
Conflict-driven constraint answer set solving

Author:
Drescher, Christian

Publication Date:
2015

DOI:
https://doi.org/10.26190/unsworks/18170

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/54397 in https://
unsworks.unsw.edu.au on 2024-04-30

http://dx.doi.org/https://doi.org/10.26190/unsworks/18170
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/54397
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Conflict-driven Constraint Answer Set Solving

Christian Drescher

A thesis in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Computer Science and Engineering

Faculty of Engineering

May 2015

Abstract

Constraint answer set programming (CASP) is a declarative problem solving para-

digm that combines the strengths of constraint programming (CP) and answer set

programming (ASP). ASP solvers provide good computational performance by

conflict-driven nogood learning (CDNL) and exploiting unfounded sets. To model

features like finite domain variables and global constraints, which are naturally

dealt with in CP, hybrid CASP systems have been developed that delegate CP con-

structs to a CP solver. While this achieved some success, hybrid systems do not

seamlessly integrate with CDNL. We address this deficiency by devising two alter-

native approaches that accommodate CDNL.

For one, we introduce a translation-based approach. The idea is to enhance

ASP with CP constructs through translation to ASP. Implemented as preprocess-

ing, this allows us to apply existing CDNL-enabled ASP systems to CASP solv-

ing. Our contributions include various generic translations that work for any con-

straint, and specialised encodings for important global constraints such as ALL-

DIFFERENT, GRAMMAR, and REACHABILITY. We show that the inference of ASP

solvers can simulate the effect of complex CP algorithms in many cases. Propa-

gation of REACHABILITY, however, can be hindered because ASP systems disregard

some consequences from unfounded sets for performance reasons. We tackle this

weakness by providing more efficient methods using a reduction to the problem

of finding dominators in a flowgraph.

For another, we devise an extension to CDNL-based ASP solving that can inte-

grate CP constructs via lazy nogood generation (LNG). Rather than a-priori trans-

lations into ASP, the idea of LNG is to make necessary parts of an encoding explicit

on demand and only when new information can be propagated. We introduce

external propagators to facilitate LNG and incorporate them into a decision pro-

cedure for ASP solving that is centred around CDNL. We then demonstrate how

to seamlessly integrate constraint propagation with this framework, resulting in a

novel approach to CASP solving.

We have implemented a prototypical CASP system to demonstrate some key

principles of our approaches. In 2013, it has successfully participated in a model

and solve competition, outperforming hybrid systems.

iii

Acknowledgements

This PhD thesis is the culmination of a life-long interest in the area of artificial

intelligence that was fuelled by so many people. Accomplishing this thesis would

not have been possible without them.

I am most grateful to Toby Walsh for supervising my PhD project. His aca-

demic courage and vision inspires me. I thank him for providing me guidance,

many constructive comments, and putting in all his weight into winning me schol-

arships and travel grants. I also thank my co-supervisor Maurice Pagnucco for his

support and help.

I am indebted to Torsten Schaub for introducing me into research during my

earlier studies. Special thanks go to him and Tomi Janhunen for taking on the

task of reviewing this thesis. I am grateful to Pascal van Hentenryck and Peter

Stuckey for invaluable discussions on various occasions. I also thank Marcello

Balduccini, Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Yuliya Lierler,

Valentin Mayer-Eichberger, Nina Narodytska, and Max Ostrowski for their brilliant

work.

Finally, and most importantly, I thank my wife Nino Labadze, my family, and

friends for supporting me all the time.

v

Contents

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 7

2 Background 11

2.1 Graph Theory . 11

2.2 Formal Languages . 15

2.3 Constraint Satisfaction Problems . 19

2.4 Boolean Satisfiability . 21

Unit Propagation . 22

Conflict-driven Nogood Learning . 23

2.5 Answer Set Programming . 24

Well-founded Negation and Well-founded Justification 30

Choice Rules, Cardinality Constraint Rules, and Integrity Constraints 36

Programs with Externals . 38

2.6 Constraint Answer Set Programming 40

Hybrid Constraint Answer Set Solving 42

3 Well-founded Justification and Well-founded Domination 45

3.1 Cuts in the Support Flowgraph . 46

3.2 Approximation of Well-Founded Justification 52

3.3 Component-unary Programs . 55

3.4 Well-Founded Domination . 59

3.5 Limitations . 65

vi

Contents

3.6 Related Work . 67

3.7 Conclusions . 69

4 Translation-based Constraint Answer Set Solving 71

4.1 Foundations . 72

4.2 Value Encoding . 75

4.3 Support Encoding . 78

4.4 Bound Encoding . 80

4.5 Range Encoding . 83

4.6 Mixed Encodings and Primitive Constraints 86

4.7 Related Work . 91

4.8 Conclusions . 93

5 Encoding Global Constraints with Answer Set Programming 95

5.1 The ALL-DIFFERENT Constraint . 95

Experimental Results . 103

5.2 The GRAMMAR Constraint . 108

The REGULAR Constraint . 122

Experimental Results . 131

5.3 The REACHABILITY Constraint . 134

Experimental Results . 150

5.4 Limitations . 153

5.5 Related Work . 154

5.6 Conclusions . 157

6 Constraint Answer Set Solving via Lazy Nogood Generation 159

6.1 Nogoods of Programs with Externals 160

6.2 Lazy Nogood Generation . 170

6.3 Decision Algorithm . 179

6.4 Experimental Results . 189

6.5 Related Work . 201

6.6 Conclusions . 204

7 Conclusion 207

Acronyms 213

Bibliography 215

vii

Chapter 1

Introduction

Developing a powerful paradigm for declarative problem solving is one of the key

challenges in the area of knowledge representation and reasoning. A promising

candidate is answer set programming (ASP; Gelfond and Lifschitz, 1988; Eiter et al.,

1997; Lifschitz, 1999; Niemelä, 1999; Marek and Truszczyński, 1999; Baral, 2003;

Gebser et al., 2012b) that has emerged in the last decade of the 20th century. It

comes with an expressive but simple modelling language rooted in logic program-

ming (Baral and Gelfond, 1994) and nonmonotonic reasoning (Brewka et al., 2008),

featuring recursive definitions and default negation. In fact, the integration with

conflict-driven solving (Mitchell, 2005) and the exploitation of unfounded sets

(Van Gelder et al., 1991) in modern ASP solvers (Giunchiglia et al., 2006; Gebser

et al., 2007a; Maratea et al., 2008; Lierler, 2011; Alviano et al., 2013b) achieved a

breakthrough in terms of computational performance that has elevated ASP to the

avant-garde in logic programming.

ASP now faces a growing demand for new modelling features, most notably

variables over finite domains and global constraints, constructs that are more nat-

urally handled in constraint programming (CP; Dechter, 2003; Rossi et al., 2006).

As demonstrated in (Dovier et al., 2005; Coban et al., 2008; Mancini et al., 2008;

Celik et al., 2009), ASP has the advantage of being more compact, more elabora-

tion tolerant than CP, and is highly competitive. On the other hand, it sometimes

makes modelling difficult and tedious, and produces non-compact ASP encod-

ings, whilst in CP, finite domain variables facilitate elegant and general modelling,

and a large library exists for sophisticated propagation algorithms of global con-

straints. On the other hand, CP implementations are less robust and cannot han-

dle recursive definitions naturally.

1

1. Introduction

This led to the development of constraint answer set programming (CASP;

Baselice et al., 2005), a paradigm that naturally merges CP and ASP, while pre-

serving the advantages of both approaches. For illustration, consider the problem

of solving a Hidato puzzle.

Example: CASP Model of Hidato

Hidato (Benedek, 2008) is a number-placement puzzle game. The goal is to fill

a grid with consecutive integers connecting horizontally, vertically, or diago-

nally. Hence, all values assigned to the cells in a solution must be all-different.

Some numbers, including 1, being the smallest, and the highest number n on

the grid, are preassigned in order to guarantee a unique solution. The follow-

ing is a sample Hidato containing 80 cells.

28 26
30

66 37 16
71 63 36 32 18 22

70 41 35 14 11 21
44 42 8

60 46 48 9 7
49 51 1

79 50 3
80

Every Hidato puzzle can be described in terms of logic programming facts,

where

– connections between cells are encoded in the form edge(X,Y), repre-

senting that a cell X is connected to Y

– preassigned values are encoded in the form clue(X,V), representing

that a cell X takes the value V, and

– the highest integer N on the grid, i.e., the number of cells in the grid, is

encoded in the form size(N).

Then, the above instance is represented by the following:

edge(cell_0_1,cell_0_2).

edge(cell_0_2,cell_0_1).

2

edge(cell_0_1,cell_1_1).

edge(cell_1_1,cell_0_1).

. . .

clue(cell_0_6,28).

clue(cell_0_7,26).

clue(cell_2_2,66).

. . .

size(80).

Logic programming based approaches like ASP are particularly well suited for

modelling Hidato because path constraints are encoded straightforwardly us-

ing recursive transitive closure. This is difficult to encode in CP. On the other

hand, constraints that work globally, like ALL-DIFFERENT on the values taken

by the cells, are more naturally represented in CP.

The purpose and strength of CASP is that it combines the best of both

worlds. We demonstrate CASP using the syntax of the CASP system inca 1.

#var $value(X) : cell(X) : size(N) = 1..N. (1.1)

$value(X) #== V :- clue(X,V). (1.2)

#alldifferent {$value(X) : cell(X)}. (1.3)

1 {path(X,Y) : edge(X,Y)} 1 :- cell(Y), not clue(Y,1). (1.4)

reached(X) :- clue(X,1). (1.5)

reached(Y) :- reached(X), path(X,Y). (1.6)

:- cell(X), not reached(X). (1.7)

#linear [$value(Y), -$value(X)] == 1 :- path(X,Y). (1.8)

The encoding works on a description of the puzzle in terms of logic program-

ming facts. As you can see, CASP distinguishes regular atoms from constraint

atoms and variable declarations, indicated by the # symbol, and constraint

variables, indicated by the $ symbol. Line (1.1) declares a variable for each

cell in the grid with values between 1 and N, whilst Line (1.2) ensures that pre-

assignments are respected by the corresponding variables. Line (1.3) encodes

the condition that the values taken by the cells in the grid are ALL-DIFFERENT.

Lines (1.4–1.7) encode a Hamiltonian path, represented by auxiliary atoms

3

1. Introduction

of the form path(X,Y), and Line (1.8) ensures that the values taken by two

connected cells in the Hamiltonian path are consecutive. Note that the ALL-

DIFFERENT constraint is redundant in this encoding, but it can greatly improve

run time.

28 26
67 65 38 30 29 27 25 24
68 66 64 37 39 31 16 17 19 23
71 69 63 40 36 32 15 18 20 22
72 70 62 41 35 33 14 12 11 21
73 61 44 43 42 34 13 10 8 6
74 60 45 46 48 54 53 9 5 7
75 59 58 47 49 55 51 52 1 4
76 77 79 57 56 50 2 3

78 80

Above graphic shows the unique solution of the sample Hidato puzzle.

Although CASP systems support models with first-order variables, this thesis lim-

its the attention to propositional specifications and the process of constraint an-

swer set solving.

At the solving level, recent years have seen the emergence of hybrid CASP

systems (Mellarkod and Gelfond, 2008; Mellarkod et al., 2008; Balduccini, 2009;

Gebser et al., 2009c). Following the idea of satisfiability modulo theories (SMT;

Nieuwenhuis et al., 2006), hybrid CASP systems improve on the solving capabil-

ities of ASP by delegating the tasks of handling finite domain variables and the

propagation of constraints to CP systems. This approach has been successfully

applied to sophisticated industrial-size scheduling problems (Balduccini, 2011),

and comparisons to the state-of-the-art in ASP are encouraging (Balduccini and

Lierler, 2012; Lierler et al., 2012). As demonstrated by Gebser et al. (2009c), the key

to developing an efficient CASP system is the integration with conflict-driven solv-

ing, most importantly CONFLICTANALYSIS (Moskewicz et al., 2001), i.e., capable of

combining conflict information from ASP and CP constructs.

1.1 Contributions

Although hybrid CASP systems have achieved some success, their design princi-

ple does not integrate well with the state-of-the-art in conflict-driven solving: Al-

1http://potassco.sourceforge.net/labs.html

4

1.1. Contributions

though modern hybrid CASP systems Gebser et al. (2009c); Balduccini (2009) em-

ploy a conflict-driven ASP solver as their core reasoning engine, enabling learning,

conflict-oriented search heuristics, and conflict-directed backjumping (Mitchell,

2005), their performance can be hindered by the CP counterpart, as CP solvers

typically apply backtracking search (Dechter, 2003; Rossi et al., 2006). The ma-

jor limiting factor, however, is the lack of information-sharing between the ASP

and CP systems. In particular, the elaboration of constraint interdependencies

through CONFLICTANALYSIS is restricted because current CP systems do not pro-

vide an interface supporting conflict-driven learning.

We address these deficiencies by devising two alternative approaches to con-

straint answer set solving that fully accommodate conflict-driven solving.

Translation-based Constraint Answer Set Solving

We introduce a translation-based approach to CASP solving rather than a hybrid

one. The idea is to enhance ASP with CP techniques through translation to ASP. In

other words, any CASP specification is compiled into an ASP encoding by adding

a logic programming decomposition of all CP constructs. We present various ge-

neric translations that work for any constraint, and specialised encodings for a se-

lection of important global constraints such as ALL-DIFFERENT (van Hoeve, 2001),

GRAMMAR and related constraints (Pesant, 2004; Sellmann, 2006; Quimper and

Walsh, 2006), and REACHABILITY (Dooms et al., 2005). Implemented as prepro-

cessing, any existing ASP systems can be applied without changing their source

code.

While this enables conflict-driven CASP solving, the effect of propagating con-

ditions encoded into ASP is not yet understood. Hence, our major contribution

is a study of the interaction between the ASP representation of a constraint and

the inferences made by ASP solvers in terms of local consistency (Dechter, 2003;

Rossi et al., 2006). In particular, we show that ASP inference on our encodings can

simulate the effect of complex CP algorithms in many cases.

An exception is given through REACHABILITY, a condition that should be nat-

urally and efficiently handled in ASP, since ASP allows for recursive transitive clo-

sure and its solvers employ very efficient inference mechanisms such as unit prop-

agation (UP) and well-founded negation (WFN). Whilst this intuition is strength-

ened by experimental results (Celik et al., 2009; Coban et al., 2008), we show that

the propagation of REACHABILITY can be hindered because ASP systems, for per-

formance reasons, disregard some consequences from unfounded sets. We tackle

5

1. Introduction

this weakness by providing a more efficient method to compute the effects of well-

founded justification (WFJ) and another, new form of unfounded set inference,

called well-founded domination (WFD). Using a reduction to the problem of find-

ing dominators in a flowgraph, we show how to approximate the consequences

from WFJ and WFD in general, but compute all their effects in some relevant cases,

including all uses of REACHABILITY.

Constraint Answer Set Solving via Lazy Nogood Generation

We devise an extension to conflict-driven nogood learning (CDNL; Gebser et al.,

2007a) based ASP solving that integrates constraint propagation and the handling

of finite domain variables via lazy nogood generation (LNG), a technique that

is founded on very recent developments (Ohrimenko et al., 2009) in the area of

constraint satisfaction problem (CSP; Dechter, 2003; Rossi et al., 2006) research.

Rather than translating CP constructs into ASP a-priori, the central idea of LNG

is to encode necessary parts of their translation on demand and only when new

information can be propagated. This is motivated by the insight that the perfor-

mance of ASP systems is sensitive to the size of encodings, which can quickly be-

come impractical.

We here lay the foundation to LNG for ASP in terms of external propagators

that represent conditions on the answer sets of a logic program without encod-

ing them a-priori, but that make their encoding explicit when they trigger any in-

ference. We also specify a decision procedure for CASP solving with LNG. It is

centred around CDNL and integrates constraint propagation without sacrificing

the advantages of conflict-driven techniques. To demonstrate the applicability of

our approach, we have implemented a prototypical CASP system. In 2013, it has

successfully participated in a competition, outperforming hybrid systems.

Related Publications

The research presented in this thesis has been carried out with the intellectual

support of Toby Walsh. The theoretical and experimental contributions are origi-

nal work by the author.

Some material on the generic value and support encodings (Sections 4.2–4.3),

and the support encoding of the ALL-DIFFERENT constraint (Definition 5.2; Sec-

tion 5.1) has been presented in the preliminaries of a previous Master’s thesis

(Drescher, 2010), but was not claimed as a contribution of it.

6

1.2. Outline

Part of the results presented in this thesis have been reported in the following

publications.

C. Drescher and T. Walsh. Efficient approximation of well-founded justifi-

cation and well-founded domination. In Proceedings of LPNMR’13, pages

277–289. Springer, 2013.

C. Drescher and T. Walsh. Answer set solving with lazy nogood generation.

In ICLP’12 Technical Communications, pages 188–200. Schloss Dagstuhl–

Leibniz-Zentrum für Informatik, 2012.

C. Drescher and T. Walsh. Conflict-driven constraint answer set solving with

lazy nogood generation. In Proceedings of AAAI’11, pages 1772–1773. AAAI

Press, 2011.

C. Drescher and T. Walsh. Modelling grammar constraints with answer set

programming. In ICLP’11 Technical Communications, pages 28–39. Schloss

Dagstuhl–Leibniz-Zentrum für Informatik, 2011.

C. Drescher and T. Walsh. Translation-based constraint answer set solving.

In Proceedings of IJCAI’11, pages 2596–2601. IJCAI/AAAI Press, 2011.

C. Drescher and T. Walsh. A translational approach to constraint answer set

solving. Theory and Practice of Logic Programming, 10(4-6):465–480, 2010.

C. Drescher and T. Walsh. Reformulation of global constraints into answer

set programming. In Proceedings of AAAI Workshop WARA’10, pages 14–19.

AAAI Press, 2010.

C. Drescher. Constraint answer set programming systems. In ICLP’10 Tech-

nical Communications, pages 255–264. Schloss Dagstuhl–Leibniz-Zentrum

für Informatik, 2010.

1.2 Outline

The remainder of this thesis is organised as follows.

In Chapter 2, we presents all necessary background, starting with notions from

graph theory and formal language theory. Then, we proceed with concepts from

CSP and Boolean satisfiability (SAT). A particular focus is put on UP and CDNL.

We then introduce ASP and a characterisation of the conditions to the answer sets

7

1. Introduction

of a logic program in terms of nogoods and unfounded sets. Given this, we present

important preliminaries to unfounded set inference, in particular, WFN and WFJ,

and two nogood-based alternatives. Then, we provide an introduction to impor-

tant extensions to the language of ASP, and a central theorem used in this thesis,

i.e., the splitting set theorem (Lifschitz and Turner, 1994) based on logic programs

with externals. Finally, we acquaint the reader with CASP and outline the state-of-

the-art in constraint answer set solving.

In Chapter 3, we provide our method for approximating the consequences of

WFJ, WFD, and related inference. We begin with an introduction to support flow-

graphs, our new graph-representation of programs written in ASP, and show how

the effect of WFJ can be approximated via cuts in the graph. Based on this, we

prove that the problem of finding all dominators in such graph can be used to

approximate WFJ. We also demonstrate that its effects can be simulated for im-

portant classes of programs. Then, we introduce WFD and show how our method

can be used to approximate, respectively simulate its consequences too. We con-

clude the chapter with a discussion of the limitations of our approach as well as its

related work.

In Chapter 4, we describe our translational approach to constraint answer set

solving. First, we present the foundations of our key idea, i.e., compiling all CP

constructs from a CASP encoding into ASP by exploiting Lifschitz and Turner’s

splitting set theorem. Then, we present how the domain of a finite domain variable

can be represented with ASP in various ways. We begin with the value encoding.

Based on this, we demonstrate two alternative generic encodings of constraints

and compare the local consistency achieved by UP. We proceed with a bound and

a range representation of the variables’ domains in a similar fashion, and outline

mixed variants. Finally, we discuss related work.

In Chapter 5, we proceed with our translational approach to constraint answer

set solving by considering specialised encodings of important global constraints.

We begin with ALL-DIFFERENT for which we present encodings such that the infer-

ence of any modern ASP solver achieves arc, bound, and range consistency. For

each case, we prove its asymptotic run time complexity. We give some experimen-

tal results demonstrating competitiveness with related work. We then proceed

with two alternative encodings of GRAMMAR and related constraints. One of which

is more straightforward, with the other being an extension such that ASP inference

maintains domain consistency. We prove that our models exhibit an asymptotic

run time complexity that is similar to the one of complex propagation algorithms.

8

1.2. Outline

Then, we proceed with the REGULAR constraint in a similar fashion. Experimental

results demonstrate competitiveness with related work. A final, global constraint

considered in this thesis is REACHABILITY. We first show how the domains of graph

variables and vertex set variables can be represented with ASP. Then, we pro-

ceed with studying the impact of ASP inference on propagating REACHABILITY with

varying degrees on freedom. Our results will establish practical relevance for WFJ

and WFD inference. Again, we prove asymptotic run time complexity and present

the outcome of an experimental evaluation. We conclude the chapter with a dis-

cussion of the limitations of our translation-based approach to constraint answer

set solving as well as its related work.

In Chapter 6, we describe our second approach to constraint answer set solv-

ing which is facilitated through LNG. We begin with presenting its logical founda-

tions by formulating a variant of the splitting set theorem that considers external

propagation. We then demonstrate how constraint propagation integrates with

our framework. Based on this, we present a decision procedure that is centred

around conflict-driven solving. We empirically evaluate our approach and com-

pare to the state-of-the-art in ASP and CASP. Finally, we discuss related work.

In Chapter 7, we conclude the main part of this thesis, and outline the signifi-

cance of the presented results.

9

Chapter 2

Background

We start by recalling some basic notions of formal graph and language theory, and

give all necessary background to constraint satisfaction problems, answer set pro-

gramming, and constraint answer set programming.

2.1 Graph Theory

Many structures are conveniently represented by means of a graph, including, as

we shall see, structures in answer set programming. In this thesis, we will mostly

consider finite, directed graphs.

A (directed) graph G = (V ,E) consists of a finite set V or V (G) of vertices and a

set of ordered pairs of distinct vertices E or E(G) called (directed) edges. If v and w

are two vertices of a graph and the ordered pair e = (v, w) is an edge of the graph,

we say that e is directed from v to w , that e is adjacent from v , and that e is adjacent

to w . The size of a graph G is the number of its edges, i.e., |E(G)|.
An undirected graph is one in which edges are unordered pairs, i.e., they have

no orientation. In other words, the edge (v, w) is identical to the edge (w, v). Graph

inclusion defines a partial ordering among graphs. For two graphs G and G′, G in-

cludes G′, denoted by G⊆G′, if V (G) ⊆V (G′) and E(G) ⊆ E(G′). We also say that G′

is a sub-graph of G.

We illustrate graphs as diagrams in which the vertices are represented by cir-

cles and boxes with textual labels and the edges are represented by arrows.

Example 2.1

The following is an illustration of the graph G= (V ,E) where V = {v0, . . . , v22},

11

2. Background

and

E =

(v0, v1), (v0, v3), (v0, v4), (v0, v5), (v0, v6), (v1, v2), (v1, v9),

(v3, v10), (v4, v11), (v4, v13), (v5, v14), (v6, v15), (v8, v9), (v9, v17),

(v12, v13), (v13, v19), (v14, v20), (v16, v8), (v17, v16), (v17, v22),

(v18, v12), (v19, v18), (v20, v13), (v21, v16), (v22, v21)

.

v18

v19

v20

v12

v13

v14

v15

v11

v4

v5

v6

v10

v3

v0

v2

v1

v9

v8

v7

v17

v16

v22

v21

Connectivity

Let v and w be two vertices of a graph G. A path from v to w is a finite alter-

nating sequence (v0,e1,v1,e2, . . . ,en ,vn) of vertices and edges of the graph such

that v = v0, w = vn , and ei = (vi−1,vi) for 1 ≤ i ≤ n. If u is a vertex in the path then

the path is said to pass through u. It is not required that the vertices in a path are

all distinct, i.e., a path can pass through a vertex more than once. The number of

edges in a path is the length of the path. If there is a path from v to w , then v con-

nects to w , and we also say that w is connected to v . Otherwise, w is disconnected

from v . A graph is connected if for any two vertices v and w of the graph either v

connects to w or w connects to v . A connected sub-graph G′ of a graph G is a loop

if for any two vertices v and w of the graph v connects to w and w connects to v .

If, in addition, every graph G′′ such that G′ ⊂ G′′ ⊆ G is not a loop, then G′ is a

strongly connected component (SCC) of G. In other words, an SCC of a graph is a

maximal loop. Tarjan (1972) proposed a linear-time algorithm for finding all SCCs

in a graph.

Example 2.2

Reconsider the graph G from Example 2.1. The sequences s0, and s1, given

12

2.1. Graph Theory

through

s0 = (v0, (v0, v4), v4, (v4, v13), v13, (v13, v19), v19, (v19, v18), v18), and

s1 = (v0, (v0, v5), v5, (v5, v14), v14, (v14, v20), v20, (v20, v13), v13,

(v13, v19), v19, (v19, v18), v18)

both are paths from v0 to v18. Verify that the graph G′ = (V ′,E ′), where

V ′ = {v12, v13, v18, v19} and

E ′ = {(v12, v13), (v13, v19), (v19, v18), (v18, v12)},

is a loop of G. On the other hand, v7 is disconnected from any other vertex. In

particular, G is not a connected graph.

We will also consider trees, that are, a special case of graphs. A (directed rooted)

tree is a connected graph with a unique vertex, the root, and in which for any other

vertex v , there is exactly one path from the root to v . In a tree, any vertex w that

has an edge adjacent from another vertex v is called a child of v .

Cuts and Dominators in Flowgraphs

In our context, a flowgraph is a graph G with a specially designated source vertex.

A vertex v of a flowgraph G is reachable if v is connected to the source. If every

path from the source to v passes through a vertex w , then w dominates v . Note

that, by definition, every vertex dominates itself. If w dominates v and w 6= v then

w strictly dominates v . If w strictly dominates v and there is no other vertex u

such that u strictly dominates w and w strictly dominates u, then w immediately

dominates v . Similarly, we define for a set W ⊆ V of vertices, w dominates W if

w dominates every v ∈ W , and w immediately dominates W if w dominates W

and there is no vertex u such that u dominates W and w strictly dominates u.

The domination relationship induced by a flowgraph G can be represented in

form of a graph, where each edge directs a vertex to those vertices it immediately

dominates. If G is connected then every vertex is immediately dominated by at

most one other vertex. The resulting graph is a tree with the source vertex as root,

and is therefore called the dominator tree. In our context, we will disregard all

vertices that are disconnected from the source when illustrating the domination

relationship of a graph. Thus, the domination relationship of any flowgraph is a

dominator tree.

13

2. Background

Example 2.3

Reconsider the graphs from Example 2.2. Verify that G is a flowgraph with

source v0. The dominator tree of G is illustrated below.

v0

v6 v5 v1 v3 v4 v13

v15 v14 v2 v9 v10 v11 v19

v20 v17 v18

v16 v22 v12

v8 v21

Observe that, although the sub-graph G′ forms a loop of G, its vertices are in a

strict domination relationship with v13 immediately dominating {v12, v18, v19},

v12 immediately dominating {v18, v19}, and v18 immediately dominating v19.

Georgiadis and Tarjan (2004) have provided a linear-time algorithm for finding all

dominators in a flowgraph. It can be made incremental, i.e., few dominators might

be recomputed at any stage during search, subject to removal and re-insertion of

edges (Sreedhar et al., 1997).

Next, consider any partition c = (S,W) of the vertices V (G) into two disjoint

subsets S and W such that the source is in S. For accessing the vertices in S that

have an edge directed to a vertex in W , define

front(c) = {v ∈ S | (v, w) ∈ E(G), w ∈W }.

In principle, edges that are directed from a vertex in W to a vertex in S are allowed.

For vertices in W that have an edge directed to a vertex in S, define

back(c) = {v ∈W | (v, w) ∈ E(G), w ∈ S}.

The partition c is called a cut in G since no vertex in W is reachable if all edges

adjacent from vertices in front(c) are removed from E(G). It is easy to see that,

front(c) = {v} if and only if v immediately dominates W .

14

2.2. Formal Languages

Example 2.4

Reconsider the graph from Example 2.3. Consider the cuts c1 and c2 given

through

c1 = ({v0, . . . , v7, v10, . . . , v15, v18, v19, v20}, {v8, v9, v16, v17, v21, v22}), and

c2 = ({v0, . . . , v11, v14, . . . , v17, v20, v21, v22}, {v12, v13, v18, v19}).

Verify that c1 and c2 are in fact cuts of G with

front(c1) = {v1}, and front(c2) = {v4, v20}.

Also note that back(c1) = ; and back(c2) = ;. The cuts are illustrated in the

diagram below.

v18

v19

v20

v12

v13

v14

v15

v11

v4

v5

v6

v10

v3

v0

v2

v1

v9

v8

v7

v17

v16

v22

v21

cut c1cut c2

Verify that the vertex front(c1) = {v1} immediately dominates the set of ver-

tices {v8, v9, v16, v17, v21, v22}. On the other hand, neither of the vertices from

front(c2) = {v4, v20} immediately dominates any of the vertices in the loop G′

as there are two alternative paths to reach the vertices in the loop, that are,

one that passes through v4 and one that passes through v20.

2.2 Formal Languages

We now give the necessary background from formal language theory.

A string is a sequence of symbols from an alphabet Σ. The length of a string is

given through the length of the sequence, i.e., the number of indices for symbols in

15

2. Background

the string. The set of all strings over Σ is denoted by Σ∗. Then, a formal language L

is a subset ofΣ∗. Among other formalisms, formal languages are usually described

by formal grammars or automata.

Grammars

We will consider context-free, linear, and regular grammars. A context-free gram-

mar (CFG; Chomsky, 1956) is a quadruple G = (N ,Σ,P,S), where N is a finite set

of nonterminal symbols, Σ is a finite set of terminal symbols (the alphabet, being

disjoint from N), P ⊆ N×(N∪Σ)∗ is a set of production rules, and the distinguished

start symbol S ∈ N . The grammar G is linear if P ⊆ N ×Σ∗∪N∗Σ∗N∗, and regu-

lar if P ⊆ N ×Σ∪ΣN . Hence, regular grammars are strictly contained in linear

grammars, and linear grammars are strictly contained in CFG.

We often omit to specify the complete quadruple and only provide the set of

production rules using the following conventions in the context of grammars: cap-

ital letters denote nonterminals in N , lowercase letters denote terminal symbols

in Σ, and υ and ω (sometimes with index) denote a sequence of nonterminals

and terminals called string. We also assume that S is the unique start symbol.

Moreover, productions (A,ω) ∈ P can also be written as A ::= ω, and productions

(A,ω1), (A,ω2), . . . , (A,ωm) ∈ P can be written as A ::= ω1 | ω2 | · · · | ωm . We define

the size of the grammar |G | as the number of productions in P .

The derivation relationship ⇒G induced by the grammar G is defined for any

υ1,υ2 as υ1 Aυ2 ⇒G υ1ωυ2 if there is a production A ::=ω ∈ P . We write ω1 ⇒∗
G
ωm

if there exists a sequence of strings ω2, . . . ,ωm−1 such that ωi ⇒G ωi+1 for all 1 ≤
i < m. If ω1 ⇒∗

G
ωm then we say that ω1 produces ωm . The language produced by

G is the set of strings LG = {ω ∈Σ∗ | S ⇒∗
G
ω}.

A CFG is in Chomsky normal form if all productions are of the form A ::= a

or A ::= BC . Every context-free grammar G such that the empty string ε is not

generated by G can be transformed into a grammar H such that LG = LH and

H is in Chomsky normal form. Transformations are described in most textbooks

on automata theory, such as (Hopcroft and Ullman, 1979), with at most a linear

increase in the size of the grammar.

Example 2.5

Consider the following CFG G given through the productions

S ::= S A | AS | 2

16

2.2. Formal Languages

A ::= 1

Observe that G is in Chomsky normal form. The grammar produces the lan-

guage of strings that contain a single 2, preceded or succeeded by a sequence

of 1s of any length. For instance, the strings 2, 12, 21, 112, 121, 211, and so on,

are in LG . In particular, we derive S ⇒G AS ⇒G 1S ⇒G 12.

The Cocke-Younger-Kasami Parsing Algorithm

To determine whether a string is contained in the language generated by a CFG,

we consider the Cocke-Younger-Kasami (CYK) parsing algorithm (Younger, 1967).

Parsing denotes a process of analysing a sequence of symbols.

The CYK algorithm requires the CFG to be rendered into Chomsky normal

form and constructs a dynamic programming table T where, considering every

possible subsequence of symbols, it includes a nonterminal A ∈ N into T [i , j] if

A produces the string from the i -th symbol of length j . First, the CYK algorithm

starts with subsequences of length 1. Then, it goes on to subsequences of length 2

and so on, considering every split of a sequence from the i -th symbol of length j

into two subsequences, say of length k and j −k for 1 ≤ k < j , and checks if there is

some production A ::= BC ∈ P such that B ∈ T [i ,k] and C ∈ T [i +k, j −k]. For each

such production, the algorithm records A ∈ T [i , j], meaning that A produces the

considered subsequences. Once this process terminates, the inclusion of the start

symbol S into T [1,n] determines whether the input string of length n is contained

in the language generated by the CFG.

Example 2.6

The dynamic programming table T is typically represented by a grid. For in-

stance, reconsidering the setting from Example 2.5, i.e, parsing the string 12,

CFG generates the following table:

{S}

{A} {S}

1 2

Now, consider the slightly extended grammar G ′ that generates sequences of

strings produced from the above grammar, separated by two 1s:

S ::= S A | AS | 2 | BS

17

2. Background

A ::= 1

B ::= SC

C ::= A A

For the input string 2112, we get the following table:

{S}

{B, S} {S}

{S} {C} {S}

{S} {A} {A} {S}

2 1 1 2

Observe that the bold-faced entries are not used in any sequence of deriva-

tions that starts with S and produces 2112.

In light of above observation, i.e., the CYK algorithm includes nonterminals in the

dynamic programming table even if they are not used in any sequence of deriva-

tions that starts with S and produces the input string, we make the following dis-

tinction between entries in T [i , j]: Let ω be the string of length j from the i -th

symbol. We say that A ∈ T [i , j] acts in a successful parsing of the input string

υ1ωυ2 ∈ LG if A ⇒∗
G
ω and S ⇒∗

G
υ1 Aυ2 ⇒∗

G
υ1ωυ2.

Example 2.7

Reconsider the dynamic programming table for parsing the string 2112 from

Example 2.6. We have that S ∈ T [1,1], A ∈ T [2,1], A ∈ T [3,1], S ∈ T [4,1],

C ∈ T [2,2], B ∈ T [1,3], and S ∈ T [1,4] act in a successful parsing of the input

string, whilst S ∈ T [1,3], S ∈ T [2,3], S ∈ T [1,2], S ∈ T [3,2] do not.

Automata

A deterministic finite automaton (DFA; Hopcroft and Ullman, 1979) M is a quin-

tuple (Q,Σ,δ, q0,F), where Q is a finite, non-empty set of states, Σ is a finite, non-

empty input alphabet, δ is a transition function mapping state-input symbol pairs

to a new state Q ×Σ→Q, q0 is the initial state, and F is a set of accepting states.

A DFA takes a sequence of input symbols ω as input, each symbol t ∈Σ causes

M to perform a transition from its current state q to a new state δ(q, t), where M

starts off in the state q0. The inputω is recognised by M ifω causes M to transition

from q0 in one of the accepting states. The language recognised by M is the set of

inputs LM = {ω ∈Σ∗ |M recognises ω}.

18

2.3. Constraint Satisfaction Problems

DFAs are illustrated as diagrams in which the (final) states are represented by

labelled (double) circles and the transitions are represented by labelled arrows.

Example 2.8

Consider the DFA M = ({q0, q1, qr e j }, {1,2},δ, q0, {q0, q1}) where the transition

function δ is represented by the following automata diagram:

q0start q1 qr e j

1

2

2

1

1,2

The language recognised by M is the set of strings constructed by a sequence

of 1s that preceeds a sequence of 2s. For instance, the empty string, 1, 12, 112,

122, and so on, are in LM .

We define the size of the DFA M , denoted by |M |, as the number of transitions,

i.e., the product of |Q| and |Σ|.

2.3 Constraint Satisfaction Problems

Many tasks from the declarative problem solving domain can be defined as con-

straint satisfaction problem (CSP; Dechter, 2003; Rossi et al., 2006), that are, com-

binatorial problems defined as a set of variables whose value must satisfy a num-

ber of limitations (the constraints).

Formally, a CSP is a triple (V,D,C) where V = {v1, . . . ,vn} is a set of (constraint)

variables, D = {dom(v1), . . . ,dom(vn)} is a set of the respective finite domains of

values, and C is a finite set of constraints.

Variables

Intuitively, the domain of a variable represents all possible values that can be as-

sumed from this variable. We assume that a variable has an ordered, discrete do-

main dom(v) = [lb(v),ub(v)] where l b(v) denotes the smallest value and ub(v) the

greatest value. In particular, we will consider values from an integer interval. If for

a variable v the associated domain is a singleton we say that the value of v is fixed.

We also consider set variables and graph variables (Dooms et al., 2005). A set

variable represents a set of elements, whilst a graph variable represents a directed

19

2. Background

graph. A set variable v has a discrete domain dom(v) = [lb(v),ub(v)] constructed

from two sets, the mandatory set lb(v) and the possible set ub(v)\lb(v) of elements.

In particular, v can take as value a set S such that lb(v) ⊆ S ⊆ ub(v). Similarly, the

domain of a graph variable is given via graph inclusion. Thus, a graph variable v

has a domain dom(v) = [lb(v),ub(v)] constructed from the lattice of graphs in-

cluded between the lower bound graph l b(v) and the upper bound graph ub(v). A

graph variable v can take as value a graph G such that G is a super graph of l b(v)

and a sub-graph of ub(v).

Constraints

A constraint c is a k-ary relation, denoted range(c), on the domains of the vari-

ables in scope(c) ∈ Vk . The number of variables in scope(c) determines the arity

of the constraint. Hence, a binary constraint has |scope(c)| = 2, whilst an n-ary

constraint has parametrised scope and is therefore called a global constraint. A

(constraint variable) assignment is a function A that assigns to each variable v ∈V
a value from dom(v). For a sequence of variables v1, . . . ,vk , define A(v1, . . . ,vk) =
(A(v1), . . . , A(vk)) and A(〈v1, . . . ,vk〉) = A(v1) . . . A(vk). A constraint c is satisfied w.r.t.

an assignment A if A(scope(c)) ∈ range(c). Otherwise, we say that c is violated. The

complement of a constraint c is denoted by c. It is easy to see that for any assign-

ment, c is violated if and only if c is satisfied. We denote the subset of constraints

from C satisfied w.r.t. A by

satC(A) = {c | c ∈C, A(scope(c)) ∈ range(c)}.

An assignment A is a solution for the CSP (V,D,C) ifC= satC(A), i.e., all constraints

are satisfied.

In what follows, we are more interested at pairing an assignment with a config-

uration of satisfied and violated constraints. A configuration is a pair (A, satC(A))

where A is an assignment and satC(A) is the set of constraints satisfied w.r.t. A.

Obviously, the set of constraints violated w.r.t. A is C\ satC(A). It is easy to see that

the problem of finding configurations for a CSP can be reformulated to the task of

finding solutions for a CSP.

Local Consistency

Constraint programming (CP) systems are oriented towards solving CSP and typi-

cally interleave backtracking search to explore assignments in a search tree with

20

2.4. Boolean Satisfiability

constraint propagation to prune the set of values a variable can take (Dechter,

2003; Rossi et al., 2006). In a search tree, each vertex represents a partial assign-

ment to only some variables. Child vertices are typically obtained by selecting

an unassigned variable and having two child vertices, one for a possible value as-

signed to this variable, and one with the domain of the variable reduced by the

value. Other types of branching are also possible, e.g., domain splitting (Dincbas

et al., 1988). Every time a domain changes, a constraint propagation stage is ex-

ecuted, pruning the set of values for the other variables. The effect of constraint

propagation is studied in terms of local consistency.

A binary constraint c is arc consistent if whenever a variable v in scope(c)

is assigned any value, there exists a value in the domain for the other variable

in scope(c) \ {v} such that c is not violated. An n-ary constraint c is domain con-

sistent if whenever a variable vi ∈ scope(c) = {v1, . . . ,vn} is assigned any value di ∈
dom(vi), there exist compatible values in the domains of all the other variables,

i.e., d j ∈ dom(v j), where 1 ≤ j ≤ n, j 6= i , such that (d1, . . . ,dn) ∈ range(c), form-

ing an (n-ary) support for vi = di . Any n-ary constraint can be decomposed into

a k-ary constraint with k ≥ 2 (Montanari, 1974). Often, binary decompositions

(k = 2) are considered. Observe that in general, however, a constraint propagator

that enforces domain consistency prunes more values than one that enforces arc

consistency on a binary decomposition of the original constraint (Walsh, 2000).

Bound and range consistency are defined for constraints over finite intervals.

A constraint c is bound consistent if whenever a variable v ∈ scope(c) is assigned

the smallest value l b(v) or the greatest value ub(v) of its domain, there exist con-

sistent values between the smallest and greatest value for all the other variables in

the scope of the constraint, called a bound support. A constraint is range consis-

tent if whenever a variable is assigned any value in its domain, there exists a bound

support. Range consistency is in between domain and bound consistency, where

domain consistency is the strongest of the three local consistency properties.

2.4 Boolean Satisfiability

A special case of CSP is Boolean satisfiability (SAT; Biere et al., 2009), i.e., where

all variables are propositional and, in our context, all constraints are forbidden

combinations of literals called nogoods.

Using the notation of Gebser and Schaub (2013), a literal is a formula of the

form Tp or Fp, where p is a propositional variable. Intuitively, Tp expresses that p

21

2. Background

is assigned true and Fp that it is false. The complement of a literal σ is denoted σ,

i.e., Tp = Fp and Fp = Tp. To access the variable in a literal σ we write var(σ), e.g.,

var(Tp) = p.

A (Boolean) assignment A over a set of propositional variables dom(A), is a set

of literals. To access the true and the false variables in A we use AT = {p | Tp ∈ A}

and AF = {p | Fp ∈ A}. We say that A is conflict-free if AT ∩AF = ;, otherwise A is

conflicting. For two assignments A and A′, A extends A′ if A ⊇ A′. Furthermore, A is

total if AT ∪AF = dom(A), otherwise A is partial.

A nogood is a set {σ1, . . . ,σk } of literals σi for 1 ≤ i ≤ k, expressing a forbidden

combination of literals. Accordingly, for an assignment A, a nogood δ is conflicting

if δ⊆ A. For a set of nogoods ∆, a total and conflict-free assignment A is a solution

if δ 6⊆ A for all δ ∈∆.

Example 2.9

Consider the set of nogoods ∆ = {{Tp,Tq}, {Fp,Fq}} and the assignments A =
{Tp}, A′ = {Tp,Fq}, and A′′ = {Tp,Tq}.

Observe that A′ extends A. Since A′ is total and conflict-free, we have

that A′ is a solution for ∆. On the other hand, the assignment A′′ also ex-

tends A, but the nogood {Tp,Tq} is conflicting for A′′, since {Tp,Tq} ⊆ A′′.

Unit Propagation

Unit propagation (UP) is the most important inference mechanism in SAT (Biere

et al., 2009). It forces the inclusion of a literal into an (extended) assignment if its

complement occurs in a nogood whose other literals are already included.

Formally, given an assignment A, for a nogood δ and a literalσ ∈ δ, if δ\{σ} ⊆ A

and σ 6∈ A then δ is unit w.r.t. A and σ is unit-resulting, i.e., only unit-resulting

literals can avert δ ⊆ A. UP is the process of extending an assignment with unit-

resulting literals.

Definition 2.1: Unit Propagation

Given an assignment A and a set of nogoods ∆, we define

UP(∆,A) =
A∪ {σ} if σ is unit-resulting w.r.t. A for some δ ∈∆,

A otherwise.

Note that, in general, there might be several choices for σ. Therefore, we will con-

sider the fixpoint of UP by default. Only in formulas will we denote it by UP∗(∆,A).

22

2.4. Boolean Satisfiability

Example 2.10

Reconsider the set of nogoods ∆= {{Tp,Tq}, {Fp,Fq}} and the assignment A =
{Tp} from Example 2.9. We have that the nogood {Tp,Tq} is unit w.r.t. A, and

Fq is unit-resulting. Hence, UP(∆,A) = A′ = {Tp,Fq}. Note that this is also the

fixpoint of UP as UP(∆,A′) = A′.

There exist very efficient implementations of UP, for instance, the watched literals

method (Moskewicz et al., 2001). Down any branch of the search tree, the propa-

gation time is proportional to the number of literals in the nogoods.

Theorem 2.1: Complexity of Unit Propagation (Dechter, 2003)

UP takes O (k) time down any branch of the search tree to propagate a set of

nogoods with a total size of k literals.

Under certain conditions, the fixpoint application of UP achieves a solution for ∆.

Given an assignment A, we say that a nogood δ is Horn-style if δ \ A is of the form

{Tp0,Fp1, . . . ,Fpm}, i.e., δ contains at most one positive literal of an unassigned

variable. If all nogoods in ∆ are Horn-style then UP finds a solution of ∆ in linear

time (cf. Dowling and Gallier, 1984).

Conflict-driven Nogood Learning

An efficient decision-algorithm for solving SAT is conflict-driven nogood learn-

ing (CDNL; Bayardo and Schrag, 1997; Marques-Silva and Sakallah, 1999). It com-

bines search and UP, and is centred around CONFLICTANALYSIS (Moskewicz et al.,

2001), a process of extracting a reason for a conflicting assignment encountered

during search by iteratively resolving a conflicting nogood against other nogoods.

This guides backjumping, a form of non-chronological backtracking that may skip

some decision level. Recording the extracted reason in a nogood facilitates conflict-

driven learning. This can prune the search space and lead to more propagation.

We define CDNL as shown in Algorithm 2.1 in accordance with Gebser et al.

(2007a). Given a set of nogoods ∆, CDNL starts from an empty assignment A, and

recorded nogoods ∇, at decision level dl initialised with 0.

First, CDNL applies UP to extend A (Line 5). If this encounters a conflict in

Line 6 then CONFLICTANALYSIS generates a nogood ε and determines a decision

level k at which to continue search (Line 8). Then, ε is added to the set of recorded

nogoods ∇ in Line 9. Lines 10–11 account for backjumping to level k, where dl(σ)

23

2. Background

Input : A set of nogoods ∆.
Output: A solution for ∆ if one exists.

1 A ←; // assignment
2 ∇←; // recorded nogoods
3 dl ← 0 // decision level
4 loop
5 A ← UP∗(∆∪∇,A)
6 if δ⊆ A for some δ ∈∆ then
7 if dl = 0 then return no solution
8 (ε,k) ← CONFLICTANALYSIS(δ,∆∪∇,A)
9 ∇←∇∪ {ε}

10 A ← A \ {σ ∈ A | k < dl(σ)}
11 dl ← k

12 else if AT ∪AF = dom(A) then
13 return A
14 else
15 σd ← SELECT(∆,∇,A)
16 A ← A∪ {σd }
17 dl ← dl +1

Algorithm 2.1: CDNL

is used to access the decision level of a literal σ. If CONFLICTANALYSIS, however,

yields a conflict at level 0, no solution exists (Line 7).

Second, if A is total then it is a solution of ∆ (Lines 12–13). Otherwise (Lines

14–17), A is partial and no nogood is conflicting. Then, a decision literal σd is

selected by some heuristic, denoted by SELECT, i.e., based on the information

from ∆, recorded nogoods ∇, or the current assignment A. The literal is added

to A, and the decision level is incremented.

2.5 Answer Set Programming

Another special case of CSP is answer set programming (ASP; Baral, 2003; Gebser

et al., 2012b), i.e., where all variables are propositional and the conditions on them

are induced by a logic program under answer set semantics. In this thesis, we

consider normal logic programs. Given a finite set of atomic propositions P , a

(propositional normal logic) programΠ is a finite set of rules r of the form

p0 ← p1, . . . , pm , not pm+1, . . . , not pn (2.1)

24

2.5. Answer Set Programming

where each pi ∈ P is an atom for 0 ≤ i ≤ n. A default literal is an atom p or its

default negation not p. Furthermore, for a rule r of the form (2.1), we define

head(r) = p0

body(r) = {p1, . . . , pm , not pm+1, . . . , not pn}

where the atom head(r) is called the head of r , and the set of default literals body(r)

is called the body of r . For any set S = {p1, . . . , pm , not pm+1, . . . , not pn}, define

S+ = {p1, . . . , pm} and S− = {pm+1, . . . , pn}. Given this, for any rule r , the sets of

atoms body(r)+ is called the positive body of r and body(r)− is called the negative

body of r . If body(r) = ; then r is called a fact. For a program Π we define the

following notations:

atom(Π) = ⋃
r∈Π({head(r)}∪body(r)+∪body(r)−

body(Π) = {body(r) | r ∈Π}

The sets atom(Π) and body(Π) denote the atoms and bodies that occur in Π, re-

spectively. To access rules sharing heads from a set X , define

ΠX = {r ∈Π | head(r) ∈ X }.

Note thatΠX itself is a program.

The semantics of a programΠ is given by its answer sets, which have been de-

fined in many interchangeable ways (Lifschitz, 2008b). Traditionally, the answer

sets are viewed as the entailed atoms in classical models that are necessarily sup-

ported by an applicable rule. For a set of atoms X , a rule r is applicable w.r.t. X if

body(r)+ ⊆ X and body(r)−∩ X = ;. If r is applicable then head(r) is supported

by r w.r.t. X . If every atom p ∈ X is supported by some rule in Πw.r.t. X , we call X

supported by Π. For our purposes, we say that a set of atoms X is a model of Π if

either head(r) ∈ X , body(r)+ 6⊆ X , or body(r)−∩ X 6= ; holds for every rule r ∈ Π.

Furthermore, a model X of Π that is supported by Π is called a supported model

ofΠ.

Definition 2.2: Answer Set of a Program

Given a program Π, a set X ⊆ atom(Π) is an answer set of Π, if X is the least

model of the reduct (Gelfond and Lifschitz, 1988):

ΠX = {head(r) ← body(r)+ | r ∈Π, body(r)−∩X =;}.

25

2. Background

Note that, since the negative body of every rule in ΠX is empty, the least model

of ΠX is unique. Moreover, every answer set of Π is a supported model of Π. The

converse, however, does not hold in general (Fages, 1994). The following example

will serve as a running example.

Example 2.11

Consider the programΠ, given through the set of rules

r1 : p ← not q r3 : r ← p r5 : s ← r

r2 : q ← not p r4 : r ← s

and the sets X1 = {p,r, s}, X2 = {q,r, s}, and X3 = {q}, all of which are supported

models of Π. We obtain their corresponding reducts by removing all rules

fromΠwhose negative body contains an atom from a set, and then dropping

all default negated atoms from the remaining rules. Hence, we have

ΠX1 =

p ←
r ← p

r ← s

s ← r

, ΠX2 =

q ←
r ← s

s ← r

 , ΠX3 =
{

q ←
}

.

Verify that X1 is the least model of ΠX1 and X3 is the least model of ΠX3 . On

the other hand, the set {q} ⊂ X2 is the least model of ΠX2 . Hence, X1 and X3

are answer sets ofΠ, whilst X2 is not.

We often use an alternative characterisation of answer sets. In particular, the one

of Lee (2005), who has shown that the answer sets of a program Π coincide with

the supported modelsΠ that do not contain a non-empty unfounded set.

In accordance with Gebser et al. (2007a), we view a model X ofΠ as an assign-

ment A with dom(A) = atom(Π)∪body(Π), in particular, p ∈ AT whenever p ∈ X

and p ∈ AF whenever p 6∈ X where p ∈ atom(Π), and represent the conditions in-

duced by the completion of Π (Clark, 1978) in terms of nogoods. These capture

the supported models ofΠ (cf. Apt et al., 1988) and allow for their computation by

means of CDNL.

To begin, for a set of default literals β= {p1, . . . , pm ,not pm+1, . . . ,not pn}, de-

fine

EQβ =
{

{Fβ,Tp1, . . . ,Tpm ,Fpm+1, . . . ,Fpn},

{Fp1,Tβ}, . . . , {Fpm ,Tβ}, {Tpm+1,Tβ}, . . . , {Tpn ,Tβ}

}
.

26

2.5. Answer Set Programming

Typically, we haveβ ∈ body(Π). Then, the nogoods in EQβ represent thatβmust be

false if and only if some of its literals does not hold. For an assignment A, if at least

the implication holds for every rule inΠ, i.e., if {β ∈ body(Π) | (β+∩AF)∪(β−∩AT) 6=
;} ⊆ AF, then we say that A is body-saturated. Observe that running UP on the

nogoods
⋃

β∈body(Π) EQβ to a fixpoint achieves a body-saturated assignment.

For an atom p ∈ atom(Π), let {β1, . . . ,βk } = body(Π{p}), i.e., the bodies of rules

with head p. We define

∆∆∆
p
Π =

{
{Tβ1,Fp}, . . . , {Tβk ,Fp},

λ
p
body(Π{p})

}

where for any set of bodies S = {β1, . . . ,βk }

λ
p
S = {Tp,Fβ1, . . . ,Fβk }.

The nogoods in {Tβ1,Fp}, . . . , {Tβk ,Fp} view the rules in Π as implications. On the

other hand, the nogood λp
body(Π{p})

stipulates the existence of a rule in Π that sup-

ports p if p is true. To put it in different words, λp
body(Π{p})

represents that p cannot

hold if p is not supported by any rule inΠ.

Definition 2.3: Completion Nogoods

For a programΠ, the completion nogoods are

∆Π = ⋃
β∈body(Π) EQβ∪

⋃
p∈atom(Π)∆∆∆

p
Π.

As Gebser et al. (2007a) have shown, the solutions for ∆Π correspond to the sup-

ported models ofΠ.

Theorem 2.2: Completion Nogoods of a Program (Gebser et al., 2007a)

LetΠ be a program and X ⊆ atom(Π) and A the assignment given through

A= {Tp | p ∈ X }∪ {Fp | p ∈ atom(Π) \ X }

∪{Tbody(r) | r ∈Π,body(r)+ ⊆ X ,body(r)−∩X =;}

∪{Fbody(r) | r ∈Π,(body(r)+∩ (atom(Π) \ X))

∪(body(r)−∩X) 6= ;}.

Then, X is a supported model ofΠ if and only if A is a solution for ∆Π.

A direct consequence from the theorem is that we can apply CDNL to compute

models ofΠ’s completion. We illustrate the theorem with an example.

27

2. Background

Example 2.12

Reconsider the program Π from Example 2.11. For the bodies in body(Π) we

have the following equations:

EQbody(r1)Π= {{Fbody(r1),Fq}, {Tbody(r1),Tq}}

EQbody(r2)Π= {{Fbody(r2),Fp}, {Tbody(r2),Tp}}

EQbody(r3)Π= {{Fbody(r3),Tp}, {Tbody(r3),Fp}}

EQbody(r4)Π= {Fbody(r4),Ts}, {Tbody(r4),Fs}}

EQbody(r5)Π= {{{Fbody(r5),Tr }, {Tbody(r5),Fr }}

For the atoms in atom(Π) we have the following equations:

∆∆∆
p
Π = {{Tp,Fbody(r1)}, {Fp,Tbody(r1)}}

∆∆∆
q
Π = {{Tq,Fbody(r2)}, {Fq,Tbody(r2)}}

∆∆∆r
Π = {{Tr,Fbody(r3),Fbody(r4)}, {Fr,Tbody(r3)}, {Fr,Tbody(r4)}}

∆∆∆s
Π = {{Ts,Fbody(r5)}, {Fs,Tbody(r5)}}

Altogether, the completion nogoods ofΠ are given through

∆Π = EQbody(r1)Π∪·· ·∪EQbody(r5)Π∪∆∆∆p
Π∪∆∆∆

q
Π∪∆∆∆r

Π∪∆∆∆s
Π.

Now, recall that the sets X1 = {p,r, s}, X2 = {q,r, s}, and X3 = {q} are supported

models ofΠ. In accordance with Theorem 2.2, we represent X1, X2, and X3 by

the respective assignments A1, A2, and A3 as follows:

A1 = {Tp,Fq,Tr,Ts,Tbody(r1),Fbody(r2),Tbody(r3),Tbody(r4),Tbody(r5)}

A2 = {Fp,Tq,Tr,Ts,Fbody(r1),Tbody(r2),Fbody(r3),Tbody(r4),Tbody(r5)}

A3 = {Fp,Tq,Fr,Fs,Fbody(r1),Tbody(r2),Fbody(r3),Fbody(r4),Fbody(r5)}

Verify that A1, A2, and A3 are solutions for ∆Π, i.e., they are total and no no-

good is violated.

Since the nogoods in∆Π are solely determined byΠ, we sometimes abuse notation

and write that we apply UP onΠ, rather than UP on ∆Π.

We now turn to unfounded sets (Van Gelder et al., 1991). They characterise

atoms in a program that might circularly support themselves when they have no

supporting rule that is external to the set. Formally, for a program Π and a set

28

2.5. Answer Set Programming

U ⊆ atom(Π), the external support of U is defined as

ESΠ(U) = {body(r) | r ∈Π, head(r) ∈U , body(r)+∩U =;}.

Definition 2.4: Unfounded Set

Let Π be a program and A an assignment. A set U ⊆ atom(Π) is an unfounded

set ofΠw.r.t. A if ESΠ(U) ⊆ AF.

Furthermore, we say that A is unfounded-free if for all U ⊆ atom(Π) such that

ESΠ(U) ⊆ AF we have that U ⊆ AF, i.e., all atoms from unfounded sets are false.

We now have all building blocks at hand, to formulate a first alternative char-

acterisation of a program’s answer sets. Following Lee (2005), the answer sets

of a program Π coincide with the supported models of Π that do not contain a

non-empty unfounded set. In light of Theorem 2.2, we obtain the following vari-

ant.

Theorem 2.3

LetΠ be a program and X ⊆ atom(Π) and A the assignment given through

A= {Tp | p ∈ X }∪ {Fp | p ∈ atom(Π) \ X }

∪{Tbody(r) | r ∈Π,body(r)+ ⊆ X ,body(r)−∩X =;}

∪{Fbody(r) | r ∈Π,(body(r)+∩ (atom(Π) \ X))

∪(body(r)−∩X) 6= ;}.

Then, X is an answer set ofΠ if and only if A is a solution for∆Π and unfounded-

free forΠ.

We illustrate the theorem in the following example.

Example 2.13

We proceed from Example 2.12. Verify that A1 and A3 are unfounded-free

for Π. On the other hand, for U = {r, s} we have ESΠ(U) = {body(r3)} ⊆ AF
2 .

That is, U is an unfounded set forΠw.r.t. A2.

Therefore, by Theorem 2.3, only sets X1 and X3 are answer sets of Π. In-

deed, they are (cf. Example 2.11).

Attention is often restricted to unfounded sets that are subsets of SCCs (i.e., loops)

in the (positive) dependency graph ofΠ, denoted DG+(Π), where DG+(Π) = (V ,E) is

29

2. Background

defined by

V = atom(Π)∪body(Π)

E = {(body(r),head(r)) | r ∈Π}∪ {(p,body(r)) | r ∈Π, p ∈ body(r)+}).

A non-empty set of atoms U ⊆ atom(Π) is a loop of Π if U is the set of vertices in

a loop of DG+(Π) (Lee, 2005). We denote by loop(Π) the set of all loops in Π, and

define for β ∈ body(Π) the set scc(β) as being composed of all atoms that belong

to the same SCC as β.

Example 2.14

Reconsider the programΠ from Example 2.11. We have

loop(Π) = {{p}, {q}, {r }, {s}, {r, s}}.

If every loop of Π is a singleton, then we say that Π is tight. If Π is tight, then the

supported models of Π are precisely the answer sets of Π (Erdem and Lifschitz,

2003).

Well-founded Negation and Well-founded Justification

An important inference operation that aims at unfounded sets is well-founded

negation (WFN; Gebser and Schaub, 2013). WFN is the process of extending an

assignment by assigning false to all atoms that are included in an unfounded set.

Definition 2.5: Well-founded Negation

For sets of atomsΩ⊆ 2atom(Π) we define

WFN[Ω](Π,A) =
A∪ {Fp} if U ∈Ω, p ∈U , ESΠ(U) ⊆ AF,

A otherwise.

By construction, if Ω = 2atom(Π) then fixpoint operation of WFN[Ω](Π,A) achieves

an unfounded-free assignment. In practice, it is enough to consider only un-

founded sets that are loops, i.e.,Ω= loop(Π), resulting in a restricted form of WFN

referred to as forward loop (FL). Fixpoint operation of FL and UP, however, simu-

lates the effect of WFN and UP (Gebser and Schaub, 2013). FL can be implemented

such that it takes O (|Π|) time (cf. Anger et al., 2006). Formally, we denote the fix-

point of WFN[Ω](Π,A) by WFN∗[Ω](Π,A).

30

2.5. Answer Set Programming

Example 2.15

Proceeding from Example 2.13. Recall that for U = {r, s} we have ESΠ(U) =
{body(r3)} ⊆ AF

2 . Hence, WFN extends the assignment as follows:

WFN∗[2atom(Π)](Π,A2) = A2 ∪ {Fr,Fs}.

Note that the extended assignment is now conflicting, e.g., we have Tr and Fr

in A2 ∪ {Fr,Fs}. Since U ∈ loop(Π) (cf. Example 2.14), FL achieves the same

result, i.e.,

WFN∗[loop(Π)](Π,A2) = A2 ∪ {Fr,Fs}.

Most modern ASP solvers apply FL also on partial assignments. For instance,

consider the assignment A′
2 ⊂ A2 given through A′

2 = {Fp,Fbody(r3)}. Verify

that for U = {r, s} we have ESΠ(U) = {body(r3)} ⊆ (A′)F
2 , and FL extends the

assignment in a similar way:

WFN∗[loop(Π)](Π,A′
2) = A′

2 ∪ {Fr,Fs}.

The contrapositive of WFN is well-founded justification (WFJ; Gebser and Schaub,

2013). It establishes the truth of the only remaining external support of a set of

atoms which contains at least one true atom.

Definition 2.6: Well-founded Justification

For sets of atomsΩ⊆ 2atom(Π) we define

WFJ[Ω](Π,A) =
A∪ {Tβ} if U ∈Ω, p ∈U ∩AT, ESΠ(U) \ AF = {β},

A otherwise.

Again, we consider the alternatives Ω = 2atom(Π), i.e., what we refer to as WFJ,

and Ω= loop(Π), called backward loop (BL). Similar to UP and WFN, there might

be several choices for extending an assignment with WFJ and BL. Therefore, we

will consider their respective fixpoints.

Example 2.16

Proceeding from Example 2.13, for instance, consider the partial assignment

A′
1 ⊂ A1 given through A′

1 = {Tr }. Verify that for U = {r, s} we have ESΠ(U) =
{body(r3)} and body(r3) 6∈ AF

1 . Hence, WFJ extends the assignment as follows:

WFJ[2atom(Π)](Π,A′
1) = A′

1 ∪ {Tbody(r3)}.

31

2. Background

Since U ∈ loop(Π) (cf. Example 2.14), BL achieves the same result, i.e.,

WFJ[loop(Π)](Π,A′
1) = A′

1 ∪ {Tbody(r3)}.

Gebser and Schaub have shown that, in general, WFJ propagates more conse-

quences than BL. The time complexity for computing WFJ is O (|Π|2), a relatively

high computational cost, as it amounts to failed-literal-detection and WFN.

Reduction to Boolean Satisfiability

In principle, the unfounded set conditions can be represented by sets of nogoods.

In accordance with Lee (2005), the set of loop nogoods of a program (Gebser et al.,

2007a) express that the atoms in every unfounded set have to be falsified.

Definition 2.7: Loop Nogoods of a Program

LetΠ be a program. The set of loop nogoods ofΠ, denoted byΛΠ, is

ΛΠ = ⋃
U⊆atom(Π){λ

p
ESΠ(U) | p ∈U }.

As Gebser et al. have shown, the answer sets of a program Π can be characterised

by the solutions to the completion nogoods and the loop nogoods ofΠ.

Theorem 2.4: Reduction to Boolean Satisfiability (Gebser et al., 2007a)

LetΠ be a program and X ⊆ atom(Π) and A the assignment given through

A= {Tp | p ∈ X }∪ {Fp | p ∈ atom(Π) \ X }

∪{Tbody(r) | r ∈Π,body(r)+ ⊆ X ,body(r)−∩X =;}

∪{Fbody(r) | r ∈Π,(body(r)+∩ (atom(Π) \ X))

∪(body(r)−∩X) 6= ;}.

Then, X is an answer set ofΠ if and only if A is a solution for ∆Π∪ΛΠ.

Example 2.17

Reconsider the program Π from Example 2.11. For the non-trivial loops from

loop(Π) we have the following equations:

λr
ESΠ({r,s}) = {Tr,Fbody(r3)}

λs
ESΠ({r,s}) = {Ts,Fbody(r3)}

We will spare the reader with the remaining nogoods inΛΠ, that are obtained

from all other subsets of atom(Π).

32

2.5. Answer Set Programming

Reconsider the assignments from Example 2.12, all of which are solutions

for ∆Π. However, observe that λr
ESΠ({r,s}) ⊆ A2 and λs

ESΠ({r,s}) ⊆ A2, i.e., above

nogoods are violated w.r.t. A2. In particular, A2 is no solution for ΛΠ. Hence,

by Theorem 2.4, X2 = AT
2 ∩atom(Π) is no answer set of Π. On the other hand,

A1 and A3 are solutions forΛΠ. Hence, by Theorem 2.4, X1 = AT
1 ∩atom(Π) and

X3 = AT
3 ∩atom(Π) are answer sets ofΠ. Indeed, they are (cf. Example 2.11).

The worst-case exponential number of loops in a programΠmakes an explicit rep-

resentation of ΛΠ infeasible in general (Lifschitz and Razborov, 2006). Most mod-

ern ASP solvers therefore encode loop nogoods on demand, for instance, when-

ever a loop nogood is conflicting (cf. Lin and Zhao, 2002; Giunchiglia et al., 2006;

Gebser et al., 2007a).

Janhunen and Niemelä (2011) have proposed an alternative approach for char-

acterising answer sets, centred around program transformations that only require

sub-quadratic space in the size of the original program. The idea is based on level

rankings (Niemelä, 2008), similar to level numberings (Janhunen, 2004), i.e., to

map an atom p to a natural number (its level rank). We shall see that a supported

model X of Π is an answer set of Π if and only if there exists a level ranking such

that each atom p ∈ X is in the head of an applicable rule whose atoms in its posi-

tive body have level ranks that are smaller that that of p.

We here consider Janhunen and Niemelä’s level mapping transformation with

weak ranking constraints.

Definition 2.8: Level Mapping of a Program (Janhunen and Niemelä, 2011)

For a program Π, the level mapping transformation, denoted by LP2LP(Π), is

the program defined as follows:

LP2LP(Π) = ⋃
SCC G of DG+(Π) LP2LPΠ(V (G)∩atom(Π))

Observe that the level mapping exploits the SCCs of the positive dependency

graph ofΠ. To establish compatibility, define LP2LPΠ(;) =;. Then, in case of

a singleton V (G)∩atom(Π) = {p}, define

LP2LPΠ({p}) = {r ∈Π{p} | r 6∈ body(r)+}.

For any set of atoms S ⊆ atom(Π) such that |S| > 1, let n = dlog2 |S|e, and define

LP2LPΠ(S) = ⋃
p∈S LP2LPΠ,S(p)

33

2. Background

where LP2LPΠ,S(p) is constructed as follows:

1. Introduce a new atom of the form bt(r) for each rule r ∈Π{p} to access

its applicability, and split r into two rules

p ← bt(r) bt(r) ← body(r).

2. For each rule r ∈ Π{p} such that body(r)+ ∩ S = ;, represent external

support through

ext(p) ← bt(r)

where ext(p) is a new atom to represent whether p is externally sup-

ported.

3. To achieve a binary representation of the level rank of p, introduce new

atoms of the form lvl(p)i where 1 ≤ i ≤ n. By convention, lvl(p)1 is the

most significant bit. The following rules encode the level rank for p, and

set it to 0 if p is false or externally supported:

lvl(p)i ← not lvl(p)i

lvl(p)i ← not lvl(p)i

← lvl(p)i , not p

← lvl(p)i , p, ext(p)

4. For each rule r ∈ Π{p} such that body(r)+∩S = {p1, . . . , pm} = ;, repre-

sent internal (non-external) support through

int(p) ← bt(r), lt(p1, p)1, . . . , lt(pm , p)1, not ext(p)

where int(p) is a new atom to represent whether p is internally sup-

ported. Intuitively, the above rule encodes that the atom p is inter-

nally supported if the level rank of each atom in its body sharing the

same SCC is smaller than the level rank of p, and p is not externally sup-

ported. The new atoms of the form lt(q, p)i represent that the binary

encoded number lvl(q)i . . . lvl(q)n (i.e., from the level rank of atom q) is

smaller than the binary encoded number lvl(p)i . . . lvl(p)n (i.e., from the

level rank of atom p).

34

2.5. Answer Set Programming

This is encoded by the set of rules

lt(p j , p)i ← bt(r), lvl(p)i , not lvl(p j)i

where 1 ≤ i ≤ n and 1 ≤ j ≤ m, and the set of rules

lt(p j , p)i ← bt(r), lt(p j , p)i+1, not lvl(p)i , not lvl(p j)i

lt(p j , p)i ← bt(r), lt(p j , p)i+1, lvl(p)i , lvl(p j)i

where 1 ≤ i < n and 1 ≤ j ≤ m.

5. Finally, it is required that if p is true, then it must be externally or inter-

nally supported:

← p, not ext(p), not int(p).

Observe that the asymptotic space complexity of LP2LP(Π) is O (|Π| log2 |Π|). Jan-

hunen and Niemelä have shown that the supported models of LP2LP(Π) corre-

spond to the answer sets ofΠ.

Theorem 2.5: Models of the Level Mapping (Janhunen and Niemelä, 2011)

Let Π be a program. The supported models of LP2LP(Π) correspond many-

to-one to the answer sets of Π. In particular, if X is a supported model of

LP2LP(Π), then X ∩atom(Π) is an answer set ofΠ.

We demonstrate the level mapping transformation in the following example.

Example 2.18

Reconsider the programΠ from Example 2.11. Its transformation LP2LP(Π) is

given through the following set of rules:

p ← not q

q ← not p

r ← bt(r3) bt(r3) ← p

r ← bt(r4) bt(r4) ← s

s ← bt(r5) bt(r5) ← r

ext(r) ← bt(r3)

lvl(r)1 ← not lvl(r)1 lvl(s)1 ← not lvl(s)1

lvl(r)1 ← not lvl(r)1 lvl(s)1 ← not lvl(s)1

35

2. Background

← lvl(r)1, not r ← lvl(r)1, r, ext(r)

← lvl(s)1, not s ← lvl(s)1, s, ext(s)

int(r) ← bt(r4), lt(s,r)1, not ext(r)

lt(s,r)1 ← bt(r4), lvl(r)1, not lvl(s)1

int(s) ← bt(r5), lt(r, s)1, not ext(s)

lt(r, s)1 ← bt(r5), lvl(s)1, not lvl(r)1

← r, not int(r), not ext(r)

← s, not int(s), not ext(s)

Verify that

X ′
1 = {p,r, s,bt(r3),bt(r5),bt(r4),ext(r), int(s), lt(r, s)1, lvl(s)1}, and

X ′
3 = {q}

are the supported models of LP2LP(Π), and the projections X ′
1∩atom(Π) = X1

and X ′
3 ∩ atom(Π) = X3 are the answer sets of Π. Hence, in our example,

the level mapping transformation achieves a one-to-one correspondence be-

tween the answer sets ofΠ and the supported models of LP2LP(Π).

Janhunen and Niemelä also provide an encoding that achieves a one-to-one cor-

respondence in general, using strong ranking constraints. For our purposes, how-

ever, the weak ranking constraints are sufficient to study the limits of the level

mapping transformation.

Then, by Theorem 2.2, the answer sets of a program Π are given through so-

lutions for ∆LP2LP(Π), and therefore, the combination of search and UP provides a

decision engine, i.e., CDNL, without need for checking unfounded set criteria.

Choice Rules, Cardinality Constraint Rules, and Integrity Constraints

We also consider some useful and widely used extension to programs: choice

rules, cardinality constraint rules, and integrity constraints. Their semantics are

given through program transformations that introduce additional atoms (cf. Si-

mons et al., 2002). A choice rule has the form

{h1, . . . ,hk } ← p1, . . . , pm ,not pm+1, . . . ,not pn (2.2)

and, if it is applicable w.r.t. some set of atoms X , it supports the atoms in an arbi-

trary subset of {h1, . . . ,hk } w.r.t. X . In this thesis, we will see a rule of the form (2.2)

36

2.5. Answer Set Programming

as a shorthand for

hi ← p1, . . . , pm ,not pm+1, . . . , not pn , not hi

hi ← not hi

where 1 ≤ i ≤ k, and hi are new atoms. An integrity constraint is of the form

← p1, . . . , pm ,not pm+1, . . . ,not pn (2.3)

i.e., an abbreviation for a rule with an unsupported head. Hence, a rule r of the

form (2.3) must not be applicable w.r.t. any model of a program that includes r . It

can be transformed into a rule of the form (2.1) as follows:

p0 ← p1, . . . , pm , not pm+1, . . . , not pn , not p0

The condition encoded by an integrity constraint, however, can be represented

very efficiently by a single nogood, i.e., for an integrity constraint of the form (2.3),

the nogood {Tp1, . . . ,Tpm ,Fpm+1, . . . ,Fpn}. A cardinality constraint rule is of the

following form:

p0 ← k{p1, . . . , pn} (2.4)

It can be transformed into
(n

k

)
rules with head p0, where for each k-elementary

subset β⊆ {p1, . . . , pn} there is a rule r with body(r) =β.

Alternatively, Simons et al. (2002) have provided a transformation that needs

just O (nk) rules. The transformation, referred to as sequential counting (cf. Sinz,

2005), introduces additional atoms of the form count(i , j) to represent that at

least j of the atoms with index ≥ i are included in a model. Then, a cardinality

constraint rule of the form (2.4) can be transformed into the following set of rules:

p0 ← count(1,k) (2.5)

count(i ,1) ← pi (2.6)

count(i , j) ← count(i +1, j) (2.7)

count(i , j +1) ← pi , count(i +1, j) (2.8)

where 1 ≤ i ≤ n and 1 ≤ j ≤ k. Sinz has shown that UP on an encoding that uses

sequential counting prunes all values.

37

2. Background

Theorem 2.6: Boolean Cardinality via Unit Propagation (Sinz, 2005)

UP on (2.5–2.8) prunes all values in O (k) time down any branch of the search

tree.

The key argument in the proof is that all nogoods represented by (2.5–2.8) are

Horn-style, and therefore, can be solved in linear time via UP.

Another alternative transformation was put forward by Bomanson and Jan-

hunen (2013), using merging and sorting constructions. Modern ASP solvers also

incorporate specialised algorithms for handling cardinality constraints. In this

thesis, we use both, the O (nk) transformation and specialised algorithms where

appropriate. When k = 2 and space complexity is no issue, we even use the
(n

k

) =
O (n2) transformation. Sometimes, we use cardinality constraint rules without

head, i.e., representing an unsupported head, of the following form:

← k{p1, . . . , pn} (2.9)

Intuitively, such rule puts a restriction on the number of atoms allowed in the

model. Note that, in practice, cardinality constraint rules also admit default lit-

erals. Other forms of aggregations are also common in ASP (Niemelä et al., 1999;

Pelov, 2004; Gebser et al., 2009b; Faber et al., 2011). We here limit ourselves to the

above concepts as they are expressive enough for our purposes.

Programs with Externals

In order to study the effect of ASP inference on sub-programs, or more generally,

programs that integrate information from external sources, we use programs with

external atoms. Formally, a program with externals E is a program Π over an al-

phabet distinguishing regular atoms P and external atoms E , such that head(r) ∈
P for each r ∈ Π. In other words, external atoms do not appear in the head of

any rule, but may provide information that determines the applicability of certain

rules in the program.

Definition 2.9: Pre-Evaluation of a Program with Externals

Let Π be a program with externals E , and X ⊆ E . The pre-evaluation of Π

w.r.t. X , denoted byΠ(X), is

Π(X) = {head(r) ←{p | p ∈ body(r)+ \E }∪ {not p | p ∈ body(r)− \E }

| r ∈Π,body(r)+∩E ⊆ X , body(r)−∩E ∩X =;}

38

2.5. Answer Set Programming

We obtainΠ(X) by removing all rules fromΠwhose positive body contains an ex-

ternal atom that is not in X or whose negative body contains an atom from X ,

and then dropping all (possibly default negated) external atoms from the remain-

ing rules. Observe that any pre-evaluation of a program with externals is always a

program without externals.

We now turn to splitting a program into sub-programs. Following Lifschitz and

Turner (1994), we define splitting sets.

Definition 2.10: Splitting Set

Let Π be a program over P . A splitting set for a program Π is a set E ⊆ P if

head(r) ∈ E then body(r)+∪body(r)− ⊆ E for each r ∈Π.

Observe that, if E is a splitting set of Π, it splits Π into a program ΠE over E and a

programΠP \E with externals E .

There are two trivial splitting sets for a program Π, one being E = ; and the

other one being E = atom(Π). In either case,Π is split into ; andΠ. The following

is an example for a non-trivial splitting set.

Example 2.19

Reconsider the program Π over P = {p, q,r, s} from Example 2.11. Verify that

E = {p, q} is a splitting set for Π. In particular, E splits the program Π into ΠE ,

given by the rules r1 and r2, and the program ΠP \E with externals E , consist-

ing of the rules r3, r4 and r5:

ΠE =
{

r1 : p ← not q

r2 : q ← not p

}
andΠP \E =

r3 : r ← p

r4 : r ← s

r5 : s ← r

 .

Lifschitz and Turner put forward the following proposition, showing that split-

ting sets can be used to simplify the task of computing answer sets of a program.

Theorem 2.7: Splitting Set Theorem (Lifschitz and Turner, 1994)

LetΠ be a program over P , E a splitting set forΠ, and X ⊆P . The set X is an

answer set ofΠ if and only if X = Y ∪Z such that Y is an answer set ofΠE and

Z is an answer set ofΠP \E (Y).

In other words, a splitting set E breaks the task of computing an answer set of Π

into two tasks:

1. computing an answer set Y of the program ΠE , and using Y as an input for

39

2. Background

(read below)

2. computing an answer set of Π(Y), i.e., the pre-evaluation of the program

ΠP \E with externals over E w.r.t. Y .

Example 2.20

Continuing from Example 2.19, verify that the sets Y1 = {p} and Y3 = {q} are

answer sets of ΠE . We obtain the pre-evaluation of ΠP \E w.r.t. Y1, by remov-

ing all rules fromΠwhose negative body contains an atom from Y1, and then

dropping all default literals associated to external atoms in E from the remain-

ing rules. We proceed with Y3 in a similar fashion. Hence, we have

ΠP \E (Y1) =

r ←
r ← s

s ← r

 and ΠP \E (Y3) =
{

r ← s

s ← r

}
.

Verify that the sets Z1 = {r, s} and Z3 =; are the only answer sets of ΠP \E (Y1)

andΠP \E (Y3), respectively. By the splitting set theorem, X1 = Y1∪Z1 = {p,r, s}

and X3 = Y3∪Z3 = {q} are answer sets ofΠ. Indeed, they are (cf. Example 2.11).

It is also important to note that the splitting set theorem works bidirectionally. In

particular, it allows to join a program with externals, and a program that encodes

those externals into one program. Moreover, recursive application of the splitting

set theorem allows for decomposing a program into, and composing a program

from further (sub-) programs.

2.6 Constraint Answer Set Programming

Constraint answer set programming (CASP; Baselice et al., 2005) is a special case

of CSP that naturally merges CP and ASP, while preserving the advantages of both

approaches to modelling and solving CSP. For instance, CP supports global con-

straints, whilst ASP permits recursive definitions and offers default negation.

An elegant, general formalism to facilitate the modelling in CASP is constraint

logic programming. It is a form of logic programming that abstracts from non-

propositional constraints by incorporating constraint atoms. Each constraint atom

p is identified with the corresponding constraint via the function constraint(p).

40

2.6. Constraint Answer Set Programming

Definition 2.11: Constraint (Logic) Program

A constraint (logic) program is a quadruple P= (V,D,C,Π), where (V,D,C) is a

CSP and Π is a program with externals C , the constraint atoms, such that C=
{constraint(p) | p ∈C }.

Hence, for any constraint program P as above, it holds that head(r) 6∈ C for each

r ∈ Π. To improve the modelling convenience, however, we follow Gebser et al.

(2009c) and view a rule r with head(r) ∈C as the integrity constraint

← body(r), not head(r).

To access the constraint atoms in C that are associated with a constraint c, we

define

atom(c) = {p | p ∈C ,constraint(p) = c}

atom(C) = ⋃
c∈C atom(c)

where C is a set of constraints. Hence, a fundamental difference to CP is that, in

CASP, every constraint c ∈C is reified via atom(c). Their truth value is determined

by the conditions induced by Π and an assignment A to the variables in scope(c).

We expand the notion of answer sets to define a declarative semantics for con-

straint programs.

Definition 2.12: Constraint Answer Sets of a Constraint Program

LetP= (V,D,C,Π) be a constraint program, X ⊆ atom(Π) and A a total assign-

ment to the variables in V.

Then, the pair (X , A) is a constraint answer set of P if (A, satC(A)) is a con-

figuration for the CSP (V,D,C) and X is an answer set ofΠ(atom(satC(A))).

Note that the pre-evaluation of Π w.r.t. atom(satC(A)) is precisely the constraint

reduct of Gebser et al. (2009c).

Example 2.21

Consider the constraint program P = (V,D,C,Π) where V = {v}, D = {{1,2,3}}

with dom(v) = {1,2,3}, C= {v ≤ 2}, and Π is the program over atoms {p, q,r, s}

and constraint atoms {[[v≤ 2]]} consisting of the following rules:

p ← not q r ← p s ← r, [[v≤ 2]]

q ← not p r ← s

The constraint atom [[v ≤ 2]] is associated with the constraint v ≤ 2, i.e., we

41

2. Background

have constraint([[v≤ 2]]) = v≤ 2 and atom(v≤ 2) = {[[v≤ 2]]}.

Verify that the pair (X1, A1) is a constraint answer set of P, where X1 =
{p,r, s} and A1 such that A1(v) = 2. In particular, we have that (A1, {v≤ 2}) is a

configuration for (V,D,C), and X1 is an answer set of the pre-evaluation of Π

w.r.t. atom(satC(A1)) = {[[v≤ 2]]} given through the following rules:

p ← not q r ← p s ← r

q ← not p r ← s

Similarly, verify that the pair (X3, A1) is a constraint answer set of P where

X3 = {q}. Now, consider the assignment A2 with A2(v) = 3. Hence, satC(A2) =
; and (A2,;) is a configuration for (V,D,C). Then, the pre-evaluation of Π

w.r.t. atom(satC(A1)) =; is given through the following rules:

p ← not q r ← p

q ← not p r ← s

Verify that the sets X3 and {p,r } are the answer sets ofΠ(;) and, therefore, the

pairs (X3, A2) and ({p,r }, A2) are constraint answer sets of P.

Hybrid Constraint Answer Set Solving

Observe that Definition 2.12 provides us with instructions on how to compute

constraint answer sets of a constraint program P = (V,D,C,Π). In particular, the

problem can be broken down into two tasks:

1. computing configurations for the CSP (V,D,C), i.e., pairs (A, satC(A)), and

2. computing the answer sets ofΠ(atom(satC(A))), i.e., the pre-evaluation ofΠ

w.r.t. atom(satC(A)).

Hybrid approaches to constraint answer set solving employ a CP solver for the

former, and an ASP solver for the latter.

Following the idea of satisfiability modulo theories (SMT; Nieuwenhuis et al.,

2006), hybrid CASP systems hand the constraint program to an ASP solver which

ignores the theory behind constraint atoms, and constructs a model X∪Y where X

is an answer set of Π(Y), and Y is an arbitrary choice of constraint atoms repre-

senting atom(satC(A)). In turn, the existence of a configuration (A, satC(A)) for the

underlying CSP must be verified by the CP system. Balduccini and Lierler (2013)

42

2.6. Constraint Answer Set Programming

have studied and evaluated various coupling mechanisms between the ASP and

CP system, including a clear-box approach that performs the verification on par-

tially constructed model candidate. If a configuration of the CSP exists, we have a

constraint answer set. Otherwise, the model candidate is rejected. Another candi-

date has to be determined, possibly under considerations from CONFLICTANALY-

SIS that preclude a similar model. The procedure is repeated until it finds a con-

straint answer set, or the ASP solver determines that the program has no (further)

answer sets. In case of the latter, the original constraint program has no constraint

answer set.

The CASP systems adsolver and acsolver (Mellarkod and Gelfond, 2008; Mel-

larkod et al., 2008), clingcon (Gebser et al., 2009c), and ezcsp (Balduccini, 2009) fol-

low this hybrid approach. Whilst clingcon combines the conflict-driven ASP solver

clasp (Gebser et al., 2007b) and the CP system gecode, ezcsp offers the program-

mer a choice between the ASP solvers clasp, cmodels (Giunchiglia et al., 2006), and

dlv (Leone et al., 2006), and between the CP systems sicstus and b-prolog (Zhou,

2012). This illustrates great flexibility but also the black-box character of the hybrid

approach. For a comparison of the proof-theoretic similarities and differences be-

tween the syntax and algorithms of above systems, we refer the reader to (Lierler,

2014). The adsolver and acsolver systems integrate a backtracking-search decision

algorithm with a CP solver for difference constraints, but disregard conflict-driven

techniques. An experimental analysis conducted by Gebser et al. (2009c) revealed

that they do not scale well. On the other hand, ezcsp employs conflict-driven

search during model generation through clasp, though it does not consider in-

formation from model candidates rejected by the CP solver. From the above CASP

systems, only clingcon attempts to overcome this limitation. Accordingly, Balduc-

cini and Lierler (2013) described the integration schema of clingcon as tighter than

ezcsp’s clear-box approach. However, from our perspective, clingcon still treats its

CP solver as an oracle that does not contribute any information about its propaga-

tion, e.g., to the CONFLICTANALYSIS process. As a workaround, recent advances in

clingcon (Ostrowski and Schaub, 2012) apply indirect measures to learn from the

underlying CSP by looking at the implication graph between constraint atoms.

43

Chapter 3

Well-founded Justification and

Well-founded Domination

Many native ASP solvers exploit unfounded sets via WFN to determine conse-

quences of a program, but disregard WFJ due to computational cost. In fact, the

most efficient technique to compute WFJ known to date is a combination of failed-

literal-detection and FL (cf. Gebser and Schaub, 2013). This has high polynomial

costs in size of the program.

In this chapter, we make several fundamental and foundational contributions

to the propagation of unfounded sets.

– We devise a method that approximates the consequences of WFJ. Our tech-

nique is based on a novel graph-representation of programs written in ASP,

termed the support flowgraph. We show that the problem of finding all

dominators in such graph, for which linear-time algorithms exist, can be

used to approximate WFJ.

– Our domination-based characterisation of WFJ gives rise to new forms of

unfounded set inference that we call well-founded domination (WFD) and

loop domination (LD). WFD and LD allow for the computation of additional

consequences of a program. In particular, they include atoms into an an-

swer set in order to guarantee external support to already included atoms.

– While our method provides an approximation of WFJ and WFD, in general,

we will show that their effects can be simulated for important classes of pro-

grams. Those include important REACHABILITY conditions which we will

study later in this thesis.

45

3. Well-founded Justification and Well-founded Domination

We start by motivating and introducing the support flowgraph of a program. It

is similar to the positive dependency graph but dynamic in nature as it considers

assignments.

3.1 Cuts in the Support Flowgraph

The inclusion of a set of atoms into an answer set of a program must be justi-

fied by the existence of external support. External support is provided by at least

one body belonging to a rule whose head is from the set, but whose positive part

does not include any of its atoms, and whose positive and negative dependencies

are respected, i.e., included, respectively, excluded from the answer set. In turn,

each positive dependency itself must be justified by the existence of external sup-

port. Ultimately, support is provided by bodies with no positive dependency, for

instance, bodies that belong to facts.

Hence, if support were a resource, bodies with no positive dependency would

have direct access, and could provide it to the atoms in the heads of their corre-

sponding rules. In turn, these atoms would provide support as a resource to bodies

that positively depend on them.

In this section, we will elaborate on this intuition by taking a look at how sup-

port flows through a program. First, we will tighten the notion of positive depen-

dency as we do not wish to allow just any atom from the positive part of a body to

provide support. While it is clear that all dependencies of a body (positive and neg-

ative) have to be respected in order for the body to truly supply support to atoms,

we here relax this criterion and allow only a few dependencies to single-handedly

support an entire body. At the same time, however, we want to retain information

about circular dependency. We do so by distinguishing between atoms that share

with a body the same strongly connected component in the positive dependency

graph, and those that do not.

Definition 3.1: Support Dependency

For a programΠ and a body β ∈ body(Π), the support dependency of β w.r.t.Π

is given through the mapping sup-depΠ : body(Π) 7→ 2atom(Π) defined by

sup-depΠ(β) =
β

+ if β+∩ scc(β) =;
β+∩ scc(β) otherwise.

46

3.1. Cuts in the Support Flowgraph

Observe that sup-depΠ(β) ⊆ β+, i.e., every support dependency of β is also a pos-

itive dependency, and that sup-depΠ(β) =;, i.e., β has no support dependency, if

and only if β has no positive dependency. As we shall see, restricting the intake of

support by a body to support dependencies has some interesting properties.

We now formalise our previous intuition in terms of a flowgraph representa-

tion of the program.

Definition 3.2: Support Flowgraph

For a program Π and an assignment A, the support flowgraph of Π w.r.t. A is

the flowgraph SFG(Π,A) = (V ,E), where

– the set of vertices is

V = atom(Π)∪ (body(Π) \ AF)∪ {>},

– the new symbol > is the designated source vertex, and

– the set of edges is

E = {(β, p) | p ∈ atom(Π), β ∈ body(p) \ AF}

∪{(p,β) |β ∈ body(Π), p ∈ sup-depΠ(β) \ AF}

∪{(>,β) |β ∈ body(Π) \ AF, sup-depΠ(β) =;}.

In words, the support flowgraph of a program (w.r.t. some assignment) consists of

a vertex for each atom and each non-false body, and the source vertex. Further-

more, for each atom p, there is an edge that directs to the vertex corresponding

to p from each vertex corresponding to a non-false body that belongs to a rule

with head p, while for each vertex corresponding a non-false body β, there is an

edge in the support flowgraph that directs to β from each vertex corresponding to

a non-false support dependency of β. If β does not have any positive dependency,

however, then there is an edge directed from the source vertex > to β.

We establish the following conventions: Vertices that correspond to atoms are

referred to as atom nodes, and vertices that correspond to bodies are referred to

as body nodes. We will also identify the atom nodes and body nodes in a support

flowgraph with the corresponding atoms and bodies from the program.

We illustrate the support flowgraph of a program in the following example.

47

3. Well-founded Justification and Well-founded Domination

Example 3.1

Consider the programΠwith the following set of rules:

a ← b a ← c, f a ← d b ← a,h b ← not f c ← b

d ← not e e ← not d f ← not g g ← not f h ← not i i ← not h

j ← f j ← k j ← not h k ← j

The support flowgraph ofΠw.r.t. the empty assignment ;, SFG(Π,;), looks as

follows. We use circle, rectangle, and diamond shapes to visually support the

difference between vertices that stem from atoms and bodies, and the source.

k

{ j }

{ f }

{k}

j

f

e

i

{not h}

{not g }

{not d}

h

{not i }

>

g

{not f }

{not e}

b

{a,h}

d

{b}

a

{d}

c

{c, f }

Observe that there is an edge directed from the source vertex > to each non-

false body that has no positive dependency. The other vertices and edges form

a sub-graph similar to DG+(Π) with the exception of the edges from f to {c, f },

and from h to {a,h}. Those are missing in SFG(Π,;) as f 6∈ sup-depΠ({c, f })

and h 6∈ sup-depΠ({a,h}).

A distinguished feature of the support flowgraph over related graph representa-

tions of a program, like the positive dependency graph, is that it is a dynamic

rather than a static structure, i.e., it changes with the assignment. In every sup-

port flowgraph SFG(Π,A), however, we can observe a range of properties. They

hold by construction and are easy to verify.

– Every edge that is adjacent to an atom node is adjacent from a body node,

and either all edges adjacent to a body node are adjacent from atom nodes

or there is a single edge that is adjacent to the body node, i.e., adjacent from

the source vertex.

48

3.1. Cuts in the Support Flowgraph

– There is no edge directed from or to a vertex corresponding to an atom or a

body in AF. For every cut c in SFG(Π,A) holds that front(c)∩AF =;.

– If A is body-saturated then there is an edge adjacent to every non-false body,

and only bodies that are non-false have a corresponding vertex.

– Apart from the source vertex > and edges adjacent from >, the support flow-

graph of a program is always a sub-graph of the program’s positive depen-

dency graph. Formally, for SFG(Π,A) = (V ,E) we have (V \{>},E \{(>,β) |β ∈
body(Π)}) ⊆ DG+(Π).

– Every loop of SFG(Π,A) is a loop of DG+(Π) and, in agreement with our previ-

ous intuition, the strongly connected components of SFG(Π,;) are precisely

the strongly connected components of DG+(Π).

– The computational complexity for constructing SFG(Π,A) from scratch is

linear in the size ofΠ. The construction, however, can be made incremental

w.r.t. the assignment, i.e., edges and vertices are removed down any branch

of the search tree and re-inserted upon backtracking.

We will formally prove one property of the support flowgraph, though, to provide

reassurance that our intuition from the start of this section is met, i.e., every atom

that is externally supported has in fact access to support as a resource provided by

the source vertex via edges in the support flowgraph.

Theorem 3.1

Given a program Π and a body-saturated, unfounded-free assignment A. For

every atom p ∈ atom(Π) \ AF there is a path from > to p in SFG(Π,A).

Proof. Let p ∈ atom(Π) \ AF and U be the union of atoms in all paths in SFG(Π,A)

from an atom node to p. Since A is unfounded-free, we have that ESΠ(U) \ A 6= ;,

i.e., there is a rule r ∈Π such that body(r) 6∈ AF, head(r) ∈U , and body(r)+∩U =;.

By Definition 3.2, there is an edge that directs from body(r) to head(r), and by

assumption, we have a path from head(r) to p. Hence, there is a path from body(r)

to p. Since A is body-saturated, by Definition 3.1, either there is an edge directed

to body(r) from each atom in sup-depΠ(β) ⊆ body(r)+, or the only edge adjacent

to body(r) is adjacent to the source vertex >. However, as U contains the atoms

of all paths in SFG(Π,A) from an atom node to p, and body(r)+∩U =;, the latter

holds. In conclusion, there is a path from > to p.

49

3. Well-founded Justification and Well-founded Domination

To analyse the flow of support we make use of cuts.

Definition 3.3: Support Cut

For a programΠ and an assignment A, a cut c= (S,W) in SFG(Π,A) is a support

cut if >∈ S, front(c) ⊆ body(Π), and back(c) ⊆ body(Π).

For a support cut c = (S,W) in SFG(Π,A), the condition front(c) ⊆ body(Π) en-

sures that whenever a body is in W then all its support dependencies are in W ,

and back(c) ⊆ body(Π) ensures that every body that has a support dependency

in W is also in W . We will refer to vertices in S as being on the support side and to

vertices in W as being on the well-founded side of c.

Example 3.2

Reconsider the programΠ from Example 3.1. Verify that the following cuts

c1 =({>,d ,e, f , g ,h, i , j ,k, {d}, { f }, { j }, {k}, {not d}, {not e}, {not f },

{not g }, {not h}, {not i }}, {a,b,c, {a,h}, {b}, {c, f }}),

c2 =({>, a,b,c,d ,e, f , g ,h, i , {a,h}, {b}, {c, f }, {d}, { f }, {not d}, {not e},

{not f }, {not g }, {not h}, {not i }}, { j ,k, { j }, {k}}), and

c3 =({>, a,c,d ,e, f , g , i , j ,k, {a,h}, {c, f }, {d}, { f }, { j }, {k}, {not d}, {not e},

{not f }, {not g }, {not h}, {not i }}, {b,h, {b}}),

all are support cuts in SFG(Π,;). We illustrate c1, c2, and c3 below.

k

{ j }

{ f }

{k}

j

f

e

i

{not h}

{not g }

{not d}

h

{not i }

>

g

{not f }

{not e}

b

{a,h}

d

{b}

a

{d}

c

{c, f }

cut c1cut c2 cut c3

Verify: {a,b,c} is the set of atoms on the well-founded side of c1, { j ,k} the one

on the well-founded side of c2, {b,h} the one on the well-founded side of c3.

50

3.1. Cuts in the Support Flowgraph

We can make the following observations, setting the bodies that have an edge

directed to an atom on the well-founded side of a cut in relation with their

external support:

front(c1) = {{d}, {not f }} = ESΠ({a,b,c}),

front(c2) = {{ f }, {not h}} = ESΠ({ j ,k}), and

front(c3) = {{a,h}, {not i }} ⊇ ESΠ({b,h}) = {{a,h}}.

In words, front(c1) and front(c2) represent external support of the atoms on

their support side, while front(c3) provides only an upper bound.

We now formalise our observation from Example 3.2 on the relationship between

the bodies in front(c) and the external support of the atoms on its well-founded

side, i.e., every support cut separates a set of atoms from their external support.

Lemma 3.2: Separation Lemma

Given a program Π and a body-saturated assignment A. If c= (S,W) is a sup-

port cut in SFG(Π,A) then ESΠ(W ∩atom(Π)) \ AF ⊆ front(c).

Proof. Let c= (S,W) be a support cut in SFG(Π,A). We verify that all non-false ex-

ternal support is included in front(c). Let r ∈Π such that body(r) 6∈ AF. By Defini-

tion 3.3, if head(r) ∈W then either body(r) ∈ front(c) or body(r) ∈W . If body(r) ∈
front(c) then we simply declare that body(r) may provide external support, so

there is nothing left to prove. Suppose, however, that body(r) ∈ W . Then, again

by Definition 3.3, there is no edge directed from the source vertex > to body(r).

Hence, it holds that sup-depΠ(body(r)) 6= ;, and since A is body-saturated we

have sup-depΠ(body(r)) ⊆ W . Therefore, body(r)+ ∩W 6= ;, i.e., if the body of

a rule is on the well-founded side then it contains atoms from the well-founded

side in its positive part. Therefore, it is not a member of the external support to

the atoms in W. In conclusion, we get ESΠ(W ∩atom(Π)) \ AF ⊆ front(c), i.e., every

external support to the set of atoms in W is a member of front(c).

Hence, the support flowgraph of a program can be used to extract information

about non-false external support of a set of atoms, i.e., the set of bodies in front(c)

of a support cut c always provide an upper bound on the remaining external sup-

port of the atoms on the well-founded side of c. In the next section, we show how

to exploit this property to compute consequences from WFJ.

51

3. Well-founded Justification and Well-founded Domination

3.2 Approximation of Well-Founded Justification

We now give special attention to support cuts that separate a set of atoms from a

single external support, i.e., we want to identify body nodes that are in a domina-

tion relationship with a set of atoms.

Theorem 3.3: Approximation of WFJ

Given a program Π and a body-saturated, unfounded-free assignment A. Let

U ⊆ atom(Π) and r ∈ Π. If body(r) immediately dominates U in SFG(Π,A)

then ESΠ(U) \ AF = {body(r)}.

Proof. Let body(r) immediately dominate U in SFG(Π,A). Then, there is a sup-

port cut c = (S,W) such that front(c) = {body(r)} and with all atoms in U on the

well-founded site, i.e., U =W ∩atom(Π). By the Separation Lemma, ESΠ(U)\ AF ⊆
{body(r)}. Since A is unfounded-free, it holds that ESΠ(U) \ AF 6= ;. We con-

clude ESΠ(U) \ AF = {body(r)}.

Hence, we can compute consequences from WFJ by searching for body nodes that

are dominators in the support flowgraph of a program w.r.t. an assignment.

Example 3.3

Reconsider the programΠ introduced in Example 3.1 with the support cuts c1

and c2 from Example 3.2 together with the assignment A given through

A = {Ta,Fd ,Te,T j ,Tk,F{d},T{ j },T{k},T{not d},F{not e}}.

We illustrate the updated support flowgraph SFG(Π,A) and both cuts below.

k

{ j }

{ f }

{k}

j

f

e

i

{not h}

{not g }

{not d}

h

{not i }

>

g

{not f }

b

{a,h}

d

{b}

a

c

{c, f }

cut c1cut c2

52

3.2. Approximation of Well-Founded Justification

Verify that A is body-saturated and unfounded-free, and observe that {not f },

being the only body in front(c1), immediately dominates all vertices on the

well-founded side of c1, i.e., the atoms in {a,b,c}.

The dominator tree of SFG(Π,A) looks like the following.

>

{not d} {not g } {not f } {not i } {not h} j

e f g b h i { j }

{ f } {b} k

a c {k}

{a,h} {c, f }

In fact, setting {not f } to true is a consequence of applying BL or WFJ, i.e.,

WFJ[loop(Π)](Π,A) extends A by T{not f } since ESΠ({a,b,c}) \ AF = {{not f }}.

On the other hand, there are two bodies in front(c2), { f } and {not h}, both

provide external support to the set of atoms { j ,k} from the well-founded side

of c2.

The application of WFJ can be interleaved with UP and WFN in order to compute

further consequences from a program under an (extended) assignment.

Example 3.4: (continued)

Continuing from where we have left Example 3.3, after extending A by T{not f },

fixpoint operation of UP and WFN establishes the extended, body-saturated,

unfounded-free assignment A′ given through

A′ = A∪ {F f ,Tg ,F{c, f },F{ f },T{not f },F{not g }}.

The updated support flowgraph SFG(Π,A′) along with the considered cuts is

illustrated below.

53

3. Well-founded Justification and Well-founded Domination

k

{ j }

{k}

j

f

e

i

{not h}

{not d}

h

{not i }

>

g

{not f }

b

{a,h}

d

{b}

a

c

cut c1cut c2

The dominator tree of SFG(Π,A′), in comparison to the one of SFG(Π,A) has

also changed, and looks as follows.

>

{not d} {not f } {not i } {not h}

e g b h i j

{b} { j }

a c k

{a,h} {c, f } {k}

Observe that, having { f } assigned false, the body {not h} is the only remaining

non-false external support of the set of atoms { j ,k}. In fact, {not h} dominates

both j and k. This domination relationship coincides with computing conse-

quences from BL or WFJ, as the application of BL or WFJ extends the assign-

ment A′ by T{not h}. Formally, we have WFJ[loop(Π)](Π,A′) = A′∪ {T{not h}}.

Recall that finding all dominators in a flowgraph, e.g., by constructing the dom-

inator tree, can be done in linear time w.r.t. the size of the program, and that

54

3.3. Component-unary Programs

this computation can be made incremental, i.e., few dominators might be recom-

puted at any stage during search, subject to removal and re-insertion of vertices

and edges. Hence, a domination-based method to approximate WFJ has a better

asymptotic complexity than the best known method for computing consequences

from WFJ (cf. Gebser and Schaub, 2013) by a linear factor, putting it on the same

level of computational cost as WFN. As the combined run time complexity for

unfounded set inference remains at O (|Π|), here is no worst case penalty to inte-

grating our approximation into existing ASP solvers that already compute WFN.

3.3 Component-unary Programs

While a non-false body β being a dominator of some true atom is sufficient for Tβ

being a consequence of WFJ, it is not a necessary condition. In fact, the converse

of Theorem 3.3 does not hold in general. However, there is a class of programs for

which it does, and then, all consequences from WFJ or BL can be computed by in-

specting the dominator tree of a support flowgraph. As this can be done in linear

time, our approach offers an algorithmic advance over the most efficient tech-

nique to compute WFJ or BL known to date (cf. Gebser and Schaub, 2013).

Definition 3.4: Unary and Component-unary Programs

A component-unary (logic) program is a program Π such that for every rule

r ∈ Π it holds that either |body(r)+| ≤ 1 or |body(r)+∩ scc(body(r))| = 1.

A unary (logic) program is a program Π such that for every rule r ∈Π it holds

that |body(r)+| ≤ 1.

It is easy to see that every unary program is a component-unary program. On the

other hand, component-unary programs are much more general than unary pro-

grams, because unary programs cannot express conjunctive conditions (cf. Jan-

hunen, 2000). A prominent example from the class of component-unary programs

is discussed in Section 5.3. Similarly, however, component-unary programs can-

not specify conjunctive conditions over atoms that do not share the same strongly

connected component. This makes component-unary programs less expressive

than (general) programs.

A key property of a program being component-unary is that, in a support flow-

graph, there is exactly one edge adjacent to each body node.

55

3. Well-founded Justification and Well-founded Domination

Lemma 3.4

Given a component-unary programΠ and an assignment A. For every rule r ∈
Πwe have |sup-depΠ(body(r))| ≤ 1.

Proof. Let r ∈ Π. Since Π is component-unary, we have either |body(r)+| ≤ 1 or

|body(r)+∩ scc(body(r))| = 1. The edges adjacent to a body node are determined

by support dependency. By Definition 3.1, sup-depΠ(body(r)) ⊆ body(r)+. Hence,

if |body(r)+| ≤ 1 then the claim holds trivially. On the other hand, if |body(r)+∩
scc(body(r))| = 1, meaning that there is an atom p ∈ atom(Π) such that body(r)+∩
scc(body(r)) = {p}, then we get that also sup-depΠ(β) = {p}, by Definition 3.1. In

conclusion, we have |sup-depΠ(body(r))| ≤ 1.

For what follows in the remainder of this chapter, we introduce a template for

constructing a support cut from a set of atoms such that those atoms define the

set of atoms on the well-founded side of the cut.

Definition 3.5: Support Cut w.r.t. a Set of Atoms

For a program Π and a set of atoms U ⊆ atom(Π), the support cut w.r.t. U ,

denoted ESΠ-cut(U), is the cut (S,W) where

– W =U ∪ {body(r) | r ∈Π, sup-depΠ(body(r))∩U 6= ;}, and

– S = (atom(Π) \W)∪ (body(Π) \ (W ∪AF))∪ {>}.

In words, ESΠ-cut(U) has all atoms from U and all bodies with a support de-

pendency in U on the well-founded side. All other vertices of SFG(Π,A), includ-

ing ESΠ(L) are on the support side of ESΠ-cut(U). We can prove that ESΠ-cut(U) is

in fact a support cut in SFG(Π,A).

Lemma 3.5

Given a component-unary programΠ and an assignment A. Let U ⊆ atom(Π).

ESΠ-cut(U) is a support cut in SFG(Π,A).

Proof. Let ESΠ-cut(U) = (S,W). We already have back(ESΠ-cut(U)) ⊆ body(Π) and

> 6∈ front(ESΠ-cut(U)), by Definition 3.5. In order to prove front(ESΠ-cut(U)) ⊆
body(Π), it remains to demonstrate that front(ESΠ-cut(U)) ∩ atom(Π) = ;, i.e.,

there is no edge directed from an atom node in S to W . We show by proof of con-

tradiction.

Suppose there is an atom p ∈ atom(Π) such that p ∈ front(ESΠ-cut(U)). Then,

by Definition 3.2, p 6∈ AF and there is a rule r ∈ Π such that body(r) ∈ W and

56

3.3. Component-unary Programs

p ∈ sup-depΠ(body(r)). Since Π is component-unary, we can apply Lemma 3.4

and get |sup-depΠ(body(r))| ≤ 1. In fact, we have sup-depΠ(body(r)) = {p}. There-

fore, sup-depΠ(body(r))∩U =;. But then body(r) ∈ S, by Definition 3.5, contra-

dicting the assumption. Hence, front(ESΠ-cut(U))∩atom(Π) = ;. In conclusion,

ESΠ-cut(U) is a support cut in SFG(Π,A).

Example 3.5

Reconsider the programΠ introduced in Example 3.1 with the support cuts c1,

c2, and c3 from Example 3.2. We can construct c1, c2, and c3 as follows:

c1 = ESΠ-cut({a,b,c})

c2 = ESΠ-cut({ j ,k})

c3 = ESΠ-cut({b,h})

For component-unary programs, the support cut w.r.t. a set of atoms captures

the remaining non-false external support of that set if it forms a loop in the pro-

gram.

Theorem 3.6

Given a component-unary programΠ and a body-saturated A. Let L ∈ loop(Π).

Then, we have that front(ESΠ-cut(L)) = ESΠ(L) \ AF.

Proof. Let ESΠ-cut(L) = (S,W). We know from Lemma 3.5 that ESΠ-cut(L) is a

support cut in SFG(Π,A). Moreover, by Definition 3.5, we have L = W ∩atom(Π).

Then, the Separation Lemma applies and we get front(ESΠ-cut(L)) ⊇ ESΠ(L) \ AF.

In words, every external support of L is in front(ESΠ-cut(L)). To prove the theorem,

it remains to show that also front(ESΠ-cut(L)) ⊆ ESΠ(L) \ AF. To begin with, we will

demonstrate that for every rule r ∈ Π with body(r) ∈ front(ESΠ-cut(L)) it holds

that body(r) ∈ ESΠ(L) \ AF. We show by proof of contradiction.

Suppose there is r ∈ Π such that body(r) ∈ front(ESΠ-cut(L)) and body(r) 6∈
ESΠ(L) \ AF. Since body(r) ∈ front(ESΠ-cut(L)), by Definition 3.2, we have that

body(r) 6∈ AF and head(r) ∈ L, and by Definition 3.3, we have sup-depΠ(body(r))∩
L = ;. Now, since body(r) 6∈ AF, head(r) ∈ L, and body(r) 6∈ ESΠ(L) \ AF, we get

body(r)+∩L 6= ;, by definition of external support. Furthermore, from L ∈ loop(Π),

head(r) ∈ L, and body(r)+∩L 6= ;we conclude body(r)+∩scc(body(r)) 6= ;. There-

fore, by Definition 3.1, sup-depΠ(body(r))∩L 6= ;, and by Definition 3.5, body(r) ∈
W , contradicting the assumption that body(r) ∈ front(ESΠ-cut(L)). Hence, for ev-

ery rule r ∈Πwith body(r) ∈ front(ESΠ-cut(L)) it holds that body(r) ∈ ESΠ(L) \ AF.

57

3. Well-founded Justification and Well-founded Domination

Finally, since ESΠ-cut(L) is a support cut in SFG(Π,A), by Lemma 3.5, we have

front(ESΠ-cut(L)) ⊆ body(Π), and therefore, front(ESΠ-cut(L)) ⊆ ESΠ(L) \ AF. In

conclusion, front(ESΠ-cut(L)) = ESΠ(L) \ AF.

Hence, for component-unary programs, we can exploit the domination relation-

ship between body and atom nodes to compute all consequences from BL.

Theorem 3.7: BL for Component-unary Programs

Given a component-unary program Π and a body-saturated, unfounded-free

assignment A. Let L ∈ loop(Π) and r ∈Π such that body(r) 6∈ AF. Then, body(r)

immediately dominates L in SFG(Π,A) if and only if ESΠ(L) \ AF = {body(r)}.

Proof. The implication (⇒) holds by Theorem 3.3. It remains to show (⇐). To

begin, let ESΠ(L) \ AF = {body(r)}. By Lemma 3.5, ESΠ-cut(L) is a support cut

in SFG(Π,A), and front(ESΠ-cut(L)) = {body(r)} by Theorem 3.6. Hence, body(r)

immediately dominates L in SFG(Π,A).

While previous theorems apply to sets of atoms that are loops of a program, we

now consider any set of atoms. For unary programs, the support cut w.r.t. a set of

atoms captures remaining non-false external support.

Theorem 3.8

Given a unary programΠ and a body-saturated assignment A. Let U ⊆ atom(Π).

Then, we have that front(ESΠ-cut(U)) = ESΠ(U) \ AF.

Proof. Let ESΠ-cut(U) = (S,W). We know from Lemma 3.5 that ESΠ-cut(U) is a

support cut in SFG(Π,A). Moreover, by Definition 3.5, we have U = W ∩atom(Π).

Then, the Separation Lemma applies and we get front(ESΠ-cut(U)) ⊇ ESΠ(U) \ AF,

i.e., every external support of U is in front(ESΠ-cut(U)). It remains to show that

also front(ESΠ-cut(U)) ⊆ ESΠ(U) \ AF. To begin, we will demonstrate that for every

rule r ∈Πwith body(r) ∈ front(ESΠ-cut(U)) it holds that body(r) ∈ ESΠ(U) \ AF.

We show by proof of contradiction. Suppose there is r ∈Π such that body(r) ∈
front(ESΠ-cut(U)) and body(r) 6∈ ESΠ(U) \ AF. Since body(r) ∈ front(ESΠ-cut(U)),

by Definition 3.2, we have that body(r) 6∈ AF and head(r) ∈U , and by Definition 3.3,

sup-depΠ(body(r))∩U = ;. Moreover, since Π is unary, Lemma 3.4 applies, and

we get sup-depΠ(body(r)) = body(r)+. From sup-depΠ(body(r))∩U =;, we con-

clude body(r)+ ∩U = ;, and then, we have body(r) ∈ ESΠ(U) \ AF contradicting

the assumption that body(r) 6∈ ESΠ(U) \ AF. Hence, for every r ∈Π with body(r) ∈
front(ESΠ-cut(U)) it holds that body(r) ∈ ESΠ(U) \ AF.

58

3.4. Well-Founded Domination

Finally, since ESΠ-cut(U) is a support cut in SFG(Π,A), by Lemma 3.5, we have

front(ESΠ-cut(U)) ⊆ body(Π), and therefore, front(ESΠ-cut(U)) ⊆ ESΠ(U) \ AF. In

conclusion, front(ESΠ-cut(U)) = ESΠ(U) \ AF.

Given this, for unary programs, we can guarantee that the domination relationship

between body and atom nodes in the support flowgraph can be used to compute

all consequences from WFJ.

Theorem 3.9: WFJ for Unary Programs

Given a unary programΠ and a body-saturated, unfounded-free assignment A.

Let U ⊆ atom(Π) and r ∈Π such that body(r) 6∈ AF. The body body(r) imme-

diately dominates U in SFG(Π,A) if and only if ESΠ(U) \ AF = {body(r)}.

Proof. The implication (⇒) holds by Theorem 3.3. It remains to show (⇐). To

begin, let ESΠ(U) \ AF = {body(r)}. By Lemma 3.5, ESΠ-cut(U) is a support cut

in SFG(Π,A), and front(ESΠ-cut(U)) = {body(r)} by Theorem 3.8. Hence, body(r)

immediately dominates U in SFG(Π,A).

In the sequel, we will demonstrate that BL can not be replaced by UP and WFN,

even if level mapping transformations (Janhunen and Niemelä, 2011) are used.

So far, we have restricted our attention to body nodes that dominate a set of

atom nodes. In principle, however, any type of vertex can be a (strict) dominator

in the flowgraph of a program w.r.t. some assignment. We will address dominators

that are atom nodes in the next section.

3.4 Well-Founded Domination

We define an atom-equivalent of WFJ, i.e., if a set of atoms U contains at least one

true atom, then any atom that appears positively in all external support of U must

likewise be true.

Definition 3.6: Well-Founded Domination

For a set of sets of atoms Ω, a program Π, and an assignment A, the well-

founded domination operator is defined as

WFD[Ω](Π,A) =

A∪ {Tp} if U ∪ {p} ∈Ω, U ∩AT 6= ;, and

ESΠ(U) \ AF ⊆ {body(r) | r ∈Π, p ∈ body(r)+},

A otherwise.

59

3. Well-founded Justification and Well-founded Domination

As with WFJ, we consider the two alternativesΩ= 2atom(Π) (well-founded domina-

tion, WFD) andΩ= loop(Π) (loop domination, LD), i.e., all sets of atoms and loops

from the program, respectively. It is easy to see that LD and WFD do not interfere

with the completeness of any inference system for ASP: Since every set of atoms

containing a true-assigned atom cannot be an unfounded set, at least one external

support must hold. Hence, it is safe to infer all literals that are shared amongst all

non-false external support. In particular, it is safe to infer the truth of all atoms

shared amongst the positive of all non-false external support.

In this section, we will show how the support flowgraph of a program can be re-

used to also compute consequences of LD and WFD. We follow a strategy similar

to the one from the previous sections, and start by defining a new form of cut, the

atom cut.

Definition 3.7: Atom Cut

For a programΠ and an assignment A, a cut c= (S,W) in SFG(Π,A) is an atom

cut if >∈ S, front(c) ⊆ atom(Π), and back(c) ⊆ body(Π).

For an atom cut c = (S,W) in SFG(Π,A), the conditions front(c) ⊆ atom(Π) and

back(c) ⊆ body(Π) ensure that every body that has a support dependency in W or

corresponds to a rule with a head in W is also in W . Hence, the distinguishing

property of atom cuts is, in comparison to support cuts, that atom cuts have edges

directed from atom nodes off the support side to body nodes on the well-founded

side of the cut. Like with support cuts, we will refer to vertices in S as being on the

support side and to vertices in W as being on the well-founded side of c.

Example 3.6

Consider the programΠwith the following set of rules:

a ← c,not f a ← d ,not g b ← c,not f b ← c,not g c ← d ,not f

c ← d ,not h d ← not e d ← not h e ← not d f ← not g

g ← not f h ← not i i ← not h

Verify that the two cuts c1 and c2 given through

c1 =({>,d ,e, f , g ,h, i , {not d}, {not e}, {not f }, {not g }, {not h}, {not i }},

{a,b,c, {c,not f }, {c,not g }, {d ,not f }, {d ,not g }, {d ,not h}}),

c2 =({>, a,c,d ,e, f , g ,h, i , {d ,not f }, {d ,not g }, {d ,not h}, {not d},

{not e}, {not f }, {not g }, {not h}, {not i }}, {b, {c,not f }, {c,not g }},

60

3.4. Well-Founded Domination

both are atom cuts in SFG(Π,;). The support flowgraph SFG(Π,;) along with

c1 and c2 looks like below.

g

f

e

{not f }

{not g }

{not d}

{not i }

>

h

{not e}

{not h}

{d ,not h}

d

i

c

{d ,not f }

{d ,not g }

{c,not g }

{c,not f }

a

b

cut c1 cut c2

The set {a,b,c} is the set of atoms on the well-founded side of c1, and {b} the

one on the well-founded side of c2. Verify that the atom in front(c1) = {d} ap-

pears positively in bodies from ESΠ({a,b,c}) = {{d ,not f }, {d ,not g }, {d ,not h}},

and that the one in front(c2) = {c} appears positively in bodies from ESΠ({b}) =
{{c,not f }, {c,not g }}.

Building on the observation from Example 3.6, we formalise an atom-equivalent

of the Separation Lemma. It guarantees that every atom cut in SFG(Π,A) sepa-

rates a set of atoms from the set of atoms that appear positively in its external

support.

Lemma 3.10

Given a program Π and a body-saturated assignment A. If c = (S,W) is an

atom cut in SFG(Π,A) then ESΠ(W ∩atom(Π))\AF ⊆ {body(r) | r ∈Π, body(r)+∩
front(c) 6= ;}.

Proof. Let c = (S,W) be an atom cut in SFG(Π,A). Let B = W ∩ {body(r) | r ∈
Π, sup-depΠ(body(r))∩ front(c) 6= ;}. In words, B is the set of bodies in W ad-

jacent to an edge that directs from a vertex in front(c). In particular, for all β ∈ B

we have β+∩ front(c) 6= ;. We construct a new cut c′ = (S′,W ′) where S′ = S ∪B

and W ′ = W \ B , i.e., all bodies in B are shifted from the well-founded side of c to

the support side of c′. All other vertices, however, remain on their respective side,

e.g., W ∩atom(Π) =W ′∩atom(Π). In particular, back(c′) = back(c) ⊆ body(Π).

Next, recall that, by Definition 3.2, in a support flowgraph, all edges direct to

body node from either an atom node or the source vertex, or direct body nodes

61

3. Well-founded Justification and Well-founded Domination

to atom. Hence, through shifting, we get front(c′) ⊆ B ⊆ body(Π) and, therefore,

c′ is a support cut in SFG(Π,A). By the Separation Lemma, ESΠ(W ′∩ atom(Π)) \

AF ⊆ front(c′). Since W ∩ atom(Π) = W ′ ∩ atom(Π), we get ESΠ(W ∩ atom(Π)) \

AF ⊆ front(c′), and since front(c′) ⊆ B we get ESΠ(W ∩ atom(Π)) \ AF ⊆ {body(r) |
r ∈Π, sup-depΠ(body(r))∩ front(c) 6= ;}. By Definition 3.1, sup-depΠ(body(r)) ⊆
body(r)+, and we conclude ESΠ(W ∩atom(Π)) \ AF ⊆ {body(r) | r ∈Π, body(r)+∩
front(c) 6= ;}.

Hence, for an atom cut c in SFG(Π,A), the atoms in front(c) provide an upper

bound on the atoms that appear positively in all external support of the atoms

on the well-founded side of c.

However, we can only draw a meaningful conclusion if the atoms in front(c)

are shared amongst the positive dependency of all external support. Therefore,

we restrict our attention to atom cuts with a single member in front(c), i.e., dom-

inators. This restriction guarantees that front(c) represents the intersection of all

external support, trivially, and allows us to approximate WFD easily.

Theorem 3.11: Approximation of WFD

Given a program Π and a body-saturated assignment A. Let U ⊆ atom(Π)

and p ∈U \ AF. If p immediately dominates U in SFG(Π,A) then ESΠ(U \ {p}) \

AF ⊆ {body(r) | r ∈Π, p ∈ body(r)+}.

Proof. In principle, the proof follows from Lemma 3.10.

Let p immediately dominate U in SFG(Π,A). Since p ∈U , p immediately dom-

inates U \ {p}. Then, there exists an atom cut c = (S,W) such that front(c) ⊆ {p}

and U \{p} =W ∩atom(Π). By Lemma 3.10, ESΠ(W ∩atom(Π))\AF ⊆ {body(r) | r ∈
Π, body(r)+∩ front(c) 6= ;} and therefore, ESΠ(U \ {p}) \ AF ⊆ {body(r) | r ∈Π, p ∈
body(r)+}.

Example 3.7

Reconsider the program Π and atom cuts c1 and c2 from Example 3.6 to-

gether with the assignments A = {Ta} and A′ = {Tb}. The flowgraphs SFG(Π,A)

and SFG(Π,A′) are the same as in the previous example.

Verify that A and A′ are body-saturated, and observe that the atom d from

front(c1), being the only atom that appears positively in all external support

of {a,b,c}, dominates all vertices on the well-founded side of c1. Similarly, the

atom c from front(c2), being the only atom that appears positively in all exter-

62

3.4. Well-Founded Domination

nal support of {b}, dominates all vertices on the well-founded side of c2. This

is reflected in the dominator tree of SFG(Π,A) and SFG(Π,A′), as illustrated

below.

>

{not d} {not g } {not f }

d

{not e} {not h}

e f g i

{d ,not f } {d ,not g } c {d ,h} a

{c,not f } b {c,not g }

Hence, given A, WFD sets d to true, i.e., WFD[atom(Π)](Π,A) extends A by Td .

Similarly for A′, WFD[atom(Π)](Π,A′) non-deterministically extends A′ by Tc

and Td .

For component-unary programs, the domination relationship between atoms can

be used to compute all consequences of LD.

Theorem 3.12: LD for Component-unary Programs

Given a component-unary program Π and a body-saturated assignment A.

Let L ∈ loop(Π) and p ∈ L\AF. The atom p immediately dominates L in SFG(Π,A)

if and only if ESΠ(L \ {p}) \ AF ⊆ {body(r) | r ∈Π, p ∈ body(r)+}.

Proof. The implication (⇒) holds by Theorem 3.11. It remains to show (⇐) that if

ESΠ(L \ {p}) \ AF ⊆ {body(r) | r ∈Π, p ∈ body(r)+} then p immediately dominates L

in SFG(Π,A). Let ESΠ(L \ {p}) \ AF ⊆ {body(r) | r ∈Π, p ∈ body(r)+}. By Lemma 3.5,

ESΠ-cut(L\{p}) is a support cut in SFG(Π,A), and by Theorem 3.6, front(ESΠ-cut(L\

{p})) = ESΠ(L \{p})\AF. Hence, by assumption that ESΠ(L \{p})\AF ⊆ {body(r) | r ∈
Π, p ∈ body(r)+}, we have front(ESΠ-cut(L \ {p})) ⊆ {body(r) | r ∈Π, p ∈ body(r)+}.

Next, let ESΠ-cut(L \ {p}) = (S,W). We construct a new cut c = (S′,W ′) where

S′ = S\front(ESΠ-cut(L\{p})) and W ′ =W ∪front(ESΠ-cut(L\{p})), i.e., all non-false

external support of L \{p} is shifted from the support side of ESΠ-cut(L \{p}) to the

well-founded side of c. All other vertices, however, remain on their respective side,

e.g., W ∩atom(Π) =W ′∩atom(Π). In particular, back(c) = back(ESΠ-cut(L \{p})) ⊆

63

3. Well-founded Justification and Well-founded Domination

body(Π). Next, recall that, by Definition 3.2, in a support flowgraph, all edges di-

rect to body node from either an atom node or the source vertex, or direct body

nodes to atom. Hence, through shifting, we get front(c) ⊆ atom(Π), and therefore,

c is an atom cut in SFG(Π,A).

It remains to show that front(c) = {p}. Let r ∈ Π be a rule such that body(r) ∈
front(ESΠ-cut(L\{p})). By construction, we have p ∈ body(r)+. Given this, from L ∈
loop(Π), head(r) ∈ L, and p ∈ L, we conclude body(r)+∩ scc(body(r)) ⊇ {p}. Then,

by Definition 3.1, we have sup-depΠ(body(r)) ⊇ {p}. Since Π is component-unary,

Lemma 3.4 applies. Hence, we have |sup-depΠ(body(r))| ≤ 1, and can conclude

that sup-depΠ(body(r)) = {p}.

Therefore, c is an atom cut in SFG(Π,A) with atoms in L \ {p} on the well-

founded side, and front(c) = {p}. In conclusion, p immediately dominates L \ {p}

in SFG(Π,A). In particular, p immediately dominates L in SFG(Π,A)

For unary programs, our domination-based approach can even simulate WFD.

Theorem 3.13

Given a unary programΠ and a body-saturated assignment A. Let U ⊆ atom(Π)

and p ∈U \AF. The atom p immediately dominates U in SFG(Π,A) if and only

if ESΠ(U \ {p}) \ AF ⊆ {body(r) | r ∈Π, p ∈ body(r)+}.

Proof. The strategy of this proof follows the one from Theorem 3.12.

The implication (⇒) holds by Theorem 3.11. It remains to show (⇐) that if

ESΠ(U \ {p}) \ AF ⊆ {body(r) | r ∈ Π, p ∈ body(r)+} then the atom p immediately

dominates U in SFG(Π,A). Let ESΠ(U \ {p}) \ AF ⊆ {body(r) | r ∈Π, p ∈ body(r)+}.

By Lemma 3.5, ESΠ-cut(U \ {p}) is a support cut in SFG(Π,A), and by Theorem 3.6,

front(ESΠ-cut(U \{p})) = ESΠ(U \{p})\AF. Hence, by assumption that ESΠ(U \{p})\

AF ⊆ {body(r) | r ∈ Π, p ∈ body(r)+}, we have front(ESΠ-cut(U \ {p})) ⊆ {body(r) |
r ∈Π, p ∈ body(r)+}. Next, let ESΠ-cut(U \{p}) = (S,W). We construct a new cut c=
(S′,W ′) where S′ = S \front(ESΠ-cut(U \{p})) and W ′ =W ∪front(ESΠ-cut(U \{p})).

Then, we have back(c) = back(ESΠ-cut(U \{p})) ⊆ body(Π) and front(c) ⊆ atom(Π).

Therefore, c is an atom cut in SFG(Π,A).

It remains to show that front(c) = {p}. Let r ∈ Π be a rule such that body(r) ∈
front(ESΠ-cut(U \ {p})). By assumption, p ∈ body(r)+. As Π is unary, |body(r)+| ≤
1, we have body(r)+ = {p}. Then, by Definition 3.1, sup-depΠ(body(r)) = {p}.

64

3.5. Limitations

Hence, c is an atom cut in SFG(Π,A) with atoms in U \{p} on the well-founded

side, and front(c) = {p}. In conclusion, p immediately dominates U \ {p}, and in

particular, p immediately dominates U in SFG(Π,A).

The above Theorem relates to Janhunen’s Lemma 24 Janhunen (2006). For positive

unary programs, that are unary programs without default negation, Janhunen’s

Lemma 24 states that conclusions can be derived from facts following paths drawn

from the body of a rule containing a true atom to its head (which in turn can be

inferred as true as well). If the truth of an atom p is derived this way in an unam-

biguous way, i.e., no two different derivation paths exist, then WFD can be seen as

a counterpart of Janhunen’s Lemma 24, following the same path backwards start-

ing from the true atom p.

3.5 Limitations

We have seen in the previous sections how computing the dominators in the sup-

port flowgraph of a (component-) unary program w.r.t. an assignment can be used

to simulate the effects of WFJ (BL) and WFD (LD, respectively). Our domination-

based method also works for more general classes of programs, i.e., those that are

not component-unary. In this case, however, we cannot always capture all con-

sequences of WFJ, WFD, and the related propagators. As every program can be

translated into a binary program (Janhunen, 2000), i.e., a program with at-most

two atoms in the positive body of every rule, we demonstrate the limits of our

method on a binary program.

Example 3.8

Consider the programΠwith the following set of rules:

r1 : a ← b r3 : a ← not e r5 : b ← a,c r7 : c ← not f

r2 : d ← a,c r4 : e ← not f r6 : f ← not e r8 : c ← d

Verify thatΠ is not component-unary because |body(r)+∩scc(body(r))| = 1 is

not satisfied for r = r2, r = r5 respectively. Next, consider the body-saturated

and unfounded-free assignment A given through

A = {Ta,Tb,Tc,Td ,T{a,c},T{b},T{d}}.

65

3. Well-founded Justification and Well-founded Domination

Verify that ESΠ({a,b}) \ AF = {{not e}}. However, as can be seen from the illus-

tration of SFG(Π,A) below, the body node {not e} dominates neither a nor b.

e

>

f

{not f }

{not e}

c

a

{d}

{a,c}

{b}

d

b

cut c

In other words, every cut that separates a and b from {not e} is no support cut.

For instance, the cut c given in the illustration is not a support cut. Hence, a

domination-based approach to BL does not conclude T{not e}.

The reason why our method cannot always detect all consequences, e.g., of BL,

becomes obvious when we recall that the support flowgraph is constructed in a

way that every path to a set of atoms represents a possible derivation of their truth.

Then, for programs that are not component-unary support may have to flow along

multiple paths. In Example 3.8 for instance, support for the atoms in {a,b} has to

pass through the body nodes {not e} and {not f }.

In general, however, programs can become (component-) unary as truth val-

ues are assigned during search. It is also important to note that for programs

which are not (component-) unary, our domination-based method can still simu-

late WFJ and WFD (BL and LD, respectively) on the maximal (component-) unary

sub-program.

A class of conditions that are naturally expressed in form of component-unary

program is given through REACHABILITY, that we will analyse in Section 5.3. For

those conditions, we can compute the consequences from unfounded set infer-

ence via dominators in the support flowgraph.

Another concern is the practical realisation of our technique, as implementing

Georgiadis and Tarjan’s linear-time algorithm (2004) for finding all dominators in

a flowgraph represents a challenging engineering exercise. It relies on many so-

phisticated, non-standard data structures. Even more challanging is the imple-

mentation of an incremental version (Sreedhar et al., 1997).

66

3.6. Related Work

3.6 Related Work

A straightforward method to computing consequences from unfounded sets is a

reduction to the application of UP on SAT. This may require the introduction of

additional atoms. As shown by Lifschitz and Razborov (2006), it is unlikely that,

in general, a polynomial-size translation from ASP to SAT would not require ad-

ditional atoms. Evidence is provided by the encoding of Lin and Zhao (2002) that

has exponential space complexity. Another result, shown by Niemelä (1999), is

that ASP cannot be translated into SAT in a faithful and modular way. Sacrific-

ing modularity, however, Janhunen (2006) showed that component-wise transla-

tions are feasible. E.g., the non-modular program transformations based on level

rankings (Niemelä, 2008) devised by Janhunen and Niemelä (2011) require only

sub-quadratic space. Whilst their level mapping allows for computing additional

information with UP, it cannot replace unfounded set inference.

The following example demonstrates that UP and WFN on the level mapping

transformation of a program can hinder the propagation of unfounded sets. The

gap can be closed with WFJ.

Example 3.9

Consider the program Π which is a slight variation of the one from Exam-

ple 2.11, consisting of the following rules:

r1 : p ← not q r3 : r ← p r5 : s ← r, not q

r2 : q ← not p r4 : r ← s

It has the same answer sets as the program from Example 2.11, and even its

level mapping transformation LP2LP(Π) is similar to the one shown in Exam-

ple 2.18. In fact, we only have to replace the fifth line with the following:

s ← bt(r5) bt(r5) ← r, not q

Now, consider the assignment A given through

A = {Tr,Fext(s),Flvl(s)1, s, ext(s),F{lvl(r)1, not r }}.

Verify that UP∗(∆LP2LP(Π),A) = A and WFN∗[2atom(∆LP2LP(Π))](∆LP2LP(Π),A) = A.

Hence, the joint fixpoint application of UP and WFN assings no further values.

67

3. Well-founded Justification and Well-founded Domination

However, since ES{r,s}(Π) \ F = {{p}}, we have WFJ[loop(Π)](Π,A) = A∪ {T{p}},

i.e., the application of BL concludes T{p}.

We invite the interested reader to verify that T{p} is still not inferred by UP

and WFN on the transformation of Janhunen and Niemelä that uses strong

ranking constraints.

This makes a good case for unfounded set inference, and BL in particular.

An advantage of native ASP solvers like clasp (Gebser et al., 2007b), dlv (Leone

et al., 2006), and smodels (Simons et al., 2002) over SAT-based systems (Giunchiglia

et al., 2006; Janhunen and Niemelä, 2011; Lin and Zhao, 2002) is that they can in-

tegrate propagators for unfounded sets. Hence, those systems have the potential

to propagate more consequences from unfounded sets using less space and time.

Formal means for analysing ASP computations in terms of inference were intro-

duced by Gebser and Schaub (2013). According which, smodels’ atmost and dlv’s

greatest unfounded set detection, both compute WFN and FL, respectively, using

linear time. Similarly, clasp’s unfounded set check computes FL (Anger et al., 2006).

Gebser and Schaub also identified the backward propagation operations for un-

founded sets, i.e., WFJ and BL. A method that can be used to propagate BL has

been proposed by Chen et al. (2013). It is inefficient due to high computational

costs (i.e., cubic in the size of the program), but complete even for programs that

are not component-unary. Their idea is to first falsify all atoms in loops without

external support, and then search for a rule whose exclusion from the program

would yield a loop without external support. In conclusion, the body of such rule

provides the single external support for all atoms in the loop. In turn, a set of no-

goods is generated to enforce the truth of the body if an atom in the loop is true.

The algorithm could be extended to capture LD inference at additional costs in

terms of asymptotic time complexity, e.g., by searching for an atom that, when

all rules containing it in their positive part are removed from the program, yield a

loop without external support. This relates to pushing all bodies from the support

side of a support-cut to the well-founded side.

We have devised a linear-time approximation of WFJ and shown under which

conditions our method simulates WFJ and BL, respectively. Moreover, we have

put forward WFD and LD as new forms of inference that can draw additional con-

sequences from unfounded sets. Our approach uses a reduction to the task of

finding all dominators in the support flowgraph of a program, for which efficient

algorithms exist. For instance, Georgiadis and Tarjan’s algorithm (2004) runs in

linear time, and computing all dominators can be made incremental (Sreedhar

68

3.7. Conclusions

et al., 1997).

3.7 Conclusions

This chapter has narrowed the gap to efficiently propagating the consequences

from WFJ and BL. Our main contribution was a linear-time approximation of WFJ

based on a reduction to finding all dominators in the support flowgraph. This

gave rise to novel forms of inference, WFD and DL, which can be approximated

using the same techniques. We have outlined classes of logic programs for which

our approximations simulate WFJ and BL, and WFD and LD, respectively. As we

shall see in Chapter 5, this includes REACHABILITY conditions that are relevant to

a range of real world applications.

Despite our best efforts, efficient algorithms for fully propagating WFJ and

WFD, or proof of a quadratic lower bound on their time complexity remain as open

problems.

Moreover, our work raises a number of questions. The foremost one concerns

an experimental comparison with alternative approaches to unfounded set infer-

ence, e.g., Janhunen and Niemelä’s level mapping transformations. To our knowl-

edge, there is no strong empirical evidence that any single approach is in prac-

tice strictly better than all others. Whilst it is left with the programmer to choose

a technique that best fits a problem domain, a step towards automating this se-

lection might be to look at some extra bookkeeping to monitor atom activity in

unfounded set inference.

Another open problem is whether WFJ, or WFD, or restrictions thereof can

be simulated by UP and WFN using (small) program transformations. Gebser and

Schaub argue that WFJ cannot be simulated by UP and WFN, but they did not look

at program transformations. We showed that our approximation of BL computes

consequences from a program that cannot be inferred by UP and FL on Janhunen

and Niemelä’s level mapping transformation, but it is not known whether the gap

can be closed by alternative encodings. This direction will not be further investi-

gated in this thesis.

69

Chapter 4

Translation-based Constraint

Answer Set Solving

We now describe our translational approach to constraint answer set solving. In

this approach, all parts of the CASP encoding are mapped into ASP for which

highly efficient, conflict-driven solvers are available.

– First, we present the foundations of the key idea. Based on Lifschitz and

Turner’s splitting set theorem, we show how a given constraint program can

be compiled into a (normal logic) program by adding an ASP reformulation

of all CP constructs that appear in the constraint program.

– We present various ASP representations of the variables’ domains: the value,

bound, and range encoding, and mixed variants thereof.

– Given these, we consider four different but generic ASP encodings that work

for any constraint: the direct, support, bound and range encoding. Each

represents constraints in a different way.

– We provide theoretical results on their propagation strength, i.e., what type

of local consistency is achieved by the UP inference of any ASP solver.

Because atoms will be shared between the ASP encodins of the constraints, mod-

ern solving techniques like conflict-driven nogood learning (CDNL; Gebser et al.,

2007a) can exploit interdependencies between constraint and use this informa-

tion to improve propagation.

71

4. Translation-based Constraint Answer Set Solving

4.1 Foundations

To begin, recall that the problem of computing constraint answer sets of a con-

straint program P= (V,D,C,Π) can be broken down into two tasks:

1. computing configurations for the CSP (V,D,C), i.e., pairs (A, satC(A)), and

2. computing the answer sets ofΠ(atom(satC(A))), i.e., the programΠwith ex-

ternals over C .

Whilst hybrid approaches to constraint answer set solving employ a CP solver for

the former, and an ASP solver for the latter, a translation-based approach reduces

the problem of computing configurations for the CSP to the one of computing

answer sets of a program Ψ with externals from C (and possibly further auxiliary

atoms).

Definition 4.1: ASP Encoding of a Constraint Satisfaction Problem

Let P = (V,D,C,Π) be a constraint program where Π is a program with ex-

ternals over constraint atoms C . An ASP encoding of the CSP (V,D,C) is a

programΨ over an alphabet E ⊇C such that

– the answer sets of Ψ correspond one-to-one to the configurations of

(V,D,C), in particular, there is a bijective function assignV,D(X) that

maps each answer set X ofΨ into the corresponding assignment A, and

– for each answer set X ofΨ and constraint atom c ∈C holds that c ∈ X if

and only if constraint(c) ∈ satC(A).

Extracting a configuration (A, satC(A)) of the CSP from an answer set ofΨ is easy:

If X is an answer set of Ψ then the set satC(A) is represented by the constraint

atoms X ∩C . The extraction of the corresponding assignment A, however, de-

pends on the mapping assignV,D, i.e., on how the variables’ domains are repre-

sented in Ψ. In this chapter, we will consider three different representations that

encode values, bounds, and ranges in the domain of a variable. As we shall see,

the assignment v = i can be represented by atom [[v = i]] ∈ X in our value encod-

ing, by atom [[v∈ [i , i]]] ∈ X in our range encoding, and by atoms [[v ≤ i]] ∈ X and

[[v≤ i−1]] 6∈ X in our bounds encoding, where i−1 is the predecessor of the value i

in the domain of v.

Given this, we can compute the constraints answer sets of the constraint pro-

gram P by encoding the corresponding CSP into an ASP encodingΨ and comput-

72

4.1. Foundations

ing the answer sets of the (joint) programΠ∪Ψ.

Theorem 4.1

Let P = (V,D,C,Π) be a constraint program where Π is a program with exter-

nals over constraint atoms C , and the program Ψ over E ⊇ C be an ASP en-

coding of the CSP (V,D,C). The set X ⊆ atom(Π)∪E is an answer set ofΠ∪Ψ
if and only if (X \E ,assignV,D(X ∩E)) is a constraint answer sets of P.

Proof. The proof follows from the splitting set theorem (Lifschitz and Turner, 1994)

that we introduced in the Background section of this thesis. We show both impli-

cations of the proposition.

(⇒) Let X ⊆ atom(Π)∪E be an answer set of Π∪Ψ. By construction, E is a

splitting set forΠ∪Ψ. Hence, the splitting set theorem applies and we get X ∩E is

an answer set ofΨ and X \E is an answer set ofΠ(X ∩E). Then, by Definition 4.1,

X ∩E corresponds to a configuration (A, satC(A)) of the CSP (V,D,C) and X ∩E =
atom(satC(A))∩atom(Π), where A = assignV,D(X ∩E). In conclusion, (X \ E , A) is

a constraint answer set of P.

(⇐) Let (X , A) be a constraint answer set of P. Then, by definition, X is an

answer set of Π(atom(satC(A)) ∩ atom(Π)) and (A, satC(A)) is a configuration to

the CSP (V,D,C). Then, by Definition 4.1, (A, satC(A)) corresponds to an answer

set Y of Ψ such that c ∈ Y if and only if constraint(c) ∈ satC(A) for each c ∈ C .

Hence, Y ∩C = atom(Π)∩atom(satC(A)). Since E ⊇ C is a splitting set for Π∪Ψ,

separating Π∪Ψ into Π and Ψ by construction, the splitting set theorem applies

and we get X ∪Y is an answer set ofΠ∪Ψ.

Whilst Lifschitz and Turner’s splitting set theorem facilitates the reduction of the

problem of computing the constraints answer sets of a constraint program to com-

puting the answer sets of a single, joint ASP encoding, it also provides us with the

foundations of a modular design principle for constructing ASP encodings in an

automated fashion, and lays the foundations to dissecting that encoding in order

to allow a study of the effect of ASP inference on sub-programs, i.e., encodings of

individual constraints independently from each other. For instance, the ASP en-

codingΨ of a CSP (V,D,C) can be constructed from the union of

– a programΨV encoding of the variables’ domains, and

– a programΨc with externals over atom(ΨV) for each constraint c ∈C, repre-

senting the conditions on the variables’ domains induced by c.

73

4. Translation-based Constraint Answer Set Solving

The construction can be implemented as preprocessing, so that existing ASP sys-

tems can be applied to compute constraint answer sets without changing their

source code. This allows for programmers to select the solver that best fit their

needs. We will use conflict-driven solvers to enable conflict-driven constraint an-

swer set solving. This has a range of advantages over hybrid CASP and CP systems,

including the following:

– All constraints are made transparent, there is no black-box propagation al-

gorithm.

– Hence, no scheduling of constraints is required. As atoms will be shared

between constraints, and all constraints are always propagated at the same

time by the inference of the underlying ASP solver.

– CDNL can exploit constraint interdependencies. This can improve propa-

gation between constraints and contribute to search heuristics.

– Advanced dynamic selection heuristics from conflict-driven solvers can be

used. There is no need for programming search.

The remainder of this and the following chapter concern the two main challenging

tasks of encoding the variables’ domains and constraints into ASP, that are, the

programsΨV andΨc above, and investigating the effect of ASP inference onΨV∪
Ψc in terms of local consistency on the original constraint.

We start our study with four generic encodings: the value, support, bound, and

range encoding. Each represents constraints in a different, generic way. We will

demonstrate that the UP inference of any ASP solver on these encodings provides

a propagator of the original constraint that can hinder propagation, or achieve arc,

bound, and range consistency, respectively.

We will make an assumption on the structure of the domains, though, to save

the reader from multiple superscripts and simplify the presentation of encodings,

theorems, and their proofs.

Assumption: Variables’ Domains

The domain of a variable is the interval of integer values [1,d].

The encoding of a consistent representation of the variables’ domains will be shar-

ed between the ASP encodings of all constraints. Hence, it has to be chosen care-

fully, considering the options for encoding individual constraints at hand. Since

74

4.2. Value Encoding

constraint encodings are programs with externals over atoms representing the do-

mains of the variables in their scope, they are independent of the actual imple-

mentation of the variables’ domains representation. This allows for encodings

that mix different representations.

4.2 Value Encoding

Our first encoding is the popular and straightforward value encoding, similar to

the direct encoding by Walsh (2000). In the value encoding, a new atom is intro-

duced for each variable v ∈ V and each value i from the variable’s domain. We

will denote this atom [[v = i]]. An assignment to [[v = i]] will indicate whether the

value i can be assigned to v. Hence, [[v = i]] will be assigned true if v takes the

value i , and false if the value i has been removed from the domain of v (or, rather,

v takes a value different from i).

Definition 4.2: Value Encoding of Variables’ Domains

Our value encoding of the variables’ domains, denoted ASP-VALUE[V], is spec-

ified as follows, where v ∈V.

{[[v= 1]], . . . , [[v= d]]} ← (4.1)

← not [[v= 1]], . . . ,not [[v= d]] (4.2)

← 2 {[[v= 1]], . . . , [[v= d]]} (4.3)

The choice rule (4.1) encodes all possible assignments for a variable v, while the

remaining rules encode a consistent assignment, i.e., that there must be at least

one value for each v, and that v takes at-most one value. We specify that v takes at

least one value by the integrity constraint (4.2). Cardinality constraint rules (4.3)

express that v cannot take two values, and hence, v takes at-most one value.

Overall, the value encoding introduces O (nd) new atoms and O (n) rules, where

n = |V| and d is the largest domain size.

Example 4.1

Consider the variable v with dom(v) = [1,3]. The value encoding of v is

{[[v= 1]], [[v= 2]], [[v= 3]]} ←
← not [[v= 1]],not [[v= 2]],not [[v= 3]]

← 2 {[[v= 1]], [[v= 2]], [[v= 3]]}

75

4. Translation-based Constraint Answer Set Solving

which can be compiled into a program without choice and cardinality con-

straint rules (see Section 2.5). From this, we can construct the set of no-

goods ∆ASP-VALUE[{v}]. The situation where no value has been removed from

v’s domain is represented in an assignment A such that [[v = i]] 6∈ AT ∪AF for

i ∈[1,3]. The removal of a value i from v’s domain is indicated by F[[v= i]] ∈ AF,

for instance, F[[v = 2]] ∈ A if 2 was removed. A situation where only a single

value j is left in v’s domain, or v is assigned j , is represented by T[[v = j]] ∈ A

and F[[v= i]] ∈ A for i 6= j . Some examples are given in the table below.

1 2 3 Property of A

X X X [[v= 1]], [[v= 2]], [[v= 3]] 6∈ AT ∪AF

X X F[[v= 2]] ∈ A, [[v= 1]], [[v= 3]] 6∈ AT ∪AF

X F[[v= 1]],F[[v= 2]],T[[v= 3]] ∈ A

The table identifies values that have not been removed from the domain of v

(X) and properties that can be observed in A.

The expert reader will notice that there is a slightly more compact representation

of the conditions (4.1–4.3) if choice rules with bounds are allowed. As those are

typically compiled into above rules, we will refrain from introducing additional

syntactic sugar.

We proceed with representing constraints with ASP. Observe that every con-

straint can be encoded into a program with externals over the above representa-

tion of the domains of the variables in its scope. Let c ∈C and scope(c) = (v1, . . . ,vn).

In the value encoding, c is decomposed into forbidden combination of values. Let

v1 = i1, . . . ,vn = in be such a forbidden combination, we post a rule of the form

[[c]] ← [[v1 = i1]], . . . , [[vn = in]] (4.4)

and repeat the process for each forbidden combination. A rule of the form (4.4)

can be read as whenever v1 = i1, . . . ,vn = in holds, i.e., a forbidden combination

is satisfied, then the constraint is violated, represented by the atom [[c]]. We use

default negation to access information on whether a constraint c ∈ C is satisfied

rather than violated, expressed by the atom [[c]]. To ensure consistency, i.e., either

[[c]] or [[c]] is contained in any solution, we post the following rule:

[[c]] ← not [[c]] (4.5)

When a relation is represented by allowed combinations of values, however, then

all forbidden combinations have to be deduced. Alternatively, we can encode rules

76

4.2. Value Encoding

for [[c]], encoding all allowed combination of values. Let now v1 = i1, . . . ,vn = in be

an allowed combination, we post

[[c]] ← [[v1 = i1]], . . . , [[vn = in]]

and repeat the process for each allowed combination. Now we can express [[c]] via

default negation of [[c]]

[[c]] ← not [[c]]

In the remainder of this thesis, however, the process of decomposing a constraint

into ASP will involve the introduction of rules with head [[c]]. It is understood that

a rule of the form (4.5) has to be defined whenever the atom [[c]] is required. For

the sake of brevity, we will omit making it explicit in the sequel.

Example 4.2

Consider two variables v1 and v2 with dom(v1) = [2,4] and dom(v2) = [1,3],

and a constraint c where scope(c) = (v1,v2) and range(c) = {(i , j) | i ∈ dom(v1),

j ∈ dom(v2), i ≤ j }. In other words, c is the constraint v1 ≤ v2. The value en-

coding of c, using forbidden combinations of values, is given through the fol-

lowing set of rules.

[[c]] ← [[v1 = 2]], [[v2 = 1]] [[c]] ← [[v1 = 4]], [[v2 = 1]]

[[c]] ← [[v1 = 3]], [[v2 = 1]] [[c]] ← [[v1 = 4]], [[v2 = 2]]

[[c]] ← [[v1 = 3]], [[v2 = 2]] [[c]] ← [[v1 = 4]], [[v2 = 3]]

Unfortunately, the value encoding hinders propagation:

Theorem 4.2: Unit Propagation on the Value Encoding

Enforcing arc consistency on the binary decomposition of a constraint prunes

more values from the variables’ domains than UP on its value encoding.

Proof. A SAT-equivalent of the theorem was shown by Walsh (2000), by consider-

ing a constraint on two variables over two values that rules out every possible com-

bination of values. For instance, consider the constraint c with scope(c) = (v1,v2)

and range(c) = ;, where dom(v1) = dom(v2) = [1,2]. A value encoding of c is the

77

4. Translation-based Constraint Answer Set Solving

programΨc given by the set of rules

r1,1 : [[c]] ← [[c1 = 1]], [[c2 = 1]]

r1,2 : [[c]] ← [[c1 = 1]], [[c2 = 2]]

r2,1 : [[c]] ← [[c1 = 2]], [[c2 = 1]]

r2,2 : [[c]] ← [[c1 = 2]], [[c2 = 2]]

representing the following set of nogoods:

{{T[[c]],Fbody(r1,1),Fbody(r1,2),Fbody(r2,1),Fbody(r2,2)}}

∪{{F[[c]],Tbody(ri , j)} | i , j ∈ {1,2}}

∪{{Fbody(ri , j),T[[c1 = i]],T[[c2 = j]]} | i , j ∈ {1,2}}

∪{{Tbody(ri , j),F[[c1 = i]]}, {Tbody(ri , j),F[[c2 = j]]} | i , j ∈ {1,2}}

⊆∆Ψc∪ASP-VALUE[{v1,v2}]

The set ∆Ψc∪ASP-VALUE[{v1,v2}] does not contain any unit nogood. In particular

UP(∆Ψc∪ASP-VALUE[{v1,v2}], {F[[c]]}) = {F[[c]]}

i.e., UP does not prune any value. On the other hand, enforcing arc consistency

on this binary constraint removes all values from the variables’ domains.

Observe that the programs from the above proof, Example 4.2, and the value en-

coding of any other constraint are tight. ASP inference that aims at unfounded

sets which are loops of the program, e.g., FL, BL, or LD, has therefore no effect,

and cannot complement UP in this setting.

4.3 Support Encoding

The support encoding has been proposed by Gent (2002) in the domain of SAT to

tackle the limitations of value encodings. We transfer here Gent’s idea to ASP, i.e.,

we encode support information for assignments rather than conflicts.

Support is defined for a possible assignment to a variable, and is given by the

set of values for another variable which allow this assignment. Formally, a binary

support for a variable v to take the value i across a constraint c ∈ C is the set of

values { j1, . . . , jm} ⊆ dom(v′) of another variable in v′ ∈ scope(c) \ {v} that do not

violate the constraint if v = i . Whilst binary support is a special case of support,

observe that, binary support equals to the more general notion if the constraint is

binary.

78

4.3. Support Encoding

The support encoding of a constraint works on the value representation of the

domains of the variables in its scope. Let c ∈ C and scope(c) = (v1, . . . ,vn). We

encode binary support by a rule of the form

[[c]] ← [[v= i]],not [[v′ = j1]], . . . ,not [[v′ = jm]] (4.6)

where the set the values { j1, . . . , jm} for variable v′ is the support for v = i across c.

A rule of the form (4.6) can be read as whenever v = i , then at least one of its sup-

ports must hold, otherwise the constraint is violated. In the support encoding of

a constraint c ∈ C, we encode binary support for each pair of distinct variables

v,v′ ∈ scope(c), and for each value i ∈ dom(v).

Example 4.3

Reconsider the setting from Example 4.2, i.e., two variables v1 and v2 with the

domains dom(v1) = [2,4] and dom(v2) = [1,3], and the constraint c = v1 ≤ v2.

The support encoding of c is given through the following set of rules.

[[c]] ← [[v1 = 1]], not [[v2 = 1]], not [[v2 = 2]], not [[v2 = 3]], not [[v2 = 4]]

[[c]] ← [[v1 = 2]], not [[v2 = 2]], not [[v2 = 3]], not [[v2 = 4]]

[[c]] ← [[v1 = 3]], not [[v2 = 3]], not [[v2 = 4]]

[[c]] ← [[v1 = 4]], not [[v2 = 4]]

[[c]] ← [[v2 = 1]], not [[v1 = 1]]

[[c]] ← [[v2 = 2]], not [[v1 = 1]], not [[v1 = 2]]

[[c]] ← [[v2 = 3]], not [[v1 = 1]], not [[v1 = 2]], not [[v1 = 3]]

[[c]] ← [[v2 = 4]], not [[v1 = 1]], not [[v1 = 2]], not [[v1 = 3]], not [[v1 = 4]]

Verify that UP prunes the value 4 from v1’s domain and the value 1 from v2’s

domain, providing an advantage over the value encoding where UP does not

prune any value.

In general, UP on the support encoding achieves arc consistency.

Theorem 4.3: Unit Propagation on the Support Encoding

UP on the support encoding enforces arc consistency on the binary decom-

position of the original constraint.

Proof. A SAT-equivalent of the Theorem was shown by Gent (2002).

Let c be any constraint and A be an assignment to the atoms in a value repre-

sentation of the variables in the scope of the constraint, i.e., the atoms in the pro-

79

4. Translation-based Constraint Answer Set Solving

gram ASP-VALUE[scope(c)], representing the current set of values in the domain of

the variables. Suppose UP has been run to completion, extending A∪ {F[[c]]} (i.e.,

the constraint c shall not be violated) to the conflict-free assignment A′. The key

argument is that all nogoods represented by the support encoding of c contain at

most one positive literal of an unassigned atom, i.e., all nogoods are Horn-style

and can be solved in linear time via UP. Since the support encoding will prune

any values which are not arc consistent (cf. Gent, 2002), the assignment A′ is arc

consistent.

4.4 Bound Encoding

A different perspective on the domains of variables is provided by our bound en-

coding. Similar to the order encoding of Tamura et al. (2006), a new atom is in-

troduced for each variable v and value i to represent whether the value of v is

bounded from above by i , i.e., v ≤ i . We will denote this atom [[v ≤ i]]. An assign-

ment to [[v≤ i]] will indicate whether a value less or equal to i can be assigned to v.

To clarify, [[v≤ i]] will be assigned true if v takes the value i or any value less than i ,

and false if every value that is less or equal i has been removed from the domain

of v (or, rather, v takes a value greater than i).

Definition 4.3: Bound Encoding of Variables’ Domains

Our bound encoding of the variables’ domains, denoted ASP-BOUND[V], is

specified as follows, where v ∈V and 1 ≤ i < d .

{[[v≤ 1]], . . . , [[v≤ d]]} ← (4.7)

← [[v≤ i]],not [[v≤ i +1]] (4.8)

← not [[v≤ d]] (4.9)

Similar to the value encoding, for each variable v, possible assignments are en-

coded by a choice rule of the form (4.7). We can encode the channelling condition

that v≤ i implies v≤ i+1 by consistency constraints of the form (4.8), for 1 ≤ i < d ,

in order to ensure a consistent set of bounds. To guarantee non-empty domains,

i.e., a value must be assigned to each variable v, the integrity constraints of the

form (4.9) specifies that v≤ d must hold.

Overall, the bound encoding introduces O (nd) new atoms and O (nd) rules,

where n = |V| and d is the largest domain size.

80

4.4. Bound Encoding

Example 4.4

Consider the variable v with dom(v) = [1,4]. The bound encoding for v is

{[[v≤ 1]], [[v≤ 2]], [[v≤ 3]], [[v≤ 4]]} ←
← [[v≤ 1]],not [[v≤ 2]]

← [[v≤ 2]],not [[v≤ 3]]

← [[v≤ 3]],not [[v≤ 4]]

← not [[v≤ 4]]

From this, we can construct the set of nogoods ∆ASP-BOUND[{v}]. The situation

where no value has been removed from v’s domain is represented by an as-

signment A such that [[v≤ i]] 6∈ AT ∪AF for i ∈[1,3]. An updated lower bound i

of v’s domain is indicated by F[[v ≤ i −1]] ∈ A, for instance, F[[v ≤ 2]] ∈ A if the

new lower bound is 3, and the channelling conditions also ensure F[[v ≤ 1]] ∈
A. On the other hand, an updated upper bound i of v’s domain is indicated

by T[[v ≤ i]] ∈ A, for instance, T[[v ≤ 3]] ∈ A if the new upper bound is 3. The

channelling conditions also ensure T[[v≤ j]] ∈ A where j > i . The value of v is

fixed to i when F[[v≤ i −1]] ∈ A and T[[v≤ i]] ∈ A. Some examples are given in

the table below.

1 2 3 4 Property of A

X X X X [[v≤ 1]], [[v≤ 2]], [[v≤ 3]] 6∈ AT ∪AF,T[[v≤ 4]] ∈ A

X X [[v≤ 1]], [[v≤ 2]], [[v≤ 3]] 6∈ AT ∪AF,T[[v≤ 4]] ∈ A

X X F[[v≤ 1]],F[[v≤ 2]] ∈ A, [[v≤ 3]] 6∈ AT ∪AF,T[[v≤ 4]] ∈ A

X F[[v≤ 1]],F[[v≤ 2]],T[[v≤ 3]],T[[v≤ 4]] ∈ A

The table identifies values that have not been removed from the domain of v

(X) and some properties that can be observed in A (no complete list). Note

that holes in the domain are not reflected in A (first vs second column).

In the bound encoding, constraints are decomposed into combinations of prim-

itive constraints representing conflict regions, that are sets of bounds on the do-

mains that contain no solution of the constraint. When the combination l1 ≤ v1 ≤
u1, . . . , ln ≤ vn ≤ un violates the constraint c ∈C, we encode a rule of the form

[[c]] ← [[v1≤u1]], . . . , [[vn ≤un]],not [[v1≤l1 −1]], . . . ,not [[vn ≤ln −1]] (4.10)

81

4. Translation-based Constraint Answer Set Solving

and repeat the process for each conflict region. A rule of the form (4.10) can be

read as whenever l1 ≤ v1 ≤ u1, . . . , ln ≤ vn ≤ un holds, i.e., a conflict region is satis-

fied, then the constraint is violated.

Example 4.5

Reconsider the setting from Example 4.2, i.e., two variables v1 and v2 with the

domains dom(v1) = [2,4] and dom(v2) = [1,3], and the constraint c = v1 ≤ v2.

The support encoding of c is given through the following set of rules.

[[c]] ← [[v2 ≤ 1]], not [[v1 ≤ 1]]

[[c]] ← [[v2 ≤ 2]], not [[v1 ≤ 2]]

[[c]] ← [[v2 ≤ 3]], not [[v1 ≤ 3]]

Verify that UP prunes the value 4 from v1’s domain and the value 1 from v2’s

domain, and hence, achieves a bound consistent assignment.

In general, UP on the bound encoding achieves bound consistency.

Theorem 4.4: Unit Propagation on the Bound Encoding

UP on the bound encoding enforces bound consistency on the original con-

straint.

Proof. Let c be any constraint and A be an assignment to the atoms in a bound rep-

resentation of the variables in the scope of the constraint, i.e., the atoms in the pro-

gram ASP-BOUND[scope(c)], representing the current set of bounds on the domain

of the variables. Suppose UP has been run to completion, extending A∪{F[[c]]} (i.e.,

the constraint c shall not be violated) to the conflict-free assignment A′. We show

by proof of contradiction that the domains are bound consistent.

Suppose there is a variable vi ∈ scope(c) such that if vi is assigned its mini-

mum value li or its maximum value ui , then there are no compatible values of the

other variables v1, . . . ,vi−1,vi+1, . . . ,vn ∈ scope(c) between their respective mini-

mum l1, . . . , li−1, li+1, . . . , ln and their maximum values u1, . . . ,ui−1,ui+1, . . . ,un , i.e.,

the domains are not bound consistent.

First, we analyse the case vi = ui , i.e., all assignments such that vi = ui are

in a conflict region l ′1 ≤ l1 ≤ v1 ≤ u1 ≤ u′
1, . . . , l ′n ≤ ln ≤ vn ≤ un ≤ u′

n encoded

by a rule r of the form (4.10). To begin with, we have [[v j ≤ l j − 1]] ∈ (A′)F and

[[v j ≤ u j]] ∈ (A′)T, representing l j ≤ v j and v j ≤ u j for each 1 ≤ j ≤ n. Since A′ is

a conflict-free, the nogoods represented by the channelling condition (4.8), most

importantly {F[[v j ≤ l j −1]],T[[v j ≤ l j −2]]} and {T[[v j ≤ u j]],F[[v j ≤ u j +1]]} guar-

82

4.5. Range Encoding

antee [[v j ≤ l j −2]] ∈ (A′)F and [[v j ≤ u j +1]] ∈ (A′)F. Repeatedly applying this argu-

ment eventually gets us [[v j ≤ l ′j −1]] ∈ (A′)F as well as [[v j ≤ u′
j]] ∈ (A′)T. But then

the nogood {Fbody(r),F[[v1 ≤ l ′1 −1)]],T[[v1,≤ u′
1]], . . . ,F[[vn ≤ l ′n −1]],T[[vn ≤ u′

n]]},

represented by r (defined above), guarantees [[vi ≤ u′
i]] ∈ (A′)F. Since ui < u′

i and,

again, by the nogoods represented through the channelling condition (4.8), we

have [[vi ≤ ui]] ∈ (A′)F, indicating that ui is not in the domain of vi . This contra-

dicts our assumption.

The second case, where vi is assigned its minimum value li , is symmetric.

Hence, we conclude that the domains are bound consistent as required. Since

at least one value must be in each domain, we have a set of non-empty domains

which are bound consistent.

4.5 Range Encoding

As a third generic encoding for variables and their domains we present the range

encoding. Similar to some work decomposing CSP (cf. Bessière et al., 2009a), in

the range encoding, we represent that a variable v ∈ V can take values from a

discrete interval [l ,u], i.e., a value between l and u (inclusive). For each vari-

able v and interval [l ,u] ⊆ [1,d] = dom(v) a new atom is introduced to repre-

sent whether the value of v is in the interval [l ,u]., i.e., l ≤ v ≤ u. We denote this

atom [[v∈ [l ,u]]]. An assignment to [[v∈ [l ,u]]] will indicate whether a value in the

range [1,d] can be assigned to v. For this purpose, [[v∈[l ,u]]] will be assigned true

if v takes any value between l and u, and false if every value in the interval [l ,u]

has been removed from the domain of v (or, rather, v takes a value outside of the

interval [l ,u]).

Definition 4.4: Range Encoding of Variables’ Domains

Our range encoding of the variables’ V domains, denoted ASP-RANGE[V], is

specified as follows, where v ∈V and 1 ≤ l ≤ u ≤ d .

[[v∈[l ,u]]] ← not [[v∈[1, l −1]]],not [[v∈[u +1,d]]] (4.11)

← [[v∈[l +1,u]]],not [[v∈[l ,u]]] (4.12)

← [[v∈[l ,u −1]]],not [[v∈[l ,u]]] (4.13)

For each variable v ∈V, we encode possible assignments by rules of the form (4.11)

where 1 ≤ l ≤ u ≤ d , that conclude v ∈ [l ,u] whenever there is no evidence for

v ∈ [1, l − 1] or v ∈ [u + 1,d] via default negation. In order to ensure a consistent

83

4. Translation-based Constraint Answer Set Solving

set of ranges, we also encode channelling conditions, that are v ∈ [l ,u] implies

v∈ [l −1,u] and v∈ [l ,u +1], by integrity constraints of the form (4.12) and (4.13),

respectively. In other words, the channelling conditions guarantee that whenever

the range [l ,u] contains a value from the domain of v, so does any range that in-

cludes [l ,u].

Overall, the range encoding introduces O (nd 2) new atoms and O (nd 2) rules,

where n = |V| and d is the largest domain size.

Example 4.6

Reconsider the variable v with dom(v) = [1,4]. The range encoding for v is

[[v∈[1,1]]] ← not [[v∈[2,4]]] [[v∈[1,2]]] ← not [[v∈[3,4]]]

[[v∈[1,3]]] ← not [[v∈[4,4]]] [[v∈[1,4]]] ←
[[v∈[2,2]]] ← not [[v∈[1,1]]], not [[v∈[3,4]]]

[[v∈[2,3]]] ← not [[v∈[1,1]]], not [[v∈[4,4]]]

[[v∈[2,4]]] ← not [[v∈[1,1]]]

[[v∈[3,3]]] ← not [[v∈[1,2]]], not [[v∈[4,4]]]

[[v∈[3,4]]] ← not [[v∈[1,2]]]

[[v∈[4,4]]] ← not [[v∈[1,3]]]

← [[v∈[1,1]]],not [[v∈[1,2]]] ← [[v∈[2,2]]],not [[v∈[1,2]]]

← [[v∈[1,2]]],not [[v∈[1,3]]] ← [[v∈[2,3]]],not [[v∈[1,3]]]

← [[v∈[1,3]]],not [[v∈[1,4]]] ← [[v∈[2,4]]],not [[v∈[1,4]]]

← [[v∈[2,2]]],not [[v∈[2,3]]] ← [[v∈[3,3]]],not [[v∈[2,3]]]

← [[v∈[2,3]]],not [[v∈[2,4]]] ← [[v∈[3,4]]],not [[v∈[2,4]]]

← [[v∈[3,3]]],not [[v∈[3,4]]] ← [[v∈[4,4]]],not [[v∈[3,4]]]

From this, we can construct the set of nogoods ∆ASP-RANGE[{v}]. The situation

where no value has been removed from v’s domain is represented in an assign-

ment A such that [[v∈[l ,u]]] 6∈ AT ∪AF for 1 ≤ l ≤ u ≤ 4 except for T[[v∈[1,4]]] ∈
A. An updated range [l ,u] for v’s domain is indicated by T[[v∈ [l ,u]]] ∈ A, for

instance, T[[v∈ [2,3]]] ∈ A if the new range is [2,3], and the channelling con-

ditions also ensure T[[v∈ [1,3]]],T[[v∈ [2,4]]] ∈ A. On the other hand, the ex-

clusion of a range [u, l] from v’s domain is indicated by F[[v∈ [l ,u]]] ∈ A, for

instance, F[[v∈ [2,3]]] ∈ A if the range [2,3] is excluded. The channelling con-

84

4.5. Range Encoding

ditions also ensure F[[v ∈ [2,2]]],F[[v ∈ [3,3]]] ∈ A. The value of v is fixed to i

when T[[v∈[i , i]]] ∈ A. Some examples are given in the following table.

1 2 3 4 Property of A

X X X X T[[v∈[1,4]]] ∈ A

X X T[[v∈[1,4]]],F[[v∈[2,3]]],F[[v∈[2,2]]],F[[v∈[3,3]]] ∈ A

X X T[[v∈ [1,4]]],F[[v∈ [1,2]]],T[[v∈ [3,4]]],F[[v∈ [1,1]]],F[[v∈ [2,2]]] ∈
A

X T[[v∈ [1,4]]],T[[v∈ [1,3]]],T[[v∈ [2,4]]],T[[v∈ [2,3]]],T[[v∈ [3,3]]] ∈
A

The table identifies values that have not been removed from the domain of v

(X) and some properties that can be observed in A (no complete list). Note

that, different to the bound encoding, holes in the domain are reflected in A.

Similar to the bound encoding, we encode constraints via conflict regions. We

represent a conflict region v1 ∈ [l1,u1], . . . ,vn ∈ [ln ,un] by a rule of the form

[[c]] ← [[v1∈[l1,u1]]], . . . , [[vn ∈[ln ,un]]] (4.14)

and repeat the process for each conflict region. The intuition behind a rule of the

form (4.14) is similar to the one from the bound encoding. That is, whenever l1 ≤
v1 ≤ u1, . . . , ln ≤ vn ≤ un holds, i.e., a conflict region is satisfied, then the constraint

is violated.

Example 4.7

Reconsider the setting from Example 4.2, i.e., two variables v1 and v2 with

domains dom(v1) = [2,4] and dom(v2) = [1,3], and the constraint c = v1 ≤ v2.

The range encoding of c is given through the following set of rules.

[[c]] ← [[v1∈[2,4]]], [[v2∈[1,1]]]

[[c]] ← [[v1∈[3,4]]], [[v2∈[1,2]]]

[[c]] ← [[v1∈[4,4]]], [[v2∈[1,3]]]

Verify that UP prunes the value 4 from v1’s domain and the value 1 from v2’s

domain, and hence, achieves a range consistent assignment.

In general, UP on the range encoding achieves range consistency.

85

4. Translation-based Constraint Answer Set Solving

Theorem 4.5: Unit Propagation on the Range Encoding

UP on the range encoding enforces range consistency on the original con-

straint.

Proof. Let c be any constraint and A be an assignment to the atoms in a range

representation of the variables in the scope of the constraint, i.e., the atoms in the

program ASP-RANGE[scope(c)], representing the current ranges on the domain of

the variables. Suppose UP has been run to completion, extending A∪ {F[[c]]} (i.e.,

the constraint c shall not be violated) to the conflict-free assignment A′. We show

by proof of contradiction that the domains are range consistent.

Suppose there is a variable vi ∈ scope(c) such that if vi is assigned a value

between the minimum value li and the maximum value ui of its domain, say

vi = k where li ≤ k ≤ ui , then there is no bound support in the other variables

v1, . . . ,vi−1,vi+1, . . .vn ∈ scope(c), i.e., there are no compatible values between their

respective minimum l1, . . . , li−1, li+1, . . . , ln and their maximum values u1, . . . ,ui−1,

ui+1, . . . ,un . That means, all assignments are in a conflict region

l ′1 ≤ l1 ≤ v1 ≤ u1 ≤ u′
1, . . . , l ′n ≤ ln ≤ vn ≤ un ≤ u′

n

encoded by a rule r of the form (4.14).

For each v j , where 1 ≤ j ≤ n, we have [[v j ∈ [l j ,u j]]] ∈ (A′)T representing v j ∈
[l j ,u j]. Since A′ is conflict-free, nogoods represented by the channelling condi-

tions (4.12) and (4.13), most importantly {T[[v j ∈ [l j ,u j]]],F[[v j ∈ [l j − 1,u j]]]} and

{T[[v j ∈ [l j ,u j]]],F[[v j ∈ [l j ,u j +1]]]} guarantee that [[v j ∈ [l ′j ,u′
j]]] ∈ (A′)T for all in-

tervals [l j ,u j] ⊆ [l ′j ,u′
j]. In turn, the nogood {Fbody(r),T[[v1 ∈ [l ′1,u′

1]]], . . . ,T[[vn ∈
[l ′n ,u′

n]]]}, represented by r (defined above), enforces [[vi ∈ [l ′i ,u′
i]]] ∈ (A′)F repre-

senting vi 6∈ [l ′i ,u′
i]. Since [k,k] ⊆ [l ′i ,u′

i] and, again, by the nogoods represented

in (4.12) and (4.13), we have [[vi ∈ [k,k]]] ∈ (A′)F. That means, the value k is not in

the domain of vi . This contradicts our assumption.

Hence, we conclude that the domains are range consistent as required. Since

at least one value must be in each domain, guaranteed by (4.11), we have a set of

non-empty domains which are range consistent.

4.6 Mixed Encodings and Primitive Constraints

Encodings that mix various representations of the variables V’s domains are also

possible, for instance, using the atoms from the value and bound encoding, i.e.,

86

4.6. Mixed Encodings and Primitive Constraints

the atoms from ASP-VALUE[V] and ASP-BOUND[V]. Another example is mixing the

representations from the bound and range encoding. While mixed encodings can

increase space complexity, they have their advantages.

– An encoding of the variables’ domains that makes use of more than just

one representation does introduce a multitude of new atoms. On the other

hand, such an encoding allows for the search heuristic of the ASP solvers

decision algorithm to select atoms from either representation. With the

success of search heuristics that are based on activity during the CONFLICT-

ANALYSIS in a conflict-driven solver (cf. Goldberg and Novikov, 2002), this is

of particular interest as the solver’s search can dynamically adjust to a rep-

resentation that produces results faster.

– It is inherent with some encodings, in particular the value encoding, that as-

signments made by the solver’s search heuristic can represent a very strong

commitment. For instance, it is often more beneficial to branch on bounds

(domain splitting; Dincbas et al., 1988) and, in turn, prune values to approx-

imate a solution, rather than to branch on exact values which may immedi-

ately lead to failure. On the other hand, some constraints may propagate

better with a value encoding at hand.

– Ultimately, if a CASP encoding includes constraints with ASP decomposi-

tions that are best represented with different representations of variables, it

is imperative to use mixed encodings.

Defining a mixed encoding is very easy. In the following, we will present two mixed

encodings, the value and bound encoding and the bound and range encoding.

Value-by-bound Encoding

To achieve a mixed representation of the value and bounds of the variables’ do-

mains, we can take the bound encoding, i.e., ASP-BOUND[V], and combine it with

rules of the form

[[v= i]] ← [[v≤ i]], not [[v≤ i −1]] (4.15)

where v ∈ V and 1 < i ≤ d . A rule of the form (4.15) defines an assignment to

a value via bounds. The mixed value and bound representation introduces O (nd)

new atoms and O (nd) rules, where n = |V| and d is the largest domain size.

87

4. Translation-based Constraint Answer Set Solving

Example 4.8

Reconsider the variable v with dom(v) = [1,4]. The mixed value and bound

encoding for v is

{[[v≤ 1]], [[v≤ 2]], [[v≤ 3]], [[v≤ 4]]} ←
← [[v≤ 1]],not [[v≤ 2]]

← [[v≤ 2]],not [[v≤ 3]]

← [[v≤ 3]],not [[v≤ 4]]

← not [[v≤ 4]]

[[v= 1]] ← [[v≤ 1]]

[[v= 2]] ← not [[v≤ 1]], [[v≤ 2]]

[[v= 3]] ← not [[v≤ 2]], [[v≤ 3]]

[[v= 4]] ← not [[v≤ 3]], [[v≤ 4]]

From this, we can construct the set of nogoods ∆ASP-VALUE-BY-BOUND[{v}]. The

situation where no value has been removed from v’s domain is represented

in an assignment A such that [[v = i]], [[v ≤ i]] 6∈ AT ∪ AF for i ∈ [1,4] except

for T[[v ≤ 4]] ∈ A. The update of lower and upper bounds on the values of v

works like in the bound encoding. The value of v is fixed to i when F[[v ≤
i −1]],T[[v ≤ i]] ∈ A and T[[v = i]] ∈ A. This dependency is being taken care of

by UP. Some examples are given in the table below.

1 2 3 4 Property of A

X X X X T[[v≤ 4]] ∈ A, [[v= 1]], [[v= 2]], [[v= 3]], [[v= 4]] 6∈ AT ∪AF

X X F[[v= 2]],F[[v= 3]],T[[v≤ 4]] ∈ A, [[v= 1]], [[v= 4]] 6∈ AT ∪AF

X X F[[v= 1]],F[[v= 2]],F[[v≤ 2]],T[[v≤ 4]] ∈ A

X T[[v= 3]],F[[v≤ 2]],T[[v≤ 3]] ∈ A

The table identifies values that have not been removed from the domain of v

(X) and an some properties that can be observed in A. Note that holes in the

domain are reflected in A.

Range-by-bound Encoding

Similarly, to achieve a mixed representation of the bounds and ranges of a vari-

ables’ domains, we can take the bound encoding, i.e., ASP-BOUND[V], and com-

88

4.6. Mixed Encodings and Primitive Constraints

bine it with rules of the form

[[v∈[l ,u]]] ← [[v≤ u]], not [[v≤ l −1]] (4.16)

where v ∈V and 1 ≤ l ≤ u ≤ d . Here, a rule of the form (4.16) maps bounds on the

domain of a variable to a range. We denote this encoding ASP-RANGE-BY-BOUND[V].

In total, the mixed bound and range representation introduces O (nd 2) new atoms

and O (nd 2) rules, where n = |V| and d is the largest domain size.

Example 4.9

Reconsider the variable v with dom(v) = [1,4]. The mixed bound and range

encoding for v is

{[[v≤ 1]], [[v≤ 2]], [[v≤ 3]], [[v≤ 4]]} ←
← [[v≤ 1]],not [[v≤ 2]]

← [[v≤ 2]],not [[v≤ 3]]

← [[v≤ 3]],not [[v≤ 4]]

← not [[v≤ 4]]

[[c∈[1,1]]] ← [[v≤ 1]] [[c∈[1,2]]] ← [[v≤ 2]]

[[c∈[1,3]]] ← [[v≤ 3]] [[c∈[1,4]]] ← [[v≤ 4]]

[[c∈[2,2]]] ← not [[c≤ 1]], [[v≤ 2]]

[[c∈[2,3]]] ← not [[c≤ 1]], [[v≤ 3]]

[[c∈[2,4]]] ← not [[c≤ 1]], [[v≤ 4]]

[[c∈[3,3]]] ← not [[c≤ 2]], [[v≤ 3]]

[[c∈[3,4]]] ← not [[c≤ 2]], [[v≤ 4]]

[[c∈[4,4]]] ← not [[c≤ 3]], [[v≤ 4]]

From this, we can construct the set of nogoods ∆ASP-RANGE-BY-BOUND[{v}]. The

situation where no value has been removed from v’s domain is represented in

an assignment A such that [[v≤ i]] 6∈ AT∪AF for i ∈[1,3] and [[v∈[l ,u]]] 6∈ AT∪AF

for 1 ≤ l ≤ u ≤ 4 except for T[[v∈ [1,4]]] ∈ A. The update of lower and upper

bounds on the values of v works like in the bound encoding, but also reflected

by an updated range [l ,u] for v’s domain. This dependency is being taken care

of by UP. For instance, F[[v ≤ 1]],T[[v ≤ 3]],T[[v ∈ [2,3]]] ∈ A if the new lower

89

4. Translation-based Constraint Answer Set Solving

bound is 2 and the new upper bound is 3. Some more examples are given in

the table below.

1 2 3 4 Property of A

X X X X T[[v∈[1,4]]],T[[v≤ 4]] ∈ A

X X T[[v∈[1,4]]],T[[v≤ 4]],F[[v∈[2,3]]] ∈ A

X X F[[v∈[1,2]]],F[[v≤ 2]],T[[v≤ 4]] ∈ A

X F[[v∈[1,2]]],F[[v≤ 2]],T[[v≤ 3]],T[[v≤ 4]] ∈ A,T[[v∈[3,3]]] ∈ A

The table identifies values that have not been removed from the domain of v

(X) and some properties that can be observed in A (no complete list). Note

that holes in the domain are not reflected in A.

Range Support Encoding

In principle, we can define a support encoding based on the bound or range rep-

resentation of the variables’ domains.

A (binary) range support for a variable v to take a value from the range [l ,u]

across a constraint c ∈C is the set of domain ranges [l1,u1], . . . , [lm ,um] of another

variable in v′ ∈ scope(c) \ {v}, where ui < li+1 for 1 ≤ i < m, that do not violate the

constraint if v ∈ [li ,ui]. Let c ∈ C and scope(c) = (v1, . . . ,vn). To achieve a sup-

port encoding of c that works on the range representation of the domains of the

variables in its scope, we encode range support by a rule of the form

[[c]] ← [[v ∈ [l ,u]]],not [[v′ ∈ [l1,u1]]], . . . ,not [[v′ ∈ [lm ,um]]] (4.17)

where the set of domain ranges [l1,u1], . . . , [lm ,um] for variable v′ form the range

support for v ∈ [l ,u] across c. A rule of the form (4.17) can be read as whenever

v ∈ [l ,u], then at least one of its range supports must hold, otherwise the con-

straint is violated. In the range support encoding of a constraint c ∈C, we encode

range support for each pair of distinct variables v,v′ ∈ scope(c), and for each range

[l ,u] ⊆ dom(v).

Primitive Constraints

A last remark concerns a simple optimisation for translating CASP to ASP. While

we have introduced atoms of the form [[v = i]], [[v ≤ i]] and [[v ∈ [l ,u]]] as value,

bound, and range representations of the variable v’s domain, respectively, they

can also be seen as primitive constraints. Different from decomposing constraints

90

4.7. Related Work

via forbidden combination of values or regions, a primitive constraint does not

require decomposition. Instead, the corresponding variable encoding can be used

directly, without introducing auxiliary constraint atoms.

Example 4.10

Consider any constraint program P= (V,D,C,Π) such that v≤̇i ∈C is the con-

straint that the value of v ∈ V must be smaller or equal i , and Π contains the

rule r

p ← q, [[v≤̇i]]

where [[v≤̇i]] is a constraint atom representing v≤̇i , i.e., constraint([[v≤̇i]]) =
v≤̇i . (We use v≤̇i to distinguish the constraint atom [[v≤̇i]] from the bounds

representation of v’s domain.) The bound encoding of v≤̇i is given by the rules

[[v≤̇i]] ← not [[v≤ i]]

[[v≤̇i]] ← not [[v≤̇i]]

where [[v≤ i]] is from the bound representation of v’s domain.

We can substitute above encoding by simply replacing every occurrence

of [[v≤̇i]] inΠwith [[v≤ i]] inΠ. The rule f for instance, changes to

p ← q, [[v≤ i]].

Similarly, in the bound encoding of the constraint v>̇i ∈C that the value of v ∈
V must be strictly greater than i , the constraint atom [[v>̇i]] may be substi-

tuted with the default negated atom not [[v≤ i]].

Whilst this optimisation is worthwhile in a practical implementation of our ap-

proach, note that it goes slightly beyond Definition 4.1.

4.7 Related Work

ASP was put forward as a paradigm for modelling and solving CSP by Niemelä

(1999). Niemelä also presented a systematic, straightforward mapping from CSP

to ASP, including an encoding of constraints via either allowed or forbidden com-

bination of values. This is reflected in our value encoding. We have demonstrated

in Section 4.2 that this approach can hinder propagation, e.g., arc consistency on

the original constraint cannot be achieved through UP. A consequence of the work

91

4. Translation-based Constraint Answer Set Solving

by You and Hou (2004) is that this gap can be closed by employing lookahead, i.e.,

extending propagation with failed-literal detection. Whilst UP runs in linear-time,

using lookahead has quadratic costs in the size of the encoding. We devised sup-

port, bound, and range encodings as alternatives in Sections 4.3–4.5 that only re-

quire UP.

Decompositions of constraints have been previously studied in the related

area of SAT. Walsh (2000) analysed two different mappings of binary constraints

into SAT, i.e., the direct encoding and the log encoding. While the direct encoding

is reflected by our value encoding, the log encoding represents the bit-vector of

each variable. Although the log encoding is more space-efficient, UP on the di-

rect encoding prunes more possible values than UP on the log encoding (Walsh,

2000). Gent (2002) proposed to encode support rather than encoding conflicts,

and showed that UP can maintain arc consistency on the original constraint. This

technique was generalised to relational k-arc consistency by Bessière et al. (2003).

When encoding CSP into SAT, the condition that a variable cannot take more

than one value is sometimes ignored when it is not necessary for proving the exis-

tence of a solution. This may be of benefit in terms of space complexity, as naïve

SAT encodings of the at least-one condition requires quadratic space in the size

of the domain. Though, linear-size encodings that introduce auxiliary atoms ex-

ist (cf. Sinz, 2005). Similarly, in our context, we can drop the cardinality constraint

rule (4.3) from the value encoding. In effect, the one-to-one correspondence be-

tween the answer sets of a CSP’s ASP encodings and the CSP’s configurations is

weakened (cf. Definition 4.1): If an answer set is found that represents an assign-

ment of two values to a variable v then a configuration exists.

Apart from the direct encoding, representing bounds on the variables’ domains

is also common in the area of SAT. Using this method, CSPs have been successfully

solved with the award-winning system sugar (Tamura et al., 2006).

To our knowledge, the only related work that represents domain ranges in a

Boolean variable was conducted by Bessière et al. (2009a) in their decomposition

of the ALL-DIFFERENT constraint into cardinality constraints. We will follow their

idea when we present a specialised ASP encoding for ALL-DIFFERENT in the next

chapter.

92

4.8. Conclusions

4.8 Conclusions

In this chapter, we have presented a translation-based approach to constraint an-

swer set solving. We began with laying the theoretical foundations of the key idea,

i.e., to compile the variables’ domains and constraints of a constraint program

into ASP. By exploiting Lifschitz and Turner’s splitting set theorem, the problem

of computing the constraints answer sets of a constraint program can then be re-

duced to computing the answer sets of a single, joint ASP encoding for which effi-

cient off-the-shelf solvers are available, in particular, conflict-driven solvers.

We then started with translating CSP into ASP by presenting various generic

encodings of constraints based on the value, bound, range, or mixed representa-

tion of the variables’ domains, and investigated the level of local consistency ASP

inference can maintain on the original constraint. I.e., applying UP on the generic

support, bound, or range encoding achieves arc, bound, or range consistency, re-

spectively.

The applicability of our technique is not limited to CASP: To our knowledge,

previous work on modelling with ASP was not concerned with the propagation

strength of their encodings. The idea of studying the effect of ASP inference in

terms of local consistency on the condition encoded in ASP constructs might add

to understanding the interaction between formulation and algorithm in ASP in

general.

We will proceed with our translation-based approach to constraint answer set

solving by investigating more specialised ASP encodings for important global con-

straints in the next chapter.

93

Chapter 5

Encoding Global Constraints with

Answer Set Programming

In the previous chapter, we have presented a translation-based approach to con-

straint answer set solving. In particular, we have studied four generic encodings:

the value, support, bound, and range encoding. In turn, we demonstrated that the

UP inference of any ASP solver on these encodings provides a propagator of the

original constraint that can hinder propagation, or achieve arc, bound, and range

consistency, respectively.

We here proceed with our investigation by considering more specialised, yet

simple encodings for important global constraints, that are, ALL-DIFFERENT (van

Hoeve, 2001), GRAMMAR and related constraints (Pesant, 2004; Sellmann, 2006;

Quimper and Walsh, 2006), and REACHABILITY (Dooms et al., 2005). We shall see

that the ASP inference on our encodings can simulate the effect of complex prop-

agation algorithms from CP with similar asymptotic run time complexity.

5.1 The ALL-DIFFERENT Constraint

We start with ALL-DIFFERENT (van Hoeve, 2001), one of the most important (global)

constraints. Because of its importance, ALL-DIFFERENT represents a crucial bench-

mark for our translation-based approach to constraint answer set solving. We

make several contributions to this line of research.

– First, we demonstrate that the ALL-DIFFERENT constraint can be modelled

straightforwardly with ASP using cardinality constraint rules. We show that,

95

5. Encoding Global Constraints with Answer Set Programming

for this encoding, UP inference maintains arc consistency, and provide the-

oretical results on asymptotic run time complexity.

– Then, we present alternative ASP encodings based on a range or bound rep-

resentation of the variables’ domains. Again, we prove their properties in

terms of local consistency achieved by UP and its run time complexity. In

particular, the UP inference of any ASP solver can simulate the effect of com-

plex constraint propagation algorithms like the one in (Leconte, 1996).

– Finally, we demonstrate applicability on problems from the CSPLib (Gent

and Walsh, 1999), a large problem library widely used for benchmarking in

CP. Our results demonstrate the competitiveness of our approach.

The effect of ALL-DIFFERENT is that a set of variables take all different values.

Definition 5.1: ALL-DIFFERENT

Given an assignment A, the constraint ALL-DIFFERENT({v1, . . . ,vn}) is satisfied

if and only if A(vi) 6= A(v j) for 1 ≤ i < j ≤ n.

A key concept in propagating ALL-DIFFERENT is the notion of a Hall set (Hall, 1935).

This is a set of m values which completely contains the domains of ≥ m variables.

Given an ALL-DIFFERENT constraint c, H is a Hall set if |{v ∈ scope(c) | dom(v) ⊆
H }| ≥ |H |. If the strict inequality holds, then c is violated. If the equality holds, then

in any domain consistent assignment, the variables whose domains are contained

in the Hall set consume all the values in the Hall set, whilst other variables must

find values outside the Hall set.

It is not practical to check every single one of the 2|d | sets for their Hall prop-

erty. A propagator for ALL-DIFFERENT that determines Hall sets in polynomial time

exists (Régin, 1994), but it cannot be simulated efficiently with UP (Bessière et al.,

2009b).

Arc Consistent Encoding of ALL-DIFFERENT

In order to achieve an arc consistent assignment in polynomial time, we can limit

ourselves to Hall sets of size 1, that are, represented by the domain of a variable

whose value is fixed. All other variables must find values outside the Hall set, in

any arc consistent assignment.

Example 5.1

Consider an ALL-DIFFERENT constraint over the variables v1,v2,v3,v4 with the

96

5.1. The ALL-DIFFERENT Constraint

following domains:

1 2 3 4

v1 X

v2 X X X

v3 X X X X

v4 X X

{2} is a Hall set of size 1 as the domain of a single variable, v1, is completely

contained within it. Therefore, the value 2 can be removed from the domains

of all the other variables. This leaves the variable v4 with the value 3, and we

obtain another Hall set of size 1, i.e., the set {3}. Removing 3 from the domains

of the other variables leaves v2 with the value 1. In turn, this new Hall set leads

to 4 being the only remaining value of v4.

As no further pruning is possible, this leaves the following arc consistent

domains:

1 2 3 4

v1 X

v2 X

v3 X

v4 X

We can use cardinality constraint rules to express the condition induced by Hall

sets of size 1 straightforwardly into ASP.

Definition 5.2: ASP Encoding of ALL-DIFFERENT Constraints

Our ASP encoding of the ALL-DIFFERENT({v1, . . . ,vn}) constraint is

[[ALL-DIFFERENT({v1, . . . ,vn})]] ← 2 { [[v1 = i]] . . . , [[vn = i]] } (5.1)

where 1 ≤ i ≤ d . We denote the encoding by ASP-ALL-DIFFERENT[{v1, . . . ,vn}].

Observe that our encoding of ALL-DIFFERENT introduces only O (d) rules, is quite

simple, yet ASP inference enforces arc consistency.

Theorem 5.1: Arc Consistency on ALL-DIFFERENT via Unit Propagation

UP on ASP-ALL-DIFFERENT[{v1, . . . ,vn}] ∪ ASP-VALUE[{v1, . . . ,vn}] enforces arc

consistency on the binary decomposition of ALL-DIFFERENT({v1, . . . ,vn}).

97

5. Encoding Global Constraints with Answer Set Programming

Proof. The proof strategy is to show that if an assignment to a variable is possible

then, for each other variable, there is a value in the domain that satisfies the binary

decomposition of the constraint.

Let A be an assignment to the atoms in a value representation of the variables

in the scope of the constraint, i.e., the atoms in the program ASP-VALUE[{v1, . . . ,vn}],

representing the current set of values in the domain of the variables. Suppose UP

has been run to completion, extending A ∪ {F[[ALL-DIFFERENT({v1, . . . ,vn})]] (i.e.,

the ALL-DIFFERENT constraint shall not be violated) to the assignment A′. We show

by proof of contradiction that the domains are arc consistent.

Suppose there is a variable vi in the scope of the constraint and a value k that

has not been removed from its domain, and there is some other variable v j where

1 ≤ j ≤ n with j 6= i , that has no compatible value, i.e., the domains are not arc con-

sistent. In particular, we have [[vi = k]] 6∈ (A′)F whilst [[v j = l]] ∈ (A′)F for 1 ≤ l ≤ d

where l 6= k. Then, the nogood {F[[v j = l]] | 1 ≤ l ≤ d} represented by (4.2) guar-

antees [[v j = k]] ∈ (A′)T, and we have that the corresponding cardinality constraint

rules (5.1) in ASP-ALL-DIFFERENT[{v1, . . . ,vn}] ensure [[vi = k]] ∈ (A′)F. That means,

the value k is not in the domain of vi . This contradicts our assumption.

Hence, we conclude that the domains are arc consistent as required. Since

at least one value must be in each domain, guaranteed by (4.2), we have a set of

non-empty domains which are arc consistent.

We now address run time complexity.

Theorem 5.2

UP on ASP-ALL-DIFFERENT[{v1, . . . ,vn}]∪ ASP-VALUE[{v1, . . . ,vn}] runs in O (nd)

time down any branch of the search tree.

Proof. For each of the n variables, there are O (d) constant-size nogoods and one

nogood of size O (d) represented by ASP-VALUE[{v1, . . . ,vn}]. On the other hand, for

each of the d values, there is one cardinality constraint rule containing n atoms.

By Theorems 2.1 and 2.6 we obtain, down any branch of the search tree, a total

running time complexity given by O (nd)+O (nd) =O (nd).

Notice that the size of an individual ASP construct like cardinality constraint rules

can be more or equally relevant for the complexity of propagation than the num-

ber of rules in the entire encoding.

98

5.1. The ALL-DIFFERENT Constraint

Range Consistent Encoding of ALL-DIFFERENT

A propagator for the ALL-DIFFERENT constraint that enforces range consistency

pruning Hall intervals has been proposed by Leconte (1996). An interval [l ,u] is a

Hall interval if [l ,u] is a Hall set, i.e., for an ALL-DIFFERENT constraint c we have

|{v ∈ scope(c) | dom(v) ⊆ [l ,u]}| ≥ |u − l + 1|. In other words, a Hall interval [l ,u]

completely contains the domains of ≥ u−l+1 variables. If the equality holds, then

in any range consistent assignment, the variables whose domains are contained in

the Hall interval consume all the values in the Hall interval, whilst other variables

must find values outside the Hall interval.

We illustrate the effect of Hall intervals in the following example.

Example 5.2

Consider an ALL-DIFFERENT constraint over the variables v1,v2,v3,v4 with the

following bound consistent domains:

1 2 3 4

v1 X X

v2 X X X X

v3 X X X X

v4 X X

[2,3] is a Hall interval of size 2 as the domains of two variables, v1 and v4, are

completely contained within it. We can thus remove [2,3] from the domains

of v2 and v3. This leaves the following range consistent domains:

1 2 3 4

v1 X X

v2 X X

v3 X X

v4 X X

As an alternative to a specialised propagator for ALL-DIFFERENT like Leconte’s,

Bessière et al. (2009a) proposed the decomposition of ALL-DIFFERENT into car-

dinality constraints that check whether no interval [l ,u] contains more variables

than its size. Exploiting Hall intervals, Bessière et al. showed that maintaining

domain consistency on their decomposition enforces range consistency on the

original constraint.

99

5. Encoding Global Constraints with Answer Set Programming

Fortunately, most ASP systems natively support cardinality constraint rules.

Following the idea of Bessière et al., we propose a simple ASP encoding based

on our range representation of the variables’ domains from the previous chap-

ter.

Definition 5.3: Range Consistent ASP Encoding of ALL-DIFFERENT Constraints

Our range consistent ASP encoding of the ALL-DIFFERENT({v1, . . . ,vn}) con-

straint c is

[[c]] ← u − l +2 { [[v1 ∈ [l ,u]]], . . . , [[vn ∈ [l ,u]]] } (5.2)

where 1 ≤ l ≤ u ≤ d . We denote it by ASP-ALL-DIFFERENT-RC[{v1, . . . ,vn}].

This simple encoding of ALL-DIFFERENT permits us to simulate the effect of com-

plex constraint propagation algorithms like the one in (Leconte, 1996).

Theorem 5.3: Range Consistency on ALL-DIFFERENT via Unit Propagation

UP on ASP-ALL-DIFFERENT-RC[{v1, . . . ,vn}] ∪ ASP-RANGE[{v1, . . . ,vn}] enforces

range consistency on ALL-DIFFERENT({v1, . . . ,vn}).

Proof. Let A be an assignment to the atoms in a range representation of the vari-

ables in the scope of the constraint, i.e., the atoms ASP-RANGE[{v1, . . . ,vn}], rep-

resenting the current ranges on the domain of the variables. Suppose UP has

been run to completion, extending A∪ {F[[ALL-DIFFERENT({v1, . . . ,vn})]]} (i.e., the

ALL-DIFFERENT constraint shall not be violated) to the conflict-free assignment A′.
Leconte (1996) has shown that the ALL-DIFFERENT constraint is range consistent

if and only if every variable whose domains are not fully contained within a Hall

interval has no value from the Hall interval it its domain. We show by proof of

contradiction that the domains are range consistent.

Suppose there is a variable vi in the scope of the constraint, such that if vi

is assigned a value between the minimum value li and the maximum value ui

of its domain, say vi = k where li ≤ k ≤ ui , then there is no bound support in

the other variables v1, . . . ,vi−1,vi+1, . . .vn , i.e., there are no compatible values be-

tween their respective minimum l1, . . . , li−1, li+1, . . . , ln and their maximum values

u1, . . . ,ui−1,ui+1, . . . ,un . In particular, there is a Hall interval [l ,u] such that 1 ≤ l ≤
k ≤ u ≤ d and for the variables with indices H = { j | [[v j ∈ [l ,u]]] ∈ (A′)T, i 6= j } we

have |H | = u−l+1, i.e., vi is outside of the Hall interval. The truth of [[v j ∈ [l ,u]]] for

each i ∈ H in guaranteed by nogoods represented by (4.12) and (4.13) because A′ is

conflict-free, and hence, the truth of smaller domain ranges, say [l j ,u j] ⊆ [l ,u] was

100

5.1. The ALL-DIFFERENT Constraint

channelled accordingly. Since [[ALL-DIFFERENT({v1, . . . ,vn})]] ∈ (A′)F, however, we

have that the corresponding cardinality constraint rule (5.2) ensures [[v` ∈ [l ,u]]] ∈
(A′)F for each ` 6∈ H where 1 ≤ `≤ n. In particular, [[vi ∈ [l ,u]]] ∈ (A′)F. Again, by the

nogoods represented through (4.12) and (4.13), we have [[vi ∈ [k,k]]] ∈ (A′)F. That

means, the value k is not in the domain of vi . This contradicts our assumption.

Hence, we conclude that the domains are range consistent as required. Since

at least one value must be in each domain, guaranteed by (4.11), we have a set of

non-empty domains which are range consistent.

In fact, ASP inference on our encoding has the same asymptotic run time com-

plexity as Leconte’s specialised algorithm.

Theorem 5.4

UP on ASP-ALL-DIFFERENT-RC[{v1, . . . ,vn}] ∪ ASP-RANGE[{v1, . . . ,vn}] runs in

O (nd 2) time down any branch of the search tree.

Proof. For each of the n variables, there are O (d 2) nogoods of constant size repre-

sented by ASP-RANGE[{v1, . . . ,vn}]. On the other hand, for each of the d 2 Hall inter-

vals, there is one cardinality constraint rule in ASP-ALL-DIFFERENT-RC[{v1, . . . ,vn}]

containing n atoms. By Theorems 2.1 and 2.6 we obtain, down any branch of the

search tree, a total running time complexity given by O (nd 2)+O (nd 2) = O (nd 2).

Bound Consistent Encoding of ALL-DIFFERENT

In order to achieve a decomposition of ALL-DIFFERENT that can only prune bounds,

Bessière et al. (2009a) proposed constraints that are woken whenever the bounds

on the variables’ domains change, and showed that maintaining bounds consis-

tency on the resulting reformulation enforces bounds consistency on the original

constraint. To reflect their idea within our context, we make a simple change to

the way domains are represented. Recall that the bound encoding of the variables’

domains can be mixed with a range representation, as given through RANGE-BY-

BOUND that we have introduced in the previous chapter.

Then, UP on ASP-ALL-DIFFERENT-RC[{v1, . . . ,vn}] has a different effect.

Theorem 5.5: Bound Consistency on ALL-DIFFERENT via Unit Propagation

UP on ASP-ALL-DIFFERENT-RC[{v1, . . . ,vn}]∪ ASP-RANGE-BY-BOUND[{v1, . . . ,vn}]

enforces bound consistency on ALL-DIFFERENT({v1, . . . ,vn}).

101

5. Encoding Global Constraints with Answer Set Programming

Proof. The proof follows the ones of Theorems 4.4 and 5.3, as the decompositions

for range and bound consistency both encode the same conflict regions.

Let A be an assignment to the atoms in a mixed bound and range represen-

tation of the variables in the scope of the constraint, i.e., the atoms in the pro-

gram ASP-RANGE-BY-BOUND[{v1, . . . ,vn}], representing the current domains of the

variables. Suppose UP has been run to completion, extending the assignment

A∪ {F[[ALL-DIFFERENT({v1, . . . ,vn})]]} (i.e., the ALL-DIFFERENT constraint shall not

be violated) to the conflict-free assignment A′. We show by proof of contradiction

that the domains are bound consistent.

Suppose there is a variable vi , where 1 ≤ i ≤ n, such that if vi is assigned its

minimum value li or its maximum value ui , then there are no compatible values

of the other variables v1, . . . ,vi−1,vi+1, . . . ,vn between their respective minimum

l1, . . . , li−1, li+1, . . . , ln and their maximum values u1, . . . ,ui−1,ui+1, . . . ,un , i.e., the

domains are not bound consistent.

First, we analyse the case vi = ui , i.e., vi is assigned its maximum value ui .

Then, there is a Hall interval [l ,u] such that 1 ≤ l ≤ ui ≤ u ≤ d and for the variables

with indices H = { j | [[v j ∈ [l ,u]]] ∈ (A′)T, i 6= j } we have |H | = u − l + 1, i.e., vi is

outside of the Hall interval. The assignments T[[v j ≤ u]] and F[[v j ≤ l −1]] for each

j ∈ H are guaranteed by nogoods represented by (4.8) because A′ is conflict-free,

and hence, the truth value of tighter bounds on the domains, say l ≤ l j ≤ u j ≤ u,

was channelled accordingly. In turn, nogoods {Fbody(r),T[[v j ≤ u]],F[[v j ≤ l −1]]}

and {F[[v j ∈ [l ,u]]],Tbody(r)} represented by rules r of the form (4.16) guarantee

[[v j ∈ [l ,u]]] ∈ (A′)T. Since [[ALL-DIFFERENT({v1, . . . ,vn})]] ∈ (A′)F, however, we have

that the corresponding cardinality constraint rule (5.2) ensures [[v` ∈ [l ,u]]] ∈ (A′)F

for each ` 6∈ H where 1 ≤ ` ≤ n. In particular, [[vi ∈ [l ,u]]] ∈ (A′)F. Observe that

we have [[vi ≤ l −1]] ∈ (A′)F because [[vi ≤ li −1]] ∈ (A′)F. Then, the nogoods rep-

resented by (4.16) guarantee [[vi ≤ u]] ∈ (A′)F, and through channelling (4.8) we

get [[vi ≤ ui]] ∈ (A′)F, i.e., the value ui is not in the domain of vi . This contradicts

our assumption.

The second case, where vi is assigned its minimum value li , is symmetric.

Hence, we conclude that the domains are bound consistent as required. Since

at least one value must be in each domain, guaranteed by (4.9), we have a set of

non-empty domains which are range consistent.

We now address run time complexity.

102

5.1. The ALL-DIFFERENT Constraint

Theorem 5.6

UP on ASP-ALL-DIFFERENT-RC[{v1, . . . ,vn}]∪ASP-RANGE-BY-BOUND[{v1, . . . ,vn}]

runs in O (nd 2) time down any branch of the search tree.

Proof. For each of the n variables, there are O (d 2) nogoods of constant size rep-

resented by ASP-RANGE-BY-BOUND[{v1, . . . ,vn}]. On the other hand, for each of the

d 2 Hall intervals, there is one cardinality constraint rule containing n atoms. By

Theorems 2.1 and 2.6 we obtain, down any branch of the search tree, a total run-

ning time complexity given by O (nd 2)+O (nd 2) =O (nd 2).

Although our range and bound consistency encodings of ALL-DIFFERENT have the

same worst-case space complexity, i.e., they share the rules of the form (5.2), Theo-

rems 5.3 and 5.5 report different effects from UP. This is due the way ranges are en-

coded. For instance, it is easy to see that UP on ASP-RANGE-BY-BOUND[{v1, . . . ,vn}]

does not propagate gaps in the domains, whilst ASP-RANGE[{v1, . . . ,vn}] does. On

the other hand, the former contains only O (nd) rules, compared to the O (nd 2)

rules of the latter.

We can further limit the size of our decompositions by using an upper bound

h on the size of Hall intervals. The resulting encoding with only those cardinality

constraint rules (5.2) for which u − l +1 ≤ h detects Hall intervals of size at most

h. This will result in a smaller encoding, in exchange of achieving a weaker level of

consistency.

Experimental Results

To test the competitiveness of our translation-based approach to CASP solving, we

have conducted experiments on hard combinatorial problems that are tradition-

ally modelled with ALL-DIFFERENT and PERMUTATION constraints. The PERMUTA-

TION constraint is a special case of ALL-DIFFERENT when the number of variables

is equal to the number of all their possible values. An ASP decomposition of the

constraint c = PERMUTATION({v1, . . . ,vn}) extends ASP-ALL-DIFFERENT[{v1, . . . ,vn}]

by

[[c]] ← not [[v1 = i]], . . . , not [[vn = i]] (5.3)

and ASP-ALL-DIFFERENT-RC[{v1, . . . ,vn}] by rules of the form

[[c]] ← d −u + l { not [[v1 ∈ [l ,u]]], . . . , not [[vn ∈ [l ,u]]] } (5.4)

where 1 ≤ l ≤ u ≤ k. This can increase propagation.

103

5. Encoding Global Constraints with Answer Set Programming

Example 5.3

Consider a PERMUTATION constraint over the variables v1,v2,v3,v4 with the

following domains:

1 2 3 4

v1 X X

v2 X X X X

v3 X X X X

v4 X X

Observe that there is no Hall interval (of size < 4). However, the effect of

PERMUTATION beyond ALL-DIFFERENT, respectively the addition of cardinality

constraint rules of the form (5.3) or (5.4), is that the Hall property is also main-

tained for intervals of removed values. For instance, [2,3] is such an interval of

size 2 as the domains of two variables, v1 and v3, does not include any value

from it. Hence, the domains of the remaining variables must be contained

in [2,3]. This leaves the following domains:

1 2 3 4

v1 X X

v2 X X

v3 X X

v4 X X

Benchmark problems for our experiments stem from the CSPLib (Gent and Walsh,

1999), a large problem library widely used for benchmarking by the CP commu-

nity. It is important to note that although the problem domains seem academic,

they are important because they appear hidden in many real-world applications.

For instance, the quasigroup completion problem is included in scheduling prob-

lems.

Our analysis considers the ASP decompositions that we have studied in this

chapter. We denote the support encoding of the global constraints by S, the bound

encoding of the global constraints by B , and the range encoding of the global con-

straints by R. To explore the impact of small Hall intervals, we also tried Bk and Rk ,

a decomposition of the ALL-DIFFERENT constraint with only those cardinality con-

straint rules (5.2) for which u− l +1 ≤ k. The consistency achieved by Bk and Rk is

therefore weaker than bound and range consistency, respectively. An implemen-

104

5.1. The ALL-DIFFERENT Constraint

tation is available as a preliminary version of the CASP system inca2 introduced in

the sequel of this thesis.

We also include the hybrid systems clingcon (0.1.2)3, and ezcsp (1.6.9)4 in our

empirical analysis. While clingcon extends the ASP system clingo (2.0.2)3 with the

CP library gecode (2.2.0)5, ezcsp combines the grounder gringo (2.0.3)3 and ASP

solver clasp (1.3.0)3 with sicstus (4.0.8)6 as the CP solver. Note that clingo stands

for clasp on gringo and combines both systems in a monolithic way. Hence, to

provide a representative comparison with clingcon and ezcsp, we selected the ASP

system clingo (2.0.3) to solve our decompositions. We also do not separate time

spend on grounding/decomposing and solving the problem, because we found

the grounder’s share of the overall run time is largely insignificant on our bench-

mark sets.

To compare the performance of CASP solvers against CP systems, we also re-

port results of gecode (3.2.0) on the same model, using the smallest domain vari-

able selection heuristic. This is also the default in clingcon. We also applied the

default propagation algorithms in clingcon, ezcsp, and gecode, all of which achieve

arc consistency on the binary decomposition of ALL-DIFFERENT.

Experiments were run on a 2.00 GHz PC under Linux. We report results in

seconds, where each run was limited to 600 s time and 1 GByte RAM. Run times

below 0.1s were always rounded to 0.1s.

Pigeon Hole Problems

The famous pigeon hole problem (PHP) is to show that it is not possible to assign

n pigeons to n − 1 holes if each pigeon must be assigned a distinct hole. It is a

classic example of a benchmark that aims at the worst-case for many methods

that compute ALL-DIFFERENT.

As can be seen from the results shown in Table 5.1, our bound and range en-

codings perform significantly faster compared to weaker encodings, the hybrid

CASP systems, and gecode, all of which are limited in their pruning by the prop-

agation they achieve. As can be expected on such problems, detecting large Hall

intervals is essential.

2http://potassco.sourceforge.net/labs.html
3http://potassco.sourceforge.net/
4http://www.mbal.tk/ezcsp/
5http://www.gecode.org/
6http://www.sics.se/sicstus/

105

http://www.mbal.tk/ezcsp/
http://www.gecode.org/
http://www.sics.se/sicstus/

5. Encoding Global Constraints with Answer Set Programming

Table 5.1: Runtime results in seconds for PHP.

n S B1 B2 B3 B R3 R ezcsp clingcon gecode
10 5.4 0.7 0.5 0.1 0.1 0.2 0.1 1.8 1.4 0.9
11 46.5 3.5 1.5 1.0 0.1 1.9 0.1 16.7 15.2 9.0
12 105.0 14.8 7.1 3.9 0.1 2.6 0.1 183.9 172.5 104.1
13 — 91.4 68.6 25.4 0.1 30.4 0.1 — — —
14 — — 350.1 125.0 0.1 196.9 0.1 — — —
15 — — — — 0.1 — 0.1 — — —
16 — — — — 0.1 — 0.1 — — —

Quasigroup Completion

A quasigroup is an algebraic structure (Q, ·), where Q is a set and · is a binary oper-

ation on Q such that for every pair of elements a,b ∈Q there exist unique elements

x, y ∈ Q which solve the equations a · x = b and y · a = b. The order n of a quasi-

group is defined by the number of elements in Q. A quasigroup can be represented

by an n ×n-multiplication table, where for each pair a,b the table gives the result

of a ·b, and it defines a Latin square. This means that each element of Q occurs ex-

actly once in each row and each column of the table. The quasigroup completion

problem (QCP) is to determine whether a partially filled table can be completed

in such a way that a multiplication table of a quasigroup is obtained. Randomly

generated QCPs have been proposed as a benchmark domain for CP systems by

(Gomes and Selman, 1997) because they combine the features of purely random

problems and highly structured problems.

In this experiment, we include settings for gecode that enforce bound and do-

main consistency on ALL-DIFFERENT, denoted gecodeBC and gecodeDC , respec-

tively. Table 5.2 gives the run time for solving QCPs of order n = 20. The left-most

column gives the ratio of preassigned entries.

Our results demonstrate an easy-hard-easy phase transition (Cheeseman et al.,

1991) behaviour in the systems ezcsp, clingcon, gecode, and gecodeBC , while our

ASP encodings and gecodeDC (not shown) solve all problems within seconds. Em-

ploying a propagator that achieves a stronger form of consistency, gecodeBC im-

proves over gecode. On the other hand, we cannot draw the same conclusion for

our approach, i.e., settings S and B . Hence, even our weaker encoding (weaker in

terms of consistency) are sufficient to tackle QCPs, and compete with specialised

algorithms that aim at a stronger consistency. In other words, such specialised

algorithms that enforce domain consistency are not necessary. We attribute the

106

5.1. The ALL-DIFFERENT Constraint

Table 5.2: Average times over 100 runs on QCP. Timeouts are given in parenthesis.

% S B3 B R3 R ezcsp clingcon gecode gecodeBC

10 2.6 5.0 8.2 6.0 7.3 29.6 (7) 9.7 (4) 2.2 (4) 0.5 (1)
20 2.4 5.0 8.0 6.2 7.2 21.3 (20) 6.2 (5) 5.0 (4) 0.9 (3)
30 2.3 4.8 7.9 6.1 7.1 10.3 (30) 12.9 (13) 2.9 (13) 1.1 (5)
35 2.3 4.8 7.9 6.1 7.0 21.6 (24) 11.2 (17) 14.1 (13) 6.2 (7)
40 2.3 4.7 7.8 6.0 6.9 51.6 (29) 23.1 (22) 11.7 (20) 5.7 (9)
45 2.3 4.7 7.8 5.9 6.8 36.3 (35) 14.7 (28) 17.7 (25) 6.3 (13)
50 2.3 4.6 7.7 5.9 6.8 36.1 (50) 21.2 (37) 25.1 (32) 6.3 (18)
55 2.3 4.5 7.6 5.8 6.7 61.4 (51) 24.4 (44) 19.6 (41) 30.9 (29)
60 2.2 4.4 7.5 5.6 6.6 60.2 (63) 31.4 (56) 36.0 (51) 27.2 (35)
70 2.2 4.2 7.1 5.1 6.0 70.0 (66) 30.2 (50) 28.0 (45) 17.0 (27)
80 2.1 4.0 6.7 4.7 5.5 16.2 (18) 4.2 (18) 17.2 (13) 7.0 (7)
90 2.1 4.0 6.7 4.7 5.5 1.4 2.6 (1) 0.4 (1) 3.2

advantage of our approach to CDNL which allows for learning interdependencies

between the global constraints on rows and columns.

Quasigroup Existence

The quasigroup existence problem (QEP) is to determine the existence of certain

interesting classes of quasigroups. QEP has been proposed as a benchmark do-

main for CP systems in (Gent and Walsh, 1999). We follow Fujita et al. (1993) and

look at problem classes QG1 to QG7 that were targeted to answer open questions

in finite mathematics. Each class gives an axiom that a quasigroup has to satisfy.

The axioms are the following:

QG1 If a ·b = c ·d and a ·b = c ·d then a = c and b = d .

QG2 If a ·b = c ·d and a ·b = c ·d then a = c and b = d .

QG3 (a ·b) · (b ·a) = a

QG4 (b ·a) · (a ·b) = a

QG5 ((b ·a) ·b) ·b = a

QG6 (a ·b) ·b = a · (a ·b)

QG7 (b ·a) ·b = a · (b ·a)

To avoid some symmetries in the search space, we also add the axiom a ·n ≥ a −1

where n is the order of the desired quasigroup, and assume quasigroups to be

idempotent, that means a ·a = a.

107

5. Encoding Global Constraints with Answer Set Programming

All axioms have been modelled in ezcsp and gecode using constructive dis-

junction (Van Hentenryck et al., 1995). Their logic programming equivalent are

integrity constraints, exploited in the options S, Bk , Rk and clingcon.

Our results in Table 5.3 demonstrate that constructive disjunction and integrity

constraints have a similar run time behaviour, as for ezcsp and clingcon on bench-

mark classes QG1 to QG4. On harder instances, clingcon’s way of learning from in-

consistent assignments appears to be too costly to be practical. In fact, additional

experiments revealed that clingcon without learning performs similar to ezcsp. On

the other hand, our decompositions benefit from learning constraint interdepen-

dencies within the CDNL framework, resulting in run times that outperform cling-

con and ezcsp, and compete with gecode.

Graceful Graphs

A labelling of the vertices of a graph (V ,E) is graceful if it assigns a unique label

from the integers in [0, |E |] such that, when each edge is labelled with the abso-

lute difference between adjacent vertices, the resulting edge labels are all differ-

ent. The graceful graph problem (GGP) is to determine the existence of a graceful

labelling of a given graph.

We use auxiliary variables for edge labels. Their relation to node labels is rep-

resented through a direct encoding, weakening the overall consistency. For our

experiments we consider double-wheel graphs that are composed by two copies

of a cycle with n vertices, each connected to a central hub. The problem of de-

termining the gracefulness of double-wheel graphs is highly symmetric, similar to

PHP, but a solution exists in most cases.

Table 5.4 shows that our encodings compete with ezcsp and outperform the

other systems, where the support encoding performs better than bound and range

encodings. We observe some variability in the results for Bk and Rk , e.g., for n = 8

the options B1 and B solve the problem within the time limit but B3 does not,

although B3 contains B1. We explain this variability by the heuristic used in clingo,

being misled by the extra variables introduced in Bk and Rk . This is inherent with

the increasing size of the encoding.

5.2 The GRAMMAR Constraint

One very promising method for scheduling, rostering and sequencing problems is

to specify constraints via grammars or automata that recognise some formal lan-

108

5.2. The GRAMMAR Constraint

Table 5.3: Runtime results in seconds for QEPs.

n S B1 B3 B R3 R ezcsp clingcon gecode

7 1.7 1.7 1.7 1.7 1.7 1.6 65.0 189.8 0.6
QG1 8 19.0 5.9 4.7 19.8 6.4 4.7 — — —

9 — 139.4 152.0 234.6 27.6 466.9 — — —

7 1.7 1.7 1.7 1.8 1.7 1.8 46.1 1.5 1.2
QG2 8 46.6 9.6 10.6 37.7 11.7 14.8 — — —

9 — 246.0 55.7 88.3 119.7 213.4 — — —

7 0.2 0.2 0.2 0.3 0.2 0.3 3.2 1.0 0.1
QG3 8 0.4 0.4 0.5 0.5 0.5 0.5 4.3 9.0 0.2

9 10.2 7.4 9.5 16.5 11.0 12.8 — — 18.2

7 0.2 0.2 0.2 0.3 0.3 0.3 2.8 0.7 0.1
QG4 8 0.5 0.6 0.7 0.9 0.8 0.7 27.9 36.8 0.3

9 1.3 1.0 2.1 3.0 1.1 0.9 442.1 288.8 3.7

8 0.4 0.4 0.4 0.5 0.4 0.4 6.9 5.3 0.1
9 0.7 0.8 0.8 0.9 0.8 0.8 249.2 — 0.1

QG5 10 1.6 1.5 1.6 1.9 1.6 1.6 — — 0.2
11 2.1 2.2 2.4 3.4 2.8 2.4 — — 0.8
12 27.0 6.2 9.1 12.4 8.4 10.4 — — 16.4

8 0.4 0.4 0.5 0.5 0.5 0.4 0.8 — 0.1
9 0.7 0.7 0.8 0.9 0.8 0.8 1.2 — 0.1

QG6 10 1.2 1.4 1.5 1.8 1.6 1.5 10.5 — 0.1
11 2.7 2.8 4.0 4.2 3.9 4.8 125.5 — 1.2
12 32.0 12.9 25.6 36.4 25.7 50.6 — — 24.6

8 0.4 0.4 0.4 0.6 0.5 0.5 1.1 — 0.1
QG7 9 0.7 1.0 1.2 1.7 1.2 1.4 9.1 — 0.9

10 6.7 3.2 5.2 8.0 4.7 4.6 — — 22.0

Table 5.4: Runtime results in seconds for GGP.

n S B1 B3 B R3 R ezcsp clingcon gecode
3 11.4 3.8 5.7 8.7 6.0 10.4 6.5 66.9 1.8
4 1.3 2.0 1.5 3.2 3.0 2.5 0.6 0.1 0.1
5 4.5 5.0 4.5 13.5 12.5 31.4 1.0 2.0 0.1
6 7.2 11.0 17.6 47.7 21.3 110.2 1.2 — 7.2
7 23.8 28.3 67.9 227.9 60.0 432.9 18.0 — —
8 48.4 68.4 — 207.8 58.4 356.8 4.3 — —
9 82.8 106.5 200.4 486.6 227.4 — 390.5 — —

109

5. Encoding Global Constraints with Answer Set Programming

guage (Sellmann, 2006; Quimper and Walsh, 2006). For instance, we might want

to ensure that anyone working three consecutive shifts then has two or more days

off, or that an employee changes activities only after a fifteen minutes break or one

hour lunch. Intuitively, GRAMMAR constraints require that the sequence of val-

ues taken by the variables in their scope belong to a formal language produced by

a CFG.

Definition 5.4: GRAMMAR

Given a CFG G and an assignment A, the constraint GRAMMAR(G ,〈v1, . . . ,vn〉)
is satisfied if and only if A(〈v1, . . . ,vn〉) ∈ LG .

Grammar-based constraint propagators were proposed by Sellmann (2006) and

Quimper and Walsh (2006), and modelled with SAT by Quimper and Walsh (2007).

Although SAT models can be directly converted into ASP (Niemelä, 1999), we here

show that GRAMMAR and related constraints can be modelled with ASP in a more

straightforward and easily maintainable way without paying any penalty, e.g., in

form of efficiency, for using ASP. Moreover, the propagation of an ASP solver can

achieve domain consistency on the original constraint. We make several contri-

butions to this line of research.

– First, we start with modelling GRAMMAR constraints that are specified using

CFG with ASP. We will show that they can be made to not hinder prop-

agation, i.e., the inference of an ASP solver can prune all possible values.

We also provide results on asymptotic run time complexity. For restricted

classes of CFGs, for instance, linear or regular grammars, we will adapt our

encodings and report improved run times.

– Second, we present and study alternative ASP encodings for a special case of

GRAMMAR constraints, i.e., REGULAR constraints that are specified via DFAs.

Again, we give theoretical results on the pruning achieved by the UP infer-

ence of any ASP solver, and run time complexity.

– Third, we demonstrate the applicability of our approach on shift-scheduling

instances.

Context-free Grammars in Chomsky Normal Form

We here encode GRAMMAR(G ,〈v1, . . . ,vn〉) with ASP in a very straightforward way,

based on the well known Cocke-Younger-Kasami (CYK; Younger, 1967) parser. Our

110

5.2. The GRAMMAR Constraint

construction will maintain a CYK parsing table T where A ∈ T [i , j] if A is a non-

terminal symbol that produces the string ti ti+1 . . . ti+ j ∈ Σ∗ and the assignments

vi+` = ti+` are possible, i.e., the value ti+` has not been removed from the domain

of vi+`, where 0 ≤ `≤ j .

Definition 5.5: ASP Encoding of GRAMMAR Constraints

Our ASP encoding of the GRAMMAR(G ,〈v1, . . . ,vn〉) constraint is constructed as

follows:

– To represent A ∈ T [i , j] whether A produces the string of length j start-

ing from the i -th symbol, we introduce the new atom A(i , j).

– Each production of the form A ::= t is encoded by rules of the form

A(i ,1) ← [[vi = t]] (5.5)

where 1 ≤ i ≤ n. A rule of the form (5.5) states that A ∈ T [i ,1] if vi = t ,

i.e., A produces the i -th symbol t .

– Each production of the form A ::= BC is encoded by rules of the form

A(i , j) ← B(i ,k),C (i +k, j −k) (5.6)

where 1 ≤ i < n and 1 ≤ k < j ≤ n − i − 1. Intuitively, a rule of the

form (5.6) states that A produces the string of j symbols starting at the

i -th symbol if B produces the string of length k starting from the i -th

symbol and C produces the string of length j −k starting from the i +k-

th symbol. In other words, k splits the string produces by A into the

(sub-)strings produced by B ∈ T [i ,k] and C ∈ T [i +k, j −k].

– Finally, the constraint is violated if the dedicated start symbol S does

not produce the input string, captured by the rule

[[GRAMMAR(G ,〈v1, . . . ,vn〉)]] ← not S(1,n). (5.7)

We denote the encoding by ASP-GRAMMAR[G ,〈v1, . . . ,vn〉].

Observe that our ASP encoding of the GRAMMAR constraint is not only straightfor-

ward, but easily maintainable, as it amounts to a syntactic transformation of the

production rules in the grammar.

111

5. Encoding Global Constraints with Answer Set Programming

The asymptotic space complexity of ASP-GRAMMAR[G ,〈v1, . . . ,vn〉] is O (n3|G |).

We can prove that our encoding is correct.

Theorem 5.7

GRAMMAR(G ,〈v1, . . . ,vn〉) is satisfiable if and only if there exists a solution A for

∆ASP-GRAMMAR[G ,〈v1,...,vn〉]∪ASP-VALUE[{v1,...,vn }] s.t. [[GRAMMAR(G ,〈v1, . . . ,vn〉)]] ∈ AF.

Proof. Correctness follows from the correctness of the CYK parser. To improve

readability, letΨ= ASP-GRAMMAR[G ,〈v1, . . . ,vn〉]∪ASP-VALUE[{v1, . . . ,vn}]. We show

both implications of the theorem.

(⇒) Suppose GRAMMAR(G ,〈v1, . . . ,vn〉) is satisfiable, i.e., there exists an assign-

ment to the sequence of variables ω= v1 . . .vn , say ω is assigned the string t1 . . . tn ,

such that the starting nonterminal S belongs to T [1,n]. We can construct an as-

signment A the following way:

– T[[vi = ti]] ∈ A where 1 ≤ i ≤ n, encoding the satisfying assignment to the

sequence of variables

– TA(i , j) ∈ A for all nonterminals A ∈ T [i , j], i.e., those that appear in the CYK

table, where 1 ≤ i ≤ n and 1 ≤ j ≤ n − i +1,

– all bodies are set to the value equivalent to the conjunction of their ele-

ments, and all other atoms are set to false.

We observe that no nogood in ∆Ψ is contained in A, i.e., A is conflict-free. Since A

is also total, A is a solution for ∆Ψ.

(⇐) Let A be a solution for the set ∆Ψ such that [[GRAMMAR(G ,〈v1, . . . ,vn〉)]] ∈
AF. We show that GRAMMAR(G ,〈v1, . . . ,vn〉) is satisfiable.

To begin, we prove that for any nonterminal A that A(i , j) ∈ AT implies A ⇒∗
G

ti . . . ti+ j−1 by structural induction.

Without loss of generality, suppose the production rules in G with A on the

right-hand-side be

A ::= B1C1 | · · · | BmCm | tim+1 | · · · | ti` .

The base case is A(i ,1) ∈ AT. For A(i ,1) we have the following rules of the form (5.5)

rm+1 : A(i ,1) ← [[vi = tim+1]]

. . .

r` : A(i ,1) ← [[vi = ti`]]

112

5.2. The GRAMMAR Constraint

in ASP-GRAMMAR[G ,〈v1, . . . ,vn〉]. Hence, there is a nogood

{Fbody(rm +1), . . . ,Fbody(r`),TA(i , j)} ∈∆∆∆A(i ,1)
Ψ ⊆∆Ψ

guaranteeing that at least one production rule applies, i.e., Tbody(rs) for some s

with m < s ≤ ` is in A. Then, the nogood

{Tbody(rs),F[[vi = tis]]} ∈ EQbody(rs) ⊆∆Ψ

guarantees [[vi = tis]] ∈ AT, i.e., we have the assignment vi = tis . Moreover, the

nogoods represented by ASP-VALUE[{v1, . . . ,vn}] guarantee that for each index i ,

where 1 ≤ i ≤ n, we have [[v = ti]] for precisely one terminal ti , i.e., every vari-

able is assigned a terminal symbol. In fact, since A is conflict-free, we have the

equality ti = tis . Hence, A ⇒∗
G

ti .

We now show for any nonterminal A such that A(i , j) ∈ AT and j > 1, assuming

that A′(i , j ′) ∈ AT implies A′ ⇒∗
G

ti . . . ti+ j ′−1 holds for every nonterminal A′ where

1 ≤ j ′ < j . To begin, for parsings of length j starting from the i -th symbol, we have

the following rules of the form (5.5–5.6)

r1 : A(i , j) ← B1(i ,k), C1(i +k, j −k)

. . .

rm : A(i , j) ← Bm(i ,k), Cm(i +k, j −k)

in ASP-GRAMMAR[G ,〈v1, . . . ,vn〉], where 1 ≤ k < j . Hence, there is a nogood

{Fbody(r1), . . . ,Fbody(r`),TA(i , j)} ∈∆∆∆A(i , j)
Ψ ⊆∆Ψ

guaranteeing that at least one production rule applies, i.e., Tbody(rs) for some s

with 1 ≤ s ≤ m. Then, the nogoods

{Tbody(rs),FBs(i ,k)}, {Tbody(rs),FCs(i +k, j −k)} ∈ EQbody(rs) ⊆∆Ψ

guarantee Bs(i ,k),Cs(i +k, j −k) ∈ AT. By assumption, we have Bs produces the

string from the i -th to the i +k−1-th symbols, and Cs produces the string from the

i +k-th to the i + j −1-th symbols, i.e., Bs ⇒∗
G

ti . . . ti+k−1 and Cs ⇒∗
G

ti+k . . . t j−k .

Therefore, we have A ⇒∗
G

ti . . . ti+ j−1.

We conclude that A(i , j) ∈ AT implies A ⇒∗
G

ti . . . ti+ j−1 for any nonterminal A

where 1 ≤ i ≤ n and 1 ≤ j < n − i +1. Now, the nogoods represented by the rule r

of the form (5.7), i.e., the nogoods {F[[GRAMMAR(G ,〈v1, . . . ,vn〉)]],Tbody(r)} and

{Fbody(r),FS(1,n)}, guarantee that S(1,n) ∈ AT. Hence, S ⇒∗
G

t1 . . . tn , i.e., the con-

straint GRAMMAR(G ,〈v1, . . . ,vn〉) is satisfied.

113

5. Encoding Global Constraints with Answer Set Programming

Unfortunately, our straightforward encoding is not very efficient from a theoretical

point of view, i.e., it does not prune all possible values.

Counter Example 5.4

Reconsider the grammar from Example 2.5, i.e., the CFG G given through the

productions

S ::= S A | AS | 2

A ::= 1

Suppose the input string of length 2, v1v2 with dom(v1) = dom(v2) = [1,3]. Our

encoding ASP-GRAMMAR[G ,〈v1,v2〉] comprises the following rules

A(1,1) ← [[v1 = 1]] S(1,1) ← [[v1 = 2]]

A(2,1) ← [[v2 = 1]] S(2,1) ← [[v2 = 2]]

S(1,2) ← S(1,1), A(2,1)

S(1,2) ← A(1,1), S(2,1)

[[GRAMMAR(G ,〈v1,v2〉)]] ← not S(1,2)

Although the value 3 does not appear in any assignment that satisfies the con-

straint GRAMMAR(G ,〈v1,v2〉), applying UP on ASP-GRAMMAR[G ,〈v1,v2〉] does

not prune 3 from the domains.

A SAT model of the GRAMMAR constraint such that UP prunes all values was pro-

posed by Quimper and Walsh (2007). The encoding is based on their decomposi-

tion into an and-or-graph (Quimper and Walsh, 2006).

To achieve a similar result, we propose an extension to our ASP encoding in

which we take into account whether an entry in the CYK table acts in a successful

parsing of the input string.

Definition 5.6: Domain Consistent ASP Encoding of GRAMMAR Constraints

Our improved ASP encoding of the GRAMMAR(G ,〈v1, . . . ,vn〉) constraint is con-

structed as follows:

– Include ASP-GRAMMAR[G ,〈v1, . . . ,vn〉].

– We introduce additional atoms actA(i , j) and actBC (i , j) to represent

whether S ⇒∗
G
υ1 Aυ2 ⇒∗

G
ω and S ⇒∗

G
υ1BCυ2 ⇒∗

G
ω with ω ∈ LG , re-

114

5.2. The GRAMMAR Constraint

spectively, i.e., A or BC , respectively, act in a successful parsing of the

string of length j starting from the i -th symbol.

– For each production of the form A ::= t we encode rules of the form

{actA(i ,1)} ← [[vi = t]] (5.8)

where 1 ≤ i ≤ n. A rule of the form (5.8) states that A produces the i -th

symbol if vi = t , and may act in a successful parsing of the input string.

– Similarly, for each production of the form A ::= BC we encode the fol-

lowing two rules, using the auxiliary atom actBC (i , j),

{actA(i , j)} ← actBC (i , j) (5.9)

{actBC (i , j)} ← actB(i ,k), actC (i +k, j −k) (5.10)

where 1 ≤ i < n and 1 ≤ k < j ≤ n−i−1. Intuitively, rules of the form (5.9)

encode that A ∈ T [i , j] may act in a successful parsing if A produces the

pair BC and BC acts in a successful parsing, producing the string of

length j starting from the i -th symbol.

In turn, rules of the form (5.10) encode that the pair BC produces the

string of length j from the i -th symbol and may act in a successful pars-

ing if B ∈ T [i ,k] and C ∈ T [i +k, j −k] act in a successful parsing of the

input string. Similar to rules of the form (5.6), k splits the string pro-

duced by BC into the (sub-)strings produced by B and C .

– To ensure that UP prunes all possible values, we capture the condi-

tion that for each assignment vi = t there exist a nonterminal that pro-

duces t and acts in a successful parsing of the input string, forming a

support for vi = t . Let A1, . . . , Am ∈ N such that A` ::= t , for all 1 ≤ `≤ m.

We include

← [[vi = t]], not actA1(i ,1), . . . , not actAm(i ,1) (5.11)

into our encoding. Similarly, for each pair BC that produces the string

of j symbols starting at the i -th symbol and acts in a successful parsing

of the input string, there must be a nonterminal that produces BC and

acts in a successful parsing of the input string. Let A1, . . . , Am ∈ N such

115

5. Encoding Global Constraints with Answer Set Programming

that A` ::= BC , for all 1 ≤ ` ≤ m, we encode this condition by integrity

constraints of the form

← actBC (i , j), not actA1(i , j), . . . , not actAm(i , j) (5.12)

where 1 ≤ i < n and 1 ≤ j ≤ n − i .

In turn, for each A that produces the string of j symbols starting at

the i -th symbol and acts in a successful parsing of the input string,

there must be a pair of nonterminals containing A on the right-hand

side of some production rule, i.e., AB or B A for some nonterminal B ,

that act in a successful parsing of the input string. Let AB1, . . . , ABk

and Bk+1 A, . . . ,Bm A all such pairs of nonterminals from the production

rules of G . We encode this condition by integrity constraints of the form

← actA(i , j), not actAB1(i , j +`1), . . . ,

not actABk (i , j +`k),

not actBk+1 A(i −`k+1, j +`k+1), . . . ,

not actBm A(i −`m , j +`m)

(5.13)

where 1 ≤ i < n, 1 ≤ j ≤ n − i , 1 ≤ `h ≤ n − i − j for 1 ≤ h ≤ k, and

1 ≤ `h ≤ i −1 for k < h ≤ m.

– The condition that the unique starting symbol S has to produce the in-

put string remains unchanged. In fact, S must act in a succesful parsing,

or otherwise the original constraint is violated.

← not actS(1,n) (5.14)

We denote the improved encoding by ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉].

It is important to note that above encoding assumes F[[GRAMMAR(G ,〈v1, . . . ,vn〉)]],

i.e., the constraint [[GRAMMAR(G ,〈v1, . . . ,vn〉)]] shall not be violated, but it can be

easily adjusted to work with any assignment to [[GRAMMAR(G ,〈v1, . . . ,vn〉)]] by care-

fully including the default negated atom not [[GRAMMAR(G ,〈v1, . . . ,vn〉)]] into the

integrity constraints that encode support.

The space complexity of ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉], in comparison to

its simpler counterpart, remains unchanged. It is still O (n3|G |). Hence, there is no

penalty in terms of asymptotic size of the encoding. Though, there are O (n2|N |)
rules of the form (5.13) that have a rather large body, i.e., with an asymptotic space

116

5.2. The GRAMMAR Constraint

complexity of O (n|{ω | N ::=ω ∈G }|).

Example 5.5

Reconsider the CFG G from Counter Example 5.4, again applied to the string

v1v2 with dom(v1) = dom(v2) = [1,3]. In addition to the ones specified in

Counter Example 5.4, our ASP encoding ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉] com-

prises the following rules:

{actA(1,1)} ← [[v1 = 1]] {actS(1,1)} ← [[v1 = 2]]

{actA(2,1)} ← [[v2 = 1]] {actS(2,1)} ← [[v2 = 2]]

{actS(1,2)} ← actAS(1,2)

{actAS(1,2)} ← actA(1,1), actS(2,1)

{actS(1,2)} ← actS A(1,2)

{actS A(1,2)} ← actS(1,1), actA(2,1)

← [[v1 = 1]], not actA(1,1) ← actA(1,1), not actAS(1,2)

← [[v1 = 2]], not actS(1,1) ← actA(2,1), not actS A(1,2)

← [[v1 = 3]] ← actS(1,1), not actS A(1,2)

← [[v2 = 1]], not actA(2,1) ← actS(2,1), not actAS(1,2)

← [[v2 = 2]], not actS(2,1) ← actS A(1,2), not actS(1,2)

← [[v2 = 3]] ← actAS(1,2), not actS(1,2)

← not actS(1,2)

Running UP on ASP-GRAMMAR-DC[G ,〈v1,v2〉]∪ASP-VALUE[{v1,v2}] prunes the

value 3 from the domains, i.e., sets [[v1 = 3]] and [[v2 = 3]] to false.

With our improved encoding, UP provides an efficient domain consistency prop-

agator for free.

Theorem 5.8: Domain Consistency on GRAMMAR via Unit Propagation

UP on ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉] ∪ ASP-VALUE[{v1, . . . ,vn}] enforces do-

main consistency on GRAMMAR(G ,〈v1, . . . ,vn〉).

Proof. The proof strategy is to show that if an assignment to a variable is possi-

ble then there is a combination of values to the other variables that satisfies the

constraint.

Let A be an assignment to the atoms in a value representation of the variables

in the scope of the constraint, i.e., the atoms in the program ASP-VALUE[{v1, . . . ,vn}],

117

5. Encoding Global Constraints with Answer Set Programming

representing the current set of values in the domain of the variables. Suppose UP

has been run to completion, extending A∪ {F[[GRAMMAR(G ,〈v1, . . . ,vn〉)]]} (i.e., the

GRAMMAR constraint shall not be violated) to the assignment A′.

Consider any variable vi in the scope of the constraint and a value t that has

not been removed from the domain of vi. That means, [[vi = t]] 6∈ (A′)F, i.e., [[vi = t]]

is either true or unassigned. Then, the nogood {T[[vi = t]]}∪ {F actA(i ,1) | A ::=
t ∈ G } represented by (5.11) guarantees that there is a nonterminal A which pro-

duces t as the i -th symbol, i.e., actA(i ,1) 6∈ (A′)F.

Now, consider any nonterminal A ∈ N such that A(i , j) 6∈ (A′)F where 1 ≤ i ≤ n

and 1 ≤ j ≤ n − i +1. The nogood {TA(i , j),F actAB1(i , j +`1), . . . ,F actABk (i , j +
`k),F actBk+1 A(i−`k+1, j+`k+1), . . . ,F actBm A(i−`m , j+`m} represented by (5.13)

guarantees that there must be a pair of nonterminals AB or B A (i.e., containing

A), that can be produced, and the corresponding atom is not in (A′)F. In turn, for

any pair of nonterminals BC such that actBC (i , j) 6∈ (A′)F where 1 ≤ i ≤ n and 1 ≤
j ≤ n− i +1, the nogood {T actBC (i , j),F actA1(i , j), . . . ,F actAm(i , j)} represented

by (5.12) guarantees that there is some actAk (i , j) 6∈ (A′)F for some 1 ≤ k ≤ m such

that Ak ::= BC ∈G .

By successively applying these arguments, we obtain a sequence of produc-

tions connecting [[vi = t]] to S(1,n), or rather, a sequence connecting S(1,n) to

[[vi = t]] representing a successful parsing of an input string, such that every atom

in this sequence is not in (A′)F. In fact, for any atom in this sequence, nogoods

represented by the remaining rules (5.8–5.10) and (5.14) guarantee that the corre-

sponding nonterminal produces a string of values t1 . . . t . . . tn ∈ LG that are in the

domains of the corresponding variables. (The proof repeats the arguments from

the proof of Theorem 5.7.) In other words, we have [[v1 = t1]], . . . , [[vi = t]], . . . , [[vn =
tn]] 6∈ (A′)F, i.e., the value t` is in the domain of v` for 1 ≤ `≤ n with ` 6= i .

In conclusion, when a variable vi is assigned a value t one can find compatible

values in the domains of all the other variables. Since at least one value must be in

each domain, guaranteed by (4.2), we have a set of non-empty domains which are

domain consistent.

Now we address the run time. Note that the specialised algorithm of Sellmann

(2006) and the approach of Quimper and Walsh (2007) have the same cubic asymp-

totic run time complexity, i.e., the worst case run time complexity of the CYK algo-

rithm.

118

5.2. The GRAMMAR Constraint

Theorem 5.9

UP on ASP-GRAMMAR-DC[G , 〈v1, . . . ,vn〉] ∪ ASP-VALUE[{v1, . . . ,vn}] runs in

O (n3|G |) time down any branch of the search tree.

Proof. For each of the n variables, there are O (d) constant-size nogoods and one

nogood of size O (d) represented by ASP-VALUE[{v1, . . . ,vn}]. On the other hand,

there are O (|G |n3) nogoods of constant size and O (n2|N |) nogoods of O (n|{ω |
N ::= ω ∈ G }|) size represented by ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉]. By Theorem

2.1 we obtain, down any branch of the search tree, a total running time complexity

given by O (nd)+O (n3|G |) =O (n3|G |).

Context-free Grammars with Restrictions

An extension which is sometimes useful in practice but goes slightly beyond CFGs

considers restrictions on productions (Quimper and Walsh, 2007). For instance, in

the shift-scheduling domain (see Experimental Results), we want that an employee

works on an activity for a minimum of one hour. We will assume that such restric-

tions are represented via (external) atoms fA(i , j) limiting the start i and length j

of a string produced by a nonterminal symbol A.

Definition 5.7: ASP Encoding of Restricted GRAMMAR Constraints

We amend ASP-GRAMMAR[G ,〈v1, . . . ,vn〉] by encoding restrictions on a pro-

duction of the form A ::= BC , with restrictions represented by fA(i , j),fB (i , j),

and fC (i , j), by rules of the form

A(i , j) ← B(i ,k), C (i +k, j −k), fA(i , j), fB (i ,k), fC (i +k, j −k) (5.15)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n − i +1. A rule of the form (5.15) encodes that the

nonterminal A produces a string of length j starting at the i -th symbol if

– the condition fA(i , j) is satisfied,

– B produces a string of length k starting at the i -th symbol where the

condition fB (i ,k) is satisfied, and

– C produces a string of length j −k starting at the i +k-th symbol where

the condition fC (i +k, j −k) is satisfied.

119

5. Encoding Global Constraints with Answer Set Programming

The changes to ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉] are symmetric, i.e., we use

rules of the form

{actA(i , j)} ← actBC (i , j), fA(i , j) (5.16)

{actBC (i , j)} ← actB(i ,k), actC (i +k, j −k),

fB (i ,k), fC (i +k, j −k)
(5.17)

where 1 ≤ i < n and 1 ≤ k < j ≤ n − i −1.

Amendments to restrictions on productions of the form A ::= t are similar.

For ASP-GRAMMAR[G ,〈v1, . . . ,vn〉] we use rules of the form

A(i ,1) ← [[vi = t]], fA(i ,1) (5.18)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n−i +1. This rule states that A produces the i -th sym-

bol if vi = t , i.e., the i -th symbol is the terminal t , and the condition fA(i ,1) is

satisfied. Our encoding ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉] is amended by rules

of the form

{actA(i ,1)} ← [[vi = t]], fA(i ,1) (5.19)

where 1 ≤ i < n and 1 ≤ k < j ≤ n − i −1.

Linear Grammars

In some cases, we only need a linear language to specify problem constraints.

They are a special case of CFG where all productions are of the form A ::= tB ,

A ::= B t . To also capture productions of these forms, we make few simple changes

to our encodings.

Definition 5.8: ASP Encoding of Linear GRAMMAR Constraints

Following our previous encodings we represent production rules of the form

A ::= tB and A ::= B t by rules of the form

A(i , j) ← [[vi = t]], B(i +1, j −1) (5.20)

A(i , j) ← B(i , j −1), [[vi+ j−1 = t]] (5.21)

120

5.2. The GRAMMAR Constraint

in ASP-GRAMMAR[G ,〈v1, . . . ,vn〉], and

{actA(i , j)} ← [[vi = t]], actB(i +1, j −1) (5.22)

{actA(i , j)} ← actB(i , j −1), [[vi+ j−1 = t]] (5.23)

in ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉], where 1 ≤ i ≤ n, 1 ≤ j ≤ n − i +1.

For linear languages, propagation is faster.

Theorem 5.10

If G is linear then UP on

ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉]∪ ASP-VALUE[{v1, . . . ,vn}]

enforces domain consistency on GRAMMAR(G ,〈v1, . . . ,vn〉) in O (n2|G |) time

down any branch of the search tree.

Proof. The proof follows the one of Theorem 5.9.

For each of the n variables, there are O (d) constant-size nogoods and one no-

good of size O (d) represented by ASP-VALUE[{v1, . . . ,vn}]. On the other hand, if all

productions are of the form A ::= tB , A ::= B t , or A ::= t , then there are O (n2|G |)
nogoods of constant size represented by ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉]. By The-

orems 2.1 we obtain, down any branch of the search tree, a total running time

complexity given by O (nd)+O (n2|G |) =O (n2|G |).

Regular Grammars

In some cases, we only need a regular language produced by a regular grammar

in order to specify problem constraints. In regular grammars, all productions are

of the form A ::= tB or A ::= t . Hence, a distinctive feature of regular grammars

is that each nonterminal A ∈ T [i , j] produces a string from the i -th symbol to the

n-th symbol (the last symbol), i.e., j = n always holds. Using this insight, we can

optimise our encodings.

Definition 5.9: ASP Encoding of Regular GRAMMAR Constraints

If G is regular, following our previous encodings, we encode production rules

of the form A ::= tB by rules of the form

A(i ,n − i +1) ← [[vi = t]], B(i +1,n − i) (5.24)

121

5. Encoding Global Constraints with Answer Set Programming

where 1 ≤ i ≤ n. The changes to ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉] are sym-

metric, i.e., we encode those productions by rules of the form

{actA(i ,n − i +1)} ← [[vi = t]], actB(i +1,n − i) (5.25)

where 1 ≤ i ≤ n.

For regular languages, propagation is faster.

Theorem 5.11

If G is regular then UP on

ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉]∪ ASP-VALUE[{v1, . . . ,vn}]

enforces domain consistency on GRAMMAR(G ,〈v1, . . . ,vn〉) in O (nd |G |) time

down any branch of the search tree.

Proof. The proof follows the one of Theorem 5.9.

For each of the n variables, there are O (d) constant-size nogoods and one no-

good of size O (d) represented by ASP-VALUE[{v1, . . . ,vn}]. On the other hand, if all

productions are of the form A ::= tB or A ::= t , then there are O (n|G |) nogoods of

constant size represented by ASP-GRAMMAR-DC[G ,〈v1, . . . ,vn〉]. By Theorems 2.1

we obtain, down any branch of the search tree, a total running time complexity

given by O (nd)+O (n|G |) ≤O (nd |G |).

The REGULAR Constraint

Recall that each regular language can also be specified by means of a DFA M that

accepts assignments to a sequence of variables if and only if it is a member of the

language. Hence, as an alternative to constraints specified via regular grammars,

we present and study encodings of REGULAR constraints (Pesant, 2004) that are

specified via DFAs.

An automaton-based constraint propagator was previously modelled with SAT

by Quimper and Walsh (2007) and Bacchus (2007). We here follow their idea and

represent the constraint with ASP by encoding the processing of M for a fixed

input length. Our encodings are not a direct copy of theirs. As we shall see, our

first encoding will capture all of M ’s processing with rules of a single form. This

makes it more straightforward and easily maintainable. To achieve an encoding

that pays no penalty in terms of pruning, however, we will follow Quimper and

122

5.2. The GRAMMAR Constraint

Walsh (2007) and Bacchus (2007) by introducing auxiliary atoms in an extended

encoding of REGULAR.

We start with a definition of the constraint.

Definition 5.10: REGULAR

Given a DFA M , the REGULAR constraint REGULAR(M ,〈v1, . . . ,vn〉) is satisfied

on just those assignments to the sequence of variables 〈v1, . . . ,vn〉 which be-

long to the language recognised by M .

The automaton from Example 2.8 will serve as a running example for the remain-

der of this section.

Example 5.6

Consider the DFA M = ({q0, q1, qr e j }, {1,2},δ, q0, {q0, q1}) where the transition

function δ is represented by the following automaton diagram:

q0start q1 qr e j

1

2

2

1

1,2

Consider the input string of length 3, v1v2v3 with the following domains:

1 2

v1 X X

v2 X

v3 X X

The REGULAR(M ,〈v1,v2,v3〉) constraint specifies that for any solution A holds

that A(〈v1,v2,v3〉) ∈ LM , that are, A(〈v1,v2,v3〉) = 111 and A(〈v1,v2,v3〉) = 112.

Examples that violate the constraint are A(〈v1,v2,v3〉) = 211 and A(〈v1,v2,v3〉) =
212, as these inputs make the DFA terminate in the rejecting state qr e j .

As demonstrated by Katsirelos et al. (2009a), one important advantage of using an

automaton based representation, over our encoding of GRAMMAR, is that it per-

mits to compress the encoding using standard techniques for automaton minimi-

sation (Hopcroft and Ullman, 1979).

Given a DFA M and a sequence of variables v1, . . . ,vn representing an input

string, we propose an encoding of REGULAR(M ,〈v1, . . . ,vn〉). Our encoding will

represent all possible states the automaton can be in after processing the first i

123

5. Encoding Global Constraints with Answer Set Programming

symbols. Ultimately, an accepted input string must generate a sequence of transi-

tions starting at the starting state and ending in some finite state.

Definition 5.11: ASP Encoding of REGULAR Constraints

For a DFA M = (Q,Σ,δ, q0,F) our ASP encoding of REGULAR(M ,〈v1, . . . ,vn〉) is

denoted by ASP-REGULAR[G ,〈v1, . . . ,vn〉], and is constructed as follows:

– We introduce new atoms qk (i) for each step i of M ’s processing, i.e.,

0 ≤ i ≤ n, and each state qk ∈ Q, to indicate whether M is in state qk

after having processed the first i symbols from the input string.

– Each transition δ(q j , t) = qk is encoded by rules of the form

qk (i) ← q j (i −1), [[vi = t]] (5.26)

where 1 ≤ i ≤ n. The intuitive meaning of a rule of the form (5.26) is that

whenever M is in state q j after having processed the first i −1 symbols

and M reads t as the i -th symbol, then M transitions to the state qk in

step i .

– The condition that M must start processing in starting state q0 is cap-

tured by the rule

q0(0) ← (5.27)

which sets q0(0) unconditionally to true in any conflict-free assignment.

– To represent that the original constraint is violated if M finishes pro-

cessing in a rejecting state qr e j ∈Q \ F , we post rules of the form

[[REGULAR(M ,〈v1, . . . ,vn〉)]] ← qr e j (n) (5.28)

for each rejecting state qr e j .

The asymptotic space complexity of ASP-REGULAR[G ,〈v1, . . . ,vn〉] is O (|M |), where

|M | is the number of transitions.

Notice how the above encoding captures M ’s processing with rules of the sin-

gle, straightforward and easily maintainable form (5.26). By allowing for a non-

deterministic choice between the states in a transition, we could effortlessly go be-

yond DFA by representing non-deterministic finite automaton (NFA). NFAs can be

significantly smaller than DFAs (Hopcroft and Ullman, 1979), but there is a price to

124

5.2. The GRAMMAR Constraint

be paid: Because of their non-determinism, NFA-based models of REGULAR break

with the one-to-one correspondence between the solutions for the encoding and

the ones for the underlying constraint. Hence, we will the not further investigate

their encoding in this thesis.

We proceed with demonstrating our DFA-based ASP encoding of REGULAR in

the following example.

Example 5.7

Reconsider the DFA M from Example 5.6, with the input string of length 3,

v1v2v3 with the domains dom(v1) = dom(v3) = [1,2] and dom(v2) = [1,1]. Our

encoding ASP-REGULAR[M ,〈v1,v2,v3〉] comprises the following rules:

q0(1) ← q0(0), [[v1 = 1]] qr e j (1) ← q1(0), [[v1 = 1]]

q0(2) ← q0(1), [[v2 = 1]] qr e j (2) ← q1(1), [[v2 = 1]]

q0(3) ← q0(2), [[v3 = 1]] qr e j (3) ← q1(2), [[v3 = 1]]

q1(1) ← q0(0), [[v1 = 2]] qr e j (1) ← qr e j (0), [[v1 = 1]]

q1(2) ← q0(1), [[v2 = 2]] qr e j (2) ← qr e j (1), [[v2 = 1]]

q1(3) ← q0(2), [[v3 = 2]] qr e j (3) ← qr e j (2), [[v3 = 1]]

q1(1) ← q1(0), [[v1 = 2]] qr e j (1) ← qr e j (0), [[v1 = 2]]

q1(2) ← q1(1), [[v2 = 2]] qr e j (2) ← qr e j (1), [[v2 = 2]]

q1(3) ← q1(2), [[v3 = 2]] qr e j (3) ← qr e j (2), [[v3 = 2]]

q0(0) ←
[[REGULAR(M ,〈v1, . . . ,vn〉)]] ← qr e j (3)

Verify that, if we want to satisfy the REGULAR(M ,〈v1,v2,v3〉) constraint, the ap-

plication of UP discovers that M must not be in state q1 at step 2 or state qr e j

at step 3, but it does not prune any other value, i.e.,

T[[v2 = 1]],Fqr e j (3),

F[[v2 = 2]],Fq1(2)

}
∈ UP(∆Ψ, {F[[REGULAR(M ,〈v1, . . . ,vn〉)]]})

whereΨ= ASP-REGULAR[M ,〈v1,v2,v3〉]∪ ASP-VALUE[{v1,v2,v3}].

Observe that by encoding the processing of M into ASP, the state of the automa-

ton underlying a REGULAR constraint, i.e., the state of the constraint propagator,

is made transparent via (assignments to) atoms of the form q j (i). Any ASP solver

can use these in its advanced search heuristics. Moreover, the CONFLICTANALY-

125

5. Encoding Global Constraints with Answer Set Programming

SIS procedure in CDNL can exploit the processing of M and expose the implicit

relationship between states. This can improve propagation of REGULAR.

Theorem 5.12

REGULAR(M ,〈v1, . . . ,vn〉) is satisfiable if and only if there exists a solution A for

∆ASP-REGULAR[M ,〈v1,...,vn〉]∪ASP-VALUE[{v1,...,vn }] s.t. [[REGULAR(M ,〈v1, . . . ,vn〉)]] ∈ AF.

Proof. To begin, letΨ= ASP-REGULAR[M ,〈v1, . . . ,vn〉]∪ASP-VALUE[{v1, . . . ,vn}]. We

show both implications of the proposition.

(⇒) Suppose REGULAR(M ,〈v1, . . . ,vn〉) is satisfiable, i.e., there exists an assign-

ment to the variables ω = v1 . . .vn , say ω is assigned the string t1 . . . tn , such that

M transitions through a sequence of states (qk0 , . . . , qkn) starting at qk0 = q0 into

an accepting state qkn . We can construct an assignment A the following way, for

1 ≤ i ≤ n:

– T[[vi = ti)]] ∈ A,

– Tqki (i) ∈ A,

– all bodies are set to the value equivalent to the conjunction of their ele-

ments, and all other atoms are set to false.

We observe that no nogood in ∆Ψ is contained in A, i.e., A is conflict-free. Since A

is also total, A is a solution for ∆Ψ.

(⇐) Let A be a solution for the set ∆Ψ such that [[REGULAR(M ,〈v1, . . . ,vn〉)]] ∈
AF. We show that REGULAR(M ,〈v1, . . . ,vn〉) is satisfiable. To begin, the nogood

{Fq0(0)}, represented by rule (5.27), guarantees that q0(0) ∈ AT.

Now, let q j be any state such that q j (i − 1) ∈ AT, 1 ≤ i ≤ n. Since A extends

the assignment to the value encoding, we have [[vi = t]] ∈ AT for some value t ,

and the nogoods represented by rules of the form (5.26) force qk (i) ∈ AT for some

state qk with δ(q j , t) = qk . We can continue this reasoning until reaching a final

state q`, i.e., q`(n) ∈ AT. The nogoods represented by rules r of the form (5.28), i.e.,

{F[[REGULAR(M ,〈v1, . . . ,vn〉)]],Tbody(r)} and {Fbody(r),Fq`(n)}, guarantee the fi-

nal state q` is accepting. Otherwise, A would be conflicting, contradicting the as-

sumption.

In conclusion, all the visited atoms qk (i) such that qk (i) ∈ AT, starting from

some q0(0) and finishing ing q`(n), form a processing of M whose transitions form

a sequence satisfying REGULAR(M ,〈v1, . . . ,vn〉).

126

5.2. The GRAMMAR Constraint

To ensure that UP prunes all possible values, we extend our encoding by only a

few more items. Following the general idea of Bacchus (2007), we introduce new

atoms, each representing whether a particular transition is possible at a certain

step in the DFA’s processing. We will use these atoms to encode support for an

input or a state leading to an accepting state.

Definition 5.12: Domain Consistent ASP Encoding of REGULAR Constraints

Our improved ASP encoding of the REGULAR(M ,〈v1, . . . ,vn〉) constraint is con-

structed as follows:

– Include ASP-REGULAR[M ,〈v1, . . . ,vn〉].

– Support for the assignment vi = t is given through a transition δ(q j , t) =
qk , i.e., from the state q j to the state qk at step i while reading t . In

order to encode support, we define auxiliary atoms d(q j , qk , i) for each

transition δ(q j , t) = qk by rules of the form

d(q j , qk , i) ← q j (i −1), [[vi = t]], qk (i) (5.29)

where 1 ≤ i ≤ n.

Now, for an assignment vi = t , let (q j` , qk`) for 1 ≤ ` ≤ m be the pairs

of states such that δ(q ji , t) = qki , i.e., states connected when M reads t .

We encode the existence of support for vi = t by rules of the form

← [[vi = t]], not d(q j1 , qk1 , i), . . . , not d(q jm , qkm , i) (5.30)

where 1 ≤ i ≤ n. A rule of the form (5.30) is satisfied if either the assign-

ment vi = t has a support, or the atom [[vi = t]] is false.

– Finally, for each state q j and step in M ’s processing, there must be an

outgoing transition. Let qk1 , . . . , qkm be transitions out of q j . We encode

the existence of a transition to a successor state for q j by rules of the

form

← q j (i −1), not d(q j , qk1 , i), . . . , not d(q j , qkm , i) (5.31)

where i is a step in M ’s processing, 1 ≤ i ≤ n.

We denote this improved encoding by ASP-REGULAR-DC[M ,〈v1, . . . ,vn〉].

The space complexity of ASP-REGULAR-DC[M ,〈v1, . . . ,vn〉], in comparison to its

127

5. Encoding Global Constraints with Answer Set Programming

simpler counterpart, remains unchanged. It is still O (|M |). Hence, there is no

penalty in terms of asymptotic size of the encoding. Though, there are O (|Q|) rules

of the form (5.31), where |Q| is the number of states in M , that have a rather large

body, dependent on the number of incoming transitions.

Example 5.8

Reonsider the DFA M from Example 5.6, again applied to the string v1v2v3

with dom(v1) = dom(v3) = [1,2] and dom(v2) = [1,1]. In addition to the ones

specified in Example 5.6, our ASP encoding ASP-REGULAR-DC[M ,〈v1,v2,v3〉]
comprises the following rules:

d(q0, q0,1) ← q0(0), [[v1 = 1]], q0(1)

d(q0, q0,2) ← q0(1), [[v2 = 1]], q0(2)

d(q0, q0,3) ← q0(2), [[v3 = 1]], q0(3)

d(q0, q1,1) ← q0(0), [[v1 = 2]], q1(1)

d(q0, q1,3) ← q0(2), [[v3 = 2]], q1(3)

d(q1, q1,1) ← q1(0), [[v1 = 2]], q1(1)

d(q1, q1,3) ← q1(2), [[v3 = 2]], q1(3)

d(q1, qr e j ,1) ← q1(0), [[v1 = 1]], qr e j (1)

d(q1, qr e j ,2) ← q1(1), [[v2 = 1]], qr e j (2)

d(q1, qr e j ,3) ← q1(2), [[v3 = 1]], qr e j (3)

d(qr e j , qr e j ,1) ← qr e j (0), [[v1 = 1]], qr e j (1)

d(qr e j , qr e j ,2) ← qr e j (1), [[v2 = 1]], qr e j (2)

d(qr e j , qr e j ,3) ← qr e j (2), [[v3 = 1]], qr e j (3)

d(qr e j , qr e j ,1) ← qr e j (0), [[v1 = 2]], qr e j (1)

d(qr e j , qr e j ,3) ← qr e j (2), [[v3 = 2]], qr e j (3)

← [[v1 = 1]], not d(q0, q0,1), not d(q1, qr e j ,1), not d(qr e j , qr e j ,1)

← [[v2 = 1]], not d(q0, q0,2), not d(q1, qr e j ,2), not d(qr e j , qr e j ,2)

← [[v3 = 1]], not d(q0, q0,3), not d(q1, qr e j ,3), not d(qr e j , qr e j ,3)

← [[v1 = 2]], not d(q0, q1,1), not d(q1, q1,1), not d(qr e j , qr e j ,1)

← [[v3 = 2]], not d(q0, q1,3), not d(q1, q1,3), not d(qr e j , qr e j ,3)

128

5.2. The GRAMMAR Constraint

← q0(0), not d(q0, q0,1), not d(q0, q1,1)

← q0(1), not d(q0, q0,2), not d(q0, q1,2)

← q0(2), not d(q0, q0,3), not d(q0, q1,3)

← q1(0), not d(q1, q1,1), not d(q1, qr e j ,1)

← q1(1), not d(q1, q1,2), not d(q1, qr e j ,2)

← q1(2), not d(q1, q1,3), not d(q1, qr e j ,3)

← qr e j (0), not d(qr e j , qr e j ,1)

← qr e j (1), not d(qr e j , qr e j ,2)

← qr e j (2), not d(qr e j , qr e j ,3)

Verify that, if we want to satisfy the REGULAR(M ,〈v1,v2,v3〉) constraint, in ad-

dition to the effects of UP described in Example 5.7, UP immediately prunes

the value 2 from the domain of v1. Amongst other effects, UP discovers that

only the transitions represented by the auxiliary atoms d(q0, q0,1), d(q0, q0,2),

d(q0, q0,3), and d(q0, q1,3) may satisfy the constraint. The other auxiliary

atoms are assigned F.

Note that rules of the form (5.30) are not neccessary to achieve correctness, i.e.,

rules of the form (5.29–5.31) are redundant. However, they ensure that UP can

prune all possible values. In fact, encoding the REGULAR constraint into ASP by

means of a DFA yields a result similar to Theorem 5.8, our approach that is based

on production rules.

Theorem 5.13: Domain Consistency on REGULAR via Unit Propagation

UP on ASP-REGULAR-DC[M ,〈v1, . . . ,vn〉]∪ ASP-VALUE[{v1, . . . ,vn}] enforces do-

main consistency on REGULAR(M ,〈v1, . . . ,vn〉).

Proof. The proof strategy is to show that if an assignment to a variable is pos-

sible then there is a combination of values to the other variables that satisfies

the constraint. To improve readability, let Ψ= ASP-REGULAR-DC[M ,〈v1, . . . ,vn〉]∪
ASP-VALUE[{v1, . . . ,vn}].

Let A be an assignment to the atoms in a value representation of the variables

in the scope of the constraint, i.e., the atoms in the program ASP-VALUE[{v1, . . . ,vn}],

representing the current set of values in the domain of the variables. Suppose UP

has been run to completion, extending A∪ {F[[REGULAR(M ,〈v1, . . . ,vn〉)]]} (i.e., the

REGULAR constraint shall not be violated) to the assignment A′.

129

5. Encoding Global Constraints with Answer Set Programming

Consider any variable vi in the scope of the constraint and a value t that has

not been removed from the domain of vi. That means [[vi = t]] 6∈ (A′)F, i.e., [[vi =
t]] is either true or unassigned. Then, the nogood {T[[vi = t]]} ∪ {Fd(q j , qk , i) |
δ(q j , t) = qk ∈M } represented by a rule of the form (5.30) guarantees that a transi-

tion δ(q j , t) = qk is possible, i.e., d(q j , qk , i) 6∈ (A′)F. In turn, there is a rule r of the

form (5.29) representing nogoods {Td(q j , qk , i), Fbody(r)} ∈ ∆∆∆d(q j ,qk ,i)
Ψ ⊆ ∆Ψ, and

{Tbody(r),Fq j (i − 1)}, {Tbody(r),Fqk (i)} ∈ EQbody(r) ⊆ ∆Ψ that guarantee q j (i −
1),qk (i) 6∈ (A′)F. That is, reaching state q j at step i −1 and qk at step i is allowed.

It remains to show that M can in fact reach state q j at step i −1 from the start-

ing state, and an accepting state from state qk at step i .

First, let q j be any state of M such that q j (i) 6∈ (A′)F where 1 ≤ i ≤ n. The

transition function defines the set of predecessor states q j1 , . . . , q jm for q j , that are,

states q j` such that δ(q j` , t) = q j for some value t where 1 ≤ `≤ m. In our encod-

ing, we have the rules ESΨ({qk (i)}) = {r1, . . . ,rm}, i.e., rules with head qk (i), given

through

r1 : q j (i) ← q j1 (i −1), [[vi = t j1]]

. . .

rm : q j (i) ← q jm (i −1), [[vi = t jm]]

for each step i . The nogood {Fbody(r1), . . . ,Fbody(rm),Tqk (i)} ∈∆∆∆q j (i)
Ψ ⊆∆Ψ guar-

antees that at least one transition δ(q j` , t j`) = q j is applicable, i.e., body(r`) 6∈
(A′)F. Then, the nogoods {Tbody(r`),F[[vi = t j`]]} and {Tbody(r`),Fq j`(i −1)} from

EQbody(r`) guarantee [[vi = t j`]],q j`(i −1) 6∈ (A′)F. In other words, M can reach the

state q j` at step i −1 and read the symbol t j` , i.e., the assignment vi = t j` is possi-

ble. We continue this reasoning until reaching the starting state. Since q0(0) ∈ (A′)F

by the nogood {Fq0(0)} ∈∆∆∆q0(0)
Ψ ⊆∆Ψ represented by rule (5.27), we have a possible

processing of M reaching state q j at step i −1.

Second, let qk be any state of M such that qk (i) 6∈ (A′)F where 1 ≤ k < n. Then,

the nogood {Tqk (i)}∪ {Fd(qk , q`, i +1) | δ(qk , t) = q`} represented by a rule of the

form (5.31) guarantees that a transition δ(qk , t) = q` is possible, i.e., d(qk , q`, i +
1) 6∈ (A′)F. In turn, there is a rule r of the form (5.29) representing the nogoods

{Td(qk , q`, i +1),Fbody(r)} ∈∆∆∆d(qk ,q`,i+1)
Ψ ,

{Tbody(r),F[[vi+1 = t ′]]}, and {Tbody(r),Fq`(i +1)} ∈ EQbody(r)

for some value t ′, that guarantee [[vi+1 = t ′]],q`(i +1) 6∈ (A′)F. That is, the value t ′

has not been removed from the domain of vi+1 and reaching the state q` at step

130

5.2. The GRAMMAR Constraint

i +1 is allowed. We can continue this reasoning until reaching a final state. Then,

since [[REGULAR(M ,〈v1, . . . ,vn〉)]] ∈ (A′)F the nogoods represented by rules r of the

form (5.28), i.e., {F[[REGULAR(M ,〈v1, . . . ,vn〉)]],Tbody(r)} and {Fbody(r),Fq`(n)},

guarantee that a final, accepting state q` can be reached.

In conclusion, whenever vi = t one can find compatible values in the domains

of all the other variables. Since at least one value must be in each domain, guar-

anteed by (4.2), we have a set of non-empty domains which are domain consis-

tent.

With our improved encoding, UP provides an efficient domain consistency prop-

agator for free. Note that the specialised algorithm of Sellmann (2006) and the

SAT-based method of Bacchus (2007) have a similar asymptotic run time com-

plexity.

Theorem 5.14

UP on ASP-REGULAR-DC[M , 〈v1, . . . ,vn〉] ∪ ASP-VALUE[{v1, . . . ,vn}] runs in

O (nd |M |) time down any branch of the search tree

Proof. For each of the n variables, there are O (d) constant-size nogoods and one

nogood of size O (d) represented by ASP-VALUE[{v1, . . . ,vn}]. On the other hand,

ASP-REGULAR-DC[M ,〈v1, . . . ,vn〉] represents O (n|M |) nogoods of constant size.

By Theorems 2.1 we obtain, down any branch of the search tree, a total running

time complexity given by O (nd)+O (n|M |) ≤O (nd |M |).

Experimental Results

We tested the practical utility of our ASP encodings on a set of shift-scheduling

instances. The benchmark stems from Côté et al. (2011) and has been previously

used by Quimper and Walsh (2007) and Katsirelos et al. (2009b) to compare the

performance of CYK-based GRAMMAR constraint propagator in CP and SAT sys-

tems. The problem is to schedule employees in a company to activities subject to

the following rules.

– An employee either works on activity ai , has a break b, has lunch l , or rests r .

– If the company business is open, an employee works on an activity for a

minimum of one hour and can change activities after a fifteen minutes break

or one hour lunch.

– Break and lunch both are scheduled between periods of work.

131

5. Encoding Global Constraints with Answer Set Programming

– A part-time employee works at least three hours and at most six hours plus

a fifteen minutes break, while

– a full-time employee works at least six hours and at most eight hours plus

an hour and a half for the lunch and the breaks.

Our goal is to minimise the number of hours worked.

The schedule of an employee is modelled with a sequence of 96 variables, each

encodes a time slot of 15 minutes and can take a value that represents whether the

employee works on an activity, has a break, has lunch, or rests. The sequence

must be produced by the following CFG, encoding above rules, with restrictions

on productions.

S ::= RF R, fF (i , j) ≡ 30 ≤ j ≤ 38

S ::= RPR, fF (i , j) ≡ 13 ≤ j ≤ 24

F ::= PLP

P ::=W bW

W ::= Ai , fW (i , j) ≡ j ≥ 4

L ::= l L | l , fL(i , j) ≡ j = 4

Ai ::= ai Ai | ai , fAi (i , j) ≡ open(i)

R ::= r R | r

In addition to the GRAMMAR constraint on each of the m employee’s schedule, we

also post a constraint
∑

m[[vm
i = ai]] ≥ d(t , ai) in order to satisfy the demand d(t , ai)

for each activity ai at time t . To break symmetry, we force the schedules for the

employees to be in lexicographical order.

A bottom-up ASP grounder such as gringo (3.0.3)7 can be employed to gener-

ate our encodings. (Bottom-up describes the fashion of the grounding process, i.e.,

instantiating a program from a first-order signature by systematically substituting

all occurrences of first-order variables with terms, starting from facts and contin-

uing with rules following positive predicate dependency.; cf. Gebser et al., 2011b)

Then, the grounder simulates a CYK parser, i.e., it constructs all possible parsings

for all possible subsequences of the input sequence. However, similar to the CYK

parser, it also generates productions that cannot produce the starting symbol S.

This represents a significant overhead. Instead, we have implemented a grounder

7http://potassco.sourceforge.net/

132

5.2. The GRAMMAR Constraint

Table 5.5: Results on shift scheduling instances.

|A| # m ASP-GRAMMAR ASP-GRAMMAR-DC SAT
1 2 4 26.00 26.25 26.00
1 3 6 37.25 37.50 37.50
1 4 6 38.00 38.00 38.00
1 5 5 24.00 24.00 24.00
1 6 6 33.00 33.00 33.00
1 7 8 49.00 49.00 49.00
1 8 3 20.50 20.50 20.50
1 10 9 54.00 54.25 54.25

2 1 5 25.00 25.00 25.00
2 2 10 58.00 58.75 59.25
2 3 6 39.50 40.25 39.50
2 9 3 19.00 19.00 19.00
2 4 11 68.25 68.50 69.00
2 5 4 24.50 24.75 25.50
2 6 5 28.25 29.25 28.50
2 8 5 32.00 32.75 32.25
2 10 8 57.25 57.75 57.00

for the special purpose of this benchmark based on the algorithm in (Quimper and

Walsh, 2007).

We consider our two ASP encodings of the GRAMMAR constraint: ASP-GRAMMAR

and ASP-GRAMMAR-DC. The latter allows UP to achieve domain consistency. We

compare against the SAT model by Quimper and Walsh (2007). Experiments were

run with the ASP solver clasp (1.3.5)7 on a 2.00 GHz PC under Linux, where each

run was limited to 3600 s time and 1 GByte RAM.

Table 5.2 presents our results on instances involving one or two activities. |A|
denotes the number of activities, # denotes the problem number, and m denotes

the number of employees. For each setting, the table provides the best solution

in the number of worked hours (lower is better) that was found by the ASP solver

within 3600 s time.

Regardless of the encoding, the solver returned a feasible solution for all in-

stances after a few seconds, and rarely reported an improved result within the

remaining run time. Optimality was only reported on four instances. No clear

conclusion can be drawn comparing the three models, i.e., no encoding performs

significantly better that the other. We therefore advocate our ASP-GRAMMAR en-

coding because it is simpler, more straightforward, easier to maintain, and com-

133

5. Encoding Global Constraints with Answer Set Programming

petes with the other approaches on the benchmark domain. As the SAT encoding

is reported to outperform a CP model of the problem (Quimper and Walsh, 2007),

we expect that our ASP encoding beat the CP approach just as well.

5.3 The REACHABILITY Constraint

Since our ASP encodings of constraints presented in the previous sections are all

tight, it was reasonable to limit our studies on the impact of ASP inference to UP.

We here turn our attention to conditions of REACHABILITY (cf. Dooms et al., 2005)

that are straightforwardly encoded into non-tight programs. We make several con-

tributions to this line of research.

– First, we show how to represent the graph variables’ and vertex set variables’

domains with ASP. Then, we proceed with studying the impact of UP and

unfounded set inference on propagating REACHABILITY with varying degrees

on freedom.

– Because ASP allows for recursive definitions and employs very efficient in-

ference mechanisms such as UP and WFN, it should naturally and efficiently

handle REACHABILITY. Whilst this intuition is strengthened by experimental

results (Celik et al., 2009; Coban et al., 2008), we demonstrate that restrict-

ing inference to the combination of UP and WFN can hinder propagation in

general.

– Additional information, however, can be drawn from unfounded sets. We

show that BL and LD can lead to additional pruning, and that the complete

range of ASP inference considered in this thesis maintains domain consis-

tency of REACHABILITY.

– We demonstrate that under certain limitations, however, a restricted set of

inference operators is sufficient to achieve a similar result. In particular, we

prove that if the graph and source nodes are fixed, then UP and FL prune all

values. If the graph and source nodes are not fixed, but the set of reached

nodes are, then UP and BL prune all values.

– We provide theoretical results on asymptotic run time complexity.

– Finally, we experimentally evaluate the effects of ASP inference on bench-

marks that make use of REACHABILITY conditions.

134

5.3. The REACHABILITY Constraint

The (global) REACHABILITY constraint works on graph- and vertex set variables. As

outlined in the Background chapter, we will make some practical assumptions on

the structure of their domains, following Dooms et al. (2005).

Assumption: Graph Variables’ and Vertex Set Variables’ Domains

The domain of a graph variable G is the lattice of graphs [lb(G),ub(G)]. The

domain of a vertex set variable X is [lb(X),ub(X)], the powerset of the set of

vertices ub(X) in a graph under inclusion of the set of vertices lb(X) ⊆ ub(X).

Given this, we define the REACHABILITY constraint as follows.

Definition 5.13: REACHABILITY

For an assignment A, the REACHABILITY constraint REACHABILITY(G ,S,T) is

satisfied if and only if G is a graph such that T is the set of nodes reachable

from some node in S.

Reachability is a relevant condition in many applications, in particular, applica-

tions that require a graph to be connected. For instance, in the problem of plac-

ing valves in an urban hydraulic network, we want to maximise the sub-net that

stays connected to a water source when a pipe is isolated for maintenance (see Sec-

tion 6.4). Another example is the Hidato puzzle presented earlier.

Example 5.9

Consider the REACHABILITY(G,S,T) constraint where the domain of G is given

through

lb(G) = ({v1, v3}, {(v3, v1)}) and

ub(G) = ({v1, v2, v3}, {(v1, v2), (v2, v3), (v3, v1)}),

the domain of S is [;, {v1, v2}], and the domain of T is [{v1}, {v1, v2, v3}]. The

graph lb(G) looks like this:

v1 v3

and the graph ub(G) looks like this:

v1

v2

v3

135

5. Encoding Global Constraints with Answer Set Programming

The potential start vertices v1, v2 ∈ ub(S) are lightly shaded red. As can be

seen from the domain of G, the vertices v1 and v3, and the edge (v3, v1) is

included in every possible assignment to G. An assignment that satisfies the

constraint is A with A(G) = ({v1, v3}, {(v3, v1)}), A(S) = {v1}, and A(T) = {v1}.

Another satisfying assignment is A′ with A′(G) = ({v1, v2, v3}, {(v2, v3), (v3, v1)}),

A′(S) = {v2}, and A′(T) = {v1, v2, v3}. The graph A′(G) looks like this:

v1

v2

v3

Contrary to the intuition that ASP systems naturally and efficiently handle REACH-

ABILITY, we demonstrate that they in fact hinder its propagation, as ASP systems

restrict inference to a combination of UP and WFN. Additional information, how-

ever, can be drawn from unfounded sets. We show that LD can lead to additional

pruning, and that applying UP, FL, BL, and LD on REACHABILITY prunes all possi-

ble values.

To begin, we show how to represent the domain of a graph variable G and ver-

tex set variables S and T . For encoding G we introduce a new atom for each ver-

tex v ∈ ub(G) and for each edge (u, v) ∈ ub(G). We will denote these atoms [[v∈G]]

and [[(u, v) ∈ G]], respectively. An assignment to [[v ∈ G]] will indicate whether

the vertex v belongs to G. Hence, [[v ∈ G]] will be assigned true if v ∈ G, and

false if the vertex v has been removed from the domain of G. Similarly, an as-

signment to [[(u, v) ∈G]] will indicate whether the edge (u, v) belongs to G, and

[[(u, v)∈G]] will be assigned true if the edge (u, v) belongs to G, and false if it has

been removed from the domain of G. Extra care has to be taken when encoding a

consistent set of domains. In particular, an edge (u, v) can only be included in G if

both vertices u and v belong to G.

Definition 5.14: ASP Encoding of Graph Variables’ Domains

Our ASP encoding of a graph variable G’s domain, denoted by ASP-GRAPH[G],

is specified as follows.

– For each pair of distinct vertices u, v ∈ ub(G), include rules of the form

{ [[v∈G]] } ← (5.32)

136

5.3. The REACHABILITY Constraint

{ [[(u, v)∈G]] } ← [[v∈G]], [[v∈G]] (5.33)

– For each vertex v ∈ lb(G), include the integrity constraint

← not [[v∈G]] (5.34)

– Similarly, for each edge (u, v) ∈ lb(G), include the integrity constraint

← not [[(u, v)∈G]] (5.35)

The choice rules from (5.32–5.33) represent the upper bound on the domain of

a graph variable G, where a rule of the form (5.32) encodes the possible inclu-

sion of a vertex, and a rule of the form (5.33) encodes the possible inclusion of an

edge (u, v) if both vertices u and v are included. On the other hand, the remaining

integrity constraints (5.34–5.35) represent the lower bound on the domain of G,

where a rule of the form (5.34) enforces the inclusion of a vertex, and a rule of the

form (5.35) enforces the inclusion of an edge.

Example 5.10

Reconsider the setting from Example 5.9 where the domain of G was given

through

lb(G) = ({v1, v3}, {(v3, v1)}) and

ub(G) = ({v1, v2, v3}, {(v1, v2), (v2, v3), (v3, v1)}).

Our encoding of G, ASP-GRAPH[G], is

{ [[v1∈G]] } ← { [[(v1, v2)∈G]] } ← [[v1∈G]], [[v2∈G]]

{ [[v2∈G]] } ← { [[(v2, v3)∈G]] } ← [[v2∈G]], [[v3∈G]]

{ [[v3∈G]] } ← { [[(v3, v1)∈G]] } ← [[v3∈G]], [[v1∈G]]

← not [[v1∈G]]

← not [[v3∈G]]

← not [[(v3, v1)∈G]]

which can be compiled into a program without choice rules. From this, we

can construct the set of nogoods∆ASP-GRAPH[G]. Verify that UP on ASP-GRAPH[G]

137

5. Encoding Global Constraints with Answer Set Programming

achieves an assignment A that reflects G’s domain. In particular, for the ver-

tices we have T[[v1 ∈G]],T[[v3 ∈G]] ∈ A and [[v2 ∈G]] 6∈ AT ∪AF. For the edges,

we have T[[(v3, v1)∈G]] ∈ A and [[(v1, v2)∈G]], [[(v2, v3)∈G]] 6∈ AT ∪AF.

To expand on the example, the removal of the vertex v2 fromG is indicated

by F[[v2 ∈G]] ∈ A. In turn, the removal of the edges (v1, v2), (v2, v3) from G is

represented by F[[(v1, v2)∈G]],F[[(v2, v3)∈G]] ∈ A.

lb(G) ub(G) Property of A

({v1},;) ({v1, v3},{(v3, v1)}) T[[v1∈G]] ∈ A, [[v3∈G]], [[(v3, v1)∈G]] 6∈ AT ∪AF

({v1},;) ({v1},;) T[[v1∈G]],F[[v2∈G]],F[[v3∈G]] ∈ A

The table relates sample domains of G with properties that can be observed

in an assignment A reflecting G.

Encoding the vertex set variables S and T is straightforward, using the atoms from

ASP-GRAPH[G]. In general, for a vertex set variable X , we introduce a new atom for

each vertex v ∈ ub(X). We will denote this atom [[v∈X]]. An assignment to [[v∈X]]

will indicate the inclusion or exclusion of v . Hence, [[v ∈X]] will be assigned true

if v is included in X , and false if v is excluded from X .

Definition 5.15: ASP Encoding of Vertex Set Variables’ Domains

Our encoding of a vertex set variable X ’ domain, denoted by ASP-VSET[G, X],

is specified as follows.

– For each vertex v ∈ ub(X), include a rule of the form

{ [[v∈X]] } ← [[v∈G]] (5.36)

– For each vertex v ∈ lb(X), include the integrity constraint

← not [[v∈X]] (5.37)

Obviously, any non-empty program ASP-VSET[G, X] has externals in ASP-GRAPH[G],

that are, atoms representing the inclusion of vertices into G. The choice rules

from (5.36) represent the upper bound on the domain of a vertex set variable X ,

where each rule of the form (5.36) encodes the possible inclusion of a vertex if it

is a vertex in the underlying graph. On the other hand, the integrity constraints

from (5.37) represent the lower bound on the domain of X , where each rule of the

form (5.37) enforces the inclusion of a vertex.

138

5.3. The REACHABILITY Constraint

We use ASP-VSET[G,S] to represent the domain of S and ASP-VSET[G,T] to rep-

resent the domain of T .

Example 5.11

Reconsider the setting from Example 5.9 where the domain of S is [;, {v1, v2}],

and the domain of T is [{v1}, {v1, v2, v3}]. Our encoding of the vertex sets S

and T , i.e., ASP-VSET[G,S] and ASP-VSET[G,T], is

{ [[v1∈S]] } ← [[v1∈G]] { [[v1∈T]] } ← [[v1∈G]]

{ [[v2∈S]] } ← [[v2∈G]] { [[v2∈T]] } ← [[v2∈G]]

← not [[v1∈T]] { [[v3∈T]] } ← [[v3∈G]]

which can be compiled into a program without choice rules. Given this, we

can construct the set of nogoods ∆ASP-GRAPH[G]∪ASP-VSET[G,X].

Verify that UP achieves an assignment A that reflects S’ and T ’s domains.

In particular, we have T[[v1 ∈T]] ∈ A and [[vi ∈T]], [[vi−1 ∈S]] 6∈ AT ∪AF for 2 ≤
i ≤ 3. Some other examples are given in the table below.

v1 v2 v3 Property of A

X 7 T[[v1∈G]],F[[v2∈G]] ∈ A, [[v3∈G]] 6∈ AT ∪AF

X 7 X T[[v1∈G]],F[[v2∈G]],T[[v3∈G]] ∈ A

The table relates membership information of the vertices v1, v2, and v3 to T

(X inclusion, 7 exclusion) with properties that can be observed in an assign-

ment A reflecting T .

Note that our encoding of graph variables’ and vertex set variables’ domains is

rather technical. In practice, the domains of some of the variables may be fixed,

allowing for simpler encodings. For instance, if the graph G is fixed then the edges

in G are typically encoded by using facts rather than choice rules.

Now that we have settled on a representation of graph structures, we can pro-

ceed with encoding REACHABILITY conditions. The following encoding of REACH-

ABILITY is folklore (cf. Niemelä, 1999; Lifschitz, 2008a; Brewka et al., 2011).

Definition 5.16: ASP Encoding of REACHABILITY Constraints

Our ASP encoding of the REACHABILITY(G,S,T) constraint is constructed as

follows:

– For each vertex v ∈ ub(G) we introduce the new atom reached(v) to

139

5. Encoding Global Constraints with Answer Set Programming

reflect whether a vertex v is reached.

– Then, include the following set of rules, where v, w ∈ ub(G) are distinct

vertices.

reached(v) ← [[v∈S]] (5.38)

reached(v) ← reached(u), [[(u, v)∈G]] (5.39)

– Finally, the constraint is violated if the reached vertices do not coincide

with the ones specified in the vertex set T , captured by the rules of the

form

[[REACHABILITY(G,S,T)]] ← [[v∈T]], not reached(v) (5.40)

[[REACHABILITY(G,S,T)]] ← reached(v), not [[v∈T]] (5.41)

where v ∈ ub(G).

We denote the encoding by ASP-REACHABILITY[G,S,T].

The encoding is intuitive: Rules of the from (5.38) and (5.39) encode that a vertex v

is reached if it is a start vertex or, alternatively, if there is an edge to v from another

vertex u where u is reached. The remaining rules of the form (5.40) and (5.41)

ensure that REACHABILITY(G,S,T) is violated if the value of T does not correspond

to the set of vertices that are reached.

Note that our encoding allows for some flexibility. For instance, in practice

one might only want to enforce that T represents a subset of reachable nodes

rather than a one-to-one correspondence. Then, all rules of the form (5.41) may

be dropped. In total, ASP-REACHABILITY[G,S,T]∪ASP-GRAPH[G]∪ASP-VSET[G,S]∪
ASP-VSET[G,T] introduces O (n2) new atoms and O (n2) rules, where n is the num-

ber of vertices in ub(G).

We proceed with investigating the impact of ASP inference on our encoding in

terms of local consistency achieved on the original constraint. We will start with

the special case where G and S are fixed, i.e., G and S work as parameters. Then,

the constraint ASP-REACHABILITY[G,S,T] amounts to queries about vertices that

can be reached from S in G.

Example 5.12

Consider the REACHABILITY(G,S,T) constraint, that we do not want to vio-

140

5.3. The REACHABILITY Constraint

late, and the assignment A representing the fixed domains of the graph vari-

able G = (V ,E) with V = {v1, v2, v3, v4} and E = {(v1, v2), (v3, v4), (v4, v3)}), and

the start vertices S = {v1}, and the domain of T given through l b(T) = ; and

ub(T) = {v1, v2, v3, v4}. In particular, we have

F[[REACHABILITY(G,S,T)]], T[[v1∈S]],

T[[(v1, v2)∈G]], T[[(v3, v4)∈G]], T[[(v4, v3)∈G]]

}
∈ A.

The value of G looks like this:

v1 v2 v3 v4

The single start vertex v1 is lightly shaded red. Observe that the vertices v3

and v4 are disconnected from v1. The program ASP-REACHABILITY[G,S,T] in-

cludes the following rules:

reached(v1) ← [[v1∈S]]

reached(v2) ← reached(v1), [[(v1, v2)∈G]]

reached(v3) ← reached(v4), [[(v4, v3)∈G]]

reached(v4) ← reached(v3), [[(v3, v4)∈G]]

[[REACHABILITY(G,S,T)]] ← [[v1∈T]], not reached(v1)

[[REACHABILITY(G,S,T)]] ← [[v2∈T]], not reached(v2)

[[REACHABILITY(G,S,T)]] ← [[v3∈T]], not reached(v3)

[[REACHABILITY(G,S,T)]] ← [[v4∈T]], not reached(v4)

[[REACHABILITY(G,S,T)]] ← reached(v1), not [[v1∈T]]

[[REACHABILITY(G,S,T)]] ← reached(v2), not [[v2∈T]]

[[REACHABILITY(G,S,T)]] ← reached(v3), not [[v3∈T]]

[[REACHABILITY(G,S,T)]] ← reached(v4), not [[v4∈T]]

We omit the remaining rules that do not apply, given the above domains. Con-

sidering the assignment A, immediate consequences of UP are v1, v2 ∈ lb(T),

i.e.,

UP∗(∆Ψ,A) = A′ ⊇ {T[[v1∈T]],T[[v2∈T]]}

141

5. Encoding Global Constraints with Answer Set Programming

where

Ψ= ASP-REACHABILITY[G,S,T]∪ ASP-GRAPH[G]

∪ ASP-VSET[G,S]∪ ASP-VSET[G,T].

On the other hand, FL determines that v3 and v4 are not reachable, i.e.,

WFN∗[loop(Ψ)](Ψ,A′) = A′′ ⊇ {F reached(v3),F reached(v4)}.

Further application of UP removes v3 and v4 from the domain of T , i.e.,

UP∗(∆Ψ,A′′) ⊇ {F[[v3∈T]],F[[v4∈T]]}.

In conclusion, we have T = {v1, v2}.

In general, if G and S are fixed, then the application of UP and FL inference on

ASP-REACHABILITY[G,S,T] prunes all values of T .

Theorem 5.15

If G and S are fixed, then UP and FL on

Ψ= ASP-REACHABILITY[G,S,T]∪ ASP-GRAPH[G]

∪ ASP-VSET[G,S]∪ ASP-VSET[G,T].

achieve domain consistency on REACHABILITY(G,S,T).

Proof. The proof strategy is to show that if an assignment to a variable is possible

then there is a combination of values to the other variables that satisfies the con-

straint. Since G and S are fixed, we will prove for values of T , i.e., the exclusion of

vertices from T and the inclusion of vertices to T .

Let A be an assignment to the atoms representing the current domains of G, S,

and T , i.e., atoms from ASP-GRAPH[G]∪ ASP-VSET[G,S]∪ ASP-VSET[G,T]. Since G

and S are fixed, A is total for atom(ASP-GRAPH[G]∪ ASP-VSET[G,S]). Suppose UP

and FL have been run to completion, extending A∪F[[REACHABILITY(G,S,T)]] (the

REACHABILITY constraint shall not be violated) to the conflict-free assignment A′.
Consider any vertex v ∈ ub(T). We make a case distinction between [[v ∈T]] 6∈

(A′)T and [[v∈T]] 6∈ (A′)F, i.e., the exclusion of v from T or the inclusion of v to T is

possible.

First, if [[v∈T]] 6∈ (A′)T, then the nogoods {F[[REACHABILITY(G,S,T)]],Tbody(r)}

and {Fbody(r),T reached(v),F[[v ∈T]]} represented by a rule r of the form (5.41)

142

5.3. The REACHABILITY Constraint

guarantee that reached(v) 6∈ (A′)T. In turn, the nogoods {F reached(v),Tbody(r)}

and {Fbody(r),T[[v ∈S]]} represented by a rule r of the form (5.38) guarantee that

[[v ∈ S]] 6∈ (A′)T. (Since A′ is total for atom(ASP-VSET[G,S]) and conflict-free, we

have [[v∈S]] ∈ (A′)F, i.e., v 6∈ S.) Similarly, for every incident edge (u, v) ∈G we have

[[(u, v)∈G]] ∈ (A′)T and a rule r of the form (5.39) representing nogoods {Tbody(r),

F reached(v)} and {Fbody(r),T reached(u),T[[(u, v)∈G]]}. This guarantees that we

have reached(u) 6∈ (A′)T. (Since A′ is total for atom(ASP-VSET[G,S]) and conflict-

free, we have [[u ∈ S]] ∈ (A′)F, i.e., u 6∈ S.) That means, every predecessor u of v

can be disconnected. By successively applying the same argument, we obtain

paths (including loops), all of which contain only vertices that can be discon-

nected. For each such vertex u, the nogoods {F[[REACHABILITY(G,S,T)]],Tbody(r)}

and {Fbody(r),T reached(u),F[[u ∈T]]} represented by a rule r of the form (5.41)

guarantee that [[u ∈T]] 6∈ (A′)T, i.e., the exclusion of v from T is possible. In con-

clusion, if [[v ∈T]] 6∈ (A′)T, i.e., the exclusion of v from T is possible, then there are

compatible exclusions of other vertices that satisfy the constraint. (In fact, since G

is fixed, there is no degree of freedom, and the other vertices are indeed excluded

from T .)

On the other hand, if [[v ∈T]] 6∈ (A′)F, then the nogoods represented by a rule r

of the form (5.40), i.e., {F[[REACHABILITY(G,S,T)]],Tbody(r)} and {Fbody(r),T[[v ∈
T]],F reached(v)}, guarantee that reached(v) 6∈ (A′)F. Since FL ran to completion,

A′ is unfounded-free. Hence, ESASP-REACHABILITY[G,S,T]({reached(v)}) \ AF 6= ;. That

means, either F{[[v ∈S]]} 6∈ A′ or F{reached(u), [[(u, v)∈G]]} 6∈ A′ for some (u, v) ∈G,

i.e., either v ∈ S or v has a predecessor u that is reached. By successively applying

the same argument, we obtain a path which concludes in a start vertex. Hence,

if [[v ∈T]] 6∈ (A′)F, i.e., the inclusion of v into T is possible, then there are compati-

ble inclusions of other vertices that satisfy the constraint. (In fact, since G is fixed,

there is no degree of freedom, and the other vertices are indeed included in T .)

In conclusion, if the exclusion of v from T or the inclusion of v to T is possi-

ble, then there is a combination of values to the other variables that satisfies the

constraint. Hence, we have a set of domains which are domain consistent.

We now turn our attention to another special case of REACHABILITY(G,S,T), i.e.,

the set of reachable vertices in T is fixed. This is useful in situations where access

of a vertex to a resource, represented through start vertices, has to be guaranteed.

In such circumstances, applying UP and WFN on ASP-REACHABILITY[G,S,T] can

hinder propagation, in general. The construction of a counter example is sim-

ple.

143

5. Encoding Global Constraints with Answer Set Programming

Counter Example 5.13

Consider the REACHABILITY(G,S,T) constraint, that we do not want to violate,

and the assignment A representing the fixed domain of T = {v1, v2}, and the

domains of the graph variable G given through

lb(G) = ({v1, v2},;) and

ub(G) = ({v1, v2}, {(v1, v2), (v2, v1)}),

and the start vertices S given through lb(S) =; and ub(S) = {v1}. In particular,

we have reached(v1),reached(v2) ∈ AT. The graph ub(G) looks like this:

v1 v2

The single (potential) start vertex v1 ∈ ub(S) is lightly shaded red. Our encod-

ing ASP-REACHABILITY[G,S,T] includes the following rules:

reached(v1) ← [[v1∈S]]

reached(v2) ← [[v2∈S]]

reached(v1) ← reached(v2), [[(v2, v1)∈G]]

reached(v2) ← reached(v1), [[(v1, v2)∈G]]

[[REACHABILITY(G,S,T)]] ← [[v1∈T]], not reached(v1)

[[REACHABILITY(G,S,T)]] ← [[v2∈T]], not reached(v2)

[[REACHABILITY(G,S,T)]] ← reached(v1), not [[v1∈T]]

[[REACHABILITY(G,S,T)]] ← reached(v2), not [[v2∈T]]

We get (v2, v1) ∈ lb(G) as an immediate consequence of UP, i.e.,

UP∗(∆Ψ,A) 3 T[[(v2, v1)∈G]]

where

Ψ= ASP-REACHABILITY[G,S,T]∪ ASP-GRAPH[G]

∪ ASP-VSET[G,S]∪ ASP-VSET[G,T].

However, verify that neither UP nor WFN onΨ include v1 in the lower bound

of S, represented by T[[v1∈S]].

144

5.3. The REACHABILITY Constraint

However, we can guarantee that the addition of WFJ inference prunes all values.

Theorem 5.16

If T is fixed then UP and BL on

Ψ= ASP-REACHABILITY[G,S,T]∪ ASP-GRAPH[G]

∪ ASP-VSET[G,S]∪ ASP-VSET[G,T].

achieve domain consistency on REACHABILITY(G,S,T).

Proof. The proof strategy is to show that if an assignment to a variable is possible

then there is a combination of values to the other variables that satisfies the con-

straint. Since T is fixed, we will prove for values of G and S, i.e., the exclusion of

edges from G and the inclusion of edges to G, and the exclusion of vertices from S

and the inclusion of vertices to S.

Let A be an assignment to the atoms representing the current domains of G, S,

and T , i.e., atoms from ASP-GRAPH[G]∪ ASP-VSET[G,S]∪ ASP-VSET[G,T]. Since T

is fixed, A is total for atom(ASP-VSET[G,T]). Suppose UP and BL have been run to

completion, extending A∪F[[REACHABILITY(G,S,T)]] (i.e., the REACHABILITY con-

straint shall not be violated) to the conflict-free assignment A′.
Consider any edge (u, v) ∈ ub(G). We make a case distinction between [[(u, v)∈

G]] 6∈ (A′)T and [[(u, v)∈G]] 6∈ (A′)F, i.e., the exclusion of (u, v) from G or the inclu-

sion of (u, v) to G is possible. First, let [[(u, v)∈G]] 6∈ (A′)F. If reached(u) 6∈ (A′)F, i.e.,

u ∈ T is possible, then the nogoods {Fbody(r),T reached(u),T[[(u, v) ∈G]]} and

{F reached(v),Tbody(r)} represented by a rule r of the form (5.39) guarantee that

reached(v) 6∈ (A′)F, i.e., v ∈ T is possible. (In fact, since T is fixed, there is no de-

gree of freedom, and if u ∈ T then v ∈ T .) Hence, the inclusion of the edge (u, v)

into G does not connect a vertex that is reached with a disconnected one. In con-

clusion, there is an assignment with (u, v) ∈G satisfying the constraint.

On the other hand, let [[(u, v)∈G]] 6∈ (A′)T. If reached(v) ∈ (A′)T, i.e., v ∈ T via a

rule of the form (5.41), then

ESASP-REACHABILITY[G,S,T]({reached(v)}) \ AF 6= {{reached(u), [[(u, v)∈G]]}}

i.e., if v is reached then either v ∈ S is possible or there is some other edge (u′, v)

that can connect a reachable vertex u′ to v . (In fact, since T is fixed, there is no

degree of freedom, and if v ∈ T then u′ ∈ T .) By successively applying the same ar-

145

5. Encoding Global Constraints with Answer Set Programming

gument, we obtain paths, each of which concludes in a vertex that can be included

in S. Hence, there is an assignment with (u, v) 6∈G satisfying the constraint.

In conclusion, if the exclusion of (u, v) from G or the inclusion of (u, v) to G is

possible, then there is a combination of values to the other variables that satisfies

the constraint.

Now, consider any vertex v ∈ ub(S). We make a case distinction between [[v ∈
S]] 6∈ (A′)T and [[v ∈S]] 6∈ (A′)F, i.e., the exclusion of v from S or the inclusion of v

to S is possible. First, if [[v ∈S]] 6∈ (A′)F then the nogoods {Fbody(r),T[[v ∈S]]} and

{F reached(v),Tbody(r)} represented by a rule r of the form (5.38) guarantee that

reached(v) 6∈ (A′)F, i.e., v ∈ T is possible via a rule of the form (5.41). (In fact,

since T is fixed, there is no degree of freedom, and v ∈ T .) Hence, the inclusion

of the vertex v into S does not connect a vertex that is disconnected. Hence, the

constraint is satisfied.

On the other hand, let [[v∈S]] 6∈ (A′)T. If reached(v) ∈ (A′)T, i.e., v ∈ T via a rule

of the form (5.41), then

ESASP-REACHABILITY[G,S,T]({reached(v)}) \ AF 6= {{[[v ∈ S]]}}

i.e., if v is reached then v being a start vertex is not the only way to connect v , i.e.,

there is some edge (u, v) that can connect a reachable vertex u to v where

ESASP-REACHABILITY[G,S,T]({reached(v)}) \ AF 3 {reached(u), [[(u, v)∈G]]}.

From {reached(u), [[(u, v) ∈G]]} 6∈ (A′)F and the nogoods in EQ{reached(u),[[(u,v)∈G]]}

we conclude reached(u), [[(u, v)∈G]] 6∈ (A′)F. (In fact, we have reached(u) ∈ (A′)T

via a rule of the form (5.41) since T is fixed, and there is no degree of freedom.)

Hence, if v is reached then there is an edge that can be included in G connecting

a reachable vertex to v . By successively applying the same argument, we obtain

paths, each of which concludes in a vertex that can be included in S, satisfying the

constraint.

In conclusion, if the exclusion of v from S or the inclusion of v to S is possi-

ble, then there is a combination of values to the other variables that satisfies the

constraint. Hence, we have a set of domains which are domain consistent.

Example 5.14

Reconsider the setting from Counter Example 5.13.

146

5.3. The REACHABILITY Constraint

Since {reached(v1),reached(v2)} ∈ loop(ASP-REACHABILITY[G,S,T]) and

ESASP-REACHABILITY[G,S,T]({reached(v1),reached(v2)}) \ AF = {{[[v1∈S]]}},

the application of BL enforces T{[[v1∈S]]}. In turn, UP includes v1 in the lower

bound of S, represented by T[[v1∈S]].

If the value of T is not fixed, however, domain consistency is not guaranteed.

Again, the construction of a counter example is simple.

Counter Example 5.15

Consider the REACHABILITY(G,S,T) constraint, that we do not want to violate,

and the assignment A representing the domains of the graph variable G given

through

lb(G) = ({v1, v2, v3, v4},;) and

ub(G) = ({v1, v2, v3, v4}, {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}),

the set variable of start vertices S given through lb(S) = ; and ub(S) = {v1},

and the set variable of reachable vertices T given through lb(T) = {v4} and

ub(T) = {v1, v2, v3, v4}. In particular, we have T reached(v4) ∈ A.

The graph ub(G) looks like this:

v1

v2

v3

v4

The single (potential) start vertex v1 ∈ ub(S) is lightly shaded red. Our encod-

ing ASP-REACHABILITY[G,S,T] includes the following rules:

reached(v1) ← [[v1∈S]]

reached(v2) ← reached(v1), [[(v1, v2)∈G]]

reached(v3) ← reached(v1), [[(v1, v3)∈G]]

reached(v4) ← reached(v2), [[(v2, v4)∈G]]

reached(v4) ← reached(v3), [[(v3, v4)∈G]]

147

5. Encoding Global Constraints with Answer Set Programming

[[REACHABILITY(G,S,T)]] ← [[v1∈T]], not reached(v1)

[[REACHABILITY(G,S,T)]] ← [[v2∈T]], not reached(v2)

[[REACHABILITY(G,S,T)]] ← [[v3∈T]], not reached(v3)

[[REACHABILITY(G,S,T)]] ← [[v4∈T]], not reached(v4)

[[REACHABILITY(G,S,T)]] ← reached(v1), not [[v1∈T]]

[[REACHABILITY(G,S,T)]] ← reached(v2), not [[v2∈T]]

[[REACHABILITY(G,S,T)]] ← reached(v3), not [[v3∈T]]

[[REACHABILITY(G,S,T)]] ← reached(v4), not [[v4∈T]]

We here omit the remaining rules that do not apply, given the above domains.

Verify that neither UP nor WFN, nor WFJ include v1 in the lower bound of S

or T , represented by T[[v1∈S]] and T reached(v1), respectively.

Additional pruning is required. We can show that if UP, FL, BL, and LD are avail-

able, then we can prune all values.

Theorem 5.17

UP, FL, BL and LD on

Ψ= ASP-REACHABILITY[G,S,T]∪ ASP-GRAPH[G]

∪ ASP-VSET[G,S]∪ ASP-VSET[G,T].

achieve domain consistency on REACHABILITY(G,S,T).

Proof. The proof strategy is to show that if an assignment to a variable is possi-

ble then there is a combination of values to the other variables that satisfies the

constraint. We need to consider this for values of G, S, and T , i.e., the exclusion

of edges from G and the inclusion of edges to G, the exclusion of vertices from S

and the inclusion of vertices to S, and the exclusion of vertices from T and the in-

clusion of vertices to T . We will prove the exclusion of vertices to T in detail. The

other possible assignments follow the arguments from the proof of Theorems 5.15

and 5.16.

Let A be an assignment to the atoms representing the current domains of G, S,

and T , i.e., atoms from ASP-GRAPH[G]∪ ASP-VSET[G,S]∪ ASP-VSET[G,T]. Suppose

UP and BL have been run to completion, extending A∪F[[REACHABILITY(G,S,T)]]

(i.e., the REACHABILITY constraint shall not be violated) to the conflict-free assign-

ment A′.

148

5.3. The REACHABILITY Constraint

For any edge (u, v) ∈ ub(G), the proof follows the one for Theorem 5.16, i.e., UP

ensures that if (u, v) can be included in G then (u, v) does not connect a vertex that

is reached via one that cannot be reached, and BL and UP guarantee that if (u, v)

can be excluded from G then, if v can be included in T , there is either some path

connecting a vertex to v that can be included in S, or v can be included in S itself.

Hence, in any case, the constraint is satisfied.

Similarly, following the proof of Theorem 5.16, for any vertex v ∈ ub(S), UP

ensures that if v can be included in S then v can also be included in T , and BL

and UP guarantee that if v can be excluded from S then, if v can be included in T ,

there is some path connecting a vertex to v that can be included in S. Hence, in

any case, the constraint is satisfied.

Moreover, following the proof of Theorem 5.15, for any vertex v ∈ ub(T), UP

and FL ensure that if v can be included in T then either v can also be included

in S, or there is some path connecting a vertex to v that can be included in S.

On the other hand, UP guarantees that if v can be excluded from T then v can

be excluded from S and every path (including loops) that ends in v contains only

vertices that can be made disconnected from start vertices. In order to satisfy the

constraint, however, it remains to show that, then, each other vertex w (distinct

from v) that is included in T does not get disconnected, i.e., not all paths from a

potential start vertex go though v . Let w ∈ ub(T) such that w is included in T ,

i.e., [[v ∈T]] ∈ (A′)T. Then the nogoods {F[[REACHABILITY(G,S,T)]],Tbody(r)} and

{Fbody(r),T[[v ∈T]],F reached(v)} represented by a rule r of the form (5.40) guar-

antee that reached(v) ∈ (A′)T. By construction of ASP-REACHABILITY[G,S,T], every

set of vertices V ⊆ ub(G), in particular every such set V with w ∈ V , induces a

loop {reached(v) | v ∈ V } in the program ASP-REACHABILITY[G,S,T]. Since LD ran

to completion, we have

ESASP-REACHABILITY[G,S,T]({reached(v) | v ∈V }) \ AF

6⊆ {body(r) | r ∈ ASP-REACHABILITY[G,S,T], [[v∈T]] ∈ body(r)}

for each set of vertices V such that {v} ⊆V ⊆ ub(G). Hence, not all paths from a po-

tential start vertex go though v , and the exclusion of v from T does not disconnect

vertices that are already included in T . Hence, the constraint is satisfied.

In conclusion, if the exclusion of v from T or the inclusion of v to T is possi-

ble, then there is a combination of values to the other variables that satisfies the

constraint. Hence, we have a set of domains which are domain consistent.

149

5. Encoding Global Constraints with Answer Set Programming

Example 5.16

Reconsider the setting from Example 5.15. Since the singleton {reached(v1)}

is a loop in loop(ASP-REACHABILITY[G,S,T]) and

ESASP-REACHABILITY[G,S,T]({reached(v1)}) \ AF = {body(r2),body(r3)}

⊆ {body(r) | r ∈ ASP-REACHABILITY[G,S,T], reached(v1) ∈ body(r)},

LD includes reached(v1) in the lower bound of T , represented by the literal

T reached(v1). In turn, the application of BL enforces T{[[v1 ∈ S]]}, and UP

includes v1 in the lower bound of S, represented by T[[v1∈S]].

Finally, we address the run time for propagating REACHABILITY conditions.

Theorem 5.18

UP, FL, BL and LD on

Ψ= ASP-REACHABILITY[G,S,T]∪ ASP-GRAPH[G]

∪ ASP-VSET[G,S]∪ ASP-VSET[G,T].

run in O (n2) time down any branch of the search tree.

Proof. There are O (n2) nogoods represented by Ψ. By Theorems 2.1 we obtain,

down any branch of the search tree, a running time complexity of O (n2) for UP.

Since ASP-REACHABILITY[G,S,T] is component-unary, by Theorem 3.7 and Theo-

rem 3.12 a O (n) algorithm to compute dominators in the support-flowgraph rep-

resentation of our encoding can simulate the application of BL and LD. Hence, the

overall time complexity to enforce domain consistency on REACHABILITY(G,S,T)

is given by O (n2)+O (n2) =O (n2).

Experimental Results

An experimental evaluation of the effects of ASP inference on REACHABILITY con-

ditions relies on the availability of BL and LD inference in ASP systems. To date,

however, there is no ASP solver that implements a method for BL and LD. We have

put forward a method in Chapter 3 that can be used to simulate the effects of BL

and LD on REACHABILITY via computing dominators in the support-flowgraph of

our encoding. Implementing Georgiadis and Tarjan (2004)’s linear-time algorithm

for finding all dominators in a flowgraph, however, is a challenging engineering ex-

ercise as it relies on sophisticated data structures. Hence, for practical reasons, we

150

5.3. The REACHABILITY Constraint

have integrated BL into the ASP solver clasp (2.1.1)8 via failed-literal-detection and

FL. This has high computational costs, i.e., down any branch of the search tree, cu-

bic in the size of the program, whilst our flowgraph-based method has worst-case

quadratic costs.

To compare with the state-of-the-art, i.e., limiting ASP inference to only use

UP and FL, we include the default setting of clasp in our analysis. We conducted

experiments on search problems that make use of REACHABILITY conditions. Our

benchmarks stem from the Second ASP Competition (Denecker et al., 2009). Most

of the problems also formed a benchmark class in the third ASP competition (Cal-

imeri et al., 2011).

Connected Dominating Set

A dominating set in an undirected graph G = (V ,E) is a subset D ⊆ V of vertices

in the graph such that for every vertex v ∈ V , either v ∈ D , or v is adjacent to a

vertex u ∈ D , i.e., there is an edge (u, v) ∈ E . The dominating set D is connected if

the sub-graph induced by the vertices in D is connected. Connected dominating

sets are useful for efficient routing in ad hoc wireless networks (Wu and Li, 1999).

Given a graph G and an integer k, the connected dominating set problem is to find

a connected dominating set with at most k vertices.

Generalised Slitherlink

Slitherlink is logic puzzle game that is played on a grid of dots forming squares

inside them. Some of the squares contain a number. The goal of the puzzle is to

connect adjacent dots horizontally and vertically such that the lines form a loop,

where the number in a square constraints how many of its four sides represent

a segment in the loop. The generalised Slitherlink problem extends the grid to a

graph problem, constraining the membership of subsets of edges in the loop.

Graph Partitioning

A partitioning of an undirected graph (V ,E) is a labelling of the vertices V with

the integers in [1,k] such that the sub-graph induced by the vertices sharing a la-

bel, called a partition, is connected. Given the number of partitions k, a weight-

function w : E → N that assigns a weight to each edge in E , and a maximum

weight wmax , the graph partitioning problem is to find a partitioning such that

8http://potassco.sourceforge.net/

151

5. Encoding Global Constraints with Answer Set Programming

Table 5.6: Experimental Data.

Benchmark UP+FL UP+FL+BL
Class n s time branches conflicts s time branches conflicts
Connected
Dominating Set

21 20 202 11321k 6339k 20 3342 6887k 3655k

Generalised
Slitherlink

29 29 3 22k 5k 29 4 1k <1k

Graph
Partitioning

13 13 147 3159k 2345k 13 785 1139k 810k

Hamiltonian
Path

29 29 1 44k 18k 29 8 6k 3k

Maze
Generation

29 26 53 3832k 1906k 20 1700 1426k 881k

for every pair of partitions the sum of the weights of the edges connecting a vertex

from each partition is at-most wmax .

Hamiltonian Graph

A Hamiltonian path is a path in a directed graph G = (V ,E) that passes every ver-

tex v ∈ V exactly once. The Hamiltonian graph problem is to find a Hamiltonian

path in a given graph.

Maze Generation

A maze is a tour puzzle played on a two-dimensional grid. Each cell in the grid

either contains a wall or is empty. The goal is to find a path from a distinguished

entry cell to a distinguished exit cell. The maze generation problem is to create

a maze subject to criteria that make the maze a realistic one. For instance, every

empty cell in the maze must be reachable from the entry.

Summary of Results

The following definitions apply to Table 5.6 of results. UP+FL denotes clasp’s de-

fault setting, and UP+FL+BL denotes the setting that integrates BL. In each bench-

mark class, n denotes the total number of instances and s denotes the number of

instances for which the program terminated within the allowed time. Most im-

portantly, the table shows the time taken to compute all instances in the class that

152

5.4. Limitations

were solved in both settings. Similarly, we provide the total number of branches

and the number of conflicts during search, aggregated over all instances in the

class that were solved in both settings. Experiments were run on a Linux PC, where

each run was limited to 1200s time on a single 2.00 GHz core and 1 GByte RAM.

From the results shown in Table 5.6, it can be concluded that information

from BL prunes search dramatically: The additional propagation in UP+FL+BL

decreases the number of branches and conflicts by roughly one order of magni-

tude in comparison to UP+FL. On the other hand, the high computational costs

of propagating BL via failed-literal-detection are clearly reflected in the run times

of UP+FL+BL. These costs, however, could be drastically reduced by using Geor-

giadis and Tarjan (2004)’s linear-time algorithm, and by making the computation

of dominators incremental. In conclusion, our experiments encourage the imple-

mentation of these techniques.

5.4 Limitations

In the previous sections, we have presented ASP encodings for some important

constraints and shown that the inference of an ASP solver on our encodings of

GRAMMAR, REGULAR, and REACHABILITY constraints can achieve domain consis-

tency with an asymptotic run time complexity that is similar to specialised algo-

rithms propagating the same constraints. It might be supposed that, there are

many more constraint propagators that can be simulated by ASP inference on a

simple, straightforward, and easily maintainable logic programming model. In

fact, Gent’s Fundamental Conjecture of Reformulation suggests that it may always

be possible to transform a constraint into a set of smaller constraints for which

propagation can be performed establishing the same level of consistency in the

same asymptotic run time as a specialised propagator for the original constraint

(Gent, 2001).

Gent’s conjecture, however, was refuted by Bessière et al. (2009a) showing that

it is impossible to encode ALL-DIFFERENT into SAT using polynomial space such

that UP achieves domain consistency. Though, a domain consistency constraint

propagator exists (Régin, 1994). As ASP solving shares many techniques with SAT,

including UP inference, it is reasonable to assume that Bessière et al.’s result also

carries over to ASP. For certain, there is no practical, tight ASP encoding of ALL-

DIFFERENT that will enable UP inference to prune all values in general, given the

close relationship between tight programs and SAT. Though, it remains an open

153

5. Encoding Global Constraints with Answer Set Programming

question whether the effect of unfounded set inference on a non-tight encoding

can help to simulate a domain consistent propagator of ALL-DIFFERENT, but the

author of this thesis is doubtful.

Whilst it may not always be possible to translate constraint propagation into

ASP inference on a logic programming encoding that achieves a strong form of lo-

cal consistency, our experimental analysis has shown little evidence to support a

claim that using those strong translations are beneficial. Moreover, we have found

them harder to encode and not easy to maintain. On the other hand, our exper-

imental results have shown that there is hardly any penalty involved in using the

simpler, easily maintainable encodings instead.

In fact, the greater advantages of our translation-based approach to constraint

answer set solving over competing ones are provided through the conflict-driven

techniques it enables. In our approach, for instance, CONFLICTANALYSIS can ex-

ploit constraint interdependencies which, in turn, can improve propagation be-

tween constraints and contribute to the dynamic search heuristic modern ASP

solvers employ. Albeit dynamic search heuristics are intriguing, our approach

lacks the possibility to include specialised heuristics, or even a search algorithms,

into CASP specifications as it is common in CP systems. Problem-specific search

heuristic often lead to high computational impact. Recent developments in incor-

porating problem-specific search heuristics into ASP (Gebser et al., 2013b), how-

ever, may be extended to CASP.

A key limitation our translation-based approach to constraint answer set solv-

ing is the asymptotic space complexity of our ASP encodings. When constraints

range over variables with large domains, our encoding become large, challenging

computational resources even if the asymptotic space complexity is a small poly-

nomial. Another limitation, that also plagues SAT, is that the best case asymptotic

run time (down any branch of the search tree) of UP on our ASP encodings is the

same as the worst case.

5.5 Related Work

There is some related work that empirically compares of the performance of ASP

and CP systems on solving CSP. An extensive study conducted by Dovier et al.

(2005) on concludes that ASP encodings are more compact, and more declara-

tive than CP encodings. There was no clear winner in terms of computational

efficiency, as the performance of the respective solvers was affected by the na-

154

5.5. Related Work

ture of the specific problem. ASP systems were particularly scalable on graph-

based problems, but performance deteriorated on problems with arithmetic con-

straints or large domains, creating an issue with encoding size. Coban et al. (2008)

conducted an empirical study on wire routing and halo type inference problems.

While systematic similarities between the encodings of these problems can be ob-

served in general, ASP is rated more elaboration tolerant on a variation of wire

routing which includes REACHABILITY constraints. Incidentally, wire routing was

the problem where CP timed out on all instances. Regarding halo type inference

problems, Coban et al. point out that presence of recursive definitions and de-

fault negation in ASP saves a polynomial number of auxiliary variables. On the

other hand, functions and matrices in CP allow to formulate some problems more

concisely. Mancini et al. (2008) conducted experiments on car sequencing, word

design, and other CSP that stem from the CSPLib (Gent and Walsh, 1999). From

their results, it can be observed that there is no a single approach winning on all

problem, with ASP being competitive to CP. Experiments confirm, however, that

CP benefits from the use of global constraints. Celik et al. (2009) compared ASP

and CP on grid puzzles, e.g., Kakuro, Nurikabe, and Heyawake, and draw similar

conclusions: The CP approach finds solutions on Kakuro instances spending less

computational time in comparison to ASP systems, due to the efficient implemen-

tation of global constraints. On the other hand, ASP outperforms CP on Nurikabe

and Heyawake due to the unnatural handling of REACHABILITY in CP.

Preliminary work on translating CASP into ASP was conducted by Gebser et al.

(2009a) with their CASP system xpanda9. Their results include a value encoding of

the variables’ domains and ALL-DIFFERENT using cardinality constraint rules. We

have expanded on Gebser et al.’s results in Section 5.1, investigating the level of

consistency achieved by ASP inference on the support encoding of ALL-DIFFERENT.

Furthermore, we have studied variants of the encoding that maintain bound and

range consistency. In our experimental analysis, the effect of xpanda is reflected

by setting S.

Another related system is aspartame9 (Banbara et al., 2013). Oriented towards

prototyping ASP encodings of constraints, it translates a CSP into an ASP specifica-

tion over externals, i.e., constraint atoms. The latter still need to be implemented,

or taken from a library of ASP encodings for variables and constraints, to which

our encodings presented in this thesis could serve as a good starting point.

There is also a substantial body of work that focuses on the translation of con-

9http://potassco.sourceforge.net/labs.html

155

5. Encoding Global Constraints with Answer Set Programming

straints into SAT. In turn, SAT models can be translated into ASP (Niemelä, 1999).

Direct encodings into ASP, however, can be more general as every SAT clause can

be syntactically represented by a rule, but other ASP constructs are also possi-

ble, such as cardinality constraint rules and their generalisation, weight constraint

rules (Niemelä et al., 1999).

There are specialised SAT encodings for pseudo-Boolean constraints (Eén and

Sörensson, 2006) and integer LINEAR constraints (Tamura et al., 2006). Bessière

et al. (2009a) exploit Hall intervals when decomposing ALL-DIFFERENT into car-

dinality constraints, such that the corresponding propagators achieve bound and

range consistency. This result motivated our work on encoding ALL-DIFFERENT

into ASP and showing that ASP inference can achieve similar results.

Quimper and Walsh (2006) proposed the GRAMMAR constraint and provided

two different domain consistency propagators for the constraint, one based on the

CYK parser and one based on the Early parser. Independently, Sellmann (2006)

also introduced the GRAMMAR constraint and gave a CYK-based propagator. A

SAT encoding of GRAMMAR, based on a decomposition into and-or-graphs, such

that UP can prune all values is generated by a CYK-based algorithm was proposed

by Quimper and Walsh (2007). We have devised two CYK-based ASP encodings

of GRAMMAR in Section 5.2. Our first encoding is fairly straightforward and eas-

ily maintainable, and the second is an extension of the first that achieves a result

similar to Quimper and Walsh’s. Since both approaches compete with the one of

Quimper and Walsh in our experimental analysis, we advocate our simpler encod-

ing. Alternatively, by exploiting the fixed length of the constraint, Katsirelos et al.

(2009b) gave an algorithm that translates a CFG into an automaton.

DFAs were proposed to specify REGULAR constraints by (Pesant, 2004) who also

provided a domain consistency propagator. A DFA-based SAT model of REGULAR

such that UP can prune all values was presented by Bacchus (2007). We synthe-

sised this result by providing a DFA-based ASP encoding that achieves a similar re-

sult. However, we also presented a simpler, straightforward, and easily maintain-

able encoding of REGULAR. Given the empirical evidence provided by our GRAM-

MAR encodings, we also do not expect significant benefits from using the more

complex encoding.

Modelling REACHABILITY conditions is folklore in the area of ASP (cf. Niemelä,

1999; Lifschitz, 2008a; Brewka et al., 2011), but the effect of ASP inference has not

been previously studied. We have addressed this issue in Section 5.3.

Propagators for a family of CONNECTIVITY constraints, i.e., constraints that en-

156

5.6. Conclusions

sure that a graph is connected, with applications in computational sustainability

are presented in (Bessière et al., 2015). For the basic CONNECTIVITY constraint, the

propagator enforces domain consistency in linear time.

5.6 Conclusions

In this chapter, we have proceeded with our translation-based approach to con-

straint answer set solving by introducing more specialised, yet simple encodings

for ALL-DIFFERENT, GRAMMAR, REGULAR, and REACHABILITY constraints. In all

cases, ASP inference provides an efficient arc, bound, range, or domain consis-

tency propagator for free, i.e., without the need for complex, specialised algo-

rithms, with a similar asymptotic run time complexity.

– Our ASP encodings of ALL-DIFFERENT exploit Hall intervals such that UP

can achieve arc, bound, and range consistency, respectively. We have em-

pirically evaluated their performance on CSP benchmarks and found them

outperforming hybrid CASP systems and compete with CP solvers.

The existence of a polynomial-size, domain consistent ASP encoding for

ALL-DIFFERENT remains an open problem.

– Our ASP encoding of the GRAMMAR constraint and its restriction to linear

grammars and regular grammars is based on the production rules of the

grammar. We have also provided an alternative encoding for REGULAR, based

on the transition function of a DFA. Extensions to our GRAMMAR and REG-

ULAR encodings sacrifice some of their simplicity but allow the inference

of an ASP solver to achieve domain consistency. Though, an experimental

analysis has shown only a little advantage over the more straightforward en-

coding, and both compete with related work. Given the statistical evidence

provided by Quimper and Walsh (2008), we expect that our ASP encodings

for GRAMMAR beat CP systems, but leave an empirical comparison to future

work.

Open to future analysis is also an encoding of REGULAR constraints based

on NFAs rather than DFAs. The encoding would benefit from an NFA being

much smaller than DFA. On the other hand, this would break with the one-

to-one correspondence between the solutions for the ASP encoding and the

ones for the underlying constraint, hence, making solution enumeration

more difficult.

157

5. Encoding Global Constraints with Answer Set Programming

– We have analysed the ASP inference on REACHABILITY conditions. In con-

trast to the intuition that the inference in existing ASP systems naturally

handles REACHABILITY, our results have shown that even some restricted

variants of REACHABILITY cannot be efficiently propagated by a combina-

tion of UP and WFN. This gap can be closed with BL and LD, establishing

practical relevance for these forms of inference.

Recall that, to our knowledge, existing ASP solvers do not implement BL and

LD. Therefore, we cannot draw a clear picture from our experimental data,

but encourage the integration of BL and LD into ASP systems, e.g., via our

flowgraph-based method described earlier in this thesis.

This thesis investigated the propagation of a folklore ASP encoding of REACH-

ABILITY. Hence, another open problem is the existence of an alternative

encoding such that UP alone maintains domain consistency. For instance,

a polynomial size, tight encoding might be constructed based on the idea

of Warshall’s algorithm for transitive closure of directed graphs (Warshall,

1962). This direction will not be investigated in this thesis.

A translation-based approach to constraint answer set solving exhibits many ad-

vantages: Since the state of the constraints is made transparent trough translation

into a joint encoding, sharing the representation of the variables’ domains be-

tween encodings, no scheduling of constraint propagation is required. In fact, all

constraints are always propagated at the same time by the inference of the under-

lying ASP solver. The outstanding key advantage of a conflict-driven solver is that

CDNL can exploit constraint interdependencies. This can improve propagation

between constraints and contribute to the advanced dynamic selection heuristics.

A key limitation of translation-based constraint answer set solving is the worst-

case asymptotic space complexity inherent with this strategy. In particular when

constraints range over variables with large domains, our encoding can become

large, challenging computational resources even if the asymptotic space complex-

ity is a small polynomial. We will address this problem in the next chapter.

158

Chapter 6

Constraint Answer Set Solving via

Lazy Nogood Generation

Our translation-based approach to conflict-driven constraint answer set solving

from the previous chapter is made possible by the existence of modern CDNL-

based ASP solvers. Their performance, however, is sensitive to the size of ASP

encodings which can quickly become impractical. For instance, the best known

encoding of ALL-DIFFERENT that achieves domain consistency exploits a worst-

case exponential number of Hall sets. But even if the asymptotic space complexity

of a constraint’s ASP model is a small polynomial, it can challenge computational

resources when variables with large domains have to be considered.

This is of no issue for hybrid CASP systems, as they employ a CP solver to han-

dle constraint propagation and variables. On the other hand, hybrid CASP sys-

tems sacrifice the advantages of conflict-driven solving within the constraint part

of a CASP encoding. This includes conflict-driven learning to uncover constraint

interdependencies. In turn, lookback-based heuristics (Mitchell, 2005) are being

hindered.

In this chapter we will tackle the disadvantages of both the translation-based

and hybrid approaches to constraint answer set solving by combining their ad-

vantages.

– We here present a new computational extension to answer set solving, called

lazy nogood generation (LNG). Motivated by the success of lazy clause gen-

eration (Ohrimenko et al., 2009) in solving CSP, the key idea of LNG is to

generate parts of an ASP encoding on demand, only when new information

can be propagated.

159

6. Constraint Answer Set Solving via Lazy Nogood Generation

– We will start with presenting the logical foundations of external propagators

by formulating variants of the splitting set theorem (Lifschitz and Turner,

1994). They will allow various alternative characterisations of the condi-

tions to answer sets induced by a (sub-) program (with externals) of the ASP

encoding, including unfounded set conditions, completion nogoods, loop

nogoods, and external propagators. This allows for programmers to select a

representation that best fit their needs.

In contrast to modern ASP systems like cmodels (Giunchiglia et al., 2006),

clasp (Gebser et al., 2007a), sup (Lierler, 2011), and wasp (Alviano et al.,

2013b), that extract all completion nogoods from an ASP encoding eagerly,

i.e., during preprocessing, the ones represented by external propagators are

not made explicit a-priori. Instead, an external propagator generates parts

of its underlying encoding on-demand, in particular, when it triggers any

conflict or inference. As we shall see, this technique generalises the idea of

encoding the consequences from FL in form of loop nogoods (Lin and Zhao,

2002; Giunchiglia et al., 2006; Gebser et al., 2007a).

– We then show how constraint propagation seamlessly integrates into our

framework, and present an algorithmic foundation that is centred around

conflict-driven solving. Beyond a CDNL-like decision procedure for ASP

solving, it applies LNG via external propagation, resulting in a novel ap-

proach to conflict-driven constraint answer set solving. It combines key

advantages of hybrid and translation-based approaches, including the ex-

ploration of constraint interdependencies.

– Finally, we empirically evaluate our approach and compare to the state-of-

the-art in ASP and CASP.

We have implemented a prototypical CASP system to demonstrate some key prin-

ciples of our approaches. In 2013, it has successfully participated in the fourth ASP

competition (Alviano et al., 2013a), outperforming hybrid systems.

6.1 Nogoods of Programs with Externals

We start with a generalisation of the approach of Gebser et al. (2007a), i.e., describ-

ing nogoods that capture the inferences from the completion of a programΠwith

externals E .

160

6.1. Nogoods of Programs with Externals

Definition 6.1: Completion Nogoods of a Program with Externals

For a program Π over P with externals E , the set of completion nogoods, de-

noted by ∆E
Π, is the following:

∆E
Π = ⋃

β∈body(Π) EQβ∪
⋃

p∈P \E ∆∆∆
p
Π

The sets EQβ and ∆∆∆p
Π are the same as defined in the Background chapter of this

thesis. It is easy to see that if there are no externals, say E =;, then ∆;
Π represents

precisely the set of completion nogoods ofΠ in the style of Gebser et al., i.e., ∆;
Π =

∆Π. Hence, by Theorem 2.2, the solutions for ∆;
Π correspond to the supported

models of Π. In general, however, ∆E
Π excludes ∆∆∆p

Π for each external atom p, as

external atoms are naturally defined outside of Π. (Observe that, otherwise, for

each p ∈ E we would have∆∆∆p
Π = {{Tp}} since ESΠ({p}) =;, i.e., there is no rule r ∈Π

with head(r) = p, unintentionally excluding p from any solution.) The following

proposition establishes correspondance with Gebser et al.’s completion nogoods

of a program.

Lemma 6.1: Splitting Completion Nogoods

LetΠ be a program over P with externals F , and E a splitting set forΠ. Then,

we have that the equation∆F
Π =∆E∪F

ΠP \E
∪∆F

ΠE
holds. In particular, if F =; then

∆Π =∆E
ΠP \E

∪∆ΠE
.

Another direct consequence of the lemma is that for an assignment A, we have that

A is a solution for∆Π if and only if A is a conflict-free assignment for∆ΠE
and∆ΠP \E .

Such assignment A, however, is technically not a solution for ∆ΠE
and ∆ΠP \E be-

cause dom(A) goes beyond the atoms and bodies ofΠE andΠP \E , respectively. To

restrict the domain of an assignment to the objects in a program, we define

A|Π = {σ|σ ∈ A, var(σ) ∈ atom(Π)∪body(Π)}.

Then, we have that A is a solution for ∆Π if and only if A|ΠE
is a solution for ∆ΠE

and A|ΠP \E is a solution for ∆ΠP \E .

Proof of Lemma 6.1. We start by applying Definition 6.1.

∆E∪F
ΠP \E

∪∆F
ΠE

= ⋃
β∈body(ΠP \E) EQβ∪

⋃
p∈P \(E∪F)∆∆∆

p
ΠP \E

∪ ⋃
β∈body(ΠE) EQβ∪

⋃
p∈E \F ∆∆∆

p
ΠE

161

6. Constraint Answer Set Solving via Lazy Nogood Generation

Since E is a splitting set for Π, for every p ∈ P \ (E ∪F) we have that ESΠ({p})∩
body(ΠE) = ;, and for every p ∈ E \ F we have that ESΠ({p})∩body(ΠP \E) = ;.

In other words, the rules in ΠP \E never share a head with rules in ΠE , and vice-

versa. Hence, for every p ∈P \(E ∪F) it holds that ESΠP \E ({p}) = ESΠ({p}), and for

every p ∈ E \F it holds that ESΠE
({p}) = ESΠ({p}). We proceed with applying these

equations, and get the following:

= ⋃
β∈body(ΠP \E) EQβ∪

⋃
p∈P \(E∪F)∆∆∆

p
Π

∪ ⋃
β∈body(ΠE) EQβ∪

⋃
p∈E \F ∆∆∆

p
Π

= ⋃
β∈body(ΠP \E)∪body(ΠE) EQβ∪

⋃
p∈(P \(E∪F))∪(E \F)∆∆∆

p
Π

= ⋃
β∈body(Π) EQβ∪

⋃
p∈P \F ∆∆∆

p
Π

= ∆F
Π

This proves the equation.

We will take up a previous example to illustrate the lemma. It will also serve as

a running example.

Example 6.1

Reconsider the splitting set E = {p, q} for the program Π over P = {p, q,r, s}

from Example 2.19, given through

ΠE =
{

r1 : p ← not q

r2 : q ← not p

}
andΠP \E =

r3 : r ← p

r4 : r ← s

r5 : s ← r

 .

Verify that the completion nogoods represented byΠE are

∆;
ΠE

=EQbody(r1)∪EQbody(r2)∪∆∆∆p
ΠE

∪∆∆∆q
ΠE

=

{Fbody(r1),Fq}, {Tbody(r1),Tq},

{Fbody(r2),Fp}, {Tbody(r2),Tp},

{Tp,Fbody(r1)}, {Fp,Tbody(r1)},

{Tq,Fbody(r2)}, {Fq,Tbody(r2)}

,

162

6.1. Nogoods of Programs with Externals

the ones represented byΠP \E are

∆E
ΠP \E

=EQbody(r3)∪·· ·∪EQbody(r5)∪∆∆∆r
ΠP \E

∪∆∆∆s
ΠP \E

=

{Fbody(r3),Tp}, {Tbody(r3),Fp},

{Fbody(r4),Ts}, {Tbody(r4),Fs},

{Fbody(r5),Tr }, {Tbody(r5),Fr },

{Tr,Fbody(r3),Fbody(r4)},

{Fr,Tbody(r3)}, {Fr,Tbody(r4)},

{Ts,Fbody(r5)}, {Fs,Tbody(r5)}

,

and verify that ∆;
ΠE

∪∆E
ΠP \E

=∆Π, as detailled in Example 2.12.

As with completion nogoods, we can generalise the notion of unfounded sets for

programs with externals. They are similar to unfounded sets of a program, but do

not include externals.

Definition 6.2: Unfounded Set of a Program with Externals

Let Π be a program with externals E . Given an assignment A, U ⊆ atom(Π) is

an unfounded set ofΠw.r.t. A if U ∩E =; and ESΠ(U) ⊆ AF.

It is easy to see that if the set of externals is empty, say E =;, then the unfounded

sets of Π coincide with the conventional ones. The following proposition guaran-

tees that, for any assignment, the process of splitting a logic program maintains

unfounded-freeness.

Lemma 6.2

LetΠ be a program over P , E a splitting set forΠ, and A an assignment. Then,

we have that A is unfounded-free for Π if and only if A|ΠE
is unfounded-free

forΠE and A|ΠP \E is unfounded-free forΠP \E .

Proof. We show both implications of the proposition.

(⇒) Let A be unfounded-free forΠ. First, we show that A|ΠE
is unfounded-free

forΠE , i.e., for every U ⊆ atom(ΠE) such that ESΠE
(U) \ A|FΠE

=; we have that U ⊆
A|FΠE

. To begin, let U ⊆ atom(ΠE) such that ESΠE
(U) \ A|FΠE

= ;. By definition, for

every r ∈ ΠP \E we have that head(r) 6∈ E . Hence, since U ⊆ atom(ΠE) ⊆ E , we

have ESΠE
(U) = ESΠ(U), and therefore, ESΠ(U) \ A|FΠE

=;. Since A|ΠE
⊆ A and A is

unfounded-free for Π, we also have U ⊆ A|FΠE
. In conclusion, A|ΠE

is unfounded-

free forΠE .

Second, we show that A|ΠP \E is unfounded-free for ΠP \E , i.e., for every U ⊆

163

6. Constraint Answer Set Solving via Lazy Nogood Generation

atom(ΠP \E) such that U ∩ E = ; and ESΠP \E (U) \ A|FΠP \E
= ; we have that U ⊆

A|FΠP \E
. To begin, let U ⊆ atom(ΠP \E) such that U ∩E =; and ESΠP \E (U)\A|FΠP \E

=
;. By definition, for every r ∈ΠE we have that head(r) 6∈ atom(ΠP \E) \ E . Hence,

since U ⊆ atom(ΠP \E) \ E , we have ESΠP \E (U) = ESΠ(U), and therefore, ESΠ(U) \

A|FΠP \E
= ;. Since A|ΠP \E ⊆ A and A is unfounded-free for Π, we also have U ⊆

A|FΠP \E
. In conclusion, A|ΠP \E is unfounded-free forΠP \E .

(⇐) Let A be an assignment such that A|ΠP
is unfounded-free forΠE and A|ΠP \E

is unfounded-free for ΠP \E . We show that A is unfounded-free for Π, i.e., for ev-

ery U ⊆ P such that ESΠ(U) \ AF = ; we have that U ⊆ AF. To begin, let U ⊆ P

such that ESΠ(U) \ AF = ;. Recall that, by definition, for every r ∈ ΠE we have

that head(r) ∈ E , and for every rule r ∈ ΠP \E we have head(r) ∈ P \ E . Hence,

we have ESΠ(U) = ESΠE
(U)∪ESΠP \E (U). Given this, from ESΠ(U) \ AF = ; we in-

fer ESΠE
(U) \ AF = ; and ESΠP \E (U) \ AF = ;. In particular, we have ESΠE

(U ∩E) \

A|FΠP
=;, and ESΠP \E (U \E) \ A|FΠP \E

=;. Since A|ΠE
is unfounded-free for ΠE and

A|ΠP \E is unfounded-free forΠP \E , we have U ∩E ⊆ A|FΠE
and U \E ⊆ A|FΠP \E

. More-

over, since A|FΠE
∪A|FΠP \E

⊆ AF, we get U ⊆ AF. In conclusion, A is unfounded-free

forΠ.

Example 6.2

We proceed from Example 6.1. Consider the assignments A1, A2, and A3 given

through

A1 = {Tp,Fq,Tr,Ts,Tbody(r1),Fbody(r2),Tbody(r3),Tbody(r4),Tbody(r5)}

A2 = {Fp,Tq,Tr,Ts,Fbody(r1),Tbody(r2),Fbody(r3),Tbody(r4),Tbody(r5)}

A3 = {Fp,Tq,Fr,Fs,Fbody(r1),Tbody(r2),Fbody(r3),Fbody(r4),Fbody(r5)}

Verify that A1 and A3 are unfounded-free forΠ, A1|ΠP \E and A3|ΠP \E are unfoun-

ded-free for ΠP \E , and A1|ΠE
and A3|ΠE

are unfounded-free for ΠE , respec-

tively. On the other hand, for U = {r, s} we have ESΠP \E (U) = ESΠ(U) = {body(r3)}

where body(r3) ∈ A|FΠP \E
⊆ AF

2 . That is, U is an unfounded set for ΠP \E w.r.t.

A2|ΠP \E and forΠw.r.t. A2.

In light of Lemmas 6.1 and 6.2, we formulate a variant of the splitting set theo-

rem (Lifschitz and Turner, 1994).

Recall, the splitting set theorem provides conditions under which the evalu-

ation of a program can be split into the evaluation of (sub-) programs, e.g., for a

program Π and a splitting set E for Π, splitting Π into the program ΠP \E with ex-

164

6.1. Nogoods of Programs with Externals

ternals E and the program ΠP (without externals). Applied recursively, the split-

ting set theorem allows for the application of a different representation, or solving

technique, for each (sub-) program of an ASP encoding.

Intuitively, the following variant states that, given a splitting set E , we can com-

pute the answer sets of a program Π by computing the answer sets of ΠE and

unfounded-free solutions for the completion nogoods ofΠP \E .

Theorem 6.3

LetΠbe a program over P , E a splitting set forΠ, X ⊆P and A the assignment

given through

A= {Tp | p ∈ X }∪ {Fp | p ∈P \ X }

∪{Tbody(r) | r ∈Π,body(r)+ ⊆ X ,body(r)−∩X =;}

∪{Fbody(r) | r ∈Π,(body(r)+∩ (P \ X))

∪(body(r)−∩X) 6= ;}.

Then, X is an answer set ofΠ if and only if

– X ∩E is an answer set ofΠE , and

– A|ΠP \E is a solution for ∆E
ΠP \E

and unfounded-free forΠP \E .

When applied recursively, a direct consequence of the theorem is that the condi-

tions on the answer sets induced by any (sub-) program (over externals) can be

represented by the unfounded-free solutions to its completion nogoods.

Proof of Theorem 6.3. We show both implications of the proposition.

(⇒) Let X be an answer set of Π. By Theorem 2.3, the assignment A is a so-

lution for ∆Π and unfounded-free for Π. Then, by Lemma 6.1, A|ΠE
is a solution

for ∆;
ΠE

and A|ΠP \E is a solution for ∆E
ΠP \E

, and by Lemma 6.2, A|ΠE
is unfounded-

free for ΠE and A|ΠP \E is unfounded-free for ΠP \E . Since ∆;
ΠE

= ∆ΠE
and E =

atom(ΠE), again by Theorem 2.3, A|TΠE
∩E is an answer set of ΠE . In particular,

since X = A|TΠE
∩P and E ⊆P , X ∩E is an answer set ofΠE .

(⇐) Let A|ΠP \E be a solution for∆E
ΠP \E

and unfounded-free forΠP \E , and X ∩E

be an answer set of ΠE . Then, by Theorem 2.3, the assignment A|ΠE
is a solution

for ∆ΠE
and unfounded-free for ΠE . Since ∆ΠE

= ∆;
ΠE

, we have that A|ΠE
is also a

solution for ∆;
ΠE

and unfounded-free for ΠE . Then, by Lemma 6.1, A is a solution

for ∆Π, and by Lemma 6.2, A is unfounded-free for Π. Finally, by Theorem 2.3,

X = AT ∩P is an answer set ofΠ.

165

6. Constraint Answer Set Solving via Lazy Nogood Generation

Example 6.3

We proceed from Example 6.2. Verify that the assignments A1|ΠP \E , A2|ΠP \E ,

and A3|ΠP \E are solutions for ∆E
ΠP \E

. Consider the projections of the underly-

ing assignments onto the atoms in P given through

X1 = A1 ∩P = {p,r, s},

X2 = A2 ∩P = {q,r, s}, and

X3 = A3 ∩P = {q}.

Verify that (X1 ∩E) = {p} and (X2 ∩E) = (X3 ∩E) = {q} are answer sets ofΠE .

However, as we have demonstrated in Example 6.2, the assignment A2|ΠP \E

is not unfounded-free for ΠP \E . Therefore, by Theorem 6.3, only sets X1

and X3 are answer sets ofΠ. Indeed, they are (cf. Example 2.11).

As with conventional unfounded sets, we can capture the conditions induced by

unfounded sets of a program with externals in terms of nogoods.

Definition 6.3: Loop Nogoods of a Program with Externals

Let Π be a program over P with externals E . The set of loop nogoods of Π,

denoted byΛE
Π, is the following.

ΛE
Π = ⋃

U⊆P \E {λp
ESΠ(U) | p ∈U }

The nogoodλp
ESΠ(U) is the same as defined in the Background chapter of this thesis.

It is easy to see that if there are no externals, say E =;, then Λ;
Π =ΛΠ. In general,

however,ΛE
Π excludes λp

ESΠ(U) for sets U which contain externals, i.e., we have U ∩
E =;.

Lemma 6.4: Splitting Loop Nogoods

LetΠ be a program over P with externals F , and E a splitting set forΠ. Then,

we have that the equation ΛF
Π ⊇ ΛE∪F

ΠP \E
∪ΛF

ΠE
holds. In particular, if F = ;

thenΛΠ ⊇ΛE
ΠP \E

∪ΛΠE
.

Observe that some loop nogoods of the original program can be lost through split-

ting, that are, loop nogoods for sets of atoms that receive external support from

both sub-programs. However, as we shall see, those nogoods are not required to

establish correspondence between solutions and answer sets.

166

6.1. Nogoods of Programs with Externals

Proof of Lemma 6.4. We start by applying Definition 6.3.

ΛE∪F
ΠP \E

∪ΛF
ΠE

= ⋃
U⊆P \(E∪F){λ

p
ESΠP \E

(U) | p ∈U }∪ ⋃
U⊆E \F {λp

ESΠE
(U) | p ∈U }

Since E is a splitting set for Π, for every U ⊆ P \ (E ∪F) we have that ESΠ(U)∩
body(ΠE) = ;, and for every U ⊆ E \ F we have that ESΠ(U)∩body(ΠP \E) = ;.

In other words, the rules in ΠP \E never share a head with rules in ΠE , and vice-

versa. Hence, for every U ⊆P \ (E ∪F) it holds that ESΠP \E (U) = ESΠ(U), and for

every U ⊆ E \ F it holds that ESΠE
(U) = ESΠ(U). We proceed with applying these

equations, and get the following:

= ⋃
U⊆P \(E∪F){λ

p
ESΠ(U) | p ∈U }∪ ⋃

U⊆E \F {λp
ESΠ(U) | p ∈U }

⊆ ⋃
U⊆(P \(E∪F))∪(E \F){λ

p
ESΠ(U) | p ∈U }

= ⋃
U⊆((P \E)\F)∪(E \F){λ

p
ESΠ(U) | p ∈U }

= ⋃
U⊆P \F {λp

ESΠ(U) | p ∈U }

=ΛF
Π

This proves the inclusion. Observe, however, that equality holds if we only con-

sider sets U ⊆ loop(Π).

The following proposition establishes, for any assignment, the correspondence

between unfounded sets and loop nogoods included in the assignment for pro-

grams with externals.

Lemma 6.5

Let Π be a program with externals E , and A an assignment. Then, U is an

unfounded set of Π w.r.t. A such that U ∩AT 6= ; if and only if there is some

δ ∈ΛE
Π such that δ⊆ A.

Proof. The proof follows from Definitions 6.2 and 6.3. We show both implications

of the proposition.

(⇒) Let U be an unfounded set of Π w.r.t. A and p ∈ U ∩ AT. For ESΠ(U) =
{β1, . . . ,βk } we have, by Definition 6.2, U ∩E = ; and {β1, . . . ,βk } ⊆ AF. Hence, we

have δ=λp
ESΠ(U) = {Tp,Fβ1, . . . ,Fβk } ∈ΛE

Π such that δ⊆ A.

(⇐) Letδ ∈ΛE
Π be a loop nogood such thatδ⊆ A. Sinceδ is of the formλ

p
ESΠ(U) =

{Tp,Fβ1, . . . ,Fβk } where p ∈ U ⊆ atom(Π) \ E and ESΠ(U) = {β1, . . . ,βk }, we have

that there is p ∈ U ∩AT where U ∩E = ; and ESΠ(U) \ AF = ;. Hence, by Defini-

tion 6.2, U is an unfounded set ofΠw.r.t. A and p ∈U ∩AT.

167

6. Constraint Answer Set Solving via Lazy Nogood Generation

Example 6.4

We proceed from Example 6.2. Recall that {r, s} is an unfounded set for ΠP \E

w.r.t. A2|ΠP \E and A3|ΠP \E , respectively. However, A3|ΠP \E is unfounded-free

for ΠP \E , whilst A2|ΠP \E is not. We now inspect the set of nogoods ΛE
ΠP \E

,

given through

ΛE
ΠP \E

= {λr
ESΠP \E

({r }),λ
s
ESΠP \E

({s}),λ
r
ESΠP \E

({r,s}),λ
s
ESΠP \E

({r,s})}

where

λr
ESΠP \E

({r }) = {Tr,Fbody(r3),Fbody(r4)},

λs
ESΠP \E

({r }) = {Ts,Fbody(r5)},

λr
ESΠP \E

({r,s}) = {Tr,Fbody(r3)}, and

λs
ESΠP \E

({r,s}) = {Ts,Fbody(r3)}.

Actually, since A1|ΠP \E , A2|ΠP \E , and A3|ΠP \E are solutions for ∆E
ΠP \E

, we only

inspect the nogoods ΛE
ΠP \E

\∆E
ΠP \E

= {λr
ESΠP \E

({r,s}),λ
s
ESΠP \E

({r,s})}, as for all the

other nogoods δ we already know that δ 6⊆ A1|ΠP \E , δ 6⊆ A2|ΠP \E , and that δ 6⊆
A3|ΠP \E .

To begin with, verify that λr
ESΠP \E

({r,s}) ⊆ A2|ΠP \E and λs
ESΠP \E

({r,s}) ⊆ A2|ΠP \E .

Therefore, by Lemma 6.5, {r, s} is an unfounded set of ΠP \E w.r.t. A2|ΠP \E that

contains true atoms. Indeed, A2|ΠP \E is not unfounded-free for ΠP \E (cf. Ex-

ample 6.2).

On the other hand, verify that λr
ESΠP \E

({r,s}) 6⊆ A3|ΠP \E and λs
ESΠP \E

({r,s}) 6⊆ A3,

i.e., A3|ΠP \E does not contain any nogood from ΛE
ΠP \E

. Therefore, by Lemma

6.5, there is no unfounded set of ΠP \E w.r.t. A3|ΠP \E that contains true atoms.

Indeed, A3|ΠP \E is unfounded-free forΠP \E .

At last, recall that there is no unfounded set ofΠP \E w.r.t. A1|ΠP \E . Hence,

by Lemma 6.5, δ 6⊆ A1|ΠP \E for every δ ∈ ΛE
ΠP \E

. Indeed, verify that we have

λr
ESΠP \E

({r,s}) 6⊆ A1|ΠP \E and λs
ESΠP \E

({r,s}) 6⊆ A1|ΠP \E .

Based on Lemma 6.5, we formulate another variant of the splitting set theorem. It

states that, given a splitting set E , we can compute the answer sets of a programΠ

by computing the answer sets ofΠE and solutions for ∆E
ΠP \E

∪ΛE
ΠP \E

.

Theorem 6.6

LetΠbe a program over P , E a splitting set forΠ, X ⊆P and A the assignment

168

6.1. Nogoods of Programs with Externals

given through

A= {Tp | p ∈ X }∪ {Fp | p ∈P \ X }

∪{Tbody(r) | r ∈Π,body(r)+ ⊆ X ,body(r)−∩X =;}

∪{Fbody(r) | r ∈Π,(body(r)+∩ (P \ X))

∪(body(r)−∩X) 6= ;}.

Then, X is an answer set ofΠ if and only if

– X ∩E is an answer set ofΠE , and

– A|ΠP \E is a solution for ∆E
ΠP \E

∪ΛE
ΠP \E

.

Proof. The proof follows that of Theorem 6.3, but applies Lemma 6.5. We show

both implications of the proposition.

(⇒) Let X be an answer set ofΠ. By Theorem 6.3, X ∩E is an answer set ofΠE ,

and the assignment A|ΠP \E is a solution for ∆E
ΠP \E

and unfounded-free for ΠP \E .

In particular, for every U ⊆P \E such that ESΠP \E (U) \ AF =; we have U ⊆ A|FΠP \E
.

Then, by Lemma 6.5, we also have for every δ ∈ ΛE
ΠP \E

that δ 6⊆ A|ΠP \E . In other

words, A|ΠP \E is a solution forΛE
ΠP \E

. Hence, A|ΠP \E is a solution for ∆E
ΠP \E

∪ΛE
ΠP \E

.

(⇐) Let A|ΠP \E be a solution for∆E
ΠP \E

∪ΛE
ΠP \E

, and X∩E be an answer set ofΠE .

Then, by Theorem 2.3, the assignment A|ΠE
is a solution for ∆ΠE

and unfounded-

free for ΠE . Since ∆ΠE
= ∆;

ΠE
, we have that A|ΠE

is also a solution for ∆;
ΠE

and

unfounded-free forΠE . On the other hand, from A|ΠP \E being a solution for∆E
ΠP \E

∪
ΛE
ΠP \E

, by Lemma 6.5, we have for every unfounded set U ofΠP \E w.r.t. A|ΠP \E that

U ∩A|TΠP \E
= ;. In fact, since A|ΠP \E is total, for every unfounded set U of ΠP \E

w.r.t. A|ΠP \E we have U ⊆ A|FΠP \E
. Hence, A|ΠP \E is unfounded-free for ΠP \E . Then,

by Lemma 6.1, A is a solution for∆Π, and by Lemma 6.2, A is unfounded-free forΠ.

Finally, by Theorem 2.3, X = AT ∩P is an answer set ofΠ.

Example 6.5

We proceed from Example 6.4. Recall that A1|ΠP \E and A3|ΠP \E are solutions

for ∆E
ΠP \E

and ΛE
ΠP \E

, whilst A2|ΠP \E is a solution for ∆E
ΠP \E

but not for ΛE
ΠP \E

.

Moreover, recall that for X1 = A1 ∩P = {p,r, s}, X2 = A2 ∩P = {q,r, s}, and

X3 = A3 ∩P = {q} we have that (X1 ∩E) = {p}, and (X2 ∩E) = (X3 ∩E) = {q}

are an answer sets of ΠE . Therefore, by Theorem 6.6, only sets X1 and X3 are

answer sets ofΠ. Indeed, they are (cf. Example 2.11).

169

6. Constraint Answer Set Solving via Lazy Nogood Generation

6.2 Lazy Nogood Generation

Given a program Π, instead of generating all nogoods ∆Π (or even ΛΠ) a-priori

for use in UP, referred to as eager encoding, we introduce external propagators to

generate nogoods on demand, i.e., only when UP is able to propagate new infor-

mation. We call this technique lazy nogood generation (LNG).

Definition 6.4: External Propagator

An external propagator for a set of nogoods Γ is a function p that maps a

Boolean assignment to a subset of Γ such that for any total assignment A if

δ⊆ A for some δ ∈ Γ then δ′ ⊆ A for some δ′ ∈ p(A) ⊆ Γ.

In other words, an external propagator generates a conflicting nogood from Γ if

some nogood in Γ is conflicting with a total assignment. If this condition holds for

every (partial) assignment, then we call the external propagator conflict-optimal.

Example 6.6

Consider the external propagator p1 forΛE
ΠP \E

, given through

p1(A) =

{λp

ESΠP \E
(U) |U ∈ loop(ΠP \E), p ∈U ∩AT,ESΠP \E (U) \ AF =;}

if A is

total,

; else.

It is easy to verify that p1 is an external propagator for ΛE
ΠP \E

. In fact, every

loop nogood that p1 generates has the formδ= {λp
ESΠP \E

(U)} = {Tp,Fβ1, . . . ,Fβk }

where ESΠP \E (U) = {β1, . . . ,βk }. Since p ∈ AT and {β1, . . . ,βk } ⊆ AF we have

that δ⊆ A.

Proceeding from Example 6.4, for instance, reconsider the partial assign-

ments A1, A2, and A3. For A2 we have

p1(A2) = {λr
ESΠP \E

({r,s}),λ
s
ESΠP \E

({r,s})} = {{Tr,Fbody(r3)}, {Ts,Fbody(r3)}}.

For both nogoods δ ∈ p1(A2) ⊆ΛE
ΠP \E

we have δ⊆ A2. On the other hand, for A1

and A3, we have p1(A1) = p1(A3) =;. Hence, A1|ΠP \E and A3|ΠP \E are solutions

forΛE
ΠP \E

, whilst A2|ΠP \E is not.

Observe that p1 is not conflict-optimal. Still, it provides an external prop-

agator that can check whether all atoms in an unfounded set are falsified. ASP

170

6.2. Lazy Nogood Generation

solvers that implements this approach are described in (Lin and Zhao, 2002;

Giunchiglia et al., 2006).

Note that, however, p1 can easily be made conflict-optimal by dropping

the requirement of A being total.

Even though an external propagator for Γ is conflict-optimal, UP on Γmight infer

more literals than UP on lazily generated nogoods. To close this gap, we define

inference-optimal external propagators. An external propagator p for a set of no-

goods Γ is inference-optimal if p is conflict-optimal and for any conflict-free as-

signment A if δ \ A = {σ} such that σ 6∈ A for some δ ∈ Γ then δ′ \ A = {σ} for some

δ′ ∈ p(A). I.e., in addition to the nogoods generated by a conflict-optimal prop-

agator, an inference-optimal one also generates all nogoods from Γ that are unit

w.r.t. A.

Example 6.7

Consider the external propagators p2 and p3 forΛE
ΠP \E

, given through

p2(A) = {λp
ESΠP \E

(U) |U ∈ loop(ΠP \E), p ∈U , ESΠP \E (U) \ AF =;}, and

p3(A) = p2(A)∪ {λp
ESΠP \E

(U) |U ∈ loop(ΠP \E), p ∈U ∩AT, |ESΠP \E (U) \ AF| = 1}.

The external propagator p2 is conflict-optimal because it generates all no-

goods from p1 on any (partial) assignment. In addition, it also generates no-

goods of the formλ
p
ESΠP \E

(U) = {Tp,Fβ1, . . . ,Fβk } where ESΠP \E (U) = {β1, . . . ,βk }

and {β1, . . . ,βk } ⊆ AF but p 6∈ AF, i.e., a unit nogood where Fp is unit-resulting.

Proceeding from Example 6.4, for instance, consider the partial assign-

ment A′
2 ⊂ A2 given through

A′
2 = {Fp,Fbody(r3)}.

Then, we have

p2(A′
2) = {λr

ESΠP \E
({r,s}),λ

s
ESΠP \E

({r,s})} = {{Tr,Fbody(r3)}, {Ts,Fbody(r3)}},

both nogoods are unit, where Fr and Fs are unit-resulting. In fact, p2 provides

an external propagator that can check whether the atoms in an unfounded

set have to be falsified, i.e., it encodes FL inference. An ASP solver that imple-

ments this approach is described in (Gebser et al., 2007a).

171

6. Constraint Answer Set Solving via Lazy Nogood Generation

In general, however, p2 does not generate all nogoods from ΛE
ΠP \E

that

are unit w.r.t. an assignment, as much as FL does not infer all consequences

from unfounded sets (see Chapter 3). For instance, consider the partial as-

signment A′
1 ⊂ A1 given through

A′
1 = {Tr,Ts,Tbody(r4),Tbody(r5)}.

Then, we have p2(A′
1) = ;. Hence, p2 is not inference-optimal. On the other

hand, we have

p3(A′
1) = {λr

ESΠP \E
({r,s}),λ

s
ESΠP \E

({r,s})} = {{Tr,Fbody(r3)}, {Ts,Fbody(r3)}}.

Both nogoods in p3(A′
1) are unit, where Tbody(r3) is unit-resulting. In fact, p3

provides an external propagator for ΛE
ΠP \E

that encodes FL and BL inference.

Moreover, within our example, p3 is inference-optimal as it generates all unit

nogoods fromΛE
ΠP \E

.

The correspondence between external propagation and the set of nogoods it rep-

resents is formalised in the following proposition.

Lemma 6.7

Let∆ be a set of nogoods, and p be an external propagator for Γ⊆∆. Then, the

assignment A is a solution for ∆ if and only if A is a solution for p(A)∪ (∆\Γ).

Proof. We show both implications of the proposition.

(⇒) We prove by contradiction. Suppose A is a solution for ∆ but is conflicting

for p(A)∪ (∆ \Γ). That means, there is a nogood δ ∈ p(A)∪ (∆ \Γ) such that δ ⊆
A. Since p(A) ⊆ Γ ⊆ ∆, however, we have δ ∈ Γ and A cannot be a solution for ∆,

contradicting the assumption.

(⇐) Again, we prove by contradiction. Suppose A is a solution for p(A)∪ (∆\Γ)

but is conflicting for ∆. That means, there is a nogood δ ∈∆ such that δ⊆ A. Since

A is in particular a solution for ∆ \Γ, we have δ ∈ Γ. Then, by definition, there is a

nogood δ′ ⊆ A such that δ′ ∈ p(A). Hence, A is conflicting for p(A). This contradicts

our assumption.

Theorem 6.6 and Lemmata 6.7 and 6.5 yield yet another variant of Lifschitz and

Turner’s splitting set theorem.

The following proposition states that, given a splitting set E , we can compute

the answer sets of a program Π by computing the answer sets of ΠE and solutions

172

6.2. Lazy Nogood Generation

for∆E
ΠP \E

∪ΛE
ΠP \E

. Instead of making all nogoods in∆E
ΠP \E

∪ΛE
ΠP \E

explicit, however,

an external propagator p can be used to represents a subset thereof.

Theorem 6.8

Let Π be a program over P , E a splitting set for Π, p an external propagator

for Γ⊆∆E
ΠP \E

∪ΛE
ΠP \E

, X ⊆P and A the assignment given through

A= {Tp | p ∈ X }∪ {Fp | p ∈P \ X }

∪{Tbody(r) | r ∈Π,body(r)+ ⊆ X ,body(r)−∩X =;}

∪{Fbody(r) | r ∈Π,(body(r)+∩ (P \ X))

∪(body(r)−∩X) 6= ;}.

Then, X is an answer set ofΠ if and only if

– X ∩E is an answer set ofΠE , and

– A|ΠP \E is a solution for p(A)∪ (∆E
ΠP \E

∪ΛE
ΠP \E

) \Γ.

Proof. The proof follows from Theorem 6.6 and Lemma 6.7.

Example 6.8

We proceed from Example 6.5 and also reconsider the external p1 for ΛE
ΠP \E

from Example 6.6. Recall that A1|ΠP \E and A3|ΠP \E are solutions for p1(A1)∪
∆E
ΠP \E

and p1(A3)∪∆E
ΠP \E

, respectively, whilst A2|ΠP \E is a solution for ∆E
ΠP \E

but not for p1(A2).

Moreover, recall that for X1 = A1 ∩P = {p,r, s}, X2 = A2 ∩P = {q,r, s}, and

X3 = A3∩P = {q} we have that (X1∩E) = {p}, and (X2∩E) = (X3∩E) = {q} are

answer sets ofΠE . Therefore, by Theorem 6.8, only sets X1 and X3 are answer

sets ofΠ. Indeed, they are (cf. Example 2.11).

The recursive application of Theorems 6.8, 6.3, and 6.8 allows that the conditions

on the answer sets induced by any (sub-) program (over externals) of an ASP en-

coding can be represented by either unfounded-free solutions to its completion

nogoods, or solutions to its completion nogoods and loop nogoods, or solutions

to the nogoods generated by an external propagator (plus the remaining nogoods

not represented by the external propagator). This provides extreme flexibility, as

the programmer can choose between eager or lazy generation of nogoods for any

(sub-) program of an ASP encoding.

173

6. Constraint Answer Set Solving via Lazy Nogood Generation

One of the advantages of LNG over eager encodings is space efficiency. For in-

stance, the worst-case exponential number of loops in a program Π, i.e., nogoods

in Λ;
Π, makes an explicit representation of ΛΠ infeasible (Lifschitz and Razborov,

2006). On the other hand, as we have argued, FL inference can be implemented

in form of a conflict-optimal external propagator that falsifies unfounded sets by

generating appropriate nogoods inΛ;
Π on demand (Gebser et al., 2007a) using lin-

ear time (Calimeri et al., 2002; Anger et al., 2006). This approach can easily be

generalised to any programΠwith externals in E , i.e., nogoods inΛE
ΠP \E

.

In general, the creation of efficient external propagators to represent any given

set of nogoods is a challenging task. In the context of CASP, however, we can con-

veniently draw from CP, a research area that is largely concerned with efficient

propagation in solving CSP. In the next sections, we will show how LNG can be

applied to CASP, in particular, how encodings for variables’ domains and global

constraints can be captured by external propagators. Following the idea of Ohri-

menko et al. (2009) we will apply CP techniques to propagate constraints and then

generating lazy nogoods that represent the underlying inference.

Encoding Variable’s Domain via External Propagation

We start with external propagators for the nogoods represented by ASP-VALUE[V]

from Section 4.2. Recall, ASP-VALUE[V] introduces atoms of the form [[v = i]] to

indicate whether v= i is possible, where v ∈V is a variable and i ∈ dom(v) a value

from its domain. The conditions induced by ASP-VALUE[V] ensure any conflict-

free assignment A represents a consistent set of domains for the values in V.

For reasons of space complexity we have previously transformed the cardinal-

ity constraint rules from ASP-VALUE[V] into a set of rules following the idea of Sinz

(2005), i.e., encoding sequential counters. With LNG, however, we can employ

an external propagator for the nogoods represented by the quadratic size decom-

position into integrity constraints (cf. Section 2.5). For instance, Algorithm 6.1

provides a specification of an inference-optimal external propagator for this task.

It takes an assignment A and returns a set of lazily generated nogoods, initialised

in Line 1, that are unit or conflicting. Lines 2–3 ensure that if v is assigned a value i

then all other values are removed from its domain, while Lines 4–5 deal with the

condition that there is at least one value that can be assigned to v. This proce-

dure can be made very efficient, for instance, by using watched literals (Moskewicz

et al., 2001; Gent, 2013).

174

6.2. Lazy Nogood Generation

Input : A Boolean assignment A.
Output: A set of lazily generated nogoods.

1 ∇←; // set of lazily generated nogoods
2 if [[v= i]] ∈ AT for some i ∈ dom(v) then
3 ∇← {{T[[v= i]], T[[v= j]]} | j ∈ dom(v) \ {i }, [[v= j]] 6∈ AF}

4 if [[v= i]] 6∈ AT for some i ∈ dom(v)∧∀ j ∈ dom(v) \ {i } [[v= j]] ∈ AF then
5 ∇← {{F[[v= j]] | j ∈ dom(v)}}

6 return ∇
Algorithm 6.1: An external propagator for nogoods represented by ASP-VALUE[V].

Recall that other options for representing the variables’ domains, for instance,

the bound encoding ASP-BOUND[V], the range encoding ASP-RANGE[V], or vari-

ants there-of are also possible. As with ASP-VALUE[V] we can employ external

propagators for ∆;
ASP-BOUND[V] and ∆;

ASP-RANGE[V], respectively. In a similar fashion,

this carries over to mixed encodings.

Encoding Constraints via External Propagation

As described in Chapter 4, we can view atoms from the above encodings as primi-

tive constraints because all constraints can be decomposed into a set of rules over

them, by using one of our generic encodings (Sections 4.2–4.5), or specialised

encodings that simulate the inference of constraint propagation via ASP infer-

ence (Sections 5.1–5.3). Either way, to maintain a certain level of local consistency,

the changes to the variables’ domains are described in terms of primitive con-

straints. Based on this insight, we can create an external propagator for any con-

straint by simply modifying an existing propagation algorithm for the constraint

to make its inferences explicit in form of nogoods over primitive constraints.

Algorithm 6.2 specifies an external propagator for the nogoods represented by

an ASP encoding of the ALL-DIFFERENT constraint c = ALL-DIFFERENT({v1, . . . ,vn}).

Provided with an assignment A, it starts with an empty set of lazily generated no-

goods, followed by a distinction into two cases. First, if the constraint must not be

violated, i.e., [[c]] ∈ AT, then for each variable in the scope of the constraint that

has a value assigned, a nogood is generated that asserts the removal of this value

from the domain of all other variables in the scope of the constraint (Lines 3–4).

On the other hand, if the constraint is set to be violated or the constraint atom is

unassigned, i.e., [[c]] 6∈ AT, the algorithm checks whether two variables in the scope

175

6. Constraint Answer Set Solving via Lazy Nogood Generation

Input : A Boolean assignment A.
Output: A set of lazily generated nogoods.

1 ∇←; // set of lazily generated nogoods
2 if [[c]] ∈ AT then
3 foreach v ∈ scope(c) s.t. [[v= i]] ∈ AT for some i ∈ dom(v) do

4
∇←∇∪ {{T[[c]], T[[v= i]], T[[w= i]]} |w ∈ scope(c) \ {v}

i ∈ dom(w), [[w= i]] 6∈ AF}

5 else
6 foreach v ∈ scope(c) s.t. [[v= i]] ∈ AT for some i ∈ dom(v) do
7 if w ∈ scope(c) \ {v} s.t. [[w= i]] ∈ AT then
8 if [[c]] 6∈ AF then
9 ∇← {{T[[c]], T[[v= i]], T[[w= i]]}}

10 return ∇
11 if ∀v ∈ scope(c) ∃i ∈ dom(v) s.t. [[v= i]] ∈ AT then
12 ∇← {{F[[c]]}∪ {T[[v= i]] | v ∈ scope(c), i ∈ dom(v), [[v= i]] ∈ AT}}

13 return ∇
Algorithm 6.2: An external propagator for nogoods represented
by ASP-ALL-DIFFERENT[{v1, . . . ,vn}] encoding c = ALL-DIFFERENT({v1, . . . ,vn}).

of the constraint have the same value assigned (Lines 6–10). If this is the case, the

ALL-DIFFERENT constraint is violated and a nogood asserting that the constraint

atom is set to false will be returned (unless [[c]] ∈ AT, in which case the constraint

atom is already false). If, however, no such pair of variables can be found and

all variables in the scope of the constraint have a value assigned, then the ALL-

DIFFERENT condition is satisfied and a nogood is generated that asserts the truth

of the corresponding constraint atom (Lines 11–12).

Example 6.9

Reconsider the constraint c = ALL-DIFFERENT({v1,v2,v3,v4}) from Example 5.1

and the assignment A1 given through

A1 =

F[[v1 = 1]], T[[v1 = 2]], F[[v1 = 3]], F[[v1 = 4]],

F[[v2 = 4]],

F[[v4 = 1]], F[[v4 = 4]],

T[[c]]

176

6.2. Lazy Nogood Generation

Verify that A represents the following domains:

1 2 3 4

v1 X

v2 X X X

v3 X X X X

v4 X X

Let pc be the external propagator specified in Algorithm 6.2 for the nogoods

represented by ASP-ALL-DIFFERENT[{v1, . . . ,v4}]. The application of pc yields

the following nogoods:

pc (A1) =∇1 =

{T[[c]],T[[v1 = 2]],T[[v2 = 2]]},

{T[[c]],T[[v1 = 2]],T[[v3 = 2]]},

{T[[c]],T[[v1 = 2]],T[[v4 = 2]]}

This encodes the removal of the value 2 from the domains of v2, v3, and v4

on the grounds that the constraint c is not to be violated and v1 is already

assigned 2. In turn, UP updates the domains. That is,

UP∗(∆ASP-VALUE[{v1,...,v4}] ∪∇1,A1) = A2 = A1 ∪
{

F[[v2 = 2]],F[[v3 = 2]],

F[[v4 = 2]]

}
.

Let pV be the external propagator specified in Algorithm 6.1 for the nogoods

represented by ASP-VALUE[{v1, . . . ,v4}]. The application of pV yields the follow-

ing nogoods:

pV(A2) =∇2 = {{F[[v4 = 1]],F[[v4 = 2]],F[[v4 = 3]],F[[v4 = 4]]}}

This encodes the assignment of the only remaining value 3 in the domains

of v4 on the grounds that at least one value must be in the domain of v1. As

before, UP performs the inference encoded. That is,

UP∗(∆ASP-VALUE[{v1,...,v4}] ∪∇2,A2) = A3 = A2 ∪ {T[[v4 = 3]]} .

Further propagation is possible

pc (A3) =∇3 =
{

{T[[c]],T[[v4 = 3]],T[[v2 = 3]]},

{T[[c]],T[[v4 = 3]],T[[v3 = 3]]}

}

177

6. Constraint Answer Set Solving via Lazy Nogood Generation

where pc encodes the removal of 3 from the domains of v2 and v3, again, per-

formed by UP. Verify that

UP∗(∆ASP-VALUE[{v1,...,v4}] ∪∇3,A3) = A4 = A3 ∪ {F[[v2 = 3]],F[[v3 = 3]]}

and then

pV(A4) =∇4 = {{F[[v2 = 1]],F[[v2 = 2]],F[[v2 = 3]],F[[v2 = 4]]}}

i.e., pV encodes that v2 must be assigned the remaining value in its domain.

In turn,

UP∗(∆ASP-VALUE[{v1,...,v4}] ∪∇4,A4) = A5 = A4 ∪ {T[[v2 = 1]]}

UP assign the value 1 to v2. We can repeat this process, until a fixpoint is

reached. To proceed,

pc (A5) =∇5 =
{

{T[[c]],T[[v2 = 1]],T[[v3 = 1]]}
}

and then

UP∗(∆ASP-VALUE[{v1,...,v4}] ∪∇5,A5) = A6 = A5 ∪ {F[[v3 = 1]]}

i.e., the value 1 is removed from v3, and then

pV(A6) =∇6 = {{F[[v4 = 1]],F[[v4 = 2]],F[[v4 = 3]],F[[v4 = 4]]}}

and

UP∗(∆ASP-VALUE[{v1,...,v4}] ∪∇6,A6) = A7 = A6 ∪ {T[[v3 = 4]]}

i.e., the value 4 is assigned to v3. Finally, verify that pc (A7) = pV(A7) = ;, i.e.,

no further propagation is possible. This leaves the assignment A7, where

A7 =

F[[v1 = 1]], T[[v1 = 2]], F[[v1 = 3]], F[[v1 = 4]],

T[[v2 = 1]], F[[v2 = 2]], F[[v2 = 3]], F[[v2 = 4]],

F[[v3 = 1]], F[[v3 = 2]], F[[v3 = 3]], T[[v3 = 4]],

F[[v4 = 1]], F[[v4 = 2]], T[[v4 = 3]], F[[v4 = 4]].

T[[c]]

representing the following set of arc consistent domains:

178

6.3. Decision Algorithm

1 2 3 4

v1 X

v2 X

v3 X

v4 X

Notice that Algorithm 6.2 generates nogoods that are either unit or conflicting

w.r.t. A. This is best practice as it will enable UP to perform the encoded infer-

ence within its next iteration, thus pruning (the representation of) some variable’s

domain, or, for instance, the truth value of the constraint atom representing a

constraint. In this manner, constraint propagation via external propagation, and

ASP inference can be repeated until a fixpoint is reached or a conflict is encoun-

tered. By generating a conflicting nogood, for instance, an external propagator

can yield that the underlying constraint is violated (with respect to the assign-

ment to the associated constraint atom). If [[c]] ∈ AT, observe that the external

propagator specified in Algorithm 6.2 enforces arc consistency on the binary de-

composition of the original constraint. Other propagators are also possible. In

fact, external propagation provides a form of hybridisation that allows program-

mers to select encodings which propagate better, but were previously avoided for

space-related reasons. For instance, in Section 5.1 we have described ASP encod-

ings of the ALL-DIFFERENT constraint such that ASP inference maintains bound or

range consistency. As discussed in the previous chapter, a constraint propagator

that can achieve domain consistency exists (Régin, 1994) but it cannot be simu-

lated efficiently with UP using eager encodings (Bessière et al., 2009b). Because

of the fact that external propagators generate nogoods only on demand, however,

we can implicitly represent encodings via LNG that are otherwise impractical. We

will exercise this option in Section 6.4.

6.3 Decision Algorithm

To facilitate conflict-driven constraint answer set solving via LNG, we here develop

a decision procedure for answer set solving with LNG based on CDNL-ASP (Geb-

ser et al., 2007a). We will inherit all features of CDNL, including CONFLICTANALY-

SIS according to the First-UIP scheme (Zhang et al., 2001). This will guide dynamic

search heuristics and backjumping by iteratively resolving a conflicting nogood

against other nogoods until a unique implication point is obtained. Recording the

179

6. Constraint Answer Set Solving via Lazy Nogood Generation

resulting nogood enables conflict-driven learning, which can further prune the

search space. Similar to CDNL, for controlling the set of recorded nogoods, dele-

tion strategies can be applied (cf. Moskewicz et al., 2001). In contrast to CDNL-

ASP we integrate external propagators that perform LNG in order to represent

conditions on the answer sets of a program that are not encoded eagerly. By mak-

ing them explicit (in particular, when they propagate new information), lazily gen-

erated nogoods can contribute to CONFLICTANALYSIS like their eager counterpart,

i.e., the nogoods involved in this process can stem from eagerly and lazily gener-

ated encodings. This can improve propagation and contribute to lookback-based

search heuristics. Different to eagerly encoded nogoods, however, the amount of

lazily generated nogoods can be controlled via deletion.

Conflict-driven Nogood Learning with Lazy Nogood Generation

Algorithm 6.3 specifies our main procedure, CDNL-LNG. It takes a constraint

program P= (V,D,C,Π) and a setting (ψ,π,mode), where

– ψ is a function that maps each variable v ∈ V to an ASP encoding Ψv of its

domain, and each constraint atom c ∈ atom(C) to an ASP encoding Ψc of

the corresponding constraint constraint(c),

– π is a function that maps each variable v ∈ V to an external propagator pv

for the nogoods represented by Ψv, and each constraint atom c ∈ atom(C)

an external propagator pc for the nogoods represented byΨc , and

– mode is a function that maps each variable v ∈V and each constraint atom

c ∈ atom(C) to the values eager or lazy. The mapping determines whether

the nogoods represented byΨv andΨc are encoded eagerly or lazily, respec-

tively.

Given this, Algorithm 6.3 initialises the ASP encoding Ψ of all components of the

corresponding CSP that are configured to be eagerly encoded in Line 1, based on

our theoretical foundations laid in Chapter 4. The externals E of Π∪Ψ are com-

puted in Line 2, that are, atoms in the ASP encoding of the remaining components

of the CSP. These components are the ones configured to be lazily encoded via

external propagators. The algorithm collects external propagators that stem from

variables in PV (Line 3) and constraints in PC (Line 4). Then, it proceeds with an

empty assignment A and an empty set ∇ that will store recorded nogoods, includ-

180

6.3. Decision Algorithm

Input : A constraint program P= (V,D,C,Π) and a setting (ψ,π,mode).
Output: A constraint answer set of P if one exists.

1 Ψ← ⋃
v∈V, mode(v)=eagerψ(v)∪ ⋃

c∈atom(C), mode(c)=eagerψ(c)

2 E ← ⋃
v∈V, mode(v)=lazy atom(ψ(v))∪ ⋃

c∈atom(C), mode(c)=lazy atom(ψ(c))

3 PV ← ⋃
v∈V, mode(v)=lazyπ(v)

4 PC ← ⋃
c∈atom(C), mode(c)=lazyπ(c)

5 A ←;
6 ∇←;
7 dl ← 0
8 loop
9 (A,∇) ← PROPAGATION(Π∪Ψ,PV,PC,∇,A)

10 if δ⊆ A for some δ ∈∆E
Π∪Ψ∪∇ then

11 if dl = 0 then return no constraint answer set
12 (ε,k) ← CONFLICTANALYSIS(δ,Π∪Ψ,∇,A)
13 ∇←∇∪ {ε}
14 A ← A \ {σ ∈ A | k < dl(σ)}
15 dl ← k

16 else if AT ∪AF = atom(Π∪Ψ)∪body(Π∪Ψ)∪E then
17 return (AT ∩atom(Π),assignV,D(AT ∩ ⋃

v∈V atom(ψ(v))))
18 else
19 σd ← SELECT(Π∪Ψ,E ,∇,A)
20 A ← A∪ {σd }
21 dl ← dl+1

Algorithm 6.3: CDNL-LNG

ing lazily generated nogoods from external propagators. The decision level dl is

initialised with 0.

The following loop is very similar to Gebser et al.’s description of CDNL-ASP,

adjusted to our setting. First, PROPAGATION (Line 9) extends A and ∇, as described

in the next section. If this encounters a conflict (Line 10), where∆E
Π∪Ψ =∆atom(C)

Π ∪
∆E
Ψ by Lemma 6.1, then the CONFLICTANALYSIS procedure generates a conflict-

ing nogood ε by exploiting interdependencies between the nogoods represented

by Π∪Ψ and ∇ through CONFLICTANALYSIS, and determines a decision level k at

which to continue search. Then, ε is added to the set of recorded nogoods ∇ in

Line 12. This can prune the search space and lead to more propagation. Lines 13–

15 account for backjumping to level k. Thereafter ε is unit and triggers inference

in the next round of propagation. If CONFLICTANALYSIS, however, yields a conflict

at level 0, no answer set exists (Line 11). Furthermore, we distinguish the cases of

181

6. Constraint Answer Set Solving via Lazy Nogood Generation

Input : A programΠwith externals E , two sets of external propagators P
and Q, recorded nogoods ∇, and an assignment A.

Output: An extended assignment and set of recorded nogoods.

1 loop
2 A ← UP∗(∆E

Π∪∇,A)

3 if δ⊆ A for some δ ∈∆E
Π∪∇ then return (A,∇)

4 foreach p ∈P do
5 Γ← p(A) // high priority external propagation
6 if Γ 6= ; then break

7 if Γ=; then foreach p ∈Q do
8 Γ← p(A) // low priority external propagation
9 if Γ 6= ; then break

10 if Γ=; then
11 Γ← UNFOUNDEDSETPROPAGATION(Π,A)

12 if Γ=; then return (A,∇)
13 ∇←∇∪Γ

Algorithm 6.4: PROPAGATION

a total assignment (Lines 16–17) and a partial one (Lines 18–21). In case of a total

assignment, the atoms in AT represent a constraint answer set of Ψ, where AT ∩
atom(Π) is an answer set of Π(satC(A)) and A = assignV,D(AT ∩ ⋃

v∈V atom(ψ(v)))

is an assignment to the variables in V such that (A, satC(A)) is a configuration of

the CSP (V,D,C). In the other case, A is partial and no nogood is conflicting. Then,

a decision literal σd is selected by some heuristic, added to A, and the decision

level is incremented.

Whilst the CONFLICTANALYSIS and SELECT procedures are similar to the ones

in CDNL-ASP, we extend PROPAGATION to accommodate LNG.

Nogood Propagation with Lazy Nogood Generation

A specification of our PROPAGATION procedure is shown in Algorithm 6.4. It works

on a program Π with externals E , two sets of external propagators P and Q, a set

of recorded nogoods ∇, and an assignment A. PROPAGATION interleaves UP on

nogoods ∆E
Π and recorded nogoods ∇. The latter may include lazily generated no-

goods from external propagators.

We start with UP (Line 2), resulting either in a conflict, i.e., some nogood is

conflicting (Line 3) w.r.t. A, or in a fixpoint that extends A with unit-resulting liter-

182

6.3. Decision Algorithm

als. If there is no conflict, PROPAGATION performs external propagation following

some priority (Lines 4–9), where precedence is given to external propagators in P

over external propagators inQ. Typically, the ones inP represent the variables’ do-

mains, and the ones in Q represent constraints. (We want to update domains and,

in particular, discover an empty domain before propagating constraints.) In prin-

ciple, additional priority queues or an elaborate scheduler are also possible. Any-

way, based on A, each external propagator may encode inference in a set of lazily

generated nogoods Γ which is added to the set of recorded nogoods ∇ at the end

of the loop in Line 13. The UNFOUNDEDSETPROPAGATION procedure (Line 11; cf.

Gebser et al., 2007a) works similarly, and ensures that AF does not contain atoms

from any unfounded set, for instance, using an implementation of FL or WFN. In

addition, the procedure may employ our approximations for WFJ or WFD, as dis-

cribed in Chapter 3.

It is important to note that external propagation and UNFOUNDEDSETPROPA-

GATION is interleaved by UP. This is to assign unit-resulting literals immediately

and detect conflicts early. Our algorithm also favours external propagation over

UNFOUNDEDSETPROPAGATION. Although the letter may have a better asymptotic

time complexity than some external propagators in practical applications, our de-

sign decision is grounded on the observation that external propagators can falsify

external support, i.e., UNFOUNDEDSETPROPAGATION may depend on the results

from external propagation.

Soundness and Completeness

We now establish soundness and completeness of CDNL-LNG. In fact, since it is

a decision algorithm, completeness is due to termination. Soundness and termi-

nation of CDNL-LNG largely follow from the fact that CDNL-ASP is sound and

terminates (Gebser, 2011). The relationship between CDNL-LNG and CDNL-

ASP is particularly obvious in the case when all CP constructs are eagerly en-

coded.

Definition 6.5: Eager Setting

For a constraint program P = (V,D,C,Π), the setting (ψ,π,mode) such that

mode(c) = eager for each v ∈ V and mode(c) = eager for each c ∈ atom(C) is

called the eager setting.

The following proposition establishes soundness and termination of CDNL-LNG

under eager settings.

183

6. Constraint Answer Set Solving via Lazy Nogood Generation

Theorem 6.9

LetPbe a constraint program and (ψ,π,mode) the eager setting. Then CDNL-

LNG terminates, and returns a constraint answer set of P if and only if some

constraint answer set of P exists.

Proof. Let P= (V,D,C,Π). By recursive application of Lifschitz and Turner’s split-

ting set theorem, the program Ψ constructed in Line 1 of CDNL-LNG is an ASP

encoding of the CSP (V,D,C). Furthermore, we have E =; (Line 2),PV =; (Line 3),

PC = ; (Line 4), and the equation ∆;
Π∪Ψ = ∆Π∪Ψ (Line 10). Given this, CDNL-

LNG works just like CDNL-ASP, i.e., our added routines do not operate. By Theo-

rem 4.1, the answer sets of Π∪Ψ coincide with the constraint answer sets of P.

Then, the soundness and termination of CDNL-LNG directly follows from the

soundness and termination of CDNL-ASP Gebser (2011).

We now turn our attention to any setting different from the eager setting, i.e.,

settings (ψ,π,mode) with mode(v) = eager for some v ∈ V or mode(c) = lazy for

some c ∈ atom(C). Soundness with respect to the decision problem of the exis-

tence of a constraint answer set is obtained from PROPAGATION and CONFLICT-

ANALYSIS exploiting the available information, without drawing incorrect conclu-

sions. As CONFLICTANALYSIS remains unchanged from CDNL, respectively CDNL-

ASP, we proceed with analysing our LNG extensions to PROPAGATION.

Before we begin, we make one reasonable assumption to avoid multiple case

distinctions in the following proofs. The assumption is that and that UNFOUND-

EDSETPROPAGATION returns at least those loop nogoods of a given ASP encoding

which are generated by the external propagator for the nogoods represented the

model.

Assumption 6.6

Let Π be a program with externals F , E be a splitting set for Π, p be an ex-

ternal propagator for ∆F
ΠE

∪ΛF
ΠE

, and A be an assignment. We assume that

UNFOUNDEDSETPROPAGATION(Π,A) ⊆ p(A).

In practice, UNFOUNDEDSETPROPAGATION is not required to satisfy the above re-

quirement for arbitrary assignments, but eventually produces some conflicting

loop nogood every total assignment that is not a solution for the set of loop no-

goods. We have provided examples for conflict-optimal and inference-optimal

unfounded set inference in Section 6.2.

184

6.3. Decision Algorithm

The following proposition establishes that the assignment and the set of re-

corded nogoods returned by PROPAGATION is bounded by the elements returned

by PROPAGATION under the eager setting. In other words, PROPAGATION with LNG

always exploits less information than PROPAGATION under the corresponding ea-

ger encoding.

Lemma 6.10

Let P= (V,D,C,Π) be a constraint program and (ψ,π,mode) be a setting. Let

ΨV = ⋃
v∈V, mode(v)=eagerψ(v) and Ψ̂V = ⋃

v∈V, mode(v)=lazyψ(v)

be the eager and lazy encodings of the variables’ domains, and let

ΨC = ⋃
c∈atom(C), mode(c)=eagerψ(c) and Ψ̂C = ⋃

c∈atom(C), mode(c)=lazyψ(c)

be the eager and lazy encodings of the constraints, such that Ψ =ΨV∪ Ψ̂V∪
ΨC∪ Ψ̂C as constructed in Line 1 of CDNL-LNG under the eager setting. Let

PV and PC be the set of external propagators constructed in Lines 3 and 4

under the setting (ψ,π,mode).

Let ∇ be a set of nogoods, A be an assignment, and Ae be the assignment

returned in Line 12 of PROPAGATION(Π∪Ψ,;,;,∇,A). Then, the execution of

PROPAGATION(Π∪ΨV∪ΨC,PV,PC,∇,A) returns in Line 12 with an assignment

Al such that Al ⊆ Ae .

Proof. Before we begin, let E ⊆ atom(ΨV ∪ Ψ̂V) be the externals of Ψc and let

Ê ⊆ atom(ΨV∪Ψ̂V) be the externals of Ψ̂c , where c ∈ atom(C). Then, by construc-

tion, we have that PV are the propagators that represent the set of nogoods ∆Ψ̂V
∪⋃

v∈V, mode(v)=lazyΛΨ̂v
, and PC are the propagators that represent the set of no-

goods ∆Ê
Ψ̂C

∪ ⋃
c∈atom(C), mode(c)=lazyΛ

Ê
Ψ̂c

.

Now, let PROPAGATION(Π∪Ψ,;,;,∇,A) return the pair (Ae ,∇e) in Line 12. We

show that the execution of PROPAGATION(Π∪ΨV∪ΨC,PV,PC,∇,A) returns a pair

(Al ,∇l) in Line 12 such that Al ⊆ Ae by proof of contradiction.

Suppose, PROPAGATION(Π∪ΨV∪ΨC,PV,PC,∇,A) returns (Al ,∇l) such that Al \

Ae 6= ;. Then, Al extends Ae ∩Al by a literal σ that is unit-resulting w.r.t. Ae ∩Al in

Line 2. In particular, the literalσbelongs to some nogoodδ from the set of comple-

tion nogoods ofΠ∪ΨV∪ΨC or recorded nogoods∆(atom(C)\atom(ΨC))∪(E \atom(ΨV))
Π∪ΨV∪ΨC

∪
∇l that is unit with respect to Ae ∩Al . By Lemma 6.1, we have that the equation

185

6. Constraint Answer Set Solving via Lazy Nogood Generation

∆
(atom(C)\atom(ΨC))∪(E \atom(ΨV))
Π∪ΨV∪ΨC

∪∇l =∆atom(C)
Π ∪∆E

ΨC
∪∆ΨV∪∇l holds. Next, observe

that the set of recorded nogoods ∇l augments ∇ via Line 13 by

– loop nogoods fromΛ
(atom(C)\atom(ΨC))∪(E \atom(ΨV))
Π∪ΨV∪ΨC

(Line 11), or

– lazily generated nogoods p(A′) for some external propagator p ∈ PV ∪PC,

where A′ is the assignment in some iteration of the loop, A ⊆ A′ ⊆ (Ae ∩Al).

Since p(A′) ⊆ ∆Ê
Ψ̂C

∪ ⋃
c∈atom(C), mode(c)=lazyΛ

Ê
Ψ̂c

∪∆Ψ̂V
∪ ⋃

v∈V, mode(v)=lazyΛΨ̂v
, we

conclude that

δ ∈∆atom(C)
Π ∪∆E

ΨC
∪∆ΨV ∪Λ(atom(C)\atom(ΨC))∪(E \atom(ΨV))

Π∪ΨV∪ΨC
∪∆Ê

Ψ̂C

∪ ⋃
c∈atom(C), mode(c)=lazyΛ

Ê
Ψ̂c

∪∆Ψ̂V
∪ ⋃

v∈V, mode(v)=lazyΛΨ̂v
.

By Lemma 6.1, we have∆atom(C)
Π ∪∆E

ΨC
∪∆Ê

Ψ̂C
∪∆ΨV∪∆Ψ̂V

=∆Π∪Ψ, and by Lemma 6.4,

Λ
(atom(C)\atom(ΨC))∪(E \atom(ΨV))
Π∪ΨV∪ΨC

∪ ⋃
c∈atom(C), mode(c)=lazyΛ

Ê
Ψ̂c

∪ ⋃
v∈V, mode(v)=lazyΛΨ̂v

⊆ΛΠ∪Ψ.

Hence, δ ∈ ∆Π∪Ψ∪ΛΠ∪Ψ. By Assumption 6.6, if δ ∈ ΛΠ∪Ψ, then δ ∈ ∇e . In other

words, δ is a member of the completion nogoods of Π∪Ψ, or it was produced by

UNFOUNDEDSETPROPAGATION under the eager setting. In any case, δ is also unit

w.r.t. Al ∩Ae in the execution of PROPAGATION(Π∪Ψ,;,;,∇,A). Therefore, σ ∈ Ae ,

contradicting the assumption.

In conclusion, we have Al ⊆ Ae . Since PROPAGATION(Π∪Ψ,;,;,∇,A) returns

in Line 12, so must PROPAGATION(Π∪ΨV∪ΨC,P,Q,∇,A).

A closer inspection of PROPAGATION shows that, if PROPAGATION returns in Line

3 under the eager setting and the assignment A, then it also returns in Line 3 for

every total assignment extending A under any setting, i.e., different from the eager

setting.

Lemma 6.11

Let P= (V,D,C,Π) be a constraint program and (ψ,π,mode) be a setting. Let

ΨV = ⋃
v∈V, mode(v)=eagerψ(v) and Ψ̂V = ⋃

v∈V, mode(v)=lazyψ(v)

186

6.3. Decision Algorithm

be the eager and lazy encodings of the variables’ domains, and let

ΨC = ⋃
c∈atom(C), mode(c)=eagerψ(c) and Ψ̂C = ⋃

c∈atom(C), mode(c)=lazyψ(c)

be the eager and lazy encodings of the constraints, such that Ψ =ΨV∪ Ψ̂V∪
ΨC∪ Ψ̂C as constructed in Line 1 of CDNL-LNG under the eager setting. Let

PV and PC be the set of external propagators constructed in Lines 3 and 4

under the setting (ψ,π,mode).

Let ∇ be a set of nogoods and A be an assignment such that PROPAGA-

TION(Π∪Ψ,;,;,∇,A) returns in Line 3. Then, the execution of PROPAGA-

TION(Π∪ΨV∪ΨC,PV,PC,∇,At) returns in Line 3 for every assignment At ⊇ A

that is total.

Proof. Before we begin, let E ⊆ atom(ΨV ∪ Ψ̂V) be the externals of Ψc and let

Ê ⊆ atom(ΨV∪Ψ̂V) be the externals of Ψ̂c , where c ∈ atom(C). Then, by construc-

tion, we have that PV are the propagators that represent the set of nogoods ∆Ψ̂V
∪⋃

v∈V, mode(v)=lazyΛΨ̂v
, and PC are the propagators that represent the set of no-

goods ∆Ê
Ψ̂C

∪ ⋃
c∈atom(C), mode(c)=lazyΛ

Ê
Ψ̂c

.

Now, let PROPAGATION(Π∪Ψ,;,;,∇,A) return the pair (Ae ,∇e) in Line 3, and

At ⊇ A be a total assignment. We show that the execution of PROPAGATION(Π∪
ΨV∪ΨC,PV,PC,∇,At) returns in Line 3.

Since PROPAGATION(Π∪Ψ,;,;,∇,A) returns (Ae ,∇e) in Line 3, we have some

nogood δ ∈ ∆Π∪Ψ∪∇e such that δ ⊆ Ae , where ∇e augments ∇ by loop nogoods

from ΛΠ∪Ψ. Hence, we distinguish the following three cases: δ ∈ ∇, δ ∈ ∆Π∪Ψ, or

δ ∈ΛΠ∪Ψ.

First, suppose δ ∈∇. Since δ⊆ Ae and Ae ⊆ At , we have that PROPAGATION(Π∪
ΨV∪ΨC,PV,PC,∇,At) returns in Line 3, trivially.

Second, suppose δ ∈ ∆Π∪Ψ. By Lemma 6.1, ∆Π∪Ψ = ∆atom(C)
Π ∪∆E

ΨC
∪∆Ê

Ψ̂C
∪

∆ΨV ∪∆Ψ̂V
. If δ ∈ ∆atom(C)

Π ∪∆E
ΨC

∪∆ΨV then, again by Lemma 6.1, we have that

δ ∈ ∆(atom(C)\atom(ΨC))∪(E \atom(ΨV))
Π∪ΨV∪ΨC

, and PROPAGATION(Π∪ΨV ∪ΨC,PV,PC,∇,At)

returns in Line 3. On the other hand, if δ ∈∆Ê
Ψ̂C

∪∆Ψ̂V
then δ is in the set of nogoods

represented by some propagator p ∈PV∪PC. Recall that, by definition, an external

propagator always returns a violated nogood if some of the nogoods it represents

are violated w.r.t. a total assignment. Hence, there is some δ′ ∈ p(At) such that δ′ ⊆
At , and PROPAGATION(Π∪ΨV∪ΨC,PV,PC,∇,At) returns in Line 3.

Finally, suppose δ ∈ΛΠ∪Ψ. By Lemma 6.5, A is not unfounded-free for Π∪Ψ.

In turn, by Lemma 6.2, A is not unfounded-free for Π or A is not unfounded-free

187

6. Constraint Answer Set Solving via Lazy Nogood Generation

forΨ. Then, by Lemma 6.5 again, we have that there is some nogoodδ′ ∈Λatom(C)
Π ∪

ΛΨ such that δ′ ∈ A. Alternating between Lemma 6.2 and Lemma 6.5 we can pro-

ceed with dissecting the sets of loop nogoods, and conclude that there is some δ′′ ∈
Λatom(C)
Π ∪ΛE

ΨC
∪⋃

c∈atom(C), mode(c)=lazyΛ
Ê
Ψ̂c

∪ΛΨV∪
⋃

v∈V, mode(v)=lazyΛΨ̂v
such that

δ′′ ∈ A. We make yet another case destinction. First up, if δ′′ ∈Λatom(C)
Π ∪ΛE

ΨC
∪ΛΨV

then, by Lemma 6.4, we have that δ′′ ∈Λ(atom(C)\atom(ΨC))∪(E \atom(ΨV))
Π∪ΨV∪ΨC

, and PROPA-

GATION(Π∪ΨV∪ΨC,PV,PC,∇,At) returns in Line 3, since UNFOUNDEDSETPROPA-

GATION adds δ′′ to the recorded nogoods in Line 11 via Line 13. On the other hand,

if δ′′ ∈ ⋃
c∈atom(C), mode(c)=lazyΛ

Ê
Ψ̂c

∪ ⋃
v∈V, mode(v)=lazyΛΨ̂v

then δ′′ is in the set of

nogoods represented by some propagator p ∈ PV∪PC. Recall that, by definition,

an external propagator always returns a violated nogood if some of the nogoods it

represents are violated w.r.t. a total assignment. Hence, there is some δ′′′ ∈ p(At)

such that δ′′′ ⊆ At that is added to the recorded nogoods in Lines 5 or 8 via Line 13,

and PROPAGATION(Π∪ΨV∪ΨC,PV,PC,∇,At) returns in Line 3.

Hence, if PROPAGATION(Π∪Ψ,;,;,∇,A) returns in Line 3, so does PROPAGA-

TION(Π∪ΨV∪ΨC,PV,PC,∇,At) for every total assignment At ⊇ A.

We now show that, given the above, soundness and termination of CDNL-LNG

follows for any setting.

Theorem 6.12: Soundness and Termination of CDNL-LNG

Let P be a constraint program and (ψ,π,mode) any setting. CDNL-LNG ter-

minates, and returns a constraint answer set ofP if and only if some constraint

answer set of P exists.

Proof. Let (ψ,π,mode) be any setting. We begin with showing that CDNL-LNG is

sound under (ψ,π,mode). We have to consider the following two cases: The first

one is that CDNL-LNG returns a pair (AT ∩atom(Π),assignV,D(A)) in Line 17, and

the second one is that CDNL-LNG returns no constraint answer set in Line 11.

First, suppose CDNL-LNG under the setting (ψ,π,mode) returns the pair (AT∩
atom(Π),assignV,D(A)) in Line 17. Then, Lemma 6.10 guarantees that PROPAGA-

TION under the eager setting draws the same conclusions. Since the test in Line 16

is passed, A is a total assignment. Furthermore, since the test in Line 10 is passed

and by Lemma 6.11, A is not conflicting with the eager encoding. By Theorem 6.9,

(AT ∩atom(Π),assignV,D(A)) is a constraint answer set.

Secondly, suppose CDNL-LNG under the setting (ψ,π,mode) returns no con-

straint answer set in Line 11. Then, Lemma 6.10 guarantees that PROPAGATION

188

6.4. Experimental Results

under the eager setting draws the same conclusions. By Theorem 6.9, P has no

answer set.

Termination of CDNL-LNG follows from the termination of CDNL-ASP (Geb-

ser, 2011), and CDNL (Zhang and Malik, 2003) in particular.

Note that, since we have abstracted external propagators from any specific im-

plementation, in practice, the termination of CDNL-LNG is dependent on the

termination of the actual algorithms underlying external propagation. Naturally,

complete algorithms have to be employed whenever complete results are desired.

Also note that CDNL-LNG can be made into an enumeration algorithm, e.g.,

following Gebser et al. (2007c).

6.4 Experimental Results

For its empirical assessment, we have implemented LNG for finite domain vari-

ables, the ALL-DIFFERENT and integer LINEAR constraints within our prototypi-

cal CASP system inca10. It is based on a development version of the ASP system

clingo (3.0.92)11, and uses CDNL-LNG as its core reasoning engine that it inher-

its from clasp (1.3.10)11. This includes conflict-driven learning, lookback-based

search heuristics, deletion strategies, restart policies, watched literals, solution

enumeration, optimisation, native handling of cardinality constraint rules, and

so on (Gebser et al., 2007b,c).

The architecture of inca is illustrated in Figure 6.5. Given a constraint pro-

gram P = (V,D,C,Π), its PREPROCESSOR creates all necessary objects for CDNL-

LNG: It computes the strongly connected components of Π, and eagerly gener-

ates all completion nogoods of Π and those constraints in C and variables in V

that were configured to be represented eagerly. In turn, it initialises the exter-

nal propagators for the remaining CP constructs, i.e., those constraints in C and

variables in V that were configured to be represented lazily. Search and propa-

gation is controlled by clasp’s ASP decision engine. Though, as we have outlined

in Algorithm 6.4, PROPAGATION distinguishes between ASP inference and exter-

nal propagation. Whilst ASP inference is performed by clasp, it defers the han-

dling of all remaining CP constructs to external propagators. To facilitate the lat-

ter, the ASP decision engine communicates its current assignment A to the con-

straint propagation engine which extracts the updated domains of the constraint

10http://potassco.sourceforge.net/labs.html
11http://potassco.sourceforge.net/

189

6. Constraint Answer Set Solving via Lazy Nogood Generation

Constraint
Program

Constraint
Answer Set

�

�

�

�

ASP DECISION ENGINE

EXTERNAL PROPAGATION�
�

�
�PREPROCESSOR

Nogoods,
Components

Variables,
Constraints

'

&

$

%
CDNL

Assignment

Dynamic
Nogoods

��
��

��PPPPPP������PP
PP

PP propagate?

yes

'

&

$

%
LAZY

NOGOOD

GENERATOR

?

6

�
�	

@
@R

?

-

-

-�

-

6

�

Figure 6.5: Architecture of inca.

variables and the state of the constraint atoms. This is implemented via watched

literals (Moskewicz et al., 2001; Gent, 2013). If some external propagator p reports

inference, it reports back a lazily generated nogood from p(A).

The default setting of inca uses an ALL-DIFFERENT propagator that enforces

arc consistency, while incaDC enforces domain consistency, representing an in-

feasible ASP encoding of ALL-DIFFERENT, i.e., one based on all Hall sets. Our im-

plementation of the external propagators representing the conditions induced by

ALL-DIFFERENT constraints use a separate low priority queue, staged propagation,

incremental matching, and incremental exploitation of strongly connected com-

ponents (cf. Gent et al., 2008).

We include the CASP system clingcon (2.0.0-beta)11 in our analysis. It also

extends clingo, but integrates the CP solver gecode (3.7.1)12. Recall that, similar

to our approach, clingcon is based on CDNL and abstracts from the constraints

via constraint atoms. Following the idea of SMT, however, clingcon employs its

12http://www.gecode.org/

190

http://www.gecode.org/

6.4. Experimental Results

CP solver to check the existence of a variable assignment that does not violate

any constraint (according to the assignment to constraint atoms). Compared to

its predecessor that we have previously evaluated in Section 5.1, this newer ver-

sion of clingcon encodes the state of the CP solver into nogoods over constraint

atoms, whenever gecode yields a conflict or determines the truth value of a con-

straint atom. This process can be seen as a very limited form of LNG, though,

the CP solver does not contribute any information about its propagation to the

CONFLICTANALYSIS process. Hence, this approach may also require exponentially

more search than LNG as it cannot access the state of the propagator, e.g., via to

intermediate atoms.

We have set clingcon to generate nogoods by looking at the implication de-

pendency between constraint atoms according to the irreducibly inconsistent set

construction method in forward mode (Ostrowski and Schaub, 2012), when we no-

ticed that this option significantly improves the performance of clingcon on our

benchmarks. In general, however, this indirect method incurs some overhead for

the CONFLICTANALYSIS process. Moreover, recall that clingcon applies backtrack-

ing search through gecode following some variable and value selection heuristic to

determine an assignment to the variables, while in inca all search is carried out

through the CDNL-LNG engine. Another, more subtle difference to inca is that

clingcon prefers unfounded set propagation over constraint propagation. As with

inca, the default setting of clingcon uses an ALL-DIFFERENT propagator that en-

forces arc consistency, while clingconDC enforces domain consistency.

For a comparison with the state-of-the-art in answer set solving, our experi-

ments also consider eager encodings generated by inca. Since eager encodings

only rely on inca’s ASP subsystem clingo (3.0.92) for the solving process, we denote

this option by clingo. Note that the loop nogoods representing unfounded set in-

ference are encoded lazily in all settings. Experiments were run on a 2.00 GHz PC

under Linux, where each run was limited to 600 s time and 2 GByte RAM.

Quasigroup Completion

We first reconsider quasigroup completion problems (QCPs) to test LNG for the

ALL-DIFFERENT constraint. Previous experiments on this benchmark domain with

n = 20, reported in Section 5.1, have shown eager encodings outperforming hybrid

CASP systems, including a preliminary version of clingcon.

In order to study the computational behaviour on large-scale tables we have

increased size to n = 40. This quadruples the amount of variables involved, and

191

6. Constraint Answer Set Solving via Lazy Nogood Generation

doubles the size of their domains. We have generated 200 instances near to the

easy-hard-easy phase transition (Cheeseman et al., 1991). The phase transition

can be observed, e.g., at the maximum memory consumption of clingo in relation

to the preassignment rate. In fact, we observe most cases of memory exhaustion

with a preassignment rate of 50 percent. The graph in Figure 6.6 (top) illustrates

the maximum memory usage of clingo and inca in GBytes by preassigned values

in percent.

Since all atoms in the CASP encoding for QCP are constraint atoms whose

truth value is known a-priori, clingcon cannot make use of its conflict-driven ca-

pacities. Instead, search and propagation is carried out by its backtracking-based

CP solver, i.e., following a smallest domain and smallest value first selection heuris-

tic, whilst search in clingo and inca is based on activity in CONFLICTANALYSIS. This

is likely be the reason that renders clingcon ineffective on this benchmark domain,

solving only 9 of 200 instances. It is therefore excluded from Figure 6.6. To our sur-

prise, enabling learning capacities in clingcon by decomposing the ALL-DIFFERENT

constraints into primitive constraints, like in the eager encoding used by clingo,

exhausts CPU time on all instances.

As can be seen in Figure 6.6 (bottom) which gives the run time in minutes

against the numbers of solved instances, within the allowed execution time, clingo

solves almost half of all instances. Though, clingo performs drastically worse on

QCPs with the increased size, compared to previous experiments.

The use of LNG in inca, on the other hand, avoids huge encodings while pre-

serving conflict-driven learning capacities. In fact, inca solves twice as many in-

stances as clingo within one hour of execution time, and nearly twice as many

instances overall.

Propagation that achieves domain consistency further improves performance.

Both CASP systems, clingcon and inca benefit thereof, as results on QCPs demon-

strate (see Table 6.3). This emphasises the importance of external propagation, as

achieving domain consistency is impossible via eager encodings in general.

Quasigroup Existence

We also reconsider quasigroup existence problems (QEPs), i.e., the problem of de-

termining the existence of certain classes of quasigroups with properties QG1–

GG7 (see Section 5.1) which are modelled using primitive constraints. This weak-

ens the overall consistency achieved by propagation.

192

6.4. Experimental Results

0.5

1.0

1.5

2.0

30 35 40 45 50 55 60 65 70 75

m
ax

.m
em

o
ry

co
n

su
m

p
ti

o
n

(G
B

yt
es

)

% preassigned values

clingo
inca

0

60

120

180

240

300

25 50 75 100 125 150 175

ti
m

e
(m

in
)

number of solved instances

clingo
inca

Figure 6.6: Results on QCPs of size 40.

193

6. Constraint Answer Set Solving via Lazy Nogood Generation

Table 6.1: Run time results in seconds for QEPs.

n clingo clingcon clingconDC inca incaDC

7 1.5 6.8 7.9 1.5 1.5
QG1 8 8.6 42.8 176.2 13.4 4.4

9 — — — 450.1 —

7 1.5 9.2 6.9 1.5 1.5
QG2 8 26.9 — — 7.4 19.0

9 — — — 69.7 61.2

7 0.1 0.6 0.3 0.1 0.1
QG3 8 0.1 0.1 1.1 0.1 0.1

9 13.3 — — 18.4 16.0

7 0.1 0.6 0.6 0.1 0.1
QG4 8 0.2 11.8 17.0 0.2 0.3

9 0.3 24.6 22.4 0.1 0.6

12 1.7 — — 1.7 3.2
QG5 13 33.3 — — 41.6 70.1

14 155.4 — — 217.8 219.4

10 0.3 19.6 27.6 0.2 0.2
QG6 11 1.0 488.0 442.7 0.8 1.4

12 14.7 — — 42.9 14.9

10 5.5 — 267.1 8.0 1.3
QG7 11 197.7 — — 327.3 9.2

12 — — — — 107.5

In comparison to our previous experiments with clingcon (0.1.2), that had only

very limited capacities for conflict-driven learning involving constraint atoms and

no support for global constraints like the ALL-DIFFERENT constraint, clingcon’s

newer version improves run time. Still, it cannot compete with the translation-

based approach represented by clingo. Our results shown in Table 6.1 demonstrate

that techniques which encode CP constructs into nogoods, continue to benefit

from learning constraint interdependencies a lot more than the hybrid system.

Whilst inca competes with clingo, it outperforms clingo on the hardest instances.

Graceful Graphs

To test LNG for a combination of ALL-DIFFERENT and integer LINEAR constraints,

we reconsider instances of the graceful graph problem (GGPs; see Section 5.1),

in particular, the problem of determining the existence of a graceful labelling of

194

6.4. Experimental Results

Table 6.2: Run time results in seconds for GGP.

n clingo clingcon clingconDC inca incaDC

3 3.5 1.1 0.4 3.8 5.6
4 0.1 0.9 0.8 0.1 0.2
5 0.3 3.8 1.3 3.8 0.3
6 0.2 57.1 25.9 1.2 0.3
7 0.7 — 12.5 7.2 2.8
8 0.9 — 22.3 15.3 3.0
9 1.6 — 156.1 — 29.2
10 5.4 — — — 31.3
11 14.5 — — — 28.8
12 — — — — 24.8
13 — — — — 132.0
14 — — — — —

double-wheel graphs. The results shown in Table 6.2 confirm previous observa-

tions. Moreover, the eager encoding represented by clingo competes with LNG on

this benchmark domain even if strong propagators are employed. Though, this

observation does not hold for larger graphs any more.

Packing

To further test LNG for integer LINEAR constraints, we consider instances of the

Packing problem, that is the problem of packing objects together inside a con-

tainer. A special case of the packing problem formed a benchmark class in the

third ASP competition (Calimeri et al., 2011). There, a set of squares of known di-

mensions had to be packed into a rectangular area such that no two squares over-

lap each other and all the squares are packed, possibly leaving space in the rectan-

gular area unoccupied. Problems like packing are particularly hard to solve with

ASP systems because they typically involve large domains that affect the size of

their encoding. In fact, the encoding that was given in the system track of the com-

petition quickly reaches the memory limit of 2 GBytes in 49 out of 50 instances,

while the CASP systems clingcon and inca solve every instance within a reason-

able amount of space and time. On the Packing domain, the advantage of inca

over clingcon is only marginal.

195

6. Constraint Answer Set Solving via Lazy Nogood Generation

Table 6.3: Average run time in seconds over completed runs on QCP, QEP, GGP,
Packing, and Numbrix benchmarks. Number of completed runs are given in
parenthesis.

Benchmark class clingo clingcon clingconDC inca incaDC

Quasigroup
Completion (200)

106.6 (93) 34.4 (9) 4.6 (200) 86.2 (171) 24.7 (200)

Quasigroup
Existence (21)

25.7 (18) 61.4 (10) 88.2 (11) 60.3 (20) 26.6 (20)

Graceful Graphs (10) 3.0 (9) 15.7 (4) 31.3 (7) 5.2 (6) 12.6 (10)

Packing (50) 104.1 (1) 33.1 (50) 33.1 (50) 24.6 (50) 24.6 (50)

Numbrix (12) 10.4 (12) 17.4 (12) 51.3 (12) 1.3 (12) 5.2 (12)
weighted,
penalised time

228.3 267.0 124.6 103.1 24.2

Numbrix

Numbrix is a variant of Hidato, the number-placement game we have described

in Chapter 1. It is played on an n ×n grid. Similar to Hidato, its objective is to

fill the grid with consecutive integers that connect horizontally and vertically, but,

different from Hidato, not diagonally. Another difference is that the positions of

the smallest and the highest number are not always given. Still, every Numbrix

puzzle should have a unique solution.

Our experiments determine the existence of a unique solution for puzzles that

stem from Marilyn vos Savant’s column in the Parade magazine13 with size n =
9. While clingo, clingcon, and inca, all are able to solve all puzzles considered in

our analysis, we observe that execution time improves when CP constructs are

encoded into nogoods, as in the options clingo and inca, and drastically improves

when this encoding is lazy, as in the option inca.

Summary of Results

A summary of our experiments is provided in Table 6.3. It also gives the aver-

age run time over all benchmark classes, where each benchmark class is weighted

equally, and penalising timeouts with the time limit. We can draw a few interesting

conclusions.

13http://www.parade.com/

196

http://www.parade.com/

6.4. Experimental Results

First, execution time can improve when CP constructs are treated by external

propagation rather than encoding them eagerly. The latter can lead to huge en-

codings, in particular, when large domains are involved.

Second, the advantage of generating nogoods to describe the inferences of

constraint propagators is that CDNL can exploit constraint interdependencies for

directing search, and most importantly CONFLICTANALYSIS. The fact that clingcon

does not encode CP constructs into nogoods, by design, is likely to be the reason

for its limited success in our experiments, where clingcon is particularly ineffective

on quasigroup problems.

Third, experiments show that our approach, represented through inca, com-

bines the best of both worlds: It can avoid huge encodings via abstraction to exter-

nal propagation while retaining the ability to make the encoding explicit. It out-

performs the state-of-the-art in CASP solving on individual benchmark classes,

and is more robust over all benchmark instances.

On most benchmarks, lazy generation of infeasible ALL-DIFFERENT encodings

via external propagation has further increased performance, where incaDC im-

proves on clingo by one order of magnitude.

The Fourth Answer Set Programming Competition

In order to introduce our techniques to a competitive environment and increase

their visibility, we entered our CASP system inca into the fourth ASP competition14

(Alviano et al., 2013a). Participants were competing on a collection of benchmark

problems selected via a peer review process. Benchmarks stem from a variety

of domains, including real world applications, and two of our contributions: in-

stances from graceful graphs and connected maximum-density still life problems.

We have also submitted a package to the Model & Solve track of the competition.

The Model & Solve track was oriented towards developers of systems for declar-

ative problem solving to showcase their solvers on 15 problem domains. Our

submission package included our CASP system inca along with a CASP specifi-

cation and a solver setting for each benchmark. While the set of benchmarks was

known to the participants, all submissions were compared on a set of undisclosed

instances. Amongst others, the following benchmarks were considered:

Permutation Pattern Matching Given a permutation text and a permutation

pattern, the permutation pattern matching problem (PPM) is to determine the

14http://www.mat.unical.it/aspcomp2013/

197

http://www.mat.unical.it/aspcomp2013/

6. Constraint Answer Set Solving via Lazy Nogood Generation

existence of a sub-permutation in the text that has the same relative order as spec-

ified by the pattern.

Valves Location The valves location problem (Valve) consists of placing a given

number of valves in a water distribution network. The objective is, in case of dam-

age of a pipe, to minimise the disruption caused by isolating the affected sub-

network.

Graceful Graphs Recall, the graceful graph problem (GGP) is to determine the

existence of a graceful labelling of a graph.

Bottle Filling Given a rectangular grid, a placement of convex containers (e.g.,

bottles) on the grid that may hold liquid, and the sum of cells in any container

along each row and column that are filled with liquid. The bottle filling prob-

lem (Fill) is to determine which cells are filled, and which ones are empty, under

consideration of gravity.

Nomystery Given a graph with integer-labelled edges and a truck that can move

along its edges, load and unload packages at vertices. Each move consumes fuel

equal to the edge label. The task in nomystery (Nom) is to find a sequence of ac-

tions to move packages between vertices with a limited amount of fuel.

Ricochet Robots This board game is played on a grid with walls that separate

some adjacent cells. A set of robots with distinct colours is placed on predefined

cells. (A cell may hold at most one robot.) Each robot can move horizontally or

vertically in any direction, but does not stop until it encounters a wall or another

robot. The task is to find a sequence of actions to move a designated robot to some

target cell within a given number of moves. The ricochet robots (RiRo) benchmark

is further described in (Gebser et al., 2013a).

Crossing Minimisation A hierarchical graph is a type of graph layout in which

the vertices are organised in horizontal layers with the edges directed downwards.

Naturally, crossing of edges that connect vertices from the same two layers oc-

cur. The objective in the crossing minimisation problem (Cross) is to minimise the

number of crossings by re-arranging the vertices in each layer of a given hierarchi-

cal graph.

198

6.4. Experimental Results

Weighted-sequence The weighted-sequence problem (WSeq; Lierler et al., 2012)

is a variant of the problem of finding a minimal-cost join order in query optimisa-

tion. Given a set of vertices, where each vertex is associated with two costs (weight

and cardinality), the task is to find a permutation and a colouring of the vertices

such that the cost (according to a given function defined on colour, weight, and

cardinality of neighbouring vertices) is below or equal the given maximum.

Incremental Scheduling Motivated by industrial printing, the incremental sche-

duling problem (Sched; Balduccini, 2011) is an incremental version of the job

scheduling problem, where a schedule has to be updated w.r.t. the addition of jobs

and devices going offline.

Whilst the above problems are naturally modelled with CASP, the remaining prob-

lems in the Model & Solve track of the competition, i.e., connected maximum-

density still life, sokoban, solitaire, and strategic companies, do not benefit from

the increased modelling convenience at this stage, or are naturally solved using

polynomial algorithms, i.e., (polynomial) reachability and stable marriage.

Competing participants submitted packages that include ASP and CASP sys-

tems, and related solvers that extend logic programming to integrate higher-level

constructs. On above benchmarks, the potassco (Gebser et al., 2011c) team em-

ployed their ASP systems gringo and clasp (2.1.2), but did not opt to use their

CASP system clingcon. The ezcsp team, on the other hand, selected clingcon (2.0.3)

on weighted-sequence and incremental scheduling problems, and chose between

the ASP systems dlv, clingo (3.0.3), and clingof (0.4.3) for the remaining bench-

marks. The latter is a variant of clingo that supports non-Herbrand functions (Bal-

duccini, 2013), but it was only used on the nomystery benchmark. Observe that

ezcsp’s eponymous CASP system was not submitted to the competition. In con-

trast, the idp team contributed idp (3.1.4), their model expansion system for an

extension of classical logic (Wittocx et al., 2008). It implements lazy clause gener-

ation, a technique related to LNG (see de Cat et al., 2015), and handles CP con-

structs in aformentioned benchmarks, except for bottle filling, nomystery, and

ricochet robots. To complete the list of participants, the b-prolog (Zhou, 2012)

team’s system integrates dynamic programming, CP solving, and compilation to

SAT, whilst the enfragmo (Aavani et al., 2012) team committed to the translation-

based approach, transforming each benchmark’s instance into a SAT problem.

199

6. Constraint Answer Set Solving via Lazy Nogood Generation

Table 6.4: Results from the Fourth Answer Set Programming Competition.

System Total PPM Valve GGP Fill Nom RiRo Cross WSeq Sched
potassco 1126 (15) 98 58 84 95 51 79 79 100 63
inca 832 (13) 99 24 51 94 98 46 43 0 0
ezcsp 769 (14) 67 23 33 94 0 40 23 87 58
idp 534 (10) 96 0 35 64 78 0 19 0 6
b-prolog 284 (6) 100 16 43 N/A 100 12 13 0 0
enfragmo 66 (4) 24 N/A 3 33 0 N/A N/A 0 N/A

We have extracted the competition’s total results14 in points, with detailed re-

sults for some benchmarks in Table 6.4. The point system is explained in (Alviano

et al., 2013a). It considers run time and quality of a solution to each benchmark in-

stance, where at most 100 points could be achieved on each problem domain. An

incorrect output, e.g., due to an error in the model or the solver, was penalised with

no points for the entire benchmark. This is also reflected in Table 6.4 by a decre-

ment in the number of valid submissions in parenthesis (maximum is 15). Unfor-

tunately, our team was affected twice. First, a modelling error was too strict on the

lower bound of a variables’ domain in some instances of the weighted-sequence

problem, and second, a software bug in inca’s subsystem clingo triggered by some

instances of the incremental scheduling problem. (At closer inspection, the in-

stances that remained unaffected by either problem show inca competing with

the approaches of potassco and ezcsp, i.e., clasp and clingcon, respectively.) Still,

inca was placed ahead of the majority of the contestants, including all hybrid sys-

tems, winning second place.

It is difficult, if not impossible, however, to draw any meaningful conclusion

from the results of the competition. The reason is that the problem encodings

submitted with each system were not restricted to (syntactic adjustments of) a

common model, e.g., the ASP encoding provided by the organising committee

with each benchmark. This has encouraged participants to investigate and en-

code special- and corner cases of each problem domain as much as resources were

available to each contestant. As the potassco team has shown spectacularly, find-

ing a tailor-made encoding for a specific problem and algorithms can drastically

prune search, and provide an advantage even over algorithms that are more natu-

rally suited. While this is represents a remarkable achievement, for our purposes, a

fair comparison between systems must undoubtedly be based on a shared model.

That aside, there is no single contestant that performs best on every bench-

200

6.5. Related Work

mark, and overall, the approaches by potassco, inca, and ezcsp are most mature

w.r.t. the number of problem domains successfully tackled. This may be traced

back to clasp’s implementation of CDNL that is shared amonst their systems, in-

cluding clingo, clingcon, and inca.

6.5 Related Work

Related work on separating the conditions on the answer sets of a program in-

duced by sub-programs, or for this purpose, modules, is plentiful. Our theoreti-

cal underpinnings are founded on the modularity offered through the splitting set

theorem by Lifschitz and Turner (1994). Oikarinen and Janhunen (2006) proposed

the module theorem which strengthens the splitting set theorem by allowing neg-

ative recursions between modules. In turn, Oikarinen and Janhunen’s modules

slightly generalise programs with externals.

Example 6.10

Consider the program Π1 with externals over {a} and the program Π2 with

externals over {b}, where

Π1 =
{

a ← not b
}

andΠ2 =
{

b ← not a
}

.

The splitting set theorem does not allow for the join Π1 ∪Π2 as there exists

no splitting set separating the joint program into Π1 and Π2. In other words,

there is a recursive dependency involving atoms from both programs.

Without introducing the definitions needed to fully capture the join oper-

ation of modules, the module theorem, on the other hand, allows for the join

as there is no positive dependency between atoms fromΠ1 andΠ2.

When the module theorem is combined with the results from Gebser et al. (2007a),

i.e., the inferences from the completion and loop formulas of a module is captured

by nogoods, then the proofs of our Lemmas 6.1 and 6.4, and Theorem 6.6 from

Section 6.1 will follow straightforwardly. In our setting, however, there is no prac-

tical relevance of admitting negative recursion between modules as we represent

each constraint by a program with externals representing only the variables’s do-

mains. Any recursive dependency between constraints is always expressed in the

underlying constraint logic program (with externals representing the constraints).

Further abstraction, away from any particular syntax and semantics, was in-

vestigated by Järvisalo et al. (2009). The module theorem for disjunctive logic pro-

201

6. Constraint Answer Set Solving via Lazy Nogood Generation

grams is presented in (Janhunen et al., 2009).

Whilst the aforementioned work mostly focused on semantic aspects of modu-

larisation, including join operations between modules, there have also been quite

many substantial applications, e.g., in incremental (Gebser et al., 2008), reactive

(Gebser et al., 2011a), and time-decaying (Gebser et al., 2012a) answer set solving.

Our centre point here were low-level computational, nogood-based alterna-

tives for representing the conditions on the overall semantics (i.e., the answer sets)

induced by a module, including lazy generated nogoods by an external propaga-

tor. Of particular interest to us are their guarantees in terms of inference. For

instance, we can now characterise the implementation of FL inference by Gebser

et al. (2007a) as conflict-optimal external propagation of the loop nogoods of a

program. An extension that also considers BL inference, e.g., via our methods pre-

sented in Chapter 3, can achieve inference-optimal external propagation. A very

recent study conducted by Lierler and Truszczynski (2014) looked at building hy-

brid inference systems. Their methods, however, are too high-level to capture the

propagation within modules.

The direction of research in the field of ASP closest to our notion of external

propagation is HEX-programming (Eiter et al., 2009). It integrates ASP with exter-

nal sources of computation. Although they have been tightly incorporated with

conflict-driven answer set solving in a study by Eiter et al. (2012), external prop-

agators are treated as black-boxes that do not contribute any information about

their inference to the CONFLICTANALYSIS procedure. As a workaround, Eiter et al.

apply indirect measures to learn nogoods from observing the input-output rela-

tionship of external sources (uninformed learning), with few optimisations if the

relationship is known to be monotonic or functional (informed learning). This can

be regarded as a very limited form of LNG.

LNG is motivated by lazy clause generation (Ohrimenko et al., 2009), a SAT-

based approach to solving CSP where lazy clause generators encode the inference

of constraint propagation rules into clauses. Hence, exploiting the close relation-

ship between ASP and SAT, an obvious alternative to integrating CP via LNG with

answer set solving is the integration of ASP into a lazy clause generation CP sys-

tem. Aziz et al. (2013) made the effort to incorporate FL inference with their lazy

clause generation solver. As they point out, their system is close to what we have

implemented. However, LNG is fundamentally more general than lazy clause gen-

eration: Every external propagator can be made to simulate lazy clause generation

by syntactically representing every nogood by a clause. But, in principle, other

202

6.5. Related Work

ASP constructs are also possible, such as cardinality constraint rules, their gen-

eralisation to weight constraint rules (Niemelä et al., 1999), and aggregations and

other forms of set constructions (Pelov, 2004; Faber et al., 2011). Elkabani et al.

(2004) provide a generic framework which provides an elegant treatment of such

extensions to ASP, employing constraint propagators for their handling, though,

without support for conflict-driven techniques. A thorough approach to incorpo-

rating a native treatment of weight constraint rules within a conflict-driven frame-

work is presented in (Gebser et al., 2009b). As such constructs in turn represent

sets of nogoods, we can use them to implement staging mechanisms, e.g., by giv-

ing preference to the handling of native ASP constructs over external propagation.

Another difference to lazy clause generation is that the SAT-based approach also

disregards the negation of a constraint, i.e., the truth value of each constraint atom

is known a-priori. In our approach, every constraint c is reified via constraint

atoms [[c]] (or [[c]]). There is, however, no technical limitation to lazy clause gen-

eration that should impede on the integration of propagators for the negation of a

constraint.

A paradigm related to CASP that has very recently seen the integration of lazy

clause generation into a conflict-driven decision procedure is represented through

idp (de Cat et al., 2015, ; cf. Section 6.4). In their experimental analysis, de Cat et al.

report significant speed-ups over eager encodings. Although idp and inca imple-

ment similar techniques, their system does not seem to perform on a par with

ours, even on similar models, given the results from the fourth ASP competition.

In the field of CASP, the line of research closest to ours is the one of Gebser

et al. (2009c), that we have discussed repeatedly in previous chapters of this the-

sis. Following a hybrid approach to constraint answer set solving, Gebser et al.

incorporated a CP system into a conflict-driven ASP solver that interleaves search

and ASP inference with constraint propagation. In accordance with the study con-

ducted by Balduccini and Lierler (2013) on integration schemes, Gebser et al. fol-

low a clear-box approach. Though, their approach still treats the CP solver as a

black-box which does not contribute any information about its propagation, e.g.,

to the CONFLICTANALYSIS process. As a workaround, recent advances reported

in (Ostrowski and Schaub, 2012) apply indirect measures to learn from the under-

lying CSP by looking at the implication graph between constraint atoms. In con-

trast to Ostrowski and Schaub indirect method, our approach can make the infer-

ence of constraint propagation fully transparent. An implementation of Ostrowski

and Schaub’s technique is given through the CASP system clingcon, to which we

203

6. Constraint Answer Set Solving via Lazy Nogood Generation

have compared our approach in a range of experiments. Our analysis has shown

that clingcon competes with our solution on many benchmarks. On some exper-

iments, however, their indirect method of integrating information from external

propagation limits the exploration of constraint interdependencies. This is when

our approaches outperform clingcon.

Alternative computation models for ASP and CASP have also been proposed,

for instance, aimed at limiting the need for preliminary grounding (Lefèvre and

Nicolas, 2009; Dal Palù et al., 2009, e.g.), or based on alternative problem solving

paradigms (Liu et al., 2012, e.g.).

6.6 Conclusions

We presented a comprehensive extension for answer set solving to address the

scalability and efficiency of ASP, called LNG, a technique motivated by lazy clause

generation (Ohrimenko et al., 2009) for solving CSP. Founded on a nogood-based

characterisation of external propagation, LNG allows for representing encodings

that are otherwise impractical. This has been demonstrated with an ASP encoding

of ALL-DIFFERENT that has to consider a worst-case exponential number of Hall

sets. However, external propagators can make parts of the encoding explicit via

lazily generated nogoods whenever conflict or inference is triggered. Recording

these nogoods can avoid their re-computation, where deletion strategies may be

applied to control their amount.

We started with theoretical underpinnings of our approach, centred around

variants of the splitting set theorem (Lifschitz and Turner, 1994). They add a form

of modularity that allows a programmer to mix constructs and processing tech-

niques through eager and lazy representations. To characterise the effect of UP

on nogoods generated by external propagators, we have introduced the notions of

conflict- and inference optimality. A prominent example of conflict-optimal ex-

ternal propagation of a program’s loop nogoods was given by Gebser et al.’s imple-

mentation of FL inference. We have argued that it can be made inference-optimal

by considering the effects of BL inference.

We seamlessly applied our techniques to constraint answer set solving by em-

ploying constraint propagation algorithms as external propagators. The individ-

ual algorithms can be drawn from CP, a research area that is largely concerned

with efficient propagation in solving CSP. Whilst convenient at first glance, ex-

isting implementations of constraint propagation do not encode their inference

204

6.6. Conclusions

in form of lazy nogoods. This may represent a significant obstacle to LNG, as ev-

ery CP construct has to be addressed anew and made into an external propagator.

Where this limitation can be overcome, LNG represents a significant advance in

the state-of-the-art of integrating information from constraint propagation with

CDNL. In contrast to hybrid CASP systems that must employ indirect measures by

looking at inference graphs or input-output relationships of external sources, our

approach can make the inference of constraint propagation fully transparent.

Finally, we presented our key algorithm, called CDNL-LNG. It inherits many

advantages from translation-based constraint answer set solving. In particular,

constraint propagation is made transparent trough a joint nogood-based model,

sharing the representation of the variables’ domains between encodings. Hence,

CDNL-LNG maintains the outstanding feature, i.e., the exploration and exploita-

tion of constraint interdependencies during CONFLICTANALYSIS. This can improve

propagation between constraints and contribute to the advanced selection heuris-

tics. In contrast to our translation-based approach, CDNL-LNG requires schedul-

ing of external propagation, an area that may require further investigation, but can

improve efficiency.

An empirical analysis with our prototypical implementation has shown sig-

nificant computational impact over translation-based and hybrid CASP systems,

in particular when an eager encoding is large and CONFLICTANALYSIS can discover

useful constraint interdependencies. Some benchmarks also advocate a dedicated

treatment of infeasible encodings via external propagation. Given the experimen-

tal evidence provided in Ohrimenko et al. (2009); Schutt et al. (2009), we also ex-

pect computational advantage over the state-of-the-art in CP systems, but leave

further empirical study to future work.

Another open question is when to generate lazy nogoods. Recall that external

propagators generate their inference whenever pruning is done. An interesting al-

ternative might be to enforce the result of a propagator without requiring the unit

nogood as evidence. Instead, each propagator maintains a propagation stack that

stores enough data to reconstruct its state whenever the nogood is explicitly re-

quested by the ASP solver, e.g., within CONFLICTANALYSIS. There is some promis-

ing experimental evidence for the viability of this approach (Gent et al., 2010).

Left open to future work is also a study on exploiting LNG for implementing

staging mechanisms, e.g., the lazy decomposition of an external propagator into

simpler ones. This may lead to further computational impact.

Finally, given that eager and lazy encodings can be used interchangeably and

205

6. Constraint Answer Set Solving via Lazy Nogood Generation

selected for each CP construct in the CASP encoding anew, an open question is

how to automate this selection. A starting point for developing selection criteria

might be a constraint’s activity during the solving process (cf. Abío et al., 2013).

206

Chapter 7

Conclusion

This thesis contributed two alternative approaches to constraint answer set solv-

ing. For one, we introduced a translation-based approach, i.e., decomposing CASP

into ASP. We laid detailed theoretical foundations in Chapter 4, where we showed

how the problem of computing the constraint answer sets of a constraint program

can then be reduced to computing the answer sets of a single, joint ASP encod-

ing that includes an ASP representation of each finite domain variable and con-

straint that occurs in the original program. The reduction is facilitated by exploit-

ing the splitting set theorem (Lifschitz and Turner, 1994). To our knowledge, this

is the theorem’s first significant application. Then, we presented various generic

encodings of constraints based on the value, bound, range, or mixed representa-

tion of the variables’ domains, and investigated the level of local consistency ASP

inference can maintain. In Chapter 5, we proceeded with specialised encodings

for some important global constraints, including ALL-DIFFERENT, GRAMMAR and

related constraints, and REACHABILITY. Significant in our translation-based ap-

proach to constraint answer set solving are the following:

– Our ASP encodings are straightforward and easy to maintain, avoiding the

need to integrating with additional specialised algorithms for a new con-

straint.

– By translation into ASP, the state of all constraint propagators is made trans-

parent via (assignments to) atoms. Any ASP solver can use these in its ad-

vanced search heuristics, i.e., without need for programming search. More-

over, no scheduling is required as all constraints are always propagated at

the same time.

207

7. Conclusion

– As our ASP encodings are formulated as preprocessing, any existing ASP sys-

tems can be made a CASP system without changing their source code. This

allows for programmers to select the solver that best fit their needs.

– In particular, our approach seamlessly integrates with CDNL. Its CONFLICT-

ANALYSIS can exploit constraint interdependencies. This can improve prop-

agation between constraints and further contribute to search heuristics.

– We showed that in many cases, our ASP encodings achieve a level of local

consistency equal to specialised algorithms, with a similar asymptotic run

time complexity.

– Because of the flexibility of our approach and the advanced search methods

available to us, however, we can also relax the encodings which makes our

encodings even smaller and easier to maintain.

To our knowledge, previous work on modelling with ASP was not concerned with

the propagation strength of encodings. In this regard, we made a first significant

contribution to the field of ASP. In particular, the effect of unfounded set infer-

ence on the folklore ASP encoding of REACHABILITY was not understood. We here

showed that the combination of UP, FL, BL, and LD inference maintains domain

consistency of REACHABILITY. Whilst efficient implementations of UP and FL ex-

ist, the best known technique to compute WFJ was a combination of failed-literal-

detection and FL (cf. Gebser and Schaub, 2013), having quadratic costs in size of

the program. In Chapter 3, we devised a method that approximates the conse-

quences of WFJ based on support flowgraphs, our novel graph-representation of

programs written in ASP. We showed that the problem of finding all dominators

in such graph can be used to approximate WFJ. Our techniques gave rise to new

forms of unfounded set inference, called WFD and LD, which can lead to addi-

tional pruning. The results contributed in this thesis are significant for the follow-

ing reasons:

– In contrast to the intuition that the inference in existing ASP systems, i.e.,

WFN and UP, naturally handles REACHABILITY, we showed that even some

restricted variants of REACHABILITY cannot be efficiently propagated by a

combination of UP and WFN.

208

– This gap can be closed with BL and LD, establishing practical relevance for

these forms of inference. Yet, because of their quadratic run time complex-

ity, BL and LD are currently not implemented by any existing ASP solver.

– The effects of WFJ and WFD, and BL and LD in particular, can be approxi-

mated in linear time, based on our reduction to the problem of finding all

dominators in a flowgraph.

– Our approximation can be used to simulate the effects of BL and LD if the

underlying program is component-unary. It even simulates the effects of

WFJ and WFD if the program is unary. An important member from the class

of component-unary programs is REACHABILITY. In general, any program

can become (component-) unary as truth values are assigned during search.

– For above classes of programs, our method improves on the run time com-

plexity of the best known method for computing consequences from BL

and WFJ by a linear factor.

– Our techniques can be used to maintain domain consistency of REACHABIL-

ITY conditions.

This advocates further research into implementing propagators for unfounded

sets, as they can provide highly useful extensions to ASP solving.

The other alternative approach to constraint answer set solving contributed

in this thesis is centred around the integration of LNG with ASP solving. As de-

tailed in Chapter 6, the idea is to incorporate external propagators to represent

parts of the encoding implicitly, rather than generating it a-priori. However, exter-

nal propagators can make an encoding of their inference explicit on demand. We

laid their theoretical foundations based on variants of Lifschitz and Turner’s split-

ting set theorem, and devised notions to characterise their propagation strength.

We then developed CDNL-LNG, our conflict-driven algorithm for the problem of

computing a constraint answer set. Beyond a CDNL-like decision procedure, it

applies LNG via external propagation. The results contributed in this thesis are

significant for the following reasons:

– LNG allows for representing encodings that are otherwise impractical. For

instance, the best known ASP encoding of ALL-DIFFERENT that achieves do-

main consistency exploits a worst-case exponential number of Hall sets.

209

7. Conclusion

However, efficient domain consistency propagators for ALL-DIFFERENT ex-

ist (Régin, 1994). Constraint propagators are good candidates for efficient

external propagators because they are well-studied.

– LNG integrates seamlessly with CDNL, i.e., the state-of-the-art in ASP solv-

ing. This includes nogood learning and backjumping.

– CDNL-LNG combines the key advantages of hybrid and translation-based

approaches to CASP solving, that are, the use of efficient (external) propa-

gators and the integration with CONFLICTANALYSIS.

– The techniques from LNG can be carried over to other conditions that are

frequently expressed in ASP. In fact, LNG generalises existing approaches

for the lazy encoding of consequences from FL (Gebser et al., 2007a) and

weight constraints (Gebser et al., 2009b).

– It is easy to build notions for characterising the propagation strength of ex-

ternal propagators. For instance, Gebser et al.’s implementation of FL infer-

ence can be viewed as conflict-optimal external propagation of a program’s

loop nogoods, i.e., pruning more values than the approaches taken by Lin

and Zhao (2002) and Giunchiglia et al. (2006). Though, Gebser et al.’s prop-

agator is not inference-optimal.

The outstanding key advantage of both our approaches to constraint answer set

solving is that they integrate seamlessly with CONFLICTANALYSIS. This allows for

the exploitation constraint interdependencies, improving propagation between

constraints and contributing to search heuristics. It also distinguishes our work

from hybrid approaches to CASP solving which delegate the tasks of handling fi-

nite domain variables and the propagation of constraints to CP systems, and apply

indirect measures to learn from the interdependencies between constraints.

– The success of our methodology is demonstrated by our prototypical CASP

system inca. In 2013, it has successfully participated in a competition, fin-

ishing as first runner-up and outperforming hybrid CASP systems.

The challenge inherent with our techniques, however, is to define a compact rep-

resentation of each constraint anew, a task that is more difficult in the translation-

based approach without sacrificing propagation strength. In particular, the latter

may not always scale due to an increase in space. Given this, hybrid CASP solving

210

is also a viable approach. In fact, we have to accept the idea that a mix of tech-

niques is likely better than any single approach. The holy grail ought to be a CASP

system which allows the programmer to choose a setting that best fits the problem

domain.

211

Acronyms

ASP answer set programming

BL backward loop

CASP constraint answer set programming

CDNL conflict-driven nogood learning

CFG context-free grammar

CP constraint programming

CSP constraint satisfaction problem

CYK Cocke-Younger-Kasami

DFA deterministic finite automaton

FL forward loop

LD loop domination

LNG lazy nogood generation

SAT Boolean satisfiability

SCC strongly connected component

SMT satisfiability modulo theories

UP unit propagation

WFD well-founded domination

WFJ well-founded justification

WFN well-founded negation

213

Bibliography

Bibliography

A. Aavani, X. Wu, S. Tasharrofi, E. Ternovska, and D. G. Mitchell. Enfragmo: A

system for modelling and solving search problems with logic. In Proceedings of

LPAR’12, pages 15–22. Springer, 2012.

I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and P. J. Stuckey. To

encode or to propagate? The best choice for each constraint in SAT. In Proceed-

ings of CP’13, pages 97–106. Springer, 2013.

M. Alviano, F. Calimeri, G. Charwat, M. Dao-Tran, C. Dodaro, G. Ianni, T. Kren-

nwallner, M. Kronegger, J. Oetsch, and A. Pfandler. The fourth answer set pro-

gramming competition: Preliminary report. In Proceedings of LPNMR’13, pages

42–53. Springer, 2013a.

M. Alviano, C. Dodaro, W. Faber, N. Leone, and F. Ricca. WASP: A native ASP

solver based on constraint learning. In Proceedings of LPNMR’13, pages 54–66.

Springer, 2013b.

C. Anger, M. Gebser, and T. Schaub. Approaching the core of unfounded sets. In

Proceedings of NMR’06, pages 58–66, 2006.

K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge.

In Foundations of Deductive Databases and Logic Programming. Morgan Kauf-

mann, 1988.

R. A. Aziz, P. J. Stuckey, and Z. Somogyi. Inductive definitions in constraint pro-

gramming. In Proceedings of ACSC’13, pages 41–50. Australian Computer Soci-

ety, 2013.

F. Bacchus. GAC via unit propagation. In Procedings of CP’07, pages 133–147.

Springer, 2007.

215

Bibliography

M. Balduccini. Representing constraint satisfaction problems in answer set pro-

gramming. In ICLP Workshop ASPOCP’09, 2009.

M. Balduccini. Industrial-size scheduling with ASP+CP. In Proceedings of LP-

NMR’11, pages 284–296. Springer, 2011.

M. Balduccini. ASP with non-Herbrand partial functions: a language and system

for practical use. Theory and Practice of Logic Programming, 13(4-5):547–561,

2013.

M. Balduccini and Y. Lierler. Practical and methodological aspects of the use of

cutting-edge asp tools. In Proceedings of PADL’12, pages 78–92. Springer, 2012.

M. Balduccini and Y. Lierler. Hybrid automated reasoning tools: from black-box

to clear-box integration. In ICLP Workshop ASPOCP’13, 2013.

M. Banbara, M. Gebser, K. Inoue, T. Schaub, T. Soh, N. Tamura, and M. Weise.

Aspartame: Solving constraint satisfaction problems with answer set program-

ming. In ICLP Workshop ASPOCP’13, 2013.

C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003.

C. Baral and M. Gelfond. Logic programming and knowledge representation. Jour-

nal of Logic Programming, 19/20:73–148, 1994.

S. Baselice, P. Bonatti, and M. Gelfond. Towards an integration of answer set and

constraint solving. In Proceedings of ICLP’05, pages 52–66. Springer, 2005.

R. Bayardo and R. Schrag. Using CSP look-back techniques to solve real-world SAT

instances. In Proceedings of AAAI’97, pages 203–208. AAAI Press/The MIT Press,

1997.

G. Benedek. Hidato: 200 Pure Logic Puzzles. Andrews McMeel Publishing, 2008.

C. Bessière, E. Hebrard, and T. Walsh. Local consistencies in SAT. In Proceedings

of SAT’03, pages 299–314. Springer, 2003.

C. Bessière, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh. Decompo-

sitions of all different, global cardinality and related constraints. In Proceedings

of IJCAI’09, pages 419–424. AAAI Press/The MIT Press, 2009a.

216

Bibliography

C. Bessière, G. Katsirelos, N. Narodytska, and T. Walsh. Circuit complexity and

decompositions of global constraints. In Proceedings of IJCAI’09, pages 412–418,

2009b.

C. Bessière, E. Hebrard, G. Katsirelos, and T. Walsh. Reasoning about connectivity

constraints. In Proceedings of IJCAI’15, page To appear. IJCAI/AAAI Press, 2015.

A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiabil-

ity. IOS Press, 2009.

J. Bomanson and T. Janhunen. Normalizing cardinality rules using merging and

sorting constructions. In Proceedings of LPNMR’13, pages 187–199. Springer,

2013.

G. Brewka, I. Niemelä, and M. Truszczyński. Nonmonotonic reasoning. In V. Lif-

schitz, F. van Harmelen, and B. Porter, editors, Handbook of Knowledge Repre-

sentation, pages 239–284. Elsevier, 2008.

G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance.

Communications of the ACM, 54(12):92–103, 2011.

F. Calimeri, W. Faber, N. Leone, and G. Pfeifer. Pruning operators for answer set

programming systems. In Proceedings of NMR’02, pages 200–209, 2002.

F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber,

O. Febbraro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. C.

Santoro, M. Sirianni, G. Terracina, and P. Veltri. The third answer set program-

ming competition: Preliminary report of the system competition track. In Pro-

ceedings of LPNMR’11, pages 388–403. Springer, 2011.

M. Celik, H. Erdogan, F. Tahaoglu, T. Uras, and E. Erdem. Comparing ASP and CP

on four grid puzzles. In AIIA Workshop RCRA’09, 2009.

P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are.

In Proceedings of IJCAI’91, pages 331–340. Morgan Kaufmann, 1991.

X. Chen, J. Ji, and F. Lin. Computing loops with at most one external support rule.

ACM Transactions on Computational Logic, 14(1):3:1–3:34, 2013.

N. Chomsky. Three models for the description of language. IRE Transactions on

Information Theory, 2:113–124, 1956.

217

Bibliography

K. Clark. Negation as failure. In Logic and Data Bases, pages 293–322. Plenum

Press, 1978.

E. Coban, E. Erdem, and F. Türe. Comparing ASP, CP, ILP on two challenging ap-

plications: Wire routing and haplotype inference. In Proceedings of LaSh’08,

2008.

M.-C. Côté, B. Gendron, C.-G. Quimper, and L.-M. Rousseau. Formal languages

for integer programming modeling of shift scheduling problems. Constraints,

16:54–76, 2011.

A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. Answer set programming with

constraints using lazy grounding. In Proceedings of ICLP’09, pages 115–129.

Springer, 2009.

B. de Cat, M. Denecker, M. Bruynooghe, and P. J. Stuckey. Lazy model expansion:

Interleaving grounding with search. Journal of Artificial Intelligence Research,

52:235–286, 2015.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczyński. The second

answer set programming competition. In Proceedings of LPNMR’09, pages 637–

654, 2009.

M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The

constraint logic programming language CHIP. In Proceedings of FGCS’88, pages

693–702, 1988.

G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introducing a graph computation

domain in constraint programming. In Proceedings of CP’05, pages 211–225.

Springer, 2005.

A. Dovier, A. Formisano, and E. Pontelli. A comparison of CLP(FD) and ASP

solutions to NP-complete problems. In Proceedings of ICLP’05, pages 67–82.

Springer, 2005.

W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability

of propositional Horn formulae. Logic Programming, 1(3):267–284, 1984.

C. Drescher. Symmetry breaking for answer set programming. Master’s thesis,

Technische Universität Wien, 2010.

218

Bibliography

N. Eén and N. Sörensson. Translating pseudo-Boolean constraints into SAT. Jour-

nal on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Transactions on

Database Systems, 22(3):364–418, 1997.

T. Eiter, G. Brewka, M. Dao-Tran, M. Fink, G. Ianni, and T. Krennwallner. Com-

bining nonmonotonic knowledge bases with external sources. In Proceedings of

FroCoS’09, pages 18–42. Springer, 2009.

T. Eiter, M. Fink, T. Krennwallner, and C. Redl. Conflict-driven ASP solving with

external sources. Theory and Practice of Logic Programming, 12(4-5):659–679,

2012.

I. Elkabani, E. Pontelli, and T. Son. Smodels with CLP and its applications: A simple

and effective approach to aggregates in ASP. In Proceedings of ICLP’04, pages

73–89. Springer, 2004.

E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic Pro-

gramming, 3(4-5):499–518, 2003.

W. Faber, G. Pfeifer, and N. Leone. Semantics and complexity of recursive aggre-

gates in answer set programming. Artificial Intelligence, 175(1):278–298, 2011.

F. Fages. Consistency of Clark’s completion and the existence of stable models.

Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

M. Fujita, J. K. Slaney, and F. Bennett. Automatic generation of some results in

finite algebra. In Proceedings of IJCAI’93, pages 52–59. Morgan Kaufmann Pub-

lishers, 1993.

M. Gebser. Proof theory and algorithms for answer set programming. PhD thesis,

Universität Potsdam, 2011.

M. Gebser and T. Schaub. Tableau calculi for logic programs under answer set

semantics. ACM Transactions on Computational Logic, 14(2):15:1–15:40, 2013.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set

solving. In Proceedings of IJCAI’07, pages 386–392. AAAI Press/MIT Press, 2007a.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven

answer set solver. In Proceedings of LPNMR’07, pages 260–265. Springer, 2007b.

219

Bibliography

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set

enumeration. In Proceedings of LPNMR’07, pages 136–148. Springer, 2007c.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. En-

gineering an incremental ASP solver. In Proceedings of ICLP’08, pages 190–205.

Springer, 2008.

M. Gebser, H. Hinrichs, T. Schaub, and S. Thiele. xpanda: A (simple) preprocessor

for adding multi-valued propositions to ASP. In Proceedings of WLP’09, 2009a.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. On the implementation of

weight constraint rules in conflict-driven ASP solvers. In Proceedings of ICLP’09,

pages 250–264. Springer, 2009b.

M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In Pro-

ceedings of ICLP’09, pages 235–249. Springer, 2009c.

M. Gebser, T. Grote, R. Kaminski, and T. Schaub. Reactive answer set program-

ming. In Proceedings of LPNMR’11, pages 54–66. Springer, 2011a.

M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3. In

Proceedings of LPNMR’11, pages 345–351. Springer, 2011b.

M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M. T. Schnei-

der. Potassco: The Potsdam answer set solving collection. AI Communications,

24(2):107–124, 2011c.

M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and T. Schaub. Stream

reasoning with answer set programming: Preliminary report. In Proceedings of

KR’12, pages 613–617. AAAI Press, 2012a.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Prac-

tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan

and Claypool Publishers, 2012b.

M. Gebser, H. Jost, R. Kaminski, P. Obermeier, O. Sabuncu, T. Schaub, and

M. Schneider. Ricochet robots: A transverse ASP benchmark. In Proceedings

of LPNMR’13, pages 348–360. Springer, 2013a.

M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, and P. Wanko. Domain-

specific heuristics in answer set programming. In Proceedings of AAAI’13, pages

350–356. AAAI Press, 2013b.

220

Bibliography

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

In Proceedings of ICLP’88, pages 1070–1080. The MIT Press, 1988.

I. P. Gent. The fundamental conjecture of reformulation. In CP Workshop For-

mul’01, 2001.

I. P. Gent. Arc consistency in SAT. In Proceedings of ECAI’02, pages 121–125. IOS

Press, 2002.

I. P. Gent. Optimal implementation of watched literals and more general tech-

niques. Journal of Artificial Intelligence Research, 48:231–251, 2013.

I. P. Gent and T. Walsh. CSPLIB: A benchmark library for constraints. In Proceedings

of CP’99, pages 480–481. Springer, 1999.

I. P. Gent, I. Miguel, and P. Nightingale. Generalised arc consistency for the all-

different constraint: An empirical survey. Artificial Intelligence, 172(18):1973–

2000, 2008.

I. P. Gent, I. Miguel, and N. C. A. Moore. Lazy explanations for constraint propaga-

tors. In Proceedings of PADL’10, pages 217–233. Springer, 2010.

L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Proceedings of

SODA’04, pages 869–878. SIAM, 2004.

E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on

propositional satisfiability. Journal of Automated Reasoning, 36(4):345–377,

2006.

E. I. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proceed-

ings of DATE’02, pages 142–149. IEEE Computer Society, 2002.

C. P. Gomes and B. Selman. Problem structure in the presence of perturbations. In

Proceedings of AAAI’97, pages 221–226. AAAI Press/The MIT Press, 1997.

P. Hall. On representatives of subsets. Journal of the London Mathematical Society,

10:26–30, 1935.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.

T. Janhunen. Comparing the expressive powers of some syntactically restricted

classes of logic programs. In Proceedings of CL’00, pages 852–866. Springer, 2000.

221

Bibliography

T. Janhunen. Representing normal programs with clauses. In Proceedings of

ECAI’04, pages 358–362. IOS Press, 2004.

T. Janhunen. Some (in)translatability results for normal logic programs and propo-

sitional theories. Journal of Applied Non-Classical Logics, 16(1-2):35–86, 2006.

T. Janhunen and I. Niemelä. Compact translations of non-disjunctive answer

set programs to propositional clauses. In Proceedings of Logic Program-

ming, Knowledge Representation, and Nonmonotonic Reasoning, pages 111–

130. Springer, 2011.

T. Janhunen, E. Oikarinen, H. Tompits, and S. Woltran. Modularity aspects of dis-

junctive stable models. Journal of Artificial Intelligence Research, 35:813–857,

2009.

M. Järvisalo, E. Oikarinen, T. Janhunen, and I. Niemelä. A module-based frame-

work for multi-language constraint modeling. In Proceedings of LPNMR’09,

pages 155–169. Springer, 2009.

G. Katsirelos, S. Maneth, N. Narodytska, and T. Walsh. Restricted global grammar

constraints. In Proceedings of CP’09, pages 501–508. Springer, 2009a.

G. Katsirelos, N. Narodytska, and T. Walsh. Reformulating global grammar con-

straints. In Proceedings of CPAIOR’09, pages 132–147. Springer, 2009b.

M. Leconte. A bounds-based reduction scheme for constraints of difference. In

CP Workshop CONSTRAINT’95, 1996.

J. Lee. A model-theoretic counterpart of loop formulas. In Proceedings of IJCAI’05,

pages 503–508. Professional Book Center, 2005.

C. Lefèvre and P. Nicolas. The first version of a new ASP solver : ASPeRiX. In

Proceedings of LPNMR’09, pages 522–527. Springer, 2009.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The

dlv system for knowledge representation and reasoning. ACM Transactions on

Computational Logic, 7(3):499–562, 2006.

Y. Lierler. Abstract answer set solvers with backjumping and learning. Theory and

Practice of Logic Programming, 11(2-3):135–169, 2011.

222

Bibliography

Y. Lierler. Relating constraint answer set programming languages and algorithms.

Artificial Intelligence, 207:1–22, 2014.

Y. Lierler and M. Truszczynski. Abstract modular inference systems and solvers. In

Proceedings of PADL’14, pages 49–64. Springer, 2014.

Y. Lierler, S. Smith, M. Truszczynski, and A. Westlund. Weighted-sequence prob-

lem: ASP vs CASP and declarative vs problem-oriented solving. In Proceedings

of PADL’12, pages 63–77. Springer, 2012.

V. Lifschitz. Answer set planning. In Proceedings of ICLP’99, pages 23–37, 1999.

V. Lifschitz. What is answer set programming? In Proceedings of AAAI’08, pages

1594–1597. AAAI Press, 2008a.

V. Lifschitz. Twelve definitions of a stable model. In Proceedings of ICLP’08, pages

37–51. Springer, 2008b.

V. Lifschitz and A. Razborov. Why are there so many loop formulas? ACM Transac-

tions on Computational Logic, 7(2):261–268, 2006.

V. Lifschitz and H. Turner. Splitting a logic program. In Proceedings of ICLP’94,

pages 23–37, 1994.

F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT

solvers. In Proceedings of AAAI’02, pages 112–118. AAAI Press/MIT Press, 2002.

G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed integer

programming. In Proceedings of KR’12, pages 32–42. AAAI Press, 2012.

T. Mancini, D. Micaletto, F. Patrizi, and M. Cadoli. Evaluating ASP and commercial

solvers on the CSPLib. Constraints, 13(4):407–436, 2008.

M. Maratea, F. Ricca, W. Faber, and N. Leone. Look-back techniques and heuristics

in DLV: Implementation, evaluation, and comparison to QBF solvers. Journal of

Algorithms, 63(1-3):70–89, 2008.

V. M. Marek and M. Truszczyński. Stable models and an alternative logic program-

ming paradigm. In K.R. Apt, V.W. Marek, M. Truszczyński, and D.S. Warren, ed-

itors, The Logic Programming Paradigm: a 25-year perspective, pages 375–398.

Springer, 1999.

223

Bibliography

J. P. Marques-Silva and K A. Sakallah. GRASP: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

V. Mellarkod and M. Gelfond. Integrating answer set reasoning with constraint

solving techniques. In Proceedings of FLOPS’08, pages 15–31. Springer, 2008.

V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating answer set programming

and constraint logic programming. Annals of Mathematics and Artificial Intelli-

gence, 53(1-4):251–287, 2008.

D. Mitchell. A SAT solver primer. Bulletin of the European Association for Theoret-

ical Computer Science, 85:112–133, 2005.

U. Montanari. Networks of constraints: Fundamental properties and applications

to picture processing. Information Sciences, 7:95–132, 1974.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

efficient SAT solver. In Proceedings of DAC’01, pages 530–535. ACM, 2001.

I. Niemelä. Logic programs with stable model semantics as a constraint program-

ming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–

273, 1999.

I. Niemelä. Stable models and difference logic. Annals of Mathematics and Artifi-

cial Intelligence, 53(1-4):313–329, 2008.

I. Niemelä, P. Simons, and T. Soininen. Stable model semantics of weight con-

straint rules. In Proceedings of NMR’99, pages 317–333. Springer, 1999.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories:

From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).

Journal of the ACM, 53(6):937–977, 2006.

O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation via lazy clause generation.

Constraints, 14(3):357–391, 2009.

E. Oikarinen and T. Janhunen. Modular equivalence for normal logic programs. In

Proceedings of ECAI’06, pages 412–416. IOS Press, 2006.

M. Ostrowski and T. Schaub. ASP modulo CSP: The clingcon system. Theory and

Practice of Logic Programming, 12(4-5):485–503, 2012.

224

Bibliography

N. Pelov. Semantics of logic programs with aggregates. PhD thesis, Department of

Computer Science, K.U. Leuven, Belgium, April 2004.

G. Pesant. A regular language membership constraint for finite sequences of vari-

ables. In Proceedings of CP’04, pages 482–495. Springer, 2004.

C.-G. Quimper and T. Walsh. Global grammar constraints. In Proceedings of CP’06,

pages 751–755. Springer, 2006.

C.-G. Quimper and T. Walsh. Decomposing global grammar constraints. In Pro-

ceedings of CP’07, pages 590–604. Springer, 2007.

C.-G. Quimper and T. Walsh. Decompositions of grammar constraints. In Proceed-

ings of AAAI’08, pages 1567–1570. AAAI Press, 2008.

J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceed-

ings of AAAI’94, pages 362–367, 1994.

F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.

Elsevier, 2006.

A. Schutt, T. Feydy, P. J. Stuckey, and M. Wallace. Why cumulative decomposition is

not as bad as it sounds. In Proceedings of CP’09, pages 746–761. Springer, 2009.

M. Sellmann. The theory of grammar constraints. In Proceedings of CP’06, pages

530–544. Springer, 2006.

P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable

model semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality con-

straints. In Proceedings of CP’05, pages 827–831. Springer, 2005.

V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. Incremental computation of dominator

trees. ACM Transactions on Programming Languages and Systems, 19(2):239–

252, 1997.

N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP into

SAT. In Proceedings of CP’06, pages 590–603. Springer, 2006.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146–160, 1972.

225

Bibliography

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general

logic programs. Journal of the ACM, 38(3):620–650, 1991.

P. Van Hentenryck, V. A. Saraswat, and Y. Deville. Design, implementation, and

evaluation of the constraint language cc(FD). Logic Programming, 37(1-3):139–

164, 1995.

W. J. van Hoeve. The alldifferent constraint: A survey. Computing Research Repos-

itory, cs.PL/0105015, 2001.

T. Walsh. SAT v CSP. In Proceedings of CP’00, pages 441–456. Springer, 2000.

S. Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11–12, 1962.

J. Wittocx, M. Mariën, and M. Denecker. The IDP system: A model expansion

system for an extension of classical logic. In Proceedings of LASH’08, pages 153–

165. ACCO, 2008.

J. Wu and H. Li. On calculating connected dominating set for efficient routing in

ad hoc wireless networks. In Proceedings of DIALM ’99, pages 7–14. ACM Press,

1999.

J.-H. You and G. Hou. Arc-consistency + unit propagation = lookahead. In Pro-

ceedings of ICLP’04, pages 314–328. Springer, 2004.

D. H. Younger. Recognition and parsing of context-free languages in time n3. In-

formation and Control, 10(2):372–375, 1967.

L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-

based checker: Practical implementations and other applications. In Proceed-

ings DATE’03, pages 10880–10885. IEEE Computer Society, 2003.

L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven

learning in Boolean satisfiability solver. In Proceedings of ICCAD’01, pages 279–

285, 2001.

N.-F. Zhou. The language features and architecture of B-Prolog. Theory and Prac-

tice of Logic Programming, 12(1-2):189–218, 2012.

226

	Title Page - Conflict-driven constraint answer set solving
	Abstract
	Acknowledgements
	Table of contents

	Chapter 1 - Introduction
	Chapter 2 - Background
	Chapter 3 - Well-founded justification and well-founded domination
	Chapter 4 - Translation-based constraint answer set solving
	Chapter 5 - Encoding global constraints with answer set programming
	Chapter 6 - Constraint answer set solving via lazy nogood generation
	Chapter 7 - Conclusion
	Acronyms
	Bibliography

