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ABSTRACT 

A theoretical treatment of various electrodiffusion regimes for 

electrolytes and membranes was given. One dimensional analytical 

solutions to the Nemst-Planck and Poisson equations for the small signal 

a.c. response of an electrolyte were found for both planar and spherical 

symmetry and its four terminal electrical impedance was calculated. 

When the voltage electrodes were situated outside the double layer of the 

current electrodes, the impedance was an oscillatory function of 

frequency at low frequencies. The magnitude of the variations tn 

impedance and the frequencies at which oscillations occurred were 

determined by the diffusion constants of the ion species, the dimensions of 

the system and the ion concentrations. 

Ion concentrations, electric field and ionic currents were also 

oscillatory functions of position. Calculations suggest the possibility of 

large errors in ion current measurements through membranes, if these 

currents are inferred from measurements in the external electrolyte. 

Numerical solutions to the Nemst-Planck and Poisson equations were 

found for a pore of arbitrary shape, but with cylindrical symmetry in an 

electrolyte. These were used to model the small signal a.c. response of a 

cylindrical pore and an insulating membrane. It was found that the 

conductance of the pore was considerably lower than the equilibrium 

value, while the capacitance was much greater than the geometrical value 

for both the pore and the insulating membrane, especially at low 

frequencies. Other non-geometric effects were modelled: i) Including a 

Born energy term restricted the occupancy of the channel and hence 

reduced channel conductance. It also increased the effective thickness of 

the membrane, resulting in a lower channel capacitance. ii) A channel 

which is impermeable to one ion species significantly reduced the current 
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of the counter-ion through the channel, resulting in a marked decrease in 

channel conductance. 

In all cases the magnitudes and phases of ion concentrations, electric 

fields, ion fluxes and impedances were computed at all points in space for 

frequencies above and below the characteristic frequency of the system. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Mental processes (such as my writing and your reading of this thesis) 

involve complicated electrochemical computers whose active elements are 

tiny nonlinear conductors in the membranes of nerve cells: Na+ and K+ 

channels. These elements are not nearly as well understood as the 

transistors which are the active elements of less powerful electronic 

computers (whose operation was also involved in this thesis, as later 

chapters will attest). 

This work was inspired by biophysics and its application to biological 

membranes. It began as a theoretical analysis of the questions: What are 

the electrical properties of ion channels and how do they affect 

membranes? These questions are of great interest to electrophysiologists 

with recent contributions from molecular biophysicists. Yet in this area 

some basic electrical questions remain unanswered because it is often 

difficult to interpret apparently simple electrophysiological 

measurements. So the first few chapters of this thesis address more 

fundamental theoretical questions of how salt solutions behave and how 

they interact with electrodes. 

Although these questions were inspired by biophysics, much or all of 

the approach used will be of much wider usefulness, and may have 

applications in electrochemistry and in artificial membrane research. 

Work in this thesis may prove useful in such diverse areas as the 

performance evaluation of electrochemical cells and separation 
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technologies commonly used in food processing. 

Put in the most general way, this thesis is a theoretical analysis of the 

electrical properties of i) electrolyte solutions, ii) electrolyte solutions in 

contact with electrodes and iii) membranes with holes and electrically 

interesting structures. 

The power of electrical techniques, used in situ, suggests that one 

should use them to obtain structural details. However, until the present 

time little information is available. Much progress has been made in the 

development of steady state ( d.c. or zero frequency) models of transport 

mechanisms (see for example Levitt, 1986 and 1991, Jordan, 1986 and 

Lauger, 1985). Relatively little progress has been made in the analysis of 

transient or a.c. response, even though such analysis may be able to yield 

significant information. 

In studying the electrical behaviour of biological membranes and 

conducting channels, electrical measurements such as patch clamping and 

impedance spectroscopy are obvious tools for obtaining information about 

the electrical behaviour and electrical structure of these systems. Patch 

clamping is the study of the electrical properties of a very small region of 

membrane which may contain one or a few channels. Impedance 

spectroscopy is the measurement of the frequency dependence of real and 

imaginary parts of impedance for comparison with calculations based on 

known or hypothesized structures. Patch clamping has many advantages: 

it has sufficiently high resolution to allow detection of the tiny current 

pulses through a single ion channel and it can be used in several different 

configurations. Recently, patch clamping has revealed some of the 

detailed behaviour of individual channels. However, it yields relatively 

few data about any given channel. Impedance spectroscopy on the other 

hand, produces a whole spectrum for each experimental condition. The 

disadvantage of using impedance spectroscopy is its lack of resolution in 
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the plane of the membrane. So far little or no use has been made of a.c. 

techniques and impedance spectroscopy in patch clamping. However, 

combining the two techniques has potential, since impedance spectroscopy 

provides a powerful technique for structural analysis. It should be noted 

that before applying the a.c. signal, the membrane patch would have to be 

suitably voltage clamped, so that the ion channel was either permanently 

closed or, where possible, open for a sufficiently long time. The time has 

almost arrived for the combination of these techniques since i) the patch 

clamping technique has become well established and refined, ii) very 

accurate impedance spectrometers have been developed and iii) almost 

enough computing power is available for sufficiently detailed modelling 

of channels. 

This thesis is a theoretical analysis of the electrical response of 

membranes and the surrounding electrolyte solution to small a.c. signals. 

The a.c. approach has two advantages over the steady state models: 

1) Exact algebraic solutions to the Nemst-Planck and Poisson 

equations are possible for the case of one dimensional electrolyte systems. 

2) Additional information can be obtained from measurements of 

the impedance spectrum that could provide information about the 

structure of ion channels. 

The remainder of this chapter is used to give a brief description of 

cell membranes, their electrical properties and patch clamping. 

1.2 MEMBRANES 

Membranes form a barrier between the interior and the surrounding 

environment of all living cells. Hence, they allow different environments 

to exist in the interior and exterior of the cell (e.g. concentration 

3 



differences) and control both active and passive transport of ions, 

nutrients and waste products into and out of the cell. Recently, intensive 

work on artificial membranes has attempted to reproduce these functions 

in artificial membranes. 

There are many cell types which perform different functions. 

However, all cell membranes consist of a lipid bilayer, typically 2 to 5 nm 

thick, into which protein molecules are embedded to various extents, as 

shown in Figure 1.1. Membranes and their embedded proteins form a 

dynamic structure, of which the lipid bilayer is a two dimensional fluid. 

The most common types of lipid are phospholipids (mammalian cells 

contain four major types), sterols and glycolipids. The basic structure of a 

lipid has two components. The first is a hydrophilic polar head group and 

the second contains hydrophobic hydrocarbon chains (usually two per 

polar head group). In the bilayer the chains meet near the central plane 

and the head groups are directed towards the surrounding solution. Lipid 

bilayers can form spontaneously in aqueous media due to their 

amphipathic nature. They are highly impermeable to ions and charged 

molecules, due to the low dielectric constant of the central hydrophobic 

region, i.e. they have low conductances (of the order of mS m-2, 

depending on electrolyte composition and concentration, Smith et al., 

1984) and many different ion species cross the cell membrane through 

channels formed by protein molecules spanning the bilayer. The passive 

transport that occurs primarily through channels, greatly increases the 

conductance of biological membranes to values between 1 and 

100 S m-2. 

Studies of proteins inserted into artificial bilayers suggest that these 

protein channels only function fully in the presence of certain 

phospholipids. However, the functional significance of different lipid 

types is still largely unknown. The lipid composition of the inner and 
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FIGURE 1.1 

Figure 1.1. A schematic diagram of the fluid mosaic model of a 
membrane (from Israelachvili, 1978). The large structures 
represent channel proteins embedded in the lipid bilayer. 



outer monolayer of cell membranes differs in some cases, such as the 

membranes of human red blood cells (see Alberts et al., 1989). This 

asymmetric structure might assist in maintaining the correct orientations 

of proteins. 

1.3 ION CHANNELS 

Channel proteins form aqueous pores through which ions can pass. 

The transportation through open channels is passive and ions diffuse 

through the aqueous interior of the protein due to electrochemical 

potential differences between the cell's interior and exterior. Most 

channels in animal cells are highly ion selective. A description of some of 

the better known channel proteins is given in Chapter 2. 

Almost all animal cells maintain a potential difference across their 

cell membranes at equilibrium, with the inside of the cell being usually 

more negative than the outside. This is called the resting potential. The 

electric field across membranes is enormous, since membranes are very 

thin. For example, transmembrane potentials are typically in the range of 

10 to 100 mV while membrane thickness is of the order of 5 nm, which 

results in electric fields of the order of 107 V m-1. These fields are 

perhaps sufficiently strong to play a role in the transition of channels 

from the non-conducting (closed) to conducting (open) state (Honig et al., 

1986). 

1.4 PATCH CLAMPING 

One of the most successful techniques for studying the electrical 

properties of ion channels in membranes is patch clamping (see Neher and 

Sakman, 1992; Neher, 1992; Auerbach and Sachs, 1984 and further 

5 



details in Chapter 2). With this technique, single channel currents can be 

measured with a resolution of fractions of picoamperes. 

Ion channels open and close in response to stimuli such as changes in 

transmembrane potentials and ligand binding. Hence single ion channel 

currents occur as a series of constant amplitude current steps as shown in 

Figure 1.2. These are in the range of picoamperes, except for channels 

with substates which lead to multiple conductance steps. The opening 

frequency distribution in these cases are probabilistic (Auerbach and 

Sachs, 1984 ). The conductance level obtained from the amplitude of the 

current pulses is a characteristic unique to each type of channel. 

Conductance levels are typically anywhere from tens to hundreds of pS. 

They are often used to identify the channel type in individual membrane 

patches under investigation. These unit conductances for many channel 

types appear to be species invariant. 

N onnally patch clamping will only reveal channels with fluctuating 

currents. This is because of the necessary initial arbitrary zeroing of the 

current and voltage scales in order to allow detection of the current 

pulses. These can be very small compared to the d.c. offsets present. ill 

biological membranes, d.c. or steady state currents as well pulsed currents 

are present. Even though the treatment in Chapter 3 and 4 concentrates on 

the fluctuating current, the numerical model of Chapter 6 includes the 

additional possibility of modelling steady currents. 

1.5 SCOPE OF THE THESIS 

This thesis models passive ion transport through open channels or 

pores, using a.c. response theory to determine the impedance of the 

channel. The a.c. signals considered are assumed to be small, and hence 

do not cause action potentials to occur. In addition, gating mechanisms or 
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FIGURE 1.2 
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Figure 1.2. A schematic diagram of typical current recordings for 
single channel patch clamps. Channel opening times are typically of 
the order of milliseconds and the amplitude of the current pulses is 
of the order of picoamperes. 



carrier facilitated transport are not considered in this work. 

Models of ion transportation which use the small signal a.c. response 

complement information obtained through steady state models, which 

have been extensively used to calculate channel current voltage 

characteristics and conductances of channels. Steady state models have 

already been developed by various authors ( e.g. Levitt, 1991, Lauger, 

1987 and Jordan, 1986) 

To understand how ions pass through aqueous channels, one has to 

first consider how ions pass through any aqueous medium. This is 

nontrivial, because the positive and negative ions interact and since, in 

general, the ion species have different diffusion constants. Their 

behaviour is particularly complicated when boundaries - electrodes - are 

imposed. Hence in the first part of this thesis, the electrical properties of 

electrolyte solutions only are investigated. Chapter 3 gives analytical 

solutions to the small a.c. signal response of multi-ion (2 or 3) electrolyte 

solutions in the simplest one dimensional geometry possible: planar 

geometry. 

Ion currents through membranes can be measured directly by 

positioning a microelectrode on either side of the cell membrane. This is 

however not possible for some cell types without unacceptable damage to 

the cell. Hence methods have been developed to determine local ionic 

currents solely from electrochemical measurements in the external 

electrolyte. The membrane currents are then assumed to equal these local 

ion currents, once the necessary geometrical correction have been made. 

However, in many experiments of this nature, it is quite likely that the 

ionic currents will vary with distance away from the membrane, 

especially for time-varying measurements. Hence these techniques may 

lead to significant errors. This problem is addressed in Chapter 3. 

Channels in membranes have cross-sections with dimensions in the 
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order of nm. Hence they are very small compared to the size of most 

measuring electrodes, which are usually situated at macroscopic distances 

away from the membrane. In order to pass through the channel, ions in 

some cases have to diffuse to the mouth of the channel from a large 

reservoir of electrolyte solution. The region of electrolyte solution 

around the channel mouth is therefore often modelled as a hemisphere 

(e.g. Langer, 1976 and Levitt, 1987). Hence in Chapter 4, the 

electrodiffusion equations are solved for spherical geometry. This also 

allows investigation of geometrical effects, by comparing the solutions in 

spherical geometry to those for the planar geometry of Chapter 3. 

Exact algebraic solutions to the Nemst-Planck and Poisson equations 

appear to be possible only for one dimensional systems. However, ion 

channels through membranes are complicated three dimensional 

structures. Consequently, in Chapters 5 and 6 a numerical approach is 

developed to solve the electrodiffusion equations. These solutions have the 

advantage of allowing arbitrary channel geometry and including other 

important effects such as the surface charge of channels, effects due to the 

dielectric discontinuity and ion selectivity. 

Chapter 7 presents the conclusions and suggestions for further work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The electrical properties of cell membranes are of fundamental 

importance in physiology and biology. Since membranes are necessarily 

surrounded by electrolyte solutions, measurements of membrane 

properties must include effects of the electrolyte. Furthermore, 

measurements are made with electrodes which themselves have electrical 

properties. Hence, the first part of my thesis investigates the electrical 

properties of electrolyte solutions, in particular, their a.c. impedance. 

Theories of the a.c. impedance of electrolytes are commonly used in 

electrochemistry, in order to find equivalent circuits. The reason for 

introducing equivalent circuits is this: if the equivalent circuits are simple 

and if they are also good approximations of the system, they enable 

simple calculations of the system response. It is not always clear, 

however, that published equivalent circuits satisfy these criteria. 

Any charged surface in an electrolyte solution attracts counter-ions 

and repels co-ions, thus forming a double layer. Some of the theories of 

the electrical properties of double layers are briefly discussed in this 

chapter. 

Chapters 5 and 6 give a description of a numerical model of the 

electrical properties of ion channels through membranes based on the 

finite difference version of the Nemst-Planck electrodiffusion equations. 

In biological membranes, channels are formed by protein molecules 

which span the lipid bilayer. The structure of these proteins determines 
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the characteristics of channels, so a brief review of protein structure and 

function is included. Much progress has been made in recent years in 

modelling ion channels. However, most of the conventional theories 

model steady state systems, whereas the approach presented in this thesis 

is to investigate the small signal a.c. response of ion channels. 

The nature of this study poses problems for the review of relevant 

literature. A thorough review of electrolyte theory, double layer studies, 

permeation, membrane pores and channels would produce a volume 

larger than this thesis in itself. On the other hand, the material which is 

directly relevant to the thesis - a.c. electrolyte and pore studies, is very 

scarce indeed. Therefore a brief review of background material will be 

presented, along with more detail on the relatively few directly related 

articles. 

2.2 A.C. ELECTRODIFFUSION THEORY OF 

ELECTROLYTES 

Electrical measurements of electrolyte solutions almost always 

involve electrodes, so it is of interest to determine the electrical 

properties of an electrolyte in contact with an electrode. Although the 

equilibrium distribution of ions and potential profile of the double layer 

formed near an electrode have been studied extensively, relatively few 

analyses of the a.c. response of the double layer appear to be available. A 

simple system is considered where it is assumed that any molecular effects 

can be neglected, and that the electrode is blocking or ideally polarizable, 

i.e. impermeable to ions. 

The polarization impedance of a single blocking electrode in an 

electrolyte solution containing an arbitrary number (N) of ion species was 

calculated by DeLacey and White (1982) as follows. The system was 
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described using three equations: Poisson's equation, the continuity 

equation and a form of the Nernst-Planck equation equivalent to that used 

in this thesis, which represents the balance of the hydrodynamic drag and 

the electrical and thermodynamic forces on each ion species. 

The effect of applying a small a.c. voltage of frequency ro/2rc to the 

system was investigated. The amplitude was chosen so that all second and 

higher order terms of the electric field could be neglected. An analytical 

solution for the potential difference of the double layer of one infinite 

electrode was obtained for zeta potential (~), ~ = 0. This was then used 

to determine numerically the polarization impedance I of the double layer 

(Ze) for cases of non-zero zeta potentials2. The series resistance (Rs) and 

capacitance (Cs) of the double layer as a function of frequency were then 

calculated for different values of~ and electrolyte concentrations (c)3. 

DeLacey and White found that Rs approached a limiting value with 

increasing zeta potential. This is consistent with the non-linear Gouy­

Chapman theory, which predicts that the potential in the double layer at 

very high ~ varies with ~ only over a very thin region. Cs also increased 

with increasing ~' but showed no limiting behaviour. The behaviour of 

the double layer impedance with increasing concentration was found to be 

consistent with the concentration dependence of the Debye length4 (see 

1Note that the Stem layer, i.e. the layer of adsorbed charge on the electrode surface, was 

neglected in the polarization impedance calculations. 
2The zeta potential is defined as the electrostatic potential at the surface of shear between 

the solution-associated and the stationary part of the double layer" for electrophoresis 

measurements (e.g. Cevc, 1990). This is a pragmatic definition inspired by 

electrophoretic measurement of surface charge. 
3For a series combination, Rs and C5 are related to Ze by: Ze = Rs + i/(roC5). This 

choice is arbitrary and DeLacey and White (1982) give the alternate expression for the 

total impedance in terms of a parallel resistance (Rp) and capacitance (Cp). In this case, 

Ze = (Rp + iroCpRp2)J[1 + (roCpRp)2]. The latter defmition is used in this thesis. 

4The Debye length gives an approximate range of the electric field and ion concentration 
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section 2.4 ). Rs was approximately proportional to c-112, while Cs 

increased as approximately cl/2. 

The double layer impedances for several electrolytes (KCl, 

Ba(N03)2, LaCl3 and K4Fe(CN)6) were determined for a fixed ionic 

strength and value of ~ to investigate the effect of ion valency on Rs and 

Cs. The total number of counter-ions in the double layer increases with 

increasing valency, as predicted from non-linear Gouy-Chapman theory. 

Furthermore, the higher valency ions can carry more current for a given 

applied field. The observed decrease in Rs and increase in Cs with 

increasing valency was mainly attributed to these two effects. 

DeLacey and White (1982) also concluded that the marked sensitivity 

of the total double layer impedance to valencies could have contributed 

significantly to the reported irreproducibility of early electrode 

impedance measurements. 

Although their treatment was more general in terms of the number 

of ion species and range of zeta potentials than the system described in 

Chapter 3, it differs in other ways: DeLacey and White calculated the a.c. 

impedance of the double layer of a single infinite electrode in an infinite 

electrolyte solution. Calculations of Chapter 3 were for the a.c. 4 

terminal impedance of a finite electrolyte between two infinite electrodes, 

i.e. the impedance was calculated between two points at an arbitrary 

distance away from the current electrodes. There is, however, an overlap 

for one particular case and a brief comparison will be given in Chapter 3. 

The characteristics of electrochemical cells are commonly evaluated 

using a.c. impedance measurements (see for example Bai and Conway, 

1990, Bates and Chu, 1988; Bohnke and Bohnke, 1990; Morita et 

a/.,1992; Muragesamoorthi et al., 1991 and Ratnakumar et al., 1990). 

However, published theoretical treatments of the a.c. impedance of liquid 

gradients in the double layer. 
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electrolytes used to interpret these measurements differ from the 

approach used in this thesis. For example, one conventional method is to 

fit impedance data to well established equivalent circuits, such as the 

Randles circuit, to extract the time constants for the faradaic and 

diffusion processes of the system (VanderNoot, 1991). The impedance of 

simple redox reactions has been calculated for various electrode 

geometries using simple diffusion equations. The presence of excess 

support electrolyte is assumed, so that electrical forces may be neglected 

(Fleischmann et al., 1991). 

Macdonald has published many papers on the small a.c. response of 

both solid and liquid binary electrolytes of arbitrary valencies and 

mobilities for various boundary conditions and approximations (e.g. 

Macdonald, 197 4 and Macdonald and Franseschetti, 1978). Unlike the 

approach used in this thesis, Macdonald concentrates on finding 

equivalent circuits of the different electrolyte systems, in some cases 

including frequency dependent elements. (e.g. MacDonald, 1987). If the 

equivalent circuit is sufficiently simple it can provide a useful empirical 

characterisation of the system's behaviour. In some cases a circuit analog 

can be intuitively useful. For example the potential difference across an 

electrode/electrolyte system is, in some cases, equal to V dl + V s, where 

V dl is the voltage drop across the double layer and V s is the voltage drop 

across the bulk solution. Hence the total impedance may be modelled by a 

double layer impedance in series with an electrolyte impedance. However, 

equivalent circuits with frequency independent elements may become 

misleading, especially for mathematically very complicated analysis, since 

they are at best a representation of the system and not a physical 

equivalent thereof. 

All of Macdonald's papers deal with the total impedance measured 

between two electrodes (i.e. a two terminal impedance) which is 
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dominated by the impedance of the double layer near the electrodes. In 

Chapters 3 and 4, the focus will be on the impedance between two voltage 

electrodes situated in the electrolyte solution outside the two double 

layers. This effectively excludes the impedance of the double layers. 

An alternative technique to a.c. impedance measurements is to 

investigate the transient response of an electrolyte solution to small pulses 

of charge or voltage steps. This has also been calculated using the Nemst­

Planck equations (Buck, 1969). However there are technical problems 

associated with analysing transient response data: fourier transform 

algorithms use sums of exponentials, hence smaller components often 

cannot be distinguished from noise and large time constants may be 

misinterpreted as systematic shifts or errors. 

Two terminal impedance measurements essentially measure the 

double layer plus electrolyte. To investigate the electrolyte solution alone 

usually requires four terminal measurements using separate electrodes to 

measure the current and voltage. In order to achieve this, voltage 

electrodes have to be very small so that they do not perturb ion diffusion. 

They also have to have a very large impedance, so that they do not change 

the current and hence do not introduce an additional potential difference. 

The importance of testing the electronic response of the measuring 

instrument has been emphasized by VanderNoot et al. (1990). All 

impedance calculations given in this thesis are for four terminal systems. 

They may be reduced to two terminal results simply by setting the 

position of the voltage electrodes equal to that of the current electrodes. 
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2.3 MEMBRANE IMPEDANCE 

The small a.c. signal response of lipid bilayers (e.g. Ashcroft et 

al.,1983 and Laver et al., 1984) and to a lesser extend that of living 

membranes have been widely studied, using impedance spectroscopy (e.g. 

Chilcott, 1988 and Coster and Smith, 1977). In principle, these impedance 

spectra can provide much structural information since they provide many 

data for any one experimental condition. However, there remains a 

problem in the interpretation of these results. Most conduction is thought 

to occur via pores or transient holes in lipid bilayers and through ion 

channels in living membranes. To date there has been no satisfactory a.c. 

theory to model the electrical properties of these pores or channels. This 

thesis attempts to provide such a theory. 

2.4 DOUBLE LAYER THEORY OF ELECTROLYTE 

SOLUTIONS 

Electrostatic interactions are of paramount importance for the case 

of charged surfaces in an electrolyte solution. They are also relevant to 

electrolyte solutions between electrodes, as well as to membranes and 

colloids. A combination of Poisson's equation and Boltzmann statistics 

have commonly been used in equilibrium double layer theories. 

At equilibrium the cation (n+) and anion (n-) concentrations in an 

electrolyte solution obey Boltzmann statistics. That is: 

n+ =no Z+ exp(-z+q\jf/kT) 

n_ = no z_ exp( -z-q\jf/kT) 

(2.4.1) 

(2.4.2) 



where: q is the electronic charge, 

11o is the bulk electrolyte concentration 

\jf is the electric potential, 

k is Boltzmann's constant, 

T is the temperature and 

Z+ and z_ are the valencies of cations and anions, respectively. 
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Poisson's equation relates the space charge (p) p = q(z+n+- z-n-) to 

the electric potential (\jf) : 

V2\jf = -p/e (2.4.3) 

Combining 2.4.1 to 2.4.3 gives the Poisson-Boltzmann equation: 

(2.4.4) 

where e is the permittivity of the electrolyte solution. 

Debye and Hiickel (1923) used the linearised Poisson-Boltzmann 

equation in spherical geometry to calculate the activity coefficients for 

non-ideal electrolyte solutions, i.e. the correction to the electrolyte 

concentration which accounts for the influence of the surrounding 

counter-ions on the distribution of ions in solution. They treated the ion 

as a point charge and the charges surrounding it as a uniform ionosphere, 

when calculating the average potential as a function of radial distance. 

Since the concentrations and potentials used in this thesis are low, the 

electrolyte solutions can be approximated by ideal solutions. 

The Gouy-Chapman theory of double layers is one of the earliest, 

simplest and widely used theories and can be found in many reviews and 
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texts (e.g. Feynmann, 1972; McLaughlin, 1989; Carnie and Torrie, 1984 

and Cevc, 1990). In this theory, the potential 'lf(X) in an electrolyte 

solution as a function distance x from an electrode or charged membrane 

surface can be calculated from the one dimensional Poisson and 

Boltzmann equation. The surface is assumed to be planar and infinite, 

which is often applicable because its size is usually much greater than the 

Debye length. 

Solving equation 2.4.4 for 'lf(X) using the boundary conditions: 

\j/(0) = 0 and d'lf/dx = 0 as x approaches infinity gives: 

(x) = 2kT ln (l+aexp(-KX)) 
'I' q 1-aexp(-Kx) (2.4.5) 

where :a= (eq'lf(0)/2kT_l)/(eq'lf(0)/2kT+l) and 

K = [2z2q2n0 /(ekT)] 1/2 is the inverse of an effective screening 

length known as the Debye length. 

For cases where 'lf(X) is small compared to kT 2.4.5 reduces to : 

0' 
'If( X) = - e-KX eK (2.4.6) 

In this theory, the effects of discreteness of charge, the finite size of 

the ions, the inhomogeneities of the charged surface (especially relevant 

to surfaces such as membranes which have low surface charge density) 

and hydration are neglected. Furthermore the equivalence of spatial 

averaging and time averaging is implied. 

To allow for adsorption of ions of finite size at the membrane 

surface, the Gouy-Chapman theory has been extended to include a layer 

of adsorbed or fixed charge known as the Stem layer. Complications of a 
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Stem layer and reactions at the electrodes have not been considered in 

this thesis, since all impedances calculated are four terminal impedances 

and the potential at the current electrode surfaces is consequently not 

required. In addition, confining the study to small signals minimises the 

effects of ion size in activity and dielectric saturation. 

A comparison of modem statistical mechanical theories of the double 

layer by Carnie and Torries (1984) with computer simulations for a 

primitive model of electrolyte solution (i.e. ions are hard spheres in a 

homogeneous dielectric medium) confirmed that despite its simplistic 

approach, the modified Gouy-Chapman5 theory is able to predict 

properties of double layers as accurately as far more elaborate theories 

for a significant range of concentrations and surface charge for 

monovalent ions. Recent experimental tests of the Gouy-Chapmann 

theory, as well as Monte Carlo and molecular dynamics simulations also 

confirm this (e.g. Honig eta/., 1986). 

In the limiting case when the surface potential 'tf(O) is much greater 

than kT/q, rearrangement of Gouy-Chapman's expression for 'tf(O) shows 

that the concentration of the counter-ion at the membrane/solution 

interface is proportional to cr2 (cr is the surface charge density), and is 

independent of the counter-ion valency and the concentration of the bulk 

salt solution. Recently this relation has also been derived from more 

general considerations, hence providing a possible reason for the success 

of the Gouy-Chapman theory, despite its crude approximations 

(McLaughlin, 1989). Cevc (1990) gives criteria for the suitability of 

simple electrostatic theoretical models and more complicated modem 

theories for double layers near membranes. 

5The modified Gouy-Chapman theory is an extension of the simple Gouy-Chapman 

theory, described in this section. It includes with Poisson's equation the effects of ion­

ion and ion-surface interactions via an additional potential term (Cevc, 1990). 
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2.5 STRUCTURE AND FUNCTION OF CHANNEL PROTEINS 

Transmembrane proteins extend across the membrane as single or 

multiple alpha helixes, with hydrogen bonding between overlying peptide 

bonds. Some of these have covalently bonded fatty acid chains extending 

into the bilayer. Proteins on the surface are attached either via a fatty acid 

chain extending into the bilayer or via an oglisaccharide to a minor 

phospholipid. Other proteins are held by noncovalent interactions to the 

surface of transmembrane proteins (Eisenberg, 1984). Unlike lipids, 

proteins are fairly rigid molecules, although parts of them can undergo 

conformational transitions. These conformational changes include i) the 

translocation of charged groups perpendicular to the membrane plane, ii) 

the reorientation of existing dipoles, and iii) the binding of ions, e.g. 

protons to sites near the channel entrance (e.g. Anderson and Koeppe, 

1992). 

The proteins involved in transporting substances across membranes 

can be divided into two groups: channel proteins and carrier proteins. 

2.5.1 Channel Proteins 

Channel proteins form aqueous pores through which ions can pass. 

Transport through open channels is passive. Ions diffuse through the 

aqueous interior of the protein due to electrochemical potential 

differences between the cell's interior and exterior. Many transmembrane 

proteins found in animal and higher plant cells are highly selective to 

certain ion species, due to their structure and the position of fixed 

charged groups. One commonly accepted reason for this selectivity is that 

ions temporarily bind very selectively to charged groups of channel 
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proteins during their passage through the channel (Eisenman and Alvarez, 

1991). 

Proteins determine most of the specific functions of cells, hence the 

type and abundunce of proteins in cell membranes varies considerably. 

Examples of some of the commonly studied channel types will now be 

presented. 

2.5.1a) Gated Channels 

Gated channels open in reponse to a membrane perturbation. These 

perturbations include i) a change in transmembrane potential (voltage 

gated) ii) the binding of a signalling molecule such as a neurotransmitter 

(tranmitter-gated) or an ion, usually Ca2+ (Alberts et al., 1989). Voltage 

gated channels are thought to have "sensors" or charged structures 

intrinsic to the channel protein, which move in response to changes in the 

transmembrane potential (e.g. Honig et al., 1986). This results in 

conformational changes which open the channel to a specific ion species. 

One example, the Acetylcholine receptor (ACH) channel is a well 

known transmitter-gated channel. It is formed by a glycoprotein, 

consisting of five subunits, as shown in Figure 2.1. Two of these subunits 

are identical and each can bind one molecule of ACH. The channel opens 

as a result of a conformational change in the pentameric complex induced 

by the binding of ACH. This transition is not stable and the channel closes 

after approximately one millisecond. The ACH molecule dissociates and is 

hydrolysed by enzymes. The channel then returns to its original 

configuration. ACH receptor channels found in membranes of skeletal 

muscles play a major part in muscle contraction. In this case the ACH 

molecules needed to activate the channel are released from nerve endings. 

Functional acetylcholine channels can be incorporated into artificial 
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Figure 2.1. An illustration of the proposed structure of the 
acetylcholine receptor channel (from Alberts et. al., 1989). It 
consists of five subunits (a,a,~,y,8), two of which (a) can bind an 
acetylcholine molecule. each subunit contains about 500 amino acid 
residues, and the channel weighs approximately 300,000 Dalton. 
The polypeptide chain of each subunit is thought to cross the 
bilayer as 4 a helices. 
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lipid bilayers, enabling the measurement of single channel conductances 

(Montal et al., 1986 and MacNamee et al., 1986). Several models have 

been proposed to describe the arrangement of ACH channels in bilayers, 

based on electron microscopy and X-ray diffraction work. The large 

number of negatively charged amino acid residues at the channel mouth is 

thought to exclude anions from the channel. Only hydrated cations with 

radii less than about 0.65 nm can pass through. However, the channel is 

not selective to cation type, hence the flux of cations depends on their 

electrochemical gradient. 

A second example is the propagation of action potentials along 

neurons and axons. This process involves a number of different types of 

channels. In the resting state the external concentration of sodium ions 

(Na+) is high, whilst the internal concentration of K+ is high on the 

inside. At rest the membrane is more permeable to K+ than to Na+ and 

this results in a transmembrane potential which is negative in the interior 

of the cell. If the magnitude of the membrane potential difference is 

reduced below a critical or "threshold" value, a large influx of Na+ ions 

occurs via voltage gated channels. The influx continues in a self 

amplifying manner until the membrane potential is predominantly 

permeable to Na+ and approaches the Nernst equilibrium potential6 for 

Na+ (typically +50 mV). This process is self amplifying because the 

influx of Na+ further shifts the transmembrane potential to more positive 

6Ions flow into and out of cells depending upon the gradient of their electrochemical 

potential. This is comprised of two major terms: the first is the potential difference (V) 

between the inside and outside of the cell and the second is the concentration gradient of 

the ion species across the membrane. When these two terms balance exactly, i.e. the ratio 

of the internal and external ion concentrations: C/C0 = exp(-V /k:T), the electrochemical 

gradient, and hence the ionic current is zero. The transmembrane potential for this case is 

known as the Nernst equilibrium potential for that ion species, and can be calculated from 

the Nernst equation: V= -kT/q ln(CdCi). 
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values, causing the opening of even moreNa+ channels. 

The permeability of K+ also increases, but more slowly, resulting in 

a net outward flow of K+. This further reduces the potential, until it 

reaches a value close to the resting potential. Since the sodium channels 

have a refractory period of a few milliseconds after the membrane 

potential returns to its original negative value, the system can return to its 

original state via the Na+-K+ pump. This change in membrane potential 

is sufficient to trigger neighbouring membrane patches, enabling signal 

transmission along the axon. Hodgkin and Huxley (1952) were the first to 

develop a model for these action potentials. 

The resting potential of the cell membrane is maintained as follows. 

Na+-K+ pumps actively drive K+ into the cell and Na+ out. The 

permanently open potassium (K+) leak channels, found in the membrane 

of all animal cells, make the membrane predominantly permeable to 

potassium ions. Thus the membrane potential approaches the Nernst 

equilibrium potential for K+, known as the resting potential. This 

potential typically has range of -20 mV to -200 mV, depending on cell 

type. 

Other commonly studied gated channels include the calcium activated 

potassium channel and voltage dependent anion selective channels 

(VDAC). 

2.5.lb) Antibiotics 

Some of the most studied channel proteins, such as gramicidin and 

alamethicin, are antibiotics. These were among the first proteins whose 

structure could be determined completely, since they are small and 

chemically simple compared to other channel forming proteins. They 
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form cylinders (alpha helixes) whose exterior surfaces are lipophilic, 

hence they "dissolve" easily in the membranes of microorganism 

(Gomperts, B.D., 1977 and Wallace, 1990). By dramatically increasing 

cation permeability, they disturb the concentration gradients of cations 

between the cell's interior and exterior, leading to cell death. Unlike 

gramicidin, the conductance of alamethicin is strongly voltage dependent. 

Gramicidin molecules adopt two distinct families of conformations 

designated "channel" and "pore" structures, depending on whether they 

are added to lipid bilayers or organic solutions respectively. The channel 

consists of a dimer: its two monomers are right handed helixes, linked by 

hydrogen bonds between the two N-terminal amino acid groups. When 

the channel closes these bonds break and the monomers are displaced 

laterally as shown in Figure 2.2. The pore is a double helix. (Note: the 

"pore" referred to here is not related to pores through lipid bilayers). 

The gramicidin channel is selective for monovalent cations (alkali metals) 

and its conductance also depends on the nature of lipid used (e.g. Wallace, 

1990). 

2.5.1c) Porins 

Some bacteria such as Esherichia coli have an outer membrane with 

a high density of different types of channel forming proteins called 

porins. These channels serve as a "sieve" to molecules in the bacterium's 

environment. They control the exchange of nutrients and form a barrier 

to certain antibiotics as well as harmful chemicals, such as detergents and 

degradative enzymes (Jap and Walian, 1990 and Hancock and Brown, 

1992). The exclusion of molecules for the different types of porins is 

mainly controlled by their channel radii. 



FIGURE 2.2 

Figure 2.2. A schematic illustration of the proposed opening and 
closing of the gramicidin channel. When the channel is open, the 
two monomers are held together by hydrogen bonds. When these 
bonds break the two subunits are displaced laterally and the 
channel closes (from Wallace, 1990). 
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2.5.2 Carriers 

Carrier proteins transport molecules across the bilayer by binding 

the molecule to the protein and translocating it across the membrane by 

means of conformational changes of the carrier protein. This form of 

transport can be active, as in pumps, i.e. it requires energy, usually 

provided by A TP hydrolysis, or it can be passive, i.e. by diffusion down 

the electrochemical gradient. Carrier facilitated conduction is usually 

around 100 times slower than that through channels (Alberts et al., 1989). 

Active transport may also be driven by concentration gradients of other 

ion species, as for example in kidney epithelial cells (Scott, 1987 and 

Duchatelle et al., 1992). 

For most animal cells the concentration of Na+ ions varies from 

being 10 to 20 times higher in the interstitial fluid than in the interior. In 

contrast, the reverse is true forK+ ions. Na+-K+ pumps found in these 

cells maintain this concentration difference. They also play an important 

role in osmotic regulation and are exploited to facilitate the transport of 

sugars (e.g. Scott, 1987). Another important pump is the Ca2+ ATPases 

found in muscle tissues. The Na+-H+ exchange pump is present in all 

vertebrate cells and plays a major role in regulating the pH of the cell. In 

addition, bacteriorhodopsin is an example of a light activated proton 

pump. 
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2.6 THE ELECTRICAL MODELLING OF ION CHANNELS 

When modelling ion channels, the following three factors need to be 

considered: 

1) Selection of a suitable model for ion flow through a channel, 

usually using electrodiffusion equations or reaction kinetics. 

2) The external electrolyte solution (see sections 2.2 and 2.4) 

3) Image forces due to the dielectric discontinuity. 

The following models describe the steady state conductance of the 

channel. They are essentially one dimensional, except for simulations. 

The approach in this thesis differs from these example, since the small 

signal a.c. response of channels is investigated. Furthermore, the 

numerical solutions of electrodiffusion through ion channels presented in 

this thesis are two dimensional. 

2.6.1 Steady State Electrodiffusion Theories 

The steady state electrodiffusion theories are continuum theories 

(like the approach used in this thesis), i.e. they do not include any effects 

of discreteness of charge and they imply the equivalence of space and 

time averaging. Ion flux is calculated using the Nernst-Planck equation 

for each ion species, which give the current density as a function of the 

concentration gradient and the electric field. Solutions to these require a 

knowledge of the electrostatic potential 'P(x) and the cross-sectional area 

available to the ion as a function of position (x). 'P(x) is usually resolved 

into two terms : the external applied potential and the electrochemical 

potential of the channel itself. The latter includes the Born image 

charging potential (see section 2.6.3), the potential due to the fixed charge 
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and the surrounding counter-ions, whose potential is calculated from the 

Debye-Hiickel theory, and the potential difference across the mouth of the 

channel which is assumed to be a hemispherical region of radius equal to 

the "capture radius" of the ion (Lauger, 1976). The equilibrium ion 

concentrations are calculated using Boltzmann statistics. The equilibrium 

solutions for the case of a charged channel have also been used as a 

starting point to obtain numerical solutions for the nonequilibrium case. 

These are very difficult to obtain for large values of the applied potential 

and potential energy wells of the fixed charge because of problems of 

convergence (Levitt, 1985). From the total potential across the channel 

and channel mouths and the ion currents, the steady state conductance can 

be determined. 

fu the above theory, it is assumed that the dielectric constant of the 

aqueous channel is equal to that of water and the ratio of the dielectric 

constant of water to lipid is infinite. The latter approximation implies that 

the field lines are completely constrained to the channel, and hence the 

component of the electric field perpendicular to the channel walls can be 

neglected. This simplifies considerably the calculation of the Born energy 

potential, which is very difficult to calculate exactly (see section 2.6.3). 

At the channel mouth the electric field lines are assumed to have spherical 

symmetry, i.e. the equipotential surfaces are hemispheres (Levitt, 1985). 

Since the dielectric constant of water is much higher than for the interior 

of lipid bilayers (of the order of 20-40 times greater), this is a suitable 

approximation for most aqueous channels, although it may fail in high 

field regions where dielectric saturation becomes important. 

One of the major limitation of the continuum theory is its inability to 

include strong ion-ion interactions. These effects have been accounted 

for, to some extent, by the model of single ion channels, i.e. a channel 

that can be occupied by one ion at most at any one time. This is achieved 
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by including the probability of channel occupancy in the boundary 

condition for ion concentration at both ends of the channel. This leads to 

zero concentration of ions entering the channel, if the channel is already 

occupied (Levitt, 1986). The theory for single ion channels has been 

extended to channels occupied by two ions (Levitt, 1987) and multi-ions 

(Levitt, 1991) 

The structural details of both gramicidin and the acetylcholine 

receptor channel (ACH) are amongst the best known and so 

electrodiffusion models have been applied to these two channel types in 

particular. For example, calculations based on the multi-ion channel 

model for a channel geometry similar to that of the ACH channel are in 

qualitative and, sometimes quantitative, agreement with measured voltage 

current characteristics of ACH (Levitt, 1991). 

Jakobsson and Chiu (1987) extended Levitt's theory for gramicidin 

channels to calculate the mean passage time for ions to traverse the 

channel and the effect of ions that remain in the channel. Calculations 

based on this theory as well as calculations based on Brownian dynamic 

simulations gave potential profiles consistent with N a+ permeation 

through gramicidin channels. 

2.6.2 Reaction Kinetic Schemes 

A method of calculating steady state ion flow through channels, is as 

follows (Lauger, 1987): A potential profile, consisting of a series of 

maxima and minima, is estimated through the channel. Ion transport is 

described by "thermally activated jumps" across barriers between local 

potential minima. Rate constants for these transitions can be calculated 

from the barrier height and oscillation frequency of an ion in a potential 

minimum, using classical rate theories (Eyring et al., 1949 and Zwolinski 
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et al., 1949, as cited by Lauger, 1987). The current can be obtained from 

these rate constants and the potential difference (il'V) across the channel. 

At equilibrium, the ion concentrations on both sides are equal and the 

channel conductance can be calculated from the current for the limit 

2.6.2.1 Conductances for two different types of barriers: 

a) Time independent barriers: 

If a channel has only one ion binding site (i.e. the channel can only 

be occupied by a single ion at any time), the conductance A (c) at 

equilibrium ion concentration (c) can be shown to equal (Langer, 1987): 

c 
A(c) = Amax c+K 

where Amax is the conductance for c~oo 

~ !C K = , = " and p p 

(2.6.1) 

J..L', J..L" are the rate constants for an ion jumping from the binding site 

to the left and right solution and p ', p" are the ratios of rate constants on 

concentration for an ion entering the binding site from the solution on 

either side. 

When the channel contains more than one binding site, ion transport 

is complicated by the interaction between ions occupying the channel at 

the same time. For a two site channel the equilibrium conductance can be 

written as: (Urban and Hladky, 1979, as cited by Lauger, 1987) 
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A Ate+ A2c2 + A3c3 
(c)= Bo + B1c + B2c2 + B3c3 + B4C4 (2.6.2) 

where the Ai and Bi are combinations of concentration independent rate 

constants. 

b) Channels with conformational changes: 

Conformational transitions of the protein may occur. This means 

that the potential profile of the channel now varies with time. These 

strongly affect ion fluxes and channel selectivity (Lauger, 1985). If 

conformational transitions are fast compared to the "dwell time" of the 

ion, the above relations may still be used, provided the potential profile is 

replaced by an average profile (the so-called "potential of mean force"). 

When the frequency of conformational changes is less than or equal 

to the jumping frequency of the ion, the conductance will explicitly 

depend on the rate constants of the conformational transitions, as well as 

those for ion binding. For a channel with two different structural states, 

the equilibrium conductance is as follows: 

A( ) _ z2F2 Ac + Bc2 
c - RT C + De + Ec2 (2.6.3) 

where A, B, C, D and E are again concentration-independent 

combinations of rate constants, z is the valency, F is Faraday constant, R 

is the ideal gas constant and T is the absolute temperature. 

For this case, coupling between the ion conformational changes and 

ion passage may occur. Computer simulations of the molecular dynamics 

of the trajectory of an ion through a protein channel with conformational 

transitions confirm this (Lauger, 1985). 
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The total potential profile of the channel arises from various other 

sources. These include: i) the transmembrane potential, ii) the image 

potential due to the polarization charge induced by the ion or ions 

traversing the channel, iii) the applied potential, iv) the charge 

distribution and conformation changes of the channel protein and v) the 

effects on ion access to the diffuse electrolyte region near the channel 

mouth due to long range electrostatic forces (Jordan, 1986). 

Ion transport may include various processes such as dehydration of 

the ion at the channel mouth, translocation through the channel and 

hydration at the other channel mouth (Eisenman and Dani, 1987). These 

can be characterised by different rate constants. Expressions for some of 

these rate constants have been derived using stochastic theories (Cooper et 

al., 1988). The dimensions of the constriction at each channel mouth (i.e. 

its effective radius) can be varied independently. Access to the channel 

mouth is limited by diffusion. The effect of the bilayer is modelled by a 

surface layer of point dipoles at the membrane/electrolyte solution 

interface. Jordan (1986) discusses the effect of varying the various 

geometrical and electrical factors on channel transport. 

At low electrolyte concentrations (c), the total channel conductance 

is limited by diffusion to the channel mouth. Hence the capture radius, i.e. 

the effective radius of the channel mouth minus the ionic radius (Lauger, 

1976), can be estimated from the limit of conductance as c approaches 

zero. 

Reaction kinetic schemes have also been found to be suitable for 

describing a wide variety of membrane transport systems (e.g. Sanders et 

al., 1984 and Hansen et al., 1981). The rate equations for multi­

occupancy ion channel systems can be conveniently summarized by a state 

diagram represented by a two dimensional array of all states, connected 

by all possible transitions. These state diagrams can be transformed into 
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equivalent circuits, which simplify the calculation of ion fluxes in some 

cases. (Sandblom and Eisenman, 1982). 

2.6.3 Image Forces due to Dielectric Discontinuity 

An ion in an infinite dielectric medium with dielectric constant 

K = e/eO (e is the permittivity of the medium and eO is the permittivity 

of free space) possesses a self energy due to its electric field, which is 

inversely proportional to the dielectric constant. For the ith ion species 

this is given by: 

(2.6.4) 

where ai is the radius of the ith ion species. The dielectric constant 

of lipids is much lower than that of water. Hence the energy required to 

translocate an ion through a lipid from an aqueous phase is immense, due 

to the difference in UE. For typical values of ion radii and dielectric 

constants of lipids, UE is much larger than kT, hence ions cannot 

partition into the lipid and thus ion transport must occur primarily 

through aqueous channels. For example, UE ::::: 2.3 eV for a lipid 

dielectric constant of 3 and ion radius of .lnm, while kT::::: .025 eV. The 

vicinity of the low dielectric medium to an ion in a channel however 

alters the self energy of the ion and this affects its transport significantly. 

It therefore should be included in ion channel models. 

The electric field surrounding an ion has the effect of inducing 

charge at an interface between two media with different dielectric 

constants. These charges alter the original field of the ion. The true 

potential can be calculated by summing up the contribution of a set of 

fictitious image charges, which leads to an infinite series of potential 
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terms. These charges are situated at positions which are reflections of the 

original charge through the dielectric interface and would produce the 

same field as the induced charge. For semi-infinite and finite dielectric 

media these calculations are in general very complicated. Neumke and 

Langer (1969) have calculated the image potential energy of an ion in a 

thin slab of low dielectric constant (K) surrounded by a semi infinite 

homogeneous region of high dielectric constant on both sides (applicable 

to bilayers). Parsegian (1975) has added a cylinder with a different 

dielectric constant (Kp, Kp ::1:- K) which extends through the slab of low 

dielectric material as described above. The potential energy due to the 

image charges as well as the self energy for an ion situated at the centre 

of the cylinder. This geometry simulates a pore through a bilayer. 

2.7 PATCH CLAMPING 

One common technique of investigating the behaviour of active 

channels (e.g. voltage or transmitter gated channels) is the patch clamp 

technique, which was first developed by E. Neher and B. Sakmann 

(1976). The success of the patch clamping technique lies in its ability to 

form a very high resistance seal (of the order of 100 GQ) between the tip 

of a very small pipette and an area of the membrane by applying suction. 

This enables the recording of the current through a single ion channel in 

biological membranes. Earlier techniques employing microelectrodes 

failed to achieve this, since the background noise, although small, 

completely masked the single channel signal. As the resistance of the 

solution in the pipette is much lower than that of the membrane, the cell 

can be voltage clamped by applying a voltage to the pipette. 

Patch pipettes are mechanically stable, so they can be relatively 

easily excised from the cell. Another technique, used for whole cell 
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recordings, is to remove a microscopic patch of membrane inside the 

pipette without breaking the membrane/pipette seal. The pipette then 

replaces the conventional intracellular microelectrode. This technique 

allows detailed electrophysiological study of small mammalian cells. 

Earlier techniques (e.g. voltage clamping using intracellular 

microelectrode impalement) were restricted to large cells (e.g. Hodgkin, 

1976). Whole cell patch clamping can also be used to modify the 

composition of the cytoplasm. (e.g. Neher and Sakmann, 1992) 

Patch clamping thus allows the conductance of an individual ion 

channel to be measured as a function of voltage across the membrane and 

the internal and external ion concentrations, giving information about the 

electrical behaviour channels. On the other hand, much knowledge of the 

structure of channel proteins has been gained from progress in 

deciphering the amino acid sequences of some channel forming proteins. 

By combining recent genetic techniques with patch clamping, it has 

been possible in some cases to make structural changes to critical amino 

acid sequences. A study of the resultant change in electrical behaviour of 

such mutagenic channel proteins can provide useful information about the 

three dimensional structure of these channels (e.g. Anderson and 

Koeppe, 1992) 

Some possible limitations of the patch clamp technique include: 

1) Errors due to inadequate correction for liquid junction 

potentials between the pipette and the bathing solution. 

2) Leakage through the seal. Small cells may have a resistance not 

significantly less than the seal resistance, hence current leakage 

through the seal can be considerable and has to be accounted for 

(especially for the case of whole cell measurements) in order to 

obtain representative single channel conductances. 

3) Distortion. Current recordings of intact patches of small cells 
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may be distorted considerably, due to the change in the cell's 

potential resulting from the passage of current through the channel. 

A method of correcting for this effect has been developed by Barry 

and Lynch (1991). 

Patch clamp resolution is ultimately limited by the thermal noise of 

the patch/seal combination. At high frequencies it also depends on the 

membrane patch, the seal or the glass. Also, current amplifiers have noise 

that increases with bandwidth (Auerbach and Sachs, 1984 ). 

In recent years it has been possible to isolate functionally active 

channel forming proteins from various biological cells and to incorporate 

them into artificial lipid bilayers so that their function may be analysed in 

a simple, controlled environment, in order to gain some insight into the 

possible molecular mechanisms of channel transport. This technique has 

the advantage of allowing transmembrane potential, electrolyte 

concentration and composition on both sides to be easily varied over a 

wide range. Furthermore, the composition of the lipid bilayer can be 

varied to study the effect of lipid environment on channel function. In 

addition, the isolated channel proteins can be modified chemically or 

genetically before being incorporation into bilayers. This allows one to 

investigate the importance of the various subunits on channel function. 

Some of the more common channels incorporated into artificial bilayers 

include: the acetylcholine receptor, Na+, K+ and Ca2+ channels, voltage 

gated anion-selective channels (see for example Montal et at., 1986, 

Anderson et al., 1986 and Latorre, 1986). Studying single channels in 

artificial bilayers using the patch clamp technique rather than 

conventional voltage clamping has the advantage of improving the signal 

to noise ratio by allowing smaller membrane patches and thus lower 

membrane capacitances (Auerbach and Sachs, 1984). 
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As the patch clamp technique is becoming more sensitive and 

refined, much more detailed channel behaviour can be detected. Hence, 

more complex kinetic models are required to explain the channel activity. 

Even though these models fit the experimental results more closely, they 

may become too complex and involve too many free parameters to aid 

our understanding of channel function (Auerbach and Sachs, 1984). 

Patch clamping has become a powerful tool for investigating the 

electrical properties of individual ion channels in a variety of 

environments. However, it provides little information about channel 

structure and any such information has been mainly obtained by studying 

the effect of specific changes of critical amino acid sequences on channel 

function. Techniques using small signal a.c. response have the advantage 

of providing a whole range of data for any one experimental condition 

and may therefore prove to be useful in yielding structural information 

about channel proteins. 



CHAPTER 3 

SOLUTIONS TO THE NERNST-PLANCK 
POISSON EQUATIONS OF AN ELECTROLYTE 

FOR PLANAR GEOMETRY 

3.1 INTRODUCTION 

Before tackling complicated structures such as ion channels in 

membranes, one needs to understand how currents flow through 

electrolyte solutions and the way that they are measured. These questions 

are of a wider interest than to just bioelectrochemistry. Consider first, 

however, two situations in which the external electrolyte may influence 

the measurement of ion transport across cell membranes. 

As mentioned, the thicknesses of cell membranes are of the order of 

nm. However, measuring electrodes employed by physiologists can 

usually only be positioned to within J..Lm of the cell membrane. It is 

unavoidable that these measurements will always include some electrolyte 

solution in series with the membrane. Hence, when studying the electrical 

properties of membranes and ion channels, the properties of the 

surrounding medium must also be taken into account. Since these 

properties are frequency dependent, they can be investigated by 

measuring the response of the medium to an a.c. signal. By measuring the 

potential difference between two points in the medium for a given applied 

current, the impedance can be calculated. This may be useful in 

characterising the medium. For simple electrolyte systems the impedance 
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can be calculated analytically. Such systems are discussed in this and the 

following chapter. 

Similar problems occur in electrochemistry generally and in ion 

exchange and ultrafiltration membranes. Although this thesis is inspired 

by and takes examples from electrophysiology, it has potentially much 

broader relevance. 

Exact solutions to the Nemst-Planck electrodiffusion equations are 

possible for one dimensional systems. The simplest such system is that of a 

fully dissociated binary electrolyte solution. This is rarely of practical 

importance, except as an approximation. Since water is itself a weak 

electrolyte (i.e. H20 -> H+ + OH- ), any aqueous salt solution will contain 

more than two ion species. Hence in this chapter exact one dimensional 

solutions for the case of three distinct ion species are given. The three ion 

theory is applicable to strong bases and acids as well as salts, i.e. those for 

which recombination of the ion species in solution is negligible. Strong 

bases contain two cation and one anion species (e.g. sodium hydroxide 

solutions contains Na+, H+ and OH- ions), while acids contain two anion 

and one cation species. Because of the difference in the sizes of the ions, 

the ion species may have very different diffusion constants. The following 

analysis is for two cation and one anion species, but can be easily 

modified, by a simple change in notation, for the case of two anions and 

one cation. 

The solutions to the electrodiffusion equations are complicated 

functions of position and frequency. However they can be simplified for 

the case of a binary electrolyte (which is a special case of the three ion 

theory), so the later part of this chapter will present a description of the 

behaviour of such a system. 
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One technique of measuring ion fluxes is to insert a microelectrode 

into the cell and measure the membrane current directly from the current 

between the internal electrode and a reference electrode in the external 

medium (e.g. voltage clamp and patch clamp techniques). However this is 

not always possible without significantly damaging the cell. Consequently, 

researchers in physiology have developed methods of inferring the 

properties of cell membranes from measurements at electrodes in the 

medium surrounding the cell, sometimes far away (of the order of Jlm) 

from the cell surface. 

One such technique is the vibrating probe, (Jaffe and Nuccitelli, 

197 4) which measures the a.c. potential difference over the range of 

alternating displacement of a vibrating metal electrode in the external 

electrolyte solution. The ion current can then be calculated using the local 

conductivity of the solution. 

Another method employs ion selective microelectrodes to measure 

the ion activities at different points in the external solution and uses these 

to estimate the local chemical potential and hence the ion current 

(Newman et. al., 1987). The local ion currents obtained by these 

techniques are assumed to equal the current through the membrane, once 

the necessary geometrical corrections have been made, i.e. in all these 

techniques it is assumed that the ionic currents are approximately 

independent of position. This assumption is valid only for one dimensional 

systems which have reached steady state. However solutions to the Nernst­

Planck electrodiffusion equations for the small signal a.c. response of an 

electrolyte solution presented in this chapter indicate that for some one 

dimensional cases, the potential difference and ionic currents can vary 

significantly with position. For 2 and 3 dimensional systems the variations 

with position may be even more noticeable. 
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3.2 THEORY 

In this section the linearised Nernst-Planck equations and Poisson's 

equation are used to calculate the ion concentrations, ion current densities 

and impedance for the following system: a fully dissociated electrolyte 

solution situated between two infinite plane electrodes. A uniform a.c. 

current of small amplitude is passed between two current electrodes 

(Figure 3.1). 

The Nernst-Planck equations are obtained from the derivative of the 

chemical potential in the following manner. The electrochemical potential 

(J..li) of an ion of the ith species in a dielectric medium at constant pressure 

is given by: 

where : Zi is the valency 

ci is the concentration 

q is the electron charge 

k is Boltzmann's constant 

T is the temperature 

'¥ is the (electrical) potential 

J..lio is the standard chemical potential 

Yi is the activity coefficient 

YiCi is the chemical activity of the ith ion species 

(3.2.1) 

YiCi gives the activity - an effective concentration of ions. For all 

calculations in this thesis, it is assumed the activity coefficient (Yi) is one, 

i.e. the electrolyte solution is ideal. This is a valid approximation for 
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Figure 3 .1. The geometry of the system used for chapter 3. 



dilute strong electrolytes. The distribution of ions in solution is influenced 

by the presence of counter ions (see Chapter 2). Debye and Hiickel's 

analysis of this effect gives values for Yi· The current density (J i) is 

related to the negative derivative of its chemical potential (J.!i) as: 

where Di is the diffusion constant of the ith ion species. 

Note that bold characters have been used to indicate vectors. 

(3.2.2) 

It is assumed that the electrolyte solution is homogeneous (except for 

ion concentration variations) and consequently, \1 Jlio is zero throughout 

this system. In Chapter 6, variations in other energy terms are considered. 

For this case the Nemst-Planck equations reduce to : 

q2 zp2 Dp P E 
J p = -q Zp Dp \1 p + k T (3.2.3) 

q2 zn2 Dn N E 
Jn = q Zn Dn \1 N + k T (3.2.4) 

(3.2.5) 

where : J p is the current density of cations with valency zp, diffusion 

constant Dp and concentration P. 

Jn is the current density of anions with valency Zn, diffusion 

constant Dn and concentration N. 
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J c is the current density of the second cation species with 

valency Ze, diffusion constant De and concentration C. 

E is the electric field (note bold characters are used to denote 

vectors). 

For a very small a.c. signal of angular frequency ro, the ion 

concentrations and electric field can be written as (lower case variables 

denote a.c. variations) : 

P = Po + p e j ro t 

N = No + n e j ro t 

C = Co + c e j ro t 

E = Eo + e e j ro t 

(3.2.6) 

(3.2.7) 

(3.2.8) 

(3.2.9) 

where : j = v-=1 and Po, Co and No are the bulk ion concentrations of 

the first and second cation species and anion species, respectively (i.e. the 

concentrations for zero a.c. signal). zpPo + zeCo = z0 No, since the system 

is electrically neutral. 

Substituting equations 3.2.6 to 3.2.9 into equations 3.2.3 to 3.2.5 and 

retaining only the a.c. terms, expressions for the ionic components of the 

a.c. current densities now may be expressed as (after dividing by drot): 

q2 Z·i Dp 
Jp = -q zp Dp V p + k T (e Po+ p Eo) (3.2.10) 

q2 zn2 Dn 
Jn = q Zn Dn V n + k T (e No+ n Eo) (3.2.11) 

q2 Ze2 De 
Jc = -q Ze De V c + k T (e Co+ cEo) (3.2.12) 
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where products of a.c. terms have been discarded, since (for small 

signals they are negligibly small. 

For a one dimensional system with zero d.c. electric field (i.e. 

Eo = 0) the expressions for the current densities reduce to: 

D 
dn q2 Zn2 Dn No e 

In= q Zn n dx + k T 

J D 
de q2 zc2 De Co e 

c = -q Zc c dx + k T 

Poisson's equation relates e to the a.c. ion concentrations: 

de q 
dx = e ( Zp p + Zc c - z0 n) 

where e denotes the permittivity of the electrolyte solution 

The continuity equations give: 

.9b dP 
dx + q Zp dt = 0 -> . ~ 0 qzpJ oop+ dx = 

din dN 
dx - q Zn dt = O -> 

. dJn O 
- q Zn J ro n + dx = 

~ dC 
dx + q Zc dt = O -> 

. Qk 0 qZcJCOC+ dx = 

(3.2.13) 

(3.2.14) 

(3.2.15) 

(3.2.16) 

(3.2.17) 

(3.2.18) 

(3.2.19) 

Combining equations (3.2.18 to 3.2.19) produces the following 

second order differential equations: 
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d2p j (l) 1 
dx2 = -D p + X 2 (zp p + ZcC -zon) p Zp p 

(3.2.20) 

d2n j ro 1 
dx2 = -D n - X 2 (zp p + ZcC -z0 n) 

n Zn n 
(3.2.21) 

d2c j ro 1 
dx2 = -D c + X 2 (zp p + ZcC -z0n) c Zc c 

(3.2.22) 

where Ap, An and Ac are the "effective" Debye lengths associated with 

the different ion species: 

The differential equation 3.2.20 to 3.2.22 can be written as: 

d2p 
dx2 = Au p + A12 n + A13 c (3.2.23) 

(3.2.24) 

(3.2.25) 

where: 
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Zp 
A21 =- X 2 

Zn n 

Zp 
A31 = X: 2 

Zc c 

J: -- rm;­
":>p- -'V -ro 

Zn 
A12 =- X 2 Zp p 

Zc 
A13 = z X: 2 p p 

2j 1 
A22=~+~ 

Zc 
A23 =- X 2 

Zn n 

Zn 
A32 =- X 2 

Zc c 

1: _ .... /2Dc 
";)C- -'J (l) 

The ~i are characteristic rms distances travelled by the ions via 

diffusion per radian. 

The characteristic polynomial for this system is : 

(3.2.26) 

where : a1 =-(Au + A22 + A33) 

a2 =Au A22 +Au A33 + A22 A33 - A12 A21 - A13 A31 -

A23 A32 

a3 =-Au A22 A33 +An A23 A32- A12 A23 A31 + 

A12 A21 A33- A13 A21 A32 + A13 A22 A31 

To solve the cubic the following definitions are made: 
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The roots of the cubic (i.e. characteristic lengths) are given by: 

(3.2.27) 

(3.2.28) 

(3.2.29) 

From the symmetry of the system, p(x) = -p( -x), n(x) = -n( -x) and 

c(x) = -c( -x), consequently : 

3 
p(x) = Lai sinh(x/A.i) 

i=l 
3 

n(x) = L<Xi si sinh(x/Ai) 
i=l 
3 

c(x) = :Lai Ti sinh(x/Ai) 
i=l 

(3.2.30) 

(3.2.31) 

(3.2.32) 

The Si and Ti are calculated by substituting the expressions for p(x), 

n(x) and c(x) into the differential equations for ~:~ and ~:~ i.e. : 

The <Xi are constants to be determined later 
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(3.2.33) 

(3.2.34) 

(3.2.35) 

(3.2.36) 

The electric field is obtained from Poisson's equation: 

(3.2.37) 

(3.2.38) 

where e1 is an integration constant. 

The total a.c. current (J) at x is given by: 

J= Jp(x) + Jn(x) + Jc(X) + Jo(x) (3.2.39) 

where Jo(x) is the displacement current defined by: 

Jo(x) = j m e e(x). (3.2.40) 



J is of course independent of position (from the continuity equations 

dJ/dx = 0 for all x), and equal to the applied current current density. 

Terms applicable to the case where e is independent of position are 

now introduced. These have been indicated by subscript K. Equation 

3.2.38 shows that this can only occur if a1 = a2 = <X3 = 0 and the 

electric field is given by eK = er. 

The area specific admittance per unit length (yK) for constant electric 

field and an applied current density J is given by : 

(3.2.41) 

where gK is the total conductivity of the electrolyte and is given by: 

(using equations 3.2.13 -3.2.15 and 30.32) 

(3.2.42) 

(3.2.43) 

(3.2.44) 

(3.2.45) 

Therefore e1 = eK = JIYK· The ion current densities then reduce to : 

3 
Jp(x) = q zpDp L { -aJAi+a{AJ(zpf...p2) (zp+Zc Ti-ZnSi)} cosh(x/Ai) 

i=l 

q2 zp2Dp Po J 
+ k T YK (3.2.46) 

(using equations 3.2.13 -3.2.15, 30.32 and 30.38) 
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3 
Jn(X) = q ZnDn L { aJAi+CXiAJ(znAn2) (zp+Zc Ti-ZnSi)} cosh(x/Ai) 

i=l 

(3.2.47) 

3 
Jc(X) = q ZcDc L { -ai/Ai+ai Ai/(zc Ac2) (zp+Zc Ti-ZnSi)} cosh(x/Ai) 

i=l 

(3.2.48) 

3.3 BOUNDARY CONDITIONS 

Three linearly independent boundary conditions are needed to 

evaluate the constants at, cx2 and a3. The following boundary conditions 

for perfectly blocking current electrodes, located at x = + L, have been 

used. Note that because of the symmetry of the system, the ion 

concentrations are antisymmetric functions and the electric field and Jp 

and Jn are symmetric functions, hence boundary conditions at only one of 

the electrodes are required. These are expressed as: 

Jp(L) = 0 Jn(L) = 0 Jc(L) = 0 (3.3.1) 

Rearranging these gives the following: 

(3.3.2) 
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Jp(L) -0 
q Zp Dp -

Equations 3.3 .2. to3 .3 ·+ then reduce to : 

1 QJ?.
1 

+ 1 dn
1 

_ 0 
Zp Po dx L Zn No dx L -

1 QJ?.
1 

1 de I _ 
0 zp Po dx L - Zc Co dx L -

J0 (L) ~ q Zp Po e _ 
0 q Zp Dp - dx + k T -

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 

(3.3.7) 

Substituting equations 3.2.30 to 3.2.32 and 3.2.38 and 3.2.46, into 

3.3.5 to 3.3.7 gives: 

<Xt L 
0 -cosh(-) 

At A-1 

B 
az L 0 -cosh(-) = Az Az 
~ L cosh(-) 

g zp Po J 
(3.3.8) 

A3 A3 k T YK 

where the elements of matrix B are given by : 

1 St 
Bn=_p_+ N 

Zp 0 Zn 0 

B _ _]J_+ St 
21 - Zc Co Zn No 

B __ 1_+ Sz 
12 - Zp P 0 Zn N 0 

B __ 1_+ s3 
13 - zpPo ZnNo 
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Solving equation 3.3.8 for <Xi gives: 

a· - Ai q zv Po J Fi ' i =1 to 3 
1

- h(L) k T YK det cos -
Ai 

where: F1 = B12 B23- Bzz B13 

Fz = B21 B13- B11 B23 

F3 = Bn Bzz- B21 B12 

and det is the determinant of matrix B 

3.4 FOUR TERMINAL IMPEDANCE 

The potential 'l'(x) is given by: 

'l'(x) = -J e(x) dx 

(3.3.9) 

(3.3.10) 

(3.3.11) 

(3.3.12) 

(3.3.13) 

(3.4.1) 

The impedance Zt times unit area between the voltage electrodes 

(located at x = ± L') is given by: 
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'P(-L')- 'P(L') 
Zt= J 

where: 

2 L' 
ZK=-­

YK 

(3.4.2) 

(3.4.3) 

(3.4.4) 

Thus the impedance can be written as the sum of four distinct terms. 

ZK is the small signal impedance which would be measured if there were 

no a.c. concentration variations. For this case e would be uniform (and 

equal to ei) and the potential difference between the electrodes would be 

linear, therefore the impedance would be given by the reciprocal of the 

geometrical admittance YKIL· The Zi's are impedance terms associated 

with the three different characteristic lengths Ai. Z1 is associated with the 

space charge produced when cations and anions move in opposite 

directions due to the presence of an electric field. For blocking electrodes 

this space charge is highest in the double layer near the electrodes, hence 

zl dominates the total impedance of this region at low frequencies. z2 and 

Z3 arise from the charge separation produced when cations and anions 

diffuse at different rates and they can contribute significantly to the total 

impedance under appropriate conditions. 
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The total capacitance (Ct) and conductance per unit area (Gt) can be 

calculated from the total impedance times unit area (Zt). Ct and Gt are 

given by: 

(3.4.6) 

where Im(l/Zt) and Re(l/Z1) denote the imaginary and real parts, 

respectively, of the admittance per unit area. Note that all calculated 

impedances and hence conductances and capacitances in this thesis are area 

specific, except for those for spherical geometry of Chapter 4. 

The exact solutions are rather complicated functions of the parameter 

space and will not be presented in this thesis (to conserve trees). However, 

some limiting cases of physical importance for which relatively simple 

explicit expression can be found have been considered. 

3.5 LOW FREQUENCY LIMIT 

At low frequencies the diffusion lengths in aqueous solutions are 

much greater than the Debye lengths associated with each ion species, i.e. 

~P• ~n and ~c >> Ap, An and Ac. It can be shown that, to first order in ro, the 

characteristic lengths Ai simplify to : 

(3.5.1) 

. 1 1 
A2 = { J2ro (D* -D) }-I/2 (3.5.2) 

(3.5.3) 

(see eqns 2.2.26 -2.2.29) 

52 



where: 
a -----~--P~o_z_p~2--~--~ 
P- Po zp2 + No Zn2 + Co Zc2 

q2(Po zp2 + No zn2 + Co zc2) 
e0 e k T 

(3.5.4) 

(3.5.5) 

(3.5.6) 

(3.5.7) 

(3.5.8) 

(3.5.9) 

The zeroth order term of the characteristic length At is equal to the 

De bye length (A) defined above. Z1 is proportional to 

sinh(L '/At)/cosh(L/At). Thus Zt becomes negligibly small when the 

current electrode spacing and the separation between current and voltage 

electrodes are large compared to the Debye length. (ForLand L' >>At, 

sinh(L '/At)/cosh(L/A-1) == e-(L-L')/At which is very small provided L- L' 

>>AI). 

Since at low frequencies A-2 and A3 are inversely proportional to roi/2 

(see equations 3.5.2 and 3.5.3), L' << A2 and A3 for small voltage 
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electrode spacings. Hence sinh(L' f'Ary_) can be approximated by L' /Ah i=2,3 

and equation 3.4.5 reduces to: 

2 L' L 
Zi ~ ~ KJcosh(Ai) , i=2,3 (3.5.10) 

(3.5.11) 

To lowest order in ro, Ki simplifies to : 

(3.5.12) 

where Kidiff 1s equal to the low frequency limit of 

Fi (zp + Zc Ti- Zn Si) Ai2 , i = 2,3 (see equation 3.2.35, 3.2.36, 3~4·.5) 

The explicit expression for Kidiff, i=2,3, is a complicated function of 

the ion concentrations and the diffusion constants Dp, D0 , De, D* and D 

and will not be given here. The low frequency limit of Kidiff can, 

however, be simplified under certain conditions that are described below. 

Since Ai is complex, cosh(L/Ai) and hence both Z2 and Z3 are 

oscillatory functions of frequency, i.e. both the real and imaginary part of 

Z2 and Z3 will alternate between positive and negative values with 

increasing frequency. For cases where Z2 and or Z3 dominate the total 

impedance, the behaviour of Zt may deviate considerably from that 

expected at or near equilibrium. For example the imaginary part of Zt 

will alternately become capacitative and inductive with increasing 

frequency. 
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The lowest order terms (in ro) of 1/A22 and l/A32 are imaginary, 

therefore 1/Ai can be written as (1 + j) ki (i = 2 and 3) where : 

(3.5.13) 

At low frequencies L << A i (i - 2 or 3), 

cosh(L/Ai) ::::: cosh[(l +j)kiL] ::::: 1 + j ki2 L2. 

Let Ki = Krei + j ro Kimi which will then give: 

(3.5.14) 

Both Krei and Kimi are complicated functions of the diffusion 

constants Dp, De and D0 weighted by the relative bulk ion concentrations. 

The expression for Kimi includes second order terms which cannot be 

simplified. However the ratio (Krei L2 ki2/ro)/Kimi is proportional to L2JA2. 

A is an "effective" Debye length typically of the order of nm, thus 

(Krei L2 ki2/ro)/Kimi is very large unless L is comparable to A. Hence the 

contribution of the Kimi term to the total impedance can be neglected for 

typical values of ion concentrations and macroscopic values of L. 

The real part of Zi (and hence Gi) will be zero for kiL = (n- 1/2) 1t, 

where n = 1,2,3 .... This occurs for frequencies f ni = ro'0 i/2 1t (i=2,3). 

Using equation 3.5.13 these are given by: 

ro'n2 = 
(n - 1/2)2 1t2 

L 2 cri* -b) and 
, (n - 1/2)21t2 

ro n3 = 1 1 
L2 (D* + D) 

(3.5.15) 
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Since Krei is real, the imaginary part of Zi (and therefore the 

corresponding capacitance Ci) is equal to zero for L ki = n 1t , i.e. for 

ffini = 21tfni = n2/(n - 1/2)2 ro'ni (i=2,3). (3.5.16) 

fu order to predict the frequencies for which the real and imaginary 

parts of the total impedance are zero, the relative magnitudes of Z2 and Z3 

need to be compared, using the ratio ZvZ3 = K2diffjK3diff (see equations 

3.5.10 to 3.5.12). K2diff and K3diff involve the factor 1/D which is equal to 

the square root of a complicated expression depending on the diffusion 

constants weighted by the relative bulk ion concentrations (see equation 

3.4.9). Therefore useful analytical expressions for Z2 and Z3 could only 

be found for ranges of the diffusion constants where the square root term 

could be approximated by a simpler expression 1. Three such cases are 

considered : 

Case 1) If De is very different from Dp and Dn , the lowest order K2diff 

and K3diff are proportional to ze2 Co and zp2 Po respectively. 

If De<< Dp or Dn, then K2diff and K3diff simplify to : 

(3.5.17) 

(3.5.18) 

i.e. ~ is much larger than Z3, except when Co approaches zero. 

1 An exact expressions for the much simpler case of a binary electrolyte has been derived 

and is presented in section 3.6. 
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If De << Dp or Dn, then K2diff is again inversely proportional to 

(Dn - Dp), thus for similar Dp and Dn, Z2 is larger than Z3 except for low 

values of Co. 

Hence for both situations Z3 dominates the total impedance for low 

values of Co only and Z2 dominates for all other concentrations. 

Case 2) If De ::::: Dp: 

(3.5.19) 

(3.5.20) 

It is assumed that the only charges present are the ionic species, 

hence Zp Po + Zc Co = Zn No. Therefore if the two cation species have the 

same valency Z, <Xe + <Xp = (z/zn) <Xn. Hence z3 does not vary greatly 

with Co and Po, provided the total ion concentration remains the same. 

If Dn ::::: Dp, when the two cation concentrations are approximately 

equal, Z2 and Z3 are of the same order of magnitude. Hence the 

frequencies for which the real and imaginary parts of the total impedance 

are zero lie between those predicted for Z2 and Z3 alone. For small Co 

and Po the total impedance is approximately equal to Z3 + ZK. 

If Dn >> Dp or De, Z3 will dominate for all concentrations, 

provided (De- Dp) << Dp. 

Case 3) If Dn is much smaller than Dp or De : 
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(3.5.21) 

(3.5.22) 

Therefore z3 is very large compared to z2 (inversely proportional to 

Dn2). If the cation valencies are equal, Z3 again does not vary much with 

ion concentration, provided the total ion concentration is kept constant. It 

dominates the total impedance for all concentrations. 

At very low frequencies cosh(L/A.i) is approximately equal to one, 

hence the real part of Zi simplifies to 2 L'KiiYK ::= 2 L'Ki/gK. The total 

conductance Gtis equal to R{Y(zK + .iz91 For the cases where either 
1=1 1 

Z2 or Z3 dominates, Gt thus simplifies to : 

Gt = "fb 1 ; Ki (i = either 2 or 3) (3.5.23) 

The imaginary part of Zi is proportional to ro and includes second 

order terms of A.z and A3. 

3.6 HIGH FREQUENCY LIMIT 

At very high frequencies the ions do not have enough time to diffuse 

far in one cycle, hence the total impedance approaches ZK. The total 

capacitance and conductance are therefore approximately equal to CK and 

GK respectively, where CK = E/(2 L') and GK = gK/(2 L') . (3.6.1) 
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3.7 BINARY ELECTROLYTE 

To gain further insight into the physical mechanisms involved in the 

impedance terms, it is helpful to examine a binary electrolyte. This is 

because the algebra is considerably simpler than for the three ion case2. 

3. 7.1 General Solution 

For the case of a binary electrolyte the characteristic equation 

reduces to a quadratic, i.e. it involves only two characteristic lengths Ai. 

(3.7.1) 

(3.7.2) 

(3.7.3) 

(3.7.4) 

112= (3.7.5) 

2 In work, currently in press (Smith and Eberl, 1993) concerned only with a binary 

electrolyte we use a slightly different notation where Si are replaced by ei and ai are 

replaced by 2ai. 
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(3.7.6) 

The Debye length (A) reduces to: A.= [ee0 kT/q2(zp2Po+z0 2No)Jll2, where 

(3. 7. 7) 

As before the electric field can obtained by integrating Poisson's 

equation: 

e(x) = J ~ (zp p - Zn n) dx 

= ; ( ai Ai(Zp- Zn Si)cosh(~i) + Cli Ai(Zp- Zn Si)cosh(~i)) 

(3.7.8) 

For a binary electrolyte the admittance per unit length YK is given 

by: 

(3.7.9) 

Substituting equations 3.7.1, 3.7. 2 and 3.7. 8 into 3.2.13 gives, 

after simplification: 

Jp(x) = -j ro q zp ( a1 AI cosh(:
1
) + a2 A2 cosh(:

2
)) + J gpKIYK 

(3.7.9b) 

3 Note that for consistency in notation with chapter 4, I retain Co as the symbol for the 

overall bulk electrolyte concentration. This should not be confused with Co used in the 

theory for the three ion electrolyte of sections 3.2 to 3.4 above, where it denotes the bulk 

concentration of the third ion species only. 
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Similarly, combining 3.7.1,2 and 8 and 3.2.14- gives J0 : 

1n(x) = -j ro q Zn ( H1 a1 A.1 cosh(:
1
) + H2 a2 A.2 cosh(:)) 

+ JgnrdYK (3.7.10) 

(3.7.11) 

The two unknowns a 1 and az can again be determined from the 

following boundary conditions at the electrodes, situated at x = ±L. 

However, I now consider the more general boundary conditions than for 

the three ion case, i.e. the current electrodes can now also be partially 

blocking as well as completely blocking. The ion current densities are 

now set equal to an arbitrary fraction of the total applied current density 

(J) at x = +L : 

Jp(L) = tp J and J0 (L) = tn J (3.7.12) 

where tp and t0 are the fractions of J carried by the cations and anions at 

the current electrodes, respectively. 

For this case a1 and a2 simplify to: 

2jJ(tp- gpKIYK)/(2roqzp) - <ltAtcosh(L/At) 
A2COSh(L/A2) 

The a.c. potential ('l'(x)) can be obtained from: 

(3.7.13) 

(3.7 .14) 
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'P(x) = -J e(x) dx 

Again 'Pr = 0, since '¥(0) is chosen to be zero. 

The impedance ZT = ['¥( -L') - 'P(L')]/J measured in between voltage 

electrodes at x = ±L' can now be written as the sum of three terms (from 

equations 3.7.8 and 3.7.9). 

(3.7.16) 

As before ZK is simply the impedance that would be measured in the 

absence of a.c. space charge. 

2L' z -­K- YK 

~( . L' . L') ZT =- e <XlA12(zp-znSI)sinh(A)+<XzAz2(zp-ZnSz)smh~) 

+ 2L'IYK (3.7.17) 

Z 1 and Zz are the impedances associated with the characteristic 

lengths A 1 and Az, respectively. ZT involves three fundamental 

characteristic lengths : A, l;p and Sn in addition to YK, the constant field 

area specific admittance per unit length. Z1 and Zz as well as AI and A-2 

depend on 112 which includes the square root of a complex function of 
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frequency. As before, for voltage electrodes situated many Debye lengths 

away from the current electrodes, the contribution of Z1 to the total 

impedance is negligible. 

Z2 is again an oscillatory function of frequency. As before the 

angular frequencies (co'ni and COni) at which the real and imaginary parts 

of Z2 are equal to zero, strongly depend on the differences between Dp 

and Dn and the current electrode separation L. However these frequencies 

are now independent of bulk electrolyte concentrations (Po and No). For 

this case co'ni and COni reduce to : 

co'ni = 2 (n +1)21t2(zp + Zn) Dp Dn/[L2(zp Dp + Zn Do)] (3.7 .20) 

COni = CO'ni m2/(m + 1)2 (3. 7.21) 

3. 7.2 Low Frequency Limit 

Measurements of electrical properties of membranes, using a.c. 

techniques such as the vibrating probe, are usually performed at low 

frequencies (below 500Hz). The expressions for arbitrary co can be 

simplified considerably by considering the low frequency limit (see 

Appendix 3.1). This involves neglecting the contribution of the 

displacement current and assuming that the diffusion lengths are large in 

comparison with the Debye length A (given by equation 3.7.7). It is also 

assumed that measurements are taken outside the electric double layer in 

the electrolyte at the membrane surface, i.e (L-x)>>A where A is 

typically of the order of nm. Variables derived for these low frequencies 

have been indicated by the subscript L. 
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Equations that describe the low frequency behaviour of p(x), n(x), 

e(x), 'Jf(X), Jp(x) and J0 (x) in terms of the constants of the electrolyte (i.e. 

Dp, Dn, Zp, Zn P, N and e) and the membrane (tp and tn) are now 

presented. It is convenient to introduce some extra terms: Qp denotes the 

difference in cation transference number between the membrane and the 

bulk electrolyte: 

(3.7.22) 

~s denotes the rms distance through which solute diffuses during a 

change of one radian in the phase of the applied AC current and is defined 

by: 

(3.7.23) 

where Ds denotes the effective diffusion coefficient for the solute. This is 

given by: 

(3.7.24) 

The low frequency variations in cation and anion concentration are 

respectively given by: 

_ (j-l)JQp sinh( (I +j)x/ss) 
PL(x) - 23/2rol/2zpqDsl/2 cosh((l +j)L/~s) (3.7.25) 
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( ) 
_ U-l)JQp { 1 + jroA-2(1/Dp-1/Dn)} sinh((1+j)x/ss2 

nL x - 23/2rol/2znqD8 1/2 cosh((1 +j)L/~s) (3.7.26) 

The concentration changes in pL(x) and nL(x) are thus approximately 

in the ratio Zn/Zp. There is, however, a small difference and this gives rise 

to an a.c. space or net charge PL(x) given by: 

PL(X) = ZpPL(X)- ZnnL(X) 

_ (1+j)JQp(Dp-Dn)ro112 'A2 sinh((1+j)x/ss2 
- 2312qDpDnDsl/2 cosh((l +j)L/~s) (3.7.27) 

This space charge produces an additional term in the electric field. 

The a.c. electric field is then given by: 

( ) _ _1_(1 Qp(Dn-Dp) cosh((1+j)x/ss)) 
eL x - gKL~ + D8 cosh((l+j)L/~8) (3.7.28) 

where gKL denotes the area specific admittance per unit length at low 

frequencies, assuming a constant electric field (i.e. independent of 

position) and is given by: 

(3.7 .29) 

The potential is then given by: 

_ __l_( (1-j)Qp(Dn-Dp) sinh((l+j)x/l;s)) 
'I'L(x) - - gKL~ x + 2112D

8
1/2rol/2 cosh( (1 +j)L/~8) (3.7.30) 

where 'Jf(O)=O at x=O. 
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The a.c. ion currents are: 

1 ( ) _ 1 (Ipcosh((l +j)x/ss) zvDv { 1 cosh((l +j)x/ss) } ) 
pL x - \._ cosh((l+j)L/~8) + zpDp+ZnDn -cosh((l+j)L/~s) 

(3.7.31) 

J ( ) _ 1 {Incosh((l +j)x/ss) znDn { 1 cosh((l +j)x/ss)}) 
nL x - \._ cosh((l+j)L/~8) + zpDp+ZnDn -cosh((l+j)L/~s) 

(3.7.32) 

It should be remembered that equations 3.7.25 to 3.7.28 and 3.7.30 

to 3.7.32) give the spatial dependence of each parameter. The time 

dependence can be introduced by multiplying by expUoot). Thus for 

example PL(x,t) = PL(x)expUoot) etc. 

3.8 RESULTS 

The results in this chapter are for the behaviour of the electrolyte 

many Debye lengths away from the electrodes, hence they effectively 

exclude the double layer impedance of the current electrodes. For the 

four terminal impedances which exclude these double layers, diffusion 

effects become important due to the contribution of the impedance terms 

z2 and z3 to the total impedance (see section 3.4). z2 and z3 arise from a 

component of the space charge which is produced if the cationic and 

anionic diffusion constants differ. Cations and anions will then tend to 

move at slightly different rates under the influence of the applied 

field. They can never move at very different rates, even if they have very 

different diffusion constants, because the charge separation creates a large 

electric field which slows down the more mobile and accelerates the less 

mobile ion. The strong electric field that opposes their independent 

66 



motion produces "waves" of solute movement between the current 

electrode, analogous to standing waves in an air column. 

The a.c. impedance of the double layer has been calculated by 

DeLacey and White (1982) for an arbitrary number of ion species. 

Although the results presented in this chapter are for impedances which 

exclude the double layer impedance, the voltage electrode separation (L') 

can be varied arbitrarily, and hence a comparison was possible for the 

case of KCl and ; = 0. The impedance calculated for this case 

approximately agreed with that of Delacey and White's value and showed 

approximately the same trend with frequency. (It was difficult to 

determine on the scale of the graphs). 

3.8.1 Impedances Ratios for a 3 ion electrolyte 

The capacitance and conductance ratios Ct!CK and Gt!GK were 

calculated as functions of frequency for various bulk ion concentrations 

and diffusion constants. CK and GK denote the geometrical capacitance and 

conductance, respectively, i.e. the capacitance and conductance for no a.c. 

concentration variation (CK = e[L' and GK = (gpK + gnK)fL'). Because 

these ratios varied considerably with diffusion constants and ion 

concentrations, it was difficult to find a suitable set of parameters for 

representative plots of capacitance and conductance. 

Calculations of the impedance require very high numerical precision, 

since the solution of the three differential equations for the ion 

concentrations (p, c and n) involves finding complex cubic roots which 

may include subtracting terms of similar magnitude. Furthermore, 

finding ai from the boundary conditions involve the inversion of a matrix 

whose elements have different orders of magnitude, which can lead to loss 
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of precision. Hence one needs to use very high precision variables, 

otherwise the error in the results renders them meaningless. For the 

results below 36 digits were used per variable (Checks at higher precision 

showed this to be a suitable precision). 

As discussed below, CJCK and GJGK depend strongly on the ratio of 

the cation to anion diffusion constants (Dp/D0 ). To illustrate this effect, 

plots of CJCK and GJGK for a binary electrolyte for a large range of the 

ratio Dp/Dn and a wider range of frequencies are presented in Figure 3.2 

for the case of a binary electrolyte. 

No variations of the ratios CJCK and GJGK with frequency occur 

above or below the frequency range of the oscillations of CJCK and 

GJGK: at high frequencies the capacitance and conductance were equal to 

their geometrical values and at low frequencies they reach a limiting 

value. Therefore plots demonstrating the effect of the third ion species 

were limited to this frequency range only. 

If the three ion species have different diffusion constants, the 

capacitance ratio CJCK reaches a value much greater than one at low 

frequencies. This low frequency limit is a complicated function of 

diffusion constants and ion concentrations and the dimensions of the 

system and increases with greater differences in the diffusion constants. 

CJCK oscillates between negative and positive values at intermediate 

frequencies, i.e. the total reactance becomes capacitative and inductive 

alternately. However the magnitude of consecutive oscillations decreases 

very quickly with frequency. CICK approaches one at high frequencies. 

The conductance ratio G/GK is less than one at very low frequencies. 

It also oscillates at intermediate frequencies and approaches one at high 

frequencies. As explained above, the oscillations of the total impedance 

and hence capacitance and conductance, are due to Z2 and Z3, whose real 
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constant = 1 o-9 m2 s-1. 

3 

10 



and imaginary parts alternately become negative and positive with 

increasing frequency. Since Z1 is negligible for the voltage electrode 

spacings used here (see section 3.4), the real and imaginary parts of the 

total admittance (Re(1/Zt) and ImO/Zt)) will equal Re(l!ZK) and Im(ZK) 

at frequencies for which Re(l/(Zz + 1/Z3)) and Im(l/(Zz + l/Z3)), 

respectively are equal to zero. At these frequencies (denoted by foe and 

f0 a, respectively) the capacitance and conductance ratios are equal to 

unity. fnc and fna vary with diffusion constants and electrode separation, 

as well as bulk ion concentrations. 

While the effect of the impedance terms Zz and Z3 on the capacitance 

ratios is spectacular, the conductance ratios remain reasonably close to 

unity, since, although Ct is much greater than CK, roCt is considerably 

smaller than Gt at low frequencies for the parameters chosen in this 

chapter (of the order of 1 %). However, at very low electrolyte 

concentrations, the effect on the conductance can become important. The 

expressions for the ion current densities also include the oscillatory term 

cosh(L/Ai). Hence this analysis may help to explain qualitatively some of 

the peculiarities of ion flux measurements of plant cells reported in the 

literature, (e. g. Newman et. al., 1987 and Kochian, 1989). 

Figures 3.3 and 3.4 give examples of the capacitance and conductance 

ratio respectively as functions of frequency for the case when the 

diffusion constant of the second cation species (De) is much greater than 

that of the first (Dp). Plots are shown for several different concentrations 

of salt 1 (Po). The concentrations of salt 2 (Co) are chosen so that zpPo + 

zcCo (and therefore the total ion concentration) is kept constant. Simple 

approximate expressions for the frequencies (f ni and fnh i=2,3) for which 

the real and imaginary parts of Zi, respectively are equal to zero can be 

found (see theory section above). As explained in the previous section, 
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TABLE 3.1 

PARAMETER VALUE 

e/eo relative dieletric constant of the solution 80 
T temperature 20°C 
Zp valency of cation 1 1 
Zc valency of cation 2 1 
Zn valency of anion 1 
L current electrode separation l0-4 m 
L' voltage electrode separation l0-6 m 

The values of L and L' were chosen as the best realisation of a 
macroscopic system consist with the very large exponents so 
produced. 



even though the frequencies foe and foG (defined above) depend on both 

Z2 and Z3, usually one of the two terms dominates Zt, and therefore CJCK 

and GJGK over large ranges of the bulk ion concentration. Thus 

approximate values foe and foG can be predicted from the expressions for 

f oi and foh i=2,3. (foe = f0 2 or fo3 and foG= f o2 or f o3, depending on 

whether Z2 or Z3 dominates). For example, if De is much larger than Dp, 

Z2 dominates the total impedance except for very low concentrations of 

the second cation (Co). Hence the frequencies for which the total 

capacitance equals CK (foe) are expected to equal fo2 except for very small 

values of Co, (down to Co =10-5 mM for the parameters chosen here). For 

smaller Co, foG should approach f0 3. Similarly the calculated frequencies 

for which the total conductance equals GK (foG) are approximately equal 

to f' o3 for very small values of Co only and are similar to f' o2 for all 

other concentrations. The results presented in Figures 3.2 and 3.3 are in 

agreement with this4. 

For a binary electrolyte with cation diffusion constant Dp, the 

characteristic frequencies foe and foG are similar to f0 3 and f' 0 3 

respectively. Thus this example shows that small concentrations of a 

second ion species can alter the variation of the total capacitance with 

frequency considerably, provided that the diffusion constants of the 

cations differ significantly. The effect on the total conductance is however 

much smaller. The effect of the third ion may be important in the 

measurement of the diffusion constant for a given ion. 

4 Note: The total conductance Gt is smaller than GK at f' 12 (i.e. at the flrst frequency for 

which G2 is zero). Hence flG is somewhat higher than f'12 unless Co is small. This 

difference is due to the imaginary part of Z2, which dominates the imaginary part of the 

total impedance at this frequency, provided Co is sufficiently high. (Im[cosh(L/A2)] is 

nonzero at f'12 and K2 is large unless Co-> 0) 
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Figures 3.5 and 3.6 show the capacitance and conductance ratios as a 

function of frequency for similar cation and anion diffusion constants. 

The magnitudes of the capacitance and conductance oscillations are much 

smaller than for the previous case. Also fnc and fna do not vary 

significantly with ion concentrations. fnc and fna are approximately equal 

to f0 3 and f' n3 respectively for low values of Co and lie between f0 3 and 

f02, and f' n3 and f' n2 for most other concentrations. 

3.8.2 Spatial Variations at low Frequencies for the Binary 

Electrolyte 

The problem of estimating membrane currents from electrochemical 

measurements in the external electrolyte is now considered. An 

instrument that could measure J directly would thus give the correct value 

at all positions within the electrolyte, since the total a.c. current J in the 

electrolyte must necessarily be independent of position. 

An a.c. technique such as the vibrating current probe, or two closely 

spaced voltage electrodes, however introduces the possibility of incorrect 

estimates of time varying J because it essentially measures the local 

electric field. A knowledge of the local ion concentrations then allows 

calculation of the local conductivity and thus the current. However the 

particular relationship used to calculate the conductivity (usually equation 

3.7.29 or equivalent) is derived on the basis of an electric field 

independent of position. Equation 3.7.28 indicates that such a constant 

field will only occur if Tp=zpDp/(zpDp+ZnDn) and/or Dp=D 0 • The first 

condition, when the transference number is the same for the membrane 

and the bulk electrolyte, results in zero a.c. concentration changes 

throughout the electrolyte, i.e. PL(x)=nL(x)=O for all x. The second 
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condition results in PL(x)=nL(x) and then the a.c. concentration changes 

carry no net charge. Both of these conditions are unlikely in experiments 

and consequently the current calculated from the electric field on the basis 

of a constant field may be in error depending on tp, Dp, D0 and the cosh 

terms (given by the function F below) in equation 3.7.28. 

Figure 3.7 gives an example of the behaviour of the oscillatory 

function F which occurs in both the low frequency limit of the electric 

field and the ionic current densities. 

F _ cosh(( I +j)x/ss) 
- cosh((l+j)L/~8) 

cos(x/ss)cosh(x/ss) + jsin(x/ss)sinh(x/ss) 
= cos(L/~8)cosh(L/~8) + jsin(L/~8)sinh(L/~8) 

(3.S.\ ) 

This theoretical treatment shows that the inclusion of the Poisson 

equation has important consequences. It produces an electrical coupling 

between fluxes because movement of one species will cause concentration 

changes that produce a local net or space charge that will itself then 

generate a local electric field that attracts the other species. It is 

consequently impossible for ionic species to flow independently and after 

travelling sufficient distance the fraction of the total current carried by 

each species will eventually be in proportion to their valence, 

concentration and mobility in the bulk electrolyte. Again because the 

exponential of a complex variable is a periodic function, JpL(x) and J0L(x) 

will both be oscillatory functions of ro, Ds and x (see Figure 3.7). 

The variation of phase shown in Figure 3. 7 indicates that even the 

apparent direction of a time-varying ionic current can be incorrect. This 

could provide a possible explanation for the widely varying 
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stoichiometries sometimes observed between fluxes of different ions and 

the sometimes perplexing reversals in flux direction seen in measurements 

on plant cells (Newman et. al., 1987 and Kochian et. al., 1989). 

The situation is more complicated if ion fluxes are estimated from 

the difference in concentration between two positions in the electrolyte as 

determined by ion-sensitive electrodes. The ion current is usually 

calculated from the gradient of the ion concentration assuming a linear 

variation with distance. The oscillatory nature of p(x) means that 

interpolating between two points could possibly lead to erroneous 

conclusions, particularly when the distance between measurements 

becomes comparable to ~s· An additional problem might occur if the time 

taken to move the ion-sensitive-electrode between positions is comparable 

to the time scale of ion current variations - it is then possible that 

measurements are taken in different parts of cycle. 

It is stressed that this treatment is for a simple, one-dimensional 

system only. Calculations in Chapter 4 show no qualitative difference 

from the results for planar geometry, apart from geometrical factors. 

Results presented should at least be qualitatively applicable to 

measurements in external electrolyte solutions of biological membranes, 

whatever the geometry. 

3.'9 CONCLUSIONS 

Exact algebraic solutions to the Nemst-Planck and Poisson equations 

for planar geometry were presented for an electrolyte containing at most 

3 distinct species. Calculations of the impedance of the regions excluding 

the double layer at the electrodes showed hitherto unexpected behaviour at 

low frequencies. For this region Zt was dominated by diffusion effects 
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(due to the oscillatory nature of the impedance terms, Z2 and Z3), which 

led to large oscillations in the capacitance as a function of frequency. 

These effects could possibly offer an explanation for the inductances 

occasionally measured in electrochemical experiments on biological 

systems. Calculations showed that the presence of even a low 

concentration of the second cation species could considerably affect the 

total capacitance, if the diffusion constants of the two cation species were 

very different. 

The large oscillations in the impedance occurred only for four 

terminal measurements. Even though these oscillations may not have been 

observed to date, they are not just of academic interest, but could provide 

the basis for a useful measuring tool, since they allow null 

measurements. This would be a powerful method of determinS 
diffusion constants for the following two reasons: 

1) They remove free parameters. For example, fitting measured 

capacitance values to the zero points of the frequency spectrum, 

predicted by a theory such as the one described in this chapter, 

removes the necessity of knowing the electrode area precisely. This 

area can be difficult or cumbersome to measure in some cases. 

Furthermore, since the theory predicts more than one zero, the 

additional zeros could provide an extra check of the goodness of the 

fit to the data, or enable additional parameters to be determined. 

2) They are inherently powerful, since measuring systems are 

usually most sensitive near their zero points. 

The varying activity of membrane transport systems produces 

membrane currents that vary with time. These currents flow through the 

electrolyte that surrounds the membrane and produce time-dependent 
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ionic concentrations. This creates several possible sources of error if 

external electrochemical measurements are used to determine the 

membrane currents. Two such errors are: 

(i) The relationship between the electric field and total current at 

any point in the electrolyte depends upon the rate of change of the 

membrane currents. This raises complications in the interpretation of 

time-varying measurements with the conventional vibrating probe. 

(ii) The coupling between ionic currents that vary with time means 

that the current of a species measured in the external electrolyte 

some distance away from the membrane can be quite different from 

its value in the membrane. 
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CHAPTER 4 

SOLUTIONS OF THE NERNST-PLANCK 
POISSON'S EQUATIONS FOR SPHERICAL 

GEOMETRY 

4.1 INTRODUCTION 

In this chapter analytical solutions to the Nemst-Planck and Poisson 

equations for a binary electrolyte with spherical geometry are presented. 

For this system the two current electrodes are assumed to be a point and a 

hemispherical shell electrode as shown in Figure 4.1. As it is assumed that 

ion concentrations and current densities depend only on radial distance, so 

mathematically this is also a one dimensional system as was the planar 

geometry of Chapter 3. Membranes are flat on scales of the order of a 

Debye length and in experimental situations the electrodes are normally 

situated at macroscopic distances from membranes. Ion channels have 

radii in the order of a nm and it is therefore reasonable (not to mention 

analytically convenient) to assume that the electric field lines and ion 

fluxes will follow approximately radial lines outside the channel. 

Spherical geometry has also been used by Bers and Peskoff (1991) to 

calculate the electrodiffusion of calcium ions in a hemisphere of 

electrolyte solution centred on the external mouth of a cardiac calcium 

channel. However, unlike the solutions presented in this thesis, their 

treatment is for the steady state or d.c. ion concentrations and potentials. 

Some steady state theories of the electrical properties of ion channels 

model the channel mouth by a hemisphere of electrolyte solution (see for 

example Levitt, 1987; Lauger 1976 and Jordan, 1986). Although this 
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FIGURE 4.1 

Figure 4.1. The geometry used for the impedance calculations of 
Chapter 4. The current electrodes are situated at r=O and R, 
respectively, while the potential and hence impedance is calculated 
between r = fi and r2. 



region has been shown to have significant effects on the total channel 

conductance in some cases, its influence on a.c. impedance remains 

undetermined. Solutions for the spherical geometry presented in this 

chapter may be useful for investigating this effect. 

Channel selectivity is thought to be controlled by the narrowest part 

of the channel, e.g. the acetylcholine receptor channel and sarcoplasmic 

reticulum K + channel both have wide, funnel-shaped outer channel 

regions which lead to a short narrow section deep inside the pore 

(Eisenman and Dani, 1987). This may allow the approximation of the 

pore as a point source or sink used as boundary conditions for this 

geometry. Note that the infinities in ion concentrations and the potential at 

the point source do not concern the results calculated for the impedances. 

As I use four terminal measurements, the potentials at both voltage 

electrodes are finite and the current has a finite value everywhere over 21t 

sterradians. 

Ion flow near biological membranes is, of course, much more 

complicated than the electrodiffusion model presented here. Current flow 

near the entrance of the channel is also influenced by effects such as the 

vicinity of the low dielectric constant of the lipid bilayer (see Chapter 2), 

the presence any fixed charge on the channel walls and possible steady ion 

currents. I return to some of these complexities in Chapter 6. 
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4.2 THEORY 

As in Chapter 3, the three dimensional Nemst-Planck equations g1ve 

the current densities of ions moving under the influence of their 

concentration gradients and the electric field. For the case where no d.c. 

electric field is present, the expressions for the a.c. current densities 

become: 

q2 zp2 Dv Poe 
J p = -q Zp Dp v p + k T (4.2.1) 

q2 Zn2 Dn No e 
J n = q Zn Dn V n + k T (4.2.2) 

where: Jp = current density of cations with valency Zp, diffusion constant 

Dp and concentration Po 

Jn =current density of anions with valency z0 , diffusion constant 

Dn and concentration No 

p = a.c. cation concentration 

n = a.c. anion concentration 

e = a.c. electric field 

q = electron charge 

k = Boltzmann' s constant and 

T = temperature (in Kelvin) 

(note characters in bold denote vectors) 

Again products of a.c. terms have been discarded, since they are 

negligibly small, and Zp Po = Zn No = Co = bulk electrolyte concentration. 

78 



Poisson's equation relates the electric field to the ion concentrations: 

V .e = ~ (zp p - Zn n) 

where c is the permittivity of the medium. 

The a.c. continuity equations are given by : 

qzpWt = q zp j ro p + V .Jp = 0 

-qzp fr = -q Zn j ro n + V .J n = 0 

Combining equations 4.2.1 to 4.2.5 gives : 

-AL 1 2" 
'\12 n + ZnAn2 P - ( An2 + ~P~ ) n = 0 

ckT 
where Ap2 = 2 q2 p , Zp 0 

and 
~ ... f20p 
._,P= -\1 ~ 

A- 2 - ckT 
0 

- zn2 q2 No' 

and 

(4.2.3) 

(4.2.4) 

(4.2.5) 

(4.2.6) 

(4.2.7) 

(4.2.8) 

(4.2.9) 

As for Chapter 3, Ap and An are the "effective" Debye lengths 

associated with the cations and anions, while ~P and ~n are the 

characteristic rms distances travelled via diffusion in the characteristic 

time 1/ro by the cations and anions, respectively, via diffusion per radian. 
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The equations for p and n are now solved assuming spherical 

symmetry , i.e. the equations are now one dimensional. 

For spherical symmetry, \72 reduces to ; 2 :r ( r2 :r ) and equations 

4.2.6 and 4.2. 7 then have solutions of the form : 

(4.2.10) 

(4.2.11) 

where: m1 = (11t+112)112 (4.2.12) 

(4.2.13) 

(4.2.14) 

112= (4.2.15) 

Note: mi is used here instead ofl/Ai, i=1,2 of Chapter 3. 

St and S2 can be found by substituting the expressions for p(r) and 

n(r) back in to the differential equations. They simplify to: 

(4.2.16) 
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where ').) - e k T 
- q2 (~ + Zn) Co 

(4.2.17) 

The values for the complex coefficients ai and bi (i=1,2) can be 

obtained from the boundary conditions at each of the two electrodes. 

The electric field can be obtained from Poisson's equation (4.2.3) 

which for a small a.c signal is : 

..La r2 er g_ 
r2 d r = e (zp p - Zn n) (4.2.18) 

The electric field can be obtained by integrating equation 4.2.18: : 

e(r) = ~ J r2 (zp p - Zn n) dr (4.2.19) 

substituting equations 4.2.10 and 4.2.11 into equation 4.2.19 gives: 

(4.2.20) 

where er is an integration constant. 

Substituting equations 4.2.10 and 4.2.11 into equations 4.2.1 and 

4.2.2 gives: 
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82 

g Dn zn [ Jp(r) = ri alemlr(l-mtr) + a2e-m1r(1+m1r) 

+ b1em2r(l-m2r) + b2e-m2r (l+m2r) 

(4.2.21) 

J ( ) - q Dn Zn [ S (1 ) S (1 ) n r - r2 - 1a1em1r -m1r - 1a2e-m1r +m1r 

- S2b1em2r(l-m2r)- S2b2e-m2r(1+m2r) 

(4.2.22) 

The total current density is equal to: 

Jt = Jp + Jn + j roe e (4.2.23) 

V.Jt = 0, hence the total current It= 4 1t r2 It is independent of r. 

Using this, er can be found: 
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(4.2.24) 

(4.2.25) 

The electric potential \f" is given by : 

V\f"=-e (4.2.26) 

For spherical symmetry equation 4.2.26 becomes: 

\f"(r) = - f e(r) . dr (4.2.27) 

(4.2.28) 

where \f"r is a constant of integration. 

The impedance between r = r1 and r2 (r1 and r2 > 0) is given by: 

Z 
_ \f" Crt) - \f" (r2) 
- It (4.2.29) 

As for section 3.7, Z can be written as: 

(4.2.30) 

where: zi = 
q 

e I 1 r 



( 4.2.31) 

(4.2.32) 

The conductance G and capacitance C can be calculated from the 

real and imaginary part of 1/Z , respectively: 

(4.2.33) 

Note that Z, G and C are not area specific, unlike those of the 

preceding chapter, since the area is a function of r for this geometry. 

Italics are used to distinguish this case. 

4.3 BOUNDARY CONDITIONS 

The current electrodes are situated at r = 0 and r = R, and are 

assumed to be partially blocking (see Figure 4.1). As this system is no 

longer antisymmetric as was the case in Chapter 3, four coefficients (a~, 

a2, bt and b2) rather than only two for planar geometry have to be 

determined. So boundary conditions at both electrodes must be used: 

(4.3.1) 

In(o) = In(R) = tn It (4.3.2) 

where Ip and In denote the total cation and anion currents, respectively 

and tp and tn are fractions of the total current It carried by the cations and 

anions at the current electrodes. 
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The total current is equal to (2 1t r2) times the current densities for a 

hemisphere. Note that the r2 term in r2Jp(o) and r2J0 (o) cancels, since 

both current densities are proportional to lfr2. Therefore: 

(4.3.3) 

(4.3.4) 

Substituting equations 4.2.2\ and 4.2.22 into 4.3.3 and 4.3.4 and 

solving for the complex coefficients ai and bi (i=l,2) gives: 

fa -1 +emiR - R mt 
at=- St 1 - e2m1R + R fit + R e2m1R ffii 

(4.3.5) 

fb -1 + emzR - R mz 
bt = Sz 1 - e2mzR + R mz + R e2mzR mz (4.3.6) 

and (4.3.7) 

(4.3.8) 

(4.3.9) 

k _ zp q Co It tp It 
P - k T 2 1t Y k - 2 1t q Dp (4.3.10) 

k _ Zn q Co It t 0 It 
n- k T 2 1t Y k - 2 1t q Dn (4.3.11) 

Zp b + Zn 
ktp = Zp b - 'l 2 2 and Zp ll..p m1 
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z11 a+ Zn 
k2p = zp a- 'l 2 2 (4.3.12) zp Ap m2 

Zp b + Zn 
ktn = Zn- Zn An2 m12 and 

z11 a + Zn 
k2n = Zn- 'l 2 m 2 (4.3.13) Zn An 2 

a= ~[ 1 1 . 1 1 ] 
2 'Ap2 - J...n2 + 2j(~P2 -~02)+ 112 (4.3.14) 

(4.3.15) 

kp, k0 , kip and kin are introduced for mathematical convenience only. 

kip and kin simplify to : 

j ro Zp b and 
mt2 Dp k2p (4.3.16) 

jrob jroa 
kin= Zp (1- b + 2 D ) and k2n = Zn (1- a+ 2 D ) (4.3.17) 

fit p ffi2 p 

As for the binary electrolyte of Chapter 3, the total impedance 

comprises of three terms: the impedance terms zl and z2 which are 

associated with the characteristic lengths AI (=llmi) and A2 (=1Im2) and 

the impedance at equilibrium ZK, i.e. the impedance for no a.c. signal (see 

equation 4.2.28). AI and A2 are the same as for the two ion case of 

Chapter 3. However, because of the asymmetry of this geometry, the 

solutions include four coefficients, a~, a2, b1 and b2 rather than the two of 
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Chapter 3 and the exponential terms e±miR cannot be combined into a 

single cosh term, unlike those in the previous chapter. 

4.4 HIGH FREQUENCY LIMIT 

At high frequencies the ions do not have sufficient time to travel far 

per cycle, resulting in negligible space charge in the bulk solution and the 

impedance approaches the equilibrium value, i.e. the value for zero a.c. 

concentration changes. 

For spherical symmetry, the high frequency limit of the capacitance 

CKand conductance GK can be shown to equal: 

( 4.4.1) 

G _ 2 1t r1 r2 q2 Co (zp Dp + Zn Dn) 
K - k T (r2 - ri) (4.4.2) 

Note that CK and GK are not area specific and that in the limit of r2 

approaching infinity, both C K and G K are independent of r2 and 

proportional to r1, as is the case for an ohmic conductor. 

4.4.1 Electrical Characteristics of "a Pore in a Membrane" at 

High Frequencies. 

For the case of a pore in a membrane, the impedance of the pore 

(Zp) as well as that of the surrounding lipid bilayer (Zm) has to be 

considered, in addition to that of the surrounding electrolyte medium (Zs) 

as shown in Figure 4.2. At high frequencies, Zp, Zm and Zs can be 
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FIGURE 4.2 

"membrane" 

Figure 4.2. The configuration used for the high frequency 
calculations. 



approximated by their geometrical values, since there is negligible space 

charge in the electrolyte solution. The presence of the bilayer leads to 

distortions of the electric field near the pore due to the small but finite 

displacement or polarization current through it, especially at high 

frequencies. However, even though the impedances of the different 

regions cannot strictly speaking be added as separate elements, it is still 

useful to determine their magnitudes at high frequencies to obtain an 

estimate of the relative importance of the electrolyte at the channel mouth 

to the total impedance of a pore at frequencies where the conductances of 

the various components are given by simple expressions. The high 

frequency limit of the total conductance of a pore and the capacitance of a 

membrane are now compared to C K and G K for a spherical shell of 

electrolyte solution of inner radius, r1 equal to the radius of the pore (see 

equations 4.4.1 and 4.4.2). For these calculations, the pore is 

approximated by a cylinder of electrolyte solution of concentration Co, 

length d and radius equal to r1. Hence the high frequency limit of its 

conductance is given by: 

(4.4.3) 

The ratio of the high frequency limit of the "pore" to the 

hemispherical shell of electrolyte at the channel mouth (GpiGK ) is 

obtained from equations 4.4.2 and 4.4.3: 

G !G _ r1(r2 - r1) 
p K - 2 d f2 (4.4.4) 

Usually r2 >> r1, hence the conductance ratio GpiGK can be 

approximated by: 
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(4.4.5) 

Hence, for typical values of pore radii and pore length, Gp is 

comparable in magnitude to GK. Table 4.1 gives some typical values of 

the high frequency limit of the conductance and capacitance of the "pore" 

and the hemispherical shell of electrolyte as well as typical measured 

values of the capacitance and conductance of a bilayer. The bilayer 

capacitance C b dominates the total capacitance for typical membrane 

areas. 

Because of the awkwardness of the assumptions made in the spherical 

symmetrical model, the solutions presented in this chapter can only 

resemble electrical properties of a pore. However, exact algebraic 

solutions to the electrodiffusion equations appear only to be possible for 

one dimensional systems. Hence numerical solutions of the Nemst-Planck 

equations for a channel had to be resorted to. These are discussed in 

Chapters 5 and 6. 

4.5 RESULTS 

4.5.1 Comparison of Spherical and Planar Geometries 

Again the results are shown as the ratios GriGK and CriCK, where Ct 

and Gt are the total capacitance and conductance, respectively and CK and 

G K denote the geometrical capacitance and conductance when ionic 

concentration changes do not occur. CK and GK are equal to the high 

frequency limits of the capacitance and conductance given by equations 

4.4.1 and 4.4.2, respectively. At low frequencies Z1 makes a negligible 
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TABLE 4.1 

The high frequency limit of the conductance (G) and 
capacitance (C) for a cylinder of electrolyte solution of radius q and 
a hemispherical shell of electrolyte of inner radius q and outer 
radius rz. These values are for a univalent binary electrolyte with 
diffusion constants Dp and Dn and permittivity E: 

Dp = 2 10-9m2 s-1 
Dn = 1.98 10-9 m2 s-1 
E = 80 EO 

q = 1 nm 
rz ~ 1 11m 

4.1a) The electrolyte concentration: Co = 1 m M: 

Hemispherical shell of electrolyte: 
Cylinder of electrolyte of length 5 nm: 

G (S) 

9.55 10-11 
9.55 10-12 

C(F) 

4.4510-18 
4.45 I0-19 

4.1b) The electrolyte concentration: Co = 10 0 m M: 

G (S) 

Hemispherical shell of electrolyte: 9.55 I0-9 
Cylinder of electrolyte of length 5 nm: 9.55 I0-10 
Measured bilayer values for a circular 2.1 10-10 
area of radius = 0.1 mm: 
(from Smith et. al., 1984) 

C(F) 

4.4510-18 
4.45 I0-19 
3.1 10-10 



contribution to the total impedance (Zt), calculated many Debye lengths 

away from the current electrodes, since "-1 (=l/m1) is equal to the Debye 

length to first order. The contribution of Z2 thus dominates Zt and the 

variation of GtiGK and CtfCK with frequency is expected to be similar to 

that for the binary electrolyte for planar geometry. The differences due 

to geometrical factors are demonstrated in Figures 4.4. to 4.7 and a 

comparison to the results of Chapter 3 is given in Appendix 4.1. Even 

though the calculated capacitances and conductances for spherical 

geometry are necessarily extensive rather than area-specific, this 

comparison is still valid since in each case the ratio of total capacitance 

and conductance to their geometrical values (i.e. to their high frequency 

limits) for both geometries are calculated. 

4.5.2 Results for Small Values of the "Pore" Radius r1 

At low frequencies the contribution of the impedance term associated 

with the double layer (Z 1) to the total impedance (Z t ) is now 

considerable. The imaginary part of Z1, Im(ZJ), now dominates Im(Zt). 

For the case of perfectly blocking electrodes (i.e. tp = tn = 0) at low 

frequencies the total conductance ratio G tl G K approaches zero as 

expected. CtiCK again reaches a plateau at low frequencies. This limiting 

value is, however, much less for impedance calculations far away from 

both current electrodes (within one order of magnitude of unity), since 

the large capacitances of the previous section are attributable to diffusion 

effects (see Figures 4.4 to 4.7). Neither CtfCK nor GtfGK vary 

significantly with bulk electrolyte concentration (Co) nor with r2 for 

values of r2 >> r1. 

For the case of partially blocking electrodes, (i.e. tp and/or tn ::t 0), 

diffusion effects again became important. The low frequency limit of the 
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FIGURE 4.3 
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Figure 4.3. The configurations used for the calculations for planar 
and spherical geometries. 
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Figure 4.4. The capacitance and conductance ratios for planar and 
spherical geometries, for Dp = 2 1 0-9 m2 s -1, R = 200 f..l. m , 

q = 99 f.!m, r2 = 101 f..l.m, L = 100 f.!m and L' = 1 f..l.m. The 

variations in the conductance ratios are too small to be usefully 
displayed graphically for intermediate frequencies (see Table 4.2 

for all other parameters, see Figure 4.3 for the geometry used). 



FIGURE 4.5 
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Figure 4.5. A comparison of the capacitance and conductance ratios 
for planar and spherical geometries, for Dp == 4 1 0-9 m2 s -1, 

R == 200 J.Lm, q = 99 Jlm, r2 = 101 J.Lm, L = 100 Jlm and 
L' = 1 Jlm (see Table 4.2 for all other parameters, see Figure 4.3 

for the geometry used). 
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FIGURE 4.6 
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Figure 4.6. The capacitance and conductance ratios for planar and 
spherical geometries, for Dp = 2 10-9 m2 s -1, R = 200 J.l m , 

q = 149 Jlm, rz = 151 J.Lm, L= 100J..Lm and L'= 1 Jlm. The 

variations in the conductance ratios are very small - too small to be 
usefully displayed graphically for intermediate frequencies (see 
Table 4.2 for all other parameters, see Figure 4.3 for the geometry 
used). 
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Figure 4. 7. The capacitance and conductance ratios for planar and 
spherical geometries, for Dp = 2 10-9 m2s-1, R = 2 mm, 
q = 999 f.Lm, f2 = 1001 l!ffi, L = 1 mm and L' = 1 f.Lm (see 

Table 4.2 for all other parameters, see Figure 4.3 for the geometry 
used). 



TABLE 4.2 

PARAMETER 

T 

Zn 

Zp 

temperature 

anion diffusion constant 

dielectric constant of the 
solution and channel 

anion valency 

cation valency 

bulk electrolyte concentration 

VALUE 

293 K 

1.98 10-9 m2 s-1 

80 

1 

1 

2 mM 

The current electrodes are assumed to be perfectly blocking for the 
comparison between spherical and planar geometry. 



capacitance ratio CriCK increases with r2 and is a strong function of tp and 

t0 • If the fraction of current carried by the more mobile ion species at the 

electrodes is greater than that for the slower one, the impedance can 

become inductive, i.e. the low frequency limit of the C11CK is negative, 

while for the case when the current electrodes are completely blocking to 

the more mobile ion only, CriCK is positive (see Figure 4.8 for an 

example). This is a diffusion effect as discussed in the Chapter 3. 

However, this case differs from the results presented in Chapter 3, which 

concentrated on the variation of the impedance resonances as a function of 

frequency for perfectly blocking electrodes. 

This can be explained in two ways. First, recall the analogy with the 

standing waves in a pipe: blocking electrodes are like closed ends -

displacement nodes. Non blocking electrodes are more like anti-nodes. 

The consequent shifts in the resonance positions when changing from 

blocking to non blocking electrodes can give rise to inductive behaviour 

in four terminal measurements. A more physical explanation is as 

follows: The faster ion drags the slower ion species through the 

electrolyte against the field. If the cations are more mobile and the 

current electrodes are completely non blocking to cations, then anions 

initially accumulate at the electrodes, and start to diffuse away from the 

current electrode. Since they are negatively charged, the direction of the 

current remains (briefly) unchanged and the impedance becomes 

inductive. 

As for calculations of Chapter 3, although the diffusion constants and 

tp and tn have a considerable effect on the capacitance, the variation in the 

conductance ratio is much smaller, since Re(Zr) is dominated by Re(ZK), 

except at low bulk electrolyte concentrations. The low frequency 

conductance is greater than GK (within one order of magnitude). 
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FIGURE 4.8 
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Figure 4.8. The capacitance (CtfCk )and conductance (GtfGk) ratios 
of a univalent binary electrolyte of concentration Co = 100 mM for 
different cation diffusion constants : 
1 : Dp = 2 10-9 m2 s-1 
2 : Dp = 4 1 0-9 m2 s -1 . 

R = 200 ~ m, rt = 1 nm, r2 = 1 ~ m 
tp = 1 and tn = 0. 

The low frequency limits of the capacitance and conductance ratios 
for these parameters are: 

1 -5.38 1.56 
2 -654.1 2.07 
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The capacitance and conductance approach their geometrical values 

at frequencies above the characteristic frequencyt of the electrolyte 

solution. GtiGK and oscillates about unity at high frequencies below the 

characteristic frequency. So too does CtiCK, although the effect is less 

spectacular. For partially blocking electrodes the conductance ratio may 

become negative at these high frequencies, due to resonance effects of 

solute movement between the current electrodes. The negative 

conductances occur at very low bulk electrolyte concentrations for which 

the contribution of ZK to the total impedance is significantly reduced. 

This is not however, a perptuum mobile. Recall that this is a 4 terminal 

impedance, so negative conductance merely means that the potential 

difference between the voltage electrodes is out of phase with the current. 

To return to the analogy of the resonant pipe: depending on the choice of 

placement of two pressure sensors in the pipe, the phase of the pressure 

difference could be in or out of phase with particle velocity at the reed. 

Unlike at low frequencies, the two ion species can now essentially move 

independently (both the real and imaginary part of At and A2 are of the 

order of the diffusion length of the cations and anions respectively at high 

frequencies). This effect, as well as the large variations in the total 

capacitance, may play a role in channel gating which has not been 

considered in steady state models. 

Note that for tp and/or tn = 1, the outer current electrode (at R) is 

completely non blocking to either or both ion species. This, regrettably, is 

1 The characteristic frequency (fc) is defined as frequency for which the geometrical conductance 

(GK) equals the geometrical capacitance (CK): 

fc = roc/21t = GKICK, where GK and CK are given by equations 4.4.1 and 4.4.2. 
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only a poor approximation of the current electrodes commonly used for 

impedance measurements. 

For small r1 and for non blocking electrodes, the total impedance is 

dominated by a small region surrounding the hemisphere of radius r1 and 

the strong radial dependence means that variations in the space charge, 

and hence in the field near the origin, dominate the behaviour. 

Consequently the values for tp and t0 at the outer current electrode have 

little effect on the impedance. These and other important pore effects may 

be masked by the double layer impedance of the electrode at R in 

measurements with only two electrodes. 

4.5.3 The Effect of Access Impedance on Membrane Channels 

At very low concentrations of the permeant ion, channel conductance 

is ultimately limited by diffusion to the channel mouth, and the resistance 

of this region can contribute significantly to the total resistance (Levitt, 

1987). This access resistance is usually approximated by the convergence 

resistance to a hemisphere of electrolyte of radius r1 equal to the radius of 

the porl(Hil)e, 1968, 1970, as cited by Hall, 1975). The conductance is 

strongly dependent on r1. A similar result has been reported by Levitt 

(1987 and 1991). The treatment given in this chapter allows the a.c. 

access resistance to be calculated. The high frequency limit of the 

conductance of a hemispherical shell of electrolyte, GK, given by equation 

4.4.2, is equivalent to 1/Rh for r1 << r2. The pulsed nature of current 

flow through channels means the a.c. impedance could be more relevant 

than the d.c. value. In addition to Rg, the resistance of the hemisphere of 

electrolyte solution at the channel mouth (Rh) also has to be taken into 

account. The d.c. value of Rh has been found to be up to 60 % of Rg 

(Hille, 1968, 1970, as cited by Hall, 1975). 

* Strictly the convergence radius is equal to pore radius minus ion 

radius. 
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4.6 CONCLUSIONS 

i) Solutions to the Nemst-Panck and Poisson's equations in spherical 

geometry include no new impedance terms and they differ from the 

planar solutions of the previous chapter by the expected geometrical 

factors (i.e. the radial dependence of the ion concentrations, electric field 

and current densities). 

ii) The calculated values of the impedance differ quantitatively 

between planar and spherical geometries, thus calculations performed in 

the simpler planar geometry (e.g. Chapter 3) should at least be 

qualitatively applicable to other membrane electrolyte geometries In 

between the two extreme geometries considered in Chapters 3 and 4. 

iii) The total conductance of a channel necessarily includes a region 

of electrolyte solution surrounding the channel mouth. This region 

extends over a small distance only and the contribution of the electrolyte 

solution outside this region is small. The contribution to the total channel 

conductance of this region can become important, especially for channels 

with a high intrinsic channel conductance and at very low electrolyte 

concentration, since ion transfer becomes diffusion limited in these cases 

(Levitt, 1987). The a.c. impedance of this electrolyte has been shown to 

be a complicated function of frequency. 

The exact solutions presented in this chapter cannot deal with other 

important effects such as fixed charges, which are thought to play a 

fundamental role in the operation of channels. Accordingly in Chapters 5 

and 6 a new approach is used to overcome the restrictions of Chapters 3 

and 4. Of necessity, this approach must be numerical, since Nemst-Planck 

Poisson's equations cannot be solved exactly for these cases. 
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CHAPTER 5 

NUMERICAL SOLUTIONS TO THE NERNST­
PLANCK EQUATIONS 

5.1 INTRODUCTION 

In this chapter a method for solving the Nemst-Planck equations 

numerically is described, and the advantages and disadvantages of 

analytical and numerical solutions are discussed. 

First numerical solutions for an electrolyte in simple geometry are 

found. This allows qualitative comparisons with the analytical solutions as 

such comparisons are not possible for interesting geometries. The simpler 

geometries provide "controls" for comparison when the order of 

complexity is increased. In this chapter, the models considered are the 

case of a disc of insulating membrane and a simple transmembrane pore. 

In chapters 5 and 6 the term "pore" is used to denote an aqueous hole 

through an insulating membrane, while "channel" is used for holes with 

more elaborate structure or features. This choice is arbitrary. 

For systems where both anal::ytical and numerical solutions are 

possible, the analytical calculations are preferable to numerical ones, 

unless they prove to be so complex that their implementation becomes 

difficult. Analytical solutions have the following advantages: 

1) They introduce no errors by differentiation, 

2) In some cases with simple geometry, i.e. systems with a high 

degree of spatial and temporal symmetry they are often faster 

(always assuming they are possible), 

3) They give arbitrary time and spatial resolution. 
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However when substituting values for the various parameters to 

obtain numerical results, care has to be taken to allow for enough 

precision, otherwise numerical answers for some values of the 

parameters may become meaningless. For example, the analytical 

solutions described in Chapter 3 involve matrix inversions, which can 

lead to loss of precision due to rounding errors associated with each type 

of computer. 

Analytical solutions for simple electrolyte systems in only one 

dimension are complicated, as was shown in Chapters 3 and 4. It is 

extremely difficult to find analytical solutions to the three dimensional 

Nemst-Planck equations. 

Consequently, many three dimensional systems can only be solved 

numerically. These calculations have the advantage of yielding solutions 

for the arbitrary geometries and boundary conditions that need to be 

considered for modelling the small signal response of an ion channel in a 

membrane surrounded by an electrolyte solution. 

Numerical solutions have finite temporal and spatial resolution, as 

well as limited parameter space for stability. The new values of the 

variables for each iteration depend on the accuracy of the values of the 

previous iteration. In this model the ion concentrations for each iteration 

are calculated from the ionic current of the previous iteration from the 

continuity equations: the rate of change of ion concentrations in each 

finite volume element, or voxel is equal to the total ionic current entering 

or leaving it. This can be written as: 

(5.1.1) 
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where: L1qp is the change in total charge carried by the ion species in each 

voxel, 

dt is the time step between consecutive iterations and 

dip is the total ion current entering or leaving the voxel, i.e. each 

unit element of volume. 

For stability, dtdlp has to be very small compared to the total 

charge in each voxel, otherwise the concentrations are forced to vary too 

quickly with time and the calculations diverge (L1qp/L1Ip < lQ-lOs, for 

the parameters chosen for this thesis). Since the thickness of membranes 

and the diameter of ion channels are typically of the order of nm, the 

voxel size also should be smaller than these dimensions. Hence the total 

charge carried by each ion species in each voxel is small. This limits the 

time interval between consecutive iterations to very small values and since 

dt is inversely proportional to frequency, the criterion for stability limits 

the lowest frequency feasible for finite calculation times. The total 

number of voxels is limited by memory size and iteration time which is 

proportional to the square of the number of voxels for the method used. 

The computational power available means that the numerical 

calculations described here are a feasibility study that gives an indication 

of the precision and iteration step size that are required. Strong 

assumptions and crude approximations are used, so the purpose of these 

calculations illustrate qualitatively and semi-quantitatively the behaviour 

of the system. Even though these calculations take a long time on the 

Macintosh Ilfx used throughout this thesis, in future larger and faster 

machines could be employed to allow greater resolution calculations in 

shorter time periods. Due to these limitations a quantitative comparison 

with experimental results would be premature and will not be given in 

this thesis. Not only the computational methods are immature, the detailed 
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structure of channels is still poorly known. In the future, the method 

described here could be used to calculate the electrical properties of ion 

channels as their structures are determined. Nevertheless, the current 

study is expected to show the qualitative behaviour and give order of 

magnitude calculations of the important effects in real membrane 

channels. 

5.2 METHODS 

An ion channel in a uniform dielectric slab, immersed in a binary 

fully dissociated electrolyte solution with the same dielectric constant is 

modelled in the following manner. The response of this system to a small 

applied a.c. signal is considered. The boundary conditions chosen are as 

follows. A uniform surface charge density crs(t), which varies 

sinusoidally with time, is assumed to be situated at opposite ends of the 

chamber. The region between the boundaries is divided into finite 

elements or voxels. Constrictions or ion channels are introduced by 

blocking ion current flow completely (or partially) into the appropriate 

group of voxels, i.e. setting the ion current densities equal to zero (or 

some small fraction) at the channel boundaries. Note that since the 

electric field is continuous through the blocked region, displacement 

current (i.e. the current due to time varying polarization charges at the 

interface) is still allowed in this region. 

In practice electrodes are conductors, hence equipotential lines 

would be a more realistic boundary condition, rather than assuming a 

uniform charge density at the boundaries. However there are problems 

with this. 

One could obtain the potential directly from Poisson's equation. This 

however, leads to second order differential equations or involves a double 
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integration, which makes convergence much more difficult. In two 

dimensions, the equations involve x andy (orr and z components) of the 

electric field. These are difficult to adjust independently in order to keep 

the total potential between the two boundaries constant. Changes in the 

electric field lead to changes in currents and ion concentration. During 

further iterations all variables eventually reach a steady a.c. value (i.e. the 

transients have decayed away). Having to converge on a constant potential 

difference between the two boundaries would add an order of magnitude 

of difficulty to the problem. Hence one needs to be content with using 

uniform surface charge density as a boundary condition. Fortunately for 

the interesting geometries, the equipotential lines are nearly parallel near 

the electrodes, so the difference is small - smaller indeed than that 

introduced by the quantization in finite elements. 

Two obvious methods are possible for calculating the electric field: 

i) calculate the potential V in each voxel and obtain the electric field (e) 

from the gradient of V or ii) calculate e directly from the charge 

distribution and obtain the potential V by integration. 

Method ii) has been chosen for the system described here to 

determine the electric field at each voxel surface. V can then be obtained 

by numerical integration of e. There are obvious reasons for preferring 

integration to differentiation in numerical calculations. 

Vis assumed to vary linearly with position throughout each voxel. 

This may not be a valid approximation, especially in the double layer 

near the charged boundaries, where V and e vary rapidly with distance (y 

or z) and where available memory has constrained me to use sizes which 

are not much smaller than the Debye length. 

Both method i) and ii) introduce quantization errors - the error of 

setting the cord equal to the curve and of taking average values. In 

method 2, they produce a "noise" current which is not necessarily zero at 
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"equilibrium". The size of this error depends on the size of the applied 

charge ( a.c. case) as well as on the nonlinearity of V, as discussed later. 

It is assumed that a sinusoidally varying charge density crs(t) of small 

amplitude cr0 and angular frequency co is applied, i.e. 

crs(t) = + cro sin (rot) (5.2.1) 

This charge density produces a current density Jt(t) given by: 

Jt(t) =Ito cos( rot)= ro cro cos(rot) (5.2.2) 

The continuity equations give the variation 1n time of the IOn 

concentrations : 

Qp_ 
V • J p = -q Zp at and 

an 
V • Jn = q Zn at (5.2.3) 

The Nemst-Planck equations are used to calculate the cation and 

anion current densities from the ion concentrations and the electric field : 

Jp = -q zp Dp V p + q2zp2DpPO e/kT 

where: p is the a.c. cation concentration 

n is the a.c. anion concentration 

Dp is the cation diffusion constant 

Dn is the anion diffusion constant 

zp is the cation valency 

zn is the anion valency 

(5.2.4) 

(5.2.5) 
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Po is the cation concentration for zero current 

No is the anion concentration for zero current 

q is the electron charge. 

Each a.c. cycle is divided into nT time iterations, hence the time 

interval between iterations (~t) equals 2 1t I (ro nT). Initial values of the 

ion concentrations and a.c. ion current densities are chosen. The new a.c. 

ion concentrations can then be calculated from the finite difference 

version of the continuity equations. ( see 5.2.1-5.2.3) 

The whole procedure is iterated until the solution converges (i.e. the 

concentrations, electric field and ion currents vary sinusoidally with time 

with constant amplitude and phase). The amplitude and phase of all a.c. 

variables can be determined by fitting a sine wave to their variation with 

time (the sine wave fitter was developed by T. Chilcott and J.R. Smith). 

This method is applied to the following two systems. A simple case is 

first considered where rectangular geometry is assumed, i.e the channels 

are either rectangular holes or constrictions of infinite width in the z 

(third) dimension. This provides a geometry where the numerical 

solutions can be compared to the analytical ones. The second system uses 

cylindrical coordinates, since pores have an approximately circular cross­

sectional area. 

In experiments the electrodes are typically spaced at distances of J..lm 

or more, thus a large number of voxels are required to cover these 

distances, provided the voxels are equally spaced between the two 

boundaries. However the important variations in ion concentrations, 

electric field and ion currents presumably occur close to the ion channel 

and near the system boundaries. Reducing the total number of voxels 

between the two boundaries, will not introduce a significant error, 

provided that the voxel size is kept small enough to show these variations 
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(of the order of nm or less). All calculations described later in this 

chapter are for relatively few voxels in both the x and y, or r and z 

directions. 

The electric field is due to the vector sum of the space charge in 

every voxel, hence the array size for these calculations is proportional to 

the square of the total number of voxels, again making calculations for 

many voxels lengthy. 

Analytical one dimensional solutions for an electrolyte solution 

between two infinite electrodes as discussed in Chapter 3, can be 

compared to the corresponding numerical calculations for both 

rectangular and cylindrical geometry for the case where the region 

between the charged boundaries contains only electrolyte solution. 

However there are important differences between the one dimensional 

system and the numerical calculations. These include: 

1) The dielectric/electrolyte system for the numerical solutions is 

now of finite width and therefore the electric field and ion currents 

are not everywhere parallel to the central axis 

2) Both the applied charge on the boundaries and the a.c space 

charge of the electrolyte solution are assumed to be discrete. 

Due to these differences, the expected agreement between the 

analytical solutions and the numerical calculations discussed later in this 

chapter is only approximate. 

Both systems (rectangular and cylindrical) assume that the dielectric 

constant of the membrane is equal to that of the liquid electrolyte. 

However the dielectric constant of lipid bilayers and cell membranes is 

typically of the order 2 to 5, while that of water is approximately 80. 

This dielectric continuity alters the self energy of the ions in its vicinity 

and induces a polarizations charge at the interface, which give rise to 

102 



"image forces". For simplicity any effects due the dielectric discontinuity 

in these initial calculations are ignored. The channels are also assumed to 

be uncharged. Surface charges can significantly alter the current flow of 

the two ion species (i.e. increase one and reduce the other). Both the 

presence of fixed charge and the effect of image forces will be dealt with 

in Chapter 6. Note that the assumption of uniform dielectric constant has 

also been used in other methods of calculating the electrical properties of 

electrolytes (e.g. Lamperski, 1991 has made this assumption in his Monte 

Carlo simulation of the properties of solvent molecules adjacent to 

charged interfaces). 

5.2.1 Rectangular Geometry 

The dielectric/electrolyte system is assumed to be two dimensional, 

i.e. it extends infinitely in the z direction. Two infinite strips of width 

Ltx, carrying a uniform surface charge per unit length As(t) are situated 

at y = 0 and Lty. The region between these boundaries is divided into nx 

by ny voxels of dimension hx and hy in the x andy direction respectively, 

as shown in Figure 5.1. The concentrations are calculated in the centre of 

each voxel, whereas the x andy components (ex and ey) of the electric 

field (e) and cation and anion current densities Opx, Jpy, Jnx and Jny) are 

calculated at the voxel boundaries. 

The a.c. ion concentrations at time t+.6.t in voxel ij are given by : 

.6.t 
Pij(t+.6.t) = - q Zp [ (Jpy iG+ 1)(t) - Jpy ij(t))/hy + 

Opx(i+ l)j(t) - Jpx ij(t))/hx ] + Pij(t) 

(5.2.6) 
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FIGURE 5.1 
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Figure 5.1. The geometry used for the numerical calculations using 
rectangular coordinates. 



dt 
nij(t+dt) =- q zn [ (Jny i(j+1)(t)- Jny ij(t))!hy + 

CJnx(i+1)j(t)- Jnx ij(t))!hx] + nij(t) 

(5.2.7) 

When calculating the electric field at the voxel boundaries the space 

charge in the electrolyte and the surface charge at the boundaries are 

treated as lines of charge located at the centre of each voxel. Hence the x 

and y components of the electric field at point P due to the ijth voxel are 

given by (see Figure 5.2) : 

Qij X 
ex= 2 1t e r2 

Qij y 
and ey = 2 1t e r 2 

where: e is the permittivity of the electrolyte and 

Qij is the charge in the ijth voxel and is given by: 

Qij = (zp p- zn n) hx hy. 

(5.2.8) 

(5.2.9) 

Qi due to the surface charge As(t) at the boundaries at timet is given 

by: 

Qi = + As(t) hx , for i=l to nx (5.2.10) 
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FIGURE 5.2 

p 

y 

Figure 5 .2. The geometry used for the electric field calculation at point 
P. 

The total electric field at each voxel boundary can then be obtained 

by summing over all voxels, including the surface charge on both 

boundaries. These new values are then substituted into the following 

equations to obtain the new values of cation and anion current densities . 

.. ·c n z 
J '(j 1) D { PirPt J+ ~ '(j 1) ( .. '(j 1) 2PO)} py1 + = qzp p h + 2kT ey1 + P1J+P1 + + y 

(5.2.11) 

ni(j+ 1)-nij qzn 
Jnyi(j+l) = qznDn{ h + 2kTeyi(j+l) (nij+Ui(j+1)+2No)} 

y 

(5.2.12) 

P .. (' 1)' z 
J (. 1)' D { ItP 1+ 1 + ~ (' 1)' ( .. (' 1)' 2PO)} px I+ J = qzp p hx 2kT ex 1+ J PtJ+P 1+ J+ 

(5.2.13) 
n(i+ 1)j-nij qzn 

Jnx(i+1)j = qznDn{ hx + 2kTex(i+1)j (nij+n(i+1)j+2NO)} 

(5.2.14) 
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Note : They component of the electric field need not be calculated at the 

y boundaries, since the ion current is set equal to zero at the boundaries. 

5.2.2 Cylindrical Geometry 

Channels through biological membranes resemble cylindrical holes 

more closely than wide rectangular slabs. So the finite difference Nemst­

Planck equations are now solved using cylindrical geometry. 

The voxels are now concentric annular prisms of thickness hr in the 

radial direction and hz in the z direction. Two circular charged 

boundaries are situated at z = 0 and Lt. There are nr voxels in the radial 

direction, and nz sets of such voxels along the z axis (see Figure 5.3). 
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FIGURE 5.3 

z 

ith jth voxel 

Figure 5.3. An illustration of the ijth voxel. 

As before, the r and z components ( er and ez) of the electric field 

(e) and cation and anion current densities (Jpr, Jpz, Jnr and Jnz) are 

defined at the centre of the four surfaces of each voxel. However the a.c. 

ion concentrations are calculated at an area weighted centre. 

The total a.c. cation and anion current entering or leaving each voxel 

give the change with time of the a.c. cation and anion concentrations and 

hence the new concentrations at time t+dt are given by: 

dt 
pij(t+dt) =- qzp [{Jpz iG+l)(t)- Jpz ij(t)}/hz + 
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2 
. 2 ·2 {ri+ 1Jpr(i+ 1)j(t) - riJpr ij(t)}] + Pij(t) 

r1+ 1 -r1 

(5.2.15) 

nij(t+Llt) = 
tit 
qzn [ {Jnz iU+ l)(t) - Jnz ij(t) }1hz+ 

2 
. 2 ·2 {ri+ 1Jnr(i+ 1)j(t) - riJnr ij(t)}] + nij(t) 

r1+1 -r1 

(5.2.16) 

The electric field at each voxel surface due to the ions in the 

electrolyte and the surface charge on the boundaries is determined in the 

following way. 

The radial and axial (z) components of the electric field (er and ez 

respectively) due to a ring of charge with linear charge density A at a 

point A can be shown to equal: 

1t 

A (. d9 
er = 4-{2 1t£0e "'./R-Vr" J (a- cos9)3/2-

0 
1t 

A .VR. J d9 cose 
4-{2 1t£0£ r3/2 (a- cos9)3/2 

0 

1t 

A z J cte ez-
- 4-{2 1t£0£ Rl/2r3/2 (a - cos9)3/2 

where a 

0 

R2 + r2 + z2 
2 R r 

(5.2.17) 

(5.2.18) 

(5.2.19) 
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Qij 
A = 2 1t R i where Qij is the total charge in the ijth voxel and 

Ri is the radius where this charge is assumed to 

be located. 

This is shown diagrammatically in Figure 5.4. 

FIGURE 5.4 
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Figure 5 .4. The geometry used for calculating the electric field due to 
each voxel. 

Since the cross-sectional area of a cylindrical shell increases with r, 

Ri is taken to be the radius at half the cross-sectional area: 

(5.2.20) 
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This choice of Ri becomes important for non-negligibly small radial 

voxel thicknesses.Qij due to the space charge in the electrolyte solution is 

given by: 

Qij = q (zp p - zn n) (ri+ 12 -fi2) 1t hz (5.2.21) 

where ri and ri+ 1 are the inner and outer voxel radii respectively. 

Qi due to the surface charge <is(t) at the boundaries at timet is given 

by: 

Qi = <is(t) 1t (ri+ 12 -ri2) (5.2.22) 

The integrals with respect to e of equations 5.2.17 and 5.2.18 are 

calculated numerically for appropriate values of nr, nz and ratio hz/hr. 

The new a.c. ion current densities can then be calculated from these 

values for the a.c. ion concentrations and electric field : 

.. ·c n z 
J "(j 1) D {PirPt I-1: + ~ "(j 1) ( .. "(j 1) 2PQ)} pzi + = qzp p hz 2kT ezi + PtJ+PI + + 

(5.2.23) 

ni(j+ 1)-nij qzn 
Jnzi(j+l) = qznDn { hz + 2kTezi(j+1) (nij+ni(j+1)+2PO)} 

(5.2.24) 

J (. 1)" q D {Pij-p(i+ 1)j + qzp (" 1)" ( .. + (" 1)"+2NQ)} pr I+ J = Zp p hr 2kT er I+ J PIJ p I+ J 

(5.2.25) 
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n(i+l)j-nij qzn 
Jnr(i+l)j = qznDn{ hr + 2kTer(i+l)j (nij+n(i+l)j+2NO)} 

(5.2.26) 

CJpr and Jnr = 0 along the central axis). 

5.2.3 Summary of the Iteration Procedure 

An iterative procedure has been used to solve the Nemst-Planck 

equations numerically. The main steps are outlined below: 

1) The ion concentrations are set equal to the equilibrium, i.e. bulk 

electrolyte, concentrations. The cation and anion current densities 

through the unblocked region are set equal to half of the applied 

current densities. 

2) The new ion concentrations are calculated from the divergence of the 

ion current densities. 

3) The electric field at each voxel boundary is calculated from the sum of 

the electric field due to the space charge in each voxel plus the 

contribution from the charged boundaries. 

4) These values of cation and anion concentrations and electric field are 

then used to determine new values of the cation and anion current 

densities at the voxel boundaries from the Nemst-Planck equations. 

5) The applied charge density (crs(t)) at the boundaries is set equal to the 

value for the next time step, i.e. crs(t+L1t) = crocos(t+dt), where L1t is 

the time increment. 

6) Steps 2 to 5 are then repeated until all transients have become 

negligibly small for one half cycle. 
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5.3 RESULTS 

In this section the results of the numerical calculations for different 

geometries in order of increasing complexity will be presented. The 

effects of quantization as well as limitations on voxel size and total voxel 

number are also discussed. For the simpler configurations, the results are 

compared qualitatively to the analytical solutions. 

All the cases described are cylinders of electrolyte with various 

materials and internal geometries between two small circular boundaries 

(e.g. Figure 5.14), except for section 5.3.5, where a comparison is made 

with analytical solutions. The electric field is imposed by a sinusoidally 

varying uniform surface charge density on both plates. Both these and the 

cylindrical boundary are perfectly blocking i.e. at these points the ionic 

current is set equal to zero. Even though using equipotentials as boundary 

conditions might be more appealing due to the problems discussed earlier, 

other methods are preferred. 

Simpler configurations are considered first to serve as "controls" 

before the level of complexity is increased. These may show the 

peculiarities of each new feature such as completely blocking the ion flow 

in all or the outer voxels in the central plane, simulating a membrane or a 

simple pore through a membrane (see Figures 5.11 and 5.14). 

Note that when varying the frequency (f), the amplitude of the total 

applied current density CJtO) is kept constant rather than that of the 

applied charge density ( cr 0 ) on the plates. They are related by 

cro = ItOI(2nf). cro for the high frequency (fh) calculations is lower than 

that for low frequency (fl) calculations by a factor of fl/fh and hence the 

amplitude of the ion concentrations and the electric field at high 

frequencies can be expected to also decrease by approximately the same 

factor. 
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In each case reported the logistics of obtaining a solution are 

described. All calculations were carried out on a Macintosh Ilfx, with a 

clockspeed of 40 MHz and memory size of 8 Mbytes. This meant that 

calculations required, approximately 5 minutes for every 100 iterations. 

For the high frequency calculations 1000 iterations per cycle were been 

used (this gives time steps between iteration = 1 o-11 s for a frequency of 

100 MHz). All transients decay to negligible levels after a few cycles. For 

all floating point variables and calculations 20 digits precision was used. 

Several tests were been performed at higher precision to check for round 

off errors. In "real life", time steps are of the order of 10-12 s (==typical 

collision time of water molecules) and "voxel size" of the order of 

10-11 m (==distance between water molecules). As explained earlier, 

convergence depends on the time step between iterations. The iteration 

step size (~t) has been varied for the different frequencies to achieve 

convergence. ~t is upper bound, since the calculations diverge if ~t is too 

large, and the values of ~t chosen for the calculations in this thesis are not 

greatly less than maximum. The low frequency calculations required 

more iterations per cycle for convergence due to the much lower 

frequency and hence 24000 iterations per cycle were used in that 

situation. 

5.3.1 A Non conducting Solvent 

The medium between the boundaries contains only non-conducting 

solvent. For this configuration, calculations of the electric field due to the 

applied charge at the boundaries only (i.e. in the absence of space charge) 

are investigated. Although this is not a very realistic model, since even 

water molecules form hydrogen bonds and partially dissociate, it still 

serves as a starting point for this analysis, from which further levels of 
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complexity will be introduced. Complications such as water being a 

nonlinear dielectric at the high fields obtained in the double layer have 

been neglected. 

In this case, the solvent is by hypothesis an insulator, so there is no 

rearrangement of charge and only one iteration is required for the 

electric field calculations. The calculation only takes seconds and is 

essentially a d.c. calculation. However it can be easily extended to a.c. -

the electric field and potential are in phase with the applied signal and all 

ion currents are equal to zero. 

Figure 5.5a presents the results. The z component of the a.c. electric 

field (ez) decreases rapidly with distance (z) away from the charged 

boundaries. Close to these ez is considerably lower in the outer voxels 

(i=4) than in the centre because of the edge effects as a result of the finite 

diameter of the charged boundaries. The radial component ( er) in the 

region of counter charge increases with radial distance and is comparable 

in magnitude to ez near the edge as expected for finite systems (Figure 

5.5.b). 

Since the diameter of the cylinder is less than its length, the electric 

field lines near the edge are not parallel. However near the middle, the 

field is approximately uniform, and thus the system provides a reasonable 

"control" for the later configurations in which a membrane or pore is 

located at the centre. 

The electric field can be integrated numerically to obtain the 

potential difference (V) (V is set equal to zero at the centre of the 

system). The effect of the finite size can be seen in the equipotential lines 

shown in Figure 5.5c. One or two equipotential lines intersect the circular 

boundaries, therefore the electrodes are only approximately 

equipotentials (they are in fact surfaces carrying uniform charge density 

crs(t) as mentioned before, see equation 5.2.2). Again the approximately 
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Figure 5.5a. The z component of the electric field (ez) as a function 
of z for the different voxel radii (ri, i=l,4) for the non-conducting 
solvent. 
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Figure 5.5b. The radial component of the electric field (er) as a 
function of z for the different voxel radii (ri, i=l,4) for the non­
conducting solvent. 
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Figure 5.5c. A plot of the equipotential lines for the non-conducting 
solvent. 



parallel equipotential lines near the centre show that the field 1s 

approximately uniform in this region. 

5.3.2 The Effect of Finite Size and Discreteness of Charge 

The geometry of section 5.3.1 is used to obtain a quantitative (order 

of magnitude) estimate of the effect of finite size as well as discreteness of 

charge on the electric field. Figure 5.6a shows two circular plates of 

diameter Lr carrying equally spaced rings of charge. The cylinder of 

dielectric in between is assumed to contain no net charge and the circular 

boundaries are separated by a distance Lz. The electric field due to these 

rings of charge is calculated along the central axis (i.e. z axis) of the 

system and is compared to that for two infinite plates of the same 

separation Lz and carrying the same charge per area. For values of Lr 

and Lz equal to those of section 5.3.1 above, the electric field along the 

central axis is considerably smaller than that for infinite plates. To 

investigate the effect of size, the diameter (Lr) of the charged plates is 

increased by adding extra rings of charge at the same separation (hr) as 

those used for the calculations in section 5.3.1, while keeping the total 

charge constant. This has a marked effect on the electric field (Figure 

5.6b) for small ratios of Lr/Lz. Similarly the effect of the discreteness of 

charge can be estimated by dividing the circular plates into a larger 

number of more closely spaced rings of charge (for a fixed value of Lr 

and the same total charge). It was found that this produces considerably 

less error in the electric field than the effect of finite size described above 

for the dimensions used here (except at the region close to the rings of 

charge). 
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5.3.3 A Cylinder of Electrolyte 

All calculations of the small a.c. signal response presented in the 

remainder of this chapter were performed at two frequencies: one above 

and one below a characteristic frequency fc. I define fc as the frequency 

at which GK = 21tfcCK: 

fc = GK/(21t CK) (5.3.1) 

where GK is the equilibrium conductance of a region of bulk electrolyte 

of thickness Lo. GK can be derived from Boltzmann's transport theory 

and is given by: 

GK = q2(zp Dp + zn Dn) Co I (k T LG) (5.3.2) 

CK the capacitance of an ideally polarised dielectric slab of thickness 

Lc and permittivity E). 

CK = c 1 Lc (5.3.3) 

The choice of LC and LG depends on the characteristics and/or 

geometry of the system studied. 

The effect of adding a fully dissociated binary electrolyte between 

the two charged circular plates of section 5.3.1 is now considered. Given 

enough time the ions will redistribute in response to the a.c. signal 

applied at the boundaries. In the region near the applied charge counter 

ions accumulate forming a double layer. The range of variation of charge 

and electric field in the double layer is of the order of a Debye length AD 

given by: 
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AD= [ekT/q2Co(zp+zn)]ll2 (5.3.4) 

where e denotes the permittivity of the electrolyte solution and Co is the 

bulk electrolyte concentration (see Table 5.la for all other variables). 

Hence when calculating the the characteristic frequency, denoted by 

fell for this system, La and Lc were set equal to AD. 

Unless stated otherwise, the plots presented show the magnitude of 

the amplitude of each variable, which by definition is always positive. For 

antisymmetric functions such as the a.c. ion concentration and potential, 

which change sign at the origin, the symmetry of the system is conveyed 

by the phase. 

The spurious points in the phase plots for values of z for which the 

amplitude is very small are artefacts, since it is difficult to fit a phase to 

variables with close to zero amplitude. This occurs near the centre for the 

case of antisymmetric functions. 

5.3.3 a) High frequency calculations for a Cylinder of 

Electrolyte Solution 

The frequency (f) chosen for these calculations higher than fdl (see 

Table 5.1a). As the frequency is very high, the a.c. charge carried by the 

counter-ions is small compared to the applied charge. Hence there is very 

little screening of the applied charge and geometrical effects dominate: 

the a. c. cation concentration (p) as well as ez in the double layer are 

considerably lower in the outer voxels (i=4 and 3) than near the central 

axis (see Figures 5.7a and 5.7b). The peculiarities of the variation of 

amplitude and phase of p are possibly due to spatial resolution problems. 
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TABLE 5.1a 

PARAMETER VALUE 

T temperature 293K 

Dn anion diffusion constant 2 10-9 m2s-1 

Dp cation diffusion constant 1.98 1QA-9 m2s-1 

e/eO dielectric constant of the solution 80 

zn anion valency 1 

zp cation valency 1 

JtO magnitude of the total current 1 Am-2 
density at the boundaries 

Co bulk ion concentration 100Mm-3 

nT points per cycle 1000 

f frequency- section 5.3.3: 1GHz 
section 5.4, 5.5 and chapter 6: 100MHz 

nr total number of voxels in the r direction 4 

nz total number of voxels in the z direction 15 

hr voxel size in r direction (i.e. width of ring) 0.5 nm 

hz voxel size in the z direction 1 nm 
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Figure 5.7c. The amplitude and phase/1t of the radial a.c. electric field (er) for 
the different voxel radii rj, i=l to 4, for a cylinder of electrolyte for a 
frequency above fdl· 



The voxel size is of the order of AD and there is very little counter 

charge. 

As before, er in the region of counter charge increases with radial 

distance (Figure 5.7c). Both ez and er are approximately in phase with 

the applied charge (ez is symmetric while er is antisymmetric). The 

electric field as well as the equipotential lines (Figure 5. 7 d) are similar to 

those for the case of the nonconducting solvent of section 5.3.1, because 

of limited screening of the applied charge. 

The z component of the a.c. cation current density (Jpz) is highest in 

the double layer and its phase leads the applied charge (note the phase of 

Jpz is zero at the boundary, only because Jpz is set equal to zero there. 

Jpz should approach n/2 near the boundaries) This current charges the 

double layer (Figure 5.7e). The radial a.c. cation current density (Jpr, 

Figure 5. 7f) in this region is lower than Jpz and increases with r. Jpz is 

fairly uniform along the central axis and approximately in phase with the 

applied charge. 

Only plots of the concentrations (p) of the cations have been 

included, since this model is charge symmetric. Hence the a.c. anion 

concentrations (n) are equal in magnitude but have opposite phase to those 

of the cations. Similarly, plots for anion current densities have been 

omitted, since the anion and cation currents densities are approximately 

equal. The next chapter includes a description of asymmetric systems and 

both p and n and current densities for both ion species will be shown. 

Plots for anions where n is equal to -p are not presented. 
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Figure 5.7d. A plot of the equipotential lines for a cylinder of 
electrolyte at a frequency above fdl-
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Figure 5.7e. The amplitude and phase/1t of the z component of the 
a.c. cation current densities (Jpz) as a function of z for the different 
voxel radii ri, i=l to 4, for a cylinder of electrolyte for a frequency 
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Figure 5.7f. The amplitude and phase/1t of the radial component of 
the a.c. cation current density (Jpr) as a function of z for the 
different voxel radii ri, i=l to 4, for a cylinder of electrolyte for a 
frequency above fdl· 



5.3.3 b) The frequency of the a.c. applied charge at the 

boundaries is much lower than fdl· 

To show the effect of frequency and to contrast with the previous 

results a frequency much lower than fdl is now used. At this frequency, 

the results are approaching those for d.c., since there is now sufficient 

time during each cycle for counter ions to accumulate near the charged 

boundaries to form a double layer. 

The frequency used for these calculations is 1/1000 that for the high 

frequency calculations of the previous section. When changing frequency, 

the current density is kept constant rather than the applied charge density 

(cro). Thus cr0 is now 1000 times greater (see equation 5.2.2). The ratio 

of the amplitude of the a.c. cation concentration (lpl) to cro in the double 

layer is higher than for the high frequency calculations of section 5.3.3a. 

The total space charge in this region is approximately half of the applied 

surface charge on the plate. fu an infinite system the total space charge is 

equal to the total charge on the plates, however in such a system all field 

lines are confined to the region between the plates. fu this model the field 

lines leave the system in both the r and z direction, resulting in reduced 

space charge. p also decreases less rapidly with radial distance, than for 

the calculations at high frequencies (5.3.3a) and is in phase with the 

applied charge but is antisymmetric (Figure 5.8a, see Table 5.lb). 

Figure 5.8d shows the equipotential lines for low frequency 

calculations for a cylinder of electrolyte. The appearance is very different 

to the equipotential lines due to the surface charge alone (i.e. in the 

absence of space charge as shown in Figure 5.5b. The differences arise 

mainly from edge effects in such a small system. 

The electric field is strongest near the charged boundaries as also 

occurred for the cylinder of non-conductiong solvent (section 5.3.1). 
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TABLE 5.lb 

PARAMETER VALUE 

T temperature 293K 

Dn anion diffusion constant 2 10-9 m2s-I 

Dp cation diffusion constant 1.98 10A-9 m2s-I 

c/Eo dielectric constant of the solution 80 

Zn anion valency 1 

Zp cation valency 1 

JtO magnitude of the total current 1 Am-2 
density at the boundaries 

Co bulk ion concentration 100Mm-3 

nT points per cycle 24000 

f frequency 1MHz 

nr total number of voxels in the r direction 4 

nz total number of voxels in the z direction 15 

hr voxel size in r direction (i.e. width of ring) 0.5 nm 

hz voxel size in the z direction 1 nm 
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Figure 5.8b. The amplitude and phase/7t of the z component of the 
electric field (ez) for voxel radii ri, i=1,4 for a cylinder of electrolyte 
at low frequencies. 
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Figure 5.8c. The amplitude and phase/7t of the radial electric field 
(er) for voxel radii ri, i=1,4 for a cylinder of electrolyte at low 
frequencies. 
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Figure 5.8d. A plot of the equipotential lines for a cylinder of 
electrolyte solution at low frequencies. A stetch of the electric field 
lines is included. 



A way from the charged plates the curvature of the electric field lines 

changes sign. (Figures 5.8b and 5.8c) This change in curvature is due to 

the space charge, which accumulates at the cylindrical edges rather than 

in the centre as a consequence of the electric field lines leaving the 

cylinder, while the boundary conditions constrain the charge to remain 

inside the cylinder. (Figure 5.8d includes an approximate sketch of the 

electric field lines). The phase of ez now reaches a maximum near the 

centre. 

5.3.4 Quantization Errors 

All numerical calculations have finite resolution. In this section the 

effect of voxel size for the parameters used in this thesis is investigated. 

One consequence of having a finite voxel size is that Gauss's law is 

only approximately satisfied by the numerical solutions. The electric field 

is calculated at the centre of each voxel surface and is assumed to be 

constant over the whole surface. This oversimplification can introduce an 

error. An order of magnitude estimate of this can be obtained by 

comparing Ecentre A to JE.dA, where E is the electric field due to a 

point charge in the voxels along the z axis and A is the surface area of the 

voxel (see Appendix 5.1). 

However this difference does not affect the internal consistency of 

the calculations, which use Coulomb's law instead of Gauss's law. The 

electric field (e) and the current density (Jp and Jn) are calculated at the 

same point. e is used only to calculate Jp and Jn for each iteration. The 

ion concentration in each voxel for the next iteration is then calculated 

from the net current entering or leaving each voxel. 

As discussed in the introduction to this Chapter, the use of the 

electric field rather than the potential (V) means that the chemical 
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potential may not be constant in regions where e and therefore V are 

varying rapidly and non-linearly in space. Thus a quantization noise, 

consisting of stable circulating currents are possible in the numerical 

solutions to the electrodiffusion equations. These currents decrease 

rapidly with distance away form the charged boundaries. Plots of the 

current densities at low frequencies will not be presented because of this 

quantization "noise". 

5.3.5 Comparison of the One Dimensional Analytical Theory 

with the Numerical Calculations 

The electrodiffusion equations can be solved analytically for the case 

of a binary electrolyte between two infinite electrodes (see Chapter 3). 

These will now be compared to numerical results for an electrolyte 

between two charged boundaries for two different geometries described 

in the methods section of this chapter: 

Configuration 1) Infinite lines of charge in the z direction. 

Configuration 2) Annular prisms of charge. 

The analytical case is one dimensional, while the two numerical 

configurations are two and three dimensional respectively. This 

difference is important. Since the width of the charged boundaries is 

smaller than their separation, they do not retain the parallel field of large, 

closely-spaced plates. Indeed, they resemble a dipole as much as they do 

two infinite plates. The comparison will show the effect of this geometry, 

as well as the smaller effect of discrete versus continuous charge. 

For all of the following numerical calculations the total width and 

separation of the charged boundaries is kept constant. All numerical plots 

in this section show the instantaneous a.c. component of each variable. 

The cation concentration (p) and the electric field (e) are plotted at the 
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time of maximum applied charge, while the cation current density (Jp) is 

shown at the time of minimum applied signal. For the frequency (f) 

chosen here p and e are approximately in phase with the applied charge 

and the phase of Jp is approximately Tt/2 ahead of the applied charge, 

hence they are similar to the magnitude of the a.c. amplitude of these 

variables. 

Configuration 1) This is a slab of electrolyte solution (infinite in 

the z direction) between two boundaries of width Ltx (parallel to the x 

axis) and separation Lty, carrying equally spaced infinite lines of charge. 

The amplitude of this charge varies sinusoidally with time. The region is 

divided into rectangular voxels, which are also infinite in the z direction. 

Figure 5.9a shows the cation concentration (p) as a function of y for 

configuration 1 as well as the results of the infinite slab (analytical 

solution). p for configuration 1 is somewhat lower than that for the one 

dimensional analytical calculations, especially near the charged 

boundaries mainly due to the effects of finite size. 

The a.c. electric field ( ey) in the y direction IS lower for 

configuration 1 than that of the infinite slab calculated analytically (see 

Figure 5.9b). This difference can be mainly attributed to geometrical 

factors (i.e the small ratio of Ltx/Lty) rather than the discreteness of 

charge assumed for the numerical calculations, as discussed earlier. The 

lower electric field results in a smaller space charge for configuration 1. 

Ion concentrations and electric field vary most rapidly near the charged 

boundaries, hence the limited resolution of the numerical calculations (the 

voxel size is of the order of one Debye length) also affects the magnitude 

of these quantities. 

Figure 5.9c shows the a.c. component of cation current density as a 
' 

function of y. The cation current density is lower than the analytical value 

as explained below. 
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Figure 5.9a. A comparison of the a.c. cation concentrations (p) for 
rectangular geometry (configuration I) with the analytical solution 
of chapter 3. 
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chapter 3. 
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the y axis for rectangular geometry (case 1) with the analytical 
solution of chapter 3. 



Configuration 2 : A cylinder of electrolyte (the voxels are now 

annular prisms as shown in Figure 5.3). Figure 5.10a shows the cation 

concentration p along the central axis. The difference between the 

numerical results and those of the infinite slab is greater than for 

configuration 1, since this system is finite in all three dimension, while 

configuration 1 (rectangular geometry) is finite in only two dimensions. 

As before, the electric field is lower than that of the infinite slab due to 

differences in geometry. (Figure 5.10b and 5.10c). 

For an infinite slab, the electric field half way between the two 

charged plates is equal to the ratio Ito/YK, where ItO is the applied 

current density and YK is the admittance per unit length, as given by 

equation 3.2.41. This ratio is very small, compared to that near the 

electrodes at low frequencies, so the current is almost purely ionic. In 

both configurations 1 and 2 the numerical calculations give a higher 

electric field (ez) in the centre, due to limited resolution and finite size, 

hence a smaller fraction of the total current is ionic. Thus the cation 

current is lower than that of the analytical solutions. 

The effect of blocking some of the voxels to ion flow is considered 

in the following two geometries. 

5.4 INSULATING MEMBRANE 

A disc of insulating material in the centre of the system is now 

considered (Figure 5.11). This disc is initially assumed to have the same 

dielectric constant as the electrolyte (see section 5.2). So the system 

resembles an impermeable membrane, except that biological membranes 

have a dielectric constant much lower than water. This has two effects: i) 

it makes the membrane effectively "thicker" since it changes the electric 

field lines and ii) it ignores effects due to the Born energy, as explained 
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Figure 5 .I Oa. A comparison of the cation concentration p for 
cylindrical geometry (configuration2) and the analytical solution of 
chapter 3 (see Table 5.lb for a list of the parameters chosen for this 
comparison). 
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Figure 5.1 Ob. A comparison of the z component of the electric field 
ez for cylindrical geometry (configuration2) with the analytical 
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chapter (see Table 5.lb for a list of the parameters chosen for this 
comparison). 



z 

Figure 5.11 

charged 
boundary 

blocked voxels 

i=1 2 3 4 

r -----~~ 

charged 
boundary 

Figure 5 .11. The configuration used for the calculations for the 
insulating disc. 



in section 2.6.3. The presence of a region with a lower dielectric constant 

increases the self energy of ions in its proximity and the ions "induce" 

charge at the dielectric discontinuity. Restriction (ii) is removed in 

Chapter 6. 

The characteristic frequency of the insulating membrane is the same 

as for the cylinder of electrolyte solution of section 5.3. However, in the 

next section the effect of adding a pore through the insulating membrane 

will be discussed and this pore has a characteristic frequency (fc), which 

is lower than fdl. In order to allow comparison between these two 

configurations fc is used for calculations above the characteristic 

frequency, rather than fdl. 

5.4.1 Low Frequency Calculations 

The following results are for a frequency below fc, hence these are 

"near equilibrium" calculations. Therefore plots of ion current densities 

will not be shown, since the ionic current densities are small and 

comparable to those due to quantization artefacts as discussed earlier in 

this chapter. 

Figure 5 .12a shows that space charge accumulates near the 

membrane/electrolyte interface. This charge on the membrane is of 

opposite sign, but smaller in magnitude, to that of the nearest charged 

boundary. The charge build up at the membrane/electrolyte interface 

gives rise to an increase in the electric field in the voxels near the two 

membrane/electrolyte interfaces (Figure 5.12b and 5.12c). The a.c. 

concentrations do not vary much in the r direction, i.e. parallel to the 

interface. Any differences can mainly be attributed to the finite size of the 

system. The effect of the finite size of the system can be more clearly 

seen in Figure 5.12d, which shows the equipotential lines. 
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(p) for the different voxel radii (ri, i=l,4) for the insulating 
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Figure 5.12e. The amplitude and phase of the potential difference 
(V) for the different voxel radii (ri, i=l ,4) for the insulating 
membrane at low frequencies. 
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Figure 5 .12d. A plot of the equipotential lines for an insulating 
membrane at low frequencies. 



For the parameters chosen, the potential difference near the 

membrane/electrolyte interface is comparable in magnitude to that of the 

double layer at the charged boundaries. (Figure 5.12e). 

5.4.2 Calculations at a frequency greater than fc 

The variation of the a.c. cation concentration (p) with z at high 

frequencies appears similar to that at low frequencies (Figure 5.13a). 

(Note that the applied charge density ( cr 0 ) at this frequency is equal to 

1/100 that at the lower frequency). The amplitude of p/cro is now slightly 

smaller when compared to that for the low frequency calculations. As the 

frequency is higher, there is less time per cycle for ions to accumulate 

near the insulating membrane. This leads to a reduction in ez/O'o (and 

therefore V/cr0 ) in the double layer near the electrolyte/membrane 

interface. The phase of ez in the region half way between the charged 

boundary and the membrane now leads the applied charge by a 

considerably larger angle (Figure 5.13b and c, Figure 5.13d shows the 

plots of the potential difference). 

The z component of the cation current density (Jpz) is approximately 

constant in the region between the charge boundaries and the membrane. 

This current charges both double layers, hence its phase leads the applied 

charge approximately rc/2. The amplitude of Jpz near the charged 

boundaries does not vary significantly in the radial direction. The phase is 

set equal to zero at the charged boundaries as well as the surface of all 

voxels of the membrane, since the ionic current densities are set equal to 

zero there (Figure 5.13e). 

The radial a.c. current density (Jpr) is now much lower than for the 

low frequency calculations everywhere. (Figure 5.13t). Jpr is ===l/2rc out 

of phase with the applied charge half way between the charged 
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Figure 5.13a. The amplitude and phase/1t of the a.c. cation 
concentration for the different voxel radii (ri, i=l,4) for the 
insulating membrane at high frequencies. 
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the a.c. electric field (ez) for the different voxel radii (ri, i=l,4) for 
the insulating membrane at high frequencies. 
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Figure 5.13c. The amplitude and phase/1t of the radial components 
of the a.c. electric field (ez) for the different voxel radii (ri, i=1,4) for 
the insulating membrane at high frequencies. 
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at high frequencies. 
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Figure 5.13e. The amplitude and phase/n of the axial component of 
the cation current density (Jpz) for the different voxel radii (ri, 
i=l,4) for the insulating membrane at high frequencies 

llprl I A m-2 

4 6 8 10 12 14 
z/nm 

phase/7t of Jp r 
7S 

4 

-0 25 

-0.5 

-0 7S 
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i=l,4) for the insulating membrane at high frequencies. 



boundaries. It leads the applied charge in the regwn between the 

positively charged boundary and the insulating membrane and lags in the 

region between the insulating membrane and the negatively charged 

boundary. 

5.5 A SIMPLE PORE IN A MEMBRANE 

The effect of putting a pore through the insulating membrane is now 

investigated. The calculations presented for this and the following chapter 

are for a pore radius approximately equal to one Debye length, and the 

configuration for these calculations is depicted in Figure 5.14. Note that 

the dielectric constant of the membrane is still the same as that of the 

electrolyte in this chapter. The geometrical conductance (GK) for the 

pore is lower than GK of the double layer of the electrolyte cylinder of 

section 5.3.3 above, hence its characteristic frequency fc is lower than 

fdl.(GK for the pore is given by 5.3.2, for a value of La= length of the 

pore) 

This system IS quantitatively different from most biological 

membranes, whose surface area is very large compared to that of the 

pore. In such membranes, a large membrane capacitance can be 

considered to be approximately in parallel with the conductance of a 

single pore. This calculation is qualitatively similar, but because of the 

small capacitance of the pore the characteristic frequency of this 

"membrane" is relatively high. Also, experimental electrodes are situated 

at macroscopic distances away from the membrane rather than nm away. 

Therefore the conductance of the electrolyte is considerably lower than 

for this case, resulting in a characteristic frequency much less than fc (see 

equation 5.3.2). The logistical difficulties in these calculations prohibit 

either large membrane areas or large electrode distances, so the 
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characteristic frequency in these calculations will seem very high to 

experimentalists. On the positive side, however, the fact that pores are far 

apart, means that it is unlikely that they interact with each other, and 

hence the characteristics of only a single pore needs to be studied. 

5.5.1 Low Frequency Calculations 

The following results are for a frequency lower than fc. The cation 

concentration (p) in the voxels surrounding the insulating membrane 

increases in comparison to that for a cylinder of electrolyte solution in 

section 5.3.3b (Figure 5.15a). However this space charge is very small 

compared to that near the charged boundaries (the latter is approximately 

the same as before). It is also very different compared to the insulating 

membrane of the previous section, i.e. it is smaller in amplitude and p 

near the insulating region does not change sign. The increase in space 

charge results in an increase in the electric field (e) in the central region 

compared to that of the electrolyte cylinder of section 5.3.3b (Figure 

5.15b and c). This leads to an increase in the potential difference (V) in 

the central region, which is however much less than the potential 

difference across the insulating membrane. The phase of V with respect 

to the applied charge approaches rc/4 near the centre and decreases in the 

r direction (Figure 5.15e). This variation would be large if the membrane 

were large. 

Plots of the current densities have again been omitted for this 

frequency, because artefacts due to quantization noise. 
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a.c. electric field (ez) for the different voxel radii ri, i=l to 4, for a 
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5.5.2 Calculations at a Frequency above fc. 

When the frequency is high, there is little time for charge transfer, 

hence ions accumulate near the membrane/electrolyte interface forming a 

double layer similar to that for the insulating membrane without a pore 

(i.e. the space charge in this region is smaller in magnitude but of 

opposite sign than that of the nearest charged boundary). Ions also 

accumulate at the pore entrance (Figure 5.16a). This charge leads to an 

increase in the electric field (and therefore potential (V)) in the region 

near the pore entrance and near the electrolyte/membrane interface 

(Figures 5.16b to d). As for the insulating membrane, p/oo in the double 

layer near the charged boundaries is lower than that for the low 

frequency case. o 0 is again a factor 1/100 lower than o o for the low 

frequency calculations. 

As for the low frequency calculations, the cation current density 

(Jpz) is highest inside the pore but decreases rapidly with distance in the 

bulk solution before it increases again near the charged boundaries. This 

increase near the charged boundaries is due to the current that charges the 

double layer (Figure 5.16e). Jpz now has a considerably lower magnitude 

in the central region than that for the low frequency case. The phase of 

Jpz leads the applied charge in the double layer near the charged 

boundaries (by up to .4 1t for these calculations). Jpz charges the double 

layer, hence phase difference between Jpz and the applied charge 

approaches 7t/2 near the boundaries. This phase difference decreases with 

distance away from the boundaries. In the central region the phase of Jpz 

slightly lags the applied charge. 

As ions cannot pass through the insulating membrane, the radial 

component of the cation current density (Jpr) is highest near the 

electrolyte/membrane interface, as well as near the channel entrance 
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simple pore at a frequency above fc. 

phase of ezl1t 

~~~~~~=r;;::::=;r-ii=4 
~.------------~i=1 

4 6 8 10 12 14 

z/nm 
Figure 5 .16b. The amplitude and phasel1t of the z component of the 
a.c.electric field (ez) for the different voxel radii ri, i=l to 4, for a 
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the a.c. electric field (er) for the different voxel radii ri, i=l to 4. for 
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(Figure 5.16f). The largest increase occurs near the edge of the channel 

(i=2). Jpr is in phase with the applied charge in the central region, but 

changes sign CJpr is antisymmetric). The increase in Jpr in the double 

layer near the charged boundaries can be mainly attributed to the finite 

size of the system. 

Some of the peculiarities of the phase plots (e.g. "spikes") for the 

high frequency calculations for both the insulating layer and the pore may 

be due to limited resolution (see section 5.3.3). 

5.6 FREQUENCY SPECTRUM 

Because calculations at low frequency take such a long time, the 

effect of frequency was investigated using a very low resolution system 

with the same overall size and geometry as the system described above. 

The model uses 2 voxels in the r direction and 6 in the z direction. The 

reduction in total voxel number led to an almost 50% decrease in a.c. 

space charge near the charged boundaries as well as the total potential 

difference between them compared to those above - the voxel size in the z 

direction is approximately 2.5 Debye lengths. 

The same numerical calculations as above were carried out for four 

different frequencies f : 1 kHz, 10 kHz, 100 KHz and 1 MHz. All are 

lower than the characteristic frequencies of both the pore and the 

insulating layer. The magnitude of the total potential difference IV I 
decreased with increasing frequency, while its phase with respect to the 

applied charge increased. I V I oc 1/f to a very good approximation - it 

is linear up to 100kHz and deviates from linearity by less than 1% at 1 

MHz. 

129 



5.7 IMPEDANCE CALCULATIONS 

The area specific impedance (Z) and hence the conductance (G) and 

capacitance (C) for the different geometries can be determined from the 

amplitude ( I V I ) and phase ( <P) of the total potential difference : 

z = I vI e,j<P;Jto (5.7.1) 

where Jto is the total applied current density. 

Note: <P is calculated with respect to JtO rather than the applied 

charge, unlike the previous phase plots. The conductance (G) and 

capacitance (C) can then be calculated from the real and imaginary parts 

of 1/Z. 

0= Re(l/Z) 

C = Im(l/(Z 21tf)). 

(5.7.2) 

(5.7.3) 

For a cylinder of electrolyte at a high frequency (section 5.3.3a), the 

conductance (G) and capacitance (C) approach their geometrical values 

(OK and CK, respectively) given by equations 5.3. 2 and 5.3.3. (G is 

somewhat higher and C is lower). Any differences can be mainly 

attributed to geometrical factors (see earlier sections of this chapter). In 

addition the calculated total potential difference does not include the set 

of voxels closest to the charged boundaries, since for this model the 

electric field at the charged boundaries is not defined. This leads to a 

lower total impedance, especially for low resolution calculations. G, for 

the cylinder of electrolyte solution is much lower than OK at low 

frequencies, while C approaches CK. 
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The insulating membrane in the central region completely blocks 

both cation and anion flow through that region, therefore the conductance 

approaches zero at low frequencies, and is considerably reduced when 

compared to that of the cylinder of electrolyte of the same thickness at 

high frequencies. This non zero conductance is due to the finite charging 

current in the region next to the electrolyte/membrane interface. 

Blocking voxels to ion flow (simple pore) reduces the high frequency 

value of the calculated conductance of the central region compared to that 

for a cylinder electrolyte of the same thickness, especially at low 

frequencies, as expected (Figure 5.17). 

The capacitance ratio C/CK for the insulating membrane is higher 

than for a region of bulk electrolyte of the same thickness, due to the 

accumulation of charge in the double layers, especially at low 

frequencies. This increase is much greater for the case of a simple pore, 

since the potential difference across the pore is considerably lower than 

for the insulating membrane. Since there is little charge transfer at high 

frequencies, C/CK for the insulating layer and the simple pore are 

approximately the same (Figure 5.17b). The capacitance of a small 

channel in a membrane is dominated by that of the surrounding insulating 

layer. 

5.8 CONCLUSIONS 

Numerical solutions to the Nemst-Planck equations were presented 

for different geometries at both high and low frequencies. Numerical 

solutions have the advantage of allowing arbitrary channel configuration. 

However, spatial and temporal resolution are limited. Both the total 

number and size of the voxels are limited by feasible computation times 

on the computer available for these calculations. The resulting effects of 
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finite size and quantization errors are discussed. For the model chosen for 

this thesis, effects of geometry have been found to be more important 

than those due to the finite voxel in the in the boundary. 

Calculations for the simpler geometries (i.e. for the case of an 

infinite slab and a cylinder of electrolyte) show approximate agreement 

with the analytical solutions of Chapter 3 and the differences are mainly 

attributable to effects of the finite size of the systems used for the 

numerical calculations. 

Cylindrical geometry has been used except for part of the 

comparison with analytical solutions. Calculations presented in this 

chapter assume that the dielectric constant is constant everywhere, to 

avoid complications due to image charges. Effects due to the difference in 

dielectric constant are included in Chapter 6. 

Results were presented for the following configurations: 

i) A cylinder of electrolyte: At high frequencies the ions cannot 

move far during each cycle, resulting in only a slight screening of 

the applied charge. At low frequencies there is sufficient time for 

ions to accumulate near the charged boundaries to form a double 

layer. 

ii) An insulating membrane: At low frequencies ions accumulate 

near the electrolyte/membrane interface forming a double layer with 

space charge of opposite sign to that of the nearest charged 

boundary. This leads to an increase in the electric field, and hence 

potential difference in this region. 

The results for the high frequency calculations are similar, 

except that the space charge in the double layers is reduced. Because 

the membrane completely blocks ion flow through it, the 

conductance of the central region is zero. The accumulation of 
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charge leads to large capacitances of the central region, especially at 

low frequencies. 

iii) A simple pore through a membrane: At low frequencies ions can 

move sufficiently far per cycle to pass through the pore, leading to 

only a slight space charge near the membrane/electrolyte interface, 

hence the electric field is also lower in the central region compared 

to that of the insulating membrane. 

The membrane blocks a significant region to ion flow, leading 

to a reduction in the conductance of the central region compared to 

the geometrical value, especially at low frequencies. As for the case 

of a membrane, the capacitance of the central region is considerably 

greater than the geometrical value at both high and low frequencies. 

At low frequencies the capacitance of the pore is considerably higher 

than that of the insulating membrane due to the lower electric field 

in the central region. 
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CHAPTER 6 

DECORATIONS TO THE MODEL OF AN ION 
CHANNEL 

6.1 INTRODUCTION 

The ion channels through biological membranes that are formed by 

protein molecules are much more complex than the simple model of the 

pore described in Chapter 5. In this chapter an extension of the model to 

mimic more closely biological channels is presented. The embellishments 

to the basic model include the influence of Born energies, fixed charge 

and ion selectivity as a result of differences of diffusion constants of the 

different ion species inside the channel and the possibility of 

phenomelogical flux coupling. 

6.1.1 Born Energy 

In the calculations of Chapter 5 it was assumed that all unblocked 

voxels were equally accessible to ions. This would not be the case in a 

pore in a biological membrane, due to the effect of image forces. It is 

energetically unfavourable for ions to enter a region of low permittivity 

(e), because of the consequent increase in their self energy, i.e. the energy 

stored in the electric field surrounding them which is inversely 

proportional to e (see Chapter 2). In the previous chapter the assumption 

of a uniform e throughout the system was made, so that Born energy 

effects, i.e. the effects of image charges could be excluded. However the 

dielectric constants of water and the hydrocarbon interior of lipid 
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membranes differ by a factor of 30 or more. This effect will be included 

by adding an energy term due to the difference in Born energy in the 

voxels at the boundary of dielectric discontinuity. 

6.1.2 Fixed Charges 

The ion distribution in channels is also affected by charges fixed in 

the channel itself. Researchers in molecular biology (e.g. Fox and 

Richards,1982) have now determined the amino acid sequence and 

structure of some proteins that form ion channels in membranes. Some of 

the amino acids forming these proteins carry a net charge at physiological 

pH. Therefore they attract ions of opposite charge (counter-ions) and 

repel ions of the same sign (co-ions). For example, one of the most 

widely investigated channel forming proteins is gramicidin A (Wallace, 

1990). When incorporated into lipid bilayers, it can significantly increase 

the flux of cations through the membrane. Negatively charged carbonyl 

groups are situated at the most constricted part of a gramicidin A channel. 

It is believed that the interaction between ions and these groups aids the 

passage of cations through the channel. 

The model of ion channels described in the previous chapter assumes 

that the surface of the cylindrical hole through the dielectric slab is 

uncharged. The model is now modified to allow for fixed surface 

charges. 

6.1.3 Selectivity 

For the calculations of Chapter 5, it has been assumed that the 

diffusion constant of each ion species is the same everywhere inside and 

outside the channel. However, some ion channels may hinder or 
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completely block the passage of specific ions through them, presumably 

via local geometry or fixed charges. To study this, the diffusion constant 

of each ion species inside the channel is allowed to differ from that of the 

external solution. 

Selectivity could also arise from the geometry of the fixed charge 

sites and the different hydration energies (Eisenman and Hom, 1983). 

Another effect which could be allowed for in the model Is 

phenomelogical coupling between the two ion species, i.e. the flux of one 

ion species affects the flux of another species. 

6.2 METHODS 

6.2.1 The Effect of the Difference in Dielectric Constant. 

The effect of the Born energy between the lipid bilayer and the 

electrolyte solution is accounted for in the following way. 

The ion current density Ji of the ith ion species can be determined 

from the negative derivative of the total chemical potential (see Chapter 

3): 

where : Zi is the valency of the ith ion species 

Di is its diffusion constant 

ci is its concentration 

(6.2.1) 

The chemical potential (,7i) of an ion species in a dielectric medium is 

given by: 
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iii= Jl.io +kT1nai +PV +other energy terms, (6.2.2) 

where : Jl.io is the standard chemical potential, ai is the activity of the 

ith ion species, Pis the pressure and V the volume. 

The Born energy can be added as an explicit term, or included in Jlio 

- the effect is the same, only the accounting is different. The difference in 

chemical potential (~JliO) then appears in the calculations because Ji is 

proportional to V Jli (see equation 6.2.1). 

The Born energy comprises of two terms: 

The first term is the "self energy" (UE) of an ion in a dielectric 

medium due to the electric field of the ion. For the ith ion species in an 

infinite dielectric medium of permittivity e UE is equal to (see Chapter 2): 

Zi2 q2 UE = _..:::.~L.__ 
8 1t e ai 

where ai is the radius of the the itb ion species. 

(6.2.4) 

The difference in Born energy between two semi-infinite media with 

permittivities e and ep is: 

(6.2.3) 

The second term arises from dielectric discontinuities. For a 

dielectric slab of finite width, the energy due to the polarization charges 

at the boundary surfaces of the slab (Up) has to be added to the Born 

energy. One method of estimating this extra term is to sum the 

contribution of the image charges, i.e. charges located at positions which 
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are reflections of the position of the actual ion through the boundary 

surfaces. This infinite set of charges allows calculation of the force on the 

test charge. These calculations are, however, very complicated (Neumke 

and Lauger, 1969). 

Parsegian (1975) has calculated this term numerically for the 

following case (these results are given relative to the energy of an ion in 

an infinite pore): A slab of width L, (infinite in the other two dimensions) 

and permittivity em is surrounded by a medium with much higher 

permittivity e. The slab contains a cylindrical hole of radius b (b << L) 

and permittivity ep. An ion is situated at the centre of this cylinder. 

A value for the Born energy was chosen of the same order of 

magnitude as the ones calculated by Parsegian. (The geometry here differs 

from that of Parsegian's calculations, which apply to ions at the centre of 

the channel, so the exact values were not used. 

The difference between the Born energy (Us= UE +Up) of an ion 

inside the channel and that of an ion in the electrolyte solution gives an 

estimate of d!J.io (d!J.io = U s/q) which can then be included in the ion 

current density equations for the voxels shown in Figure 6.1. 

The proteins forming the channel effectively lower the dielectric 

constant inside the channel by varying amounts. The effect of this could 

be included by adding different Born energy terms to the current density 

in all channel voxels. On the other hand, the surface groups of lipids also 

have a dielectric constant, which is greater than the one in their interior. 

In the absence of detailed information about structure, and in the interest 

of simplicity, this has not been pursued. 
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6.2.2 Charged Channels 

According to Coulomb's law, any net fixed charge on the channel 

surface will attract ions of the opposite sign and repel ions of the same 

sign, therefore altering the ion distributions and current densities in the 

region surrounding the charge. Unlike all previous cases this system is not 

charge symmetric. 

Charges are introduced by smearing one (or 1/n) ion charges over a 

ring in one or more of the voxels comprising the channel surface. The 

radius of the ring for this "surface" charge is the same as that used for the 

electric field calculations due to the space charge (see section 5.2.2), i.e. it 

includes a cross-sectional area weighting factor. The electric field due to 

these charges at each voxel surface is added to that due to the a.c. space 

charge and surface charge at the circular boundaries. 

The polar groups of some channel forming proteins are believed to 

form electric dipoles. Even though the computer program used for these 

calculations allows for an arbitrary number of surface charges, the results 

presented in this chapter are for a single charge only. 

Even though the structure of some protein forming channels have 

been studied extensively, their configuration in the lipid bilayer may 

differ from that of their crystallized form. Furthermore, the detailed 

structure of only a few relatively simple channel proteins is known to 

date. Because of the assumptions used in the model and the rather crude 

voxel size, the calculations presented in this thesis only give qualitative 

results. It will, however, be relatively simple to extend these calculations 

when better data and faster machines are available. 
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6.2.3 Asymmetric Ion Distributions 

Even though ions can pass through channels or pores easily in 

comparison to the lipid bilayer, the presence of these constrictions may 

still affect the diffusion rate of the ions passing through them. The extent 

of this effect can differ for the two ion species. For example, the ion 

radius relative to the pore radius, the degree of hydration of the ion and 

the presence of charged groups on the channel surface could all contribute 

to the rate of diffusion of a particular ion species throughout the channel. 

This effect has been introduced by assuming that the diffusion 

constant of one (or both) of the ion species is now decreased by an 

arbitrary fraction for the voxels inside the channel and near the channel 

surface. 

6.2.4 Coupling between the two Ion Species 

Experiments on some types of channels indicate that the flux of one 

ion species through the channel influences the flux of the other species. 

One method of accounting for this dependence would be to add a 

fraction of the anion current density at time t to the new cation current 

density (i.e. at time t+dt) and subtract it from the new anion current 

density (or vice versa). 

This has not been pursued in this thesis because it is, in a sense, 

contrary to the philosophy of this work. Flux coupling constants are 

empirical constants which throw no light on the physical process. Once 

the physical reason for a particular coupling process is understood, it can 

be incorporated explicitly in computations such as these. One such 

mechanism, for instance, could be the reduction of the electrical potential 

by the associated transport of ions of opposite charge. 
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6.3 RESULTS 

The first three modifications to the model discussed are added to the 

simple pore as previously described in Chapter 5. 

Using the method described in section 5.2 all variables are iterated 

until they cease to vary with time, for the case of zero applied a.c. signal. 

These equilibrium ion distributions and electric fields (for the cases where 

it is non zero) are used as initial values for the a. c. calculations. 

As before, the a.c. calculations are performed at two different 

frequencies: the first frequency (ft) is very much lower than the 

characteristic frequency (fc) and the second (fh) above fc. For the former, 

the same frequency and number of points per cycle as for the low 

frequency calculations of Chapter 5 are used. The calculations take 

approximately the same time as those in Chapter 5. 

Each of the modifications to the simple model affects the 

characteristic frequency of the system. These new characteristic 

frequencies are still of the same order of magnitude as fc of Chapter 5. To 

allow comparison with the results of Chapter 5, the same values of the 

frequency were used for the calculations. As in the previous chapter the 

applied current density is kept constant rather than the applied charge 

(Qo), when changing frequency. Therefore, for all high frequency 

calculations of this chapter the applied charge is smaller than for the 

calculations below fc by a factor fh/f1. The total size of the system, pore 

geometry, applied charge and bulk electrolyte concentration etc. are 

identical to the simple pore described in the previous chapter (see Table 

S.la and S.lb of Chapter 5). 
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Ions have lower energy in a medium of high dielectric constant, 

hence their concentration is reduced in and near regions of low dielectric 

constants, such as bilayers. As described in section 6.2.1, the effect of the 

difference in dielectric constant between the membrane and the electrolyte 

solution is modelled by adding an extra term to the chemical potential 

proportional to the Born energy (UB) (see Figure 6.1). 

This of course reduces the equilibrium ion concentrations in the 

voxels surrounding the dielectric by e-UB/kT, as given by Boltzmann 

statistics. The calculations in this section are for a Born energy of 1 kT 

for both ion species. 

Initially the ion concentrations are set equal to the bulk electrolyte 

concentration in all unblocked voxels. The iterations for zero applied 

signal produce the expected equilibrium concentrations (Figure 6.2). At 

equilibrium the ion current density term due to the concentration gradient 

and the Born energy gradient term for the voxels surrounding the 

dielectric are equal in magnitude but opposite in sign. The calculated 

values of both ion current densities and electric field are negligibly small 

at equilibrium. 

Note that plots of current densities for calculations at a frequency 

below fc have again been omitted for the three complications considered, 

because of uncertainties due to quantization noise, as discussed in section 

5.3.4. 
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The effect of applying a small a. c. signal (of magnitude equal to that 

used in the previous chapter) to the two circular boundaries is now 

investigated. 

6.5.1 Low Frequency Calculations 

The amplitude of the a.c. cation concentration (fig. 6.3a) is 

considerably lower than those for the simple pore in the voxels for which 

the "Born energy" term (i.e. the image forces) affects the ion currents, 

since the image forces increase the ion flux out of the region surrounding 

the dielectric. It is somewhat higher in the channel voxels closest to the z 

axis as well as near the channel entrance (approximately 10% for the 

parameters chosen). Near the charged boundary it is approximately the 

same as for the simple pore of Chapter 5. 

Compared to the simple pore, the phase of the a.c. cation 

concentration lags the applied charge by a larger amount near the centre. 

This is due to the lower concentrations: the fluxes are smaller, which 

means that the time taken to shift a given amount of charge is greater. The 

phase does not vary with radial distance. 

Adding a Born energy term effectively increases the resistance of the 

pore. Thus the axial component of the a.c. electric field (ez) (Figure 6.3b) 

in the channel and the potential difference (V) across it increase (Figure 

6.3d). ez for the simple pore is approximately constant inside the pore and 

then increases with distance away from the channel entrance. For the case 

discussed here, the constant region includes the voxels at the channel 

entrance. The radial component of the electric field ( er) is similar to that 
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for the simple pore, except close to the central axis, where it is somewhat 

lower (Figure 6.3c). Near the charged boundaries electric field is similar 

to those obtained for the simple pore. The phase of ez and V leads the 

applied charge by a larger angle in the central region. 

This system is charge symmetric, and so only cation concentrations 

and have been shown. 

6.5.2 Calculations for a Frequency above fc. 

As for the case of the simple pore of the previous chapter, ions 

accumulate near the electrolyte/membrane interface, since charge transfer 

is much reduced at high frequencies. This space charge is of lower 

magnitude and opposite sign compared to that of the double layer near the 

charged boundaries. Adding the Born energy term results in a reduction 

of the cation concentration (p) in the voxels next to the channel wall. This 

leads to an increase in p near the channel entrance as well as in the 

channel voxels closest to the central axis. In the double layer near the 

charged boundaries pis similar to that for the simple pore (Figure 6.4a). 

The reduction in p near the channel wall leads to a slight decrease in 

the z component of electric field (ez) in this region, while the 

accumulation of charge at the channel entrance results in a higher ez 

there. The difference is small, since the reduction of p in the channel is 

partially compensated by an increase near the channel entrance. The phase 

of ez is similar to the case of a simple pore (Figure 6.4b). Near the 

charged boundaries, the radial component of the electric field er is similar 

to the case of the simple pore. In the channel and near the channel 

entrance, it is lower in the voxels closest to the central axis and higher 

near the channel wall. The phase of er is approximately the same as for the 

case of the simple pore (Figure 6.4c). The potential difference is also 
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similar to that of the basic model (Figure 6.4d). 

The resistance of the channel increases in the voxels where the Born 

energy term is included, which leads to a significant reduction in the z 

component of the current density (Jpz) in the voxels next to the channel 

wall, and a slight increase near the central axis. Adding the Born energy 

term lowers the cation concentration (p) and therefore also the gradient of 

p, since pis zero in the centre. Jpz involves two terms; one proportional to 

the concentration gradient and one proportional to the product of p and 

the ez. The former dominates, hence Jpz is lower in the voxels closest to 

the channel wall. Jpz near the charged boundaries is similar to that for the 

simple pore (Figure 6.4e). The variation of p with r inside the channel 

results in a non zero radial component of the cation current density (Jpr) 

near both ends of the channel. Including the effect of the Born energy for 

the voxels next to the electrolyte/membrane interface reduces Jpr near that 

region compared to Jpr of the simple pore (Figure 6.4f). The phase of 

both Jpz and Jpr is approximately the same as that for the simple pore 

everywhere. 

6.6 EQUILIBRIUM DISTRIBUTIONS FOR A CHARGED 

CHANNEL 

The effect of adding a positive ring of charge near one of the channel 

entrances is now investigated (see Figure 6.5). Initially the ion 

concentrations are set equal to the bulk electrolyte solution in all 

unblocked voxels. The equilibrium ion distribution and electric field are 

obtained for the system as before. However for this case an increase in the 

bulk anion concentration is included to ensure electroneutrality in the 

whole system (i.e. the total charge of the anions add up -lq) before a 

current flows through the system. 
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The concentration of anions increases near the fixed (positive) 

charge, while that of the cations decreases, hence partially screening the 

fixed charge (Figures 6.6a and 6.6b). The separation of charge results in 

high electric fields in the voxels surrounding the fixed charge, which 

oppose further movement of charge (Figures 6.6c and 6.6d). 

At equilibrium, one would expect the current due to the 

concentration gradient and that due to the electric field to be equal in 

magnitude but opposite in sign. However the calculations presented 

include a small quiescent (i.e. not transient) circulating current densities 

near the voxel containing the fixed charge. These are possible numerical 

solutions because of quantisation errors as explained in section 5.3.4. 

The percentage difference between the current density term due to 

the concentration gradient and that due to the electric field at equilibrium 

gives an estimate of the "error" in the current densities. The maximum 

difference is approximately 30% for the radial current density and 10% 

for the axial component for the parameters chosen here. 

6.7 SMALL A.C. SIGNAL CALCULATIONS FOR A 

CHARGED CHANNEL 

The effect of adding a small a.c. signal to the charged channel of 

section 6.6 is discussed. The calculations are again performed at two 

different frequencies, one above and one below fc. 

6.7.1 Results for a Frequency below fc. 

The amplitude of the a.c. component of the cation concentration, p, 

in the central region is lower than for the simple pore with the greatest 

reduction in the voxels near the fixed charge. In the double layer p is 
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approximately the same as before (Figure 6.7a). 

The amplitude of the a.c. component anion concentration (n) in the 

voxels surrounding the fixed charge increases compared to that for a 

simple pore of Chapter 5. lnl for the charged channel is also higher in the 

channel voxels closest to the central axis as shown in Figure 6. 7b. The 

phase of both p and n lags the applied boundary charge by a slightly 

larger angle. 

The decrease in p and corresponding increase in n around the fixed 

charge gives a small a.c. screening. This leads to a slight reduction of the 

amplitude of ez and er compared to the pore in the central region and 

hence an increase in the effective conductance of the charged channel 

compared to the pore. These effects, however, are of size smaller than the 

quantisation error, so cation should be used in their interpretation. The 

phase of ez and er are approximately the same as for the simple pore 

(Figures 6.7c and 6.7d, Figure 6.7e shows the corresponding potential 

difference plots). 

6.7.2 Results for a Frequency above fc. 

As for the simple pore of Chapter 5, the lack of charge transfer 

through the channel results in a relative increase of the a.c. ion 

concentrations (p and n) in the region near the electrolyte/membrane 

interface and the channel mouth, compared to that of the double layers 

near the charged boundaries, forming a double layer of opposite phase to 

that of the nearest charged boundary. As for the previous section the fixed 

charge attract counter-ions and repels ions of the same sign, resulting in 

an asymmetric charge distribution near the charge and inside the channel 

(Figures 6.8a and 6.8b ). 

The electric field and the potential difference is approximately the 
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same as the simple pore, due to the screening of the charge (Figure 6.8c 

to 6.8e). 

The fixed charge results in an asymmetric current distribution in the 

surrounding region. Both the axial and radial components of the cation 

current density (Jpz and Jpr) are reduced near the fixed charge (Figure 6.8f 

and 6.8h), while the anion current density Onz and Jnr) increases in this 

region, compared to those for the simple pore (Figures 6.8g and 6.8i). 

These currents maintain the asymmetric charge distribution. 

6.8 EQUILIBRIUM DISTRIBUTION FOR THE ION 

SELECTIVE CHANNEL 

As explained earlier in this chapter (section 6.1.3) the diffusion 

constants for both ion species inside the channel may not be equal to those 

in the bulk solution. The case where the anion diffusion constant in the 

channel is set equal to zero is now considered, while the cation diffusion 

constant remains the same (analogous to a cation selective channel). 

Initially the concentration of both ion species is set equal to zero 

inside the channel and equal to bulk concentration external to the channel. 

The equilibrium distributions are obtained from iterations for zero 

applied signal as before. 

Cations diffuse into the channel initially because of the concentration 

gradient. No anions can enter the channel, therefore they accumulate at its 

entrance. The charge separation results in an electric field which opposes 

further cation diffusion into the channel. At equilibrium, the current due 

to the concentration gradient and that due to the electric field should be 

equal in magnitude and opposite in sign. However, as for the charged 

channel, the numerical solutions give a residual non-zero ion current 

density at equilibrium, due to quantisation errors. Figures 6.9a and 6.9b 
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channel at a frequency above fc. 
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charged channel at a frequency above fc. 
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Figure 6.8h. The amplitude and phase/7t of the radial component of 
the cation current density (Jpr) for voxel radii ri i = 1 to 4, for the 
charged channel at a frequency above fc. 
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the anion current density (Jnr) for voxel radii ri i = 1 to 4, for the 
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show the cation (P) and anion (N) concentrations at equilibrium. Note that 

capital letters denote equilibrium values, while lower case letter are used 

for the a.c. values. P is lowest inside the channel and approaches the bulk 

electrolyte concentration (Co) near the circular boundaries. N is greater 

than Co at the channel entrance and next to the insulator/solution interface. 

There is very little variation of ion concentration in the radial direction, 

since all voxels of the insulator and pore are blocked to ion flow. Inside 

the channel P is slightly higher next to the channel wall than near the 

central axis. 

The space charge is positive inside the channel and slightly negative 

outside (it is symmetric). This results in an electric field in and near the 

channel. The axial component of the electric field ( ez) is antisymmetric 

(Figure 6.9c), while the radial component (er) is symmetric (Figure 6.9d). 

6.9 A.C. CALCULATIONS FOR THE ION SELECTIVE 

CHANNEL 

Results of the small signal a.c. response of the ion selective channel 

at a frequency above and below fc are presented below. 

6.9.1 Low Frequency Calculations 

The following calculations are for a frequency much lower than fc. 

As before, the response of this system to a sinusoidally varying charge 

applied at both circular boundaries is determined. 

The a.c. anion concentration (n) is similar to that for the insulating 

membrane (except there is variation of the amplitude with radial 

distance). As the anions cannot pass through the channel or the insulator 

they accumulate, as for the case of f>fc, near interface between the 
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Figure 6.9b. The equilibrium anion concentration (N) of the ion 
selective channel for voxel radii ri, i=l to 4. 
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Figure 6.9c. The z component of the electric field at equilibrium (Ez) 
of the ion selective channel for voxel radii ri, i=l to 4. 
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electrolyte solution and the membrane containing the channel. 

Consequently a second double layer forms there of opposite sign and 

lower magnitude to that near the charged boundaries (Figure 6.10b). 

The a.c. cation concentration (p) is higher in comparison to the 

simple pore, since the anions are excluded from the pore. (Note that 

initially before the a.c. signal is applied, both the total cation and anion 

charge in the system is lower than in the case of the simple pore). The 

greatest increase occurs near the channel entrance next to the 

insulator/electrolyte interface where n is also high (p and n are in phase in 

this region). In the radial direction, p does not vary significantly. The 

phase of p is approximately the same as for the simple pore (Figure 1 Oa). 

The accumulation of anions near the channel mouth and 

electrolyte/membrane interface leads to an increase in ez in that region. 

The plots of ez look similar to those for the insulating membrane, 

however the amplitude in the central region is much lower than for the 

membrane. The values of the electric field, and hence the potential, are 

closer in magnitude to those for the simple pore (Figures 6.1 Oc to 6.1 Oe ), 

since, unlike for the case of the insulating membrane, significant transfer 

of cations through the channel still occurs at this frequency. The phase of 

ez is similar to that for the simple pore, but leads the applied charge by a 

considerably lower angle, especially in the near channel entrance and 

membrane/electrolyte interface. 

6.9.2 Calculations at a Frequency above fc. 

The cation concentration (p) resembles that for the high frequency 

calculations of the simple pore of the previous chapter (i.e. charge build 

up at electrolyte/membrane interface of opposite sign to that of the double 
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layer of the nearest charged boundary). However, unlike for the low 

frequency calculations, it is somewhat lower than for the simple pore in 

the central region, where n is higher but approximately 1t radians out of 

phase with p (Figure 6.11a). As for the low frequency calculation of the 

previous section, the anion concentration (n) resembles that of the 

insulating membrane of Chapter 5, except for a slight increase near the 

channel mouth (Figure 6.11 b). 

Again ez, er and therefore V have values in between those for the 

simple pore and an insulating layer (see Figures 6.11c to 6.11d). At this 

frequency, double layers form near the channel entrance and 

electrolyte/insulator interface for the case of the simple pore and ion 

selective pore, as well as the membrane, hence ez for all three cases is 

comparable in magnitude. 

The anions which accumulate in the central region attract cations, 

resulting in a small reduction in the cation current density through the 

pore, as well as Jpr in the central region (see Figures 6.11f and 6.11h). Jnz 

remains approximately the same as in the case of the insulating membrane 

(Figure 6.llg). The phase of both Jpzand Jpr is similar to that of the 

simple pore, while that of Jnz and Jnr is similar to that for the insulating 

membrane (Figure 6.11h and 6.11i). 

6.10 IMPEDANCE CALCULATIONS 

As for the previous chapter, the conductance (G) and capacitance (C) 

can be calculated from the amplitude and phase of the potential difference 

as a function of distance. Note that the phase used for these calculations 

lags the phase shown in Figures 6.3, 6.4, 6.7, 6.8, 6.10 and 6.11 by 

approximately 1t/2, since the impedance is calculated with respect to the 

applied current and not charge. In order to determine the effect of the 
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various complications, the conductance (G/GK) and capacitance (C/CK) 

ratios are again compared to the corresponding ratios for the simple pore 

of Chapter 5. GK and CK are the geometrical conductance and capacitance, 

respectively, for a homogeneous dielectric of the same thickness and are 

given by equations 5.3.3 and 5.3.4. 

The Born energy term drives ions out of the voxels surrounding the 

electrolyte/insulator interface, thus considerably reducing the conductance 

of the channel at both high and low frequencies (Figure 6.12). 

The screening of the fixed charge on the channel surface leads to a 

very slight reduction in the electric field. Hence the conductance of the 

channel increases slightly at low frequencies compared to the conductance 

of the simple pore. At high frequencies, the channel conductance 

decreases slightly due to the smaller number of charge carriers in the 

channel. 

The example of an ion selective channel used here is one which is 

completely impermeable to anions. As a result, anions accumulate at the 

channel mouth. This attracts cations to this region and tends to reduce 

cation current flow through the channel. This leads to a significant 

decrease in the channel conductance at both high and low frequencies. 

As in the previous chapter, the capacitance at low frequencies is 

much higher than the equilibrium value for all three types of wn 

channels. Adding the Born energy term effectively decreases the 

occupancy of the channel and thus leads to an increase in the potential 

difference across the channel. This also increases the effective thickness of 

the membrane and hence the capacitance decreases. 

At low frequencies the capacitance of the charged channel increases 

slightly compared to that of the simple pore, due to the slight decrease in 

the electric field. This effect may however be small enough to lie within 

the range of quantisation errors. 
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2 Charged channel - section 6.7.1 
3 Ion selective channel - section 6.9.1 
4 Simple pore of chapter 5 - section 5.5 .1 
GK and CK are the geometrical conductance and capacitance defined 
by equations 5.3.3 and 5.3.4. 

G!GK CICK 
1 

0.8 15 

0.6 ~ 14 

0.4 
13 

0.2 ~ 
0 

3 5 4 4.5 5 5.5 6 

d/nm d/nm 
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frequency calculations of chapter 6 for the following cases: 
1 Channel including the effect of Born energy - section 6.5.2 
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The accumulation of charge in the central region leads to a marked 

increase in the electric field in the central region. Consequently the 

capacitance of the ion selective channel decreases significantly compared 

to that of simple pore. At high frequencies, the capacitance 1s 

approximately the same as for the simple pore for all three cases. 

6.11 CONCLUSIONS 

Since ion transport through channels of cell membranes depends on 

effects other than geometry, extensions of the simple model of Chapter 5, 

which include some of these effects, have been investigated. The results 

presented in this chapter serve primarily to demonstrate the order of 

magnitude of the effects and the feasibility of the model. By increasing 

the resolution and using a more detailed channel geometry, one could 

easily use this model to perform much more computationally intensive 

calculations for specific channel types. Calculations for this model show 

that these modifications significantly affect the impedance of the channel 

as described below: 

* Effect of the Born energy: Ions tend to be driven out of voxels 

surrounding the insulating membrane, as a result of the Born energy 

term. This effectively restricts the occupancy of the channel and hence 

significantly reduces the channel conductance. The accumulation of 

charge near the channel mouth results in an increase in the electric field 

and potential difference across the channel and a consequent reduction of 

the capacitance of the channel at low frequencies. 

* Effect of surface charges: The fixed charge attracts counter-ions 

and repels co-ions. The resulting decrease in cation concentration and 

corresponding increase in anion concentration leads to a very slight 

decrease in the electric field in the central region, thus effectively 
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increasing the conductance of the channel by a very small amount. 

* Effect of ion selectivity: A channel impermeable to anions is used 

as an example in this thesis. Anions accumulate at the channel mouth. This 

attracts cations and reduces the cation flow, resulting in a significant 

decrease in the channel conductance, especially at low frequencies. 



CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR 
FURTHER WORK 

7.1 CONCLUSIONS 

Much can be learnt about the mechanisms of ion transport from 

studies of the electrical properties of channels through membrane. This 

thesis is a theoretical analysis of the a.c. electrodiffusion for such 

systems. Electrical measurements of ion channels in membranes 

necessarily include part of the surrounding medium, which is usually an 

electrolyte solution. Therefore in Chapter 3 exact algebraic solutions to 

the Nemst-Planck and Poisson equations for the small signal response of 

an electrolyte solution were found. The calculations presented in Chapter 

3 showed that diffusion effects become important for values of 

impedances (Z) between voltage electrodes situated many Debye lengths 

away from the current electrodes. If the ion species have different 

diffusion constants, the impedance is an oscillatory function of 

frequencies at low frequencies. The frequencies and magnitude of these 

oscillations depend on the diffusion constants of the ion species, the 

spacing of the current electrodes and the ion concentration. The 

oscillations of the capacitance can be very great for large differences in 

the diffusion constants of the different ion species. However, since these ,. 
oscillation occur at low frequencies, the ratio Im(Z)/Re(Z) is not very 

large and typically varies between -0.4 and 0.1 for the parameters chosen 

for this thesis. 

The capacitance alternated between positive and negative values with 
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increasing frequency. Hence this theory can possibly be applied to the 

method of null measurements, which is a very powerful measuring 

technique for the following two reasons: i) it can remove free parameters 

and ii) it is inherently powerful, since many measuring instruments are 

most sensitive near zero. 

Ionic currents, electric field and ion concentrations are also 

oscillatory functions of position. Calculations of their spatial variation 

suggests the possibility of errors in measurements for some small signal 

a.c. techniques commonly used in physiology, which infer ion fluxes 

through membranes solely from measurements in the external electrolyte 

solution relatively far away (J..Lms) from the membrane. 

In experimental situations, ion fluxes are approximately radial. 

Hence in Chapter 4, the Nemst-Planck and Poisson equations were solved 

for spherical geometry: the current electrodes were assumed to be a very 

small source (the channel) and a hemispherical shell electrode. The 

comparison of the four terminal impedances for spherical symmetry with 

those for the planar geometry of Chapter 3 showed no qualitative 

differences and the quantitative differences were approximately those 

expected from geometrical factors. It is possible that calculations 

performed in the simpler planar geometry (e.g. Chapter 3) can be 

expected at least to be qualitatively applicable to other membrane 

electrolyte geometries in between the two extreme geometries considered 

in Chapters 3 and 4. 

The total conductance of a channel necessarily includes a small 

region of electrolyte solution surrounding the channel mouth, which has 

often been modelled by a hemisphere (e.g. Levitt, 1985). The 

contribution to the total channel conduction can be considerable, 

especially for channels with a high "intrinsic" channel conductance. At 

very low electrolyte concentrations, the total conductance ultimately 
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becomes limited by diffusion of ions to the channel mouth (Lauger, 1976 

and Levitt, 1987). The spherical geometry employed in this chapter 

enabled the calculation of this "access impedance". 

In Chapters 5 and 6 numerical methods were used to solve 

geometries which did not yield analytical solutions. Although numerical 

solutions allow arbitrary channel geometry, they have limited spatial and 

temporal resolution. Ion channel dimensions are of the order of nm and 

hence voxel sizes need to be smaller than these. The time steps required 

for convergence also need to be very small. This made the calculations 

computationally intensive. Hence, limitations of the available equipment 

meant that only low resolution calculations could be performed in 

reasonable computation times. 

The results presented in Chapters 5 and 6 show that even with 

modest computational power, electrical properties of interesting systems 

could be analysed for useful geometries. No attempt was made to fine­

tune the model to allow a comparison with experimental data of which 

there are as yet virtually none. 

The calculations in this thesis required 20 digits of precision. The 

calculation time per a.c. cycle for one voxel required for convergence 

(tc) depends on the frequency (f), the total number voxels (nv) and the 

clock speed of the computer. It can be represented by: tc = K/(f nv2). For 

the calculations in this thesis K is approximately equal to 2xl07 for a 

clockspeed of 40 MHz. It was found that for these calculations the effects 

of the finite size of the system were more important than those of 

quantisation errors arising from the finite voxel size. 

Even though the numerical results presented in this thesis have very 

limited resolution, they could still provide estimates of the magnitude of 

some of the important effects on ion transport through channels. 

For the simpler geometries, the results were compared with the 
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analytical solutions of Chapter 3. This comparison showed approximate 

agreement between the analytical and numerical results and the 

differences were mainly attributable to the effects of the finite size of the 

slab and cylinder of electrolyte used for the numerical calculations. 

For an insulating membrane, ions accumulated near the 

membrane/electrolyte interface forming a space charge of sign opposite 

to that of the nearest charged boundary. The conductance was essentially 

zero, while the capacitance was much larger than the geometrical value, 

especially at low frequencies. 

For a simple pore at low frequencies, ions can diffuse sufficiently 

far for significant charge transfer through the channel to occur. Hence a 

considerably smaller amount of charge accumulated at the 

electrolyte/membrane interface, resulting in a lower electric field than 

for the insulating membrane and thus a larger capacitance than for the 

membrane with no pore. At high frequencies there is little transfer of 

charge through the pore, hence ions accumulated near the 

membrane/electrolyte interface and the entrance of the pore. At these 

frequencies the capacitance of the insulating membrane and the simple 

pore were approximately the same. 

Channels in biological membranes are complicated and ion transport 

through them depends on effects other than geometry, which have not 

been considered in the model of the simple pore presented in Chapter 5. 

Hence in Chapter 6, the simple model was modified to include some of 

the more important effects. These were: 

1) Born energy 

2) Fixed charges on the surface of the channel wall. 

3) Ion selectivity due to differences in the diffusion constants of the 

different ion species inside the channel. 
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These complications had significant effects, especially at low 

frequencies. Adding the Born energy restricted channel occupancy and 

hence it reduced the conductance of the channel. The capacitance of the 

channel also decreased, since the Born energy increased the effective 

"thickness" of the membrane, by reducing ion concentration in the voxels 

surrounding the membrane/electrolyte interface. 

The fixed charge attracts counter-ions and repels co-wns. This 

screening of the fixed charge resulted in a slight decrease in the electric 

field in the central region, and hence an effective increase in channel 

conductance. The slight decrease in potential difference across the channel 

led to a slight increase of the capacitance. 

The example of an ion selective channel presented in this thesis is a 

channel impermeable to one ion species only. The consequent 

accumulation of the impermeable ion species led to a decrease in the ion 

current for counter-ions. This resulted in a considerable reduction of the 

conductance of the channel. The increase in electric field across the 

channel resulted in a reduction in the capacitance of the channel. For the 

example presented, the value of the capacitance was approximately twice 

that for the insulating membrane. 

At very high frequencies, the capacitance was approximately the 

same for all three cases. 

7.2 SUGGESTIONS FOR FURTHER WORK 

Other exact algebraic solutions of the Nemst-Planck and Poisson 

equations are possible for the following electrodiffusion regimes: 

1) An electrolyte solution containing four distinct charge species 

or three charge species and a neutral species formed by 

recombination of the ions. 
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2) Reaction kinetic schemes (Walkerden, 1987). 

Reaction kinetic schemes have been used extensively in steady state 

models of ion channels in which the electrical properties of the channel 

are modelled by a series of rate constants (e.g., Lauger, 1987 and Sanders 

et al., 1984) 

fu Chapter 6, the effects of various important factors such as fixed 

charge and Born energy have been added separately. Although this gives 

order of magnitude estimates and qualitative understanding, it would be 

of interest to study the interaction of two or more of these effects. For 

example, fixed charges can compensate for the effect of Born energies 

only for the case of the counter-ion. For the case of the co-ion, it 

presumably would make the situation more severe. This would be 

especially of interest in particular cases when molecular information will 

be good enough to allow more detailed modelling. 

The model could be extended further to allow for other effects such 

as coupling currents from the different ion species. A steady d.c. current 

could also be included explicitly. 

Even though Chapters 5 and 6 only giVe low resolution 

representative results, much more computationally intensive calculations 

for specific channels could be performed on more powerful computers, 

especially as more detailed channel protein structures become available. 

Currently the expense of array processors is not justified for such 

problems, given the lack of knowledge of the exact geometries. 

Some channel proteins, e.g. the acetylcholine receptor channel, have 

a narrow charged constriction which is believed to play a major role in 

the transport mechanism of the channel. This can be simulated by varying 

the number of blocked voxels in the radial direction as a function of 

distance through the channel, since the model presented in this thesis 
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allows an arbitrary number of blocked voxels in both directions. 

Voxel size in the z direction for the model presented in Chapter 5 

and 6 was kept constant. Since most of the variations of concentration, 

electric field and ionic current occurs near the charged boundaries and in 

the region containing the channel and membrane, it may prove useful to 

include voxel sizes which vary with z and/or with r. This would be 

particularly useful when modelling large systems, at regions far away 

from the channel. 

This method could also be applied to one dimensional nonlinear 

systems for which exact algebraic solutions are not possible. An example 

of this would be a more detailed model of the double layer near an 

infinite electrode or charged surface which includes fixed charges in the 

Stem layer, non-zero zeta potentials, recombination of ion species and a 

dielectric constant that varies with distance. 

As a final comment I cannot resist advising, however, that the 

implementation of such calculations is rather more difficult than their 

description. To anyone undertaking such future work, I would be willing 

to provide computer codes and any advice required. Further I would like 

to wish him/her good luck and as much sanity as is consistent with work 

of this nature. 
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APPENDIX 3.1 

The slow response time of miniature ion-sensitive electrodes and 

typical vibration frequencies of probes means that measured changes of 

ionic activities and electric fields will only occur at relatively low 

frequencies (typically < 1 Hz ). Variables derived at this low frequency 

limit will be indicated by the subscript L. At these low frequencies the 

contribution of displacement current will be negligible. The characteristic 

lengths simplify to: 

(A3.1.1) 

(A3.1.2) 

where ~s denotes the rms distance through which the solute diffuses 

during a phase change of one radian in the applied current. Therefore: 

(A3.1.3) 

where Ds denotes the effective diffusion coefficient for the solute 

which is given by: 

(A3.1.4) 

Thus at very low frequencies the magnitudes of the two characteristic 

lengths are simply the Debye length A and the diffusion length for the 

solute ~s· A is independent of frequency, whereas ~s varies as ro-I/2. 
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Although AlL is real, A2L has real and imaginary components of equal 

magnitude. 

S2L = (zp/Zn) [1 + 2jA2(~~2-~~2)] 

HlL= 1 

(A3.1.5) 

(A3.1.6) 

(A3.1.7) 

(A3.1.8) 

In the low frequency limit, H1L = 1 and H2L = -zp/Zn. Thus the 

ionic currents carried by cations and anions associated with the terms with 

subscript 1 will be in the ratio zp/zn because they move in opposite 

directions under the influence of the electric field. However the ionic 

currents carried by cations and anions via terms with subscript 2 will be 

in the ratio -1. This is because they move in the same direction, 

effectively as movement of solute. After substituting equations A3.1.1 to 

A3.1.8, equations 3.5.13 and 3.5.14 become: 

(A3.1.9) 

(A3.1.10) 

The ionic currents are given by: 

JpL(x) = J {zpDp/(zpDp+ZnDn)+Qpcosh((1 +j)x~8)/cosh((l +j)L~)} 

(A3.1.11) 
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JnL(x) = J { ZnDn/(zpDp+ZnDn)-Qpcosh((l +j)x/~s)/cosh((l +j)L/~5)} 

(A3.1.12) 



APPENDIX 4.1 COMPARISON OF THE IMPEDANCE OF A 

BINARY ELECTROLYTE FOR PLANAR AND SPHERICAL 

GEOMETRY. 
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The coefficients b1 and b2 involve the exponential terms e+R/12 

(12=1/m2). Since 12 is complex (see equation 4.2.15 to 4.2.17) these 

exponential terms, and hence Z2, are again oscillatory. Since the 

contribution of Z1 is negligbly small for the values of r1 and r2 chosen 

for these calculations, the real and imaginary parts of Zt will equal ZK 

at frequencies for which the real and imaginary parts of Z2 are equal to 

zero. At frequencies (fnG) at which the real part of Z2 is zero, G 1 is 

approximately equal to the geometrical value GK. Also at frequencies 

(fne) at which the imaginary part of Z2 is zero, Ct approaches CK. Since 

this system is not antisymmetric and Z1 is a rather complicated function of 

e±R/A.2, it proved impossible to find a simple expression for foG and foe as 

well as Z1 , unlike for the two ion case of chapter 3. 

Qualitatively the variation of C11CK and G11GK with frequency is 

similar to those for two ions in a planar geometry, i.e. CtiCK approaches 

a very large frequency independent value at low frequencies and oscillates 

at intermediate values. G1 is less than GK at low frequencies and oscillates 

about unity at intermediate frequencies. Both C1 and G1 approach their 

geometrical values at high frequencies. As before the magnitude of the 

oscillations of C 11 C K is much larger than that of G 11 G K. However the 

values of the frequencies foG and foe differs significantly from those for 

planar geometry of the previous chapter (see Figures 4.4 to 4.7). 

As has been found for planar geometries C tl C K and G tl G K are 

functions of the difference between the cation (Dp) and anion (Do) 

diffusion constants as well as current electrode separation R. The effects 

of R and the difference between diffusion constants on the capacitance and 



conductance ratios are much more spectacular in the case of CtiCK than 

Gr!GK, since the real part of Zt is dominated by ZK, except for large 

ratios of Dp/Dn. As the difference between Dp and Dn becomes larger, it 

considerably increases the low frequency limit of C t as well as the 

magnitude of the capacitance oscillations at intermediate frequencies. This 

increase in the difference between Dp and Dn also lowers the low 

frequency limit of the conductance (Figures 4.4 and 4.5). As for the two 

ion case of the previous chapter, fnc and fnG do not vary with bulk 

electrolyte concentration. 
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Increasing R shifts fna and fnc to lower frequencies, as well as 

significantly increasing the value of CtiCK. For planar geometry both fna 

and fnc are inversely proportional to the square of the current electrode 

separation. The fractional increase in the low frequency limit of CtiCK for 

spherical symmetry is approximately the same as that for the binary 

electrolyte for planar geometry (Figures 4.4 and 4.6). 

The frequencies fnc and fna as well as Zt now also depend on the 

positions of the voltage electrodes r1 and r2. Increasing r1 and r2, while 

keeping r2-r1 constant results in an increase in the low frequency limit of 

C t • fnc shifts to higher frequencies and the magnitude of the oscillations 

of CtfCK decreases. The low frequency Gt limit remains approximately 

unchanged (Figures 4.4 and 4.7). 



APPENDIX 5.1 

Consider a voxel along the central axis as shown below. 

z 
EO 

e 

Assume that the total charge in the voxel is confined to a point at the 

centre of the voxel. 

En= Eo cos29 

rc/4 rc/4 
JEn.dA = J 2rc rsin9/cose Eo cos29 r/cose de 
0 0 

= 2n r2 Eo [ -cose ]o1t14 

= 2rc r2Eo (1-1/"2) 

Hence the integral of the electric field is= 0.6 of that assuming 

uniform electric field on the voxel boundary. 
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