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Abstract
Arti�cial neural networks have been widely used for machine learning and optimiza-

tion. A neuro ensemble is a collection of neural networks that works cooperatively on a problem.
In the literature, it has been shown that by combining several neural networks, the generalization
of the overall system could be enhanced over the separate generalization ability of the individu-
als. Evolutionary computation can be used to search for a suitable architecture and weights for
neural networks. When evolutionary computation is used to evolve a neuro ensemble, it is usually
known as evolutionary neuro ensemble

In most real-world problems, we either know little about these problems or the prob-
lems are too complex to have a clear vision on how to decompose them by hand. Thus, it is
usually desirable to have a method to automatically decompose a complex problem into a set of
overlapping or non�overlapping sub�problems and assign one or more specialists (i.e. experts,
learning machines) to each of these sub�problems.

An important feature of neuro ensemble is automatic problem decomposition. Some
neuro ensemble methods are able to generate networks, where each individual network is spe-
cialized on a unique sub�task such as mapping a subspace of the feature space. In real world
problems, this is usually an important feature for a number of reasons including: (1) it provides
an understanding of the decomposition nature of a problem; (2) if a problem changes, one can
replace the network associated with the sub-space where the change occurs without affecting the
overall ensemble; (3) if one network fails, the rest of the ensemble can still function in their sub�
spaces; (4) if one learn the structure of one problem, it can potentially be transferred to other
similar problems.

In this thesis, I focus on classi�cation problems and present a systematic study of a
novel evolutionary neuro ensemble approach which I call cooperative coevolutionary mixture of
experts (CCME). Cooperative coevolution (CC) is a branch of evolutionary computation where
individuals in different populations cooperate to solve a problem and their �tness function is
calculated based on their reciprocal interaction. The mixture of expert model (ME) is a neuro
ensemble approach which can generate networks that are specialized on different sub�spaces in
the feature space. By combining CC and ME, I have a powerful framework whereby it is able to
automatically form the experts and train each of them. I show that the CCME method produces
competitive results in terms of generalization ability without increasing the computational cost
when compared to traditional training approaches.

I also propose two different mechanisms for visualizing the resultant decomposition
in high-dimensional feature spaces. The �rst mechanism is a simple one where data are grouped
based on the specialization of each expert and a color�map of the data records is visualized. The
second mechanism relies on principal component analysis to project the feature space onto lower
dimensions, whereby decision boundaries generated by each expert are visualized through convex
approximations.

I also investigate the regularization effect of learning by forgetting on the proposed
CCME. I show that learning by forgetting helps CCME to generate neuro ensembles of low struc-
tural complexity while maintaining their generalization abilities.

Overall, the thesis presents an evolutionary neuro ensemble method whereby (1) the
generated ensemble generalizes well; (2) it is able to automatically decompose the classi�cation
problem; and (3) it generates networks with small architectures.
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Chapter 1

Introduction

Arti�cial Neural Networks (ANNs) have been widely studied for their ability

to correctly learn the true distribution of the data from a sample. This ability is called

generalization. Evolutionary Computation (EC), a powerful tool for global optimization,

has been quite successful in training ANNs. As described in the prominent review of

Yao (Yao 1999), evolutionary methods can be applied at different levels of the ANN,

notably the architecture and connection weights. When EC is used for training ANNs,

the process is called Evolutionary ANNs (EANNs).

Most of the work in the ANN literature concentrates on �nding a single net-

work. However, a single network found using the training set alone may not be the best

network on the test set (i.e. it may not generalize well). The network can either over�

�t the data, or be undertrained on it. It has been found that combining several neural

networks, can enhance the generalization of the whole system over the separate general-

ization ability of the individuals (Abbass 2003a; Abbass 2003b; Jimenez and Walsh 1998;

Liu and Yao 1997; Liu and Yao 1999; Liu, Yao, and Higuchi 2000; Rosen 1996; Sharkey

1998; Tumer and Ghosh 1996; Ueda and Nakano 1996; Yao and Liu 1996; Yao and Liu

1997; Yao and Liu 1998a). Ensembles of neural networks are called neuro ensembles.

One important application of an ensemble of ANNs is in automatic problem

decomposition. Imagine a complex problem, where instead of using a single ANN to

2
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solve it, an ensemble is used in such a way that each of its individuals is specialized on

a different aspect of the problem. For example, each individual might specialize on a

different region of the input space. Imagine further, that a mechanism to combine these

specialists' opinions is provided. Such an ensemble could potentially solve a complex

problem with higher accuracy than a single network alone, because the subproblems

might be simple enough for the individual ANNs to learn and specialize well.

This thesis is about neuro ensembles. I am interested in understanding the

mechanisms underlying neuro ensembles. These include the role of diversity on the en-

semble, the bene�ts of cooperative coevolution of the components of neuro ensembles,

the effects of regularization on neuro ensembles and the role of neuro ensembles in auto-

matic problem decomposition.

Although the thesis focuses on neuro ensembles, the analysis and visualization

tools proposed in this thesis could also be used to understand other types of ensembles,

whether ensembles of a single class of learners (as here), or ensembles of mixed types of

learners.

1.1 Scope and thesis questions

This thesis is limited to the study of ensembles of arti�cial neural networks

(neuro ensembles) on binary classi�cation problems. More speci�cally, the thesis in-

vestigates the automatic problem decomposition property, which is useful for the clas-

si�cation task by enabling enhanced classi�cation, of neuro ensembles. The three key

questions which may be raised in the study of automatic problem decomposition are

1. How does the system divide a complex problem into simpler sub�tasks?

2. How does the system create the modules to work on these sub�tasks?

3. How does the system self-organize its modules to solve the sub�tasks ef�ciently

and accurately?
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An important related issue, motivated by the second question, is that it is highly desir-

able that the system maintain diversity between its modules. I note that a system with

self�similar components has no obvious advantage over a system consisting of only one

component, and therefore is not desirable.

In this thesis, I wish to speci�cally answer the following research question:

Can arti�cial evolution produce a self-organized neuro ensemble that auto-

matically decomposes a complex problem?

In order to answer the main research question, it is necessary to study a number

of aspects of neuro ensembles. These aspects can be grouped into the following sub

questions to be answered in this thesis:

1. What is the role of diversity in neuro ensembles? An essential question for any

research into ensembles is how to diversify the ensemble (Brown 2004; Kuncheva

2003b; Shipp and Kuncheva 2002). Without diversity, an ensemble offers no ad-

vantage over a single individual. Therefore understanding the role of diversity,

and how to inject diversity into neuro ensembles, gives insights allowing better de-

sign of neuro ensemble. The experiments in Chapter 4 of the thesis are devoted to

investigating the role of diversity in a number of neuro ensemble methods.

2. Can cooperative coevolution of both the gating mechanism and the experts gen-

erate good neuro ensembles? Many ensemble methods use a gate of some form

to combine the results from different members. In the traditional neuro ensemble

and evolutionary neuro ensemble literatures, the ensemble members and the gate

are generally considered separately. Many systems use a �xed gating mechanism,

which does not change depending on the data. However it is desirable that the gate

have information about both the data, and the experts it is combining, before it de-

cides on the best way to combine the individuals' outputs. This is the motivation

of the mixture of experts (ME) method (Jacobs, Jordan, Nowlan, and Hinton 1991;

Jacobs, Jordan, and Barto 1991). However ME uses gradient-based techniques,
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which can easily be trapped in local minima. In the search space de�ned by the

combination of complex data and the interaction of complex experts, local minima

are highly likely. Given the strengths of evolutionary methods in handling complex

�tness landscapes (Forrest 1993; Mitchell 1996), it is worth examining the com-

bination of evolutionary approaches and ME models. In this thesis, I propose a

method called the cooperative coevolutionary mixture of experts model (CCME).

It combines the advantages of ME and cooperative coevolution, allowing the gate

and the experts to coevolve and potentially helping the system to generalize bet-

ter. Chapter 5 of the thesis is devoted to examining this approach, and determining

whether it offers signi�cant advantages.

3. Do ME and CCME automatically decompose a complex problem? The prob-

lem of automatic problem decomposition has been studied in many disciplines

(Khare, Yao, Sendhoff, Jin, and Wersing 2005). Neuro ensembles provide effective

learning methods, which many believe result from good problem decomposition

(Sharkey 1996). It is highly desirable to test this. In Chapter 6 of this thesis, I

provide visualization tools which help to understand the structure of the solutions

provided by these ME-based methods. The tools allow us to examine the input

spaces assigned to the individual experts by the gate; with the help of the visual-

ization, I am able to see that the gate sub-divides the input space into regions, and

assigns primary responsibility for different regions to different experts. Chapter 6

provides a detailed analysis of this issue.

4. Can regularization enhance neuro ensembles by generating low structural com-

plexity while maintaining the same level of accuracy? In the literature of arti�-

cial neural networks, it has been shown that �learning by forgetting� can generate

ANNs with lower structural complexity (Ishikawa 1996; Ishikawa and Yoshino

1993; Kozma, Kitamura, Malinowski, and Zurada 1995; Miller and Zurada 1997).

This is important, since reduced structural complexity reduces the risk of over-
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specialization (Bishop 1995). However I have not been able to �nd any previous

studies on the use of learning by forgetting in neuro ensembles, and especially in

ME. In this thesis, I investigate the effects of learning by forgetting on both the

performance and the architecture of ME methods. I examine both the original ME

method, and the CCME extension. This work is reported in Chapter 7.

5. Can learning by forgetting help neuro ensembles to automatically decompose

problems? Learning by forgetting has been shown to promote a form of automatic

problem decomposition by modularizing the architectures of the ANNs (Ishikawa

1996; Ishikawa and Yoshino 1993). In chapter 7, I examine whether learning by

forgetting can assist with feature selection for ME and if so, whether this feature

selection has any bene�t for problem decomposition.

1.2 Structure of the thesis

This thesis is divided into three main parts:

• Literature Review (chapters 2 and 3): in chapter 2, I introduce the basic concepts

of ANNs and evolutionary ANNs using EC. In chapter 3, I review in greater de-

tail the literature on ensembles of ANNs (neuro ensembles). I also review the key

concepts used in the later parts of the thesis. These include the Mixture of Ex-

perts model, the Cooperative Coevolution framework, regularization methods, and

automatic problem decomposition in general.

• Initial Investigation (chapter 4): in chapter 4, I compare a number of state-of-

the-art neuro ensemble methods which have been proposed in the literature. These

include

� the simple ensemble method, where a population of ANNs is evolved, and

the best individuals are combined to form an ensemble.
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� an Island�based neuro ensemble, which uses the Island model from EC to

generate diversity in the ensemble

� the Negative Correlation Learning ensemble method proposed by Liu and Yao

(Liu and Yao 1999; Liu, Yao, and Higuchi 2000)

� an ensemble method based on multi�objective optimization

This chapter provides an empirical study of different aspects of the above four

neuro ensemble methods. It also examines the signi�cance of diversity in ensemble

learning.

• CCME: A novel method for automatic problem decomposition (chapters 5,6

and 7): in chapter 5, I introduce and investigate a novel method based on the Mix-

ture of Experts (ME) model and the Cooperative Coevolution (CC) framework.

In chapter 6, I introduce a set of novel visualization tools to speci�cally investi-

gate automatic decomposition of classi�cation problems. These tools are applied

to analyze ME and CCME on binary classi�cation problems. In chapter 7, ME

and CCME are extended with regularization of the structure of the model. Two

different regularization methods are investigated: structural learning by forgetting,

proposed by Ishikawa (Ishikawa and Yoshino 1993), and the weight elimination

method proposed by Weigend et al (Weigend, Rumelhart, and Huberman 1990).

1.3 Contributions of the thesis

At the core of this thesis, two major contributions can be identi�ed. These are

• a novel machine learning method based on the concept of mixture of experts and

the cooperative coevolution framework. I examine whether this method works well

through comparisons with other methods, and statistical test(s) of signi�cance.

• visualization tools to inspect whether or not a method is capable of automatically

decomposing the problem.
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The detailed contributions are summarized below (in order of their appearance):

• A comprehensive literature review of arti�cial neural networks, evolutionary arti-

�cial neural networks, neuro ensembles and mixture of experts (chapter 2 and 3).

This provides an intensive background for the thesis and a short summarization of

what has been done in the literature of these �elds.

• An empirical study, emphasizing the role of diversity, in state-of-the-art neuro en-

sembles. I examine methods such as Negative Correlation Learning and multi�

objective optimization. The studies include the effects of combinational mech-

anisms of the ensemble, the level of diversity, the usefulness of local search on

evolution to �nd better solutions, the effect of noise injection and early stopping

on generalization, and possible relationships between diversity and performance of

the ensemble (chapter 4).

The experimental results and analysis show that:

� Different combination gates have little effect on the average performance of

the four investigated ensemble methods

� The diversity level maintained by negative correlation learning is poor, as

suggested by McKay and Abbass's analysis (McKay and Abbass 2001)

� Combining individuals improves the performance of the system

� Local search helps evolution to �nd better solutions. This applies to both

ensemble and individual-based methods

� Noise injection shows interesting effects on performance enhancement, though

the results are equivocal

� Early stopping is useful in enhancing generalization. A variety of different

stopping conditions, detecting minimum values of a variety of validation set

properties such as the �tness of the ensemble or the average �tness of the

population, can avoid over��tting of the networks to the training data.
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The empirical study also addresses the �rst research question, regarding the con-

nection between diversity and performance of neuro ensembles. The results are

perhaps surprising. They suggest that the assumed connection between diversity

and performance of the ensemble is at best doubtful, and requires further veri-

�cation. Our results are consistent with those reported by Kuncheva (Kuncheva

2003b).

• A novel Mixture of Experts model based on cooperative coevolution (chapter 5):

The ME model is a neuro ensemble approach which can generate networks that are

specialized on different sub-spaces in the feature space. Cooperative coevolution

is a branch of evolutionary computation where individuals in different populations

cooperate to solve a problem, and their �tness function is calculated based on their

reciprocal interaction. By combining CC and ME, I have built a powerful frame-

work in which it is possible to automatically form and train the experts. The CCME

method produces competitive results in terms of generalization ability, without in-

creasing the computational cost when compared to traditional training approaches.

The experimental results and analysis in this chapter answer the second research

question, in that cooperative coevolution of both the gate and the experts produces

ensembles with better generalization ability, when compared with gradient-based

non- evolutionary ME.

• An empirical study that provides a better understanding of ME and CCME. I exam-

ine a range of aspects such as the effects of error functions, learning rate, stopping

criteria, number of hidden units per experts and number of experts, on the general-

ization performance of the models (chapter 5). The study suggests that

� CCME and ME are robust to various error functions, learning rates, numbers

of experts and numbers of hidden units;

� early stopping is bene�cial for ME and CCME;

� the empirical study gives better insights into different aspects of neuro-ME
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and CCME, which have not been investigated before, such as the effects of

different error functions, learning rates, stopping criteria, number of hidden

units and number of experts on the generalization performance of ME and

CCME.

• Two novel visualization tools to analyze automatic problem decomposition in high-

dimensional feature spaces (chapter 6). The �rst, simpler, mechanism groups data

based on the specialization of each expert, generating a color�map of the data

records. The second mechanism relies on Principal Component Analysis (PCA)

to project the feature space onto lower dimensions, in which decision boundaries

generated by each expert are visualized through convex hull approximations. These

tools help to visualize how the models decompose the data into sub-regions, so that

the input-output relationship in each sub-region is easier for the expert to learn. The

tools also show how the methods discover potential modularity in the dataset, and

match this modularity by assigning different experts to different modules in the

problem. The PCA plots also indicate how increasing the number of experts and

number of hidden units affect the way ME and CCME divide and conquer hard

problems. The plots show that there is a range of optimal structural complexity

in which increasing the structural complexity of the ensemble also increases the

system's potentiality to �nd a better decomposition and solve the decomposed sub-

regions with higher accuracy. Beyond this range, increasing complexity does not

help the performance of the system. Although these tools are used in this thesis to

analyze neuro ensembles, they are not limited to neural networks and can be used

with any ensemble methods. They are useful for the analysis of automatic problem

decomposition in general, independent of the representation. The tools and anal-

ysis address the third research question. about how ME and CCME automatically

decompose a complex problem.

• The �rst empirical study of two different regularization mechanisms, Learning by
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Forgetting (LF) and Weight Elimination (WE), on the performance and structure

of ME and CCME models for binary classi�cation problems (chapter 7). First,

the study addresses the fourth research question, showing that regularization can

generate ME and CCME with low structural complexity, while maintaining accu-

racy. Second, the study suggest that LF can discover the modularity of each expert

in its own designated regions of the input space. Moreover, with the help of LF,

the model can discover the importance of the input features and the relevance of

the features for each expert. In other words, ME and CCME with LF can auto-

matically assign different experts to different subsets of the input features. This

empirical study addresses the last research question, in that LF helps mixtures of

experts (and their extensions) to automatically decompose a complex problem. It

also opens up a number of new questions for future research, such as whether LF

can be used to perform feature selection on other types of neuro ensemble.



Chapter 2

An Overview of Arti�cial Neural

Networks

Researchers have been attracted to the vast, sophisticated architecture and mar-

vellous functionality of human and animal brains for centuries. In 1943, Warren Mc-

Culloch and Walter Pitts proposed the �rst arti�cial model for a neuron (the so-called

McCulloch and Pitts model). Since then, numerous methods for building neuro-inspired

computational models, ranging from simple to very sophisticated mathematical models,

have been proposed and investigated. This �eld of study is generally known by the name

of Arti�cial Neural Networks (ANNs).

To design an ANN, one needs to de�ne a number of parameters. These in-

clude the number of neurons, the way they are connected, the learning rule, etc. In

the traditional ANN �eld, networks were hand designed in a lengthy process, requiring

an expert's knowledge in the domain of application (Balakrishnan and Honavar 1995).

Later, with increasing interest in another biological process, the evolutionary process, it

was proposed that Evolutionary Computation (EC) could provide a suitable tool to auto-

matically construct and train an ANN (Yao 1999). The use of EC eases the dependence

on human experts, both in terms of domain knowledge (EC can self-adapt), and in the

lengthy process of hand design (EC can evolve the architecture of an ANN).

12
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One of the main problems for ANN is to �nd a suitable network that generalizes

well on unseen data/task (Bishop 1995). Often, the primary aim of training an ANN is to

obtain one that can learn the underlying distribution of the data, and thus be able to predict

unseen data accurately. Therefore, it is undesirable to have a network that over��ts the

training data, as it will generalize poorly on unseen data. The avoidance of over��tting -

�nding a suitable generalization - is an essential aspect of designing an ANN.

In recent years, Dietterich and Pennock (Dietterich 1997; Pennock, Maynard-

Reid II, Giles, and Horvitz 2000) proposed an alternative idea to overcome the general-

ization problem, based on the committee of experts in human organizations. They argued

that, by combining a set of experts with different generalization abilities, the whole sys-

tem might possess a better generalization ability than the individual networks in isolation.

Since then, various ideas have been proposed to design, construct and train such ensem-

bles of experts. This idea was heavily applied in the �eld of ANN, and became a special

branch, namely neuro ensembles (Jimenez and Walsh 1998; Liu and Yao 1997; Sharkey

1998; Sharkey 1996).

In the following sections, I present a brief overview of the ANN �eld from the

basic structure of ANNs, to evolutionary�based methods, and �nally to neuro ensembles

and evolutionary neuro ensembles.

2.1 Arti�cial neural networks

2.1.1 Arti�cial neurons

An ANN is a network of mathematical interconnections between processing

units (Haykin 1999). A neural network can achieve a very large computational power

by distributing its work over a massively parallel structure through specialized learning

mechanisms.

Biological nervous systems come in various architectures. Some are simple,

while others are complex. But all of these different types are composed of the same type
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(a) a biological neuron

(b) an arti�cial neuron

Figure 2.1: Basic structure of (a) a biological neuron and (b) an arti�cial neuron

of building blocks, the neural cells or neurons.

A neuron receives signals and produces a response. In this sense, a neuron acts

as a function which receives a set of inputs as arguments and produces an output. Figure

2.1 shows the basic structure of (a) a biological neuron and (b) an arti�cial neuron.

In the biological neuron, the inputs and responses are electrical pulses. The

input pulses are passed to the neuron body through a set of channels (i.e. dendrites)

and the output (if any) is passed forward through the axon. The contact points between

different neurons are called the synapses. The synapses can open and close to allow or

stop the current �ow; they also direct the pulses in a well de�ned manner. The surface

(membrane) of the neuron body contains a number of ionic channels in the form of pores.

When the electrical impulse reaches the synapse, the impulse causes the synapsis to fuse

to the membrane of the cell body, and a number of these ionic channels will be opened to
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let more ions �ow to the interior of the neuron cell. This �ow of ions changes the potential

inside the cell and thus causes a response signal to be emitted. Depending on the type of

ions �owing in, the cell potential can increase (excitatory) or decrease (inhibitory), and

thus a different action is emitted. The number of ionic channels triggered at the arrival

of a signal are different from one synapse to another. Thus, in the arti�cial model, the

synapses are often associated with a weight value.

Analogously to this biological neuron, an arti�cial neuron often consists of a

body which acts as a basic function, with a set of inputs represented by the number of in-

coming links (McCulloch-Pitts unit) or real values. These values are passed to the neuron

through abstract links, which might be associated with weights as in the case of synaptic

weights in the biological neuron. The neuron computes the function of the inputs, and

emits an output value, which is transmitted to other components in the network. Thus,

the arti�cial neurons can be thought of as (i) simpli�ed versions of biological neurons or

(ii) primitive mathematical functions.

2.1.2 Arti�cial neural networks

If an arti�cial neuron can be thought of as a primitive function, then an arti�cial

neural network is a network of these basic functions. This distribution of information in

a vast network allows an ANN to speed up the computation process and to represent

complicated functions.

Different models of ANNs differ in the primitive functions used, the structure

and interconnection patterns, and the timing of the transmission of information. Typical

ANNs have the structure shown in Figure 2.2. The ANN can be considered as a composite

function Φ of the sub functions f1, f2, .., fH evaluated at points (x1, x2, ..., xn). Such a

function Φ is called the network function. Different sets of parameters w1, w2, ..., wW

produce different network functions.

youtput = Φ(f1(~x, ~w), f2(~x, ~w), ..., fH(~x, ~w)) (2.1)
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where ~x = {x1, x2, ..., xn} and ~w = {w1, w2, ..., wW}

Figure 2.2: An ANN as a network of mathematical functions

Therefore, there are three essential elements to determine an ANN: (i) the struc-

ture of the neurons (i.e. their functions fi's and thresholds θi's), (ii) the topology of the

network (e.g. the number of nodes and how nodes are interconnected) and (iii) a learning

algorithm to obtain a suitable set of weights {wk} of the network.

2.1.2.1 Computational units in ANNs

The simplest form of arti�cial neuron was proposed in 1943 by McCulloch and

Pitts. In their model (Figure 2.3), each neuron receives, as inputs, binary signals through

a set of un�weighted edges. These edges belong to one of two types: excitatory and

inhibitory. The McCulloch and Pitts neuron computes its binary output as follows: if

at least one of the incoming edges is inhibitory, and a 1 is received through this edge,

the output of the unit is 0 (inhibited); otherwise, if the overall signal x =
∑

i xi through

the excitatory edges is greater than or equal to a certain threshold θ, the unit �res a 1;

otherwise a 0 if x < θ. With this particular setup, the McCulloch and Pitts neuron model

achieves its functionality by de�ning a suitable number of inhibitory and excitatory edges

and assigning an appropriate threshold θ to the neuron.

Although it has been claimed initially that a network of McCulloch and Pitts

neurons can compute any logical function, the model has some undesirable features for

simple use. First, because of the limited number of free parameters in the network, the
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Figure 2.3: McCulloch and Pitts model of an arti�cial neuron

system is often in�exible when applied to different problems. Second, learning in the

McCulloch and Pitts system is obtained via changing the connections between the units.

Physically disconnecting and connecting these edges is more problematic than changing

a numerical weight over the edges. Because of these two limitations, the weighted model

is often more appealing than the simple McCulloch and Pitts model (Rojas 1995).

The second model for the arti�cial neuron is the perceptron (Figure 2.4) pro-

posed by Frank Rosenblatt in 1958. A simple perceptron is a computing unit with thresh-

old θ and a set of edges with weights w1, w2, ..., wn. A perceptron receives n inputs

x1, x2, ..., xn and outputs 1 if
∑n

i=1 wixi ≥ θ and 0 otherwise (Rojas 1995).

Figure 2.4: A perceptron model of an arti�cial neuron

A geometric interpretation of the perceptron is as a hyperspace dividing the

input space into two half-spaces, where points belonging to one of the half-spaces are

associated with an output of 1, while a 0 is associated with the other half (Figure 2.5).

With this structure, perceptrons can be considered as step functions of a linear
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Figure 2.5: A geometric interpretation of the perceptrons

combination of the input units. However, a step function is non-differentiable. This is

a serious limitation because it excludes many simple approximation methods in which

gradient information (i.e. derivatives) play an essential role. Thus, for a more powerful

computing unit, the step function is often replaced by a smooth threshold function, such

as the sigmoidal function used in this thesis.

2.1.2.2 ANN topology

A single perceptron is powerful enough to compute a number of basic logi-

cal functions. However for more complicated situations, such as non-linearly separable

problems, a combination of perceptrons is required (Haykin 1999; Rojas 1995). The ar-

rangement of these basic computing units is a critical feature in de�ning the expressive

power of an ANN. This arrangement is called the topology or architecture of the ANN.

As mentioned in the introduction of this chapter, the biological nervous system

is laid out in a well-de�ned manner. The direction of current �ow is very well de�ned in

the makeup of the synapses.Thus arti�cial neural networks, imitating the nervous system,

are often represented by a directed graph, with arrows as the direction of the signal �ow

(Figure 2.6a). As in directed graphs, an edge can be forward or feedback (Figure 2.6b).

Depending on the existence of feedback edges, one can divide ANNs into two types: (i)

a Feed-forward Neural Network (FFNN), which has no feedback links, and a Recurrent

Neural Network (RNN), which has some type of feedback (or cyclic) edges.

Other important features of an ANN topology are the number of intermediate
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Figure 2.6: ANNs (a) as a directed graph (b) with feed�forward and feedback edges

layers of neurons, and the number of neurons in these layers. As the input layer serves

as a �sensory� layer to receive external inputs and the output layer is to emit the �nal

signal to the environment, the intermediate layers are the main computing mechanisms

of an overall ANN. These layers are hidden from the external environment, leading to the

names �hidden layers� and �hidden units�. The number of these hidden units, and their

complex arrangement, largely determine the expressive power of an ANN.

The third important aspect of the ANN topology is the mechanism by which

the units are interconnected. Neurons can be partially or fully connected, depending

on the requirements of the problem. A fully connected ANN is simpler to design, but

generally contains redundancy, which may hinder the performance of the system. A

partially connected ANN is more compact, more precise and faster than a fully connected

one. However designing a proper pattern of partial connections requires extra effort from

the designer and/or the system itself (if automatic methods are implemented).

In the scope of this thesis, I implement the most common ANN architecture,

the so called feed-forward single-layer fully connected ANN. In other words, the imple-

mented ANN consists of a single hidden layer without feedback edges; and every unit in

one layer is connected to every other unit in the next layer (Figure 2.7).
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Figure 2.7: A feed-forward one-layered fully-connected ANN

2.1.2.3 Learning rules

An ANN is attractive because of its ability to learn and generalize. Learning is

achieved by training the network with a set of training data. During the training process,

the connection weights and threshold are adjusted.

The adjustment of weights is undertaken by a learning rule. There are four ba-

sic learning rules, namely error-correction, Hebbian, competitive and Boltzman learning

(Haykin 1999). During the learning phase, the network produces a response yk for each

input pattern. However, this response may be different from the target output dk. With

some learning-rate parameter � which affects the rate of convergence and hence must be

carefully selected � the synaptic weight adjustment ∆wkj(n) of the four basic learning

rules is summarized below (Haykin 1999).

Error-correction learning minimizes some cost function based on the difference

between the actual and target outputs ek = yk−dk. The adjustment to the synaptic weight

is de�ned as ∆wkj(n) = ηek(n)xj(n). Hebbian learning is based on some simple rules,

that the strength of a connection should be increased or decreased, depending respectively

on whether the two neurons on its two sides excite or inhibit each other (i.e. have the same

or different signs). The weight adjustment for the Hebbian rule is de�ned as ∆wkj(n) =

ηyk(n)xj(n). Thirdly, in competitive learning, the output neurons of a neural network

compete against each others to be active. Then, the synaptic adjustment is ∆wkj(n) =

η[xj(n) − wkj] if neuron k wins the competition and 0 if it loses. Finally, Boltzman

learning is based on information-theoretic and thermodynamic concepts: it is more likely

that a network will jump from high energy to lower energy. The state of a random unit
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is �ipped from 'on' to 'off' and vice versa, according to some probability based on the

energy change and some temperature T. ∆wkj(n) = η(ρ+
kj − ρ−kj) where ρ+

kj and ρ−kj

are respectively the conditional (on the condition that all visible neurons are clamped to a

particular state determined by the environment) and unconditional correlations between

the state of neurons j and k.

2.1.2.4 Classes of learning algorithms

There are three basic classes of learning algorithms: supervised, reinforcement

and unsupervised learning. The main difference in these three classes is the degree of

dependence of the system on the prior knowledge regarding the behavior of the function

(decreasing in that order from fully dependent to independent). Supervised learning re-

quires a priori knowledge in the training, i.e. the �teacher� has to set up a set of inputs

with their corresponding outputs. ANNs for this purpose often use error-correction to

adjust the synaptic weights. By contrast, reinforcement learning does not require ex-

plicit prior knowledge, this knowledge rather being received from the environment. The

system constructs a trial network, and observes the reaction in the environment, using its

observations to adjust the weights. Unsupervised learning happens when the system does

not have any prior knowledge. The scope of this thesis is limited to supervised learning.

2.2 Feed�forward arti�cial neural networks

The previous sections introduced the basic details of ANNs. The following sec-

tion provides an overview of a popular architecture in the ANN literature, the so called

FFNNs. There are other types of architectures such as recurrent neural networks, asso-

ciative networks, and Radial Basis Functions (RBF). But this thesis is limited to FFNN.
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2.2.1 Back propagation

An ANN can be regarded as a complex composite function of the input signals.

A key question is how to derive a suitable set of parameters (i.e. synaptic weights) to �t

the function to a particular problem. The task of adjusting these weights is known gener-

ally as the learning problem. As I described in the previous section, a signi�cant number

of learning algorithms have been proposed in the literature of ANNs. Among them, the

most popular, and most widely applied in industrial problems, is Back Propagation (BP).

The back propagation algorithm looks for the minimum of the error function

in the weight space, using the method of iterative gradient descent. In other words, the

set of weights that minimizes the error function is considered to be the solution of the

system. Since this method requires the explicit computation of the gradient of the error

function, it is essential for the error function to be continuous and differentiable. The

back propagation algorithm can be summarized in the following components:

1. Initialization: BP starts with a set of zero values or random values for the synaptic

weights and thresholds

2. Presentation of training patterns: the order and the mode to present training patterns

to the ANN is an important aspect of BP. There are two basic modes: (i) sequential

mode and (ii) batch mode.

3. Forward computation: given a pattern (~x, ~d), forward ~x to the ANN and compute

the output of each node. The computation can be divided into three sub steps:

• Compute the weighted sum of the inputs to node j: vl
j =

∑P
i wl

ijy
l−1
i where

wl
ij is the weights of the incoming link to node j from node i and yl−1

i is

the output of node i. l is the current layer of node j and l − 1 indicates the

previous layer.

• Compute the output signal of node j by applying the activation function yl
j =

ϕ(vl
j)
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• Compute the errors at the output layer depending on the error function in use.

For example, for the sum-of-squares error function, the error of node j at the

output layer is de�ned as ej = dj − yL
j where dj is the target value and yL

j is

the computed output.

4. Backward computation: the error is propagated backward to the nodes in hidden

layers. A local gradient is de�ned and computed for each node.

5. Weight update: weights are updated in the negative gradient direction: wij = wij +

η ∂E
∂wij

where η is the update step size, generally known as the learning rate.

6. Stopping criterion: the learning process is halted when a certain stopping criterion

is met. The simplest stopping mechanism is �xing the number of iterations (called

epochs). However, later on in this thesis, I will discuss why other types of stopping

criteria may be preferable to this simple one.

2.2.1.1 Activation functions

1- Sigmoidal function

ϕ(x) =
1

1 + e−ax
(2.2)

The coef�cient a determines the shape of the sigmoid curve (Figure 2.8)
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Figure 2.8: Sigmoids with different coef�cients
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The derivative of the sigmoid with respect to x is

dϕ(x)

dx
=

ae−ax

(1 + e−ax)2
= aϕ(x)(1− ϕ(x)) (2.3)

2- Hyperbolic tangent function:

Another popular activation function in the literature is the so called hyperbolic

tangent (Figure 2.9).

ϕ(x) = a
1− e−bx

1 + e−bx
(2.4)

The derivative of the hyperbolic tangent with respect to x is

dϕ(x)

dx
=

b

a
(a− ϕ(x))(a + ϕ(x)) (2.5)

Figure 2.9: Hyperbolic tangent

The advantage of this activation function is its symmetry about the origin as

seen in Figure 2.9. In fact, any squashing function, which is continuous and differen-

tiable, can be used as an activation function for ANN, but in this thesis, I use the sigmoid

function.

2.2.1.2 Sequential vs. batch mode

There are two principal training modes for presenting the training examples

and updating the weights: sequential and batch training modes.
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1. Sequential training mode (also known as online or stochastic training mode): in this

training mode, the ANN weights are updated after each exposure of each training

pattern (Algorithm 1), with the patterns typically being presented in random order.

2. Batch training mode (also known as off-line): in this mode, the weight corrections

41wij ,42wij ,4Nwij are computed for weight wij with patterns 1..N . The overall

correction is computed as the sum of these per-pattern weight corrections 4wij =
∑k=N

k 4kwij . Weights are updated at the end of an epoch, when all patterns have

been presented to the system.

Each of these training modes has its own bene�ts and drawbacks. The batch

mode exactly follows the negative gradient direction, but can be rapidly trapped in a local

minimum. On the other hand, the sequential mode, with its stochastic nature, does not

exactly follow the gradient, and is thus less predictable than the batch mode. However

sequential BP can jump out of local minima. It is arguable that �adding some noise to

the gradient direction can help to avoid falling into shallow local minima of the error

function� (Rojas 1995). In this thesis, I use the sequential update mode.

Algorithm 1 The back propagation algorithm in sequential mode
1: randomly select a set of initial weights
2: repeat
3: for each pattern ~x, ~d in the training set do
4: forward the input ~x and compute the output of nodes in the ANN.
5: compute the errors at the output level.
6: pass the errors backward, and compute the partial derivatives of the errors with

respect to each weight ∂E
∂w

.
7: update the weights in the negative gradient direction. 4w = −η ∂E

∂w

8: end for
9: until the halting criteria are satis�ed

2.2.1.3 Learning rate

The learning rate is a measure of the size of the step in the weight space taken

in the direction of the minimum error. A small step size results in smoother trajectory
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but slower convergence. A large step size speeds up the learning process but may cause

instability (i.e. oscillation) in the system (Haykin 1999). Usually, a carefully tailored

trial-and-error approach has to be adopted, to �nd the most suitable learning rate for

a particular problem. Other methods automatically adding a correction factor, such as

adding a momentum component, to the error function can also be used.

2.2.2 The generalization problem for BP

The goal of training an ANN is not to �nd a model that exactly �ts the training

data. Such a model often performs poorly on unseen data, because instead of learning

the true underlying distribution (i.e. function) of the data, it memorizes the training data.

The ability to perform well on unseen data is known generally as the generalization ability

of an ANN. To understand this generalization phenomenon, two concepts, namely bias

and variance, have been introduced. The generalization error is decomposed into three

components (Brown 2004): a bias term, which deals with the ability of the model to �t

a particular training set, a variance term corresponding to the �exibility of the model to

different training sets and a third term corresponding to the existing random noise in the

training data. This last error term is not related to the model itself and is thus ignored in

the bias/variance trade-off problem. The bias and variance terms are usually in con�ict

with each other, in the sense that a better-�tting model (high bias) must result in less

�exibility (low variance), and vice versa. Theoretically, the best compromise or trade-

off between bias and variance terms would result in an acceptable generalized model

(Bishop 1995; Haykin 1999). In practice, it is often impossible to know in advance

a perfect bias/variance tradeoff, because of the complexity of the ANN. These terms

are deep-rooted in different aspects of the ANN, such as the model selection method,

the architecture complexity, the learning algorithm, and the magnitudes of the weights.

Numerous methods have been proposed in the literature for �nding a good region for this

trade-off but so far it is still an elusive concept in practice.
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2.2.2.1 Cross validation

In most cases, only the training data are known. Without some kind of testing

of the model, it is very hard to avoid the system over��tting the training data. One

way to deal with this problem is to divide the training data into two subsets: a training

set and a validation set. The validation set acts as a test of the model on unseen data.

The training set is used in the normal fashion, to train the system. The validation set

is used to estimate the generalization performance of the ANN in a number of ways.

For example, the validation set can be used to compute the performance of the ANN, if

knowing the generalization is the only concern. Alternatively, it can be used to stop the

training process early, as I describe below.

Although dividing the training data into a training set and a validation set is

helpful, the ANN is now additionally subject to bias in the division process itself. To

solve this problem, statistical concepts are often applied. Instead of a one-time division,

the system can be repeatedly partitioned into a number of partitions at random points.

In this thesis, I adopt the traditional k-fold cross validation, in which the dataset is par-

titioned into k disjoint subsets using strati�ed sampling. In each fold, two subsets are

chosen as the test and validation sets, and the remaining subsets are combined to form

the training set. For example, in the �rst fold, subsets 1 and 2 are used as test and val-

idation and a combination of 3 → k is used as training; in the second fold, 2 and 3 are

used as test and validation and a combination of 1 and 4 → k is used as training and so

on. This technique results in k folds of data setups. The system is then run with each

fold, and an average error over the test sets of the k folds is reported as the system's

performance.

2.2.2.2 Early stopping of training

One way to handle the generalization problem is to stop the training process

early, before it over-learns the training data. This idea takes advantage of the cross val-

idation mechanism, using the validation set to predict the generalization ability of the
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system. The smoothed curves (because actual curves are often much more rugged, with

many raises and dips) of the training and validation errors are shown in Figure 2.10. As

I can see in these curves, there exists a point t where the system generalizes best. After

that point, the training curve still reduces, while the validation curve starts to increase.

In other words, after this turning point, the system starts to over��t the training data and

generalize poorly. This turning point can be approximated by the minimum on the valida-

tion curve (i.e. minimum error on the validation set), so that the training process should

be stopped when this point is reached.

Figure 2.10: Early stopping based on minimum error on validation set

2.2.3 Growing and pruning FFNN

To solve real world problems, often a highly structured ANN is preferable to

a large size one. The concerns here are, how to decide on the right size of the ANN

while maintaining the performance, and more importantly how to organize the ANN into

a suitable structure. There are generally two ways to achieve this objective: (i) growing

an ANN from a minimum structure (i.e. the constructive mechanism) and (ii) pruning a

large network to remove unnecessary redundancy (the so called destructive mechanism).
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2.2.3.1 Growing

Constructive techniques, such as the Tower (Gallant 1990), the BPtower (Hay-

ward 1999), the Tiling (Mezard and Nadal 1989) algorithms, and the famous Cascade

Correlation algorithm (Fahlman and Lebiere 1990), share the same principles: hidden

nodes are added and connected to existing nodes when the system still makes errors

(classi�cation problems) or when the error curve reaches a certain plateau (regression

problems). It is argued that, by incrementally increasing the network complexity, via

adding hidden nodes, the system is able to adapt itself to the best compact structure that

minimizes the error. These methods are reported to perform well on arti�cial datasets.

But in practical situations, the bene�t of such constructive mechanisms has not yet been

con�rmed (Campbell 1997). First, adding hidden nodes may not reduce the error, due

to the complex interactions among the nodes and weights of the ANN. Second, dif�-

culties in detecting the optimum size mean that the constructed network is often over-

grown, so that it over��ts the training data and thus generalizes poorly. To prevent this

over-complexity, some form of early stopping may be implemented, to halt the growing

process at the correct moment. Another way to solve this problem is to implement, in

parallel, a pruning mechanism which reduces the network complexity and regularizes the

network structure.

2.2.3.2 Pruning

While the constructive methods attempt to increase the network complexity by

adding hidden nodes to a minimum ANN architecture, the destructive techniques look at

the problem from the opposite view: regularizing the complexity of ANN by decaying the

weights and/or pruning near-zero connections from a complex ANN. Pruning redundant

weights and nodes has a number of bene�ts. Firstly, the resulting structure is compact,

sot that it is less computationally expensive to train, and less likely to over��t the data

(Haykin 1999). Secondly, the relevance of nodes and connection patterns are highlighted

more clearly, resulting in a better and/or modularized structure (Campbell 1997). Thirdly,
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some forms of regularization (e.g. weight decay) smooth out the predicted function curve,

and thus are less likely to �t the noise in the training data. Large weight values produce

a �mapping with regions of large curvature�, while relatively small weights produce ap-

proximately linear network mapping, since with small weights, the sigmoidal function in

the neurons is activated in the approximately linear central region (around zero) (Bishop

1995).

Since I will investigate a number of regularization methods in this thesis (Chap-

ter 7), the following subsection is devoted to providing an overview of some well known

pruning methods in the literature of FFNN. The destructive techniques could be approxi-

mately categorized into (1) complexity regularization, (2) physically removing synapses

or nodes and (3) a combination of (1) and (2).

2.2.3.2.1 Complexity regularization In complexity regularization methods, a penalty

term is added to the usual performance measure, to smooth out the network mapping.

R(w) = Ep(w) + λEr(w) (2.6)

where Ep(w) is the normal performance measure (e.g. error function) and Er(w) is the

penalty function for the complexity of the network and λ is the regularized coef�cient

or penalty weight. Training is performed on this composite error function. A network

with a good �t to the training data will result in a smaller value for Ep while one with a

smoother mapping will result in a smaller value for Er. The resulting network mapping

is a compromise between �tting the data and smoothing the curve (Bishop 1995).

• Weight decay: the simplest form of network regularization is the weight decay

method.

Er(w) =
1

2

∑
i

w2
i (2.7)

where wi involves all weights and biases in the current arti�cial neural network.

The result is an ANN with smaller values of weights, and often better generaliza-
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tion ability. To prune this ANN, weights with magnitudes less than a certain thresh-

old are considered redundant, and their corresponding links are removed from the

ANN (Bishop 1995).

• Weight elimination: However, a problem with the simple weight-decay mechanism

is that the system prefers networks with many small weights to those with a few

large weights. To �x this problem, Weigend et al (Weigend, Rumelhart, and Huber-

man 1990) proposed another regularizing term, the so called weight elimination.

Er(w) =
∑

i

w2
i

w2
0 + w2

i

(2.8)

where w0 is a scaling factor, which is often set to 1. This modi�ed decay term

favors ANN with a few large weights over those with many small weights, so that

weights are more susceptible to elimination (whence comes the name) (Bishop

1995).

• Laplace prior regularization: when considering the weight decay technique in the

light of the Bayesian framework, it can be viewed as incorporating a Gaussian

prior. This raises an interesting question, whether other prior distributions could

be applied in complexity regularization. One of the better distributions for the

regularization term is the Laplace prior (Goutte and Hansen 1997; Williams 1993;

Williams 1995).

Er(w) =
∑

i

|wi| (2.9)

Williams (Williams 1993; Williams 1995) argued that a Laplace weight prior is

more suitable than a Gaussian for feed�forward neural networks with no direct

input-output connections. They base this on the consistency principle, which de-

mands that the prior for the weights should be a function of the weight magnitude

|w| alone and �the maximum entropy distribution for a non-negative quantity con-

strained to have a given mean is the exponential distribution� (Williams 1995).
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Thus a Laplace density 1
2
αe−α|wj | is a suitable choice.

2.2.3.2.2 Weight and node pruning The key question in network complexity prun-

ing is how to de�ne the relative importance of the weights, in order to prune the least

important. Some measure of importance, or saliency, of weights has to be de�ned. The

complexity regularization method above uses the simplest form of salience � the mag-

nitude of weights, with the argument that smaller weights are less important than larger

ones (Bishop 1995). However, this simplistic form of argument may not capture the

actual characteristics of the network weight space, so that pruning may not be ef�cient.

Weight pruning takes advantage of the same error function as used in the ANN

training. The methods in this category, such as Optimal Brain Damage (Le Cunn, Denker,

and Solla 1990) and Optimal Brain Surgeon (Hassibi and Stork 1993), are based on the

second-order derivatives of the error surface, and use this information to trade off the

ANN performance and complexity (Campbell 1997).

Weights are not the only thing which can be pruned. Complete nodes may

be removed as well. The simplest way is to measure the salience of nodes, based on the

difference between the cost functions with and without the node. However, this technique

is quite slow, as the system must be repeatedly trained with and without each of the

available nodes (Bishop 1995).

2.2.3.2.3 Combining regularization with node pruning - the case of Structural Learn-

ing by Forgetting (SLF): One of the well-known methods to combine magnitude-based

pruning with physical node pruning is structural learning by forgetting (Ishikawa 1996;

Miller and Zurada 1997; Kozma, Kitamura, Malinowski, and Zurada 1995). SLF is

rooted in the Laplace prior regularization, adding a penalty term of
∑

i |wi| to the train-

ing error function for back propagation. The derivative of this penalty term with respect

to the individual weight |wi| is sgn(wi) where sgn is the sign function which is 1 if

|wi| > 0 and −1 otherwise.

The updated weights for BP thus becomes 4wi = −η ∂E
∂wi

− ηεsgn(wi) where
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−η ∂E
∂wi

is the usual negative gradient of the error function, η is the learning rate and

ε′ = ηε is the regularization coef�cient. After the system is trained for a number of

epochs with this modi�ed cost function, the system enters the second stage, in which

hidden nodes are forced to become either 0 (inactive) or 1(active). Ishikawa (Ishikawa

1996) reported that SLF was able to discover a skeletal form of ANN with relatively good

performance.

In Chapter 7, I will present an experimental study of two regularization tech-

niques: weight elimination and a modi�ed version of SLF.

2.2.4 Problems with gradient descent approach

Although gradient descent is the most popular ANN method, especially in in-

dustrial problems, because of its simple implementation and its ef�ciency, it still has

some serious drawbacks. First, any method based on gradient descent suffers from the

risk of being trapped in local minima. By descending to a valley of the error function,

the gradient-based method can guarantee to reduce the total error to a local minimum.

However, it is impossible for these simple gradient descent methods to escape from a

local minimum once it reaches that point. Unless a perturbing mechanism is introduced,

to corrupt the parameters and thus bring the system out of the trapped local minimum,

(as is done in the generalized gradient techniques (Bishop 1995; Rojas 1995)), the sys-

tem will remain trapped forever. Second, with gradient descent, not every function can

be learnt (Sutton 1986). This can be seen clearly in problems where the error surface is

multimodal or when there are discontinuities in the error function.

There are a number of ways to ameliorate the problem of local minima. One

is to carefully select a set of good initial weights, in a promising region for locating the

global optimum. This is often inef�ciently done through trial and error. An alternative

is to occasionally add a small perturbation to the ANN weights, to move it out of any

trapped local minima. A key issue is, how and when to add such interference to the

system, so that the interference does not destroy the knowledge learnt so far. A third al-



CHAPTER 2. AN OVERVIEW OF ARTIFICIAL NEURAL NETWORKS 34

ternative is to change the architecture of the ANN. Altering the architecture (e.g. number

of hidden layers, number of hidden units) changes the shape of the overall error function,

and thus by chance may arrive at a better error function.

However applying concepts from biological evolution to solve multi-modal

problems might offer a better solution to these drawbacks in gradient descent learning.

In the next section, I will discuss the application of evolutionary computation (EC) to

enhance the learning of ANNs. EC techniques are not based on gradient learning, so

they suffer less dif�culty when problems are multi�peaked and/or the error surface is

discontinuous. However, the most important advantage of EC is that it can automatically

generate and adapt the architecture and weights of the arti�cial neural network without

intensive domain knowledge.

2.3 Evolutionary arti�cial neural networks

Evolutionary Arti�cial Neural Networks (EANN) are a special class of train-

ing algorithms for neural networks. They are based not only on learning, but also on

evolution. A biological brain does not develop into a complex system solely based on

adjusting its connection weights, but also on, throughout generations, the evolution of its

architecture and learning rules. In other words, evolution (over the generations) changes

the genetic code of the neural network, and learning (over the lifetime of an individ-

ual) tunes the network to a particular environment (Gruau 1994b; Gruau 1994a). This

biological analogy motivates researchers to apply evolutionary techniques to evolve the

connection weights, architectures and learning rules of ANNs. The results support the

hypothesis that, by both evolving and learning, neural networks could advance in their

complexity, power and adaptability (Nol� and Floreano 1999; Yao 1999).
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2.3.1 A brief glance on evolutionary computation

Evolutionary computation refers to �a class of population-based stochastic search

algorithms that are developed from ideas and principles of natural evolution� (Yao 1999).

Lying at the heart of an evolutionary algorithm (EA) is a pool of individuals (i.e. popu-

lation) and a set of evolutionary operators (e.g. selection, crossover and mutation). The

individuals are encoded in a speci�c type of representation, for example a bit string in

the case of Genetic Algorithms (GA). The Darwinian principle of natural evolution is that

individuals are evolved through the process of mating, which combines and sometimes

mutates the genetic information stored in the species' DNA strands. The individuals

are often competing to survive in the environment. The stronger individual, a concept

depending on the evaluated function, has a better chance to survive and spread its ge-

netic information. After a number of generations (possibly millions of years in natural

evolution), this system is able to converge to better adaptive and more complex species.

Imitating this natural process, an evolutionary algorithm starts with an initial random

population, and iteratively applies certain biologically inspired evolutionary operators to

modify the genetic information in a �tness improving direction. As a result, at the end of

n generations or when a certain stopping criterion is met, the system may have converged

to a better region of the search space and thus may produce �tter solutions. Algorithm

4.2.4.1 summarizes a typical evolutionary algorithm.

Algorithm 2 An evolutionary algorithm
1: generate an initial population
2: evaluate the individuals in the population
3: repeat
4: select parents based on their �tness.
5: apply operators such as crossover and mutation to the parents to create offsprings.
6: evaluate offsprings.
7: form the population for the next generation from the offsprings and/or the current

population.
8: until halting criterion is met

EC has a powerful ability to deal with large, complex search problems. The

change from gradient search may allow EC to escape from local minima. These advan-
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tages motivate the applications of EC to ANN design problems. Pioneering work, e.g.

(Montana and Davis 1989; Fogel, Fogel, and Porto 1990), in EANN attempted to code

the connection weights to genomes suitable for genetic algorithms. Later work attempted

to evolve the next level in complexity of an ANN, namely the architecture of the ANN, or

a combination of both architecture and weights. In addition, there have been a number of

attempts to evolve the learning algorithm itself. The following section will brie�y review

some trends in evolutionary arti�cial neural networks.

2.3.2 Evolution of the connection weights

Connection weights are often adjusted during training by minimizing the error

function between target and actual outputs, as discussed in previous sections. One major

problem for gradient search is the risk of being trapped in a local minimum of the er-

ror function (Yao 1999). Evolutionary methods, which work well in global optimization

problems, could solve this problem (Barlett and Downs 1990; Beer and Gallagher 1992;

Caudell and Dolan 1989; Dill and Deer 1991; Fogel, Fogel, and Porto 1990; Fogel 1993;

Fogel, Wasson, and Boughton 1995; De Garis 1991; Hansen and Meservy 1996; Heister-

mann and Eckardt 1989; Kinnebrock 1994; Koeppen, Teunis, and Nickolay 1997; Koza

and Rice 1991; Likartsis, Vlachavas, and Tsoukalas 1997; Osmera 1995; Porto, Fogel,

and Fogel 1995; Prados 1992; Saravanan and Fogel 1995; Secton, Dorsey, and Johnson

1998; Srinivas and Patnaik 1991; Thierens 1996; Topchy and Lbedko 1997).

In order to apply evolution, the connection weights are encoded into chromo-

somes. Yao (Yao 1999) mentioned that a neural network with its connection weights

was often represented as a binary or real-valued string. In a binary representation, each

weight is represented as a string of bits. The weights of the connections threading the

same hidden and output nodes are located together on the chromosome, to permit the

retention of building blocks. Obviously, this method is designed to work with Genetic

Algorithms. In a real-valued representation, each weight is represented as a real number;

and each individual of the population is a vector of real-valued weights. In this case,
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Evolutionary Programming (EP) or Evolutionary Strategies (ES) could be used. In both

representations, to evaluate the �tness of individuals, the individual chromosome has to

be converted back to a full network. This network is then trained, and the error function

is computed, to de�ne the �tness of the individual.

Although evolutionary computation could work well for global search on a

complex, multimodal or non-differentiable surface, it is often slow compared to gradient

search based techniques such as BP (Yao 1999). Thus, a number of researchers have

combined these two methods and obtained impressive results. In these hybrid methods,

an EA is used to locate promising search regions, and local search is used to locate

optimum solutions in these regions.

Evolution of connection weights is simple, but it can work only on a prede�ned

�xed architecture. Thus, the optimal solutions obtained are limited to a particular archi-

tecture, which may not be the optimal architecture for the required task. Moreover, it is

often not simple to manually design the network architecture, due to the extensive domain

knowledge required. This amount of knowledge is often not available for the designer.

Evolutionary techniques can overcome such problems by letting evolution determine the

network connections.

2.3.3 Evolution of the ANN architecture

During the evolution of the architecture, evolutionary computation is applied

to the connectivity and transfer function of the nodes (Alba, Aldana, and Troya 1993;

Angeline, Sauders, and Pollack 1994; Bornholdt and Graudens 1992; Dodd 1991; Gruau

1994b; Gruau 1994a; Koza and Rice 1991; Likothanassis, Georgopoulos, and Fotakis

1997; Liu and Yao 1996; Maniezzo 1994; Marshall and Harrison 1991; Miller, Todd,

and Hedge 1989; Mondada and Floreano 1995; Pujol and Poli 1998; Ragg and S.Gutjahr

1997; Sarkar and Yegnanarayana 1997; Schaffer, Caruana, and Eshelman 1990; Stanley

and Miikkulainen 2002; Tang, Chan, Man, and Kwong 1995; Tsakonas and Dounias

2002; White and Ligomenides 1993; Yao and Liu 1997; Yao and Liu 1998a; Yao and Liu
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1998b). There are direct and indirect encoding schemes, which are described below.

In the direct scheme, either only the connections of the architecture are di-

rectly speci�ed, in a two-dimensional matrix in which each entry represents whether a

connection between any two nodes is active (1) or inactive (0). Alternatively, both the

architecture and connection weights may be encoded (Yao 1999). The mapping between

phenotype (the actual neural network) and genotype (the encoded chromosome) is one-

to-one, which means that one genotype can produce one and only one corresponding

network.

Abbass (Abbass 2002a) encodes the connections weights and the number of

hidden units into an individual, and uses a multi�objective optimization algorithm called

Pareto-frontier Differential Evolution (PDE) (Abbass 2002b; Abbass and Sarker 2002) to

decide on the network's weights and the number of hidden units. Yao and Liu (Yao and

Liu 1997) designed EPnet, which uses evolutionary programming with only mutation and

rank-based selection to evolve both the architecture and connection weights. Ferdinando

et al (Di Ferdinando, Calabretta, and Parisi 2001) used GA to evolve two schemes: (i)

both architecture and connection weights of a network, (ii) only the architecture.

While direct schemes encode every connection into the genome, the indirect

methods encode only some details of the architectures. There are a number of different

methods, Yao (Yao 1999) contains a good review of some. Among them, the devel-

opmental (or grammatical) rule methods are most popular. A developmental rule is a

recursive equation, that, when repetitively applied, will generate the connection matrix.

Kitano (Kitano 1990) developed a context free, deterministic grammar encod-

ing method which used Lindenmayer-systems (L-systems) to evolve a connection matrix.

Nol� and Parisi proposed a neural growing method (Nol� and Parisi 1992), using a �xed

length genetic string to encode both the architecture and connection weights. In their

method, the neurons and their axonal growth are positioned in a 2D Cartesian plane.

A connection is formed when the axonal growth of one neuron reaches another neu-

ron. In the �nal stage, the isolated and interconnected neurons and axons are removed
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from the space. Gruau (Gruau 1994b) developed another developmental grammar en-

coding method called Cellular Encoding. Cellular encoding �encodes families of similar

structured Boolean Neural Networks� as a set of grammar trees, which keep the instruc-

tions (graph transformations) to manipulate the cells and their parameters. Eggenberger

(Eggenberger 1997; Eggenberger 2000), Bongard and Pfeifer (Bongard and Pfeifer 2003)

and Dellaert and Beer (Dellaert and Beer 1994) inspired by biology, proposed various

models based on the arti�cial genetic regulatory system.

2.3.4 Evolution of learning rules

The third level deals with the evolution of learning rules. Unlike the �rst two

levels, which encode and evolve the static properties (i.e. weights and architecture of

the ANN), methods in this level attempt to evolve the dynamic properties of the learning

process. Key questions are (i) how to understand and characterize the dynamics of learn-

ing and (ii) how to measure learning in order to encode it into certain type of genotype

(e.g. bit string or array of numerical values). Current researchers following this direction

study simpli�ed versions of the learning mechanism.

Chalmers (Chalmers 1990) encoded the complex forms of weight-space dy-

namics into simple linear genomes, as functions of local information about ANN con-

nections. More speci�cally, the method encoded a scaling value and ten coef�cients of a

linear function of four parameters of a synapse link, namely the activations of the input

and output units, the training signal on the output unit and the weight of the connection,

and their six pairwise products. The ANN architecture in this system was �xed. The

system was able to evolve various successful learning mechanisms, including the well-

known delta rule (Chalmers 1990). Neirotti and Caticha (Neirotti and Caticha 2003)

applied genetic programming to generate populations of programs that implement algo-

rithms used by ANN classi�ers to learn a rule in supervised learning mode. A few other

methods (Baxter 1992; Bengio and Bengio 1990; Crosher 1993; Kim, Jung, Kim, and

Part 1996; Kuscu 1995; Radi and Poli 2003) have been proposed. However because of
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the extreme complexity of the learning mechanism, this �eld of study has not advanced

very far, the representations and solutions being still limited to simplistic evolution of

parameters.



Chapter 3

A Review Of Neuro Ensembles

The problem of generalization (e.g. bias/variance dilemma) is a challenge in

the machine learning �eld (see Chapter 2). A number of experiments have shown that

the overall generalization ability of a committee of experts can be better than each expert

alone (Jimenez and Walsh 1998; Liu and Yao 1997; Liu and Yao 1999; Liu, Yao, and

Higuchi 2000; Rosen 1996; Sharkey 1998; Yao and Liu 1996; Yao and Liu 1997; Yao

and Liu 1998a).

3.1 A theoretical perspective: why an ensemble is better

than a single network

An ensemble is a collection of predictors that can be combined to give an over-

all prediction.

In Chapter 2, we have discussed the issues of the so called bias/variance dilemma,

which can be restated as follows: the best model on a training dataset should minimize

the difference between the model's output and the expected output. However, this min-

imization process has not considered the possibility of noise in the data. It will also

attempt to �t any noise that may exist in the training set and thus, when presented with

unseen data, it may perform poorly. Such a model is said to have small bias and high

41
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Figure 3.1: Ensemble of predictors

variance. On the contrary, a model with small variance and high bias is one that is less

dependable on the training set (e.g. a linear model). The motivation is to �nd a trade-off

between these two components: the bias and the variance.

The motivation behind ensemble research is to �nd such a tradeoff, by com-

bining models which possess different bias/variance abilities. Intuitively, the average of

these different biases/variances approaches the optimal tradeoff. Some researchers have

attempted to derive a theoretical framework to prove that this intuition is valid (Krogh

and Vedelsby 1995; Tumer and Ghosh 1996; Ueda and Nakano 1996).

3.1.1 Ambiguity decomposition

Krogh and Vedelsby (Krogh and Vedelsby 1995) have shown in the regression

context that the quadratic error of an ensemble of predictors is guaranteed to be less than

the average quadratic error of the individual predictors.

(fens − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − fens)
2 (3.1)

where fens =
∑

i wifi is the combination of the individual estimators' outputs

fi.

The �rst term is the weighted average of the errors of the predictors (i.e. ac-
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curacy) while the second term measures the amount of variability (i.e diversity) of the

predictors in the ensemble, and thus is called the Ambiguity term. Since the ambigu-

ity term is always positive, it guarantees that the ensemble error is always less than the

weighted average of the individual predictors. However, although increasing the ambigu-

ity term reduces the overall ensemble error from the weighted average of the members'

errors, it also tends to increase the individuals' errors and consequently increases the �rst

term. In other words, diversity alone is not enough, a correct balance between accuracy

and diversity is essential to guarantee a better error for the ensemble (Brown 2004).

3.1.2 Bias-variance-covariance decomposition

Although the ambiguity decomposition is useful in increasing the accuracy of

the ensemble, it has not attacked the problem of generalization. Ueda and Nakano (Ueda

and Nakano 1996) have derived another useful decomposition, based on the original Bias-

Variance decomposition for a single estimator.

If the output of the ensemble is a simple average of the individual outputs,

fens =
1

M

∑
i

fi (3.2)

then, the mean square error of the ensemble is

E[(fens − d)2] = bias
2
+

1

M
var + (1− 1

M
)covar (3.3)

where bias, var and covar are the average conditional bias, conditional variance, and

conditional covariance averaged over all individual estimators respectively (a more de-

tailed derivation may be found in (Ueda and Nakano 1996)).
bias = 1

M

∑M
i=1 bias{fm}

var = 1
M

∑M
i=1 var{fm}

covar = 1
M(M−1)

∑
i

∑M
j,j 6=i Cov{fi, fj}

This decomposition indicates that the generalization error of the ensemble also
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depends on the correlation between the individual estimators. Thus, an ensemble in

which individual experts are uncorrelated (i.e. diverse) generalizes better. However,

this decomposition is limited to the simple average combination method for regression

predictors.

3.1.3 Error correlation in classi�cation

Tumer and Ghosh (Tumer and Ghosh 1996) attempted to provide a theoretical

framework for decomposing the error function in a classi�cation context. They assumed

that individual classi�ers estimate the a posteriori class probability. These estimates are

then averaged, to provide the �nal estimation of the ensemble. Since the estimated bound-

ary may not be the same as the optimum boundary, the total error can be decomposed into

two terms: the normal Bayes error Ebayes and an added error Eens
add:

Etotal = Ebayes + Eens
add (3.4)

Because the Bayes error cannot be altered, the ensemble can only be enhanced

by changing the second term. The added error of the ensemble Eens
add was derived as

follows:

Eens
add =

1 + δ(M − 1)

M
Eind

add (3.5)

where Eind
add is the added error rate of the individual classi�ers, assumed to be equal for

all classi�ers. δ is the correlation between the errors of each classi�er. Thus, if the errors

of the classi�ers are fully correlated (i.e. δ = 1), no improvement happens with the

ensemble, i.e Eens
add = Eind

add. However, if the errors are uncorrelated (e.g δ = 0), then the

added error of the ensemble is reduced by M, i.e. Eens
add =

Eind
add

M
.
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3.2 Forming and selecting the individual networks

By combining the opinions of several �different� individuals or �experts�, the

system's generalization ability can be enhanced (Krogh and Vedelsby 1995; Tumer and

Ghosh 1996; Ueda and Nakano 1996; Yao and Liu 1996). Consequently, the ensem-

ble literature mainly focuses on two important issues, namely accuracy and diversity.

Accuracy refers to the ability of each individual predictor to learn and predict the cor-

rect underlying distribution of the data; and diversity (or �difference�) refers to different

bias/variance trade-offs.

3.2.1 Accuracy issues in classi�cation

Bouckaert (Bouckaert 2002) de�ned the accuracy of an ensemble under 0-1

loss as �the one minus the 0-1 loss of the classi�er, i.e. A = 1 -L� where the loss function

is a function �that compares the prediction of a classi�er with the true value of y and

maps it onto a real value� (y is the data distribution). In (Bouckaert 2002), Bouckaert

derived a framework for the upper and lower bounds of ensemble accuracy based on the

mean accuracy of the individual classi�ers. His proof stated that ensemble accuracy can

never exceed twice the mean accuracy of the individuals, and can never decrease below

twice the mean accuracy minus 1.

Dietterich (Dietterich 1997) de�ned an accurate classi�er as one which has an

error rate of better than random guessing on new x values. He also examined the three

fundamental reasons why an ensemble works better than its individual components: (i)

statistically: by combining a set of classi�ers, the chance of selecting a wrong classi�er

is reduced, (ii) computationally: a classi�er with local search often gets stuck in local

minima and thus, by combining classi�ers with different local search points, the sys-

tem could better approximate the true unknown function, and (iii) representationally: a

weighted sum of hypotheses drawn from the hypothesis space H may expand the space

of representable functions.
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3.2.2 Diversity issues

Diversity requires that the individual members of an ensemble be different. In

many cases, accuracy and diversity are in con�ict. It is sometimes not recognised that

selecting a set of most accurate predictors may result in an ensemble of self-similar ones.

This is undesirable, because a self-similar ensemble is no better than a single predictor.

Hence, in designing neuro ensembles, one has to take into account these two tightly

coupled performance indicators.

Researchers have been attempting to verify the relationship between diversity

and the ensemble's generalization (Kuncheva 2003b). To build this understanding, one

has to answer a number of questions: (i) how to de�ne and measure diversity, (ii) which

diversity promotion mechanisms to use, and (iii) how to use diversity to improve the

ensemble? (Kuncheva 2003b).

3.2.2.1 How to de�ne diversity?

A number of researchers (Krogh and Vedelsby 1995; Ruta and Gabrys 2001;

Tumer and Ghosh 1996; Ueda and Nakano 1996) have attempted to provide a framework

to decompose the error term of the ensemble in order to isolate the contributions/effects

of accuracy and diversity on the overall performance. Often, a correlation term between

individuals in the ensemble is identi�ed as the source of diversity. Following these dif-

ferent decompositions, (Rosen 1996; Yao and Liu 1996; Yao and Liu 1997; Yao and Liu

1998a; Liu, Yao, and Higuchi 2000) derived a negative correlation concept to promote

diversity among the neural network members of the ensemble. Their results showed a

possible reduction in the ensemble error.

However, as shown in (McKay and Abbass 2001) and in our own experiments

in chapter 4, the diversity of the ensemble with negative correlation can be very poor.

As ensemble diversity is often de�ned as the total differences (or distances) between all

pairs of classi�ers in the ensemble; therefore, an ensemble with high diversity is one in

which each classi�er is as different (or further away) from all others as possible. McKay
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and Abbass revealed that negative correlation learning only acts to push the members of

the ensemble away from their mean, but not necessarily away from each other. Therefore

low diversity with negative correlation learning is not a particular surprise. A simple

demonstration of such situation can be seen in Figure 3.2. The experts of ensemble in (a)

are grouped in two dense clusters, therefore although the distance from each expert to the

ensemble mean is high, the total distances between all pairs of experts (i.e. diversity) are

low. On the other hand, the experts of ensemble in (b) are pushed away from each other,

thus, the total distance is higher.

Figure 3.2: An example of ensembles with (a) low and (b) high diversity

Moreover, as noted by Kuchenva (Kuncheva 2003b), the results of correlating

different diversity measures to the ensemble errors are discouraging. There is not yet any

obvious link between injecting diversity into the ensemble, and improving its general-

ization ability. In other words, it is still an open question whether the diversity of the

ensemble does assist in generalization, and if so, in what way it is useful.

3.2.2.2 Diversity measures

In the literature of ANNs and EC, a number of diversity measures have been

proposed. They range from statistically to mathematically to biologically inspired mea-

sures. Krogh and Vedelsby (Krogh and Vedelsby 1995) de�ned diversity as the degree

of disagreement (ambiguity) between two classi�ers. Some researchers (Cunningham

and Carney 2000; Cho, Ahn, and Lee 2001; Cho and Ahn 2001; Kuncheva 2003b) bor-

rowed different measurements from the �eld of information theory to de�ne diversity,

notably entropy (e.g. the Kullback-Leibler distance). Others applied statistical concepts
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(e.g. Kappa statistics, Q-statistics, etc..) to compute the dissimilarity between classi�ers

(Kuncheva 2003b; Ban�eld, Hall, Bowyer, and Kegelmeyer 2003).

Diversity can be measured on different levels in an ensemble. Kuncheva (Kuncheva

2003b) distinguished between the data point level and the classi�er level. In the former,

the diversity is computed based on the entropy of the distribution of class labels among

the classi�ers with respect to a certain data point; thus, the diversity in a dataset with N

data points is the average of N within-population diversity measurements, corresponding

to the populations at the N data points. In the latter level, some pairwise measure of di-

versity between two classi�ers (e.g. measure of disagreement (Kuncheva 2003b; Skalak

1997; Zenobi and Cunningham 2001)) is de�ned, and the diversity of the ensemble is

taken to be the average over all possible pairs.

3.2.2.3 Diversity promotion mechanisms

The next question is how to design such a mechanism to promote diversity

in the population. Diversity has been studied in a wide range of �elds. Biologists have

struggled for decades to understand the mechanisms causing the diversity in the biosphere

(bio�diversity) (Standish 2002). EC researchers have been trying to solve the problem

of early (premature) convergence and diversity promotion for a considerable time (Lau-

manns, Thiele, Deb, and Zitzler 2002; Horn, Goldberg, and Deb 1994; Spears, Jong,

Bäck, Fogel, and de Garis 1993; Toffolo and Benini 2003; Zitzler 1999). Furthermore,

in the literature of ensembles of classi�ers, a number of theoretically motivated mech-

anisms have been proposed, aiming to promote useful diversity among the members of

an ensemble of classi�ers (Brown 2004; Brown, Wyatt, Harris, and Yao 2004; Chan-

dra and Yao 2004; Liu, Yao, and Higuchi 2000; Rosen 1996; Yao and Liu 1996; Yao

and Liu 1997; Yao and Liu 1998a; Zenobi and Cunningham 2001). Diversity promotion

mechanisms will be discussed in section 3.4.
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3.3 Gates in ensemble learning

Currently there are four popular combination methods, namely, majority vot-

ing, winner-take-all, simple averaging and weighted averaging. These are described be-

low.

Majority voting In this combination method, the output of the ensemble is the

binary output value which receives the vote of the majority of networks in the ensemble.

Winner-take-all In the winner-take-all method, the ensemble output is the out-

put of the network whose output is maximally different from the classi�cation threshold

(e.g. 0.5).

yens(
−→x i) = argmax,j(|ŷj(

−→x i)− threshold|) j ∈ [1, Nc] (3.6)

Simple averaging In the simple averaging method, the output of the ensemble

is the mean of the individual outputs of the networks.

yens(
−→x i) =

Nc∑
j=1

ŷj(
−→x i)/Nc (3.7)

Weighted averaging In the weighted average method, a weight αj is assigned

to each ANN member in the ensemble. The output of the ensemble is a linear combina-

tion of the output of the individual networks with the assigned weights as the coef�cients.

yens(
−→x i) =

Nc∑
j=1

αj ŷj(
−→x i)/Nc (3.8)

Peronne and Copper (Perrone and Cooper 1993) presented a theoretical frame-

work for simple averaging, and generalized (through weights) the averaging mechanisms.

Theoretically, the generalized averaging mechanism should perform better than simple

averaging (Perrone and Cooper 1993) in the mean square error sense. Following this

demonstration, Jimenez (Jimenez and Walsh 1998) attempted to derive a procedure to dy-

namically weight the certainties of the individual classi�ers. Zhou et al (Wu, Zhou, and
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Chen 2001; Zhou, Wu, and Tang 2002; Zhou, Wu, Jiang, and Chen 2001) also weighted

the contribution of the members to the generalization improvement, and thus, selected

the highly contributing members to form a weighted average ensemble. Fumera and Roli

(Fumela and Roli 2002) theoretically and experimentally compared simple averaging and

weighted averaging fusion gates. Their results showed that �weighted averaging signif-

icantly improves the performance of simple averaging only for ensembles of classi�ers

with highly imbalanced performance and correlation�. Thus, the advantage of weighted

averaging over simple averaging is quite small. This argument was supported by the ex-

perimental results in (Ueda and Nakano 1996). Pennock et al. (Pennock, Maynard-Reid

II, Giles, and Horvitz 2000) examined different combination gates for the classi�cation

problem. They identi�ed several properties for the combination gates such as universal-

ity, independence of irrelevant information, scale invariance, neutrality, symmetry and

positive responsiveness. Their analysis showed that no combination gate possesses all of

these properties.

Beside these popular fusion methods, Sharkey (Sharkey 1998) mentioned a few

other methods. Sharkey divided the combination gates into four categories: (1) averaging

and weighted averaging, (2) non-linear combining methods (e.g. voting and rank-based),

(3) supra Bayesian, which is based on the probability distribution of the experts' opinions

, and (4) stacked generalization.

3.4 Review of diversity promotion mechanisms

3.4.1 Methods based on data manipulation

3.4.1.1 Data sampling

One popular method to generate diverse members for an ensemble is to sample

the training data into different subsets. The purpose is to create subsets of training data

such that each subset has at least some data that do not exist in other subsets. Because
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each subset is used to train a member of the ensemble, it is likely that the ensemble mem-

bers are different from each other, i.e. the errors are likely to have reduced correlation,

compared with ensemble members trained on the same data.

A number of techniques can be used to sample data from a training dataset.

The simplest method is to divide the training data into disjoint datasets (Sharkey 1998;

Sharkey 1996). However, this method works better with large datasets than with small

datasets, where the resultant disjoint subsets may be small enough for a neural network to

over-�t the data. Krogh and Vedelsby (Krogh and Vedelsby 1995) used cross-validation

as their sampling method. A cross-validation strategy, also called leave-some-out, works

by removing a number of data points out of the training data to form the validation set.

A network is trained on the training set and tested on the validation set. A k-fold cross-

validation is a mechanism in which the training set is divided into k disjoint subsets. The

training set is composed of (k − 1) subsets; and the k-th subset forms the validation set.

One way to use cross-validation is to train individual networks on k different training

sets, and use the different validation sets to estimate the generalization error. Another

approach is to test the validity of a method by training the networks with k different

collections of data (a collection here refers to the corresponding subsets of training, val-

idation and testing data); and then use the average error of the k collections as the true

estimated error of the method.

Efron (Efron 1982) introduced a re�sampling method called bootstrapping; and

Breiman (Breiman 2000) proposed another re�sampling method called bagging. Both

involve sampling the dataset, with replacement, into N subsets. However in bagging,

where the probability given to a pattern is 1
N

across N data points in the original training

set, an adaptive scheme will change this probability in favor of the data that are currently

misclassi�ed.
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3.4.1.2 Boosting and arcing

These techniques are also based on sampling the training data, but the differ-

ence lies in the adaptive re�sampling scheme. The original boosting method (Schapire

1990) works as follows: create the �rst network and train it on a subset of the training

data. This network is then used to select a training set for the second network by select-

ing a distribution of correctly classi�ed and misclassi�ed patterns out of the remaining

patterns. Then the second trained network will jointly work with the �rst one to �lter the

patterns for the next network. In summary, this process will add a network based on the

disagreement of the previous trained networks on �new� data.

The original boosting method has a problem in that it requires a large dataset.

To solve this problem, Freund and Schapire (Freund and Schapire 1995; Freund and

Schapire 1996) proposed an algorithm that adaptively resampled and combined - hence

the name arcing - the data in such a way that the weights in the re�sampling were in-

creased for the most misclassi�ed cases; the combining was done by weighted voting.

The best known variant of arcing is the so called Adaboost (Schapire 1999), which can

be used with small training datasets by assigning a weight to each data pattern. These

weights are updated to favor the patterns most misclassi�ed by the networks of the cur-

rent round. A number of modi�ed methods based on Adaboost have been proposed. Oza

(Oza 2003) proposed AveBoost, which uses a training example weight vector based on

the performance of all preceding networks, rather than the previous one alone. Kuncheva

(Kuncheva 2003a) attempted to derive a mathematical framework for the error bound

of different versions of Adaboost, namely aggressive Adaboost and Conservative 1 and

Conservative 2 Adaboosts. These modi�ed versions of Adaboost differ from the original

in the way they punish previous successful or unsuccessful outcomes.

3.4.1.3 Other data varying methods

Beside these popular methods to vary the training data (and hence vary the

resultant members of the ensemble), there are a number of other methods. These in-
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clude distortion of the input data by adding noise (Raviv and Intrator 1999), or selecting

different feature subsets of the feature space (Zenobi and Cunningham 2001; Oliveira,

Sabourin, Bortolozzi, and Suen 2003; Opitz and Shavlik 1996). Another way is to select

the input data from different data sources, (e.g. different sensory data (Sharkey 1998;

Sharkey 1996).

Tumer and Gosh (Tumer and Ghosh 1996) tested four different methods based

on correlation reduction: (i) cross-validation to partition training data; (ii) pruning input

features to generate new training sets; (iii) re�sampling, and (iv) weighted averaging of

individual networks, where the weights are a function of the inputs (so that in each input

region, one network gets more weight than the others). Their results showed that except

for the �rst method, which showed some promising results, the methods did not provide

signi�cant improvement over the base results. Moreover, it was dif�cult to �ne tune

the methods since �a small change in the design step lead to large changes in combiner

performance� (Tumer and Ghosh 1996).

3.4.2 Methods based on explicit diversity mechanisms

3.4.2.1 Diversity based on networks' correlation

Knogh and Vedelsby (Krogh and Vedelsby 1995) has proposed another bias/variance

decomposition designed for ensembles of predictors. They de�ned a term �Ambigu-

ity�, which measures the disagreement of a member with the overall ensemble output

(weighted average) (Krogh and Vedelsby 1995). The ensemble ambiguity was computed

as the weighted average of the individual networks' ambiguities. Thus the error of the

ensemble, E, could be decomposed into the weighted average of the generalization error

of the individual networks, E, minus the weighted average of the ambiguities, A.

E = E − A (3.9)

This ambiguity term captured all correlations between networks (Krogh and
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Vedelsby 1995). Their decomposition scheme suggested that increasing the negative

correlation between networks could reduce the ensemble error. Based on this suggestion,

a number of methods have been proposed for incorporating negative correlation during

the training of individual networks in the ensemble.

Rosen (Rosen 1996) incorporated a decorrelation measure that penalizes corre-

lations between networks. Similarly, Liu and Yao (Liu, Yao, and Higuchi 2000; Yao and

Liu 1996; Yao and Liu 1997; Yao and Liu 1998a) proposed the negative correlation learn-

ing method, which adds the correlation between networks as a penalty term to the error

function. This penalty term was computed based on the disagreement of every network

output in the ensemble with the ensemble's output (using the average). In other words,

negative correlation methods aims to diversify the member networks by decorrelating

them.

3.4.2.2 Diversity based on evolutionary computation

Another way to generate diversity in the ensemble is to borrow diversity mech-

anisms from other disciplines, such as evolutionary computation. Lee et al (Cho, Ahn,

and Lee 2001; Cho and Ahn 2001) applied speciation to diversify their evolutionary neu-

ral networks. Abbass (Abbass 2003b) proposed to use the Pareto-based multi-objective

method to evolve a group of networks that differ from each other in respect of the ob-

jectives. He suggested a number of objectives which could be used to promote diversity

between networks. The �rst approach was to contrast the architecture's complexity with

the generalization error of the ensemble. Another approach depended on sampling the

data, where the dataset is divided into subsets, whose training errors serve as the objec-

tives. The third suggestion was to inject noise to distort the output, and use the distorted

output as the second objective in competition with the original output. The second ap-

proach was found to produce the best results.
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3.4.2.3 Other diversity mechanisms

As mentioned above, noise injection into the output could serve as a source

of diversity. The effects of noise injection in the output level range from changing the

bias/variance distribution to diversifying the models. Christensen (Christensen 2003) in-

troduced an output distortion mechanism, in which the outputs are distorted by displacing

them by amounts selected from a �xed set of predetermined values. The distortion was

conducted such �that the average distortion applied to each data points output values is

exactly zero�. Their results showed an interesting characteristic, contrasting with the

common belief that individual networks in an ensemble should have low bias and high

variance. He showed that large bias networks might also be useful, if the correlation

component between them were large enough to overcome the bias component.

Most of the above ensemble methods used the same architecture for the indi-

vidual networks. Another way to handle the diversity issue was to vary the networks'

architectures. Abbass (Abbass 2003b) used the number of hidden units as a possible

objective in his multi-objective-based technique. Yao et al also introduced architecture

variations in their EPNet model (Liu, Yao, and Higuchi 2000; Yao and Liu 1996; Yao and

Liu 1997). Renner (Renner 1999) used cascade correlation as the constructive method;

however the selected neural networks did not require diversity on the architecture level.

Thus, although the study used the cascade correlation method, the source of diversity

actually derived from the data varying techniques.

3.4.3 Using diversity as a criterion to select the members for an en-

semble

So far, we have recorded that diversity is widely used in constructing the indi-

vidual networks for the ensemble. Another important component that may determine the

success of an ensemble technique is a pruning process (through which members should

be removed from the ensemble). Selection is an important issue because:
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• using identical networks in the ensemble is pointless. Thus, a �rst heuristic goal is

to remove identical networks.

• networks with very low accuracy may deteriorate the whole ensemble. According

to the ambiguity formula (Krogh and Vedelsby 1995), E = E −A, including high

error networks will greatly increase the �rst term, which is undesirable unless there

is a more-than-compensating bene�cial increase in the second term of at least E

(Christensen 2003).

• networks that are positively correlated should not be included together. This argu-

ment is derived directly from the ambiguity formula. Positive correlation between

networks entails a reduction in A, and thus a possible increase in the ensemble's

error, E.

There are a number of different ways to make use of diversity in network selec-

tion. Perrone and Cooper (Perrone and Cooper 1993) introduced the use of the correlation

matrix Cij , where the entries represent the correlations between networks. They dis-

cussed how this correlation matrix could be ill-conditioned, due to duplicate and nearly

duplicate networks. Thus, it is essential to remove these duplicates. The correlation ma-

trix, representing diversity, could be used to remove the duplicates. They also came up

with an inequality condition for adding sets to the ensemble.

Similarly, Zhou et al (Zhou, Wu, and Tang 2002) derived a condition for re-

moving networks from an ensemble. They proposed a method called GASEN (Zhou,

Wu, and Tang 2002; Wu, Zhou, and Chen 2001; Zhou, Wu, Jiang, and Chen 2001),

which assigned weights to individuals according to the contribution of the networks to

the ensemble. These weights, used to prune the networks, were evolved using a genetic

algorithm programmed to �nd an optimum contribution distribution of the individual sets

in the ensemble.

Aksela (Aksela 2003)) compared six different methods for selecting the mem-

bers, based on six diversity measures: (i) Correlation between errors (ii) Q-statistics (iii)
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Mutual information (iv) Ratio between different and same errors (v) Weighted count of

errors and correct results (vi) Exponential error count. The results favor the exponential

error count method, which weights identical errors made by classi�ers in an exponential

fashion, and normalizes it with the number of data points where all members are correct.

Navone et al (Navone, Verdes, Granitto, and Ceccatto 2000) proposed an in-

cremental approach. At every stage, the system searches for a new member which is

partially anti-correlated with the current members in the ensemble. However, in their

paper (Navone, Verdes, Granitto, and Ceccatto 2000), diversity does not directly result

from their method but is rather a theoretical result stemming from the assumption that

an added member must reduce the ensemble error. It was not clear if this theoretically

expected diversity did in fact emerge in the ensemble.

Ban�eld et al (Ban�eld, Hall, Bowyer, and Kegelmeyer 2003) de�ned another

diversity measure - the Percentage Correct Diversity Measure - which counts the number

of data instances which are correctly classi�ed by between 10% and 90% of the classi-

�ers. In addition, they proposed two different diversity based mechanisms to thin out

the classi�ers in the ensemble's pool. However, they used C4.5 decision trees as the

classi�ers in their research, rather than neural networks.

Oliveira et al (Oliveira, Sabourin, Bortolozzi, and Suen 2003) introduced multi-

objective methods to two aspects of ensemble classi�cation: feature selection and mem-

ber selection. The argument is that Pareto optimality displays characteristics suitable for

diversity and ensemble (Abbass 2002a; Kuncheva 2003b; Oliveira, Sabourin, Bortolozzi,

and Suen 2003). The second level incorporates selecting the subset of networks that

promote maximum recognition rate, and maximization of ambiguity (diversity) using a

Pareto-based approach. Although the method seems to perform well, there is no concrete

validation of the claim that the members are diverse.

Both (Oliveira, Sabourin, Bortolozzi, and Suen 2003) and (Abbass 2003b) used

Multi�objective Optimization Problem (MOP) as the main mechanism to promote diver-

sity among the members of the ensemble. However, because of the crisp comparison
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being used in MOP, the networks could be very similar, yet MOP could still pick out a

subset with �highest� diversity, though �highest� may result from a very small difference

from the lesser values, e.g. 3.5 > 3.4999.

Lazarevic and Obradovic (Lazarevic and Obradovic 2001) derived their prun-

ing method based on an unsupervised clustering algorithm, where the distance between

clusters represents the diversity of classi�ers. The algorithm incrementally increases the

number of clusters until the diversity between clusters deteriorates, then the clusters are

removed, leaving only their centroids.

3.5 Automatic problem decomposition

One important application of ensembles is automatic problem decomposition

(APD). Often, a real world problem is too complicated for a single individual to solve.

The Divide-and-Conquer strategy has proven effective in many of these complicated situ-

ations. The questions that may arise in this research area are (i) how to divide the problem

into simpler tasks, (ii) how to assign individuals to solve these subtasks and (iii) how to

put the whole system back together. As mentioned previously, most real�world problems

are too complex to be hand�designed, thus, it is desirable to have a method to automat-

ically decompose a complex problem into a set of overlapping or disjoint sub problems,

and to assign one or more specialists to each of these subproblems. The remaining ques-

tion is how to combine the outputs of these experts if the decomposition scheme is not

known in advance.

In the previous section, we have discussed a number of combining methods,

including methods to generate weights for the experts. In these methods, the weight-

generating module is often disconnected from the training of the experts themselves.

However, since these weights more or less represent the networks - one might consider

these weights acting as the con�dence levels of the experts - we argue that it is more

practical to train the experts together with the weight-generating module.
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A second way to create a modular ensemble of ANNs is to apply a new paradigm

from evolutionary computation research, namely cooperative coevolution. Its main mo-

tivation is to generate a system of subcomponents that must cooperate for it to perform

well. A number of authors have investigated this direction (Garcia-Pedrajas, Hervas-

Martinez, and Ortiz-Boyer 2005; Khare, Yao, Sendhoff, Jin, and Wersing 2005). In both

of these approaches, �xed size arti�cial neural networks are trained on some aspect of

the problem. Another possible way to accommodate automatic task decomposition is to

grow, prune and differentiate an ANN to a modularized structure (Ishikawa and Yoshino

1993). In a sense, this third method is a bridge between a single huge modularized ANN

and an ensemble of ANN.

3.5.1 Mixture of experts

Jacobs (Jacobs, Jordan, Nowlan, and Hinton 1991; Jacobs, Jordan, and Barto

1991) has proposed a method of ensemble training and combination called the mixture of

experts model. It is based on the Divide-and-Conquer principle. In their method, instead

of assigning a set of combinational weights to the experts, an extra gating component

is used to compute these weights dynamically from the inputs (Figure 3.3). This gating

component is trained together with other experts through a specially tailored error func-

tion. The training localizes the experts into different subsets of the data while improving

the system's performance. In the ME model, experts may be of any type, e.g. ANNs or

C4.5 trees, but the gating is often an arti�cial neural network. Jordans and Jacobs (Jor-

dan and Jacobs 1992; Jordan and Jacobs 1994) also extended the model to the so-called

hierarchical mixture of experts, in which each component of the ME model is replaced

with a Mixture of Experts. Since Jacobs' proposal of the ME model in 1991, there has

been a huge volume of literature on the topic.

Some researchers (Alexandre, Campilho, and Kamel 2004; Jordan and Xu

1993; Kang and Oh 1997) derived a statistical understanding of the workings of the ME

model. Waterhouse (Waterhouse, MacKay, and Robinson 1996; Waterhouse 1997) and
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Figure 3.3: ME architecture

Moerland (Moerland 1997a) have applied the Bayesian framework to design and explain

the ME model. According to their interpretation, the ME outputs can be considered as es-

timates for the a-posteriori probabilities of class membership (Moerland 1997a); thus, the

Bayesian framework can be used to design the training error function (Bishop 1995) and

estimate the parameters for the ME model (Waterhouse, MacKay, and Robinson 1996).

Besides the traditional ME model, a large number of variants have been put

forward. Waterhouse and Cook (Waterhouse and Cook 1997) and Avnimelech and Cook

(Avnimelech and Intrator 1999) proposed to combine ME with the boosting algorithm.

They argued that boosting encourages classi�ers to be experts on those patterns that the

previous experts disagree on. As a result, it should be able to split the dataset into regions

for the experts in the ME model, and thus ensure localization for experts. On the other

hand, the dynamic gating function of the ME ensures a good combination of classi�ers

(Avnimelech and Intrator 1999). Tang et al (Tang, Heywood, and Shepherd 2002) tried

to explicitly localize the experts by applying a self organizing map to partition the input

space for the experts. Wan and Bone (Wan and Bone 1996) used a mixture of radial basis

function networks to partition the input space into statistically correlated regions, and to

learn the local covariation model of the data in each region.
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3.5.2 Co-evolved ensembles

In recent years, the use of multi-population-based EAs has attracted attentions

as the next level of parallelization. One architecture uses coevolution, based on the co-

evolution of multiple species in real ecosystems. There are two types of coevolutionary

systems, namely competitive (Rosin and Belew 1995; Rosin and Belew 1997) and coop-

erative coevolution (Potter 1997; Potter and De Jong 2000). In this thesis, we focus on

applying cooperative coevolutionary systems to the mixture of experts model.

A coevolutionary algorithm is an evolutionary algorithm, usually involving

multiple populations, in which the �tness of each individual depends on its interaction

with individuals from other populations. In other words, the �tness of an individual

results from the individual reciprocal interaction with other individuals. However, one

may ask about the nature of this interaction. Waterhouse (Waterhouse 1997) de�ned the

following classi�cation of measures de�ned over a system:

1. Objective measure: A measurement of an individual is objective, if the measure

considers that individual independently from any other individuals, apart from any

scaling or normalization effect.

2. Subjective measure: A measurement of an individual is subjective if the measure

is not objective

3. Internal measure: A measurement of an individual is internal if the measure

in�uences the course of evolution in some way.

4. External measure: A measurement of an individual is external if the measure

cannot in�uence the course of evolution in any way.

5. De�nition of a coevolutionary algorithm: An EA that employs a subjective in-

ternal measure for �tness assessment.

However, from this de�nition, it is hard to distinguish the coevolutionary con-

cept from the more traditional EA concept for a single-population. Is it essential to have
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multiple populations for a coevolutionary algorithm? In the literature of coevolution,

this is still a muddy area. However it is widely accepted that a coevolutionary algorithm

should involve more than one population, and the �tness evaluation of individuals in one

population should be in�uenced by the �tness evaluation of other individuals from other

populations.

However, what kind of interaction should an individual in one population have,

for �tness evaluation, with indivduals from the other populations? Should it resemble the

predator-prey relationship, where each species has to derive better and better strategies

in order to survive (competitive coevolution)? Or should the problem be considered as a

�big picture�, in which each sub�population evolve to cope with one part of this whole

picture (cooperative coevolution)? The answer depends on the nature of the problem. In

the next section, we will limit our discussion to the cooperative coevolutionary algorithm,

since it is what is needed in this thesis.

3.5.3 Cooperative co-evolutionary algorithms

Potter and De Jong (Potter 1997; Potter and De Jong 2000) developed a general

framework to construct and evaluate cooperative coevolution. The architecture involves

two or more isolated sub�populations interacting through a �tness evaluation mechanism.

The species are encouraged to cooperate with one another by rewarding them based on

how well they cooperate. These species in general are isolated from each other, i.e. they

stay in different niches or sub�populations, and evolve without interaction with each

other other than through the �tness measure.

Algorithms 3 and 4 describe the principal procedures for operating a CC. A

primary driver of the system is the collaborative �tness evaluation module (Figure 3.4).

It distinguishes CC from traditional multi-population EAs. An individual has to form a

successful collaboration with representatives from other populations, in order to obtain

higher �tness. This credit assignment scheme enforces collaboration between popula-

tions. However, a number of problems remains unsolved under this scheme.
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Figure 3.4: Cooperative coevolutionary algorithm

First, when sub�populations interact, it is possible that they may became self-

similar. Especially, when the number of individuals is large, it is possible that sub�

populations overlap. How to push the sub�populations apart from each other, so that

they can �nd separable niches to live, is a key open research question. Potter et al (Potter

1997; Potter and De Jong 2000) suggested decreasing/increasing the number of sub�

populations when the system stagnates. However, determining the stagnation of a system

is a non-trivial question. A simplistic approach to detecting stagnation is to note when

the best �tness does not improve. However, in some situations, the best �tness may

stabilize while evolution is trying to escape from large valleys. Thus �nding a better way

to measure evolutionary activity is an important open research topic.

Second, suppose we have good populations occupying different niches of the

search space. An important question is how, when bringing them together through col-

laboration, to de�ne a suitable �tness function to model their interaction. The appropriate

form of collaboration is largely dependent on the problem itself, and the way the task is

decomposed into subtasks for each sub�population to specialize on.
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Algorithm 3 Canonical cooperative coevolutionary algorithm
(Potter 1997)

1: t = 0
2: for each species S do
3: initialize Pt(S) to random individuals from a speci�ed range.
4: end for
5: for each species S do
6: evaluate the �tness of individuals in Pt(S)
7: end for
8: while the termination condition is false do
9: for each species S do

10: select individuals for reproduction from Pt(S) based on �tness
11: apply genetic operators to reproduction pool to produce offspring
12: evaluate �tness of offspring
13: replace members of Pt(S) with offspring to produce Pt+1(S)
14: end for
15: t = t + 1
16: end while

Algorithm 4 Fitness evaluation of individuals from species S
(Potter 1997)

1: choose representatives from other species
2: for each individual z from S requiring evaluation do
3: form collaboration between z and representatives from other species
4: evaluate �tness of collaboration by applying it to target problem
5: assign �tness of collaboration to z
6: end for
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3.5.4 Cooperative coevolutionary neuro ensembles

Some recent work directly applies the concept of cooperative coevolution to

the design of ensembles.

• Cooperative coevolution with multiobjective optimization (CCMOP) (Garcia-

Pedrajas, Hervas-Martinez, and Ortiz-Boyer 2005): CCMOP has two levels of evo-

lution. There is a network level, consisting of sub�populations which contributes

ANNs to the ensemble. There is a separate ensemble level, which evolves the gate

and corresponding combinational weights for the ensemble. Multiobjective Opti-

mization algorithms are used at the network level to evolve a set of well-performed,

regularized, cooperative and diverse ANNs; and at the ensemble level to create ac-

curate and uncorrelated ensembles. The use of a MOP mechanism has its own

advantages and disadvantages. The bene�t of the method is that different crite-

ria (i.e. objectives) are considered at the same time, which �ts naturally with the

previously noted bias/variance decomposition or accuracy/ambiguity decomposi-

tion. One can consider each of these con�icted terms as an objective for the MOP

algorithm.

• Cooperative coevolution with radial basis function ANNs (CCRBF)(Khare,

Yao, Sendhoff, Jin, and Wersing 2005): CCRBF also has two levels of evolution:

a module level and an ensemble level. Both the module and the ensemble level

make use of RBF networks. Each sub�population in the module level is designed

to solve a particular sub-task of the whole problem, and the ensemble level pro-

vides the combination of these module networks. The main disadvantage of this

method is its dependence on credit assignment. That is, the �tness of each module

is decided by the contribution of the module to the whole system. To solve the

problem of a �xed number of modules, Khare et al (Khare, Yao, Sendhoff, Jin, and

Wersing 2005) used Potter's idea of adding and removing sub�populations when-

ever the system's �tness stagnates for a long period. Despite its problems, CCRBF
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has merit in that both the structures and the parameters of the modules and the

ensemble can be evolved within the framework.

3.5.5 Regularization in the light of task decomposition and neuro

ensembles

I have discussed a number of regularization methods in chapter 2. This section

will look at regularization in task decomposition.

One can look at the biological nervous system as a single complex system,

or as a set of separate networks corresponding to different functions, with some form

of central network to direct and control these sub-networks. For example, there might

be a network for walking and another for eating, together with a central network to tell

the body when to walk and when to eat. The distinction between these two views are

somewhat blurred. The same fuzzy line may be drawn between the �elds of single ANNs

and ensembles of ANNs, especially in the light of the Mixture of Experts (Jacobs, Jordan,

Nowlan, and Hinton 1991), Dyn�Co (Hansen 2000) and Negative Correlation Learning

(Liu, Yao, and Higuchi 2000). Brown (Brown and Wyatt 2003) has drawn an interesting

connection between these methods. An ME can be considered as an intermediate link

between single ANN and a modular system of ANNs. Dyn�Co with its special penalty

term can alternate between ME and a closed kind of ensemble. NCL �lls in the gap

between Dyn�Co and a pure ensemble of ANNs (Brown and Wyatt 2003). In other

words, the distinction between modular and ensemble systems is no longer clear. In fact,

one can consider a neuro ensemble as a very large decentralized network, in which a

specialized gating module (e.g. a switch) provides a link between the individual experts

(Figure 3.5).

In the previous chapter, I mentioned that regularization can remove redundant

connections in an arti�cial neural network. With careful design, it is possible to construct

a regularization scheme organizing the connection patterns of the ANN into a modular-
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Figure 3.5: An ensemble with averaging combinational mechanism as a super ANN

ized structure.

3.5.5.1 Regularization as a method to modularize the system

Methods such as learning by forgetting have successfully created a form of

modularized structure for task decomposition (Ishikawa and Yoshino 1993), by skele-

tonizing the ANN until it re�ects the regularity in the training data. This method works

well if the data possesses clear regularization characteristics. Although learning by for-

getting has shown its merits in regularizing ANN, it has not been applied to the mixture

of experts.

3.5.5.2 Regularization at the level of modules

At this level, regularization might help to better �t the individual ANN to the

subproblem. It might reduce the redundancy and complexity so that the individual ANN

is localized and generalized to the assigned subtask. This ensures that the subcompo-

nents are different and localized. Waterhouse (Waterhouse 1997) applied weight decay

to regularize the expert network in the Mixture of Experts model. Ramamurti and Ghosh

(Ramamurti and Gosh 1996) used a penalty term to force the gate network in the Mixture

of Experts model to produce softer splitting in the input space, so that each expert can

observe more training data before deciding on its expertise. Since more training data
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entails less likelihood of over�tting, this allows experts to generalize better in their sub

regions of input space. Abbass (Abbass 2003a) suggested using the complexity of the

neuro ensemble (i.e. the number of synapses and/or hidden nodes) as one objective in the

multiobjective optimization-based evolutionary neuro ensemble. Garcia-Predajas et al

(Garcia-Pedrajas, Hervas-Martinez, and Ortiz-Boyer 2005) and Jin et al (Jin, Okabe, and

Sendhoff 2004) applied regularization as an objective in the evolution of the individual

ANN.

3.5.5.3 Regularization at the ensemble level

At this higher level, regularization can be used to prune out an overall individ-

ual neural network if it does not contribute to the ensemble. Another use of regularization

at this level is to determine a suitable ensemble size. For example, Kondo et al (Kondo,

Hatanaka, and Uosaki 2005) used the number of RBF networks as an objective in their

MOP-based ensembles of RBF networks.

3.6 Conclusion

In this chapter I have reviewed the literature of neuro ensembles. It has been

found that combining several neural networks can enhance the generalization of the

whole system beyond the separate generalization ability of the individuals. The two

main issues for neuro ensembles, accuracy and diversity, have also been discussed in de-

tail. I have especially re�ected on how these issues drive neuro ensemble research toward

�nding, selecting and combining a set of suitable individuals to form an ensemble. The

discussion raises a number of important questions in the neuro ensemble literature, such

as how to de�ne, measure and promote diversity within the ensemble.

Finally, this chapter gives an overview of automatic problem decomposition.

The review looks at how neuro ensembles and other mechanisms, such as cooperative

coevolution or learning by forgetting, promote automatic decomposition. The review
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also describes a number of the background ideas for this thesis, including the mixture

of experts model, the cooperative coevolution framework and the learning by forgetting

regularization. In the literature of ANN, of neuro ensembles, and of evolutionary compu-

tation, each of these techniques has been separately analyzed in the context of automatic

problem decomposition, however, a combination of them has not previously been intro-

duced. In this thesis, I will show how these mechanisms can enhance each other, and how

their integration produces an effective neuro ensemble approach to automatic decompo-

sition of classi�cation problems.



Chapter 4

An Empirical Study of Neuro

Ensembles

This chapter is based on (Nguyen, Abbass, and McKay 2004).

The literature of neuro�ensemble has been growing over the last few years.

Hence, I decided to investigate the effectiveness of some ensemble methods in order to

gain insight and understanding of their properties and the way they function, and to con-

struct the basic experimental framework for the later chapters 5,6,7. The investigation

focuses on six methods, namely (i) a simple evolutionary computation with no ensem-

ble (i.e. the best network found all over an evolutionary run is selected), (ii) a memetic,

through back propagation, evolutionary computation with no ensemble, (iii) ensembles

built using simple evolutionary computation, (iv) ensembles built using an island model,

(v) ensembles built using evolutionary computation with negative correlation learning,

and (vi) ensembles built using evolutionary Pareto multi�objective optimization. Besides

exploring the previous methods, I also use two generalization improvement methods:

noise injection and early stopping criteria. The �rst generalization method adds a Gaus-

sian noise in the evolution with the aim of introducing stochastic noise to the �tness

landscape hoping that the evolutionary method will escape a local optima. The second

generalization improvement method uses some criteria, such as performance on a vali-

70
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dation set, to select intermediate networks in the evolutionary run. These networks may

not be the best found network in terms of training error but may have the potential to

generalize better.

4.1 Methods

In this preliminary study, I investigate a number of state-of-the-art neuro en-

sembles in the literature. These include (i) the simple neuro ensemble whose members

are taken straightforwardly from an evolved population, (ii) the island neuro ensemble,

whose members are evolved separately in a set of islands, (iii) the negative correlation

neuro ensemble, whose networks are evolved and trained using the negative correlation

learning proposed by Yao and Liu (Liu and Yao 1999; Liu, Yao, and Higuchi 2000), and

(iv) the multi�objective optimized neuro ensemble, whose networks are evolved using

Pareto-based multi�objective optimization (Abbass and Deb 2003). Although there are

a large number of evolutionary algorithms in the literature, in this thesis, I use the self-

adaptive (µ + λ) evolutionary strategies (Schwefehm 1981), which have been success-

fully applied to evolve ANNs (Binner and Kendall 2002; Eggenberger 2000; Eggenberger

2001; Gabryel, Cpalka, and Rutkowski 2005; Greenwood 1997; Magoulas, Plagianakos,

and Vrahatis 2001) to evolve a population of ANNs to be used in the ensemble. The

evolved ANNs are fused together using three popular gating mechanisms in the neuro

ensemble literature: majority voting, simple averaging and winner-take-all.

4.1.1 Self-adaptive evolutionary strategies (µ + λ)

Evolutionary Strategies (ESs) (Back 1996; Rechenberg 1973; Rechenberg 1994)

were invented for numerical optimization. Let ~x be an n dimensional solution vector

(x1, x2, . . . , xn) for problem P1 and ~σ be the corresponding step�length (σ1, σ2, . . . , σn).

Let µ be the number of parents, where each parent zk is the pair (~xk, ~σk). In the �rst gen-

eration, µ parents are generated at random. In each subsequent generation, λ children
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are generated from the µ parents through recombination and mutation as follows: let

yj = (~xj, ~σj) be the jth child to be generated from the two parents zk = (~xk, ~σk) and

zl = (~xl, ~σl). The child is generated either by discrete recombination or arithmetic re-

combination as follows: for each variable xji in ~xj , do xji = xki or xli for discrete

recombination, or xji = (xki + xli)/2 for arithmetic recombination. The same recombi-

nation takes place for the step�size vectors σ. The child is then mutated as follows:

~x′j = ~xk + ~Rk (4.1)

~σ′j = ~σk (4.2)

where ~Rk is a random vector according to a Gaussian distribution with zero mean and

standard deviation ~σk; that is the probability, Prob(Rki), of the random number Rki ∈ ~Rk

is

Prob(Rki) =
1√

2πσki

exp
− Rki

2σki

2

(4.3)

There are two primary variants of ESs, based on the replacement mechanism.

In the �rst variant, ES(µ + λ), λ children are generated from µ parents. The parents

in the next generation are the µ best solutions among the total µ + λ solutions. In the

second variant, ES(µ, λ), λ children are again generated from the µ parents, but now the

parents in the next generation are the µ best solutions among the λ child solutions from

the previous generation.

The step�size σ can vary during the evolutionary process. In this case, the algo-

rithm is called a self�adaptive evolutionary strategy. The well�known one��fth success

rule is commonly used, where the step�size increases if the ratio of successful mutations

(mutations which produced children better than their parents) to all mutations is greater

than 1/5. Schwefehm (Schwefehm 1981), proposes log-normal self�adaptation, where

a rotation angle is used to adapt the search towards coordinates which are likely to be
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correlated. Given τ and τ ′, the step size σj is perturbed as follows

σ′ji = σji exp(τ ′N(0,1)+τNj(0,1)) (4.4)

where, the values of τ and τ ′ are suggested to be

τ =
1√(

2
√

(n)
) (4.5)

τ ′ =
1√
(2n)

(4.6)

The complete self�adaptive evolutionary strategy algorithm is depicted in Algorithm 5.

Algorithm 5 The self�adaptive evolutionary strategy (µ + λ).
1: randomly generate µ parents, where each parent zk = (~xk, ~σk).

2: set τ =

(√(
2
√

(n)
))−1

and τ ′ =
(√

(2n)
)−1

.
3: repeat
4: repeat
5: select two parents zk = (~xk, ~σk) and zl = (~xl, ~σl) at random to generate child

~yj = (~xj, ~σj).
6: discrete recombination: for each variable xji and step size σji in ~yj , do (xji =

xki and σji = σki ) or (xji = xli and σji = σli).
7: mutation: For each xji and step size σji in ~yj

x′ji = xji + σjiNj(0, 1) (4.7)

σ′ji = σji exp(τ ′N(0, 1) + τNj(0, 1)) (4.8)
8: select the best µ individuals among all the µ + λ parents and children.
9: until λ children are generated

10: until the halting criteria are satis�ed

4.1.2 Simple neuro ensembles

An ensemble (Sharkey 1998) is a set of redundant networks, each by itself

would �provide a solution to the same task�, i.e. predict the target output of an input
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vector. Thus, the output of an ensemble can be computed by feeding the input pattern to

the individual neural nets, getting a prediction from each, and combining their outputs in a

prede�ned fashion, namely a combination gate. The algorithm is presented in Algorithm

6.

Algorithm 6 General neuro ensemble algorithm
1: Input: Population P of neural networks. A set of M examples
2: for each example in the dataset do
3: for each network in the ensemble do
4: present the example to the network to get a predicted output
5: end for
6: using the combining gate to combine the outputs of all the networks in the en-

semble to obtain a common value. This is the output of the ensemble for each
example

7: compare the ensemble's output with the actual value to compute the error rate
(�tness).

8: end for

4.1.3 Island model and ensemble of diversi�ed neural networks us-

ing island model

The Parallel Island model (Adamidis 1994; Back 1996; Lin, Yao, and Macleod

1996) is one type of diversity-promotion mechanisms often used for distributing the com-

putation in an evolutionary algorithm. The main difference between the island model and

a normal evolutionary computation method is the division of the population into sub�

populations in a number of isolated islands. The sub�population occupying each island

is updated independent from other sub�populations. Occasionally, members in neighbor-

ing islands are migrated from one island to another. In one variant of the algorithm, the

best individuals from one island replace the worst individuals of neighboring islands. The

connections between islands can be random or �xed in a sequential and cyclic manner.

Algorithm 7 shows the neuro ensemble with island models.
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Algorithm 7 The self-adaptive evolutionary strategy (µ′ + λ′) with island models.
1: for each island p do
2: randomly generate µ′ parents
3: set migration count to 0
4: end for
5: repeat
6: repeat
7: for each island p do
8: generate λ′ children from µ′ parents.
9: select the best µ′ individuals among all the µ′ + λ′ parents and children.

10: when the stopping criteria are satis�ed, stop.
11: increment migration count.
12: end for
13: until the migration interval is reached
14: for each p = 1 to Nisland do
15: �nd the best individual zp,best in the top µ′ individuals of island p
16: �nd the worst individual zp+1modI,worst in the top µ′ individuals of island p +

1 mod Nisland

17: exchange the individuals zp,best and zp+1 mod Nisland,worst between islands p and
p + 1 modNisland

18: reset migration count to 0.
19: end for
20: until the halting criteria are satis�ed
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4.1.4 Negative correlation learning and ensemble of evolutionary neg-

atively correlated neural networks

Negative Correlation Learning, proposed by Yao and Liu (Liu and Yao 1999;

Liu, Yao, and Higuchi 2000), aims to maximize the difference among the members of the

ensemble by adding a penalty term in each member network's mean squared error (MSE)

function. These penalty terms are computed based on the correlation of the individuals.

The networks are trained using normal back propagation (Haykin 1999).

Let M be the total number of members in the ensemble (often termed ensemble

size). For each pattern ~Xp in the training set, the output of the ensemble F p is computed

as the average of the output Ŷ p(m) , m = 1. . . M of the M individual members.

F p =
1

M

M∑
m=1

Ŷ p(m) (4.9)

The error function for network m is de�ned by

Errorp(m) =
1

P

P∑
p=1

1

2
(Ŷ p(m)− Y p)2 +

1

P

P∑
p=1

λΦp(m) (4.10)

Φp(m) is called the penalty function of network m and pattern p. This represents the

correlation between the networks.

Φp(m) = (Ŷ p(m)− F p)
∑

l 6=m

(Ŷ p(l)− F p) (4.11)

The partial derivative of the error Errorp(m) with respect to the output of network m is

∂Errorp(m)

∂Ŷ p(m)
= (Ŷ p(m)− Y p)− λ(Ŷ p(m)− F p) (4.12)

In other words, the only difference between Negative Correlation Learning and

BP is an additional penalty term of λ(Ŷ p(m)− F p) to the error function.
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4.1.5 Ensemble of diversi�ed neural networks using multi�objective

optimization

Pareto-based methods are potential diversity mechanisms (Abbass and Deb

2003; Abbass 2003b; Kuncheva 2003b). In this set of experiments, I investigate the

feasibility of using Pareto ranking as a source of diversity for the ensemble. In the multi�

objective optimization literature, diversity has been also a main concern. As a result, a

number of methods (Coello Coello 2002; Van Veldhuizen 1999; Zitzler 1999) were in-

vented to solve this problem. A state-of-the-art method, Strength Pareto Evolutionary

Algorithm, was proposed by Zitzler (Zitzler 1999), where the Pareto ranking algorithm

was introduced as a diversity mechanism. The algorithm takes into account the crowding

(based on a special dominance/nondominance ratio) of the population in different regions

and promotes diversity by avoiding crowded regions. This ranking method results in a

wide spread of solutions on the Pareto frontier. To be fair in the comparison, Zitzler's

Pareto ranking algorithm is implemented together with the Evolutionary Strategy algo-

rithm introduced earlier.

Algorithm 8 shows Zitzler's Pareto ranking method, in which an elitist set P ′

is created to hold the accounted non-dominated solutions in the whole population P . For

each member i of the elitist set, a strength function (i.e. crowding �tness) is de�ned as

the number of individuals in the whole population P being dominated by i, normalized

by N , the total number of individuals in the whole population. Hence, the �tness of

a non-dominated individual is always less than 1. Next, for each dominated member

j in the population P , a �tness function is computed as the sum of the strength of the

elitist members that dominate j. To ensure that the non-dominated solutions have better

chance (i.e. lower crowding �tness) to survive, a value of 1 is added to the �tness of the

dominated solutions.

The Pareto ensemble method uses Pareto ranking as the diversity promoting

mechanism. It is similar to the evolutionary ensemble algorithm, the only difference lies
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Algorithm 8 Pareto ranking algorithm.
1: Input: Population P . Population size N
2: create an empty pool P ′

3: copy all non-dominated individuals into P ′

4: for each non-dominated solution z in P ′ do
5: de�ne a strength function

s(z) =
N1

N + 1
(4.13)

where N1 is the number of individuals in P that are dominated by z. Assign a
�tness f(z) = s(z) to item z

6: end for
7: for each dominated solution in P − P ′ do
8: assign a �tness f(z) = 1 +

∑
t∈P ′,t dominates z s(t)

9: end for
10: rank the population in ascending order of the �tness

in the use of Pareto ranking as the mechanism for selection. The training set is split into

two subsets and the multi�objective problem is then to minimize the training error on

each subset.

4.1.6 Other over��tting avoidance methods

4.1.6.1 Noise injection

A random Gaussian noise with zero mean and a standard deviation of σ is

added to the training error (�tness) of the ensemble in each generation. This disturbance

gives networks with bad training �tness more chances to survive because often the ones

with less ability to memorize the training data are the ones which can generalize well.

This noise addition also has the effect of changing the bias/variance distribution of each

individual network (Breiman 2000).

4.1.6.2 Stopping criteria

In this chapter, I investigate three different criteria for choosing the optimal

generation for the ensemble. The �rst criterion is to use the population of the last gener-
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ation to form the ensemble; this is widely used in the literature (Liu, Yao, and Higuchi

2000; Yao and Liu 1996; Yao and Liu 1998a). The second criterion is to form the ensem-

ble in each generation and evaluate it on the validation set. The ensemble corresponding

to the minimum validation error is selected (Algorithm 10). The third criterion is to form

the ensemble from the members of the population achieving the minimum average �tness

on the validation set (Algorithm 11).

Algorithm 9 Without early stopping
1: for gen = 0 to the maximum number of generations do
2: run any techniques.
3: end for
4: form the ensemble E by combining the individuals of the population

Algorithm 10 Minimum error of ensemble on validation set
1: initialize ensemble E to empty, initialize the minimum validation �tness fmin to 1.
2: for gen = 0 to the maximum number of generations do
3: conduct the selected method
4: form the ensemble Ecurrent of all the individual in the population
5: compute the ensemble �tness f on the validation set
6: if f < fmin then
7: set E = Ecurrent

8: end if
9: end for

10: compute and report the testing error of E

Algorithm 11 Minimum average error of population on validation set
1: initialize the population P ′ to empty, initialize the minimum average validation �t-

ness fmin to 1.
2: for gen = 0 to the maximum number of generations do
3: conduct the selected method
4: compute the validation �tness of each individuals in the population and compute

the average favg

5: if favg < fmin then
6: set P ′ = Pµ

7: end if
8: end for
9: form the ensemble E out of the population P ′

10: compute and report the testing error of E
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4.1.7 Gating methods for combining members in the ensemble

As discussed in Chapter 3, there are many ways to combine the individual

ANNs to form the ensemble. In the experiments of this thesis, I exploit the three most

popular combination (gating) methods in the ensemble literature: majority voting, aver-

age and winner-take-all.

4.1.8 Diversity measure

In this initial investigation, I apply a simple diversity measure based on the

average hamming distance of the predicted outputs of all possible pairs of individuals in

the networks. In other words, let N be the number of instances in the training set, M the

number of classi�ers in the ensemble, and −→y m = yi
m, i = 1..N, m = 1..M , where each

entry yi
m corresponds to the binary predicted class of example i in the training set for

classi�er m. Then, the diversity measure for the two binary vectors −→y j and −→y k is

djk =
N∑

i=1

(a(yi
j, y

i
k)) (4.14)

where

a(yi
j, y

i
k) =





0 if yi
j = yi

k

1 otherwise

Finally, the diversity measure of the ensemble is

Dens =
M∑

p=1

M∑

q=1,q 6=p

(dpq) (4.15)



CHAPTER 4. AN EMPIRICAL STUDY OF NEURO ENSEMBLES 81

4.2 An empirical study of neuro ensembles

4.2.1 Hypotheses

The experiments are designed around seven hypotheses; these are:

Hypothesis 1: Combination of local search through learning and evolution

improves the generalization ability

The �rst set of experiments is designed to analyze the effect of combining

learning with evolution. In the literature of evolutionary arti�cial neural networks, it is

still debatable if combining learning and evolution will be better than each alone.

Hypothesis 2: An ensemble of neural networks perform better than individual

networks

The second set of experiments is used to verify the claim by many researchers

(Jimenez and Walsh 1998; Liu and Yao 1997; Liu and Yao 1999; Liu, Yao, and Higuchi

2000; Rosen 1996; Sharkey 1998; Tumer and Ghosh 1996; Ueda and Nakano 1996; Yao

and Liu 1996; Yao and Liu 1997; Yao and Liu 1998a; Zhou, Wu, and Tang 2002) that an

ensemble of classi�ers performs better than individual ones.

Hypothesis 3: Different combination methods yield similar results

In this set of experiments, the members of the ensemble are combined using

different combination gates. I verify the effect of these different combination gates.

Hypothesis 4: Noise injection improves the generalization ability of the ensem-

ble

Noise could be injected in different levels of the system. In this experiment, I

choose to inject a random Gaussian noise to training �tness of the networks in the ensem-

ble with the hope that it could reduce the pressure of evolution to over��t the networks.
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This disturbance gives networks with bad training �tness more chances to survive be-

cause often the ones with less ability to memorize the training data are the ones which

can generalize well. This noise addition also has the effect of changing the bias/variance

distribution of each individual network (Breiman 2000).

Hypothesis 5: Early stopping is useful in avoiding over��tting

The next set of experiments is motivated by the observation frequently seen in

the neural network literature that early stopping could reduce the chance of over��ting

and thus improving the network's generalization ability. However, in the literature of

ensemble, it is not yet clear if different stopping criteria affect the generalization ability

of the ensemble. Therefore, this experiment is designed to explore possible use of early

stopping and possible stopping criteria.

Hypothesis 6: Useful diversity is an important feature of ensemble techniques

Diversity, as seen in the literature review, is a very interesting and important

issue in the ensemble. However, most of the papers in the �eld do not report the actual

diversity of the members in their ensembles. In this initial investigation, three different

diversity mechanisms, namely negative correlation learning, island model and the Pareto-

based bootstrapping model, are examined in two aspects: accuracy and diversity.

The aim here is not to claim if any method outperforms the other. Since there

are many different elements that could affect greatly the performance of a method, and

since the aim of this investigation is to gain an understanding on different mechanisms,

I choose a common evolutionary method with a common parameter setting for all three

mechanisms. There is no guarantee that the chosen evolutionary method and parameters

are optimized for each mechanism.

Hypothesis 7: Architecture complexity is important in the problem of over�

�tting



CHAPTER 4. AN EMPIRICAL STUDY OF NEURO ENSEMBLES 83

Number of Number of Continuous Discrete
Instances Attributes Attributes Attributes

(i) small datasets
Breast Cancer 699 9 9

Australian credit card 690 14 6 8
Diabetes 768 8 8

Liver Disorder 345 6 6
Tic Tac Toe Endgame 958 9 9

Table 4.1: Five datasets from UCI machine learning repository database

It is widely noted that architecture complexity plays an important role in the

generalization ability of neural networks. Small simple networks have less chance to

memorize the training data and, thus, have more bias and less variance. On the other

hand, large and complex networks could capture more of the data but run into the prob-

lem of over��tting the data. Hence, the problem of �nding a suitable architecture for

each problem set is a dif�cult problem. In this experiment, the architecture is varied by

changing the number of hidden units in the hidden layer of the feed�forward neural net-

works.

4.2.2 Datasets

In these preliminary experiments, the hypotheses are tested on �ve standard

datasets (Table 4.1) taken from the UCI Machine Learning Repository (Appdendix B) :

the breast cancer Wisconsin, the Australian credit card assessment, the diabetes, the liver

disorder and the Tic Tac Toe Endgame.

In the experiments, I use ten-fold cross validation for each dataset. A dataset is

divided into ten subsets using the strati�ed sampling method. For each fold, the distribu-

tion of data in the test/validation/training sets is 1/1/8. For each fold, a different pre�xed

random seed is used to generate the required random numbers (e.g. network weights,

noise, crossover and mutation rates) for the method. The method is trained using the

training set, stopped by one of the different criteria, and the ensemble obtained by com-

bining the population at the stopping point is tested on the test set. The �nal result is the
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average of the ten-fold results.

4.2.3 Parameters

Each individual feed�forward neural network consists of a single hidden layer

with 6 hidden units (except in the architecture complexity experiments where 1 to 6

hidden units are used). The evolution is run for a maximum of 1000 generations, unless

an early stopping criterion is satis�ed, with a population of (µ = 20 and λ = 80) for all

methods except the island model, where 10 islands of (µ′ = 2 and λ′ = 8) are used. The

migration interval in the island model method is set to 10 generations.

For the negative correlation learning method, I use a learning rate of 0.1 for

BP with 10 epochs of learning. For the negative correlation penalty coef�cient, I also

test different values ranging from 0.1 to 0.5. The initial experiment showed that 0.2 is a

suitable value for most of the datasets, and thus, it is used in the NCL based experiments.

For the ensemble using MOP, the two objectives are the training errors of the

neural network on two disjointed subsets of the training data.

Finally, for the ensemble method using noise distortion, a Gaussian noise of

zero mean and 0.01 standard deviation is added to the computed training �tness of each

individual neural network.

4.2.4 Results and analysis

The experiments, as discussed above, are carried out on six group of methods:

(i) the simple evolutionary computation, (ii) the memetic (through back propagation)

evolutionary computation, (iii) the ensemble of simple evolutionary computation, (iv)

the ensemble of evolutionary neural networks using the island model, (v) the ensemble of

evolutionary negatively correlated neural networks, and (vi) the ensemble of evolutionary

Pareto based neural networks. Each group consists of a with-noise and a without-noise

experiments. The means and standard deviations of the testing errors in these twelve
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experiments are recorded based on the three stopping criteria. Obviously, there are a

number of different dimensions to be considered such as the use of local search, the

effect of noise injection, the various architecture complexity as measured by the number

of hidden units, and different diversity mechanisms. The large amount of experimental

results are grouped under the seven hypotheses. To verify a hypothesis, an error value is

computed across all other dimensions.

4.2.4.1 Local search helps evolution to �nd better solutions

Table 4.2 shows the results of the �rst set of experiments, in which a simple

EC approach is used to evolve, with and without BP learning, the best neural network to

classify the �ve datasets. These results show that integrating BP to EC (Algorithm 12)

improves the performance of three out of the �ve datasets. The performance enhance-

ment of the Liver Disorder (16%) and Australian Credit Card (11.2%) datasets and the

performance worsening of Breast Cancer Wisconsin dataset (13.3%) are statistically sig-

ni�cant. The results in Table 4.2 implies that BP learning, on the average, helps EC to

�nd better solutions for the classi�cation problem.

Algorithm 12 An evolutionary algorithm with back propagation
1: generate an initial population
2: evaluate the individuals in the population
3: repeat
4: select parents based on their �tness.
5: apply operators such as crossover and mutation to the parents to create offsprings.
6: apply BP to the offsprings
7: evaluate offsprings.
8: form the population for the next generation from the offsprings and/or the current

population.
9: until halting criterion is met

4.2.4.2 Ensemble performs better than individuals

The second set of experiments compares the simple ensemble with the best

individual (without ensemble) approaches. The results are summarized in Table 4.3. The



CHAPTER 4. AN EMPIRICAL STUDY OF NEURO ENSEMBLES 86

Dataset EC EC + BP learning
Breast Cancer Wisconsin 0.030(0.017) 0.034(0.021)
Australian Credit Card 0.150(0.043) 0.134(0.041)
Diabetes 0.242 (0.055) 0.231 (0.044)
Liver Disorder 0.374 (0.054) 0.318 (0.085)
Tic Tac Toe End Games 0.289 (0.041) 0.291 (0.049)

Table 4.2: Memetic effect - means and standard deviations of the error rates of evolu-
tionary ANN with and without BP learning. Bold face in each row indicates statistically
signi�cant result at con�dence level 95%.

results show that the simple ensemble method performs better than the best individual

in three out of the �ve datasets, especially the improvement in the Breast Cancer and

the Liver Disorder datasets are quite signi�cant (10.1% and 10.7% ). In the only dataset

(Tic Tac Toe ) where the best individual outperforms the ensemble, the improvement

is actually quite small (3.6%). As a result, ensemble of neural networks on average

performs better than the best neural network in the population.

Dataset Best Individual Simple Ensemble
Breast Cancer Wisconsin 0.030(0.017) 0.027 (0.014)
Australian Credit Card 0.150(0.043) 0.140 (0.052)
Diabetes 0.242(0.055) 0.242(0.056)
Liver Disorder 0.374(0.054) 0.336(0.075)
Tic Tac Toe End Games 0.289(0.041) 0.299(0.052)

Table 4.3: Mean (and standard deviation) error rates of the best individual and the whole
ensemble. Bold face in each row indicates statistically signi�cant result at con�dence
level 95%.

4.2.4.3 Combination gates perform similarly

Table 4.4 shows that the performance of different gates is similar since each

gate outperforms the other two on at most 2 out of 5 datasets. This suggests that on the

average, the three different gates perform the same.

4.2.4.4 Noise injection improves generalization

Table 4.5 shows the results of the comparison of with and without noise distur-

bance in each dataset. Except in the Breast Cancer Wisconsin dataset, where three out of

�ve methods perform better without noise addition, the remaining four datasets exhibit
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Dataset Majority voting Averaging Winner-take-all
Breast Cancer Wisconsin 0.027(0.014) 0.027(0.017) 0.027(0.017)
Australian Credit Card 0.140(0.050) 0.133(0.048) 0.139(0.050)
Diabetes 0.238(0.043) 0.235(0.041) 0.232(0.037)
Liver Disorder 0.286(0.038) 0.286(0.038) 0.286(0.038)
Tic Tac Toe End Games 0.212(0.042) 0.212(0.042) 0.223(0.044)

Table 4.4: Mean (and standard deviation) error rates of ensembles with three different
combining gates: (i) majority voting, (ii) averaging, (iii) winner-take-all. Bold face in
each row indicates statistically signi�cant result at con�dence level 95%.

a clear preference for noise injection. Also, from Table 4.5, noise intrusion is favorable

for Simple Ensemble and Ensembles with Multi-Objective Optimization methods where

four out of �ve datasets display preference on noise.

In summary, the results from Table 4.5 suggest that the performance could be

improved by introducing a Gaussian noise into the �tness of the neural network during

�tness computation. Especially, noise addition works well with Simple Ensemble and

Ensembles with MOP methods. A possible reason is that noise addition reduces the

pressure of selecting overly-�t network using the training �tness.

4.2.4.5 Early stopping is useful in avoiding over��tting

Table 4.6 displays the results of the set of experiments to verify hypothesis 5:

early stopping performs better than stopping at the maximum number of generations.

As seen from the outcomes, using two early stopping criteria: minimum of the ensem-

ble on validation and minimum average of population �tness on validation outperforms

(4 of 5 datasets per method show preference) the last generation criterion for �Simple

Ensemble�, �Ensembles with Island model�, and �Ensembles with Negative Correlation

Learning�. Only �Ensembles with MOP� shows a slight favor of the last generation cri-

terion. The results support the hypothesis that early stopping is bene�cial.

4.2.4.6 Useful diversity is an important feature of ensemble techniques

Table 4.7 displays the results of classi�cation of �ve datasets using four differ-

ent ensemble methods: �Simple Ensemble�, �Ensembles with Island model�, �Ensem-
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Breast Cancer
Method Without Noise With Noise
EC 0.030(0.017) 0.032(0.016)
SE 0.027(0.014) 0.028(0.019)
IsE 0.027(0.017) 0.025(0.017)
NCLE 0.027(0.017) 0.030(0.017)
MOPE 0.030(0.018) 0.027(0.017)

Australian Credit Card Assessment
Method Without Noise With Noise
EC 0.150(0.043) 0.142(0.048)
SE 0.140(0.052) 0.137(0.044)
IsE 0.133(0.048) 0.149(0.043)
NCLE 0.144(0.040) 0.137(0.044)
MOPE 0.140(0.050) 0.144(0.057)

Diabetes
Method Without Noise With Noise
EC 0.242(0.055) 0.235(0.045)
SE 0.242(0.056) 0.240(0.060)
IsE 0.232(0.037) 0.246(0.055)
NCLE 0.236(0.050) 0.226(0.057)
MOPE 0.236(0.051) 0.226(0.042)

Liver Disorder
Method Without Noise With Noise
EC 0.374(0.054) 0.321(0.054)
SE 0.336(0.075) 0.315(0.068)
IsE 0.350(0.085) 0.303(0.080)
NCLE 0.286(0.038) 0.295(0.054)
MOPE 0.326(0.074) 0.298(0.073)

Tic Tac Toe End Games
Method Without Noise With Noise
EC 0.289(0.041) 0.322(0.047)
Se 0.299(0.052) 0.281(0.062)
IsE 0.311(0.034) 0.277(0.042)
NCLE 0.212(0.042) 0.195(0.039)
MOPE 0.278(0.042) 0.272(0.026)

Table 4.5: Effect of noise injection for each dataset (SE=Simple Ensemble,
IsE=Ensembles with island, NCLE=Ensemble w/NCL, MOPE=Ensemble w/MOP). Pre-
sented results are means and standard deviations of error rates. Bold face in each row
indicates statistically signi�cant result at con�dence level 95%.

bles with NCL�, and �Ensembles with MOP�. The values show that the Island model

performs the best in three datasets and Negative Correlation Learning performs the best

in the remaining two datasets.

The next question is whether these diversity mechanisms do generate diversity.

Diversity measure as described in section 4.1.8 is used. Table 4.8 shows the diversity

measures of �ve datasets across different stopping criteria and diversity methods. More-

over, �gures 4.1, 4.2, 4.3, 4.4, and 4.5 plot the Diversity over the generations of the four

different diversity mechanisms for the �ve Datasets.

Looking across different ensemble methods with different diversity promot-

ing mechanisms, ensembles generated with the Island model show very good diversity

level for most cases, while �Simple Ensembles� and �Ensembles with multi�objective

Optimization� are reasonably good in promoting diversity. However, surprisingly, �En-
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Dataset Last Minimum on minimum
generation validation average
Simple Ensemble

Breast Cancer Wisconsin 0.035(0.028) 0.027(0.014) 0.030(0.021)
Australian Credit Card 0.149(0.056) 0.140(0.059) 0.140(0.052)
Diabetes 0.243(0.047) 0.242(0.056) 0.248(0.039)
Liver Disorder 0.338(0.066) 0.347(0.071) 0.336(0.075)
Tic Tac Toe End Games 0.299(0.052) 0.308(0.049) 0.301(0.053)

Ensembles with Island model
Breast Cancer Wisconsin 0.219(0.246) 0.030(0.012) 0.027(0.017)
Australian Credit Card 0.150(0.057) 0.133(0.048) 0.142(0.051)
Diabetes 0.244(0.041) 0.232(0.037) 0.235(0.038)
Liver Disorder 0.422(0.071) 0.350(0.085) 0.368(0.064)
Tic Tac Toe End Games 0.311(0.034) 0.317(0.047) 0.323(0.034)

Ensembles with Negative Correlation Learning
Breast Cancer Wisconsin 0.044(0.028) 0.028(0.019) 0.027(0.017)
Australian Credit Card 0.169(0.048) 0.147(0.044) 0.144(0.040)
Diabetes 0.264(0.058) 0.236(0.050) 0.249(0.051)
Liver Disorder 0.286(0.038) 0.292(0.071) 0.295(0.071)
Tic Tac Toe End Games 0.217(0.038) 0.224(0.040) 0.212(0.042)

Ensembles with multi�objective Optimization
Breast Cancer Wisconsin 0.032(0.020) 0.032(0.017) 0.030(0.018)
Australian Credit Card 0.140(0.050) 0.146(0.052) 0.142(0.044)
Diabetes 0.248(0.057) 0.236(0.045) 0.246(0.052)
Liver Disorder 0.326(0.074) 0.347(0.078) 0.347(0.080)
Tic Tac Toe End Games 0.278(0.042) 0.293(0.052) 0.284(0.050)

Table 4.6: Comparison of different stopping criteria (i) last generation (ii) minimum on
validation (iii) minimum average of population on validation. Presented results are means
and standard deviations of error rates. Bold face indicates statistically signi�cant result
at con�dence level 95%.

Breast Cancer Wisconsin
Simple Ensemble Ensemble + Island Ensemble + NCL Ensemble + MOP
0.027(0.014) 0.027(0.017) 0.027(0.017) 0.030(0.018)

Australian Credit Card
Simple Ensemble Ensemble + Island Ensemble + NCL Ensemble + MOP
0.140(0.052) 0.133(0.048) 0.144(0.040) 0.140(0.050)

Diabetes
Simple Ensemble Ensemble + Island Ensemble + NCL Ensemble + MOP
0.242(0.056) 0.232(0.037) 0.236(0.050) 0.236(0.045)

Liver Disorder
Simple Ensemble Ensemble + Island Ensemble + NCL Ensemble + MOP
0.336(0.075) 0.350(0.085) 0.286(0.038) 0.326(0.074)

Tic Tac Toe End Games
Simple Ensemble Ensemble + Island Ensemble + NCL Ensemble + MOP
0.299(0.052) 0.311(0.034) 0.212(0.042) 0.278(0.042)

Table 4.7: Mean (and standard deviation) error rates of ensembles with and without di-
versity promotion. Bold face in each row indicates statistically signi�cant result at con�-
dence level 95%.
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Figure 4.1: Diversity measure of the Breast Cancer Wisconsin Dataset

sembles with Negative Correlation Learning� shows a very poor diversity measure. This

fact is supported by the analysis of McKay and Abbass (McKay and Abbass 2001) which

showed that Negative Correlation Learning does not promote diversity among networks.

Considering the four lines in each �gure(4.1, 4.2, 4.3, 4.4, and 4.5), which cor-

respond to four different methods, �Ensembles with Island model� and �Ensembles with

MOP� have the best diversity curves (top two lines in each graph), and the �Ensembles

with Negative Correlation� curves are very low for all dataset. These results agrees with

the remark that the former two methods produce higher diversity among members than

the other methods. Also, it con�rms that Negative Correlation Learning produces very

small diversity among the members.

The diversity analysis and performance analysis across different methods raises

an interesting fact: the Island model yields best performance and the highest diversity

level, while the Negative Correlation Learning model also performs well but has very

small diversity. Also, the simple ensemble and the ensemble with MOP have quite good

diversity levels but with poor performance. In conclusion, I have not found any useful
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Figure 4.2: Diversity measure of the Australian Credit Card Assessment Dataset

connection between diversity and performance when building an ensemble.

One possible reason is that unhealthy diversity could deteriorate the ensemble

performance. Let us revisit Krogh's equation:

E = E − A (4.16)

Promoting diversity among members of the ensemble will change the Ambigu-

ity term A which contains all the correlations among the individual classi�ers. However,

large diversity in the ensemble may greatly reduce the average accuracy of the ensemble

E. Thus, it is possible that unhealthy diversity, which reduces E much faster than A,

can degrade the performance of the ensemble. In the future, more experiments may be

required to fully analyze the relationship of diversity and accuracy.

Diversity across different stopping criteria Looking across the columns in Table 4.8,

the minimum on validation (column 2) stopping criterion shows reasonably high level

of diversity across three stopping criteria. The second best is the minimum average of
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Figure 4.3: Diversity measure of the Diabetes Dataset

population on validation (column 3) and the lowest is the last generation criterion. This

result, together with the previous conclusion that early stopping performs better than last

generation, suggests a connection between high diversity and the good performance of

early stopping.

Also, Figures 4.1, 4.2, 4.3, 4.4, and 4.5 show the diversity decaying over time

(Note: since the diversity measure decreases quickly to zero, the graph is plotted in log

scale). From the �gures, since diversity tends to reduce over time, an early stopping often

implies higher diversity among the individuals.

4.2.4.7 Architecture complexity is important

This �nal set of experiments is designed to testify any connection of the neu-

ral network's architecture complexity and the performance of the ensemble. Table 4.9

presents the results of different number of hidden units on the performance of the ensem-

ble for three datasets: the Australian credit card, the Diabetes and the Tic Tac Toe End

Games. Looking across the three datasets, it is obvious that there are no particular �xed
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Figure 4.4: Diversity measure of the Liver Dataset

number of hidden units that can perform best for all datasets with all methods.

Looking down the columns in Table 4.9, the island model appears to perform

comparably well across various number of hidden units while NCL favors less complex

networks and MOP prefers more complex ones.

The results in Table 4.9 back the claim that architecture complexity of the neu-

ral network is an important factor to be considered when designing an ensemble method.

Moreover, and what is more interesting, the level of network complexity depends on the

diversity promoting mechanism.

4.3 Conclusion

In this chapter, I have presented an overview of some state-of-the-art methods

in the �eld of neuro ensemble. A number of experiments were conducted to investigate

various aspects of methods used to build neuro ensembles. The �ndings verify some

points raised by other researchers in the �eld, and also raise a number of interesting and
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Figure 4.5: Diversity measure of the Tic Tac Toe End Games Dataset

potential directions for later chapters.

The key points from the experimental analysis could be summarized as : (1)

different combination gates have little effect on the performance of the ensemble, (2) the

diversity level maintained by negative correlation learning is poor, which was suggested

by McKay and Abbass's analysis (McKay and Abbass 2001), (3) combining individuals

(ensemble) improves the performance of the system.

Some interesting open directions are raised from the experimental results. Those

are: (1) local search does help evolution to �nd better solutions, this is applicable for both

ensemble and individual-based methods, (2) noise injection shows interesting effects on

performance enhancement, though the improvement is not yet clear from the initial ex-

periments, (3) early stopping is useful in enhancing generalization, where using different

minimum values in the validation �tness, such as the �tness of the ensemble or the av-

erage �tness of the population, can avoid the networks to over��t the training data, (4)

architecture complexity of the neural networks is an important factor to be considered

when designing the ensemble of EANNs, (5) the connection between diversity and per-
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Objective last min ensemble min average
generation on validation of population

Breast Cancer Wiscosin
Simple Ensemble 0.039(0.118) 28.042(20.423) 3.203(2.730)
Emsemble Island 59.912(57.168) 91.205(41.182) 22.853(20.531)
Emsemble NCL 0.000(0.000) 116.646(139.802) 1.542(1.342)
Emsemble MOP 0.721(1.727) 56.438(63.541) 4.009(4.815)

Australian Credit Card Assessment
Simple Ensemble 2.381(2.537) 78.141(42.795) 20.452(22.799)
Emsemble Island 0.285(0.857) 85.813(58.874) 16.838(15.241)
Emsemble NCL 0.060(0.151) 31.515(83.813) 3.600(4.638)
Emsemble MOP 4.478(3.769) 48.713(30.609) 12.235(9.887)

Diabetes
Simple Ensemble 5.167(3.165) 51.202(27.868) 18.474(19.099)
Emsemble Island 1.282(3.600) 64.383(41.064) 28.635(22.122)
Emsemble NCL 0.743(0.528) 6.460(9.215) 3.552(2.457)
Emsemble MOP 16.985(10.014) 34.303(15.857) 25.267(10.204)

Liver Disorder
Simple Ensemble 5.360(4.938) 23.387(17.791) 16.083(19.161)
Emsemble Island 24.479(12.618) 62.334(12.630) 44.370(19.247)
Emsemble NCL 0.734(0.938) 2.415(1.185) 1.681(1.208)
Emsemble MOP 10.717(7.366) 44.920(36.224) 23.461(13.196)

Tic Tac Toe End Games
Simple Ensemble 2.048(2.970) 8.608(13.847) 3.836(4.208)
Emsemble Island 2.977(4.559) 59.845(32.055) 37.045(46.293)
Emsemble NCL 0.215(0.209) 3.856(2.879) 1.815(2.509)
Emsemble MOP 8.173(10.266) 39.862(25.063) 18.239(19.456)

Table 4.8: Diversity measure of �ve Datasets across different diversity mechanisms and
stopping criteria. The bold values are the high diversity measure (members more dis-
agree) in contrast to plain numbers which correspond to little difference among ensemble
members.

formance of the ensemble is still a myth to be veri�ed, this is supported by the results of

Kuncheva's experiments (Kuncheva 2003b).
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Australian Credit Card Assessment
Hiddens Island model NCL MOP
1 0.134(0.054) 0.133(0.044) 0.152(0.035)
2 0.147(0.047) 0.133(0.050) 0.146(0.040)
3 0.139(0.052) 0.139(0.049) 0.143(0.045)
4 0.150(0.045) 0.144(0.048) 0.142(0.049)
5 0.149(0.051) 0.133(0.039) 0.144(0.057)
6 0.133(0.048) 0.144(0.040) 0.139(0.048)

Diabetes
Hiddens Island model NCL MOP
1 0.246(0.046) 0.225(0.056) 0.246(0.055)
2 0.236(0.050) 0.229(0.062) 0.235(0.074)
3 0.244(0.061) 0.226(0.069) 0.247(0.044)
4 0.234(0.058) 0.230(0.063) 0.242(0.059)
5 0.232(0.042) 0.231(0.068) 0.238(0.056)
6 0.232(0.037) 0.236(0.050) 0.236(0.051)

Tic Tac Toe
Hiddens Island model NCL MOP
1 0.318(0.015) 0.305(0.057) 0.311(0.050)
2 0.322(0.044) 0.309(0.045) 0.261(0.045)
3 0.312(0.046) 0.286(0.033) 0.313(0.055)
4 0.300(0.048) 0.249(0.034) 0.297(0.030)
5 0.313(0.037) 0.241(0.071) 0.302(0.047)
6 0.311(0.034) 0.212(0.042) 0.279(0.042)

Table 4.9: Mean (and standard deviation) error rates of ensembles with various architec-
ture complexity in terms of the number of hidden units (�Hiddens� column). Bold face
in each row indicates statistically signi�cant result at con�dence level 95%.
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Figure 4.6: Error rate vs number of hidden units for the Australian Credit Card Assess-
ment dataset
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Figure 4.7: Error rate vs number of hidden units for the Diabetes dataset
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Figure 4.8: Error rate vs number of hidden units for the Tic Tac Toe End Games dataset



Chapter 5

Cooperative Coevolutionary Mixture of

Experts

In chapter 2, I have explained why evolutionary computation algorithms are

ef�cient heuristic methods to solve computationally dif�cult problems. ECs are often

more effective than gradient based methods (such as BP) in dif�cult, rugged, multimodal

and/or discontinuous search spaces. In dif�cult problems, they tend to �nd better so-

lutions in the search space. In chapter 3, the concept of cooperative coevolution (CC)

is discussed as a framework to evolve diverse and modularized neuro ensembles. The

biologically inspired collaboration of modules allows the ensemble to emerge as a well-

structured system.

In this chapter, I will �rst investigate a popular modularization method in the

ensemble literature, the so called mixture of experts (ME) model. The main advantage

of the ME model over other ensemble methods is its ability to automatically decompose

problems by using a special architecture and training scheme, which forces the experts

to specialize on different regions of the input space while maintaining their cooperation

(Jacobs, Jordan, Nowlan, and Hinton 1991).

More importantly, I will introduce a novel method that combines the ME model

with the CC mechanism. CC allows for incorporating evolutionary computation into

98
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back propagation-based ME. This can enhance the learning method when compared with

simple gradient descent search. Moreover, the CC framework has an inherently decom-

position nature, so we expect it to assist the ME rather than hinder it. Last but not least,

CC as proposed by Potter (Potter 1997; Potter and De Jong 2000) has the potential to

adapt the number of species to the problem, by increasing or decreasing the number of

sub�populations when the system stagnates. This will be helpful in designing ensembles

for problems where the desirable ensemble size is not known a priori, so that the size can

be an emergent property rather than prede�ned by human experts.

The ME model imposes an external diversity force, to drive the components

into different local regions, and therefore ensures diversity between the sub�populations.

This diversity is useful because it is an emergent property, while ensuring performance,

rather than being imposed by the users. Moreover, the ME model is localized in the sense

that each expert is responsible for a sub region of the input space. This suits very well the

localization requirement of the CC framework, in which each species preferably occupies

a local niche in the environment.

5.1 Mixture of experts

Jacobs et al (Jacobs, Jordan, Nowlan, and Hinton 1991) introduced the ME

model based on the principle of divide and conquer. ME is a method to derive and

combine a series of localized models through a dynamic system. Considering a learning

problem, it is desirable that each expert accumulate and specialize its expertise in a subset

of the input space. An extra gating network, also looking at the input vectors, can decide

which expert is in charge of which input instance.

If the problem has a distinct natural decomposition, it would be possible to

derive such a decomposed system by hand. However, in most real-world problems, we

either know little about the problem, or the problem is too complex, for us to have a

clear vision on how to decompose it by hand. Thus, it is desirable to have a method to
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automatically decompose a complex problem into a set of overlapping/non-overlapping

sub problems, and to assign one or more specialists (i.e. experts, learning machines) to

each of these subproblems.

The remaining issue is how to combine the outputs of these experts if the

scheme for decomposition is not known in advance. In the previous chapter, I have dis-

cussed a number of gating mechanisms, including methods to generate dynamic weights

for the experts. However, even in these methods, this weight-generation module is often

independent of the training of the experts themselves. However, the weights in effect

represent the networks - one might consider the weights as the con�dence levels of the

experts. Thus it is more practical to train the experts together with the weight-generation

module, rather than separately.

5.2 Architecture

Figure 5.1: ME architecture

In the original form (Jacobs, Jordan, Nowlan, and Hinton 1991), an ME con-

sists of a number of experts joined by a gate (Figure 5.1). All have access to the in-

put space X . Each component can be any type of classi�er, including simple feed�
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forward multi�layer neural networks as in this thesis. Given a dataset (~xi, ~di), i = 1..N ,

where ~xi and ~di are the attributes and targets of case i, the output y(~xi) of an ME is the

weighted average of the individual experts' outputs ym(~xi),m = 1..M with the weights

gm(~xi),m = 1..M produced by the gate network.

y(~xi) =
M∑

m=1

gm(~xi)ym(~xi) (5.1)

5.3 A probabilistic interpretation of the ME model

The gate output could be considered as the probability that an expert m is

selected (5.4.1). To ensure that gm(~xi) satis�es the axioms of probability theory (i.e.

gm(~xi) > 0 and
∑M

m=1 gm(~xi) = 1), one could apply a soft-max function on the raw

outputs zm(~xi) of the gate. For example, applying softmax on a linear gate network

produces the following outputs

gm(~xi) =
exp(zm(~xi))∑M
j=1 exp(zj(~xi))

(5.2)

Another way to view a ME output is as the conditional density of target ~di

given input ~xi. If the output ym(~xi) of each expert m, m = 1..M , could be viewed as the

conditional density of target ~di given input ~xi for that expert ym(~xi) = φ(~di|~xi), then the

internal function of each expert can be expressed as

p(~di|~xi) =
M∑

m=1

gm(~xi)φm(~di|~xi) (5.3)

Given the above equation, one can apply different probability distributions in

place of φm(~di|~xi). In the following section, I will describe a number of distributions,

and the corresponding error functions, used in the literature of ME.
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5.4 Training the ME model

There are many ways to look at the ME model � as a simple ensemble model

or as a probabilistic model. Depending on the point of view, different motivations arise

for different error functions. While a residual cancelling error function is suf�cient for

a simple ensemble, more localized and competitive error functions are preferred for the

ME model to take full advantage of its special architecture. Furthermore, if a ME is

considered in the light of the Bayesian framework, where the gate is estimating the apriori

probability that an expert is chosen for each pattern, Gaussian and Bernoulli distributions

could be used to design a suitable error function.

5.4.1 Error functions

Bishop has devoted a whole chapter in his book (Bishop 1995) to discussing

various error functions for regression and classi�cation problems. Since the scope of

this thesis is binary classi�cation, this section summarizes a number of possible error

functions for ME in binary classi�cation problems. Because a binary class has only two

possible values, 0 and 1, to simplify the notation, ~di is replaced with di, and gi
m and yi

m

are used interchangeably with gm(~xi) and ym(~xi).

5.4.1.1 Residual cancelling error function

Originally, Jacobs et al (Jacobs, Jordan, and Barto 1991) assumed the �nal

output of the whole system was a simple linear combination of the experts' outputs. The

gating network generated the weights, which indicated the contribution of the localized

experts on the overall input space.

Ei = ‖di −
∑
m

gi
myi

m‖2 (5.4)

where di is the target of case i and yi
m is the output of expert m on case i. gi

m is the

generated combination weight corresponding to expert m and case i. This error function
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compares the target to a blend of experts' outputs. Thus, �to minimize the error, each

local expert must make its output cancel the residual error that is left by the combined

effects of all the other experts� (Jacobs, Jordan, Nowlan, and Hinton 1991). Although

this strong coupling forces the experts to cooperate amicably, it does not encourage expert

diversity. Nevertheless, this is the error function used in most methods in the ensemble

literature. To overcome this similarity problem, one could inject diversity into the system

as discussed in the previous chapters.

5.4.1.2 Competitive and localized error function

Instead of injecting diversity in the system, a simpler approach is to repair the

error function so as to encourage competition among the networks for each input case.

Jacobs et al introduced such a competitive and localized error function in (Jacobs, Jordan,

Nowlan, and Hinton 1991). Instead of letting each expert cancel out the residual error,

the experts are forced to consider the whole output vector. �As a result, the goal of a local

expert on a given training case is not directly affected by the weights within other local

experts� (Jacobs, Jordan, Nowlan, and Hinton 1991). The system tends to assign each

expert to each training case, and hence, localize the experts.

Ei =
∑

i

gi
m‖di − yi

m‖2 (5.5)

5.4.1.3 Probabilistic error function

Another way to view the system is through the Bayesian framework. An ME

model could be interpreted as an input conditional mixture model, with the data assumed

to be generated from a series of processes. Each data point (~xi, di) is assumed to be

generated by a process m. There exists a probability distribution P (Z) such that each

zi
m is the decision to use process m for case i. With this probabilistic interpretation, each

expert in the ME system models a process, while the gating network models the decision

probability distribution P (Z) (Waterhouse 1997). The likelihood of target di given inputs
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~xi and parameters {~w1, ~w2, ..., ~wM , ~v} is modelled by the ME as follow:

P (di|~xi, ~w1, ~w2, ..., ~wM , ~v) =
M∑

m=1

P (m|~xi, ~v)P (di|~xi, ~wm,m) (5.6)

where {~w1, ~w2, ..., ~wM , ~v} is the parameter space, ~wm are the weights of an ex-

pert network m, and ~v the weights of the gating network. P (m|~xi, ~v) is the conditional

probability of the gating network to select expert m. P (di|~xi, ~wm,m) is the conditional

probability of expert m to produce output di. This conditional probability is the under-

lying mechanism of the expert network. By varying this function, one can achieve the

desired behavior.

Jacobs et al (Jacobs, Jordan, Nowlan, and Hinton 1991) used the Gaussian

distribution.

P (di|~xi, ~wm, σm) =
1√

2πσ2
m

exp(− 1

σ2
m

(di − yi
m)2) (5.7)

where σ2
m is the variance for expert m.

However, for a classi�cation, it is more appropriate to use a cross entropy be-

tween the target di and the outputs of the experts yi
m (Bishop 1995):

φm(di|~xi, ~wm) ≡ P (di|~xi, ~wm) = (yi
m)di

+ (1− yi
m)(1−di) (5.8)

The overall error function E for the ME model is de�ned as the negative log

likelihood:

E = −
∑

i

log

M∑
m=1

P (m|~xi, ~v)P (di|~xi, ~wm,m) (5.9)

A more useful error function for each pattern i is de�ned as

Ei = −log

M∑
m=1

P (m|~xi, ~v)P (di|~xi, ~wm,m) (5.10)
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5.4.2 Training ME with back propagation

I will use BP as a local search operator in this thesis. The modi�ed BP for the

ME method is presented in Algorithm 13 as follow:

5.5 Cooperative coevolutionary mixture of experts

CC is different from a traditional multi-population EA in its �tness evalua-

tion scheme. In chapter 3, I have identi�ed two important issues with respect to the CC

method, namely the diversity between the sub�populations and the scheme to combine

the components to form the whole system. ME can address both issues. If the �tness

evaluation component - at the heart of the CC - is implemented with a ME, then ensur-

ing sub�population diversity (arising from the localization nature of ME) is interwoven

nicely with evolving a collaboration scheme (through the gate mechanism of the ME).

Thus the integration of CC and ME (namely Cooperative Coevolutionary Mixture of Ex-

pert or CCME) overcomes both the inter-diversity and the collaboration problems of the

traditional CC.

Figure 5.2: CCME architecture

Figures 5.2 illustrates the architecture of the CCME model. The CCME model
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Algorithm 13 ME learning with back propagation
1: randomly generate the weights for the ME
2: for epoch = 0 to the maximum number of epoches do
3: for each pattern i do
4: forward {~xi, di} through the gate network. Output zi

m = ~vm~xi,m = 1..M
5: apply softmax: gi

m = exp(zi
m)/

∑M
j=1 exp(zi

j).
6: forward {~xi, di} through each expert m, compute the conditional density

φm(di|~xi) (or φi
m).

7: compute the posterior probability hi
m = gi

mφi
m/

∑M
j=1 gi

jφ
i
j

8: compute the error terms δi
g,m for the gate outputs using the following partial

derivative of the error function Ei (see Appendix A for a derivation of the for-
mula)

δi
g,m ≡ ∂Ei

∂zi
m

= gi
m − hi

m (5.11)

9: pass δi
g,m backward, and update weights ~v of the gate network

10: compute the error term δi
m of the output of expert m using the following sets of

equations
δi
m ≡ ∂Ei

∂ai
m

=
∂Ei

∂yi
m

∂yi
m

∂ai
m

(5.12)

where yi
m = g(ai

m) (e.g. yi
m = 1

(1+exp(−ai
m))

if sigmoid activation is used) and
ai

m = ~wm~xi. Since
∂Ei

∂yi
m

= − gi
m∑M

j=1 gi
jφ

i
j

∂φi
m

∂yi
m

(5.13)

Therefore,
δi
m = − gi

m∑M
j=1 gi

jφ
i
j

∂φi
m

∂ai
m

(5.14)

For a multi�nomial conditional density φi
m = (yi

m)di
+ (1 − yi

m)(1−di) (binary
classi�cation) and a sigmoid activation, the error term δi

m is simpli�ed to:

δi
m = hi

m(yi
m − di) (5.15)

11: pass δi
m backward and update weights ~wm of expert m.

12: end for
13: end for
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consists of a number of sub�populations, each of which can be considered as a supply

pool for one of the experts in the ME model, so that the experts do not depend entirely on

a single initialization. Since in this thesis, the experts are ANNs, these sub�populations

are pools of ANNs. To evaluate the �tness of an individual k in a sub�population j, it

is required, in the CC scheme, that the other sub�populations contribute a representative

(or perhaps representatives) to the evaluation module. This representative can be the

best individual in the sub�population (greedy algorithm) or a randomly selected one (or

in the case of multiple representatives, both might be used). The evaluation module will

assemble individual k together with these representatives to form a complete system (e.g.

a full ensemble) and evaluate it. The performance of the complete system is assigned

back to the individual i as its �tness. In other words, the �tness of an individual measures

how well it works with the other populations, hence the term cooperative.

In our model, the evaluation module is implemented as an ME. In other words,

to evaluate the �tness of an individual k, k is assembled with the representatives from the

other sub�populations to form an ME. This ME is then trained using BP for a number of

epochs to evaluate the �tness. In the literature of EC, one often �nds two different modes

combining training and evolution. In the Lamarkian model, the lifetime training is en-

coded back to the individual while in Darwinian evolution it is not (though the Baldwin

effect may lead to the gradual incorporation of this learned behavior back into the geno-

type even in Darwinian evolution) (Cantu-Paz and Kamath 2005). Each of these types

has its own advantages and weakness.

I have found that Lamarkian is more ef�cient in my model. The reason is

that unlike traditional CC, where training is just a local search, training is important

here for turning the ensemble into a true ME by localizing its components, and hence

�nding suitable local niches for the species. Without encoding the changes through local

search, as in Darwinian evolution, back to the individual, the system has to depend on the

weaker and slower evolutionary pressure instead of this strong force to drive the experts

to different areas of the search space. Consequently, Lamarkian is more ef�cient and
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therefore implemented throughout this thesis.

Another design concern is whether elitism should be used, and if so, how. I

have tested the algorithm without elitism. The system takes much longer time to con-

verge and often good solutions are lost. Especially with the Lamarkian ME, in which the

training weights are coded back to the individual, champions are important. Let us take

a simpli�ed example of two sub�populations (Figure 5.3).

Figure 5.3: CCME with two sub�populations, without and with elitism

At generation k, I train a, b, c to work well with a clone of 1 and 1, 2, 3 to

work with a clone of a. Because the trained weights are coded back to the individual

as per the Lamarkian approach, individuals in the following generation are a1, b1, and

so on instead of the original a, b, etc. Assuming that the best combination out of these

six is between 2 and a, let us call it 2 ←→ a. At generation k + 1, without elitism, the

representatives are 2a and b1, which have the best �tness in their populations. However,

2a was trained previously to work well with the old a and b1 was trained to work well

with old 1. Now both a and 1 have been lost. There is a possibility that (i) the system can

never �nd such a good combination, or (ii) the information in 2a and b1 may completely

disrupt the previously evolved direction. In this event, the system will �uctuate between

�nding a good direction and losing it. With elitism in place, as in Figure 5.3, where the
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best collaboration in a generation is saved back to the population for the next generation,

the performance of a system becomes monotonically non-decreasing (i.e. stays as it is

or increases). As in Figure 5.3, since the best collaboration in generation k is 2 ←→
a, 2 and a become the representatives. In the next generation, these two are replaced

only if a better collaboration is found. The complete CCME algorithm is summarized in

Algorithm 14.

Algorithm 14 ME learning with cooperative coevolution
1: initialize the populations Pj . Initialize empty pools P ′

j . Set fEclone = 0.
2: for gen = 0 to the maximum number of generations do
3: clone the best individual of each population Pj to P ′

j (elites)
4: apply evolutionary operators to each population Pj

5: for each individual z in each population Pj do
6: form an ensemble E consisting of z and P ′

k, k 6= j
7: apply local search to E using BP and ME
8: compute �tness fE of E in terms of classi�cation accuracy rate, assign this �t-

ness to individual k.
9: if fE > fEclone then

10: copy E to Eclone and set fEclone = fE

11: end if
12: end for
13: copy components of Eclone (the best ensemble in the current generation) to the

corresponding populations Pj . Empty P ′
j .

14: end for
15: apply the selecting criterion to select and output the desired ensemble.

5.6 ME on classi�cation problems

I will apply the original ME model to a number of classi�cation problems. The

data sets are drawn from the UCI Machine Learning Repository and the StatLog database.

The following experiments will establish a baseline for comparison against the CCME

method proposed in this thesis. In term of complexity, I distinguish between the ensemble

complexity (i.e. the number of experts in the ensemble) and the network complexity (i.e.

the number of hidden units in each expert's neural network). These concepts will be used

in chapter 5,6 and 7. In the following sections, I will present the results for the following
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investigations:

1- ME with different error functions

This set of experiments investigates different error functions proposed in the

literature of the Mixture of Experts: (1) Gaussian error function, (2) cross-entropy error

function, (3) competitive and localized error function and (4) residual cancelling error

function.

2- ME with different learning rates

This set of experiments is designed to investigate the effect of different learn-

ing rates, an important aspect of any learning algorithm, on the performance of the ME

model.

3- ME with and without early stopping

In chapter 4, I have investigated the bene�ts of early stopping on improving

generalization. This set of experiments is conducted to con�rm that early stopping im-

proves the generalization ability of the ME model. The experiments are conducted on

two criteria: (i) the minimum error on validation as an early stopping criteria (I call this

�val�) and (ii) the last generation (I call this �end� or �without early stopping�).

4- ME with different ensemble sizes

The next set of experiments is designed to test the effect of ensemble complex-

ity - in terms of the number of experts - on the performance of the mixture of experts.

5- ME with different network complexity

The last set of experiments investigates the effect of network complexity - in

terms of the number of hidden units in each individual ANN of the ensemble - on the

performance of ME.
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5.6.1 Experimental setups

To investigate the above aspects of the ME model, I use the following gen-

eral setup (unless stated otherwise) - which were investigated in the preliminary study

(Chapter 4) and published in (Nguyen, Abbass, and McKay 2004):

The model consists of three experts (except in the experiments on different en-

semble size), each of which is a feed�forward ANN with one hidden layer consisting of

three hidden nodes. The nodes in the expert ANN are all sigmoidal. The gate component

is a feed�forward ANN, which has three linear output nodes corresponding to three ex-

perts and no hidden nodes. The outputs of the gate network are passed through a softmax

function to obtain probability-like values.

Since the best error function for a binary classi�cation mixture of experts model

is naturally the cross entropy error function (Bishop 1995), I will apply the cross entropy

error function for the training process.

An initial set of experiments was used to determine suitable parameters. Over-

all, a value of 320,000 for the number of epochs was found to be suitable. The learning

rate is taken to be 0.1. The ensemble at the last epoch (without early stopping) or the

ensemble with the minimum validation error (early stopping) is tested against the testing

data. The averaged test error rate (%) is reported as the performance of the ensemble.

Datasets

As in chapter 4, I will test the ME model on �ve standard datasets down-

loaded from the UCI Repository. Appendix B provides more detailed descriptions of

these datasets.

Ten-fold cross validation is performed on each dataset: the available data are

divided into ten disjoint subsets using strati�ed sampling. The testing/validation/training

sets are taken at the ratio 1/1/8. For each fold, a new random seed is supplied, while I

maintain the same random sees across different setups to have a fair comparison. The

results are averaged over these ten folds.
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The conventions adopted for presenting results in this thesis

For many of these experiments, a table of results is presented. Each row rep-

resents a dataset, while the column represents the investigated factor. The paired student

t�test is used to compute the signi�cance of the results in each row. A bold face indicates

a signi�cantly better performance in a row while an italic font indicates a signi�cantly

inferior performance compared to the best. In some cases, to have a better comparison, I

plot the performance (i.e. averaged error rates) of the method together with the standard

deviations (error bars) in a box plot.

In more complex problems with multiple levels and multiple factors, ANOVA

(analysis of variance) is a preferable test of signi�cance to the traditional student t�test

(Festing and Altman 2005; Gelman 2005; Hopkins 2000). Throughout this chapter, the

ANOVA test and plots will be used when necessary. In an ANOVA plot, using the �mult-

compare� function in MATLAB on the statistical structure of an ANOVA test, each group

average is represented by a symbol and an interval around the symbol. An overlapping

of the intervals of two groups' averages implies the groups are not signi�cantly different;

while disjoint intervals imply they are signi�cantly different (MathWorks 1997).

5.6.2 ME with different error functions

In this experiment, I will investigate different error functions for the ME model.

Jacobs et al (Jacobs, Jordan, Nowlan, and Hinton 1991) proposed three different error

functions: the residual cancelling (Res), the competitive (Com) and the Gaussian error

function (Gau). According to their original investigation, the Gaussian error function

seemed to perform better than the other two methods. In addition to these three error

functions, a number of researchers have pointed out that a cross-entropy error function

(Cro) is appropriate for classi�cation problems (Bishop 1995; Moerland 1997b; Tang,

Heywood, and Shepherd 2002; Waterhouse 1997). Thus, in this section, I will test the

ME model against these four error functions.
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Table 5.1 presents the error rates of these four error functions for the �ve

datasets. The differences of these error functions for four out of �ve datasets are not

statistically signi�cant. Figure 5.4, which plots the performance and two-way ANOVA

test of all data across all datasets, con�rms this. Thus, because of the appropriateness of

the cross entropy error function for binary classi�cation problems (Bishop 1995; Moer-

land 1997b; Tang, Heywood, and Shepherd 2002; Waterhouse 1997), I will use the cross

entropy error function throughout the chapter.

Dataset Gaussian Cross Entropy Compete Residual Con�dence
Breast Cancer 0.0372(0.0138) 0.0372(0.0193) 0.0386(0.0135) 0.0386(0.0135)
Australian credit card 0.1449(0.0355) 0.1580(0.0345) 0.1435(0.0316) 0.1275(0.0391) 95%
Diabetes 0.2369(0.0633) 0.2537(0.0572) 0.2343(0.0668) 0.2369(0.0543)
Liver Disorder 0.2785(0.0658) 0.2850(0.0793) 0.2756(0.0600) 0.2846(0.0796)
Tic Tac Toe 0.1743(0.0547) 0.1847(0.0499) 0.1994(0.0435) 0.2078(0.0465)

Table 5.1: Mean (and standard deviation) error rates of ME with different error functions.
A bold face indicates a signi�cantly better performance in a row while an italic font
indicates a signi�cantly inferior performance compared to the best.
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Figure 5.4: Error rates and ANOVA test for four different error functions for ME. Over-
lapping intervals of groups' averages imply the groups are not signi�cantly different;
while disjoint intervals imply they are signi�cantly different

5.6.3 ME with various learning rates

In this set of experiments, three different pairs of learning rates are used, re-

spectively for the expert ANNs and for the gate ANN: (a)0.1 and 0.1, (b)0.1 and 0.01,

and (c)0.01 and 0.1. The aim is to see if different learning rates for the experts and the

gates have any effect on the overall performance of the ME model.



CHAPTER 5. COOPERATIVE COEVOLUTIONARY MIXTURE OF EXPERTS 114

Tables 5.2 and 5.3 present the results of these three sets of learning rates with

and without early stopping. These results are averaged over the ten folds. The two-way

ANOVA (analysis of variance) test is used to test the signi�cance of the learning rate

factor (Figure 5.5).
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early stopping

error(%)
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last generation

error(%)

Figure 5.5: ANOVA test on error rates for learning rate factor for ME. Overlapping in-
tervals of groups' averages imply the groups are not signi�cantly different; while disjoint
intervals imply they are signi�cantly different

The ANOVA test shows that the small variations in the learning rates that I

tested are not a signi�cant factor in the ME model with and without early stopping. The

results in tables 5.2 and 5.3 con�rm this observation. Looking at each dataset sepa-

rately, with and without early stopping, only the breast cancer dataset, and the Tic Tac

Toe dataset without early stopping, show a signi�cant preference for particular learning

rates. It is hard to generalize the results of learning rates on some datasets to other. How-

ever, I undertook a number of similar experiments for other setups, and the results were

consistent with this section.

Dataset (a)rexp = 0.1 (b)rexp = 0.01 (c)rexp = 0.1
rgate = 0.1 rgate = 0.1 rgate = 0.01

Breast Cancer 0.0372(0.0193) 0.0400(0.0162) 0.0386(0.0165)
Australian credit card 0.1580(0.0345) 0.1580(0.0440) 0.1464(0.0345)
Diabetes 0.2537(0.0572) 0.2304(0.0648) 0.2395(0.0598)
Liver Disorder 0.2850(0.0793) 0.2815(0.0595) 0.3167(0.0672)
Tic Tac Toe 0.1847(0.0499) 0.1919(0.0548) 0.1461(0.0340)

Table 5.2: Mean (and standard deviation) error rates of ME with different sets of learning
rates on validation stopping criterion.
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Dataset (a)rexp = 0.1 (b)rexp = 0.01 (c)rexp = 0.1 Con�dence
rgate = 0.1 rgate = 0.1 rgate = 0.01

Breast Cancer 0.0644(0.0215) 0.0500(0.0263) 0.0343(0.0168) 95%
Australian credit card 0.1768(0.0304) 0.1884(0.0421) 0.2014(0.0450)
Diabetes 0.2889(0.0680) 0.2904(0.0639) 0.2644(0.0745) 90%
Liver Disorder 0.3421(0.0610) 0.3371(0.0963) 0.3596(0.0720)
Tic Tac Toe 0.2234(0.0386) 0.1826(0.0414) 0.1754(0.0425) 95%

Table 5.3: Mean (and standard deviation) error rates of ME with different sets of learning
rates without early stopping. A bold face indicates a signi�cantly better performance in
a row while an italic font indicates a signi�cantly inferior performance compared to the
best.

5.6.4 ME with and without early stopping

In this experiment, the ME model is tested against two different stopping cri-

teria: early stopping based on validation set; and no early stopping. The results in Table

5.4 are the averages of the ten-fold results over three sets of learning rates in the previous

section (i.e. 30 results). Figure 5.6 displays the ANOVA plot of two different stopping

criteria for the �ve datasets.

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23

st=end

st=val

error(%)

Figure 5.6: ANOVA on error rates to test the effect of stopping criterion on the per-
formance of ME. Overlapping intervals of groups' averages imply the groups are not
signi�cantly different; while disjoint intervals imply they are signi�cantly different.

The ANOVA results indicate that early stopping is signi�cantly better (with

a con�dence level of 95%) than omitting early stopping (i.e. last generation). This is

con�rmed by the results in table 5.4, where the results based on the validation early

stopping criterion outperform the last generation criterion for all �ve test datasets with

signi�cance level of at least 95%.

In the previous two sets of experiments, I found that small variations of the
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Dataset (a) early stopping (b) without early stopping Con�dence
Breast Cancer 0.0386(0.0168) 0.0496(0.0245) 95%
Australian credit card 0.1541(0.0370) 0.1889(0.0396) 99%
Diabetes 0.2412(0.0594) 0.2812(0.0676) 95%
Liver Disorder 0.2944(0.0686) 0.3463(0.0757) 99%
Tic Tac Toe 0.1743(0.0498) 0.1938(0.0449) 95%

Table 5.4: Mean (and standard deviation) error rates of ME with (a) early stopping based
on minimum error on validation set and (b) without early stopping. A bold face indicates
a signi�cantly better performance in a row while an italic font indicates a signi�cantly
inferior performance compared to the best.

learning rates are not a signi�cant factor, while early stopping is signi�cantly bene�cial.

Thus in the rest of this chapter, a learning rate of 0.1 is used for both the experts and the

gate ANNs. Also, validation set performance is used as the criterion for early stopping.

Only the results for early stopping are presented.

5.6.5 ME with various ensemble size

In this set of experiments, I test the ME model on different ensemble size to

see if this factor has any effect on the performance of the model. As foreshadowed, the

learning rates and stopping criterion are �xed. I compare ensembles with �ve different

sizes of 3, 6, 9, 12 and 15 experts. The results are presented in �gure 5.7. The �gures in

the left column display the error rates of the ensemble with different ensemble sizes (i.e.

number of experts). The right column presents the corresponding two-way ANOVA test

on different ensemble sizes. It is obvious that ME is quite robust to the ensemble size, i.e.

the ensemble size does not signi�cantly affect the performance of the ensemble. Only the

Tic Tac Toe endgame dataset shows a signi�cant deterioration when the ensemble size is

increased to 15. The rest of �gure 5.7 shows no signi�cant effect. The ANOVA plot of

the ensemble size factor across all datasets in Figure 5.8 con�rms the insigni�cance of

the ensemble size factor.
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Figure 5.7: Error rate plots (left) and ANOVA tests (right) for �ve datasets on differ-
ent ensemble size. Overlapping intervals of groups' averages imply the groups are not
signi�cantly different; while disjoint intervals imply they are signi�cantly different.
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Figure 5.8: Mean (and standard deviation) error rates and ANOVA test for the ensemble
size factor for ME. Overlapping intervals of groups' averages imply the groups are not
signi�cantly different; while disjoint intervals imply they are signi�cantly different.

5.6.6 ME with various network complexity

In the last set of experiments, I test the ME model with different numbers of

hidden units in each individual ANN of the expert. I test the ME model against four

different values of the number of hidden nodes: 3, 5, 7 and 9. The performance (left) and

the corresponding ANOVA plot (right) are presented in �gure 5.9. From �gure 5.9, only

the Tic Tac Toe endgame dataset shows a signi�cant improvement between the smallest

ANN (number of hidden nodes = 3) and the other architectures. The plots indicate the

robustness of the ME model to an unnecessary increase in the number of hidden units.

It is obvious that three hidden units are enough for all datasets except the Tic Tac Toe

, which requires �ve hidden nodes. The gradual increase in the average performance

(left plot in Figure 5.10) suggests that larger ANNs, in terms of the number of hidden

units in each individual expert ANN, have slightly better average errors. However, the

signi�cance plot of the network complexity factor across all datasets in Figure 5.10 does

not provide enough signi�cant evidence to support the advantage of the larger ANNs.

5.7 CCME on classi�cation problems

Analogously to section 5.6, CCME is tested against �ve different factors: (i)

error functions, (ii) learning rates, (iii) stopping criteria, (iv) ensemble complexity in term

of number of networks, and (v) network complexity in term of number of hidden units.
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Figure 5.9: Error rate plots (left) and ANOVA tests (right) for �ve datasets on different
network complexity. Overlapping intervals of groups' averages imply the groups are not
signi�cantly different; while disjoint intervals imply they are signi�cantly different.
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Figure 5.10: Mean (and standard deviation) error rates and ANOVA test for the network
complexity factor for ME. Overlapping intervals of groups' averages imply the groups are
not signi�cantly different; while disjoint intervals imply they are signi�cantly different.

5.7.1 Experimental setups

In the experiments, a self�adaptive (20+20)-ES is applied as the Evolutionary

Algorithm. The number of populations/species is the ensemble size plus the gate pop-

ulation. For example, to generate a system with an ensemble size of 3, I create three

populations for these three experts and the fourth population for the gating network. I

apply a coevolution scheme in which each individual is evaluated against the best in the

other populations. Although there are other reasonable selection schemes, it is outside

the scope of this thesis to investigate the effect of these schemes.

The same setup from section 5.6 is applied to the ME model at the heart of the

CCME algorithm. In other words, each expert is a simple sigmoidal feed-forward neural

network with one hidden layer consisting of three hidden nodes (unless noted otherwise).

The gating network has no hidden layer and consists of as many linear outputs - with

softmax - as the number of experts.

Back propagation is employed to train the ME model (i.e. local search). The

learning rates are 0.1 for all components of the model unless speci�ed otherwise. The

probabilistic cross entropy function is used as the training error function of the ME local

search.

The system is run for 200 generations; local search is performed for 10 epoches

per generation per individual. In each generation, the best found ensemble is stored in a

place holder and passed back to the population at the end of the evaluation process (i.e.
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elitism = 1 per sub�population).

5.7.2 CCME with different error functions

Table 5.5 presents the error rates of these four error functions for the �ve

datasets. Figure 5.11, which plots the performance and two-way ANOVA test of all data

across all datasets, implies that the difference between these four error functions is not

statistically signi�cant. However, the cross entropy error function is the best among the

four error functions (Figure 5.11). Therefore, I will use the cross entropy error function

throughout the chapter. This is consistent with the the literature (Bishop 1995; Moerland

1997b; Tang, Heywood, and Shepherd 2002; Waterhouse 1997).

Dataset Gaussian Cross Entropy Compete Residual Con�dence
Breast Cancer 0.0300(0.0196) 0.0300(0.0142) 0.0372(0.0167) 0.0286(0.0165)
Australian credit card 0.1420(0.0541) 0.1261(0.0381) 0.1464(0.0490) 0.1406(0.0355)
Diabetes 0.2485(0.0449) 0.2317(0.0460) 0.2290(0.0474) 0.2538(0.0587) 95%
Liver Disorder 0.3051(0.0865) 0.2994(0.0786) 0.3395(0.0667) 0.2790(0.0757) 95%
Tic Tac Toe 0.1555(0.0306) 0.1294(0.0381) 0.1775(0.0635) 0.1754(0.0541) 95%

Table 5.5: Mean (and standard deviation) error rates of CCME with different error func-
tions. A bold face indicates a signi�cantly better performance in a row while an italic
font indicates a signi�cantly inferior performance compared to the best.
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Figure 5.11: Error rates and ANOVA test for four different error functions for CCME.
Overlapping intervals of groups' averages imply the groups are not signi�cantly different;
while disjoint intervals imply they are signi�cantly different.
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5.7.3 CCME with different learning rates

Tables 5.6 and 5.7 present the performance of CCME on three different sets

of learning rates for two different stopping criteria: minimum on validation and without

early stopping respectively. The �rst set corresponds to the case of learning rate 0.1 for

both the gating network and the experts. The second and third sets test the cases when

the experts and the gating network have different learning rates (0.01,0.1) and (0.1,0.01)

respectively.
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Figure 5.12: ANOVA test on error rates for learning rate factor for CCME. Overlap-
ping intervals of groups' averages imply the groups are not signi�cantly different; while
disjoint intervals imply they are signi�cantly different.

The results in Table 5.6 show that the �rst set of learning rates is the best among

the three in four out of �ve datasets while the results for the last generation (Table 5.7) is

inconclusive. On the one hand, the ANOVA test on the learning rate factor (�gure 5.12,

considering all datasets, shows that for early stopping, a learning rate of 0.1 for both the

experts and the gate is statistically signi�cantly preferable to the other two situations. On

the other hand, the difference in the last generation is not statistically signi�cant for any

set of learning rates although set (a) has the best average performance out of the three.

Throughout this chapter, I will use a learning rate of 0.1 for both the expert ANNs and

the gate ANN (unless stated otherwise).
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Dataset (a)rexp = 0.1 (b)rexp = 0.01 (c)rexp = 0.1 Con�dence
rgate = 0.1 rgate = 0.1 rgate = 0.01

Breast Cancer 0.03(0.0142) 0.0329(0.0151) 0.0329(0.0152)
Australian credit card 0.1261(0.0381) 0.1362(0.0356) 0.1464(0.0301) 95%
Diabetes 0.2317(0.0460) 0.2303(0.0477) 0.2265(0.0377)
Liver Disorder 0.2994(0.0786) 0.3346(0.1062) 0.3021(0.0813) 90%
Tic Tac Toe 0.1294(0.0381) 0.2243(0.07) 0.1221(0.0563) 99%

Table 5.6: Different learning rate for CCME with stopping criteria based on minimum
on validation set (a) rexp = 0.1, rgate = 0.1) and (b) rexp = 0.01, rgate = 0.1 and (c)
rexp = 0.1, rgate = 0.01. Presented results are mean and standard deviation of error
rates. A bold face indicates a signi�cantly better performance in a row while an italic
font indicates a signi�cantly inferior performance compared to the best.

Dataset (a)rexp = 0.1 (b)rexp = 0.01 (c)rexp = 0.1 Con�dence
rgate = 0.1 rgate = 0.1 rgate = 0.01

Breast Cancer 0.0329(0.0135) 0.03(0.0142) 0.0415(0.0195) 95%
Australian credit card 0.1536(0.035) 0.1348(0.0355) 0.1493(0.0306)
Diabetes 0.2475(0.0607) 0.2434(0.0517) 0.2421(0.0623)
Liver Disorder 0.2845(0.0861) 0.2937(0.0913) 0.299(0.0743)
Tic Tac Toe 0.1231(0.0435) 0.1982(0.0655) 0.1179(0.0428) 99%

Table 5.7: Different learning rate for CCME without early stopping (a) rexp = 0.1,
rgate = 0.1) and (b) rexp = 0.01, rgate = 0.1 and (c) rexp = 0.1, rgate = 0.01. Pre-
sented results are mean and standard deviation of error rates. A bold face indicates a
signi�cantly better performance in a row while an italic font indicates a signi�cantly
inferior performance compared to the best.
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Dataset (a) early stopping (b) without early stopping Con�dence
Breast Cancer 0.0319(0.0162) 0.0348(0.0144)
Australian credit card 0.1362(0.0346) 0.1459(0.0346) 95%
Diabetes 0.2295(0.0425) 0.2443(0.0564) 95%
Liver Disorder 0.3120(0.0879) 0.2924(0.0815) 95%
Tic Tac Toe 0.1586(0.0721) 0.1464(0.0623) 99%

Table 5.8: Different stopping criteria for CCME (a) minimum error on validation set
and (b) no early stopping. Presented results are mean and standard deviation of error
rates. A bold face indicates a signi�cantly better performance in a row while an italic
font indicates a signi�cantly inferior performance compared to the best.

5.7.4 CCME with different stopping criteria

The average error rates (over ten fold results of three learning rates) are pre-

sented in tables Table 5.8. The performance (Table 5.8) and ANOVA tests (Figure 5.13)

give mixed results. Early stopping is preferable on two of the �ve datasets, while �last

generation� is preferable on another two (signi�cance level 95%). Overall, early stop-

ping shortens the training time while maintaining a comparable competence, so I will use

early stopping throughout the remainder of this chapter.

0.16 0.165 0.17 0.175 0.18 0.185 0.19
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Figure 5.13: CCME: ANOVA test for the stopping criteria factor. Overlapping inter-
vals of groups' averages imply the groups are not signi�cantly different; while disjoint
intervals imply they are signi�cantly different.

5.7.5 CCME with various ensemble size

The performance of CCME with different ensemble sizes are presented in �g-

ure 5.14. It is obvious that CCME is quite robust to the ensemble size, i.e. the ensemble

size does not signi�cantly affect the performance of the ensemble. Only the Tic Tac Toe
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Endgame dataset shows a signi�cant improvement when the ensemble size is increased

from 3 experts to a larger size. The rest of the �gure 5.14 shows statistically insigni�cant

effects. The results across all datasets are presented in Figure 5.15. The ANOVA plot

shows that none of the ensemble sizes has a statistically signi�cant effect on the perfor-

mance of the ensemble, although the ensemble with 9 experts seems to be the best among

the �ve con�gurations.

5.7.6 CCME with various network complexity

The performance of CCME with different networks complexity is presented in

�gure 5.16. The plots indicate the robustness of the CCME model to an unnecessary

increase in the number of hidden units. It is obvious that three hidden units were enough

for all datasets except the Tic Tac Toe which requires �ve hidden nodes. This conclusion

is backed up by the plot across all datasets in Figure 5.17. Although the overall plot (Fig-

ure 5.17) suggests that too simple and too complex (in term of number of hidden units)

ANNs are not ideal, the lack of a statistically signi�cant difference makes it inconclusive.

5.7.7 Understanding evolutionary dynamics of CCME

In this section, the evolutionary dynamics of CCME are analyzed to gain in-

sight into evolutionary behavior in the model.

Training and validation accuracy over generation plots

Figures 5.19 display the training and validation accuracy over generation curves

of Diabetes, Liver Disorder and Tic Tac Toe Endgame datasets. In this section, the train-

ing and validation accuracies of the best ME in each generation are considered as the

accuracies of the system in that generation. The plots contrast the training accuracy

with the corresponding validation accuracy. As expected with an elitism-based coevolu-

tionary system (Popovici and Jong 2005), the training accuracy (also the �tness in this
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Figure 5.14: Error plots (left) and ANOVA tests (right) for �ve datasets on different
ensemble size: only Tic tac toe dataset show a signi�cant different between ensemble of
size 3 and of other sizes. Overlapping intervals of groups' averages imply the groups are
not signi�cantly different; while disjoint intervals imply they are signi�cantly different.
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Figure 5.15: ANOVA test on error rates for the ensemble size factor for CCME. Overlap-
ping intervals of groups' averages imply the groups are not signi�cantly different; while
disjoint intervals imply they are signi�cantly different.

thesis) of the best individual in the generation increases monotonically and converges

after a number of generations. The plots of the corresponding validation accuracy of the

best individual are as expected, with up and down movements.

Since the validation curves also show the tendency of early stopping, the plots

suggest that CCME should stop much earlier in the case of Diabetes than in the other two

datasets.

Fitness over generation plots

In this section, I use the usual �tness over generation plots to get insights into

how the sub�populations behave over time (units are taken here to means generations).

Figure 5.19 shows three types of �tness-time plots: (i) the leftmost displays the �tness of

the best ME in each generation, (ii) the middle shows the �tness of the best individuals

of the four sub�populations, and (iii) the rightmost shows the average �tness of the four

sub�populations. In other words, the �rst plot in a row corresponds to the evolution-

ary dynamics of the whole system while the last two correspond to the coevolutionary

dynamics of the sub�populations.

The plots of the sub�population's best �tness and average �tness show a small

�tness diversity among sub�populations. However, since the �tness is computed as the

correction rates of the cooperation between an individual in one sub�population and the

best individuals in the other sub�populations, it is not surprising the �tness differences
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Figure 5.16: Error plots (left) and ANOVA tests (right) for �ve datasets on different net-
work complexity: only Tic tac toe dataset show a signi�cant different between ensemble
of size 3 and of other sizes. Overlapping intervals of groups' averages imply the groups
are not signi�cantly different; while disjoint intervals imply they are signi�cantly differ-
ent.
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Figure 5.17: ANOVA test on error rates for the network complexity factor for CCME.
Overlapping intervals of groups' averages imply the groups are not signi�cantly different;
while disjoint intervals imply they are signi�cantly different.

between sub�populations are not high. Moreover, this small diversity in sub�population

�tness does not contradict the observation that the system, being a mixture of experts,

exerts a much higher genotypic diversity in terms of the different input regions, for which

the model's sub�populations are responsible. In chapter 6, I will show that indeed, the

sub�populations are diverse in the sense that they are responsible for very different input

sub�regions.

Fitness distributions

Popovici and De Jong (Popovici and Jong 2003) have proposed a visualization

technique to understand how the �tness distribution of an EA population changes over

time. In this technique, the �tness data are collected through multiple runs and the �tness

distributions of each run are plotted as lines on the same graph. By taking snapshots at

some time intervals (i.e. generations) during a complete run, the sequence of plots show

how the distributions change over time.

In the following plots, the �tness distributions of ten runs at generation 0 (ini-

tialization), 1, 20, 40, 60, 100, 150 and 200 are plotted. Different lines in the same plot

represent different runs. A wider spread in the �tness distribution implies higher phe-

notypic diversity in the population while a narrow distribution implies low population

diversity in the �tness space. Figures 5.20,5.22,5.23 present the �tness distributions of

the Diabetes, Liver Disorder and Tic Tac Toe Endgames datasets respectively. Over time,
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Figure 5.18: CCME: training and validation accuracy of the best individual of each gen-
eration vs. generation curves of 10 runs of Diabetes, Liver Disorder and Tic Tac Toe
Endgames: different lines represent different runs.
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Figure 5.19: CCME: An example of �tness over generation plots for Diabetes, Liver
Disorder and Tic Tac Toe:(left) best individual in generation, (middle) best individual in
every sub�population, (right) average �tness in every sub�population
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i.e. generations, the �tness distribution gradually spreads out and is skewed to the left

(i.e the frequency peak lies at the higher �tness). This phenomenon implies that the pop-

ulations gradually lose their phenotypic diversity over time. However even at generation

200, there is still some spread in the �tness distribution, which suggests CCME is able to

explore the lower �tness range after a long evolutionary run. In other words, population

diversity is maintained. A detailed example of the �tness distribution over generations

for Diabetes is plotted as a 3D graph in Figure 5.21. The plot shows how the distribution

of �tness increases over time, as well as how it is gradually skewed to the left.

In the Diabetes and Liver Disorder cases, this change in the �tness distribu-

tion occurs much slower than for the Tic Tac Toe dataset, which suggests Tic Tac Toe

converges much quicker than the other two sets. This conclusion matches the training

accuracy plots in section 5.7.7.

5.8 CCME vs. ME comparisons

In this set of experiments, CCME is compared against the back propagation

ME to test whether adding a CC layer improves the generalization performance of the

ME model. The experiments are divided into two sets. In the �rst set of experiments,

CCME is veri�ed against a single ME with long training time (i.e. 320,000 epochs).

The purpose is to verify CCME against the traditional ME regarding the performance

and time complexity, which are reported and compared. To keep the comparison fair,

since CCME makes use of 320,000 objective evaluations (i.e. 200 generations x 160

individuals x 10 epochs per generation per individual), I use the same number of epochs

(i.e. 320,000) for ME. The second set of experiments is conducted to test whether CC is

bene�cial in improving the performance of the ME model. To test this, for each fold (in

10 folds), instead of running a single ME for a long period, I run a set of 160 randomized

MEs, each of which is trained for 2,000 epochs. The ME with the minimum validation

error out of these 160 runs is chosen to be tested against the test data. The reported errors
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Figure 5.20: 10 �tness distributions of Diabetes taken at generations 0, 1, 20, 40, 60, 100,
150 and 200: different lines represent different runs.
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are averaged over ten folds.

Datasets

In this section, I add another ten different datasets. CCME and ME are com-

pared on �fteen benchmark datasets taken from the UCI machine learning repository

(Newman, Hettich, Blake, and Merz 1998) and the StatLog database (King, Feng, and

Shutherland 1995). The datasets are summarized in Table 5.9. Since the number of inputs

greatly affects the networks' complexity, and consequently the system performance, the

datasets will be categorized into small size (number of attributes < 20) and medium size

(number of attributes ≥ 20). It is undoubtable that larger datasets require more complex

systems, i.e. more experts and more hidden nodes per expert; however, it is outside the

scope of this thesis to investigate the relationship between data complexity and network

complexity. Therefore, the comparisons will be limited to a �xed level of complexity to

demonstrate that even with a small system, the method is still compatible/competitive to

the simple back propagation ME.

5.8.1 CCME vs ME on performance

CCME is compared against the back propagation ME across different learn-

ing rates to avoid possible bias of different learning rates toward different methods. The

results (Tables 5.10 and 5.11) show a superior performance of CCME over the original

ME, regardless of different learning rates and different stopping criteria. Figure 5.24

shows the signi�cance test (ANOVA) of CCME vs ME for the �fteen datasets, consid-

ering all different learning rates with and without early stopping. The tests show that

CCME signi�cantly outperforms ME in the small datasets and is better than ME in the

medium datasets, although the latter difference is insigni�cant. These results provide

strong evidence of the advantage gained by using CC in conjunction with the ME model.
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Figure 5.21: A 3D plot of �tness distributions over time of Diabetes

Number of Number of Continuous Discrete
Instances Attributes Attributes Attributes

(i) small datasets
Breast Cancer 699 9 9

Cleveland Heart 303 13 7 6
Australian credit card 690 14 6 8

Diabetes 768 8 8
StatLog Heart 270 13 7 6

Hepatitis 155 19 6 13
Liver Disorder 345 6 6

Ljubljana Breast Cancer 286 9 9
Tic Tac Toe 958 9 9

House voting 84 435 16 16
(ii) medium datasets

German credit card 1000 24 7 17
Ionosphere 351 33 33

King Rook vs King Pawn 3196 36 36
E.coli Promoters 106 57 57
Thyroid sickness 2800/972 27 7 20

Table 5.9: Fifteen datasets from UCI machine learning repository and Statlog database
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Figure 5.22: 10 �tness distributions of Liver Disorder taking at generations 0, 1, 20, 40,
60, 100, 150 and 200: different lines represent different runs.
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Figure 5.23: 10 �tness distributions of Tic Tac Toe Endgames taking at generations 0, 1,
20, 40, 60, 100, 150 and 200: different lines represent different runs.
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ηexp = ηgate = 0.1 ηexp = 0.01, ηgate = 0.1 ηexp = 0.1, ηgate = 0.01
Dataset ME CCME ME CCME ME CCME

(i) small datasets
Breast Cancer 0.037(0.019) 0.030(0.014) 0.040(0.016) 0.033(0.015) 0.039(0.017) 0.033(0.015)
Cleveland Heart 0.208(0.052) 0.225(0.073) 0.258(0.098) 0.228(0.059) 0.241(0.077) 0.215(0.047)
Australian credit card 0.158(0.034) 0.126(0.038) 0.158(0.044) 0.136(0.036) 0.146(0.034) 0.146(0.030)
Diabetes 0.254(0.057) 0.232(0.046) 0.230(0.065) 0.230(0.048) 0.240(0.060) 0.227(0.038)
StatLog Heart 0.211(0.080) 0.174(0.089) 0.185(0.087) 0.159(0.092) 0.219(0.120) 0.181(0.069)
Hepatitis 0.200(0.099) 0.168(0.061) 0.180(0.064) 0.188(0.090) 0.200(0.090) 0.194(0.053)
Liver Disorder 0.285(0.079) 0.299(0.079) 0.282(0.059) 0.335(0.106) 0.317(0.067) 0.302(0.081)
Ljubljana Breast Cancer 0.263(0.040) 0.297(0.112) 0.283(0.033) 0.245(0.049) 0.256(0.031) 0.276(0.112)
Tic Tac Toe 0.185(0.050) 0.129(0.038) 0.192(0.055) 0.224(0.070) 0.146(0.034) 0.122(0.056)
House voting 84 0.064(0.035) 0.037(0.034) 0.055(0.039) 0.046(0.032) 0.071(0.052) 0.062(0.054)

(i) medium datasets
German credit card 0.261(0.048) 0.242(0.027) 0.262(0.040) 0.243(0.029) 0.274(0.038) 0.243(0.032)
Ionosphere 0.262(0.069) 0.222(0.098) 0.265(0.095) 0.217(0.088) 0.268(0.087) 0.228(0.091)
King Rook vs King Pawn 0.018(0.008) 0.010(0.008) 0.018(0.010) 0.019(0.009) 0.010(0.007) 0.009(0.006)
E.coli Promoters 0.180(0.182) 0.254(0.129) 0.215(0.140) 0.194(0.216) 0.169(0.150) 0.244(0.157)
Thyroid sickness 0.107(0.004) 0.098(0.016) 0.108(0.005) 0.077(0.018) 0.107(0.006) 0.102(0.000)

Table 5.10: Mean (and standard deviation) error rates of CCME vs single ME running
320,000 epochs using three different sets of learning rates and early stopping. A bold
face indicates a signi�cantly better performance in a row.

ηexp = ηgate = 0.1 ηexp = 0.01, ηgate = 0.1 ηexp = 0.1, ηgate = 0.01
Dataset ME CCME ME CCME ME CCME

(i) small datasets
Breast Cancer 0.064(0.022) 0.033(0.014) 0.050(0.026) 0.030(0.014) 0.034(0.017) 0.041(0.020)
Cleveland Heart 0.244(0.076) 0.222(0.065) 0.251(0.074) 0.228(0.045) 0.251(0.088) 0.192(0.056)
Australian credit card 0.177(0.030) 0.154(0.035) 0.188(0.042) 0.135(0.036) 0.201(0.045) 0.149(0.031)
Diabetes 0.289(0.068) 0.247(0.061) 0.290(0.064) 0.243(0.052) 0.264(0.074) 0.242(0.062)
StatLog Heart 0.248(0.100) 0.185(0.076) 0.233(0.096) 0.170(0.101) 0.237(0.068) 0.174(0.103)
Hepatitis 0.195(0.126) 0.180(0.073) 0.161(0.076) 0.207(0.088) 0.175(0.096) 0.226(0.074)
Liver Disorder 0.342(0.061) 0.285(0.086) 0.337(0.096) 0.294(0.091) 0.360(0.072) 0.299(0.074)
Ljubljana Breast Cancer 0.301(0.077) 0.266(0.066) 0.269(0.094) 0.273(0.053) 0.287(0.072) 0.263(0.049)
Tic Tac Toe 0.223(0.039) 0.123(0.043) 0.183(0.041) 0.198(0.065) 0.175(0.042) 0.118(0.043)
House voting 84 0.062(0.052) 0.064(0.045) 0.048(0.035) 0.041(0.026) 0.053(0.041) 0.062(0.040)

(i) medium datasets
German credit card 0.280(0.060) 0.264(0.043) 0.302(0.056) 0.246(0.046) 0.325(0.054) 0.264(0.031)
Ionosphere 0.242(0.081) 0.217(0.072) 0.308(0.073) 0.225(0.078) 0.279(0.063) 0.217(0.089)
King Rook vs King Pawn 0.018(0.011) 0.009(0.007) 0.011(0.005) 0.018(0.008) 0.010(0.005) 0.010(0.004)
E.coli Promoters 0.161(0.149) 0.234(0.174) 0.226(0.161) 0.218(0.109) 0.198(0.166) 0.281(0.188)
Thyroid sickness 0.109(0.008) 0.176(0.233) 0.106(0.011) 0.084(0.018) 0.107(0.005) 0.102(0.000)

Table 5.11: Mean (and standard deviation) error rates of CCME vs single ME running
320,000 epochs using three different sets of learning rates and without early stopping. A
bold face indicates a signi�cantly better performance in a row.
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Figure 5.24: ANOVA test on error rates for the CCME vs single ME running 320,000
epochs for small and medium datasets accounting all three learning rates and (a) early
stopping, (b) without early stopping. Overlapping intervals of groups' averages imply the
groups are not signi�cantly different; while disjoint intervals imply they are signi�cantly
different.

5.8.2 CCME vs randomized ME on performance

I have shown above that CCME, on average, performs better than a single ME

running for 320,000 epochs. However, someone may argue that a long running time is

disadvantageous to back propagation, even though early stopping is used. In this section,

for each fold, instead of running a single ME for a long period, a set of 160 randomized

MEs are run for 2,000 epochs. This mimics the evolutionary setup, which consists of

160 individuals running for 200 generations x 10 local search epochs. The ME with the

lowest validation error is selected, out of 160 randomized MEs, as the representative of

the run. This individual is then tested against the test set and its test error is reported as

the performance error of the run. The average test error of the ten runs is reported as the

generalization error of the randomized back propagation ME.
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CCME is compared against the randomized back propagation ME across differ-

ent learning rates. The results (Tables 5.12 and 5.13) show that on small datasets, CCME

performs signi�cantly better than back propagation ME, regardless of different learning

rates. Figure 5.25 shows the signi�cance test (ANOVA) of CCME vs ME for the �fteen

datasets considering all different learning rates. The test con�rms the above conclusion,

that CCME signi�cantly out-performs ME on small datasets. For the medium datasets,

however, there is not enough evidence to reject the null hypothesis, that CCME is no

different from ME. The results in this section, together with those in section 5.8.1, imply

that adding a CC layer enhances the generalization ability of ME for some classi�cation

problems.

(a) With early stopping

0.18 0.19 0.2 0.21

CCME

ME

 small datasets

error(%)
0.16 0.17 0.18

CCME

ME

 medium datasets

error(%)

(b) Without early stopping

0.18 0.19 0.2 0.21

CCME

ME

 small datasets

error(%)
0.16 0.17 0.18

CCME

ME

  medium datasets

error(%)

Figure 5.25: ANOVA test on error rates for the CCME vs 160 randomized MEs running
2,000 epochs for small and medium datasets accounting all three learning rates. Overlap-
ping intervals of groups' averages imply the groups are not signi�cantly different; while
disjoint intervals imply they are signi�cantly different.
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ηexp = ηgate = 0.1 ηexp = 0.01, ηgate = 0.1 ηexp = 0.1, ηgate = 0.01
Dataset ME CCME ME CCME ME CCME

(i) small datasets
Breast Cancer 0.043(0.019) 0.030(0.014) 0.046(0.022) 0.033(0.015) 0.049(0.018) 0.033(0.015)
Cleveland Heart 0.244(0.087) 0.225(0.073) 0.248(0.083) 0.228(0.059) 0.225(0.044) 0.215(0.047)
Australian credit card 0.133(0.046) 0.126(0.038) 0.132(0.039) 0.136(0.036) 0.157(0.041) 0.146(0.030)
Diabetes 0.243(0.055) 0.232(0.046) 0.236(0.055) 0.230(0.048) 0.246(0.055) 0.227(0.038)
StatLog Heart 0.222(0.068) 0.174(0.089) 0.237(0.088) 0.159(0.092) 0.185(0.099) 0.181(0.069)
Hepatitis 0.194(0.062) 0.168(0.061) 0.193(0.080) 0.188(0.090) 0.161(0.073) 0.194(0.053)
Liver Disorder 0.287(0.039) 0.299(0.079) 0.297(0.081) 0.335(0.106) 0.319(0.071) 0.302(0.081)
Ljubljana Breast Cancer 0.322(0.082) 0.297(0.112) 0.283(0.064) 0.245(0.049) 0.245(0.072) 0.276(0.112)
Tic Tac Toe 0.111(0.033) 0.129(0.038) 0.185(0.065) 0.224(0.070) 0.130(0.044) 0.122(0.056)
House voting 84 0.067(0.048) 0.037(0.034) 0.080(0.053) 0.046(0.032) 0.050(0.042) 0.062(0.054)

(i) medium datasets
German credit card 0.268(0.033) 0.242(0.027) 0.273(0.039) 0.243(0.029) 0.258(0.040) 0.243(0.032)
Ionosphere 0.239(0.072) 0.222(0.098) 0.197(0.095) 0.217(0.088) 0.228(0.074) 0.228(0.091)
King Root vs King Prawn 0.010(0.006) 0.010(0.008) 0.011(0.005) 0.019(0.009) 0.007(0.005) 0.009(0.006)
E.coli Promoters 0.189(0.123) 0.254(0.129) 0.214(0.188) 0.194(0.216) 0.239(0.146) 0.244(0.157)
Thyroid sickness 0.112(0.011) 0.098(0.016) 0.105(0.005) 0.077(0.018) 0.106(0.004) 0.102(0.000)

Table 5.12: Mean (and standard deviation) error rates of CCME vs 160 randomized MEs
running 2,000 epochs using three different sets of learning rates and early stopping. A
bold face indicates a signi�cantly better performance in a row while an italic font indi-
cates a signi�cantly inferior performance compared to the best.

ηexp = ηgate = 0.1 ηexp = 0.01, ηgate = 0.1 ηexp = 0.1, ηgate = 0.01
Dataset ME CCME ME CCME ME CCME

(i) small datasets
Breast Cancer 0.044(0.016) 0.033(0.014) 0.038(0.018) 0.030(0.014) 0.039(0.014) 0.041(0.020)
Cleveland Heart 0.258(0.043) 0.222(0.065) 0.251(0.043) 0.228(0.045) 0.255(0.040) 0.192(0.056)
Australian credit card 0.171(0.022) 0.154(0.035) 0.150(0.029) 0.135(0.036) 0.162(0.024) 0.149(0.031)
Diabetes 0.263(0.046) 0.247(0.061) 0.246(0.054) 0.243(0.052) 0.247(0.051) 0.242(0.062)
StatLog Heart 0.231(0.076) 0.185(0.076) 0.211(0.066) 0.170(0.101) 0.225(0.075) 0.174(0.103)
Hepatitis 0.197(0.056) 0.180(0.073) 0.189(0.050) 0.207(0.088) 0.186(0.046) 0.226(0.074)
Liver Disorder 0.305(0.041) 0.285(0.086) 0.279(0.063) 0.294(0.091) 0.302(0.043) 0.299(0.074)
Ljubljana Breast Cancer 0.306(0.047) 0.266(0.066) 0.278(0.049) 0.273(0.053) 0.292(0.045) 0.263(0.049)
Tic Tac Toe 0.195(0.016) 0.123(0.043) 0.233(0.019) 0.198(0.065) 0.175(0.016) 0.118(0.043)
House voting 84 0.059(0.038) 0.064(0.045) 0.058(0.038) 0.041(0.026) 0.058(0.037) 0.062(0.040)

(i) medium datasets
German credit card 0.293(0.019) 0.264(0.043) 0.284(0.021) 0.246(0.046) 0.288(0.021) 0.264(0.031)
Ionosphere 0.254(0.048) 0.217(0.072) 0.241(0.050) 0.225(0.078) 0.238(0.053) 0.217(0.089)
King Root vs King Prawn 0.017(0.005) 0.009(0.007) 0.023(0.006) 0.018(0.008) 0.012(0.004) 0.010(0.004)
E.coli Promoters 0.204(0.138) 0.234(0.174) 0.197(0.140) 0.218(0.109) 0.198(0.134) 0.281(0.188)
Thyroid sickness 0.109(0.002) 0.176(0.233) 0.107(0.003) 0.084(0.018) 0.111(0.006) 0.102(0.000)

Table 5.13: Mean (and standard deviation) error rates of CCME vs 160 randomized MEs
running 2,000 epochs using three different sets of learning rates and without early stop-
ping. A bold face indicates a signi�cantly better performance in a row while an italic font
indicates a signi�cantly inferior performance compared to the best.
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5.8.3 CCME vs ME on time complexity

To justify the time complexity of CCME, the running time of CCME is com-

pared against the running time of the back propagation ME on �fteen datasets. The

running time is counted over 200 generations for CCME and 320,000 epochs for ME,so

as to equalize the number of objective evaluations for both methods [320,000 = 160(in-

dividuals)x 200(generations) x 10(epochs in local search)]. The results of three learning

rates over ten folds are averaged and reported in Figure 5.26 and Table 5.14. The results

show that CCME is slightly slower than ME due to the evolutionary overhead. However,

the running time of CCME is still of the same magnitude as the running time of ME. In

other words, CC does not add signi�cant computation time to the overall running time of

the system.
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Figure 5.26: Running time (seconds) for ME and CCME on �fteen datasets

5.9 Conclusion

In this chapter, I have �rst introduced and investigated different aspects of the

Mixture of Experts model. The key results of the experiments can be summarized as fol-

lows: (i) different error functions do not signi�cantly affect the performance of the ME,

(ii) the ME model is robust to various learning rates, ensemble complexity measured by

the number of individual ANNs, and ANN complexity in terms of the number of hidden
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units, and (iii) early stopping signi�cantly improves the generalization performance of

the ME model, which con�rms the conclusion of chapter 4.

In addition, I have introduced and investigated a novel method based on the

principle of cooperative coevolution and the mixture of experts model. The key results

of the experiments can be summarized as follows: (i) different error functions do not

signi�cantly affect the performance of CCME, (ii) the CCME model is robust against

various learning rates, ensemble complexity in terms of the number of individual ANNs

and ANN complexity in terms of the number of hidden units, (iii) CCME is robust against

over��tting. These conclusions should be interpreted with appropriate caution regarding

extrapolation to other datasets, as our experiments are limited to binary classi�cation.

Finally, the performance of CCME is validated against the traditional ME in

a number of ways. The results suggest that (i) adding CC improves the performance of

ME on a number of classi�cation problems, (ii) the time complexity of CCME and ME

is of the same magnitude, or in other words, CCME is equivalent to ME in terms of time

complexity.
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Dataset ME (seconds) CCME (seconds)
(i) small datasets

Breast cancert (bre) 1385 (13) 1560 (5)
Cleveland heart (cle) 717 (2) 759 (3)
Australian credit card (crx) 1662 (7) 1801 (7)
Diabetes (dia) 1494 (8) 1632 (7)
Statlog heart (hea) 641 (2) 676 (4)
Hepatitis (hep) 465 (6) 492 (5)
Lover disorder (liv) 619 (3) 634 (5)
Ljubljana breast cancer (lub) 563 (4) 642 (6)
Tic tac toe (ttt) 1927 (12) 2169 (7)
House voting 84 (vot) 1125 (8) 1208 (6)

(i) medium datasets
German credit card (ger) 3280 (35) 3603 (31)
Ionosphere (ios) 1395 (46) 1501 (9)
King rook vs king pawn (krv) 13290 (134) 14255 (91)
E.coli promoters (pro) 590 (12) 667 (8)
Thyrois sickness (sic) 10913 (93) 12014 (69)

Table 5.14: Mean (and standard deviation) of the running time of ME and CCME on
�fteen datasets



Chapter 6

Automatic Problem Decomposition

As mentioned in chapter 3, often real world problems are often too compli-

cated to solve with a single ANN. One ef�cient way to solve these complex problems

is to divide them into a set of simpler solvable sub-problems, and design a set of ANNs

to suit these sub-problems. This scheme is often described as Divide-and-Conquer. In

fact, problem decomposition is desirable not only in overly-complex problems but also

in simple problems. Firstly, decomposability implies that the system has the potential to

run in parallel, which can speed up the system if conducted correctly. Secondly, with po-

tentially modular problems, a modular solution better re�ects the problem structure and

therefore is more desirable than a non-modular solution. Since problem decomposition

is a natural way to discover such modular structures, in the solution as well as in the

problem, it is bene�cial to study problem decomposition.

The key questions in automatic problem decomposition are: (i) how to divide

the problem into simpler tasks, (ii) how to assign individuals to solve these sub�tasks

and (iii) how to synthesize the whole system back together. If the problem has a clear

decomposition nature, it may be possible to derive such a decomposed system by hand.

However in most real-world problems, we either know little about the problems, or the

problems are too complex to have a clear vision for a hand designed decomposition. Thus

it is desirable to have a method to automatically decompose a complex problem into a set

145
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of overlapping or disjoint sub problems, and to assign one or more specialists to each of

these subproblems.

ME has proven to be a good Divide-and-Conquer method (Waterhouse 1997).

By cleverly training a gate component together with the experts, ME answers all three

key questions of the automatic problem decomposition. Firstly, by applying a competitive

error function, ME can let the experts compete with each other for the input cases. This

property addresses the �rst two issues of APD. Secondly, by training the gate which

produces the combination weights for the experts, ME ensures an appropriate integration

recipe for the experts. This addresses the last requirement of an APD system.

Although, in the literature of ME, while it is often stated that ME possesses the

APD property, it is not often carefully analyzed. In this chapter, I introduce a number of

visualization tools to analyze the APD characteristics of the ME and CCME models. I

show that, by visualizing the experts' responsibilities vs. the input space, one can see how

these models decompose a problem. Moreover, with the help of an arti�cial 2D problem,

I will show that ME and CCME not only decompose the input space, but decomposes it

in such a way that each subproblem is simple enough such that the assigned experts can

solve it with greater accuracy.

6.1 Visualization tools to analyze APD

In this thesis, I will propose two different mechanisms for visualizing the auto-

matic problem decomposition in high-dimensional feature spaces. The �rst mechanism

is a simple one where data are grouped based on the specialization of each expert and a

color�map of the data records is visualized. The second mechanism relies on principal

component analysis to project the feature space onto lower dimensions, whereby decision

boundaries generated by each expert are visualized through convex approximations.
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6.1.1 Output vs input image plot (imgpl)

The simplest way to visualize automatic problem decomposition is to plot the

output of an individual ANN together with its inputs. As discuss in the previous chapters,

the gate component of a Mixture of Experts acts as a soft switch, selecting an expert (or

experts) to be responsible for each data record. Thus the outputs of this gate can be

considered as a responsibility measure for the experts for a speci�c data instance. To

visualize the responsibility of each expert versus the data, instead of using the actual

weights produced by the gate, a value `1' is assigned to the expert with the maximum

responsibility and `0' to the rest. However, since the gate is a 'soft' switch in the sense

that it might select more than one expert for certain patterns, in those cases, 0's are

assigned to all the experts. In other words, a value of `1' indicates strong responsibility

(i.e. the corresponding weight is distinctly higher than other experts' weights).

The outputs of the individual experts are recorded in a matrix as follows. For

the sake of explanation, I assume an ME with three experts (i.e. ensemble size = 3) and 10

data records. Figure 6.1 displays such a matrix, where each row corresponds to an expert

and each column corresponds to a data pattern. Each entry of the matrix represents the

output of network i on data pattern j. A value `1', for example in row 1 and column 4

(highlighted in Figure 6.1), indicates that expert 1 is assigned to pattern 4.

Figure 6.1: Matrix of individual experts' responses

To visualize an expert's responsibility for different regions of the input space,

a matrix representing the input values for each corresponding record is required. For ex-

ample, a hypothetical dataset of ten records and 4 attributes is presented in the following

matrix:
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0.2 1 0.33 0.25 0.1 0 0.25 0.6 0.37 0

0.1 0 0.33 0 0.1 0 0.25 0.4 0.12 0

0.3 0 0 0.25 0.6 1 0.25 0 0.22 1

0.4 0 0.33 0.5 0.2 0 0.25 0 0.29 0




To make it easier to interpret the plot, the two matrices are sorted according

to the experts' responsibilities (i.e. rows are clustered in the Hamming space, with the

number of clusters equals to the number of experts):




0 0.33 1 0.25 0.1 0.25 0.6 0.2 0.25 0.37

0 0.33 0 0 0.1 0.25 0.4 0.1 0 0.12

1 0 0 0.25 0.6 0.25 0 0.3 0.25 0.22

0 0.33 0 0.25 0.2 0.25 0 0.4 0.5 0.29







0 0 0 0 0 0 0 1 1 1

0 0 0 1 1 1 1 0 0 0

1 1 1 0 0 0 0 0 0 0




Finally, a color map is used to plot the two matrices. An example for the Breast

cancer dataset with 3 experts is shown in Figure 6.2
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Figure 6.2: Individuals' output vs. inputs of the Breast cancer dataset with ensemble size
= 3

The plots of experts' responsibilities against the inputs show that the Mixture of
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Experts model can decompose the problem and assign individual experts to each region

of the input space. In each run, the white bars in the lower box represent the experts'

responsibilities, while the rows in the upper box display a color�map of the values of

each input attribute. The x-axis is the pattern index. Figure 6.2 shows that the white

bars (in the lower plot) distinctively divide the upper plot into regions with dark and light

shade. This means the experts are distinctively responsible for different regions of the

input space.

This �gure is visually useful for simple datasets. For more complex datasets,

it will be too complicated to allow us to analyze the relationship between the experts'

responses and the inputs. Figure 6.3 is an example of a more complex dataset. Unlike the

Breast cancer dataset, the Australian credit card dataset makes use of most of its compo-

nents, as shown in most of the runs. The relationship between the experts' responsibilities

and the input space becomes extremely dif�cult to detect in this kind of plot, because (i)

the correlation between the inputs is not simple, and thus the image map is no longer

useful, (ii) each expert is responsible for a small number of cases, and thus to detect the

transition between the white bars and the corresponding transition in the input space is

visually hard, and (iii) the relationship between the experts and the cases may not be a

simple function.

6.1.2 Output vs principal components plot (pcapl)

In this thesis, I introduce a second type of plot based on Principal Component

Analysis (PCA).

The central idea of principal component analysis is to reduce the dimension-

ality of a data set in which there are a large number of interrelated variables,

while retaining as much as possible of the variation present in the data set.

This reduction is achieved by transforming to a new set of variables, the

principal components (PC), which are uncorrelated, and which are ordered
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Figure 6.3: Individuals' output vs. inputs in 10 runs of the Australian credit card dataset
with ensemble size = 6

so that the �rst few retain most of the variation present in all of the original

variables (Jolliffe 1986).

For a detailed derivation, and procedures for using PCA, readers are referred to

(Jackson 1991; Jolliffe 1986). Here, I present a simple introduction. Suppose I have a set

of vectors ~x = {x1, x2, ..., xp} of p variables. What I am interested in, is to analyze the

variances, covariances and correlations between these p variables in order to discover the

interrelationships between these variables. If p À 1 then obviously it is very hard to �nd

such relationships. However, in many cases, these variables are correlated, sometimes

even highly correlated. The PCA method tries to remove these redundancies, and thus

reduce the number of variables, while preserving the underlying information from the

relationships between these variables.

The outputs of a PCA procedure are a new coordinate systems of p principal

components, and the transformed data from the original to the new coordinate systems.

This new coordinate systems is ordered so that the �rst variable accounts for most of the

variation in the original data, and the last variable accounts for the least variation (Figure
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6.4). In other words, only the �rst few k (k ¿ p) variables, called principal components,

are required to account for most of the information in the data. The obvious question is,

how many principal components are suf�cient to explain the variability in the data. The

literature suggests a number of ways to decide on this number. One way is to look at the

SCREE plot- a simple line segment plot that shows the fraction of total variance in the

data as explained or represented by each principal component (Jolliffe 1986) - such as in

Figure 6.4 and �nd the place where the bar curve levels off to the right of the plot (e.g.

2 in the left plot and 3 or 4 in the right plot). A cruder way is to �nd enough principal

components to account for 60%-80% of the variability, depending on the problem. In

many cases, between one and three principal components are suf�cient.
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Figure 6.4: SCREE plots of the percent variability explained by each principal compo-
nent. Left: Breast cancer, right: Diabetes

To assist our analysis of problem decomposition, PCA is �rst applied to reduce

the number of inputs, and then a plot of the expert's responsibility based on the categor-

ical value of the data against the �rst few principal components can be used to analyze

the automatic problem decomposition property of ME. A maximum of three principal

components is used in our analysis. They accounted in all our examples for at least 70%
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of the variance in the data. With three principal components, one can visualize the data in

3D space, but here, to simplify the visualization, I plot three 2D views of the data against

different pairs of principal components (i.e. PC1 vs PC2, PC1 vs PC3, and PC2 vs PC3).

Figure 6.5 shows an example of our pcapl plot, where different colors of the

markers correspond to different experts' responsibilities; for example, red corresponds to

expert 1 and blue to expert 2. The black points correspond to the cases where no expert

is solely responsible for the data. The boundaries, using the convex hull algorithm in

Algorithm 15, are shown together with the data, to give a clustering view of the data. �A

convex hull of a set of points is the smallest convex set that contains the points� (Barber,

Dobkin, and Huhdanpaa 1996).

The percentage displayed in the label of the subplot shows the percentage of

variance of the inputs retained by the �rst three principal components. From the pcapl

plot, one can see how the experts decompose the input space using the most important

principal components.
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Figure 6.5: pcapl of experts'responsibility in principal component analysis for the Breast
cancer dataset. Percentage shows how much variance of the original inputs is retained in
the principal components. Different colors correspond to different experts' responsibil-
ities. Black points correspond to the cases where no expert is solely responsible for the
data. Marker types (`+' and `o') represent different classes.
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Algorithm 15 Quickhull algorithm for the convex hull in <d

(Barber, Dobkin, and Huhdanpaa 1996)
1: create a simplex of d + 1 points
2: for each facet F do
3: for each unassigned point p do
4: if p is above F then
5: assign p to F 's outside set
6: end if
7: end for
8: end for
9: for each facet F with a non-empty outside set do

10: select the furthest point p of F 's outside set
11: initialize the visible set V to F
12: for all unvisited neighbors N of facets in V do
13: if p is above N then
14: add N to V
15: end if
16: the set of horizon ridges H is the boundary of V
17: for each ridge R in H do
18: create a new facet from R and p
19: link the new facet to its neighbors
20: end for
21: for each new facet F ′ do
22: for each unassigned point q in an outside set of a facet in V do
23: if q is above F ′ then
24: assign q to the outside set of F ′

25: end if
26: end for
27: end for
28: end for
29: end for
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6.2 Analysis of ME and CCME on UCI datasets using

the proposed visualization tools

In this section, I apply the two proposed visualization tools, imgpl and pcapl,

to analyze how ME and CCME automatically decompose real binary classi�cation prob-

lems. The analysis is conducted on the experimental results from Chapter 5 for the Breast

Cancer dataset, which is a relatively easy binary classi�cation problem, and the Aus-

tralian credit card dataset, which is a complex binary classi�cation. These datasets are

taken from the UCI Machine Learning Repository (Newman, Hettich, Blake, and Merz

1998).

6.2.1 Application of imgpl on the Breast cancer dataset with differ-

ent ensemble sizes

ME

Figures 6.6 and 6.7 show the plots for the Breast cancer dataset with ensemble

sizes of 3 and 9. The plots show a couple of interesting results. With larger ensemble,

only a fraction of the ensemble is used. In fact, at most three experts are used for most

of the runs. This is understandable, because Breast cancer is an easy dataset, therefore, it

is not necessary to use a large ensemble with many experts to classify the dataset. With

larger ensemble size, the split seems to be softer. In runs 0 and 2 of Figure 6.7, some

experts are assigned to the same distinct regions of the input space; in the rest of the data,

none of the experts has a high enough weight to be solely responsible for the pattern.

Probably, ME �nds a way to make use of the redundancy of experts, by jointly assigning

them to the same patterns. Nevertheless, the plots give a good visual demonstration of

the automatic problem decomposition characteristic of ME.
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Figure 6.6: ME: imgpl of expert's responsibility vs. inputs in 10 runs of the Breast cancer
dataset with ensemble size = 3
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Figure 6.7: ME: imgpl of expert's responsibility vs. inputs in 10 runs of the Breast cancer
dataset with ensemble size = 9
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CCME

Similarly, the imgpl plots in �gures 6.8 and 6.9 show how CCME, with en-

semble sizes of 3 and 9, decomposes the Breast cancer dataset. Again, different experts

are assigned to distinct regions of the input space. Since the Breast cancer dataset is

simple enough, the model does not use all of the experts, as seen in �gure 6.9. In fact,

approximately two to three experts are enough to solve the problem.

6.2.2 Application of imgpl on a more complex classi�cation prob-

lem: the case of the Australian credit card dataset

Figures 6.10 and 6.11 show the imgpl plots for ME and CCME on the Aus-

tralian credit card dataset. Although Australian credit card is a dif�cult dataset, to some

extent the plots still reveal how the models decompose the problems. Throughout the

plots, it is obvious that some experts particularly respond to some inputs. For example,

in run 0 of Figure 6.10, expert 1 is obviously responsible for inputs 1 and 5; in run 1,

expert 3 is responsible for input 3.

6.2.3 Application of pcapl on the classi�cation problems

Breast cancer dataset

Figures 6.12 and 6.13 display the pcapl of ME and CCME on the Breast cancer

dataset respectively. The plots show that both ME and CCME are able to decompose

the input space, represented by three principal components, into separate regions and

assign different experts to these regions (recall different colors corresponding to different

experts). One particular observation from the plot of the Breast cancer dataset is that, by

reducing the input dimensions to three principal components, the dataset turns out to be

modular: the cases of class `o' mostly group together in one cluster while the cases of `+'

group in another cluster. Both ME and CCME are able to �nd this modularity and assign

experts correctly to different clusters.
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Figure 6.8: CCME: imgpl of expert's responsibility vs. inputs in 10 runs of Breast cancer
dataset with ensemble size = 3
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Figure 6.9: CCME: imgpl of expert's responsibility vs. inputs in 10 runs of the Breast
cancer dataset with ensemble size = 9
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Figure 6.10: ME: imgpl of expert's responsibility vs. inputs in 10 runs of the Australian
credit card dataset with ensemble size = 3
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Figure 6.11: CCME: imgpl of expert's responsibility vs. inputs in 10 runs of the Aus-
tralian credit card dataset with ensemble size = 3
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Figure 6.12: ME: pcapl plots of experts' responsibilities in 10 runs of the Breast cancer
dataset. Percentage shows how much variance of the original inputs is retained in the
principal components. Different colors correspond to different experts' responsibilities.
Black points correspond to the cases where no expert is solely responsible for the data.
Marker types (`+' and `o') represent different classes.
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Figure 6.13: CCME: pcapl plots of experts' responsibilities in 10 runs of the Breast can-
cer dataset. Percentage shows how much variance of the original inputs is retained in the
principal components. Different colors correspond to different experts' responsibilities.
Black points correspond to the cases where no expert is solely responsible for the data.
Marker types (`+' and `o') represent different classes.



CHAPTER 6. AUTOMATIC PROBLEM DECOMPOSITION 161

Australian credit card dataset

Figures 6.14 and 6.15 display the pcapl of ME and CCME on the Australian

credit card dataset, one of the more complex classi�cation problems. Although it is

harder to view the APD property of the dataset, the plots still show that both ME and

CCME are able to decompose the input space, represented by three principal components,

into separate regions and assign different experts to these regions.

6.3 Analysis of CCME on arti�cial problems

In the previous section, I examined the value of the visualization tools in vi-

sualizing the APD properties of ME and CCME on real datasets. However, to gain a

deeper understanding of the working mechanisms of CCME, it is desirable to work with

a problem of lower dimensionality (in my case, 2D), while maintaining the key features

of real datasets (i.e. reasonable dif�culty). In this section, I use a 2D arti�cial problem to

analyze the functioning mechanism of CCME. Although this arti�cial dataset has lower

dimensionality, it remains a dif�cult problem because of the discontinuity in the class

distribution.

6.3.1 Arti�cial data description

To analyze CCME, an arti�cial binary classi�cation problem, as in Figure 6.16,

is used. This arti�cial dataset has two attributes x1 and x2 where −1 < x1 < 1 and

−1 < x2 < 1 and binary class labels. The eight class boundaries are de�ned by the

following set of equations:
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Figure 6.14: ME: pcapl plots of experts' responsibilities in 10 runs of the Australian
credit card dataset. Percentage shows how much variance of the original inputs is re-
tained in the principal components. Different colors correspond to different experts' re-
sponsibilities. Black points correspond to the cases where no expert is solely responsible
for the data. Marker types (`+' and `o') represent different classes.
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Figure 6.15: CCME: pcapl plots of experts' responsibilities in 10 runs of the Australian
credit card dataset. Percentage shows how much variance of the original inputs is retained
in the principal components. Different colors correspond to different experts' responsi-
bilities. Black points correspond to the cases where no expert is solely responsible for
the data. Marker types (`+' and `o') represent different classes.
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Figure 6.16: Arti�cial dataset with class boundaries





x1 − x2 + 0.5 = 0 x1, x2 ∈ [0, 1]

x1 + x2 − 0.5 = 0 x1, x2 ∈ [0, 1]

x1 − x2 − 0.5 = 0 x1, x2 ∈ [0, 1]

x1 + x2 − 1.5 = 0 x1, x2 ∈ [0, 1]

x1 − x2 + 0.25 = 0 x1 ∈ [0.5, 0.75], x2 ∈ [0.25, 0.5]

x1 + x2 − 1.25 = 0 x1 ∈ [0.5, 0.75], x2 ∈ [0.5, 0.75]

x1 − x2 − 0.25 = 0 x1 ∈ [0.25, 0.5], x2 ∈ [0.5, 0.75]

x1 + x2 − 0.75 = 0 x1 ∈ [0.25, 0.5], x2 ∈ [0.25, 0.5]

The innermost and outermost regions contain records of class `1' while the

middle ring contains all records of class `0'. As mentioned before, the reasons for this

particular setup are: (i) the problem can be viewed in two dimension and (ii) the problem

is not easy in the sense that the class distribution is discontinuous.

6.3.2 Analysis of CCME on arti�cial data

As mentioned in (Sharkey 1998), the Mixture of Experts model not only de-

composes the input space but also learns the relationship between the input and labels of

the data. It is useful to plot and analyze these relationship in the same clustering view,
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to see how CCME takes into account the input-output relationship. Figure 6.17 shows

the PCA plots of the CCME model on the arti�cial dataset. The arti�cial problem is 2D,

which could be analyzed in its original form. To be consistent with the analysis through-

out the chapter, I use PCA instead. Henceforth, the readers may notice discrepancies

between the PCA-based images of problems and their original forms; for example, the

positions of the decision boundaries may be rotated according to their principal compo-

nents.

Again, the circle markers represent class `0' while the cross markers represent

class `1'. The black markers are cases where no experts are dominantly responsible for

the case. In extension to the proposed pcapl plot, described in section 6.1.2, I plot the

predicted outputs instead of the true class labels to see how the experts perform in their

designated regions. Moreover, to distinguish between the right and wrong classi�cations,

yellow markers are used when the predicted labels are wrong (i.e. an error). For example,

if the true label is `1', i.e. supposed to be a colored `+', and the predicted label is `0', a

yellow `o' is plotted instead of a colored `+'. In short, apart from the black and yellow

markers, the color markers correspond to different experts in the ensemble.

To view how the whole system classi�es the dataset, the predicted class bound-

aries are plotted as thick black lines. To plot the class boundary, a contour curve at level

0.5 is plotted. Figure 6.18 shows an example of how contour curves are located. A con-

tour curve (or level curve) �of a function u: <2 → < is a curve g : [a, b] → <2 such that

u(g(t)) = c for t ∈ [a, b] where c is a constant� (Eriksson, Estep, and Johnson 2004). In

this thesis, a contour curve at the threshold of the classi�cation is plotted. Since there are

two classes: 0 and 1, the threshold is selected at c = 0.5.

It is obvious that CCME learns to decompose the problem into distinct sub�

regions of the input space. The joint responsibility of experts only occurs in the shared

spaces between two different experts' regions (e.g. run 4 of Figure 6.17). In other words,

the experts display strong con�dence in their primary regions, and only join with each

other in a few (possibly hard) shared cases.
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Figure 6.17: CCME with 3 experts and 3 hidden nodes on arti�cial data. Different colors
correspond to different experts' responsibilities. Black points correspond to the cases
where no expert is solely responsible for the data. Marker types (`+' and `o') represent
different classes. Yellow markers correspond to wrong outputs, thick black lines repre-
sent the predicted class boundaries.
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Figure 6.18: An example of the surface and contour plots of the sphere function. The
contour curves g(a, b) on the �at surface present different levels u(g(a, b)) = c where c
is a scalar.
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As seen in Figure 6.17, CCME splits data into clusters in such a way that each

cluster is easier to classify. The emergent class boundaries are de�nitely simpler than

the original class boundaries. For example, looking closely at run 4 and run 7 (Figure

6.19(a)), the predicted class boundaries (running black lines) are obviously simpler than

the true boundaries (both running and breaking black lines). A possible reason is that

the classi�ers, with only three hidden units, are insuf�cient to �nd better boundaries for

complex clusters. However, looking at run 1 and run 8 (Figure 6.19(b)), the gate has split

the data into easier clusters and thus the existing classi�ers are able to classify the data

with much higher accuracy.

These observations of the correlation between the ease of the sub�problems

(i.e. clusters) and the accuracy of the system conform very well to the automatic prob-

lem decomposition principle: the system decomposes a complex problem into easier sub

problems, which the available modules are able to handle with higher accuracy.

In the following sections, I investigate this APD nature of CCME by varying

the network complexity and the model complexity. The network complexity is measured

by the number of hidden units, and the model complexity by the number of experts.

Intuitively, with suf�cient complexity, the system should perform better. Suf�ciency

here means two possible things. First of all, providing that the system can reasonably

divide the data into clusters, more complex experts should help improve the performance

of the system because each expert can solve the data in its area of responsibility with

a higher degree of accuracy. Secondly, equipped with reasonably simple classi�ers, it

is probable that the system with more components can �nd a better decomposition. The

word �reasonably� is stressed here, because larger does not always mean better. Recalling

the analysis in chapter 5, increasing ensemble size and different network complexity may

not always signi�cantly enhance the system's performance.
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6.3.2.1 CCME with various number of hidden units

To validate the correlation between the dif�culty of the sub�tasks and the ac-

curacy of the system, the same experiments are conducted with different network com-

plexities, in terms of the number of hidden units per expert. The error rates and ANOVA

tests are recorded in Table 6.1 and Figure 6.20. The best con�gurations lie between ten

and �fteen hidden units per expert. Again, too small ANNs (e.g. 3 hidden units) and too

large ANNs (e.g. 25 hidden units) are not desirable.

Figure 6.21 presents the pcapl of ensemble of 3 experts, consisting of 3, 10 and

25 hidden nodes. The plots support the observation that ANNs which are either too small

or too large are not desirable. With 3 hidden nodes, the class boundaries are too simple

to correctly classify the problem. With 25 hidden nodes, the class boundaries in most of

the runs are quite close to the true boundaries. However, in some runs (i.e. run 0 and

6), CCME fails to generate more complex boundaries, so that the average error rate (out

of ten runs) increases slightly. It is obvious that the best con�guration lies somewhere

between these two extreme cases. With 10 hidden nodes, CCME performs generally well

in all of the runs, with the predicted class boundaries closely matching the true locations.

Moreover, the visualization motivates an important observation: more complex

experts can generate more complex class boundaries, and hence, can classify the data in

their clusters with higher accuracy. In the top set of plots (i.e. 3 hidden units), the individ-

ual experts can only produce simple class boundaries with continuous class distributions.

For example, in run 7 of the 3 hidden units case, the green expert cannot produce the

required U-shape for its cluster. Instead, it opens up a bridge by assuming a part of the

data as class `+', which is wrong in this case. With larger ANN such as 10 hidden units,

the experts can produce much more complex boundaries. As seen in most of the runs

with 10 hidden units, at least one of the available three experts can classify discontinuous

class distributions with high accuracy.
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Figure 6.19: CCME on arti�cial datasets: failure and success. Different colors corre-
spond to different experts' responsibilities. Black points correspond to the cases where
no expert is solely responsible for the data. Marker types (`+' and `o') represent differ-
ent classes. Yellow markers correspond to wrong outputs, thick black lines represent the
predicted class boundaries.

number of hidden units error rate
3 0.126(0.042)
5 0.069(0.037)
7 0.052(0.034)
10 0.045(0.017)
15 0.048(0.017)
20 0.065(0.044)
25 0.076(0.045)
35 0.096(0.063)

Table 6.1: Mean (and standard deviation) of error rates of CCME with different numbers
of hidden units on arti�cial data
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6.3.2.2 CCME with various number of experts

In this section, I examine CCME with varying ensemble sizes of 3, 6, 10 and

15 experts, each expert consisting of three hidden nodes. Intuitively, with increasing

ensemble sizes, the system can generate more clusters, so that each cluster is easier for a

simple 3-hidden-unit classi�er to classify. The error rates and ANOVA tests are recorded

in Table 6.2 and Figure 6.22. The best con�guration is six experts; adding more experts

does not help the model to perform better. These results support the �ndings in chapter

5.

number of experts error rate
3 0.126(0.042)
6 0.094(0.050)
10 0.098(0.043)
15 0.096(0.053)

Table 6.2: Mean (and standard deviation) of error rates of CCME with different number
of experts on arti�cial data

Figure 6.23 presents the pcapl of ensemble of 3 and 6 experts, whose number

of hidden units are �xed at 3. The plots show that by adding more experts, the model

can generate more clusters. For example, with 6 experts, the model can generate up to 4

clusters, e.g. run 3 of 6 experts. However, when the number of experts grows too large,

some of them either become redundant, or are used jointly to predict clusters which one

alone could handle. An example is seen in the 15-expert experiments. The total number

of clusters is limited to �ve clusters (5 different colors), so the other 10 experts are either

redundant, or subordinately assist the �ve main ones.

One interesting observation from these plots is that the model can �nd very

good ways to divide the data into better clusters. For example in run 3 of the middle

plots, or in runs 1, 2, 5 and 8 of the bottom plots, the model can �nd the optimum

division scheme to divide the data, and therefore the generated class boundaries are very

close to perfect. However, in some runs, the model cannot �nd a good division scheme at

all, and therefore classi�es the data badly. The reason for this bad performance is unclear.
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Nevertheless, these results raise a couple of interesting questions: (1) can a measure of

the dif�culty of a cluster be de�ned?, (2) can this kind of measurement of the quality of

a cluster be used to guide the model towards dividing the data in a better way, and (3)

can this measure be used to explain the differences in performance between methods of

automatic problem decomposition? These questions remain open and serve as possible

future directions.

6.4 Conclusion

In this chapter, I have proposed a number of tools to analyze CCME as an au-

tomatic problem decomposition method. I have also tested CCME on a complex arti�cial

dataset to see how CCME performs in 2D problems. The key results can be summarized

as follow. Firstly, the tools help to view how the model decomposes the data into regions

of simpler input-output relationship. The tools show how ME and CCME can discover

the modularity of the problems (if there is any). Moreover, with more complex problems,

the tools still provide a sensible view of how the models apply the principle of divide-and-

conquer, in which a complex problem is divided into simpler sub�tasks (clusters) to suit

the available components (i.e. experts). Thirdly, there is a possible correlation between

the input-output relationship in the clusters, and the system's performance, which may

be useful to de�ne clustering metrics based on input-output relationship as opposed to

the normal purity measurement used in existing clustering techniques. I hypothesize that

such a metric could be used as a guide, forcing CCME toward producing better clusters

in terms of ease classi�cation.
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Figure 6.20: Error rate and ANOVA plots of CCME with different numbers of hidden
units on arti�cial data. Overlapping intervals of groups' averages imply the groups are
not signi�cantly different; while disjoint intervals imply they are signi�cantly different.



CHAPTER 6. AUTOMATIC PROBLEM DECOMPOSITION 173

3 hidden units

PC1

P
C

2

run 0

PC1
P

C
2

run 1

PC1

P
C

2

run 2

PC1

P
C

2

run 3

PC1

P
C

2

run 4

PC1

P
C

2

run 5

PC1

P
C

2

run 6

PC1

P
C

2

run 7

PC1

P
C

2

run 8

PC1

P
C

2

run 9

10 hidden units

PC1

P
C

2

run 0

PC1

P
C

2

run 1

PC1

P
C

2

run 2

PC1

P
C

2

run 3

PC1

P
C

2
run 4

PC1

P
C

2

run 5

PC1

P
C

2

run 6

PC1

P
C

2

run 7

PC1

P
C

2
run 8

PC1

P
C

2

run 9

25 hidden units

PC1

P
C

2

run 0

PC1

P
C

2

run 1

PC1

P
C

2

run 2

PC1

P
C

2

run 3

PC1

P
C

2

run 4

PC1

P
C

2

run 5

PC1

P
C

2

run 6

PC1

P
C

2

run 7

PC1

P
C

2

run 8

PC1

P
C

2

run 9

Figure 6.21: CCME on the arti�cial dataset with 3,10 and 25 hidden units. Different
colors correspond to different experts' responsibilities. Black points correspond to the
cases where no expert is solely responsible for the data. Marker types (`+' and `o')
represent different classes. Yellow markers correspond to wrong outputs, thick black
lines represent the predicted class boundaries.
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Figure 6.22: Error rate and ANOVA plots of CCME with different number of experts
on arti�cial data. Overlapping intervals of groups' averages imply the groups are not
signi�cantly different; while disjoint intervals imply they are signi�cantly different.
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Figure 6.23: CCME on the arti�cial dataset with 3, 6 and 15 experts. Different colors cor-
respond to different experts' responsibilities. Black points correspond to the cases where
no expert is solely responsible for the data. Marker types (`+' and `o') represent differ-
ent classes. Yellow markers correspond to wrong outputs, thick black lines represent the
predicted class boundaries.



Chapter 7

Effects of Regularization on ME and

CCME

In chapter 2, I discussed a number of regularization methods commonly applied

to ANN. Among them are the methods of weight elimination (Weigend, Rumelhart, and

Huberman 1990) and structural learning by forgetting of Ishikawa et al (Ishikawa 1996;

Ishikawa and Yoshino 1993). In chapter 3, I examined some of the ANN regularization

literature from the perspective of problem decomposition. In this chapter, I investigate

the effects of the above two regularization methods on ME and CCME, to see if regular-

ization (1) can reduce the structural complexity of ME and CCME while maintaining the

generalization accuracy, and (2) is bene�cial in enhancing the problem decomposition

power of the models. A number of visualization and analysis tools are introduced, to

analyze the effects of regularization on the system architecture, especially the magnitude

and distribution of the weights.

7.1 Regularization revisited

A complex �tting with a high number of free coef�cients tends to generate a

mapping with high curvature and complex structure, as a result of over��tting the noise in

176
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the training data (Bishop 1995). Figure 7.1 shows different boundaries obtained through

using different networks with varying complexity for a classi�cation problem (Bishop

1995). A too-simple structure results in a poor performance, since it is insuf�cient for

the task; but a too-complex structure results in over��tting the noise in the data. From

a generalization point of view, therefore, it is more preferable to obtain an intermediate

level of complexity suf�cient for the problem. In fact, according to the well-known

Occam's razor principle, a simpler model is preferable to a complex one, to the extent

that one may trade off complexity against the �t of the model to the data (Bishop 1995).

Figure 7.1: Different network complexity results in different class boundaries. The `o'
and `+' represent different classes while the unbroken lines/curves represent the predicted
class boundaries.

One way to simplify an ANN is to add a penalty term, called the regulariza-

tion term, to the cost function. This technique is generally known as regularization. The

purpose of this regularization term is to encourage a smoother mapping, by penalizing

a complex network, and thus to force the redundant weights towards zero. From an-

other perspective, regularization removes redundant connections, and thus thins out the

structure, resulting in minimal but effective ANNs.

In a regularized ANN, the cost function is usually formulated as follows

E = ED + εER (7.1)

where ED is the usual error function, e.g. sum-square-error, and ER is the regularization

term. ε = ηε′ is the regularization parameter, which controls the degree of regularization,
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and η is the learning rate. The connection weights wk are updated correspondingly as

follows

4wk = −η
∂ED

∂wk

− ε
∂ER

∂wk

(7.2)

7.1.1 Learning by forgetting (LF)

LF was proposed in (Ishikawa and Yoshino 1993), in which the regularization

term was de�ned as ER =
∑W

k=1 |wk|, where W was the number of weights wk to be

regularized. In fact, LF is analogous to the Laplace prior regularization method in the

Bayesian framework, in that both use a Laplace distribution as the weight distribution.

The regularization parameters can be estimated using the Bayesian framework (Goutte

and Hansen 1997; Williams 1995; Williams 1993) or by other means such as adaptive,

trial-and-error or cross-validation (Ishikawa 1996; Ishikawa and Yoshino 1993; Kozma,

Kitamura, Malinowski, and Zurada 1995; Miller and Zurada 1997).

In this chapter, I use the original LF (Ishikawa 1996). The weight update is

done by the following equation, where ∂ER

∂wk
= sgn(wk) = 1 if wk ≥ 0 and−1 otherwise:

4wk = −η
∂ED

∂wk

− εsgn(wk) (7.3)

In LF, the regularization parameter ε can be thought of as the rate of forgetting.

It is expected that a higher forgetting rate often causes more weights to be removed (i.e.

forgotten) (Ishikawa and Yoshino 1993).

7.1.2 Weight elimination (WE)

Another popular regularization term in the literature of ANN is the modi�ed

weight decay, namely weight elimination (Weigend, Rumelhart, and Huberman 1990). In

the weight elimination scheme, the regularization term is de�ned as ER =
∑W

k=1
w2

k

w2
0+w2

k

where w2
0 is a scaling parameter, often chosen as 1. This penalty term �tends to favor
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a few large weights rather than many small ones, so is more likely to eliminate weights

from the network than is the simple weight-decay� (Bishop 1995). With w2
0 = 1, the

weight update is done by the following equation where ∂ER

∂wk
= 2 wk

(1+w2
k)2

4wk = −η
∂ED

∂wk

− ε
wk

(1 + w2
k)

2
(7.4)

7.2 Regularization on ME and CCME

The aim of this chapter is to investigate the bene�ts of using regularization on

ME and CCME. In the ME model, over��tting can be considered at different levels. At

the simplest level, the system, viewed as a very large ANN, can over��t the data and thus

not generalize well. This perspective considers all connection weights in the ensemble

equally, regardless of whether they belong to the experts or the gate. At the second

level, the gate network can be overtrained so as to poorly divide the problem, while each

individual expert in the ensemble can be overtrained so that it memorizes the noise in its

data region. This level deals with the experts and the gate as distinguished entities of ME.

Different regularization terms and different regularization parameters may be used for the

different components, i.e. experts and gate, of the system. At the highest level, a special

regularization scheme involving parameters from both the experts and the gate may be

used in a cooperative fashion on the whole system, instead of treating them separately as

on the lower level. The reason is that the components of the ME function as inseparable

parts of a whole system. Therefore the joint effects between them may be taken into

account when considering regularization.

Although regularization can be applied at different levels of the hierarchy, I

choose to experiment with the simplest level, in which the individual connection weights

are updated by equation 7.1. In this case, the only difference between the regularized and

un-regularized update lies in the extra regularization term, which is added to whatever

weight update function was used in the previous chapter.
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7.2.1 Regularization classes

Different priors are suitable for different types of weights found in FFNNs.

Generally, the connection weights of a simple FFNN, without direct input-to-output con-

nections, can be classi�ed as (1) weights with hidden nodes as destinations (i.e. input-

to-hidden and hidden-to-hidden weights), (2) weights with outputs as destinations (i.e.

hidden-to-output connections) and (3) bias weights. For bias weights, it is generally ar-

gued that the prior should have constant density, so that biases should be excluded from

regularization (Williams 1993; Williams 1995). In a FFNN, the hidden-to-output weights

act purely as scaling factors for the outputs of the hidden units. In other words, an inactive

hidden unit, due to its pruned inputs, should emit a very small output value, compared to

the active ones. Thus with the same order of magnitude of the scaling weights, its con-

tribution is insigni�cant. Therefore, it is not necessary to regularize these weights. Our

networks have only a single hidden layer. Consequently, the only weights that need to be

subjected to regularization in the following experiments are the input-to-hidden weights.

7.3 An experimental study of regularization on ME and

CCME

I investigate the effects of two different regularization schemes, LF and WE,

on ME and CCME. The purpose is not to �nd the best regularization scheme, but to test

whether regularization of any kind is bene�cial for ME and CCME.

7.3.1 Experimental setups

In the experiments, the same experimental setups as in chapters 5 and 6 are

applied. The ensemble size is �xed to 3 experts, which are simple sigmoidal FFNNs with

one hidden layer, consisting of three hidden nodes. The gating FFNN has no hidden layer,

and consists of as many linear outputs as the number of experts. The back propagation
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algorithm with learning rate of 0.1 is employed to train the models. For CCME, the

system is run for 200 generations; local search is performed for 10 epochs per generation.

The same early stopping scheme, based on the minimum ensemble error on the validation

set, is applied in this set of experiments. The hypothesis is veri�ed on the same �fteen

benchmark datasets as described in chapter 5.

For each regularization scheme, i.e. LF or WE, three different values, 10−5,

10−4, 10−3, of the regularization parameter are used. These values of epsilon are consis-

tent with the literature of Learning by Forgetting (Ishikawa 1996; Ishikawa and Yoshino

1993).

7.3.2 ME vs. regularized ME

7.3.2.1 On performance in terms of error rate

Figure 7.2 and tables 7.1 and 7.2 show the testing error rates, computed on un-

seen test data, of ME with LF and WE on �fteen ML datasets. The con�dence columns in

the tables show the statistical signi�cance of the difference between the regularized and

unregularized (i.e. ε = 0.0) systems. Boldface indicates cases where regularization sta-

tistically signi�cantly deteriorates the performance of the system, with con�dence level

of 90% and above. It is clear that, for most datasets (excepting LF with ε = 10−3 on

Liver Disorder, Tic Tac Toe and King-rook-versus-king-prawn datasets), regularization

does not signi�cantly deteriorate the classi�cation performance, even with high regular-

ization coef�cients.

7.3.2.2 On complexity in terms of the number of active connections

Since a minimal network often has better generalization ability than a complex

one, regularization, especially LF, is designed to obtain this desired skeletal architecture.

This is done by pushing the irrelevant connection weights towards zero, and maintaining

only the relevant weights (Ishikawa and Yoshino 1993). Hence, an important measure
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Figure 7.2: Error rate: ME with LF (denoted `f') and weight elimination (denoted `e')
with different regularization parameters {0, 1, 2, 3} ≡ {0, 10−5, 10−4, 10−3}

Dataset ε = 0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 0.037(0.019) 0.046(0.035) 0.037(0.023) 0.043(0.021) 75% 50% 87%
Cleveland Heart 0.208(0.052) 0.248(0.074) 0.205(0.070) 0.241(0.077) 95% 57% 84%
Australian credit card 0.158(0.034) 0.175(0.032) 0.151(0.033) 0.164(0.058) 88% 78% 59%
Diabetes 0.254(0.057) 0.234(0.048) 0.232(0.044) 0.273(0.052) 84% 92% 81%
StatLog Heart 0.211(0.080) 0.219(0.088) 0.181(0.098) 0.159(0.105) 64% 88% 96%
Hepatitis 0.200(0.099) 0.180(0.109) 0.206(0.064) 0.188(0.058) 96% 59% 63%
Liver Disorder 0.285(0.079) 0.288(0.071) 0.323(0.077) 0.420(0.009) 57% 98% 100%
Ljubljana Breast Cancer 0.263(0.040) 0.256(0.035) 0.263(0.072) 0.245(0.026) 66% 50% 90%
Tic Tac Toe 0.185(0.050) 0.180(0.061) 0.351(0.108) 0.653(0.004) 60% 100% 100%
House voting 84 0.064(0.035) 0.053(0.034) 0.048(0.029) 0.060(0.038) 86% 97% 65%

(ii) medium dataset
German credit card 0.261(0.048) 0.290(0.033) 0.274(0.041) 0.348(0.117) 98% 75% 96%
Ionosphere 0.262(0.069) 0.211(0.076) 0.268(0.071) 0.293(0.013) 100% 58% 93%
King Root vs King Prawn 0.018(0.008) 0.015(0.011) 0.054(0.017) 0.457(0.046) 73% 100% 100%
E.coli Promoters 0.180(0.182) 0.131(0.157) 0.161(0.157) 0.153(0.112) 93% 75% 77%
Thyroid sickness 0.107(0.004) 0.111(0.005) 0.102(0.002) 0.102(0.000) 92% 100% 100%

Table 7.1: Error rates of LF with different values of ε for ME. The con�dence columns
show the statistical signi�cance of differences between LF and the unregularized system.
Italic and boldface indicate LF is signi�cantly (90% and above) better or worse than the
unregularized system respectively.

for regularization is the percentage of remaining (i.e. active) connections. It is noted

that the weights are often not driven to absolute zero. In fact, with LF, tiny weights
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Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 0.037(0.019) 0.037(0.019) 0.033(0.020) 0.036(0.018) 0% 90% 66%
Cleveland Heart 0.208(0.052) 0.215(0.055) 0.215(0.082) 0.235(0.060) 83% 61% 90%
Australian credit card 0.158(0.034) 0.165(0.041) 0.170(0.044) 0.171(0.044) 84% 93% 87%
Diabetes 0.254(0.057) 0.258(0.061) 0.247(0.051) 0.234(0.049) 67% 91% 98%
StatLog Heart 0.211(0.080) 0.222(0.065) 0.226(0.075) 0.233(0.076) 83% 76% 92%
Hepatitis 0.200(0.099) 0.199(0.098) 0.206(0.110) 0.180(0.105) 52% 66% 96%
Liver Disorder 0.285(0.079) 0.285(0.078) 0.276(0.071) 0.282(0.073) 51% 73% 56%
Ljubljana Breast Cancer 0.263(0.040) 0.266(0.045) 0.255(0.049) 0.246(0.061) 83% 62% 83%
Tic Tac Toe 0.185(0.050) 0.198(0.066) 0.196(0.054) 0.208(0.049) 82% 76% 97%
House voting 84 0.064(0.035) 0.064(0.035) 0.060(0.040) 0.060(0.037) 0% 83% 70%

(ii) medium dataset
German credit card 0.261(0.048) 0.266(0.047) 0.260(0.044) 0.281(0.028) 89% 55% 85%
Ionosphere 0.262(0.069) 0.256(0.073) 0.233(0.088) 0.256(0.067) 71% 89% 63%
King Root vs King Prawn 0.018(0.008) 0.017(0.008) 0.017(0.009) 0.013(0.008) 77% 75% 94%
E.coli Promoters 0.180(0.182) 0.151(0.159) 0.142(0.147) 0.113(0.149) 90% 89% 98%
Thyroid sickness 0.107(0.004) 0.107(0.005) 0.110(0.008) 0.113(0.017) 54% 83% 87%

Table 7.2: Error rates of WE with different values of ε for ME. The con�dence columns
show the statistically signi�cance of the difference between WE and the unregularized
system. Italic and boldface indicate WE is signi�cantly (90% and above) better or worse
than the unregularized system respectively.

often �uctuate between (−ε, +ε) instead of zero. However, for normalized data, if ε is

small enough, the weights whose magnitude is bound by |ε| do not have any effect on the

overall performance, and thus, the corresponding connections can be physically removed.

In this thesis, the connections are not removed physically. Instead, a threshold of 10−3 is

used to differentiate the active and inactive weights, i.e. a weight is said to be active if its

absolute value is greater than this threshold.

Figures 7.3 and 7.4 respectively show the averaged percentage of active weights

for the experts, and for the gate, of ME. The results and the statistical tests in tables 7.3

and 7.4 indicate that LF signi�cantly reduces the number of weights. The results and the

statistical tests in tables 7.5 and 7.6 show that WE can also push the connection weights

towards zero, although it is not as effective as LF. In fact, only with a high regularization

coef�cient (ε = 10−3), is WE able to thin out the network architecture (with signi�cance

levels of 90% and above). Smaller regularization parameters do not signi�cantly affect

the structural complexity of the ANN, in terms of the number of connection weights.

Section 7.3.2.1 shows that any effect of regularization on ME's performance(in

terms of error rates) is not statistically signi�cant. This section shows that regulariza-

tion does affect the structural complexity of ME by removing the redundant connection
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weights. These observations strongly suggest that regularization is bene�cial to ME, by

�nding a minimal architecture - hence, less training time if the redundant connections

are removed - while maintaining the generalization performance. This �nding �ts well

into the literature of ANN, in which regularization is often found to be bene�cial to the

generalization ability by reducing the complexity of the ANN (Bishop 1995).
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Figure 7.3: Percentage of active weights for the experts of ME with LF (denoted `f') and
weight elimination (denoted `e') with different regularization parameters {0, 1, 2, 3} ≡
{0, 10−5, 10−4, 10−3}

7.3.2.3 On comparison between LF and WE

Figure 7.5 plots the percentage of active weights (i.e. structural complexity)

versus the generalization error rates (i.e. performance) for six different sets of regulariza-

tion � 3 regularization parameters for LF and 3 for WE � on �fteen datasets. The scatter

plot shows that with the current set up and parameters, LF is more effective than WE in
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Figure 7.4: Percentage of active weights for the gate of ME with LF (denoted `f') and
weight elimination (denoted `e')with different regularization parameters {0, 1, 2, 3} ≡
{0, 10−5, 10−4, 10−3}

Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 1.000(0.000) 0.494(0.341) 0.531(0.455) 0.313(0.253) 100% 100% 100%
Cleveland Heart 0.999(0.003) 0.608(0.279) 0.500(0.347) 0.472(0.413) 100% 100% 100%
Australian credit card 0.999(0.002) 0.572(0.163) 0.559(0.353) 0.444(0.198) 100% 100% 100%
Diabetes 0.999(0.004) 0.583(0.162) 0.307(0.092) 0.235(0.234) 100% 100% 100%
StatLog Heart 1.000(0.000) 0.541(0.246) 0.402(0.331) 0.311(0.355) 100% 100% 100%
Hepatitis 1.000(0.000) 0.564(0.339) 0.390(0.341) 0.492(0.440) 100% 100% 100%
Liver Disorder 0.998(0.005) 0.459(0.143) 0.348(0.347) 0.849(0.025) 100% 100% 100%
Ljubljana Breast Cancer 1.000(0.000) 0.783(0.176) 0.522(0.342) 0.809(0.228) 100% 100% 99%
Tic Tac Toe 1.000(0.000) 0.814(0.120) 0.552(0.124) 0.621(0.102) 100% 100% 100%
House voting 84 0.999(0.002) 0.322(0.295) 0.242(0.386) 0.186(0.265) 100% 100% 100%

(ii) medium dataset
German credit card 1.000(0.000) 0.814(0.136) 0.306(0.241) 0.288(0.136) 100% 100% 100%
Ionosphere 0.999(0.002) 0.564(0.185) 0.450(0.303) 0.680(0.239) 100% 100% 100%
King Root vs King Prawn 0.998(0.002) 0.168(0.145) 0.027(0.000) 0.028(0.004) 100% 100% 100%
E.coli Promoters 1.000(0.001) 0.463(0.430) 0.200(0.155) 0.049(0.066) 100% 100% 100%
Thyroid sickness 1.000(0.001) 0.217(0.060) 0.261(0.362) 0.112(0.075) 100% 100% 100%

Table 7.3: Percentage of active weights of LF with different values of ε for experts of
ME. The con�dence columns show how statistically signi�cantly LF is different from
the unregularized system.

reducing the structural complexity, while maintaining a similar level of accuracy. In the

next section, I analyze different effects of LF on the weights of ME.
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Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 1.000(0.000) 0.897(0.281) 0.933(0.097) 0.713(0.248) 86% 97% 100%
Cleveland Heart 1.000(0.000) 0.964(0.059) 0.993(0.016) 0.888(0.123) 96% 90% 99%
Australian credit card 0.998(0.007) 0.942(0.095) 0.949(0.043) 0.860(0.052) 95% 100% 100%
Diabetes 1.000(0.000) 0.996(0.012) 0.922(0.079) 0.819(0.185) 83% 99% 99%
StatLog Heart 1.000(0.000) 0.990(0.017) 0.979(0.029) 0.938(0.099) 95% 98% 96%
Hepatitis 0.998(0.005) 0.778(0.309) 0.858(0.178) 0.918(0.069) 98% 98% 100%
Liver Disorder 1.000(0.000) 0.952(0.103) 0.976(0.034) 0.957(0.061) 91% 97% 97%
Ljubljana Breast Cancer 1.000(0.000) 0.997(0.011) 0.967(0.044) 0.920(0.076) 83% 98% 100%
Tic Tac Toe 0.997(0.011) 0.993(0.014) 0.993(0.014) 0.993(0.021) 70% 70% 66%
House voting 84 1.000(0.000) 0.978(0.049) 0.947(0.046) 0.706(0.126) 90% 100% 100%

(ii) medium dataset
German credit card 1.000(0.000) 0.996(0.009) 0.963(0.027) 0.869(0.067) 90% 100% 100%
Ionosphere 1.000(0.000) 0.839(0.198) 0.874(0.183) 0.922(0.082) 98% 97% 99%
King Root vs King Prawn 1.000(0.000) 0.875(0.035) 0.857(0.033) 0.574(0.029) 100% 100% 100%
E.coli Promoters 1.000(0.000) 0.645(0.312) 0.524(0.204) 0.544(0.203) 100% 100% 100%
Thyroid sickness 0.999(0.004) 0.624(0.094) 0.608(0.205) 0.260(0.101) 100% 100% 100%

Table 7.4: Percentage of active weights of LF with different values of ε for the gate net-
work of ME. The con�dence columns show how statistically signi�cantly LF is different
from the unregularized system.

Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 1.000(0.000) 0.999(0.004) 1.000(0.000) 0.928(0.123) 83% 0% 95%
Cleveland Heart 0.999(0.003) 1.000(0.000) 0.992(0.015) 0.997(0.004) 83% 94% 96%
Australian credit card 0.999(0.002) 0.982(0.049) 0.995(0.009) 0.906(0.154) 85% 92% 96%
Diabetes 0.999(0.004) 0.994(0.016) 0.991(0.019) 0.999(0.004) 81% 86% 50%
StatLog Heart 1.000(0.000) 0.994(0.015) 0.956(0.080) 0.848(0.197) 86% 94% 98%
Hepatitis 1.000(0.000) 0.944(0.118) 0.901(0.172) 0.658(0.342) 92% 95% 99%
Liver Disorder 0.998(0.005) 0.987(0.035) 0.997(0.007) 0.851(0.242) 82% 70% 96%
Ljubljana Breast Cancer 1.000(0.000) 1.000(0.000) 0.993(0.014) 0.950(0.082) 0% 92% 96%
Tic Tac Toe 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.996(0.008) 0% 0% 95%
House voting 84 0.999(0.002) 1.000(0.000) 0.930(0.212) 0.758(0.215) 83% 84% 100%

(ii) medium dataset
German credit card 1.000(0.000) 1.000(0.000) 0.998(0.004) 0.972(0.021) 0% 89% 100%
Ionosphere 0.999(0.002) 0.996(0.011) 0.991(0.014) 0.817(0.220) 75% 94% 99%
King Root vs King Prawn 0.998(0.002) 0.987(0.035) 0.970(0.044) 0.819(0.165) 83% 96% 100%
E.coli Promoters 1.000(0.001) 0.917(0.157) 0.742(0.323) 0.638(0.369) 94% 98% 99%
Thyroid sickness 1.000(0.001) 0.922(0.165) 0.792(0.237) 0.752(0.249) 91% 99% 99%

Table 7.5: Percentage of active weights of WE with different values of ε for experts of
ME. The con�dence columns show how statistically signi�cantly WE is different from
the unregularized system.

7.3.2.4 Analyzing LF on ME

As seen above, LF has the effect of pushing irrelevant weights towards zero. In

this section, I use the Diabetes dataset to analyze the effects of LF on ME.

7.3.2.4.1 Effect of the regularization parameters on the magnitude of weights Fig-

ure 7.6 shows a typical effect of LF on the weights' magnitude. The weights' magnitude

is plotted on a log10 scale. The solid line at 10−3 represents the potential threshold for

physical weight pruning (this is not actually implemented as it is viewed as beyond the
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Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.997(0.011) 0% 0% 83%
Cleveland Heart 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Australian credit card 0.998(0.007) 1.000(0.000) 1.000(0.000) 1.000(0.000) 83% 83% 83%
Diabetes 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
StatLog Heart 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Hepatitis 0.998(0.005) 0.998(0.005) 0.997(0.011) 0.992(0.012) 50% 66% 92%
Liver Disorder 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.995(0.015) 0% 0% 83%
Ljubljana Breast Cancer 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Tic Tac Toe 0.997(0.011) 1.000(0.000) 1.000(0.000) 1.000(0.000) 83% 83% 83%
House voting 84 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.994(0.013) 0% 0% 90%

(ii) medium dataset
German credit card 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Ionosphere 1.000(0.000) 0.999(0.003) 1.000(0.000) 0.999(0.003) 83% 0% 83%
King Root vs King Prawn 1.000(0.000) 0.999(0.003) 0.995(0.012) 0.981(0.021) 83% 90% 99%
E.coli Promoters 1.000(0.000) 0.998(0.004) 0.999(0.002) 0.997(0.006) 90% 92% 96%
Thyroid sickness 0.999(0.004) 0.990(0.021) 0.951(0.066) 0.918(0.093) 87% 97% 99%

Table 7.6: Percentage of active weights of WE with different values of ε for the gate net-
work of ME. The con�dence columns show how statistically signi�cantly WE is different
from the unregularized system.

scope of this thesis). In each subplot, different colors, in separate blocks, represent dif-

ferent experts of ME. I show here the weights of the experts (lower plots) and of the

gate (upper plots). As expected, with higher forgetting rates, more weights are pushed

towards zero. As seen in Figure 7.6, in the case of no regularization (i.e. ε = 0.0), the

weights of both the experts and the gate have magnitudes of order 1 (i.e. 100). In the

intermediate subplots, an increase in the regularization parameters corresponds to a de-

crease in the overall weights' magnitudes, for both the experts and the gate. With a heavy

regularization of ε = 10−3, most of the experts' weights are pushed below the threshold

(10−3) and those of the gate reduce at least an order of magnitude (i.e. 10−2 − 10−1)

Figure 7.7 plots the error rates and weight distributions, in a histogram, of the

experts and gate versus different forgetting parameters for the Diabetes dataset.

The plots show some very interesting observations. First, the plots con�rm

the �ndings in the literature of ANN regularization, that higher regularization parame-

ters tend to push more weights toward lower magnitude (Bishop 1995; Ishikawa 1996;

Ishikawa and Yoshino 1993; Kozma, Kitamura, Malinowski, and Zurada 1995; Miller

and Zurada 1997). For both the gate and the experts, the weight magnitudes with high ε,

are at least one order smaller than the unregularized case.

Secondly, the plots also con�rm the �ndings in the original structural learning
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Figure 7.5: Percentage of active weights vs. error rate for ME with LF and WE and three
different regularization values {1, 2, 3} ≡ {10−5, 10−4, 10−3}

by forgetting studies, that irrelevant weights are pushed toward zero, while the rest are

responsible for error minimization (Ishikawa 1996; Ishikawa and Yoshino 1993; Kozma,

Kitamura, Malinowski, and Zurada 1995; Lozowski, Miller, and Zurada 1996; Miller

and Zurada 1997). This can be seen clearly from the plot of the experts' weights. For

ε > 10−5, the weight histogram has two peaks: one at the order of 100 = 1, the other at a

much lower order, for example, with ε = 10−5, the two peaks are at 100 and 10−5.

Thirdly, looking at the weight distribution plots, one can distinguish three dif-

ferent phases: (1) when ε is small enough, ε ≤ 10−6, the weight distributions follow a

sort of bell shape around a median value of 100, (2) when ε increases to a certain range,

10−6 ≤ ε ≤ 10−2, the weight distributions split into two peaks, one peak stays at 100,

while the other monotonically decreases, and (3) when ε is high enough, ε ≥ 10−2, the

weight magnitude starts to increase again. The second phase can be divided further into

two sub phases: (2a) both the weights of the experts and gate decrease, and (2b) the

experts' weights increase while the gate's weights still decrease.

In terms of the error rates, in phase (1), the error rate curve is relatively �at

with a low value. In phase (3), where ε is high, the error curve is also relatively �at with



CHAPTER 7. EFFECTS OF REGULARIZATION ON ME AND CCME 189

−6

−3

2 
Gate

−6

−3

2 
Experts

ε = 0

−6

−3

2 
Gate

−6

−3

2 
Experts

ε = 10−5

−6

−3

2 
Gate

−6

−3

2 
Experts

ε = 10−4

−6

−3

2 
Gate

−6

−3

2 
Experts

ε = 10−3

Figure 7.6: An example of LF on ME with different regularization parameters ε. y-axis:
log10|w|. x-axis: weight number. 10−3: cutoff value. Different colors refer to different
experts in ME.

a high value. The interesting phase is the intermediate one, where the curve displays

a phase transition. In the Diabetes dataset, it is interesting to see that the starting and

ending points of each phase exactly correspond to the changes in the error rates.

In phase (1), the regularization parameters are too small for the regularization

term to have much impact on the weights of the system. Therefore, these weights are

similar to the weights of the unregularized case. From phase (2a) onwards, the penalty

term starts to have an effect on the weight distribution, and also on the generalization

error. As in �gure 7.7, with increasing ε, the error rate slightly decreases while the

weight magnitudes of both the gate and the experts are quickly reduced.

In phase (2b), the majority of the weights of the experts are low, and most likely

do not contribute to the functioning of the system. Meanwhile, some of the gate weights

have a large magnitude. Thus, this observation and the discussion about feature selection

below suggest that in this phase, the gate is in charge of the system performance.

Finally, the only difference between phases (2b) and (3), in terms of the weight

distribution, is a phase change in the weight magnitude of the gate, from mostly in the

higher peak (phase (2b)) towards the lower peak (phase (3)). This observation suggests

that with high values of ε, i.e. phase (3), the gate is over regularized and therefore works
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Figure 7.7: ME: weight distribution versus regularization parameter ε for Diabetes
dataset. Top plot: error rate and median (w∗) of the weight distributions of ME ex-
perts and gate, middle: weight distribution of ME experts, bottom: weight distribution of
ME gate. Histogram: the scale of x-axis in each box are equalized for the whole subplot.
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inef�ciently with the error function, consequently causing a high error rate.

To con�rm these observations, similar experiments and plots are conducted

on the House Voting 84 dataset (Figure 7.8) and the Ionosphere dataset (Figure 7.9). Al-

though the phase changes in the error rate and the weight distribution plots are not as clear

as in the Diabetes dataset, they are still observable in these two datasets. Furthermore,

the weight histograms for these datasets show similar characteristics as in the Diabetes

dataset.

The discussion in this section opens a number of future research questions: (1)

is there a relationship between the weight distribution and the generalization error?, (2)

can phase changes in the weight distribution be used as proxies for phase changes in

the generalization errors? and (3) if there is such a relationship, can one �nd an opti-

mized weight distribution which produces an optimized neuro ensemble, in terms of its

generalization ability?

Figure 7.10 shows a typical architecture of the ensemble with different forget-

ting rates. It is expected that with higher forgetting rates (e.g ε = 10−3), the network

becomes more sparse, with many connections being removed.

7.3.2.4.2 The effect of the regularization parameters on relevant input features

Figure 7.11 shows the ensemble architectures with LF (ε = 10−4) on ME. With ε = 10−4,

LF reduces the error rate from 25.4% to 23.2% (signi�cant level = 92%).

First, it is interesting to note that some input attributes do not participate at all

in the ensemble, as shown by the absence of links from those inputs to any hidden units

of the three experts. For example in runs 0,4, and 5 in Figure 7.11, none of the inputs are

connected to any hidden units of any expert, except for the bias node (the last node in the

input layer of each expert). In other words, in these runs, the regularized ME depends

upon the gate to cluster the data into self-similar clusters (in terms of class purity), in

which the responsible expert will always give the same class. That is, experts do not

classify but simply propose a constant class. Looking closely at the cluster plots, - based
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Figure 7.8: ME: weight distribution versus regularization parameter ε for House Voting
84 dataset. Top plot: error rate and median (w∗) of the weight distributions of ME experts
and gate, middle: weight distribution of ME experts, bottom: weight distribution of ME
gate. Histogram: the scale of x-axis in each box are equalized for the whole subplot.
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Figure 7.9: ME: weight distribution versus regularization parameter ε for Ionosphere
dataset. Top plot: error rate and median (w∗) of the weight distributions of ME experts
and gate, middle: weight distribution of ME experts, bottom: weight distribution of ME
gate. Histogram: the scale of x-axis in each box are equalized for the whole subplot.
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 ε = 0  ε = 10−5

 ε = 10−4  ε = 10−3

Figure 7.10: A typical ME architecture with LF and different regularization parameters
ε. Different colors refer to different experts in ME. The last ANN in each case is the gate.

on Principle Component Analysis - of one of these runs (Figure 7.12), one can see the

evidence of this behavior, in that there is only one class in each cluster. This strongly

suggests that by applying LF, ME can be emergently turned into a clustering system.

Second, different experts are responsible for different sets of input feature, al-

though these sets are not necessarily disjoint. For example, in run 1, the �rst expert is

responsible for inputs {1, 2, 3, 4, 6, 8}, the second is responsible for {1, 2, 3, 8} and the

third is responsible for none of the inputs.

This automatic feature selection is an emergent property of the LF algorithm.

According to Ishikawa (Ishikawa 1996; Ishikawa and Yoshino 1993), LF possesses the

automatic problem decomposition property in the sense that the single ANN, in their ex-

periment, can reorganize itself into different regions of the input space by skeletonizing

the architecture, and thus selecting the appropriate input features for each hidden unit.

Our experiments support this claim and extend it to the ME context. The experiments

suggest that by applying LF to the ME model, the system can select relevant input fea-

tures for each expert in the model.
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run 0 run 1

run 2 run 3

run 4 run 5

run 6 run 7

run 8 run 9

Figure 7.11: ME: a typical ensemble architecture with LF (error rate = 23.2% compared
to 25.4% of the unregularized ME). Different colors refer to different experts in ME. The
last ANN in each case is the gate.

7.3.3 CCME vs. regularized CCME

7.3.3.1 On performance in terms of error rate

Figure 7.13, and tables 7.7 and 7.8 show the error rates of CCME with LF and

WE for �fteen datasets. The results in table 7.7, for seven out of the �fteen datasets,

show a statistically signi�cant preference for the unregularized case, suggesting that a

high forgetting rate (ε = 10−3) is not suitable for CCME. The best forgetting rate is

an intermediate value (ε = 10−4), for which only two out of �fteen datasets show a

statistically signi�cant (signi�cance level of 98%) deterioration compared with the un-

regularized system.

On the other hand, the results in table 7.8 show that with and without WE, the

generalization performance is generally comparable. Two, four and four out of �fteen
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Figure 7.12: Class purity when using high LF on ME. Different colors correspond to
different experts' responsibilities. Black points correspond to the cases where no expert is
solely responsible for the data. Yellow points correpond to wrong classi�cation. Marker
types (`+' and `o') represent different classes.

datasets (boldface) show a statistically signi�cant worse performance for WE with ε =

10−5, 10−4, 10−3 respectively. Hence, the best value for WE is ε = 10−5.

Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 0.030(0.014) 0.037(0.014) 0.034(0.010) 0.039(0.021) 95% 86% 93%
Cleveland Heart 0.225(0.073) 0.224(0.049) 0.205(0.030) 0.208(0.062) 50% 85% 72%
Australian credit card 0.126(0.038) 0.133(0.040) 0.145(0.033) 0.143(0.048) 93% 98% 96%
Diabetes 0.232(0.046) 0.238(0.049) 0.236(0.041) 0.249(0.046) 72% 68% 87%
StatLog Heart 0.174(0.089) 0.170(0.099) 0.189(0.073) 0.181(0.086) 58% 89% 75%
Hepatitis 0.168(0.061) 0.174(0.060) 0.168(0.034) 0.220(0.087) 66% 50% 99%
Liver Disorder 0.299(0.079) 0.308(0.060) 0.317(0.098) 0.337(0.076) 71% 70% 94%
Ljubljana Breast Cancer 0.297(0.112) 0.287(0.123) 0.290(0.128) 0.286(0.120) 71% 61% 69%
Tic Tac Toe 0.129(0.038) 0.118(0.047) 0.116(0.038) 0.242(0.039) 67% 88% 100%
House voting 84 0.037(0.034) 0.050(0.037) 0.041(0.043) 0.046(0.036) 94% 75% 87%

(ii) medium dataset
German credit card 0.242(0.027) 0.264(0.025) 0.237(0.033) 0.271(0.043) 98% 66% 100%
Ionosphere 0.222(0.098) 0.233(0.095) 0.222(0.076) 0.259(0.089) 79% 50% 86%
King Root vs King Prawn 0.010(0.008) 0.009(0.009) 0.009(0.005) 0.051(0.012) 64% 71% 100%
E.coli Promoters 0.254(0.129) 0.245(0.153) 0.302(0.095) 0.228(0.183) 62% 98% 71%
Thyroid sickness 0.098(0.016) 0.140(0.125) 0.097(0.015) 0.102(0.004) 84% 52% 83%

Table 7.7: Error rates of LF with different values of ε for CCME. The con�dence columns
show how statistically signi�cantly LF is different from the unregularized system. Italic
and boldface indicate LF is signi�cantly (90% and above) better and worse than the
unregularized system respectively.

7.3.3.2 On complexity in term of the number of active connections

Figures 7.14 and 7.15 show the averaged percentage of active weights for the

experts and the gate of CCME respectively. The �gures suggest that LF, especially with
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Figure 7.13: Error rate: CCME with LF (denoted `f') and WE (denoted `e') with different
regularization parameters {0, 1, 2, 3} ≡ {0, 10−5, 10−4, 10−3}

Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 0.030(0.014) 0.033(0.010) 0.033(0.010) 0.034(0.012) 83% 92% 90%
Cleveland Heart 0.225(0.073) 0.241(0.055) 0.224(0.065) 0.228(0.066) 70% 50% 55%
Australian credit card 0.126(0.038) 0.129(0.035) 0.130(0.039) 0.145(0.035) 66% 72% 98%
Diabetes 0.232(0.046) 0.245(0.039) 0.238(0.049) 0.245(0.044) 99% 82% 96%
StatLog Heart 0.174(0.089) 0.174(0.099) 0.200(0.093) 0.167(0.098) 50% 93% 70%
Hepatitis 0.168(0.061) 0.168(0.061) 0.167(0.052) 0.186(0.067) 0% 52% 75%
Liver Disorder 0.299(0.079) 0.304(0.049) 0.325(0.044) 0.296(0.063) 58% 94% 56%
Ljubljana Breast Cancer 0.297(0.112) 0.265(0.120) 0.293(0.126) 0.283(0.117) 97% 56% 74%
Tic Tac Toe 0.129(0.038) 0.134(0.055) 0.131(0.058) 0.122(0.060) 61% 56% 64%
House voting 84 0.037(0.034) 0.037(0.034) 0.041(0.028) 0.062(0.055) 0% 71% 90%

(ii) medium dataset
German credit card 0.242(0.027) 0.238(0.038) 0.256(0.046) 0.253(0.009) 68% 88% 83%
Ionosphere 0.222(0.098) 0.245(0.087) 0.234(0.095) 0.217(0.074) 98% 78% 61%
King Root vs King Prawn 0.010(0.008) 0.011(0.009) 0.010(0.007) 0.010(0.008) 80% 50% 56%
E.coli Promoters 0.254(0.129) 0.254(0.129) 0.273(0.132) 0.291(0.100) 0% 92% 92%
Thyroid sickness 0.098(0.016) 0.099(0.008) 0.157(0.174) 0.092(0.025) 58% 85% 71%

Table 7.8: Error rates of WE with different values of ε for CCME. The con�dence
columns show the statistical signi�cance of differences between WE and the unregu-
larized system. Italic and boldface indicate WE is signi�cantly (90% and above) better
and worse than the unregularized system respectively.

higher forgetting rates, does have positive effect on the structure of the ANN, in terms of

the number of pruned weights for both the experts and the gate. This is con�rmed by the
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t-test results (i.e. con�dence columns in tables 7.9 and 7.10). On the other hand, it seems

that WE is not effective in pruning the connection weights. The t-test in tables 7.11 and

7.12, in which most of the values are not statistically signi�cant, support this observation.

In the previous section, I have shown that LF with forgetting rate of ε = 10−4

is the best regularization scheme for CCME. The results in this section indicate that the

network complexity with LF at ε = 10−4 is still statistically signi�cantly less than that

without regularization. In other words, LF is bene�cial to CCME providing that a suitable

forgetting rate is chosen.
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Figure 7.14: Percentage of active weights for the experts of CCME with LF (de-
noted `f') and weight elimination (denoted `e') with different regularization parameters
{0, 1, 2, 3} ≡ {0, 10−5, 10−4, 10−3}

7.3.3.3 On comparing LF and WE

Figure 7.16 plots the averaged percentage of active weights (i.e. structural

complexity) versus the error rates (i.e. performance) for six different sets of regulariza-
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Figure 7.15: Percentage of active weights for the gate of CCME with LF (denoted `f') and
weight elimination (denoted `e')with different regularization parameters {0, 1, 2, 3} ≡
{0, 10−5, 10−4, 10−3}

Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 1.000(0.000) 0.979(0.016) 0.786(0.178) 0.344(0.199) 100% 100% 100%
Cleveland Heart 1.000(0.000) 0.993(0.010) 0.897(0.111) 0.368(0.167) 97% 99% 100%
Australian credit card 1.000(0.000) 0.978(0.014) 0.721(0.087) 0.314(0.168) 100% 100% 100%
Diabetes 1.000(0.000) 0.959(0.029) 0.700(0.083) 0.320(0.098) 100% 100% 100%
StatLog Heart 1.000(0.000) 0.990(0.012) 0.906(0.060) 0.530(0.195) 98% 100% 100%
Hepatitis 1.000(0.000) 0.995(0.009) 0.924(0.045) 0.509(0.214) 95% 100% 100%
Liver Disorder 1.000(0.000) 0.990(0.011) 0.870(0.091) 0.586(0.132) 99% 100% 100%
Ljubljana Breast Cancer 1.000(0.000) 0.991(0.011) 0.952(0.046) 0.781(0.227) 98% 100% 99%
Tic Tac Toe 1.000(0.000) 0.998(0.007) 0.920(0.042) 0.540(0.089) 83% 100% 100%
House voting 84 0.998(0.004) 0.985(0.011) 0.819(0.097) 0.282(0.161) 100% 100% 100%

(ii) medium dataset
German credit card 1.000(0.000) 0.981(0.007) 0.727(0.177) 0.358(0.161) 100% 100% 100%
Ionosphere 0.999(0.002) 0.987(0.011) 0.851(0.086) 0.548(0.146) 100% 100% 100%
King Root vs King Prawn 0.999(0.001) 0.763(0.073) 0.329(0.136) 0.068(0.049) 100% 100% 100%
E.coli Promoters 0.999(0.001) 0.997(0.004) 0.938(0.048) 0.512(0.265) 96% 100% 100%
Thyroid sickness 0.999(0.002) 0.626(0.117) 0.244(0.078) 0.081(0.048) 100% 100% 100%

Table 7.9: Percentage of active weights of LF with different values of ε for experts of
CCME. The con�dence columns show the statistical signi�cance of differences between
LF and the unregularized system.

tion values: 3 for LF and 3 for WE, on �fteen datasets. The scatter plot shows that with

the current set up and parameters LF is more effective than WE in reducing the structural
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Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 1.000(0.000) 1.000(0.000) 0.947(0.048) 0.653(0.206) 0% 100% 100%
Cleveland Heart 1.000(0.000) 1.000(0.000) 0.995(0.010) 0.890(0.117) 0% 92% 99%
Australian credit card 1.000(0.000) 0.996(0.009) 0.958(0.051) 0.769(0.045) 92% 99% 100%
Diabetes 1.000(0.000) 1.000(0.000) 0.952(0.068) 0.578(0.284) 0% 97% 100%
StatLog Heart 1.000(0.000) 1.000(0.000) 0.998(0.008) 0.924(0.049) 0% 83% 100%
Hepatitis 0.997(0.011) 1.000(0.000) 0.997(0.007) 0.863(0.101) 83% 50% 100%
Liver Disorder 1.000(0.000) 0.995(0.015) 0.990(0.020) 0.838(0.127) 83% 92% 100%
Ljubljana Breast Cancer 1.000(0.000) 0.997(0.011) 0.983(0.032) 0.947(0.092) 83% 93% 95%
Tic Tac Toe 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.993(0.014) 0% 0% 92%
House voting 84 0.998(0.006) 1.000(0.000) 0.971(0.025) 0.820(0.112) 83% 100% 100%

(ii) medium dataset
German credit card 1.000(0.000) 0.997(0.006) 0.971(0.036) 0.760(0.105) 92% 99% 100%
Ionosphere 0.998(0.004) 0.998(0.004) 0.995(0.005) 0.877(0.112) 50% 90% 100%
King Root vs King Prawn 0.999(0.003) 0.952(0.020) 0.718(0.138) 0.589(0.064) 100% 100% 100%
E.coli Promoters 1.000(0.000) 0.999(0.002) 0.983(0.017) 0.850(0.101) 83% 99% 100%
Thyroid sickness 1.000(0.000) 0.915(0.051) 0.537(0.155) 0.214(0.082) 100% 100% 100%

Table 7.10: Percentage of active weights of LF with different values of ε for the gate net-
work of CCME. The con�dence columns show the statistical signi�cance of differences
between LF and the unregularized system.

Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Cleveland Heart 1.000(0.000) 0.999(0.003) 0.998(0.003) 0.999(0.003) 83% 92% 83%
Australian credit card 1.000(0.000) 0.999(0.002) 1.000(0.000) 0.998(0.005) 83% 0% 90%
Diabetes 1.000(0.000) 0.999(0.004) 0.999(0.004) 1.000(0.000) 83% 83% 0%
StatLog Heart 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Hepatitis 1.000(0.000) 0.999(0.002) 0.999(0.002) 1.000(0.000) 83% 83% 0%
Liver Disorder 1.000(0.000) 0.998(0.005) 1.000(0.000) 1.000(0.000) 83% 0% 0%
Ljubljana Breast Cancer 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Tic Tac Toe 1.000(0.000) 0.999(0.004) 1.000(0.000) 0.999(0.004) 83% 0% 83%
House voting 84 0.998(0.004) 0.998(0.004) 0.998(0.004) 0.999(0.004) 0% 0% 83%

(ii) medium dataset
German credit card 1.000(0.000) 1.000(0.001) 1.000(0.000) 1.000(0.001) 83% 0% 83%
Ionosphere 0.999(0.002) 0.999(0.001) 1.000(0.001) 0.998(0.002) 66% 83% 78%
King Root vs King Prawn 0.999(0.001) 0.999(0.001) 0.998(0.002) 1.000(0.000) 50% 83% 96%
E.coli Promoters 0.999(0.001) 0.999(0.001) 0.999(0.001) 0.999(0.002) 0% 70% 70%
Thyroid sickness 0.999(0.002) 1.000(0.001) 1.000(0.001) 0.999(0.002) 92% 92% 50%

Table 7.11: Percentage of active weights of WE with different values of ε for experts of
CCME. The con�dence columns show the statistical signi�cance of differences between
WE and the unregularized system.

complexity of CCME while maintaining similar level of accuracy. In the next section,

the effects of LF on the weights of CCME are analyzed.

7.3.3.4 Analysis of LF on the CCME model

As seen above, LF has the effect of pushing irrelevant weights towards zero. In

this section, the Diabetes dataset is used to analyze the use of LF on the CCME model.
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Dataset ε = 0.0 ε = 10−5 ε = 10−4 ε = 10−3 Con�dence
(i) small dataset

Breast Cancer 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Cleveland Heart 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Australian credit card 1.000(0.000) 1.000(0.000) 0.998(0.007) 1.000(0.000) 0% 83% 0%
Diabetes 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
StatLog Heart 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Hepatitis 0.997(0.011) 0.997(0.011) 1.000(0.000) 1.000(0.000) 0% 83% 83%
Liver Disorder 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.995(0.015) 0% 0% 83%
Ljubljana Breast Cancer 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
Tic Tac Toe 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0% 0% 0%
House voting 84 0.998(0.006) 0.998(0.006) 0.998(0.006) 1.000(0.000) 0% 0% 83%

(ii) medium dataset
German credit card 1.000(0.000) 0.997(0.006) 1.000(0.000) 1.000(0.000) 92% 0% 0%
Ionosphere 0.998(0.004) 0.999(0.003) 1.000(0.000) 1.000(0.000) 70% 92% 92%
King Root vs King Prawn 0.999(0.003) 0.999(0.003) 1.000(0.000) 0.998(0.004) 0% 83% 70%
E.coli Promoters 1.000(0.000) 0.999(0.002) 0.999(0.002) 0.999(0.002) 83% 92% 83%
Thyroid sickness 1.000(0.000) 0.999(0.004) 1.000(0.000) 1.000(0.000) 83% 0% 0%

Table 7.12: Percentage of active weights of WE with different values of ε for the gate net-
work of CCME. The con�dence columns show the statistical signi�cance of differences
between WE and the unregularized system.

7.3.3.4.1 Effect of regularization parameters on the weight magnitude Similar to

the analysis for the ME model, �gure 7.17 shows a typical effect of LF on the weight

magnitude of CCME. As expected, with higher forgetting rates, more weights are pushed

towards zero. As seen in Figure 7.17, in the unregularized case (i.e. ε = 0.0), the weights

of both the experts and the gate have a magnitude of order 1 (i.e. 100). In the subsequent

plots, an increase in regularization parameters corresponds to a decrease in the overall

weight magnitudes of both the experts and the gate. With a high value of ε = 10−3, most

of the experts' weights, and some weights of the gate, are pushed below the threshold of

10−3.

Figures 7.18, 7.20 and 7.19 show the detailed weight distributions of the gate

and experts of CCME for three datasets: Diabetes, House Voting 84 and Ionosphere. As

in the ME case, there is an interesting observation about certain relationships between

the phase transition of the weight distributions and the generalization errors of the sys-

tem. From the plots, it is obvious that the interesting phase transition, in terms of the

error rate, happens when ε lies in the range [10−4, 10−1]. This corresponds exactly to a

phase transition in the weight distributions of the gate and the experts. This observation

strengthens my belief that there exists a relationship between the weight distribution and

the generalization performance of the ME family.
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Figure 7.16: Percentage of active weights vs. error rate for CCME with LF and WE and
three different regularization values {1, 2, 3} ≡ {10−5, 10−4, 10−3}

Moreover, the minimum generalization error for all three datasets occurs at

ε ≤ 10−4. At ε = 10−4, a number of weights in both the gate and experts are still in the

lower magnitude region. The plot con�rms my previous �ndings that regularization with

a suitable control parameter has the effect of reducing the structural complexity of the

system while maintaining the level of accuracy compared to the unregularized system.

Figure 7.21 shows a typical architecture of the ensemble with different forget-

ting rates. As expected, with higher forgetting rate (e.g ε = 10−3), the network becomes

sparser, with many connections being removed. However, comparing this to the same

plot in the ME model (section 7.3.2.4.1), it appears that LF may have less effect on the

CCME model.

7.3.3.4.2 Effect of the regularization parameters on relevant input features Fig-

ure 7.22 shows the ensemble architectures for LF (ε = 10−4) on CCME. In this case, LF

has a similar error rate to the unregularized case (23.6% compared to 23.2%).

As in ME, different experts are responsible for different sets of input features.

For example, in run 2, the �rst expert works on {4, 5}, the second on {5, 6, 8} and the

third on all inputs. Again, this automatic feature selection is an emergent property of the
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Figure 7.17: An example of LF on CCME with different regularization parameters ε.
y-axis: log10|w|. x-axis: weight number. 10−3: cutoff value. Different colors refer to
different experts in CCME.

LF algorithm. The results suggest that by applying LF to the CCME model, the system

automatically selects relevant input features for each expert in the model.

7.3.4 Effects of regularization on CCME and ME

Figure 7.23 contrasts the scatter plots of the regularization effects on ME and

CCME. The plots clearly show that regularization has different effects on ME and CCME.

In terms of percentage of active weights, although LF clearly outperforms WE

for both ME and CCME, the effect of LF on ME is stronger than on CCME. This dif-

ference is best seen in the cases of LF1 and LF2. The scatter plots show LF2 (square

markers) can pull the percentage of active weights of ME down below 60% while in

CCME, LF2 markers concentrate around 80% in terms of percentage of active weights.

Similarly, LF1 (triangle markers) is still effective in reducing the percentage of active

weights of ME, while it almost has no effect on CCME. Moreover WE has no effect

on CCME while WE3 is effective in reducing the percentage of active weights of ME

to about 60%-80%. In conclusion, the scatter plots suggest CCME is less responsive to

regularization than ME.
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Figure 7.18: CCME: weight distribution versus regularization parameter ε for Diabetes
dataset. Top plot: error rate and median (w∗) of the weight distributions of CCME experts
and gate, middle: weight distribution of CCME experts, bottom: weight distribution of
CCME gate. Histogram: the scale of x-axis in each box are equalized for the whole
subplot.
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Figure 7.19: CCME: weight distribution versus regularization parameter ε for House
Voting 84 dataset. Top plot: error rate and median (w∗) of the weight distributions of
CCME experts and gate, middle: weight distribution of CCME experts, bottom: weight
distribution of CCME gate. Histogram: the scale of x-axis in each box are equalized for
the whole subplot.
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Figure 7.20: CCME: weight distribution versus regularization parameter ε for Ionosphere
dataset. Top plot: error rate and median (w∗) of the weight distributions of CCME experts
and gate, middle: weight distribution of CCME experts, bottom: weight distribution of
CCME gate. Histogram: the scale of x-axis in each box are equalized for the whole
subplot.
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 ε = 0  ε = 10−5

 ε = 10−4  ε = 10−3

Figure 7.21: A typical CCME architecture with LF and different regularization parame-
ters ε. Different colors refer to different experts in CCME. The last ANN in each case is
the gate.

In terms of the error rates, except for three outliers in ME with LF3 where

the error rates jump to 40%-70%, both regularization mechanisms are able to keep the

error rates of ME and CCME below 40%. This con�rms the hypothesis, namely that

regularization does not, on average, deteriorate the generalization performance of ME

and CCME.

7.4 Conclusion

In this chapter, I have investigated two popular regularization schemes: learn-

ing by forgetting and weight elimination. The purpose is to see if regularization is bene�-

cial to the mixture of experts and cooperative coevolutionary mixture of experts models.

The results suggest the following conclusions. First, in terms of accuracy, regularization

does not signi�cantly affect the performance of the models. Second, in terms of network

complexity, learning by forgetting is effective in pushing irrelevant weights towards zero

while maintaining the same level of accuracy. Comparing learning by forgetting and

weight elimination, the latter is not as effective as the former although it still can prune

a number of weights. Third, because of its structural modularization ability (Ishikawa

1996; Ishikawa and Yoshino 1993), learning by forgetting can manipulate the models
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Figure 7.22: CCME: a typical ensemble architecture with LF, ε = 10−4, error rate =
23.6% compared to 23.2%(without LF). Different colors refer to different experts in
CCME. The last ANN in each case is the gate.

into doing different types of tasks. In some cases, it can turn the ME model into a tra-

ditional clustering system, by pruning all the input-to-hidden connections of the experts

and letting the gate divide the data into clusters of the same class. Another bene�t of

learning by forgetting lies in allowing different experts of the models to select different,

but not necessarily disjoint, sets of input features. Finally, the experiments and analy-

sis of this chapter suggest that there is a relationship between the weight distribution, in

terms of magnitude, and the generalization ability of the ME and CCME model. This

serves as an open research question for future works.
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Figure 7.23: Percentage of active weights vs. error rate for ME (left) and CCME (right)
with LF and WE and different regularization parameters {1, 2, 3} ≡ {10−5, 10−4, 10−3}



Chapter 8

Conclusions and Future Work

In this thesis, I have presented a systematic study of neuro ensembles on binary

classi�cation problems. First, I have investigated the relationship between diversity and

accuracy of a number of state-of-the-art neuro ensembles, aiming to generate insights

into how to design a good neuro ensemble. Applying these insights, I have proposed a

method to co-evolve the gate and experts of a mixture of experts (ME) using a cooperative

coevolution (CC) framework, which I name the cooperative coevolutionary mixture of

experts or CCME. The proposed method blends concepts from mixture of experts and

cooperative coevolution to generate a modularized neuro ensemble, which solves both

the diversity problem - by forcing the experts to work on different regions of input (ME)

and to be diverse in terms of species diversity (CC) - and the generalization problem -

the whole system must work cooperatively. The more conventional ME is then compared

against CCME in terms of the generalization performance and running time. I have

also investigated and presented the traditional back propagation ME and the proposed

method in the light of automatic problem decomposition, using a newly-derived set of

visualization tools. Finally, I have shown the effects of regularization, especially the so-

called learning by forgetting, on the structural complexity and the behaviors of ME and

CCME.

The main �ndings from the research work in this thesis can be summarized as

210
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follow:

1. This thesis has investigated different aspects of a number of state-of-the-art neuro

ensemble methods (Chapter 4): namely the Simple Ensemble, the Negative Corre-

lation Learning Ensemble, the Island Ensemble and the Multi Objective Ensemble.

The results verify a number of points raised in the literature:

(a) Combining individual networks into an ensemble improves the performance

of the system.

(b) Different combination gates have little effect on the average performance of

the ensemble

(c) The diversity level maintained by negative correlation learning is poor.

(d) Local search helps evolution to �nd better solutions

(e) Noise injection shows interesting effects on performance enhancement, though

the improvement is not yet clear.

(f) Early stopping enhances generalization

(g) The connection between diversity and performance of the ensemble remains

a hypothesis with limited or no veri�cation

2. The proposed Cooperative Coevolutionary Mixture of Experts (CCME) method is

validated against a set of benchmark binary classi�cation problems. I have ana-

lyzed different aspects of both the traditional back propagation ME and the novel

CCME in chapter 5. The key �ndings are:

(a) In terms of performance, CCME is better on average than the traditional ME

in classi�cation problems.

(b) CCME is comparable to ME in terms of the running time.

(c) Early stopping is useful in enhancing the generalization of both back propa-

gation ME and CCME.
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(d) CCME and ME are robust to different error functions, learning rates, num-

ber of experts and network complexity in a number of binary classi�cation

problems.

3. The proposed visualization tools are applied to analyze the problem decomposition

behaviors of ME and CCME (Chapter 6). The key results are:

(a) Both ME and CCME can decompose the input space into less complex re-

gions (i.e. sub�tasks) in such a way that the available experts are able to

classify the data in their clusters with higher accuracy.

(b) The tools show how ME and CCME can discover the modularity of the prob-

lem if there is any.

(c) Increasing network complexity, in terms of number of hidden units, helps

the experts to classify their clusters with better accuracy. However, there is

a phase transition, beyond which an increase in complexity deteriorates the

system performance.

(d) Increasing the number of experts also enhances the system performance by

dividing the data into more clusters. Again, however, there is a critical region,

beyond which adding more experts does not improve the system performance.

4. The thesis has extended both ME and CCME models by adding a regularization

term - based on learning by forgetting and weight elimination - during training

(Chapter 7). Another contribution of this chapter is that it introduces and uses

a number of novel visualization tools to visualize the weight distribution and the

architecture of the model. The key results are:

(a) In terms of accuracy, regularization does not signi�cantly affect the perfor-

mance of the models.

(b) In terms of network complexity, learning by forgetting is effective in pushing

irrelevant weights toward zero, while maintaining the same level of accuracy.



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 213

(c) weight elimination is not as effective as learning by forgetting in pruning out

the irrelevant weights

(d) Because of its structural modularization ability (Ishikawa 1996; Ishikawa and

Yoshino 1993), learning by forgetting can manipulate the models into doing

different types of tasks. In some cases, it can turn the ME model into a tra-

ditional clustering system by pruning all the input-to-hidden connections of

the experts, and letting the gate divide the data into clusters of the same class.

Another bene�t of learning by forgetting is to allow different experts of the

models to select different, but not necessarily disjoint, sets of input features.

(e) There is a possible relationship between the weight distribution, in terms of

magnitude, and the generalization ability of the ME and CCME model.

In conclusion, the experiments and �ndings answer the research question: ar-

ti�cial evolution can produce neuro ensembles that automatically decompose complex

classi�cation problems by dividing the data to sub�regions where the input�output rela-

tionship is easier to learn and assigning different experts to these sub�regions. The higher

performance of CCME over the conventional ME implies that by adding a cooperative

co�evolution layer, the system can explore the search space more ef�ciently (CCME out-

performs the random search for ME) and thus �nd more �tting neuro ensembles.

8.1 Future Work

Numerous directions for further explorations and investigations have emerged

from the work of this thesis. Some open research questions have already been highlighted

in the respective chapters where they directly arise from the experiments and analysis.

These can be summarized as follows:

1. In chapter 6, the automatic problem decomposition analysis of CCME shows that

the model can �nd a very good way to divide the data into better clusters, where
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�better� measures the ease with which an expert can classify the data in the clus-

ters. The results suggest the following questions: (1) can we de�ne a measure for

the ease with which a cluster may be classi�ed?, and if yes, (2) can this measure-

ment be used to guide the model toward dividing the data in a better way, or can

it at least explain the differences in performance between methods of automatic

problem decomposition?

2. In section 7.3.2.4.1, the correlation between the generalization error curves and the

weight distribution plots suggests the following open research directions: (1) is

there a relationship between the weight distribution and the generalization error?,

(2) in the case of regularization, can the phase changes in the weight distribution

be used as an estimate for the phase change in the generalization errors? and (3)

if there is such a relationship, can one �nd an optimized weight distribution which

will produce an optimized neuro ensemble in terms of the generalization ability?

Besides the above questions, a number of research directions arising from the

philosophical issues underlying the thesis are outlined here:

First, a critical question, that still remains open in the ensemble literature, is

how to decide on the optimum ensemble size. As I discussed in the thesis, cooperative

coevolution is a powerful framework allowing a suitable number of sub�populations to

emerge, based on the �tness of the whole system. The principle is to add and remove

sub�populations when the overall �tness stagnates for a number of generations (Potter

1997; Potter and De Jong 2000). The proposed framework allows the ensemble size to

emerge as the system adjusts itself to the best �tness.

Second, in this thesis, I have shown how ME and CCME automatically decom-

pose a hard problem into sub�regions of the input with the property that the sub�regions

are easier, in terms of input-output relationship, for the available classi�ers to solve.

However, the decomposition mechanism underlying the models remains an open ques-

tion. As suggested, a measure of the ease-of-classi�cation of the sub�regions could be
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very valuable in guiding the system towards better decomposition schemes. If such a

measure exists, it could be cooperated into the performance �tness of the system, for ex-

ample serving as an objective in a multi�objective optimization method. It would force

the gate to divide the data into optimum regions, in terms of simplest input-output rela-

tionship, and at the same time evolve accurate experts to solve these sub�regions with

minimum error.

Finally, although learning by forgetting is applied and analyzed in this thesis,

it is applied in a simple form in which the regularization parameters are the same for

both the gate and the experts. As suggested in the experiments and analysis in chapter

7, the relationship between these regularization parameters and the weight distributions

of the gate and the experts is not simple. It is therefore interesting to further investigate

the effect of LF with different parameters for these components. Also, it will be valuable

to study the relationship between the weight distribution and the error rate, since such

relationship might give valuable insights into the optimum range and shape of the weight

distribution to generate neuro ensembles that generalize well. If such an optimum weight

distribution can be found, then a mixture of experts can be quickly designed to solve

the problem. Besides learning by forgetting, there are other successful regularization

schemes in the literature of ANN. It would be interesting to study the effects of these

schemes on both ME and CCME.



Appendix A

Derivations of error functions and their

derivatives

A.1 Back�propagation for feedforward neural networks

Given a dataset consisting of N records: {~xi, ~di} where ~xi = {x1, x2, ..., xP}
and ~di = {d1, d2, ..., dQ} are the attributes and targets of case i respectively; given a

FFNN as shown in �gure A.1; the output of each layer k is denoted as o
(k)
j where the

subscript j refers to the position of the node in its layer. Since the input node has no

transformation function, o
(0)
j ≡ ~x. Each hidden node often has two parts: a summation

function a
(k)
j =

∑
l w

(k)
lj o

(k−1)
l , and an activation function ϕ(a

(k)
j ).

Figure A.1: FFNN architecture with denoted signals

216



APPENDIX A. ERROR FUNCTIONS AND THEIR DERIVATIVES 217

Often, to train the system, a cost function is given as a measurement of the

ANN performance. The aim of the training process is to minimize this cost function.

E =
1

N

N∑
i

Ei (A.1)

The instantaneous value Ei of the total energy of pattern i is obtained by summing the

errors eq over all the neurons q in the output layer.

Ei =
1

2

∑
q

e2
q (A.2)

where eq = dq − o
(2)
q

A.1.1 Derivatives

The aim of the training process is to adjust the free parameters (i.e. ~w to min-

imize the overall cost function). Back propagation uses gradient descent to adjust these

weights in the direction of minimizing the gradients of each weight. The update is done

as follow:

w
(k)
lj = w

(k)
lj +4w

(k)
lj (A.3)

4w
(k)
lj = −η

∂E

∂w
(k)
lj

= −η
∂E

∂a
(k)
j

∂a
(k)
j

∂w
(k)
lj

(A.4)

Since a
(k)
j =

∑
l w

(k)
lj o

(k−1)
l , ∂a

(k)
j

∂w
(k)
lj

= o
(k−1)
l . De�ne an error term (also known as the local

gradient at neuron j) δ
(k)
j ≡ ∂E

∂a
(k)
j

, the updated term for the weight is therefore

4w
(k)
lj = −ηδ

(k)
j o

(k−1)
l (A.5)
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A.1.1.1 Error terms for the output layer

For the node q in the output layer, the error term is expanded as follow

δ(k)
q ≡ ∂E

∂a
(k)
j

=
∂E

∂Ei

∂Ei

∂eq

∂eq

∂o
(k)
q

∂o
(k)
q

∂a
(k)
q

= 1× eq × (−1)× ϕ′(a(k)
q ) (A.6)

Recall with sigmoid function, ϕ′(x) = ϕ(x)[1− ϕ(x)], which leads to

δ(k)
q = −(dq − o(k)

q )o(k)
q (1− o(k)

q ) (A.7)

A.1.1.2 Error terms for the hidden layers

Each node j in hidden layer k is connected to nodes in the next layer k + 1

through a set of weights. Therefore, the error term at hidden node j is the sum of the

back propagated errors from all the nodes in the next layer to which j is connected.

δ
(k)
j = −

∑
q

w
(k+1)
jq δ(k+1)

q o
(k)
j (1− o

(k)
j ) (A.8)

A.2 Back�propagation for mixture of experts on binary

classi�cation

Notation: since in this section, I introduce only the binary classi�cation, the

output of expert m is simpli�ed as ym, and output m of the gate is denoted as zm, gm.

Also, this section deals with the uppermost level of the derivatives. To derive the com-

plete derivative for each weight in the experts and the gate, one just need to apply the

same chain rule on the error function in this section and the derivatives derived in section

A.1.1. Therefore to update the weights, chain rules can be applied here in the same man-

ner as above. For example, to update weight r of expert m, given ∂Ei

∂ym
, which is derived
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Figure A.2: Mixture of experts architecture

in this section, the chain rule can be applied as follow:

4wr,m = −η
∂Ei

∂wr,m

= −η
∂Ei

∂ym

∂ym

∂am

∂am

∂wr,m

(A.9)

Let the weights of each expert m be ~wm, and the weights, corresponding to

expert m, of the gate be ~vm. Since the gate has no hidden units, the raw output zm of

output node m of the gate is computed as the weighted sum of the inputs: zm = ~vm~x. To

maintain the probabilistic property of the gate output, this raw output is passed through a

softmax function, resulted in

gm =
exp(zm)∑
j exp(zj)

(A.10)

Some useful derivatives for the gate:

∂gm

∂zm

= gm(1− gm) (A.11)

∂gm

∂zj,j 6=m

= −gmgj (A.12)

In chapter 5, I has de�ned four error functions to be investigated in this thesis.

Here, I will provide more derivations and derivatives of these error functions.



APPENDIX A. ERROR FUNCTIONS AND THEIR DERIVATIVES 220

A.2.1 Residual cancelling error function

For each pattern i, the error function is de�ned as

Ei = ‖di −
∑
m

gi
myi

m‖2 (A.13)

• For expert m

∂Ei

∂yi
m

= gi
m(

∑
j

gi
jy

i
j − di) = gi

m(yi
me − di) (A.14)

• For output m of the gate, which corresponds to expert m

∂Ei

∂zi
m

=
∂Ei

∂gi
m

∂gi
m

∂zi
m

+
∑

j,j 6=m

∂Ei

∂gi
j

∂gi
j

∂zi
m

(A.15)

= gi
m(1− gi

m)yi
m(yi

me − di)−
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j,j 6=m

gi
mgi

jy
i
j(y

i
me − di)

= gi
m(yi

me − di)(yi
m − yi

ens)

A.2.2 Competitive error function

For each pattern i, the error function is de�ned as

Ei =
∑
m

gi
m(yi

m − di)2 (A.16)

• For expert m

∂Ei

∂yi
m

= gi
m(yi

m − di) (A.17)

• For output m of the gate, which corresponds to expert m

∂Ei

∂zi
m

=
∂Ei

∂gi
m

∂gi
m

∂zi
m

+
∑
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∂Ei
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∂zi
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(A.18)
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m(1− gi

m)(yi
m − di)2 −

∑

j,j 6=m

gi
mgi

j(y
i
j − di)2

= gi
m[(yi

m − di)2 −
∑
m

gi
m(yi

m − di)2]
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A.2.3 Gaussian error function

For each pattern i, the error function is de�ned as

Ei = −log
∑
m

gi
mexp(−1

2
‖yi

m − di‖2) (A.19)

Let Ψm = exp(−1
2
‖yi

m − di‖2)

• For expert m

∂Ei

∂yi
m

= 2hi
m(yi

m − di) (A.20)

where

hi
m = [

gi
mΨm∑
j gi

jΨj

] (A.21)

is the posterior probability.

• For output m of the gate, which corresponds to expert m, since

∂Ei

∂gi
m

= − Ψm∑
j gi

jΨj

(A.22)
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A.2.4 Multi�nomial error function on binary classi�cation

For each pattern i, the error function is de�ned as

Ei = −log
∑
m

gi
m(yi

m)di

(1− yi
m)(1−di) (A.24)

Let Ψm = (yi
m)di

(1− yi
m)(1−di)

The posterior probability is de�ned as

hi
m =

gi
mΨm∑
j gi

jΨj

(A.25)
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• For expert m

∂Ei

∂yi
m

= 2hi
m(yi

m − di) (A.26)

• For output m of the gate, which corresponds to expert m
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Appendix B

Dataset Descriptions

The following �fteen benchmark datasets are taken from the UCI machine

learning repository (Newman, Hettich, Blake, and Merz 1998) and the StatLog database

(King, Feng, and Shutherland 1995). The datasets are categorized as small and medium

types based on the number of attributes: small datasets have at most 20 attributes while

medium ones have more than 20 attributes.

B.1 Small datasets

The breast cancer dataset was originally obtained from W. HG. Wolberg at

the University of Wisconsin Hospitals, Madison. The set is divided into two classes:

benign or malignant. The set has 699 instances (as of 15 July 1992) represented by 9

categorical attributes. 458 instances are benign and 241 are malignant.

The diabetes dataset was donated by Vincent Sigillito from Johns Hopkins

University and was constructed by constrained selection from a larger database by the

National Institute of Diabetes and Digestive and Kidney Diseases. All patients here are

females at least 21 years old of Pima Indian heritage. The set consists of 768 instances

of 8 attributes. 500 examples tested negative for diabetes, and 268 are tested positive.

The liver disorder dataset was donated by Richard S. Forsyth from the col-
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lected data by BUPA Medical Research Ltd. The set has 345 instances with 6 attributes.

The class distribution is 145 (class 0) and 200 (class 1).

The Australian credit card assessment dataset contains 690 instances of 15

attributes. There are two classes: + with 307 instances and � with 383 instances.

The Tic Tac Toe endgame dataset was created and donated by David W. Aha

on 19 August 1991. This database encodes the complete set of possible board con�gu-

rations at the end of Tic Tac Toe end games, where �x� is assumed to have played �rst.

The target concept is �win for x� (i.e., true when �x� has one of 8 possible ways to create

a �three-in-a-row�). There are 958 instances of 9 attributes (each corresponding to one

Tic Tac Toe square). There are two classes: negative (332 instances) and positive (625

instances).

The Cleveland heart disease dataset was donated by David W. Aha on July,

1988. The purpose is to distinguish the presence and absence of heart disease in the

patient. This database originally contains 76 attributes, but only a subset of 7 categorical

and 6 continuous attributes is used in all published experiments. There are two classes:

presence (139 instances) and absence (164 instances).

The StatLog heart disease dataset was obtained from the StatLog database

(King, Feng, and Shutherland 1995). The purpose us to distinguish the presence and

absence of heart disease in the patient. There are two classes: presence (120 instances)

and absence (150 instances) of heart disease.

The hepatitis dataset was donated by G.Gong (Carnegie-Mellon University).

The dataset is divided into two classes: die (32 instances) and live (123 instances). There

are 6 continuous and 13 categorical attributes in the dataset.

The Ljubljana breast cancer dataset was obtained from the University Medi-

cal Center, Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M.

Soklic for providing the data. This data set includes 201 instances of the no-recurrence-

events class and 85 instances of the recurrence-events class. The instances are described

by 9 attributes.
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The house voting 84 dataset was donated by Jeff Schlimmer on 27 April 1987.

The data were collected from the 98th Congress Congressional Quarterly Almanac, 2nd

session 1984, Volume XL: Congressional Quarterly Inc., Washington, D.C., 1985. This

data set includes votes for each of the U.S. House of Representatives Congressmen on

the 16 key votes identi�ed by the CQA. The CQA lists nine different types of votes:

voted for, paired for, and announced for (these three simpli�ed to yea), voted against,

paired against, and announced against (these three simpli�ed to nay), voted present, voted

present to avoid con�ict of interest, and did not vote or otherwise make a position known

(these three simpli�ed to an unknown disposition). There are two classes: democrats

(267 instances) and republicans (168 instances).

B.2 Medium datasets

The German credit card dataset (King, Feng, and Shutherland 1995) was

donated by Professor Dr. Hans Hofmann Institut f�ur Statistik und �Okonometrie Uni-

versit� at Hamburg. For algorithms that need numerical attributes, Strathclyde University

produced the �le �german.data-numeric�, which has been edited and several indicator

variables added to make it suitable for algorithms which cannot cope with categorical

variables. Several attributes that are ordered categorical (such as attribute 17) have been

coded as integer. There are totally 24 attributes in the edited �le. There are two classes:

good credit (700 instances) and bad credit (300 instances).

The ionosphere dataset was donated by Vince Sigillito in 1989. �This radar

data was collected by a system in Goose Bay, Labrador. This system consists of a phased

array of 16 high-frequency antennas with a total transmitted power on the order of 6.4

kilowatts. The targets were free electrons in the ionosphere. Good radar returns are those

showing evidence of some type of structure in the ionosphere. Bad returns are those that

do not; their signals pass through the ionosphere. Received signals were processed using

an autocorrelation function whose arguments are the time of a pulse and the pulse num-
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ber. There were 17 pulse numbers for the Goose Bay system. Instances in this databse

are described by 2 attributes per pulse number, corresponding to the complex values re-

turned by the function resulting from the complex electromagnetic signal� (Blake and

Merz 1998). There are two classes: good (225 instances) and bad (126 instances)

The King Rook vs King Pawn dataset was donored by Rob Holte on 1 Au-

gust 1989. The dataset describes a chess game of King Rook versus King Pawn on

a7 (usually abbreviated KRKPA7). The pawn on a7 means it is one square away from

queening. There are a total of 36 categorical attributes. It is the King Rook's side (white)

to move. There are two classes: White-can-win (1669 instances) and White-cannot-win

(1527 instances).

The E. coli promoter gene sequences (DNA) with associated imperfect do-

main theory dataset was donated by M. Noordewier and J. Shavlik on 30 June 1990.

There are 57 attributes corresponding to 57 sequential nucleotide (�base-pair�) positions.

There are two classes: positive (53 instances) and negative (53 instances).

The Thyroid disease dataset was supplied by the Garavan Institute and J. Ross

Quinlan, New South Wales Institute, Sydney, Australia in 1987. The dataset records an

archive of thyroid diagnoses obtained from the Garvan Institute. There are 2800 training

(data) instances and 972 test instances in total with 27 attributes. The are two classes: sick

(171 training instances and 60 testing instances) and negative (2629 training instances

and 912 testing instances).
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