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Abstract

The automatic synthesis of embodied creatures through artificial evolution has be-
come a key area of research in robotics, artificial life and the cognitive sciences.
However, the research has mainly focused on genetic encodings and fitness func-
tions. Considerably less has been said about the role of controllers and how they
affect the evolution of morphologies and behaviors in artificial creatures. Further-
more, the evolutionary algorithms used to evolve the controllers and morphologies
are pre-dominantly based on a single objective or a weighted combination of mul-
tiple objectives, and a large majority of the behaviors evolved are for wheeled or
abstract artifacts.

In this thesis, we present a systematic study of evolving artificial neural network
(ANN) controllers for the legged locomotion of embodied organisms. A virtual but
physically accurate world is used to simulate the evolution of locomotion behavior
in a quadruped creature. An algorithm using a self-adaptive Pareto multi-objective
evolutionary optimization approach is developed.

The experiments are designed to address five research aims investigating: (1) the
search space characteristics associated with four classes of ANNs with different con-
nectivity types, (2) the effect of selection pressure from a self-adaptive Pareto ap-
proach on the nature of the locomotion behavior and capacity (VC-dimension) of
the ANN controller generated, (3) the efficiency of the proposed approach against
more conventional methods of evolutionary optimization in terms of computational
cost and quality of solutions, (4) a multi-objective approach towards the comparison
of evolved creature complexities, (5) the impact of relaxing certain morphological
constraints on evolving locomotion controllers.

The results showed that: (1) the search space is highly heterogeneous with both
rugged and smooth landscape regions, (2) pure reactive controllers not requiring
any hidden layer transformations were able to produce sufficiently good legged loco-
motion, (3) the proposed approach yielded competitive locomotion controllers while
requiring significantly less computational cost, (4) multi-objectivity provided a prac-
tical and mathematically-founded methodology for comparing the complexities of
evolved creatures, (5) co-evolution of morphology and mind produced significantly
different creature designs that were able to generate similarly good locomotion be-
haviors. These findings attest that a Pareto multi-objective paradigm can spawn
highly beneficial robotics and virtual reality applications.
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Chapter 1

Introduction

“The controlling Intelligence understands its own nature, and what it

does, and whereon it works.”

(Marcus Aurelius, 167A.D.)

1.1 Overview

The automatic synthesis of embodied and situated creatures through arti-

ficial evolution has become a key area of research in artificial life (Sims 1994a; Sims

1994b; Komosinski and Rotaru-Varga 2000; Bongard and Paul 2001; Komosinski and

Rotaru-Varga 2001; Taylor and Massey 2001; Hornby and Pollack 2002), robotics

(Mataric and Cliff 1996; Harvey, Husbands, Cliff, Thompson, and Jakobi 1997; Hus-

bands, Harvey, Jakobi, Thompson, and Cliff 1997; Floreano 1998; Nolfi and Floreano

2000; Pollack, Lipson, Hornby, and Funes 2001; Pollack, Lipson, Ficici, Funes, and

Hornby 2002), and the cognitive sciences (Dautenhahn 1996; Mataric 1997; Pfeifer

and Scheier 1999; Dautenhahn 1999; Nolfi and Floreano 2002). This concept stresses

the importance of studying systems that have a body and are situated in a physical

environment. It also emphasizes the utilization of artificial evolution as the primary

mechanism for driving the self-organization process. This approach enables arti-

ficial creatures to autonomously develop intelligent behavior through the dynamic

1
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interactions between its body, nervous system and environment.

Research into evolving artificial creatures typically involves real-life robots

or physically simulated artifacts and in some cases, a combination of both. There

are a number of theoretical as well as technological considerations that needs to be

addressed in order to conduct such artificial evolution. Theoretical considerations

include the genetic encodings of the creature, the kinds of algorithms for driving the

evolutionary process and the types of controllers suitable to act as the creature’s

mind. Here, the term mind is simply used to reflect the creature’s artificial neural

network (ANN) that act as its body’s controller. We will use the terms mind and

controller interchangeably throughout this thesis. As Franklin (1995) points out,

“The overriding task of Mind is to produce the next action. Minds are

the control structures of autonomous agents.” (p.412)

Technological considerations for virtually simulated creatures include the physics en-

gine for simulating the creature and its surroundings. For real-life physical robots,

the technological issues include robotic platforms suitable for evolutionary design

approaches and techniques for automatically generating robots with variable con-

trollers as well as morphologies.

This thesis is about the evolution of morphology and mind in virtual or-

ganisms. We are interested in understanding how the evolution of the creature’s

mind affects the evolution of its behavior as well as its morphology. Although our

study focuses on the evolution of simulated creatures, we believe that the results

from our investigation will also help to further the understanding and development

of real-life autonomous robots. On a more general level, it will also provide some

useful insights into the relationship between the co-evolution and co-adaptation of

body and mind in real creatures.

1.2 Motivation

There have been numerous significant contributions to this area of research

over the last decade (Sims 1994a; Sims 1994b; Harvey, Husbands, Cliff, Thompson,
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and Jakobi 1997) and especially in the early part of this new millennium (Nolfi

and Floreano 2000; Komosinski and Rotaru-Varga 2001; Taylor and Massey 2001;

Bongard and Pfeifer 2002; Hornby and Pollack 2002). We have seen how artifi-

cial evolution allows the engineering of robotic lifeforms to be fully autonomous

from the initial design of morphologies and controllers to fabrication of real working

robots (Lipson and Pollack 2000). Captivating communities of evolving 3D virtual

organisms that live and die in a complex physics-based virtual world have given

insights into the emergence of complex dynamical life-like systems (Komosinski and

Rotaru-Varga 2001) as well as the general question of evolvability (Komosinski and

Rotaru-Varga 2000). Studies have also shown how learning complements evolu-

tion in generating adaptive and robust controllers for wheeled robots (Floreano and

Urzelai 1998; Nolfi and Floreano 1999). This is just a small sampling of the recent

exciting and highly significant advancements that have been contributed by research

in embodied and situated artificial creatures. The potential future contributions to

the engineering, biological and cognitive sciences stemming from further research in

this area are clearly evident.

The emphasis of most studies in evolving embodied artificial creatures have

been on the role of genetic encodings and how different types of genotype-phenotype

representations allow for greater evolvability (Bongard and Pfeifer 2001; Hornby

and Pollack 2001a; Komosinski and Rotaru-Varga 2001; Bongard 2002b; Hornby

and Pollack 2002). There have also been some investigations into the role of fitness

functions and how they affect the direction of the evolutionary process (Floreano

and Urzelai 2000; Komosinski and Rotaru-Varga 2000; Ray 2000). A very recent

investigation explored how morphological complexity itself affects the emergence of

more complex behavior in artificial creatures (Bongard and Pfeifer 2002). However,

considerably little has been said about the role of controllers in the artificial evolution

of such creatures.

In Nolfi’s (2002) very recent overview of the current state-of-the-art, this

gap in the literature is further supported by his remark that

“. . . the potential to design systems that exploit sensory-motor coordi-
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nation remains largely unexplored.” (p.31)

As such, there is currently a lack of understanding of how the evolution of controllers

affects the evolution of morphologies and behaviors in embodied and situated crea-

tures. It remains unclear what properties of an artificial creature’s mind allow it to

exhibit the desired action and form. Our motivation for this thesis stems from the

fact that a better fundamental understanding of the controller’s role in terms of its

search space characterization, evolutionary dynamics, operational dynamics, com-

plexity and representational power should pave the way towards our understanding

of the emergence of more complex artificial creatures with a variety of morphologies

and behaviors.

1.3 Research Question and Hypothesis

Life, as we all know too well, seldom allows us to survive by solely focusing

on a single objective alone. Rather, it presents us with a myriad of choices and often

forces us to choose between conflicting goals that in one way or another affects our

chances for survival. As such, we believe that the introduction of multi-objectivity

for the evolution of embodied artificial creatures will allow for this important aspect

of biological life to be captured and modelled naturally as part of the evolutionary

process in artificial life systems.

In this thesis, we wish to specifically answer the following research question:

Is a Pareto evolutionary multi-objective optimization (EMO)1

approach beneficial for evolving artificial creature controllers?

Our hypothesis is that a Pareto EMO approach will reduce the computational cost of

evolving effective locomotion controllers compared to non-Pareto EMO algorithms

1It should be noted that another acronym commonly used to refer to EMO algorithms is MOEA,

which stands for Multi-Objective Evolutionary Algorithms (Deb 2001; Coello Coello, Van Veld-

huizen, and Lamont 2002). In this thesis, we use only the acronym EMO to refer to this class of

algorithms.
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and single-objective evolutionary algorithms (EAs). Hence our main research objec-

tive is to prove or disprove that a Pareto EMO approach is advantageous for evolv-

ing locomotion controllers of artificial creatures. This objective will be achieved by

comparing the trade-off between the optimized controllers and computational cost

involved in finding these optimized controllers from using a Pareto EMO method-

ology against weighted sum EMO and single-objective EA approaches. Although

the results of this thesis can be generalized to the area of evolutionary robotics, our

focus will be only for simulated legged artificial organisms.

In order to answer the main research question, a number of other related

sub-questions will need to be investigated as well:

1. What are the characteristics of the underlying search space associ-

ated with finding effective locomotion controllers for artificial crea-

tures?

The underlying search space associated with generating artificial creature con-

trollers for legged locomotion needs to be understood in order to gain an idea

of the difficulty associated with this problem. If the fitness landscape is highly

smooth and unimodal, then a gradient-based algorithm such as greedy hill-

climbing would perform well. On the other hand, if the fitness landscape

is highly rugged, an evolutionary optimization approach will perhaps be of

benefit in solving this problem.

2. What types of controller architecture are suitable for evolving loco-

motion controllers?

There are a number of different ANN architectures that can be used as the

artificial creature’s controller. The question here is what types of ANN ar-

chitecture are easier to search for generating locomotion abilities in artificial

creatures. Perhaps simple feed-forward ANNs are sufficient for generating the

required locomotion controllers. On the other hand, recurrent architectures

might be more efficient in capturing the state-dependent dynamics of the ar-

tificial creature’s legged limb motions.
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3. What is the minimum hidden layer size required to produce loco-

motion controllers?

The capacity of an ANN is determined by its so-called Vapnik-Chervonenkis

(VC) dimension (Vapnik and Chervonenkis 1971), which in turn is determined

by the number of free parameters in the network such as the connection weights

(Haykin 1999). One way to control the weights is by controlling the number

of hidden units present in the ANN. Hence, the importance of implementing

a suitably-sized hidden layer within the ANN architecture needs to be ascer-

tained. Firstly, finding the ANN controller with the minimum network size

will reduce the amount of computation that needs to be carried out by the

artificial creature’s controller, thereby further enhancing its efficiency during

operation. Secondly, to be able to use the controller as some type of complex-

ity measure (see next item), we need to ensure that the amount of redundancy

in the network is minimized as far as possible in order to avoid false indica-

tions given by large redundant networks. Thirdly, although redundancy may

be beneficial for life-long learning, we need to avoid evolving networks with

unseen redundancy to be able to reduce the risk of unpredictable behavior.

Redundancy can be later added manually, with its corresponding effects an-

alyzed by the designer. Thus, minimizing the number of redundant hidden

units can reduce the amount of “surprise” (Ronald and Sipper 2001) arising

from the use of biologically-inspired solutions (see Section 2.3).

4. How can we compare between the complexities of artificially evolved

creatures?

Another question that needs to be addressed is how can the complexity of the

artificial creatures that have been evolved be measured or characterized. It

is important to be able to make objective comparisons between the evolved

characteristics of the artificial creatures such as their controllers, morphologies

and emergent behaviors. For example is controlling a four-legged robot more

complex than controlling a six-legged robot? Conversely, is a six-legged robot

able to achieve more complex behaviors that are not achievable by a four-
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legged robot? Being able to answer such questions will establish a methodology

that allows for a better understanding of the cost trade-offs between different

designs, controller requirements and operational capabilities.

5. What effects does the simultaneous evolution of morphology to-

gether with controller have on the evolutionary optimization pro-

cess?

The evolutionary search process for automatically generating locomotion con-

trollers for artificial creatures can be carried out by either using a fixed hand-

designed morphology for the artificial creature or by allowing self-organization

to occur simultaneously for both the controller and the morphology through a

co-evolutionary process, which may help to produce innovative designs. Per-

haps by allowing the artificial creature’s morphology to freely change and

evolve as the corresponding controller evolves may ease the search space dif-

ficulty of this problem. Using co-evolution, the evolutionary search process

can experiment with unconventional and previously unexplored morphological

designs that may be easier to control for legged locomotion. On the other

hand, adding more parameters to the evolutionary optimization process may

cause an explosion in the search space subsequently causing the search algo-

rithm to perform dismally. Hence, it is important to determine whether a

co-evolutionary process is actually beneficial or otherwise in evolving locomo-

tion controllers for artificial creatures.

1.4 Organization of the Thesis

This thesis has nine chapters and is organized as follows:

In Chapter 1, an introduction to the thesis is presented. It first provides

an overview of the research field, followed by the motivation and research questions

raised in the thesis. An outline of the thesis is then given and the chapter closes

with a list of scientific contributions stemming from this research work.

In Chapter 2, a survey of the literature is undertaken for research conducted
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in evolving artificial creatures. This review is divided into three main sections, first

emphasizing the relevance of conducting such research based on the principles of em-

bodiment and situatedness, then a survey of the work carried out using real physical

robots and finally a survey of the work carried out using simulations. The survey

includes both evolution of controllers alone as well as co-evolution of morphology

and mind.

In Chapter 3, the virtual environment in which the experiments in this

thesis are carried out is explained. Firstly, a description of the physics engine used

to simulate the creature and its world is given, followed by the physical setup of

the creature’s morphology. Then, an explanation of the ANNs used to control the

creature’s movement is presented, followed by a discussion of the genotype repre-

sentation of the ANN controller. Finally, the basic evolutionary and simulation

parameters used in the experiments are outlined.

In Chapter 4, we investigate the question of search space difficulty asso-

ciated with four different types of ANN architecture. A basic characterization of

the fitness landscape involved in searching for ANN controllers that exhibit good

locomotion capabilities is performed using random search, hill-climbing and random

walk algorithms.

In Chapter 5, we explore the possibility of using a Pareto EMO method-

ology for evolving artificial creature controllers. A self-adaptive Pareto EMO algo-

rithm called Self-adaptive Pareto Artificial Neural Network (SPANN) is presented

and used to evolve ANN controllers for the artificial creature. Detailed analysis is

then conducted on the evolutionary search process and comparisons made against

the controllers obtained from random search, hill-climbing and random walk algo-

rithms. The operational dynamics of the best evolved controllers are also analyzed.

In Chapter 6, we answer the main research question of whether the Pareto

EMO methodology is actually beneficial for the evolution of locomotion controllers.

The SPANN algorithm is compared against more conventional EAs, namely a hand-

tuned EMO algorithm, a weighted sum EMO algorithm, a single-objective EA,

and a recent Pareto EMO algorithm (Non-dominated Sorting Genetic Algorithm II
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(NSGA-II) (Deb, Agrawal, Pratab, and Meyarivan 2000)), to verify that the self-

adaptive Pareto EMO algorithm is actually beneficial for evolving artificial creature

controllers. An analysis into the redundancies of the evolved networks is also given.

In Chapter 7, we tackle the question of how to compare creature complex-

ities. A multi-objective view is presented for characterizing and comparing between

the complexities of the different evolved controllers using the EMO approach. Ex-

amples are also given as to how this multi-objective approach towards understanding

complexity can be useful in other disciplines.

In Chapter 8, we conduct the simultaneous evolution of both morphology

and controller. The constraint of fixing the artificial creature’s morphology when

conducting the evolutionary optimization process is relaxed and the SPANN algo-

rithm is augmented to enable this co-evolution of the creature’s morphology and

mind to occur.

In Chapter 9, the main findings from this thesis are summarized. The

chapter concludes the thesis with a discussion of possible future research directions.

This thesis has an accompanying CD-ROM which can be found on the

inside back cover of the thesis. The CD-ROM is divided into two main sections

containing the video clips of the artificial creatures in simulation and the graphs

generated during the analysis of the experimental data. The nature of this inves-

tigation necessitated the generation of a large number of graphs, not all of which

could be included into the pages of the thesis itself but have been inserted into the

CD-ROM. An index to the contents of the CD-ROM can be found in Appendix A.

1.5 Original Contributions

A list of original scientific contributions arising from this thesis is given in

this section.

• A Pareto evolutionary approach for evolving locomotion of a quadruped is

presented. Although Pareto methods have been used for designing intelligent

control systems (Tan and Li 1997; Gacogne 1997; Coello Coello, Christiansen,
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and Aguirre 1998; Pirjanian 1998), no study to our knowledge has attempted to

use such methods for evolving locomotion of a quadruped. Previous methods

for conducting this type of evolution have focused on using single-objective

EAs or weighted sum EMO methodologies for optimizing the desired behavior.

The Pareto EMO approach is shown to offer significant advantages for evolving

artificial creature controllers. This will open up an entirely new paradigm into

evolving controllers not only for simulated quadrupeds but also for all other

types of artificial life and physical robots.

• An analysis of the fitness landscape for quadruped locomotion and a criti-

cal evaluation of the current literature for fitness landscape analysis are pre-

sented (Chapter 4). The analysis provides an insight into the variety of fit-

ness landscape features that can significantly affect the outcome of evolution-

ary searches for locomotion controllers. An understanding of the underlying

search space characteristics is paramount towards the design of more effective

search strategies and optimization algorithms for the purpose of generating

quadruped locomotion controllers. The deficiencies noted with current meth-

ods of characterizing fitness landscapes will pave the way for more insightful

and practical solutions to be devised for future investigations into the search

spaces of artificial creature evolution.

• A systematic study of the relationship between quadruped locomotion and

controller size is presented, and a modified version of the SPANN algorithm

suitable for evolving ANNs for robotic control is developed (Chapter 5). A

fundamental understanding of the size requirement of ANN controllers for

quadruped locomotion will allow for more efficient use of computational re-

sources in the control of autonomous robot and virtual creature locomotion.

The proposed SPANN algorithm allows for the use of a Pareto approach for the

automatic generation of ANNs that can serve as effective autonomous control

units for virtual artificial creatures.

• Presenting the advantages of SPANN by comparing it with a hand-tuned,
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weighted sum, single-objective, and NSGA-II algorithms (Chapter 6). The

much lower computational cost offered through the self-adaptive Pareto EMO

approach can significantly reduce the amount of time required to carry out ar-

tificial life and evolutionary robotics experiments for finding effective artificial

creature controllers.

• First attempt to formulate the problem of hierarchical complexity as a multi-

objective optimization problem and establish EMO as a platform for studying

complexity (Chapter 7). The measurement and comparison of complexity be-

tween different objects have always been a problematic issue across multiple

research disciplines. An entirely different perspective towards characteriza-

tion of hierarchical complexity can be achieved by taking a multi-objective

viewpoint. The multi-objective characterization of complexity can open up

radically different avenues into complexity research and in general how re-

searchers think about complexity. We show that complexity characterization

can be carried out in a simple and practical manner using an EMO approach.

This highly accessible method of capturing complexity has significant implica-

tions not only within the scope of artificial life and evolutionary robotics but

across a much wider spectrum of research fields.

• Proposing a methodology for studying the impact of morphological constraints

on behavior and evolution (Chapter 8). The imposition of pre-designed mor-

phologies on both physical robots and simulated agents may require more

complex controller requirements as well as entailing a more involved evolu-

tionary search. The co-evolution of both morphology and controller through

the relaxation of certain morphological constraints can lead to similarly good

locomotion behavior as well as new and interesting artificially evolved mor-

phological designs. This can allow for previously unexplored robot bodies or

simulated characters to be engineered and synthesized. At the same time, the

co-evolutionary approach represents an important step towards truly evolvable

materials and physical constructs, especially in the field of nanotechnology.



Chapter 2

Evolving Artificial Creatures

2.1 Introduction

As we have seen from the brief introduction given in Chapter 1, the artificial

evolution of embodied and situated creatures can be classified into two groups: (1)

the evolution of virtual creatures in simulation, and (2) the evolution of real physical

robots. Over the last decade, work on evolving robots has become a mainstream

effort in robotics and the field has come to be known as evolutionary robotics (Nolfi

and Floreano 2000). On the other hand, the evolution of virtual abstract creatures

in simulation has not reached the level of maturity achieved by its physical coun-

terpart. As such, there is no commonly agreed upon term that refers to this latter

type of work. Some of the keywords used to describe the evolution of virtual ab-

stract creatures in simulation include virtual embodied evolution (Bongard and Paul

2000), virtual creature evolution (Komosinski and Rotaru-Varga 2001), body-brain

co-evolution (Hornby and Pollack 2002) and evolution of morphology and behavior

(Taylor 2002). In this thesis, we will use the term evolution of morphology and mind

to refer to this class of work. As explained earlier in Section 1.1, the word mind

here is used to refer to the ANN that acts as the artificial creature’s controller.

It should be noted however that there is no strict delineation between the

two fields of physical and simulated evolution of artificial creatures. As we will see

later in this chapter, a significant proportion of the work in evolutionary robotics

12
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does actually involve simulation of real robots to reduce the steep time requirements

when conducting evolution on real physical robots (Mataric and Cliff 1996). A se-

ries of studies on “minimal simulations” has shown that if the simulation faithfully

captures the robot’s operation in its environment including the presence of noise

in sensors and motors, then evolved controllers in simulation can be successfully

transferred to real world robots (Jakobi, Husbands, and Harvey 1995; Jakobi 1997b;

Jakobi 1997a; Jakobi 1998). Additionally, some of the highly abstract creatures

evolved in simulation, which are far from the design or workings of any real-life

robots, have actually been literally “fleshed out” to become tangible, physical man-

ifestations of the real world (Lipson and Pollack 2000; Hornby, Lipson, and Pollack

2001).

This chapter begins with an overview of the importance of embodied and

situated evolution. The relevant literature concerning the evolution of real physical

robots is then reviewed, followed by a review of the evolution of morphology and

mind in simulated artifacts. Figure 2.1 in conjunction with Table 2.1 provides a

road-map to the literature surveyed in this chapter on the evolution of different

types of artificial creatures. The final level of categorization in Figure 2.1 have

been assigned numerical tags of which the corresponding entries in Table 2.1 list the

details of the research work in that grouping.
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Ref. Year Authors
1.1 1996 Eggenberger

1997 Lund and Hallam
1998 Floreano and Mondada

Floreano and Urzelai
Husbands, Smith, Jakobi, and O’Shea

1999 Nolfi and Floreano
2000 Floreano and Urzelai
2001 Floreano and Mattiussi

Floreano, Nolfi, and Mondada
Floreano and Urzelai
Hulse, Lara, Pasemann, and Steinmetz
Husbands, Philippides, Smith, and O’Shea
Pasemann, Steinmetz, Hulse, and Lara (a)
Pasemann, Steinmetz, Hulse, and Lara (b)
Lara, Hulse, and Pasemann
Smith, Husbands, and O’Shea (a)
Smith, Husbands, and O’Shea (b)

2002 Eggenberger, Gomez, and Pfeifer
Floreano, Schoeni, Caprari, and Blynel
Nolfi
Philippides, Husbands, Smith, and O’Shea
Smith, Husbands, Philippides, and O’Shea
Smith, Philippides, Husbands, and O’Shea
Watson, Ficici, and Pollack

1.2 1995 Thompson
1996 Keymeulen, Durantez, Konaka, Kuniyoshi, and Higuchi
1997 Thompson
1998 Keymeulen, Iwata, Konaka, Suzuki, Kuniyoshi, and Higuchi

1.3 1996 Nordin and Banzhaf
2.1 1997 Harvey, Husbands, Cliff, Thompson, and Jakobi
2.2 1997 Lund, Hallam, and Lee
2.3 1996 Lee, Hallam, and Lund
3.1 1992 Beer and Gallagher

1996 Gallagher, Beer, Espenschied, and Quinn
1997 Gruau
1998 Jakobi

Kodjabachian and Meyer (a)
Kodjabachian and Meyer (b)

1999 Reeve
2001 Fujii, Ishiguro, Aoki, and Eggenberger

Otsu, Ishiguro, Fujii, Aoki, and Eggenberger
Paul and Bongard

3.2 2001 Reil and Massey
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Ref. Year Authors
2002 Reil and Husbands

3.3 1998 Gomi and Ide
1999 Hornby, Fujita, Takamura, Yamamoto, and Hanagata
2000 Hornby, Takamura, Yokono, Hanagata, Yamamoto, and Fujita

4.1 2001 Bongard and Paul
4.2 1997 Arnold
5.1 1993 Cliff, Harvey, and Husbands

1994 Dellaert and Beer
1994 Harvey, Husbands, and Cliff
1996 Cliff and Miller
1997 Husbands, Harvey, Jakobi, Thompson, and Cliff
1999 Lichtensteiger and Eggenberger
2000 Lipson and Pollack

5.2 1999 Dittrich, Skusa, Banzhaf, and Kantschik
6.1 1998 Ijspeert, Hallam, and Willshaw

1999 Ijspeert
Ijspeert, Hallam, and Willshaw
Ijspeert and Kodjabachian

2001 Ijspeert
2002 Bongard (a)
2002 Bongard and Pfeifer

6.2 2000 Ijspeert
Ijspeert and Arbib

7.1 2002 Mandik
7.2 1997 Gritz and Hahn
8.1 1994 Sims (a)

Sims (b)
1999 Komosinski and Ulatowski
2000 Bongard and Paul

Komosinski
Ray

2001 Bongard and Pfeifer
Hornby and Pollack (a)
Komosinski, Koczyk, and Kubiak
Komosinski and Kubiak
Komosinski and Rotaru-Varga
Taylor and Massey

2002 Bongard (b)
Hornby and Pollack

8.2 2001 Hornby, Lipson, and Pollack
Hornby and Pollack (b)

8.3 1997 Eggenberger

Table 2.1: Summary of literature survey on evolution of artificial creatures. Num-
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bered references refer to the numerical tags assigned in Figure 2.1.

2.2 Situatedness and Embodiment

The importance of embedding the study of evolving artificial creatures

within the twin principles of situatedness and embodiment is perhaps best exempli-

fied by how natural evolution occurs in real biological organisms. Natural creatures

such as animals and insects have bodies and are situated in a physical environ-

ment. Their skills and behaviors are developed autonomously through the intimate

interplay with their environment. As such, in order to create artificial creatures

that might possess some of these novel properties exhibited by real creatures, such

systems must be built based on the principles of situatedness and embodiment.

This view of intelligence as an emergent phenomenon of embodied and

situated artifacts is regarded by many researchers to be the foundation for success-

ful design and implementation of artificial agents. On embodiment, Varela (1995)

pointed out that

“Cognition depends on the kinds of experience that come from having a

body with various sensorimotor capacities.” (p.15),

while Brooks (1995) stressed that

“The robots have bodies and experience the world directly — their ac-

tions are part of a dynamic with the world and have immediate feedback

on their own sensations.” (p.29),

and Arkin (1998) stated that

“A robot has a physical presence (a body). This spatial reality has

consequences in its dynamic interactions with the world . . . ” (p.26).

Following on to situatedness, Varela (1995) explained that

“The individual sensorimotor capacities are themselves embedded in a

more encompassing biological and cultural context.” (p.15),
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while Brooks (1995) highlighted that

“. . . robots are situated in the world — they do not deal with abstract

descriptions, but with the here and now of the world directly influencing

the behavior of the system.” (p.29),

and Arkin (1998) stated that

“The robot is an entity situated and surrounded by the real world. It

does not operate upon abstract representations of reality, but rather

reality itself.” (p.26).

In Dautenhahn’s work with socially intelligent robots (Dautenhahn 1996;

Dautenhahn 1999), the importance of embodiment was discussed at length in design-

ing reactive cognitive architectures in physical robots and other artificially intelligent

agents that can exist in simulation. Dautenhahn (1996) highlighted the fact that

“. . . there is much evidence to support the assumption that cognitive

capabilities are only possible through the interaction of body and mind,

i.e. that the body is not simply used by the mind, but that there is

a co-development and mutual shaping of cognitive abilities on the one

hand and bodily skills and experiences on the other hand. The body

is not a fixed and pregiven ‘actuator device’, but it is a dynamic and

ontogenetically evolving entity.” (p.27).

Furthermore, Dautenhahn (1996) argued that the study of embodied and situated

artifacts will play a significant role in bridging the gap between phenomenologi-

cal understanding and the computation-theoretic approaches normally adopted in

cognitive science, artificial intelligence and artificial life studies.

Mataric (1997) addressed the issue of how physical embodiment is related

to cognition and reviewed both biological and artificial studies that have endeav-

ored to answer this question. It was argued that artificial systems are preferable

over biological systems as although biological data are abundant, they are often dis-

connected and incomplete due to the restrictions that apply when working with real
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rather than artificial life. On the other hand, the use of artificial systems allows the

researcher complete freedom to experiment with whatever aspects of embodiment

and cognition that are of interest, in particular ablation of neural pathways, am-

putation of limbs and/or other forms of disablement of sensory-motor capabilities,

which are central to the question of the role of embodiment in higher-level cognition.

In the author’s own study, artificial mobile agents were used to answer a number

of key questions relating to social group behavior as well as imitative behavior, and

how these behaviors are in turn related to embodiment and cognition.

Nolfi and Floreano (2002) importantly pointed out that for an external

observer, designing such situated and embodied creatures capable of autonomously

developing the desired behavior through dynamical interactions with their environ-

ments is a very complex task. They further explained that there were two ways in

which this can be achieved: (1) by painstakingly recreating the artificial creature

through careful mimicking of natural organisms, or (2) by employing an artificial

evolutionary process that allows for self-organization to occur automatically. As

such, this makes the evolution of embodied and situated creatures a prime candi-

date for evolutionary computation techniques.

2.3 Evolutionary Robotics

Evolutionary robotics is defined to be the synthesis of autonomous robots

using artificial evolutionary methods (Nolfi and Floreano 2000). An early review

of this field of research is given by Mataric and Cliff (1996) where the majority of

studies focused mainly on the evolution of control structures only. A more recent

overview highlights the move of evolutionary robotics into evolving both the control

and morphology of robots where the interplay between brain and body is considered

to be a crucial factor in the successful synthesis of autonomous robots (Nolfi and

Floreano 2002). A thorough treatment of the field can be found in the seminal

textbook written by Nolfi and Floreano (2000) on this subject.

As pointed out by Harvey (1997), the design of controllers for robots is
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a complex task not suited to human divide-and-conquer design strategies. There

are 3 major problems: (1) it is not obvious how the controller system should be

decomposed, (2) interactions are not limited to direct connecting links but are also

mediated through the environment, and (3) interactions between sub-parts grows

exponentially as system complexity increases. Thus, evolutionary approaches to

controller design are desirable, where the only benchmark is the overall behavior

that should be achieved by the system.

However, Ronald and Sipper (2001) recently pointed out that emergence

stemming from the use of biologically-inspired solutions in engineering problems may

be problematic because unexpected and sometimes unwanted results or behaviors

might arise. Using the so-called emergence test, it was claimed that evolutionary

robotics exhibited mild emergence where the degree of surprise is limited to well-

defined boundaries (unsurprising surprise). On the other hand, traditional hard-

wired engineering solutions exhibited no surprise (unsurprising) while artificial life

exhibits a very high degree of surprise (surprising surprise). Nonetheless, it was

surmised that emergence in engineering solutions that draw on inspirations from

nature such as evolutionary robotics and the related reliability issues are unavoidable

consequences if the desire is to design smart, adaptive and evolvable machines. In

general, evolutionary robotics can be grouped into three main categories, those

involving the evolution of (1) wheeled, (2) legged, and (3) abstract robots.

2.3.1 Wheeled Robots

A hybrid genetic programming (GP)/genetic algorithm (GA) methodology

was used to evolve both the controller and parameters of a wheeled robot’s mor-

phology in simulation (Lee, Hallam, and Lund 1996). The controller consisting of a

tree-like program was evolved using the GP part of the system while morphological

parameters such as the robot’s body size, wheel radius and wheel base size encoded

in a linear string of real numbers were evolved using the GA part of the system.

Individuals were assessed for obstacle avoidance behaviors using a fitness function

that combined multiple terms such as distance from obstacles, forward speed and
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rotating speed into a single objective. It was claimed to be the first study which co-

evolved both the controller and morphology of robots and concluded that because

the evolved controller only functioned within the co-evolved body, the evolution

of the body component played a significant role in the success of the evolutionary

process. An island-GA model was used to maintain genetic diversity during the

evolutionary process. In a related study using simulations, Khepera wheeled robots

were shown to require only simple perceptron controllers that directly connected

sensors to motors for evolving behaviors such as exploration and homing (Lund

and Hallam 1997). It was claimed that the robot’s perception of its environment’s

geometries allowed time-related components to be encoded without requiring any

recurrent connections in the controller. GP alone has also been used to evolve con-

trollers for Khepera robots for obstacle avoidance and object tracking behaviors

utilizing a combination of simulated and real-world testing of evolved controllers

(Nordin and Banzhaf 1996).

The Species Adaptation Genetic Algorithm (SAGA) algorithm was used

to evolve both the controller and visual morphology parameters for simple naviga-

tional tasks in a two-wheeled mobile autonomous robot (Harvey, Husbands, Cliff,

Thompson, and Jakobi 1997). The desired behavior was evolved within 50–100 gen-

erations using 40–60 individuals that were evaluated using a simple single-objective

distance-based fitness function. SAGA allows for increases in length to genotypes

and hence it was argued that it permitted incremental evolution to occur during the

evolutionary process. Conversely, Eggenberger (1996) reported the use of biological

cell differentiation techniques in order to reduce the length of the genotype encoding

when evolving neural network controllers for Khepera robots in simulation. It was

claimed that using such a developmental method, the genome need not necessarily

increase in length whenever the number of neurons increased since no specific data

relating to the presence or otherwise of neurons need to be stored in the genome,

which will now be specified as part of the cell differentiation process rather than

being directly encoded for in the genome. This cell differentiation system has sub-

sequently been used to evolve only the morphologies of static 3D virtual organisms
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(Eggenberger 1997) and more recently to grow the connectivity of a neural network

for controlling a foveating retina of a real physical robot (Eggenberger, Gomez, and

Pfeifer 2002).

Related work with wheeled robots have also shown promising results in

robustness and the ability to cope with changing environments by evolving plas-

tic individuals that are able to adapt both through evolution and lifetime learning

(Floreano and Mondada 1998; Floreano and Urzelai 1998; Nolfi and Floreano 1999;

Floreano and Urzelai 2000; Floreano and Urzelai 2001). A number of different reac-

tive navigation behaviors were generated using evaluation functions that typically

included different terms for rewarding speed, wall avoidance and straight-line mo-

tion combined into a single objective. Instead of evolving the synaptic weights, the

learning rules governing the behavior of individual synapses were evolved when gen-

erating a neural network controller for Khepera robots. It was demonstrated that

the evolved controllers were adaptive to changes in the environment due to their

synaptic plasticity. Lifetime learning or ontogenetic adaptation has several adaptive

functions within evolution: (1) allowing for individuals to adapt to fast-changing

environmental conditions, (2) channelling information extracted from the environ-

ment to evolution, (3) helping to guide evolution, (4) reducing genotype length, and

(5) maintaining genetic diversity (Nolfi and Floreano 1999). Learning and evolution

were shown to be able to solve tasks that evolution alone could not solve. Perfor-

mance increases were also noticed even when the learning tasks differed from the

selection tasks. Learning individuals were thus better adapted to changing environ-

ments than non-learning individuals. Interaction between learning and evolution

deeply altered both these processes in that learning enabled evolution to extract su-

pervision information from the environment. In terms of generality, plastic-general

individuals required less complex control systems compared to full-general individ-

uals. Ontogenic adaptation has also been studied in a competitive co-evolutionary

context of predator-prey simulations using Khepera robots (Floreano, Nolfi, and

Mondada 2001).

Pure reactive agents that do not use any internal representation were shown
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to able to solve complex tasks through the use of sensory-motor coordination only

(Nolfi 2002). By exploiting agent-environment interactions, these embodied arti-

ficial creatures were able to coordinate perception and action that enabled them

to perform complex tasks without needing to react differently to the same sensory

states in different contexts. The experiments involving physical agents were carried

out using Khepera robots and neural networks weights were evolved for the control

of the agents. Sensory-motor coordination allowed the robots to (1) select the most

effective feedback, (2) simplify harder tasks, (3) exploit emergent behaviors, and

(4) exploit environmental constraints. Pure reactive agents although effective were

found to be sub-optimal in most conditions. As a remedy, it was suggested that

more complex behaviors could be allowed to emerge through a simple process of

adding internal representations to the existing reactive behaviors.

In a departure from classical connectionist models, Floreano, Schoeni,

Caprari, and Blynel (2002) recently demonstrated the use of evolutionary spiking

neurons for the control of an autonomous microbot. A single “spike” in a spiking

neural network is a discrete binary event that simply encodes whether a stimulus

is present or absent. Instead of using conventional non-linear, real-valued sigmoidal

activation functions, the use of spiking neurons in neural circuits were shown to

transfer easily to microcontrollers by virtue of their binary nature, which can be

mapped onto low-level digital circuits using only a few logic operations such as

AND and NOT. In an earlier study, it was shown that viable controllers were easier

to evolve using spiking neurons than sigmoidal neurons for a vision-based navigation

task of a Khepera robot (Floreano and Mattiussi 2001).

Comparatively small neural networks that utilized recurrent connections

were shown to be capable of producing good obstacle avoidance and light-seeking

behaviors in Khepera robots (Pasemann, Steinmetz, Hulse, and Lara 2001a; Pase-

mann, Steinmetz, Hulse, and Lara 2001b) using the ENS3 (Evolution of Neural

Systems by Stochastic Synthesis) algorithm. A weighted sum of different speed and

navigation objectives were combined into a single-objective function for the evalu-

ation of evolved networks. The simplest evolved networks did not use any hidden
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units and it was also demonstrated that larger networks were not necessarily more

robust than smaller ones. In a related study, separately evolved neuromodules for

obstacle avoidance and light-seeking behaviors were combined together to produce a

single controller with both behaviors (Lara, Hulse, and Pasemann 2001) by evolving

additional interface neurons and synapses for the interconnection between these two

neuromodules. It was also shown in another related experiment that the evolved

controllers were robust and performed well in both simulated and actual robots

(Hulse, Lara, Pasemann, and Steinmetz 2001).

The control structures consisting of ANNs for a population of robots were

evolved using a fully decentralized EA (Watson, Ficici, and Pollack 2002). The EE

(Embodied Evolution) methodology was defined as conducting evolution in a group

of real physical robots where evaluation, selection, and reproduction took place by

and between robots in a distributed, asynchronous and autonomous manner. The

robots were simple two-wheeled self-designed mobile agents with inter-agent com-

munication capabilities. Evolved controllers outperformed hand-designed controllers

for a phototaxis task.

A gaseous signalling mechanism was used in the GasNet algorithm for gen-

erating robot controllers in visual discrimination and navigation tasks (Husbands,

Smith, Jakobi, and O’Shea 1998; Husbands, Philippides, Smith, and O’Shea 2001).

The fitness of generated controllers was evaluated using a single function that com-

bined the weighted sum of navigational scores. Although the neural networks using

the gaseous signalling mechanisms could be evolved in fewer generations compared

to neural networks that did not use these mechanisms, implying a less difficult search

space in the former neural networks, all the standard random sampling measures

used to discriminate between the two different search spaces failed to show any

discernable differences between these evolutionary systems (Smith, Husbands, and

O’Shea 2001b). Further analysis showed that the evolutionary robotics search space

exhibited phases of neutral evolution (Smith, Husbands, and O’Shea 2001a). The

population as a whole was shown to move significantly in the genotype space during

such phases of neutrality and was not trapped at a local optimum in the fitness
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landscape. However, no evidence could be found to indicate that neutral adaptation

acted as a scaffolding for later transitions to higher fitness levels. As such, it was

concluded that neutrality did not play any useful role in this particular evolutionary

robotics search space.

It was later shown that the combined effects of increased neutrality and de-

creased ruggedness in evolutionary robotics search spaces allowed for greater evolv-

ability (Smith, Philippides, Husbands, and O’Shea 2002). It was argued that pheno-

typic stability and genetic instability were prerequisites if successful evolution were

to occur in an organism. Four different GasNet neural network models acting as

controllers for simulated mobile robots in a shape discrimination task were imple-

mented with varying degrees of redundancy and coupling to elucidate these effects.

More recently, Smith, Husbands, Philippides, and O’Shea (2002) showed that the

high success rates of GasNets neural networks in the visual discrimination task was

due to temporal adaptivity and argued that this property is fundamental for the

generation of adaptive behavior. Recent related work has also extended the family

of GasNet neural networks to include more details of biological gaseous signalling

mechanisms into two new versions called the plexus and receptor models, which

were shown to be more evolvable than the earlier version of GasNet (Philippides,

Husbands, Smith, and O’Shea 2002).

2.3.2 Legged Robots

The pioneering work of Beer and Gallagher (1992) documented the use of

GA to evolve continuous-time recurrent neural networks for controlling the legged

locomotion of a hexapod insect, although this study was conducted using a highly

simplified physics model. It was shown in a later study that the evolved controllers

could still perform the locomotion successfully when transferred to a real hexapod

robot (Gallagher, Beer, Espenschied, and Quinn 1996). Related studies based on

this simplified six-legged hexapod model have been conducted to investigate the

evolution of neural network architectures rather than synaptic weights alone using a

developmental scheme specified by the Simple Geometry Oriented Cellular Encoding
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(SGOCE) algorithm (Kodjabachian and Meyer 1998a; Kodjabachian and Meyer

1998b).

Arnold (1997) investigated the generation of legged locomotion for four and

six-legged virtual creatures using spectral synthesis (involving Fourier transforms).

The control system was algorithm-based and did not make use of any sensory input

information. Evolution was used only to tune the parameters of the algorithmic con-

trollers and limb attributes for optimizing a single-objective function of maximizing

horizontal distance achieved within a designated time period. In a later study by

Reeve (1999), the control mechanism based on different models of neural networks

for generating legged locomotion for a range of fixed morphology robots were evolved

in simulation using a simple GA. It was found that simple single-termed fitness mea-

sures based on performance attributes such as speed was sufficient to generate the

desired behavior and that more complex fitness measures relating to inner workings

of neurons and joints were not advantageous. It was also found that higher-order

neural networks were significantly better at performing the required tasks and that

very densely connected controllers performed better than sparsely connected ones.

A dynamically-rearranging neural network (DRNN) was evolved to act as

a controller for legged locomotion in a simulated biped robot (Fujii, Ishiguro, Aoki,

and Eggenberger 2001). Generated controllers were assigned fitness values based

on a single-objective function of horizontal movement achieved. Neuromodulators

were used to dynamically change synaptic weights as well as network architecture

by activating and blocking neurons and synapses. However, it was observed that

many of the evolved controllers did not actually make use of the modifiable synaptic

weights, in other words normal neural networks with fixed synaptic weights would

have sufficed. Nonetheless, it was claimed that the DRNN would have exhibited

superior performance in a changing environment due to their polymorphic charac-

teristics although this was not investigated using the biped robot. In related work

using a simulated quadruped robot, a DRNN was again evolved to act as a controller

for legged locomotion (Otsu, Ishiguro, Fujii, Aoki, and Eggenberger 2001). It was

claimed that the controllers generated were adaptive to changes in the environment



CHAPTER 2. EVOLVING ARTIFICIAL CREATURES 27

(retardant forces and uneven slopes) due to the neuromodulations present in the

DRNN. However, as no analysis was provided on the actual dynamics of the neuro-

modulators during the legged locomotion of the quadruped, it remains unclear what

roles these elements actually played towards the generation of a successful legged

locomotion in the changing environments.

Both the controller and morphology of a biped robot were evolved using

a GA with a simple single-objective fitness function based on horizontal distance

travelled (Paul and Bongard 2001). It was claimed that the experiments produced

the first reported results of stable bipedal locomotion achieved through the opti-

mization of both controller and morphology. An interesting point to note was that

only 6 out of the 60 evolutionary runs were successful in evolving a stable gait.

The architecture of the recurrent neural networks that were used as the controllers

remained fixed with only the synaptic weights being evolved. Also, only certain

parameters of robot’s morphology were allowed to be modified during evolution. A

related study using similar biped robots where both the controller and morphol-

ogy were co-evolved found that the inclusion of certain morphological parameters

allowed for fitter individuals to be discovered by evolutionary search (Bongard and

Paul 2001). It was shown that fitter individuals did not arise simply because a

better morphology was found but rather the addition of morphological parameters

into the genotype space allowed for extra-dimensional bypasses to be formed in the

higher dimensional search space, thereby allowing the evolutionary search to find

these fitter individuals. This phenomenon facilitated the connection of otherwise

isolated adaptive peaks in the objective space, making it easier for the evolutionary

search process to proceed smoothly from one adaptive peak to the next.

Central pattern generators (CPGs) were evolved as controllers for gener-

ating planar walking behaviors in two different physically simulated bipeds (Reil

and Massey 2001). It was shown that using the appropriate mechanical construc-

tion, Hopfield neural network controllers and optimization through a GA with a

single-objective distance-based fitness function, minimal bipedal locomotion can be

achieved by CPGs that do not require sensor inputs. In the second more sophis-
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ticated biped, incremental evolution was used where a weak stabilizing controller

was used during the initial stages of evolution and later removed after a certain

fitness level was achieved. The lower portions of the more sophisticated biped’s

legs were implemented as passive limbs to allow for a more anthropomorphic gait

to emerge. Only 10% of the first biped’s evolutionary runs produced successful

controllers whereas 80% of the second biped’s evolutionary runs produced successful

controllers. However no analysis was given on whether the two search spaces differed

significantly in terms of optimization difficulty.

In a related study, CPGs were again evolved to generate bipedal locomo-

tion in a simulated robot in a real-time physics environment (Reil and Husbands

2002). Once more, it was shown that no sensory inputs were necessary to generate

successful straight-line walking behavior although this was achieved only on a ho-

mogenous planar surface. It was suggested that the fitness landscape underlying the

evolutionary search space of the recurrent ANN architecture is very smooth leading

to successful evolution of controllers despite using only a very simple single-objective

fitness function based on a combination of two objectives of maximizing distanced

travelled from origin and minimizing occurrences of falling below a certain height

threshold for the robot’s center of gravity. However it was also reported that only

10% of the evolutionary runs resulted in stable controllers and that an additional

fitness term that rewarded cyclic activity in the ANN was necessary to improve the

success rate. The authors also noted a shortfall in the experimental setup in that

the effect of network size on the efficiency of the approach was not studied. A num-

ber of important contributions of the evolutionary robotics approach to designing

controllers for legged locomotion of artificial creatures were highlighted: (1) fully

automated process that allows for changes or additions to the creature’s structure

to be accommodated very easily through re-evolution, (2) diversity of solutions, and

(3) relatively cheap evolutionary computational requirements.

Real physical robots have also been used to study the generation of legged

locomotion using EAs. Online evolution was used by Gruau (1997) and Gomi and

Ide (1998) to generate static gaits for an octopod robot, and by Hornby and his co-
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researchers to generate dynamic gaits for a Sony quadruped robot (Hornby, Fujita,

Takamura, Yamamoto, and Hanagata 1999) as well as for the Sony entertainment

robot dog AIBO (Hornby, Takamura, Yokono, Hanagata, Yamamoto, and Fujita

2000). The cellular encoding method of (Gruau 1994) was used to evolve not only

the weights but also the architecture of the neural network controller for the oc-

topod robot and also relied on interactive user assignment of fitness values rather

than integrating a fully automated fitness assignment into the artificial evolutionary

process (Gruau 1997). Jakobi (1998) utilized his “minimal simulation” method to

also evolve gaits in simulation for the same octopod robot in order to reduce the

time requirements of evolution on the real physical robot.

2.3.3 Abstract Robots

The neural network controller and visual morphology for visually guided

behaviors in a specialized gantry robot was evolved using the SAGA algorithm

(Harvey 1992) for a visual discrimination task (Harvey, Husbands, and Cliff 1994;

Husbands, Harvey, Jakobi, Thompson, and Cliff 1997). Minimal vision systems and

small networks were found to be sufficient for generating the required behaviors us-

ing a weighted sum combination of navigational scores as the evaluation function.

Small population sizes and small number of generations were also sufficient for suc-

cessfully evolving these controllers. A good choice of control system primitives were

suggested as the main reason for the success of these evolutionary runs. Work has

also been carried where only the morphology of a compound eye on an abstract robot

was evolved while the neural network controller was kept fixed (Lichtensteiger and

Eggenberger 1999). Cliff, Harvey, and Husbands (1993) have also conducted work

on evolving both the visual morphology and recurrent neural network controller of

a mobile robot. In a later related study, Cliff and Miller (1996) also evolved both

visual morphologies and neural controllers of predator-prey agents in a competitive

co-evolutionary environment although the simulation was only carried out in a 2D

world. Using developmental methods, the bodies and controllers of autonomous 2D

agents have also been co-evolved in a study by Dellaert and Beer (1994).
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GP was used to evolve controllers for a robot with manually reconfig-

urable morphology called a random morphology robot (RM robot) (Dittrich, Skusa,

Banzhaf, and Kantschik 1999). Evaluation of controller fitness was carried out using

a single-objective function consisting of weighted scores for the robot’s speed and

distance. The fitness landscape was found to be highly dynamic because the robot

moves around on a carpeted floor and hence encounters situations with different

levels of difficulties arising from the directionality of individual carpet strands. It

was shown that discrimination between good and bad individuals was hard during

certain periods of the evolutionary process where the noise level was high. Hence

it was proposed that reference individuals be employed to enable a differential fit-

ness value to be calculated for evolving individuals in order to better capture the

actual performance of individuals throughout the highly variable evolutionary pe-

riods. Nevertheless, it was later observed that there were periods where the fit-

ness landscape oscillated, which created a problem for the proposed relative fitness

methodology as well.

Lipson and Pollack (2000) combined both simulated and physical approach-

es for evolving simple robots composed of bars, actuators and artificial neurons for

the single objective of maximizing horizontal distance moved. The authors claimed

that to fully realize artificial life, autonomy must be achieved not only at the level

of power and behavior but also at the levels of design and fabrication. They demon-

strated this point in their experiments where artificial evolution was conducted to

automatically design abstract robots that could perform locomotion in simulation

and then the best virtual designs were fabricated into real robotic body parts using

3D thermoplastic solid printing techniques. The results from testing the physical

versus the virtual robots showed that in one case, the distance travelled was almost

identical while in the two other cases, the distances travelled were quite dissimilar

although it was argued that the overall control and mechanics of the motion were

still maintained when moving from simulation to reality.
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2.3.4 Evolvable Hardware

Evolvable hardware circuits in the form of field programmable gate arrays

(FPGAs) were utilized to evolve obstacle avoidance controllers for Khepera robots

(Thompson 1995; Thompson 1997) and was claimed to be the first example of intrin-

sic hardware evolution (Harvey 1997), where every actual hardware specified during

the evolutionary process was tested in situ rather than in simulation. Another series

of studies also utilized FPGAs as evolvable controllers for producing visual tracking

and obstacle avoidance behaviors in Khepera robots (Keymeulen, Durantez, Kon-

aka, Kuniyoshi, and Higuchi 1996; Keymeulen, Iwata, Konaka, Suzuki, Kuniyoshi,

and Higuchi 1998). Solutions generated were evaluated using a fitness function that

took a weighted sum combination of two objectives of minimizing the robot-target

distance and minimizing the number of steps required to complete the task. It

has been argued that true evolvable hardware should allow for both control circuits

and body plans to be evolved (Lund, Hallam, and Lee 1997). Such true evolvable

hardware using a modified version of the Khepera robot with a reconfigurable audi-

tory morphology was developed by Lund, Hallam, and Lee (1997) as a framework

for studying the evolution of phonotaxis in crickets although no result from actual

experimentation was reported.

2.4 Evolution of Morphology and Mind

The study of evolving physically situated and virtually embodied artificial

creatures has been a hotbed of research in recent years. The availability and matura-

tion of commercial-off-the-shelf physics engines coupled with the dramatic increase

of personal computing power have encouraged widespread research into this intrigu-

ing field of artificial life (Taylor and Massey 2001). Not surprisingly, there were

notably few significant advancements in this field since the pioneering work of Sims

(1994a, 1994b) until very recently.

Research in this area generally falls into two categories: (1) the evolution

of controllers only for creatures with fixed morphologies (Gritz and Hahn 1997;
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Taylor 2000; Bongard and Pfeifer 2002; Mandik 2002), and (2) the evolution of

both the creatures’ morphologies and controllers simultaneously (Sims 1994a; Sims

1994b; Komosinski and Ulatowski 1999; Bongard and Paul 2000; Komosinski 2000;

Komosinski and Rotaru-Varga 2000; Ray 2000; Bongard and Pfeifer 2001; Hornby

and Pollack 2001a; Komosinski and Rotaru-Varga 2001; Taylor and Massey 2001;

Bongard 2002b; Hornby and Pollack 2002). Some work has also been carried out

in evolving only the morphology alone for static 3D virtual organisms (Eggenberger

1997) and evolving morphology with a fixed controller (Lichtensteiger and Eggen-

berger 1999).

The idea of using artificial evolutionary methods to automatically gener-

ate 3D embodied virtual creatures was first introduced by Karl Sims in 1994. A

proprietary physics-based simulation system was implemented to evolve both the

morphology and neural systems of virtual creatures using a directed graph gram-

mar. Conventional artificial evolution was used to evolve specific behaviors such

as swimming, walking, jumping and light-following (Sims 1994b) and a competitive

co-evolutionary method was used to evolve creatures for resource acquisition (Sims

1994a). The fitness of evolved creatures was judged using simple single-objective

functions such as speed and height achieved. Although highly interesting mor-

phologies and behaviors were evolved, the applicability of the system for evolving

real robots remained questionable as the physics specifications for synthesizing the

creatures allowed for interpenetrating surfaces. While Sims required Connection

Machine CM-5 parallel computers to conduct his artificial evolution, Taylor and

Massey (2001) recently re-implemented Sims’ work using only standard personal

computers. Ray (2000) has also implemented a system highly reminiscent of Sims’

system but rather than using a fixed fitness function within the artificial evolution-

ary system for selection, he relied upon aesthetic user selection. Both Taylor and

Massey (2001) and Ray (2000) used a commercial-off-the-shelf physics engine called

MathEngine, which is the predecessor to the physics engine known as Vortex used

in this thesis (see Section 3.1.1).

MathEngine was also used to develop a 3D biomechanical simulation of
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a salamander for a computational neuroethological experiment into the underlying

neural circuits that generated the aquatic and terrestrial locomotion of real salaman-

ders (Ijspeert 2000). Although no evolutionary results were reported, an algorithmic

CPG controller was developed that allowed for realistic and life-like swimming and

trotting gaits to be reproduced in the artificial salamander. The CPGs were shown

to be stable enough to receive higher-level sensory input from vision modules to

enable tracking and approach towards a moving target (Ijspeert and Arbib 2000).

These studies stem from earlier work on evolving CPGs based on neural controllers

that generate swimming gaits for a 2D lamprey (Ijspeert, Hallam, and Willshaw

1999; Ijspeert and Kodjabachian 1999) as well as for generating locomotion gaits

for a 2D salamander (Ijspeert, Hallam, and Willshaw 1998; Ijspeert 1999; Ijspeert

2001). The fitness of evolved neural controllers was evaluated using single-objective

functions based on either single or multiply-combined network output metrics.

GP has also been used to evolve controllers for a fixed morphology vir-

tual creature (Gritz and Hahn 1997). In this study, the emphasis was on evolving

different control programs for a 3D animated character as opposed to traditional

“key-framing” techniques that involved human hand-designed frames used by most

animators. It was claimed that the evolved controller produced fluid, physically

and biologically plausible motions. An incremental approach where additional con-

straints were phased into the single-objective fitness function as the evolutionary

optimization progressed was used to evolve the final desired behavior. This incre-

mental methodology was adopted after it was found that a direct approach incorpo-

rating all the desired motion styles into the fitness function from the start severely

restricted the evolvability of the system. Both evolutionary robotics and virtual

embodied evolution techniques have also been extended to practical applications

in the entertainment and edutainment industries (Taylor 2000; Grand 2001; Lund

2001). Commercially-based research conducted by Grand (2001) produced the ar-

tificial life game called Creatures in which owners could breed, nurture and evolve

virtual organisms known as Norns on their personal computers and even exchange

genetic material with other owners over the Internet. Techniques used included
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user-guided behavior-based systems, user-guided evolutionary and co-evolutionary

robotics as well as those including morphogenesis (Lund 2001) while it was sug-

gested that to enable scaling to more complex behaviors required for characters in

computer games, other techniques such as lifetime learning, virtual ecologies and

evolution of behavioral primitives need to be considered (Taylor 2000).

Bongard and Paul (2000) investigated the relationship between morpholog-

ical symmetry and locomotive efficiency by co-evolving the controller and morphol-

ogy of virtual embodied organisms using a physically accurate simulation. A variable

length GA based on the SAGA algorithm (Harvey 1992) was used to evolve the arti-

ficial creatures and a recurrent neural architecture was used to act as the creatures’

controllers. Two single-objective fitness functions were designed to reward firstly

a combination of locomotion distance and morphological symmetry, and secondly

locomotion distance and morphological asymmetry. It was found that bilaterally

symmetrical agents were favored by evolution in terms of locomotion capability. Al-

though these experiments entailed two separate objectives of distance and symmetry,

these objectives were combined into a single fitness evaluation function.

Bongard and Pfeifer (2002) also conducted experiments in which only the

weights for fixed architecture recurrent neural controllers were evolved. 10 creatures

with different but fixed morphologies were used to investigate the difficulties of

evolving locomotion controllers for creatures with different body masses and number

of legs. Using a single-objective fitness function that measured forward displacement,

it was claimed that hexapedal agents were the easiest while worm-like agents were

the hardest to evolve successful controllers. In a related study, artificial evolution

was shown to automatically add more complex behaviors to simpler ones through

the use of different sensor modalities (Bongard 2002a). Using a quadrupedal agent

with two simulated chemical sensors, a lower-level chemotaxis behavior was shown,

through a number of lesioning experiments, to provide a base for the generation of a

higher-level forward locomotion behavior. Hidden units in the neural networks were

also lesioned to demonstrate that over evolutionary time, some hidden units became

specialized in processing certain input signals.
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A similar but separate series of studies focused on the developmental pro-

cesses associated with evolving virtual embodied organisms where both the controller

and morphology were again being co-evolved (Bongard and Pfeifer 2001; Bongard

2002b). Using the designed system called Artificial Ontogeny (AO), artificial or-

ganisms were evolved to locomote and push boxes in which a standard GA using

a single-objective evaluation function was augmented with a genetic model based

on biological differential gene expression. As such, the genotype-to-phenotype mor-

phogenesis allowed for changing pattern expressions similar to that found in genetic

regulatory networks (GRNs). It was claimed that the AO system had high evolvabil-

ity since the artificial evolutionary system was able to produce modular structures

as well as dissociate between the genotypic and phenotypic complexities (Bongard

and Pfeifer 2001). In the later study, Bongard (2002b) showed that the AO system

was able to generate modular GRNs early during the evolutionary process which

led to the successful generation of creatures with high parts count. The early ap-

pearance of modular GRNs was attributed to the high pleiotropy (co-regulation of

genes) within the neurogenesis process and low pleiotropy between the neurogenesis

and morphogenesis processes. However, a somewhat biased weighted sum fitness

function that involved a “shaping” term, which explicitly rewarded organisms with

number of body parts, sensors, motors and synapses, was used to encourage the

early appearance of active agents during evolution.

Komosinski and Ulatowski (1999) developed a proprietary platform for

studying the evolution of 3D physically simulated virtual creatures called Fram-

sticks. The system allows for both directed as well as open-ended evolutionary runs

to be conducted although published results have only documented experiments with

directed evolution for behaviors such as walking and swimming (Komosinski and

Ulatowski 1999; Komosinski 2000). An initial investigation into the design and use

of more evolvable genotype representations for achieving open-ended evolution was

discussed by Komosinski and Rotaru-Varga (2000). It was found in a later study

that higher-level encodings that included either recurrent or developmental elements

in the genotype representation allowed for more structured phenotypes to be gen-
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erated, which in turn led to the appearance of fitter individuals for separate single-

objective maximization tasks involving height and locomotion speed (Komosinski

and Rotaru-Varga 2001). The Framsticks artificial evolutionary system has also

been used to create a method for studying the taxonomy of evolved agents based on

how dissimilar agents were in terms of their morphological geometry (Komosinski

and Kubiak 2001). The results obtained from using these taxonomic measures on

artificial organisms were later compared to the characteristics and properties of bi-

ological phylogenic trees constructed for real organisms (Komosinski, Koczyk, and

Kubiak 2001). The Framsticks creatures have also been used by Mandik (2002) to

study the evolvability of mental representations where the neural controllers of fixed

morphology agents were optimized using a combination of both human and artifi-

cial evolutionary design inputs for food-finding tasks in both walking and swimming

creatures.

The emphasis of Hornby and Pollack (2001a) in their study of evolving

both the controller and morphology of virtual creatures was also on the genotype

encoding for achieving more complex designs. Using a developmental grammar based

on Lindenmayer systems (L-systems), 3D agents with simple bars and actuators

were evolved in a quasi-static virtual world which could physically simulate low

momentum movements similar to that of Lipson and Pollack (2000). A weighted

sum fitness function was utilized to optimize maximization of locomotion distance

and minimization of occurrences where body parts were dragged on the ground.

They showed that creatures evolved using generative encodings outperformed those

evolved using non-generative encodings for a locomotion task by capturing useful

design space biases while allowing large scale mutations to be performed viably,

which in turn enabled the encapsulated and coordinated re-use of hierarchies of

parts (Hornby and Pollack 2002). It was claimed that the morphologies of these

generatively encoded creatures were more complex than those previously reported

by Sims (1994b), Komosinski and Rotaru-Varga (2000) and Lipson and Pollack

(2000), by virtue of having more parts in the morphology and more regularity in

the overall design of the evolved creatures. In related work, oscillator controllers
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similar to CPGs were used in place of neural network controllers for evolving both

2D (Hornby, Lipson, and Pollack 2001) and 3D virtual agents (Hornby and Pollack

2001b). The 2D agents were also successfully transferred to real physical robots

(Hornby, Lipson, and Pollack 2001).

2.5 The Emergent Questions

As we have seen, the research into evolving artificial creatures have focused

mainly on generating the desired behavior using single-objective fitness functions.

These evaluation functions typically consist only of a single term for assigning the

fitness of individuals generated (Sims 1994b; Arnold 1997; Gritz and Hahn 1997;

Harvey, Husbands, Cliff, Thompson, and Jakobi 1997; Reeve 1999; Lipson and Pol-

lack 2000; Fujii, Ishiguro, Aoki, and Eggenberger 2001; Komosinski and Rotaru-

Varga 2001; Paul and Bongard 2001; Reil and Massey 2001; Bongard and Pfeifer

2002) or a combination of multiple terms into a single weighted objective when the

desired behavior cannot be achieved with simpler single-termed functions (Lee, Hal-

lam, and Lund 1996; Floreano and Mondada 1998; Husbands, Smith, Jakobi, and

O’Shea 1998; Keymeulen, Iwata, Konaka, Suzuki, Kuniyoshi, and Higuchi 1998;

Dittrich, Skusa, Banzhaf, and Kantschik 1999; Bongard and Paul 2000; Hornby and

Pollack 2001a; Pasemann, Steinmetz, Hulse, and Lara 2001b; Bongard 2002b; Reil

and Husbands 2002). It is highly surprising that a true multi-objective optimiza-

tion approach involving optimization of explicitly distinct objectives have not been

explored yet thus far for artificial creature evolution. Such an investigation might

very well reveal significant advantages over standard single-objective EAs in terms

of the evolutionary optimization process itself in addition to the possibility of gener-

ating greater varieties of creature morphologies and behaviors. We investigate this

problem in Chapters 5, 6 and 8.

Although it was reported that more complex creatures could be evolved

with certain artificial evolutionary systems (Hornby and Pollack 2001a; Komosinski

and Rotaru-Varga 2001; Bongard 2002b), these claims were made simply based on
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the fact that the artificial creatures had more moving parts or greater regularity

in their morphology. Obviously such a trivial comparison leaves much to be de-

sired since a millipede would be considered to be more complex than a human on

both counts! Hence, it remains unclear how we can objectively compare between

the complexities of artificially evolved creatures using more intuitive measures or

methodologies. We attempt to tackle this problem in Chapter 7.

Additionally, apart from the work of Smith with wheeled robots (2001b,

2001a, 2002), there has been little effort invested in systematic explorations of the

fitness landscape characteristics for evolving artificial creature controllers. There

has been even less work conducted on characterizing the underlying search space

difficulty when evolving controllers for legged artificial creatures. Only the work of

Dittrich, Skusa, Banzhaf, and Kantschik (1999) with an abstract morphology robot

has provided some empirical information regarding the evolutionary fitness land-

scape for a non-wheeled robot. Although a conjecture concerning the smoothness

of the underlying search space for evolving CPG controllers for bipedal robots was

postulated by Reil and Husbands (2002), no actual experimental results have been

reported yet thus far with regards to testing this hypothesis. As such, very little is

known at this stage concerning the fitness landscape and difficulty associated with

evolutionary searching of controllers for legged artificial creatures. We attempt to

tackle this problem in Chapter 4.

2.6 Chapter Summary

A literature review of the related fields of evolutionary robotics and evo-

lution of embodied artificial life was presented in this chapter. The importance of

situating and embodying the artificial agents within a physically-based world was

first highlighted. A comprehensive survey of the various methods employed for

evolving artificial creatures comprising of both real physical robots and simulated

virtual agents was then given. Finally, the research questions emerging from this

literature review were presented.



Chapter 3

The Virtual World

This chapter outlines the virtual world used for conducting the experiments

to be presented in this thesis. It is divided into five main sections. First, we briefly

discuss the physics engine used to simulate the creature and its environment. Next,

we explain in detail the setup of the creature’s morphology. Then we describe

the basic workings of an artificial neural network (ANN) that act as the creature’s

locomotion controller, as well as evolutionary methods of learning for ANNs. The

next section then explains the genotype used to represent the artificial creature’s

locomotion controller including an outline of the process which converts the genotype

into the operational ANN used to control the movement of the artificial creature.

Finally we discuss the choice of our common evolutionary, simulation parameters

and statistical test of significance used for the experiments conducted in this thesis.

3.1 Physics-Based Simulation

The accurate modelling of the simulation environment plays a crucial part

in producing artificial creatures that move and behave realistically in 3D (Taylor and

Massey 2001). A dynamic rather than kinematic approach is paramount in allowing

for effective artificial evolution to occur. Physical properties such as forces, torques,

inertia, friction, restitution and damping need to be incorporated into the artificial

evolutionary system. To this end, the Vortex physics engine (CM Labs 2002) was

39
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employed to generate the physically realistic artificial creature and its simulation

environment.

By virtue of conducting our artificial evolution within a physically accurate

virtual world, rich dynamical interactions are able to occur between the simulated

creature and its environment. This in turn enables complex walking behaviors to

emerge as the creature evolves the use of its sensors to control the actuators in

its limbs through dynamical interactions with the environment. Furthermore, the

accurate modelling of physical forces results in creature locomotion that is both

realistic and biologically interesting.

3.1.1 Vortex Physics Engine

The Vortex physics engine is a commercial-off-the-shelf simulation toolkit

developed by Critical Mass Laboratories (CM Labs 2002). It consists of a set of

libraries that comprise of C++ routines for robust rigid-body dynamics, collision

detection, contact creation, and collision response. Vortex is currently being used by

NASA’s Autonomy and Robotics Group to develop autonomous rovers for possible

deployment in future Mars exploration programs (CM Labs Press Release 2003).

The advantages of Vortex include allowing the simulation of natural behavior of

objects in the physical world and offering fast yet accurate computation of the

dynamical forces that act on the simulated objects. Using the supplied libraries,

real-time interactive 3D simulations can be created in which objects, particularly

jointed objects moving under constraints, exhibit natural movement under various

environmental conditions. However, as Vortex is a constraint-based simulation, it

naturally suffers from increasingly higher computational requirements as the number

of objects being simulated in the world increases. As such, the design of the artificial

creature and its world are kept relatively simple in order to maintain a reasonable

run time, especially when conducting the evolutionary experiments.
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3.2 Creature Morphology

The artificial creature is a basic quadruped with 4 short legs. Each leg con-

sists of an upper limb connected to a lower limb via a hinge (one degree of freedom)

joint and is in turn connected to the torso via another hinge joint. Therefore, there

are 8 degrees of freedom overall. The mass of the torso is 1g and each of the limbs is

0.5g. The torso has dimensions of 4× 2× 1cm and each of the limbs has dimensions

of 1×1×1cm. In terms of its morphological dimensions, the creature can be visual-

ized as some type of insect. A biological equivalent in terms of size and weight can

be found in beetles, where their body lengths range from 0.25mm to 16cm and body

mass from 0.4mg to 30g (Grzimek 1984). Research into evolving tiny creatures is

being given more attention lately, especially in the field of nanotechnology. A screen

dump of the actual creature within the simulation world is shown in Figure 3.1 and

a geometric representation of the creature is given in Figure 3.2.

Figure 3.1: A screen dump of the simulated quadruped in the simulation world.

The hinge joints are allowed to rotate between 0 to 1.57 radians. Each of the

hinge joints is actuated by a motor that generates a torque producing rotation of the

connected body parts about that hinge joint. The creature’s overall central nervous

system is illustrated in Figure 3.3 where the three letter abbreviations identify each

of the 8 different limbs. The first letter denotes (U)pper or (L)ower, the second

denotes to (F)ront or (B)ack, and the third denotes (R)ight or (L)eft.
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Figure 3.2: A geometric representation of the simulated quadruped.
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Figure 3.3: A diagrammatic representation of the simulated quadruped’s central

nervous system.

Correspondingly, the artificial creature has 12 sensors and 8 actuators. The

12 sensors consist of 8 joint angle sensors (x1, x2, x3, x4, x5, x6, x7, x8) corresponding
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to each of the hinge joints and 4 touch sensors (x9, x10, x11, x12) corresponding to

each of the 4 lower limbs of each leg. The joint angle sensors (x1–x8) return contin-

uous values in radians whereas the touch sensors (x9–x12) return discrete values, 0

if no contact with the ground and 1 if contact is made. The choice of inputs was

decided upon after a review of the literature where joint angle and touch sensors

were the most commonly used types of input to the controller (eg. Sims 1994a; Ko-

mosinski 2000; Paul and Bongard 2001; Bongard and Pfeifer 2002). The 8 actuators

(y1, y2, y3, y4, y5, y6, y7, y8) represent the motors that control each of the 8 articulated

joints of the creature. These motors are controlled via outputs generated from the

ANN controller which is then used to set the desired velocity of rotation of the con-

nected body parts about that joint. A summary of the sensors is given in Table 3.1

followed by the actuators in Table 3.2.

Sensor Number Detects Angle Between Value Returned
x1 Torso & upper back left limb [0, 1.57]
x2 Torso & upper front left limb [0, 1.57]
x3 Torso & upper back right limb [0, 1.57]
x4 Torso & upper front right limb [0, 1.57]
x5 Upper & lower back left limbs [0, 1.57]
x6 Upper & lower front left limbs [0, 1.57]
x7 Upper & lower back right limbs [0, 1.57]
x8 Upper & lower front right limbs [0, 1.57]

Sensor Number Detects Contact Between Value Returned
x9 Lower back left limb & ground {0, 1}
x10 Lower front left limb & ground {0, 1}
x11 Lower back right limb & ground {0, 1}
x12 Lower front right limb & ground {0, 1}

Table 3.1: Description of the simulated quadruped’s 12 sensors that provide inputs

to the ANN controller.

3.3 Creature Controller

3.3.1 Artificial Neural Networks

An ANN may be described as a directed graph: G(N,A, ψ), where N is

a set of nodes, A denotes the connections between the nodes, and ψ represents the
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Actuator Number Controls Joint Between Velocity Range
y1 Torso & upper back left limb [−5, +5]
y2 Torso & upper front left limb [−5, +5]
y3 Torso & upper back right limb [−5, +5]
y4 Torso & upper front right limb [−5, +5]
y5 Upper & lower back left limbs [−5, +5]
y6 Upper & lower front left limbs [−5, +5]
y7 Upper & lower back right limbs [−5, +5]
y8 Upper & lower front right limbs [−5, +5]

Table 3.2: Description of the simulated quadruped’s 8 actuators that receive outputs

from the ANN controller.

learning rule which enables the strengths of inter-neuron connections to be auto-

matically adjusted. A node receives its inputs from an external source or from other

nodes in the network. The node undertakes some processing on its inputs and sends

the result as its output. The processing function of a node is called the activation

function. The activation, a, is calculated as a weighted sum of the inputs to the

node in addition to a constant value called the bias.

The following notations will be used to describe a single hidden layer feed-

forward ANN:

• I and H are the number of input and hidden units respectively.

• Xp ∈ X = (xp
1, x

p
2, . . . , x

p
I), p = 1, . . . , P , is the pth pattern in the input feature

space X of dimension I, and P is the total number of patterns.

• Yp
o ∈ Yo is the corresponding scalar of pattern Xp in the output target space

Yo.

• wih and who, are the weights connecting input unit i, i = 1, . . . , I, to hidden

unit h, h = 1 . . . H, and hidden unit h to the output unit o.

• Θh(X
p) = σ(ah); ah =

∑I
i=0 wihx

p
i , h = 1, . . . , H, is the hth hidden unit’s

output corresponding to the input pattern Xp, where ah is the activation of

hidden unit h, and σ(.) is the activation function that is taken in this paper

to be the logistic function σ(z) = 1
1+e−Dz , with D the function’s sharpness or

steepness and is taken to be 1.
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• Ŷ p
o = σ(ao); ao =

∑H
h=0 whoΘh(X

p) is the network output and ao is the acti-

vation of output unit o corresponding to the input pattern Xp.

The following pseudocode describes the functioning of a single hidden layer

feed-forward ANN in operation.

1. Until termination conditions are satisfied, do

(a) for each input pattern, (Xp, Y p
o ), apply the following steps

i. Inject the input pattern Xp into the network.

ii. Calculate the output, Θh(X
p), for each hidden unit h.

iii. Calculate the output, Ŷo
p
, for each output unit o.

3.3.2 Evolutionary Artificial Neural Networks

Traditionally ANNs are trained using learning algorithms such as back-

propagation (BP) (Rumelhart, Hinton, and Williams 1986) to determine the con-

nection weights between nodes. However such methods are gradient-based tech-

niques which usually suffer from the inability to escape from local minima when

attempting to optimize the connection weights. To overcome this problem, evo-

lutionary approaches have been proposed as an alternative method for optimizing

the connection weights. ANNs evolved via this method is thus referred to as evo-

lutionary ANNs (EANNs). In the literature, research into EANNs usually involves

one of three approaches: (1) evolving the weights of the network (Fogel, Fogel, and

Porto 1990; Belew, McInerney, and Schraudolph 1992), (2) evolving the architecture

(Miller, Todd, and Hegde 1989; Kitano 1990), or (3) evolving both simultaneously

(Koza and Rice 1991; Angeline, Saunders, and Pollack 1994). For a thorough review

of EANNs, refer to the comprehensive survey conducted by Yao (1999).

Our objective is to evolve ANNs that can perform successfully as loco-

motion controllers for artificial creatures. Here we will attempt to optimize both

the connection weights and number of hidden nodes through evolutionary methods.

Other architectural aspects of the ANN such as types of connections between layers,
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types of transfer functions and number of input/output units have been kept fixed

and are not subjected to evolutionary optimization.

3.3.3 Controller Architectures

The choice of ANN architectures used for controller evolution is normally

made arbitrarily when evolving both simulated (Reeve 1999; Bongard and Paul

2001; Pasemann, Steinmetz, Hulse, and Lara 2001a; Paul and Bongard 2001; Reil

and Massey 2001; Bongard 2002a; Bongard and Pfeifer 2002; Reil and Husbands

2002) as well as physical artificial creatures (Husbands, Harvey, Jakobi, Thomp-

son, and Cliff 1997; Lund and Hallam 1997; Floreano and Urzelai 1998; Floreano

and Mondada 1998; Nolfi and Floreano 1999; Floreano and Urzelai 2000; Nolfi and

Floreano 2002; Nolfi 2002). Usually some form of recurrency is used in the ANN,

either partially (Bongard and Paul 2001; Pasemann, Steinmetz, Hulse, and Lara

2001a; Paul and Bongard 2001; Bongard and Pfeifer 2002; Bongard 2002a) or fully

(Floreano and Urzelai 1998; Floreano and Mondada 1998; Nolfi and Floreano 1999;

Reeve 1999; Floreano and Urzelai 2000; Reil and Massey 2001; Nolfi and Floreano

2002; Nolfi 2002; Reil and Husbands 2002). On the other hand, simple direct con-

nections between sensor inputs and motor outputs have also proven to be sufficient

for evolving robots controllers with simple behaviors that can accomplish the set

task (Lund and Hallam 1997; Pasemann, Steinmetz, Hulse, and Lara 2001a; Nolfi

2002). As such, it remains unclear from the body of literature what types of ANN

architecture should be used to evolve controllers for artificial creatures.

We will now introduce four different types of ANN architecture for con-

troller evolution where in the next chapter, we will attempt to provide some char-

acterization of the search space associated with each type of controller architecture.

The first type of ANN is a simple feed-forward ANN and is denoted NNType0 (Fig.

3.4.1). The second type of ANN is a feed-forward ANN augmented with direct con-

nections from input to output units and is denoted NNType1 (Fig. 3.4.2). The

third type of ANN is a feed-forward network with recurrency on the hidden units

(Elman-type ANN (Elman 1990)) and is denoted NNType2 (Fig. 3.4.3). The last
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Figure 3.4: Diagrammatic representation of 4 types of ANN architecture: 1.

NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom left), 4.

NNType3 (bottom right).

type of ANN is a feed-forward network augmented with both direct connections

from input to output units as well as recurrency on the hidden units and is denoted

NNType3 (Fig. 3.4.4).

Recurrent connections were included to allow the creature’s controller to

learn state-dependent dynamics of the system. Direct input-output connections

were also included in the controller’s architecture to allow for direct sensor-motor

mappings to evolve that do not require hidden layer transformations. For all four

ANN architectures, all units in the preceding layer are fully-connected to all units

in the following layer. A bias term is also incorporated into the calculations of the

activations of the hidden as well as output units.

All four ANN architectures have a variable hidden layer in terms of its

number of active hidden units. This is an integral feature of the ANNs that is essen-
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tial for the purposes of this investigation as explained in Section 1.2. Experiments

and analyses found later in this thesis will further clarify this point.

3.4 Genotype Representation

Our chromosome is a class that contains one matrix Ω and one vector ρ.

The matrix Ω is of dimension (I + H) × (H + O). Each element ωij ∈ Ω, is the

weight connecting unit i with unit j, where i = 0, . . . , (I − 1) is the input unit i,

i = I, . . . , (I + H − 1) is the hidden unit (i − I), j = 0, . . . , (H − 1) is the hidden

unit j, and j = H, . . . , (H + O − 1) is the output unit (j −H).

The vector ρ is of dimension H, where ρh ∈ ρ is a binary value used to

indicate if hidden unit h exists in the network or not. As such, it works as a switch

to turn a hidden unit on or off. The sum,
∑H

h=0 ρh, represents the actual number of

hidden units in a network, where H is the maximum number of hidden units. The

use of ρ allows a hidden node to evolve even if it is not active during certain periods

of the evolutionary optimization process.

The chromosome has two additional components when the crossover and

mutation rates are also subjected to evolutionary optimization and self-adapted in

the algorithms. These additional elements are the crossover rate δ and the mutation

rate η. The addition of these last two elements to the genotype representation allows

simultaneous training of the weights in the network and selecting a subset of hidden

units as well as allowing for the self-adaptation of crossover and mutation rates

during optimization.

A direct encoding method was chosen to represent these variables in the

genotype as an easy-to-implement and simple-to-understand encoding scheme. Other

more complex direct as well as indirect encoding schemes such as those involving

developmental mechanisms may prove to be useful and represents possible future

work extending from this investigation. A summary of the variables used in the

chromosome to represent the artificial creature’s genotype is listed in Table 3.3.

The mapping of the chromosome into the ANN is depicted in Figure 3.5.
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Variable Representing Value Type Value Range
Ω ANN Connection Weights Real ]−∞, +∞[
ρ Active Hidden Units Discrete {0, 1}
δ Crossover Rate ∗ Real [0, 1]
η Mutation Rate ∗ Real [0, 1]

Table 3.3: Description of the variables used in the chromosome to represent the

artificial creature’s genotype. ∗ denotes elements present only in algorithms that

use self-adaptation of crossover and mutation rates.

Figure 3.5: A diagram illustrating the mapping from a chromosome to an ANN

controller.

3.4.1 Fitness Functions

The fitness f1 of each locomotion controller represented in the genotype g

is defined to be simply

f1 = ⇑ d(g) (3.1)

where d refers to the horizontal Euclidean distance achieved by the creature as

controlled by the ANN at the end of the evaluation period of 500 timesteps. In other
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words, d measures the planar locomotion distance travelled by the artificial creature

over the designated period. In experiments involving multi-objective evolutionary

optimization of the locomotion controller, a second fitness f2 is defined to be

f2 = ⇓
H∑

h=0

ρh (3.2)

where the number of active hidden units in used in the ANN controller is counted

by summing the binary vector ρh, which is part of the genotype g. Therefore, the

first objective is to maximize the horizontal locomotion achieved by the artificial

creature and where a second objective is involved, to minimize the use of nodes

in the hidden layer of the ANN controller, which will in turn determine the VC-

dimension of the controller as explained in Section 1.3. Unless stated explicitly, the

fitness of a controller always refers to the first fitness function f1 which measures

the locomotion distance.

3.5 Evolutionary and Simulation Parameters

The relevant literature on artificial evolution of physically simulated crea-

tures was reviewed to ascertain suitable parameter values for use in the evolutionary

runs to be conducted in the experiments. Table 3.4 summarizes the parameters used

for these types of experiments.

Authors No. of Population No. of No. of
Generations Size Timesteps Repeats

Lipson and Pollack (2000) 300–600 200 12 N/A
Bongard and Paul (2000) 300 300 20000 10

Hornby and Pollack (2001a) 100–500 100 N/A 10
Taylor and Massey (2001) 50–100 ∼300 200–1000 N/A

Otsu, Ishiguro, Fujii,
Aoki, and Eggenberger (2001)

500 100 N/A 5

Komosinski and
Rotaru-Varga (2001)

120–800 200 50–500 10

Bongard (2002a) 50 200 500 10
This Thesis 1000 30 500 10

Table 3.4: A comparison of the evolutionary and simulation parameters used for

evolving artificial creatures in simulation.
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As can be seen, the parameters used in the literature varied significantly.

The evolutionary parameters used in this thesis were chosen after both reviewing

the literature and conducting a number of preliminary experiments. This was to

ensure that the evolutionary runs balanced both time requirements and quality of

solutions obtained. These values are given in the last line of Table 3.4. It may be

noticed that the number of generations we have chosen is above the normal range

used in the literature. This is to ensure that the evolutionary optimization has

been given enough time to converge to a reasonably optimal solution. Secondly,

the use of a small population size is also noted with our proposed multi-objective

evolutionary optimization algorithm. Small population sizes have been previously

shown to be advantageous when evolving ANNs using GAs (Foster, McCullagh, and

Whitford 1999). Furthermore, preliminary experiments have shown that a large

population size was not essential for evolving successful locomotion controllers (Teo

and Abbass 2002a; Teo and Abbass 2002b; Teo and Abbass 2002c). One reason is

that the objective of minimizing the number of hidden units which is discrete in

nature imposes an upper bound on the possible number of non-dominated solutions

that can exist in the population (see Section 5.1 for an explanation of non-dominance

and Pareto optimality). This upper bound is simply the maximum number of hidden

units allowed + 1 (see second paragraph of Section 4.4 for further explanations). A

population size of 30 is approximately double the bound on the number of non-

dominated solutions that can exist in any population using this approach (Abbass

2002a). Since our approach is an elitist Pareto approach, we only preserve the non-

dominated set in each population. Therefore, we do not need to introduce additional

methods for reducing the number of Pareto solutions when they exceed a certain

threshold as in the case of the PDE algorithm (Abbass, Sarker, and Newton 2001)

where a neighborhood function was used, and NSGA-II (Deb, Agrawal, Pratab, and

Meyarivan 2000) where a niching strategy was used.
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3.5.1 Statistical Testing

In order to test for the presence of significant statistical differences be-

tween two sets of results, the paired two-sample t-test (Runyon, Haber, Pittenger,

and Coleman 1996) is used throughout all experimental setups in this thesis. Since

the main objective of this work is to investigate the automatic generation of loco-

motion controllers, all tests of significance are always conducted in relation to the

f1 objective which evaluates locomotion fitness. The t-statistic is calculated using

the direct difference method (Runyon, Haber, Pittenger, and Coleman 1996) which

is given by the equation

t =
D̄

√√√√√√
∑

D2 −
(
∑

D)2

N
N(N − 1)

(3.3)

where D̄ = X̄1 − X̄2 and X̄1, X̄2 are the sample means of the two groups and

D is the difference between the corresponding pairs of random variables. The 10

different initial populations are fixed for all experiments by using the same set of

10 seeds corresponding to each of the 10 individual runs. N is the sample size of a

single group and the degree of freedom is approximated by taking N − 1. For all

statistical testing of results, a two-tailed test at both significance levels of α = 0.05

(95% confidence interval, t-value = 2.262) and α = 0.01 (99% confidence interval,

t-value = 3.250) are conducted. Bracketed t-values indicate that the sample mean of

the group being tested, X2, is lower compared to the sample mean group of results

tested against, X1.

In experiments involving comparisons between different ANN architecture

types, the tests for statistical significance are always made against the NNType0

architecture. As explained earlier in Section 3.3.3, the NNType0 architecture is

a simple feed-forward artificial neural network with connections only between the

input-hidden and hidden-output layers. It does not have any other additional direct

nor recurrent connections that are present in the other types of controller architec-

tures. Thus, the NNType0 controllers have the most minimal architectures among
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the different types of controller architectures assuming that the number of hidden

units is fixed. Hence, to test whether more complex types of ANN architectures

with additional connections provided significantly different locomotion capabilities,

t-tests are always carried out against the NNType0 architecture.

3.6 Chapter Summary

The design of our physically-based artificial evolutionary system for evolv-

ing the locomotion controllers of a virtually embodied creature was described. The

choice of parameters to be used in the experimental sections of this thesis were also

discussed and justified. In the next chapter, we will attempt to characterize the

fitness landscapes of four ANN architectures to investigate which type of network

will be most suitable for the artificial evolution of controllers.



Chapter 4

Fitness Landscapes

1 As we have seen from Chapter 2, there has been a lot of interest in evolving

controllers for both physically simulated creatures as well as for real physical robots.

However, a range of different ANN architectures are used for controller evolution

and in the majority of the work conducted, the choice of the architecture used is

made arbitrarily.

There have been some preliminary experiments that compared the perfor-

mance of evolved feed-forward versus dynamically recurrent ANNs for controlling

Khepera robots in a simulated space-constrained box-pushing experiment (Spronck,

Sprinkhuizen-Kuyper, and Postma 2001). It was found that feed-forward archi-

tectures were sufficient for successfully completing the task although the recurrent

architecture provided much more stability for the controller’s behavior, particularly

in maneuvering out of problematic positions. However, no fitness landscape analysis

was provided for the underlying fitness landscape of the controller’s search space.

As such, the literature remains largely inconclusive as to which ANN ar-

chitecture provides the most efficient and effective space for searching the range of

possible controllers through evolutionary methods. This represents the motivation

for this chapter where we compare the search space for four different types of ANN

architecture for controller evolution through an analysis of the fitness landscape as-

1Some of the material presented in this chapter have been previously published in Teo and

Abbass (2003).

54
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sociated with each type of architecture. We intend to ascertain whether additional

recurrent and input-output connections to a standard feed-forward ANN architec-

ture yields any benefit in terms of providing a fitness landscape which is easier to

search for locomotion controllers. The results from this chapter will provide a basis

for selecting the appropriate ANN architecture to be used for controller evolution

in later chapters of this thesis.

4.1 Introduction

The idea of fitness landscapes was first proposed by Wright (1932) and has

since proven to be an invaluable tool for analyzing evolutionary theories (Kauffman

1993; Adami 1998). It serves as a powerful tool for visualizing the evolutionary pro-

cess through its imagery of mountainous peaks, hills, valleys, ridges and plateaus

that are encountered through the exploration and exploitation of genotype space.

Evolution can thus be viewed as movements within a multi-dimensional search space.

Although initially introduced by Wright as a non-mathematical tool for visualiz-

ing biological selection and variation, fitness landscapes have since become highly

amenable to mathematical analysis. A discussion of the various metrics that have

been proposed for mathematically characterizing fitness landscapes is given in Sec-

tion 4.3.

In an evolutionary computation context, a fitness landscape comprises of

three main elements: (1) the set of genotypes, (2) the fitness function that evaluates

the genotypes, and (3) the genetic operators that define the neighborhood relation-

ships between the set of genotypes (Vassilev, Fogarty, and Miller 2000). The fitness

landscape is thus normally a high-dimensional space with n + m dimensions, where

n is the genotype length and the extra m dimensions representing the fitness values

associated with the genotype when evaluated using the m fitness functions. In tradi-

tional evolutionary computation, m is usually 1 since the evolutionary optimization

process is conducted on one objective function only. In this case, a genotype with

length two can be visualized as a 3D landscape where genetic operations carried out
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on the set of genotypes will produce small movements on the landscape during the

evolutionary search process. On the other hand, in an evolutionary multi-objective

search process, m would be ≥ 2 since the solution is being optimized along two or

more objective functions.

4.2 Search Space Difficulty

The performance of an EA is thus tied intimately to the structure of its

fitness landscape. In attempting to identify the difficulties presented by a particular

landscape, the evolutionary search is typically characterized in terms of the degree

of epistasis and modality (Smith, Husbands, Layzell, and O’Shea 2002). Epistasis

refers to the situation where the fitness of a genotype is dependent on multiple

gene interactions. Modality refers to the situation where the search space has large

numbers of optima. Both high epistasis and modality will lead to a rugged fitness

landscape (Vassilev, Fogarty, and Miller 2000). Such rugged search spaces can be

visualized as a landscape with many hill-tops that are separated by deep valleys. In

other words, there is no steady or smooth progression of fitness values from one point

to another neighboring point and thus increases the difficulty for the evolutionary

search to move to higher areas of fitness during the optimization process. Therefore,

highly epistatic and multi-modal problems will lead to a rugged landscape that is

more difficult to search compared to a smoother landscape with low epistasis and

modality.

4.3 Analyzing Fitness Landscapes

A number of fitness landscape analysis techniques have been proposed for

measuring the degree of ruggedness of the underlying search space. These math-

ematical treatments of the fitness landscape comprise of two main streams: (1)

statistical measures, and (2) information measures.



CHAPTER 4. FITNESS LANDSCAPES 57

4.3.1 Statistical Measures

Weinberger (1990) used the autocorrelation function to measure the rugged-

ness of the landscape. A sequence of fitness values is generated using a random walk

through the search space. The autocorrelation ρ between sets of fitness points sep-

arated by a distance of Γ is then approximated by

ρ(Γ) ≈ E(ftft+s)− E(ft)E(ft+s)

V (ft)
(4.1)

where E(ft) represents the expectation and V (ft) the variance of the sequence of N

fitness values {ft}N
t=1. A high correlation indicates a smooth landscape since neigh-

boring points have highly similar fitness values. On the other hand, a low correlation

indicates a rugged landscape since neighboring points have highly dissimilar fitness

values.

Weinberger also proposed another correlation measure called the correla-

tion length to define landscape ruggedness. It is simply the distance beyond which

the sets of fitness points become uncorrelated. The correlation length τ between

sets of fitness points separated by a distance of Γ is calculated as

τ(Γ) = − 1

ln(ρ(1))
(4.2)

where ρ(1) is the autocorrelation of neighboring points. The magnitude of this length

indicates the smoothness of the landscape. A longer correlation length would thus

indicate a very smooth fitness landscape whereas a shorter length would indicate

a more rugged landscape. A number of other correlational metrics have also been

proposed for characterizing fitness landscapes (Manderick, de Weger, and Spiessens

1991; Lipsitch 1991; Hordijk 1996; Vassilev, Fogarty, and Miller 2000).

4.3.2 Information Measures

Apart from statistical analysis, a distinctly different methodology based

on classical information theory (Shannon 1948) known as information content has

been proposed for characterizing fitness landscapes (Vassilev, Fogarty, and Miller

2000). It also approximates the ruggedness of the underlying search space through
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analysis of a sequence of fitness values {ft}N
t=1 obtained through a random walk of

N steps over the landscape but instead measures the entropy or amount of fitness

change encountered during the walk. Four measures were proposed by Vassilev in

conjunction with this information analysis of fitness landscapes (Vassilev, Fogarty,

and Miller 2000):

1. Information Content (H(ε)): indicates the ruggedness of landscape path

2. Partial Information Content (M(ε)): indicates the modality of landscape path

3. Information Stability (ε?): indicates the magnitude of landscape path’s optima

4. Density-Basin Information (h(ε)): characterizes the landscape structure arou-

nd optima

The information content characterizes the amount of ruggedness with re-

spect to the flat areas of the landscape. The degree of flatness depends on a sensi-

tivity parameter ε which is explained in the following paragraph. The information

content is given by

H(ε) = −
∑

p6=q

P[pq] log6 P[pq] (4.3)

where H(ε) represents the entropy of the system. The probabilities P[pq] represent the

frequencies of possible sub-blocks pq of elements from the string S(ε) = s1s2s3...sN

where si ∈ {1̄, 0, 1}. The string S(ε) is enumerated using the following function

si = Ψft(i, ε) (4.4)

where

Ψft(i, ε) =





1̄ if fi − fi−1 < −ε

0 if |fi − fi−1| ≤ ε

1 if fi − fi−1 > ε

(4.5)

for a particular value of the parameter ε. This parameter ε controls the sensitiv-

ity for measuring the entropy and is a real-valued number chosen from the range

[0, L] where L represents the maximum fitness difference of the sequence {ft}N
t=1.
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The information analysis will be most sensitive when ε is 0 producing the maximal

string of 1’s and 1̄’s when enumerating S(ε) and hence provides the most detailed

description of the landscape. Conversely, the analysis will be least sensitive when ε

is L producing a string of 0’s when enumerating S(ε) and hence provides the least

detailed description of the landscape. In effect, ε acts as an accuracy setting for

the information analysis and provides an idea of the landscape profile according to

varying degrees of detail.

The partial information content is obtained by filtering out non-essential

parts of S(ε) to obtain an indication of the modality encountered during the walk.

It is given by

M(ε) =
µ

n
(4.6)

where µ is the length of the derived string S ′(ε) and n is the length of the original

string S(ε). µ is calculated using a recursive function ΦS(1, 0, 0) defined as

ΦS(i, j, k) =





k if i > n

ΦS(i + 1, i, k + 1) if j = 0 and si 6= 0

ΦS(i + 1, i, k + 1) if j > 0, si 6= 0 and si 6= sj

ΦS(i + 1, j, k) otherwise

(4.7)

where k will return the value of µ upon completion of the evaluation. When M(ε)

is 0, this is an indication that no slopes were present in the path. However when

M(ε) is 1, this indicates that the path is maximally multi-modal. Furthermore, the

expected number of optima can be calculated from the partial information content

as bnM(ε)
2
c.
The information stability (ε?) is defined to be the smallest value of ε cor-

responding to H(ε) = 0. A high information stability indicates that the largest

possible difference between two neighboring points is similarly high. Thus, it pro-

vides an idea of the magnitude of the landscape path’s optima encountered during

the walk.

In order to characterize the landscape structure around optima, it was also

suggested that the density-basin information (h(ε)) be calculated (Vassilev, Fogarty,



CHAPTER 4. FITNESS LANDSCAPES 60

and Miller 2000). This measure gives an indication of the flat and smooth areas of

the landscape and gives an indication of the density as well isolation of peaks in the

landscape. The formula for calculating this measure is given by

h(ε) = −
∑

p∈{1̄,0,1}
P[pp] log3 P[pp] (4.8)

where pp represent sub-blocks 00,11 and 1̄1̄. A high number of peaks existing within

a small area of the landscape would thus give a high value for (h(ε)). On the other

hand, an isolated optimum would give a low value for (h(ε)). As such, this provides

an idea of the size and nature of the basins of attractions of optima. Landscapes with

high density-basin information should thus be easier for an evolutionary search pro-

cess to become “attracted” to a fitter solution space and the converse for landscapes

with lower density-basin information.

In summary, higher values of information content, partial information con-

tent and information stability suggest higher degrees of epistasis and modality, which

leads to a more rugged landscape that is harder to search. At the same time,

the density-basin information should further assist in determining the search space

difficulty by characterizing the landscape around optima. Therefore, using these

information-theoretic measures to compare between different artificial evolutionary

systems should provide useful characterizations of the search difficulty associated

with the different fitness landscapes.

4.4 Experimental Setup

Three series of experiments were performed to provide an insight into the

search space difficulty associated with each type of ANN architecture. The fitness

of each genotype in these experiments was evaluated according to the f1 objective

function only, which is the locomotion distance achieved by the controller as defined

in Section 3.4.1.

In the first series of experiments, random sampling of solutions was con-

ducted for all four architectures. Since random search is used, each genotype is



CHAPTER 4. FITNESS LANDSCAPES 61

generated independently from all other genotypes. Furthermore, the variable num-

ber of hidden units for each network specified by the genotype is initialized randomly

ranging between 0 to 15 hidden units according to a uniform distribution. From prior

experiments, it was found that the best controllers only required between 2–4 hid-

den units (Teo and Abbass 2002a; Teo and Abbass 2002b; Teo and Abbass 2002c).

As such, we have chosen to set the upper bound for this parameter at 15 hidden

units. In each run, a total of 30,000 genotypes were sampled. This is equivalent

to an evolutionary run with a population size of 30 over 1000 generations, which

is the intended setup for later experiments involving artificial evolution of ANNs,

to ensure that a fair comparison of the search space can be made. Sampling of the

search space using random search is replicated for 10 different seeds giving 10 inde-

pendent runs with a total of 300,000 fitness evaluations (although a single run that

directly generates the required 300,000 fitness evaluations would be equivalent, the

setup using 10 runs initialized from 10 seeds is used to maintain consistency across

all experimental setups).

In the second series of experiments, trial solutions were obtained using a

hill-climbing algorithm for all four ANN architectures. New genotypes were gener-

ated from the currently accepted genotype using a mutation of 0.1. The mutation

operator changes both the values of the connection weights and number of active

hidden units in the network. A move from the best solution found so far to a trial

solution is accepted only if the trial solution has a higher fitness than the best so-

lution found so far. Otherwise, another trial solution is generated. The fitness for

all solutions generated during the hill-climb were recorded and analyzed. Each run

was again allowed to sample a maximum of 30,000 genotypes over 10 independent

runs as in the random search experiments. In order to reduce the amount of bias on

the number of hidden units present in each ANN during initialization of the geno-

type, each of the 10 independent runs was started using networks initialized with

increasing probabilities of having more hidden units ranging from 0 to 15 hidden

units. This guarantees that the genotype space is sampled uniformly in terms of the

variable hidden layer.
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For the last series of experiments, a random walk was performed using all

four ANN architectures. The fitness value obtained for every genotype at each step

of the walk was recorded. A new point in the search space was generated through

a 0.1 mutation of the previous genotype reached during the walk. Again to ensure

fair comparisons, each walk was allowed a maximum of 30,000 steps and 10 separate

walks were carried out staring from different points in the search space. Also, as

with the hill-climbing experiments, each of the 10 independent runs were started

using networks initialized with increasing probabilities of having more hidden units

to ensure that the genotype space is sampled uniformly in terms of the variable

hidden layer.

The information content analysis was carried out only for the search spaces

sampled using random walk. This is due to the neighborhood definition of this

landscape measure, which is only meaningful when all subsequent fitness points of

genotypes sampled in the search space are related through a walk obtained using the

genetic operators (see Section 4.1). Furthermore, from the definition of the auto-

correlation function, to conduct such an analysis requires sampling of fitness points

that are separated by a distance of Γ. However, an autocorrelation analysis was not

possible in our particular problem as the algorithm used in our random walk cannot

guarantee that fitness points of step length > 1 are unique points in the landscape.

This was due to the fact that the mutation operator used to generate subsequent

neighborhood points is non-directional in the sense that later mutations may return

a particular walk to a previously encountered landscape point. A directional ap-

proach would also not provide an accurate picture of the actual fitness step lengths

because of two problems: (1) network symmetry, and (2) hidden unit activation.

Firstly, mutations arising from distinctly different trajectories can lead to identical

ANNs by virtue of architectural symmetries that can arise in the network. Secondly,

the flipping of a single bit in the genotype which turns a particular hidden unit on

or off will cause an entire set of connection weights to either become active or inac-

tive in the ANN and hence, the mutation of a single hidden unit can cause a very

large change in the phenotype. These are known problems in measuring diversity
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when evolving neural networks (Yao 1999). As such, an autocorrelation analysis

conducted in this case will not be reliable since we cannot guarantee that fitness

points after s steps are actually at a distance Γ = s away from each other. Hence,

we focus our fitness landscape analysis of neighborhood points sampled by random

walk using only the informational measures.

This initial investigation of the underlying fitness landscapes should provide

some indication on which of the four proposed types of ANN architecture would allow

for better controller evolution. Although there are limitations associated with fitness

landscape analysis methods, which we discuss in Section 4.6, the results from this

initial investigation will at least provide some basis for deciding which type of ANN

architecture is to be used for the remainder of the artificial evolution experiments.

4.5 Results and Discussion

The results from the experiments described above are presented in three

sections. The first section provides a characterization of the search space using

random sampling, followed by hill-climbing and finally using random walk. For each

sampling technique, a 3D graph was first plotted to show the frequency distribution

of sampled genotypes in terms of their solution fitness as well as the number of hidden

units present in the ANN. As the objective is a continuous function, genotypes

were grouped into 5000 discrete intervals to calculate the frequency distribution.

These 3D frequency graphs were rotated along the X-Y axis in order to provide a

clearer depiction of the distribution characteristics as it was found that the default

orientation in the original plots often resulted in some features becoming obscured

by large peaks in the distribution. This convention is adopted throughout the thesis

whenever such graphs are depicted. Additional 2D smoothed contour graphs were

plotted to provide a clearer depiction of the relationship between number of hidden

units present in the ANN and quality of solutions. A smoothed probability density

function was also plotted for each architecture by grouping solutions according to

their fitness irrespective of the number of hidden units present in the ANN. Also,
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the best solution found by each of these algorithms over the 10 independent runs

was plotted over time. This will give an indication of how the search proceeded over

time. Finally, a comparison of the best overall solution found using the different

algorithms is discussed along with the average and standard deviation of the best

solutions found.

4.5.1 Random Search

Figure 4.1: Frequency distribution of solutions using random search for ANN archi-

tecture 1. NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom left),

4. NNType3 (bottom right). X-axis: Fitness, Y-axis: No. of hidden units, Z-axis:

Frequency.

Figure 4.1 is a frequency histogram of the distribution of solutions in terms
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of their fitness and number of hidden units. From these graphs, it is apparent that

the number of hidden units does not affect the quality of the solutions sampled at

random. An analysis conducted on the mean fitness across ANNs with different

numbers of hidden units showed that there was no correlation between the number

of units present in the hidden layer and the locomotion capability of the ANN.

What this means is that from random sampling, controller size in terms of number

of hidden units does not appear to affect the locomotion capability of the creature.

This may be due to the fact that solutions with good locomotion abilities may

be extremely rare and isolated in the search space, which makes this problem of

automatic generation of artificial creature controllers a particularly hard problem.

2D contour graphs of frequency distribution of solutions obtained from

random search in terms of fitness and number of hidden units present in the ANN

are given in Figure 4.2. No obvious concentration of solutions can be seen from these

graphs, which confirms the earlier observation that the number of hidden units does

not appear to affect the solutions found by random search. However, it is interesting

to note that the final contour line extends further by more than 1 unit distance in

NNType1 (Figure 4.2.2) and NNType3 (Figure 4.2.4) compared to NNType0 (Figure

4.2.1) and NNType2 (Figure 4.2.3). This suggests that it was slightly easier to reach

fitter regions of the controller’s objective space using the NNType1 and NNType3

architectures compared to using the NNType0 and NNType2 architectures.

Figure 4.3 shows the probability density function of solutions obtained

using random search for all four types of ANN architecture. It is clear from these

graphs that a random search of the genotype space yields a very high percentage

of low fitness solutions. For all four types of ANN, the most commonly sampled

genotype only yields a fitness of around 1. This is a clear indication that a uniform

sampling of the genotype space yields a highly skewed distribution of solutions in

the objective space. The NNType1 (Figure 4.3.2) and NNType3 (Figure 4.3.4)

architectures appear to provide slightly more solutions with higher fitness although

the difference is not very obvious. This can be seen from the small shift to the

right of the probability curve for these networks. Also, the probability of generating
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Figure 4.2: Contour graphs of frequency distribution of solutions obtained using

random search for ANN architecture 1. NNType0 (top left), 2. NNType1 (top

right), 3. NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Fitness,

Y-axis: No. of hidden units.

controllers begins to approach 0 for NNType0 (Figure 4.3.1) and NNType2 (Figure

4.3.3) beyond a fitness 6 whereas for NNType1 and NNType3, this only occurs at

a fitness of beyond 8. This observation gives a weak indication that ANNs with

direct connections from input to output (NNType1 & NNType3) may be easier to

search whereas recurrent connections only (NNType2) do not provide any significant

advantage over a standard feed-forward architecture (NNType0).

The best solution obtained over the 30,000 iterations of random search for

10 independent runs is depicted in Figure 4.4. The final best solutions clustered



CHAPTER 4. FITNESS LANDSCAPES 67

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fitness

P
ro

ba
bi

lit
y

Random Search NNType0

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fitness

P
ro

ba
bi

lit
y

Random Search NNType1

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fitness

P
ro

ba
bi

lit
y

Random Search NNType2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fitness

P
ro

ba
bi

lit
y

Random Search NNType3

Figure 4.3: Density (solid) and cumulative (dashed) probability distribution of so-

lutions obtained using random search for ANN architecture 1. NNType0 (top left),

2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom right).

X-axis: Fitness, Y-axis: Probability.

between a fitness of 6 to 9 for NNType0 (Figure 4.4.1) and NNType2 (Figure 4.4.3)

whereas for NNType1, the final best solutions clustered between 9 and 11 (Figure

4.4.2). There was a larger spread of best final solutions in NNType3 ranging between

9 and 13 (Figure 4.4.4). The NNType3 architecture also had more runs in which

significant fitness improvements still occurred in the latter parts of the random

search compared to the other three architectures where in most runs, the major

improvements in fitness occurred before the 10,000th iteration resulting in large

plateau areas in the end regions of these graphs.
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Figure 4.4: Best fitness for solutions obtained over time for 10 runs using random

search for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right), 3.

NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Iterations, Y-axis:

Fitness.

NNType Overall Best Average Best Fitness t-statistic No. of
Fitness ± Standard Deviation (against Hidden

NNType0) Units
0 8.8637 7.5406 ± 0.6733 - 10.0 ± 2.3
1 11.3962 10.0931 ± 0.7348 8.60 7.4 ± 4.0
2 9.1804 7.3609 ± 0.7490 (0.47) 10.9 ± 2.5
3 13.0225 10.2878 ± 1.2747 5.58 9.2 ± 4.2

Table 4.1: Comparison of best solutions found using random search over 10 inde-

pendent runs.
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Table 4.1 shows the overall best f1 fitness obtained from 10 independent

runs of random search along with the average best fitness and standard devia-

tions for all four ANN architecture types. The overall best fitness was obtained

using NNType3 followed by NNType1. The next best overall fitness was given

by NNType2 and the worst was NNType0. In terms of the average best fitness,

NNType3 had the highest value, followed by NNType1, NNType0 and NNType2

respectively. The differences between means of NNType1 and NNType3 against

NNType0 were statistically significant at both α = 0.05 and α = 0.01. This in-

dicates that in terms of the best controllers found, additional input-output con-

nections in NNType1 architectures were able to yield better controllers on average

when searched randomly as was the case with NNType3, which had both additional

input-output as well as recurrent connections. However, recurrent-only architecture

in NNType2 did not show any significant advantages over the standard feed-forward

architecture in NNType0.

In terms of the number of hidden units used in the best controllers, the

solutions found by random search used an average of between 7.4 and 10.9 hidden

units. Surprisingly, the best solutions found using the NNType1 and NNType3 ar-

chitecture types, which had higher locomotion fitness than NNType0 and NNType2,

required on average less number of hidden units compared to these latter two archi-

tectures. However, the standard deviations were also much higher in NNType1 and

NNType3 suggesting that the apparent inverse relationship between controller size

and locomotion distance could have been due to chance encounters with small-sized

networks with better locomotion capabilities.

4.5.2 Hill-Climbing

Figure 4.5 plots the frequency distribution of solutions in terms of fitness

and number of hidden units. In this case, the number of hidden units does affect the

controller’s locomotion capabilities as evidenced by the non-uniform distribution of

solutions across the objective space. The hill-climbing algorithm appeared to favor

genotypes that had between 4 and 10 units in the variable hidden layer as evidenced
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Figure 4.5: Frequency distribution of solutions using hill-climbing for ANN archi-

tecture 1. NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom left),

4. NNType3 (bottom right). X-axis: Fitness, Y-axis: No. of hidden units, Z-axis:

Frequency.

by the significantly higher frequencies of samples appearing in this region of the

objective space.

Accompanying 2D contour graphs of frequency distribution of solutions in

terms of fitness and number of hidden units present in the ANN are given in Figure

4.6. The peaks illustrated in these contour graphs provide a clearer picture of where

the concentration of sampled genotypes occurred. For NNType0 and NNType1,

the most commonly sampled genotypes had hidden layers of 8 units peaking at a

fitness of just under 4 (Figure 4.6.1) and 5 (Figure 4.6.2) respectively. NNType2
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Figure 4.6: Contour graphs of frequency distribution of solutions obtained using

hill-climbing for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right),

3. NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Fitness, Y-axis:

No. of hidden units.

had multiple but lower peaks at 4,6,7 and 8 hidden units with fitness ranging from

just under 1 to just over 6 (Figure 4.6.3). Finally, the highest concentration of

genotypes encountered during hill-climbing in NNType3 had hidden layers of 7 units

and fitness of approximately 3.5 (Figure 4.6.4). A slightly lower but still very high

peak could also be seen in NNType3 with 5 hidden units and a fitness of around 5.

These observations suggest that for all four ANN architectures, hill-climbing is very

susceptible to becoming stuck in local optima that are apparently very difficult to

break out of.
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Figure 4.7: Density (solid) and cumulative (dashed) probability distribution of so-

lutions obtained using hill-climbing for ANN architecture 1. NNType0 (top left),

2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom right).

X-axis: Fitness, Y-axis: Probability.

Figure 4.7 shows the probability density function of solutions obtained

using hill-climbing for all four types of ANN architecture. The genotypes that were

sampled using hill-climbing yielded a set of solutions with much higher fitness than

those obtained using random sampling. The architecture that generated the lowest

fitness was NNType0 (Figure 4.7.1). Here, the probability of generating a controller

approached 0 beyond a fitness of 7. This is expected since the NNType0 architecture

has the least number of available connections between layers. Surprisingly, the

next best architecture was NNType3 (Figure 4.7.4) which had the most number of
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available connections between layers. The probability of generating a controller in

this case approached 0 beyond a fitness of only 10. For NNType1 (Figure 4.7.2) and

NNType2 (Figure 4.7.3), the probability only approached 0 beyond a much higher

fitness of 14. This may be due to a chance encounter with a much fitter solution

which caused the sampling process to cluster around a local optimum with a higher

fitness, thereby biasing the distribution of solutions towards this area of the objective

space (the presence of outliers in NNType1 and NNType2 is discussed again later

in this section). It should be noticed though that the majority of the solutions were

still sampled around the low quality areas of the search space yielding controllers

with locomotion distances of between 0 and 6. This is again an indication that the

landscape might be quite rugged and thus very easy for a hill-climbing algorithm to

become stuck in a local optimum.

The best solution obtained over the 30,000 iterations of hill-climbing for 10

independent runs is depicted in Figure 4.8. The final solutions appeared to cluster

between a fitness of 4 to 6 and is most apparent in NNType0 (Figure 4.8.1). The

best solutions obtained with NNType1 (Figure 4.8.2) and NNType2 (Figure 4.8.3)

had a larger spread of fitness values compared NNType3 (Figure 4.8.4). What is

noticeably clear is that most of the improvement in the quality of solutions occurred

within an extremely short window at the start of the search process and subsequent

improvements were minimal except only in a single run each with NNType1 and

NNType2 causing large plateau areas in the graphs. This supports the earlier hy-

pothesis that the landscape may be quite rugged and that a hill-climbing algorithm

may get stuck very easily in a local optimum and find it difficult to obtain fitter

solutions that will enable it to move away from the local optimum.

Table 4.2 shows the overall best f1 fitness obtained from 10 independent

runs of hill-climbing along with the average best fitness and standard deviations

for all four ANN architecture types. The overall best fitness was obtained using

NNType1 although the overall best fitness from NNType2 was only less by 0.47.

This was followed by NNType3 and the worst was NNType0. This is consistent

with the mean of the best fitness which also indicates that NNType1 and NNType2



CHAPTER 4. FITNESS LANDSCAPES 74

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10

12

14

16

18

20

Iterations

F
itn

es
s

Hill−Climbing NNType0

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10

12

14

16

18

20

Iterations

F
itn

es
s

Hill−Climbing NNType1

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10

12

14

16

18

20

Iterations

F
itn

es
s

Hill−Climbing NNType2

0 0.5 1 1.5 2 2.5 3

x 10
4

0

2

4

6

8

10

12

14

16

18

20

Iterations

F
itn

es
s

Hill−Climbing NNType3

Figure 4.8: Best fitness for solutions obtained over time for 10 runs using hill-

climbing for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right), 3.

NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Iterations, Y-axis:

Fitness.

NNType Overall Best Average Best Fitness t-statistic No. of
Fitness ± Standard Deviation (against Hidden

NNType0) Units
0 7.1333 5.5969 ± 0.9714 - 7.0 ± 2.3
1 14.9792 8.4652 ± 2.6246 3.41 7.4 ± 2.0
2 14.5086 7.6568 ± 2.9365 2.06 6.4 ± 2.5
3 10.0832 6.9057 ± 1.5719 2.18 6.8 ± 2.2

Table 4.2: Comparison of best solutions found using hill-climbing over 10 indepen-

dent runs.
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were the easiest architectures to search using hill-climbing in generating efficient

controllers for the creature. Correspondingly, the worst architecture was NNType0

which had the least possible number of connections allowable between layers of the

network. However, it should be noted that the standard deviations for NNType1 and

NNType2 were higher than NNType3 or NNType0 and may indicate the presence of

outliers that were chanced upon during the search. A t-test showed that the only sig-

nificant difference was between NNType0 and NNType1. NNType2 and NNType3

did not show any significant differences in terms of their average best solution com-

pared to NNType0 at both α = 0.05 and α = 0.01. This is an indication that in

terms of the best solutions found using a hill-climbing algorithm, only additional

input-output connections (NNType1) were advantageous in yielding higher quality

locomotion controllers and that neither additional recurrent-only (NNType2) nor

additional recurrent plus input-output connections (NNType3) provided any signif-

icant advantages over the standard feed-forward architecture (NNType0).

There was very little difference in the number of hidden units used by the

best controllers found using hill-climbing. On average, the best solutions found using

NNType2 required the least number of hidden units at 6.4 while NNType1 required

the most at 7.4. The standard deviation among the best controllers was also very

similar across the different architectures ranging between 2.0 and 2.5 hidden units.

4.5.3 Random Walk

The frequency distribution of solutions obtained from a random walk of the

fitness landscape is presented in Figure 4.9. All four architectures yielded a fairly

similar but again highly skewed distribution over the objective space. The majority

of genotypes sampled by a random walk again clustered around the very low quality

areas of the search space and around ANNs with hidden layers of between 3 and

12 units. As such, a very high percentage of low fitness solutions again appeared

to dominate the random walk. As with hill-climbing, there are indications that the

size of the hidden layer affects the locomotion capabilities of the controller. This is

more evident from the contour graphs that follow.
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Figure 4.9: Frequency distribution of solutions using random walk for ANN archi-

tecture 1. NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom left),

4. NNType3 (bottom right). X-axis: Fitness, Y-axis: No. of hidden units, Z-axis:

Frequency.

The effect of hidden units on the fitness of genotypes is very apparent

in these accompanying 2D contour graphs depicted in Figure 4.10. Solutions with

fitness above 4 had between 6 and 9 hidden units. It is also clear from the peaks

on these graphs that the most frequently encountered genotype had between 7 and

8 hidden units. This may indicate that there is a large basin of attraction in this

region of the search space. However, the fitness of solutions in this area is very

low indeed (∼ 1). Similar to the observations noted in the random search contour

graphs, it was slightly easier to reach fitter regions of the controller’s objective
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Figure 4.10: Contour graphs of frequency distribution of solutions obtained using

random walk for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right),

3. NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Fitness, Y-axis:

No. of hidden units.

space when random walks were performed on the fitness landscape of ANNs with

architecture NNType1 (Figure 4.10.2) and NNType3 (Figure 4.10.4) compared to

NNType0 (Figure 4.10.1) and NNType2 (Figure 4.10.3). However, this effect is

not very significant and thus only gives a weak indication that ANNs with direct

connections from input to output (NNType1 & NNType3) may be easier to search

than those with recurrent connections only (NNType2) or a standard feed-forward

architecture (NNType0).

The probability density function of solutions obtained using random walk
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Figure 4.11: Density (solid) and cumulative (dashed) probability distribution of

solutions obtained using random walk for ANN architecture 1. NNType0 (top left),

2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom right).

X-axis: Fitness, Y-axis: Probability.

is illustrated in Figure 4.11 for all four ANN architectures. The shape of the curves

was very similar to the ones obtained with random search. These graphs show that

a random walk of the genotype space yields a very high percentage of low fitness

solutions centered around a fitness of only 1. This supports the earlier observation

from random search that the distribution of solutions in the objective space is highly

non-uniform. As with random search, random walk had a slightly better probability

of encountering fitter genotypes with NNType1 and NNType3 architectures com-

pared to the NNType0 and NNType2 architectures (as evidenced by the slightly
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larger areas under the curves in Figures 4.11.2 & 4.11.4 compared to the curves in

Figures 4.11.1 & 4.11.3) as the probabilities approached 0.
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Figure 4.12: Best fitness for solutions obtained over time for 10 runs using random

walk for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right), 3.

NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Iterations, Y-axis:

Fitness.

The best solution obtained over the 30,000 iterations of random walk for

the 10 independent runs is depicted in Figure 4.12. Compared to hill-climbing, the

best solutions obtained for all four ANN architectures were less clustered within

a specific range of fitness and had a fair spread of solutions between 7 and 12.

Again this supports the earlier observations that the fitness landscape may be quite

rugged and thus in a random walk, which does not have the constraint of having
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to search within a neighborhood area of the best solution found so far, may have a

better chance of finding a better solution by virtue of its random trajectory through

different objective sub-spaces. Additionally, the progression of the best solution over

time is more gradual in random walk compared to hill-climbing and the periods

where the best fitness does not improve is also much shorter as evidenced by less

occurrences of long plateau regions.

NNType Overall Best Average Best Fitness t-statistic No. of
Fitness ± Standard Deviation (against Hidden

NNType0) Units
0 11.6325 9.7725 ± 1.2009 - 7.4 ± 2.1
1 11.8494 10.4776 ± 0.9616 1.66 7.4 ± 2.2
2 12.2220 9.5602 ± 1.3372 (0.43) 8.2 ± 2.0
3 13.0900 10.0333 ± 1.2535 0.42 7.0 ± 1.4

Table 4.3: Comparison of best solutions found using random walk over 10 indepen-

dent runs.

Table 4.3 shows the overall best f1 fitness obtained from the 10 independent

runs of random walk along with the average best fitness and standard deviations

for all four ANN architecture types. A slightly different picture is given by random

walk compared to hill-climbing in terms of the ease of searching for good controllers

across the four ANN architectures. The results obtained were less differentiating

for the overall best fitness and especially with the average of the best fitness. Here,

although the overall best fitness was highest for NNType3 followed by NNType2,

then by NNType1 and finally NNType0, the averages had NNType1 with the highest

best fitness followed by NNType3, then by NNType0 and the worst was NNType2.

Taking into consideration the standard deviations, the means of these best solutions

were not very different from each other. As such, there are no strong indications

as to what effect allowing recurrency and direct input-output connections have on

the ease of searching for good quality controllers. It is also interesting to note

that a comparison of the average best fitness obtained with random walk was much

higher than those obtained with hill-climbing. This lends further confirmation to

the fact that hill-climbing is highly inefficient in searching this landscape and that

even a random walk is better in chancing upon a fitter solution. A t-test at both
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α = 0.05 and α = 0.01 showed no significant differences for the four different ANN

architectures in terms of the best solutions obtained over 10 independent runs.

As with hill-climbing, there was little variation in terms of the size of the

hidden layer among the best controllers found using random walk. However in this

case, NNType3 required on average the least number of hidden units, NNType0 and

NNType1 had similar requirements while NNType2 required the highest number

of hidden units. Also, on average across all architecture types, random walk used

approximately 1 hidden unit more than the best controllers found using hill-climbing

and approximately 2 hidden units less than random search.

4.5.3.1 Information Content Analysis

NNType ε H(ε) M(ε) Exp. No. h(ε)
of Optima

0 0 0.4067 ± 0.0009 0.6226 ± 0.0050 9339 ± 75 0.5727 ± 0.0030
1 0.6733 ± 0.0269 0.2406 ± 0.0219 3608 ± 328 0.3993 ± 0.0293
2 0.3442 ± 0.0522 0.0771 ± 0.0186 1156 ± 279 0.1588 ± 0.0310
5 0.0233 ± 0.0135 0.0023 ± 0.0015 34 ± 22 0.0059 ± 0.0039
9 0.0002 ± 0.0004 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0001
12 0.0000 ± 0.0000 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0000

1 0 0.4066 ± 0.0005 0.6302 ± 0.0042 9452 ± 64 0.5681 ± 0.0026
1 0.6951 ± 0.0358 0.2581 ± 0.0275 3870 ± 413 0.4266 ± 0.0309
2 0.3837 ± 0.0539 0.0914 ± 0.0226 1371 ± 339 0.1856 ± 0.0354
5 0.0338 ± 0.0170 0.0031 ± 0.0019 47 ± 29 0.0091 ± 0.0054
9 0.0003 ± 0.0004 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0001
12 0.0000 ± 0.0000 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0000

2 0 0.4069 ± 0.0007 0.6241 ± 0.0042 9361 ± 63 0.5718 ± 0.0025
1 0.6703 ± 0.0220 0.2379 ± 0.0169 3568 ± 254 0.3924 ± 0.0236
2 0.3327 ± 0.0418 0.0720 ± 0.0144 1079 ± 215 0.1514 ± 0.0248
5 0.0186 ± 0.0079 0.0017 ± 0.0008 26 ± 12 0.0045 ± 0.0020
9 0.0003 ± 0.0004 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0001
12 0.0000 ± 0.0000 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0000

3 0 0.4067 ± 0.0005 0.6303 ± 0.0037 9454 ± 55 0.5680 ± 0.0023
1 0.6976 ± 0.0365 0.2608 ± 0.0281 3912 ± 421 0.4267 ± 0.0306
2 0.3817 ± 0.0548 0.0911 ± 0.0218 1366 ± 327 0.1845 ± 0.0366
5 0.0330 ± 0.0189 0.0032 ± 0.0020 48 ± 30 0.0090 ± 0.0060
9 0.0002 ± 0.0004 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0001
12 0.0000 ± 0.0000 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0000

Table 4.4: Information content analysis using random walk for the 4 ANN architec-

ture types.



CHAPTER 4. FITNESS LANDSCAPES 82

The information characteristics associated with the search spaces of the

four different types of controller architectures are presented in Table 4.4. This anal-

ysis does not indicate any discernable differences between the four different fitness

landscapes in terms of information content. All architectures have a similarly high

information stability (H(ε) = 0) of approximately 12 indicating that the differences

in fitness between neighboring solutions is very high. H(0) is also quite large and

therefore this indicates that the diversity of shapes on the landscape is also relatively

high. M(0) is also large indicating that a high degree of modality was encountered

during the walk, which is also evident from the large number of expected optima

on the landscape. Surprisingly, h(0) is significantly large, indicating that there are

diverse flat and smooth landscape sections. As such, the information content anal-

ysis points to the fact that there is a mixture of both rugged as well as smooth

areas in the fitness landscapes for all four architectures, the characteristics of which

were both encountered a significant proportion of the time during the random walk.

This is an indication that depending on which sub-spaces were being explored, the

characteristics of the landscape may differ very substantially from highly rugged to

very smooth. As such, the ability for search algorithms to find increasingly better

solutions may be highly dependent on the initialization and trajectory of the search

on the fitness landscape.

4.6 Limitations and Future Work

The idea of neutral plateaus within search spaces, where large numbers

of genotypes have similar phenotype fitness values, has recently been of particular

interest (Huynen 1996; Barnett 1998; Smith, Philippides, Husbands, and O’Shea

2002). It was suggested that problems with high degrees of neutrality, whether an

inherent feature of the original problem or artificially introduced through genotype

redundancy, tend to produce landscapes that are easier for EAs to escape local

optima and find better solutions (Shackleton, Shipman, and Ebner 2000; Vassilev

and Miller 2000). However, both autocorrelation and information content measures
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are unable to provide any information regarding the presence of such neutral ar-

eas within search spaces (Barnett 1998; Smith, Philippides, Husbands, and O’Shea

2002). A new methodology for elucidating neutrality was proposed by Smith, Hus-

bands, Layzell, and O’Shea (2002). However, these methods measure for evolvability

rather than providing direct characterizations of the actual fitness landscapes. Fur-

thermore, there is also evidence that neutrality does not necessarily improve the

evolutionary search process (Smith, Husbands, and O’Shea 2001a) and hence, the

general significance of neutrality within search spaces remains somewhat inconclu-

sive.

In order for both autocorrelation and information content measures to

work, an important assumption needs to be made — that the fitness landscapes

being analyzed are statistically isotropic (Weinberger 1990; Vassilev, Fogarty, and

Miller 2000). Importantly, it was highlighted by Smith, Husbands, and O’Shea

(2001b) that the search space for an evolutionary robotics task environment dis-

played strong indications of anisotropy. Therefore, the results obtained from land-

scape analysis methods that make the explicit assumption of isotropy needs to be

treated with some caution. Another important observation made by Smith, Hus-

bands, and O’Shea (2001b) is that results obtained from using sparse sampling

methods such as random sampling and random walk may provide a highly inaccu-

rate picture of the actual fitness landscape when the distribution of solutions in the

search space is non-normal and highly skewed, as was the case in the experiments

carried out in this study. This problem of heterogeneity is present in many hard

problems and may lead to inaccurate characterizations of landscapes when using

techniques that assume homogenous distribution of solutions. Another landscape

feature that may also affect the efficacy of the evolutionary search process is the

degree of deceptiveness of the problem and again is not a characteristic that can be

ascertained with current landscape measures (Smith, Husbands, and O’Shea 2001b).

From our experiments, we have also noted five additional limitations asso-

ciated with these existing landscape analysis methods. Where relevant, we provide

some pointers on open research questions and possible future work that will further



CHAPTER 4. FITNESS LANDSCAPES 84

extend the usability and generalization power of these techniques.

1. The problems being analyzed are generally problems that exist in high-dimen-

sional space whereas the landscape analysis methods such as the autocorrela-

tion and information content measures only provide some statistical charac-

terization of the actual search space. As such, these methods only capture a

limited amount of information along a particular dimension. A methodology

that is able to capture more information from the high-dimensional search

spaces would thus be desirable in order to give a more comprehensive and

accurate appraisal of the actual fitness landscape.

2. Obtaining the landscape points through a random walk results in evaluating

the search space in one particular direction. This implies a bias in the way

in which the landscape is being characterized. In order to reduce this bias,

multiple walks need to be carried out. However, generating multiple random

walks is extremely time-consuming and the time spent on characterizing the

fitness landscape may actually take longer than that needed to simply proceed

with the actual optimization process of finding a solution. More research effort

is required towards designing a computationally more efficient technique for

obtaining fitness values in fitness landscape analyses.

3. The operators involved in generating landscape points function only in the

genotype space. As such, these landscape measures do not provide any infor-

mation whatsoever concerning the genotype-to-phenotype mapping. Again, it

would be highly desirable to have a technique that is able to give some insights

into how different genotype-phenotype mappings affect the fitness landscapes.

4. Current landscape analysis methods only work with a single fitness function. If

the problem is multi-objective, then none of the existing measures are able to

generalize to higher dimensional objective spaces. For example, the parameter

ε from the information content analysis can only be used to perform analysis

on one objective function at a time. Furthermore, it does not show the degree

of correlation between the objective functions. With the resurgent interest
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in multi-objective optimization approaches for solving real-world problems, an

analysis technique able to characterize such multi-functioned landscapes would

be of great value to both researchers and industry practitioners alike.

5. The last and perhaps most serious drawback to current landscape analysis

techniques is their inability to capture the true landscape of evolving popu-

lations in EAs. Current methods rely on generating a single genotype and

tracing its single path through the fitness landscape. It must be remembered

that in EAs, an entire population is moving through the fitness landscape,

not just a single individual. Considerations need to be given to the coverage

of the search space achieved by the evolving population as the optimization

progresses. Additionally, concurrent evolutionary paths somehow need to be

tracked in order to provide a more accurate picture of how the actual forma-

tions present on the EA landscapes affect the transition of populations from

one generation to the next.

4.7 Chapter Summary

An analysis on the fitness landscape for four different types of ANN archi-

tecture yielded the following results:

• The advantages or disadvantages of having recurrent connections and/or di-

rect input-output connections in the ANN for controlling the artificial creature

remain unclear. In terms of average best solutions found, random search per-

formed better using NNType1 and NNType3, hill-climbing performed better

using only NNType1 whereas random walk showed no performance differences

whatsoever between the four types of architectures. Furthermore, hill-climbing

performed worse than both random search and random walk in three out of

the four architectures and worse than random walk in the remaining case. As

such, whether the search space difficulty is lowered by adding recurrent and/or

input-output connections to a standard feed-forward ANN architecture cannot

be concluded with certainty.
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• The fitness landscape of all four ANN architectures is highly similar. The

landscape analysis conducted using informational measures did not show any

discernable differences between the four search spaces.

• The fitness landscape of these evolutionary search spaces has both rugged and

smooth sections depending on the sub-spaces being explored. Additionally,

the variety of rugged shapes on the landscape is high indicating that epistatic

interactions between genes in the genotype are high. A correspondingly high

degree of modality in the fitness landscape was also noted.

• The solution space is highly heterogeneous — a uniform sampling of the geno-

type space yielded a highly skewed distribution of solutions in the objective

space.

• There are serious deficiencies associated with current landscape analysis me-

thodologies, especially for analyzing non-homogenous and anisotropic search

spaces, such as in artificial creature evolution. Additional limitations were also

noted for characterizing evolutionary search spaces using such techniques.

It remains unclear as to whether the NNType0, NNType1, NNType2 or

NNType3 architecture provides a more amenable search space. As such, experimen-

tation on all four architectures will be required in searching for fit artificial creature

controllers. In the next chapter, we will present our evolutionary optimization algo-

rithm using a Pareto multi-objective methodology for evolving controllers based on

these four ANN architectures.



Chapter 5

Multi-Objective Controller

Evolution

1 The artificial evolution conducted in prior studies have mainly focused on

single objectives, for example walking, swimming, light-following, block-pushing or

obstacle avoidance (Sims 1994b; Komosinski and Rotaru-Varga 2000; Hornby and

Pollack 2001a; Bongard 2002a). Although there have been some studies that ap-

pear to have multi-objectivity present in the evolutionary system, such as predator-

prey simulations (Cliff and Miller 1996; Nolfi and Floreano 2000; Floreano, Nolfi,

and Mondada 2001), body-brain co-evolution (Bongard and Paul 2000; Hornby and

Pollack 2001a) and evolution by physical competition (Sims 1994b), they do not

explicitly impose the evolutionary search on distinctly different optimization crite-

ria. In other words, these studies do not explicitly qualify the solutions in terms

of a Pareto set (explained in next section), which is a focal concept in evolutionary

multi-objective optimization (EMO). Consequently, the resulting artificial creatures

cannot exhibit clear trade-offs in terms of their different evolutionary goals. Here,

we propose a methodology for multi-objective evolution of creature controllers that

emphasizes the generation of Pareto optimal sets of solutions, that is the generation

of results that explicitly trade-off between two different and conflicting optimization

1Some of the material presented in this chapter have been previously published in Teo and

Abbass (2002a; 2002b; 2002c).

87
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objectives. More specifically, we will attempt to simultaneously minimize the num-

ber of hidden units used in the creature’s ANN controller while at the same time

maximize the horizontal distance travelled by the creature as guided by its ANN

controller. Hence, our proposed approach will produce a Pareto optimal set of con-

trollers that have clear delineations between optimizing network size and locomotion

capability through an EMO process.

First, we explain the concept of non-dominance and Pareto optimality.

Then, we present an overview of the literature concerning EMO algorithms. This

is followed by a review of the PDE family of EMO algorithms, which our proposed

Pareto EMO algorithm for generating controllers is based upon. Next, we explain in

detail our proposed algorithm called SPANN. This is then followed by a discussion

of the experimental setup for evolving locomotion controllers using the proposed

Pareto EMO methodology. As the experiments from the previous chapter did not

show any discernable differences between the search space difficulties associated

with the four different types of ANN architectures proposed in Section 3.3.3, we will

continue to experiment with all four ANN types. This will ascertain whether or not

significant advantages can be offered by the different ANN architectures under an

EMO paradigm. The remainder of the chapter presents a detailed discussion of the

results from these experiments.

5.1 Dominance and Pareto Optimality

The optimization problem (hereafter referred to as P1) can be stated as

(P1): Minimise f(x)

subject to: θ(x) = {x ∈ Rn | G(x) ≤ 0}

where x is the set of decision variables, f(x) is the objective function, G(x) is a

set of constraints, and θ(x) is the set of feasible solutions. If the optimization

problem is maximization, it is equivalent to a minimization problem by multiplying

the objective by (−1). Also, if a constraint is an equation, it can be represented

by two inequalities — one is “less than or equal” and the other is “greater than or
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equal”. A “greater than or equal” inequality can be transformed to a “less than

or equal” inequality by multiplying both sides by (−1). In short, any optimization

problem can be represented in the previous general form.

Two important types of optimal solutions will be used in this thesis, local

and global optimal solutions. Let us define the open ball, that is a neighborhood

centered on x̄ and defined by the Euclidean distance δ, as follows

Bδ(x̄) = {x ∈ Rn | ||x− x̄|| < δ}

Definition 1: Local optimality A point x̄ ∈ θ(x) is said to be a local minimum

of the optimisation problem iff ∃ δ > 0 such that f(x̄) ≤ f(x), ∀x ∈ (Bδ(x̄)∩
θ(x)).

Definition 2: Global optimality A point x̄ ∈ θ(x) is said to be a global mini-

mum of the optimization problem iff f(x̄) ≤ f(x), ∀x ∈ θ(x).

Usually, there is more than a single objective to be optimized in real life ap-

plications. In this case, the problem is called a multi-objective optimization problem

(MOP). The problem P1 can be re-defined as a general multi-objective optimization

problem, MOP1, by replacing the objective function f(x) with a vector of objectives

F (x) as follows

(MOP1): Minimize F (x)

subject to: θ(x) = {x ∈ Rn | G(x) ≤ 0}

When the objectives are in conflict, the existence of a unique optimal solution is

no longer a valid concept. The solution which satisfies the optimality conditions of

one objective may be a bad solution for another. Consequently, we need to redefine

the concepts of local and global optimality in multi-objective problems. To do this,

we define two operators, � and ≺ and then assume two vectors, X and Y . X � Y

iff ∃ xi ∈ X and yi ∈ Y such that xi 6= yi. X ≺ Y iff ∀ xi ∈ X and

yi ∈ Y, xi ≤ yi, and X � Y . � and ≺ can be seen as the “not equal to” and

“less than” operators over two vectors. We can now define the equivalent concepts

of local and global optimality in a MOP.
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Definition 3: Local efficient (non-inferior) solution: A vector of objective va-

lues F (x̄), x̄ ∈ θ(x) is said to be a local efficient solution of MOP iff @ x ∈
(Bδ(x̄) ∩ θ(x)) such that F (x) ≺ F (x̄) for some positive δ.

Definition 4: Global efficient (non-inferior) solution: A vector of objective

values F (x̄), x̄ ∈ θ(x) is said to be a local efficient solution of MOP iff @ x ∈
θ(x)) such that F (x) ≺ F (x̄).

Definition 5: Pareto solutions: A point x̄ ∈ θ(x) is said to be a Pareto solution

of MOP iff F (x̄) is a global efficient solution of MOP.
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Figure 5.1: Diagram illustrating the concept of dominance and Pareto optimality.

X-axis: Objective 1, Y-axis: Objective 2.

The concept of dominance and Pareto optimality is depicted in Figure 5.1.

Let us consider the case where there are three solutions A, B, and C and assume

that the two objectives 1 and 2 are to be maximized. A is not dominated by any

other solution since it has the highest value for objective 2. Similarly, B is not

dominated by any other solution since it has the highest value for objective 1. C

is not dominated by A since it has a higher value for objective 1. However, C is
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dominated by B since it has lower values for both objectives 1 and 2 compared to

B. Hence we have the following situation

dominate(A) = φ

dominate(B) = φ

dominate(C) = {B}

where dominate(C) denotes the set of solutions that dominate C. Therefore, the set

of non-dominated or Pareto optimal solutions are given by

Pareto Set = {A, B}

5.2 Evolutionary Multi-Objective Optimization

EMO combines the fields of evolutionary computation with multiple crite-

ria decision-making for solving multi-objective optimization problems (Zitzler 1999;

Deb 2001; Coello Coello, Van Veldhuizen, and Lamont 2002). EMO is an established

sub-field of optimization and has been utilized for solving both theoretical and prac-

tical multi-objective optimization problems for over ten years (Zitzler 2002). A large

range of practical applications of EMO to real-life problems across a host of different

disciplines can be found in the reference texts by Deb (2001) and Coello Coello, Van

Veldhuizen, and Lamont (2002). The literature surveyed on EMO covering general

reviews, specific algorithms and related applications in the areas of robotics and

artificial life is summarized in Table 5.1.

As explained in the preceding section, unlike in single-objective optimiza-

tion, a multi-objective optimization problem gives rise to a number of optimal solu-

tions, known as Pareto optimal solutions, of which none can be said to be better than

the others with respect to all objectives. EAs are particularly suited for tackling

multi-objective optimization problems by virtue of their population-based nature

that allows for the generation of multiple solutions of the Pareto set within a single

run (Deb 2001; Coello Coello, Van Veldhuizen, and Lamont 2002). Hence, the pri-

mary goal in EMO is to find or to approximate the set of Pareto optimal solutions

through an evolutionary optimization process.
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Type Description Reference
General - Goldberg (1989)
Reviews Zitzler (1999)

Van Veldhuizen and Lamont (2000a)
Zitzler, Deb, and Thiele (2000)
Deb (2001)
Coello Coello, Van Veldhuizen, and Lamont (2002)
Laumanns, Thiele, Deb, and Zitzler (2002)
Zitzler (2002)

Algorithms VEGA Schaffer (1984)
MOGA Fonseca and Fleming (1993)
NPGA Horn, Nafpliotis, and Goldberg (1994)
NSGA Srinivas and Deb (1994)
SPEA Zitzler and Thiele (1999)
ELSA Menczer, Degeratu, and Street (2000)
IEDS Parmee, Cvetkovic, Watson, and Bonham (2000)

MOMGA Van Veldhuizen and Lamont (2000b)
NSGA-II Deb, Agrawal, Pratab, and Meyarivan (2000)

PAES Knowles and Corne (2000)
MOMGA-II Zydallis, Van Veldhuizen, and Lamont (2001)

Abbass, Sarker, and Newton (2001);PDE
Abbass and Sarker (2002)

MPANN Abbass (2001; 2002a)
SPEA2 Zitzler, Laumanns, and Thiele (2001)
PCGA Kumar and Rockett (2002)
SPDE Abbass (2002b)

Applications Robotics Gacogne (1997; 1999)
& ICS Tan and Li (1997)

Coello Coello, Christiansen, and Aguirre (1998)
Dozier, McCullough, Homaifar, Tunstel, and

Moore (1998)
Pirjanian (1998; 2000)
Tan, Lee, and Khor (1999)
Leger (1999)
Teo and Abbass (2002a)
Teo, Nguyen, and Abbass (2003)

A-Life Oliveira, de Oliveira, and Omar (2000)
Oliveira, Bortot, and de Oliveira (2002)
Kim and Hallam (2002)
Teo and Abbass (2002b; 2002c; 2003)

Table 5.1: Summary of literature survey on EMO reviews, algorithms and related

applications in intelligent control systems (ICS), robotics and artificial life (A-Life).
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The seminal work on EMO was that of Schaffer (1984) where the Vector

Evaluation Genetic Algorithm (VEGA) was introduced for solving machine learning

problems. Goldberg (1989) later outlined a 10-point list of how EMO algorithms

can be formulated based on the concept of Pareto dominance, out of which a num-

ber of the early and well-known EMO algorithms were developed: Multi-Objective

Genetic Algorithm (MOGA) (Fonseca and Fleming 1993), Non-dominated Sorting

Genetic Algorithm (NSGA) (Srinivas and Deb 1994) and Niched Pareto Genetic

Algorithm (NPGA) (Horn, Nafpliotis, and Goldberg 1994). These algorithms share

two common properties in that solutions were ranked according to their dominance

in the population and diversity was maintained using a niching strategy. However,

these algorithms did not use any elite-preserving mechanism and as such, could

not guarantee convergence to the Pareto optimal solutions. More recent algorithms

have since focused on the use of elitism during the EMO process to improve on the

convergence properties, such as Strength Pareto Evolutionary Algorithm (SPEA)

(Zitzler and Thiele 1999), Pareto Archived Evolution Strategy (PAES) (Knowles

and Corne 2000), Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb,

Agrawal, Pratab, and Meyarivan 2000), Multi-Objective Messy Genetic Algorithm

(MOMGA) (Van Veldhuizen and Lamont 2000b), Strength Pareto Evolutionary

Algorithm 2 (SPEA2) (Zitzler, Laumanns, and Thiele 2001) and Multi-Objective

Messy Genetic Algorithm II (MOMGA-II) (Zydallis, Van Veldhuizen, and Lamont

2001).

A special issue of the Evolutionary Computation journal was published

on EMO algorithms in 2000 (edited by Deb and Horn) where a number of seminal

studies on EMO algorithms were presented. Firstly, multi-objective optimization

problems were rigorously defined and the theoretical development of EMO algo-

rithms was reviewed by Van Veldhuizen and Lamont (2000a). This article also

presented an early attempt at classifying the different types of EMO algorithms and

addressed specific issues such as fitness functions, Pareto ranking, niching, fitness

sharing, mating restriction and secondary populations. A systematic comparison

of a number of EMO algorithms was presented by Zitzler, Deb, and Thiele (2000)
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using a set of six test functions specially chosen to elucidate particular problems

associated with the EMO process. In this study, it was shown that elitism is partic-

ularly important for success in an EMO search. The PAES algorithm was introduced

by Knowles and Corne (2000) as a simple (1 + 1) evolutionary strategy algorithm

augmented with local search that is able to generate diverse solutions in solving

multi-objective optimization problems. In this study, six variants of PAES were

compared to variants of NPGA and NSGA over a diverse suite of six test functions.

The results showed that PAES consistently performed well over the range of test

functions. Parmee, Cvetkovic, Watson, and Bonham (2000) introduced the concept

of an Interactive Evolutionary Design System (IEDS) as a methodology which allows

EMO to be an interactive rather than a preset process. It was argued that such an

interactive process permits the redefinition of the variable and objective space over

the evolutionary process that will lead to a more finely tuned design environment.

A simple selection method called local selection, which is based on the comparison

of an individual’s fitness to a fixed threshold rather than to another individual, was

introduced by Menczer, Degeratu, and Street (2000) in an EMO algorithm called

Evolutionary Local Selection Algorithm (ELSA). It was shown that ELSA naturally

maintained genetic diversity by virtue of the local selection process and performed

well for three multi-objective optimization problems.

More recently, the Pareto Converging Genetic Algorithm (PCGA) proposed

by Kumar and Rockett (2002) eliminates the use of a niching strategy for diversity

maintenance and was shown to produce competitive results on three benchmark

problems while at the same time reducing computational cost. Laumanns, Thiele,

Deb, and Zitzler (2002) also recently researched on the problem of maintaining

diversity among the solutions while still being able to converge to the true Pareto

optimal solutions in EMO algorithms. The concept of ε-dominance was proposed

as a method for overcoming these problems and was shown that algorithms using

this methodology for archiving solutions will theoretically converge to the actual

Pareto-front in the limit while being able to maintain an optimal distribution of

solutions along this front.
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5.2.1 EMO in Control, Robotics and Artificial Life

EMO has been previously applied to the automated design of intelligent

control systems by Tan and Li (1997) and Tan, Lee, and Khor (1999). There have

also been studies on using true multi-objective optimization methods for the au-

tomatic design of artificial creatures. Pirjanian (1998, 2000) used multi-objective

optimization to generate action selection modules in a behavior-based robotics ex-

periment. However, this study utilized conventional mathematical optimization

methods and did not make use of an evolutionary optimization approach. Evo-

lutionary methods have been used to solve navigational problems with multiple

objectives for 2D mobile agents in simulation (Dozier, McCullough, Homaifar, Tun-

stel, and Moore 1998; Gacogne 1997; Gacogne 1999). Coello Coello, Christiansen,

and Aguirre (1998) also used an EMO approach for a robotics design problem but

this experiment involved only a non-autonomous subject in the form of an attached

robotic manipulator arm. Multi-objective evolutionary optimization has also been

used by Leger (1999) although the focus of the EMO approach was for optimiz-

ing the physical configurations of modular robotic components rather than for the

generation of autonomous robotic controllers. There have been a number of other

studies involving the use of some form of EMO for the design of robotic manipulator

arms as reviewed by Coello Coello, Van Veldhuizen, and Lamont (2002).

More recently, Oliveira, Bortot, and de Oliveira (2002) used an EMO ap-

proach in an artificial life study of 1D cellular automata for the density classification

task problem. It was reported that the use of an EMO approach offered signifi-

cant advantages in terms of defining and evaluating the fitness of evolving popu-

lations over a weighted sum approach carried out in a prior experiment (Oliveira,

de Oliveira, and Omar 2000). Kim and Hallam (2002) also recently reported the

use of EMO for solving the so-called Woods problem, which are goal-search prob-

lems for agents starting at random initial positions and having to find an end-state

goal position. The objective of the study was to quantify the amount of inter-

nal memory states required for the finite state machine controllers to solve a given

Woods task. Pareto-fronts of discrete internal memory states were minimized in a



CHAPTER 5. MULTI-OBJECTIVE CONTROLLER EVOLUTION 96

trade-off against maximizing the fitness of the agents, which were evaluated as the

minimum number of steps required to reach the end-state goal position from the

initial starting position. However, the artificial creatures were only very simple 2D

agents that acted in a discrete grid-world environment with movement allowed only

in the four cardinal directions. In this chapter, we will demonstrate the use of EMO

for evolving completely autonomous, embodied and situated creatures that act in

a 3D world with fully continuous and non-restrictive movements that trade-off be-

tween the number of internal nodes required in the neural network controller and

locomotion capability achieved. Furthermore, our experiments are aimed at gener-

ating legged locomotion in 3 dimensions rather than wheeled or mobile locomotion

behaviors that are restricted to 2 dimensions.

5.3 PDE Algorithm

Abbass et al. first introduced the Pareto-frontier Differential Evolution

(PDE) algorithm for vector optimization problems (Abbass and Sarker 2002; Ab-

bass, Sarker, and Newton 2001). PDE is a multi-objective adaptation of the original

Differential Evolution (DE) algorithm introduced by Storn and Price (1995) for op-

timization problems over continuous domains. The PDE algorithm outperformed

the SPEA algorithm (Zitzler and Thiele 1999) on five benchmark problems in this

introductory investigation.

PDE combined with local search was later introduced for evolving ANNs

in the MPANN algorithm (Abbass 2001). MPANN was found to be highly effective

for knowledge discovery in databases. In subsequent work, the MPANN algorithm

was empirically shown to possess better generalization in medical diagnosis of breast

cancer whilst incurring a much lower computational cost (Abbass 2002a).

In an extension to PDE, a self-adaptive version called Self-adaptive Pareto

Differential Evolution (SPDE) algorithm was proposed to allow for self-adaptation of

mutation and crossover rates during the optimization process (Abbass 2002b). Both

rates for new individuals are inherited from parents during crossover and mutated
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in the same process that occurs for decision variables. SPDE was found to be highly

competitive against 13 other EMO algorithms on four benchmark test functions and

actually outperformed a number of current state-of-the-art algorithms.

As described above, the SPDE algorithm has been found to be a highly

effective algorithm for optimization over a continuous domain. Moreover, it has also

been tested successfully for the evolution of ANNs. For these reasons, SPDE was

chosen as the algorithm for evolving the creature’s controllers since the parameters

that are being optimized in the evolutionary process are the real-valued weights of

the neural network. Furthermore, it provides an added advantage over the original

PDE algorithm since it allows for self-adaptation of the crossover and mutation

rates. It should be noted that other EMO algorithms may also be used to evolve

the creature’s controllers. However, since the objective of this work is to investigate

the application of an EMO approach for evolving artificial creature controllers and

not a comparison between EMO algorithms, the question of which EMO algorithm

will work best for this purpose is beyond the scope of this thesis and remains an

open question for future work.

5.4 Proposed SPDE-Based Controller Evolution

More recently, the SPDE algorithm has been combined with MPANN for

evolving artificial neural networks called the Self-adaptive Pareto Artificial Neural

Network (SPANN) algorithm (Abbass 2003). In this thesis, we propose a modified

version of SPANN for controller evolution. There are two major differences between

this proposed version and the original version of SPANN. Firstly, SPANN uses back-

propagation for learning. In the case of locomotion controller evolution, the task to

be learned is not clear-cut as in canonical classification problems. As such, the only

learning that takes place in the modified version of SPANN occurs only through

evolutionary adaptation. A possible future work would be to investigate the possi-

bility of augmenting the current proposed version of SPANN with lifetime learning

by somehow introducing a measure of error associated with the locomotion task,
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which would then allow back-propagation to be used. Nolfi (1999) has previously

shown how learning through back-propagation can be integrated with evolutionary

artificial neural networks to predict the next move state for an autonomous agent

in a 2D grid world. However, the prediction task required in this case involved only

movements in the four cardinal directions by virtue of the grid world. As such it

remains an open question how such a methodology can be applied to 3D physically

accurate embodied creatures living in virtual worlds with infinitely large numbers

of possible directions for locomotion.

Secondly, the repair function originally used in SPANN for evolving the

crossover and mutation rates (which truncates the whole number portion leaving

only the decimal portion), though useful for the data mining task, was found to

cause premature convergence of these rates to the lower boundary of 0 when evolv-

ing controllers. Consequently, the evolutionary optimization process would also

prematurely stagnate due to the lack of crossover and mutation during reproduc-

tion. Hence a new repair function as explained in Section 5.4.1 is proposed in the

modified version of SPANN to overcome this problem. For the remainder of the

thesis, this proposed version of the SPANN algorithm for controller evolution is re-

ferred to whenever the acronym SPANN is used. The pseudocode of this proposed

version of the algorithm is given in the next subsection.

5.4.1 The SPANN Algorithm

The pseudocode for the SPANN algorithm is as follows:

1. Create a random initial population of potential solutions. The elements of the

weight matrix Ω are assigned random values according to a Gaussian distri-

bution N(0, 1). The elements of the binary vector ρ are assigned the value 1

with probability 0.5 based on a randomly generated number according to a

uniform distribution between [0, 1], otherwise 0. The crossover rate δ and mu-

tation rate η are assigned random values according to a uniform distribution

between [0, 1].
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2. Repeat

(a) Evaluate the individuals in the population and label those who are non-

dominated.

(b) If the number of non-dominated individuals is less than 3 repeat the

following until the number of non-dominated individuals is greater than

or equal to 3:

i. Find a non-dominated solution among those who are not labelled.

ii. Label the solution as non-dominated.

(c) Delete all dominated solutions from the population.

(d) Repeat

i. Select at random an individual as the main parent α1, and two indi-

viduals, α2, α3 as supporting parents.

ii. Select at random a variable j.

iii. Crossover: With some probability Uniform(0, 1) > δα1 or if i = j,

do

ωchild
ih ← ωα1

ih + N(0, 1)(ωα2
ih − ωα3

ih ) (5.1)

ωchild
ho ← ωα1

ho + N(0, 1)(ωα2
ho − ωα3

ho ) (5.2)

ρchild
h ←





1 if (ρα1
h + N(0, 1)(ρα2

h − ρα3
h )) ≥ 0.5

0 otherwise
(5.3)

δchild ← δα1 + N(0, 1)(δα2 − δα3) (5.4)

ηchild ← ηα1 + N(0, 1)(ηα2 − ηα3) (5.5)

otherwise

ωchild
ih ← ωα1

ih (5.6)
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ωchild
ho ← ωα1

ho (5.7)

ρchild
h ← ρα1

h (5.8)

δchild ← δα1 (5.9)

ηchild ← ηα1 (5.10)

where each variable in the main parent is perturbed by adding to it a

Gaussian value N(0, 1) multiplied by the difference between the two

values of this variable in the two supporting parents. At least one

variable in Ω must be changed. If δ or η are not in [0, 1], repair by

adding (if < 0) or subtracting (if > 1) a random number between

[0, 1] until δ and η are in [0, 1].

iv. Mutation: With some probability Uniform(0, 1) > ηα1 , do

ωchild
ih ← ωchild

ih + N(0, ηα1) (5.11)

ωchild
ho ← ωchild

ho + N(0, ηα1) (5.12)

ρchild
h ←





1 if ρchild
h = 0

0 otherwise
(5.13)

δchild ← N(0, 1) (5.14)

ηchild ← N(0, 1) (5.15)

(e) Until the population size is M

3. Until maximum number of generations is reached.
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5.5 Experimental Setup

Four series of experiments were conducted to compare the evolution of

controllers using the four different types of ANN architecture. The fitness of each

genotype in these experiments was evaluated according to both the f1 and f2 ob-

jective functions, which measures the locomotion distance achieved and number of

hidden units used by the controller respectively as defined in Section 3.4.1. The

evolutionary and simulation parameters used were as reported in Section 3.5: 1000

generations, 30 individuals, 500 timesteps and 10 repeated runs. As with the fitness

landscape experiments in Chapter 4, the maximum number of hidden units allowed

in the ANN was set to 15. Being the objects of the evolutionary optimization pro-

cess, the locomotion distance and number of hidden units used in the ANN were

recorded for every individual generated in every generation.

First, we analyze the optimization results from the evolution of creature

controllers for the four types of ANN architectures. Next, we compare the con-

trollers obtained using our SPANN algorithm against those obtained from using the

random search, hill-climbing and random walk algorithms. Then, we analyze the

evolutionary dynamics at the individual as well as population level of genotypes gen-

erated during the evolutionary optimization process to provide a deeper insight into

how the evolution of controllers affects the evolution of locomotion capabilities in a

physically simulated artificial creature. This is followed by a characterization of the

search space difficulty associated with each of the four types of ANN architectures

to investigate whether any of the four ANN architectures provide any significant ad-

vantages in terms of evolutionary search for controllers with high locomotion fitness.

Finally, we analyze the operational dynamics of the overall best controller evolved

for locomotion distance using the SPANN algorithm to ascertain what is actually

happening in the creature’s limbs as they are controlled by the evolved ANN during

locomotion as well as the effect of noise on the performance of the evolved ANN

controller.
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5.6 Results and Discussion
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Figure 5.2: Pareto-front of solutions obtained for 10 runs using the SPANN algo-

rithm for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right), 3.

NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Locomotion distance,

Y-axis: No. of hidden units.

The Pareto-fronts achieved at the last generation for each of the 10 runs

are plotted in Figure 5.2. It can be noticed that a variety of solutions in terms of

controller size and locomotion capability was obtained in the majority of the evolu-

tionary runs. Most of the solutions on the Pareto-frontier comprised of controllers

with less than 5 hidden units in the ANN. This is an indication that larger networks

did not offer significant advantages in terms of generating better locomotion capa-

bilities compared to smaller networks. There were no obvious differences between
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the four different types of ANN architectures. However, having direct input-output

connections did have an observable effect on networks with 0 hidden units. The

locomotion achieved with NNType1 (Figure 5.2.2) and NNType3 (Figure 5.2.4) ar-

chitectures ranged between 2 up to almost 15 whereas NNType0 (Figure 5.2.1) and

NNType2 (Figure 5.2.3) architectures were clustered between 2 to 4. It should be

pointed out that although NNType0 and NNType2 networks with 0 hidden units do

not have any sensor-to-motor mappings whatsoever, some small movement is still

achieved due to the initial forces generated from the outputs of the these networks

since an activation value of zero would still produce an output signal of 0.5 by virtue

of the sigmoidal transfer function — however, without any mapping between the in-

put and output layers of the networks, this initial movement is unsustainable due

to the lack of synchronization ability (Teo and Abbass 2002a). Hence, NNType1

and NNType3 controllers with direct input-output connections could achieve suffi-

ciently good locomotion capabilities without requiring a hidden layer. The ability

of such pure reactive agents for solving complex sensory-motor coordination tasks

have previously been reported in wheeled robots (Lund and Hallam 1997; Pasemann,

Steinmetz, Hulse, and Lara 2001a; Nolfi 2002). These direct connections between

the input and output layers also appeared to have generated Pareto optimal net-

works with smaller sizes in a large majority of the runs. This may be due to the fact

that the direct input-output connections are already providing a good mechanism

for basic locomotion, thus requiring only a few extra hidden units to further improve

on this basic locomotion.

The largest network on the Pareto-front can be found with the NNType2

architecture using up to 13 hidden units. This suggests that the recurrency is some-

how making the locomotion task more difficult to learn and thereby adding unneces-

sary complexity to the task (it must be remembered that the recurrent connections

in NNType2 are already themselves adding structural complexity to the ANN ar-

chitecture). This observation is supported by comparing against the Pareto optimal

controllers obtained using the simple feed-forward-only NNType0 architecture, a

number of which utilized fewer hidden units than the NNType2 Pareto optimal
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controllers but were still able to achieve highly similar locomotion capabilities.
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Figure 5.3: Best locomotion distance of Pareto solutions obtained over 1000 gener-

ations for 10 runs using the SPANN algorithm for ANN architecture 1. NNType0

(top left), 2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom

right). X-axis: Generation, Y-axis: Locomotion distance.

The evolution of the Pareto solution for best locomotion distance using the

SPANN algorithm for the 10 runs over 1000 generations is depicted in Figure 5.3.

No marked differences between the four ANN architectures could be seen. Most

of the improvement occurred early during the evolutionary process where in most

runs, the best solution exceeded a locomotion capability of beyond 10 units by the

150th generation. Compared to the best solutions obtained using random search,

hill-climbing and random walk, the EMO algorithm provided a smoother progress
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over time in discovering fitter solutions. This may be an indication that the land-

scape is explored better using EMO. Among the four different ANN architectures,

NNType1 appeared to have the least amount of variation in terms of the best solu-

tion obtained over the 10 different runs (Figure 5.3.2). On the other hand, NNType2

showed much larger differences between the 10 runs (Figure 5.3.3). This might be

an indication that the additional direct input-output connections exhibited a less

rugged landscape compared to additional recurrent-only connections in the ANN

when evolving controllers using the EMO algorithm. In the former case, most of

the runs were able to proceed along more similar paths due to the presence of a

smoother landscape, thereby leading to less variation among solutions.

NNType Overall Best Average Best t-statistic
Locomotion Locomotion Distance (against NNType0)

Distance ± Standard Deviation
0 16.4104 13.4755 ± 1.8613 -
1 16.5375 13.6866 ± 1.8318 0.30
2 16.5418 12.7079 ± 2.4674 (0.87)
3 17.6994 13.9626 ± 1.7033 0.53

Table 5.2: Comparison of best locomotion distance for Pareto solutions found using

the SPANN algorithm over 10 independent runs.

The overall best Pareto solution in terms of locomotion fitness together

with the mean best locomotion fitness and standard deviations obtained using the

SPANN algorithm are given in Table 5.2. The overall and average best solutions

were obtained with the NNType3 architecture although the differences between ar-

chitectures were small. A t-test at both α = 0.05 and α = 0.01 significance levels

showed no significant differences between the four ANN architectures in terms of

the best solutions obtained over 10 independent runs. The lowest average best loco-

motion fitness was given by NNType2, which also showed a much larger deviation

among the best solutions found compared to the other architectures. This supports

the earlier observation that the evolutionary path encountered when using addi-

tional recurrent-only connections in NNType2 was more rugged, leading to greater

variation among solutions.

Table 5.3 lists the global Pareto optimal solutions found by SPANN over
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NNType No. of Hidden Units Locomotion Distance
0 0 4.9981

1 10.6792
2 14.1010
3 14.9951
4 16.4104

1 0 14.6870
4 15.2998
5 16.4548
6 16.5375

2 0 4.5740
1 15.4944
9 16.5418

3 0 14.7730
1 15.7506
2 16.2295
3 17.0663
4 17.6994

Table 5.3: Comparison of number of hidden units used and locomotion distance

for global Pareto optimal controllers obtained using the SPANN algorithm over 10

independent runs.

the 10 runs for each type of ANN architecture. The solutions with the highest

locomotion fitness used between 4 and 9 hidden units in the ANN controller. For

NNType0 and NNType3, the maximum number of hidden units required to generate

the best locomotion was only 4 hidden units whereas NNType1 required 6 hidden

units. NNType2 required the most number of hidden units (9). It is interesting to

note that by allowing direct input-output connections in NNType1 and NNType3,

controllers which did not use the hidden layer at all (0 hidden units) could generate

a sufficiently good locomotion ability, moving the creature up to a distance of 14.7

and 14.8 units respectively. This is empirical proof that perceptron-like controllers,

which rely only on input-to-output connections without any internal nodes, are

sufficient for generating simple locomotion in a four-legged artificial creature. As

previously pointed out, this phenomenon has been previously observed to occur in

wheeled robots as well (Lund and Hallam 1997; Pasemann, Steinmetz, Hulse, and

Lara 2001a; Nolfi 2002). As such, robots that are only required to perform simple
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tasks can be evolved as purely reactive agents, which would dramatically simplify the

process of synthesizing successful robot controllers. As previously explained in the

first paragraph of this section, for NNType0 and NNType2 controllers with 0 hidden

units, there is still an act of force on the creature produced by the zero-activation

output from these networks that permit the small initial movements.

5.6.1 SPANN vs. Random Search, Hill-Climbing and Ran-

dom Walk

NNType Algorithm Average Best t-statistic No. of
Locomotion Distance (against Hidden
± Standard Deviation SPANN) Units

0 SPANN 13.4755 ± 1.8613 - 6.5 ± 2.0
Random Search 7.5406 ± 0.6733 (9.96) 10.0 ± 2.3
Hill-Climbing 5.5969 ± 0.9714 (11.39) 7.0 ± 2.3
Random Walk 9.7725 ± 1.2009 (4.63) 7.4 ± 2.1

1 SPANN 13.6866 ± 1.8318 - 4.1 ± 3.5
Random Search 10.0931 ± 0.7348 (6.06) 7.4 ± 4.0
Hill-Climbing 8.4652 ± 2.6246 (5.45) 7.4 ± 2.0
Random Walk 10.4776 ± 0.9616 (4.84) 7.4 ± 2.2

2 SPANN 12.7079 ± 2.4674 - 6.2 ± 3.5
Random Search 7.3609 ± 0.7490 (7.02) 10.9 ± 2.5
Hill-Climbing 7.6568 ± 2.9365 (3.49) 6.4 ± 2.5
Random Walk 9.5602 ± 1.3372 (3.59) 8.2 ± 2.0

3 SPANN 13.9626 ± 1.7033 - 4.9 ± 2.6
Random Search 10.2878 ± 1.2747 (5.59) 9.2 ± 4.2
Hill-Climbing 6.9057 ± 1.5719 (11.46) 6.8 ± 2.2
Random Walk 10.0333 ± 1.2535 (5.78) 7.0 ± 1.4

Table 5.4: Comparison of best locomotion distance for Pareto/best solutions ob-

tained over 10 independent runs using the SPANN, random search, hill-climbing

and random walk algorithms over 10 independent runs.

Table 5.4 provides a comparison of the best results for locomotion distance

obtained using the SPANN, random search, hill-climbing and random walk algo-

rithms. For all four ANN architectures, the SPANN algorithm produced controllers

that had much higher locomotion capabilities than controllers obtained using ran-

dom search, hill-climbing and random walk. To confirm that the results obtained
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using the proposed SPANN algorithm were significantly superior, a t-test was con-

ducted. At both significance levels of α = 0.05 and α = 0.01, the best solutions

obtained using SPANN over 10 independent runs were all significantly higher in

terms of locomotion fitness than random search, hill-climbing and random walk

across all four ANN architectures.

The last column of Table 5.4 shows the average number of hidden units

used in the ANN of the best controller evolved for locomotion distance obtained over

the 10 different runs. It is clear that with the additional optimization objective of

minimizing the number of hidden units used in the ANN for the SPANN algorithm,

the number of hidden units required by the best controllers obtained from evolution

for all four different types of ANN architectures were lower than those obtained

using random search, hill-climbing and random walk, which were just optimizing

along the single objective of locomotion distance. However, what is interesting is

the fact that a significantly higher locomotion distance was achieved with a smaller

controller size when the EMO algorithm was used. This may be explained by the

strong evolutionary pressures on the survival of controllers within the population

during reproduction and selection, thereby playing a significant role in forcing con-

trollers to become increasingly efficient at locomotion as well as requiring fewer

active hidden units in the ANN controller. Moreover, the inclusion of a second ob-

jective to the optimization process may have provided an extra-dimensional bypass

in which the SPANN algorithm was able to reach a fitter solution space compared

to random search, hill-climbing and random walk. This phenomenon has been pre-

viously encountered during the evolution of walking behavior in a simulated biped

robot when additional morphological parameters for size and mass distribution of

body segments were added to the original chromosome of the artificial creature

(Bongard and Paul 2001). The EMO methodology may have naturally created

the extra-dimensional bypass through the optimization of multiple objectives. The

extra-dimensional bypass may have also arisen from the usage of ρ, which allows

hidden units to continuously evolve even though it may be inactive during certain

periods of the evolutionary process.
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5.6.2 Evolutionary Dynamics
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Figure 5.4: Non-dominated solutions generated by the SPANN algorithm over 1000

generations for runs using the first seed for ANN architecture 1. NNType0 (top left),

2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom right).

X-axis: Generation, Y-Axis: No. of hidden units, Z-axis: Locomotion distance.

Additional graphs can be found in the accompanying CD-ROM.

Figure 5.4 illustrates the evolution of non-dominated solutions over 1000

generations from the first run using the four different ANN architectures. Three main

results can be concluded from the analysis of these graphs, which are representative

of the dynamics of controller evolution from the other 9 runs conducted for each of

the architecture types respectively. Firstly, a large variety of solutions in terms of

locomotion capability and controller size is maintained throughout the evolutionary
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process. The evolution starts off with an even spread of solutions across the range

of permissible hidden layer sizes. A high level of evolutionary activity can then

be seen to occur before the 250–300th generation. During this evolutionary era,

solutions with different controller sizes and locomotion capabilities were actively

competing for survival as non-dominated solutions that will be carried over to the

next generation as parents. After the initial flurry of evolutionary activity, the

optimization process begins to stabilize after the 400–500th generation. Even at the

end of 1000 generations, between 3 to 6 different Pareto controllers in terms of the

number of hidden units used in the ANN were still present in the optimal set of

solutions out of a possible 16 different configurations for active hidden units.

Secondly, the graphs show that some genotypes with a certain hidden layer

architecture disappears from the non-dominated set of solutions and then reap-

pears, for example controllers with 8 hidden units in NNType0 (Figure 5.4.1) and

controllers with 5 hidden units in NNType2 (Figure 5.4.3). This phenomenon is

indicative of the evolutionary search process moving through the fitness landscape

by experimenting with different hidden layers sizes and eventually re-discovering a

network configuration previously used but now with added locomotion capabilities.

Lastly, we see from the evolutionary dynamics of controller evolution that

it is generally very hard for larger controllers with more hidden units to survive

due to the strong evolutionary pressure of trading-off the ANN performance and its

complexity. This observation is attributed to the fact that a larger controller does

not easily lead to locomotion abilities that can’t be achieved with a smaller controller

in this particular problem. As a result, larger controllers find it hard to compete

with smaller controllers in trying to maximize the horizontal distance travelled by

the quadruped.

In summary, the multi-objective approach maintains genetic diversity by

allowing individuals with different controllers and capabilities to be retained within

the genetic pool. This shows that the EMO approach is highly advantageous since

it allows for simultaneous maintenance of genetic diversity as well as survival of

individuals that exhibit particular advantages over the rest of the population. The
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maintenance of genetic diversity using an EMO approach has recently been verified

by Abbass and Deb (2003).
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Figure 5.5: Mean locomotion distance of population over 1000 generations (selected

seeds only) using the SPANN algorithm for ANN architecture 1. NNType0 (top

left), 2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom

right). X-axis: Generation, Y-Axis: Locomotion distance. Additional graphs can

be found in the accompanying CD-ROM.

Next, we analyze the mean of the population for locomotion distance as it

evolved over 1000 generations, which is depicted in Figure 5.5. There were gener-

ally four trends in the movement of the population mean during the evolutionary

optimization process present across the four types of ANN architectures. The most

commonly occurring trends in the population means were that of an early increase
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followed by a decrease and then stabilizing into a constant range, which is depicted

in Figure 5.5.1, and that of a slow and small increase over time, which is depicted in

Figure 5.5.4. However, there were also instances where there was a sudden evolution-

ary jump into a much higher fitness space which was then maintained throughout

the evolutionary process, as shown in Figure 5.5.2. This can be explained by reach-

ing an evolutionary peak and maintaining the search process within this high fitness

subspace, perhaps assisted by the presence of a large basin of attraction associated

with this subspace. This occurrence may also be indicative that the majority of

new solutions being generated are located near or close to a newly-found superior

solution, which results in the increase in population mean since new solutions being

generated have fitness values close to this superior individual. Finally, there were

also occurrences of the opposite phenomenon, that of a sudden decrease in the pop-

ulation mean, indicative of reaching an evolutionary peak which is surrounded by

low fitness subspaces, as illustrated in Figure 5.5.3. This again suggests the pres-

ence of a large basin of attraction, this time associated with a low fitness subspace.

Overall, these results support the earlier characterization of the random walk fitness

landscape using informational measures (Section 4.5.3.1) which showed that there

were a variety of shapes present on the evolutionary landscape and that depending

on the initialization and trajectory of the search process, smooth or highly rugged

landscape regions may be encountered.

NNType Average Locomotion Distance ± Standard Deviation
0 3.9848 ± 0.7972
1 5.5943 ± 1.9875
2 3.4466 ± 1.2297
3 5.1650 ± 1.7368

Table 5.5: Mean and standard deviation of all individuals’ f1 fitness generated within

all generations and over all 10 runs for SPANN. The average is calculated over

300,000 individual f1 fitness recorded across the entire evolutionary optimization

process.

Table 5.5 lists the average locomotion fitness achieved by all individuals

generated throughout the 1000 generations over 10 runs. On average, the fitness
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space occupied by the evolving population was highest in NNType1 followed closely

by NNType3. Correspondingly, a much lower fitness region of the search space was

occupied by the evolving populations of NNType0 and NNType2. This indicates

that the NNType1 and NNType3 architectures, which have the direct input-output

connections, permitted reproduction of offspring that were generally fitter than those

produced by NNType0 and NNType2. The inclusion of direct input-output connec-

tions introduces some sort of a lower bound on the performance of controllers having

the NNType1 and NNType3 architectures since these direct input-output connec-

tions are not subjected to evolutionary pressures and hence are always present in

any controller of these types. On the other hand, controllers using NNType0 and

NNType2 architectures have no such lower bound since controllers of these types

that use no hidden units will not have any mapping between the input and output

layers whatsoever. Nonetheless, it should be noted that although the fitness regions

occupied by the evolving populations of NNType1 and NNType3 were higher than

that of NNType0 and NNType2, no significant advantages were evident in terms of

leading the search towards a more optimal final solution since a t-test showed that

there were no significant differences between the best locomotion distances of the

Pareto solutions found using the four different types of ANN architecture (see Table

5.2).

5.6.3 Search Space Characterization

The distribution of genotypes generated during the EMO search process

is plotted in Figure 5.6 in terms of locomotion distance and number of hidden

units used in the ANN. Except for NNType1, the distribution of solutions obtained

across the solution space was less clustered for all other architectures using the

EMO algorithm compared to random search, hill-climbing and random walk. This

suggests that the EMO search process was able to sample more uniformly across both

objective spaces in spite of having the added optimization criterion of minimizing

the number of hidden units used in the ANN. In NNType1, a number of spikes

in the frequency distribution could be seen (Figure 5.6.2). A separate graph is
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Figure 5.6: Frequency distribution of solutions using the SPANN algorithm for ANN

architecture 1. NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom

left), 4. NNType3 (bottom right). X-axis: Locomotion distance, Y-axis: No. of

hidden units, Z-axis: Frequency.

plotted for this architecture in Figure 5.7. This occurrence is discussed further in

the next paragraph where the concentration of solutions in terms of the two separate

objectives is more evident in the accompanying contour graphs. Furthermore, for

all four architectures, a significantly larger proportion of individuals were generated

in the fitter regions of the locomotion objective space compared to random search,

hill-climbing and random walk.

The contour graphs in Figure 5.8 illustrate the distribution of solutions

across the two objectives of minimizing the hidden layer and maximizing locomotion
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Figure 5.7: Frequency distribution of solutions obtained using the SPANN algorithm

for ANN architecture NNType1 with re-scaled frequency axis. X-axis: Locomotion

distance, Y-axis: No. of hidden units, Z-axis: Frequency.

distance. Compared to hill-climbing and random walk, the effect of having an extra

objective in the form of minimizing the number of hidden units used in the ANN can

be seen from the slight shift in distribution of solutions towards the lower halves of

the graphs, which is very prominent in NNType3 (Figure 5.8.4) and most obvious in

NNType1 (Figure 5.8.2). As was discussed previously, the presence of direct input-

output connections allowed the search process to find effective locomotion controllers

using a very small number of hidden units or none at all. For NNType1, the spikes

highlighted in the previous paragraph can be seen in the high fitness regions of both

objective spaces using only 0 or 1 hidden units and achieving between 9 and 15 units

of locomotion distance.

The probability density function of solutions obtained using the SPANN

algorithm is illustrated in Figure 5.9 for all four ANN architectures. The graphs

clearly show that the probability of encountering fitter solutions in terms of lo-

comotion distance was much higher than in all previous search algorithms. The

probability density curves were similar to a large extent across all four architec-

tures in terms of the locomotion fitness. From the cumulative curve, it can be

seen that for NNType0 (Figure 5.9.1) and NNType2 (Figure 5.9.3), the probability
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Figure 5.8: Contour graphs of frequency distribution of solutions obtained using the

SPANN algorithm for ANN architecture 1. NNType0 (top left), 2. NNType1 (top

right), 3. NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Locomotion

distance, Y-axis: No. of hidden units.

of generating controllers approached 0 beyond a locomotion capability of 12 units

whereas for NNType1 (Figure 5.9.2) and NNType3 (Figure 5.9.4), the probability

only approached 0 beyond a locomotion capability of 14 units. This is another weak

indication that the direct input-output connections provided an easier path to reach

fitter controllers in terms of locomotion capability while the recurrent connections

did not appear to provide any significant advantages over the simple feed-forward

ANN architecture that had no extra connections between layers.
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Figure 5.9: Density (solid) and cumulative (dashed) probability distribution of solu-

tions obtained using the SPANN algorithm for ANN architecture 1. NNType0 (top

left), 2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom

right). X-axis: Locomotion distance, Y-axis: Probability.

5.7 Operational Dynamics

5.7.1 Behavior Inside and Outside Evolutionary Window

A top-down view of the artificial creature’s path as controlled using the

overall best ANN evolved for locomotion distance is plotted in Figure 5.10.1 for the

actual period between 1–500th timestep where the fitness of the controller is being

evaluated. A second graph of the artificial creature’s path for the period between

the 501–1000th timestep is plotted in Figure 5.10.2 to observe the locomotion be-
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Figure 5.10: Path taken by artificial creature as controlled by overall best ANN

evolved for locomotion distance using the SPANN algorithm — NNType3: 4 Hidden

Units. 1. 1–500th timestep (left), 2. 501–1000th timestep (right) X-axis: X-Plane,

Y-axis: Z-Plane (in Vortex, the Z-Plane is the Y-axis).

havior beyond the actual fitness evaluation window used during evolution. This

controller has the NNType3 architecture and uses 4 hidden units. Although the

path taken was not exactly a straight line, it did however maximize the horizontal

distance moved fairly well. It begins from the origin at coordinates (0,0) and after

500 timesteps ends approximately at coordinates (−6.9,−16.5). This emergent be-

havior is interesting in that although the initial setup has the creature’s forwards

orientation as being in the positive coordinate areas of the X-Plane and Z-Plane,

the evolved locomotion behavior was in fact a backwards oriented walk if the ini-

tial positioning of the creature is taken as the reference frame. Visualization of the

other global Pareto solutions revealed similar orientations for the evolved locomo-

tion behaviors (interested readers can view video clips of these evolved behaviors in

the accompanying CD-ROM). This can be explained by the fact that all the global

Pareto solutions using the NNType3 architecture were actually obtained from one

run using a particular seed. Across the global Pareto solutions obtained with other

architectures using SPANN as well as other algorithms, the majority of the evolved

controllers produced movement in the forwards direction rather than this backwards
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movement. The design of the creature’s limbs and in particular how the joint con-

straints were set up allowed for both forwards and backwards oriented walks to be

evolved. Note that the initial movement seen in the other direction from coordi-

nates (0,0) to approximately (0.5,0) occurred during the standing up phase of the

creature’s locomotion. Once the creature stood up, it then started the backwards

oriented walk to achieve the maximal horizontal distance moved.

Towards the end of the walk, the path could be seen to start curving

back towards the X-Plane. The continuation of this peculiar behavior beyond 500

timesteps as controlled by this evolved ANN can be seen in the plot of the path in

Figure 5.10.2. Nonetheless, the creature was still able to walk in a fairly straight

line thereby achieving a reasonably maximal locomotion distance during this next

500 timesteps. If the path of the creature is considered over the entire 1-1000th

timestep, what this analysis shows is that the operational dynamics of the evolved

behavior during the period which the controller was actually evolved to perform can

be quite different to the operational dynamics when used beyond its evolutionary

design period. This phenomenon relates back to what was highlighted by Ronald

and Sipper (2001) in that the use of biologically-inspired solutions in engineering

problems may be problematic because unexpected and sometimes unwanted results

or behaviors might arise (discussed in the last paragraph of Section 2.3).

5.7.2 Limb Dynamics

The outputs generated from the operation of the overall best controller

evolved for locomotion distance to Actuators y1–y8 are plotted in Figure 5.11. In

all except one of the outputs, sine-like wave signals were generated by the evolved

ANN to the motors in the respective limb actuators. This is consistent with the

evolved walking behavior which is cyclic in nature.
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It is also interesting to note that the signals generated were quite distinctive

over time as near maximal outputs of either 0 and 1 at the peaks and troughs of

the cycle were being generated by the ANN. This behavior is close to the optimal

control strategy known as “Bang-Bang Controls”, which take their values on the

extreme points (in our case, 0 and 1) (Macki and Strauss 1982). In terms of the

single output which generated a totally flat signal of practically 0 magnitude over

time (Figure 5.11.7), this indicated the presence of a passively-controlled lower limb,

which obtained its swinging motion from the movement of the attached upper limb.

A visual inspection of the creature in simulation confirmed that this limb did in

fact exhibit some dynamical behavior during locomotion. This suggests that the

evolutionary search found a simpler control solution through the use of a passive

dynamic limb (McGeer 1990).

Limbs Correlation Coefficient
Upper and Lower Back Left 0.9410
Upper and Lower Front Left −0.9648
Upper and Lower Back Right 0.0376
Upper and Lower Front Right −0.9998

Table 5.6: Correlation coefficients for neural network outputs between the upper

and lower limbs of each leg.

Another interesting dynamical behavior that emerged from the outputs

of the ANN is that the component limbs in all of the legs learnt to coordinate and

synchronize their movements within each leg, with the exception of the leg containing

the passive dynamic limb. This is evidenced by the very high correlation between

the upper and lower limbs of the back left, front left and front right legs as shown

in Table 5.6. For a legged gait with good locomotion capabilities, the constituent

components in each leg would be expected to function as a cohesive unit in order for

each leg to generate useful movements for locomotion. The outputs to the individual

limb actuators for the back left leg have evolved to be almost entirely in-phase, as

evidenced by the very high positive correlation coefficient (0.9419). On the other

hand, the outputs to the individual limb actuators for the front left and front right

legs have evolved to be almost entirely out-of-phase, as evidenced by the very high
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negative correlation coefficients (−0.9648 & −0.9998). This shows that the neural

network controller has learnt to coordinate and synchronize between the limbs of

each leg, thereby allowing for successful locomotion to occur.

5.7.3 Effects of Noise

In this section, we investigate the effects of noise on the performance of

the overall best evolved controller for locomotion distance obtained from SPANN.

Seven different levels of noise were applied to the joint angle sensors, touch sensors

and outputs to the actuators individually as well as in combination for all three

elements. Random noise levels ranging from 1% to 50% of the individual ranges of

values for these sensors and actuators (see Section 3.2) were applied.

Noise Locomotion Locomotion Locomotion Locomotion
Level Distance Distance Distance Distance

with Noise in with Noise in with Noise in with Noise in
Joint Angle Touch Sensors Actuators All Sensors

Sensors and Actuators
1% 13.4402 ± 1.7281 14.3599 ± 0.9073 13.8640 ± 0.9970 13.8147 ± 1.2219
5% 13.2121 ± 2.0271 12.5348 ± 1.0275 13.2310 ± 0.7213 11.2828 ± 0.8163
10% 11.8406 ± 1.2960 10.6214 ± 1.3914 12.9669 ± 1.2229 9.5492 ± 0.5552
20% 8.7969 ± 0.8017 6.3701 ± 1.9298 10.8933 ± 2.5271 4.8763 ± 0.4763
30% 6.8828 ± 0.4429 3.5598 ± 1.2999 8.8441 ± 1.9260 2.6185 ± 1.0707
40% 6.6890 ± 0.6028 1.6049 ± 1.1109 6.7339 ± 1.7209 1.2486 ± 0.6111
50% 6.7256 ± 0.9367 1.3050 ± 1.0950 3.7132 ± 1.9092 1.2153 ± 0.4210

Table 5.7: Comparison of average locomotion distance achieved over 10 runs by

overall best controller evolved for locomotion distance using the SPANN algorithm

with varying noise levels in the sensors and actuators.

Table 5.7 lists the average and standard deviation of locomotion distances

achieved by the overall best locomotion controller from SPANN with varying levels

of noise applied to the sensors and actuators of the artificial creature. The perfor-

mance of the controller degraded monotonically in all cases as the level of noise was

increased from 1% to 50%, except for 50% noise in the joint angle sensor. At the

lowest level of noise of 1%, the least significantly affected component was the touch

sensor which still achieved on average 81.1% of the original locomotion distance.
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However, as the noise level was increased, the touch sensors seemed to be most af-

fected by the presence of noise. In all cases where noise ranging from 5% to 50% was

applied to the individual components, the lowest average locomotion distance was

obtained when there was the presence of noise in the touch sensors. When noise was

introduced to all sensors and actuators of the artificial creature in combination, the

performance was lower than in all cases where noise was applied to each individual

component except for 1% noise in the joint angle sensors. A visual inspection of the

artificial creature in simulation with 10% random noise added to the sensors and

actuators both individually and in combination revealed that the major character-

istics of the locomotion behavior was still present, such as the backwards oriented

walk and general movement of the limbs (interested readers can view video clips of

a sample of these behaviors in the accompanying CD-ROM). Therefore, the evolved

controller was still able to perform reasonably well with low levels of noise present

in the sensors and actuators of the artificial creature.

5.8 Advantages of Pareto EMO

From these experiments, it can be seen that the most significant advantage

in using a Pareto EMO approach for studying the evolution of artificial creatures as

proposed in our SPANN algorithm is that a variety of controllers can be generated in

a single evolutionary run without requiring any further modification of parameters by

the user. This means that an entire set of controllers with varying network sizes and

locomotion capabilities can be generated at once, allowing for comparisons between

creatures with different abilities and controllers to be made after just a single run is

conducted for each type of creature. As such, the Pareto EMO approach provides

a flexible and convenient platform for conducting investigations into the evolution

of artificial creatures. This represents a significant advantage over single-objective

evolutionary systems that need to be re-run multiple times in order to test the

effect of other factors such as number of hidden units on the locomotion capability

of the artificial creatures (Bongard and Pfeifer 2002). Such a setup would require a
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significantly larger number of evolutionary runs before a suitable set of controllers

with different network characteristics and locomotion capabilities can be obtained

in order to conduct comparisons between different creature designs. An alternative

method would be to re-formulate the problem by taking a weighted sum of the two

objectives into a single objective. However, there are a number of drawbacks in using

a weighted sum methodology, which we discuss in detail later in Section 6.4.2. In

short, the Pareto EMO paradigm allows the user the option to conveniently choose

from a variety of controllers with varying architectural complexities and locomotion

competencies to suit the eventual simulation environment, constraints and purposes.

A further advantage of using a Pareto multi-objective approach for arti-

ficial evolution is that genetic diversity is maintained naturally during the course

of the evolutionary process (Abbass and Deb 2003). A common problem with evo-

lutionary optimization algorithms is premature convergence due to loss of genetic

diversity and this phenomenon has been observed to cause problems in the artificial

evolution of virtual creatures as well (Komosinski and Rotaru-Varga 2001). In a

simple artificial life ecosystem, mutualism (Pachepsky, Taylor, and Jones 2002) was

proposed as a method for promoting genetic diversity and was shown to improve

evolvability as well as population stability in the artificial evolutionary system. Here,

we propose an evolutionary multi-objective algorithm that promotes reproductive

diversity by allowing the evolutionary process to optimize along two separate and

distinct goals of minimizing network size while maximizing locomotion ability. This

type of evolutionary optimization algorithm therefore fits well into the scheme of

creating artificial creatures. In this case, evolutionary creativity should not be sti-

fled by the optimization process but should instead be encouraged if interesting and

diverse creatures are to emerge from the process.

The use of EMO also opens up the possibility of creating extra-dimensional

bypasses through the search space that provide an easier path for the optimization

process to reach fitter regions of the solution space. This phenomenon has been

previously encountered in conventional single-objective evolutionary optimization

systems through the addition of extra genotypic parameters into the artificial evo-
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lutionary system (Bongard and Paul 2001). However, such artificial methods of

increasing the search space is rather subjective and may require significant experi-

mentation in order to find the right parameters that can create the extra-dimensional

bypass. In our proposed methodology, this is achieved in a natural manner through

the use of multiple optimization objectives. Here, we do not make the claim that

such extra-dimensional bypasses will be present under all EMO runs but simply

that the use of multiple objectives in an artificial evolutionary system allows for the

possibility of such bypasses to emerge through the inherently more complex inter-

actions between genes under multiple evolutionary pressures. The presence of high

epistatis is evidenced by the highly rugged fitness landscape areas present in certain

sub-regions of the search space as discussed in Section 4.5.3.1.

5.9 Chapter Summary

An investigation into the use of multi-objective evolutionary optimization

for automatic synthesis of ANN controllers that are proficient at generating locomo-

tion capabilities in a physically simulated quadruped yielded the following results:

• An EMO algorithm called SPANN was implemented for the multi-objective

evolution of artificial creature controllers. ANN controllers based on four dif-

ferent types of underlying architecture were successfully evolved for maximum

horizontal locomotion capability and minimum usage of number of hidden

units in the ANN.

• An EMO algorithm provides significant advantages over conventional single-

objective optimization algorithms by: (1) reducing the number of runs re-

quired to test different design factors associated with the synthesis of artificial

creatures, (2) preserving genetic diversity and, (3) offering extra-dimensional

bypasses for the search process to reach fitter solution spaces.

• Additional recurrent connections do not provide any significant advantages

over conventional feed-forward neural network architectures for evolving loco-
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motion capability in a four-legged artificial creature.

• Pure reactive agents not requiring hidden layer transformations in the ANN

controller produced sufficiently good locomotion capabilities. The use of di-

rect input-output connections in a perceptron-like controller was sufficient for

generating a basic locomotion ability in a four-legged artificial creature. The

use of a hidden layer was not required to synthesize a controller with a com-

paratively good locomotion capability.

• An operational dynamics analysis revealed that the ANN controller learnt to

coordinate and synchronize between the upper and lower limbs in three of the

simulated quadruped’s legs. The presence of a passively-controlled dynamic

limb was observed in the remaining leg. The ANN controller still performed

well when a reasonable level of noise was present in the sensors and actuators.

The design, implementation and use of an EMO algorithm called SPANN

for the evolution of artificial creature controllers has been presented in this chapter.

ANN controllers were successfully evolved for minimum hidden layer size and maxi-

mum horizontal locomotion distance using four different types of ANN architecture.

In the next chapter, we will compare the SPANN algorithm against more conven-

tional methods of evolutionary optimization to verify that this approach is actually

beneficial for evolving artificial creature controllers.



Chapter 6

Verifying the Self-Adaptive Pareto

EMO

In this chapter, we employ more conventional methods of evolutionary opti-

mization for the generation of artificial creature controllers and then compare these

results against the self-adaptive Pareto approach of the SPANN EMO algorithm.

Three evolutionary optimization algorithms are used here, namely a hand-tuned

EMO algorithm, a weighted sum EMO algorithm and a single-objective evolutionary

optimization algorithm. The objectives of these comparisons are firstly to elucidate

the effectiveness of using these conventional algorithms for generating high qual-

ity locomotion controllers and secondly whether the advantages of the self-adaptive

Pareto approach are truly beneficial against these more common methods of evolu-

tionary optimization. A test of redundancy present in the ANN controllers evolved

using SPANN is also conducted and compared against the ANN controllers evolved

using the conventional EAs mentioned above. Finally, a comparison of SPANN is

made against NSGA-II, a well-known and state-of-the-art Pareto EMO algorithm.

127
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6.1 A Hand-Tuned EMO Algorithm

6.1.1 Experimental Setup

In this set of experiments, we used an EMO algorithm with user-defined

crossover and mutation rates rather than self-adapting parameters in the SPANN

algorithm (similar to the MPANN algorithm (Abbass 2001) but without back-

propagation). Apart from the non-self-adapting crossover and mutation rates, the

hand-tuned EMO algorithm is otherwise similar to the SPANN algorithm in all other

respects. The NNType3 architecture was used since it provided the best overall re-

sults among the different controller architectures (see Section 5.6). Three different

crossover rates (c) and mutation rates (m) were used: 10%, 50% and 90% for both

rates giving a total of 9 different combinations. As with SPANN, the fitness of

each genotype in these experiments was evaluated according to both the f1 and f2

objective functions, which measures the locomotion distance achieved and number

of hidden units used by the controller respectively as defined in Section 3.4.1. All

other evolutionary and simulation parameters remain the same: 1000 generations,

30 individuals, maximum of 15 hidden units, 500 timesteps and 10 repeated runs.

In characterizing the fitness landscapes, the individual genotypes were grouped into

6250 discrete intervals over the increased locomotion distance dimension of 25 used

in this chapter, in order to maintain the same frequency distribution’s interval length

as those previously used in Chapters 4 and 5.

6.1.2 Results and Discussion

In this section, we discuss the solutions produced using the hand-tuned

EMO algorithm in terms of the different crossover and mutation rates used dur-

ing evolution. The best Pareto solutions for locomotion distance obtained from

conducting the evolutionary optimization process using user defined rates for the

genetic operators are presented in Table 6.1. The highest overall best locomotion

distance of 19.5 was achieved using a crossover rate of 10% and a mutation rate of

50% while the lowest overall best locomotion distance of 14.9 was obtained using
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Crossover Mutation Overall Best Average Best No. of
Rate Rate Locomotion Locomotion Distance Hidden

Distance ± Standard Deviation Units
10% 10% 17.1071 13.5192 ± 2.7845 3.2 ± 1.8
10% 50% 19.5051 14.1158 ± 2.6535 6.6 ± 2.1
10% 90% 14.9493 13.2843 ± 1.8225 8.1 ± 2.7
50% 10% 16.2272 14.1268 ± 2.1286 3.0 ± 2.4
50% 50% 18.5638 15.3819 ± 2.3195 6.5 ± 1.7
50% 90% 16.3347 13.1881 ± 1.4715 7.7 ± 2.5
90% 10% 18.5980 14.1511 ± 2.4721 3.4 ± 1.8
90% 50% 15.8766 13.1978 ± 1.6447 6.1 ± 1.4
90% 90% 15.9395 12.1653 ± 2.3799 6.8 ± 2.9

Table 6.1: Comparison of best locomotion distance for Pareto solutions found over

10 independent runs using the hand-tuned EMO algorithm with different crossover

and mutation rates.

a crossover rate of 10% and a mutation rate of 90%. The best result in terms of

average best locomotion distance achieved was obtained using a crossover rate of

50% and mutation rate of 50% while the worst overall result was obtained using a

crossover rate of 90% and mutation rate of 90%. This suggests that a low to medium

crossover coupled with a medium mutation rate provided better results when self-

adaptation was not used in the EMO algorithm and conversely, a high mutation

rate seemed to provide lower quality results for locomotion distance. In terms of

optimizing the hidden layer, the crossover rate did not seem to affect the results

while a low mutation rate of 10% consistently gave the smallest hidden layer for the

evolved controllers of around 3.2 hidden units compared to higher mutation rates of

50% and 90%.

The evolution of the Pareto solution for best locomotion distance using the

hand-tuned EMO algorithm for 10 runs over 1000 generations is shown in Figure

6.1 for four of the nine different combinations of crossover and mutation rates. In

general, the characteristics of these convergence graphs were similar to that obtained

using SPANN (Figure 5.3.4) in that the progression of fitter solutions being discov-

ered was relatively smooth over time. The top two graphs (Figures 6.1.1 & 6.1.2) are

representative of these runs. However, there were also combinations of crossover and
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Figure 6.1: Best locomotion distance of Pareto solutions obtained over 1000 genera-

tions for 10 runs using the hand-tuned EMO algorithm with 1. c=10% m=50% (top

left), 2. c=50% m=50% (top right), 3. c=10% m=90% (bottom left), 4. c=50%

m=90% (bottom right). X-axis: Generation, Y-axis: Locomotion distance. Addi-

tional graphs can be found in the accompanying CD-ROM.

mutation rates where the improvement of the solutions was much less smooth caus-

ing large plateau regions. This phenomenon can be seen in the bottom two graphs

(Figures 6.1.3 & 6.1.4), which are highly reminiscent of the graph obtained using

hill-climbing (Figure 4.8.4), suggesting that the algorithm may have become stuck

in a local optimum for some of the runs. This is likely to be due to the limitation of

not being able to change the mutation and crossover rates during the evolutionary

optimization process, which may be beneficial in escaping from deep local optima.



CHAPTER 6. VERIFYING THE SELF-ADAPTIVE PARETO EMO 131

As such, these results suggest that self-adaptation, such as that present in SPANN,

may be a desirable feature not merely for reducing the computational runs required

to test out hand-tuned crossover and mutation rates but also for avoiding premature

convergence to less optimal solutions.
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Figure 6.2: Mean locomotion distance of population over 1000 generations using

the eighth seed for the hand-tuned EMO algorithm with 1. c=10% m=10% (left),

2. c=90% m=90% (right). X-axis: Generation, Y-Axis: Locomotion distance.

Additional graphs can be found in the accompanying CD-ROM.

Figure 6.2 depicts the mean locomotion distance and Figure 6.3 depicts

the standard deviation for locomotion distance of the population as it evolved over

1000 generations. The graphs depicted are representative of the trends observed in

a large majority of the runs. The average population fitness in terms of locomotion

distance remained constant within a fixed range after the initial large jump early

during evolution as shown in Figures 6.2.1 and 6.2.2. The two most common trends

in the standard deviation of the population were remaining fairly constant within

a certain range as shown in Figure 6.3.1 and increasing slightly over time as shown

in Figure 6.3.2. Lower crossover and mutation rates seemed to produce a higher

population average (Figure 6.2.1) compared to higher crossover and mutation rates

(Figure 6.2.2). On the other hand, higher crossover and mutation rates appeared to

produce less changes to the standard deviation of the population over time (Figure
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Figure 6.3: Standard deviation for locomotion distance of population over 1000 gen-

erations using the eighth seed for the hand-tuned EMO algorithm with 1. c=10%

m=10% (left), 2. c=90% m=90% (right). X-axis: Generation, Y-Axis: Standard

deviation of locomotion distance. Additional graphs can be found in the accompa-

nying CD-ROM.

6.3.2) compared to lower crossover and mutation rates (Figure 6.3.1). These last

two observations suggest that higher crossover and mutation rates were less efficient

at finding fitter solutions because the large changes being applied to the genotype at

every generation did not allow evolution a chance to discover and maintain a good

set of basic genes. Consequently, the solutions being sampled using high crossover

and mutation rates were similarly low in fitness resulting in the lower population

means and smaller changes in the standard deviations over time.

6.1.3 Search Space Characterization

The distribution of genotypes generated using the hand-tuned EMO algo-

rithm is plotted in Figure 6.4 in terms of locomotion distance and number of hidden

units used in the ANN. Although the distribution of solutions across both objective

spaces were more uniform compared to that obtained using random search (Fig-

ure 4.1.4), hill-climbing (Figure 4.5.4) and random walk (Figure 4.9.4), they were

much less uniform and more clustered compared to the distribution obtained using
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Figure 6.4: Frequency distribution of solutions obtained using the hand-tuned EMO

algorithm with 1. c=10% m=10% (top left), 2. c=10% m=50% (top right), 3.

c=50% m=50% (bottom left), 4. c=50% m=90% (bottom right). X-axis: Locomo-

tion distance, Y-axis: No. of hidden units, Z-axis: Frequency. Additional graphs

can be found in the accompanying CD-ROM.

SPANN (Figure 5.6.4). From the general features observed in these graphs, the

distributions most similar to SPANN were those generated using a crossover rate of

10% and mutation rate of 50% (Figure 6.4.2) as well as a crossover rate of 50% and

mutation rate of 50% (Figure 6.4.3). The main difference between the hand-tuned

EMO algorithm and SPANN is that the solutions in the hand-tuned EMO were

mainly clustered around the lower fitness regions of the search space, a large major-

ity of which yielded only between 0 and 10 units of locomotion distance compared
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to SPANN where a more even distribution could be seen to extend to fitness regions

of 15 units of locomotion distance.
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Figure 6.5: Contour graphs of frequency distribution of solutions obtained using the

hand-tuned EMO algorithm with 1. c=10% m=10% (top left), 2. c=10% m=50%

(top right), 3. c=50% m=50% (bottom left), 4. c=50% m=90% (bottom right).

X-axis: Locomotion distance, Y-axis: No. of hidden units. Additional graphs can

be found in the accompanying CD-ROM.

The contour graphs in Figure 6.5 illustrate the distribution of solutions

across the two objectives of minimizing the hidden layer and maximizing locomotion

distance. A number of interesting features emerged in these contour graphs. Firstly,

the mutation rate significantly affected the range of genotypes generated in terms

of the number of hidden units used in the controller. The controllers evolved using
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the lowest mutation rate of 10% centered around a usage of between 2 and 3 hidden

units (Figure 6.5.1). When the mutation rate was increased to 50%, the solutions

now centered around a higher usage of between 7 and 8 hidden units (Figures 6.5.2

& 6.5.3), and furthermore, in the highest setting of the mutation rate at 90%, the

solutions clustered around controllers that used between 10 and 12 hidden units

(Figure 6.5.4). The contour features most similar to SPANN (Figure 5.8.4) again

could be seen when the crossover rate was set at 10% and mutation rate at 50%

(Figure 6.5.2) as well as at a crossover rate of 50% and mutation rate of 50% (Figure

6.5.3), although in both these cases the spread of solutions over the objective spaces

were less uniformly distributed. Interestingly, the movement of solutions to larger

hidden layer sizes produced lower locomotion capabilities. The underlying fitness

landscape may have become more rugged as the size of hidden layer increased and

as previously postulated, the non-self-adapting crossover and mutation rates may

have represented a severe limitation in allowing the algorithm to move through

these landscapes, subsequently causing the optimization process to become trapped

around sub-optimal regions of the search space.

The probability density function of solutions obtained using the hand-tuned

EMO algorithm is illustrated in Figure 6.6. The probability density curves show that

a low crossover rate of 10% and low mutation rate of 10% provided the best dis-

tribution of solutions across the locomotion objective space (Figure 6.6.1). The cu-

mulative curve shows that the probability of encountering fitter solutions decreased

noticeably as the mutation rate was increased to 50% (Figures 6.6.2 & 6.6.3) and

especially 90% (Figure 6.6.4), where the probability of encountering a solution de-

creased to 0 beyond a fitness of only around 11.

The search space characterization of the hand-tuned EMO algorithm show-

ed significantly different characteristics compared to SPANN, especially when very

high and very low combinations of crossover and mutation rates were used. As

previously discussed, the correct choice of these two rates by the user is paramount

in obtaining reasonably good results when using this form of the EMO algorithm.

This analysis also showed that the use of self-adaptive crossover and mutation rates
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Figure 6.6: Density (solid) and cumulative (dashed) probability distribution of so-

lutions obtained using the hand-tuned EMO algorithm with 1. c=10% m=10% (top

left), 2. c=10% m=50% (top right), 3. c=50% m=50% (bottom left), 4. c=50%

m=90% (bottom right). X-axis: Locomotion distance, Y-axis: Probability. Addi-

tional graphs can be found in the accompanying CD-ROM.

in SPANN allowed the evolutionary search to sample a much larger area of the

objective space compared to the non-self-adaptive EMO algorithm and as such was

able to perform more effectively in finding good locomotion controllers.
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6.2 A Weighted Sum EMO Algorithm

6.2.1 Experimental Setup

For this second set of experiments, we used a single objective that com-

bined the two objectives f1 and f2 using a weighted sum rather than a true Pareto

approach as found in the SPANN algorithm, which distinctly separates the two ob-

jectives when assigning fitness values to individuals in the population. As in the

comparison between the hand-tuned versus self-adaptive EMO algorithms in the

previous section, the NNType3 architecture was used in this set of experiments for

the same reason that it provided the best overall result among the different archi-

tectures as reported in Section 5.6. The weighting of the individual objectives was

done in a relative manner using a parameter denoted by γ. In order to combine the

two objectives f1, which is the maximization of the locomotion distance, and f2,

which is the minimization of the number of hidden units used in the ANN, into a

single weighted sum fitness function, these objectives needed to be unified in terms

of their direction of optimization. Firstly, the locomotion distance objective f1 was

re-defined to be a minimization problem

f ′1 = 100.0− f1 (6.1)

which yielded the minimization of the overall weighted sum function as follows:

γ × f ′1 + (1− γ)× f2 (6.2)

However, we chose to convert the overall weighted sum optimization problem into

one of maximization to maintain consistency when presenting the solutions in terms

of locomotion distance achieved by the best evolved controllers. Hence the final

weighted sum objective function is given by

f(overall) = 100.0− [(γ × f ′1) + ((1− γ)× f2)] (6.3)

where f(overall) represents the weighted fitness and γ is the relative weight pa-

rameter. The unification of the two objectives f1 and f2 could have been similarly
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achieved by converting f2 into a maximization problem. 10 different values were

used for γ ranging from 10% to 100% in increments of 10%. No setup for γ = 0%

was used since in this case, no optimization would be performed on f1, which means

that in such an evolutionary run, there will be no pressure for the controller to

develop any locomotion ability whatsoever. On the other hand, γ = 100% would

result in an evolutionary run with no pressure towards minimizing the number of

hidden units since no optimization would be performed on f2. All this means is that

the hidden layer in the controller is completely free to use any number of hidden

units for optimizing the locomotion behavior, therefore this setup is retained in the

experiments.

An approach similar to the (µ + λ) evolutionary strategy is used where

the 15 best individuals of the population are carried over to the next generation

without any modification to the genotype at all. This is to allow a setup similar

to SPANN, where the upper bound on the number of Pareto solutions is simply

1 + 15, the maximum number of hidden units allowed. The crossover and muta-

tion operators function as in SPANN and the rates for these genetic operators are

also self-adaptive. The only real difference between SPANN and the weighted sum

method is the objective function and therefore, the selection mechanism. For all

other parameters, they remain the same as in all other experiments: 1000 genera-

tions, 30 individuals, maximum of 15 hidden units, 500 timesteps and 10 repeated

runs. As in the hand-tuned EMO algorithm search space characterization, the in-

dividual genotypes generated were grouped into 6250 discrete intervals to cater for

the increased locomotion distance dimension.

6.2.2 Results and Discussion

The results obtained from using the weighted sum method for conducting

the EMO process are given in Table 6.2. In the analysis of this set of results, we

first present the solution fitness in terms of the actual weighted sum value that is

used for the selection process. Then, we decompose the weighted sum fitness into

the two separate objectives of locomotion distance and number of hidden units, and
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γ Weighted Sum Overall Best Locomotion No. of
Value ± Locomotion Distance ± Hidden

Standard Deviation Distance Standard Deviation Units
10% 90.9857 ± 0.1428 12.3513 9.8571 ± 1.4277 0.0 ± 0.0
20% 82.0122 ± 0.4539 14.5964 10.4613 ± 2.6883 0.1 ± 0.3
30% 72.4592 ± 0.3774 9.8821 8.4306 ± 1.3288 0.1 ± 0.3
40% 63.4604 ± 0.6815 12.3985 9.4011 ± 2.1017 0.5 ± 0.8
50% 55.2962 ± 1.4375 15.8411 11.3924 ± 3.0330 0.8 ± 0.9
60% 46.6677 ± 1.9308 16.4046 12.1794 ± 2.9865 1.6 ± 1.0
70% 38.6314 ± 1.2593 17.9004 13.7448 ± 2.4376 3.3 ± 1.9
80% 30.4217 ± 1.6079 17.7011 14.0521 ± 2.3034 4.1 ± 1.5
90% 23.0408 ± 1.8146 18.1530 15.1119 ± 1.9977 5.6 ± 1.9
100% 15.2829 ± 3.6578 21.8228 15.2829 ± 3.6578 8.1 ± 1.5

Table 6.2: Best solutions obtained over 10 independent runs using the weighted sum

EMO algorithm with different weights for the two objectives. γ = relative weight

parameter.

present the analysis from these distinct points of view. Firstly, it is apparent that

the correct combination of weights played a critical role in obtaining good results

from the evolutionary optimization runs when both locomotion distance and hidden

layer size are to be considered simultaneously in a single weighted objective. Setting

γ to between 60% and 90% seemed to provide a good trade-off between achieving a

reasonably good locomotion capability and relatively small hidden layer size. Setting

γ = 100%, which places all the optimization pressure on the locomotion component,

yielded the highest overall and average best locomotion distance. However, this

correspondingly resulted in the highest average of hidden units used in the evolved

ANNs since there was no pressure to minimize the hidden layer at all. On the

other hand, the lowest average of hidden units used was obtained when γ was set

to 10%, although the average best locomotion distance achieved was much lower

at only around 9.9 by virtue of the very large weighting assigned to the hidden

unit component and correspondingly small weighting assigned to the locomotion

component. Although it was expected that the average best locomotion distance

obtained would increase monotonically as γ increased, this was not the case in the

runs where the parameter was set to 30% and 40%. This was likely due to the fact

that controllers with very small hidden layer sizes dominated the elite solutions and
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subsequently caused the optimization process to become stuck in a local optima

centered around these small-sized controllers with limited locomotion capabilities.

Further analysis of this phenomenon is given in the following paragraph as well as

in Section 6.2.3.
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Figure 6.7: Best solutions obtained over 1000 generations for 10 runs using the

weighted sum EMO algorithm with 1. γ = 20% (top left), 2. γ = 40% (top right),

3. γ = 70% (bottom left), 4. γ = 100% (bottom right). X-axis: Generation, Y-

axis: Weighted sum value. Additional graphs can be found in the accompanying

CD-ROM.

The evolution of the best solution using the weighted sum EMO algorithm

for 10 runs over 1000 generations is shown in Figure 6.7 for four of the ten different

combinations of weights assigned to the respective objectives. These graphs depict
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the progression of the best solutions in terms of the actual weighted fitness value as

evaluated using the weighted sum objective. The fixed weighting of the objectives

appeared to have a significant impact on the improvement of the best solutions over

time. When γ was set to low values as depicted in the top two graphs, the solutions

were only able to improve over a highly constrained weighted value (Figures 6.7.1

& 6.7.2). This again was likely due to controllers using small numbers of hidden

units being assigned high fitness values and hence dominating the elite solutions.

As the value of γ was increased, the solutions were able to improve over a larger

range of weighted values, although this also increased the variations between the

best solutions found, as shown by the bottom two graphs (Figures 6.7.3 & 6.7.4).

In the following paragraphs, we discuss the convergence of the solutions from the

viewpoint of the separate component objectives.

The convergence of the best solution using the weighted sum EMO al-

gorithm for 10 runs over 1000 generations is shown in Figure 6.8 in terms of the

locomotion distance for the same four combinations of weights as in Figure 6.7. In

the majority of the runs, most of the improvement achieved in terms of locomotion

distance occurred very early during evolution, generally around the 100–120th gen-

eration. Also, the effect of rewarding controllers with smaller hidden layers can be

seen clearly in Figure 6.8.3 where solutions with lower locomotion fitness but using

less hidden units were accepted as the current best solution, causing this particular

graph to have periods of apparently lower fitness during the convergence process.

This in fact occurred because the weighted sum value of certain controllers that

achieved greater locomotion distances were actually lower than controllers with less

locomotion capabilities, as a result of using more hidden units in the hidden layer

of the ANN compared to the less effective locomotion controllers. The progression

of the use of hidden nodes over the evolutionary optimization process can be seen

in the graphs that follow.

The convergence of the best solution using the weighted sum EMO al-

gorithm for 10 runs over 1000 generations is shown in Figure 6.9 in terms of the

number of hidden units used in the controller for the same four combinations of
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Figure 6.8: Locomotion distance of best solutions obtained over 1000 generations

for 10 runs using the weighted sum EMO algorithm with 1. γ = 20% (top left),

2. γ = 40% (top right), 3. γ = 70% (bottom left), 4. γ = 100% (bottom right).

X-axis: Generation, Y-axis: Locomotion distance. Additional graphs can be found

in the accompanying CD-ROM.

weights as in the previous paragraphs. The effect of assigning the larger proportion

of the weighted fitness to minimizing the hidden layer size can be seen clearly in

the top two figures (Figures 6.9.1 & 6.9.2). The best solutions in these cases were

highly constrained during the majority of the evolutionary process, using only 2 or

less hidden nodes in the ANN controller. This consequently limited the ability of

the solutions to improve on the locomotion distances achieved as a direct result of

being able to only use controllers with very small numbers of hidden nodes. As γ is
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Figure 6.9: Hidden layer size of best solutions obtained over 1000 generations for

10 runs using the weighted sum EMO algorithm with 1. γ = 20% (top left), 2.

γ = 40% (top right), 3. γ = 70% (bottom left), 4. γ = 100% (bottom right). X-

axis: Generation, Y-axis: Number of hidden units. Additional graphs can be found

in the accompanying CD-ROM.

increased to give more weight to the locomotion component, the constraint on the

size of the hidden layer is lessened, thereby increasing the algorithm’s likelihood of

improving on the quality of the locomotion behavior by having more opportunities

to experiment with ANN controllers with larger hidden layer sizes.

The mean locomotion distance and standard deviation for locomotion dis-

tance of the population as it evolved over 1000 generations using the weighted sum

EMO algorithm are illustrated in Figures 6.10 and 6.11 respectively. Higher values
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Figure 6.10: Mean locomotion distance of population over 1000 generations using

the second seed for the weighted sum EMO algorithm with 1. γ = 20% (left), 2.

γ = 90% (right). X-axis: Generation, Y-Axis: Locomotion distance. Additional

graphs can be found in the accompanying CD-ROM.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Generation

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 lo

co
m

ot
io

n 
di

st
an

ce

WS−EMO l=20% h=80% Run 2

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Generation

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 lo

co
m

ot
io

n 
di

st
an

ce

WS−EMO l=90% h=10% Run 2

Figure 6.11: Standard deviation for locomotion distance of population over 1000

generations using the second seed for the weighted sum EMO algorithm with 1.

γ = 20% (left), 2. γ = 90% (right). X-axis: Generation, Y-Axis: Standard deviation

of locomotion distance. Additional graphs can be found in the accompanying CD-

ROM.

of γ generally resulted in higher population means, which is expected as more weight

is placed on optimizing the locomotion distance over minimizing the hidden layer.
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A large majority of the population means reached a fairly constant range after the

initial increase in fitness and either remained fixed within a small range or increased

slightly in fitness as shown by Figure 6.10.2, which are similar to the trends ob-

served in the hand-tuned EMO algorithm. Another interesting trend that emerged

was that of the population mean increasing in a step-wise manner as depicted in

Figure 6.10.1 but this only occurred in less than 10% of the runs. This phenomenon

was most probably caused by the elite solutions becoming dominated by particular

classes of solutions that changed their usage of the number of hidden units in the

ANN controller and at the same time achieved distinctly better locomotion capabil-

ities, resulting in short periods of constant fitness followed by significant jumps in

fitness. The use of strong elitism in the weighted sum EMO algorithm also produced

another common feature in almost all of the runs in that the population mean did

not show any significant decrease in fitness over the evolutionary optimization pro-

cess. This can be explained by the fact that the 15 best individuals representing the

elite solutions carried forward from the previous generation will buffer any signifi-

cant drop in the mean fitness of newly created individuals in the current generation.

This observation is supported by the large movements of the standard deviation over

time shown in Figure 6.11.2, which is representative of a large majority of the runs.

These movements are noticeably larger than the standard deviations observed using

the hand-tuned EMO algorithm where only the non-dominated solutions rather than

elite solutions were retained. This strong elitism causes two distinct populations to

emerge, one in the carried over individuals and another in the newly generated indi-

viduals. Consequently, when a number of new individuals are either good solutions

similar to the elite solutions or bad solutions far removed from the elite solutions,

the standard deviation will correspondingly change very significantly with strong

elitism.

6.2.3 Search Space Characterization

The distribution of genotypes generated using the weighted sum EMO

algorithm is plotted in Figure 6.12 in terms of locomotion distance and number of
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Figure 6.12: Frequency distribution of solutions obtained using the weighted sum

EMO algorithm with 1. γ = 10% (top left), 2. γ = 30% (top right), 3. γ = 60%

(bottom left), 4. γ = 80% (bottom right). X-axis: Locomotion distance, Y-axis:

No. of hidden units, Z-axis: Frequency. Additional graphs can be found in the

accompanying CD-ROM.

hidden units used in the ANN. Note that the frequency axis has been expanded from

140 in prior graphs to 10000 to cater for the higher concentrations of genotypes found

within a specific range of objective values. Firstly, the distribution of genotypes

across the objective spaces were dramatically different compared to SPANN and

the hand-tuned EMO algorithm in that the generated genotypes were found to

cluster very closely around highly specific values of locomotion distance and number

of hidden units. The very significant change to the characteristics of the search
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space is likely due to the use of a weighted sum approach coupled with an elitist

approach. It is clear from the figures that genetic diversity in terms of the number of

hidden units is not equivalent to that achieved with the Pareto approach. Allowing

individuals to survive based solely on the weighted sum objective resulted in what

can be seen in the figures, where hidden layers with certain numbers of hidden units

dominated the evolutionary process. On the other hand, the carrying over of only

non-dominated solutions in SPANN and the hand-tuned EMO algorithm leaves more

room for variation since each parent is at least entirely different from the other in

terms of the size of the hidden layer. Hence, the newly generated individuals can

be expected to have greater diversity and consequently sample a larger proportion

of the search space.

The contour graphs in Figure 6.13 illustrate the distribution of solutions

across the two objectives of minimizing the hidden layer and maximizing locomotion

distance. Two trends emerged when using the weighted sum approach in terms of

the concentration of solutions across the respective objective spaces. The first trend

is that of extremely high concentrations of solutions within very specific areas of the

objective space, as evidenced by Figure 6.13.4. This phenomenon occurred when γ

was set to 40%, 50%, 70% and 80%. The second group of genotypes had less highly

concentrated distributions compared to the first group and had wider sampling

of the search space as shown by Figures 6.13.1, 6.13.2 and 6.13.3, although this

was still much less compared to the hand-tuned EMO algorithm and especially to

SPANN. This supports the earlier observations that the respective weights assigned

to the different objectives can significantly affect the behavior of the evolutionary

optimization algorithm. As shown by this analysis, some combination of weights

will cause the generated solutions to sample only a very limited area of the search

space.

The probability density function of solutions obtained using the weighted

sum EMO algorithm is illustrated in Figure 6.14. The probability of encountering

different classes of solutions in terms locomotion capability varied considerably as

different combinations of weights were used to evaluate the generated genotypes. As
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Figure 6.13: Contour graphs of frequency distribution of solutions obtained using the

weighted sum EMO algorithm with 1. γ = 10% (top left), 2. γ = 30% (top right), 3.

γ = 60% (bottom left), 4. γ = 80% (bottom right). X-axis: Locomotion distance,

Y-axis: No. of hidden units. Additional graphs can be found in the accompanying

CD-ROM.

expected, as more weight was placed on the locomotion component by increasing γ,

the probability density curve could be seen to shift more to the right. However, as

pointed out in earlier sections, certain combinations did not perform according to

this expectation. Figure 6.14.2 shows that the probability of encountering solutions

dropped to 0 as early as 9 units of locomotion distance. This rather poor perfor-

mance is only slightly better than that achieved using random search (Figure 4.3.4),

hill-climbing (Figure 4.7.4) and random walk (Figure 4.11.4) where the probability
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Figure 6.14: Density (solid) and cumulative (dashed) probability distribution of

solutions obtained using the weighted sum EMO algorithm with 1. γ = 10% (top

left), 2. γ = 30% (top right), 3. γ = 60% (bottom left), 4. γ = 80% (bottom right).

X-axis: Locomotion distance, Y-axis: Probability. Additional graphs can be found

in the accompanying CD-ROM.

dropped to 0 between 7 to 8 units of locomotion distance.

In summary, the search space characteristics of the EMO algorithm using

a weighted sum approach pointed to the fact that although reasonably good sam-

pling of the search space can be achieved with some weight combinations of the

respective objectives, dramatically sparse sampling can similarly occur. Moreover,

the sampling of the search space for the better combinations of weights were still sig-

nificantly less uniformly distributed compared to SPANN and even the hand-tuned
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EMO algorithm to a lesser extent.

6.3 A Single-Objective EA

6.3.1 Experimental Setup

In the last set of experiments, we used a conventional EA which opti-

mizes only one objective as opposed to optimization of multiple objectives in EMO

algorithms such as SPANN. The only objective being optimized in the following evo-

lutionary runs is the locomotion distance achieved by the creature’s ANN controller

while the size of the hidden layer is kept fixed. Hence, only the f1 fitness function is

used to evaluate the genotypes. Apart from the change of optimizing two objectives

to one, the single-objective algorithm is otherwise similar to the SPANN algorithm

in all other respects. The crossover and mutation rates are self-adaptive and are

identical to their counterparts in SPANN except that crossover and mutation now

excludes any changes to the number of hidden units used in the ANN controller

since this component is fixed in the single-objective EA. As in previous compar-

isons, the NNType3 architecture was used in this set of experiments and all other

parameters remained the same: 1000 generations, 30 individuals, 500 timesteps and

10 repeated runs. As in the weighted sum EMO algorithm discussed in Section 6.2,

the (µ+λ) strategy is used in this single-objective EA where the 15 best individuals

of the population are carried over to the next generation without any modification

to the genotype at all. Sixteen separate sets of evolutionary runs were conducted

corresponding to each one of the different number of nodes used in the hidden layer

ranging from 0 to 15, which is the range allowed in the multi-objective runs. As

with prior algorithms used in this chapter, the individual genotypes generated were

grouped into 6250 discrete intervals for search space characterization.

6.3.2 Results and Discussion

The results obtained from using the single-objective EA for conducting the

EMO process are given in Table 6.3. The highest overall best f1 fitness of 22.4 was
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No. of Overall Best Worst of the Average Best Fitness
Hidden Units Fitness Best Fitness ± Standard Deviation

0 20.3725 11.6791 15.7516 ± 2.9721
1 19.3005 12.2596 15.1441 ± 2.0260
2 19.8772 9.9934 16.3236 ± 2.7242
3 19.2861 9.5247 15.1532 ± 3.1696
4 20.6868 12.9391 15.2088 ± 2.2106
5 19.9139 11.2756 15.1562 ± 2.8741
6 19.6655 12.7716 16.0317 ± 2.0719
7 17.8093 13.4571 15.8033 ± 1.6159
8 21.6668 12.1226 17.4358 ± 3.2508
9 20.4605 12.1012 15.7375 ± 2.6430
10 19.4172 13.5765 16.1514 ± 2.1318
11 21.6224 9.3723 15.0614 ± 3.5612
12 22.3296 11.6783 15.4287 ± 3.0020
13 17.6432 12.1548 15.0359 ± 1.8909
14 22.4069 10.9295 16.6273 ± 2.8095
15 19.7747 12.5919 15.6150 ± 2.4605

Table 6.3: Best solutions obtained over 10 independent runs using the single-

objective EA with different hidden layer sizes.

obtained using a hidden layer of 14 nodes while the lowest overall best fitness of 17.6

was obtained using a hidden layer of 13 nodes. In terms of average best locomotion

distance achieved, the setup in which the ANN controller’s hidden layer was fixed

to use 8 nodes provided the best result while the worst result was obtained when

the hidden layer was fixed at 11 nodes. In general, the variations between the best

solutions achieved were high when using the single-objective EA. Only 2 out of the

16 different hidden layer setups had standard deviations of less than 2, 10 setups had

standard deviations of between 2 and 3 while the remaining 4 setups had standard

deviations of more than 3 units distance. The setup which used 11 hidden units also

had the highest standard deviation where the difference between the best and worst

solutions obtained was 12.2, which is a variation of more than 56% of the overall

best fitness achieved using this hidden layer setup. These observations suggest that

optimizing the artificial creature’s controllers using the single-objective EA is quite

unstable and the quality of solutions obtained can vary greatly between different

runs.
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Figure 6.15: Best fitness for solutions obtained over 1000 generations for 10 runs

using the single-objective EA with 1. 2 hidden units (top left), 2. 7 hidden units

(top right), 3. 10 hidden units (bottom left), 4. 14 hidden units (bottom right).

X-axis: Generation, Y-axis: Locomotion distance. Additional graphs can be found

in the accompanying CD-ROM.

The evolution of the best solution using the single-objective EA for 10

runs over 1000 generations is shown in Figure 6.15 for four of the sixteen different

hidden layer setups. Across all the different sizes of hidden layer used in the ANN

controller, the majority of the improvement achieved in the best solutions occurred

very early during evolution, as in the weighted sum method. This phenomenon could

be seen to occur as early as the 50–80th generation in some of these runs. This can

be explained by the fact that all the optimization effort is being focused solely on
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a single objective and thus the single-objective EA should show a faster rate of

improvement and subsequently be able to converge earlier compared to algorithms

with distinct multiple objectives. However, the cost of this type of fast convergence is

as discussed earlier in the previous paragraph, that the standard deviations between

the best evolved solutions can be quite large. Figure 6.15.4 depicts this phenomenon

clearly and is representative of the different hidden layer sizes used in the other runs

for this single-objective EA. This shows that although very good solutions can be

obtained in terms of locomotion distance, correspondingly poor solutions can also

be expected.
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Figure 6.16: Mean fitness of population over 1000 generations using the fourth seed

for the single-objective EA algorithm with 1. 4 hidden units (left), 2. 12 hidden

units (right). X-axis: Generation, Y-Axis: Locomotion distance. Additional graphs

can be found in the accompanying CD-ROM.

The mean locomotion distance and standard deviation for locomotion dis-

tance of the population as it evolved over 1000 generations using the single-objective

EA is illustrated in Figures 6.16 and 6.17 respectively. The movement of the pop-

ulation means and standard deviations were very similar to the trends observed in

the weighted sum EMO algorithm. The mean could be seen to increase and then

either remain fixed or increase slightly over time (Figures 6.16.1 & 6.16.2). The

mean also did not show any significant decrease in fitness throughout evolution.
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Figure 6.17: Standard deviation for fitness of population over 1000 generations using

the fourth seed for the single-objective EA algorithm with 1. 4 hidden units (left),

2. 12 hidden units (right). X-axis: Generation, Y-Axis: Standard deviation of

locomotion distance. Additional graphs can be found in the accompanying CD-

ROM.

Likewise, the standard deviation movements (Figures 6.17.1 & 6.17.2) were again

noticeably larger than those observed using the hand-tuned EMO algorithm. The

highly similar trends observed in this single-objective EA and the weighted sum

EMO algorithm strongly suggest that the use of strong elitism in both these algo-

rithms is the likely cause of these phenomena. The effect of different sizes of hidden

layers used in the controller did not appear to create any consistently different trends

in the behavior of the population mean over time. However, the standard deviation

of the population appeared to have varied within a lower range of deviation for the

controllers that used less hidden units compared to those that used more hidden

units. This observation suggests that although the population means were on aver-

age quite similar across different sizes of hidden layer used, the discrepancy between

the best solutions and the newly generated solutions were larger in controllers that

used more hidden units. Therefore, the analysis of the populations’ average fitness

and standard deviations points to the fact that the fitness landscapes may be more

rugged for larger hidden layer sizes since newly produced offspring are further away
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from the elite parents compared to controllers with smaller hidden layer sizes.

6.3.3 Search Space Characterization

Figure 6.18: Frequency distribution of solutions obtained using the single-objective

EA with 1. 1 hidden unit (top left), 2. 3 hidden units (top right), 3. 8 hidden units

(bottom left), 4. 14 hidden units (bottom right). X-axis: Locomotion distance,

Y-axis: No. of hidden units, Z-axis: Frequency. Additional graphs can be found in

the accompanying CD-ROM.

The distribution of genotypes generated using the single-objective EA is

plotted in Figure 6.18 in terms of locomotion distance and number of hidden units

used in the ANN. Note that the frequency axis was again expanded to 10000 as in

the analysis of the weighted sum approach (Section 6.2.3) to cater for the higher con-
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centrations of solutions. The characteristics of the genotype distribution in the ob-

jectives spaces were expectedly very different from all prior algorithms since the size

of the hidden layer was forcibly maintained within each evolutionary optimization

setup by virtue of the single-objective methodology. Two different trends emerged

from these runs. The distribution of solutions was more highly clustered when

smaller hidden layer sizes were used, especially in setups that used between 0 and

4 hidden units. The distribution of genotypes depicted in Figures 6.18.1 and 6.18.2

are representative of this first trend. As the size of the hidden layer was increased,

the generated genotypes were less closely concentrated, large peaks in the frequency

were less commonly seen, and the magnitude of areas with high concentrations was

also lower. The distribution of genotypes depicted in Figures 6.18.3 and 6.18.4 are

representative of this second trend. Frequency distribution graphs at higher resolu-

tions are shown below for the latter two hidden layer sizes.

Figure 6.19: Frequency distribution of solutions obtained using the single-objective

EA at higher resolutions for 1. 8 hidden units with frequency axis re-scaled to

1000 (left), 2. 14 hidden units with frequency axis re-scaled to 140 (right). X-axis:

Locomotion distance, Y-axis: No. of hidden units, Z-axis: Frequency. Additional

graphs can be found in the accompanying CD-ROM.

The distribution of controllers generated using 8 and 14 hidden units are

illustrated in Figure 6.19 at increased resolutions to show the finer characteristics
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of these fitness landscapes. Figure 6.19.1 is re-scaled to a frequency of 1000 and

Figure 6.19.2 is re-scaled to a frequency of 140. Some clustering of genotypes can

still be observed in controllers that used 8 hidden units. However, in controllers that

used 14 hidden units, the distribution of genotypes was more uniformly distributed

across the objective space. This phenomenon can be further explained by analyzing

the associated contour graphs of these distributions.
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Figure 6.20: Contour graphs of frequency distribution of solutions obtained using

the single-objective EA with 1. 1 hidden unit (top left), 2. 3 hidden units (top

right), 3. 8 hidden units (bottom left), 4. 14 hidden units (bottom right). X-axis:

Locomotion distance, Y-axis: No. of hidden units. Additional graphs can be found

in the accompanying CD-ROM.

The contour graphs in Figure 6.20 illustrate the distribution of solutions
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across the two objectives of minimizing hidden layer size and maximizing locomotion

distance. The two trends that emerged in the 3D graphs discussed in the previous

paragraph can be seen again clearly in these contour graphs. With a smaller num-

ber of hidden units, the solutions were distributed within a much smaller range of

locomotion values, where most controllers achieved locomotion distances of between

6 and 14 units (Figures 6.20.1 & 6.20.2). Using a larger number of hidden units, the

genotypes generated were able to sample larger areas of the objective space, where

a significant proportion of the controllers were able to achieve locomotion distances

that ranged between 1 and 17 units (Figures 6.20.3 & 6.20.4). This suggests that

as the size of the hidden layer increases, the artificial creature is able to generate a

wider range of locomotion capabilities in terms of the overall distance moved as a

result of being able to sample the much larger search space offered by the increased

network sizes.

The probability density function of solutions obtained using the single-

objective EA is illustrated in Figure 6.21. Again, these graphs show that the smaller

hidden layer sizes produced lower quality controllers in terms of locomotion distance

compared to larger hidden layer sizes. Four hidden layer sizes of 8, 11, 12 and 14

were able to sample controllers up to 19 units of distance in the class of larger-sized

networks before the probability dropped to 0. The graphs depicted in Figures 6.21.3

and 6.21.4 are indicative of the probability density functions obtained using these

setups with larger hidden layer sizes. In comparison, for seven out of the eight

hidden layer sizes that used 7 nodes or less, the probability of obtaining controllers

dropped to 0 only around distances of between 15 and 17 units, as shown by the

cumulative curves. The graphs depicted in Figures 6.21.1 and 6.21.2 are indicative

of the probability density functions obtained using these setups with smaller hidden

layer sizes.

In general, the search space characteristics were indicative of the fact that

genotypes generated using smaller-sized hidden layers produced locomotion capabil-

ities that were more constrained in terms of the range of distances achieved by the

creature compared to genotypes that used larger-sized hidden layers. In the latter
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Figure 6.21: Density (solid) and cumulative (dashed) probability distribution of

solutions obtained using the single-objective EA with 1. 1 hidden unit (top left), 2. 3

hidden units (top right), 3. 8 hidden units (bottom left), 4. 14 hidden units (bottom

right). X-axis: Locomotion distance, Y-axis: Probability. Additional graphs can be

found in the accompanying CD-ROM.

group of controllers, a significantly larger proportion of the newly generated geno-

types were sampled from higher fitness sub-spaces. However, since there were no

observable trends in terms of the best controllers found (see Table 6.3), these results

strongly suggest that the underlying fitness landscape becomes increasingly rugged

as the hidden layer size increases and coupled with the much larger search spaces,

much more optimization effort may be required to find increasingly fitter solutions

in these larger networks. This is an expected outcome given that the VC-dimension
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increases with an increase in the number of hidden units (as explained earlier in

Section 1.3) — therefore, more optimization effort is required.

6.4 Comparing SPANN Against Conventional Ev-

olutionary Optimization Approaches

In this section, we compare the results obtained using the three EAs pre-

sented in this chapter against the results obtained using the SPANN algorithm. In

the first section, SPANN is compared against the hand-tuned method, followed by a

comparison against the weighted sum method in the second section, and then against

the single-objective method in the third section. In the next two sections, firstly an

overall discussion of the global Pareto solutions using SPANN as well as all other

algorithms employed thus far is given in terms of the trade-off between the quality

of the locomotion controller generated against the computational cost involved in

obtaining these controllers, which is followed by an investigation into the amount

of redundancy that is present in the overall best controllers evolved for locomotion

distance using SPANN against the hand-tuned, weighted sum and single-objective

methodologies. Finally, SPANN is compared to a well-known, state-of-the-art Pareto

EMO algorithm called the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

(Deb, Agrawal, Pratab, and Meyarivan 2000).

6.4.1 SPANN Against a Hand-Tuned EMO Algorithm

The advantage of using the self-adaptive Pareto approach against hand-

tuning of crossover and mutation rates of the EMO algorithm is that it reduces

the number of repeated experiments required to find the “right” combination of

these parameters in order to generate the best possible solutions. Furthermore,

it is unclear what effects fixing the crossover and mutation rates throughout the

evolutionary optimization process will have on the quality of the eventual solutions

obtained. In the results below, we compare the best solutions obtained from using 9

different combinations of crossover and mutation rates using the hand-tuned version
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of the EMO algorithm against the best solutions obtained using the self-adaptive

SPANN EMO algorithm.

Algorithm Average Best t-statistic No. of
Locomotion Distance (against Hidden
± Standard Deviation SPANN) Units

SPANN 13.9626 ± 1.7033 - 4.9 ± 2.6
HT-EMO c=10% m=10% 13.5192 ± 2.7845 (0.48) 3.2 ± 1.8
HT-EMO c=10% m=50% 14.1158 ± 2.6535 0.16 6.6 ± 2.1
HT-EMO c=10% m=90% 13.2843 ± 1.8225 (0.94) 8.1 ± 2.7
HT-EMO c=50% m=10% 14.1268 ± 2.1286 0.16 3.0 ± 2.4
HT-EMO c=50% m=50% 15.3819 ± 2.3195 1.39 6.5 ± 1.7
HT-EMO c=50% m=90% 13.1881 ± 1.4715 (1.03) 7.7 ± 2.5
HT-EMO c=90% m=10% 14.1511 ± 2.4721 0.20 3.4 ± 1.8
HT-EMO c=90% m=50% 13.1978 ± 1.6447 (1.42) 6.1 ± 1.4
HT-EMO c=90% m=90% 12.1653 ± 2.3799 (1.61) 6.8 ± 2.9

Table 6.4: Comparison of best locomotion distance for Pareto solutions obtained

over 10 independent runs using the SPANN and hand-tuned EMO (HT-EMO) al-

gorithms. c = crossover rate, m = mutation rate.

As shown in Table 6.4, the use of hand-tuned crossover and mutation rates

did not provide any significant advantage over the SPANN algorithm in terms of

the average best locomotion distance achieved by the evolved controllers. A t-test

showed no significant differences at the α = 0.05 and α = 0.01 significance levels.

Four combinations of the hand-tuned EMO algorithm gave marginally better results

over the 10 runs in terms of the average best solution obtained while five other

combinations performed worse than the SPANN algorithm. In terms of the number

of hidden units used, three combinations in the hand-tuned EMO algorithm used an

average of 1.7 nodes less than SPANN while six other combinations used an average

of 7.0 nodes more than the SPANN algorithm. As such, the self-adaptive SPANN

algorithm is beneficial compared to a hand-tuned EMO algorithm in that it reduces

the computational runs required while still being able to maintain the same quality

of solutions generated.
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6.4.2 SPANN Against a Weighted Sum EMO Algorithm

A weighted sum approach combines the two objectives into a single objec-

tive by taking a weighted sum of the objectives. There are four main advantages of

using the Pareto approach over a weighted sum method:

• The weighted sum method would only be able to generate a single Pareto

solution in a single run compared to an entire set of Pareto solutions in a single

run using the Pareto approach. Multiple runs will be required to generate a

Pareto-front when using the weighted sum method.

• The determination of the weights is arbitrary in a weighted sum method. Some

form of hand-tuning these weights will need to be carried out in order to obtain

good results and as such, extra runs will again be required compared to the

Pareto approach.

• The different objectives combined in a weighted sum method are assumed to be

somehow commensurable, that is the objectives can be measured in the same

units. In the case where they are not, as in this case of combining locomotion

distance and number of hidden units, the use of the correct relative weights

will be necessary to overcome this problem. Again, the Pareto approach does

not require any such assumption to hold true since it treats each objective

independently from the other.

• The weighted sum method assumes that the Pareto-front of the multi-objective

optimization problem is of a convex nature. If the Pareto-front of the multi-

objective optimization problem is actually non-convex, then the Pareto solu-

tions generated by the weighted sum method will result in a discontinuous

Pareto-front since the single-objective hyperplane will not be able to sample

the non-convex regions of the Pareto-front. As such, in order to use a weighted

sum method, the experimenter will first need to ascertain whether the particu-

lar problem is convex or otherwise, and no such information is usually available

until the actual experiments are carried out and the Pareto-front plotted. Con-

versely, knowledge of such properties about the multi-objective optimization
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problem is not required since the solutions generated using a Pareto approach

is not constrained or limited to a specific Pareto-front of the multi-objective

optimization problem.

Algorithm Average Best t-statistic No. of
Locomotion Distance (against Hidden
± Standard Deviation SPANN) Units

SPANN 13.9626 ± 1.7033 - 4.9 ± 2.6
WS-EMO γ=10% 9.8571 ± 1.4277 (5.97) 0.0 ± 0.0
WS-EMO γ=20% 10.4613 ± 2.6883 (3.19) 0.1 ± 0.3
WS-EMO γ=30% 8.4306 ± 1.3288 (7.96) 0.1 ± 0.3
WS-EMO γ=40% 9.4011 ± 2.1017 (4.46) 0.5 ± 0.8
WS-EMO γ=50% 11.3924 ± 3.0330 (2.15) 0.8 ± 0.9
WS-EMO γ=60% 12.1794 ± 2.9865 (1.86) 1.6 ± 1.0
WS-EMO γ=70% 13.7448 ± 2.4376 (0.33) 3.3 ± 1.9
WS-EMO γ=80% 14.0521 ± 2.3034 0.09 4.1 ± 1.5
WS-EMO γ=90% 15.1119 ± 1.9977 1.76 5.6 ± 1.9
WS-EMO γ=100% 15.2829 ± 3.6578 1.04 8.1 ± 1.5

Table 6.5: Comparison of best locomotion distance for Pareto/best solutions ob-

tained over 10 independent runs using the SPANN and weighted sum EMO (WS-

EMO) algorithms. γ = relative weight parameter.

In Table 6.5, we compare the weighted sum EMO against the Pareto

SPANN algorithm. Results comparable to those obtained using the SPANN al-

gorithm are achieved only with γ = 70%. Although slightly higher locomotion

distances were achieved using higher values of γ, which places more emphasis on the

locomotion component of the weighted objective function, in all cases the standard

deviation of the solutions were higher for the average best fitness for locomotion

distance. Also, the case where γ = 100%, which does not put any pressure whatso-

ever towards optimizing the size of the hidden layer, results in a very high average of

hidden units used in the evolved controllers. This suggests that a significant amount

of redundancy may be present in these networks, given that a t-test showed none

of these weighted sum solutions were significantly better than those obtained with

SPANN at both the α = 0.05 and α = 0.01 significance levels. Conversely, three

of the weight combinations resulted in solutions significantly worse than SPANN at
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the α = 0.01 significance level (γ = 10%, 30%, 40%) and one weight combination

worse than SPANN at the α = 0.05 significance level (γ = 20%). Therefore, ob-

taining good solutions when using a weighted sum method critically depends on the

choice of weights used on the respective objective functions and to find this right

combination of weights would require multiple evolutionary runs to be conducted.

Hence, the Pareto approach adopted in our SPANN algorithm is preferable from a

computational cost point of view over a weighted sum method since it is able to

proceed with the evolutionary optimization process without any tuning of weights

and is still able to produce highly competitive results.

6.4.3 SPANN Against a Single-Objective EA

In a single-objective EA, the number of objectives that can be optimized

in any one run is restricted to one. If there is more than one factor that may affect

the quality of the solutions that are obtained from the evolutionary optimization

process, then the single-objective EA will need to be re-run multiple times to test

the effects of these other factors. For example, to test the effect of the size of the

number of hidden units used on the evolution of artificial creature controllers, a

separate set of runs will need to be carried out for each hidden layer size (see the

experiments reported in Bongard and Pfeifer (2002) for such a case). As such, the

obvious advantage an EMO algorithm has over a single-objective EA is its ability

to optimize multiple objectives simultaneously, thereby significantly reducing the

number of computational runs required to investigate other factors that may be

crucial to the effectiveness of the evolutionary process.

In Table 6.6, we compare the single-objective EA against the multi-objecti-

ve SPANN algorithm. In all the single-objective runs, higher locomotion distances

were achieved by the evolved controllers in terms of the mean of the best solutions

compared to SPANN. This is expected since all the evolutionary optimization pres-

sure is focused only on the one objective of maximizing locomotion distance whereas

this pressure is halved in the EMO case, where it is being shared with the objective

of minimizing the hidden layer size. However, none of these results were significantly
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Algorithm No. of Average Best t-statistic
Hidden Locomotion Distance (against
Units ± Standard Deviation SPANN)

SPANN 4.9 ± 2.6 13.9626 ± 1.7033 -
SO-EA 0 15.7516 ± 2.9721 1.53
SO-EA 1 15.1441 ± 2.0260 1.33
SO-EA 2 16.3236 ± 2.7242 2.43
SO-EA 3 15.1532 ± 3.1696 1.05
SO-EA 4 15.2088 ± 2.2106 1.61
SO-EA 5 15.1562 ± 2.8741 1.32
SO-EA 6 16.0317 ± 2.0719 2.86
SO-EA 7 15.8033 ± 1.6159 2.07
SO-EA 8 17.4358 ± 3.2508 2.89
SO-EA 9 15.7375 ± 2.6430 1.53
SO-EA 10 16.1514 ± 2.1318 2.49
SO-EA 11 15.0614 ± 3.5612 0.86
SO-EA 12 15.4287 ± 3.0020 1.41
SO-EA 13 15.0359 ± 1.8909 1.19
SO-EA 14 16.6273 ± 2.8095 2.70
SO-EA 15 15.6150 ± 2.4605 2.58

Table 6.6: Comparison of best locomotion distance for Pareto/best solutions ob-

tained over 10 independent runs using the SPANN algorithm and single-objective

EA (SO-EA). Number of hidden units is fixed in the single-objective EA.

different at the α = 0.01 significance level compared to SPANN while only six out

of the sixteen different setups were significantly different at the α = 0.05 signifi-

cance level (number of hidden units = 2, 6, 8, 10, 14 & 15). However, it should be

noted that the standard deviations in 15 out of the 16 different setups in the single-

objective EA were higher than SPANN which suggests that even though the search

space is much larger in the EMO case, the SPANN algorithm is still more stable

in terms of its optimization results. It should also be remembered that 150 more

evolutionary runs (15 setups × 10 repeats) were required in the single-objective

case simply to investigate the effects of the hidden layer size on the evolution of

these controllers. This would be a serious limitation for such investigations if the

different number of setups required increases in magnitude (for example, consider

the case where 100 or 1000 hidden units are allowed) or if the additional factors to

be investigated are not discrete in nature (for example variations in the morpho-
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logical parameters of the artificial creature). Moreover, in obtaining these better

locomotion capabilities, there is a significant trade-off since the overall computa-

tional costs in terms of evaluating the ANN during evolution is much higher for the

single-objective EA compared to SPANN (see Section 6.4.4 below).

6.4.4 Trading-Off Pareto Optimality Against Computatio-

nal Cost
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Figure 6.22: Pareto-front of solutions obtained using all algorithms over all runs

conducted. X-axis: Locomotion distance, Y-axis: No. of hidden units.

Figure 6.22 plots the global Pareto-front for all the different algorithms

used in evolving ANN controllers for the artificial creature. Two distinct groups of

Pareto optimal solutions can be seen in this graph. One group is formed using the
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random search, hill-climbing and random walk algorithms where the solutions were

significantly worse than the other group of solutions formed by SPANN, the hand-

tuned EMO, weighted sum EMO and single-objective EA. In the latter group, the

best global Pareto-front was obtained using the single-objective EA when viewed in

terms of the locomotion capability achieved, followed by the weighted sum method,

the hand-tuned EMO and finally by SPANN. Although the Pareto-front of SPANN

was not as optimal as the other algorithms, the controller with the highest loco-

motion distance discovered by each algorithm had the smallest hidden layer size for

SPANN (4 nodes) compared to the hand-tuned EMO (9 nodes), weighted sum EMO

(7 nodes) and the single-objective EA (14 nodes).

Algorithm Best +/−% Total +/−%
Locomotion of SPANN Computational of SPANN

Distance Cost
SPANN 17.6994 - 909,520,500 -

Random Search 13.0225 −26.4% 1,122,402,000 +23.4%
Hill-Climbing 10.0832 −43.0% 1,047,833,000 +15.2%
Random Walk 13.0900 −26.0% 1,124,060,000 +23.5%

HT-EMO 19.5051 +15.9% 7,529,814,400 +727.9%
WS-EMO 21.8228 +23.3% 3,073,867,500 +238.0%
SO-EA 22.4069 +26.5% 1,441,441,000,000 +15748.4%

Table 6.7: Comparison of overall best locomotion controller obtained and corre-

sponding computational cost using SPANN against all other algorithms.

Table 6.7 compares the overall best solution found by the different algo-

rithms against the overall computation cost involved in discovering these solutions.

The computational cost is estimated using the total number of hidden unit activa-

tions registered during the search process for each algorithm. This is a reasonable

estimate since most of the computational time involved in conducting these exper-

iments is spent on the evaluation of different ANN controllers by way of physically

simulating the creature as guided by each newly generated controller within the Vor-

tex physics-based world (see Section 3.1.1). Therefore, the computational cost (C)

will differ between different algorithms as a function of the number of hidden unit

activations required to evaluate the fitness of each newly generated genotype (A),

the number of new genotypes generated per evolutionary run (G) and the number
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of evolutionary runs per algorithm (R), as described by the following equation:

C = A×G×R (6.4)

The best overall solution in terms of locomotion distance was obtained us-

ing the single-objective EA where the improvement over SPANN was 26.5%. How-

ever, the corresponding computational cost was a staggering 15,748% more than

SPANN. This was mainly due to the number of repeated runs required for each

different hidden layer size as well as the high usage of hidden units in the runs in-

volving larger hidden layer sizes, which cannot be changed within each evolutionary

run. Again, although better locomotion capabilities were obtained using the hand-

tuned EMO and weighted sum EMO, dramatically higher computational costs were

also associated with the use of the hand-tuned (727%) as well as the weighted sum

methods (238%) compared to SPANN. Again these increases can be attributed to

the need for repeated evolutionary runs required to test different weight assignments

and crossover/mutation rates respectively in these algorithms. However, the inclu-

sion of another objective in these two algorithms, which allowed for the minimization

of the hidden layer size, did reduce the computational cost significantly compared

to the single-objective EA. Although inferior results were obtained using the ran-

dom search, hill-climbing and random walk algorithms, the overall computational

costs were still higher than SPANN. This is due to the fact that these algorithms

were only optimizing the locomotion component as in the single-objective EA and

hence did not impose any pressure on minimizing the usage of hidden units during

optimization.

In summary, although better controllers were evolved for locomotion dis-

tance using the single-objective EA, the corresponding trade-off in terms of overall

computational cost was dramatically and unfavorably large. The trade-off between

obtaining better locomotion capabilities and computational cost was again signifi-

cantly and unfavorably large using the hand-tuned and weighted sum EMO algo-

rithms. Hence, the SPANN algorithm has been shown to provide reasonably good

results in terms of evolving locomotion controllers while at the same time providing

the lowest overall computational cost compared to all other algorithms investigated
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in this study.

6.4.5 Redundancy in Best Evolved Controllers

We now compare the amount of redundancy present in the overall best

evolved controllers in terms of the hidden units as well as weight synapses obtained

from SPANN against the hand-tuned, weighted sum and single-objective method-

ologies. For this set of experiments, we selected the overall best controller evolved

for locomotion distance obtained from SPANN, the hand-tuned EMO algorithm,

the weighted sum EMO algorithm and the single-objective EA as representative

ANN architectures optimized using these respective approaches. These controllers,

which are used in the lesioning experiments that test for redundancy in the ANN

architecture, are listed in Table 6.8.

Algorithm Locomotion Distance No. of Hidden Units
SPANN 17.6994 4

HT-EMO 19.5051 9
WS-EMO 21.8228 7
SO-EA 22.4069 14

Table 6.8: Overall best locomotion controllers evolved using the SPANN, hand-

tuned (HT-EMO), weighted sum (WS-EMO) and single-objective (SO-EA) algo-

rithms used in the lesioning experiments.

In our analysis, redundancy is considered to be present when a controller

can allow deletion of: (1) entire hidden units, or (2) individual weight synapses,

without loss of fitness of more than 1 unit of locomotion distance compared to the

intact controller originally evolved. The first comparison involved deletion of entire

nodes in the hidden layer and can be regarded as macro-lesioning of the controller.

This was done in a fashion similar to Migliono and Walker (2002) where all possible

combinations of hidden units used in the ANN controller were systematically deleted.

The lesioned controller is then re-evaluated and the new fitness achieved recorded.

For example, if the best evolved controller had 4 hidden units, then all possible

combinations of networks with 1 node lesioned are first evaluated, followed by all

combinations of networks with 2 nodes lesioned and so forth terminating when
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the next level of hidden unit removal causes the fitness evaluations of the lesioned

controllers to fall below the redundancy threshold. The second comparison involved

the deletion of individual weight synapses which can be regarded as micro-lesioning

of the controller. The test for weight synapse redundancy was carried out in a greedy

fashion due to the very large numbers of possible weight synapse combinations: first

find the least loss of locomotion capability with 1 weight synapse lesioned, then

proceed to find the next least loss of locomotion capability with another weight

synapse lesioned by keeping the weight synapse found in the preceding step lesioned,

and so forth terminating when the next level of weight synapse removal causes the

fitness evaluations of the lesioned controllers to fall below the redundancy threshold.

This second redundancy test is less drastic compared to the first test since the

deletion of a single hidden node would cause entire sets of weight synapses to be

also deleted in a single step. As such, the second redundancy test of lesioning only at

the weight synapse level allows for a finer investigation into the controller’s evolved

architecture.

6.4.5.1 Hidden Unit Redundancy

Algorithm Redundancy Best Worst Average Lesioned
Fitness Lesioned Lesioned Fitness ±

Threshold Fitness Fitness Standard Deviation
SPANN 16.6994 12.8242 8.6991 10.9156 ± 1.9204

HT-EMO 18.5051 18.6472 1.6899 10.8691 ± 7.0303
WS-EMO 20.8228 18.6352 8.5114 14.4979 ± 3.8776
SO-EA 21.4069 17.5729 2.1421 12.9751 ± 4.8180

Table 6.9: Comparison of locomotion distance of overall best controller evolved using

the SPANN, hand-tuned (HT-EMO), weighted sum (WS-EMO) and single-objective

(SO-EA) algorithms with 1 hidden node lesioned.

None of the overall best controllers evolved for locomotion distance using

SPANN, weighted sum and single-objective methodologies showed any redundancy

in terms of hidden units present in the ANN controller. All possible combinations of

controllers with a single hidden node removed from the optimized architecture using
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these algorithms resulted in locomotion fitness below the redundancy threshold as

shown in Table 6.9. However, the overall best controller evolved using the hand-

tuned EMO algorithm did have one redundant hidden unit (the eighth node) which

could be lesioned without causing the controller’s capabilities to fall below the fitness

threshold. This phenomenon together with the results from further levels of hidden

unit lesioning of the overall best controller evolved using the hand-tuned EMO

algorithm are discussed in the next paragraph. Surprisingly, the lesioning of a

single hidden unit appeared to also have the most detrimental effect on the best

controller evolved using the hand-tuned EMO algorithm in terms of the average loss

of locomotion fitness compared to all other algorithms. Furthermore, the lesioning

of a particular hidden node in the best controller evolved using the hand-tuned EMO

algorithm also produced the worst 1-node lesioned controller, which only achieved a

minuscule locomotion distance of just over 1.6 units. The removal of entire hidden

nodes from the optimized ANN controllers seemed to result in large scale loss of

locomotion capability suggesting that macro-lesioning of these evolved architectures

is too drastic due to removal of not only a single hidden node but an entire set of

weight synapses connecting to and originating from the lesioned hidden node. If the

redundancy test were to be concluded at this coarse level, then the results would

have indicated that no redundancy was present at all in the evolved controllers

obtained using SPANN, the weighted sum EMO algorithm and the single-objective

EA. However, a redundancy test at the finer weight synapse level, which is presented

in the next section, showed otherwise.

Algorithm Redundancy Best Worst Average Lesioned
Fitness Lesioned Lesioned Fitness ±

Threshold Fitness Fitness Standard Deviation
HT-EMO 18.5051 18.1569 1.3326 9.4544 ± 5.6139

Table 6.10: Locomotion distance of overall best controller evolved using the hand-

tuned EMO (HT-EMO) algorithm with 2 hidden nodes lesioned.

Before proceeding with the analysis at the weight synapse level, we first

discuss the results obtained from the lesioning of different combinations of 2 hidden

nodes from the overall best controller evolved using the hand-tuned EMO algorithm
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since lesioning of 1 hidden node did show redundancy in this particular controller.

None of the controllers which had 2 hidden nodes removed could produce locomotion

fitness above the redundancy threshold as shown in Table 6.10. Compared to the

overall best controller evolved using the self-adaptive SPANN algorithm, the hand-

tuned EMO algorithm evolved a controller with more redundancy at the hidden

unit level. Hence, the self-adaptive crossover and mutation rates appeared to have

benefited the Pareto evolutionary optimization process in that SPANN was able to

find a more compact network with less redundancy compared to the hand-tuned

algorithm, which had pre-determined and fixed crossover and mutation rates during

the optimization process.

6.4.5.2 Weight Synapse Redundancy
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Figure 6.23: Locomotion distance for overall best controller evolved using SPANN

with lesioning of 1. 1 weight synapse (left), 2. 2 weight synapses (right). The

index assigned to the lesioned weight synapse is labelled according to the order of

lesioning. X-axis: Synapse index, Y-axis: Locomotion distance.

Figure 6.23 illustrates the loss of locomotion fitness as weight synapses

were lesioned in the overall best controller evolved using SPANN. There was only

one particular weight synapse that could be lesioned without causing the controller’s

performance to fall below the fitness threshold (Figure 6.23.1). No other lesioning of
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a single synapse could produce a fitness above the redundancy threshold. Addition-

ally, no controller with 2 synapses lesioned could produce controllers that maintained

their performance above the fitness threshold (Figure 6.23.2). This meant that the

best evolved controller from SPANN only had a redundancy of one weight synapse

and furthermore this occurred only with a specific weight synapse, which was the

connection between the input from the joint sensor that measures the angle between

the torso and the upper back left limb (Sensor x1) and the first node in the hidden

layer of the ANN.

Figure 6.24 illustrates the loss of locomotion fitness as weight synapses were

lesioned in the overall best controller evolved using the hand-tuned EMO algorithm.

This controller exhibited a high level of weight synapse redundancy where up to 281

synapses could be removed without causing the controller to fall below the fitness

threshold. No controller with 282 synapses lesioned could produce controllers that

maintained their performance above the fitness threshold (Figure 6.24.4). In line

with results obtained from macro-lesioning at the hidden unit level, a much higher

level of weight synapse redundancy should be expected in this controller compared

to the overall best controllers evolved using the other algorithms. This is the case

since the analysis from the previous section showed that an entire hidden node

could be removed without causing the controller to fall below the fitness threshold,

which correspondingly means that the entire set of synapses connected to and orig-

inating from this particular hidden unit were redundant. Thus, at least 30 weight

synapses that are connected to this hidden unit can be removed without causing

the lesioned controller to fall below the fitness threshold. The number of different

weight synapses that could be removed varied considerably at different levels of le-

sioning. For example, Figure 6.24.2 showed that only approximately 25 different

synapses could be removed at the 100-synapse level without causing the controller’s

locomotion capabilities to fall below the redundancy threshold. On the other hand,

Figure 6.24.3 showed that approximately 75 different synapses could be removed

at the 200-synapse level without causing the lesioned controller to fall below the

fitness threshold. The fluctuations observed with regards to the number of different
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Figure 6.24: Locomotion distance for overall best controller evolved using the hand-

tuned EMO algorithm (HT-EMO) with lesioning of 1. 1 weight synapse (top left), 2.

100 weight synapses (top right), 3. 200 synapses (bottom left), 4. 282 synapses (bot-

tom right). The index assigned to the lesioned weight synapse is labelled according

to the order of lesioning. X-axis: Synapse index, Y-axis: Locomotion distance.

synapses that could be removed at various levels of weight synapse lesioning are

most probably due to the greedy nature in which the synapse lesioning takes place

combined with the complex dynamics that takes place within the evolved ANN. A

weight synapse lesioned presently will provide the best performance at the current

level but the effects of this lesioning may at certain stages become highly sensitive

to further lesioning and vice versa due to the combinatorial effects that occur be-

tween different weight synapses and hidden nodes in the network, which cannot be
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ascertained by this one-step lookahead algorithm.
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Figure 6.25: Locomotion distance for overall best controller evolved using the

weighted sum EMO algorithm (WS-EMO) with lesioning of 1. 1 weight synapse (top

left), 2. 2 weight synapses (top right), 3. 3 synapses (bottom left), 4. 4 synapses

(bottom right). The index assigned to the lesioned weight synapse is labelled accord-

ing to the order of lesioning. X-axis: Synapse index, Y-axis: Locomotion distance.

Figure 6.25 illustrates the loss of locomotion fitness as weight synapses

were lesioned in the overall best controller evolved using the weighted sum EMO

algorithm. Up to three synapses could be lesioned without causing the controller

to fall below the fitness threshold. No controller with 4 synapses lesioned could

produce controllers that maintained their performance above the fitness threshold

(Figure 6.25.4). In terms of the number of different weight synapses that could
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be removed and still produced controllers that performed above the threshold, 6

controllers were found when 1 synapse was lesioned (Figure 6.25.1), followed by

2 controllers when 2 synapses were lesioned (Figure 6.25.2) and finally by only

1 controller when 3 synapses were lesioned (Figure 6.25.3). Hence there was more

synaptic redundancy present in the overall best controller evolved using the weighted

sum method compared to SPANN.
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Figure 6.26: Locomotion distance for overall best controller evolved using the single-

objective EA (SO-EA) with lesioning of 1. 1 weight synapse (top left), 2. 2 weight

synapses (top right), 3. 3 synapses (bottom). The index assigned to the lesioned

weight synapse is labelled according to the order of lesioning. X-axis: Synapse index,

Y-axis: Locomotion distance.

Figure 6.26 illustrates the loss of locomotion fitness as weight synapses
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were lesioned in the overall best controller evolved using the single-objective EA.

Up to 2 synapses could be lesioned without causing the evolved controller to fall

below the fitness threshold. No controller with 3 synapses lesioned could produce

controllers that maintained their performance above the fitness threshold (Figure

6.26.3). Only a particular weight synapse could be removed when 1 synapse was

lesioned which produced a controller that performed above the threshold (Figure

6.26.1). Following this lesioning, only another specific weight synapse could be

removed at the 2-synapse lesioning level that resulted in a controller that performed

above the threshold (Figure 6.26.2). Thus, there was also more synaptic redundancy

present in the overall best controller evolved using the single-objective EA compared

to SPANN but less synaptic redundancy compared to the hand-tuned and weighted

sum method. A summary comparing the number of redundant weight synapses

present in the best evolved controller obtained from SPANN against those obtained

using the hand-tuned, weighted sum and single-objective algorithms is given in Table

6.11.

Algorithm No. of Redundant Synapses
SPANN 1

HT-EMO 281
WS-EMO 3
SO-EA 2

Table 6.11: Number of redundant synapses in the best evolved controllers from the

SPANN, hand-tuned (HT-EMO), weighted sum (WS-EMO) and single-objective

(SO-EA) algorithms.

6.4.6 SPANN Against NSGA-II

To conclude our verification of SPANN as a beneficial Pareto EMO al-

gorithm, we compare its results against one of the current state-of-the-art Pareto

EMO algorithms called NSGA-II (Deb, Agrawal, Pratab, and Meyarivan 2000). Our

objective here is simply to verify that the solutions obtained using SPANN are com-

parable to those obtained using a well-known and well-tested Pareto EMO algorithm
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and not to determine which Pareto EMO algorithm is better for evolving locomo-

tion controllers as this is beyond the scope of this thesis. The NSGA-II algorithm

was obtained from the authors’ web site (KanGAL 2003) and used as a benchmark

algorithm without any modification to the NSGA-II algorithm. The NNType3 archi-

tecture was again used in this set of experiments and all other parameters remained

the same: 1000 generations, 30 individuals, 500 timesteps and 10 repeated runs.

NSGA-II requires a number of other parameters to be set by the user including the

crossover and mutation rates which are non-self-adaptive. Recently, the authors of

NSGA-II conducted a comprehensive comparative study of NSGA-II against other

EMO algorithms, which were reported in Deb, Pratab, Agrawal, and Meyarivan

(2002). Hence, in the first setup, these user-defined parameters were set according

to those used in the above-mentioned comparative study as follows: crossover rate

90%, mutation rate for real-coded variables 0.1553% (representing the reciprocal of

the number of real-coded variables), and mutation rate for binary-coded variables

6.6667% (representing the reciprocal of the number of binary-coded variables), dis-

tribution index for crossover operator 20, distribution index for mutation operator

20, and single-point crossover.

Algorithm Overall Best Average Best t-statistic No. of
Locomotion Locomotion (against Hidden

Distance Distance ± SPANN) Units
Standard Deviation

SPANN 17.6994 13.9626 ± 1.7033 - 4.9 ± 2.6
NSGA-II Setup 1 15.5452 11.7421 ± 2.0497 (3.78) 0 ± 0
NSGA-II Setup 2 18.3941 16.2022 ± 1.5860 2.85 6.8 ± 2.3
NSGA-II Setup 3 20.4144 17.8635 ± 1.9744 4.54 8.4 ± 2.1
NSGA-II Setup 4 20.9806 16.2667 ± 2.1868 2.54 7.7 ± 1.7

Table 6.12: Comparison of best locomotion distance for Pareto solutions obtained

over 10 independent runs using the SPANN and NSGA-II algorithms. Setup 1:

c=90%, m(r)=0.1553%, m(b)=6.6667%. Setup 2: c=50%, m(r,b)=50%. Setup 3:

c=50%, m(r,b)=90%. Setup 4: c=90%, m(r,b)=50%. c = crossover rate, m(r)

= mutation rate for real-coded variables, m(b) = mutation rate for binary-coded

variables.
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Table 6.12 lists the best Pareto solutions for locomotion distance obtained

using the NSGA-II algorithm and compares them against those obtained using the

SPANN algorithm. The best solutions obtained using the first setup for NSGA-II

produced controllers that used no hidden units in all 10 runs. The overall best

locomotion distance achieved was lower than that obtained using SPANN. The very

small mutation rate used in this setup most probably caused the evolutionary search

to prematurely converge to local optima centered around controllers which did not

use any hidden units. A t-test showed that the results obtained using NSGA-II were

significantly worse than SPANN at the α = 0.01 significance level for this setup.

Also, the overall best controller from SPANN achieved over 2 units of distance more

than the overall best controller obtained from this setup of NSGA-II (representing

a decrease of 12.2% compared to the overall best locomotion distance achieved by

SPANN).

To overcome the inferior results obtained using the setup reported in (Deb,

Pratab, Agrawal, and Meyarivan 2002), a second experiment utilizing the best com-

bination of crossover and mutation rates obtained from the hand-tuned EMO was

conducted. This second setup used crossover and mutation rates of 50% with all

other parameters unchanged. Much better results were obtained in this second

setup, where the overall best controller in terms of locomotion achieved a higher

distance than that obtained using SPANN by just under 0.7 units (representing a

3.9% improvement over the best locomotion distance achieved by SPANN). A t-

test showed that the solutions obtained using NSGA-II with the second setup were

significantly better than those obtained using SPANN at the α = 0.05 significance

level.

Since these results suggest that a high mutation rate may improve the

performance of NSGA-II, we carried out a third experiment using a setup with

an even higher mutation rate of 90% while maintaining the crossover rate at 50%.

However, a t-test comparing the results from this third setup against the second

setup for NSGA-II showed no significant improvements. To test whether a higher

crossover rate would yield better results, a fourth experiment was conducted using
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a setup with crossover rate of 90% and maintaining the mutation rate at 50%.

Again, a t-test showed no significant improvements in the results obtained with the

fourth setup compared to the second setup of NSGA-II. The solutions obtained with

third and fourth setup for NSGA-II were significantly better than those obtained

with SPANN at the α = 0.01 and α = 0.05 levels respectively. The best solutions

obtained from the third setup of NSGA-II used an average of 8.4 hidden units, which

is almost double the number used by the best solutions obtained using SPANN, while

the fourth setup used an average of 7.7 hidden units.

The Pareto-frontiers obtained over the 10 runs of NSGA-II for the four

setups are depicted in Figure 6.27. The first setup only produced controllers that

did not make use of any hidden units in the ANN controller as can be seen in

Figure 6.27.1. All runs converged to solutions that did not require any hidden

layer transformation resulting in purely reactive controllers being generated. In

comparison, the second, third and fourth setups which used much higher mutation

rates all produced a much greater variety of controllers as shown by the Pareto-fronts

plotted in Figures 6.27.2, 6.27.3 and 6.27.4 respectively.

Figure 6.28 plots the global Pareto-front of SPANN and NSGA-II. It can

be seen that the Pareto-front generated through 10 runs of SPANN is comparable

though dominated by the Pareto-front generated through 40 runs of NSGA-II (10

runs each in Setup 1–4). The solution with 0 hidden units of the NSGA-II global

Pareto-front was contributed from the first setup of NSGA-II while the remaining

8 other solutions on the global Pareto-front were contributed from the other three

setups.

In summary, as with the hand-tuned EMO algorithm, there is a trade-

off between obtaining better locomotion controllers using NSGA-II at the cost of

incurring greater computational expense to find the optimal parameter settings. It

is clear that the performance of NSGA-II is also sensitive to the parameters used. As

future work, it would be interesting to implement a self-adaptive version of NSGA-II

for a direct comparison against the self-adaptive SPANN.
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Figure 6.27: Pareto-front of solutions obtained for 10 runs using the NSGA-II al-

gorithm for Setup 1 (top left), Setup 2 (top right), Setup 3 (bottom left), Setup 4

(bottom right). Setup 1: c=90%, m(r)=0.1553%, m(b)=6.6667%. Setup 2: c=50%,

m(r,b)=50%. Setup 3: c=50%, m(r,b)=90%. Setup 4: c=90%, m(r,b)=50%. c =

crossover rate, m(r) = mutation rate for real-coded variables, m(b) = mutation

rate for binary-coded variables. X-axis: Locomotion distance, Y-axis: No. of hidden

units.

6.5 Chapter Summary

The self-adaptive Pareto SPANN algorithm was compared against EMO

algorithms that utilized hand-tuning of crossover/mutation rates and weighted sum

approaches as well as a single-objective EA. It was found that SPANN discovered

reasonably good quality controllers but most importantly required significantly less
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Figure 6.28: Global Pareto-front of controllers obtained using the SPANN and

NSGA-II algorithms. X-axis: Locomotion distance, Y-axis: No. of hidden units.

overall computational costs. Although better solutions were found using the single-

objective EA, the weighted sum and hand-tuned EMO algorithms, the trade-off in

terms of computational costs was extremely high in comparison to SPANN. Fur-

thermore, there was more redundancy present in the best controllers evolved using

the hand-tuned, weighted sum and single-objective methodologies compared to the

self-adaptive Pareto approach. The performance of SPANN was also found to be

comparable to that of a current state-of-the-art benchmark Pareto EMO algorithm,

NSGA-II. Therefore, the self-adaptive Pareto SPANN algorithm has been shown to

be a highly beneficial EMO algorithm to use for evolving artificial creature con-

trollers compared to other more conventional evolutionary optimization algorithms.

In the next chapter, we will present a multi-objective view towards capturing and

characterizing the complexities of evolved controllers using the SPANN algorithm.



Chapter 7

Creature Complexity

1 Complexity has been and will remain a debatable concept. We all know

it when we see it, yet when we need to provide a functional definition of complexity,

it becomes a mythical entity. Although the study of complex systems has attracted

much interest over the last decade and a half, the definition of what makes a system

complex is still the subject of much debate among researchers (Adami 1998; Feldman

and Crutchfield 1998b; Standish 2001). What is complexity? Is there a universal

measure of complexity? Does complexity arise when a system reaches a critical

point or is there a phase transition between simple and complex systems? Are

adaptability, adaptation, emergence, hierarchy, bifurcation, and self-organization

evidence for complexity? These are all common concerns raised by researchers when

speaking of complex systems and complexity itself.

Although there are numerous methods available in the literature for mea-

suring complexity (Badii and Politi 1997; Edmonds 1999), it has been argued how-

ever that such complexity measures are typically too difficult to compute to be of

use for any practical purpose or intent (Shalizi 2001). This chapter attempts to

unfold some mysteries about complexity and to pose EMO as a simple and highly

accessible methodology for characterizing the complexity of artificially evolved crea-

tures using a multi-objective methodology. One of the main objectives of evolving

1Some of the material presented in this chapter have been previously published in Teo, Nguyen,

and Abbass (2003).
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artificial creatures is to synthesize increasingly complex behaviors and/or morpholo-

gies either through evolutionary or lifetime learning (Pfeifer and Scheier 1999; Nolfi

and Floreano 2000; Hornby and Pollack 2001a; Komosinski and Rotaru-Varga 2001;

Bongard 2002b). Needless to say, the term “complex” is generally used very loosely

since there is currently no general method for comparing between the complexities

of these evolved artificial creatures’ behaviors and morphologies. As such, without a

quantitative measure for behavioral or morphological complexity, an objective eval-

uation between these artificial evolutionary systems becomes very hard and typically

ends up being some sort of a subjective argument.

We first present attempts at defining complexity followed by a compre-

hensive review of the different views of complexity from the social sciences to con-

crete measures in information systems and the physical sciences. Then, we pro-

pose a characterization of the notion of complexity in embodied cognition using

multi-objectivity as a natural and theoretically-founded paradigm in mathematics.

Specifically, we will attempt to characterize the behavioral and morphological com-

plexities of different artificial creatures using the multi-objective controller evolution

approach introduced in Chapter 5.

7.1 Complexity Defined?

The following list provides some suggested definitions of complexity and

complex systems:

• “The complexity of a system S is a contingent property, depending upon the

nature of the observables describing S, and their mutual interactions.” —

Casti (1986, p.155)

• “Complexity is the study of the behavior of macroscopic collections of such

units that are endowed with the potential to evolve over time.” — Coveney

and Highfield (1995, p.7)

• “. . . a “theory of complexity” could be viewed as a theory of modelling, en-
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compassing various reduction schemes (elimination or aggregation of variables,

separation of weak from strong couplings, averaging over subsystems, evaluat-

ing their efficiency and, possibly, suggesting novel representations of natural

phenomena.” — Badii and Politi (1997, p.6)

• “I use complex and complexity intuitively to describe self-organized systems

that have many components and many characteristic aspects, exhibit many

structures in various scales, undergo many processes in various rates, and

have the capabilities to change abruptly and adapt to external environments.”

— Auyang (1998, p.13)

• “Complexity is that property of a model which makes it difficult to formulate

its overall behavior in a given language, even when given reasonably com-

plete information about its atomic components and their inter-relations.” —

Edmonds (1999, p.72)

• “. . . in defining complexity we need to consider both functions of perception

and analysis. For what we want to know is not whether a simple or short

description can be found of every detail of something, but merely whether

such a description can be found of those features in which we happen to be

interested.” — Wolfram (2002, p.557).

It is surprising to note that although there is a large body of literature

that discusses issues relating to complexity, few actually provide a definition to

complexity as used in their respective contexts (Feldman and Crutchfield 1998b).

As pointed out in the introduction to this chapter, the task of defining complexity

is difficult in itself, which may explain why the term “complexity” is so commonly

used without qualification. A number of books authored about complexity theory

confirms this observation, where an enormous range of views were drawn about what

complexity means to different researchers and to different disciplines (Lewin 1993;

Waldrop 1994; Mainzer 1997).

In the social sciences, complex systems typically refer to social phenomena

that exhibit some form of dynamic nonlinear behavior that are difficult to explain
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using basic linear models. Examples of complex systems described in the social sci-

ences include fluctuations of stock markets and exchange rates, impacts of economic

policies, human population growth and migration, societal organization, political

revolutions, organizational cooperation and conflict, human interactions and their

communication structures (Coveney and Highfield 1995). With reference to complex

systems and the evolution of human society, Mainzer (1997) states that

“The crucial point of the complex system approach is that from a macro-

scopic point of view the development of political, social, or cultural order

is not only the sum of single intentions, but the collective result of non-

linear interactions.” (p.253)

Biological organisms and processes associated with living things and life

in general typically correspond to what we intuitively know as objects and systems

that exhibit the highest degree of complexity (Badii and Politi 1997). Examples of

complex systems in the biological sciences include genomic evolution, genetic regula-

tory networks, population ecology, morphogenesis and biological neural networks to

name but a few (Mainzer 1997). More specific studies of biological complex systems

have been conducted on the self-replication of bio-molecules, in-vitro RNA evolution,

self-regulation of the glycolytic process, self-organization of slime moulds, pattern

formation of the hydra, oscillations of the heart, spatio-temporal organization of

hymenoptera colonies, punctuated equilibrium as catastrophe theory, planetary self-

regulation and Gaia theory (Coveney and Highfield 1995).

In chemical and physical systems, complexity is often attributed to pro-

cesses that exhibit some form of aperiodicity or possess high degrees of freedom

(Badii and Politi 1997). Terms commonly associated with complex physical and

chemical systems include chaos, phase transitions, bifurcation, self-organized criti-

cality and percolation. Examples of such complex phenomena include cement for-

mation caused by the percolation of water through irregularly shaped particles in

cement powder, criticality of sand-piles that produce avalanches beyond a certain ge-

ometric configuration, fluid instabilities that produce turbulence, optical instabilities

in lasers that produce quasi-periodic light patterns and fluctuations of spin-glasses
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caused by the disorderly arrangements of spinning electrons (Coveney and Highfield

1995; Badii and Politi 1997; Adami 1998).

As can be seen from the diverse interpretations and applications to so-

cial, biological and physical systems, complexity provides very different meanings

depending on the context it is being referred to. Perhaps Mainzer (1997) provides

the best summary of what complex systems encompasses:

“. . . the theory of nonlinear complex systems cannot be reduced to spe-

cial natural laws of physics . . . it is an interdisciplinary methodology to

explain the emergence of certain macroscopic phenomena via the non-

linear interactions of microscopic elements . . . ” (p.1)

In the next section, we will provide more concrete examples of complex systems

and specifically what types of measures have been formulated to capture complexity

across the different disciplines.

7.2 Measures of Complexity

In this section, we present a review of existing measures for defining or

simply characterizing complexity as viewed from the social, physical and biological

sciences’ perspectives. A summary of the literature surveyed on general reviews

and specific applications of complexity measures is given in Table 7.1. Here we

give a high-level survey of the more significant measures from these diverse fields.

Our intention is simply to provide an indication of the wide spectrum of efforts

in trying to capture complexity into something mathematical or formal so as to

assist with the characterization or comparison of different systems. A more compre-

hensive and detailed survey of existing complexity measures is available elsewhere

(Edmonds 1999). Nonetheless, our shorter survey will show that such measures

are often highly specific, being specially designed or formulated for application in a

particular domain or area of research not readily transferable to another application

domain. A discussion of the advantages and disadvantages associated with these dif-

ferent methodologies for measuring complexity will be also highlighted. We will also
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Category Reference
General Casti (1986)
Reviews Lewin (1993)

Waldrop (1994)
Coveney and Highfield (1995)
Mainzer (1997)
Auyang (1998)

Biological Cavalier-Smith (1985)
Sciences Bonner (1988)

Atlan and Koppel (1990)
Smith (1994)
Maynard Smith and Szathmary (1995)
Nehaniv (2000a), Nehaniv (2000b)
Szathmary, Jordan, and Pal (2001)

Social Kelly (1955)
Sciences Albin (1980)

Cooper (1993)
Holm (1993)
Lyon (1993)
Gibson (1998)
Halford, Wilson, and Phillips (1998)
Clement (1999)
Neyman and Okada (1999)
Butts (2001)
Andrews and Halford (2002)
DeShazo and Fermo (2002)
Warren and Gibson (2002)

Physical Shannon (1948)
Sciences Kolmogorov (1965)

Bennett (1988)
Badii and Politi (1997)
Wolpert and MacReady (1997)
Adami (1998)
Feldman and Crutchfield (1998a), Feldman and Crutchfield (1998b)
Edmonds (1999)
Shalizi (2001)
Standish (2001)
Wolfram (2002)

Table 7.1: Summary of literature survey on reviews of complexity measures and

their applications in the biological, social and physical sciences.

cover the more recent complexity measures suggested since the review conducted

by Edmonds (1999) especially for biological organisms as they may provide critical

insights to the measurement of complexity in their artificial counterparts.
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7.2.1 Social Sciences

An early attempt to capture complexity in a numerical form exists in the

psychology literature. It is called cognitive complexity and is used to describe the

complexity of mental constructions of the world possessed by an individual (Kelly

1955). Cognitive complexity here is estimated numerically by counting the number

of different relationships constructed by the subject from given object attributes. In

this sense, a person who sees the world in more dimensions would be considered to

have a higher cognitive complexity. A related and more recent technique for measur-

ing cognitive complexity called Relational Complexity (RC) theory was proposed by

Halford, Wilson, and Phillips (1998). It is defined as the number (arity) of relations

between entities or arguments in a given decision task. For example, an unary rela-

tion would have one entity, such as woman(Jane) and a binary relation would have

two entities such as married(Jane,Dean). Hence, each entity corresponds to a vari-

able or attribute and an n-ary relation maps to a set of points in an n-dimensional

cognitive space. A recent study has tested the validity of this metric and was found

to be effective in measuring the cognitive development of young children (3–8 years)

(Andrews and Halford 2002).

In studies of group and organizational behavior, an early conceptualization

of measuring the complexity of social interactions was proposed by Albin (1980).

It applies graph theory to participating individuals within an interacting group

and measures the level of complexity of social actions based on the connectivity of

actions between individuals. In a more recent application of complexity to the social

sciences, Butts (2001) proposed the use of algorithmic complexity to measure the

complexity of social networks. Again based on graph theory, the interaction of roles

representative of human social structures are first represented as directed graphs, the

complexity of which is then measured according to the amount of “reducibility” or

“compressibility” that can be achieved on the network. In this case, a social network

with higher compressibility would be considered to have higher reducibility and the

converse in a social network with low reducibility. Interestingly, complexity has also

been applied to command and control theory associated with military operations
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in an attempt to unify difficulties encountered with such systems (Cooper 1993).

Specifically, three types of complexity were identified: dimensional, uncertainty and

computational, although no actual method of measuring these complexities within

the military setting was given.

Another area where complexity has been applied numerically is the study

of human language processing. In a theory called Syntactic Prediction Locality

Theory (SPLT) proposed by Gibson (1998), the complexity of a sentence can be

predicted according to the memory cost associated with keeping a partial sentence

in memory and integration cost associated with integrating new words into existing

syntactical structures built thus far. Memory cost is quantified according to the

number of syntactic categories necessary to complete the current input string as

a grammatical sentence. Integration cost is quantified according to the distance

between an incoming input and the nearest syntactic component it attaches to.

This technique has been used to empirically measure how different localizations of

noun phrases affected sentence complexity (Warren and Gibson 2002).

Complexity in economics typically refers to simply the relaxation of as-

sumptions made on the behavior of market agents (Edmonds 1997). More specific

applications of complexity can be found in game theory where the number of agent

states is used as a measure of economic complexity (Holm 1993). An entropy-based

measure has been formulated to capture the complexity of agent strategies in a re-

peated games environment (Neyman and Okada 1999). Complexity measures for

gauging consumer demand and preferences have also been developed based on the

quantity of information and configuration of information present in a given choice

set (DeShazo and Fermo 2002). In a study that looked at the accuracy of market

earnings forecasts, the portfolio complexity of research analysts was defined sim-

ply as the number of firms and industries being tracked in their market analysis

(Clement 1999).

Measures of complexity have largely been applied at only a very superficial

level in the social sciences, typically taking size as a simplistic basis for describing

or capturing complexity. There are obvious deficiencies associated with size-based
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complexity measures, the most evident being that not all large systems are complex

(Edmonds 1999). It has been argued that the application of complex systems the-

ory to the social sciences results in reductionist view of complexity when applied

to the social domain (Lyon 1993). The important point raised is that contextual

relationships such as political and moral issues are lost during the transformation

into a mathematical or metaphoric model for complexity analysis.

7.2.2 Biological Sciences

It is especially difficult to define or measure biological complexity (Maynard

Smith and Szathmary 1995; Szathmary, Jordan, and Pal 2001). An obvious measure

would be the size of an organism’s genome in terms of the number of base pairs (BP)

present in the DNA, which can be thought of in the sense that a more complex

organism would require lengthier instructions for making the organism (Cavalier-

Smith 1985; Maynard Smith and Szathmary 1995). However, a total DNA count

would place the complexity of humans (3.5×109 BP) an order of magnitude below a

newt (19.0×109 BP) and two orders of magnitude below a lungfish (140.0×109 BP)

and a lily (130.0 × 109 BP) (Maynard Smith and Szathmary 1995). An alternate

measure of biological complexity based on DNA is that of counting only parts of

the DNA that actually code for proteins that are expressed (Cavalier-Smith 1985).

This complexity measure would then make more sense in that eukaryotes would

have more coding DNA than prokaryotes, multi-celled organisms have more coding

DNA than single-celled organisms, and that vertebrates have more coding DNA

than invertebrates. However, this is an extremely coarse-grained classification that

tells us very little about the structural and functional complexity between different

organisms.

Another suggested measure of complexity for biological organisms based

on genomic information is the number of genes present in the DNA (Szathmary,

Jordan, and Pal 2001). However, humans, previously thought to have an order of

magnitude more genes, are now estimated to have only around 20,000–35,000 genes

and have the same order of magnitude of genes as the flowering plant A. thaliana
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(25,498 genes), the nematode worm C. elegans (18,424 genes) and the fruit fly D.

melanogaster (13,601 genes) (Szathmary, Jordan, and Pal 2001). As such, merely

counting the number of genes as a measure of biological complexity may not be very

insightful.

There are a number of other suggested methods of measuring biological

complexity. Focusing on multicellular organism, the number of cell types present can

be used to define the complexity of such an organism (Bonner 1988). A problem with

this approach is that what constitute a distinct cell type as opposed to another cell

type depends on our current understanding of molecular biology and biochemistry

and may vary significantly between different groups of researchers (Nehaniv 2000a;

Szathmary, Jordan, and Pal 2001).

The ability to measure the complexity of brains has been critically analyzed

by Smith (1994). He laments

“. . . how very far we are at present from being able to give a numerical

estimate.” (Smith 1994, p.93)

Showing the inadequacies of “borrowed” complexity measures from the physical

sciences, he argues that organization as well as levels of organization need to be

considered when attempting to capture the complexity of brains. A numerical mea-

sure based on the columnar organization of the neocortex was suggested citing a

quantitative example that estimates the complexity of human brains, with roughly

300,000 such columns, to be 375 times greater than that of mouse brains, with only

800 columns.

A more formal approach based on algorithmic complexity to measuring bi-

ological complexity has been suggested by considering the number of developmental

steps required to produce the organism from its DNA (Atlan and Koppel 1990).

However, as critically pointed out by Szathmary, Jordan, and Pal (2001),

“The snag here is that evolution is not an engineer but a tinkerer, so that

there is no reason to expect that, for example, elephants have developed

according to a minimalist program.” (p.1315)
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Another formal measure for biological complexity was suggested by Ne-

haniv (2000a) based on the notion of hierarchical complexity. In this measure,

biological systems are assigned an integer value which gives the least number of

hierarchical organized computing levels needed to construct an automata model of

the biological system. Although powerful in terms of generalization since it does not

require the actual knowledge of how a biological system is built nor its components,

it does however have the requirement that the system can first be adequately mod-

elled using finite automata (Nehaniv 2000a). The process of transforming biological

systems into such automata is highly subjective and can be executed in a myriad of

ways depending on how the system is viewed by the transformer. This measure of

complexity was later applied to the measurement of evolvability in a later study and

argued that open-ended evolutionary systems should show unbounded complexity

increase over time (Nehaniv 2000b).

Szathmary, Jordan, and Pal (2001) more recently proposed the measure-

ment of biological complexity by considering the connectivity of networks of tran-

scription factors and the genes that regulate rather than direct counting of genes

or the interactions among genes. They argue that biological complexity normally

thought of in terms of morphological and behavioral complexity correlates better

with the connectivity of gene-networks than direct measurements such as gene num-

bers since the former will correctly account for the presence of so-called delegated

information processing systems in the form of vertebrate nervous and immune sys-

tems. However, current artificial evolutionary systems lack the level of sophistication

in terms of such gene-regulatory networks and as such, do not readily lend themselves

to such an analysis. Nonetheless, work has begun to imbue artificial evolutionary

systems with some form of genetic regulation (Bongard 2002b) in the hope of evolv-

ing more sophisticated artificial organisms and will conceivably in the future allow

for such a measure to be applied.
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7.2.3 Physical Sciences

In the physical sciences literature, there are generally two widely-accepted

views of measuring complexity. The first is an information-theoretic approach based

on Shannon’s entropy (Shannon 1948) and is commonly referred to as statistical

complexity due to its formulation based on probability. Shannon’s entropy measure

H(X) of a random variable X, where the outcomes xi occur with probability pi, is

given by

H(X) = − C

N∑
i

pi log pi (7.1)

where C is the constant related to the base chosen to express the logarithm. It is

a probabilistic measure of disorder present in a system and thus gives an indication

of how much we do not know about a particular system’s structure. Shannon’s

entropy is used to measure the amount of information content present within a

given message or more generally any system of interest. Thus a more complex

system would be expected to give a much higher information content than a less

complex system. In other words, a more complex system would require more bits

to describe compared to a less complex system. However, a sequence of random

numbers will lead to the highest entropy and hence give a false indication of the

system being complex when it is really just random. In this sense, complexity is

somehow a measure of order or disorder that does not give a true indication of

the information value present in the system, which in turn leads to an inaccurate

characterization of complexity. Furthermore, an entropic measure does not take into

account the semantic nature of the system. Consider for example a simple behavior

such as walking. Let us assume that we are interested in measuring the complexity

of walking in different environments and the walking itself is undertaken by an ANN.

From Shannon’s perspective, the complexity can be measured using the entropy of

the data structure holding the neural network. Obviously a drawback for this view

is its ignorance of the context and the concepts of embodiment and situatedness.

The complexity of walking on a flat landscape is entirely different from walking on a

rough landscape. Two neural networks may be represented using the same number

of bits but exhibit entirely different behaviors. Using the outputs from the neural
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networks as a measure of entropy is similarly problematic. Consider the case where a

particular neural network optimized to perform robotic control has two of its output

nodes swapped. The entropy as measured from the outputs of both the original and

modified networks will remain the same but the behavior of the robot will change

dramatically since the signals being sent to the individual actuators connected to

these swapped output nodes have been disrupted. Hence, the change in the robot’s

behavior cannot be captured using this form of entropic measure.

The other approach to measuring complexity is a computation-theoretic

approach based on Kolmogorov’s application of universal Turing machines (Kol-

mogorov 1965) and is commonly known as Kolmogorov complexity or algorithmic

complexity. It is a deterministic measure concerned with finding the shortest possi-

ble computer program or any abstract automaton that is capable of reproducing a

given string. The Kolmogorov complexity K(s) of a string s is given by

K(s) = min{|p| | s = CT (p)} (7.2)

where |p| represents the length of program p and CT (p) represents the result of run-

ning program p on Turing machine T . A more complex string would thus require

a longer program while a simpler string would require a much shorter program. In

essence, the complexity of a particular system is measured by the minimum amount

of computation required to recreate the system in question. A well-known theo-

retical shortcoming of Kolmogorov complexity is that it is effectively incomputable

since by virtue of the halting problem (Turing 1936), it cannot be determined with

certainty that the absolute shortest program or description has been found (Badii

and Politi 1997; Edmonds 1999; Shalizi 2001). On an empirical level, the follow-

ing example will show the limitations of Kolmogorov complexity. Assume we have

a sequence of random numbers. Obviously the shortest program which is able to

reproduce this sequence is the sequence itself. Consequently, it is somehow also a

measure of order or disorder, thereby endowing it with highly similar properties to

that of Shannon’s entropy (Badii and Politi 1997; Edmonds 1999). In addition, let

us re-visit the neural network example. Assume that the robot is not using a fixed

neural network but some form of evolvable hardware (which may be an evolutionary
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neural network). If the fitness landscape for the problem at hand is monotonically

increasing, a hill climber will simply be the shortest program which guarantees to

re-produce the behavior. However, if the landscape is rugged, reproducing the be-

havior is only achievable if we know the seed. Otherwise, the problem will require

complete enumeration to recreate the behavior. Unlike Shannon’s entropy measure,

Kolmogorov complexity is both a syntactic and semantic measure of complexity but

ignores the pragmatic nature of the system. Furthermore, Kolmogorov complex-

ity has been shown to be a poor measure for biological complexity (Smith 1994;

Szathmary, Jordan, and Pal 2001).

A measure of complexity commonly discussed in computer science and

software engineering literature is computational complexity, which is the time and

storage space required by actual algorithms to solve a given problem (Badii and

Politi 1997). Normally, it is referred to by the big-O notation which is a worst-case

complexity measure that is defined as the order of the rate of growth of the resources

required to compute the output to a problem as compared to the size of its input

(Edmonds 1999). For example, an algorithm with computational complexity O(n2)

would be expected to have a quadratic increase in computational resources with

each linear increase in its input while an algorithm with computational complexity

of O(n3) would be expected to have a cubic increase with each linear increase in its

input. The analysis of computational complexity has important implications in the

study of NP-completeness (Garey and Johnson 1979). The problem is to ascertain

whether or not a particular problem is tractable or intractable, or more accurately

to determine whether or not a polynomial time algorithm exists that can solve the

problem on a von Neumann architecture. However, computational complexity pro-

vides only a rough approximation as it is measured only according to the order of the

polynomial associated with the increase required in computational resources when

there is an increase in input. Furthermore, this measure of complexity specifically

looks at the construction of program code and how the computational cost is af-

fected by this code. Again, it measures complexity at the syntactic level and thus

is unable to accommodate notions of environments or interactions which would be
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paramount in a study of embodied organisms.

Bennett (1988) proposed a measure of complexity called logical depth by

combining the notions of Kolmogorov complexity and computational complexity.

The logical depth Ds(x) of a string s at level x is defined as

Dx(s) = min{T (p) | |p| − |p∗| < x ∧ U(p) = x} (7.3)

where p is the range of programs, T (p) is the run-time required by program p, p∗

is the smallest such program and U is a Turing machine. It essentially states that

the logical depth of a string is based on the running time of the shortest algorithm

that will reproduce a given string. It is poised between Kolmogorov complexity and

computational complexity in that it considers the size of the shortest program as well

as the run-time of the program respectively (Badii and Politi 1997). Logical depth

was proposed as a measure of the value of information as reflected by the degree to

which that information has been organized in a particular object. However, as logical

depth is defined based on Kolmogorov complexity, it too is essentially incomputable

(Badii and Politi 1997).

A starkly contrasting measure of complexity based on self-dissimilarity

properties was recently proposed by Wolpert and MacReady (1997). Incorporating

statistical inference and information theory, this complexity measure based on self-

dissimilarity argues that the spatio-temporal signatures of complex systems vary

markedly at different scales whereas the spatio-temporal signatures of simple sys-

tems do not differ significantly between different scales. Furthermore, the variation

in a complex system’s patterns over different space and time scales are considered to

be the very essence of complexity rather than just an aberration of the modelling or

measurement process. The spatio-temporal patterns in terms of the internal struc-

ture of a complex biological system for example, differs greatly when the observation

scale is changed from the molecular level, to the cellular level, to the level of organs

and to the level of the organisms itself. On the other hand, this self-dissimilarity

measure argues that the spatio-temporal patterns of simple systems such as crystals,

gases and even fractals do not change very much as one changes the scale of obser-

vation. However, as stated by the authors themselves, this notion of complexity has
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only been formulated at the theoretical level and its real worth will only be proven

when it is finally applied to real-world data (Wolpert and MacReady 1997).

In another research field known as computational mechanics, which is con-

cerned with the dynamics of automata behavior, a mathematically-based entity that

captures statistical complexity called the ε-machine was proposed by Feldman and

Crutchfield (1998a). The ε-machine acts as a model for capturing the ensembles al-

lowable configurations of a state machine. In other words, it is an object which allows

for the inference of causal architecture from observed behavior (Shalizi 2001). As

such, it allows for the definition and calculation of the global and macroscopic prop-

erties that reflect the average information processing capabilities of the system. The

ε-machine has been applied empirically to measure the amount of self-organization

achieved by four increasingly sophisticated types of process: memoryless transduc-

ers, time series, transducers with memory, and cellular automata (Shalizi 2001).

Although the ε-machine has been shown to be effective and useful in capturing

the increase in statistical complexity of such self-organized systems, this complexity

measure is again based on automata theory and as such requires that the system

being studied readily transforms into some form of state machine. As with other

automata-based methods (Nehaniv 2000a), the question of how these transforma-

tions should be undertaken and what effects these transformations ultimately have

when applied to less readily transformable systems such as creature behaviors and

morphologies remains unanswered. More importantly, it provides a one dimensional

view of complexity through the reduction of complex processes into a finite state

machine and as such, does not leave any room for the interpretation of interactions

between the system and its environment, for example. Hence, such automata-based

complexity measures may not be a suitable methodology to apply to areas such as

embodied cognition in terms of usefulness and pragmatic value where the essence of

complexity lies in the system operating as a fully-interacting, adaptable and reactive

whole.
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7.3 Proposed EMO-Based Complexity Measure

We will now introduce the use of EMO as a convenient platform which

researchers can utilize practically in attempting to define, measure, or simply char-

acterize the complexity of everyday problems in a useful and purposeful manner.

We first explain why a Pareto view to complexity is advantageous and then pro-

ceed to present our proposed method of measuring complexity using EMO. Finally,

we discuss the assumptions associated with our proposed EMO-based complexity

measure.

1 2 3 4 5 6 7 8 9 10
−20

0

20

40

60

80

100

120

Objective 1

O
bj

ec
tiv

e 
2

Pareto−Frontiers

A

B

C

Figure 7.1: Diagram illustrating three different Pareto-frontiers for a problem with

multiple objectives. X-axis: Objective 1, Y-axis: Objective 2.

Figure 7.1 provides an illustration of three layers of a potential Pareto-front

of a particular multi-objective optimization problem. These layers can be viewed

as providing three different levels of optimality. If we consider the problem to be

maximization of both objectives, then the Pareto-front that dominates is curve A.

All solutions along this front will dominate all other solutions in B and C because

the solutions of A are more optimal along both objectives. If the problem involves

minimization of both objectives, then the Pareto-front that dominates in this case
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will be the curve C. We will show in the section that follows how this dominance

ordering can provide useful insights for characterizing complexities from more than

one perspective.

7.3.1 A Pareto View to Complexity

Here, we are interested in finding a binary relation which is able to say

that one object “is more complex than” another object. There are a number of

characteristics in which the elements in a set are related to one another and we

shall visit each in turn to see which are desirable to have in such a binary relation.

Assume a set A and a binary relation R on A. R is

• Reflexive if (a, a) ∈ R ∀ a ∈ A. This is undesirable since an object should

not be more complex than itself.

• Irreflexive if (a, a) /∈ R ∀ a ∈ A. This is desirable since an object should not

be more complex than itself.

• Symmetric if ∀ a, b ∈ A, (a, b) ∈ R → (b, a) ∈ R. This is undesirable since if

a is more complex than b, then b should not be more complex than a.

• Asymmetric if ∀ a, b ∈ A, (a, b) ∈ R → (b, a) /∈ R. This is desirable since if

a is more complex than b, then b should not be more complex than a.

• Antisymmetric if ∀ a, b ∈ A, (a, b) ∈ R and (b, a) ∈ R → a = b. This is

undesirable since if a and b are identical objects, then it should not hold true

that a is more complex than b and b is more complex than a.

• Transitive if ∀ a, b, c ∈ A, (a, b) ∈ R and (b, c) ∈ R → (a, c) ∈ R. This is

desirable since if a is more complex than b, and b is more complex than c, then

a should be more complex than c.

• Negatively Transitive if ∀ a, b, c ∈ A, (a, b) /∈ R and (b, c) /∈ R → (a, c) /∈ R.

This is undesirable since if a is not more complex than b and b is not more

complex than c, it does not imply that a is not more complex than c, which
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we will show through contradiction. Assume two complexity measures 1 and 2

with three objects a, b, and c having the complexity values of (20,30), (30,10),

and (10,20) respectively with reference to the complexity measures 1 and 2 in

that order. In this case, a is not more complex than b since b has a higher value

than a in terms of complexity measure 1. Similarly, b is not more complex than

c since c has a higher value than b in terms of complexity measure 2. If the

complexity relation R is negatively transitive, then this implies that a is not

more complex than c. However, this is a contradiction as a is actually more

complex than c since a has higher values in terms of both complexity measures.

Therefore, this axiom is undesirable for the complexity binary relation R.

• Connected if ∀ a, b ∈ A, a 6= b → (a, b) ∈ R or (b, a) ∈ R. This is undesirable

since some pairs of objects may share the same complexity class and hence

not all pairs of objects are necessarily connected through the relation that one

object is more complex than the other. We will show that connectedness is

an undesirable axiom using the example described above. a has higher values

in terms of both complexity measures than c, hence a is more complex than c

and therefore is connected to c through the complexity relation R. However,

a is not more complex than b and thus shares the same complexity class as b,

thus a is not connected to b through the complexity relation R. Similarly, b is

not more complex than c and therefore b is also not connected to c. Thus, this

axiom is undesirable for the complexity binary relation R since some objects

may share the same complexity class.

• Strongly Connected if ∀ a, b ∈ A, (a, b) ∈ R or (b, a) ∈ R. This is unde-

sirable since if the connectedness axiom does not hold true, then this axiom

cannot hold true.

Therefore, the binary relation “is more complex than”, R, should satisfy the irreflex-

ivity, asymmetry and transitivity axioms.

It is important to point out that our purpose here is not to introduce an-

other measure of complexity that can supposedly overcome all previous limitations
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associated with existing measures neither claiming that it is an all-encompassing

technique which will be able to calculate a definitive complexity value for complex

systems. Our objective here is simply to propose and demonstrate that the Pareto

set of solutions arising from an EMO process can be highly beneficial for character-

izing and comparing between the complexities of different systems and at the same

time satisfy the axioms desirable in a complexity binary relation. Furthermore, we

will show through our experiments that the Pareto approach is a useful complexity

measure. A complexity measure is said to be useful when it is able to capture what

we intuitively regard as complex (Edmonds 1999).

There are two major advantages associated with using an EMO-based ap-

proach for capturing complexity. Firstly, it measures complexity of a particular

system as seen from an observer’s point of view. This has been argued by Casti

(1986) to be paramount since the complexity of a system only has meaning through

the interaction with its observer, particularly in more subjective areas such as be-

havioral complexity. As he puts it,

“. . . system complexity is a contingent property arising out of the inter-

action I between a system S and an observer/decision-maker O. Thus,

any perception and measure of complexity is necessarily a function of S,

O, and I.” (Casti 1986, p.149)

More importantly, he highlights the fact that

“Conditioned by the physical sciences, we typically regard S as the active

system, with O being a passive observer or disengaged controller. Such

a picture misses the crucial point that generally the system S can also

be regarded as an observer of O and that the interaction I is a two-way

path.” (Casti 1986, p.149)

Since a Pareto set is the result of optimization across two (or more) objectives, the

solutions can be viewed as the result of a two-way interaction that occurs between

the different objectives during the optimization process. Hence, a Pareto approach

provides a distinct advantage when used to capture complexity by generating a set
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of solutions that inherently exhibits properties of a two-way interaction and which

can be reversibly used simply by looking at the results from the other optimization

objective’s view.

Secondly, we contend that the Pareto approach achieves a certain level of

pragmatism when used as a complexity measure as opposed to simply providing

a syntactic or semantic measure of complexity. In other words, it does not simply

measure the complexity at the level of the language or symbols used to construct the

system as in a typical syntactic measure nor does it measure the system’s complexity

within some predefined context or environment as would a semantic measure. Car-

iani (1992) explains that the syntactic axis represents operations conducted at the

symbolic level, the semantic axis represents operations where symbolic information

is extracted from the environment through measurement and control while the prag-

matic axis represents the selection of appropriate measurements and controls that

are advantageous to the operation of the system. In this sense, the proposed EMO

methodology towards capturing complexity goes one step further in that it captures

complexity through an evolutionary optimization process that continually gener-

ates new solutions from modification of previous solutions arising from testing and

measurement of the system’s performance within a given context or environment,

which in turn is guided by the Pareto approach that imposes evolutionary pressures

from multiple dimensions. In other words, it provides a view of complexity from a

practical standpoint since a Pareto set comprises of solutions from a selection and

adaptation process thereby constituting a pragmatic approach when such a Pareto

set is used as a measure of complexity.

7.3.2 The Complexity Measure

We now present the formulation of our proposed complexity measure and

demonstrate how it can be applied to characterize as well as compare the behavioral

and morphological complexities of embodied artificial creatures. First, we define

an embodied organism as the interaction between five components: morphology,

behavior, controller, environment, and the learning algorithm. We will then show
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how complexity can be defined as a partial order relation over this five-dimensional

hyperspace. Accordingly, the complexity of two embodied organisms can be com-

pared using this partial order relation. Finally, we support our argument with some

experimental results which is presented in Section 7.4.

What follows is our proposal of a generic definition for complexity using

the multi-objective paradigm. However, before we proceed with our definition, we

need first to explain the concept of partial order.

Definition 1: Partial and Lexicographic Order. Assume the two sets A and

B. Assume the l-subsets over A and B such that A = {a1 < · · · < al} and

B = {b1 < · · · < bl}.

A partial order is defined as A ≤j B if aj ≤ bj, ∀j ∈ {1, . . . , l}

A Lexicographic order is defined as A <j B if ∃ak < bk and aj = bj, j <

k, ∀j, k ∈ {1, . . . , l}

In other words, a lexicographic order is a total order. In multi-objective

optimization, the concept of Pareto optimality is normally used. A solution x be-

longs to the Pareto set if there is not a solution y in the feasible solution set such

that y dominates x (that is x has to be at least as good as y when measured on all

objectives and better than y on at least one objective). The Pareto concept thus

forms partial orders in the objective space.

Let us recall the embodied cognition problem. The problem is to study the

relationship between the behavior, controller, environment, learning algorithm and

morphology. A typical question that one may ask is “What is the optimal behavior

for a given morphology, controller, learning algorithm and environment?”. We can

formally represent the problem of embodied cognition as the five sets B, C, E, L, and

M for the five-dimensional hyperspace of behavior, controller, environment, learning

algorithm, and morphology respectively. We also need to differentiate between the

robot behavior B and the desired behavior B̂. The former can be seen as the actual

value of the fitness function and the latter can be seen as the real maximum of

the fitness function. For example, if the desired behavior (task) is to maximize
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the locomotion distance, then the global maximum of this function is the desired

behavior, whereas the distance achieved by the robot (what the robot is actually

doing) is the actual behavior. In traditional robotics, the problem can be seen as

Given the desired behavior B̂, find L which optimizes C subject to E
⋃

M . In

psychology, the problem can be formulated as Given C, E, L and M , study the

characteristics of the set B. In co-evolving morphology and mind, the problem is

Given the desired behavior B̂ and L, optimize C and M subject to E. A general

observation is that the learning algorithm is usually fixed during the experiments.

In asking a question such as “Is a human more complex than a Monkey?”,

a natural question that follows would be “In what sense?”. Complexity is not

a unique concept. It is usually defined or measured within some context. For

example, a human can be seen as more complex than a Monkey if we are looking

at the complexity of intelligence, whereas a Monkey can be seen as more complex

than the human if we are looking at the number of different gaits the monkey has

for locomotion. Therefore, what is important from an artificial life perspective is to

establish the complexity hierarchy on different scales. Consequently, we introduce

the following definition for complexity.

Definition 2: Complexity is a strict partial order relation.

According to this definition, we can establish an order of complexity be-

tween the system’s components/species. We can then compare the complexities of

two species S1 = (B1, C1, E1, L1,M1) and S2 = (B2, C2, E2, L2,M2) as:

S1 is at least as complex as S2 with respect to concept Ψ iff

SΨ
2 = (B2, C2, E2, L2,M2) ≤j SΨ

1 = (B1, C1, E1, L1,M1), ∀j ∈ {1, . . . , l}, Given

Bi = {Bi1 < · · · < Bil}, Ci = {Ci1 < · · · < Cil}, Ei = {Ei1 < · · · < Eil},

Li = {Li1 < · · · < Lil}, Mi = {Mi1 < · · · < Mil}, i ∈ {1, 2} (7.4)

where Ψ partitions the sets into l non-overlapping subsets.



CHAPTER 7. CREATURE COMPLEXITY 206

We can even establish a complete order of complexity by using the lexico-

graphic order as:

S1 is more complex than S2 with respect to concept Ψ iff

SΨ
2 = (B2, C2, E2, L2,M2) <j SΨ

1 = (B1, C1, E1, L1,M1), ∀j ∈ {1, . . . , l}, Given

Bi = {Bi1 < · · · < Bil}, Ci = {Ci1 < · · · < Cil}, Ei = {Ei1 < · · · < Eil},

Li = {Li1 < · · · < Lil}, Mi = {Mi1 < · · · < Mil}, i ∈ {1, 2} (7.5)

The lexicographic order is not as flexible as partial order since the former

requires a monotonic increase in complexity. The latter however, allows individuals

to have similar levels of complexity. Therefore, it is more suitable for defining

hierarchies of complexity. Hence, our definition of complexity based on the Pareto

approach conforms to the set of axioms desirable in a binary operator for measuring

complexity as discussed earlier in Section 7.3.1.

The concept of Pareto optimality is a special case of the partial order

concept in that Pareto optimality is a strict partial order. In other words, Pareto

optimality does not satisfy reflexivity; that is, a solution cannot dominate itself.

Therefore two copies of the same solution cannot co-exist as Pareto solutions. Usu-

ally, when we have copies of one solution, we discard one of them. Therefore this

problem does not arise when the Pareto set is generated. As a result, we can assume

here that Pareto optimality imposes a complexity hierarchy on the solution set.

The previous definition will simply order the sets based on their complex-

ities according to some concept Ψ. However, they do not provide an exact quanti-

tative measure for complexity. In the simple case, given the five sets B, C, E, L,

and M : assume the function f , which maps each element in each set to some value

called the fitness, and assuming that C, E and L do not change, a simple measure

of morphological change of complexity can be

∂f(b)

∂m
, b ∈ B,m ∈ M (7.6)

In other words, assuming that the environment, controller, and the learning algo-

rithm are fixed, the change in morphological complexity can be measured in the
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eyes of the change in the fitness of the robot (actual behavior). The fitness will be

defined later in Section 7.4.2. Therefore, we introduce the following definition

Definition 3: Change of Complexity Value for the morphology is the rate of

change in behavioral fitness when the morphology changes, given that both

the environment, learning algorithm and controller are fixed.

The previous definition can be generalized to cover the controller and en-

vironment quite easily by simply replacing “morphology” by either “environment”,

“learning algorithm”, or “controller”. Based on this definition, if we can come up

with a good measure for behavioral complexity, we can use this measure to quantify

the change in complexity for morphology, controller, learning algorithm, or envi-

ronment. In the same manner, if we have a complexity measure for the controller,

we can use it to quantify the change of complexity in the other four parameters.

Therefore, we propose the notion of defining the complexity of one object as viewed

from the perspective of another object. This is not unlike Emmeche’s idea of com-

plexity as put in the eyes of the beholder (Emmeche 1994). However, we formalize

and solidify this idea by putting it into practical and quantitative usage through the

multi-objective approach. We will demonstrate that results from an EMO run of

two conflicting objectives results in a Pareto-front that allows a comparison of the

different aspects of an artificial creature’s complexity.

In the literature, there are a number of related topics which can help here.

For example, the Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis

1971) can be used as a complexity measure for the controller. A feed-forward neural

network using a threshold activation function has a VC dimension of O(WlogW )

while a similar network with a sigmoid activation has a VC dimension of O(W 2),

where W is the number of free parameters in the network (Haykin 1999). It is

apparent from here that one can control the complexity of a network by minimizing

the number of free parameters which can be done in a number of ways, the most

obvious being the minimization of the number of synapses and/or the number of

hidden units. It is important to separate between the learning algorithm and the

model itself. For example, two identical neural networks with fixed architectures
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may perform differently if one of them is trained using back-propagation while the

other is trained using an evolutionary algorithm. In this case, the separation between

the model and the algorithm helps us to isolate their individual effects and gain an

understanding of their individual roles.

In this set of experiments, we are essentially posing two questions, what

is the change of (1) behavioral complexity, and (2) morphological complexity of the

artificial creature in the eyes of its controller. In other words, how complex is the

behavior and morphology in terms of evolving a successful controller?

7.3.3 Complexity Measures Revisited

Before we proceed with an empirical experiment of how this complexity

measure based on the Pareto concept can be applied to capturing the morphological

and behavioral complexities of artificially evolved creatures, we first provide some

examples of how this methodology can be applied in a more general manner to the

biological, social and physical sciences.

First, we provide a Pareto view to complexity in the biological sciences.

More specifically, we will use two existing measures for biological complexity, namely

genome length and number of genes which were discussed previously in Section

7.2.2. The data used in this example are actual genomic information extracted

from the EnsEMBL on-line database (EnsEMBL.Org 2002)2. We will compare

the complexities of five different organisms (the version of the organism’s genomic

database is given in following parentheses): human (v.8.30a.1), mouse (v.8.3b.1),

zebrafish (v.8.08.1), fugu or pufferfish (v.8.1.1) and mosquito (v.8.1b.1). In terms

of genome length, the order of complexity from least to greatest number of DNA

base-pairs, we obtain

1. zebrafish (0.04× 109 BP)

2EnsEMBL is a joint project between European Molecular Biology Laboratory, European

Bioinformatics Institute and the Sanger Institute to develop a software system that produces and

maintains automatic annotation on eukaryotic genomes. It is one of the three main repositories

for genomic information (Gibas and Jambeck 2001).
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2. mosquito (0.28× 109 BP)

3. fugu (0.33× 109 BP)

4. mouse (2.73× 109 BP)

5. human (3.34× 109 BP)

However, if we take the number of genes instead as the measure for biological com-

plexity, then we obtain the following ordering

1. zebrafish (1511 genes)

2. mosquito (15088 genes)

3. mouse (22444 genes)

4. human (22980 genes)

5. fugu (31059 genes)

As such, by simply changing the complexity measure (scale) from genome length to

number of genes, we have dramatically changed the ordering of complexity for the

mouse, human and fugu, as depicted in Figure 7.2.

Now let us take a multi-objective approach to characterizing the complexi-

ties of these different organisms by combining the two biological complexity measures

into a 2D graph.

Let us assume that a real biological organism can be made analogous to

an artificial embodied creature. Now we can compare between the organisms’ com-

plexities by making the following representations: assume that all the organisms

share a common environment E being the Earth, acquire knowledge through some

common learning mechanism L such as reinforcement learning, that the organisms

have different morphologies M , that the genome is acting as a master controller C

and that the primal behavior in the organism B is a reflection of its genes.

Using the Pareto approach, we can now characterize the complexity of

these five organisms at four different levels. Firstly, we can make some observations



CHAPTER 7. CREATURE COMPLEXITY 210

Figure 7.2: Conflicting ordering of biological complexity when taking a single-

objective view to complexity measures (scales).
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about which organisms are more complex than others by considering the dominance

ordering present in one set of organisms defined within the two complexity dimen-

sions B and C. Since the mosquito dominates the zebrafish along both complexity

dimensions, we can say that the mosquito is more complex than the zebrafish. In a

similar manner, we can also say that the mouse is more complex than the mosquito

and that both the human and fugu is in turn more complex than the mouse. How-

ever, if we compare the human against the fugu, we cannot say that either is more

complex than the other because they both each dominate the other along one of the

complexity dimensions. In other words, the human and fugu are at the Pareto-front

of this particular set of organisms when compared using these two measures of bio-

logical complexity. In this case, the hierarchy of complexity can be illustrated as in

Figure 7.4.

Figure 7.4: Diagram illustrating the complexity hierarchy of 5 organisms constructed

using a Pareto approach.

Secondly, we can make some quantitative comparisons by looking at the

Euclidean distance between these organisms. We can see that the increase in com-

plexity from the zebrafish to the mosquito was smaller than the increase in complex-

ity from the mosquito to the mouse. We can also look at the change in complexity

along one dimension relative to the other. For example, a relatively small change in

the zebrafish’s number of DNA base-pairs resulted in a surprisingly large increase in

number of genes as compared to the required increase in number of DNA base-pairs
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going from the mosquito to the mouse for a roughly similar increase in the number

of genes.

Thirdly, if we had another dimension of complexity, say in terms of the

environment E and that E now represents the planet Mars, then this second set of

organisms from Mars can be compared with the first set of organisms from Earth

by taking the two Pareto-fronts present in these two sets of organisms and finding

some common ground for complexity along one dimension and comparing the rela-

tive change in the other. In this case, let us presume that Organism M-human and

Organism M-fugu represent the two organisms placed at the Pareto-front of organ-

isms from Mars, then these two organisms can be compared against the human and

fugu from Earth, since these form the Pareto-front of organisms from Earth. For

example, say if we find that Organism M-human has a comparable number of DNA

base-pairs as the fugu but has double the number of genes, then we might conclude

that the change in the environment from Earth to Mars shows a more complex en-

vironment in Mars in terms of the required number of genes to survive as compared

to on Earth since for the same number of DNA base-pairs, the organism in Mars

required more number of genes to allow for the survival of Organism M-fugu.

In terms of the social sciences, an example can be taken from the political

governance of two different countries, which can be regarded as two distinct complex

systems. Let us assume that Country A has less citizens than Country B and define

the complexity of the country based on the number of citizens that needs to be

governed. Using this measure, Country A would be considered less complex than

Country B. Let us assume that another measure of complexity can be formulated

in terms of the governance structure of the different countries. Assume Country A

is democratic with a government that is lead by a group of elected representatives

while Country B is autocratic with a government that is lead by a single dictator.

It is reasonable to assume that Country A requires many interactions between its

politicians before any decision can be made compared with no interaction required

whatsoever in the case of a decision made by the sole dictator in Country B. In this

sense, Country A may now be considered to be more complex than Country B on
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this new scale. A Pareto view will again help in comparing between the political

complexities of these countries by considering one complexity measure in the eyes

of the other complexity measure rather than taking these conflicting viewpoints as

stand-alone indicators, which would then reflect a failure in providing a reasonable

characterization of political complexity between the two countries by virtue of the

contrasting quantizations.

Let us now see how this can be done in terms of our formulated measure

of complexity. First, let us consider that the actual political complexity of these

countries are the result of interactions between both its citizens and governance

structure, rather than just either of these singular components. Then let us assume

that the political complexities of the countries represent the morphology M of the

complex system, that the environment E is unchanged if we consider them to be

geographically located in the same region of the world, that learning occurs through

some common medium L such as the mass media, that the populations represent the

behavior B and that the governance structures represent the controller C. Now we

can compare the change in political complexity between these two different countries

∂M by measuring some quantitative change in the behavior of the population ∂B

through some commonality that can be found in the hyperspace of the controlling

governance structure C. Conversely, we can compare the governance complexity

between the two countries ∂M from the reverse viewpoint by measuring some quan-

titative change in terms of the controlling governance structure ∂C through estab-

lishing some commonality in the hyperspace of the population’s behavior B. Casti

(1986) provides an elegant example of how such a complex system emerges from the

interactions between its governance structure and its citizens. Here, he states that

the citizens views the governance structure as complex if the actions taken by its

political leaders seem to be incomprehensible:

“. . . they [the citizens ] see a byzantine and unwieldy government bureau-

cracy and a large number of independent decision-makers (government

agencies) affecting their day-to-day life.” (p.150)

Similarly, the government typically also views its citizens as being very complex:
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“They [the political leaders ] would see a seemingly fickle, capricious pub-

lic, composed of a large number of independent self-interest groups clam-

oring for more and more public goods and services.” (p.150)

Hence, we can see that a multi-objective view to the study of social sciences such as

political complexity can again be very insightful and valuable.

In revisiting complexity measures for the physical sciences, let us turn to

an example from computer science itself. Wuensche (1999) has recently devised a

method for automatic classification of 1D cellular automata (CA) rules into one

of three dynamical groups, that is ordered, complex and chaotic systems based

on the frequency of particular updating rules being looked-up over time called the

input-entropy. Based on Shannon’s entropy measure, Wuensche (1999) formulated

input-entropy S at time-step t as

St = −
2k∑
i=1

(
Qt

i

n
× log(

Qt
i

n
)) (7.7)

where k and n are the neighborhood and system size of the CA, and Qt
i is the

lookup frequency of neighborhood i at time t. One of the proposed classification

methods was based on indications given by two measures: (1) the input-entropy

itself, and (2) the variability (standard deviation) of the input-entropy. An example

from Wuensche (1999) classified three rules from a Boolean CA system with k = 5

and n = 150, described as typical examples of CA behaviors, as given in Table 7.2:

Rule No. Classification Input-Entropy Variability of Input-Entropy

01 dc 96 10 Ordered low low

6c 1e 53 a8 Complex medium high

99 4a 6a 65 Chaotic high low

Table 7.2: Classification of 3 cellular automata rules according to Wuensche (1999).

Let us now consider two rules arising from the same CA setup that after

experimentation and analysis gave the following indications:

• Rule X: moderately high entropy, moderately high variability
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• Rule Y: very high entropy, very high variability

It would be difficult to classify these two rules since they are placed mid-way between

the existing classes. However, if we take a multi-objective view to this problem, we

would be able to provide the following perspective:

0 1
0

1

Ordered

Chaotic

Rule X 

Complex

Rule Y 

Variability of input−entropy

In
pu

t−
en

tr
op

y

Multi−Objective View of 5 CA Rules

Figure 7.5: Multi-objective view of 5 cellular automata rules by combining input-

entropy and variability of input-entropy. X-axis: Variability of input-entropy, Y-

axis: Input-entropy.

If we now cast the cellular automata system into our proposed measure

of complexity, we can formulate the following representations. The environment

E is represented by the CA’s overall system setup as defined by the neighborhood

size, periodic boundary conditions and dimensionality. As such, E remains constant

since both rules arise from the same CA setup. L would be null in all cases since

no learning occurs in a CA system. Let us now consider that the difference between

Rule X and Rule Y represents a change in the controller C of the CA system since

the dynamics of a CA is dependent on the rule being used in the CA. Next, we shall

consider that the morphology M of the CA is represented by the input-entropy and

that the behavior B of the CA is represented by the variability in the input-entropy.
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Firstly, we can see that Rule Y dominates all other rules in this particular

system since it has higher values for both complexity dimensions of B and M .

As such, we can say that Rule Y is the most complex rule from a multi-objective

perspective. Also, we can see that a Pareto-front is formed by the Chaotic and

Complex rules, and that both rules are as complex as each other since they both

dominate each other in one dimension. Furthermore, since Rule X is not dominated

by either the Chaotic nor the Complex rule in both dimensions, it too belongs to the

Pareto set for this particular CA system and that its complexity can be characterized

as being similar to that of the Chaotic and Complex rules in terms of B and M . As

for the Ordered rule, it has the same value for B (variability of input-entropy) as

the Chaotic rule and has a lower value for M (input-entropy) than the Chaotic rule.

As such, the Ordered rule is dominated by the Pareto-front of which the Chaotic

rule is a member. Hence, it can be characterized as being the least complex among

all the rules in this particular CA system since it is dominated by all other rules.

As with the biological example visited earlier, a change in the environment E, for

example increasing the neighborhood size, will produce a second set of observations

which can then be compared with this first set of observations by comparing the

two Pareto-fronts obtained from these two different CA systems.

In the next section, we will describe the setup of the experiments which

demonstrate empirically how our proposed measure for capturing complexity can

be applied to the comparison of the morphological and behavioral complexities of

artificially evolved creatures.

7.4 Experimental Setup

7.4.1 Two Artificial Creatures

Two artificial creatures were used in this study (Figure 7.6): (1) a quadru-

ped creature with four legs, (2) and a hexapod creature with six legs. The first

artificial creature (Figure 7.6.1) is the same quadruped used in Chapters 4, 5, and
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Figure 7.6: Screen dump of the 1. quadruped (left), 2. hexapod (right) artificial

creatures.

6. The second artificial creature (Figure 7.6.2) is a hexapod3 with 6 long legs that

are connected to the torso by insect hip joints. Each insect hip joint consists of two

hinges, making it a joint with two degrees of freedom: one to control the back-and-

forth swinging and another for the lifting of the leg. Each leg has an upper limb

connected to a lower limb by a hinge (one degree of freedom) joint. The hinges are

actuated by motors in the same fashion as in the first artificial creature.

Morphological Characteristic Simulated Quadruped Simulated Hexapod

No. of legs 4 6

Degrees of freedom 8 24

No. of sensors 12 24

No. of motors 8 18

Table 7.3: A comparison of the simulated quadruped and hexapod creatures’ mor-

phological characteristics.

Table 7.3 presents a comparison of the main features of the two artificial

creatures. It would appear that the quadruped has a much simpler design compared

to the hexapod creature. However, this is only a subjective observation from a

human designer’s perspective. It remains to be seen whether this view will hold when

3The design and experimentation of the hexapod creature was carried out jointly with another

graduate student Ms. Minh Ha Nguyen.
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we compare the complexities of these two artificial creatures from the controller’s

and behavior’s perspectives.

7.4.2 Controller Architecture

The Pareto-frontier of our evolutionary runs are obtained from optimizing

two conflicting objectives as in Chapter 5: (1) minimizing the number of hidden

units used in the ANN that act as the creature’s controller, and (2) maximizing

horizontal locomotion distance of the artificial creature. What we obtain at the end

of the runs are again Pareto sets of ANNs that trade-off between number of hidden

units and locomotion distance. The locomotion distances achieved by the different

Pareto solutions will provide a common ground where locomotion competency can

be used to compare different behaviors and morphologies. It will provide a set of

ANNs with the smallest hidden layer capable of achieving a variety of locomotion

competencies. The structural definition of the evolved ANNs can now be used as a

measure of complexity for the different creature behaviors and morphologies.

The type of ANN architecture used for the experiments in this chapter

is NNType3 as presented in Section 3.3.3, which has fully-connected feed-forward

network with recurrent connections on the hidden units as well as direct input-output

connections. Only one type of architecture was used since the results from Chapter

5 showed no significant differences between the four architectures. Of the four

architectures, NNType3 was chosen since the best overall locomotion distance was

achieved using this particular architecture. A diagrammatic representation of part

of the ANN architecture is illustrated in Figure 3.4.4. The genotype representation

used for specifying the ANN controller remains unchanged as explained in Section

3.4 and the SPANN algorithm as presented in Section 5.4.1 was again used to drive

the artificial evolutionary process.

7.4.3 Assumptions

Two assumptions need to be made. First, the Pareto set obtained from

evolution is considered to be the actual Pareto set. This means that for the creature
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on the Pareto set, the maximum amount of locomotion is achieved with the minimum

number of hidden units in the ANN. We do note however that the evolved Pareto

set in the experiments may not have converged to the optimal set. Nevertheless, it

is not the objective of this paper to provide a method which guarantees convergence

of EMO but rather to introduce and demonstrate the application of measuring

complexity in the eyes of the beholder. It is important to mention that although

this assumption may not hold, the results can still be valid. This will be the case

when creatures are not on the actual Pareto-front but the distances between them on

the intermediate Pareto-front are similar to that of creatures on the actual Pareto-

front.

The second assumption that we are making is that there are no redundan-

cies present in the ANN architectures of the evolved Pareto set. This simply means

that all the input and output units as well as the synaptic connections between lay-

ers of the network are actually involved in and required for achieving the observed

locomotion competency. We have investigated the amount of redundancy present

in evolved ANN controllers in Section 6.4.5 and found that the self-adaptive Pareto

EMO approach produces networks with virtually no redundancy.

Before excluding these assumptions, it is important to emphasize that none

of these assumptions will dramatically change our findings. Since we are interested

in the partial order and the rate of change, getting to the exact Pareto-front or

obtaining the neural network with zero redundancy may not affect the results. Take

for example the solutions on the Pareto set found during a hypothetical EMO run

X1 = (0, 5), X2 = (1, 4). Let us assume that the two solutions on the actual Pareto-

front are Y1 = (0, 5.5), Y2 = (1, 4.5). What we are interested in is the difference

between the two solutions and the partial order between them, which as can be

seen in this case, are not affected by the evolved Pareto-front not being the actual

Pareto-front. Obviously this is a hypothetical example but at least it demonstrates

that the assumptions may hold in a large number of actual cases.
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7.4.4 Evolutionary Runs

Two series of experiments were conducted. Behavioral complexity was

investigated in the first series of experiments and morphological complexity was

investigated in the second. For both series of experiments, each evolutionary run

was allowed to evolve over 1000 generations with a randomly initialized population

size of 30. The maximum number of hidden units was again fixed at 15 as in previous

experiments carried out in Chapters 4, 5, and 6. The number of hidden units used

and maximum locomotion achieved for each genotype evaluated as well as the non-

dominated set of solutions obtained in every generation were recorded. The Pareto

solutions obtained at the completion of the evolutionary process were compared to

obtain a characterization of the behavioral and morphological complexity.

To investigate behavioral complexity in the eyes of the controller, the mor-

phology was fixed by using only the quadruped creature but the desired behavior was

varied by having two different fitness functions. The first fitness function measured

only the maximum horizontal locomotion achieved but the second fitness function

measured both maximum horizontal locomotion and static stability achieved. By

static stability, we mean that the creature achieves a statically stable locomotion

gait with at least three of its supporting legs touching the ground during each step

of its movement. The two problems we have are:

(P1)

f1 = ⇑ d(g) (7.8)

f2 = ⇓
H∑

h=0

ρh (7.9)

(P2)

f1 = ⇑ d(g)/20 + s(g)/500 (7.10)

f2 = ⇓
H∑

h=0

ρh (7.11)

where P1 and P2 are the two sets of objectives used. f1 and f2 represent the respec-

tive fitness functions used to evaluate the genotypes g. d refers to the locomotion

distance achieved and s is the number of times the creature is statically stable as
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controlled by the ANN at the end of the evaluation period of 500 timesteps. P1

is using the locomotion distance as the first objective while P2 is using a linear

combination of the locomotion distance and static stability. Minimizing the number

of hidden units is the second objective in both problems.

To investigate morphological complexity, another set of 10 independent

runs was carried out but this time using the hexapod creature. This is to enable

a comparison with the quadruped creature which has a significantly different mor-

phology in terms of its basic design. The P1 set of objectives was used to keep the

behavior fixed. The results obtained in this second series of experiments were then

compared against the results obtained from the first series of experiments where the

quadruped creature was used with the P1 set of objective functions. Where the P1

experiments involving the quadruped creature was required, the results from Section

5.6 for NNType3 were used since the setup of the experiments were identical.

7.5 Results and Discussion

7.5.1 Morphological Complexity
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Figure 7.7: Pareto-frontiers of controllers obtained from 10 runs using the P1 set

of objectives for the 1. quadruped (left), 2. hexapod (right). X-axis: Locomotion

distance, Y-axis: No. of hidden units.
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Figure 7.8: Global Pareto-front of controllers obtained from 10 runs using the P1 set

of objectives for the quadruped and hexapod. X-axis: Locomotion distance, Y-axis:

No. of hidden units.

We first present the results for the quadruped and hexapod evolved under

P1. Figure 7.7 compares the Pareto optimal solutions obtained for the two differ-

ent morphologies over 10 runs. Figure 7.8 plots the global Pareto-front for both

the hexapod and quadruped. As such, we are comparing two Pareto-fronts that

characterize the complexities of two different systems. Here we are fixing E and

L. Therefore, we can either measure the change of morphological complexity in the

eyes of the behavior or the controller: that is, ∂f(B)
∂M

or ∂f(C)
∂M

respectively. If we fix

the actual behavior B as the locomotion competency of achieving a movement of

13 < d < 15, then the change in the controller ∂f(C) is measured according to the

number of hidden units used in the ANN. At this point of comparison, we find that

the quadruped is able to achieve the desired behavior with 0 hidden units whereas

the hexapod required 3 hidden units (Figure 7.8). Therefore, this is an indication
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that from the controller’s point of view, given the change in morphology ∂M from

the quadruped to the hexapod, there was an increase in complexity for the con-

troller ∂C from 0 hidden units to 3 hidden units. Hence, the hexapod morphology

can be seen as being more complex than the quadruped morphology in the eyes of

the controller.

Conversely, if we would like to measure the complexity of the morphology

from the eyes of the locomotion behavior, we can choose a common point of com-

parison in terms of the network size. If we fix the controller C to having a hidden

layer size of 3 hidden units, then the change in the locomotion behavior ∂f(B) is

measured according to the maximum distance achieved by artificial creatures. At

this point of comparison, we find that the quadruped achieves just over 17 units dis-

tance while the hexapod is only able to achieve just under 14 units distance (Figure

7.8). Thus, this is an indication that from the locomotion behavior’s point of view,

given the change in morphology ∂M from the quadruped to the hexapod, there

was an increase in complexity for the locomotion behavior ∂B of approximately 3

units distance. In this case, the quadruped morphology can be seen as being more

complex than the hexapod morphology.

As such, by taking different viewpoints, we find different interpretations

of which morphology is more complex than the other. This is not unlike what we

have seen in the biological sciences (see Section 7.2.2) where different complexity

measures result in different orderings of organismic complexity. Therefore, a Pareto

approach to capturing complexity is advantageous in the sense that it gives multiple

views of complexity through a single comparison exercise.

7.5.2 Behavioral Complexity

A comparison of the results obtained using the two different sets of fitness

functions P1 and P2 is presented in Table 7.4. Here we are fixing M , L and E and

looking for the change in behavioral complexity. The morphology M is fixed by using

the quadruped creature only. For P1, we can see that the Pareto-frontier offers a

number of different behaviors. In this case, we are comparing complexities within a
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Type of Pareto No. of Locomotion Static
Behavior Controller Hidden Units Distance Stability

P1 1 0 14.7730 19
2 1 15.7506 24
3 2 16.2295 30
4 3 17.0663 26
5 4 17.6994 14

P2 1 0 5.2065 304
2 1 3.3355 408
3 2 3.5935 420
4 3 3.6829 419

Table 7.4: Comparison of number of hidden units, locomotion distance and static

stability for global Pareto optimal controllers obtained using the quadruped for the

P1 and P2 sets of objective functions.

system by using the evolved Pareto-front to represent the complexity characteristics

of a single system. For example, a network with no hidden units can achieve up to

14.7 units of distance while the creature driven by a network with 5 hidden units

can achieve 17.7 units of distance within the 500 timesteps. This is an indication

that to achieve a higher speed gait entails a more complex behavior than a lower

speed gait.

We can also see the effect of static stability, which requires a walking

behavior, by comparing the two Pareto-fronts that characterize the P1 and P2

systems respectively. By comparing a running behavior using a dynamic gait in P1

with no hidden units against a walking behavior using a static gait in P2 with no

hidden units, we can see that using the same number of hidden units, the creature

achieves both a dynamic as well as a quasi-static gait. If more static stability is

required, this will necessitate an increase in controller complexity.

At this point of comparison, we find that the behavior achieved with the

P1 fitness functions consistently produced a higher locomotion distance than the

behavior achieved with the P2 fitness functions. This meant that it was much

harder for the P2 behavior to achieve the same level of locomotion competency in

terms of distance moved as the P1 behavior due to the added sub-objective of having
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to achieve static stability during locomotion. Thus, the complexity of achieving the

P2 behavior can be seen as being at a higher level of the complexity hierarchy than

the P1 fitness function in the eyes of the controller.
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Figure 7.9: Locomotion distance of Pareto solutions obtained from 10 runs using

the quadruped with the P1 (left) and P2 (right) sets of objective functions. X-axis:

Locomotion distance, Y-axis: No. of hidden units.

Figure 7.9 depicts the locomotion distance achieved using the quadruped

with the P2 set of objectives, which measure for both locomotion distance and static

stability, along with the Pareto-fronts obtained from using the P1 set of objectives.

Note that the graph for P2 does not depict Pareto-fronts since we are only inter-

ested in the locomotion distance, which is only part of the objective function. Here

we see that the locomotion distance achieved was much lower due to the added

sub-objective of attempting to maximize static stability. This is expected since the

creature will be discouraged from jumping behaviors, which may allow for greater

locomotion capabilities. No controllers could be found that achieved a locomotion

distance of d > 7. As such, it was not possible to compare the behavioral complex-

ities of standard locomotion versus locomotion with stability since the quadruped

evolved for standard locomotion achieved a distance of 13 < d < 15 with the least

complex network of 0 hidden units. In other words, no commonality could be found

that would have enabled a comparison of the change in behavioral complexity from
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the eyes of the controller.

7.5.3 Limitations

From our experiments, we note the following limitations with the proposed

complexity measure based on the Pareto approach:

• To compare across Pareto-fronts from different systems, some common ground

needs to be established to enable a fair comparison of complexity. The first

disadvantage arising from this requirement is that the inherent complexity of

the particular component being investigated may be so different between the

different systems that no common ground exists. For example, we found that

no common ground existed when we tried to compare between the two fit-

ness functions P1 and P2 when viewed from the controllers perspective (see

Section 7.5.2). Secondly, the actual determination of the range of values con-

sidered to be within this area of commonality is dependent on the results of

the components being compared. For example, in our comparison between the

quadruped and hexapod creatures, we determined that the locomotion com-

petency range used as the common ground when viewing from the controller’s

perspective was 13 < d < 15 by virtue of the results that were obtained (see

Section 7.5.1).

• In empirical studies involving artificial evolutionary systems, some form of con-

flicting objectives needs to be present before this Pareto approach will provide

any additional benefits in taking a multi-objective view to complexity. In the

case where the objectives of a particular problem are not in conflict, the Pareto

approach will simply reflect an hierarchical ordering similar to those obtained

when the individual single objectives are used to characterize the objects in

question. As such, this requirement of having conflicting objectives is not so

much of a disadvantage but rather a desirable characteristic to have for the

Pareto approach to be able to provide a different view towards capturing com-

plexity. For example, if the evolutionary runs conducted in our experiments
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had maximization of locomotion distance and straight-line walking behavior,

then there exists no conflict since the maximum distance will be achieved when

the walking behavior results in a path that is maximally straight. In other

words, this complexity measure will not provide any additional value towards

characterizing complexity unless the system in question can be formulated in

some form of conflicting components.

7.6 Chapter Summary

In the introductory sections of this chapter, we have reviewed the concept

of complexity as well as a number of existing measures of complexity as applied in

the social, biological and physical sciences. We then proposed a Pareto approach to-

wards complexity and revisited each of these areas to show how conflicting measures

of complexity can be re-formulated using a Pareto approach to provide an under-

standing of complexity from different perspectives. Subsequently, we proceeded to

demonstrate how this technique can be applied empirically for studying the behav-

ioral and morphological complexities of artificially evolved embodied creatures. In

doing so, we found that the morphological complexity of a quadruped creature was

lower than the morphological complexity of a hexapod creature as seen from the

perspective of an evolving locomotion controller. At the same time, the quadruped

was found to be more complex than the hexapod in terms of behavioral complexity.

This proposed measure will allow for artificial creatures with evolvable morphologies

to be compared in terms of their morphological as well as behavioral complexity in

the next chapter.



Chapter 8

Co-Evolution of Morphology and

Mind

Morphology and materials are intimately related to control in adaptive be-

havior (Pfeifer 2000). This is referred to as ecological balance and was argued to

enable better designs of robots and other artificial organisms. There is a trade-off

between morphology and control: having the right morphology can greatly simplify

controller requirements. As such, it was also argued that discussions of embodied

autonomous agents pertaining only to neural processing issues are incomplete with-

out a related discussion of the agent’s shape, physical properties of its sensors and

motors as well as the materials which make up the agent’s body and appendages.

The term co-evolution as used in the field of evolutionary computation usu-

ally refers to the concurrent evolution of two or more populations with fitness func-

tions that are coupled dynamically (Rosin and Belew 1997). These co-evolutionary

algorithms can either consist of competing populations (Hillis 1992; Angeline and

Pollack 1993; Cliff and Miller 1996; Rosin and Belew 1997; Nolfi and Floreano 2000;

Floreano, Nolfi, and Mondada 2001) or cooperative populations (Husbands and Mill

1991; Paredis 1995; Potter and De Jong 2000). However, here we use the term co-

evolution as previously used by Dellaert and Beer (1994), Lee, Hallam, and Lund

(1996), and Hornby and Pollack (2001a) to refer to the simultaneous evolution of

both morphology and controller in evolving artificial creatures rather than to refer

228
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to competing or cooperating populations with coupled fitness functions.

In this chapter, we will attempt to evolve both the creature’s morphol-

ogy and mind. This will be achieved by relaxing certain morphological constraints

imposed on the artificial creature where the focus thus far has only been on the

optimization of its ANN controller. We will now include the parameters of the crea-

ture’s ANN controller as well as morphology into the chromosome to allow for both

aspects of the creature’s body and mind to be optimized simultaneously through

co-evolution. As we have seen from the literature survey conducted in Chapter 2,

there are two extremes in evolving artificial creatures where on the one hand all of

the morphology is totally fixed and unchangeable such as in the more common four-

legged and six-legged physical robots, and on the other hand virtually all aspects of

the morphology are changeable such as in abstract robots. Thus, we have adopted

an approach midway between these extremes and evolve only certain parameters of

the artificial creature’s morphology and maintain some underlying body plan repre-

sentative of quadrupedal organisms. The objective of this chapter is thus to explore

not only the legged locomotion behavior that can be achieved by co-evolving both

the morphology and controller but also the selective adaptation of body parts and

joint constraints by evolution for efficient legged locomotion.

8.1 Additional Chromosome Parameters

To allow for the morphology of the creature to be simultaneously co-evolved

with its ANN controller, we relax two specific aspects of the quadruped’s morphol-

ogy. The first constraint relaxed is the length of each of the upper and lower limbs

in each of the four legs, which are now variable in length. The second constraint

relaxed is the manner in which each limb is connected to the adjoining body part,

where a choice of how the upper limb joins to the torso as well as how each lower

limb joins to each upper limb is now available. These additional evolutionary pa-

rameters arising from the relaxation of the morphological constraints are added to

the existing chromosome structure as previously explained in Section 3.4. More ex-
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planation concerning the addition of these new genes into the chromosome is given

in the following paragraphs.

Limb Description Previous Length New Length
Upper back left 1.0 0.2 + (L1 × 4.0)
Upper front left 1.0 0.2 + (L2 × 4.0)
Upper back right 1.0 0.2 + (L3 × 4.0)
Upper front right 1.0 0.2 + (L4 × 4.0)
Lower back left 1.0 0.2 + (L5 × 4.0)
Lower front left 1.0 0.2 + (L6 × 4.0)
Lower back right 1.0 0.2 + (L7 × 4.0)
Lower front right 1.0 0.2 + (L8 × 4.0)

Table 8.1: Description of the simulated quadruped’s previous fixed limb lengths and

new evolvable limb lengths (in centimeters).

Table 8.1 lists the artificial creature’s previous and new limb lengths. Pre-

viously, the length of each limb was fixed to only 1cm. In the new design, each limb

has a minimum length of 0.2cm and to that is added a length that can vary from 0

to 4cm. These variable attributes are denoted L1 through L8 and are included into

the chromosome as continuous variables taking values between 0 and 1. As such,

the dimensions of the limbs are now 1× 1× (0.2 + (L× 4))cm.

Upper Limb-

Torso Constraint

Orientation:

Bottom

Upper Limb-

Torso Constraint

Orientation: Side

Figure 8.1: Front-on view of the evolvable constraint orientation for the joint con-

nection between the torso and upper limbs 1. bottom-oriented connection (left), 2.

side-oriented connection (right).
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Upper-

Lower Limb

Constraint

Orientation:

Front

Creature’s Frontal Direction

Upper-

Lower Limb

Constraint

Orientation:

Back

Creature’s Frontal Direction

Figure 8.2: Side-on view of the evolvable constraint orientation for the joint con-

nection between upper and lower limbs 1. front-oriented connection (left), 2. back-

oriented connection (right).

Limb Connected Previous New
Description To Constraint Constraint

(Limb) Orientation Orientation
Upper back left Torso Side Side or Bottom (C1 )
Upper front left Torso Side Side or Bottom (C2 )
Upper back right Torso Side Side or Bottom (C3 )
Upper front right Torso Side Side or Bottom (C4 )
Lower back left Upper back left Back Back or Front (C5 )
Lower front left Upper front left Back Back or Front (C6 )
Lower back right Upper back right Back Back or Front (C7 )
Lower front right Upper front right Back Back or Front (C8 )

Table 8.2: Description of the simulated quadruped’s previous fixed constraint ori-

entations and new evolvable constraint orientations.

Table 8.2 lists the artificial creature’s previous and new limb constraint

orientations. In the previous setup, all joint connections were fixed to either side

or back orientations depending on whether it was an upper or lower limb. In the

new setup, there is now a choice of constraint orientation for each of the eight

joint connections. Each upper limb can now be connected to the torso either from

side (Figure 8.1.1) or from the bottom (Figure 8.1.2). Each lower limb can now

be connected to each upper limb either from the front (Figure 8.2.1) or from the

back (Figure 8.2.2). These variable attributes are denoted C1 through C8 and are
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included into the chromosome as Boolean variables that denote either one of the

two orientation choices.

8.2 Experimental Setup

1cm

4cm

10cm

TORSO

LIMBS

(Variable lengths and constraint orientations)

Figure 8.3: A geometric description of the new artificial creature used in the co-

evolutionary experiments with evolvable limb lengths and evolvable constraint ori-

entations. The torso dimensions are fixed as denoted.

A series of 10 independent runs were carried out to investigate the co-

evolution of morphology and controller simultaneously. SPANN was used as the

algorithm for driving the artificial evolutionary optimization process again. This

augmented version which allows for the co-evolution of morphology and mind is de-

noted as the SPANN-CMM algorithm. A number of the artificial creature’s setup

was changed in SPANN-CMM to accommodate the additional evolvable compo-

nents of its morphology. All changes were scaled linearly in relation to the original

quadruped’s setup discussed in Section 3.2. A geometric description of the new
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artificial creature is given in Figure 8.3. The torso dimension was increased to

10 × 4 × 1cm and the mass increased to 5g. From initial co-evolutionary experi-

ments, the original shorter torso length of 4cm caused the limbs with longer lengths

to constantly come in contact with each other during the locomotion cycle and thus

restricted full movement of the limbs. Hence the length of the torso was increased to

10cm to allow for full and unhindered movement of the longer limbs. Furthermore,

the creature frequently toppled over when longer limbs were present, therefore the

width of the torso was also increased from 2cm to 4cm to allow for greater stability.

As outlined in the introduction to this chapter, we wished to maintain some basic

quadrupedal body plan and as such, we kept the torso fixed as a hand-designed

component of the artificial creature and not part of the evolvable morphology. The

mass of each limb and force generated at each associated hinge joint were also scaled

linearly in accordance with the length of the associated limbs as they evolved. The

maximum rotation allowed at each hinge joint remained unchanged at 1.57 radians.

The ANN architecture used was NNType3 since it gave the best overall results from

prior experiments. All other evolutionary and simulation parameters remained the

same: 1000 generations, 30 individuals, 500 timesteps and a maximum of 15 hidden

units allowed in the ANN controller.

In the analysis, we first discuss the best solutions obtained from the evo-

lutionary runs using SPANN-CMM in terms of the locomotion behavior and size

of the ANN controller as well as comparing the results against SPANN. This is

followed by a simple characterization of the search space associated with this co-

evolutionary setup. We then use the complexity measure defined in the previous

chapter to conduct a simple comparison of the different creatures evolved with and

without co-evolution of morphology.

8.3 Results and Discussion

Table 8.3 shows the best results obtained using SPANN-CMM in terms of

locomotion distance. The overall best f1 fitness was slightly better than SPANN
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Algorithm Overall Worst of Average Best t-statistic
Best f1 Best f1 f1 Fitness (against
Fitness Fitness ± Standard Deviation SPANN)

SPANN-CMM 18.1472 11.9002 15.1421 ± 2.0321 1.63
SPANN 17.6994 11.3234 13.9626 ± 1.7033 -

Table 8.3: Comparison of best locomotion distance for Pareto solutions found using

the SPANN-CMM and SPANN algorithms over 10 independent runs.

achieving a locomotion distance of 18.1 units. The average locomotion distance

of the best evolved controllers were also slightly higher than those obtained using

SPANN although the improvement was not statistically significant.

Table 8.4 shows the best results obtained using SPANN-CMM in terms of

number of hidden units used in the ANN controllers. The overall best f2 fitness

was slightly worse than SPANN using 1 more hidden unit. The worst of the best

f2 fitness was also slightly worse than SPANN using 2 more hidden units. The

average number of hidden units used in the best evolved controllers was also slightly

higher than those obtained using SPANN although the increase was not statistically

significant.

Algorithm Overall Worst of Average Best t-statistic
Best f2 Best f2 f2 Fitness (against
Fitness Fitness ± Standard Deviation SPANN)

SPANN-CMM 3 11 6.4 ± 2.8 1.15
SPANN 2 9 4.9 ± 2.6 -

Table 8.4: Comparison of smallest hidden layer size for Pareto solutions found using

the SPANN-CMM and SPANN algorithms over 10 independent runs.

In general, the results in terms of the best solutions obtained at the end of

co-evolving both the morphology and controller were not very different for both the

locomotion distances achieved as well as number of hidden units used in the ANN

controller.
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Figure 8.4: Comparison of best locomotion distance of Pareto solutions obtained

over 1000 generations for 10 runs using the 1. SPANN-CMM (left), 2. SPANN

(right) algorithms. X-axis: Generation, Y-axis: Locomotion distance.

8.3.1 Evolutionary Dynamics

Two interesting characteristics emerged in the evolutionary dynamics of

the best solutions in SPANN-CMM (Figure 8.4.1). Firstly, although some signif-

icant improvements in the locomotion fitness were observed early during the evo-

lutionary process, significant improvements still occurred during the later stages of

evolution. In six of the runs, large improvements occurred between the 400–600th

generation. One of these six runs later showed another large improvement around

the 700th generation. Another separate run showed a large improvement as late

as the 900th generation. Secondly, the improvements were very discrete in nature,

some improving over 3 units of locomotion distance in a single generation. Both

these characteristics were in contrast to those observed in SPANN where the ma-

jority of the improvements occurred well before the 200th generation and occurred

much more gradually (Figure 8.4.2). This suggests firstly that evolution might have

discovered a significantly better morphology during the co-evolutionary optimization

process and hence a large improvement in locomotion distance could be achieved

within a single generation. Secondly, SPANN-CMM may require more time to con-

verge on a solution by virtue of the increased number of evolutionary parameters
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resulting from the inclusion of additional morphological parameters into the chro-

mosome. Thus, the solutions found may still be some distance away from the actual

Pareto-frontier of optimal solutions. In order to test this second postulation, we

extended the best run (the tenth seed), which still showed a noticeable improve-

ment at the 773rd generation, beyond 1000 generations for another 500 generations

from the 773rd generation but found no further improvements. Hence, the second

postulation that the co-evolutionary runs require more time to converge is unlikely

to be true since the best run had in fact converged to a final solution by the 1000th

generation.
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Figure 8.5: Mean locomotion distance of population over 1000 generations for the

SPANN-CMM algorithm using the 1. first (left), 2. tenth (right) seeds. X-axis:

Generation, Y-Axis: Locomotion distance. Additional graphs can be found in the

accompanying CD-ROM.

The variation in SPANN-CMM’s population mean tended to either remain

fixed within a certain range or increase slightly over time, as illustrated by Figures

8.5.1 and 8.5.2 respectively. The standard deviation in the population was generally

quite high, varying mostly between 3 and 4 in the earlier half of evolution then

tending towards 5 in the later half of evolution, as shown by Figure 8.6.1, and even

6 in some of the runs, as shown by Figure 8.6.2. This is most probably due to

the generation of new individuals which have morphologies that may not be easily
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Figure 8.6: Standard deviation for locomotion distance of population over 1000

generations for the SPANN-CMM algorithm using the 1. first (left), 2. tenth (right)

seeds. X-axis: Generation, Y-Axis: Standard deviation of locomotion distance.

Additional graphs can be found in the accompanying CD-ROM.

controlled by the existing ANN controllers. Consequently, a larger gap will exist

between the optimized solutions that have controllers and morphologies that work

well together and the newly generated solutions that don’t as evolution progresses.

8.3.2 Comparing Pareto-Fronts and Morphological Compl-

exity

Table 8.5 lists the global Pareto solutions obtained using SPANN-CMM

followed by those obtained using SPANN. The Pareto-front is highly similar to that

obtained using SPANN although SPANN-CMM did have one more solution on the

Pareto-front which used 6 hidden units and achieved the best locomotion distance.

In general, the locomotion distances achieved with each hidden layer size was highly

similar. No trend could be observed with the controllers that were comparable, with

three hidden layer sizes achieving slightly higher locomotion distances in SPANN-

CMM (networks using 1, 2 & 3 hidden units) and two hidden layer sizes performing

slightly better in SPANN (networks using 0 & 4 hidden units).

Figure 8.7 compares the Pareto optimal solutions obtained using SPANN-
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Algorithm No. of Hidden Units Locomotion Distance
SPANN-CMM 0 14.2775

1 15.8432
2 17.0130
3 17.2338
4 17.6614
6 18.1472

SPANN 0 14.7730
1 15.7506
2 16.2295
3 17.0663
4 17.6994

Table 8.5: Comparison of number of hidden units and locomotion distance for global

Pareto optimal controllers obtained using the SPANN-CMM and SPANN algorithms

over 10 independent runs.
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Figure 8.7: Pareto-front of solutions obtained for 10 runs using the 1. SPANN-CMM

(left), 2. SPANN (right) algorithms. X-axis: Locomotion distance, Y-axis: No. of

hidden units.

CMM against SPANN over 10 runs. As in Section 7.5.1, we are comparing two

Pareto-fronts that characterize the complexities of two different morphologies. Here

the environment E and learning algorithm L are again fixed, so we can either mea-

sure the change of morphological complexity in the eyes of the behavior or the

controller: that is, ∂f(B)
∂M

or ∂f(C)
∂M

respectively. If we fix the actual behavior B as the

locomotion competency of achieving a movement of 13 < d < 15, then the change
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in the controller ∂f(C) is measured according to the number of hidden units used

in the ANN. At this point of comparison, we find that both SPANN-CMM (Figure

8.7.1) and SPANN (Figure 8.7.2) produced creatures that were able to achieve the

desired behavior with 0 hidden units. Therefore, this is an indication that from the

controller’s point of view, given the change in morphology ∂M from the creature

evolved by co-evolving morphology and controller to the fixed morphology creature,

there was no increase in complexity for the controller ∂C. Hence, the SPANN-CMM

morphology can be seen as being at the same level of complexity as the SPANN mor-

phology in the eyes of the controller.

Conversely, we can also measure the complexity of the morphology from

the eyes of the locomotion behavior. First we need to choose a common point of

comparison in terms of the network size. If we fix the controller C to having a hidden

layer size of 3 hidden units, then the change in the locomotion behavior ∂f(B) is

measured according to the maximum distance achieved by artificial creatures. At

this point of comparison, we find again that the creatures evolved with both SPANN-

CMM (Figure 8.7.1) and SPANN (Figure 8.7.2) achieve a similar locomotion distance

of 17 units. Thus, this is an indication that from the locomotion behavior’s point

of view, given the change in morphology ∂M from the co-evolved morphology and

fixed morphology, there was no increase in complexity for the locomotion behavior

∂B. In this case, the SPANN-CMM morphology can again be seen as having the

same level of complexity as the SPANN morphology.

Table 8.6 lists the evolved values for the variable parameters in the crea-

ture’s morphology for the global Pareto solutions found by SPANN-CMM. The limb

length values for Pareto solutions 2 through 5 were very similar while solutions 1 and

6 were slightly more different. In Pareto solutions 2 through 5, the only difference

in limb length was found in gene L5 of 0.1cm. Pareto solution 1 had a longer limb

length for genes L5 and L6 while Pareto solution 6 had a longer limb length for

gene L4 compared to the other Pareto solutions. There was more variation in terms

of the constraint orientation found in the Pareto solutions although some common

choices of orientation could still be found. All C1, C5 and C8 genes had similar
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Pareto Solution No. 1 2 3 4 5 6
Locomotion Distance 14.3 15.8 17.0 17.2 17.7 18.1
No. of Hidden Units 0 1 2 3 4 6

L1 0.2 0.2 0.2 0.2 0.2 0.2
L2 0.2 0.2 0.2 0.2 0.2 0.2
L3 4.1 4.1 4.1 4.1 4.1 4.1
L4 0.2 0.2 0.2 0.2 0.2 3.8
L5 4.0 2.7 2.8 2.7 2.8 2.8
L6 3.8 0.2 0.2 0.2 0.2 0.2
L7 0.6 0.6 0.6 0.6 0.6 0.2
L8 0.2 0.2 0.2 0.2 0.2 0.2
C1 side side side side side side
C2 bottom bottom bottom side bottom side
C3 side side side side side bottom
C4 side bottom bottom side side side
C5 back back back back back back
C6 back back back back front back
C7 back front front back front back
C8 front front front front front front

Table 8.6: Evolved limb lengths and constraint orientations for global Pareto opti-

mal controllers obtained using the SPANN-CMM algorithm. Numerical values are

rounded to 1 decimal place in this table.

values while C3 and C6 genes were similar in five out of the six Pareto solutions.

It is very hard to generalize on why the evolutionary runs have converged on the

limb length and constraint orientation gene values. Although it may be likely that

longer limb lengths provided an evolutionary advantage in that artificial creatures

with longer limbs should be able to move further distances per cycle of limb, not

all of the solutions had maximal limb lengths. In fact, a number of limbs had the

minimal value of 0.2cm such as L1, L2 and L8. This combination of very small limb

lengths actually resulted in entire legs that did not contribute to the locomotion of

the creature upon visual inspection. This is somewhat analogous to vestigial limbs

found in some animals. The presence of the non-contributing limbs may have lead

to easier control requirements for the creature’s legged locomotion. Screen dumps

of the creature for the six global Pareto solutions are given below to provide a

visualization of the evolved morphologies and the locomotion behavior generated.

Visual inspection of the locomotion behavior generated by the creatures
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Figure 8.8: Screen dumps of the artificial creatures found on the global Pareto-

frontier from co-evolving morphology and controller. 1. Solution 1 (top left), 2.

Solution 2 (top right), 3. Solution 3 (middle left), 4. Solution 4 (middle right), 5.

Solution 5 (bottom left), 6. Solution 6 (bottom right).

found on the global Pareto-frontier of the evolutionary runs revealed that all the

creatures moved forwards by using a dynamic jumping gait rather than a statically

stable walking gait (interested readers can view video clips of these evolved behaviors

in the accompanying CD-ROM). Creature 1 (Figure 8.8.1) was basically a tripedal

creature which generated its locomotion force from its front left, back right and

back left legs while having a non-contributing front right leg. Creatures 2 through

5 (Figures 8.8.2–8.8.5) were essentially bipedal creatures that had almost identical

morphologies and resultant gaits, where the locomotion force was generated by the

two back legs while the two front limbs did not contribute to the forwards move-
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ment. Creature 6 (Figure 8.8.6) again returned to the tripedal-like morphology seen

in Creature 1. However the non-contributing leg was now switched to the front left

and the locomotion force was generated by the front right, back right and back left

legs. Across all the creatures, it is interesting to note that the legs which contributed

to the forwards locomotion had fairly similar overall leg lengths although the indi-

vidual limbs that made up the overall leg were quite different between the upper

and lower limbs. Furthermore, the non-contributing limbs were fully minimized to

the shortest possible length. As postulated earlier, this may somehow simplify the

control requirements of the creature by reducing the number of legs that actually

touched the ground during the creature’s movement and hence did not require any

synchronization within these legs nor coordination with other contributing legs to

occur.

8.3.3 Search Space Characteristics

Figure 8.9: Frequency distribution of solutions obtained using the 1. SPANN-CMM

(left), 2. SPANN (right) algorithms. X-axis: Locomotion distance, Y-axis: No. of

hidden units, Z-axis: Frequency.

The frequency distribution of genotypes generated by SPANN-CMM across

the two objective spaces were fairly uniformly spread out as depicted in Figure

8.9.1, similar to the frequency distribution obtained for SPANN (Figure 8.9.2). The
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Figure 8.10: Contour graphs of frequency distribution of solutions obtained using

the 1. SPANN-CMM (left), 2. SPANN (right) algorithms. X-axis: Locomotion

distance, Y-axis: No. of hidden units.
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Figure 8.11: Density (solid) and cumulative (dashed) probability distribution of

solutions obtained using the 1. SPANN-CMM (left), 2. SPANN (right) algorithms.

X-axis: Locomotion distance, Y-axis: Probability.

contour graph in Figure 8.10.1 shows that the highest concentration of genotypes

generated by SPANN-CMM used between 6 and 8 hidden units in the controller

and produced very bad locomotion capabilities. Again, this can be attributed to the

changing morphology of the creature, of which some may be very hard to generate

good locomotion behaviors by virtue of their physical characteristics. From the
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contour graphs, it can be seen that the distribution of solutions in terms of the two

objectives were more spread out and less clustered within a specific region in SPANN

(Figure 8.10.2) compared to SPANN-CMM, and as such was able to sample areas of

the search space with higher locomotion fitness. The probability density function for

SPANN-CMM shows that the probability of encountering solutions dropped to zero

at around 12 units of distance (Figure 8.11.1) compared to SPANN which extended

to around 14 units (Figure 8.11.2). However, the fact that SPANN-CMM was still

able to produce controllers with locomotion distances higher than SPANN in spite

of having a higher concentration of solutions in the lower fitness regions of the

objective space shows that the inclusion of morphological parameters for evolution

is not entirely counterproductive but can in fact find good combinations of controller

and morphology.

8.4 Chapter Summary

We have investigated the co-evolution of morphology and mind by aug-

menting the SPANN algorithm to allow for simultaneous optimization of both the

creature’s body and controller. Certain morphological parameters which were pre-

viously constrained have been relaxed to allow for the ANN controller to be opti-

mized while at the same time allowing evolution to find suitable morphologies that

would work well with the controllers. It was found that although no significant

improvement in locomotion distance was achieved, significantly different locomotion

behaviors emerged together with radically different body designs. Dynamic locomo-

tion gaits based on a jumping motion generated mainly from hind legs were found

in creatures that were essentially bipedal and tripedal in their legged locomotion.

A characterization of the different solutions showed that the creatures existing on

the global Pareto-frontier had similar complexities in terms of both control and

locomotion behavior.



Chapter 9

Conclusion

“And in the future? Who knows? But it seems almost certain that the

first forms of alien life we see will not be through telescopes, but through

the windows of our computer screens into digital universes. The first

person to hold a conversation with an alien intelligence will not be an

astronaut: it will be a computer scientist or computational neuroscientist,

talking to an evolved digital neural network. The first glimpses of non-

human cultures and technologies will occur in our research labs, where

the digital biology grows more complex day by day.” (p.14)

(Peter J. Bentley, 2002)

9.1 Summary of Results

In this thesis, we presented a systematic study of evolving ANN controllers

for the legged locomotion of virtual organisms using a Pareto multi-objective evolu-

tionary optimization approach. A virtual and physically accurate world was created

to simulate the evolution of locomotion behavior in a quadruped creature. A self-

adaptive Pareto EMO algorithm called SPANN, which allowed for the generation of

Pareto solutions that optimized multiple objectives distinctly, was implemented to

evolve the ANN-based control mechanism for the quadruped. The search spaces un-

245
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derlying four classes of ANNs with different connectivity types were characterized.

SPANN was then used to evolve Pareto solutions that maximized the locomotion

distance of a fixed morphology quadruped and minimized usage of hidden units in

its ANN controller. More conventional methods of evolutionary optimization were

subsequently compared against SPANN to ascertain the true advantages offered

by the self-adaptive Pareto EMO methodology. An approach for the characteriza-

tion of the morphological and behavioral complexity was then proposed based on a

multi-objective viewpoint. Finally, the simultaneous evolution of morphology and

controller was conducted by relaxing some of the morphological parameters imposed

on the artificial creature to explore the different creature designs that can be found

through the co-evolutionary optimization methods.

The main findings from the investigations carried out in this thesis are as

follows:

1. Search space characterization of four different types of ANN controller architec-

tures (NNType0, NNType1, NNType2 and NNType3) using random search,

hill-climbing and random walk showed no significant differences in terms of

the ease of finding good quality locomotion controllers.

2. The fitness landscape of the evolutionary search spaces had both rugged and

smooth sections depending on the sub-spaces being explored. The variety of

rugged shapes on the landscape was high indicating that epistatic interactions

between genes in the genotype were high. A correspondingly high degree of

modality in the fitness landscape was also noted.

3. The solution space was found to be highly heterogeneous. A uniform sampling

of the genotype space yielded a highly skewed distribution of solutions in the

objective space.

4. An EMO algorithm called SPANN was implemented for the multi-objective

evolution of artificial creature controllers. Artificial creature controllers were

successfully evolved for minimum hidden layer size and maximum horizontal

locomotion distance using four different types of ANN architecture. Although
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the overall best solution was found using the NNType3 architecture, statistical

tests showed no significant difference existed between the results obtained.

5. A comparison between SPANN and random search, hill-climbing and random

walk showed that the evolutionary search implemented in SPANN produced

statistically superior solutions.

6. Recurrent connections did not provide any significant advantages over con-

ventional feed-forward neural network architectures for evolving locomotion

behavior in a quadruped.

7. Pure reactive agents not requiring hidden layer transformations in the ANN

controller produced sufficiently good locomotion capabilities. The use of di-

rect input-output connections in a perceptron-like controller was sufficient for

generating a basic locomotion behavior in the quadruped.

8. The SPANN algorithm discovered reasonably good quality controllers but

required significantly less overall computational costs compared to a single-

objective EA, a weighted sum EMO algorithm as well as a hand-tuned EMO

algorithm. The controllers evolved using SPANN were comparable to those

obtained with NSGA-II, one of the current state-of-the-art Pareto EMO algo-

rithms. The self-adaptive Pareto EMO approach implemented in the SPANN

algorithm provided significant advantages over conventional evolutionary op-

timization algorithms by: (1) reducing the number of runs required to test

different design factors associated with the synthesis of artificial creatures, (2)

preserving genetic diversity, and (3) offering extra-dimensional bypasses for

the search process to reach fitter solution spaces.

9. The overall best locomotion controller evolved using SPANN had the least

amount of redundancy present in the ANN compared to the overall best lo-

comotion controllers evolved using a hand-tuned EMO algorithm, a weighted

sum EMO algorithm and a single-objective EA.

10. Some level of coordination and synchronization was achieved by the overall
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best locomotion controller evolved using SPANN. The controller continued to

perform well despite the presence of low levels of noise in the quadruped’s

sensors and actuators.

11. Taking a multi-objective view towards complexity provided a useful platform

for comparing between the evolved behavioral and morphological complexi-

ties of embodied creatures. A Pareto-based methodology for characterizing

complexity was implemented and using this approach, it was found that the

morphological complexity of a hexapod was higher than a quadruped while

the behavioral complexity of a quadruped was higher than a hexapod.

12. Significantly different locomotion behaviors emerged together with radically

different body designs when certain morphological constraints were relaxed to

allow for co-evolutionary optimization of morphology and controller to occur

in the SPANN-CMM algorithm. Dynamic locomotion gaits based on a jump-

ing motion generated mainly from hind legs were found in creatures that were

essentially bipedal and tripedal in locomotion behavior. A comparison be-

tween solutions evolved with and without co-evolution of morphology showed

that creatures existing on the global Pareto-frontier of both evolutionary sys-

tems had similar complexities in terms of both controller requirements and

locomotion behavior.

9.2 Future Work

Numerous avenues for further explorations and investigations have emerged

from this body of work. Some open research questions have already been highlighted

in the respective chapters where they directly followed on from the work completed

in the experiments. Here we outline more diverse and philosophical future research

directions that encompass the evolution of artificial organisms at a higher level.

Other forms of control mechanism can be used in place of these basic ANNs.

On a lower level, CPGs and other types of algorithmic controllers would certainly

be also useful to evolve for simpler artificial organisms. On a higher level, more ad-
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vanced forms of ANNs such as those having higher-order activation functions, Gas-

Nets that use temporally and spatially adaptive neurons (Husbands, Smith, Jakobi,

and O’Shea 1998), as well as Pulsed Neural Networks that use spiking neurons (Flo-

reano and Mattiussi 2001) may allow for the emergence of more complex behaviors

in artificial organisms that are required to perform more complicated tasks and in

changing environments.

The power of a Pareto multi-objective approach lies in the flexibility and

ease of incorporating new objectives and elements into the artificial evolutionary

process. The inclusion of elements such as compactness of genetic material in EAs

that utilize variable length chromosomes or other more elaborate developmental en-

codings as a distinct and separate objective on top of the primary objective will not

only provide useful ways of improving the efficiency of the EA but may possibly also

provide interesting insights into why vastly different genome lengths are found in

biological organisms. Other elements that will be fruitful to investigate as separate

evolutionary objectives from an artificial life perspective include phylogenetic diver-

sity, number of body parts/joints and physical energy consumption to name but a

few.

The SPANN algorithm can be beneficial in evolving controllers not only for

legged robots but also wheeled and other forms of physical robots. Again, the multi-

objectivity of the artificial evolution can easily incorporate additional engineering

factors such as noise and stress tolerance into the optimization process. It will also

be interesting to expand the SPANN-CMM algorithm to allow for fully and freely

evolvable robotic forms that are not based on any underlying body plan and evolved

from very basic structures, perhaps even at the atomic level. This can have far-

reaching implications on the evolution of minimal controllers and morphologies of

recyclable micro-machines that can be created with nanotechnology and evolvable

hardware. The fully automated design, fabrication and re-use cycle of such evolvable

systems would then truly constitute a form of artificial life. On an even grander

scale, although representing a scenario which perhaps demands more serious ethical

discussions, such artificial creatures can at later generations even fabricate micro-
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factories capable of re-designing and evolving existing creatures into more efficient

and effective forms of life and intelligence.

9.3 Concluding Remarks

The automatic synthesis of embodied and situated artificial creatures that

are fully autonomous and intelligent is a truly lofty goal. Significant advancements

have been made through numerous artificial evolutionary studies and in this thesis,

we have proposed the use of a Pareto multi-objective approach to this end. We have

shown that multiple objectives can be treated as distinct and separate optimization

goals in a Pareto EMO algorithm when evolving such organisms. This body of work

should not be seen as merely an attempt to present a new artificial life system or

an evolutionary robotics algorithm, although it does exhibit many useful character-

istics in these respects, but as a new paradigm in which evolutionary computation

can be used in a truly purposeful and powerful way in terms of designing, generat-

ing and synthesizing intelligent machines and artifacts that do not only mindlessly

avoid walls or react to our facial expressions but are able to exhibit a host of other

intelligent behaviors that constitute the multi-objective nature of our world. This

technology will pave the way for such intelligent creatures to be realized in the not-

too-distant future, which will then truly revolutionize the way in which we humans

think about and live life.
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Appendix A

Contents of the Accompanying

CD-ROM

The CD-ROM accompanying this thesis contains videos of the artificial

creature visualized in simulation and additional graphs that were not included in the

thesis. The directory structure of the CD-ROM’s contents is shown in Figure A. On

machines with autorun features enabled, the CD-ROM should play automatically.

Otherwise, it is recommended to begin using the CD-ROM by first reading the

readme.txt file, and then pointing your web browser to index.html. All videos

and graphs on the CD-ROM are accessible through this index file.

The graphs require Adobe Acrobat Reader to view. A link to download a

copy can be found in the index.html file. To view the graphs, simply click on the

corresponding links that appear on the relevant pages. The videos require an MPEG

viewer. If using Internet Explorer 5.5 (or higher) or Netscape 6.2 (or higher) on a

personal computer running Microsoft Windows 98 (or higher), these videos will play

automatically by clicking on the corresponding links. Otherwise, a link to on-line

instructions on how to install the appropriate MPEG players can be found in the

index.html file.
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Figure A.1: Index to the contents of the accompanying CD-ROM. The last video

listed as “SPANN (P2 F.F.)” refers to the locomotion behavior evolved using the

P2 fitness function explained in Section 7.4.4. Videos for the best SPANN controller

operating with the presence of noise can be found under the Videos\SPANN sub-

directory.
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