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ABSTRACT 

 

Despite considerable environmental and social impacts of bushfire, there are no high resolution, 

spatially continuous projections of bushfire risk across Australia under climate change which 

take into account the interplay between rising carbon dioxide levels and vegetation growth. This 

thesis aims to address this gap. First, observations are analysed for the presence of trends in fire 

weather conditions across Australia. Significant increases in average (90
th
 percentile) fire 

weather were observed at 16 (24) of 38 stations across Australia, with none recording a 

significant decrease. Second, future fire weather is projected in eastern Australia using skill-

selected global climate models. Global climate models project strong increases in fire weather 

conditions in the southeast, including a lengthened fire season, but little change or decreases in 

the northeast. A regional climate model is then evaluated for its ability to simulate historical fire 

weather in southeast Australia. It simulates observed spatial patterns of fire weather well, but 

has an average positive bias in annual cumulative FFDI of 381. A simple model of fuel load is 

next developed for use in a land surface model, using net primary productivity as a proxy. This 

model accounts for the effects of climate and carbon dioxide fertilisation. No trends in fuel load 

are evident in simulations of historical fuel load over Australia. Finally, these models are used 

to project both fire weather and fuel load in Australia under climate change and associated 

increasing carbon dioxide. Fuel load is consistently projected to increase in temperate, grassland 

and subtropical areas of Australia. The sign of change in fire weather projections is sensitive to 

model selection. However, the magnitude of increases is much larger than that of decreases and 

all models suggest a lengthening of the fire season. Overall this research suggests bushfire risk 

is likely to increase in Australia under climate change, with increased load likely to have a 

greater impact in load-limited areas such as grasslands. In contrast, fire weather increases are 

likely to be of greater significance in temperate forested areas in the southeast and southwest. 

Two key uncertainties in the evolution of Australian fire regimes are the trajectory of regional 

rainfall change and the impact of carbon dioxide fertilisation on vegetation growth. 
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Chapter 1 

 

Bushfires in Australia 

Context, patterns, switches 

The focus of this thesis is the question, how will climate change affect bushfire risk? Before 

considering the future, it is worth pausing briefly to consider the past. Fire has a long history on 

Earth, with evidence that fires occurred over 400 million years ago when terrestrial plants first 

appeared (Scott and Glasspool 2006). The evolution of humans marked a new period in the 

history of fire, as for the first time there was a species that could start fires, attempt to control or 

suppress them and change the flammability of the landscape (Marlon et al. 2008; Bowman et al. 

2009; Pausas and Keeley 2009; Mooney et al. 2011; Bowman et al. 2013). Satellite imagery 

reveals the ubiquity of bushfires today, while also hinting at the complexity of contemporary 

fire regimes (Figure 1.1; NASA FIRMS 2014). Understanding the possible future of modern 

fire regimes requires a relatively new context to be taken into account – the onset of an era in 

which humans have become the chief agent of global environmental change (Crutzen 2002; 

Rockstrom et al. 2009). Recent warming of the climate system is unequivocal, humans are 

extremely likely to have been the dominant cause and continued greenhouse gas (GHG) 

emissions will cause further warming and changes (IPCC 2013).  

Bushfires are a worldwide phenomenon and an active area of scientific research1. A major 

reason for research interest in bushfires is the adverse effects they can have. For example, the 

author of this thesis is employed by an organisation tasked with protecting “life, property and 

community assets from the adverse impacts of bushfires” (OEH 2012). The adverse effects of 

bushfires extend beyond the loss of lives and homes to a wide range of environmental, social 

and economic assets, such as biodiversity, iconic and threatened flora and fauna, carbon stocks 

and clean air and water (McAneney et al. 2009; Gill et al. 2013).  

 

                                                        
1 The term ‘bushfire’ is distinctly Australian. Those searching for literature on bushfires are advised to 
consider alternatives, including but not limited to: bush fire (note the space), wildfire, wildland fire, 
vegetation fire, unplanned fire, biomass burning and vegetation-specific terms such as grass fire and 
forest fire. 
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Figure 1.1 Fires detected by satellite in June (top) and December 2013 (bottom; NASA FIRMS 

2014).  
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Our understanding of bushfire is frequently couched in the ‘fire regime’2 concept (Gill 1975). 

The concept has evolved since its introduction and now generally includes the prevailing timing 

(frequency and seasonality), size, severity and type (ground, surface, crown) of fires at a given 

location. Fire regimes vary greatly among ecosystems; it has been said that there are no fire 

adapted species per se, rather there are species adapted to specific fire regimes (Pausas and 

Keeley 2009). Variation in contemporary fire regimes can be traced to a large extent to variation 

in four drivers of bushfire incidence: the presence of sufficient biomass, the availability of 

biomass to burn, the presence of an ignition source and weather conditions conducive to the 

spread of fire (Archibald et al. 2009; Bradstock 2010). Given that each of these ‘switches’ must 

be on for a fire to occur, fire regimes can also be defined by the relative importance of each 

driver in limiting overall fire incidence. The ‘four switches of fire’ framework is a recurring 

theme in this thesis. 

Recent studies have identified rainfall and fuel as particularly important in defining Australia’s 

patterning of fire regimes. Russell-Smith et al. (2007) modelled the relationship between 

satellite-derived fire incidence data from 1997 to 2005 and a range of biophysical variables, 

finding rainfall seasonality to be the dominant influence, followed by vegetation (i.e. fuel) 

structure. Bradstock (2010) found that variation in available moisture and the dominance of 

either woody or herbaceous vegetation are the primary factors influencing fire regimes in much 

of Australia. Where fire depends on the accumulation of herbaceous fuels, available moisture in 

the months preceding the fire season limits fire incidence. In contrast, available moisture in the 

preceding days and weeks is the limiting factor where fire depends on the drying out of forest 

litter. The exception to this pattern is the tropics, where monsoonal rainfall is predictably 

followed by ‘the dry’, leading to the build up and subsequent drying out of fuel which often 

burns annually. Murphy et al. (2012) also identified the latitudinal gradient in summer monsoon 

rain activity as the major driver of Australia’s fire regimes at a continental scale. The pictures of 

Australia’s fire regimes developed by Russell-Smith et al. (2007) and Murphy et al. (2012) 

provide significant new detail compared to a frequently cited earlier version from Luke and 

McArthur (1978; Figure 1.2). 

These continental assessments highlight the significance of regular, widespread burning in 

Australia’s north, for instance with regard to carbon accounting and the global carbon cycle 

(Meyer et al. 2012; Haverd et al. 2013b; Poulter et al. 2014). Conversely, adopting the stance of 

fire as a problem to be dealt with (Gill et al. 2013) or a natural hazard to coexist with (Moritz et 

al. 2014) shifts attention to the infrequent but high intensity fire regimes associated with  

                                                        
2 Krebs et al. (2010) give an interesting account of the history of the fire regime concept. 



Chapter 1 
 

4 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Models of different aspects of Australian fire regimes. Top is a widely cited 

schematic of bushfire seasonality (Luke and McArthur 1978). Bottom is a map and graph 

showing fire seasonality and extent derived by Russell-Smith et al. (2007). FAA stands for fire 

affected areas and corresponds to burned area.  
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Figure 1.2 (continued) Model of Australian bushfire regime ‘niches’ from Murphy et al. (2012), 

encompassing vegetation type, fire frequency, fire intensity and seasonality. Niches are ordered 

according to decreasing annual net primary productivity. 
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eucalypt forests of Australia’s southern and eastern extremities, because it is there that the 

majority of the Australian population lives. Particular attention is given to communities at the 

so-called wildland-urban interface (WUI), which are at greatest risk of the direct impacts of 

bushfires3. A national forum on fire research and policy priorities in 2003 nominated ‘a better 

understanding of current fire regimes’ as a major goal (Dovers et al. 2004). Over ten years on 

from the forum, major steps have been taken towards addressing this goal.  

The 2003 forum identified another priority for both research and policy, which is the focus of 

this thesis: how can we improve our ability to forecast the impacts of climate change on 

bushfires, in particular at scales relevant to fire management? A number of studies have 

attempted to characterise potential responses of bushfire regimes to climate change, with 

significant impacts expected (Flannigan et al. 2009; Krawchuk et al. 2009; Bradstock 2010; 

Macias Fauria et al. 2011; Cary et al. 2012; Moritz et al. 2012; Bowman et al. 2014a). Given the 

complexity of bushfire, and its strong coupling to human systems, there are multiple pathways 

through which climate change may affect it (Hessl 2011; Bowman et al. 2013). One approach is 

to consider the impact of climate change on the drivers of fire incidence discussed earlier – fuel 

amount, fuel dryness, fire weather and ignition.  

Fire weather is typically expressed through some combination of surface air temperature, 

precipitation, relative humidity4 and wind speed. There are a number of different indices that 

integrate these meteorological variables into a single fire danger measure, for example the 

McArthur Forest Fire Danger Index (FFDI; Luke and McArthur 1978), the Canadian Forest Fire 

Weather Index System (FWI; Van Wagner 1987) and the United States National Fire Danger 

Ratings System (Deeming et al. 1977). Other metrics focus on the water and energy balance 

above the surface. The Haines Index (Haines 1988) and a variant adapted to Australia (Mills 

and McCaw 2010) link vertical atmospheric stability and humidity with erratic fire behaviour. 

The 850 hPa temperature gradient has been linked to extreme fire weather events over southeast 

Australia (Mills 2005a). There is a range of research focused on synoptic drivers of fire risk 

(e.g. Girardin et al. 2004; Crimmins 2006; Long 2006; Wastl et al. 2013; Papadopoulos et al. 

2014 and references therein). 

Numerous studies have projected changes in FFDI (e.g. Beer and Williams 1995; Cary and 

Banks 1999; Williams et al. 2001; Cary 2002; Lucas et al. 2007; Pitman et al. 2007; Bradstock 

et al. 2009; Fox-Hughes et al. 2014) and FWI (two recent examples are Bedia et al. 2013 and 

Lehtonen et al. 2014). Other elements of fire weather that have been related to climate change 

                                                        
3 The building and construction guidelines of NSW, Australia, reserve a vivid term for those at highest 
level of bushfire risk: the flame zone. 
4 Relative humidity is actually a proxy for vapour pressure deficit, which directly influences fuel 
moisture. This proxy works best at low dew points and worst at high dew points and temperatures. 
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include atmospheric stability (Luo et al. 2013), synoptic patterns (Hasson et al. 2009; Grose et 

al. 2014) and modes of climate variability (Cai et al. 2009). By relating observed weather 

patterns to fire incidence or burned area, projected changes in weather are often used as a proxy 

for the presence of fire and its impacts (e.g. Amatulli et al. 2013; Mori and Johnson 2013). 

Another of the four switches of fire, fuel dryness, can also be related to standard meteorological 

variables such as relative humidity and temperature5. Despite this, there are relatively few 

studies that focus on climate change impacts on fuel dryness as a driver of wildfire incidence 

(Matthews et al. 2011; Matthews et al. 2012). However, since FFDI and FWI incorporate 

measures of fuel dryness, studies of these indices contain implicit projections of climate change 

impacts on fuel dryness, even if their conclusions do not always emphasise this aspect. Fewer 

studies still have addressed climate change impacts on wildfire ignition sources. Such studies 

have focused on the only significant natural ignition source, lightning, through either model 

parameterisation (Price and Rind 1994; Goldammer and Price 1998; Krause et al. 2014) or a 

derived relationship between lightning and weather variables (Krawchuk et al. 2009; Penman et 

al. 2013). Although climate change per se is not expected to alter ignitions caused by humans, a 

number of studies have investigated the impacts of changes in variables linked to anthropogenic 

ignitions, such as population density or land use (Bistinas et al. 2013; Penman et al. 2013; Knorr 

et al. 2014; Price and Bradstock 2014).  

In contrast to the direct use of meteorological variables for fire weather, fuel moisture and 

ignition risk assessment, attempts to predict changes in biomass growth or fuel load require a 

significant transformation of climate model data. The task is complicated by the need to factor 

in the potential response of vegetation to changes in atmospheric carbon dioxide (CO2) 

concentration, in addition to climate (Karnosky 2003; Donohue et al. 2013). Reflecting this 

complexity, there are a number of different approaches to answering the question of how 

climate change affects wildfire fuel loads. Field and laboratory studies have examined the 

response of plants to elevated CO2 in controlled environments, for instance through free air 

CO2 enrichment (e.g. Barton et al. 2010). Similar to the other three switches, statistical 

relationships have been developed between current vegetation patterns and meteorological 

variables (Matthews et al. 2012; Thomas et al. 2014; Williamson et al. 2014). These 

relationships allow vegetation changes to be derived from projected changes in meteorological 

variables, but do not account for CO2 effects. In contrast to these empirical studies, there is an 

active research community devoted to process-based approaches to fuel load and vegetation 

more broadly. These approaches include dynamic global vegetation models (DGVMs), 

landscape fire succession models and biogeochemical models. These models may represent 

                                                        
5 Fuel dryness (i.e. fuel moisture) is of course commonly measured directly e.g. through field sampling 
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direct influences on fuel amount, such as litterfall, decomposition and fire incidence, as well as 

indirect causes like phenology, primary productivity, heat and moisture. Significantly, process-

based models have the capacity to incorporate fertilisation effects of CO2 on plant growth (e.g. 

Bala et al. 2013; Jiang et al. 2013). 

Compared to the total number of studies of the impact of climate change on wildfire, relatively 

few attempt quantitative, integrated assessments of the impact of climate change on multiple 

fire drivers (Pechony and Shindell 2010; Kloster et al. 2012; Loepfe et al. 2012; Eliseev et al. 

2014). In Australia, Bradstock (2010) provides a qualitative assessment of each of the four 

drivers, based on case studies of five fire regimes using quantitative and qualitative data. 

Bradstock (2010) concludes that increasing temperatures and dryness may lead to divergent 

impacts on fire activity across Australia, with potential increases in temperate forests, but 

decreases in areas where fires are currently limited by fuel amount rather than fire weather 

conditions. It is also noted that these trends could be confounded or reinforced by elevated CO2 

effects. Matthews (2012) estimates climate change impacts on fuel load, fuel moisture and fire 

weather at a single location in southeast Australia, finding increased fire weather and fuel 

moisture but decreased fuel amount, the latter through a litter accumulation model. King et al. 

(2011, 2012) examined climate change impacts on multiple wildfire drivers in forested and 

grassland regions of southeast Australia in two separate studies. While each examined potential 

changes in fire weather and fuel load, only the grassland study included fuel moisture (curing) 

as well as fertilisation effects of CO2 (King et al. 2012), via a process-based grassland and 

water-balance model. Both studies projected increases in fire weather conditions and overall 

decreases in fuel load, which translated to increases in fire incidence and area burned in forests, 

but minimal changes in fire risk in grasslands. 

To the author’s knowledge, no previous studies have quantitatively addressed climate change 

impacts on fuel amount, fuel moisture, fire weather and ignitions across the landscape and at a 

scale relevant to decision makers, while incorporating fertilisation effects of CO2 on vegetation. 

While this thesis does not attempt such a comprehensive endeavour, it examines a number of 

research avenues that build towards this goal.  

Firstly, the thesis aims to explore climate change impacts on fire weather, as represented by the 

FFDI. Coupled climate models play a central role of in projecting future climate, making studies 

of fire weather an ideal research topic. FFDI can be calculated from meteorological variables 

obtained directly from global and regional climate models. There are also good scientific 

reasons for focusing on fire weather conditions, with evidence that weather can drive ignitions 

(Penman et al. 2013), fire severity (Bradstock et al. 2010), house loss (Blanchi et al. 2010) and 

fatalities (Blanchi et al. 2014). FFDI is chosen because of its considerable traction in the fire 
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management community. It is used operationally by weather forecasters and fire agencies in 

Australia to declare fire weather warnings and total fire bans and to determine fire danger (the 

difficulty of putting out fires which may occur).  

A natural reference point for any analysis or interpretation of projections of future fire weather 

is the existing or historical record of fire weather. Despite the widespread use of FFDI in 

climate projections research, there have been no peer-reviewed studies of existing spatial 

patterns or trends in this index in Australia. Chapter 3 aims to address this topic. 

Chapter 4 aims to provide an initial estimate of the impact of climate change on FFDI using 

global climate models (GCMs). It builds on previous studies in a number of novel ways, making 

use of the evaluation of these climate models by Perkins et al. (2007) to select a subset that 

demonstrate skill in simulating the climate of Australia. These fire weather projections also aim 

to recognise the importance of rainfall in driving Australian fire regimes, by grouping results by 

regions of rainfall seasonality.  

GCMs model the climate well at continental scales and above, but their ability to provide 

information about regional variations in climate is limited by their resolution and coarse 

representation of important regional climate drivers and offshore processes (e.g. the East 

Australian Current; Meehl et al. 2007b; Randall et al. 2007; Flato et al. 2013). Dynamical 

downscaling with regional climate models (RCMs) overcomes some of these limitations in 

providing information relevant to regional adaptation planning. They can operate at much finer 

spatial and temporal scales and contain additional information about a range of factors which 

are important in determining regional climate (such as more detailed topography). Since they 

are built on physical principles, dynamical RCMs allow for changes in the existing relationship 

between weather variables or climate drivers. A clear research direction therefore is to 

undertake high resolution modelling of fire weather. At the time of undertaking this research, 

only one Australian fire weather projection study (Lucas et al. 2007) used an (atmosphere only) 

RCM; the remainder were based on GCMs. Chapter 5 aims to lay the necessary groundwork for 

dynamically downscaled fire weather projections by undertaking an evaluation of the ability of 

a regional climate model to simulate observed FFDI.  

The studies in Chapters 3 to 5 are limited by a lack of any link between increasing CO2 levels, 

changes in plant growth and fuel load. The incorporation of more realistic representations of fire 

into global vegetation and climate change models has recently been cited as one of three keys to 

a better understanding of human-influenced fire regimes, along with better observational and 

historical data and a greater understanding of different cultural traditions of landscape burning 

(Bowman et al. 2011). The aim of the next phase of the thesis is to account for the effects of 

changing net primary productivity (NPP) under increased CO2 conditions on fire risk. 
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To this end, Chapter 6 explores the use of NPP as a proxy for fuel load. NPP represents the rate 

of production of vegetation and changes in NPP are therefore associated with changes in the 

amount of vegetation and ultimately fuel load (Matthew 1997; Kindermann et al. 2008). The 

model of NPP as a proxy for fuel load is developed using a land surface model (LSM), which 

routinely simulates NPP. Equally importantly, the LSM used here provides the lower boundary 

conditions for the Australian coupled climate model used in numerical weather prediction and 

global intercomparisons (Kowalczyk et al. 2013).  

Chapter 7 aims to draw together the research in Chapters 3 to 6 by developing the first relatively 

fine scaled (50 km horizontal resolution) continental assessment of the impact of climate change 

on two key drivers of bushfire risk, fire weather and fuel load, taking into account the interplay 

between increasing atmospheric CO2 and plant growth. A key feature of the study is the use of 

an ensemble of GCMs and RCMs to sample, at least to some degree, the possible future change 

space. This ensemble is used to calculate projected changes in FFDI as well as force a land 

surface model, from which projected changes in fuel load are estimated.  

Bushfires are an extremely diverse research topic and in focusing on fire weather and fuel load 

modelling, this thesis does not cover other important topics. The thesis does not consider 

bushfire ignitions, nor does it focus on fuel moisture – although the FFDI does contain an 

estimate of the moisture of fuel. By using FFDI, this research does not consider other important 

elements of weather such as synoptic patterns, atmospheric stability, wind direction and change, 

and local meteorological effects such as Foehn winds and topographic tunnelling. The model of 

fuel load developed here is necessarily simple, and does not take into account the complexity of 

Australian vegetation formations and fuel load dynamics, particularly their response to 

disturbance. Although fire weather conditions and fuel load both have significant impacts on 

fire behaviour, this thesis does not address the dynamics of fire, including characteristics like 

fire intensity and area burnt. An exception to the general omission of fire behaviour is the use of 

fire rate of spread, in Chapters 6 and 7, as a coarse measure of bushfire risk that integrates both 

weather and load. The diverse and complex consequences fire, including GHG emissions and 

changes in vegetation composition, are also beyond the scope of this thesis. Finally, this 

research does not address the human dimensions of fire, such as suppression, prescribed 

burning, smoke and the social and economic costs of bushfire. The scale of the projections 

developed here is not fine enough to facilitate detailed fire behaviour modelling or local fire 

weather forecasts. However, it is of a scale that can contribute to regional impact assessment 

and adaptation planning.  
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In summary, this thesis aims to contribute to the evidence base for understanding the impacts of 

climate change on fire weather conditions and fuel load in Australia. It does so by addressing 

four questions: 

1. Are there significant trends in average or extreme fire weather within the observational 

record? 

2. How is fire weather projected to change in different rainfall seasonality regions by skill-

selected global climate models? 

3. Can a simple model of fuel load be developed for use in the Australian land surface 

model, that accounts for both climate and atmospheric CO2 effects on vegetation 

growth? 

4. How are fire weather and fuel load projected to change at a relatively fine scale (50 km) 

by an ensemble of global and regional climate models, selected to span the possible 

future climate change space? 
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Chapter 2 

 

Methods 

Modelling the drivers of fire and climate 

This thesis investigates the impact of climate change on two measures of bushfire risk, fire 

weather and fuel load. With the exception of Chapter 3, which focuses on observations, all of 

the studies contained herein use climate models to simulate past and future climate. These 

simulated climates are applied to measures of fire weather conditions and bushfire fuel load to 

arrive at estimates of the impact of the specified climate on these measures. Fire weather 

conditions are represented by an existing and widely used fire danger index. In contrast, a new 

and simple model of fuel load is developed for use in a land surface model (LSM), for the 

express purpose of facilitating estimates of the impact of climate change on load.  

The first three sections address the use of global climate models (2.1), regional climate models 

(2.2) and reanalysis (2.3). The approach to bushfire risk is then addressed (2.4). Section 2.5 

describes the calculation and use of FFDI as a measure of fire weather conditions. Section 2.6 

describes the approach to fuel load, including the rationale for using an LSM (2.6.1), the 

development of a simple model (2.6.2-2.6.3) and its use (2.6.4-2.6.5). Section 2.7 describes the 

various analyses used throughout the thesis. 

 

2.1 Global climate models 

Global climate models (GCMs) are mathematical representations of the key processes of the 

Earth’s climate system, including the atmosphere, ocean and land surface, and are run on 

powerful computers (McGuffie and Henderson-Sellers 1987). The equations behind these 

models are based on well established physical laws such as conservation of mass, energy and 

momentum. Climate models are the main tools used to understand how earth’s climate system 

responds to various forcings and to project future climate on the scale of decades to centuries 

under different GHG emissions scenarios (Flato et al. 2013). There is a large research 

community dedicated to developing, running and evaluating climate models. The projections 

reported in the IPCC Fourth Assessment Report relied on trajectories of GHG emissions from 
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the Special Report on Emissions Scenarios (SRES; Nakicenovic et al. 2000). Projections 

reported in the IPCC Fifth Assessment Report, which was released after the studies in this thesis 

were completed, use Representative Concentration Pathways (RCPs) instead of SRES emissions 

scenarios (Moss et al. 2010).  

No GCMs are run as part of the research comprising this thesis. However, GCM output is used 

directly in Chapter 4 to project the impact of climate change on fire weather, and indirectly in 

Chapter 7 to supply the boundary conditions for a regional climate model (RCM) ensemble, 

from which climate change impacts on fire weather are estimated. 

 

2.1.1 Fire weather projections from GCMs 

For Chapter 4, daily climate model data over eastern Australia for maximum temperature, mean 

wind speed, average specific humidity and total precipitation are taken from the World Climate 

Research Program’s (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) 

multimodel dataset (Meehl et al. 2007a). The CMIP3 archive includes simulations of past, 

present and future climate. CMIP5 data were not available at the time of this and other studies 

in the thesis. Data from 1961 to 2000 are used to calculate present fire weather (i.e. 20th century 

for the purposes of the study in Chapter 4). Data from 2046 to 2065 and 2081 to 2100 are used 

to project climate for 2050 and 2100 respectively.  

Only the A2 SRES emission scenario is used because at the time of the study it was the scenario 

closest to global emissions trends (Le Quéré et al. 2009) and for which daily data from multiple 

GCM simulations existed. 

A key feature of Chapter 4 is the use of GCMs selected for their skill in representing the 

Australian climate. CSIRO, ECHO-G, IPSL and MRI are the models with the highest skill score 

over Australia, defined as the amount of overlap between observed and simulated probability 

density functions (PDFs) of daily temperature and precipitation (Perkins et al. 2007). MRI 

ranked fifth but daily data for the higher ranking MIROC-m were not available. One simulation 

is used per model because differences between individual model realisations were small 

(Perkins et al. 2007). Details of each climate model are available in Randall et al. (2007) and 

Perkins et al. (2007). 

Another key element of the study in Chapter 4 is the aggregation of GCM output into rainfall 

seasonality zones. The study regions are adapted from the four major rainfall zones in eastern 

Australia: summer tropical (ST), summer (SU), uniform (UN) and winter (WI; Figure 2.1). 

These regions are based on differences between summer and winter rainfall (Australian Bureau 
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of Meteorology 2005b). In the summer tropical (or ‘summer dominant’) zone, which occupies 

the upper half of the northeast state of Queensland (QLD), 50–70% of rainfall occurs in summer 

and winters are typically dry. Southeast QLD and northeast New South Wales (NSW) constitute 

the summer rainfall zone, receiving 30–40% of rainfall in summer and low rainfall in winter. 

The summer zone extends along or near the coast as far south as Sydney, NSW, with isolated 

patches in the southeast corner of NSW. To the south and west of the summer zone, 

precipitation occurs uniformly throughout the seasons. A patch of this uniform rainfall zone also 

occurs within the summer zone (Figure 2.1). The southwest of NSW and the majority of the 

southern state of Victoria fall within the winter rainfall zone, with a wet winter and low summer 

rainfall. Considerable areas of forest occur in all four zones. 

 

Figure 2.1 Rainfall seasonality regions (shaded; Australian Bureau of Meteorology 2005b) and 

study area (boxed) used in GCM-derived fire weather projections (Chapter 4). 

To minimise overlap and maximise grid cell representation, a region size of 7° (~600 000 km2) 

is used. This necessarily meant the exclusion of Tasmania and the inclusion of landscapes less 

prone to fire and a degree of overlap between rainfall zones, particularly in the south where 
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rainfall zones are smaller. No ECHO-G grid cells fit in the uniform region and two CSIRO cells 

are counted towards separate regions (out of nine total grid cells in each). GCM grid-cell 

representation and other major features of the study areas are summarised in Table 2.1. 

 

Table 2.1 Rainfall regions used in GCM-derived fire weather projections (Chapter 4). 

Rainfall 

seasonality 

Geographical area Bounds (°) Climate 

zones1 

Number of model grid 

cells within region 

Summer 

tropical (ST) 

Northeast Queensland 17.5-24.5 S, 

143.5-150.5 E 

Tropical, 

subtropical, 

grassland 

CSIRO (9), IPSL (2), 

ECHO-G (1), MRI (2) 

Summer (SU) Southeast Queensland, 

northeast New South 

Wales 

25-32 S, 146.5-

153.5 E 

Subtropical, 

temperate, 

grassland 

CSIRO (9), IPSL (2), 

ECHO-G (1), MRI (2) 

Uniform (UN) Mid- to southeast New 

South Wales 

31-38 S, 145.5-

152.5 E 

Temperate, 

grassland 

CSIRO (9), IPSL (1), 

ECHO-G (0), MRI (1) 

Winter (WI) Victoria, southwest 

New South Wales 

33-40 S, 141.5-

148.5 E 

Temperate, 

grassland 

CSIRO (9), IPSL (2), 

ECHO-G (1), MRI (4) 

1 Based on Köppen classification (Stern et al. 1999; Australian Bureau of Meteorology 2005a). 

 

2.1.2 GCMs used to drive RCM ensemble for fire weather projections 

A key feature of Chapter 7 is the use of global and regional climate model ensemble. Four 

GCMs are downscaled using three configurations of WRF resulting in a 12 member ensemble 

(Figure 2.2; Evans et al. 2014). GCMs were selected in three steps. First, a large set drawn from 

the CMIP3 (Meehl et al. 2007a) was evaluated in order to remove the worst performing models. 

Second, remaining models were ranked according to their independence following Bishop and 

Abramowitz (2013). Last, GCMs were placed within the future change space (defined by 

projected change in temperature and precipitation) and the most independent models that span 

that space were chosen. The GCM choices were MIROC3.2-medres, ECHAM5, CCCM3.1 and 

CSIRO-Mk3.0. The GCMs are downscaled for present (1990–2008) and, using the A2 SRES 

emissions scenario (Nakicenovic et al. 2000) future (2060–2078) time periods. 
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Figure 2.2 Methods for projecting fire weather and fuel load (Chapter 7). FFDI is calculated 

from a global and regional climate model ensemble spanning present (1990-2008) and future 

(2060-2078) periods. The same ensemble supplies the meteorological forcing to the land surface 

model CABLE, yielding NPP. Based on the relationship between fine litter and NPP in the 

BIOS2 modelling environment, fine litter is calculated from NPP in CABLE. 
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2.2 Regional climate models 

As discussed in the Chapter 1, dynamical downscaling with RCMs overcomes some of the 

limitations of global climate models in providing information relevant to regional adaptation 

planning (Evans et al. 2012a). No RCMs are run as part of the research comprising this thesis. 

However, RCM output is used to calculate FFDI for the studies in Chapters 5 and 7. RCM 

output is also used in Chapter 7 to supply the meteorological forcing for LSM simulations, the 

output of which is used to calculate fuel load.  

 

2.2.1 WRF Model 

All regional climate model output used in this thesis is derived from the Weather Research and 

Forecasting (WRF) model, an open source atmospheric simulation system that can be used as an 

RCM (Skamarock et al. 2008). The design of WRF allows for the effective creation of many 

different RCMs through the selection of different model physical parameterisations. WRF has 

been shown to skilfully reproduce the observed spatial patterns of surface temperature and 

precipitation (Evans and McCabe 2010) and the diurnal rainfall cycle (Evans and Westra 2012) 

from the late 20th to early 21st century in southeast Australia. Another more practical reason for 

selecting WRF was the availability of output from simulations which were beyond my capacity 

to reproduce.  

 

2.2.2 Simulation of historical fire weather by an RCM – WRF setup 

In the study in Chapter 5, the Advanced Research WRF (ARW) version 3 is used. WRF is run 

from 1 November 1984 to 31 December 2009, excluding the first two months which are 

discarded as model spin-up. The model timestep is 1 min. Model top pressure is 50 hPa. The 

monthly atmospheric CO2 concentration changes monthly from measurements at Baring Head, 

New Zealand (Evans and McCabe 2010). Sea surface temperatures are continuously updated 

and deep soil moisture varies dynamically throughout the simulation according to the physics 

embodied in the Noah land surface model. The following physics schemes are used: WRF 

single moment 5-class microphysics scheme; the rapid radiative transfer model (RRTM) 

longwave radiation scheme; the Dudhia shortwave radiation scheme; Monin-Obukhov surface 

layer similarity; Noah land-surface scheme; Yonsei University boundary layer scheme; Kain-

Fritsch cumulus physics scheme and Rayleigh damping in the upper 5 km of the atmosphere. 

The model has 30 vertical levels spaced closer together in the planetary boundary layer. The 
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physics schemes used here are chosen as a compromise between schemes that have been found 

to a) perform well in other studies (Evans and McCabe 2010; Evans et al. 2012b), b) represent 

the required physical processes and c) be computationally efficient enough to perform long 

simulations. 

A key feature of the study in Chapter 5 is the comparison of two WRF simulations with 

different horizontal resolution. Two domains are used with one-way nesting. The parent and 

nested domain have respective horizontal grid spacings of 50 and 10 km. The two simulations 

are referred to as WRF50 and WRF10. The lateral boundary conditions of the parent domain are 

provided by reanalysis data (see section 2.3 below). The outermost six horizontal layers of both 

nests were discarded from the analysis to minimise lateral boundary effects. 

 

2.2.3 Fire weather projections from RCMs – WRF setup 

The WRF simulations in Chapter 7 are part of a study of the impact of climate change on fire 

weather and fuel load (Figure 2.2). The 12 member regional climate model ensemble used in 

Chapter 7 was built from 4 GCMs (see section 2.1.2 above) and 3 RCMs created by using 

different configurations of WRF (Evans et al. 2014). RCMs were selected using a similar 

process to that used to select GCMs. A large set consisting of different physical 

parameterisations was evaluated in order to remove the worst performing RCMs. From the 

better performing models, a subset was chosen such that each chosen RCM is as independent as 

possible from the other RCMs. The three selected model configurations are shown in Table 2.2.  

 

Table 2.2 Configuration of RCMs selected for ensemble (Chapter 7; from Evans et al. 2014). 

Ensemble 

member 

Planetary boundary 

layer physics / surface 

layer physics 

Cumulus 

physics 

Microphysics Short wave / 

long wave 

radiation physics 

R1 MYJ / Eta similarity KF WDM 5 class Dudhia / RRTM 

R2 MYJ / Eta similarity BMJ WDM 5 class Dudhia / RRTM 

R3 YSU / MM5 similarity KF WDM 5 class CAM / CAM 

 

The RCM was run at 50 km resolution over the CORDEX AustralAsia region (Giorgi et al. 

2009), which includes Australia, New Zealand, Indonesia, Papua New Guinea and large parts of 

the Indian, Southern and Pacific Oceans. Analysis is restricted to output over the Australian 
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continent including Tasmania, bounded in the southwest at (44.75S, 110.5E) and in the 

northeast at (10.00S, 158.75E). 

 

2.3 Reanalysis  

Reanalyses are analyses of meteorological and oceanographic variables, created by 

incorporating observations of these quantities into modelling systems that are similar to climate 

models (Kalnay 2003). They can be contrasted with analyses, which are used in operational 

weather forecasting but are not consistent over long periods of time due to changes in the 

methods used to create them. By incorporating observations using a common method, 

reanalyses produce a long term, gridded estimate of the state of the climate that is as close to 

reality as possible.  

No reanalyses are created for this thesis, but reanalysis output is used in Chapter 5 to calculate 

FFDI and provide the lateral boundary conditions to an RCM simulation. Modified reanalysis 

output is used in Chapter 6 to force an LSM, from which fuel load is estimated.  

 

2.3.1 Reanalysis used to drive RCM simulation of historical fire weather  

Chapter 5 presents an evaluation of the ability of WRF to simulate FFDI in southeast Australia. 

Reanalysis lateral boundary conditions are used to drive WRF, which minimises error 

inheritance and allows identification of positive and negative features of the RCM simulation in 

a reasonably controlled environment. The lateral boundary conditions of the parent domain are 

provided by 6-hourly National Centers for Environmental Prediction (NCEP) and National 

Center for Atmospheric Research (NCAR) reanalysis project data (NNRP; Kalnay et al. 1996) 

at a grid spacing of 250 km. The regional climate produced by the WRF simulation driven by 

the NNRP reanalysis has been extensively evaluated on time scales ranging from diurnal to 

interannual (Evans and McCabe 2010; Evans and Westra 2012). This simulation was found to 

be a good representation of the observed regional climate. 

 

2.3.2 Reanalysis used to drive LSM simulation of historical fuel load 

Chapter 6 presents a model for estimating fuel load over Australia. Similar to Chapter 5, 

reanalysis output is used in order to provide a long term estimate of the climate that is as close 

to reality as possible. A key difference is that the reanalysis data in Chapter 6 is bias corrected. 
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The LSM used in Chapter 6 is forced with meteorological data sourced from the Modern-Era 

Retrospective Analysis for Research and Applications (MERRA) reanalysis (Rienecker et al. 

2011) at 3-hourly intervals and integrated from 1980 to 2008. The forcing variables include 

incoming longwave and shortwave radiation, air temperature, specific humidity, surface 

pressure, wind speed, and precipitation. The MERRA reanalysis was bias corrected for 

precipitation following Decker et al. (2013) using the Bureau of Meteorology’s Australian 

Water Availability Project (AWAP) gridded precipitation dataset (Grant et al. 2008; Jones et al. 

2009). 

 

2.4 Perspectives on bushfire risk 

In this thesis bushfire risk is considered through the lens of four major drivers of bushfire 

incidence: fuel load, fuel dryness, fire weather and an ignition source (Archibald et al. 2009; 

Bradstock 2010). These drivers of fire incidence can be considered switches, all of which need 

to be on for a bushfire to occur. One variation of this combines fuel amount and fuel dryness 

into a single switch (fuel) while adding a new switch, humans. This recognises the many ways 

humans influence fire, including by fragmenting the landscape, changing vegetation and 

actively suppressing fire. Although worthy of investigation, the role of humans is beyond the 

scope of this thesis. Other models of fire incidence include those of Preisler et al. (2004), 

Pechony and Shindell (2010), Guyette et al. (2012) and process-based fire models such as 

Thonicke et al. (2010).  

Regional variation in fire regimes can be characterised in part by variation in which of the four 

switches tends to limit overall fire incidence. The four switches also provide a potential focus 

for climate change impact studies. Projected changes take on extra significance when they are to 

a switch that limits overall fire incidence for the fire regime in question. This thesis examines 

two of the four switches of fire: fire weather conditions and fuel load. A third switch, fuel 

dryness, is addressed only indirectly as a component of the fire weather index used. 

By choosing drivers of bushfire incidence, this thesis focuses on the preconditions for fire. 

Other frameworks for understanding bushfire risk, and risk more generally, include both the 

probability of fire occurring and its consequences (e.g. Jones et al. 2012). These consequences 

might include impacts on human life and property, or more broadly on social, economic and 

natural systems. A focus on impacts suggests additional pathways for reducing bushfire risk 

beyond minimising fire occurrence, such as not locating properties and infrastructure in bushfire 

prone landscapes (reducing exposure) or using more fire resistant materials in building 

construction (reducing vulnerability). There are a wide range of programs, accompanied by a 
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growing body of research, that address bushfire risk through preparedness. In Australia, this has 

focused on risk perception, homeowner preparedness and response during fires, and community 

safety (Moritz et al. 2014). In contrast, much work in the United States has been devoted to 

understanding the social acceptance of fuel reduction on public and private lands, and other risk 

minimisation techniques. The public response during and after fires is also beginning to receive 

more attention in the United States. 

 

2.5 The McArthur Forest Fire Danger Index 

In this thesis, fire weather conditions are represented using the Forest Fire Danger Index, known 

variously as the FFDI, McArthur FFDI, Fire Danger Index (FDI) and Fire Danger Rating 

(FDR). It was empirically derived in the late 1960s to relate weather conditions to expected fire 

behaviour and rate of spread (Luke and McArthur 1978). The FFDI combines observations of 

temperature, relative humidity and wind speed with an estimate of the fuel state: the ‘drought 

factor’. The latter depends largely on daily rainfall and the amount of time since the last rain. 

FFDI1 was originally calculated using a set of cardboard wheels which the user turned to match 

the observations (the Forest Fire Danger Meter; Figure 2.3). Turning the wheels on the meter 

yielded a number (the FFDI) as well as a category corresponding to this number. Initially the 

highest category was “Extreme”, corresponding to FFDI values between 50 and 100 (Figure 

2.3). An FFDI of 100 was thought to indicate ‘the near worst possible fire conditions that are 

likely to be experienced in Australia’ (Luke and McArthur 1978). This notional upper bound 

was based on observations made during the 1939 Black Friday fires in Victoria: temperature of 

40°C, relative humidity of 15%, 10 minute averaged wind speed of 55 km h−1 and at least six to 

eight weeks of drought. However, these conditions have been exceed in the observational record 

(Lucas 2010) and after the 2009 Black Saturday fires in Victoria the FFDI categories and 

thresholds were revised in many jurisdictions, including NSW, as follows: 0–11 

(low/moderate), 12–24 (high), 25–49 (very high), 50–74 (severe), 75–99 (extreme) and 100+ 

(catastrophic).  

Today the FFDI is used operationally by weather forecasters and fire agencies in Australia to 

declare fire weather warnings and total fire bans and to determine fire danger (the difficulty of 

putting out fires which may occur) and associated operational preparedness requirements.  

                                                        
1 When describing FFDI as a value, rather than a fire weather index, no definite article is used. 



Methods – Modelling the drivers of fire and climate 

23 

2.5.1 Calculation of FFDI 

Although the meters shown in Figure 2.3 are still used operationally (Lucas 2010), they have 

been reverse engineered to obtain equations by which FFDI is now more commonly calculated 

(Noble et al. 1980). The basic equation for FFDI is: 

FFDI = 2 × exp(0.987 × ln(DF) − 0.0345 ×H +0.0338×T +0.0234×V −0.45) (1) 

 

where DF is the drought factor, T is the temperature (°C), V the wind speed (km h−1) and H the 

relative humidity (%). Continuously recording weather stations make it possible to calculate 

FFDI at any time of day and to establish the daily maximum value. By convention, however, 

daily FFDI is calculated from daily maximum surface air temperature and 3pm local time (LT) 

values of relative humidity and wind speed, with wind speed calculated as an average of the 

previous 10 minutes at a height of 10m. The aim is to capture the period of highest fire danger 

in the day, which is often but not always around 3pm (Fox-Hughes 2011). 

 

 

Figure 2.3 A McArthur Mk 5 Forest Fire Danger Meter (CSIRO 2011). 
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 In contrast to the relatively simple formulation of T, V and H, the drought factor is more 

complex2. It is an empirical estimate of the state of the fuel, incorporating soil moisture deficit 

and recent daily rainfall. In the form used here, DF is calculated following the methodology 

described in Griffiths (1999) and Finkele et al. (2006). This method uses the Keetch-Byram 

Drought Index (KBDI; Keetch and Byram 1968) as its input for soil moisture deficit.  

The drought factor is dimensionless, ranging between 0 and 10 and is calculated as: 

DF = 10.5 × (1 – exp(–(KBDI/30)/40) × (41X2 + X)/(40X2 + X + 1) (2) 

 

where X expresses the influence on the drought factor of past rainfall. X is defined as: 

X = N1.3 / (N1.3 + P – 2)  for  N ≥ 1 and P > 2 

X = 0.81.3 / (0.81.3 + P – 2)  for N = 0 and P > 2 

X = 1 for P ≤ 2 

(3) 

 

where P is the past rainfall amount and N is the number of days since it fell. A rainfall event is 

defined as a set of consecutive days, each with rainfall above 2 mm, within the last 20 days. P is 

the sum of rainfall within the event and N is the number of days since the day with the largest 

daily rainfall amount within the rain event. In operational use, the above algorithm has been 

found to increase the drought factor too quickly in prolonged dry periods after significant rain 

events (Finkele et al. 2006). A correction applied by the Australian Bureau of Meteorology is 

used, which calculates X as the minimum of Eqn 3 and the limiting function Xlim, defined as: 

Xlim = 1/(1 + 0.1135 × KBDI)  for KBDI <20 

Xlim = 75/(270.525 + 1.267 × KBDI)  for KBDI ≥ 20 

(4) 

 

The FFDI methodology ignores local variations in fuel amounts and types, as well as the slope 

of the terrain, factors that significantly impact fire behaviour. However, the goal here is to 

understand the weather and climate aspects of the issue. Uncertainties in the amounts of 

historical grassland curing make the use of GFDI problematic. In any case, future climate 

projections show a great deal of overlap in the behaviour of the GFDI and FFDI (Hennessy et 

al. 2005). Furthermore, a comparison of FFDI with the widely used Canadian FWI shows 

considerable similarities between the two (Dowdy et al. 2010). 

                                                        
2 Complex enough to have inspired the creation of simpler alternatives (Sharples and McRae 

2009) 
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2.5.2 Analysis of historical trends in FFDI 

Chapter 3 presents a study of historical trends in FFDI in Australia. The observations are drawn 

from Australia’s first high quality observational FFDI dataset. This dataset has daily time 

resolution and is created using observations of maximum daily temperature and wind speed and 

relative humidity as measured at 1500 LT. The drought factor is calculated using daily rainfall 

measurements collected at 0900 LT.  

A major feature of this dataset is the use of homogenisation. When investigating the long-term 

behaviour of any climate variable, the homogeneity of the dataset is important. Homogeneous 

data are those which are free from artificial trends or discontinuities, such as those caused by 

station relocations, instrument changes and/or changes in observational practices. Lucas (2010) 

examined the homogeneity of the FFDI dataset and its components. While all the individual 

datasets show some degree of inhomogeneity, those in the wind speed data have the largest 

impact on the FFDI. These inhomogeneities in the wind speed arise from the changing local 

environment of the wind measurement as well as the changing instrumentation used to record 

wind speeds (see also Jakob 2010), particularly those associated with the modernization of the 

observing network and the introduction of Automatic Weather Stations (AWS). Further, before 

the introduction of the AWS, wind reports at many of the rural stations in the dataset were made 

through visual estimates of the effects of wind on vegetation. The quality of these 

measurements is greatly dependent on the skill of the observer, and they often show many 

inhomogeneities. They are also often inconsistent with later records made with the modern 

AWS instrumentation, with very different means, variance and skewness characteristics. As a 

general rule, the mean of past wind speed measurements is lower than those measured with 

contemporary AWS anemometers. However, there are exceptions. 

Lucas (2010) described a correction methodology for the wind inhomogeneities, applicable to 

statistics of the FFDI distribution rather than individual observations. Breakpoints in the wind 

speed time series are identified using two-phase regression similar to that described by 

Easterling and Peterson (1995). The bulk change in FFDI (ΔFFDI) at a given percentile level 

(e.g. median or 90th percentile) for a given change in wind speed (ΔV) is given by: 

ΔFFDI = 0.0234 × FFDI × ΔV (5) 

 

Past FFDI values are adjusted so that they are in relative homogeneity with contemporary 

measurements. The sensitivity of this homogenization methodology was discussed in Lucas 

(2010). It was found to adequately account for changes in the FFDI distribution at most 

percentile levels. However, this was not true at the extreme upper ends of the FFDI distribution, 
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where the changes to the variance and the skewness of the winds had a significant effect. This 

generally occurred at percentile levels above 90%; the homogenization correction at higher 

levels is subject to more uncertainty. A scheme based on similar principles is determined for 

ΣFFDI. For this variable, an amount of adjustment is estimated by integrating Equation (2) 

multiplied by the observed relative frequency of occurrence of each value of FFDI over the 

observed FFDI distribution. This is done individually for each station. 

A subset of the Lucas (2010) dataset is used, based on two criteria: 1) Stations that contain wind 

speed measurements based on visual estimates are excluded; 2) Stations with 365 or more total 

missing days are excluded. Applying these criteria results in 38 stations being selected for this 

analysis (Figure 2.4, Table 2.3). There is considerable overlap between the two sets of stations 

that fail to meet the criteria. Stations with visually estimated winds are mostly rural, where in 

general there are more missing data. The stations chosen tend to be located in the more 

populated areas, often at airports or meteorological offices. While the number of stations is 

approximately halved, the national coverage of the complete dataset is maintained, albeit with 

gaps in northern Queensland (QLD) and along the eastern border of Western Australia (WA). 

 

Figure 2.4 Stations used to analyse historical FFDI trends (Chapter 3). See Table 2.3 for key. 

The marker for Laverton (LV) has been moved west to avoid overlap with Melbourne Airport. 
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Table 2.3 Stations used to analyse historical FFDI trends (Chapter 3). 

Station (Abbreviation) State Latitude (°) Longitude (°) 
Adelaide (AD) SA -34.92 138.62 
Albany Airport (AL) WA -34.94 117.80 
Alice Springs (AS) NT -23.80 133.89 
Amberley (AM) QLD -27.63 152.71 
Brisbane Airport (BA) QLD -27.39 153.13 
Broome (BR) WA -17.95 122.23 
Cairns (CA) QLD -16.87 145.75 
Canberra (CB) ACT -35.30 149.20 
Carnarvon (CN) WA -24.89 113.67 
Ceduna (CE) SA -32.13 133.70 
Charleville (CH) QLD -26.42 146.25 
Cobar (CO) NSW -31.49 145.83 
Coffs Harbour (CF) NSW -30.31 153.12 
Darwin (DA) NT -12.42 130.89 
Esperance (ES) WA -33.83 121.89 
Geraldton (GE) WA -28.80 114.70 
Hobart (HO) TAS -42.89 147.33 
Kalgoorlie (KA) WA -30.78 121.45 
Launceston Airport (LA) TAS -41.54 147.20 
Laverton (LV) VIC -37.86 144.76 
Mackay (MA) QLD -21.12 149.22 
Meekatharra (MK) WA -26.61 118.54 
Melbourne Airport (ME) VIC -37.68 144.84 
Mildura (MI) VIC -34.23 142.08 
Moree (MO) NSW -29.49 149.85 
Mt Gambier (MG) SA -37.75 140.77 
Mt Isa (MT) QLD -20.68 139.49 
Nowra (NO) NSW -34.95 150.54 
Perth Airport (PE) WA -31.93 115.98 
Port Hedland (PO) WA -20.37 118.63 
Rockhampton (RO) QLD -23.38 150.48 
Sale (SA) VIC -38.12 147.13 
Sydney Airport (SY) NSW -33.94 151.17 
Tennant Creek (TE) NT -19.64 134.18 
Townsville (TO) QLD -19.25 146.77 
Wagga (WA) NSW -35.16 147.46 
Williamtown (WI) NSW -32.79 151.84 
Woomera (WO) SA -31.16 136.81 
 

  

2.5.3 Use of historical FFDI to evaluate an RCM simulation 

Chapter 5 presents an evaluation of the regional climate model WRF’s ability to simulate 

observed FFDI in southeast Australia. The observations used for the evaluation are drawn from 

the same FFDI dataset used in Chapter 3. As stated above, the observations used in Chapter 3 

are subject to a correction for wind inhomogeneities that is applicable to the statistics of the 
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FFDI distribution, rather than individual observations. The methodology breaks down at the 

extreme upper ends of the FFDI distribution, typically above the 90th percentile. However, the 

evaluation criteria employed in Chapter 5 require observations with daily time resolution and 

include values occurring less frequently than those at the 90th percentile. In order to retain data 

with daily resolution uncorrected data is used. This leads to an underestimate of average FFDI 

values by ~5% for the period of this study (corrected and uncorrected data supplied by Chris 

Lucas, Bureau of Meteorology). 

All weather stations from Lucas (2010) that fall within the regional climate model domains are 

used for the analysis; 35 in total (Figure 2.5, Table 2.4). All stations are missing some 

observational data (Table 2.4). 

 

Figure 2.5 WRF domain showing elevation and stations used to evaluate WRF (Chapter 5). See 

Table 2.4 for key. 
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Table 2.4 Stations used to evaluate WRF (Chapter 5), including missing data. 

Station Station location (°) Total days missing 
(years missing >90 days) (Abbreviation) Lat Lon 

Adelaide (AD) -34.92 138.62 16 
Amberley (AM) -27.63 152.71 259 
Bendigo (BE) -36.74 144.33 57 
Birdsville (BI) -25.9 139.35 652 (1997) 
Bourke (BO) -30.04 145.95 561 (1998) 
Brisbane (BR) -27.39 153.13 7 
Broken Hill (BH) -31.98 141.47 708 (1985, 1991) 
Canberra (CA) -35.3 149.2 16 
Casino (CS) -28.88 153.05 1012 (1985-86) 
Charleville (CH) -26.42 146.25 27 
Cobar (CO) -31.49 145.83 80 
Coffs Harbour (CF) -30.31 153.12 18 
Dubbo (DU) -32.22 148.58 298 
Emerald (EM) -23.57 148.18 159 
Hay (HA) -34.52 144.85 441 (1991) 
Laverton (LV) -37.86 144.76 21 
Lismore (LM) -28.81 153.26 680 (1986-87) 
Melbourne (ME) -37.68 144.84 19 
Mildura (ML) -34.23 142.08 10 
Miles (MS) -26.66 150.18 530 (1987) 
Moree (MO) -29.49 149.85 24 
Mt Gambier (MG) -37.75 140.77 8 
Nhill (NH) -36.33 141.64 104 
Nowra (NO) -34.95 150.54 246 
Omeo (OM) -37.1 147.6 1021 (1986, 2002, 2009) 
Orbost (OR) -37.69 148.47 47 
Renmark (RE) -34.2 140.68 173 (1988) 
Richmond (RI) -33.6 150.78 29 
Sale (SA) -38.12 147.13 101 
Sydney (SY) -33.94 151.17 6 
Thargomindah (TH) -27.99 143.82 345 
Tibooburra (TI) -29.44 142.01 131 
Wagga (WA) -35.16 147.46 13 
Wilcannia (WI) -31.56 143.37 1057 (1985, 1988-92, 1996) 
Williamtown (WT) -32.79 151.84 9 

 

2.5.4 Calculation of FFDI from climate models 

FFDI is computed at each model grid cell using Equations 1-4 above. Due to limitations in the 

available model data, there are some departures from the standard method for calculating FFDI. 

The study in Chapter 4 calculates FFDI from skill-selected global climate models (GCMs). 

Departures from the standard method include the use of daily average wind speed and humidity, 

derivation of wind speed from GCM-simulated north and east vectors, and derivation of relative 

humidity from GCM-simulated specific humidity and temperature. The use of daily mean, 

rather than 3pm, relative humidity is likely to lead to underestimates of FFDI. The effect of 
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using daily mean wind speed is less clear because, unlike temperature (relative humidity), wind 

speed is not generally assumed to be greatest (lowest) around 3pm. However, no quantitative 

analysis of these effects was conducted. In addition, for some models surface humidity data is 

not available so was calculated based on a simple linear relationship found to exist between 

GCM humidity at surface (1000 hPa) and 925 hPa over land.  

The studies in Chapters 5 and 7 calculate FFDI from a regional climate model (RCM). 

Departures from the standard method include the derivation of wind speed from RCM-

simulated north and east wind vectors and the derivation of relative humidity from RCM-

simulated specific humidity, temperature and air pressure. Further, wind speed values are 

instantaneous, not 10 minute averages. 

 

2.6 Fuel load 

Bushfire fuel load is connected to a wide range of human and natural systems, with each system 

emphasising different aspects of load. Fire fighters and communities are directly affected by 

fuel load because it affects fire behaviour – including rate of spread, flame height and spotting – 

and the resulting probability of suppression (Watson 2009). Since fires typically ignite in fuels 

found on the surface, fuel load is often defined as surface fuel – primarily litter, the dead leaves 

and twigs that have been shed from living and dead plants (Watson 2009). The need to improve 

our understanding of fire behaviour has led to a more nuanced approach to fuel modelling, 

stressing the importance of different layers of fuel and the spaces between them, rather than the 

total mass of surface fuel (e.g. Cheney et al. 1992; Gould et al. 2007; Hines et al. 2010; Zylstra 

2011). Establishing links between vegetation types and typical fuel load levels has contributed 

significantly to the management of fire across the landscape (e.g. Watson 2012). Where 

vegetation mapping allows, these links provide an estimate of average or baseline conditions. 

By adding information about the evolution of fuel load over time, particularly its buildup since 

the last fire, fire managers make decisions and allocate scarce resources for conducting planned 

burns (Penman et al. 2011). Wildfires and controlled burns are an important source of local and 

regional air pollution, with significant human health impacts including an estimate of over 

330,000 deaths annually due to bushfire smoke (Johnson et al. 2012; Johnston and Bowman 

2013). Studies of biomass burning emissions more broadly emphasise specific aspects of fuel 

load (e.g. dryness, structure, vegetation type) that influence (e.g. Russell-Smith et al. 2009). 

Finally, at both global and regional scales, wildfires influence the carbon cycle, releasing large 

quantities of carbon into the atmosphere, which slowly return during vegetation regrowth 
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(Haverd et al. 2013c; Poulter et al. 2014). In Indonesia, for example, emissions from a single 

year of peat fires were equivalent to 20-40% of global fossil fuel emissions (Page et al. 2012). 

 

2.6.1 CABLE model and the rationale for using an LSM to model fuel load  

Fuel load models vary widely in how they derive load, with mechanisms represented 

empirically at one end of the spectrum to process-based approaches at the other (Adams et al. 

2013). A key aim of process-based models is to provide physically consistent and spatially and 

temporally continuous estimates of many different variables across the entire landscape. 

Process-based approaches to fuel load dynamics are incorporated in several major classes of 

models, including dynamical global vegetation models (DGVMs), landscape fire succession 

models and biogeochemical models. These models allocate carbon or total biomass into 

multiple litter pools based on the balance of litterfall and decomposition (e.g. Wang et al. 2010; 

Keane et al. 2011). Litterfall is typically linked to phenology and primary productivity, while 

decomposition is determined by a combination of heat and moisture.  

LSMs provide process-based simulations of fluxes of heat, water and carbon between the land 

surface and the atmosphere. The Community Atmosphere Biosphere Land Exchange (CABLE; 

Wang et al. 2011) model is a sophisticated LSM that can be run as an offline model with 

prescribed meteorology (e.g. Kala et al. 2014) or fully coupled to an atmospheric model within 

a global or regional climate model (e.g., Hirsch et al. 2014). CABLE has been extensively 

evaluated (Abramowitz et al. 2008; Wang et al. 2011) and has been used at site-specific, 

(Abramowitz et al. 2007), regional (Cruz et al. 2010) and global (Pitman et al. 2011; Zhang et 

al. 2011; Lorenz et al. 2014) scales.  

Critically, CABLE also provides the lower boundary condition for the Australian Community 

Climate and Earth System Simulator (ACCESS) coupled climate model used in numerical 

weather prediction (NWP) and global intercomparisons, including the Australian contribution to 

CMIP5 (Kowalczyk et al. 2013). The use of CABLE in this context provides an advantage over 

other process-based models that provide explicit measures of fuel load but are not routinely 

used for NWP or in IPCC assessments. The aim of Chapter 6 is to develop a simple model of 

fuel load that can be incorporated into the operational LSM used in Australia.  

 

2.6.2 Development of a simple fuel load model 
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The model developed in Chapter 6 uses net primary productivity (NPP), which is routinely 

simulated by LSMs, as a proxy for fuel load, which is not. The rationale for using NPP as a 

proxy for fuel load is well founded. NPP represents the rate of production of vegetation and 

changes in NPP are therefore associated with changes in the amount of vegetation and 

ultimately fuel load (Matthew 1997; Kindermann et al. 2008). Since fuel load is usually 

considered as a subset of total plant matter (e.g. foliage and small twigs in forests), it is 

proportional to, rather than equivalent to, total accumulated NPP. Chapter 7 uses this model to 

project the response of fuel load to climate change.  

The fuel load model is developed in two parts (Figure 2.6). Part A aims to derive the 

relationship between fuel load and NPP. This ideally requires observations of both quantities at 

a sufficiently long time-scale and over a range of ecosystem/vegetation types. Since these 

datasets are not available, the next best source of fuel load and NPP data is from an ecosystems 

model, ideally one that has been constrained using observations. One such modelling 

environment, BIOS2 (Haverd et al. 2013a), includes a biogeochemical model that includes fine 

litter pools, and is constrained by multiple observational datasets, including litter observations 

and flux tower measurements. BIOS2 is not designed to be coupled to a climate model and 

cannot be used in ACCESS. The routine use of CABLE in Australia, including coupled to 

ACCESS and regional climate models, provides the rationale for part B of the study, which 

aims to simulate fuel load in CABLE by using the BIOS2 relationship between fuel load and 

NPP derived in Part A. The fuel load generated will be consistent with CABLE’s simulation of 

NPP. Finally, uncertainty in the estimation of fuel load in CABLE is examined by varying three 

key vegetation parameters that have a large influence on NPP. 

 

2.6.3 Linking fuel load with NPP 

BIOS2 is a system for modelling the coupled energy, water and carbon balances of the 

Australian continent at fine spatial (0.05°, 5 km) and temporal (hourly) scales (Haverd et al. 

2013a). BIOS2 is limited to the Australian continent and cannot be coupled to the global 

ACCESS model. BIOS2 is partly based on the land surface model CABLE, but with some 

important differences (see Part B for a description of the CABLE model). BIOS2 does not use 

CABLE’s default modules for soil processes and carbon. Instead, it uses the SLI soil model 

(Haverd and Cuntz 2010) and the CASA-CNP biogeochemical model (Wang et al. 2010). 

CASA-CNP allocates the carbon cycling through the terrestrial ecosystem into plant, litter and 

soil pools. There are three litter pools: metabolic, structural and coarse woody debris. BIOS2 

was run from 1990 to 2011 using meteorological forcing from the AWAP dataset. 
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Figure 2.6 Methods for developing a simple fuel load model (Chapter 6). By linking fuel load 

and NPP in BIOS2 (Part A), fuel load can be calculated from NPP in CABLE (Part B). 

 

AWAP data are downscaled from daily to hourly time steps (on the half-hour) using a weather 

generator within BIOS2. The BIOS2 simulations used here were also constrained by 

observations of a wide variety of variables including streamflow, evapotranspiration, net 

ecosystem production and litterfall. The use of observational constraints along with the best 

available gridded observations for Australia (AWAP) means the simulations by BIOS2 are 

likely the best available estimates of quantities such as fuel load that are not measured often 

enough or over a large enough sample, to provide a direct observational dataset.  

Fuel load is defined as fine litter, which is the sum of the metabolic (easily broken down) and 

structural (resistant) litter pools (e.g. Wang et al. 2010; Haverd et al. 2013a). BIOS2 divides 

vegetation cover in each grid cell into persistent (mostly woody) and recurrent (mostly grassy) 

fractions based on partitioning of remotely sensed estimates of the fraction of photosynthetic 

absorbed radiation (fPAR; see Haverd et al. 2013a). Woody fine litter is mostly along the 

southwest and southeast coast and in Tasmania, where most of the evergreen broadleaf forests 
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are found. Grassy fine litter is mostly within the agricultural regions of the southwest and 

southeast wheat belts and parts of the northern tropical savannas.  

To obtain the relationship between NPP and fuel load for BIOS2, the relationship between 

annual NPP and fine litter for the period 1990 to 2011 is calculated using the Pearson product-

moment correlation coefficient. BIOS2’s fine litter values are also compared with NPP values in 

the preceding year i.e. lag-1 correlation, on the grounds that it should be on the order of one 

seasonal cycle before NPP is translated into fine litter load. NPP and fine litter are not separated 

into grassy and woody fractions; instead the total of both grassy and woody fractions is used in 

all analyses. Fine litter is related to NPP using ordinary least squares linear regression, with 

NPP taken as the independent variable. There is a generally high correlation between the two 

variables, and no clear evidence for a nonlinear relationship. For each model grid cell with a 

significant (p < 0.05) lag-1 correlation, a linear model is calculated.  

To understand regional variation in model output, a modified Köppen climate classification is 

used, which separates Australia into 6 mostly-contiguous and climatically similar regions 

(Figure 2.7; Stern et al. 1999). The Köppen zones are: equatorial, tropical, subtropical, desert, 

grassland and temperate. A linear model is developed for each of these climate zones. Although 

one of the climate zones is called ‘grassland’, there is no separation of woody and grassy 

fractions in this or any other climate zone in this analysis. These zones are applied to fuel load 

simulations in Chapter 6 and both fuel load and FFDI simulations in Chapter 7. 

 

Figure 2.7 Köppen zones used to regionalise model output (Chapters 6, 7; Stern et al. 1999). 
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2.6.4 Simulation of historical fuel load by an LSM – CABLE setup 

The version used in this study is CABLEv1.4b. In CABLEv1.4b, the one-layered, two-leaf 

canopy radiation module of Wang and Leuning (1998) is used for sunlit and shaded leaves and 

the canopy micrometeorology module of Raupach (1994) is used for computing surface 

roughness length, zero-plane displacement height, and aerodynamic resistance. The model also 

consists of a surface flux module to compute the sensible and latent heat flux from the canopy 

and soil, the ground heat flux, as well as net photosynthesis. A soil module is used for the 

transfer of heat and water within the soil and snow, and an ecosystem carbon module based on 

Dickinson et al. (1998) is used for the terrestrial carbon cycle. A detailed description of CABLE 

is provided by Wang et al. (2011). CABLE, like most LSMs, uses plant functional types (PFTs), 

as opposed to the partitioning of cells between recurrent and persistent vegetation as BIOS2 

does. This implementation of CABLE uses fixed PFTs derived from the International 

Geosphere–Biosphere Programme (IGBP) land-use classification map. 

CABLEv1.4b is used within the National Aeronautics and Space Administration Land 

Information System version 6.1 (LIS-6.1; Kumar et al. 2006, 2008), a flexible software platform 

designed as a land surface modelling and hydrological data assimilation system. A grid 

resolution of 0.25° is utilized, covering Australia. Monthly CO2 concentrations are prescribed 

using measurements from Baring Head, New Zealand (Keeling et al. 2005). 

Using CABLE in this way provides NPP consistent with the meteorological forcing and the 

LSM. In order to estimate uncertainty in NPP from CABLE, and hence fuel load, a series of 

sensitivity experiments are carried out using the upper, lower and middle estimates of three 

vegetation parameters that influence NPP. Lu et al. (2013) conducted an extensive parameter 

sensitivity analysis of CABLE and found that globally, the most important parameters affecting 

gross primary production (GPP), and therefore affecting NPP, are the maximum carboxylation 

rate (vcmax, the maximum ribulose-1,5-bisphosphate carboxylation rate of the leaves at the 

canopy top at a leaf temperature of 25°C), followed by Leaf Area Index (LAI, the total one-

sided surface area of leaf per ground surface area). vcmax partially determines the rate of 

photosynthesis and hence GPP and thereby NPP and is estimated as a function of leaf nitrogen 

per unit leaf area. LAI affects photosynthesis directly in the ecosystem carbon module, where it 

also affects GPP and to a lesser extent autotrophic respiration. Finally, the rooting depth (r) was 

varied. NPP is partially dependent on soil moisture since transpiration cannot occur in the 

absence of water. Varying r changes the amount of water available for transpiration and 

photosynthesis and therefore, GPP and NPP. Root depths are not well known and therefore r 

remains a parameter that is uncertain but important. 
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Kala et al. (2014) examined the influence of realistic interannual variations in LAI on the 

surface energy and carbon balance in CABLE. They generated a 15 member monthly LAI 

ensemble, based on the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product 

and gridded observations of temperature and precipitation. The maximum, mean and minimum 

LAI ensemble members from Kala et al. (2014) are used for these simulations to capture the 

variability of LAI. Upper and lower estimates of vcmax values are derived from Kattge et al. 

(2009). Since the values in Kattge et al. (2009) did not exactly match the default CABLE values 

for each plant functional type, CABLE values are varied by the ratio of standard deviation to 

mean values as shown in Table 3 of Kattge et al. (2009). Upper and lower estimates for r are 

derived by varying default values by the standard deviation of the default r values for all plant 

functional types (0.015). The key 1 = low, 2 = default (vcmax, r) or mean (LAI), 3 = high is used 

to describe these experiments. For example, L3V1R2 refers to the ensemble member with a 

high LAI parameter value, a low vcmax parameter value, and the default r value. 

 

2.6.5 Fuel load projections from an LSM – CABLE setup 

The CABLE simulations in Chapter 7 are part of a study of the impacts of climate change on 

fire weather and fuel load (Figure 2.2). The version used in this study is CABLE v2.0. A 

detailed description of CABLE is provided by Wang et al. (2011). CABLE is used within LIS-

6.1 (Kumar et al. 2006, 2008). A grid resolution of 0.25° is utilized, covering Australia. 12 

offline simulations are run, each forced with meteorological data from one of the 12 regional 

climate model ensemble members described above. The emissions scenarios used in WRF (i.e. 

present day and SRES A2) are also used with CABLE. LAI is prescribed using the mean of the 

15 member monthly LAI ensemble described above (Kala et al. 2014). The same LAI 

prescribed for present day simulations is also used for future projections. The use of prescribed 

LAI i.e. the inability of LAI to respond to variations in surface climate or atmospheric CO2, is a 

limitation of this study. It is likely to dampen variation in NPP due to changes in LAI but the 

overall effect is expected to be small. 

 

2.7 Analysis 

The FFDI analyses in Chapters 3, 4 and 5 include measures of mean and extreme FFDI. 

Chapters 3, 4 and 7 include measures of FFDI seasonality. Chapter 7 includes measures of mean 

FFDI and fuel load, as well as seasonality of both variables. Chapters 6 and 7 also introduce fire 
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rate of spread, as a simple way of incorporating the influence of both load and fire weather on a 

measure of bushfire risk. 

2.7.1 Analysis of trends in historical fire weather 

To analyse the long-term trends of fire weather in Australia, daily data are further summarized 

on both annual and seasonal time scales. Across much of Australia, the peak fire season occurs 

during the summer half of the year, roughly from September to March (Luke and McArthur 

1978; but see also second two parts of Figure 1.2). To accommodate this, a ‘fire year’ is chosen 

to run from 1 July to 30 June of the following year for the annual calculations. The variables 

chosen to summarize the fire weather climate are: 

1. Annual cumulative FFDI (ΣFFDI): This variable is calculated as the sum of all daily 

FFDI values over the entire fire year (Beer and Williams 1995). It provides a useful 

metric to compare relative levels of fire weather danger over long time periods and/or 

different spatial areas. Cumulative FFDI is computed from the 1973–1974 through the 

2009–2010 fire years, a total span of 37 years. 

2. Annual 90th percentile FFDI: The daily values during a fire year are sorted, and the 36th 

highest value is chosen. This variable is indicative of the extreme end of the fire 

weather spectrum, times when the largest, most intense wildfires are more likely to 

occur and be more active. This variable is computed over the same period as ΣFFDI. 

3. Seasonal median and 90th percentile FFDI: The median and 90th percentile FFDI over 

the standard southern hemisphere meteorological seasons are chosen (i.e. December–

January–February (DJF), March–April– May (MAM), etc.). Each season is 

approximately 90 days long. This variable provides information on any potential 

changes in the annual timing of the fire season. It is available from MAM 1973 through 

DJF 2011. 

 

The trends in Chapter 3 are estimated by using ordinary least squares linear regression with time 

taken as the independent variable. There is no physical reason why trends in fire weather should 

be strictly linear. Rather, this method is chosen as it is simple, widely used and easily 

understood. The possibility of more complex trend shapes cannot be excluded. The 95th 

percentile confidence interval for linear trends is also calculated for each time series. The F -

statistic (p < 0.05), a comparison of the variance explained by the linear fit and the total 

variance of the system, is examined as an indicator of the significance of the trend. 
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The calculation of climate trends is sensitive to the choice of start and end dates of the 

calculation. The robustness of trends calculated here is examined with some simple sensitivity 

tests. These are:  

1. changing the start and end dates by 1, 5 and 10 years and  

2. randomly removing increasing numbers of stations and in each case re-calculating 

trends. 

 

2.7.2 Analysis of fire weather projections from GCMs 

Bootstrapping is a statistical method to increase the sample size by randomly selecting data 

values from the original dataset to create a new set of observations of specified size, making it 

possible to put confidence bounds on sample parameters. Standard, with-replacement 

bootstrapping techniques are used to create 1000 bootstrap samples for each GCM, region and 

scenario. These are used to calculate the 95% confidence interval for mean monthly FFDI, 

defined as the average of daily values in each month. Thus, where models project changes that 

are large relative to the confidence bounds shown by the bootstrapping, these changes are likely 

to be significant. 

A two-sided Kolmogorov–Smirnov test (p < 0.05) is used to provide a statistical basis on which 

to judge the difference between the distributions of monthly FFDI, based on all daily values, in 

each scenario. The null hypothesis is that there is no difference between the FFDI in 2050 or 

2100 and the 20th century i.e. that the two FFDI samples are from the same population. Years 

are defined from July to June in order to encompass the spring–summer fire season. 

The probability of property destruction has been found to approach 1 when FFDI exceeds 40, 

given a fire is burning at the time (Bradstock and Gill 2001). A measure of days per month with 

FFDI above 40 is therefore empirically based and policy-relevant, while also permitting 

analysis of seasonal changes. Bradstock and Gill’s study is based on data from the Sydney 

region of NSW, but a value of 40 is used throughout all regions as no better estimate existed at 

the time of the analysis. However, Blanchi et al. (2010) report a value of 50 may be appropriate 

for forested areas – this value is used in Chapters 5 and 7. 

There are also several different measures of bushfire season length. State (regional) 

governments employ statutory definitions of fire season timing, e.g. for issuing fire permits, but 

State boundaries do not align well with these study areas (Figure 2.1). Lucas et al. (2007) 
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proposed a method of determining the start and end of the fire season by using a threshold of the 

average date of the first and last 3 days with FFDI over 25. This simple method yielded 

reasonable results for some cities but failed for others, and baseline differences between GCMs 

mean it is not universally applicable to these results. Therefore an internal measure of fire 

seasonality is used: the peak months of mean and extreme FFDI as calculated above. 

Calculating the percentage change in mean monthly FFDI allows an analysis of seasonal 

changes in fire weather independent of model baselines. 

 

2.7.3 Analysis of an RCM’s ability to simulate fire weather  

The variables chosen to summarise and evaluate the fire weather climate are: 

1. Annual cumulative FFDI (ΣFFDI) – see section 2.7.1 above. ΣFFDI is calculated as the 

average over the period 1985–2009.  

2. Days per year over 50 – this variable is indicative of extreme conditions. The largest, 

most intense wildfires are more likely to happen on these days and any fires that do 

occur are unlikely to be controllable. It has been found that 90% of property loss from 

major fires in Australia occurred during times when FFDI was above 50 (Blanchi et al. 

2010). Days per year over 50 is calculated over the same time period as ΣFFDI. 

Although there is great interest in FFDI categories above 50 (namely 75 and 100) the 

sample size at many stations is too small to draw robust conclusions. 

3. Skill score for FFDI and underlying variables – also known as the overlap statistic of 

the PDF (Perkins et al. 2007). It is calculated by taking the area under the curve defined 

by the minimum of the modelled and observed PDFs. Expressed in terms of the 

empirical bins used: 

Skill score = 

 

1

n

∑ min(Zm,Zo) (6) 

 

where n is the number of bins used to calculate the PDF, Zm is the relative frequency of values 

in a given bin from the model and Zo is the relative frequency of values in a given bin from the 

observations. Skill score ranges from zero to one, with zero indicating no overlap and one 

indicating identical PDFs. It is multiplied by 100 to simplify visual interpretation. This metric is 

useful as it is quite robust to sampling errors or random errors in the observations and it 

measures more than just the mean: simulation of an entire PDF demonstrates an ability to 
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simulate values at the tails of the distribution as well as at the centre. However, skill scores do 

not indicate the sign of bias and are increasingly insensitive to errors as values become rarer. 

Bias and root mean square error (RMSE) are calculated for annual cumulative FFDI and days 

per year with FFDI over 50 at each station. In order to investigate potential sources of WRF 

error, FFDI is also recalculated after replacing WRF values with observed values for the 

variables underlying FFDI. One limitation of this approach is that the variables are not 

independent, particularly in the case of relative humidity and temperature, so changing one 

without changing the other(s) may lead to physical inconsistencies. Proportional error is defined 

here as: the absolute value of (WRF − Observed) ÷ Observed. The effect of substituting 

observed data is labelled Improvement, defined as: 

(|WRF − Observed| − |WRFS − Observed|) ÷ |WRF − Observed| (7) 

 

where WRFS is WRF with one variable substituted with either observed drought factor (DF), 

maximum temperature (T), wind speed (W) or relative humidity (H). A negative value of 

Improvement implies that model accuracy has deteriorated with substitution relative to the 

original model value. Generally, Improvement behaves as follows: 

As |WRFS − Observed| → 0, Improvement → 1 

As |WRF − Observed| → 0, Improvement → -∞ 

As |WRFS − Observed| → |WRF − Observed|, Improvement → 0 

For |WRF − Observed| » |WRFS − Observed|, Improvement → 1 

 

2.7.4 Analysis of LSM simulations of historical fuel load 

Mean annual continental NPP is used to describe the overall effect of varying each of the 

vegetation parameters used in the sensitivity analysis. Fine litter in CABLE is derived for both 

individual grid cells as well as for each climate zone. Results are illustrated using either all 

ensemble members, or a sample of the lowest, highest and default ensemble members. Annual 

fine litter anomaly time series are calculated to examine the impact of parameter variation on 

the temporal evolution of fuel load. Additionally, to frame changes in fuel load linked with NPP 

with changes in meteorological forcing, the relative impact of load and weather in forested areas  
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is examined using rate of spread of fire (McArthur 1967). The rate of spread (R, in km h-1) is 

defined as 

R = 0.0012 × F × L (4) (8) 

 

where F is the McArthur Forest Fire Danger Index (FFDI) and L is load in t ha-1. 

This provides a simple way of comparing the impact of changes in load and fire weather 

conditions. Analysis is restricted to the temperate region, which contains the forest types in 

which this rate of spread function was calibrated. The rate of spread in grassland is calculated 

differently to forests, and commonly used models of rate of spread draw on fuel moisture and 

weather but not fuel amount (Cheney et al. 1998; Sharples and McRae 2013). Because fuel load 

is not a significant driver of the rate of spread of grass fires, compared to fuel moisture and 

weather, no comparison is made of the relative influence of load and weather on grassland fire 

rate of spread. 

 

2.7.1 Analysis of projections of fire weather and fuel load 

Mean annual continental values are used to describe the overall impact of climate change, as 

well as variation between ensemble members. Mean annual values are calculated for each 

climate zone to understand regional variation in these results. To explore changes in seasonality 

mean monthly values are calculated. As in Chapter 6, to frame changes in fuel load with 

changes in meteorological forcing the rate of spread of fire (McArthur 1967) in the temperate 

region is examined.  
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Chapter 3 Overview 

Analysis of historical trends in fire weather 

A natural reference point for any analysis or interpretation of projections of future fire weather 

is the existing or historical record of fire weather. Despite the widespread use of FFDI as a 

measure of fire weather in climate projections research, there have been no peer-reviewed 

studies of existing spatial patterns or trends in this index in Australia. 

Although trends have been recorded in some of the variables from which FFDI is constructed, 

none of these correspond to the precise formulation of each variable in the FFDI equation. The 

creation of the first high quality historical data-set of FFDI (Lucas, 2010b) was the catalyst for 

Chapter 3, an analysis of observations of FFDI. In particular, the question was posed, given the 

observed and regionally varied changes in the Australian climate, do we observe any significant 

trends in average and extreme fire weather and if so, what are their spatial patterns? Some 

trends from this data-set have previously been reported in the context of a study on climate 

change projections for southeastern Australia (Lucas et al., 2007). This earlier work was 

expanded upon by including more recent data, additional stations from the entire continent, and 

correcting for inhomogeneities in the wind record. 

The work reported here has been published in the peer reviewed literature and is reproduced 

exactly as published:  

Clarke H, Smith PL, Lucas C (2013) Changes in Australian fire weather between 1973 and 

2010. International Journal of Climatology, 33, 931-944. DOI 10.1002/joc.3480 
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Forest Fire Danger Index (FFDI). Annual cumulative FFDI, which integrates daily fire weather across the year, increased
significantly at 16 of 38 stations. Annual 90th percentile FFDI increased significantly at 24 stations over the same period.
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smallest occur near the coast. The largest increases in seasonal FFDI occurred during spring and autumn, although with
different spatial patterns, while summer recorded the fewest significant trends. These trends suggest increased fire weather
conditions at many locations across Australia, due to both increased magnitude of FFDI and a lengthened fire season.
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influence of climate change, if any, with that of natural variability. Copyright  2012 Royal Meteorological Society
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1. Introduction

The probability of wildland fire is driven by the amount
and dryness of fuel, ambient weather and ignitions
(Archibald et al., 2009). Fire regimes can be character-
ized in part by differences in these drivers – for instance
those ecosystems where wildland fire occurrence is lim-
ited by the amount of fuel and those where it is limited
by a combination of fuel availability and ambient weather
(Bradstock, 2010). Humans have a substantial and diverse
impact on fuel and ignitions across the globe, for instance
through land clearing, active fire suppression and burn-
ing off of agricultural debris. In contrast, there is no
clear human imprint on fire weather – yet. Each of the
drivers of wildland fire is highly sensitive to changes in
climatic conditions, but fire weather is one of the first
phenomena that could be expected to show a response
to existing trends in climate change. The effects of cli-
mate change on biomass growth and fuel availability are
complex and because of the nature of climate variability
and human influence it may take decades for this to be
clearly discernible.

Fire weather is typically expressed through some
combination of surface air temperature, precipitation,
relative humidity and wind speed. There are a number
of different indices that integrate these meteorological
variables into a single fire danger measure, for example
the McArthur Forest Fire Danger Index (FFDI; Luke

∗ Correspondence to: H. Clarke, Climate Change Science Section,
NSW Office of Environment and Heritage, PO Box 3720, Parramatta,
NSW 2124, Australia. E-mail: h.clarke@student.unsw.edu.au

and McArthur, 1978), the Canadian Forest Fire Weather
Index System (FWI; Van Wagner, 1987) and the United
States National Fire Danger Ratings System (NFDRS;
Deeming et al., 1978). Other metrics focus on the water
and energy balance above the surface. The Haines Index
(Haines, 1988) and a variant adapted to Australia (Mills
and McCaw, 2010) link vertical atmospheric stability
and humidity with erratic fire behaviour. The 850 hPa
temperature gradient has been linked to extreme fire
weather events over southeastern Australia (Mills, 2005).

Some trends have been observed in the variables
underlying fire weather indices. Since 1960, the mean
temperature in Australia has increased by about 0.7 °C.
The entire country has experienced warming, in some
areas by 1.5–2 °C (CSIRO and Bureau of Meteorology,
2010). Warming has occurred in all seasons; however, the
strongest warming has occurred in spring (about 0.9 °C)
and the weakest in summer (about 0.4 °C). There has
been an increase in the number of record hot days and a
decrease in the number of record cold days each decade
since 1960 (Alexander and Arblaster, 2009; CSIRO
and Bureau of Meteorology, 2010). The increase in
temperature has been formally attributed to anthropogenic
increases in greenhouse gases (Stott, 2003; Nicholls,
2006). Australian rainfall patterns are highly variable,
with no consistent sign of change across the country and
trends that depend more on start points. In southwestern
Australia, a significant decline in rainfall since the 1970s
has been attributed to a combination of natural variability
and anthropogenic greenhouse gases (Timbal et al., 2006;
Bates et al., 2008). Decreases in rainfall since 1960

Copyright  2012 Royal Meteorological Society
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have also occurred in southeast Australia, while there
was an increasing trend over northwestern Australia
over the same period. Between 1957 and 2003, dew
point temperature either remained the same or increased
over much of Australia, with a national averaged trend
of 0.1 °C per decade (Lucas, 2010a). These results are
broadly similar to those from a global humidity data
set with 5° resolution (Willett et al., 2007), although
its starting point (1973) coincides with an exceptionally
wet period over Australia, leading to more negative
trends. From 1975 to 2006, there has been a small
stilling trend in wind speed of −0.009 m s−1 year−1

across Australia (McVicar et al., 2008). This trend is
widespread, with almost 90% of the 0.1° resolution grid
cells showing a decline, and 58% of them a significant
decline. These trends have occurred in the presence of
considerable interannual fluctuations in the Australian
climate, due to the El Niño-Southern Oscillation (ENSO)
and other drivers of climate variability (Risbey et al.,
2009).

Furthermore, the meteorological variables described
above do not match exactly with those used in the
calculation of the FFDI, which is used operationally
by weather forecasters and fire agencies in Australia
to declare fire weather warnings and total fire bans
and to determine fire danger (the difficulty of putting
out fires which may occur). The Australian humidity
data set (Lucas, 2010a) is for dew point temperature,
has monthly resolution and has been homogenized for
measurements at 0900 local time (LT). FFDI uses relative
humidity typically calculated at 1500 LT, when relative
humidity is close to a minimum. The wind trends
reported by McVicar et al. (2008) are based on total
daily wind run, whereas FFDI uses wind speed at
1500 LT, averaged over the previous 10 min. Moreover,
in the calculation of FFDI each variable is weighted
differently (see Section 2), such that a one unit increase
in one variable does not equate to a one unit increase
in another, for example. Therefore, it is only in cases
where just a single variable has changed, or where the
direction of trend in all variables effectively coincides
(i.e. temperature and wind speed increasing, relative
humidity and precipitation decreasing) that we may state
with confidence that a change in fire weather is likely.
The impact of a given change in fire weather – for
example in extreme values of the FFDI at a certain time
of year – will be moderated by regional differences in
fire seasonality as well as the relative importance of
fire weather among fire limiting processes (Bradstock,
2010).

The creation of Australia’s first high-quality observa-
tional FFDI data set (Lucas, 2010b) presents an oppor-
tunity to pose the question: Given the observed and
regionally varied changes in the Australian climate, do
we observe any significant trends in average and extreme
fire weather and if so, what are their spatial patterns?
Some trends from this data set have previously been
reported in the context of a study on climate change pro-
jections for southeastern Australia (Lucas et al., 2007).

We expand upon this earlier work on by including more
recent data, additional stations from the entire continent
and correcting for inhomogeneities in the wind record
(see Section 2). Finally, an examination of historical
trends should add value to the interpretation of existing
and future projections of fire weather in Australia under
climate change.

2. Data and methods

2.1. Study area

Australian fire regimes are highly seasonal in nature.
In the forested southeast and southwest, summer and
spring are the dominant fire seasons, while in the savanna
landscapes of monsoonal northern Australia fire danger
peaks late in the winter dry season (Luke and McArthur,
1978). The roughly latitudinal gradient in continental
scale fire patterning is explained to a large extent by
rainfall seasonality (Russell-Smith et al., 2007).

2.2. Fire weather and climate variables

For this study, FFDI is chosen to quantify fire weather
conditions. This index was empirically derived in the
late 1960s to relate weather conditions to expected fire
behaviour and rate of spread. A series of threshold val-
ues are used to determine fire danger ratings: 0–11
(low/moderate), 12–24 (high), 25–49 (very high), 50–74
(severe), 75–99 (extreme) and 100+ (catastrophic). The
FFDI – or its similarly derived counterpart the Grassland
Fire Danger Index (GFDI) – is widely used across Aus-
tralia as the basis for fire weather warnings issued by fire
agencies. The methods of calculation used in this study
are described by Lucas (2010b).

FFDI utilizes standard weather observations of tem-
perature, relative humidity, 10 min averaged wind speed
and rainfall to estimate the fire weather conditions.
The basic equation for FFDI is given by Noble et al.
(1980):

FFDI = 2 × exp(0.987 × ln(DF) − 0.0345

× H + 0.0338 × T + 0.0234 × V − 0.45) (1)

where DF is the drought factor, T is the temperature ( °C),
V the wind speed (km h−1) and RH the relative humidity
(%). In the formulation used here, fully described in
Lucas (2010b), a fire weather data set with daily time
resolution is created using observations of maximum
temperature and V and RH as measured at 1500 LT. The
drought factor, an empirical estimate of the state of the
fuel, is calculated following the methodology described
in Griffiths (1999) and uses the Keetch–Byram Drought
Index (Keetch and Byram, 1968) as its input for soil
moisture deficit, based on rainfall measurements collected
at 0900 LT.

The methodology described in Lucas (2010b) provides
a consistently calculated fire weather data set. The
methodology ignores local variations in fuel amounts and
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types, as well as the slope of the terrain. These factors
have a significant impact on the fire behaviour. While
this presents problems for understanding the exact details
of fire behaviour, our goal is to understand the weather
and climate aspects of the issue. Uncertainties in the
amounts of historical grassland curing make the use of
GFDI problematic. In any case, future climate projections
show a great deal of overlap in the behaviour of the
GFDI and FFDI (Hennessy et al., 2005). Furthermore, a
comparison of FFDI with the widely used Canadian FWI
shows considerable similarities between the two (Dowdy
et al., 2010).

To analyse the long-term trends of fire weather in
Australia, these daily data are further summarized on
both annual and seasonal time scales. Across much of
Australia, the peak fire season occurs during the summer
half of the year, roughly from September to March (Luke
and McArthur, 1978). To accommodate this, a ‘fire year’
is chosen to run from 1 July to 30 June of the following
year for the annual calculations. The variables chosen to
summarize the fire weather climate are:

1. Annual cumulative FFDI (�FFDI): This variable is
calculated as the sum of all daily FFDI values over the
entire fire year (Beer and Williams, 1995). It provides
a useful metric to compare relative levels of fire
weather danger over long time periods and/or different
spatial areas. Cumulative FFDI is computed from the
1973–1974 through the 2009–2010 fire years, a total
span of 37 years.

2. Annual 90th percentile FFDI : The daily values during
a fire year are sorted, and the 36th highest value is
chosen. This variable is indicative of the extreme end
of the fire weather spectrum, times when the largest,
most intense wildfires are more likely to occur and be
more active. This variable is computed over the same
period as �FFDI.

3. Seasonal median and 90th percentile FFDI : The
median and 90th percentile FFDI over the stan-
dard southern hemisphere meteorological seasons
are chosen (i.e. December–January–February (DJF),
March–April–May (MAM), etc.). Each season is
approximately 90 d long. This variable provides infor-
mation on any potential changes in the annual timing
of the fire season. It is available from MAM 1973
through DJF 2011.

2.3. Data homogenization and station selection

When investigating the long-term behaviour of any cli-
mate variable, the homogeneity of the data set is impor-
tant. Homogeneous data are those which are free from
artificial trends or discontinuities, such as those caused
by station relocations, instrument changes and/or changes
in observational practices. Lucas (2010b) examined the
homogeneity of the FFDI data set and its components.
While all the individual data sets show some degree of
inhomogeneity, those in the wind speed data have the
largest impact on the FFDI. These inhomogeneities in the
wind speed arise from the changing local environment of

the wind measurement as well as the changing instrumen-
tation used to record wind speeds (see also Jakob, 2010),
particularly those associated with the modernization of
the observing network and the introduction of Automatic
Weather Stations (AWS). Further, before the introduction
of the AWS, wind reports at many of the rural stations
in the data set were made through visual estimates of
the effects of wind on vegetation. The quality of these
measurements is greatly dependent on the skill of the
observer, and they often show many inhomogeneities.
They are also often inconsistent with later records made
with the modern AWS instrumentation, with very differ-
ent means, variance and skewness characteristics. As a
general rule, the mean of past wind speed measurements
is lower than those measured with contemporary AWS
anemometers. However, there are exceptions.

Lucas (2010b) described a correction methodology for
the wind inhomogeneities, applicable to statistics of the
FFDI distribution rather than individual observations.
Breakpoints in the wind speed time series are identified
using two-phase regression similar to that described by
Easterling and Peterson (1995). The bulk change in FFDI
(�FFDI) at a given percentile level (e.g. median or 90th
percentile) for a given change in wind speed (�V) is
given by:

�FFDI = 0.0234 × FFDI × �V (2)

Past FFDI values are adjusted so that they are in
relative homogeneity with contemporary measurements.
The sensitivity of this homogenization methodology was
discussed in Lucas (2010b). It was found to adequately
account for changes in the FFDI distribution at most
percentile levels. However, this was not true at the
extreme upper ends of the FFDI distribution, where
the changes to the variance and the skewness of the
winds had a significant effect. This generally occurred
at percentile levels above 90%; the homogenization
correction at higher levels is subject to more uncertainty.

A scheme based on similar principles is determined
for �FFDI. For this variable, an amount of adjustment
is estimated by integrating Equation (2) multiplied by
the observed relative frequency of occurrence of each
value of FFDI over the observed FFDI distribution. This
is done individually for each station resulting in a unique
correction factor at each location.

The data set described in Lucas (2010b) was comprised
of 77 individual stations. However, many of these stations
were not suitable for use in this analysis. Two criteria are
used in this study:

1. Stations that contain wind speed measurements based
on visual estimates are excluded. In many cases, the
wind speed time series at these stations show frequent
changes in the mean and considerable differences
compared to later instrumental observations, suggest-
ing that they are unreliable. Furthermore, differences
in the statistical distributions make the homogeniza-
tion more subject to uncertainty.
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2. Stations with more than 1 year (365 d) of cumulative
missing observations between 1973 and 2010 are
excluded. This is equivalent to a record that is 98%
complete.

Applying these criteria results in 38 stations selected
for this analysis (Table I). There is considerable overlap
between the two sets of stations that fail to meet the
criteria. Stations with visually estimated winds are mostly
rural, where in general there are more missing data. The
stations chosen tend to be located in the more populated
areas, often at airports or meteorological offices. The
locations of the chosen stations are shown in Figure 1.
While the number of stations is approximately halved, the
national coverage of the complete data set is maintained,
albeit with some gaps in northern Queensland (QLD) and
in the desert regions along the eastern border of Western
Australia (WA).

Table I. List of stations used in this study.

Station (Abbreviation) State Latitude (°) Longitude (°)

Adelaide (AD) SA −34.92 138.62
Albany Airport (AL) WA −34.94 117.80
Alice Springs (AS) NT −23.80 133.89
Amberley (AM) QLD −27.63 152.71
Brisbane Airport (BA) QLD −27.39 153.13
Broome (BR) WA −17.95 122.23
Cairns (CA) QLD −16.87 145.75
Canberra (CB) ACT −35.30 149.20
Carnarvon (CN) WA −24.89 113.67
Ceduna (CE) SA −32.13 133.70
Charleville (CH) QLD −26.42 146.25
Cobar (CO) NSW −31.49 145.83
Coffs Harbour (CF) NSW −30.31 153.12
Darwin (DA) NT −12.42 130.89
Esperance (ES) WA −33.83 121.89
Geraldton (GE) WA −28.80 114.70
Hobart (HO) TAS −42.89 147.33
Kalgoorlie (KA) WA −30.78 121.45
Launceston Airport (LA) TAS −41.54 147.20
Laverton (LV) VIC −37.86 144.76
Mackay (MA) QLD −21.12 149.22
Meekatharra (MK) WA −26.61 118.54
Melbourne Airport (ME) VIC −37.68 144.84
Mildura (MI) VIC −34.23 142.08
Moree (MO) NSW −29.49 149.85
Mt Gambier (MG) SA −37.75 140.77
Mt Isa (MT) QLD −20.68 139.49
Nowra (NO) NSW −34.95 150.54
Perth Airport (PE) WA −31.93 115.98
Port Hedland (PO) WA −20.37 118.63
Rockhampton (RO) QLD −23.38 150.48
Sale (SA) VIC −38.12 147.13
Sydney Airport (SY) NSW −33.94 151.17
Tennant Creek (TE) NT −19.64 134.18
Townsville (TO) QLD −19.25 146.77
Wagga (WA) NSW −35.16 147.46
Williamtown (WI) NSW −32.79 151.84
Woomera (WO) SA −31.16 136.81

2.4. Trend analysis

The trends in this study are estimated by using ordinary
least squares linear regression with time taken as the
independent variable. There is no physical reason why
trends in fire weather should be strictly linear. Rather, this
method is chosen as it is simple, widely used and easily
understood. The possibility of more complex trend shapes
cannot be excluded. The 95th percentile confidence
interval for linear trends was also calculated for each
time series. The F -statistic (p < 0.05), a comparison of
the variance explained by the linear fit and the total
variance of the system, was examined as an indicator
of the significance of the trend.

The calculation of climate trends is sensitive to the
choice of start and end dates of the calculation. The
robustness of trends calculated here is examined with
some simple sensitivity tests. These are:

1. changing the start and end dates by 1, 5 and
10 years and

2. randomly removing increasing numbers of stations
and in each case re-calculating trends.

3. Results

3.1. Annual statistics

The time series of wind-corrected �FFDI anomaly for
each station in this study is shown in Figure 2. Although
there is considerable interannual variability throughout
the record, a clear upward trend is apparent at many
of the stations and in the nationally averaged anomaly.
Many of the lowest values at individual stations are
observed in the early 1970s. There is evidence of a
‘jump’ in �FFDI at many stations after 2000, as noted
in Lucas et al. (2007) for southeastern Australia. Some
degree of coherence is seen in the signal, with peaks
and troughs in the individual time series tending to occur
simultaneously. This coherent interannual variability is
broadly consistent with the known modulation of the fire-
weather climate by ENSO (Williams and Karoly, 1999).
El Niño years (e.g. 1982–1983, 1997–1998, 2002–2003,
2006–2007) are often higher than normal; La Niña
periods (e.g. 1973–1975, 1998–2000) show negative
anomalies.

Table II lists the trend values of �FFDI at individual
stations. Mean values for �FFDI and all other metrics
used here are shown in Table III to aid interpretation of
these trends. Sixteen of 38 stations show a significant
positive trend; none show a negative trend, significant
or otherwise. The multi-station mean shows that on
average across Australia, there has been an increase in
annual cumulative FFDI since 1973 of 212 points per
decade. This increase is not an artefact of the correction
procedure. At 36 of 38 stations, the trend in �FFDI is
reduced by the correction process, many times by over
50% of its original value. The two stations where the
correction procedure results in an increased trend occur
at Albany Airport and Mackay although the magnitude
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Figure 1. Map of station locations. See Table I for key. The marker for Laverton (LA) has been moved west to avoid overlap with Melbourne
Airport.
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Figure 2. Time series of annual cumulative FFDI anomaly at each station. The thick line indicates the multi-station mean. The thick dotted line
indicates the linear trend.

is small and the trend is near-zero before and after
correction. As previously noted (see Section 2), this is
consistent with the known historical shortcomings and
tendencies in the observed wind speed data.

The spatial pattern of the trends in �FFDI is shown
in Figure 3. An area of large, significant positive trend

is seen in the southeast of the country, extending from
Alice Springs southeastwards through South Australia
(SA), western New South Wales (NSW), Victoria (VIC)
and into northern Tasmania (TAS). With the excep-
tion of the Tasmanian station, trends in this region are
well above 100 points per decade and at their strongest
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Figure 3. Map of trend magnitude in annual cumulative FFDI. Marker size is proportional to the magnitude of trend. Reference sizes are shown
in the legend. Filled markers represent trends that are statistically significant. The marker for Laverton has been moved west to avoid overlap

with Melbourne Airport. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

exceed 600 points per decade. Furthermore, trends at
Mt Isa in western QLD and Moree in northern NSW
are significant if the 90% (p < 0.10) level is consid-
ered. Outside of this region, an area of significant trends
is noted in southeast QLD at Mackay, Rockhampton
and Amberley. However, the coastal Brisbane Airport
does not show a significant trend. Perth Airport in West-
ern Australia has a significant positive trend in �FFDI;
Kalgoorlie and Esperance have trends that are signifi-
cant at the 90% level. Across much of tropical north
Australia small and insignificant trends are observed.
Coastal regions of New South Wales, including Sydney,
Williamtown and Coffs Harbour also have small insignif-
icant trends.

Figure 4 shows the time series of the annual 90th
percentile FFDI anomaly at each station. The shape of
the time series shares many traits with the time series of
�FFDI shown in Figure 2. The interannual variability
shows the same pattern, with higher values generally
found during El Niño years and an overall upward
trend. Figure 5 shows the spatial pattern of the trends
and Table II shows the magnitude of the trend at each
station. The spatial pattern of the trends is very similar
to that of �FFDI, with strong upward trends identified
across the southeast portion of the continent. A few
stations that did not have significant trends in �FFDI
showed significant trends in annual 90th percentile FFDI,
especially along the New South Wales and Queensland
coasts. Five stations recorded an annual increase of 0.27
or greater, which equates to a rise since 1973 of at least
10 points in the value exceeded on the 36 highest fire
danger days of the year. No significant decreases were
observed. Trends in annual 95th percentile levels were

also computed (not shown). As a general rule, trends are
larger at the high percentile levels, which suggests that
the overall shape of the distribution is changing, rather
than merely shifting to the right due to a change in the
mean.

Trends in the multi-station mean �FFDI and 90th
percentile FFDI show similar sensitivity to the selection
of start and end points (Figure 6). The trend in both
measures remains positive when 1, 5 and 10 years are
removed from the start or end of the record. However,
the trend is no longer significant when the end point
occurs 10 years earlier. This gives an indication of the
magnitude of the apparent ‘jump’ in values in the post-
2000 years. In the case of �FFDI, delaying the start
date by 5 years results in a trend whose lower 95%
confidence bound is just below 0, which points to a
period of relatively low fire weather conditions during
the mid-1970s. Randomly removing individual stations
has no material effect on trends until well in excess of
50% are removed (data not shown). This fits in with the
suggestion of a spatial coherence in the signal between
individual station time series shown in Figures 2 and 4.

3.2. Seasonal statistics

The spatial distribution of trends in seasonal 90th per-
centile FFDI for each of the four meteorological seasons
is shown in Figure 7. Table III shows the values at indi-
vidual stations for both the median and 90th percentile
FFDI. The seasonal patterns show a wider variety of
changes compared to the annual values shown previ-
ously. During winter, trends in both median and 90th
percentile FFDI are almost uniformly positive, the excep-
tion being Brisbane Airport. For the 90th percentile FFDI
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Figure 4. Time series of annual 90th percentile FFDI anomaly at each station. The thick line indicates the multi-station mean. The thick dotted
line indicates the linear trend.

Figure 5. Map of trend in annual 90th percentile FFDI. Marker size is proportional to the magnitude of trend. Reference sizes are shown in the
legend. Filled markers represent trends that are statistically significant. The marker for Laverton has been moved west to avoid overlap with

Melbourne Airport. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

(median FFDI), 17 (15) stations recorded significantly
positive trends, and an additional 4 (6) at the p < 0.10
level. The stations with significant trends are spread out
across the country, although the largest trends are found
northwards of about 31 °S. Smaller trends, significant or
otherwise, are found in the southeast and in northern
coastal Queensland.

The largest trends overall are seen in spring, for
both median and 90th percentile FFDI. Most signifi-
cant changes in FFDI are found in the southern half
of mainland Australia, particularly in the southeast.
Tasmania is an exception here. Many non-significant,
but large-valued, trends are noted in the central latitudes
of the country. In several cases, these are significant
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Table II. Trends (points/decade) in annual cumulative and 90th percentile FFDI and seasonal median and 90th percentile FFDI.
Shading indicates trends are significant at the 95% level.

Station Annual Σ FFDI Annual 90% Seasonal 50% Seasonal 90%

JJA SON DJF MAM JJA SON DJF MAM

Adelaide 330 2.49 0.13 0.66 1.09 0.70 0.41 2.21 2.47 2.49
Albany Airport 30 0.00 0.09 0.15 − 0.30 0.06 0.23 0.32 − 0.43 0.33
Alice Springs 638 3.33 0.96 2.31 1.55 2.36 1.34 3.09 1.08 2.62
Amberley 317 2.08 0.98 0.61 0.49 1.28 2.23 1.63 0.66 1.6
Brisbane Airport 0 − 0.36 − 0.15 − 0.15 − 0.10 0.23 0.34 0.94 − 0.51 − 0.05
Broome 50 1.27 0.83 0.07 − 0.17 0.05 2.21 0.55 − 0.43 1.39
Cairns 49 0.77 0.22 0.21 − 0.34 0.36 0.56 0.51 − 0.36 1.2
Canberra 170 1.07 0.14 0.61 − 0.43 0.92 0.25 1.1 − 0.07 1.83
Carnarvon 60 0.37 0.44 0.23 − 0.25 0.25 1.64 0.43 − 0.65 0.94
Ceduna 282 2.64 0.36 0.84 0.55 0.85 1.42 3.78 1.74 3.31
Charleville 122 0.96 0.84 1.10 − 1.46 1.20 1.52 1.51 − 1.61 1.38
Cobar 564 3.11 0.57 2.08 1.30 1.05 1.65 3.43 1.74 1.13
Coffs Harbour 48 0.42 0.13 − 0.08 0.12 0.21 0.25 0.16 0.45 0.34
Darwin 59 0.42 0.64 0.40 − 0.07 0.04 0.46 0.21 − 0.12 0.23
Esperance 94 0.27 0.13 0.21 0.10 0.15 0.44 0.43 0.07 0.73
Geraldton 126 0.84 0.63 0.68 0.16 0.74 1.81 2.04 − 1.5 2.48
Hobart 48 0.41 0.19 0.25 0.11 0.27 0.24 0.38 0.49 0.42
Kalgoorlie 323 1.90 0.80 1.84 0.61 0.53 1.94 2.69 1.87 1.12
Launceston Airport 85 0.67 0.07 0.21 0.41 0.42 0.15 0.38 0.16 0.87
Laverton 183 0.91 0.29 0.69 0.09 0.17 0.3 2.1 0.77 0.26
Mackay 105 0.41 0.05 0.19 − 0.05 0.35 0.2 0.16 0.21 0.42
Meekatharra 346 1.41 1.20 2.27 0.40 0.73 1.63 1.86 1.05 − 0.01
Melbourne Airport 312 1.58 0.40 1.06 0.37 0.43 0.85 3.32 1.58 0.89
Mildura 645 3.72 0.57 1.99 1.67 1.20 0.95 4.17 2.77 2.62
Moree 231 1.63 0.91 0.98 0.05 1.21 2.16 2.3 0.62 1.24
Mt Gambier 70 0.52 0.01 0.18 − 0.06 0.14 0.11 1.07 0.34 0.91
Mt Isa 323 2.28 1.28 2.00 − 0.76 1.32 1.4 1.88 0.26 1.5
Nowra 153 1.16 0.51 0.62 0.16 0.69 0.71 1.83 − 0.07 1.28
Perth Airport 160 1.11 0.32 0.59 0.89 0.75 1.06 1.77 0.78 1.56
Port Hedland 82 0.92 0.95 0.04 0.13 0.67 1.53 1.05 − 0.24 1.32
Rockhampton 343 1.96 0.53 0.94 0.25 0.90 2.15 1.91 0.74 2.07
Sale 193 1.23 0.39 0.82 0.16 0.64 0.9 1.79 0.02 1.23
Sydney Airport 27 0.96 0.18 0.48 0.22 0.31 0.31 2.34 0.64 0.57
Tennant Creek 240 0.81 0.80 0.89 − 0.23 1.24 0.1 0.42 − 1.39 0.58
Townsville 1 0.40 0.05 0.07 − 0.18 0.71 0.38 0.06 − 0.17 1.01
Wagga 439 2.74 0.22 1.49 1.09 1.30 0.32 2.85 2.21 1.46
Williamtown 87 0.97 0.11 0.24 0.35 0.22 0.65 1.86 0.4 − 0.02
Woomera 689 3.56 0.92 2.67 2.33 1.38 2.31 4.58 3.08 2.58

at the p < 0.10 level. While median trends are smaller
than 90th percentile trends in almost all cases, southeast-
ern New South Wales shows a striking disparity in this
regard. In the tropical north, trends in both the median
and 90th percentile FFDI are small during this season.

The fewest significant trends are observed during DJF
(the summer), with only 3 (5) stations significant for the
seasonal 90th percentile FFDI (median FFDI). These are
found in southern portions of the country, at Adelaide,
Mildura and Woomera, with Ceduna and Perth included
for the median. Generally weak and insignificant negative
trends are seen during this season in the northern portions
of the country. Significant trends are more frequent
during MAM and are seen along eastern Australia from
coastal north QLD extending southwards into Tasmania.
A greater number of significant trends are seen in

the median than 90th percentile FFDI during autumn,
especially in southeastern NSW. Prominent trends in the
90% level are also noted in a region centred on South
Australia. Sites along the west coast also show significant
trends.

4. Discussion and conclusions

4.1. Trends in fire weather
Fire weather, as depicted by the FFDI, has increased
across much of Australia since 1973. Statistically sig-
nificant increases in annual cumulative FFDI, observed
at two fifths of the sites in the data set, are concen-
trated in the south and southeast of Australia. The largest
absolute changes occur in the hot, arid interior of the con-
tinent, although some of the largest proportional increases
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Figure 6. Sensitivity of multi-station mean trend values in (a) annual cumulative FFDI and (b) annual 90th percentile FFDI (points/decade) to
variation in the start and end points of the time series. Whiskers indicate 95% confidence intervals for trend values.

occurred in coastal areas, where average annual cumula-
tive FFDI is relatively low – Melbourne and Adelaide
recorded increases of 49% or more over the duration of
the record. Although no significant decreases in annual
cumulative FFDI were observed, large areas did not
record a significant increase: much of the north and west
of the country, as well as most of the eastern seaboard.

While annual cumulative FFDI provides a good stand-
alone estimate of changes to fire weather, it masks their
distribution and timing. The upper tails are changing
more quickly than the centre, such that changes to the
annual 90th percentile FFDI account for 20–30% of the
total change on average. It is at these upper tails of
the FFDI distribution that fire weather conditions are
greatest. There are also distinct seasonal changes and
associated spatial patterns, even in regions which do not
show a significant increase in the annual figures. The
largest changes by magnitude have occurred in the spring,
with large changes on southern parts of the mainland,

particularly Victoria, South Australia and New South
Wales. An increase in the upper tails of the distribution
is particularly dominant here. There are similarities here
with temperature trends in Australia since 1960, which
have increased the most in spring and the least in summer
(CSIRO and Bureau of Meteorology, 2010). Based on the
weather station data used in this study, relative humidity
shows a similar pattern of larger increases in spring. The
bias towards larger increases in spring compared to other
seasons is slightly more pronounced for temperature than
for relative humidity and FFDI.

The fewest significant trends are observed in summer.
Trends in the 90th percentile summer FFDI are large
across the south, but often not significant because of the
large interannual variability. In the tropical north, weak
negative trends occur during summer, which is not part
of the fire season. Widespread changes occur in both
autumn and spring, but are of larger magnitude during
spring. Changes in the winter are comparatively small
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(a) (b)

(c) (b)

Figure 7. Map of trend in seasonal median FFDI. Marker size is proportional to the magnitude of trend. Reference sizes are shown in the legend.
Filled markers represent trends that are statistically significant. The marker for Laverton has been moved west to avoid overlap with Melbourne

Airport. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

but widespread, and occur at lower latitudes than the
bulk of spring and autumn increases. The general spatial
coherence of these changes suggests that these are not
effects of ‘spurious significance’ but real phenomena.
At most locales, the largest trends are observed in the
season before the peak of the fire season, which indicates
a lengthening fire season across southern Australia. An
increase in fire season length has also been found in
Ontario, Canada, due in contrast to a delayed end to the
fire season (Woolford et al., 2010). It should be noted that
FFDI values are a nonlinear indication of fire weather
conditions; the magnitude of change must be interpreted
with respect to local baseline values and fire danger rating
thresholds.

There are a number of difficulties in separating the
contribution from each of the variables constituting FFDI
towards the observed trends. One method, adapted from
Lucas (2010b; see also Dowdy et al., 2010), is to take
the partial derivative of the FFDI equation with respect
to each variable (they are differently weighted) and
substitute the change in each variable, as derived from
ordinary least squares regression. This approach suggests
that decreases in relative humidity have played the largest
role in the average changes observed here and that
the direct effect of temperature has played a relatively
small role (data not shown). In southeastern Australia,
drought factor – an estimate of fuel dryness – appears
to be a significant factor in the observed trends. This
observation is particularly noteworthy in Victoria (e.g.
Laverton, Melbourne and Mildura), where severe drought

conditions have prevailed between 1996 and late-2010
(Murphy and Timbal 2008; Timbal 2009). However,
this method is based on average changes and does not
capture influences across the distribution, particularly at
the important upper end. It must also rule out wind speed,
as the methodology used here to correct inhomogeneities
in the wind record has the effect of removing any trends.
Moreover, the decreasing trend in relative humidity is
influenced by the data set commencing during a relatively
wet period. Ultimately, any attempt at attributing changes
in FFDI to individual variables must recognize that
the variables are not independent. Relative humidity
and temperature are strongly linked and it is possible
that changes in relative humidity are more attributable
to temperature than actual water vapour amounts. In
addition, while the drought factor is based largely on
recent rainfall, temperature is also a contributing factor
in its calculation.

These increases in FFDI do not necessarily equate to
an increased chance of wildland fire occurrence. The
changes will have manifested differently depending on
local fire dynamics. In the north and widespread arid
regions, wildland fire is limited more by fuel availability
than the immediate weather (Bradstock, 2010). Rainy
years – such as the strong La Niña event of 2010 – can
bring enhanced fire danger in the following year(s).
This can lead to a situation where 1 or 2 years of
very low cumulative FFDI are followed by a period of
increased fire weather conditions, such as the central
Australian fires in the 1970s and early 2000s (Griffin
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Table III. 1973–2010 mean values (in points FFDI) for �FFDI, annual 90th percentile FFDI and seasonal median and 90th
percentile FFDI.

Station Annual
∑

FFDI Annual 90% Seasonal 50% Seasonal 90%

JJA SON DJF MAM JJA SON DJF MAM

Adelaide 2875 18.6 1.9 4.3 10.3 5.7 5.7 15.7 28.2 17.5
Albany Airport 1414 8.6 1.0 1.9 6.1 3.9 3.3 5.0 11.9 10.8
Alice Springs 9329 45.8 12.1 26.6 29.6 17.7 25.5 48.1 51.4 36.9
Amberley 3378 17.9 7.1 8.6 4.7 5.7 17.6 21.8 14.1 14.0
Brisbane Airport 2068 10.6 5.1 5.5 3.4 3.9 13.0 12.3 8.5 8.8
Broome 4496 27.1 17.0 8.2 4.2 8.3 29.9 30.7 9.3 24.8
Cairns 1919 10.8 5.9 5.9 1.1 1.6 11.1 12.3 7.4 7.5
Canberra 2693 17.3 2.4 4.1 8.5 4.8 5.7 14.7 27.1 13.7
Carnarvon 3658 18.1 6.1 8.6 8.9 8.1 16.6 18.3 18.7 18.2
Ceduna 4984 30.9 4.9 8.3 10.2 7.9 17.0 35.4 39.5 26.9
Charleville 6582 34.5 9.8 20.1 18.8 13.9 19.3 38.6 40.3 28.5
Cobar 5191 29.5 4.9 12.7 20.2 10.5 11.8 30.7 39.8 22.5
Coffs Harbour 1397 7.8 3.4 3.4 2.0 1.5 8.5 9.0 6.6 5.4
Darwin 3510 22.1 14.9 8.3 0.6 5.1 27.1 17.6 5.3 17.9
Esperance 1905 10.2 1.9 3.3 6.3 4.7 6.9 9.0 12.8 13.1
Geraldton 4412 27.5 2.7 6.5 13.1 10.4 10.1 18.8 42.6 31.4
Hobart 1458 7.9 1.6 2.6 4.2 2.9 4.1 7.0 10.7 7.6
Kalgoorlie 6059 34.1 6.7 16.7 22.3 11.2 17.0 37.2 44.9 27.6
Launceston Airport 1396 9.0 1.0 2.3 6.2 3.0 2.3 5.9 13.3 8.8
Laverton 2185 12.7 2.3 3.2 5.6 3.9 6.0 11.8 21.1 12.3
Mackay 1110 6.5 3.0 5.1 1.8 1.7 6.6 8.4 7.0 5.1
Meekatharra 8467 44.9 10.0 26.6 35.0 17.9 22.7 47.1 56.5 36.8
Melbourne Airport 2591 15.1 2.4 3.5 6.8 4.5 5.9 13.2 25.0 14.3
Mildura 5121 29.4 4.8 12.2 20.2 10.1 12.1 31.6 40.1 24.1
Moree 4696 24.5 5.9 10.8 11.9 10.2 12.9 28.6 27.6 20.7
Mt Gambier 2097 12.7 0.9 2.2 7.7 3.7 2.6 7.6 22.5 13.6
Mt Isa 8447 41.0 18.0 29.4 14.2 17.1 28.7 47.6 40.4 30.8
Nowra 2022 11.2 3.2 3.5 3.4 2.9 9.1 15.0 11.7 8.6
Perth Airport 3805 24.8 1.3 4.8 16.2 9.0 5.8 14.4 35.1 24.2
Port Hedland 7722 38.5 17.2 22.3 11.3 15.2 32.1 46.0 30.5 32.0
Rockhampton 3329 16.9 8.1 9.7 6.0 7.3 17.3 21.1 14.2 14.5
Sale 2010 10.9 2.1 3.0 5.3 3.5 5.9 10.0 15.8 10.2
Sydney Airport 2370 12.7 3.0 4.3 4.2 2.9 10.3 15.2 12.9 9.0
Tennant Creek 8710 41.6 20.3 31.5 18.3 19.8 31.2 47.8 45.4 36.6
Townsville 2883 13.7 7.6 8.2 2.9 5.6 16.1 13.8 10.0 11.6
Wagga 3639 23.8 1.8 4.1 15.8 7.0 5.0 18.5 36.8 18.8
Williamtown 2100 12.8 2.6 4.2 4.4 2.4 9.8 16.7 15.8 8.9
Woomera 7615 40.9 8.1 19.6 27.9 14.9 20.1 46.8 50.8 31.4

et al., 1983; Edwards et al., 2008). Conversely, the Black
Saturday forest fires of February 2009 in Victoria, in the
country’s temperate southeast, were driven by some of
the highest FFDI values on record, against a background
of severe drought conditions in the preceding months
and years (McCaw et al., 2009; National Climate Centre,
2009). Regional differences in fire frequency will also
lead to different sample sizes from which to detect
potential impacts of changes in fire weather. In the
north, some parts of the tropical savanna woodlands
and grasslands burn on an annual basis, while fires in
temperate heathlands and dry sclerophyll forests have
inter-fire intervals of 7 to 30 years (Beeton et al., 2006).
Fires in wet sclerophyll forests are less frequent but
often of extremely high intensity when they do occur,
especially in the southern temperate areas.

4.2. Natural variability and climate change

The observed trends in fire weather occurred against a
backdrop of considerable interannual variability. A pri-
mary mechanism driving this variability across Australia
is ENSO. There is a strong positive relationship between
El Niño events and fire weather conditions in southeast
and central Australia (Williams and Karoly, 1999; Verdon
et al., 2004; Lucas, 2005). Despite the strong relation-
ships, ENSO only explains 15–35% of the year to year
variance in FFDI (Lucas et al., 2007). A link has recently
been found between positive Indian Ocean Dipole (pIOD)
events, which have trended upwards since 1950, and sig-
nificant fire seasons in the country’s southeast (Cai et al.,
2009). Another possible driver of variability is the South-
ern Hemisphere Annular Mode (SAM). The effect of
SAM on Australia varies with the season; the positive
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phase of SAM corresponds with generally higher sum-
mer rainfall in north-central and south-east Australia and
lower winter rainfall in south-east and south-west Aus-
tralia (Hendon et al., 2007).

Sources of interannual variability are in turn subject
to longer term interdecadal circulation variations such as
the Interdecadal Pacific Oscillation (IPO; Folland et al.,
1999; Power et al., 1999). Long-term fluctuations with a
period of around 20 years are apparent at a few stations
in southeast Australia with data extending back to the
1940s (Lucas et al., 2007). These longer time series also
highlight the importance of start date selection in a highly
variable climate. The 1940s were a period of relatively
high fire danger and the observed trends since then are
much lower. Although we find the choice of start and end
dates has a relatively small effect on the positive trends in
fire danger, the fact remains that the period 1973–1975
was one of the wettest across Australia.

Is climate change a plausible contributor to the trends
observed here? Studies of the impacts of elevated atmo-
spheric carbon dioxide on future fire weather show con-
siderable global variation, including decreases in some
areas, but the potential for large increases in many areas
(e.g. increases of up to 95% in a daily fire severity rating
by 2070 in western Canada during summer; Nitschke and
Innes, 2008; see Flannigan et al., 2009 for other exam-
ples). A number of early Australian studies on the effects
of climate change using global climate model (GCM)
simulations found widespread increases in fire weather
under increased atmospheric carbon dioxide (Beer and
Williams, 1995; Cary and Banks, 1999; Williams et al.,
2001; Cary, 2002). Building on the work of Hennessy
et al. (2005), Lucas et al. (2007) projected increases in
annual FFDI of up to 30% by 2050 over historical levels
in southeast Australia, and up to a trebling in the num-
ber of days per year where the uppermost values of the
index are exceeded. The largest changes occurred in the
arid and semi-arid interior of NSW and northern Victoria,
with the smallest changes in coastal areas and Tasmania.
They also found that in many cases, fire weather con-
ditions during the 2000s far exceeded the projections
for 2050. The southeast of Australia is a hotspot for
future increases in fire weather conditions according to
other studies, in terms of both FFDI (Clarke et al., 2011)
and a synoptic marker of extreme fire events (Hasson
et al., 2009). Observed increases in FFDI over southeast
Australia match these projections well. Another area of
agreement is Tasmania, which has recorded little to no
increases in FFDI and was projected to continue to do
so by Lucas et al. (2007). There is less consistency in
projections for other areas: in tropical northeast Australia,
some studies have projected no change or decreases in
mean and extreme FFDI (Clarke et al., 2011) while others
located the largest increases in this region (Pitman et al.,
2007). Observations for tropical north Australia corre-
spond more closely to the former, with smaller increases
or no significant trends in much of tropical northern Aus-
tralia. Detailed spatial projections are lacking for much
of central and Western Australia.

These projections should be interpreted in light of
known flaws in climate models’ ability to simulate
important modes of variability (Guilyardi et al., 2009)
and their interaction (Cai et al., 2011). There is further
uncertainty about the potential effect climate change
will have on these modes and thus indirectly on future
fire weather conditions. For instance, it is believed that
climate change will impact the physical processes that
underpin ENSO, but it is not known whether this will
lead to more or less events or a change in their intensity
(Collins et al., 2010). An additional source of doubt
in future projections of the probability of wildland fire
occurrence is the response of fuel load to climate change,
with potentially competing effects of increased carbon
dioxide fertilization and changes in both magnitude and
variability of temperature and precipitation (Medvigy
et al., 2010; Zhang et al., 2010; Matthews et al. 2011).
As discussed above, the relative importance of fire
weather with respect to other limiting factors (such as
fuel load) in determining overall chance of wildland fire
occurrence depends on prevailing fire regimes.

The total change predicted by the trends is typically
smaller than the range of interannual variability, which
can be quite large depending on the location and sea-
son. Despite this, there is a consistency between the
increases in FFDI observed since 1973 and projections of
increased fire weather conditions due to climate change.
One hypothesis, after Lucas et al. (2007) is that we are
currently experiencing an upswing in fire weather con-
ditions due to some natural forcing with an interdecadal
time scale, and that this is being exacerbated by the sub-
tle, ongoing effects of climate change. In this respect, it is
noteworthy that the 2010/2011 fire season has seen some
of the lowest measures of FFDI on record in some areas.
Additional data in the coming years will reveal whether
this is a natural fluctuation in the face of a steadily
increasing trend, or part of a longer lasting decline in
FFDI values.
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Chapter 3 Summary 

Analysis of historical trends in fire weather 

The observational record of FFDI in Australia is marked by clear interannual variability. There 

is a spatial coherence to this variability, suggesting common drivers in its evolution amongst the 

38 stations that comprise the high quality FFDI dataset. Against this backdrop of variability, 16 

of 38 stations recorded a significant increase in average fire weather conditions between 1973 

and 2010. No decreases were recorded at any station. Over the same period, 24 of 38 stations 

recorded a significant increase in high fire danger conditions. Again, no decreases were 

recorded. These trends are largely robust to variation of the starting and ending points from 

which they are calculated.  

The period of these observations coincides with an era of unprecedented rates of global 

warming, including increases in temperature across Australia. Although no formal attribution of 

FFDI was conducted, observations of either increased or unchanged levels of fire danger are 

consistent with early studies of the influence of climate change over fire weather in Australia. 

The next chapter aims to build on these earlier studies to further investigate the changes in FFDI 

projected by global climate models over Australia.  
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Chapter 4 Overview  

Projections of fire weather from global climate models 

Global climate models (GCMs) are the major tools for understanding the potential evolution of 

the earth’s climate system under different scenarios over the coming decades and centuries. 

They have evolved significantly since their inception, incorporating additional physical 

processes, uniting atmospheric, ocean and land systems and improving in skill. They also 

provide outputs from which FFDI can be calculated.  

Several previous studies have investigated the broad impacts of climate change on FFDI in 

Australia. The work in Chapter 4 describes these studies and then build on them in a number of 

novel ways: 

- It uses GCMs selected for their skill in representing the Australian climate, increasing 

confidence in model projections, 

- It takes daily model output to create a daily FFDI time series, avoiding bias from 

analyses based on averages and increasing the amount of data available, and 

- It examines regional variation in fire weather changes using rainfall seasonality zones, 

which are simple and climatically relevant.  

The work reported here has been published in the peer reviewed literature and is reproduced 

exactly as published:  

Clarke H, Smith P, Pitman AJ (2011) Regional signatures of future fire weather over eastern 

Australia from global climate models. International Journal of Wildland Fire, 20, 550-562. 

DOI: 10.1071/WF10070 
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Regional signatures of future fire weather over eastern
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Abstract. Skill-selected global climate models were used to explore the effect of future climate change on regional
bushfire weather in eastern Australia. Daily Forest Fire Danger Index (FFDI) was calculated in four regions of differing
rainfall seasonality for the 20th century, 2050 and 2100 using the A2 scenario from the Special Report on Emissions
Scenarios. Projected changes in FFDI vary along a latitudinal gradient. In summer rainfall-dominated tropical north-east
Australia, mean and extreme FFDI are projected to decrease or remain close to 20th century levels. In the uniform and
winter rainfall regions, which occupy south-east continental Australia, FFDI is projected to increase strongly by 2100.
Projections fall between these two extremes for the summer rainfall region, which lies between the uniform and summer
tropical rainfall zones. Based on these changes in fire weather, the fire season is projected to start earlier in the uniform and
winter rainfall regions, potentially leading to a longer overall fire season.

Additional keywords: climate projections, fire seasonality, Forest Fire Danger Index.

Introduction

Regional variation in the drivers of bushfire risk – biomass
growth, the fuel’s availability for burning, ambient weather and
ignitions – has led to a distinct pattern of fire regimes across
Australia (Bradstock 2010). In the south-east and south-west,
summer and spring are the dominant fire seasons, whereas in
northern Australia, fire danger peaks late in the winter dry
season (Fig. 1a; Luke and McArthur 1978). In the north, some
parts of the tropical savanna woodlands and grasslands burn on
an annual basis, whereas fires in temperate heathlands and dry
sclerophyll forests have interfire intervals of 7 to 30 years. Fires
inwet sclerophyll forests are less frequent but often of extremely
high intensity when they do occur, especially in the southern
temperate areas. Fires are absent or very rare in rainforest for
both temperate and tropical regions and of low intensity in the
absence of disturbances such as cyclones or logging (Beeton
et al. 2006).

Climate change adds a layer of complexity to this existing
pattern of fire regimes, and to the challenge of bushfire predic-
tion. There has been a growing effort to characterise potential
responses of bushfire regimes across the globe to climate change
(see Flannigan et al. 2009 for a review). Although dominated by
North American studies, the current consensus is that climate
change will lead to an increase in fire risk globally, partially
offset by decreased risks in some areas. Several different aspects
of bushfire have been explored, including fire weather, area
burned, fire occurrence, fire season and fire intensity.

Within Australia, the focus of most climate change studies
has been fire weather, frequently depicted by the McArthur

Forest Fire Danger Index (FFDI; Luke andMcArthur 1978). The
FFDI is an exponential function of dryness, temperature, wind
speed and humidity. Several early Australian studies on the
effects of climate change using global climate model (GCM)
simulations found an increase in bushfire weather under
increased atmospheric carbon dioxide (CO2) (Beer andWilliams
1995; Cary and Banks 1999; Williams et al. 2001; Cary 2002).

Lucas et al. (2007) used a ‘change factor’ approach to
convert observed daily weather time series in south-east
Australia into new series centred on 2020 and 2050, using an
atmosphere-only regional climate model (CCAM), driven at the
boundaries by two versions of the CSIRO GCM. They calcula-
ted monthly decile changes per degree of global warming for
each weather variable, based on the upper and lower projection
bounds from the Intergovernmental Panel on Climate Change’s
(IPCC’s) Fourth Assessment Report (AR4, IPCC 2007). By
2050, annual FFDI was projected to increase by up to 30%,
whereas the uppermost values of the index were projected to
increase by up to 300%. The largest changes occurred in the arid
and semiarid interior of NSW and northern Victoria, where fire
danger from forest or grassland fire is usually low owing to
negligible fuels in most years. Alternatively, along the near-
coastal regions where most forests are distributed, little or no
change in fire weather was simulated. These findings, along
with a modified FFDI split into ambient and drought compo-
nents, were used by Bradstock et al. (2009) to predict a 20–84%
increase in potential large ($1000 ha) fire ignition days in the
Blue Mountains and Central Coast regions, both located near
Sydney in NSW, by 2050.
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In contrast, Pitman et al. (2007) directly used output from a
regional climatemodel (RAMS, Pielke et al. 1992), driven at the
boundaries by the CSIROGCM, to calculate the change in FFDI
and grassland fire danger index in January throughout Australia
in 2050 and 2100. FFDI increased under both low–moderate
(B2) and relatively high (A2) emissions scenarios from the
Special Report on Emissions Scenarios (SRES, Nakicenovic
et al. 2000). To move away from considering averages, Pitman
et al. (2007) also calculated the FFDI probability density
function (PDF), which describes the relative likelihood of a
variable taking any given valuewithin its distribution, at a single
point in NSW. For example, on the western slopes of the Great
Dividing Range, 29.8858S, 149.1048E, they found a 25%
increase in 2050, a further 20% increase in 2100 under the
B2 scenario and a dramatically higher risk again under the A2
scenario compared with the present day. These values represent

maxima, as the drought factor was fixed at its uppermost value
of 10 for the study.

Hasson et al. (2009) also investigated the effect of climate
change on fire weather. However, rather than using FFDI, they
examined a synoptic feature characteristic of some of the
most extreme fire events in south-east Australia over the last
50 years: strong cold fronts over the Southern Ocean moving
towards the area. Intensification of these fronts generates ideal
bushfire conditions, because of a northerly prefrontal jet that
advects hot, dry gusty winds southwards. Using an 850-hPa
temperature gradient as a proxy, they calibrated output from
10 AR4 GCMs against reanalysis datasets to predict changes in
the frequency of extreme cold fronts in 2050 and 2100 under the
A2 and B1 SRES scenarios. Overall, the results suggested a
doubling in the number of extreme cold fronts – and hence
extreme fire weather – by 2050, from approximately one every

Winter and spring Arid – low rainfall

Winter (WI)

Melbourne

Canberra

Sydney

Brisbane

Cairns

(a) (b)

Uniform (UN)

Summer (SU)

Summer tropical (ST)
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Summer tropical – marked wet summer and dry winter

Summer subtropical – wet summer and low winter rainfall
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Fig. 1. (a) Bushfire seasonality in eastern Australia (from Luke and McArthur 1978). (b) Rainfall seasonality regions (shaded; from Australian Bureau of

Meteorology 2005b) and study area (boxed).
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2 years to one per year. By 2100, this increases to between one
and two events per year.

The ability of climate models to simulate observed climate
must be consideredwhen evaluating projections against amodel
baseline. Perkins et al. (2007) reasoned that the better a model
can simulate the entire PDF of a variable – i.e. not just the
average but the range and relative probability of all values – the
more confidence there is in the model’s projections under future
climate change. This is because even at 2!CO2 in 2100, the
future PDF still substantially overlaps a current PDF. Perkins
et al. (2007) partitioned Australia into 12 regions and evaluated
the capacity of 16 AR4 models to simulate observed PDFs for
minimum temperature, maximum temperature and precipitation
for each region. Many of the models show considerable skill
in representing observed PDFs over Australia, more so for
temperature than precipitation. Similar results have been found
with indices of climate extremes (Alexander and Arblaster
2009). There is less knowledge about GCM skill over Australia
in simulating the other two variables from which FFDI is
calculated: wind speed and humidity. On a global scale, models
show significant and increasing skill in representing large-scale
distributions of both variables (Randall et al. 2007) but no
detailed evaluation exists for Australia owing to limited obser-
vational data.

The aim of this paper is to explore the effect of climate
change on one of the key drivers of fire regimes over eastern
Australia – fire weather. Rather than using an adjusted historical
time series, we useGCMs to directly calculate FFDI, which does
not assume a linear relationship between annual mean global
warming and regional climate (i.e. temperature, precipitation,
humidity and wind speed). We use rainfall seasonality zones
as the basis for exploring regional variation in fire weather.
Rainfall seasonality is a major driver of existing fire regimes
(see e.g. Bradstock 2010) and there are four major rainfall zones
along the eastern third of Australia, which matches the resolu-
tion of GCMs well.

Our approach differs from existing studies in that it:

" uses GCMs selected for their skill in representing the Austra-
lian climate, increasing confidence in model projections,

" takes daily model output to create a daily FFDI time series,
avoiding bias from analyses based on averages and increasing
the amount of data available, and

" examines regional variation in fire weather changes using
rainfall seasonality zones, which are simple and climatically
relevant.

Methods

Climate model data

Daily climate model data over eastern Australia for maximum
temperature, mean wind speed, average specific humidity and
total precipitation were taken from theWorld Climate Research
Program’s (WCRP) Coupled Model Intercomparison Project
phase 3 (CMIP3) multimodel dataset. The CMIP3 archive
includes simulations of past, present and future climate. Data
from 1961 to 2000 were used to calculate present fire weather
(i.e. 20th century for the purposes of the present study). Data
from 2046 to 2065 and 2081 to 2100were used to project climate
for 2050 and 2100 respectively. The use of daily data avoids

biases that may accompany analyses based only on averages or
other summary statistics. Only the A2 SRES emission scenario
was used because it is the scenario closest to – although pres-
ently tracking below – global emissions trends and for which
daily data frommultiple GCM simulations exist (Le Quéré et al.
2009).

The four models selected were CSIRO, ECHO-G, IPSL and
MRI. These were the models with the highest skill score over
Australia, defined by Perkins et al. (2007) as the amount of
overlap between observed and simulated PDFs. MRI ranked
fifth but was included because daily data for all variables were
not available for MIROC-m, which would otherwise have been
used. One simulation was used for each model. Details of each
climate model are available in Randall et al. (2007) and Perkins
et al. (2007).

Study area

The study regions are adapted from the four major seasonal
rainfall zones in eastern Australia: summer tropical (ST),
summer (SU), uniform (UN) and winter (WI) (Fig. 1b). These
regions are based on differences between summer and winter
rainfall (Australian Bureau of Meteorology 2005b). In the
summer tropical (or ‘summer dominant’) zone, which occupies
the upper half of the north-eastern state of Queensland (QLD),
50–70% of rainfall occurs in summer and winters are typically
dry. South-east QLD and north-east New South Wales (NSW)
constitute the summer rainfall zone, receiving 30–40% of
rainfall in summer and low rainfall in winter. The summer zone
extends along or near the coast as far south as Sydney, NSW,
with isolated patches in the south-east corner of NSW. To the
south and west of the summer zone, precipitation occurs uni-
formly throughout the seasons. A patch of this uniform rainfall
zone also occurs within the summer zone (Fig. 1b). The south-
west of NSW and the majority of the southernmost continental
state of Victoria fall within the winter rainfall zone, with a wet
winter and low summer rainfall. Considerable areas of forest
occur in all four zones.

GCM grid cells differ in size with CSIRO having the highest
resolution (,1.98! 1.98) andECHO-G the lowest (,3.98! 3.98).
Models also differ in the location of their boundaries. To
minimise overlap andmaximise grid cell representation, a region
size of 78 (,600 000 km2) was used. This necessarily meant the
exclusion of Tasmania and the inclusion of landscapes less prone
to fire and a degree of overlap between rainfall zones, particu-
larly in the south where rainfall zones are smaller. No ECHO-G
grid cells fitted in the uniform region and two CSIRO cells were
counted towards separate regions (out of nine total grid cells in
each). GCM grid-cell representation and other major features of
the study areas are summarised in Table 1.

Forest fire danger index (FFDI)

Daily FFDI values were calculated as:

FFDI ¼ 2! expð0:987! ln DFð Þ & 0:0345! H þ 0:0338

! T þ 0:0234! V & 0:45Þ ð1Þ

where DF is a drought factor, H is relative humidity (%), T is
maximum temperature (8C), and V is wind speed in the open
at a height of 10m (kmh&1) (Noble et al. 1980). Continuously
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recording weather stations make it possible to calculate FFDI at
any time of day and to establish the daily maximum value. This
is not possible with GCM data as wind speed and humidity are
provided as daily averages. The drought factor is dimensionless,
ranging between 0 and 10 and was calculated using the Keetch–
Byram Drought Index (KBDI; Keetch and Byram 1968), fol-
lowing Griffiths (1999), as:

DF ¼ 10:5! ð1& expð&ðKBDI=30Þ=40ÞÞ
! ð41X 2 þ X Þ=ð40X 2 þ X þ 1Þ ð2Þ

where X expresses the influence on the drought factor of past
rainfall. X is defined as:

X ¼ N1:3=ðN 1:3 þ p& 2Þ for N ( 1 and p > 2

X ¼ 0:81:3=ð0:81:3 þ p& 2Þ for N ¼ 0 and p > 2

X ¼ 1 for p ) 2 ð3Þ

where p is the sum of rainfall within the last rain event and N is
the number of days since the day with the largest daily rainfall
amount within the rain event. A rainfall event is defined as a set
of consecutive days, each with rainfall above 2 mm, within the
last 20 days. In operational use, the above algorithm has been
found to increase the drought factor too quickly in prolonged dry
periods after significant rain events.We use a correction applied
by the Australian Bureau of Meteorology (Finkele et al. 2006),
which calculates X as the minimum of Eqn 3 and the limiting
function Xlim, defined as:

Xlim ¼ 1=ð1þ 0:1135! KBDIÞ for KBDIo 20

Xlim ¼ 75=ð270:525þ 1:267! KBDIÞ for KBDI ( 20 ð4Þ

Wind speed was derived from GCM-simulated north and east
vectors. GCMs produce specific humidity at several different
atmospheric pressure levels. For all models except ECHO-G,
a significant proportion of surface humidity data was not
available. It was found that a simple linear relationship exists
between GCM humidity at surface (1000 hPa) and 925 hPa over
land. Missing surface humidity was calculated using this rela-
tionship. Relative humidity was calculated from GCM-specific
humidity and temperature, capped at 100. All calculations were
performed using MatLab (see http://www.mathworks.com).

Data analysis

Bootstrapping is a statistical method to increase the sample size
by randomly selecting data values from the original dataset to
create a new set of observations of specified size, making it
possible to put confidence bounds on sample parameters. We
used standard, with-replacement bootstrapping techniques to
create 1000 bootstrap samples for each model, region and sce-
nario. We used these to calculate the 95% confidence interval
formeanmonthly FFDI, defined as the average of daily values in
each month. Thus, where models project changes that are large
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relative to the confidence bounds shown by the bootstrapping,
these changes are likely to be significant.

We used a two-sided Kolmogorov–Smirnov test (P¼ 0.05)
to provide a statistical basis on which to judge the difference
between the distributions of monthly FFDI, based on all daily
values, in each scenario. The null hypothesis was that there is
no difference between the FFDI in 2050 or 2100 and the 20th
century i.e. that the two FFDI samples are from the same
population. Years are defined from July to June in order to
encompass the spring–summer fire season.

There are several ways to investigate extreme values in the
distribution of FFDI, including return values (annual, decadal
or otherwise), percentile values (e.g. 90th, 99th) and days (per
month, season or year) over some threshold. The probability of
property destruction has been found to approach 1 when FFDI
exceeds 40, given a fire is burning at the time (Bradstock and
Gill 2001). A measure of days per month with FFDI above 40
is therefore empirically based and policy-relevant, while also
permitting analysis of seasonal changes. Bradstock and Gill’s
study is based on data from the Sydney region of NSW, but we
used a value of 40 throughout all regions as no better estimate
existed at the time of the analysis. However, Blanchi et al.
(2010) report a value of 50may be appropriate for forested areas.

There are also several different measures of bushfire season
length. State (regional) governments employ statutory defini-
tions of fire season timing, e.g. for issuing fire permits, but State
boundaries do not align well with our study areas (Fig. 1). Lucas

et al. (2007) proposed a method of determining the start and end
of the fire season by using a threshold of the average date of the
first and last 3 days with FFDI over 25. This simple method
yielded reasonable results for some cities but failed for others,
and baseline differences between GCMs mean it is not univer-
sally applicable to our results. We therefore used an internal
measure of fire seasonality: the peak months of mean and
extreme FFDI as calculated above. Calculating the percentage
change in mean monthly FFDI allows an analysis of seasonal
changes in fire weather independent of model baselines.

Results

Mean monthly FFDI

Figs 2–5 show the bootstrapped 95% confidence interval for
mean monthly FFDI by region and scenario for each model.
Seasonal variation is apparent in all models, with mean monthly
values reaching a maximum earlier in the ST and SU regions
than in the UN and WI regions, although there are intermodel
differences.

CSIRO results are shown in Fig. 2. In the ST region, mean
FFDI peaks in November in each scenario. FFDI is projected to
decrease throughout the year by 2050. By 2100, the projected
monthly FFDI increases from the 2050 projections to be very
similar to the 20th century levels. Thus, in the CSIROmodel, the
future mean monthly FFDI either decreases or shows negligible
change relative to the 20th century simulations in the ST region.

Fig. 2. Mean monthly forest fire danger index (FFDI) for each scenario from the CSIRO model in each region. The width of each line provides a 95%

confidence interval for the mean estimate derived using bootstrapping (see Methods).
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Decreases by 2050 are also projected in the SU, UN and WI
regions (Fig. 2). These decreases occur predominantly later in
the fire season than earlier, i.e. after the peak month. These
changes follow a latitudinal gradient, with the largest decreases
projected in the northernmost ST region and the smallest
decreases projected in the southernmost WI region. However,
in each region, by 2100, the mean FFDI is projected to either
return to levels similar to 20th century (ST region) or to increase
above 20th century levels (SU, UN and WI regions). Where the
mean FFDI is projected to increase above 20th century levels
by 2100, this increase occurs predominantly earlier in the fire
season. In addition, the peak of the mean FFDI is higher by 2100
in the SU, UN and WI regions, suggesting more severe fire

weather during the fire season. The combination of increased
values earlier in the fire season and similar values later suggests
an extension of the fire season through an earlier onset by 2100.

Results for ECHO-G are shown in Fig. 3. As with CSIRO,
mean monthly FFDI is projected to decrease by 2050 in the ST,
SU and WI regions (Fig. 3), mostly later in the fire season. No
results were obtained from ECHO-G for the UN region, as it had
no grid cells that fell entirely within this region. By 2100, mean
monthly FFDI is projected to decline in the ST region (Fig. 3)
through further decreases after the peak fire month. A similar
pattern is evident by 2100 in the SU region (Fig. 3), although
decreases in mean monthly FFDI later in the year are partly
offset by increases earlier in the year. By 2100 in the WI region
(Fig. 3), there is both an overall increase in monthly FFDI,
particularly in the first half of the year, and a clear shift forwards
in the fire season, with higher values earlier in the season and
marginally lower values later. The key results from the ECHO-G
model are therefore the projection of an earlier end to the fire
season in all three regions. This is offset by an earlier start to the
fire season in the SU region, and both an earlier start and higher
overall values in the WI region by 2100.

Fig. 4 shows results for the IPSL model. Little change is
projected in the ST region by 2050 and 2100 and, because most
changes are within the confidence bounds estimated with boot-
strapping, these are likely the result of model variability. The
SU region follows a similar pattern, but with a more marked
increase in mean FFDI early in the fire season by 2100 (Fig. 4).
Large increases in FFDI are projected throughout the year
by 2050 and 2100 in the UN and WI regions (Fig. 4), with
the largest increases occurring in the WI region. These changes
are large relative to the confidence bounds estimated via
bootstrapping.

MRI results are shown in Fig. 5. In the ST and SU regions,
monthly FFDI changes little during the peak fire danger months,
and those changes that are projected fall largely within the
confidence bounds estimated via bootstrapping. By 2050 and
2100 in the UN and WI regions (Fig. 5), there is an increase in
mean FFDI during the peak firemonths and earlier in the season,
suggesting a longer fire season with more severe fire weather.
These are clearly different from the 20th century projections and
are clearly differentiated in the bootstrapped confidence bounds.

The monthly distribution of FFDI in 2050 and 2100 was
significantly different from the 20th century distribution in most
of cases (P, 0.05 for 96 of 96 CSIRO, 92 of 96 IPSL, 58 of 72
ECHO-G and 74 of 96 MRI comparisons). Although they
represent a small fraction overall, cases where the distributions
were not found to be significantly different are biased towards
2050–20th century comparisons (65% of not-significant results)
and ST and SU regions (combined 70% of not-significant
results).

Considering all models and both 2050 and 2100 timeframes,
meanmonthly FFDI is projected to decrease or remain similar to
20th century levels in the ST region, but increase in the UN and
WI regions, with changes in the SU region falling in between.
The strongest increases in FFDI occur early in the season,
suggesting an extended fire season through an earlier start
in the UN and WI regions. Despite these similarities, models
vary considerably in themagnitude of FFDI.MRI (Fig. 5) has the
consistently highest mean FFDI values, peaking between 20 and

Fig. 3. As in Fig. 2 but for the ECHO-G model. No ECHO-G results were

obtained for the uniform region (see Methods).
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Fig. 5. As in Fig. 2 but for the MRI model.

Fig. 4. As in Fig. 2 but for the IPSL model.
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Fig. 7. As in Fig. 6 but for the IPSL model.

Fig. 6. Days per month with forest fire danger index (FFDI) above 40 for each scenario from the CSIRO model in each region.
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30 depending on the region and scenario. ECHO-G (Fig. 3)
monthly FFDI values peak at,12–15, with the other twoGCMs
falling in between. The models contributing the least (ECHO-G;
Fig. 3) and most (CSIRO; Fig. 2) amount of data have the
broadest and narrowest confidence intervals respectively.

Extreme FFDI values

The number of days per month with FFDI above 40 is shown in
Figs 6–8. ECHO-G results are omitted from the figures, as there
were very few days over 40 in any of the ECHO-G simulations
(ranging from none in the ST region to 0.4 in the SU region in
October 2100). As anticipated from Figs 2–5, there is a seasonal
variation in the number of days when FFDI exceeds 40.

CSIRO results are shown in Fig. 6. In the ST and SU regions,
the number of days with FFDI above 40 is projected to decrease
(2050) or change little (2100). However, the seasonality changes
in both regions by 2100, with a clear earlier peak in ST and an
earlier and longer peak in SU. Extreme FFDI is projected to
decrease or remain similar to 20th century levels in the UN and
WI regions by 2050 (Fig. 6), but to increase strongly by 2100
with a more intense peak and a full-month-longer period of
activity. Thus, in all regions, the largest increases in days per
month over 40 occur earlier in the fire season, suggesting an
earlier to start to extreme fire weather.

Fig. 7 shows results for the IPSL model. Few months have
days with FFDI over 40 in the ST and UN regions during any
time period (Fig. 7). A decrease is projected in days above 40 in

the SU region (Fig. 7) by 2050 but by 2100, a large increase over
20th century levels is projected, predominantly early in the fire
season, such that the point at which the number of days of FFDI
above 40 becomes non-negligible moves a full month earlier in
the season. A strong increase is projected in the WI region
(Fig. 7) by 2100 such that 3 to 4 months experience more than
1 day over 40 FFDI every second year. At current levels in this
region, days above 40 are projected at most once every 10 years.

Results from the MRI model are shown in Fig. 8. Marked
increases in days per month with FFDI above 40 are expected
in all regions except ST. The WI region records the largest
increases of any region in days over 40. These increases are
skewed towards the early part of the fire season and are larger by
2100 than 2050.

Overall, the number of days per month with FFDI above 40
is almost always higher in 2100, and often in 2050, than in the
20th century, regardless of whether the mean monthly value
follows the same trend. The risk of such days is projected to
either change little or decrease in the ST region. Results are
equivocal for the SU region, whereas large increases are
projected in the UN and WI regions, particularly by 2100. As
with mean monthly FFDI, differing magnitudes lie behind these
common trends. Apart from differences in the number of days,
models disagree on regional variation in extreme FFDI values.
MRI (Fig. 9) and CSIRO (Fig. 7) ascribe the highest number of
days per month with FFDI above 40 to theWI region, but the SU
region has this trait in IPSL projections (Fig. 8). At the other end
of the spectrum, the ST region has the least days per month over

Fig. 8. As in Fig. 6 but for the MRI model.
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40 as projected by CSIRO, IPSL puts the ST and UN regions
both at close to no days above 40, whereas MRI ranks the UN
region as the least likely to have days above 40.

Fire seasonality

Percentage changes in mean monthly FFDI for each model,
region and scenario are shown in Fig. 9. In the ST (first column)
region, CSIRO and ECHO-G project decreases in FFDI in the
peak fire months. The decreases are commonly ,25%. How-
ever, IPSL projects negligible change and MRI projects small
changes of either sign. In general, therefore, the projected
change in FFDI in ST is most likely a decrease (there are only
isolated months with an increase) that is relatively small in
magnitude. The SU region displays evidence of a shift in fire
seasonality. There are increases in FFDI projected by all models
early in the fire season and decreases later in the year according
to CSIRO, ECHO-G and IPSL. The decrease later in the year is
clear in CSIRO and ECHO-G and exceeds 25% in somemonths.
Overall, however, changes are negligible in IPSL and MRI in
terms of the magnitude of the percentage change, and the
changes in SU remain inconsistent.

The UN region (third column) and WI (fourth column)
regions show stronger evidence of a consistent result. In UN,
CSIRO shows increases in FFDI early in the season and
decreases later in the season. IPSL projects strong (10 to
.50%) increases in FFDI throughout the year. MRI projects
increases (,25%) early and late in the first season. In this
region, there is therefore a strong indication of a more intense
early fire season, which may be longer (IPSL, MRI) or merely

earlier (CSIRO). Finally, in the WI region, all models project
an earlier fire season, which is projected to be somewhat more
intense (,25%, CSIRO, MRI) or much more intense, particu-
larly by 2100 (50 to.75%, ECHO-G, IPSL). There is a dramatic
difference in projection from the ECHO-G model (earlier and
stronger peak, lower FFDI thereafter) compared with the IPSL
model (much higher throughout the year).

Discussion

These results identify changes in fire weather along a roughly
latitudinal gradient across eastern Australia (Fig. 10). In the
tropical far north, where rainfall is summer-dominated, mean
and extreme values of FFDI and the fire season length are pro-
jected to decrease by 2050. These statistics are projected to
return to levels similar to those of the 21st century by 2100. A
small decrease in risk from fire weather is projected for 2050 in
the summer rainfall region, immediately south of the summer
tropical region. This pattern is projected to reverse by 2100, with
a small increase projected, as well as an earlier start to the fire
season but no clear trend in duration overall. Thus, there is little
change in the nature of fire weather in the northernmost regions
and where changes do occur, they are unlikely to lead to sig-
nificant changes in management policies designed to reduce the
effect of fire.

Major increases in fire weather are projected in the southern-
most regions of uniform (south-east NSW) and winter (Victoria,
south-west NSW) rainfall. Projections of large-scale changes
in mean and extreme FFDI are not consistent enough between
models to provide unequivocal conclusions for 2050, although

Fig. 9. Percentage change in mean monthly forest fire danger index (FFDI) by 2050 and 2100 for each region (columns) and each model (rows).
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there is some indication of an earlier fire season. However, by
2100, everymodel simulates both an earlier fire season andmore
severe fire weather. These changes are almost always large
relative to the confidence bounds represented by bootstrapping.
It should be noted that a value of 1 or 2 days per month with
FFDI above 40 should not be interpreted as insignificant; this is a
measure that predicts near-certain property losses should a fire
occur. Thus the clearest and largest increases in risk from fire
weather are projected in the regions where Australia’s worst
bushfires have occurred.

What is driving these changes in fire weather? An analysis of
the variables from which FFDI is constructed shows that the
biggest increases in FFDI (e.g. by 2100 in the Uniform and
Winter regions) are most consistently driven by temperature
increases. All models project increased temperature, regardless
of region. Depending on the model, changes in humidity (IPSL,
MRI) and drought factor (via reduced precipitation; CSIRO,
IPSL) couple with temperature to increase FFDI in these
regions. Conversely the decreases in FFDI reported here are

chiefly the result of increased relative humidity. CSIRO and
IPSL project increases in humidity in all regions and time-
frames. The drivers of changes in fire seasonality are similar. By
2100 in the Winter region, temperature increases occur across
the year but there is also a pronounced spike (dip) in drought
factor (humidity) early in the season, depending on the model.
Changes in wind speed contribute very little to any of the FFDI
changes reported here.

These results are consistent with earlier projections and
analyses that focussed on different models, different regions
or different measures. For example in southeast Australia, Lucas
et al. (2007) project more intense fire seasons, starting earlier
and ending slightly later, based on projected changes in seasonal
median FFDI by 2020 and 2050. In an analysis that extended
beyond fire weather to the other drivers of Australian fire
regimes – biomass growth, availability to burn and ignition,
Bradstock (2010) concluded that future change may be limited
in the tropics, but that fire activity may increase in temperate
forests in the south of the country. Bradstock also suggested that

Strong increase

Strong increase

Little change

Little change

Projected fire weather

Little change to fire weather by 2050

Little change to fire weather by 2050

Small decrease in magnitude by 2050

Fire weather similar to 20th century by 2100

Decreased magnitude, shorter season
by 2050

Small increase in magnitude,
earlier season onset by 2100

Strong increase in magnitude, longer
fire season with earlier onset by 2100

Strong increase in magnitude, longer
fire season with earlier onset by 2100

Fig. 10. Summary of effects of climate change on fire weather by 2050 and 2100 in each region.
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increasing dryness may lead to a decrease in fire activity in dry
woodlands, which occupy much of the country, particularly in
between the latitudinal extremes of the tropics and the temperate
south.

Although we have examined only one driver of fire regimes
here, it is clear that climate change could have significant effects
on fire regimes. Changes to fire regimes could have flow-on
effects on biodiversity and human systems, although these
effects will depend in part on whether projected changes are
beyond the bounds of natural variability (which may not
coincide with the model ‘natural variability baseline’ of
1961–2000). In the case of Australia’s built environment, there
is no sign yet that the annual probability of building destruction
from bushfire has increased over the last century, after adjusting
for changes in population, wealth and inflation (McAneney et al.
2009). Our results suggest that if such changes are to happen,
regions of uniform and winter rainfall are the most likely
locations to identify the signal.

Our results suggest that changes in the frequency of fires on
an annual or fire-season basis will not be detectable (in a
statistical sense) from the natural variability for at least many
decades. However, it is possible that observed warming is
already moving the fire season forward in ways that could be
detectable. Le Goff et al. (2009) projected changes in monthly
fire risk in eastern Canada, finding that by 2100, the fire season
peak was projected to move later in the season. If the North
American fire season moves later, and the Australian season
moves earlier, changes in strategies to manage fire risk will be
required. NSW and Victoria currently rent firefighting equip-
ment from North America, while firefighters from both hemi-
spheres regularly work abroad during their own off season. Thus
any significant overlap in southern and northern hemisphere fire
seasons would have direct effects on the sharing of firefighting
resources. An earlier or longer fire season could also have
implications for hazard reduction burning.

Several caveats apply to these findings. Only daily average
(rather than 1500 hours) values of relative humidity and wind
speed were available. Despite significant agreement between
models in the regional response of fire weather to climate
change, baseline differences between models mean the absolute
values of FFDI vary considerably. For instance, CSIRO and
ECHO-G are much ‘wetter’ models than IPSL and MRI, which
in turn tend to be hotter. Nevertheless, bias is minimised through
the use of skill selection and the direct use ofGCMoutput (rather
than adjusted historical time series) provides an estimate of the
uncertainty and variability in climate that is known to exist.
Uncertainties also exist about the capacity of GCMs to capture
key components of the Australian climate. For example, there
is a strong relationship between El Niño–Southern Oscillation
and fire risk (Williams andKaroly 1999;Verdon et al. 2004), yet
GCMs vary widely in their ability to simulate this mode of
climate variability (Randall et al. 2007; Guilyardi et al. 2009).

Despite these uncertainties, our results taken in the context
of earlier work point to CO2-induced warming having the clear
potential to alter fire regimes across eastern Australia. These
results do not translate directly into probability of the incidence
of fires, nor can they be applied to individual locationswithin the
regions studied here. FFDI is a common proxy for fire weather,
but only peripherally references fuel (through the drought

factor; a standard fuel availability of 12.5 t ha&1 is assumed)
and does not take into account ignitions, terrain or human
behaviour. Nevertheless, these results are representative of the
kind of changes in fire-weather risk likely to occur in these
different regions under the (relatively conservative) A2 emis-
sions scenario. A downscaled model, evaluated against histori-
cal FFDI and reanalysis datasets would address several
limitations of this study and provide the next generation of
high-resolution data needed for impact assessment studies.
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Chapter 4 Summary  

Projections of fire weather from global climate models 

The use of skill selected GCMs points to future changes in FFDI in eastern Australian that vary 

along a clear latitudinal gradient. In summer rainfall-dominated tropical northeast Australia, 

mean and extreme FFDI are projected to decrease or remain close to 20th century levels. In the 

uniform and winter rainfall regions, which occupy southeast continental Australia, FFDI is 

projected to increase strongly by 2100. Projections fall between these two extremes for the 

summer rainfall region, which lies between the uniform and summer tropical rainfall zones. 

Based on these changes in fire weather, the fire season is projected to start earlier in the uniform 

and winter rainfall regions, potentially leading to a longer overall fire season. 

These and other results from global climate models point to the potential for significant 

increases in fire weather conditions in Australia. However, there is a strong demand from fire 

management agencies for finer resolution information than that available from global climate 

models. Such information is more suited to assessing impacts and planning adaptation at the 

scale at which they operate. The next chapter aims to lay the foundation for finer resolution 

projections by evaluating the ability of a regional climate model to accurately downscale fire 

weather from a global climate model. 
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Chapter 5 Overview  

Evaluation of a regional climate model fire weather simulation 

The climate system is a global phenomenon, and the global climate models developed to 

represent it do well at continental scales and above (Flato et al. 2013). However, it is the local 

and regional climate which affects our daily lives, and it is at this level that adaptation to 

climate change occurs. The ability of GCMs to provide information about regional variations in 

climate is limited by their resolution and coarse representation of important regional climate 

drivers such as sub-continental scale topography and offshore processes.  

There is therefore a large demand, driven particularly by end users, for the conversion of 

information from global models to a regional level, a process known as downscaling. 

Dynamical downscaling with regional climate models (RCMs) overcomes many of the 

limitations of GCMs in providing information relevant to regional adaptation planning. Since 

they are built on physical principles, dynamical RCMs allow for changes in the existing 

relationship between weather variables or climate drivers. At the time of writing of Chapter 5, 

almost all existing Australian (and most global) fire weather projection studies were based on 

GCMs. A single study (Lucas et al., 2007) used an (atmosphere only) RCM. A clear research 

direction is therefore to undertake high resolution modelling of fire weather. A useful precursor 

to any such future modelling is an evaluation of the ability of the RCM to simulate observed fire 

weather conditions; this is the aim of Chapter 5. 

The work reported here has been published in the peer reviewed literature and is reproduced 

exactly as published:  

Clarke H, Evans JP, Pitman AJ (2013) Fire weather simulation skill by the Weather Research 

and Forecasting (WRF) model over southeast Australia from 1985 to 2009. International 

Journal of Wildland Fire, 22, 739-756. DOI: 10.1071/WF12048 

Author contributions 

I led this project. The project was conceived by Jason Evans (JE; my associate PhD supervisor), 

Andy Pitman and myself. JE provided the WRF data. I was jointly responsible for experimental 

design with JE and AP. I conducted the analysis and prepared the figures, incorporating 

feedback from JE and AP. I drafted the paper and revised it based on comments from JE and 

AP. I led the revisions following external review, preparing a response and incorporating 

contributions from JE and AP.  
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An examiner noted the following errors in the published paper: 

p743 “Fig 1b” should read “Fig 1” 

p753 “in the north-east of the domain” should read “in the north-west of the domain” 
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Abstract. The fire weather of south-east Australia from 1985 to 2009 has been simulated using the Weather Research
and Forecasting (WRF) model. The US National Oceanic and Atmospheric Administration Centers for Environmental
Prediction and National Center for Atmospheric Research reanalysis supplied the lateral boundary conditions and initial

conditions. The model simulated climate and the reanalysis were evaluated against station-based observations of the
McArthur Forest Fire Danger Index (FFDI) using probability density function skill scores, annual cumulative FFDI and
days per year with FFDI above 50.WRF simulated the main features of the FFDI distribution and its spatial variation, with

an overall positive bias. Errors in average FFDI were caused mostly by errors in the ability of WRF to simulate relative
humidity. In contrast, errors in extreme FFDI values were driven mainly by WRF errors in wind speed simulation.
However, in both cases the quality of the observed data is difficult to ascertain. WRF run with 50-km grid spacing did not
consistently improve upon the reanalysis statistics. Decreasing the grid spacing to 10 km led to fire weather that was

generally closer to observations than the reanalysis across the full range of evaluationmetrics used here. This suggests it is
a very useful tool for modelling fire weather over the entire landscape of south-east Australia.
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Introduction

In order for wildland fire to occur there must be: sufficient
biomass that is dry enough to burn, the presence of ignitions and
weather conditions conducive to burning. Elements of weather
relevant to wildland fire risk include temperature, humidity,

wind speed, atmospheric stability and the passage of wind
changes (Parkyn et al. 2010). Fire regimes can be defined in part
by the relative importance of these four drivers in limiting

overall wildland fire incidence. For instance, in some ecosys-
tems fire is limited primarily by the amount of fuel whereas in
others a combination of fuel availability and ambient weather is

the primary limiting factor (Archibald et al. 2009; Bradstock
2010).

Climate change is expected to alter global fire regimes

significantly (Flannigan et al. 2009; Krawchuk et al. 2009;
Bradstock 2010). Owing to the central role of coupled climate
models in projecting future climate, studies of the effects of
increased atmospheric carbon dioxide on wildland fire have

tended to focus on fire weather, which is more directly linked to

changes in the prevailing climate than are other drivers.
Global climate models model perform their task well

(Randall et al. 2007), but their ability to provide information
about regional variations in climate is limited by their coarse

resolution and their representation of important regional climate
drivers such as sub-continental scale topography (e.g. the Great
DividingRange) and offshore processes (e.g. the East Australian

Current) (Meehl et al. 2007). Although the climate system is a
global phenomenon, it is the local and regional climate that
affects our immediate environment. Dynamical downscaling

with regional climate models (RCMs) overcomes many of the
limitations of global climate models in providing information
relevant to regional adaptation planning (Evans et al. 2012a).

They can operate at much finer spatial scales and contain
additional information about drivers of regional climate includ-
ing more detailed topography and improved representation of
important regional land–atmosphere phenomena (Pitman et al.
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2012) and feedback mechanisms (Evans et al. 2011). Because
they are built on physical principles, dynamical RCMs allow for
changes in the existing relationship between weather variables

or climate drivers.
Given their use in downscaling fire weather projections, the

ability of RCMs to simulate observed climate is of great interest.

TheWeather Research and Forecasting (WRF)model is an open
source atmospheric simulation system that can be used as an
RCM.WRF has been shown to skilfully reproduce the observed

spatial patterns of surface temperature and precipitation (Evans
and McCabe 2010) and the diurnal rainfall cycle (Evans and
Westra 2012) from the late 20th to early 21st century in south-
east Australia. The simulation described in Evans and McCabe

(2010) included a positive temperature bias of ,18C and a
precipitation bias that varied in sign depending on the region and
season.Mölders (2008, 2010) also examined the performance of

WRF and found it to be well suited for fire weather prediction in
Alaska, based on its ability to produce 1–5-day forecasts of two
fire weather indices, during June 2005. Mölders (2008) found

that WRF underestimated precipitation on average and slightly
overestimated wind speed, but adequately captured the temporal
evolution of these variables as well as temperature and relative

humidity over the study period. Shimada and Ohsawa (2011)
and Shimada et al. (2011) also reported a positive bias in wind
speed from WRF, this time over Japan, in a simulation for the
year 2005. WRF’s ability to simulate fire weather has not yet

been evaluated in Australia.
The McArthur Forest Fire Danger Index (FFDI) is a function

of temperature, precipitation, relative humidity and wind speed

and was derived in the late 1960s to relate weather conditions to
expected fire behaviour and rate of spread (McArthur 1967;
Luke and McArthur 1978). It is used operationally by weather

forecasters and fire agencies in Australia to declare fire weather
warnings and total fire bans, and to determine fire danger. FFDI
is often used in analyses of weather conditions associated with
major wildfires (e.g. Engel et al. 2012). The index also

correlates with property loss from wildland fires (Blanchi
et al. 2010; Bradstock and Gill 2001). There are considerable
similarities between FFDI and the Canadian Forest Fire

Weather Index (FWI) system: both are drawn from daily
meteorological observations of temperature, wind speed, rain-
fall and relative humidity. The two indices differ in the

vegetation used for calibration and in the FWI’s greater
emphasis on fuel moisture (Van Wagner 1987; Dowdy et al.

2010). The United States National Fire Danger Ratings System

(NFDRS; Deeming et al. 1978) is more physically based than
are the FWI and FFDI, and draws on a wider range of
meteorological inputs (Mölders 2010).

Multivariate indices such as the FFDI are a useful measure of

regional climate model performance. Simulating FFDI well
requires a model to simulate the spatial and temporal variation
of four different variables. The ability of WRF to capture

extreme values of FFDI is of particular interest, as it is on these
days that the largest fires are most likely and in the event of an
outbreak, most difficult to control. It is important to correctly

simulate the overall distribution of FFDI, as lower values are
also used in determining weather conditions suitable for con-
ducting fuel reduction burns and setting appropriate levels of
community advice.

Our study evaluates the ability of WRF to simulate observed
fire weather, represented by FFDI, between 1 January 1985 and
31 December 2009 over south-east Australia. This is the first

study comparing observed and simulated FFDI in Australia, and
it covers a substantially longer period than did previous evalua-
tions of the model in terms of fire weather. We use reanalysis

lateral boundary conditions to drive WRF, which minimises
error inheritance and allows identification of positive and
negative features of the RCM simulation in a reasonably

controlled environment. WRF is being used to develop climate
projections for south-east Australia under the New SouthWales
and Australian Capital Territory Regional Climate Modelling
Project (NARCliM; NSW Office of Environment and Heritage

2012). This evaluationwill determinewhetherWRF is a suitable
tool to estimate the fire danger at the observation locations in
this region.

Methods

Study area

Most of south-east Australia is low lying (Fig. 1a). The most
prominent relief occurs at the Flinders Range in South Australia

(between 30 and 368S, near 1398W) and the Great Dividing
Range that follows the east coast of Australia (approximately
from 388S, 1468E to 278S, 1528E). The dotted lines in Fig. 1a

show a 28 grid (,220 km), which approximates the grid spacing
of global climate models e.g. CSIRO-MK3.0 (Gordon et al.

2002). At this resolution the coastline is distorted and features

such as the Flinders and Great Dividing Ranges tend to be
smoothed and poorly represented. In Australia, these topo-
graphic features have considerable influence on the regional

scale hydrometeorology, representing a clear boundary between
the drier semiarid interior and the wetter coastal fringe. Inade-
quate representation of complex mountainous terrain is likely to
lead to omission of their characteristic features: rapid and sys-

tematic changes in climatic parameters such as precipitation and
temperature, enhanced direct runoff and erosion and systematic
variation of other environmental (e.g. soil types) and climatic

(e.g. radiation) factors (Christensen et al. 2007).
There is an approximately latitudinal gradient in fire season-

ality over south-east Australia, beginning in spring in the

northern part of the domain and shifting to mid to late summer
in the southernmost regions. Vegetation ranges from subtropical
rainforests in the north-east to the forested Great Dividing

Range including alpine heathlands in the southern Alps, through
dry forests and rangelands of the mid-west to the dry plains of
the north-west. Along with vegetation patterns, rainfall season-
ality is a primary driver of existing fire regime patterns in the

study area (Russell-Smith et al. 2007). Russell-Smith et al.

(2007) modelled the relationship between satellite-derived fire
incidence data from 1997 to 2005 and a range of biophysical

variables, finding rainfall seasonality to be the dominant influ-
ence, followed by vegetation (i.e. fuel) structure.

Observational data

The observational data used in this study are based on the high
quality historical FFDI dataset described by Lucas (2010a).
FFDI is derived from standard weather observations of air
temperature, relative humidity, 10-min averaged wind speed
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and rainfall to estimate the fire weather conditions. FFDI is

given by Noble et al. (1980) as:

FFDI ¼ 2� expð0:987� lnðDFÞ � 0:0345� H

þ 0:0338� T þ 0:0234� V � 0:45Þ ð1Þ

where DF is the drought factor, T is the temperature (8C), V the
wind speed (kmh�1) and H the relative humidity (%). In the
formulation used here, FFDI is based on maximum daily
temperature, and wind speed and relative humidity measured

at 1500 hours local time. The drought factor is an empirical
estimate of the state of the fuel and is calculated following the
methodology described in Griffiths (1999). This uses the

Keetch-Byram Drought Index (Keetch and Byram 1968) as its
input for soil moisture deficit, based on total daily rainfall
collected at 0900 hours local time.

FFDI is widely used across Australia by weather forecasters
and firemanagers. The fire danger rating scale divides FFDI into
a series of threshold values with associated descriptions: 0–11
(low–moderate), 12–24 (high), 25–49 (very high), 50–74

(severe), 75–99 (extreme) and 100þ (catastrophic). FFDI
ignores local variations in fuel amounts and types, as well as
the slope of the terrain. These factors have a significant influ-

ence on the fire behaviour. FFDI is therefore primarily a tool for
understanding weather- and climate-related aspects of fire risk.

The FFDI also has a similarly derived counterpart, theGrassland

Fire Danger Index (GFDI), which is designed to be applied to
large areas of grassland that are subject to fire, e.g. central and
northern Australia. GFDI is not evaluated here, being problem-

atic as a result of uncertainties in the amounts of historical
grassland curing. In any case, future climate projections show
considerable overlap in the behaviour of the GFDI and FFDI
(Hennessy et al. 2005).

Lucas (2010a) describes inhomogeneities in wind speed data
that in some cases have a large effect on the FFDI. These
inhomogeneities arise from the changing local environment of

the wind measurement as well as the changing instrumentation
used to record wind speeds. The inhomogeneities are most
evident in rural stations and before the 1990s, and as a general

rule the mean of past wind speed measurements is lower than
those measured with contemporary anemometers. Lucas
(2010a) proposes a methodology for correcting these data that

is applicable to the statistics of the FFDI distribution, rather than
individual observations. The methodology breaks down at the
extreme upper ends of the FFDI distribution, typically above the
90th percentile. In order to retain data with daily resolution we

used uncorrected data. This leads to an underestimate of average
FFDI values by,5% for the period of this study (corrected and
uncorrected data supplied by Chris Lucas, Australian Weather

and Climate Research, Bureau of Meteorology).
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Fig. 1. Map of study area showing elevation and the location of weather stations. See Table 1 for

key to station names.
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Model data

The WRF modelling system is developed collaboratively by
several agencies and the research community. In this study the
Advanced ResearchWRF (ARW) version 3 is used (Skamarock
et al. 2008). WRF was run from 1 November 1984 to 31

December 2009, excluding the first two months which were
discarded as model spin-up. The model timestep is 1 min.
Model top pressure is 50 hPa. The monthly atmospheric carbon

dioxide concentration changed monthly from measurements at
Baring Head, New Zealand (Evans and McCabe 2010). Sea
surface temperatures are continuously updated and deep soil

moisture varies dynamically throughout the simulation
according to the physics embodied in the Noah land surface
model. The following physics schemes were used: WRF single
moment 5-class microphysics scheme; the rapid radiative

transfer model (RRTM) longwave radiation scheme; the Dudhia
shortwave radiation scheme; Monin-Obukhov surface layer
similarity; Noah land-surface scheme; Yonsei University

boundary layer scheme; Kain-Fritsch cumulus physics scheme

and Rayleigh damping in the upper 5 km of the atmosphere. The
model has 30 vertical levels spaced closer together in the
planetary boundary layer (both domains). The physics schemes

used here were chosen as a compromise between schemes that
have been found to perform well in other studies (Evans and
McCabe 2010; Evans et al. 2012b), represent the required

physical processes and are computationally efficient enough to
perform long simulations.

Two domains are used with one-way nesting. The parent and

nested domain have respective horizontal grid spacings of 50
and 10 km. The two simulations are referred to as WRF50 and
WRF10. The lateral boundary conditions of the parent domain
are provided by 6-hourly National Centers for Environmental

Prediction (NCEP) and National Center for Atmospheric
Research (NCAR) reanalysis project data (NNRP; Kalnay
et al. 1996) at a grid spacing of 250 km. By using as many

observations as possible, NNRP produces an estimate of the

Table 1. Location of stations, distance from stations to centre of NNRP, WRF 50 km (W50) and WRF 10 km (W10) grid cells, and summary of

missing data for each station

Station (abbreviation) Station location (8) Distance from grid cell centre (to nearest kilometre) Total days missing

(years missing .90 days)Latitude Longitude NNRP W50 W10

Adelaide (AD) �34.92 138.62 37 71A 1 16

Amberley (AM) �27.63 152.71 82 7 3 259

Bendigo (BE) �36.74 144.33 45 8 2 57

Birdsville (BI) �25.90 139.35 64 28 6 652 (1997)

Bourke (BO) �30.04 145.95 64 15 7 561 (1998)

Brisbane (BR) �27.39 153.13 66 18 5 7

Broken Hill (BH) �31.98 141.47 101 25 5 708 (1985, 1991)

Canberra (CA) �35.30 149.20 73 20 3 16

Casino (CS) �28.88 153.05 99 25 5 1012 (1985–86)

Charleville (CH) �26.42 146.25 79 15 5 27

Cobar (CO) �31.49 145.83 40 29 7 80

Coffs Harbour (CF) �30.31 153.12 106 23 5 18

Dubbo (DU) �32.22 148.58 98 17 3 298

Emerald (EM) �23.57 148.18 27 19 5 159

Hay (HA) �34.52 144.85 91 15 5 441 (1991)

Laverton (LV) �37.86 144.76 87 31 5 21

Lismore (LM) �28.81 153.26 92 10 4 680 (1986–87)

Melbourne (ME) �37.68 144.84 73 12 5 19

Mildura (ML) �34.23 142.08 107 31 3 10

Miles (MS) �26.66 150.18 107 14 5 530 (1987)

Moree (MO) �29.49 149.85 15 13 2 24

Mount Gambier (MG) �37.75 140.77 69 31 3 8

Nhill (NH) �36.33 141.64 118 11 1 104

Nowra (NO) �34.95 150.54 59 9 5 246

Omeo (OM) �37.10 147.60 47 20 4 1021 (1986, 2002, 2009)

Orbost (OR) �37.69 148.47 68 12 2 47

Renmark (RE) �34.20 140.68 97 21 2 173 (1988)

Richmond (RI) �33.60 150.78 78 19 3 29

Sale (SA) �38.12 147.13 128 10 3 101

Sydney (SY) �33.94 151.17 94 17 3 6

Thargomindah (TH) �27.99 143.82 68 32 4 345

Tibooburra (TI) �29.44 142.01 48 7 7 131

Wagga (WA) �35.16 147.46 61 33 6 13

Wilcannia (WI) �31.56 143.37 84 25 4 1057 (1985, 1988–92, 1996)

Williamtown (WT) �32.79 151.84 60 28 6 9

AThe grid cell closest to the coordinates of the station at Adelaide occurred in a cell flagged as sea; the next closest land grid cell was picked.
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state of the atmosphere that is as close to reality as possible. The

regional climate produced by the WRF simulation driven by
the NNRP reanalysis has been extensively evaluated on time
scales ranging from diurnal to inter-annual (Evans and McCabe

2010; Evans andWestra 2012). This simulation was found to be
a good representation of the observed regional climate. The
outermost six horizontal layers of both nests were discarded
from the analysis to minimise lateral boundary effects, resulting

in the domain areas shown in Fig. 1b.

Analysis

All weather stations from Lucas (2010a) that fell within both
WRF nests were used for the analysis; 35 in total. FFDI at each

station was compared with FFDI at the closest WRF grid cell
over land. Comparisons with the closest NNRP grid cell were
also made. In several cases the same NNRP grid cell was
compared with multiple stations. It is preferable to use grid-

based observations to evaluate model output, which is generally
taken to represent area averaged rather than point processes
(Osborn and Hulme 1998). Moreover, the larger the model grid

cell, the less likely it is that weather at any given point in the
landscape will be representative of the entire grid cell; this is
particularly the case for 250-km NNRP grid cells. However, no

grid-based FFDI observations are available for this time period
and in any case such observations are also subject to limitations,
such as representativeness and sensitivity of interpolation

techniques to changes in network density (Klein Tank et al.

2009; King et al. 2012). The location of each station and its
distance from the centre of the closest WRF grid cell are shown
respectively in Fig. 1b andTable 1.All stations aremissing some

observational data (Table 1).

The variables chosen to summarise and evaluate the fire

weather climate were:

1. Annual cumulative FFDI (SFFDI) – calculated as the sum of

all daily FFDI values over the entire year (e.g. Beer and
Williams 1995). It provides a useful metric to compare
relative levels of fire weather danger over long time periods

or different spatial areas. SFFDI is calculated as the average
over the period 1985–2009.

2. Days per year over 50 – this variable is indicative of extreme
conditions. The largest, most intense wildfires are more

likely to happen on these days and any fires that do occur
are unlikely to be controllable. It has also been found that
90% of property loss from major fires in Australia occurred

during times when FFDI was above 50 (Blanchi et al. 2010).
Days per year over 50 is calculated over the same time period
asSFFDI. Although there is great interest in FFDI categories
above 50 (namely 75 and 100) the sample size at many
stations is too small to draw robust conclusions.

3. Skill score for FFDI and underlying variables – also known

as the overlap statistic of the probability density function
(PDF). It is calculated by taking the area under the curve
defined by theminimumof themodelled and observed PDFs.
Expressed in terms of the empirical bins used:

Skill score ¼
Xn

1

minðZm; ZoÞ ð2Þ

where n is the number of bins used to calculate the PDF, Zm
is the relative frequency of values in a given bin from the
model and Zo is the relative frequency of values in a given bin
from the observations. Skill score ranges from zero to one,

with zero indicating no overlap and one indicating identical

(a) Observed (b) NNRP (c) WRF 50 km

Annual cumulative FFDI

(d) WRF 10 km
7500

5500

3500

2500

2000

1500

1600

1100

600
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�100

�600

(g) W10 – Obs(f ) W50 – Obs(e) N – Obs

Fig. 2. Mean annual cumulative FFDI (1985–2009). Top row shows absolute values: (a) Observed, (b) NNRP, (c) WRF 50 km, (d ) WRF 10 km. Second

row shows error values: (e) NNRP – Observed, ( f ) WRF 50 km – Observed, (g) WRF 10 km – Observed. Bin sizes are nonlinear and have been chosen to

maximise representation in each bin. Owing to their proximity, there is overlap between the markers for Laverton and Melbourne, Sydney and Richmond,

Casino and Lismore, and Brisbane and Amberley.
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PDFs.Wemultiplied by 100 to simplify visual interpretation.

This metric is useful as it is quite robust to sampling errors or
random errors in the observations and it measures more than
just the mean: simulation of an entire PDF demonstrates an

ability to simulate values at the tails of the distribution aswell

as at the centre. However, skill scores do not indicate the sign
of bias, and are increasingly insensitive to errors as values
become rarer (Perkins et al. 2007).

Bias and root mean square error (RMSE) were calculated for

annual cumulative FFDI and days per year with FFDI over 50 at
each station. In order to investigate potential sources of WRF
error, FFDI is also recalculated after replacingWRF values with
observed values for the variables underlying FFDI. One limita-

tion of this approach is that the variables are not independent,
particularly in the case of relative humidity and temperature, so
changing onewithout changing the other(s) may lead to physical

inconsistencies. Proportional error is defined here as: the abso-
lute value of (WRF�Observed)CObserved. The effect of
substituting observed data is labelled Improvement, defined as:

ðjWRF� Observedj � jWRFs � ObservedjÞ
CjWRF� Observedj ð3Þ

where WRFS is WRF with one variable substituted with either
observed drought factor (DF), maximum temperature (T), wind

Table 2. Annual cumulative FFDI and days per year with FFDI over 50 from observations (Obs), NNRP,WRF 50km (W50) andWRF 10km (W10)

Station Annual cumulative FFDI Days per year over 50

Obs NNRP W50 W10 Obs NNRP W50 W10

Adelaide 2779 3507 4305 3069 1.7 0.2 0.8 0.1

Amberley 3197 1640 3046 2688 1.7 0.0 0.7 1.0

Bendigo 2812 2641 4444 3487 1.8 0.2 2.4 3.2

Birdsville 9352 12213 10383 9765 29.8 68.8 27.1 19.4

Bourke 5735 6320 7589 7048 6.8 5.0 13.9 13.6

Brisbane 1855 1640 1976 1289 0.7 0.0 0.2 0.1

Broken Hill 4432 6733 8115 7324 2.4 3.8 13.4 13.8

Canberra 2417 1351 2513 2362 1.1 0.0 0.2 0.6

Casino 2305 1309 1278 1970 1.9 0.0 0.0 0.7

Charleville 6396 4854 7453 6762 7.7 2.4 8.7 6.6

Cobar 5035 5330 6564 5725 5.4 3.0 7.2 7.0

Coffs Harbour 1167 1309 1492 693 0.2 0.0 0.0 0.0

Dubbo 3577 3450 4785 4038 2.7 1.0 1.9 2.4

Emerald 4584 2900 6023 5705 1.4 0.3 2.2 2.3

Hay 3350 4554 6258 5552 1.0 3.4 6.9 8.6

Laverton 1945 2641 2550 1854 1.7 0.2 0.3 0.9

Lismore 1728 1309 1278 1142 0.3 0.0 0.0 0.2

Melbourne 2361 2641 2550 2094 3.3 0.2 0.3 1.0

Mildura 5284 6268 6821 6532 8.4 7.0 7.5 12.7

Miles 4103 2458 5266 4582 0.6 0.0 1.9 1.8

Moree 4198 2613 5801 5020 3.2 0.0 3.6 3.7

Mount Gambier 1847 2606 2457 1502 1.8 0.0 0.1 0.1

Nhill 3677 2861 5114 4098 4.6 0.3 3.0 3.8

Nowra 1762 1351 1721 1442 1.0 0.0 0.1 0.2

Omeo 1395 1599 2164 1390 0.0 0.0 0.0 0.0

Orbost 1043 1599 2005 1039 0.2 0.0 0.0 0.0

Renmark 5304 6313 6640 6719 10.2 7.1 6.3 14.2

Richmond 2469 1525 2272 2462 1.7 0.0 0.2 1.1

Sale 1679 2259 2326 1530 0.6 0.1 0.1 0.2

Sydney 1897 1525 2216 1293 1.4 0.0 0.0 0.1

Thargomindah 7238 8023 8971 8393 15.3 15.8 24.2 19.8

Tibooburra 7339 8963 9095 8506 18.0 23.8 18.4 17.7

Wagga 3461 2359 4608 3578 4.9 0.0 2.9 2.9

Wilcannia 6408 7720 8200 7559 11.6 11.0 15.2 16.2

Williamtown 1914 1076 1619 1184 1.6 0.0 0.1 0.2

Table 3. Station-averaged values for bias and root mean square error

(RMSE) in annual cumulative FFDI (SFFDI) and days per year with

FFDI over 50, and skill score for FFDI, drought factor (DF), tempera-

ture (T), wind speed (V) and relative humidity (H)

NNRP WRF 50 km WRF 10 km

SFFDI Bias 40 967 381

RMSE 1118 1348 909

Days over 50 Bias �0.11 0.38 0.55

RMSE 7.08 3.27 3.64

Skill score FFDI 85.7 85.4 91.2

DF 81.8 88.9 92.0

T 85.4 91.6 92.7

V 65.0 74.1 74.2

H 79.0 79.8 84.9
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speed (W) or relative humidity (H). A negative value of
Improvement implies that model accuracy has deteriorated with
substitution relative to the original model value. Generally,

Improvement behaves as follows:

As jWRFs � Observedj ! 0; Improvement ! 1

As jWRF� Observedj ! 0; Improvement ! �1
As jWRFs � Observedj ! jWRF� Observedj; Improvement ! 0

For jWRF� Observedj � jWRFs � Observedj; Improvement ! 1

Results

Annual cumulative FFDI

Fig. 2 and Table 2 show SFFDI. The observed data (Fig. 2a)

ranged from just over 1000 to over 8000 with a strong gradient
from low values near the coast to very high values inland.
Modelled SFFDI and error are shown for NNRP (Fig. 2b, e),

WRF50 (Fig. 2c, f ) and WRF10 (Fig. 2d, g). Although NNRP
captures well the overall coastal–inland gradient (Fig. 2b), it
significantly underestimates SFFDI for much of eastern Aus-
tralia (Fig. 2e). Indeed, Fig. 2e shows much of the region

dominated by errors exceeding 600.WRF50 also underestimates

Days per year with FFDI above 50

(a) Observed (b) NNRP

(e) N – Obs (f ) W50 – Obs (g) W10 – Obs

(c) WRF 50 km (d ) WRF 10 km

Days

12

0.5

0.1

4

2

1

2.0

�1.5

�2.0

0.5

�0.5

�1.0

Fig. 3. Mean days per year with FFDI above 50 (1985–2009). Top row shows absolute values: (a) Observed, (b) NNRP, (c)WRF 50 km, (d )WRF 10 km.

Second row shows error values: (e) NNRP – Observed, ( f ) WRF 50 km – Observed, (g) WRF 10 km – Observed. Bin sizes are nonlinear and have been

chosen to maximise representation in each bin. Owing to their proximity, there is overlap between the markers for Laverton and Melbourne, Sydney and

Richmond, Casino and Lismore, and Brisbane and Amberley.

(a) NNRP (b) WRF 50 km

Skill score

Skill score: FFDI

80 83 86 89 92 95

(c) WRF 10 km

Fig. 4. FFDI skill score: (a) NNRP, (b) WRF 50 km, (c) WRF 10 km. Owing to their proximity, there is overlap between the markers for Laverton and

Melbourne, Sydney and Richmond, Casino and Lismore, and Brisbane and Amberley.
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SFFDI along areas of the east coast, but more frequently over-
estimates FFDI, particularly in inland areas and along the south
coast (Fig. 2f ). Relative to those for NNRP, the simulated errors

are considerably smaller. Fig. 2c shows that WRF10 also cap-
tures extremely well the basic gradient in SFFDI from the coast
towards the inland. Five sites, located in the south-east, are

within �100, but elsewhere along both the east and south coast
WRF10 tends to underestimate SFFDI. As with WRF50, WRF10

also overestimates SFFDI inland, but the bias is generally

smaller than with WRF50 and NNRP. The observed values of
SFFDI are positively correlated with the absolute error for
NNRP ((correlation coefficient (r) of 0.64, P, 0.001 from t

statistic)), WRF50 (r¼ 0.50, P, 0.001) and WRF10 (r¼ 0.42,
P¼ 0.01). However, there was no correlation between obser-
vations and proportional error for NNRP (r¼ –0.20, P¼ 0.24),
WRF50 (r¼ –0.24, P¼ 0.41) or WRF10 (r¼ –0.05, P¼ 0.77).

The station-averaged bias for SFFDI for NNRP is relatively
low at 40, compared with 967 forWRF50 and and 381 forWRF10

(Table 3). However, this masks a range of large positive and

negative biases inNNRP, as shown by theRMSE (1118).WRF10

has the lowest RMSE (909) and WRF50 the highest (1348).

Days per year with FFDI above 50

Fig. 3 and Table 2 show days per year with FFDI above 50. As
expected based on the results for theSFFDI, the number of days

where FFDI exceeds 50 also shows a strong gradient from the
coast to inland (Fig. 3a). Near the coast, the observations point
mainly to 0.5–2 days per year with FFDI exceeding 50, with this
increasing to more than 12 inland. NNRP captures some of the

gradient, but consistently underestimates values along the east
and south-east coasts, and seriously overestimates the value at
Birdsville (Fig. 3b).WRF50 andWRF10 capture well the overall

pattern of the observations (Fig. 3c, d ). The difference between
WRF50 and the observations (Fig. 3f ) shows seven stations
where the model is within�0.5 days per year. AlthoughWRF50

tends to underestimate this measure near the coast, the overall
simulation appears close to the observations. A similar result is
apparent forWRF10; there are nine stations within�0.5 days per
year of the observations, elsewhere the model tends to be closer

to the observations than forWRF50. BothWRF simulations yield
more overestimates of days per year over 50 than did NNRP.
The observed values of days per year with FFDI over 50 are

positively correlatedwith the absolute error for NNRP (r¼ 0.77,
P, 0.001) and WRF10 (r¼ 0.52, P, 0.001), but not WRF50

(r¼ 0.27, P¼ 0.12). Proportional error is correlated with

observed values for NNRP (r¼ –0.34, P¼ 0.05), but not for
WRF50 (r¼ –0.29, P¼ 0.09) or WRF10 (r¼ –0.22, P¼ 0.21).

NNRP has a slight negative bias on average across all stations

(�0.11; Table 3) in the simulation of the number of days where
FFDI exceeds 50. On average WRF has a positive bias (0.38 for
WRF50 and 0.55 for WRF10). As with annual cumulative FFDI,
the low mean bias of NNRP relative to WRF masks one

particularly large positive bias (Birdsville, 39) and a range of
negative biases, such that the RMSE for NNRP is 7.08, com-
pared with 3.27 for WRF50 and 3.64 for WRF10.

FFDI skill score

To assess the models more generally, skill scores were calcu-
lated based on the overlap of the PDF (Fig. 4 and Table 4).

Sample PDFs are shown for two stations for which WRF10 had
high skill scores (Fig. 5; see Supplementary material Fig. S1 for
WRF50 and Fig. S2 for NNRP). Fig. 5 also shows the insensi-

tivity of skill score to errors in rare values (see Methods). The
station-averaged skill scores were 85.7 for NNRP, 85.4 for
WRF50 and 91.2 forWRF10. AlthoughWRF50 andNNRPdisplay

similar performance overall, WRF50 (Fig. 4b) has two fewer
stations in the lowest skill score bin than does NNRP (Fig. 4a),
and one more in the highest bin. In contrast, WRF10 (Fig. 4c)
clearly captures the observed PDF of FFDI better than does

either NNRP or WRF50. Compared to WRF10, WRF50 does rel-
atively poorly along the southern coast (,85) and in inland areas
this remains ,90. WRF50 does capture the observations along

the east coast verywell inmost cases.WRF10 shows a significant
improvement over WRF50 (Fig. 4c). WRF10 skill scores along
the south coast increase to .95. There is a small reduction in

skill scores along parts of the east coast. Themajor improvement
is further inland where the skill score improves by 5–10 over

Table 4. FFDI skill scores for the NNRP, WRF 50 km (W50) and

WRF 10 km (W10)

Station FFDI skill score

NNRP W50 W10

Adelaide 81 76 93

Amberley 72 96 91

Bendigo 91 80 92

Birdsville 82 86 88

Bourke 92 84 90

Brisbane 90 94 81

Broken Hill 76 68 75

Canberra 85 95 97

Casino 85 83 95

Charleville 82 89 95

Cobar 94 85 93

Coffs Harbour 96 92 86

Dubbo 97 86 94

Emerald 71 82 87

Hay 88 72 80

Laverton 84 85 99

Lismore 92 90 86

Melbourne 85 89 97

Mildura 89 83 89

Miles 73 85 94

Moree 78 81 89

Mount Gambier 82 86 96

Nhill 90 82 94

Nowra 96 96 95

Omeo 83 83 97

Orbost 79 75 98

Renmark 87 83 86

Richmond 86 97 99

Sale 85 83 97

Sydney 95 87 87

Thargomindah 89 85 90

Tibooburra 85 83 88

Wagga 88 85 97

Wilcannia 85 84 90

Williamtown 87 97 88
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WRF50 such that only one station has a skill score ,80 in con-
trast to 4 in WRF50.

What causes WRF errors in average and extreme FFDI?

The Improvement metric (see Methods) demonstrates which
variables contribute to the errors in the WRF-derived FFDI
values. Table 5 shows the results forSFFDI for bothWRF50 and

WRF10, with stations ranked by proportional error. Where
the proportional error is,0.05 (that is, WRF is within 5% of the
observations) we have not colour coded the outcomes on the
grounds that WRF is likely within observational error without

implementing any corrections using the observations. Table 5
shows that substituting drought factor or temperature does not
lead to significant improvements in WRF50. The main effect is

caused by replacingWRF’s simulated relative humiditywith the
observed humidity, suggesting that there is a systematic dif-
ference between theWRF50 and observed humidity that strongly

affects the derived FFDI. A similar result is shown for WRF10.

Although substituting each of DF, T and V does contribute
improvements, the only systematic substitution that has a large

effect is humidity. Table 6 shows the equivalent result for FFDI
days over 50. In this case, it is not the substitution of humidity
that contributes most to an improvement of the simulated FFDI,

rather it is the substitution of wind speed.
Tables 5 and 6 demonstrate that different components of the

FFDI contribute to different measures of WRF’s ability to

simulate FFDI. The SFFDI errors in WRF50 and WRF10 are
largely determined by differences between the observed and
simulated relative humidity. The errors in simulating days over
50 are largely determined by differences between the observed

and simulated wind speed. Tables 5 and 6 also show stations
where substituting observed values of each quantity degrades
the WRF-derived FFDI. This is counterintuitive but is likely

related to a physical consistency inWRF between the simulation
of each variable, which leads to an accurate simulation of FFDI
inmany stations. Removing one of these variables and replacing

it with an observed quantity causes physical inconsistencies,
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Fig. 5. Probability density functions (PDFs) of FFDI at two stations for which WRF 10 km has a high skill score. Right hand side excludes values

below 25, showing relative insensitivity of skill score to errors in rare values.
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which degrades themodel’s performance in the resultingmetric.

In some cases, however, a markedly decreased improvement
arises when relatively large positive and negative biases in
multiple variables balance each other out. At Moree for exam-

ple,WRF50 simulates 3.6 days per year with an FFDI above 50,
compared with 3.2 actually observed. Substituting observed
wind speed and relative humidity changes the respective

WRF50 value to 5.6 and 1.7, because negative and positive
biases in extreme values of these variables no longer cancel each
other out.

What causes WRF errors in FFDI skill score?

To explore the causes of remaining weaknesses in WRF’s
capacity to capture the overall distribution of FFDI we explored

the performance of the model in simulating each of its compo-
nent variables using the PDF-based skill score. Fig. 6a shows
that WRF50 captures well the drought factor across the region

with most stations exceeding 80. Fig. 6b shows the WRF50

simulation of temperature. The model is outstanding over all
regions and it is unlikely that remaining errors are associated
with weaknesses in simulating FFDI. Fig. 6c shows the wind

speed and Fig. 6d shows humidity. Clearly, for both wind and
humidity WRF50 simulates the distribution poorly compared
with the drought factor or temperature. Along the east coast and

inlandwind speed is capturedwith a skill score frequently below
73. A similar result is clear for relative humidity, although it is
simulated slightly better than wind by WRF50. Interestingly,

although the station-averaged FFDI skill scores for WRF50 and
NNRP are almost identical, WRF50 has a higher station-
averaged skill score than does NNRP for each variable
(Table 3): drought factor (88.9 v. 81.8), temperature (91.6 v.

85.4), wind speed (74.1 v. 65.0) and relative humidity (79.8 v.

79.0). It follows that to some extent, theWRF50 errors reinforce
each other, the NNRP errors cancel each other out, or both.

Table 5. Effect of substituting in each of the observed variables on WRF error in annual cumulative FFDI

Stations are arranged in reverse order of proportional error. See Methods for definition of improvement. Dark grey shading shows improvement .0.7, grey

shows improvement between 0.3 and 0.7, no shading shows improvement between�0.3 and 0.3 and light grey shading shows improvement below�0.3 (i.e. an

increase in error). Stations where WRF10-modelled FFDI is within 5% of the observed value have been italicised. Absolute error is shown for reference

Station Proportional error Absolute error Improvement (WRF 50 km þ observed) Improvement (WRF 10 km þ observed)

DF T V H DF T V H

Hay 0.66 �2203 0.25 �0.11 0.07 0.49 �0.5 �0.96 �1.5 0.48

Broken Hill 0.65 �2892 �0.29 0.14 0.39 0.63 0.59 0.56 0.17 0.82

Coffs Harbour 0.41 474 0.15 0.02 �0.02 0.61 �0.09 �0.17 �0.15 0.54

Williamtown 0.38 730 �0.16 �0.24 �0.36 0.84 �0.35 �0.95 �1.41 �0.32

Lismore 0.34 586 �0.12 �0.03 0.16 0.74 �0.21 �0.14 0.24 0.73

Sydney 0.32 605 �1.24 �1.19 �1.57 0.1 0.32 0.37 0.41 0.92

Brisbane 0.31 567 0.09 0.04 0.16 0.69 0.05 �0.06 0.27 0.65

Renmark 0.27 �1416 �2.19 �2.83 �1.74 0.46 �1.29 �2.01 �1.24 0.97

Bendigo 0.24 �675 0.38 0.26 0.21 0.56 0.82 0.78 0.42 0.73

Emerald 0.24 �1121 �0.02 �0.03 �0.07 0.62 �0.37 �0.47 �0.3 0.8

Mildura 0.24 �1248 �0.08 �0.08 0.27 0.58 �0.41 �0.35 0.41 0.54

Bourke 0.23 �1313 �0.31 �0.4 �1.21 0.83 0.4 0.36 0.53 0.87

Moree 0.2 �822 �0.02 �0.1 �0.29 0.94 �0.27 �0.48 �0.82 0.71

Mount Gambier 0.19 345 �0.12 �0.06 �0.19 0.95 �0.15 �0.18 �0.09 0.95

Nowra 0.18 321 0.08 �0.01 0.34 0.58 0.04 �0.07 0.4 0.51

Wilcannia 0.18 �1151 �0.36 �0.16 �0.6 0.99 �0.53 0.32 �1.69 �0.06

Amberley 0.16 509 0.69 0.51 0.22 0.85 0.43 0.4 0.23 0.91

Thargomindah 0.16 �1155 �1.19 �0.64 �2.25 0.75 0.92 0.59 0.53 0.26

Tibooburra 0.16 �1167 0.08 0.04 �0.27 0.82 0.01 �0.03 �0.05 0.68

Casino 0.15 336 �0.12 �0.13 0.06 0.71 �0.3 �0.55 0.02 0.76

Cobar 0.14 �690 0.2 0.03 �0.21 0.71 0.18 �0.11 �0.4 0.79

Dubbo 0.13 �461 �0.12 �0.06 �1.04 0.95 0.58 0.62 0.94 0.59

Miles 0.12 �480 0.27 �0.06 �0.15 0.64 �0.14 �0.54 �0.21 0.53

Melbourne 0.11 267 �5.6 �1.39 �5.33 �2.46 0.67 0.42 0.88 0.68

Nhill 0.11 �421 �0.2 �0.07 �0.13 0.66 �42 �37 �17 �8.15

Adelaide 0.1 �289 �0.07 �0.06 �0.11 0.67 �58 �46 �43 �36

Sale 0.09 149 �0.04 �0.09 �0.16 0.89 �0.05 �0.09 0.09 0.71

Charleville 0.06 �366 0.94 0.92 0.92 0.97 �19 �27 �16 �14

Laverton 0.05 91 0.14 �0.06 �0.35 0.28 0.88 0.89 �0.45 0.87

Birdsville 0.04 �413 20.53 20.3 22.39 0.36 0.46 0.33 0.77 0.41

Wagga 0.03 �117 20.07 20.07 0.28 0.59 20.16 20.19 0.35 0.59

Canberra 0.02 55 20.01 0 0.08 0.69 20.08 20.16 0.15 0.69

Omeo 0 6 0.16 20.07 20.16 0.69 21.23 21.55 22.12 0.97

Orbost 0 3 20.01 20.08 20.11 0.92 20.16 20.23 20.11 0.97

Richmond 0 7 0.5 0.49 0.19 0.4 0.24 0.26 0.56 0.63
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The improvement in skill score in capturing the drought

factor using WRF10 is only clear at several stations in the
southern part of the domain (Fig. 7a). Elsewhere, the improve-
ments inWRF10 are incremental, but no station is captured with

a skill score of less than 85. In effect, the drought factor is
simulated very well inWRF50 and because of this only a handful
of stations are improved inWRF10. Similarly, there is incremen-

tal improvement in simulating temperature (Fig. 7b). Indeed, at
no station is either temperature or drought factor captured with a
skill score of ,80 and in most cases values exceed 90. Weaker
performance forWRF10 is apparent for wind speed, with almost

identical results toWRF50 (Figs 6c, 7c). In contrast, humidity is
improved considerably in WRF10 such that there are only five
stations with skill scores ,80 in WRF10, in contrast to 17 in

WRF50. And although there are only four stations over 90 in

WRF50, there are eight in WRF10.
WRF50 and WRF10 have very similar RMSE values overall

for drought factor (station-averaged RMSE 2.6 and 2.5); indi-

vidual station data not shown) and temperature (2.3 and 2.2). In
contrast,WRF10 clearly improves overall onWRF50 in terms of
wind speed (8.1 compared with 10.6) and relative humidity

(13.0 compared with 18.7).

Summarising the skill score difference between WRF50
and WRF10

The differences between WRF50 and WRF10 in simulating the
distribution of each variable are summarised in Fig. 8. Points
above the y¼ x line indicate better skill score inWRF10, whereas

Table 6. Effect of substituting in each of the observed variables on WRF error in days per year with FFDI over 50

Stations are arranged in reverse order of proportional error. See Methods for definition of improvement. Dark grey shading shows improvement .0.7, grey

shows improvement between 0.3 and 0.7, no shading shows improvement between�0.3 and 0.3 and light grey shading shows improvement below�0.3 (i.e. an

increase in error). Stations where WRF10 modelled FFDI is within 5% of the observed value have been italicised. Absolute error is shown for reference.

inf, infinity

Station Proportional error Absolute error Improvement (WRF 50 km þ observed) Improvement (WRF 10 km þ observed)

DF T V H DF T V H

Hay 7.60 �7.6 0.2 0.18 0.66 0.91 0.08 0.16 0.78 0.59

Broken Hill 4.67 �11.4 0.23 0.23 0.27 0.98 0.15 �0.06 0.71 0.69

Miles 1.93 �1.16 0.51 0.27 0.58 0.71 0.35 0.13 0.98 0.9

Bourke 1.01 �6.84 0.05 0.26 0.33 0.93 �0.12 0.12 0.84 0.77

Coffs Harbour 1.00 0.24 0 0 0.2 �0.2 0 0 0.17 0

Sydney 0.94 1.32 0 0.03 0.43 0.06 0 �0.03 0.67 �0.06

Mount Gambier 0.93 1.6 0 0.02 0.79 0.07 0 0.02 0.23 0.16

Adelaide 0.93 1.72 �0.36 0.55 0.83 0.19 0.02 0.1 0.65 0

Brisbane 0.88 0.6 0.15 0.15 0.16 0.46 0.33 0.07 0.8 0.2

Williamtown 0.88 1.44 0 0 0.28 0.1 �0.03 0 0.19 0.08

Orbost 0.80 0.16 0 0 0.2 0.2 0.25 0 0.5 0

Nowra 0.79 0.76 �0.05 0 0.24 0.1 0.05 0.05 0.49 0.11

Bendigo 0.74 �1.36 0.47 0.91 �2.11 �0.75 0.3 0.44 0.55 0.73

Melbourne 0.71 2.32 0 �0.03 0.72 0.07 0.03 �0.02 0.71 0.09

Casino 0.65 1.24 0 0 0.27 �0.02 �0.03 0.1 0.64 �0.33

Sale 0.64 0.36 �0.18 �0.18 0.98 0.46 �0.22 0 0.9 0.12

Emerald 0.58 �0.84 0.04 �0.11 �0.9 0.37 0 0 �0.07 0.5

Mildura 0.50 �4.24 �1.59 �1.9 �4.48 �4.12 0.26 0.36 0.3 0.75

Laverton 0.48 0.8 0.03 �0.03 0.98 �0.03 0.4 �0.1 0.8 �0.3

Amberley 0.44 0.76 0 �0.03 0.38 0.09 0 0.11 0.84 0.29

Canberra 0.43 0.48 �0.18 0.05 0.55 �0.14 �0.08 0.17 0.5 �0.42

Wagga 0.41 2 �0.31 �0.06 0.46 �0.39 0.06 �0.02 0.74 �0.02

Wilcannia 0.40 �4.6 0.25 �0.18 �1.82 �0.51 �0.01 �0.21 �0.05 0.61

Renmark 0.39 �4 �0.16 �0.05 0.3 �0.89 0.13 0.17 0.56 0.75

Birdsville 0.35 10.48 �0.04 0.7 �3.08 �3.74 0.01 0.52 0.55 �0.54

Richmond 0.33 0.56 �0.05 0.03 0.54 0.14 0.14 0 0.79 �0.28

Thargomindah 0.29 0.08 0.18 0.06 0.58 0.96 0.08 �0.16 0.94 0.98

Lismore 0.29 �4.48 0 0 0.17 �0.17 �0.5 �0.49 0.53 �1.42

Cobar 0.28 �1.52 0.1 �0.21 0.72 0.83 �0.55 �0.47 0.39 0.29

Nhill 0.17 0.76 �0.71 �0.25 �0.5 �1.09 0.42 0.44 0.42 0.05

Moree 0.15 �0.48 �0.68 �0.18 �4.97 �2.79 0.92 0.91 �1.27 �0.75

Charleville 0.14 1.04 0.9 0.98 �0.35 0.1 0.19 �0.12 �0.37 �0.42

Dubbo 0.10 0.28 0.16 0.22 �1.42 �1.57 �0.43 0.18 �3.39 �4

Tibooburra 0.02 0.32 20.22 0.95 217.12 215.36 20.41 23.14 20.82 210.19

OmeoA n/a n/a n/a –inf –inf n/a 0 21.05 21.24 1

AThe observed value at Omeo is 0, so proportional error cannot be calculated.
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points below the line indicate better skill score in WRF50. For

FFDI (Fig. 8a), WRF10 outperforms WRF50 in most cases,
usually by a small margin but sometimes by over 10 points.
There are, however, five stations at whichWRF50 records higher

skill scores than does WRF10. These stations are Amberley,
Brisbane, Lismore, Coffs Harbour and Williamtown; all are
found along the middle to upper eastern seaboard. Skill scores

for drought factor (Fig. 8b) cluster more closely to the line y¼ x

than for FFDI, but there remain several stations at whichWRF10

perform considerably better than doesWRF50. Little is gained by
moving from 50- to 10-km grid spacing when simulating the

distribution of maximum temperature (Fig. 8c) or wind speed
(Fig. 8d ). Skill scores for both variables are fairly tightly and
evenly clustered around the line y¼ x. In contrast, the pattern of

relative humidity skill scores is quite similar to FFDI (Fig. 8e).
There is a clear and often large improvement in humidity skill

scorewhenmoving from50- to 10-kmgrid spacing, but there are

also five stations – the same as for FFDI – where WRF10 per-
forms worse than does WRF50. In summary, decreasing WRF
grid spacing typically leads to either an improvement or no

change in skill score. At a few stations, however, WRF’s sim-
ulation accuracy actually degrades when grid spacing is
decreased.

Discussion and conclusions

This study provides strong evidence for the first time of a
regional climate model’s capacity to simulate fire weather over

multiple decades. WRFwas evaluated over a period of 25 years,
covering a much broader range of weather conditions than had
previous studies, which assessed periods of days to weeks. At

both 10- and 50-km grid spacings WRF is able to capture large
spatial gradients in average and extreme FFDI, as well as

73 80 85 90 93 96

(a) Drought factor

WRF 50 km variable skill scores

(b) Temperature

(d ) Relative humidity(c) Wind speed

Fig. 6. WRF50 kmvariable skill score: (a) drought factor, (b) temperature, (c) wind speed, (d ) relative humidity. Bin

sizes are nonlinear and have been chosen to maximise representation in each bin. Owing to their proximity, there is

overlap between the markers for Laverton and Melbourne, Sydney and Richmond, Casino and Lismore, and Brisbane

and Amberley.
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reproduce the overall distribution of FFDI. The major biases in
WRF are underestimates of FFDI along the east coast and
overestimates at hot and arid inland locations. These over-

estimates apply more to average than extreme FFDI values and
are mitigated partly by the known underestimation of observed
average FFDI values (see Methods).

There are several sources of errors in the WRF simulations.
The boundary conditions (NNRP) and deficiencies in the
representation of physical processes in the model both contrib-

ute to the errors. The fact that the NNRP has similar spatial
patterns of error indicates these boundary conditions are a
dominant source of error. The biases in temperature and precip-
itation found by Evans and McCabe (2010) influence results

here, but only negligibly so compared with the other two
variables that comprise FFDI. Based on the improvement scores
from substituting in observed variables to recalculate FFDI,

relative humidity is the largest driver of errors in annual

cumulative FFDI, whereas wind speed has the most influence
on errors in extreme FFDI values. Given that FFDI is more
sensitive to changes in wind speed than it is to changes in the

other variables (Dowdy et al. 2010) and that FFDI is an
exponential function, the influence ofWRF errors in wind speed
will be disproportionately high at the upper extremes of the

distribution. Conversely, relative humidity is very low on the
highest FFDI days, so errors must be proportionately larger
to have an equivalent effect on FFDI. Our results do, how-

ever, demonstrate the value of separately examining measures
of central tendency (in this case the annual cumulative
FFDI) and measure of extreme values (days per year with FFDI
above 50).

It is noteworthy that where the observations are more
consistent (temperature and drought factor, which is derived
from precipitation)WRF performs very well. As noted by Evans

and McCabe (2010), WRF improves almost all temperature and

73 80 85 90 93 96

(a) Drought factor

WRF 10 km variable skill scores

(b) Temperature

(d ) Relative humidity(c) Wind speed

Fig. 7. WRF10 kmvariable skill score: (a) drought factor, (b) temperature, (c) wind speed, (d ) relative humidity. Bin

sizes are nonlinear and have been chosen to maximise representation in each bin. Owing to their proximity, there is

overlap between the markers for Laverton and Melbourne, Sydney and Richmond, Casino and Lismore, and Brisbane

and Amberley.
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precipitation statistics relative to those derived from the NNRP
reanalysis data, which supplied the lateral boundary conditions
for their and our study. However, for wind speed and relative
humidity, forwhich inhomogeneity in observational datasets is a

greater issue than for temperature and rainfall (Jakob 2010;
Lucas 2010b), there are larger differences between the model
and the observations. A significant fraction of these errors are
likely associated with model error, but some fraction is very
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probably observational errors. We cannot determine the relative
fractions, but an exploration of how well WRF captures wind

and relative humidity at those stations that are particularly
reliable would be worthwhile.

The performance of WRF run at 50-km grid spacing, with

respect to the NNRP reanalysis dataset that provided the lateral
boundary conditions to drive the WRF simulations, depends on
the measure used. Owing to the introduction of a positive bias
overall in theWRF simulation, NNRP averages smaller errors in

annual cumulative FFDI. WRF performs better than NNRP for
extreme values and simulates the overall distribution of each of
the variables underlying FFDI better than does NNRP. WRF

also better captures lower values (in average and extreme FFDI).
In contrast, WRF run at 10-km grid spacing represents a clear
improvement over NNRP and in most cases WRF at 50 km,

especially in the south-east corner of continental Australia. The
twoWRF simulations perform similarly with respect to extreme
FFDI values, with much smaller errors in variance than for
NNRP; WRF at 10 km also improves upon NNRP in simulating

variation in average values. At a small number of locations along
the east coast WRF performance actually degrades with finer
grid spacing. This is likely because of introduced deficiencies in

simulating relative humidity at these locations. Any errors in
wind speed simulation internal toWRF are essentially unaffected
by decreasing the grid spacing of the model from 50 to 10 km.

The improvement ofWRFat finer grid spacing appears unrelated
to its greater proximity to weather stations; there is no correla-

tion between error and distance from model grid cell centre for
either WRF at 10 km or WRF at 50 km grid spacing (data not
shown). Whether the improvement in model performance war-

rants the additional computational resources required for high-
resolution model runs depends on the location and the needs of
users of the data.

An advantage of high resolution climate models over station-

based meteorological datasets is their comprehensive spatial
coverage. WRF can be used to generate estimates of FFDI risk
across the entire landscape rather than just at station locations,

which may provide novel information to fire managers. Figs 9
and 10 respectively show WRF maps of average annual cumu-
lative FFDI and average days per year with FFDI above 50. The

maps also show the observed values at each station for reference.
For bothmetrics the areas of largest fireweather risk are found in
the north-east of the domain, which is dominated by grassland
and desert, rather than forest. There is a clear gradient of

increasing risk from the coast inwards, which is stronger in
the south-west than along the east coast. The full landscape
coverage of regional climate models such as WRF can provide

important information that a sparse station network cannot. For
example, Warrumbungle (31.38S, 149.18E) is surrounded by
areas with between 1.5 and 6.5 days per year of FFDI above 50,

24�S

26�S

28�S

30�S

32�S

34�S

36�S

38�S

140�E 144�E 148�E 152�E

1300

1600

1900

2200

2500

3200

3900

4600

5500

6400

7300

9000

Annual FFDI

Fig. 9. WRF 10 kmmap of mean annual cumulative FFDI (1985–2009).Markers show observed

values. Small black markers show examples of places where days per year with FFDI over 50

differs substantially from the surrounding area.
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whereas much of it records less than 1 day per year (Fig. 10).
Conversely, Willaura (37.68S, 142.78E) records approximately

double the number of days above 50 than in much of the
surrounding area. Cavan, Mannanarie and Arcadia Valley are
other towns with extreme FFDI values that are considerably

different to their surrounds. When taken into account with other
wildfire risk factors, these differences in fire weather conditions
have the potential to influence a range of decisions in fire

management, including prioritisation of prescribed burns and
guidelines for housing construction and setback distances
between buildings and vegetation.

WRF simulates observed FFDI quite well and does this

despite the additional constraint of matching grid-based values
with point-based observations. WRF run with 50-km grid
spacing does not consistently outperform the reanalysis data,

improving in some areas but not in others. The fire weather
derived from WRF with 10-km grid spacing is generally closer
to observations than the reanalysis across the full range of

evaluation metrics used here. This suggests it is a very useful
tool for modelling fire weather over the entire landscape of
south-east Australia. The evaluation of WRF against multi-
decadal observations also provides a useful reference for any

future projections of FFDI derived from WRF. Further studies
evaluating RCMs against long-term observational datasets will

provide more opportunities to judge the relative merit of this
simulation.
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Fig. S1. Same as Fig. 5, but with WRF 50 km instead of WRF 10 km.  
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Fig.S2. Same as Fig. 5, but with NNRP instead of WRF 10 km. 
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Chapter 5 Summary  

Evaluation of a regional climate model fire weather simulation 

The evaluation of WRF against multidecadal station-based observations of FFDI suggests it is a 

very useful tool for modelling fire weather over southeast Australia.  WRF simulated the main 

features of the FFDI distribution and its spatial variation, with an overall positive bias. Errors in 

WRF simulating mean FFDI conditions appear connected with errors in simulating relative 

humidity. In contrast, errors in simulating extreme FFDI conditions are more linked with errors 

in wind simulation. Improving the resolution of WRF from 50 km to 10 km generally improved 

model performance. A fuller evaluation of WRF’s skill in simulating FFDI would be facilitated 

by an improved observational FFDI data-set. Ideally this would be grid-based, and would 

incorporate longer term and higher quality records than those available at the time of writing 

Chapter 5.  

Based on the evidence presented in Chapter 5, WRF is well placed to add value to GCM 

projections of fire weather in Australia. A different way of adding further value to projections of 

future bushfire risk is to expand the analysis from fire weather conditions to include one of the 

other major drivers of bushfire incidence: fuel load, fuel moisture or ignitions. Chapter 6 aims 

to lay the foundation for such an expansion, by developing a model capable of projecting 

changes in bushfire fuel load. 
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Chapter 6 Overview  

Simulation of fuel load with a land surface model 

The previous chapters dealt with a single major driver of bushfire risk: fire weather conditions. 

Chapter 6 lays the foundations for a broader evaluation of future bushfire risk by examining a 

second major driver, fuel load. The meteorological variables required for assessing future 

changes in fire weather conditions are generally directly available as output from global and 

regional climate models. In contrast, simulating changes in biomass growth or fuel load requires 

a significant transformation of climate model data. Climate models used in CMIP5 do not 

simulate fuel load and this is not a variable reported in simulations assessed by the IPCC’s Fifth 

Assessment Report. Simulating fuel loads is complicated by the need to factor in the potential 

response of vegetation to changes in both climate and atmospheric CO2 concentration.  

The work described in Chapter 6 aims to address this challenge by exploring the use of net 

primary production (NPP) as a fuel load proxy. NPP is routinely simulated by land surface 

models (LSMs), which incorporate impacts of both climate and atmospheric CO2. The land 

surface model used here is CABLE (Community Atmosphere Biosphere Land Exchange), 

which has an advantage over other process-based estimates of fuel load, as it provides the lower 

boundary conditions for the Australian Community Climate and Earth System Simulator 

(ACCESS), the Australian GCM used in numerical weather prediction and global 

intercomparisons.  

The following study has been submitted to a peer reviewed journal and is reproduced as 

submitted:  

Clarke H, Pitman AJ, Kala J, Carouge C, Haverd V (submitted) Multidecadal wildfire fuel load 

over Australia simulated with a land surface model. International Journal of Wildland Fire. 

Author contributions 

I led this project. The project was conceived over a long period of time through discussions 

between Andy Pitman (AP; my PhD supervisor), Vanessa Haverd (VH) and myself. The 

experimental design was led by myself and AP, incorporating substantial contributions from 

Jatin Kala (JK), Claire Carouge (CC) and VH. BIOS2 data was supplied by VH. I led the 

modelling, with regular input from JK and CC. I led the analysis and prepared the figures, 

incorporating comments from all other coauthors. I drafted the manuscript and incorporated 

comments from the other coauthors.  
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Abstract 1	  

This study explores the use of net primary production as a proxy for wildfire fuel load using a 2	  

process-based land surface model. Fuel load is simulated over the Australian continent from 3	  

1980 to 2008 and ranges from 304 to 417 g C m-2 annually in temperate areas of Australia, 67 4	  

to 101 g C m-2 in grassland regions and 175 to 263 g C m-2 in subtropical areas. Annual fuel 5	  

load anomalies were robust to variation in key model parameters and no simulations showed 6	  

any statistically significant trend. We compared the relative contributions of fire weather and 7	  

fuel load to variability in mean fire rate of spread in temperate regions, finding that most 8	  

interannual variability is driven by fire weather rather than load. We show that net primary 9	  

productivity can be used as a proxy to estimate fuel load, and that combining this simple 10	  

proxy with a process-based model of net primary production allows a range of experiments to 11	  

be conducted, including estimates of future changes in load. Although our results are specific 12	  

to CABLE, the broad methodology could to applied to other land surface models. 13	  

 14	  

 15	  

16	  
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Introduction 1	  

Net primary productivity (NPP), the net flux of carbon from the atmosphere into green plants, 2	  

is a key ecosystem parameter, representing plant growth and biogeochemical cycling (Ito 3	  

2011). NPP has been equated to litter production (Matthews 1997) and been found to be 4	  

approximately linearly correlated to standing biomass (Kindermann et al., 2008). In the 5	  

wildfire context, these links provide a rationale for the use of NPP as a proxy for vegetation 6	  

biomass i.e. fuel (Hely et al., 2004; Roberts et al., 2008; Moritz et al., 2012;). Plant biomass 7	  

in turn exerts a major influence on wildfire incidence, fire behaviour, burning emissions and 8	  

the carbon cycle (Archibald et al., 2009; Bradstock et al., 2010). The term fuel load is more 9	  

commonly used than biomass when discussing the influence of vegetation on wildfire risk, 10	  

but the two are not necessarily synonymous. In forests, for example, fuel load is often defined 11	  

as a subset of biomass: surface litter (the foliage and twigs found on the forest floor), and 12	  

possibly also near surface and elevated fuels, ladder fuels, canopy fuels and coarse woody 13	  

debris (Watson 2009). Alternative classifications emphasise different fuel class sizes, which 14	  

ignite and burn at different rates (Deeming et al., 1977). Whatever the definition, if NPP can 15	  

be related to fuel load then it can be used as a surrogate in modelling it.  16	  

 17	  

There is already evidence of changes in NPP over time, raising questions of whether there 18	  

have been associated changes in fuel load. At a global level there is high confidence in 19	  

increases in terrestrial NPP relative to the preindustrial era, but less agreement about trends 20	  

over recent decades (Settele et al., 2014). Satellite observations over Australia from 1981 to 21	  

2006 show	  that	  nondeciduous	  perennial	  vegetation types have increased by 21% (Donohue 22	  

et al. 2009). Deciduous, annual and ephemeral vegetation types decreased by 7% over the 23	  

same period, although the result was not statistically significant. In a modelling study 24	  

constrained by multiple observation types, NPP over Australia between 1990 and 2011 was 25	  
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found to be higher than almost every other 22-year period since 1900 (Haverd et al. 2013b). 1	  

High continental NPP values were due to high NPP in the Tropics, Savanna and Desert, and 2	  

were partially offset by below-median NPP in Mediterranean, Cool Temperate and Warm 3	  

Temperate regions. A common factor of these modelled increases (decreases) in NPP was 4	  

above (below) average rainfall in the area. The same study showed that rising CO2 increased 5	  

continental NPP by 13% compared with steady preindustrial forcing. 6	  

 7	  

There are many methods available for modelling fuel load and NPP, both empirical and 8	  

process-based. Process-based approaches to fuel load dynamics are incorporated in several 9	  

major classes of models, including dynamical global vegetation models (DGVMs), landscape 10	  

fire succession models and biogeochemical models. DGVMs in particular are widely used to 11	  

model ecosystem process feedbacks and climate change impacts on terrestrial vegetation 12	  

(Sitch et al., 2008; Scheiter and Higgins, 2009).	  While these models may not use NPP as a 13	  

fuel load proxy per se, they allocate NPP into multiple load or litter pools based on the 14	  

balance of litterfall and decomposition (e.g. Wang et al. 2010, Keane et al. 2011). Litterfall is 15	  

typically linked to phenology and primary productivity, while decomposition is determined 16	  

by a combination of heat and moisture. Although process-based approaches contain a range 17	  

of biases and uncertainties (e.g. Sitch et al., 2008; Quillet et al., 2010; Ito 2011; Kelley et al., 18	  

2013), a key advantage is that they can incorporate the effects of both climate and carbon 19	  

dioxide fertilisation on vegetation growth, which remains a key uncertainty in the response of 20	  

terrestrial ecosystems to climate change (Donohue et al., 2013; Settele et al., 2014).  21	  

 22	  

Land surface models (LSM) provide a process-based alternative to the models listed above. 23	  

The major Australian LSM is the Community Atmosphere Biosphere Land Exchange 24	  

(CABLE; Wang et al. 2011) model, a sophisticated LSM that simulates fluxes of heat, water 25	  
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and carbon. CABLE has been extensively evaluated (Abramowitz et al. 2008, Wang et al. 1	  

2011) and has been used at site-specific (Abramowitz et al. 2007), regional (Cruz et al. 2010), 2	  

and global (Pitman et al. 2011, Zhang et al. 2011, Lorenz et al. 2014) scales. Critically, 3	  

CABLE also provides the lower boundary condition for the Australian Community Climate 4	  

and Earth System Simulator (ACCESS) coupled climate model used in numerical weather 5	  

prediction (NWP) and global intercomparisons (Kowalczyk et al. 2013). The use of CABLE 6	  

in this context provides an advantage over other process-based models that provide explicit 7	  

measures of fuel load but are not routinely used for NWP or in Intergovernmental Panel on 8	  

Climate Change (IPCC) assessments.  9	  

 10	  

The goal of our study is to represent fuel load in CABLE, which, when operated within the 11	  

ACCESS coupled model, will provide valuable data on current and future changes in fuel 12	  

load. Three specific objectives are: 1) to determine a relationship between NPP and fuel load 13	  

using available data, 2) to use this relationship in CABLE to model recent fuel load in 14	  

Australia on a climatological timescale and 3) to estimate the uncertainty in simulated load 15	  

by varying key model parameters.  16	  

 17	  

Materials and methods 18	  

Our study has two parts (Figure 1). Part A aims to derive the relationship between fuel load 19	  

and NPP. In the absence of observations of both quantities at a sufficiently long time-scale 20	  

and over a range of ecosystem/vegetation types, the next best source of fuel load and NPP 21	  

data is from an ecosystems model, ideally one that has been constrained using observations. 22	  

The routine use of CABLE in Australia, including coupled to ACCESS and regional climate 23	  

models, provides our rationale for part B of our study, which aims to simulate fuel load in 24	  

CABLE by using the relationship derived in Part A.  25	  
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 1	  

Part A – Linking fuel load with NPP in BIOS2 2	  

BIOS2 model description 3	  

BIOS2 is a system for modelling the coupled energy, water and carbon balances of the 4	  

Australian continent at fine spatial (0.05°) and temporal (hourly) resolutions (Haverd et al. 5	  

2013a). BIOS2 is limited to the Australian continent and was not designed to be coupled to 6	  

the global ACCESS model. BIOS2 is partly based on the land surface model CABLE, but 7	  

with some important differences (see Part B for a description of CABLE). Instead of using 8	  

CABLE’s default soil process and carbon modules, BIOS2 uses the SLI soil model (Haverd 9	  

and Cuntz, 2010) and the CASA-CNP biogeochemical model (Wang et al. 2010). CASA-10	  

CNP allocates the carbon cycling through the terrestrial ecosystem into plant, litter and soil 11	  

pools. There are three litter pools: metabolic (easily broken down), structural (resistant) and 12	  

coarse woody debris. BIOS2 does not include fire so its litter pools should be considered 13	  

potential, rather than realised, fuel load. 14	  

 15	  

BIOS2 was run from 1990 to 2011 using meteorological forcing from the Bureau of 16	  

Meteorology’s Australian Water Availability Project data set (AWAP) (Grant et al. 2008, 17	  

Jones et al. 2009). BIOS2 simulations were constrained by observations of many variables 18	  

including streamflow, evapotranspiration, net ecosystem production and litterfall. BIOS2 has 19	  

been evaluated against a number of point-based observations of quantities related to fuel load 20	  

(Haverd et al. 2013a). When compared with 49 long-term above-ground fine litter 21	  

observations across different climate zones (Barrett 2001), BIOS2 has an r2 of only 0.1 and a 22	  

RMSE of 315 g C m-2. BIOS2 is better at predicting litterfall (r2 = 0.36), above-ground 23	  

biomass (r2 = 0.58) and a proxy for gross primary productivity derived from net ecosystem 24	  

production (r2 = 0.80). Despite these biases, the use of observational constraints along with 25	  
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the best available gridded observations for Australia i.e. AWAP, means the simulations by 1	  

BIOS2 are likely the best available estimates of quantities such as fuel load that are not 2	  

measured often enough or over a large enough sample, to provide a direct observational data 3	  

set.  4	  

 5	  

We define fuel load as fine litter, the sum of metabolic and structural litter pools (e.g. Wang 6	  

et al. 2010, Haverd et al. 2013a). Fires typically ignite in fuels found on the surface, and fine 7	  

litter is widely used as a measure of fuel load in Australia. BIOS2 divides vegetation cover in 8	  

each grid cell into persistent (mostly woody) and recurrent (mostly grassy) fractions based on 9	  

partitioning of remotely sensed estimates of the fraction of photosynthetic absorbed radiation 10	  

(fPAR; Haverd et al. 2013a). Figure 2 shows the mean annual fine litter from BIOS for a) 11	  

woody and b) grassy fractions. This is consistent with the expected distribution, namely that 12	  

woody fine litter is mostly along the southwest and southeast coast and in Tasmania, where 13	  

most of the evergreen broadleaf forests are found. Grassy fine litter is mostly within the 14	  

agricultural regions of the southwest and southeast wheat belts and parts of the northern 15	  

tropical savannas.  16	  

 17	  

To obtain the relationship between NPP and fuel load for BIOS2 we used the Pearson 18	  

product-moment correlation coefficient on annual NPP and fine litter for the period 1990 to 19	  

2011. We also compared BIOS2’s fine litter values with NPP values in the preceding year i.e. 20	  

lag-1 correlation, on the grounds that it should be on the order of one seasonal cycle before 21	  

NPP is translated into fine litter load. Given the strong correlation and lack of evidence for a 22	  

non-linear relationship (Supplementary Figure 1), fine litter was related to NPP using 23	  

ordinary least squares linear regression, with NPP taken as the independent variable. A linear 24	  

model was calculated for each model grid cell with a significant (p < 0.05) lag-1 correlation. 25	  
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To understand regional variation in model output, we use a modified Köppen climate 1	  

classification, which separates Australia into 6 mostly-contiguous and climatically similar 2	  

regions (Figure 3; Stern et al. 1999). The major Köppen zones are: equatorial, tropical, 3	  

subtropical, desert, grassland and temperate. A linear model was also developed for each of 4	  

these climate zones. Although one of the climate zones is called ‘grassland’, there is no 5	  

separation of woody and grassy fractions in this or any other climate zone in our analysis; in 6	  

all cases the combined pools are used.  7	  

 8	  

Part B – Simulating fuel load and fuel load uncertainty in CABLE 9	  

The CABLE model description 10	  

CABLE is a land surface model designed to simulate fluxes of energy, water, and carbon at 11	  

the land surface and can be run fully coupled to an atmospheric model within a global or 12	  

regional climate model (‘online’, e.g. Hirsch et al. 2014), or as an ‘offline’ model with 13	  

prescribed meteorology (e.g. Kala et al. 2014). CABLE is a key part of the Australian 14	  

Community Climate Earth System Simulator (ACCESS; see 15	  

http://www.accessimulator.org.au), a fully coupled earth system science model and 16	  

contributor to the Fifth Assessment Report (AR5) of the IPCC. The version used in this study 17	  

is CABLEv1.4b. 18	  

 19	  

In CABLEv1.4b, the one-layered, two-leaf canopy radiation module of Wang and Leuning 20	  

(1998) is used for sunlit and shaded leaves and the canopy micrometeorology module of 21	  

Raupach (1994) is used for computing surface roughness length, zero-plane displacement 22	  

height, and aerodynamic resistance. The model also consists of a surface flux module to 23	  

compute the sensible and latent heat flux from the canopy and soil, the ground heat flux, as 24	  

well as net photosynthesis. A soil module is used for the transfer of heat and water within the 25	  

http://www.accessimulator.org.au
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soil and snow, and an ecosystem carbon module based on Dickinson et al. (1998) is used for 1	  

the terrestrial carbon cycle. A detailed description of CABLE is provided by Wang et al. 2	  

(2011). CABLE, like most LSMs, uses plant functional types (PFTs), as opposed to the 3	  

partitioning of cells between recurrent and persistent vegetation as BIOS2 does. Our 4	  

implementation of CABLE uses fixed PFTs derived from the International Geosphere–5	  

Biosphere Programme (IGBP) land-use classification map.  6	  

 7	  

Simulations 8	  

CABLEv1.4b was used within the National Aeronautics and Space Administration Land 9	  

Information System version 6.1 (LIS-6.1; Kumar et al. 2006, 2008), a flexible software 10	  

platform designed as a land surface modeling and hydrological data assimilation system. A 11	  

grid resolution of 0.25° was utilized, covering continental Australia (including Tasmania). 12	  

The model was forced with meteorological data sourced from the Modern-Era Retrospective 13	  

Analysis for Research and Applications (MERRA) reanalysis (Rienecker et al. 2011) at 3-14	  

hourly intervals from 1980 to 2008. The forcing variables included incoming longwave and 15	  

shortwave radiation, air temperature, specific humidity, surface pressure, wind speed, and 16	  

precipitation. The MERRA reanalysis was bias corrected for precipitation following Decker 17	  

et al. (2013) using the AWAP gridded precipitation dataset. Monthly carbon dioxide 18	  

concentrations were prescribed using measurements from Baring Head, New Zealand 19	  

(Keeling et al. 2005). We omitted the first year of CABLE output as a spin-up period. Soil 20	  

moisture initialisation can take longer than one year in drier environments but these are not 21	  

the focus of our study. 22	  

 23	  

To estimate uncertainty in NPP from CABLE, and hence fuel load, we carried out a series of 24	  

sensitivity experiments using the upper, lower and middle estimates of three vegetation 25	  
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parameters that influence NPP (Supplementary Table 1). We refer to the set of simulations 1	  

resulting from these structurally distinct instances of CABLE as an ensemble. Globally, the 2	  

most important parameters in CABLE affecting gross primary production (GPP), and 3	  

therefore affecting NPP, are the maximum carboxylation rate (vcmax,	  the	  maximum ribulose-4	  

1,5-bisphosphate carboxylation rate of the leaves at the canopy top at a leaf temperature of 5	  

25°C) and Leaf Area Index (LAI, the total one-sided surface area of leaf per ground surface 6	  

area; Lu et al., 2013). vcmax partially determines the rate of photosynthesis and hence GPP and 7	  

thereby NPP and is estimated as a function of leaf nitrogen per unit leaf area. LAI affects 8	  

photosynthesis directly in the ecosystem carbon module, where it also affects GPP and to a 9	  

lesser extent autotrophic respiration. Finally, we varied the rooting depth (r). NPP is partially 10	  

dependent on soil moisture since transpiration cannot occur in the absence of water. Varying 11	  

r changes the amount of water available for transpiration and photosynthesis and therefore, 12	  

GPP and NPP. Root depths are not well known and therefore r remains a parameter that is 13	  

uncertain but important.  14	  

 15	  

We prescribe LAI using the maximum, mean and minimum ensemble members from Kala et 16	  

al. (2014). These are drawn from a 15-member ensemble, based on the Moderate Resolution 17	  

Imaging Spectroradiometer (MODIS) LAI product and gridded temperature and precipitation 18	  

observations, and designed to examine the influence of realistic interannual variations in LAI 19	  

on the surface energy and carbon balance in CABLE. We derive upper and lower estimates of 20	  

vcmax values from Kattge et al. (2009), but since their values did not match the default 21	  

CABLE values for each plant functional type exactly, we varied the CABLE values by the 22	  

ratio of standard deviation to mean values as shown in Table 3 of Kattge et al. (2009). Upper 23	  

and lower estimates for r were derived by varying default values by the standard deviation of 24	  

the default r values for all plant functional types (0.015). We use the key 1 = low, 2 = default 25	  
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(vcmax, r) or mean (LAI), 3 = high to describe our experiments. For example, L3V1R2 is the 1	  

ensemble member with a high LAI parameter value, a low vcmax parameter value and the 2	  

default r value.  3	  

 4	  

To frame changes in fuel load linked with NPP with changes in meteorological forcing we 5	  

examined the relative impact of load and weather in forested areas using rate of spread of fire 6	  

(McArthur 1967). The rate of spread (R, in km h-1) is defined as  7	  

 8	  

R = 0.0012 x F x L 9	  

 10	  

where F is the McArthur Forest Fire Danger Index (FFDI) and L is load in t ha-1. FFDI is 11	  

defined as 12	  

 13	  

 F =  2 × exp(-0.45 + 0.987logD + 0.0345H + 0.0338T + 0.0234U) 14	  

 15	  

where D is a drought factor (0–10), H is the relative humidity (%), T is the air temperature 16	  

(°C) and U is the wind speed at 10 m in the open (km h-1) (Noble et al. 1980). 17	  

 18	  

This provides a simple way of comparing the impact of changes in load and fire weather 19	  

conditions. We restrict our analysis to the temperate region, which contains the forest types in 20	  

which this rate of spread function was calibrated. Because fuel load is not a significant driver 21	  

of the rate of spread of grass fires, compared to fuel moisture and weather (Cheney et al. 22	  

1998, Sharples and McRae 2013), we make no comparison of the relative influence of load 23	  

and weather on grassland fire rate of spread. 24	  

 25	  
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Results 1	  

Part A – Linking fuel load with NPP in BIOS2 2	  

The correlation between fine litter and NPP from BIOS2 in the same year was not significant 3	  

in most of southern and central Australia (data not shown). In contrast, the lag-1 correlation 4	  

between fine litter and NPP was statistically significant (p < 0.05) for most of Australia, with 5	  

most correlation coefficients ranging from 0.6 to 0.95 (Figure 4, areas marked in white are 6	  

not statistically significant). The lag-1 correlation is weakest, and sometimes not significant, 7	  

in northern Australia, as well as some regions of southern central Australia. The areas with a 8	  

poor lag-1 correlation correspond closely to areas where the lag-0 correlation (i.e. between 9	  

fine litter and NPP in the same year) is significant and/or greater than the lag-1 correlation. 10	  

Lag-1 correlations were significant in each climate zone (Table 1) and were greater than 11	  

those between fine litter and NPP in the same year. The lag-1 correlation was greatest in the 12	  

subtropical, temperate and grassland climate zones and lowest in the equatorial zone.    13	  

 14	  

The generally strong and significant lag-1 correlation between NPP and fine litter obtained 15	  

from BIOS2 forms the basis for using this correlation to derive fuel load from NPP in 16	  

CABLE. Although correlations are significant for the desert, tropical and equatorial regions 17	  

as a whole, we omit these regions from our analysis because a large fraction of individual 18	  

grid cells found in the tropical and equatorial regions have a low correlation or none at all, 19	  

and in the desert zone the overall litter and NPP amounts are small. 20	  

 21	  

Part B – Simulating fuel load and fuel load uncertainty in CABLE 22	  

The boxplot in Figure 5 shows the mean daily NPP from of all 27 CABLE ensemble 23	  

members obtained by perturbing LAI, vcmax and r. The median NPP is 1.10 g C m-2 d-1, while 24	  

the lowest (0.70 g C m-2 d-1) and highest (1.51 g C m-2 d-1) ensemble NPP values differ by a 25	  
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factor of about two. The lowest (highest) values correspond to the ensemble members with all 1	  

three parameters at their low (high) values. Figure 5 also shows the change in NPP that 2	  

results from varying a single parameter. NPP is much more sensitive to the prescribed 3	  

changes in LAI and vcmax than r, with vcmax having a slightly larger effect than LAI. Lower 4	  

LAI and vcmax parameter values lead to a slightly larger departure from the default than high 5	  

values. The largest variations in NPP result from changes in more than one parameter i.e. 6	  

high values of both LAI and vcmax lead to higher NPP than either parameter alone. Although it 7	  

is not the focus of this study, ensemble results provide evidence for interacting, rather than 8	  

additive, effects between vegetation parameters. 9	  

 10	  

Figure 6 shows fine litter from CABLE based on the linear model for each grid cell, 11	  

developed using BIOS2 as was described in Part A. The spatial pattern of average fine litter 12	  

is very similar between the lowest, median and highest ensemble members. Fine litter is 13	  

highest in the southwest and southeast, including Tasmania, and along the coastal strip 14	  

extending from the southeast up to far northeast Australia. Litter is relatively low in inland 15	  

areas. The prescription of LAI strongly influences the spatial distribution of fine litter, both 16	  

within and between ensembles. Changes resulting from increasing parameter values are most 17	  

noticeable in those regions where fine litter is already high. 18	  

 19	  

Mean fine litter from CABLE averaged by climate zone is shown in Figure 7. Load is highest 20	  

in the temperate zone (ensemble range 304 to 417 g C m-2) , followed by the equatorial (186 21	  

to 268 g C m-2), subtropical (175 to 263 g C m-2) and tropical (167 to 248 g C m-2) zones. 22	  

Load in grasslands (67 to 101 g C m-2) is substantially lower and lowest in the desert climate 23	  

zone (32 to 47 g C m-2). Error bars in Figure 7 show the standard deviation (calculated on the 24	  

zone-averaged timeseries), which is proportional to fine litter amount. This can also be seen 25	  
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in Figure 8, which shows the annual time series in mean fine litter anomaly across all 27 1	  

ensembles, for the temperate (Figure 8a), grassland (Figure 8b) and subtropical (Figure 8c) 2	  

zones. The temperate zone displays the most interannual variability, followed by subtropical 3	  

and grassland areas.  4	  

 5	  

There is a considerable degree of coherence (i.e. robustness to parameter variation) amongst 6	  

ensemble members in the sequence of fine litter anomalies, in terms of both direction and 7	  

magnitude of change. The ensemble range in fine litter anomaly is proportional to the mean 8	  

absolute anomaly, such that the greater the deviation from mean values, the greater the spread 9	  

in ensemble values. This effect is strongest in grassland areas (r2 = 0.89, p = 0.000), followed 10	  

by subtropical areas (r2 = 0.82, p = 0.000) and then temperate areas (r2 = 0.74, p = 0.000). 11	  

There is no significant trend for any ensemble members within the temperate, grassland or 12	  

tropical zones (p<0.05). At a significance level of 0.1, three ensemble members in the 13	  

subtropical zone display an increasing trend: L3V1R1 (p = 0.07), L3V1R2 (p = 0.07), 14	  

L3V1R3 (p = 0.09). A high value of LAI and a low value of vcmax are common to these three 15	  

positive trends at a weaker significance level. 16	  

  17	  

BIOS2 fine litter is lower than that simulated by CABLE over the same period, with the 18	  

greatest difference in the temperate (60 g C m-2 d-1) and subtropical (33 g C m-2 d-1) regions 19	  

and lowest in the grassland region (7 g C m-2 d-1).  20	  

 21	  

Figure 9 shows the sensitivity of fire rate of spread to fuel load and fire weather conditions in 22	  

the temperate zone. Rate of spread calculated from annually varying fine litter and FFDI 23	  

fluctuates between about 0.06 and 0.19 km h-1. For any given year, rate of spread has an 24	  

uncertainty of between 0.02 and 0.04 km h-1, due to uncertainty in fine litter from the CABLE 25	  



15	  
	  

sensitivity ensemble. Rate of spread closely tracks interannual variation in mean annual 1	  

FFDI, as shown by the overlapping curves showing rate of spread calculated from both 2	  

varying and constant fine litter. In contrast, holding FFDI constant at its annual mean value 3	  

results in a rate of spread with far less interannual variation, reflecting the lower variation in 4	  

fine litter, even taking into account the wide range of ensemble litter values. There is no 5	  

significant trend in rate of spread over the period of the simulation (ensemble p values 6	  

between 0.25 and 0.85). 7	  

 8	  

Discussion 9	  

We have developed a model of fuel load that combines the physical rigour and consistency of 10	  

a land surface model with a simple empirical relationship between productivity in one year 11	  

and load in the next. The link between fine litter and NPP is derived from the observationally 12	  

constrained ecosystem model BIOS2, and is statistically significant for both most individual 13	  

grid cells and area averages in temperate, grassland and subtropical areas of Australia. The 14	  

relationship is far weaker in tropical and equatorial regions, and northern Australia in general. 15	  

Much of the affected areas are grassy rather than woody, where the time between plant 16	  

growth (i.e. primary productivity) and availability for burning as litter is much shorter. 17	  

However, there are other regions of grassy vegetation, particularly in southern Australia, 18	  

where the litter is significantly correlated to the previous year’s, but not the same year’s NPP. 19	  

Given these weaknesses, and the overall low litter and NPP amounts in desert regions, we 20	  

focus on the temperate, grassland and subtropical zones. Tradeoffs in model applicability 21	  

such as these are unsurprising given the simplicity of our approach and the complexities of 22	  

Australian fire seasonality and fuel dynamics (Russell-Smith et al. 2007, Murphy et al. 2012).  23	  

 24	  
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There is considerable interannual variation in simulated load, but little indication of a trend 1	  

over the study period of 1980 to 2008. Variation of model parameter values within the overall 2	  

parameter space does not strongly influence trends in NPP and load, although absolute values 3	  

of these quantities were sensitive to variations in the maximum carboxylation rate and LAI. 3 4	  

of the 81 total ensemble members recorded a weakly significant (p<0.10) increasing trend in 5	  

load. A common feature of each of these was a high value of leaf area index combined with 6	  

low value of the maximum carboxylation rate parameter, a result we plan to explore further 7	  

in the future. 8	  

 9	  

We compared the relative influence of load and fire weather conditions on fire behaviour in 10	  

the temperate region, using a simple formulation of rate of spread (Figure 9). Even 11	  

accounting for the wide range of load estimates arising from the sensitivity ensemble, the rate 12	  

of spread is far more sensitive to variation in FFDI than changes in fuel amount. Although we 13	  

underestimate maximum potential fuel load by using mean annual values, the same statistic is 14	  

applied to FFDI. Moreover, while mean load may be close to representative of actual load 15	  

when a wildfire takes place, mean annual FFDI may be an order of magnitude below that 16	  

experienced during major wildfires. Given that significant increases in FFDI have been 17	  

projected for this part of the world (Clarke et al. 2011, Fox-Hughes et al. 2014), this suggests 18	  

that future changes in load are not likely to be an important contributor to fire rate of spread 19	  

in temperate regions, except where these changes are exceptionally high. However, these 20	  

findings also reflect the construction of the rate of spread function and do not imply that fire 21	  

weather is or will become more important the load in determining fire behaviour or other 22	  

measures of fire risk. Regional variation in fire regimes is strongly linked to differences in 23	  

the relative importance of load, fuel availability, weather conditions and ignitions in limiting 24	  

overall wildfire incidence (Bradstock et al., 2010).  25	  
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 1	  

Since the link between fine litter and NPP is simple, our model cannot account for 2	  

mechanistic changes in litterfall and litter decomposition, the two processes that translate 3	  

primary productivity into fuel load amount. However, the model of NPP in CABLE is 4	  

mechanistic and is sensitive to changes in climate forcing and atmospheric carbon dioxide 5	  

concentration. There is thus the potential to incorporate major influences on the evolution of 6	  

a key driver of fuel load. This contrasts with the negative exponential model (Jenny et al., 7	  

1949; Olson et al., 1963), which assumes a fixed fuel load amount at equilibrium. This 8	  

widely used, empirical model has been modified in the past to show variation about a steady 9	  

state value, but, in comparison to our modeling approach, this is not typically tied to drivers 10	  

of litter amount. Conversely, unlike the negative exponential model, our model does not 11	  

account for disturbance (i.e. fire) and post-fire recovery of load. Such a feature could be 12	  

added to the model, for instance by periodically setting NPP close to zero to represent the 13	  

incidence of wildfire, with the existing observations of fuel load accumulation serving as a 14	  

test of model performance.  15	  

 16	  

Our model is vulnerable to biases and weaknesses in CABLE and BIOS2. Despite significant 17	  

differences, these models are not entirely independent because BIOS2 is based on a modified 18	  

version of CABLE. The relatively poor performance of BIOS2 in simulating one set of litter 19	  

observations is concerning, but other related quantities are modeled more skillfully and any 20	  

litter simulation should be interpreted in light of the disparate nature of litter observations 21	  

(Keane et al., 2012), which do not share a common methodology and are subject to large 22	  

errors from fine scale heterogeneity (Haverd et al. 2013a). CASA-CNP, the biogeochemical 23	  

model within BIOS2, has been run with a much coarser grid than BIOS2 (220 km compared 24	  

to ~5 km for BIOS2) and found to agree well with previous global estimates of total fine litter 25	  
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production and total fine litter pool size (Wang et al. 2010). Ultimately, rigorous evaluation 1	  

of our model, BIOS2 and other landscape-scale models of load over Australia, would benefit 2	  

from the development of a long term, high quality, gridded observational dataset of fuel load.  3	  

 4	  

There are several other aspects of our model which may limit its applicability. As mentioned 5	  

above, we have so far only examined annual mean values, rather than seasonal or finer time 6	  

scale variation in load, including extremes. Other definitions of fuel load are possible (e.g. 7	  

Migliavacca et al. (2013) include coarse woody debris) and the model does not address fuel 8	  

strata or structure, which can be more important to aspects of fire behaviour than overall fuel 9	  

mass (Cheney et al. 1992, Gould et al. 2007, Hines et al. 2010, Zylstra 2011). At 25 km 10	  

horizontal resolution, the model is too coarsely grained to address detailed variation in 11	  

vegetation and corresponding implications for fire management. 12	  

 13	  

However, our aim is not to provide fuel estimates for detailed fire behaviour modelling at 14	  

specific locations. Our aim is to investigate the response of wildfire fuel load to climate and 15	  

atmospheric carbon dioxide concentration at a regional to continental scale. Using this model 16	  

we will drive CABLE with output from dynamically downscaled climate model projections 17	  

(Evans et al. 2014), combining estimates of fuel load with projections of changes in fire 18	  

weather conditions to investigate the trajectories of weather and load in contributing to 19	  

overall wildfire risk. Finally, although our methodology can be used in other land surface 20	  

models, its application in CABLE has important implications for research capacity in 21	  

Australia. CABLE is a community model, with users in weather forecasting, climate change 22	  

projections, water resources management, carbon management and accounting, 23	  

environmental information and accounting and integrated assessment (Law et al. 2012).  24	  

 25	  
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 1	  

 2	  

Figure 1 Part A aims to derive the relationship between fuel load and NPP. BIOS2 includes a 3	  

biogeochemical model that includes NPP and fine litter pools, and is constrained by multiple 4	  

observational datasets. Unlike BIOS2, CABLE is routinely used coupled to ACCESS and 5	  

regional climate models. Hence, Part B aims to simulate fuel load in CABLE by using the 6	  

relationship derived in Part A. Uncertainty in CABLE estimation of fuel load is addressed by 7	  

varying three key vegetation parameters. 8	  
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 1	  

 2	  

Figure 2 Mean annual fine litter in BIOS2 (1990-2011) for a) woody and b) grassy 3	  

vegetation. 4	  

 5	  

 6	  

Figure 3 Köppen classification major climate zones. 7	  

8	  
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 1	  

 2	  

Figure 4 Lag-1 correlation between annual fine litter and the previous year’s NPP in BIOS2. 3	  

White areas indicate no significant correlation (p<0.05). 4	  

 5	  

Figure 5 Summary of ensemble continental mean annual NPP from CABLE. Boxplot 6	  

whiskers show the range of all 27 simulations, box shows the quartiles. The black dots show 7	  

continental mean annual NPP where a single parameter is varied: vcmax, LAI and r. The 8	  

central dot in each of these columns shows NPP with default parameter values. 9	  
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 1	  

 2	  

Figure 6 Mean annual fine litter from CABLE for the a) lowest, b) default and c) highest 3	  

ensemble members. 4	  

 5	  

 6	  

Figure 7 Mean annual fine litter from CABLE by climate zone from the lowest, default and 7	  

highest ensemble members. Error bars show standard deviation.  8	  
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 1	  

 2	  

Figure 8 Ensemble annual fine litter anomaly from CABLE for the a) temperate, b) grassland 3	  

and c) subtropical climate zones. Each ensemble member is a separate line. 4	  

 5	  

Figure 8 Ensemble annual fine litter anomaly from CABLE for the a) temperate, b) grassland 6	  

and c) subtropical climate zones. Each ensemble member is a separate line. 7	  

8	  

1980 1985 1990 1995 2000 2005 2010
−30

−20

−10

0

10

20

30

Fi
ne

 li
tte

r a
no

m
al

y 
(g

 C
 m

−2
)

a) Temperate

1980 1985 1990 1995 2000 2005 2010
−10

−5

0

5

10

15

Fi
ne

 li
tte

r a
no

m
al

y 
(g

 C
 m

−2
)

b) Grassland

1980 1985 1990 1995 2000 2005 2010
−20

−10

0

10

20

Fi
ne

 li
tte

r a
no

m
al

y 
(g

 C
 m

−2
)

Year

c) Subtropical

1980 1985 1990 1995 2000 2005 2010
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
Fire rate of spread − Temperate zone 

R
at

e 
of

 S
pr

ea
d 

(k
m

 h
−1

)

Year

 

 
Varying load and FFDI
Fixed load
Fixed FFDI



35	  
	  

 1	  

 2	  

Supplementary Figure 1 Scatterplots of mean annual NPP and fine litter in each climate 3	  

zone. Fine litter from same year as NPP is shown on left hand side, fine litter from the year 4	  

following NPP is shown on the right hand side. 5	  

6	  
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Table 1. Lag-1 correlation between fine litter and NPP by climate zone 1	  

Climate zone r2 (p value) 

Temperate 0.80 (0.00) 

Grassland 0.78 (0.00) 

Desert 0.66 (0.00) 

Subtropical 0.86 (0.00) 

Tropical 0.74 (0.00) 

Equatorial 0.48 (0.03) 

 2	  

Supplementary Table 1. Parameter values used in sensitivity ensemble 3	  

IGBP Vegetation Name vcmax (mol m-2 s-1) r  

Evergreen Needleleaf 6.52 ± 2.35 × 10-5 0.943 ± 0.015 

Evergreen Broadleaf 6.50 ± 2.34 × 10-5 0.962 ± 0.015 

Deciduous Needleleaf 7.00 ± 2.52 × 10-5 0.966 ± 0.015 

Deciduous Broadleaf 8.50 ± 3.06 × 10-5 0.961 ± 0.015 

Mixed Forest 8.00 ± 2.88 × 10-5 0.966 ± 0.015 

Closed Shrub 2.00 ± 0.72 × 10-5 0.914 ± 0.015 

Open Shrub 2.00 ± 0.72 × 10-5 0.964 ± 0.015 

Woody Savanna 1.00 ± 0.36 × 10-5 0.972 ± 0.015 

Savanna 2.00 ± 0.72 × 10-5 0.943 ± 0.015 

Grassland 1.00 ± 0.36 × 10-5 0.943 ± 0.015 

Wetland 5.00 ± 1.80 × 10-5 0.961 ± 0.015 

Cropland 8.00 ± 2.88 × 10-5 0.961 ± 0.015 

Urban 1.00 ± 0.36 × 10-6 0.961 ± 0.015 

Cropland & Natural Mosaic 8.00 ± 2.88 × 10-5 0.961 ± 0.015 

Ice 1.70 ± 0.61 × 10-5 0.961 ± 0.015 

Barren 1.70 ± 0.61 × 10-5 0.975 ± 0.015 

Land Ice 1.70 ± 0.61 × 10-5 0.975 ± 0.015 

 4	  
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Chapter 6 Summary  

Simulation of fuel load with a land surface model 

The model of fuel load developed in Chapter 6 is based on a simple relationship between net 

primary productivity and fine litter. This relationship is derived from a process-based carbon, 

water and energy modelling framework that incorporates observations of a broad range of 

variables. It therefore likely represents our best estimate of values such as load across the 

landscape. The model was run over Australia from 1980 to 2008, with uncertainty represented 

by variation in three key model parameters. No trend in load was detected over the period of 

simulation, regardless of parameter variation.  

Through its link with a mechanistic representation of NPP, this model allows for the influence 

of both climate and atmospheric CO2 on fuel load. This serves as the foundation for the 

experiments in Chapter 7, which aim to quantify the response of fuel load to future climate 

change in Australia, and their relative importance compared to changes in fire weather 

conditions.  
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Chapter 7 Overview  

Downscaled projections of fuel load and fire weather 

The work described in Chapters 3 to 6 lays the groundwork for the study presented in Chapter 7. 

Fire weather in Australia has been undergoing pronounced changes over recent decades; 

changes that are projected by global climate models to continue under scenarios of future 

climate change. A tool for converting these global projections into fine scaled, physically 

consistent regional information has been shown to capture key aspects of the observed 

distribution of fire weather conditions in southeast Australia. A separate tool has been 

developed for simulating the evolution of bushfire fuel load, combining a simple model of load 

as a function of net primary productivity (NPP), with a process-based model of NPP that 

accounts for influences of both climate and atmospheric CO2 on terrestrial vegetation.  

Chapter 7 aims to build on the above by developing the first fine scaled (50 km) continental 

assessment of the impact of future climate change on two key drivers of fire risk in Australia, 

fire weather and fuel load, taking into account the interplay between rising CO2 levels and 

vegetation growth.  

The following study has been submitted to a peer reviewed journal and is reproduced as 

submitted:  

Clarke H, Pitman AJ, Kala J, Carouge C, Haverd V, Evans JP (submitted) An investigation of 

future fuel load and fire weather in Australia. Climatic Change.  

Author contributions 

I led this project. The project was the culmination of several years of planning and discussion, 

building on multiple previous papers. The study was chiefly conceived by myself and Andy 

Pitman (AP; my PhD supervisor) The experimental design was led by myself, incorporating 

substantial contributions from AP, Jatin Kala (JK) and Jason Evans (JE). I led the modelling, 

with input from JK and Claire Carouge (CC). I led the analysis and prepared the figures, 

incorporating comments from all other coauthors. I drafted the manuscript and incorporated 

comments from all other coauthors.  
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Abstract 1	  

A continental assessment of the impact of future climate change on two key drivers of fire risk in 2	  

Australia, fire weather and fuel load, is presented. Fire weather conditions are represented by the 3	  

McArthur Forest Fire Danger Index (FFDI), calculated from a 12-member regional climate model 4	  

ensemble. Fuel load is derived from net primary production, simulated using a land surface model 5	  

forced by the same regional climate model ensemble. Mean annual fine litter is projected to 6	  

increase across all ensemble members, by 56 to 78 g C m-2 in temperate areas, 13 to 25 g C m-2 in 7	  

grassland areas and 33 to 53 g C m-2 in subtropical areas. Ensemble changes in annual cumulative 8	  

FFDI vary widely, from 57 to 550 in temperate areas, -186 to 1372 in grassland areas and -231 to 9	  

907 in subtropical areas. The largest increases in fuel load and fire weather are projected to occur in 10	  

spring. Rate of fire spread, a function of both fire weather and fuel load, increases in temperate 11	  

areas by 0.02 to 0.07 km h-1 on average annually. Failing to take into account changes in both fuel 12	  

load and fire weather leads to underestimates of fire rate of spread. These results suggest that FFDI 13	  

projections will not be robust if only a single simulation is used. Our methods can be applied to 14	  

other regions to estimate future fuel load, when this information is not directly available from 15	  

climate model outputs.  16	  

17	  



	   3	  

1 Introduction 1	  

Wildfires occur with sufficient and continuous plant biomass (fuel), fuel dry enough to burn, 2	  

weather conducive to fire spread and an ignition source (Archibald et al. 2009; Bradstock 2010). 3	  

How climate change affects fire weather has commonly been examined using indices designed to 4	  

relate surface weather conditions to wildfire risk, such as the Canadian Forest Fire Weather Index 5	  

system (FWI; van Wagner 1987) and the Australian McArthur Forest Fire Danger Index (FFDI; 6	  

McArthur 1967; Luke and McArthur 1978). Since both are widely used in fire management and can 7	  

be calculated from standard climate model output, numerous studies have projected changes in FWI 8	  

and FFDI (e.g. Williams et al. 2001; Bedia et al. 2013; Fox-Hughes et al. 2014; Lehtonen et al. 9	  

2014). Other elements of fire weather that have been related to climate change include atmospheric 10	  

stability (Luo et al. 2013), synoptic patterns (Hasson et al. 2009; Grose et al. 2014) and modes of 11	  

climate variability (Cai et al. 2009). By relating observed weather patterns to fire incidence or 12	  

burned area, projected changes in weather have also been used as a proxy for the presence of fire 13	  

and its impacts (e.g. Mori and Johnson 2013).  14	  

 15	  

In contrast to the direct use of meteorological variables for fire weather, predicting changes in 16	  

biomass growth or fuel load requires a significant transformation of climate model data. The task is 17	  

complicated by the need to include the potential response of vegetation to increasing carbon dioxide 18	  

(CO2), in addition to climate (Donohue et al. 2013). There are multiple approaches to examining 19	  

how climate change affects wildfire fuel loads. Statistical relationships have been developed 20	  

between current vegetation patterns and meteorological variables (Matthews et al. 2012; Thomas et 21	  

al. 2014; Williamson et al. 2014). These relationships allow vegetation changes to be derived from 22	  

projected changes in meteorological variables, but do not account for CO2 effects. Process-based 23	  

approaches to fuel load and vegetation include dynamic global vegetation models (DGVMs), 24	  

landscape fire succession models and biogeochemical models. These models may represent direct 25	  

influences on fuel amount, such as litterfall, decomposition and fire incidence, as well as indirect 26	  



	   4	  

causes like phenology, primary productivity, heat and moisture. Process-based models can 1	  

incorporate fertilisation effects of CO2 on plant growth (e.g. Jiang et al. 2013).  2	  

 3	  

Quantitative, integrated assessments of the impact of climate change on multiple fire drivers are 4	  

relatively rare (Pechony and Shindell 2010; Kloster et al. 2012; Loepfe et al. 2012; Eliseev et al. 5	  

2014). In Australia, Bradstock (2010) provides a qualitative assessment based on case studies of 6	  

five fire regimes drawing on quantitative and qualitative data. Bradstock concludes that increasing 7	  

temperatures and dryness may lead to divergent impacts on fire activity across Australia, with 8	  

potential increases in temperate forests, but decreases in areas where fires are currently limited by 9	  

fuel amount rather than fire weather conditions. The impact of climate change on multiple wildfire 10	  

drivers in forested and grassland regions of southeast Australia was estimated by King et al. (2011, 11	  

2012). Both studies examined potential changes in fire weather and fuel load, but only the grassland 12	  

study included fuel moisture (curing) as well as fertilisation effects of CO2, via a process-based 13	  

grassland and water-balance model.  Each study projected increases in fire weather conditions and 14	  

overall decreases in fuel load, which translated to increases in fire incidence and area burned in 15	  

forests, but minimal changes in fire risk in grasslands.  16	  

 17	  

Our study aims to provide the first quantitative, landscape-scale assessment of the impact of 18	  

projected changes in climate and CO2 on fuel load and fire weather focused on Australia. Fire 19	  

weather projections are derived from a regional climate model, which is then used to force a land 20	  

surface model from which fuel load is estimated, following Clarke et al. (submitted; see Section 21	  

2.4), incorporating both direct and indirect effects of elevated atmospheric CO2. Variation in 22	  

Regional Climate Models (RCMs) and their forcing Global Climate Models (GCMs) is a major 23	  

source of uncertainty in climate impact projections (Lung et al. 2013). We aim to improve the 24	  

robustness of these projections through the use of a 12-member ensemble, selected for both its skill 25	  

in representing the regional climate as well as the independence of individual ensemble members 26	  



	   5	  

(Evans et al. 2014). By accounting for uncertainty in GCMs and RCMs, and by including CO2 1	  

fertilisation and its impact on fuel load, we provide a more complete estimate of future changes in 2	  

key aspects of wildfire risk.  3	  

 4	  

2 Materials and Methods 5	  

Our study uses a combination of new and pre-existing regional climate and land surface model 6	  

simulations (Figure 1).  7	  

 8	  

2.1 Regional climate model simulations 9	  

Future climate projections used the Weather Research and Forecasting (WRF) modelling system 10	  

(Skamarock et al. 2008), which has been extensively evaluated and shown to perform well in terms 11	  

of regional Australian climate (Evans and McCabe 2010, 2013) and fire weather (Clarke et al. 12	  

2013). The simulations used in this study are drawn from the NSW and ACT Regional Climate 13	  

Modelling (NARCliM) project (Evans et al. 2014). 14	  

 15	  

NARCliM uses the Advanced Research WRF (ARW) version 3.3. Four GCMs are downscaled 16	  

using three configurations of WRF resulting in a 12 member ensemble (Figure 1). A three step 17	  

GCM selection process was used. First, a large set drawn from the 3rd Coupled Model 18	  

Intercomparison Project (CMIP3; Meehl et al. 2007) was evaluated in order to remove the worst 19	  

performing models. Second, better performing models were ranked according to their independence 20	  

(Bishop and Abramowitz 2013). Last, GCMs were placed within the future change space and the 21	  

most independent models that span that space were chosen. A similar process was used to select 22	  

RCMs. A large set consisting of different physical parameterisations was evaluated in order to 23	  

remove the worst performing RCMs. From the better performing models, a subset was chosen such 24	  

that each chosen RCM is as independent as possible from the other RCMs. Although partial bias 25	  

correction of FFDI is possible (Fox-Hughes et al. 2014), we opt to maintain physical consistency in 26	  



	   6	  

model dynamics and instead address model bias via ensemble design and reporting of modelled 1	  

changes, rather than absolute values. 2	  

 3	  

GCMs are downscaled in two time slices 1990–2008 (‘present’) and 2060–2078 (‘future’). For 4	  

future projections the SRES A2 emissions scenario is used (IPCC 2000). RCMs were run at 50 km 5	  

resolution over the CORDEX AustralAsia region (Giorgi et al. 2009).  6	  

 7	  

2.2 Land surface model simulations 8	  

Fuel load projections are developed from the Community Atmosphere-Biosphere Land Exchange 9	  

(CABLE, version 2.0) land surface model, which is designed to simulate fluxes of energy, water, 10	  

and carbon at the land surface (Wang et al. 2011). CABLE has been extensively tested against 11	  

observational data (Abramowitz et al. 2008; Wang et al. 2011). CABLE can be run with prescribed 12	  

meteorology (e.g. Kala et al. 2014), or coupled in a global or regional climate model. CABLE is a 13	  

key part of the Australian Community Climate Earth System Simulator (ACCESS; see 14	  

http://www.accessimulator.org.au), a fully coupled earth system science model and contributor to 15	  

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). 16	  

 17	  

CABLE was used within the National Aeronautics and Space Administration Land Information 18	  

System version 6.1 (LIS-6.1; Kumar et al. 2008) at a grid resolution of 25 km. 12 offline 19	  

simulations were run, each forced with meteorological data from one of the 12 regional climate 20	  

model ensemble members described above (Figure 1). The emissions scenarios used in WRF (i.e. 21	  

present day and SRES A2) were also used with CABLE. Leaf Area Index (LAI) is prescribed for 22	  

the present and future using the mean of a 15 member monthly LAI ensemble based on the 23	  

Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product and gridded observations 24	  

of temperature and precipitation (Kala et al. 2014).  25	  

 26	  

http://www.accessimulator.org.au
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2.3 Fire weather estimation 1	  

Following Noble et al. (1980), FFDI is computed as  2	  

FFDI = 2 × exp(0.987 × ln(DF) − 0.0345 × H + 0.0338 × T + 0.0234 × V − 0.45) (1) 

 3	  

where DF is the drought factor, T is the temperature (°C), V the wind speed (km h-1) and H the 4	  

relative humidity (%). The drought factor is an estimate of fuel dryness (Griffiths 1999) and is 5	  

computed using the Keetch-Byram Drought Index (Keetch and Byram 1968) based on total daily 6	  

rainfall. Daily FFDI was calculated from the 12 member regional climate model ensemble. 7	  

 8	  

2.4 Fuel load estimation 9	  

Fuel load is calculated from net primary productivity (NPP) following Clarke et al. (submitted). 10	  

NPP is used as a fuel load proxy since it represents the rate of production of vegetation. NPP has 11	  

been equated to litter production (Matthews 1997) and is strongly correlated with biomass 12	  

(Kindermann et al. 2008).  13	  

 14	  

The relationship between fuel load and NPP is derived from the BIOS2 modelling environment, 15	  

which simulates both quantities (Figure 1; Haverd et al. 2013). BIOS2 simulates the energy, water 16	  

and carbon balances of the Australian continent at fine spatial (0.05°, ~5 km) and temporal (hourly) 17	  

resolution. BIOS2 has similarities with CABLE v1.4, but the soil and carbon modules are replaced 18	  

by the SLI soil model (Haverd and Cuntz 2010) and the CASA-CNP biogeochemical model (Wang 19	  

et al. 2010). CASA-CNP allocates the carbon cycling through the terrestrial ecosystem into plant, 20	  

litter and soil pools. BIOS2 was run from 1990 to 2011 using meteorological forcing from the 21	  

Bureau of Meteorology’s Australian Water Availability Project data set (AWAP) (Jones et al. 22	  

2009). The BIOS2 simulations were constrained by observations of streamflow, evapotranspiration, 23	  

net ecosystem production and litterfall. The use of observational constraints along with the best 24	  

available gridded observations for Australia (AWAP) means the simulations by BIOS2 are likely 25	  
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the best available estimates of fuel load in the absence of high quality, long term, landscape-scale 1	  

observations. 2	  

 3	  

The Pearson product-moment correlation coefficient was used to calculate the relationship between 4	  

annual NPP and fuel load in BIOS2 for the period 1990 to 2011. Fuel load was defined as the fine 5	  

litter pool; the sum of the metabolic and structural litter pools in CASA-CNP (Wang et al. 2010). 6	  

Where the correlation between NPP and fine litter was significant (p < 0.05), fine litter was related 7	  

to NPP using ordinary least squares linear regression. Although there is no physical reason why this 8	  

relationship should be strictly linear, the correlation was generally high with no clear evidence for a 9	  

non-linear relationship. Since the link between fine litter and NPP is statistical, this model cannot 10	  

account for mechanistic changes in litterfall and litter decomposition, the two processes that 11	  

mediate the translation of primary productivity into fuel load. However, the model of NPP in 12	  

CABLE is mechanistic and is sensitive to changes in climate forcing and CO2 concentration. 13	  

 14	  

To understand regional variations the same methods were applied to model output aggregated into 15	  

climate zones. A modified Köppen climate classification was used, which separates Australia into 6 16	  

mostly contiguous and climatically similar regions (Figure 2; Stern et al. 1999). The major Köppen 17	  

zones are: equatorial, tropical, subtropical, desert, grassland and temperate. The lag-1 correlations 18	  

were significant (p < 0.05) for all 6 climate zones with the highest correlations in the subtropical (r2 19	  

= 0.86), temperate (r2 = 0.80) and grassland (r2 = 0.78) climate zones.  20	  

 21	  

The linear models (Clarke et al. submitted) for each climate zone and each model grid cell were 22	  

then applied to the present study, allowing fuel load to be calculated from NPP simulated by the 12 23	  

member land surface model ensemble (Figure 1). We focus on the temperate, grassland and 24	  

subtropical zones because of the high correlation between NPP and load in these regions. 25	  

 26	  
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2.5 Analysis 1	  

To frame changes in fuel load with changes in meteorological forcing we examined the rate of 2	  

spread of fire (R, in km h-1, McArthur 1967): 3	  

R = 0.0012 × F × L (2) 

 4	  

where F is the FFDI and L is load in t ha-1. This provides a simple way of comparing the impact of 5	  

changes in load and fire weather conditions. We restrict our analysis of rate of spread to the 6	  

temperate region that contains the forest types used in the calibration of R.  7	  

 8	  

3 Results 9	  

Figure 3a shows the simulated spread in continental mean annual fine litter depending on choice of 10	  

GCM and RCM, and how the fine litter changes between the present and future. Mean continental 11	  

fine litter is projected to increase substantially by 2060-2078 in all model simulations, such that the 12	  

lowest future ensemble member (154 g C m-2) is higher than the highest present ensemble member 13	  

(151 g C m-2). Increases in continental fine litter are projected for every ensemble member, with 14	  

increases ranging from 17 to 26 g C m-2 (11% to 20%). Figure 3 also shows those models 15	  

simulating the lower (higher) values of fine litter in the present remain the lower (higher) models in 16	  

the future. Further, RCM3 consistently simulates the highest litter amounts, illustrating the 17	  

importance of RCM physics settings. 18	  

 19	  

Figure 3b shows results for continental mean annual cumulative FFDI. While substantial increases 20	  

are projected by some ensemble members, the results are strongly model dependent in contrast to 21	  

Figure 3a. Ensemble members driven by CCCMA3.1 and MIROC3.2 show little change and 22	  

occasionally small decreases. Ensemble members driven by the other two GCMs project larger 23	  

increases in FFDI. The projected change in continental mean annual cumulative FFDI from all 24	  

ensemble members ranges from a decrease of 109 to an increase of 1275. Overall there is an 25	  



	   10	  

increase in the ensemble mean FFDI from 5274 to 5816 (10%). Selecting only ECHAM5 and 1	  

CSIRO-Mk3.0, the range of increases is 10 to 23%, while selecting only CCCMA3.1 and 2	  

MIROC3.2 gives a range of -2 to 15% (excluding outlier MIROC3.2/RCM3 gives a range of -2 to 3	  

2%). This highlights the dangers of using single GCMs for estimating future changes in FFDI; the 4	  

choice of model strongly influences the sign and magnitude of the overall change. The consistent 5	  

placement of RCM3 at lower end of ensemble simulated FFDI (in contrast to its placement at the 6	  

upper end of litter estimates in Figure 3) further demonstrates the importance of RCM physics 7	  

settings. 8	  

 9	  

Figure 4 shows the change in mean annual fine litter from CABLE based on the linear model for 10	  

each grid cell, developed using BIOS2 (see Figure 1). The ensemble members representing the least 11	  

(4a) and most (4b) change are shown, selected by taking the continental average of all grid point 12	  

change values for each ensemble member and then ranking these from lowest to highest. The 13	  

overall pattern of change in each of the 12 ensemble members is very similar, with all models 14	  

showing increases in fine litter in the southeast and northeast of Australia, particularly along the 15	  

coast (Online Resource 1). Overall, our results consistently show increasing fine litter in the future.  16	  

 17	  

Figure 4 also shows the change in annual cumulative FFDI at each grid cell. The overall pattern of 18	  

change in all 12 ensemble members is strongly divergent, with ensemble members forming two 19	  

groups, some with substantial increases and others with modest decreases (Online Resource 2). In 20	  

the lowest ensemble member (4c), little change in FFDI is projected across the continent. The 21	  

highest ensemble member (4d) projects increases ranging from 200 to 600 in the southeast and 22	  

extending along the coast to the northeast, to over 1800 over parts of northwest Australia. Again, 23	  

this highlights the dangers of using single GCMs for estimating future FFDI since the choice of 24	  

model determines the sign and magnitude of the overall change. The overall spatial pattern of 25	  



	   11	  

change in FFDI is most strongly dictated by GCM, with RCMs modulating the magnitude of these 1	  

changes (Online Resource 2). 2	  

 3	  

Figure 5a-c shows the projected change in mean monthly fine litter values in temperate, grassland 4	  

and subtropical climate zones (actual values in Online Resource 3). Increases in fine litter are 5	  

projected every month in all three zones, and the highest increases are projected to occur in mid to 6	  

late spring. In the subtropical zone, and to a lesser extent the temperate zone, there is clear 7	  

separation between the lowest future ensemble member and the highest present member (Online 8	  

Resource 4). The increase in fine litter across all regions by 2060-2078 from each ensemble 9	  

member gives us confidence in the robustness of this result.  10	  

 11	  

In contrast to the fuel load results, monthly values of mean daily FFDI show both decreases and 12	  

increases in all three zones (Figure 5d-f; actual values in Online Resource 3). However, the 13	  

magnitude of increases in FFDI is much greater than that of decreases. As with fine litter, in all 14	  

three climate zones the largest projected increases in FFDI are projected to occur in mid to late 15	  

spring (October and November). In contrast to litter, however, there is considerable overlap 16	  

between the lowest future ensemble member and the highest present member in all three zones 17	  

(Online Resource 4). 18	  

 19	  

Mean fire rate of spread in the temperate zone (Figure 6a) shows considerable overlap between the 20	  

ensemble values for present (0.13 to 0.19 km h-1) and future rate of spread (0.17 to 0.25 km h-1). 21	  

Despite this overlap, there is a clear trend towards increasing rate of spread in every ensemble 22	  

member, with the projected increase ranging from 0.02 to 0.07 km h-1. The second two boxplots in 23	  

Figure 6a show the change in rate of spread from changes in only FFDI and only load, respectively. 24	  

Rate of spread increases, but not as much as when both future FFDI and future load are used. 25	  

Calculating rate of spread using only projected changes in FFDI results in a change of between 0 26	  



	   12	  

and 0.04 km h-1, compared to more consistent increases of ~0.02 km h-1 for all ensemble members 1	  

when calculating the rate of spread using only projected changes in load.  2	  

 3	  

Figure 6b shows the change in mean monthly rate of spread in the temperate zone (actual values in 4	  

Online Resource 5). Changes are similar across model ensemble members, with the largest 5	  

increases projected during spring and summer. The difference is that the smallest values projected 6	  

by minimum ensemble members, which occur in winter and late autumn, are actually (relatively 7	  

small) decreases in rate of spread. In contrast, the multimodel mean and maximum ensemble 8	  

members project increases in rate of spread throughout the year. The minimum ensemble members 9	  

also project increases in rate of spread to peak in early summer, compared to a late spring peak for 10	  

the multimodel mean and maximum ensemble members. In all simulations the rate of spread 11	  

therefore increases in spring, summer and early autumn, with the maximum increase occurring in 12	  

late spring or early summer. 13	  

 14	  

4 Discussion 15	  

Our results suggest that changes in climate and CO2 will increase fuel load in both forested and 16	  

grassland areas of Australia by the latter part of the 21st century. In contrast, changes in fire weather 17	  

are more uncertain and model-dependent. The high end of ensemble projections represents 18	  

substantial increases in fire weather conditions, while the lower end represents little change. These 19	  

results suggest that FFDI projections are strongly dependent on the choice of GCM and the physics 20	  

settings of the RCM. Across all ensemble members, the biggest increases in fire weather conditions 21	  

are projected to occur in late spring, suggesting a longer fire season. In combination these findings 22	  

suggest that fire risk in temperate areas, based on fire rate of spread, will increase and that failing to 23	  

account for both weather and load leads to underestimates in this risk. These changes would have 24	  

implications for fire management agencies’ scheduling of prescribed burning. 25	  

 26	  
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These fire weather projections, particular in temperate areas, are in broad agreement with a range of 1	  

previous studies which have projected increased wildfire risk from weather (Cai et al. 2009; Hasson 2	  

et al. 2009; Clarke et al. 2011; Matthews et al. 2012; Fox-Hughes et al. 2014). These studies project 3	  

a tendency towards a longer fire season, via intensified fire weather conditions early in the fire 4	  

season. In contrast to significant increases at the upper end of the ensemble, projections at the lower 5	  

end suggest little change by 2070 or decreases in fire weather consistent with Flannigan et al. 6	  

(2009) and Clarke et al. (2011). The decreases tend to be of a smaller magnitude than corresponding 7	  

increases in fire weather conditions. Note also that our study focuses on measures of average, rather 8	  

than extreme, fire weather conditions. Changes at the upper end of the FFDI distribution, when fires 9	  

that occur are most difficult to control, are likely to be even higher that those at the centre of the 10	  

distribution, based on both modelling (e.g. Clarke et al. 2011) and observational (Clarke et al. 2012) 11	  

studies. Similar provisos apply to our use of average, rather than extreme, fire rate of spread.  12	  

 13	  

Our findings of uniform and widespread increases in fuel load under climate change differ from 14	  

several previous assessments for Australia. King et al. (2012) projected mostly decreases in grassy 15	  

fuel load in southeast Australia, with CO2 fertilisation insufficient to compensate for changing 16	  

temperature and rainfall. Matthews et al. (2012) and Penman and York (2010) projected decreases 17	  

in forest fuel load at two forested sites in southeast Australia, although the decreases reported by 18	  

Penman and York (2010) were not considered significantly different to present values. Neither of 19	  

these studies factored in CO2 fertilization. However, the scenarios used by King et al. (2012), 20	  

Penman and York (2010) and Matthews et al. (2012) all utilised GCMs which project an overall 21	  

decrease in rainfall. These differ from our ensemble which was designed to account for uncertainty 22	  

by selecting GCMs that projected both increases and decreases in rainfall.  23	  

 24	  

Improving certainty in regional rainfall projections may not clarify all vegetation trends, due to 25	  

differences in the response of major vegetation types to precipitation (Thomas et al. 2014; Gibson et 26	  



	   14	  

al. 2014). The complex relationships observed between climate and vegetation type contrast with 1	  

the near uniform changes in vegetation amount projected in our study. A possible reason is the 2	  

strong CO2 fertilisation effect in ours and other land surface models. In one study of the response of 3	  

vegetation to a range of climate scenarios, CO2 fertilisation was found to be the major cause of 4	  

modelled increases in gross primary productivity (NPP plus autotrophic respiration), well in excess 5	  

of rainfall or temperature and regardless of climate zone (Raupach et al. 2013). Process-based 6	  

models could benefit from incorporation of empirical findings and the emergence of high quality, 7	  

landscape-scale fuel load observations. 8	  

 9	  

In conclusion, we have provided the first landscape-scale assessment of the combined effects of 10	  

climate change and increasing CO2 on fuel load levels and fire weather conditions in Australia. Our 11	  

results suggest that wildfire risk will be increased under climate change in temperate, grassland and 12	  

subtropical climate zones, due to the combined effects of increased fuel load and either stable or 13	  

increasing fire weather. However, these results contrast with other studies projecting decreases in 14	  

fuel load under climate change in Australia, possibly related to our selection of GCMs that spanned 15	  

a range of possible climate futures. While work is required to understand the reasons for these 16	  

differences and refine of our simple fuel load model, a better understanding of long-term changes in 17	  

fire risk over Australia will benefit from more accurate predictions of regional-scale rainfall.  18	  
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Figure captions 4	  

Fig 1 Summary of methodology. FFDI is calculated from a regional climate model ensemble 5	  

spanning present (1990-2008) and future (2060-2078) periods. The same ensemble supplies the 6	  

meteorological forcing to CABLE, yielding NPP. Based on the relationship between fine litter and 7	  

NPP in BIOS2, fine litter is calculated from NPP in CABLE. 8	  

Fig 2 Köppen classification major climate zones 9	  

Fig 3 Ensemble mean annual continental (a) fine litter and (b) cumulative FFDI for present and 10	  

future periods. Whiskers show the ensemble range, box shows the quartiles. Individual GCM/RCM 11	  

combinations are represented by marker (GCM) and colour (RCM).  12	  

Fig 4 Change in mean annual (a) fine litter and (b) cumulative FFDI from the lowest and highest 13	  

ensemble members, calculated from the average of all grid cell changes  14	  

Fig 5 Change in mean monthly (a) fine litter load and (b) FFDI in temperate, grassland and 15	  

subtropical climate zones. Unbroken line shows multimodel mean, dotted lines show ensemble 16	  

minimum and maximum values. 17	  

Fig 6 a) Ensemble mean fire rate of spread in the temperate climate zone, calculated using 18	  

combinations of present and future FFDI and load. Whiskers show the ensemble range, box shows 19	  

the quartiles. b) Change in mean monthly fire rate of spread in the temperate climate zone. 20	  

Unbroken line shows multimodel mean, dotted lines show ensemble minimum and maximum 21	  

values. 22	  

 23	  

Electronic supplementary material (ESM) captions 24	  

ESM 1 Change in mean annual fine litter from each ensemble member 25	  

ESM 2 Change in mean annual cumulative FFDI from each ensemble member 26	  



	   16	  

ESM 3 Present and future mean monthly fine litter (a-c) and FFDI (d-f) in temperate, grassland and 1	  

subtropical climate zones. Unbroken line shows multimodel mean, dotted lines show ensemble 2	  

minimum and maximum values. 3	  

ESM 4 Ensemble mean annual fine litter (a-c) and cumulative FFDI (d-f) for present and future 4	  

periods in temperate, grassland and subtropical climate zones. Whiskers show the range of all 12 5	  

simulations, box shows the quartiles. 6	  

ESM 5 Present and future mean monthly rate of spread in the temperate climate zone. Unbroken 7	  

line shows multimodel mean, dotted lines show ensemble minimum and maximum values.	  8	  

  9	  

10	  
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 1	  

 2	  

Fig 1 Summary of methodology. FFDI is calculated from a regional climate model ensemble 3	  

spanning present (1990-2008) and future (2060-2078) periods. The same ensemble supplies the 4	  

meteorological forcing to CABLE, yielding NPP. Based on the relationship between fine litter and 5	  

NPP in BIOS2, fine litter is calculated from NPP in CABLE. 6	  
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Fig 2 Köppen classification major climate zones 3	  

4	  
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 1	  

 2	  

Fig 3 Ensemble mean annual continental (a) fine litter and (b) cumulative FFDI for present and 3	  

future periods. Whiskers show the ensemble range, box shows the quartiles. Individual GCM/RCM 4	  

combinations are represented by marker (GCM) and colour (RCM). 5	  

6	  
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Fig 4 Change in mean annual (a) fine litter and (b) cumulative FFDI from the lowest and highest 3	  

ensemble members, calculated from the average of all grid cell changes 4	  

5	  
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 1	  

 2	  

Fig 5 Change in mean monthly (a) fine litter load and (b) FFDI in temperate, grassland and 3	  

subtropical climate zones. Unbroken line shows multimodel mean, dotted lines show ensemble 4	  

minimum and maximum values. 5	  
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 1	  

 2	  

Fig 6 a) Ensemble mean fire rate of spread in the temperate climate zone, calculated using 3	  

combinations of present and future FFDI and load. Whiskers show the ensemble range, box shows 4	  

the quartiles. b) Change in mean monthly fire rate of spread in the temperate climate zone. 5	  

Unbroken line shows multimodel mean, dotted lines show ensemble minimum and maximum 6	  

values. 7	  
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 1	  

 2	  

ESM 1 Change in mean annual fine litter from each ensemble member 3	  

4	  
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 1	  

 2	  

ESM 2 Change in mean annual cumulative FFDI from each ensemble member 3	  

4	  
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 1	  

 2	  

ESM 3 Present and future mean monthly fine litter (a-c) and FFDI (d-f) in temperate, grassland and 3	  

subtropical climate zones. Unbroken line shows multimodel mean, dotted lines show ensemble 4	  

minimum and maximum values. 5	  
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 1	  

 2	  

ESM 4 Ensemble mean annual fine litter (a-c) and cumulative FFDI (d-f) for present and future 3	  

periods in temperate, grassland and subtropical climate zones. Whiskers show the range of all 12 4	  

simulations, box shows the quartiles. 5	  
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 1	  

 2	  

ESM 5 Present and future mean monthly rate of spread in the temperate climate zone. Unbroken 3	  

line shows multimodel mean, dotted lines show ensemble minimum and maximum values. 4	  
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Chapter 7 Summary  

Downscaled projections of fuel load and fire weather 

The study described in Chapter 7 suggests that climate change will bring increases in bushfire 

risk throughout much of Australia due to changes in fuel load and fire weather conditions. Fuel 

load is projected to increase substantially across both forested and grassy landscapes by the late 

21st century. None of the ensemble members projected a decrease in mean fuel load amounts for 

the broadscale climate zones analysed. Fire weather projections are much more sensitive to the 

choice of model, with roughly half the ensemble projecting significant increases, and the other 

half projecting little change, including minor decreases. Across both fuel load and fire weather, 

the largest projected increases occur in spring, suggesting a lengthening of the existing fire 

season.  

This study, along with those described in Chapters 3-6, suggests some robust conclusions that 

can be drawn about the impacts of climate change on bushfire risk, as well as a number of 

important caveats. These are discussed in Chapter 8 in the context of the broader literature and 

the four research questions which guide this thesis. 
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Chapter 8 

 

Discussion 

This thesis aims to improve the understanding of the potential impacts of climate change in 

Australia on two of the four ‘switches’ of bushfire, fire weather and fuel load (the other two 

switches are fuel dryness and ignitions; Archibald et al. 2009; Bradstock 2010). These switches 

are represented by two measures, one well established and the other novel. Fire weather 

conditions are represented by the FFDI, widely used in fire management, forecasting of fire 

danger and research (FFDI includes a measure of the third switch, fuel dryness, but it is not 

explicitly examined here). In contrast, fuel load projections are based on a simple model of fuel 

load as a function of NPP, developed specifically for this purpose. Climate change impacts on 

fire weather and fuel load are derived from climate model simulations and, in the case of load, 

land surface model simulations. These numerical experiments are supplemented by a study of 

fire weather observations, providing a baseline against which the projections can be interpreted. 

The overarching aim of the thesis is addressed through four research questions, discussed here 

in order (8.1-8.4). The chapter concludes with uncertainties, caveats and issues of scope (8.5). 

 

8.1 Are there significant trends in average or extreme fire weather 

within the observational record? 

Chapter 3 provides strong evidence that fire weather conditions in Australia have changed over 

the observational record. These changes are widespread – occurring at about half of all sites in 

the network and in all states and territories – and are all increases, pointing to increases in both 

fire weather magnitude and fire season length. A changing climate poses a challenge to one of 

the key steps of climate change impact science – establishing a baseline against which to 

measure future change1. It is of course still possible to calculate standard climatological values 

such as annual and seasonal means, but these values are less representative of the climate over a 

given period when there is a significant trend.  

Although trends in observations of meteorological variables such as temperature and rainfall 

have received considerable attention (Hartmann et al. 2013; Australian Bureau of Meteorology 
                                                        
1 The baseline could be in climate, or it in some aspect of a fire regime e.g. burned area. 
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and CSIRO 2014), there are few other studies of trends in fire weather indices globally. A study 

of historical FFDI at four sites in South Africa found significant positive trends at all four 

locations (Kraaij et al. 2013). Long term trends have been assessed for a range of fire weather 

metrics in alpine regions of Europe, with changes detected at multiple locations and most of 

these increases (Wastl et al. 2012). A small number (2 out of 25) of stations recorded decreases 

in some fire danger metrics, but most of these were not statistically significant. At the upper 

ends of the distribution, indicating extreme conditions, all changes detected were increases. 

Strong increases in fire weather, particularly in the last two decades, were detected at five 

stations in the northern Sierra Nevada region of the U.S. (Collins et al. 2014). Positive trends in 

the FWI have been found across southern and eastern Europe, although these findings are based 

on reanalyses, rather than meteorological observations (Venäläinen et al. 2014; see Chapter 2 

for more information on reanalysis). Venäläinen et al. (2014) found positive trends in a 

reanalysis covering the period 1980 to 2012, but no obvious trends for a separate reanalysis for 

the period 1960 to 1999. As with Australia, the changes in fire weather detected in these studies 

occurred against a backdrop of large interannual variability. This variability is likely to remain a 

strong feature of fire weather conditions and may produce periods of no trend or even deceases 

in fire weather in spite of overall increasing trends, as has been shown for global temperatures 

(Easterling and Wehner 2009).  

Results from Chapter 3 and the international studies cited above suggest that increases in fire 

weather conditions are greater at the upper ends of the distribution. However, in Chapter 3, a 

relatively conservative extreme value was adopted (90th percentile FFDI). For example, bushfire 

impacts on property (Blanchi et al. 2010) and life (Blanchi et al. 2014) are dominated by events 

occurring on days with FFDI values above 100. Values near 100 are at the very uppermost of 

the FFDI distribution in many parts of Australia, having occurred only once during the entire 38 

year record. Inhomogeneities in the variables making up FFDI (particularly wind) are an 

obstacle to analyses of extremes, limiting the effective duration and spatial coverage of extreme 

values. However, over time more stations will have longer and higher quality records. 

Chapter 3 does not present a detailed investigation into the drivers of observed fire weather 

trends, including their regional and seasonal variation. Such drivers might go beyond the 

individual variables comprising FFDI (temperature, relative humidity, precipitation, wind 

speed) to include local meteorological effects (Sharples et al. 2010), dynamics (Peace et al. 

2012), synoptic patterns (Skinner et al. 2002; Girardin et al. 2004; Mills 2005a, 2005b; Mills 

2008a, 2008b) and teleconnections (Williams and Karoly 1999; Verdon et al. 2004; Lucas 2005; 

Le Goff et al. 2007; Cai et al. 2009). A benefit of establishing relationships between any of 

these phenomena and local fire weather is that they can then be used as proxies for fire weather 

in climate change impact studies (e.g. Cai et al. 2009; Hasson et al. 2009). A related issue is the 
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attribution of observed changes in fire weather conditions in the formal sense of climate change 

detection and attribution (D&A; Stone et al. 2009; Stott et al. 2010). There have been some 

attempts to provide quantitative links between human-induced climate change and fire activity 

(Piñol et al. 1998; Gillett et al. 2004; Kasischke and Turetsky 2006; Westerling et al. 2006) but 

none of these focused explicitly on fire weather metrics. Attributing changes in FFDI is 

complicated by the fact that it is calculated from multiple variables, not all of which are 

independent (e.g. temperature and relative humidity). Nevertheless, growth in the number of 

D&A studies adds confidence in the possibility of such a task (Herring et al. 2014).  

In short, evidence from multiple studies points to increasing trends in fire weather during the 

observational record. Research presented in this thesis, representing a systematic examination of 

fire weather in Australia, also identifies clear and statistically significant increasing trends in 

average and extreme fire weather. 

  

8.2 How is fire weather projected to change in different rainfall 

seasonality regions by skill-selected global climate models? 

The major way in which the fire weather projections developed in Chapter 4 build upon earlier 

studies is through the use of an ensemble of skill-selected GCMs. The aim of this is to sample 

uncertainty while minimising biases arising from poorly performing models. The objective 

design of model ensembles according to skill or other means follows on from the use of 

ensembles. The general premise is that any individual climate model simulation will represent 

just one of many possible pathways of the climate system. Therefore, to evaluate uncertainties 

due to differences in model formulation and the initial conditions, it is necessary to carry out 

simulations with multiple models, or multiple simulations using the same model (Flato et al. 

2013). The publication of the Intergovernmental Panel on Climate Change’s (IPCC’s) Fourth 

Assessment Report (IPCC 2007) coincided with the release of a large associated archive of 

GCM output under the auspices of CMIP3 (Meehl et al. 2007a). Conducting climate change 

impact studies based on an ensemble of multiple GCMs became much easier with the 

availability of this dataset of consistently produced climate model output. Prior to 2011, when 

Chapter 4 was published, only a very small number of fire weather projections used more than 2 

GCMs; exceptions include pioneers Flannigan and Van Wagner (1991; 3 GCMs), Stocks et al. 

(1998; 4 GCMs), Malevsky-Malevich et al. (2008; 6 GCMs) and Hasson et al. (2009; 10 

GCMs). Hasson et al. (2009) was the only Australian study, focusing on southeast Australia.  

Of course, there have been and continue to be pragmatic reasons for using a limited number of 

models in climate impact studies. Models may be chosen because researchers have personal 
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experience with, or links to the modelling group behind, a given GCM, or because output from 

multiple models is not available, or not available for all required variables and time resolutions 

(Evans et al. 2014). For example, in selecting four GCMs used in Chapter 4, daily data for all 

variables required to compute FFDI were not available from the model ranked first by Perkins 

et al. (2007), so the fifth ranked GCM was used instead. Even where model data is available, the 

computational resources required to process large ensembles can be significant, especially when 

used in combination with other experimental treatments (e.g. Tarancón et al. 2014). A common 

multiplier of model results is the use of multiple SRES emissions scenarios (Nakicenovic et al. 

2000) or RCPs (Moss et al. 2010), which aim to address uncertainty in the future evolution of 

GHG emissions. This thesis does not attempt to sample uncertainty in emissions scenarios, 

using a single emissions scenario in Chapters 4 and 7. However, the scenario selected in 

Chapter 4 (A2) was the closest one to global emissions trends at the time (Le Quéré et al. 2009) 

and emissions continue to track the high end of emissions scenarios (Friedlingstein et al. 2014), 

giving confidence in the choice of this over lower emissions pathways. 

Whether 2 or 10 GCMs are used, the assumption is generally that while models differ in their 

formulation, each member of the ensemble provides an independent and equally likely estimate 

of future climate change, and that results should thus be weighted equally (Abramowitz 2010). 

However, there is now a wealth of information on just how well different models simulate 

different aspects of the climate system (Randall et al. 2007; Flato et al. 2013). It is thus possible 

to weight models by performance2, select those that perform best, or remove those that perform 

worst – noting, however, that any selection methodology is likely to reveal different ‘best’ 

models, depending on the variable and metric chosen, as well as the region of evaluation 

(Perkins et al. 2007). At the time of the design of the study in Chapter 4, Perkins et al. (2007) 

had recently published an evaluation of GCMs’ ability to simulate the Australian climate, based 

on PDFs of temperature and rainfall. To the author’s knowledge, Chapter 4 presents the first 

projections of climate change impacts on fire weather conditions using multiple GCMs selected 

with a peer-reviewed methodology. A subsequent example is Litschert et al. (2012), who 

develop a model of burned area in the Southern Rockies Ecoregion of the U.S. Litschert et al. 

(2012) select two GCMs from an ensemble of 16, evaluated by Dominguez et al. (2010) for 

their ability to simulate modes of climate variability important to fire regimes in the region. 

There are other methods for addressing biases in climate models, including the use of scaled 

observations rather than direct climate model output (e.g. Lucas et al. 2007; Amatulli et al. 

2013; Lehtonen et al. 2014) and the adjustment of model output to match observations (e.g. 

Fox-Hughes et al. 2014). However, the correction of model output carries with it the risk of 
                                                        
2 The use of independence and spanning future change space as model selection criteria will be 
addressed under question 4, below. 
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invalidating a key strength of climate models, namely their adherence to a range of physical 

laws describing the behaviour of the climate system (Ehret et al. 2012). Some correction of 

biases may be necessary to carry out certain climate change impact applications, but it should be 

made clear that the increase in fidelity to observations may be accompanied by a corresponding 

decrease in fidelity to physical principles, such as the relationship between variables or the 

consistency of spatiotemporal fields. Without these clarifications, bias correction may only 

bring results closer to reality to the extent that changing the stickers on a Rubik’s cube brings it 

closer to a solution. 

A second feature of Chapter 4 that builds upon previous GCM-based fire weather studies is its 

grouping of results by a key driver of Australian fire regimes, rainfall seasonality (Russell-

Smith et al. 2007; Bradstock 2010; Murphy et al. 2012). The great majority of fire weather 

projections using GCMs do not group results along biophysical boundaries; rather they are 

applied over an entire region of interest (and perhaps interpolated or summarised in the form of 

contours or area averages) or to individual sites corresponding to locations with historical fire 

weather records. While such an approach does not preclude the subsequent grouping of results 

by different categories, this task is generally left to the user (or literature reviewer). Using direct 

model output also avoids the assumption, made in Chapter 4, that GCMs faithfully reproduce 

observed patterns of rainfall seasonality. Nevertheless, grouping of GCM output into 

biophysically relevant categories is common in studies of the impact of climate change on other 

aspects of fire regimes, such as fire activity (Vázquez de la Cueva et al. 2012; Moritz et al. 

2012; Girardin et al. 2013; Migliavacca et al. 2013; Mori and Johnson 2013; Yue et al. 2013). 

Boulanger et al. (2013) even make groupings the focus of their research, objectively deriving 

zones with homogenous fire regimes in Canada for use in climate projections and to highlight 

otherwise hidden aspects of fire regimes under prevailing classifications. 

The point of grouping model output by regions of rainfall seasonality is to help interpret and use 

the results, which is a major aim of all climate change impact studies. Indeed, even though 

GCMs are designed to simulate the global climate, they are often used for specific regions 

(North America, boreal forests, the Mediterranean, southeast Australia) rather than global 

analyses (see Moritz et al. 2012 for an exception). This clearly points to the fact that it is at the 

local and regional level at which the impacts of climate change are felt, and at which adaptation 

takes place. It is this factor that has driven another trend in climate research, the increasing 

downscaling of GCM output. This use of RCMs to downscale will be addressed below, but 

despite the push towards downscaling, global climate models remain critical to climate change 

impact studies. They provide the boundary conditions needed to run RCMs and the raw data 

required by statistical downscaling, and are still widely used without downscaling. Future fire 

weather projections will therefore benefit from further development and evaluation of GCMs.  
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In summary, research presented in this thesis uses an ensemble of skill-selected GCMs to 

project future fire weather in eastern Australia by regions of rainfall seasonality, a key driver of 

variation in Australian fire regimes. The use of these methods builds upon earlier studies to 

deliver a clearer picture of the broad patterns of fire weather conditions expected in Australia 

under climate change. In the summer rainfall-dominated, tropical northeast, fire weather is 

projected to decrease or remain close to 20th century levels. In the uniform and winter rainfall 

areas of the southeast, strong increases in fire weather magnitude and duration are projected.  

 

8.3 Can a simple model of fuel load be developed for use in the 

Australian land surface model, that accounts for both climate and 

atmospheric CO2 effects on vegetation growth? 

Chapter 6 demonstrates that NPP can be used as a proxy to model fuel load, based on a strong 

linear relationship between annual NPP and the subsequent year’s load in large areas of 

Australia, including temperate, grassland and subtropical climate zones. The use of NPP as a 

proxy allows load to be modelled using the process-based land surface model CABLE, which 

incorporates effects of climate and CO2 fertilisation on plant growth. The use of NPP as a proxy 

for load in CABLE allows a range of offline and coupled experiments on the sensitivity of fuel 

load to changing environmental conditions. 

The skill and scope of this model should be placed in the context of existing process-based and 

empirical3 options for modelling the impact of climate change on fuel load (Tables 8.1 and 8.2). 

CABLE has some advantages over other approaches. Firstly, CABLE is the standard land 

surface model for the Australian global climate model, ACCESS. This provides direct and easy 

access to a range of past and potential future experiments linked to a climate model that has 

been designed for the Australian context, and that is routinely used for numerical weather 

prediction and global climate projection intercomparisons. While DGVMs are regularly forced 

with climate model output (‘offline’), the coupling of DGVMs to GCMs (‘online’) has not 

generally been standard, although this is changing (Flato et al. 2014). Secondly, by emphasising 

interactions between the land surface and the atmosphere, CABLE provides an alternative 

framework with which to potentially reduce one of the major uncertainties around climate 

change and vegetation, namely the response of productivity to climate change (Settele et al.   

                                                        
3 This dichotomy is somewhat misleading. Empirical models assume a process underlying the 
correlative link, while process-based models rely heavily on, and generally include some, 
empirical information (Adams et al. 2013). 
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Table 8.1 Major approaches to modelling response of fuel load to climate change – general features. 

Model type Model (example) Aim Spatial resolution Vegetation resolution Fuel load representation 

Process-based 

 

Dynamic global 

vegetation model 

(Bonan et al. 2003) 

Ecosystem processes 

esp. climate and 

vegetation interactions 

Regional to global Plant functional types Small number of pools e.g. 

litter, coarse woody debris 

Process-based 

 

Land surface model1 

(Wang et al. 2011) 

Land surface and 

atmosphere interactions 

esp. water, energy and 

carbon fluxes  

Regional to global Plant functional types By proxy e.g. NPP 

Process-based 

 

Biogeochemical model 

(Wang et al. 2010) 

Cycling of carbon, 

other elements through 

earth system 

Regional to global Plant functional types Small number of pools e.g. 

metabolic litter, structural 

litter, coarse woody debris 

Process-based 

 

Landscape fire 

succession model 

(Keane et al. 2011) 

Climate, fuel and fire 

interactions 

Local to regional Species to plant 

functional types 

Single to large number of 

pools e.g. surface fuels, 

canopy fuels 

Empirical Statistical-correlative 

modelling (Thomas et 

al. 2014) 

Link load2 with 

variable available from 

climate model 

Point to global Species to plant 

functional types 

Varies e.g. temperature, 

precipitation 

 

1 The approach taken in this thesis is highlighted in grey 

2 Indirect correlative models have also been developed, linking meteorological variables to a proxy for load e.g. NPP (Batllori et al. 2013)
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Table 8.2 Major approaches to modelling response of fuel load to climate change – mechanisms.  

Model type Model (see Table 

8.1 for examples) 

Key processes affecting load Incorporation of climate change impacts Allows for CO2 

fertilisation? 

Process-based Dynamic global 

vegetation model 

Primary: litterfall, decomposition, 

disturbance. Secondary: primary 

productivity, heat, moisture 

Forced by climate model output, coupling 

to climate model 

Yes 

Process-based Land surface model1 Primary: primary productivity, carbon 

flow between vegetation and soil 

Forced by climate model output, coupling 

to climate model 

Yes 

Process-based Biogeochemical 

model 

Primary: litterfall, decomposition  

Secondary: primary productivity, heat, 

moisture, nutrient limitation 

Forced by climate model output, coupling 

to climate model 

Yes 

Process-based Landscape fire 

succession model 

Varies2 e.g. gap model, state and 

transition model, fuel accumulation 

model; includes disturbance 

Forced by climate model output (generally 

temperature and precipitation only) 

Generally no 

Empirical Statistical-correlative 

modelling 

Function of environmental variables e.g. 

temperature, precipitation 

Forced by climate model output No 

 
1 The approach taken in this thesis is highlighted in grey 

2 Some components of landscape fire succession models can be used as fuel load models in their own right e.g. gap models, state and transition models. See 
also the growth and yield model, with origins in forestry (Hurteau et al. 2014a) and the tree demography and landscape structure model (Haverd et al. 2013c). 
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2014). Clearly, however, CABLE is a complement to, rather than a substitute for, existing 

approaches to capturing the relationship between fuel load and climate change (e.g. King et al. 

2012). In the same way that model ensembles can reduce uncertainty in climate projections, 

adopting a portfolio of modelling approaches can reduce uncertainty in the modelled 

phenomenon (e.g. Ito 2011).  

Process-based and empirical approaches to fuel load modelling will improve through evaluation 

and the incorporation of new findings. For instance, evidence from observational and modelling 

studies of litter and litter decomposition suggests the strong possibility of interacting effects 

between climate, CO2, species composition (vegetation, macrofauna, microbes) and litter 

quality (Rouifed et al. 2010; Boyero et al. 2011; Ferreira and Chauvet 2011; Brovkin et al. 

2012; Ott et al. 2012; Saura-Mas et al. 2012). Empirical studies of the existing relationship 

between climate and major fuel types (Bowman et al. 2014b; Gibson et al. 2014; Thomas et al. 

2014) suggest a more nuanced response than the broad shifts (e.g. away from grasslands and 

towards forests) projected by DGVMs (Scheiter and Higgins 2009; Jiang et al. 2011; Jiang et al. 

2013).  

The model developed in Chapter 6 does not presently include disturbance, nor is it based on 

detailed measures of current land cover. As a result the fuel load modelled should be considered 

potential, rather than realised fuel load. However, this points to a much broader issue in 

modelling the impacts of climate change on bushfire and other complex systems: the presence 

of interactions and feedbacks. In spite of the presence of a large body of relatively reductionist 

research on bushfires and climate change, the potential for interactions and feedbacks has been 

widely recognised (e.g. Cary et al. 2012; Gill et al. 2013; Clark et al. 2014; Hurteau et al. 2014a, 

2014c; Mitchell et al. 2014). This thesis has assumed that changes in fire weather or fuel load 

will lead to changes in bushfire risk, depending on their significance to local fire regimes. 

However, fire is just as often a cause as it is an effect. Changes in fire regimes will likely have a 

range of direct and indirect effects on these same fire regimes in ways not modelled in the 

original study. For instance, it is commonly projected that climate change could lead to a 

doubling or more in fire weather conditions or area burned in some areas (Guyette et al. 2014; 

Hurteau et al. 2014b; Stavros et al. 2014). However, if large and severe fires act to reduce 

available fuel for future fires, this could act as a negative feedback, potentially limiting their 

overall frequency and extent (e.g. Heon et al. 2014). Conversely, it is likely that suppression has 

had some influence on historical fires, which form the basis of correlative models used in 

projections (Turco et al. 2014). If increases in fire weather conditions are large enough to 

overwhelm humans’ ability to suppress them and lead to increases in the number of 

uncontrollable fires (de Groot et al. 2013b), then projections of future fire based on correlative 

models may be underestimates. The following is a small sample of impacts of fire with potential 
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for feedback effects including and up to transition to entirely different fire regimes (Zinck et al. 

2011; Batllori et al. 2013; Pausas and Keeley 2014)  

• the age of vegetation and fuel load (Raymond and McKenzie 2012; Taylor et al. 2014) 

and overall biomass carbon stock (Keith et al. 2014) 

• litter properties (Papanikolaou et al. 2010; Aponte et al. 2014; Toberman et al. 2014)  

• soil properties, hydrology and water supply (Dunbar et al. 2012; Bladon et al. 2014) 

• a wide range of impacts on animals and plants – for instance on weeds and invasive 

species vis-à-vis fuel load – beyond that explored by DGVMs (Driscoll et al. 2010; 

Vivian et al. 2010; Banks et al. 2014; Dolanc et al. 2014) 

• GHG emissions (Keith et al. 2014; Loehman et al. 2014) 

• fire management including prescribed burning (Bradstock et al. 2012; Tarancón et al. 

2014) and land management (Gibbons et al. 2012) 

• a range of social and health impacts, e.g. land use (Bryant and Westerling 2014), smoke 

(Price et al. 2012), national park visitation (Duffield et al. 2013) and employment 

(Nielsen-Pincus et al. 2014) 

 

Chapter 6 does not present an evaluation of the simple fuel load model developed in it. The high 

quality, long term, gridded observational datasets available for climate model validation4, stand 

in stark contrast to the lack of similar fuel load observational datasets. Still, there are a number 

of options for evaluating fuel load models. Watson (2012) provides a useful synthesis of a range 

of fuel load observations in NSW, including many sites beyond the initial dataset used to 

validate BIOS2 (Haverd et al. 2013a). Site-based observations are not an ideal test for grid-

based models – they may not be representative of the entire model grid-cell with which they are 

being compared, and there have been considerable differences in fuel assessment methodologies 

over the years (Watson 2009; Keane 2012). Nevertheless, these represent the longest running 

and most diverse source of fuel load observations and will give some indication of model bias. 

In contrast, vegetation-formation based estimates of load developed by Watson (2012) are more 

or less spatially continuous, having been generalised from multiple point-based observations for 

a range of vegetation types found in NSW, including rainforests, dry and wet sclerophyll forests 

and grassy woodlands.  

                                                        
4 More for temperature and precipitation than other meteorological variables. 
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There are a number of remotely sensed products of a spatial scale suitable for process-based fuel 

load model evaluation. LiDAR measurements have been empirically related to various spatial 

properties of fuel, including density and amount (Clark et al. 2009; Bolton et al. 2013). They 

have also been used as close to pure observations (see Keane et al.’s (2001) discussion of direct 

versus indirect mapping using remote sensing). Passive microwave remote sensing of vegetation 

optical depth (VOD), which reflects vegetation water content, has been used as a proxy for 

terrestrial aboveground (living) biomass (Liu et al. 2011; Liu et al. 2013). The normalized 

difference vegetation index (NDVI) derived from remote sensing has been used to estimate fuel 

amount as well as the curing of herbaceous vegetation (Chafer 2007; Turner et al. 2011). 

Finally, remotely sensed estimates of NPP have been used to estimate fuel load (Hély et al. 

2003; Roberts et al. 2008). It would be ironic, but not physically inconsistent, if these NPP-

based load values5 were to serve as observations for the validation of model of load derived 

from NPP.  

The research presented in Chapter 6 does not attempt to isolate the effects of rising CO2 on the 

load during the twentieth century. One study has found that Australian continental NPP between 

1990 and 2011 was 13% higher than it would have been in the absence of anthropogenic CO2 

(Haverd et al. 2013b). Isolating CO2 effects on NPP has of course more than historical 

relevance, given the increasing trajectory of global atmospheric CO2 emissions. The use of this 

model to project future load is described in Chapter 7 and addressed below. A separate issue 

relates to the length of the simulation presented in Chapter 6. At 28 years, it is longer than any 

other historical fuel load simulation focused on Australia that author is aware of, but longer 

reanalysis datasets are available. For instance, the NNRP dataset (Kalnay et al. 1996) begins in 

1948 and would allow for a considerably extended simulation of load, making it easier to 

investigate interdecadal variability and spatial and temporal trends.  

To sum up, this thesis presents research which demonstrates that in an observationally 

constrained ecosystem model, fuel load expressed as a simple linear function of the previous 

year’s NPP explains most of the variation in annual fuel load over large regions of Australia, 

particularly in temperate, grassland and subtropical regions. The Australian land surface model 

CABLE incorporates both climate and atmospheric CO2 into its simulation of NPP and can 

therefore be used to simulate fuel load under changing climate and CO2, based on this simple 

relationship. As presently formulated, there is most confidence in the model’s ability to simulate 

variation in fuel load at coarse temporal scales (annually) and over large climate regions. At a 

fine spatial scale, the model performs strongly in some areas and weakly in others. Improving 

                                                        
5 Themselves based on empirical relationships between observable quantities, such as greenness, and 
NPP. 
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the temporal resolution and accuracy of the model, through model evaluation and the 

incorporation of more realistic mechanisms, will improve its overall applicability. 

 

8.4 How are fire weather and fuel load projected to change at a 

relatively fine scale (50 km) by an ensemble of global and regional 

climate models, selected to span the possible future climate change 

space? 

Chapter 7 presents the first continental, relatively fine scaled projections of the impact of 

climate change on both fire weather and fuel load. These projections suggest an increase in 

bushfire risk in temperate, grassland and subtropical areas of Australia due to climate change, 

driven by increasing fuel load, increasing or stable fire weather and a lengthened fire season. If 

these changes were to occur, they would likely have impacts across the country’s fire regimes. 

However, projections of increasing fuel load are potentially more significant in grassland 

regions, where fire incidence tends to be load-limited, while increases in fire weather conditions 

may be more significant in forested areas, where fire incidence is limited more by weather 

conditions that dry fuel out enough for it to burn (Bradstock 2010; King et al. 2013). 

The study relies on the fuel load model developed in Chapter 6 (discussed above) and the ability 

of WRF to simulate FFDI, which is demonstrated for southeast Australia in Chapter 5. With 

respect to fire weather, WRF is yet to be evaluated over the rest of Australia, including parts of 

the climate zones used in Chapter 7. The simulations used in Chapter 7 are part of a larger RCM 

dataset that includes a three member reanalysis-driven ensemble, which provides additional 

model data to evaluate against observations (Evans et al. 2014). Moreover, the reanalysis dates 

back to 1950. A small number of stations in the observational network also go back to around 

this time (Lucas 2010), raising the prospect of testing the ability of WRF to capture long term 

variation in FFDI. Work is underway to develop a gridded FFDI product (M. Boer, K Braganza, 

pers. comm.), which would provide a more appropriate test of WRF’s performance and 

facilitate bias correction of WRF output beyond individual stations. Chapter 5 does not 

investigate the reasons for the WRF biases identified (e.g. a tendency towards positive bias 

inland and negative bias on the coastline), nor for differences in WRF performance at different 

model resolution. Evans and McCabe (2013) found that mountainous and coastline areas are 

generally simulated better at 10 km resolution than 50 km resolution, and that coarser resolution 

RCM simulations can actually mask errors in the driving GCM, which are revealed by finer 

resolution simulations.  
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As noted, the need for regionally useful climate change information has led to increased 

downscaling of global climate models for fire weather projections (and other measures of 

bushfire risk). Two major avenues for converting GCM output to a finer scale are dynamical 

regional climate models (RCMs; Mearns et al. 2003) and statistical downscaling (Wilby et al. 

2004). This thesis focuses on RCMs, but the two have different strengths and weaknesses and 

importantly, they are not mutually exclusive. The use of RCMs in climate change research on 

bushfires goes surprisingly far back, with two studies published in 2001 that used an RCM to 

explore changes in fire weather conditions in the west (Amiro et al. 2001) and boreal forest 

(Flannigan et al. 2001) of Canada. In Australia, the atmosphere-only RCM, CCAM, was used to 

project changes in FFDI in southeast Australia in 2005 (Hennessy et al. 2005). There has been a 

strong increase in the number of studies since then, facilitated by model development and the 

availability of large GCM output archives, as well as increased expertise amongst scientists in 

using these models. In 2013 and 2014 alone, there were at least 13 fire weather projection 

studies using RCMs, spanning the Mediterranean, Europe, North America, Australia and China.  

The increasing use of RCMs has benefited from the development of several regional climate 

projection ensembles, including PRUDENCE (Christensen et al. 2007), ENSEMBLES (van der 

Linden and Mitchell 2009), and NARCCAP (Mearns et al. 2012). Chapter 7 employs an 

ensemble selected not just for its skill in representing climate, but for two other important 

attributes: model independence and spanning a range of possible futures. The issue of model 

independence relates to the treatment of ensemble members as equally likely projections of 

future climate. As an example, if an ensemble of three models contains two that are very 

similar, and one that is quite different, it would be misleading to consider each one an equally 

likely representation of a possible future climate. The ensemble used in Chapter 7 draws on the 

work of Bishop and Abramowitz (2013), who provide a means for defining model independence 

based on covariance in model errors. The author is not aware of any other fire projection studies 

that use an ensemble of climate model simulations selected for independence.  

The use of ensembles that span a range of possible future climates is more common (Jiang et al. 

2011; Lung et al. 2013; Hurteau et al. 2014b; Mann et al. 2014). The selection of a subset of 

models that spans the range of a large ensemble reduces the complexity and computational cost 

of the study, while retaining critical information about the extremes of possible change. It is 

therefore an acknowledgement that climate projection studies are undertaken to inform policy 

and management decisions, with the assumption that users will be interested in not just average 

projections, but also ‘best’ and ‘worst’ case scenarios. All studies the author is aware of use 

temperature and precipitation as their criteria for defining the span of possible change (e.g. 

warm and wet vs. hot and dry) but other options are possible and will depend on the needs of 

the users. The growing use of objectively designed model ensembles has led some to refer to an 
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unweighted collection of models, not long ago something of a gold standard in climate research, 

as a Poor Man’s Ensemble (Cane et al. 2013). 

As discussed above, the fire weather projections presented in Chapter 7 are drawn from a larger 

RCM dataset. This dataset includes a 12 member ensemble, using the same GCMs and RCMs 

as Chapter 7, but at 10 km horizontal resolution. While 50 km can be considered fine scale in 

terms of GCM resolution, these higher resolution simulations provide an opportunity to 

examine finer scale variation in future fire weather and further compare the effect of model 

resolution on model performance. The increased resolution comes at a cost in spatial coverage, 

with the 10 km resolution ensemble available only over southeast Australia, rather than all of 

Australia. The 10 km dataset also includes bias-corrected temperature and precipitation data, 

which raises the prospect of comparing what would be a partially corrected (but physically 

inconsistent) FFDI against uncorrected FFDI, in terms of both projections as well as ability to 

simulate observed fire weather (see Fox-Hughes et al. 2014 for an example from Tasmania). 

In conclusion, this thesis presents projections of fire weather and fuel load under climate change 

in Australia from a global and regional climate member ensemble, selected for model skill and 

independence, as well as to span the range of possible climate change futures. Fuel load is 

projected to increase strongly across Australia by all ensemble members. In contrast, projections 

of fire weather conditions are highly sensitive to the choice of model, with two of four GCMs 

suggesting little change in FFDI, including small decreases, and the other two suggesting strong 

increases in FFDI. All ensemble members project the largest increases in fire weather to occur 

in spring, suggesting a longer fire season overall.  

 

8.5 Caveats, uncertainties and scope 

There are of course major uncertainties inherent in these conclusions. Uncertainty in fire 

weather projections is closely linked to uncertainty in the global climate model forcings used, 

although it is notable that the magnitude of projected increases is far larger than that of 

decreases. This contrasts with fuel load, which is consistently projected to increase, likely 

linked to the CO2 fertilisation effect. Uncertainty in projected load is strongly related to the 

model of load as a function of NPP itself, developed in this thesis. The rationale for linking 

these two variables is sound, but the implementation is simple, temporally coarse (based on 

annual values) and is unable to represent changes in the drivers of litter amount, litterfall and 

litter decomposition. As a result, fuel load projections should be considered indicative of 

potential broadscale vegetation responses to changed climate and increased CO2, rather than 

prescriptive of detailed changes in vegetation amount feeding into fire behaviour models.  
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Another limitation is the ability of the models used in Chapters 3 to 7, particularly WRF, to 

accurately simulate FFDI. In a similar vein, thesis results are limited by CABLE’s ability to 

simulate NPP and carbon fluxes more generally. Reducing uncertainty in the response of 

vegetation to increased atmospheric CO2 is a major research challenge. Another caveat 

applicable across this thesis is that uncertainty in the trajectory of global GHG emissions is not 

sampled. All projections use a single emissions scenario, A2, a choice supported by evidence 

showing that global emissions continue to track at the upper end of the various IPCC scenarios. 

Finally, the models used here are relatively fine in spatial scale with regard to global climate 

models, but relatively coarse compared to some other models (e.g. landscape fire succession 

models). Although they can be run at higher resolution than used here, they are not generally 

designed to simulate very fine (e.g. below 1 km) variation in fuels, weather and fire behaviour. 

That said, by providing a robust link to mechanisms of climate change, the approach used in this 

thesis still yields insights about the relationship between climate, weather and fuel load that will 

be useful to decision making and adaptation planning.  

The results in this thesis should also be interpreted in light of a number of important factors 

beyond scope. The thesis takes the four switches of fire framework, focusing on the drivers of 

bushfire incidence, rather than patterns of fire behaviour and impacts of fire. Within this 

framework, the thesis focuses on fire weather and fuel load, omitting ignitions and treating fuel 

moisture only indirectly, as a component of the fire weather index used. In using FFDI to 

represent fire weather conditions, some pertinent aspects of fire weather are not addressed: wind 

direction and wind changes, upper atmospheric properties, and more broadly synoptic features, 

teleconnections and other drivers of fire weather. Moreover, FFDI as a measure of fire danger 

and behaviour is subject to its own strengths and weaknesses (Zylstra 2011). FFDI’s 

weaknesses are most obvious in predominantly grassland areas, where results should be 

interpreted with caution. Although it behaves similarly to its counterpart, the Grassland Fire 

Danger Index, FFDI does not place as a great an emphasis on wind speed or explicitly account 

for the distinctive curing of herbaceous vegetation. As mentioned above, given the spatial scale 

of the climate and land surface models used in this thesis, exploring the mechanisms responsible 

for fine variation in fuels, fire behaviour and local weather are beyond the scope of this 

research. Also out of scope are the wide range of potential interactions and feedbacks between 

these projections and human and natural systems, including fire regimes themselves.  

In spite of these caveats and uncertainties, a number of conclusions can be reached about the 

research presented in this thesis. These are discussed in Chapter 9, which also addresses future 

work and the broader context of this research. 
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Chapter 9 

 

Conclusion 

This thesis aims to develop improved projections of the impact of climate change on bushfire 

weather conditions and fuel load, via four specific research questions: 

1. Are there significant trends in average or extreme fire weather within the observational 

record? 

2. How is fire weather projected to change in different rainfall seasonality regions by skill-

selected global climate models? 

3. Can a simple model of fuel load be developed for use in the Australian land surface 

model, that accounts for both climate and atmospheric CO2 effects on vegetation 

growth? 

4. How are fire weather and fuel load projected to change at a fine scale (50 km) by an 

ensemble of global and regional climate models, selected to span the possible future 

climate change space? 

The first aim is addressed through the first Australia-wide analysis of a high quality fire weather 

dataset (Chapter 3), which reveals an increasing trend in mean and extreme fire weather at 

around half of all stations, and no decreasing trends. The analysis also suggests that the fire 

season in Australia has been lengthening since 1973. This analysis was published by Clarke et 

al. (2013a). 

The second aim is addressed through the use of a four member ensemble of skill selected global 

climate models to project fire weather under climate change over eastern Australia (Chapter 4). 

Fire weather is projected to increase strongly in regions of uniform and winter dominated 

rainfall in southeast Australia. In contrast, little change or even decreases are projected in 

summer dominated rainfall regions in the north. This analysis was published by Clarke et al. 

(2011). 

The third aim is addressed by using net primary productivity, a measure of the rate of vegetation 

growth, as a proxy for fuel load (Chapter 6). A strong relationship is found between net primary 

productivity and fuel load in an observation-constrained ecosystem model; this relationship is 
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applied to a sensitivity ensemble of land surface model simulations from 1980 and 2008 over 

Australia, incorporating the effects of both climate and atmospheric carbon dioxide on 

vegetation. This analysis has been submitted to a journal for publication. 

The fourth and final aim of the thesis is addressed by running an ensemble of regional climate 

model and land surface models to predict fire weather and fuel load respectively (Chapter 7). 

The study builds on previous work in the thesis, particularly the fuel load model developed in 

Chapter 6 and an evaluation of a regional climate model’s ability to simulate fire weather in 

southeast Australia presented in Chapter 5. The ensemble is derived from a mixture of global 

and regional climate models selected for their skill in simulating Australia’s climate, their 

independence as models, and their ability to span the range of predicted climate change in 

Australia. Strong increases in fuel load are projected in temperate, grassland and subtropical 

regions of Australia, likely driven by increases in carbon dioxide fertilisation. Fire weather 

projections are more contingent on the climate forcing, which spans both drying and wetting 

futures, but tend towards a lengthening of the fire season and much larger increases in fire 

weather than decreases. The regional climate model evaluation was published by Clarke et al. 

(2013b). The fire weather and fuel load projections have been submitted to a journal for 

publication.  

In summary, this thesis provides strong evidence that climate change will have significant 

impacts on fire weather and fuel load in Australia. These findings are broadly consistent with a 

large body of international research on climate change impacts on bushfire, namely that there is 

the potential for large increases in fire risk, partly compensated for by little change or even 

decreases in some areas. One of the strengths of the ‘four switches of fire’ framework is its idea 

of a limiting switch. Considering which of the switches limits overall fire incidence in a given 

area is particularly useful when interpreting climate change impact studies. Thus increases in 

fire weather conditions or fuel load are unlikely to lead to corresponding increases in fire risk 

everywhere. Increases in fire weather conditions are likely to be particularly significant in 

forests in the southeast and southwest of Australia, where load is typically plentiful but does not 

often dry out enough to support fire (Bradstock 2010). In contrast, increases in fuel load may be 

more significant in arid environments, where hot, dry conditions do not lead to frequent fire 

because of insufficient rain in preceding months to allow fuel buildup.  

There are important caveats to these results, including uncertainty in the future regional 

response of rainfall to climate change, limitations to the simple fuel load model developed in 

Chapter 6, some weaknesses in the ability of climate models to accurately simulate fire weather 

and the response of vegetation to changing climate and atmospheric CO2. Despite these 
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uncertainties, there is little doubt that climate change poses a clear challenge to fire managers1. 

Nor should this challenge be considered a purely long-term one, given that changes in fire 

weather conditions have already been observed in many areas across Australia since the early 

1970s. Society and fire managers must plan for changes and reduce systemic vulnerability in 

fire risk. One tool for achieving this is the framework of robust decision making, which shares 

some features of the objective design of climate model ensembles (Weaver et al. 2013). Rather 

than focus exclusively on narrowing the bounds of uncertainty to some arbitrarily narrow 

window, this framework emphasises the need for managers and modellers to understand the 

current bounds of uncertainty and how robust their systems are to it. A related, and somewhat 

difficult question for climate and fire modellers, is the likelihood of their results being used by 

decision makers (Tang and Dessai 2012). There is a clear need for an improved understanding 

of the links between science, policy and management, a topic that extends well beyond the 

scope of this thesis.  

Apart from the potential for more and larger fires, the changes projected here are likely to have 

implications for the use of prescribed burning, which is a major risk management activity in 

NSW and elsewhere (OEH 2012; Penman et al. 2011). Prescribed burning is generally 

undertaken in shoulder seasons, which stand to be redefined by changes in fire weather 

(Flannigan et al. 2013). How will prescribed burn windows change? More evidence is required 

of the fire weather conditions currently prevailing during prescribed burns. Developing a 

climatology of such conditions would be a useful first step to evaluating potential changes in 

prescribed burning windows. 

Other areas for future research include:  

• exploring observed trends at greater extremes in the FFDI distribution than those 

analysed here;  

• exploring in greater detail the absolute and relative amount of observed changes in 

FFDI; 

• investigating the drivers of observed changes in fire weather, including a formal 

detection and attribution study; 

• evaluating WRF fire weather simulations, and reasons for biases, over a longer time 

period and greater spatial domain; 

                                                        
1 Spare a thought for fire managers, who need to consider not just the vast and varying effects of 
climate change, but other potential disruptors such as invasive plant species and socioeconomic 
and policy changes (Pausas and Keeley 2014). 
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• conducting finer scale projections of fire weather over southeast Australia using WRF; 

• evaluating the fuel load model against observations (even though these themselves are 

subject to uncertainties);  

• investigating additional methods of determining forest fire rate of spread (e.g. Cheney 

et al. 2012); 

• running coupled land surface model-regional climate model simulations to dynamically 

explore past and future fuel load and fire weather pathways, with a focus on the relative 

importance of carbon dioxide fertilisation in determining the overall response of 

vegetation to climate change; 

• a broader examination of the likely impacts of the changes projected here on fire 

regimes and human and natural systems.  

Humanity has had considerable notice of its potential to alter our earth’s climate system (Le 

Treut et al. 2007), from Arrhenius’ seminal climate prediction in the century before last, to 

Keeling’s discovery of rising atmospheric CO2 in the 1950s, to the formation of the IPCC in the 

late 1980s and the Rio Earth Summit in the early 1990s. Despite this, global temperatures and 

GHG emissions continue to rise and no agreement has been reached on a global mechanism to 

deeply cut emissions. In this context, the task of understanding potential impacts of unmitigated 

climate change on human and natural systems takes on extra significance. That is the aim of this 

thesis, for the coupled natural and human system of bushfires. The studies presented here 

provide robust evidence of potential climate change impacts on two key drivers of bushfire risk, 

fire weather and fuel load. They add to a growing body of evidence that bushfire risk could 

increase strongly in some areas, but remain stable or even decrease moderately in others. The 

resolution of major uncertainties in these responses is likely to take years of research across 

disciplinary boundaries. But work to understand the sensitivity of fire management to these 

potential impacts can, and should, begin immediately.  
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