
Efficient points-to analysis based on CFL-reachability
summarisation

Author:
Shang, Lei

Publication Date:
2012

DOI:
https://doi.org/10.26190/unsworks/15895

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/52343 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/15895
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/52343
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Efficient Points-To Analysis based on

CFL-Reachability Summarisation

Lei Shang

School of Computer Science and Engineering

University of New South Wales

A thesis submitted for the degree of

Doctor of Philosophy

2012

Acknowledgements

First of all, I would like to deliver sincere gratitude to Prof. Jingling

Xue for supervising me during my PhD. I thank him for guiding me

constantly through the road of my research and encouraging me to

overcome the difficulties. I have been deeply impressed by his insight

and breadth of knowledge in compilers and programming languages

as well as his continuous dedication to research work. This work was

not possible without his significant encouragements and supports.

I would like to acknowledge the continuous support from my senior

colleague, Dr. Yi Lu, together with whom I conducted research on

several research topics. I would also like to give my thanks to my

friend, Xinwei Xie, for supporting the work presented in Chapter 3.

Besides, my thanks also go to all my friends and colleagues in Compiler

Research Group (CORG) in UNSW. A number of colleagues, past and

present, have helped greatly at many stages during my PhD study.

Finally, I thank my wonderful wife for her constant love, who has

given me tremendous support and encouragement.

Publications

[1] Lei Shang, Xinwei Xie and Jingling Xue. On-demand Dynamic

Summary-based Points-to Analysis. In 10th Annual IEEE/ACM In-

ternational Symposium on Code Generation and Optimization (CGO’12),

San Jose, California, 2012.

[2] Lei Shang, Yi Lu and Jingling Xue. Fast and Precise Points-to

Analysis with Incremental CFL-Reachability Summarisation. In 27th

IEEE/ACM International Conference on Automated Software Engi-

neering (ASE’12), Essen, Germany, 2012.

[3] Lei Shang, Yi Lu and Jingling Xue. Fast and Precise Points-to Anal-

ysis with Incremental CFL-Reachability Summarisation. In UNSW

Computer Science and Engineering Technical Report no. UNSW-

CSE-TR-201216, 2012.

iv

Abstract

Points-to analysis plays a critical role in modern compilers and a wide range of pro-

gram understanding and bug detection tools. Nevertheless, developing precise and

scalable points-to analysis for large-scale object-oriented software remains a chal-

lenge, especially in the presence of different client requirements and frequent software

modifications.

In this thesis, we present two new techniques for achieving more efficient points-to

analysis based on Context-Free Language (CFL)-reachability. In general, our tech-

niques significantly improve the state-of-the-art points-to analysis for Java applica-

tions when handling demand-driven queries and small code changes.

This thesis firstly presents an on-demand dynamic summary-based points-to anal-

ysis for Java, which provides a more scalable solution without affecting precision.

Our second technique is an incremental summarisation framework designed for IDEs,

which can efficiently handle frequent program edits, addressing a long-standing chal-

lenge in points-to analysis. For each technique, we describe the algorithms and eval-

uate the implementations with a set of Java applications and clients.

Contents

1 Introduction 10

1.1 Problem . 10

1.2 Challenges . 11

1.3 Approaches . 12

1.4 Contributions . 14

1.5 Outline . 15

2 Background 17

2.1 Points-to Analysis . 17

2.2 Program Representation . 20

2.3 CFL-Reachability based Points-to Analysis 23

2.3.1 CFL-Reachability . 24

2.3.2 Field Sensitivity . 24

2.3.3 Context Sensitivity . 27

2.3.4 Basic CFL-Reachability-based Points-to Analysis 27

2.3.5 The Benefits of CFL-Reachability Approach 30

2.4 State-of-the-Art . 31

2

CONTENTS 3

2.4.1 Refinement . 31

2.4.2 Symbolic Graphs . 33

3 Dynamic Summary-Based Demand-Driven Analysis 36

3.1 Overview . 36

3.2 A Motivating Example . 39

3.3 The DynSum Analysis . 42

3.3.1 PPTA: Partial Points-To Analysis 43

3.3.2 Algorithms . 45

3.3.3 An Example . 48

3.3.4 Comparison . 51

3.4 Evaluation . 52

3.4.1 Implementation . 53

3.4.2 Methodology . 54

3.4.3 Results and Analysis . 55

3.5 Related Work . 60

3.6 Summary . 62

4 Incremental Analysis 64

4.1 Overview . 65

4.2 Background . 68

4.2.1 Example . 68

4.2.2 Challenges Facing Incremental Points-to Analysis 71

4.3 Points-to Analysis with Incremental Summarisation 72

4.3.1 Whole-Program Summarisation 75

CONTENTS 4

4.3.2 Incremental Summary Update 80

4.3.3 On-demand Points-to Query 83

4.3.4 Handling Recursion and Call Graph 86

4.4 Evaluation . 88

4.4.1 Methodology . 88

4.4.2 Results and Analysis . 90

4.5 Related Work . 95

4.6 Chapter Summary . 98

5 Conclusions and Future Work 99

5.1 Conclusions . 99

5.2 Future Work . 100

A Formal Rules 103

Bibliography 110

List of Figures

1.1 The percentage of local statements and global statements across our

benchmarks. More than 80% of statements only are involved only with

local variables within their own methods. 14

2.1 An abstraction of Java programs. 21

2.2 A small code example and its graph representation (PAG) for points-to

analysis. 23

2.3 Recursive State Machines (RSMs) for LFT and RRP. 25

3.1 A motivating example. 40

3.2 PAG for the example given in Figure 3.1. 41

3.3 Traversals of DynSum when answering the queries for s1 and s2 in

our motivating example (a, e and v stand for fields arr, elems and

vector, respectively). 50

3.4 Normalised analysis times for each batch of queries normalised with

respect to RefinePTS. 58

3.5 The cumulative number of summaries computed by DynSum nor-

malised with respect to StaSum. 59

5

LIST OF FIGURES 6

4.1 A Java example. 69

4.2 PAG for the Java example given in Figure 4.1. 70

4.3 The framework structure of Emu. 73

4.4 CFL-reachability summarisation for an example. 75

4.5 Abstract domains. 76

4.6 Summaries (with field stacks omitted) before and after deleting “t2[index]

= v” in put in line 14 in Figure 4.1. 81

4.7 Precision of SafeCast. 94

A.1 Syntax of an abstraction of Java language. 104

A.2 Abstract domains. 105

A.3 Deduction rules for RefinePTS analysis 106

A.4 Summarisation by local reachability analysis. 107

A.5 Local reachability analysis. 107

A.6 Summary update for code changes. 108

A.7 Summary-based points-to analysis. 108

A.8 Global reachability analysis. 109

List of Tables

2.1 Dimensions that affect the cost/precision trade-offs of points-to analysis. 18

2.2 Representations of canonical statements for Java points-to analysis.

For the method call statement, fm,i is the corresponding formal pa-

rameter of pi and retm is the returned value. 21

3.1 Strengths and weaknesses of four demand-driven points-to analyses. 49

3.2 Benchmark statistics. Note that Column “O (objs)” is identical to

Column “new”. All of the numbers include the reachable parts of the

Java library, determined using a call graph constructed on the fly with

Andersen-style analysis [2] by Spark [31]. Column “locality” gives the

ratio of local edges among all edges in a PAG. 53

3.3 Analysis times of NoRefine, RefinePTS and DynSum for the three

clients: SafeCast, NullDeref and FactoryM. 56

4.1 Analysis times of SafeCast by RefinePTS and Emu. #M is the

number of methods (in thousands) in Soot’s context-insensitive call

graph. #Q is the number of queries raised. 91

7

LIST OF TABLES 8

4.2 NullDeref and FactoryM in Emu. “Prec” denotes the precision at a

budget of 75K against an exhaustive analysis. 95

List of Algorithms

1 Basic CFL-reachability-based analysis 28

2 RefinePTS’s points-to analysis, SBPointsTo. 33

3 The RefinePTS analysis . 34

4 PPTA-based summarisation . 44

5 The DynSum analysis . 46

6 Summarisation by local reachability analysis 77

7 Local reachability analysis . 78

8 Summary update for code change . 82

9 Summary-based points-to analysis . 85

10 Global reachability analysis . 87

9

Chapter 1

Introduction

1.1 Problem

Pointers are one of the most important features of imperative programming and have

been widely supported in main-stream languages, such as C, C++, Java, Pascal and

Fortran 90. The value of a pointer refers directly to (or points to) another value

stored elsewhere in the memory using its address. Pointers are the key to effective

memory handling, resource utilisation, and repetitive operations, such as traversing

strings, tables and tree structures. It is often much efficient in time and space to copy

and access the data using pointers.

The great benefits of pointers, however, are counterbalanced by the notorious

difficulty of writing safe and effective programs with them. Because pointers can be

directly manipulated, they are flexible and so can be difficult to control by developers.

In order to understand program behaviours, program analysis is a key tool for diverse

purposes such as optimisation [12, 31, 57], bug checking [18, 58], security detection [8,

10

CHAPTER 1. INTRODUCTION 11

15, 52] and many others. A fundamental and particularly useful program analysis is

points-to analysis (or pointer analysis): a static program analysis to resolve the points-

to set (denoted as Ptspvq) for a specific variable v, which contains all the possible

memory locations that can be pointed by the pointer v. Points-to analysis is beneficial

for many compiler optimisations and other analyses, since pointer information is a

prerequisite for most program analyses. Without precise pointer information, most

of these optimisations and analyses must be very conservative or unsound.

1.2 Challenges

While points-to analysis can be extremely useful in soundly checking the behaviour

of pointers and in helping improve the quality of software systems, precise points-to

analyses, like most static analyses, cannot scale to large software systems. In theory,

points-to analysis is an undecidable problem. Even after making common approxima-

tions, e.g., modelling dynamic memory allocations conservatively and treating arrays

monolithically, points-to analysis is still NP-hard [7]. Therefore, optimising analysis

algorithms has become critically important in making points-to analysis practical in

practice.

Over the past three decades or so, many research efforts have focussed on exploring

the trade-off between precision and performance in developing practical points-to

analysis. Points-to analysis is a well-studied research area with a large number of

research papers published on this subject (e.g., an earlier survey [24] in 2001). To

date, several research groups around the world have been actively working on the

problem. Points-to analyses face two primary challenges:

CHAPTER 1. INTRODUCTION 12

• The first challenge is improving the scalability of points-to analysis without af-

fecting precision. In all the approaches to points-to analysis, CFL-reachability

has become a state-of-the-art technique in recent years, especially in handling

on-demand queries. Some recent papers typically sacrifice some precision to

obtain scalability. However, the software community is paying increasing at-

tention to the precision of points-to analysis, especially for heap sensitivity and

context sensitivity for object-oriented software systems. Therefore, exploring

techniques that boost performance while maintaining precision is a demanding

but difficult task.

• The second challenge is satisfying the needs of practical software, such as sup-

porting client-driven, demand-driven analyses and handling program changes.

Since points-to analysis is not a stand-alone task in practice, we need to tailor

the analysis to satisfy the different needs of the clients. While software sys-

tems are evolving, it is also a challenging task to effectively compute points-to

results in response to program changes. Each of these requirements is itself

challenging and the separate literature in points-to analysis for some of them

is sufficient. However, the studies on points-to analysis that effectively satisfies

all the requirements are limited.

1.3 Approaches

This thesis presents two techniques to improve the state-of-the-art points-to analysis

for Java based on CFL-reachability without affecting precision. Our analysis algo-

rithms, which are scalable and precise, rely on some pervasive features observed from

CHAPTER 1. INTRODUCTION 13

practical software systems. The insight of our techniques is to exploit the locality in

programs to enhance reusability. Locality is an important technique in computer

science and a widely used term in many different research areas, such as cache opti-

misation and parallel computing. In this thesis, we exploit locality from two different

aspects to show experimentally that our algorithms are effective in utilising locality

of programs.

• Locality of program statements

All the statements in a program can be categorised into two classes: local state-

ments, which only involve local variables in a method, and global statements,

which involve at least one variable outside the scope of the current method.

We find that a large majority of statements are local in real-world applications.

Figure 1.1 shows our statistics for the percentage of local and global statements

in a number of Java programs. It can be seen that more than 80% of statements

in these programs are local statements. As a result, the points-to analysis based

on CFL-reachability can benefit from summarisation of local statements, which

is the key insight for our first approach.

• Locality of code changes

In response to program changes, especially incorporated into IDEs, most of

current points-to analyses need to reanalyse a program from scratch. Several

existing approaches are unbounded, i.e., the impact of a code change may prop-

agate to the entire program in the worst case. The key insight is to utilise CFL-

reachability-based summarisation to localise the impact of program changes

made in a method.

CHAPTER 1. INTRODUCTION 14

0%

20%

40%

60%

80%

100%

Global

Local

Figure 1.1: The percentage of local statements and global statements across our

benchmarks. More than 80% of statements only are involved only with local variables

within their own methods.

In order to tackle the challenges, we developed several techniques based on the in-

sights above. Unlike recent studies, we firstly present an approach that exploits reuses

by dynamic local reachability summaries, which improves the performance of points-

to analysis without affecting precision. Furthermore, we extend the summarisation

technique to limit the change impact in response to small code changes.

1.4 Contributions

This thesis makes the following contributions:

• Dynamic summarisation for demand-driven points-to analysis

It presents a dynamic summarisation technique, called DynSum, to boost per-

CHAPTER 1. INTRODUCTION 15

formance of CFL-reachability based context-sensitive demand-driven points-to

analysis by exploiting local reachability reuse. Our approach improves the per-

formance of demand-driven points-to analysis without affecting precision and is

fully on-demand without requiring any (costly) whole-program pre-analysis.

• Incremental summarisation for supporting code changes in IDEs

It introduces a points-to analysis framework, called Emu, that enables develop-

ers to perform pointer-related queries while making changes to their programs

in IDEs. Emu achieves its fast response times by adopting a modular approach

to incrementally updating method summaries upon code changes: the points-to

information in a method is summarised indirectly by CFL-reachability rather

than directly by points-to sets, enabling the impact of code change made in a

method to be localised within the method so that only the affected part of the

method needs to be updated.

1.5 Outline

The rest of this thesis is organised as follows. Chapter 2 provides the general back-

ground and introduces CFL-reachability based points-to analysis for Java, including

the program representation that serves to set up the foundation in which points-to

analysis can be developed. We also present the basic and state-of-the-art context-

sensitive points-to analysis based on CFL-reachability. Chapter 3 presents dynamic

summarisation, a technique to boost the performance of state-of-the-art demand-

driven points-to analysis without affecting precision. It successfully exploits the reuse

from locality of statements and avoids the redundant traversals to local reachability

CHAPTER 1. INTRODUCTION 16

paths. Chapter 4 introduces a summary-based modular framework to handle small

code changes in IDEs. The use of summarisation helps localise the impact of code

changes and enables fast response time during program editing. Finally, Chapter 5

concludes the thesis with directions for future work.

Chapter 2

Background

The goal of this thesis is to develop techniques for points-to analysis to produce more

efficient and practical solutions for Java programs. This chapter lays the founda-

tions for our work and describes some preliminaries on points-to analysis via CFL-

reachability. We present some background knowledges of points-to analysis in Sec-

tion 2.1. Section 2.2 defines the notations and terminology that we use to represent

Java program to facilitate CFL-reachability based points-to analysis. Then we present

the basic CFL-reachability based points-to analysis algorithm in Section 2.3 and sev-

eral important concepts are explained with examples whereas appropriate. Finally,

we introduce some state-of-the-art approaches in optimisation and improvements of

basic points-to analysis based on CFL-reachability in Section 2.4.

2.1 Points-to Analysis

Points-to analysis is widely used in static analysis tools [24]. It is especially impor-

tant for object-oriented languages in which the extensive use of pointer-induced heap

17

CHAPTER 2. BACKGROUND 18

Language Semantics Precise Model Imprecise Model

assignment subset-based equality-based

field accesses field-sensitive field-insensitive, field-based

control flows flow-sensitive flow-insensitive

method calls context-sensitive context-insensitive

heap abstractions context-sensitive heap context-insensitive heap

Table 2.1: Dimensions that affect the cost/precision trade-offs of points-to analysis.

accesses, subtyping and dynamic dispatch make it difficult to understand value-flow

in a program. This section provides a brief introduction to some important points-to

analysis terminology. A points-to analysis is to compute an over-approximation of

the possible objects that a variable may point to during the execution of a program.

Points-to targets are a finite set of abstract locations, represented as points-to sets,

which are abstractions of runtime objects. For a variable x in a program P, we rep-

resent the points-to set of x as Ptspxq, and for each abstract location o P Ptspxq, x

may point to some object represented by o in some particular execution of P.

In general, points-to analyses use various approximations of language semantics to

balance precision and performance of the analysis. Table 2.1 summarises a number of

orthogonal dimensions to model different language features, which introduces relevant

terminology along the way. Note that the table only refers to limited but most

important dimensions and approaches for points-to analysis.

In order to model assignment statements, there are subset-based [2] (or inclusion-

based) analysis, which precisely handles an assignment x “ y by ensuring that

Ptspyq Ď Ptspxq in the analysis result, and equality-based [56] (or unification-based)

CHAPTER 2. BACKGROUND 19

analysis, which imprecisely ensures Ptspxq “ Ptspyq given the same assignment on

the contrary. While equality-based analysis can be efficiently computed at nearly

linear time, subset-based analysis suffers from a worst-case cubic complexity. There

exist some analysis, like one-level flow analysis [11], that makes trade-offs in between.

In order to model field accesses, there are field-sensitive analysis [41], which pre-

cisely distinguishes field access x.f by checking both base x and field f, field-insensitive

analysis, which only checks field base x, and field-based analysis, which only checks

field f.

In order to model control flows, there are flow-sensitive analysis [21, 22, 26],

which takes into account the order of statements and computes one points-to graph

for each program point, and flow-insensitive analysis [4], which ignores control flow

and produces a single result;

In order to model method calls, there are context-sensitive analysis [54, 61, 62],

which precisely models method call semantics and computes only along realisable

paths, and context-insensitive analysis [55], which approximately treats calls as goto

instructions;

In order to model heap abstractions, there are context-sensitive heap abstraction,

which distinguishes the contents of different data structure instances and represents

objects of each data structure separately, and context-insensitive heap abstraction,

which simply represents objects by its allocation statement (malloc in C or new in

Java), causing merging of the contents of all instances in the analysis result. Moreover,

some techniques can provide precision beyond context-sensitive heap abstraction. It-

eration count abstraction (ICA) [35, 67] can prove properties of heap abstractions in

loops. Shape analysis (e.g., [48]) is typically an expensive but more precise analysis

CHAPTER 2. BACKGROUND 20

on heap and data structures.

Besides, there are also approximations on path sensitivity [13, 19, 59], array in-

dexing [47] and other dimensions on precision.

Points-to analysis for Java is typically flow-insensitive, field-sensitive and context-

sensitive (both method invocation and heap abstraction) to balance precision and

efficiency [50, 54, 66]. That is also the setting and assumption used for all the points-

to analyses for Java presented throughout this thesis.

2.2 Program Representation

In this section, we present the program representation of an abstraction of Java

program that we use in subsequent sections to present points-to analysis. We adopt

the similar program representation and notations from Sridharan’s paper [54].

A program pro is defined as a set of statements stmt where each stmt is defined

as a flow edge with a label. The syntax is given in Figure 2.1. In its canonical form,

a Java program is represented by a directed graph, known as a Pointer Assignment

Graph (PAG), which has threes types of nodes: objects, local variables and global

variables. Since the analysis is flow-insensitive, control-flow statements are irrelevant.

All edges are oriented in the direction of value flow, representing the statements in

the program. Table 2.2 shows the simple transformation of canonical statements of

Java into our graph representation. A method m is associated with the following

seven types of edges:

(1) new, n2
new
Ð−− n1: n1 is an object created and n2 is a local variable, both in

method m, with Ð indicating the flow of n1 into n2. As a result, n2 points directly

CHAPTER 2. BACKGROUND 21

Allocation sites o P O

Local variables v P V

Global variables g P G

Instance fields f

Call sites i

Nodes n ::“ o | v | g

Labels l ::“ new | assign | ldpfq | stpfq

| entryi | exiti | assignglobal

Statements stmt ::“ n
l
Ð− n

Programs pro ::“ H | pro Y{stmt}

Figure 2.1: An abstraction of Java programs.

Statement Representation

s: x “ new Objpq x
new
Ð−− os

x “ y (x,y P V) x
assign
Ð−−− y

x “ y.f x
ldpfq
Ð−− y

x.f “ y x
stpfq
Ð−− y

x “ y (x P G or y P G) x
assignglobal
Ð−−−−−− y

s: x “ y.mpp1,p2, . . . ,pkq fm,i
entrys
Ð−−− pi for i P 1..k

thism
entrys
Ð−−− y, x

exits
Ð−− retm

Table 2.2: Representations of canonical statements for Java points-to analysis. For

the method call statement, fm,i is the corresponding formal parameter of pi and retm

is the returned value.

CHAPTER 2. BACKGROUND 22

to n1.

(2) assign, n2
assign
Ð−−− n1: n1 and n2 are local variables in method m. So n2 points

to whatever n1 points to.

(3) assignglobal, n2
assignglobal
Ð−−−−−− n1: n1 or n2 or both are static variables. So n2

points to whatever n1 points to.

(4) ldpfq, n2
ldpfq
Ð−− n1: n1 and n2 are local variables in method m and f is an

instance field for the load n2 “ n1.f.

(5) stpfq, n2
stpfq
Ð−− n1: n1 and n2 are local variables in method m and f is an

instance field for the store n2.f “ n1.

(6) entryi, n2
entryi
Ð−−− n1: n1 is a local variable in a caller that contains a call site at

line i to method m, such that n1 represents an actual parameter of the call and n2

is its corresponding formal parameter of m. So n2 points to whatever n1 points to.

(7) exiti, n2
exiti
Ð−− n1: n1 is a local variable that contains a return value of method

m and n2 is a local variable assigned from n1 at a call site i for m. So n2 points to

whatever n1 points to.

Loads and stores to array elements are modeled by collapsing all elements into a

special field arr. By convention, it is assumed that no two classes (methods) contain

the same identically named global (local) variable.

Figure 2.2 gives a simple Java example and its graph representation. On the left-

hand side of Figure 2.2, in lines 1 – 2, two objects are created and then they are

passed as parameters to method calls in lines 4 – 5. There is also a simple assignment

in line 3. The definition of method id is shown in line 6.

For this example, its PAG is shown on the right-hand side in Figure 2.2. Some

notations are in order: (1) oi denotes the abstract object o created at the allocation

CHAPTER 2. BACKGROUND 23

1 a = new A() ; // o1

2 b = new A() ; // o2

3 c = a ;

4 x = id (a) ; // call 1

5 y = id (b) ; // call 2

6 id (p){ r = p ; return r ;}
o2

o1

b

a

new

new

p r ret

entry1

entry2

assign assign

x

y

exit1

exit2

c
assign

(a) program code (b) graph representation

Figure 2.2: A small code example and its graph representation (PAG) for points-to

analysis.

site in line i, and (2) ret is a temporary variable introduced in line 6 representing the

return variable of the method. In next section, we would like to use this example to

explain the basic points-to analysis based on CFL-reachability.

2.3 CFL-Reachability based Points-to Analysis

The points-to analyses presented in this thesis, which differ from most traditional

points-to analyses, use context-free language reachability (CFL-reachability) as their

underlying foundation. The program analysis using CFL-reachability is firstly pre-

sented by Reps et.al. [44, 45] more than ten years ago. The state-of-the-art CFL-

reachability points-to analysis [54, 66, 67, 70] for Java is both context-sensitive (for

both method calls and heap abstractions) and field-sensitive. In this section, we

introduce the basic CFL-reachability based points-to analysis for Java. The recent

CHAPTER 2. BACKGROUND 24

progress presented in this paper and some related work can be considered as the op-

timisation of the basic analysis. The basic analysis provides the baseline for us to

enhance its performance using several new techniques.

2.3.1 CFL-Reachability

Context-free language (CFL) reachability [44, 71] is an extension of graph reachability

that is equivalent to the reachability problem formulated in terms of either recursive

state machines (RSMs) [9] or set constraints [27]. Let G be a directed graph whose

edges are labeled by symbols from an alphabet Σ. Let L be a CFL over Σ. Each path

p in G has a string wppq in Σ˚ formed by concatenating in order the labels of edges

in p. A node u is L-reachable from a node v if there exists a path p from v to u,

called an L-path, such that wppq P L.

CFL-reachability is computationally more expensive to solve than the standard

graph reachability. In the case of the single-source L-path problem, which requires

finding all nodes L-reachable from a source node n in a graph G, the worst-case time

complexity is OpΓ 3N3q, where Γ is the size of a normalised grammar for L and N is

the number of nodes in G [44]. Therefore, we are motivated to exploit reachability

reuse to lower its analysis overhead in this thesis.

2.3.2 Field Sensitivity

We discuss how to perform field-sensitive points-to analysis without considering con-

text sensitivity in CFL-reachability. A context-insensitive analysis merges informa-

tion from different calls of a method rather than reasoning about each call separately.

As a result, global assignment, call entry or call exit edges are all treated as local

CHAPTER 2. BACKGROUND 25

S1

alias

new

assign

ld
pfqst

pf
q

S1 S2

alias alias

new new

assign assign

ld
pfqst

pf
q st(f

)ld
(f

)

(a) LFT (with flowsTo shown on the left and alias on the right)

RRP

entry
i |exit

iex
it
i
|e
nt
ry

i

(b) RRP

Figure 2.3: Recursive State Machines (RSMs) for LFT and RRP.

assignment edges. Given a program, its PAG is thus simplified to possess only four

types of local edges: new, assign, ld and st.

Let us first consider a PAG G with only new and assign. It suffices to develop a

regular language, LFT (FT for flows-to), such that if an object o can flow to a variable

v during the execution of the program, then v will be LFT-reachable from o in G. Let

flowsTo be the start symbol of LFT. Then we have the following (regular) grammar

for LFT:

flowsTo Ñ new p assignq˚ (2.1)

CHAPTER 2. BACKGROUND 26

If o flowsTo v, then v is LFT-reachable from o. Thus, we know that o belongs to the

points-to set of v.

For field accesses, precise handling of heap accesses is formulated with the updated

LFT being a CFL of balanced parentheses [55]. Two variables x and y may be aliases

if an object o may flow to both x and y. Thus, v may point to o if there exists a

pair of statements p.f “ q and v “ u.f, such that the base variables p and u can

be aliases. So o flows through the above two statements with a pair of parentheses

(i.e., stpfq and ldpfq), first into q and then into v. Therefore, the flowsTo production

is extended into:

flowsTo Ñ new p assign | stpfq alias ldpfqq˚ (2.2)

where x alias y means that x and y could be aliases. To allow alias paths in an alias

language, flowsTo is introduced as the inverse of the flowsTo relation. A flowsTo-

path p can be inverted to obtain its corresponding flowsTo-path p using inverse

edges, and vice versa. For each edge x
`
Ð− y in p, its inverse edge is y

`
Ð− x in p.

(To avoid cluttering, the inverse edges in a PAG, such as the one given in Figure 3.2,

are not shown explicitly.) Thus, o flowsTo x iff x flowsTo o. This means that

flowsTo actually represents the standard points-to relation. As a result, x alias y iff

x flowsTo o flowsTo y for some object o. Thus, the alias language is defined by:

alias Ñ flowsTo flowsTo

flowsTo Ñ p assign | ldpfq alias stpfqq˚ new

Our final CFL LFT for finding the points-to set of a variable consists of the productions

given in (2.2) and (2.3) with flowsTo as its start symbol. For convenience, we often

write pointsTo to mean flowsTo.

CHAPTER 2. BACKGROUND 27

The RSMs [9] for pointsTo and alias are shown in Figure 2.3(a); they will be

referred later to facilitate the understanding of DynSum in Chapter 3.

2.3.3 Context Sensitivity

A call entry or exit edge is treated as an assign edge as before in LFT to represent

parameter passing and method return but assign and assignglobal edges are now dis-

tinguished.

A context-sensitive analysis requires call entries and exits to be matched, which is

solved also as a balanced-parentheses problem [44, 46]. This is done by filtering out

flowsTo- and flowsTo-paths corresponding to unrealisable paths. The following CFL

RRP (RP for realisable paths) is used to describe all realisable paths in a PAG G; its

RSM is given in Figure 2.3(b):

C Ñ CallEntryi C CallExiti | C C | ε

CallEntryi Ñ entryi | exiti

CallExiti Ñ exiti | entryi

When traversing a flowsTo-path in G, entering a method via entryi from call site i

requires exiting from that method back to call site i via either (1) exiti to continue its

traversal along the same flowsTo-path or (2) entryi to start a new search for a flowsTo-

path. The situation for entering a method via exiti when traversing a flowsTo-path

is reversed.

2.3.4 Basic CFL-Reachability-based Points-to Analysis

With the formulations given above, we give the basic CFL-reachability based

points-to analysis in Algorithm 1, which is to compute CFL-reachability for the CFL

CHAPTER 2. BACKGROUND 28

Algorithm 1 Basic CFL-reachability-based analysis

PointsTo (v, c)

1: pts Ð H

2: for each v
new
Ð−− o do

3: pts Ð pts Y {(o, c)}
4: for each v

assign
Ð−−− x do

5: pts Ð pts Y PointsTo (x, c)

6: for each v
assignglobal
Ð−−−−−−− x do

7: pts Ð pts Y PointsTo (x, H)

8: for each v
exiti
Ð−− x do

9: pts Ð pts Y PointsTo px, c.Push(i)q

10: for each v
entryi
Ð−−− x do

11: if c.Peek() “ i or c “ H then

12: pts Ð pts Y PointsTo px, c.Pop()q

13: for each v
ldpfq
Ð−−− u do

14: for each q
stpfq
Ð−−− p do

15: CSalias Ð H

16: for po, c 1q P PointsTo (u, c) do

17: CSalias Ð CSalias Y FlowsTo (o, c 1)

18: for (r, c2) P CSalias do

19: if r “ q then

20: pts Ð pts Y PointsTo (p, c2)

21: return pts

Lpts “ LFT X RRP. This is done by tracking the state of RRP for each explored path

while computing LFT reachability. As we focus on computing pointsTo, i.e., flowsTo

in the formulation, a state represents a calling context, which is typically a finite stack

configuration corresponding to CallEntryi edges. Note that the FlowsTo procedure,

which is not given, is analogous to PointsTo but traverses edges in the opposite

direction. By convention, standard stack operations, including Push(), Pop() and

CHAPTER 2. BACKGROUND 29

Peek(), are used in the algorithm.

Given a variable v and a call stack c, PointsTopv, cq computes pointsTopv, cq,

i.e., the points-to set of v in context c. It traverses edges in the reverse direction.

Note that for each flowsTo edge x
`
Ð− y, its inverse flowsTo edge is y

`
Ð− x. Therefore,

traversing from x to y along x
`
Ð− y in reverse direction means traversing from x to

y along y
`
Ð− x. The check for c “ H, i.e, ε in line 11 allows for partially balanced

parentheses (a prefix with unbalanced closed parentheses and a suffix with unbalanced

open parentheses) since a realisable path may not start and end in the same method.

All the transitions strictly follow the formulation and RSM presented above. In

the example given in Figure 2.2, we can conclude that c points to o1 because there is

a CFL-path from o1 to c: c
new
Ð−− a

assign
Ð−−− o1.

PointsTo is context-sensitive for method invocation by matching call entries

and exits and also for heap abstraction by distinguishing allocation sites with calling

contexts propagating objects only along realisable paths. In our example in Figure 2.2,

there are two abstract objects flowing to variable x: one is x
exit1
Ð−− ret

assign
Ð−−− r

assign
Ð−−−

p
entry1
Ð−−− a

new
Ð−− o1, and the other is x

exit1
Ð−− ret

assign
Ð−−− r

assign
Ð−−− p

entry2
Ð−−− b

new
Ð−− o2.

However, variable x can only point to abstract object o1, since entry1 and exit1 matches

on the first path, but entry2 and exit1 does not on the second.

Global variables are context-insensitive. As a result, the RRP state is cleared

across assignglobal edges (lines 6 and 7 in Algorithm 1). Thus, these edges “skip” the

sequence of calls and returns between the reads and writes of a global variable.

CHAPTER 2. BACKGROUND 30

2.3.5 The Benefits of CFL-Reachability Approach

CFL-reachability based analyses have been extensively studied [27, 55, 66, 67, 70, 74]

in recent years. It has become a state-of-the-art technique in points-to analysis,

especially in answering on-demand queries. There are several significant benefits

compared to traditional points-to analysis based on constraint resolution.

• First, by formulating a points-to analysis problem as a CFL-reachability prob-

lem, we can discover some key insights behind the analysis. Therefore, CFL-

reachability is powerful to model points-to relations with context sensitivity

and field sensitivity. Moreover, it can also be applied to a broader context than

points-to relations. For example, it is also used to formulate container semantics

to detect memory problems [65] recently.

• Second, CFL-reachability is a good and natural solution for demand-driven

analysis, by only computing results for specific variables (queries) issued by

clients. Most traditional points-to analyses are exhaustive, analysing for all

variables in the program when only answering a small number of queries. Ex-

isting demand-driven work, based on set constraints, e.g., the work of Heintze

and Tardieu [23], is formulated through elaborate deductive rules and may not

be easily applicable in dealing with context, field and heap sensitivity. In con-

trast, a CFL-reachability formulation of points-to relations automatically leads

to demand algorithms for points-to analysis. The formulation enforces that

only the statements along the CFL-path are necessary for queried variables.

Note that demand-driven analysis alone does not yield a scalable analysis for

Java [54]. The key to scalable and precise analysis is to exploit techniques to

CHAPTER 2. BACKGROUND 31

improve the performance of CFL-reachability based analysis [50, 54, 66].

• Moreover, the analysis based on CFL-reachability can compute the most pre-

cise flow-insensitive points-to results for a Java program. CFL-reachability can

effectively model the semantics of method calls and heap allocation with calling

contexts. In general, context sensitivity can be formulated as a balanced paren-

thesis problem [45, 46]. Furthermore, CFL-reachability is especially suitable

for Java. Unlike C, context sensitivity can provide a large precision benefit for

Java [33] and balanced parentheses can also be used to model field sensitivity

due to the type-safety in Java. In terms of the precision dimensions introduced

in Section 2.1, the state-of-the-art CFL-reachability based analysis is the most

precise in handling assignments, fields, method calls and heap allocation.

2.4 State-of-the-Art

While the basic context-sensitive points-to analysis based CFL-reachability cannot

scale to some large programs, there are several recent approaches aiming to improve

its performance. Some representative state-of-the-art approaches are simply described

as below.

2.4.1 Refinement

Now, we introduce the work of Sridharan and Bod́ık [54] which is a context-sensitive

demand-driven points-to analysis for Java formulated in terms of CFL-reachability.

Their approach is denoted as RefinePTS in this thesis.

Sridharan et al. [54, 55] were the first to formulate the points-to analysis for

CHAPTER 2. BACKGROUND 32

Java as computing CFL-reachability on a PAG. To make context-sensitive points-

to analysis scalable, their work [54, 55] introduces a so-called refinement technique,

an important optimisation for points-to analysis that approximates field sensitivity

with a field-based approach. The authors propose the refinement technique to satisfy

clients with imprecise resolutions without computing fully field-sensitive points-to

sets, but the approach is artificially restricted answering some queries from a client

and may incur pure overhead if the client cannot be satisfied in some sequence of

refinement steps.

We give the algorithms of their work in Algorithm 2 and Algorithm 3. To support

iterative refinements, RefinePTS operates with a refinement loop, which is simpli-

fied in Algorithm 3 to avoid the complications in dealing with points-to cycles. For

more details, see [54, 55]. Given a points-to query, an initial approximation with a

field-based analysis is adopted and then gradually refined until the client is satisfied.

In lines 13 and 14, the base variables u and q are assumed to be aliases, if v
ldpfq
Ð−− u is

not in fldsToRefine, a set controlling the refinement. In this case, an artificial match

edge v
match
Ð−−− p is considered to have been introduced. By moving directly from v to

p, a sequence of calls and returns between the read and write of field f can be skipped.

Hence, the state of RRP is cleared (line 17). If satisfyClient(pts) returns false, then

another refinement iteration is needed. All encountered match edges are removed,

and the analysis becomes field-sensitive for each such match edge, v
match
Ð−−− p, so that

the paths between their endpoints are explored. This may lead to new match edges

to be discovered and further refined until either a pre-set budget is exceeded or the

query has been answered (lines 29 and 30).

CHAPTER 2. BACKGROUND 33

Algorithm 2 RefinePTS’s points-to analysis, SBPointsTo.

SBPointsTo (v, c)

1: pts Ð H

2: for each v
new
Ð−− o do

3: pts Ð pts Y {(o, c)}
4: for each v

assign
Ð−−− x do

5: pts Ð pts Y SBPointsTo (x, c)

6: for each v
assignglobal
Ð−−−−−−− x do

7: pts Ð pts Y SBPointsTo (x, H)

8: for each v
exiti
Ð−− x do

9: pts Ð pts Y SBPointsTo px, c.Push(i)q

10: for each v
entryi
Ð−−− x do

11: if c.Peek() “ i or c “ H then

12: pts Ð pts Y SBPointsTo px, c.Pop()q

13: for each e “ v
ldpfq
Ð−−− u do

14: for each q
stpfq
Ð−−− p do

15: if e R fldsToRefine then

16: fldsSeen Ð fldsSeen Y {e}
17: pts Ð pts Y SBPointsTo pp,Hq

18: else

19: CSalias Ð H

20: for po, c 1q P SBPointsTo (u, c) do

21: CSalias Ð CSalias Y SBFlowsTo(o, c 1)

22: for (r, c2) P CSalias do

23: if r “ q then

24: pts Ð pts Y SBPointsTo (p, c2)

25: return pts

2.4.2 Symbolic Graphs

A different approach that primarily targets the scalability challenge analyses a pro-

gram using a pre-computed symbolic graph, which has been used with a great success

CHAPTER 2. BACKGROUND 34

Algorithm 3 The RefinePTS analysis

RefinePTS(v)

1: while true do

2: fldsSeen ÐH

3: ptsÐ SBPointsTo pv,Hq

4: if satisfyClient(pts) then

5: return true

6: else

7: if fldsSeen “ H then

8: return false

9: else

10: fldsToRefine Ð fldsToRefineY fldsSeen

in model checking [3] and memory bloat detection [65]. This approach replaces a stan-

dard PAG with an approximate symbolic graph, which is generally smaller than the

original PAG. A number of papers [65, 66, 67, 70] have shown that the analysis using

symbolic graphs can greatly improve the performance of alias analysis for Java.

We briefly discuss the pros and cons of using symbolic graphs for points-to analysis.

Xu et al. [66] proposed a program representation, which is referred to as the interpro-

cedural symbolic points-to graph (ISPG). The construction of a symbolic points-to

graph is carried out by pre-computing the relationship between object nodes. The

symbolic graph abstracts away variable nodes, and partitions the heap using symbolic

and allocation nodes. Using this representation, it is possible to disambiguate alias

relations with a lower cost as this representation contains fewer nodes and edges than

a PAG used by CFL-reachability points-to analysis. The complexity of the CFL-

reachability computation depends only on the size of the symbolic graph, not the

number of variables in the program. Therefore, the analysis using symbolic graphs

CHAPTER 2. BACKGROUND 35

takes advantage of these features to perform analysis that would be less expensive

both in time and memory.

The symbolic graph approach benefits from its smaller graph size, however it may

introduce some imprecision to the points-to analysis for some clients. As a result, it

may not be well-suited to distinguishing individual variables or memory locations of

a symbolic node. This problem may not be that serious when used to compute alias

relations, but it may directly impact the results of points-to analysis. The points-to

information computed during the analysis depends on the individual characteristics of

the points-to sets and it may make a difference whether a symbolic node represents a

single memory location or multiple memory locations. Furthermore, symbolic graphs

differ from PAGs not only in terms of symbolic nodes, but also in how load and store

edges are merged. Therefore, the analysis based on symbolic graphs conservatively

approximates the original PAGs and consequently lead to some precision loss.

Chapter 3

Dynamic Summary-Based

Demand-Driven Analysis

This chapter presents our on-demand dynamic summary-based points-to analysis.

The analysis dynamically exploits local reachability reuse to improve the performance

of CFL-reachability based demand-driven points-to analysis. We have implemented

the algorithm in the Soot compiler and evaluated it with a suite of Java programs.

3.1 Overview

Many static analyses can be accelerated if some redundant computations can be

avoided. Considerable progress has been made, resulting in, for example, cycle elimi-

nation [14, 20] for Andersen-style points-to analysis [2] and sparse analysis [21, 22, 72]

for flow-sensitive points-to analysis. In the case of context-sensitive points-to analysis,

computing a points-to summary for a method [40, 62, 72] avoids re-summarising it

unnecessarily for the same and different calling contexts. Despite many earlier efforts,

36

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS37

it remains unclear how to craft points-to analyses that can efficiently answer demand

queries (e.g., non-aliasing) for a specific client.

The majority of the current solutions perform a whole-program points-to analysis

to improve precision at the expense of efficiency, by computing points-to information

for all variables in the program. Such exhaustive algorithms are too resource-intensive

to be useful in environments with small time budgets, such as just-in-time (JIT)

compilers and IDEs. One widely acceptable observation is that points-to analysis

is not a stand-alone task since it needs to be tailored to suit the specific needs of

a client application. As a result, much recent work [54, 55, 66, 74] has focussed on

demand-driven points-to analysis, which mostly relies on CFL-reachability [44] to

perform only the necessary work for a set of variables specified by a client rather than

a whole-program analysis to find all its points-to information.

To perform points-to analysis with CFL-reachability, a program is represented as

a PAG as we discussed in Chapter 2, with nodes denoting variables/objects and edges

pointer-manipulating statements. Determining if a variable v points to an object o

requires finding a path p between the nodes v and o in the graph such that p’s

label is in a CFL that ensures the corresponding statements can cause v to point to

o. To balance precision and efficiency for on-demand queries, a points-to analysis is

typically flow-insensitive, field-sensitive and context-sensitive [54]. Context sensitivity

is realised as a balanced-parentheses problem along two axes: method invocation (by

matching call entries and exits so that only realisable paths are considered) and heap

abstraction (by distinguishing the same abstract object from different paths).

While CFL-reachability formulation introduced in Section 2.3 automatically leads

to a demand-driven approach, performing basic CFL-reachability based points-to

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS38

analysis, which is introduced in Algorithm 1, for large, complex software can still

be costly, especially when a client issues a large number of queries. Existing state-of-

the-art solutions [54, 66, 74] discussed in Section 2.4 have addressed the performance

issue by using some kind of approximations. However, redundant traversals along the

same path are still repeatedly made, unless they are identified by a time-consuming

whole-program pre-analysis.

In this chapter, we introduce a novel technique, called DynSum, to perform

context-sensitive demand-driven points-to analysis fully on-demand. Unlike existing

techniques [54, 66, 74], our approach exploits local reachability reuse by perform-

ing a Partial Points-To Analysis (PPTA) within a method dynamically. PPTA is

field-sensitive but context-independent, thereby enabling the summarised points-to

relations in a method to be reused in its different calling contexts without any pre-

cision loss. We identify such reuse as a practical basis for developing an effective

optimisation for demand-driven points-to analysis.

In this chapter, we make the following contributions:

• Our dynamic approach improves the performance of demand-driven points-to

analysis without affecting precision and is fully on-demand without requiring

any (costly) whole-program pre-analysis. This appears to be the first points-to

analysis that computes dynamic method summaries to answer demand queries.

• We have implemented DynSum in the Soot compiler framework for Java. We

have used three representative clients (safe casting, null dereferencing and fac-

tory methods) to evaluate the performance improvements against RefinePTS,

the state-of-the-art demand-driven points-to analysis introduced in [54]. The

average speedups achieved by DynSum for the three clients over a suite of nine

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS39

Java benchmarks are 1.95ˆ, 2.28ˆ and 1.37ˆ, respectively.

• We show that DynSum computes only a small percentage of the summaries

computed by StaSum, a static whole-program analysis [70]. This makes Dyn-

Sum more scalable and better-suited for answering demand queries in low bud-

get environments.

3.2 A Motivating Example

In this section, we illustrate the problem using an example. Figure 3.1 gives a Java

program, which represents the most common operations of a Vector container. Its

PAG representation is shown in Figure 3.2.

To avoid cluttering, the labels “assign” and “assignglobal” for assignment edges

are omitted. Note that oi denotes the object created at the allocation site in line i

and vm (with a subscript) denotes variable v declared in method m.

We explain how RefinePTS works by using it to compute the points-to sets for

s1 and s2 in Figure 3.2. We motivate the need for local reachability reuse in DynSum

in Section 3.3.

Consider RefinePTSps1q first. To fully resolve its points-to set, the following

four iterations are performed:

1. Initially, RefinePTS starts being field-based since fldsSeen

“ fldsToRefine “ H. In this first iteration, due to the existence of the match

edge, p
match−−−Ñ retget, we find that SBPointsTops1,Hq “ to26,o29u since

there are two flowsTo-paths: (1) o26
new−−Ñ tmp1

entry26−−−−Ñ p
match−−−Ñ retget

exit22−−−Ñ

retretrieve
exit32−−−Ñ s1 and (2) o29

new−−Ñ tmp1
entry29−−−−Ñ p

match−−−Ñ retget
exit22−−−Ñ retretrieve

exit32−−−Ñ

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS40

1 class Vector{

2 Object [] elems;

3 int count;

4 Vector (){

5 t=new Object [8];

6 this.elems=t;}

7 void add(Object p){

8 t=this.elems;

9 t[count ++]=p;}

10 Object get(int i){

11 t=this.elems;

12 return t[i]; }}

13 class Client{

14 Vector vec;

15 Client () {}

16 Client(Vector v)

17 { this.vec=v; }

18 void set(Vector v)

19 { this.vec=v; }

20 Object retrieve ()

21 { t=this.vec;

22 return t.get (0); }}

23 class Main{

24 static void main (...){

25 Vector v1=new Vector ();

26 v1.add(new Integer (1));

27 Client c1=new Client(v1);

28 Vector v2=new Vector ();

29 v2.add(new String ());

30 Client c2=new Client ();

31 c2.set(v2);

32 s1=c1.retrieve ();

33 s2=c2.retrieve ();}

34 }

Figure 3.1: A motivating example.

s1.

2. In the second iteration, RefinePTS starts with fldsToRefine “ ttget
ldparrq−−−−Ñ

retgetu. There are two new match edges found: tVector
match−−−Ñ tget and tVector

match−−−Ñ

tadd. As tadd
match
Ð−−− tVector

new
Ð−− o5

new−−Ñ tVector
match−−−Ñ tget, tadd and tget are found

to be aliases. Thus, SBPointsTops1,Hq “ to26,o29u remains unchanged.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS41

p

tadd

thisadd

stparrq

ldpelemsq

o5

tVector

thisVector

new

stpelemsq

tmp2 o29 s2
new

tmp1 o26
s1

new

v2 o28 o30 c2
new new

v1 o25 o27 c1
new new

thisget

tget

retget

ldparrq

ldpelemsq

retretrieve

tretrieve

thisretrieve

ldpvecq
vset thisset

vClient thisClient

stpvecq

stpvecq

en
tr
y 2

2

exit22

ex
it 3

2

ex
it 3
3

en
tr
y 3
3

entry32

entry
31en

tr
y 3
1

en
try

2
5

entry
28

entry29

ent
ry26

entry29

entry
26

en
tr
y 2
7

en
try

2
7

local edge global edge

Figure 3.2: PAG for the example given in Figure 3.1.

3. In the third iteration, RefinePTS continues to refine the two new match

edges discovered in the second iteration. SBPointsTo starts its traversal

from s1 along the right part of the graph. Initially, RRP “ v w. On encoun-

tering exit32 and exit22, the analysis pushes their call sites into the context

stack at node retget: RRP “ v32, 22w. Then it arrives at tretrieve after hav-

ing popped the stack once so that RRP “ v32w. Traversing along another two

new match edges, tretrieve
match
Ð−−− vClient and tretrieve

match
Ð−−− vset, RefinePTS will

next explore from vClient and vset, one by one. As both o25 and o28 can flow

to thisVector and thisadd, so thisVector and thisadd are aliases. So once again

SBPointsTops1,Hq “ to26,o29u is the same as before.

4. In the last iteration, RefinePTS continues to refine the two new match edges

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS42

discovered in the third iteration. Due to context sensitivity, only the edge

thisretrieve
entry32
Ð−−−− c1 is realisable because entry32 matches the top of context

stack v32w but thisretrieve
entry33
Ð−−−− c2 does not. Therefore, thisClient and thisretrieve

may be aliases. So SBPointsTo will eventually visit o26 and obtain the final

solution: SBPointsTo ps1,Hq “ to26u.

Similarly, s2 is resolved. However, RefinePTS will traverse redundantly a few

paths that it did before in resolving s1 in order to conclude that SBPointsTo

ps2,Hq “ to29u.

3.3 The DynSum Analysis

While RefinePTS may bring benefits for some clients, our motivating example has

exposed several of its limitations:

• The same paths can be traversed multiple times for a set of queries under the

same or different calling contexts. This problem becomes more severe as modern

software relies heavily on common libraries (e.g., Java JDK).

• Ad hoc caching techniques [54, 66, 74] are ineffective for three reasons. First,

SBPointsTopv, cq cannot be cached unless it is fully resolved within a pre-set

budget. Second, the cached SBPointsTopv, cq can only be reused in the same

context c. When resolving SBPointsTops1,Hq and SBPointsTops2,Hq pre-

viously, the points-to set of retget is computed twice, once for v32, 22w and once

for v33, 22w. As a result, the same path from retget to thisget is still redun-

dantly traversed for such different contexts. Finally, caching and refinement

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS43

may be incompatible as a cached points-to set may depend on the match edges

encountered when the points-to set was computed.

• All field-based refinement iterations are pure overhead before a client can be

satisfied with a particular query. This “lazy” strategy is not well-suited for

clients that require precise points-to or aliasing information.

In this chapter, we propose to overcome these limitations by giving up refinement

and relying on exploiting local reachability reuse to efficiently answer demand queries.

As shown in Figure 3.2, we categorise the two types of edges in a PAG: local edges

(new, assign, ld and st) and global edges (assignglobal, entryi and exiti). The key

observation is that local edges have no effects on the context of a query while global

edges have no effects on its field sensitivity.

Therefore, our DynSum analysis is broken down into two parts. DSPointsTo

given in Algorithm 4 performs a partial points-to analysis (PPTA) on-the-fly for a

queried variable to summarise its points-to relations along the local edges within a

method field-sensitively but context-independently. DynSum in Algorithm 5 handles

the context-dependent global edges while collaborating with PPTA to compute new

summaries if they are unavailable for reuse.

3.3.1 PPTA: Partial Points-To Analysis

It is easy to understand what PPTA is in terms of the RSMs given in Figure 2.3, as

the two RSMs (for pointsTo and alias) in Figure 2.3(a), which are together equivalent

to LFT, handle field sensitivity, and the RSM for RRP shown in Figure 2.3(b) handles

context sensitivity.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS44

Algorithm 4 PPTA-based summarisation

DSPointsTo (v, f, s)

1: ppts Ð H

2: if s “ S1 then

3: for each v
new
Ð−− o do

4: if f “ H then

5: ppts Ð ppts Y { o }
6: else

7: ppts Ð ppts Y DSPointsTo pv, f,S2q

8: for each v
assign
Ð−−− x do

9: ppts Ð ppts Y DSPointsTo px, f,S1q

10: for each v
ldpgq
Ð−−− x do

11: ppts Ð ppts Y DSPointsTo (x, f.Pushpgq,S1)

12: if v
exit/entry/assignglobal
Ð−−−−−−−−−−−−− n then

13: ppts Ð ppts Y { pv, f,S1q }
14: if s “ S2 then

15: for each x
ldpgq
Ð−−− v do

16: if f.Peek() “ g then

17: ppts Ð ppts Y DSPointsTo (x, f.Poppq,S2)

18: for each x
assign
Ð−−− v do

19: ppts Ð ppts Y DSPointsTo px, f,S2q

20: for each x
stpgq
Ð−−− v do

21: ppts Ð ppts Y DSPointsTo (x, f.Pushpgq,S1)

22: for each v
stpgq
Ð−−− x do

23: if f.Peek() “ g then

24: ppts Ð ppts Y DSPointsTo (x, f.Poppq,S1)

25: if n
exit/entry/assignglobal
Ð−−−−−−−−−−−−− v then

26: ppts Ð ppts Y { pv, f,S2q }
27: return ppts

PPTA aims to summarise all state transitions field-sensitively but

context-insensitively made along the local edges of a method according to the pointsTo

and alias RSMs given in Figure 2.3(a). Starting with a points-to query for a variable

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS45

v in context c, we will eventually arrive at the two RSMs with a new query pu, f, sq,

where u is a node in some method m, f is a field stack containing the field edge

labels encountered but not yet matched, and s is a state indicating the direction in

which the analysis traverses—along a flowsTo path if s “ S1 and a flowsTo path if

s “ S2. The objective of performing PPTA for pu, f, sq is to compute a so-called

partial points-to set for u, denoted pptapu, f, sq, so that (1) pptapu, f, sq contains all

objects o in method m that flow to u, and (2) all tuples pu 1, f 1, s 1q eventually reached

by the pointsTo and alias RSMs given in Figure 2.3(a) along only the local edges in

method m. Each such tuple represents a state reached this way and will be cached

for later reuse just before a global edge is about to be traversed.

Consider our example given in Figure 3.1 again. We have pptapretget,H,S1q

“ tpthisget, varr, elemsw, S1qu, which shows intuitively that the points-to set of

thisget.elems.arr must be included in the points-to set of retget. Note that this

PPTA information is computed when answering the points-to query for s1 and will

be reused later when the points-to query s2 is answered.

For another example, suppose we want to compute the points-to set for s2 with

an empty context. By traversing the right part of the PAG in Figure 3.2, we will

eventually need to compute a query for pthisset, varr, elems, vecw,S2q (as later illus-

trated in Steps 6 – 7 for s2 in Figure 3.3). By performing a PPTA, we find that

pptapthisset, varr, elems, vecw,S2q “ tpvset, varr, elemsw,S1qu.

3.3.2 Algorithms

Algorithm 4 This is a recursive algorithm that propagates the context-independent

CFL-reachability information across a given PAG.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS46

Algorithm 5 The DynSum analysis

DynSum (v, c)

1: pts Ð H

2: wÐ { pv,H,S1, cq }
3: while w ‰ H do

4: remove pu, f, s, c 1q from w

5: if ppu, f, sq, lq P Cache then

6: pptaÐ l

7: else

8: pptaÐ DSPointsTo (u, f, s,H)

9: CacheÐ CacheY ppu, f, sq,pptaq

10: for each o P ppta do

11: pts Ð pts Y { po, c 1q }
12: for each px, f 1, s 1q P ppta do

13: if s 1 “ S1 then

14: for each x
exiti
Ð−− y do

15: Propagatepw,y, f 1,S1, c
1.Push(i)q

16: for each x
entryi
Ð−−− y do

17: if c 1 “ H or c 1.Peek()“ i then

18: Propagatepw,y, f 1,S1, c
1.Pop()q

19: for each x
assignglobal
Ð−−−−−−− y do

20: Propagatepw,y, f 1,S1,Hq

21: if s 1 “ S2 then

22: for each y
exiti
Ð−− x do

23: if c 1 “ H or c 1.Peek()“ i then

24: Propagatepw,y, f 1,S2, c
1.Pop()q

25: for each y
entryi
Ð−−− x do

26: Propagatepw,y, f 1,S2, c
1.Push(i)q

27: for each y
assignglobal
Ð−−−−−−− x do

28: Propagatepw,y, f 1,S2,Hq

29: return pts

Propagate(w, n, f, s, c)

1: w Ð w Y { pn, f, s, cq }

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS47

The analysis strictly follows the pointsTo and alias RSMs for LFT given in Fig-

ure 2.3(a), which has two states, S1 and S2. All transitions on S1 are handled in lines

2 – 13 and those on S2 in lines 15 – 26. Let us consider S1 first. On encountering an

edge v
new
Ð−− o (lines 3 – 7), the analysis will insert the object o into pts only when

the field stack f is empty. Otherwise, it will traverse a flowsTo path to find an alias

relation between v and some x such that v alias x holds. An alias relation is discov-

ered by following the alias RSM given in Figure 2.3(a). In lines 8 – 11, the assign and

ld edges are handled. In lines 12 – 13, on encountering a global edge, PPTA stores

the current state in pts. Lines 15 – 26 for dealing with state S2 are similar. The only

interesting part happens in lines 22 – 24, which accepts a st edge when the top of the

field stack f matches the label of the store edge, g.

Note that the two states S1 and S2 are handled asymmetrically since the alias

RSM in Figure 2.3(a) is “asymmetric”, or precisely, is recursive. There are four

cases involved in handling field accesses: ldpgq, stpgq, ldpgq and stpgq. In the PPTA

algorithm, the ldpgq edges are handled in S1 while the other three in S2. In S1, the

alias RSM will process a ldpgq edge, v
ldpgq
Ð−− x, and stay in S1. In S2, the alias RSM

will process (1) a ldpgq edge, x
ldpgq
Ð−− v, and stay in S2, (2) a stpgq edge, x

stpgq
Ð−− v,

and then transit to S1 to look for aliases for the base variable x of the store, and

(3) a stpgq edge, v
stpgq
Ð−− x, and transit to S1 if the base variable v is an alias of the

base variable of the most recent load processed earlier in lines 13 – 14. Note that

the alias RSM can only move from S1 to S2 at an allocation site on new new, i.e., by

first traversing the corresponding new edge and then the same edge in the opposite

direction, which is the new edge.

Note that there can be points-to cycles in a PAG. Therefore, in our implementation

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS48

a set of visited nodes is used to avoid re-traversing a cycle more than once, similarly

as in [54].

Algorithm 5 This is where our DynSum analysis starts. When called, DynSum

pv, cq will return the points-to set of a queried variable v in context c. This is a

worklist algorithm that propagates the CFL-reachability facts through a given PAG.

Because the local edges are handled as a PPTA by Algorithm 4, Algorithm 5 deals

with only the context-dependent global edges according to the RSM RRP in Figure

2.3(b) while calling Algorithm 4 to perform all required PPTA steps.

Each worklist element is a tuple of the form pu, f, s, cq, indicating that the com-

putation for v has reached node u, where u is a new queried variable generated, with

the current field stack f, the current “direction” state s P tS1,S2u of the RSM given

in Figure 2.3(a) and the current context stack c. In lines 5 – 9, the summary ppta

for the query pu, f, sq is reused if it is available in Cache and computed otherwise

by calling Algorithm 4. As ppta returned from PPTA contains both objects and

tuples, DynSum handles objects in lines 10 – 11 and tuples in lines 12 – 28. The

assignglobal, exiti and entryi edges are handled according to the RSM for RRP given

in Figure 2.3(b), similarly as in RefinePTS.

3.3.3 An Example

We highlight the advantages of DynSum using the example given in Figure 3.1. In

our implementation of Algorithm 5, DSPointsTo is not called in line 8 to perform

the PPTA if u has no local edges.

Suppose we want to answer the same two points-to queries s1 and s2 as before.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS49

Algorithm Full Precision Memorisation Reuse On-Demandness

NoRefine Yes No No Yes

RefinePTS Yes Dynamic (within queries) Context Dependent Yes

StaSum No Static (across queries) Context Independent Partly

DynSum Yes Dynamic (across queries) Context Independent Yes

Table 3.1: Strengths and weaknesses of four demand-driven points-to analyses.

Figure 3.3 illustrates how local reachability reuse is exploited in our analysis by show-

ing only the traversed edges that lead directly to their points-to targets: o26 for s1

and o29 for s2.

Suppose s1 is issued first and then followed by s2. DynSum starts from s1

with the initial state being (s1,H,S1,H). The analysis encounters the incoming

exit32 edge, staying at S1 and pushing 32 into the context stack. The new state is

(retretrieve,H,S1, v32w).

Next, DynSum processes edges according to the RSMs given in Figures 2.3(a)

and (b). On encountering a node with some local edges, the analysis first performs a

PPTA on the node and then uses its summarised partial points-to set to continue its

exploration. If the summarised partial points-to set is available in the cache, then it

is reused straightaway to speed up the exploration.

When a node is visited, there can be several paths to be explored from the node.

For example, v1 is visited at Step 11 when the query s1 is processed. In this case,

there are three entry edges v
entry25−−−−Ñ thisVector, v

entry26−−−−Ñ thisadd and v
entry27−−−−Ñ vClient to

deal with. The latter two do not lead to more paths to be explored and entry25 is the

only acceptable path to keep traversing.

Finally, DynSum reaches tmp1
new
Ð−− o26, by completing its analysis in 23 steps.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS50

Step v f s c Edge

0 s1 v w S1 v w exit32
1 retretrieve v w S1 v32w exit22
2 retget v w S1 v32, 22w loadpaq
3 tget vaw S1 v32, 22w loadpeq
4 thisget va, ew S1 v32, 22w entry22
5 tretrieve va, ew S1 v32w loadpvq
6 thisretrieve va, e, vw S1 v32w entry32
7 c1 va, e, vw S1 v w new new
8 c1 va, e, vw S2 v w entry27
9 thisClient va, e, vw S2 v27w storepvq
10 vClient va, ew S1 v27w entry27
11 v1 va, ew S1 v w new new
12 v1 va, ew S2 v w entry25
13 thisVector va, ew S2 v25w storepeq
14 tVector vaw S1 v25w new new
15 tVector vaw S2 v25w storepeq
16 thisVector va, ew S1 v25w entry25
17 v1 va, ew S1 v w new new
18 v1 va, ew S2 v w entry26
19 thisadd va, ew S2 v26w loadpeq
20 tadd vaw S2 v26w storepaq
21 p v w S1 v26w entry26
22 tmp1 v w S1 v w new
23 o26 v w S1 v w
0 s2 v w S1 v w exit33
1 retretrieve v w S1 v33w exit22
2 retget v w S1 v33, 22w

loadpaq loadpeq reuse

2 thisget va, ew S1 v33, 22w entry22
3 tretrieve va, ew S1 v33w

loadpvq reuse

2 thisretrieve va, e, vw S1 v33w entry33
4 c2 va, e, vw S1 v w new new
5 c2 va, e, vw S2 v w entry31
6 thisset va, e, vw S2 v31w storepvq
7 vset va, ew S1 v31w entry31
8 v2 va, ew S1 v w new new
9 v2 va, ew S2 v w entry28
10 thisVector va, ew S2 v28w

storepeq new new storepeq reuse

20 thisVector va, ew S1 v28w entry28
11 v2 va, ew S1 v w new new
12 v2 va, ew S2 v w entry29
13 thisadd va, ew S2 v29w

loadpeq storepaq reuse

2 p v w S1 v29w entry29
14 tmp2 v w S1 v w new
15 o29 v w S1 v w

Table 1: Traversals of DYNSUM when answering the points-to queries fors1 and s2 in our motivating example (a, e and v stand for
fieldsarr, elems and vector, respectively).

Algorithm Full Precision Memorization Reuse On-Demandness

NOREFINE Yes No No Yes
REFINEPTS Yes Dynamic (within queries) Context Dependent Yes
STASUM No Static (across queries) Context Independent Partly
DYNSUM Yes Dynamic (across queries) Context Independent Yes

Table 2: Strengths and weaknesses of four demand-driven points-to analyses.

Figure 3.3: Traversals of DynSum when answering the queries for s1 and s2 in our

motivating example (a, e and v stand for fields arr, elems and vector, respectively).

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS51

The points-to set of s1 is {o26}.

When s2 is issued, the summaries computed earlier can be reused. As shown in the

bottom part of Figure 3.3, DynSum takes only 15 steps to find {o29} as its points-to

set. Ad hoc caching techniques [54, 66, 74] are not helpful since both queries require

different calling contexts to be traversed, as explained earlier.

For this example, the summaries computed when query s1 is processed are not

reused within the same query. In general, however, reuse can happen both within a

query and during subsequent queries.

3.3.4 Comparison

We compare four context- and field-sensitive demand-driven points-to or alias analyses

in Table 3.1 now and in our evaluation later:

• RefinePTS. This is the implementation from [54] with an open-source release.

As reviewed earlier, RefinePTS uses a refinement policy to satisfy a client’s

queries. All queries are handled independently. Ad hoc caching is used to avoid

unnecessary traversals within a query.

• NoRefine. This is the version of RefinePTS with neither refinement nor ad

hoc caching.

• StaSum. This is the implementation with similar concepts introduced in [66,

70], which computes all-pair reachability summaries for each method off-line and

then reuses the summaries to accelerate demand queries. In our experiments,

such summaries are computed for all methods on the PAG instead of a symbolic

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS52

graph of the program. No efforts are made to avoid some summaries based on

some user-supplied heuristics.

• DynSum. This is the one introduced in this thesis. DynSum can deliver the

same precision as RefinePTS with enough budgets and is fully on-demand

without performing any unnecessary computations to achieve great reuse.

3.4 Evaluation

We evaluate the efficiency of DynSum by comparing it with RefinePTS using nine

Java benchmarks, selected from the Dacapo and SPECjvm98 benchmark suites. For

reference purposes, the performance of NoRefine is also given. As StaSum is not

available to us, we will compare it with DynSum in terms of the number of summaries

computed. Our evaluation has validated the following two experimental hypotheses

about the proposed DynSum approach:

• DynSum is more scalable than RefinePTS. DynSum outperforms Re-

finePTS by 1.95ˆ, 2.28ˆ and 1.37ˆ on average for the three clients discussed

below.

DynSum avoids a great number of unnecessary computations and thus repre-

sents a good optimisation for context-sensitive demand-driven analysis.

• DynSum is more scalable than StaSum. DynSum computes significantly

fewer summaries than StaSum for the same three clients, making it better-

suited for low-budget environments like JIT compilers and IDEs.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS53

Benchmark
#Methods #Nodes (K) #Edges (K)

Locality
(K) O pVYGq new assign ld st entry exit assignglobal

jack 0.5 16.6 207.9 16.6 328.1 25.1 8.8 39.9 12.8 2.4 87.3%

javac 1.1 17.2 216.1 17.2 367.4 26.8 9.1 42.4 13.3 0.5 88.2%

soot-c 3.4 9.4 104.8 9.4 195.1 13.3 4.2 19.3 6.4 0.7 89.4%

bloat 2.2 10.3 115.2 10.3 217.2 14.5 4.6 20.6 6.1 1.0 89.9%

jython 3.2 9.5 109.0 9.5 168.4 14.4 4.2 19.5 7.1 1.3 87.6%

avrora 1.6 4.5 45.1 4.5 38.1 6.0 2.9 9.7 2.9 0.3 80.0%

batik 2.3 10.8 118.1 10.8 119.7 13.4 5.3 24.8 7.8 0.6 81.8%

luindex 1.0 4.4 48.2 4.4 42.6 6.9 2.3 9.1 3.0 0.5 81.7%

xalan 2.5 6.6 75.8 6.6 76.4 14.1 4.4 15.7 4.0 0.2 83.6%

Table 3.2: Benchmark statistics. Note that Column “O (objs)” is identical to Column

“new”. All of the numbers include the reachable parts of the Java library, determined

using a call graph constructed on the fly with Andersen-style analysis [2] by Spark [31].

Column “locality” gives the ratio of local edges among all edges in a PAG.

3.4.1 Implementation

RefinePTS is publicly available in the Soot 2.4.0 [60] and Spark [31] frameworks. We

have implemented DynSum and NoRefine in the same frameworks and conducted

our experiments using the Sun JDK 1.6.0 16 libraries. Unmodeled native methods

and reflection calls [37, 38] are handled conservatively and Tamiflex [5] is used. As

all three analyses are context-sensitive, the call graph of the program is constructed

on-the-fly so that a context-sensitive call graph is always maintained during the CFL-

reachability exploration.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS54

When introducing all three algorithms earlier, we have assumed cycle-free PAGs to

make them easy to understand. However, recursion is handled as described in [54] by

computing the call graph on-the-fly with recursion cycles collapsed. Points-to cycles

are also handled using visited flags in Algorithm 4 as described in [54] by ensuring

that a node is not cyclically visited.

3.4.2 Methodology

We have conducted our experiments on a machine consisting of four AMD Opteron

2.2GHz processors (12 cores each) with 32 GB memory, running RedHat Enterprise

Linux 5 (kernel version 2.6.18). Although the system has multi-cores, each analysis

algorithm is single-threaded.

We have selected the following three representative clients:

• SafeCast. This client checks the safety of downcasts in a program as also

discussed in [54].

• NullDeref. This client detects null pointer violations, demanding high precision

from points-to analysis.

• FactoryM. This client checks that a factory method returns a newly-allocated

object for each call as in [54].

Each client continuously issues points-to queries to an analysis. A query is either

positively answered by the analysis or terminated once a pre-set budget is exceeded.

In our experiments, we have also carefully divided the queries from a client into

batches to demonstrate the scalability of DynSum compared to RefinePTS and

StaSum as the number of queries increases.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS55

The benchmarks we used for evaluation are nine Java programs selected from the

SPECjvm98 and Dacapo benchmark suites. Table 3.2 shows the number of different

kinds of nodes and edges in the context-sensitive PAG of a program. The locality of

a PAG is measured as the percentage of local (flowsTo) edges (including new, assign,

ld and st) among all (flowsTo) edges. This metric is used to demonstrate the scope of

our optimisation. As can be seen from Table 3.2, the majority of the edges in a PAG

are local edges. This implies that a large number of paths with only local edges can

be summarised in context-independent manner and reused later.

We repeated each experiment three times and reported the average time of the

three runs, which includes the time elapsed on points-to analysis and client analysis.

All the experiments have low variance in performance. For all analysis algorithms

compared, the budget limitation is 75,000, indicating the maximum number of edges

that can be traversed in a PAG in order to answer one points-to query.

3.4.3 Results and Analysis

Analysis Times Table 3.3 compares the analysis times of DynSum with Re-

finePTS and NoRefine for the three clients. NoRefine is the slowest in most

cases but can be faster than RefinePTS in some benchmarks for clients SafeCast

and NullDeref. In contrast, DynSum is always faster than NoRefine in all bench-

marks for all three clients.

Let us compare DynSum and RefinePTS. DynSum is only slightly slower in

avrora for SafeCast and luindex for FactoryM. DynSum attains its best perfor-

mance in soot-c for NullDeref, outperforming RefinePTS by 4.19ˆ. The aver-

age speedups achieved by DynSum for the three clients SafeCast, NullDeref and

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS56

jack javac soot-c bloat jython avrora batik luindex xalan

SafeCast

NoRefine 31.0 68.1 134.7 68.2 61.8 39.1 43.4 47.6 459.1

RefinePTS 28.4 77.9 127.9 76.3 50.9 30.2 29.8 44.9 457.5

DynSum 15.2 41.3 37.5 32.8 32.2 35.1 19.7 25.3 194.5

NullDeref

NoRefine 121.0 174.4 212.3 72.8 160.0 84.4 95.0 57.1 797.9

RefinePTS 145.6 163.9 221.0 73.5 150.2 20.6 80.7 60.1 575.7

DynSum 52.6 87.5 52.8 42.6 72.3 13.6 46.4 41.3 194.1

FactoryM

NoRefine 26.3 85.1 22.8 147.1 15.7 30.1 41.2 20.7 139.1

RefinePTS 25.4 60.5 9.5 104.6 15.4 27.9 33.9 13.1 117.8

DynSum 23.4 47.2 6.7 75.1 6.3 24.4 24.3 13.4 99.5

Table 3.3: Analysis times of NoRefine, RefinePTS and DynSum for the three

clients: SafeCast, NullDeref and FactoryM.

FactoryM are 1.95ˆ, 2.28ˆ and 1.37ˆ, respectively.

The client that benefits the most from DynSum is NullDeref, which requires

more precision than the other two clients. Given such high-precision requirements,

RefinePTS can hardly terminate early, effectively rendering its repeated refinement

steps as pure overhead. This fact is also reflected by the similar analysis times taken

by both RefinePTS and NoRefine for this client.

As garbage collection is enabled, it is difficult to monitor memory usage precisely.

In our all experiments, DynSum never exceeds 20% more than RefinePTS in terms

of the peak memory usage.

Scalability in Answering Demand Queries We have selected soot-c, bloat

and jython to demonstrate that DynSum is more scalable than RefinePTS and

StaSum. These applications are selected because they have large code bases, i.e.,

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS57

large PAGs as shown in Table 3.2. For each program, we divide the sequence of

queries issued by a client into 10 batches. If a client has nq queries, then each of the

first nine batches contains tnq{10u queries and the last one gets the rest.

• Comparing with RefinePTS Figure 3.4 compares the times taken by Dyn-

Sum for handling each batch of queries normalised with respect to RefinePTS.

As more batches are processed, more points-to relations will have been sum-

marised dynamically and recorded for later reuse, and consequently, the less

time that DynSum takes to process each subsequent batch.

• Comparing with StaSum We collect the number of summaries computed

by DynSum at the end of each batch and compare it with StaSum for the

three selected benchmarks. For DynSum, the number of summaries computed

is available as the size of Cache given in Algorithm 5. For StaSum, all possible

summaries for each call entry or exit in a PAG are computed. While StaSum

can reduce its number of such summaries based on a user-supplied threshold

[70], it is unclear how this can be done effectively by the user, particularly when

its optimal value varies from program to program.

Figure 3.5 compares the (cumulative) size of summaries computed by Dyn-

Sum normalised with respect to StaSum. DynSum only needs to compute

41.3%, 47.7% and 37.3% of the summaries computed by StaSum on average

in order to handle all the queries issued by the three clients. Furthermore, the

number of summaries increases dynamically as the number of queries increases,

highlighting the dynamic nature of DynSum.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS58

soot-c bloat jython

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) SafeCast

N
or

m
al

is
ed

T
im

e
to

R
e
f
in
e
P
T
S

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) NullDeref

N
or

m
al

is
ed

T
im

e
to

R
e
f
in
e
P
T
S

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) FactoryM

N
or

m
al

is
ed

T
im

e
to

R
e
f
in
e
P
T
S

Figure 3.4: Normalised analysis times for each batch of queries normalised with re-

spect to RefinePTS.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS59

StaSum DynSum

all soot-c bloat jython

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

(a) SafeCast

S
u

m
m

ar
y

S
iz

e
(%

)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

(b) NullDeref

S
u

m
m

ar
y

S
iz

e
(%

)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

(c) FactoryM

S
u

m
m

ar
y

S
iz

e
(%

)

Figure 3.5: The cumulative number of summaries computed by DynSum normalised

with respect to StaSum.

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS60

Through these studies, we find that DynSum is effective in avoiding unneces-

sary traversals made as in RefinePTS and unnecessary summaries computed as in

StaSum. The increased scalability makes DynSum better-suited to low-budget en-

vironments such as JIT compilers and IDEs in which software may undergo frequent

changes.

3.5 Related Work

In recent years, there has been a large body of research devoted to points-to analysis,

with the summary-based approach to be the most popular and general for achieving

context sensitivity. However, existing summary-based algorithms [40, 62, 72] are

mostly whole-program-based. How to compute summaries efficiently for demand-

driven analysis is less well-understood. Below we focus only on the work directly

related to demand-driven points-to analysis.

To accelerate demand queries, some techniques to speed up demand-driven points-

to analysis have been explored. In the refinement-based approach introduced in [54],

the analysis starts to be field-based for all heap accesses and gradually introduces field

sensitivity into those heap accesses where a better precision may be obtained. In [66],

a (whole-program) pre-analysis is presented to improve the performance of demand-

driven points-to analysis in Java. In demand-driven analysis techniques [54, 66, 74],

budget limitation is commonly used to give a conservative answer for a query once a

pre-set budget has been exceeded.

Reps et al. [34, 44] pioneered the research on program analysis via graph reachabil-

ity. They formulate a number of static analysis programs in terms of CFL-reachability,

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS61

leading to a natural solution to demand-driven points-to analysis.

Heintze and Tardieu [23] introduced a deduction-based demand-driven points-to

analysis for C to determine the points-to sets based on demand queries from a client.

They adopted an Andersen-style inclusion-based pointer analysis by reasoning about

dependent constraints.

Sridharan et al. [54, 55] have proposed two approaches to solving CFL-reachability-

based demand-driven points-to analysis for Java. They initially presented a CFL-

reachability formulation to model heap accesses as a balanced-parentheses problem

in a context-insensitive manner [55]. Later, they extended this earlier work to obtain a

context-sensitive points-to analysis [54]. The starting point of our PPTA-based solu-

tion, DynSum, is Sridharan and Bodik’s refinement-based analysis [54], using Spark’s

PAG [31] as our program representation. DynSum improves the performance of this

state-of-the-art work significantly without affecting precision.

Zheng and Rugina [74] described a demand-driven alias analysis for C. Unlike

Heintze and Tardieu’s analysis [23], Zheng and Rugina’s analysis relies a memory

alias CFL-reachability formulation. Their analysis is context-insensitive with indirect

function calls being conservatively handled. As a result, realisable and unrealisable

paths are not distinguished, resulting in both precision and performance loss for some

queries.

Xu et al. [66] proposed a pre-analysis to speed up the context-sensitive points-to

analysis introduced in [54]. The analysis builds a symbolic graph to reduce the size

of a program’s PAG but it is whole-program-based.

Yan et al. [70] have recently extended the work of [66] to perform a demand-driven

alias analysis without having to compute points-to sets. The proposed approach,

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS62

denoted StaSum, is compared with DynSum in Table 3.1 and Figure 3.5.

Some existing techniques [54, 66, 74] on memorisation are ad hoc, limiting their

scope and effectiveness. The points-to set ptspv, cq of a variable v in a calling context c

is cached only after all v’s pointed-to objects have been fully resolved, which does not

happen once a pre-set budget has been exceeded. Due to such full reachability reuse,

ptspv, cq can only be reused for v in exactly the same (full) context c. In addition,

these existing memorisation techniques do not directly apply to the state-of-the-art

refinement-based approach [54] since the underlying PAG may change due to the

iterative refinement used. To the best of our knowledge, this work represents the

first systematic investigation on how to exploit local reachability reuse dynamically

in order to improve the performance of context-sensitive demand-driven points-to

analysis in CFL-reachability.

3.6 Summary

In this chapter, we present a new technique on how to dynamically exploit local reach-

ability reuse to improve the performance of CFL-reachability based demand-driven

points-to analysis without sacrificing precision and ondemandness. Evaluation and

validation using three client applications over a range of nine Java benchmarks show

that our summarisation approach can significantly boost the performance of state-

of-the-art work without affecting precision by exploiting the locality of statements.

Our approach is not only an improvement of demand-driven points-to analysis, but

also provides a potential for it to be used in low-budget environments such as JIT

and IDEs, especially when a program undergoes constantly many changes as further

CHAPTER 3. DYNAMIC SUMMARY-BASED DEMAND-DRIVEN ANALYSIS63

investigated in the next chapter.

Chapter 4

Incremental Analysis

Incremental analysis is a technique used to analyse the program by assessing the im-

pact of small changes based on previous analysis results, while traditional program

analysis completely starts over from the beginning. The incremental approach may re-

sult in considerable savings in analysis time, however, studies on points-to analysis for

handling program changes are limited. Previous state-of-the-art incremental points-to

analyses suffer from use of complicated rules or limited precision [10, 25, 28, 42, 49, 73].

This chapter presents an approach to incrementally handle program changes based on

CFL-reachability. The goal is to reduce the unnecessary analysis time of recomput-

ing from scratch by limiting the change impact to those affected parts in a program.

Section 4.1 provides an overview of our incremental approach. Section 4.2 shows an

example used to describe our framework. Section 4.3 presents our points-to frame-

work based on incremental summarisation. Section 4.4 evaluates our approach with

three clients on a set of Java benchmarks. Section 4.5 discusses the previous work

most closely related to our work. Section 4.6 summaries the chapter.

64

CHAPTER 4. INCREMENTAL ANALYSIS 65

4.1 Overview

Software evolution is an important feature of modern software. In practice, larger

software applications are never complete and will continue to evolve once deployed.

Points-to analysis researches over several decades have focused on obtaining pre-

cise points-to information efficiently, with impressive progress being made in points-to

analysis for Java [32, 50, 54, 61, 70]. However, existing algorithms are generally not

formulated to be used in environments like IDEs where the software is still being devel-

oped. Precise whole-program analyses [32, 61] are expensive because they reanalyse a

program from scratch in response to code changes. Others [50, 54, 70] reduce analysis

times by performing points-to analysis on demand for a set of specified variables.

Points-to information is increasingly used in a variety of static analysis tools incor-

porated into an IDE to assist developers with program understanding and debugging.

In such environments, a points-to analysis must satisfy the following three constraints:

Frequent Code Changes The analysis must be engineered to work well in response

to small but frequent edits.

Non-Intrusiveness The analysis must handle each code change quickly without

disrupting developer productivity.

Demand Queries with Limited Budgets The analysis must answer queries as

precisely as possible within a small time budget.

For example, the developer may wish to know if (T)v is a safe downcast or not while

still making code changes to the program. The analysis is required to answer the

query quickly within a given budget while handling the impact of the code changes

being made.

CHAPTER 4. INCREMENTAL ANALYSIS 66

Traditional Method Summarisation In the case of whole-program analysis, con-

text sensitivity has been traditionally achieved via summarisation [26, 62, 72]. The

interprocedural modification side-effects of a method are summarised directly in terms

of the points-to sets established by the method itself and the others called directly

or indirectly in the method. The summary is then instantiated context-sensitively at

its different call sites. These traditional summary-based approaches are not suitable

for IDEs. When a code change occurs in a method, the summaries for the method

and all its direct and indirect callers may have to be updated, resulting in unbounded

propagation of the changed points-to information.

Change impact analysis Change impact analysis [1, 6, 17, 43] identifies software

artifacts being affected by a change. However, the underlying whole-program points-

to analyses currently employed do not even scale for small programs if flow and context

sensitivity are considered [1]. Existing incremental points-to analyses [28, 49, 73] were

not formulated for IDEs and thus cannot suitably be used due to their lack of efficiency

or precision, as discussed in Section 4.5.

In this chapter, we introduce a new approach, called Emu, to points-to analysis

for Java that simultaneously satisfies all the three constraints above for IDEs [51].

Leveraging recent advances on demand-driven points-to analysis [50, 54, 70], Emu

adopts a CFL-reachability formulation to facilitate processing demand queries raised

in IDEs after code changes are made. Emu achieves its efficiency by adopting a novel

modular approach to allowing method summaries to be incrementally updated upon

code changes. The points-to information in a method is summarised indirectly by

CFL-reachability so that the impact of a code change made in a method is localised,

i.e., bounded, requiring only the affected part of the method to be re-summarised just

CHAPTER 4. INCREMENTAL ANALYSIS 67

to reflect the change. In contrast, existing summary-based techniques for points-to

analysis [26, 62, 72] are unbounded, because the amount of re-summarisation triggered

by code changes is proportional to the size of the program rather than the size of the

impact. Emu achieves its precision by being (fully) context-sensitive (for both method

invocation and heap abstraction) and field-sensitive (by distinguishing different fields

of an object). These two axes are known to be crucial to achieving analysis precision

for Java [32, 61].

This chapter makes the following contributions:

• In this chapter, we present Emu, the first points-to analysis formulated directly

for IDEs by CFL-reachability to answer pointer-related queries on demand upon

code changes.

• We introduce a modular incremental summarisation to achieving both efficiency

and precision. Method summaries are described by CFL-reachability rather

than points-to sets as is done traditionally, enabling the impact of a code change

made in a method to be localised within the method so that only the affected

part of the method needs to be updated.

• We have implemented Emu in Soot, a Java optimisation and analysis framework

integrated into the Eclipse IDE. We have evaluated Emu with three represen-

tative clients, safe casting, null dereferencing and factory methods, using seven

Java programs. For small code changes, such as adding/deleting statements

(assignments or calls), Emu can answer each query under 0.054 secs on average

and under 0.87 secs in the worst case, at nearly the same precision achieved

by Emu without any time budget (or a whole-program analysis). Our results

CHAPTER 4. INCREMENTAL ANALYSIS 68

are encouraging, suggesting that Emu can be promisingly deployed in an IDE

where the changes are small.

4.2 Background

In this section, we show the points-to analysis problem with program changes from

an example. We also illustrate the major challenges facing incremental algorithm.

4.2.1 Example

First we introduce the problem using a Java example given in Figure 4.1, providing

an abstraction for the Java container pattern. In this example, we consider a simple

code change during development of the program. Lines 1 – 18 defines a Hashtable

class which contain two fields key and val. In lines 22 – 26, a Hashtable, h1, is

created and populated with an object of Element, e1, with its field f being initialised

with a string. In lines 27 – 31, the same thing happens for another Hashtable h2 with

a different object e2 of Element. In lines 32 and 33, calling get results in e3 “ e1

and e4 “ e2. In line 34, m retrieves the string stored in e3.f.

To obtain the points-to set of variablem in line 34, it is necessary to distinguish the

different calling contexts to obtain precise solution. We consider a statement deletion

in this example: the statement t2[index] = v in line 14. We need to resolve the

points-to solution after this code change.

The PAG of this example is shown in Figure 4.2. We use the PAG of our example

to show how to resolve some pointers on demand via CFL-reachability. Let us first

see how to discover o5 as a pointer target for t1 through LFT. In Figure 4.1, o22 flows

CHAPTER 4. INCREMENTAL ANALYSIS 69

1 class Hashtable {

2 Object [] key;

3 Object [] val;

4 Hashtable () {

5 Object [] s1 = new Object[MAXSIZE];

6 Object [] s2 = new Object[MAXSIZE];

7 this.key = s1;

8 this.val = s2;}

9 void put(Object k, Object v) {

10 int index = k.hashCode ();

11 Object [] t1 = this.key;

12 t1[index] = k;

13 Object [] t2 = this.val;

14 t2[index] = v;}

15 Object get(Object k) {

16 int index = k.hashCode ();

17 Object [] t = this.val;

18 return t[index]; }}

19 class Element{ Object f; }

20 class Main {

21 static void main (...) {

22 Hashtable h1 = new Hashtable ();

23 Element e1 = new Element ();

24 e1.f = new String("hello");

25 String k1 = "first";

26 h1.put(k1, e1);

27 Hashtable h2 = new Hashtable ();

28 Element e2 = new Element ();

29 e2.f = new String("world");

30 String k2 = "second";

31 h2.put(k2, e2);

32 Element e3 = (Element) h1.get(k1);

33 Element e4 = (Element) h2.get(k2);

34 Object m = e3.f; }}

Figure 4.1: A Java example.

CHAPTER 4. INCREMENTAL ANALYSIS 70

e3
m

ldpfq
e4

retexit32
exit33

t

thisget

ldparrq

ldpvalq

o5 o6

s1 s2

new new

thisHashtable

stpkeyq stpvalq

thisput

t1 t2

ldpkeyq ldpvalq

k v

stparrq stparrq

k1 k2
entry

26

en
tr
y 3

1

o25 o30

new new

e1 e2en
try

2
6 en

try
31

o23

o28new

new

tmp1tmp2

stpfq stpfq

o24 o29

new new

o22

h1

new

o27

h2

new

entry26

entry22

entry
32

entry31

entry27
en
tr
y 3
3

global edge

local edge

Figure 4.2: PAG for the Java example given in Figure 4.1.

to h1, which is the actual parameter passed to the formal parameter thisHashtable

of constructor Hashtable and thisput of put. So thisHashtable alias thisput. This

CHAPTER 4. INCREMENTAL ANALYSIS 71

fact is found in LFT because

thisHashtable assign h1 new o22 new h1 assign thisput

We then know that o5 flowsTo t1 since LFT has the flowsTo-path:

o5 new s1 stpkeyq thisHashtable alias thisput ldpkeyq t1

This flowsTo-path is also in RRP. So t1 points to o5.

Similarly, we find that o24 flowsTo m and o29 flowsTo m. However, when context

sensitivity is considered, only the former flowsTo-path is realisable. In Figure 4.1, o24

is initially inserted by calling put in line 26 into Hashtable h1, which is created in

line 22, and later retrieved by calling get in line 32 and saved into m. This flowsTo-

path is realisable because entry26 Ñ entry26 Ñ entry22 Ñ entry22 Ñ entry32 Ñ exit32 is

in RRP. In contrast, the flowsTo-path corresponding to o29 flowsTo m is not because

entry31 Ñ entry31 Ñ entry27 Ñ entry27 Ñ entry33 Ñ exit32 is not in RRP, i.e., o29 does

not flow to m context-sensitively.

After the code change made in line 14, the local edge from v to t2 will disappear

and thus the existing solutions may not be valid any more. For example, o24 cannot

flow to m any more due to the change. Existing CFL-reachability based points-to

analyses can only recompute the points-to information for the changed program from

scratch, which is costly. Therefore, an incremental analysis that can effectively handle

the change is critical to tackling this problem.

4.2.2 Challenges Facing Incremental Points-to Analysis

The research on points-to analysis that takes program changes into consideration is

limited. There are several major challenges facing incremental analysis:

CHAPTER 4. INCREMENTAL ANALYSIS 72

• Dependency maintenance. Incremental analysis needs to find out the part

of existing computed points-to solutions influenced by the program changes.

Without dependency information between the points-to results and the program

structures, it is in general not possible to determine the impact of program

changes. Therefore, the analysis must keep the relationship during the points-

to analysis. Typically, however, only a small percentage of the program codes

actually may change. The maintenance of this dependency is costly for most

incremental analyses.

• Expensive recomputation. While affected points-to results are found, the

incremental analysis must recompute their results in the modified program. For

most exhaustive points-to analyses, the points-to sets of all variables are com-

puted together. Therefore, the recomputation is often expensive or complicated.

• High memory requirements. Each variable in the points-to queries must

maintain its relevant accumulated program results during analysis. These ex-

tra data structures tend to be large, with potentially hundreds to thousands

of nodes. This problem is exacerbated for large programs with hundreds of

thousands of nodes, which may consume a significant amount of memory.

4.3 Points-to Analysis with Incremental Summari-

sation

To overcome the challenges, our incremental approach relies on a local CFL-reachability

analysis to compute context-independent CFL-reachability summaries for individ-

CHAPTER 4. INCREMENTAL ANALYSIS 73

ual methods. As a result, these summaries are amenable to fast incremental re-

summarisation upon code changes, leading to fast and precise on-demand points-to

queries for IDEs.

Whole Program
Summarisation

Incremental Summary
Update

On-demand
Points-to Query

Ready
Installation

Code Change

Query

Time: Minutes (Once only)

Time: Milliseconds

Time: Seconds

Figure 4.3: The framework structure of Emu.

As discussed in Chapter 3, we can categorise two types of edges in a PAG: local

edges (new, assign, ld or st) and global edges (assignglobal, entry or exit). The key

observation is that the impact of local change can be isolated by summarisation.

Local edges are encapsulated within methods while global edges connect methods

and global variables. Our local reachability analysis finds CFL-reachability relations

between nodes in a PAG along only the local edges within a method field-sensitively

but context-independently. For each parameter (including the implicit this) or return

variable in a method, the summarisation process uses the local reachability analysis to

construct and maintain a CFL-reachability summary. The summary in this chapter

is similar to the technique introduced in Chapter 3 but more general and suitable

CHAPTER 4. INCREMENTAL ANALYSIS 74

for handling of changes. A summary consists of all reachable local objects and local

variables (parameters, returns and other locally defined variables) that are connected

to a global edge. The summary for a variable is not computed for a specific on-

demand field stack like Chapter 3, but constructed as a general summary including

all unmatched field edges along the paths in the method. Such summaries enables

fast on-demand points-to queries to be answered, as they can be recomputed quickly

and independently in response to code changes.

The Emu framework comprises the three phases as shown in Figure 4.3. Initially,

we compute and cache the local CFL-reachability summaries for all methods. The

summaries may be updated individually for each given code change, and are always

kept up-to-date. On-demand points-to queries are answered by using summaries and

traversing context-dependent global edges to find field- and context-sensitive points-to

set for each given query.

We specify our analysis by presenting our analysis algorithms here as well as a set

of formal deductive formulations (similar to [23]) in Appendix A. Unlike the stack

operations (Push(), Pop() and Peek()) used in Chapter 3, we present our algorithms

in this chapter using syntactical equivalence, formally defined in Figure 4.5. We will

explain each phase in detail using the motivating example in Figure 4.1 and others to

demonstrate how it works. In particular, we will check the potential null dereference

error in e3.f at line 34, before and after deleting the statement t2[index] = v in

method put in line 14 for the motivating example. Our goal is to show how to update

summaries and answer queries quickly and precisely.

CHAPTER 4. INCREMENTAL ANALYSIS 75

1 fun(p) {

2 y = new ..;

3 z = new ..;

4 y.g = z;

5 x = y.g;

6 x.f = p;

7 r = z.f;

8 return r; }

r

z

y

x

p

stpfq

ldpgq

stpgq

ldpfq

o3

o2
new

new

entry
i

ex
it i

step state

1 pr,S1,Hq

2 pz,S1, fq

3 pz,S2, fq

4 py,S1, f:gq

5 py,S2, f:gq

6 px,S2, fq

7 pp,S1,Hq

Figure 4.4: CFL-reachability summarisation for an example.

4.3.1 Whole-Program Summarisation

To answer queries as precisely as possible in a small time budget, we use a once-

off initialisation to compute and store local CFL-reachability summaries for formal

parameters and return variables of all methods. The summarisation is similar to

our dynamic summary introduced in Chapter 3, but there are some differences to

be suitable for our incremental framework. Let us first consider a method with only

local assignments, such as fun(p){ retfun = p; return retfun;}. The summary

for retfun can be easily obtained as p ñ retfun, indicating that retfun points to

whatever p points to. Note that a summary for a method is always independent of

its calling contexts so that it can be universally used.

In the presence of field accesses, as illustrated for fun in Figure 4.4, summarisation

involves handling the balanced parentheses of ld and st. The process strictly follows

the flowsTo and alias RSMs for LFT given in Figure 2.3(a), which has two states, S1,

CHAPTER 4. INCREMENTAL ANALYSIS 76

Directions s ::“ S1 | S2

Call stacks c ::“ H | c:i

Field stacks k ::“ H | d | ´d | k:k

Directed fields d ::“ f | f

Caches Γ ::“ H | Γ Y tpv, sq ÞÑ σu

Summaries σ ::“ H | σY tpn, s, kq}

States ζ ::“ pn, s, k, cq

Figure 4.5: Abstract domains.

representing flowsTo, and S2, representing flowsTo. Let us compute the summary for

r with the steps taken shown in the right side of Figure 4.4. Because r is a return

node, which may flow to a caller, we need to summarise its local flowsTo information,

starting from S1. The analysis first accepts a ldpfq and then encounters z. After

having visited o3 and returning to z, state S2 is entered. Then the analysis can

accept a stpgq edge to find an alias relation to match the ldpgq to reach x. Now, x

and z are known to be aliases. According to the leftmost transition in the alias RSM

in Figure 2.3(a), the analysis can accept a stpfq to reach p. So we find that p ñ r,

representing that the points-to set of p is in the points-to set of r.

If we replace x.f = p by t = p.h and x.f = t, then the summary for r will

be p.h ñ r. So the summary for a parameter/return consists of not only locally

reachable objects and variables but also the fields to be matched later when the

summary is applied.

CHAPTER 4. INCREMENTAL ANALYSIS 77

Algorithm 6 Summarisation by local reachability analysis

ComputeSummaries()

1: Γ ÐH

2: for each v
entry
Ð−−− n do

3: Γ Ð Γ Y t v,S2 ÞÑ LocalReachable(v,S2,H) u

4: for each n
exit
Ð−− v do

5: Γ Ð Γ Y t v,S1 ÞÑ LocalReachable(v,S1,H) u

Abstract Domains

We now present the incremental analysis based on the CFL-reachability summarisa-

tion. In the presentation, we construct analysis algorithms from a program specified

in Figure 2.1 with additional abstract domains defined in Figure 4.5.

In Figure 4.5, we provide the formal definitions for these semantic domains. The

state s indicates the direction in which the analysis traverses: along a flowsTo path

if s “ S1 or a flowsTo path if s “ S2. S1 and S2 correspond to the two states in the

RSMs given in Figure 2.3. A context (call stack) c is defined as an ordered sequence of

call sites to achieve context sensitivity by matching CallEntry and CallExit. Similarly,

a field stack k is an ordered sequence of directed fields to achieve field sensitivity

by matching field stores/loads. Directed fields are used to distinguish the traversal

directions of ld and st edges, where f is the inverse of f. We use a special annotation

(´d) to indicate a field that is not matched on the local field stack of a summary

but may be matched later on the global field stack used during the global points-to

analysis described in Section 4.3.3. A cache Γ maps a variable and a direction of

the analysis to its summary, which contains its local reachability relations for the

variable. A summary σ is a set of context-insensitive local states, representing the

reachable states within a method by traversing its local edges only. Global states ζ

CHAPTER 4. INCREMENTAL ANALYSIS 78

Algorithm 7 Local reachability analysis

LocalReachable(n, s, k)

1: σÐH

2: if s “ S1 then

3: for each n
new
Ð−− o do

4: σ Ð σ Y tpo,S1,kqu

5: σ Ð σ Y LocalReachable(n,S2,k)

6: for each n
assign
Ð−−− n 1 do

7: σ Ð σ Y LocalReachable(n 1,S1,k)

8: for each n
ldpfq
Ð−−− n 1 do

9: σ Ð σ Y LocalReachable(n 1,S1,k:f)

10: if n
exit/entry/assignglobal
Ð−−−−−−−−−−−−− n 1 then

11: σ Ð σ Y tpn,S1,kqu

12: if s “ S2 then

13: for each n 1
assign
Ð−−− n do

14: σ Ð σ Y LocalReachable(n 1,S2,k)

15: for each n 1
stpfq
Ð−−− n do

16: σ Ð σ Y LocalReachable(n 1,S2,k:f)

17: for each n 1
ldpfq
Ð−−− n do

18: if k “ k 1:f then

19: σ Ð σ Y LocalReachable(n 1,S2,k
1)

20: else if k ‰ k 1:d then

21: σ Ð σ Y LocalReachable(n 1,S2,k:´f)

22: for each n
stpfq
Ð−−− n 1 do

23: if k “ k 1:f then

24: σ Ð σ Y LocalReachable(n 1,S1,k
1)

25: else if k ‰ k 1:d then

26: σ Ð σ Y LocalReachable(n 1,S1,k:´f)

27: if n 1
exit/entry/assignglobal
Ð−−−−−−−−−−−−− n then

28: σ Ð σ Y tpn,S2,kqu

29: return σ

CHAPTER 4. INCREMENTAL ANALYSIS 79

are used by the field- and context-sensitive global points-to analysis discussed later.

CFL-reachability-based Summarisation

The algorithms of the first phase are given in Algorithm 6 and Algorithm 7. Algo-

rithm 6 shows the construction of summaries, which is the first stage of our incre-

mental framework, by using the local reachability analysis defined in Algorithm 7.

Let us consider Algorithm 7 firstly. The algorithm in this part is similar to the

dynamic summarisation algorithm (Algorithm 4) in Section 3.3. The difference is

also obvious: Algorithm 4 computes summarisation for a specific field stack, while

Algorithm 7 solves a general summary for all possible field stacks. The trick is to

introduce the annotation ´d to represent the unmatched field on the local reachability

path in current method. In such a way, the field stack k, containing both fields to

be matched in and out of the current method, can represent full information along

the local reachable path. Since the summarisation is more general, we can maintain

fewer summaries, which is suitable for incremental updates.

The description of algorithm details is as follows. In Algorithm 7, lines 2 – 11

handle state S1, and lines 12 – 28 handle state S2. The local transition computation

is transitive for local reachability. The handling of each kind of statements in the

algorithm corresponds to a transition in the flowsTo and alias RSMs for LFT given

in Figure 2.3(a). On encountering an edge n
new
Ð−− o, the analysis finds the object o.

Different from Algorithm 4, it will keep traversing a flowsTo path (by transiting to

S2) to find an alias relation between n and some n 1 such that n alias n 1 holds. The

interesting part happens when a matching field is not found on the local field stack

(note that unmatchable fields are excluded by k ‰ k 1:d), we push the field onto the

CHAPTER 4. INCREMENTAL ANALYSIS 80

local field stack for it to be recorded in the summary. We resolve inter-procedural field

matching when the summary is used by the on-demand points-to analysis described

in Section 4.3.3.

During the initialisation phase shown in Algorithm 6, we compute a flowsTo sum-

mary in S2 for each parameter and a flowsTo summary in S1 for the return, with the

field stack being empty initially. The process exhaustively searches for and includes

(1) all reachable local objects (always in state S1) and (2) all reachable local variables

connected to an incoming global edge in S1 or an outgoing global edge in S2.

Now let us consider put in the Hashtable class in our motivating example. Ac-

cording to our algorithms, the summarisation will produce the following:

Γppthisput,S2qq “ tpk,S1,´key:´arrq, pv,S1,´val:´arrqu

Γppv,S2qq “ tpthisput,S1,arr:valqu

Γppk,S2qq “ tpthisput,S1,arr:keyqu

Note that the unmatched fields, e.g., ´key, ´val, ´arr in the summary of

thisput, are added in lines 21 and 26 in Algorithm 7, which is a significant difference

from the dynamic summary in Chapter 3.

4.3.2 Incremental Summary Update

After its installation, Emu enters into a ready state, as shown in Figure 4.3. If a

code change is made in a method, then its local reachability summaries are updated.

Existing incremental points-to analyses [28, 49, 73] typically cache the points-to sets

of the variables queried earlier and update (often approximately) all affected points-to

sets after a code change, leading to unbounded (slow) and imprecise propagation of

CHAPTER 4. INCREMENTAL ANALYSIS 81

thisput

t1 t2

ldpkeyq ldpvalq

k v

stparrq stparrq

entry
26

en
tr
y 3

1 en
try

2
6 en

tr
y 3
1

en
try

26
entry

31
thisput

t1 t2

ldpkeyq ldpvalq

k v

stparrq

entry
26

en
tr
y 3

1 en
try

2
6 en

tr
y 3
1

en
try

26
entry

31

k reaches thisput k reaches thisput (unchanged)

v reaches thisput v reaches null (changed)

thisput reaches k, v thisput reaches k (changed)

(a) Before (b) After

Figure 4.6: Summaries (with field stacks omitted) before and after deleting

“t2[index] = v” in put in line 14 in Figure 4.1.

changed points-to information. Since our summaries store local reachability relations,

we only need to update the affected summaries for the modified methods. Such

modularity leads to a fast and precise analysis suitable for IDEs.

We do not consider the modifications on software design that may trigger class

hierarchy and/or interface changes. In the case of such major design changes, Emu

can be re-installed as suggested in Figure 4.3 to re-produce a program-wise summari-

sation for all methods (in parallel if needed due to the modularity of our approach).

Therefore, we consider only atomic changes made in a program, i.e., additions or

deletions of edges in the PAG. Note that adding/deleting a call statement consists of

adding/deleting the entry and exit edges for all possible methods invoked.

CHAPTER 4. INCREMENTAL ANALYSIS 82

Figure 4.6 shows how the summaries for put in our motivating example are up-

dated incrementally after its line 14 is deleted. Before the change, the summaries are

given in (4.1). After the change, the summaries should be updated as illustrated.

The summaries for all modified methods are updated independently. To update

a method, the algorithms given in Algorithm 8 are applied. The Update method

below performs the actual re-summarisation while SumUpdate method determines

what summaries are affected and need to be recomputed for different types of edges.

We do not distinguish edge insertions and deletions, by treating both as edge changes.

Algorithm 8 Summary update for code change

SumUpdate(Γ , stmt)

1: if stmt “ n
new/assign/ld/st
Ð−−−−−−−−−− n 1 then

2: Update(Γ ,n,S2)

3: Update(Γ ,n 1,S1)

4: if stmt “ n
entry
Ð−−− n 1 then

5: Update(Γ ,n 1,S1)

6: if stmt “ n 1
exit
Ð−− n then

7: Update(Γ ,n 1,S2)

8: if stmt “ g
assignglobal
Ð−−−−−−− n then

9: Update(Γ ,n,S1)

10: if stmt “ n
assignglobal
Ð−−−−−−− g then

11: Update(Γ ,n,S2)

Update(Γ ,n, s)

1: for each pn 1, s 1,k 1q P LocalReachable(n, s,H) do

2: remove pn 1, s 1q ÞÑ σ from Γ

3: Γ “ Γ Y { pn 1, s 1q ÞÑ LocalReachable(n 1, s 1,H) }

CHAPTER 4. INCREMENTAL ANALYSIS 83

SumUpdate function in Algorithm 8 performs updates for various statements.

Changes of all local edges are treated uniformly in lines 1 – 3, where we update

summaries of variables that n may flow to (in S2) and summaries of variables that

n 1 may points to (in S1). Then in Update function, we first search for the affected

variables in the given direction, then recompute their summaries in the reversed

direction (note that S1 “ S2 and S2 “ S1), and finally, update the cache.

Changes of global edges are treated individually. In lines 4 – 5, we recompute

the summaries of local variables that n 1 may point to. We do not consider n that is

a parameter of another method whose summaries are in the cache and not affected.

Similarly, in lines 6 – 7, we only need to update summaries of local variables that n 1

may flow to, because n is a return variable in another method.

For changes made on a global assignment in lines 8 – 11, we consider only the

local variables (if any) involved in the assignment. Otherwise, then temporary local

variables can be introduced.

To re-summarise put in Figure 4.6, we apply Algorithm 8 to find that the sum-

maries of v and thisput are affected but not k:

Γppthisput,S2qq “ tpk,S1,´key:´arrqu

Γppv,S2qq “ H

Γppk,S2qq “ tpthisput,S1,arr:keyqu

4.3.3 On-demand Points-to Query

With up-to-date summaries, Emu answers on-demand points-to queries from devel-

opers or other analyses by using local summaries and traversing global edges. Emu

CHAPTER 4. INCREMENTAL ANALYSIS 84

performs on-demand points-to analysis as described in Section 4.2 except it uses

reachability-based method summaries to speed up the analysis. We will first present

our algorithm and then illustrate it with our motivating example.

Consider Figure 4.6(a). Suppose when a particular query is processed, Emu needs

to determine where the value of v flows to in put. This can be found directly from the

local summary Γppv,S2qq given in (4.1), which means that v flows into thisput.val.arr,

so that redundant traversals along the path are avoided.

Algorithm 9 shows the algorithm for our summary-based on-demand points-to

analysis with Γ , which contains all up-to-date summaries. The outer while loop picks

up a tuple pn, s, k, c 1q from the worklist, which includes both field stack k and context

stack c 1. Note that we distinguish two types of field stacks: local field stack used in

method summaries and global field stack used here for on-demand points-to analysis.

The only place adding element to the points-to set pts is in lines 5 – 6, when the final

global field stack is empty—all fields introduced by ld and st edges must have been

matched up. The local field stack that appears in a summary may contain specially

annotated fields (i.e., ´d) to be matched on the global field stack. We may remove a

field from the global field stack by defining a syntactical equivalence on two types of

field stacks:

k:d:´d:k 1 ” k:k 1 H:k ” k k:H ” k

which is used in lines 13 – 14 to merge both.

In Algorithm 9, lines 8 – 10 are used for queried local variables that have no

summaries (local variables other than method parameters and returns), in which case,

we need to perform a local reachability analysis. Lines 11 – 12 deal with context-

dependent global edges by a global reachability analysis specified in Algorithm 10.

CHAPTER 4. INCREMENTAL ANALYSIS 85

Algorithm 9 Summary-based points-to analysis

PointsTo(Γ , v, c)

1: pts Ð H

2: w Ð tpv,S1,H, cqu

3: while w ‰ H do

4: remove pn, s, k, c 1q from w

5: if n P O AND k “ H then

6: pts Ð pts Y tpn, c 1qu

7: else

8: if pn, sq R dompΓq then

9: for each pn 1, s 1,k 1q P LocalReachable(n, s, k) do

10: Propagate(w,n 1, s 1,k 1, c 1)

11: for each pn 1, s 1, c 1q P GlobalReachable(n, s, c) do

12: Propagate(w,n 1, s 1,k, c 1)

13: for each pn 1, s 1,k 1q P Γppn, sqq AND ´d R k:k 1 do

14: Propagate(w,n 1, s 1,k:k 1, c 1)

15: return pts

Propagate(w,n, s, k, c)

1: w Ð w Y tpn, s, k, cqu

Lines 13 – 14 look up and reuse the existing summaries available in the cache and

requires that any to-be-matched fields in the local field stack of a summary to be

matched on the global field stack.

Algorithm 10 is concerned with global reachability analysis for handling context-

dependent global edges according to the RSM for RRP in Figure 2.3(b). As discussed

in Section 2.3.3, the analysis is context-sensitive for method invocation and heap

CHAPTER 4. INCREMENTAL ANALYSIS 86

abstraction.

Let us compute Ptspe3q for our motivating example given in Figure 4.1 before

and after t2[index] = v in line 14 is deleted. Before the deletion, we can find a

points-to path as follows:

pe3,S1,H,Hq initial state

−Ñ pthisput,S2,arr:val, 26q

−Ñ pv,S1,arr:val:´val:´arr, 26q

” pv, S1,H, 26q by syntactical equivalence

−Ñ po23,S1,H,Hq

Each tuple is a worklist element, which shows the reachable states from initial query

pe3,S1,H,Hq to the final allocation po23,S1,H,Hq. The null dereferencing checker

will not report an error for accessing e3.f. Note that syntactical equivalence of un-

matched field (´d) is used during the analysis on the global field stack, which corre-

sponds to lines 13 – 14 in Algorithm 9.

After the deletion, we cannot find any points-to path to an object:

pe3,S1,H,Hq initial state

−Ñ pthisput,S2,arr:val, 26q

−Ñ pv,S1,arr:val:´key:´arr, 26q

” ? fields cannot be matched!

Thus, a null dereferencing error on e3.f is reported.

4.3.4 Handling Recursion and Call Graph

So far we have not considered recursive calls and changes on the call graph in a

program, since their treatments are rather standard. For recursive calls, we simply

CHAPTER 4. INCREMENTAL ANALYSIS 87

Algorithm 10 Global reachability analysis

GlobalReachable(n, s, c)

1: sta Ð H

2: if s “ S1 then

3: for each n
exiti
Ð−− n 1 do

4: sta Ð sta Y { pn 1,S1, c:iq }

5: for each n
entryi
Ð−−− n 1 do

6: if c “ H then

7: sta Ð sta Y { pn 1,S1,Hq }

8: else if c “ c 1:i then

9: sta Ð sta Y { pn 1,S1, c 1q }

10: for each n
assignglobal
Ð−−−−−−− n 1 do

11: sta Ð sta Y { pn 1,S1,Hq }

12: if s “ S2 then

13: for each n 1
exiti
Ð−− n do

14: if c “ H then

15: sta Ð sta Y { pn 1,S2,Hq }

16: else if c “ c 1:i then

17: sta Ð sta Y { pn 1,S2, c 1q }

18: for each n 1
entryi
Ð−−− n do

19: sta Ð sta Y { pn 1,S2, c:iq }

20: for each n 1
assignglobal
Ð−−−−−−− n do

21: sta Ð sta Y { pn 1,S2,Hq }

22: return sta

CHAPTER 4. INCREMENTAL ANALYSIS 88

approximate the calling edges in the strongly-connected components (SCCs) of the

call graph as gotos. To maintain a precise context-sensitive call graph, we construct

the call graph on-the-fly while performing on-demand points-to analysis. Whenever

we encounter a virtual method call v.funpq, we initiate a points-to query for v to

find the possible callees (target objects of funpq) and include them in the call graph.

For virtual calls whose targets cyclically depend on each other, we track the pending

queries and re-propagating them as new call targets, a standard technique used in

demand-driven analyses [54].

4.4 Evaluation

Our evaluation has validated the following two hypotheses:

• Our modular approach is scalable. The update cost for small code changes

does not grow with the program size as it is bounded, i.e., localised to where

the change is made.

• Our query processing is fast and precise. Given a pre-set time budget,

Emu takes at most 0.054 secs on average to correctly answer at least 97.4%

of all queries raised compared to an exhaustive exploration for all three clients

used.

4.4.1 Methodology

We evaluate the suitability of Emu for deployment in an IDE in terms of its ef-

ficiency and precision in response to small code changes, such as adding/deleting

statements (assignments or calls). We have selected three representative clients, safe

CHAPTER 4. INCREMENTAL ANALYSIS 89

casting, null dereferencing and factory methods, using seven Java programs from the

Dacapo benchmark suite. We compare Emu with RefinePTS, a state-of-the-art

demand-driven points-to analysis [54] also formulated via CFL reachability. Due to

the incremental CFL-reachability-based summarisation used, Emu is faster and more

precise and can be promisingly used in IDEs where the changes are small.

Implementation We have implemented Emu in Soot-2.4.0 [60], which is integrated

into the Eclipse IDE.

All experiments were conducted on a machine with an Intel Xeon 3.0GHz processor

(4 cores) with 16 GB memory, running RedHat Enterprise Linux 5 (kernel 2.6.18) and

Sun JDK 1.6.0 23.

Clients We evaluate the incremental analysis with three clients: SafeCast, FactoryM

and NullDeref, which have been introduced in Section 3.4. Each query is answered

in a pre-set time budget. Failing to complete its exploration within the budget, an

analysis will terminate with a conservative answer (e.g., the downcast tested may not

be safe). In our experiments, the default budget is 75K steps, indicating the maxi-

mum number of edges that can be traversed in a PAG per query. This is a tunable

parameter discussed further below.

Code Changes As discussed in Section 4.3.2, we consider only small changes at

the level of statements. For a program, we randomly select four kinds of changes

corresponding to adding/deleting assignments and calls. We exclude statements that

do not impact our queries. We present and analyse our results for four tests (or four

changes) with each test consisting of adding or deleting 10 statements in the program:

CHAPTER 4. INCREMENTAL ANALYSIS 90

del (deleting 10 assignments) and add (adding the 10 deleted assignments back), delC

(deleting 10 call statements) and addC (adding the 10 deleted calls back). As Emu is

modular, the results for many other changes tested by us are similar in both analysis

times and precision reported.

Efficiency and Precision For each code change, we report the times taken by

Emu and RefinePTS and also compare their precision achieved. For a given client,

the precision achieved by an analysis is compared to that achieved by an exhaustive

analysis without any time budget constraint (equivalent to a whole-program analysis).

4.4.2 Results and Analysis

We present and analyse our results for SafeCast in detail in Section 4.4.2 and discuss

the other two, FactoryM and NullDeref, briefly in Section 4.4.2.

Our results show that Emu is fast enough to be used in IDEs and also more precise

than RefinePTS for small code changes tested.

SafeCast We examine first analysis times and then precision.

Analysis Times Table 4.1 gives the analysis times from both RefinePTS and

Emu for the Java programs used. The “#M (K)” column gives the number of reach-

able methods in the PAG in thousands for each program. Note that the numbers here

are larger than those in [54] because we used a different Java JDK library (1.6.0). The

“#Q” column gives the number of queries raised for each program. A large number

of queries are issued in order to accurately measure the average and worst-case times

taken in answering each query.

CHAPTER 4. INCREMENTAL ANALYSIS 91

Benchmark #M (K) #Q Change
RefinePTS (secs) Emu (secs)

BT CT IT UT DT

soot-c 10.4 973

del 43.3 131.5

41.2

0.015 47.4

add 43.0 125.5 0.013 44.6

delC 43.0 125.4 0.010 44.8

addC 44.7 135.7 0.011 48.7

sablecc-j 21.4 358

del 127.3 76.6

63.6

0.016 31.8

add 126.7 77.0 0.013 32.0

delC 126.9 71.7 0.012 31.5

addC 127.9 79.3 0.013 31.7

antlr 12.9 281

del 35.9 15.4

12.5

0.015 4.8

add 35.9 15.5 0.014 4.8

delC 36.6 15.1 0.020 4.8

addC 36.0 15.4 0.013 4.8

bloat 10.8 1221

del 43.8 143.9

24.2

0.009 57.7

add 43.2 145.8 0.015 57.7

delC 43.7 144.9 0.011 57.9

addC 46.0 148.1 0.012 58.9

chart 17.4 682

del 143.0 191.8

74.5

0.011 68.9

add 140.1 192.4 0.016 69.0

delC 141.3 191.9 0.007 68.9

addC 142.3 194.1 0.005 69.6

jython 27.5 524

del 38.3 27.5

28.0

0.015 5.2

add 38.6 27.5 0.016 5.2

delC 38.8 26.9 0.015 5.1

addC 38.7 27.6 0.014 5.2

ps 13.5 660

del 128.4 96.1

63.4

0.011 42.3

add 127.7 97.5 0.011 44.3

delC 124.8 104.7 0.007 46.8

addC 129.7 94.7 0.007 42.3

Table 4.1: Analysis times of SafeCast by RefinePTS and Emu. #M is the number

of methods (in thousands) in Soot’s context-insensitive call graph. #Q is the number

of queries raised.

CHAPTER 4. INCREMENTAL ANALYSIS 92

In the “Change” column, the four tests are performed in that order for each

program. The analysis times consumed by RefinePTS and Emu, given in the last

five columns in Table 4.1, are discussed below.

RefinePTS After a code change is made in a program, the time taken per query is

given by BT + CT/#Q, where BT represents the time spent on rebuilding the

PAG for the program by using a context-insensitive pointer analysis provided

in Soot and CT represents the time spent by RefinePTS to answer all queries

raised for the program. For RefinePTS [54] and other state-of-the-art demand-

driven points-to analyses [50, 70, 74], the cost for rebuilding the PAG after each

code change is too high to make it suitable for them to be directly deployed in

IDEs.

Emu For each program, Emu only needs to build its PAG initially once by taking

the time indicated by BT for RefinePTS. Subsequently, Emu proceeds accord-

ing to the three phases, Whole-Program Summarisation, Incremental Summary

Update, and On-demand Query, illustrated in Figure 4.3, consuming the times

as given in the last three columns in Table 4.1. Whole-Program Summarisation

happens only once for a program. IT gives the time for computing the local

CFL-reachability summaries for all methods in its PAG. As our approach is

modular, IT can be significantly reduced (in parallel) if needed.

After each code change is made in a program, the (amortised) time per query

taken by Emu is given by DT/#Q if Incremental Summary Update can com-

plete before On-demand Query starts and is bounded by (UT+DT)/#Q other-

wise. Here, UT gives the time for updating the summaries affected by the code

CHAPTER 4. INCREMENTAL ANALYSIS 93

change and DT gives the time taken by Emu in answering the queries issued.

As Emu takes a modular approach to updating summaries, UT is under 20ms

for all the queries combined. In addition, Emu is about 3ˆ faster in answering

queries than RefinePTS (by comparing the CT and DT columns).

For all the three clients tested, Emu can answer each query under 0.054 secs on

average and under 0.87 secs in the worst case. There are no significant perfor-

mance variations among the four tests due to the modularity of our approach.

Memory Usage Because garbage collection is enabled, it is difficult to monitor

memory usage precisely (a well-known fact for JVMs). We measured the memory us-

age of the whole JVM heap with and without summaries. We find that summarisation

consumes only slightly more memory, ranging from 21MB to 70MB across the seven

benchmarks with an average of 46.25MB. This translates into a percentage increase

across the benchmarks, ranging 3.27% to 16.24% with an average of 6.94%.

Precision We measure the precision of RefinePTS and Emu with different bud-

gets against an exhaustive analysis without any budget constraint. As described

in [54], SafeCast is an exacting test of points-to analysis precision, especially of the

ability to distinguish the contents of different data structures. Figure 4.7 compares

RefinePTS and Emu with the precision of SafeCast being defined as the percent-

age of queries that gives the same answers as the exhaustive analysis under three

budgets, 7.5K, 30K and 75K. Being summary-based, Emu is no less precise than

RefinePTS as Emu avoids making redundant traversals across the queries on the

PAG. For RefinePTS, the average precision percentages for 7.5K, 30K and 75K are

29.16%, 75.55% and 87.38%, respectively. For Emu, better ones, 54.19%, 89.34% and

CHAPTER 4. INCREMENTAL ANALYSIS 94

99.61%, are achieved, respectively. In the case of 75K, the default budget used in Ta-

ble 4.1, Emu can answer nearly all the queries (99.6% on average) positively compared

to an exhaustive analysis, proving 13.2% more safe downcasts than RefinePTS.

7.5K 30K 75K

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

(a) RefinePTS (b) Emu

Figure 4.7: Precision of SafeCast.

FactoryM and NullDeref As in the case of SafeCast, RefinePTS must be charged

for the cost of rebuilding the PAG after each code change and is no more precise than

Emu. So we will no longer compare it directly with Emu.

The results given in Table 4.2 for these two clients show the same trend as

SafeCast. UT never exceeds 20ms. In addition, each query can be answered un-

der 0.035s and 0.025s on average for FactoryM client and NullDeref, respectively.

No more than 0.87 secs are needed for each query in the worst case for both clients.

Finally, under the default budget of 75K, FactoryM client and NullDeref achieve a

precision of 98.5% and 97.4%, respectively, compared against an exhaustive analysis.

CHAPTER 4. INCREMENTAL ANALYSIS 95

4.5 Related Work

Our discussion is restricted to four related areas: context-sensitive points-to analysis

(depending on whether if it is whole-program, demand-driven or incremental) and

change impact analysis. As shown for SafeCast, context sensitivity is needed in

Benchmark
NullDeref

#Q UT (secs) DT (secs) Prec (%)

soot-c 2047 0.012 38.7 99.7

sablecc-j 1084 0.008 23.2 97.2

antlr 650 0.016 19.5 100.0

bloat 3007 0.011 77.3 95.7

chart 1281 0.011 97.4 93.0

jython 2411 0.008 68.8 97.5

ps 1426 0.012 69.0 98.4

Benchmark
FactoryM

#Q UT (secs) DT (secs) Prec (%)

soot-c 619 0.013 6.0 100.0

sablecc-j 331 0.007 6.5 96.1

antlr 146 0.009 3.3 100.0

bloat 813 0.009 18.9 97.8

chart 195 0.014 9.7 99.8

jython 214 0.008 4.5 100.0

ps 326 0.010 8.6 97.4

Table 4.2: NullDeref and FactoryM in Emu. “Prec” denotes the precision at a

budget of 75K against an exhaustive analysis.

CHAPTER 4. INCREMENTAL ANALYSIS 96

IDEs for Java as all queries issued cannot be positively answered otherwise.

Whole-Program Points-to Analysis Context sensitivity is achieved by cloning

[61] or summarisation [26, 62, 72]. Cloning is trivially context-sensitive for method

invocation and heap abstraction since distinct calls to a method are diverted to its

distinct clones. Unfortunately, this does not scale to large programs and is also un-

suitable for IDEs. Summarisation suffers from the unbounded propagation of changed

points-to information as discussed in Section 4.1. In contrast, the summarisation ap-

proach described in this chapter is modular since the impact of a code change is

bounded, i.e., localised to the method where the code change is made. In addition,

full context sensitivity is usually approximated by using aliases holding at call sites

[62, 72] for method calls and by recognising allocation wrappers for heap abstraction.

Demand-Driven Points-to Analysis A demand-driven points-to analysis com-

putes points-to information for a set of specified variables rather than all the variables

in a program. The state-of-the-art algorithms for Java [50, 54, 70] and C [74] are all

formulated in terms of CFL-reachability initially introduced in [44, 45]. Given a

CFL-reachability formulation, a demand-driven analysis resolves pointers and aliases

as described in Section 4.2.

However, none of these algorithms are directly formulated to deal with code

changes efficiently, as validated for a representative solution in our experiments. The

novelty of this work lies in using context-independent CFL-reachability summaries

and adopting a modular approach to incrementally updating the affected summaries

to avoid redundant updates after code changes are made.

CHAPTER 4. INCREMENTAL ANALYSIS 97

Incremental Points-to Analysis Existing techniques are not formulated directly

for the IDEs targeted by this work. Earlier, Yur et al. [73] introduced an incremen-

tal approximation of their previous flow- and context-sensitive points-to analysis [29]

for C, achieving a 6-fold speedup with a precision loss (solution agreement on 75%

of tests on average) for programs with 1 – 25KLOC. Kodumal and Aiken [28] dis-

cussed a timestamp-based analysis in their Banshee toolkit. For a code change, their

coarse-grained analysis backtracks to the first affected constraint and reanalyses the

program from that point forward. Their analysis is fast but imprecise for IDEs due

to its lack of support for context sensitivity. Saha and Ramakrishnan [49] presented a

solution also for C based on logic deduction rules. When context sensitivity is consid-

ered, their analysis is slow, by consuming 50 – 73% of the from-scratch time. These

approaches typically falsify all invalid points-to sets greedily rather than on demand

and then rederive them. In contrast, Emu provides instant feedback to developers for

their queries by performing incremental CFL-reachability-based summarisation while

achieving nearly the same precision of a whole-program analysis.

Change Impact Analysis Change impact analysis determines the effects of code

changes to support the planning, implementation and validation of code changes

in software evolution and maintenance. A taxonomy for impact analysis can be

found in [30]. Recent approaches [1, 6, 17, 43] rely on slicing, dependence analysis,

dynamic tracing and history mining. In general, impact analysis requires fast and

precise points-to information to be effective. According to [1], change impact analysis

needs to be performed in nightly build environments as developers need fast access

to the impact information for risk analysis, effort estimation and regression testing.

Unfortunately, precise flow- and context-sensitive points-to analyses still do not scale

CHAPTER 4. INCREMENTAL ANALYSIS 98

even for small programs to enable them to be used during a nightly build. Unlike

such whole-program points-to analyses, the points-to analysis proposed in this chapter

is fast for IDEs, achieving nearly the same precision as a whole-program field- and

context-sensitive points-to analysis.

4.6 Chapter Summary

In this chapter, we have introduced a new points-to analysis that enables software

developers to perform pointer-related queries on demand while making code changes

to the programs being developed. Our modular approach, which is formulated in

terms of CFL-reachability, allows method summaries to be incrementally updated

after some small code changes are made. By bounding the propagation of changed

points-to information, pointer-related queries can be answered quickly, with high

precision. Our approach can be promisingly deployed in IDEs to facilitate program

understanding and debugging when changes are small and frequent.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Modern software is becoming more complex in size and functionality, and it is more

difficult to understand or optimise a large program without automated program anal-

ysis techniques. Points-to analysis, which is to resolve points-to information, is a

fundamental technology for static program analysis to manage the complexity. The

precision of points-to solutions is significant to subsequent program analysis and other

clients, especially for object-oriented software systems. Therefore, developing highly

efficient and precise points-to analysis becomes vitally important.

In this thesis, we investigate new approaches aimed at improving points-to analysis

scalability without affecting precision. The key observation on which our work relies

is identifying and exploiting different types of locality : the locality when traversing

local statements in Chapter 3 and the locality when handling local program changes

in Chapter 4 to avoid redundant computations. We believe that understanding such

99

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 100

software features is necessary to develop effective solutions for improving the perfor-

mance of points-to analysis based on CFL-reachability.

Based on these observations, this thesis first presents an approach that dynami-

cally exploits the local reachability reuse to improve the performance of CFL-reachability

based demand-driven points-to analysis (Chapter 3). The second approach proposed

by the thesis addresses the points-to analysis for a program that undergoes a lot

of small changes by providing the CFL-reachability summarisation to localise the

change impact (Chapter 4). Central to these two approaches is to exploit reusability

and modularity when analysing local statements based on CFL-reachability. Eval-

uation and validation using several clients over a range of Java benchmarks show

that our approaches can significantly boost the performance of the state-of-the-art

points-to analysis without affecting precision.

We expect the techniques developed in this thesis to be useful in program analysis

for modern object-oriented software applications.

5.2 Future Work

Points-to analysis based on CFL-reachability has been extensively studied recently

and novel techniques have been proposed to answer demand queries efficiently. How-

ever, there are still a number of interesting problems to be investigated in the future.

Generalisation Many clients other than those we tested could benefit from the

scalability and precision of our CFL-reachability-based summarisation techniques.

By using our points-to analysis, a number of optimisations and bug detections may

be able to scale to much larger programs. Furthermore, we believe that the principle

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 101

of locality goes beyond context-sensitive points-to analysis; it can be exploited for

other types of program analysis as well. Our summarisation techniques are devel-

oped for a specific points-to formulation. However, it remains an open question as to

whether the general CFL-reachability problems can be accelerated using summarisa-

tion. Exploiting locality properties in new program analysis is an interesting direction

for future work.

Practical incremental points-to analysis Our incremental summarisation tech-

nique is promising for IDEs. A practical IDE-based implementation of our points-to

analysis would pose interesting engineering challenges. One key issue would be how

to maintain the program representations while making various changes in IDEs. Our

current research is still limited to some simple and small changes in Java programs.

How to handle more complex code changes, including method and class level changes,

will be a future topic. Moreover, it is more challenging to incrementally analyse large-

scale software systems.

Annotated CFL-reachability While CFL-reachability formulations have been

extremely successful in modelling points-to or alias relations, they can be poten-

tially used for other purposes as well. In the current formulation, the edges in a PAG

are either fields or calling contexts. Looking a bit far into the future, we may con-

sider to annotate the edges with more information, such as loop counts and execution

frequencies, which could be expected to produce some powerful analyses.

Dynamic Class Loading The analysis introduced in this thesis assumes a closed

world in the sense that only classes reachable from the main method of a program

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 102

at analysis time can be used by the program at run time. It will be interesting to

generalise this work in the presence of dynamic class loading [39, 53, 68, 69].

Demand-Driven Analysis for Concurrency Bugs Static analysis [36] for de-

tecting data races, deadlocks and atomicity violations suffers from high false positive

rates. On the other hand, dynamic analysis has low coverage [16, 63, 64]. One pos-

sible future research is to investigate how to combine CFL-reachability-based static

analysis with dynamic instrumentation in detecting concurrency bugs more efficiently

and effectively.

Appendix A

Formal Rules

The analyses introduced in our thesis are presented using algorithms. In this part,

we state the alternative formal deduction formulations for some of the analyses .

We construct the deduction rules (similar to [23]) from a program as specified in

Figure A.1 (the syntax) with additional abstract domains in Figure A.2.

Firstly, we give the deduction formulations of our baseline analysis RefinePTS

in Figure A.3. Note that if we omit the refinement rule, it just represents the basic

CFL-reachability-based points-to analysis.

In the following, we present the deduction rules of our points-to analysis with

incremental summarisation introduced in Chapter 4. We specify our local reachabil-

ity analysis using deductive reachability formulations. The reachability analysis is

described by a set of deduction rules in the form of:

pn, s, kq =ñ pn 1, s 1,k 1q

which follow only local edges and are context-independent. Each local edge in a PAG

is translated into one or more deduction rules. For example, given a points-to query

103

APPENDIX A. FORMAL RULES 104

for variable v in state S1 with field stack k, we may conclude that v reaches o with

field stack k 1 if we can derive a reachable path: pv,S1,kq =ñ po, s, k 1q. Here is a

derivable local reachability relation found in Figure 4.2:

t1
ldpkeyq
Ð−−−− thisput

pthisput,S2,Hq =ñ pt1,S2,´keyq

t1
stparrq
Ð−−−− k

pt1,S2,´keyq =ñ pk,S1,´key:´arrq

pthisput,S2,Hq =ñ pk,S1,´key:´arrq

The deduction rules of summarisation analysis, local reachability, summary up-

date, points-to query and global reachability are given in Figure A.4-A.8 respectively.

Allocation sites o

Local variables v

Global variables g

Instance fields f

Call sites i

Nodes n ::“ o | v | g

Labels l ::“ new | assign | ldpfq | stpfq

| entryi | exiti | assignglobal

Statements stmt ::“ n
l
Ð− n

Programs pro ::“ H | pro Y{stmt}

Figure A.1: Syntax of an abstraction of Java language.

APPENDIX A. FORMAL RULES 105

Directions s ::“ S1 | S2

Call stacks c ::“ H | c:i

Field stacks k ::“ H | d | ´d | k:k

Directed fields d ::“ f | f

Caches Γ ::“ H | Γ Y tpv, sq ÞÑ σu

Summaries σ ::“ H | σY tpn, s, kq}

States ζ ::“ pn, s, k, cq

Figure A.2: Abstract domains.

APPENDIX A. FORMAL RULES 106

(transitivity)
pn, cq −Ñ pn2, c2q pn2, c2q −Ñ pn 1, c 1q

pn, cq −Ñ pn 1, c 1q

(new)
n

new
Ð−− n 1

pn, cq −Ñ pn 1, cq

(assign)
n

assign
Ð−−− n 1

pn, cq −Ñ pn 1, cq

(assignglobal)
n

assignglobal
Ð−−−−−−− n 1

pn, cq −Ñ pn 1,Hq

(refinement)
n

ldpfq
Ð−−− n2 n

match
Ð−−− n 1 n3

stpfq
Ð−−− n 1

pn, cq −Ñ pn 1,Hq

(field)
n

ldpfq
Ð−−− n2 pn2, cq « pn3, c 1q n3

stpfq
Ð−−− n 1

pn, cq −Ñ pn 1, c 1q

(entry)
n

entrypiq
Ð−−−− n 1

pn, c:iq −Ñ pn 1, cq

(entry-H)
n

entrypiq
Ð−−−− n 1

pn,Hq −Ñ pn 1,Hq

(exit)
n

exitpiq
Ð−−−− n 1

pn, cq −Ñ pn 1, c:iq

(alias)
pn, cq −Ñ po, c2q pn 1, c 1q −Ñ po, c2q

pn, cq « pn 1, c 1q

Figure A.3: Deduction rules for RefinePTS analysis

APPENDIX A. FORMAL RULES 107

σ “ tpo,S1,kq | pv, s,Hq =ñ po,S1,kqu Y

tpn,S1,kq | pv, s,Hq =ñ pn,S1,kq ^ n
exit/entry/assignglobal
Ð−−−−−−−−−−−−− n 1u Y

tpn 1,S2,kq | pv, s,Hq =ñ pn,S2,kq ^ n 1
exit/entry/assignglobal
Ð−−−−−−−−−−−−− nu

Sumpv, sq “ σ

Figure A.4: Summarisation by local reachability analysis.

n
new
Ð−− o

pn,S1,kq =ñ po,S1,kq

n
new
Ð−− o

pn,S1,kq =ñ pn,S2,kq

n
assign
Ð−−− n 1

pn,S1,kq =ñ pn 1,S1,kq

n
ldpfq
Ð−−− n 1

pn,S1,kq =ñ pn 1,S1,k:fq

pn, s, kq =ñ pn2, s2,k2q

pn2, s2,k2q =ñ pn 1, s 1,k 1q

pn, s, kq =ñ pn 1, s 1,k 1q

n 1
assign
Ð−−− n

pn,S2,kq =ñ pn 1,S2,kq

n 1
stpfq
Ð−−− n

pn,S2,kq =ñ pn 1,S1,k:fq

n 1
ldpfq
Ð−−− n

pn,S2,k:fq =ñ pn 1,S2,kq

n 1
ldpfq
Ð−−− n k ‰ k 1:d

pn,S2,kq =ñ pn 1,S2,k:´fq

n
stpfq
Ð−−− n 1

pn,S2,k:fq =ñ pn 1,S1,kq

n
stpfq
Ð−−− n 1 k ‰ k 1:d

pn,S2,kq =ñ pn 1,S1,k:´fq

Figure A.5: Local reachability analysis.

APPENDIX A. FORMAL RULES 108

(local-edge)

stmt “ n
new/assign/ld/st
Ð−−−−−−−−−− n 1

UpdatepΓ ,n,S2q “ Γ
1 UpdatepΓ 1,n 1,S1q “ Γ

2

UpdatepΓ , stmtq “ Γ 2

(entry)

stmt “ n
entry
Ð−−− v UpdatepΓ , v,S1q “ Γ

1

UpdatepΓ , stmtq “ Γ 1

(exit)

stmt “ v
exit
Ð−− n UpdatepΓ , v,S2q “ Γ

1

UpdatepΓ , stmtq “ Γ 1

(global-from)

stmt “ g
assignglobal
Ð−−−−−−− v UpdatepΓ , v,S1q “ Γ

1

UpdatepΓ , stmtq “ Γ 1

(global-to)

stmt “ v
assignglobal
Ð−−−−−−− g UpdatepΓ , v,S2q “ Γ

1

UpdatepΓ , stmtq “ Γ 1

(update)

Sumpn, sq “ pn1, s1,k1q, .., pnj, sj,kjq

Γ 1 “ Γ rpn1, s1q ÞÑ Sumpn1, s1qs..rpnj, sjq ÞÑ Sumpnj, sjqs

UpdatepΓ ,n, sq “ Γ 1

Figure A.6: Summary update for code changes.

(local)

pn, sq R dompΓq pn, s, kq =ñ pn 1, s 1,k 1q

Γ , pn, s, k, cq −Ñ Γ , pn 1, s 1,k 1, cq

(global)

pn, s, cq −Ñ pn 1, s 1, c 1q

Γ , pn, s, k, cq −Ñ Γ , pn 1, s 1,k, c 1q

(summary)

pn 1, s 1,k 1q P Γppn, sqq ´d R k:k 1

Γ , pn, s, k, cq −Ñ Γ , pn 1, s 1,k:k 1, cq

(transitivity)

Γ , ζ −Ñ Γ , ζ2 Γ , ζ2 −Ñ Γ , ζ 1

Γ , ζ −Ñ Γ , ζ 1

Figure A.7: Summary-based points-to analysis.

APPENDIX A. FORMAL RULES 109

n
assignglobal
Ð−−−−−−− n 1

pn,S1, cq −Ñ pn 1,S1,Hq

n
exiti
Ð−− n 1

pn,S1, cq −Ñ pn 1,S1, c:iq

n
entryi
Ð−−− n 1

pn,S1, c:iq −Ñ pn 1,S1, cq

n
entryi
Ð−−− n 1

pn,S1,Hq −Ñ pn 1,S1,Hq

n 1
assignglobal
Ð−−−−−−− n

pn,S2, cq −Ñ pn 1,S2,Hq

n 1
exiti
Ð−− n

pn,S2, c:iq −Ñ pn 1,S2, cq

n 1
exiti
Ð−− n

pn,S2,Hq −Ñ pn 1,S2,Hq

n 1
entryi
Ð−−− n

pn,S2, cq −Ñ pn 1,S2, c:iq

Figure A.8: Global reachability analysis.

Bibliography

[1] Mithun Acharya and Brian Robinson. Practical change impact analysis based

on static program slicing for industrial software systems. In Proceedings of the

33rd International Conference on Software Engineering, ICSE ’11, pages 746–

755, New York, NY, USA, 2011. ACM.

[2] L. O. Andersen. Program analysis and specialization for the C programming

language. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU

report 94/19).

[3] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Au-

tomatic predicate abstraction of C programs. In Proceedings of the ACM SIG-

PLAN 2001 conference on Programming language design and implementation,

PLDI ’01, pages 203–213, New York, NY, USA, 2001. ACM.

[4] Sam Blackshear, Bor-Yuh Evan Chang, Sriram Sankaranarayanan, and Manu

Sridharan. The flow-insensitive precision of andersen’s analysis in practice. In

Proceedings of the 18th international Symposium on Static analysis, SAS ’11,

pages 60–76, Berlin, Heidelberg, 2011. Springer-Verlag.

110

BIBLIOGRAPHY 111

[5] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini.

Taming reflection: Aiding static analysis in the presence of reflection and custom

class loaders. In Proceedings of the 33rd International Conference on Software

Engineering, ICSE ’11, pages 241–250, New York, NY, USA, 2011. ACM.

[6] Michele Ceccarelli, Luigi Cerulo, Gerardo Canfora, and Massimiliano Di Penta.

An eclectic approach for change impact analysis. In Proceedings of the 32nd

International Conference on Software Engineering, ICSE ’10, pages 163–166,

New York, NY, USA, 2010.

[7] Venkatesan T. Chakaravarthy. New results on the computability and complex-

ity of points–to analysis. In Proceedings of the 30th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’03, pages 115–125,

New York, NY, USA, 2003. ACM.

[8] Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible security

enforcement using dynamic data flow analysis. In Proceedings of the 15th ACM

conference on Computer and communications security, CCS ’08, pages 39–50,

New York, NY, USA, 2008. ACM.

[9] Swarat Chaudhuri. Subcubic algorithms for recursive state machines. In Proceed-

ings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’08, pages 159–169, New York, NY, USA, 2008.

ACM.

[10] C.L. Conway, K.S. Namjoshi, Dennis Dams, and S.A. Edwards. Incremental

algorithms for inter-procedural analysis of safety properties. In Proceedings of the

BIBLIOGRAPHY 112

17th international conference on Computer Aided Verification, CAV ’05, 2005.

[11] Manuvir Das. Unification-based pointer analysis with directional assignments.

In Proceedings of the ACM SIGPLAN 2000 conference on Programming language

design and implementation, PLDI ’00, pages 35–46, New York, NY, USA, 2000.

ACM.

[12] Manuvir Das, Ben Liblit, Manuel Fahndrich, and Jakob Rehof. Estimating the

impact of scalable pointer analysis on optimization. In Patrick Cousot, editor,

Static Analysis, volume 2126 of Lecture Notes in Computer Science, pages 260–

278. 2001.

[13] Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable path-

sensitive analysis. In Proceedings of the 2008 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’08, pages 270–280,

New York, NY, USA, 2008. ACM.

[14] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken. Par-

tial online cycle elimination in inclusion constraint graphs. In Proceedings of the

ACM SIGPLAN 1998 conference on Programming language design and imple-

mentation, PLDI ’98, pages 85–96, New York, NY, USA, 1998. ACM.

[15] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.

Effective typestate verification in the presence of aliasing. In Proceedings of the

2006 international symposium on Software testing and analysis, ISSTA ’06, pages

133–144, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 113

[16] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and precise dy-

namic race detection. In Proceedings of the 2009 ACM SIGPLAN conference

on Programming language design and implementation, PLDI ’09, pages 121–133,

New York, NY, USA, 2009. ACM.

[17] Robert Goeritzer. Using impact analysis in industry. In Proceedings of the 33rd

International Conference on Software Engineering, ICSE ’11, pages 1155–1157,

New York, NY, USA, 2011.

[18] Samuel Z. Guyer and Calvin Lin. Error checking with client-driven pointer

analysis. Science of Computer Programming, 58:83 – 114, 2005.

[19] Brian Hackett and Alex Aiken. How is aliasing used in systems software? In

Proceedings of the 14th ACM SIGSOFT international symposium on Foundations

of software engineering, SIGSOFT ’06/FSE-14, pages 69–80, New York, NY,

USA, 2006. ACM.

[20] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate

pointer analysis for millions of lines of code. In Proceedings of the 2007 ACM SIG-

PLAN conference on Programming language design and implementation, PLDI

’07, pages 290–299, New York, NY, USA, 2007. ACM.

[21] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In

Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages, POPL ’09, pages 226–238, New York, NY, USA,

2009. ACM.

BIBLIOGRAPHY 114

[22] Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of

lines of code. In Proceedings of the 9th International Symposium on Code Gen-

eration and Optimization, CGO ’11, pages 289–298, 2011.

[23] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In Proceed-

ings of the ACM SIGPLAN 2001 conference on Programming language design

and implementation, PLDI ’01, pages 24–34, New York, NY, USA, 2001. ACM.

[24] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In Proceed-

ings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering, PASTE ’01, pages 54–61, New York, NY, USA,

2001. ACM.

[25] Martin Hirzel, Daniel Von Dincklage, Amer Diwan, and Michael Hind. Fast

online pointer analysis. ACM Trans. Program. Lang. Syst., 29(2), April 2007.

[26] Vineet Kahlon. Bootstrapping: a technique for scalable flow and context-

sensitive pointer alias analysis. In Proceedings of the 2008 ACM SIGPLAN con-

ference on Programming language design and implementation, PLDI ’08, pages

249–259, New York, NY, USA, 2008. ACM.

[27] John Kodumal and Alex Aiken. The set constraint/CFL reachability connection

in practice. In Proceedings of the ACM SIGPLAN 2004 conference on Program-

ming language design and implementation, PLDI ’04, pages 207–218, New York,

NY, USA, 2004. ACM.

BIBLIOGRAPHY 115

[28] John Kodumal and Alex Aiken. Banshee: A scalable constraint-based analysis

toolkit. In Proceedings of the 12nd international Symposium on static analysis,

SAS ’05, pages 218–234, 2005.

[29] William Landi and Barbara G. Ryder. A safe approximate algorithm for in-

terprocedural aliasing. In Proceedings of the ACM SIGPLAN 1992 conference

on Programming language design and implementation, PLDI ’92, pages 235–248,

New York, NY, USA, 1992. ACM.

[30] Steffen Lehnert. A taxonomy for software change impact analysis. In Proceedings

of the 12th International Workshop on Principles of Software Evolution and the

7th annual ERCIM Workshop on Software Evolution, IWPSE-EVOL ’11, pages

41–50, 2011.

[31] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using

SPARK. In Proceedings of the 12th international conference on Compiler con-

struction, CC’03, pages 153–169, Berlin, Heidelberg, 2003. Springer-Verlag.

[32] Ondřej Lhoták and Laurie Hendren. Context-sensitive points-to analysis: is it

worth it? In CC ’06, pages 47–64, 2006.

[33] Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Evaluating the preci-

sion of static reference analysis using profiling. In Proceedings of the 2002 ACM

SIGSOFT international symposium on Software testing and analysis, ISSTA ’02,

pages 22–32, New York, NY, USA, 2002. ACM.

[34] David Melski and Thomas Reps. Interconvertbility of set constraints and context-

free language reachability. In Proceedings of the 1997 ACM SIGPLAN symposium

BIBLIOGRAPHY 116

on Partial evaluation and semantics-based program manipulation, PEPM ’97,

pages 74–89, New York, NY, USA, 1997. ACM.

[35] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race de-

tection. In Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, POPL ’07, pages 327–338, New York,

NY, USA, 2007. ACM.

[36] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for

java. In Proceedings of the 2006 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’06, pages 308–319, New York, NY,

USA, 2006. ACM.

[37] Phung Hua Nguyen and Jingling Xue. Interprocedural side-effect analysis and

optimisation in the presence of dynamic class loading. In ACSC ’05, pages 9–18,

2005.

[38] Phung Hua Nguyen and Jingling Xue. Interprocedural side-effect analysis and

optimisation in the presence of dynamic class loading. In Proceedings of the

Twenty-eighth Australasian conference on Computer Science - Volume 38, ACSC

’05, pages 9–18, Darlinghurst, Australia, Australia, 2005. Australian Computer

Society, Inc.

[39] Phung Hua Nguyen and Jingling Xue. Interprocedural side-effect analysis and

optimisation in the presence of dynamic class loading. In Proceedings of the

Twenty-eighth Australasian conference on Computer Science - Volume 38, ACSC

BIBLIOGRAPHY 117

’05, pages 9–18, Darlinghurst, Australia, Australia, 2005. Australian Computer

Society, Inc.

[40] Erik M. Nystrom, Hong seok Kim, and Wen mei W. Hwu. Bottom-up and top-

down context-sensitive summary-based pointer analysis. In Proceedings of the

11th international symposium on static analysis, SAS ’04, pages 165–180, 2004.

[41] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Efficient field-sensitive

pointer analysis for C. In Proceedings of the 5th ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools and engineering, PASTE ’04,

pages 37–42, New York, NY, USA, 2004. ACM.

[42] G. Ramalingam and Thomas Reps. A categorized bibliography on incremental

computation. In Proceedings of the 20th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, POPL ’93, pages 502–510, New York,

NY, USA, 1993. ACM.

[43] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley.

Chianti: a tool for change impact analysis of Java programs. In Proceedings

of the 19th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, OOPSLA ’04, pages 432–448, New York,

NY, USA, 2004.

[44] Thomas Reps. Program analysis via graph reachability. In In Proceedings of

1997 International Logic Programming Symposium, ILPS ’97, pages 5–19, 1997.

[45] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow

analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-

BIBLIOGRAPHY 118

SIGACT symposium on Principles of programming languages, POPL ’95, pages

49–61, New York, NY, USA, 1995. ACM.

[46] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up

slicing. In Proceedings of the 2nd ACM SIGSOFT symposium on Foundations

of software engineering, SIGSOFT ’94, pages 11–20, New York, NY, USA, 1994.

ACM.

[47] Radu Rugina and Martin Rinard. Symbolic bounds analysis of pointers, array

indices, and accessed memory regions. In Proceedings of the ACM SIGPLAN

2000 conference on Programming language design and implementation, PLDI

’00, pages 182–195, New York, NY, USA, 2000. ACM.

[48] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis

via 3-valued logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT sympo-

sium on Principles of programming languages, POPL ’99, pages 105–118, New

York, NY, USA, 1999. ACM.

[49] Diptikalyan Saha and C.R. Ramakrishnan. Incremental and demand-driven

points-to analysis using logic programming. In Proceedings of the 7th ACM

SIGPLAN international conference on Principles and practice of declarative pro-

gramming, PPDP ’05, 2005.

[50] Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-based

points-to analysis. In Proceedings of the Tenth International Symposium on Code

Generation and Optimization, CGO ’12, pages 264–274, 2012.

BIBLIOGRAPHY 119

[51] Lei Shang, Lu Yi, and Jingling Xue. Fast and precise points-to analysis with

incremental cfl-reachability summarisation. In Proceedings of the 2012 27th

IEEE/ACM International Conference on Automated Software Engineering, ASE

’12, 2012.

[52] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting

format string vulnerabilities with type qualifiers. In Proceedings of the 10th

conference on USENIX Security Symposium - Volume 10, SSYM’01, pages 16–

16, Berkeley, CA, USA, 2001. USENIX Association.

[53] Vugranam C. Sreedhar, Michael Burke, and Jong-Deok Choi. A framework for

interprocedural optimization in the presence of dynamic class loading. In Pro-

ceedings of the ACM SIGPLAN 2000 conference on Programming language de-

sign and implementation, PLDI ’00, pages 196–207, New York, NY, USA, 2000.

ACM.

[54] Manu Sridharan and Rastislav Bod́ık. Refinement-based context-sensitive points-

to analysis for Java. In Proceedings of the 2006 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’06, pages 387–400,

New York, NY, USA, 2006. ACM.

[55] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bod́ık. Demand-driven

points-to analysis for Java. In Proceedings of the 20th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applica-

tions, OOPSLA ’05, pages 59–76, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 120

[56] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings

of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’96, pages 32–41, New York, NY, USA, 1996. ACM.

[57] Yulei Sui, Yue Li, and Jingling Xue. Query-directed adaptive heap cloning for

optimizing compilers. In Proceedings of the 11th International Symposium on

Code Generation and Optimization, CGO ’13, 2013.

[58] Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection using full-

sparse value-flow analysis. In Proceedings of the 2012 International Symposium

on Software Testing and Analysis, ISSTA ’12, pages 254–264, New York, NY,

USA, 2012. ACM.

[59] Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. SPAS: scalable path-

sensitive pointer analysis on full-sparse ssa. In Proceedings of the 9th Asian

conference on Programming Languages and Systems, APLAS’11, pages 155–171,

Berlin, Heidelberg, 2011. Springer-Verlag.

[60] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. Soot: a java bytecode optimization framework. In CASCON

First Decade High Impact Papers, CASCON ’10, pages 214–224, Riverton, NJ,

USA, 2010. IBM Corp.

[61] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams. In Proceedings of the ACM SIGPLAN

2004 conference on Programming language design and implementation, PLDI

’04, pages 131–144, New York, NY, USA, 2004. ACM.

BIBLIOGRAPHY 121

[62] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis

for C programs. In Proceedings of the ACM SIGPLAN 1995 Conference on

Programming language design and implementation, PLDI ’95, pages 1–12, 1995.

[63] Xinwei Xie and Jingling Xue. Acculock: Accurate and efficient detection of data

races. In Proceedings of the 9th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, CGO ’11, pages 201–212, Washington,

DC, USA, 2011. IEEE Computer Society.

[64] Xinwei Xie, Jingling Xue, and Jie Zhang. Acculock: accurate and efficient de-

tection of data races. Software: Practice and Experience, pages n/a–n/a, 2012.

[65] Guoqing Xu and Atanas Rountev. Detecting inefficiently-used containers to avoid

bloat. In Proceedings of the 2010 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’10, pages 160–173, 2010.

[66] Guoqing Xu, Atanas Rountev, and Manu Sridharan. Scaling CFL-reachability-

based points-to analysis using context-sensitive must-not-alias analysis. In

Proceedings of the 23rd European conference on Object-oriented programming,

ECOOP ’09, pages 98–122, 2009.

[67] Guoqing Xu, Dacong Yan, and Atanas Rountev. Static detection of loop-

invariant data structures. In Proceedings of the 26th European conference on

Object-oriented programming, ECOOP ’12, pages 738–763, 2012.

[68] Jingling Xue and Phung Hua Nguyen. Completeness analysis for incomplete

object-oriented programs. In Proceedings of the 14th international conference

BIBLIOGRAPHY 122

on Compiler Construction, CC ’05, pages 271–286, Berlin, Heidelberg, 2005.

Springer-Verlag.

[69] Jingling Xue, Phung Hua Nguyen, and John Potter. Interprocedural side-

effect analysis for incomplete object-oriented software modules. J. Syst. Softw.,

80(1):92–105, January 2007.

[70] Dacong Yan, Guoqing Xu, and Atanas Rountev. Demand-driven context-

sensitive alias analysis for Java. In Proceedings of the 2011 International Sym-

posium on Software Testing and Analysis, ISSTA ’11, pages 155–165, 2011.

[71] Mihalis Yannakakis. Graph-theoretic methods in database theory. In Proceed-

ings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of

database systems, PODS ’90, pages 230–242, New York, NY, USA, 1990. ACM.

[72] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. Level

by level: making flow- and context-sensitive pointer analysis scalable for millions

of lines of code. In Proceedings of the 8th International Symposium on Code

Generation and Optimization, CGO ’10, pages 218–229, 2010.

[73] Jyh-Shiarn Yur, Barbara G. Ryder, and William Landi. An incremental flow-

and context-sensitive pointer aliasing analysis. In Proceedings of the 21st inter-

national conference on Software engineering, ICSE ’99, 1999.

[74] Xin Zheng and Radu Rugina. Demand-driven alias analysis for C. In Proceed-

ings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’08, pages 197–208, New York, NY, USA, 2008.

ACM.

	Title Page - Efficient Points-To Analysis based on CFL-Reachability Summarisation
	Acknowledgements
	Publications
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms

	Chapter 1 - Introduction
	Chapter 2 - Background
	Chapter 3 - Dynamic Summary-Based Demand-Driven Analysis
	Chapter 4 - Incremental Analysis
	Chapter 5 - Conclusions and Future Work
	Appendix A - Formal Rules
	Bibliography

