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Abstract

Epidemiological models are used to inform health policy on issues such as
target vaccination levels, comparing quarantine options and estimating the
eventual size of an epidemic. Models that incorporate some elements of the
social network structure are used for diseases where close contact is required

for transmission.

The motivation of this research is to extend epidemic models to include the
relationship with a broader set of relevant real world network properties. The
impact of degree distribution by itself is reasonably well understood, but
studies with assortativity or clustering are limited and none examine their

interaction.

To evaluate the impact of these properties, | simulate epidemics on networks
with a range of property values. However, a suitable algorithm to generate
the networks is not available in the literature. There are thus two research
aspects: generating networks with relevant properties, and estimating the

impact of social network structure on epidemic behaviour.

Firstly, | introduce a flexible network generation algorithm that can
independently control degree distribution, clustering coefficient and degree
assortativity. Results show that the algorithm is able to generate networks

with properties that are close to those targeted.

Secondly, | fit models that account for the relationship between network
properties and epidemic behaviour. Using results from a large number of
epidemic simulations over networks with a range of properties, regression
models are fitted to estimate the separate and joint effect of the identified
social network properties on the probability of an epidemic occurring and the
basic reproduction ratio. The latter is a key epidemic parameter that
represents the number of people infected by a typical initial infected person

in a population.

Results show that social network properties have a significant influence on

epidemic behaviour within the property space investigated. Ignoring the



differences between social networks can lead to substantial errors when
estimating the basic reproduction ratio from an epidemic and then applying
the estimate to a different social network. In turn, these errors could lead to

failure in public health programs that rely on such estimates.
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Chapter 1: Introduction

Chapter 1: Introduction

An epidemic is “a sudden outbreak of infectious disease that spreads rapidly
through the population, affecting a large proportion of people” (Martin 1994).
Historians have recorded epidemics since at least 400 BCE, where a
contemporaneous record noted the contribution of an epidemic in the fall of
Athens to Sparta (Thucydides 431 BCE). Modern historians and anthropologists
have studied the role of epidemics not only in conquest, but also in shaping
society, for example through their role in labour shortages (popular accounts
include McNeill 1976; Diamond 1998; Sherman 2006).

Quantitative methods were introduced to epidemiology with Bernoulli’s
comparison of smallpox immunisation techniques (1766). Snow’s proof of the
cause of cholera through identification of an infected water pump (Snow

1855) was the first use of systematic analysis for contagion control.

General mathematical models of the way in which diseases spread through the
population were not developed until after 1900 (Hamer 1906; Kermack and
McKendrick 1927). These were developed to examine key epidemiological

questions such as:

o Under what conditions does an epidemic occur?

o What is the eventual size of a specific epidemic?

o How quickly is a specific epidemic expected to spread?

An understanding of epidemic behaviour sufficient to answer these questions
is necessary in order to inform health policy on issues such as target

vaccination levels and comparing quarantine options.

These early models made strong assumptions about social interaction that
simplified the mathematics. The strongest is that all people have the same
level of social contact and that contacts form uniformly at random.

Notwithstanding this simplification, these models are very successful in
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Chapter 1: Introduction

modelling airborne diseases such as measles, where only limited or incidental

contact is required to transmit the infection.

More realistic assumptions about social interaction were introduced for
models of sexually transmitted diseases and other diseases where transmission
depends on close contact. In particular, variation in number of contacts was
explicitly included in models developed for gonorrhoea (Lajmanovich and
Yorke 1976) and HIV (Gupta et al. 1989). These studies demonstrated that
modelling of social structure is necessary to explain some aspects of epidemic
behaviour, such as a disease remaining present in a population despite very

low average prevalence.

1.1 Research questions

Network theorists have defined a variety of properties in addition to the
variation in number of contacts already described (referred to as the degree
distribution), and calculated their values for many different real world

networks (Newman 2003c).

Real world networks typically have a positively skewed degree distribution
with a long tail of nodes with high degree, rather than the symmetric Poisson
distribution that would be expected from random edge creation (Newman
2003c, Section I1I.C and Figure 6).

Further, social networks display some characteristic differences from other
types of real world networks, such as links in web pages and other
technological networks (Newman and Park 2003). In particular, they have
positive degree assortativity and higher clustering coefficient than would be
expected from the degree sequence (see Section 2.2.1 and glossary at
Appendix A). There has been only limited investigation of the impact of

assortativity and clustering on epidemic behaviour.
This observation sets the context for the primary research question:

What is the relationship between epidemic behaviour and three

key features of social networks: positively skewed degree
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Chapter 1: Introduction

distribution, positive clustering coefficient and positive

assortativity?

A key parameter in epidemic models is the basic reproduction ratio, denoted
by Ro, which represents the expected number of infections directly generated
by the first infection. It is related to both whether an epidemic occurs and, if

so, the size of the epidemic.

Focussing the primary research question to concentrate on these aspects of
epidemic behaviour leads to the more specific secondary research questions
1 to 3:

1) How does each of these properties affect epidemic

occurrence?

2) How does each of these properties affect the basic

reproduction ratio Ry?

3) Do these social network properties influence epidemic
behaviour separately or jointly and, if the latter, how do they

interact?

Simulation provides the greatest potential to evaluate the impact of the full
range of property values and interactions. However, this method requires
networks to be generated with positively skewed degree distribution, positive

assortativity and positive clustering coefficient.

An algorithm to generate networks that control these three properties is not

available in the literature. This leads to secondary research question 4:

4)  How can networks be generated for simulations with various
values of degree sequence, assortativity and clustering

coefficient, separately and jointly?



Chapter 1: Introduction

1.2 Structure of the thesis

To enable investigation of these questions, Chapter 2 first sets out the
relevant background from epidemiology and social network analysis (with a
glossary at Appendix A). It also describes commonly used network generation
algorithms and those that generate networks with some of the social
properties sought. Several studies have investigated aspects of the
relationship between social structure and epidemic behaviour with
mathematical models from epidemiological and network perspectives, and
with simulations. Chapter 2 concludes with a description of these studies and

those results relevant to the research questions.

Chapter 3 assumes suitable networks can be generated and describes the
experimental design. There are three aspects to the design: the properties of
the networks, the epidemic properties of the simulation (infectivity, recovery
and immunity probabilities), and practical aspects of the simulation such as

the update process.

| introduce an algorithm in Chapter 4 that is able to generate networks,
controlling the three properties of interest. This chapter identifies how the
algorithm inputs relate to the properties of the generated networks and the
algorithm is then used to generate the networks for simulation required by

the experimental design.

These networks are used to simulate up to 100 epidemics for each
combination of network property values and epidemic parameters. For each
simulation, the results of interest are whether an epidemic occurred and, if
so, the basic reproduction ratio implied by the size of the epidemic.
Chapter 5 includes a detailed analysis of a selected simulation parameter set

and summary results for all simulation sets.

This analysis includes fitting of regression models, which estimate the
separate and joint effects on epidemic behaviour of the degree distribution,
assortativity and clustering of the social networks over which the epidemic

occurs. The computer code and other files used for the analysis are described
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in Appendix B and included on the supplementary DVD. The DVD also contains

the detailed results for all simulation sets, indexed at Appendix C.

The conclusions and implications of the research are presented in Chapter 6.

1.3

Summary of contributions

The first group of contributions concerns network generation:

The

The major contribution in this group is design of a novel three phase
approach to generate networks with separate control of degree
sequence, degree assortativity and clustering coefficient (Section 4.2.1),

responding to secondary research question 4.

| implement this approach with a specific algorithm: one dimensional
ring with stochastic edge swaps (Section 4.2.2). The algorithm is
validated, and the relationship between input parameters and properties

of generated networks is described (Section 4.3).

In addition, an existing network generation algorithm is modified to
generate networks with a given degree distribution that are connected
(Section 4.1), to enable equivalent network implementation of the basic

epidemiological model with its simple social structure assumptions.

second group of contributions describes aspects of the relationship

between social network properties and the behaviour of epidemics for the

property space examined, based on simulation over networks generated with

the new algorithm:

The major contribution in this group is the first analysis of the effect of
each of three network properties (positively skewed degree distribution,
positive degree assortativity and positive clustering coefficient) in the
presence of the other properties (Chapter 5), responding to the primary

research question.

An operational definition of epidemic for simulation studies is proposed
(Section 5.1).
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| study the relationship between degree heterogeneity and epidemic
occurrence in the presence of assortativity and clustering

(Section 5.2.1), responding to secondary research question 1.

¢  For low infectivity rates, the results provide further support for
published studies that suggest epidemics are more likely to occur as
degree variation increases in the absence of assortativity and
clustering. However, this relationship interacts with infectivity, and
for some higher infectivity rates, epidemics are less likely to occur

as degree variation increases.

¢ The results also provide evidence that the relationship between
epidemic occurrence and degree heterogeneity in networks with
positive assortativity and clustering has the same direction as in

networks with zero values of those properties.

| investigate the relationship between degree heterogeneity and
epidemic size in the presence of assortativity and clustering
(Section 5.2.2).

¢ The established view that epidemics are smaller as degree variation

increases is supported.

¢ This same pattern generally occurs in networks that have positive
assortativity or clustering, but the opposite pattern occurs for

highly clustered networks where the epidemic has low infectivity.

| study the relationship between epidemic occurrence, assortativity and
clustering, while controlling for degree heterogeneity (Section 5.3),
responding to secondary research question 1. The likelihood of an
epidemic decreases for higher values of one or both of these properties,

but the significant property differs across parameter sets.

While controlling for degree heterogeneity, | study the relationship
between assortativity and clustering, and basic reproduction ratio (Rp) as

derived from epidemic final size where immunity is conferred (SIR
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epidemics) (Section 5.4) or from equilibrium prevalence where there is

no immunity (SIS epidemics) (Section 5.5.1), responding to secondary

research questions 2 and 3. Results show:

¢

assortativity and clustering affect Rp independently and linearly,

with only limited evidence of interaction or nonlinearity;

increases in either assortativity or clustering lead to lower values of
Ro;

the relative importance of assortativity and clustering differ
between degree distribution types, infectivity levels and SIR or SIS

epidemic type;

the impact of assortativity and clustering on Ry is substantial, with
real world values reducing R, (as compared to its value for zero
values of the network properties) by between 9% and 45% over the

various simulation sets (Section 5.5.3);

some evidence that SIR epidemics are more strongly affected by
clustering and assortativity in the social network than SIS epidemics
(Section 5.5.2).

Based on the concept of secondary reproduction number proposed in

(Eguiluz and Klemm 2002), an alternative method to include the impact

of network social structure into epidemic models is proposed, accessible

proportion of network in a specified number of steps (Section 5.6). Using

this measure:

by itself - models are generally able to account for less of the
variability in the value of epidemic derived Ry than models based

on assortativity and clustering coefficient;

in addition to assortativity and clustering coefficient - models have
only limited additional explanatory power than models based on

assortativity and clustering coefficient only.
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The role of social structure in epidemic behaviour can be studied from the
perspective of three overlapping fields of study. Sociologists studying social
networks have defined a variety of properties and calculated their values for
many different real world social networks. Mathematicians and other physical
scientists have studied dynamic processes, including epidemic spread, on
idealised networks through mathematical techniques and by simulation.
Finally, epidemiologists have incorporated elements of social structure in

models of disease spread.

This chapter initially presents basic concepts and results from epidemiology
and from social network theory. This is followed by a description of several
published network generation algorithms, selected because they are
commonly used for simulation of processes on networks, or they generate
networks with some control over the network properties of interest. These
basic concepts and algorithms each contribute to published results concerning
the effect of the selected social properties on epidemic behaviour. These
results are then described and gaps identified, particularly as they relate to

the research questions.

2.1 Fundamentals of epidemic modelling

Simple epidemic models fall into two broad categories described by the
available states for the population. A person who is available to be infected is
referred to as susceptible (S). Once the disease is successfully transmitted to
a person and that person is able to transmit the disease to other members of
the population, that person is referred to as infected (/). At the end of the
infectious period, the person either returns to the susceptible state or is
removed (R) from the relevant population through immunity (or death). The
model where immunity is conferred is referred to as an SIR epidemic. If there

is no immunity, it is an SIS epidemic.
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Other states are used in more complex models. For example, if there is a
period between the time at which a person becomes infected and the time at
which they can infect others, they are referred to as exposed (E) during that
period. Models including this state are referred to as SEIR or SEIS. Only SIR
and SIS epidemics are modelled in this study.

2.1.1 Basic epidemic model

The first mathematical models of person to person epidemic transmission
included two key concepts, the mass action principle and threshold theory.
The mass action principle (Hamer 1906) states that the spread of a disease is
proportional to the rate of contact between infected and susceptible

individuals. Implicit in this principle are two assumptions:

o The probability of transmission of infection is the same for all pairs of

susceptible and infected persons; and

o Every susceptible individual has an equal probability of coming into

contact with every infected individual.

Threshold theory arises from the system of differential equations now
referred to as the Kermack-McKendrick model or basic epidemiological model.

This model was developed to examine the reasons why epidemics die out.

Two of the reasons commonly put forward ... are (1) that the
susceptible individuals have all been removed, and (2) that
during the course of the epidemic the virulence of the causative
organism has gradually decreased (Kermack and McKendrick
1927, pg 34).

As well as the mass action principle, the model was based on several

assumptions:
o One (or more) infected persons introduced to community;
o Disease spread by contact;

. All members of the community are equally susceptible;
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o Infectivity is a function of infection age (that is, time since infection);
o Removal (immunity or death) is a function of infection age;
o Permanent immunity is conferred by a single infection;

o Population is constant (with the exception of deaths caused by the
epidemic) as the disease timeframe is short compared to demographic

timeframe.

While Kermack and McKendrick were unable to develop a general solution to
the equation system in the form of a function for the number of infected
persons over time, they provided solutions for several special cases. One of
these special cases is where the infection and removal functions are
independent of infection age. By the assumptions of the model, infectivity
and susceptibility are also independent of seasonality, characteristics of the
person infected or exposed, or any other potentially relevant factor. This
simplifies the equation system considerably and is the usual presentation of
the model (for example, in Bailey 1975; Anderson 1991; Diekmann &
Heesterbeek 2000).

The model is given by:

S+I+R=N
ds
— =-S5l
dt h
dl
— = pSI-yl
print i
% = }/[
dt
where: N is total population
S is number susceptible
| is number infected
R is number removed (dead or immune)
p is infection transmission parameter
unit: per person per unit time
y is removal (or recovery) rate
unit: per unit time

-11 -



Chapter 2: Literature Analysis

The infection transmission parameter (or contact rate or infectivity rate) is

defined as:

The proportion of total possible contacts between infectious
cases and susceptibles that lead to new infections (Last 2001, pg
94).

The parameter incorporates two separate elements. The reference to
"possible” contacts is important in this definition as one element is the mean
contact rate between susceptible and infected persons in the population, or
stochastically the mean probability that there is contact between any
specified infective and any specified susceptible. The other element is the

proportion of contacts that transmit the infection.

Under these assumptions, an epidemic occurs only when the population

exceeds a critical ratio of the two rates:
N>ZL 2.2)
B

Further, an epidemic dies out because the number of susceptible people
decreases, thereby decreasing the contact rate component of the infection
transmission parameter. The critical threshold increases and, from the point
of time where N is insufficient, the number of people being removed is higher

than the number of new infections.

Population size is the somewhat unintuitive critical factor because the
assumptions of the model have the number of contacts increasing as
population size increases. One interpretation is that the population is
contained in a limited space and the relevant disease is airborne, so changes

in population numbers do lead to proportional changes in contact rates.

An alternative formulation of the model use S, I and R to denote the density
of susceptible, infected and recovered persons instead of the number of
people in each of these states. Similar notation is used, which can lead to

confusion about the interpretation of parameters in equation system (2.1).
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See the discussion in (Hethcote and van Ark 1987, pp 90-91) about the

differences between the two formulations.

From the basic epidemiological model, neither reason previously put forward
is required to explain the fact that an epidemic dies out before infecting an
entire population. Kermack and McKendrick (1927) also found an approximate
solution for the final size of the epidemic (total number of people infected),
valid only near the threshold. They were also able to demonstrate that similar
results exist in the more general situations of nonconstant infectivity and
removal rates, and where transmission is through contact with an

intermediate host.

As pointed out by Anderson (1991), while Kermack and McKendrick did not
present their result in this way, it is fundamental to the modern concept of
basic reproduction ratio (Rp). Ro is defined (Diekmann et al. 1990, pp 365-6)

as:

the expected number of secondary cases produced, in a
completely susceptible population, by a typical infected

individual during its entire period of infectiousness.

Calculation of R, for a disease is of key concern to epidemiologists because
the threshold theorem, in its modern form, states that an epidemic can occur
if Rp > 1. That is, an epidemic occurs if an infected person who has contact
only with susceptible people is able to produce at least one other infected
person on average. This is equivalent to equation (2.2) as Rp = BN/y in this

model.
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2.1.2 Key results from the basic model

As well as the threshold theorem, R, is related to other key features of
epidemic behaviour. For an SIR epidemic, the total proportion of the
population ever infected is referred to as final size. It is given by the nonzero
root f satisfying (Kendall 1956; Diekmann & Heesterbeek 2000, equation
1.11):

log.(1-f)=-fR, (2.3)

For an SIS epidemic, final size is not relevant. Instead, equilibrium is reached,
where a constant proportion of the population remains infected. This
proportion is at the level where new infections are matched by infected
persons recovering and becoming susceptible. Thus, ongoing prevalence p is

given by (Anderson & May 1992, equation 2.1):

p=1-—- (2.4)
0

Also, by definition, Ry provides the growth rate per generation in the initial
stages of an epidemic, where the proportion of infected (or removed) persons
is negligible. The growth rate per unit time will depend also on the recovery
rate. In each generation, an infected person infects Ry, other persons and

recovers themselves. Thus:
I, = IOG‘R*"“ (2.5)

where: G is number of generations
I, is number initially infected
I; is number infected at generation G

and:
g% =R, -1 (2.6)

where: g, is initial growth rate per generation
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These results are all based on a deterministic consideration of epidemic
behaviour. Later researchers were also able to examine epidemics from a
stochastic viewpoint. The key difference is that the number of people
infected from each infection is treated as a probability distribution instead of

the exact value Ry.

Where a significant proportion of the population is infected, the stochastic
impact is small and the deterministic results apply. However, in the early
stages of an epidemic, stochastic considerations give rise to a nonzero
probability that an epidemic will not occur, despite a basic reproduction ratio

of greater than one.

Following (Diekmann & Heesterbeek 2000, section 1.2.2), branching theory
can be used to show that the probability of an epidemic going extinct before
infecting a significant proportion of the population is given by the smallest

root z satisfying:

z=>Yqcz" (2.7)
k=0
where: g, is the probability of an infected person

infecting k persons

Under the assumptions of a fixed number of contacts ¢ with probability of
infection p given contact, and a completely susceptible population, the

probability of an epidemic going extinct is given by z satisfying:

z=§[i]pk(1—p)“k z¢ (2.8)

2.2 Fundamentals of social network theory

Graph Theory is a mathematical abstraction used to describe relationships
between entities. More generally, a graph is a set of nodes and a set of edges
between those nodes. The edges denote the existence and, in some cases,

direction of the relationship of interest between the pair of nodes that it
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connects. For a given set of nodes many different relationships can exist. Each

relationship defines a different set of edges, and hence a different graph.

For example, if the nodes represent people, relationships could include living
in the same residence, older than, likes, wearing the same coloured shirt etc.
This study concerns the behaviour of human epidemics. In this situation,
nodes represent people and the relationship of interest is social contact
sufficient to transmit the disease in some undefined period of time. Clearly,
diseases with different transmission modes (such as airborne, blood, sexual

activity) would define different graphs over the same population.

The term ‘graph’ tends to be used in mathematical studies of theoretical
results that apply to ensembles of graphs with specified properties (for
example, in Bollobas 2001) and the term ‘network’ is used by sociologists
investigating a real instance (for example, in Wasserman & Faust 1994) where
nodes and edges have additional properties (such as age). This study will use

the term 'network’.

Networks have been studied from various perspectives. For example,
sociologists may be interested in fully mapping a specific example of a
network and identifying a small set of behavioural rules that allow networks
to evolve that are similar to the network of interest, or investigating
properties of the network that influence the current social behaviour. Such a
set of rules or properties can then be used to provide insight into how society
operates (for a general reference, see Wasserman & Faust 1994). In contrast,
the mathematical field of Graph Theory investigates general classes of
abstract networks regardless of whether there are specific existing examples
of the network class (for example, Bollobas 2001). Researchers from many
other fields have also used networks as a way to represent and analyse various
relationships. These include biological relationships such as food webs or the
proteins involve in gene regulation, and constructed relationships such as
power transmission grids and links between world wide web pages (for a

comprehensive review, see Newman 2003c).
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This study considers only social networks, as they provide the contact for
person to person disease transmission in humans. Thus, only those aspects of

network theory relevant to social networks will be considered.
2.2.1 Relevant network properties

This section defines the network properties that are to be compared for their
impact on epidemic behaviour. There are many other properties defined,
measured and interpreted in social network literature, some of which are
likely relevant to epidemic behaviour. For example, the concept of
“betweenness” emphasises that a person may be involved in greater or fewer
of the paths between randomly selected people in the network. Excellent
descriptions of network properties are included in (Wasserman & Faust 1994)
and (Newman 2003c).

2.2.1.1 General network properties

For this study, the relationships of interest are between network properties
and epidemic behaviour. In order to illuminate these relationships, several
simplifying assumptions are made about the networks (discussed at the start

of Chapter 4); they are undirected, static and unweighted. That is:

o the relationship denoted by an edge between arbitrary nodes i and j

exists from node i to node j and from node j to node i (undirected);

o the set of edges (and nodes) does not change once the network is

created (static); and

o all edges in the network transmit infection with equal probability

(unweighted).

A network is referred to as connected if any node can be reached from any
other node by following edges. For networks that are not connected, each
section of the network in which all nodes can be reached from each other is
referred to as a component. Thus, a connected network has only one
component. In a disconnected network, the largest component is referred to

as the giant component if it includes more than half the nodes.
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In this study, edges denote epidemic transmission opportunities. Therefore, if
a network is not connected, the disease cannot spread through the entire
population and the size of the giant component constrains the potential size

of the epidemic.

A network is referred to as simple if there are no multiple edges or self edges.
That is, each edge connects two different nodes (rather than connects a node
to itself) and each pair of nodes either does not have an edge between them
or has exactly one edge between them. This is in contrast to a multigraph,
which may contain multiple edges between the same pair of nodes. Self edges
and multiple edges have no epidemic interpretation if an edge is defined by

the opportunity to infect, so the networks of interest are simple.
2.2.1.2 Degree distribution

The degree (sometimes referred to as connectivity) of a node is the humber of
edges connected to it or, equivalently, the number of neighbours it has. The
degree distribution is then the frequency distribution of different degrees

across the nodes in the network.

There are several aspects of the degree distribution that are potentially
relevant to epidemic behaviour. The most basic of these is mean degree, the

average degree across all nodes in the network. It is given by:

k= MIN (2.9)

where: M is number of (undirected) edges
N is number of nodes

The basic epidemiological model (Section 2.1.1) explicitly assumes that all
members of the community are equally infectious and equally susceptible.
This assumption requires all individuals to have the same rate of contact with
all other individuals in the community. That is, all nodes have the same

degree.

An alternative interpretation is that any variation in number of contacts is

exactly balanced by a variation in intrinsic infectivity or susceptibility. While
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this is mathematically equivalent, it is artificial and the previous

interpretation is the standard.

Other features of the degree distribution that may be practically useful
include the general form of the degree probability function, variance in the
degree, and various measures of bias in the function such as skewness,
entropy of the data sequence and indices concerning concentration of edges
amongst particular nodes. Such summary measures provide a convenient way

to compare degree distributions with a small set of parameters.
2.2.1.3 Clustering coefficient

Clustering is a measure of network transitivity, the extent to which
neighbours of a node are neighbours of each other. There are two alternative

approaches to calculating the clustering coefficient for the network.

Unless specifically noted, this study will use the definition of clustering

coefficient given in (Watts and Strogatz 1998):

Suppose that a vertex v has k, neighbours; then at most
ky(k,- 1)/2 edges can exist between them (this occurs when
every neighbour of v is connected to every other neighbour of v).
Let C, denote the fraction of these allowable edges that actually
exist. Define C (the clustering coefficient) as the average of C,

over all v.

That is, the local clustering coefficient is calculated for each vertex and the
mean of these coefficients is used. By convention, a node with degree of 0 or

1 is considered to have local clustering coefficient of 0. Formally:

C =—>C
NE©
0 if k, = 0,1 (2.10)
C, = Z‘e,.j givene, and e exist‘ .
if k, 22
k, (k, =1) ’
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where: C is clustering coefficient
C, is local clustering coefficient for node v
v,i, j are nodes
N is the total number of nodes
e; indicates that an edge exists between nodes i and j

k, is degree of node v

For the example at Figure 2-1, the network clustering coefficient would be
calculated as the mean of 0.33 (for V), 1 (for a), O (for b), 1 (for c) and 1 (for

d), for a network clustering coefficient of 0.67.

(o
Lo

|
@

Figure 2-1: Clustering coefficient example : Vertex V has four neighbours, vertices

a, b, c and d. Thus, there are 6 possible undirected edges between these pairs of
neighbours: ab, ac, ad, bc, bd and cd. Of these, only two edges (ac and cd) exist, so

the clustering coefficient for vertex V is 2/6.

The other approach is to calculate the proportion of realised neighbour pair
edges in the network (Holland and Leinhardt 1970), referred to in the social
network literature as the fraction of transitive triples. For the example at
Figure 2-1, this method would give a clustering coefficient of 0.55 (from
(2+1+0+1+1)/(6+1+0+1+1))

2.2.1.4 Geodesic path lengths

In a connected graph, any node can be reached from any other node through a
series of edges and nodes. The shortest path (or geodesic) between a pair of
nodes is the smallest number of edges required to get from one node in the

pair to the other. Two properties of interest are the mean and maximum
-20 -



Chapter 2: Literature Analysis

(diameter) of the shortest paths across all pairs of nodes, as they provide

indicators of the potential speed of an epidemic across the network.

1NN

Mean geodesic =— G;
21,21 ’ (2.11)
Diameter =Max(G;) i,je[1LN]
where: N is the total number of nodes

M is the total number of (undirected) edges
G, is the length of the shortest

path (geodesic) between node i and node j

2.2.1.5 Assortativity

The term assortativity is used broadly in social network theory to describe
preferential relationships. For example, the ‘friendship’ relation is more
likely to exist between persons of similar age and/or similar interests than
would be expected purely from the age and interest proportions of people in
the population. However, unless specifically stated, assortativity is used in

this study in the narrow sense of assortativity with respect to degree.
Newman (2002a) defines the assortativity coefficient of a network as:

.. simply the Pearson correlation coefficient of the degrees at

either ends of an edge.

For an undirected network, each edge must be included twice in the
correlation calculation, once in each direction. The assortativity of an

undirected network can be calculated as follows:

r= Mzijiki - :Z,J::
My i?-[3,5]
where: J; and k; are the degrees of the nodes

at the ends of edge i withi=1...M
M is the number of edges

2

(2.12)
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The network literature also uses the term degree correlation, but this
obscures the fact that the correlation of interest is between the degrees at
each end of the edges. As for correlation coefficients generally, assortativity
has a value in the range [-1,1], with positive assortativity indicating that

nodes preferentially link to nodes with similar degree.
2.2.2 Properties of social networks

Newman, together with occasional colleagues, has pursued a research thread
collating and comparing published properties of social and other networks,
classified as information, technological or biological (Newman 2002; Newman
2003a; Newman 2003c; Newman and Park 2003a). This research thread
identifies properties relevant to social networks and investigates potential

factors giving rise to these properties.

Table 2-1 displays the network properties for social networks where all
information is available, extracted from (Newman 2003, Table lic). All

networks are undirected except for email address books.

Table 2-1: Summary of network properties for published social networks

Network Nodes Mean degree Clustering  Assortativity
Film actors 449 913 113.43 0.78 0.208
Company directors 7 673 14.44 0.88 0.276
Maths co-authorship 253 339 3.92 0.34 0.120
Physics co-authorship 52 909 9.27 0.56 0.363
Biology co-authorship 1520 251 15.53 0.60 0.127
Email address books 16 881 3.38 0.13 0.092
Student relationships 573 1.66 0.001 -0.029

*

Values for both definitions of clustering coefficient are given in the original
table. Only the value for C(2) is displayed here as that corresponds to the definition

being used.

From this table, it is clear that a broad range of values can exist for key
properties of real world social networks. In general, social networks show
positive assortativity and relatively high clustering. These conclusions should,

however, be qualified by the observation that the social networks presented
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are not the type of networks that would give rise to epidemic transmission.
However, they are consistent with studies of social networks in which diseases

are transmitted through sexual contact or needle sharing (Rothenberg 2003).

In contrast, other types of networks generally show negative degree
assortativity and clustering that is consistent with the value expected if edges
occurred between pairs of nodes selected uniformly at random but

constrained by the degree distribution.
2.2.3 Property relationships

The requirement that the network be simple has been shown empirically to
cause negative assortativity (Maslov et al. 2002; Park and Newman 2003) in
networks with degree distributions that are highly positively skewed. The

popular but unquantified explanation is that, if the highest degree nodes have

degrees in the order of +/N, the expected number of edges between some
high degree nodes given random connections is greater than one. Because
only one edge is formed, the excess edge(s) must instead be made with a

lower degree node and the created network has negative assortativity.

For any specific degree sequence, a network constructed by randomly making
edges until the target degree is met (Molloy and Reed 1995, described in
Section 2.3.2.1) has an expected assortativity of zero (Newman 2002a). The
same type of network has an expected (transitive triples) clustering

coefficient given by (Newman and Park 2003):

— AZ — L 2
[var(k) E3k k] 2.13)

c=1
N

where: C is the transitive triples version of clustering coefficient
N is the number of nodes
var(k) is the variance of the degree distribution

k is mean degree

While there has been no systematic study of the relationship between

assortativity and clustering in networks, some relevant results have been
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reported. The internet shows much lower clustering than random networks
with the same degree distribution, but significantly higher clustering than
random networks constructed with the same degree distribution and
assortativity (Maslov et al. 2002). The potential assortativity / clustering
space was mapped for a specific degree sequence in (Holme and Zhao 2006,
Figure 1a) and higher values for one property are strongly linked to higher

values of the other.

2.3 Commonly used network generation algorithms

There are two broad approaches to network generation. One method uses
detailed data to synthesise the population of interest and their activities so as
to derive contact information. For example, the EpiSims project uses
population census and traffic survey data (Eubank et al. 2004) to generate a
large urban population for simulating the effect of different diseases and

public health techniques.

Alternatively, there are several algorithms available that enable a network to
be generated with specific values of some properties. This is the method to be
used in this study as it enables variation in the network properties, which is
essential to develop relationships between these properties and epidemic

behaviour.

Several network generation algorithms have been widely used in the published
literature. Networks generated with different algorithms have different

properties.

Algorithms that generate graphs that are not simple are included, as post-hoc
corrections can be made by simply deleting self-edges and duplicate edges.
However, such corrections may change the characteristics of the algorithm.
For example, nodes with higher degree are more likely to have self edges, so

deleting these may reduce the range of achieved degrees.

It is important to recognise that algorithms to generate networks have been

developed for many different purposes and that their suitability for epidemic
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simulation does not necessarily impact on their suitability for analysis of other
types of networks. This is because the properties of social networks can be
very different from the properties of other types of networks (Newman and
Park 2003).

2.3.1 Random graphs (Erdos-Rényi algorithms)

In their classic paper on random graphs, Erdos and Rényi (1960) presented two
network generation processes. For both of these algorithms, the graphs
generated are simple because of the construction rules, but not necessarily

connected.

Their primary method creates graphs with exactly the specified number of
nodes and edges (and hence mean degree) with equal probability from the set
of all possible simple graphs with that number of nodes and edges. The

algorithm is as follows:
1) Take a set of N nodes;

2) Form an edge between any pair of nodes, selecting with equal
probability from all pairs that do not have an edge already between

them;

3) Repeat edge creation until the desired number of edges (M) has been

created.

The other method described, but not used, generates graphs with the
required number of nodes, but mean degree is stochastic. The generation

algorithm is as follows:
1) Take a set of N nodes;

2) For each pair of nodes (different from each other), create an edge

between them with a given probability (p).
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Various authors (including Erdos and Rényi 1960; Bollobas 2001) have
demonstrated that large graphs generated using the two construction methods

have similar properties. One objective of random graph theory is

... to determine at what stage of the evolution a particular

property of the graph is likely to arise (Bollobas 2001, pg xiii).

Consistent with this approach, Erdos and Rényi investigated the mathematical
properties of graphs constructed using probabilistic techniques and the real
world correspondence of their networks was not relevant. However, they

anticipated future work by noting (pg 19):

.. if one aims at describing such a real situation, one should
replace the hypothesis of equiprobability of all connections by

some more realistic hypothesis.

For both methods, each node can have a possible (N-1) edges so the constant
probability for an edge between any pair of nodes necessary to generate an

expected M edges is given by:

M
= 2.14
p NN =) (2.14)
Thus, degree distribution is a binomial distribution with mean degree:
k=2p(N-1 (2.15)
and probability of degree k given by:
N -1 1
P(k)=[ B kam—p)”” (2.16)

For large N, this can be approximated by the Poisson (for p<<7) or Gaussian

(for p not close to 0 or 1) distributions.

As each edge is constructed independently of all other edges, the probability
of an edge occurring between two nodes with a common neighbour is the
same as any other edge. That is, the clustering coefficient is given by p. The
expected assortativity for networks constructed by these methods is 0.
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2.3.2 Given degree sequence - configuration and Markov

chain models

There are two major algorithms in the literature for producing a random
network with a specified degree sequence. The algorithms are the
configuration model, which uses a matching process, and the Markov model,

which uses a swapping process.
2.3.2.1 Configuration model (Molloy-Reed algorithm)

Although implicit in earlier studies (see Bender and Canfield 1978; Wormald
1981) or presented in a different form (Békéssy et al. 1972), the
configuration model is generally attributed to Molloy and Reed, who gave the
first explicit algorithmic presentation (Molloy and Reed 1995, pg 166). This
algorithm constructs a network by matching pairs of imaginary stubs (edges
not yet formed). Each component is fully constructed and, if there are nodes
not yet in the network when the algorithm runs out of available stubs, a new

component is started.
The method is as follows:

1) Form a set that contains d; copies of node i for all i, where d; is the

degree of node i

2) Choose any two members of the set uniformly at random and remove the

pair from the set

3) Choose any member of the set for which at least one of its copies has
already been removed and choose its partner at random from the whole
of the set

4) Repeat step 3 until there are no members of the set which meet the

conditions, in which case return to step 2, or until the set is empty

5) Construct the network by including an edge for each pair of nodes

removed from the set
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A network constructed with this algorithm is not necessarily simple (as the
two members of the pair may be copies of the same node) nor connected. If a
simple graph is required, the common practice is to reject any proposed pair
where the nodes are the same or the pair has already been chosen and select
another or, if there are no suitable pairs available, restart the algorithm.
While this introduces bias (King 2004), there is some evidence that the bias is
small (Milo et al. 2004).

All random choices are made uniformly. In practice, this means that a node
will be chosen from the available nodes (all in step 2, or only those already
chosen in step 3) in proportion to residual degree (that is, degree minus pairs

already formed).

The Molloy-Reed algorithm generates uniformly any graph with a given degree
distribution, where the nodes are labelled and therefore isomorphic networks
are considered different. If, however, the graph is unlabelled (as occurs when
working from the degree distribution rather than the degree sequence), this
algorithm generates networks with probability proportional to the number of
isomorphic networks with the given degree sequence. In principle, if a
uniform selection is required from the degree distribution, a specific degree
sequence from the given degree distribution could be selected with
probability inversely proportional to the number of isomorphisms of that
sequence. This is similar to the approach taken in (Goldberg and Jerrum 1996)

to uniformly sample connected multigraphs.
2.3.2.2 Given degree sequence - Markov chain model

The other standard algorithm for generating networks with a specific degree
sequence uses a Markov chain edge swap process to generate a random
network from a starting network with the required degree sequence (Rao et
al. 1996; Roberts Jr 2000; Snijders 1991).

Typically, the initial network is created using the Havel-Hakimi algorithm
(Havel 1955; Hakimi 1962). This algorithm repeatedly selects the node with
the highest residual degree (degree d) and makes edges with the d nodes with

the next highest residual degrees. A simple graph is created.
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The Markov Chain transition process performs an edge swap. Two edges are
selected that do not share a node (say edge from node A to B and edge from
node C to D). The potential swap involves breaking the existing edges and
making new edges across pairs (so AC and BD, or AD and BC). This potential
switch is carried out only if the new edges do not duplicate any existing edge
(so the graph remains simple). This transition process maintains the degree

distribution.

Because any simple graph with the given degree sequence can be generated
with sufficient edge swaps from any other (which provides irreducibility) and
the probability of generating a particular network depends only on the current
network state, Markov Chain theory states that a uniformly random network is

generated following sufficient edge swaps.

Several modifications to this algorithm have been proposed to generate
connected graphs (Gkantsidis et al. 2003; Viger and Latapy 2005; Stauffer and
Barbosa 2005). As well as the edge duplication test, these algorithms perform
a connectedness test and the swap is only performed if the resultant graph is
connected. However, to increase efficiency because connectedness tests are
much more expensive than edge swaps, the test is only performed after some
number w of potential edge swaps, and all edge swaps since the last test are
undone if connectedness fails. The algorithms differ with respect to the size
of w but they each increase w whenever there is a successful connectedness

test and decrease w if connectedness fails.

Regardless of which of these two methods are used to construct a random
network with specified degree sequence, the network will have a positive
clustering coefficient arising from its degree sequence (mean probability of

edge), and expected assortativity of 0.

2.3.3 Motif models - including exponential random graph

(Frank-Strauss p*) models

A motif is a small subgraph, usually comprising 3 or 4 nodes and the edges

between them (see Figure 2-2 for examples). There are several strands of
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research considering how motifs may be used to understand and model real
world networks. Motif models count the number of times each particular
motif appears in the full network and uses this information to identify motifs

that appear more or less frequently than expected.

Figure 2-2: Motif examples: Each of these subgraphs is a motif. They are referred

to as (from left to right) the 2-star, triangle and 3-star.

The most fully developed motif approach is exponential random graph
(sometimes referred to as p*) models. These models (Wasserman and Pattison
1996; Robins et al. 2005) generalise Markov graphs originally elaborated in
(Holland and Leinhardt 1981; Frank and Strauss 1986). The key assumption is
that the presence of an edge is dependent only on the presence of edges that

are incident (have a node in common).

The model is then of the form:

P(edge) = l’(exp(iazij (2.17)

i=1

where: i represents the particular Markov configuration (motif),
such as edge, triangle, star
6; is the model parameter for the motif
z; is the number of times the motif appears in the real network
being modelled
x is a normalisation parameter to ensure a probability function

Fitting models is a complicated process, with degeneracy problems and a high
computation cost associated with the normalisation parameter. Several

different approaches have been used including maximum likelihood
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estimation, pseudo likelihood estimation and simple regression of
approximate logit models (Anderson et al. 1999; Snijders et al. 2006). Once
fitted, however, the model can be used to generate networks with the same

conditional probability distribution of motifs.

Related work (Milo et al. 2002) has used a simulation approach to identify
those motifs with 3 or 4 nodes that appear substantially more often in
selected real world networks than would be expected in a randomly

generated network with the same degree distribution.
2.3.4 Preferential growth (Barabasi-Albert algorithm)

A highly studied network generation algorithm is that developed by Barabasi
and Albert (1999) with the intention of explaining and reproducing the
scale-free degree distribution shown by many large networks, particularly the
network formed by world wide web site links. The key parameter is the
number of edges added per node. The original description of this algorithm

has the following steps:
1)  Start with a small number of nodes
2)  Add remaining nodes one at a time

3) For each new node, add a fixed number of edges (m) to the existing
network from that node. Each edge is attached to a node already in the
network, selected in proportion to its existing degree (with no multiple
edges).

The paper demonstrated that the two features of growth over time and
preferential attachment (steps 2 and 3 respectively) lead to a network with a
power law degree distribution. That is, the probability of degree k for a node

is given by:
P(k)y=c k™ (2.18)

with ¢ a constant to ensure total probability is 1 and a = 3. Note that the

degree distribution does not truly satisfy the power law, as the power law
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does not extend to very small degrees. In particular, the minimum degree is
generally m and occurs for nodes added toward the end of the process. Lower
degree nodes can only arise in the unlikely event that at least one of the
initial nodes attracts fewer than m edges in the initial construction plus the

growth phase.

As noted in (Bollobas and Riordan 2003), this description is not a full
specification of an algorithm. Most importantly, the initial nodes have no
edges and therefore the selection probability is undefined. The method used
in this study refines the initialisation step of the algorithm in the following

ways:
1)  The initial number of nodes is set equal to the edges per node m

2) The initial network is complete. That is, each initial node has an edge

with each of the other initial nodes, and hence degree of m-1

By ensuring connectivity in the initial network, this form of the algorithm
generates a connected network. Also, the network after the first additional
node will have m+1 nodes, each of which has a degree of m, so this version

has a minimum degree of m.

By construction, there is an age effect in this algorithm, where the high
degree nodes are the early nodes and, further, these nodes are very close to
each other. Consequently, preferential growth networks have a shorter
average path length than random graphs with the same degree distribution

(Albert and Barabasi 2002, pp 74-75 and references therein).

Other models exist for generating power law distribution networks. The most
direct is to select the desired degree sequence and use the configuration
model described above. This approach was taken in (Aiello et al. 2001) to
analyse the relationship between component size and the powers (a, 8 below)
where the number of nodes of degree k (denoted ny) follows the more general

power law:

no=€ (2.19)
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An alternative explanatory model was analysed in (Caldarelli et al. 2002;
Servedio and Caldarelli 2004). It relies on an intrinsic fitness' of each vertex
and a general linking function based on the fitness of the nodes at the ends of
the potential edge. This method generates networks with a power law degree
distribution for a broad range of fitness probability distributions and linking

functions.

Two extensions of the Barabasi-Albert algorithm are particularly important for
modelling social networks. The first of these (Dorogovtsev et al. 2000)
considers the case where nodes have some identical initial attractiveness (A)
and selection is then proportional to attractiveness plus degree. This model
avoids the problem of undefined probabilities at the start of the growth phase
for A > 0. It also provides a more general power law degree distribution, with
the power a able to vary from 2 (when A is 0) through 3 (when A is 1) to «

(when A is «).

The other extension of interest modifies the algorithm to allow the clustering
coefficient to be set (Holme and Kim 2002) instead of accepting the default
value close to zero. In the original algorithm, the new node is connected to
existing nodes selected proportional to their degree. In the modified model,
this selection process is used only for the first edge from the new node and,
for an appropriate probability, for later edges. An alternative selection
process is used for the other cases, where the existing node is selected from
the neighbours of the node selected for the first edge. This alternative

selection process ensures clustering occurs.

For networks of finite size, the skewness of the degree distribution in
networks generated with the preferential growth algorithms and the fact that
the networks are simple, leads to negative assortativity values (see

Section 2.2.3 for discussion).
2.3.5 Lattice structures

Lattice networks are often generated in one (ring) or two (lattice)

dimensions, but higher dimension structures could be used. Nodes are placed
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at regular intervals and each node is connected to all of the nodes physically
located next to it (see Figure 2-3). The lattice of nodes is generally
considered to ‘wrap’ so that those on one edge of the lattice directly connect

to those on the other side.

In lattice networks, each node has the same degree. Mean shortest paths are
relatively high because there are no edges that connect physically distant
sections of the network and many short hops are needed to get between

nodes.

Clustering coefficients depend on the specific algorithm used. For example, in
the 1D ring shown in Figure 2-3, each node has 4 (network) neighbours, with 3
of the possible 6 edges between them in place so the clustering coefficient is
0.5. However the 2D square lattice with degree 4 has a clustering coefficient
of 0. Assortativity is meaningless for lattices as all nodes have the same

degree.

Figure 2-3: Lattice network examples : The network on the left shows a one
dimensional (1D) ring layout with each node connected to the two nearest nodes on
either side (degree 4). The right hand side network shows a 2D rectangular layout
with each node connected to the four nodes that are next to it, vertically or

horizontally (also degree 4).
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Cellular automata models use a lattice as the underlying network structure.
Lattices are particularly useful for modelling systems where physical location

is important in the system behaviour, such as the spread of crop epidemics.
2.3.6 Small-world networks (Watts-Strogatz algorithm)

Real world social networks display the small-world property. That is, they
have similar mean geodesic as random graphs of the same size and edge
density, but with a very high clustering coefficient. This is in contrast to
random graphs, which have a low clustering coefficient, and also to lattices,

which have a high mean geodesic.

Watts and Strogatz (1998) developed an algorithm to generate networks with
this property, by starting from a ring lattice and addind a rewiring procedure.
For each edge, with given fixed probability, the edge is removed and a new
edge created that joins one of the nodes previously connected with the
original edge to a uniform randomly selected node in the network. The
original implementation considered the edges in a particular order and this
ordering also chose which node from the removed edge would be joined with

the new edge.

Other implementations are possible. For example, the underlying lattice could
be of any form. The edge creation process could have both end nodes
selected randomly instead of remaining connected to one of the original

nodes.

For any of these implementations, the principle of providing short cuts across

the lattice structure is the same:

... the rewired edges must typically connect vertices that would
otherwise be much further apart than [the mean shortest path in
a random graph with the same number of nodes] (Watts and
Strogatz 1998, pg 441).

By varying the probability of edge rewiring, the algorithm provides

intermediate networks between a regular lattice (probability of 0) and a
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random graph (probability of 1). Note that the particular implementation used
by Watts and Strogatz, with only one end of the edge rewired, does not
generate a true random graph as defined in Section 2.3.1. In particular, the
minimum degree in the network will be at least half the mean degree.
However, implementation with both ends rewired does generate true random

graphs where the edge rewiring probability is 1.

For a broad range of rewiring probability values, the mean geodesic of the
networks generated by the algorithm increase logarithmically with the size of
the network while clustering coefficient remained stable, thus demonstrating
the required small-world property. Mean geodesic is lower for higher rewiring

probability.

For networks generated with the small-world algorithm of rewiring a lattice,
the clustering coefficient is close to the clustering coefficient of the original

lattice and expected assortativity is 0.

2.4 Network generation with community structure

Several network generation algorithms are less widely used, but have been
specifically developed to incorporate community structure in some way. Thus,
they are potentially more relevant to epidemic simulation because the

generated networks are expected to have more socially realistic properties.
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2.4.1 Keeling’s focal points algorithm

In spatially constructed network generation algorithms, physical location is
used to define the network structure but, after the network is generated, the
physical location has no relevance and is discarded. Simple examples have
been explored in (Waxman 1988; Hong et al. 2005). Waxman’s RG1 model (pp
1619-20) starts with N nodes distributed in rectangular 2D space at uniformly
random selected integer coordinate points. For each pair of nodes, an edge is
made between them with probability based on the Euclidean distance

between them:

P(edge) = fexp (;—ij (2.20)

where: d is Euclidean distance
L is maximum Euclidean distance

a e (0,1] is a parameter for ratio of short or long edges

B e (0,1] is a parameter for edge density

A variation of this model has been used by Keeling and his colleagues (Keeling
1999; Eames and Keeling 2002; Keeling 2005) to examine the impact of some
aspects of social network structure on epidemic behaviour, particularly mean
degree, variance of degree and clustering. Keeling’s algorithm has some

additional steps and parameters:

1) The space used is a periodic square of size such that the mean node

density is 1 node per unit area (so side length is /N)

2) Nodes are located anywhere in the space (coordinates uniformly random

selected) rather than integer coordinates

3) Focal points are uniform randomly located in space (number or density

of these is a model parameter)

4) Each node moves toward the closest focal point a fixed proportion

(model parameter) of the distance to that focal point
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5) For each pair of nodes, an edge is made between them with probability

based on the Euclidean distance between them:

—d?
P(edge) = Hexp| — 2.21
(edge) p[ ZVJ (2.21)
where: d is Euclidean distance (wrapped surface)

H is a parameter for edge density
V is a parameter for ratio of short or long edges (clustering)

6) Only the giant component is used, and only if it includes at least 90% of

the available nodes.

This model is particularly suited to epidemic consideration because of the
introduction of community structure through focal points. Nodes that move
toward the same focal point also move toward each other, thereby increasing
the probability of an edge being created between them. Further, the higher
the proportion of distance moved, the stronger this effect. Thus, focal points

play the role of

... places where people congregate, and could represent schools
and workplaces, or family groups, depending on their number
(Keeling 2005, pg 3).

The edge creation probability is inspired by the Gaussian normal distribution,

but there is no requirement that H =+/272V . Instead, H (height) and V

(variance) are able to be set entirely independently.

H represents the maximum probability of an edge, as it is the probability that
two nodes identically ‘located’ have an edge between them. Thus, H <1
ensures that a proportion of node pairs do not have edges, providing an upper
limit to edge density. Also, H > 1 establishes a distance where any two nodes
that are closer than that distance always have an edge between them in the

created network.

V provides a distance over which edge creation occurs. If V is very small,

probability of an edge is low for all but very small distances. In contrast, if V
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is very large, the distance has minimal impact on the probability and the

probability of an edge approaches H for all node pairs.

Using a standardised version of the V parameter, the relationship between
algorithm parameters and network properties has been examined in (Badham
et al. 2007). This paper shows that the impacts of the H and (standardised) V
parameters on the network properties are consistent and predictable. In
contrast, the focal point parameters have inconsistent effect (see summary at
Table 2-2).

Table 2-2: Impact of parameters in Keeling network generation

Parameter Mean Degree Clustering  Assortativity
Degree Variance Coefficient

Nodes N Parallel Parallel Minimal Minimal

Edge creation H Parallel Parallel Parallel Parallel

Edge creation \' Parallel Parallel Minimal Opposing

Focal point density f Minimal Minimal Various Various

Move proportion m Minimal Minimal Various Various

There are three difficulties with using this algorithm to generate networks for
the epidemic simulations required. First, the degree distribution is
approximately binomial. There is no capacity to generate the highly skewed
degree sequences that can arise in social networks. Second, the relationships
between parameters and properties break down where very small values of V
are required; that is, for sparse networks with low mean degree but large
size. Third, values for clustering coefficient and assortativity tend to be

similar, with scope for separation only in networks with large mean degree.
2.4.2 Newman's community structure algorithm

Another network generation algorithm that explicitly includes communities
also provides some control over clustering and assortativity in the generated
network (Newman and Park 2003; Newman and Park 2007). While this model

was developed to estimate the value of network properties arising naturally
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from the distribution of nodes across groups, it can also be used to generate

networks.

In this model, nodes are distributed to multiple groups, with the number of
groups for the node randomly selected from some arbitrary distribution. The
size of each group is also selected from some (different) arbitrary
distribution. Edges are created between all pairs of nodes within groups with
a fixed probability. The final parameter is either the total number of nodes or
the total number of groups. These are related to each other through the

means of each distribution and the edge probability.

Where the groups are of different size, there is assortativity in the generated
network. Further, the value of the assortativity coefficient can be calculated
theoretically, using the moments of the two distributions. The clustering
coefficient is related to the edge probability (with reasoning similar to
Newman 2003b).

This algorithm is unsuitable for generating the required networks for epidemic
simulation because the properties of interest are generally not independent.
In particular, mean degree, shape of degree distribution and assortativity all

depend on the two distributions.

Some control exists for the specific case where the number of groups for each
node is an integer constant C and the group size is taken from a Poisson
distribution. In this case, assortativity (p) depends only on the probability of

connection (p) and the number of groups, and is given by:

p=F/ (2.22)

For this case, clustering coefficient depends on p and mean degree can be
adjusted through group size without impacting on the other properties.

However, there is no way to control the degree distribution shape.
2.4.3 Using motif algorithms for network properties

Researchers using the motif algorithms have focussed on fitting models to real

networks and quantifying the extent to which the motif frequencies differ
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from that expected (see Section 2.3.3). While there has been no research
explicitly examining the relationship between model parameters and network
properties, there has been some recent work examining the goodness of fit of
models (Robins et al. 2007; Hunter et al. 2005), which is relevant to

generation of networks with specific properties.

The goodness of fit research uses the fitted model to generate a number of
networks and then examines whether the original network differs from the
simulated sample. This comparison examines both the distribution of motifs
(which is the input to the model) and broader network properties such as
moments of distributions of degree, geodesics and local clustering coefficient.
At least for some sets of motifs, this research shows that the properties of
networks simulated from a model fitted to those motifs are reasonably stable

and consistent with the real world network properties.

2.5 Incorporating social structure in

epidemiological models

The basic epidemiological model excludes several significant biological factors
that could be important in modelling the behaviour of an epidemic. These
include such issues as births and natural deaths (that is, not caused by the
epidemic), differential impact of a disease on population subgroups (such as
age groups), impact of maternal disease status on infants, and loss of

immunity over time (for a discussion of these, refer to Anderson & May 1992).

Some of these factors were incorporated by Kermack and McKendrick in their
later work (1932; 1933). Amongst other things, this work demonstrated that a
disease that conferred immunity could nevertheless maintain an endemic
state in a population where new susceptible individuals were added to the
population through birth or immigration. That is, the disease does not die out,

instead maintaining a stable prevalence.

The key issue to be considered further in this study is the impact on epidemic

behaviour of relaxing the assumption of the mass action principle. Under this
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principle and the consequent assumption of equal infection transmission
parameter, patterns of contact within the community are ignored and every
susceptible individual has an equal probability of coming into contact with
every infected individual. All other assumptions of the basic epidemiological
model will be maintained, including homogeneity of disease impact and use of

a fixed population.

Social network structure has been incorporated into epidemiological models
analytically and by simulation. There are several reviews (including sections
of Newman 2002b; Newman 2003c; Watts 2004; Keeling and Eames 2005) for

the specific consideration of epidemic behaviour on networks.
2.5.1 State model

There are many potential sources of heterogeneity that may affect epidemic
dynamics and therefore need to be incorporated into models. These include
(Anderson & May 1992; Diekmann & Heesterbeek 2000):

. Demographic structure: infectivity, recovery and other rates may differ

for different age and/or gender groups;

. Genetic and comorbidity variation: different people of the same ‘type’
(age, gender, infection status) may have different infectivity,
susceptibility or recovery rates due to factors specific to the individual,

including the presence of other disease;

o Social structure: individuals with the same demographic and genetic
factors may have different social activity levels that impact on their
infectivity or susceptibility, particularly in the number of contacts and

the frequency of partner change;

. Spatial structure: this is a specific type of social structure impact where

the contact rate is entirely dependent on the local population density.

Although different authors may use different presentations, terminology
and/or levels of rigour and formality, these structures are each incorporated

into models in the same way.
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The key steps are (Nold 1980; May and Anderson 1984; Hethcote and van Ark
1987; Diekmann et al. 1990; and others):

1)

Define a set of states (or subpopulations), with each state incorporating
a particular value or range of values for each factor (for example, a

state may be age 25-34, female, 1-2 sexual partners per year);

¢ The set of states must be exhaustive and mutually exclusive (that

is, each individual can be assigned to exactly one state);
Calculate population counts for each state;

Assume that individuals with the same state are homogenous in terms of

any characteristics that affect epidemic behaviour;

Define a ‘who acquires infection from whom’ (WAIFW) transmission
matrix K with elements k;j; set by the number of new cases of state i

caused by a single infected individual of state jj;

The matrix and initial population counts are then used to simulate

epidemic behaviour.

The transmission matrix can also be formulated as the probability that a

member of class i will infect a member of class j (instead of the number of

infections), with consequential changes in the presentation of results.

There has been considerable progress in determining analytical results for

state based models. In particular, Diekmann et al (1990) demonstrates that

the basic reproduction ratio is the spectral radius of the transmission matrix:

R, = lim|K"[” (2.23)

N—oo

The interpretation of this is that the transmission matrix K operates on one

generation of the epidemic to describe the state specific number of infections

in the next generation of the epidemic. The spectral radius is then the

average over many generations of the generational infection change.
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Further, Ry is the dominant eigenvalue of the transmission matrix as all
elements are positive. Results for initial growth rate, probability of a minor
outbreak, final size and prevalence for an endemic are presented in
(Diekmann & Heesterbeek 2000). However, the mathematics is intractable in

most situations.

Averaged across possible states for the initial infection, the transmission
matrix is similar to the next generation operator (Diekmann et al. 1990) or
secondary reproduction ratio (Eguiluz and Klemm 2002), providing the
expected number of infections arising directly from a single infection. Under
the assumption that the probability of infection is constant (given a contact
between an infected and a susceptible node), this is also equivalent to the
proportion of the network accessible by travelling along a single edge from

the starting position, averaged over all nodes (potential starting positions).

While the state approach is able to incorporate many observable sources of
variation, there are many other less clearly defined aspects that may also
impact on epidemic behaviour. These include environmental factors (such as
the impact of the weather on the capacity of the infective agent to survive
the transfer process), presence of other diseases that affect immunity, and

nutrition and hygiene behaviour.
2.5.2 Analytical approaches to contact variation

One specific application of the general state model is to define states by
number of contacts. That is, all members of the population (or nodes in the
social network) are considered homogenous except for contact rate. This
introduces the network theory concept of degree distribution to the epidemic
model. In general, degree heterogeneity increases Ry (Becker 1973; Adler
1992).

Note that an inherent assumption of the state model is that all individuals in
the same state are equivalent and any may be uniform randomly chosen for

the purposes of the transmission matrix. This is equivalent to an assumption
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that the clustering coefficient is equal to the expected clustering coefficient

given the degree distribution and that assortativity is zero.

As an aside, many results from state model epidemiology require that the
transmission matrix be irreducible. This is satisfied by any network that is
connected, because a node in any state can be reached from a node in any

other state.

One assumption often applied to epidemic state models, which simplifies the
mathematics considerably, is that of separable mixing. This assumption
requires that the states of the infective and susceptible individuals involved in
any transmission are independent. Equivalently, the social network defined by
potential epidemic transmission has assortativity of zero with respect to the
combination of properties used to define states. Where states are defined
solely by contact rates, separable mixing is equivalent to assuming zero
(degree) assortativity. Zero assortativity social networks with degree
heterogeneity but otherwise homogenous nodes also satisfy the stronger
requirements for proportionate mixing, where the relative infectivity of a
group is equal to its relative susceptibility, because a node's infectivity and

susceptibility are both proportional to its degree.

Under the assumption of separable mixing, Ry is given by (Nold 1980;
Diekmann et al. 1990):

var(k
Ry =R; {1+ 122( )} (2.24)
where: R; is the basic reproduction ratio with uniform degree k

var(k) is the variance of the degree distribution

k is mean degree

The correction factor reflects the fact that, regardless of how the initial
infected node is selected, nodes infected later are selected proportional to
their susceptibility, in this case degree, and this in turn means that the

infected nodes also have relatively high infectivity.
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The inclusion of the degree variance term can allow epidemics to exist in a
population with much lower average infectivity per node. This is because a
core group with high contact rates has a disproportionate effect arising from
the high potential of core group members to become infected and also the
opportunity to infect many others. At the extreme, a scale free network of
sufficient size can maintain an epidemic for an arbitrarily low mean

prevalence (Pastor-Satorras and Vespignani 2001).

A separate research thread (Becker 1973; Ball 1985; Andersson and Britton
1998; Lefevre and Malice 1988) has examined the size of epidemics in the
presence of infectivity and susceptibility heterogeneity. While this research is
not specifically considering the contact rate component of infectivity and
susceptibility, the results can be applied to degree heterogeneity. In general,
heterogeneity leads to a smaller epidemic than would be expected from the
mean infectivity and susceptibility, weighted by number of nodes. However,

the opposite is true when infectivity is low.

Thus, the higher basic reproduction ratio does not translate into larger
epidemics as would be expected from equations (2.3) and (2.4). Extended
equations have been developed under separable mixing for both SIS (Nold
1980; May and Anderson 1984; Hethcote and van Ark 1987a) and SIR (Ball and
Clancy 1993; Britton 2001) epidemics. These equations show a similar form,
but the contribution of subpopulations is weighted, with the weights
incorporating the degree of the subpopulation and the correction factor for
degree variation. Because of the nonlinearity of the relationship between Ry
and final size (SIR) or endemic prevalence (SIS), the degree variation can lead
to a substantial difference between the R, derived from observed epidemic

behaviour and the actual Ry.

The counterintuitive result of degree heterogeneity leading to higher Ry but
smaller epidemics is related to the shape of the degree distribution. The
highest degree nodes are the most susceptible and are able to infect the most
additional nodes, but also represent the smallest proportion of nodes. The low

degree nodes suffer the least impact of the epidemic but form a much greater
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proportion of the nodes. This issue is discussed in detail with an example in
Section 5.7.1.

2.5.3 Dependency in number of contacts (assortativity)

In the absence of separable mixing, there are two approaches that have been
taken to introduce assortativity to the transmission matrix. Note that
networks with uniform degree must have assortativity of 1 by definition.
Hence, any analysis of the impact of assortativity on epidemic behaviour must

also have degree heterogeneity.

The first approach considers the special case where there are two components
to the mixing: proportional mixing across states plus preferential mixing

within states.

A proportion 1-s of contacts [edges] are distributed in
proportion to the fractional activity levels [in this case, degree]
of the groups contacted (Nold 1980, pg 237).

The remaining edges connect nodes within groups. The parameter s allows
assortativity to range between 0 (at s = 0) and 1 (at s = 1). Note that the fully
assortative network is disconnected, with each component containing only

nodes of the same degree. Under this scheme,

... there exists an interval of s values such that the disease
persists, as long as the infectious contact number of some group
exceeds 1 (Nold 1980, pg 238).

That is, an assortative network will have subnetworks with relatively high
mean degree and other subnetworks with relatively low mean degree. The
high degree subnetworks have a reproduction ratio within that network
section of greater than one, and are able to maintain the epidemic. This is
different from the degree variability case discussed in Section 2.5.2. For high
assortativity networks, the epidemic is maintained by direct transfer between
high degree nodes. In the case of high degree variability without assortativity,

the epidemic is transferred from high to low to high degree nodes.
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An expression equivalent to the epidemic threshold is derived for similar
mixing schemes by (Diekmann et al. 1990, section 3.2 and references
therein). The required level of vaccination is derived in (Anderson & May
1992, section 9.6 and Appendix D).

The same mixing scheme is applied to power law degree distribution networks
in (Moreno et al. 2003). SIR epidemic behaviour is analysed using mean field
methods and by simulation. This paper finds the probability of an epidemic is
reduced for the assortative networks compared to random networks, but no
difference in the limit of large network size. In addition, the epidemic is

smaller in the presence of assortativity.

The second approach is based on the joint distribution of the degrees at each
end of the edges. This approach is not restricted to the analytically tractable
proportional plus preferential mixing. Given the joint degree distribution, the
assortativity can be directly calculated. Newman (2002a) derives an
expression for the size of the giant component of such a network, which is

related to the SIR final size.

In the same paper, Newman describes an algorithm to generate a network
with the specified joint distribution by successive edge swaps from a randomly
generated network with the appropriate degree sequence. This algorithm and
the analytical results are tested for the specific distribution where the degree
at each end of the edge is from a binomial distribution with the same
probability and that probability then controls the assortativity. As
assortativity increases, the giant component forms more easily and is smaller.
Newman concludes that positive assortativity (as occurs in social networks)

could lead to a:

core group ... [that sustains] an epidemic even in cases in which
the network is not sufficiently dense on average for the disease

to persist (Newman 2002a, pg 4).

Similarly, (Boguna and Pastor-Satorras 2002) uses the complete joint degree
distribution (referred to as the connectivity matrix) to derive a relationship

between the required infectivity to reach the epidemic threshold and the
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largest eigenvalue of the WAIFW matrix. Epidemics are simulated on networks
of various sizes (and, due to the generating algorithm, different assortativity)
to provide empirical support for the relationship. The epidemic threshold is
found to be lower on assortative networks than for epidemics on networks

with the same degree distribution but zero assortativity.

The two approaches thus lead to consistent conclusions that epidemics are
smaller for assortative networks than for randomly mixed networks with the
same degree distribution. Only Moreno et al (2003) quantified the
relationship, noting that assortativity can decrease size by 15-20% for
moderate (in terms of their simulation parameters) infectivity rates. Further,
it is suggested by the reported simulation results but never explicitly stated
that a larger assortativity leads to a smaller epidemic, though the methods
used make such comparisons difficult as other network features may also

change for some studies.

There are inconsistent results for epidemic occurrence. The paper by Moreno
et al (2003) found that assortativity decreases the probability of an epidemic
for finite network size. Other studies found the epidemic threshold to be

lower, which suggests the probability of an epidemic is higher.
2.5.4 Clustering within the social network

The network phenomenon of clustering cannot be examined from the
perspective of a WAIFW transmission matrix as the nodes to connect are not

randomly selected from those nodes with a given state.

An alternative analytical approach was taken in (Keeling 1999) where the
effect of (fraction of transitive triples) clustering was considered in a fixed
degree distribution network. The edges were classified by the epidemic status
of the nodes at each end. Because the proportion of infected-infected edges
is non-zero in clustered networks, the basic reproduction ratio is reduced
compared to equivalent random networks, with consequently slower initial

growth and smaller final size.
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Simulated SIR epidemics supported the analytical results and also found that
clustered networks have a higher probability of failure to achieve an
epidemic. These networks were generated using an algorithm that assigned
locations to the nodes and weighted the edge creation probability by
distance.

A more sophisticated network generation algorithm was used in (Keeling 2005)
to also allow comparison of the impact of degree variance and interaction
with mean degree and clustering. In this paper the simulated SIR epidemics
were compared to basic epidemic models, fitted to the initial growth.
Clustering was again found to inhibit early growth, but the final size was
higher than for the best fit model. This is because the best fit model without
clustering version actually has a lower underlying infection rate and the
inhibition in the clustered network is reduced once the epidemic escapes from

the initial infection area.
2.5.5 Incorporation of spatial structure

Spatial location is not considered in the network theory and epidemiological
models already described. However, it clearly influences network structure,

as contact requires some form of collocation.

Lattice based cellular automata models emphasise spatial structure but are
unrealistic in other social network aspects. Various methods have been used

to introduce social structure into epidemic simulations on lattice networks.

One method (Eidelson and Lustick 2004) assigns identities to each node and
these identities are able to change over time. Probability of transmission is
higher if the infected and susceptible neighbours share an identity. Another
model assighs one or more mirror identities (reflecting home, school,
transport etc) to nodes (Huang et al. 2004; Huang et al. 2005). Thus, each
node appears in multiple locations and its neighbourhood is composed of the

neighbourhoods of all the locations.

Lattice models can also be extended by allowing movement of agents within

the lattice structure. For example, one model of human epidemics (Rhodes

-50 -



Chapter 2: Literature Analysis

and Anderson 1996) has examined the impact on epidemic behaviour of

different speeds of movement.

This research emphasises that spatial structure impacts on epidemic

behaviour, but no general rules are developed about the form of the impact.

An alternative approach to spatial structure is taken by metapopulation or
patch models. In these models (Lajmanovich and Yorke 1976; Lloyd and May
1996; Grenfell and Harwood 1997), the population is divided into an arbitrary
number of subpopulations of arbitrary size that reflect households, towns or
other spatially defined communities. The simplest model uses two different
rates for contact rate; a relatively high rate within a subpopulation and a
lower rate between different subpopulations. However, this approach is
simply another form of a general state model (Section 2.5.1), with the state
defined by subpopulation and arbitrary contact rates between any two
subpopulations. The contact rates are then the basis for the WAIFW

transmission matrix.

A more sophisticated version of the patches model (Morris 1995) uses socially
meaningful characteristics such as age to define the patches instead of spatial
structure. As for clustering or degree variation, relatively small
subpopulations with high contact rates are able to maintain an epidemic and
transmit it to other groups. In this form, the patches model is very similar to
Newman’s community structure network generation algorithm (Section 2.4.2).
With Newman'’s algorithm, there is a contact rate (probability of edge) within
a group, the same contact rate between selected pairs of groups (those pairs
where there is a node in common) and a zero contact rate between any other

pairs of groups.

2.6 Relevance to research questions

The literature is clear that social structure has an impact on epidemic
behaviour, including whether an epidemic occurs and the size of an epidemic
(Section 2.5). The primary research question is therefore a legitimate field for
research.
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Primary research question: What is the relationship between
epidemic behaviour and three key features of social networks:
positively skewed degree distribution, positive clustering

coefficient and positive assortativity?

Other network properties may also influence epidemic behaviour. However,
the properties selected for inclusion are key characteristics of social networks
(Newman and Park 2003). A key parameter in epidemic models is the basic
reproduction ratio (Diekmann et al. 1990). Thus, the term ‘epidemic
behaviour’ in the primary research question can be focussed to create two

secondary research questions.

Secondary research question 1: How does each of these

properties affect epidemic occurrence?

Secondary research question 2: How does each of these

properties affect the basic reproduction ratio Ry?

The relationship between degree heterogeneity and epidemic behaviour has
been extensively studied (Section 2.5.2). Increased degree variation leads to

higher epidemic occurrence but smaller epidemics.

In contrast, the impacts of assortativity and clustering are poorly understood
(Sections 2.5.3 and 2.5.4). Assortativity increases the probability of an
epidemic, while clustering decreases it. Both properties reduce the size of
epidemics that do occur. Quantitative relationships exist only for specific
combinations of artificial degree distributions and a narrow range of property

values.

It is also clear that real world social networks simultaneously exhibit degree
heterogeneity, clustering and positive assortativity. The degree heterogeneity
results assume that clustering and assortativity are absent. Also, there is no
information about the joint effect of assortativity and clustering. Thus, there

are no existing results relevant to secondary research question 3.
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Secondary research question 3: Do these social network
properties influence epidemic behaviour separately or jointly

and, if the latter, how do they interact?

To investigate these questions, the experimental design requires simulation of
epidemics on networks with a range of property values. Further, each
property must be able to be considered separately and in combination with
various values of the other properties. Thus, simulation requires a network
generation algorithm that allows each of the three social network properties

to be controlled separately.

Section 2.4 describes published algorithms that are able to generate networks
that control any two of the three sought properties: degree distribution,
assortativity and clustering coefficient. However, the remaining property
either has an expected value arising naturally from the degree distribution
(such as zero for assortativity), or the inherent structure of the algorithm
leads to a limited range of values for the ‘free’ property. A suitable algorithm
to generate the networks with all three properties is not available in the

literature and is the subject of secondary research question 4.

Secondary research question 4: How can networks be generated
for simulations with various values of degree sequence,

assortativity and clustering coefficient, separately and jointly?
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There are three network properties of interest: degree distribution, clustering
and assortativity. In principle, there are at least two methodologies possible
to consider the impact of these network properties on epidemic behaviour,

mathematical modelling and simulation.

Mathematical modelling has the advantage that the resultant model can be
used to calculate the expected behaviour from any set of inputs. However,
models of epidemic spread must incorporate the degree of the infected node
and the expected degree of the susceptible nodes to which it is connected
and average this over all infected nodes. Existing models have incorporated
some elements of degree distribution and either assortativity or clustering
(see Sections 2.5.2 to 2.5.4). The degree distribution impacts on the degree
of the infected node and the averaging process. Clustering has a complex
effect on the probability of a node previously being exposed and hence on the
susceptibility of neighbour nodes. Assortativity modifies the expected degree
distribution of the neighbour nodes to depend on the degree of the instant
node. The existing models are already complicated and extending them to

incorporate a third property appears infeasible.

Simulation is a suitable approach for modelling complex social systems but has
its own limitations (Gilbert & Troitzsch 1999; Marney and Tarbert 2000;
Goldspink 2002). In particular, simulations are specific to the system
parameters actually simulated and results cannot necessarily be extrapolated
to more general results. There are also more subtle issues where the
implementation decisions can affect the results (Agar 2003; Polhill et al.
2005). Also, there is no published algorithm that can generate networks with

the range of property values required.

However, generating the networks required is more feasible than extending

the mathematical models. Thus, simulation was selected as the methodology
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for the study. The experimental design described in this chapter assumes the

problem of generating networks with relevant properties can be solved.

Clearly, simulated networks will need various combinations of values of the
social properties. Also, the simulations will be run with different infectivity
levels to enable examination of the consistency of derived relationships. In
addition, the relationships must be examined for the two basic categories of
epidemic models, SIR (infection provides full immunity) and SIS (no immunity

conferred).

The properties to be varied in this study fall into two groups. The network
properties are degree distribution (3 types), clustering coefficient (all
available values) and assortativity (all available values). The epidemic

properties are infectivity (3 values) and immunity (2 values).

In general, 100 simulations are run for each specific combination of network
and epidemic parameters. These are comprised of 10 epidemic runs on each

of 10 networks.

To minimise differences between networks with different clustering and
assortativity levels, the networks with different values of these properties are
generated with the same target degree sequence. That is, 10 target degree
sequences are used for each of the three distribution types and these are used
to generate the 10 networks for each set of network properties. Some
networks are more difficult than others to generate and, in these cases, fewer
than 10 networks may be generated for some property combinations and,

hence, fewer than 100 epidemic simulations are available for those networks.

Additional networks are generated to implement the assumptions of the basic
epidemiological model in a network context. Epidemics are simulated on
these networks with the same set of infectivity and immunity parameters to

allow a comparison.
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3.1 Networks for epidemic simulation

A novel algorithm, referred to in this thesis as the neighbour algorithm (see
Section 4.2 for details) is used to construct the networks with specific values
for target degree sequence (3 broad shapes), clustering coefficient and
assortativity. Up to 10 networks are generated for each combination of

network property values.

Other network properties are held constant for all simulations. In particular,
all networks have the same number of nodes (1 000) and target mean degree
(8). These values are arbitrary, chosen for sufficient size but moderate

enough for repeated computation.

The three types of degree distribution shapes used are an exemplar real world
degree distribution, power law, and normal distribution. Each network is

generated with a different seed.

For each degree distribution type, degree sequence instances are extracted
from networks constructed with generation algorithms common in the
literature (normal, power law) or directly from the degree distribution (real
world). Using the neighbour algorithm, a network is generated with each

degree sequence and a range of specific clustering and assortativity values.

Target assortativity and clustering coefficient values are 0, 0.1, ... to the
maximum possible. A single attempt is made with a range of input parameters
to generate networks, and any property pairs not obtained are then
specifically targeted with up to 10 attempts each. This process is shown in

Figure 3-1.

- 57 -



Chapter 3: Experimental Design

Figure 3-1: Experimental process: Simulation of epidemics over networks with
specific properties: From the degree sequence, a network is generated with
specific assortativity and clustering coefficient values and all epidemic simulations

are run before generating the next network.

3.1.1 Normal degree distribution

For the normal degree distribution, the fixed number of edges variant of the
Erdos-Rényi algorithm (Erdos and Rényi 1960, and Section 2.3.1) is used to

generate ten network instances, each with 1 000 nodes and 4 000 edges.
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For each network, the degree sequence is extracted and used with the
neighbour algorithm to generate a network for each accessible pair of

assortativity and clustering coefficient values (refer to Figure 3-1).
3.1.2 Real world degree distribution

The real world distribution exemplar is taken from an early study of a
friendship network between children (Rapoport and Horvath 1961). Each child
nominated up to 8 friends. The number of nominations received is then used

as the basis of the undirected real world degree distribution.

The full distribution was published (Rapoport and Horvath 1961, Table 5).
Each child was nominated by between 0 and 29 of the children in the social
group, with mean 6.84. For use in the experiments, the cumulative
probability distribution is rescaled by multiplying each degree point by 8/6.84
(to increase mean degree to 8), and linear piecewise interpolation is used to
create the corrected cumulative probability distribution. Rescaled for mean

degree of 8, the probability density function is displayed at Figure 3-2.

As can be seen from this figure, the distribution displays positive skewness,
characteristic of real world networks. The degree distribution is the only

aspect of the exemplar network used in this study.
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Ten instances of a degree sequence are generated, each by sampling from the
rescaled degree distribution until 1 000 non-zero degree values are selected.
This degree sequence instance is used with the neighbour algorithm to
generate a network for each accessible pair of assortativity and clustering

coefficient values (refer to Figure 3-1).
3.1.3 Power law degree distribution

For the power degree distribution, the Barabasi-Albert algorithm (Barabasi
and Albert 1999, and Section 2.3.4) is used to generate ten network instances.
The initial network has 4 nodes, each connected to all other nodes. Each
additional node also adds 4 edges. The generated networks hence have 1 000

nodes and 3 990 edges.

For each network, the degree sequence is extracted and used with the
neighbour algorithm to generate a network for each accessible pair of

assortativity and clustering coefficient values (refer to Figure 3-1).
3.1.4 Basic epidemiological model (uniform degree)

In addition to the neighbour networks used for analysis of property impact,
networks are constructed to implement the basic epidemiological model. This
network has uniform degree and is generated with the modified Molloy-Reed
algorithm described in Section 4.1. That is, all nodes have the same degree lin

this case, 8). The modification is to ensure the network is connected.

By definition, networks with uniform degree have assortativity of 1. Hence,
this distribution type is not used to generate networks with specific
assortativity and clustering values for the relationship analysis, but instead

provides a comparison point.
3.1.5 Multiple degree sequences or multiple networks?

There are two broad choices for sampling of the ten networks with any

parameter set: generate 10 networks from the same degree sequence (or
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instance of the degree distribution), or generate 1 network from each of 10

degree sequences.

The advantage of a single degree sequence with multiple networks approach
is that one source of variation is removed, making it easier to identify
relationships. On the other hand, a single degree sequence introduces a risk
that the relationship identified depends on the specific degree sequence
rather than more general characteristics of the degree distribution such as

shape.

To assist with this decision, networks with normal and power law degree
sequences were generated using the neighbour algorithm with 1 000 nodes,
mean degree of 8, target assortativity of 0.2 and maximum achievable
clustering coefficient (0.5 for normal and 0.4 for power law). For each
distribution, 30 networks were generated from a single distribution instance

and a single network was generated for each of 30 distribution instances.

An SIS epidemic (that is, no immunity) was simulated on each network with 3
nodes initially infected, automatic transmission from an infected node to an
adjacent susceptible node and probability of recovery of 0.3333 in each
timestep (hence, mean infection period of 3 timesteps). The number of

infected nodes was counted at timesteps 5, 10 and 20.

Table 3-1: Variation in number of infected nodes - degree sequence or network
instance? Number of nodes currently infected at timestep, mean and coefficient of

variation over 30 networks

Timestep 5 Timestep 10 Timestep 20

Mean cv Mean cv Mean cv

Normal - vary degree 414 24.0% 1065 5.9% 1412 2.2%
Normal - same degree 476 31.9% 1058 11.8% 1419 3.0%
Power law - vary degree 671 25.8% 1102 5.6% 1445 2.4%
Power law - same degree 708 18.2% 1120 4.1% 1457 2.0%

From Table 3-1, the two types of networks give different results. For normal
degree distribution, generating multiple networks from the same degree
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sequence led to greater variation in the number of infected nodes at all three
timesteps. For power law degree distribution, greater variation occurred with
multiple degree sequences. For both types of degree distribution, variation

reduced over time.

The relatively low variation in the power law single instance simulations
emphasised the high risk that any relationship identified depends on the
specific degree sequence. Further, both versions of the normal degree
distribution design showed relatively high variation, suggesting either would

be suitable for the experimental simulations.

The multiple degree sequence with single network option was selected (as
described in the sections for each degree distribution, Sections 3.1.2 to
3.1.3). That is, the approach used was to generate 10 different degree
sequences for each type of distribution. For each instance, one network was
generated with the required property values for assortativity and clustering

coefficient.

3.2 Epidemic simulation design

Once the networks are generated, 60 epidemic simulations are run for 100
timesteps. The 60 simulations comprise 10 runs with each of 3 infectivity
levels and 2 immunity types. Each simulation is started with a single infected
node, selected uniformly at random, and uses a different seed. For each
timestep, the numbers of infected, susceptible and immune nodes are

recorded.
3.2.1 Model update process

The simulations are updated synchronously. Each timestep, the infected
nodes are checked for potential transmission of infection to susceptible

neighbours and then checked for potential recovery.
The full process is (also see Figure 3-3):

1) Infect initial node (at timestep 0)
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Add 1 to timestep counter

FOR EACH infected node

4) Identify all susceptible neighbours
5) FOR EACH susceptible neighbour

6) With probability of infectivity rate * susceptibility, mark for

infection in next timestep
7)  END for susceptible neighbours

8) With probability of recovery rate, mark the infected node for

recovery in next timestep
END for infected nodes
Infect all susceptible nodes listed for infection

For each infected node listed to recover, make immune (SIR) or
susceptible (SIS)

Count nodes in each state (susceptible, infected or immune)

Move to next timestep (that is, return to step 2)

Recovers with given probability, tested each timestep

515 epidemic t
epidemic type Recovered

Infected ArmmiiAE)

SIR epidemic type

Test for each node that is infected and connected;

Susceptible | progress with probability of infectivity rate

Figure 3-3: Epidemic state progression for nodes in simulation
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The initial infected node is infected at timestep 0, so secondary infections
start at timestep 1. The initial node is included in the cumulative count of

infected nodes.
3.2.2 Epidemic parameters

Three infectivity rates are used. The values are arbitrary but are intended to
provide Ry values near but exceeding 1. At this value, epidemics are likely to
occur but also fail. At higher infectivity levels, an epidemic would occur for
almost all simulations and epidemic sizes would be similar, so the effect of
network properties on epidemic behaviour would be less clear. For example,
Ro values of 4 and 6 for an SIR epidemic would lead to 98.1% and 99.7% of

nodes becoming infected respectively.

The probability of an infection occurring over an edge between an infected

and a susceptible node during an entire infectious period is given by:

P(infection) :p+(1—r)(1—p)p+(1—r)2(1—p)2p+...

(1-ry (1-p)
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w
—
~

1
Sum of infinite geometric series (Dwight 1961, pg 6 item 26.1)

1
1-(1-r—p+rp)
B
r+p—rp

=p for 1—r—p+rp|<1

where: p = probability of infection in timestep
r = probability of recovery in timestep

For all simulations, susceptibility is set to 1 so that infection transmission
depends only on infectivity rate. Infectivity levels (p in equation (3.1)) are
1/24, 2/24 and 3/24.

Recovery rate (r in equation (3.1)) is 1/3. That is, the probability of an

infected node becoming immune (SIR) or susceptible (SIS) in a timestep is 1/3.
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The distribution of infectious periods follows an exponential distribution with
mean period of infection of 3 timesteps. This value is arbitrary, but must be
long enough for nodes in clustered networks to be infected by a node directly

and still be infected when a mutual neighbour becomes infected.

Thus, given that a newly infected node is connected to a susceptible node
(and ignoring the potential for the susceptible node to become infected from
some other node), the probabilities of infection across the edge are given by
equation (3.1) and displayed in Table 3-2. The expected values for Ry are also
displayed, assuming the degree for all nodes in all networks is 8, each
potential infection is independent, and ignoring the effects of clustering and

assortativity in the network.

Table 3-2: Simulated infectivity rates and R, for degree 8

Infectivity rate Probability of Ro ignoring network
infection structure
1/24 3/26 0.9231
2/24 6/28 1.7143
3/24 9/30 2.4000

Immunity probability takes two values, 0 for SIS epidemics and 1 for SIR

epidemics.

3.3 Summary of experimental design

Epidemic behaviour on networks is potentially analysed over several
dimensions. These include network size, network degree features, other
network properties and epidemic parameters such as infectivity. The actual

data items for analysis also add dimensions.

These dimensions are summarised at Table 3-3, together with comments

concerning how they are considered in the experimental design.
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Table 3-3: Dimensions of simulated networks and epidemics

Aspect Approach

Network features

Network size (nodes) Not varied (set at 1 000)

Mean degree Not varied (target is 8)

Degree distribution shape Normal, Real world, Power law
Variation in degree Not analysed: averaged over networks
Degree assortativity coefficient Varied, target values 0.0, 0.1, ..., max
Clustering coefficient Varied, target values 0.0, 0.1, ..., max

Epidemic parameters

Nodes infected at timestep 0 Not varied (set at 1)

Initial node(s) selection method Random uniform used

Infectivity rate 3 values, all nodes: 1/24, 2/24, 3/24
Susceptibility rate Not varied, all nodes 1

Recovery rate Not varied, all nodes 1/3

Immunity response 2 values, all nodes: all (SIR) or none (SIS)

Epidemic behaviour
Timestep First 100 timesteps recorded

Prevalence (current status infected) Relevant for SIS only

Epidemic size (Z new infected) Relevant for SIR only
Whether epidemic occurs Calculated from simulation results
Epidemic derived Ry Calculated from simulation results

- 66 -



Chapter 4: Network Generation

Chapter 4: Network Generation

The motivation for this study is epidemic behaviour, where the relationship is
defined by contact sufficient to transmit a specific disease. Several

simplifying assumptions are made about the contact process:

o if two people are in contact, the disease can be transmitted from either

person to the other;

o probability of transmission is independent of type and duration of

contact;

o probability of transmission is equal between any pair of infected and

susceptible persons; and
o contact patterns do not change.

The network consequences of these assumptions are that the networks of
interest are undirected, static and unweighted. That is, the defining

relationship has the following characteristics:

. the relationship is between two nodes, rather than from one node to the

other;

o the relationship does not change over time, or at least the relationship
changes in a much longer timeframe than the issues being investigated

so the network can be considered to have a fixed structure; and

o the relationship either exists or does not exist, there is no consideration

of strength of the relationship.

To use simulation to study the impact of social network properties on
epidemic behaviour, many networks are required. Networks (both real and
simulated) have many different properties. Furthermore, different networks
can be similar in some ways and quite different in others. In order to

investigate epidemic behaviour using simulated networks, it is important that
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the relevant properties of real world social networks are replicated. The

relevant properties selected for this study are:
. degree distribution;

o clustering coefficient; and

o (degree) assortativity coefficient.

As discussed in Section 2.4, existing network generation algorithms are not
able to generate networks controlling for all three of these properties. Thus,
a new algorithm is presented that enables targeting of these properties (the
neighbour algorithm, described at section 4.2). The algorithm’s performance
is analysed to assess the success in satisfying property targets (section 4.3).
This algorithm is then used to generate networks that allow examination of
the separate and joint impact of these properties on epidemic behaviour
(section 4.4).

Separately, an algorithm is required to generate uniform degree networks
that implement the basic epidemiological model and provide an additional

comparison point. This algorithm is presented first.

4.1 Generation of arbitrary degree simple

connected networks

For the uniform degree basic epidemiological model implementation, an
algorithm is developed as a modification to the Molloy-Reed algorithm
described in Section 2.3.2.1. The modification is to ensure the generated
network is both simple and connected. The network must be simple because
multiple edges and self edges have no epidemiological interpretation. The
network must be connected because the basic epidemiological model assumes
there is a fixed probability of transmission between any infected and
susceptible persons. No parameters are required apart from the degree

sequence, and all nodes have the same degree for the required networks.
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4.1.1 Description of algorithm

The simple connected algorithm is as follows (flowchart at Figure 4-1). The
term residual degree means the difference between the intended degree of
the node and the number of edges already established for that node, and any

node with a residual degree of at least 1 is referred to as open.

1)  Group the nodes into those that have degree at least 2 (multiple degree

group) and those that have degree of 1;
2) Randomly order the nodes in the multiple degree group;
3) Start network with first node in the multiple degree group;

4) FOR EACH multiple degree node, attach the specified node to a node
selected from the open nodes already in the network with probability
proportional to residual degree (ensures connectivity by creating a

spanning tree);

5) FOR EACH single degree node, attach the specified node to a node
already in the network randomly selected in proportion to residual

degree;

6) FOR EACH multiple degree node, close the network by attaching the
specified node to as many open nodes as required (excluding the instant
node and nodes to which it is already connected) with probability

proportional to residual degree.

The algorithm may fail in the final step because the only open nodes would

result in self edges or multiple edges. In this case, it restarts.

As an alternative to restarting, a rewiring process could be added whereby an
existing edge is broken to provide access to other nodes. However, a rewiring
process introduces a bias, as those simple networks with many ‘close’ self edge
or multiple edge networks would be more likely to be generated. A rewiring

process is not used in this study.
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Figure 4-1: SC algorithm: Generating an arbitrary degree network that is simple

and connected

4.1.2 Bias assessment

The use of the spanning tree introduces a potential bias to the networks
generated by the simple connected (SC) modified Molloy-Reed algorithm.
Thus, an experiment was conducted to compare the relevant properties of
networks generated by the Erdos-Rényi (ER) random graphs algorithm (Erdos
and Rényi 1960, described in Section 2.3.1) and the SC algorithm.

Networks were constructed by the ER algorithm with various edge probability
settings (p = 0.002, 0.005, 0.01) and a size of 5000 nodes. The degree
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sequence was extracted and used as the input to the SC algorithm. Forty pairs

of networks were randomly generated for each edge probability.

For each network property of interest, a paired t-test is conducted for each

parameter set. The properties are:

o Clustering coefficient;

. Shortest paths: mean and maximum (diameter);
o Assortativity.

If the SC algorithm generates a truly random instance of a graph with the
specified degree distribution, the properties of the ER and SC graphs should

be the same.

Table 4-1 summarises the property values for each set of experiments and
suggests there is little difference between the networks created by each
algorithm. This conclusion is supported by the paired t-tests, with none
rejecting the hypothesis that the property values are the same at the 90%

significance level (that is, p > 0.1).

It is therefore not unreasonable to conclude that the SC algorithm generates a
random simple connected network with the given degree distribution. As the
full degree distribution is preserved, this method is better than merely
retaining the giant component where these characteristics are important, for

example in modelling epidemics.

For the uniform input degree distribution, the SC algorithm provides a

network implementation of the basic epidemiological model. That is:
o all nodes have the same degree;

o an infection can access any node in the network because it is connected;

and

o the edges are formed between nodes selected randomly in proportion to
the difference between target degree and the number of edges already

created that involve that node.
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Table 4-1: Properties of generated networks - ER vs SC (mean for parameter set,

with standard deviation in ())

Nodes 5 000 5 000 5 000
Probability of edge 0.002 0.005 0.01
Clustering coefficient ER 0.0020 0.0050 0.0100
(0.0002) (0.0001) (0.0001)
Clustering coefficient SC 0.0020 0.0050 0.0100
(0.0002) (0.0001) (0.0001)
Mean shortest path ER 3.95(0.009) 2.93 (0.002) 2.59 (0.002)
Mean shortest path SC 3.95(0.008) 2.93 (0.002) 2.59 (0.002)
Diameter ER 6.6 (0.5) 4.0 (0.0) 3.3(0.4)
Diameter SC 6.7 (0.5) 4.0 (0.0) 3.2 (0.4)
Assortativity coefficient ER 0.001 0.000 0.000
(0.007) (0.004) (0.003)
Assortativity coefficient SC -0.003 -0.001 -0.001
(0.007) (0.004) (0.003)

4.2 Neighbour algorithm: Generating networks with

specific properties of interest

To generate networks for investigating the impact of network properties on
epidemic behaviour, the relevant network properties must be directly entered
as inputs to the algorithm, or related to input parameters in some predictable
way. For this study, the properties of interest are degree distribution (either
fully specified or defined by a probability function), assortativity and

clustering coefficient.

Ideally, the generation algorithm would be able to create a network with a
neutral impact on other network properties. That is, it would generate a
uniform randomly selected instance of a network with the given degree
distribution, degree assortativity and clustering coefficient. For practical

reasons, the algorithm should also be efficient.
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4,2.1 General approach

The proposed approach is inspired by the spatial models of Waxman (1988)
and Keeling (2005) discussed in Section 2.4.1. Like these models, nodes are
connected with some parameterisable probability that depends on distance.
That is, nodes that are closer in the space are more likely to have an edge

created between them. The space is then discarded.

However, in the proposed algorithm, the positioning of the nodes in that
space depends on the desired assortativity. This is implemented through a
layout modification stage so that nodes with similar degree are closer

together and therefore more likely to have an edge created.
The neighbour algorithm therefore has three phases:

1) Initialisation (degree distribution): uniform randomly locating the nodes

in space and assigning a target degree to each.

2) Layout modification (assortativity): moving nodes so that those with

similar target degree are relatively close.

3) Edge creation (clustering coefficient): For each pair of nodes, create an
edge with some probability that depends on the degree of each and the

distance between them.

These phases map the network generation problem to (initialisation) and from
(edge creation) physical space. In physical space, layout modification to
target assortativity is much more straightforward than in network space.

Hence, the mapping allows each property to be dealt with individually.
4.2.2 Implementation: One dimension with node swap

This general approach can be implemented in different ways. The method
used for this study uses a one dimensional wrapped space (ring) as the
notional space. Layout modification is implemented with stochastic
conditional node swaps. For edge creation, edges for each node are created

with fixed probability, tested from nearest to furthest nodes, until the
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desired target degree is achieved. A flowchart of this implementation is at

Figure 4-2.
4.2.2.1 Initialisation

Required information for the initialisation is the degree distribution, which
also provides the number of nodes N. This can be fully specified with a count

of the number of nodes with each degree or with a probability distribution.

Each node is assigned an identifier and a target degree randomly selected
from the degree distribution or degree sequence. Each node is randomly

assigned a position between 1 and N (inclusive).

The position is used to identify which nodes are in each neighbourhood in the
later phases. Position N is next to position N-1 and position 1, so the position

space is wrapped (the locations can be conceptualised on a ring).
4.2.2.2 Layout modification

The principle for the layout modification stage is that, because edge creation
is more probable for closer node pairs, nodes are moved so that the nodes
that should be connected to attain the desired assortativity are closer

together.

Each layout update iteration compares the mean degree of the
neighbourhoods of two uniform randomly selected nodes and swaps the
location of the nodes only if such a swap would place the higher degree node
in the higher degree neighbourhood. The neighbourhood is of size k/p, where
k is the higher degree of the two nodes and p is the probability to be used in

the edge creation phase.

The layout modification stage consists of some number of layout update

iterations.
4.2.2.3 Edge creation

For each node, the edge creation stage creates all required edges to reach

the node's target degree before moving to the next node, with nodes
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considered in random order. For the randomly selected node, each node that
does not already have its required number of edges and does not have an
edge with the instant node is considered in location order: location of instant
node +1 slot, then location of instant node -1 slot, then location of instant
node +2 slots and so on. For the node being considered, an edge is made with
the instant node with a set probability. If all nodes have been considered
before the target degree is reached for the instant node, the nodes are
considered again in the same order. If there are insufficient nodes that do not
have edges with the instant node and have not reached their target degree,

the algorithm fails.
4.2.2.4 Connecting the phases

While the edge creation phase uses the target degree, there is no natural
stopping criterion for the layout update phase. The algorithm does not know
when it has reached the target assortativity except by generating a network

and measuring its assortativity.

Thus, there are three arbitrary evaluation points: how often to generate a
test network, and after how many iterations to abandon the algorithm, and
assortativity tolerance to accept the network. As implemented (for a 1 000
node network, Figure 4-2), a test network is generated every 500 iterations
and accepted if actual assortativity is at least target assortativity minus 0.05.
That is, the tolerance for assortativity is 0.05, but the layout iterations are
also stopped if actual assortativity is too high, as there is no mechanism to
reduce assortativity. The network is accepted regardless of its properties at

50 000 iterations, with an error message.
Thus, the implementation of the three phase approach is:
INITIALISE:

1)  INPUTS: number of nodes, target degree for each node, target

assortativity and edge creation probability

2) Randomly locate each node with an assigned target degree on a 1D ring
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Figure 4-2: Neighbour network algorithm: 1D wrapped space with layout by

swap
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LAYOUT MODIFICATION:

3) FOR EACH of 500 pairs of nodes, if the higher degree node is in the lower

degree neighbourhood, swap the locations of the nodes in the pair
EDGE CREATION:

4) FOR EACH node, with given probability, create edges with nodes until

target degree is reached, starting with nearest nodes
TEST FOR COMPLETION:
5) Calculate assortativity of network

6) IF assortativity is less than target assortativity minus 0.5 and step 3 has

been performed fewer than 10 times, return to step 3
7)  ELSE network is retained and algorithm stops

Although arbitrary, these evaluation points are selected based on an initial

investigation of the algorithm convergence.

4.3 Evaluation of neighbour algorithm

For the purposes of this study, the algorithm must generate networks with
degree sequences from varied distribution families, a range of clustering
coefficients and a range of assortativity values. Furthermore, these properties
must be able to be analysed both jointly and independently, so multiple

combinations of values are required.

In this context, the algorithm is valid if the implementation is able to control
each of the target properties independently of the other two properties. It is
reliable if the output network properties can be estimated from the input

parameters.

Thus, some analysis of the networks generated by the algorithm is required to
investigate issues such as the relationship between input parameters and

network properties and the feasibility of generating networks with the desired
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properties, to assess the suitability of the algorithm to generate the required

networks.
4.3.1 Targeting of network properties

A single instance of a normal degree distribution and a power law degree
distribution were generated. As for the networks to be used for epidemic
simulation, these were generated using the Erdos-Rényi (Section 2.3.1) and
Barabasi-Albert (Section 2.3.4) algorithms respectively, with 1 000 nodes and
mean degree 8. For each of these distributions, the neighbour network
generation algorithm was run with a target assortativity of 1 and various
values of edge probability (0.25, 0.5 and 1). Each 100 iterations of the layout
update phase, 10 networks were generated and their properties measured. In
addition, the number of nodes that are actually in a different location

compared to the previous test point was recorded.
4.3.1.1 Assortativity: layout update phase

If all node pair tests led to a swap and no node was selected twice, there is a
maximum of 200 node changes in each 100 iterations. As there is a nonzero
probability of two nodes being selected having identical degree, fewer than
half of the considerations could be expected to lead to swaps initially, with a
decreasing number over time. This is consistent with the results at Figure 4-3.
Fewer than 5% of nodes are being moved by iteration 20 000 for both the
normal (ER) and power law (BA) distributions. That is, the algorithm is finding

it increasingly difficult to identify potential increases in assortativity.

The question then is whether these location changes are having the intended
impact on achieved assortativity. To this end, the mean assortativity for the
10 generated networks at each test point are shown at Figure 4-4. For
iterations up to approximately 5 000, assortativity is steadily increasing as
expected with the relative ease of node location changes. As swaps are

reduced, the increase in assortativity also slows.
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Figure 4-3: Layout update iterations: number of nodes in different locations
Individual plots are not important here, just the general shape. For both degree
distribution types and all three edge creation probabilities, up to half the 200
considered nodes moved in the initial 100 layout update iterations and this

decreases throughout the layout update phase.

For the ER distribution, the maximum possible assortativity is 0.93 and this
value is being approached by iteration 20 000. However, for the BA
distribution, the maximum is 0.44 but additional iterations are having little
impact reaching this level. Unlike the ER distribution, the higher edge
creation probability also apparently impacts on the assortativity achieved for
the BA distribution. If this is not a small sample artifact, one possible
explanation is that the algorithm relies on the higher degree node to set the
size of the neighbourhood for mean degree calculation to determine node
swaps. For the BA distribution, the potentially extreme degrees could lead to
big differences in the neighbourhood used for layout changes and the

neighbourhood in which the actual edges are created.
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Figure 4-4: Layout update iterations: impact on assortativity

This issue of how much of the property space is actually accessible to the
neighbour algorithm is revisited when the actual networks used for epidemic

simulation are examined (Section 4.4.3).
4.3.1.2 Clustering coefficient: edge creation phase

The design of the algorithm intends assortativity and clustering to be
independently controlled, with the layout updates influencing only
assortativity and the edge creation probability influencing clustering. This is
supported by Figure 4-5, with the mean clustering coefficient of the test

networks maintaining a constant value regardless of layout update iterations.

The clustering coefficient value is slightly less than half the edge creation
probability for both distribution types and all probability values. This
highlights a weakness of the neighbour algorithm as implemented; an upper
limit to the achievable clustering coefficient, achieved with edge creation
probability of 1. From Table 2.1, this is too low to cover the full range of real

world social networks.
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Figure 4-5: Layout update iterations: impact on clustering coefficient

Consider a ring lattice of some number at least 2m+1 of identical nodes, each
with degree 2m. Select an arbitrary node and label it as location 0. That node
will have edges with the nodes from location -m to +m. The node at location
-m will have edges with nodes at -(m-1) to 0 (as well as others that do not
have edges with the node at location 0). Similarly, the node at location -j (for
0 < j <m) will have edges with nodes from location -m to +(m-j), and the

node at location j will have edges with nodes from location -(m-j) to m.

Since each edge is counted twice by this analysis of edges from one node to
the other, the total number of edges between the neighbours of the node at 0

is given by:

i[(m j)+m—-1] =m(2m-1) Z]
= 4.1)

:m(2m—1)—w
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The number of possible edges between neighbours is:

=

2

>

where: k=2mis degree

Hence, clustering coefficient for a ring lattice with uniform degree is given

by:

where: k is (uniform) mean degree

This is the maximum clustering coefficient achievable for a network
generated by the neighbour algorithm. Decreasing the edge creation
probability or increasing the degree variation reduces the clustering

coefficient achievable.
4.3.2 Stability of properties of generated networks

Having established that the neighbour algorithm does work as expected and
set the stopping criteria, the next area of investigation is the stability of the
properties of networks generated from fixed input parameters. That is, how
similar are multiple networks generated from a single set of input
parameters? Thirty neighbour networks were generated for each combination

of the following input parameters:
1) Target mean degree 8 and 100 nodes

2) Distribution type: normal, real world, power law (using the same
algorithms as are to be used for the epidemic simulation networks,

defined in Section 3.1)
3) Target assortativity: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
4)  Edge creation probability: 0.2, 0.4, 0.6, 0.8, 1.0
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4.3.2.1 Stability of degree sequence

At first examination, the neighbour algorithm performs very poorly in
obtaining a network with the desired degree sequence for the skewed
distributions (Table 4-2). For example, for the power law distribution, 36% of
the generated networks have a mean degree less than 90% of the target mean
degree. The variation in the degree is also reduced, with achieved standard
deviation in degree of 4.9 instead of the target 6.1 for power law networks.
Note that, by construction, the number of edges cannot exceed the edges in

the target degree sequence.

Table 4-2: Stability of networks - Degree sequence

Normal Real world Power law

Mean degree - target 8.00 7.81 7.80
Mean degree - achieved 7.93 7.44 7.09
Minimum edges 366 285 277

Maximum edges 400 497 390

Proportion <95% target edges 0.00 0.39 0.80
Proportion <90% target edges 0.00 0.08 0.36
Degree CV - target 0.34 0.66 0.78
Degree CV - achieved 0.34 0.63 0.69
Degree SD - target 2.74 5.19 6.06
Degree SD - achieved 2.70 4.68 4.90
Edges in top 5% nodes - target 8.8% 13.9% 18.1%
Edges in top 5% nodes - achieved 8.7% 13.2% 16.7%
Edges in top 5% nodes - <95% edges 9.1% 13.4% 16.5%
Edges in top 5% nodes - <90% edges n/a 14.1% 16.3%

However, more detailed analysis suggests the flaws are not so substantial as
to interfere with the capacity of the algorithm to generate networks suitable
for investigation of epidemic behaviour. The general shape of the degree
sequence is maintained, with the proportion of edges connected to the 5%

highest degree nodes consistent even for those networks with fewer edges.
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The degree truncation problem for the power law networks is also evident in
examination of the edge representation of the top 5% of nodes, but the
truncation is no worse for the lower mean degree networks than for the

higher mean degree networks.
4.3.2.2 Stability of clustering coefficient

The networks generated by the neighbour algorithm show consistent values of
the clustering coefficient for a given edge creation probability. The mean
clustering coefficient increases linearly with edge creation probability and has
a consistent standard deviation across degree distribution types of up to 0.03
(Table 4-3).

The highest coefficient of variation is 19% for real world with 0.2 edge
creation probability. This high value reflects the low mean rather than being
an indication of unusually high variation. The largest range is for real world
networks with 1.0 edge creation probability, with a minimum clustering

coefficient of 0.36 and a maximum of 0.52.

Table 4-3: Stability of networks - Clustering coefficient

Edge creation probability
0.2 0.4 0.6 0.8 1.0

Normal Mean 0.10 0.18 0.27 0.38 0.49
SD 0.01 0.02 0.02 0.02 0.02
Real world Mean 0.12 0.17 0.25 0.34 0.44
SD 0.02 0.02 0.03 0.03 0.03
Power law  Mean 0.14 0.18 0.25 0.35 0.43
SD 0.02 0.02 0.02 0.03 0.03

Overall, the algorithm generates networks with stable clustering coefficients.
If targeting a particular value, a suitable starting edge creation probability

would be twice the target clustering coefficient.
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4.3.2.3 Stability of assortativity

For assortativity, the target value is the relevant input parameter to the
network generation algorithm. A network is accepted if the achieved
assortativity is 0.05 below the target assortativity or higher. Thus, at the end
of the algorithm, as well as assortativity close to target, a generated network
can have an assortativity higher than intended or that is too low but the

algorithm was abandoned.

For the purposes of Table 4-4, target assortativity is achieved if the
assortativity of the generated network is within 0.05, or correct to one
decimal place. Except for the higher target values for the power law networks
(which may not be feasible), the algorithm is able to successfully generate a

network with the required assortativity in the majority of attempts.

Table 4-4: Stability of networks - Target assortativity achieved

Target assortativity
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Normal 52% 71% 83% 87% 91% 85% 78%
Real world  66% 71% 73% 73% 70% 59% 55%
Power law  72% 61% 59% 45% 16% 3% 5%

For the normal distribution networks, for target assortativity values up to 0.4,
the majority of failures arise because the achieved assortativity is too high,
with the algorithm terminating before reaching the target assortativity being
the larger contributor to failure for target assortativity of 0.5 and 0.6. For
power law and real world distributions, positive assortativity values are more
difficult to attain and termination is the major contributor for much lower

target assortativity values of 0.1 and above (except 0.3 for real world).
4.3.2.4 Suitability for epidemic simulation

The neighbour algorithm generates networks with predictable clustering and
assortativity properties. Further, broad ranges of values for these properties

are able to be achieved. While generated networks have a reduced variation
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of degree compared to the target for highly skewed degree distributions, the
general shape is maintained and there remains substantial variation so the

networks generated would allow results to incorporate degree variation.

Thus, the algorithm is suitable as a tool for generating networks with a broad
range of socially relevant properties to enable investigation of epidemic

behaviour by simulation.
4.3.3 Small-world property

Social networks exhibit the small-world property (Watts and Strogatz 1998),
where the mean geodesic of networks is logarithmically related to the number
of nodes (as compared to a linear relationship for random graphs) while
maintaining high clustering coefficients. While the network property of mean
geodesic is specifically excluded from examination in this study, the small-
world property requires some investigation because it is a fundamental
characteristic of social networks. The neighbour algorithm creates edges
between nodes that are physically close, in the same way as lattice networks

which do not exhibit this property.

To investigate this aspect, 10 neighbour networks were generated for each

combination of the following input parameters:

1) Target mean degree 4, 8 and 12

2) Nodes 100, 500, 1 000, 5 000 and 10 000

3) Distribution type: uniform

4) Target assortativity: no layout updates (irrelevant as uniform degree)
5) Edge creation probability: 0.2, 0.4, 0.6, 0,8, 1.0

Uniform degree distribution was selected as any degree variation enables
higher degree nodes to make relatively long edges and reduce mean
geodesics. Uniform degree is thus the type of distribution for which the small-

world property would be least evident for neighbour networks.
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Since the edge creation probability defines the tightness of the lattice
structure, mean geodesic can be expected to be directly related to this

probability.

To satisfy the small-world property, networks generated by the neighbour
algorithm must display a logarithmic relationship between number of nodes
and mean geodesic within a fixed degree and edge creation probability
parameter pair. For the networks with degree of 8, Figure 4-6 displays the
number of nodes and mean geodesic of the generated networks. As the
number of nodes is plotted on a logarithmic scale, the small world property is

displayed as a linear plot.
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Figure 4-6: Relationship between nodes and mean geodesic: Uniform degree

distribution, Neighbour algorithm, degree of 8

From this figure, the relationship is clearly logarithmic for probability values
of 0.2, 0.4 and 0.6 (R? > 90% for all three). It starts to break down for p = 0.8
(though logarithmic is a better fit than linear) and the small world property
fails for p = 1. A similar pattern is also observed for the networks of other
degree (Table 4-5). That is, the neighbour networks satisfy the small-world
property for moderate edge probabilities, but the relationship breaks down

for very high edge creation probabilities.
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Table 4-5: Nodes versus mean geodesic - Logarithmic or linear?

Edge creation probability

0.2 0.4 0.6 0.8 1.0
Degree 4 log log log linear linear
Degree 8 log log log log linear
Degree 12 log log log log linear

While the small-world property is able to be maintained for moderate
clustering coefficients, some rewiring would be necessary where both small-
world and very high clustering are required for generated networks. Watts and
Strogatz's paper suggests a small rewiring process (1% to 10% of nodes) has a
substantial impact on mean geodesic, but very little on clustering. Any impact
on assortativity could be limited by rewiring to the same degree nodes where

possible.

4.4 Networks generated for epidemic simulation

As a reminder of the key points from the experimental design, 10 instances of
each of three degree distribution types are generated for 1 000 nodes and
mean degree of 8. For each instance, one neighbour network is generated for
each feasible combination of 11 clustering coefficient values and 11
assortativity values. Table 4-6 summarises key properties of the networks

used for the epidemic simulations.

In addition, 10 networks are generated with uniform degree using the SC
algorithm. These are to allow comparison with a network implementation of

the basic epidemiological model.
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Table 4-6: Properties of generated networks

Property Normal Real world  Power law
Mean proportion in giant component 1.00 0.98 1.00
Mean of mean degree® 7.99 7.58 7.67
Mean of degree CV 0.35 0.67 0.97
Mean of degree in top 5% nodes 8.9% 14.4% 21.2%
Max potential assortativity 0.955 0.926 0.527
Min achieved assortativity -0.066 -0.098 -0.168
Mean achieved assortativity 0.384 0.346 0.086
Max achieved assortativity 0.864 0.863 0.490
Min achieved clustering 0.008 0.012 0.019
Mean achieved clustering 0.246 0.240 0.249
Max achieved clustering 0.510 0.446 0.463

a The neighbour algorithm is not guaranteed to create all desired edges. Thus,

there are some differences between target and actual degree sequences.

4.4.1 Giant component or entire network?

While an epidemic can only be transmitted within a component of a network,
the whole network was retained for the simulations rather than only the giant
component. This was to maintain, to the extent possible, the experimental
design, which calls for the same degree sequence to be used to generate

networks with different values of assortativity and clustering coefficient.

As the only distribution with a considerable number of very low degree nodes,
the real world distribution networks were the only group to have significant
numbers of networks where the giant component included less than 95% of
nodes (11.5%). The proportion increased for higher clustering and/or
assortativity values, but the mean proportion of nodes in the giant component

exceeded 90% for all property values.

Two aspects of epidemic behaviour are examined in this study (see Chapter
5), occurrence of an epidemic and basic reproduction ratio (Ry) derived from

epidemic size.
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Components that are not the giant component are generally too small to allow
an epidemic that meets the definition developed in Section 5.1. For epidemic
occurrence, retaining the whole network increases the likelihood that an
epidemic does not occur because there is a non-zero probability that the
initial node for infection will be in a small component. However, this is also
true for real world epidemics and the full network is the more valid

equivalent for simulation than just the giant component.

As the only successful epidemics will occur in the giant component, the
number of nodes infected during the epidemic is not affected by whether the
full network or giant component is used. However, epidemic derived Ry is
based on infected proportion. Using the nodes in the giant component for this
conversion would more faithfully preserve the theoretical relationship
between Ry and epidemic size. However, epidemiologists do not have access
to information about the size of the giant component and using the full
network, or population size, more faithfully reflects the practice of deriving

Ro from an epidemic.
4.4.2 Degree sequence: target versus generated

Networks were used even if the algorithm failed to resolve. That is, if a node
had insufficient edges to meet its target degree, but the only nodes available
for connection would lead to a self edge or a multiple edge, edge creation
was abandoned and the network was retained with the reduced number of

edges.

Like the networks generated to investigate property stability (see Section
4.3.2.1), the simulation networks for the skewed degree distributions have
lower degree, reduced degree variation and reduced impact of the highest
degree nodes than targeted (Table 4-7). These effects are more pronounced

in the power law than real world degree distribution types.

While the effect of degree variation has been blunted by the neighbour
network generation algorithm, there remains a substantial skewing even in

those networks where the fewest edges were able to be created. Thus, the
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networks are sufficient to investigate differences in simulated epidemic

behaviour arising from differences in the shape of the degree distribution.

Table 4-7: Properties of experimental networks - Degree sequence

Normal Real world Power law
Mean degree - target 8.00 7.81 7.80
Mean degree - achieved 7.93 7.44 7.09
Minimum edges 366 285 277
Maximum edges 400 497 390
Proportion <95% target edges 0.00 0.39 0.80
Proportion <90% target edges 0.00 0.08 0.36
Degree CV - target 0.34 0.66 0.78
Degree CV - achieved 0.34 0.63 0.69
Degree SD - target 2.74 5.19 6.06
Degree SD - achieved 2.70 4.68 4.90
Edges in top 5% nodes - target 8.8% 13.9% 18.1%
Edges in top 5% nodes - achieved 8.7% 13.2% 16.7%
Edges in top 5% nodes - <95% edges 9.1% 13.4% 16.5%
Edges in top 5% nodes - <90% edges n/a 14.1% 16.3%
4.4.3 Feasible assortativity and clustering coefficients

Table 4-8 displays the number of networks generated by the neighbour
algorithm and used for the epidemic simulations, by approximate assortativity
and clustering coefficient. Note that these property values are the achieved,
not target, values. There are 1 111 neighbour networks in total distributed
between the various degree distribution types, assortativity and clustering

coefficients.

From Table 4-8, there are some combinations of network properties for which
at least some of the possible 10 networks could not be generated. As
expected from the considerations described in Section 4.3.1.2, the more
skewed distributions are unable to achieve the same clustering coefficients as

the networks with normal degree distribution.
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Table 4-8: Number of neighbour networks for epidemic simulation, by network

properties
Clustering Coefficient
Distribution Assortativity | 0.0 0.1 0.2 0.3 0.4 0.5
normal 0.0 10 10 6 3 1 1
0.1 10 10 10 10 10 10
0.2 10 10 10 10 10 10
0.3 10 10 10 10 10 10
0.4 10 10 10 10 10 10
0.5 - 10 10 10 10 10
0.6 - 10 10 10 10 10
0.7 - 10 10 10 10 10
0.8 - 10 10 10 10 10
0.9 - 9 10 10 10 10
real world 0.0 10 10 10 10 9
0.1 10 10 10 10 10
0.2 1 10 10 10 10
0.3 - 10 10 10 10
0.4 - 10 10 10 10
0.5 - 10 10 10 10
0.6 - 10 10 10 10
0.7 - 10 10 10 10
0.8 - 10 10 10 10
0.9 - - 8 10 10
power law 0.0 7 10 10 10 10 1
0.1 - 10 10 10 10
0.2 - 8 10 10 10
0.3 - 3 10 10 10
0.4 - 1 6 7 7
0.5 - - - 2 1

There is also a weak relationship between achievable values of the two
properties. For normal degree distribution, the neighbour algorithm has least

success in generating networks with high values of one property and low
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values of the other. For real world and power law degree distribution the

maximum assortativity achieved is lower for a lower clustering coefficient.

Power law networks exhibit the greatest restriction on achievable properties.
The maximum assortativity is approximately 0.5 instead of approximately 0.9
for the other degree distribution types. However, this is more a reflection of
the degree distribution than the neighbour algorithm. Given a specific degree
sequence, the simple network with the maximum possible assortativity is that
constructed by the Havel-Hakimi algorithm. In this algorithm, the nodes are
ordered by descending degree and the highest degree node is connected to
the appropriate number of nodes from the next highest degree down (Havel
1955; Hakimi 1962). This process continues through the nodes. Table 4-9
shows the assortativity of the Havel-Hakimi network and the maximum
assortativity of networks constructed with the neighbour algorithm for various

approximate clustering coefficients.

Table 4-9: Maximum assortativity achieved

Normal Real world Power law
Clustering ~0.0 0.369 0.154 -0.026
Clustering ~0.1 0.857 0.819 0.374
Clustering ~0.2 0.859 0.858 0.429
Clustering ~0.3 0.864 0.861 0.490
Clustering ~0.4 0.863 0.863 0.475
Clustering ~0.5 0.862 n/a -0.044
Maximum feasible 0.955 0.926 0.527

Referring again to Table 4-8, for almost all values of assortativity or
clustering, there are 10 networks for each of several values of the other
property. Thus, the networks provide a suitable range of independent

property values to build a model of impact on epidemic behaviour.
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4.5 Discussion

Previously published algorithms have been able to generate networks with
only specific ranges of interactions between degree distribution, assortativity
and clustering coefficient (Section 2.4). However, independent control of
each of these properties is required to examine the interaction of these

properties.

The network generation neighbour algorithm developed in this chapter has a
three phase approach. Each of these phases influences one of the target
social network properties. The initialisation phase uniform randomly locates
nodes in a notional space and assigns a target degree to each node. The
layout modification controls assortativity by moving nodes with similar target
degrees nearer to each other. The edge creation phase creates edges with
given probability between nodes that are located near each other in the
notional space provided they have not reached their target degree. The
search for potential edge partners starts with the closest nodes and moves
further away. Thus, a lower probability leads to a larger search space and

smaller clustering coefficient.

In developing this algorithm, the objective was to generate networks with a
range of values for the properties of interest. As such, within the general
approach described, a suitable implementation was developed and validated.
The implementation used a one dimensional ring as the notional space and

stochastic node pair swaps for layout update.

Validation analysis confirmed the independent control over the three targeted
social network properties. Test networks generated at regular intervals during
layout modification displayed increasing levels of assortativity and a constant

level of clustering.

The neighbour algorithm was also able to generate networks with property

values close to those targeted for each property.

For degree distribution, if the algorithm successfully resolves, the generated
network will have the same degree sequence as the target degree sequence.
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However, the validation analyses demonstrated that the algorithm only rarely
resolves and only where degree heterogeneity is low. If networks are
accepted without resolution, the generated networks show the same skewed
shape as the target degree sequence but mean degree and heterogeneity are
both reduced. The reduction is greatest for the most highly skewed

distribution types.

The difficulty is that the highest degree nodes are unable to find sufficient
free nodes with which to make edges. This problem could be alleviated by
ordering the edge creation phase so that higher degree nodes are connected
first. However, consider the networks with edge creation probability of 1. The
higher degree nodes would connect to all their immediate physical
neighbours. Thus, a low degree node near several high degree nodes would
not have the opportunity to connect to other low degree nodes, potentially
introducing a bias in both assortativity and clustering coefficient of the
generated networks. The random ordering implemented avoids this bias but at

the cost of lower rates of resolution.

For assortativity, the algorithm is inelegant in its convergence as
implemented. In particular, the edge creation phase is implemented
periodically throughout the layout modification phase to generate test
networks. If the test network has an assortativity that is near to the target
assortativity, that network is retained as the generated network. If the
assortativity of the test network is too low, the layout modification phase
continues and a further test network is generated. However, if the test
network assortativity is too high, the algorithm is abandoned because there is
no mechanism to reduce assortativity. In general, over half the networks
generated had assortativity values within the tolerance of 0.05 of the target
values. This could be improved by introducing a mechanism to reduce
assortativity, such as swapping a certain number of randomly selected pairs of

nodes.
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The algorithm is successful in the scope of achievable assortativity values. For
all distribution types, it was able to generate networks with over 90% of the

maximum value feasible given the degree sequence.

For clustering coefficient, the neighbour algorithm is able to consistently
generate networks with very similar properties using the same input edge
creation probability parameter. Further, there is a linear relationship
between the edge creation probability and the clustering coefficient of the
generated network, which simplifies the use of the neighbour algorithm to
generate networks with specific target properties. If targeting a particular
value, a suitable starting edge creation probability would be twice the target
clustering coefficient. This could be increased or decreased if the networks
being generated had clustering coefficients that were too low or high

respectively.

However, there is a significant limitation in the capacity of the neighbour
algorithm to generate networks with specific clustering coefficients. The
maximum feasible clustering coefficient is approximately 0.5 and is reduced
in the presence of degree variation. As some real world social networks have
clustering coefficients higher than this value, this restriction does impact on

the study of epidemic behaviour.

There is also some evidence that the neighbour algorithm is restricted in the
combination of assortativity and clustering coefficient values able to be
achieved. The algorithm was unable to generate higher assortativity networks

in combination with a clustering coefficient near zero.

This could be a structural limitation rather than an artifact of the algorithm,
particularly for smaller networks. Higher assortativity requires nodes of
similar degree to have edges between them. If there are only a small nhumber
of nodes with similar degree for parts of the degree sequence, this will also
lead to clustering. There is some evidence supporting this interpretation from
the Keeling algorithm (Keeling 2005; Badham et al. 2007), which also has

difficulty in separating the values of assortativity and clustering coefficient,
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and also from a study of feasible property space for a specific degree

sequence (Holme and Zhao 2006).

In addition to the properties for which the neighbour algorithm was
developed, the test networks were also assessed for their compliance with the
small world property. Social networks are known to exhibit the small-world
property (Watts and Strogatz 1998), but lattice networks do not and the

neighbour algorithm uses lattice like construction methods.

Neighbour networks satisfy the small-world property for moderate edge
probabilities, but for very high edge creation probabilities, mean geodesic

increases linearly with network size.

This suggests that some rewiring would be necessary where both small-world
and very high clustering are required for generated networks. Watts and
Strogatz's (1998) paper suggests a small rewiring process (1% to 10% of nodes)
has a substantial impact on mean geodesic, but very little on clustering. Any
impact on assortativity could be limited by rewiring to the same degree nodes

where possible.

The neighbour algorithm demonstrated its suitability for generating networks
for simulation studies of the impact of degree distribution, assortativity and
clustering coefficient by generating a suitable sample for this study of
epidemic behaviour. Multiple networks were obtained for a range of
assortativity and clustering values for each type of degree distribution, which

enables the impact of these properties to be assessed separately and jointly.
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Chapter 5: Epidemic Simulation

This chapter investigates the way in which epidemic behaviour is affected by
differences in the properties of the network: positively skewed degree
distribution, (degree) assortativity and clustering coefficient. As described in
Chapter 3, up to 100 SIR and SIS epidemic simulations are run for each
simulation set defined by network property (degree distribution type,
assortativity and clustering coefficient) and epidemic parameter (infectivity
and immunity). In total, 66 720 simulations are run on neighbour networks
generated by the neighbour algorithm developed in Chapter 4, with another
600 simulations to implement the basic epidemiological model in a network

context.

Two aspects of epidemic behaviour are examined. The first of these is the
proportion of simulations in which an epidemic occurs. This will be based on

the definition of an epidemic as developed in Section 5.1.1.

The second examination concerns the intensity of the epidemic, given that an
epidemic occurs. This uses the standard epidemiological measure of basic
reproduction ratio Ry derived from the size of the epidemic. For the SIR
simulations, an epidemic will eventually die out because available nodes are
immune. Thus, the cumulative infections at the end of the epidemic is an
appropriate measure of size (referred to as final size). For the SIS process, the
epidemic will eventually stabilise so that there is a relatively constant number
of infected nodes. Thus, prevalence after stability is achieved is an
appropriate measure of size. Both of these size measures can be used to

estimate the underlying value of R, for the epidemic.

5.1 Analytical framework

For the simulations, the probability of infection transmission given an edge

between an infected and a susceptible node is shown in Table 3.2. Note that
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this value ignores lower probability events such as the infected node
transmitting the infection more than once to the same node. It also ignores
the possibility of the susceptible node becoming infected from some other

source.

From equations (2.3) and (2.4), there is a relationship between Ry, and the
observable epidemic property of final size (for SIR) or prevalence (for SIS),
expressed as the proportion of nodes. Rewriting so that Ry is a function of

observable properties:

For SIR epidemics (Diekmann & Heesterbeek 2000,pg 13 eq 1.11):

Ro :_loge(1_f% (5.1)
where: f is final size, the proportion of the population

ever infected

For SIS epidemics (Anderson & May 1992, pg 17 eq 2.1):

-1
Ry % b (5.2)
where: p is the prevalence at equilibrium as a proportion

of the population

While these relationships are invalid once degree variation is introduced (see
Section 5.7.1 for discussion), prevalence and final size information is not
available by degree in real world epidemics. Thus, to measure the impact of
network properties, the observed value of Ry is calculated from the
simulations with known assortativity and clustering, and compared to the
value over networks with the same degree distribution but zero values of

those properties.

The experimental dataset is summarised at Table 5-1. The main analysis

dataset is the neighbour networks with specific assortativity and clustering

coefficient values for each of three degree distribution types. This is

described more fully in Section 5.1.1. The properties of the networks have

already been described in Section 4.4. There are also 10 networks with
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uniform degree, which are used to implement the basic epidemiological

model for selected comparisons.

Table 5-1: Number of records used for analysis

Uniform Real Power  Normal Total
Networks generated 10 409 183 520 1122
60 simulations per network (3 infectivity rates x SIR/SIS x 10 instances)
Simulations performed 600 24 540 10 980 31200 67 320
Timestep records (million) 0.06 2.45 1.10 3.12 6.673

Note: The actual number of records in the dataset is 8.24 million as it also includes

epidemic simulations on some additional comparison networks.

There are properties not controlled by the experimental design that are also
changed as assortativity and clustering vary, at least some of which are likely
to impact on epidemic behaviour (such as mean geodesic). The impact of

these factors is not specifically considered in this analysis.

The supplementary DVD includes the C++, Matlab and SPSS code used for the
major analyses, datasets and analysis output in Excel, Matlab or SPSS. Where
important results were produced in SPSS, the output is also available in HTML.

A description of the analysis process and files used is at Appendix B.
5.1.1 Analysis dataset

To examine the impact of network structure, the analysis dataset comprises
epidemic simulations over neighbour networks with a range of assortativity
and clustering values. The analysis will consider each type of degree
distribution and infectivity value separately. The number of simulations and
the number of those simulations that are epidemics (defined in Section 5.1.3),

are displayed in Table 5-2.

For simplicity, the detailed analysis is generally presented for only a single
simulation set or property combination, though summary results are presented
for all cases. Where only selected results are presented, the results for all
simulations are included on the supplementary DVD and indexed in

Appendix C. Any conflicting results are noted in the text.
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Table 5-2: Number of simulations and epidemics in dataset

Infectivity rate

0.0417 0.0833 0.1250
Simulations
Normal 5200 5200 5200
Real world 4090 4090 4090
Power law 1830 1830 1830
SIR Epidemics
Normal 326 2 152 3 506
Real world 480 1573 2 331
Power law 276 627 900
SIS Epidemics
Normal 711 2797 3830
Real world 719 1863 2 554
Power law 322 761 1083

The simulation set described fully is that for the real world distribution with
highest infectivity rate. The real world distribution was selected as the
normal distribution is socially unrealistic and the power law distribution has a
smaller range of property values available for analysis. The highest infectivity
value was selected as it has the highest proportion of successful epidemics,
and therefore the richest dataset when considering the impact on basic

reproduction ratio.

For analyses where assortativity and clustering coefficient are held constant,
the values selected for presentation will be 0.2 and 0.4 respectively as these
are moderate values for published social networks (see Table 2.1). The
analysis dataset includes networks with assortativity of up to 0.9, so 0.2 is
within the property space. For clustering coefficient, 0.4 is a very high value
with respect to the networks able to be generated but is included in the

simulations.

The dataset also includes simulations on 10 uniform degree networks. These

networks implement the basic epidemiological model within the same
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network modelling framework as the simulations to be used for the analysis of
relationships. The number of simulations and epidemics in the dataset for

these networks is at Table 5-3.

Table 5-3: Number of uniform degree simulations and epidemics in dataset

Infectivity rate
0.0417 0.0833 0.1250
Simulations 100 100 100
SIR Epidemics 9 54 82
SIS Epidemics 4 59 74
5.1.2 Epidemic definition: Empirical reproduction ratio

In order to assess whether an epidemic occurs, some definition is required for

whether the epidemic ‘occurred’ or ‘failed’.

The generally accepted definition of epidemic amongst epidemiologists is

disease specific:

The occurrence in a community or region of cases of an illness ...

clearly in excess of normal expectancy (Last 2001, pg 60).

Thus, relevant organisations such as the United States’ Centre for Disease
Control set epidemic thresholds that are specific to the disease, available
information and location. For example, the (US) influenza epidemic threshold
is that the proportion of deaths attributable to pneumonia and influenza is in
excess of 1.645 standard deviations above the seasonal baseline percentage
(Center for Disease Control 2007).

The epidemic threshold theorem (Kermack and McKendrick 1927; Diekmann et
al. 1990) suggests a more relevant potential definition. An epidemic occurs
when an infected node in a susceptible population is able to infect, on
average, at least one node during the period of its infection or equivalently,
that the basic reproduction ratio Ry is greater than or equal to 1. However,
this measure is not observable from a single simulation, so cannot be used to
determine whether an epidemic occurred.
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Instead, define timestep specific empirical reproduction ratio (E¢;) as the
number of new infections arising in the next infectious period per current

infection. That is:

where: E, is the empirical reproduction ratio at timestep t
J, is the new infections at timestep i
r is recovery rate
I, is the number of nodes infected at timestep ¢t

Note that this is not a measure of reproduction per generation; such a
measure would require tracking of the number of nodes that each node
directly infects. In contrast, the presented ratio excludes infections already
achieved by the currently infected nodes, excludes infections achieved by the
currently infected nodes more than an average generation time in the future
and includes infections achieved by nodes infected by the currently infected
nodes, provided the infections occur quickly. In addition, timestep is a
discrete measure so E; will incorrectly estimate the actual reproduction ratio
unless 1/r is an integer. However, E; is an observable measure of epidemic

behaviour.

What is the appropriate timestep at which to test for reproduction at least

one and hence epidemic success?

If the test is too early, false negatives could arise where a later generation
‘kickstarts’ the epidemic. Alternatively, false positives could occur where the
initial success is not able to develop into a full epidemic. This latter error may
be a particular problem on highly clustered networks, where the infected
nodes may be trapped in areas where all their neighbours are immune (for
SIR) or already infected (SIS and SIR).
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Another problem arises because the basic reproduction ratio is a theoretical
measure based on a completely susceptible population. Once a simulation has
started, the population is no longer completely susceptible and reproduction
per infection decreases. Thus, testing too late could lead to false negatives,
where an epidemic occurred but is no longer producing sufficient new

infections to appear to be an epidemic.

For this study, the preliminary definition of an epidemic is that an epidemic

occurs if the empirical reproduction ratio is at least 1 for some timestep:

3t such that E; >1 (5.4)

This is implemented by calculating the achieved reproduction ratio (E;) for all
timesteps after a short run in time (15 timesteps = 5 generations). The run in
time is intended to avoid the value being determined by a single high degree
or otherwise successful node in the period where a single node can dominate
the ratio. The maximum over these timesteps is then used to assess whether
an epidemic succeeds. An epidemic is considered to have occurred where
E=>1.

t=98

E= mtaXEt |t:15

(5.5)

5.1.3 Epidemic definition: Assessment and refinement

While the operational epidemic definition has a theoretical justification, it

must also meet conditions of operational utility and validity.

The first question of validity is whether the definition produces expected
results in relation to infectivity. That is, is increased infectivity associated
with a higher proportion of epidemic occurrence? This threshold test is
satisfied for both SIR and SIS simulations for each of the four types of degree

distribution (Figure 5-1 and Figure 5-2 respectively).
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Figure 5-1: Epidemic occurrence by infectivity, SIR: Comparisons across degree
distribution types are not valid as each has a different proportion of networks with

higher values for assortativity and clustering.

Figure 5-2: Epidemic occurrence by infectivity, SIS: Note that comparisons across
degree distribution types are not valid as each has a different proportion of

networks with higher values for assortativity and clustering.

The next question concerns the extent to which the definition distinguishes

between successful and failed epidemics. Figure 5-3 displays the distribution
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of the maximum reproduction ratio (in the simulation period of 100 timesteps)
over the 33 660 SIR epidemic simulations, with the equivalent information for
SIS at Figure 5-4. Both of these figures show a substantial difference (note the
logarithmic scale) in the number of simulations with reproduction ratios in the
range [0,1) compared to [1,2), which provides support for the epidemic

definition.

Table 5-4 provides limited further support for the definition of epidemic. It
shows general agreement between the proposed theoretically based definition
and whether more than 33 total infections were achieved in the first 33
generations. However, these classifications are not independent and the table

also raises concerns about false positives and negatives.

Figure 5-3: Number of simulations by reproduction ratio, SIR The reproduction
ratio scale has been truncated at 27. The maximum value that occurs in the dataset

for SIR simulations is 92 and there are 8 simulations excluded.
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Figure 5-4: Number of simulations by reproduction ratio, SIS The reproduction
ratio scale has been truncated at 27. The maximum value that occurs in the dataset

for SIR simulations is 97 and there are 5 simulations excluded from the chart.

For SIR simulations, 1.6% of those simulations meeting the definition of an
epidemic do not achieve 34 total infections in the first 33 generations, so the
reproduction is not maintained. For SIS epidemics, only 1.0% are not
maintained. That is, the epidemic reproduces but then becomes trapped by

already infected (and immune, for SIR) nodes and dies out.

False negatives for SIR simulations are a much greater problem with the
definition. Of those simulations identified as not epidemics, 8.6% of SIR but
only 0.1% of SIS runs have achieved 34 infections by timestep 100.
Furthermore, many of these simulations infect a substantial proportion of the
population, with at least 500 infections achieved by 1 396 SIR simulations not
defined as epidemics. This situation arises where significant growth occurs

during the run in period (first 5 generations).
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Table 5-4: Potential incorrect epidemic classification

SIR SIS
Number Percent Number Percent
Not epidemic, infections > 33 2 897 8.6% 18 0.1%
Not epidemic, infections < 33 21 282 63.2% 18 876 56.1%
Epidemic, infections > 33 8 951 26.6% 14 431 42.9%
Epidemic, infections < 33 530 1.6% 335 1.0%
Total 33 660 100.0% 33 660 100.0%

To reduce this problem, maximum growth rate was considered as an
alternative epidemic indicator. Define the timestep specific growth rate of

the epidemic as the average growth rate per generation up to that timestep:

where: G, is the growth rate at timestep t

J; is new infections at timestep i
tr is the number of mean infection periods
I, is the number of nodes initially infected

As for the reproduction ratio, define the maximum growth rate G as:

t=100

=15 (5-7)

G= m?th |

Figure 5-5 displays the distribution of the maximum growth rate (in the initial
100 timesteps) over the 33 660 SIR epidemic simulations, with the equivalent

information for SIS at Figure 5-6.

The minimum value of the (maximum) growth rate is 0 as there is at least one
infection (the initial node) for all simulations. Thus, unlike reproduction ratio,
there is no suitable value for growth rate to be used to define an epidemic.

However, it can be used to supplement the theoretically sound reproduction
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ratio definition. In particular, G can be used to identify those epidemics

where there is significant initial growth in infections.

Figure 5-5: Number of simulations by growth rate, SIR Note that if the initial
node results in only one additional node becoming infected, G will have the value

2"(1/5)-1 = 0.15, which produces the gap in the histogram.

Figure 5-6: Number of simulations by growth rate, SIS
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An epidemic is defined to occur when either the reproduction rate is at least
1 or G is greater than some threshold value. The threshold value is arbitrary,
but should be sufficiently small so as to increase the number of epidemics by
minimising false negatives. However, a very low value of G will lead to
additional false positives, where a simulation is considered an epidemic
because of overall growth and the reproduction ratio test will have no

practical impact.

Several potential threshold values are examined at Table 5-5. From this table,
the threshold value of 1 was chosen for the definition of an epidemic.
Assuming that the growth occurs in the first 5 generations (run in period,
where reproduction ratio not calculated) and then slows, this threshold is
equivalent to the simulation achieving 32 infections by timestep 15. The
consistency with the maintenance target of 34 infections by timestep 100
contributes to the strong performance of this threshold value in removing
false negatives. Note that 6 infections by timestep 15 (that is, 1 replacement
infection per generation) then no further infections would provide a G value
of 0.43, but such a low value substantially increases the proportion of
simulations that are defined as an epidemic but have minimal impact on the

population.

Table 5-5: Impact of various values of G threshold on epidemic definition, SIR

G tested Consistent False positives False negatives
>0.0 68.5% 31.5% 0.0%
>0.5 91.0% 9.0% 0.0%
> 0.7 95.6% 4.4% 0.0%
>0.9 97.7% 2.3% 0.0%
>1.0 98.2% 1.6% 0.2%
> 1.1 97.7% 1.6% 0.8%
>1.2 97.1% 1.6% 1.3%
>1.3 96.6% 1.6% 1.8%

Table 5-6 provides the same information as Table 5-4 with the revised

definition of epidemic.
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Table 5-6: Potential incorrect epidemic classification, with G>1 in epidemic

definition
SIR SIS

Number Percent Number Percent
Not epidemic, infections > 33 73 0.2% 7 0.0%
Not epidemic, infections < 33 21 271 63.2% 18 876 56.1%
Epidemic, infections > 33 11775 35.0% 14 442 42.9%
Epidemic, infections < 33 541 1.6% 335 1.0%
Total 33 660 100.0% 33 660 100.0%

In summary, an epidemic is defined to occur if either of two conditions is
met. The first condition is that, after an initial run-in period of approximately
five generations, there is at least one timestep where the number of infected
nodes is at least the same size as the number of infected nodes one
generation (three timesteps) previously. This is an operational approximation
of the epidemic threshold theorem, which states that an epidemic occurs if

the basic reproduction ratio is at least 1.

The alternative condition is that there is at least one timestep for which the
average growth per generation since the start of the simulation is greater
than 1. That is, each generation has infected enough nodes to replace itself
(as the nodes recover) and reproduce, so each node must infect more than
two other nodes. This condition is to recognise epidemics that grow strongly

during the run-in period of the simulation.

5.2 Epidemic impact of degree variation

The role of degree variation in epidemic behaviour has been extensively
studied (Becker 1973; Adler 1992; and others, see Section 2.5.2), with a
greater probability of an epidemic occurring as degree variance increases.
The result arises from the fact that higher degree nodes have greater
exposure and hence susceptibility, leading to over-representation in the

average degree of the potential epidemic path. Thus, the effective contact
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rate is higher than mean degree and this increases the basic reproduction

ratio Ry. In turn, this leads to a greater probability of an epidemic occurring.

Despite the higher value of Ry, in positively skewed degree distributions,
epidemic size generally decreases with an increase in degree variation
(Becker 1973; and Section 2.5.2). This is due to the high proportion of low
degree nodes where probability of infection is relatively low and can be seen
in the example given in Section 5.7.1. The opposite pattern occurs when

infectivity is low (Andersson and Britton 1998).

As there is substantial literature on this topic, | undertook only basic analysis
on the independent impact of degree distribution. This was to confirm that
the relationship was consistent regardless of the network structure imposed
by different levels of assortativity and clustering, as these published studies

did not consider these network properties.

The experimental design has three types of degree distribution for which
neighbour networks are constructed with target assortativity and clustering
coefficients. These are normal, real world and power law. The normal degree
distribution networks have substantially lower degree variation than those
with real world degree distribution, which are in turn lower than the values

for the power law networks.

Using the degree sequence, networks are constructed with various values of
assortativity and clustering coefficient. To isolate the effect of degree
heterogeneity, the simulations can be compared between degree distribution
types for specific values of assortativity and clustering coefficient. Table 5-7
displays aspects of the degree distribution and epidemic behaviour, comparing
the degree distribution types for three selected sets of network property

values.
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Table 5-7: Network and epidemic properties by degree distribution: selected

assortativity and clustering values, infectivity=0. 1250

Normal

Real World

Power Law

Clustering~0.0, Assortativity~0.0

Degree - coefficient of variation

33% - 36%

65% - 69%

86% - 103%

Degree - top 5% nodes 9% - 9% 14% - 15% 19% - 22%
Number of simulations 100 100 70
SIR proportion epidemics 0.70 0.73 0.66
SIR mean final size 0.880 0.780 0.786
SIS proportion epidemics 0.78 0.69 0.77
SIS mean endemic prevalence 0.554 0.503 0.507

Clustering~0.2, Assortativity~0.1

Degree - coefficient of variation

33% - 36%

66% - 69%

92% - 113%

Degree - top 5% nodes 9% - 9% 14% - 15% 21% - 24%
Number of simulations 100 100 100
SIR proportion epidemics 0.67 0.54 0.51
SIR mean final size 0.838 0.751 0.595
SIS proportion epidemics 0.77 0.64 0.54
SIS mean endemic prevalence 0.553 0.497 0.455

Clustering~0.4, Assortativity~0.2

Degree - coefficient of variation

33% - 36%

66% - 69%

90% - 105%

Degree - top 5% nodes 9% - 9% 14% - 15% 20% - 22%
Number of simulations 100 100 100
SIR proportion epidemics 0.77 0.51 0.32
SIR mean final size 0.464 0.617 0.430
SIS proportion epidemics 0.83 0.56 0.51
SIS mean endemic prevalence 0.548 0.476 0.407

The first set (clustering ~ 0.0 and assortativity ~ 0.0) provides unstructured
networks similar to those assumed in theoretical analysis of the impact of
degree heterogeneity. The third set (clustering ~ 0.4 and assortativity ~ 0.2)
uses the example values selected in Section 5.1.1 for their real world
relevance. The other set (clustering ~ 0.2 and assortativity ~ 0.1) provides an

intermediate comparison value.
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5.2.1 Relationship with epidemic occurrence

While the literature suggests the normal degree distribution simulations
should have the lowest proportion of epidemics through the impact of degree
heterogeneity on Ry (Nold 1980), this pattern is not evident from the
simulations shown in Table 5-7. However, the literature does assume that the

network is created randomly, without assortativity or clustering.

To investigate this further, Table 5-8 displays the epidemic occurrence for all
neighbour network simulation sets with assortativity and clustering coefficient
of zero, and also the basic epidemiological model as implemented through the
uniform degree network. There is no evident trend of increase or decrease
with degree heterogeneity (which increases from Uniform to Power law

networks).

Table 5-8: Proportion of simulations where epidemic occurs, zero structure

Infectivity  Immunity | Uniform Normal Real World Power Law
0.0417 SIR 0.09 0.06 0.10 0.16
SIS 0.04 0.13 0.16 0.09
0.0833 SIR 0.54 0.58 0.54 0.46
SIS 0.59 0.52 0.59 0.61
0.1250 SIR 0.82 0.70 0.73 0.66
SIS 0.74 0.78 0.69 0.77

However, there is some evidence of a pattern across all simulations. Table 5-9
compares the proportion of simulations in which epidemics occur for normal
(N), real world (R) and power law (P) networks, restricted to those values of
assortativity and clustering coefficient for which more than 50 simulations

were performed for all three distribution types.
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Table 5-9: Distribution type comparison of epidemic proportion The number of
specific approximate assortativity and clustering coefficient pairs for which the
relative proportions of epidemics in each of the three degree distribution types
show the relationship in the column heading. N denotes normal, R denotes real
world and P denotes power law.

Immunity Infectivity | N<P<R N<R<P P<R<N P<N<R R<P<N R<N<P
SIR 0.0417 7 11 0 1 0 1
0.0833 0 1 13 4 1 0
0.1250 0 0 17 2 2 0
SIS 0.0417 4 7 4 2 0 2
0.0833 0 1 17 1 1 0
0.1250 0 0 12 0 6 1

This table shows that for the lowest infectivity level, the normal degree
distribution simulations generally show the lowest probability of achieving an
epidemic for all assortativity and clustering coefficient combinations.
However, for the two higher infectivity levels, the smallest epidemic

proportion occurs in the power law degree distribution simulations.

One potential explanation for this is related to the selection method for the
initial node to infect. This node is selected uniformly from all nodes. For the
lowest infectivity rate, all simulation sets have low proportions achieving an
epidemic. For the normal distribution simulations, no more than 20% achieve
epidemics across all assortativity and clustering combinations where all three
distributions are represented. For those networks with higher degree
variation, there is a reasonable chance for the initial node to infect a very

high degree node that is then able to stimulate an epidemic.

In contrast, for the higher infectivity rates, epidemic occurrence is not as
reliant on infecting a very high degree node, moderate degree nodes are
sufficient. For the normal distribution simulations, 30% to 90% achieve an
epidemic for infectivity of 0.0833 with higher rates for infectivity of 0.1250.
Instead, the skewed degree distribution is a disadvantage, because there is a

very high proportion of very low degree nodes and there continues to be a
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significant probability that the low degree initial node is unable to infect the

necessary high degree node.
5.2.2 Relationship with epidemic size

For epidemic size, the literature suggests the power law networks to be
smallest except where infectivity is low (Andersson and Britton 1998) and this

is true for most of simulations shown in Table 5-7.

Table 5-10 displays the mean size of epidemics for all neighbour network
simulation sets with assortativity and clustering coefficient of zero. In
addition, the basic epidemiological model is implemented through the

uniform degree network.

Unlike epidemic occurrence, there is an evident trend of increase or decrease
with degree heterogeneity. For the lowest infectivity rate, size appears to
increase with degree heterogeneity and it decreases for the higher infectivity
rates. This is supported by an ANOVA (Tabachnick & Fidell 2006), which found
the differences between distribution types to be significant (p<0.001) for all

immunity and infectivity combinations.

Table 5-10: Mean epidemic size, zero structure

Infectivity Immunity Uniform Normal Real World Power Law
0.0417 SIR final size 0.035 0.040 0.093 0.231
SIS prevalence - 0.15 0.106 0.136
0.0833 SIR final size 0.707 0.681 0.602 0.601
SIS prevalence 0.411 0.411 0.386 0.366
0.1250 SIR final size 0.920 0.880 0.780 0.786
SIS prevalence 0.572 0.554 0.503 0.507
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Table 5-11 compares the epidemic size for normal (N), real world (R) and
power law (P) networks, restricted to those network structure values for

which more than 10 epidemics were achieved for all three distribution types.

Table 5-11: Distribution type comparison of epidemic size The number of specific
approximate assortativity and clustering coefficient pairs for which the relative
epidemic size in each of the three degree distribution types show the relationship in

the column heading. N denotes normal, R denotes real world and P denotes power

law.
Immunity Infectivity | N<P<R N<R<P P<R<N P<N<R R<P<N R<N<P
SIR 0.0417 0 1 0 0 0 0
0.0833 9 1 5 4 0 0
0.1250 2 0 11 4 2 0
SIS 0.0417 0 0 0 0 0 0
0.0833 0 0 16 3 0 0
0.1250 0 0 19 0 1 0

For the lowest infectivity rate, there were insufficient epidemics to compare
the distribution types. For the highest infectivity rate and the moderate
infectivity rate for SIS epidemics, the pattern expected from the literature

(P<R<N) was achieved for almost all clustering and assortativity combinations.

For the moderate infectivity rate for SIR epidemics, however, there was no
consistent pattern, with the normal and the power law distributions each the
smallest for approximately half the assortativity and clustering pairs. With
detailed investigation, the pattern crystallises into two groups: the power law
distribution epidemics are smallest for the relatively high assortativity and
low clustering, and the normal distribution epidemics are smallest for

relatively low assortativity and high clustering.

Thus, the infectivity role in the impact of degree heterogeneity on epidemic
size is more complex than shown in (Andersson and Britton 1998); it also
interacts with assortativity and clustering coefficient. This suggests a possible

explanation.
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For the normal distribution network simulations, the high clustering level is
apparently inhibiting the ability of the epidemic to expand and the infectivity
rate is not sufficient to overcome this barrier. However, for the networks with
more variable degree, the high degree nodes provide surges to break out of

the clustered areas.

Where overall infectivity is higher, clustering poses less of a problem and the
variation in the degree leads to the expected result of relatively low
probability of infection for the high proportion low degree nodes and hence a

smaller epidemic.
5.2.3 Discussion

The simulations support the study that has previously found degree
heterogeneity to interact with infectivity in its impact on epidemic size
(Andersson and Britton 1998). Further, they suggest that a similar complex

dependency exists for epidemic occurrence.

While networks with various levels of assortativity and clustering generally
show the same relationship between degree heterogeneity and epidemic
behaviour as networks with zero values of these properties, there is some
suggestion that assortativity and clustering affect the relationship between

infectivity, degree heterogeneity and epidemic size.

The role of infectivity introduces an extra dimension to the study and is
outside the scope of the research question, which is focussed on the role of
social network properties on epidemic behaviour. Further, the impact of
degree heterogeneity on epidemic behaviour is complex, with reversals of
patterns at different infectivity levels. A general model that includes degree

heterogeneity would therefore need to include infectivity in a nonlinear way.

Hence, further analysis will examine the impact of assortativity and clustering
coefficient on epidemic behaviour within simulation sets defined by degree
distribution type and infectivity. Trends across degree distribution types or

infectivity will not be examined because of the potential interference from
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the interaction of degree heterogeneity and infectivity. General rules will be

sought by identifying common features from the various simulation sets.

Since assortativity and clustering coefficient concern the selection of nodes to
connect to each other, these properties will be loosely referred to as network

structure.

5.3 Impact of network structure on epidemic

occurrence

In contrast with the impact of degree heterogeneity on epidemic occurrence,
the effect of network structure has had only limited study. From (Boguna and
Pastor-Satorras 2002; and others, see Section 2.5.3), the literature suggests
that the proportion of simulations in which epidemics occur should increase as
assortativity increases, although one study found the opposite relationship.
From (Keeling 2005, see Section 2.5.4) the probability of an epidemic
occurring decreases as clustering increases. However, this result is from a

single study, albeit with both theoretical and simulation elements.

From the simulations, there is an apparent relationship between network
structure and whether an epidemic occurs. However, the relationship is subtle

and somewhat inconsistent.

Consider the results in Table 5-12, which shows the proportion of SIR
simulations meeting the definition of epidemic on the real world degree
distributions with infectivity of 0.1250 (or probability of transmission of
infection of 0.30). Generally, within a specific assortativity value, the
proportion of epidemics decreases as clustering increases. This is consistent
with the results in the literature. However, there are substantial aberrations,
particularly for the 0.0 and 0.1 values of assortativity, where there is an

increase in the proportion of epidemics for the most clustered networks.
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Table 5-12: Proportion of simulations satisfying epidemic definition: SIR, real

world degree distribution, infectivity=0.1250

Approximate Approximate Clustering Coefficient
Assortativity 0.0 0.1 0.2 0.3 0.4 Total
0.0 73% 59% 56% 73% 59% 64%
0.1 68% 68% 54% 59% 61% 62%
0.2 70% 63% 60% 66% 51% 60%
0.3 58% 61% 57% 57% 58%
0.4 57% 71% 51% 56% 59%
0.5 63% 51% 54% 51% 55%
0.6 58% 57% 55% 49% 55%
0.7 55% 58% 52% 50% 54%
0.8 57% 54% 51% 41% 51%
0.9 53% 46% 42% 46%
Total 70% 60% 58% 56% 52% 57%

The trend across assortativity values within specific clustering values is less
clear. With the lower assortativity values, there are both increases and
decreases in epidemic proportion as assortativity increases. However, for very
high assortativity values (at least 0.6), epidemic proportion decreases as

assortativity increases, contrary to the results from the literature.

For the SIS simulations for the same network type and infectivity level (Table
5-13) there is no apparent relationship between epidemic proportion and
clustering. For assortativity, the same pattern is observed as for SIR
simulations; for high values of assortativity, epidemic proportion decreases as

assortativity increases.

One possible explanation for inconsistent results is that the number of
simulations differs between property groups, leading to a false result from the

smaller samples. However, from Table 5-14, this explanation is false.
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Table 5-13: Proportion of simulations satisfying epidemic definition: SIS, real

world degree distribution, infectivity=0. 1250

Approximate Approximate Clustering Coefficient
Assortativity 0.0 0.1 0.2 0.3 0.4 Total
0.0 69% 63% 61% 58% 66% 63%
0.1 73% 59% 64% 72% 64% 66%
0.2 60% 70% 55% 62% 56% 61%
0.3 63% 71% 61% 63% 65%
0.4 60% 67% 60% 67% 64%
0.5 67% 60% 65% 70% 66%
0.6 57% 64% 65% 67% 63%
0.7 53% 63% 56% 64% 59%
0.8 59% 61% 52% 58% 57%
0.9 58% 61% 56% 58%
Total 70% 61% 62% 61% 63% 62%

Table 5-14: Number of contributing simulations: Real world, infectivity=0.125

Approximate Approximate Clustering Coefficient
Assortativity 0.0 0.1 0.2 0.3 0.4 Total
0.0 100 100 100 100 100 500
0.1 100 100 100 100 100 500
0.2 10 100 100 100 100 410
0.3 100 100 100 100 400
0.4 100 100 100 100 400
0.5 100 100 100 100 400
0.6 100 100 100 100 400
0.7 100 100 100 100 400
0.8 100 100 100 100 400
0.9 80 100 100 280
Total 210 900 980 1,000 1,000 4,090
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5.3.1 Is the relationship significant?

A logistic regression (Tabachnick & Fidell 2006) was used to more rigorously
examine the effect of the two properties and their interaction on epidemic
occurrence. As assortativity and clustering are of the same order of

magnitude, no rescaling is necessary.

To fit the model, the independent variables were added progressively (Elliott
& Woodward 2007) with the most significant added in each step (that is,
smallest value of significance and provided p<0.05). After adding the new
variable, the model was recalculated with each of the variables removed
individually to assess whether a variable is no longer required. Finally, the
Hosmer-Lemeshow test (Tabachnick & Fidell 2006) was used to assess

whether the model is a good fit.

For the SIR simulations on the real world degree distribution networks and
infectivity of 0.1250, the results of this logistic regression process were as
follows. The significant coefficients of the model were 0.519 for the constant
(p<0.001) and -2.266 for the interaction term (p<0.001). In addition, the full
model was significant when compared to the constant only model (model
chi-square test, p<0.001) and the Hosmer-Lemeshow statistic found a good fit

(p=0.561, nonsignificant chi-square is interpreted as a good fit).

Thus, for a given assortativity A and clustering coefficient C, the probability

of an epidemic is estimated by:

0.519-2.266 AC

0.519-2.266 AC (5.8)

Prob(epidemic) =
1+e

For example, for a random network with A=0 and C=0, the estimated
probability of an epidemic is 62.7%. This is reduced to 57.8% with A=0.3 and
C=0.3. Despite the good statistical fit of the model, these results show a much

smaller range than the actual values of 73% and 57% respectively.

Instead of using the model to estimate the probability of an epidemic with

specific values of assortativity and clustering, the influence of the network
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properties can be seen from the coefficient of the odds ratio (Tabachnick &
Fidell 2006). The odds ratio is the probability of an epidemic divided by the
probability of no epidemic. While the specific coefficient values are difficult
to interpret because they depend on both the size of the effect and the
starting value, a coefficient of less than 1 means that the probability of an
epidemic is reduced as the value of that property increases. Further, a value
close to 1 indicates that that epidemic occurrence is almost independent of

the property.

The results of the logistic regression for all degree distribution types and
infectivity rates are at Table 5-15 (SIR) and Table 5-16 (SIS). These tables
show the coefficients of the odds ratio for each significant (p<0.05) property
or interaction and the value of the Hosmer-Lemeshow goodness of fit

statistic.

Table 5-15: Influence of network properties on epidemic occurrence (SIR):

logistic regression odds ratio coefficients (“-” indicates not significant)

Distribution Infectivity | Assortativity Clustering Interaction | Fit (>0.05)
Real world 0.0417 - 0.240 - 0.298
0.0833 0.382 - - 0.160
0.1250 - - 0.104 0.561
Power law 0.0417
0.0833 0.047 - - 0.277
0.1250 - 0.429 0.005 0.949
Normal 0.0417 - 0.154 - 0.212
0.0833 0.481 0.128 - 0.238
0.1250 - - 0.076 0.554

The Hosmer-Lemeshow goodness of fit statistic is report in the column headed
Fit(>0.05) and the fit is considered good if the value is greater than 0.05.

From Table 5-15, except for the simulations with a power law degree
distribution and infectivity of 0.0417, the social network structural properties
have a significant effect on the probability of an epidemic. Unfortunately,

different properties are significant for different simulation sets.
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One area where there is some consistency is which properties are significant
when comparing across simulation sets with the same infectivity level. That
is, assortativity has a significant influence for all simulation sets with
infectivity of 0.0833 and the interaction term has a significant influence for

all simulation sets with infectivity of 0.1250.

The other area of consistency is that all odds ratio coefficients are smaller
than one. That is, an increase in the property (or interaction) value decreases
the probability of an epidemic occurring. This is consistent with the literature
for clustering, but conflicts with previous studies concerning the effect of

assortativity.

The results for SIS simulations (Table 5-16) also show insufficient consistency
to allow generalisation. Overall, the network properties have a lesser impact
on the occurrence on an epidemic for SIS as compared to SIR, with three

simulation sets unable to find a model, and one model with a poor fit.

For specific property effects, clustering is not a significant variable in the
regression for any simulation set, unlike the SIR simulations. However, it does

have an impact through the interaction term.

Table 5-16: Influence of network properties on epidemic occurrence (SIS): logistic

regression odds ratio coefficients

Distribution Infectivity | Assortativity Clustering Interaction | Fit (>0.05)
Normal 0.0417 - ) 0.185 0.516
0.0833 - - 0.362 0.792
0.1250
Real world 0.0417
0.0833 0.380 - 3.632 0.518
0.1250 0.731 - - 0.868
Power law 0.0417
0.0833 0.167 - - 0.616
0.1250 0.187 - - No fit 0.004

The Hosmer-Lemeshow goodness of fit statistic is report in the column headed
Fit(>0.05) and the fit is considered good if the value is greater than 0.05.
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The other difference is that there is an odds ratio coefficient that is more
than one. However, that coefficient is on the interaction term and
assortativity is also significant. As a result, if the network has a clustering
value of no more than 0.7245, the decrease in epidemic occurrence arising
from a difference only in assortativity is larger than the increase arising from
the interaction term. For a given value of assortativity, simulations on
networks with a higher clustering coefficient are more likely to result in an

epidemic than on networks with a lower clustering coefficient.
5.3.2 Discussion

For those simulation sets (degree distribution type by immunity type by
infectivity rate) in this study where a relationship was found, the presence of
network structure consistently decreases the occurrence of epidemics.
However, the structural property with the strongest influence differed

between the simulation sets for both SIR and SIS epidemics.

For SIR simulations, the highest infectivity rate logistic models had the best fit
and these found the interaction of assortativity and clustering to be
significant. Logistic models were fitted to other simulation sets that found
only assortativity or only clustering to impact on epidemic occurrence, albeit

with lower significance.

For SIS simulations, four of the nine simulation sets found no significant
relationship between network structure and epidemic occurrence (as
compared to one for SIR). Where a relationship was found, assortativity or the
interaction term was the relevant structural variable (with one set using both
in the model). Clustering coefficient did not appear in any model outside of

its influence through the interaction with assortativity.

The SIR simulations provide some evidence to support published results that
higher clustering is associated with a reduction in the probability of an
epidemic occurring, with six of the nine simulation sets finding a significant
relationship with either clustering or the interaction term. However, the SIS

simulations found only limited evidence with no simulation sets identifying
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clustering as a significant factor. Of the three sets that found the interaction
term to be significant, one has increased probability of epidemics with an

increase in clustering.

This suggests that clustering may restrict SIR epidemics more than it does SIS
epidemics. Such an interpretation is reasonable, because loops of infection
that return to previously infected nodes are permanently blocked for SIR

epidemics, but the node may have become susceptible again in SIS epidemics.

For assortativity, all simulation sets either found no significant relationship
with epidemic occurrence or found that an increase in assortativity is
associated with a decrease in epidemic occurrence. This is in conflict with

published results.

In summary, over the property space simulated, the effect of network
structure on epidemic occurrence varies between simulation sets (degree
distribution type by infectivity level), and the results differ between SIR and
SIS epidemics. There is some consistency in that, where an effect is observed,
increasing assortativity or clustering coefficient decreases epidemic
occurrence, but the relevant property is different for different sets and may

impact through the interaction term.

5.4 Basic reproduction ratio for SIR epidemics in

the presence of network structure

Three papers (Nold 1980; Newman 2002a; Moreno et al. 2003) have
considered the impact of assortativity on epidemic size. Nold’s study
considered networks with the specific mixing scheme of part proportional and
part within the same degree, and the other two papers used the full
specification of the joint probability distribution. The three papers all
considered SIR epidemics and agreed that the epidemic is smaller in the
presence of assortativity. Due to the relationship between epidemic size and
basic reproduction ratio, this would also lead to a reduction in epidemic

derived Ry.

- 127 -



Chapter 5: Epidemic Simulation

Only Moreno et al (2003) quantified the relationship, noting that assortativity
can decrease size by 15-20% for moderate (in terms of their simulation
parameters) infectivity rates. The results also suggest that a higher
assortativity coefficient leads to a smaller epidemic in the absence of other

changes.

The published literature on the impact of clustering on epidemic size is very
limited. The only study to have specifically compared SIR epidemics on
clustered networks compared to similar networks without clustering (Keeling

1999) found that increasing clustering decreases epidemic size and Ry.

To examine the relationship between social network properties and SIR
epidemic behaviour, only those SIR simulations on neighbour networks where
an epidemic occurred will be included in the analysis. The size of the dataset
for each of the nine simulation sets is at Table 5-17 (extracted from Table 5-2
on page 101). For the real world degree distribution with infectivity of
0.1250, the network properties for the 2 331 epidemics are distributed as
shown in Table 5-18.

Table 5-17: Number of epidemics in dataset (SIR)

Infectivity rate
0.0417 0.0833 0.1250
Normal 326 2152 3 506
Real world 480 1573 2 331
Power law 276 627 900

From the experimental design, up to 100 epidemics were simulated for each
property combination (at each infectivity value), with 10 simulations for each
of up to 10 networks. Further, the set of 10 target degree instances was
identical for each property combination, replicating network structure to the

extent possible.
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Table 5-18: Number of contributing simulations: SIR, real world,
infectivity=0.1250

Approximate Approximate Clustering Coefficient
Assortativity 0.0 0.1 0.2 0.3 0.4 Total
0.0 73 59 56 73 59 320
0.1 68 68 54 59 61 310
0.2 7 63 60 66 51 247
0.3 - 58 61 57 57 233
0.4 - 57 71 51 56 235
0.5 - 63 51 54 51 219
0.6 - 58 57 55 49 219
0.7 - 55 58 52 50 215
0.8 - 57 54 51 11 203
0.9 - - 42 46 42 130
Total 148 538 564 564 517 2 331

The values of the network properties and Ry as derived from epidemic final
size are shown at Table 5-19. For the lowest infectivity rate of 0.0417, the
small number of epidemics occurring in the simulations is consistent with the
low values of Ry for all epidemics. As infectivity increases, the maximum of
the derived value of Ry increases accordingly, but there continue to be

epidemics that almost failed.

The differences in the ranges of assortativity and clustering across different
infectivity levels within the same degree distribution type indicate that

epidemics did not occur on some networks.
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Table 5-19: Range of property and SIR derived R, values in dataset

Distribution  Infectivity | Assortativity Clustering Ro
Normal 0.0417 0.00 to 0.86 0.01 to 0.50 1.00 to 1.13
0.0833 -0.02 to 0.86 0.01 to 0.51 1.00 to 1.85
0.1250 -0.02 to 0.86 0.01 to 0.51 1.01 to 2.66
Real world 0.0417 -0.05 to 0.86 0.01 to 0.45 1.00 to 1.17
0.0833 -0.05 to 0.86 0.01 to 0.45 1.00 to 1.67
0.1250 -0.05 to 0.86 0.01 to 0.45 1.00 to 2.13
Power law 0.0417 -0.05 to 0.48 0.02 to 0.46 1.00 to 1.20
0.0833 -0.05 to 0.49 0.02 to 0.46 1.00 to 1.63
0.1250 -0.05 to 0.49 0.02 to 0.46 1.01 to 2.09
5.4.1 Is there a relationship?

Before undertaking a regression analysis to model the relationship between
the network properties of assortativity and clustering, and epidemic
behaviour as measured by epidemic size and the basic reproduction ratio Ry,
exploratory techniques were used to assess whether a relationship is

apparent.

54.1.1 Epidemic behaviour over time, varying assortativity or

clustering

The first exploratory analysis examined the number of infections over time for
specific assortativity values, comparing different levels of clustering, and for

specific clustering coefficients, comparing different levels of assortativity.

Again using the real world degree distribution with infectivity of 0.1250 as an
example, Figure 5-7 shows the mean cumulative infections of the simulations
over networks with assortativity of approximately 0.2 where an epidemic

occurred, by clustering coefficient of the network.
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Figure 5-7: Epidemic size over time (cumulative infections) by clustering

coefficient: Real world, infectivity=0.1250, Assortativity~0.2

While assortativity of 0.2 was selected for the example because it is a
moderate and socially realistic level (see Table 2.1), it is coincidentally
reasonably well behaved. For each increase in clustering coefficient,
cumulative infections increase more slowly and reach a smaller final size.
However, there is little difference between the results for clustering

coefficients of 0.1 and 0.2, and only slightly more between 0.3 and 0.4.

Similarly, Figure 5-8 shows the mean cumulative infections of the simulations
over networks with clustering coefficient of approximately 0.4 where an

epidemic occurred, by assortativity of the network.
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Figure 5-8: Epidemic size over time (cumulative infections) by assortativity:
Real world, infectivity=0. 1250, Clustering~0.4

Again, 0.4 was selected because it is a moderate and socially realistic level,
but it is again reasonably well behaved. For each increase in assortativity,
cumulative infections increase more slowly and reach a smaller final size. The
only aberration is that the cumulative infection curves for the two lowest
values of assortativity are reversed. That is, the epidemics on networks with
assortativity of 0.0 show slower growth and a smaller final size than for

epidemics on networks with assortativity of 0.1.

While not all of the specific clustering or assortativity values show the
consistency of the relationships in these examples, there is a clear pattern.
That pattern is that for each of the degree distribution types and infectivity
levels, epidemics are smaller as assortativity or clustering increases while
holding the other property fixed.
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There is a notable group of exceptions. The fixed clustering charts for
infectivity of 0.0417 for all three degree distribution types show no clear
pattern between assortativity values and cumulative infections over time.
This lack of a pattern is consistent with the complex interactions between
degree heterogeneity, infectivity and network structure identified in
Section 5.2.

54.1.2 Epidemic final size, with assortativity and clustering

Having established that there is a difference in epidemic behaviour over time,
the second exploratory analysis considers how the epidemic final size varies
with both assortativity and clustering coefficient simultaneously. Final size is

important because it is the epidemic parameter used to estimate Ry.

Table 5-20 displays the average of the final size for all simulations in which an
epidemic occurred (for the specified simulation set). That is, up to 100
simulations contribute to each average, 10 epidemic simulations on each of 10

networks. The actual number of contributing epidemics is given at Table 5-18.

While there are some aberrations (such as 705 for assortativity of 0.1 and
clustering of 0.4), there is a clear trend whereby final size decreases as the
value of either structural property increases. Also immediately noticeable is
that these differences are very large, with the epidemic infecting 116 nodes
in the most highly structured networks on average, compared to 780 nodes in
the unstructured networks. In networks of 1,000 nodes, this is a reduction of
final size to 0.116 from 0.780.

With three continuous variables and dependency between assortativity and
clustering coefficient, there is no simple test for a trend in the final size
values. However, Table 5-21 provides the standard error for each mean and
these are small enough to suggest that the observed relationship is

statistically valid.
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Table 5-20: Mean epidemic final size: SIR, real world, infectivity=0.1250

Approximate Approximate Clustering Coefficient
Assortativity 0.0 0.1 0.2 0.3 0.4 Total
0.0 780 774 760 744 683 749
0.1 768 764 751 737 705 746
0.2 747 726 724 627 617 677
0.3 693 666 598 509 618
0.4 692 633 543 446 583
0.5 665 600 480 356 533
0.6 616 491 373 210 432
0.7 602 449 314 178 393
0.8 517 379 271 173 349
0.9 307 185 116 202
Total 773 675 585 507 422 563

Table 5-21: Standard error of mean epidemic final size: SIR, real world,
infectivity=0. 1250

Approximate Approximate Clustering Coefficient
Assortativity 0.0 0.1 0.2 0.3 0.4 Total
0.0 2 4 3 10 22 5
0.1 3 3 5 5 12 3
0.2 10 4 5 20 18 7
0.3 12 13 22 26 10
0.4 4 16 24 26 11
0.5 10 14 20 23 12
0.6 18 26 24 24 15
0.7 12 22 24 19 14
0.8 22 25 22 21 14
0.9 28 19 11 14
Total 2 5 8 10 11 5

Again, there is no clear relationship between assortativity and final size in the

simulation sets where infectivity is 0.0417.
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5.4.1.3 Correlation between Rq and assortativity or clustering

The third exploratory analysis calculates the partial correlation coefficient
between the basic reproduction ratio Ry as derived from the epidemic final
size, and each of assortativity and clustering coefficient, removing the

influence of the other.

From Table 5-22, this analysis indicates that there is a significant negative
linear relationship between Ry and assortativity for all distribution types with
infectivity of 0.0833 or 0.1250 (correlation of -0.38 to -0.79, p<0.001). That
is, increases in assortativity are associated with a decrease in the Ry

calculated from epidemic final size for both these infectivity rates.

Table 5-22: Correlation between epidemic derived R, and network properties
(SIR): Partial correlation correcting for other network property (significant with
p<0.001)

Distribution Infectivity Assortativity Clustering coefficient
Normal 0.0417 0.21 -0.43
0.0833 -0.38 -0.78
0.1250 -0.50 -0.84
Real world 0.0417 - -0.50
0.0833 -0.65 -0.67
0.1250 -0.82 -0.58
Power law 0.0417 -0.31 -0.46
0.0833 -0.69 -0.44
0.1250 -0.71 -0.38

The three simulation sets with infectivity of 0.0417 show a different result for
each of the three degree distribution types. For real world distribution
networks there is no significant linear relationship. For normal distribution
networks, there is a positive significant linear relationship (p<0.001), opposite
to that shown in simulations with higher infectivity. For power law

distribution networks, there is a significant linear relationship (p<0.001)
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consistent with the higher infectivity simulations, where an increase in

assortativity is associated with a decrease in Ry.

For all degree distribution types and infectivity levels, there is a significant
negative linear relationship between Ry and clustering coefficient (correlation
of -0.40 to -0.83, p<0.001). That is, increases in clustering are associated with

a decrease in the Ry calculated from epidemic final size.
5.4.1.4 Relationship between Ry and assortativity and clustering

The final exploratory analysis examined the specific values of assortativity
and clustering coefficient, instead of comparing within groups of similar
values. A scatter plot was constructed for each simulation set with the
structural property values as the axes, using colour to indicate the mean Ry
value (Figure 5-9). For each point, 10 simulations and therefore up to 10

epidemics contributed to the mean.

From this figure, Rp values range from approximately 1.0 to 2.1. The grey
pales as assortativity or clustering increases, indicating a decrease in the

mean value of Ry, consistent with the earlier analyses.

For infectivity of 0.0417, the scatter plots highlight the conflicting results
from those simulation sets with. Each of these shows a small range of Ry
values with only a few points with colours that are different from the
majority. While the relationship between clustering coefficient and Ry is
obvious, there is no apparent relationship between assortativity and Ry. This is
despite the significant partial correlation found for two of the degree

distribution types.
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Figure 5-9: Assortativity, clustering coefficient and R, derived from epidemic

final size: SIR, Real world, infectivity=0.1250, colour indicates R

5.4.2

Relationship between network structure and the

derived basic reproduction ratio (SIR)

While the preliminary analysis suggests there is a relationship between

assortativity, clustering and Ry, there is no indication whether the relationship
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is linear and whether the two network properties operate independently or

have some additional interacting influence.

Multiple linear regression (Tabachnick & Fidell 2006) was used to model the
relationship between the basic reproduction ratio Ry, as derived from
epidemic final size, and the network structure properties of assortativity and
clustering coefficient. A separate model is fitted for each degree distribution

type and infectivity level.
54.2.1 Adequacy of linear model without interaction terms

To assist in assessing whether a linear model is adequate, three sets of
regression models are fitted. The first is the multiple regression model
containing only assortativity and clustering coefficient as independent

variables. This models the linear relationship without interaction.

Two broader regression models add independent variables progressively
(Elliott & Woodward 2007) from a pool that includes nonlinear and interaction
transformations of assortativity and clustering coefficient using stepwise
selection. This method selects the variable from the pool that is most
significant (that is, lowest p value) and then checks the model to determine
whether any of the variables is of insufficient significance and should be

removed.

The variables available for selection are listed at Table 5-23. Where the

nonlinear transformation involves log A or /A, some data points are lost
because there are networks with negative values of assortativity. Thus,
expanded models use a smaller dataset to fit the model and there is the
possibility that the model will have lesser explanatory power than a linear

model fitted to the complete data.

One set of expanded models starts with the linear model based on
assortativity and clustering before the stepwise selection of additional

variables. The other set of models has no variables initially included.
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Table 5-23: Linear, nonlinear and interaction variables tested for model fitting

Linear Nonlinear, no Nonlinear,

interaction interaction

Assortativity (A)
Clustering (C) X
log A
log C
Alog A
Clog C
1/ (1+e”(5-10A))
1/ (1+e”(5-10C))
1/A
1/C
TA
/C
AJA
cJ/c
AZ
CZ
AC
A/C
CJ/A
AC
AC
Alog C
Clog A
C/ (1+e*(5-10A))
A/ (1+e"(5-10A))

X X X X X X X X X X X X X X

X X X X X X X X X

The purpose of fitting the expanded models is not to determine the final form
of the regression model. Such a model would have substantial collinearity
between the independent variables. Rather, it is intended to assess the
potential additional explanatory power from adding nonlinear or interaction

terms and to help identify potential variables should they be required.
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Table 5-24 reports the adjusted R® for the linear model and the best model
achieved by either set of expanded regression models. The adjusted R? is used
as it includes a correction for the number of variables in the model and
therefore provides a more useful comparison the fit of models with different
numbers of independent variables. As can be seen from this table, there is
little gain in adding the nonlinear and interaction terms and, in some cases,

there is a reduction in the fit of the model.

Based on this analysis, only a multiple linear regression model will be fitted to
the simulation results. Confirmation of the adequacy of the linear model will

be sought through an analysis of the residuals.

Table 5-24: Adjusted R? for linear and nonlinear regressions, SIR

Distribution Infectivity Adj R* linear Adj R* expanded
Normal 0.0417 0.194 0.221
0.0833 0.668 0.800
0.1250 0.769 0.806
Real world 0.0417 0.248 0.315
0.0833 0.659 0.654
0.1250 0.753 0.766
Power law 0.0417 0.296 0.324
0.0833 0.582 0.405
0.1250 0.586 0.357
5.4.2.2 Model of relationship

For all simulation sets, a linear model was able to be fitted that is significant
(p<0.001), so there is a linear relationship between Ry and at least one of
assortativity and clustering coefficient. However, the explanatory power of
the models varies substantially (see Table 5-25). For simulations with
infectivity of 0.0417, only 20% to 30% of the variability of Ry is accounted for
by the linear model. Within degree distribution type, the explanatory power

of the models for simulations with infectivity of 0.0833 and 0.1250 are of
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similar magnitude, but slightly greater for the models of epidemics with

higher infectivity.

Table 5-25: Performance of multiple linear regression models, SIR

Distribution Infectivity R* Significance
Normal 0.0417 0.198 p<0.001
0.0833 0.668 p<0.001
0.1250 0.769 p<0.001
Real world 0.0417 0.251 p<0.001
0.0833 0.659 p<0.001
0.1250 0.753 p<0.001
Power law 0.0417 0.301 p<0.001
0.0833 0.584 p<0.001
0.1250 0.587 p<0.001

Consider the simulations over real world degree distribution networks with
infectivity of 0.1250. The regression equation is given by (Table 5-26 on page
145):

Predicted R, = 2.036 - 0.781 Assortativity - 0.789 Clustering (5.9)

The first analysis of the adequacy of this model considers the distribution of

the residuals. The residual is calculated as:

Residual = actual value of R, - model prediction for R, (5.10)

In Figure 5-10, the residuals have been standardised. While the histogram is
similar to the expected normal distribution, there is a tail with several
residuals more than 3 standard deviations below the mean. That is, the model

prediction is very high for more epidemics than expected.
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Figure 5-10: Histogram of standardised regression residuals: SIR, Real world,
infectivity=0.1250

To analyse whether these very high predictions indicates a systematic error in
the regression model, the residual is plotted separately against each variable:
predicted Ry, (Figure 5-11), assortativity (Figure 5-12) and clustering
coefficient (Figure 5-13). Such a systematic error could, for example, indicate

nonlinearity in the actual relationship that is not accounted for in the model.
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Figure 5-11: Residual plotted against regression prediction for Ry: SIR, Real
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Figure 5-13: Residual plotted against clustering coefficient: SIR, Real world,
infectivity=0.1250

The first of these plots suggests that any bias is occurring in the midrange of
the predicted Ry values. This could indicate nonlinearity, with the predicted
values not decreasing quickly enough through the middle values of
assortativity and clustering, but then ‘catching up' at the higher values. The
plots against each network property show large negative residual values
throughout the range of clustering coefficient values, with some suggestion
that the overestimates of Ry occur where assortativity is lower. However, for
these assortativity values, the majority of the residual values are close to

zZero.

Instead, the apparent bias in the model predictions actually reflects a
property of Ry. Basic reproduction ratio for an epidemic that occurs, derived
from the epidemic final size, must be at least 1. Thus, the residual for a
predicted value of 1+x is at least -x. This provides the boundary evident in

Figure 5-11.

Overall, the linear regression model is a good fit for epidemic simulations over
real world networks with infectivity of 0.1250. Explanatory power is high, and
there is no evidence of a systematic bias that could indicate the presence of

nonlinearity or interaction terms that are not included in the model.
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Consistent with the results of the preliminary analysis, the regression models
for simulation sets with infectivity of 0.0417 have insufficient explanatory
power to be of any practical use (from Table 5-25). However, the models for
the other simulation sets with infectivity of 0.0833 or 0.1250 all support
conclusions similar to the model detailed above. Regression coefficients for

these models are shown in Table 5-26 and all are significant (p<0.001).

Table 5-26: Regression coefficients (SIR), influence of assortativity and

clustering on basic reproduction ratio

Distribution Infectivity Intercept Assortativity Clustering
Normal 0.0417° 1.026 0.013 -0.049
0.0833 1.608 -0.236 -1.200
0.1250 2.564 -0.575 -2.580
Real world 0.0417° 1.080 not significant -0.144
0.0833 1.565 -0.339 -0.692
0.1250 2.036 -0.781 -0.789
Power law 0.0417° 1.139 -0.080 -0.135
0.0833 1.410 -0.566 -0.301
0.1250 1.748 -1.114 -0.496

a Values for infectivity 0.0417 are reported but are not of practical use

From the regression coefficients, basic reproduction ratio is reduced as
assortativity or clustering increases for the exploitable models. There is,
however, insufficient evidence to support any other general rules as the
relative impact of the two properties differ between degree distribution types

and infectivity levels.

5.5 Comparison between SIS and SIR results

Studies of the impact of assortativity and clustering have focused on SIR
epidemic behaviour. However, except for the mean field approach, the
results have not relied on the fact that the epidemic is SIR. Thus, the SIR
results can be used as a first estimate of the effect of network structure on
SIS epidemics and any behaviour differs between epidemic types are of
particular interest.
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The SIR and SIS epidemics in this study are simulated over identical networks
with the same sets of infectivity rates. Hence, it is reasonable to expect some
consistency of epidemic behaviour and observed relationships between the

two immunity groups.

The same analyses of relationships between network properties and R, as
described in Section 5.4 for SIR epidemics were also conducted for SIS
epidemics. In addition, values of Ry from equivalent SIR and SIS simulations

are directly compared in Section 5.5.2.
5.5.1 Summary of SIS simulation results

To examine the relationship between social network properties and SIS
epidemic behaviour, only those SIS simulations on neighbour networks where
an epidemic occurred will be included in the analysis. In addition, at least one
node must be infected at timestep 100, the end of the period for which
epidemic information is recorded in the simulations. This additional
requirement is because a simulation can meet the definition of an epidemic,
but not maintain endemic equilibrium. Such equilibrium is needed to

calculate the basic reproduction ratio Ry from prevalence using equation (5.2)

The size of the dataset for each of the nine simulation sets is at Table 5-27.
Even some of the high infectivity rate epidemics are unable to sustain an
endemic, but it is a particular problem for normal degree distribution
epidemics with the lowest infectivity rate. For these simulations, despite the
epidemic occurring, there is neither sufficient probability of infection nor a

core group of high degree nodes to sustain the infections.

The values of the network properties and Ry as derived from epidemic
prevalence are shown at Table 5-28. Prevalence is calculated as the mean
prevalence over the final 9 timesteps (3 average generations). This is to
minimise the impact of the skewed degree distribution on variability of

prevalence and hence on variability of the derived Ry.
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Table 5-27: Number of epidemics in dataset (SIS)

Infectivity rate

0.0417 0.0833 0.1250

Normal 711 2797 3830
with prevalence > 0 220 2745 3 821
Real world 719 1863 2 554
with prevalence > 0 559 1 804 2533
Power law 322 761 1083
with prevalence > 0 307 716 1 054

Table 5-28: Range of property and SIS derived R, values in dataset

Distribution Infectivity | Assortativity Clustering Ry
Normal 0.0417 -0.01 to 0.86 0.01 to 0.50 1.00 to 1.09
0.0833 -0.02 to 0.86 0.01 to 0.51 1.00 to 1.78
0.1250 -0.02 to 0.86 0.01 to 0.51 1.01 to 2.37
Real world 0.0417 -0.05 to 0.86 0.01 to 0.45 1.00 to 1.20
0.0833 -0.05 to 0.86 0.01 to 0.45 1.01 to 1.72
0.1250 -0.05 to 0.86 0.01 to 0.45 1.00 to 2.14
Power law 0.0417 -0.05 to 0.49 0.02 to 0.44 1.04 to 1.20
0.0833 -0.05 to 0.49 0.02 to 0.46 1.00 to 1.65
0.1250 -0.05 to 0.49 0.02 to 0.46 1.00 to 2.11
5.5.1.1 Is there a relationship?

Before undertaking the regression analysis, exploratory techniques were used
to assess whether there appears to be a relationship between the network
properties of assortativity and clustering, and epidemic behaviour as
measured by endemic prevalence and the basic reproduction ratio Ry. The
four exploratory analyses conducted were the same as for the SIR epidemic
analysis, except for the substitution of prevalence (current infections) instead

of final size (cumulative infections).

The first exploratory analysis examined charts of current infections over time

(SIR analysis described at Section 5.4.1.1), with either assortativity or
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clustering held constant and separate plots for each value of the other

property.

SIS epidemics show an increase in prevalence over time until the equilibrium
prevalence level is achieved. With fixed assortativity, as for SIR epidemics,
the epidemic grows more slowly for each increase in clustering coefficient.
However, the final prevalence levels achieved do not show the same
separation as SIR final size values except for those networks with very high
assortativity levels, where higher clustering is associated with a lower

prevalence.

With fixed clustering coefficients, the epidemic grows more slowly and the
final prevalence is at a lower level for each increase in assortativity. This is

consistent with the SIR results.

However, there is a complication for higher clustering coefficients. Consider
Figure 5-14, the mean prevalence for epidemics on networks with assortativity
of approximately 0.9 has apparently not reached stability. This problem exists
for several of the simulation sets where both properties have high values,

particularly for the lowest infectivity level simulations.

More detailed examination reveals that the simulations defined as epidemics
on these highly structured networks separate into three groups (example
numbers are from the 56 epidemics in the Assortativity~0.9 group in Figure
5-14):

o those that grow early and reach stability at a relatively high prevalence

level (approximately 33, depending on definition of 'early’);

o those that maintain a low prevalence throughout the simulation period
(7); and

o those that maintain a low prevalence early in the simulation and then
grow relatively suddenly to reach a higher stable prevalence

(approximately 15, depending on definition of ‘early’).
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Figure 5-14: Epidemic size over time (current infections) by assortativity (SIS) :
Real world, infectivity=0. 1250, Clustering~0.4

There is a fourth group that is not included in Figure 5-14; those epidemics
that maintain a low prevalence early in the simulation period and then fail.
These simulations meet the definition of epidemic but are not used in the
analysis because non-zero prevalence is needed to estimate R, (see Table
5-27).

The apparent failure to reach instability hence reflects changes in the mean
prevalence as individual epidemics jump from low to high prevalence. Given a
longer time period, some of the other low prevalence epidemics may also
jump to a higher prevalence level, but they may also fail. That is, prevalence
and Ry are bi-modal. Both modal values arise from valid epidemics with an
impact on the population, but the lower value is removed from the dataset as
simulation period increases. This issue is discussed further in Section 5.5.1.3.
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Overall, for each of the degree distribution types and infectivity levels, there
is some evidence that epidemics are smaller as assortativity or clustering
increases while holding the other property fixed. However, the apparent

relationship is not as strong or consistent as that shown by the SIR epidemics.

The second exploratory analysis considers how prevalence varies with both
assortativity and clustering coefficient simultaneously (SIR analysis at
Section 5.4.1.2) by considering the mean values of prevalence achieved by the

end of the simulation.

Consistent with the relationship identified for the SIR epidemics, prevalence
decreases with increases in assortativity. For higher assortativity levels only,
prevalence also decreases with increases in clustering, whereas clustering had
an impact for all assortativity levels in SIR epidemics. Unlike the SIR
epidemics, this pattern also occurs for the SIS simulation sets with infectivity
of 0.0417, except for the normal degree distribution simulations. However,
the simulations with infectivity of 0.0417 show a slower epidemic growth
overall and there is no evidence that this relationship would exist if sufficient

time had elapsed to ensure all epidemics had achieved equilibrium.

The third exploratory analysis calculates the partial correlation coefficient
between epidemic prevalence derived R, and each of assortativity and
clustering coefficient, removing the influence of the other (equivalent SIR

analysis at Section 5.4.1.3).

From Table 5-29, this analysis indicates that there is a significant negative
linear relationship between Ry and assortativity for all distribution types with
infectivity of 0.0833 or 0.1250 (correlation of -0.48 to -0.82, p<0.001). That
is, increases in assortativity are associated with a decrease in the Ry

calculated from endemic prevalence for both these infectivity rates.
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Table 5-29: Correlation between epidemic derived R, and network properties
(SIS): Partial correlation correcting for other network property (significant with
p<0.001)

Distribution Infectivity Assortativity Clustering coefficient
Normal 0.0417 0.48 -0.50
0.0833 -0.51 -0.74
0.1250 -0.48 -0.45
Real world 0.0417 -0.19 -0.56
0.0833 -0.82 -0.37
0.1250 -0.81 -0.30
Power law 0.0417 -0.75 -0.18
0.0833 -0.81 -0.19
0.1250 -0.76 -0.17

The three simulation sets with infectivity of 0.0417 show conflicting results.
For real world distribution networks there is a smaller but no less significant
negative linear relationship. For normal distribution networks, there is a
positive significant linear relationship (p<0.001), opposite to that shown in
simulations with higher infectivity. For power law distribution networks, the

relationship is consistent with the higher infectivity simulations.

For all degree distribution types and infectivity levels, there is a significant
linear relationship between Ry and clustering coefficient (correlation of -0.17
to -0.75, p<0.001), despite the lack of any apparent relationship with
prevalence from the earlier analysis. That is, increases in clustering are

associated with a decrease in the epidemic derived Ry.

One potential explanation of a significant correlation despite an apparent lack
of a relationship is that the relationship exists and is consistent, but that
clustering makes only very small differences in Ry as derived from endemic
prevalence. Such a relationship would lead to small coefficients for clustering

in the regression model.
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The final exploratory analysis examined the specific values of assortativity
and clustering coefficient, instead of comparing within groups of similar
values (SIR analysis at Section 5.4.1.4) with a scatter plot coloured to indicate

the mean R, value.

Results were consistent with other exploratory analysis results for infectivity
levels of 0.0833 and 0.1250. That is, Ry values decrease as assortativity

increases and, for higher assortativity values, as clustering increases.

5.5.1.2 Adequacy of linear regression model without interaction

terms

Multiple linear regression was used to model the relationship between the
basic reproduction ratio Ry, as derived from prevalence, and the network
structure properties of assortativity and clustering coefficient. A separate

model is fitted for each degree distribution type and infectivity level.

The modelling process used is the same as for the SIR multiple linear
regression. Three sets of regression models are fitted. The first is the multiple
regression model containing only assortativity and clustering coefficient as
independent variables to model the linear relationship without interaction.
Two broader regression models add independent variables progressively using
stepwise selection from a pool that includes nonlinear and interaction
transformations of assortativity and clustering coefficient (variables listed at
Table 5-23 on page 139).

Table 5-30 reports the adjusted R® for the linear model and the best model
achieved by either set of expanded regression models. As can be seen from
this table, there is little gain in adding the nonlinear and interaction terms
and, in some cases, there is a reduction in the explanatory power of the
model (due to the removal of information from networks with negative

assortativity).

However, the normal degree distribution simulations with infectivity of 0.1250
do show a substantial improvement in the model fit with the addition of the

nonlinear and interaction variables. Most of this improvement arose with the

- 152 -



Chapter 5: Epidemic Simulation

addition of a single interaction variable that combines assortativity and a

logistic transformation of clustering coefficient.

The same variable was also the first selected for addition to the model
starting with assortativity and clustering for the real world degree distribution

simulations with infectivity of 0.1250.

Table 5-30: Adjusted R’ for linear and nonlinear regressions, SIS

Distribution Infectivity Adj R” linear Adj R* expanded

Normal 0.0417 0.332 0.394
0.0833 0.662 0.737
0.1250 0.420 0.626

Real world 0.0417 0.359 0.412
0.0833 0.717 0.735
0.1250 0.692 0.755

Power law 0.0417 0.595 0.505
0.0833 0.679 0.456
0.1250 0.613 0.372

Based on this analysis, a multiple linear regression model will be fitted to the
simulation results. Confirmation of the adequacy of the linear model will be
sought through an analysis of the residuals. A nonlinear model is also fitted to
the real world and normal degree distributions, infectivity of 0.1250 results
(see Section 5.5.1.4). Those models also include the additional independent

variable.
5.5.1.3 Linear model of relationship

For all simulation sets, a significant linear model was able to be fitted
(p<0.001), so there is a linear relationship between Ry and at least one of
assortativity and clustering coefficient. However, the explanatory power of
the models varies substantially (see Table 5-31) with between 34% and 72% of

the variability of Ry accounted for by the linear model.
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Table 5-31: Performance of multiple linear regression models, SIS

Distribution Infectivity R* Significance
Normal 0.0417 0.338 p<0.001
0.0833 0.662 p<0.001
0.1250 0.421 p<0.001
Real world 0.0417 0.361 p<0.001
0.0833 0.717 p<0.001
0.1250 0.693 p<0.001
Power law 0.0417 0.597 p<0.001
0.0833 0.680 p<0.001
0.1250 0.613 p<0.001

As for the SIR epidemics, consider the simulations over real world degree
distribution networks with infectivity of 0.1250. The regression equation is

given by (Table 5-32 on page 157):
Predicted Rp = 2.069 - 0.502 Assortativity - 0.233 Clustering

As for the SIR results, there are several simulations for which the model
substantially overestimates Ry, by up to 7 times the standard deviation in the
predicted values of Ryp. However, unlike the SIR results, there is some
evidence that these very high predictions indicate a systematic error in the

regression model.

The plot of residuals against predicted Ry (Figure 5-15) suggests that any bias
is occurring in the lowest of the predicted Ry values. The plots or residuals
against assortativity (Figure 5-16) and clustering coefficient (Figure 5-17)
show that the model underestimates the reduction in Ry associated with large

increases in either property.

In combination, these residuals plots suggest there is a systematic bias in the
model where both network property values are high, and that this bias can
lead to substantial overestimates of the value of Rp; that is, there are
simulations for which the actual value is much lower than the value predicted

from the model.

- 154 -



Chapter 5: Epidemic Simulation

I
i

Regression Predicted Value
[wa)
1

| T | T T
-0.75 -0.50 -0.25 0.00 0.25
Regression Residual

Figure 5-15: Residual plotted against regression prediction for R,: SIS, Real
world, infectivity=0.1250
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Figure 5-16: Residual plotted against assortativity: SIS, Real world,
infectivity=0.1250

- 155 -



Chapter 5: Epidemic Simulation

0.5

% %

o
=
1

o % qp

Clustering
o
i

o
B8]
|

o
1

D OGS COMMEND

0.0

I T
-0.75 -0,50 0.25 0.00 0.25
Regression Residual

Figure 5-17: Residual plotted against clustering coefficient: SIS, Real world,
infectivity=0.1250

A detailed examination of the individual simulations suggests an alternative
explanation than a systematic bias. Even for the networks with high values of
both assortativity and clustering, the majority of the residuals are close to 0
and only a minority have very large (negative) residuals. Thus, there is not a
systematic bias in the model; these results reflect the two different
prevalence levels described in Section 5.5.1.1. The model estimates the

higher Ry value, where the majority of the results fall.

Overall, the linear regression model is a good fit for the simulation sets with
infectivity of 0.0833 or 0.1250. Explanatory power is high, and there is no
evidence of a systematic bias that could indicate the presence of nonlinearity
or interaction terms that are not included in the model (though a nonlinear
interaction model is also fitted for two simulation sets in Section 5.5.1.4).
Regression coefficients for these models are shown in Table 5-32 and all are

significant (p<0.002).
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Table 5-32: Regression coefficients (SIS), influence of assortativity and
clustering on basic reproduction ratio: Values for infectivity 0.0417 are reported

but are only of practical use for the power law degree distribution.

Distribution Infectivity Intercept Assortativity Clustering
Normal 0.0417 1.022 0.035 -0.073
0.0833 1.819 -0.271 -0.829
0.1250 2.382 -0.344 -0.513
Real world 0.0417 1.150 -0.027 -0.180
0.0833 1.658 -0.371 -0.207
0.1250 2.069 -0.502 -0.233
Power law 0.0417 1.158 -0.134 -0.024
0.0833 1.505 -0.567 -0.082
0.1250 1.926 -0.833 -0.134

The regression models for real world and normal degree distribution
simulation sets with infectivity of 0.0417 have insufficient explanatory power
to be of any practical use (Table 5-31), consistent with the situation for SIR
simulation sets. However, the model for power law degree distribution and
infectivity of 0.0417 is of comparable explanatory power to the models for

higher infectivity simulations.

From the regression coefficients, basic reproduction ratio is reduced as
assortativity or clustering increases for the exploitable models. As for SIR
results, there is insufficient evidence to support any other general rules. The
relative contribution of each network property differs between the degree

distribution types.
5.5.1.4 Nonlinear model of relationship

As foreshadowed in Section 5.5.1.2, an additional model was fitted to the real
world and normal degree distribution simulation sets with infectivity of
0.1250. As well as the assortativity and clustering coefficient variables, these

models also include ASigmoidC, calculated as:
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Assortativity

ASingidC = 1+ e(5—10 Clustering)

(5.11)

The regression coefficients for the linear and the expanded models are at
Table 5-33. The additional term increases the explanatory power of the real
world degree distribution model from 69.3% to 75.5%, and the normal degree
distribution model from 42.1% to 62.2%.

The ASigmoidC variable has the property that it is very small for low to
moderate values of clustering coefficient and approximately equal to the
product of assortativity and clustering coefficient for values of clustering
coefficient near 0.5. Thus, for the parameter space of the simulations, it has
a stronger effect for the higher values of assortativity and clustering,

correcting for the weakness in the linear model.

Table 5-33: Regression coefficients, linear and nonlinear models (SIS):
infectivity=0. 1250

Distribution  Model Intercept  Assortativity Clustering ASigmoidC

Normal linear 2.382 -0.344 -0.513 na
nonlinear 2.236 -0.138 0.198 -1.663

Real world linear 2.069 -0.502 -0.233 na
nonlinear 1.996 -0.365 0.107 -1.184

Despite this correction, the residuals show a similar pattern as arose for the
linear model. The histogram for the normal degree distribution simulations is
at Figure 5-18. As for the linear model, the large residuals occur where the
predicted value of Ry is much higher than the actual value for some of the

epidemics on networks with high assortativity and clustering coefficients.

While the additional nonlinear interaction term increases the proportion of
variability in Rp accounted for by the model, the residuals distribution is
essentially unchanged. Thus, there is only limited evidence for a joint and
nonlinear effect of assortativity and clustering on Ry, and that evidence is
limited to the single simulation set of SIS simulations with normal degree
distribution and the highest infectivity rate used.
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Figure 5-18: Histogram of standardised regression residuals: SIS, Normal,

infectivity=0.1250, with nonlinear interaction term

5.5.2 Consistency in epidemic derived basic reproduction

ratio

The consistency between the values of R, derived from epidemic size in
equivalent SIR and SIS simulations was assessed with both exploratory analyses
and, for the observed values, a two sample (independent groups) t-test
(Tabachnick & Fidell 2006).

The analysis grouped simulations by approximate assortativity and clustering
coefficient, in addition to degree distribution and infectivity level. This allows
up to 100 SIR and 100 SIS epidemics to contribute to the comparison. As the
simulations with infectivity of 0.0417 had few occurrences of epidemics, and
inconsistent behaviour of those epidemics (as shown by poor model fitting),

they are excluded from the analysis.
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5521 Consistency in range of observed and predicted values

The first analysis considered the range of epidemic derived Ry and linear
model predicted Ry. Selected ranges are reported at Table 5-34. These
suggest that the prevalence of the SIS epidemics generally leads to a higher Ry
than the final size of the equivalent SIR epidemics, but there is a great deal of
overlap. This pattern occurs across all degree distribution types, infectivity

levels and network property values.

In addition, the minimum R, for SIR epidemics falls to approximately 1.00 (the
minimum possible) for simulations with lower levels of assortativity and
clustering than occurs for SIS epidemics. One explanation for this phenomenon
is that epidemics that ‘only just' qualify under the definition of epidemic are
retained in the SIR dataset, but are likely excluded from the SIS dataset
because they fail before the end of the simulation period and prevalence is
zero. That is, the effect is an artifact of the experimental design rather than

a difference between SIS and SIR epidemic behaviour.

Table 5-34: Range of epidemic derived and predicted Ry, SIR and SIS: Real world,
infectivity=0.1250

Epidemic R, Predicted R,
Assortativity Clustering SIR SIS SIR SIS
Approx 0.0 Approx 0.0 1.79-2.08 1.88-2.13 2.00-2.06 2.05-2.09
Approx 0.1 Approx 0.2 1.62-2.08 1.84-2.10 1.75-1.87 1.95-2.00
Approx 0.2 Approx 0.4 1.02-1.80 1.77-2.00  1.52-1.59 1.85-1.89
Approx 0.4 Approx 0.4 1.02-1.72 1.70-1.93 1.39-1.44  1.77-1.80
Approx 0.4 Approx 0.6 1.01-1.50 1.01-1.81 1.24-1.28 1.67-1.69
Approx 0.4 Approx 0.8 1.01-1.37  1.01-1.74  1.09-1.13 1.58-1.60

The Ry values predicted from the SIR and SIS linear regression models have a
small overlap for the networks with approximately zero for both assortativity
and clustering coefficient. However, as the structure increases through either
property, the range of predicted R, values separate, with the prediction for

SIS consistently higher than from SIR. The same pattern occurs for normal
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degree distribution simulations with infectivity of 0.1250. The simulations for
real world and normal degree distributions with infectivity of 0.0833 and both
infectivity levels for power law degree distributions show the same separation
as network structure increases. However, even for unstructured networks,

there is no overlap.

There are two aspects to this pattern that are of potential interest. The
higher epidemic derived value of Ry from SIS simulations as compared to SIR
simulations suggests that SIS epidemics are less affected by the impact of
degree variation in reducing Ry derived from mean epidemic behaviour (see
Section 5.7.1). The other aspect is that the separation of ranges suggests SIR
epidemics are more strongly affected by assortativity and clustering structure
in the network or, alternatively, that such structure exaggerates the influence

of degree variation.

Alternatively, epidemics with relatively low Ry values in SIS simulations fail
before the end of the simulation period, increasing the mean value of R,.
While this interpretation can explain the high values at the bottom of the Ry
range for SIS simulations, it does not explain why the top of the range values

are also high.
5.5.2.2 Individual values of epidemic derived Ry

The second exploratory analysis examined the values of Ry derived from
individual simulations. Figure 5-19 displays the frequency of these values in
the absence of network structure. There is substantial overlap, but there are
more high values from SIS simulations and low values from SIR simulations.
Compare these results to Figure 5-20 for more structured networks. Overlap is
considerably reduced and the higher SIS values are more obvious. This pattern

can be observed in all degree distribution types and both infectivity levels.
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Figure 5-19: SIR and SIS epidemic derived RO values, frequencies: Real world,
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Figure 5-20: SIR and SIS epidemic derived R, values, frequencies: Real world,

infectivity=0. 1250, assortativity~0.2, clustering~0.4
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5.5.2.3 Consistency in range of observed and predicted values

A two sample (independent groups) t-test (Tabachnick & Fidell 2006) confirms
that the apparent separation is statistically significant. That is, the hypothesis
that there is no difference between mean Ry derived from the final size of SIR
epidemics and mean R, derived from the prevalence of SIS epidemics is
rejected for almost all degree distribution and infectivity combinations
(p<0.01).

Table 5-35 provides the results of the t-test for the standard examples from
real world distribution with infectivity of 0.1250, as well as those simulation
sets for which the general hypothesis rejection was not true. Each simulation
set is determined by degree distribution type, infectivity level (inf),
assortativity (A) and clustering coefficient (C). This table displays the mean
value of Ry for the SIR and SIS simulations and the significance for Levene's
test of homogeneity of variance. If that test is significant (p<0.05), the t-test

reported does not assume equal variances in the distribution of Ry.

Table 5-35: t-test to compare SIR and SIS epidemic derived R, values: selected

simulation groups are from standard analysis set, or because results are unusual

Group SIRR, SISR, Levene's Reject same?

Real world inf=0.0833 A~0.2 C~0.0 1.46 1.58 p=0.031 no (p=0.195)
Real world inf=0.1250 A-0.0 C~-0.0 1.94 2.02 p=0.001 yes (p<0.001)
Real world inf=0.1250 A~0.2 C~0.4 1.59 1.91 p<0.001 yes (p<0.001)
Power law inf=0.0833 A-0.5 C~0.3 1.11 1.29 p=0.071 yes (p=0.002)

Power law inf=0.1250 A-0.5 C-0.4 | 1.14  1.42  p=0.091  no (p=0.144)
Normal inf=0.0833 A~0.0 C-0.0 1.68 1.70  p<0.001  no (p=0.129)
Normal inf=0.0833 A-0.1 C-0.0 1.68  1.69  p<0.001  no (p=0.271)
Normal inf=0.1250 A~0.1 C~0.2 2.24 224 p<0.001  no (p=0.902)
Normal inf=0.1250 A~0.2 C-0.2 217 224 p<0.001 yes (p=0.025)
Normal inf=0.1250 A~0.3 C-0.1 2.25 221 p<0.001 yes (p=0.015)
Normal inf=0.1250 A~0.4 C-0.1 219 220  p<0.001  no (p=0.470)
Normal inf=0.1250 A~0.5 C-0.1 220  2.18  p<0.001  no (p=0.488)
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In almost all simulation sets, the mean value of Ry from SIS simulations is
higher than the mean value from equivalent SIR simulations (with equivalence
determined by degree distribution, infectivity, assortativity and clustering).
The exceptions are the simulations over normal degree distribution networks
with infectivity of 0.1250 and limited social structure: assortativity of up to
approximately 0.5 with clustering up to approximately 0.1 (except

assortativity~0.4 with clustering~0.1).
5.5.2.4 Ro values from SIR and SIS regression models

The SIR and SIS models can also be compared directly. Excluding the models
for the lowest infectivity rate, Table 5-36 displays the linear model regression
coefficients (SIR from Table 5-26 and SIS from Table 5-32). The standard

errors for these coefficients are at Table 5-37.

Table 5-36: Regression coefficients, influence of assortativity and clustering on

basic reproduction ratio

Distribution Infectivity Model | Intercept Assortativity Clustering
Normal 0.0833 SIR 1.608 -0.236 -1.200
SIS 1.819 -0.271 -0.829
0.1250 SIR 2.564 -0.575 -2.580
SIS 2.382 -0.344 -0.513
Real world 0.0833 SIR 1.565 -0.339 -0.692
SIS 1.658 -0.371 -0.207
0.1250 SIR 2.036 -0.781 -0.789
SIS 2.069 -0.502 -0.233
Power law 0.0833 SIR 1.410 -0.566 -0.301
SIS 1.505 -0.567 -0.082
0.1250 SIR 1.748 -1.114 -0.496
SIS 1.926 -0.833 -0.134

From these tables, the 99% confidence intervals for the regression coefficient
values from the SIR and matching SIS models only overlap for the assortativity

regression coefficient for infectivity of 0.0833, and do so for all three degree
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distribution types. The confidence intervals do not overlap for any other pair

of coefficients.

Table 5-37: Standard error of regression coefficients

Distribution Infectivity Model | Intercept Assortativity Clustering
Normal 0.0833 SIR 0.007 0.013 0.021
SIS 0.005 0.009 0.014
0.1250 SIR 0.009 0.017 0.028
SIS 0.006 0.010 0.017
Real world 0.0833 SIR 0.006 0.010 0.019
SIS 0.004 0.006 0.012
0.1250 SIR 0.007 0.011 0.023
SIS 0.004 0.007 0.014
Power law 0.0833 SIR 0.007 0.024 0.024
SIS 0.005 0.016 0.016
0.1250 SIR 0.011 0.037 0.040
SIS 0.007 0.022 0.024
5.5.3 Discussion

For the two higher infectivity rates, significant linear models were
successfully fitted that were able to account for substantial variability in the
value of epidemic derived Ry, based only on assortativity and clustering
coefficient. For the SIR simulations, the models account for between 58% and
77% of the variation of Ry, and between 42% and 72% for the SIS simulations.
With the exception of the SIS simulations on power law degree distribution
networks, the models for the lowest infectivity rate had insufficient

explanatory power for any practical use.

Additional nonlinear and interaction terms increase the explanatory power of
some of the models, but the increases are generally not large. The exception
is the SIS simulations over the normal degree distribution networks with
highest infectivity, where variability of R, accounted for in the model
increased from 42.1% to 62.2% with the addition of the nonlinear interaction

term.
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Residuals analysis suggests that the linear models are appropriate. While
there are some epidemics for which the model substantially overestimates Ry,
there is no apparent systematic bias. Even the model where the nonlinear
interaction term adds explanatory power does not substantially affect the
residuals distribution. Thus, there is only limited evidence for a joint or
nonlinear effect of assortativity and clustering on Ry, and that evidence is
limited to the single simulation set of SIS simulations with normal degree

distribution and the highest infectivity rate used.

Hence, it is reasonable to conclude that the structural properties of
assortativity and clustering operate separately and with no interaction over

the property space investigated.

Ignoring the models with low explanatory power, the regression coefficients
for assortativity and clustering coefficient are negative for all simulation sets.
That is, Ry is reduced (and the epidemic is smaller) as either assortativity or
clustering increases. This is consistent with the literature. However, the
relative contribution of each property differs between degree distribution
types and infectivity levels, suggesting that further work is required to

develop a general model.

The regression coefficients for the individual degree distribution / infectivity
models suggest that network structure can substantially alter Ry. Consider the
example of assortativity of 0.2 and clustering coefficient of 0.4. From the
models, this level of assortativity reduces Ry by up to 12.7% and the clustering
coefficient reduces Ry by up to 40.2%. The combined effect is a reduction in
Ro of between 9.4% and 44.7%. On the other hand, if Ry is being estimated
from the behaviour of an epidemic occurring in a highly structured social
network, the estimates could substantially underestimate the relevant R, for
other social networks. This has implications for public health policy, for
example in setting target vaccination levels or in calculating health resource

needs from epidemic size estimates using Ro.

Finally, the comparison of derived and predicted Ry values from the SIR and

SIS models applying to the same simulation sets show either similarity or a
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higher value for SIS simulations. Furthermore, as the networks are more

structured, the values separate.

There are two aspects to this pattern that are of potential interest. The
higher value of Ry from SIS simulations suggests that SIS epidemics are less
affected by the impact of degree variation in reducing R, derived from mean
epidemic behaviour. This interpretation could be analysed theoretically. The
other aspect is that the separation of ranges suggests SIR epidemics are more
strongly affected by assortativity and clustering structure in the network or,
alternatively, that such structure exaggerates the influence of degree

variation.

As SIS simulations are restricted in their maximum size through the timestep
process in a way that does not affect SIR simulations (see Section 5.7.3), the
SIS simulations could be expected to show a smaller, rather than larger,
epidemic derived Ry. Thus, the difference would be expected to be larger in a

study without this restriction.

5.6 Accessible network proportion

Instead of trying to build models that include network properties, some
authors have instead considered the impact of those network properties
through the secondary reproduction number (Eguiluz and Klemm 2002). This is
defined as the mean degree of the network neighbours of the highest degree
nodes multiplied by the average transmission probability. That is, how many

nodes can a high degree node be expected to infect?

Extend this concept to a higher numbers of steps. A node can infect its
neighbours and each can infect their neighbours and so on. However,
clustering increases the likelihood that the nodes that are reached by the
neighbours have already been exposed by the original infected node.
Similarly, degree distribution and assortativity both impact on the number of

neighbour nodes at various distances from the original node.
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Define the h-step extended neighbourhood of a node as the number of unique
nodes that can be reached in h steps from that node as a proportion of the
total number of nodes. For example, the 3-step extended neighbourhood of
node i is the proportion of the network that is accessible from node i in 3
steps. The h-step accessible proportion is then the mean h-step extended

neighbourhood over all nodes.

For each network, this was recorded for h values of 1 to 5. Proportion
accessible directly measures the effect of network structure as an alternative
to using the network structure property values. Models based on this measure

were fitted for comparison to models using the property values.

Across the three degree distribution types and three infectivity levels, the
epidemic derived Ry has the highest correlation with the proportion accessible
in either 2 or 5 steps. The highest correlation coefficient for each simulation
set is at Table 5-38.

The proportion accessible in 2 steps is highly correlated with the proportion
accessible in 5 steps, so either but not both are assessed for possible addition
to models to predict Ry. The explanatory power of three models are compared
in Table 5-39, the assortativity and clustering model already developed, a
model using only the proportion accessible, and a model with all three

variables.

Table 5-38: Correlation between epidemic derived R, and accessible proportion

of network
Infectivity
Immunity Distribution 0.0417 0.0833 0.1250
SIR Normal 0.379 0.882 0.828
Power law 0.582 0.788 0.800
Real world 0.511 0.830 0.813
SIS Normal 0.282 0.696 0.466
Real world 0.620 0.741 0.698
Power law 0.749 0.790 0.748
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Models with proportion accessible have similar explanatory power as models
using assortativity and clustering coefficient for SIR simulations, but do not
perform as well for SIS simulations. Further, proportion accessible has only
limited additional explanatory power where assortativity and clustering

coefficient are known.

Table 5-39: Adjusted R? for network structure models of Ry: Infectivity=0.1250

Immunity Distribution | Assortativity / Proportion Combined
Clustering accessible
SIR Normal 0.769 0.685 0.770
Real world 0.753 0.661 0.754
Power law 0.586 0.640 0.672
SIS Normal 0.420 0.217 0.491
Real world 0.692 0.487 0.695
Power law 0.613 0.558 0.664

Conceptually, models using proportion accessible incorporate the same
network elements as models using values of network structure properties.
This table suggests that proportion accessible is worth further investigation as
an alternative predictor for Ry for situations where proportion accessible is

able to be estimated but not assortativity or clustering.

5.7  Methodological limitations

Based solely on the basic epidemiological model with uniform degree, it
would be expected that the regression intercept would reflect the
relationship between Ry and final size or prevalence as described by equations
(5.1) and (5.2). That is, Ry calculated from the epidemic behaviour in the
absence of social structure (assortativity and clustering both zero) should
reflect the basic model. From Table 5-40, it is clear that the Ry values
calculated from the epidemic behaviour are quite different from those

expected from theory.
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Table 5-40: Expected and derived R, values based on epidemic behaviour in the

absence of network structure

Infectivity
Epidemic Distribution 0.0417 0.0833 0.1250
Expected Uniform 0.92 1.71 2.40
Expected Normal 1.03 1.92 2.69
Expected Real world 1.26 2.34 3.29
Expected Power law 1.65 3.04 4.25
SIR Uniform 1.02 1.74 2.76
SIR Normal 1.02 1.68 2.41
SIR Real world 1.05 1.54 1.94
SIR Power law 1.14 1.53 1.97
SIS Uniform na® 1.70 2.34
SIS Normal 1.02 1.70 2.25
SIS Real world 1.12 1.63 2.02
SIS Power law 1.16 1.58 2.03

a No epidemics had a nonzero prevalence to enable calculation of Ry

There are several confounding factors that impact on the theoretical Ry value,
the relationship between Ry and expected epidemic behaviour, and the actual
behaviour of the simulated epidemics. Degree variation increases the
theoretical value of Ry, as discussed in Section 2.5.2. Other factors are
discussed in this section operate so as to decrease the capacity of an infected
node to transmit infection, reducing the size of the epidemic. Thus, the

calculated Ry is lower than expected from theory.
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5.7.1 Impact of degree variation

In the presence of degree variation, for SIR epidemics, the relationship
between final size and Ry is given by (Hethcote and van Ark 1987, equation

8.7; Britton 2001, equation (3) observation (c)):

_znk log(1-£,)
R, = —*&
20 f

(5.12)

where: k is degree
n, is the proportion of the population with degree k
f, is the proportion of the population with degree k that
became infected (final size)

Similarly, for SIS epidemics, the relationship between prevalence and Ry is
given by (Hethcote and van Ark 1987, equation 7.8; Nold 1980):

2
an(1 Py j
Ry=— P/ (5.13)
p
DM
k

1-py

where: k is degree
n, is the proportion of the population with degree k
p, is the proportion of the population with degree k that
is infected at equilibrium (prevalence)

In the absence of degree variation, these relationships simplify to equations
(5.1) and (5.2) respectively. However, using the simpler relationship to
estimate Ry, from epidemic behaviour can lead to substantial error arising

from the skewness in the degree distribution.

From (Nold 1980), the proportion of a specific subpopulation ever infected
(SIR) or infected at equilibrium (SIS) is the same proportion as would be
infected if that subpopulation made up the whole population, but with the
inflation factor also included that recognises the natural weighting of nodes

that become infected as discussed at Section 2.5.2.
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That is, for an SIR epidemic, the final size (fx) for the subpopulation with

degree k is given by:
log. (1-f) = —fi R (5.14)

Similarly, for an SIS epidemic, endemic prevalence (px) for the subpopulation

with degree k is given by:

1
=1-— 5.15
Py R, ( )
where the reproduction ratio (Rx) for the subpopulation with degree k is given

by:

var(k
R, :,Bk{1+ 122( )} (5.16)
where: B is the probability of transmission of infection

k is the degree
var(k) is the variance of the degree distribution
k is mean degree

However, this correction factor is for the reproduction ratio in a completely
susceptible population (by definition of Rp). As the higher degree nodes
become infected first, the average degree of the susceptible population

reduces and the impact of the degree variation also reduces.

To see the effect of these varying influences, consider a specific instance of a
degree distribution generated by the Barabasi-Albert algorithm (Section 2.3.4)
with 1 000 nodes and 4 edges per node. From that degree sequence, a
network was generated with the modified Molloy-Reed algorithm
(Section 4.1). The constructed network had a maximum degree of 83 and
almost no community structure, with assortativity of -0.01 and a clustering

coefficient of 0.03.

Five hundred SIR epidemic simulations were run on this network until no
infected nodes remained. With infectivity of 0.2 and recovery of 1/3,

probability of infection transmission was 0.43. Of the 500 simulations, 438 had
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at least 51 nodes ever infected and were retained for the analysis. Number of
nodes and the mean proportion infected by degree for these simulations is at
Table 5-41. For all epidemic simulations, all nodes with degree 16 or greater
became infected except for 1 node with degree 17 (of 4) in one simulation

and 1 node with degree 20 (of 4) in another.

Using the degree specific final size and equation (5.14), the empirical values
of Ry can be determined. Dividing each Ry by the degree provides the
effective transmission probability, which incorporates the underlying
transmission probability, the degree variation inflation factor and the various
confounding factors related to simulation over a network discussed at Section
5.7.2. This value is shown in the final column of Table 5-41. Note that it is not
calculated for higher degree nodes, where all nodes become infected and thus

equation (5.14) is undefined.

Table 5-41: Epidemic impact by degree (nodes with degree not specifically

displayed had final size of 1 except as noted in text)

Degree  Nodes Infected Final size  Calculated Ry Ry per degree
4 344 300.3 0.873 2.36 0.59
5 183 169.2 0.925 2.80 0.56
6 124 118.4 0.954 3.24 0.54
7 81 78.8 0.973 3.72 0.53
8 46 45.2 0.984 4.18 0.52
9 35 34.7 0.990 4.69 0.52
10 24 23.9 0.994 5.21 0.52
11 20 19.9 0.996 5.66 0.51
12 24 24.0 0.999 6.70 0.56
13 15 15.0 0.998 6.50 0.50
14 22 22.0 1.000 8.08 0.58
15 12 12.0 0.999 7.47 0.50
16-82 68 all 1.000 undefined undefined
83 2 2.0 1.000 undefined undefined
7.98 1 000 933.4 0.933
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Taking the mean of these values weighted by the number of nodes (only up to
degree 15), gives an effective transmission probability of 0.56 per degree.
This is higher than the underlying transmission probability of 0.43, but much
lower than the value implied by the correction factor in equation (5.16),

which is 0.94 (network degree coefficient of variation is 1.09).

Applying the effective transmission probability to each degree individually,
converting to final size for that degree and adding across degrees, the
expected number of nodes infected is 921.0. This is lower than the mean
simulation result of 933.4 because of the high proportion of nodes with degree
4, which had a relatively high value of R, by degree. Alternatively, using the
mean degree of 7.98, Ry is 4.464 and the expected number of nodes infected
is 987.8.

The difference between expected final size of 921 nodes and 988 nodes (from
1 000) is substantial and is entirely created by the positively skewed degree
distribution. The low degree nodes are both the highest nhumber and the least

likely to become infected.

This difference is exacerbated by the nonlinearity of the relationship between
final size and Ry (see Figure 5-21). Converting each to Ry, the values are 2.76
for the degree specific expected final size, 2.90 for the mean simulation final
size and 4.64 for the mean degree expected final size. Thus, a 7.3%

overestimate in the final size converts to a 62.0% overestimate of Ry.
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Figure 5-21: Relationship between epidemic behaviour and derived R,

A similar analysis can be performed with SIS epidemics with similar results,
but SIS epidemic simulations are much more affected by the simulation

update process as described in Section 5.7.3, confounding the analysis.

Within a degree distribution type, the impact of degree variation will be
different for each distribution instance despite generation by the same
algorithm. The specific instance is used as the target degree sequence for the
neighbour networks with different social parameters so the experimental
design preserves the subpopulation structure and hence impact on epidemic
size. However, resolution failure of the neighbour network introduces

differences in the achieved subpopulation structure.
5.7.2 Representing contacts as a static network

For both SIR and SIS epidemics, the relationship between epidemic size and Ry
assumes the mass action principle (see Section 2.1.1). Specifically, this
assumes that the number of infections produced by an infected node is
proportional to the probability that the node at the other end of the edge is

susceptible.
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However, when using a static network to describe the contact process, the
degree variation correction factor in equation (5.16) overstates the capacity
of a node to reproduce in a network. This is because the node that infected a
node is not susceptible and the available neighbours must be reduced by 1
(Diekmann & Heesterbeek 2000, section 10.5.2).

5.7.3 Simulation update process

The simulation model has synchronous timing (see Section 3.2.1). Consider an
infected node in an SIS simulation that becomes infected immediately after
recovering from the current infection. The state counter is updated at the
end of each timestep. That is, the node is counted as susceptible for the
timestep in which it recovers. For this study, the mean duration of infection is
3 timesteps. Thus, even if the node is immediately infected whenever it
recovers, it is susceptible for one timestep in four on average. Across all

nodes, this translates into a maximum equilibrium prevalence of 0.75.

One way to reduce the impact of this effect is to split the timesteps into
smaller slices. For example, if a model was structured by days with a mean
infectious period of 3 days, the internal slices could represent one hour.
Probability of infection and recovery would need to be suitably rescaled.
Results can still be kept at the longer scale simply by only counting states
every 24 slices. The impact of this scale change is that a node immediately
becoming reinfected is only susceptible for one 'hour’ instead of one 'day’ and

the maximum prevalence increases from 1/4 to 1/73.

Note that the final size of an SIR epidemic does not have a similar artificial
maximum. However, for both epidemic types, time rescaling could have a
more subtle impact on epidemic behaviour, especially in networks with high
clustering. This is because the distribution of infectious periods is changed,

despite maintaining the mean with appropriate changes in probabilities.

The synchronous timing of the simulation update also leads to competition for
susceptible nodes in the same timestep, and any epidemic is smaller than

expected from the underlying value of Ry,. Once a significant proportion of
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the population is infected, several infected nodes may be connected to the
same susceptible node and the potential to generate new infections is

reduced.

This effect is easiest to see with an SIS simulation on a uniform network.
Consider a network with 1 000 nodes and degree of 8 for each node, randomly
connected. With infectivity of 0.1 and recovery of 1/3, the infection
transmission probability is 0.25 so theoretical Ry is 2 and equilibrium

prevalence is 50%.

Consider a susceptible node within this network with prevalence of 50%. It has
edges with 8 nodes of which 4 are infected. Each infected node has
probability 0.25 of successfully infecting the susceptible node. Thus, it has
probability 0.684 of becoming infected. However, from the perspective of the
four infected nodes, each had the chance of infecting the susceptible with
probability of 0.25. Thus, four contacts were used with a total expectation of
1 new infection to generate a new infection with probability of only 0.684.
Thus, effective reproductive ratio is less than 1 and equilibrium prevalence
must be higher than the theoretical value to accommodate the infected nodes

competing for the same susceptible.

5.8 Discussion

This chapter examines the impact of three network properties (degree
distribution, assortativity and clustering) on epidemic occurrence and

epidemic derived basic reproduction ratio Ry.

Degree heterogeneity was found to interact with infectivity in its impact on
epidemic behaviour. For low infectivity levels, degree heterogeneity increases
epidemic occurrence or epidemic size, and the opposite occurs for higher
infectivity levels. For epidemic size, the simulations suggest that clustering
may impact on the infectivity level at which this reversal occurs. In general,
however, the presence of network structure through positive assortativity or

clustering did not affect these relationships.
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To better focus on network structure, the study separately considered each of
the simulation sets defined by degree distribution type and infectivity. Within
degree distribution type, the experimental design uses identical target degree
sequences for the networks with varied structural properties (assortativity and

clustering coefficient).

For epidemic occurrence, the simulations found that the presence of network
structure decreases the likelihood of an epidemic occurring. However, the
property or interaction contributing most significantly to that decrease varied

between simulation sets.

For epidemic derived Ry, clustering and assortativity were found to
independently and linearly decrease its value. Again, the relative contribution

of each property was inconsistent between simulation sets.

The potential impact of network structure was found to be substantial. With
reasonable real world values of network properties, Ry can be reduced by up
to 45% in comparison with Ry based on simulations with zero values for

assortativity and clustering.

Further, due to the nonlinearity in the relationship between epidemic
behaviour and derived Ry, small differences in Ry can lead to large differences
in the estimated impact of an epidemic for values up to about 2.5 (see Figure
5-21). For example, Ry = 1.5 leads to an SIR epidemic affecting 58.3% of the
population, but the final size for Ry = 1.7 is 69.1%.

The simulations also suggest that the impact of all three network properties

considered may impact more strongly on SIR epidemics than SIS epidemics.
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Historians and anthropologists recognise the potentially substantial role of
epidemics in social and cultural development through a variety of
mechanisms, such as affecting the outcome of wars or creating labour
shortages. The basic reproduction ratio Ry is a key parameter in
epidemiological models. It incorporates information about the disease itself
but also about the society in which it is embedded. The objective of this study

is to draw out the implications of that embedding.

The role of social structure in epidemic behaviour can be studied from the
perspective of three overlapping fields of study. Sociologists studying social
networks have defined a variety of properties and calculated their values for
many different real world social networks. Mathematicians and other physical
scientists have studied dynamic processes, including epidemic spread, on
idealised networks through mathematical techniques and by simulation.
Finally, epidemiologists have incorporated elements of social structure in

models of disease spread.

Social networks are well studied and there are three properties (amongst
others) that social networks display that are in conflict with the assumptions
about social structure used to develop the epidemiological models based on

Ro: degree heterogeneity, positive degree assortativity and clustering.

The literature (summarised in Chapter 2) verifies the importance of the three
selected network properties for social networks. It also suggests that the
impact of degree heterogeneity on epidemic behaviour is well understood.
However, the implications of assortativity and clustering coefficient have

received only limited attention and the joint effect has not been studied.

Each of these three social network properties influences the number of
susceptible nodes available to any infected node, either through direct

connection, or through the connections of the neighbour nodes. Thus, any
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mathematical model would be very complex and simulation appeared the

more viable analysis technique.

Simulation, however, requires an algorithm to generate networks with a range

of values for the properties of interest.

The experimental design (described in Chapter 3) assumes such an algorithm
is available. To focus on the specific study question, only a single network size
(1 000 nodes) and target mean degree (8) is used for all networks. Up to 10
networks are generated for each combination of degree distribution type,
assortativity value and clustering coefficient value. Ten simulations are
carried out on each network for each of 3 infectivity levels with both SIR and
SIS immunity settings. Thus, there are up to 100 simulations for each network

property and epidemic parameter combination.

In total, 66 720 simulations are conducted with various network and epidemic
properties. These simulations allow the relationship between epidemic
behaviour and network properties to be analysed. Two aspects of epidemic
behaviour are examined: whether an epidemic occurred and, if so, the basic

reproduction ratio as derived from epidemic size.

6.1 Generating networks with specific properties

The first major contribution of this thesis is the development of a network
generation algorithm that is able to generate networks with independent
control of degree distribution, assortativity and clustering coefficient. This

algorithm responds to secondary research question 4:

How can networks be generated for simulations with various
values of degree sequence, assortativity and clustering

coefficient, separately and jointly?

Such an algorithm strengthens the link between the fields of social networks
as studied by sociologists and network analysis as studied by mathematical
physicists, by enabling generation of networks with more realistic properties.

This algorithm is developed in Chapter 4.
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The general approach has three phases. The nodes are assigned target
degrees and uniform randomly located in a notional space. The nodes are
then moved so that nodes with similar target degrees are closer together.
Edges are created taking into account the target degrees but favouring nodes

in the local area or (physical) neighbourhood.

| implement this approach with a specific algorithm: one dimensional ring

with stochastic node pair swaps (Section 4.2.2).

Testing demonstrates that the algorithm is valid: the three phase neighbour
approach is able to target degree sequence, assortativity and clustering
coefficient separately. Previously published algorithms have, at best, been
able to generate networks with a target degree sequence and only one
structural property. The capacity for two structural properties with
independent control makes the algorithm very flexible, with much broader

potential applications than epidemiology.

| validate the implementation and describe the relationship between input
parameters and properties of generated networks in Section 4.3. The

algorithm is reliable with some limitations.

The target degree sequence can take any shape and the exact degree
sequence is achieved if the algorithm resolves (as compared to the generated
degree sequence being random with an expected value that matches the
target). For the target degree sequences with the greatest variation,
however, the algorithm is unable to resolve and the generated networks have

slightly reduced variation and mean degree.

For assortativity, the target value is also directly specified as an input to the
algorithm. While the algorithm does not exactly match the target
assortativity, tolerance is arbitrary. For the small (100 node) networks tested,
over 50% of the generated networks had assortativity within 0.05 of the target
value. Further, the algorithm is able to generate networks across the entire
feasible space. Generated networks were able to achieve assortativity values

of over 90% of the maximum possible given the degree sequence.
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For clustering coefficient, the relevant input to the algorithm is the edge
creation probability. Achieved clustering coefficient is approximately half the
probability value. As there are real world networks with clustering coefficient
greater than 0.5, this limitation makes the algorithm unsuitable for

investigating social networks with very high clustering coefficients.

The algorithm also has difficulty generating networks with higher assortativity
in combination with a clustering coefficient near zero. However, both
assortativity and clustering coefficient are properties arising from the
characteristics of specific node pairs that have edges between them, and
feasible values of these properties may be interdependent as well as
dependent on the degree sequence. Further work is warranted to examine the
relationship between the two structural properties to determine whether the
difficulty in achieving certain combinations of properties is a characteristic of

the algorithm or such networks are not feasible.

Clustering was also related to the small world property. Compliance with the

small world property degenerates for the highest probability values.

For this study of the relationship between epidemic behaviour and social
network properties, the one dimensional ring with stochastic node pair swaps
implementation of the neighbour algorithm was sufficient, and Chapter 4 also

details the properties of the networks generated for the study.

In addition to the neighbour network generation algorithm, | also developed a
modification to the Molloy-Reed algorithm (see Section 4.1) to implement the

basic epidemiological model in the network context.

6.2 Impact of network properties on epidemic

behaviour

The second major contribution of this thesis is the use of simulated epidemics
to investigate the relationship between properties of the social network over
which an epidemic occurs, and epidemic occurrence and basic reproduction

ratio. These simulations enable epidemiological models to take greater
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advantage of knowledge about social networks and processes that occur on

networks.
This analysis responds to the primary research question:

What is the relationship between epidemic behaviour and three
key features of social networks: positively skewed degree
distribution, positive clustering coefficient and positive (degree)

assortativity?

This can be separated into three secondary research questions that focus on

specific aspects of the relationship:

1 How does each of these properties affect epidemic

occurrence?

2 How does each of these properties affect the basic

reproduction ratio Ry?

3 Do these social network properties influence epidemic
behaviour separately or jointly and, if the latter, how do they

interact?

Chapter 5 details the results of the simulations conducted. The full analysis is
presented for the simulation set with real world degree distribution and the
highest infectivity rate, with summary results for all simulation sets. The
detailed results for other simulation sets are included on the supplementary
DVD, and indexed at Appendix C.

The first aspect of epidemic behaviour investigated is the relationship
between network properties and epidemic occurrence (secondary research
question 1). | first propose an operational definition of epidemic for

simulation studies (Section 5.1).

The relationship with degree heterogeneity has been well studied in the
literature, but previous studies have assumed the absence of network
structure. | find that the presence of assortativity and clustering has no

apparent impact on the relationship between epidemic occurrence and degree
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heterogeneity (Section 5.2.1). However, the relationship is not as clear as the
literature would suggest. For the lowest infectivity rate, the networks with
greater degree variation had a higher occurrence of epidemics as expected.
For the higher infectivity rates, the results were the opposite, with the
normal degree distribution simulations having the highest occurrence of
epidemics. Further work is required to draw out where this reversal occurs,

particularly concerning the relationship to both infectivity and mean degree.

The relationship between epidemic occurrence and network structure has
attracted only limited attention, with the literature suggesting that
assortativity increases occurrence and clustering decreases occurrence. This
relationship is examined in (Section 5.3), controlling for degree

heterogeneity.

There are nine simulation sets defined by degree distribution and infectivity
for both SIR and SIS epidemics. A significant relationship was found between
network structure and epidemic occurrence for SIR epidemics in eight
simulation sets and for SIS epidemics in five simulation sets. While the
particular property differed, all the relationships found that the proportion of
epidemics decreased as assortativity or clustering coefficient or their

interaction increased.

For assortativity, the result from this study is in conflict with the majority of
previous studies. However, it is a more general result, not relying on a
particular mixing scheme or joint degree distribution. One previous simulation
study using power law degree distribution networks also found increases in

assortativity decrease epidemic occurrence.

For clustering coefficient, the result from this study confirms the results of

the single previous study.

In addition, this study provides the first indication that assortativity and
clustering coefficient have a joint effect in decreasing epidemic occurrence,

separate to their individual effects.
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The second aspect of epidemic behaviour analysed is the basic reproduction
ratio Ry, derived from the epidemic final size (SIR) or equilibrium prevalence
(SIS), responding to secondary research question 2. Epidemic size has a

strictly monotonic but nonlinear relationship with Ry.

For degree heterogeneity, this study generally confirms previously published
results that the mean epidemic size (and hence derived Ry) decreases as the
variance of degree increases (Section 5.2.2). However, the opposite
relationship is found for SIR simulations with relatively low infectivity
combined with high clustering, where the normal degree simulations have the
smallest epidemic size. That is, the epidemic becomes trapped in a small

region of the network under specific conditions.

To estimate the quantitative impact of network structure on Ry, regression
models were fitted with assortativity and clustering coefficient as the
independent variables (Sections 5.4 and 5.5). For the lowest infectivity level,
Ro was very close to its minimum of 1 and, while the fitted models were
significant, they were able to account for only a small proportion of the

variation in Rp.

For the higher infectivity rates, assortativity and clustering coefficient were
each found to have a significant linear relationship with R, for all simulation
sets for both SIR and SIS epidemics. Increases in either property reduce the
value of Ry derived from epidemic size. This result is consistent with previous
qualitative studies that have identified the direction of the relationship

between these properties and epidemic size.

The potential size of this impact is critical in determining whether network
structure can be ignored for health planning and other applications of
epidemiological models. Analysis of real world social networks suggests that
relatively high but reasonable values of these properties are 0.2 for
assortativity and 0.4 for clustering coefficient. From the regression models
(Section 5.5.3), Rp in such a network would be reduced by 9.4% to 44.7%
compared to Ry for a network with the same degree sequence but no

structure. As such, calculating Ry from an epidemic over a less structured
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social network could substantially underestimate the potential impact of the

same epidemic in a more structured social network.

For almost all simulation sets, including nonlinear and interaction terms did
not substantially improve the explanatory power of the regression model. For
one simulation set, a nonlinear interaction term did provide substantial
additional explanatory power for the regression model. That simulation set is
SIS epidemics with the highest infectivity level over normal degree
distribution networks. Responding to secondary research question 3, as this
occurred for only one simulation set from twelve (Section 5.5.1.4), it is
reasonable to conclude that any joint effect from the two network structure

properties can generally be excluded from models of Ry.

As well as models using the network properties of assortativity and clustering
coefficient, | also propose a method to include the effect of network social
structure that directly measures the effect of network structure; accessible
proportion of network in a specified number of steps. | find (Section 5.6) that
this measure is generally less successful in accounting for the variability in the
value of epidemic derived Ry and provides only limited additional explanatory

power.

6.3 Future work

Clearly there are applications other than epidemic behaviour for which similar
network properties are likely to be important. Other dynamic processes on
social networks are already studied using the model of contagion, such as
information transfer, development of fads and opinion exchange. The network
generation algorithm allows suitable networks to be constructed for

simulation of any of these dynamic processes.

The three phase network generation approach is very flexible. The one
dimensional ring with edge swapping used in this study to generate the
networks for epidemic simulation is only one possible implementation. There
are several potential research threads in developing the algorithm for other
simulation studies.
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The first research thread concerns improving the performance of the specific
implementation used in this study (Section 4.2.2). For example, there is no
procedure to rewire existing edges when a node with high target degree is
attempting to make edges and there are insufficient nodes available. Breaking
an existing edge potentially makes two new nodes available and may improve
resolution and hence convergence to the target degree sequence. A rewiring
process could also be developed to improve compliance with the small-world
property. Finally, the assortativity overshoot can be reversed by randomly

swapping the locations of pairs of nodes.

The second research thread concerns alternative implementations of the
three phase neighbour network generation approach, to improve reliability in
generating specific properties or to extend the algorithm for other network
properties. For example, using a higher dimensional space is likely to weaken
the control over clustering coefficient, but may allow the algorithm to control
mean geodesic for the generated networks through the edge creation phase.
Other types of assortativity could also be targeted, such as age or gender

association.

Processes other than edge swapping are also available for the layout update
phase. For example, a combination of attractive and repulsive forces could be
used, with attractive forces based on the properties of the nodes (such as
target degree) and the network property of interest. Repulsive forces, based

on distance between nodes, would be required to maintain separation.

The third research thread concerns the feasible property space for generated
networks. Degree distribution restricts feasible assortativity. This study
suggests that there may also be a relationship between feasible or likely
assortativity and clustering coefficient (Section 4.4.2). Such a relationship has
ramifications when examining real world social networks, because a particular
value of one property may affect the probability distribution of the values for
the other property in random networks. Thus, the other property value would
need to be compared to its expected value rather than considered at its

absolute level.
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For the specific issue of the impact of social network properties on epidemic

behaviour, there are also several threads for future work.

To focus on the social properties of interest, the experimental design fixed
other network properties and simplified epidemic parameters. These design
decisions limited the scope of simulations and hence the scope of the results.
While it is reasonable to expect any identified relationships between network
properties and epidemic behaviour to also exist more generally, further
studies would be needed to verify such relationships. In particular, it is likely

that the values of regression coefficients would depend on factors such as:
o network size

o mean degree of network

. infectivity rate (probability of transmission of infection)

o recovery rate (or mean period of infection)

Some results may also be affected by the selection method for the initial
infected node, particularly for network property relationships with epidemic
occurrence. For example, if the initial selection is weighted by degree, the
proportion of epidemics that occur is likely to increase for the skewed

distribution types.

Further studies could also consider more complex epidemic states, including
latency periods, partial immunity and time dependent infectivity. Such
studies are possible with the neighbour algorithm to generate networks,
paired with suitable implementation of epidemic parameters through simple

models or more complex multi-agent systems.

The study also identified some issues that would benefit from targeted
research. The results suggest that the influence of degree heterogeneity on
epidemic behaviour has a complex interaction with infectivity but finer
discrimination in both properties is required to draw out that relationship
(Section 5.2). Some of the results suggest that network structure may restrict

SIR epidemics more than it does SIS epidemics (Section 5.5.2).
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The long term objective of these studies is to develop more general models
that relate epidemic behaviour (or other dynamic processes) to the properties
of the societies in which they occur. If such models can be developed,
published values for different types of social networks could eventually allow
models to be calibrated from a real world process on one social network, then
applied to other social networks with corrections for the differences in social

structure.

Separately, high resolution models are required to compare vaccination,
quarantine and other public health strategies, to identify which strategies are
appropriate in which circumstance. To provide all the information required
for such models, the relationship between social structure and epidemic
behaviour would need to be consider many aspects not explored in this study.
This includes the additional parameters identified above (such as network size
and complex epidemic states). However, it also potentially includes relaxing
some of the assumptions inherent in the network model if the diseases to be
considered did not require close or direct contact for transmission. In
particular, the network assumptions of a fixed set of contacts (static) and
equal and constant probability of transmission to each contact (unweighted)
are likely to be valid for only specific diseases. Nevertheless, the approach
used in this study through the neighbour algorithm could potentially be

extended to generate networks where these assumptions are not made.

General models could be used to identify those aspects of network structure
and of most importance. Future research could be targeted to improving the
measurement of real world values of those network and epidemic parameters
known to be important and hence contribute to the development of more

effective high resolution simulations to improve epidemic management.

- 189 -



Chapter 6: Conclusions

- 190 -



Chapter 7: References

Chapter 7: References

Adler, F.R. 1992, “The effects of averaging on the basic reproduction ratio”,

Mathematical Biosciences, vol. 111, pp. 89-98.

Agar, M. 2003, “My kingdom for a function: Modeling misadventures of the
innumerate”, Journal of Artificial Societies and Social Simulation, [Online],

vol. 6, no. 3, Available from: <http://jasss.soc.surrey.ac.uk/6/3/8.html>.

Aiello, W., Chung, F. & Lu, L. 2001, “A random graph model for power law
graphs”, Experimental Mathematics, [Online], vol. 10, pp. 53-66, Available

from: <http://www.expmath.org/expmath/volumes/10/10.html>.

Albert, R. & Barabasi, A.-L. 2002, “Statistical mechanics of complex
networks”, Reviews of Modern Physics, vol. 74, pp. 47-97.

Anderson, C.J., Wasserman, S. & Crouch, B. 1999, “A p* primer: logit models

for social networks”, Social Networks, vol. 21, pp. 37-66.

Anderson, R.M. 1991, “Discussion: The Kermack-McKendrick epidemic
threshold theorem”, Bulletin of Mathematical Biology, vol. 53, no. 1/2, pp. 3-
32.

Anderson, R.M. & May, R.M. 1992, Infectious Diseases of Humans: Dynamics

and Control, Oxford Science Publications, Oxford University Press, Oxford.

Andersson, H. & Britton, T. 1998, “Heterogeneity in epidemic models and its
effect on the spread of infection”, Journal of Applied Probability, vol. 35,
no. 3, pp. 651-61.

Badham, J.M., Abbass, H.A. & Stocker, R., Standardisation and
parameterisation of Keeling”s network generation algorithm, ALAR Technical
Report Series, Artificial Life and Adaptive Robotics Laboratory, University of
NSW (ADFA).

-191 -



Chapter 7: References

Bailey, N.T.J. 1975, The Mathematical Theory of Infectious Diseases and its
Applications, 2nd edn, Charles Griffin & Company, High Wycombe.

Ball, F. 1985, “Deterministic and stochastic epidemics with several kinds of

susceptibles”, Advances in Applied Probability, vol. 17, pp. 1-22.

Ball, F. & Clancy, D. 1993, “The final size and severity of a generalised
stochastic multitype epidemic model”, Advances in Applied Probability, vol.
25, no. 4, pp. 721-36.

Barabasi, A.-L. & Albert, R. 1999, “Emergence of scaling in random
networks”, Science, vol. 286, no. 15 Oct 1999, pp. 509-12.

Becker, N.G. 1973, “Carrier-borne epidemics in a community consisting of

different groups”, Journal of Applied Probability, vol. 10, no. 3, pp. 491-501.

Békéssy, A., Békéssy, P. & Komlos, J. 1972, “Asymptotic enumeration of
regular matrices”, Studia Scientiarum Mathematicarum Hungarica, vol. 7, pp.
343-53.

Bender, E.A. & Canfield, E.R. 1978, “The asymptotic number of labeled
graphs with given degree sequences”, Journal of Combinatorial Theory, vol.
24, pp. 296-307.

Bernoulli, D. 1766, “Essai d”une nouvelle analyse de la mortalité causée par
la petite vérole et des avantages de ”inoculation pour la prévenir”, Mémoires

de Mathématique et de Physique, Académie Royale des Sciences, pp. 1-45.

Boguna, M. & Pastor-Satorras, R. 2002, “Epidemic spreading in correlated

complex networks”, Physical Review E, vol. 66, no. 047104.

Bollobas, B. 2001, Random Graphs, Cambridge Studies in Advanced

Mathematics 73, 2nd edn, Cambridge University Press, Cambridge.

Bollobas, B. & Riordan, O.M. 2003, “Mathematical results on scale-free
random graphs” in Handbook of Graphs and Networks: From the Genome to
the Internet, ed S. Bornholdt & G. Schuster, Wiley-VCH, Weinheim, pp. 1-34.

-192 -



Chapter 7: References

Britton, T. 2001, “Epidemics in heterogeneous communities: estimation of Ry
and secure vaccination coverage”, Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 63, no. 4, pp. 705-15.

Caldarelli, G., Capocci, A., de los Rios, P. & Muhoz, M.A. 2002, “Scale-free
networks from varying vertex intrinsic fitness”, Physical Review Letters,
[Online], vol. 89, no. 258702, Available from:
<http://link.aps.org/abstract/PRL/v89/e258702>.

Center for Disease Control, (10 November 2007), Overview of Influenza
Surveillance in the United States, [Online], Available from:

<http://www.cdc.gov/flu/weekly/fluactivity.htm>.

Diamond, J. 1998, Guns, Germs and Steel: A Short History of Everybody for
the Last 13,000 Years, Random House.

Diekmann, O. & Heesterbeek, J.A.P. 2000, Mathematical Epidemiology of
Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series

on Mathematical and Computational Biology, John Wiley & Sons.

Diekmann, O., Heesterbeek, J.A.P. & Metz, J.A.J. 1990, “On the definition
and the computation of the basic reproduction ratio R, in models for
infectious diseases in heterogeneous populations”, Journal of Mathematical
Biology, vol. 28, pp. 365-82.

Dorogovtsev, S. N., Mendes, J. F. F. & Samukhin, A. N. 2000, 'Structure of
growing networks with preferential linking’, Physical Review Letters, vol. 85,
pp. 4633-4636.

Dwight, H.B. 1961, Tables of Integrals and Other Mathematical Data, 4th edn,
MacMillan Publishing Co Inc, New York.

Eames, K.T.D. & Keeling, M.J. 2002, “Modeling dynamic and network
heterogeneities in the spread of sexually transmitted diseases”, Proceedings
of the National Academy of Sciences of the United States of America, vol. 99,
pp. 13330-5.

-193 -



Chapter 7: References

Eguiluz, V.M. & Klemm, K. 2002, “Epidemic threshold in structured scale-free
networks”, Physical Review Letters, vol. 89, no. 10, p. 108701.

Eidelson, B.M. & Lustick, I. 2004, “VIR-POX: An agent based analysis of
smallpox preparedness and response policy”, Journal of Artificial Societies
and Social Simulation, [Online], vol. 7, no. 3, Available from:

<http://jasss.soc.surrey.ac.uk/7/3/6.html>.

Elliott, A.C. & Woodward, W.A. 2007, Statistical Analysis Quick Reference
Guidebook: with SPSS Examples, Sage Publications, Thousand Oaks, California.

Erdos, P. & Rényi, A. 1960, “On the evolution of random graphs”, Publications
of the Institute of Mathematics, Hungarian Academy of Science, vol. 5, pp.
17-60.

Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A.,
Toroczkai, Z. & Wang, N. 2004, “Modelling disease outbreaks in realistic urban

social networks”, Nature, vol. 429, pp. 180-184.

Frank, O. & Strauss, D. 1986, “Markov graphs”, Journal of the American
Statistical Association, vol. 81, no. 395, pp. 832-42.

Gilbert, N. & Troitzsch, K.G. 1999, Simulation for the social scientist, Open

University Press, Buckingham.

Gkantsidis, C., Mihail, M. & Zegura, E. 2003, “The Markov Chain simulation
method for generating connected power law random graphs”, Proceedings of
SIAM Alenex 03 [Online], Available from: <http://www.cc.gatech.edu/
~gantsich/TopologyGenerators/ TheMCSimulationMethodForGeneratingConnect
edPLRG.pdf>.

Goldberg, L.A. & Jerrum, M. 1996, “Randomly sampling molecules”,
Proceedings of Eighth SIAM Conference on Discrete Mathematics, Jun 17-20,
1996, Baltimore, Maryland [Online], Available from
<http://citeseer.ist.psu.edu/ goldberg96randomly.html>.

- 194 -



Chapter 7: References

Goldspink, C. 2002, “Methodological implications of complex systems
approaches to sociality: Simulation as a foundation for knowledge”, Journal of
Artificial Societies and Social Simulation, [Online], vol. 5, no. 1, Available

from: <http://www.soc.surrey.ac.uk/JASSS/5/1/3.html>.

Grenfell, B.T. & Harwood, J. 1997, “(Meta)population dynamics of infectious
diseases”, Trends in Ecology & Evolution, vol. 12, no. 10, pp. 395-9.

Gupta, S., Anderson, R.M. & May, R.M. 1989, “Networks of sexual contacts:
implications for the pattern of spread of HIV”, AIDS, vol. 3, no. 12, pp. 807-
17.

Hakimi, S.L. 1962, “On realizability of a set of integers as degrees of the
vertices of a linear graph”, Journal of the Society for Industrial and Applied
Mathematics, vol. 10, no. 3, pp. 496-506.

Hamer, W.H. 1906, “Epidemic disease in England: the evidence of variability

and persistency of type”, The Lancet, pp. 733-9.

Havel, V. 1955, “A remark on the existence of finite graphs”, Casopis pro
Pestovdni Matematiky [Czech], vol. 80, pp. 477-80.

Hethcote, H.W. & van Ark, J.W. 1987, “Epidemiological models for
heterogeneous populations: Proportionate mixing, parameter estimation, and

immunization programs”, Mathematical Biosciences, vol. 84, pp. 85-118.

Holland, P.W. & Leinhardt, S. 1970, “A method for detecting structure in

sociometric data”, American Journal of Sociology, vol. 76, no. 3, pp. 492-513.

Holland, P.W. & Leinhardt, S. 1981, “An exponential family of probability
distributions for directed graphs”, Journal of the American Statistical

Association, vol. 76, no. 1, pp. 33-50.

Holme, P. & Kim, B.J. 2002, “Growing scale-free networks with tunable

clustering”, Physical Review E, vol. 65, no. 026107.

- 195 -



Chapter 7: References

Holme, P. & Zhao, J. (2006), Exploring the assortativity-clustering space of a
network”s degree sequence, Preprint cond-mat/0611020, Available from:
<http://arxiv.org/PS_cache/q-bio/pdf/0611/0611020.pdf>

Hong, L.H., Pattison, P. & Robins, G. 2005, “A spatial model for social
networks”, Physica A, vol. 360, pp. 99-120.

Huang, C.-Y. , Sun, C.-T. , Chen, Y.A. & Lin, H. 2005, “A novel small-world
model: Using social mirror identities for epidemic simulations”, Simulation,
vol. 81, no. 10, pp. 671-99.

Huang, C.-Y. , Sun, C.-T. , Hsieh, J.-L. & Lin, H. 2004, “Simulating SARS:
Small-world epidemiological modeling and public health policy assessments”,
Journal of Artificial Societies and Social Simulation, [Online], vol. 7, no. 4,

Available from: <http://jasss.soc.surrey.ac.uk/7/4/2.html>.

Hunter, D.R., Goodreau, S.M. & Handcock, M.S. 2005, Goodness of fit of
social network models, PennState Department of Statistics Technical Reports
05-02.

Keeling, M.J. 1999, “The effects of local spatial structure on epidemiological

invasions”, Proceedings of the Royal Society London B, vol. 266, pp. 859-69.

Keeling, M.J. 2005, “The implications of network structure for epidemic

dynamics”, Theoretical Population Biology, vol. 67, no. 1, pp. 1-8.

Keeling, M.J. & Eames, K.T.D. 2005, “Networks and epidemic models”,
Journal of the Royal Society Interface, [Online], vol. 2, no. 4, pp. 295-307,
Available from:
<http://www.journals.royalsoc.ac.uk/openurl.asp?genre=article&id=
doi:10.1098/rsif.2005.0051>.

Kendall, D.G. 1956, “Deterministic and stochastic epidemics in closed
populations”, ed J. Neyman, Proceedings of Third Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley and Los Angeles, University

of California Press.

- 196 -



Chapter 7: References

Kermack, W.0. & McKendrick, A.G. 1927, “Contributions to the mathematical
theory of epidemics - 17, Proceedings of the Royal Society, vol. 115A,
pp. 711-21.

Kermack, W.0. & McKendrick, A.G. 1932, “Contributions to the mathematical
theory of epidemics - Il: The problem of endemicity”, Proceedings of the
Royal Society, vol. 138A, pp. 55-83.

Kermack, W.0. & McKendrick, A.G. 1933, “Contributions to the mathematical
theory of epidemics - lll: Further studies of the problem of endemicity”,

Proceedings of the Royal Society, vol. 141A, pp. 94-122.

King, O.D. 2004, “Comment on “Subgraphs in random networks”“, Physical
Review E, vol. 70, no. 058101.

Lajmanovich, A. & Yorke, J.A. 1976, “A deterministic model for gonorrhea in
a nonhomogeneous population”, Mathematical Biosciences, vol. 28, pp. 221-
36.

Last, J.M. (eds) 2001, A Dictionary of Epidemiology, 4th edn, Oxford

University Press.

Lefevre, C. & Malice, M.-P. 1988, “Comparisons for carrier-borne epidemics
in heterogeneous and homogenous populations”, Journal of Applied
Probability, vol. 25, no. 4, pp. 663-78.

Lloyd, A.L. & May, R.M. 1996, “Spatial heterogeneity in epidemic models”,
Journal of Theoretical Biology, vol. 179, no. 1, pp. 1-11.

Marney, J.P. & Tarbert, H. 2000, “Why do simulation? Towards a working
epistomology for practitioners of the dark arts”, Journal of Artificial Societies
and Social Simulation, [Online], vol. 3, no. 4, Available from:
<http://www.soc.surrey.ac.uk/JASSS/3/4/4.html>.

Martin, E.A. (eds) 1994, Concise Medical Dictionary: New Edition, 4th edn,

Oxford University Press, Oxford.

-197 -



Chapter 7: References

Maslov, S., Sneppen, K. & Zaliznyak, A. (2002), Detection of Topological
Patterns in Complex Networks: Correlation Profile of the Internet, Preprint
cond-mat/0205379 v2

May, R.M. & Anderson, R.M. 1984a, “Spatial heterogeneity and the design of

immunization programs”, Mathematical Biosciences, vol. 72, pp. 83-111.

May, R.M. & Anderson, R.M. 1984b, “Spatial, temporal, and genetic
heterogeneity in host populations and the design of immunization
programmes”, IMA Journal of Mathematical Applications in Medicine and

Biology, vol. 1, pp. 233-66.
McNeill, W.H. 1976, Plagues and Peoples, Anchor Press, New York.

Milo, R., Kashtan, N., Itkkovitz, S., Newman, M.E.J. & Alon, U. (2004), On the
uniform generation of random graphs with prescribed degree sequences,
Preprint cond-mat/0312028, Available from:
<http://aps.arxiv.org/PS_cache/cond-mat/pdf/0312/0312028.pdf>

Milo, R., Shen-Orr, S., Itkkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U.
2002, “Network motifs: Simple building blocks of complex networks”, Science,
vol. 298, pp. 824-7.

Molloy, M. & Reed, B. 1995, “A critical point for random graphs with a given

degree sequence”, Random Structures and Algorithms, vol. 6, pp. 161-79.

Moreno, Y., Gomez, J.B. & Pacheco, A.F. 2003, “Epidemic incidence in

correlated complex networks”, Physical Review E, vol. 68, no. 035103.

Morris, M. 1995, “Data driven network models for the spread of infectious
disease” in Epidemic Models: Their Structure and Relation to Data, ed D.

Mollison, Cambridge University Press, Cambridge, pp. 302-22.

Newman, M.E.J. 2002a, “Assortative mixing in networks”, Physical Review
Letters, vol. 89, no. 208701.

Newman, M.E.J. 2002b, “Spread of epidemic disease on networks”, Physical
Review E, vol. 66, no. 016128.

- 198 -



Chapter 7: References

Newman, M.E.J. 2003a, “Mixing patterns in networks”, Physical Review E,
vol. 67, no. 026126.

Newman, M.E.J. 2003b, “Properties of highly clustered networks”, Physical
Review E, vol. 68, no. 026121.

Newman, M.E.J. 2003c, “The structure and function of complex networks”,
SIAM Review, [Online], vol. 45, no. 2, pp. 167-256, Available from:
<http://arxiv.org/abs/cond-mat/0303516>.

Newman, M.E.J. & Park, J. 2003, “Why social networks are different from
other types of networks”, Physical Review E, vol. 68, no. 036122.

Newman, M.E.J. & Park, J. 2007, personal communication.

Nold, A. 1980, “Heterogeneity in disease transmission modelling”,

Mathematical Biosciences, vol. 52, pp. 227-40.

Park, J. & Newman, M.E.J. 2003, “Origin of degree correlations in the

Internet and other networks”, Physical Review E, vol. 68, no. 026112.

Pastor-Satorras, R. & Vespignani, A. 2001, “Epidemic spreading in scale-free

networks”, Physical Review Letters, vol. 86, no. 14, pp. 3200-3.

Polhill, J.G., Izquierdo, L.R. & Gotts, N.M. 2005, “The ghost in the model (and
other effects of floating point arithmetic)”, Journal of Artificial Societies and
Social  Simulation, [Online], vol. 8, no. 1, Available from:

<http://jasss.soc.surrey.ac.uk/8/1/5.html>.

Rao, A.R., Jana, R. & Bandyopadhyay, S. 1996, “A Markov chain Monte Carlo
method for generating random (0,1) matrices with given marginals”, Indian
Journal of Statistics, vol. 58, pp. 225-42.

Rapoport, A. & Horvath, W.J. 1961, “A study of a large sociogram”,

Behavioral Science, vol. 6, no. 4, pp. 279-91.

Rhodes, C.J. & Anderson, R.M. 1996, “Persistence and dynamics in lattice
models of epidemic spread”, Journal of Theoretical Biology, vol. 180,
pp. 125-33.

- 199 -



Chapter 7: References

Roberts Jr, J.M. 2000, “Simple methods for simulating sociomatrice with given

marginal totals”, Social Networks, vol. 22, no. 3, pp. 273-83.

Robins, G., Pattison, P., Kalish, Y. & Lusher, D. 2005, A workshop on
exponential random graph (p*) models for social networks, Social Networks
working paper No. 1/05, Psychology Department, University of Melbourne
[Online], Available from:

<http://www.psych.unimelb.edu.au/staff/gr/ergm.pdf>.

Robins, G., Snijders, T.A.B., Wang, P., Handcock, M.S. & Pattison, P. 2007,
“Recent developments in exponential random graph (p*) models for social

networks”, Social Networks, vol. 29, no. 2, pp. 192-215.

Rothenberg, R. B. 2003, ‘'Large network concepts and small network
characteristics’, in Networks and the Population Dynamics of Disease
Transmission, Institute for Mathematics and Its Applications, University of

Minnesota (unpublished).

Servedio, V.D.P. & Caldarelli, G. 2004, “Vertex intrinsic fitness: How to
produce arbitrary scale-free networks”, Physical Review E, vol. 70, no.
056126.

Sherman, |.W. 2006, The Power of Plagues, ASM Press.

Snijders, T.A.B. 1991, “Enumeration and simulation methods for 0-1 matrices

with given marginals”, Psychometrika, vol. 56, pp. 397-417.

Snijders, T.A.B., Pattison, P., Robins, G. & Handcock, M.S. 2006, “New
specifications for exponential random graph models”, Sociological
Methodology, vol. 36, pp. 99-153.

Snow, J. 1855, On the Mode of Communication of Cholera, 2nd edn, John
Churchill, London.

Stauffer, A.O. & Barbosa, V.C. (2005), A study of the edge switching Markov-
Chain method for the generation of random graphs, Preprint cond-
mat/0512015, Available from: <http://arxiv.org/abs/cs/0512105>

- 200 -



Chapter 7: References

Tabachnick, B.G. & Fidell, L.S. 2006, Using Multivariate Statistics, 5th edn,
Allyn & Bacon, Boston.

Thucydides 431 BCE, History of the Pelopponnesian War, [Online], Available

from: <http://classics.mit.edu/Thucydides/pelopwar.html>.

Viger, F. & Latapy, M. (2005), Fast generation of random graphs with
prescribed degrees, Preprint cond-mat/0502085, Available from:
<http://arxiv.org/PS_cache/cs/pdf/0502/0502085.pdf>

Wasserman, S. & Faust, K. 1994, Social Network Analysis: Methods and
Applications, Structural Analysis in the Social Sciences, Cambridge University

Press, Cambridge.

Wasserman, S. & Pattison, P. 1996, “Logit models and logistic regressions for
social networks: |. An introduction to Markov random graphs and p*”,

Psychometrika, vol. 61, no. 3, pp. 401-26.

Watts, D.J. 2004, “The “new” science of networks”, Annual Review of
Sociology, [Online], vol. 30, pp. 243-70, Available  from:

<www.annualreviews.org (doi:10.1146/annurev.soc.30.020404.104342)>.

Watts, D.J. & Strogatz, S.H. 1998, “Collective dynamics of “small-world”
networks”, Nature, vol. 393, pp. 440-2.

Waxman, B.M. 1988, “Routing of multipoint connections”, IEEE Journal on

Selected Areas in Communications, vol. 6, no. 9, pp. 1617-22.

Wormald, N.C. 1981, “The asymptotic connectivity of labelled regular
graphs”, Journal of Combinatorial Theory, Series B, vol. 31, pp. 156-67.

- 201 -



Chapter 7: References

- 202 -



Appendix A:  Glossary

Appendix A: Glossary

Network analysis is a multidisciplinary field, with researchers in the

overlapping fields using different terminology for related concepts. This

glossary summarises key terms and identifies synonym terms across fields.

Actor
Adjacent

Arc

Assortativity

Basic reproduction

ratio

Clustering

coefficient

Complete

Component

Connected

Connectivity

Contact

See node.

Two nodes are adjacent if an edge connects them. See
neighbour.

A connection between two nodes that indicates that they
are related. Usually used to indicate a directed
relationship.

Pearson correlation coefficient of the degrees at the
ends of each edge.

The expected number of secondary cases produced, in a
completely susceptible population, by a typical infected
individual during its entire period of infectiousness.

Mean local clustering coefficient over all nodes.

A network is complete if each pair of nodes has an edge
between them. Thus, there are n(n-1)/2 edges in an
undirected complete network with n nodes.

If a network is not connected, each connected
subnetwork is referred to as a component.

A network is connected if and only if any node can be
reached from any other node by travelling along edges.
Also see component.

Alternative term for degree

Epidemiological term where the relationship between
two (or more) individuals allows a nonzero probability of
disease transmission. From the perspective of network
theory, a contact (for a node) can be interpreted as
either the edges that connect to the node, or the nodes

that have edges that connect to the specific node.
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Degree

Degree correlation

Degree distribution

Degree sequence

Diameter

Directed

Edge

Epidemic

Geodesic

Graph

Host

Isomorphic

Local clustering

coefficient

Motif

Mutual
Multigraph

Neighbour

A node characteristic, the number of edges in which the
node participates.

Alternative term for (degree) assortativity.

The frequency distribution for the degree of a node.

A specific instance of a degree distribution. That is, a
listing of the nodes with the degree for that node.

Mean geodesic across all pairs of nodes in the network.
Indicates that a relationship from A to B is different from
a relationship from B to A. For example, the relationship
‘trusts’ is undirected because A trusts B is not the same
as B trusts A.

A connection between two nodes that indicates that they
are related. Usually used to indicate a mutual or
undirected relationship. Also see arc.

The occurrence in a community or region of cases of an
illness ... clearly in excess of normal expectancy.
Number of edges in the shortest path between a pair of
nodes.

Comprises the nodes and the edges that join pairs of
nodes

Person who is infected, also see node.

Two networks are isomorphic if one could be produced
from the other by only changing any labels on the nodes.
That is, the node and edge configuration is identical.
Characteristic of a node, the proportion of potential
edges between neighbour nodes that are actual edges in
the network.

Small subgraph that potentially appears many times
within a larger graph.

Alternative term for undirected.

A graph where pairs of nodes may have more than a
single edge between them. Compare with simple graph.
If two nodes have an edge between them, each node is
referred to as a neighbour of the other node. See

adjacent.
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Neighbour algorithm  Algorithm developed and described in thesis to generate

Neighbour network
Network

Node

Original network
Reproduction ratio
Proportionate

mixing

Rewiring

Self edge

Separable mixing

Simple graph

SIR

SIS

networks with specific values of assortativity and
clustering coefficient from a degree sequence.

Network generated with neighbour algorithm

Set of nodes and edges that describe a specific
relationship.

An individual who may be involved in the relevant
relationship with another node. Also actor, vertex and, in
the specific case of disease transmission, host.

Network generated with an algorithm from the literature
(Also reproduction rate)

For all people, the infectivity and susceptibility are
proportional. Note that early research uses the term
proportionate mixing for the mixing relationship later
referred to as separable mixing.

Modification to a network through selection of two
existing edges, removing those edges and constructing
new edges for two different pairs of the four nodes
involved.

A self edge connects a node to itself.

For any pair of infective and susceptible people involved
in a potential transmission, the relevant characteristics
of the two people are independent.

A graph where each pair of nodes has 0 or 1 edges
between them (no multiple) and no edge joins a node to
itself. Compare with multigraph.

An epidemic where the only states are susceptible,
infected or removed. The disease confers either
permanent immunity or death.

An epidemic where the only states are susceptible or
infected. Once a person recovers from the disease, they

are immediately susceptible to a new infection.
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Undirected

Unweighted

Vertex

Indicates that the network, relationship or edge is
mutual. That is, A is related to B if and only if B is
related to A. For example, the relationship ‘is a sibling
of’ is undirected. Formally, the relation is reflexive.

In certain types of networks, nodes or edges may be
weighted to reflect specific characteristics (such as a
stronger relationship). In an unweighted network, neither
nodes nor edges are weighted.

Alternative term for node.
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Appendix B: Files Used in Analysis

This appendix describes the programs and settings used to generate networks,
simulate epidemics, and perform the major analyses for the study. It also
identifies the output files. All the files are included on the supplementary results
DVD.

In general, the CODE folder contains the C++ code to generate networks and
simulate epidemics and SPSS and Matlab scripts used for analysis. The DATASETS
folder contains the raw datasets generated by the simulation, the SPSS scripts to
summarise the data into various views of the data and the SPSS format summary
datasets. The outputs of the various analyses are at the top level of the DVD
(with html format versions of the SPSS output files in the WEBOUTPUT folder).

B.1 C++ libraries

The C++ programs described in this appendix rely on several code libraries,
included in the CODE folder on the DVD. In addition, the standard template

library (STL) is used extensively.

The Network library is used to generate networks with different algorithms and
measure network properties. To generate neighbour networks, the
MakeNeighbourNetwork1D method is used. There are two related libraries:
DegDist enables property calculation from the extracted degree distribution, and
NetBasic is a subset of Network, to allow Network to call DegDist and DegDist to

call NetBasic without circular referencing.

The Epidemic library runs the epidemic simulation over a specified network with
method Simulate. It also contains methods to summarise simulation results files

in different ways.
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There are also three utility libraries. The Array2D class is an extension of the STL
vector class to enable two dimensional index notation. The Random class
implements a random number generator. Other utility functions, such as printing

of STL data types, are included in the Utilities library.

B.2 Neighbour algorithm validation

Section 4.3.1 describes the evaluation of the neighbour algorithm with respect to

its ability to target network properties separately. The relevant files are:
o C++ program: Miscellanous.cpp (switch 6), in the CODE folder
o Output files: Convergence.xls, in the RESULTS folder

Section 4.3.2 describes the way in which algorithm inputs are related to the

generated neighbour networks. The relevant files are:
o C++ program: NetParameters.cpp, in the CODE folder
o Output files: Networks Parameters.xls, in the RESULTS folder

Conformity with the small-world property is assessed in section 4.3.3. The

relevant files are:
o C++ program: Miscellanous.cpp (switch 4), in the CODE folder

. Output files: Small World.xls, in the RESULTS folder

B.3 Generate simulation data

The experimental design is described in Chapter 3. Up to 10 neighbour networks
are generated for each of three degree distribution types, with each of various
values of assortativity and clustering coefficient. For each network, up to 10
epidemics are simulated with a specific infectivity rate (3 values) and immunity
setting (SIR or SIS).
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Thus, there are potentially 100 SIS and 100 SIR epidemics for each network and
epidemic property combination (10 networks by 10 epidemics). For each
simulation, the number of nodes in each disease state (such as infected or

susceptible) is recorded for 100 timesteps.

The relevant file to generate the networks and simulate the epidemics is the C++
program EpiRunSample.cpp. This program is run separately for each degree
distribution type (distType: 0 for uniform, 1 for real world, 2 for power law and 3
for normal), with manual changing of the distType parameter and output file

names.

Figure B-1: Parameter setup for main simulation program

The output files are included on the DVD in the RESULTS folder. They contain

headings and the following information:

o DistType Networks.csv: Each record has network identification fields and

network property values (see Table B-1).
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Table B-1: Fields in Networks datasets

Field Comment

Distribution type Uniform, Real world, Power law (BA) or Normal (ER)

Distribution run Counter for instance of distribution type
Network type Algorithm used - original or neighbour
Network run / ID Counter for instance of network

Assortativity target  Assortativity parameter for neighbour algorithm

Clustering

probability

Distribution seed

Network seed

Max assortativity

Edge parameter for neighbour algorithm

Random number generator seed for distribution
generation
Random number generator seed for network generation

Maximum possible assortativity given degree distribution

Valid Status code for whether network generation resolved

Nodes Number of nodes in generated network

Edges Number of edges in generated network. This is important
for determining whether to accept networks that are
invalid.

Degree Mean degree of generated network

CV Degree Coefficient of variation for degree of nodes

Assortativity

Actual assortativity of generated network

Clustering Mean clustering coefficient of nodes in generated
network

Giant Proportion of network in giant component

Components Number of components in network

Entropy Measure of skewness of degree distribution

Gini index Measure of skewness of degree distribution

HHI Herfindahl-Hirschman Index of degree concentration
(power 2)

Nodes 5% Proportion of edges accounted for by the highest degree

5% of nodes
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o DistType Data.csv: Each record has network identification fields, epidemic
parameters settings, and epidemic status information for a specific

timestep (see Table B-2).

o DistType Made.csv: A table displaying the total number of networks
generated by property combinations in order to obtain the required sample

size.

For each degree distribution type, the detailed epidemic data is summarised with

Miscellaneous.cpp (code switch 3). Created summary datasets are:

o DistType Epidemic Stability.csv: Identifies if, and at what timestep,
epidemic stability is reached. A record is created for each simulation that
contains network / epidemic identification information and epidemic status

information averaged after stability.

The four datasets for each degree distribution type are combined with the SPSS
syntax program CreateDatasets.sps. This program also adds derived variables
including the empirical reproduction rate, whether an epidemic occurred (see
section 5.1) and basic reproduction ratio derived from epidemic size, and creates
three detailed and three summary SPSS datasets with various perspectives of the

simulation data.

Note that the summary datasets were recreated several times to enable some of
the included variables (such as whether an epidemic occurred) to be included
after the relevant analysis was performed. That is, derivations of the new

variables were added to the syntax file and the script rerun.
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Table B-2: Fields in Data datasets

Field

Comment

Distribution type

Distribution run
Network type

Network run

Assortativity target

Clustering
probability
Infectivity
Susceptibility
Recovery
Immunity
Start infected
Selection type
Epidemic run
Epidemic seed
Timestep

New infections

Cumulative
infections
Infected
Susceptible
Immune

New infections
degree

Cum infections
degree

Infected degree

Susceptible degree

Immune degree

Key to match with network
Key to match with network (redundant)
Key to match with network (redundant)
Key to match with network
Key to match with network (redundant)

Key to match with network (redundant)

Infectivity probability - applied to all nodes
Susceptibility probability - applied to all nodes
Recovery probability - applied to all nodes
Probability of immunity when recovered

Number of nodes initially selected as infected

Initial infection uniform or proportional to degree
Counter for instance of epidemic

Seed for random number generator for epidemic run
Simulation step counter

Incidence: number of nodes that became infected in
timestep

Impact: Number of nodes infected up to this timestep

Prevalence: number of nodes in infectious state
Number of nodes in susceptible state
Number of nodes in immune state

Mean degree of new infection nodes

Mean degree of all nodes that have been infected

Mean degree of infected nodes

Mean degree of susceptible nodes

Mean degree of immune nodes
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The summary datasets are:

o EpidemicSummary.sav: Simulations (10 epidemic runs on 10 network
instances) were aggregated by distribution type, network type, network
properties (approximate clustering and assortativity) into two records, one
for epidemics and one for simulations where an epidemic did not occur.
Variables included the mean and standard deviation of the number of nodes

in each epidemic state for each timestep.

o EpidemicTimelines.sav: The same information as EpidemicSummary.sav but
there is a separate record for each timestep, rather than information for

multiple timesteps in the same record (or case).

o EpidemicNetworkMinimal.sav: This dataset has a record for each simulation

but contains only summary information instead of data for each timestep.

All datasets and code to create the SPSS datasets are included on the DVD in the
DATASETS folder.

In addition to matching onto the epidemic datasets, the Network.csv files are
used to create the Microsoft Excel workbook Networks.xls. This workbook
describes the number and properties of the networks used for epidemic

simulations.

B.4 Analysis of relationship between network

properties and epidemic behaviour

Note that much of the analysis was performed with SPSS software. The syntax
files (suffix sps) can be accessed with a text editor. However, the output files
(suffix spo) are in a SPSS proprietary format that is only accessible with SPSS
software. These output files have also been produced in a web browser
accessible format.
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A hyperlinked index to the html versions of the SPSS output files is at the top
level of the DVD (WebOutputindex.htm). The html version is complete but does
not have any internal hyperlinks to find individual sections. As the comments and
code from the syntax file is reproduced in the output file, specific analyses can
be found by searching for the relevant text. Furthermore, the utility to produce
the html file generates a separate file for each chart and many of the analyses
contain large numbers of charts. Hence, the web format versions (same
filename, suffix htm) are in a separate folder (WebOutput) with subfolders for

those with large numbers of files.

Two SPSS syntax files are used to summarise the number of simulations and

epidemics in the dataset (Section 5.1.1):

o For the neighbour networks with varying network properties:
SimulationCounts.sps (CODE folder), with output at SimulationCounts.spo;

and

o For the networks implementing the basic epidemiological model:

ZeroStructure.sps (CODE folder), with output at ZeroStructure.spo.

For the definition of an epidemic (Sections 5.1.2 and 5.1.3), the syntax file to
perform the analysis is EpidemicDefn.sps (CODE folder), with output at
EpidemicDefn.spo. After this analysis was performed, the summary dataset
creation syntax file was rerun with some additional code to implement the

definition.

The analysis of impact of degree heterogeneity (Section 5.2) on epidemic
occurrence and epidemic size used Degreelmpact.sps (CODE folder), with output
at Degreelmpact.spo. Some of the results were transferred to the spreadsheet
Degreelmpact.xls for additional analysis concerning the number of property

combinations with different patterns of relativity between distribution types.
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The analysis of the relationship between epidemic behaviour and the network

properties of assortativity and clustering was performed with a series of SPSS

syntax and related files:

relationship with epidemic occurrence (Section 5.3) summary tables and
logistic regressions used PropertylmpactSeverity.sps (CODE folder), with

output at PropertylmpactSeverity.spo;

relationship with basic reproduction ratio (Sections 5.4 and 5.5) exploratory
analysis used PropertylmpactBehaviour.sps (CODE folder), with output at
PropertylmpactBehaviour.spo;

PropertylmpactBehaviour.sps also creates the text file SizeAssClusData.csv,
which is used by the Matlab script ROAssClusScatter.m (CODE folder) to
generate scatter plots (Section 5.4.1.4) of the relationship between
epidemic derived Ry and the structure properties, with the output

contained in SIR EpiRO Properties.pdf and SIS EpiRO Properties.pdf; and

regressions are fitted (Sections 5.4.2 and 5.5.1) using
PropertylmpactRegression.sps ~ (CODE  folder), with  output at

PropertylmpactRegression.spo; and

some additional analyses to compare predictions from the SIR and SIS
regression models (Section 5.5.2) use ConsistencySIRvSIS.sps (CODE folder),
with  output at  ConsistencySIRvSIS.spo  and the Excel file

Consistency Predictions. xls.

A separate analysis used regression models to examine the performance of an

alternative way to incorporate network structure in epidemic models, accessible

network proportion in a given number of steps (Section 5.6). The analysis used

ProportionAccessible.sps, with output at ProportionAccessible.spo.
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Appendix C: Index to Additional Results

Several of the tables and figures in Chapter 5 presented results for a single
simulation set (for example, real world degree distribution with infectivity of
0.1250). This appendix identifies the file in the supplementary DVD where the
results are available for all simulation sets for these tables (Table C-1) and
figures (Table C-2).

The results files are in the proprietary SPSS output format, but have also been
produced in a web browser accessible format. An index to the html versions of
the SPSS output files is at the top level of the DVD (WebOutputindex.htm).

Table C-1: Filename for supplementary results, Tables

Table number and caption Results file

Table 5-7: Network and epidemic properties Degreelmpact.spo

by degree distribution

Table 5-12: Proportion of simulations PropertylmpactSeverity.spo
satisfying epidemic definition: SIR

Table 5-13: Proportion of simulations PropertylmpactSeverity.spo

satisfying epidemic definition: SIS

Table 5-14: Number of contributing PropertylmpactSeverity.spo
simulations

Table 5-18: Number of contributing PropertylmpactSeverity.spo
simulations: SIR

Table 5-20: Mean epidemic final size: SIR PropertylmpactBehaviour.spo
Table 5-21: Standard error of mean PropertylmpactBehaviour.spo

epidemic final size: SIR

Table 5-35: t-test to compare SIR and SIS ConsistencySIRvSIS.spo
epidemic derived R, values

Table 5-39: Adjusted R? for network ProportionAccessible.spo

structure models of Ry
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Table C-2: Filename for supplementary results, Figures

Figure number and caption

Results file

Figure 5-7: Epidemic size over time (cumulative
infections) by clustering coefficient

Figure 5-8: Epidemic size over time (cumulative
infections) by assortativity

Figure 5-9: Assortativity, clustering coefficient
and R, derived from epidemic final size

Figure 5-10: Histogram of standardised
regression residuals

Figure 5-11: Residual plotted against regression
prediction for Ry

Figure 5-12: Residual plotted against
assortativity

Figure 5-13: Residual plotted against clustering
coefficient

Figure 5-14: Epidemic size over time (current
infections) by assortativity (SIS)

Figure 5-15: Residual plotted against regression
prediction for Ry

Figure 5-16: Residual plotted against
assortativity

Figure 5-17: Residual plotted against clustering
coefficient

Figure 5-18: Histogram of standardised
regression residuals

Figure 5-19: SIR and SIS epidemic derived RO
values, frequencies

Figure 5-20: SIR and SIS epidemic derived RO

values, frequencies

PropertylmpactBehaviour.spo

PropertylmpactBehaviour.spo

PropertylmpactBehaviour.spo

SIR RO Properties.pdf

SIS RO Properties. pdf

PropertylmpactRegression.spo

PropertylmpactRegression.spo

PropertylmpactRegression.spo

PropertylmpactBehaviour.spo

PropertylmpactRegression.spo

PropertylmpactRegression.spo

PropertylmpactRegression.spo

PropertylmpactRegression.spo

ConsistencySIRvSIS.spo

ConsistencySIRVSIS. spo
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