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Abstract

This thesis is focused on the skills that must be performed by an autonomous robot

to interact with objects in a complex environment. For a robot to manipulate and

interact effectively with an object it must first learn the appearance of the object,

determine the shape of the object, be able to recognise and localise the object in the

environment and determine the physical properties of the object. We consider each

of these skills in turn.

A new method of object recognition using local image feature matching has

been developed that is more accurate than existing methods, as well as being more

efficient in some circumstances. Next we developed a system that combines robot

initiated object motion and long term image feature tracking to accurately extract

object features from complex scene images. This allows a robot to learn to recognise

previously unseen objects in the presence of clutter, noise and background motion.

The object feature matching and segmentation methods are then combined with 3D

reconstruction methods to determine the object’s shape. This is done by stitching

together multiple views of the object.

Physical properties (weight, friction, centre of mass, etc) are important factors in

determining how a robot can use an object. However, unlike shape and appearance,

these may be impossible to determine by passive observation. We have developed

a method in which the robot performs experiments on the object, and uses the

outcomes to update its knowledge of the object’s physical properties. To perform

the most informative experiments, a physics simulator is used to internally rehearse

each experiment and its potential outcomes. The outcome of each experiment, after

being performed on the physical object, is input back into the simulator forming a

hypothesis-experiment-refinement loop. In this way the robot effectively learns the

internal properties of an object. Finally, the robot uses this knowledge to plan and

carry out a simple task in which the object is used as a tool.
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Chapter 1

Introduction

This thesis deals with the steps required for an autonomous robot to progress from

encountering a new object in the environment to being able to recognise, manipulate,

and finally use the object to complete a task. This thesis encompasses several fields

ranging from computer vision, object recognition and reconstruction, to simulation

and planning. We focus on maximising robot autonomy by developing methods

that allow a robot to be self-sufficient in tasks that would otherwise require human

operator intervention or the availability of pre-processed data.

The principal aim of this thesis is to investigate a method for a robot to au-

tonomously learn an object’s properties by interacting with the object and observing

the outcome of these interactions. However, there are several perception problems

that need to be solved before a robot can effectively interact with an object. We

address these first, followed by presenting the main contribution of active robot

learning of object properties.

The initial step is to develop a vision system capable of learning to recognise a

new object in a complex environment with no human intervention or pre-processed

training data. This consists of two separate tasks. The first is to learn the object’s

appearance by separating its image features from the background. This is challeng-

ing as the robot has no a priori knowledge of the object and segmentation may

be complicated by a cluttered and dynamic scene background. The second is to

1



effectively match the learned object’s appearance to a model, so that the robot can

recognise and localise the object in the scene.

The next step is to learn the object’s 3D shape and the full 360◦ appearance

model. This allows the robot to recognise an object in a scene from any angle and

to determine its pose. Knowing the shape of the object enables a robot to plan

grasp and manipulation actions. The robot learns the full 3D model of the object

by combining views of the object from different directions.

The final step is for the robot to learn the physical and internal properties of

an object through experimentation and interaction. Some properties of an object

cannot be determined by passive observation (eg: centre of mass, coefficient of

friction, etc). To do this, the robot must actively interact with the object, performing

experiments and observing the results. By doing this, it can build a model of the

internal properties of the object. The challenges include choosing an appropriate

representation to model the properties of the object, performing the experiments

that provide the most information about the object, and correctly inferring the

object’s properties from the outcomes of the experiments. By doing this, the robot

can efficiently build an accurate model of the object, taking into account its shape,

appearance, internal and physical properties. This allows the robot to effectively

manipulate and use the object to accomplish tasks.

The end result is a robot system that can autonomously progress from a first

encounter with an object to effectively using the object as a tool.

1.1 Motivation

One of the first widespread applications of robots was in factories to automate assem-

bly and construction [Makino and Arai, 1994]. In these cases the robots operated

in structured environments and performed structured tasks. Over time robots be-

came mobile, gained a degree of autonomy, and were being used in less structured

environments [Forlizzi and DiSalvo, 2006]. Extrapolating this trend leads to many
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Figure 1.1.1: A Willow Garage PR2 Robot performing a household
task. (Image courtesy of “A fresh view on the Internet and Society”
http://cs47n.blogspot.com.au/2011/10/article-on-willow-garage-where-well.html)

new potential application areas, for example household service robots (example in

Figure 1.1.1). These are robots which could be used to perform tasks around the

house and provide assistance for the elderly and disabled. One of the main chal-

lenges [Kemp et al., 2007] to applying robotics to these applications is autonomy

and self-sufficiency.

Consider the following example scenario: a household service robot is deployed

into an elderly person’s home. A typical tasks that it may need to perform is retriev-

ing medicine. This seemingly simple task involves several steps that are complicated

by the need for autonomy and to operate in a complex, human-centric environment.

First, the robot must be able to recognise and locate the correct medicine con-

tainer in the house. There are many different approaches to object perception using

robot sensors (discussed in detail in Chapter 2), however many of them rely on the

robot having a priori knowledge of the target object. For example, this knowledge

can be in the form of segmented views of the object. The problem with this is

that an autonomous robot, operating in a complex environment, may encounter an
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endless array of objects. It is not feasible to provide the robot, prior to deployment,

with a model of every possible object it may need to recognise. Instead, the robot

must be able to autonomously learn the appearance of new objects. In the case of a

household service robot, it would learn the appearance of various objects around the

house after it has been deployed. In this way the robot would no longer be reliant on

pre-programmed classifiers, but would be able to dynamically learn to recognise and

localise novel objects. A related task is reconstructing the 3D shape of an object.

Knowing the shape of an object allows a robot to more effectively interact with it,

being able to choose optimal grasp points [Borst et al., 1999], as well as allowing

the robot to perform motion planning and reason about the potential tool uses of

the object [Brown and Sammut, 2007]. Similar to learning the object’s appearance,

a robot should be able to learn the 3D shape of an object autonomously.

Consider a different scenario in which a household service robot needs to prop

open a door with some object. In this case the properties of the object will determine

if it is a suitable tool to use for this task. For example, a light or slippery object may

not be suitable, whereas a heavy and rough object would be. Similar to the problem

of object recognition, it is not feasible to pre-program a robot with knowledge of the

physical properties of every object it may encounter in an unstructured environment

such as a home. Instead the robot must be able to autonomously discover object

properties such as weight, centre of mass, coefficient of friction, etc. To do this it

may need to perform experiments to build a model of the object.

Many of the problems this dissertation addresses are based on minimising the role

of human intervention and pre-programmed knowledge, instead maximising robot

autonomy. The aim is a level of autonomy that would allow a robot to be deployed in

an unknown and unstructured environment, and to be able to discover new objects

and use these as tools to solve some tasks.
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1.2 Contributions

The main achievements presented in this theses are:

• A novel method for a robot to learn the physical properties of an object by

active experimentation. We use a physics simulator to generate hypotheses and

guide the robot toward the experiments with the highest information gain. We

solve the problem of choosing the optimal experiment by internally rehearsing

each experiment in simulation to determine the posterior probability and the

associated expected entropy. The optimal experiment is then carried out by

the robot on the object, and the results provide information about the internal

and physical properties of the object.

• The learned model, incorporating the appearance, shape and the physical

properties of the object, is used to plan and execute a tool-use task. The

task is planned using internal rehearsal in simulation, and then carried out by

the robot.

• A new method for local image feature matching, correlating scene image fea-

tures to a database of learned object image features for object recognition and

localisation. The developed algorithm is more accurate than the approximate

nearest-neighbour method [Beis and Lowe, 1997], as well as computationally

more efficient in certain circumstances. This enables a robot to recognise and

localise objects in a scene with greater accuracy and speed.

• A method for a robot to learn to recognise a previously unseen object by using

motion and long term feature tracking to segment object features from the

background, generating a database of object image features in the process.

We solve the problem of generating segmented snapshots of the target object

in the presence of a high degree of background clutter and motion. Object

snapshots are combined to learn the full 3D aspect graph and shape of the

object by stitching together multiple object views.
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Figure 1.3.1: The robot platform used for this thesis. The robot is composed of a six
degrees-of-freedom industrial arm, a two fingered gripper, and a camera mounted
on a pan-tilt unit. A tablet-top workspace is accessible in front of the robot.

The result of this thesis is a robot system with the ability to encounter an unknown

object, learn to recognise the object, determine its 3D shape, its physical properties,

and use the object to complete a task requiring tool use.

1.3 Robot Platform

The platform used to test and evaluate the methods and algorithms presented here

consists of a camera on a pan-tilt unit and a six degrees of freedom robot arm with

a gripper attachment. This is arranged in a humanoid configuration, the pan-tilt

unit and camera are placed on top of a metal spine and the arm is attached below

(see Figure 1.3.1). The spine is fixed to a table, which provides the robot with a

flat workspace in front. The camera unit is located 0.8 metres above the workspace

surface, while the arm is fixed to a point 0.5 metres above the surface.

The camera unit is a Point Grey Bumblebee2 stereo camera1, which incorporates

two RGB cameras with 43◦ field of view and a 12cm baseline distance. We used

a resolution of 640 × 480 at a refresh rate of 10 frames per second. For some
1http://www.ptgrey.com/products/bumblebee2/
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Figure 1.3.2: The two-fingered gripper attachment on the end of the robot arm.
Each finger is composed of two servos, the finger tips consist of metal plates covered
in silicone to increase friction.

experiments this camera is replaced with a Microsoft Kinect2 RGB-D camera. The

Kinect is a sensor unit combining a traditional RGB camera with an infrared camera

and projector which, using structured light, is able to provide 11 bits of depth

information per pixel. The result is a 640 × 480 resolution image, with each pixel

containing RGB color information as well as a depth value. The Kinect is described

in greater detail in Chapter 6.

The robot arm is a Denso Robotics VP-63 robot, which is able to orient the

end-point with six degrees of freedom and is composed of six joints. At the end of

the robot arm we attached a two fingered gripper (see Figure 1.3.2). Each finger

consists of two servos with a silicone coated pad at the tip for improved grip.

1.4 Thesis Outline

• Chapter 2 provides an overview of the related work in the fields of computer

vision, 3D reconstruction and active robot learning.

• Chapter 3 describes a new method of image feature matching for object

recognition, improving upon existing methods in both speed and accuracy.

• Chapter 4 describes a method for a robot to learn the appearance of a new
2http://www.xbox.com/en-US/kinect
3http://www.densorobotics.com/products_vp_5_6axis.php
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object autonomously and in a complex environment. This allows the robot to

learn to recognise objects after it has been deployed, rather than being limited

to those objects it has been trained to recognise during development.

• Chapter 5 combines the methods developed in Chapters 3 and 4 with 3D

reconstruction techniques into a system allowing a robot to learn the full 3D

aspect graph of an object as well as its shape.

• Chapter 6 presents the primary contribution of this thesis, a technique for a

robot to learn the physical and internal properties of an object using interaction

and experimentation. The learned object model is then used for planning and

carrying out a tool-use task.

• Chapter 7 suggests avenues for future work as well as concluding the thesis.
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Chapter 2

Background

This thesis investigates the primary skills an autonomous robot needs to interact

with and use objects in its environment. These skills include: learning the appear-

ance of a novel object, recognising and tracking the object in a cluttered scene,

reconstructing the 3D shape of the object, and learning the physical properties of

the object to accomplish a task. In this chapter, we discuss the background and

existing literature in each of these areas. We present related work and the strengths

and weaknesses of the existing approaches, followed by an outline of how these

weaknesses are addressed in the following chapters.

2.1 Object Perception

Object recognition and localisation is a key aspect of any robot system that needs

to interact with objects in an unstructured environment. Many different sensor

modalities have been used for robot object recognition. Haptic feedback (touch) has

been used to determine the shape of an object from sparse surface contact points

that are then used to match the shape of known objects [Allen and Roberts, 1989].

Scene range data from a time-of-flight sensor, such as a laser range scanner, can

also be used to recognise and localise objects in a scene by matching known shapes

[Arman and Aggarwal, 1993]. Magnetic markers [Livingston and State, 1997] and
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acoustic signatures [Sinapov et al., 2009] are further examples of the wide range of

sensors and modalities that have been applied to object tracking and recognition.

However, the most common sensor modality for object recognition and localisation

is vision.

Video cameras are popular sensors because of their low cost, high resolution, and

the large amount of scene data contained in the camera image stream. The output

of most cameras is a stream of images, where each image is a two dimensional array

of pixels. This data can then be used for recognising and localising an object in the

scene by examining the pixel values of the camera images.

There has been a large amount of research in computer vision addressing the

problem of object recognition and localisation, applying a variety of techniques

[Forsyth and Ponce, 2002] [Shapiro and Stockman, 2001]. We present an overview

of the different approaches that have been used for object recognition and localisa-

tion in computer vision, going into detail for the more relevant research literature.

In general, the development of object recognition algorithms has been driven by

the need to address two main problems. First, the appearance of an object in a

scene image may be different from its appearance during training. This can be due

to changed lighting conditions, partial occlusion of the object and viewing the object

from a different perspective. The second problem is background clutter. The scene

image may contain background regions that appear similar to the target object.

This can make accurate object recognition and localisation difficult.

2.1.1 Model Based Recognition

3D model based recognition relies on an existing 3D representation of an object to

recognise and localise it. A typical representation is a 3D Computer Aided Design

(CAD) model that defines the faces and edges of the object. Edges [Canny, 1986]

and contours extracted from an image can be matched against the CAD data to

determine the object’s pose in the scene [Drummond and Cipolla, 2002]. However,
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one of the problems with this approach is finding the initial correspondence between

scene edges and the object’s shape. A simple solution is to initialise the scene object

in a particular orientation [Drummond and Cipolla, 2002], but this is not suitable

when the object’s pose is unknown. An improved approach is to match locally

distinct image regions to determine the initial correspondence between the object

model and the scene [Kim and Kweon, 2005].

Despite being able to accurately track the pose of an object, model based ob-

ject tracking has several drawbacks. An accurate 3D CAD model of the object is

required, which may be difficult and time consuming to obtain. Additionally, the

objects must have well defined contours and edges for optimal performance. Objects

with complex patterns and textures may not be suitable for recognition and tracking

using this approach.

2.1.2 Appearance Based Recognition

In contrast to model-based recognition, appearance-based methods store a represen-

tation of the object’s visual appearance and features from different points of view.

The stored representation is then matched against a scene image to recognise the

object in the environment. The different appearance based approaches are charac-

terised by how the object’s appearance features are represented and how this model

is matched to the scene image. We can divide these into two classes: methods using

global image features; and methods using local image features.

Global Image Features

Global image features are functions of either the entire image, or a large part of it.

Global features can be used to form a very compact representation of an image as

a vector in a high dimensional space.

Colour and colour histograms are useful global features for object perception.

If the object has a relatively uniform colour, distinct from the background, object

11



Figure 2.1.1: For colour histogram object detection, a training object image (top
left) is used to generate a representative colour histogram (top right). This is then
used to label the pixels in the scene image (bottom right), highlighting pixels that
have a high probability of belonging to the target object (bottom left). (Images
courtesy of [Metta, 2011])

recognition and localisation can be performed by labelling as object pixels if they

match a predefined colour-space region [Bandlow et al., 2000]. Object pixel regions

determine the location of the target object in the image. Alternatively, an object

view can be characterised by it’s colour histogram. A histogram is a representation

of the frequency that each colour occurs in an image. This can be used to classify the

content of an image [Chapelle et al., 1999], but also for object detection and locali-

sation. If we calculate the colour histogram of an object’s appearance using training

images, we can find the image regions that have a similar colour to the object by back

projecting the object’s histogram onto the scene image [Swain and Ballard, 1991].

An example of this is shown in Figure 2.1.1.

This approach can work well if the object’s colours are distinct from the back-

ground. It is also able to handle rotation and scale changes, as a histogram is in-

variant to such image transforms. However, if the background image regions contain

similar colours to the target object, this approach will fail. A more robust approach

is to combine colour with other image features such as shape [Diplaros et al., 2006].
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Figure 2.1.2: A shape context description vector is formed for an object (a) by taking
its silhouette (b) and drawing vectors out from points along the contour to other
points on the contour (c). The result for a point p can be represented as a log-polar
histogram (d). The shape context of the entire object is a vector of the histograms
of the points along the contour. (Image courtesy of [Zhang and Lu, 2004])

Shape based approaches to object recognition use the contour or silhouette

of an object to create a description vector. This description vector can include

shape metrics such as area, eccentricity, etc [Zhang and Lu, 2004]. However, im-

proved object discrimination has been achieved by using shape context features

[Belongie et al., 2002]. These features are formed by taking points along the con-

tour of an object (which can be found using edge detection [Canny, 1986]) and

drawing vectors out to other points along the contour. The length and direction of

the vectors form the shape context description of the object (see Figure 2.1.2). To

match shapes, a minimum error mapping is found between the points comprising

the shape contexts of a learned model and the scene image, where each point is

characterised by its vectors. This approach is effective for objects with well defined

shapes and silhouettes. However, as background clutter and partial object occlusion

is introduced, this method becomes less accurate.

Template matching [Cole et al., 2004] is another approach to object recognition.

The simplest variant is to store the object’s appearance as the raw pixel values

of a snapshot from a particular point of view. To detect and localise the object

in the scene, the stored snapshot pixel values are directly compared to the scene

image. This method, however, does not cope well with changes in perspective and

lighting, as well as partial occlusions. We can improve upon raw pixel intensity

template matching by using Principal Component Analysis [Jolliffe, 1986] (PCA) to

reduce dimensionality. PCA performs eigen-decomposition to find the similarities
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and differences in the template pixel data across many different sample views of

the object. This allows the most statistically significant and invariant to noise pixel

components of the templates to be stored and allows matching to be performed

on scene images in which the object may have a slightly different appearance as

compared to the training data (due to lighting and perspective changes, noise, etc).

This approach has been successfully used to perform very fast object recognition of

a set of 100 objects [Nayar et al., 1996]. It has also been applied to facial recognition

tasks [Yang et al., 2004].

Many other global feature approaches to object perception have been studied.

However, despite benefits such as matching and classification speed, object recogni-

tion techniques based on global image features have several weaknesses. For scenes

where the target object is partially occluded, or scenes with a lot of background

clutter, global image feature techniques can struggle. Techniques such as PCA tem-

plates can also require a large amount of training data to build a reliable statistical

model of the object’s appearance under different lighting conditions.

Local Image Features

In contrast to global image features, local image features refer to small image

patches. There are typically very many local image features that comprise an im-

age. Each local image feature can be characterised by its position in the image and

in some cases a vector that describes some aspects of the neighbourhood of pixels

around the feature. Object recognition and localisation is performed by matching

the local image features extracted from training images of the object to the scene

image features.

An example of a simple local image feature is a corner. A corner is defined as

a region with two dominant edge gradient directions. The Harris corner detector

[Harris and Stephens, 1988] is an efficient algorithm for extracting corner local image

features from an image. However, there are several factors that make it unsuitable for

object recognition. First, each corner is characterised only by its position, making
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matching corners between a learned object appearance model and a scene image

difficult. Second, corners are not scale invariant. Part of an object may appear as

a corner at one scale, but not at another. These shortcomings are addressed by

interest point detectors.

An interest point detector searches an image for stable points of interest, and

generates a description vector that encapsulates the structure of the image in a

neighbourhood around the point. Interest points can typically be characterised

as having a well defined position in an image, are stable and reproducible under

different lighting conditions, rotations, and small perspective changes.

There are numerous local image detector algorithms [Schmid et al., 2000]

[Mikolajczyk and Schmid, 2005] [Tuytelaars and Mikolajczyk, 2008], each with their

own strengths and weaknesses. We will give a detailed overview of the Scale Invari-

ant Feature Transform (SIFT) algorithm [Lowe, 2004] [Lowe, 1999] as it is one of

the most popular interest point detectors for object recognition and localisation in

cluttered and complex scenes.

SIFT Algorithm The Scale Invariant Feature Transform (SIFT) is a local image

descriptor developed by Lowe [Lowe, 1999]. It combines the detection of stable local

interest points at multiple image scales with a rotation and scale invariant descriptor

that describes the neighbourhood around each interest point. The SIFT algorithm

can output many features for an image, depending on its content. Object recognition

and localisation is performed by matching SIFT features from reference images of

the target object to the scene image features.

SIFT features have been used for 3D object recognition and pose localisation

for robot manipulation [Collet et al., 2009] [Gordon and Lowe, 2006], localisation

[Se et al., 2001] and stereo correspondence matching [Stephen et al., 2002]. It is a

popular approach for object recognition because it is able to successfully deal with

scene clutter, partial object occlusion, lighting and perspective changes, and is rota-

tion and scale invariant. However, one of the weaknesses of SIFT and other similar
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Figure 2.1.3: SIFT features can be used to effectively recognise and localise objects
in highly cluttered and complex scenes. (Images courtesy of [Lowe, 1999])

features, is that it does not handle plain untextured objects well. SIFT features are

generated in areas of high texture, around edges and corners. A plain object may

generate very few or no features at all, making object recognition impossible using

this method. Figure 2.1.3 demonstrates object recognition using SIFT features in a

cluttered environment.

The SIFT algorithm can be broken down into several steps. These steps first

detect and localise stable interest points in an image, and then generate a description

of the pixel neighbourhood around each interest point. The SIFT extraction process

for an image is as follows:

1. Generate a Scale-Space pyramid. SIFT finds features at all image scales.

To do this, a scale-space pyramid is built by repeatedly convolving the original

image with a Gaussian kernel.

2. Build a Difference of Gaussians pyramid. The Difference of Gaussians

is an approximation of the Laplacian function high-pass filter on the image

[Marr and Hildreth, 1980]. This is computed by taking the difference of adja-

cent pairs of images from the scale-space pyramid.
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3. Find the extrema points in the Difference of Gaussians pyramid.

Each point in the Difference of Gaussians pyramid has 26 neighbours, eight on

the same scale and nine each in the above and below scale. The points that

are the minimum or maximum of their 26 neighbours are the extrema points.

4. Rejection of unstable extrema points. Points with a low absolute value

in the Difference of Gaussians pyramid or points that are too edge-like are

considered to have poor repeatability and unstable image locations in the

presence of noise.

5. Orientation assignment. Each of the remaining key-points is assigned a

principal orientation. This is the most prominent gradient direction of a small

neighbourhood of pixels around the interest point.

6. Generation of key-point description vectors. For each key-point, a

neighbourhood of pixels is used to build a normalised array of histograms

of gradients. The final result is a 128-dimensional description vector for each

key-point.

The final result of extracting SIFT features from an image is a set of features. Each

feature is characterised by the following data: an (x, y) sub-pixel image coordinate,

an orientation vector describing the direction of the principal gradient, a scale, and a

128-dimensional description vector describing the image neighbourhood around the

feature point. Figure 2.1.4 shows the resulting extracted SIFT features on a sample

scene image.

Object recognition is performed by matching SIFT features from a stored database

of features (extracted from sample image views of the object) to the scene image

features. This is done by individually matching each scene image feature to the

nearest neighbour object database feature, based on the 128-dimensional descrip-

tion vector. Spurious matches are rejected by examining the ratio of the distance to

the nearest neighbour and the distance to the second-nearest neighbour. If this ratio
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Figure 2.1.4: The SIFT features (right) generated for an image of a house (left). Each
feature is represented by an arrow. The length of the arrow represents the scale of
the feature, the direction represents the feature’s orientation. (Image courtesy of
[Lowe, 2004])

is above a certain threshold then the match is considered spurious and is rejected

[Lowe, 2004]. This is done because some SIFT features are more discriminatory than

others. The ratio of the nearest and second-nearest match distances approximates

how discriminatory the feature is.

The next step is to determine which of the feature matches is geometrically con-

sistent and find the transform from database feature positions to corresponding scene

feature positions. Two common methods for doing this are the Hough transform

[Duda and Hart, 1972, Ballard, 1981] and RANSAC [Fischler and Bolles, 1981]. These

methods find a subset of database object features and their matching scene image

features that are related by a common geometric transform. The remaining inconsis-

tent features are rejected as spurious matches. The geometric transform defines the

position and orientation of the target object in the scene image. The SIFT feature

matching process is described in further detail in Chapter 3.

One of the main challenges of this approach is efficiently performing feature

matching between the scene and database features. Nearest neighbour matching in a

low dimensional space can be performed efficiently using a k-d tree

[Friedman et al., 1977]. However, SIFT descriptors are 128-dimensional, and as a

result of the high dimensionality of the search space k-d trees perform poorly. An

alternate approach is to use an approximate nearest-neighbour matching method

using the best-bin-first modification of the k-d tree search [Beis and Lowe, 1997] to

significantly speed up feature matching.
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There has been some work in improving SIFT. One of the weaknesses of SIFT is

that it does not take colour into account, as the base algorithm deals with grey-scale

image. CSIFT [Abdel-Hakim and Farag, 2006] is an extension of SIFT that takes

colour into account in the feature description vector. PCA-SIFT [Yan Ke, 2004] is

another variant, applying PCA on the 128-dimensional description vector of each

feature to reduce its dimensionality. In some cases this can improve the feature

matching accuracy and speed. Another related interest point detector is SURF

[Bay et al., 2006], providing much faster image feature extraction performance as

compared to SIFT, improved performance under lighting changes, but poorer re-

peatability under object transformation [Juan and Gwun, 2009].

Graph Matching Feature matching can be viewed as an instance of a graph

matching problem, where the graphs are composed of the nodes of the features of

the reference and scene images. Graph matching involves finding a correspondence

between the nodes and edges of two graphs. There has been significant amounts of

work applying graph matching approaches to object recognition [Conte et al., 2004].

These approaches typically define an energy function between matched nodes and

edges of the two graphs, and seek to find a mapping that minimises this energy

function [Torresani et al., 2008]. However, the task of finding an optimal mapping

is generally NP-complete [Conte et al., 2004]. This has lead to the development

of approximation methods that find an adequate solution [Torresani et al., 2008,

McAuley et al., 2010, Caetano et al., 2009] instead of an optimal one, with the aim

of reducing computational costs. These methods look promising from a matching

accuracy standpoint. However, even these approximation methods are unlikely to

be suitable for real-time applications (eg: one method claims to “find the global

minimum within a minute” [Torresani et al., 2008]).
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Improvements

Chapter 3 presents an improved method for matching learned object SIFT features

to scene image features for object recognition and localisation. This work was pub-

lished at the 2010 International Conference on Control, Automation, Robotics and

Vision (ICARCV) [Sushkov and Sammut, 2010]. We improve on the existing near-

est neighbour method by taking into account the geometric consistency of matched

features concurrently with their description vector similarity. This is in contrast to

the existing method where features are first matched using only their description

vectors, followed by removing inconsistent matches in a later stage. Our approach

results in a greater number of features matches (improving the reliability and accu-

racy of object detection), as well as allowing a significant improvement in matching

speed in some situations.

2.2 Learning an Object’s Appearance

The object recognition and localisation techniques reviewed in Section 2.1 depend

on the availability of training data for the target object. If a robot is to interact with

an object, it needs these training data (typically in the form of cleanly segmented

views of the object) to learn it’s appearance and build an internal representation

of the object. This is then matched to a scene image depending on the particular

recognition approach. For example, in the case of SIFT feature matching, features

are extracted from cleanly segmented training images of the object, and then inserted

into a database for later use in recognition and localisation tasks [Lowe, 2004].

In the case of an autonomous robot, a problem arises if an unknown object

must be recognised. In some applications it may be possible to provide the robot a

priori with training data for all objects that can be encountered in the environment.

However, this is not always possible to do. For example, in the case of a house-hold

service robot, there are many different objects it may encounter, making it infeasible

to provide training views of every possible object for recognition and localisation.
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One possible solution is for the robot to autonomously generate training data

for new objects encountered in the environment. This involves observing the object

and separating the object image regions and features from the background. This

problem can be solved through image segmentation, separating image into back-

ground and object segments. The object image segments can then be used to learn

the object’s appearance features. Image segmentation has been extensively studied

in literature [Forsyth and Ponce, 2002] [Nikhil and Sankar, 1993], with many differ-

ent approaches and methods. We can separate these into two classes, static image

segmentation and dynamic segmentation.

2.2.1 Static Image Segmentation

Static image segmentation refers to methods that use information from a single

image. The aim is to use the brightness, colour, contrast, and texture data contained

in the image to determine the object and background regions. This can then be

used by a robot to build an appearance model of the object for later recognition and

localisation.

One of the simplest approaches is to use an intensity threshold value to separate

the background pixels from the object pixels [Forsyth and Ponce, 2002]

[Perez and Gonzalez, 1987]. The choice of threshold value can be determined in

several ways, for example choosing a fixed constant or by examining the image in-

tensity histogram to find a suitable threshold value. This lightweight approach may

be suitable for situations where the background colour is distinct from the object’s

appearance. An example of this is if the object is placed on a turn-table engineered

to have a fixed colour distinct from the object [Reinhold et al., 2005] [Peters, 2006]

(see Figure 2.2.1). However, in the case of an uncontrolled environment this ap-

proach is not effective as the background scene can have similar colour and intensity

to the target object.

Region growing [Shapiro and Stockman, 2001] is an approach to image segmen-
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Figure 2.2.1: The environment may be engineered to make the background easy
separable from the object image regions. In this case, the object is placed on a
turn-table with a very dark colour, making threshold segmentation possible. (Image
courtesy of [Reinhold et al., 2005])

tation that considers the relationship between pixels in a region and grows the

region to include adjacent pixels that have similar properties. There are two cate-

gories of region growing algorithms, seeded [Adams and Bischof, 1994] and unseeded

[Lin et al., 2001]. In the case of seeded region growing, the algorithm is initialised

with a set number of starting image locations. Each region is then grown outwards

from the seed points by considering the neighbouring pixels at the region border.

If a neighbouring pixel has similar properties to the region, then it is included in

the region. An example criterion for including a neighbour pixel is if its intensity is

within a threshold distance of the mean intensity of the region’s pixels.

One of the issues with this approach is the choice of seed locations can signifi-

cantly affect the final segmentation. An alternative is unseeded region growing. In

this case an arbitrary point is chosen in the image to start growing a region. When a

neighbouring pixel differs from the current regions by more than a threshold amount,

it becomes a seed for a new region.

A different approach to segmentation is to represent the image as a weighted,

undirected graph [Felzenszwalb and Huttenlocher, 2004]. Each pixel is represented

by a graph vertex, and adjacent pixels are connected by graph edges with weights

determined by a similarity measure such that similar pixels are connected by heav-
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Figure 2.2.2: Pixels can be represented as graph vertices and adjacent pixels joined
by weighted edges. A cut is performed to separate the graph vertices into disjoint sets
linked to a sink and source nodes that can represent the background and foreground
components. (Image courtesy of [Boykov and Kolmogorov, 2004])

ier weighted edges. This graph is then partitioned in a way that minimises some

energy function using a graph-cut [Wu and Leahy, 1993] [Jianbo and Malik, 2000]

[Boykov and Kolmogorov, 2004]. A cut is a partitioning of the graph vertices into

two disjoint subsets by removing a cut-set of edges. A min-cut is a cut such that

the sum of the edge weights of the cut-set is minimum. This can be used for image

segmentation by introducing two extra vertices that can represent, for example, the

background and foreground image regions. These are joined to all of the pixel ver-

tices by edges weighted by the a priori confidence that the corresponding pixel is in

the foreground or background. A min-cut is then performed to separate the vertices

into two disjoint sets. The vertices that are in the set connected to the foreground

represent the foreground image region pixels, the remainder the background. This

process is shown in Figure 2.2.2.

There are many other image segmentation approaches and algorithms. However,

static image segmentation for the purposes of separating a target object from a

complex background, with no a priori knowledge of the object’s appearance, is

fundamentally reliant on the assumption that the object boundaries correspond to

discontinuities in the brightness, colour, texture, or contrast in the image. However,

for complex objects in cluttered scenes, this assumption does not hold. A single

image may not contain sufficient information to resolve ambiguities and separate a

complex object from a cluttered background. Figure 2.2.3 shows an example of a
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Figure 2.2.3: Static image segmentation can over-segment a scene image. This
is because the boundary of semantic objects in the scene may not correspond
to colour, texture, or contrast boundaries in the image. (Image courtesy of
[Felzenszwalb and Huttenlocher, 2004])

complex scene with the resulting segmentation. The people in the foreground are

over-segmented, with the region boundaries located at image discontinuities rather

than at semantic object boundaries.

Rather than relying on a single image to perform scene segmentation, a robot

can use multiple image dynamic segmentation to separate the target object image

regions from the background.

2.2.2 Dynamic Segmentation

We refer to scene segmentation methods that use more than one image, or a stream

of images, as dynamic. The aim is to use the temporal domain to gather more scene

information to improve the effectiveness of the segmentation.

One particular class of dynamic segmentation methods is background subtrac-

tion. First, a background model of a scene is constructed and then when the target

object is placed in the scene, the background model is subtracted from the scene

image. The remaining regions are the foreground object. Figure 2.2.4 shows an

example of this process. There are many variations of background subtraction

[Piccardi, 2004], differing in how the background is modelled and how it is used

for extracting the foreground. One approach is to model the background colour of

each pixel as a Gaussian probability distribution function [Wren et al., 1997]. The
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Figure 2.2.4: Foreground segmentation using background subtraction. The back-
ground model is learned over time (top right). When foreground objects enter the
scene (top left), the background model is subtracted from the image (bottom left).
This allows the foreground image regions to be extracted (bottom right). (Image
courtesy of [Yao et al., ])

colour value of each pixel is tracked over time and a Gaussian function is fitted to

the values. When performing segmentation, the current value of each pixel is com-

pared to it’s probability function to determine the likelihood that the pixel belongs

to the background. If the likelihood is over a threshold, then the pixel is considered

to be a background pixel. This approach works well for situations where the scene

background is static. However, if there is regular movement in the background,

such as swaying trees, a uni-modal Gaussian is a poor model for the value of a

background pixel. An improved approach is to model each pixel as a mixture of

Gaussians [Stauffer and Grimson, 1999]. In this way regular background movement

can be taken into account.

Using pure background subtraction for foreground segmentation can be prob-

lematic in cases where the foreground object does not move uniformly. This may

be the case for a person who is moving only their arms and head, but not their

body. In this case the body would be erroneously labelled as background, while the
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limbs and head as foreground. By combining colour and contrast with motion cues,

more effective segmentation in such cases can be achieved [Criminisi et al., 2006].

Another approach is to segment the scene into different motion layers, rather than

simply foreground and background [Jiangjian Xiao, 2005].

Nonetheless, background subtraction assumes that the background is only chang-

ing slowly or changes in a periodic manner. Large unpredictable movement in the

background would result in that movement being mistaken for the foreground object.

Another dynamic object segmentation approach is to combine pixel based seg-

mentation and feature tracking to generate object image snapshots. In the work of

Southey et al [Southey and Little, 2006], the scene is observed using a stereo cam-

era pair to generate a depth map. The depth information for each pixel is used in

combination with the pixel intensity to perform a segmentation of the scene using a

normalised cut algorithm [Jianbo and Malik, 2000]. This, however, leads to an over-

segmentation of the target objects (see Figure 2.2.5). This problem is addressed by

moving the target objects and tracking the motion of the SIFT features. This in-

formation is then used to merge together the over-segmented regions by considering

that SIFT features moving together in adjacent regions should be part of the same

segment. The result is correctly segmented target object image regions (see Figure

2.2.6). However, this method does not effectively address the issue of background

motion as moving background objects can be mistaken for the foreground.

Active Robot Segmentation

Active robot segmentation refers to methods that rely on the robot actively manip-

ulating the target object in the environment to separate it from the background.

For example, the robot can nudge the object to generate movement and by detect-

ing the movement, segment the object image regions. One particular approach uses

object symmetry to track the object motion and determine the object displacement

[Wai Ho Li, 2008]. Symmetric regions are found in the scene and nudged by the

robot manipulator perpendicular to the camera viewing direction. The displace-
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Figure 2.2.5: In the method presented by Southey et al [Southey and Little, 2006],
the scene image (left) is first segmented using pixel intensity and depth information
using a normalised cut algorithm. This results in an over-segmentation of the image
(right) as the pixel intensity boundaries do not correspond to object boundaries.
(Images courtesy of [Southey and Little, 2006])

Figure 2.2.6: In the method presented by Southey et al [Southey and Little, 2006],
tracked SIFT features (left) are used to join together segmented image regions that
move together. The merged regions correspond to the target objects. (Image cour-
tesy of [Southey and Little, 2006])
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Figure 2.2.7: Nudging a symmetrical object while tracking the axis of symmetry
line allows the object to be segmented from the background. (Image courtesy of
[Wai Ho Li, 2008])

ment of the axis of symmetry in the scene image is used as a cue to determine

the object region (see Figure 2.2.7). However, this approach is only applicable to

near-symmetric objects.

A more general approach to object segmentation through active robot manipula-

tion is presented by Fitzpatrick et al [Fitzpatrick, 2003a]

[Metta and Fitzpatrick, 2003]. The robot uses it’s manipulator to sweep the area

containing the target object. This is done while tracking the scene motion by using

per pixel frame differencing. When the robot’s manipulator makes contact with

the target object, a burst of motion is generated due to the movement of the ob-

ject (see Figure 2.2.8). The burst of motion is located around the edges of the

object, and can have discontinuities. To extract the full object image region, a min-

cut [Boykov and Kolmogorov, 2004] [Stoer and Wagner, 1997] algorithm is used (see

Figure 2.2.9). Min-cut uses the sparse object motion information along the edges

to extract the foreground image region. Object segmentation can be refined by

repeating the process multiple times [Kenney et al., 2009].

Robot-induced object motion for foreground segmentation works well for scenes

with a static background. However, any significant and unpredictable background
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Figure 2.2.8: In the system presented by Fitzpatrick et al, the robot sweeps the
scene with the manipulator, tracking the image motion using frame differencing.
When the robot’s end-effector makes contact with the object, a burst of motion is
detected. This can then be used for object region segmentation. (Image courtesy of
[Metta and Fitzpatrick, 2003])

Figure 2.2.9: The robot manipulator bumps the target object. The motion due to
the manipulator is filtered out, and the object regions are segmented using a min-cut
algorithm. The result is a clean segmentation of the object from the background.
(Image courtesy of [Fitzpatrick, 2003a])
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motion can result in incorrect segmentation. If a background object moves at the

same time as the target object, the resulting segmentation could include the back-

ground object as well as the target object image regions. Another issue is the

nature of the manipulation of the object. The method presented by Fitzpatrick

et al [Fitzpatrick, 2003a] [Metta and Fitzpatrick, 2003] requires that the object is

placed in the scene and then bumped by the robot manipulator. This may be suf-

ficient for learning a single aspect of the object, however, learning multiple aspects

from different angles may be difficult. For example, in the case of a cube shaped

object, there are only six orientations in which it can be placed on a flat surface.

To observe the object from some view points, the robot must orient its body and

camera appropriately, rather than orienting the object. Ideally, the robot should

hold the object and be able to orient it appropriately to view and learn the various

aspects.

Improvements

In Chapter 4 we present a method for a robot to autonomously segment object fea-

tures from the background to build a model for object recognition. This work was

published at the 2011 Australian Conference on Robotics and Automation (ACRA)

[Sushkov and Sammut, 2011]. We address the issue of background motion, back-

ground clutter, and the ability to observe different aspects of the object. Our ap-

proach is to track individual SIFT features in the scene while the robot moves the

object. We use the long term trajectory data for each feature to segment the object

features from the static background, as well as from any background motion. The

segmented object SIFT features can then form the basis of object recognition as well

as for reconstructing the object’s 3D shape.
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Figure 2.3.1: By projecting a strip of light onto an object and observing the re-
sulting image, the contour of the object can be determined. (Image courtesy of
[Turk and Levoy, 1994])

2.3 Reconstructing an Object’s Shape

After learning an object’s appearance, the next step for a robot to be able to interact

with the object is to reconstruct it’s 3D shape. Knowing an object’s shape allows the

robot to perform grasp planning [Miller et al., 2003] [Borst et al., 1999] and motion

planning [Kuffner et al., 2005] effectively. There is a large amount of literature on

the topic of 3D object reconstruction, using a wide variety of methods. These vary

in their speed, accuracy, assumptions about the shape of the object, and suitability

for an autonomous robot to reconstruct an object in a complex environment.

A technique for very high quality 3D reconstruction is to use a laser to project a

line of light onto an object placed on a turn-table [Turk and Levoy, 1994]

[Curless and Levoy, 1996]. A camera is used to detect the reflected line of light

on the surface of the object. The shape and location of the line in the camera im-

age specifies the contour of the object (see Figure 2.3.1). The object is rotated on

the turn-table, allowing the full 360◦ shape of the object to be reconstructed. This

method can output an extremely accurate and dense 3D reconstruction of the object.

However, it requires that the object is placed in a carefully engineered environment,

with a turn-table and calibrated laser projector and camera.

Instead of using a specialised laser projector to determine an object’s shape, its

appearance in a camera image can be used for reconstruction. For example, the ob-
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ject’s silhouette can be used to reconstruct its shape [Martin and Aggarwal, 1983]

[Laurentini, 1994]. A single silhouette image cannot be used to determine the ob-

ject’s volume, but the areas of the scene that are not part of the object volume (the

image areas outside the silhouette). By combining these data from many images of

the object from different view points, the object volume can be determined. The

problem with this approach is that for some objects the visual hull is not equal to

the shape of the object. For example, concave indents on the surface of the object

cannot be accounted for in the silhouette, and thus cannot be reconstructed using

this technique.

The shape of an object can be inferred from a series of images in which the

camera is moving relative to the object. The observed motion field of the se-

ries of images gives clues as to the structure of the shape. This technique of 3D

shape recovery is known as structure from motion [Hartley and Zisserman, 2003]

[Koenderink and van Doorn, 1991].

Another technique is to use SIFT features for reconstruction. Each feature is

highly discriminatory, and therefore allows a correspondence to be built between dif-

ferent images of a scene. This has been used for robot SLAM [Schleicher et al., 2007],

and can be applied for object reconstruction by observing the object from multiple

view points and correlating the SIFT features between the different images. By do-

ing this, the relative 3D positions of the SIFT features can be determined, and used

to build a 3D point cloud of the surface of the object [Skrypnyk and Lowe, 2004]

[Brown and Lowe, 2005]. Figure 2.3.2 shows an example of an object point cloud

recovered from correlated SIFT features. Another method uses matched SIFT fea-

tures between images as a basis to perform further shape recovery of the scene using

Delaunay triangulation and graph cuts [Labatut et al., 2007].

Local image features other than SIFT can be used as well. Yamazaki et al

[Yamazaki et al., 2004] presented a method for a wheeled robot to reconstruct an

object by driving around it and tracking the object’s image features using a Kanade-

Lucas-Tomasi (KLT) tracker [Lucas and Kanade, 1981] [Tomasi and Kanade, 1991].
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Figure 2.3.2: In the system presented by Skrypnyk et al, a point cloud is generated
by correlating SIFT features from multiple images of the scene. The left image shows
the cup placed in the environment, the right image shows the resulting SIFT feature
point cloud and the camera view points used the generate it. (Image courtesy of
[Skrypnyk and Lowe, 2004])

The data from the motion was used to construct a point cloud representation of the

object’s surface. The problem with these approaches is that SIFT features (and

most other local image features) are found in highly textured image regions, around

corners and edges. Plain coloured regions will not generate many SIFT features, or

none at all, resulting in insufficient shape information for parts of the object.

Structured light is one method that can be used to recover 3D shape in areas

that lack texture [Rusinkiewicz and O. Hall-Holt, 2002]. This class of techniques

use a projector to project a light pattern (typically in the IR spectrum) onto the

scene. This light pattern is then detected by a camera and can be used to determine

the depth of the scene at each image point. This method has been incorporated

into consumer devices such as the Microsoft Kinect1. This provides an inexpensive

and reliable sensor for finding the depth information of a scene as viewed from the

camera. Accurate and fast scene reconstruction is possible using a moving Kinect

camera [Izadi et al., 2011]. A Kinect sensor outputs a series of frame images, each

image is composed of a standard RGB colour component and a depth value for

each pixel. These data can be used to create a 3D model of the scene. However, a

single frame only provides partial information, as many parts of the scene may be

occluded or out of view. To compensate for this, the Kinect is moved around the
1http://www.xbox.com/en-US/kinect
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Figure 2.3.3: Robot reconstructing a held object using a depth camera (left). The
object is observed from multiple points of view (top right) to account for occlu-
sions. The shape uncertainty of the object (red in bottom right) decreases as more
observations are made. (Image courtesy of [Krainin et al., 2011a])

scene, and the individual scene snapshots are stitched together using an Iterative

Closest Point (ICP) algorithm [Rusinkiewicz and Levoy, 2001]. ICP is a method of

aligning two 3D point clouds by repeatedly shifting them to minimise the distance

between corresponding point pairs.

For a robot to effectively reconstruct an object, it can grasp the object and

manipulate it to view it from different points of view. However, this introduces the

problem of filtering out the robot manipulator from the 3D model data. Otherwise

the robot arm may be mistaken for the object. A secondary issue is how to optimally

orient the object to view it from all of the necessary angles, as well as to account

for the robot gripper and arm occluding certain parts of the object. Krainin et al

[Krainin et al., 2011b] address these issues by first learning an accurate 3D model

of the arm to filter out arm segments, and by maintaining a confidence distribution

over the object’s surface to indicate the areas that need to be observed to learn the

complete model of the object (see Figure 2.3.3).

In Chapter 5 we present a system that combines existing 3D reconstruction tech-

niques with the segmentation and feature matching methods developed in Chapter

3 and Chapter 4, to allow a robot to autonomously recover the shape of an object

in a complex environment.
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2.4 Learning an Object’s Properties

Learning an object’s appearance and shape is not always sufficient for a robot

to effectively use the object. Tasks such as grasping, manipulation, and tool use

[Edsinger and Kemp, 2006] [Latombe, 1991] [Kemp et al., 2007] may require the robot

to learn properties of the object other than shape and appearance, as they may af-

fect the outcome of some robot actions. Furthermore, these properties may not

be discoverable through passive observation, but may instead require active robot

interaction with the object. For example, an object’s centre of mass cannot be de-

termined by passive observation, as it may depend on the internal mass distribution

of the object. One approach is to use specialised sensors. Wrist force/torque sensors

for a robot arm have been used to identify object parameters such as mass and

centre of weight [Lin and Yae, 1992, Atkeson et al., 1985]. However, this requires

specialised hardware designed for determining a very small set of possible object

properties. Instead of relying on specialised sensors, the robot can interact with the

object, performing experiments to determine the centre of mass (for example: by

dropping the object from different orientations and observing the outcome).

Affordance Learning

There has been some previous research in the area of learning object properties,

much of it in the context of affordances. An affordance is a term first introduced

by J. J. Gibson [Gibson, 1977] in the field of cognitive psychology. It refers to

a property of an object that allows an action to be performed. For example, a

door knob affords being grasped and a button affords being pressed. Work in this

area explores how a robot can interact with an object, by performing actions and

observing the outcomes, to determine the affordances and properties of the object.

In the work by Griffith et al [Griffith et al., 2009], a robot categorises objects

into container and non-container categories. The robot does this by dropping a

small block over the object, and then pushing the object (see Figure 2.4.1). If the
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Figure 2.4.1: Griffith et al developed a method for a robot to classify objects into
container and non-container classes by dropping a block over each of them and
observing if subsequently the block and the object moved together. (Image courtesy
of [Griffith et al., 2009])

robot detects that the block and object move together, then the robot’s confidence

that it is a container increases. After performing these experiments on a number

of different objects, the robot is able to learn the visual features that distinguish

container and non-container objects, allowing it to categorise a novel object using

its depth image.

In other work, the robot determines whether an object is rigid or soft-bodied

using exploratory poking actions [Willimon et al., 2010]. An object is placed on a

table and its image based skeleton is extracted. The robot then performs a poking

action and compares the initial image based skeleton to the resulting skeleton. The

difference between the two is used to determine if the object is rigid or non-rigid,

as well as to find the location of any joints. A similar approach has been used

to locate and classify the joints of an articulated object such as a pair of scissors

[Katz and Brock, 2008].

In addition to the previous work focusing on learning the object properties, there

has also been work in learning properties inherent to the relationship between the

robot and the object. The learning of grasping affordances of various objects is

explored by Kraft et al [Kraft et al., 2010] [Kraft et al., 2009]. In this work a robot

repeatedly performs experiments on various objects, attempting to grasp them at
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Figure 2.4.2: Work by Stoytchev involved a robot learning the reach extension
tool affordance model of various stick objects (left). The reach extension model is
represented as how the position of a puck is affected by moving the stick object
(right). (Image courtesy of [Stoytchev, 2005a])

different points. The success and failure of these grasps allows the robot to build

a model of the object that defines the areas of the object that can be successfully

grasped.

Stoytchev presented work on grounding the affordance representation of an ob-

ject in the context of a robot’s behaviours [Stoytchev, 2005a] [Stoytchev, 2005b].

The robot in this case learns how various objects extend its reach. The objects in

question are stick tools of different shapes. The robot performs behavioural bab-

bling with each tool, moving them around the workspace while observing the effect

on a puck object (see Figure 2.4.2). The resulting movement of the puck when

it is manipulated with the different tools allows the robot to build an affordance

model of each object and define how the tool can be used to move a puck. Brown

[Brown and Sammut, 2007] further extended the concept of grounding an object’s

affordances and properties by incorporating active learning and inductive logic to

build a symbolic planner based description of a tool object. This allows a level of

generalisation to be built into the affordance representation.

Fitzpatrick et al developed a method for a robot to learn the motion model

of an object in response to a prodding action [Fitzpatrick et al., 2003]. The robot

uses its manipulator to bump various objects from different directions (see Figure

2.4.3). The resulting movement is used to construct a model of the motion of the
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Figure 2.4.3: The approach by Fitzpatrick involved the robot poking an object from
different angles and tracking the resulting movement. This movement data are used
to build a motion model of each object. (Image courtesy of [Fitzpatrick, 2003b])

object, represented as a motion vector distribution parametrised by the poke angle.

Different objects will have different motion models. For example, a cylinder shaped

object will roll when bumped from some directions, but not from others. A ball,

on the other hand, will roll regardless of the direction of the bump. These data

are then used to categorise objects, and to choose an appropriate action to make a

particular object move.

The main shortcoming of the approach presented by Fitzpatrick is that the rep-

resentation of the object’s model does not generalise to different situations. For

each object, the model is in the form of an explicit distribution over motion vectors,

learned from the robot’s exploratory poking actions. Such a model is capable of

predicting the object’s motion only in a similar environment as the learning envi-

ronment. However, if the environment is changed, for example by putting the object

on a slope, the learned model will not make accurate predictions.

There has been other similar work, using a neural network to model the motion

as a result of a robot poking action [Nishide et al., 2008]. Another method of mod-

elling an object’s affordance is to use a Bayesian network [Montesano et al., 2007b].

In this case, the Bayesian network represents the probability of various outcomes
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when different actions are performed on objects with certain properties (size, colour,

shape). The Bayesian network is built from empirical data obtained by the robot

performing many trials of the actions on different objects and observing the results.

Using a Bayesian network to model the object properties is a more general repre-

sentation capable of expressing a variety of outcomes and actions as compared to

explicitly modelling the motion vector [Fitzpatrick et al., 2003]. However, this does

not solve the problem of applying the learned model to environments significantly

different to the learning environment.

The choice of robot exploratory actions is a further shortcoming of existing

methods. Many of the existing methods use a behavioural babbling approach

[Saegusa et al., 2009] [Stoytchev, 2008] where the robot performs either random ac-

tions or a fixed list of predetermined actions. The disadvantage of this is that some

actions may be more informative than others and therefore they should be priori-

tised ahead of the less informative actions. Furthermore, how informative a certain

action is depends on the results of the previous actions. Performing a random or

fixed list of actions is not an efficient way of learning an object’s properties. Alter-

natively, a robot can learn an object’s properties by demonstration and imitation

[Montesano et al., 2007a], where a human interacts with the object and the robot

infers the properties by observing the outcomes.

System Identification

A related concept to discovering the properties of an object is system identification

[Ljung, 1987] [Goodwin and Payne, 1977]. System identification is the process of

modelling a dynamic system using statistical methods, such as linear regression,

based on some experimental measurements of the system. This also includes el-

ements of optimal experimental design [Lindley, 1956] [Fedorov, 1972] to generate

useful and informative measurements for model fitting. System identification is com-

monly applied in control engineering applications for building a model of a complex
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system to be used in a control algorithm. An example application of this is to model

the behaviour of a small unmanned helicopter [Mettler et al., 1999]. In this case, the

helicopter is flown using remote control by an experienced operator. The response

of the helicopter to various inputs is recorded, including acceleration, roll, pitch,

yaw, etc. This experimental data is then used to build a model of the helicopter

dynamics, to allow automatic control of the helicopter. The dynamic model repre-

sentation varies depending on the particular application. One example is to model

the helicopter dynamics using a neural network [Suresh et al., 2002].

One of the weaknesses of using a system identification approach for a robot to

model an object is it does not incorporate a feedback mechanism between the results

of an experiment and the choice of the next experiment to carry out. Typically a

predetermined list of experiments is performed to gather data, and a model is then

fitted to the results. A better approach is for the choice of the next experiment to

be based on the results of the previous experiments.

Improvements

In Chapter 6 we present a method for a robot to autonomously learn the properties of

an object using active interaction. This work was published at the 2012 International

Conference on Intelligent Robots and Systems (IROS) [Sushkov and Sammut, 2012].

We use a physics simulator to model the object, as well as to generate hypotheses

about an object’s properties and predictions of the outcome of a given robot action.

When the robot performs an experiment, we update the confidence distribution

over the object properties and choose the next actions based on this distribution

to maximise the information gained. By doing this we improve on the existing

methods in several ways. First, by using a physics simulator representation of the

object model, we gain a level of generality for the model. A learned model should

be able to describe the behaviour of the object in a number of different situations,

distinct from the learning environment. Second, we use the physics simulator to
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simulate the potential outcome of different experiments and actions, which allows

the robot to choose the most informative experiment to perform. This minimises

the number of actions required to learn an accurate model of the object.
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Chapter 3

Image Feature Matching for

Object Recognition

In this chapter we present a method for matching learned local image features

(specifically SIFT [Lowe, 2004] features) to scene features, for the purpose of object

recognition and localisation. Our approach differs from existing methods by taking

into account the geometric consistency of matched features concurrently with the

description vector similarity. As a result we do not need to over-constrain the de-

scription vector matching criteria as is the case with existing methods (see Section

2.1.2). The outcome of our approach is a greater number of feature matches which

improves the accuracy of object recognition, as well as an improvement in matching

speed under certain circumstances. The work presented in this chapter was pub-

lished at the 2010 International Conference on Control, Automation, Robotics and

Vision (ICARCV) [Sushkov and Sammut, 2010].

3.1 Introduction

Local interest point detectors [Tuytelaars and Mikolajczyk, 2008]

[Schmid et al., 2000] are a class of algorithms that can be used for object recognition

and localisation in images. Interest point detectors use a small neighbourhood of
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pixels around a point. One particular interest point detector is the Scale Invariant

Feature Transform (SIFT) [Lowe, 2004] [Lowe, 1999]. The SIFT algorithm generates

highly discriminatory scale and rotation invariant description vectors of the pixel

neighbourhood around stable points (minima and maxima in image scale space),

coupled with the orientation of the image gradient at this point and the scale of the

pixel neighbourhood. The SIFT algorithm is described in more detail in Section 3.2.

There are several steps required to recognise and localise an object in an image

using SIFT features (these steps also apply to many other interest point descrip-

tors). First a database of object features is learned using training views of the object.

The training views are typically images of the object with either a blank or cleanly

segmented background. These images can be generated either in a controlled en-

vironment (eg: turn table with a clean background [Reinhold et al., 2005]), with a

human performing background segmentation, or by autonomously separating object

features from the background (see Chapter 4).

The next step is to use the properties of each feature (such as the description

vector, gradient orientation, and image position) to match the scene features against

learned database features to find the object in the scene. Figure 3.1.1 shows an

example match between a reference image and scene image features.

In this chapter we present an algorithm for feature matching that is more ac-

curate, flexible, and (under certain conditions) faster than existing methods. Our

algorithm is focused on matching SIFT features, but in future may be applied to

other local interest point detectors.

The main contribution of our approach is in combining the feature description

vector matching with the geometric consistency filtering stage. Existing methods

for SIFT feature matching consist of two distinct stages. First matching individual

scene image features to database features using only the description vector, followed

by filtering out incorrect matches using a geometric consistency check. Our method

combines the two stages, using geometric consistency in parallel with feature de-

scription vectors to determine the database to scene feature mapping. This is done
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Figure 3.1.1: An example feature mapping from a training image of an object (above)
and a cluttered scene containing that object (below). Each line connects a matched
SIFT feature pair in the two images.

by finding a small set of feature match pairs (between the database and scene image)

that have a high probability of forming a valid correspondence. This is determined

using both the geometric relationship of the feature positions and the feature de-

scription vectors. This seed set of high confidence matches is then used to find

additional matches using a position constraint to speed up the search.

The advantage of our approach is the relaxed criteria for feature description

vector matching, since geometric properties are used in conjunction to find poten-

tial feature match pairs. As a result, our algorithm achieves a higher percentage

of correct feature matches as compared to the existing matching method. A fur-

ther benefit of our approach is its structure allows scene knowledge and temporal

coherence to be used to greatly speed up the search for feature matches. Under

certain conditions our algorithm is much faster than the existing feature matching

algorithm.
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In this chapter we present the following:

• an overview of the SIFT algorithm (Section 3.2),

• current approach to matching features and it’s associated shortcomings (Sec-

tion 3.3),

• a detailed description of our matching algorithm (Section 3.4),

• performance evaluation and experimental results (Section 3.6),

• discussion of results (Section 3.7),

• and potential avenues for future work (Section 3.8).

3.2 SIFT Feature Generation

The SIFT algorithm is described in detail in a paper by D. Lowe [Lowe, 2004]. This

section presents a brief summary of the algorithm and it’s application for object

recognition and localisation. Extracting SIFT features from an image can be divided

into several sequential steps:

1. Build a Difference of Gaussians pyramid. This is computed by taking

the difference of adjacent pairs of images from the scale-space pyramid. The

scale-space pyramid of an image is built by repeatedly convolving an image

with a Gaussian kernel. The resulting image after each convolution forms a

layer of the pyramid.

2. Find the extrema points in the Difference of Gaussians pyramid.

Each point in the pyramid has 26 neighbours, eight on the same scale and

nine each in the above and below scale. The points that are the minimum or

maximum of their 26 neighbours are the extrema points. These extrema are

candidates for stable interest points. These are typically found near corners

and edges in an image at a given scale.
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3. Rejection of unstable extrema points. Points with a low absolute value

in the Difference of Gaussians pyramid or points that are too edge-like are

considered to have poor repeatability and unstable image locations in the

presence of noise. This is because points located on edges are similar to nearby

points, in terms of their pixel neighbourhoods. Principal curvature is used to

measure the edge response at the extrema point. If the difference in principal

curvature in the edge direction is very different to the perpendicular direction,

then the point is considered to be poorly localised and is rejected.

4. Orientation assignment. Each of the remaining key-points is assigned a

principal orientation. This is the most prominent gradient direction of a small

neighbourhood of pixels around the key-point. Assigning an orientation to

each point allows the key-point description vector (described in the next step)

to be represented in a rotation invariant manner.

5. Generation of key-point description vectors. For each key-point, a

neighbourhood of pixels is used to build an array of histograms of gradients.

The histograms are normalised to the principal orientation of the key-point

to make the descriptor vector rotation invariant. Additionally, the histogram

is normalised on gradient magnitude of the pixel neighbourhood to increase

robustness to changes in contrast and lighting. The result is a 128-dimensional

description vector for each key-point.

The final output of these series of steps is a list of stable local image features,

each characterised by an (x, y) image position, primary gradient orientation angle,

scale, and a 128-dimensional description vector. It should be noted that SIFT uses

a greyscale image. To extract SIFT features from say an RGB colour image it

must first be converted to a single channel greyscale image. Figure 3.2.1 shows a

representation of extracted SIFT features for a scene image.
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Figure 3.2.1: This image shows the SIFT features extracted from a scene image.
Each arrow corresponds to a single SIFT feature at the arrow’s origin. The length
of the arrow represents the scale of the feature, and the direction of the arrow
indicates the feature’s primary gradient orientation.

3.3 SIFT Feature Matching

The first step in recognising an object in a scene image is to learn a database of

object features from a set of training images of the object. These training images are

prototypical views of the object from which SIFT features are extracted and stored

in a database. The next step is to match these features against a scene image that

may contain a learned object.

3.3.1 Nearest-Neighbour Matching Overview

The SIFT algorithm [Lowe, 2004] matches each scene feature independently to the

learned database of features, by comparing description vectors. Usually the gener-

ated feature matches are refined further with a geometric consistency check, such as

the Hough transform [Duda and Hart, 1972] or RANSAC [Fischler and Bolles, 1981],

to remove inconsistent matches and determine the position and orientation of the

object in the scene image.

Nearest neighbour is used for matching scene to database feature. For each

scene feature the nearest database feature is found. This is done using the Euclidean
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distance between the 128-dimensional description vectors of the features as a metric.

This results in every scene feature having a corresponding matched database feature,

including many incorrect matches. To reject spurious feature matches a global

description vector distance threshold may be used. However, it was found that not all

SIFT features have equally discriminatory description vectors, and therefore a single

global threshold performs poorly [Lowe, 1999]. Instead, a more effective approach

is to compare the distance between the nearest neighbour and the second-nearest

neighbour in the database. If the ratio of the distances to the nearest and second-

nearest neighbours is above a threshold value, the match is said to be spurious.

For this threshold, the value of 0.8 eliminates more than 90% of false matches

while discarding less than 5% of true matches. If the database of features contains

multiples views of the same object, then the second-nearest neighbour feature is

redefined to be the nearest feature that belongs to a different object than the first

(closest) match. This addresses the problem of matching the same object feature

for both the nearest and second-nearest neighbours. This feature matching process

is defined in detail in Algorithm 3.1.

3.3.2 Weaknesses of the Existing Algorithm

The nearest-neighbour algorithms, described in the previous section, have several

distinct weaknesses, which we seek to improve upon with a new feature matching

method. These weaknesses stem from several factors: the first is scene features

are matched to database features independent of one another and using only the

description vector, the second is constraining each scene feature to only match its

nearest neighbour in the database, and third the reliance on the second-nearest

neighbour for rejecting spurious matches. We discuss each of these in turn.

The first weakness is matching each feature independently followed by a separate

stage in which a geometric consistency check on the resulting feature matches is

performed. This results in poor performance if the object to be matched has a
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Algorithm 3.1 Nearest-neighbour feature matching.
input: set of learned database features → D
input: set of scene feature → S

matches← {}
forall s in S

s_descr_vec← descriptionV ector(s)
min_distance← inf
closest_feature← null

forall d in D
d_descr_vec← descriptionV ector(d)
if |d_descr_vec− s_descr_vec| < min_distance then

min_distance← |d_descr_vec− s_descr_vec|
closest_feature← d

endif
endfor
second_min_distance← inf
forall d in D

if parentObject(d) 6= parentObject(closest) then
d_descr_vec← descriptionV ector(d)
if |d_descr_vec− s_descr_vec| < second_min_distance then
second_min_distance← |d_descr_vec− s_descr_vec|

endif
endif

endfor
if min_distance ≤ 0.8 · second_min_distance then

matches← matches ∪ {(s, closest_feature)}
endif

endfor
output: set of feature matches ← matches
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Figure 3.3.1: Consider an object with a regular pattern texture. This regular pattern
would give rise to multiple SIFT features (represented by the red dots) with almost
identical description vectors. In this case, if the scene features are matched to the
database features independently, based only on the description vectors, the correct
feature mapping (left) is not guaranteed. Instead an incorrect mapping may result
(right), in which case these feature matches would be discarded by a later geometric
consistency check.

regular pattern texture that generates multiple SIFT feature with similar description

vectors. In this case, the nearest-neighbour approaches are unlikely to generate

a geometrically consistent match for the similar features, as the initial match is

performed independently and purely on the description vectors. An example of

this is shown in Figure 3.3.1. The correct and geometrically consistent mapping is

shown on the left. However, since the features do not have distinct feature vectors,

it is instead more likely that the matching stage will produce an incorrect mapping,

shown on the right. This incorrect mapping would then be rejected by a geometric

consistency check, resulting in the object not being detected in the scene image.

The second weakness refers to the constraint of matching a scene feature only

to its description vector nearest neighbour in the database. This severely limits

the potential matches for a feature. If the geometric relationship of other feature

matches are considered in parallel, the correct match for a scene feature may not

necessarily be its nearest neighbour in the database. Figure 3.3.2 shows a scenario in
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Figure 3.3.2: This diagram demonstrates a weakness of only considering nearest
neighbour feature matches. In the above example, the scene features F1, F2, and F3
are successfully matched against the correct corresponding object reference features ,
F1′, F2′, and F3′. Consider that feature F4 and F4′ have similar description vectors,
but F5′ has an even closer description vector to F4. In this situation, despite the
match (F4 ↔ F4′) being geometrically consistent with the other matches, it will
not be considered as they are not description vector nearest neighbours. Instead F4
will be matched to F5′ and later filtered out by a geometric consistency check.

which the geometric relationship of a number of feature matches is constraining the

remaining feature match (F4). But the suggested feature match is not considered

as it is not the description vector nearest neighbour match. The end result of this is

a lower number of feature matches between the scene and learned database, which

could lead to higher errors in the localisation of an object or not recognising an

object at all.

Finally, the reliance on the second-nearest neighbour for rejecting spurious matches

means that the accuracy and speed of matching an object’s features is dependent on

the remaining features stored in the database. Consider the scenario of two different

feature databases, containing different features of different objects. We then insert

into each database features from training images of a new object. Given that the

same training data for the new object is used for both databases, we should expect

that both databases would have the same matching performance. However, because

52



the remaining features are different and hence the second-nearest neighbour for a

scene feature is likely to also be different, the matching performance for the two

databases will not necessarily be the same. This is not a desirable outcome.

A further side-effect is the impact on matching speed. The larger the database

grows as more objects are learned, the longer feature matching will take. In some

cases this is unavoidable, however, in others we may wish to exploit background

knowledge of the scene contents to speed up feature matching. Take, for example, a

scenario where a scene is known to contain a specific object. When performing scene

feature matching, it would improve performance to consider only the database fea-

tures belonging to the known object, rather than all of the features in the database,

including those belonging to other objects. However, when using the second-nearest

neighbour threshold criteria for rejecting spurious matches, this is not possible.

To address these limitations, we present a new approach to matching SIFT fea-

tures. We call this approach Bipartite Feature Matching, as it resembles building a

bipartite graph between scene and database object features.

3.4 Bipartite Feature Matching Algorithm

3.4.1 Overview

The aim of our algorithm is to recognise and localise an object by matching fea-

tures from a set of training images of the object to corresponding features of that

object in an image, while dealing with clutter, occlusion, orientation, and lighting

changes. Let us call the set of object features extracted from a single training image

a “snapshot”, the feature database consists of multiple snapshots of various objects.

It should be noted that we match snapshots from the database to the scene, in

contrast to the approach described previously in which the opposite is done, scene

features are matched to the database.

We consider the problem of matching a snapshot to the scene as forming a bipar-
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Figure 3.4.1: The task is to map object snapshot features to scene features, each
feature has a pixel position (Pos), a description vector (Dv), and an image gradient
orientation (Ori).

tite graph between the snapshot’s features and the matched scene features (Figure

3.4.1 illustrates this concept). A valid mapping will have each snapshot feature

map to a single scene feature or to a null node (signifying no appropriate match for

that feature), and each scene feature will have no more than one snapshot feature

mapped to it. There are several other criteria for a valid feature mapping; match-

ing features should exhibit three forms of consistency in relation to one another.

These are Description Vector Consistency, Position Consistency, and Orientation

Consistency. Description Vector Consistency (described in detail in Section 3.4.2)

constrains matched features to have similar description vectors. Position Consis-

tency (described in detail in Section 3.4.3) constrains matched scene features to have

the same relative image positions as the corresponding database features. Similarly,

Orientation Consistency constrains matched scene features to have the same rel-

ative orientations as the corresponding database features. By considering relative

feature positions and orientations, the feature matching is invariant to translation

and rotation of the object in the image.

To find a mapping that satisfies the above criteria, we first find a small sub-

set of matches between snapshot and scene features that have a high confidence of
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being valid (described in detail in Section 3.4.5). This subset is then used to boot-

strap the rest of the feature mapping (described in detail in Section 3.4.7). Once a

consistent mapping is found between snapshot features and scene features the po-

sition and orientation of the object in the image can be determined using a least

squares model fitting approach. As our approach inherently incorporates geometric

consistency between feature match pairs (described in Section 3.4.3), there is no

need for a further step to remove outliers or inconsistent matches with RANSAC

[Fischler and Bolles, 1981] or the Hough Transform [Duda and Hart, 1972].

In Section 3.6 we present experimental results demonstrating the effectiveness of

this approach for feature matching, followed by discussion of these results and areas

for future work.

3.4.2 SIFT Description Vector Consistency

Each SIFT feature has an associated 128-dimensional description vector, which is a

scale and rotation invariant description of the pixel neighbourhood around the in-

terest point. We use this description vector as the primary method by which SIFT

features are matched between images. SIFT description vectors are highly discrim-

inatory, therefore if two features in two different images of a scene have similar

description vectors, they have similar local pixel neighbourhoods and are thus likely

to correspond to the same point on an object. A mapping between a snapshot’s fea-

tures and scene features should exhibit Description Vector Consistency, which is the

requirement that matched features have similar description vectors. The similarity

between two SIFT features is measured by the Euclidean distance between their

description vectors. Given two feature description vectors A and B, the distance is:

Distance(A,B) =

√√√√128∑
i=1

(Ai −Bi)2 (3.4.1)

The lower the descriptor distance between two features the more likely they are

to match. We further quantify this relationship by examining the description vector
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distances between matching and non-matching features. The goal is to determine

the function F (D) → pmatch which, given the distance D, returns the probability

pmatch. This is the probability that two features match given the Euclidean distance

D between their description vectors. We define this function using Bayes Rule:

P (match|D ≤ x) = P (D ≤ x|match) · P (match)
P (D ≤ x)

In this equation, P (D ≤ x|match) is the probability of the description vector

distance being less than x for a matching pair of features, P (D ≤ x) is the probability

that any feature pair has a description vector distance less than x, and P (match) is

the a priori probability that two features match.

To calculate the first two probabilities we considered a large number of matching

and non-matching feature pairs across a number of different objects and recorded the

description vector distance for each. For non-matching features we used many images

(see Appendix section B) of distinct objects and considered all pairs of features

between the different images. The distribution of description vector distances for

non-matching feature pairs is presented in Figure 3.4.2. This distribution equates

to the probability P (D ≤ x).

For matching features we took several objects and placed them in a scene in

varying orientations, positions, and lighting conditions. We then manually matched

features that were on the same point on the surface of the same object in different

images. The distribution of description vector distances for matching feature pairs is

shown in Figure 3.4.2. This distribution equates to the probability P (D ≤ x|match).

We define the a priori probability that a given Snapshot feature matches a given

Scene feature, P (match), to be equal to 1
N

where N is the number of Scene features.

Using these data we can calculate the independent probability of a particular Snap-

shot feature matching a Scene feature based only on their feature description vector

distance. An example probability distribution is show in Figure 3.4.3, assuming the

number of Scene features N to be equal to 300.
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Figure 3.4.2: This graph shows the ratio of randomly chosen feature pairs, as well
as matching feature pairs, that have a description vector distance less than a given
amount.
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Figure 3.4.3: The a priori probability that two features are a match, given their
description vector distances.
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3.4.3 Feature Position Consistency

Position Consistency refers to the fact that, assuming a rigid object, the mapped

object snapshot features should have the same positions relative to one another

as the corresponding scene features. Initially position consistency is defined for a

triplet of matching feature pairs, and can then be extended to the entire mapping by

considering all triplets of matching feature pairs. A matching feature pair is a tuple

of features, (SnapshotFeature, SceneFeature), the first is from the set of snapshot

features and the second is the matching feature from the set of scene features.

Let the triplet of matching feature pairs be (F1, F1′), (F2, F2′), and (F3, F3′);

to determine whether they are Position Consistent we need to check whether the

relative positions of the snapshot and scene features are similar. This is done by first

finding the perimeters of the triangles formed by the three snapshot (F1, F2, F3)

and scene (F1′, F2′, F3′) features’ image positions. Let these perimeter lengths be

p and p′ respectively. We then calculate the normalized pixel edge lengths of the two

triangles by taking the edge distance and scaling by the perimeter of the triangle,

eg:

normalisedLength(F1, F2) = |imgPos(F1)− imgPos(F2)|
p

(3.4.2)

For a position-consistent match the difference between corresponding normalized

edge lengths of the snapshot and scene features will be small. That is,

|normalisedLength(F1, F2)− normalisedLength(F1′, F2′)| < ε (3.4.3)

The purpose of normalizing the edge lengths is to account for varying scales and

image resolution. Figure 3.4.4 shows a case of a position consistent and inconsistent

match. The features in the Snapshot are position-consistent with the matching

features in SceneA, but are inconsistent with matching features in SceneB. For
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Figure 3.4.4: Features in the Snapshot are position-consistent with the matching
features in SceneA, and not consistent with matching features in SceneB.

example in Figure 3.4.4 in the case of SceneA,

d1
d1 + d2 + d3 ≈

d1′
d1′ + d2′ + d3′ (3.4.4)

whereas in the case of SceneB,

d1
d1 + d2 + d3 6≈

d1′′
d1′′ + d2′′ + d3′′ (3.4.5)

It is important to note that due to perspective effects position consistency as

defined above is not guaranteed to hold between two views of an object. This is

because as an object is rotated out of the camera plane, the points on its surface

will change their relative positions in the camera image. However, as the object is

rotated out of the camera plane, the description vectors of each SIFT feature on

its surface will change, since the pixel neighbourhoods around each point change.

Because of this, after a few degrees of rotation the SIFT feature will change beyond

recognition (or disappear), and as such multiple different snapshots of an object are

required to recognize the object from different view angles. As a result, in practice

position consistency will hold within some small error bound for the snapshots near

the current object viewing direction.
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3.4.4 Feature Orientation Consistency

Each SIFT feature has an orientation angle that refers to the direction of the domi-

nant image gradient at the feature point. If an object is rotated the orientation of a

feature on that object will also rotate, but will remain constant relative to other fea-

tures on the same object (since those features are also rotated). A feature mapping

has Orientation Consistency if the relative feature orientations between snapshot

features are equal to the relative orientations between corresponding scene features.

Furthermore, if we take a vector between any two snapshot features, and a vector

between the corresponding matched scene features, the angle between the snapshot

features’ orientations and the vector between them should match the angle between

the corresponding scene features’ orientations and the vector between them.

This concept is shown in Figure 3.4.5. In the case of a match between the

Snapshot and SceneA there are matching feature pairs (F1, F1′) and (F2, F2′); the

match between the Snapshot and SceneB has matching feature pairs (F1, F1′′) and

(F2, F2′′). Each feature has an associated orientation vector, for example ori1 for

the feature F1. The relative orientations of the features determine that the former

has orientation consistency whereas the latter does not:

ori1 · ori2 ≈ ori1′ · ori2′

ori1 · ori2 6≈ ori1′′ · ori2′′ (3.4.6)

A further reason for a lack of Orientation Consistency for the match between the

Snapshot and SceneB is that the orientation of the features in SceneB relative to

the vector between the features is different to that of the Snapshot and SceneA. Let

us define the following:

vec = ‖imgPos(F1)− imgPos(F2)‖

vec′ = ‖imgPos(F1′)− imgPos(F2′)‖

vec′′ = ‖imgPos(F1′′)− imgPos(F2′′)‖ (3.4.7)
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Figure 3.4.5: The matching features between the Snapshot and SceneA,
(F1, F1′), (F2, F2′), exhibit orientation consistency as their feature orientations are
similar relative to each other and are also similar relative to the line between them.
The features in SceneB, (F1, F1′′), (F2, F2′′), do not exhibit orientation consistency
relative to the Snapshot.

From this it can be seen that in Figure 3.4.5 the following holds:

ori1 · vec ≈ ori1′ · vec′

ori1 · vec 6≈ ori1′′ · vec′′ (3.4.8)

3.4.5 Finding a Consistent Feature Mapping

We define a consistent feature mapping as one that exhibits Description Vector, Po-

sition, and Orientation Consistency. This section describes a method for efficiently

finding a consistent mapping between snapshot and scene features.

A brute force method for finding a consistent mapping is extremely inefficient as

for each snapshot there is on the order of m!
(m− n)! possible mappings to consider for

n snapshot features andm scene features. Clearly it is not feasible to simply generate

every single possible mapping and iterate through to find the most consistent one.

A more efficient approach is to find a small set of feature matches that exhibit

a high degree of consistency and use these as a basis to construct the remainder of
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the mapping. This is possible because once a small set of feature matches is fixed,

the requirement of Position Consistency restricts the remaining feature matches.

For example, if there are three snapshot object features and matching scene features

have been found for two of them, only features in a small region of the scene image

need to be considered to match the last snapshot feature.

Figure 3.4.6 illustrates this concept. If two matched feature pairs (F1, F1′) and

(F2, F2′) are fixed as a basis, this narrows down the search for a mapping for F3 to

features in a small scene image region (Search Area), in this example containing F3′.

Features outside of this small scene image region, in this case F4′, can be ignored.

This is because any potential match pair with F3, such as (F3, F4′), would not

exhibit Position Consistency relative to the other matched features.

Figure 3.4.6: If (F1, F1′) and (F2, F2′) match we can narrow down the search for
the matching feature for F3 to a small Search Area, ignoring features such as F4’
outside this area, as the resulting match would not be Position Consistent.

The initial step to generating a consistent feature mapping is to find a small set

of matching feature pairs that are highly consistent in all three respects (description

vector, position, orientation), indicating a high likelihood they form part of a valid

mapping. We call this the basis set of feature matches. To build the basis set, a

list of all possible matching feature pairs is generated and sorted according to their

SIFT description vector similarity:

S = [(SnapshotFeature, SceneFeature, SIFT_similarityi)]nm
i=0

SIFT_similarityi > SIFT_similarityi+1 (3.4.9)
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The list S has n ×m elements (for n snapshot features and m scene features),

the SIFT_similarity is the probability the features are a valid match (in the

range [0.0, 1.0]) based on their SIFT description vector similarity presented in Sec-

tion 3.4.2. The potential feature matches at the front of the list S have a higher

SIFT_similarity and thus a higher probability of being valid matches.

The next step is to select sets of matching feature pairs from the front of this se-

quence and calculate the overall Consistency Score for each set. We need a minimum

of three matching feature pairs for a basis set since this is the minimum number re-

quired to determine Position Consistency. The overall consistency score for a set of

matching feature pairs is defined as the product of the description vector, position,

and orientation consistency scores; each is in the range [0.0, 1.0] and is described in

the following section.

3.4.6 Calculating Consistency Scores

We determine if a set of three feature matches is a potential basis set by calcu-

lating its overall Consistency Score and comparing this to a threshold value. The

Consistency Score is calculated by multiplying the description vector consistency,

position consistency, and orientation consistency scores of the set of matches. These

are described below.

The description vector consistency score for the three matching feature pairs is

their average SIFT_similarity. The SIFT_similarity of each feature pair is in

the range [0.0, 1.0] and is the probability that the features match based purely on

their description vector distance (see Section 3.4.2).

The position consistency score is based on the sum of the differences between the

corresponding normalized edge lengths of the triangles formed by the three snapshot

features and three scene features. Taking Figure 3.4.4 as an example, with the three

feature match pairs being (F1, F1′), (F2, F2′), and (F3, F3′). The normalized edge
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difference between the Snapshot and SceneA is equal to:

∣∣∣∣∣d1
p
− d1′

p′

∣∣∣∣∣+
∣∣∣∣∣d2
p
− d2′

p′

∣∣∣∣∣+
∣∣∣∣∣d3
p
− d3′

p′

∣∣∣∣∣ (3.4.10)

where p = d1 + d2 + d3 and p′ = d1′ + d2′ + d3′. This sum is normalized

to the range [0.0, 1.0] using a Gaussian Radial Basis function, with a mean of 0.0

and standard deviation of 0.2, to give the final position consistency score. These

parameters were determined empirically to give good results.

To determine the orientation consistency score of a set of three feature match

pairs first consider the orientation score of two feature match pairs. Denote the two

feature match pairs as (A,A′) and (B,B′), where A and B are snapshot features

while A’ and B′ are scene features. For the snapshot features calculate three values:

• angle difference (in radians) between the orientations of the features,

• angle difference (in radians) between the orientation of A and the vector from

A to B,

• angle difference (in radians) between the orientation of B and the vector from

B to A.

Similarly these values are calculated for the two corresponding scene features, A′

and B′. The sum of the absolute difference between the corresponding values of

the snapshot and scene features is the raw orientation consistency score of the two

feature match pairs. The raw orientation consistency score of a triplet of matching

pairs is defined as the average orientation consistency score across the three possible

pairs of matching feature pairs. To calculate the final orientation score, this value

is normalized to the range [0.0, 1.0] using a Gaussian Radial Basis function with a

mean of 0.0 and standard deviation 0.3 radians, these parameters were determined

empirically to give good results.

Having calculated these three separate consistency scores (description vector,

position, and orientation), we can then calculate the overall Consistency Score of a
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particular basis set by multiplying the component scores. As each is in the range of

[0.0, 1.0], the resulting overall Consistency Score will also be in the range [0.0, 1.0].

3.4.7 Generating the Feature Mapping

Given a basis set of feature match pairs, we can use this to match the remaining

snapshot features to scene features. A basis set of feature match pairs contains three

pairs of potentially (with high confidence) matching snapshot and scene features.

This set of feature matches defines a rigid transform (described in detail below)

between snapshot and scene features. We can calculate this transform, apply it to

all other snapshot features, and match the transformed features to nearby scene

features that have similar description vectors and orientations. In this way a basis

set generates a feature mapping between snapshot and scene features. Figure 3.4.7

illustrates this concept.

However, there are many possible basis sets, each of which potentially resulting

in a different feature mapping. To determine the single definitive mapping from

snapshot to scene features, we consider basis sets of feature matches from the front

of the ordered (by description vector similarity) list S (defined in Section 3.4.5),

and only those with an overall Consistency Score greater than 0.8. This threshold

was determined by trying out different values on a small number of test scenes and

objects, and choosing the threshold value that performed best. A more thorough

investigation of the optimal parameters for our feature matching algorithm we leave

as future work. For each such basis set we generate the complete feature mapping

(described in detail below). We take the definitive feature mapping to be the one

with the largest number of feature matches. If the definitive feature mapping has

less than a threshold number of feature matches (we use four as a minimum), then

no valid matches are said to exist. This would occur, for example, if the target

object is not present in the scene image.
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Figure 3.4.7: This diagram shows how a rigid transform can be extracted from the
basis set of feature matches [(F1, F1′), (F2, F2′), (F3, F3′)] and then used to find
the remaining feature matches. The entire snapshot is transformed by a transform
derived from the basis feature matches. This then allows the remaining snapshot
features to be matches to scene features that are nearby in the image and have
similar descriptions and orientations.
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Basis Set Transform A basis set of feature matches implicitly defines a rigid

transform between snapshot and scene features. This transform is in the form of a

translation, rotation, and scaling. We define the scaling component of this transform

as the ratio between the perimeter of the triangle formed by the three snapshot

features and the perimeter of the triangle formed by the three scene features. The

translation component is calculated by taking the difference between the average of

the (x, y) image positions of the snapshot and scene basis set features (centre of the

triangle). The rotation component is calculated by comparing the orientations of

corresponding snapshot and scene features of the basis set. The average difference

in orientation is the rotation amount. We then apply this transform to all of the

features of the snapshot, scaling, rotating, and then translating the image positions

of each so that they overlay the scene features. The rotation component is also

applied to the SIFT orientation of each snapshot feature.

Matching Features After all the snapshot features have been transformed, each

unmatched snapshot feature (not part of the basis set) is compared against nearby

scene features. We match a snapshot feature to the most similar scene feature

within a small radius. The similarity in this case is a function of description vector

and feature orientation similarity. The description vector similarity is a value in

the range [0.0, 1.0] and was presented in Section 3.4.2. The orientation similarity

is the difference in orientation angles of each feature in radians, normalised to the

range [0.0, 1.0] using a Gaussian Radial Basis function with mean 0.0 and standard

deviation 0.3 radians. The overall similarity is the product of the two values, and

is therefore also in the range [0.0, 1.0]. We match a snapshot feature only to scene

feature that have a similarity score over a threshold (we empirically chose a threshold

of 0.7 as it provided good results). This matching process is detailed in Algorithm

3.2.
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Algorithm 3.2 Generating full feature match from a basis set.
input: set of snapshot features → S
input: set of scene features → C
input: transform from snapshot to scene basis features→ t

matches← {}
forall s in S

s← applyTransform(t, s)
near_features← getNearSceneFeatures(C, s)
best_similarity ← inf
best_match← null
forall n in near_features

similarity ← calculateSimilarity(s, n)
if similariy > similarity_threshold ∧ similarity > best_similarity then

best_similarity ← similarity
best_match← n

endif
endfor
if best_match 6= null then

matches← matches ∪ {(s, best_match)}
endfor

endfor
output: all match pairs ← matches

3.5 Feature Database Matching Efficiency

So far we have discussed matching a single database snapshot of features to a set of

scene features. The run-time complexity of matching a single snapshot to a scene

is at least O(nm) for n snapshot features and m scene features. This stems from

the need to generate the list of size n ×m of all possible feature match pairs, and

for each match pair we must compute the SIFT description vector distance. For

a database with s snapshots, matching a scene with no a priori knowledge of its

composition, has a computational complexity of O(nms). This compares poorly

with the matching performance of the standard nearest-neighbour algorithm. For

our algorithm, if a k-d tree space partitioning structure is used, a complexity of

O(n logms) is possible. However, our algorithm matches a single snapshot indepen-

dently of all others, without impacting matching accuracy. The nearest-neighbour

matching algorithm, on the other hand, relies on the second-nearest neighbour dis-
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tance to perform rejection of spurious SIFT matches. In this case, the accuracy of

feature matching is dependent on the contents of the entire database.

Take a scenario in which the content of the scene is known, or at least it is known

that only a small subset of all learned objects may be in the scene. An example of

such a scenario is processing a video stream. Due to temporal coherence we may be

able to assume that the current frame can only contain the objects present in the

previous frame, only checking for the appearance of new objects intermittently. In

such a scenario, using our approach, we could match only the snapshots of objects

known to be present in the frame, ignoring all others. This is not possible to do using

a nearest-neighbour matching algorithm without affecting matching accuracy. In the

experimental results section (Section 3.6) we demonstrate the speed-up possible if

the contents of the scene can be narrowed down.

3.6 Experiments and Results

We test the effectiveness of our feature matching method by comparing it to the

nearest neighbour approach. First we test the feature matching accuracy in the

context of object recognition. We build a database of object features using a training

set of images, followed by using the generated database to match object features in

scene images. This process is summarised in Figure 3.6.1.

The reference nearest neighbour feature matching implementation is Hess’s1

Best-Bin First kd-tree implementation for matching SIFT features, with the KD-

TREE-BBF-MAX-NN-CHKS parameter set to 5000. When testing the performance

of the nearest-neighbour matching method, we also add to the database 2000 features

extracted from random images with no parts in common with the test object images.

This is required because the nearest-neighbour algorithm relies on the second-nearest

neighbour feature to provide the rejection threshold for spurious matches (discussed

in Section 3.3).

1http://web.engr.oregonstate.edu/~hess/
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Figure 3.6.1: Schematic representation of the method of testing different feature
matching approaches. We add to a feature database training snapshots of the object.
Then we use this database to perform object recognition on a test image of the
object in a scene, recording the number of correctly and incorrectly identified object
features.

The test data set consists of images of 17 different objects in a cluttered scene

under three different lighting conditions with four images per lighting condition, for

a total of 204 images. For each image, a mask is available that specifies which areas

of the image are object and which are background. This, in turn, indicates which

features in the image are object features and which are background. The objects

used were flat faced rectangular prisms with an image on the faces. The camera used

was a Bumblebee2 stereo camera (only the left camera image is used) outputting a

colour image with resolution 512x384.

For each object, 12 images are available, we separate these images into a training

set and a test set. In total there are 4094 ways in which 12 images can be split in

this way. For each pair of training and testing sets the object features are extracted

from the training set of images and inserted into an object feature database. The

database is then used to match the test image features to object features, using the

nearest neighbour method and the Bipartite Matching method. It should be noted
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Figure 3.6.2: Percentage of object features correctly detected by the nearest neigh-
bour and Bipartite Matching approaches. The performance of each approach is
graphed against the number of object training images used to generate the database
of object features. The error bars indicate the Standard Error of the result data.
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that the aim of this experiment is to compare the raw feature matching performance

of the existing Nearest Neighbour algorithm and our Bipartite Matching algorithm.

As a consequence, no further feature match filtering (eg: geometric consistency) is

performed for either method, as it is not our intention to test the effectiveness of an

algorithm such as RANSAC or the Hough Transform.

The percentage of correct and incorrect matches is tabulated according to the

number of images in the training set, and averaged over all objects. The true

positive match results are shown in Figure 3.6.2, while the false positive match

results (background features incorrectly matched to object features) are shown in

Figure 3.6.3. These results show that our matching scheme has a higher feature

matching rate across all training set sizes, while at the same time having a lower

false positive matching rate.

In addition to testing the matching performance, we also compared the matching

speed of our algorithm against the Best-Bin-First nearest neighbour method. We

recorded the time in milliseconds to perform a feature match for a given feature

database size (database size is defined as the total number of features stored). The

match time is calculated by taking the time to match an image, divided by the

number of features in the image. The feature database is composed of features from

many different objects. We tested two different scenarios, in the first the scene

content is unknown and it may contain any of the learned objects, in the second

the scene content is known to contain only one of the learned objects. In the latter

scenario, using the Bipartite Matching approach we can realise a significant speed-

up by not matching any of the snapshots of objects known to not be in the scene.

The results are presented in Figure 3.6.4. It can be seen that the time complexity of

our algorithm is linear with the size of the database when no information regarding

the scene is available. However, if we specify the object in the scene with a hint,

our Bipartite Matching method is much more efficient compared to the nearest

neighbour approach.
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Figure 3.6.3: Number of background features incorrectly classified as object features
by the nearest neighbour and Bipartite Matching approaches, expressed as a per-
centage of object features. The performance of each approach is graphed against the
number of object training images used to generate the database of object features.
The error bars indicate the Standard Error of the result data.

74



Figure 3.6.4: Comparison of matching speeds between a database using the Nearest
neighbour scheme (Best-Bin-First) and one using the Bipartite Matching scheme.
The Bipartite Matching scheme is considerably slower when no information about
the scene being matched is known. However, if a hint is given regarding the contents
of the scene, the Bipartite Matching scheme is extremely efficient, much faster than
the Nearest neighbour method.
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3.7 Discussion

Our method for feature matching has several demonstrated advantages over previ-

ous methods in terms of both accuracy and speed. The accuracy advantage stems

from the fact that Bipartite Matching takes into account feature position and ori-

entation as well as the description vector at the matching stage. Nearest neighbour

and distance threshold methods perform feature matching using only the feature

description vector and then as a separate stage remove geometrically inconsistent

matches.

In a situation where the object to be recognized has a regular pattern texture,

such as a checkerboard pattern for example, the nearest neighbour method may

perform very poorly. This is because the object has many features that have very

similar description vectors and when matching scene features to database features

either very few features will have a nearest neighbour closer than 80% distance to

the second nearest neighbour, or many of the feature matches will be incorrect and

removed in the geometric consistency stage.

The Bipartite Matching method, on the other hand, does not restrict itself to

matching only the nearest neighbour features or features under a certain threshold

distance. Instead, a holistic approach is used, taking into account multiple properties

to determine an appropriate feature match.

The computational complexity of the nearest neighbour method can be a prob-

lem, due to the difficulty of nearest neighbour search in a high dimensional space (128

dimensional in the case of SIFT features). Furthermore, the database of features

cannot be pruned based on scene knowledge without affecting matching accuracy.

This is because we are searching for both a nearest neighbour for a scene feature, as

well as its second-nearest neighbour. As a result, the nearest neighbour matching

scheme cannot take advantage of scene knowledge which may be available in some

situations and applications.

In the case of the presented matching method, the database stores object features
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grouped into individual views of the object. The advantage of this is that each set

of snapshot features is independent. This means that if there is prior knowledge of

the objects in the scene, we can focus only on matching the snapshots of the present

objects, ignoring the rest. Furthermore if the views for each object are arranged in

an aspect graph [Cyr and Kimia, 2001] (a graph in which each node represents a

view of the object as seen from some viewpoint), such that it is possible to know if

two views of an object are from similar orientations, if we have prior knowledge of

the orientation of an object in a scene we can focus our search on the views for that

given orientation. For tracking objects in a scene, we could assume that if an object

is present in the scene in a frame it will likely be present in the next few frames.

Similarly, if an object was in a particular orientation in a frame it will most likely

be in a similar orientation in the next few frames. In such a scenario the Bipartite

Feature Matching method can exploit the temporal and spacial coherency and be

significantly faster than a nearest neighbour feature matching scheme.

3.8 Future Work

In the current approach we assume a rigid affine transform between the learned

snapshot of object features and the scene object features. We extract a potential

transform from a basis set of feature matches and apply it to the remaining snapshot

features. These transformed features are then matched to nearby scene features to

construct the complete match. It may be more accurate to model the transformation

between snapshot and scene features as a perspective transform. To do this, however,

we would need to expand the basis set of feature matches to include four match pairs

(the minimum required to fit a perspective transform).

Our algorithm has been developed with SIFT features in mind. However, it

should be applicable to other local interest point detectors such as SURF

[Bay et al., 2006] and PCA-SIFT [Yan Ke, 2004]. Adapting this matching method

to a different type of local image feature should be relatively straight forward. For
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SIFT-like detectors, it may be as simple as modelling the given feature type’s descrip-

tion vector, to convert between a description vector distance between two features

to a match probability.

A further extension of the method is to apply it to 3D stereo images. We have

so far dealt with single-camera images but we could extend this algorithm to stereo-

camera images. In the case of a stereo-camera we could match corresponding fea-

tures between the left and right camera image, resulting in stereo SIFT features

which have a 3D position determined by the camera parameters. When learning

to recognize an object, the features saved in the database would be stereo features

which have 3D position information. To recognize and localize an object in a scene

we would perform Bipartite Matching between stereo features, with an appropriate

modification to position consistency to take into account the 3D as opposed to 2D

position of each feature. The advantage of this approach would be a possible im-

provement in matching accuracy since our position consistency would be based on

3D coordinate data and the 3D localization of the object in the scene is a direct

result of the feature matching process.

Another possible avenue to explore is to combine the presented approach with

aspects of a graph matching algorithms [Conte et al., 2004]. For example, McAuley,

Caetano, et al, have presented work [McAuley et al., 2010, Caetano et al., 2009] on

using heuristics and machine learning to speed up graph matching in Euclidean

spaces. This type of approach could be used to improve the feature matching be-

tween the snapshot and scene features, by treating this task as a quadratic assign-

ment problem.

Finally, there is significant scope for future work in reducing the reliance on con-

stant parameters and thresholds for our feature matching algorithm. Automatically

finding the optimal parameters may result in a higher matching accuracy.
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Chapter 4

Feature Segmentation for Object

Recognition

4.1 Introduction

In the previous chapter we presented a method for matching SIFT features from a

learned object database to scene image features. This allows a robot to recognise

and localise an object in a scene, which is vital for many robotics applications, as it

allows the robot to effectively track, grasp, and then manipulate the object.

There are some applications in which it is not possible to provide training images

of an object a priori. In the case of an autonomous robot deployed to a new envi-

ronment (for example a household service robot), it is impossible to predict every

object that the robot may need to interact with and hence recognise. A solution to

this problem is for the robot to be able to autonomously acquire training data of an

object in its environment with no human intervention.

In this chapter we present a system for a robot to determine training data for a

previously unseen object in the presence of clutter, noise and background motion.

Our vision system for object recognition and localisation is based on SIFT features.

As a result, the specific problem that we solve is segmenting the SIFT features of an

object from the background, in a complex and cluttered environment (an example
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of this problem is shown in Figure 4.1.1). The output of our segmentation algorithm

can then be used by an existing feature classification algorithm for recognition and

localisation of the object in a scene at a later time.

Our approach to this problem is focused on obtaining as much information as

possible about individual image features, which is then used to determine whether

a feature belongs to the object, to the robot arm, or to the background. This is

done by having the robot grasp the object and performs a series of moves, while

stereo vision and feature tracking are used to gather trajectory data for each feature

over multiple frames. By using robot induced object motion and tracking stable

image features over many frames, we can effectively separate object and background

features in a dynamic, highly cluttered environment. These features can then be

used for building an all-aspect object appearance model (discussed in Chapter 5),

allowing recognition, localisation, and effective manipulation of the object by the

robot.

The outline of this chapter is as follows:

1. a brief overview of related approaches and their corresponding weaknesses

(Section 4.2);

2. a detailed description of the feature segmentation method (Section 4.3);

3. experimental results demonstrating the effectiveness of the presented method

(Section 4.4);

4. a discussion of the results and of the presented algorithm (Section 4.5);

5. an overview of avenues for future work (Section 4.6).

4.2 Current Methods

The problem of learning a new object’s appearance model can be viewed as a seg-

mentation problem. Previous approaches to image and feature segmentation were
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Figure 4.1.1: A robot arm gripping an object in a cluttered environment. The purple
arrows represent SIFT features. Our goal is to separate out the object features,
which can later be used for recognising and localising the object in a scene.

presented in detail in Chapter 2. In this section we give a brief overview of the most

relevant techniques.

In a cluttered and complex environment and target object, static image analysis

may not be effective at separating the object image regions or features from the

background. An alternate approach is to perform dynamic scene analysis. Back-

ground subtraction [Wren et al., 1997] [Piccardi, 2004] is one approach which can

be used. This involves having the robot observe the scene without the object in

place, and build an image model of the background. The object is then placed in

the scene, and to determine the object image regions, the previously learned back-

ground model is subtracted from the resulting image. The areas of the image that

correspond to the object will not match the learned background model and will be

labelled as foreground object regions. This object image region can then be used to

learn an appearance model, such as object SIFT feature snapshots.

Another approach is to use object motion to separate its image region from the

background. One example [Fitzpatrick, 2003a] involves placing the object in a scene

and nudging it with the robot gripper. As the object moves as a result of the contact,

there is an increased amount of detected motion in the image stream. This burst of

motion can be used to segment the object image region from the background using

the min-cut algorithm [Boykov and Kolmogorov, 2004] [Stoer and Wagner, 1997].
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These methods have the advantage of being able to deal with a cluttered back-

ground and a complex object. However, in the presence of background motion,

these algorithms may not perform well. This is because they only use instantaneous

motion rather than long term motion to determine which image regions correspond

to the object. To effectively cope with background motion, we propose that robot

induced object motion and long term tracking of feature trajectories is required to

build a model of each feature and use it to differentiate between background motion

and object motion, as well as separating out a cluttered background.

4.3 Feature Segmentation Algorithm

4.3.1 Overview

The purpose of our algorithm is to allow a robot to autonomously find object image

features in a dynamic unstructured environment. These features can later be used

for object recognition and localisation. We do this by using the robot gripper to

grasp and move the object through a scene, recording this motion with a stereo

camera, extracting long-term (in the order of several seconds) feature trajectories

from the resulting video stream, and finally using these data to extract the object

features. The challenges we seek to addresses are:

• separating object features from a cluttered background;

• separating object and robot gripper features;

• robustness to background motion;

• robustness to changes in the visual appearance of the robot arm.

The basis for our algorithm is to use motion to separate the features of a target

object from background features. We track the motion in 3D world space rather

than in 2D image space as this provides more information to determine whether

features belong to the background or the object. The use of SIFT features, that can
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be reliably correlated from frame to frame, allows a feature to be tracked through

multiple frames. This enables long term tracking of features trajectories. This

in turn provides more information for segmentation as compared to instantaneous

motion methods [Fitzpatrick, 2003a].

The basic outline of our approach is as follows: the robot grasps the object

and moves it through the scene in a linear motion (keeping the same aspect of the

object facing the camera), during this motion the robot records a video stream from

its stereo camera. Grasping the object (before its appearance is learned) can be

challenging. In our case we had a human operator place the object in the robot’s

grasp, but there are several other possible approaches that are discussed in the future

work section (Section 4.6).

For every frame, we extract SIFT features from the left and right camera images

and correlate them to form 3D SIFT features. These features are tracked from frame

to frame to form feature trajectories. A single trajectory is a series of corresponding

3D SIFT features that should be located on the same point on a surface in the

scene. Every few frames (we chose an interval of 5 frames) we take a snapshot, and

use the feature trajectories to determine which of the 3D SIFT features belong to

the grasped object and which belong to the background or robot arm. The object

features from each snapshot are stored in an object feature database.

The stages of our algorithm are:

1. extracting and correlating SIFT features from the stereo video stream (Section

4.3.2),

2. tracking the trajectory of each feature during the motion (Section 4.3.3),

3. periodically extract snapshots of object features when sufficient trajectory data

is available (Section 4.3.3),

4. separate arm and object features (Section 4.3.4),

5. filter out background motion by ignoring features whose motion differs from
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the trajectory of the arm (Section 4.3.5),

6. finally we improve the separation of arm and object features by comparing the

feature snapshots from different objects and remove matched features (Section

4.3.6).

The platform we used for testing our algorithm consists of a Bumblebee2 (see Figure

4.3.1) stereo camera (resolution of 512× 386 pixels at 15 frames per second is used)

and a six degrees-of-freedom (DOF) industrial arm with a two fingered gripper

attached (see Figure 4.3.2). The fingers consist of two servos per finger and silicone

pads on the tips to increase friction when grasping objects. A workspace is accessible

in front of the robot (see Figure 4.3.1).

We do not address the problem of the robot initially grasping the object. In our

experiments, the object is manually placed in the robot’s gripper, and the gripper

is closed to apply sufficient pressure such that the object does not slip. The objects

were chosen to have a shape and orientation suitable for grasping by the robot’s two-

fingered gripper. Future work could incorporate more sophisticated grasp planning

[Miller et al., 2003] [Borst et al., 1999], as well as a method for detecting previously

unseen objects in the environment and picking them up. For example, if an object

is located on a table, the robot could use the height variation from the flat surface

as a cue to indicate that there may be an object that can be picked up.

4.3.2 Stereo Feature Generation

Our overall approach is based on gathering as much data about each feature as

possible to determine if it belongs to the held object. The first step is to determine

the 3D world position of each feature. At the time of this work, we determined that

the most suitable sensor for this was a stereo camera. In later work (Chapters 5

and 6) we switched to using the new Kinect depth camera, as it provided higher

resolution depth information than we could obtain from the stereo camera. However,

the techniques presented in this chapter are mostly independent of the specific sensor
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Figure 4.3.1: Robot and workspace setup on the left, the Bumblee2 stereo
camera on the right. The robot has a stereo camera on a pan-tilt unit
and a 6-DOF arm with a gripper attached. Bumblebee2 schematics from:
http://www.ptgrey.com/products/bumblebee2/bumblebee2_xb3_datasheet.pdf

Figure 4.3.2: Two fingered gripper. The gripping pads are constructed from silicone
around flat metal plates. Each finger consists of two servo-driven joints.
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used to determine the 3D world position of each feature.

A SIFT feature is a function of a small pixel neighbourhood around the interest

point, which in turn is a function of the appearance of the scene in the corresponding

area. This scene area, when viewed from a two slightly different positions, should

result in similar image patches, and hence generate similar SIFT features. Using

this property, the stereo camera equipped robot, can correlate SIFT features from

the left and right scene images and determine the 3D world position of each using

the camera parameters (baseline distance, field of view, and image resolution). Each

correlated pair of SIFT features from the left and right image is designated a Stereo

Feature and is a tuple of the form (LeftFeature, RightFeature,WorldPosition).

To find the Stereo Features for a camera frame, we extract the SIFT features for

both the left and right images and match them by comparing their image positions,

description vectors and orientation. For each feature in the left image we search the

right image for a feature on the same epipolar line with the closest SIFT description

vector by Euclidean distance. In the case of the Bumblebee2 stereo camera geometry,

the epipolar constraint simply means that any matching features in the left and right

image must have the same y image coordinate. If the left and right image features

have their orientations and description vectors within a threshold distance they are

said to match and form a new Stereo Feature. The justification for this is that the

same point on an object’s surface should produce similar SIFT features, in terms of

both description vector and orientation, in both the left and right images. Algorithm

4.1 gives an overview of the process to match the SIFT features from the left and

right image to form the Stereo Features for a frame.

The performance of this algorithm is dependent on the choice of threshold for

the orientation and description vector difference between the left and right image

features (10◦ and 350 respectively in Algorithm 4.1). Because the left and right

images are concurrent views of the scene, with the same lighting conditions and

perspective, we consider a simple threshold as sufficient for stereo feature matching;

as opposed to using a more complex threshold or matching method as described in
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Algorithm 4.1 Finding stereo features.
input: left image SIFT features → leftFeatures
input: right image SIFT features → rightFeatures

stereoFeatures← {}
forall lFeature in leftFeatures

rightEpipolarFeatures← epipolarF ilter(rightFeatures, lFeature)
rFeature← getDescriptionV ectorNearest(rightEpipolarFeatures, lFeature)
oriDist← orientationDistance(lFeature, rFeature)
if oriDist ≤ 10◦ then

featureDist← featureV ectorDistance(lFeature, rFeature)
if featureDist ≤ 350 then

worldPos← findPosition(lFeature, rFeature)
newFeature← (lFeature, rFeature, worldPos)
stereoFeatures← {newFeature} ∪ stereoFeatures

endif
endif

endfor
output: scene stereo features ← stereoFeatures

Chapter 3.

We determined suitable values for the two thresholds empirically. This was done

by finding corresponding SIFT feature pairs in a large number of stereo images and

recording the distance between their description vectors and orientation difference.

We found the mean orientation difference to be 3.7◦ with a standard deviation of

3.1◦. We set the orientationThreshold to be mean plus three standard deviations

(x+ 3σ), which is equal to 10◦.

To determine the description vector threshold we consider the percentage of cor-

responding stereo feature pairs with a description vector distance less than

x : {0.0 ≤ x ≤ 700.0} (we found that none of the feature description vector dis-

tances exceeded 700.0), as compared to the distance between non-corresponding

feature pairs. These data are summarised in Figure 4.3.3. We set the feature de-

scription vector threshold to 350.0 as we found that 95% of correctly corresponding

stereo feature pairs have description vectors with a distance less than this, while

only 1.5% of non-corresponding feature pairs fall within this threshold.

Evaluating these threshold parameters we found that the rate of incorrect feature
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Figure 4.3.3: This shows the percentage of corresponding and non-corresponding
SIFT stereo feature pairs with description vectors within a distance threshold.

correspondence was 1.3%. These thresholds should be applicable to a variety of

objects and environments since SIFT features are not dependent on the overall scene

composition, as they are local image features that consider a small neighbourhood

of pixels, and are robust to illumination changes, due to the normalisation of the

histogram used to construct the feature’s description vector [Lowe, 2004]. However,

cameras of varying quality, and baseline length may require different parameters.

4.3.3 Feature Tracking and Snapshotting

After generating the Stereo Features for a frame, the next step is to track the features,

dealing with intermittent feature visibility and motion of the features in 3D space.

This is done by maintaining a set of feature trajectories, each of which is a series

of (Feature,DetectT ime) tuples. DetectT ime refers to when the given feature was

detected and added to the trajectory. The features that make up a trajectory should

correspond to the same point on the surface of an object in the scene. The purpose
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Figure 4.3.4: Every feature from a new image must be inserted into a matching
active trajectory, or a new trajectory created if none match. A trajectory is a list of
corresponding Stereo Features from previous frames.

of keeping track of the feature trajectories is to determine which features are part

of the background and which are part of the object held by the gripper.

We maintain a set of active feature trajectories. These are trajectories that have

had a new feature added within the last three frames (which is 200 milliseconds

as we use a video stream of 15fps). Each Stereo Feature of a new camera frame

is compared to every active trajectory and inserted into the best match (this is

illustrated in Figure 4.3.4). If none is a sufficiently close match, a new trajectory is

created containing that feature and is then added to the set of active trajectories.

The reason for maintaining a list of active trajectories (which have been updated

in the last three frames), rather than a list of all trajectories, is our reliance on spatial

locality and descriptor locality for matching a new Stereo Feature to a trajectory.

We found that in our case, trajectories that have not been updated for more than

three frames do not contain sufficient locality for reliable feature matching, resulting

in spurious and incorrect matches to new features.

To determine if a new feature should be inserted into an existing trajectory,

we compare the description vector, orientation and 3D world coordinates of the

new feature and the most recent feature of the trajectory. Successive features in a

trajectory should have spatial locality in 3D world space, similar feature description
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Algorithm 4.2 Inserting new stereo feature into a matching trajectory.
input: new stereo feature → s
input: active feature trajectories → Trajectories

matchingTrajectory ← null
forall t in Trajectories

(tFeature, tDetectT ime)← latestFeature(t)
worldPosDist← getWorldPosDist(s, tFeature)
if worldPosDist ≤ (curT ime− tDetectT ime) · ArmSpeed then

descriptorDist← SIFTDist(s, tFeature)
orientationDist← oriDist(s, tFeature)
if descriptorDist ≤ 250 ∧ orientationDist ≤ 5◦ then
matchingTrajectory ← t

endif
endif

endfor
if matchingTrajectory 6= null then

matchingTrajectory ← (s, currentT ime) : matchingTrajectory
else

Trajectories← [(s, currentT ime)] ∪ Trajectories
endif
output: updated feature trajectories ← allT rajectories

vectors and orientations. This is because they should be located on the same point

of an object. For every new Stereo Feature we take all trajectories that have their

most recent feature within a threshold distance in 3D world space. The distance

threshold is:

(CurrentT ime− TrajectoryT ime) · ArmSpeed (4.3.1)

ArmSpeed is the maximum arm movement speed, CurrentT ime is the current

time, and TrajectoryT ime is the time-stamp when the particular trajectory was last

updated with a new feature. The justification for this threshold is that no feature

on the grasped object can move faster than the arm and it is not necessary to track

features of faster moving objects in the background.

From this set of nearby trajectories we find the one with the closest (by Euclidean

distance) description vector to the new Stereo Feature. If the description vector and
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orientation difference between the features is less than a fixed threshold then the

new feature is inserted into this matching trajectory. The process for matching a

single feature to a trajectory is described in detail in Algorithm 4.2. The description

vector and orientation thresholds are determined by examining the variability of the

description vector and orientation of features during linear movement (movement

such that the underlying object remains in the same orientation in the image). We

plot the average description vector distance and orientation difference between a

feature and its corresponding match in each of the previous 30 frames; this is shown

in Figure 4.3.5. After 3 frames the average distance between description vectors

in a trajectory is 100 with a standard deviation of 50, and the mean orientation

difference is 1.3◦ with a standard deviation of 1.2◦. We chose the thresholds of 250

and 5◦ by taking the mean and adding three standard deviations (x+ 3σ) for both

the feature descriptor and orientation difference.

If for a new Stereo Feature no active trajectory is found matching the above

criteria, an empty trajectory is created and the feature is inserted into this new

trajectory.

The purpose of tracking feature trajectories is to use motion to separate fore-

ground object features from the background, which then form a feature database

used for object recognition. While the object is being moved by the robot, we

periodically take snapshots of the most recent features of trajectories that have a

displacement over a certain threshold. The displacement of a trajectory is defined

as the sum of the distance between the 3D world positions of subsequent features of

the trajectory. The frequency of feature snapshots is dependent on several factors:

the camera frame rate, speed with which the robot moves the object, and the desired

level of detail for the learned object feature database. In our case, we perform a

snapshot every five frames. The snapshotted trajectories are ones that have moved

in 3D world space at least (FramesSinceLastSnapshot− 1) ∗ArmSpeed since the

last snapshot. These trajectories should correspond to the robot arm, the held ob-

ject, and any background motion. Any static background features should belong to
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Figure 4.3.5: These graphs show the increasing description vector and orientation
difference between the most recent Stereo Feature of a trajectory and older features
of the same trajectory. The error bars represent the standard deviation.
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Figure 4.3.6: This image shows a snapshot of features. The Stereo Feature trajectory
paths are indicated in green. The robot arm and held object features have long trails
because they are moving through the scene. The red points indicate Stereo Features
that form a snapshot due to having moved over a threshold amount. Note that this
is before arm features are filtered out.

trajectories which have a displacement under the threshold, and hence will not be

included in the snapshot. The next step is to separate out the arm features and

background motion from the snapshotted trajectories. The remaining snapshotted

object features are then inserted into a database, which can later be used for object

recognition and localisation. Figure 4.3.6 shows an example of a snapshot.

4.3.4 Separating Arm and Object Features

Since the source of object motion is movement by the robot’s arm and gripper,

trajectories produced by the robot itself must be removed. One way this can be

done is if an accurate mapping can be made between arm joint angles and the 3D

world space regions occupied by the arm, then any snapshot features that fall in

these regions can be labelled as arm features and removed. The disadvantage of this

approach is it requires very accurate kinematics, a high degree of synchronisation

with the vision system, and an accurate 3D model of the robot arm and gripper.

A different method is to use a database of arm SIFT features to compare against

the snapshot and remove any matching features. There are two approaches to gener-

ating the arm feature database. The first is to extract SIFT features from segmented

and labelled training images of the robot arm and insert them into a database. How-
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ever, this assumes the availability of appropriate training images, which may not be

the case. The second approach is to have the robot perform the feature snapshotting

steps without holding an object, and instead learn snapshots of arm features. In

this way the robot can autonomously generate a database of arm SIFT features as

an initialisation procedure. We decided to take this last approach as our aim is to

minimise human intervention in the entire process of object learning.

With the generated robot arm feature database, we can filter out arm features

from the feature snapshots, leaving behind held object features. For matching snap-

shot features to the arm database, we use Lowe’s method [Lowe, 2004] for SIFT

feature matching. This involves searching the arm database for the nearest and

second-nearest features to the snapshot feature. If the Euclidean distance between

the SIFT description vectors of the snapshot feature and the nearest database arm

feature is less than 80% of the distance to the second-nearest feature, then the snap-

shot feature matches the arm feature. We remove from each snapshot all features

that match an arm feature, the remaining features are labelled as object features.

The justification for this approach is that the density of features in the neighbour-

hood of a feature indicates how discriminatory that feature’s description vector is.

The 80% value was determined by Lowe experimentally [Lowe, 1999] to give the

optimal trade-off between false positives and false negatives.

The reason we use this nearest neighbour method of matching, as opposed to

the bipartite matching method described in Chapter 3, is that we do not have a

geometric dependency between matched features. The robot gripper can be in many

different positions, almost fully closed when gripping small objects, or almost fully

open when gripping large objects. As a result, if we were to match using the method

described in Chapter 3, we would need to learn the feature appearance model of the

gripper for all of the different grip sizes. Instead we take the approach of matching

individual snapshot features against the database of arm features based only on the

feature description vector.
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4.3.5 Filtering Background Motion

The features that comprise a snapshot can come from three sources, the held object,

the robot arm and gripper, and any background motion. Static background features

are not included as their trajectory displacements are less than the threshold required

(described in Subsection 4.3.3). In the previous section we dealt with filtering out

the robot arm features. The next step is to filter out background motion features.

Background motion can be filtered out in several ways. First, distant features

outside the robot’s workspace can be removed by examining their 3D world position.

If a feature is further away from the robot that the robot’s maximum reach, then it is

safe to assume the feature does not belong to the held object. A further refinement is

to use arm kinematics to determine the approximate gripper position in each frame

and only consider features within a threshold distance of this point. However, it

is possible to have background motion that falls within this threshold distance. A

further refinement is necessary.

Our solution to this problem is to use the fact that the gripper and the features

of the held object will follow similar trajectories in 3D world space. By comparing

a feature trajectory to the path of the robot arm, it is possible to determine if it

belongs to background motion or the held object. There are two ways the robot

arm’s path can be determined. The first is by using kinematics and the joint angles.

We can track the robot arm joints and for every frame use these to determine the

arm position, thus building a trajectory. However, this approach requires accurate

arm kinematic feedback synchronised with the vision system. An alternate approach

is to use the detected arm feature trajectories (described in the previous section) to

determine the robot arm motion.

In the previous section, we described how to determine the feature trajectories of

a snapshot which belong to the robot arm. Each such trajectory can be interpreted as

a series of 3D world space positions, corresponding to the positions of the trajectory’s

features. This series of positions can be used to compare against other trajectories. If
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Figure 4.3.7: Feature trajectory position normalisation. When comparing two tra-
jectories, both have their comprising feature world positions shifted so that the
trajectory starts at the origin.

the difference is over a threshold then we conclude that the trajectory cannot belong

to the held object as it has not followed a similar path to the arm. To compare two

trajectories, a list of feature positions is extracted from each and normalised to the

origin. Normalising a series of positions refers to shifting them such that the latest

position of the trajectory is at the origin (refer to Figure 4.3.7). The individual

feature positions of the trajectory are altered as follows:

pn, pn+1, ..., pm → (pn − pm), (pn+1 − pm), ..., (pm − pm) (4.3.2)

where pn is the 3D position of a trajectory feature at frame n. To calculate the

difference between two trajectories, take the average distance between positions on

matching frames across the two normalised position lists P and Q:

Dist(P,Q) = 1
n

∑
|pa − qa| (4.3.3)

where n is the number of frames in which both trajectories have a recorded

feature, pa is the normalised position of the first trajectory at frame number a, and

qa is the normalised position of the second trajectory at the same frame number.

We remove any feature trajectories that are not within a threshold distance of an

arm feature trajectory as determined by the above distance measure. We determined

the appropriate threshold by empirically examining the variability of trajectories of
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Figure 4.3.8: Example of motion filtering in action. The green trails in the left image
represent the feature trajectory paths, the blue points in the right image indicate the
snapshotted object features, and the red points indicate the detected arm features.
Note that background motion trajectories of the blue box are successfully filtered
out and do not contribute to the snapshotted features.

a rigid object. We found that the average distance using the above measure of

feature trajectories on a rigid object is 0.21cm with a standard deviation of 0.25cm.

We set the threshold to be x̄ + 3σ which is 0.96cm. Any feature trajectory that

is not within this threshold distance from at least one arm feature trajectory is

considered background motion and filtered out from a snapshot. Figure 4.3.8 shows

the effectiveness of this approach at removing background motion trajectory features

from a snapshot.

This approach to trajectory filtering should be equally applicable in the case

where accurate and synchronised arm kinematics is available. In this case, rather

than using an arm feature trajectory positions, we would use the arm kinematic

positions to compare against all other trajectories. We leave this for future work.

One caveat of this method for background motion filtering is its poor performance

when the motion of the robot gripper and held object has a large rotation component,

as compared to the translation component. In the case of rotation, the path of each

feature depends on its distance from the axis of rotation, which is not suitable for this

approach. In practice we found that a small rotation component can be tolerated

by the background motion filter. We discuss ways to address these limitations in

Section 4.5.
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4.3.6 Refining the Segmentation

In section 4.3.4 we described a method for separating out the features belonging to

the robot arm and gripper from the snapshot, with the aim of filtering out all features

not belonging to the held object. This is done by learning an arm feature database

that can be matched against snapshot features. However, due to noise or lighting

variations, some snapshot arm features may fail to match the stored database and

instead be incorrectly labelled as object features. Additionally, if the arm appearance

changes as compared to its state when the database was learned, some arm features

may not match the database. An arm may change appearance due to factors such as

accumulated dirt or wear and tear. The result of incorrect matches is arm features

incorrectly labelled as object features. This could detrimentally affect the accuracy

of the generated object feature database during object recognition and localisation.

We address this problem by comparing the features of snapshots of different

objects. Our solution is to use the fact that, due to the highly discriminatory

nature of SIFT features, similar features appearing in snapshots of different objects

are likely to be misclassified arm or background features. Assuming that the objects

the robot learns are visually unique, the only common features between snapshots

of different objects must belong to the robot arm or the background.

When a set of feature snapshots has been generated for a number of objects,

we consider each object in turn and all of the feature snapshots of that object are

compared against the snapshots of the remaining objects. Call the set of snapshots

belonging to the current object A, and the set of snapshots belonging to the remain-

ing objects B. Every snapshot a ∈ A is compared against the snapshots b ∈ B,

searching for matching features. Depending on the number of objects learned, it

may be computationally prohibitive to compare against all of the snapshots of every

object. In this case, a random subset of snapshots b ∈ B can be used instead, the

size depending on the desired accuracy and time constraints.

When comparing a snapshot a to a snapshot b, we search for features that match.
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Algorithm 4.3 Finding mislabelled arm features.
input: current snapshot → a
input: all snapshots of other objects → B

arm_features← {}
forall b in B

forall fa in objectFeatures(a)
fb ← getNearestFeatureIn(b, fa)
second_nearest← getSecondNearestFeatureIn(b, fa)
if distance(fa, fb) < 0.8 · distance(fa, second_nearest) then

arm_features← {fa} ∪ arm_features
endif

endfor
endfor
output: mislabelled arm features ← arm_features

The matching criterion is similar to that used for matching arm features: feature fa

from snapshot a matches feature fb from snapshot b if fb is the nearest neighbour

to fa of all features occurring in b using the SIFT descriptor distance metric, and

this distance is less than 80% of the distance to the second nearest neighbour. All

features fa with a matching feature in b are marked as arm features, which are then

removed from the snapshot a. This process for finding mislabelled arm features by

correlating features across snapshots of different objects is summarised in Algorithm

4.3.

4.4 Evaluation

To test the effectiveness of our feature segmentation method, we examine the reli-

ability of the segmentation in different circumstances, as well as the object feature

recognition performance of the database that is generated using the segmented fea-

tures.

To test the accuracy of the feature segmentation, the robot executes the algo-

rithm described in this section while moving a grasped object through a cluttered

scene. The motion performed by the robot during a single trial is to move the object

backward and forward in a straight line 50cm in length. During this motion, twenty
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Figure 4.4.1: Some of the objects used to test the robot learning of object recognition.

Features Detected
True Arm Features 328
True Object Features 378
False Arm Features 8
False Object Features 40

Table 4.1: The average number of correctly and incorrectly identified object and
arm features per trial, across 10 different objects, with three trials per object. Each
trial consists of 20 snapshots.

feature snapshots are performed, one every five frames. For each snapshot we record

the total number of correct object features and arm features detected, as well as the

total number of incorrectly labelled object and arm features. We perform this pro-

cess in different scenarios, three separate times for an object, across ten different

objects, for a total of thirty trials for each scenario. The objects used are simple

shapes such as a soft drink cans and cubes of edge length 7cm with an image on the

side facing the camera (see Figure 4.4.1). For each trial, we sum the total number

of detected features from the 20 snapshots which comprise the trial and present the

data in table format.

In the first scenario, we test the object feature segmentation in a cluttered en-

vironment with no background motion. The average number of features detected

per trial is shown in Table 4.1. We can see that the number of background and arm

features misclassified as object features is low compared to the number of correctly

classified object features. All of the False Object Features were due to arm features

incorrectly classified as object features. No background features were classified as

object features.

The second scenario involved testing the effectiveness of the background motion
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Motion Filtering Disabled Enabled Change
True Arm Features 289 289 -
True Object Features 312 282 -9%
False Arm Features 3 6 +100%
False Object Features 366 38 -89%

Table 4.2: This table shows the number of features labelled by the feature segmenta-
tion algorithm, in the presence of background motion, with motion filtering disabled
and enabled. It can be seen that motion filtering greatly reduces false positive object
features in the presence of background motion.

filtering of our feature segmentation method. This is done by introducing back-

ground motion into the scene, in the form of a textured object (the same form and

size as the held object) moving in a random path in the vicinity of the robot arm.

This motion is performed by a human operator. We then compared the perfor-

mance of the segmentation algorithm with background motion filtering enabled and

disabled. In each case the number of correct and incorrect arm and object features

found during the course of the arm movement is counted. The average number of

features detected, across 30 trials, is presented in Table 4.2. It can be seen that the

effect of background motion filtering is a ten fold reduction in false object features,

removing feature trajectories of the object moving in the background. The remain-

ing false object features are due to misclassified arm features. The downside is a

small reduction in the number of detected object features.

The next test scenario is to test the effectiveness of the segmentation refinement

to account for arm features falsely classified as object features. To test this, we

alter the appearance of the arm by attaching a textured marker to the robot gripper

(shown in Figure 4.4.2). This marker is not present when the robot is learning the

SIFT features of the arm, it is only present when the robot is learning the held

object features. This simulates a scenario where the robot arm becomes worn out

or dirty through use, altering its appearance as a result. Normally the features of

the textured marker would be incorrectly classified as object features, as they will

not match the learned arm feature database. However, by cross-matching learned

object features across multiple different objects, we can determine the common fea-
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Figure 4.4.2: The marker attached to the robot gripper is circled in red. This is
used to test the effectiveness of the feature correlation filtering.

Cross-Correlation Disabled Enabled Change
True Arm Features 253 581 +129%
True Object Features 446 494 +10%
False Arm Features 1 6 +500%
False Object Features 380 72 -81%

Table 4.3: Feature cross correlation reduces false positive object features when the
arm appearance changes.

tures and conclude that they must belong to the arm (assuming objects distinct in

appearance).

To evaluate the effectiveness of the cross-matching between object snapshots,

the robot performs the feature segmentation and snapshotting for all ten objects

(with twenty snapshots per object). Following this, the snapshots of each object are

iterated through and the features are matching against the nine other objects. Any

matching object features are re-labelled as arm features. The results are presented

in Table 4.3. When correlating snapshot features for each object, all nine other

objects are compared against, with twenty snapshots per object. The result is that

the number of false object features is reduced by 81% when correlation filtering is

enabled, due to the removal of the texture marker features from the object features

set. These results are summarised in Table 4.3.

Finally, we tested the object recognition accuracy of the generated object feature
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database. The goal of the segmentation algorithm is for a robot to learn the SIFT

features of an object and use these to later recognise and localise the object in a

scene. To test the effectiveness of the segmentation algorithm for this application,

we use the snapshotted object features generated by the robot to create an object

feature database. We then use this database to match against various scene images

containing the learned object (see Appendix section C), recording the number of

object features successfully matched. The performance of the autonomously gener-

ated object feature database is compared to an object feature database generated

from manually segmented views of the object.

The autonomously generated object feature database is created by having the

robot perform the previously described algorithm while moving the object in a linear

motion. This process is performed in a cluttered scene, with no background motion.

29 snapshots are performed per object per trial. The object features from each

snapshot are inserted into a database, which is then used to match object features

in nine different scene images containing that object. Each of these images has a

manually generated ground truth feature classification, determining which of the

features in the image are object features and which are background or arm features.

The number of object features successfully detected as a fraction of all object features

in the image is recorded. The number of falsely classified object features is also

recorded. This is done for ten different objects, the performance of the database is

recorded relative to the number of snapshots that comprise the database. This is

done to evaluate the change in matching accuracy as more snapshots are added to

the database.

The manually segmented training views of each object, with six image snapshots

per object, are used to build a baseline feature database to compare against. For each

object, features are extracted from the training images and inserted into the baseline

database. This is then used to perform object feature matching in the same way

as described for the autonomously generated database above. For each database,

features are matched using Lowe’s nearest-neighbour approach [Lowe, 1999], with

103



the second nearest neighbour database feature providing the threshold for rejecting

spurious feature matches.

The matching performance results of the two databases are shown in Figure

4.4.3. After the 29 autonomously generated snapshots (for each object) are added

to the database, it is capable of recognising 71% of an object’s features in the test

scene images. The baseline database, created from six manually segmented training

images of the object, is able to detect 62% of object features. The number of false

positives of the two databases is 6% and 4% respectively. These results show that the

presented feature segmentation method is effective at generating an object feature

database that can be used to match object features in a scene image.

The performance of this algorithm is comparable to using manually segmented

views of an object, with the advantage that it allows a robot to learn a new object

autonomously in a complex and dynamic environment.

4.5 Discussion

We have presented an effective algorithm for active learning of object SIFT features

on an autonomous robot platform, using motion based feature segmentation. Stable

image features localised in 3D world space, combined with motion, provide sufficient

data to perform effective object feature segmentation from background features in

the presence of background motion and clutter.

One of the caveats of the algorithm is the way the target object is moved through

the scene. The motion the robot performs while holding the object is chosen to be a

translation, allowing one particular aspect of the object’s appearance to be learned.

The linear motion is required to build up trajectory information about each feature,

by tracking it over a sufficient period of time. If features of multiple aspects of the

object need to be learned, then a combination of rotation and translation motion

must be used. Ideally the robot should rotate the object in place so as to view the

object from all sides, allowing multiple aspects to be learned. However, we found
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Figure 4.4.3: The fraction of object features, detected by an autonomously generated
object feature database, compared to that of a feature database generated from
manually labelled training images. The manually labelled database is generated
from six segmented training images of each test object. The performance of the
autonomously generated database is plotted in relation to the number of snapshots
used to build the database. The error bars indicate the Standard Error across the
different evaluation iterations.
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that tracking features becomes a problem under rotation (pitch or yaw relative to

the camera), only being able to track features through approximately 15◦ of rotation

out of the camera plane. This is because under such rotation the pixel neighbour-

hood around a feature point changes, compared to the original. This reduces the

trajectory information per feature as compared to translation motion, making the

separation of foreground object and arm features from background features unreli-

able. Furthermore, background motion filtering based on arm feature trajectories

becomes ineffective due to their short length. As a result, to learn the features of

an object from multiple viewpoints, we fall back to performing multiple translation

motions with a gradual rotation of the robot wrist joint. This allows a feature to

be tracked for a sufficient period of time, while still viewing multiple aspects of the

object. This is further elaborated on in Chapter 5.

The feature recognition results presented in Figure 4.4.3 raise the question of why

the percentage of detected object features does not approach 100% as more snapshot

features are added to the database. The main reason for this is pixels from the

background influencing the learned object SIFT features. SIFT features are based

on a pixel neighbourhood of a certain size, depending on the scale of the feature.

Features near the edges of an object and with large pixel neighbourhoods will have

background pixels contributing to the description vector. As a result, when learning

the features of an object while it is held by the robot arm, some of the learned

features that have a large scale or are close to the object edge will not be recognisable

later when the object is placed in a scene. This is because the background pixels

will change, which will also change the SIFT feature’s description vector. The

phenomenon of background pixels influencing an object’s SIFT feature is illustrated

in Figure 4.5.1. To support this hypothesis, when performing object recognition,

we record for each object feature its distance from the object image region and its

scale. These data are plotted in Figure 4.5.2 for object features successfully matched

by the database, and for object features which were not matched. It can be seen

that, as the distance from the object region’s edge decreases and the feature scale
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Figure 4.5.1: This diagram demonstrates how a SIFT feature located inside the
object image region (green) can be dependent on the background (grey), affecting the
resultant description vector and orientation direction. This makes reliable matching
of some object features impossible since the background may be different compared
to when the feature was learned.

increases, the number of undetected features grows, supporting our hypothesis.

4.6 Future Work

There are several possible avenues for future work to build upon the general approach

presented in this chapter. First, our implementation of the feature tracking and seg-

mentation method is based on SIFT features. However, there is a wide variety of

other local image descriptors (SURF [Bay et al., 2006], PCA-SIFT [Yan Ke, 2004])

which may be used instead of, or in addition to, SIFT. Second, the feature trajec-

tory tracking aspect of our implementation can be improved by combining the ex-

pected direction of arm movement (extracted from the arm kinematics) and Bayesian

tracking [Arulampalam et al., 2002] [Bors and Pitas, 2000] of features. Third, if a

detailed 3D model of the robot gripper and arm can be built autonomously, it may

be used to better filter out arm features from snapshots.

This chapter has presented a method of learning the features of one aspect of

an object, that is, only a single perspective of the object. However, for object

recognition and localisation, the full aspect graph should be learned to be able to

recognise the object in a scene from all viewing directions. Furthermore, as each

object Stereo Feature has a 3D world position, if multiple aspects are learned then

they may be joined to form a single coherent 3D point cloud of the object. This can
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Figure 4.5.2: Plot of detected and undetected features given their pixel distance from
the object edge and the feature scale. The border distance is the number of pixels
to the nearest non-object pixel from the SIFT feature, the feature scale determines
the size of the neighbourhood used to compute the SIFT description vector.
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be used to determine the overall shape of the object, which is useful for grasping

and manipulation planning. This is presented in the next Chapter.
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Chapter 5

Object Reconstruction

5.1 Introduction

In Chapter 3 we presented a method for matching the SIFT features of a single

view of an object to a set of scene features for object recognition. In Chapter 4 we

presented a method for a robot to autonomously learn the SIFT features of a single

aspect of an object by using motion and feature tracking. In this chapter we combine

these methods to build an all-aspect appearance model of the object and reconstruct

its 3D shape. This is the next step in the overall process of a robot autonomously

learning to recognise an object, learning it’s shape and physical properties, and using

this knowledge to accomplish a task.

We present a system that combines the feature segmentation and matching meth-

ods (described in the previous two chapters) with object reconstruction techniques

to extract a complete 3D object model. The model includes the 3D shape and the

full aspect graph of SIFT features of the object. This model will enable the robot

to recognise and localise the object in a scene in different orientations. Additionally,

knowing the shape of the object allows the robot to use this model for manipulation

and grasp planning.

To build the object appearance and shape model, we switched from the stereo

camera used in the previous chapter to use a RGB-D (colour and depth) Kinect
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camera. This sensor provided much higher resolution depth information than we

could achieve with the stereo camera. The hardware platform is described in Section

5.2. The colour and depth data is combined with robot induced object motion, to

separate the object image region from the background. We then stitch together

the different views into a single coherent model. The object segmentation is based

on the method described in Chapter 4. The robot grasps an object and moves

it through the scene in a linear motion. The object is slowly rotated during the

course of the motion so that different aspects of the object are visible to the robot’s

camera. During the course of this motion, the robot tracks the scene SIFT features,

builds a trajectory of each, and periodically performs snapshots of the features that

have moved over a threshold amount. These snapshot data are used to extract an

object-view, consisting of the SIFT features and a surface point cloud of the object

as viewed from a single direction (described in Section 5.3). Multiple object-views

are extracted as the robot moves and rotates the object, viewing it from multiple

directions. The resulting views are stitched together (described in Section 5.4) to

form a single coherent model, encompassing all 360◦ of the object. The model

consists of a set of SIFT feature snapshots, covering different viewing directions and

a surface point cloud describing the shape of the object. A geometric model is fitted

to the point cloud (described in Section 5.5) to provide a compact description of

the object’s shape. This resulting object appearance model can then be used for

recognising and localising the object in a scene (described in Section 5.6). Figure

5.1.1 summarises the steps involved in the object reconstruction system.

5.2 Hardware Platform

The hardware platform for this system is similar to the one used in the previous

chapter. It consists of a six degrees of freedom robot arm mounted on a metal spine

on a table. The robot arm is equipped with a two-fingered gripper (see Section 1.3).

One of the aims of the object reconstruction system is to determine the 3D
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Figure 5.1.1: A top level overview of our object appearance and shape reconstruction
system.

shape of the object. To do this we replaced the Bumblebee2 stereo camera, used

in the previous chapter, with a Kinect RGB-D camera system (see Figure 5.2.1).

The advantage of using the Kinect over a stereo camera is that it provides accurate

real-time depth information for each pixel without needing to compute a dense

correspondence between left and right stereo images. We use the per-pixel depth

data to construct a dense point cloud of the surface of the object.

The Kinect camera features a standard RGB camera that outputs colour images

with a resolution of 640×480 pixels at a rate of 30 frames per second. Additionally,

the Kinect has a depth sensor that outputs a 640×480 pixel resolution depth image

at a rate of 30 frames per second. This depth image consists of 11-bit values for

each pixel, signifying the distance of the scene from the camera at that point. To

generate the depth image, the Kinect uses an infra-red laser projector to project a

structured grid of points onto the scene, which is then viewed through an infra-red

camera. The pattern of infra-red light is used to determine the depth of the scene

at each pixel (see Figure 5.2.2).
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Figure 5.2.1: Kinect RGB-D camera mounted on a pan-tilt servo pair. This is
located on the “neck” of the robot, allowing the Kinect sensor to look down to
observe the workspace, robot gripper, and object.

Figure 5.2.2: Top: the Kinect projects a structured pattern onto the scene in infra-
red (image courtesy of http://graphics.stanford.edu/~mdfisher/Kinect.html). Bottom: the
resulting per-pixel depth information is expressed in grey scale, darker pixels rep-
resenting areas closer to the camera. Pixels that are black have no valid depth
information (image courtesy of http://www.brekel.com/wp-content/uploads/2010/12/kinect-
3D-scanner-capture-depth.jpg).
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5.3 Generating Object-Views

In this section we extend the concept of object feature snapshots (introduced in the

previous chapter) to form an object-view. In addition to SIFT features, an object-

view also includes a dense surface point cloud of the object as viewed from a given

direction.

In Chapter 4 we presented a method for generating object SIFT feature snapshots

consisting of the features visible from a single aspect. Object features are separated

from the background by having the robot move the object through the scene and

track the resulting feature motion. The SIFT features are tracked in 3D world space

using a stereo camera. Those that follow a similar trajectory to the robot gripper

are labelled as object features.

A single snapshot provides both appearance and shape information of a single

aspect of the object. The SIFT features encapsulate the appearance information,

allowing the object to be recognised and localised in a scene by using the feature

matching approach presented in Chapter 3. The 3D positions of the snapshot SIFT

features also provide information about the shape of the object, forming a point

cloud of its surface.

The main weakness of using only the SIFT features for shape information is the

potentially sparse nature of the point cloud. Plain untextured image regions will not

produce many SIFT features [Lowe, 2004]. This results in little shape information

in untextured areas of the object. To address this problem, we replace the stereo

camera with a Kinect depth camera. The Kinect camera, in addition to a standard

RGB image, outputs a per pixel depth value. This allows the robot to construct a

dense surface point cloud of the object, independent of the object’s appearance. This

process is represented in Figure 5.3.1. In this section we describe the modifications

to the object snapshotting method introduced in Chapter 4. First we describe the

changes required to move from a stereo camera to a Kinect depth camera. We

then outline the method used to extract the object and arm surface point cloud, in
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Figure 5.3.1: The process of extracting an object-view. The object is moved through
the scene and its SIFT features are tracked in 3D world space (top left, and top
right). We then take a snapshot, separating the object and arm features from the
background. The image regions that correspond to the object and arm are extracted
by performing a flood fill over the depth image (bottom right). The resulting object-
view consist of the object’s SIFT features (blue dots in the bottom right), and the
object’s dense surface point cloud (bottom left).

addition to the SIFT features and how to separate the arm and object regions of

the point cloud. In later sections, we describe how the individual object-views are

stitched together to form a complete all-aspect object appearance and shape model.

5.3.1 RGB- Image

In Chapter 4 we presented a method using a stereo camera to determine the 3D

position of each SIFT feature by correlating features in the left and right images. In

the case of a RGB-D camera, each pixel has an associated depth value, along with

the colour RGB values. We extract the SIFT features using the RGB colour image,
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Figure 5.3.2: To find the world space position of a feature or a point on the surface
of an object, we take the distance d associated with the feature’s pixel and project
a ray out of the camera’s image plane into the scene. The end-point of the ray
corresponds to the 3D world space position of the feature.

and to find the 3D positions we use the depth values of the pixels on which the

features are centered. We project a ray out of the camera’s image plane a distance

indicated by the pixel’s depth value. The resulting point is the 3D world position

of the feature. This is illustrated in Figure 5.3.2.

5.3.2 Arm and Object Surface Point Cloud

As the robot moves the object through the scene, it periodically performs feature

snapshots. This consists of features that have moved more than a threshold distance

and follow a similar trajectory to the arm end point. These features correspond to

the held object and robot arm. This process was presented in detail in the previous

chapter. We now use the dense depth information provided by an RGB-D sensor to

perform further processing and extract the arm and object surface point clouds for

each snapshot.

When a snapshot is obtained, we use the SIFT features as seed points for region

growing segmentation to extract the arm and object surface point cloud. To do this

we make use of the following assumptions:

• the snapshot SIFT features are located on the robot arm or target object’s

surface;
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• the surface of the viewed aspect of the robot arm and target object is mostly

continuous and smooth;

• no background objects or surfaces are in contact with the target object or arm.

We use the snapshot scene depth image to segment the object and arm image regions

from the background. This is done by performing an eight-neighbour flood fill

starting at every snapshot SIFT feature. The flood fill is performed over the depth

image, with a neighbouring pixel being filled if its depth value is within a small

threshold distance of the current pixel. We used a threshold of 0.5cm, this is equal

to the 95th percentile precision of the Kinect RGB-D sensor1. All pixels that are

filled are then labelled as arm/object pixels. These pixels, with their associated

depth values, form a surface point cloud of the arm and object. This process is

summarised in Algorithm 5.1 and Figure 5.3.3. The result of this process is a set of

SIFT features and a surface point cloud of the robot arm and the held object. The

next step is to separate the object and arm features and surface points.

5.3.3 Arm and Object Segmentation

The next step is to separate the arm and object point cloud regions, as well as the

SIFT features. This is done in a similar way to separating snapshotted arm and

object SIFT features in Chapter 4. First, the appearance and shape model of the

robot arm and gripper is learned as an initialisation stage. This is done by having

the robot move its arm, without holding an object, through the scene. The gripper

is slowly rotated 360◦ through the course of the linear movement. Periodically,

snapshots of arm features are taken. In addition to snapshotting the arm features,

the arm surface point cloud is also extracted for each snapshot (using the approach

described in the previous section). Since the robot is not holding an object, the

filled region corresponds to the robot arm. The full set of these views, generated

through the course of the entire movement routine as the gripper is rotated through
1http://www.ros.org/wiki/openni_kinect/kinect_accuracy
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Figure 5.3.3: To find the robot arm and held object image regions (bottom in red)
and associated surface point cloud, we perform seeded region growing. The snapshot
SIFT features (top left in blue) are the seeds, and the region growing is performed
over the depth image (top right).
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Algorithm 5.1 Arm and Object Region Growing.
input: snapshot features → S
input: snapshot depth image → D

labelled_pixels← {}
forall s in S

p← pixelPosition(s)
floodF ill(p)

endfor
function floodFill (input: pixel p)

labelled_pixels← labelled_pixels ∪ {p}
N ← getEightNeighbourP ixels(p,D)
p_depth← getDepth(p)
forall n in N

n_depth← getDepth(p)
if |p_depth− n_depth| ≤ 0.5cm then

floodF ill(n)
endif

endfor
endfunction
output: arm and object image region pixels ← labelled_pixels

the full 360◦, forms the arm appearance and shape model.

Once the arm model is learned we can use it to separate the arm and object

image regions and SIFT features in a snapshot. First, we find the pose of the arm in

the snapshot image scene. To do this we match every learned arm snapshot to the

features of an object-view using the method presented in Chapter 3. For the best

matching arm snapshot (with the highest number of feature matches) we find the

aligning transform between the snapshot and the object-view. The method to find

this transform is presented in the next section (Section 5.3.4). We use the aligning

transform to overlay the learned arm surface points of the arm snapshot over the

object-view. All object-view surface points and SIFT features that are within a

small threshold distance of an overlayed arm surface point are labelled as belonging

to the arm.

The final result is a set of views of the different aspects of the object. Each

object-view is composed of the object SIFT features, the object surface point cloud,

the robot arm SIFT features, and the robot arm surface point cloud. The next step
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is to stitch these views together into a single coherent model. This is presented in

Section 5.4.

5.3.4 Aligning Corresponding 3D Points

A common task that is performed at several stages of object reconstruction, as well as

recognition and localisation, is finding a transform to align two sets of corresponding

points. For example, when arm snapshot SIFT features are matched to the object-

view features we need to align the arm snapshot features with the matching snapshot

features to determine the arm’s pose.

First let us define the specific problem. Let there be a set of corresponding

3D point pairs P = {(a0, b0), . . . , (an, bn)}, where each ai and bi are triples of the

form (x, y, z). The goal is to find a rigid transform that aligns the points a with

the corresponding points b. A rigid transform is defined in this case as a rotation

followed by a translation (a 3 × 3 matrix R, and 3D vector t, respectively). An

aligning transform should minimise an error over the corresponding point pairs.

The error function is defined as the sum of square distances between transformed

points a and their corresponding points b:

Transform = argmin
R,t

error(R, t) (5.3.1)

error(R, t) =
n∑

i=0
|(Rai + t)− bi|2 (5.3.2)

Finding the transform that minimises this error is a least-squares fitting problem

of a system of linear equations, and can be solved in several ways

[Rusinkiewicz and Levoy, 2001] [Spoor and Veldpaus, 1980]. We use Singular Value

Decomposition[Golub and Reinsch, 1970] to solve this linear system. This is done

by first finding the rotation matrix R by solving the following least squares problem:
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min
R
‖RA−B‖

where A = [a0 − ā, . . . , an − ā] and B = [b0 − b̄, . . . , bn − b̄], ā = 1
n

n∑
i=0
ai and

b̄ = 1
n

n∑
i=0
bi. We compute the Singular Value Decomposition of the matrix C = BAT

such that U ∑V T = C, where U and V are orthogonal matrices, and∑ is a diagonal

matrix. We then compute the rotation matrix R = UDV T where D is a diagonal

3×3 matrix such that its top left and middle elements are 1, and its bottom right is

det(UV T ). Finally, we compute the translation vector t = b̄ − Rā, which, together

with the rotation matrix R, gives us the full rigid body transformation to align the

two sets of corresponding points. More details on this method can be found in work

by Söderkvist et al [Soderkvist and Wedin, 1993].

5.4 Object-View Stitching

To form a complete object model we need to align the separate object-views so

that their relative poses match their alignment on the physical object. There has

been a lot of work in this area, stitching together views for object reconstruction

[Rusinkiewicz and O. Hall-Holt, 2002] [Izadi et al., 2011] as well as for building en-

vironment maps for robot navigation [Surmann et al., 2003]. In our approach we

use both the SIFT features and surface point cloud information of each object-view

to determine its relative pose. We use the SIFT features to find an approximate

transform for an object-view to align it with the already processed views. This is fol-

lowed by using the surface point cloud and the Iterative Closest Point (ICP) method

(described in Section 5.4.1) to further refine the transform. Figure 5.4.1 shows a

simple example of stitching together multiple independent snapshots to reconstruct

the overall object shape.

Let the list of extracted object-views be defined as V = {v0, v1, . . . , vn}. Each

view v ∈ V is composed of a list of object SIFT features, arm SIFT features, object
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Figure 5.4.1: A simple 2D example of stitching together multiple snapshots (top) of
an object. The snapshots are aligned one by one (middle) to finally reconstruct the
complete model (bottom).

surface points, and arm surface points. The aim is to find a list of rigid transform

T = {t0, t1, . . . , tn}, one per view, such that the transformed views are aligned

relative to each other according to the shape of the object.

First, we initialise the list of aligned object-views to contain only the first view

(v0). We align the remainder of the views relative to the first view. We then initialise

a point cloud to contain the arm and object surface points of the first view. The

next step is to iterate through the remaining object-views and align each one relative

to the previously aligned views.

To align an object-view, we match its SIFT features to the SIFT features of every

aligned object-view, using the method presented in Chapter 3. We take the match

with the highest number of feature matches and use it to generate an alignment

transform (using the method presented in Section 5.3.4). This transform is then

applied to the current object-view by transforming all of its surface points (arm and

object) and all of its SIFT features (arm and object).

The next step is to use the object-view’s surface points to refine the alignment.

This is done by using ICP to line up the object-view’s surface points with the

surface points of all of the already aligned object-views. This refined transform is

then applied to the object-view and it is inserted into the list of aligned views. These

steps are summarised in Algorithm 5.2.
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Algorithm 5.2 Aligning Views Algorithm Overview
input: list of object-views → V

alignedV iews← {v0}
allPoints← objectPoints(v0) ∪ armPoints(v0)
forall v in V

bestMatch← findBestSIFTMatch(alignedV iews)
approxTransform← findTransform(bestMatch)
v ← applyTransform(v, approxTransform)
viewPoints← objectPoints(v) ∪ armPoints(v)
refinedTransform← performICP (viewPoints, allPoints)
a← applyTransform(v, refinedTransform)
alignedV iews← alignedV iews ∪ {a}
allPoints← allPoints ∪ objectPoints(v) ∪ armPoints(v)

endfor
output: list of aligned object-views ← alignedV iews

The set of aligned object-views forms the basis for the object model. The re-

maining step is to fit a geometric model to the surface point cloud. This is presented

in Section 5.5.

5.4.1 Iterative Closest Point

Iterative closest point (ICP) [Besl and McKay, 1992] is a method to align two point

clouds that have a subset of points describing a common surface. It is used to find the

transformation of a point cloud such that the distance to the corresponding points

of the other point cloud is minimised. Example applications of this method include

reconstructing object shapes from several individual scans [Krainin et al., 2011b]

[Rusinkiewicz and O. Hall-Holt, 2002] and motion estimation for mobile robots

[Milella and Siegwart, 2006].

Let us define two points clouds, A and B. The ICP algorithm involves the fol-

lowing sequence of steps:

1. determine a correspondence between points in A and B using a nearest neigh-

bour criterion;

2. find a rigid transformation (rotation and translation) for the points in A to
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minimise the square distance to the corresponding points in B;

3. apply the transformation to the points in A;

4. repeat the process (by finding new correspondences, etc).

A simple representation of the ICP process is shown in Figure 5.4.2. The ICP

algorithm works best when the approximate relative pose between the two point

clouds is known. In our case this is achieved by first aligning the object-views based

on the SIFT features, which provides a good initial alignment. We then use the

PCL point cloud library2 to implement the ICP method. This library takes as input

two point clouds, in the form of a list of 3D points, and outputs a rigid transform

that best aligns the first point cloud with the second. This library uses a point to

point nearest neighbour approach for building a correspondence and uses SVD for

finding the alignment transform for a given correspondence. When using the ICP

library method, we set the maximum iterations of the ICP method to 20 and the

RANSAC outlier threshold to 2cm. These parameters were chosen ad hoc, but were

experimentally verified to give good results with the objects used. The final output

of the ICP stage is a refined transform between the object-view point cloud and the

current object point cloud.

5.4.2 Loop Closure and Error Accumulation

In the previous section we presented a method for stitching together individual views

of an object to align them relative to each other. Each view is aligned relative to the

already aligned views. However, each alignment will inevitably result in some error

due to sensor noise and incorrectly classified surface points. These errors accumulate

over time, until the final object-views are not aligned properly relative to the initial

object-views.

A related problem of loop closure arises when the robot observes an object view

that was previously seen a long time ago. This happens when the robot has rotated
2http://pointclouds.org/
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Figure 5.4.2: An example of two iterations of the ICP method on point clouds
represented by a green and black curve. First, a correspondence is found between
points in the two clouds, then an error minimising transform is found using these
point pairs. This process is repeated multiple times, finding new correspondences
and transforms, and converges to the best alignment transform between the point
clouds.

the object in its hand the full 360◦. The problem is deciding whether the robot has

seen the object-view previously, and in correlating features between the object views

separated by a large time difference. This problem is of particular importance in

mobile robotics and Simultaneous Localisation and Mapping (SLAM) [Thrun, 2008],

but is also important in 3D object reconstruction [Krainin et al., 2011b].

In our system, we do not specifically address these issues. We have found that by

aligning each object-view relative to the point cloud of all of the already aligned views

(as opposed to only the single previously aligned view) reduced the accumulated

stitching errors to a negligible amount for our purposes. However, future versions of

this system should address this issue by incorporating existing methods. We discuss

this further in the conclusion (Section 5.7).

5.4.3 Handling Gripper Occlusion

The robot extracts object-views by moving the target object through the scene

in a linear motion while rotating it along one axis (using the wrist joint). As a

result, the robot is not able to observe all areas of the object’s surface. Some areas
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Figure 5.4.3: The robot holding the cylinder object in two different orientations
and positions. The robot performs the object-view extraction and aligning process
with both, to create two models which are then combined into one. By doing this
the robot can compensate for blind spots in the individual model caused by gripper
occlusion.

are hidden by the robot gripper, while some are not observed due to the single-

axis rotation. To address this problem, the robot performs two separate passes for

reconstructing the object, holding the object in a different grasp each time. We

perform the entire object reconstruction procedure, described in this chapter, twice

on the same object with different grasps. Figure 5.4.3 shows the robot grasping

the object differently in the two reconstruction passes. This generates two separate

object-view sets and surface point clouds. We then take these two independent

object models and combine them into one by finding a transform that aligns the

two object models together. We do this by first using SIFT features to match every

object-view from one model to the other, using the method described in Chapter

3. The match that has the largest number of feature match pairs is then used

to generate an approximate transform using the method described in Section 5.3.4.

After the two object models are aligned using SIFT features, we perform an ICP pass

to align the two separate surface point clouds of the object models. At the conclusion

of this, the two object models are merged by combining the lists of object-views and

the surface point clouds. In this way, we are able to build a model of an object that

includes all of the object’s surface and aspects.

127



Figure 5.4.4: The box object (top left) and different views of the reconstructed
surface point cloud.

5.4.4 Results

To test the object-view stitching method, we used three different objects. The first

object is a box with highly textured sides and dimensions 5.5cm× 8.4cm× 11.9cm.

The second object is a cylinder, also with highly textured sides, of height 13cm and

diameter 6cm. The final object is a toy truck 25cm long, 12cm wide, and with a

maximum height of 12cm. The truck has a small box attached on the back to enable

the robot gripper to securely grasp the object. The majority of the body of the truck

is not textured and composed of only two colours.

The robot performed the object reconstruction method described in this chapter

on each of these objects, extracting the object-views and stitching them together to

form a coherent model. The surface point clouds of the reconstructed models of the

different objects are shown in Figure 5.4.4 (box), Figure 5.4.5 (cylinder), and Figure

5.4.6 (truck). It can be seen that the point clouds for all three objects closely match

the shape of each object, indicating that the object-views were stitched together

correctly.
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Figure 5.4.5: The cylinder object (top left) and different views of the reconstructed
surface point cloud.

Figure 5.4.6: The truck object (top left) and different views of the reconstructed
surface point cloud.
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5.5 Shape Fitting

A dense surface point cloud contains a large amount of information about the shape

of an object. However, a more compact shape representation is more suitable for

some applications (eg: collision detection). For this reason we fit a geometric model

to the point cloud. The complexity and type of geometric model can vary greatly,

depending on the class of shapes that needs to be represented and the application

domain. For example, a very simple geometric model is a sphere. However, this is

a very restrictive model that is only able to accurately represent a single shape. At

the other end of the spectrum, a triangular mesh can be fitted to a point cloud. A

triangular mesh can represent arbitrary 3D shapes but has the disadvantage that

fitting a mesh to a point cloud is more complex than fitting a simpler model (eg: a

sphere). Other tasks, such as collision detection, are also more complex to perform

on a triangular mesh.

Our approach uses a super-ellipsoid to model an object’s shape. Super-ellipsoids

are a subclass of super-quadrics and are popular for representing basic shapes in

computer graphics [Barr, 1981]. The surface of a super-ellipsoid is defined as all

points (x, y, z) that satisfy the following equation:

F (x, y, z) ≡
( x
A

) 2
e2 +

(
y

B

) 2
e2


e2
e1

+
(
z

C

) 2
e1 = 1 (5.5.1)

The internal volume of the super-ellipsoid is defined as all points such that

F (x, y, z) ≤ 1. There are five parameters that define the shape and size of a super-

ellipsoid. These are A, B, C, e1, and e2. The parameters A, B and C define the

extents of the shape in the x, y, and z dimensions, respectively. The parameters e1

and e2 define the general shape of the surface, Figure 5.5.1 shows several example

super-ellipsoid shapes.
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Figure 5.5.1: Example shapes that can be represented by the parametric super-
ellipse geometric model.

5.5.1 Model Fitting Method

To fit a super-ellipse model to the object’s surface point cloud we find a set of

parameters that minimises the distance between the model surface and the point

cloud’s points. The total number of parameters of the geometric model is 12. Five of

these parameters determine the super-ellipsoid shape and seven determine the point

cloud alignment transform. The transform parameters consist of four describing a

rotation transform (in the form of quaternions) and three describing a translation.

The purpose of the transform is to align the point cloud with the super-ellipsoid.

The next step is to formulate the objective function. Let the point cloud points be

the set {p0, p1, . . . , pn}, where each point is a 3D world position pi = (xi, yi, zi). The

objective function is defined as the average radial distance between the transformed

point cloud and the surface of the super-ellipsoid. For calculating the distance

between the super-ellipsoid surface (defined by the parameters {A,B,C, e1, e2}) and

a point (x, y, z) we use the following radial distance function [Zhang et al., 2002]

[Zhang, 2003]:
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RadialDist(x, y, z) =
√
x2 + y2 + z2 ·

∣∣∣1− F−e1/2 (x,y, z)
∣∣∣ , (5.5.2)

where the function F is defined in the equation 5.5.1. The overall objective error

function of a super-ellipsoid shape and transform is defined as:

error = 1
n

n∑
i=0
RadialDist (M(pi + T )) , (5.5.3)

where M is the rotation matrix (derived from the quaternion parameters of the

transform) and T is the translation vector component of the point cloud transform.

The next step is to find the 12 parameters (which determine transform and super-

ellipsoid shape) that minimise this error function. There are many different methods

[Bertsekas and Bertsekas, 1999] [Kelley, 1999] that can be used to do this. For ease

of implementation we used a Random Restart Nelder-Mead optimisation method,

performing ten restarts of five hundred iterations each. We determined these pa-

rameters by experimenting with different values on the cylinder object, choosing

the number of iterations such that a fit was produced consistently over several trial

runs. These parameters may not be suitable for objects and environments other

than our test environment. However, as our aim was to show the overall feasibility

of reconstructing the 3D shape of an object using data obtain by a robot, we do not

view this as a fundamental problem.

On completion, the twelve parameters that yield the lowest objective error func-

tion across the point cloud is taken as the final super-ellipsoid geometric model of

the object.

5.5.2 Results

We performed the super-ellipsoid fitting method on the box and cylinder objects.

The box object point cloud resulted in a super-ellipsoid with the following param-

eters: e1 : 0.11, e2 : 0.22, A : 6.09, B : 4.41, C : 2.93. The super-ellipsoid fitted

to the cylinder object had the following parameters: e1 : 0.19, e2 : 0.96, A : 6.64,
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Figure 5.5.2: The super-quadric shapes fitted to the box (left) and cylinder (right)
surface point clouds.

B : 3.46, C : 3.38. The fitted shapes are shown in Figure 5.5.2. These geometric

models closely correspond to the true shapes of the corresponding objects.

5.6 Object Recognition and Localisation

One of the main uses of the reconstructed object model is to allow the robot to

recognise and localise the object in a scene. The model consists of a set of object-

views, a surface point cloud, and a fitted geometric model. The scene, as observed

by the Kinect sensor, is taken to consist of a set of SIFT features (each with an

associated 3D world space position) and a point cloud. We use the SIFT feature

and point cloud data of the model to recognise the target object and, if it is present

in the scene, determine its position and orientation.

Our approach is to first use the SIFT features of the object-views to recognise

the object and find its approximate pose, followed by using the object’s surface point

cloud to refine the pose estimate using ICP. The object transform calculated from

the SIFT feature matches provides a good initial guess for the ICP alignment stage.

The ICP refinement stage is then able to use a greater amount of surface information

(from the dense surface point cloud) to calculate a more accurate object pose.
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First, we try to match every object-view to the scene based on SIFT features,

using the matching method presented in Chapter 3. We take the object-view with

the highest number of features that match the scene features as the best candidate

view. If the best candidate view has less than four matching features, we use that

as a signal that the object is not present in the scene.

The result of the feature match between the best candidate object-view and the

scene is a set of feature match pairs, each pair consisting of an object feature and a

corresponding scene feature. Each object feature has a 3D position in object space,

and each scene feature has a 3D position in world space. The next step is to find an

object transform T (consisting of a 3× 3 rotation matrix and a translation vector)

such that the distance between the transformed object feature and the corresponding

scene feature is minimised. This is done using the Singular Value Decomposition

method described in Section 5.3.4.

Next, we use this transform as an initial approximation for the object’s pose for

a refinement stage using ICP. We apply the transform to all of the surface points of

the object, and perform an ICP alignment between the scene point cloud and the

surface point cloud. The final output is the transform describing the pose of the

object in the scene.

5.6.1 Results

To test the recognition and localisation performance of the reconstructed object

models we carried out a series of tests. Each test involved placing the target object

in the scene in one of six positions and in one of three orientations (each of which

corresponds to a different aspect facing the camera). Each test is carried out three

times, for a total of 54 iterations per object. Furthermore, these tests are carried out

both with and without the ICP refinement stage. For each test we record the position

error of the object and the angular error of the orientation. The average errors

are presented for each aspect facing the camera. Figure 5.6.1 shows an example
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Figure 5.6.1: The test object (in this case the box object) is placed in the scene
at a predefined position and orientation. The robot localises the object using SIFT
feature matching and ICP refinement.

experimental set up for the box object.

The results for the box and cylinder objects are presented in Tables 5.1 and 5.2

respectively. With the truck, we only used two orientations for testings, with wheels

on the table, and with the truck on its back. These results are presented in Table

5.3.

It can be seen that the accuracy of the object localisation is high for the box and

cylinder objects, with a clear improvement when ICP is used for refinement. With

the truck object, however, accuracy is very poor. We discuss the reasons for this in

the next section.
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Box Pose Estimate Errors
SIFT Only SIFT+ICP

Position Err. Orientation Err. Position Err. Orientation Err.
Aspect 1 1.35cm (0.08) 1.32◦ (0.43) 0.82cm (0.19) 0.99◦ (0.38)
Aspect 2 2.09cm (0.31) 1.39◦ (0.56) 1.00cm (0.18) 1.58◦ (0.44)
Aspect 3 1.96cm (0.38) 7.66◦ (2.58) 0.87cm (0.14) 1.44◦ (0.39)

Table 5.1: The average position and orientation errors of localising the box object
in a scene. This is done for three different aspects of the box facing the camera.
Localisation is performed using only SIFT features, and using SIFT features followed
by Iterative Closest Point (ICP) refinement. The 95% confidence interval is given
in parentheses in the same units as the error value.

Cylinder Pose Estimate Errors
SIFT Only SIFT+ICP

Position Err. Orientation Err. Position Err. Orientation Err.
Aspect 1 2.32cm (0.54) 7.44◦ (6.70) 0.83cm (0.22) 2.57◦ (2.46)
Aspect 2 1.09cm (0.35) 5.50◦ (1.77) 0.86cm (0.21) 2.11◦ (0.80)
Aspect 3 2.63cm (0.34) 7.73◦ (4.58) 0.69cm (0.19) 3.09◦ (1.14)

Table 5.2: The average position and orientation errors of localising the cylinder
object in a scene. This is done for three different aspects of the cylinder facing
the camera. Localisation is performed using only SIFT features, and using SIFT
features followed by Iterative Closest Point (ICP) refinement. The 95% confidence
interval is given in parentheses in the same units as the error value.

Truck Pose Estimate Errors
SIFT Only SIFT+ICP

Position Err. Orientation Err. Position Err. Orientation Err.
Aspect 1 7.11cm (3.38) 17.87◦ (11.00) 4.72cm (2.55) 14.61◦ (8.99)
Aspect 2 11.11cm (2.77) 30.65◦ (12.94) 6.82cm (2.32) 30.88◦ (12.71)

Table 5.3: The average position and orientation errors of localising the truck object
in a scene. This is done for two different aspects of the box facing the camera.
Localisation is performed using only SIFT features, and using SIFT features followed
by Iterative Closest Point (ICP) refinement. The 95% confidence interval is given
in parentheses in the same units as the error value.
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5.7 Conclusion and Future Work

We have presented an object reconstruction system building on the feature matching

and segmentation methods introduced in Chapter 3 and Chapter 4. This system

enables a robot to autonomously learn an all aspect appearance and shape model

of an object in a complex environment. This model is then used to recognise and

localise the object in a scene.

However, there are some issues with the approach and areas that can be im-

proved in future work. First, the object recognition and localisation performance

for the truck was very poor. This is in contrast to the good performance for the box

and cylinder objects. This poor performance is due to the way light interacts with

the truck. The truck is largely composed of flat, single coloured facets that produce

specular reflections. This means that the apparent colour of a given facet is strongly

dependent on the intensity and angle of incidence of the light (example shown in Fig-

ure 5.7.1). The relative colour/brightness of adjacent facets is also strongly affected

by the relative light position. As a result the appearance of the truck in the camera

image changes significantly depending on the lighting conditions. This in turn means

that the SIFT features (which are calculated based on small image neighbourhoods)

of the learned model can differ greatly compared to the features of the truck placed

in the scene, resulting in poor recognition and localisation performance. A further

problem is caused by the fact that a single image of the truck has many similar SIFT

features. This is because there is very little difference in the local appearance of the

different corners and edges of the flat facets of the truck. The box and cylinder, on

the other hand, have diffuse surfaces that have coloured patterns and textures. In

this case, the appearance of the object in the camera image is less dependent on the

relative light position, which results in similar SIFT features between the learned

model and a test scene image. This problem may be overcome using a different local

image feature algorithms (eg: SURF [Bay et al., 2006]), a mixture of different types

of features, or by learning the appearance of the objects in several different lighting
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Figure 5.7.1: With flat coloured specular surfaces, the image colour depends strongly
on the scene lighting. As the lighting changes, the object’s local appearance can
change significantly. This is shown in the above pair of images, with different light
positions in the left and right images.

conditions.

A further area for improvement is how the robot observes the different aspects

of the object during object-view acquisition. Currently, the object is moved in a

linear motion while being rotated around a single axis. This motion is repeated

with the object grasped in an orthogonal grasp for the robot to observe the areas

of the object occluded by the gripper. The two separate models are then merged.

One of the problems of this approach is that the directions from which the object

is observed are not uniformly distributed, with some aspects of the object having

less coverage than others. This potentially reduces the feature matching accuracy,

and subsequently the object localisation accuracy, if the object is observed from

an angle that was not covered during learning. A solution to this problem is to

keep track of the aspects of the object which have been learned and to dynamically

choose which aspects to observe, also taking into account occlusions by the robot

arm [Krainin et al., 2011b] [Scott et al., 2003].
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The third issue is our use of a relatively simple geometric model for fitting to the

object’s surface point cloud. We use a super-ellipsoid parametric model, which can

represent a narrow class of shapes. In the future this should be improved by fitting

a more general geometric model, such as a triangular mesh, to the point cloud. This

would allow a wider variety of shapes to be represented.

Finally, we have not rigorously addressed the issue of loop closure (Section 5.4.2)

when stitching together the different object-views. Loop closure refers to the prob-

lem of handling accumulated errors as the adjacent object-views are stitched to-

gether, which results in a potentially large final error. We found that in our case the

accumulated errors were not large enough to be noticeable. However, it is possible

that with different objects it can be a problem. There are many existing approaches

for loop closure for stitching together different views and point clouds [Pulli, 1999]

[Weise et al., 2009] [Huber and Hebert, 2003], involving for example global graph

optimisation methods, and should be considered for future versions of this system.

In this chapter we have demonstrated that the methods introduced in Chapter

3 and Chapter 4 can be used to build a system for a robot to autonomously learn

an all-aspect appearance and shape model of a previously unknown object. The

next step is for the robot to learn the physical properties of an object. Knowing

shape and appearance is not sufficient to reliably manipulate and use the object to

complete a task. The object may have some physical or internal properties that

affect its behaviour, properties which cannot be determined by passive observation

(eg: centre of mass). In this case, the robot must actively interact with the object,

performing experiments to build an object model of these properties. This problem

is addressed in the next chapter.
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Chapter 6

Discovery of Object Properties

6.1 Introduction

The previous chapters dealt with the task of a robot learning to recognise a new

object and determining its 3D shape. However, to effectively manipulate and use an

object, knowing the shape and appearance is not always sufficient. The robot needs

an internal model of the object which, in addition to representing the visual appear-

ance and shape of the object, also represents other physical properties. Examples of

physical properties include the coefficient of friction of the object’s surface, the cen-

tre of mass and the weight of the object, whether the object is rigid or articulated,

etc. Having an accurate model of such properties can allow the robot to effectively

manipulate and use the object to accomplish a task.

To determine some physical properties, passive observation with a robot’s sensors

(such as a camera) may not be possible. Instead, we present a method in which the

robot performs some experiments on an object and the outcome of these interactions

provides information as to the underlying physical properties.

For example, take the task of finding the centre of mass of an object. The centre

of mass depends on the internal composition of the object and cannot be determined

by a robot using vision alone. Instead, the robot can take the object and drop it

onto a flat surface from various starting orientations. The resulting orientation of
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the object, after each drop, provides the robot with information about the location

of the centre of mass. However, these physical experiments are expensive, in terms

of time and wear and tear. Ideally, the number of actions performed should be

minimised, by performing the most informative experiments.

Our approach involves using a physics simulator to generate hypotheses about

the object’s properties and predictions of the outcome of an action on a simulated

model of the object. We can then match the outcome of a real world action to the

simulated outcomes to determine which hypothesis most accurately describes the

real world object. The simulated outcomes can also be used to determine the most

informative action that will minimise the total number of actions the robot must

perform to reliably determine the object’s physical properties. This is one of the key

contributions of our work, as it allows a robot to learn the properties of an object

more effectively than performing uninformed random actions. Figure 6.1.1 shows a

simple representation of the hypothesise-simulate-perform loop of our method. The

final result is a simulated model that accurately describes the physical properties of

the real object. This simulated model can then be used to predict the outcome of

an action on the object or plan tool use tasks using the object.

The idea of internally generating hypotheses that are then checked for consis-

tency with real world experiments has previously been applied in biology to discover

metabolic pathways in yeast [King et al., 2004]. The use of internal simulation to

make predictions of action consequences and hypotheses about the world has paral-

lels with cognitive theory of the mind [Hesslow, 2002].

We present a description of our general approach (Section 6.2), followed by sev-

eral experiments in which the robot learns the physical properties of an object by

performing various actions (Section 6.3). Next we demonstrate a tool use task in

which the robot uses the learned physical properties to plan and achieve a set goal

(Section 6.4). The chapter concludes with a discussion of the results (Section 6.5)

and possible avenues for future work (Section 6.6).
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Figure 6.1.1: The experiment loop view of our system. The robot uses a physics
simulator to make hypotheses about the outcome of actions on an object and uses
this to determine the most informative action. This action is then carried out by
the robot on the real world object, the result of which is then used to update the
probability distribution over hypothesis models. This process is repeated several
times to determine the most accurate model of the object.

6.2 Active Robot Learning Framework

6.2.1 Problem Definition

The problem we solve is how can a robot best determine the underlying physical

properties of an object by performing some actions and observing the outcomes.

First we define the problem. Let there be an object that the robot can localise in a

scene using the method from Chapter 5. The 3D shape of this object has also been

determined using the previously presented method. The goal is to find a model, M ,

that accurately describes the physical properties of this object.

The problem definition requires the following:

• a pre-defined list of possible models H = {h1, h2, . . . , hn} that can describe

the object;

• a discrete probability distribution C = {c1, c2, . . . , cn} | ci = P (M = hi) rep-

resenting the confidence of a corresponding model matching the object;

• a set of actions A = {a1, a2, . . . , am} that can be carried out by the robot;

• a set of possible action outcomes R = {r1, r2, . . . , rl}, where the result of each

action a ∈ A is some r ∈ R.
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The goal is to determine the model h ∈ H that most accurately describes the object,

such that M = h. To do this, the robot repeatedly performs actions a ∈ A on the

real object, observes the results r ∈ R, and updates the confidence distribution C.

After several iterations, the model hx with the highest corresponding confidence cx

is taken to be the model that best describes the object (M = hx).

6.2.2 Overview

To learn the object model, the robot must have a representation of each candidate

model, determine the best actions to perform and update the probability distribution

over the possible models, using the outcome result of an action. In this section, we

describe our general object model learning method, which addresses these challenges.

Further on in this chapter we present some concrete implementations, demonstrating

the effectiveness and suitability of our approach to a variety of problems.

The learning algorithm consists of several distinct steps:

1. building a probability model of all of the available actions and results (de-

scribed in Section 6.2.4).

2. generating a discrete set of possible result labels R (described in Section 6.2.5).

3. the experimentation loop:

(a) determine the most informative action, based on the current confidence

distribution and action probability models (described in Section 6.2.6),

(b) perform the best action,

(c) update the confidence distribution using the result.

4. the model with the highest confidence is returned as the best model M .

These steps are outlined in a flowchart in Figure 6.2.1 and in further detail in

Algorithm 6.1

144



Figure 6.2.1: Flowchart of the object model learning system.
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Algorithm 6.1 Object model learning algorithm.
input: set of actions → A
input: set of possible models → H

Ccurrent ←
{

1
|H|

}
buildActionModels(A,H)
R← buildResultLabels(A,H)
repeat

abest ← mostInformativeFrom(A,Ccurrent)
world_state← performAction(abest)
r ← classifyToResultLabel(world_state, R)
Cnew ← updateModelConfidence(Ccurrent, r)
Ccurrent ← Cnew

until max_iterations
highest_confidence← 0
forall hi in H

if ci > highest_confidence then
highest_confidence← ci

M ← hi

endif
endfor
output: most accurate object model ←M

6.2.3 Object Model Representation

The object model refers to the robot’s internal representation of an object. A par-

ticular model determines the different properties that can be represented, as well as

being used to predict the outcomes of the robot actions. There are many different

representations that can be used for the object model, depending on the particular

application domain in which the model will be used, and the properties of the object

that are required in the model. The nature of the object model representation will

also affect how it can be used for planning and prediction.

The representation can be very low level. For example, a mapping between motor

input commands and the resulting change in pixel values in the camera image due to

the object being moved [Sinapov and Stoytchev, 2007]. An example of a higher level

feature is the motion vector of an object when it is bumped by the robot manipulator

from some direction [Fitzpatrick et al., 2003]. However, this type of low level explicit
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representation generalises poorly for different circumstances. For example, in the

case of learning the movement vector after a bump from some direction, if the model

is learned on a flat surface it would perform poorly if the object was located on a

sloped surface. To overcome these limitations, our method uses a physics simulator

to model an object.

There are several advantages to this approach. First, many laws of physics are

encoded in the simulated environment. The robot does not need to learn from

scratch concepts such as gravity or friction.

Second, a variety of object properties can be represented, depending on the

sophistication of the physics simulator. This includes properties such as weight,

centre of mass, coefficient of friction, hinges and axles, etc.

Third, the physics engine can be used to carry out simulated actions on an object

model to build a posterior distribution over results for each action, to generate

hypotheses about the object’s underlying properties, and decide on which actions it

should carry out in the real world to efficiently determine an accurate model for the

object. We elaborate on this in Section 6.2.4.

Finally, a physics engine model can be used to predict the outcome of an action

in many different scenarios, even if the environment differs from the one in which the

object model was learned. For example, the robot may learn the centre of mass of a

box by dropping it onto a flat surface and observing the results. This learned model

can later be used for accurately predicting how the box will land if it is dropped

onto a sloped surface.

6.2.4 Action Probability Model

The action probability model refers to the likelihood of observing a particular result

when performing an action on an object with properties matching a specific model.

To determine the model that most accurately describes the object, the robot

performs a series of actions. The type of motion and manipulation involved in each
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action will depend largely on the nature of the object, the physical properties of

interest, and the methods of manipulation available to the robot. However, the

overall structure of the action probability model and how it fits into the overall

framework remains the same.

When the robot performs an action a ∈ A, the outcome is some world state

that can be labelled r ∈ R, where R is a discrete and finite set of possible results.

How we generate a discrete result label for a continuous world state is described

in the following section. Using this outcome, we can use Bayesian inference to

update the probability distribution, C, over the possible models. Bayesian inference

[Box and Tiao, 1973] is the application of Bayes rule to calculate the change in a

belief distribution due to newly acquired evidence. This is expressed as:

P (B|E) = P (E|B) · P (B)
P (E) (6.2.1)

where P (B|E) is the posterior probability (the confidence of belief B being

true given the new evidence E), P (B) is the prior probability (the certainty of B

being true before the observation was made), P (E) is the probability of observing

evidence E independent of B, and P (E|B) is the probability of observing evidence

E, if B is known to be true. In the context of our system, after performing action

a and observing result r, using this formula, the robot can update the probability

distribution C as follows:

∀ci ∈ C : cnew
i ← P (r|hi, a) · cold

i

P (r|a) (6.2.2)

where P (r|hi, a) is the probability of observing the result r when performing ac-

tion a on an object whose model matches hi, P (r|a) is the probability of observing

result r independent of the object model when performing action a, cold
i is the prior
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confidence level P (hi), and cnew
i is the updated posterior confidence. This update fol-

lows from the fact that the probability distribution C is our confidence that a model

corresponds to the object. That is, cold
i = Pprior (hi) and cnew

i = Pposterior(hi|r, a).

To perform this update, we must first determine the values of the terms P (r|hi, a)

and P (r|a) for an action a. We must calculate the probability P (r|hi, a) of observing

a result, r, when an action is performed on an object described by a particular model,

and the probability P (r|a) of a result when the action is performed independent of

the object’s model.

The naive method is to have the robot determine the result probabilities by

performing every action a ∈ A on every possible object with model h ∈ H multiple

times. However, this would be time consuming, depending on the size of A and H.

Due to the noise and errors in manipulation and perception, each action must be

performed several times to determine the underlying result probability distribution.

Furthermore, this method requires the availability of a reference object for every

model h ∈ H for the robot to perform the actions on a known model. For these

reasons, this approach is not feasible.

We take an alternate approach, using the physics engine to simulate the outcome

of actions on all of the possible object models. These simulated results are used to

build the probability model of each action. This requires that each of the actions

a ∈ A can be simulated with acceptable accuracy, such that the outcome of a

simulated action is representative of the expected outcome when performed by the

robot on the actual object. Additionally, the simulated action should account for

the errors and noise present in the system when the robot carries out the action in

the real world. We present some specific examples of action simulation in Section

6.3.

Calculating the probability model for each action can be done as an initialisation

step, prior to the robot interacting with the object. To do this, each action is

performed on each possible object model in simulation. This is done several times so

that the noise of the action is taken into account by the probability distribution over
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Algorithm 6.2 Calculating action result probabilities.
input: set of actions → A
input: set of possible models → H
input: set of possible action results → R

forall a in A
independent_probabilities[a]← {0}
forall h in H

model_probabilities[a][h]← {0}
repeat

world_state← performSimulatedAction(a, h)
r ← classifyToResultLabel(world_state, R)
independent_probabilities[a][r]← independent_probabilities[a][r] + 1
model_probabilities[a][h][r]← model_probabilities[a][h][r] + 1

until num_iterations
forall x in model_probabilities[e][h]

x← x

num_iterations
endfor

endfor
forall x in independent_probabilities[a]

x← x

|H| ·max_iterations
endfor

endfor
output: result probabilities ∀a ∈ A : P (r|a)← independent_probabilities
output: result probabilities ∀a ∈ A, h ∈ H : P (r|h, a)← model_probabilities

results. When a simulated action outputs a particular result label, a corresponding

counter is incremented for both the object model dependent probability P (r|hi, a)

and independent probability P (r|a). At the end, these counters are normalised

according to the number of simulations performed and become the action’s model

probability distributions. The process is summarised in Algorithm 6.2.

6.2.5 Result Labels

We calculate the discrete result probability distributions P (r|a) and P (r|hi, a). To

do this, we represent the outcome of an action as a discrete result label r ∈ R,

were R is a discrete set of all possible outcomes. However, the world state at the

conclusion of an action is typically represented as a multi-dimensional, continuous
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vector describing various aspects of the world (object pose, robot arm joints, etc).

This world state may contain a large amount of information not related to the action

performed and the object model. To convert the world state into a result label, r,

we extract the relevant information (for example the object pose) and match it to

a set of result bins, each of which has a corresponding label r ∈ R. This label is

the output result of an action, which can then be used for updating the confidence

distribution over possible object models.

The result bins are predefined as an initialisation step of the overall system. The

specific format of the result bins is heavily dependent on the application domain. A

simple example of generating the result bins is by discretising the space of possible

(x, y, z) object positions into uniform cells. After an action is carried out, we match

the object pose to the closest discretised cell and return the corresponding label. A

more complex example is performing many simulations and clustering the results

using an algorithm such as K-means [Hartigan and Wong, 1979] to generate the

result bins. Different methods of generating discrete result labels are presented in

detail in Section 6.3.

6.2.6 Choosing an Action

The robot performs experiments on the real object and observes the results to de-

termine some underlying properties of that object. However, not all actions that

the robot may perform are equally informative. Figure 6.2.2 illustrates this concept.

The worst case scenario is if an action produces the same result regardless of the

properties of the object. In this case the information gained is zero. Our goal is to

choose the most informative action, given the current level of uncertainty over the

possible object models. This reduces the number of actions that must be performed

by the robot to determine the object’s properties, minimising wear and tear on the

hardware and reducing learning time.

To determine the information gain of an action we calculate its expected Kullback-
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Figure 6.2.2: Not all actions that a robot can perform to determine the physical
model of an object are equally informative. In the above example, if the robot needs
to determine whether the centre of mass of a box (indicated by the red circles) is
located in the middle or at one of the ends, dropping the box in the top orientation
will not provide much information, as the outcome will be the same in both instances
(in both cases the centre of mass is on the same side of the vertical line drawn from
the pivot point). The bottom action is more informative as the outcome will depend
on the centre of mass of the box.

Leibler divergence (KL divergence) [Kullback and Leibler, 1951]. KL divergence is

a distance measure between two probability distributions P and Q, denoted as

DKL (P,Q). For discrete probability distributions P and Q the KL divergence is

defined as:

DKL (P,Q) =
∑

i

P (i) ln P (i)
Q (i) (6.2.3)

Formally it is a measure of the expected number of bits needed to encode samples

from one distribution when using a code based on the other. In Bayesian statistics

the KL divergence between two distributions can be used as measure of the informa-

tion gained moving from one to the other. Furthermore, in the domain of Bayesian

optimal experimental design [Chaloner and Verdinelli, 1995], a common aim is to

maximise the KL divergence between the prior and posterior. In our system, the
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Figure 6.2.3: To determine the usefulness of an action, we find the expected KL-
divergence between the prior probability distribution (Current Probability Dis-
tribution) and the resulting posterior probability distribution after the action is
performed and result known. In the simple example above (with two possi-
ble outcomes X and Y , and two hypothesis models A and B) this is equal to
P (ResultX) ·DKL (CPD,PDW ) + P (ResultY ) ·DKL (CPD,PDZ), where CPD
is the current probability distribution, PDW is the resulting distribution if the
outcome is X, and PDZ is the resulting distribution if the outcome is Y .

robot chooses to perform the experiment with the highest expected KL divergence

from the current object model confidence distribution, thus maximising the expected

information gain.

To calculate the expected KL divergence of an action, we use its probability

model (presented in Section 6.2.4) and the current confidence distribution over ob-

ject models. The outcome of an action is some r ∈ R, and for every possible out-

come there is a corresponding new confidence distribution (computed using Equation

6.2.2). To calculate the expected KL divergence, we take the weighted sum of the KL

divergences between the current confidence distribution and every possible resulting

distribution, weighted by the probability of the corresponding result. Figure 6.2.3

illustrates this concept for a simple example with only two possible outcomes for an

action. Algorithm 6.3 gives a step by step description of calculating the expected

information gain.
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Algorithm 6.3 Calculating the expected KL divergence of an action.
input: action → a
input: set of possible models → H
input: set of possible results → R
input: current confidence distribution → Ccurrent

expected_information← 0
forall r in R

weight← 0
Cnew = {cnew

1 , cnew
2 , . . . , cnew

n }
forall hi in H
weight← weight+ ciP (r|M = hi, a)

cnew
i ← P (r|M = hi, a) ccurrent

i

P (r|a)
endfor
expected_information← expected_information+weight ·DKL(Ccurrent, Cnew)

endfor
output: expected KL divergence of the action ← expected_information

6.2.7 Relation to Active Machine Learning

Our system performs active machine learning [Cohn et al., 1994], which is a form of

supervised machine learning. It is motivated by problems where unlabelled data is

abundant, but labelling each training instance is expensive and/or time consuming.

With active learning, the algorithm has an active role in choosing which training

instances should be labelled by the supervisor. This has the effect of reducing

training time and improving accuracy.

There are many different strategies that can be used to determine which training

instance should be labelled by the supervisor [Settles, 2009]. In our case the most

relevant is query-by-committee (QBC) [Seung et al., 1992]. The QBC framework

features a committee of competing classifiers, a labelled set of training data points

on which they are trained, and an unlabelled set of data points. The aim is to

determine the most accurate classifier. The competing classifiers are used to generate

hypothetical labels for the unlabelled data points. The data point on which they

disagree is considered to be the most informative and is then queried to be labelled

by the supervisor. The outcome of this query is used to update the accuracy of each

classifier. Kullback-Leibler divergence is one particular method used as a measure
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of disagreement between classifier models, for example active learning of document

class classification [McCallum and Nigam, 1998].

Our system can be viewed as a QBC active learning task if we consider each of

the simulated object physics models as a classifier, each of the actions that can be

performed as an unlabelled training data point, and the robot carrying out a partic-

ular action on the actual object as the supervisor. First, we generate hypothetical

labels for each of the actions (unlabelled training data points) by performing them

in simulation with each of the different models (competing classifiers). The result

of each is a probability distribution over result labels. We use the KL divergence

measure to choose the action that produces the most disagreement. We then query

the supervisor to obtain a label, which in our case is the robot carrying out the

chosen action on the actual object. This label is then used to update the model

likelihood distribution, indicating the most accurate object model.

6.3 Experimental Results

To test the effectiveness of the object modelling method described in this chapter,

we perform three experiments. In the first experiment (Section 6.3.1) we show

that the method can be used to learn the centre of mass of an object by dropping

it from different orientations onto a flat surface and observing the results. The

second experiment (Section 6.3.2) investigates the application of the method to

the task of learning the wheel configuration of a box-cart object. This is done by

releasing the box-cart on a sloped ramp in a particular orientation and observing

the trajectory of the cart. The third experiment (Section 6.3.3) demonstrates the

general applicability of the learning method by showing that it can be used to learn

object properties not limited to physical attributes. In this case, the object is a

Lego Mindstorms1 robot programmed to perform a particular movement behaviour

in response to some stimulation. The stimulation is in the form of activating a

1http://mindstorms.lego.com
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light sensor on the Lego robot. The goal of the learning robot is to determine the

particular behaviour model by using a flashlight to illuminate the light sensors and

observing the resulting movement of the Lego robot.

The final experiment demonstrates the benefits of learning a predictive model of

an object. This is done by having the robot plan and perform a tool use task using

an object and a learned physics engine model of that object. The learned model is

used to plan an appropriate action in simulation and then carry it out to accomplish

a goal.

6.3.1 Centre of Mass Experiment

6.3.1.1 Overview

In this experiment we apply the presented active robot learning method to the

task of finding the centre of mass of an object. This is done with two different

objects: a box and a cylinder. The robot must determine the centre of mass of

each by dropping them onto a flat surface. The dimensions of the box object are

5.5cm × 8.4cm × 11.9cm, the cylinder object is 13cm in height (along the z-axis)

and 6cm in diameter (see Figure 6.3.1). Both the cylinder and the box may have

weights added internally to change the location of their centre-of-mass. The drop

orientations and heights are chosen to have the highest expected information gain.

This is done using the previously described method of finding the most informative

action from a set of available actions. A physics simulator is used to simulate the

various possible object models and actions.

To find the centre of mass of the box and cylinder objects, the robot performs

the following steps:

1. localise the target object in the scene,

2. grasp the object with the robot gripper,

3. calculate the information gain of each action given the current model likelihood
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Figure 6.3.1: The cylinder (left) and box (right) objects used in the Centre of Mass
Experiment. Each can be unweighted, in which case it has a centre of mass in the
centre, or can have weights added internally to offset the centre of mass.

distribution,

4. carry out the most informative action by dropping the object from the specified

height and orientation,

5. determine the resulting pose of the object,

6. classify the resulting pose by matching it to a result label,

7. update the model likelihood distribution using the outcome probabilities of

the performed action and the result label.

The object is localised in a scene using the method described in Chapter 5, using

a complete aspect graph of SIFT [Lowe, 2004] features and a depth camera. In the

case of a box and cylinder objects, grasping is performed along the longest axis of

each object with the vector between the two gripper pads parallel to the ground

plane. Figure 6.3.2 shows a before and after image of the robot performing a drop

experiment on the box object.

Next we will present the following: the possible models that can describe the

objects and the actions that the robot can perform (Section 6.3.1.2), the simula-

tion method used to determine the action probability models (Section 6.3.1.3), the
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Figure 6.3.2: The before (left) and after (right) state of a single iteration of the
Centre of Mass Experiment. The robot positions the box object in an appropriate
orientation and height above the flat table-top, and then releases it. The resulting
orientation of the object provides information on the location of its centre of mass.

method of labelling the result of each drop action with a discrete label (Section

6.3.1.4), and the performance results of applying the object model learning method

to determining the centre of mass of a box and cylinder object (Section 6.3.1.5).

6.3.1.2 Possible Object Models and Actions

The goal for the robot is to determine which of the models, from an a priori defined

set of possible models, best fits the object in question. This is done by performing

actions drawn from a pre-defined pool. For this experiment, we define three possible

centre-of-mass models for both the box and cylinder (shown in Figure 6.3.3). In the

case of the box, the possible models have their centre-of-mass either in the middle

of the box, or offset half-way along the main axis. The coordinates (in centimetres)

of the centre-of-mass of the three possible box models are: (0, 0, 0), (0, 0, 3), and

(0, 0,−3). The coordinate (0, 0, 0) corresponds to the centre of the box. In the

case of the cylinder, the possible models also have their centre-of-mass either in the

middle, or offset half-way along the main axis. The coordinates (in centimetres) of

the centre-of-mass of the three possible cylinder models are: (0, 0, 0), (0, 0, 3.5), and

(0, 0,−3.5). The coordinate (0, 0, 0) corresponds to the centre of the cylinder.
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Figure 6.3.3: The potential models for the box and cylinder objects. Each can be
described by one of three models, with the centre of mass (denoted by the red dot)
in the middle (model A), or with the centre of mass offset half way to the end along
the longest axis of the object (models B and C).

The actions that the robot can perform on the box and cylinder is dropping each

from a specified orientation and height. The drop height is defined as the distance

between the flat tablet-top and the nearest point on the object’s surface. The drop

orientation is defined as the upward facing direction of the object at the time of

release, as dropping an object onto a flat surface has rotational symmetry around

the vertical axis. The pool of available actions is specified ad hoc to consist of 100

instances, each with a randomly generated drop height (in the range 0.5cm to 2cm)

and drop orientation. The drop height is generated by choosing a random value in

the specified range [0.5, 2.0], the drop orientation is generated by choosing a random

unit vector.

The robot performs actions drawn from this pool to determine which of the

pre-defined models best matches the box and cylinder object.
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6.3.1.3 Simulation Method

Our method for learning the properties of an object involves simulating the outcome

of various actions performed on the different possible object models. This is done

to calculate the action probability model (ie: the probabilities P (r|h, a) and P (r|a)

discussed in Section 6.2.4). This is then used to update the confidence distribution

after an action is performed and a result observed, as well as to calculate the expected

KL divergence of the different actions to perform the most informative one.

To simulate the actions and find their conditional probability distributions we

use the Bullet Physics Engine2 (version 2.76), which is capable of simulating the in-

teractions between various bodies. This includes collision detection between bodies,

soft-body and rigid-body dynamics, as well as being able to simulate various types

of joints, hinges, and axles.

For the Centre of Mass Experiment, the flat workspace surface is simulated by an

infinite plane with friction set to 1.0, and the gravity vector set to (0, 0,−9.8) m/s2.

The box and cylinder are simulated by a ConvexHull rigid body, with friction set

to 0.7, restitution parameter set to 0.01, linear damping parameter set to 0.05, and

angular damping set to 0.5. These parameters were chosen to give visually realistic

simulations. The mass of the simulated objects does not affect the outcome of a

simulated actions and is set to 1.0.

For simulation, we simplify the action significantly. We do not simulate the

robot arm grasping the object, moving it into position and releasing the object.

Instead, the simulated object is set to the appropriate orientation and height above

the ground plane (as specified by the drop parameters) and released. To model

the noise and errors resulting from the robot manipulating an object in the real

world, the simulated object’s position and orientation are perturbed from the values

specified by the simulated action. Gaussian noise is added to the drop height with

a mean of 0cm and standard deviation of 0.5cm, while the orientation is rotated

around a random vector by an amount specified by a Gaussian noise variable with
2http://www.bulletphysics.com
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Figure 6.3.4: Before (left) and after (right) screenshots of a simulated action, drop-
ping a box object in a physics engine from a particular orientation and height. The
image on the left shows the world state when the box is released, the right image
shows the final pose of the box after it has come to a stop.

mean 0◦ and standard deviation of 10◦. These values were chosen as conservative

over-estimates of the errors of the robot manipulation of the objects, based on our

experience with the robot.

After setting the simulated object to the appropriate pose, the physics simulator

is run for 300 frames, each frame corresponding to 1
30 of a second. Figure 6.3.4

shows a before and after screenshot of dropping a box in a physics simulation. At

the conclusion of a simulation, the resting pose of the object is converted to a discrete

result label. This is discussed in the following section.

6.3.1.4 Result Classification

Our method requires the outcome of an action to be expressed as a discrete result

label r ∈ R, where R is a finite set of all possible result labels (see Section 6.2.5).

This is due to the fact that the action model is represented as a discrete probability

distribution over the result labels (see Section 6.2.4). For a robot action, the outcome

is generically some world state described by a continuous variable. By discretising

the relevant information, this world state can be converted into a result label.

In this experiment, the relevant part of the world state is the resting pose of the

object. For effectively classifying the results of a drop, the full 6 degrees of freedom

pose of the object is not required. Only the upward facing direction of the object is

needed. The upward direction vector is calculated using the following formula:
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up_vector = M−1 (0, 0, 1)T ,

whereM is the object’s world space orientation matrix and (0, 0, 1)T is the world

“up” direction. The next step is to discretise the outcome up-vector of the object

to form a result label. This is done by matching the up-vector to a predetermined

set of result bins.

There are several ways in which these result bins can be defined. The most

straight forward is to subdivide the unit sphere of up-vectors into uniform sections,

with each section corresponding to a result bin. This approach, however, is not

optimal for objects such as a box and cylinder. In the case of a six-sided box,

there are only six possible up-vectors that can be the outcome of a drop action

(corresponding to one of the sides facing upward). Similarly with a cylinder, only

a subset of all up-vectors is possible in the outcome. In this case, the cylinder can

have either of its flat ends facing up, or the rounded side.

To generate the appropriate result bins for the Centre of Mass Experiment we

use clustering. The reasoning behind this is to group together up-vectors that are

logically similar into the same buckets. This clustering stage is performed at ini-

tialisation, prior to the experiment loop or the building of the action models. This

involves running many simulations of actions on all of the possible object models,

recording the outcome result and finally clustering all of the recorded results into

bins. This scheme is outlined in Figure 6.3.5.

In the case of this experiment, this is done by taking the outcome up-vectors

from many simulated runs and grouping together vectors that are within 45◦ of one

another. Each up-vector is viewed as a graph node and any two vectors within 45◦ of

each other are joined by a graph edge. This is done because the box and cylinder have

their faces separated by 90◦ intervals. The resulting graph of up-vector nodes will

have multiple connected components, with each component corresponding to a result

bucket. In the case of the box, the result is six connected components, corresponding

to the six sides. In the case of the cylinder, the result is three connected components,
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Figure 6.3.5: This diagram outlines how result bins are generated. The available
actions are run multiple times on all of the available object models in simulation.
The set of output results is then clustered or discretised to create a smaller set of
possible result bins. These are later used for result labelling.

two for the flat ends and one for the round side. Each of these groups of up-vectors

are stored as a result bucket. When an action is performed (or simulated when

building the action models), the resulting object up-vector is taken and compared

against these result buckets. The result bucket which contains the closest up-vector

is taken to be the matching result label, r.

6.3.1.5 Performance Results

We test the performance of the learning system by having the robot carry out

multiple runs of learning the object model. In each run the robot performs a series

of actions, updating the confidence distribution over the possible models using the

result of each action. By performing the most informative action at every stage and

using the learned action models, the robot’s confidence distribution should have the
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Figure 6.3.6: The results of the Centre of Mass Experiment on the box object,
showing the change in the confidence distribution after a number of drop iterations.
The robot performs multiple drops of the box and updates its model hypothesis
based on the results. The left graph corresponds to the trials with an unweighted
box with the centre of mass at (0, 0, 0), with the matching object model indicated
as Central CoG Model. The right graph corresponds to the trials with a weighted
box with the centre of mass at (0, 0, 3), with the matching object model indicated
as Z+ CoG Model. The error bars represent the 95% confidence interval across 8
independent runs.

matching object model’s confidence rise to 1.0 and the remaining models’ confidence

fall to 0.0 as more actions are performed.

The robot performed eight separate trials of determining the object model of

the box. In each, trial the robot performed nine drops. This procedure was done

with the box unweighted (centre-of-mass in the middle) and with the box having

weights added internally (centre of mass offset −3cm from the middle along the

z-axis). Figure 6.3.6 shows how the robot’s model confidence distribution changed

during the nine drops. It can be seen that after even a small number of drops, the

confidence of the object’s correct corresponding model rises above the remaining

incorrect models.

With the cylinder object, the robot performed eight separate trials, with each

trial consisting of six drops. This is done with the cylinder unweighted (centre of

mass located in the middle), and with weights added internally (centre of mass
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Figure 6.3.7: The results of the Centre of Mass Experiment on the cylinder object,
showing the change in the confidence distribution after a number of drop iterations.
The robot performs multiple drops of the cylinder and updates its model hypothesis
based on the results. The left graph corresponds to an unweighted cylinder with
centre of mass at (0, 0, 0), the right graph to a weighted cylinder with the centre of
mass offset to (0, 0,−3.5) along the main axis. The error bars represent the 95%
confidence interval of the hypothesis across 8 independent runs.

offset −3.5cm from the middle along the z-axis). Figure 6.3.7 shows the change

in the confidence distribution over the possible models during the trials. We can

see from the results that the robot is able to quickly and accurately determine the

correct model of the object by performing the action with the highest information

gain.

In addition to evaluating the performance of the active learning framework when

applied to determining the centre of mass of an object, we investigated the effect

of choosing the action with highest expected information gain on the learning rate.

A key part of the learning framework is choosing to perform the most informative

action, as measured by expected KL divergence. We compared in simulation a robot

learning the centre of mass of a box and cylinder using the most informative action

at every step and using a random action at every step. It is important to note

that this is carried out purely in simulation, the actions are simulated in the same

manner as when building the action model. For the best action and random action

selection policies, six simulated runs are performed, each with nine drop actions
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Figure 6.3.8: Learning the box centre of mass using the action with highest expected
information gain (left), and using a random action (right) at every iteration. This
is performed in simulation, and simulated box has its centre of mass in the centre
(corresponding to the Centre CoG Model). It can be seen that by performing the
most informative action the confidence distribution quickly converges on the correct
object model. When performing a random action, the confidence distribution on
average does not converge. The error bars indicate the 95% confidence interval,
with the error bars on the left too small to show.

performed. The progression of the confidence distribution over the possible object

models is show in Figure 6.3.8 for the box object, and in Figure 6.3.9 for the cylinder

object. It can be seen that by choosing the most informative action leads to a much

faster convergence of the confidence distribution to the correct object model, whereas

choosing a random action leads to much worse performance.

6.3.2 Wheel Configuration Experiment

6.3.2.1 Overview

In this experiment we apply the active robot learning method to the task of learning

the configuration of the wheels on a box-cart (pictured in Figure 6.3.10). The box-

cart consists of a rectangular prism body, two wheels attached at one end, and a

wooden block at the other. The configuration of the two wheels is unknown to the

robot, specifically how they are oriented and whether they are able to rotate. For this

experiment the workspace consists of a flat surface and a 25◦ ramp at one end (see
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Figure 6.3.9: Learning the cylinder centre of mass using the action with highest
expected information gain (left), and using a random action (right) at every iter-
ation. This is performed in simulation, and the simulated cylinder has its centre
of mass in the centre (corresponding to the Centre CoG Model). It can be seen
that by performing the most informative action the confidence distribution quickly
converges on the correct object model, as compared to performing a random action.
The error bars indicate the 95% confidence interval.

Figure 6.3.11). The robot determines the configuration of the box-cart by releasing

it on the sloped ramp from various orientations and observing the resting pose of

the object. By choosing the release pose with the highest expected information gain,

the robot is able to efficiently determine the object model that describes the box-

cart. To choose an optimal action and to update the model confidence distribution,

a physics engine is used to simulate the outcome of the different actions on the

possible object models.

The procedure followed by the robot in this experiment is similar to the Centre

of Mass Experiment. To find the wheel configuration of the box-cart, the robot

repeats the following steps:

1. localise the target box-cart in the scene;

2. grasp the cart with the robot gripper;

3. calculate the information gain of each action given the current model likelihood

distribution;
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Figure 6.3.10: The box cart object used for the Wheel Configuration Experiment.
The cart consists of a box, two wheels on one end, and a wooden block on the
opposite end. The wheels can be set to point straight ahead or 90◦ to the side. The
wheels may also be prevented from rotating by the application of sticky-tape.

Figure 6.3.11: The workspace layout for the Wheel Configuration Experiment. The
robot places the box-cart on a 25◦ ramp and releases it, allowing it to roll down. The
final pose of the cart provides the robot with information regarding the configuration
of the wheels.
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Figure 6.3.12: The before (left) and after (right) state of an iteration of the Wheel
Configuration Experiment. The robot positions the box-cart object in a particular
orientation and position on the sloped ramp, and then releases it. The resulting
pose of the cart provides information on the configuration of its wheels.

4. carry out the most informative action by releasing the cart from the appropri-

ate pose on the ramp;

5. determine the resulting pose of the cart;

6. classify the resulting pose by matching it to a result label;

7. update the model likelihood distribution using the outcome probabilities of

the performed action and the result label.

The cart is localised in a scene using the method described in Chapter 5, with a

complete aspect graph of SIFT features and a depth camera. Grasping is performed

along the longest axis of the top of the cart, with the vector between the two gripper

pads parallel to the ground plane. Figure 6.3.12 shows a before and after image of

the robot performing a drop experiment on the box object.

Next we will present the possible models that can describe the box-cart and

the actions that the robot can perform (Section 6.3.2.2), the simulation method

used to determine the action probability models (Section 6.3.2.3), the method of

labelling the result of each action with a discrete label (Section 6.3.2.4), and the

performance results of using the object model learning method to determining the

wheel configuration of a cart object (Section 6.3.2.5).
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Figure 6.3.13: The above diagram depicts the 6 different potential models of the
box-cart. Models 1, 3, and 5 have wheels oriented in the direction of the main axis,
models 2, 4, and 6 have wheels oriented at 90◦ to the main axis. Models 1 and 2
have freely rotating wheels, models 3 and 4 have the right wheel blocked (prevented
from rotating), models 5 and 6 have the left wheel blocked.

6.3.2.2 Possible Object Models and Actions

The robot’s goal is to determine which model from a predefined set of models best

fits the box-cart. For this experiment we define the set of possible models to consist

of six different wheel configurations (see Figure 6.3.13). The two wheels of the box-

cart may both be pointing straight ahead or both 90◦ to the side, and they may

freely rotate or either of the two wheels may be taped shut (but not both).

The actions that the robot can perform are releasing the cart on the ramp at a

particular vertical height and orientation. The cart’s wheels and rear block are in

contact with the ramp surface at the time of release. The vertical height of the release

is defined as the vertical distance of the centre of the cart from the horizontal ground

plane. The orientation of the cart is defined as the angle it is facing in the horizontal

plane at the time of release. For our experiments, we restricted the release height of

the cart to be between 2cm and 8cm. This was determined by the maximum height

of the available ramp, and the size of the cart constraining the minimum height at

which it was positioned wholly on the ramp. In this height range, we generated

experiments at 1cm height increments (giving seven different heights), and at each

height we generated 30 possible experiments with orientations in 12◦ increments.

We judged this discretisation of the action space to be sufficient, given the accuracy
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of our robot’s manipulation and the workspace, to give a representative sample of

actions. This results in a pool of 210 possible actions for the robot to choose from

to determine the wheel configuration of the box-cart.

6.3.2.3 Simulation Method

As with the Centre of Mass Experiment, to determine the probability models (ie:

the probabilities P (r|h, a) and P (r|a) discussed in Section 6.2.4) for each action,

we use the Bullet Physics Engine to simulate the outcome for each possible action

on each possible object model. In the case of a physics simulation, there are many

parameters that must be set to simulate an object. Some parameters we measured

and set appropriately (eg: the weight of the cart). For parameters that we could

not easily measure (coefficient of friction), or that do not have a direct real-world

analogue (angular damping of a rotating wheel), we chose simulation parameters

that resulted in a visually realistic outcome.

The ramp and flat table surface are simulated with two planes with friction

coefficient set to 0.7, the gravity vector set to (0, 0,−9.8) m/s2. The box-cart object

is simulated by two box rigid bodies for the main body and rear block, and two

cylinder objects for the wheels. The rear block object is joined to the main box by

a rigid six degrees of freedom constraint, forcing them to behave as a single rigid

body. The two cylinders are joined to the box by hinge constraints. The direction

of the hinge constraint is defined by the particular model being simulated (whether

the wheels of the model are pointing ahead or to the side). The rear block and

wheel friction coefficient is set to 0.7. The mass of the main box object is set to

150 grams and the mass of each wheel and the rear block is set to 20 grams; this

matches the measured weight of the real world box-cart components. The angular

damping parameter of each wheel is set to either 0.15 or 1.0, depending on whether

the wheel in the particular model being simulated is free to rotate or not.

As with the Centre of Mass Experiment, we simplify the action during simulation.

Instead of simulating the robot arm grasping the object and moving it into position,
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Figure 6.3.14: Before (left) and after (right) screenshots of a simulated action, re-
leasing a box-cart object on a ramp in the physics engine. The image on the left
shows the world state when the box-cart is released, the right image shows the final
pose of the box-cart after it has come to a stop.

the simulated object is directly set to the appropriate orientation and position on

the ramp, as specified by the action parameters. When the robot performs an

action in the real world, there are several sources of noise and error that affect

the outcome. This includes errors in the positioning of the box-cart on the ramp,

slight variations in the ramp and tabletop surface, variations in the wheel axle’s

turning resistance, etc. To account for these sources of noise when performing a

simulated action, we perturb the release height and orientation as well as perturbing

the axle damping parameters for each wheel. The release height and orientation are

perturbed by Gaussian noise with mean 0 and standard deviation set to 0.5cm and

10◦ respectively. The wheel damping parameters, wheel friction, and rear block

friction are each perturbed by uniform noise in the range [−0.1, 0.1].

After settings the simulated box-cart to the appropriate pose, the physics sim-

ulation is run for 300 frames, each frame corresponding to 1
30 of a second. Figure

6.3.14 shows a before and after screenshot of a release action carried out in physics

engine simulation. At the conclusion of a simulation, the resting pose of the sim-

ulated object is converted to a discrete result label. This is discussed in the next

section.

6.3.2.4 Result Classification

Our method requires that the outcome of an action is a discrete result label r ∈ R.

This is done by discretising the relevant information from the outcome world state
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of an action. In the case of the Wheel Configuration Experiment, the discretisation is

performed using the pose of the box-cart after it has rolled down the ramp and come

to rest. The resting pose is constrained to be on the surface of the flat tabletop or

ramp, and we assume the box-cart remains upright. Therefore, we can simplify the

full six degrees of freedom cart pose by expressing the result as the (x, y) position

and an angle θ for the orientation of the cart on the tabletop plane. For labelling the

simplified pose we use a uniform discretisation scheme. The workspace is divided

into cells, 3cm× 3cm in size and orientations are divided into 10◦ increments. Each

of these cells corresponds to a single result bin. An (x, y, θ) result pose can be

mapped to a result bin by finding the particular cell which contains the result pose.

The matching cell for the box-cart pose is taken to be the result label, r.

6.3.2.5 Performance Results

We test the performance of the learning system by having the robot carry out

multiple runs learning the box-cart model. In each run the robot performs a series

of actions, updating the confidence distribution over the possible models using the

result of each action.

The robot performed six separate trials of determining the object model of the

box. In each trial, the robot rolled the cart down the ramp six times. This was

repeated with the box-cart’s wheels set to all six of the possible configurations (see

Figure 6.3.13). The results of these trials are presented in Figure 6.3.15, showing how

the robot’s model confidence distribution changed during the course of the trials.

Each of the separate graphs corresponds to a different configuration of the box-cart

object. It can be seen that very quickly the confidence of the object’s corresponding

model rises above the remaining incorrect models.

In additional to evaluating the learning performance, we investigated the effect

of choosing the action with highest expected information gain on the learning rate.

We compare, in simulation, a robot learning the box-cart’s wheel configuration using

the most informative action at every step and using a random action at every step.
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Figure 6.3.15: The results of the Wheel Configuration Experiment in terms of the
model confidence distribution after a number of release iterations. The underly-
ing configuration of the physical box-cart in each of the above runs matches the
corresponding configuration shown in Figure 6.3.13. The error bars signify the 95%
confidence interval. We label only the correct object model confidence in each graph.
This is the model corresponding to the true underlying configuration of the box cart.
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Figure 6.3.16: Learning the box-cart wheel configuration using the action with high-
est expected information gain (left), and using a random action (right) at every
iteration. This is performed in simulation with the simulated box-cart having its
wheels set to configuration 4 as seen in Figure 6.3.13. By performing the most in-
formative action the confidence distribution quickly converges on the correct object
model. When performing a random action, the confidence distribution on average
does not reliably converge. The error bars indicate the 95% confidence interval, with
the error bars on the left too small to show.

It is important to note that this is carried out purely in simulation. The actions

are simulated in the same manner as when building the action model. For the best

action and random action selection policies, six simulated runs are performed, each

with nine actions performed. The progression of the confidence distribution over the

possible object models is shown in Figure 6.3.16. It can be seen that by choosing

the most informative action results in a much faster convergence of the confidence

distribution to the correct object model, whereas choosing a random action leads to

much worse performance.

6.3.3 Stimulus Response Behaviour Experiment

Overview

In this experiment, we demonstrate that the general active learning method is ap-

plicable to a wide variety of object properties. In this case, the robot determines
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Figure 6.3.17: Lego Mindstorms robot. It is composed of the NXT Intelligent brick,
two motor driven rear wheels, and two light sensors. The light sensors are facing
forward and downward at a 45◦ angle.

a behavioural model of an object, rather than a physical property. The object in

question is a Lego Mindstorms3 bot which is programmed to respond to light stimuli.

The Lego-bot is composed of two motor driven wheels, and two light sensors (see

Figure 6.3.17). It is programmed to perform a certain movement behaviour if one

of its sensors is stimulated by light. A sensor is said to be stimulated if it detects a

high light level as compared to the other sensor. An example movement behaviour

is turn left 45◦ and move forward 15cm if the left light sensor is stimulated.

The task of the main robot is to perform some actions to determine a model

that describes the Lego-bot’s movement behaviour. For this purpose, a flashlight is

attached to the gripper, which the robot can use to project light onto the workspace.

This is illustrated in Figure 6.3.18. The robot can shine the flashlight onto specific

areas of the workspace and observe the resultant Lego bot’s motion. This motion

provides information as to the bot’s underlying programmed behaviour. A simulator

is used to predict the outcome of the various possible actions on the possible object

models.

The procedure followed by the robot in this experiment differs from the pre-

vious two experiments in that the robot does not directly manipulate the target

object. Instead, the robot uses a flashlight attached to its gripper to illuminate

the workspace and trigger the Lego bot’s movement behaviour. To learn the object

3http://mindstorms.lego.com
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Figure 6.3.18: The robot uses a flashlight attached to the gripper to perform illu-
mination actions to determine the light stimulation response behaviour of the Lego
Mindstorms bot. An action is in the form of shining the flashlight onto the workspace
to stimulate the light sensors on the Lego bot.

model, the robot performs the following steps:

1. localise the Lego bot in the scene,

2. calculate the information gain of each action given the current model likelihood

distribution,

3. carry out the most informative action by illuminating the appropriate part of

the workspace with the flashlight,

4. determine the resulting pose of the Lego bot,

5. classify the resulting pose by matching it to a result label,

6. update the model likelihood distribution using the outcome probabilities of

the performed action and the result label.

The cart is localised in a scene using SIFT features and a textured marker placed

on top of the Lego bot.
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Next we present the possible models that can describe the movement behaviour

of the Lego bot and the actions that the robot can perform (Section 6.3.3.1), the

simulation method used to determine the action probability models (Section 6.3.3.2),

the method of labelling the result of each action with a discrete label (Section

6.3.3.3), and the performance results of determining the behaviour model of the

Lego cart using the active object model learning approach (Section 6.3.3.4).

6.3.3.1 Possible Object Models and Actions

The robot’s task is to determine the underlying behaviour of the Lego bot. This

is done by finding a model from a predefined set of possible behaviour models that

best fits the observed results of performed actions. For this experiment, we define

the set of potential models that can describe the Lego bot’s behaviour to be of size

16. If the left sensor is stimulated, the bot may turn 0◦ or 45◦ left, followed by

moving forward 0cm or 15cm. If the right sensor is stimulated, the bot may turn

0◦ or 45◦ right, followed by moving forward 0cm or 15cm. A sensor is said to be

stimulated when its sensed light level exceeds the sensed light level of the opposing

sensor by 50%.

The robot determines which of the potential models most accurately matches

the behaviour of the Lego bot by performing actions from an available pool and

observing the results. The robot gripper has a flashlight attached that emits a

focused light cone measured to have a 15.3◦ spread. The robot moves the gripper

into a particular position to shine the light onto the Lego bot. Each illumination

action can be defined by three parameters, the (x, y) position of the light cone

relative to the Lego bot, and the height of the light above the table surface. The

height determines the size of the projected light circle on the table surface.

For our experiments, we restrict the centre of the light cone to fall inside a circle

of radius 15cm from the centre of the Lego bot. This is chosen as it is the farthest

distance at which our robot’s light sensors can detect the light cone. The height

of the flashlight is restricted to be between 20cm and 40cm from the table surface.
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These limits are chosen based on the minimum height to avoid hitting the Lego

bot, and the maximum height that the robot arm can reach inside the workspace.

We divide the heights into five values, {20cm, 25cm, 30cm, 35cm, 40cm}. For each

of these heights, the robot generates 50 random (x, y) positions within the circle

around the Lego bot. We consider this number of actions to give a good sample of

the overall action space. This results in a pool of 250 possible actions available to

the robot to perform to discover the behaviour configuration of the Lego bot.

6.3.3.2 Simulation Method

To determine the probability distribution over results of each action on the poten-

tial models we use a simulation method. However, unlike with the Centre of Mass

and Wheel Configuration experiments, there are no convenient physics engine primi-

tives for simulating a Lego Mindstorms robot programmed with a certain behaviour.

Instead we approximate the amount of light sensed by a light sensor when the flash-

light is placed in a particular position relative to the Lego bot. This is followed by

simulating the movement performed by the Lego bot if the light response behaviour

is triggered.

We simulate the flashlight by computing the circle of light it projects onto the

table surface from a particular position. The flashlight is held vertical in all cases,

and the beam spread is set to 15.3◦. This is used to compute the light circle’s

position and size for any given illumination action, which is specified by the relative

position and height of the flashlight to the Lego bot. We then compute how much of

this projected light circle falls within the field of view of the light sensor. We do this

by projecting a large number of rays from the position of each light sensor. These

rays are projected in a cone of angle 45◦ with the axis oriented in the direction of

the light sensor (at a 45◦ angle looking at the ground). Each of these sample rays

are intersected with the ground plane. The percentage of all of the sampling rays

of a light sensor that have their ground intersection point fall within the projected

light circle is said to be the light value sensed by the sensor. Figure 6.3.19 illustrates
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Figure 6.3.19: This diagram shows how we simulate the amount of light sensed
by a light sensor when the flashlight casts a light circle on the ground. We project
multiple rays (denoted by blue lines inside the sampling cone) from the light sensor’s
position, in a sampling cone of angle 45◦ in the direction the sensor is pointing. The
percentage of these light rays that intersect the projected light circle is taken as the
light sensed by the sensor. This value can then be compared to the light sensed by
the opposing sensor to determine if the Lego bot’s movement behaviour is triggered.

the ray casting method. We do this for both the left and right light sensors, and

compare the computed values. If the computed value of one of the sensors is more

than 1.5× that of the other, the model movement behaviour is triggered. To simulate

a movement behaviour, we rotate and translate the simulated Lego bot object as

dictated by the particular behaviour model.

To account for various sources of error and noise when the illumination action

is performed on the robot, we apply a noise model to each simulated run. This is

done by perturbing the light circle’s size and position, as well as the amount the

simulated Lego-bot turns and drives forward, using Gaussian noise. The light circle

position is shifted in a random direction on the xy plane by noise with standard

deviation 0.5cm and mean 0cm. The light circle size perturbation has a standard

deviation of 0.5cm and mean 0cm. When the simulated Lego-bot turns, the turn

amount perturbation has a standard deviation of 10◦ and mean 0cm, when it drives

forward the perturbation for the distance driven has a standard deviation of 1cm

and mean 0cm. These perturbations are chosen ad hoc, but are set to overestimate

the error in the Lego bot’s movement.
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6.3.3.3 Result Classification

The result labels are generated by discretising the workspace into uniform cells,

followed by matching the Lego-bot’s resulting pose at the conclusion of an action

iteration to one of these cells. The discretisation is achieved by dividing a square

50cm× 50cm centered on the Lego-bot into 100 5cm× 5cm cells. To discretise the

orientation, each of these is further divided into 24 orientation cells, dividing the

360◦ circle into 15◦ increments. The end result is 2400 possible result labels.

When an illumination action is performed, to determine the outcome result label,

we first calculate the relative motion of the Lego-bot to its starting pose. From this

relative pose we then calculate the (x, y, θ) values, which are the relative amount

the robot moved on the (x, y) plane and the angle amount it has rotated around the

vertical axis. This relative pose is then matched to one of the 2400 possible result

label cells.

6.3.3.4 Performance Results

We test the performance of the learning system by having the robot carry out

multiple runs of learning the behaviour model of the Lego bot. In each run, the

robot performs a series of actions, updating the confidence distribution over the

possible models using the result of each action.

To test our approach, we used three different scenarios (the Lego bot was pro-

grammed with three different behaviours). For each scenario the robot performed

three independent learning runs, each run involved a series of six illumination ac-

tions to determine the underlying model of the Lego bot’s behaviour. In the first

scenario, the Lego bot is programmed to not move at all, that is, to not respond

to stimuli. In the second scenario, the Lego bot is programmed to turn left when

the left sensor is stimulated, otherwise to remain stationary. In the third scenario,

the Lego bot is programmed to turn left and move forward when the left sensor is

stimulated, and move forward without rotating when the right sensor is stimulated.
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The results are presented in Figure 6.3.20 and show how the robot’s confidence dis-

tribution over the 16 possible behaviour models changed during the course of each

run. We can see that the robot’s confidence distribution quickly tends toward the

correct model describing the Lego bot’s behaviour in all 3 instances.

In addition to evaluating the performance of the learning method, we investigated

the effect of choosing the action with highest expected information gain on the

learning rate. We compare, in simulation, a robot learning the Lego bot’s behaviour

using the most informative action at every step, and using a random action at every

step. The actions are simulated in the same manner as when building the action

model. For the best and random action selection policies, three simulated runs

are performed, each with six actions performed. The progression of the confidence

distribution over the possible Lego bot behaviour models is show in Figure 6.3.21. It

can be seen that by choosing the most informative action leads to a convergence of

the confidence distribution to the correct object model, whereas choosing a random

action does not result in a convergence to the correct model. This is due to the fact

that many of the possible actions do not result in any response by the Lego bot.

If neither of the light sensors are illuminated by the flashlight, then the Lego bot’s

behaviour will not be triggered and no information will be gained as a result.

6.4 Learned Model Exploitation

Overview

The final experiment involves the robot performing a basic tool use task using an

object for which it has previously learned a physics model. This learned model

allows the robot to plan a solution to a task using the predictive qualities of the

model, and then carry out the plan to complete the task.

The objective for the robot is to knock over a cylinder standing vertically on a

flat surface. This cylinder is out of reach of the robot arm, instead the robot must

use a ramp and a box-cart to knock down the cylinder by placing and releasing the
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Figure 6.3.20: The results of the Stimulus Response Experiment showing the pro-
gression of the model confidence distribution after a number of illumination action
iterations. There are 16 possible models that can describe the Lego bot behaviour,
the above results show how the robot’s confidence distribution over the potential
models evolved when performing actions in three different scenarios. Top Left cor-
responds to a scenario in which the Lego bot does not respond in any way to light.
Top Right corresponds to the scenario in which the Lego bot is programmed to
turn left when the left sensor is stimulated. The Bottom Left corresponds to the
scenario in which the Lego bot is programmed to turn left and move forward when
the left sensor is stimulated, and move forward when the right sensor is stimulated.
The error bars correspond to the 95% confidence interval, with the error bars in
the top two graphs too small to show. We omit individually labelling each line in
the graphs as there are 16 different models. We only provide a label for the correct
model confidence in each instance.
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Figure 6.3.21: Learning the Lego bot’s behaviour using the action with highest ex-
pected information gain (left), and using a random action (right) at every iteration.
This is performed in simulation with the simulated Lego bot programmed to drive
forward if its left sensor is stimulated, and turn left and drive forward if its right
sensor is stimulated. By performing the most informative action the confidence
distribution quickly converges on the correct object model. When performing a ran-
dom action, the confidence distribution on average does not converge. The error
bars indicate the 95% confidence interval, with the error bars on the right too small
to show.
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Figure 6.4.1: The above figure represents the workspace layout for the Tool Use
task. In this task the robot has a workspace similar to the Wheels Experiment, but
with the addition of a cylindrical peg placed at one of two possible positions, A and
B (15cm and 20cm from the ramp), the ramp angle is set to 20◦. The robot’s task
is to use the internal simulated model of the box-cart object to release the cart from
an appropriate position and orientation on the ramp to knock over the peg.

cart on the ramp in the appropriate orientation such that its trajectory intersects

the position of the cylinder. The workspace consists of a flat table top and a 20◦

ramp. The cylinder is placed upright on the flat table top in one of two positions,

15cm and 20cm from the end of the ramp. This configuration is shown in Figure

6.4.1.

We use two different box-cart configurations, the wheels can either be directed

forward, or at a 45◦ angle to the left, both wheels are free to rotate on the axle.

These two cart configurations are illustrated in Figure 6.4.2. The robot has a learned

physics engine model of the box-cart, which is determined using the method from

Section 6.3.2 (note that the ramp angle during learning is 25◦, whereas during this

task it is 20◦). The robot uses this model to simulate the outcome of releasing the

box-cart from many different poses on the ramp. It chooses the best release pose,
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Figure 6.4.2: Possible box-cart wheel configurations models. The wheels of the box-
cart can either be oriented straight ahead, or at a 45◦ angle to the left. Box wheels
are free to rotate.

and performs the corresponding action on the real world box-cart to knock down the

cylinder. The purpose of this experiment is to demonstrate the feasibility of using a

predictive object model in the form of a physics engine to plan a solution to a task,

demonstrating the importance of learning the correct object model. We also test

the ability to use a learned physics model to make predictions in an environment

different to that during learning.

To find the release pose for the box-cart with the best chance of knocking over

the cylinder, the robot performs a non-linear numerical optimisation over the release

pose parameter space. The release pose parameters specify the (x, y) position of

the box-cart on the ramp and its orientation angle θ. We use the Nelder-Mead

[Nelder and Mead, 1965] optimisation method, as it is simple to implement and this

particular problem has a low dimension and smooth parameter space. In principle,

other optimisation methods, such as Simulated Annealing [Kirkpatrick et al., 1983],

may be used instead. The value of the release pose objective function to be optimised

is determined by performing a number of simulations where the simulated box-cart

model is released in the specified pose. The simulation is run for 600 frames (this is

sufficient for the simulated cart to come to a stop under all circumstances) at a step

rate of 30 frames per second. For each simulated frame the position of the box-cart

is recorded. The output of a single simulation run is the smallest distance between

the box-cart and the position of the cylinder during the run. This is performed 50
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Algorithm 6.4 Box-cart positioning objective function.
input: box cart release pose→ pose
input: box cart physics model → model
input: cylinder position → target_position
error_sum← 0
for iter in {1 . . . 50}

initialiseSimulationEnvironment()
noisy_object_model ← perturbModel(model)
noisy_release_pose← perturbPose(pose)
positionBoxCart(noisy_release_pose, noisy_object_model)
min_distance← inf
for frame in {1 . . . 600}

simulationStep()
cart_position← getBoxCartPosition()
if ‖cart_position− target_position‖ < min_distance then

min_distance← ‖cart_position− target_position‖
endif

endfor
error_sum← error_sum+min_distance

endfor
average_error ← error_sum

50

output: value of the object function ← average_error

times to account for the noise in the simulated action. The noise model is the same

as the one used for the Wheels Experiment (Section 6.3.2). The final output of the

objective function is the average smallest distance between the box-cart and the

cylinder. This objective function is summarised in Algorithm 6.4. Using the Nelder-

Mead algorithm, we find the box-cart release pose that minimises this objective

function. Finally, the robot picks up the box-cart and releases it from the optimal

pose to knock down the cylinder.

Results

To test the above approach, as well as to determine the importance of learning

the correct object model, the robot used the described method to release the box-

cart from the appropriate position and orientation on the ramp to knock down the

cylinder. We performed this experiments under the following conditions: with the

cylinder placed 15cm and 20cm (position A and B respectively in Figure 6.4.1) from
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Correct Model Incorrect Model
Position A - Straight Wheels 8/8 0/8
Position A - Turned Wheels 8/8 0/8
Position B - Straight Wheels 4/8 0/8
Position B - Turned Wheels 5/8 0/8

Table 6.1: Success rate of knocking down the cylinder with the box-cart. The above
table shows the importance of learning the correct object model. The lower success
rate when the cylinder is in position B is due to a longer distance from the ramp,
increasing the chance of the box-cart running off course.

the end of the ramp, with the box-cart wheels pointing straight ahead and turned

45◦ to the left, and with the correct and incorrect object model. “Correct object”

model refers to the physics model of the box cart matching the actual configuration

of the box cart. “Incorrect object” model refers to the physics model being the

opposite of the actual configuration of the box cart. That is, the robot thinks the

box cart wheels are turned while in reality they are straight and vice versa. This is

done to demonstrate the importance of the robot having an accurate internal model

of an object to successfully complete the task. In total, this results in eight different

test scenarios.

For each test scenario the task is performed eight times. Table 6.1 shows the

success rate of knocking down the cylinder for the different scenarios. Additionally,

for each iteration we recorded the predicted distance of the box-cart from the target

peg, calculated using the simulated object model. We also recorded the distance

between the box-cart and the cylinder after it has rolled down the ramp and come

to a stop. A distance of 0 was recorded if the cylinder was knocked down by the

box-cart. This data demonstrates the importance of an accurate model to describe

the object to plan and complete the task. These results are summarised in Figure

6.4.3.

These results clearly demonstrate the importance of learning the correct ob-

ject physics model, which allows accurate prediction of action outcomes and task

planning. When the robot had an incorrect model of the object it was unable to

accurately predict the action outcomes and successfully complete the task even once.
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Figure 6.4.3: Predicted and actual results of using a box-cart to knock down an
out of reach cylinder, expressed as a distance between the box-cart and the target
cylinder. The result distance is the smallest distance between the cylinder and the
box-cart after it comes to rest. The errors bars represent the standard deviation
across eight repeated iterations of each scenario.
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It should be noted that when the cylinder is in position B, the lower success rate

is due to the longer distance between the cylinder and the end of the ramp. The

further the distance the larger the drift of the box-cart trajectory resulting from

positioning errors and small variations in the table and ramp surface.

6.5 Discussion

We have presented a general method for a robot to determine hidden properties of

an object by building a predictive model of the object using experimentation and

simulation. A simulator is used to calculate the outcome probabilities of the actions

that the robot can perform on an object, as well as to determine which is the most

informative. The expected KL divergence is used to determine the information gain

of an action. By choosing the most informative action, the robot can learn the

model of the object in a minimum number of experiments.

We have presented both a generalised algorithm as well as several concrete ap-

plications of the method. We have demonstrated the robot determining the centre

of mass of an object, as well as learning the wheel configuration of a box-cart. We

have demonstrated the generality of our method by using it to model the behaviour

of another robot responding to outside stimuli. Finally, a learned object model is

applied to a simple tool use task in which the robot uses the object to plan and

accomplish a goal.

It must be noted that some of the results of the concrete system implementations

showed a higher than expected variance in terms of the robot’s confidence distribu-

tion over the potential object models. This is likely due to the simplified noise model

used during action simulation, as compared to the real world noise model. When

building the action probability models we typically used a simple linear Gaussian

noise model. However, in the real world the noise is, in many instances, highly

non-linear and non-Gaussian. For example, one of the most common error modes

during the Centre of Mass Experiment was for the robot to place the object too
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low, resulting in the bottom of the object striking the table surface. This would, in

turn, shift the object in the gripper, changing its orientation significantly. This type

of noise is not accounted for during simulation and would require a more detailed

simulation, including simulating the robot arm and its grasp of the object. We leave

this for future work.

6.6 Future Work

The work presented in this chapter sets out a general method for determining an

object’s properties, which can then be used for further task planning and prediction.

However, there are several areas for improvement that can be addressed in future

work.

First, the method we have presented is limited to classifying an object into one of

several pre-determined models. These models are discrete, finite and fixed. However,

many of the properties that define the nature of an object are inherently continuous

values. For example, the coefficient of friction of a surface, or the location of the

centre of gravity. We may discretise the values as an approximation, but this may

result in a very large number of potential models, which would in turn result in a

large computational load to simulate all of the actions on all of the models. This

issue would be especially prevalent when considering a many-dimensional model of

an object, as the number of discrete states would scale exponentially with the number

of dimensions. A potential approach to this problem is to adapt the presented

method to perform an optimisation search through the continuous parameter space

to determine the most accurate object model.

Likewise, the set of possible actions that the robot can perform is predefined and

fixed. A possible improvement is to allow the robot to dynamically add new actions

to choose from. It may be able to use information about the quality of existing

actions to generate new instances of increased quality, while rejecting ones with

a low expected information gain. This may be increasingly important for action
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models with a large parameter space. The models used in our experiments were

of low dimensionality, described by only two or three parameters. However, for

more complicated models with many parameters, providing sufficient coverage of

the parameter space may not be feasible with a fixed predetermined set of actions.

Third, the result space of each action is restricted to being finite and discrete in

the form of a fixed number of result labels. This is essentially a method of function

approximation of the underlying probability distribution over the resulting world

state after an action is performed. The discrete and finite nature of the function

approximation simplifies the update of the confidence over the potential models dis-

tribution, as well as simplifying the calculation of the expected information gain.

However, discretisation leads to a potential loss of information. A future improve-

ment is to move to some form of sampling method for representing the probability

distribution over the result world states.

Finally, we have only demonstrated a very simple planning and tool use task

using the learned object model. In this task the action performed by the robot

was predetermined ahead of time, the only planning involved was to determine

the parameters for the action (where to release the box-cart). This is sufficient to

demonstrate the predictive qualities of the learned model, but for more complex tasks

and actions a more comprehensive planner (eg: STRIPS [Fikes and Nilsson, 1971])

should be used. Additionally, a potential future direction is to use the learned

quantitative model of the object to learn a higher level qualitative model, this would

improve model generalisation and planning of complex actions [Bobrow, 1984].
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Chapter 7

Conclusion and Future Work

In this thesis we have presented methods for a robot to learn the various object

properties required to interact with and use an object effectively. With these meth-

ods, the robot is able to learn the object’s appearance in a complex environment,

reconstruct its shape and use the appearance model to recognise and localise the

object in a scene. These skills allow the robot to then manipulate and experiment

with the object to determine a predictive model of the properties of the object. The

combination of these skills enables the robot to progress from encountering a pre-

viously unknown object, to being able to use the object as a tool to accomplish a

task.

We have presented a method for effectively segmenting object image features

from the background. Long term tracking of object SIFT features, combined with

robot induced object motion, enables the robot to use the feature trajectory data

to separate the object’s features from a cluttered and dynamic background. In this

way the robot can autonomously learn an appearance model of a novel object, which

can then be used to recognise and localise the object in a scene.

To recognise and localise an object, we have presented a method of matching

SIFT features from a learned database of object features to scene features. We use

feature geometric properties and feature description vectors concurrently to per-

form the match, as opposed to existing methods that perform two separate feature
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matching stages. By doing this we attain a higher number of feature matches, as

compared to nearest neighbour matching, as well as improved efficiency in some

circumstances.

We then combined the object feature segmentation and matching methods with

existing 3D reconstruction techniques to build a system for a robot to autonomously

learn the full 3D shape and appearance model of the object. This is done by stitching

together many separate object views, each of which consisting of the object SIFT

features and a dense surface point cloud.

The learned object appearance and shape model allows a robot to effectively

recognise and localise the object in a scene from all aspects, as well as to plan grasp-

ing and manipulation actions. The robot uses these skills to perform experiments

to build a model of the object’s physical and internal properties. The robot plans

and rehearses actions internally using a simulator and then carries out the most

informative experiments on the object. The learned model is then used to plan and

complete tool use tasks using the object.

Future Work

There is a wide scope for future work in the topics covered in this thesis. We have

detailed in the individual chapters potential areas for future work directly related

to each topic.

The feature matching algorithm can be improved by extending it to other local

image feature and interest point detectors (eg: SURF [Bay et al., 2006]). Addition-

ally, there is scope for optimising the various parameters and thresholds used in the

feature matching process.

The object feature segmentation method can also be extended to other types of

features, as well as improving the feature tracking and arm feature filtering meth-

ods. For the feature segmentation, we track scene features while moving the target

object with the robot arm. We use a lightweight approach for tracking a feature

between frames. We can improve this by using a Bayesian tracking method, taking
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into account feature velocity, position, and description vector to correlate features

between frames.

The object shape reconstruction can be improved by incorporating a loop closure

technique for stitching together the individual aspects of the object’s shape. In

addition to this, the directions from which the robot observes the object can be

designed to optimise the amount of surface shape information gained.

There are numerous avenues for future work in the area of robot active learning

of object properties. First, the discrete and pre-defined object models and available

robot actions can be improved to be dynamically generated from the continuous

parameter space. The experiment result function approximation, in the form of

discrete result labels, can be replaced with a more accurate sample based function

approximation. We can improve the noise model, used in simulation, to take into

account non-Gaussian and non-linear sources of experiment uncertainty.

In addition to these areas of possible improvement, other avenues for future work

include how a robot can initially detect a new object in a scene, and how the final

learned object model can be used for planning of tool-use tasks. In our overall

system, we do not address the issue of how the robot can initially detect and grasp

a new object in a scene. We assume that the robot starts off with the object in its

grasp. There are various possible approaches to this problem, for example the robot

can detect areas of irregular displacement on a flat tabletop surface and use this as a

hint that it may be an object. Finally, the learned model, encapsulating the physical

and internal properties of the object, should be incorporated into a higher level

planner, such as STRIPS [Fikes and Nilsson, 1971]. This would allow for effectively

planning complex actions, using the object to accomplish a wide variety of tasks.
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Appendix A

Implementation System Design

In this section we describe some of the implementation details of the object learning

system that was used for this dissertation. The purpose of this section is to provide

a brief overview for anybody trying to reuse the software source code used to obtain

the results presented in this dissertation. The description presented in this section

should be read in combination with the source code.

Our system is written mainly in C++ in a Linux environment. The interface

that the system presents is in the form of a text-based console. In this console, the

user/developer can invoke various commands. These commands typically execute a

particular robot action and store the results in a file. These actions can be chained

together to perform the object learning and interaction tasks described in the main

body of this dissertation. A general overview of the system design is given in Figure

A.0.1.

The system is designed in such a way as to minimise the time cost of testing

a change to an algorithm at a certain point in the computation pipeline. Opera-

tions such as grasping and moving around an object with the robot arm can take a

significant amount of time, in addition to the low level processing that has to take

place afterwards (eg: extracting SIFT features from every frame). It does not make

sense to have to perform these actions again when testing changes to higher level

parts of the algorithm (eg: stitching together object views). We therefore set up the
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Figure A.0.1: A system diagram overview of our implementation.

system to function like a pipeline, with every stage outputting the results to a file,

and accepting a file as input from the previous stage (see Figure A.0.2).

A.1 Manipulation System

The manipulation system that we used consisted of a Denso 6-axis VP-G series arm1,

and a simple gripper built from Dynamixel servos 2. To interface with the Denso arm,

we ran a controller script on the robot controller. This script contained a loop that

continuously waited for a command request on the incoming communication channel.

Some of the commands had input parameters (eg: set joints to particular angles),

others had output parameters (eg: query the current joint positions). To interface

with the Dynamixel servos we sent commands over the serial port, according to the

Robotis DXL API specifications 3.

We abstracted away the details of the hardware communication protocols by
1http://www.densorobotics.com/products/vp-g-series
2http://www.robotis.com/xe/dynamixel_en
3http://support.robotis.com/en/software/dynamixel_sdk/api_reference.htm
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Figure A.0.2: An outline of the process pipeline to generate the object shape model.
At each stage the system processes the data available for a given object from a file,
and outputs the next stage into an output file. In this way the pipeline process
can be stopped and started at every stage without having to recompute all of the
previous steps.
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Figure A.1.1: Outline of the manipulator controller system.

using a dedicated Arm Server. The Arm Server ran on a computer that was directly

connected to the Denso arm and the servo serial controller. This server waited for

clients to connect over the network, and would provide an abstracted interface to

control the arm and gripper. For example, the Arm Server would accept a command

to close the gripper and would then translate this into appropriate servo commands.

Another advantage of this system is that it allowed control of the arm and gripper

without being physically connected to them (eg: over a wireless network). An

overview of the manipulator controller system is shown in Figure A.1.1.

For inverse kinematic calculations we used the Orocos KDL library 4. This is

despite the fact that the Denso controller provides an inverse kinematics engine

itself. This is because the Denso controller had undesirable behaviour if the arm

was commanded to move to a point that was outside of its work space. Instead of

sending back an error or a similar behaviour, the controller would perform a hard

shutdown, which required manual intervention to reboot the robot arm. Instead

we used a software based inverse kinematics engine on the client, which could try

various different points to move the arm to, if some of them could not be reached

by the arm.

A.2 Vision System

The vision system is structured in a similar way to the manipulation system de-

scribed above. In the initial experiments we used the Bumblebee2 5 stereo camera,
4http://www.orocos.org/kdl
5http://ww2.ptgrey.com/stereo-vision/bumblebee-2
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Figure A.2.1: Outline of the camera controller system.

while in later experiments we switched to the Kinect depth sensor 6. We chose to

implement a separate Camera Server that would abstract away the hardware-specific

protocols from the rest of the system. This Camera Server runs on a computer that

is directly connected to the camera hardware, and provides a network-based inter-

face to clients. The Camera Server connects to the hardware and then waits for a

connection. When a connection is made, it streams the raw image data over the

network to the client. One of the outcomes of this system design is that the client

computer does not depend on the camera drivers. The Bumblebee2 camera only

has Windows drivers, and does not work on Linux systems. By using the Camera

Server as an intermediary, we could have a Linux client interfacing with the camera.

An overview of the vision system is shown in Figure A.2.1.

A.3 Startup Procedure

The startup procedure when running a console command that uses both the vision

system and the manipulation system is as follows:

1. start the Denso robot controller pendant,

2. select the PRO1 program and start it,

3. start the Arm Server on a PC connected to the Denso robot arm and the grip-

per servos (this should connect to the PRO1 controller program and initialise

the servos),
6http://msdn.microsoft.com/en-us/library/jj131033.aspx
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4. start the Camera Server on a PC connected to the camera,

5. launch the client program (this should connect to both the Arm Server and

Camera Server at startup),

6. start a pipeline command from the client console (eg: “generate_movement

box1”).
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Appendix B

Feature Matching Learning

Corpus

Displayed below are images that were used in Chapter 3 to determine the distribution

of SIFT description vector distances between non-matching features. Images sourced

from the Amsterdam Library of Images1.

1http://staff.science.uva.nl/~aloi/
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Appendix C

Learned Object Feature Database

Evaluation Images

The images below are a non-exhaustive set of stereo image pairs used to test the ef-

fectiveness of the learned object feature database, generated using the segmentation

method presented in Chapter 4.
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