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Abstract

This thesis presents contributions on the economic impacts of energy infrastructure

constraints and air pollution in the developing world. I begin by investigating the

impact of unreliable power supply on worker reallocation in Chinese manufacturing

firms. This study contributes to the literature by highlighting the causal relationships

between the quality of energy infrastructure and labour market outcomes. I find that

frequent power outages significantly increase the pace at which long-term workers are

reallocated. The impacts on the reallocation of temporary workers are much weaker

and statistically insignificant. Evidence suggests that these impacts are driven in part

by firms’ decreased labour demand and the relative wages of long-term workers.

In India, to cope with the poor public electricity provision problem, many en-

terprises install private generators. I examine whether the adoption of such private

remedial infrastructure can enhance a firm’s marginal profit from production capital,

and consequently, increase the investment rate. Using Indian firm-level data, the key

findings suggest a heterogeneous treatment effect of private generator adoption on the

investment rate. That is, firms that are the least likely to install generators however

would benefit the most and have a larger impact on their investment in other produc-

tion capital.

Traditional energy production and use results in air pollution, which is now rec-

ognized as an increasing concern for developing countries. To evaluate the economic

impact of air pollution in China, I analyze the causal association between air pollu-

tion and urban land prices using a unique land conveyance dataset. To address the

endogeneity issue of air pollution, I exploit the systematic effects of the interactions

between atmospheric circulation and topographical features on the dispersion of local

air pollutants. Results suggest that air pollution significantly influences land prices.

Each 1% increase in average annual air pollution reduces urban land prices by approx-

imately 1.4%. These effects vary across land types: there is a large and negative effect
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on residential land, but the effects on industrial or commercial land are both small and

positive.
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Chapter 1

Introduction

This thesis investigates implications arising from the weakness of energy infrastructure

and the air pollution problem in the developing countries. The importance of public

infrastructure on economic development and productivity growth has been widely dis-

cussed in a series of papers in the academic literature in the past two decades. Public

infrastructure capital, which typically includes transportation, energy, water, and com-

munication facilities, etc., is usually measured at a highly aggregate level (Aschauer,

1989; World Bank 1994; Demetriades and Mamuneas, 2000). However, different from

the earlier literature, the first two chapters of this thesis concentrate on the quality of

energy infrastructure in the developing world. I investigate the economic impacts of

unreliable electricity supply in China and India, two of the largest developing countries

in the world, by using firm-level data from the World Bank Enterprise Survey.

Energy infrastructure is particularly crucial for the firm’s productivity and indus-

trial development (Rud, 2012). However, because of deficient investment and technol-

ogy, the poor quality of energy infrastructure is still seen as one of the obstacles that

hinder the growth of developing countries. The electricity sector of many developing

countries has failed to provide industrial firms with reliable power. Public grid outages

hit the firms frequently, mainly due to the inadequate power generation capacity and

the subsequent regulation on electricity use by the authorities.
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Unfortunately, the manufacturing firms’ production is highly vulnerable to the un-

reliable power supply. Frequent halts in production can translate into significant losses

for various reasons, including lost production time, machinery breakdowns, wasted raw

materials, and equipment re-start costs. Previous empirical studies have shown that

poor power supply reduces the firm’s performance and growth (Dollar et al., 2005;

Aterido et al., 2011; Rud, 2011). However, few of them investigate the potential mech-

anisms of these productivity effects. One major objective of this thesis is to examine the

potential mechanisms through the lens of labour reallocation and firm investment. It

provides an opportunity to understand how infrastructure quality ultimately influences

firm performance within the context of developing countries.

In the Chapter 2, I look into the causal effect of unreliable power supply on the

worker flows in China in 2004. Assessing the causal effects of electricity constraints on

worker reallocation is important because it helps to provide a better understanding of

how the quality of energy infrastructure influences firm performance through labour

flows. To address the well-acknowledged endogeneity problem of the power constraints

at the firm level, I use temperature shocks as the instrumental variables for outages,

which allows me to exploit the exogenous variation in the occurrences of blackouts.

I find that frequent power outages significantly increase the pace at which long-term

workers are reallocated. But the impacts of outages on the reallocation of temporary

workers are much weaker and statistically insignificant. Empirical evidence suggests

that frequent electricity failures considerably reduce a firm’s labour demand and the

wages of its long-term workers. However, outages cause the average wage of temporary

workers in a firm to increase slightly. In the other words, shocks from unreliable power

supply are absorbed by the flexibility of temporary workers, but long-term workers

respond to shocks with increased reallocation.

In response to the unreliable electricity supply, many enterprises have installed pri-

vate generators to protect against the frequent outages. However, these adjustments

are not without costs, due to the cost of self-generation being much higher than pur-
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chasing electricity from the public grid, there are still questions about whether the

adoption of private remedial infrastructure can substitute the unreliable power supply

and enhance a firm’s marginal profit of production capital, and consequently, increase

the investment rate. In Chapter 3, I develop a theoretical framework to demonstrate a

firm’s decision in adopting a generator as well as the subsequent influence on produc-

tion capital investment. I then examine the theoretical implications by applying the

interval propensity score matching approach to Indian firm-level data from the World

Bank Enterprise Survey Database. Empirical results suggest that a poor electricity pro-

vision significantly encourages private investment in a generator. Furthermore, there is

a heterogeneous treatment effect of private generator adoption on the investment rate,

specifically, firms that are the least likely to install generators however would benefit

the most and have a larger impact on their investment in other production capital.

Overall, the electricity constraints in many developing countries are partly driven

by their consistently growing energy demand. However, the rapid growth in economic

activity and energy demand has also been accompanied by severe environmental degra-

dation. For example, in China, coal-firing accounts for over 70% of electric power gen-

eration and 80% of the industrial fuel. The heavy reliance on coal power, with a low

energy efficiency, is responsible for the high level of total suspended particulates (TSP)

and sulfate concentrations (Fang et al., 2009).

With increasing concern of the continuing environmental damages and the severe

consequences, the Chinese government has implemented various environmental pro-

tection policies. Improved knowledge on the economic impacts of air pollution and

people’s willingness to pay for air quality plays an important role in the design of pol-

lution abatement policy. In Chapter 4, I attempt to reveal the implicit price of air

quality in China by associating the air pollution with urban land prices in a hedonic

framework. To address the endogeneity issue of air pollution, I exploit the systematic

effects of the interactions between atmospheric circulations and topographical features

on the dispersion of local air pollutants. The results from the instrumental variable ap-

3



proach suggest that air pollution significantly influences land prices. Each 1% increase

in average annual air pollution reduces urban land prices by approximately 1.4%. The

effects vary across land types: there is a large and negative effect on residential land,

but the effects on industrial or commercial land are both small and positive, implying

that air pollution influences land prices through different mechanisms. Finally, the

random coefficient model estimates present weak evidence on heterogeneous tastes for

clean air and the subsequent sorting behaviour across areas.

This thesis contributes to the existing literature in several ways. First, by using

unique micro-level datasets for the empirical analyse, I am able to address the potential

problems arising from the use of aggregate-level data in the previous research. Sec-

ond, this thesis highlights the identification strategy design in the empirical studies. I

employ rigorous econometrics methods to address the well-acknowledged endogeneity

problems of infrastructure quality as well as air pollution levels. Third, and perhaps

most importantly, this thesis adds to a small but growing body of evidence for the eco-

nomic impacts of energy infrastructure and environmental pollution within the context

of developing countries. In summary, these contributions provide new insights into is-

sues around energy provision and its impact on the economy, whether through labour

markets, investment incentives or air pollution, with the potential to inform improved

policy formulation.
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Chapter 2

The Effects of Unreliable Power

Supply on Worker Reallocation:

Evidence from Chinese

Manufacturing Firms

2.1 Introduction

Since the first steam-powered electric power station was established in 1882, electric

power has become the backbone of industrialized countries. Making the modern en-

ergy services available and reliable in the developing world, however, can be difficult.

Worldwide, approximately 1.5 billion people still lack access to electricity (Foster and

Steinbuks, 2009), and there are more than 30 countries with an electrification rate

under 50%.1 Even in developing countries that have made progress in electrification,

providing a reliable power supply remains highly challenging. For example, Alby et al.

(2013) demonstrate that firms in South Asia experience an average of 132 electrical

outages every year, followed by 61 per year in Sub-Saharan Africa, 41 per year in the

1Data are from the World Bank: http://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
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Middle East and North Africa, and 36 per year in East Asia and Pacific.2

The primary objective of this chapter is to investigate the causal effects of unreliable

power supply on worker reallocation at the firm level in China. As an important input

of production, the quality of electric power provision has been found to directly affect

the firms’ productivity, investment decisions and growth (Reinikka and Svensson, 2002;

Dollar et al., 2005; Aterido et al., 2011; Alby et al., 2013; Rud, 2012).3 In fact, power

provision is also likely to have other impacts on labour market outcomes. On one

hand, a firm constrained by electricity input tends to adjust its labour demand to

maximize its profit. On the other hand, when workers’ expected income is threatened

by an uncertain power supply, they may voluntarily quit and search for another job.

Therefore, worker reallocation, which is recognized as being closely related to firm

productivity and human resources investment, may be influenced by an unreliable

power supply.

Assessing the causal effects of electricity constraints on worker and job flows is

important because it helps to provide a better understanding of how the quality of

energy infrastructure affects firm performance through worker reallocation. Recent

power shortages in China provide a good opportunity to examine the impacts of energy

infrastructure. After decades of spectacular economic growth, China is hungry for

electric power: the country is now the world’s second largest consumer of electricity. To

meet their soaring demand for power, China’s energy policy calls for heavy investment

in the electricity sector. For example, in 2004 and 2005, the country added nearly 117

GW of capacity. This volume of power is approximately equal to the total electrical

2Similar statistics on the reliability of power provision can also be found on the website of the World
Bank Enterprise Survey: http://www.enterprisesurveys.org/Data/ExploreTopics/infrastructure

3Reinikka and Svensson (2002) find that while poor power infrastructure significantly reduces pri-
vate investment, it encourages firms to invest in generators. Alby et al. (2013) take a step further
and investigate how firms of different sizes and technological capabilities decide to invest in genera-
tors. Dollar et al. (2005) show that power outages are one of the most serious bottlenecks for firm
productivity and profitability. Using a large set of firm-level data, Aterido et al. (2011) demonstrate
the heterogeneous effects of electricity constraint on employment growth. Specifically, the authors
find that a poor electricity supply tends to benefit the micro-firms and hurt the growth of small,
medium, and large firms. Rud (2012) finds that electrification in India is associated with an increase
in manufacturing output.
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capacity of either France or Canada (IEA, 2006). Despite the significant growth of

capacity, challenges remain, mainly on the electricity shortages and unreliable power

supplies. In 2005, the gap between supply and demand for electricity in China was

approximately 20 GW at the peak times of use.4

To manage energy shortages and avoid large-scale blackouts, rolling outages have

been imposed by the authorities. Unfortunately, manufacturing facilities are highly

vulnerable to power outages. For firms relying heavily on electric power, abrupt halts in

production can translate into significant losses. These losses stem from lost production

time, machinery breakdowns, wasted raw materials, and equipment re-start costs. In a

2004 investment climate survey in China, access to electrical power was ranked as the

second most significant obstacle to business among 14 possible constraints.5

Using the conventional regression of outcome variables on the electricity outages

experienced by firms is unlikely to quantify the causal impacts of unreliable power

supply on worker reallocation. A large body of literature has highlighted the endoge-

nous placement of public infrastructure.6 Likewise, power constraints at the firm level

are also subject to endogeneity problems, which are fundamentally arising from two

distinct aspects. First, as the imbalanced development across different cities in China

is usually associated with unequal resources of infrastructure, new start-up firms may

self-select into favorable business environment. Second, even within the same location

or sector, unobservable factors, including local energy policy, production technologies,

and corruption, still exist. These unobservable characteristics may confound the causal

effects of power failures on worker reallocation.

In this chapter, I use the instrumental variable (IV) approach as the identification

strategy to correct the potential inconsistent estimation. To exploit the fact that the

4Data are from the State Electricity Regulatory Commission
5The top five business obstacles include: access to finance, electricity, workers’ skills and education

levels, anti-competition behaviour in other enterprises, and transport.
6For example, Duflo and Pande (2007) and Lipscomb et al. (2012) highlight endogeneity in con-

structions of dams in India and Brazil. Dinkelman (2011) and Rud (2012) emphasize the non-random
placement of electrification projects in India.
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electric power demand will increase in extreme weather to operate the cooling and

heating system (Deschênes and Greenstone, 2011), which may trigger the blackouts

because of the overloads of electrical facilities, I match the 2004 Investment Climate

Survey (ICS) with detailed weather data from a weather station database. I calculate

the fluctuations of numbers of days within nine different temperature categories in

2004 for all cities involved in the survey and use them as instrumental variables for the

firm-reported electricity outages. Generally, firms located in cities with more extreme

temperature shocks are expected to experience more blackouts. Conditional on a set of

control variables, the unpredictable temperature shocks generate exogenous variation

in power failures.

Empirical results show that temperature shocks strongly predict the occurrence of

outages. Furthermore, IV estimates suggest that the electricity outages induce sep-

arations of long-term workers through voluntary quits and layoffs, but there is no

significant effect on the hiring rates. Specifically, it is estimated that an increase of one

standard deviation in outages (about 19 outages) per year can translate into an approx-

imately 55% increase in the average annual rate of separation for long-term workers.

These effect are found to be paralleled by the positive impacts on job reallocation and

excess worker reallocation, which implies that the electricity constraints increase the

employment volatility and yield greater reallocation of long-term workers related to

match quality. However, in contrast, the impacts of outages on temporary workers are

much weaker and statistically insignificant.

These findings are related to the previous research in two ways. First, the evidence

of net effect on long-term worker separations is consistent with the empirical evidence

for the negative effect of electricity constraints on employment growth (Aterido et al.,

2011). Second, although there is no employers-employees linked data to measure the

productivity of separated workers, an analysis of excess worker flows suggests that work-

ers with higher productivity are more likely to leave when they observe the electricity

constraints as a bad signal of firm performance and realize the poor matches between

8



them and the firms. This perspective can partially explain the negative impacts of

electricity outages on firm productivity (Dollar et al., 2005).

To investigate the mechanisms through which the unreliable power supply affects

worker reallocation, I examine the impacts of electricity outages on a firm’s labour de-

mand and average wages. I find that the outages significantly reduce a firm’s capacity

utilization rate and lead to idle labour. Moreover, empirical results also show that

frequent disconnections from the public grid significantly reduce the average wage of

long-term workers. Specifically, every outage reduces average monthly wages by ap-

proximately 7 RMB (about 1 U.S. dollar). However, power outages have no significant

effect on the average wage of temporary workers. In addition, outages also narrow the

gap in wages between long-term and temporary workers within the same firm, suggest-

ing that the wages of temporary workers probably absorb the shocks of power failures,

which might otherwise be absorbed by worker reallocation.

This chapter contributes to the existing literature in several ways. First, by applying

an instrumental variable approach, this study is able to address the well-acknowledged

endogeneity concern on firm-level power outages.7 Additionally, because the instru-

mental variables connect extreme weather shocks with unreliable power supply, it also

provides important policy implications for the growth of developing countries with en-

ergy infrastructure vulnerable to global climate change. Second, and perhaps most

importantly, this study adds to a growing body of evidence for the development effects

of energy infrastructure by highlighting the causal relationships between the quality

of energy infrastructure and labour market outcomes.8 It provides an opportunity to

understand how infrastructure quality ultimately influences firm performance within

the context of developing countries.

7The endogeneity of unreliable power supply has been discussed by Reinikka and Svensson(2002)
and Aterido et al. (2011).

8For example, Dinkelman (2011) finds that household electrification raises employment by releasing
women from home production and enabling microenterprises. Using a county level panel data set for
Brazil, Lipscomb et al. (2012) demonstrate the positive effects of electrification on housing values and
human capital development.
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2.2 Background

Beginning with economic reforms in 1978, the power sector in China developed rapidly

to sustain a tremendous level of continued economic growth. In the late 1980s, eco-

nomic growth was hindered by severe electric power shortages. To cope with the

chronic power shortages, authorities initiated the constructions of numerous power

plants. It was believed that strong investment in power generation would alleviate

the electricity shortages in the future. However, when the 1997 Asian Financial Crisis

reduced predicted growth in GDP, the estimated growth rate of electricity demand

during the period of the Tenth Five Year Plan (2001 to 2005) decreased to 5%. Conse-

quently, many new construction projects were halted to avoid an oversupply of electric

power, which in fact turned out to be short sighted. In summary, underestimating

the growth of demand was partly responsible for the serious power shortages of recent

years (Thomson, 2005; IEA, 2006; Bai and Qian, 2010).

The half-liberalized Chinese energy market is another factor contributing to in-

adequate electricity production. To date, thermal plants, which rely heavily on coal

resources, still account for more than 80% of the total electric capacity in China (Bai

and Qian, 2010). After many years of reform, the price of coal is now driven by the

market, but the price of electricity remains strictly regulated. As a result, the half-

liberalized energy market and the increasing price of coal makes thermal plants less

profitable. In fact, some thermal plants refuse to produce electricity when the price of

coal is high. Moreover, long-term unbalanced investment in generation capacity and

the grid system have turned transmission and distribution grids into new bottlenecks

in the supply of reliable power (IEA, 2006). Surplus power from the provinces with rich

resources cannot be transmitted easily to the other regions due to a limited capacity

for transmission. In addition, the construction of local distribution grids has lagged

behind rapid urbanization and growing energy demands too.

Electricity demand has soared over the past decade. To see this clearly, Figure

2.1 shows the annual growth rate of per capita electricity consumption and GDP in
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China. This figure illustrates that in most years, per capita electric power consumption

is growing even faster than GDP. Generally, one important cause of increased power

consumption is improved living standards that allow for the use of more electrical appli-

ances in households (particularly air conditioners and refrigerators). For example, from

1985 to 2002, the number of refrigerators increased from 17.21 to 126.4 refrigerators

per 100 urban households and from 0.06 to 14.4 refrigerators per 100 rural households,

while air conditioners increased from 8.09 to 108.6 per 100 households in urban areas

(Hu et al., 2005). Besides, China’s rapid urbanization is creating a massive energy

demands in both traditional and emerging cities. Last but not least, booming heavy

industries are also experiencing remarkable increases in electricity consumption. Since

the early 2000s, outputs from energy intensive industries (e.g., steel, auto manufactur-

ing, cement, and aluminium) have increased significantly, which are mainly driven by

the fast growing domestic investment (Thomson, 2005; IEA, 2006).

5
10

15
20

%

1985 1988 1991 1994 1997 2000 2003 2006 2009

Per capita electricity consumption growth rate GDP growth rate

Figure 2.1: Per capita electricity consumption growth rate and GDP growth rate in
China

Note: Data are from the National Bureau of Statistics in China.
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The large and growing gap between power supply and demand finally resulted in

an electricity crisis in the early 2000s. In response to the electricity shortages, the

Chinese government has made efforts in many aspects. First, new power plants were

constructed to add generating capacity, and improvements on the national grids and

local distribution systems were also planned. Second, A set of demand-side manage-

ment (DSM) tools, along with the ongoing step-by-step power sector reforms, were

conducted by the authorities. Aiming at sustaining a more efficient economic growth

and addressing power shortages, the DSM introduces mechanisms such as shifting to

time-of-use pricing, adopting efficient equipment, and substituting fuels (Hu et al.,

2005). Nevertheless, subject to some legal, funding, and institutional barriers, the

DSM still meets a lot of difficulties.

To address immediate shortages, local authorities rely heavily on rolling blackouts.

Firms are requested by the authorities to shift their work schedules. For example, many

industrial firms are ordered to shut down for two days every week. It is estimated that

around 70% of the peak time load reduction is achieved by this method. However,

rolling outages are not without a cost. Firms that are forced to disconnect frequently

from the power grid may have to turn down business opportunities and shrink the size

of their business. In addition, outages also increase operational cost, particularly in

industries reliant on continuous production. Finally, declines in firm performance from

rolling outages may cause shifts in labour supply and demand, which subsequently

influence the voluntary exit, layoff, and hiring decisions of workers and firms.

2.3 Data

The main analysis in this study uses firm-level data from the 2004 Investment Climate

Survey (ICS). The 2004 ICS, which was conducted in 2005 by the National Bureau

of Statistics of China, randomly selected 12,400 manufacturing firms from 120 cities

and covered observations of different size, ownership and industries (see Appendix A.1
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for further description of this data).9 Compared to the other survey data, one salient

advantage of this survey is that it provides rich information on different aspects of

business operations, including basic firm characteristics, an evaluation of the investment

climate, and labour input dynamics. More importantly, the survey data also includes a

city-level location for each firm, enabling me to match this micro-level data with other

data sources.

2.3.1 Unreliable power supply

Following previous studies, I use the number of electricity outages experienced by a

firm as a measure of unreliable power supply. Although this approach may introduce

potential measurement errors, it is still preferable to any other subjective evaluation of

the quality of energy infrastructure. However, some caveats of this variable are worth

to note. In the survey, firms were asked to report the average number of power outages

that occurred annually over the past three years. Because there is no systematic way for

firms to accurately record annual outages, the number they provide may contain noises

from previous years’ data as well as other measurement errors. That is, firms that

experienced numerous outages in 2004 were likely to face similar electrical constraints

in 2003. Therefore, the estimated impacts of outages may be biased if there are any

dynamic effects of outages.

Nevertheless, these measurement errors are not of large concern in this chapter.

First, the number of outages that a firm provides should be primarily influenced by

the electricity provision in 2004, not only because 2004 was the most recent year to

the survey time, but also because it is acknowledged that the electricity shortage in

China in 2000s is initially emerging in the mid 2003 and then became one of the most

severe in history in 2004 (Thomson, 2005). Second, the IV approach applied in this

study can address potential measurement error in outage by isolating the variation in

9There were 286 cities in China in 2004. Therefore, the ICS covers more than one third of cities
in China
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outages that is attributable to electricity constraints in 2003. Third, the robustness

check in Section 2.5 suggests that any potential dynamic effects of power outages on

outcomes in subsequent years are both statistically and economically insignificant.

The average number of electricity outages experienced by firms is approximately

11.10 The outages are fundamentally non-random and vary widely within and between

regions. To illustrate the uneven distribution of electricity outages across different

regions in China, Figure 2.2 shows the average number of power outages for each

survey city. In general, southern cities are more likely to suffer frequent blackouts,

which is partially because of the area’s lack of natural resources and limited capacity

for transmitting electricity between regions. Moreover, cities in more developed regions

were also more likely to experienced power outages. For example, it is evident that the

average outages are higher in the Yangzi River Delta, Pearl River Delta and the Bohai

Economic Region. Power failures in these regions are mainly driven by massive energy

demand.

2.3.2 Worker reallocation

In the analysis, workers are divided into two different groups: long-term workers and

temporary workers. Long-term workers are employees who have long-term contract

with their firm. Temporary workers have either a short-term contract or no formal

contract at all, and they are usually hired through temporary worker agencies (Chen

and Funke, 2009).11 In the survey, firm managers were supposed to answer questions

related to the flows and wages of each worker group separately. To distinguish between

different forms of worker flows, I use firm-reported quit, layoff and hiring rates to

10In order to eliminate the impacts of outliers on estimation results, I excluded 194 observations with
reported outages exceeding 100. These observations account for approximately 1.6% of the sample.

11Before the China’s new Labour Contract Law which became effective on 1 January 2008, hiring
temporary workers were prevalent. Chinese companies often employed the temporary workers through
temporary work agencies (Chen and Funke, 2009).
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Legend
Outages

1.75 - 6.41

6.41 - 11.43

11.43 - 17.25

17.25 - 24.58

24.58 - 52.52

No Data

Weather station
0 990 1,980495 Kilometers

Figure 2.2: Electricity outages in China

Note: Data on the electricity outages are from the 2004 Investment Climate Survey (ICS) in China.
Polygons represent different cities. Shaded area represents the 120 survey cites, where darker colour
indicates more average electricity outages. 377 weather stations are projected on the map according
to their coordinates provided by the Notional Oceanic and Atmospheric Administration (NOAA).

measure voluntary and involuntary worker entry and exit in a given firm i,12 which are

denoted by quitij, layoffij, and hireij , respectively, where j is the indicator of worker

type (p for the long-term workers and t for the temporary workers).

12There is a translation confusion between the English questionnaire and original Chinese question-
naire on the related questions. Please see the Appendix A.2 for further details.

15



V
ar
ia
b
le

D
es
cr
ip
ti
on

ou
ta
ge

<
5

5
≤

ou
ta
ge

<
10

ou
ta
ge

≥
10

T
ot
al

(1
)

(2
)

(3
)

(4
)

P
an

el
A
.
F
ir
m
s
w
it
h
lo
n
g-
te
rm

w
or
ke
rs

qu
it
p

q
u
it

ra
te

of
lo
n
g-
te
rm

w
or
ke
rs

in
20

04
3.
55

2
4.
01

6
5.
03

6
4.
09

3
(9
.9
18

)
(1
0.
07

)
(1
2.
01

)
(1
0.
66

)
la
y
of

f p
la
yo

ff
ra
te

of
lo
n
g-
te
rm

w
or
ke
rs

in
20

04
2.
04

4
2.
28

7
2.
49

7
2.
22

7
(5
.5
07

)
(6
.6
26

)
(7
.5
41

)
(6
.3
99

)
h
ir
e p

h
ir
e
ra
te

of
lo
n
g-
te
rm

w
or
ke
rs

in
20

04
6.
65

4
6.
81

6
8.
20

3
7.
16

3
(1
2.
80

)
(1
1.
05

)
(1
4.
00

)
(1
2.
92

)
jo

br
p

jo
b
re
al
lo
ca
ti
on

ra
te

of
lo
n
g-
te
rm

w
or
ke
rs

5.
69

6
5.
83

8
6.
83

1
6.
07

3
(1
2.
84

)
(1
2.
37

)
(1
5.
29

)
(1
3.
58

)
w
r p

w
or
ke
r
re
al
lo
ca
ti
on

ra
te

of
lo
n
g-
te
rm

w
or
ke
rs

12
.2
5

13
.1
2

15
.7
4

13
.4
8

(2
1.
35

)
(2
0.
13

)
(2
5.
00

)
(2
2.
40

)
ew

r p
ex

ce
ss

w
or
ke
r
re
al
lo
ca
ti
on

ra
te

of
lo
n
g-
te
rm

w
or
ke
rs

6.
55

5
7.
28

1
8.
90

4
7.
41

0
(1
4.
90

)
(1
3.
66

)
(1
7.
88

)
(1
5.
72

)
p
w

av
er
ag

e
w
ag

e
of

lo
n
g-
te
rm

w
or
ke
rs

in
20

04
11

94
.5

10
51

.1
10

12
.3

11
13

.1
(9
31

.1
)

(6
91

.0
)

(6
06

.5
)

(8
07

.3
)

N
n
u
m
b
er

of
ob

se
rv
at
io
n
s

60
71

20
40

36
49

11
76

0

P
an

el
B
.
F
ir
m
s
w
it
h
te
m
p
or
ar
y
w
or
ke
rs

qu
it
t

q
u
it

ra
te

of
te
m
p
or
ar
y
w
or
ke
rs

in
20

04
6.
01

9
7.
14

5
8.
09

0
6.
91

5
(1
2.
95

)
(1
3.
96

)
(1
5.
41

)
(1
4.
03

)
la
y
of

f t
la
yo

ff
ra
te

of
te
m
p
or
ar
y
w
or
ke
rs

in
20

04
2.
74

2
3.
04

6
3.
18

3
2.
94

4
(8
.4
21

)
(8
.5
34

)
(8
.6
75

)
(8
.5
28

)
h
ir
e t

h
ir
e
ra
te

of
te
m
p
or
ar
y
w
or
ke
rs

in
20

04
9.
47

2
10

.1
3

10
.9
2

10
.0
8

(1
6.
39

)
(1
5.
47

)
(1
6.
92

)
(1
6.
42

)
jo

br
t

jo
b
re
al
lo
ca
ti
on

ra
te

of
te
m
p
or
ar
y
w
or
ke
rs

6.
67

9
6.
58

7
7.
27

4
6.
86

2
(1
4.
90

)
(1
3.
69

)
(1
5.
58

)
(1
4.
93

)
w
r t

w
or
ke
r
re
al
lo
ca
ti
on

ra
te

of
te
m
p
or
ar
y
w
or
ke
rs

18
.2
3

20
.3
2

22
.1
9

19
.9
3

(2
9.
47

)
(2
9.
57

)
(3
2.
45

)
(3
0.
56

)
ew

r t
ex

ce
ss

w
or
ke
r
re
al
lo
ca
ti
on

ra
te

of
te
m
p
or
ar
y
w
or
ke
rs

11
.5
5

13
.7
4

14
.9
2

13
.0
7

(2
3.
39

)
(2
4.
00

)
(2
6.
19

)
(2
4.
52

)
tw

av
er
ag

e
w
ag

e
of

te
m
p
or
ar
y
w
or
ke
rs

in
20

04
75

1.
4

72
8.
1

73
3.
9

74
1.
4

(3
42

.5
)

(2
91

.3
)

(2
95

.4
)

(3
18

.6
)

N
n
u
m
b
er

of
ob

se
rv
at
io
n
s

37
04

13
57

25
55

76
16

N
ot
e:

S
ta
n
d
ar
d
d
ev
ia
ti
on

s
ar
e
in

p
ar
en
th
es
es
.
T
h
e
m
ea
su
re
m
en
t
m
et
h
od

ol
og

y
fo
r
ea
ch

va
ri
ab

le
is
st
at
ed

in
th
e
te
xt
.

T
ab

le
2.
1:

D
es
cr
ip
ti
ve

st
at
is
ti
cs
:
w
or
ke
r
re
al
lo
ca
ti
on

an
d
w
ag
e

16



Table 2.1 provides summary statistics for the flows rates of two worker groups.

Because 4,493 firms reported having no temporary workers in their labour force, the

sample size for firms with temporary workers is substantially smaller than the sample

size of firms with long-term workers. In the data, long-term workers have an average

quit rate of 4.09%, an average layoff rate of 2.23%, and an average hiring rate of

7.16%, which are relatively smaller than the corresponding statistics for temporary

workers (6.92%, 2.94% and 10.08%, respectively). The higher flow rates of temporary

workers partially reflect the fact that with a much lower human capital investment,

training and firing cost, the temporary positions are typically less secure and they are

of higher volatility. Additionally, the flow rates identified in this study are slightly

lower than those observed in previous research on the U.S. economy (Lane et al., 1996)

and a number of transition economies (Davis and Haltiwanger, 1999; Haltiwanger and

Vodopivec, 2003).

To describe the rough correlation between unreliable power supply and labour out-

comes, I divide the number of power outages into 3 different ranges and then summarize

the flow rates in these ranges separately (see column 1 to 3 in Table 2.1). Interestingly,

it is evident that firms experiencing more outages also have higher worker flow rates

for both long-term and temporary workers. However, without a rigorous analysis, a

causal relationship between outages and worker flows has yet to be established.

Following Haltiwanger and Vodopivec (2003), I next construct the measures of

worker reallocation, job reallocation and excess worker reallocation. The first important

index is the job reallocation rate. Every year, many businesses expand and others

contract, changing the number of jobs available at each individual firms. This process

is driven by forces such as technological and institutional change, the cost of hiring,

training, and firing workers, and the general business environment. In this chapter,

given the quit, layoff, and hiring rates in 2004, it is straightforward to construct the

employment growth rate for worker type j in firm i is hireij − quitij − layoffij. A

positive employment growth rate implies job creation, whereas a negative employment
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growth rate implies job destruction. Based on the employment growth rate, the job

reallocation rate is defined as:

jobrij = |hireij − quitij − layoffij| (2.1)

which measures the employment volatility of worker type j firm i. Job reallocation

among firms requires workers to switch employers and employment status. Therefore,

a larger worker adjustment is conducted to accommodate the job reallocation. The

worker reallocation rate is simply the sum of the worker exit and entry rates, given by:

wrij = hireij + quitij + layoffij (2.2)

It is important to note that the ongoing matching and sorting process of worker

flows always exceed the job flows, this is because a worker may separate due to a

position being terminated or because of a poor employer-employee match. In order

to isolate the component of worker reallocation that is largely relevant to matching

quality, the excess worker reallocation rate is constructed as:

ewrij = hireij + quitij + layoffij − jobrij (2.3)

Table 2.1 presents summary statistics for job reallocation, worker reallocation and

excess worker reallocation rates. Consistent with the findings on worker separations

and accessions, the average worker reallocation rate of long-term workers is substan-

tially lower than that of temporary workers. Moreover, as a measure of worker flows

related to the quality of firm-worker matches, the excess worker reallocation accounts

for approximately 54% of long-term worker flows. This percentage is even larger for

temporary workers. Finally, it appears that job reallocation, worker reallocation and

excess worker reallocation all increase as electricity constraints become more severe.
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2.3.3 Firm characteristics

Table 2.2 describes an additional set of firm- and city-specific characteristics, including

firm age, size, capacity utilization rate, percentage of long-term employees, ownership,

workers’ education level, city population, number of employees in manufacturing sector

in the city, and the city’s average wage.13 Column 1, 2 and 3 present summary statistics

for these variables by the severity of power failures.

There are clear monotonic trends in the mean values of several firm-specific char-

acteristics. First, average age and size appear to decline with the number of outages:

younger and smaller firms tend to face more severe power constraints. Second, as a

proxy for production technology, workers’ education levels are negatively related to

the frequency of outages. Moreover, blackouts seem to vary with enterprise ownership.

Firms that share a large proportion of private capital are more likely to face challenges

in accessing a reliable power supply. In summary, all the evidence above points to the

same direction that the electricity failures are evidently non-random.

One limitation of these data is the lack of information on the ownership of private

generators. This deficiency may compromise the interpretation of final results because

back-up generators can help to alleviate the impacts of power failures. However, using

a data set from 1999 to 2004, Fisher-Vanden et al (2012) finds that only 7% of the firms

in China self generate electricity. This small proportion is not expected to significantly

influence the overall effects of electricity outages. The second reason is coming from

an econometrics consideration, which is named ’bad control problem’ by Angrist and

Pischke (2009). Specifically, because generator ownership tends to be a consequence

of blackouts rather than a cause of them, it is inappropriate to control for generator

ownership when examining the causal impacts of electricity outages is of major interests

in this chapter.

13Data of city population and number of employees in manufacturing sector are from China Data
Online (http://chinadataonline.org/). The city’s average wage is measured by the average wage of
long-term workers in the same city, using data from 2004 ICS.
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2.4 Identification Strategy

To examine the effects of unreliable power supply on a set of labour-related outcomes,

consider the following regression:

yi = β0 + β1 · outagei + β2 ·Xi + β3 · Ci + εi (2.4)

where Xi denotes a vector of firm-specific control variables and Ci represents the

city-level controls. A major concern in this regression model is the omitted variable

bias. That is, some unobservable firm characteristics are likely to correlate with black-

out frequency, job flows, and worker flows simultaneously, making the OLS regression

estimates to be inconsistent.

The identification strategy of this chapter relies on the vulnerability of power in-

frastructure to extreme temperatures events. Conditional on a set of covariates, the

extreme temperature shocks in 2004, which are independent of the omitted variables in

Equation (2.4), can provide exogenous variation in the frequency of outages and thus

lead to a consistent estimates of outages’ causal effects.

The electrical supply system is a complex system which typically includes power

plants, transmission stations, grid lines, distribution stations, and end users. The

system generally works at a balance of supply and demand. However, the reliability

of power infrastructure declines significantly with extreme temperatures. The reason

is that because the transformers in the transmission and distribution substations are

usually designed to operate during periods of relatively stable weather and loading

patterns, increased loads during periods of extreme temperatures can lead to problems

with overheating: blackouts will eventually occur if transformers are unable to cool

off efficiently (Kezunovic et al., 2008). If the weather in a given year is outside of the

range of predicted temperatures for a designed timescale, the local power distribution

system may not be able to adapt sufficiently. This was particularly true for China in

the early 2000s, as the grid system was still lagged far behind rapid urban development
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and could not respond successfully to temperature shocks.

Therefore, it is the temperature shocks, rather than the average temperatures,

trigger failures of power infrastructure. To exploit this exogenous variation in electricity

outages, I construct measures of temperature shocks in 2004. First, daily temperature

data are taken from the U.S. National Oceanic and Atmospheric Administration. The

data covers 377 weather stations in China and provide detailed temperature data from

1995 to 2004.14 Figure 2.2 shows station locations. The stations cover the entire area

of the enterprise survey, reaching from the south (10.38 ◦N) to north (52.13 ◦N), east

(75.98 ◦E) to west (132.96 ◦E), which deviate a lot in temperature distributions and

hence enable this chapter to include the impacts of both extreme hot and cold weather

shocks on power systems.

The key variable in the data is the maximum daily temperature. Maximum daily

temperature is usually recorded by weather stations at 2 pm, which is also when peak

electricity loads occur. Since the heavy snowfall on extremely cold days may interrupt

the availability of other infrastructure, thereby influencing the dependent variables

through other potential channels. Therefore, I exclude days with snow depth exceeding

two inches. These days account for less than 1% of total observations.

Following Deschênes and Greenstone (2011), daily temperatures are divided into 9

categories as follows: ≤ 10 ◦F, (10 ◦F 20 ◦F], (20 ◦F 30 ◦F], (30 ◦F 40 ◦F], (40 ◦F 50 ◦F],

(70 ◦F 80 ◦F], (80 ◦F 90 ◦F], (90 ◦F 100 ◦F], and> 100 ◦F.15 To avoid the multicollinear-

ity problem, categories between 50 ◦F and 70 ◦F are dropped. The annual number of

days within each category from 1995 to 2003 is counted separately. Temperature shocks

in 2004 are calculated as:

fluc2004(T ) = days2004(T )−
2003∑

k=1995

daysk(T )/9 (2.5)

where daysk(T ) denotes the number of days in the T th temperature category in

14Please see the Appendix A.3 for a description of the data
15For example, (10 ◦F 20 ◦F] indicates that 10 ◦F < Temperature ≤ 20 ◦F.
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year k. Comparing to setting thresholds to define cold and hot weather (e.g., below

40 ◦F and above 90 ◦F), the advantage of calculating shocks in different temperature

bins and using them as instrumental variables is clear. Because marginal effects of

shocks in different temperature categories on blackouts are likely to be nonlinear, for

example, the likelihood of a blackout on a 10 ◦F day is higher than the likelihood on

a 40 ◦F day. dividing temperatures into bins can help capture these heterogeneous

marginal effects.

Finally, temperature shocks detected by different weather stations are matched with

the survey data, according to geographic location.16 Figure 2.3 shows the distribution

of temperature shocks across the 9 different temperature categories. Extremely cold

weather shocks are primarily concentrated in northern China whereas extremely hot

weather shocks predominantly appear in southern China.17 However, negative and

positive shocks within different temperature bins are observed at the same latitudes.

Overall, the distribution of shocks is considered random and is not representative of a

region’s development.

A potential threat to the validity of IV estimation is the possibility of unobservable

adaptive behaviour by firms and power infrastructure. Specifically, because only tem-

perature shocks in 2004 are used as instruments in this study, it is plausible that cities

exposed to the volatile temperature were actually more likely to have experienced large

shocks in 2004. Shocks in a single year, therefore, partially capture the volatility of

the local climate. In fact, both infrastructure and firms can adapt to the local climate.

For example, cities experiencing more pronounced fluctuations between extreme tem-

peratures may upgrade transmission and distribution systems more frequently or may

install transformers with larger load capacities. Similarly, firms can also adopt adaptive

technique based on the prior experience. To avoid the potential inconsistent estimation

16ArcGIS was used to match weather stations and cities, see the Appendix A.3 for details on
matching methodology.

17This is because the maximum temperature in northern China rarely exceeds 100 ◦F, and the
minimum temperature in southern China does not reach 40 ◦F.
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(a) fluc(≤ 10 ◦F) (b) fluc(10 ◦F, 20 ◦F] (c) fluc(20 ◦F, 30 ◦F]

(d) fluc(30 ◦F, 40 ◦F] (e) fluc(40 ◦F, 50 ◦F] (f) fluc(70 ◦F, 80 ◦F]

(g) fluc(80 ◦F, 90 ◦F] (h) fluc(90 ◦F, 100 ◦F] (i) fluc(> 100 ◦F)

Figure 2.3: Temperature fluctuations in 2004 in China

Note: Data are from Notional Oceanic and Atmospheric Administration (NOAA). Temperature shocks
in every category is calculated by Equation (2.5) and depicted in different panel above: positive shocks
are shaded dark, negative shocks are shaded white, magnitude of shocks changes gradually with colour.

arising from the unobservable adaptive behaviour, I control for the standard deviation

of days in each temperature bin to capture the volatility of the weather. Finally, the

first stage regression specification is:
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outagesi = β0+
9∑

T=1

βT ·fluc2004(T )+β10 ·Xi+β11 ·Ci+
9∑

T=1

β11+T ·S.D2004(T )+νi (2.6)

where S.D2004(T ) denotes the standard deviations in the T th temperature category.

Conditional on a set of firm- and city-level covariates, the exclusion restriction is that

the temperature shocks do not impact worker flows or job flows except through their

impacts on the supply of electricity.

2.5 Results

2.5.1 Power outages occurrences

Table 2.3 presents the first stage regression results. The substantial change in results

between column 1 and 2 suggests that the inclusion of standard deviation of days

within each weather bins is important. Empirical findings indicate that partial effects

of extreme temperature shocks are generally smaller after controlling for historical

weather volatility. Across column 2 to column 4, the magnitude and significant level

of the coefficients of temperature shocks do not vary considerably with the inclusion

of other firm characteristics and city controls.

In the last column of Table 2.3, conditional on a full set of covariates, there is a

monotonic trend of the coefficient magnitudes from fluc(< 10 ◦F) to fluc(40 ◦F, 50 ◦F],

indicating that cold weather shocks lead to more blackouts. Although the marginal ef-

fects of high temperature shocks do not display a similar monotonic trend, shocks above

100 ◦F still show a significant positive effect on the occurrence of blackouts. Overall,

these results are consistent with the hypothesis that reliability of power infrastructure

declines with extreme temperature shocks.

The coefficients of a number of other control variables are also worth noting. In-

terestingly, the estimated parameter on the percentage of a firm that is owned by
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state capital is negative, implying that state-owned enterprises have better access to

reliable power. In contrast, the positive coefficient of the percentage of private capi-

tal suggests that private firms have less access to reliable electricity. Additionally, a

firm’s technology level is likely to affect the number of blackouts that the firm experi-

enced. Specifically, firms that adopt the advanced technology, which is represented by

a higher worker education level, have a lower likelihood of being disconnected from the

public grid. This finding is reasonable because some rolling blackouts planned by local

authorities explicitly target firms with lower technological level and energy efficiency.

2.5.2 Effects of outages on quit, layoff, and hiring rates

This analysis begins by examining how public power failures have affected worker flows

in terms of quit, layoff, and hiring rates. Panel A and B in Table 2.4 present estimates

of impacts on long-term and temporary workers, respectively. Despite the instrumental

variables have shown a strong predictive power on electricity outages in the first stage

regressions, the Conditional Likelihood Ratio (CLR) test, which is robust to weak

instruments in over-identified models (Andrews and Stock, 2007), is also provided for

IV regressions. Both the standard test and the CLR test suggest similar inference

results in each regression.

In Panel A, a first observation is that without accounting for the endogeneity of

electricity outages, OLS estimates substantially underestimate the impacts of outages

on the quit rates and layoff rates of long-term workers. Moreover, results from 2SLS

regressions suggest that outages have significant positive effects on the separations of

long-term workers through quits and layoffs, but there is no significant effect on the

hiring of new workers. Specifically, ceteris paribus, every additional outage increases

the separation rate of long-term workers by approximately 0.175%. In other words,

given that average quit and layoff rates for long-term workers are 4.093% and 2.227%,

respectively, an increase of one standard deviation in outages can translate into an

approximately 55% increase in the average separation rate of long-term workers. The
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(1) (2) (3) (4)
outage outage outage outage

fluc(≤ 10 ◦F) 0.281* 1.193*** 1.253*** 1.214***
(0.151) (0.196) (0.196) (0.196)

fluc(10 ◦F, 20 ◦F] 1.070*** 1.184*** 1.111*** 1.058***
(0.114) (0.125) (0.125) (0.130)

fluc(20 ◦F, 30 ◦F] 0.853*** 0.527*** 0.525*** 0.519***
(0.062) (0.079) (0.079) (0.083)

fluc(30 ◦F, 40 ◦F] 0.679*** 0.550*** 0.572*** 0.577***
(0.033) (0.048) (0.048) (0.050)

fluc(40 ◦F, 50 ◦F] 0.408*** 0.460*** 0.492*** 0.497***
(0.019) (0.026) (0.027) (0.028)

fluc(70 ◦F, 80 ◦F] 0.065*** 0.177*** 0.175*** 0.180***
(0.018) (0.021) (0.021) (0.021)

fluc(80 ◦F, 90 ◦F] 0.067*** -0.031 0.011 0.029
(0.024) (0.026) (0.026) (0.027)

fluc(90 ◦F, 100 ◦F] -0.032 -0.255*** -0.243*** -0.229***
(0.020) (0.025) (0.025) (0.025)

fluc(> 100 ◦F) 0.684*** 0.244*** 0.277*** 0.337***
(0.062) (0.077) (0.077) (0.081)

age -0.009 -0.008
(0.010) (0.010)

worker03 -0.000*** -0.000***
(0.000) (0.000)

steown -0.015*** -0.016***
(0.005) (0.005)

colown -0.001 -0.001
(0.005) (0.005)

priown 0.010*** 0.009***
(0.003) (0.003)

forown -0.008* -0.007
(0.005) (0.005)

educ04 -0.055*** -0.053***
(0.007) (0.007)

percentp -0.006 -0.005
(0.004) (0.004)

potn city 0.031
(0.039)

manuee city -0.142
(1.184)

wage city -0.001
(0.001)

S.D of the temperature categories? N Y Y Y
N 12175 12175 12175 12175
R2 0.079 0.111 0.137 0.137
F-statistic on weather fluctuations 115.30 55.33 56.88 53.22

Standard errors in parentheses
* Significant at the 10% level.
** Significant at the 5% level.
*** Significant at the 1% level.

Table 2.3: First stage regression

asymmetric effects of outages on worker separations and accessions subsequently result

in a net destruction of long-term positions.

In contrast, results in Panel B yield different conclusions for temporary workers.

27



Quit rate Layoff rate Hire rate

IV OLS IV OLS IV OLS
(1) (2) (3) (4) (5) (6)

Panel A. Long-term workers

outage 0.120** 0.023*** 0.055*** 0.014*** 0.031 0.035***
(0.049) (0.007) (0.021) (0.005) (0.053) (0.009)

CLR test p-value 0.000 - 0.104 - 0.801 -
S.D of the temperature categories? Yes Yes Yes Yes Yes Yes
Firm controls? Yes Yes Yes Yes Yes Yes
City controls? Yes Yes Yes Yes Yes Yes
F-statistic on IVs in first stage 52.09 - 52.09 - 52.09 -
Hansen J statistics p value 0.49 - 0.09 - 0.42 -
N 11760 11760 11760 11760 11760 11760

Panel B. Temporary workers

outage 0.022 0.038*** -0.001 0.024** -0.065 0.026*
(0.085) (0.014) (0.037) (0.009) (0.077) (0.013)

CLR test p-value 0.397 - 0.496 - 0.166 -
S.D. of the temperature categories? Yes Yes Yes Yes Yes Yes
Firm controls? Yes Yes Yes Yes Yes Yes
City controls? Yes Yes Yes Yes Yes Yes
F-statistic on IVs in first stage 33.00 - 33.00 - 33.00 -
Hansen J statistics p value 0.27 - 0.15 - 0.36 -
N 7616 7616 7616 7616 7616 7616

1 Note: Robust standard errors clustered at city level are in parentheses. The Conditional
Likelihood Ratio (CLR) test, which is robust to weak instrument in the over-identified
models, is provided for the inference of endogenous variable.

2 * Significant at the 10% level.
3 ** Significant at the 5% level.
2 *** Significant at the 1% level.

Table 2.4: Effects of power outages on worker flows

The point estimates in OLS specifications show positive effects of outages on separa-

tions and accessions of temporary workers. However, after correcting for endogeneity

by IV estimations, the impacts of outages on temporary workers become weaker and

statistically insignificant. In summary, there are heterogeneous effects of electricity

constraints on the employment of long-term and temporary workers.

2.5.3 Effects of outages on worker reallocation

I now turn to an investigation of the relationship between electrical outages and worker

reallocation. Based on the information of quit, layoff, and hiring rates at the firm level,

the worker reallocation rate is computed by Equation (2.2), and it is then decomposed

into two categories: the job reallocation rate and the excess worker reallocation rate.
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Whereas the job reallocation rate represents the volatility of total employment, and

the excess worker reallocation rate is primarily related to the quality of employee-firm

match. Because these two rates are fundamentally different but move simultaneously,

regressions using these indicators can help us understand how electricity constraints

influence decisions of firms and workers.

Job reallocation Worker reallocation Excess worker reallocation

IV OLS IV OLS IV OLS
(1) (2) (3) (4) (5) (6)

Panel A. Long-term workers

outage 0.100* 0.030*** 0.206** 0.072*** 0.106 0.042***
(0.056) (0.009) (0.090) (0.016) (0.066) (0.014)

CLR test p-value 0.046 - 0.008 - 0.021 -
S.D of the temperature categories? Yes Yes Yes Yes Yes Yes
Firm controls? Yes Yes Yes Yes Yes Yes
City controls? Yes Yes Yes Yes Yes Yes
Hansen J statistics p value 0.46 - 0.38 - 0.43 -
N 11760 11760 11760 11760 11760 11760

Panel B. Temporary workers

outage 0.034 0.034** -0.088 0.092*** -0.121 0.058***
(0.073) (0.014) (0.176) (0.027) (0.149) (0.020)

CLR test p-value 0.635 - 0.239 - 0.273 -
S.D of the temperature categories? Yes Yes Yes Yes Yes Yes
Firm controls? Yes Yes Yes Yes Yes Yes
City controls? Yes Yes Yes Yes Yes Yes
Hansen J statistics p value 0.48 - 0.39 - 0.14 -
N 7616 7616 7616 7616 7616 7616

1 Note: Robust standard errors clustered at city level are in parentheses. The measurement of
dependent variables is defined in the text.

2 * Significant at the 10% level.
3 ** Significant at the 5% level.
2 *** Significant at the 1% level.

Table 2.5: Effects of power outages on worker reallocation

Table 2.5 reports estimation results. In Panel A, as expected, the worker reallo-

cation rate for long-term workers positively correlates with the number of electricity

outages. Holding other factors constant, on average, each electrical outage results in

the reallocation of about 0.2% of long-term workers. Additionally, the coefficient of

outage in column 1 suggests that outages increase firms’ employment volatility. In

other words, firms adjust their total labour input in response to electricity constraints.

The results of the excess worker reallocation rate regression are of particular interest
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here. As a measure of the reallocation that is closely tied to match-quality, the ex-

cess worker reallocation rate is found to be positively influenced by a firm’s electricity

constraints. Although the p-value for the standard inference from 2SLS regression is

slightly higher than 0.1, the robust CLR test shows a significant effect. In summary, in

the presence of observable electricity outages, a remarkable fraction of the long-term

workers separate and are replaced by other workers.

The effects of blackouts on job reallocation, worker reallocation and excess worker

reallocation of temporary workers are all statistically insignificant. However, despite

the imprecise estimation of these impacts, the magnitudes and signs of coefficients of

outage in different regressions are still worth noting. First, in the job reallocation

rate regression, it is found that the impacts of outages on employment volatility for

temporary workers are smaller than volatility impacts for long-term workers. Second,

the sign of coefficient of outage in the excess worker reallocation rate regression is

negative, implying that outages may reduce the match-quality related reallocation of

temporary workers.

The evidence of outage impacts on worker reallocation in this chapter can be related

to the previous literature. Dollar et al. (2005) shows that unreliable power supply

lowers the level of firm productivity. Evidence presented in this section in fact can

provide an explanation for that. Because electricity constraints signal negative firm

performance to employees and create concern over future income, outages encourage

workers to leave employers with whom they are badly matched. Although I do not have

detailed information about the productivity of workers participating in the flows, it is

predicted that long-term workers with high productivity and income expectations are

more likely to separate. The separations of trained and skilled workers will eventually

reduce firm productivity.
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2.5.4 Exploring the mechanisms

Effects of outages on capacity utilization and labour demand

One important reason of the effect on firms’ decisions to layoff or hire workers is that

the outages directly affect business operations through idling production capital as well

as labour. In addition, firms may also choose to reduce the scale of their business to

avoid further losses from disputes over past due business contracts. Therefore, it is

reasonable to expect that the labour demand will decrease with electricity outages.

In order to test this hypothesis, a firm’s capacity utilization rate, which in part

reflects a firm’s labour demand, is used as the dependent variable in an IV estimation.

Results in Table 2.6 show that outages have a significant negative effect on capacity

utilization. Because the recent electricity shortages in China emerge initially in mid-

2003 (only a year before the ICS survey), it would be difficult for firms to promptly

adjust their production technology through a practice such as adopting more labour

intensive technology. Therefore, without the adjustment of production technology, a

decreasing capacity utilization rate will result in lower demand for labour.

Capacity utilization rate in 2004 Manpower situation in 2004

IV IV
(1) (2)

outage -0.187* 0.182***
(0.105) (0.067)

CLR test p-value 0.004 0.006
S.D of the temperature categories? Yes Yes
Firm controls? Yes Yes
City controls? Yes Yes
Hansen J statistics p value 0.04 0.74
N 12175 12175

1 Note: Robust standard errors clustered at city level are in parentheses. The manpower
situation is measured by the reported percentage of surplus of workers (positive num-
bers), and percentage of shortage of workers (negative numbers), and with a value of
zero for those firms which just sufficient number of workers.

2 * Significant at the 10% level.
3 ** Significant at the 5% level.
2 *** Significant at the 1% level.

Table 2.6: Effects of power outages on capacity utilization and manpower situation

To provide complementary evidence, I construct another proxy of firm relative
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labour demand as the dependent variable. In the survey, managers were asked to

evaluate their firm’s labour situation in 2004. First, the managers reported whether

their firm had adequate manpower or a surplus or shortage. Managers then applied a

percentage to cases of labour surplus or shortage. The firm’s labour situation in the

firm was ultimately measured by this number. A value of zero is used for the firms

which were of just sufficient number of workers in 2004. A positive number of this

variable implies that a firm’s labour supply exceeded its desirable labour demand, while

a negative value indicates the opposite. IV regression results presented in column 2 of

Table 2.6 suggest that electricity outages lower relative labour demand, which supports

the evidence on the capacity utilization rate.

Effects of outages on wages

Many previous studies on worker and job flows suggest that the average wage, relative

wage, and wage dispersion within firms are important determinants of firm and worker

behaviour (Haltiwanger and Vodopivec, 2003; Parsons, 1972; Galizzi and lang, 1998).

Because frequent electricity failures are found to reduce firms’ capacity utilization rates

and shift labour demand, it is possible that outages also affect workers’ wages and wage

structures.

Without employee-employer linked data, it is difficult to investigate the impacts of

electricity outages on the wages of individual workers, given their personal character-

istics. Instead, in this section, I will explore how electrical constraints influence the

average monthly wages of long-term and temporary workers. Because of the signifi-

cant income dispersion among different cities in China, I control the average long-term

workers’ wage of a city in the regression. The coefficient of outage suggests that hold-

ing the other factors constant, an additional electricity outage will reduce the average

monthly income of long-term workers by approximately 7 RMB (about 1 U.S. dollar).

In column 2, the significant negative effect of electrical failures on long-term workers’

relative wage within the city also point to the same direction, that is, more frequent
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Long-term workers’ wage Temporary workers’ wage Within firm wage ratio

pw pw/pwcity tw tw/twcity pw/tw
IV IV IV IV IV
(1) (2) (3) (4) (5)

outage -6.968** -0.006*** 1.855 0.002 -0.008**
(2.711) (0.002) (1.658) (0.002) (0.003)

CLR test p-value 0.020 0.007 0.058 0.343 0.001
S.D of the temperature categories? Yes Yes Yes Yes Yes
Firm controls? Yes Yes Yes Yes Yes
City controls? Yes Yes Yes Yes Yes
Hansen J statistics p value 0.37 0.31 0.06 0.06 0.41
N 11760 11760 7616 7616 7616

1 Note: Robust standard errors clustered at city level are in parentheses. pw indicates the average
monthly wage of long-term workers in a firm, while pw/pwcity represents the relative wage within the
city. The definitions of tw and tw/twcity are similar for temporary workers.

2 * Significant at the 10% level.
3 ** Significant at the 5% level.
2 *** Significant at the 1% level.

Table 2.7: Effects of power outages on the wage and relative wage

electricity failures lead to a lower ranking of average wage of that firm in the city.

In contrast, estimated coefficients of outage in the IV regressions of temporary

workers’ wages and relative wages are both positive. A CLR test on the coefficient of

outage in column 3 suggests that the positive effect of outages on the average wages

of temporary workers is significant at 10% level. In the last column of Table 2.7, I

use the within-firm ratio of long-term workers’ wages to temporary workers’ wages as

the dependent variable. It is interesting to find that the number of outages decrease

with the ratio. That is, increased numbers of power outages lower the wage differential

between long-term and temporary workers in the same firm.

As the frequent blackouts hit the firms and reduce their capacity utilization rate

as well as labour demand, the working hours and working schedule tend to be shifted.

Because long-term workers are usually not as flexible as temporary workers but re-

ceive a higher wage, firms may choose to substitute temporary workers for long-term

workers. Temporary workers’ payment usually depends on piece-rate wages or hourly

wage, allowing firms to better cope with the uncertainty of future electricity supply.

Therefore, shifts in working schedules eventually reduce the wages of long-term workers
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and increase the wages of temporary workers slightly. As an important determinant of

worker flows, the reduction of wage ultimately encourages long-term workers to sepa-

rate. In fact, the flexibility of temporary workers absorbs the shocks from unreliable

power supplies.

2.6 Robustness Checks

The validity of instrumental variable is a major concern of the identification strategy

in this study. Because electricity shortages in China initially emerges in mid-2003

and persisted for several years, a firm that faced electrical constraints in 2004 tended

to face similar constraints in 2003. This relationship, together with the design of the

survey question, indicates that the number of firm-reported outages is likely to contains

information on outages in 2003 as well. This measurement error is addressed by the

IV approach in the main analysis. In this section, I take a further step to verify the

validity of the instrumental variables used in this study.

If the variable outage indeed contains considerable information about outages in

2003, the data generating process of this variable, therefore, should be partially driven

by temperature shocks in 2003. In order to test this, I use the temperature shocks

in 2003 as instrumental variables for the number of outages. Moreover, using the

temperature shocks in 2003 as IV can also estimate the potential dynamic effects

of outages. Because blackouts in previous years may have lagged effects on worker

reallocation, identifying these dynamic impacts is important for the interpretation of

causal effects of electricity outages.

Column 1 in Table 2.8 reports the results of the first stage regression. The esti-

mated coefficients of fluctuations within each temperature category are much smaller

than those reported in the main analysis, implying that temperature shocks in 2003

have only a limited ability to predict firm-reported power outages. Across column 2

to 7, estimated coefficients of outage are statistically insignificant under the standard
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inference from 2SLS regression. However, the CLR test of the effect of electricity out-

ages on the hiring rates of temporary workers is significant at the 1% level. These

results indicate that there is no lagged effect of electricity outages on workers’ sepa-

rations. The only exception is that the electricity shortage in 2003 may have led to

an increased hiring rate of temporary workers in 2004. Similarly, the estimated lagged

effects of power outages on job reallocation, worker reallocation, and excess worker

reallocation in Table 2.9 are all statistically insignificant for both the long-term and

temporary workers.
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2.7 Conclusion

Estimating the impacts of infrastructure quality on worker reallocation at a micro-

level provides a new and crucial angle for understanding how infrastructure influences

firms’ performance. This understanding is particularly important for the policy-makers

in the developing world. Using recent power outages in China as an example, this

chapter provides empirical evidence for how the quality of energy infrastructure affects

worker reallocation among Chinese manufacturing firms. I also explore the mechanisms

through which the impacts of power outages operate.

To address the well-acknowledged problem of endogeneity in electrical outages at

the firm-level, I use temperature shocks as instrumental variables of outages, which

allow me to exploit the exogenous variation in the occurrences of blackouts. Estimation

results from IV regressions show that frequent power outages lead to higher separation

rates for long-term workers through both voluntary quits and layoffs. Outages also

increase employment volatility and excess worker reallocation for long-term workers. In

contrast, impacts of outages on the reallocation of temporary workers are economically

and statistically insignificant. An investigation into the mechanisms underlying these

effects suggests that frequent electricity failures considerably reduce a firm’s labour

demand and the wages of its long-term workers. However, outages cause the average

wage of temporary workers in a firm to increase slightly. In other words, shocks from

unreliable power supplies are absorbed by the flexibility of temporary workers; long-

term workers respond to shocks with increased reallocation. The final analysis in

this chapter examines potential dynamic effects of electricity outages on the outcome

variables. With the exception of a positive lagged effect in which electricity outages

impact hiring decisions in subsequent years, no other significant dynamic effects were

observed.

The policy implications of this chapter are clear. First, it is evident that global

climate change will lead to more frequent extreme weather events in the future, which

will threaten already weakened energy systems in many developing countries. Without
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significant investment in energy infrastructure, power provision will become even more

challenging in the future. Second, although rolling blackouts can partially alleviate

electricity shortages, consistent unavailability of energy inputs will reduce job security,

human capital investment, and firm performance through worker reallocation. As the

labour market in China becomes more flexible, the effects of outages on worker flows

and related business operations should also be considered by policy makers.

39



Chapter 3

Unreliable Power Supply,

Generator Use and Investment in

Indian Firms

3.1 Introduction

India has risen to be one of the fastest growing economies in recent years. However,

the speed of building the necessary infrastructure (e.g. transportation, power and wa-

ter facilities) is not fast enough to sustain its growth. Although the government has

engaged in investing more on infrastructure construction and launching some ambi-

tious projects, such as planning to increase the investment in infrastructure from the

present 4.7 percent of GDP to around 7.5 to 8 percent of GDP in the 11th Five Year

Plan from 2007 to 2011 (Prabir De, 2007), the quantity and quality of public infras-

tructure services are still unable to meet the rapid economic growth. The 2011-2012

Global Competitiveness Report ranks India 56th of 142 survey countries, behind China

(26th), South Africa (50th) and Brazil (53rd) in the BRICS . The investment environ-

ment in India is seriously penalized for its inadequate and inefficient supply of basic

infrastructure. The Indian business community continues to cite infrastructure as the
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biggest obstacle in doing business in the country (World Economic Forum, 2011).

In particular, the electric power supply remains a major challenge for India despite

some improvement in recent years. Still, more than 6 percent of the population in

the urban areas and 43 percent of the population in the rural areas lived without a

connection to the public grid in 2005 (Khandker et al., 2010). The development of

firms has also been hindered by the poor quality of electricity provisions. In a 2005 en-

terprise survey of manufacturing firms in India conducted by the World Bank, around

70 percent of the firms quoted the electricity provisions as an obstacle for business.

After dividing the degree of obstacles into five grades from 0 to 4, which represent no

obstacle, minor obstacle, moderate obstacle, major obstacle and very severe obstacle

respectively, I find that the mean value of the electricity problem as the highest among

21 different issues, followed by high taxes, tax administration, corruption and labour

regulations. Figure 3.1 depicts the evaluation of the top five obstacles from this survey.

Figure 3.1: Top five obstacles for business in India in 2004

As an indicator of the unreliable power supply, the reported number of electricity

outages or surges in the public grid varies greatly across firms. Figure 3.2 illustrates

the distribution of the number of blackouts. On average, firms in India experienced

about 95 electricity outages in 2004. Conseuqently, to contend with the poor elec-

tricity provisions, over 51 percent of the firms have invested in a private generator.

However, the adoption of a self-owned generator is costly. First, on average, the fixed

cost accounts for more than 5 percent of the gross book value of the machinery and
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equipment. Second, the electricity produced by a generator is much more expensive.

It is estimated that the diesel generator typically cost two to three times as much to

produce power as does electricity from the public grid. Overall, whether firms can

benefit from this costly adoption still remains questionable.

Figure 3.2: Distribution of electricity outages in India in 2004

The importance of public infrastructure on growth and investment has been widely

discussed in empirical research (Berndt and Hansson, 1992; Nadiri and Mamuneas,

1994; Demetriades and Mamuneas, 2000; Aiello et al., 2010). However, few studies have

been undertaken on the impact of electricity outages and in-house generation, mainly

due to the lack of appropriate micro survey data. Dollar et al. (2005) and Aterido et

al. (2011) use the frequency of power outages to proxy infrastructure quality, which

is deemed to be an important factor in the investment climate. Initiated by Reinikka

and Svensson (2002), some research has focused on the impact of public power outages

as well as self-generation. Fisher-Vanden et al. (2012) finds that the enterprises in

China facing electricity scarcity have learnt to adopt to more material-intensive and

energy-efficient production techniques to substitute for electricity input, and they do

not find evidence of an increase of in-house electricity generation. Foster and Steinbuks

(2009) estimates a probit model of generator ownership by controlling a set of firm
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characteristic variables, such as the age, size, sector and export status, and concludes

that these characteristics have a major influence on the decision to own a generator.

The unreliable electricity supply, however, was not the unique or even the largest factor

deriving generator ownership, moreover, Steinbuks (2011) shows that the firms with

better access to credit were more likely to invest in generators. Rud (2011) takes a

further step to look at the effect of adopting a power generator. He claims that the

presence of a generator would increase the level of productivity needed to survive and

would reallocate the sales and profits to the more productive firms, eventually, this

would affect the market’s equilibrium.

This chapter attempts to estimate the extent that electricity outage influences the

decision of installing a generator and to investigate whether the adoption can increase

investment in production capital. I first develop a two-period model to show the re-

action of heterogeneous firms to unreliable electricity provisions. After setting up the

profit maximization problem, I then derive the investment in production capital con-

ditional on the adoption of a generator. Unlike previous studies, the model considers

the cost of operating a generator, which adversely affects the marginal benefit of pro-

duction capital. To avoid causality estimation bias due to observable controls, this

chapter applies the propensity score matching method on s India’s enterprise survey

data for 2004. Moreover, the interval matching approach also allows me to investigate

the heterogeneous treatment effect of generator adoption on the investment rate.

In summary, this chapter provides a number of unique contributions to this field

of research. First, as India is a rapidly developing country but suffers severly from a

poorly provisioned public service, this chapter can provide a meaningful evaluation of

the consequences of electricity outages in a developing country. Second, the theoretical

model in this study highlights the cost of operating a generator, which has been ignored

in previous research. Third, the estimation results from the propensity score matching

method have a more credible causality interpretation compared to the conventional

ordinary least squares (OLS) method, which is used in other studies. Moreover, the
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interval matching approach allows me to investigate a the heterogeneous treatment

effect of generator adoption.

The rest of the chapter is organized as follows. Section 3.2 sets out a model high-

lighting the decision of private investment on electricity generator and how does it

influence a firm’s sequential investment. Section 3.3 specifies the empirical estima-

tion model. In Section 3.4, I make a simple data description. Section 3.5 reports the

estimation results. and conclusions are provided in Section 3.6.

3.2 Theoretical Model

Reinikka and Svensson (2002) has developed a three-period model to show the influence

of public capital provision quality on a firm’s investment in complementary capital

(e.g. a electricity generator) and productive capital. Their model illustrates that only

firms which are expecting a low probability of available public capital will invest in

private substitutes. Furthermore, for the firms that own substitute equipment, their

investment rate will be independent of the failure of publicly provided infrastructure

services, suggesting that there is a perfect substitute of private complementary capital

for public infrastructure. However, for the firms that do not have private substitutes,

their investment rate is reduced because of the poor public capital supply.

A salient feature of their model is that they presume a constant cost of owning and

operating a generator. However, as observed from the survey data, it is costly to gen-

erate electricity privately and a larger firm usually has a higher demand for electricity.

Therefore, the total running cost should be a decreasing function of the probability of

available public electricity p but an increasing function of the capital stock K. Below

I will relax the constant production cost assumption in a two-period model and revisit

the question of how privately invested substitutes influence the investment decisions.

To simplify the analysis of the model, I assume that capital K is the only pro-

duction input and that there are two decision stages for each firm. The timing of the
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investment is as follows. Initially, the firm perceives the probability of available public

infrastructure as p, which is assumed to be realized in the next period. Then, at the

end of the current period, it will decide whether or not to invest in a generator to

contend with the unreliable public power supply. The fixed cost of a generator is a

linear function of the capital stock and is represented as g ·Ki. In period 2, the firm

will decide how much to invest to maximize its production profits. The investment

rate is denoted as I and the marginal cost of capital is constant at r. For the firms

with a private generator, they can ensure a full capacity production. Their production

function φi · (Ki + I ·Ki)α is a concave function of the capital input (α < 1) , where

φi represents the varying firm’s productivity. However, for the firms that do not own

a generator, the production output depends partly on the public power supply in a

Cobb-Douglas functional form of φi · pβi · (Ki + I ·Ki)α.

An important setting of the model is the variable electricity cost. Here, I assume

that the electricity consumption per unit of production capital is a constant m. In

addition, the prices of electricity from the public grid and the in-house generator are

P0 and P1 respectively, with P0 < P1. Therefore the corresponding variable costs for a

firm that owns a generator and a firm that does not are equal to (p ·P0 + (1− p) ·P1) ·

m · (K + I1 ·K) and p · P0 ·m · (K + I0 ·K), respectively. The discount factor in this

two-period model is assumed to be 1. Consequently, the profit maximization problem

of a firm with a generator can be formally stated as:

max
i1i

π1i = φi·(Ki+I1i·Ki)
α−(p·P0i+(1−p)·P1i)·m·(Ki+I1i·Ki)−r·(Ki+I1i·Ki)−g·Ki

(3.1)

In contrast, for a firm without a generator, it is:

max
i0i

π0i = φi · pβi · (Ki + I0i ·Ki)
α − pi ·P0i ·m · (Ki + I0i ·Ki)− r · (Ki + I0i ·Ki) (3.2)

The optimal investment rates following the first order condition of these two problem

are denoted as I∗1i(pi, Ki) and I∗0i(pi, Ki). the main results of the theoretical model
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analysis are summarized in the two propositions below.

Proposition 3.1. Given the capital stock K, the probability of investing in a

generator is decreasing with the availability of public capital.

Proof. See Appendix B.1 .

Proposition 3.2. Under certain conditions, it can be predicted that the effect of

adopting a generator on the investment rate decreases with a firm’s size but increases

with the availability of a public power supply.

Proof. See Appendix B.2 .

Firstly, in proposition 3.2, it indicates that due to a concave production function,

the marginal output of capital and the marginal benefit of investment decreases. Thus,

a firm’s size affects the optimal investment rate adversely. Given a low availability of

public power, a larger firm without a generator needs to invest more to compensate for

the loss of production. Hence, the treatment effect of geenrator adoption on ivnestment

rate will decrease with the firm size. Secondly, given a firm’s capital stock, the impact

on available public capital differs between a firm with a generator and a firm without

one. For the firms that have installed a generator, although they can ensure a full

capacity production, their average production cost increases with the frequency of

electricity outages, which will reduce the marginal benefit of the production capital and,

consequently, reduce the investment rate. On the other hand, for the firms without a

back-up generator, as their output is determined by both the available public electricity

supply and private capital stock, one possible way to cope with the unreliable electricity

supply is to invest more on the production capital to compensate for the loss during the

blackouts. Therefore, the investment rate will increase with the failure of the public

electricity sector under some conditions. In order to illustrate the aforementioned

results explicitly, Figure 3.3 and Figure 3.4 provide a numerical example of the model.1

1The numerical example is based on the following assumptions: pi = 13.3, p0 = 5.97, m = 0.07,
α = 0.75, φ = 16.28, and β = 0.02. These parameters come from the simple regression using the
dataset that mentioned below. Admittedly there may be some estimation bias by the naive regression,
and the theoretical model is too simple to calculate the true investment rate. However, it should be
stressed that the objective of this graph illustration is not to predict the investment rate but to reveal
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Figure 3.3: Investment rate for a firm without a generator

Figure 3.4: Investment rate for a firm with a generator

3.3 Empirical Model Specification

To test the theoretical model predictions laid out above, I use India’s firm-level data

compiled from the 2004 World Bank Enterprise Surveys. As the firms differ only in

terms of the initial capital stock and the quality of the public power supply in the

theoretical model, the other characteristics should be controlled to avoid the potential

for omitted variable bias. Below, I will make a detailed empirical model specification.

Proposition 3.1 predicts that a firm is likely to invest in a generator if it perceives

the change of it with respect to the capital and the quality of the public electricity supply.
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a lower quality of public power supply. In order to test this hypothesis, I follow the

binary choice model used in Reinikka and Svensson (2002). Let the binary variable

indicate the firm’s choice of installing the private substitutes, where 1 means installed

a generator and 0 otherwise. In proposition 3.1, I show that one of the most important

determining factors in the decision to purchase a generator is the quality of the public

electricity supply, which can be proxied by the frequency of electricity outages in a

typical year. Although there is no clear justification of what other firm characteristics

should be included, failure to control the important variables might lead to an omitted

variable bias problem. For this reason, I follow Reinikka and Svensson (2002) and

Steinbuks and Foster (2010) to include the size (proxied by the total employment), the

age, a dummy variable indicating whether the firm is an exporter or not, and the credit

constraint into the estimation model. Therefore, the empirical model can be expressed

as:

Generatori = α0+β1Outagei+β2Workeri+β3Agei+β4Exporteri+β5Credit coni+εi

(3.3)

The reason for including a firm’s size as a control variable comes from the exist-

ing empirical evidence that a larger firm is more likely to afford the investment of a

generator. It is also plausible to control the credit constraints as one of the determi-

nants since a firm facing less financial constraints would have a greater possibility to

purchase a back-up generator when there is a deficient electricity supply (Steinbuks,

2011; Alby et al., 2011). In addition, exporters may need to be able to generate their

own power in order to meet the International Organization for Standardization (ISO)

standards (Steinbuks and Foster, 2010). However, the effect of age is more ambiguous.

On one hand, an older firm might have installed a generator many years ago, but on the

other hand, a mature firm might have also learnt how to deal with electricity outages

through other methods, such as adopting more energy efficiency techniques (Reinikka

and Svensson, 2002), which influence the probability of owning a generator adversely.
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Proposition 3.2 summarizes the different effects of a private generator on the in-

vestment rate under certain conditions. The investment rates are influenced by the

initial capital stock together with the frequency of electricity outages. Unfortunately,

there is no information on the firms’ start-up capital in the data. In addition, it is

inappropriate to control the current capital stock owing to the ’bad control’ problem

(Angrist and Pischke, 2009). Specifically, because the adoption of a generator is ex-

pected to affect the investment rate, which will in turn affect the current capital stock,

including the current capital stock and the generator indicator simultaneously in the

equation will lead to a bias casual interpretation of the effects of a generator. To avoid

this ’bad control’ problem, I should only control variables caused by the adoption of

a generator or variables that are predetermined. The number of workers serves as a

good candidate to proxy a firm’s size as it is relatively stable and controlled by other

factors, such as the strict labour regulations in India. Meanwhile, the same set of

independent variables as in Equation (3.3) are also included. Finally, the estimation

model is specified as follows:

Invi = α0+β0Generatori+β1Outagei+β2Workeri+β3Agei+β4Exporteri+β5Credit coni+εi

(3.4)

Following Reinikka and Svensson (2002), the dependent variable is the investment

rate in the 2004 fiscal year, measured by the share of investment in machinery and

equipment (excluding generators) in 2004 over the capital stock in 2003.

3.4 Data

This study uses a comprehensive firm-level dataset from Enterprises Survey (ES) to

examine the theoretical propositions above. The survey was initially conducted by the

World Bank in 2002 and covers more than 120,000 firms from 125 countries. It contains

extensive information about the firms’ performance as well as a broad range of aspects
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of the investment climate faced by the firms, such as infrastructure, finance, crime,

corruption and competition. The data from India used in this study was collected in

2005 and covers 2286 establishments across 64 cities and 22 industries. It provides

detailed information on the ownership of generators and electricity outages. Thus, it

allows me to investigate the impact of public electricity provision failures on private

generator adoption decisions as well as the subsequent effect on investment. In order

to examine the heterogeneous treatment effects of generator adoption by applying the

interval propensity matching approach, I use multi-industries data, containing firms

from six major industries in India. Even though I control the industry dummies in

computing the propensity score and test the balance property of each covariate, only

industries with more than 80 observations are selected in the multi-industries sample to

minimize the potential mismatch problem. Only 887 firms from the following 6 indus-

tries are included: garments, textiles, machinery, auto components, food processing,

and structural metals. The advantage of using a multi-industries sample is the larger

sample size and hence a better within-stratum balancing performance for more strata.

Besides, there will be a more general interpretation of the treatment effect of generator

adoption on investments for the Indian industries. In the sensitivity analysis section,

I restrict the sample to 334 garment and textile firms to check for robustness, which

makes the estimation results are affected by little industrial heterogeneity.

I have shown in the theoretical model that the decisions of adopting a generator

and production capital investment depend on the probability of the available public

electricity supply p. However, since this probability cannot be observed directly, I thus

alternatively utilize the number of electricity outages in 2004 as a proxy for 1−p in the

empirical estimation. The reported number of electricity outages in the dataset ranges

from 0 to 7355. Approximate 4 percent of the sample reported a number over 365,

which is extremely high compared to the mean value of 125. To avoid the estimation

bias due to these potential outliers, I censor the number at 365 by assuming that the

average maximum number of electricity blackout is one per day. After doing this, the
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average number for the whole sample is 118. Table 3.1 presents the definition and

summary statistics of each variable for the sample of six selected industries.

Variable Description Mean S.D

Inv Investment rate 0.034 0.114
Outage Number of reported electricity outages 118.277 113.595
Generator Owning a private generator or not: 1 yes, 0 no 0.571 0.495
Worker Number of workers 82.696 256.738
Age Age of the establishment 16.618 11.362
Exporter Export or not: 1 yes, 0 no 0.231 0.421
Credit con Percentage of inputs bought on credit 74.003 19.316

Observations 887

Table 3.1: Summary statistics for the variables

The dependent variable is the investment rate, measured by the investment in

machinery and equipment in 2004 over the total assets in 2003. For the entire sample,

the magnitude of the investment rate ranges from 0 to 1 with a mean value of 0.034.

The mean value of the reported number of electricity outages is 118. Over 50 percent

of the firms reported ownership of a private generator. However, the ownership of a

generator in the garment and textile industries is around 68 percent, much higher than

most of the other industries, partly reflecting the fact that the garment and textile

industries rely heavily on the electricity supply. The average number of workers also

varies greatly across industries. The average size of the firms in the six major industries

is about 82 workers, fewer than the average size of the firms in garments and textiles,

which are typically labour intensive industries. I use the percent of inputs bought on

credit to measure the financial constraint that a firm faces, by assuming that if a larger

percentage of inputs is bought on credit, then there is less financial constraints on the

firm.

Table 3.2 depicts the same summary statistics split into two groups, one for firms

that own a generator and one for firms that do not. There are 507 firms in the sample

that reported owning an electricity generator. As shown in the table, a firm that adopts

a generator, on average, shows a much higher investment rate compared to a firm that
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does not. Moreover, the firms that own a generator experience more electricity outages,

are typically larger and have a higher likelihood to export. The age and financial

constraints, however, merely show small differences between these two groups.

Variable Own a generator Do not own a generator

Inv 0.046 0.019
Outage 136.236 94.315
Worker 111.931 43.692
Age 17.763 15.092
Exporter 0.341 0.084
Credit con 76.488 70.686

Observations 507 380

Table 3.2: Summary statistics (mean value) by ownership of generator

3.5 Estimation and Results

3.5.1 Empirical Strategy

The objective of Equation (3.4) is to estimate the causal effect of installing a generator

on a firm’s capital investment. Let treatment indicator Di equals one if firm i owns a

generator and zero otherwise. Then, let I1i and I0i denote their respective investment

rates correspondingly. Thus, the treatment effect of adopting a generator for a single

firm i can be written as:

τi = I1i − I0i (3.5)

For a group of firms with a generator, the average treatment effect on the treated

(ATT) is measured by E[I1i−I0i | Di = 1]. However, there is a fundamental problem in

identifying the causal effect by using the equations above: either I1i or I0i is observed

for every firm i, and the unobserved outcome for each individual is usually called

the counterfactual outcome. Generally the naive comparisons of those firms which

do and do not install a generator are likely to be a biased estimator of the average
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treatment effect of a generator. To cope with the potential selection bias problem, two

additional assumptions are imposed as follows: (Rosenbaum and Rubin, 1983; Angrist

and Pischke, 2009).

Assumption 1: Conditional Independence Assumption (CIA), {I1i, I0i} ⊥⊥ Di | Xi

This assumption implies that, given a set of observable covariates X which are

unaffected by the treatment, potential outcomes are independent with treatment as-

signment, equivalently, unobservable factors play no role in determining the treatment

assignment given a set of observable covariates. Although strong, the consistent esti-

mation of ATT by OLS or matching relies crucially on this assumption. Besides the

CIA, there is a further requirement which ensures that for each treated unit there are

control units with the same observables.

Assumption 2: Overlap, 0 < P (Di = 1 | Xi) < 1 ∀i.

Under assumption (1) and (2), several estimation strategies can be used to iden-

tify the ATT. In principle, using regression to control many pre-determined variables

and estimate the parameter of treatment dummy is a good strategy to serve that pur-

pose. However, as Angrist and Pischke (2009) illustrate that the regression imposes an

implausible weight in estimating the ATT, a matching approach is usually preferred

because it utilizes a more reasonable weight distribution.

Matching by cell is the finest estimator of ATT, but it is not practical to apply this

when X is a high dimensional vector or when there are many continuous covariates.

Instead, a possible solution is to reduce the problem to a single dimension by using a

propensity score. Rosenbaum and Rubin (1983) show that the propensity score, which

indicates the probability of having been assigned to treatment, is a coarsest balancing

score. If the potential outcomes are independent of treatment conditional on covariates

Xi, they are also independent of treatment conditional on the propensity score P (Xi),

that is, the CIA can be expressed in an alternative way as {I1i, I0i} ⊥⊥ Di | P (Xi).

Given that the CIA and overlap conditions hold, the average treatment effect at

a certain score can be estimated by the outcome difference between the treatment
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group and control group. The propensity score matching estimator is simply the mean

difference in outcomes weighted by the propensity score distribution of participants,

expressed as

τPSM
ATT = EP (Xi)|Di=1{E[I1i | Di = 1, P (Xi)]−E[I0i | Di = 0, P (Xi)]} (3.6)

There are several algorithms to apply the propensity score matching method, in-

cluding the nearest neighbour matching, radius matching, interval matching, and kernel

matching. I will primary apply the interval (stratification) matching approach in this

study as it is very straightforward to observe the heterogeneous treatment effect across

different strata. However, other algorithms will also be used to test the robustness. The

interval matching algorithm can be described in the following way. First, estimate the

propensity score P (X) by using a logit or probit model. Second, partition the common

support of propensity score into a set of strata. While there is no standard number

of intervals to be divided, Cochran (1968) shows that the use of five subclasses can

remove 95 percent of bias associated with one single covariate. Additionally, Imbens

(2004) suggests that all bias under unconfoundedness are associated with the propen-

sity score. Hence it means that the five strata will be enough to remove most of the

bias from the observable covariates. One formal way to justify the appropriate number

of strata is to test the balancing property of the propensity score within each stratum.

In other words, I need to check whether there are statistically significant differences

between the means of the propensity score in both the treatment and control groups in

the same stratum. If so, then the stratum should be split. Third, check the balancing

property of the covariates within each stratum. This balancing property is crucial for

the matching method. Lastly, estimate the average treatment effect on the treated

within each stratum by taking the mean difference in outcomes between the treatment

and control group (Morgan and Harding, 2006; Caliendo and Kopeinig, 2008). For each
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interval, the matching estimator is estimated separately using the following equation:

τSq =

∑
i∈I(q) Y

T
i

NT
q

−
∑

i∈I(q) Y
C
i

NC
q

(3.7)

where NT
q is the number of treatment cases in block q, i is the index over treatment

cases, and j is the index over control cases, NC
q is the number of comparison units in

the same interval. The estimator of the ATT based on the stratification method is

then computed by

τS =
Q∑

q=1

τSq ·
∑

i∈I(q)Di∑
∀i Di

(3.8)

Assuming independence of outcomes across units, the analytical variance of τS is given

by

V ar(τS) =
1

NT
· [V ar(Y T

i ) +
Q∑

q=1

NT
q

NT
·
NT

q

NC
q

· V ar(Y C
j )] (3.9)

3.5.2 Results

Notwithstanding I have shown that the propensity score matching provides more re-

liable estimates of average treatment effect, regression is still a good start point for

the analysis. Table 3.3 illustrates the regression results for equation (3.3) by using a

sample of 887 observations. The number of electricity outage is positively correlated to

the ownership of a generator in probit regression and remains highly significant after

I augment the regression model by adding more control variables, suggesting that the

more electricity blackouts the firm experiences, the more likely that it will install a

generator.

I then estimate Equation (3.4) by gradually adding covariates to the regression

model. The results are depicted in the Appendix B.3. the variable of interest is

Generator. The coefficient represents the impact of generator adoption on the invest-

ment rate. In the first regression, I exclude all other controls except the number of

electricity outages. The coefficient of Generator is 0.03 and statistically significant at
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Regression 1 Regression 2 Regression 3 Regression 4 Regression 5
Dependent Var. GENERATOR GENERATOR GENERATOR GENERATOR GENERATOR
Method Probit Probit Probit Probit Probit

Constant 0.241**(0.112) 0.152(0.116) 0.003(0.127) -0.263(0.136) -0.723***(0.235)
Outage 0.002***(0.000) 0.002***(0.000) 0.002***(0.000) 0.001***(0.000) 0.001***(0.000)
Worker 0.0009***(0.000) 0.0009***(0.000) 0.0005**(0.000) 0.0005*(0.000)
Age 0.011***(0.004) 0.011***(0.004) 0.011***(0.004)
Exporter 0.766***(0.130) 0.773***(0.130)
Credit con 0.005**(0.002)
Industry Dummies Yes Yes Yes Yes Yes

Observations 887 887 887 887 887

Note: *, **, and *** indicate statistical significance at 10%, 5%, and 1% level respectively

Table 3.3: Probit regression results for Equation (3.3)

1 percent level, indicating that installing a generator will increase the investment rate

by 0.03. Next I add the interaction term of Generator and Outage. The coefficient

of Outage turns out to be insignificant due to the potential multi-collinearity problem

between those variables, but the coefficient of Generator remains significantly positive.

Another interesting finding is that the coefficient of interaction term is negative, which

implies a diminishing influence of installing a generator with an increasing blackout

frequency.

Next I apply the propensity score matching approach to investigate the causal ef-

fect of generator adoption on capital investment. The propensity score is computed

by the probit model above. Figure 3.5 depicts a histogram of the results. The black

bins demonstrate the distribution of the propensity score in the treatment group while

the dash-outline bins illustrate those in the control group. The common support for

both groups is (0.13, 0.99), only 4 out of 887 observations in the sample are out of the

common support. Although Heckman et al. (1998) found that a large part of selection

bias comes from the observations outside common support, it is negligible in the study

due to a very small proportion of them.

The essence of interval matching suggests that the sample should be divided into
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Figure 3.5: Histogram of estimated propensity score

groups where their background variables are approximately equivalent. That is, I am

comparing the comparable firms in every subsample. To do this, I firstly partition

the propensity score into eight strata and ensure that the mean propensity score is

not statistically different for treated and controls in each stratum. Next, I check the

balancing property of each covariate within every stratum. Finally I calculate the

treatment effect of generator adoption within each segment by taking the difference in

mean investment rate for the firms with and without generators.

Table 3.4 shows the mean investment rates of the firms with and without generators

within each stratum, together with the results of the treatment effect estimated by

taking the difference between them. There are eight propensity score strata for the

entire sample, although the number of observation within each stratum is not evenly

distributed. The balancing property of the propensity score and covariates have been

tested strictly at a significant level of 0.01, indicating that the characteristics between

the treatment group and the control group in each stratum do not deviate much. Hence,

it is reasonable to estimate the treatment effect for every cohort by simply taking the

mean difference of outcomes between them.

The number of treated observations in each stratum increases gradually while that
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of untreated firms decreases. 7 treated and 52 untreated firms are found in the first

stratum. In contrast, the stratum eight, which has the highest propensity of installing

generators, includes only 3 untreated comparison firms. The treatment effect of a

generator by stratum is presented in column 4. It can be observed that there is positive

treatment effect in seven out of eight strata. Furthermore, another interesting finding

is the decreasing trend of the mean outcome of the treatment group. Moreover, the

control group generally decreases with strata (the propensity score), which reflects that

the effect of generator adoption on the investment rate is larger for those firms with

a lower likelihood of installing a generator. To illustrate this trend more explicitly,

the left panel of Figure 3.6 plots the within-stratum treatment effect along with a

linear trend. It can be seen clearly from the graph that the treatment effect fluctuates

with a significant downward trend, which indicates that for the firm with the highest

probability of installing a generator, the investment rate increment by adopting a

remedial infrastructure is even smaller than those with less propensity of adoption.

The right panel of Figure 3.6 breaks down the within-stratum treatment effect into an

average investment rate for the treatment group and the control group respectively. It

illustrates a significant decreasing trend of average investment rate for the treatment

group and a rather flat trend for the control group. Finally the average treatment effect

(ATT) is identified by averaging the treatment effects in all strata on the distribution

of the treated sample. The estimated ATT is 0.027 with a standard error of 0.008 and

hence it is statistically significant. Comparing the findings to the result from the OLS

regression, I find that using the conventional OLS method will slightly over-estimate the

treatment effect. In order to test the robustness of the estimation results of the interval

matching approach, I also apply other matching approaches to compute ATT, including

nearest neighbour matching, calliper matching and kernel matching algorithms. The

standard errors of ATT are obtained analytically as well as by bootstrapping 1000

times of replications, and all of those algorithms present similar results.

One important result from the above interval propensity score matching approach, is
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Stratum Number Investment rates Difference in investment rate

1 Treatment 7 0.119
Control 52 0.038 0.082

2 Treatment 21 0.037
Control 84 0.011 0.026

3 Treatment 38 0.062
Control 63 0.011 0.051

4 Treatment 42 0.044
Control 52 0.015 0.029

5 Treatment 65 0.051
Control 42 0.020 0.031

6 Treatment 178 0.055
Control 57 0.016 0.039

7 Treatment 79 0.024
Control 27 0.041 -0.016

8 Treatment 77 0.034
Control 3 0.009 0.025

Total:

Treatment 507 0.046 ATT Std. Err P-value
Control 377 0.019 0.027 0.008 0.000

Other matching algorithms ATT Std. Err P-value
Nearest Neighbour Matching 0.032 0.012 0.002
Radius Matching (Caliper:0.1) 0.027 0.008 0.000
Kernel Matching (Gaussian, bs=1000) 0.022 0.012 0.031

Table 3.4: Estimated ATT of generator adoption
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Figure 3.6: Interval propensity score matching results

that the treatment effect of generator adoption decreases with the likelihood of getting

the treatment. That is, firms which are most likely to install a generator benefit least

from it and thus invest least on capital stock. This type of counter-intuition result is
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commonly called negative selection hypothesis (Brand and Xie, 2010). One may be

curious as to what is the typical firm in each stratum to have different probabilities

of generator adoption. In order to illustrate this clearly, I summarize the mean of the

observable controls by stratum in Table 3.5. As shown in the table, a firm with a smaller

propensity score value is typically smaller, is younger, has less probability to export,

and has fewer reported electricity outages. Therefore I can conclude that the treatment

effect is higher for the smaller firms experiencing less electricity outages, and vice versa.

In Figure 3.6, it is shown that the decreasing treatment effect is a result of a decreasing

average investment rate in the treatment groups and almost unchanged investment

rate in the control groups, which fits the diagonal slope seen in Figure 3.3 and Figure

3.4. The explanation for this, as I have shown in the theoretical model, is the higher

cost of in-house electricity production together with the diminishing marginal capital

production reduces the marginal profit of the capital for the firms with a generator,

and as a result, lowers the treatment effect of generator adoption on the investment

rate.

Stratum Number Pscore Outage Worker Age Exporter Credit con

1 Treatment 7 0.174 66.714 15.714 7.571 0 57.142
Control 52 0.175 38.846 13.365 7.576 0 58.173

2 Treatment 21 0.242 105.714 33.523 20.476 0 63.952
Control 84 0.246 106.381 37.19 14.416 0.011 65.833

3 Treatment 38 0.356 61.078 32.552 16.868 0.026 68.157
Control 63 0.347 64.111 20.38 14.38 0.015 73.603

4 Treatment 42 0.452 53.347 31.69 16.428 0 73.095
Control 52 0.44 53.173 18.519 14.75 0 67.692

5 Treatment 65 0.556 116.107 41.2 14.723 0.092 76.138
Control 42 0.553 84.761 35.476 17.904 0.023 80

6 Treatment 178 0.711 146.123 89.808 17.432 0.252 75.358
Control 57 0.704 166.456 62.473 18.964 0.157 79.035

7 Treatment 79 0.847 186.531 131.873 17.708 0.721 79.189
Control 27 0.848 170.037 163.777 21.666 0.629 76.074

8 Treatment 77 0.944 175.61 315.389 22.506 0.831 87.766
Control 3 0.941 147 354.666 13 1 76.666

Table 3.5: Mean value of covariates in strata
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3.5.3 Sensitivity Analysis

Selection on Unobserved Variables

The estimation model in Section 3.3 depends heavily on the Conditional Independence

Assumption (CIA), which assumes that firms with and without a generator only differ in

terms of observed variables. Although I have controlled many pre-treatment variables

in computing the propensity score before applying the matching method, the treatment

effects in this study may be contaminated with selection bias due to unobservable

variables, such as motivation and preferences. The purpose of sensitivity analysis in

this section is to assess potential bias and alter inference results of the ATT outcomes

when the CIA is assumed to fail. I follow the simulation-based approach developed by

Ichino et al. (2008) to measure the potential bias of the causal effect. Next, I present

a brief introduction of this method and the corresponding sensitivity test outcomes.

One central assumption of the analysis is that the treatment assignment is not

unconfounded given the set of covariates X . The unobservables are presumed to be

binary, independently and identically distributed in the cells, and associated with both

the treatment and the response. Therefore, it is assumed that the CIA holds given X

and an unobserved binary variable U

Y0 ⊥⊥ T | (X,U) (3.10)

U is essential for the consistent estimation of the ATT. A good way to measure the

impact of U on the final result is to characterize the distribution of it and simulate this

potential confounder. For simplicity, I categorize the continuous dependent variable y

into a binary variable, that is, give the new dummy y′ a value of 1 when y is greater

than the mean value, and 0 otherwise. Then, the distribution of the binary confounding

factor U is fully characterized by the choice of four parameters:

pij = Pr(U = 1 | T = i, y′ = j) = Pr(U = 1 | T = i, y′ = j,X) (3.11)
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with i, j ∈ [0, 1], which gives the probability of U = 1 in four different groups by

assuming the value of the treatment and the outcome. Then for any configuration of

the parameters pij, a value of U is attributed to each cell, which is then treated as

other observed covariates and used to recompute the propensity score and the ATT.

This procedure is repeated 1000 times and finally a simulated estimate of the ATT is

retrieved by averaging the set of simulating ATTs.

The assumption above indicates that the distribution of U given T and y′ does not

vary with the control variables X . However, in principle, the unobserved variables may

be associated with other covariates explicitly. For example, the motivation for installing

a generator may be correlated with a firm’s size. Then the chosen U cannot be used

to simulate a confounder like this since they are determined disregarding the value of

X . Instead, Ichino et al. (2008) shows another merit of the simulated confounder U

as follows:

p01 > p00 ⇒ Pr(y0 = 1 | T = 0, U = 1, X) > Pr(y0 = 1 | T = 0, U = 1, X) (3.12)

which means

Γ =

Pr(y0=1|T=0,U=1,X)
Pr(y0=0|T=0,U=1,X)

Pr(y0=1|T=0,U=0,X)
Pr(y0=0|T=0,U=0,X)

> 1 (3.13)

Hence, by simply assuming that p01 > p00, I can simulate a confounding factor

that has a positive effect on the potential outcome in the case of no treatment. The

measurement of this outcome is computed by taking the average of relative probability

to have a positive outcome in the case of no treatment, which is denoted as Γ, for

all iterations. Γ > 1 indicates the simulated confounder has a positive effect on the

outcome variable. Similarly, by estimating the logit model of Pr(T = 1 | U,X), the

average odds ratio of U would measure the effect of U on the relative probability to be
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assigned to the treatment T = 1, which is the selection effect of U .

Pr(T=1|U=1,X)
Pr(T=0|U=1,X)

Pr(T=1|U=0,X)
Pr(T=0|U=0,X)

= Λ (3.14)

P11 P10 P01 P00 Γ Λ ATT S.E

No confounder 0 0 0 0 - - 0.027 0.008
Neutral confounder 0.50 0.50 0.50 0.50 1.063 1.010 0.027 0.008
Confounder-like
I(Worker > 10) 0.90 0.86 0.75 0.55 2.907 5.374 0.024 0.008
I(Worker > 20) 0.74 0.55 0.47 0.24 3.409 4.232 0.024 0.008
I(Worker > 50) 0.50 0.32 0.22 0.07 4.754 4.131 0.024 0.008
I(Worker > 100) 0.26 0.19 0.60 0.02 11.525 6.640 0.025 0.008
I(Worker > 500) 0.06 0.03 0.08 0.01 37.433 2.970 0.027 0.008
I(Outage > 0) 0.85 0.92 0.67 0.80 0.526 2.860 0.028 0.008
I(Outage > 10) 0.76 0.87 0.45 0.67 0.393 3.201 0.028 0.008
I(Outage > 50) 0.54 0.72 0.31 0.50 0.448 2.458 0.028 0.008
I(Outage > 100) 0.41 0.56 0.20 0.35 0.432 2.310 0.027 0.008
I(Outage > 200) 0.23 0.24 0.08 0.17 0.428 1.761 0.027 0.008
I(Outage > 300) 0.12 0.08 0.04 0.09 0.523 1.146 0.027 0.008
I(Age > 5) 0.79 0.89 0.75 0.82 0.694 1.622 0.027 0.008
I(Age > 15) 0.40 0.51 0.29 0.42 0.589 1.439 0.027 0.008
I(Age > 25) 0.26 0.33 0.16 0.27 0.510 1.379 0.027 0.008
I(Age > 30) 0.12 0.16 0.02 0.10 0.280 1.859 0.027 0.008
Exporter 0.39 0.33 0.10 0.08 1.367 5.975 0.026 0.008
I(Credit con > 50) 0.89 0.89 0.88 0.82 2.476 1.582 0.027 0.008
I(Credit con > 80) 0.43 0.35 0.29 0.18 2.098 2.463 0.026 0.008

Table 3.6: Sensitivity analysis with simulated confounders

Table 3.6 reports the sensitivity results for different configurations of pij. The first

row shows that the baseline ATT estimate obtained with no confounder in the matching

set yields no outcome effect and no selection effect. The ATT is computed by the radius

matching approach with a calliper of 0.1. Since I have found that the results from

various matching algorithms are consistent in terms of the ATT and the standard error,

radius matching can provide reliable estimation results in the sensitivity analysis. The

second row reports the ATT estimated with a neutral confounder. The outcome effect

and the selection effect of the neutral confounder should both be expected to be 1 from

the definition of Γ and Λ above. As observed from Table 3.6, the real estimated outcome
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effect and selection effect are 1.06 and 1.01, respectively, and the small deviations are

due to the relative small numbers of replication in the simulation. The other rows in

Table 3.6 show how the baseline estimate changes when the binary confounding factor

U is calibrated to mimic different observable covariates and is then included in the set of

matching variables. Since many variables in the matching model are continuous, such as

the number of workers, number of outages, age, and measurement of credit constraints,

I categorize those variables by different magnitudes. For example, I(Worker > 10)

implies that the distribution of confounder U is similar to that of the dummy which

indicates whether the number of worker is greater than 10 or not. it shows that the

distribution of pij varies significantly for different mimic control variables. In the sixth

and seventh column, the estimated outcome effect differs from 0.28 to 37.433, while

the selection effect varies between 1.146 and 6.64. However, the estimated ATTs and

their corresponding standard errors change very little for different configurations. In

column eighth, the estimated ATTs range from 0.024 to 0.028, which deviates only 11.1

percent from the baseline ATT of 0.027. Moreover, this deviation is relatively small

compared to the standard error. In summary, although the tested outcome effect and

selection effect may be very strong, they do not threaten the estimation and inference of

the ATT. These simulations simply convey an impression of robustness of the baseline

matching estimate of the ATT in the previous section.

Sample Without Industrial Heterogeneity: Example of Garments and Tex-

tiles

In Section 3.4, I used a sample of firms from six different industries to estimate the ATT.

Although we have included industry dummies in the calculations of the propensity

scores and have tested the balancing property at a high confidence level of 99 percent,

there is still a probability that a firm in a particular industry matches a firm in another.

In order to reduce the probability of mismatch and estimate a more precise ATT

without the impact of industrial heterogeneity, I narrow the sample to the firms only
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within the garment and textile industries and check the robustness. The garment

and textile industries share some similar industrial characteristics and are two of the

most important industries for India. There are 230 out of 334 observations owning

a generator in the samples taken, and the average ownership of a generator is much

higher than most of the other industries, partly reflecting the fact that the garment

and textile industries rely heavily on the electricity supply. The mean value of the

investment rate is close to what I found for the larger sample. Moreover, the mean

value of the reported number of electricity outages is 131, which is slightly higher than

expected. Besides, garments and textiles are typically labour intensive industries. The

average size of a firm measured by the number of workers is around 139 and is much

larger than what have been observed in other multi-industries samples. I then use

the same procedure to estimate the ATT by utilizing the interval propensity matching

method and other algorithms as I have done in Section 3.5.2. The estimated ATTs by

various approaches differ slightly from 0.008 to 0.012, which are much smaller than the

results from the sample of six industries. The analytical and bootstrap standard errors

are both around 0.018, suggesting that the positive treatment effect is statistically

insignificant. Figure 3.7 illustrates the results from the interval matching approach.

There is an obvious downward trend of the treatment effect across different propensity

score strata. Moreover, the average investment rate of the treatment group increases

but it decreases in the control group. These empirical results still fit the theoretical

model prediction very well.

3.6 Conclusion

The firms’ response to poor public capital provision and its effect on their performance

have received little attention in current economic literature. In this chapter, I develop

a two-period theoretical model to illustrate the impact of a public electricity provision

failure on private generator adoption as well as the subsequent influence on production
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Figure 3.7: Interval propensity score matching results (Garment and textile firms)

capital investment decisions. In order to address the bias from observable controls and

estimate the heterogeneous treatment effect of generators, I apply the interval propen-

sity score matching approach on an Indian firm-level dataset. the empirical analysis

suggests that an electricity supply failure increases the likelihood of installing a pri-

vate generator significantly. Moreover, there is a significantly positive treatment effect

of generator adoption on investment in a multi-industries situation, but this positive

effect becomes insignificant when I narrow it to a sample without much industrial het-

erogeneity. This, in turn, suggests that the treatment effect may vary between different

industries. Empirical results also illustrate a negative selection of the treatment effect.

That is, the treatment effect of a back-up generator on the investment rate is greater

for the firms with less likelihood to obtain one. These are the firms which are typically

smaller and experience less electricity blackouts. This empirical finding is consistent

with the theoretical model prediction. Finally, I test the robustness of the empirical

results by applying a simulation-based sensitivity analysis approach and utilizing a

different measure of the investment rate. Sensitivity analysis findings show that the

empirical results are robust with respect to the potential endogenous unobservable

confounder and sample selections.
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Chapter 4

Air Pollution and Land Prices in

China

4.1 Introduction

Concurrent with rapid economic growth since the 1970s, China has experienced severe

environmental degradation. Approximately 1% of China’s urban population breathes

air that is considered to be safe by the European Union (The New York Times, 2007).1

Air pollution is now recognized as an increasing concern affecting China’s public health,

industrial development and economic growth (Brandt and Rawski, 2008). Substantial

efforts have been made to address the serious pollution problem. For example, the En-

vironmental Protection Law was promulgated in 1989 to regulate pollution behaviour.

Additionally, the 12th Five-Year Plan (2011-2015) presents a comprehensive air pollu-

tion and prevention control plan, which sets ambitious air quality targets, city attain-

ment requirements and detailed projects for pollution reduction (Clean Air Alliance of

China, 2012).2

It is important to assess the economic costs and benefits of pollution control policies.

1See http://www.nytimes.com/2007/08/26/world/asia/26china.html?pagewanted=all
2http://www.epa.gov/ogc/china/air%20pollution.pdf

67

http://www.nytimes.com/2007/08/26/world/asia/26china.html?pagewanted=all
http://www.epa.gov/ogc/china/air%20pollution.pdf


A large body of literature has linked pollution with human health. Empirical stud-

ies, using different data, largely show strong causal effects of pollution on poor health

outcomes, suggesting a substantial welfare loss because of the environmental degrada-

tion.3 However, the total costs of air pollution are not limited to health damage. It

is also essential to incorporate the potential effects on other aspects, such as labour

market outcomes or property values, into a welfare analysis of air quality change.4 Fur-

ther, information on these effects is particularly crucial for developing countries. The

developing world is typically suffering higher levels of pollution but lacks effective tech-

nology and institutional conditions for environmental protection. Improved knowledge

of the effects of pollution can help communities, market agents, and policy makers put

pressure on polluters and efficiently internalize the externalities of polluting behaviour.

The primary objective of this chapter is to investigate the causal effects of air

pollution on urban land prices in China. China is of particular interest because of

its unique institutional setting. The urban land in China is state-owned and land

leasehold sales account for a substantial proportion of the local government’s revenue.

Capitalizing the air quality into land prices demonstrates the direct benefit of air

quality improvement on government income, consequently providing an incentive for

local environmental regulation.

However, it is challenging to estimate the causal relationship because the pollution

levels are endogenous. The endogeneity issue of air pollution in this study typically

comes from two channels. First, there may be some unobserved or unmeasurable

3Many recent studies use U.S data and exploit exogenous variation in pollution levels in different
ways to reveal the causal effects of air pollution on health. For example, Chay and Greenstone (2003)
and Currie and Walker (2011) show the significant impacts of air pollution on the infant mortality rate,
prematurity, and low birth weight in U.S, respectively. Schlenker and Walker (2011) investigate the
effects of local pollution levels on contemporaneous health for different population groups. In contrast,
fewer empirical studies link pollution to health outcomes in China. Chen et al. (2013) find that the
higher total suspended particulate (TSP) concentration in north China due to the winter heating
policy lowers life expectancy by about 5.5 years. Ebenstein (2010) shows a significant association
between China’s water pollution and digestive cancer death rate.

4Graff Zivin and Neidell (2012) investigate the effects of ozone exposure on agricultural workers’
productivity in California. Evidence from Currie et al. (2009) shows a negative effect of pollution on
human capital accumulation through the channel of increasing school absences.
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variables, such as local policies targeting urban air pollution reduction or economic

shocks, omitted in the analysis. If these variables influence the urban land prices,

then the ordinary least square (OLS) estimates will be biased. Second, promotion

incentives may cause the reported air pollution index (API) to be manipulated by the

local governments (Chen et al., 2012; Ghanern and Zhang, 2013). The measurement

errors in air pollution readings are likely to be correlated with the real levels of air

pollution, which may also contribute to biasing the OLS estimation. Furthermore, the

estimation of the average impact can also be biased by heterogeneous tastes for clean

air and the subsequent self-selection behaviour across areas (Chay and Greenstone,

2005; Graff Zivin and Neidell, 2012).

To address the endogeneity of air pollution, this chapter exploits the natural forces

of atmospheric circulations to provide exogenous variations in a city’s pollution con-

centrations. Conditional on the total emissions of pollutants into the atmosphere, a

city’s monitored pollution level is partially determined by a set of meteorological vari-

ables including wind speed, relative humidity, and vertical temperature-gradients of

the atmosphere, and their interactions with the local topography. After controlling for

an elaborate set of covariates, these selected instrumental variables (IV) are able to

generate exogenous variations on local air quality for the identification of causal effects

of air pollution on land prices.

This study uses the most detailed and comprehensive micro-level datasets available

on air pollution and land prices in China. The daily air pollution data for 119 major

cities, during the years from 2001 to 2012, are collected. This high-frequency API

dataset allows me to calculate the average pollution levels for every city over different

time periods. In addition, a unique dataset of land transactions in China provides

detailed land characteristics and prices for approximately one million land conveyances

between 2001 and 2012. Finally, these different datasets are correlated according to

the dimensions of time and locations.

Results from the two-stage least squares (2SLS) regressions indicate that the elas-
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ticity of land prices with respect to average annual air pollution is -1.369, this is larger

than the estimates from previous studies that usually show absolute values less than

1.5 Although the negative signs of both the OLS and IV estimates point to the same

result that air quality degradation will reduce the land values, without accounting for

the endogeneity of air pollution, the OLS regression tends to underestimate the elas-

ticity. The main conclusions are shown to be robust to regression methods, presence

of extreme values in observations, and different measures of average pollution levels.

Regressions on different land types shows various effects of air pollution on land

prices. The estimated elasticity for residential land is -1.79, which is the largest among

different land uses and statistically significant. The elasticities for industrial and com-

mercial land are 0.17 and 0.5, respectively, with large estimated standard errors. These

large differences in the estimated elasticities of different land uses may result from the

strong disutility of pollution of residential land buyers and the local governments’ land

control policies for pollution reduction. Finally, a random coefficient regression model

is implemented to allow for the heterogeneous tastes for clean air and self-selection

behaviour. The control function estimations show that the estimated average effects

are close to the IV estimates. Similar to the previous research by Chay and Greenstone

(2005), the selection bias in this study is less significant than the endogeneity problems

resulting from omitted variables or measurement errors. There is also modest evidence

indicating that pollution abatement will have a larger effect on land prices in the more

polluted areas in China.

This chapter contributes to the existing literature in several ways. First, whereas

many previous studies have estimated the economic damages associated with pollution

in developed countries, little is known about the effects in the developing world (Das-

5The previous research mainly focuses on the elasticities of housing values rather than land values,
therefore the results are not directly comparable. Using IV estimations, Chay and Greenstone (2005)
find that the elasticity of housing values with respect to TSP concentrations range from -0.2 to -0.35,
Zheng and Kahn (2008) show similar results using micro-level real estate transaction data for Beijing.
However, in the recent research of Zheng et al. (2013), using the imported pollution from neighbour
cities as IV to account for the endogeneity of pollution of Chinese cities, the estimated elasticity
increases to about -0.7.
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gupta et al., 2001). This chapter adds to this relatively small, but growing, body of

literature by presenting evidence on the effects of air pollution on China’s land mar-

ket.6 The estimation results of this study will be important for the welfare analysis

of environmental protection policies. Second, this study uses the most detailed and

comprehensive micro-level data on air pollution and land transactions within China.

Considerable existing research employs aggregate data at the city- or county-level for

estimating the implicit prices of air quality. However, using the aggregate data for

regression will make it difficult to control the land characteristics that can explain

the majority of land prices. Because the hedonic model framework, usually fitted to

estimate the implicit price of air quality, is originally derived at the individual-level,

using aggregate data for regression analysis may induce biased estimations (Chay and

Greenstone, 2005). Third, this chapter uses novel instrumental variables to estimate

the causal effect of air pollution on land prices. The careful application of IV methods

in this study can address the well-acknowledged endogeneity problem of air pollution.

4.2 Background

4.2.1 Air pollution in China

The air pollution problem in China can be attributed to production technology, eco-

nomic development and the institutional setting. First, coal combustion is primarily

responsible for the high level of total suspended particulates (TSP) and sulfate con-

centrations. In China, coal-firing accounts for over 70% of electric power generation

and 80% of the industrial fuel. The heavy reliance on coal power, with a low energy

efficiency, produces a tremendous amount of TSP and sulphate emissions (Fang et al.,

6In some recent empirical works using Beijing’s housing transaction data or city-level aggregate
data in China (Zheng and Kahn,2008; Zheng et al., 2010; Zheng et al., 2013), air amenity quality is
capitalized into housing values. However, this chapter differs from the previous research by looking
into the effects of air pollution on land values. The housing market and land market are different in
terms of market mechanisms, major buyers, and sellers, which will be discussed in next section.
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2009). Moreover, vehicle emissions are a new source of pollution. Along with the rapid

development of transportation infrastructure systems, the vehicular fleet in China has

increased by approximately 20% every year since 1990, which has led to more pollution

in urban areas (He et al., 2002).

Some recent research sheds light on the roles of incomplete enforcement of envi-

ronmental regulations and the fundamental institutions of China. For example, as an

important instrument of internalizing the externality of air pollution into industrial

production, pollution levy enforcement in China has been found to be endogenous

and determined by firm characteristics and regulator-manager negotiations (Wang and

Wheeler, 2005). Xu (2011) investigated the institutional background of China, par-

ticularly the effect of the local government officers being appointed by the central

government based on their past performance. As the performance is measured by tan-

gible indicators such as GDP, the promotional systems incentivizes the subnational

governments to boost economic growth rather than invest in environmental protection.

This argument is supported by recent empirical research on the relationship between

pollution and the promotion of governors (Jia, 2013; Wu et al., 2013).

With increasing awareness of the continuing environmental damage and the severe

consequences, the Chinese government has implemented various environmental protec-

tion policies. One recent policy which is closely related to this study is the disclosure

of city-level daily air pollution index (API) data from 2001. Additionally, the re-

ported APIs are linked to the performance evaluation of local governments to provide

incentives for air pollution abatement.7 Benefiting from the transparency policy, this

chapter collects and uses the published daily API data from the website of the Ministry

of Environmental Protection for the empirical analysis.

7Specifically, days with an API lower than 100 are defined as ”blue sky” days. Since 2003, more
than 80% ”blue sky” days in a year qualifies a city for the ”national environmental protection model
city” award. This standard increased to 85% from 2007. (Chen et al., 2012)
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4.2.2 Land market in China

According to the 1982 Constitution of China, land is publicly owned and private own-

ership is legitimately prohibited.8 Initially, administration orders, rather than market

mechanisms, were adopted in land redistribution. However, the administrative reallo-

cations were shown to be very inefficient and have resulted in numerous severe conse-

quences (Deininger and Jin, 2005). To address these problems, the 1988 Amendments

of Constitution and the subsequent Amendments of Land Administration Law (LAL)

formally separated the land use rights from its ownership,9 Allowing urban land in

China to be transferred through pay-for-use leasehold for the first time. Subsequently,

a land leasehold market emerged and expanded with some unique features.

Figure 4.1 illustrates the main structure of the Chinese land market. First, land is

classified into two distinct categories: urban and rural; the urban land is owned by the

state and rural land is owned by the collectives. The prefectural city governments act

as an important bridge connecting the two separate market sectors and are the only

legitimate agents for transforming local rural land into urban use. In the rural sector,

the collectives have the power to assign land for different uses, such as for farmland,

farmers’ residential use, and township and village enterprises (TVE) constructions.

However, without a formal acquisition by the city government to convert rural land

into state-owned urban land, the rural land cannot be exchanged in the urban land

market (Ho and Lin, 2003; Su, 2008).

This chapter focuses on the urban land market for two major reasons. First, as

guaranteed by the Constitution and Land Administration Law on transferable land

use rights, the urban land leasehold market, after 25 years of development, is more

developed than that of the rural sector. It is now playing an important role in the

allocation of urban land resources. Second, the public transparency policy of early 2004

allows me to collect the detailed urban land conveyances data through the Internet,

8The 1982 Constitution of China specifies the detailed ownership of urban and rural land in Article
10 of Chapter 1. See http://www.gov.cn/gongbao/content/2004/content 62714.htm

9See http://www.law-lib.com/law/law view.asp?id=95544
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Figure 4.1: China’s Land Market Structure and Management

Note: Following Su (2008), this figure describes the main structure of China’s land market. However,
to simplify the presentation, it does not contain any secondary market or black market. See Xie et al.
(2001) and Ho and Lin (2003) for a complete discussion.

making the econometric analysis of this study possible.

There have been numerous progressive reforms in the urban land market to improve

efficiency, increase government revenue, and reduce corruption. Since the 2002 reforms

that officially banned the negotiation sales of for-profit use land after August 31, 2004,10

the urban land market system in China is refined by setting uniform relevant procedures

and standards. At the beginning of each year, an overall land use plan is developed by

the city government. A detailed use plan for each individual land parcel is subsequently

developed by an independent committee, defining the land class, development purpose,

use constraints and the reserve price (Cai et al., 2009).11 Finally, the land ready

for development will be turned over to the local land bureau where the method of

10This is referring to the Rules on the Assignment of State-owned Land Use Right by Bidding,
Auction and Quotation, issued on April 3, 2002.
Source: http://www.mlr.gov.cn/zwgk/flfg/dfflfg/200504/t20050406 636761.htm

11The reserve price varies across cities. see http://www.creva.org.cn/show.aspx?id=3509&cid=27
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distribution will be chosen. In particular, part of the land will be allocated to users

free of charge, or with an allocation fee which is much lower than the market price,

for projects of public interest, such as transportation infrastructure, hospitals, schools,

government agency buildings, etc. Other land is authorized to be transferred through

a leasehold of a fixed term with usage restrictions (Ho and Lin, 2003).12

There are four methods of land conveyance: negotiation, public tender, English

auction, and a ”two stage auction” (Zhao Pai Gua ChuRang), usually adopted in

the leasehold market.13 The major differences among these methods are the number

of bidders and transparency levels. In the negotiation sales there is only one bidder

involved; the bidder will bargain with the local land bureau on the land prices, with

neither a public procedure nor any competition. In the 1990s, a substantial proportion

of land conveyances were conducted by negotiated sales. However, because they were

criticized as being inherently corrupt and decreased government revenues, the Ministry

of Land and Resources of China has banned the negotiation sales of for-profit use

land since August 31, 2004.14 The urban land allocated for for-profit development is

thereafter transferred through more transparent methods.

4.3 Conceptual Framework

Similar to previous literature, the research question presented in this chapter fits into

the hedonic price framework that explains how air quality affects land prices. Based

on China’s unique land market structure, I discuss an extension of the classic hedonic

model to consider the existence of market power. This model can thus help add new

insights into the interpretations of the empirical results.

12For example, the lease for residential use land is 70 years, and it is 40 or 50 years for industrial
or commercial use land.

13The name of ”two stage auction” is from Cai et al (2009). It is equivalent to ”listing” in other
literature.

14The definition of ”for-profit use” is ambiguous here. Literally it means using land as an input for
production, however, neither the law nor administrative documents provides a detailed list of for-profit
use; they are usually determined by the local land bureaus.
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4.3.1 The Standard Hedonic Price Model

The hedonic model introduced by Rosen (1974) is widely used to estimate the implicit

prices of different characteristics in the property market. The fundamental idea is that

although the goods are collections of characteristics that are not directly tradable, the

implicit price of each characteristic can still be revealed through the trades when the

consumers choose the heterogeneous combinations of characteristics in a competitive

and thick market. In the case of the land market, a land parcel i can be described by

a vector of attributes, including its own characteristics, neighbourhood surroundings

and environmental amenities. To simplify, I denote the measure of air quality as Ai

and all other land attributes as Xi. The price of a land parcel i, P (Ai, Xi), is then a

function of Ai and Xi. Assuming that the land market is perfectly competitive and is

sufficiently thick to allow a wide variety on any single attribute of the heterogeneous

land parcels, then the buyers and sellers are price takers and bargaining does not affect

the equilibrium prices. Additionally, information on land parcels, buyers, and sellers

is assumed to be completely observed by the market players.

Rosen (1974) demonstrates that under the assumptions above, in equilibrium, land

is traded between the seller with the lowest offer and the buyer with the highest bid.

The implicit price of each attribute can be revealed and they equal the partial derivative

of the price with respect to each attribute. The marginal implicit price of air quality

can then be represented by ∂Pi(Ai|Xi)/∂Ai.

Following Harding et al. (2003) and Cotteleer et al. (2008), the hedonic price

model discussed above is illustrated in Figure 4.2. In a competitive market, in which

the buyers and sellers are assumed to be price takers, given the other characteristics

Xi are constant, at any level of Ai, the implicit price of air quality is revealed when the

buyers’ marginal willingness to pay (MWTP) equals the sellers’ marginal willingness

to accept (MWTA) (Cotteleer et al., 2008). Because the assumption of a competitive

market implies free entry and exit, no excess surplus exists. Consequently, the market

price of land with varying air amenities is found on the locus of the tangency of highest
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Figure 4.2: Hedonic Price Model with Perfect Competition

bid curve (θ) and lowest offering curve (ψ) in Figure 4.2. From the econometrics side,

the value of ∂Pi(Ai|Xi)/∂Ai is easy to recover by a regression of prices on a vector

of characteristics. As very few restrictions are typically placed on the functional form

of hedonic regressions, I use a log-log functional form, usually used in the literature,

to allow for a non-linear relationship between the land prices and the levels of air

pollution. The specification is as follows:

ln(Pi) = α + p(A) · ln(Ai) + p(X) ·Xi + εi (4.1)

where p(A) is the elasticity of land prices with respect to air quality, and εi represents

the error term.

4.3.2 Discussion of the Assumptions

The assumptions of competitive market, complete information, and a sufficiently thick

market are crucial in the standard hedonic framework as they drive the excess surplus to

be zero. However, in China’s land market these assumptions are difficult to maintain.

First, as the unique legitimate seller of urban land leaseholds, the city governments
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have monopoly power in the local land market. In addition, the household registra-

tion system (Hukou) creates institutional obstacles for buyers’ mobility across cities.

Second, because the land leasehold market system is still not completely transparent,

buyers may have asymmetric information between different land markets. Information

on some land parcels might only be shared by the local government and a limited num-

ber of potential buyers. Third, the housing market or land market is usually thin; there

are few substitutes for each heterogeneous land parcel (Harding et al., 2003; Ihlanfeldt

and Mayock, 2009). These market structures require the relaxation of the basic as-

sumptions in the hedonic price model. As a result, excess surplus, rather than zero

surplus, emerges, and bargaining power plays an important role in explaining how the

surplus is divided between buyers and sellers.

Figure 4.3: Hedonic Price Model with Excess Surplus

Different from the competitive model depicted in Figure 4.2, Figure 4.3 portrays the

hedonic model under the relaxed assumptions. In this model, the bid and offer curves

overlap rather than being tangent as in Figure 4.2. The excess surplus of trade S exists

and is shared between the buyers and sellers, depending on their relative bargaining

power Bi. Harding et al. (2003) develop an econometric model for controlling the
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characteristics of the buyers and sellers as a proxy for bargaining power. They show

that, after controlling for these proxies, the interpretations from the standard hedonic

model are still valid. In this case, the regression equation is as follows:

ln(Pi) = α + p(A) · ln(Ai) + p(X) ·Xi + p(B) ·Bi + µi (4.2)

where p(A) represents the elasticity of land price with respect to air quality and µi

represents the error term. Without controlling for the Bi, the estimation of implicit

prices of land characteristics can be biased because of the potential correlation between

Ai and Bi. Figure 4.3 illustrates the surplus of S divided according to the bargaining

powers of sellers and buyers. When the buyers share the same proportion of markup

in two trades (with prices of P (A1|X,B1) and P (A2|X,B1)), the slope of P1(A|X,B1)

equals the slope of the price line in Figure 4.2. The term Bi causes parallel shifts in

the hedonic price function of Equation (4.2). However, if the buyers’ market power

correlates with their taste for air quality, that is, corr(Bi, Ai) ̸= 0, then omitting Bi

may cause bias estimates of p(A). Correspondingly, it can be observed from the graph

that if the buyers’ bargaining power increases with air quality, ignoring this will lead

to an estimation of the slope P2(A|X) unequal to P1(A|X,B1).

Following Harding et al. (2003), this chapter uses buyer and seller characteristics

to control the bargaining power. In particular, because local governments are the ex-

clusive sellers in the primary market, I include a vector of city-level variables including

GDP, population, GDP per capita, and proportions of GDP from agricultural and

industrial sectors, to describe them. However, because the land data only provides

the buyers’ identities, it is impossible to obtain similar demographic variables as those

used in the previous studies to control for their characteristics. Instead, I employ the

methods of land conveyance as proxies of buyers’ relative bargaining power. Different

conveyance method options can sort the buyers and affect the number of bidders, which

eventually influence the relative market power of buyers and sellers. For example, in
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the negotiation sales, because there is strictly one buyer,15 it is expected that the buyer

will enjoy more bargaining power than buyers in auctions with competition. Hetero-

geneity of competition also exists between different auctions. Cai et al. (2009) find that

the two stage auction is typically less competitive than the regular English auction.16

Therefore, it is plausible to use auction types as proxies for relative bargaining power,

Bi in Equation (4.2).

4.4 Data

This chapter merges datasets from multiple sources. It uses a comprehensive land

transaction database that contains detailed information on over one million urban

land conveyances since 2001, and a database that provides official daily air pollution

measurements for the major cities in China. In this section, I will describe the data

sources, manipulation methods and their descriptive statistics.

4.4.1 Air Pollution Data

The daily Air Pollution Index (API) data for 119 cities are obtained from the website

of the Ministry of Environmental Protection of China.17 In 2001 there were 47 major

cities initially selected as pioneers to publish daily APIs online, and the other cities

were added gradually in the following years. So the daily API dataset is intrinsically an

unbalanced panel. Figure 4.4 shows the coverage of these cities. The sample contains

cities from coastal and inland areas and there is at least one city selected from each

province, therefore these data are basically representative of urban China. The average

APIs of selected cities in Figure 4.4 reflect that north China is more polluted than the

15According to the law, if multiple buyers express interest in any land parcel, negotiation sale of
the land parcel will be terminated and auction will be the leasing option.

16A significant difference between the two stage auction and the regular English auction is that the
former method adds a first stage that the bidder can send a costless signal to decide whether to enter
the auction.

17Source http://datacenter.mep.gov.cn/
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south, which can be attributed to the concentration of heavy industry and coal fired

power plants, and the winter heating provision policy in the north (Chen et al., 2013).

Legend

Average API
22.738752 - 47.045288
47.045289 - 60.312046
60.312047 - 70.714081
70.714082 - 82.656601
82.656602 - 113.034874
No Data

�
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Figure 4.4: Average APIs across Cities: 2001-2012

Note: The original API data are from the Ministry of Environmental Protection of China. Shaded
polygons represents the 119 cities with valid APIs, values illustrated by different colours are calculated
by averaging all daily APIs of each city over years.

The API index is computed scientifically considering the concentration levels of five

major pollutants: SO2, NO2, PM10, CO, and O3.18 There are a total of 348,048 API

readings in the dataset. Figure 4.5 shows the air pollution trend across the 47 selected

cities that have been published since 2001.19 With large seasonal fluctuations, the

average air pollution has decreased steadily over time. In 2001, the average API was

approximately 84, it then decreased approximately 2% annually and finally reached

65 in 2012. When the API is higher than 100 (the threshold for defining a ”blue sky

day”), it is considered to be polluted and there maybe damage to people’s health.

18Detailed calculation method for the API is as described here:
http://www.gdepb.gov.cn/oldsite///xcyjy/hjzs/daqi/200510/t20051020 18510.html.

19Selecting the 47 cities that published API data consistently from 2001 to 2012 is to cancel out the
impacts of other cities that were added into the data pool in latter years.
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In 2001, approximately 10% of the days were not ”blue sky” days, but this number

decreased to below 5% in 2012. The most common pollutants are the total suspended

particulates (TSPs), which account for more than 71% of days with an API greater

than 50. Sulfur dioxide ranked as the second major pollutant, but it accounts for only

7%. There are also seasonal fluctuations among different pollutants. Sulphur dioxide

appears as the major pollutant at a higher frequency during winter, attributable to the

increased heating demand that results in more coal combustion.

40
60

80
10

0
12

0
Av

er
ag

e 
AP

I

2000m1 2002m1 2004m1 2006m1 2008m1 2010m1 2012m1
Time

Figure 4.5: Monthly Average APIs of 47 Major Cities from 2001 to 2012

Note: ’m’ indicates month. For example, 2001m1 on the horizontal axis means January, 2001.

Some caveats regarding this variable are worth noting. First, the city-level APIs

are calculated by averaging data from different monitoring stations, thus they negate

the within-city spatial heterogeneity on air quality. However, more precise air pollution

measurements of smaller areas require monitor-level readings, which are still subject to

the unavailability of open source data at this stage. The second issue involves the po-

tential measurement errors in APIs. Driven by promotion incentives, the governments
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tend to manipulate the API data around the ”Blue-sky day” cutoff of 100 (Chen et

al., 2012; Ghanem and Zhang, 2013). Consequently, even though the published APIs

provide general information about air pollution, measurement errors may induce biased

estimations. To address this issue, the instrumental variable approach is discussed and

applied in this chapter.

4.4.2 Land Transaction Data

The availability of land data has benefited from the urban land market transparency

policy adopted in August 2004, which requires local land bureaus to disclose the con-

veyance information to the public after each transaction is completed. Data are col-

lected from The China Land Market website, one of the largest land market informa-

tion providers that collects and reposts land transaction outcomes from the Ministry of

Land and Resources of China.20 There were 1,175,651 recorded transactions from 2000

to 2012. However, this database only covers the primary market, in which the sellers

are local governments. In addition, some records may have been omitted from the

database, particularly for the conveyances before 2004, when the transparency policy

was not mandated.

The transaction database includes many important land characteristics, such as

land price, area, address, transaction date, transaction method, buyer’s identity, and

proposed land uses. To measure the price of land, I calculate the average price of

land per hectare, and then I adjust it by the CPI to obtain a real price. Figure 4.6(a)

illustrates the monthly average land price changes in China from 2000 to 2012. The land

market has realized tremendous growth: average land prices in 2012 are almost three

times the prices in 2003. Figure 4.6(b) shows the average prices trends for residential

land, industrial land, and commercial land. The commercial land leaseholds were sold

at the highest prices and the industrial land at the lowest. This is partially because the

20See the land conveyance outcomes on www.chinaland.com, same information can also be found
here: http://landchina.mlr.gov.cn/
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commercial land is usually located in the central business district (CBD) and realizes

the highest marginal returns. In contrast, the industrial land is often planned at the

urban fringes or far from the population-dense region to minimize the effects of the

associated pollution on the urban area, and where land is more abundant.
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Figure 4.6: Monthly Average Land Prices

A challenge of using the land transaction data is to geocode the land parcels without

specific geographic coordinates. Geocoding every land parcel is important because the

distance from a land parcel to the CBD determines the commuting cost, which be

compensated by the land price. The large within-city disparity on infrastructure may

also influence the land price. Therefore, controlling land location plays an important

role in explaining land prices. Because no software available for geocoding such a large

number of land parcels at a highly accurate level,21 I employ another geocoding method

that trades precision for efficiency. I extract the name of town or district from every

address and match them with the geographic information system (GIS) map of China

from China Data Online. I can then sort the land parcels into different towns/districts

and finally control the town- or district- level fixed effects. Because a town is the lower

level of a county and a district is the lower level of a city, they are both small enough

to mitigate the significant differences in infrastructure conditions and spatial distances

21For example, the Google Earth Pro restricts geocoding to no more than 2500 observations per day,
and the success rate has been tested to be lower than 30% to get the correct geographic coordinates,
thus it is an inapplicable way in this study because of the large size of the data set.
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to central business district.

4.4.3 Data Convergence and Descriptive Statistics

The land data provide dates for every leasehold transaction, making it possible to

match air pollution data with land transaction data by the dimensions of city and time.

However, because it is not reasonable to use the transaction day’s API to describe the

air pollution level of a city that may affect land prices, before the matching, I calculate

a moving average of APIs over the prior 365 days as follows:

APIt =
t−365∑

k=t−1

APIk (4.3)

This moving average reflects the average air pollution level during a past fixed

period. Although there is no previous evidence on how wide the moving average window

should be, it is set at one year (365 days) in the main analysis to mitigate the influences

of seasonal air pollution trends and land prices fluctuations. In the robustness checks,

I calculate the average air pollution for different time spans, such as 9 months, a half-

year, and 3 months, to investigate the short term effects of air pollution on land prices.

Finally, there are 282,075 land transactions with matched average APIs.

Table 4.1 describes the summary statistics of selected land characteristics. To

compare the characteristics across residential, industrial, and commercial land, columns

1 to 3 show the descriptive statistics for these three land types. I transform the land

prices by natural logarithm and the land parcels allocated by administration order

with zero cost are dropped from the sample.22 Consistent with the findings from

Figure 4.6(b), the prices for the commercial land are the highest among the three

types, whereas the industrial land is much less expensive.

Over 40% of the conveyances are for residential use. China’s rapid urbanization

has driven this increased demand to accommodate a growing urban population. The

22There are 68,008 transactions either report prices as 0 or have missing information.
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variable rtu indicates whether the land parcel is newly acquired from rural to urban use.

The newly acquired land parcels are more likely to first be developed for industrial use.

The first-class land accounts for a higher proportion in the commercial and residential

land than the industrial land.

The geocoding manipulation induces sample attenuation by dropping approximately

34% of the conveyances that do not have detailed address information. However, it is

crucial to ensure that this geocoding process has not caused significant sample bias. To

check this, columns 4 and 5 show the summary statistics of the samples before and after

geocoding. There is no significant difference in the mean value and standard deviation

of each variable between the two samples, suggesting that the geocoding process has

minimal effects on sample distribution.

4.5 Identification Strategy

4.5.1 OLS Regression and the Endogeneity Issue

The main objective of this chapter is to estimate the impact of air pollution on land

prices. To begin, the OLS regression model is specified as follows:

ln(Pi) = β0 + β1ln(APIi) + β2Controli + ϵi (4.4)

where ln(Pi) is the natural logarithm of the unit price of land parcel i, and ln(APIi)

is the log of the average API for the city prior to the transaction. Controli denotes a

vector of covariates including land characteristics Xi, proxies of bargaining power Bi,

and the town/district, year, and month fixed-effects. To identify the true causal effect

of air pollution on land prices, the assumption of OLS regression on Equation (4.4) is

that conditional on a full set of covariates Controli, there is no unobserved shock on

land price that correlates with air pollution.

However, the assumption above is strong and it can be violated in some circum-
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stances. For example, suppose a city government adopts regulatory policies targeting

air pollution, such as controlling the land supply for industrial uses. Because such poli-

cies can influence the land prices, but are usually unmeasurable or unobservable from

the data, failure to control them will result in omitted variable bias. Second, the mea-

surement errors on ln(APIi) can also result in biased estimation of β1. In particular,

assume that the promotion incentives drive the local bureaus to reduce their reported

air pollution levels when the real level is higher than a threshold, the deviations of the

manipulated data from the real values therefore are not randomly distributed and have

a non-zero expectation, which will bias the estimation.

4.5.2 Instrumental Variable Approach

Atmospheric Circulation, Topography and Air Pollution

The identification strategy of this chapter exploits the exogenous effects of atmospheric

circulation and topography features on monitored pollution levels, based on findings

in environmental science. Given the amount of pollutants emitted into the air, the

weather events and the topographic features largely determine the speed of dispersion

(Beaver et al., 2010). Figure 4.7 illustrates a simple model of these mechanisms. First,

there are two forces of pollutant transportation: wind in the horizontal direction and

ascending currents in the vertical direction. As an important form of air movement that

dilutes the pollutant density, wind has long been recognized as playing an important

role in ground level air quality. The atmospheric temperature gradient affects the

pollutant dispersion vertically by transferring between currents from lower to higher

atmosphere. The air generally becomes cooler with increasing altitude. As is shown in

Figure 4.7, the warm air layer is covered by the cool air in the atmosphere, forming the

ascending convection currents of air that transport pollutants. However, under some

conditions, the warmer layer can lie above the cooler layer, stopping this important

channel of dispersion and trapping the pollutants in the lower atmosphere (Milionis
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and Davies, 1994). There are numerous causes for the temperature inversion, such

as the movement of a warm and less dense air mass over a cold dense air mass, the

overnight radiative cooling of surface air (radiation inversion) or the formation of a

”marine layer” when the ocean is becoming cold.23 The relative humidity of the air is

also considered because it has been shown to be conducive to the accumulation and

formation of small particles (Heal et al., 2012; De Hartog et al., 2005). It is expected

that the TSP concentration level is higher in dry air than in moist air.

Figure 4.7: Weather and Topography Factors Affecting Air Pollution

To construct the instrumental variables above, detailed station-level historical weather

data from the U.S. National Oceanic and Atmospheric Administration (NOAA), which

has daily monitored weather data from more than 300 stations in China from 2000 to

2012, are used. Figure 4.8 illustrates the locations of these stations. The stations are

then matched with the closest cities based on the geometric centroids. The weather

data can then be correlated with the air pollution and land conveyances datasets.

The first meteorological variable is wind speed. It is provided directly by the NOAA

23See http://geography.about.com/od/climate/a/inversionlayer.htm
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weather data. The daily wind speed ranges from 0 to 36.9 knots, with a significant

seasonal cycle. A measure of relative humidity is not provided by the data. However,

there is daily information on dew point. The relative humidity is calculated using the

August-Roche-Magnus approximation method using the dew point values and mean

temperatures.24 The resulting relative humidity (rh) values range from 1.59 to 100.

The last meteorological variable is the indicator of temperature inversion. The NOAA

data only provides mean, maximum, and minimum temperatures at ground level rather

than temperatures at different altitudes, so it is impossible to observe the temperature

inversion occurrences directly. Nevertheless, the within-day temperature changes are

strongly correlated with the radiation inversion, which is the most common form of

temperature inversion.25 Therefore, the daily change in temperature is an appropriate

proxy for the probability of radiation type temperature inversion. In the data, this

within-day temperature change can be measured by gapt = maxt −mint, where maxt

is the daily maximum temperature and mint is the daily minimum temperature.

The effects of weather events on air quality are also dependent on the topographical

features (Banfield, 1973). For example, other factors being constant, the efficiency of

wind on pollutant dispersion would be greater on a flat surface. An uneven landscape

can trap the flow of pollutants and hence increase the pollution levels. To capture

these heterogeneous effects of weather conditions on monitored air pollution, I include

the interaction terms between the three weather indicators and the terrain of each city.

The land slope is used to measure a city’s terrain. To do that, I first use the digital

elevation model (DEM) data from the China Historical GIS database to calculate the

land slope of China at a grid resolution of 1km2,26 then I divide the slopes into four

24The equation is 100 · exp( 17.625·dew point
243.04+dew point )/exp(

17.625·temperature
243.04+tempearture ), where dew point and

temperature are measures of daily dew point and mean temperature in Celsius degrees. This cal-
culation method refers to: http://andrew.rsmas.miami.edu/bmcnoldy/Humidity.html.

25This is because the ground loses heat very quickly once the sun goes down, resulting in
the cooling of air in contact with the ground. Because the air itself is a poor conductor of
heat, this change of air temperature will lead to temperature inversion. Details can be seen at
http://www.wrh.noaa.gov/slc/climate/TemperatureInversions.php

26According to the CHGIS database http://www.fas.harvard.edu/ chgis/data/chgis/downloads/v4/,
the DEM data of China is derived originally from the GTOPO-30 project.
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categories: slope ≤ 1◦, 1◦ < slope ≤ 3◦, 3◦ < slope ≤ 5◦, and slope > 5◦. I calculate

the fraction of area of each land slope category by city. Using the resolution of 1km2,

approximately 55% of the land in the selected cities has a slope no greater than 1◦,

which is considered a flat surface. The land with a slope between 1◦ and 3◦ accounts

for approximately 23%, whereas land with a slope between 3◦ and 5◦ accounts for 10%.

To avoid a perfect multi-collinearity problem in the first stage regression, the category

of slope > 5◦ is dropped. Finally, the terrain data are merged with the dataset by

location.
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Figure 4.8: Weather Stations and Land Terrain of China

Note: Weather Stations are mapped according to the geographic coordinator provided by NOAA.
Land slope is calculated by using the digital elevation model (DEM) of China, the original source of
DEM is a raster produced by GTOPO-30 at 1km × 1km resolution.

Effects of Rainfall on Land Prices

One concern on the instrumental variable identification strategy of this study is that

the average wind speed, relative humidity, and within-day temperature change might

correlate with the average rainfall, thus affecting the land prices through a channel
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other than affecting the air quality only. Omitting average rainfall from the regression

can potentially lead to an inconsistent estimation of β1. According to the Land Man-

agement Law, the acquisition fee for transferring rural land to urban use, which is paid

to the collectives by the local government, depends on the agricultural production of

the land over the past three years. Because rainfall significantly correlates with agri-

cultural sector performance in developing countries (Miguel et al., 2004), any economic

shocks to the acquisition cost of rural land could become a corresponding change to

the reserve price of leasehold, especially for the land on urban fringes. Therefore, it is

important to include the average rainfall as a control variable in the regression equation

(4.4) to rule out this potential channel.

The Two-Stage Least Squares Regression Model

Finally, the 2SLS model that identifies the causal effect of air pollution on land prices

is presented as follows:

First stage

ln(APIi) =α0 + a1 ·wdspi+ a2 ·rhi+ a3 · tgapi+
3∑

k=1

bk ·wdspi · slopecat(k)i

+
3∑

k=1

ck ·rhi · slopecat(k)i +
3∑

k=1

dk · tgapi · slopecat(k)i + α2Controli + νi

(4.5)

Second stage

ln(Pi) = β0 + β1
̂ln(APIi) + β2Controli + εi (4.6)

In the first stage, the average wind speed (wdspi), average relative humidity (rhi),

average within-day temperature change (tgapi), and their interactions with the city’s

terrain features together serve as instruments to predict the average pollution level. To
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describe the topographical features in detail and generate sufficient variations, the land

slopes are categorized into three groups: slopecat(1) = %(slope ≤ 1◦), slopecat(2) =

%(1◦ < slope ≤ 3◦), and slopecat(3) = %(3◦ < slope ≤ 5◦). Controli, the vector of

covariates, includes land characteristics, city-level controls, proxy of relative bargaining

power of the buyers, town/district, year, and month fixed effects and the average rainfall

over the past year. Conditional on Controli, the exclusion restriction of this model is

that the average wind speed, average relative humidity, average within-day temperature

change, and their interactions with land slopes do not impact on land prices except

through their effects on the city’s air pollution.

4.5.3 Correlated Random Coefficient Model

If the buyers’ tastes for air quality are identical, then the estimated elasticity in Equa-

tion (4.6) is consistent estimate of the average elasticity for the population. However,

this conclusion will be threatened by the presence of heterogeneous tastes and self-

sorting behaviour. To address this issue, Chay and Greenstone (2005) use a correlated

random coefficient (CRC) model that relaxes the strong assumption of homogeneous

tastes. Following their methods, I will discuss the assumptions that are sufficient to

obtain a consistent estimate of the average elasticity in the IV estimation framework

and provide an alternative estimation method.

If the population has heterogeneous tastes on clean air, it may self-select into areas

by taste-sorting. For example, the people who have a higher marginal willingness

to pay for clean air, or equivalently, a higher elasticity of land prices with respect

to air pollution in Equation (4.6), may choose to live in communities with better

environmental amenities. Although the Household Registration System (Hukou) in

China still restricts migration, its role has been greatly reduced in the 2000s to allow

for more efficient reallocation of human resources (Wang, 2004). Therefore, setting

the taste-sorting assumption and testing its importance are plausible for this study.

Equation (4.4) can be rewritten as:
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ln(Pi) =β0 + β̄1 · ln(APIi) + β2 · Controli + (β1i − β̄1) · ln(APIi) + ϵi

=β0 + β̄1 · ln(APIi) + β2 · Controli + ei
(4.7)

To simplify the notation, I denote the exogenous variables as a vector Z, which

includes all instrumental variables z1, and the other covariates as Control. As discussed

in Wooldridge (2010), the potential problem of applying the 2SLS method to Equation

(4.7) is that the newly constructed error term e is possibly correlated with Z, even under

the strong assumptions of E(ϵi|Zi) = E(β1i|Zi) = 0. The dependence of E((β1i − β̄1) ·

ln(APIi)|Zi) on Zi results in an inconsistent 2SLS estimate of β̄1. To correct for this

problem, following Wooldridge (2003) and Chay and Greenstone (2005), consider the

following stronger assumptions.

Assumption 4.1. E(ϵi|Zi) = E((β1i − β̄1)|Zi) = 0.

Assumption 4.2. E(ϵi|ln(APIi), Zi) = λAln(APIi) + λZZi.

Assumption 4.3. E((β1i − β̄1)|ln(APIi), Zi) = ϕAln(APIi) + ϕZZi

The second equality in Assumption 4.1 is a key assumption, it states that the

conditional expectation of heterogeneous elasticity is independent of the instrumen-

tal variables. In this chapter, because the selected IVs are the natural variations

in atmospheric activities, it is reasonable to assume that the tastes for air quality

are not a function of them. In fact, the combination of Assumption 4.1 with As-

sumption 4.2 and with Assumption 4.3 imply that E(ϵi|ln(APIi), Zi) = λAνi and

E((β1i − β̄1)|ln(APIi), Zi) = ϕAνi, see the Appendix C.1 for proofs. Applying these

results to Equation (4.7) produces:

ln(Pi) = β0 + β̄1 · ln(APIi) + β2 · Controli + λAν̂i + ϕAν̂i · ln(APIi) + ξi (4.8)

where ν̂i are the predicted residuals from the first stage regression. This is an extension
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of the standard control function approach to IV estimation by including ϕAν̂i ·ln(APIi),

an interaction term of the estimated residuals with the endogenous variable. Under the

three assumptions above, the β̄1 in Equation (4.8) is shown to be a consistent estimate

of the average elasticity (Chay and Greenstone, 2005). The estimated parameters

of interaction terms in Equation (4.8) are of important implications. Because λA =

Cov(ϵi, νi)/V ar(νi) and ϕA = Cov((β1i−β̄1), νi)/V ar(νi), they measure the importance

of estimation bias because of the omitted variables and self-selection, respectively. In

particular, under the assumption of diminishing marginal utility of clean air and no

taste sorting, the value of ϕA should be negative. Otherwise, there is evidence of sorting

into different environmental amenities according to their heterogeneous tastes.

4.6 Results

4.6.1 OLS Regression Results

The empirical analysis of this study starts with the conventional OLS estimates of

Equation (4.4). OLS is widely used in the conventional hedonic literature and provides

a benchmark for the IV estimations in this chapter. Table 4.2 presents the estimation

results. In column 1, there is no other control variable except the town/district fixed

effects included in the regression. The estimated elasticity of unit land prices with

respect to air pollution is -1.856, which is statistically significant at the 1 percent

level. From columns 2 to 4, as more control variables are added into the regression

model, the magnitude of the elasticity decreases steadily. After controlling for a full

set of covariates, the estimated elasticity finally drops to -0.312, which is statistically

insignificant at any conventional level. The dramatical changes in magnitudes and

significance levels of the estimated elasticities from OLS regressions imply that the

estimation results are sensitive to the inclusion of more control variables, probably

because of the large correlations between air quality and the other covariates.
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ln(Pi)

(1) (2) (3) (4)
OLS OLS OLS OLS

ln(APIi) −1.856∗∗∗ −0.752∗∗ −0.412∗ −0.312
(0.607) (0.312) (0.243) (0.258)

Land characteristics No No Y es Y es
City controls No No No Y es
Time fixed effects No Y es Y es Y es
Town/district fixed effects Y es Y es Y es Y es
N 214, 067 214, 067 209, 363 209, 259

Note: Robust standard errors clustered at city level are in parentheses.
The land characteristics and city controls are defined in the text. Time
fixed effects are controlled for by adding year and month dummies.
∗ Significant at the 10 percent level.
∗∗ Significant at the 5 percent level.
∗∗∗ Significant at the 1 percent level.

Table 4.2: OLS Estimates of Effects of Air Pollution on Log Land Prices

4.6.2 2SLS Estimation Results

Using the specified instrumental variables to generate exogenous variations in the local

average pollution level, IV estimations are expected to provide consistent estimates

of the elasticity. To begin, Table 4.3 presents the first stage regression results. The

dependent variable is the natural logarithm of the annual average API. Across columns

1 to 4, the magnitudes and significance levels of the coefficients of instrumental variables

do not vary considerably with the inclusion of additional control variables, suggesting

that the predictive power of the IVs on air pollution is very robust against the inclusion

of other covariates. This is because the variations of the IVs, which are driven by the

natural forces of atmospheric activities, are largely orthogonal with respect to the land

or city characteristics.

The estimated parameters of the IVs in Table 4.3 show that the average wind

speed, within-day temperature change, and relative humidity significantly associate

with the average local air pollution. I only use the land slopes to roughly describe

the topographic features, which will be incapable of capturing the other important

information such as the earth surfaces, location of mountains and valleys, etc. The

estimations in Table 4.3 still demonstrate varying partial impacts of meteorological
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ln(APIi)

(1) (2) (3) (4) (5)

wdspi 0.485∗∗∗ 0.699∗∗∗ 0.684∗∗∗ 0.615∗∗∗ 0.615∗∗∗

(0.185) (0.202) (0.200) (0.202) (0.006)
rhi -0.042∗∗ -0.019 -0.019 -0.021 -0.021∗∗∗

(0.020) (0.017) (0.017) (0.019) (0.001)
tgapi -0.213∗∗ -0.213∗∗ -0.217∗∗ -0.211∗∗ -0.211∗∗∗

(0.087) (0.098) (0.097) (0.093) (0.002)
wdspi×%(slope ≤ 1◦) -0.527∗∗∗ -0.750∗∗∗ -0.735∗∗∗ -0.636∗∗∗ -0.636∗∗∗

(0.192) (0.204) (0.203) (0.206) (0.006)
wdspi×%(1◦ < slope ≤ 3◦) -0.252 -0.466∗∗ -0.452∗∗ -0.498∗∗∗ -0.498∗∗∗

(0.223) (0.194) (0.198) (0.189) (0.006)
wdspi×%(3◦ < slope ≤ 5◦) -1.598∗∗ -1.900∗∗∗ -1.876∗∗∗ -1.601∗∗ -1.601∗∗∗

(0.684) (0.658) (0.662) (0.651) (0.019)
tgapi×%(slope ≤ 1◦) 0.201∗∗ 0.197∗ 0.201∗∗ 0.194∗∗ 0.194∗∗∗

(0.088) (0.100) (0.100) (0.095) (0.002)
tgapi×%(1◦ < slope ≤ 3◦) 0.279∗∗∗ 0.244∗∗∗ 0.247∗∗∗ 0.229∗∗∗ 0.229∗∗∗

(0.074) (0.075) (0.078) (0.072) (0.003)
tgapi×%(3◦ < slope ≤ 5◦) 0.355 0.297 0.313 0.344 0.344∗∗∗

(0.254) (0.275) (0.272) (0.259) (0.007)
rhi×%(slope ≤ 1◦) 0.037∗ 0.012 0.013 0.014 0.014∗∗∗

(0.021) (0.018) (0.017) (0.020) (0.001)
rhi×%(1◦ < slope ≤ 3◦) 0.065∗∗∗ 0.061∗∗∗ 0.064∗∗∗ 0.061∗∗∗ 0.061∗∗∗

(0.021) (0.019) (0.020) (0.020) (0.001)
rhi×%(3◦ < slope ≤ 5◦) 0.063 -0.042 -0.044 -0.030 -0.030∗∗∗

(0.071) (0.052) (0.049) (0.054) (0.003)
Land characteristics No No Yes Yes Yes
City controls No No No Yes Yes
Time fixed effects No Yes Yes Yes Yes
Town/district fixed effects Yes Yes Yes Yes Yes
F-stastic of the Instrumental variables 2.12 3.29 3.17 3.93 2757.24
N 282,075 282,075 268,708 268,553 268,553
Robust standard errors Yes Yes Yes Yes No
Standard errors clustered at city level Yes Yes Yes Yes No

Note: Robust standard errors clustered at city level are in parentheses across columns
1 to 4. In column 5, the standard errors are calculated under the assumption of
independent and identically distributed error terms. The dependent variable ln(APIi)
is the natural logarithm of the city’s one-year average APIs before land i was conveyed.
wdspi, rhi, and tgapi are the city’s average wind speed, average relative humidity, and
average within-day temperature gaps of the same period, respectively. The percentage
of land slope in different categories are calculated at city level, and they are assumed
to be the same over time.
∗ Significant at the 10 percent level.
∗∗ Significant at the 5 percent level.
∗∗∗ Significant at the 1 percent level.

Table 4.3: First Stage Regression

97



variables on pollution concentration levels. The terrain features interact with the two

major forces of atmospheric flows: winds and temperature reversions, rather than the

relative humidity of air, in influencing air pollution. An uneven land surface will

generally reduce the pollutant dispersion effects of the wind, but it can also reduce the

effects of temperature reversions on pollutant concentrations.

The estimation in column 5 of Table 4.3 assumes independent and identically dis-

tributed error terms. With an F-statistic of 2,757, the instruments in the first stage

regression are highly significant. However, after adjusting for heteroskedasticity and

clustering standard errors at the city-level, the F-statistic of joint significance of instru-

ments drops sharply to approximately 4. Although there is no established evidence on

how close the relation is between the robust version of the first stage F-statistic and

relative bias (Bun and de Haan, 2010), the potential weak instrument problem is still

a concern in this study. To cope with this, I will use the Anderson-Rubin (AR) Wald

test in the 2SLS IV estimations to verify the inference of the endogenous variable, and

I will also use the limited information maximum likelihood (LIML) estimation as a

robustness check.

Table 4.4 presents the results of the estimated effects of air pollution on land prices.

Unlike the results from the OLS regressions, the similar coefficients on ln(APIi) across

columns 1 to 4 suggest that the estimated elasticity of land price with respect to air

pollution is relatively robust against adding other controls. This is because the selected

IVs are primarily associated with air pollution, rather than the other covariates that

influence the land prices. However, the results from the regression in column 4 that

controls all the other covariates is preferred.

The magnitude of the estimated elasticity is approximately -1.4, indicating that

every 1% decline in annual air pollution will, on average, result in a 1.4% increase in

land prices. The land parcels in the same area may share some similar characteristics

that are unobserved from the data, and the error term of the 2SLS estimation may be

serial correlated. Because the correlation between error terms within the same group
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ln(Pi)

(1) (2) (3) (4)
2SLS 2SLS 2SLS 2SLS

ln(APIi) −1.819 −2.460∗∗ −1.766∗∗ −1.369∗∗

(1.601) (1.106) (0.741) (0.681)
Anderson-Rubin test p value 0.000 0.000 0.003 0.013
Land characteristics No No Y es Y es
City controls No No No Y es
Time fixed effects No Y es Y es Y es
Town/district fixed effects Y es Y es Y es Y es
Hansen J statistics p value 0.142 0.147 0.485 0.485
N 212, 399 212, 399 207, 692 207, 585

Note: Robust standard errors clustered at city level are in parenthe-
ses. The Anderson-Rubin test, which is robust to weak instruments, is
provided for the inference of ln(APIi) in 2SLS estimation.
∗ Significant at the 10 percent level.
∗∗ Significant at the 5 percent level.
∗∗∗ Significant at the 1 percent level.

Table 4.4: 2SLS Estimates of Effects of Air Pollution on Log Land Prices

will bias the estimated standard error of the regressors, the clustered standard errors are

used for the 2SLS estimation inferences. However, before the error structure is known,

it is uncertain whether the standard errors should be clustered at the town/district-

level or the city-level. In this chapter, I cluster the standard errors at the city-level,

which is lower than town/district and will produce more conservative inferences. The

conventional 2SLS inference in column 4 of Table 4.4 is significant at the 5% level.

Likewise, the AR test that is robust to weak instruments also points in the same

direction. Consistent with previous studies, without accounting for the endogeneity of

a city’s air pollution, the OLS regression tends to underestimate the causal effect of

air pollution on land prices.

The estimation of the elasticity of land price with respect to air pollution is im-

portant for environmental policy because it can be incorporated into the calculation of

the benefits of environmental protection within the city. For example, the total land

leasehold revenue in Beijing in 2009 was approximately 69 billion RMB, therefore every

1% reduction of average API is estimated to result in approximately 0.9 billion RMB

increase in government revenue. In addition to the other benefits from improving air
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quality, such as the reduction of medical expenses and an increase in worker produc-

tivity, this significant benefit from air quality improvement should be considered in the

evaluation of a local government’s environmental policy.

Robustness

LIML estimation—In the case of an overidentified model and potential weak IVs, it

has been shown that the bias of 2SLS is an increasing function of the number of instru-

ments. In contrast, the limited information maximum likelihood (LIML) estimator has

the same asymptotic distribution as 2SLS but is median-unbiased in the overidentified

models (Angrist and Pischke, 2008). However, LIML is less precise than the 2SLS. Ta-

ble 4.4 reports the the results of LIML estimation using the same set of instrumental

variables as in the 2SLS regressions. The estimated elasticity is -1.39, close to -1.37

in Table 4.3. As expected, the standard error of LIML estimates is higher than that

of 2SLS, but it does not change the main conclusion: air pollution causes significant

negative effects on urban land prices, with an elasticity larger than 1.

ln(Pi)

(1)
LIML

ln(APIi) −1.390∗∗

(0.697)
Anderson-Rubin test p value 0.013
Land characteristics Y es
City controls Y es
Time fixed effects Y es
Town/district fixed effects Y es
Hansen J statistics p value 0.483
N 207, 585

Note: Robust standard errors clustered at city level are
in parentheses.
∗ Significant at the 10 percent level.
∗∗ Significant at the 5 percent level.
∗∗∗ Significant at the 1 percent level.

Table 4.5: Robustness Checks: LIML Estimation

Average APIs of Different Period Lengths—In the main analysis of this study,

the air amenities of the land are measured using a one year API average for the city prior
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to the transaction date because there are evident seasonal cycles in air pollution, land

prices and meteorological variables. For example, the average APIs are typically higher

during winter because of higher heating demand, drier air and frequent temperature

reversions. Using annual average APIs and hence the annual meteorological variables

as instruments has the advantage of accounting for these cycles.

It is also important to observe the elasticities of land prices over different time

periods, with respect to average air pollution. This is driven by the hypothesis that

the pollution shocks in different periods may influence buyers’ evaluations of land

values. The average API of every observation is thus recalculated as follows

APIt =
t−m∑

k=t−1

APIk (4.9)

where m varies from 30, 90, 180, and 270 days to represent different time periods. The

instruments for average air pollution are constructed for the same periods. Regression

results are presented in Table 4.6. From columns 1 to 4, the period length increases

with an inverted-U shape of the magnitudes of estimated elasticities. The elasticity is

as low as -0.606 when the period length m is set as 30, implying that every one percent

increase of the average API for one month before the land was conveyed will result

in only approximately a 0.6 percent decrease in the land price. The elasticity then

reaches its peak value when the average APIs are measured at a half year, suggesting

that the average pollution over the past six months may have the strongest effect on

land values.

Influences of the Extreme Values—In the land transaction data, there is a con-

siderable proportion of land parcels transacted at either very low prices or extremely

high prices. Figure 4.9 illustrates the distribution of the dependent variable ln(P ). The

tails of the distribution are long and thin. There are 1,779 observations with negative

values of ln(P ) and 702 observations with ln(P ) higher than 10.

Although it is impossible to determine whether the extreme values result from a
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ln(Pi)

(1) (2) (3) (4)
2SLS 2SLS 2SLS 2SLS
30Days 90Days 180Days 270Days

ln(APIi) −0.606∗∗ −0.943∗ −1.804∗ −1.657∗∗

(0.241) (0.554) (1.043) (0.815)
Anderson-Rubin test p value 0.000 0.000 0.002 0.003
Land characteristics Y es Y es Y es Y es
City controls Y es Y es Y es Y es
Time fixed effects Y es Y es Y es Y es
Town/district fixed effects Y es Y es Y es Y es
Hansen J statistics p value 0.649 0.509 0.399 0.401
N 207, 585 207, 585 207, 585 207, 585

Note: Robust standard errors clustered at city level are in parentheses. Across
columns 1 to 4, the regressions are based on the average APIs and their corre-
sponding IVs that are calculated in different period lengths. For example, the
endogenous variable of the regression of column 1 is defined as the 30 days API
average prior to the transaction date.
∗ Significant at the 10 percent level.
∗∗ Significant at the 5 percent level.
∗∗∗ Significant at the 1 percent level.

Table 4.6: Robustness Checks: Average APIs of Different Period Lengths
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Figure 4.9: Distribution of the Dependent Variable: ln(Pi)

misreporting land transaction information or not, it is meaningful to check the sen-

sitivity of estimations to potential outliers. Column 1 of Table 4.7 presents the es-
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timation results on a sample excluding the 2,562 observations with ln(P ) lower than

0 or higher than 10, which are equivalent to unit land prices of 10,000 RMB and 22

million RMB per hectare, respectively. The estimated elasticity of -1.367 rounds to the

same estimate of -1.4 from the previous section. In next regressions, there are more

observations in the right tail and left tail of the price distribution excluded from the

regression sample. Specifically, in Column 2 and 3, I only keep the observations with

values of ln(P ) between the 1st percentile and 99th percentile, and between the 5th

percentile and 95 percentile, respectively. The magnitudes and inferences of these two

estimated elasticities finally turn out to be robust.

ln(Pi)

(1) (2) (3)
2SLS 2SLS 2SLS

0 < ln(Pi) < 10 p(1) < ln(Pi) < p(99) p(5) < ln(Pi) < p(95)

ln(APIi) −1.367∗∗ −1.305∗ −1.216∗∗

(0.591) 0.688 (0.529)
Anderson-Rubin test p value 0.000 0.019 0.000
Land characteristics Y es Y es Y es
City controls Y es Y es Y es
Time fixed effects Y es Y es Y es
Town/district fixed effects Y es Y es Y es
Hansen J statistics p value 0.256 0.524 0.446
N 205, 023 205, 481 188, 570

Note: Robust standard errors clustered at city level are in parentheses. Across columns 1 to
3, regression samples are selected based on the values of dependent variables. The regression
of column 2 excludes observations with log land prices either lower than the value of the 1st
percentile or higher than the value of the 99th percentile. In column 3, the range contracts
to between the 5th percentile and the 95th percentile.
∗ Significant at the 10 percent level.
∗∗ Significant at the 5 percent level.
∗∗∗ Significant at the 1 percent level.

Table 4.7: Robustness Checks: Excluding Extreme Values of the Dependent Variable

Regression Sample with Lower Geocoding Precision—Because of the large dis-

parity of urban development both within and across cities, controlling the town/district-

level fixed effects can help to explain the variations in land prices, and more impor-

tantly, reduce the estimated standard errors. Therefore, I geocode the original samples

at the town/district-level using addresses. However, as many land conveyance records

do not provide sufficiently precise addresses, the regression sample size decreases con-
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siderably from 317,485 to 207,585 after geocoding. To check whether the estimates are

sensitive to the sample attenuation, I employ the original data without geocoding at

the town/district level for the 2SLS estimations. I control the city-level fixed effects

by using the city codes from the data. This is equivalent to geocoding the addresses

at a lower precision level. The estimated elasticity in Table 4.8 is -1.532, which does

not deviate significantly from the previous results. However, the estimated standard

error is much larger than that in Table 4.4, making it statistically insignificant at the

conventional levels. This is a result of the failure to absorb the large variation in land

prices in different areas within cities.

ln(Pi)

(1)
2SLS

ln(APIi) −1.532
(1.018)

Anderson-Rubin test p value 0.000
Land characteristics Y es
City controls Y es
Time fixed effects Y es
City fixed effects Y es
Hansen J statistics p value 0.139
N 317, 485

Note: Robust standard errors clustered at city level
are in parentheses. The regression sample has been
geocoded at a less precise level, the city fixed-effects,
rather than the town/district fixed-effects, are con-
trolled.
∗ Significant at the 10 percent level.
∗∗ Significant at the 5 percent level.
∗∗∗ Significant at the 1 percent level.

Table 4.8: Robustness Checks: Regressions on a Sample with a Lower Geocoding
Precision

4.6.3 Regressions on Different Land Uses

In this section I estimate the various elasticities by land uses. Different planned uses of

land can sort the buyers based on different preferences for air quality. For example, it

is expected that the buyers of residential land may have a greater willingness to pay for
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clean air than their industrial or commercial counterparts. The elasticities are likely

to also be affected by the land supply. To achieve the environmental protection goals,

the local government may adjust their industrial policy by regulating the land supply

for specific uses.

ln(Pi)

(1) (2) (3)
2SLS 2SLS 2SLS

ResidentialLand IndustrialLand CommercialLand

ln(APIi) −1.788∗ 0.166 0.500
(1.011) (0.644) (1.209)

Anderson-Rubin test p value 0.000 0.000 0.376
Land characteristics Y es Y es Y es
City controls Y es Y es Y es
Time fixed effects Y es Y es Y es
Town/district fixed effects Y es Y es Y es
Hansen J statistics p value 0.323 0.019 0.636
N 87, 143 70, 749 28, 748

Note: Robust standard errors clustered at city level are in parentheses.
∗ Significant at the 10 percent level.
∗∗ Significant at the 5 percent level.
∗∗∗ Significant at the 1 percent level.

Table 4.9: Estimates of the Impacts of Air Pollution on Land Prices by Land Uses

I categorize the proposed land uses into four major groups: residential land, in-

dustrial land, commercial land, and others. Table 4.9 reports the estimation results.

As expected, air pollution has a significantly negative effect on residential land prices:

every 1 percent increase in average API will lead to 1.7 percent decrease in the unit

price of residential land. This result is consistent with the findings in the existing

literature that shows negative effects of air pollution on housing prices. In contrast,

the elasticity for industrial land is positive but small. The robust AR test shows that

this effect is significant at the 1% significance level. A possible explanation for this is

that urban air quality degradation tends to induce the local government to regulate

the development of the polluting industrial sector using land control, which causes

higher industrial land prices. Finally, the 2SLS estimates show no significant effect of

air pollution on commercial land prices.
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4.6.4 Evidence on Taste-Sorting

Table 4.10 depicts the estimation results of the control function approach after relaxing

the assumptions of homogeneous tastes and non-sorting behaviour. As discussed in the

Section 4.5, with the random coefficient model framework and the assumptions from

1 to 3, the coefficient of APIt in Equation (4.8) is a consistent estimate of the average

elasticity. In column 3 of Table 4.10, the estimated average elasticity is -1.434, only

slightly higher than the results from the 2SLS regressions. This result implies that the

2SLS regressions are able to provide reliable estimates on the average elasticity of land

prices with respect to air pollution. As a complement to this finding, the significance

levels of the estimated coefficients on ν̂i and ln(APIi) × ν̂i suggest that the bias is

primarily the result of omitted variables or measurement error problems, rather than

heterogeneous tastes and self-selection. Unlike the results on Chay and Greenstone

(2005), the coefficient on ln(APIi) × ν̂i is negative, which provides modest evidence

suggesting that the elasticity is higher in more polluted areas.

ln(Pi)

(1) (2) (3)
OLS OLS OLS

ln(APIi) −2.521∗∗∗ −1.731∗∗ −1.434∗

(0.863) (0.850) (0.779)
ν̂i 6.732∗ 5.626 3.589∗∗

(3.921) (3.690) (1.751)
ln(APIi)× ν̂i −1.133 −1.024 −0.562

(0.941) (0.852) (0.576)
Land characteristics No No Y es
City controls No Y es Y es
Time fixed effects Y es Y es Y es
Town/district fixed effects Y es Y es Y es
N 214, 067 213, 963 209, 259

Note: Robust clustered standard errors are calculated by 500 times bootstrap
replications. νi is the predicted residual of the first stage estimation.
∗ Significant at the 10 percent level.
∗∗ Significant at the 5 percent level.
∗∗∗ Significant at the 1 percent level.

Table 4.10: Random Coefficient Estimates
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4.7 Conclusions

Environmental degradation has become an significant issue for the development of

China, however, little is known regarding the associated economic costs. This chapter

focuses on estimating the effects of air pollution on urban land prices in China and to

measure the potential economic benefits of environmental protection. Consistent with

recent literature, the endogeneity problem of observed air pollution is highlighted. I

exploit the natural mechanisms of pollutant dispersions driven by meteorological vari-

ables and their interactions with topographical features to provide exogenous variations

on local air pollutant concentrations. Using a unique land transaction dataset matched

with detailed city-level air pollution historical readings, instrumental variable estima-

tions demonstrate that the elasticity of land prices with respect to annual air pollution

is -1.4. The OLS estimates that do not account for the endogeneity problem appear

to underestimate the causal association between them. Furthermore, the impact on

residential land prices is found to be much greater than that on industrial or commer-

cial land prices, this finding might be explained by the strong disutility of pollution

for residential land buyers and the local governments’ land control policies that target

towards pollution reductions. Finally, the random coefficient estimation shows no ev-

idence of taste-sorting behaviour in China, indicating that the pollution controls can

achieve higher economic gains in the areas of worse air quality.
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Chapter 5

Conclusion

The importance of energy infrastructure on economic growth and industrial devel-

opment has been widely discussed by economists. However, the mechanisms of the

development effects of energy infrastructure have long been ignored. Chapter 2 uses

recent power outages in China as an example to show how the quality of energy infras-

tructure affects worker reallocation among Chinese manufacturing firms. To address

the well-acknowledged endogeneity problem of electrical outages at the firm level, I

use temperature shocks as an instrumental variable of outages. Empirical results from

IV estimation show that frequent power outages lead to higher separation rates for

long-term workers through both voluntary quits and layoff. Moreover, outages also in-

crease employment volatility and excess worker reallocation for long-term workers. In

contrast, impacts of outages on the reallocation of temporary workers are economically

and statistically insignificant. Furthermore, investigation of the potential mechanisms

suggests that shocks from unreliable power supplies are absorbed by the flexibility of

temporary workers in terms of wage and working hours adjustments, while long-term

workers respond to shocks with increased reallocation.

In response to the frequent electricity outages, many firms in developing countries

have installed private generators to partly substitute the unreliable pubic grid services.

However, due to the cost of self-generation being much higher than purchasing elec-
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tricity from the public grid, it is still a puzzle whether the adoption of the private

remedial infrastructure can have significant development effects on the firms. Chapter

3 develops a two-period theoretical model to demonstrate a firm’s decision in adopting

a generator and the subsequent influence on production capital investment. I then

examine the theoretical implications by using an Indian firm survey dataset. Empir-

ical results support the prediction of the theoretical framework. That is, unreliable

electricity provision significantly encourages private investment in a generator. More-

over, the estimated effect of generator adoption on investment is significantly positive.

Furthermore, there is a heterogeneous treatment effect of private generator adoption

on the investment rate, specifically, firms that are the least likely to install generator

however would benefit the most and have a larger impact on their investment in other

production capital.

Severe environmental degradation in China has been considered to be partly caused

by the inefficient energy production. The authorities have imposed various policies to

achieve pollution reduction. However, still, little is known regarding the associated

economic costs of air pollution in China. Chapter 4 attempts to estimate the implicit

price of air quality in China’s urban land market. I collected very detailed and compre-

hensive micro-level datasets on urban air pollution and land transactions in China from

2000 to 2012. Consistent with recent literature, I highlight the endogeneity problem of

local air pollution. I exploit the natural mechanisms of pollution dispersions driven by

meteorological variables and their interactions with topographical features to provide

exogenous variations on local air pollution concentrations. Results from instrumen-

tal variable estimations suggest that air pollution has economically and statistically

significant effects on urban land prices in China. However, the impact on residential

land prices is much greater than on industrial or residential land prices, which can be

explained by the strong disutility of pollution for residential land buyers as well as the

local land regulation policies. Finally, the random coefficient estimation demonstrates

no evidence of taste-sorting behaviour in China, indicating that the pollution controls
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can achieve higher economic gains in the areas of worse air quality.

The research can be extended in several directions. Although I have shown the

significant impacts of poor energy infrastructure on the labour market outcomes and

firm’s investment decision in Chapter 2 and Chapter 3, it is still unclear about the de-

velopment effect of other types of infrastructure. Therefore, as a first extension to this

thesis, I suggest analysing the economic effect of transportation infrastructure system-

atically. As public transportation infrastructure has been found to significantly affect

regional growth in the existing literature, it is interesting and important to examine

its potential time- or spatially-varying effects on the land market, firm dynamics, and

labour market outcomes, which could be incorporated into the economic analysis of

transportation facilities. Further, due to the unique institutional background of China,

this research can help understand the incentives of massive transportation infrastruc-

ture investment by the governments.

In Chapter 4, I have shown that the people’s willingness to pay for clean air in

China is relatively high, which can be reflected in the property price differences in

urban areas. However, as it is very important to investigate the reason of this high

willingness to pay for air quality in China’s urban areas, I suggest extending the analysis

of Chapter 4 by estimating the health impacts of air pollution. If the health impact of

air pollution is high, which will lead to considerable health costs, then it may be able

to significantly explain the high estimated willingness to pay for clean air in Chapter 4.

To conduct this research, I have matched the daily air pollution data at city level with

the individual-level hospitalization data of Fujian Province from 2010 to 2011. The

rich data allow me to investigate the heterogeneous health impacts of air pollution by

different ages as well as by various social groups. This study will provide important

implications for the environmental protection policy in China.

My future research plan will expand and deepen investigations on the implications

of land market development in China. Concurrent with the rapid urbanization, China’s

land markets have been booming over the past two decades. However, little is known
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about its social and economic impact. My research projects will include an examination

of urban land prices on entrepreneurship. The results will contribute to the debates

about whether the wealth shocks, e.g. through the fluctuations of land values, influence

firm creation and growth.

As part of this plan, I have collected the land transaction data and firm-level census

data in China. These different datasets will be matched according to the dimensions

of time and locations. The comprehensive data allow me to estimate the impacts of

land value shocks on firm dynamics and performance. Further, I will also empirically

investigate the mechanisms of these impacts to provide insightful explanations. These

findings will carry important policy implications for developing countries, which are

expected to experience rapid urbanization and industrialization in the future but are

typically constrained by obstacles that inhibit entrepreneurship.
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Chapter A

Appendix for Chapter 2

A.1 2004 Investment Climate Survey Sample

A.2 Worker flows

There is some confusion on translation between the English questionnaire and the

original Chinese questionnaire around the questions on quit, layoff, and hiring rates.

In the English questionnaire, firm managers were asked to provide the percentage of

resigned, laid-off, and newly-hired staff that were formerly long-term or temporary

workers. In this case, the values of quitp + quitt, layoffp + layofft, and hirep + hiret

should equal exactly 100. This does not turn out to be true because as observed in

Table 2.1, the average values of quitp, quitt, layoffp, layofft, hirep and hiret are all

less than 11.

However, in the Chinese questionnaire that was used during the survey, correspond-

ing questions ask about the quit, layoff and hiring rates of long-term and temporary

workers in 2004. To avoid misunderstandings related to the survey questions, I drop

154 observations in which the values of quitp+quitt, layoffp+layofft, and hirep+hiret

consistently equal 100. These observations account for only 1.2% of the sample. The

Chinese questionnaire and other supporting materials were obtained from the World
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Percent Percent

Sector Ownership
Food from Agricultural Products 7.81 State-owned 9.05
Foods 1.96 Collective-owned 7.01
Beverage 1.44 Share joint-owned units 2.94
Tobacco 0.37 Limited liability corporation 36.88
Textile 7.68 Shareholding corporations 10.12
Textile Wearing Apparel 1.66 Private-owned 13.51
Leather 1.12 Enterprises invested by HK, Macau, Taiwan 7.98
Processing of Timbers and Wood 1.14 FIE 11.27
Furniture 0.44 Others 1.23
Paper and Paper Products 1.90
Printing 0.50 Size
Culture, Education and Sport Activity 0.33 Micro (1-10 employees) 0.29
Petroleum 1.47 Small (11-50 employees) 12.84
Chemical Raw Material and Chemical Products 11.62 Medium (51-200 employees) 30.80
Medicines 3.44 Large (201+ employees) 56.07
Chemical Fiber 0.38
Rubber 0.17 Age
Plastic 2.65 1-5 26.81
Non-metallic Mineral Products 10.48 6-10 31.67
Ferrous Metals 3.96 11-20 24.39
Non-ferrous Metals 2.78 21-50 14.21
Metal Products 2.95 51+ 2.92
General Purpose Machinery 8.69
Special Purpose Machinery 3.92
Transport Equipment 7.98
Electrical Machinery 6.97
Electronic Equipment 4.82
Measuring Instrument 0.48
Artwork 0.88
Recycling and Disposal of Waste 0.02

Table A.1: Sample composition

Bank.

A.3 Temperature data

Temperature data were obtained from the U.S. National Oceanic and Atmospheric

Administration (NOAA). The data set provides information from 1995 to 2004 on daily

weather conditions at 377 weather stations, together with the latitude and longitude of

each station. Using the coordinates of each station, I project the weather stations onto

a digital geographic information system (GIS) map of China provided by the GADM

spatial database (www.gadm.org). Finally, weather stations are matched with survey

cities according to their geographic locations. For cities matching with more than one

station, temperature data are averaged across all stations. For cities that do not match
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with any weather station, data from the nearest station to the city boundary is used.

Projection and matching tasks are performed using ArcGIS.
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Chapter B

Appendix for Chapter 3

B.1 Proof of Proposition 3.1

Substitute the optimal investment rates I∗1i(pi, Ki) and I∗0i(pi, Ki) in the profit function

and it is observed that the optimal profit is a function of probability pi (given Ki). As

the condition for adopting a generator is ∆πi(p) = π∗
1i(p) − π∗

0i(p) > 0, I now prove

that: For every given set of parameters, there exists a specific point p∗, and the firm

will install a generator when the perceived probability p is lower than it.

For the real-valued and continuous function ∆πi(p) defined on a compact interval

p ∈ [0, 1], when the electricity power is perfectly provided by the public grid, firms

installing a generator will have a lower profit due to the fixed cost G, therefore, ∆πi(p =

1) < 0. When there is no electricity provided from the public grid, the firms without

a generator will earn a zero profit, which implies ∆πi(p = 0) > 0. Let

A = {p : p ∈ [0, 1] and∆πi(p) ≤ 0} (B.1)

Then A is nonempty since i ∈ A, and A is bound lower by 0. Let p∗ = infA. Then

0 < p∗ < 1, I next prove that ∆i(p∗) = 0.

If ∆πi(p∗) ̸= 0, there is a 1-ball B(p∗; δ) in which ∆πi(p) has the same sign as
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∆πi(p∗). If ∆πi(p∗) < 0, there are points p < p∗ at which ∆πi(p) < 0, contradicting

the definition of p∗. If ∆πi(p∗) > 0, then p∗ + δ/2 is a lower bound for A, again

contradicting the definition of p∗. Therefore ∆πi(p∗) = 0.

I thus have proved that: for every set of parameters, there indeed exists a point

p∗ satisfying ∆πi(p) > 0 when p < p∗. So when the probability of available public

electricity provision is sufficiently low, the firm will be inclined to install a generator.

B.2 Proof of Proposition 3.2

The first order condition for the maximization problem in the two cases above yields:

∂π1i
∂i1i

= φi ·α · (Ki+ I1i ·Ki)
α−1 ·Ki− (pi ·P0i+(1− pi) ·P1i) ·m ·Ki− r ·Ki = 0 (B.2)

and

∂π0i
∂i0i

= φi · pβ · α · (Ki + I0i ·Ki)
α−1 ·Ki − pi · P0i ·m ·Ki − r ·Ki = 0 (B.3)

Let I∗1i =
1
Ki

· [ (pi·P0i+(1−pi)·P1i)·m+r
φi·α ]

1
α−1 − 1 and I∗0i =

1
Ki

· [pi·P0i·m+r

φi·α·pβi ]
]

1
α−1 − 1 be the

optimal investments by the firms with and without generators, respectively. Those

equations are both functions of the initial capital stock Ki and the probability of

available public capital pi. The first order derivative of ∆I∗i with respect to capital

stock Ki equals to

∂∆I∗i
∂Ki

=
∂(I∗1i − I∗0i)

∂Ki
= − 1

K2
i

·
{
[
(pi · P0i + (1− pi) · P1i) ·m+ r

φi · α
]

1
α−1 − [

pi · P0i ·m+ r

φi · α · pβi
]

1
α−1

}

(B.4)

This value will be negative conditional on pβi · [(pi · P0i + (1 − pi) · P1i) ·m + r] <

116



pi · P0i ·m+ r I next take the first derivative of ∆I∗i with respect to the probability

∂∆I∗i
∂Ki

=
∂I∗1i
∂Ki

− ∂I∗0i
∂Ki

(B.5)

where

∂I∗1i
∂pi

=
1

Ki
· 1

α− 1
· [ (pi · P0i + (1− pi) · P1i) ·m+ r

φi · α
]

1
α−1−1 · (P0i − P1i) ·m

φi · α
(B.6)

and

∂I∗0i
∂pi

=
1

Ki
· 1

α− 1
· [pi · P0i ·m+ r

φi · α · pβi ]
]

1
α−1−1 · [P0i ·m

φi · α
·(1−β)·p−β

i − r

φi · α
·β ·p−β−1

i ] (B.7)

For the firms that have installed a generator, as I assume that the electricity price

from the public grids is lower than the in-house generation cost, that is, P0i < P1i , and

thus ∂I∗1i
∂pi

> 0, indicating that the optimal investment rate increases with the availability

of public power supply. However, the sign of ∂I∗0i
∂pi

is ambiguous, since it depends on

the sign of P0i·m
φi·α · (1 − β) · p−β

i − r
φi·α · β · p−β−1

i . If the probability of available public

electricity supply satisfies pi >
β·r

(1−β)·P0i·m , then
∂I∗0i
∂pi

< 0, which implies the investment

rate of the firms is a decreasing function of the probability pi when a generator is not

adopted. This will lead to an increasing treatment effect of generator adoption on the

investment rate.

B.3 OLS Regression Results
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Chapter C

Appendix for Chapter 4

C.1 Proofs of the Conditions for Equation (4.8)

Proof:

E(ϵi|Zi) =E[E(ϵi|ln(APIi), Zi)|Zi]

=E[λAln(APIi) + λZZi|Zi]

=λAE[ln(APIi)|Zi] + λZZi

=λAE[ΠZi + νi|Zi] + λZZi

=λAΠZi + λAE[νi|Zi] + λZZi

=λAΠZi + λZZi

=0

and because
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E[ϵi|ln(APIi), Zi] =λAln(APIi) + λZZi

=λA(ΠZi + νi) + λZZi

=λAΠZi + λAνi + λZZi

since it has shown that λAΠZi + λZZi = 0, therefore, E[ϵi|ln(APIi), Zi] = λAνi.

Applying a similar method, E((β1i − β̄1)|ln(APIi), Zi) = ϕAνi can also be proved.
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