete

case, Papp(U,Q, γ) =
∑

q∈QΛδ(q,u)≤γ

∑
u∈U qp × up. The formal definition of uncer-
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tain range search is as follows.

Definition 2.3 (Uncertain Rang Search). Given a set U of uncertain objects, an

uncertain range query Q, a distance γ and a probabilistic threshold θ (0 < θ ≤ 1),

the uncertain range search retrieves the objects U ∈ U such that Papp(U,Q, γ) ≥ θ.

U -tree [TCX+05, TXC07] is the first index structure supporting range queries

on multidimensional spatial uncertain data with arbitrary PDFs. U -tree is a new

modification of R-tree by using a set of new pruning and validating techniques.

The techniques [KKPR06, SMP+07, ZLZ+10b, AF12] are also proposed to do range

search against multi-dimensional uncertain data with arbitrary PDF. These tech-

niques follow the filtering-and-verification paradigm such that, by taking advantage

of the indexing structures, many objects are filtered at a reasonable filtering cost

without explicit calculation of their appearance probabilities . The essential idea of

the existing techniques is as follows: a summary of the PDF is pre-computed for

each uncertain object to approximately capture the distribution of its PDF, and

the summaries of the uncertain objects are organized by augmenting existing index

techniques (e.g., R-tree). For a given search region rq, the lower and upper bounds

of the appearance probability can be derived at a cheap cost for each uncertain

object. Then an uncertain object U may be filtered in two ways:

1. U is pruned if the upper bound of the appearance probability is smaller than

the given probabilistic threshold θ.

2. U is validated (qualified) if the lower bound of the appearance probability is

not less than θ. Only the objects survived the filtering phase need to be

verified, i.e., explicitly computing their appearance probabilities .

Recently, Zhang et al. propose a novel technique called U -Quadtree to effectively

index the multi-dimensional uncertain objects with arbitrary PDFs to support
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range search in [ZZLL12, ZZL+14]. All the index structures will be introduced

in Section 2.3.

There are also some studies on indexing multi-dimensional uncertain objects

which focus on specific cases of objects’ PDFs and queries. For instances, in [BPS06,

BGK+07], Böhm et al. study range queries with the constraint that PDFs of

uncertain objects follow Gaussian distributions. Assuming PDFs of the objects are

either histograms or more complex ones such as Gaussian or piecewise algebraic.

In [ACTY09], Agarwal et al. provide thorough theoretical analysis on range search

on uncertain data. Managing uncertain moving objects [ZCJ+09] and uncertain

categorical data [SMP+07] have been separately studied. Aggarwal et al. [AY08]

study the problem of indexing high dimensional uncertain data with the assumption

that the PDFs of the uncertain object on each dimension are independent to others.

Assuming the space is partitioned by a virtual grid with limited number of cells,

Ma et al. [MKM08] propose solutions for efficient retrieval of uncertain spatial

point data where the location information is derived from the free text by spatial

expressions. Recently, Kinura et al. [KMZ10] propose a primary indexing technique

named UPI to speed up the query processing on uncertain data by clustering the

heap files, in which U -tree [TCX+05, TXC07] technique is used as a building block

to index uncertain objects with arbitrary PDFs. In [LC10], Lian et al. propose

a generic framework to index uncertain data. Their main focus is how to tackle

the local correlations among uncertain objects, and their indexing technique falls

in the R-tree category.

2.2.6 Similarity Join

An important database primitive for commonly used feature databases is the sim-

ilarity join. It combines two datasets based on some similarity predicate into one



38 Chapter 2. Related Work

set such that the new set contains pairs of objects of the two original sets. In

many different application areas, e.g. sensor databases, location based services or

face recognition systems, distances between objects have to be computed based on

vague and uncertain data. Conventional join queries over two multi-dimensional

datasets are fundamental in data analysis and information retrieval. Most ex-

isting techniques for join queries have been developed based on popular spatial

access methods such as R-trees. For threshold based joins, there are three main

stream spatial join algorithms using R*-tree [HKL+09]. They are the depth-first-

join (DFJ) algorithm [BKS93], the breadth-first-join (BFJ) algorithm [HJR97],

and transformation-view-join (TVJ) algorithm [LWHS06]. Techniques for top k

spatial/similarity queries are studied in [CMTV00, HS98]. Various algorithms,

such as exhaustive algorithm, recursive algorithm, Heap algorithm, and prior-

ity queue based algorithms are proposed. Many variation of join queries over

multi-dimensional space have been studied in different contexts, including road

networks [SAS06], moving objects [ZLRB08] and data streams [SCL+12].

Join queries over uncertain objects are inherently different than conventional

joins where each uncertain object takes a set of mutually exclusive instances/points

in a multi-dimensional space. The existing model for handling similarity joins over

objects with multiple instances follows the probabilistic semantics on uncertain

objects [CSP+06, KKPR06, LS08] and aims to capture relative instance distribution

among objects with multiple instances. Note that all instances in a multi-valued

object exist simultaneously instead of mutually exclusive in an uncertain object.

Due to such inherent differences in semantics, join techniques over uncertain objects

cannot be directly applied to similarity joins over multi-valued objects.

Top k similarity join, also called closest pair queries, has attracted much re-

search attention [CMTV00]. In many applications such as decision making and
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e-business, an object may be represented by multiple points (instances) in the

d-dimensional space, namely multi-valued objects [EN11].

Definition 2.4 (Top k Similarity Join). Given two sets of objects (points) U and

V in a d-dimensional metric space, the top k similarity join query retrieves k pairs

of objects P from U × V such that the distance between any pair of objects in P is

not greater than the distance of any object pairs in U × V − P.

Uncertain objects are inherently different than multi-valued objects. Instances

of an uncertain object are mutually exclusive which means at most one instance can

appear at a particular time, while all the values/instances of a multi-valued object

must occur simultaneously at any time. Moreover, as shown in [ZLC+10], models

based on uncertain semantics cannot always capture the relative distributions of

multi-valued objects. In [ZXL+12], Zhang et al. investigate the top k similarity

join problem over multi-valued objects based on a ϕ-quantile distance (ϕ ∈ (0, 1]).

2.3 Indexing Uncertain Objects

Recently, there are several index techniques proposed to speed up queries on un-

certain data. We will give an overview of them below.

qr
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Figure 2.3: MBR
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Figure 2.4: PCR
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R-tree. In R-tree approach [KKPR06, SMP+07, LC10], the MBR of an object

serves as the summary of its PDF, and MBRs are organized byR-tree. An uncertain

object U can be validated if its MBR is contained by rq, i.e., Umbr ⊆ rq, regardless

of the value of the probabilistic threshold θ. Similarly, U is pruned if Umbr does

not intersect rq, i.e., Umbr ∩ rq = ∅. This approach is simple and performs well if

the uncertain region sizes are much smaller than rq. However, as the MBR cannot

further explore the PDF of an uncertain object, the filtering capacity of the index is

poor when the size of the uncertain region is not small. As shown in Figure 2.3, for

a given search region rq, we cannot prune A regarding any probabilistic threshold θ

although intuitively Papp(A, rq) should be small. Similarly, B cannot be validated

either. Moreover, Papadias et al. propose aggregate R-tree to index the instance of

each uncertain object [PKZT01], which is called Local aR-tree. Then, the previous

R-tree indexing the object MBRs is called Global R-tree.

E

E1 E2

Pr(E)=Pr(E1)+Pr(E2)

Figure 2.5: Local aR-tree

MBRs of the uncertain objects Local aR-tree

Figure 2.6: Global R-tree

• Local aR-tree. For each uncertain object, a local aR-tree is built to organize

its instances. The aggregate information kept on each intermediate entry

is the sum of weights of instances indexed by the entry. Namely, for every

intermediate entry E in the local aR-tree, the probability of E is recorded as

the sum of probability of instances having E as an ancestor. For example, in



Chapter 2. Related Work 41

Figure 2.5, the entry E is the parent of the entries (leaves) E1 and E2, so the

probability of E equal to the sum of probability of E1 and E2.

• Global R-tree. As showed in Figure 2.6, for each object in U , we first obtain

the MBR of its instances. Then we build an R-tree on these MBRs. This R-

tree is called the global R-tree of U , which indexes the MBRs of all uncertain

objects. In a global R-tree, each leaf (data) entry is an MBR of an uncertain

object.

U-tree. The PDF summary of an object in U -tree is a finite set of prob-

abilistically constrained regions (PCRs), which is introduced by Tao et al.

in [TCX+05, TXC07]. PCR is a general version of x-bounds which aims to in-

dex one dimensional uncertain data [CXP+04]. For a given θ (0 ≤ θ ≤ 0.5), the

PCR of an object U regarding θ, denoted by U.pcr(θ), is constructed as follows.

As shown in Figure 2.4, in each dimension, two lines are calculated. In the hori-

zontal dimension, U has the probability θ to occur on the left side of line l1−, also

probability θ to occur on the right side of line l1+. Similarly, l2− and l2+ are calcu-

lated in the vertical dimension. The shaded region in Figure 2.4 is the geometric

representation of U.pcr(θ). Then we can take advantage of U.pcr(θ) to prune or

validate U regarding θ and rq. For instance, as shown in Figure 2.4, suppose θ

is the probabilistic threshold for two search regions r1q and r2q . U can be pruned

regarding r1q because r1q does not intersect U.pcr(θ). On the other hand, U can be

validated with respect to r2q since all instances below l2− are contained by r2q . As

it is infeasible to keep all U.pcr(θ) for any θ ∈ [0, 0.5], a finite number of PCRs

are pre-computed for each object and the lower and upper appearance probability

bounds can be derived. Based on the PCRs of the uncertain objects, U -tree is built

up in a similar way with R-tree where each entry in a leaf node corresponds to the

PCRs of an uncertain object.
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UI-tree. The PDF summary of an object U in [ZLZ+10b] is a set of groups

which are disjointed partitions of its PDF based on a KD-Tree. Given a search

region rq, we can derive the lower and upper bounds of Papp(U, rq) based on the

topological relationships between the groups and rq. Specifically, groups contained

by rq contribute to both lower and upper bounds of the appearance probability

since all instances in these groups are contained by rq. With similar rationale,

groups overlapped by rq only contribute to upper bound. Then an object U may

be validated (pruned) based on the lower (upper) bound of Papp(U, rq). For the

space efficiency, the groups of the uncertain objects may be merged such that a

set of groups from different objects can share the same boundary, namely “word”

in [ZLZ+10b]. The identifications of the related objects and their corresponding

probability mass are kept in each “word”. Then UI-tree is constructed in a similarly

way with R-tree where each entry of a leaf node is a “word”.

UP -Index. Recently, Angiulli et al. [AF12] develop a pivot based indexing mech-

anism for uncertain data in general metric space. For a given pivot point p and

an object U , the PDF summary of U is the histogram of the distance distribution

regarding p and U . The upper bound of Papp(U, rq) can be derived based on the

reverse triangle inequality according to the histogram and the distance between

the center of rq and the pivot point p. Then an object can be pruned based on

the upper bound derived. To enhance the pruning power, a set of pivot points are

employed in [AF12]. The advantage of UP -Index is that it can support distance

based range query in general metric space. Nevertheless, as shown in our empirical

study, its performance is not competitive under our problem setting because : (i)

an object cannot be validated in [AF12] because UP -Index cannot derive the lower

bound of Papp(U, rq), and (ii) for any range search the whole index is scanned to

prune objects, and the index size is usually large for a decent pruning capacity.
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U-Quadtree. A quadtree [FB74] is a space partitioning tree data structure

in which a d-dimensional space is recursively subdivided into 2d regions (cells).

In [ZZLL12, ZZL+14], the instances of an uncertain object U are organized by a

summary, denoted by SU , which consists of a set of entries {e}, where each entry

records the object id (e.oid), the cell of the quadtree (e.cid) and the probability

mass of instances allocated on this cell (e.p). The entries of the uncertain objects

are organized by a B+ tree where the cell ids are key values, which are generated

based on Hilbert curve. The structure of U -Quadtree is introduced below.

Given a quadtree, a summary of an object U is defined as follows:

Definition 2.5 (SU). A summary SU of an object U regarding a quadtree consists

of a set of entries {e} where each entry e is a triplet (e.c, e.o, e.p) where e.c and e.o

represent the identification (id) of the cell and the object associated with the entry,

and e.p (0 < e.p ≤ 1) is the probability mass of the instances assigned to this entry

(i.e., the cell e.c). For any instance x ∈ U , x must be assigned to exactly one cell

c (entry e) where x ∈ c (e.c) and hence
∑

e∈SU
e.p = 1.
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Figure 2.7: U -Quadtree

In Figure 2.7(a), the objects A and B have 5 instances each and all

instances have the same occurrence probability (0.2). The height of the

quadtree (h) is 3 and the ids of the cells are labeled. We may have SA =
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{(1, A, 0.2), (6, A, 0.4), (8, A, 0.4)} and SB = {(2, B, 0.4), (6, B, 0.2), (15, B, 0.4)}.

Note that the summary of an object is not unique as an instance x can be as-

signed to any cell which contains x. For instance, an alternative of SA could be

{(1, A, 0.2), (8, A, 0.8)} in which 4 instances of A are assigned to cell 8 on level 2.

As shown in Figure 2.7(b), entries of the objects are organized based on a

quadtree, named U -Quadtree, which consists of two parts:

• Entry Index (UQE): a B+ tree used to keep entries of the objects in the

secondary memory, where the key of each entry is its cell id . Similar to [HS02],

we assume the id of a cell is its Hilbert code [Fal88] generated in a recursive

way such that the cells with close spatial proximity are likely to be allocated

to the same or adjacent pages in UQE. Particularly, a leaf node of UQE is

called the entry page (e.g., P1, P2 and P3 in Figure 2.7(b)) and f denotes its

capacity (i.e., the maximal number of entries in an entry page).

• Quadtree (UQT ): a pointer-based quadtree with height h. For each cell

(node) c, let P be the first entry page in which there is an entry e with

e.c = c. We keep the address of P as the pointer of cell c. As shown in

Figure 2.7(b), a gray cell (node) of UQT implies the pointer of the cell is not

empty, i.e., there is at least one entry on it. Note that we do not need to

keep a cell in UQT if none of its descendent cells including itself contains any

entry.

2.4 Uncertain Trajectories

Recent years have witnessed the increasing amount of research on uncertain data

modeling and query processing due to their importance in many applications. In
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this subsection, we briefly introduce two categories of work closely related to the

problem studied in this chapter.

2.4.1 Uncertain Trajectories Modeling.

A variety of models have been proposed to capture the uncertainty of the trajectory

data. Early studies on uncertain trajectories employ simple geometric shapes (e.g.,

cylinders [TWHC04] and beads [PJ99]) to approximate the possible locations of a

moving object. Despite of its simplicity, this model suffers from an inherent draw-

back: the probability distribution of an object is not considered and hence cannot

appropriately support probabilistic queries. In some recent work (e.g., [ZTZS11]),

the network-constraint model is used where the raw location of a moving object is

mapped to a linear range on the road networks. In [CKP04, MLSC13, XYCL13],

the uncertain location of an object is captured by an independent probability

density function (e.g., Gaussian distribution) at each point of time. As shown

in [EKM+12b, NZE+13], the temporal dependence between two subsequent loca-

tions of an object is lost in this model. Recently, a novel evolving density model is

proposed in [JLSY14] to capture the time-varying uncertainty of the moving objects

where the probability density function may change over time. Markov Chain model

has been widely used in the literature to capture the temporal dependency of a mov-

ing object, and hence is naturally adapted to describe the uncertainty of the tra-

jectory data with low sampling rate in [EKM+12b, EKM+12a, NZE+13, XGC+13].

Moreover, [EKM+12b, EKM+12a] show that the Markov Chain model correctly

complies with the classical possible world semantics [DS07]. In our work, we em-

ploy Markov Chain model to describe the uncertain trajectories.

To model uncertain object trajectories, Emrich et al. [EKM+12b] suppose that

the locations of an uncertain spatio-temporal object o ∈ D at time t are realizations
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of a random variable o(t). An uncertain object trajectory of object o ∈ D comprises

a set of trajectories, each assigned with a probability indicating its likelihood to

be the true trajectory of o. This consideration suggests modeling uncertain object

trajectories as a realization of a stochastic process [KT75], formally:

Definition 2.6 (Uncertain Object Trajectory). Given the spatial domain S and

the time domain T , an uncertain object trajectory o(t) ∈ S of an object o ∈ D is

a stochastic process {o(t) ∈ S; t ∈ T }.

2.4.2 Capture Uncertainty by Markov Chains

In [EKM+12b, EKM+12a], an uncertain trajectory is modeled as a realization of a

stochastic process [KT75].

Markov Chains can model a discrete spatio-temporal (state-time) space with

the assumption that o(t+ 1) only depends on o(t).

Definition 2.7 (Markov Chain model). Given a stochastic process o(t) with t ∈ T

and a state s ∈ S, the stochastic process is called Markov Chain iff P (o(t + 1) =

sj|o(0) = s0, o(1) = s1, . . . , o(t) = si) = P (o(t+ 1) = sj|o(t) = si).

For an object o moving on the space S, we set Pi,j(o) = P (o(t+ 1) = sj|o(t) =

si), where Pi,j(o) represents the probability of object o moving from state si to sj

when the time changes from anytime time t ∈ T to its successive time t+1. We can

store all Pi,j(o) in a n × n matrix M(o) to represent the transition probability of

object o from state si to sj at any time t, where the matrix M(o) is called transition

matrix. Then we have o(t + 1) = o(t)×M(o). Recall that o(t) is the distribution

vector of an object o at time t where
∑

s∈S P (o(t), s) = 1. Similarly, if M(o)T is

defined as a transposed Markov Chain matrix, we have o(t) = o(t+ 1)×M(o)T .
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Given two subsequent observations o(ti) and o(tj), efficient algorithm is pro-

posed in [EKM+12b] to derive the location distribution o(t) for t ∈ (ti, tj) based

on M(o) and M(o)T . Same as [EKM+12b, EKM+12a], we assume objects share

the same Markov Chain matrix which can be learned by domain experts in various

applications.

In an uncertain object trajectory of an object o, we have several consequent

observation timestamps. The position of the object on each timestamp is cer-

tain, whereas the positions between two continuous timestamps are uncertain,

which can be modeled by the two transition matrixes. For example, if we ob-

serve the object 0 on si when t1 and then sj when t5, the positions of o on t2,

t3, t4 are unknown. Let P (o, t1) = (0|s1, . . . , 1|si, . . . , 0|sn), then the Pf (o, t2) =

P (o, t1) ×M(o), Pf (o, t3) = P (o, t1) ×M(o)2, Pf (o, t4) = P (o, t1) ×M(o)3. Simi-

larly, Let P (o, t5) = (0|s1, . . . , 1|sj, . . . , 0|sn), then the Pb(o, t4) = P (o, t5)×M(o)T ,

Pb(o, t3) = P (o, t5)× (M(o)T )2, Pb(o, t4) = P (o, t5)× (M(o)T )3. Note that Pf and

Pb mean the result derived from M(o) and M(o)T respectively. After combining

the Pf and Pb, we can get the distributions of the object on t2, t3, t4, and then the

possible worlds are gotten.

2.4.3 Range Search on Uncertain Trajectories

Range search on uncertain data has been intensively studied in recent years. A large

body of work (e.g., [TXC07, ZZLL12]) focus on the range search on a snapshot of

uncertain trajectories; that is, each object is described by a probabilistic density

function, and objects with appearance probability exceeding a given threshold are

retrieved. The problem of range search on uncertain trajectories has been investi-

gated against difference uncertain models such as cylinder model (e.g., [TWHC04]),

beads model (e.g., [PJ99]), network-constraint model (e.g., [ZTZS11]), inde-
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pendent probabilistic density function model (e.g., [CKP04]), evolving density

model [JLSY14], as well as the Markov Chain model [EKM+12b, EKM+12a].

As to the best of our knowledge, [EKM+12b, EKM+12a] are only two existing

work which study the problem of range search on uncertain trajectories modeled

by Markov Chains. Particularly, Emrich et al. propose efficient computation algo-

rithm for range search in [EKM+12b] without the support of indexing technique.

In [EKM+12a], they further improve the performance by utilizing pre-computed

sub-diamonds based summaries which can significantly reduce the number of can-

didate objects for refinement. Section 2.4.4 will introduce the sub-diamonds based

filtering technique.

2.4.4 Sub-diamonds based Filtering

t

D1

»1 
»2 P(»2)=0.5 

ti tj

a

b
c

Q1

tx

Q2
Q3

o(ti)

o(tj)

Figure 2.8: Sub-diamonds based Filtering

In this subsection, we briefly introduce the sub-diamonds based filtering tech-

nique, which is the key of the range search algorithm in [EKM+12a]. As shown

in [EKM+12a], all possible valid trajectories within a segment g(o, ti, tj) can be

bounded by a diamond for each individual dimension if the maximal speed is given.

Figure 2.8 depicts the diamond ♢1 (♢1 = ⟨o(ti), a, o(tj), b⟩) where the horizontal

axis represents the time and the vertical axis is the dimension D1. Given a range



Chapter 2. Related Work 49

search query, we may easily prune the segment g based on ♢1. For instance, we

have P (o(t), Q1) = 0 for time t ∈ [ti, tx] since the query region Q1 does not overlap

♢1 regarding the dimension D1. Thus, g can be excluded from further computation.

Similarly, we can claim o(t) is enclosed by Q2 for any t ∈ [ti, tj] if Q2 contains the

diamond regarding both D1 and D2.

Intuitively, the filtering performance can be further enhanced by maintaining a

set of sub-diamonds. For instance, ♢2 in Figure 2.8 is a sub-diamond of g where

♢2 = ⟨o(ti), a, o(tj), c⟩, and we know that its associated probability, denoted by

P (♢2), is 0.5; that is, with probability at least 0.5, o(t) is bounded by ♢2 for any

t ∈ [ti, tj]. Consequently, the segment g can be pruned for search region Q3 if

probability threshold θ ≥ 0.5 because Q3 does not overlap ♢2. The validation of

the segment can be conducted in a similar way. Together with the diamonds and

their minimal bounding rectangles, the sub-diamonds of the segments are organized

by an R-tree in [EKM+12a], namely UST-Tree.



Chapter 3

Find Top k Influential Facilities

We follow the popular possible world semantics to model the influence of each fa-

cility as a influence score distribution. The definition of influence score of a facility

in each possible world is exactly the same as the traditional BRNN query since

only one instance occurs for each uncertain object in a possible world. Then we

apply the maximal utility principle to rank the facilities. The maximal utility

principle [SS94] has been widely used in various applications such as economic,

finance and mathematics, and it selects the one with highest expected score as

the optimal solution among a set of score distributions. By assuming the uncertain

regions of uncertain objects are organized by R-tree which is the most popular

indexing technique used for uncertain objects in the literature, we propose an ef-

ficient algorithm following the synchronized R-tree traversal paradigm. Moreover,

based on a recent uncertain indexing technique [ZZLL12], namely U -Quadtree, we

further significantly improve the performance of the algorithm in terms of CPU

and I/O costs. Finally, we approve the proposed algorithms can also apply to the

samples of the uncertain objects with massive number of instances.

This chapter is organized as follows. We first formally define the problem of top

50
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k most influential facilities over uncertain objects, and introduce some preliminary

work in Section 3.1. In Section 3.2, we propose our exact algorithms based on R-

tree and U -Quadtree respectively. Then Section 3.3 presents efficient randomized

algorithms to provide approximate solutions with accuracy guarantee. Results of

comprehensive performance studies are reported in Section 3.4. Finally, Section 3.5

concludes the chapter.

3.1 Background

We present problem definition and necessary preliminaries in this section. For

references, notations frequently used in this chapter are summarized in Table 3.1.

Notation Definition
U an uncertain object
F the facility or facility entry
u instance of the uncertain object
n number of uncertain objects
m number of instances per uncertain object

I+ (I−) upper(lower) bound of expected score
E entry of R-tree

NND Nearest Neighbor Distance
nnd min(R1, R2) the minimal NND between rectangles

R1 and R2

nnd max(R1, R2) the maximal NND between rectangles
R1 and R2

T, t object tuple
T.e entry associated with T
T.F the facilities which may influence

the object associated with T
λ pruning threshold for expected score
s number of sample sets (rounds)
Si i-th sample set

Table 3.1: The summary of notations.
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3.1.1 Problem Definition

A point (instance) x referred in this chapter, by default, is in a d-dimensional

numerical space. Given two points x and y, the distance between them is denoted

by d(x, y). Euclidian distance metric is employed in this chapter, and the techniques

developed in this chapter can be easily extended to other metric distances. In this

chapter, we focus on the bichromatic nearest neighbor search. Given a set F of

facilities (points) and the nearest neighbor of an object point x (x is not a facility )

is its nearest facility, denoted by NN(x); that is, d(x,NN(x)) = min{d(x, F )|F ∈

F)}. Without loss of generality, we assume the nearest neighbor of a point x

(NN(x)) is unique.

Uncertain Objects. An uncertain object can be described either continuously or

discretely. In this chapter, we focus on discrete case. Note that we can discretize a

continuous probability density function (PDF) of an uncertain object by sampling

methods. In the discrete cases, an uncertain object consists of a set {u1, u2, . . . , um}

of instances (points) where for 1 ≤ i ≤ m, ui occurs with the probability pui

(pui
> 0), and

∑m
i=1 pui

= 1. For an uncertain object U , Umbr denotes the minimal

bounding rectangle (MBR) of the instances of U .

Note that, in this chapter, we assume the facilities are represented by points

because usually their locations can be obtained precisely.

The possible world semantics. Given a set of uncertain objects

{U1, U2, . . . , Un}, a possible world W = {u1, u2, . . . , un} is a set of instances sequen-

tially sampled from each object. Assume the uncertain objects are independent to

each other, and the probability ofW to appear is Pr(W ) =
∏n

i=1 pui
. LetW denote

the set of all possible worlds, then
∑

W∈W Pr(W ) = 1.

Example 3.1. In Figure 3.1(a), F consists of three facilities F1, F2 and F3, and

there are three uncertain objects A, B and C. Both A and B have two instances
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F1

(c) Influence score distributions of the facilities
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Figure 3.1: Example for the Problem Definition

with the same occurrence probability (0.5), while C has only one single instance c1

with pc1 = 1.0. Consequently, there are totally 4 possible worlds in this example,

where W1 = {a1, b1, c1}, W2 = {a1, b2, c1}, W3 = {a2, b1, c1}, W4 = {a2, b2, c1} and

the probability of each possible world is 0.25. Particularly, the possible world W1 is

illustrated in Figure 3.1(b).

For each possible world W , let s(F,W ) denote the influence score of the facility

F regarding W , which is the number of reverse nearest neighbors of F in W ; In this

chapter, for each facility F , we use SF to represent the influence score distribution

of F , where Pr(SF = v) =
∑

W∈W∧s(F,W )=v Pr(W ).

Example 3.2. In Figure 3.1(b), we have s(F1,W ) = 1 , s(F2 ,W ) = 2 and

s(F3,W ) = 0. Figure 3.1(c) illustrates the score distributions of F1, F2 and F3.

For facility F1, we have Pr(SF1 = 1) = 0.5, Pr(SF1 = 2) = 0.5. Similarly,

Pr(SF2 = 0) = 0.25, Pr(SF2 = 1) = 0.5, Pr(SF2 = 2) = 0.25,Pr(SF3 = 0) = 0.5

and Pr(SF3 = 1) = 0.5.

The influence score distribution of a facility F (SF ) is a random variable, and

hence we can apply the maximal utility principle to rank the facilities. The

maximal utility principle [SS94] is one of the most popular models to select the

one with highest expected score as the optimal solution among a set of score

distributions. In this chapter, the expected influence score of a facility F , denoted
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by I(F ), is defined as follows.

I(F ) =
∑
W∈W

s(F,W )× Pr(W ) (3.1)

As the number of possible worlds grows exponentially regarding the number of

uncertain objects in U and the number of instances in each uncertain object, it is

cost-inhibitive to apply Equation 3.1 straightforwardly by enumerating all possible

worlds. Therefore, we will find an alternative of Equation 3.1 which can be derived

with reasonable computational cost.

Let NN(U,W ) denote the nearest neighbor (facility) of U in the possible world

W , and σ(NN(U,W ) = F ) = 1 if the facility F is the nearest neighbor of U in

the possible world W , and σ(NN(U,W ) = F ) = 0 otherwise. Since we assume the

uncertain objects are independent to each other, Equation 3.1 can be rewritten as

follows.

I(F ) =
∑
W∈W

(
∑
U∈U

σ(NN(U,W ) = F ))× Pr(W )

=
∑
U∈U

Pr(NN(U) = F )

=
∑
U∈U

∑
u∈U∧NN(u)=F

pu (3.2)

where Pr(NN(U) = F ) is the probability that F is the nearest neighbor of U , i.e.,

Pr(NN(U) = F ) =
∑

u∈U∧NN(u)=F pu and NN(u) is the nearest neighbor of the

instance (point) u.

Equation 3.2 implies that we can avoid enumerating all possible worlds since we

can independently compute Pr(NN(U) = F ) (i.e., nearest neighbor probability)

for each uncertain object. Our empirical study shows that even a naive imple-

mentation of the Equation 3.2 can outperform the existing work which follows the

expected rank model.
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In the light of maximal utility principle, we aim to find the k facilities with

highest expected influence scores, which is formally described below.

Problem Statement. Given a set of uncertain object O and a set of facility

F , find the k facilities with the highest expected influence scores. We assume the

number of facilities |F| ≥ k, and ties are broken arbitrarily.

3.1.2 Expected Score vs Expected Rank

In [ZHZZ12], Zheng et al. propose the expected rank based ranking model to

evaluate the influence of the uncertain objects. For a given facility F , its expected

rank, denoted by er(F ), is calculated as follows.

er(F ) =
∑
W∈W

r(F,W )× Pr(W ) (3.3)

where r(F,W ) is the rank of F in the possible world W . Then the k facilities with

highest ranks are retrieved.

Given a possible worldW , the rank of a facility (r(F,W )), is calculated based on

its influence score (i.e., s(F,W )) as well as influence scores of other facilities, while

the expected score computation is independent to other facilities. This implies that

the expected rank based ranking model is much more complicate than the expected

score based model. As shown in [ZHZZ12], we may have to enumerate all possible

worlds in the worse case, which is cost-inhibitive in practise. Therefore, although

novel pruning techniques are proposed to significantly improve the performance, the

computational cost of the algorithm is still expensive due to the high complexity

of the ranking model.

As mentioned in [CLY09], the expected score based ranking approach does not

satisfy the value invariance property, which implies that the ranking results of the

expected rank model and the expected score model may be different if there are
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some inconsistent extreme scores in the possible worlds. For instance, a facility

F has extremely high score in a few of the possible worlds such that its rank is

boosted by this extreme value. Nevertheless, under our problem setting, for each

possible world we have
∑

F∈F s(F,W ) = n where n is the number of uncertain

objects, and hence it is unlikely to have facilities with inconsistent extreme scores.

This is confirmed in our empirical study which shows that two models have almost

the same top k results but new algorithms proposed in this chapter are much more

efficient (up to one order of magnitude faster) due to the simplicity of our new

ranking model and efficiency of pruning techniques.

3.1.3 Preliminaries

Various indexing techniques have been proposed to organize uncertain objects.

In this chapter, we apply R-tree and U -Quadtree based indexing techniques to

facilitate the expected influence score computation. Note that the R-tree based

indexing technique is the most widely used approach in the literature to index

uncertain objects [SMP+07], and U -Quadtree is the most recent indexing technique

to support range search on uncertain objects.

Indexing uncertain objects by R-tree

Given an uncertain object U , we use Umbr to denote the minimal bounding rectangle

(MBR) of the instances of U . Figure 3.2 illustrates the basic idea of the R-tree

based indexing approach where the MBRs of the uncertain objects are indexed by

R-tree [Gut84]. As to each uncertain object, an aggregate R-tree is employed to

organize the instances where the aggregate value of each intermediate entry is the

probability mass of the instances in the entry.
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E

E1 E2

Pr(E)=Pr(E1)+Pr(E2)

(a) Local aR-tree

MBRs of the uncertain objects Local aR-tree

(b) Global R-tree

Figure 3.2: R-tree based Indexing

Indexing Uncertain Objects by U-Quadtree

A quadtree [FB74] is a space partitioning tree data structure in which a d-

dimensional space is recursively subdivided into 2d regions (cells). In [ZZLL12],

the instances of an uncertain object U are organized by a summary, denoted by

SU , which consists of a set of entries {e}, where each entry records the object id

(e.oid), the cell of the quadtree (e.cid) and the probability mass of instances allo-

cated on this cell (e.p). The entries of the uncertain objects are organized by a B+

tree where the cell ids are key values, which are generated based on Hilbert curve.

Figure 3.3 illustrates an example of the U -Quadtree.

Example 3.3. In Figure 3.3(a), objects A and B have 5 instances each and

all instances have the same occurrence probability (0.2). The height of the

quadtree (h) is 3 and the ids of the cells are labeled. We may have SA =

{(1, A, 0.2), (6, A, 0.4), (8, A, 0.4)} and SB = {(2, B, 0.4), (6, B, 0.2), (15, B, 0.4)}.

Note that the summary of an object is not unique as an instance x can be

assigned to any cell which contains x. In [ZZLL12], a novel indexing construction

algorithm is proposed to effectively build U -Quadtree based on the cost model.

Moreover, the instances of each uncertain object are also organized by an aggregate

' , ----------- "" 
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R-tree in [ZZLL12].
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3.2 Exact Algorithms

In this section, we investigate efficient algorithms to compute the top k most in-

fluential facilities based on their expected influence scores. Section 3.2.1 presents

a straightforward implementation of the algorithm. Assuming the uncertain ob-

jects are organized by R-tree, Section 3.2.2 improves the performance of the algo-

rithm following the filtering and verification paradigm. By taking advantage of an

enhanced uncertain object indexing technique, U -Quadtree, Section 3.2.3 further

improves the performance of the filtering and the verification algorithms.

In this chapter, we assume facilities are organized by R-tree since it is one of the

most popular index techniques in commercial spatial databases. Nevertheless, our

techniques developed in this chapter can be easily extended to other hierarchical

spatial indexing techniques.
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3.2.1 Naive Algorithm

Algorithm 1 illustrates a naive implementation of the algorithm to compute the

nearest neighbor probability of each instance regarding all facilities following Equa-

tion 3.2. For each instance of an uncertain object, a nearest neighbor query [PM97]

is issued to find its nearest facility F and the expected score of F is increased by

the occurrence probability of the instance.

Algorithm 1: Naive Algorithm(SU , SF , k)

Input : k, Uncertain object set SU , Facility set SF

Output: Top k most influential facilities

1 for each U ∈ SU do

2 for each instance u ∈ U do

3 for find nearest facility F ∈ SF do

4 I(F ) := I(F ) + pu;

5 return top k facilities with highest expected score;

Although we do not need to explore all possible worlds following the expected

score semantics, the performance of the algorithm is not scalable to the number

of instances and facilities because the instances of all objects are accessed in Algo-

rithm 1 and the expected scores are calculated for all facilities, which leads to high

CPU and I/O costs.

3.2.2 R-tree based Algorithm

To address the scalability issue in the above naive algorithm, in this subsec-

tion, we propose the R-tree based algorithm following the filtering and verification

paradigm. More specifically, based on the MBRs of the uncertain objects, which
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are organized by R-tree, we can come up with the lower and upper bounds of the

expected influence scores of the facilities in the filtering phase. Then some facilities

can be pruned based on the widely used top k filtering conditions; that is, a facility

F will be eliminated from candidate set if there are a set Q of k other facilities

such that I+(F ) < I−(F ′) for any facility F ′ in Q, where I+(F ) (I−(F )) denotes

the upper (lower) bound of expected score for the facility F . In the refinement

phase, we only need to explore the instances of the uncertain objects which may

contribute to the expected scores of the facilities in the candidate set.

In this chapter, we assume the MBRs of the uncertain objects and facilities

are organized by an aggregate R-tree RO and a R-tree RF respectively. We first

introduce some notations used in this chapter.

Definition 3.1. Nearest Neighbor Distance (NND). Given a set of facilities F ,

the distance between a point x and its nearest neighbor F is the nearest neighbor

distance of x regarding F , denoted by nnd(x,F). In [XZKD05], effective method is

proposed to compute the minimal and maximal nearest neighbor distances between

two rectangles. In this chapter, we use nndmin(R1, R2) to denote the minimal near-

est neighbor distance between two rectangles R1 and R2; that is, for any point x

in R1, its nearest neighbor distance regarding a set of facilities F contained by R2

is not smaller than nndmin(R1, R2), i.e., nnd(x,F) ≥ nndmin(R1, R2). With the

same rationale, we have nndmax(R1, R2) where nnd(x,F) ≤ nndmax(R1, R2).

To enable computing the expected scores of the facilities in a level by level

fashion, we introduce the concept of object tuple and facility tuple so that the

expected score of a group of facilities or uncertain objects can be updated or pruned

at the same time.

Definition 3.2. Object Tuple (T ). An object tuple T is employed to maintain the

information used for the NND computation of a set of uncertain objects in an entry
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e. Particularly, T.e is the object R-tree entry ( intermediate entry or data entry)

associated with T , and T.F is a set of facility R-tree entries (intermediate entry or

data entry) which may contribute to the NND computation of the objects in T.e.

Example 3.4. In Figure 3.4, there are four uncertain objects U1, U2, U3 and U4,

and their MBRs are kept in data entries {e1, e2, e3, e4}. Suppose the object tuple T

refers to the entry E1, then we have T.e = E1 and T.F = {F1, F2, F3} where F1,

F2, F3 are facilities entries which may contribute to the NND computation of the

object associated with T .

E1

e1

e2 E2
e3

e4

F1

F2

F3

RU E0

E1 E2

e2 e3
e4e1

MBR of the uncertain objectFacilities

F1 F2 F3

RF F0

Figure 3.4: Motivation Example

Whenever there is no ambiguity, we use F to denote an entry in the facility R-

tree. We use I−(F ) and I+(F ) to denote the lower and upper bounds of the expected

score of F . Note that F may represent an intermediate entry which contains a set

of facilities.

R-tree based Filtering

Motivation

The basic idea of the filtering algorithm is to conduct the NND computation on

the high level entries of RO and RF such that we do not need to compute the NND

regarding each individual object and facility, and hence improve the performance

of the algorithm in terms of CPU and I/O costs.
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Figure 3.5: Motivation Example

In Figure 3.4, let T refer to the entry E1 and T.F = {F1, F2, F3}. We can remove

F2 and F3 from T.F since the maximal NND between E1 and F1 (nnd max(E1, F1))

is smaller than the minimal NND from E1 to F2 and F3 (nnd min(E1, F1) and

nnd min( E1, F3)) , which implies that none of the facilities in F2 and F3 can

contribute to the NND computation of the objects in E1 and hence T.F = {F1}.

Similarly, we have T.F = {F2, F3} when T.e refers to E2. Moreover, let λ be the

k-th largest lower bounds of the expected scores for the facility entries seen so far,

we do not need to further explore the entries since none of the facilities in the

entry can be top k influential facilities. In this chapter, we say a facility entry F is

disabled if I+(F ) < λ.

Besides the facility entries, we can also prune object entries in this chapter. In

Figure 3.5(a), we have T.e = E1 and T.F = {F1, F2, F3}. Suppose F1 is a data

entry, i.e., F1 corresponds to a single facility, and the maximal NND between F1

and E1 is smaller than the minimal NND from E1 to F2 and F3, then we can

increase I−(F1) by agg(E1) where agg(E1) is the number of uncertain objects in

E1. Clearly, we do not need to further explore the uncertain objects in E1 and E1

is marked as disabled . On the other hand, as shown in Figure 3.5(b), suppose all

facility entries in T.F are disabled (shown as grey rectangles in the example), we

r -~ 
I- J 

------- ........ 
, ' , ' 

I I 

' , .... .. I 

... _____ __ 



Chapter 3. Find Top k Influential Facilities 63

can also prune E1 since objects in E1 only contribute to the expected scores of the

non-promising facilities.

Algorithm Algorithm 2 illustrates the details of the R-tree based filtering algo-

rithm on RO and RF , which follows the synchronized R-tree traversal paradigm

used in spatial joins. A FIFO queue (Q) is employed to keep object tuples, and

the first object tuple is initialized by the roots of RO and RF (Lines 2-5). For

each object tuple T popped from Q, Line 10 puts the object tuple T to S which

keeps the objects that need to be further explored in the refinement phase if all

entries in T.e and T.F are data entries. Otherwise, Line 13 generates an object

tuple t for each child entry of T.e 1. Then for each facility entry in T.F , we put all

of its child entries {ef} to t.F if it is not marked as disabled . Meanwhile, I−(ef )

and I+(ef ) are set by its parent entry in Line 18. Line 19 calculates the maximal

NND from T.e to facility entries in t.F , denoted by dmax. For each facility entry ef

in t.F , we exclude ef from t.F if nnd min(t.e, ef ) > dmax and decrease I+(ef ) by

agg(t.e) (Line 20-23). Recall that agg(t.e) is the number of uncertain objects in t.e.

The facility entry ef will be pruned in Line 25 if its upper bound of the expected

score is smaller than λ. In Line 26-28, we increase I−(ef ) by agg(t.e) and do not

further explore uncertain objects in t.e (i.e., prune t) if ef is the only data entry

in e.F . In Line 29-30, we prune the object tuple t if all of the facilities in t.F are

non-promising facilities. Line 32 pushes the object tuple t to Q if it is not disabled .

Finally, Algorithm 2 terminates when Q is empty, and the facilities surviving the

filtering phase (C) will be returned as well as the object tuples in S.

1In the case that T.e is a data entry, we simply set t.e = T.e at Line 13. The same strategy

goes for facilities in Line 16.
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Algorithm 2: R-tree based Filtering(RO, RF , k)

Input : RO : the aggregate R-tree for uncertain objects,
RF : the R-tree for facilities, k

Output: C : a set of candidate facilities,
S : objects need to be further explored

1 C := ∅; S := ∅; Q := ∅; λ = 0;
2 generate a new tuple T ;
3 T.e← the root of RO;
4 ef ← the root of RF ;
5 T.F ← ef ; I

−(ef ) := 0 ; I+(ef ) := # objects in RO;
6 push T into FIFO queue Q;
7 while Q is not empty do
8 T ← pop the head of Q;
9 if T.e is data entry and all facility entries in T.F are data entries then

10 S := S ∪ T ;

11 else
12 for each child entry e′ of T.e do
13 generate a new object tuple t for e′ where t.e := e′;
14 for each facility entry F in T.F do
15 if F is not disabled then
16 for each child entry ef of F do
17 t.F := t.F ∪ ef ;
18 I−(ef ) := I−(F ); I+(ef ) := I+(F );

19 dmax := min{nnd max(t.e, ef ) } for all ef in t.F ;
20 for each facility entry ef in t.F do
21 if nnd min(t.e, ef ) > dmax then
22 t.F := t.F − ef ;
23 I+(ef ) := I+(ef )− agg(t.e);

24 if I+(ef ) < λ then
25 Disable F ;

26 if t.F contains exactly one data entry ef then
27 I−(ef ) := I−(ef ) + agg(t.e);
28 Update λ; Disable t;

29 if all facilities in t.F are disabled then
30 Disable t;

31 if t is not disabled then
32 Push t to the tail of Q;

33 C ← facilities with I+(F ) ≥ λ;
34 return S, C;
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R-tree based Refinement

After the filtering phase, we need to explore the instances of the uncertain objects

in S such that we can come up with the top k influential facilities in the refinement

phase. Algorithm 3 illustrates the framework of the refinement procedure. For

each object tuple T in S, we apply the function Refinement to refine the expected

scores of the facilities in the candidate set. Note that we do not need to process T

if all facilities in T.F are marked as disabled . Finally we have I(F ) = I−(F ), and

the k facilities with the highest expected scores are retrieved.

Algorithm 3: R-tree based Refinement(C, S, k )

Input : C : the candidate facilities,

S : the objects tuples, k

Output: I : the top k influential facilities

1 I := ∅;;

2 for each object tuple T in S do

3 if all facilities in T.F are disabled then

4 Goto Line 2;

5 U ← the uncertain object associated with T.e;

6 Refinement( root of RU , T.F);

7 I ← k facilities with the highest I−(F ) values;

8 return I;

In the following, we first discuss the access orders at Line 2 of Algorithm 3 ,

then present the function Refinement at Line 6.

Access Order. Intuitively, we should put high priority to the objects which

contribute to the facilities with large upper bounds of the expected scores since

they are more likely to be the top k influential facilities, and hence leads to a
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tighter expected score threshold λ, i.e., better pruning power. In this chapter, an

object tuple T is sorted by the largest upper bounds of expected scores for facilities

in T.F . Our empirical study shows this strategy outperforms other alternatives

such as the random order and ordering by the size of T.F , i.e., the number of

facilities which may influence the uncertain objects associated with T.e.

Refinement Algorithm. Algorithm 4 is used to update the expected scores of

the facilities by exploring the instances kept in an aggregate R-tree entry e. It is

similar to the R-tree based filtering algorithm (Algorithm 2) except that: (i) In

Algorithm 2, both object entry and facility entry are drilled down in a level by level

fashion, while in Algorithm 4 only the object entries are expanded since we already

reach the bottom of the facility R-tree in the filtering phase. (ii) At Line 7, 10, 18

and 22 of Algorithm 4, p(e) represents the probability mass of the instances in the

aggregate R-tree entry e.

3.2.3 U-Quadtree based Algorithm

Observe that the performance of R-tree technique is poor when the sizes of the

MBRs of the uncertain objects are not very small because it is not effective to cap-

ture the instance distribution of an uncertain object by a single MBR. In [ZZLL12],

Zhang et al. propose a novel indexing structure based on the quadtree such that a

good tradeoff can be achieved between the filtering cost and refinement cost.

Suppose the uncertain objects are organized by U -Quadtree and the instances of

each uncertain object are kept in an aggregate R-tree, in this subsection, we present

efficient U -Quadtree based algorithm to identify the top k influential facilities.
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Algorithm 4: Refinement(e, F )

Input : e : the R-tree entry,

F : a set of facilities

Output: Updated F
1 Q := ∅; T.e := e ; T.F := F ;
2 push T to Q;

3 while Q is not empty do

4 T ← pop the head of Q;

5 if T.e is a data entry then

6 Find the nearest facility F in T.F ;
7 I−(F ) := I−(F ) + p(T.e);

8 Update λ;

9 for other facility F ′ in T.F do

10 I+(F ′) := I+(F ′)− p(T.e);

11 Disable F ′ if I+(F ′) < λ;

12 else

13 for each child entry e′ of T.e do

14 t.e← e′;

15 t.F := T.F ;
16 dmax := min{nnd max(T.e, F ) | F ∈ T.F};
17 for facility F in t.F with nnd min(T.e, F ) > dmax do

18 I+(F ) := I+(F )− p(t.e);

19 remove F from t.F ;
20 Disable F if I+(F ) < λ;

21 if There is only one facility F in t.F then

22 I−(F ) := I−(F ) + p(t.e);

23 Update λ;

24 else

25 Push t on the tail of Q;

26 return F , λ;
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U-Quadtree based Filtering

As the U -Quadtree is also a hierarchical spatial tree structure, Algorithm 2 can be

modified to support the filtering procedure. Recall that the MBR of an uncertain

object U is kept for R-tree index, while an uncertain object U is described by a

summary SU in U -Quadtree which consists of a set of entries where each entry is

represented by its corresponding cell in the quadtree and the probability mass of

the instances assigned to the cell. Therefore, in Line 10 of Algorithm 2, an object

tuple is kept in S if it is a cell at the lowest level and all facilities in T.F are data

entries. Moreover, for an object tuple T , T.e corresponds to a cell c which maintains

the entries of the uncertain object summaries assigned to c, and T.F records the

facility entries which may influence the instances of the uncertain objects associated

with c. When I−(ef ) ( I+(ef ) ) is increased (decreased), instead of agg(T.e) the

probabilities sum of all entries on c (i.e., T.e) will be used.

U-Quadtree based Refinement

E1

Boundary of the Cell C

E2
E3

Figure 3.6: Containment Example

We first introduce the containment relationship between a cell c and an entry

E in our algorithm description. The cell c fully contains the entry E if all points
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in the MBR of E are contained by the boundary of c. If c does not fully contain

E but some points in the MBR of E are contained by the boundary of c, then c

partially contains E. Otherwise, there is no containment relationship between c

and E. For instance, in Figure 3.6, E2 is fully contained by c and E1 is partially

contained by c.

Algorithm 5: U-Quadtree based Refinement (C, S, k , λ )

Input : C : the candidate facilities,

S : the objects need to further explore,

k: top k

Output: I : the top k influential facilities

1 I := ∅;

2 for each uncertain object U in S do

3 for each cell c associated with U do

4 Q := ∅; Q← root of RU ;

5 while Q is not empty do

6 e← pop the head of Q;

7 if MBR of e is fully contained by the cell c then

8 Refinement( e , F);

9 else if MBR of e is partially contained by the cell c then

10 for each entry e′ of e do

11 Push e′ to the tail of Q;

12 I ← k facilities with the highest I−(F );

13 return I;

Algorithm 5 illustrates the details of the U -Quadtree based refinement algo-
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rithm. For each uncertain object U survived in the filtering phase, we issue a set

of window queries to update the expected scores of the facilities in F . More specif-

ically, a FIFO queue Q is employed to keep entries in the aggregate R-tree of the

uncertain object U (RU), which is initialized by the root of RU . For an entry e

in the RU , we will invoke the function Refinement if it is fully contained by c.

Otherwise, the child entries of e are pushed to Q if e is partially contained by c.

Note that a data entry will either be fully contained by c or have no containment

relationship with c. Finally, we have I(F ) = I−(F ), and the k facilities with the

highest expected scores are returned.

3.3 Randomized Algorithms

In some scenarios, each object may contain a large number of instances. For ex-

ample, an uncertain object may appear at many possible locations. Moreover, to

support the query processing on uncertain objects which are described by continu-

ous probabilistic density functions, a massive number of instances will be sampled

to discretize the continuous uncertain object (e.g., [TXC07]). As expected, it is

reported in our empirical study that the performance of exact algorithms degrades

when the number of instances grows due to the expensive I/O costs incurred. There-

fore, in this Section we propose randomized algorithms to significantly improve the

performance with accuracy guarantee. Specifically, we briefly introduce the moti-

vation of the randomized algorithm as well as its straightforward implementation

in Section 3.3.1. Section 3.3.2 shows that the accuracy of the algorithms are guar-

anteed with sufficient number of sampled instances for each uncertain object. In

Section 3.3.3, we show that the exact algorithms developed in Section 3.2 can

be immediately applied against the sampled instances of the uncertain objects to
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improve the performance.

3.3.1 Motivation

The basic idea of the randomized algorithm is to sample all possible worlds W by

a small number of s possible worlds S1, S2, . . ., Ss. Given n uncertain objects,

each sampled possible world Si consists of n sampled instances where an instance

is randomly sampled from each uncertain object. In each sample set Si (i.e., the

i-th sampled possible world), the sampled instance of an uncertain object is chosen

according to their appearance probabilities; that is, an instance u ∈ U is chosen

with probability pu in Si. For each sample set Si, we can calculate the influence

score of each facility with traditional approach since there is only one instance for

each uncertain object regarding Si. Then we can come up with the estimation of

the influence score for each facilities by the average scores of the facilities on the

samples sets S1, S2, . . . , Ss; that is, given sample sets S, we can use the following

formula to estimate the expected influence score of a facility F where Ĩi(F ) is the

number of reverse nearest neighbors (i.e., influence score) of F in the sample set

Si.

Ĩ(F ) =
s∑

i=1

Ĩi(F )/s (3.4)

Following is an example of the randomized method.

Example 3.5. As shown in Figure 3.7, suppose there are three objects and each

object has three instances with the same appearance probability. There are two

sample sets S1 and S2 where S1 = {a1, b1, c1} and S2 = {a3, b2, c2}. According to

Equation 3.4, we have Ĩ1(F1) = 2, Ĩ1(F2) = 1, Ĩ2(F1) = 1, and Ĩ2(F2) = 2.

Algorithm 6 illustrates a straightforward implementation of the randomized

algorithms for expected score estimation according to Equation 3.4. For each sample
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Figure 3.7: Example of Sampling Approach

set Si ∈ S where S represents s sample sets, we can calculate the influence score for

each facility. Line 4 increases the estimated influence score of a facility F , denoted

by Ĩ(F ), by 1 against each of its reverse nearest neighbors.

In Section 3.3.2 we conduct detailed analysis on the accuracy guarantee of Al-

gorithm 6. Then we further improve the performance of the randomized algorithm

in Section 3.3.3.

Algorithm 6: Naive Randomized Algorithm(S, SF , k)

Input : Sample sets S = {S1, . . . , Ss}, Facility set SF , k

Output: Top k most influential facilities

1 for each Si ∈ S do

2 for each sampled instance u ∈ Si do

3 for find its nearest facility F ∈ SF (i.e.,NN(u) = F ) do

4 Ĩ(F ) := Ĩ(F ) + 1;

5 for each facility F ∈ SF do

6 Ĩ(F ) := Ĩ(F )/s;

7 return top k facilities with highest estimated expected influence score;
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3.3.2 Accuracy Evaluation

In this subsection, we show that with sufficient number of sample sets, our random-

ized algorithm can achieve a good accuracy. For an uncertain object Uj, let ui,j

denote the sampled instance of Uj in Si where 1 ≤ i ≤ s and 1 ≤ j ≤ n. Then for a

facility Fl, the event that the nearest facility of ui,j is Fl in Si, i.e., NN(ui,j) = Fl,

can be described by the following random variable.

Zi,j,l =


1 if NN(ui,j) = Fl in Si

0 otherwise

(3.5)

Let the random variable Yi,l record the influence score of the facility Fl in Si

where

Yi,l =
n∑

j=1

Zi,j,l (3.6)

Similarly, we define the random variable Xl where

Xl =
m∑
i=1

Yi,l/m (3.7)

According to the description of Algorithm 6 and Equation 3.4, we have Ĩ(Fl) =

Xl and Ĩi(Fl) = Yi,l.

Since Pr(Zi,j,l = 1) = Pr(NN(ui,j = Fl)) where ui,j is the sample instance of

the uncertain object Uj in the sample set Si, we have

E(Zi,j,l) =
∑

u∈Uj ∧ NN(u)=Fl

pu (3.8)

Consequently, according to the definition of I(F ) in Equation 3.2, we have

E(Yi,l) = E(
n∑

j=1

Zi,j,l) = I(Fl) (3.9)

and

E(Xl) = E(
s∑

i=1

Yi,l/s) = I(Fl) (3.10)
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Because the random variables {Xi,j,l} are independent to each others, we have

the following theorem based on the Hoeffding bound [Hoe63].

Theorem 3.1. Given an ϵ(0 < ϵ < 1), a δ(0 < δ < 1), and n objects, if s =

O( 1
ϵ2
log 1

δ
), then

Pr(|Xl − I(Fl)| ≤ ϵn) ≥ 1− δ

Theorem 3.1 indicates that when the number of sampling sets (s) is sufficiently

large, our estimation of I(F ) (i.e., Ĩ(F )) in Algorithm 6 is rather accurate.

As we aim to retrieve the top k most influential facilities, it is more interesting

to evaluate the precision and recall of the top k answer returned. Since we only

return k facilities, the precision and recall are always the same in Algorithm 6. In

the following, we show that when the number of sample sets s is sufficiently large,

the precision and recall can be guaranteed with probability at least 1− δ.

We first introduce the following Lemma.

Lemma 3.1. For two facilities Fi and Fj, suppose that I(Fi) > I(Fj). Then,

Pr(Xi ≤ Xj) ≤ exp(−s(I(Fi)− I(Fj))
2/(2 ∗ n2)).

Proof. Let Z = Xj −Xi. We have Pr(Xj ≤ Xi) = Pr(Z −E(Z) > I(Fi)− I(Fj)).

By Hoeffding inequality (Theorem 2 in [Hoe63]), the lemma is immediate.

Suppose we have I(Fi) > I(Fj) (i.e., E(Xi) > E(Xj)), Lemma 3.1 indicates the

likelihood that the order of Xi and Xj is reversed (i.e., Xi < Xj) in Algorithm 6

decreases exponentially against the sample set size s and the difference between

I(Fi) and I(Fj). Based on the above observation, we have the following theorem

which indicates that Algorithm 6 can achieve a good precision and recall when the

number of the sample sets s is sufficiently large.
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Theorem 3.2. For a given precision or recall α, suppose the objects are sorted

on their expected scores with non-increasing order. Let λ equal to I(Fβ)− I(Fk+1)

where β = ⌈αk⌉ and assume λ ≥ ϵn. Then when the number of sample sets

s = O( 2
ϵ2
log k×n

δ
), we have Pr(k∗ < α× k) ≤ δ where k∗ is the number of true top

k most influential facilities returned by Algorithm 6.

Proof. As shown in Figure 3.8, if none of the facilities in Fk+1, . . . , Fn reverse order

with any facilities in F1, . . . , Fβ, we have k∗ > α × k. Since the probability of

Xk+1 > Xβ is bounded by exp(−sλ2/n2) based on Lemma 3.1 and for all l < β

and j > k + 1, Pr(Xj > Xl) ≤ Pr(Xk+1 > Xβ), we have Pr(k∗ < α × k) <

k × n× exp(−s× λ2/(2n2)) ≤ δ.

(k+1)-th-th

λ
β

Figure 3.8: Proof of Theorem 3.2

3.3.3 Enhanced Randomized Algorithms

Because of the small number of sample sets, Algorithm 6 can improve the perfor-

mance when the number of instances in each object is massive. In this subsection,

we discuss how to further improve the performance of randomized algorithms by

applying indexing techniques on the sampled instances.

Intuitively, for each sample set (round) Si we can organize the sampled instances

by an R-tree. Then the all nearest neighbor computation techniques (e.g., [CP07])

can be immediately employed to speed up the computation of influence scores in

Algorithm 6. However, all sampled instances will be explored which may lead to
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high I/O costs. To address this issue, we organize the sampled instances in another

way.

Observe that the calculation of Ĩ(Fl) for a facility Fl in Algorithm 6 can be

rewritten as follows due to the independence of the random variables {Zi,j,l}.

Ĩ(Fl) =
s∑

i=1

n∑
j=1

Zi,j,l/s

=
n∑

j=1

s∑
i=1

Zi,j,l/s (3.11)

Equation 3.11 implies that we can compute the influence score for each indi-

vidual facility, and hence the sampled instances from the same object can be

organized in the same spatial indexing structure, instead of grouping sampled in-

stances in the same sample set. According to Equation 3.2 and Equation 3.5

as well as the fact that an instance u of the uncertain object U is chosen with

probability pu, we can apply the exact algorithms developed in Section 3.2 by

regarding s sampled instances of an object U as its instances; that is, we have

U = {u1, . . . , us} and pui
= 1

s
where ui is the sampled instance of U in Si. Our

empirical study shows that this can significantly improve the performance of the

randomized algorithm.

3.4 Experiment

In this section, we present results of a comprehensive performance study to evaluate

the efficiency and scalability of the proposed techniques in the chapter. Following

algorithms are evaluated.

• Naive The naive implementation proposed in Section 3.2.1.

• RTKIS The technique based on R-tree proposed in Section 3.2.2.
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• UQuadTKIS The technique based on U -Quadtree proposed in Section 3.2.3.

• UTKIS The technique presented in [ZHZZ12].

• Naive* The naive randomized algorithm proposed in Section 3.3.1.

• RTKIS* and UQuadTKIS* The enhanced randomized algorithms pro-

posed in Section 3.3.3, which are based on RTKIS and UQuadTKIS algo-

rithms respectively.
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Figure 3.9: Data distribution

Datasets. Three real spatial datasets, namely CA, USA and RT, are used to

evaluate our techniques. CA and USA contain 62K and 200K 2-dimensional points

representing locations in the Los Angeles and the United States respectively which

are available at [Bur]. The two datasets are separated into several groups of data

respectively, and we choose one group of data with 996 points as the facilities and

the other group of data with 21, 050 points to represent the centers of uncertain

objects from CA as default dateset, whose distributions are showed in Figure 3.9.

RT is obtained from the R-tree-Portal [The03] with cultural landmarks and popu-

lated places in North America. The number of uncertain objects in USA and RT

are 20, 287 and 24, 493 respectively. By default, around 1000 facilities are chosen
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from corresponding datasets. In our experiment, all dimensions are normalized to

domain [0, 10000], and the uncertain region of the uncertain object is a circle with

expected radius ru varying from 20 to 300 with default value 60. There are m

instances for each uncertain object and the expected m varies from 100 to 500 with

default value 200. Therefore, the total number of instances in default dataset is

4, 210, 000. The instances of an uncertain object follow popular distributions Nor-

mal(N) and Uniform(U) where Normal(N) distribution serves as default instance

distribution. To evaluate randomized algorithms, we generate a large number of

instances mr for each uncertain object and the expected mr varies from 500 to

4K with default value 2K, and the number of sample s varies from 20 to 400 with

default value 200.

All algorithms proposed in this chapter are implemented in standard C++ with

STL library support and compiled with GNU GCC. Experiments are run on a PC

with Intel Xeon 2.40GHz dual CPU and 4G memory running Debian Linux. The

disk page size is fixed to 4096 bytes and the capacity of the entry page (f) is set

to 512. In the chapter, we evaluate the I/O performance of the algorithms by

measuring the number of uncertain objects explored, i.e., uncertain objects whose

aggregate R-tree are loaded in main memory. Query response time is recorded to

evaluate the efficiency of the algorithms, which contains the CPU time and the I/O

latency.

Table 3.2 lists parameters which may have an impact on our performance study

(default values are listed as Bold). In our experiments, all parameters use default

values unless otherwise specified.
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Notation Definition
height of U -Quadtree h 5, 6, 7, 8, 9, 10, 11

radius of uncertain object region ru 20, 60, 100, 200, 300
number of uncertain objects n 10K, 20K, 30K, 40K, 50K

number of instances m 100, 200, 300, 400, 500
number of facilities f 200, 400, 600, 800, 1000

top k 10, 20, 30, 40, 50
number of instances-large data mr 500, 1K, 2K, 3K, 4K
number of sample-large data s 20, 50, 100, 200, 400

instance location normal, uniform

Table 3.2: Parameter settings

3.4.1 Performance Tuning

The performance of UQuadTKIS is effected by the height (h) of the U -Quadtree.

As expected, Figure 3.10 shows that number of objects visited in the refinement

phase drops when h increases due to the larger size of uncertain object summaries.

Nevertheless, UQuadTKIS becomes less efficient for larger h when h > 9, which

implies that the algorithm cannot pay-off the larger index size when h > 9. In the

following experiments, h is set to 9.
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Figure 3.10: Diff. U -Quadtree Height

Figure 3.11 reports the effectiveness of different access order strategies in R-

tree based refinement algorithm where the sizes of the radius grow from 20 to

100. Particularly, “by fac” denotes the facilities expected score based access order



80 Chapter 3. Find Top k Influential Facilities

strategy used in Algorithm 2, and “by obj” stands for the object based strategy,

i.e., accessing in decreasing order of the number of facilities associated with each

object. It is shown that our facility based strategy always outperforms the object

based strategy.
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Figure 3.12: Candidate Size

We evaluate the filtering effectiveness of RTKIS and UQuadTKIS in Figure 3.12

by measuring the number of candidates (facilities) after filtering phase. The per-

formance of both algorithms degrade against the growth of ru. UQuadTKIS signif-

icantly outperforms RTKIS since more resources are allocated to the U -Quadtree

to capture the distribution of the instances of the uncertain objects.

3.4.2 Exact Algorithm Performance Evaluation

We will evaluate the performance of four exact algorithms (Naive, RTKIS,

UQuadTKIS, and UTKIS) in this sub-section.

Comparing Different Ranking models. Figure 3.13 evaluates the similarity of

different ranking models ( expected rank and expected score) on three datasets CA,

USA and RT respectively, which shows the scatter-plot of the ranks of 100 facilities.

Particularly, each point in the scatter-plot represents a facility where x-axis and

y-axis record the rank of objects based on expected rank model and expected score

model respectively. It is shown that all points line up along the diagonal, and
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Figure 3.13: Result comparison

the maximal difference of the ranks for a facility is only 2 in Figure 3.13 , which

indicates that the results of two models are almost the same.
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Figure 3.14: Impact of Data Distributions

Impact of Data Distribution. Figure 3.14 reports the response time and the

number of uncertain objects accessed of the algorithms against different data distri-

butions where CAN represents the dataset in which the centers of uncertain objects

are from CA and the instances of each uncertain object follow the Normal(N) distri-

bution. It is reported that UQuadTKIS significantly outperforms other algorithms

under all data distributions, and UTKIS ranks the last due to the high complexity

of the expected rank model. Particularly, on CAN dataset, the response times of

four algorithms (UQuadTKIS, RTKIS, Naive and UTKIS) are 17.8, 44.28, 84 and

140 seconds respectively. They are 20.14, 52.85, 103 and 166.2 seconds respectively

= 
= 
~ -
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on RTU dataset.
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Figure 3.16: Diff. ru

Impact of the number of instances (m). We evaluate the response time of the

algorithms as a function of the number of instances (m) in each uncertain object

which varies from 100 to 500. Clearly, the refinement cost increases in refinement

phase when m grows. Figure 3.15 shows that UQuadTKIS has the best scalability

against m, followed by RTKIS, Naive and UTKIS.

Impact of the radius(ru). Figure 3.16 investigates the performance of four

algorithms as a function of the radius size which varies from 20 to 300. It is shown

that the scalability of UQuadTKIS is better than that of RTKIS regarding the

growth of ru.
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Figure 3.18: Diff. # objects

Impact of the number of facilities and objects. We also evaluate the impact

of the number of facilities as well as the number of objects against four algorithms,

where the number of facilities grows from 200 to 1000, and the number of objects
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varies from 10,000 to 50,000. Figure 3.17 and Figure 3.18 show that UQuadTKIS

has the best scalability among four algorithms.

Impact of k . In the last set of experiments, we evaluate the response time and

the number of I/O accesses against various k values in Figure 3.19, which indicates

that the performance of all algorithms are not very sensitive to the k value.
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3.4.3 Randomized Algorithms Performance Evaluation

We will evaluate the performance of three randomized algorithms (Naive*, RTKIS*,

UQuadTKIS*) in this sub-section.

Evaluating Accuracy

We evaluate the accuracy of randomized algorithms by precision and recall of the

top k results. As we output exactly k facilities for top k query, precision and recall

of the results are always the same.

Figure 3.20 reports the impact of the number of sample sets s on randomized

algorithms on default dataset. As expected, the approximation quality improves

when s grows. With only 200 rounds of trials, the randomized algorithms can

achieve a precision and recall values of at least 0.97 for all algorithms. Therefore,
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s is set to 200 in the following experiments.

we also evaluate the impact of k on randomized algorithms in Figure 3.21.

Although the accuracy slightly decreases when k grows, precision and recall values

are higher than 0.97.
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Evaluating Efficiency

In the first experiment, we vary the value of k and evaluate the performance of the

five algorithms ( we exclude Naive due to its poor performance in Section 3.4.2)

proposed in the chapter against the default datasets where k varies from 10 to 50 in

Figure 3.22. As expected, all techniques proposed are effective and not sensitive to

various k values. For better report on the performance of the algorithms, we exclude

the RTKIS algorithm in the following experiments since it has been significantly

outperformed by the other algorithms. Figure 3.22 shows that UQuadTKIS* has

the best performance and scalability among all algorithms.

Impact of the number of instances (m). We evaluate the response time of

the algorithms as a function of the number of instances (m) in each uncertain ob-

ject which varies from 500 to 4K. Figure 3.15 shows that the cost of UQuadTKIS

increases dramatically because the cost of exact algorithm UQuadTKIS increases

in refinement phase when m grows. As expected, the performances of random-

ized algorithms are not affected by m, because we only obtain 200 sample sets to
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perform the queries regardless of the number of instances m. This implies that

the randomized algorithm can efficiently handle the massive number of instances

for uncertain objects. Moreover, it shows that UQuadTKIS* always has the best

performance.

Impact of the radius (ru). Figure 3.24 investigates the performance of four algo-

rithms as a function of the radius size which various from 20 to 300. The response

time of UQuadTKIS rises rapidly when ru increases, and the Naive* algorithm is

not sensitive to ru. The costs of UQuadTKIS* and RTKIS* increase slowly when ru

grows. It is shown that the UQuadTKIS* outperforms RTKIS* and Naive* under

all settings of ru.

Impact of the number of facilities and objects. We also evaluate the impact

of the number of facilities as well as the number of objects against four algorithms,

where the number of facilities grows from 200 to 1000, and the number of objects

varies from 10K to 50K. Figure 3.17 and Figure 3.18 show that UQuadTKIS* has

the best scalability among four algorithms.

1\SSSSSS] 
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Impact of the sample set size (s). In the last experiments, we evaluate the

performance of three randomized algorithms against the number of sample sets s

which varies from 20 to 400. As expected, Figure 3.27 shows that the time cost of

three algorithms increases with s. Among three algorithms, UQuadTKIS* always

outperforms the other two competitors, and it also has the best scalability regarding

the growth of s.

3.4.4 Summary

As a short summary, our comprehensive performance study shows that our rank-

ing model has very similar ranking result with that of expected rank model, while

the efficiency of the algorithms under our ranking model is much better. Even

a naive implementation can outperform UTKIS Algorithm which follows the ex-

pected rank model. The experiments also show the effectiveness and efficiency of
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the filtering and refinement algorithms proposed in the chapter based on R-tree

and U -Quadtree. The overall performance of the U -Quadtree based algorithm

(UQuadTKIS) always outperforms the R-tree based one (RTKIS) under various

experiment settings because more sophisticated indexing structure is employed in

UQuadTKIS. When a large number of instances per object are involved into the

query, the randomized technique can significantly reduce the cost with the pre-

cision and recall are above 0.97. As expected, the overall performance of the

UQuadTKIS* are always the best.

3.5 Conclusion

In this chapter, we investigate the problem of finding top k most influential facili-

ties over a set of uncertain objects. Based on a new ranking semantics, we develop

effective and efficient algorithms by utilizing two uncertain objects indexing tech-

niques, R-tree and U -Quadtree respectively. A set of pruning techniques are pro-

posed in this chapter to significantly improve the performance of the filtering and

refinement algorithms. We further develop efficient randomized algorithms with
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accuracy guarantee to tackle uncertain objects with massive number of instances.

Our experiments convincingly demonstrate the effectiveness and efficiency of our

techniques.



Chapter 4

Identify Top k Dominating

Objects

A straightforward solution for parameterized ranking based top k dominating query

is to first calculate the dominance score for each instance of the objects, and then

apply the parameterized ranking algorithm [LSD11] to identify the top k dominating

objects. However, it is cost-inhibitive because the cost of dominance score compu-

tation is not cheap and the total number of instances may be huge. Therefore, we

propose an effective and efficient algorithm to support the top k dominating query

by developing novel pruning techniques based on popular R-tree based indexing

structure and some simple statistics information.

This chapter is organized as follows. Section 4.1 introduces the problem and

some preliminary knowledge. Section 4.2 develops efficient algorithms to support

the top k dominating query by utilizing the spatial indexing and statistics infor-

mation. The experimental results are reported in Section 4.3. We conclude the

chapter in Section 4.4.

89
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4.1 Preliminary

In this section, we first formally introduce the multi-dimensional uncertain object

model and the parameterized ranking function, as well as the problem statement.

Section 4.1.2 illustrates how to calculate the rank scores of the uncertain objects

based on the generating function. Section 4.1.3 introduces the R-tree based in-

dexing structure for uncertain objects. We present problem definition and neces-

sary preliminaries in this section. Table 4.1 summarizes notations frequently used

throughout the chapter.

Notation Meaning
U, V uncertain objects
O a set of uncertain objects
n the number of uncertain objects in O
u, v instances of the uncertain objects
m the number of instances in each uncertain object

u ≺ v u dominates v
d dimensionality of the space
p a point (instance) in a d-dimensional space

p.Di i-th coordinate value of point p
pu occurrence probability of the instance u
s(u) dominance score of the instance u

PRF ω parameterized ranking function
Υ(U)/Υ(u) the rank score of an object U/instance u

Υ(u) the rank score of an instance u
Umbr minimal bounding rectangle of U

U−
mbr (U

+
mbr) lower (upper) corner point of Umbr

Us dominance score distribution of U
U−
s (U+

s ) lower (upper) bound of the dominance scores for instances in U
P (x, U) probability mass of the instances of U , which

are dominated by point (instance) x

Table 4.1: The summary of notations
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4.1.1 Problem Definition

A point (instance) p is in a d-dimensional space and the i-th dimensional coordi-

nate value of p is denoted by p.Di. Without loss of generality, we assume smaller

coordinate values are preferred. For two points p and q, p dominates q, denoted by

p ≺ q, if p.Di ≤ q.Di for all dimension i ∈ [1, d] and there is at least one dimension

j ∈ [1, d] with p.Dj < q.Dj. Meanwhile, we use p ≼ q to denote that p dominates

or equals q.

Uncertain Object Model. An uncertain object can be described either continu-

ously or discretely. In the chapter, we focus on the discrete case. Note that we can

discretize a continuous probability density function (PDF) of an uncertain object

by sampling methods. In the discrete case, an uncertain object U consists of a

set {u1, u2, . . . , um} of instances (points). For 1 ≤ i ≤ m, an instance ui occurs

with probability pui
(pui

> 0), and
∑m

i=1 pui
= 1. We assume that the uncertain

objects are independent to each other. In the following chapter, we use object to

denote multi-dimensional uncertain object whenever there is no ambiguity. Given

an object U , Umbr denotes the minimal bounding rectangle which contains all of

the instances of U . Let U−
mbr (U+

mbr) denote the lower (upper) corner of Umbr, we

have U−
mbr ≼ u and u ≼ U+

mbr for any instance u ∈ Umbr.

Dominance Score Distribution. Based on the dominance relationship against

two points (instances), we can easily measure the goodness of an instance as follows.

Definition 4.1 (Dominance Score). Given a set O of objects, the dominance score

of an instance u of the object U , denoted by s(u), is

s(u) =
∑

V ∈ O\U

∑
v∈V ∧ u≺v

pv (4.1)

where
∑

v∈V ∧u≺v pv represents the probability that the object V is dominated by
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the instance u.

Given a set O of objects, we can derive the dominance score distribution for

each object U ∈ O, denoted by Us, where Us = {(s(u1), pu1), . . . , (s(ui), pui
), . . . ,

(s(um), pum)}. We use Pr(Us > c) to denote the probability that Us is larger than

the value c, where Pr(Us > c) =
∑

ui∈U∧s(ui)>c pui
.

Example 4.1. Regarding the example in Figure 1.2(b) and Definition 4.1, domi-

nance score distributions of four objects A, B ,C and D are depicted in Figure 4.1

where we assume each instance has appearance probability 0.5. Particularly, as

a1 dominates four instances (b1, b2, d2, and c2), and a2 only dominates c2, we

have s(a1) = 2, s(a2) = 0.5. Since pa1 = pa2 = 0.5, we get As = {(2, 0.5),

(0.5, 0.5)}. Similarly, we have Bs = {(1, 0.5), (0.5, 0.5)} , Cs = {(0.5, 0.5), (0, 0.5)}

, Ds = {(2.5, 0.5), (1.5, 0.5)}, and Pr(Ds > 2) = pd1 = 0.5.

0 1 2 3
Dominance Score

s(a2) s(a1)

s(b2) s(b1)

s(c2) s(c1)

s(d2) s(d1)

As

Bs

Cs

Ds

Figure 4.1: Dominance Score Distributions

Parameterized Ranking. The dominance score distributions of a set of objects

can be ranked by the top k semantics studied for uncertain data in the literature.

In the chapter, we focus on the parameterized ranking function (PRF ω) proposed

in [LSD11] since it can unify other popular ranking functions.
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For a set O of objects, a possible world W proposed in [DS07] is a set of in-

stances with one instance from each uncertain object. Given a set of uncertain

objects {U1, U2, . . . , Un}, a possible world W = {u1, u2, . . . , un} is a set of instances

sequentially sampled from each object. Assume the uncertain objects are indepen-

dent to each other, and the probability of W to appear is Pr(W ) =
∏n

i=1 pui
. In

each world W , an object is ranked based on the score (value) of its corresponding

instance in W . In the chapter, we use rW (U) to denote the rank of an object in

the possible world W which is abbreviated to r(U) whenever there is no ambiguity.

LetW denote the set of all possible worlds, and we have
∑

W∈W Pr(W ) = 1 where

Pr(W ) is the occurring probability of the possible world W . Then we have the

formal definition of parameterized ranking function.

Definition 4.2 (PRF ω). Let ω be a weighted function which maps an object-rank

pair to a complex number, the rank score of an object U , denoted by Υ(U), is

defined as follows.

Υ(U) =
∑

i∈[1,n]
ω(i)× Pr(r(U) = i) (4.2)

where ω(i) denotes the weight of the i-th position, and Pr(r(U) = i) de-

notes the probability of U ranked at the i-th position, i.e., Pr(r(U) = i) =∑
W∈W∧rW (U)=i Pr(W ). Recall that r(U) denotes the rank of U in the possible

world W .

In the chapter, we assume w(i) ≥ w(j) for any two ranking positions i and

j where i < j. This is very intuitive as a higher position is usually at least as

desirable as those behind it and thus should be given a higher weight.

Problem Statement. Given a set O of objects, we aim to return the top k

dominating objects based on their dominance score distributions and parameterized
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ranking semantics; that is, we retrieve the top k objects with the highest rank scores

regarding their dominance score distributions.

4.1.2 Computing Rank Score Υ(U)

As shown in [LSD11], the rank score of an object U can be calculated by the

summation of the rank scores of its instances. For an instance u ∈ U , we can use

the following generating function F(x, u) to calculate the rank score of u, where

PV,u is the probability that Vs is larger than s(u) (i.e., PV,u = Pr(Vs > s(u)) =∑
v∈V ∧s(v)>s(u) pv). Recall that Vs is the dominance score distribution of the object

V . Intuitively, a small PV,u is in favor of the rank score of the instance u.

F(x, u) =
(∏

V ∈O\U
(1− PV,u + PV,u · x)

)
(pu · x) (4.3)

Then we have Pr(r(u) = i) = ci where r(u) is the rank position of instance u

and ci is the coefficient of xi in F(x, u). Therefore, after applying Equation 4.2,

we have

Υ(u) =
∑

1≤i≤n
ω(i)× ci (4.4)

and

Υ(U) =
∑

u∈U
Υ(u) (4.5)

Example 4.2. In Figure 4.1, we have s(a1) = 2 and hence Pr(Bs > s(a1)) = 0.0,

Pr(Cs > s(a1)) = 0.0, and Pr(Ds > s(a1)) = 0.5 (i.e., the probability mass of the

instances of D in the shaded area ). According to Equation 4.3, F(x, a1) = (1) ×

(1)× (0.5+0.5 x)× 0.5 x = 0.25 x+0.25 x2. Therefore, we have Pr(s(a1) = 1) =

0.25 and Pr(s(a1) = 2) = 0.25. Similarly, F( x, a2) = (0.5+0.5 x)×(1)×(x)×0.5 x

= 0.25 x2 + 0.25 x3, and hence Pr(s(a2) = 1) = 0, Pr(s(a2) = 2) = 0.25 ,and

Pr(s(a2) = 3) = 0.25. Suppose ω(1) = 4, ω(2) = 3, ω(3) = 2 and ω(4) = 1 in
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PRF ω, then Υ(A) = Υ(a1)+Υ(a2) = (0.25×4+0.25×3)+(0.25×3+0.25×2) = 3

according to Equation 4.4 and 4.5. Similarly, we have Υ(B) = 2.5, Υ(C) = 1.5

and Υ(D) = 3.75. Therefore, Υ(D) > Υ(A) > Υ(B) > Υ(C).

Algorithm 7: Compute Rank Scores(O, PRF ω)

Input : O : a set of objects,

PRF ω : parameterized ranking function,

Output: S : top k objects with highest rank scores

1 Sort instances of objects in decreasing order regarding their dominance

scores ;

2 G0(x) := 1; acct(U) := 0;

3 for each ti accessed in order do

4 Pold := acc(U ti);

5 F(x, ti) := Gi−1(x)
1−Pold+Pold x

ptix;

6 Compute Υ(ti) based on F(x, ti);

7 acc(U ti) := acc(U ti) + pti ;

8 Pnew := acc(U ti);

9 Gi(x) := Gi−1(x)1−Pnew+Pnew x
1−Pold+Pold x

;

Suppose the dominance scores of the instances are available and the instances

of the objects are ordered by their dominance scores in decreasing order, it takes

O( m3n3) time to compute the rank scores of the instances following Equation 4.3,

where n andm represent the number of objects and the average number of instances

per object. In [LSD11], the parameterized ranking based top k algorithm for at-

tribute level uncertain objects (e.g., uncertain objects with multiple instances) is

complicate since the correlation of the uncertain objects are involved. Algorithm 7

illustrates a simple version of the parameterized ranking based top k algorithm with



96 Chapter 4. Identify Top k Dominating Objects

independent assumption among objects, and the time complexity is O(m2n2). The

key idea is to incrementally maintain a generating function to facilitate the rank

scores computation of the instances, which are accessed in decreasing order of their

dominance scores .

Suppose t1, t2, .. tl are instances ordered by their dominance scores in decreasing

order 1, and s(ti) denotes the dominance score of the tuple ti. Let Gi(x) denote

the expansion of the generating function regarding the instance ti for any object V

in the set O, where

Gi(x) =
∏

V ∈O
(1− Pr(Vs ≥ s(ti)) + Pr(Vs ≥ s(ti)) · x) (4.6)

Let U ti denote the object which contains the instance ti, then we have Gi(x) =

Gi−1(x) Pi(U
ti ,x)

Pi−1(Uti ,x)
where Pi(U

ti ,x) = 1 − Pr(U ti
s ≥ s(ti)) + Pr(U ti

s ≥ s(ti))x and

Pi−1(U
ti ,x) = 1− Pr(U ti

s ≥ s(ti−1)) + Pr(U ti
s ≥ s(ti−1))x = 1− Pr(U ti

s > s(ti)) +

Pr(U ti
s > s(ti))x. Based on Equation 4.6, we have F(x, ti) = Gi−1(x)

Pi−1(Uti ,x)
ptix. Then

we initialize G0(x) = 1, consequently F(x, t1) = pt1x, note that P0(U
t1 ,x) =

1−Pr(U t1
s ≥ s(t0))+Pr(U t1

s ≥ s(t0))x = 1 since the t0 does not exist. Algorithm 7

illustrates the details of the computation where the rank score of an instance can be

computed based on the generating function G(x). In Algorithm 7, for each object

U we use acc(U) to record the probability mass of its instances seen so far.

4.1.3 Indexing Uncertain Objects by R-tree

To facilitate the top k dominating query, we assume uncertain objects are organized

by R-tree indexing techniques. Given a set O of uncertain objects, Figure 4.2

illustrates the basic idea of the R-tree based indexing approach where the MBRs

of the objects are indexed by R-tree [Gut84], which is called the global R-tree of

1For presentation simplicity, we assume the dominance scores of the instances are unique.
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O. As to each uncertain object U , an aggregate R-tree [PKZT01] is employed to

organize the instances where the aggregate value of each intermediate entry is the

probability mass of the instances in the entry, which is called a local R-tree for an

uncertain object U .

E

E1 E2

Pr(E)=Pr(E1)+Pr(E2)

(a) Local aR-tree

MBRs of the uncertain objects Local aR-tree

(b) Global R-tree

Figure 4.2: R-tree based Indexing

4.2 Approach

A straightforward solution for the problem of top k dominating query is to first

calculate the dominance score for each instance of the objects by conducting dom-

inance checks against the instances of other objects, then compute the rank scores

of the objects based on Algorithm 7 in Section 4.1.2. The k objects with the high-

est rank scores are the top k dominating objects. However, it is cost-inhibitive

because the cost of dominance score computation is not cheap and the total num-

ber of instances may be huge. In this section, we propose efficient algorithms to

identify the top k dominating uncertain objects. Specifically, Section 4.2.1 presents

the framework of our algorithms following the filtering and verification paradigm.

Section 4.2.2 proposes efficient algorithms for the computation of the dominance

score. Section 4.2.3 introduces the spatial pruning technique based on the MBRs
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of the objects. Rank score based pruning technique is proposed in Section 4.2.4.

In Section 4.2.5, statistics based approach further improves the performance of the

algorithms by utilizing the probabilistic inequalities.

To facilitate the top k dominating query, we assume uncertain objects are orga-

nized by R-tree indexing techniques. Given a set O of uncertain objects, Figure 4.2

illustrates the basic idea of the R-tree based indexing approach where the MBRs of

the objects are indexed by R-tree [Gut84], which is called the global R-tree.As to

each uncertain object U , an aggregate R-tree [PKZT01] is employed to organize the

instances where the aggregate value of each intermediate entry is the probability

mass of the instances in the entry, which is called a local R-tree for an uncertain

object U .

4.2.1 Compute Top k Dominating Objects

In this subsection, we introduce the framework of the top k dominating algorithm

based on the filtering and verification paradigm in Algorithm 8. Pruning techniques

are developed to reduce computational cost by eliminating non-promising objects.

Assume MBRs of the objects are organized by the global R-tree R, Line 2 derives

the lower and upper bounds of the dominance scores for each object U , denoted

by U−
s and U+

s respectively (See Section 4.2.2), ,where U−
s ≤ s(u) ≤ U+

s for any

instance u ∈ U . Then Line 3 applies the spatial based pruning technique to identify

the candidate objects which are kept in a set C. In addition to the candidate objects,

L keeps the objects whose instances may contribute to the rank scores computation

of candidate objects. As shown in Section 4.2.3, we can safely remove remaining

objects (i.e., O \ L) from rank scores computation 2. A max-heap H is employed

to guarantee that instances are accessed by decreasing order, which is initialized

2These objects may be involved in the dominance score computation of other objects.
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by objects in L where the upper bounds of their dominance scores are key values

in the heap(Line 5). Similar to Algorithm 7, the generating function F(x, u) is

maintained to compute the rank scores for instances accessed (Line 9 and 11).

Algorithm 8 maintains a rank score threshold λ to prune non-promising objects

in Line 12 and 18 by utilizing rank score based pruning techniques (See details

in Section 4.2.4). Line 19 loads the instances of an object and calculate their

dominance scores , where an efficient dominance scores computation algorithm is

presented in Section 4.2.2. Then Line 20 pushes these instances into the heap H

for further processing. Line 6 terminates the algorithm when there is no candidate

object for further exploration or the heap is empty. Finally the k objects with the

highest rank scores are returned as the top k dominating objects.

4.2.2 Compute Dominance Scores

In this subsection, we introduce efficient dominance scores computation algorithms

based on the R-tree structure. Specifically, we first introduce the dominance re-

lationship between two rectangles, and then show how to calculate the lower and

upper bounds of the dominance scores for the instances of an object based on their

MBRs, which are organized by global R-tree. Then the algorithm is also extended

to support computation of dominance scores for all instances of an object.

Following is a formal definition of the dominate relationship between two rect-

angles.

Dominance Relationships for Rectangles. A pair of uncertain objects may

have three relationships as follows. Let R+ and R− denote the upper and lower

corners of a rectangle R, we say the rectangle R1 fully dominates another rectangle

R2 if R+
1 ≺ R−

2 . Similarly, we have R1 partially dominates R2 if R−
1 ≺ R+

2 and

R+
1 ̸≺ R−

2 . Otherwise, we say R1 does not dominate R2. It is immediate that we
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Algorithm 8: Top k Dominating Objects(R, k)
Input : R: the global R-tree of O,

k: objects retrieved

Output: Top k dominating objects

1 λ := 0;

2 Compute U+
s and U−

s for all objects U ∈ O;

3 L, C ← spatial based pruning against O;

4 for each U ∈ L do

5 Push U into H with key value U+
s ;

6 while H ̸= ∅ or C ̸= ∅ do

7 E ← deheap(H);

8 if E is an instance u from object U then

9 Update the generating function F(x, u);

10 if U ∈ C then

11 Compute Υ(u) based on F(x, u);

12 C := C \ U if U can be pruned by λ;

13 if u is the last instance of U then

14 Compute Υ(U); Update λ; C := C \ U ;

15 else

16 E corresponds to the object U ;

17 if U can be pruned based on λ then

18 C := C \ U ;

19 Compute dominance scores for instances of U ;

20 Push every u ∈ U into H with key value s(u);

21 return Top k objects with highest rank scores
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have x ≺ y for any points x ∈ R1 and y ∈ R2 if R1 fully dominates R2. Similarly,

x ̸≺ y for any points x ∈ R1 and y ∈ R2 if R1 does not dominate R2.

E3

E

E1y

x

E2

not dominated

partially dominated

 dominated

Figure 4.3: MBR Dominance Relationships

Example 4.3. As shown in Figure 4.3, we have E fully dominates E1, E partially

dominates E2 and E does not dominate E3.

Compute the Lower and Upper Bounds (U−
s , U

+
s )

Based on the definition of the dominance score (Definition 4.1) and the dom-

inance relationship between two rectangles, we can derive the lower and upper

bounds of the dominance scores of the instances from an object U , denoted by

U+
s and U−

s respectively, based on the MBRs of the objects. In this subsection,

U−
s equals the number of other objects whose MBRs are fully dominated by Umbr.

Similarly, U+
s is the number of other objects whose MBRs are fully dominated or

partially dominated by Umbr. In Section 4.2.5, these bounds can be improved by

utilizing statistics information of the objects.

Motivation. We may issue two dominating range queries based on the lower and

upper corners of the MBR of each object against the global R-treeR in Algorithm 8

to compute their lower and upper bounds of the dominance scores . Nevertheless,
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we can improve the computational cost by conducting a spatial join based com-

putation. The main idea is that, instead of directly computing dominance score

for each individual instance, we conduct the dominance checks in a level-by-level

fashion such that the dominance count can be calculated at higher level, and hence

significantly reduce the number of dominance checks.

Algorithm. Algorithm 9 illustrates the details of the dominance score bounds

computation based on MBRs of the objects, which follows the synchronized R-

tree traversal paradigm used in spatial join. For each entry E (data entry or

intermediate entry) of the global R-tree R, we use a tuple T to record its lower and

upper bounds of its dominance score, denoted by T−
s and T+

s respectively, while

T.owner refers to the entry E. Clearly, we do not need to further explore another

entry E1 regarding E if E fully dominates E1 or E does not dominate E1. We use

T.set to keep a set of entries which are partially dominated by E. A FIFO queue Q

is employed to maintain the tuples, and Q is initialized by a tuple T where T.owner

and T.set are set to the root of the global R-tree R (Line 1-2). For each tuple T

popped from Q, if the entries from T.owner and T.set are data entries, then we

have U+
s = T+

s and U−
s = T−

s where T.owner refers to the MBR of the object U .

Otherwise, Line 7-17 expand T.owner and T.set for dominance score computation

of the lower level entries. For presentation simplicity, the child entries of a data

entry are referred to the data entry itself (Line 7 and 11). Specifically, for each pair

of entries t.owner and e at Line 12 and 13, the lower bound t−s and upper bound

t+s are increased by e.cn if tmbr fully dominates embr, where e.cn is the aggregate

number of objects in entry e (Line 15). Otherwise, we only increase t+s and keep e in

t.set for further computation if tmbr partially dominates embr (Line 17). Algorithm 9

terminates when Q is empty, and the lower and upper dominance score bounds of

the objects are ready for the spatial pruning in Section 4.2.3.
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Algorithm 9: Compute Dominance Score Bounds (R)
Input : R: the global R-tree of O

Output: Objects with lower and upper dominance scores bounds

1 T.owner := root of R ; T.set := root of R;

2 Push T into FIFO queue Q;

3 while Q ̸= ∅ do

4 T ← dequeue(Q);

5 if T.owner is not a data entry or entries in T.set are not data entries

then

6 L := ∅; W := ∅;

7 for each child entry e of T.owner do

8 t.owner = e; t−s := T−
s ; t+s := t−s ;

9 L := L ∪ t;

10 for each entry e in T.set do

11 W :=W ∪ child entries of e;

12 for each tuple t in L do

13 for each entry e in W do

14 if tmbr fully dominates embr then

15 t−s := t−s + e.cn; t+s := t+s + e.cn;

16 else if tmbr partially dominates embr then

17 t+s := t+s + e.cn ; t.set := t.set ∪ e;

18 Push t into Q;
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Compute the Dominance Score

In the top k dominating algorithm (Line 19 of Algorithm 8) we need to compute

the dominance scores of the instances for the object U . We can come up with

an efficient dominance scores computation algorithm for an object U by slightly

modifying Algorithm 9. Suppose U−
s is calculated, we only need to consider a set

S of objects which are partially dominated by U . For each object V ∈ S, we set

T.owner and T.set to the roots of RU and RV respectively at Line 1 where RU

and RV are the local R-tree of the objects U and V respectively. When algorithm

terminates, for each instance u ∈ U we have the probability mass of instances from

V which are dominated by u, denoted by P (u, V ). According to Definition 4.1, the

dominance score of the instance u can be calculated as follows.

s(u) = U−
s +

∑
V ∈S

P (u, V ). (4.7)

4.2.3 Spatial Pruning Technique

Considering that the cost is expensive to compute dominance scores , we propose

effective spatial pruning techniques to reduce the number of candidate objects based

on the global R-tree; that is, we aim to prune a set of objects from dominance score

computation without accessing the instances of the objects such that the CPU and

I/O costs can be significantly reduced.

Following theorem indicates that an object U is ranked higher than another ob-

ject V if the lower dominance score bound of U is larger than the upper dominance

score bound of V .

Theorem 4.1. Given two objects U and V , we have Υ(U) > Υ(V ) if U−
s > V +

s .

Proof. Since U−
s > V +

s , we have s(u) > s(v) for any u ∈ U and v ∈ V . Therefore,
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we have Pr(r(U) ≤ i) > Pr(r(V ) ≤ i) where Pr(r(U) ≤ i) denotes the probability

that U is ranked not lower than the i-th position. According to Equation 4.2

and the monotonic property of the weight function (i.e., ω(i) ≥ ω(j) for any two

positions i and j with i < j ), we have Υ(U) > Υ(V ).

Spatial based Pruning. Let fc denote the k-th largest lower bound of the

dominance scores regarding objects in O, according to Theorem 4.1, we have

C = {U |U ∈ O and U+
s ≥ fc} in Algorithm 8; that is, only the object U with

U+
s ≥ fc can become the top k candidate objects. Let fs denote the smallest lower

bounds of dominance scores regarding objects in C, we have L = {U | U ∈ O and

U+
s ≥ fs} in Algorithm 8. Note that, as shown in Equation 4.3 the rank score of

an instance can only be affected by other instances with larger dominance scores .

4.2.4 Rank Score based Pruning Technique

In this subsection, we propose effective pruning techniques based on the rank scores

of the objects. Let λ in Algorithm 8 denote the k-th largest rank scores for objects

accessed, clearly we can safely remove an object U from the top k candidates if we

can claim the upper bound of Υ(U) is smaller than λ. In the following, we show

how to derive an upper bound of Υ(U) in Algorithm 8.

Let u1, u2, . . . , um denote the instances of an object U which are sorted by their

dominance scores in decreasing order. In Algorithm 8, these instances will be

accessed in order. For a given instance ui, we use U
i to denote a new object which

is constructed by “pushing” instances after the i-th position to ui; formally, we

have U i = {u∗
1, . . . , u

∗
m},

U i = {u∗
1, . . . , u

∗
m} (4.8)

where pu∗
j
= puj

for any 1 ≤ j ≤ m, s(u∗
j) = s(uj) for j ≤ i, and s(u∗

j) = s(ui) for
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i < j ≤ m.

Following theorem indicates that Υ(U i) ≥ Υ(U) for any 1 ≤ i ≤ m, where

Υ(U i) is the rank score of U i when U is replaced by U i.

Theorem 4.2. Suppose an object U has m instances, then we have Υ(U i) ≥ Υ(U)

for any 1 ≤ i ≤ m.

Proof. For given i with 1 ≤ i ≤ m, according to the definition of U i, we have

s(u∗
j) ≥ s(uj) for 1 ≤ j ≤ m, and hence Pr(r(u∗

j) ≤ t) ≥ Pr(r(uj) ≤ t) for

any position t. Recall that r(u) is the rank position of u and Pr(r(u) ≤ t) is

the probability that the instance u is ranked not lower than the t-th position.

Consequently, for any two instances u∗
j and uj with 1 ≤ j ≤ m, we have

∑
1≤l≤t c

∗
l ≥∑

1≤l≤t cl where c∗l = Pr(r(u∗
j) = l) and cl = Pr(r(uj) = l). Note that c∗l and cl

represent the l-th coefficient of the generating function for u∗
j and uj respectively.

Since ω(t1) ≥ ω(t2) for any two positions t1 and t2 with t1 < t2, we have Υ(u∗
j) ≥

Υ(uj) for any two instances u∗
j ∈ U i and uj ∈ U according to Equation 4.4. Based

on Equation 4.5, we have Υ(U i) ≥ Υ(U), and hence the theorem holds.

Rank Score Based Pruning. In Algorithm 8, we invoke the rank score based

pruning technique at Line 12 and 18. Let ui be the i-th visited instance of U , we

can calculate Υ(U)+ by setting pui
=

∑
i≤j≤m uj (i.e., move probability mass of the

unvisited instances of U to ui), and prune the object U from candidate set C at

Line 12 if Υ(U)+ ≤ λ. Recall that λ is the k-th largest rank scores of the objects

seen so far. Let u0 denote an instance where s(u0) = U+
s and pu0 = 1.0 ,i.e., an

object constructed by pushing all instances of U to the lower corner of Umbr. With

similar rationale in Theorem 4.2, we have Υ(U0) ≥ Υ(U). Consequently, at Line 18

of Algorithm 8, we can calculate Υ(U)+ based on U+
s without loading instances

of U and remove U from candidate set C if Υ(U)+ ≤ λ. It is immediate that we
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can also remove any unvisited object V ∈ C (i.e., the object V with V +
s < U+

s ) in

C from the top k candidates since we have Υ(V ) ≤ Υ(V )+ and Υ(V )+ ≤ Υ(U)+.

In Algorithm 8, we invoke the rank score based pruning technique at Line 12

and 18. Let ui be the i-th visited instance of U , we can calculate Υ(U i) by setting

pui
=

∑
i≤j≤m uj (i.e., move probability mass of the unvisited instances of U to ui),

and prune the object U from candidate set C at Line 12 if Υ(U i) ≤ λ. Recall that

λ is the k-th largest rank scores of the objects seen so far. Let U0 denote an object

with one instance u0 where s(u0) = U+
s and pu0 = 1.0 ,i.e., an object constructed

by pushing all instances of U to the lower corner of Umbr. With similar rationale

in Theorem 4.2, we have Υ(U0) ≥ Υ(U). Consequently, at Line 18 of Algorithm 8,

we can calculate Υ(U0) based on U+
s without loading instances of U and remove

U from candidate set C if Υ(U0) ≤ λ. It is immediate that we can also remove

any unvisited object V ∈ C (i.e., the object V with V +
s < U+

s ) in C from the top k

candidates since we have Υ(V ) ≤ Υ(V 0) and Υ(V 0) ≤ Υ(U0).

4.2.5 Enhance the Performance with Statistics

Assume some statistics information (mean and variance) of the objects are avail-

able, we can further enhance the performance of the top k dominating query (Al-

gorithm 8) by utilizing probabilistic inequalities. Specifically, given two objects

U and V , we use ∆−(V, U) (∆+(V, U)) to denote the contribution of U towards

the lower (upper) bound of the dominance score of V . In Section 4.2.2 we have

∆−(V, U) = 0 and ∆+(V, U) = 1 if V partially dominates U . This subsection shows

that we can derive tighter lower and upper bounds for the dominance scores of the

objects based on their MBRs and statistics information.

Motivation. As shown in Figure 4.4(a), given the MBR of an object U and a

point p, we use rectangle A to denote the area of Umbr on the left side of p (shaded
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area). Similarly, in Figure 4.4(b), we use rectangle B to denote the area of Umbr

on the bottom of p (shaded area). Moreover, the rectangle Rp (the rectangle with

thick line) represents the area of Umbr which is dominated by the point p. Let

P (R) denote the probability mass of U within the rectangle R, then we should

have 0 ≤ ∆−(V, U) ≤ P (Rp) if p corresponds to the upper corner of Vmbr (i.e.,

V +
mbr). Since P (Rp) ≥ 1− (P (A) + P (B)) in Figure 4.4(b), we may have ∆−(V, U)

= 1 − (P (A) + P (B))3. As we cannot have exact P (A) (P (B)) value without

accessing instances of U , this subsection shows that we can derive the upper bound

of P (A) (P (B)), denoted by P+(A) (P+(B)) based on statistics information. Then

we can come up with tight ∆−(V, U) and ∆+(V, U) values without loading instances

of U . Specifically, we may have ∆−(V, U) = 1− (P+(A)+P+(B)) 4 (p is the upper

corner of Vmbr) and ∆+(V, U) =min(P+(A), P+(B)) (p is the lower corner of Vmbr).

With similar rationale, as shown in Figure 4.4(c)(d), we use rectangle A and B to

denote the area of Umbr on the right and top sides of p (shaded area) respectively,

and the rectangle Rp (the rectangle with thick line) also represents the area of

Umbr which is dominated by the point p. If p corresponds to the lower corner of

Vmbr (i.e., V −
mbr), we should have 0 ≤ ∆+(V, U) ≤ P (Rp). Since P (Rp) ≤ P (A)

and P (Rp) ≤ P (B), we may have ∆+(V, U) = min(P (A), P (B)). It is immediate

that we get ∆+(V, U) = min(P+(A), P+(B)). With similar rationale, we may have

∆+(V, U) = min(P+(A), P+(B)) when p corresponds to the lower corner of Vmbr

in Figure 4.4(d).

Example 4.4. Suppose we have P+(A) = 0.2 and P+(B) = 0.3 in Figure 4.4. We

have P (Rp) ≥ 1− (P+(A) + P+(B)) = 0.5. Therefore, we can set ∆−(V, U) = 0.5

in Figure 4.4(b). Note that ∆−(V, U) is set to 0 in Section 4.2.2 since V partially

3We can set ∆−(V,U) to any value τ with 0 ≤ τ ≤ P (Rp) in this example.Obviously, the

larger τ value the tighter lower bound we can achieve.
4We set ∆−(V,U) to 0 if P+(A) + P+(B) > 1.
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dominates U . Similarly, in Figure 4.4(d) we have P (Rp) ≤ min(P+(A), P+(B))

and hence ∆+(V, U) can be set to 0.2, which equals 1 in Section 4.2.2 since V

partially dominates U .
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Figure 4.4: Statistic based Pruning

Definitions and Lemmas. We formally define two statistics information of an

object U as follows.

Definition 4.3 (mean µ(U)). We use µ(U) to denote the mean of an object U ,

where µ(U).Di =
∑

u∈U(u.Di × pu).

Recall that u.Di is the i-th coordinate value of a point (instance) u.

Definition 4.4 (variance σ2(U)). σ2(U) denotes the variance of an object U on

each dimension; that is, σ2
i (U) =

∑
u∈U((u.Di − µ(U).Di)

2 × pu).

Given two values x and y, we use δ(x, y) to denote a function

δ(x, y) =



1

1 + x2

y2

, y ̸= 0

1, x = 0 and y = 0

0, x ̸= 0 and y = 0

(4.9)

then Cantelli’s inequality [Mee03] is defined as follows.

Lemma 4.1 (Cantelli’s Inequality [Mee03]). Suppose that t is a random variable

in 1-dimensional space with mean µ(t) and variance σ2(t), Prob(t − µ(t) ≥ a) ≤

δ(a, σ(t)) for any a ≥ 0, where Prob(t − µ(t) ≥ a) denotes the probability of

t− µ(t) ≥ a.
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Note that Lemma 4.1 extends the original Cantellis Inequality [Mee03] to cover

the case when σ = 0 and/or a = 0. Then we can come up with another version

of Cantelli’s Inequality [LZZC11], which provides an upper-bound for Prob(t ≼ b)

when b < µ.

Lemma 4.2. Assume that 0 < b < µ(t). Then, Prob(t ≤ b) ≤ δ(µ(t)− b, σ(t)).

Proof. Let t′ = 2µ(t) − t. It can be immediately verified that σ2(t′) = σ2(t) and

µ(t) = µ(t′). The theorem holds by applying Cantelli’s Inequality on t′.

Compute ∆−(V, U). Given two objects U and V , the following theorem indicates

that we can derive ∆−(V, U) based on the statistics information.

Theorem 4.3. Given two objects U and V , let p denote the upper corner of Vmbr,

we have ∆−(V, U) = 1 −
∑

1≤i≤d(δ(µi(U) −p.Di, σi(U))) if p ≺ µ(U). Note that

we set δ(µi(U)− p.Di, σi(U)) to 0 if p.Di < U−
mbr.Di.

Proof. Let Ri denote the left side of the rectangle Umbr divided by the point p on

the i-th dimension (e.g., R1 = A and R2 = B in Figure 4.4(b)). We use P (Ri)

to record the probabilistic mass of the instances in U contained by Ri. Clearly,

we have P (Ri) = 0 if p.Di < U−
mbr.Di since Ri corresponds to an empty rectangle.

Otherwise, we have P (Ri) ≤ δ(µi(U) − pi, σi(U)) according to Theorem 4.2. Let

Rp denote the rectangle whose lower (upper) corner is p ( U+
mbr ), and P (Rp)

records the probabilistic mass of the instances in U contained by Rp. Then we

have P (Rp) ≥ 1 −
∑

1≤i≤d(δ(µi(U)− p.Di, σi(U))) , which implies that we can

set ∆−(V, U) to 1 −
∑

1≤i≤d(δ(µi(U)− p.Di, σi(U))) since all instances within Rp

are dominated by p which is the upper corner of Vmbr. Therefore, the theorem

holds.

Compute ∆+(V, U). The following theorem indicates that we can derive ∆+(V, U)

based on the statistics information.
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Theorem 4.4. Given two objects U and V , let p denote the lower corner of Vmbr,

we have ∆+(V, U) = min({δ(p.Di − µi(U), σi(U))}) with 1 ≤ i ≤ d if µ(U) ≺ p

and p ≺ U+
mbr.

We omit the details of the proof since it is similar to Theorem 4.3. The main

difference is that Lemma 4.1 is employed in the proof instead of Lemma 4.2.

Achieve Better Dominance Score bounds. Let V̂ −
s (V̂ +

s ) denote the new lower

(upper) bound for the dominance score of the object V , and S is the set of objects

which are partially dominated by V , we have

V̂ −
s = V −

s +
∑

U∈S
∆−(V, U) (4.10)

and

V̂ +
s = V −

s +
∑

U∈S
∆+(V, U) (4.11)

Recall that we have ∆−(V, U) = 0 and ∆+(V, U) = 1 in Section 4.2.2 where only

MBRs of the objects are used.

Suppose the statistics information of the objects are kept with the data entries

of the objects in the global R-tree, we can use the new lower and upper bounds

of dominance scores in Algorithm 8. Our empirical study shows that although the

statistics information slightly increase the index size, the gain is significant since

the tighter dominance scores bounds lead to smaller candidate size, and hence

reduce the CPU and I/O costs.

4.3 Experiment

In this section, we present results of a comprehensive performance study to evaluate

the efficiency and scalability of the proposed techniques in the chapter. As there
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is no existing work on top k dominating query on uncertain data following the

parameterized ranking semantics, we only evaluate the techniques proposed in the

chapter. Following algorithms are implemented for performance evaluation.

• NAIVE: The straightforward solution is introduced in the Section 4.2.

Specifically, we first compute the dominance score of each instance by issuing

range queries against the global R-tree and local R-trees, then Algorithm 7

is employed to compute top k dominating objects.

• NAIVES: Algorithm 8 proposed in Section 4.2 where only the spatial based

pruning technique (Section 4.2.3) is employed.

• BAS: Algorithm 8 proposed in Section 4.2 where spatial based pruning tech-

nique and spatial join based dominance score computation algorithms (Sec-

tion 4.2.2) are employed. It is employed as the baseline algorithm in our

empirical study.

• TKDOM: BAS Algorithm which also applies the rank score based pruning

technique (Section 4.2.4).

• TKDOM*: TKDOM Algorithm which also applies statistics based tech-

niques (Section 4.2.5).

We employ a specific parameterized ranking linear function PFRe(α) to rank

the objects. Like the setting in [LSD11], we use PFRe(α = 0.95) in the experi-

ments.

Datasets We evaluate our techniques on both synthetic and real datasets. Syn-

thetic datasets are generated by using the methodologies in [BKS01] regarding the

following parameters. Dimensionality d varies from 2 to 5 with default value 3.

Data domain in each dimension is [0, 10000]. The number n of objects in each
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dataset varies from 10K to 50K with default value 10K. The number m of in-

stances per object varies from 50 to 300 with the default value 100. The value k

varies from 10 to 50 with default value 20. The edge length h of object MBRs

varies from 100 to 600 with default value 200. Centers of objects (objects’ MBRs)

follow either Equally(E ), Correlated(C ) or Anti-correlated(A) distribution where

default is A distribution.The instances of an uncertain object follow popular dis-

tributions Normal(N ) and Uniform(U ) where N distribution is default. And two

real datasets, Forest CoverType dataset (COV )5 and Household (HOU )6, are em-

ployed to represent the centers of the uncertain objects. In COV, we select the

horizontal and vertical distances of each observation point to the Hydrology as well

as the elevation of the point. In HOU, each record represents the percentage of

an American family’s annual income spent on 3 types of expenditures (e.g., gas,

etc.). We choose 20, 000 objects in COV and HOU respectively. For each object,

we generate the instances according to the default setting above. Then with the

default setting, the total number of instances in synthetic and real datasets are 1

millions and 2 millions respectively. Furthermore, we used an LRU memory buffer

whose default size is set to 10% of the data size.

All algorithms are implemented in standard C++ and compiled with GNU

GCC. Experiments are run on a PC with Intel Xeon 2.40GHz dual CPU and 4G

memory under Debian Linux. The disk page size is fixed to 4, 096 bytes. In the

chapter, we evaluate the I/O performance of the algorithms by measuring the

number of uncertain objects explored. i.e., uncertain objects whose aggregate R-

tree are loaded in main memory. Query response time is recorded to evaluate the

efficiency of the algorithms, which contains the CPU time and the I/O latency.

Table 4.2 lists all parameters which may have impacts on our performance study,

5http://archive.ics.uci.edu/ml/datasets.html
6http://www.ipums.org
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where the default values are in bold font. In our experiments, all parameters use

default values unless otherwise specified.

Notation Definition (Default Values)
dimensionality d 2, 3, 4, 5,

number of objects n 10K, 20K, 30K, 40K, 50K
number of instances m 50, 100, 200, 300

edge length h 100, 200, 400, 600
top k 10, 20, 30, 40, 50

object location equally, correlated, anti-correlated
instance location normal, uniform

Table 4.2: Parameter settings

Performance Evaluation

In the first experiment, we vary the value of k and evaluate the performance of

the five algorithms. Figure 4.5 illustrates the response time and the number of

objects accessed for algorithms NAIVE, NAIVES, BAS, TKDOM and TKDOM*

against the default synthetic dataset where k varies from 10 to 50.As expected, all

techniques proposed in Section 4.2 are effective since the performance of them

degrades slowly against the growth of k. When the k grows, we get a larger

candidate set, so it is require more time and access more objects to get the result.

There is a clear gap between any two consecutive algorithms. Note that the NAVIE

and NAIVES algorithms are much slower than the other algorithms, and the I/O

costs of them are also much higher than the others. Then for better report on the

performance of the algorithms, we exclude the NAIVE and NAIVES algorithms in

the following experiments since they have been significantly outperformed by BAS,

TKDOM and TKDOM* algorithms.

Impact of Data Distribution. We evaluate the performance of BAS, TKDOM

and TKDOM* against datasets CN , CU , EN , EU , AN , AU , COV and HOU in
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Figure 4.6, where CN denotes the 3-dimensional synthetic data whose centers and

instances follow the Correlated and N ormal distributions respectively, and similar

definitions go to CU , EN , EU , AN and AU . It is observed that the distribution of

the instances (N and U ) does not noticeably affect performance of the algorithms,

so we only perform tests on normal distribution in the following experiments. On

the other side, all algorithms are very sensitive to the distribution of the object

centers. This is because of the nature of dominating query. It is easy to distinguish

and sort the dominance scores of objects to get a small size of candidate set under

the correlated distribution.Whereas anti-correlated distribution leads to more com-

putation time because each object only fully dominate a limited number of other

objects, so we use anti-correlated distribution as a default setting for locations.

As expected, TKDOM* significantly outperforms other algorithms under all data

distributions.
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Impact of dimensionality (d). Figure 4.7 investigates the impact of the dimen-

sionality against the algorithms where d varies from 2 to 5. It is shown that all

methods are sensitive to the growth of dimensionality. The response time and the

number of I/O accessed decrease when d arises. This is because the average number

of objects dominated or partially dominated by each object decreases against the

growth of the dimensionality. That means with the increase of dimensionality d,

the average area of MBRs gets smaller compared to the whole data space; conse-

quently, the power of the pruning rules becomes more significant. Note that the

edge lengths of the objects remains unchanged when the dimensionality grows in

the experiments.
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Figure 4.7: Diff. dimensionality

Impact of the edge length (h). We investigate the performance of the algo-

rithms as a function of the edge length which varies from 100 to 600. With large h

values, the MBRs of objects are more likely to overlap with each other and hence

the pruning power is impaired. Figure 4.8 shows that the scalability of TKDOM*

is better than that of the other two algorithms regarding the growth of h.

Impact of the number of objects (n). In Figure 4.9, we evaluate the impact of

the number of objects against the three algorithms, where the number of objects

varies from 10K to 50K. With a larger number of objects, more objects are involved

in the computation, thus incurring higher computation cost. Figure 4.9 show that
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the response time and the number of objects accessed of TKDOM* grow slowly, yet

the performance of the BAS and TKDOM drops more significantly with the growth

of n. It is clear that TKDOM* has the best scalability among three algorithms.
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Impact of the number of instances (m). Figure 4.10 evaluates the impact of

the number of instances on the algorithms where m grows from 50 to 300. The

number of objects accessed grows slowly against each algorithm when the number

of instances increase, which show our global pruning techniques are effective and

efficient. With growth of m, more instances are involved in the rank computation,

thus the response time increases. Figure 4.10 shows that TKDOM* has the best

scalability against m, followed by TKDOM and BAS.

Summary. As a short summary, our comprehensive performance study shows that
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the effectiveness and efficiency of the techniques proposed in the chapter, including

spatial join based dominance score computation algorithm (Section 4.2.2), spatial

pruning (Section 4.2.3), rank score based pruning (Section 4.2.4), and statistics

based computation techniques (Section 4.2.5). As expected, the TKDOM* algo-

rithm, which includes all techniques proposed in the chapter, always outperforms

other algorithms under all experiment settings.

4.4 Conclusion

We investigate the problem of identifying top k dominating objects over uncertain

data, which is important in the multi-criteria decision analysis when users cannot

explicitly provide a proper scoring function. Based on the state-of-the-art top

k semantics on uncertain data, we formally define a new model for the top k

dominating query on multi-dimensional uncertain data. By utilizing the popular

R-tree indexing techniques as well as spatial based and rank score based pruning

techniques, we develop an effective and efficient algorithm following the filtering and

verification paradigm. We further improve the performance of the algorithm based

on some simple statistics information of the objects. Our experiments convincingly

demonstrate the effectiveness and efficiency of our techniques.
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Chapter 5

Range Search on Uncertain

Trajectories

A straightforward approach for the problem of range search on uncertain trajecto-

ries is to calculate the appearance probability of each moving object o at each time

within the query time interval, and count the number of times in which o appears

within the search region with probability at least θ. In this chapter, we follow the

filtering-and-refinement paradigm to significantly reduce the number of candidate

trajectories (i.e., moving objects) by exploiting effective filtering techniques. In par-

ticular, for any two subsequent observations of a moving object o at times ti and tj,

denoted by o(ti) and o(tj) respectively, we aim to build a summary of the uncertain

location distribution of the object. Thus, lower and upper bounds of its appear-

ance probability can be easily derived for any time t ∈ (ti, tj) when a range query is

issued. Novel sub-diamonds based filtering technique is proposed in [EKM+12a] to

effectively support range search on uncertain trajectories. However, we observe that

its performance is unsatisfactory in our empirical study, because each sub-diamond

aims at bounding the appearance probability of the moving object o regarding all

119
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times between two subsequent observation times ti and tj. This motivates us to

develop new filtering techniques so that the summary is constructed for a set of

time intervals instead of the whole time interval (ti, tj) (i.e., partition along the

temporal dimension). Specifically, we first introduce a simple filtering technique

based on some pre-computed statistics information. Then we further enhance the

filtering power by developing partition based approach to approximate the loca-

tion distribution of a moving object using a set of buckets, which are generated by

spatial and temporal partitions. We discuss how to effectively build the partition

based summaries following some important observations.

This chapter is organized as follows. Section 5.1 formally defines the problem of

range search on uncertain trajectories and introduce some preliminary work. Sec-

tion 5.2 introduces a general framework for range search following the filtering and

refinement paradigm. Section 5.3 and Section 5.4 propose the statistics based and

partition based filtering techniques respectively. Experimental results are reported

in Section 5.5, and Section 5.6 concludes the chapter.

5.1 Background

In this section, we first formally define the problem of range search on uncertain

trajectories. Then we introduce the preliminary work on uncertain trajectories.

Table 5.1 summarizes the notations frequently used throughout this chapter.

5.1.1 Problem Definition

Following the common assumptions of the existing works (e.g., [EKM+12b,

EKM+12a, NZE+13, XGC+13]) which capture the uncertainty of trajectories with

Markov Chain model, we assume the space and time are in discrete domain. The
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space S consists of n possible states (locations) {s1, . . . , sn} in 2-dimensional space.

For a state s, s.Di denotes the coordinate value of s on i-th dimension. We use T

to denote time domain {t1, . . . , tm}. Consequently, in this chapter, the trajectory

of a moving object o is represented by a set of m′ (m′ ≤ m) tuples {tk, o(tk)},

where o(t) represents the state of o at time t. For a certain trajectory, o(t) is an

unique state s ∈ S. However, it corresponds to a probability distribution when the

location of the object is derived from probabilistic models. Following is a formal

definition of the uncertain location for an object o at time t.

Notation Definition

o (O) a moving object (a set of moving objects)
S (T ) discrete space (time) domain
o(t) location (state) of an object o at time t
q spatio-temporal search region
R a spatial search region

[q.s, q.e] query time interval
θ probabilistic threshold
η duration threshold

P (o(t), s) probability that o(t) is located at sate s
g(o, ti, tj), g a segment of an object o with two

subsequent observations o(ti) and o(tj)
T (g) time interval [q.s, q.e] ∩ [ti, tj)

∆t(q)(∆t(g)) duration of a query (segment)
P (o(t), R) probability that o(t) falling in the region R

d(o, q, θ), d(o) duration (i.e., number of times) that
object o satisfies the search region q.R

d−(o) (d+(o)) lower (upper) bound of d(o)
d(g) number of satisfied times of the object

o in segment g
d−(g) (d+(g)) lower (upper) bound of d(g)
S(g) partition based summary of segment g
g.mbr minimal bounding rectangle of segment g

Table 5.1: The summary of notations.

Definition 5.1 (Uncertain Location). Let P (o(t), s) denote the probability that an

object o appears on state (location) s at time t. The uncertain location of an object o
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at time t, denoted by o(t), consists of n′ tuples {si, P (o(t), si)} with P (o(t), si) > 0,

where
∑n′

i=1 P (o(t), si) = 1.

Consequently, an uncertain trajectory is a trajectory whose location might be

uncertain at each point of time. In particular, we assume the location (state) of an

object is certain when it is observed (reported), while locations (states) of an object

between two subsequent observation times are derived based on the Markov Chain

model [EKM+12a] which is introduced in Section 2.4.2. Therefore, the uncertain

trajectory of an object o consists of a set of segments {g(o, ti, tj)} where ti and tj

corresponds to two subsequent observations. Each segment g records the location

distribution of the object o from time ti (inclusive) to tj (exclusive). We use ∆t(g)

to denote the duration of the segment (a.k.a. observation interval size) where

∆t(g) = tj − ti.

Given a region R, we use s ∈ R to denote that the location (state) s is within

the region R. Then we define the appearance probability of o regarding R at

time t, denoted by P (o(t), R), to measure the likelihood of the object o falling in

the region R at time t.

P (o(t), R) =
∑

s∈R and s∈S

P (o(t), s) (5.1)

Definition 5.2 (Spatio-temporal search region (q)). A spatio-temporal search re-

gion q consists of three components ⟨R, s, e⟩ , where q.R represents the spatial

search region, and q.s(q.e) denotes the start (end) time of the query time interval.

We use ∆t(q) denotes the duration of the search region (i.e., ∆t(q) = q.e−q.s+1).

We say an object satisfies the spatio search region q.R with probability at least θ

at time t if P (o(t), q.R)≥ θ for t ∈ [q.s, q.e]. We use d(o, q, θ) to denote the duration

(i.e., the number of times) that a moving object o satisfies q.R with probability
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at least θ. For presentation simplicity, we use d(o) to represent d(o, q, θ) whenever

there is no ambiguity.

Finally we have the formal definition of the spatio-temporal range search on

uncertain trajectories.

Problem Statement. In this chapter, we investigate the problem of spatio-

temporal range search over uncertain trajectories. Particularly, given a spatio-

temporal search region q, a probabilistic threshold θ (0 < θ ≤ 1), a duration

threshold η (1 ≤ η ≤ ∆t(q)), and uncertain trajectories of a set O of moving ob-

jects, we aim to identify objects {o| d(o, q, θ) ≥ η} with o ∈ O; that is, find objects

which consistently (at least η times) appear within the spatial search region with

probability at least θ.

Range queries on uncertain trajectories with EXISTS and ALL semantics

in [EKM+12a, EKM+12b] are special cases of the problem studied in this chap-

ter, which correspond to the range search with η = 1 and η = ∆t(q), respectively.
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Figure 5.1: Range Search over Uncertain Trajectories

Example 5.1. In Figure 5.1(a), o(t10) and o(t14) are two subsequent observations

of object o; a spatio-temporal search region q is given as ⟨R, t11, t13⟩ with prob-

abilistic threshold θ and duration threshold η. The snap shots of o are depicted
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in Figure 5.1(b) for t11, t12 and t13, where the appearance probability for each

state is marked. Note that shaded states are contained by q.R. Then we have

P (o(t11), q.R) = 0.4, P (o(t12), q.R) = 0.5 and P (o(t13), q.R) = 0.3. Given η = 2, if

θ ≤ 0.4, o meets the query constraints, otherwise o is not an answer.

Thereafter of this chapter, the “spatio-temporal range search” is abbreviated

to “range search”, and “spatio-temporal search region” are abbreviated to “search

region” for presentation simplicity. We might use “location” and “state” inter-

changeably for better understanding of this chapter.

5.1.2 Preliminary

Recent years have witnessed the increasing amount of research on uncertain data

modeling and query processing due to their importance in many applications. In

this subsection, we briefly introduce two categories of work closely related to the

problem studied in this chapter.

Capture Uncertainty by Markov Chains

In [EKM+12b, EKM+12a], an uncertain trajectory is modeled as a realization of

a stochastic process [KT75]. Markov Chains can model a discrete spatio-temporal

(state-time) space with the assumption that o(t+ 1) only depends on o(t).

Definition 5.3 (Markov Chain model). Given a stochastic process o(t) with t ∈ T

and a state s ∈ S, the stochastic process is called Markov Chain iff P (o(t + 1) =

sj|o(0) = s0, o(1) = s1, . . . , o(t) = si) = P (o(t+ 1) = sj|o(t) = si).

For an object o moving on the space S, we set Pi,j(o) = P (o(t+ 1) = sj|o(t) =

si), where Pi,j(o) represents the probability of object o moving from state si to sj

when the time changes from anytime time t ∈ T to its successive time t+1. We can
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store all Pi,j(o) in a n × n matrix M(o) to represent the transition probability of

object o from state si to sj at any time t, where the matrix M(o) is called transition

matrix. Then we have o(t + 1) = o(t)×M(o). Recall that o(t) is the distribution

vector of an object o at time t where
∑

s∈S P (o(t), s) = 1. Similarly, if M(o)T is

defined as a transposed Markov Chain matrix, we have o(t) = o(t+ 1)×M(o)T .

Given two subsequent observations o(ti) and o(tj), efficient algorithm is pro-

posed in [EKM+12b] to derive the location distribution o(t) for t ∈ (ti, tj) based

on M(o) and M(o)T . Same as [EKM+12b, EKM+12a], we assume objects share

the same Markov Chain matrix which can be learned by domain experts in various

applications.

In an uncertain object trajectory of an object o, we have several consequent

observation timestamps. The position of the object on each timestamp is cer-

tain, whereas the positions between two continuous timestamps are uncertain,

which can be modeled by the two transition matrixes. For example, if we ob-

serve the object 0 on si when t1 and then sj when t5, the positions of o on t2,

t3, t4 are unknown. Let P (o, t1) = (0|s1, . . . , 1|si, . . . , 0|sn), then the Pf (o, t2) =

P (o, t1) ×M(o), Pf (o, t3) = P (o, t1) ×M(o)2, Pf (o, t4) = P (o, t1) ×M(o)3. Simi-

larly, Let P (o, t5) = (0|s1, . . . , 1|sj, . . . , 0|sn), then the Pb(o, t4) = P (o, t5)×M(o)T ,

Pb(o, t3) = P (o, t5)× (M(o)T )2, Pb(o, t4) = P (o, t5)× (M(o)T )3. Note that Pf and

Pb mean the result derived from M(o) and M(o)T respectively. After combining

the Pf and Pb, we can get the distributions of the object on t2, t3, t4, and then the

possible worlds are gotten.

Sub-diamonds based Filtering

The sub-diamonds based filtering technique developed in [EKM+12a] can signifi-

cantly reduce the computational cost compared with the diamond based technique.
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However, as we need enforce that the object o appears within the sub-diamond ♢

with probability at least P (♢) w.r.t all t ∈ (ti, tj), this may lead to poor filtering

performance. In our empirical study, we observe that the corresponding probabil-

ity (i.e.,P (♢)) of the sub-diamonds {♢} might be rather small, especially when the

timespan between ti and tj is long. Moreover, sub-diamonds are calculated based

on the projected values for each individual dimension separately. As reported

in [ZLZ+10b], this may lose the spatial correlation of the object location distribu-

tion, and hence deteriorates the filtering performance. These problems cannot be

addressed by simply increasing the number of sub-diamonds.

5.2 Framework

A straightforward implementation of range search on uncertain trajectories is to

calculate d(o, q, θ) for each individual object o ∈ O through Markov Chains based

computation technique [EKM+12b]. However, as shown in [EKM+12a], this is

cost-prohibitive since the refinement cost is rather expensive. Therefore, it is de-

sirable to develop effective and efficient filtering techniques to prune or validate

objects such that the number of objects involving refinement can be significantly

reduced. In particular, suppose we can derive the upper and lower bounds for

the duration of an object o regarding the range search, denoted by d+(o) and

d−(o) respectively. Then an object can be safely pruned if d+(o) < η or validated if

d−(o) ≥ η. Moreover, for each individual time t, we can also derive lower and upper

bounds of the appearance probability, denoted by P−(o(t), q.R) and P+(o(t), q.R),

so we can avoid the computation of P (o(t), q.R) if P−(o(t), q.R) ≥ θ (validate) or

P+(o(t), q.R) < θ (prune).

In this chapter, we develop efficient algorithms to support range search on
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uncertain trajectories following filtering and refinement paradigm. In the sequel,

we first introduce a simple minimal bounding rectangle based filtering technique,

then present a general framework for range search on uncertain trajectories.

5.2.1 Minimal Bounding Rectangle Based Filtering

Given two subsequent observations o(ti) and o(tj), we may easily come up with a

minimal bounding rectangle (MBR) for each segment g, denoted by g.mbr, which

encloses all possible locations of o during time ti and tj if the maximal speed is

pre-given. Together with the time dimension, each segment g can be enclosed by

a 3-dimensional minimal bounding rectangle (MBR), denoted by g.mbr. Clearly, a

spatio-temporal search region q is a cube in 3-dimensional space. In this chapter,

we define three relations between q and g.mbr. We say a query q does not overlap

a segment g if q and g.mbr does not overlap w.r.t spatial or temporal aspects;

that is, q.R ∩ g.mbr = ∅, q.s ≥ tj or q.e < ti. Otherwise, we say q overlaps

g. Particularly, we say q contains g if g is contained by q on both spatial and

temporal aspects, i.e., g.mbr ⊂ q.R, q.s ≤ ti, and q.e ≥ tj. Let d(g) denote the

contribution of the segment g to d(o) where 0 ≤ d(g) ≤ ∆t(g). It is immediate

that we have d(g) = ∆t(g) if q contains g, and d(g) = 0 if q does not overlap g.

5.2.2 Segments Summaries Tree (SS-Tree)

MBR based filtering technique is simple and intuitive, and its filtering capability

is rather limited. In Section 5.3 and Section 5.4, we introduce advanced filter-

ing techniques based on statistics information and spatio-temporal partitions of

the segment respectively where summaries of the segments are pre-computed to

facilitate the filtering process.

In this chapter, we assume a summary of the segment is constructed for each in-
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dividual segment w.r.t the filtering technique used (e.g., sub-diamonds based filter-

ing, statistics based filtering and partition based filtering). As shown in Figure 5.2,

MBRs of the segments are organized by a hierarchical spatial index structure (e.g.,

R-tree [Gut84]). For each segment entry, its corresponding summary is maintained

to enhance the filtering performance.

With the same rationale to MBR based filtering in Section 5.2.1, we can easily

come up with three relations between q and an intermediate entry E (i.e., segments

enclosed by E). Then an intermediate entry E can be pruned or validated without

further exploring its child entries.

5.2.3 A General Framework

Assuming the summaries of the segments are organized by an SS-tree, we present

a general framework for the range search on uncertain trajectories following the

filtering and refinement paradigm, and details are illustrated in Algorithm 10.

In particular, we traverse the entries in a branch and bound fashion. A FIFO

queue, denoted by Q, is used to maintain the entries to be visited. In Line 5-13,

entries are processed according to their relationships with search region q. Clearly,
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Algorithm 10: Range Search(OT , q, θ, η )

Input : OT : Uncertain trajectories of a set O of objects organized by

SS-Tree T , q : range search,

θ : probabilistic threshold, η : duration threshold

Output: objects {o} with d(o, q, θ) ≥ η

1 C := ∅; F := ∅; R := ∅;
2 Q ← push root of OT ;

3 while Q ̸= ∅ do
4 E := element popped from Q;
5 if E overlaps q then

6 if E is contained by q then

7 for each segment g ∈ E of object o do

8 d−(o) := d−(o) + ∆t(g);

9 R := R∪ o If d−(o) ≥ η; // validate

10 else if E is an intermediate entry then

11 Push child entries of E into Q;

12 else

13 F := F ∪ corresponding segment g;

14 d+(o) = d−(o) for all objects with segments in F ;
15 for each segment g of object o in F do

16 d+(o) := d+(o) + ∆t(g);

17 C ← objects {o} if d+(o) ≥ η and o ̸∈ R; // prune

18 for each candidate object o ∈ C do

19 for each candidate segment g of o in F do

20 Derive d−(g) and d+(g) from summary associated with g;

21 F := F \ g If d−(g) = ∆t(g) or d
+(g) = 0;

22 d−(o) := d−(o) +d−(g);

23 d+(o) := d+(o) −∆t(g) +d+(g);

24 if d−(o) ≥ η then // validate

25 R := R∪ o; C := C \ o;

26 else if d+(o) < η then // prune

27 C := C \ o;

28 for each object o in C do // refinement

29 R := R∪ o If o is verified;

30 return R;
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we do not need to further explore an entry E if it does not overlap q (Line 5),

because none of the segments enclosed by E contribute to the final results. On the

other hand, if E is contained by q, we can immediately validate the segments {g}

enclosed by E; that is, we increase d−(o) by ∆t(g) (Line 8) where g is a segment of

the object o. Line 9 validates o if we have d−(o) ≥ η where R is used to keep query

results. Otherwise, i.e., E overlaps q but is not contained by q, Line 10-13 further

explore an entry by expanding its child entries or put its corresponding segment

into the set F which will be further processed by advanced filtering technique at

Line 20.

We update d+(o) by accumulating the durations of its validated segments

(Line 14) and unexplored segments, i.e., segments in F (Line 16). Line 17 retrieves

candidate objects which are not validated but have a promising upper bound (i.e.,

d−(o) < η and d+(o) ≥ η). Then Line 18-27 further refine the candidate set by

exploiting the advanced filtering techniques, in which the summary of segment may

derive tighter lower and upper bounds for d(g). Note that Line 21 removes a seg-

ment g from candidate segments F if we have d−(g) = ∆t(g) (i.e., o is qualified at

all times t ∈ [ti, tj)) or d
+(g) = 0 (i.e., o is not qualified at any time t ∈ [ti, tj)).

Finally, Line 28-29 refine the remaining candidate objects by exactly computing

d(o, q, θ) for each candidate object o. Note that we only need to compute d(g) for

candidate segments {g} in F .

As shown in our empirical study, the dominant cost of Algorithm 10 is the

refinement cost at Line 29, since it is time consuming to calculate appearance

probabilities of objects at different times. This motivates us to develop effective

and efficient filtering techniques to significantly reduce the number of survived

candidates with reasonable space overhead. In Section 5.3 and Section 5.4, we

present advanced filtering techniques based on statistics information and spatio-
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temporal partitions respectively.

5.3 Statistics Based Approach

In this section, we present the statistics based filtering technique. Section 5.3.1

introduces the motivation of the technique. Section 5.3.2 proposes the detailed

pruning and validation rules. Performance analysis is conducted in Section 5.3.3.

5.3.1 Motivation

o(t)

o(t).mbr
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(c) (d)
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o(t)

q.R

D1

D2

D1 D1

D2

D2 D2

E(o(t))

d1

E(o(t))

d1

Figure 5.3: Motivation of Statistics based Filtering

In this section, we develop the statistics information based filtering technique.

In a nutshell, for each segment g(o, ti, tj) we use some simple statistics to capture the
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uncertain location distribution of the object for each time t ∈ (ti, tj). Then we can

derive lower and upper bounds of the appearance probability of o at time t, denoted

by P−(o(t), q.R) and P+(o(t), q.R) respectively, to prune or validate the time t.

We say a time t is pruned (validated) if P+(o(t), q.R) < θ (P−(o(t), q.R) ≥ θ).

Furthermore, we can merge the statistics of a set of consecutive times to reduce

the summary size.

As shown in Figure 5.3, suppose o(t) is bounded by a minimal bounding rect-

angle, denoted by o(t).mbr. We use P (Ai) (i = 1, 2) to denote the probability

mass of the states (locations) which are contained by q.R along the i-th dimension

Di, and P (Bi) records the probability mass of the states which are not contained

by q.R along the i-th dimension. In consequence, we have P (o(t), q.R) = P (A1)

in Figure 5.3(a), since q.R contains o(t) along the dimension D2. Suppose we

can derive an upper bound of P (A1), denoted by P+(A1). Then we can safely

prune the time t, if P+(A1) < θ. Similarly, t is validated in Figure 5.3(b) if

1 − P+(B1) ≥ θ, where P+(B1) is the upper bound of P (B1). This observa-

tion can be easily extended to the case where the search region overlaps o(t).mbr

on both dimensions, e.g., Figure 5.3(c) and Figure 5.3(d). In Figure 5.3(c), we

have P (o(t), q.R) ≤ min(P (A1), P (A2)) ≤ min(P+(A1), P
+(A2)), and we can

prune t if min(P+(A1), P
+(A2)) < θ. With the similar rationale, t is validated

if 1− (P+(B1) + P+(B2)) ≥ θ.

Example 5.2. Suppose we have P+(A1) = 0.1, P+(B1) = 0.1, P+(A2) = 0.2, and

P+(B2) = 0.2 in Figure 5.3. Then we have P (o(t), q.R) ≤ 0.1 in Figure 5.3(a),

P (o(t), q.R) ≥ 0.9 in Figure 5.3(b), P (o(t), q.R) ≤ min(0.1, 0.2) = 0.1 in Fig-

ure 5.3(c), and P (o(t), q.R) ≥ 1− (0.1 + 0.2) = 0.7 in Figure 5.3(d).

In the next subsection, we exploit Cantelli’s inequality [Mee03] to derive

P+(A1), P
+(A2), P

+(B1), and P+(B2) based on the statistics information of o(t).
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5.3.2 Statistics Based Filtering Technique

For presentation simplicity, we use a random variable X to denote the location dis-

tribution o(t). Following are formal definitions of the expectation and the variance

of X.

Definition 5.4. Expectation, E(X). We use E(X) to denote the expectation of

X, where E(X).Di =
∑

s∈S s.Di × P (X = s).

Note that P (X = s) denotes the probability that X resides on the state s, and

s.Di is the i-th coordinate value of the state (location) s.

Definition 5.5. Variance, σ2(X). We use σ2
i (X) to denote the variance of X

on each dimensions; that is, σ2
i (X) =

∑
s∈S(s.Di − E(X).Di)

2 × P (X = s).

Given two values x and y where x > 0 and y > 0, we use δ(x, y) to denote a

function where δ(x, y) = 1

1+x2

y2

. Following is Cantelli’s inequality [Mee03], which is

demonstrated in Figure 5.4(a).

E(Y)

( a )

 a

P(Y > a)

E(Y)

P(Y < b)

( b )

 b

P(Y) P(Y)

Figure 5.4: Example for Cantelli’s Inequality

Lemma 5.1 (Cantelli’s Inequality [Mee03]). Suppose that Y is a random variable

in one dimensional space with expectation E(Y ) and variance σ2(Y ), P (Y ≥ a) ≤

δ(a − E(Y ), σ(Y )) for any a > E(Y ), where P (Y ≥ a) denotes the probability of

Y ≥ a.
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By replacing Y with 2E(Y ) − Y , we have a variant of Lemma 5.1 which is

illustrated in Figure 5.4(b).

Lemma 5.2. Suppose that Y is a random variable in one dimensional space with

expectation E(Y ) and variance σ2(Y ), P (Y ≤ b) ≤ δ(E(Y ) − b, σ(Y )) for any

b < E(Y ), where P (Y ≤ b) denotes the probability of Y ≤ b.

We can come up with P+(B1) in Figure 5.3(b) based on Lemma 5.1. And

Lemma 5.2 can be used to derive P+(A1) in Figure 5.3(a).

Suppose the expectation and the variance of X (i.e., location distribution o(t))

are readily available, we can derive the upper bound of P (X, q.R) for pruning.

Theorem 5.1. Suppose that the search region q.R overlaps X.mbr but does not

contain E(X). We have P+(Ai) = 1 if X.mbr is contained by q.R on i-th di-

mension, otherwise P+(Ai) = δ(di, σi(X)) where di denotes the distance between

q.R and E(X) on the i-th dimension (e.g., d1 in Figure 5.3(a)). Then we have

P+(X, q.R) = min(P+(A1), P
+(A2)).

Proof. It is immediate that P+(Ai) = P (Ai) = 1 if X.mbr is contained by q.R

on i-th dimension according to the definition of P (Ai). Otherwise, suppose q.R

is on the left side or bottom of E(X) on i-th dimension (e.g., A1 in Figure 5.3(a)

and Figure 5.3(c), and A2 in Figure 5.3(c)), then we have P+(Ai) = δ(di, σi(X))

according to Lemma 5.2. Similarly, we have P+(Ai) = δ(di, σi(X)) according to

Lemma 5.1 when q.R is on the right side or top of E(X) on i-th dimension. Then

we have P (X, q.R)) ≤ min(P (A1), P (A2)) ≤ min(P+(A1), P
+(A2)). Thus, the

theorem holds.

With similar rationale, we have the following theorem which can obtain the

lower bound of P (X, q.R) for the validation of time t.
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Theorem 5.2. Suppose that the search region q.R overlaps X.mbr and contains

E(X). We have P+(Bi) = 0 if X.mbr is contained by q.R on i-th dimension,

otherwise P+(Bi) = δ(di, σi(X)) where di denote the distance between E(X) and

the uncovered area on i-th dimension (e.g., d1 in Figure 5.3(b)). Then we have

P−(X, q.R) = 1− (P+(B1) + P+(B2)).

Statistics Based Filtering. For a given segment g(o, ti, tj), the expectation and

variance information are maintained for each time t ∈ (ti, tj). For a given query

q, we can obtain P−(o(t), q.R) and P+(o(t), q.R) according to Theorem 5.1 and

Theorem 5.2. Let T (g) denote the timestamps within g which satisfy query time

constraints, i.e., T (g) = [ti, tj)∩[q.s, q.e]. For each timestamp t ∈ T (g), we increase

d−(g) and d+(g) by one if P−(o(t), q.R) ≥ θ. Otherwise, we increase d+(g) by one

if P+(o(t), q.R) ≥ θ.

Reduce Summary Size. To reduce the space consumption, we may keep the

statistics information for a set of consecutive times {tk, tk+1, . . . , tl} within a seg-

ment. Then instead of keeping the expectation and the variance information for

each individual time, we maintain the minimal bounding rectangle of their expecta-

tions as well as the maximal variance value on each dimension. Then Theorem 5.1

and Theorem 5.2 can be adopted in a conservative way such that any time t ∈ {tk,

tk+1, . . . , tl} can be pruned or validated at the same time. We omit the details due

to the space limitation.

5.3.3 Performance Analysis

Given a segment g(o, ti, tj), we assume the location distributions of the objects for

time t ∈ [ti, tj) are readily available by applying Markov Chains based techniques in

Section 2.4.2. The construction of the statistics based summary can be finished in

O(ns×∆t(g)) time where ns is the average number of tuples in o(t). Regarding the
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filtering cost, it takes O(1) time for each time and hence the total cost is O(∆t(g)).

5.4 Partition Based Approach

In this section, we introduce a new filtering approach to build summary for a

segment based on both spatial and temporal partitions. Specifically, Section 5.4.1

introduces the motivation of the partition based filtering approach. Details of the

technique are presented in Section 5.4.2. We discuss how to effectively construct

partition based summary in Section 5.4.3.

g.mbr

ti
Time

tj

ti tj

P(o(t),c)

ti+2 ti+3

P(o(t),c)

cell  c

Bucket b1 Bucket  b2

(a) (b)

Figure 5.5: Motivation of Partition based Filtering

5.4.1 Motivation

Although statistics based filtering technique is simple and effective, a considerable

number of segments will still survive from the filtering phase in our empirical study,

because it is difficult to precisely capture a distribution when there are only a few

statistics. This motivates us to develop more sophisticated summary technique

by partitioning along both spatial and temporal dimensions, so that the filtering

performance can be significantly enhanced with a reasonable space overhead.

As shown in Figure 5.5(a), we first partition the minimal bounding rectangle

of the segment (g.mbr) into a set S(g) of cells. Then for each cell c, Figure 5.5(b)
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shows that there is a function P (o(t), c) which presents the appearance probability

of the object o within the cell c for times t ∈ (ti, tj). We can immediately derive

P+(o(t), q.R) and P−(o(t), q.R) as follows.

P−(o(t), q.R) =
∑

c∈S(g) ∧ q.R contains c

P (o(t), c) (5.2)

P+(o(t), q.R) =
∑

c∈S(g) ∧ q.R overlaps c

P (o(t), c) (5.3)

It is infeasible to explicitly keep P (o(t), c) values for all t ∈ (ti, tj). Conse-

quently, we employ a set of buckets to approximate the appearance probability

distribution for each cell c. For instance, in Figure 5.5(b) we use two buckets

{b1, b2} to represent P (o(t), c) where the time interval size, maximal and minimal

appearance probabilities of a bucket b are denoted by ∆t(b), b.p
+ and b.p− respec-

tively. In particular, we have P−(o(t), c) = b(t, c).p− and P+(o(t), c) = b(t, c).p+

where b(t, c) is the corresponding bucket of c at time t. Then, we have

P−(o(t), q) =
∑

c∈S(g) ∧ q.R contains c

b(t, c).p− (5.4)

and

P+(o(t), q) =
∑

c∈S(g) ∧ q.R overlaps c

b(t, c).p+ (5.5)

5.4.2 Partition Based Filtering

Given a partition based summary of a segment g(o, ti, tj), denoted by S(g), we can

come up with an effective computation algorithm to derive lower and upper bounds

for d(g) according to Equations 5.4 and 5.5. Algorithm 11 illustrates the details.

Specifically, we first retrieve cells in S(g) which are contained by q.R or overlap

q.R, denoted by C∩ and C∪, respectively. Then we attempt to validate (Line 7-

12) or prune (Line 14-18) a time t ∈ T (g). Line 8 calculates the lower bound
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of P (o(t), q.R) based on Equation 5.4, while Line 15 derives the upper bound

according to Equation 5.5. For the given probability threshold θ, we can validate

a time t if P−(o(t), q.R) ≥ θ (Line 10). Similarly, t is pruned if P+(o(t), q.R) < θ

(Line 17).

Time Complexity. Let Cr denote the cost to retrieve the cells which are contained

by q.R or overlaps q.R, and there are nc cells in C∪. Then the total filtering cost is

O(Cr + nc ×∆t(g)).

5.4.3 Summary Construction

To effective construct S(g), we aim to address following three issues in this subsec-

tion: i) how to generate buckets for a given cell; ii) the number of cells assigned

for each segment; iii) how to generate the cells.

(i) Bucket generation. As discussed in Section 5.4.1, we cannot afford to keep

P (o(t), c) values for all times in [ti, tj). Thus, we use B buckets to approximate the

probability distribution. Suppose each time t have the same chance to be involved

in the filtering phase, the uncertainty introduced by a bucket partition B, denoted

by C(B), is as follows.

C(B) =
∑

t∈(ti,tj)

(b(t, c).p+ − b(t, c).p−) (5.6)

Recall that b(t, c) is the bucket used for the time t. Similar to V -optimal his-

togram [JKM+98], we come up with the optimal bucket partition B∗ with cost

O(∆t(g)
2 ×B) by applying dynamic programming technique.

In our implementation, the number of buckets for each cell is linear to the

duration of the segment; that is, B = ∆t(g)/l where l is a pre-given constant.

(ii) Number of cells assigned for each segment. Given two segments g1 and

g2, we use Area(g1) (Area(g2)) to denote the area of g1.mbr (g2.mbr), and n1 (n2)
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Algorithm 11: Partition based Filter(S(g), q, θ)
Input : S(g) : partition based summary of g,

q : range search,

θ : probabilistic threshold

Output: d−(g) and d+(g)

1 d−(g) := 0; d+(g) := 0;

2 C∩ ← cells in S(g) which are contained by q.R;

3 C∪ ← cells in S(g) which overlap q.R;

4 for each time t ∈ T (g) do

5 P−(o(t), q.R) := 0;

6 P+(o(t), q.R) := 0;

7 for each cell c in C∩ do

8 P−(o(t), q.R) := P−(o(t), q.R) + b(t, c).p−;

9 if P−(o(t), q.R) ≥ θ then ; // validate

10

11 d−(g) := d−(g) + 1;

12 d+(g) := d+(g) + 1;

13 else

14 for each cell c in C∪ do

15 P+(o(t), q.R) := P+(o(t), q.R) + b(t, c).p+;

16 if P+(o(t), q.R) ≥ θ then ; // prune

17

18 d+(g) := d+(g) + 1;

19 return d−(g) and d+(g);
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(a)

c
q.R

c1 c2

(b)

g1 g2

Figure 5.6: Motivation of Resource Allocation

denote the number of cells assigned to g1 (g2). At the first glance, we may assign

a fixed number of cells to each segment (i.e., n1 = n2) or fix the area of each cell

(i.e., n1

n2
= Area(g1)

Area(g2)
). However, both strategies are not cost-effective according to

our observation below.

With similar spirit to [ZZLL12], we use P (c) ×W (c) to measure the contribution

of uncertainty for a cell c, where P (c) is the probability that c overlaps q.R but

q.R doesn’t contain c, while W (c) denotes the probability mass within the cell

(i.e., W (c) =
∑

t∈(ti,tj) P (o(t), c) ). As shown in Figure 5.6(a), we can reduce

the uncertainty by evenly partitioning a cell c into two parts c1 and c2. Assume

the probability mass in c is also evenly distributed, now the overall uncertainty

cost becomes 2 × (P (c)
2
× W (c)

2
) = P (c)×W (c)

2
. In Figure 5.6(b), we assume W (g1) =

W (g2) (i.e., two segments have the same duration length), and two cells from the

same segment have the same area and probability mass. Intuitive, for a cost-

effective resource allocation strategy, each cell should contribute the same amount

of uncertainty; that is, P (g1)
n1
× W (g1)

n1
= P (g2)

n2
× W (g2)

n2
. Consequently, we have

(
n1

n2

)2 =
Area(g1)

Area(g2)
(5.7)

since P (g1)
P (g2)

≈ Area(g1)
Area(g2)

. For instance, suppose we have Area(g1) = 10 and Area(g2) =

40 in Figure 5.6(b), if 4 cells are assigned to g1, then 8 cells should goes to g2 because
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(4
8
)2 = 10

40
.

(iii) Cell generation. Now we investigate how to partition the minimal bounding

rectangle of a segment g into m1 × m2 cells. Following the above argument, the

uncertainty cost of a segment g is
∑

c∈S(g) P (c)×W (c). Because
∑

c∈S(g) Area(c)

and
∑

c∈S(g) W (c) are two constants regardless how the cells are generated. This

implies that we should have the same Area(c) ×W (c) value for each cell in S(g)

to minimize the uncertainty cost according to Chebyshev Sum Inequality [HLP88].

Nevertheless, it is infeasible to achieve this with a regular grid partition, and hence

we resort to a simple heuristic. In particular, for a segment with m1 ×m2 cells we

partition g.mbr into mi parts with the same probability mass along each dimension

i, which can be finished in time O(ns×∆t(g) +ns log(ns)) where ns is the average

number of tuples in o(t) for t ∈ (ti, tj).

5.5 Experiment

In this section, we present results of a comprehensive performance study to evaluate

the efficiency and scalability of the proposed techniques in the chapter. Following

algorithms are evaluated.

• UST: The range search techniques proposed in [EKM+12a] where sub-

diamonds based filtering technique is employed1.

• STA: Algorithm 10 in Section 5.2 where statistics based filtering technique

(Section 5.3) is employed.

• GRID: Algorithm 10 in Section 5.2 where partition based filtering technique

(Section 5.4) is employed.

1The range search with exists semantics (i.e., η = 1) is investigated in [EKM+12a]. Never-

theless, their technique can be easily extended to support range search with η > 1.
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In this work, we use techniques proposed in [EKM+12b] to perform candidate

refinement for the above three algorithms.

Datasets. We evaluate our techniques on both synthetic and real datasets using

data generator from [EKM+12a, NZE+13] with following steps. We construct a

two dimensions state space, consisting of n states, which uniformly distributed in

the domain [0, 1]2. For each state, we randomly choose several neighbors, and then

assign random probability to each connection such that the total probability equals

to 1. This builds a directed graph where the vertices represent the states and the

edges represent the transition probabilities from one state to another. The graph

is stored in a matrix as the transition matrix. To create an uncertain trajectory,

we randomly choose one state as the start point, and then apply a directed random

walk through the non-zero edges of the graph to get a moving sequence with 100

time steps. The size of time domain is set to 1, 000, and the start time of an uncer-

tain trajectory is randomly chosen between [1, 900]. The observations of an object

are randomly chosen from the moving sequence. In the experiment, we generate

10, 000 states with a transition matrix. The number of trajectories N varies from

2, 500 to 10, 000 with default value 5, 000. Two subsequent observations’ interval

size (i.e., segment duration) is randomly chosen from 10 to 15 by default. The

probabilistic threshold θ varies from 0.1 to 1.0 with default value 0.5, and the du-

ration threshold η varies from 1 to 10 with default value 6. The real datasets are

generated from a set of trajectories of taxis in the city of Beijing [YZXS11]. We ap-

ply techniques in [NZE+13] to get the state set, transition matrix, and trajectories

set, and then randomly choose 10, 000 state with 583 corresponding trajectories to

perform the experiment.

Workload. A workload for the range query consists of 1000 queries in our experi-

ments. The center of a query is uniformly chosen from the domain [0, 1]2, its start
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time is randomly generated from [1, 990]. The query extent, i.e, search region of

a query in each dimension varies from 0.05 to 0.25 with default value 0.1, and the

duration of a query (∆t(q)) varies from 10 to 25 with default value 10.

Same as [EKM+12a], the catalog size of the UST-Tree is set to 10 in the ex-

periments. In STA Algorithm, we compress the statistics information for every 3

consecutive times. Regarding GRID Algorithm, suppose one cell is assigned to an

unit area with size 0.03 × 0.03. Then for each segment g with area Area(g.mbr),

cn cells are assigned where cn = ⌈
√

Area(g.mbr)
0.03×0.03

⌉ according to Equation 5.7. More-

over, ⌈∆t(g)
5
⌉ buckets are generated for each cell where ∆t(g) is the duration of the

segment (i.e., observation interval size).

All algorithms proposed in this chapter are implemented in standard C++ with

STL library and compiled with GNU GCC. Experiments are run on a PC with Intel

Xeon 2.40GHz dual CPU and 4G memory running Debian Linux. The disk page

size is fixed to 4, 096 bytes. As the refinement phase contributes the dominant

cost in three algorithms, we evaluate their performance by measuring the average

number of candidate segments refined. The average query response time is also

recorded to evaluate the efficiency of the algorithms.

Table 5.2 lists all parameters which may have impacts on our performance

study, where default values are in bold font. In our experiments, all parameters

use default values unless otherwise specified.

Notation Definition
number of trajectories (N) 2500, 5000, 7500, 10000
segment duration ∆t(g) [10,15], [15, 20], [20, 25], [25, 30]

probabilistic threshold (θ) 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
duration threshold (η) 1, 4, 6, 8, 10

query extent (area of q.R) 0.05, 0.1, 0.15, 0.20, 0.25
query duration ∆t(q) 10, 15, 20, 25

Table 5.2: Parameter Settings
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5.5.1 Performance Tuning
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Figure 5.7: Performance Tuning

To evaluate effectiveness of the adaptive resource allocation strategy in Sec-

tion 5.4.3, we also construct partition based summaries following other two alter-

native strategies, namely GRIDC and GRIDL respectively. Particularly, GRIDC

always allocates 3 × 3 cells for each segment (i.e., fix the number of cells for each

segment), while each cell in GRIDL has the area 0.03× 0.03 (i.e., fixed the area of

each cell).

Note that summaries constructed in three algorithms have similar summary

size under default settings. Nevertheless, Figure 5.7 shows that GRID always

outperforms the other two competitors by varying the number of trajectories and

query extent. This confirms the effectiveness of our adaptive resource allocation

strategy.

5.5.2 Performance Evaluation

Impact of the number of trajectories. Figure 5.8 evaluates the performance

of three algorithms on synthetic dataset where the number of trajectories N grows

from 2, 500 to 10, 000. With a larger number of trajectories, more trajectories are

involved in the computation, thus incurring higher computation cost and more

~ 
-B-
-e-

~ 
-B-
-e-
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Figure 5.8: Impact of # Trajectories

candidate segments. The response time and the number of candidate segments

of STA and GRID grow slowly, yet the performance of UST drops more quickly

with the growth of the number of trajectories. It is shown that GRID has the best

scalability among three algorithms.
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Figure 5.9: Impact of Segment Duration

Impact of segment duration. Figure 5.9 evaluates the impact of the segment

duration ∆t(g) on three algorithms where ∆t(g) is randomly chosen from each

bounded interval. The response time and the number of candidate segments are

reported for three algorithms. As expected, the performance of UST degrades

quickly because it is difficult to find a proper sub-diamond when the segment

duration grows. Recall that a sub-diamond ♢ on a segment g(o, ti, tj) need to

enforce that the appearance probability of o(t) is bounded by P (♢) regarding all
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times t ∈ [ti, tj). On the contrary, STA and GRID are much less sensitive to the

growth of the segment duration because of the temporal partition; that is, we build

summaries for a set of time intervals in g, instead of the whole time interval.
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Figure 5.10: Impact of Query Extent and Duration

Impact of query extent and duration. We evaluate the impact of the query

extent of q.R as well as the query duration ∆t(q) against three algorithms, where

the query extent grows from 0.05 to 0.25, and the query duration varies from 10

to 25. With the grow of query extent and query duration, more trajectories are

involved in the range search, thus the number of candidate segments increases as

expected. Figure 5.10 shows that GRID has the best filtering capability among

three algorithms.
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Figure 5.12: Diff. η

Impact of probabilistic threshold. Figure 5.11 investigates the performance of

three algorithms as a function of the probabilistic threshold θ which varies from
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0.1 to 1. The performance of three algorithms is not sensitive to θ. It is shown

that GRID always has the best performance among three algorithms.

Impact of duration threshold. Figure 5.12 reports the number of candidate

segments of the algorithms as a function of the duration threshold η which varies

from 1 to 10. It is shown that the growth of η does not noticeably affect performance

of three algorithms, while GRID always achieves the best performance under all

settings. Recall that, when η equal 1, the range search exactly corresponds to the

range search with exists semantics studied in [EKM+12a].
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Figure 5.13: Experiments on Real Data

Real data. We also perform experiments on the real-life dataset. Figure 5.13

reports the number of candidate segments against the growth of the query extent

and probabilistic threshold θ. Similar trends are observed in Figure 5.13 compared

with the experiments on the synthetic data.

 0
 50

 100
 150
 200
 250
 300
 350

Synthetic Real

C
on

st
ru

ct
io

n 
T

im
e 

(s
)

UST
STA 

GRID 

(a) Construction Time
 0

 50

 100

 150

 200

 250

 300

Synthetic Real

In
de

x 
S

iz
e 

(M
B

) UST
STA 

GRID 

(b) Index Size

Figure 5.14: Index Construction
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Index construction. Figure 5.14 reports the index construction time and the

index size of three algorithms on synthetic data and real-life data. It is interesting

that STA outperforms UST in term of query response time, while STA also con-

sumes less index size and index construction time. On the other hand, although

GRID has the largest index size and construction time, it is cost effective consid-

ering of its superior performance compared with other two algorithms.

5.6 Conclusion

To tame the uncertainty of trajectory data collected in a wide spectrum of ap-

plications, we have developed effective filtering and query processing techniques

to support range search on uncertain trajectories which are modeled by Markov

Chains. Particularly, we formally define the problem of range search on uncertain

trajectories. Then we introduce an indexing structure where the summaries of

the segments are organized by an SS-Tree, as well as a general framework to sup-

port range search on uncertain trajectories following the filtering and refinement

paradigm. To enhance the filtering capabilities, we develop effective statistics based

and partition based filtering techniques. Our comprehensive experiments demon-

strate the superior performance of our new techniques compared with existing

work.



Chapter 6

Top k Similarity Join

In this chapter, we investigate the top k similarity join problem over multi-valued

objects based on a ϕ-quantile distance (ϕ ∈ (0, 1]); for example, in sport game,

median is the 0.5-quantile, maximum is the 1-quantile, minimum is the smallest

quantile (note a quantile ϕ is in (0, 1] and cannot be 0). Regarding the above

case, 0.5-quantile is based on players’ median performance; 1-quantile is to retrieve

the top k similar pairs based on players’ worst performance. ϕ-quantile group-

base distance, on the other hand, aims at the “best population” (specified by ϕ)

regarding the distance of each object pair. Therefore, we study the problem of top

k similarity joins over multi-valued objects where the input are two sets of multi-

valued objects, and the two types of quantile distances are investigated respectively.

This chapter is organized as follows. Section 6.1 formally defines the problem

of top k similarity join over multi-valued objects regarding two types of quantile

distance measures, ϕ-quantile distance and ϕ-quantile group-base distance, and

provide some necessary background information. In Section 6.2, we introduce the

filtering-refinement framework, as well as the data structures utilized in the chapter.

Section 6.3 and Section 6.4 present techniques for top k similarity join based on ϕ-

149
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quantile distance and ϕ-quantile group-base distance, respectively. In Section 6.5,

we report our experiment results. Some extension of the proposed techniques are

discussed in Section 6.6. This is followed by conclusion in Section 6.7.

6.1 Background

We present problem definition and necessary preliminaries in this section. For

references, notations frequently used in the chapter are summarized in Table 6.1.

Notation Definition
U , V two sets of objects in the join query
U (V ) multi-valued object
E entry of R-tree

u (v) instance of U (V ) - a point in d-dimensional space
w(u) (w(S)) (total) weight of u (the set S)

d(u, v) Euclidean distance between u and v
dlo(E,E ′) distance lower-bound between E and E ′

dϕ(U, V ) ϕ-quantile distance of U and V
gbdϕ(U, V ) ϕ-quantile group-base distance of U and V
U × V Cartesian product of instances from U to V

Table 6.1: The summary of Notations.

6.1.1 Problem Definition

Multi-valued Object. In our problem definition, an instance of an object U is

weighted - weight gives the representativeness of an instance in U . For instance, in

the sport game example, a game statistic of a player may appear multiple times;

consequently a normalized weight (the occurrence of an instance over the total

occurrences of all instances) may be used to indicate the representativeness of an

instance. Note that the total of such weights in U equals 1.

A multi-valued object U is represented as {(ui, w(ui))|1 ≤ i ≤ m} where ui is

a point in a d-dimensional space, 0 < w(ui) ≤ 1 (1 ≤ i ≤ m), and
∑m

i=1w(ui) = 1.
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We use U and V to denote two sets of multi-valued objects involved in the join

query.

Below we define the ϕ-quantile distance and ϕ-quantile group-base distance

between two multi-valued objects.

Quantile. Given a collection S of m elements, each element si has a weight w(si)

where 0 < w(si) ≤ 1 and
∑m

i=1w(si) = 1. Let S be sorted increasingly on a search

key f - a function; that is, f(si) ≤ f(sj) if i < j.

Definition 6.1 (ϕ-quantile of S). Given a ϕ (0 < ϕ ≤ 1), the ϕ-quantile Sϕ of S is

the first element si in the sorted S on the search key such that
∑i

j=1w(sj) ≥ ϕ.

ϕ-quantile Distance. For two given objects U and V , there are totally (|U |×|V |)

pairs of instances in U × V where each pair (ui, vj) (ui ∈ U and vj ∈ V ) has the

weight w(ui)×w(vj), namely w(ui, vj). Clearly,
∑

ui∈U,vj∈V w(ui)×w(vj) = 1. The

Euclidean distance d(ui, vj)
1 between ui and vj is called the distance of (ui, vj).

Let U × V = {((ui, vj), w(ui, vj)) | ui ∈ U & vj ∈ V }.

Definition 6.2 (ϕ-quantile distance of U and V ). Given a ϕ ∈ (0, 1], let U × V be

sorted increasingly on the search key - the distance d(ui, vj) of each element (ui, vj).

Then, the distance of the ϕ-quantile of U × V is called the ϕ-quantile distance of

U × V , denoted by dϕ(U, V ).

Definition 6.2 states that if (u, v) is the ϕ-quantile of U × V (i.e., (U × V )ϕ =

(u, v)) then d(u, v) is dϕ(U, V ).

Example 6.1. Regarding the example in Figure 6.1, |U | = 3 and |V | = 2. Assume

that w(u1) = 1
2
, w(u2) = w(u3) = 1

4
; w(v1) = w(v2) = 1

2
. Consequently, U × V

consists of the following six pairs sorted on their distances increasingly:

1Note that our techniques developed in this chapter are based on Euclidean distance; never-

theless they can be immediately extended to cover other distance metrics.
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U

V

u1

u2

u3

v1

v2

Figure 6.1: Distances between Two Multi-Valued Objects

U × V = {((u2, v1),
1
8
), ((u3, v1),

1
8
), ((u3, v2),

1
8
), ((u1, v1),

1
4
), ((u2, v2),

1
8
),

((u1, v2),
1
4
)}. The 0.2-quantile distance d0.2(U, V ) of U and V is d(u3, v1),

d0.5(U, V ) is d(u1, v1), d0.6(U, V ) is also d(u1, v1).

Below we introduce ϕ-quantile group-base distance measure, which is defined

based on the top/best quantile-population of S.

Definition 6.3 (ϕ-quantile population of S). Given a S and a ϕ ∈ (0, 1], a ϕ-

quantile population Sϕ,P of S is a sub-collection S ′ of S such that the total weights

of the elements in S ′ is not smaller than ϕ and removing any element from S ′

makes the total weights in the remaining sub-collection smaller than ϕ.

Definition 6.4 (ϕ-quantile group-base distance). Given a ϕ ∈ (0, 1], the ϕ-

quantile group-base distance of U and V is the minimum total weighted dis-

tance among ϕ-quantile populations of U × V ; that is, the minimum value of∑
(u,v)∈S′ w(u)w(v)d(u, v) with the constraint that S ′ is a ϕ-quantile population of

U × V .

The ϕ-quantile group-base distance between U and V is denoted as gbdϕ(U, V ).

Example 6.2. Regarding Example 6.1, let ϕ = 0.5. gbd0.5(U, V ) = 1
8
d(u2, v1) +

1
8
d(u3, v1) +

1
8
d(u3, v2) +

1
8
d(u2, v2) instead of 1

8
d(u2, v1) +

1
8
d(u3, v1) +

1
8
d(u3, v2) +

1
4
d(u1, v1).
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In fact, there are several 0.5-quantile populations of U × V , including

{((u3, v1),
1
8
), ((u2, v2),

1
8
), ((u1, v1),

1
4
)}, {((u2, v1),

1
8
), ((u2, v2),

1
8
), ((u1, v1),

1
4
)},

etc.

Note that for a ϕ ∈ (0, 1], Example 6.2 shows that gbdϕ(Q,U) is not al-

ways defined on the set of the “consecutive” smallest distances. In Example 6.2,

{((u2, v1),
1
8
), ((u3, v1),

1
8
), ((u3, v2),

1
8
), ((u1, v1),

1
4
)} is not even a 0.5-quantile pop-

ulation of U × V . In fact, we will show in Section 6.4 that the computation of

gbdϕ(Q,U) is NP-hard.

Problem Statement.

ϕ-quantile Top k Similarity Join. Given a ϕ ∈ (0, 1], two sets of multi-valued

objects U and V in the d-dimensional space, a ϕ-quantile top k similarity join

retrieves k pairs of objects P from U × V such that for each object pair (U, V )

from P , its ϕ-quantile distance dϕ(U, V ) is no greater than the ϕ-quantile distance

of object pairs from U × V − P .

ϕ-quantile Group-base Top k Similarity Join. Given a ϕ ∈ (0, 1], two sets of

multi-valued objects U and V in the d-dimensional space, a ϕ-quantile group-base

top k similarity join retrieves k pairs of objects P from U × V such that for each

object pair (U, V ) ∈ P , its ϕ-quantile group-base distance gbdϕ(U, V ) is no greater

than the ϕ-quantile group-base distance of object pairs from U × V − P .

6.1.2 Preliminaries

ϕ-quantile Distance Computation. Given a collection S of m elements, each

element si has a weight w(si) where 0 < w(si) ≤ 1 and
∑m

i=1w(si) ≤ 1. A naive

way to compute the ϕ-quantile is to firstly sort S regarding a given search key

f , and then scan the sorted list to obtain the ϕ-quantile of S. Clearly, the naive

algorithm runs in O(m logm).
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In [CLRS01], an efficient and effective partitioning technique PARTITIONING

(S) is proposed to find an element s ∈ S to divide S into two sub-collections S1

and S2 with the following properties:

1. for each s′ ∈ S1, f(s
′) ≤ f(s); and for each s′ ∈ S2, f(s

′) ≥ f(s).

2. |S1| ≥ 3
10
m− 6 and |S2| ≥ 3

10
m− 6.

Using the partitioning technique, in Algorithm 12 we present an iteration-based

algorithm to compute a ϕ-quantile when S is not sorted.

Algorithm 12: QUANTILE (S, ϕ)

Input : S: a collection of m elements

ϕ: 0 < ϕ ≤
∑m

i=1w(si)

f : specify a search key

Output: ϕ-quantile of S

1 (s, S1, S2) ←− PARTITIONING (S);

2 if ϕ ≤ w(S1) then

3 call QUANTILE (S1, ϕ);

4 else

5 if ϕ > w(S1) + w(s) then

6 call QUANTILE (S2, ϕ− w(S1)− w(s));

7 else

8 return s;

In Algorithm 12, w(S1) denotes the total weights of the elements in S1. When

S has only one element, S1 = S2 = ∅. It is shown in [CLRS01] that the time

complexity of PARTITIONING (S) is linear - O(|S|). Consequently, each iteration

runs in linear time regarding the current sub-collection size. Recall the property
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2 above in PARTITIONING (S). It is immediate that the sizes of sub-collections

involved in the iterations in Algorithm 12 are exponentially reduced - at the ith

iteration bounded by (( 7
10
)i−1m + c) where c is a constant; consequently, the time

complexity of Algorithm 12 is linear - O(m). The correctness of Algorithm 12

immediately follows from the property 1 of PARTITIONING (S).

Regarding two multi-valued objects U and V , there are totally |U |×|V | instance

pairs. Directly applying the partition based algorithm, computing ϕ-quantile dis-

tance between U and V takes O(|U | × |V |). In [ZLC+10], instances inside one

multi-valued object are indexed by an R-tree. Based on the R-tree, pruning tech-

niques are proposed to discard instance pairs which are guaranteed not to be the

ϕ-quantile of U × V . In this chapter, we use the pruning techniques enhanced,

partition based, linear time complexity algorithm in [ZLC+10] as a black box in

computing ϕ-quantile distance between two multi-valued objects.

ϕ-quantile Group-base Distance Computation. It is proved in [ZLC+10] that

ϕ-quantile group-base distance computation is an NP-hard problem. We adopt the

approximate algorithm in [GJ00] while applying it to computing ϕ-quantile group-

base distance. Let approxgbdϕ(U, V ) denote the group distance output by the

approximation algorithm, the following theorem is shown in [GJ00].

Theorem 6.1.

1 ≤ approxgbdϕ(U, V )

gbdphi(U, V )
≤ 2

The approximation algorithm runs in O(mlogm) where m is number of instance

pairs in U × V . In our experiment, it shows that the approximation algorithm is

very accurate in practice.

Conventional Top k Similarity Joins. As the quantile distance computation

between two objects is very expensive with the presence of multiple instances, in
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this problem, we will apply an R-tree index based top k similarity join algorithm to

facilitate the prevention of computing quantile distances between unpromising pairs

of multi-valued objects. In [CMTV00], several algorithms are proposed using R-

tree based indexes including exhaustive algorithm, recursive algorithm and Heap

algorithm. Among all the techniques presented in [CMTV00], Heap algorithm

demonstrates a better performance in most experiment settings. The priority query

based algorithm in [HS98] is quite similar to Heap algorithm except that Heap

algorithm performs a simple pruning before inserting an entry pair into the heap.

We adopt the Heap algorithm and develop novel pruning techniques to speed up the

computation. Note that our pruning techniques are general enough to be plugged

into any R-tree based algorithm for computing conventional top k similarity joins.

6.2 Framework

Our techniques for solving the top k similarity join based on both ϕ-quantile

distance and ϕ-quantile group-base distance follow a standard seeding-filtering-

refinement framework outlined in Algorithm 13.

Algorithm 13: Framework

• Phase 1 - Seeding: Compute the ϕ-quantile distance (ϕ-quantile

group-base distance) for each of the k chosen object pairs from U × V .

• Phase 2 - Filtering: Discard unpromising object pairs from U × V .

• Phase 3 - Refinement: Determine the final solution for ϕ-quantile top k

similarity join (ϕ-quantile group-base top k similarity join).

In the seeding phase, we choose k object pairs and compute their ϕ-quantile dis-

tances (ϕ-quantile group-base distances), using the techniques introduced in Section
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6.1.2. Let λk be the maximal of these k ϕ-quantile distances (ϕ-quantile group-

base distances), in the filtering phase, λk could be used to prune unpromising object

pairs and iteratively updated if necessary. Any k object pairs from U ×V could be

chosen to compute the ϕ-quantile distance (ϕ-quantile group-base distances) in the

seeding phase. Obviously, similar object pairs will lead to smaller λk values; and

hence better pruning power in the filtering phase. In our framework, to select k ob-

ject pairs, we first use the mean µ(U) of the multiple instances for each multi-valued

object U from the two given datasets to represent U . µ(U) =
∑m

i=1w(ui)×ui where

m is the number of instances in U . Clearly µ(U) is also in the d-dimensional space.

Thus the top k similarity join is converted to join over conventional datasets where

each object is a single point in the multi-dimensional space, and we could apply

the existing algorithms [CMTV00] to obtain the k most similar pairs from the two

(single-valued) datasets. The corresponding k multi-valued object pairs from U

and V are then chosen to compute the ϕ-quantile distances (ϕ-quantile group-base

distances). At this point, we obtain a distance threshold λk which will be used in

the filtering phase.

Data Structures

In our techniques, we use aggregate R-trees [PKZT01] to index the local in-

stances of each multi-valued object in U ∪ V , and use two statistic information en-

hanced R-trees (named sR-trees) to globally index the minimum bounding boxes

(MBRs) of objects in U and V, respectively. The local aR-trees and global sR-trees

are built to facilitate our filtering techniques.

Local aR-trees. For each multi-valued object U ∈ U ∪ V , a local aR-tree

[PKZT01] is built to organize its multiple instances. The aggregate information

kept on each intermediate entry is the sum of weights of instances indexed by the

entry. Namely, for every intermediate entry E in the local aR-tree, we record the
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weight of E as the sum of weights (total weights) of instances having E as an

ancestor.

Global sR-trees. We maintain two R-trees on the MBRs of multiple instances

of objects in U and V , respectively. That is, for each object in U , we first obtain

the MBR of its multiple instances. Then we build an R-tree on these MBRs. This

R-tree is called the global R-tree of U . Similarly we build the global R-tree for V .

Note in a global R-tree, each leaf (data) entry is an MBR of an object.

Suppose an object U has m instances in the d-dimensional space, u1, u2, ..., um

with the weights w(u1), w(u2), ..., w(um), respectively.

Definition 6.5 (Mean µ). The mean of U , denoted by µ(U), is
∑m

i=1w(ui)× ui.

Note that µ(U) is in the d-dimensional space. For 1 ≤ i ≤ d, µi(U) denotes the

i-th coordinate of µ(U).

Definition 6.6 (Variance σ2). For 1 ≤ i ≤ d, σ2(U) =
∑m

j=1w(uj)(uj,i − µi(U))2

where each uj,i denotes the i-th coordinate value of uj.

In each of the leaf (data) entry of the global R-tree, besides the MBR informa-

tion of each object, we also keep the above statistic information. And the global

R-tree is called a statistic R-tree, denoted by sR-tree. Remind that two sR-tree

are built for the multi-valued object sets U and V, respectively.

6.3 ϕ-Quantile Top k Similarity Join

We present our techniques for ϕ-quantile top k similarity join for a given ϕ ∈ (0, 1]

in this section. We first present novel distance, statistic and weight based pruning

techniques. Then, we integrate the proposed pruning techniques into the overall

join algorithm based on the Heap Algorithm in [CMTV00].



Chapter 6. Top k Similarity Join 159

6.3.1 Pruning Techniques

When introducing the pruning techniques, we assume that we have an entry pair

(EU , EV ) from the join processing where EU (EV ) is an entry from the global sR-

tree of U (V). EU (EV ) could be either intermediate or leaf (data) entry. The way

to access entries from the two global sR-trees will be introduced in Section 6.3.2.

Distance based Pruning. The first pruning rule is based on the distance between

two entries in the join processing obtained from intermediate or leaf entries of two

global sR-trees.

Pruning Rule 1. Let dlo(EU , EV ) denote the minimum distance between the MBRs

of two entries EU and EV . If dlo(EU , EV ) ≥ λk, then (EU , EV ) can be pruned,

namely, all entry pairs in EU × EV can be pruned.

Complexity. Computing the minimum distance between two MBRs takes O(d)

time. The complexity of Pruning Rule 1 is constant once d is fixed.

Statistic based Pruning. The second pruning technique utilizes the statistic

information kept in the global sR-tree, as introduced in Section 6.2. The main

idea is based on the current distance threshold λk, to derive a value α such that

the α-quantile distance between an object pair (U, V ) is not smaller than λk. If

α < ϕ, we can safely prune (U, V ). We first introduce the Cantelli’s inequality

[Mee03] which is employed in Pruning Rule 2.

δ(x, y) =



1

1 + x2

y2

, y ̸= 0

1, x = 0 and y = 0

0, x ̸= 0 and y = 0

Theorem 6.2 (Cantelli’s Inequality [Mee03]). Suppose that t is a random variable

in 1-dimensional space with mean µ(t) and variance σ2(t), Prob(t − µ(t) ≥ a) ≤

δ(a, σ(t)) for any a ≥ 0, where Prob(t − µ(t) ≥ a) denotes the probability of
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t− µ(t) ≥ a.

Note that Theorem 6.2 extends the original Cantelli’s Inequality [Mee03] to

cover the case when σ = 0 and/or a = 0. The following theorem is proved

in [LZZC11] and provides an upper-bound for Prob(t ≤ b) when b ≤ µ .

Theorem 6.3. Assume that 0 ≤ b ≤ µ(t). Then, Prob(t ≤ b) ≤ δ(µ(t)− b, σ(t)).

Proof. Let t′ = 2µ(t) − t. It can be immediately verified that σ2(t′) = σ2(t) and

µ(t) = µ(t′). Applying Cantelli’s Inequality on t′, the theorem holds.

Now we generalize the above observations into our statistic based pruning rule.

As shown in Figure 6.2, for two object entries (U, V ) stored in the leaf/data entries

of global sR-tree of U and V, along the i-th dimension (1 ≤ i ≤ d), e.g., the

horizontal dimension in Figure 6.2, we locate two lines m and n vertical to the i-th

dimension and with distance λk between m and n. Denote Ui (Vi) as the coordinate

value of U (V ) along the i-th dimension. The line Ui = m (Vi = n) divides the MBR

of U (V ) into two parts, denoted as U1 and U2 (V1 and V2), as shown in Figure 6.2.

Assume µi(U) < µi(V ). Remind that λk is the current distance threshold.

U V

m n

U1U2
V1 V2

Figure 6.2: Statistic based Pruning

The intuition of the statistic based pruning technique is as follows: along each

dimension i, based on Theorem 6.3, we derive an upper bound of the sum of

weights in the shaded areas of the MBRs of U1 and V1, respectively, denoted as
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W up
i (U1) and W up

i (V1). Clearly, we can claim that instance pairs from U2× V2 can

not have distance smaller than λk. Denote the sum of weights in U2 and V2 as

Wi(U2) and Wi(V2), respectively. Obviously, Wi(U2) ≥ 1 −W up
i (U1), and Wi(V2)

≥ 1−W up
i (V1). Thus, using W up

i (U1) and W up
i (V1), we can identify a value α such

that the α-quantile distance between U and V is not smaller than λk. Next we

present the monotonic property of quantile distance.

Theorem 6.4 (Monotonicity of Quantile Distance). Given two multi-valued objects

U and V , α, ϕ ∈ (0, 1], if α < ϕ, then dα(U, V ) ≤ dϕ(U, V ).

Proof. The theorem immediately holds based on the definition of quantile distance

in Definition 6.2.

Based on Theorem 6.4, once we identify the value α such that the α-quantile

distance between U and V is larger than λk, if α < ϕ, then we can claim the ϕ-

quantile distance between U and V cannot be smaller than λk. In this way (U, V )

can be pruned based on the statistic information kept in the global sR-tree only

without accessing the local aR-trees of U and V .

Pruning Rule 2. Given an object pair (U, V ) (U ∈ U , V ∈ V). For a dimension

i (1 ≤ i ≤ d), without lose of generality, assume µi(U) < µi(V ). If 1 - (1 -

δ(m− µi(U), σi(U)))× (1− δ(µi(V )− n, σi(U))) < ϕ, (U, V ) can be pruned.

Proof. For the i-th (1 ≤ i ≤ d) dimension, based on Theorem 6.3, we obtain the

upper bound of the sum of weight of instances in the shaded area U1 of the MBR of

U as W up
i (U1) = Prob(Ui ≥ m) ≤ δ(m−µi(U), σi(U)). Similarly we get W up

i (V1) =

Prob(Vi ≤ n) ≤ δ(µi(V )− n, σi(V )). Since the instance pairs from U2 × V2 cannot

have distance smaller than λk, we have α ≤ 1− (1−W up
i (U1))× (1−W up

i (V1)) ≤

1− (1− δ(m−µi(U), σi(U))) × (1− δ(µi(V )−n, σi(U))). Together with Theorem

6.4, the pruning rule is correct.
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Once we obtain an object pair (U, V ) from the join processing, we apply Pruning

Rule 2 based on the statistic information kept in the global sR-trees before accessing

the local aR-trees of U and V . If we encounter a dimension i such that 1 - (1 -

W up
i (U1)) × (1 −W up

i (V1)) < ϕ, the pruning stops and the object pair (U, V ) is

discarded. As shown in Figure 6.2, after selecting line m along the i-th dimension

of U , line n for V is also fixed regarding the current λk. We apply the equality

principle in determining the position of m and n; namely, the center of m and n

is the same as the center of µi(U) and µi(V ). Based on Theorem 6.3, we obtain

W up
i (U1) and W up

i (V1) in constant time.

Complexity. If W up
i (U1) and W up

i (V1) are derived based on Theorem 6.3, the time

complexity of Pruning Rule 2 is O(d).

Weight based Pruning. The following pruning rule incorporates both weight

and distance information. The instances of a multi-valued object are investigated

by accessing the local aR-trees. Consider an object entry pair (U, V ). If (U, V )

is not pruned by Pruning Rule 1 and 2, we explore the instances information

of the objects by accessing their local aR-trees. We traverse the local aR-trees

of two objects U and V synchronously. At level i, we trim object V using the

current distance threshold λk, and retain only the entries in V with minimum

distance to U not larger than λk. We record the entries as γV,i. Formally, γV,i =

{E ∈ Li(V ), dlo(U,E) ≤ λk}, where Li(V ) denotes all remaining entries (i.e., not

trimed in higher levels) in the local aR-tree of V at the i-th level. Similarly, we

obtain γU,i. If the multiplication of the weights of γV,i and γU,i is smaller than ϕ,

the object pair (U, V ) can be pruned as the ϕ-quantile distance between U and V

must be larger than λk.

Pruning Rule 3. If
∑

e∈γU,i
W (e) ×

∑
e∈γV,i

W (e) < ϕ, the object pair (U, V ) can

be discarded.
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Proof. From the definition of ϕ-quantile distance, it is immediate that if∑
e∈γU,i

W (e)×
∑

e∈γV,i
W (e) < ϕ, then dϕ(U, V ) > λk.

Example 6.3. As shown in Figure 6.3, at the i-th level, the local aR-tree of object

U has two entries U1 and U2, local aR-tree of V also has two entries V1 and V2. The

current threshold λk is as illustrated. Using λk, we trim the MBR of V and only

entry V1 has minimum distance to U smaller than λk; thus, γV,i = {V1}. Similarly,

γU,i = {U2}. If W (U2)×W (V1) < ϕ, the object pair (U, V ) could be pruned.

U2

U1

V1

V2

U

V

Figure 6.3: Weight based Pruning

By applying Pruning Rule 3, we can avoid accessing all instance pairs of U×V ,

and seek to stop on intermediate levels of the local aR-trees of U and V . Note the

traversal of two aR-trees is in a synchronous fashion and level-by-level from the root

node. If one aR-tree reaches leaf nodes first, it stays in leaf level while the other

one keeps traversing till its leaf level. As a by-product, if (U, V ) cannot be pruned

using Pruning Rule 3, we call the ϕ-quantile distance computation algorithm in

[ZLC+10] with the instance pairs from γU,i× γV,i only where i is the leaf (instance)

level. Clearly, the algorithm still outputs correct ϕ-quantile distance as the distance

of the pruned instance pairs are larger than λk based on the definition of γU,i and

γV,i for level i.

An exceptional case of Pruning Rule 3 is that we obtain an entry pair (EU , EV )

from the join processing, one is an object entry while the other is an intermediate
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entry. Assume EU is the object entry of U and EV is the intermediate entry.

Pruning Rule 3 could still be applied to (U,EV ) with the following modifications:

1) We access the local aR-tree of U only and at each level i, record γU,i as the

entries in U with minimum distance to EV not larger than λk.

2) if
∑

e∈γU,i
W (e) < ϕ, the entry pair (U,EV ) could be pruned. Namely, the object

pair of U and any object indexed in EV must have a ϕ-quantile distance greater

than λk.

Complexity. Assume the average number of entries at level i of the local aR-trees of

multi-valued objects is Ni, then clearly the complexity of Pruning Rule 3 is O(Ni)

at each level. The worst case complexity of using Pruning Rule 3 is O(|U | × |V |),

namely no entries are pruned at intermediate entries and we need to access all

instance pairs. However, in practice, as shown in Section 6.5, Pruning Rule 3

is very effective and saves CPU costs significantly. Note that in Pruning Rule 3

we trim the entries at each level of local aR-trees of U and V using λk instead of

considering the combination of all pairs of entries at each level. This is because trim

based pruning is more efficient compared with combining all pairs (time complexity

O(N2
i )) and also trim based pruning is very effective in practice.

6.3.2 Overall Join Algorithm

The overall join algorithm is adopted from the Heap Algorithm in [CMTV00] as it is

both efficient and easy to implement in real applications. We adjust the algorithm

to deal with multi-valued objects. Given ϕ ∈ (0, 1], two multi-valued objects sets

U and V , Algorithm 14 illustrates the top k similarity join processing. A minheap

H is maintained according to the minimum distance between two entry pairs of

the two global sR-trees RU and RV indexing U and V , respectively. H is initialized
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with the pair of root nodes of RU and RV .

The algorithm differentiates three cases based on whether the entries are object

entries or not. If both are intermediate entries (Line 5), we expand all the children

pairs and insert into heap H the pairs which survive from Pruning Rule 1 (Line 7).

If one of the entries is an intermediate entry and the other is an object entry

(Line 9), Pruning Rule 1 and 3 will be applied first (Line 10) before expanding the

children pairs. We apply all three Pruning Rules on object pairs (Line 13), and if

an object pair is survived from pruning, the ϕ-quantile distance is computed; the

top k results and λk are updated if necessary. Note that even from the root node

pair we only insert entry pairs into H if they are not pruned by Pruning Rule 1, it

is still necessary to check Pruning Rule 1 (Line 10 and Line 13) since the distance

threshold λk dynamically changes.

Correctness. Based on the correctness of the three pruning rules, it can be

immediately shown that Algorithm 14 is correct.

Discussions. The techniques proposed in this section could be immediately ex-

tended to support self-join (i.e., we compute top k similar pairs from one data

set U) and threshold base similarity join over multi-valued objects. We omit the

details due to space limits.

6.4 ϕ-Quantile Group-base Top k Similarity Join

Our techniques for join processing based on ϕ-quantile group-base distance also

follow the seeding-filtering-refinement framework in Algorithm 13. In the seeding

phase, k object pairs are selected based on the distance between weighted cen-

troid, then corresponding ϕ-quantile group-base distances are computed using the

approximation algorithm in [GJ00]. The largest among these k distance values is
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Algorithm 14: Top k Similarity Join Processing

Input : RU , RV , k, ϕ

Output: k object pairs from U × V with smallest ϕ-quantile distances

1 H = (root(RU), root(RU)) if not PRUNED1(root(RU), root(RU);

2 while H is not empty do

3 (EU , EV ) = H.top();

4 H. pop();

5 if EU and EV are both intermediate entries then

6 for each children pair (CEU
, CEV

) from EU × EV do

7 if not PRUNED1(CEU
, CEV

) then

8 insert (CEU
, CEV

) into H;

9 else if one of EU and EV is an object entry then

10 if not PRUNED1(EU , EV ) and not PRUNED3(EU , EV ) then

11 Lines 5 - 8;

12 else /* both EU and EV are object entries */

13 if not PRUNED1(EU , EV ) and not PRUNED2(EU , EV ) AND not

PRUNED3(EU , EV ) then

14 Compute ϕ-quantile distance between EU and EV ;

15 if dϕ(EU , EV ) < λk then

16 Update λk and current k most similar pairs;



Chapter 6. Top k Similarity Join 167

thus utilized as the distance threshold γk.

Below we first present the novel and efficient pruning techniques, followed by the

overall join processing algorithm based on ϕ-quantile group-base distance metrics.

6.4.1 Pruning Techniques

We assume that we have an entry pair (EU , EV ) from the join processing where

EU (EV ) could be either an intermediate entry from the global sR-tree of U (V ),

or a data entry from the local aR-tree of U (V ). The following pruning rule is

immediate based on the definition of ϕ-quantile group-base distance between two

multi-valued objects.

Pruning Rule 4. If ϕ×dlo(EU , EV ) ≥ γk, then (EU , EV ) can be pruned, namely, all

entry pairs in EU × EV can be pruned.

Proof. For each object pair (U, V ) where EU is an ancestor of U and EV is an

ancestor of V , the total weight for any ϕ-quantile population S of U × V is not

smaller than ϕ and the distances of all instances pairs in S are not smaller than

γk. Thus the pruning condition holds.

Complexity. Computing the minimum distances between EU and EV takes O(d)

time, thus the complexity of Pruning Rule 4 is constant once d is fixed.

Note that given U and V , the instance group with the total weighted distance

gbdϕ(U, V ) may spread in many different entries of U and V , it is not always possible

to trim many entries from the local aR-trees as we do for ϕ-quantile similarity join

processing in Pruning Rule 2 and Pruning Rule 3 . The next pruning rule further

explores the instances distribution information inside multi-valued objects using

the local aR-trees. Before presenting the next pruning technique, we differentiate

two cases, 1) both EU and EV are data entries, i.e., pointing to a multi-valued
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object; and 2) one of them is an intermediate entry in the global sR-tree and the

other is a data entry. Note that Case 2) occurs when the two global sR-trees are

of different heights.

Considering Case 1) first. Since both EU and EV are data entries, we load

the corresponding local aR-trees, respectively. The pruning rule is conducted in a

level-by-level fashion between the two local aR-trees starting from the root node

pairs. Let LU,k and LV,k denote all entries at level k of the local aR-tree of U and

V , respectively. Clearly there are overall |LU,k| × |LV,k| entry pairs. We denote

these entry pairs as Lk = {(EU , EV )1, ... (EU , EV )|LU,k|×|LV,k|}. Without lose of

generality, we assume these entry pairs are sorted in decreasing order based on the

minimal distance between the corresponding two MBRs, namely, dL(EU , EV )i1 ≤

dL(EU , EV )i2 if i1 < i2. Let (EU , EV )j denote the ϕ-quantile of Lk where the search

key is the minimum distance of two MBRs in each entry pair and the weight of each

pair is the multiplication of the weights of the two entries involved in the pair. The

intuition of the following pruning rule is to relax the ϕ-quantile distance between

U and V to obtain a lower bound of gbdϕ(U, V ).

Pruning Rule 5 (Case 1). Two Multi-valued objects U and V can be pruned if at

a level k of the local aR-trees of U and V ,

(ϕ−
j−1∑
i=1

w((EU , EV )i))d
L(EU , EV )j +

j−1∑
i=1

(w((EU , EV ))i × dL(EU , EV )i) ≤ γK

Notice that in Pruning Rule 5 (Case 1), if the numbers of instances of U and

V are different, it is possible that the two local aR-trees are of different hight. In

such scenarios, if one aR-tree reaches the leaf (instance) level first, then the other

tree keeps traversing until it also reaches the leaf level.

In Case 2), one of the entry is an intermediate entry from the global sR-tree

while the other is a data entry. Without loss of generality, we assume E is an

intermediate entry from the sR-tree of object U , the pruning rule is conducted by
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accessing the local aR-tree of object V . Suppose that Lk = {Ei|1 ≤ i ≤ l} consists

of all entries at the level k of the local aR-tree of object V and assume that Lk is

sorted in the increasing order based on dL(E,Ei); namely, dL(E,Ei1) ≤ dL(E,Ei2)

if i1 < i2. Let Ej denote the ϕ-quantile of Lk according to the search key dL(E,Ei)

and the weight w(Ei) of each entry Ei ∈ Lk.

Pruning Rule 5 (Case 2). The object pairs E × V =

{(U, V )|E is the ancestor of U} could be pruned if at a level k of the

local aR-tree of V ,

(ϕ−
j−1∑
i=1

w(Ei))d
L(E,Ej) +

j−1∑
i=1

(w(Ei)× dL(E,Ei)) ≤ γK

Proof. We prove Case 1) first and Case 2) could be proved in a similar way. Re-

mind that Lk denotes the sorted entry pairs from U and V at k-th level of the

corresponding aR-trees where the sorting is conducted according to the minimal

distance of MBRs of entry pairs, and (EU , EV )j denotes the ϕ-quantile of Lk. For

entry pairs before (EU , EV )j in Lk, we obtain the weighted distance of minimal

MBR distances,
∑j−1

i=1 (w((EU , EV ))i×dL(EU , EV )i). Deducting this part of weights

in ϕ (i.e., ϕ−
∑j−1

i=1 w((EU , EV )i)), the remaining part is weighted by the minimal

distance of the ϕ-quantile entry pair (EU , EV )j. The sum of these two parts is not

smaller than the weighted distance in any ϕ-quantile population of U × V .

Complexity. Remind that |LU,k| and |LV,k| denote the number of entries in the

k-th level of the local aR-tree of U and V , respectively. The time complexity for

Pruning Rule 5 Case 1) is O(|LU,k| × |LV,k| × log(|LU,k| × |LV,k|)) since we need to

sort the entry pairs first. Similarly, the time complexity for Pruning Rule 5 Case

2) is O(|Lk|log|Lk|) where |Lk| refers the number of entries at the k-th level of local

aR-tree of V .
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6.4.2 Overall Join Algorithm

Join processing based on group-base ϕ-quantile distance metrics also follows the

Heap Algorithm in [CMTV00]. Based on Algorithm 14, the following changes are

made.

• Output object pairs with smallest approximate ϕ-quantile group-base dis-

tance.

• In Line 7, PRUNED 1 is changed to PRUNED4.

• In Line 10, PRUNED 1 and PRUNED 3 are changed to PRUNED 4 and

PRUNED 5.

• In Line 13, PRUNED 1, PRUNED 2 and PRUNED 3 are changed to

PRUNED 4 and PRUNED 5.

• In Line 14, compute approxgbdϕ(EU , EV ).

• In Line 15, dϕ(EU , EV ) is changed to approxgbdϕ(EU , EV ).

Accuracy Guarantee. Due to the hardness of computing ϕ-quantile group based

distance, our techniques for ϕ-quantile group-base similarity join yield approximate

results with the following accuracy guarantee.

Theorem 6.5. For 1 ≤ i ≤ k, assume that (Ui, Vi) denotes the ith most similar

object pair in the exact ϕ-quantile group-base similarity join, (U ′
i , V

′
i ) denotes the

top-ith most similar object pair returned by our algorithms. Then, gbdϕ(Ui, Vi) ≤

approxgbdϕ(U
′
i , V

′
i ) ≤ 2gbdϕ(Ui, Vi). Namely, our algorithm has an approximation

ratio of 2.
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Proof. Following the proof of Pruning Rule 4 and 5, it is immediate that if an object

pair (U, V ) is pruned by these two pruning rules, then gbdϕ(U, V ) ≥ γk. From

Theorem 6.1, it follows that gbdϕ(Ui, Vi) ≤ approxgbdϕ(U
′
i , V

′
i ) ≤ 2gbdϕ(Ui, Vi).

Theorem 6.5 states that the i-th ϕ-quantile group-base distance output by our

algorithm is bounded by gbdϕ(U
′
i , V

′
i ) and 2gbdϕ(U

′
i , V

′
i ). Our experimental re-

sults show that the algorithm is quite accurate in practice and the error is much

smaller.

6.5 Experiment

We report a thorough performance evaluation on the efficiency of proposed tech-

niques and effectiveness of pruning rules. In particular, we implement and evaluate

the following techniques.

Join : Techniques presented in Section 6.3 to compute the top k similarity join

based on ϕ-quantile distance (ϕ ∈ (0, 1]), with Pruning Rule 1, 2 and 3

applied.

P12 : Join algorithm but with Pruning Rule 1 and 2 only.

P1 : Join algorithm but with Pruning Rule 1 only.

KNN : Baseline algorithm for Join by using KNN processing over multi-valued

objects in [ZLC+10]. For each object U ∈ U , we compute its KNN in V

based on ϕ-quantile distance, and then select k most similar pairs based on

the union of KNN results.

G-Join : Techniques presented in Section 6.4 to compute the top k similarity

join based on group-base ϕ-quantile distance (ϕ ∈ (0, 1]), with Pruning Rule

4 and 5 applied.
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P4 : G-Join algorithm but with Pruning Rule 4 only.

G-KNN : Baseline algorithm for G-Join by using group-base quantile KNN

processing over multi-valued objects in [ZLC+10]. For each object U ∈ U ,

we compute its KNN in V based on ϕ-quantile group-base distance, and then

select k most similar pairs based on the union of KNN results.

All algorithms are implemented in C++ and compiled by GNU GCC. Experi-

ments are conducted on PCs with Intel Xeon 2.4GHz dual CPU and 4G memory

under Debian Linux. Our experiments are conducted on both real and synthetic

datasets.

Real dataset is extracted from NBA players’ game-by-game statistics

(http://www.nba.com), containing 339,721 records of 1,313 players. Each player is

treated as a multi-valued object where the statistics (score, assistance, rebound) of

a player per game is treated as an instance with the equal weight (normalized).

Synthetic datasets are generated using the methodologies in [BKS01] regarding

the following parameters. Dimensionality d varies from 2 to 5 with default value

3. Data domain in each dimension is [0, 1]. Number n of objects varies from 5, 000

to 15, 000 with default value 5, 000. Number m of instances per object follows a

uniform distribution in [1, M] where M varies from 100 to 800 with the default

value 200. The value K varies among 5, 10, 15, 20 and 25 with default value 10.

The average length of object MBRs follows a uniform distribution spreading over

[0, h] where h varies from 0.02 to 0.10 with default value 0.02 (i.e., 2% of the edge

length of the whole data space).

Centers of objects (objects’ MBRs) follow either uniform, normal or anti-

correlated distribution. Locations of instances in an object follow uniform or

normal distribution. Weights assigned to each instance follow uniform or nor-

mal distribution. Table 6.2 summarizes the parameters used in our experiment
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where the default values are in bold font.

dimensionality d 2, 3, 4, 5
number of objects n 5k, 7.5k, 10k, 12.5k, 15k

edge length h 0.02, 0.04, 0.06, 0.08, 0.10
number of instances m 100, 200, 400, 600, 800

K 5, 10, 15, 20, 25
ϕ 0.1, 0.3, 0.5, 0.7, 0.9

object location uniform, normal, anti-correlated
weight distribution uniform, normal

Table 6.2: Parameter settings

6.5.1 Overall Performance

Figure 6.4 reports the results of the evaluation on processing time on Join, G-Join

and their corresponding baseline algorithms KNN, G-KNN on both synthetic

and real data. As shown, Join and G-Join are up to 3 orders of magnitude more

efficient than their baseline versions on synthetic data. The improvement is less

significant on NBA data because in NBA dataset, objects’ MBRs largely overlap

so that it is very hard to prune an object. In the rest of the experiments we no

longer evaluate the baseline algorithms since their performance is much worse than

the techniques proposed in this chapter.
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Figure 6.4: Compare with Baseline Algorithms



174 Chapter 6. Top k Similarity Join

6.5.2 Accuracy

We evaluate the accuracy of G-Join in this part. As the ϕ-quantile group-base

similarity join is NP-hard and no efficient algorithm exists, we produce the exact

solution using exhaustive search which is exponential to the number of instances

and very slow. So we conduct a very small scale experiment as follows. Each

dataset contains 500 multi-valued objects and each object consists of 4 instances.

Other parameters use the default setting in Table 6.2.

To evaluate the accuracy of G-Join, we use two error metrics. The first is the

average distance error ratio. For 1 ≤ i ≤ K, approx(i) denotes the group-base

ϕ-quantile distance of the top-i-th object pair output by G-Join, and exact(i)

denotes the group-base distance of the top-i-th object pair in the exact solution.

err ratio =

∑K
i=1

|approx(i)−exact(i)|
exact(i)

K

The second measure records the “missed” object pairs, namely the object pairs

that are missed in the approximate results output by G-Join. Let approx denote

the K object pairs output by G-Join, exact denotes the K object pairs in the

exact solution.

miss ratio = 1− |approx ∩ exact|
K

We report the results in Table 6.3 where the object distribution varies, and in

Table 6.4 where the distribution of weights varies. Both demonstrate that G-Join

is highly accurate and more accurate than the theoretical guarantee in Theorem

6.5.

6.5.3 Evaluating Effects by Different Settings

We study the scalability of our algorithms regarding different ϕ values, number of

objects, number of instances (M), lengths of MBR edges (h), K, and the dimen-
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err ratio miss ratio
anti 0.037 0.03
unif 0.029 0.02
norm 0.036 0.02

Table 6.3: Vary Objects Distribution

err ratio miss ratio
unif 0 0
norm 0.037 0.03

Table 6.4: Vary Weight Distribution
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Figure 6.5: Scalability of Join

sionality d.

Figure 6.5 reports the scalability of Join regarding various parameters. It shows

that Join is not very sensitive to different ϕ and K values, while quite sensitive

to other parameters. With a larger number of objects and instances, more objects

and instances are involved in the computation, thus incurring higher computation

cost. With large h values, the MBRs of objects are more likely to overlap with each
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other and hence the pruning power is impaired. With the increase of dimensional-

ity d, when the MBR edge length is fixed, the average area of MBRs gets smaller

compared to the whole data space; consequently, the power of the pruning rules

becomes more significant. The comparison with P1 and P12 illustrates the effi-

ciency of the Pruning Rule 2 and Pruning Rule 3 developed in Join. Note that we

do not evaluate the performance of Join after all three pruning rules are excluded,

since Pruning Rule 1 is simple yet very effective. After removing Pruning Rule 1

Join algorithm fails to terminate in a reasonable time.

Figure 6.6 reports the scalability of G-Join regarding various parameters com-

pared with P4 in which only Pruning Rule 4 is applied. As illustrated in the figure,

G-Join substantially outperforms P4 in all parameter settings, leading to the con-

clusion that Pruning Rule 5 is very efficient in practice. The trends observed are

similar to those in Figure 6.5. G-Join is not very sensitive to different ϕ and K

values. The performance of G-Join degrades with larger number of objects and

number of instances since more instances are involved in the computations. With

a larger average MBR length, G-Join requires more computation time since the

higher degree of overlapping leads to weaker pruning ability. G-Join performs bet-

ter when the dimensionality increases because once the MBR edge length is fixed,

in higher dimensions the average area of an MBR gets smaller so that an object

has a larger to be pruned.

6.6 Extensions

Techniques proposed in this chapter can also be applied to other variations of sim-

ilarity joins over multi-valued objects. In this section, we define several variations

and briefly discuss the techniques.
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Figure 6.6: Scalability of G-Join

Distance Threshold based Similarity Join on Multi-Valued Objects

Top k and threshold based approaches are two typical mechanism to select a

limited number of results which are of most interest to the users. In distance

threshold based similarity join on multi-valued objects, a distance threshold γ is

pre-given by users according to their preference and domain knowledge, only object

pairs with quantile distance not larger than γ will be retrieved.

Problem Definition. Given a ϕ ∈ (0, 1], a distance threshold γ, two sets of multi-

valued objects U and V in the d-dimensional space, a threshold based similarity

join retrieves pairs of objects from U×V with quantile distance not over γ, namely,

{(U, V )|U ∈ U , V ∈ V , dist(U, V ) ≤ γ}. Here the distance metrics dist could be
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either ϕ-quantile distance or ϕ-quantile group base distance.

In Algorithm 13, the Seeding phase is no longer required since a distance thresh-

old is pre-given. Similarity join processing algorithms in Section 4.2 and 5.2 can be

directly applied to solving distance threshold based similarity join on multi-valued

objects.

Multi-way Distance Threshold based Similarity Join on Multi-Valued

Objects

We study pairwise similarity join in this chapter where two multi-valued objects

sets are combined together to retrieve the most similar object pairs. Multiway

spatial joins, on the other hand, involve an arbitrary number of datasets where

the join condition is specified over any two datasets. Next we discuss multi-way

distance threshold based similarity join on multi-valued objects.

Problem Definition. Given n multi-valued datasets U1, ..., Un, a distance threshold

γij is specified between two datasets Ui and Uj, retrieve all n-objects that respects

the distance thresholds, {(U1, ..., Un)|1 ≤ k ≤ n, Uk ∈ Uk & ∀ij, dist(Ui, Uj) ≤ γij}.

Here the distance threshold dist could be either ϕ-quantile distance or ϕ-quantile

group-base distance.

Note that the distance constraint could be applied to any pair of datasets.

[MP01] studies multi-way join on spatial data where a synchronous traversal

paradigm is applied to process the indexes (e.g., R-trees) of all joined datasets.

Our filtering techniques could be directly plugged into the framework in [MP01] to

facilitate pruning based on the given pairwise distance constraints.

Bichromatic and homochromatic Top k Similarity Join on Multi-Valued

Objects

Consider that each object is assigned either blue or red color. A chromatic

query adds an additional constraint compared to its nonchromatic version; that
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is, only the results that meet the color requirement are considered. A bichromatic

(homochromatic) top k similarity join retrieves k most similar object pairs with

different (the same) colors.

A straightforward solution for bichromatic and homochromatic top k similar-

ity join on multi-valued objects based on ϕ-quantile distance or ϕ-quantile group-

base distance is to construct two indexes for each color for each dataset involved.

Consider the problem definitions in 6.1.1, for the dataset U we build two R-tree

based indexes, RU ,red and RU ,blue, for the color red and blue respectively. Similarly,

we build RV,red and RV,blue for dataset V . Bichromatic top k similarity join will

be conducted between the indexes with different colors, i.e., RU ,red × RV,blue and

RU ,blue × RV,red, while homochromatic top k similarity join will be conducted be-

tween the indexes with the same color. The pruning techniques developed in our

chapter could be plugged in to speed up the query processing.

6.7 Conclusion

We study the problem of top k similarity join over multi-valued objects. The

distance/similarity between two multi-valued objects is measured using quantile

based distance to capture the relative instance distribution. A filtering-refinement

framework is developed, along with novel, efficient and effective distance, statistic

and weight based pruning techniques. Comprehensive experimental study over

both real and synthetic datasets demonstrates the efficiency and scalability of our

techniques.



Chapter 7

Conclusion and Future Work

This chapter concludes the thesis by first summarizing the major contributions in

Section 7.1. Then, Section 7.2 presents several possible directions of future work

on developing advanced querying and indexing techniques on uncertain data.

7.1 Conclusion

Due to a variety of reasons including data randomness and incompleteness, noise,

privacy, etc., uncertainty is inherent in many important applications, such as

location-based services (LBS), sensor network monitoring and radio-frequency iden-

tification (RFID). Recently, considerable research efforts have been devoted into the

field of uncertainty-aware spatial query processing such that the uncertainty of the

data can be effectively and efficiently tackled. Numerous query types have been

re-investigated under the uncertain semantics and many database management

systems have been developed especially for uncertain data, as we summarized in

Chapter 2.

In this thesis, we have studied fundamental problems regarding advanced spatial

query processing and indexing techniques on uncertain data. In particular, the

180
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following four problems have been identified and tackled:

(1) Find Top k Influential Facilities.

(2) Identify Top k Dominating Objects.

(3) Range Search on Uncertain Trajectories.

(4) Top k Similarity Join

Our main contributions are stated as follows:

Find Top k Influential Facilities

Based on a new ranking semantics, we propose a new model to evaluate the in-

fluences of the facilities over a set of uncertain objects and develop effective and

efficient algorithms by utilizing two uncertain objects indexing techniques, R-tree

and U -Quadtree respectively. A set of pruning techniques are proposed to sig-

nificantly improve the performance of the filtering and refinement algorithms by

reducing the number of uncertain objects and facilities in the computation. We

further develop efficient randomized algorithms with accuracy guarantee to tackle

uncertain objects with massive number of instances. Comprehensive experiments

convincingly demonstrate the effectiveness and efficiency of our techniques.

Identify Top k Dominating Objects

We formally introduce a top k dominating query for multi-dimensional uncertain

objects based on the parameterized ranking semantics, which is important in the

multi-criteria decision analysis when users cannot explicitly provide a proper scor-

ing function. We formally define a new model for the top k dominating query on

multi-dimensional uncertain data. By utilizing the popular R-tree indexing tech-

niques as well as spatial based and rank score based pruning techniques, we develop
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an effective and efficient algorithm following the filtering and verification paradigm.

We further improve the performance of the algorithm based on some simple statis-

tics information of the objects. Our experiments convincingly demonstrate the

effectiveness and efficiency of our techniques.

Range Search on Uncertain Trajectories

To tame the uncertainty of trajectory data collected in a wide spectrum of appli-

cations, we formally define the problem of range search on uncertain trajectories

and propose effective filtering and query processing techniques to support range

search on uncertain trajectories which are modeled by Markov Chains. Then we

introduce an indexing structure where the summaries of the segments are orga-

nized by an SS-Tree, as well as a general framework to support range search on

uncertain trajectories following the filtering and refinement paradigm. To enhance

the filtering capabilities, a partition based filtering technique is developed to fur-

ther enhance the filtering capabilities. Comprehensive experiments on real-life and

synthetic datasets demonstrate the effectiveness and efficiency of our techniques.

Top k Similarity Join

We formalize the problem of top k similarity join over multi-valued objects, re-

garding two types of quantile-based distance metrics. Then, we propose efficient

and effective algorithms to compute the top k similarity join results. Particu-

larly, we propose novel and efficient distance, statistic and weight based pruning

techniques to significantly speed up the computation. Comprehensive experiments

are conducted on both real and synthetic data to demonstrate the efficiency and

effectiveness of our techniques.

Our main contributions can be summarized by a set of effective filtering and
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verification techniques as well as efficient searching algorithms on spatial uncer-

tain data, and extensive performance evaluations for verifying the efficiency and

effectiveness of our proposed techniques on corresponding problems.

7.2 Future Work

Observing the increasing popularity of spatial query processing on uncertain date

in modern applications, a number of related problems that are worth further study

have also come to our attention. We list three interesting problems to be investi-

gated in the future.

7.2.1 Spatial Query on Uncertain Data with Complex Cor-

relations

Currently, most existing query approaches are based on the assumption of simple

correlations among uncertain data such as independence or mutual exclusiveness.

While this independence assumption holds in some real applications, in other sce-

narios, however, application data may exhibit dependencies and correlate with each

other. For example, we put several sensors in a warehouse to monitor humidity and

temperature. If some sensors are spatially close to each other in a small monitoring

region, the collection data of them may tend to be similar and appear correlated

with each other. Therefore, a possible direction of future work is to manipulate

complex correlations of uncertain data in probabilistic spatial queries. There are

some key challenges. Firstly, novel model is required to derive correlations from

real environment. Secondly, efficient and effective techniques need to be developed

to process various queries on probabilistic data given the presence of complex cor-

relations. Thirdly, efficient and effective test techniques are required to evaluate
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the accuracy of query results.

7.2.2 Top k Dominating Query on Uncertain Objects with

Massive Number of Instances

In some scenarios, each object may contain a large number of instances. For ex-

ample, we want to evaluate the performance of NBA player based on five years

statistic data. The techniques proposed in Chapter 4 could not apply to the case,

due to the limitation of computing equipments and parameterized ranking seman-

tics, where the generation functions would give negative results when we perform a

large number of multiplications. Furthermore, the simple sample methods are not

enough to guarantee the accuracy of dominating query. Therefore, it is challenge

to propose efficient and effective techniques to processing top k dominating query

on uncertain objects with massive number of instances.

7.2.3 Popular Sub-route Suggestions on Uncertain Trajec-

tories

To save the energy and the communication cost, a taxi may report its location at

a low frequency. The time period between two check-in positions might be long

in Geo-social applications such as bike routes and tourist routes. Consequently,

a large volume of spatio-temporal data with low sampling rate is described by

uncertain trajectories where the possible locations of a moving object between two

subsequent observations are captured by a time-dependent random variable (i.e., a

stochastic process). When a tourist want to visit a landscape near his/her current

position, we can use the collected history data to give route suggestions. In the

history data, the route between the two point maybe uncertain. Therefore, it is
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challenge to propose efficient and effective techniques to mine the history route

data to give the tourist some route suggestions with ranking.
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