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Abstract 

An underlying premise of any segmentation method is that spectral similarity and thematic similarity 

are synonymous. This assumption holds true for image objects at an individual tree crown scale and 

they can be classified with a degree of accuracy. However, at coarser spatial scales, a large patch of 

vegetation can encompass a variety of thematic attributes. Mapping native vegetation using remote 

sensing suffers from an inability to make meaningful predictions through a change in scale. 

I propose that heterogeneous vegetation needs to be analysed across multiple scales to categorise it as a 

vegetation community. A multi-scale, object-based, hierarchical approach was introduced to generalise 

floristic data collected at the plot scale to a vegetation community map using remote sensing. This 

framework uses the cover and abundance of classified tree crown objects to inform the classification of 

larger patches of vegetation. Community scale image objects can then be named using the same 

hierarchical framework used by ecologists in plant ecology. 

Machine learning classification algorithms and patch scale segmentation algorithms were reviewed and 

benchmarked for this application. A crown delineation algorithm was formulated as well as a new way 

to combine lidar with optical imagery. The scope of this thesis was limited to three sensors: the HyMap 

hyperspectral airborne scanner, small footprint lidar, and the multi-spectral SPOT-5 satellite. To ensure 

that the results are relevant, the fieldwork for this thesis was based largely on operational standards. 

The result was a vegetation map classified on cover and abundance of dominant crown species. The 

extra resources required for individual tree crown surveys and the difficulty of analysis in highly 

diverse ecosystems are the main limitations.  

Vegetation structure was assessed by quantifying forest fuel load using remote sensing. The correlation 

between field derived attributes and vegetation indices was stronger when narrow band hyperspectral 

vegetation indices were used. Small footprint lidar successfully penetrated the canopy and offered 

quantitative information about the structure of the understorey. However, the total fuel load assessed in 

the field was dominated by leaf litter component in wet forest, which was problematic to quantify with 

remote sensing. 
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Chapter 1  

Introduction 

The aim of this thesis was to develop tools for the delineation and classification of native vegetation. 

The tools were created to interpolate physical vegetation measurements made in the field over a 

broader spatial scale. The scope of this thesis was limited to three sensors: the HyMap hyperspectral 

scanner, small footprint airborne lidar and the multi-spectral SPOT-5 satellite. The research aims to 

demonstrate the applicability of these data for their use in natural resource management. This research 

was focus primarily on using spectral information in an object-based approach.  

Reliable identification of individual tree species has always been a goal of remote sensing. 

Information on the spatial distribution of tree species has potential uses in forest inventory, vegetation 

mapping and conservation management and is otherwise difficult to collect in the field. Much of the 

recent research in this area has focused on the automated delineation of tree crowns. There has been 

little discussion on what methods are best suited for differentiating species. Leckie et al. (2005b) 

reviewed a variety of automated crown delineation algorithms and found that most used spectral data 

and that very few studies examined the use of textural and structural information. Studies in temperate 

and tropical forests of the northern hemisphere have concluded that greater numbers of narrow 

spectral bands improve classification accuracy (Clark et al., 2005, Underwood et al., 2003). They also 

inferred that commonly used hyperspectral classification algorithms are not always the most suitable. 

Hyperspectral data has shown considerable potential for differentiating native vegetation species by 

their spectral properties. Studies in temperate and tropical forests of the northern hemisphere have 

concluded that greater numbers of narrow spectral bands improve classification accuracy (Clark et al., 

2005, Underwood et al., 2003). Australian studies into species classification have been less 

successful, with Eucalypt forests in particular being difficult characterise (Bunting and Lucas, 2006, 

Coops et al., 2004, Goodwin et al., 2005, Lucas et al., 2008). Eucalypt leaves generally hang 

vertically, making their canopies semi-transparent when viewed from above (Greaves and Spencer, 

1993) increasing the soil component and shadow component in tree crown (Goodwin et al., 2005).  

A series of crown scale remote sensing studies have been carried out at the Jilliby Catchment area in 

the past. Coops et al. (2004) attempted to differentiate species amongst eucalypt crowns and rainforest 

elements using 10 band CASI-2 data (1m spatial resolution). The study was limited by the small 

number of crowns surveyed but the results implied that the CASI-2 spectra of Syncarpia glomurifia 

and rainforest species could be easily confused with other species. They found that eucalypt species 

were best differentiated using CASI-2 bands centred on 720nm and 740nm and that Eucalyptus 
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panniculata, Gray Ironbark, was relatively easy to differentiate. They warned that the results could be 

confounded by variation in tree health. A second study of the same CASI-2 data (Goodwin et al., 

2005) was able to distinguish between Syncarpia glomulifera, mesic vegetation (primarily rainforest 

species) and an amalgamated group of eucalypt species, but was unable to differentiate between 

individual eucalypt species.  

There is evidence in the literature that a greater spectral range can improve performance of crown 

species classification (Clark et al., 2004, Lucas et al., 2008). Unlike CASI-2 (405nm to 950nm) the 

HyMap hyperspectral scanner features bands in the short wave infrared where moisture content and 

various biochemicals have an effect on reflectance (450nm to 2500nm). I propose that HyMap data 

has a greater chance at differentiating tree species in tall, closed-canopy eucalypt forest than 

previously trialled sensors (CASI-2). 

Chapter 2 provides some background to the field component of this research and features some 

definitions for forest ecology and remote sensing. It reviews how native forest is surveyed in NSW, 

including the assessment of vegetation type, and shows how forest fuel loads are quantified in the 

field with the use of visual assessments and destructive sampling.   

One of the arguments established in Chapter 2 is that operational vegetation survey quadrat size is not 

large enough to survey the dominant species (trees), which conflicts with its stated role providing an 

effective representation of the floristic type. Hnatiuk et al. (2009) recommends that plot size vary with 

the height of the vegetation being sampled and that vegetation over twenty metres high be surveyed in 

30m by 30m plots. Increasing the size of vegetation surveys for every stratum is not a practical 

solution for floristic surveys in Australia. An alternative is to survey vegetation at a variety of scales, 

or in a series of nested hierarchies. 

Chapter 3 describes Jilliby and Coonabarabran study areas. It details the field survey data and the 

satellite and airborne remote sensing data used in this thesis. Following the conclusions of Chapter 2, 

a multi-scale nested survey design was applied in the field. Multiple operational approaches to 

surveying vegetation structure and floristics were employed in a nested hierarchy and encompassed by 

a tree crown survey. The scale of survey ranged from a 40m diameter circle for tree crowns to 1m 

squared, destructively sampled, leaf litter quadrats.  

An underlying premise of any segmentation method is that spectral similarity and thematic similarity 

are synonymous. For image objects at an individual tree crown scale this assumption holds true, and 

they can be classified with a degree of accuracy. However, at coarser spatial scales, a large polygon 

can encompass a variety of thematic attributes. The main obstacles to the successful mapping 

vegetation using remotely sensed data has been a lack of spectral and spatial resolution and an 

inability to make meaningful predictions through a change in scale. 
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I propose that heterogeneous vegetation needs to be analysed across multiple scales to effectively 

categorise it as a vegetation community. Therefore, a multi-scale, object-based, hierarchical approach 

is introduced to generalise floristic data collected at the plot scale to a vegetation community map 

using remote sensing. This framework uses the cover and abundance of classified tree crown objects 

to inform the classification of larger patches of vegetation. Community scale image objects can then 

be named using the same hierarchical framework used by ecologists in plant ecology. 

There are, however, a number of questions that need to be answered to accomplish this. What is an 

appropriate statistical approach to classify tree crowns based on image spectra? Can tree crowns be 

delineated automatically in complex native forest, particularly given the constraints of high spectral 

but low spatial resolution of hyperspectral scanners?  

There are several segmentation algorithms in use that can be used to delineated patches of 

homogenous vegetation. Will the result be comparable with tradition air photo interpretation of 

vegetation patterns? Given that the segmentation parameters for these algorithms can be varied, how 

can they be selected to maximise performance, and using what imagery? 

These questions are answered in a series of Chapters. Chapter 4 describes how spectral information 

from individual tree crowns can be classified to a species level. It uses HyMap hyperspectral scanner 

data and small footprint lidar to extract spectra and classifies these data with Machine Learning 

Algorithms (MLA). MLA are well suited to the analysis of hyperspectral data as they deal well with 

highly dimensional and highly correlated data. MLA have the advantage of allowing the investigation 

of the relative importance of input variables (spectral bands) in terms of their contribution to 

classification accuracy. Four algorithms are compared to select an appropriate classifier. Logistic 

Model Trees (LMT) were selected as the classifier in later chapters for their ability to automate the 

selection of relevant attributes (bands), how they deals with over-fitting, and their computational 

efficiency and performance. 

To make crown scale analysis practical at a catchment scale Chapter 5 introduces the HyMap Crown 

Delineation Algorithm (HCDA), which automates the isolation of individual tree crowns in 3.5m 

HyMap data. The method applies spatial filters to accentuate the location of tree crowns based on the 

local maxima of sunlit crowns. A watershed algorithm that detects the local minima is then applied to 

separate individual crowns. This allows for the extraction of HyMap tree crown spectra for the entire 

study area.  

Chapter 6 combines the series of steps in preceding chapters. The Size Constrained Region Merging 

(SCRM) algorithm was selected for patch scale segmentation (Castilla, 2004, Castilla et al., 2008, 

Hay et al., 2005). It is also an adaptive-filter/watershed based region-merging approach to 

segmentation. It effectively created homogenous patches of vegetation and was improved by the use 
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of pre-processed hyperspectral data. The bands used in the segmentation were selected based on the 

feature reduction powers of the MLA. The HCDA from Chapter 5was used to delineate 330,000 

crown objects. The spectral signature of each object was classified using LMT and their accuracy 

assessed with independent field data at each survey site. Vegetation patches were classified by 

dominant canopy species and used to create a vegetation community scale map.  

Despite lower classification at a crown scale than seen in Chapter 4, I posit that a representative 

sample of large, classified dominant crowns may be sufficient for labelling vegetation types. Smaller 

tree crowns overlap at this spatial resolution but the HCDA produces image objects among smaller 

crowns that may be sufficient for a representative sample of sunlit vegetation.  By using the ratio of 

dominant crowns in each patch there is some scope for error reduction through generalisation. 

Vegetation community classification and forest fuels assessment are both concerned with quantifying 

vegetation structure. Many of the attributes sampled, such as understorey density and tree height, are 

shared. Vegetation structure is critical to the expression of vegetation type and its distribution. 

Structural characteristics also tend to be the most easily recognised features on air photos or on other 

remotely sensed images (Hnatiuk et al., 2009).  

Research at the Jilliby Catchment area concludes in Chapter 7 with a comparison of the fuel load 

sampling methods employed at Jilliby. We examine the relationship between forest fuels assessed in 

the field and vegetation metrics derived from HyMap, lidar and satellite imagery. Forest fuel load was 

measured in the field at the Jilliby site using rapid visual assessments as well as labour intensive, 

destructive sampling.  

Chapter 8 represents a shift away from catchment scale mapping to regional scale mapping. The 

multi-scale, object-based analysis approach developed in Chapter 6 is applied to SPOT-5 satellite data 

in New South Wales’ central west. Chapter 8 begins by exploring some empirical discrepancy 

methods to quantify segmentation quality. It tests whether optimising segmentation parameters can 

allow replication of manually digitised vegetation patterns. Based on these results, and applying 

segmentation at multiple scales, this chapter demonstrates how homogenous patch scale objects may 

be classified based on crown size sub-objects in an operational environment. 
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Chapter 2  

Operational vegetation survey in eastern Australia 

The extensive land surface of the Australian continent and the sparse availability of biological surveys 

have seen remote sensing and spatial modelling become the basis for vegetation assessment (Ferrier 

and Guisan, 2006). Yet the focus of national and regional survey standards is on site assessment and 

local environmental planning at a property scale (Hnatiuk et al., 2009). There is a disparity between 

the geographic scale of vegetation surveys and the scale at which remote sensing and landform data 

were collected.  

This chapter reviews the current operational survey methods used to collect information about native 

vegetation in the eastern states of Australia, with a particular emphasis on New South Wales (NSW). 

The existing approach for translating these data into vegetation maps are outlined. Issues with scale 

and remote sensing are introduced and I suggest a framework for a solution. I suggest a multi-scale, 

object-based, hierarchical approach to generalise floristic data collected at the plot scale to create a 

vegetation community map using hyperspectral remote sensing. 

2.1 Forest ecology 
From the early 20th century on, forest ecologists have studied stands of vegetation which they 

considered samples of a ‘plant community’ (Allen and Hoekstra, 1992, Watt, 1947). The stands are 

selected on the basis of uniformity and discreteness and should be discernible from surrounding 

vegetation (Ter Braak et al., 2004, van der Maarel, 2004). Uniformity means that the vegetation has 

the same appearance, i.e. the same height and the same plant species in a dominant position, and that 

the floristic composition does not vary. It is the degree of species dissimilarity over a geographical 

range that determines when species assemblages should be considered as separate communities and 

recorded as such (Benson, 2006). 

The dominance of certain growth forms such as trees, shrubs and grasses allows plants to be grouped 

into formations. This grouping allows for large areas to be classified, such as a large area of mallee 

trees, or grasslands. An association is a plant community of definitive floristic composition, 

presenting a dominant growth form, and growing in uniform habitat conditions. The association is the 

fundamental unit of vegetation ecology (Westhoff and Van Der Maarel, 1978). The concept of using 

fidelity or ‘characteristic species’ to describe plant communities arose in and was pivotal in the 

seminal plant community classification methodologies developed in the 1930's (Braun-Blanquet et al., 

1932). 
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Plant communities are also part of larger units. In the usual hierarchy the next higher unit above the 

community is the ecosystem, which in turn is part of a biome, a formation together with its fauna and 

environment. The plant community as defined above is a realistic concept only at a certain scale of 

observation (the scale at which it is possible to judge the relative uniformity and distinctness). This 

'community scale' will vary with the structure of the community, from some meters squared for short 

grassland to several thousand metres squared in tall forest (van der Maarel, 2004).  

Vegetation types rarely occur as single-species stands, but rather as assemblages of species that form 

a continuum in terms of composition, cover, abundance and height (McKenzie et al., 2008). 

Ecological theory suggests that similar environmental conditions should produce clumping of species 

into recognisable and predictable plant assemblages (McKenzie et al., 2008). Classification of 

vegetation is essentially a compromise between the desire to preserve these natural groupings as 

continuously varying entities and the need to subdivide them for more utilitarian purposes (Beadle 

and Costin, 1952). 

2.2 The benefits and drawbacks of standardised vegetation assessment 
There are many advantages to using standardised vegetation sampling methods; the methods are 

widely applied and incrementally improved, they are designed to allow for repeatable and comparable 

collection field data across a variety of landscapes, and they are designed to be used by a range of 

personnel, sometimes without localised botanical expertise. Perhaps most importantly, they are 

designed to answer questions that ecologists and natural resource managers pose, because they have 

been formulated by ecologists and natural resource managers. Spatial scientists are often criticised for 

applying their own sampling design, based around their own expertise, without answering practical 

questions posed by land managers. It is a case of answering what you can, rather than what is being 

asked. 

Several publications are available to assist Australian vegetation scientists to survey, classify and map 

vegetation types to the association and sub-association level of detail. The Australian Soil and Land 

Survey Field (National Committee on Soil and Terrain, 2009) documents efforts towards an intra-

Australian standardization of the description, characterization, naming and coding of vegetation site 

attributes. The Guidelines for Surveying Soil and Land Resources (McKenzie et al., 2008) is 

published by the Australia's national science agency and also promotes the development and 

implementation of consistent methods and standards for conducting soil and land resource surveys in 

Australia.  

The problem with using standardised vegetation sampling methods is that they are not commonly 

designed to guide the classification of remote sensing data. The type of data collected in the field is 

very different to that collected by remote sensing instruments, partly because they are collected at 

different scales. For example, the understorey plays an important role in characterising vegetation 
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structure. The density of shrubs is relatively simple to quantify in a field plot but that information is 

unlikely to be correlated with remotely sensed data, particularly if the understorey is obscured by a 

taller canopy. As a result, vegetation structure is not spatially modelled in an operational setting and is 

used exclusively in site assessments. 

Australia contains over 20 000 vascular plant species and has patchy sampling and mapping of its 

vegetation in terms of quality and extent. Given the size of the country, it has a limited number of 

ecologists with the expertise to conduct research (Benson, 2006). A scattered collection of point data 

are not adequate for making natural resource management decisions. Classified remote sensing data 

are seen as an efficient tool for planning and biodiversity assessment at relatively large scales (Pressey 

and Nicholls, 1989) but can be too coarse in their thematic classification. They do not usually depict 

small patches of vegetation useful for property-scale site assessment  

The lack of precision at this finer scale is because within any broad environmental classification, such 

as vegetation community, the distribution and structure of vegetation varies as a result of modification 

by humans or past natural disturbance e.g. (Prober et al., 1995). Consequently, coarse scale maps are 

of limited value for guiding property management decisions such as identifying the need for weed 

control, monitoring grazing regimes, and maintaining habitat (McElhinny, 2005). As a result, the 

requirement for fine scale mapping  to assist with property-scale planning is increasing in Australia 

(Benson, 2008). 

Presently, there is no consistent fine scale vegetation map for the New South Wales (NSW). Both 

regional and fine scale vegetation mapping remains patchy and there is no ongoing program to fill 

data gaps (Benson, 2006). Instead, natural resource managers in rely on property scale assessment to 

meet legislative requirements. While vegetation type and forest fuel load are routinely sampled using 

standardised field techniques, standards do not exist for spatially modelling these attributes across the 

landscape. There is a glaring disconnect between the routine collection of data at a plot scale and the 

creation of maps.  

The NSW Rural Fire Service uses the Overall Fuel Hazard Guide (OFHG) (McCarthy et al., 1999) to 

quantify the volume of combustible material in the landscape. Fuel assessment is frequently used for 

planning hazard reduction burns and more recently, for predicting fire behaviour. The OFHG is 

typically used at a site scale for immediate and local management. 

The NSW Department for Environment and Climate Change uses the Biometric tool (Gibbons et al., 

2005) for property scale assessment of condition. Condition assessment is used to gauge the 

‘naturalness’ of a particular stand of forest in comparison to pre-established benchmark values. It 

predicts the loss of biodiversity from proposed clearing (including thinning), gains in biodiversity 
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from proposed offsets, and gains in biodiversity from management actions proposed for government 

incentives at the scale of the stand or patch.  

Vegetation community classification and forest fuels assessment are both concerned with quantifying 

vegetation structure. Many of the attributes sampled, such as understorey density, are shared. Their 

commonalities have meant that all three methods are relevant for this thesis. A description of the 

fieldwork conducted for this thesis appears in Chapter 3.  

2.3 Operational field methods for assessing native vegetation community type 
Vegetation can be classified through structural or physiognomic attributes such as growth form, 

height of strata and canopy cover. Alternatively, vegetation can be classified through a floristic 

approach by describing variation in species composition across a region. The latter can involve 

analyses of patterns of dominant plant species or all plant species (Kent and Coker, 1992). Often 

elements of both structural and floristic approaches are used in vegetation classification (Benson, 

2006). Growth form (trees, shrubs, vines etc.) is the core of the influential vegetation classification 

scheme of Beadle and Costin (1952). They are also a major component in the structural classifications 

of the widely used projected foliage cover and height class classification of Specht ( 1970) and the 

crown separation and height class classification of McDonald et al. (2009).  

Structural characteristics describe the vertical and horizontal distribution of vegetation in space; its 

growth form, height, density and layering. It is recorded for growth forms of major plants, usually 

repeated for each major discernible layer. A set of schematic illustrations of vegetation structure from 

a selection of Australian vegetation types is presented in McDonald et al. (2009). These structural 

classifications have the advantage of requiring minimum knowledge of plant species taxonomy but 

they tend to classify vegetation into broad classes such as ‘tall open forest’ or ‘open shrubland’ and 

each class contains numerous floristic communities generally spread over large distributions. 

Structural characteristics also tend to be the most easily recognised features on air photos or on other 

remotely sensed images (Hnatiuk et al., 2009).  

Vegetation classification at the highest level is based on the growth form and cover of the species 

forming the dominant stratum. The classes of vegetation at this level are called formation classes. 

Growth form is defined as: habit or general appearance of a plant. It is similar in definition to ‘life 

form’ (Hnatiuk et al., 2009). Floristic characteristics range from the names of dominant and 

characteristic plant species through to comprehensive species lists at the site. 

Vegetation that has been identified in the field can then be classified through numerical classification 

of floristic plot data with the application of statistical procedures such as fidelity analysis, association 

measures, hierarchical divisive cluster analysis and ordination to extend linear regressions. In 

Australia, the non-agglomerative, flexible Unweighted Pair Group Arithmetic Averaging (UPGMA) 
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(Sokal and Rohalf, 1962) approach has gained favour (Benson, 2008). The algorithm examines the 

structure present in a pair wise distance matrix and then constructs a rooted tree (dendrogram) that has 

been used to visualise the relationship between samples and guide how species are clustered into 

communities e.g. (Keith and Bedward, 1999). 

The convention for naming vegetation type generally uses floristic associations with species 

dominance and indicator species combined with the structural formation. 

ASSOCIATION + STRUCTURAL FORMATION = VEGETATION NAME 

E.g. Eucalyptus populnea tall woodland 

Equation 1  The convention for naming vegetation type generally uses floristic associations with species 

dominance and indicator species combined with the structural formation. 

Initially the most abundant or physically predominant species in the dominant stratum is selected. If 

another dominant stratum species is always present and conspicuous (a co-dominant species), it is also 

selected. In the absence of a second dominant stratum species, the most abundant or physically 

predominant species of the next most conspicuous stratum is selected. A third species is selected from 

any stratum, usually a lower stratum, as an indicator species (that is, a species, with known 

environmental preferences or of such abundance that it cannot be ignored), or to distinguish between 

associations (Hnatiuk et al., 2009).  

More species names can be added to distinguish vegetation types that have similar structures and 

species dominants in the dominant stratum. The main problem in using the dominant species to 

qualify the structural formation is that dominance can vary spatially and, for example, in the case of 

two or more species occurring in varying amounts in essentially the same vegetation type, a variety of 

names is possible. Ideally, all species present in the sample site at the time of sampling should be 

recorded. However, the completeness of a species list will depend partly on the purpose of the survey, 

the season of sampling, the degree of disturbance and the botanical expertise of the sampler (Hnatiuk 

et al., 2009). 

2.4 Operational field methods for assessing forest fuel loads 
Fire models have been developed specific to Australian forests to help predict and understand fire 

behaviour and fire hazard. These require a variety of input data but generally use variables that 

describe the meteorological, topographic and fuel conditions (Adams and Simmons, 1999). They are 

designed to predict the way in which fuel will burn by applying mathematical relationships to describe 

different aspects of fire (Andrews and Queen, 2001a). The McArthur Forest Fire Danger Index 

(FFDI) (McArthur, 1967) is the most widely utilised forest fire behaviour model in eastern Australia. 

It was designed for general forecasting purposes and is based on the expected behaviour of fire in 

eucalypt forest. Spread rate is predicted as the product of meteorological variables and the fuel load 
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(measured in tonnes per hectare). The overall fuel hazard can be combined with the current climatic 

conditions to calculate the probability of first attack success. 

Experiments have revealed the FFDI can generally predict fire behaviour under moderate conditions 

but under very high to extreme conditions it may underestimate the rate of fire spread (Buckley, 

1992). A major weakness of the model is that it does not take into account the spatial variability of 

fuel characteristics. By only using fuel load to characterise fuels the model neglects the importance of 

fuel structure. Indeed, the structure and quantity of surface fuel is of greater importance to wildfire 

behaviour than a measure of fuel load per unit area (Burrows, 2001).  

(Luke and McArthur, 1978) established that independent crown fires do not occur in eucalyptus 

forests, as the amount of radiative heating from crowns is usually insufficient to maintain combustion 

in adjacent crowns. Crown fires in eucalypt forests are the result of pre-heating by convection from 

understorey fuels. The rate of spread of fire in Australian forests is dictated by surface and near 

surface fuel layer depths and the continuity and the height of the shrub layers. Forest fires in fuels 

with a developed shrub layer are likely to spread much faster, as are fires in litter fuels with a low 

shrub layer.  

Chandler (1983) found that vertical gaps in the fuel layer 1.5 times the height of the flames can 

prevent crown fires developing, while a horizontal gap of 100m has the ability to ground a crown fire. 

Therefore, a fire of greater intensity is required to maintain a crown fire in areas where there is only 

low vegetation (Smith et al., 2004). In the right conditions, bark can act as a link between ground and 

crown fuels to produce crown fires (McCarthy et al., 1999). Bark can also defeat control in wildfire or 

even prescribed burn situations by producing spotting, burning embers that are transported by wind 

(McArthur, 1967). 

Fuel refers to combustible organic material, both living and dead. The description of fuel properties is 

necessarily complex. To combat this, fuel classes are often described by grouping vegetation types 

with similar fire behaviour characteristics e.g. Van Wagner (1968). The vegetation species is not 

always relevant since the same species may present completely different fire propagation rates, for 

example, due to fuel load or changes in vertical continuity. 

Fuel load is often divided into size classes in order to estimate the available fuel for burning (Papió 

and Trabaud, 1991). Not all fuel sizes are used to calculate fuel load. Usually only fine fuels (those 

less than 6mm in diameter) are used to calculate the fuel load. Fine fuels are used as these ignite and 

burn readily, whereas coarser fuels do not contribute as much to the flaming stages of combustion 

(Luke and McArthur, 1978). Coarse fuels are present as logs and thicker sticks in the litter layer and 

stems, trunks and limbs greater than 6mm in diameter of plants.  
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Fuels accumulate at different rates according to productivity, climate and plant species but fuel loads 

sufficient to be vulnerable to spotting can build up within 2-3 years after low intensity fires in most 

eucalypt forests and woodlands (Morrison, 2002, Raison et al., 1986, Tolhurst et al., 1992). The fuel 

properties of particular interest include: fuel load (weight per unit area), bulk density (weight per unit 

volume), fuel size (branch diameter), fuel moisture content, the spatial distribution of fuel (horizontal 

and vertical), the continuity of fuel, fuel height, and fuel type. Topography is an additional parameter 

of interest due to the interactions with forest fuel characteristics and fire behaviour.  

Destructive sampling is considered to be the most accurate fuel load assessment technique at a 

particular sample point (Catchpole and Wheeler, 1992) and all other techniques are calibrated against 

it. Destructive sampling is simple, and can be used to determine the mass and fraction of selected 

parts of the fuel array, as well as other attributes such as density and proportion of dead fuel. 

Destructive sampling requires randomly laying sample frames over vegetation and litter fuel at ground 

level and removing all of the combustible vegetation material present. The resulting fuel sample is 

oven-dried and weighed to give a measure of fuel load in weight per unit area (t/ha). Destructive 

sampling of fuels is rarely used by fire managers due to the large commitment of resources required 

(Fernandes and Botelho, 2003). Standardised methods to rapidly assess fuel loads visually have been 

developed in response. 

The Overall Fuel Hazard Guide (McCarthy et al., 1999) was originally developed by the Victorian 

Department of Natural Resources and Environment for south-eastern Australia. It simplifies the rapid 

assessment of understorey fuel loads by applying a visual scale for comparison. It has been adopted 

for operational use in NSW to ensure state-wide consistency in measuring fuel hazard levels. 

Near-surface fuels, elevated fuels and bark hazard are ranked as low, moderate, high and very high 

and extreme according to well defined visual/physical descriptions. The rankings acknowledge fuel 

continuity (horizontal and vertical), height, amount (weight), and the proportion of dead material, 

thickness of the foliage and twigs, and flammability of the live foliage. Average equivalent fuel loads 

(in tonnes per hectare) can be devised for the various hazard levels for each fuel component.  

Tables are used to convert the visually assessed surface fine fuel hazard rating score to fuel load in 

tonnes per hectare (Table 2.1) and combined with assessed levels of bark, elevated and surface fine 

fuel hazard to give an overall fuel hazard rating for a site (Table 2.2).  

Table 2.1 The surface fine fuel hazard rating converts visually assessed scores to fuel load in tonnes per 

hectare. 

Surface Fine Fuel Hazard Rating Low Moderate High Very high Extreme 

Litter-bed Height (mm) < 1 5 15- 2 5 25- 3 5 35- 5 0 50 > 

Equivalent Litter Load (t/ha) < 4 4-8 8-12 12-20 20+ 
Source: The Overall Fuel Hazard Guide (McCarthy et al., 1999) 



 

14 

 

Table 2.2 Equivalent fuel loads (t/ha) for given hazard ratings. 

FUEL Low Moderate High Very High Extreme 

Bark 0 0 2 5 7 

Surface Fine 2 5 10 16 20 

Elevated Fuels 0 0 2 6 10 
Source: The Overall Fuel Hazard Guide (McCarthy et al., 1999) 

The OFHG represents a significant change in the philosophy of assessing the fuel factors affecting fire 

behaviour. The FFDI only considers surface fine fuel loads (in t/ha) whereas the OFHG shifts the 

emphasis to a consideration the whole fuel complex, and particularly the bark and elevated fuels. Bark 

and elevated fuels are the fuel elements principally responsible for first attack failure and also for 

general suppression difficulty in Victorian forests, woodlands, deserts, heathlands and shrublands 

(McCarthy et al., 1999).  

Current practices for collecting fuel load information in the field are problematic when applied to 

large and remote areas. Field sampling is costly, complex and time consuming. Fuel quantities are 

dynamic and consequently require periodic updating, but this is difficult to achieve due to the nature 

of data collection methods. Simply reproducing measurements of fuel loads taken in the field can be a 

challenging task (Chandler, 1983).  

Brandis and Jacobson (2003) studied the relationship between fire history and fuel load and found that 

destructive sampling effectively reproduced fuel accumulation models. However, they found visual 

assessments, based on the Victorian OFHG, commonly underestimated fuel loads, especially the litter 

component. The study concluded that new methods to estimate fuel data regularly for large and 

remote areas were needed to improve fire risk assessment, fire behaviour prediction and fuel 

management plans (Brandis and Jacobson, 2003).  

The CSIRO’s Forestry and Forest Products division is currently working towards replacing fuel load 

with a numerical index, or hazard score, which should give more reliable predictions for fire spread. 

This technique places even more emphasis on quantifying the whole fuel complex by combining a 

hazard rating for each of the different fuel layers i.e. bark, elevated, near-surface and surface fuels 

layers (Gould, 2003).  

There is a clear management advantage to having an understanding of fuel continuity across the 

landscape. The provision of data for spatial simulation models is critical in active fire fighting and 

aids prescriptive burning. Maps of fuel loads are not available in most Australian environments. Fire 

history mapping and assessment of fuel reduction efficiency is haphazard at best. Current 

management practice is to estimate fuel loads at the landscape level based on expert experience in the 

local environment. This subjective approach, coupled with relatively poor fire history records outside 

major conservation reserves, has the potential to lead to non-strategic fuel mitigation strategies  
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2.5 Operational field methods for assessing the condition of native vegetation 
The concept of vegetation condition or ‘quality’ has arisen in Australia with the need to set 

conservation priorities at local and regional scales. Species richness and species diversity have been 

used as a measure of (Sarkar and Margules, 2002, Smith et al., 2002a). This is problematic because it 

is not possible to sample all species at all levels in a hierarchy and because it ranks communities with 

high richness (Margules and Pressey, 2000), such as tropical rainforests, above those with inherently 

low richness, such as woodlands and dry forests (McElhinny, 2005). Studies into groups of species or 

‘indicator species’ have concluded that they are not representative of biodiversity as a whole 

(Margules et al., 2002). 

Noss (1999) suggested that vegetation condition encompasses vegetation structure, composition and 

function and numerous surrogates have been suggested (Gibbons et al., 2005, McElhinny, 2005, 

Parkes et al., 2003, Tongway, 1995). The theory is that ecosystems with a variety of structural 

components are likely to have a variety of resources. These resources will provide for a corresponding 

variety of species (McElhinny, 2005). Consequently, there is often a positive correlation between 

elements of biodiversity and measures of the variety and complexity of structural components within 

an ecosystem e.g. McElhinny (2005). Depending on specific objectives, different combinations of 

these surrogates can be combined into indices of vegetation condition (McElhinny, 2005).  

Methods for assessing condition in rangelands, arid and semiarid ecosystems are routine (Dyksterhuis, 

1949, Ludwig et al., 2007, Reeves et al., 2001). However, the concepts of ecological condition or 

quality of native vegetation or 'habitat' in more mesic and temperate systems are still relatively vague 

and poorly defined (Gibbons et al., 2006). Recent approaches such as 'Habitat Hectares' (Parkes et al., 

2003) and the ‘Biometric Tool’ (Gibbons et al., 2005) provide rapidly obtained indices of native 

vegetation condition by using comparisons to reference condition states, or 'benchmarks', to provide 

managers of native vegetation with simple measures of vegetation ‘quality’ or condition. 

A variety of methods have since been proposed including Watson et al. (2001) Habitat Complexity 

Score, the Site Condition Score component of Habitat Hectares Index of (Parkes et al., 2003) the 

Vegetation Condition Score of the Biodiversity Benefits Index (Oliver and Parkes, 2003), the 

Vegetation Condition Score component of the Biometric assessment tool (Gibbons et al., 2005) and 

the Stand Scale Index of Structural Complexity (McElhinny, 2005).  
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Table 2.3 A comparison of condition attribute weighting. The metrics common to all three condition assessment 

methods include measures of compositional diversity, the amount of regeneration; percent cover at various 

scales, and the occurrence of large trees. 

 

Stand Structural Complexity 
(McElhinny, 2005) 

Condition Attribute 
Weight 

(%) 

Perennial species 
richness (native) 

7.7 

Lifeform richness 
(native) 

7.7 

Vegetation cover 
>0.5m 

7.7 

Vegetation cover 
<0.5m 

7.7 

Stand basal area of 
live trees 

7.7 

Number of 
regenerating 

overstorey stems 
7.7 

Litter dry weight 7.7 

Total log length 7.7 

Total large log length 7.7 

Quadratic mean 
diameter 

7.7 

Number of live stems 
> 40cm dbh 

7.7 

Number of hollow 
bearing trees 

7.7 

Number of dead 
trees 

7.7 

Total 100 
 

Site Condition Score 
(Parkes et al., 2003) 

Condition Attribute 
Weight 

(%) 

Richness of native 
species within 

lifeforms assessed 
concurrently with 

cover of native 
understorey 

lifeforms 

33 

Tree (canopy) cover 6.7 

Presence of 
adequate 

regeneration in 
woody perennial 

native species 

13 

Lack of weed cover 20 

Litter cover 6.7 

Total log length 
assessed 

concurrently with 
Large logs 

6.7 

Number of large 
trees 

13 

Total 100 
 

Vegetation Condition Score 
(Gibbons et al., 2005) 

Condition Attribute 
Weigh
t (%) 

Native plant species 
richness 

20 

Native foliage cover 
(grasses) 

5 

Native foliage cover 
(shrubs) 

5 

Native foliage cover 
(other) 

10 

Native mid-storey 
foliage cover 

5 

Native overstorey 
foliage cover 

5 

Proportion of 
overstorey species 

occurring as 
regeneration 

10 

Lack of exotic plant 
foliage cover 

5 

Total length of fallen 
logs 

5 

Number of trees with 
hollows 

30 

Total 100 

Source: Adapted from McElhinny (2005). 

A single index is useful as it facilitates comparisons between stands (Koop et al., 1995, Newsome and 

Catling, 1979, Watson et al., 2001) and provides a summary value with which to seek correlations 

with remote sensing data (Table 2.3). This index also provides a means of ranking stands in terms of 

their potential contribution to biodiversity (Parkes et al., 2003, Van Den Meersschaut and 

Vandekerkhove, 1998). Indices that are related to vegetation structure are seeing increased use as 

policy instruments for mitigating development, guiding investment decisions, and in biodiversity 

banking (Gibbons et al., 2005, Parkes et al., 2003). They provide a summary variable for a larger pool 

of structural attributes. 

The Vegetation Condition Score component of the Biometric tool of Gibbons et al. (2005) was 

designed for the to assess the impacts (positive and negative) of management activities on terrestrial 
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biodiversity (Table 2.3). Condition assessments scores are derived using the Biometric tool to predict 

the loss of biodiversity from proposed clearing (including thinning), gains in biodiversity from 

proposed offsets, and gains in biodiversity from management actions proposed for government 

incentives at the scale of the stand or patch. 

The Vegetation Condition Score attributes (Gibbons et al., 2005) detailed in Table 2.3 are compared 

to benchmark ranges as part of the Biometric process. Vegetation with relatively little evidence of 

modification generally has minimal timber harvesting (few stumps, coppicing, cut logs), firewood 

collection, and exotic weed cover, grazing and trampling by introduced herbivores or over abundant 

herbivores, soil disturbance and canopy dieback. There will be no evidence of recent fire or flood, or 

high frequency burning, and there will be positive evidence of recruitment of native species. The 

benchmarks allow interpreters to rank vegetation communities according to the relative evidence of 

alteration, disturbance or modification by humans since European settlement. A list of benchmark 

values have been published (Gibbons et al., 2005) based on broad vegetation classes from Keith 

(1994). 

McElhinny (2005) criticised Parkes et al. (2003) and Gibbons et al. (2005) for misapplying the 

concept of benchmarking, by characterising attributes in terms of a benchmark range or average level. 

This approach ignores the processes that underpin variation at the stand level, such as the increased 

development of some attributes at particular successional (seral) stages, and the fact that condition 

attributes can respond differently to disturbance agents. 

Successional stages of vegetation range from the time of disturbance, through recovery, maturing, 

senescence and to disturbance again. In some cases there will be progressive replacement of the 

dominant and other species with new species. This problem is common to all benchmark based 

methods that are based on sampling at a single point in time. 

A temporal scale is important for effective decision making in most contexts. Site assessment can 

provide relevant information for a proposed development but ignores successional stages of 

vegetation over time. Mapping condition across the landscape is still useful as it can provide spatial 

arrangement of sites in good condition and sites in bad condition. It can help target management 

actions towards areas affected by disease or over grazing, or help target restoration projects. However, 

the final objective of condition research should be to classify vegetation condition both spatially and 

temporally. 

2.6 Scaling issues for field survey 

The problem faced in the conversion of information collected in the field for spatial models using 

remote sensing is largely one of scale. Many challenging aspects of natural resource survey have 

resulted from unavoidable mismatches between scales of measurement, estimation and prediction. 
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Measurement is the vegetation survey (forest type), estimation is the process of providing a numerical 

value for the measured vegetation type (e.g. mean, median, environmental layer, altitude) and 

prediction is  modelling the type across the landscape based on environmental layers (vegetation 

map). 

Field measurements are necessarily restricted to finite areas at sparsely distributed locations. 

Manipulations of grain and extent enable us to translate information between scales. Grain is the 

finest level of spatial resolution in an observation set or model (McKenzie et al., 2008). Extent is the 

areal expanse over which observations with a particular grain is run. Course scales can be reached by 

increasing the grain and, usually, the extent of the observation set and usually involves some form of 

averaging. For example, moving from a community to a formation. Making the observation set more 

fine grained is not as easy (McKenzie et al., 2008). 

Various aspects of land resource survey require movement within the scale hierarchy. For example, 

estimating average values for vegetation type from a limited number of field observations. Or relating 

field data to remotely sensed imagery where the support for the former is often several orders of 

magnitude smaller than for the later. All of these involve movement within the scale hierarchy, and 

the steps involve some form of downscaling or upscaling. Scaling literally means to reduce or 

increase in size. Upscaling is a popular term that refers to transferring information from a given scale 

to a coarser scale it involves moving up the hierarchy either through enlarging extent, or coarsening 

grain, or both. Downscaling is the opposite process (Bloschl and Sivapalan, 1995).  

Some forms of upscaling are trivial. For example, it is straightforward to compute the NDVI for a 

single stand of trees. It is less clear how to calculate a regional mean for NDVI across an area that 

features scattered trees, grasses and soils. It will often be the extremes of the distribution that 

determine behaviour at the coarser scale. 

Allen and Hoekstra (1992) recognised that, at various scales of perception, any phenomenon will 

appear simpler at some scale than it will at others. They suggest that robust prediction requires 

consideration of at least three levels of organisation in a hierarchy. The level in question (e.g. 

vegetation association) the level below (individual plants) and the level above (formation or broad 

floristic unit made up of associations). This line of reasoning suggests that predictive relationships 

developed at one level are unlikely to be useful for prediction at a level more than one removed. 

As an example, the collection of individual plants at a survey site may inform or be characteristic of 

the association. However, multiple associations are combined to create a formation. Knowing the 

formation will not be helpful in predicting the vegetation at the survey site. The mismatch in scale 

between the measurement and process constrains the utility of prediction (McKenzie and Ryan, 1999). 
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The spacing and area of the field surveys determines whether coherent patterns can be detected. If the 

gaps between surveys are too large, the variation in type appears random. If the gaps between surveys 

are small enough but the extent over which the surveys have been made is too limited then it will not 

capture the true nature of the variation. Ideally, vegetation properties should be observed at 

dimensions that match the scale of the relevant process (McKenzie et al., 2008). 

McCauley (2006) advises that homogenous patches of vegetation should be sampled in the field to 

improve condition modelling performance. Unfortunately, native vegetation rarely occurs in 

homogenous stands. Instead it occurs in heterogeneous patches nested in a mosaic (Forman, 1995). 

Ideally, the sampling of vegetation should take place at dimensions that match the scale of the 

relevant process. Since resource limitations and floristic heterogeneity make it impractical to survey 

large areas I would argue that the landscape needs to be treated as a nested hierarchy. 

2.6.1 Plot size 

A survey site is a small area of land considered representative of the landform, vegetation and other 

land features. The Australian Soil and Land Survey Field Handbook (National Committee on Soil and 

Terrain, 2009) recommends vegetation be surveyed in a square site of 0.04 ha (i.e. 20m by 20m) when 

sampling floristics.  

However, the optimal area will vary greatly for different associations relative to the apparent 

complexity of composition and structure of the community. The scale at which vegetation community 

is expressed will vary with the structure of the community, from some meters squared for short 

grassland to several thousand metres squared in tall forest (van der Maarel, 2004). The complexity of 

the pattern or process is clearly important. If the underlying pattern is highly complex than many 

samples are required. If the same community exists over a wide area without a break then fewer 

samples are needed. 

A plot size of 0.04 ha (20m by 20 m) is the most frequently used (Benson and Ashby, 2000, Keith and 

Bedward, 1999, Keith and Benson, 1988, Sivertsen and Metcalfe, 1995). The exceptions are usually 

smaller plot sizes used in grassland or heathland surveys (Benson, 1994, Keith, 1994), or larger plots 

sizes used in open woody communities where the overstorey is the main focus (Binns, 1997, Helman, 

1983, Jurskis et al., 1995, Portners et al., 1997). 

Species area curves are traditionally used to determine the most efficient plot size for a given 

vegetation type. The aim is to capture the majority of the species on site (alpha diversity) and the 

number of plots needed to capture the full range of species occurring across the extent of the 

vegetation type (beta diversity) (Kent and Coker, 1992, Mueller-Dombois and Ellenberg, 1974). 
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A species-area curve plots the number of species found in an association on the y-axis coordinate with 

the area of the stand which is plotted on the x-axis. When several association individuals of various 

sizes have been examined, the species-area points define a characteristic curve. This curve rises 

rapidly from the intersection of the y and x (Rice and Kelting, 1955). The point on the curve at which 

the curve flattens strongly and tends to become asymptote with the x axis (on which area is plotted) is 

taken to indicate the minimal area. At that point, increasing the area of the plot no longer increases the 

variety of plants found. This led to the concept of minimal area, ‘the smallest area which can contain 

an adequate representation of an association' (Braun-Blanquet et al., 1932).  

For an effective representation of the floristic type a site survey should be large enough to survey the 

dominant species, the structure should be homogenous enough to be characteristic, and it should 

contain characteristic species for the association, i.e. those of high fidelity (Rice and Kelting, 1955).  

Vegetation surveys are most commonly 20m by 20m. This survey size is not large enough for a 

representative survey of tall trees, so it follows that it cannot provide an effective representation of the 

floristic type. Hnatiuk et al. (2009) recommends that plot size vary with the height of the vegetation 

being sampled. That is, vegetation over twenty metres high be surveyed in 30m by 30m plots, 

vegetation under twenty metres high a 20m by 20m plot is adequate, and for vegetation <1 m high a 

5m by 5m plot will suffice. In a larger plot, a larger number of tree species from the upper stratum are 

able to be identified, which increases the probability that diagnostic species for the association will be 

encountered. 

Increasing the size of vegetation surveys for every stratum is not a practical solution for floristic 

surveys in Australia. An alternative is to survey vegetation at a variety of scales, or in a series of 

nested hierarchies. Nested hierarchies involve levels which consist of, and contain, lower levels 

(O'Neill et al., 1996). Following Hnatiuk et al. (2009), I propose that plot size could vary with the 

height of the stratum being sampled.  

2.6.2 Multi-scale survey 

Soil survey and mapping already has standards for sampling at multiple scales in Australia. 

Landforms are observed as a mosaic in a nested hierarchy (National Committee on Soil and Terrain, 

2009). A landform mosaic is treated as if the tiles are of two distinct sizes, the larger ones being 

themselves mosaics of the smaller ones.  

The larger tiles, 600 m across, are called landform patterns. About 40 types of land form pattern are 

defined. They include, for example, flood plain, dunefield and hills. Relief and stream occurrence 

describe landform patterns. The smaller tiles, which form mosaics within landform patterns, are 40 m 

across. These are called landform elements. Among more than 80 defined types of landform element 
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are included, for example, cliff, footslope and valley flat. Slope and position are key attributes for 

landform elements. 

2.7 Prediction of operational survey attributes using remote sensing 
Natural resource managers have not always enjoyed good advice when selecting remote sensing 

products and services, and are wary of spatial analysis that does not meet their needs. Mapping the 

attributes of canopy species across the landscape is a complex task.  In any one stand of trees there are 

countless combinations of species, disturbance, structure, shadow, and other attributes that confound 

analysis.  This makes it difficult to consistently generalise vegetation classes across a landscape using 

remote sensing, especially with pixel-based classification. As a result there has been a tendency to 

rely on expert opinion and manual interpretation of remotely sensed imagery. 

There are three broad approaches to mapping vegetation communities using remote sensing. The first 

is a manual process driven by visual interpretation of aerial photo patterns. The second uses spatial 

models to predict the distribution of vegetation. It uses numerical relationships between site-based 

data and independent environmental variables such as landform, climate and remote sensing. The 

third combines these approaches in a hybrid system to incorporate the advantages of quantitative 

analysis with expert qualitative knowledge. 

2.7.1 Visual interpretation 

Visual interpretation of remotely sensed data allows operators to intuitively delineate and attribute 

complex patterns by using expert knowledge. The landscape patterns are then correlation with sample 

data, and extrapolated based on similar geology, topographic position, floristic attributes and 

structural formation (Bell and Driscoll, 2006, Ismay et al., 2004, Neldner et al., 2005, Sivertsen and 

Metcalfe, 1995). The argument has been that variables such as texture, spatial relationships and 

diffuse boundaries, cannot be incorporated into a digital analysis (Emery et al., 2001). Stereo imagery 

is widely used for the tree height and structural attributes it adds to the cognitive process. 

However, drawing a line between communities is an exercise in judgement, not one always following 

a clear demarcation in the vegetation, particularly where there is a gradual transition from one 

vegetation community to another (Kitchener and Harris, 2005). Visual interpretation of remote 

sensing data can be resource intensive and difficult to implement consistently over large areas (Asner 

and Warner, 2003, Gellie, 2005). A significant amount of field observation is required to both confirm 

and revise the initial air photo interpretation. The work is constrained by limitations on how rapidly a 

human interpreter could physically review and interpret air photographs and by the restricted access to 

largely inaccessible terrain  (MacMillan et al., 2007). Automated routines can be readily replicated 

across wide areas but they are generally less accurate than visual interpretation (Culvenor, 2002) 
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2.7.2 Spatial modelling of environmental layers 

Spatial modelling using environmental layers aims to utilise the landform variables and remote 

sensing attributes used to aid visual interpretation and combine these using quantitative analysis. 

Floristic surveys are used to estimate a numerical value that represents a given vegetation type (e.g. 

mean, median, environmental layer, altitude).  The use of quantitative field sampling and remotely 

sensed data allows for explicit multivariate analysis, which may detect patterns that escape 

recognition by traditional intuitive methods. Modelling vegetation reduces the role of non-repeatable 

intuitive classification and mapping decisions (Keith and Bedward, 1999). One of the advantages of 

using environmental layers as a basis is that the pre-European distribution of native vegetation in 

Australia can be modelled determined based on remnant vegetation. This has important biodiversity 

implications for setting reserve targets and conservation priorities.  

Generalised dissimilarity modelling (GDM) has been a popular approach to modelling using 

environmental variables in Australia (Ferrier and Guisan, 2006, Overton et al., 2009). GDM studies 

the spatial turnover of community composition (beta diversity) between pairs of sites as a function of 

environmental differences between sites. Regression approaches are thought to be most appropriate if 

the density of survey sites within a region is high relative to the spatial distribution of classes within 

the region (Ferrier et al., 2007). 

A greater variety of modelling approaches feature in the literature internationally. Generalised 

dissimilarity modelling (GDM), generalised linear models (GLM), generalised additive models 

(GAM) (Dobrowski et al., 2008, Overton et al., 2009), multivariate adaptive regression splines 

(MARS) (Leathwick et al., 2006, Leathwick et al., 2005), artificial neural networks (ANN) (Filippi 

and Jensen, 2006, Joy and Death, 2004) random forests (RF) (Cutler et al., 2007), classification tree 

analysis (CART) (Accad and Neil, 2006, Chastain Jr et al., 2008, Vogiatzakis and Griffiths, 2006) and 

Canonical Correspondence Analysis (CCA) (Dirnböck et al., 2003) have all seen use in recent studies. 

Consensus or ensemble approaches to classification combine the results of some of these models to 

increase the overall accuracy (Elith et al., 2006, Marmion et al., 2009). Marmion et al. (2009) 

modelled the distribution of 28 threatened plant species in pine and spruce dominated forests in 

Finland. The probability outputs of eight single-modelling techniques were combined to provide an 

ensemble of predictions.  Generalised linear models (GLM), generalised additive models (GAM), 

multivariate adaptive regression splines (MARS), artificial neural networks (ANN), general boosting 

method (GBM), random forests (RF), classification tree analysis (CART) and mixture discriminant 

analysis (MDA) were the models used. The results of single models performed between RF (0.813) 

and CTA (0.697).  Combining the results by weighted average showed the highest predictive 

performance (0.85). 
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2.7.3 Hybrid modelling 

Keith and Bedward (1999) developed a hybrid decision tree / expert rule based approach to mapping 

vegetation. They interpolate the distributions of floristic classes from point samples using 

relationships between the classes and environmental and remote structural variables that were 

available as spatial data layers. This provides a framework for incorporating non-formal expert 

knowledge into the map by offering a choice between multiple significant variables at each node, 

facilitating exploration of alternative tree structures. This kind of knowledge is difficult to build into 

statistical models, which traditionally rely upon quantitative sample data (Austin, 1987).  Tozer 

(2003) used the same decision tree / expert rule based approach and described vegetation 

communities, extant and pre-European. Point scale assessment gave overall accuracy as 50% but an 

accuracy assessment based on validation points buffered to 500m yielded improved performance 

(95%).  

In another example, Gellie (2005) modelled the distribution of vegetation groups in support of expert 

decision vegetation mapping. Generalised additive modelling (GAMS) (Austin and Belbin, 1982, Yee 

and Mitchell, 1991) was used to test some of the assumptions held by the mapping experts about the 

distributions of vegetation groups within a regional landscape setting. McCauley (2006) mapped an 

area in the Hunter Valley using SPOT 5 imagery as well as environmental layers. They found that the 

seasonal variation and the low dynamic range of SPOT 5 hampered discrimination of vegetation 

types. 

2.7.4 Scale and remote sensing 

Strahler et al. (1986) developed a framework to distinguish between the scene, which is real and exists 

on the ground, and the image, which is drawn from the scene. Scene models may be discrete, in which 

the scene model consists of discrete elements with boundaries (e.g. tree crowns), or continuous, in 

which matter and energy flows are taken to be continuous and there are no clear or sharp boundaries 

in the scene (e.g. elevation). In the discrete case, there are two possibilities for models. For high 

spatial resolution the resolution cells of the image are smaller than the elements (e.g. tree crowns), and 

thus the elements may be individually resolved. For coarse resolution imagery the cells are larger than 

the elements and so the elements cannot be resolved (see Figure 2.1).  

When the vegetation is considered as part of a hierarchical scene model (Woodcock and Harward, 

1992), the scale and square representation implied by pixels do not fit this model (Fisher, 1997) . 

Ideally, we hope to map patches of natural vegetation that have relatively homogenous spectral and 

physical values. Such a patch will hardly ever be square, so pixels will only sporadically match a 

natural scale level (Addink et al., 2007). For pixel-based studies confusion matrix evaluation can be 

problematic since at coarse resolution a pixel element may include several vegetation types (Xie et al., 

2008). 



 

24 

 

Cracknell (1998) addresses various issues with the fact that a pixel or the related instantaneous 

geometric field-of-view (IGFOV) on the ground often larger than we would like it to be. IGFOV is 

the area sampled on the ground by one pixel element taking into account the altitude and geometry of 

the sensor (Joseph, 2005). It raises some important issues for this study such as how resampling can 

leads to further complications in understanding the origin of the signal. The general conclusion is that 

it is important to realise that what contributes to producing the digital number (pixel value) where 

there is resampling, compression, mixed pixels and when the objects of study are smaller than the 

IGFOV.  

 

 

The distribution of tree crowns within a 20m by 20m 

plot is not uniform when assessing native vegetation. 

 

 

 

 

An image with a 1m IGFOV will divide a plot into 400 

pixels. For high spatial resolution the resolution cells 

of the image are smaller than the elements (e.g. tree 

crowns), and thus the elements may be individually 

resolved. 

 

 

For coarse resolution imagery the cells are larger than 

the elements (tree crowns) and so individual the 

elements cannot be resolved. This SPOT 5 pixel (10m 

by 10m) can however detect variation of cover within 

a plot. 

 

The mean of tree cover within a plot may not be 

representative of the actual distribution of trees. 

Clearings and shadow in particular can heavily weight 

the mean because of their extreme values.  

 

 

 

Figure 2.1 Tree cover and IGFOV in the remote sensing of tree cover. 

20m 
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The possibility of identifying individual tree crowns in very high spatial and spectral resolution 

imagery raises questions regarding the best scale to map stand-scale vegetation parameters. Careful 

consideration of the spatial scale of mapping is important because, as stated in the Modifiable Area 

Unit Problem (MAUP) (Openshaw, 1984) , the choice for the spatial unit affects the outcome of the 

analysis, implicating the existence of an optimal unit for quantitative analysis (Nijland et al., 2009).  

The common pixel-based approach to analysing remote-sensing imagery is a specific case of the 

MAUP, because pixels represent artificial sampling units ignoring the spatial patterns on the earth 

surface (Fisher, 1997, Marceau and Hay, 1999). The minimum pixel size is influenced by the spatial 

structure of the investigated objects. The use of image-based segmentation makes it possible to 

optimize both the shape and size of the prediction units.  

The spatial resolution of hyperspectral sensors has developed to a point that it is possible to derive 

quantitative data in heterogeneous vegetation (Addink et al., 2007, De Jong et al., 2003). HyMap 

airborne sensor (Hyvista, 2009) is capable of collecting hyperspectral imagery with a 3.5 m ground 

resolution. At this resolution, individual tree crowns can often be identified, depending on their size 

and spacing. The benefits of fine resolution images are obvious: spatially continuous information of 

vegetation characteristics can be derived directly at hill-slope, forest-stand or even smaller scales 

(Nijland et al., 2009).  

2.7.5 Hyperspectral remote sensing of vegetation 

The focus of hyperspectral remote sensing of vegetation in recent years has been on detection and 

identification of plant health (Schmidtlein and Sassin, 2004) and on monitoring invasive species 

(Asner et al., 2008a, Noujdina and Ustin, 2008, Underwood et al., 2003). Biochemical applications 

include the retrieval of moisture content (Cheng et al., 2008, Cheng et al., 2006) and isolating 

elements such as carbon (Grace et al., 2007), nitrogen (Martin et al., 2008, Smith et al., 2002b, 

Townsend et al., 2003) and potentially phosphorus (Mutangao and Kumar, 2007). The pigment and 

photosynthetic system of vegetation is of increasing interest, which will allow coupling models from 

molecules to leaf, plant and canopy scales (Schaepman et al., 2009). Less research has been 

performed on mapping vegetation species (Jia et al., 2006, Kokaly et al., 2003, Okin et al., 2001).  

Im and Jensen (2008) reviewed research devoted to documenting robust relationships between in situ 

vegetation measurements and remote sensing-derived measurements to predict or monitor vegetation 

biophysical and biochemical characteristics (Beeri et al., 2007, Hu et al., 2004, Johnson et al., 1994, 

Perry and Davenport, 2007, Wu et al., 2008, Asner, 1998). Many studies have focused on remote 

sensing of leaf area index (Hu et al., 2004, Spanner et al., 1990) and biomass (Calva and Palmeirim, 

2004, Catchpole and Wheeler, 1992, De Jong et al., 2003, Fazakas et al., 1999, Foodya et al., 2003, 
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Popescu et al., 2003, Steininger, 2000, Turner, 2006) as well as chlorophyll (Datt, 1999c, Datt, 1999a, 

Gitelson and Merzlyak, 1994, Hu et al., 2004, Wu et al., 2008). 

Generalised assessments of vegetation structure and composition can be made over closed canopies 

with lidar (Clark et al., 2004, Coops et al., 2007, Koukoulas and Blackburn, 2005, Mutlu et al., 2008, 

Turner, 2006). Sparse and clumped canopies are currently the greater challenge (Duthoit et al., 2008, 

Kotz et al., 2004, Sluiter et al., 2004). Many hyperspectral imaging studies use spectral mixture 

analysis to addresses the issues with sparse vegetation conditions (Asner et al., 2008b, Elmore et al., 

2000, Garcia and Ustin, 2001, Okin et al., 2001, Roberts et al., 1997). 

Malenovsky et al. (2007) looked at canopy composition at various levels of detail with three pixel-

based approaches: radiative transfer, spectral mixture analysis, and data fusion. The use of 

hyperspectral data have allowed for spectral separability in heterogeneous vegetation by using 

radiative transfer models (Kotz et al., 2004) and contextual approaches (Sluiter et al., 2004)  

(Schaepman et al., 2007). Species have been separated from complex surroundings using a 

combination of lidar and spectral mixture analysis (Asner et al., 2008b) and unique biochemical 

species composition (Asner et al., 2008a). 

Schaepman et al. (2009) notes that bridging spatial and spectral scaling gaps has always been a 

predominant topic in remote sensing (Chen et al., 1999, Marceau and Hay, 1999, Wessman, 1992). 

The jump from leaf to canopy to community has remained underexplored in hyperspectral research 

but is now receiving increased attention (Lewis and Disney, 2007, Roberts et al., 2004).  

2.7.6 Object-based vegetation mapping 

As we have seen, there are problems associated with sub-pixel variability, particularly for coarse 

resolution sensors (Figure 2.1). The salt-and-pepper effect of pixel-based classifiers is a particular 

issue when attempting to delineate tree crowns due to shadows, understorey and local heterogeneity 

(Kelly et al., 2008). 

Object-based classification methods have been shown to significantly increase classification accuracy 

relative to pixel-based method in part due to their ability to handle within-object variability (Liu et al., 

2007). An object-based approach was successful in delineating coniferous, deciduous, and mixed 

forest stand boundaries using either small-footprint lidar data or high resolution hyperspectral data 

(van Aardt and Wynne, 2004). Object-based methods have aided in mapping shrub encroachment and 

its intensity by segmenting the image at varying scales, identifying individual shrubs at finer scales, 

and then using that data to determine shrub density at coarser scales (Laliberte et al., 2004). 

Hierarchy theory is a dialect of general systems theory. It has emerged as part of a movement toward 

a general science of complexity. In it, different levels of a system consist of subsystems or super 

http://www.sciencedirect.com.wwwproxy0.library.unsw.edu.au/science/article/pii/S0034425709000819#bib262
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systems of each other. New characteristics emerge that can't be deduced from the qualities of the 

subsystems (Allen and Hoekstra, 1992). I propose that heterogeneous vegetation needs to be analysed 

across multiple scales to be able to effectively categorise it as a vegetation community. Individual tree 

crown delineation and classification alone will not describe a community. Nor is it possible to 

delineate a patch of vegetation and decipher the component species based on the average spectral 

response. 

Roberts et al. (2004) is a poignant example of a multi-scale approach. They quantified leaf, branch 

and stand scale variation in spectral reflectance for dominant species with a handheld spectrometer. 

They found that discrimination of plant species varied with wavelength and scale. However, contrary 

to expectations, plant species were most distinct at the branch scale and least distinct at the stand 

scale. At the stand scale (20m by 20m), broadleaf and conifer species were spectrally distinct, as were 

most conifer age classes. Intermediate separability occurred at the leaf scale.  

In this thesis I introduce a multi-scale, object-based, hierarchical approach to generalise spectral 

information collected at the crown or branch scale, where plant species are likely the most distinct, 

and use it to classify vegetation communities at the patch scale. 

2.8 Conclusion 
This chapter introduced the operational approaches to surveying floristics and structure in New South 

Wales. They were formulated to collect information at the stand or property scale where individual 

natural resource decisions are made.  

Floristic surveys have been designed using species area curves to determine floristic diversity and 

define characteristic species. The size of the plots is not well suited to analysis of over-storey species, 

nor for finding correlations with environmental and remote sensing variables. Condition and fuel load 

surveys are better suited to the scale at which the process occurs in the environment. The mismatch in 

scale between the measurement and process constrains the utility of prediction. Appropriate matching 

of scales of measurement, analysis and prediction is a major and largely unsolved problem for natural 

resource scientists (McKenzie, 2008). 

Existing vegetation maps can be efficient tools for planning and biodiversity assessment at relatively 

large scales (Pressey and Nicholls, 1989). However, they are often too coarse in their thematic 

classification and usually do not depict small patches of vegetation useful for property-scale site 

assessment (Benson, 2008). Ideally, vegetation maps would include small patches of vegetation, have 

fine thematic classification, and be spatially extensive.  

I propose that operational vegetation survey and classification should be at multiple scales. The scale 

of analysis should match the scale of the relevant growth form (grass, shrub, and tree) and the relevant 

hierarchy (individual plant, association and formation). This will support the extrapolation of 
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vegetation surveys using spatial modelling without making assumptions about changes in scale. 

Chapter 3 details the nested survey design undertaken for this thesis. 

Chapter 3  

The Jilliby and Coonabarabran study areas 

This chapter introduces the Jilliby and Coonabarabran study areas. It details the field survey data, the 

satellite data and the airborne sensor data used in this thesis. The basis of the approach is a series of 

nested sample plots that enable a thorough floristic and structural survey of the vegetation site at 

multiple scales. The survey of individual tree crowns gives a spatial dimension to species information 

within a plot. Multi-scale survey methods have been used to inform multi-scale, object-based analysis 

of remotely sensed data to create maps of vegetation type and structure. 

The Jilliby catchment area is located on the central coast of New South Wales, Australia. The study 

area is described as well as the dominant tree species. The methods used for stratification and survey 

are detailed.  

The Coonabarabran study area is located in central western New South Wales, Australia. The 

Coonabarabran work represents a shift away from catchment scale mapping towards operational and 

regional applications. Traditional survey methods have been used to inform multi-scale, object-based 

analysis of remotely sensed data.  

The remote sensing data collected and acquired for this thesis is also described. It provides details of 

an airborne hyperspectral scanner, an airborne laser scanner and the SPOT 5 satellite and describes 

the steps taken in calibrating and pre-processing the hyperspectral data. 

3.1 The Jilliby study area 

The Jilliby study area is centred over Dooralong Valley and the Jilliby State Conservation Area (33⁰ 

9’ 22’’S, 151⁰ 21’ 00’’E) on the central coast of New South Wales, Australia (see Figure 3.1). The 

study area incorporates 12,800 ha of state forest, national park and rural lands and includes the 

southern tip of the Watagan mountain range. The site is approximately 100 kilometres north of 

Sydney within Wyong Council Shire. The site is arranged as an 8km x 16km rectangle with the longer 

boundary angled north (Map North, MGA94). Figure 3.1 shows the study area in relation to the 

Wyong subregion of the Sydney Basin Bioregion (IBRA, 2009). 
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Figure 3.1 The Jilliby Study Area is in the Wyong IBRA subregion, New South Wales, Australia. 

The topography is characterised by a central valley surrounded by flat ridgelines, numerous sandstone 

cliffs, steep slopes and deeply fissured gullies (see Figure 3.2). Ground elevation ranges from 11m 

above sea level in Jilliby valley to 435m on the mountain plateau. Slopes range from 0 to 90⁰ with a 

mean of 17⁰ across the study area (Turner, 2007). 

The Jilliby site has a wide array of vegetation communities, which are relatively complex in terms of 

floristics and structure when compared to vegetation communities common within the Sydney 

Sedimentary Basin (McCauley, 2006). The distribution of mesic forest and rainforest species is 

strongly linked to topography and to a lesser extent by wildfire, disease, weed invasion, and past 

harvesting practices. Parts of the site were harvested early last century and there has been continuous 

but sporadic logging from the 1970’s to the present. Much of the forested area was recently converted 

from commercial native forest into a State Conservation Area. 

IBRA Bioregion
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Figure 3.2 A location map of the Jilliby study area showing the Mitchell Landscape ecosystem types (left) 

(EcoLogicalAustralia, 2008) and a SPOT 5 image (right) from 2005. 

The Mitchell Landscapes identified in Figure 3.2 are based on an ecosystem classification (Mitchell, 

2002) and later updated (EcoLogicalAustralia, 2008). Mitchell landscapes are driven by geologic, 

geomorphic and pedologic factors. The majority of the study area falls within the Watagan Ranges 

landscape. These ranges are steeply dissected with small areas of plateau on Triassic lithic sandstone, 

shale, tuff and claystone. Woodlands dominate the slopes with pockets of rainforest in the creeks. The 

Bucketty Ridges are undulating ridges on horizontal Triassic quartz sandstone and shale feature drier 

more open forest. 

The geology of the area is dominated by Hawkesbury and Narrabeen group sandstones. The bedrock 

is comprised of horizontally bedded Triassic quartz sandstone and shale. The frequent terracing across 

the mountain range is the result of differential weathering of layers. Consequently, sandstone boulders 

and outcrops are common. The soils are generally well-drained, acidic sandy loams with low to 

moderate fertility (NPWS, 2010). 

Mitchell Landscapes

Bucketty Ridges

Gosford - Cooranbong Coastal Slopes

Sydney - Newcastle Coastal Alluvial Plains

Watagan Ranges

0 3 61.5 km



 

31 

 

The prevailing climate of the region is temperate maritime with a high summer and low winter rainfall 

(average annual rainfall is 1266.3mm). Maximum monthly temperature varies between a mean of 

15.8⁰C in the winter months to 21.9⁰C in summer. The range of temperatures recorded at the site 

varies between 0.0⁰C to 42.9⁰C. Table 3.1 summarises some of the climactic variation experienced at 

Peats Ridge, the nearest operational weather station to the Jilliby site. Figure 3.3 shows the variation 

in average rainfall illustrating the low winter rainfall.  

Table 3.1 Climate averages near Jilliby for the years 1981-2008 (BOM, 2008). 

Maximum 
Monthly 

Temperature 
(C⁰) 

Minimum 
Monthly 

Temperature 
(C⁰) 

Temperatures 
Recorded  

(C⁰) 

Mean Annual 
Rainfall  
(mm) 

Minimum 
Monthly 

Rainfall (mm) 

Maximum 
Monthly 

Rainfall (mm) 

15.8 - 21.9  6 - 16.2 0.0 - 42.9 1266.3 842.9 2186.0 

PEATS RIDGE (WARATAH ROAD) - Site number: 061351 - Location: 33.31°S, 151.24°E - Elevation: 280 m 

 

 

Figure 3.3 Mean rainfall and mean maximum temperature for the Jilliby site between 1981 and 2008 (BOM, 

2008). 

In general, dry eucalypt forests occupy ridges and westerly slopes, while moist eucalypt forests and 

rainforest predominate in more sheltered southerly aspects and gully systems (Turner, 2007). The 

most common tree species are Blackbutt (Eucalyptus pilularis), Spotted Gum (Corymbia maculata), 

Sydney Blue Gum (Eucalyptus saligna), Round-leaved Gum (Eucalyptus deanei), Forest Oak 

(Allocasuarina torulosa), Turpentine (Syncarpia glomulifera), Rough-barked Apple (Angophora 

floribunda), Smooth-barked Apple (Angophora costata), Grey Ironbark (Eucalyptus paniculata), 
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Sydney Peppermint (Eucalyptus piperita), White Mahogany (Eucalyptus acmenioides), Red 

Mahogany (Eucalyptus Resinifera), and Blue-leaved Stringybark (Eucalyptus agglomerata), along 

with various Wattle (Acacia sp.) and rainforest species. Dry ridge tops and north-west facing slopes 

are dominated by xeric understorey species such as Coastal Banksia (Banksia serrata), Native Holly 

(Oxylobium ilicifolium), Prickly Moses (Acacia ulicifolia), Narrow leaved Geebung (Persoonia 

linearis), Bladey grass (Imperata cylindrical) and Kangaroo grass (Themeda australis). Moist south-

east slopes and gullies contain mesic understorey species such as Bracken fern (Pteridium 

esculentum), Tree fern (Dicksonia sp.), Brush Turpentine (Rhomdammnia trinervia), and Native grape 

(Cissus antarctica). 

Prescribed burning in this area is normally undertaken in April through to September. The statutory 

wildfire season occurs between 1
st
 October and 31

st
 March but this may be extended if weather 

conditions lead to increased fire danger outside of this period (NPWS, 2006). Fire regimes are 

nominally managed to maintain floristic and structural diversity with low frequency, low intensity 

burns. Table 3.2 gives the benchmark fire regime values from the Jilliby State Conservation Area Fire 

Management Plan (NPWS, 2006). 

Table 3.2 Jilliby State Conservation Area draft fire management strategy biodiversity thresholds. 

Vegetation Communities and Biodiversity Thresholds 

Shrubby Dry Sclerophyll Forest  
Avoid successive fires at intervals < 7 years 
Avoid fire exclusion for a period of > 30 years 

Wet  
Sclerophyll  
Forest  

Avoid successive fires at intervals < 25 years 
Avoid successive fires at intervals > 60 years 
Avoid fire exclusion for a period of > 200 years 

Semi-mesic  
grassy forest  

Avoid successive fires at intervals < 10 years 
Avoid successive fires at intervals > 50 years 

Rainforest  Avoid any fire occurrence (limited recovery ability exists) 
Source: Jilliby State Conservation Area Fire Management Plan (NPWS, 2006). 

The native vegetation of the Jilliby catchment area was mapped by Bell and Driscoll (2006). 

Vegetation pattern was delineated manually with the aid of stereo air photos and the map was 

published at a scale of 1:25,000. Vegetation classes were derived using expert knowledge rather than 

cluster analysis of field samples used by other such as Keith and Bedward (1999). Full floristic data 

were collected at 60 field plots and rapid assessment data were collected at almost 1000 locations. 

Polygons devised from visual interpretation of the aerial photography (API) were attributed based on 

expert knowledge and the interpolation of field data. The resulting API map is an improvement on 

existing vegetation maps of the area (Bell and Driscoll, 2006). It contains a ground sampling density 

of 1 point per 12 hectares and provides a useful independent data set for floristic patterns and 

vegetation type. 
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3.1.1 Stratification 

Effective stratification is essential to adequately sample the full range of biotic and environmental 

variation (Thackway et al., 2007). A number of tools can be used to assess the adequacy of sampling 

in geographic and environmental space (Ferrier et al., 2007, Neldner et al., 2005). Strategies include 

use of ecological gradients, random and representative sampling, stratified random sampling, and 

gradient-oriented transect sampling (Thackway et al., 2007). 

The operational survey standards in New South Wales (Sivertsen, 2009) dictate that where complex 

patterns are observed in environmental sampling units, approximately 200 sampling plots will be 

required for a 1:100,000 map sheet. However, for the same area where the environmental sampling 

units exhibit broad patterns 100 - 200 sample plots are adequate. The surveys are also required to 

sample ecotones and disturbed vegetation in addition to undisturbed vegetation. 

For the Jilliby study site there were enough resources for 130 surveys, a greater density than that 

required by the standard. Surveys were restricted to the area within 200m of an access trail, a slope of 

no more than 25 degrees, and no closer than 20m to a clearing or road to avoid edge effects. Since the 

purpose of the study was to assess the attributes of forest communities the survey sites were restricted 

to woody vegetation. 

The location of survey plots were selected using random-stratified sampling. The study site was 

partitioned into four classes based on an unsupervised ISODATA classification of 2005 SPOT 5 

imagery (10m) and a digital elevation model (25m). ISODATA is an unsupervised classification 

method that calculates class means that are evenly distributed in the data space then iteratively 

clusters the remaining pixels using minimum distance techniques (Tou and Gonzales, 1974). 

The results of the ISODATA classification were partitioned into four broad classes. Subsequently, 30 

field plots were randomly located in each of the four strata. Candidate sampling locations were further 

reduced by selecting strata areas with a minimum size limit of 50 pixels (0.5 hectares) in an effort to 

sample homogenous vegetation. Several sites were added opportunistically in the field across all four 

strata as some of the random plots were inaccessible. Every practical effort was made to sample at the 

randomly selected location but there were numerous insurmountable obstacles due to the varied 

terrain.  

The four ISODATA classes represented the spectral response and height above sea level (see Figure 

3.4). The charts illustrate the broad trend to greater height and biomass increasing in order of class. 

Class 4 was dominated by tall closed Blackbutt forest which is common in the high areas. Class 1 was 

dominated by dry and open Spotted Gum and open Blackbutt forest that is common in the low areas. 

Class 2 and 3 were less definitive but were more likely to be gully rainforest species, Turpentine 

forest and Blackbutt forest in the mid altitude areas. The limited radiometric and spectral resolution of 
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SPOT 5 multispectral data limits its use in the separation of vegetation communities. However, it 

provides an effective indication of canopy cover. Topography is seen as a major driver in the variation 

of vegetation type at the Jilliby site (Bell and Driscoll, 2006). The relatively high density of field 

surveys in the Jilliby study site mitigates the chance of omitting rarer communities. However, the 

limited discriminating power of the stratification resulted in survey sites that were not always within 

homogenous patches. 

  

Figure 3.4 Spectral response from SPOT 5 and height above sea level and were used to stratify the Jilliby site 

into four classes.  

3.1.2 Survey sites 

In Chapter 2, I argued that the size of vegetation survey plots is not well suited to analysis of over-

storey species, nor is it suited to finding correlations with environmental and remote sensing 

variables. I proposed that operational floristic vegetation surveys in Australia should be conducted at 

multiple scales to match the scale of the relevant growth form. That is, vegetation over twenty metres 

high be surveyed in 30m by 30m plots, vegetation under twenty metres high a 20m by 20m plot is 

adequate, and for vegetation <1 m high a 5m by 5m plot will suffice. 

The survey design used in the Jilliby study area provides an example of how floristic survey can be 

conducted at multiple scales. Each plot was circular in shape and 40m in diameter, which is over 3 

times the area of the operational standard. A larger number of species from the dominant stratum are 

able to be identified which increases the probability that diagnostic species for the association will be 

encountered. In addition, individual tree crowns were identified and their location was recorded. This 

allows for dominant species to be modelled across the landscape at the scale they are observed in the 

field. Structural attributes were surveyed at the Jilliby study area in a series of nested sub-plots with 

different sizes specific to each growth form. The shrub layer was assessed in 5m sub-plots and grasses 

and litter was assessed in sub-plots measuring 1m by 2m. 
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The centre of survey sites was recorded in the field using a Trimble differential GPS (see Table 3.3). 

The mean error was 0.73m after post-processing. At the centre of each plot a heavy duty iron star 

picket was hammered into the ground and numbered. This allowed multiple groups of researchers to 

visit each of the numbered sites in a repeatable fashion. The plot boundary was measured using tape 

and marked with spray paint at the 20m point in four directions. Digital photographs were taken to 

capture the four cardinal directions (magnetic).  

Table 3.3 Precision and error of plot centres as measured by differential GPS. 

DGPS 
Precision 

Mean 
Standard 
Error 

Median Mode 
Standard 
Deviation 

Range Min Max Count 

0.73 m 0.03 0.7 m 0.6 m 0.29 1.6 m 0.3 m 1.9 m 130 

 

Fieldwork at the Jilliby catchment study site was conducted in collaboration with other researchers in 

April, May and June of 2006. A rapid species list was compiled including dominant species lists and 

cover scores for multiple strata. These data were collected for this thesis and for use in other research 

related to Bell Miner associated dieback (Stone et al., 2008). The dominant tree species were surveyed 

specifically for this thesis. The condition measures were collected as part of the general floristic 

description with additional metrics collected specifically for this thesis.  

Fuel load data were collected by volunteer and professional staff as part of a multi-sensor remote 

sensing project to assess fuel loads. The sampling included the collection of leaf litter and 

combustible material for drying and weighing (destructive sampling), a visual assessment of fuel load 

(OFHG), and the measurement of structural variables related to fire behaviour (VESTA). 

3.1.3 Floristics and crown scale classification 

The floristic attributes of each plot were described in a species list by NPWS staff. The intention was 

to maximise the number of plots without leaving out relevant floristic data. The main focus was on the 

dominant canopy species, the shrub layer and the dominant vascular ground cover species. The full 

range of groundcover species was not described. 

The plant species were categorised into a particular stratum. A stratum is an easily seen layer of 

foliage and branches of a measurable height (see Figure 3.5). Following Hnatiuk et al. (2009) strata 

are named as follows: Dominant or upper stratum, mid-stratum and ground stratum. The tallest 

stratum will usually be the dominant stratum but tree crowns emerging above the canopy (emergents) 

are an exception. The tallest plants in some vegetation are so sparse that they no longer form the 

dominant or most significant layer (less than 5% cover). For example, a few tall Eucalyptus trees may 

rise above a closed rainforest canopy, or widely scattered eucalypts. 
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Figure 3.5 The plant species were categorised into a particular stratum based on foliage height. 

Source: Hnatiuk et al., 2009. 

The mid-stratum, if present, is between the dominant stratum and the lowest or ground stratum. There 

was no mandatory height limit on the ground layer, but it is usually less than 2m tall. At times 

subdivisions of the three main strata were recorded. The average height of each stratum was measured 

at each site with a Haglöf Vertex III Ultrasonic Hypsometer. 

The structure of the vegetation was at Jilliby was tied to community type and past disturbance. At one 

extreme the Spotted Gum (Corymbia maculata) open dry forest dominated by had no mid-stratum and 

a grassy ground cover. At the other, rainforest sites featured emergent Sydney Blue Gum (Eucalyptus 

saligna) with a mid stratum of juvenile tree species and tall, shade tolerant rainforest species. The 

ground stratum was often composed of ferns, vines and shrubs. 

Crown cover was estimated for each stratum regardless of species. Crown cover was defined as the 

percentage of the total area of a sample site that is covered by a vertical projection of the crown, taken 

from Hnatiuk et al. (2009). 

The rapid estimate of crown cover was supplemented with upward looking photography using a wide 

angle lens. Exposure was set to create a silhouette of the mid-stratum and upper stratum from the 

centre point of the circular plot. This is a measure of the Projected Foliage Cover (FPC), the 

proportion of ground that would be shaded if sunshine came from directly overhead (Carnahan, 1981). 

FPC is It has been generally accepted as the measure of foliage quantity in Australia (Walker, 1981) 

and is used in the Specht ( 1970) vegetation classification system. The photographs were converted to 

binary images and the amount of foliage was converted taken as a measure of FPC. 
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Tree species were identified and the location of the largest trees that intersected each plot was 

recorded. Up to ten trees per plot were selected in decreasing order of the diameter of the tree stem at 

breast height (DBH).  

The largest tree crowns in the upper stratum were identified to a species level and spatially located 

within the plot by recording a bearing and a distance from the centre. The bearing was recorded using 

a compass. The distance from the plot centre to the base of each tree was measured with a Leica laser 

rangefinder. Where the laser beam was obscured by vegetation the distance from the plot centre was 

estimated with reference to the measured plot centre or one of the four plot boundary markers labelled 

with spray paint and measured with tape. The maximum distance of any recorded crown from a 

measured location was 10m. Field sketches were also made to avoid confusion when aligning field 

and image data, noting clearings as well as crowns and dead trees. 

Estimated ranges were always calibrated with the laser rangefinder and this level of precision was 

found to be adequate for reliably locating the trunks of large crowns. This follows Clark et al. (2004) 

who located crown centroids through visual adjustment of trunk points. They used a lidar canopy 

height model to select canopy-emergent trees as they were 'easy to locate unequivocally'. Clark et al.'s 

measurements were later used in individual tree crown discrimination studies (Clark et al., 2005). 

They selected 212 emergent trees with large, exposed crowns that provided a large sample of pixels 

that were less influenced by spectral shadowing or scattering by neighbouring trees. They also found 

that large emergent trees were easy to locate in orthorectified hyperspectral imagery. 

The diameter at breast height (DBH) was estimated for each surveyed tree. Each tree was put into one 

of 5 classes according to the estimated diameter. The recorded DBH values can only be used as 

indicative and they were not subject to quantitative analysis in this thesis. The health of the dominant 

canopy was also described based on the shape of the crowns, the presence of dead or dying tree limbs 

and the presence of epicormic shoots (Stone et al., 2008). 

Figure 3.6 shows tree stem locations displayed as point data, labelled by species code, with each point 

size scaled to the DBH estimates. The vector data were subsequently overlayed on the imagery to 

assist with individual tree crown recognition and identification. At the conclusion of the fieldwork 

campaign 889 tree trunks had been identified and their location recorded. 
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Figure 3.6 Tree stems were surveyed with a bearing from a differential GPS survey point and labelled by 

species. 

3.1.4 Fuel load assessment 

There were two major field campaigns to assess fuel loads at the Jilliby catchment site in June of 

2006. The simpler of the two followed the Overall Fuel Hazard Guide (McCarthy et al., 1999). Three 

levels of fuel (ground, elevated, bark/canopy) were estimated by measuring litter depth and comparing 

elevated and bark fuels with illustrated examples from the fuel hazard guide booklet (McCarthy et al., 

1999). Estimated fuel loads for the strata at each site are then summed to compute an estimated total 

available fuel load in tonnes per hectare (t/ha). 

The second and more elaborate method was derived from a prototype of the CSIRO’s Project Vesta 

Field Guide (Gould et al., 2007). The Vesta field guide was developed to provide a systematic method 

for assessing fuel hazard and predicting potential fire behaviour in dry eucalypt forest. It is based on 

the effects of fuel age and understorey vegetation structure on fire behaviour. The guide provides 

tables to predict the potential rate of spread of a bushfire burning in dry eucalypt forest under summer 

conditions, and can also be used to predict flame height and maximum spotting distance. 

The Vesta fuel attributes were collected in four nested 5m radius sub-plots in each of the 130 main 

plots (see Figure 3.7). The nested sub-plots were in the cardinal directions (magnetic) and located 

with a measure of rope attached to the central picket. The Vesta method estimated fuel hazard and 

percentage cover for surface, near surface, elevated and intermediate canopy and over-storey canopy 

layers. Surface layers are comprised of dry particulate matter on the forest floor (i.e., humus, twigs, 

leaves and bark). Near-surface fuels include live and dead fuels just above the ground surface, 

including grasses, sedges and rushes, low shrubs and fine twiggy material, and bark not lying directly 

on the ground. Elevated fuels are comprised of shrub, heath, bracken, tall grasses and suspended 

flammable material, with foliage generally less than 8m tall (Turner, 2007). 

TRP
TAL

BLB

TAL

TRP

RLG

RLG

BLB



 

39 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.7 Forest fuel attributes were sampled in a series of multi-scale nested plots. The OFHG quadrats (20m 

by 20m) were placed inside floristic plots (40m diameter). Each OFHG quadrat was further divided into four 

nested (5m radius) sub-plots for Vesta sampling. Half of the plots (65) were subject to destructive sampling (2m 

by 1m). 

The development of the Vesta fuel scoring prototype aims to improve the ability of fire fighters to 

predict fire behaviour but, to some extent, has made remote sensing of fuel properties more difficult. 

Fuel scores are no longer linked directly to the biomass of fuels. Instead, they are tied to their 

arrangement both horizontally and vertically. For example, a thick understorey of dead woody 

material would add substantially to the overall biomass and understorey structure as assessed by 

remote sensing. However, any twigs over a 6mm in diameter are not considered, as they would not 

add to the available fuel in a fire event.  

Unfortunately, the Vesta prototype presented a series of attributes without any way to combine them 

into a single numerical score. For the purposes of this project I developed a multiplicative formula 

(see Equation 3.1) to produce a single numerical score. It combines the fuel hazard and percent cover 

scores from each stratum into a single numerical score for correlating with remotely sensed variables. 

In the remainder of this thesis, when Vesta fuel hazard scores are referred to, I am referring to fuel 

hazard scores multiplied by percent cover scores in four separate strata. These scores were then added 

together to represent an overall fuel hazard. 

∑strata
 n 

Fuel Hazard × Percent Cover  

Equation 2Multiplicative fuel hazard score derived from Vesta attributes. 
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Half of the 130 plots were also subject to destructive sampling. Destructive sampling involves the 

physical removal of litter and available fuel and is an expensive and time consuming process. 

Between 4 and 8 samples were taken in each plot (in 2m by 1m subplots) and oven dried and 

weighed. Destructive sampling was conducted after all of our other measurements so as not to disturb 

the sites.  

3.1.5 Field survey summary 

A summary of all variables recorded in the field campaign, their units of measurement and the method 

of observation or measurement are summarised in Table 3.4. 

Table 3.4 Jilliby survey site data 

Data Collected Units Methods 

Plot boundary Metres 
A length of rope was stretched from the central picket to mark foliage at 
20m in the four cardinal directions 

Plot centre Metres 
Location determined using a Trimble differential GPS unit with sub-meter 
accuracy 

Tag 
Alpha 
Numeric 

Each plot centre was marked with a star picket and tagged with a unique 
identifier 

Strata Class 
The plant species were categorised into a particular stratum following 
Hnatiuk et al. (2009) 

Strata height Metres 
The average height of each stratum was measured at each site with a Haglöf 
Vertex III Ultrasonic Hypsometer. 

Cover Score Percentage 
Crown cover was estimated as the percentage of the total area of a sample 
site that is covered by a vertical projection of the crown (see Hnatiuk et al., 
2009). 

Dominant 
species 

List The dominant species recorded in three strata was recorded by a botanist 

Rapid species 
list 

List 
A rapid list of all species in the plot was recorded by a botanist (the rapid list 
did not include all groundcover species) 

Large crowns 
identified 

List 
The largest tree crowns in the upper stratum were identified to a species 
level by a botanist and given a unique identifier 

Distance of 
large crowns 
from plot 
centre 

Metres 

The distance from the plot centre to the base of each tree was measured 
with a Leica laser rangefinder. Where the laser beam was obscured by 
vegetation the distance from the plot centre was estimated with reference 
to the measured plot boundary that was marked with spray paint 

Bearing of large 
crowns from 
plot centre 

Degrees 
The bearing to each large crown was recorded using compass and magnetic 
north as 0 degrees 

Diameter at 
breast height 

Five classes 
The diameter at breast height (DBH) of the surveyed crowns was estimated 
after the observer had calibrated themselves using a measuring tape. Each 
crown was put into a 5 classes according to an estimate of diameter 

Overall fuel 
hazard 

Tonnes per 
hectare 

Fuel load estimates for the strata (ground, elevated, bark/canopy) at each 
site are based on illustrated examples. They are summed to calculate an 
estimated total available fuel load in tonnes per hectare (t/ha) (see 
McCarthy, 1999) 

Fuel hazard and 
percentage 

Metres and 
percentage 

Fuel hazard and percentage cover was estimated for surface, near surface, 
elevated and intermediate canopy and over-storey canopy layers. Estimates 
are based on physical measurements such as the height, the number of 
times debris cross a tape on the ground or the number of branches that 
touch a vertically aligned pole (see Gould et al., 2008) 
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Destructive 
sampling 

Kilogram per 
Metres

2
 

Physical removal of litter and available fuel at between 4 and 8 samples in 
ever second plot (in 2m by 1m subplots). The collected material was oven 
dried and weighed 

Exotic species 
Presence or 
absence 

Derived from species list 

Time since fire Years Estimated based on fire scars 

Timber harvest 
Presence or 
absence 

Evidence of harvesting was based on presence of log dumps, stumps and 
stand age and location 

Tree 
development 

Five classes 
Five classes from sapling to over-mature based on the shape of tree crowns, 
the presence of dead or dying tree limbs and the presence of epicormic 
shoots 

Digital 
Photographs 

JPG 
Four photos of the cardinal directions at each site as well as upward looking 
canopy photos from the plot centre, photos of leaf litter, and photos of each 
of the 2m by 1m sub-plots used for destructive sampling. 

3.2 The Coonabarabran study area 

The Coonabarabran study site is in the central west of NSW, Australia. The centre of the study area 

(31⁰12”0’S, 149⁰ 5” 30’E) is approximately 500 kilometres north-west of Sydney. The area is a mix 

of National Park reserve, native forest, and farmland. The Coonabarabran 1: 100, 000 map sheet was 

the subject of intensive floristic sampling a year before this research project began. Unfortunately, the 

project was cancelled before the vegetation mapping in the area was finished (Ismay et al., 2004). Out 

of 903 full floristic plots sampled in the region only 293 were included in the completed mapping.  

Creating a relatively automated way of spatially modelling the unmapped vegetation communities in 

the region would represent an important contribution. The Coonabarabran site represents an 

opportunity to apply the multi-scale, object-based analysis methods developed at the Jilliby site to 

satellite imagery. Figure 3.8 illustrates the location of the site in NSW in relation to the Brigalow Belt 

South IBRA Bioregion. 

 

Figure 3.8 The Coonabarabran study area is in the Pilliga IBRA subregion, New South Wales, Australia. 
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Figure 3.9 A location map of the Coonabarabran study area showing the Mitchell Landscape  ecosystem types 

(left) (EcoLogicalAustralia, 2008) and a SPOT 5 image (right) from 2005. 

The Warrumbungle National Park features the remains of a large eroded shield volcano, creating 

some distinctive volcanic landforms (Figure 3.9). The combination of the arid western plains, moist 

eastern slopes and elevation above the surrounding plains, bestows the Warrumbungle’s with greater 

floristic diversity (DECC, 2008). Wattles and open woodlands dominate the drier western slopes 

while the more sheltered southern and eastern aspects feature tall to very tall open forest, with pockets 

of rainforest species in the gullies.  

The bedrock is comprised of horizontally bedded Jurassic and Triassic quartz sandstone and shale, 

with limited areas of conglomerate and basalts. The most obvious formations are Pilliga Sandstone, 

which dominates the northern area and runs centrally to the south, and basalt in and around the 

Warrumbungle National Park. Soils vary greatly across topography, as do micro-climate and aspect. 

Thus, it is necessary to differentiate areas of hill tops and plateau from slopes and valley floors in both 

sandstone and basalt areas as all of these factors affect the distribution of vegetation (DECC, 2008).  

Table 3.5 summarises some of the climactic variation experienced at Coonabarabran (Namoi Street), 

the nearest operational weather station to the centre of the Coonabarabran site. Coonabarabran is in 

the eastern subhumid region of Australia, with no dry season and a hot summer, with small patches to 

the east falling within the temperate zone (average annual rainfall is 747.4mm). The maximum 

monthly temperature varies between a mean of 14.8⁰C in the winter months to 31.7⁰C in summer. The 
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range of temperatures experienced at the site is extreme, varying between minus 9.0 to plus 42.9 ⁰C 

(Namoi Street). Figure 3.10 shows the variation in average rainfall illustrating the low winter rainfall 

and the relatively dry conditions with respect to the Jilliby site. 

Table 3.5 Climate averages at Coonabarabran for the years 1879-2008 (BOM, 2008). 

Mean 
Maximum 

Temperature 
(C⁰) 

Mean Minimum 
Temperature 

(C⁰) 

Range of 
Temperatures 
Recorded (C⁰) 

Mean Annual 
Rainfall (mm) 

Minimum 
Average 
Monthly 

Rainfall (mm) 

Maximum 
Average 
Monthly 

Rainfall (mm) 

14.8 - 31.7 0.0 -15.0 -9.0 - 42.6 747.4 49 90.4 

COONABARABRAN (NAMOI STREET), Site number: 064008, Location: 31.27 °S, 149.27 °E, Elevation: 505 m 

 

 

Figure 3.10 Mean rainfall and mean maximum temperature for the Coonabarabran site between 1981 and 2008 

(BOM, 2008). 

The sandstone areas of the study area support various forests and woodlands. The tall open woodlands 

and open forest in the north are dominated by a mixture of pilliga box (Eucalyptus pilligaensis), black 

cypress pine (Callitris endlicheri), white cypress pine (Callitris glaucophylla), narrow-leaved 

Ironbark (Eucalyptus crebra), white box (Eucalyptus Albens) dirty gum (Eucalyptus chloroclada), 

kurrajong (Brachychiton populneus) and white bloodwood (Corymbia trachyphloia subsp. 

Amphistomatica). River red gums (Eucalyptus camaldulensis), yellow box (Eucalyptus melliodora), 

and Blakely’s red gum (Eucalyptus blakelyi) are also relatively common in open forest. The 

Warrumbungles host rough-barked apple (Angophora floribunda) and river red gums (Eucalyptus 

camaldulensis), with woodlands of white gums (Eucalyptus rossii) and narrow-leafed ironbark 

(Eucalyptus crebra). 
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3.2.1 Native Vegetation Mapping Program (NVMP) floristic plot data 

The Native Vegetation Mapping Program (NVMP) was initiated in 2000 to provide consistent, fine 

scale vegetation mapping of much of the state. It was curtailed in 2004 when there was a switch of 

emphasis to property scale planning. Most of the work carried out for the NVMP, including species 

lists and descriptions from thousands of plots, has not been published (Benson, 2006). 

The Coonabarabran study site, and its surrounds, was the subject of intensive floristic sampling 

(Ismay et al., 2004). The NVMP program aimed to provide an ‘independent, high quality, spatial 

information of the extant native vegetation accurate at a regional scale, and to contribute towards the 

building of a standard state-wide coverage' (Ismay et al., 2004). 

The Coonabarabran 1:100 000 map sheet was the only completed vegetation map from the six map 

sheets subject to floristic surveys (Figure 3.11). This layer serves as a reference point for the expected 

spatial distribution of species and provides a benchmark on how human interpreters define vegetation 

patterns at the 1: 100 000 scale. Out of 903 full floristic plots sampled in the region only 293 have 

been utilised in spatial modelling. 

The following extract describes the methodology of the vegetation mapping program conducted at 

Coonabarabran and the surrounding map sheets (see Figure 3.12). It is used with permission. The 

description is taken from Ismay et al. (2004). 

Vegetation patterns were recognised and delineated spatially using air photo 

interpretation (1:50,000 scale). Satellite imagery was used to geo-reference the 

API. A consistent provisional vegetation code was assigned to each unique 

vegetation pattern. Comprehensive floristic data were collected for 547 plots 

using a random stratified sampling procedure. Field surveys were conducted 

between May 2003 and July 2004, during which time drought conditions varied 

across the study area. Data were supplemented by 372 existing plots from 

previous surveys. The study area was stratified on geology, elevation, slope and 

aspect to inform the survey design. A proportional sampling regime was applied 

to the stratification and plots randomly located within stratification units 

independent of land tenure. An additional mask layer was applied to distinguish 

between ‘woody’ and ‘non-woody’ vegetation to target survey effort toward 

wooded communities. 

Plot data were classified into 44 woody floristic groups using PATN (Belbin, 

1989). Additional analysis techniques included fidelity, homogeneity, nearest 

neighbour and indicator species analysis. Floristic groups are defined using 

structural dominance, diagnostic/indicator species and character species data. 

The provisional vegetation pattern codes from aerial photo interpretation were 

interrogated with respect to floristic groups to produce the map units. A 

generalised, additive model was used to investigate patterns in 

ironbark/redgum/pine assemblages in the south of the study area, where direct 

relationships between spatial and floristic data were unclear. 

A total of 24 woody map units were developed to represent woody assemblages 

and three map units spatially depict non-woody areas, non-native areas and 
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regenerating vegetation (at time of mapping). These map units are described 

with respect to structure, floristic composition and landform unit on the 

accompanying five maps. Mapping of the non-woody environment was limited to 

recognising ‘candidate’ native non-woody vegetation. 

 

 

 

 

 

Figure 3.11 The Coonabarabran map sheet was one of six that was sampled with full floristic and structural 

descriptions for the Native Vegetation Mapping Program.  

Source: Ismay et al. (2004) 
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Figure 3.12 Coonabarabran Vegetation Map sheet (1:100 000) from the 2004 Native Vegetation Mapping 

Program. Source: Ismay et al. (2004) 

The field survey recorded 1797 species from 151 families. Exotic species represented 20% of taxa 

(358 species). For a complete list of taxa and a summary of significant species (including threatened 

species) see Ismay et al., (2004). Table 3.6 details the floristic groups derived from field sampling. 

Floristic groups were further generalised into Map Units to create the final map layer. 
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Table 3.6 Floristic groups derived from field sampling, environmental stratification, topographic position and 

vegetation structure (Ismay et al., 2004). Floristic groups were further generalised into final map units. 

 Unit n Group Title Structure Total 

LOW9 2 
Brachychiton populneus subsp. populneus (Callitris 
glaucophylla and/or Eucalyptus albens) 

Tall Open Woodlands to Woodlands 7 

LOW6 3 
Angophora floribunda Eucalyptus camaldulensis 
chloroclada intergrades (Eucalyptus chloroclada and/or 
other intergrades and/or Callitris glaucophylla) grassy 

Tall Open Woodlands to Open 
Forests on sandstone 

10 

LOW3 2 
Eucalyptus pilligaensis (Callitris endlicheri and/or 
Eucalyptus albens) 

Tall Open Woodlands to Open 
Forests 

4 

HILLS1 1 
Notelaea microcarpa var. microcarpa Geijera parviflora 
(Alphitonia excelsa and/or Callitris glaucophylla) 

Mid-high Open Woodlands to 
Woodlands 

11 

LOW6 7 
Eucalyptus blakelyi (Angophora floribunda and/or 
Eucalyptus melliodora) grassy 

Very Tall Open Woodlands to Forests 15 

LOW6 6 Angophora floribunda grassy 
Tall Open Woodlands to Open 
Forests 

22 

HILLS7 18 
Angophora floribunda with Olearia elliptica subsp. 
elliptica Cassinia quinquefaria (Callitris endlicheri and/or 
mixed eucalypts) shrubby Tall 

Open Woodlands to Forests 25 

HILLS8 2 Eucalyptus bridgesiana Angophora floribunda grassy 
Very Tall Open Forests on Tertiary 
Basalts 

2 

HILLS8 3 
Eucalyptus nortonii Eucalyptus macrorhyncha with 
Olearia elliptica subsp. elliptica Cassinia quinquefaria 
(Angophora floribunda) shrubby Tall 

Woodlands to Open Forests on 
Tertiary Basalts 

3 

HILLS9 15 
Eucalyptus macrorhyncha Angophora floribunda (mixed 
eucalypts) shrubby 

Tall Open Woodlands to Forests 20 

HILLS8 7 Eucalyptus volcanica Eucalyptus macrorhyncha Tall 
Open Woodlands to Forests on 
Tertiary Basalts 

7 

HILLS6 14 
Eucalyptus albens (Olearia elliptica subsp. elliptica 
and/or Notelaea microcarpa var microcarpa and/or 
Dodonaea viscosa) shrubby 

Tall Open Woodlands to Open 
Forests 

39 

HILLS6 3 
Eucalyptus albens Callitris endlicheri with Cassinia 
arcuata and/or Acacia decora shrubby 

Tall Open Woodlands to Open 
Forests 

9 

HILLS4 9 
Eucalyptus dealbata northern complex with Olearia 
elliptica subsp. elliptica and/or Callitris endlicheri 
shrubby 

Mid-high Open Woodlands to Open 
Forests 

19 

LOW3 13 Callitris glaucophylla (Eucalyptus crebra) 
Tall Open Woodlands to Open 
Forests on sandstone 

21 

LOW12 2 Callitris glaucophylla 
Tall Open Woodlands to Open 
Forests on variable substrate 

15 

LOW7 7 Callitris glaucophylla Eucalyptus albens grassy 
Tall Open Woodlands to Open 
Forests 

14 

PLAIN1 8 
Allocasuarina luehmannii Eucalyptus crebra Callitris 
glaucophylla 

Tall Open Woodlands to Woodlands 15 

PLAIN2 1 Eucalyptus microcarpa (Callitris glaucophylla) grassy 
Tall Open Woodlands to Open 
Forests 

12 

LOW6 24 
Angophora floribunda (Callitris endlicheri and/or 
Eucalyptus blakelyi ) 

Very Tall Open Woodlands to Open 
Forests on sandstone 

43 

LOW2 36 
Mixed shrubby complex with Callitris endlicheri and/or 
Eucalyptus crebra and/or Eucalyptus macrorhyncha 

Tall Open Woodlands to Open 
Forests on Pilliga Sandstone 

88 

LOW3 74 
Corymbia trachyphloia subsp. amphistomatica Callitris 
endlicheri (Eucalyptus crebra) northern complex shrubby 

Tall Open Woodlands to Open 
Forests on Pilliga Sandstone 

113 

LOW4 12 
Corymbia trachyphloia subsp. amphistomatica 
Eucalyptus rossii northern complex shrubby 

Tall Woodlands to Open Forests on 
Pilliga Sandstone 

14 

LOW14 1 
Callitris endlicheri with Eucalyptus crebra and/or 
Eucalyptus macrorhyncha (mixed eucalypts) 

Tall Open Woodlands to Forests on 
sandstone 

52 

RIV2 7 
Casuarina cunninghamiana subsp. cunninghamiana 
(Angophora floribunda and/or Callistemon sieberi) 

Very Tall Open Woodlands to Forests 23 

LOW11 
LOW6 

5 Eucalyptus melliodora grassy 
Tall Open Woodlands to Open 
Forests 

25 
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LOW11 
LOW6 

2 
Eucalyptus conica (Eucalyptus melliodora and/or Callitris 
glaucophylla) grassy 

Tall Open Woodlands to Forests 8 

LOW7 9 Eucalyptus albens grassy Tall Open Woodlands to Open forests 66 

 

The Coonabarabran study area was visited along with several other sites with similar vegetation. 

Several of the NVMP plots were within the area of acquisition of the HyMap data and were visited 

and documented with digital photos. This helped to establish familiarity with the physical expression 

of the mapped floristic communities. The local variance and heterogeneity within several plots was 

assessed in a qualitative measure of how suitable each site was as a training sample for remote sensing 

data. 

3.3 Remote Sensing data  

HyMap hyperspectral scanner data, SPOT-5 and Landsat satellite data and Airborne laser scanner data 

were acquired or collected for the Jilliby study site. Remote sensing data were restricted to SPOT 5 

and HyMap data at the Coonabarabran site. 

3.3.1 HyMap hyperspectral scanner data 

The HyMap hyperspectral scanner is manufactured by an Australian company, the Hyvista 

Corporation (Hyvista, 2009). Hyvista owns and operates the instrument in Australia. For the Jilliby 

and Coonabarabran acquisitions it was configured to collect 128 contiguous spectral bands across the 

reflective solar wavelength region of 450 - 2500 nm (except in the atmospheric water vapour bands). 

The sampling interval is 13–17 nm recorded by 4 separate spectrographic modules. Each module 

provides 32 spectral channels giving a total of 128 spectral measurements for each image pixel (Cocks 

et al., 1998). HyMap’s detector array has 512 elements, so the swath width is 512 pixels wide. 

The signal received by a remote sensor above a tree is a complicated combination of the interactions 

between photons and atmosphere, canopy and background. Although we have limited control over 

canopy characteristics, we can still extract useful information from canopy reflectance by developing 

methods that reduce atmospheric and background effects (Huang et al., 2004).  

Spectral and radiometric calibration of the HyMap sensor was accomplished prior to the survey by the 

imagery provider. In-flight recorded DN (digital numbers) were corrected for dark current/electronic 

offsets and converted to radiance using laboratory radiometric calibration information and inflight 

measurements of the on-board calibration lamp. This information was used to allow the conversion of 

the raw DN counts to radiance values in µW/cm
2
 nm sr. The data were rescaled to preserve dynamic 

range, especially in the SWIR range. This rescaling involves multiplying bands 1 – 62 by 1000 and 

bands 63 – 126 by 4000. The wavelength and bandwidth information in nanometres (nm) is imbedded 

in the imagery metadata. Image data were recorded with a radiometric resolution of 15-bits per pixel 

with co-registered bands and stored in 16-bit BIL format (Müller et al., 2001). 
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Atmospheric correction is an essential pre-processing step to remove artefacts in the reflectance 

spectrum related to aerosol properties, atmospheric absorptions and scattering, water vapour and other 

atmospheric constituents (Sanders et al., 2001). HyVista uses the HyCorr program for converting 

radiance HyMap images to apparent surface reflectance. The Hycorr program is essentially the 

ATREM (Atmosphere Removal Program) model Centre for the Study of Earth from the Space 

(CSES), 1992. Gao and Goetz (1990) modified the algorithm to accept data collected by the HYMAP 

instrument. 

HyCorr offers two levels of processing: the simpler level is essentially compatible with ATREM 3 

processing and the more advanced level consisting of an ATREM pass followed by an Effort 

polishing pass to remove systematic ATREM errors (Boardman, 1998). Effort processing was used 

and the reflectance product was provided as a BIL short-integer image and was scaled by 10,000 

(reflectance*10000). Wavelength is displayed as micrometres (µm). 

Huang et al. (2004) found that vegetation spectra extracted from HyMap data corrected with Hycorr 

to be acceptable for tree crown studies and that atmospheric effects, such as the atmospheric water 

vapour absorption, were largely removed. They found the typical mean reflectance spectrum of a 

eucalypt tree was similar to that of the whole fresh leaf spectrum for most of the wavelengths. 

HyVista uses proprietary software for geocorrecting hyperspectral images collected by the HyMap 

airborne hyperspectral scanner. The software uses HyMap sensor position and orientation data 

collected at the same time as the image to calculate the position of each pixel in the image. The 

software uses this position information to map input image pixel values onto a geo-referenced grid of 

output image pixels.  

The HyMap system is mounted on a Zeiss SM2000 gyro-stabilised platform that provides 5 degrees of 

pitch and roll correction and 8 degrees of yaw correction. High quality DGPS integrated with a 

Boeing CMIGITS II GPS/INS inertial monitoring unit was used to provide sensor pointing data to 

precisely geocode the raw data. Geometric correction factors are provided to convert the data to map 

coordinates and provide map-based products. All geocoded products are in the UTM projection and 

WGS84 datum. 

HyMap has achieved high performance in relation to signal-to-noise ratio (SNR), band to band 

registration, calibration and geometric accuracy in past missions (Cocks et al., 1998, Kruse et al., 

2000). Spectral calibration accuracy is typically better than 0.5nm, band-band registration is within 

1/10th of a pixel, and the signal to noise ratio can be as high as 1000:1 in some bands with adequate 

calibration (Cocks et al., 1998). 
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3.3.2 Jilliby HyMap acquisition and pre-processing 

For the Jilliby HyMap acquisition the sensor was flown in a twin-prop fixed-wing aircraft at an 

average altitude of 1900m near simultaneously with the field campaigns. At this altitude the HyMap 

sensor produces imagery with a spatial resolution of 3.5m. Six swaths were flown in map north and 

map south directions, with an average overlap between swaths of approximately ten percent. Imagery 

was acquired in clear conditions with light winds at (and around) solar noon on April 11, 2006. The 

sun was at an azimuth close to zero and an elevation of 48.75⁰. 

Seven reflectance bands were visibly affected by sensor noise or water absorption and were 

subsequently excluded from analysis. Improper calibration can lead to reduced signal quality, variable 

spectral resolution and shifts in band centre wavelengths in any part of the spectrum. These factors 

can limit consistent detection of subtle absorption features (Gao et al., 2004). The bands removed 

were in the strong water absorption features at 1404, 1419, 1434 and 1953nm. The bands affected by 

sensor noise (band 1, 124 and 125) were at 456, 2479 and 2494nm respectively. 

A brightness gradient was observed that spanned the cross-track dimension of the image, which is 

commonly associated with variation in sensor view-angle (Kennedy et al., 1997). As most vegetation 

canopies show a backward scattering characteristic the backlit side of the scanned image receives less 

reflected energy than the forlit side. Following Schlerf et al. (2005) we applied a generally applicable 

method of correction to minimize the brightness gradient and preserve the low-amplitude spectral 

features necessary for species discrimination. Along-track mean values were calculated and were used 

to show the mean variation in the cross-track direction (Exelis, 2008). A polynomial function, with an 

order of 4, was fit to the means and used to remove the variation. A mosaic of the corrected swaths 

was created and clipped to the study area.  

The preliminary cross-track illumination correction was biasing the corrections of some swaths 

because of the linear feature of bright grasslands and exposed soils in the central valley. To counter 

this effect each swath was classified and the cross-track illumination corrections recalculated so that 

only pixels of closed canopy woody vegetation were used. The classes were based on a conservative 

band threshold of band 12 (626.2nm) in the visible red range. While the sun azimuth was near 

perpendicular to the flight line direction, the sun elevation was fairly low due to the autumn 

acquisition date. This led to significant shadow forming to the south of individual crowns and on the 

southern aspects of ridges and gullies. The corrected data showed almost no variation with change in 

across-track position. However, cross track correction compensated for view-angle effects only, not 

for sun-angle effects that would vary between images acquired at slightly different times (Kennedy et 

al., 1997).  
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3.3.3 Jilliby Lidar acquisition and pre-processing 

Small-footprint lidar data were acquired on May 18 and 19, 2006, using an ALS50 Airborne Laser 

Scanner (Leica, 2009). It was mounted in a fixed-wing aircraft operated by Fugro Spatial Solutions 

(Fugro, 2009). The system was configured for a pulse rate of 83,000 pulses per second, with a mean 

footprint size of 60cm, a maximum 20 degree scan angle, a mean swath width 500m and a mean point 

density of 2 pulses/m. Up to 3 returns for each outbound 1084nm NIR laser pulse were recorded as 

well as return signal intensity values (Turner, 2007). Raw lidar point data were supplied as comma-

delimited text files, each representing a 2km x 2km area. The data provider operated synchronised 

GPS base stations and supplied the point data with geometrically registration. 

All lidar data for the Jilliby site was pre-processed (Turner, 2007) to create a 1m resolution canopy 

height model and a 1m resolution DEM. To improve modelling performance the 2km by 2km point 

cloud tiles were separated into ground or non-ground (vegetation) and filtered (thinned). The 

processed data contained x, y and z coordinates, intensity value, layer type and time (only, first, 

intermediate or last return) (Turner, 2007). 

The thinned point cloud data were converted into 1 m pixel resolution raster surfaces using linear 

triangulation surface modelling. Only ground points were used to construct the DEM, while all points 

were used to build the Canopy Elevation Model (CEM). The CEM represents tree height over varying 

terrain. The DEM was then subtracted from the CEM to produce a Canopy Height Model (CHM) 

(Turner, 2007). The Canopy Height Model (CHM) is the product most commonly referred to in this 

thesis and it represents the first return which is nominally the absolute tree height (i.e. the tree height 

regardless of variations in topography). A Canopy Height Model (CHM) proved ideal for the reliable 

identification and manual delineation of large tree crowns. The lidar data were acquired three weeks 

after HyMap was flown.  

3.3.4 Co-registration of lidar and HyMap 

The HyMap data were supplied with geometric corrections based on differential GPS, integrated 

inertial monitoring, and a Digital Elevation Model (DEM). Despite this the spatial error was over 50m 

in some locations, largely due to the low flight altitude and the complex topography. The DEM 

available at the time was based on coarse resolution (~90m) Shuttle Radar Topographic Mission 

(SRTM) data (van Zyl, 2001). To improve the spatial accuracy of the data, and to provide consistent 

comparisons between data sets, the HyMap data needed to be spatially aligned to an orthorectified 

base layer, or co-registered. 

The advantages of using lidar for co-registration are numerous. The image objects will have attributes 

from both sensors. For example, tree height data and structural attributes can be derived from lidar, 

and spectral attributes such as foliar chemistry can be derived from hyperspectral data. A highly 



 

52 

 

accurate DEM can be used and individual tree crowns can be used as tie points in both image sets 

(Clark et al., 2004). However, the warping of optical data are non-linear and varies over topography 

and with aircraft pitch and yaw. Crown scale studies that hope to use both data sets simultaneously 

require that tree crowns must overlap. Manually selecting enough ground control points to assure that 

every crown would overlap is not practical. 

To co-register the HyMap and lidar data an existing tool was used in an innovative way. The ENVI 

automatic image co-registration tool (Exelis, 2008) was used to automatically select ground control 

points. The co-registration tool uses an area-based matching algorithm to obtain tie points. It 

compares the greyscale values of patches of two or more images and tries to find conjugate image 

locations based on similarity in the greyscale patterns. The results of area-based matching largely 

depend upon the quality of the approximate relationship between the base image and the warp image 

(Exelis, 2008). 

A single band of HyMap data were pre-processed to emulate the lidar Canopy Height Model (CHM). 

Once the tie points and geometry corrections were calculated they could be applied to all 125 bands. 

A histogram stretched and saturation stretched band 12 (621.2nm) was used as the warp image to 

highlight crowns for matching. The CHM was resampled to 3.5 m (nearest neighbour) to match the 

spatial resolution of HyMap for co-registration. This had the advantage of smoothing the sometimes 

noisy lidar data, and the HyMap bands can be processed at their native resolution.  

The default number of automatically selected Ground Control Points (GCPs) is set to 25 in ENVI. By 

forcing the algorithm to automatically select over 10,000 tie points, I was able to generate thousands 

of low error tie points, which were used to warp the HyMap data to fit the lidar data. The GCP list 

was sorted by root mean squared error (RMSE) and any spurious tie points with an RMSW over 10.0 

were deleted. Manually selecting several additional GCPs at the very corners of the warp band 

prevented any cropping. For the Jilliby data over 10,000 GCPs were generated with an average RMSE 

of less than 3.0. The accuracy of the method was sufficient in most cases to co-register individual tree 

crowns (see Figure 3.13). Nearest neighbour resampling was used to co-register the HyMap to the 

lidar. 

The co-registration algorithm is area based and relies on a moving window. The number of tie points 

needed, the moving window size, and the RMS threshold, is determined by the size of the image and 

its spatial resolution. For very high resolution images (images with resolution around 1 m), the 

moving window size needs to be set to a larger area (for example, 17 x 17 or higher) in order to 

achieve robust matching results (Exelis, 2008). The settings would therefore need to be modified 

according to the configuration and altitude of the instrument in other applications. 
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Each co-registered image, or each swath, was approximately 1800m wide. Illumination effects and 

geometric errors were greatest at the edge of each swath. By planning the flight to include an overlap 

between swaths some of these errors were mitigated. The six swaths collected over the Jilliby site 

were combined in a mosaic with approximately ten percent overlap. Manually drawn cutlines were 

used to include the least distorted portions of each swath without feathering, thereby minimising edge 

effects between swaths. 

 

 

 

 

 

 

Figure 3.13 The co-registration of HyMap (left) and Lidar data (right) used several thousand automatically 

generated GCPs. 

3.3.5 Coonabararan HyMap acquisition and pre-processing 

HyMap data were acquired at the Coonabarabran site with similar operational specifications to the 

Jilliby site. It was flown in a twin-prop fixed-wing aircraft at an average altitude of 1700m at (and 

around) solar noon on August 4, 2005. At this altitude the HyMap sensor produces imagery with a 

spatial resolution of 3.1m. A single swath with a length of 22km was acquired for the Coonabarabran 

site. The over-flight was on a NNE heading and was selected to encompass as much variation in 

vegetation type as possible. Almost 20 floristic plots collected by Ismay et al. (2004) were included 

within the swath and public road access was maximised.  
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The HyMap and SPOT-5 data for the Coonabarabran site were co-registered. Several ground control 

points were selected manually and the area-based matching algorithm was used to automatically 

obtain additional co-registration points. The SPOT-5 2.5m panchromatic image was used as the base 

after it was resampled to 3.5m using the cubic convolution resampling method. Band 12 (621.2nm) of 

the HyMap data were used to automatically create co-registration ground control points. 

3.3.6 SPOT-5 satellite data 

Multispectral SPOT-5 satellite imagery is available as a statewide coverage acquired in an 18 month 

period beginning in 2005. The coverage was acquired from late October 2004 to August 2005 and 

consisted of 336 scenes extending over more than 800,000 sq km. Radiometric calibration is achieved 

with a simple gain and offset calculation for each band to convert raw digital numbers to radiance. 

The imagery was geocoded to the best available control, which included aerial orthophotos, GPS 

points and topographic datasets. The spatial accuracy ranges from 1.25-3.75m. Source scene accuracy 

and gain and offset data were available in individual scene metadata records (Peters et al., 2006). 

Although the spatial resolution of SPOT-5 is superior to the pre-existing Landsat TM and ETM+ 

coverage, its use is problematic. The low spectral and radiometric resolution of SPOT-5 and the 

greater mismatch between scenes has hampered digital mapping of vegetation (McCauley, 2006). The 

‘between class’ spectral variation is more likely to be obscured by ‘within-class’ variance with the use 

of low spectral and radiometric resolution satellite data. 

The spatial resolution is 10m in the Green, Red and Near Infra-Red (NIR) bands (b1, b2 and b3 

respectively), and 20m in the Short Wave Infra-Red (SWIR) band (b4). The panchromatic band is 

acquired as two separate 5m bands resampled to generate a 2.5m composite product. Table 3.7 and 

Table 3.8 provide detail on the launch and sensor characteristics. 

Table 3.7   SPOT-5 Satellite Launch Characteristics. 

Spot-5 satellite launch characteristics 

Launch date May 3, 2002 

Equator crossing time 10:30 AM (descending node) 

Revisit time 2-3 days, depending on latitude 

Swath width 60 km x 60 km to 80 km at nadir 

Metric accuracy < 50m horizontal position accuracy (CE90%) 

Digitization 8 bits 
Source: SPOT Image 

  

http://spot5.cnes.fr/gb/satellite/satellite.htm
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Table 3.8   SPOT-5 Satellite Sensor Characteristics. 

SPOT-5 Satellite Sensor Characteristics 

Nadir resolution (m) 

Pan 2.5 

MS 10 

SWI 20 

Image bands (nm) 

Pan  480-710 

Green  500-590 

Red  610-680 

Near IR  780-890 

Shortwave IR  1,580-1,750 

Source: SPOT Image  

3.4 Conclusion 

This chapter introduced the Jilliby catchment area, the Coonabarabran study site and the remote 

sensing data collected for my thesis. The criticisms of operational floristic sampling raised in Chapter 

2 were addressed by conducting fieldwork at multiple nested scales. The sampling design is a 

combination of methods in operational use and those introduced to quantify variables at multiple 

scales. 

Forest fuel loads were comprehensively assessed at multiple scales with an aim to investigate the 

spatial expression of fuels. Condition attributes were sampled with particular emphasis on the over-

storey species, as this stratum is visible to remote sensing instruments.  

The use of hyperspectral HyMap data in an object-based approach should yield improvements in 

modelling performance over other studies. My exploration of the data collected begins in Chapter 4 

with a study of the relationship between the field data and HyMap hyperspectral data at the crown 

scale. 

This chapter also introduced the Coonabarabran site. It demonstrated how the availability of 

unpublished floristic plot data makes it an ideal study area to trial new techniques to increase the 

efficiency of vegetation mapping. Chapter 8 usesSPOT-5 remote sensing data in multi-scale, object-

based modelling of vegetation type. 

 

http://spot5.cnes.fr/gb/satellite/satellite.htm
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Chapter 4  

Classifying tree crowns using HyMap hyperspectral 

imagery 

The aim of the research described in this chapter was to determine whether manually delineated tree 

crowns can be classified using their mean spectral signature. The spatial resolution of HyMap has 

largely restricted its use in crown studies in the past but its broad spectral range should be beneficial 

for differentiating species. Machine Learning Algorithms (MLAs) were used for their ability to 

classify highly dimensional and highly correlated data. Four MLAs are compared to assess their 

relative performance.  Each of the methods have a different approach for selecting the relative 

importance of input variables (spectral bands) in terms of their contribution to classification.  

4.1 Classification of tree crowns with hyperspectral data 

The spectral response of individual tree crowns in closed forest is a combination of shaded leaves, 

sunlit leaves, bark, and understorey plants and exposed soil. Goodwin et al. (2005) reviewed 

numerous studies and examined the optimal approach for extracting crown spectra from image pixels 

for classification purposes. Variations include using the whole crown, a single pixel representing the 

local maxima, the mean sunlit spectra and the mean sunlit and shaded spectra combined. 

Leckie et al. (2003a) concluded that either the whole tree or the sunlit tree sampling methods were the 

most suitable methods to derive consistent and representative spectral response for crown modelling. 

Lucas et al. (2008) examined open eucalypt forest and found that when mean sunlit spectra were used, 

an increase in overall accuracy of around ten percent was achieved, compared to the use of single 

pixels associated with local maxima. Goodwin et al. (2005) found that separating sunlit and shaded 

aspects of tree crowns did not increase the overall classification accuracy in their work at the Jilliby 

site. 

Huang et al. (2004) found that the spatial resolution of HYMAP data (about 3 m), was adequate to 

identify individual trees as most of the trees occupy several pixels on the image. However, in closed 

forest the spatial resolution of HyMap imagery (3.5m) was too coarse to reliably identify crown scale 

objects at the Jilliby site without a secondary source of high spatial resolution data.  

Fortunately, lidar with a mean footprint size of 60cm was acquired near simultaneously with HyMap. 

A Canopy Height Model (CHM) derived from a mosaic of Lidar tiles proved ideal for the reliable 

identification and manual delineation of large tree crowns. For this chapter I used manual on-screen 
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digitisation to extract HyMap pixels from the crown of each tree sampled, incorporating sunlit and 

shaded portions. 

A vegetation map derived from image classification is considered accurate if it provides a true 

representation of the region it portrays (Foody, 2002, Weber, 2006).  A widely accepted practice is to 

use finer resolution satellite data to assess coarser resolution products (Cihlar et al., 2003) , although 

the high-resolution data are themselves subject to interpretation and possible errors (DeFries et al., 

1995). One of the problems caused by the pixel-based confusion matrix evaluation is that a pixel at a 

coarse resolution may include several vegetation types (Xie et al., 2008). Ideally, independent field 

samples are available to test classification accuracy. 

The Maximum Likelihood (ML) classifier has been one of the most widely used supervised 

classification for satellite images in the past (Sohn and Rebello, 2002, Xu et al., 2005). However, 

since ML classification assumes that the statistics for each class in each band are normally distributed 

to calculate the probability that a given pixel belongs to a specific it is less applicable in complex 

areas (Xie et al., 2008). 

4.2 Machine learning 

Four MLAs were selected for use in the analysis of the HyMap data. Classification and Regression 

Trees (CART), Neural Networks (MP), Logistic Model Trees (LMT) and Linear Discriminant 

Analysis (LDA). Machine learning refers to induction algorithms that analyse information, recognise 

patterns, and improve prediction accuracy through automated and repeated learning from training data 

(Malerba et al., 2001). The approach used at the Jilliby site was to use Machine learning algorithms 

(MLAs) to sift through large spectral databases automatically, seeking regularities or patterns (Witten 

and Frank, 2005). 

MLAs are ideal for classifying oversampled hyperspectral data as they allow for the investigation of 

the relative importance of input variables in terms of their contribution to classification accuracy 

(Foody and Arora, 1997). They readily accommodate both categorical and continuous ancillary data 

(Lawrence and Wright, 2001) and their non-parametric nature deals well with multi-modal, noisy and 

missing data (Hastie et al., 2001). There is now a large body of research that demonstrates the abilities 

of machine learning techniques, particularly the use of classification trees and artificial neural 

networks, to deal effectively with tasks involving highly dimensional and highly correlated data 

(Gahegan, 2003). Lastly, they are flexible and can be adapted to improve performance for particular 

problems by allowing users to make use of what is already know about the target (Lees and Ritman, 

1991). 

A general flaw of machine learning algorithms is that they are potentially subject to over-fitting if not 

carefully applied. Over-fitting can occur when a learning algorithm adjusts to very specific random 
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features of the training data that have no causal relation to the target function. The performance on the 

training examples increases while the performance on unseen data becomes worse (Tetko et al., 

1995). In addition, the performance of classifiers in general deteriorates when the dimensionality of 

these data increases but the training sample size remains fixed. In the remote sensing literature this 

has been referred to as the Hughes Effect (Foody and Arora, 1997, Hughes, 1968, Pal and Mather, 

2003). Since we are faced with a relatively small sample size (n = 242) and a large number of bands 

(b = 118) both of these issues needed to be addressed. 

The Hughes Effect is addressed by each of the four MLAs in a unique way. Each algorithm is capable 

of selecting a subset of bands for classification, improving the ratio of bands to classes. To address 

over-fitting, cross validation is used. Cross-validation (or jack-knifing) assesses how the results of a 

statistical analysis will generalize to an independent data set. Ten folds were used to calculate 

classification accuracy scores for the machine learning algorithms. The results were averaged to 

produce a single value (Witten and Frank, 2005). This maximises the use of the training data in the 

validation without lessening the number of training samples.  

4.3 Machine Learning Algorithms 

CART are non-parametric regression technique, that ‘grow’ a decision tree based on a binary 

decisions that recursively splits the data until groups are either homogeneous or contain not less 

observations than a user-defined threshold. CART were selected as they represent information in a 

way that is intuitive and easy to visualize and has shown recent success in classification using 

hyperspectral data (Andrew and Ustin, 2006, Andrew and Ustin, 2008).  

Decision trees have been found to outperform traditional remote sensing classifiers (Brodley and 

Friedl, 1997, Hansen et al., 1996). CARTs are structurally explicit, allowing for clear interpretation of 

the links between the dependent variable of class membership and the independent variables of 

remote sensing and/or ancillary data (see Figure 4.5) (Lawrence and Wright, 2001). A confidence 

factor of 0.1 was used to induce severe pruning, simplifying the tree without greatly lowering the 

classification accuracy. 

Neural networks consist of several layers of nodes (neurons) that are in connection with each other. In 

the input layer, the predictor variables are inserted; the output layer delivers one or more predictive 

values for the response variable. In between there is a hidden layer and the network is trained using an 

iterative method to adjust the weights of the connections between the units. Neural networks have 

shown to be accurate and robust classifiers of vegetation in remote sensing  (Filippi and Jensen, 2006, 

Pu, 2009, Weng and Hu, 2008). A Multilayer Perceptron (MP) was implemented here for its ability to 

deal with high dimensionality and because outperformed CART with real world data in benchmarks 

(Maier and Dandy, 2000). 
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Neural networks "learn" by iteratively considering each training observation and then multiplying the 

explanatory variables by a set of weights (Franklin et al., 2003). The utility of artificial neural network 

models in this case lies in the fact that can be used to infer a function from observations. The 

complexity of the spectral responses of each species makes the design of such a function by hand 

impractical. MP results should be robust despite large number of highly correlated bands and without 

knowing which bands or thresholds are important for differentiating species.  

MP solves problems stochastically, which means it won't give the same answer if you run it multiple 

times, but it allows for approximate solutions for complex problems. The main disadvantage is that it 

is it is a ‘black-box’ method, in which the weights are not interpretable. In this implementation one 

hidden layer was used as well as backpropagation. 

Linear Discriminant Analysis (LDA) was included because it has been used frequently in species 

classification (Bunting and Lucas, 2006, Clark et al., 2005, Pu, 2009, van Aardt and Wynne, 2007, 

Wang and Sousa, 2009, Xu and Gong, 2007). Its purpose is to find the linear combination of features 

which maximizes the ratio of between-class variance to within-class variance. This is particularly 

relevant given the small variations we expect between species and the large variation within species.  

It also features useful data reduction tools available for use in band selection. A forward step-wise 

Linear Discriminant Analysis classification using Wilks’ Lambda was applied in this case. Step-wise 

methods select input bands and models based on statistical merit. However, there is a risk is that these 

methods may choose predictors that have no practical significance. Thus, removing noise bands was 

important. 

Logistic Model Trees (LMT) combine the transparency of CART, the performance of MP and the 

inbuilt parameter (band) selection of LDA. It uses a supervised training algorithm that combines 

logistic regression and decision tree learning. A step-wise fitting process constructs the logistic 

regression models and can select relevant attributes (bands) in the data in a natural way.  It builds the 

logistic regression models at the leaves by incrementally refining those constructed at higher levels in 

the tree (Landwehr et al., 2005). The LogitBoost algorithm is used to produce a logistic regression 

model at every node in the tree and then the node split using CART (C4.5). It uses cross-validation to 

find a number of boosting iterations (Friedman et al., 2000) so that it doesn't overfit the training data.  

4.4 Methods 

4.4.1 Individual tree crown identification 

Tree species were identified and the location of the largest trees that intersected each plot was 

recorded. Up to ten trees per plot were selected in decreasing order of the diameter of the tree stem at 

breast height (DBH).  
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As discussed in Chapter 3, the largest tree crowns in the upper stratum were identified to a species 

level and spatially located within the plot by recording a bearing and a distance from the centre. The 

distance from the plot centre to the base of each tree was measured with a Leica laser rangefinder. 

Where the laser beam was obscured by vegetation the distance from the plot centre was estimated 

with reference to the measured plot centre, or one of the four plot boundary markers labelled with 

spray paint and measured with tape. 

Estimated ranges were always calibrated with the laser rangefinder and this level of precision was 

found to be reliably locate the trunks of large crowns. Clark et al. (2004) geo-located tree trunks 

relative to the closest grid marker using a tape measure and compass (in a 50-100m grid). They used a 

lidar canopy height model to select canopy-emergent trees as they were 'easy to locate unequivocally'. 

Clark et al.'s measurements were later used in individual tree crown discrimination studies (Clark et 

al., 2005). The authors selected 212 emergent trees with large, exposed crowns that provided a large 

sample of pixels that were less influenced by spectral shadowing or scattering by neighbouring trees. 

They found that large, emergent trees were easy to locate in orthorectified hyperspectral imagery. 

4.4.2 Manual tree crown delineation 

In this study, tree crowns were manually delineated by the author using on screen digitisation (Figure 

4.1). A single HyMap band (band 12) and lidar data were overlayed with nominal tree stem locations 

and lidar. A single greyscale image was used to minimise bias that may have been apparent were 

colour observable.  

A conservative approach was taken to ensure that each crown in the imagery was correctly attributed 

to the stem surveyed in the field. Only the largest of the surveyed trees were used. At the conclusion 

of the fieldwork, 889 tree stems were identified. For this chapter, a subset of 242 of the largest tree 

crowns was selected so as to be clearly identifiable in both image sources and not obscured by 

overlapping tree crowns or shadow. The manual delineation of tree crowns follows Clark et al. (2004) 

who located crown centroids through visual adjustment of trunk points.   

Objects were buffered by less than a pixel to help smooth artefacts of hand drawn boundaries. Only 

pixels within the crown were delineated to avoid edge effects. Pixels belonging to individual trees 

deviate from assumptions of pixel independence and normality of distribution in multispectral space 

(Nagendra, 2001). The average of multiple pixels was used to create a crown-object and these data 

were used in the analysis.   

A spectral library was created using the hand drawn vector outlines of tree crowns and all available 

bands of the HyMap reflectance data. Seven reflectance bands were visibly affected by noise and 

excluded from the analysis. The bands removed were in the strong water absorption features at 1404, 

0 10 205 m
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1419, 1434 and 1953 nm and sensor noise at bands 1, 124 and 125 (456, 2479 and 2494 nm).

 

 

 

Figure 4.1  Individual tree crowns were delineated manually (left) using 3.5m resolution HyMap data and the 

1m resolution lidar Canopy Height Model (right). 

4.5 Results 

4.5.1 Differential GPS 

The Trimble differential GPS system was used to locate the centre of each plot with sub-metre 

accuracy (Table 4.1). The mean error was 0.73m. Differential GPS for plot centres made it possible to 

locate large tree crowns. 

Table 4.1  Precision and error of plot centres as measured by differential GPS. 

DGPS 
Precision 

Mean Standard 
Error 

Median Mode Standard 
Deviation 

Range Min Max Count 

0.73 m 0.03 0.7 m 0.6 m 0.29 1.6 m 0.3 m 1.9 m 130 

4.5.2 Crown scale samples 

Eucalyptus pilularis (Blackbutt) is the most common over-storey species in the study area, and had 

the highest frequency in sampling. We found Syncarpia glomulifera (Turpentine) to be ubiquitous; its 

presence is recorded in every sample plot. It is generally restricted to the mid-storey stratum, which 

makes it harder to isolate on the imagery, but it is relatively spectrally distinct. Eucalyptus saligna 

(Sydney Blue Gum), Eucalyptus deanei (Round-leaved Gum), Eucalyptus microcorys (Tallowood), 

and Eucalyptus acmenioides (White Mahogany) were sampled as very tall emergent trees, while 

Eucalyptus propinqua (Grey Gum) and Eucalyptus agglomerata (Blue Leaved Stringybark) were 

sampled as individual crowns in stands of trees of similar heights.  

Several other species common to the study area were sampled in the field but were not suitable for 

crown extraction. Allocasuarina torulosa (Forest Oak) and Allocasuarina costata (Smooth-barked 

Apple) were both common but were frequently obscured in the mid-storey. Crowns of Eucalyptus 
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umbra (Broad Leaved White Mahogany) were easy to extract but were not sampled in sufficient 

number to be included in the analysis. Corymbia maculata (Spotted Gum) and Eucalyptus paniculata 

(Grey Ironbark) were both common on the foothills. The similar heights of individual trees in stands 

of open forest made crown delineation difficult. Eucalyptus paniculata had been shown to be 

spectrally distinct in previous studies (Coops et al., 2004). Table 4.2 summarises the species selected 

from the field survey. The mean spectral response was extracted from 242 large, emergent crowns  

from the 889 trunks recorded in the field. Abbreviations of the common name of tree species are 

given as three letter codes. 

Table 4.2  The tree species selected for the manual delineation of crowns and the attributes of each sample 

group.  

Name Code Common Name Number Sampled Avg. DBH (cm) 

Eucalyptus pilularis BLB Blackbutt 81 65 

Eucalyptus acmenioides WMG White Mahogany 25 80 

Syncarpia glomulifera TRP Turpentine 49 63 

Eucalyptus saligna BLG Sydney Blue Gum 26 65 

Eucalyptus propinqua GRG Grey Gum 27 54 

Eucalyptus deanei RLG Round-leaved Gum 8 99 

Eucalyptus microcorys TAL Tallowood 9 61 

Eucalyptus agglomerata BLS Blue Leaved Stringybark 17 51 

 

4.5.3 Crown scale spectral reflectance 

When individual pixels of vegetation spectra were extracted they can be distorted by shadow or other 

effects. As an average of multiple pixels, a crown-object is less sensitive to noise. The low reflectance 

in the visible spectrum is largely a result of absorption from chlorophyll and other pigments. The high 

reflectance in the near infrared (NIR) can be attributed to the multiple scattering in the leaf structure 

(Asner, 1998, Knipling, 1970).  For each species, the and standard deviation of reflectance was 

calculated for all crown objects (Figure 4.2). Spectra were pre-processed with EFFORT polishing. 

The arrangement and density of leaves and foliage will govern the crown scattering environment and 

the degree to which leaf biochemical properties are accentuated at pixel or crown scales (Clark et al., 

2005). Eucalyptus propinqua (GRG) had relatively low NIR reflectance as it occurred in more open 

forest with lower crown density. Syncarpia glomulifera (TRP) had lower reflectance overall as it was 

primarily sampled as a mid-storey species and it foliar structure is more complex. By contrast 

Syncarpia glomulifera (TRP) had the highest reflectance in the SWIR due to its low leaf moisture 

content. 
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Figure 4.2  The mean (bold line) and standard deviation (thin line) of reflectance was calculated for all crown 

objects of each species. Reflectance values have been scaled. 
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4.5.4 Classification accuracy 

The overall classification accuracies for the algorithms employed are presented in Table 4.3 and differ 

between algorithms by as much as 24%. All 118 noise free bands were supplied to each algorithm.  

 

Table 4.3  Crown-object species classification accuracy with a Kappa statistic. 

 

The pruned decision tree algorithm (J48) classified 62.4% of the crowns as the correct species (Figure 

4.3). A confidence factor of 0.1 was used to induce severe pruning, without greatly lowering the 

classification accuracy. Overall accuracy for J48 was 62.4% with a Kappa of 0.53. Bands labelled as 

wavelength (nm) and threshold given as scaled reflectance . As a result of this pruning, the classifier 

selected nine bands that best differentiate species to use in the classification and regression tree.  

 

The neural network (MP) correctly classified 83% of crown-objects with one hidden layer. Linear 

Discriminant Analysis (LDA) used Wilks’ Lambda to optimise band selection in a step-wise fashion 

to pre-select 16 bands for analysis. Results are reported as the mean result for 10 iterations using 

cross-validation. LDA classified 86.4% of species correctly, demonstrating the Hugh’s Effect 

(performance deteriorates with more bands if the training sample size remains fixed).  

 

Cohen's kappa coefficient is included for each algorithm as a statistical measure of reliability. The 

measure is preferred to a simple percent agreement calculation as it takes into account the agreement 

occurring by chance. 

 

 

Algorithm Acronym Correctly Classified Kappa Bands used Cross Validation 

Pruned J48 Decision Tree J48 62.4% 0.53 118 Yes 

Multilayer Perceptron MP 83.0% 0.79 118 Yes 

Logistic Model Trees  LMT 83.90% 0.8 118 Yes 

Linear Discriminant Analysis LDA 86.4% 0.83 16 Yes 
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One of the advantages of machine learning algorithms, and one of the main reasons their use is argued 

for here, is that they are designed to discover structural patterns within these data. They evaluate what 

the most important attributes are and determine how they relate to a numeric outcome. For example, 

decision trees give a graphical representation of which bands are the most important and what 

thresholds are applied. They allow for a clear interpretation of the links between the dependent 

variable of class membership and the independent variables of remote sensing and/or ancillary data 

(Lawrence and Wright, 2001).  

The bands selected by CART in the visible part of the spectrum coincided with leaf pigments 

(chlorophyll a at ~480nm). This region is characterized by strong absorption by carotenoids and 

chlorophylls (Jensen, 2005).  Only a single band was selected in the NIR, which may indicate that leaf 

structure was either; not detected, or not significant in the differentiation of species. Water present in 

the spongy mesophyll of a plant absorbs much of the energy in the mid-infrared spectral region. 

Hence, as the water content of vegetation increases, the reflectance generally decreases in the mid-

infrared regions (Jensen, 2005). 

In the SWIR, the reflectance of leaves increases when liquid water content decreases (Hoffer, 1978). 

The bands differentiating Syncarpia glomulifera for from the eucalypts were 2382 nm (SWIR), 664 

nm (NIR) and 1798 nm (SWIR). Grey Gum and Syncarpia glomulifera both had characteristically low 

SWIR reflectance. 

LMT similarly created a classification tree but had a linear logistic regression at each node. It selected 

56 bands in total and selected a custom set for each class, or species. At every node in the tree it 

creates a logistic regression model and then the node split using CART (C4.5). An example of a 

logistic regression model for BLS is the following linear equation (Equation 3). It illustrates the bands 

used and their relative power for discriminating BLS from other species. 

BLS = 18.97 +  [0.5027] * 0.17 + [0.6499] * 0.04 + [0.7225] * -0.02 + [1.7259] * -0.01 + [2.2647] * -0.02 
+ [2.2995] * -0.07 + [2.4314] * -0.03 

 

Equation 3  Example of a logistic regression tree produced by LMT. 

LDA and LMT both contain a step-wise feature that can select relevant attributes (bands).  It was an 

effective data reduction tool for HyMap data and both models were able to select the bands that 

contributed the most to differentiating vegetation species. The bands selected to be used in each 

model are illustrated in Figure 4.4 and Figure 4.5. In both cases bands were primarily selected from 

the visible, red edge, and SWIR. 
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Figure 4.4 The bands used three or more times in LMT for all species. 

 

Figure 4.5 The bands selected step-wise for all species by LDA. 

Wilks' Lambda is the measure used in this case to determine a variable's potential for discriminating 

between groups. The value is generated for each band as part of the LDA model output. In Figure 4.6, 

the higher the Wilks’ Lambda value (bold line), the better the variable is at discriminating between 

groups, or species. It is plotted against the average of all the sampled Eucalytus agglomerata spectra 

(thin line). For comparison both are scaled to values between 0 and 1. Note the peaks in Wilks’ 
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Lambda are associated with chlorophyll absorption in the visible spectrum, the relative importance of 

the red edge, and in particular the uniform high power of the SWIR bands. 

 

Figure 4.6 Wilks' Lambda (bold line) and the average of all the sampled Eucalytus agglomerata (BLS) spectra 

(thin line). Both are scaled to values between 0 and 1. 

Stone et al. (2001) looked at red coloration at the Jilliby site and found that insect-damaged mature 

leaves and healthy young expanding leaves of some species was caused by the presence of 

anthocyanin pigmentation. For the mature leaves, the level of red coloration was significantly 

correlated with insect herbivory and leaf necrosis. Significant correlations were also found between 

the level of red pigmentation and the following spectral features: maximum reflectance in the visible 

at the green peak (550 nm); the wavelength position and maximum slope of the red edge (690–740 

nm), both of which were selected by LDA and LMT.  

The maximum reflectance at 750 nm in the near-infrared portion of the electromagnetic spectrum was 

also an indicator but much of the NIR was ignored by the algorithms. Using spectral sensitivity 

analysis Barry et al. (2011) found that, wavelengths between 679 and 695 nm were most sensitive to 

the presence of necrosis in young Eucalyptus globulus but that 706 to 726 nm was the least sensitive. 

These studies raise concern that vegetation canopy condition could hamper species discrimination and 

may contribute to the power of SWIR. 

The LDA results are displayed in a confusion matrix in Table 4.4 as an example of how classification 

accuracy varied with each species. The matrix gives a breakdown of each species with user and 

producer accuracy results. The most difficult species to differentiate was Eucalyptus deanei (RLG) 

which was frequently misinterpreted as Eucalyptus propinqua (GRG) or Eucalyptus saligna (BLG). 
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This is to be expected because of the small sample size of Eucalyptus deanei (RLG) and the 

similarities the species shares with Eucalyptus saligna (BLG). Both have white or light grey smooth 

trunks, dark green leaves and similarly shaped fruit, are found in wet forests in slopes and gullies 

(Harden, 1991) and are relatively difficult to differentiate in the field. By contrast, Eucalyptus 

microcorys (TAL) and Syncarpia glomulifera (TRP) were classified correctly more frequently. 

Table 4.4 Confusion matrix for the most successful classifier, step-wise Linear Discriminant Analysis with 

Wilks’ Lambda. The classifier selected 16 optimal bands for use with the classifier (Kappa = 0.83).  

Note: for acronyms of species see Table 4.2. 

4.6 Discussion 

This chapter compared a variety of classification algorithms. Spectral information from tree crowns 

surveyed in the field was used as training data. As discussed, it is assumed that the algorithm will 

reach a state where it will be able to predict the species of unknown crowns (Witten and Frank, 2005) 

generalising what was learned from the known samples across the landscape. 

Although there are examples in the literature of crown scale analysis of HyMap data (Lucas et al., 

2008) most of the crown scale research referenced in this chapter uses very fine spatial resolution data 

(1m or less) for delineating and classifying tree crowns. Most have used CASI-2 data (Bunting and 

Lucas, 2006, Coops et al., 2004, Goodwin et al., 2005, Lucas et al., 2008, Wang and Sousa, 2009) or 

high resolution air photograph (Leckie et al., 2003a). O'Neill et al. (1996) recommend, as a practical 

rule of thumb, that the spatial resolution should be two to three times smaller than the objects of 

interest.  

Mapping individual trees using high spatial resolution data poses problems not encountered when 

mapping associations or habitat patches. Pixels covering different components of a tree, such as bark 

and leaf, can be extremely variable in intensities. This makes the spectral signature of a species of tree 

difficult to define (Cracknell, 1998, Nagendra, 2001). 

The relatively low spatial resolution of HyMap limits the number of pixels that represent a single tree 

crown. Pixels belonging to individual trees deviate from assumptions of pixel independence and 

normality of distribution in multispectral space There are numerous assumptions built into 

conventional classifiers (e.g. independence), as they were developed for the analysis of low resolution 

Species Field BLB BLG BLS GRG RLG TAL TRP WMG Total Users  

Model BLB 76 4 1 - - - - - 81 93.80% 

Results BLG 1 16 1 2 4 - - 2 26 61.50% 

 BLS - - 17 - - - - - 17 100% 

 GRG - - - 21 3 - - 3 27 77.80% 

 RLG - 3 - 1 4 - - - 8 50.00% 

 TAL - - - 1 - 8 - - 9 88.90% 

 TRP - 1 - 2 1 - 45 - 49 100% 

 WMH - 1 - 2 - - - 22 25 88.00% 

 Total 77 25 19 29 12 8 45 27 242  

Producers  98.70% 64.00% 89.50% 72.40% 33.30% 100% 100% 81.40%  86.36 



 

70 

 

satellite imagery (Crane et al., 1972).  Pixels belonging to individual trees deviate from assumptions 

of pixel independence and normality of distribution in multispectral space (Nagendra, 2001). Non-

parametric machine learning algorithms and hyperspectral data were employed to mitigate these 

effects. Alternately, individual tree crowns rather than pixels are used as objects for classification, 

through prior (manual or automated) delineation of tree crowns (Nagendra, 2001), which is another 

advantage of the object-based approach pursued here. 

The majority of the bands selected by the LMT, LDA and CART algorithms came from the short 

wave infrared (SWIR) wavelengths and visible wavelengths. SWIR bands were unavailable in 

previous crown scale studies (Coops et al., 2004, Goodwin et al., 2005). The results here confirm 

previous vegetation spectra studies at the leaf scale  (Datt, 1999b, Datt, 1999a), and other studies 

using HyMap (Lucas et al., 2008), that demonstrated the value of the SWIR wavelengths for species 

classification. 

 MLA approaches also allow for the use of expert knowledge to select bands allowing a machine 

learning to suggest or explore new relationships. The stepwise linear regression (LMT) method 

evaluated in this study exhausts all possible combinations of predictor variables in searching for the 

one that minimizes the impact of multi-collinearity without losing a significant portion of the 

explanatory power of a data set (Miller, 1990) 

Manual delineation of tree crowns is a natural first step in any crown scale study, regardless of the 

spatial resolution of the imagery. It helps establish a relationship between the imagery and the field 

data, which allows for the extraction of spectra of individual tree crowns. However, it is not practical 

for the classification of tree crowns across the landscape.  

Crown scale delineation must be automated for practical conservation applications at a landscape 

scale. In this study, a high spatial resolution lidar data set was available, but very high spatial 

resolution optical data would also be applicable. For automated crown delineation to be successful at 

the Jilliby site, one or both of the following practical limitations need to be overcome: either multiple 

sources of high spatial resolution data need to be co-registered with the HyMap data, or a technique 

must be created for crown delineation with coarse spatial resolution data.  

Co-registering the lidar and the HyMap data were the ideal solution. It allowed for the automated 

extraction of crowns using the lidar Canopy Height Model and improved the spatial location accuracy 

of the HyMap data. The lidar data also contains tree height and other useful structural attributes. 

Sources of error include spatial miss-registration, selecting the wrong crown species in the field, 

selecting the wrong crowns in the imagery and uncertainty due to the atmospheric effects, radiometric 

effects, and Bidirectional Reflectance Distribution Function (BRDF) effects. Spatial errors were 
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minimised with the use of a lidar CHM. Atmospheric effects were corrected for using HyCorr and 

illumination variance addressed with cross track correction. The risk with over-fitting is that the 

classification models developed in this chapter will not generalise across the landscape. The best 

available method for testing how robust the models are is to test them using independent field plots 

for verification. This is the approach taken in Chapter 6. 

Stand and community type delineation and classification is the obvious successor to crown scale 

classification, but it is less developed in the literature. The countless combinations of species 

diversity, structure, and other attributes in a stand of mixed species makes consistent generalisation of 

vegetation units across a landscape difficult. The combination of structural attributes from lidar, 

spectral and textural attributes from hyperspectral imagery and the machine learning algorithms 

introduced here, provide a promising approach for future research. 

4.7 Conclusions 

This chapter aimed to differentiate large tree at a species level in tall, closed canopy eucalypt forest 

using HyMap data. The HyMap hyperspectral scanner (128 bands, 4567-2944nm) is not routinely 

used for crown scale studies as its relatively coarse spatial resolution (2-8m) limits the analysis to 

large crowns. However, the high spectral resolution of HyMap, particularly the bands in the SWIR, 

proved to be important for differentiating several species. Combining lidar and HyMap allowed 

individual tree crowns to be identified given location information recorded in the field. 

Results showed that machine learning algorithms revealed structural patterns in data by selecting the 

bands most useful for discriminating target species and weighting their importance. The machine 

learning algorithms included in the comparison (J48, MP, and LMT) performed nearly as well (64-

84%) as the more commonly applied LDA (86%).  LMT was selected as the classifier in later chapters 

for its ability to automate the selection of relevant attributes (bands), how it deals with over-fitting, 

and its computational efficiency and performance. LMT was competitive in this comparison with 84% 

overall accuracy. 

The results show that the spatial resolution of HyMap was adequate for classification of some of the 

species in closed, tall eucalypt forest. However, a high spatial resolution dataset in essential for 

locating training samples and delineating tree crowns. The small number of training samples and high 

dimensionality of these data may have had an effect on the results of the classification. Cross 

validation was used to mitigate this but additional independent samples are desirable.  

Crown scale mapping using HyMap is not practical for conservation applications at a landscape scale, 

without automated crown scale delineation.  
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Chapter 5  

Individual tree crown delineation with 

hyperspectral data 

Chapter 4 established that hyperspectral data can be used to differentiate tree crown species within 

tall, closed canopy eucalypt forest. However, the method used requires image objects. This is not 

practical using HyMap without automating the delineation of tree crowns.  

This chapter presents the HyMap Crown Delineation Algorithm (HCDA) which aims to automate the 

isolation of individual tree crowns in native forest using HyMap data. The ultimate aim of the 

research is to create an accurate community scale map using multi-scale image objects. The HCDA is 

based on existing pattern recognition concepts but represents the first time HyMap has been used to 

segment individual tree crowns. The method applies spatial filters to accentuate the location of tree 

crowns based on the local maximum of sunlit crowns. A watershed algorithm that detects the local 

minima is then applied to separate individual crowns. The HCDA can be used to make crown objects, 

which can be classified using the machine learning approaches described in Chapter 4. Chapter 6 will 

demonstrate using both procedures in combination.  

5.1 Background 

In the field of computer vision, segmentation refers to the process of partitioning a digital image by 

simplifying its representation into something that is more meaningful, thus enabling clearer analysis. 

In remote sensing, image segmentation is typically used to locate objects and boundaries in images. 

Asner et al. (2002) found that visual interpretation of remote sensing is resource intensive and 

difficult to implement consistently. Automated routines can be readily replicated across wide areas 

but they are generally less accurate (Culvenor, 2002). The recognition of single trees is one of the 

most important tasks to undertake when deriving forest information from high spatial resolution 

remote sensing data (Hirschmugl et al., 2007). 

Using tree crown species identified in the field to guide the classification of tree crowns at a 

catchment scale is a relatively new approach to dealing with the problem of scale. The aim is to 

emulate the way ecologists classify vegetation type in the field by recording dominant species. The 

ultimate goal of this research is to create a nested hierarchy of polygons where crown scale objects are 

contained within community scale objects. This would give the community polygons a quantifiable 

degree of certainty not previously seen in vegetation mapping and allow for new measures of 
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ecological diversity across the landscape. Even a representative sample of large trees characteristic of 

each community would be a significant improvement over existing operational techniques. 

5.2 Existing crown scale delineation algorithms 

A variety of automated pattern recognition methods are used to isolate individual trees from high 

spatial resolution optical data. Their success depends on the spatial resolution of image data in 

comparison with the size of the tree to be detected. Most approaches use data with an IGFOV smaller 

than the average crown width (Culvenor, 2002, Leckie et al., 2005a, Pouliot et al., 2002, Read et al., 

2003, Leckie et al., 2003b).  

Photographic imagery has been used for the estimation of crown diameter and density (Falkowski et 

al., 2006, Jennings et al., 1999, Larsen and Rudemo, 1998). Videography has been used to analyse 

individual crowns in transects (Culvenor, 2002) and airborne lidar has been used in crown delineation 

(Falkowski et al., 2006, Leckie et al., 2003a, Popescu et al., 2003, Turner, 2006, Heurich, 2008) and 

the measurement of structural variables. Bunting and Lucas (2006) reviewed crown delineation 

algorithms and identified two broad approaches, detecting crown centroids and boundaries, following 

valleys (also referred to as contouring). 

Crown centroid detection involves the identification of local intensity maximum (bright points at the 

peak of the crown) and mapping of crown boundaries by expanding to local minima (Pouliot et al., 

2002, Wulder et al., 2000). Culvenor (2002) developed the Tree Identification and Delineation 

Algorithm (TIDA) which is based on spectral maximum, but takes the spectral minima into 

consideration. The delineation uses a top-down approach that begins at the centroid and finishes either 

at the minima boundaries or at user-defined threshold, both in terms of distance and spectral signature.  

Boundary (valley) following or contouring methods use similarities in data values as a delimiter 

between an object (e.g., a tree crown) and the background (Bunting and Lucas, 2006). The Individual 

Tree Crown (ITC) Suite (Gougeon and Leckie, 2003, Leckie et al., 2005a)  is an example of this 

approach. ITC is based on following valleys of shade between tree crowns after spatial filtering and 

resampling. The authors have optimised their approach for the use of image data with 50cm spatial 

resolution. Small indentations were identified and used to separate crown groups while a ‘jump-

factor’ was used to remove small ridges in the surface, thereby ensuring a more precise separation 

(Gougeon, 1995, Leckie et al., 2005a). The authors suggest that the ITC suite is designed for 

delineation of Canadian forests, and that very large crowns of tropical forests may be analysed better 

at 1m spatial resolution. Table 5.1 summarises some of the methods previously explored in the 

literature.  
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Table 5.1 A selection of tree crown delineation research. 

Research topic Authors 

Crown delineation and pattern detection (Bai et al., 2005) 

Multi-scale approach for the automatic delineation of 
individual tree crowns 

(Brandtberg and Walter, 1998, Leckie et al., 2003a, 
Leckie et al., 2003b) 

Automated tree crown detection and delineation (Brandtberg and Walter, 1998, Culvenor, 2002, 
Pouliot et al., 2002, Pouliot et al., 2005, Wang et al., 
2004, Leckie et al., 2003b) 

Segmentation and classification of individual tree 
crowns 

(Bunting and Lucas, 2006, Erikson, 2004, Leckie et al., 
2003a) 

 Tree detection with local maximum methods (Perko, 2004, Wulder et al., 2000, Wulder et al., 2004) 

Canopy shadow in IKONOS satellite observations (Asner and Warner, 2003) 

Crown-following approach to the automatic 
delineation of individual tree crowns 

(Gougeon, 1995) 

Lidar and multispectral imagery for individual tree 
crown analysis 

(Heurich, 2008, Leckie et al., 2003a) 

Retrieving individual tree crown data with lidar (Coops et al., 2007, Falkowski et al., 2006, Hyyppä et 
al., 2004, Popescu et al., 2003, Turner, 2006) 

Remote sensing for retrieval of forest stand attributes (Hyyppä et al., 2000, Leckie, 1990) 

Classification of tree crowns (Clark et al., 2005, Goodwin et al., 2005, Gougeon, 
1995, Haara and Haarala, 2002) 

 

Existing crown scale research shows a strong bias toward forests with low species diversity and 

relatively regular geometric crown shapes (Culvenor, 2002, Falkowski et al., 2006, Larsen and 

Rudemo, 1998, Leckie et al., 2005a, Popescu et al., 2003, Pouliot et al., 2002). The methods are often 

developed for the identification of conifer trees near the nadir of images as they fulfil the assumption 

that crowns are of similar size and have only one bright point located close to their centre (Bunting 

and Lucas, 2006).   

The Jilliby site’s diverse range of tree species, growth stages and canopy cover provides a challenging 

environment for tree crown delineation. Other authors have noted that crowns in native forest do not 

always have clear boundaries, are not symmetrical and vary in size and shadows and overlaps are 

common (Leckie et al., 2005a). Perhaps unsurprisingly, the crown delineation methods reviewed in 

Table 5.1 did not perform well on the Jilliby dataset. 

Chapter 4 concluded the spectral resolution of HyMap data were sufficient to differentiate the tall 

eucalypt species, but a new algorithm is required for delineating tree crowns with HyMap. The spatial 

resolution of HyMap at the Jilliby site (GIFOV 3.5m) was adequate for the manual delineation of 

large tree crowns but a high degree of uncertainty was introduced when delineating smaller crowns. A 

finer spatial resolution reference data set that is co-registered with the HyMap is required. 

Comparing the results of a segmentation algorithm to manually delineated crowns is an established  

method for accuracy assessment Pouliot et al. (2002) . It is commonly performed at an individual tree 

level using reference data consisting of tree locations visually interpreted from the imagery 
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(Brandtberg and Walter, 1998, Gougeon, 1995, Niemann et al., 1998, Pollock, 1998, Walsworth and 

King, 1998) . 

5.3 Introducing the HyMap Crown Delineation Algorithm (HCDA) 

Two of the more commonly used algorithms for automated analysis of canopies are local maximum 

filtering and local minima value finding. Local maximum filtering isolates the bright spot at the peak 

of each crown and relies on the assumption that the area surrounding the brightest local value can be 

associated with the location of a single tree crown (Culvenor, 2002, Wulder et al., 2000). Local 

minima value finding is used to detect the separation between crowns, with the assumption that the 

darker image values are created by shadows between crowns (Gougeon, 1995, Leckie et al., 2003a, 

Pouliot et al., 2002). Automated crown detection algorithms using a combination of local maximum 

filtering and local minima value finding have been developed (Leckie et al., 2005a, Pouliot et al., 

2002) but have not been applied to HyMap data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Flow chart of the HyMap crown delineation algorithm. 

The automated crown detection algorithm described here uses a combination of local maximum 

filtering and local minima value finding. It relies on a combination of histogram-based segmentation, 
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edge detection, binary threshold segmentation, focal statistics and watershed delineation to isolate 

crowns from the matrix of shadow, cleared areas and the understorey. There are several processing 

steps illustrated in Figure 5.1. 

The automated crown detection algorithm presented here was designed using existing pattern 

recognition concepts for high spatial resolution remote sensing data. The algorithm is based on spatial 

analysis of the brightness patterns in the image (visible reflectance or digital number). The specific 

kernel size for the filters employed in this method, and the thresholds used, will depend on the spatial 

resolution of the input data set and the size of the tree crowns. Thus, it cannot be presented as a truly 

automated approach. However, in a graphical user interface the threshold at each step could be 

adjusted iteratively to get the best result for the specific dataset.  

Note that the output of the HCDA is a binary image of tree crowns. This is applied as a mask to the 

original reflectance data for use in object-based classification. Histogram equalisation and the filters 

described below are not applied to reflectance data used in classification. The spectral and geometric 

quality of the data were not altered because the filters are not applied to reflectance data used in 

classification. 

5.3.1 Band selection and histogram stretch 

Band 12 (0.6212 µm) was selected as the basis for the HCDA. Many of the bands available from 

HyMap are useful for classification but much of the data were redundant for crown delineation. Band 

12 was selected as it is in the visible wavelengths (RED) so the method has potential for application to 

other sensors. The dark woody signature was also stable across multiple swaths of imagery. Once the 

crown objects are delineated using band 12, the raw reflectance from all 125 available bands can be 

extracted for each object for use in classification classification. 

The Jilliby Catchment study site is dominated by woody vegetation. It features a grassy central valley, 

shadow in the gullies, and clearings connected by highly reflective roads. Most of the scene is 

forested, so the DN histogram shows most variation in low digital numbers (see Figure 5.2).  

A 2% equalisation stretch was applied to band 12. This adjusted the 8-bit greyscale image represents 

the range of woody vegetation in the image and improved the contrast. Changing the data range of an 

input file helps maximise the contrast between sunlit crown peaks and the surrounding matrix of 

shadow, clearings and understorey. For the remainder of this thesis this process is referred to as a 

histogram stretch or histogram equalisation. To automate contrast stretching, the modal, maximum, 

and minimum brightness values of the image are calculated per scene.  
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Figure 5.2  A histogram of reflectance illustrates the low dynamic range. For segmentation, the pixel values of 

interest lie between 20 and 819. 

5.3.2 Edge detection filtering 

Edge detection and sharpening filters help determine the boundaries of a region (i.e. the size and 

shape of tree crowns). Region boundaries and edges are closely related since there is often a sharp 

change in intensity at region boundaries. Spatial filters work by producing output images where 

brightness value at a given pixel is a function of some weighted average of the brightness of the 

surrounding pixels. The moving window kernel size and the weighted value can be altered to produce 

a variety of effects. The high pass filter and a Sobel edge detection filters were used to isolate the 

brightest part at the peak of each crown.  

High pass filters are commonly used in pattern recognition for image smoothing and sharpening. A 

moving window high pass filter with a 7 x 7 kernel was used to isolate the local maxima and suppress 

noise. The Sobel edge detection filter was used in effect to ‘buffer’ the local maxima by accentuating 

their edges. The brighter and larger the tree crown, the larger the resulting buffered area. This helped 

differentiate tree crown diameters without the use of variable size moving windows. Kernel size for 

the Sobel filter cannot be altered and is set to 3 x 3. ‘Adding back’ the original high pass filtered 

image to the Sobel filtered image ensures that the edges are accentuated without the loss of the spatial 

location associated with tree crowns. The result is a model of where tree crowns are likely to appear 

based on the location of bright peaks in the imagery (Figure 5.3). 
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Figure 5.3  Histogram stretched HyMap data (Band 12) (left). A moving window filters buffers the local maxima 

that represent tree crowns (right). 

5.3.3 Image resampling and focal statistics 

Tree crowns are not uniformly visible across the landscape in 3.5m spatial resolution data. Large 

isolated crowns are clearly visible, but stands of smaller crowns tend to merge. In addition, the 

watershed algorithm (see Section 5.3.5) cannot operate effectively on crowns smaller than 2 x 2 

pixels. To correct for these ambiguities the image is resized to 1m spatial resolution using cubic 

convolution resampling.  

Cubic convolution uses the weighted average calculated from the 16 nearest input cell centres and 

their values. The new value for the output cell is a weighted average of these 16 values, adjusted to 
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account for their distance from the centre of the output cell. This interpolation method results in a 

smoother-looking surface than nearest neighbour. It has a tendency to sharpen the edges of the data 

more than bilinear interpolation, since more cells are involved in the calculation of the output 

value. Both of these effects are desirable when trying to using feature recognition to define crown 

boundaries. It can be thought of as a surface, like a DEM, that can be smoothed as it is a continuous 

surface. Nearest neighbour resampling was used for HyMap reflectance data before extracting spectral 

information. 

A moving window analysis of local maximum with a circular kernel (radius 3m or 3 pixels) can be 

optionally applied in to remove noise from the resampled image and to round the edges of the filtered 

local maxima. This was applied to the Jilliby HyMap data. 

5.3.4 Binary thresholding or ‘top hat’ segmentation 

A 3-dimensional (3D) representation of the filtered image is displayed in Figure 5.4. The height of 

these 3D objects is determined by the brightness of the local maxima, which is in turn determined by 

sensor geometry, sun-angle and crown size. A lidar derived canopy height model for the same area is 

provided for comparison. In a lidar Canopy Height Model (CHM) height of the 3D objects in the lidar 

image is a quantitative measure of tree height that is independent of illumination conditions. Despite 

the different way the information is derived, there are similarities in the size and location of large and 

small tree crowns. 

 

 

Figure 5.4  3D crown-objects derived from a greyscale HyMap image (left) and a lidar derived canopy height 

model (right). 
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Figure 5.5 A threshold at the peak of a simulated canopy (top) isolates the largest crowns but ignores small 

crowns. A compromise between crown size and separation (centre) ignores small crowns and a low threshold 

(bottom) captures all of the crowns but merges large crowns together. 

 

To isolate each local maximum the 3-dimensional representation of the HyMap data needs to be 

‘sliced’ using ‘top hat’ segmentation. The aim is to choose a threshold that effectively separates the 

larger crowns but also includes smaller or dimly lit crowns. To help visualise this problem Figure 5.5 

provides three images that represent ‘slicing’ a 3D representation of the filtered image at the peak of 

the crowns (top) at the middle (centre), and at the base (bottom). The chequered plane represents a 

user defined threshold. Setting the threshold too high will only get the tips of the largest and brightest 
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crowns (top). If the threshold is applied at too low a level (bottom), discontinuities are bridged 

between crowns, and two or more crowns are merged together. A threshold in the middle presents a 

compromise between crown size and separation (centre) but some small crowns are still excluded.  

The transition from missing out on too many crowns and merging too many crowns together is too 

variable to be iteratively selected across a scene consistently. HCDA therefore combines a 

conservative binary threshold that captures the most crowns with a watershed algorithm. 

5.3.5 Watershed segmentation  

The watershed segmentation algorithm used is a function in the IDL library. It considers the gradient 

magnitude of an image as a topographic surface. Pixels having the highest gradient magnitude 

intensities correspond to watershed lines which represents the region boundaries. Put simply, it turns 

the 3D filtered greyscale image upside down and, treating each crown as a sink-hole, and simulates 

‘filling them each with water’. 

The ‘water’ placed on any pixel enclosed by a common watershed line flows downhill to a common 

local intensity minima. When applied to the filtered greyscale image of tree crowns (Figure 5.3) the 

simulation fills each crown tip with water, and a line is drawn around the base of each crown. 

In summary, HCDA combines a conservative binary threshold that captures the most crowns with a 

watershed algorithm. The base threshold image represents applying a threshold at the base of each 

tree (local maxima filtering). This effectively separates crowns from shadow, but merges too many 

crowns. To combat this, the layer is combined with the watershed results (local minima) using a 

binary mask (Figure 5.6). The result is a series of crown scale objects that are individually coded and 

that can be easily converted into a vector-based polygon feature of tree crowns. The source code for 

applying the watershed algorithm in IDL is available in the Appendix. 

 

  



 

82 

 

 

 

 
 

 

 

Figure 5.6  Combining the base threshold of the filtered greyscale image (top) and a watershed algorithm 

(middle) creates crown objects (bottom). 
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To create a map, crown-objects in clearings or on roads need to be removed using a mask. To create a 

mask Band 12 was thresholded to remove clearing (dn = 255) (clearing) and shadow (dn = 0). The 

results are visually satisfying and capture the variation in tree crown volume without being affected 

by the mesic understorey or dark shadows. Figure 5.7 represents 3D tree crowns derived from 

greyscale HyMap data with a histogram stretched 3-band HyMap composite overlaid. The mesic 

understorey appears rusty or orange, blackbutt trees appear green and Sydney bluegums appear light 

blue or grey. 

 

Figure 5.7  Tree crowns derived from greyscale HyMap data with a histogram stretched 3-band HyMap 

composite overlaid.  

5.4 Accuracy assessment of the HyMap Crown Delineation Algorithm 

The HCDA delineate individual large crowns across the study area. However, uncertainty exists as to 

whether the algorithm will divide the imagery into too many objects (where large crowns could be 

separated into numerous branches) or too few objects (where small crowns are grouped into a patch) 

(Figure 5.8).  
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Figure 5.8  Crown objects created with the HCDA overlaid on HyMap (top) and lidar data (bottom). 

 

To provide a measure of accuracy a group of tree crowns were delineated manually with on-screen 

digitisation. The reference lidar data were used to locate a representative sample of large emergent 

crowns in a matrix of small homogenous crowns. 161 segmentation reference crowns were manually 

delineated in a without reference to HDCA results or the site data. The extent of the segmentation 

reference set was used to select the intersecting  HDCA crown-objects from the study wide data set. A 

comparison of the number of crown-objects created, their relative area and perimeter was then made 

(see Figure 5.9). These are global segmentation quality statistics. 

To provide local segmentation quality statistics several metrics were calculated. The proportion of the 

area of manual crown-objects that overlap HDCA crown-objects was calculated, as well as the 

proportion of HDCA area to manual crown-object area (both of which are topological accuracy 

metrics). Finally, the distance between HDCA crown-object centroid and the nearest manual crown-

object centroid was calculated (geometric accuracy metric). For more detail on assessing 

segmentation quality and a definition of terms please refer to Chapter 9. 
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5.5 Results 

Detailed view 
comparing manually 
delineated crown-
objects (hollow black) 
and HDCA crown-
objects (solid green). 
The centroid of each 
HDCA crown-object 
(point) is also 
displayed. 

 
 

Figure 5.9 Accuracy assessment incorporated 'polygon in polygon' statistics and average distance between 

centres of gravity. 

 

The HyMap Crown Delineation Algorithm over-segmented crowns when compared to manual 

segmentation (194 HDCA vs. 161 manual). This was due to some crowns being split into two or three 

large branches. The maximum size of the crowns was very similar (ratio of 0.94), as was the mean 

areas (ratio of 0.87) (Table 5.2). The mean distance between centroids of manually derived and 

HDCA crowns were only 3.62m which is approximately a single pixel (Table 5.3). 

Table 5.2  Global statistics of HyMap Crown Delineation Algorithm accuracy assessment for 161 manually 

delineated crown-objects. 

Global Stats Manual 
Area 

HDCA Area Ratio Manual 
Perimeter 

HDCA 
Perimeter 

Perimeter 
Ratio 

Count 161 194 1.20 161 194 1.20 

Minimum (m
2
) 33 14 0.42 25 16 0.63 

Maximum (m
2
) 332 313 0.94 77 92 1.19 

Sum (m
2
) 22348 23316 1.04 7896 9636 1.22 

Mean (m
2
) 139 120 0.87 49 50 1.01 

Standard Deviation 62 67 1.07 11 16 1.47 
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Table 5.3  HyMap Crown Delineation Algorithm accuracy measures for 161 manually delineated crown-

objects. 

 Area of manual crown-
objects that overlap HDCA 

crown-objects 

Proportion of HDCA area 
to manual crown-object 

area 

Distance between HDCA crown-
object centroid and the nearest 
manual crown-object centroid 

Count: 194 1.20 194 

Minimum  0
 

0.00 0.23 m 

Maximum  248.53 m
2
 0.75 13.97 m 

Mean  78.38 m
2
 0.56 3.63 m 

Total  15205.70 m
2
 0.68 703.47 m 

 

Sources of error include over-segmentation (splitting a crown into multiple objects), under-

segmentation (including multiple crowns in a single crown-object), spatial error (miss-registration 

between lidar and HyMap), and user error (errors in manual digitisation). The quantitative assessment 

of segmentation was performed in an area of the Jilliby site that features a mesic understory and large 

emergent crowns. The HCDA would not be as successful in the open, dry forest to the east of the site 

where background reflectance is higher and crowns are smaller, with less dense foliage. 

5.6 Conclusions 

A spatial resolution of 3.5m is barely adequate for precise crown scale delineation. The HDCA was 

used to delineate individual tree crowns by using a filtering and watershed approach. The HCDA was 

able to replicate tree crowns identified with the visual interpretation of lidar/HyMap data. The HCDA 

over-segmented crowns when compared to manual segmentation (194 HDCA vs. 161 manual). The 

mean distance between centroids of manually derived and the crowns that were delineated by the 

HDCA crowns were only 3.62m, which is approximately a single pixel. 

Culvenor (2002) notes that individual tree crown delineation from remotely sensed imagery is not a 

realistic expectation — even for human interpreters — in structurally complex forests. The spatial 

resolution was a clear limitation for delineating small crowns. Tree delineation results derived from 

HCDA in complex forest types are still useful. A representative sample of crowns, even as a stand or 

crown component, may prove to be adequate for precise classification of vegetation type when 

averaged. The ultimate aim of the research is to create an accurate community scale map. 
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Chapter 6  

Multi-scale, object-based classification of vegetation 

communities using hyperspectral imagery 

Chapter 4 established that the mean spectral response extracted from tree crown objects could be 

classified using Machine Learning Algorithms (MLAs). Chapter 5 introduced the HyMap Crown 

Delineation Algorithm (HDCA), a new method for automatically delineating tree crowns using 

HyMap data. HDCA is based on local maxima filtering and local minima watershed segmentation. 

The combination of MLAs and HDCA provides an opportunity to map tree crown species across the 

landscape. However, maps used operationally for the management of native vegetation are provided at 

the community scale. Therefore, a method is required to cluster individual tree crown objects into 

meaningful community type objects. 

The countless combinations of species diversity, structure, and other attributes in a stand of mixed 

species makes consistent generalisation of vegetation units across a landscape difficult. The spectral 

response of a vegetation type polygon will not be consistent across the landscape but delineating 

transitions between vegetation types is achievable. The difference between open dry forest and tall 

moist forest, for example, can be discerned based on structure, spectral response or landscape 

position. Classification of vegetation communities with multi-scale, object-based hyperspectral data is 

not well developed in the literature. 

A variety of segmentation algorithms are capable of community scale segmentation of vegetation 

extent. An existing community delineation algorithm, Size Constrained Region Merging (SCRM) 

(Castilla, 2004), was chosen to produce community scale polygons for the Jilliby site. The aim of this 

chapter is to combine crown scale segmentation (HCDA) and community scale segmentation (SCRM) 

to create a multi-scale object-based classification of vegetation type. 

6.1 Background 

There are several categories of forest type mapping that use satellite or aerial remote sensing data. 

Landcover mapping is frequently at the regional or continental scale and predicts the distribution of 

broad classes such as woody vegetation and water (Jung et al., 2006). Statistical models of vegetation 

type incorporate ancillary spatial layers and survey data as well as remotely sensed data and can 

predict vegetation type at regional scales (Elith et al., 2006, Elith et al., 2008, Ferrier and Guisan, 

2006, Ferrier et al., 2007). Fine scale classification of vegetation attributes like community type are 
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usually restricted to small areas (Johansen et al., 2007, Kokaly et al., 2003, Laliberte et al., 2004), as 

are studies relying on hyperspectral imagery (Okin et al., 2001, Underwood et al., 2003).  

Operational vegetation mapping at a fine scale is most commonly a product of visual interpretation of 

stereo imagery (Bell and Driscoll, 2006, Benson, 1994, Gellie, 2005, Keith and Bedward, 1999). 

Aerial photographic interpretation is time-consuming, particularly if high spatial or temporal detail is 

required, (Gellie, 2005, Leckie et al., 2005a) and not always repeatable. Visually interpretation of 

vegetation relies on recognising discrete patches of vegetation based on structure, condition and type. 

The argument traditionally has been that variables such as texture, spatial relationships and diffuse 

boundaries, cannot be incorporated into a digital analysis (Emery et al., 2001). 

Image segmentation, referred to here as segmentation, is the process of partitioning a digital image 

into multiple segments or patches. Segmentation algorithms can be used for a range of image 

processing tasks such as edge detection and feature extraction. Working with image objects instead of 

pixels is widely recognised as beneficial (Burnett and Blaschke, 2003, Hay et al., 2003, Laliberte et 

al., 2004) and allows for the use of textural and semantic information in classification. 

In ecological studies, image segmentation  is especially appropriate (Laliberte et al., 2007) landscapes 

consist of mosaics of discrete patches.  Segmentation at multiple scales can offer insights into 

ecological processes (Burnett and Blaschke, 2003, Hay et al., 2002, Laliberte et al., 2007). 

Delineating vegetation patterns with segmentation has the potential to increase the efficiency of a 

mapping at a regional scale by making it faster and more repeatable.  

6.1.1 Vegetation patch scale segmentation 

This thesis features three commercially available segmentation algorithms for patch and community 

scale segmentation: Definiens Developer 7, the ENVI 4.5 Feature Extraction Module, and Size 

Constrained Region Merging (Table 6.1). Definiens Developer uses a region-growing algorithm that 

is limited by heterogeneity, Size Constrained Region Merging uses a spatial filter to create blobs and 

then aggregates them based on similarity, and ENVI Feature Extraction Module uses an edge 

detection process followed by region-merging. 

  



 

89 

 

Table 6.1  An overview of the segmentation software and the technology behind the algorithms.  

Segmentation 
Software 

Definiens Developer 7 
 

Size Constrained Region 
Merging (SCRM) 

ENVI Feature Extraction 
Module 

Provider Definiens ITT Visual Solutions Exelis 

Reference (Baatz and Schäpe, 2000) (Castilla, 2004) (Exelis, 2008) 

Method 
Fractal net evolution 

approach, globally uniform 
region growing. 

Adaptive filter, watershed, 
aggregated by dissimilarity. 

Edge detection, Lambda-
Schedule region merging. 

Size Limit No. 
Yes. (2 megapixel images for 

freeware) 
No. 

 

Adjusting the scale parameter can lead to ‘over-segmentation’ or ‘under-segmentation’ (Delves et al., 

1992). Over-segmentation occurs where the algorithm generates too many objects. An extreme case is 

where every tree crown has been delineated, or even every pixel. The visual clutter created renders the 

results impracticable for use as a management tool or for deriving broad vegetation classes. Under-

segmentation occurs when too few objects are generated. The extreme case of under-segmentation is 

where multiple vegetation classes are combined into one super-object that has no practical meaning 

for natural resource management.  

6.1.2 Size Constrained Region Merging (SCRM) 

Size Constrained Region Merging (SCRM) was developed by Castilla (2004) and has been tested and 

refined with the aid of others (Castilla, 2004, Castilla et al., 2008, Hay et al., 2005). It is an adaptive-

filter/watershed based region-merging approach to segmentation and the source code is written in 

IDL.  

In order to use SCRM, four parameters must be specified: (a) the desired mean size of output 

polygons, (b) the minimum size required for polygons, or minimum mapping unit, (c) the maximum 

allowed size, and (d) the minimum distance between vertices in the vector layer, or minimum vertex 

interval (MVI). MVI is an indication of the positional accuracy of boundaries and is internally used to 

define the working IGFOV, that is, spatial resolution (Castilla et al., 2008). The larger the specified 

minimum mapping unit, and maximum allowed size, the more objects can be fused and the larger the 

objects grow. 

SCRM uses the radiometric distance between region centroids (mean value of inner pixels) to merge 

regions (Castilla, 2004). The SCRM application first filters the input image with Gradient Inverse 

Weighed Edge Preserving Smoothing (GIWEPS) (Castilla, 2004). The process is similar to 

anisotropic filtering or any adaptive filter. The result is equivalent to applying a median filter 

iteratively several times. Eventually patches appear as like regions merge. The output is an almost 

piecewise constant image, from which the gradient magnitude is computed.  The resulting regions are 

aggregated iteratively by increasing dissimilarity until they all exceed the size of the minimum 

http://www.definiens.com/definiens-developer_7_7_8.html
http://www.ittvis.com/codebank/search.asp?FID=545
http://www.ittvis.com/envi/featureextraction/index.asp
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mapping unit (Castilla et al., 2008). The labelled image containing the final partition is then converted 

into a vector layer. 

6.1.3 Definiens Developer 7 

The multi-resolution segmentation algorithm in Definiens Developer 7 uses a ‘fractal net evolution 

approach’. The functionality of the FNEA-algorithm is described in detail by Baatz and Schäpe 

(2000) and Benz et al. (2004). The process is analogous to merging nearby objects that contribute the 

least to heterogeneity. It uses local mutual best-fit heuristics to find the least heterogeneous merge 

following the gradient of the best-fit. The algorithm can be applied with pure spectral heterogeneity or 

with a mix of spectral and form heterogeneity Shi et al. (2005). 

Definiens’ multi-resolution segmentation is a bottom up region-merging technique starting with one-

pixel objects. In numerous subsequent steps, smaller image objects are merged into bigger ones. 

Through this pair-wise clustering process, the underlying optimization procedure minimizes the 

heterogeneity of the objects weighted by size of the objects. In each step, the pair of adjacent image 

objects which results in the smallest growth of the defined heterogeneity is merged. If the smallest 

growth exceeds the threshold defined by the scale parameter, the process stops (Benz et al., 2004). 

The algorithm is novel because it includes the shape of the object in its measurement of heterogeneity. 

The dissimilarity between adjacent objects is measured as a linear combination of radiometric 

heterogeneity (expressed by the mean of the variance in each band of pixels within the segment) and 

form heterogeneity (expressed by the ratio between the actual edge length of a segment, and the edge 

of a square with the same number of pixels as the segment) (Benz et al., 2004). It allows the user to 

skew the segmentation in favour of regions with smooth edges and a more or less compact form. The 

larger the scale parameter, the more objects are allowed to grow, creating larger segments.  

The software allows the user to classify image objects at a fine scale and run the segmentation again 

on a specific class, making it useful for multiple types of data. Castilla (2004) reviewed the ecological 

grounding from numerous segmentation algorithms and argued that, although multi-resolution 

segmentation produces aesthetically pleasing results, it has no grounding in ecology. I would argue 

that with the addition of textural variables and enhancing the spectral between-class variations I am 

adding a missing component in the ecological grounding of the algorithm. 

6.1.4 ENVI Feature Extraction Module 

ENVI’s Feature Extraction Module first applies a simple edge-based segmentation algorithm that only 

requires one input parameter (scale level). By suppressing weak edges to different levels, the 

algorithm can yield multi-scale segmentation results from finer to coarser segmentation. Applied by 

itself it does not perform well at coarse scales. However, it is designed to generate fine scale objects 

for the second, more important step of region merging.  
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The region merging routine employs the Full Lambda-Schedule algorithm created by Robinson et al. 

(2002). The algorithm iteratively merges adjacent segments based on a combination of spectral and 

spatial information. Merging proceeds for a pair of adjacent regions if the merging cost is less than a 

defined threshold lambda value. 

Redding et al. (1999) argue that segmentation is in effect a compressed description of the image, and 

that an unavoidable consequence of compression is the introduction of some error. High quality 

segmentation is therefore one which has a very efficient description given the associated error. 

Redding et al. (1999) suggests viewing segmentation as a compromise between the shape of a 

boundary and the fitting error in the region enclosed by the boundary.  

The compromise between fitting error and shape can be presented in a rigorous mathematical 

framework by expressing the segmentation problem with variational methods using the Mumford-

Shah functional (Mumford and Shah, 1985). David Mumford is a Fields Medallist in algebraic 

geometry and, together with Shah, provided a unifying framework for image segmentation. 

The Mumford-Shah functional does not depend on any a priori knowledge of the statistics of the 

image and has the properties of compactness of the set of approximate solutions, convergence of 

minimizing sequences of solutions, and smoothness of the locally optimal solutions. The simplified 

form of the Mumford-Shah functional expresses the segmentation as one of minimizing problem. 

 

Where; 

Ω is the domain of the image 

K is a set of boundaries with total length l(K) 

g is a scalar or vector-valued function of the channels of the image on the domain Ω 

u is a piecewise constant approximating scalar or vector-valued function for the image which is constant over 

each region 

λ is the regularization parameter for the boundaries.  

 

If λ is small, then a lot of boundaries are allowed and a fine segmentation results. As λ increases, 

coarser and coarser segmentations result. The channels g can be derived from texture features so that 

the method is completely general and can be used to segment textured regions. The channels of the 

image are simply the pixel intensities in the simplest case of grey level segmentation (Redding et al., 

1999).  

The contribution of Redding et al. (1999) is the Full Lambda Schedule. Instead of the regions being 

merged by scanning arbitrarily through the list of regions and selecting the best possible merge from 
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the neighbours of each region at the current λ value, it considers all pairs of neighbouring regions in 

the image (the full λ-schedule) and chooses the smallest value to merge. 

The original motivation for development of the algorithm was the segmentation of synthetic aperture 

radar (SAR) imagery into homogeneous regions for near real time target detection in military analyst 

support software. It was designed to reduce the labour intensive process of picking out objects of 

interest over broad areas. The algorithm has computational complexity of the order of the Fast Fourier 

Transform, the benchmark for very fast algorithms. 

6.2 Multi-scale vegetation mapping 

SCRM was selected to perform patch scale segmentation in this chapter. SCRM aims to transform 

aerial or satellite imagery into a polygon vector layer that  resembles the work of a human interpreter 

who has been given the task of partitioning the image into a specific number of relatively 

homogeneous polygons without a priori knowledge of the scene (Castilla et al., 2008).  

Castilla (2004) recommends that the polygon layer be used as an initial template in the task of an 

interpreter, who needs to aggregate (and/or correct) pre-delineated regions. In a multi-scale approach 

to SCRM the patch scale objects can be given attributes based on the classification of individual tree 

crowns (sub objects), not just similarity between mean object values. The result is that small 

community scale objects are merged into large community scale objects based on type, maintaining 

the continuity of manually drawn patterns.  

The names of the vegetation units used in the existing Jilliby mapping are based on previous regional 

classifications (NPWS, 2000) as well as several new variants from (Bell and Driscoll, 2006). They are 

derived directly from the field data and from a hierarchical classification structure. The crown species 

are similar in each of the vegetation types in some cases they are only differentiated by the order of 

dominance or crown cover (see Table 6.2). 
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Table 6.2  An extract of vegetation classes at three scales derived from field data for the Jilliby State 

Conservation area. Community types frequently share the same dominant crown species (in a different order of 

dominance) making them hard to differentiate. 

Community Type Crown species  Common name 

Coastal Wet Gully 
Forest 

Coastal Wet Gully 
Forest 

Syncarpia glomulifera  
Eucalyptus saligna  
Eucalyptus deanei Eucalyptus 
acmenioides  

Turpentine 
Sydney Blue Gum 
Round-leaved Gum 
White Mahogany 

Coastal Warm 
Temperate - 
Subtropical 
Rainforest 

Eucalyptus saligna 
Eucalyptus deanei  
Eucalyptus acmenioides  
Syncarpia glomulifera  
Eucalyptus pilularis 

Sydney Blue Gum 
Round-leaved Gum 
White Mahogany 
Turpentine 
Blackbutt 

Coastal Narrabeen 
Moist Forest 

Coastal Narrabeen 
Bluegum Ridge Forest 

Eucalyptus saligna 
Eucalyptus deanei 
Syncarpia glomulifera 
Eucalyptus acmenioides 

Sydney Blue Gum 
Round-leaved Gum 
Turpentine 
White Mahogany 

Coastal Narrabeen 
Mahogany - Bluegum 
Forest 

Eucalyptus umbra 
Syncarpia glomulifera 
Eucalyptus deanei 
Allocasuarina torulosa 
Angophra floribunda 
Eucalyptus acmenioides 
Eucalyptus saligna 

Broad Leaf White Mahogany 
Turpentine 
Round-leaved Gum 
Turpentine 
Rough Barked Apple 
White Mahogany 
Sydney Blue Gum 

Source : Bell and Driscoll (2006) 

An underlying premise of any segmentation method is that spectral similarity and thematic similarity 

are synonymous. At an individual tree crown scale this assumption holds true, and image objects can 

be classified with a degree of accuracy. However, at coarser spatial scales, a large polygon can 

encompass a variety of thematic attributes. 

The spectral value of a large polygon containing a particular forest type may have a significantly 

different mean spectral value to its neighbour, of the same forest type, for a number of reasons. For 

example, the extent of canopy cover can vary exposing highly reflective soils. Or the spectral 

response can be altered by topography. A sheltered gully will produce shadow that can bias the mean 

value of community scale polygons, making them difficult to classify accurately. 

This study features a multi-scale approach to vegetation classification.  Crown delineation allows for 

classification that is based on spectrally and thematically homogenous sub-objects. Higher level 

objects emulate boundaries between vegetation communities. Community polygons can be labelled 

based on the proportion of classified sub-objects, or tree crowns. Pixels that represent shadow or 

exposed soil can be ignored in the classification. The hierarchical structure used to derive vegetation 

community names (Table 6.2) is emulated in classification of multi-scale remote sensing data (Figure 

6.1).  
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Scale Field Classification Image Objects Thematic Scale 

Crown Scale 

 
e.g., Eucalyptus saligna 
Sydney Blue Gum 
Eucalyptus deanei 
Round-leaved Gum 
Syncarpia glomulifera 
Turpentine 

 
Individual tree 
crowns 

Vegetation 
Patch Scale 

 
 
 
 
e.g., Coastal Narrabeen 
Bluegum Ridge Forest 
 
 
 
 

 
 
 
 
 
 
 
 

Automatically 
delineated 
discrete patches of 
vegetation  

Community 
Scale 

 
 
 
 
e.g., Coastal Narrabeen 
Moist Forest 
 
 
 

 
 
 
 
 
 
 
 

Patches merged to 
create community 
type polygons 
(based on 
classified crown 
objects) 

Landcover 
Scale 

 
e.g., Soil 
Woody Vegetation 
Grass 
Clearing 
Infrastructure 
Water 
 
 

 
 
 
 
 
 
 
 

Broad thematic 
attributes 

Figure 6.1 From the crown scale to the community scale: the hierarchical classification of field data with 

examples and the corresponding image object scale. 

6.2.1 Crowns scale classification 

Chapter 3 described how 889 tree stems were identified in the field. The further each crown is from 

the surveyed centre of the plot, and the smaller the crown, the less confidence there is in the crown 

location recorded in the field. Only large crowns that could be positively identified with a high degree 

of confidence were used as training and test data.  

The Jilliby study site is approximately 8 km by 16 km or almost 128,000,000 square metres. The 

HyMap crown delineation algorithm generated over 330,000 objects with their own unique spectra. 

The spectral values for all 118 noise free bands were extracted for every crown object across the study 

site. The spectral response of the crowns isolated using HDCA differed subtly from the spectra from 

manually delineated crowns due to changes in the shape of the training areas. Therefore, selection of 

training crowns needed to be repeated. 309 automatically delineated tree crowns were selected 
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because they could be labelled with a species with a high degree of confidence based on site survey 

data and lidar CHM. Manual crowns were delineated without reference to HDCA results.  

Again, a conservative approach was taken to ensure that each crown in the imagery was correctly 

attributed to the stem surveyed in the field. This cannot be automated because a survey in the field 

locates the stem of the tree, not necessarily the centre of the crown. Clark et al. (2004) also located 

crown centroids through visual adjustment of trunk points using a lidar canopy height model. Enough 

variation was sampled to include 12 separate species in the analysis, 10 of which are of the eucalyptus 

genera. Table 6.3 provides the acronyms that are used to denote each species for the remainder of the 

chapter.  

Table 6.3 The tree species of the crowns selected from the automatically delineated crowns and the attributes of 

each sample group. Total number of tree crowns sampled was 309. Abbreviations of the common name of tree 

species are given as three letter codes. 

Name Code Common Name No. Sampled 

Eucalyptus pilularis BLB Blackbutt 86 

Eucalyptus acmenioides WMG White Mahogany 31 

Syncarpia glomulifera TRP Turpentine 35 

Eucalyptus saligna BLG Sydney Blue Gum 36 

Eucalyptus punctata GRG Grey Gum 16 

Eucalyptus deanei RLG Round-leaved Gum 29 

Eucalyptus microcorys TAL Tallowood 15 

Eucalyptus agglomerata BLS Blue Leaved Stringybark 12 

Corymbia maculata SPG Spotted Gum 17 

Eucalyptus sparsifolia NLS Narrow Leaved Stringybark 5 

Eucalyptus paniculata IRB Grey Iron Bark 12 

Eucalyptus umbra BWM Broad Leaved White Mahogany 15 

Total 309 

 

Tree spectral signatures were classified  using Logistic Model Trees  (Witten and Frank, 2005) 

(LMT). LMT was used in preference to LDA because it improved computational efficiency without a 

corresponding decrease in performance. The crown scale statistics were calculated using 10-fold cross 

validation to maximise the number of crowns used in training. Twelve separate species were included 

in the analysis. The results of the model based on training data were stored as a rule base and run on 

the spectra of all crown objects.  

All crowns intersecting the study site were delineated and classified. Up to four dominant species 

were independently recorded by an ecologist in the field (Chapter 3). These are compared for each 

field site to see if the dominant species predicted from the crowns scale modelling matched the 

dominant species recorded by the ecologist. 
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6.2.2 Vegetation community scale classification 

The over-segmented community scale objects derived using Size Constrained Region (SCRM) 

merging could then be classified based on dominant crown species, area/abundance scores or any one 

of a variety of ecological classification regimes based on dominant canopy species (Figure 6.2). 

For each patch scale polygon the frequency of classified crown scale objects determined the 

vegetation type. The objects were then labelled using names from the existing classification scheme 

(Bell and Driscoll, 2006). Crown scale objects with unique ‘crownID’ are given a common ‘scrmID’ 

for each community polygon. The frequency of each tree species recorded is calculated and populates 

new fields at the community type scale where ‘scrmID’ is the join field. 

crownID crownAREA Tree scrmID 
 6575 9 WMG 20365 
7010 125 BLB 20365 
7224 33 WMG 20365 
7225 175 WMG 20365 
7261 34 BLB 20365 
7310 9 WMG 20365 
7402 18 BLB 20365 
7564 128 BLB 20365 
7565 42 BLB 20365 
7650 78 BLB 20365 
7709 225 WMG 20365 
7825 128 BLB 20365 
7967 152 BLB 20365 
8025 71 BLB 20365 
8026 62 BLB 20365 
8523 90 BLB 20365 
8524 128 WMG 20365 
8550 78 TAL 20365 
8578 23 BLB 20365 
8796 34 BLB 20365 
9856 37 BLB 20365 
10114 66 BLB 20365 
10424 15 BLB 20365 
10774 66 BLB 20365 

  

Figure 6.2 An example of the spatial join of crown scale objects and community scale objects. 

The results at a plot scale are based on LMT of the mean spectral response of each of 309 tree crowns 

that were located inside and outside the plots. The three dominant tree crowns were calculated based 

on frequency (raw count) and the proportionate area of each species was also calculated. Tree crowns 

that overlapped the edge of each plot were included. Dominant tree crowns were categorised 

independently (Stone et al., 2008). Dominant species were listed in emergent, over-storey and upper-

mid storey strata.  

6.2.3 Image pre-processing 

The use of reflectance data without any pre-processing for segmentation can lead to the creation of 

image objects with artefacts sensor geometry, sun angle and topography. This is particularly relevant 

scrmID Frequency Tree 
20365 17 BLB 
20365 1 TAL 
20365 6 WMG 
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in the highly variable topography of the Jilliby Catchment area. Dark objects are generated in hill 

shade and gullies; light objects are created on brightly lit ridges, with analogous patches adding noise 

in between. The patterns delineated by SCRM using reflectance data had more in common with a hill 

shade image of a digital elevation model than it did with vegetation type.  

Therefore, pre-processing was applied to remove artefacts and correct for topographic effects. 

HyMap's spectral bands are powerful for classification but much of the data were redundant for 

community scale segmentation. A data reduction algorithm was applied.  

The Linear discriminant analysis (LDA) algorithm (used in Section 4.5.4) ranked the contribution of 

each of the 118 available noise-free bands to the classification of species type. 16 bands were selected 

in a step-wise fashion, most of which are in the Short Wave Infrared (SWIR). Each band was pre-

processed Figure 6.3 by only taking the DNs that represented woody vegetation and saturation 

stretched (see Section 5.3.1). 

 

0 80 16040 m

 

Figure 6.3 Pre-processing aims to enhance between class variance of vegetation using hyperspectral data. 

Unmodified imagery (left) and a histogram, saturation stretch of LDA selected bands(right).  

6.3 Results 

6.3.1 Image pre-processing and patch scale objects 

After pre-processing the spatial patterns visible in the processed imagery were consistent with the 

existing community mapping based on visual interpretation. The spectral response of an image object 

is more likely to be representative of the target material if the object boundary is the same size or 

smaller than the target (Nagendra, 2001). So, over-segmentation (partitioning of the data into smaller 

units than required) at the patch scale increases the chance the image object will be a homogenous 

sample of a single thematic unit (vegetation patch). Castilla (2004) similarly recommends that the 

polygon layer be used as an initial template in the task of an interpreter, who needs to aggregate and 

correct.  
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6.3.2 Crown scale classification 

Classification accuracy is lower than the results presented in Chapter 4 which used different samples 

of crowns. There is also a greater variety of tree species in the modelling and infrequently sampled 

species were used. 

Eucalyptus paniculata (IRB) and Eucalyptus sparsifolia (NLS) were mistaken for other species. This 

is due to the difficulty discriminating different eucalypt species and the lower average tree height, 

which leads to occlusion and shadow effects. Of the 309 tree crowns available for classification 

(Table 6.4) 62% were correctly classified. Table 6.5 gives accuracy per class (species). 

Table 6.4 Crown scale classification statistics using LMT 

Classification Measure Count Value 

Correctly Classified Instances 192 0.62 

Incorrectly Classified Instances 117 0.38 

Kappa statistic  0.56 

Total Number of Instances  309 
 

Table 6.5 Detailed crown scale classification statistics from LMT by class 

Class TP  FP  

BLB 0.86 0.80 

BLG 0.53 0.56 

BWM 0.60 0.47 

BLS 0.92 0.79 

GRG 0.27 0.29 

IRB 0.00 0.00 

NLS 0.00 0.00 

RLG 0.28 0.38 

SPG 0.67 0.55 

TAL 0.27 0.50 

TRP 0.86 0.81 

WMG 0.68 0.53 
 

The True Positive (TP) rate is the proportion of examples which were classified as class x, among all 

examples which truly have class x, i.e. how much part of the class was captured (Table 6.5). The False 

Positive (FP) rate is the proportion of examples which were classified as class x, but belong to a 

different class. The confusion matrix illustrates errors of commission and omission (Table 6.6). 
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Table 6.6 A confusion matrix of twelve crown species based on LMT. 

a b c d e f g h i j k l classified as  

74 4 1 0 0 0 0 2 2 0 0 3 a = BLB 

6 19 0 1 2 1 1 3 1 0 0 2 b = BLG 

2 0 9 0 1 0 0 0 1 0 0 2 c = BWM 

0 0 0 11 0 0 0 0 1 0 0 0 d = BLS 

0 1 2 0 4 2 0 2 4 0 0 0 e = GRG 

1 1 2 1 0 0 0 2 0 0 1 4 f = IRB 

0 0 3 1 0 0 0 0 0 0 1 0 g = NLS 

4 5 1 0 2 1 0 8 1 0 2 5 h = RLG 

1 1 0 0 3 0 1 0 12 0 0 0 i = SPG 

3 0 0 0 1 1 0 2 0 4 3 1 j = TAL 

0 0 0 0 1 0 0 1 0 1 30 2 k = TRP 

2 3 1 0 0 0 0 1 0 3 0 21 l = WMG 

 

6.3.3 Multi-scale vegetation map of dominant crown species 

Figure 6.4 shows a subset of the distribution of tree crowns species delineated with the HCDA and 

modelled using LMT.  In this example the distribution of modelled tree species follows field 

observations. Blackbutt (BLB) crowns are present on the dry ridge tops.  Sydney Bluegums (BLG) 

appears as large emergent trees on the slopes and amongst White Mahogany in the mesic flats. 

 

Figure 6.4 A subset of the distribution of crowns species modelled in the Jilliby Catchment area. 

The SCRM ‘community type’ polygons were intentionally over-segmented to account for variation at 

the fine scale. They were then combined based on the dominant species. This multi-scale data 

structure allows for interpretation at the familiar community scale, and if more information is needed 

the user can switch to finer scale for local applications (Figure 6.5). 
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Figure 6.5 Manual air photo interpretation of type (top left) and a patch scale segmentation (SCRM) of 

vegetation patterns (top right). Tree crowns (bottom left) are classified and species dominance used to classify 

SCRM patch polygons (bottom right) to create a map of vegetation community. 

6.3.4 Plot scale accuracy assessment 

Tree crowns delineated using HCDA that intersected with the 20m radius boundary were analysed at 

129 plots. Not all sites had three dominant species so the percentage of crowns classified correctly is 

given (see Table 6.7). Up to four dominant species were recorded independently by an ecologist in the 

field. 
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Table 6.7 Plot scale accuracy assessment of crown species in all 20m plots.  

Modelling at 20m 
Most dominant 
species modelled as 
most dominant 

Most dominant 
modelled as present 

One of the three 
most abundant 
species present 

Number of 
trees crowns 
modelled 

Field assessment of 
dominant species 

47% 63% 87% 0 - 12 

 

One site from each class in the stratification has been represented graphically in Figure 6.6 to Figure 

6.9 . The examples from Class 4 and Class 1 show the crown modelling correctly identifying species 

presence/absence but not predicting the order of dominance. The examples from Class 2 and Class 3 

correctly identify crown species presence/absence and predict the order of dominance.  

Plot number 4023 

 

Dominant crown species Eucalyptus pilularis 

 Eucalyptus saligna 

  

Modelled crown species Eucalyptus saligna 

 Eucalyptus pilularis 

  

Presence/absence present 

Order of dominance no 

Presence of species in 
community polygon in the 
field 

yes 

Number of crowns 5 

Figure 6.6 Plot number 4023 provides an example from Class 4 of the modelling correctly identifying species 

presence/absence but not predicting the order of dominance. 
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Plot Number 3008 

 

Dominant crown species Eucalyptus acmenoides 

 Syncarpia glomulifera 

  

Modelled crown species Eucalyptus acmenoides 

 Syncarpia glomulifera 

 Eucalyptus saligna 

Presence/absence present 

Order of dominance yes 

Presence of species in 
community polygon in the 
field 

yes 

Number of crowns 7 

Figure 6.7 Plot number 3008 provides an example in Class 3 of the modelling correctly identifying crown 

species presence/absence and predicting the order of dominance but included species on the edge of the plot. 

Plot Number 2002 

 

Dominant crown species Eucalyptus pilularis 

 Corymbia maculata 

  

Modelled crown species Eucalyptus pilularis 

 Corymbia maculata 

 Eucalyptus microcorys 

Presence/absence present 

Order of dominance yes 

Presence of species in 
community polygon in the 
field 

yes 

Number of crowns 8 

Figure 6.8 Plot number 2002 provides an example in Class 2 of the modelling correctly identifying crown 

species presence/absence and predicting the order of dominance. 

Plot Number 1007 

 

Dominant crown species Eucalyptus pilularis 

 Eucalyptus punctata 

 Eucalyptus deanei 

Modelled crown species Eucalyptus punctata 

 Eucalyptus deanei 

 Eucalyptus pilularis 

Presence/absence present 

Order of dominance no 

Presence of species in 
community polygon in the 
field 

yes 

Number of crowns 7 

Figure 6.9 Plot number 1007 provides another example in Class 1 of the modelling correctly identifying species 

presence/absence but not predicting the order of dominance. 
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6.4 Discussion 

For community scale vegetation mapping, a representative sample of large, classified dominant 

crowns was sufficient for labelling vegetation types. For stands of smaller trees, the crowns overlap at 

this spatial resolution. However, an algorithm that produces image objects among smaller crowns 

generated a representative sample of sunlit vegetation.  Each object supports spectral extraction, and 

classification, even if some crowns were not delineated. To increase the geometric accuracy of tree 

delineation for small tree crowns required higher resolution imagery. 

Other products such as vegetation indices, tree height from the lidar canopy height model, and DEM 

derivatives could also be extracted to improve classification if required. Other studies (Johansen et al., 

2007) have shown that texture can be a useful predictor.  

As demonstrated in Chapter 4, classification accuracy was over 85% when the eight species with large 

sample groups were examined. Classification accuracy in Chapter 6 was 62% at a crown scale with 

twelve unique species using cross validation. The independent validation data set available for this 

research was a list of dominant species described for each plot, which is typical of the data available 

to vegetation managers in NSW. At the plot scale the most dominant species was recorded as present 

63% of the time. One of the three most abundant species present 87% of the time. 

6.5 Conclusion 

This chapter demonstrated how a multi-scale, object-based approach can be used for mapping native 

vegetation with hyperspectral data. An existing community delineation algorithm (SCRM) (Castilla, 

2004) was used to produce community scale polygons for the Jilliby site in ENVI. SCRM can be 

enhanced with the use of high spectral resolution data and pre-processing to create vegetation patch 

scale polygons. The HyMap Crown Delineation Algorithm (HCDA) introduced in Chapter 5 was 

applied to the entire study area and a machine learning algorithm was used to classify dominant 

canopy species (see Chapter 4). It is an appealing approach because there were no assumptions about 

the consistency of spectral response between different scales. The scale of the sampling (tree crown) 

equals the scale of the map (crown objects). 

Unfortunately, the approach is burdened by the need to survey tree crowns precisely, which is 

unlikely to gain wide usage at operational scales. The method can also be confounded by complex 

vegetation structure and composition. The HCDA and the field survey were limited to emergent 

crowns and as such cannot represent the floristic diversity found in native forest.  
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Chapter 7  

Assessing fuel loads with remote sensing 

Chapter 6 dealt with the multi-scale classification of vegetation type using HyMap data. Vegetation 

structure is critical to the expression of vegetation type and its distribution. The convention for 

naming vegetation type generally uses floristic associations with species dominance and indicator 

species combined with the structural formation. So using remote sensing to quantifying structural 

attributes of vegetation can provide the precursor for mapping type.  

The aim of this chapter was to evaluate the operational approaches to surveying vegetation structure, 

in the form of fuel loads, and determine if the results are correlated with remote sensing variables. 

Remote sensing data included vegetation indices calculated from HyMap and satellite imagery and 

lidar variables derived from a canopy height model.  

The surface and near surface fuel layer depths and the arrangement of the shrub layer are important 

for fire hazard assessment in Australia. Since more than one approach to field survey is currently 

under consideration, both the OFHG and the Vesta methods are used in the study so that its finding 

may be beneficial for either standard. Due to the potential difficulties of isolating the structure of 

forest in a particular strata multiple sensors are utilised. The results may also be useful to guide 

selection of survey methods best suited for future remote sensing studies of fuel loads.  

7.1 Background 

Imprecise use of certain terms regarding forest fuels often causes confusion and misunderstanding. It 

is worthwhile to briefly review the main ones (Arroyo et al., 2008). Fuels are defined in terms of the 

physical characteristics of the live and dead biomass that contribute to the spread, intensity and 

severity of wildland fire (Andrews and Queen, 2001b) . 

Maps of surface fuel characteristics are more common in the conifer and deciduous tree forests of the 

northern hemisphere. The advantage of working with conifer and deciduous tree species is that 

surface fuel models can be determined based on overall vegetation structure. For example, Anderson 

(1982) characterised fuel models for the United States (US) into grasses, brush, timber, and slash. 

Grass dominated sites are easy to detect with remote sensing and, in the US, ground fires spread much 

more slowly than surface and crown fires (Mutlu et al., 2008). Closed canopy stands of short-needle 

or long-needle conifers and hardwoods, or timber, have a relatively predictable litter load and can host 

crown fires that feed on live and dead foliage (Scott et al., 2001). 
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Similarly, the main criterion of classification in the European context system is the type and height of 

the propagation element (grass, shrubs or ground litter). Fuel types are therefore described according 

to the spatial distribution of these three major groups. Fire behaviour can be modelled by simply 

taking into account fuel height and density (Riaño et al., 2002) leading to relatively high classification 

accuracies. 

Unfortunately, each fuel type classification is only applicable for similar geographic locations and 

cannot be used for other environments. Moreover, when foreign systems have been adopted for 

different locations the results have been poor (Fogarty et al., 1998) for example, discuss the problems 

of adopting the Canadian system for New Zealand. 

Fire models specific to Australian forests have been developed to help predict and understand fire 

behaviour and fire hazard. They require a variety of input data but generally use meteorological, 

topographic and fuel conditions as variables (Adams and Simmons, 1999). They are designed to 

predict the way in which fuel will burn by applying mathematical relationships to describe different 

aspects of fire (Andrews and Queen, 2001b).  

In mild weather conditions, fire behaviour can be predicted to some degree according to the type and 

structure of the vegetation, the level of moisture in the fuel, the arrangement of the fuel and the 

terrain. For example, fire burns more readily up a slope, and is less likely to burn in deep, generally 

moister gully areas (Bushfires, 2002).  

The rate of spread of fire in Australian forests is dictated more by surface and near surface fuel layer 

depths and the continuity and the height of the shrub layers. Fires are likely to spread much faster in 

forest with a developed shrub layer and fires in litter fuels are likely to spread much faster in areas 

with a low shrub layer. Previous research has found that the structure and quantity of surface fuel is of 

greater importance to wildfire behaviour than a measure of fuel load per unit area (Burrows, 2001). 

Cheney (1994) established that independent crown fires do not occur in eucalypt forests as the amount 

of radiative heating from crowns is usually insufficient to maintain combustion in adjacent crowns. 

Crown fires in eucalypt forests are the result of pre-heating by convection from under-storey fuels. 

Vertical gaps in the fuel layer can prevent crown fires developing, while horizontal gaps have the 

ability to ground a crown fire (Chandler, 1983). Isolated, field-based fuel load sampling cannot 

quantify these variables across the landscape. A major weakness of the models currently in 

operational use (see Chapter 3) is that they do not take into account the spatial variability of fuel 

structure. 
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7.2 Remote sensing of fuel loads 

There is a clear management advantage to having an understanding of fuel continuity across the 

landscape. Current practice is to estimate fuel loads at the landscape level based on expert experience 

in the local environment. This subjective approach, coupled with relatively poor fire history records 

outside major conservation reserves, has the potential to lead to non-strategic fuel mitigation 

strategies (Chafer et al., 2004). 

Field sampling is costly, complex and time consuming. Fuel quantities are dynamic and consequently 

require periodic updating, but this is difficult to achieve due to the nature of data collection methods. 

New methods to regularly estimate fuel data for large and remote areas are needed to improve fire risk 

assessment, fire behaviour prediction and fuel management plans.  

(Keane et al., 2001) suggested that remote sensing data with a high degree of accuracy may not be 

essential for fuel assessment, supporting the case for medium resolution satellites. Absolute 

measurements of fuel quantities are unnecessary as qualitative estimates are more common in the 

field, for example the (OFHG) (McCarthy et al., 1999) uses a descriptive scale (low, moderate, high, 

and extreme). 

In Australia, the predominance of eucalypt forests makes variation in fuel characteristics more 

difficult to map. The challenge for remote sensing is to quantify the variation in the structure of an 

under-storey that can fluctuate independently to changes in canopy structure. An accurate map of tree 

height, shrub height and grassland parameters that are used in fuel models for US forests will not be a 

necessarily be transferable. As discussed, the rate of spread of fire in Australian forests is dictated 

more by surface and near surface fuel layer depths and the continuity and the arrangement of the 

shrub layer. There is little research in Australia on remote sensing of forest fuel properties, with the 

notable exception of Brandis and Jacobson (2003) and Chafer et al. (2004). For a summary of national 

and international studies see Table 7.1. 

Remote sensing has the potential to reduce uncertainty when assessing fuel loads and improve our 

ability to assess spatially and temporally varying fuel characteristics (Chafer et al., 2004). The 

advantages of remote sensing include: a potential reduction in the need for expensive fieldwork, the 

assessment of inaccessible areas, the measurement of fuel characteristics at the landscape scale, and 

the provision of contemporaneous spatial data for active fire fighting.  
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Table 7.1 Advantages and disadvantages of various remote sensing data for assessing fuel loads. 

Sensor 
Methodological 
approach 

Advantages Disadvantages Reference 

Landsat, 
SPOT, 
ASTER 

Supervised 
classification of 
multi-temporal 
imagery, ancillary 
data and texture 

Broad spatial 
coverage; 
availability 

Do not allow to see 
underneath the canopy; 
limited spatial resolution 

(Chuvieco and Congalton, 
1989, Chuvieco and Salas, 
1996, Francesetti et al., 
2006, Guang-xiong et al., 
2007, Riano et al., 2003, 
Van Wagtendonk and Root, 
2003, Lasaponara and 
Lanorte, 2007b, Brandis 
and Jacobson, 2003, Chafer 
et al., 2004) 

QuickBird, 
IKONOS 

Object-based 
classification; 
maximum 
likelihood 
classification 

Detailed 
information; 
adequate for 
wild urban 
interface 

Mostly limited small to small 
scale studies; limited 
spectral resolution 

(Arroyo et al., 2008, 
Giakoumakis et al., 2002, 
Gitas et al., 2006, 
Lasaponara and Lanorte, 
2007a) 

AVIRIS, 
Hyperion, 
DAIS7915, 
HyMap 

Spectral mixture 
analysis; 
supervised 
classifications 

Can assess 
fuel features; 
biophysical 
components 
mapping 

Spectral resolution; ability 
to model sub-pixel 
abundance; greater range of 
vegetation indices; limited 
to small scale studies 

(Jia et al., 2006, 
Keramitsoglou et al., 2008, 
Kotz et al., 2004, Roberts et 
al., 2003, Thenkabail et al., 
2004) 

Lidar 
(airborne 
small 
footprint) 

Regression 
analysis; tree 
segmentation; 
vertical profiles 

Direct height 
measurement; 
penetrates 
canopy 

Complicated data 
processing; lidar 
specifications inconsistent 
between acquisitions 

(Morsdorf et al., 2004, 
Riano et al., 2003, 
Skowronski et al., 2007) 
 

RADAR 
Semi-empirical 
algorithms over 
SAR imagery  

Broad spatial 
coverage; 
penetrates 
the canopy 

Uncertainty in the 
estimation greater than 5 m 
(satellites) or 1 m (airborne). 
Insensitive to high biomass 
levels; not operative on 
steep slopes 

(Saatchi et al., 2007) 

Combined 
methods 

ASTER modelling; 
Lidar + 
multispectral; 
Lidar + 
hyperspectral 

Integration of 
information; 
broad scale 
and canopy 
penetrating 

Complicated data 
processing; expensive 

(Falkowski et al., 2006, 
Mutlu et al., 2008, Poulos 
et al., 2007, Riano et al., 
2003, Varga and Asner, 
2008, Lefsky et al., 2002) 

Source: Adapted from (Arroyo et al., 2008) 

7.2.1 Multi-spectral Medium Spatial Resolution Satellites 

Landsat-TM and SPOT-HRV have been widely used to estimate percent canopy cover, canopy height, 

tree biomass, and tree volume using empirical approaches (De Wulf et al., 1990, Oza et al., 1996, 

Spanner et al., 1990). Both sensors have seen widespread operational use due to their cost effective 

coverage, established image processing techniques, and their extensive historical archive. Indices, 

such as spectral vegetation index, simple ratio, and normalised difference vegetation index (NDVI), 

obtained from satellite data have been shown to be useful predictors of leaf area index (LAI), 

biomass, and productivity in grasslands and forests (Jakubauskas, 1996, Paruelo and Lauenroth, 1998, 

Steininger, 2000, Tieszen et al., 1997). However, recent international studies highlight the need to 
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recalibrate remotely sensed indices for each vegetation type (Calva and Palmeirim, 2004, Foodya et 

al., 2003, Riaño et al., 2002). 

Chafer et al. (2004) used SPOT2 satellite imagery before and after fire to examine the severity and 

intensity of the Christmas 2001 wildfires in the greater Sydney Basin. In the process they introduced a 

relatively simple method for estimating fuel load biomass using a combination of the satellite image 

and rapid field assessment using the OFHG. Chafer et al. (2004) extracted the mean Normalised 

Difference Vegetation Index (NDVI) for each site and correlations were extrapolated across the 

landscape using an exponential regression model. Subsequent field validation of the model indicted an 

overall accuracy of 79% for the six classes developed subjectively for the fuel model. While this 

would appear to be an acceptable degree of accuracy for the purpose of fuel load assessment for fire 

management planning, more research is required to determine how transferable this method is to other 

regions. 

In arid and semiarid environments, the use of vegetation indices such as NDVI is rarely effective. 

Vegetation indices are likely to underestimate live biomass in deserts and are insensitive to non-

photosynthetic vegetation (Okin et al., 2001) . Todd and Hoffer (1998) found that NDVI is affected by 

soil colour and is therefore not always comparable across a homogenous scene. Medium spatial 

resolution multi-spectral satellite remote sensing relies on superficial observations of reflectance from 

the canopy, and therefore, it is difficult to identify the understory component of forest fuels. 

Additionally, reflectance is not directly related to vegetation height, which is a critical variable to 

discriminate fuel types (Riaño et al., 2002). Since canopy closure is so limiting (Asner, 1998, Spanner 

et al., 1990) and litter lacks distinguishable spectral properties (Brandis and Jacobson, 2003). 

7.2.2 Hyperspectral sensors 

Active areas of relevant research into the use of hyperspectral sensors include vegetation structure and 

dynamics (Miller et al., 1991, Ustin and Trabucco, 2000) and canopy species identification (Bunting 

and Lucas, 2006). Hyperspectral remote sensing systems can analyse biophysical and chemical 

information that’s directly related to the quality of wildfire fuels, including fuel type, fuel moisture, 

green live biomass and fuel condition (Roberts et al., 2003) . Roberts & Dennison (2003) used a 

variation of spectral mixture analysis to map dominant vegetation types with hyperspectral data. A 

vegetation map produced with this method can be reclassified to standard fuel models such as those 

presented by (Anderson, 1982), providing species specific fuels information otherwise inaccessible 

through remote sensing alone. 

Roberts et al. (1997) pioneered the spectral characterization of fuel condition (relative proportion of 

live to dead or senescent fuel) using a temporal sequence of airborne hyperspectral data. Jia et al. 

(2006) implemented spectral mixture analysis techniques for mapping three major forest components. 
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Hyperspectral data have also been employed for other fire-related applications, such as mapping fire 

temperature and land cover in wildland fires (Dennison et al., 2006). 

While hyperspectral data has the advantage of being able to contribute to the classification of 

vegetation species, this is not always relevant; since the same species may present completely 

different fire propagation rates if, for example, their fuel load or vertical continuity changes 

(Anderson, 1982). 

7.2.3 Lidar 

Gould et al. (2007) burnt a series of test plots and varied the stand structure and fuel load of native 

Australian vegetation between plots. The results suggest a linear correlation may exist between stand 

height and surface fine fuel load, and between stand height and litter-bed height. The number of 

samples was too small for a conclusive result but the findings indicate that mature tree stand height 

may be used as a predictor of the surface fine fuel hazard. This may allow for the use of lidar canopy 

height models for the prediction of expected surface fine fuel hazard levels over large areas. 

Airborne lidar systems have been used for estimating critical parameters for fire behaviour, which 

have produced better results than aerial photography, airborne hyperspectral sensors (e.g. AVIRIS), 

and airborne profiling radar (Hyyppä et al., 2000, Hyyppä et al., 2004, Lefsky et al., 2002, Riano et 

al., 2003, Saatchi et al., 2007). 

Lidar remote sensing can provide detailed information about the forest canopy and ground surface 

Lefsky et al. (2002) that can be useful for mapping fuel hazard. For example, Riano et al. (2003) 

compared lidar to traditional aerial photography and fieldwork and found that airborne scanning laser 

systems provide better spatial coverage and could improve the temporal resolution for the update of 

fuel maps. Morsdorf et al. (2004) has used individual tree crown dimensions derived from lidar for 

forest fire risk assessment and Mutlu et al. (2008) combined airborne lidar data with multi-spectral 

satellite data for mapping fuels. 

Fine spectral resolution can be more important than high spatial resolution for characterising forest 

structure in some cases (Thenkabail et al., 2004). Narrow band indices can detect the presence and 

relative abundance of pigments, water, cellulose and carbon as expressed in the solar-reflected optical 

spectrum (400 nm to 2500 nm). 

The integration or fusion of lidar and optical data has the potential to complement deficiencies of the 

alternate technology as well as improve the accuracy, and increase the number of applications 

possible for forest characterisation (Lefsky et al., 2002, Mutlu et al., 2008, Riano et al., 2003). For 

example, integrating lidar data with delineated tree crown maps (derived from multispectral imagery) 
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can increase the level of accuracy by removing falsely identified tree crowns or identifying the surface 

canopy types (shrubs, young forest, grassland, etc.). 

7.3 Methods 

This study quantified forest fuel load and fuel hazard in the field and compares it with remotely 

sensed variables. Isolating the structure of forest in a particular strata presents difficulties with remote 

sensing due to occlusion under the canopy. However, this is necessary for assessing fire hazard in 

Australia as surface fuel and the arrangement of the shrub layer are the main drivers. To quantify the 

usefulness of a remote sensing approach for the Jilliby area multiple sensors were employed. Data 

from HyMap, lidar and satellite data from SPOT 5 and Landsat TM were quantitatively compared to 

field data. Since more than one approach to field survey is currently under consideration, both the 

OFHG and the Vesta were used in the study so that its finding may be beneficial for either standard. 

The aim is to provide a guide to which survey methods are best suited for mapping forest fuel using 

remote sensing and which remote sensing platform would provide the best data to implement these 

methods. 

7.3.1 Fieldwork 

Chapter 3 described the sampling design and the comprehensive range of field measurements that 

were collected at the Jilliby site. In summary, three approaches were taken in the assessment of fire 

hazard in the field. The first was a rapid visual assessment using the Overall Fuel Hazard Guide 

(OFHG) (McCarthy et al., 1999) that is used operationally in eastern Australia. The second was an 

early prototype of the CSIRO’s Project Vesta field guide methodology (Vesta), which has since been 

published by Gould et al. (2007).  

Data from the various field-based methods were compared through cross tabulation. The visual 

scoring methods were based on ordered categories, not continuous variables, and were converted to 

numeric values for comparison. Spearman’s ρ was chosen to measure the association between rank 

orders and test for significant relationships. Spearman's ρ can be used for quantitative variables as 

well as variables with ordered categories and does not assume normal distribution. Two outliers were 

removed (Site 1016 and Site 3003) due to their extreme field values. 

The OFHG gives a fuel hazard class to each vertical height strata of the fuel layers based on visual 

assessment and the use of reference photographs from the guide. A table is used to convert these 

classes (e.g. VH (very high)) to values (e.g. 6 t/ha).  

The Vesta method quantifies elevated fuels that comprise of shrubs, heath, bracken, tall grasses, tall 

sedges and suspended material.  The hazard level assigned depends on fuel amount (weight), height, 

horizontal and vertical continuity, proportion of dead material, thickness of the foliage and twigs, and 
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flammability of the live foliage.  Elevated fuels are considered within 2 m of the forest floor and are 

generally less than 8 m tall.  

Destructive fuel loads were sampled at 64 sites in nested 1m by 2m quadrat (see Figure 3.7). 

Destructive sampling requires the physical removal of fuel samples from the field which are 

subsequently dried and weighed. Either 8 or 4 quadrats were performed at each site. Fuel collected 

included all the elevated fuel from inside the 1m by 2m quadrat. All senesced or dead material <6mm 

in diameter and all green or live material <3mm in diameter was collected, oven dried and weighed. 

Destructive sampling is considered to be the most accurate fuel load assessment technique at a 

particular sample point (Bradstock et al., 2002) and all other techniques are calibrated against it. 

Upward looking photos were taken at each site and converted to black and white binary images as a 

coarse measure of canopy cover. Projected Foliage Cover is the proportion of ground that would be 

shaded if sunshine came from directly overhead (Carnahan, 1981). It has been generally accepted as 

the measure of foliage quantity in Australia (Walker, 1981) and is used in Specht ( 1970) vegetation 

classification system. 

7.3.2 Remote sensing 

Several remote sensing approaches were used in a data mining exercise to test for correlations with 

field data. Lidar volume metrics were calculated at multiple heights with an aim of determining the 

horizontal and vertical arrangement of fuel. Crown image object metrics and moving window texture 

analysis were trialled to isolate textural contribution to the relationship between fuel load scores and 

imagery. Digital elevation model derivatives were trialled to examine if there was a relationship 

between topographic position and fuel load. Each of the variables generated were placed in a database 

and cross tabulated against field attributes using non-parametric correlation. Results of the vegetation 

indices and lidar variables are presented here. 

OFHG and Vesta metrics were compared to a vegetation indices at 127 sites. Five narrow band 

vegetation indices selected based on a review of the literature, including NDVI, were calculated using 

HyMap data (Table 7.2). To create a spatial model of the results, a non-linear (power) function was 

applied to the Atmospherically Resistant Vegetation Index (ARVI).  

Following Chafer et al. (2004) broad band NDVI was calculated using SPOT 5 and Landsat TM data 

for the area within each plot. Broad band NDVI (Landsat TM 5 data, 2005-08-11) was extracted from 

each 20m quadrat OFHG plot and a non-linear function was fitted (power). Absolute fuel quantities 

are unnecessary and qualitative estimates are more common in the field. The OFHG (McCarthy et al., 

1999) uses a descriptive scale (low, moderate, high, and extreme). In some cases, remote sensing data 

with a high degree of accuracy may not be essential. In some cases, the results were then divided into 

5 broad classes. 
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Table 7.2  Vegetation Indices that were applied to the HyMap hyperspectral data 

Name and reference Acronym Description 

Normalized Difference 
Vegetation Index 

(Rouse et al., 1973) 
 

NDVI 

One of the oldest, most well known, and most frequently used VIs. The 
combination of its normalized difference formulation and use of the 
highest absorption and reflectance regions of chlorophyll make it robust 
over a wide range of conditions. It can, however, saturate in dense 
vegetation conditions when LAI becomes high. 

Simple Ratio Index 
(Birth and McVey, 

1968) 
SRI 

The SR is the ratio of the highest reflectance; absorption bands of 
chlorophyll makes it both easy to understand and effective over a wide 
range of conditions. As with the NDVI, it can saturate in dense 
vegetation when LAI becomes very high. 

Enhanced Vegetation 
Index 

(Huete et al., 2002) 
EVI 

Developed to improve the NDVI by optimizing the vegetation signal in 
LAI regions by using the blue reflectance to correct for soil background 
signals and reduce atmospheric influences, including aerosol scattering. 
This VI is therefore most useful in high LAI regions, where the NDVI may 
saturate. 

Atmospherically 
Resistant Vegetation 

Index 
(Kaufman and Tanre, 

1992) 

ARVI 

An enhancement to the NDVI that is relatively resistant to atmospheric 
factors (for example, aerosol). It uses the reflectance in blue to correct 
the red reflectance for atmospheric scattering. It is most useful in 
regions of high atmospheric aerosol content, including tropical regions 
contaminated by soot from slash-and-burn agriculture. 

Red Edge Normalized 
Difference Vegetation 

(Sims and Gamon, 
2002) 

 (Gitelson et al., 1996) 

RENDI 

This VI differs from the NDVI by using bands along the red edge, instead 
of the main absorption and reflectance peaks. The NDVI 705 capitalizes 
on the sensitivity of the vegetation red edge to small changes in canopy 
foliage content, gap fraction, and senescence. 

 

The correlation between lidar metrics and surface fuel load was examined following McCarthy 

(2004). Turner (2007) differenced first return and ground strikes to create a CHM. This layer was 

used to find maximum canopy height, leaf litter height and mid-storey density at each plot.  

7.4 Results 

The Jilliby Catchment area has historically been managed for commercial native forestry. Evidence of 

this can be seen in condition attributes collected at Jilliby. Table 7.3 provides a summary of ‘time 

since fire’ and ‘evidence of logging’ at recorded at each plot. Almost 90% of plots had visible 

evidence of logging. Only a small proportion (17%) of the plots had been exposed to recent fire.  

Table 7.3 Binary condition attributes sampled at a plot scale at Jilliby with a count of those recorded and the 

proportion of plots affected. 

Condition attribute Sampled 
Proportion  of  
Plots effected 

Evidence of fire 96 0.74 

No evidence of fire 11 0.09 

Recent fire 22 0.17 

Stumps 113 0.88 

No evidence of logging 7 0.05 

Recent logging 9 0.07 

Old logging 34 0.26 
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Table 7.4 summarises some of the condition attributes that were not assessed directly with remote 

sensing instruments. The high number of hollows is further evidence of forestry management with the 

conservation of over-mature trees as potential habitat. The occurrence of large dead trees that had 

been ringbarked, or died due to declining canopy condition, could be readily observed lidar.  

While rare, the most commonly encountered exotic species was Lantana camara. A percent cover 

score was calculated at each site the species was present. While it is a native species, Cissus 

hypoglauca vine was abundant in many areas, particularly those subject to die back, and covered 

much of the lower mid-storey and the upper mid-storey in gullies. Fallen logs were ubiquitous as a 

result of past management and the nature of tall, closed forest. 

Table 7.4 Condition attributes from the Vegetation Condition Score component of Biometric with mean values. 

 Condition 
attribute 

Hollows 
(count) 

Exotic 
percent 
cover 

Fallen 
logs (m) 

Lantana 
percent 
cover 

Cissus 
percent 
cover 

Mean 1.85 0.03 40.3 0.09 0.12 

Range 6 0.6 200 1 1 

Minimum 0 0 0 0 0 

Maximum 6 0.6 200 1 1 

Sum 231 4.11 5037 11 15 

Count 125 125 125 125 125 

 

Estimates of canopy cover and stand height were made in the field at each plot based on measured 

tree heights. The linear correlations in Figure 7.2 demonstrate how even simply measured field based 

variables can be difficult to quantify using remote sensing. 

 

 
 
 
Figure 7.1 Over-storey height measured with a vertex in the field and a field estimate of lower mid-storey 

percent cover. 
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Figure 7.2 Correlation between estimate of mid-storey percent cover and lidar returns registered between 2m 

and 15m. 

7.4.1 Field Results 

Details of two plots illustrated below ( 

Table 7.5) provide an example of how the visual assessment successfully categorises variation in the 

understorey and can be effective at differentiating sites. However, the black and white reference 

photographs show a similar amount of shadow cast by the canopy, despite the fuel load being 

dramatically different. This demonstrates how the over-storey canopy can potentially vary 

independently of fuel load.  Site 3010 featured very high surface fuel loads (litter) but moderate 

elevated fuel (easy to walk through) and bark hazard that did not add to the overall fuel hazard. By 

contrast Site 4028 featured very high elevated fuel (difficult to walk through) as well as high surface 

and bark hazard. Note that in both cases the canopy is closed, obscuring the variation in fuel hazard in 

the understorey. 
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Site 3010 Surface Elevated Bark Total 

OFHG Class Very High Moderate Moderate 10 t/ha 

Fuel Load (t/ha) 10 0 0 

 

 

Site 4028 Surface Elevated Bark Total 

OFHG Class High Very High High 18 t/ha 

Fuel Load (t/ha) 10 6 2 

 

 

Table 7.5  Overall Fuel Hazard Guide results with reference photographs.  

Table 7.6 demonstrates how the Vesta scoring system would rank each of these sites. Note that many 

of the features of the Overall Fuel Hazard Guide are replicated but the result is different. The leaf 

litter measured was similar between the Vesta and OFHG scores but the average percent cover score 

(PCS) gave Site 3010 (with the lowest elevated fuels) a higher Vesta total. The closed canopy and 

high near surface fuels weighted the PCS score. 
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Site 3010 Height (m) PCS FHS Bark Litter 
(mm) 

PCS 
Average 

FHS 
Average 

Vesta 
score 

Surface 0.0137 3.50 2.00 1 13.75 12.75 8.00 102 

Near Surface 0.1125 3.00 3.00 

Elevated 2.75 1.00 1.00 

Intermediate 15.00 1.75 1.00 

Over-storey 25.00 3.00 1.00 

  
 

Site 4028 Height (m) PCS FHS Bark Litter 
(mm) 

PCS 
Average 

FHS 
Average 

Vesta 
score 

Surface 0.013 1.75 2.00 1.25 13 9.25 9.25 86 

Near Surface 0.10 1.75 1.75 

Elevated 4.00 4.00 4.00 

Intermediate 3.50 0.25 0.25 

Over-storey 27.50 1.50 1.25 

  
 

Table 7.6 Vesta score distributes scores relatively evenly from each stratification class, indicating that it may be 

better suited for use with remote sensing variables.  

7.4.2 Comparing the sampling regimes 

Only a very weak correlation exists between the OFHG scores and the Vesta multiplicative score 

(r=0.259) (Table 7.7). This is not unexpected as the scores are designed to measure different variables. 

However, surface hazard (Surface) from the OFHG score and the surface profile depth (SPDpth) from 

the Vesta score only showed a weak (but significant) correlation for variables that were measured 
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using very similar techniques. The measurement of elevated fuels was more consistent between 

methods. The elevated fuel hazard score (EFHS) and the elevated fuels as measured by OFHG had a 

correlation coefficient of r=0.62. 

Table 7.7 Nonparametric Correlations (Spearman's ρ) between the four OFHG variables and 14 visual Vesta 

variables measured at 129 plots (statistics for each pair of variables are based on all the cases with valid data 

for that pair). 

Fuel Type Spearman's ρ Surface Elevated Bark Total 

Score Vesta 
Correlation Coefficient .210* .210* 0.143 .259** 

Sig. (2-tailed) 0.017 0.017 0.107 0.003 

Surface 

Depth 
Correlation Coefficient .308** -0.089 .180* .188* 

Sig. (2-tailed) 0 0.318 0.041 0.033 

Percent Cover 
Correlation Coefficient 0.154 -.183* 0.111 0.034 

Sig. (2-tailed) 0.082 0.037 0.211 0.705 

Fuel Hazard 
Correlation Coefficient .284** -0.064 0.117 0.169 

Sig. (2-tailed) 0.001 0.47 0.188 0.056 

Near Surface 

Height 
Correlation Coefficient -0.04 0.122 -0.133 -0.039 

Sig. (2-tailed) 0.656 0.17 0.132 0.659 

Percent Cover 
Correlation Coefficient 0.051 0.088 -0.058 0.072 

Sig. (2-tailed) 0.563 0.32 0.517 0.42 

Fuel Hazard 
Correlation Coefficient 0.094 0.115 0.006 0.124 

Sig. (2-tailed) 0.29 0.195 0.943 0.16 

Elevated 

Height 
Correlation Coefficient 0.132 .459** 0.114 .309** 

Sig. (2-tailed) 0.136 0 0.198 0 

Percent Cover 
Correlation Coefficient .220* .652** 0.141 .458** 

Sig. (2-tailed) 0.012 0 0.111 0 

Fuel Hazard 
Correlation Coefficient 0.141 .612** 0.142 .366** 

Sig. (2-tailed) 0.112 0 0.108 0 

Intermediate 

Height 
Correlation Coefficient .314** -0.016 0.151 .260** 

Sig. (2-tailed) 0 0.859 0.088 0.003 

Percent Cover 
Correlation Coefficient 0.169 -0.155 0.168 0.09 

Sig. (2-tailed) 0.055 0.08 0.058 0.309 

Fuel Hazard 
Correlation Coefficient 0.01 -0.143 0.166 -0.016 

Sig. (2-tailed) 0.907 0.107 0.061 0.853 

Over-storey 

Height 
Correlation Coefficient 0.147 0.126 .189* .199* 

Sig. (2-tailed) 0.097 0.156 0.032 0.023 

Percent Cover 
Correlation Coefficient 0.144 -.306** 0.015 -0.034 

Sig. (2-tailed) 0.103 0 0.864 0.705 

Fuel Hazard 
Correlation Coefficient -0.051 -0.077 .284** -0.031 

Sig. (2-tailed) 0.563 0.386 0.001 0.729 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 

Table 7.8 demonstrates how the OFHG and Vesta methods vary in relation to destructive sampling 

results. In addition to the methods already introduced, upward looking canopy photos from each plot 

were converted to black and white 2-bit images and the proportion of dark material was calculated. 

This is a coarse estimate of foliage projected cover. Site 2034 exhibits a low destructive mean weight 

with corresponding low scores using the other methods.  
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Site 2034 Destructive 
weight 

Destructive  Standard 
Deviation 

Number of Samples Canopy 
Photo 

OFHG Vesta 

11.8 7.3 8 0.60 12 38 

  
  

Site 3001 Destructive 
weight 

Destructive  Standard 
Deviation 

Number of Samples Canopy 
Photo 

OFHG Vesta 

26.2 16.2 8 0.78 28 123 

  
 

Site 1025 Destructive 
weight 

Destructive  Standard 
Deviation 

Number of Samples Canopy 
Photo 

OFHG Vesta 

18.2 8.2 8 0.40 8 110 

  
 

Table 7.8  A comparison of destructive sampling results, the Overall Fuel Hazard Guide, the Vesta method and 

upward look canopy photographs at three plots.  

The result is presented in a comparison of three plots in Figure 7.3 and is representative of the 

problems faced at the Jilliby site. The impacts of forest condition, canopy health and weed invasion 
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can have a profound effect on remotely sensed variables and those collected in the field. Site 1025 has 

high cover of exotic species and low canopy cover due to damaged by Bell Miner associated dieback.  

The histograms give a course indication of the range and mean values recorded. Visual assessment 

has overestimated the fuel load measured by weighing dried samples (destructive). 

 

 

 

Figure 7.3 Histograms of results of destructive sampling, the Overall Fuel Hazard Guide and Vesta score.  
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Site 3001 exhibits a relatively high destructive sampling mean weight with corresponding high visual 

score components. Site 1025 confounds predictions by featuring a relatively high destructive fuel 

load, a very low OFHG score, a high Vesta score and a low upward looking canopy photo score.  

The destructive sampling results were presented as mean weight per unit area in tonnes per hectare for 

each plot (n=64). The Spearman’s ρ correlation coefficients indicated that the surface fuel 

measurements from the OFHG were weakly correlated with the destructive sampling results but that 

the total score did not have a statistically significant relationship (Table 7.9). The Vesta score 

performed better with a correlation coefficient of r=0.508 and with similar relationships in each of the 

surface profile measurements; Surface Profile Depth (SPDepth), Surface Profile Percent Cover 

(SPPCS) and Surface Profile Fuel Hazard Score (SPFHS).  

Table 7.9 Spearman's ρ correlations coefficients for destructive sampling of available fuel weights, the visual 

assessments and key remote sensing variables from 64 plots. 

Spearman's ρ 
Fuel Load 

Mean 

Surface 

Correlation Coefficient .331
**

 

Sig. (2-tailed) .008 

N 64 

Elevated 

Correlation Coefficient .100 

Sig. (2-tailed) .434 

N 64 

Bark 

Correlation Coefficient .095 

Sig. (2-tailed) .455 

N 64 

Total 

Correlation Coefficient .231 

Sig. (2-tailed) .067 

N 64 

Vesta 

Correlation Coefficient .508
**

 

Sig. (2-tailed) .000 

N 64 

Surface Depth 

Correlation Coefficient .561
**

 

Sig. (2-tailed) .000 

N 64 

Surface Percent Cover 

Correlation Coefficient .350
**

 

Sig. (2-tailed) .005 

N 64 

Surface Fuel Hazard 

Correlation Coefficient .529
**

 

Sig. (2-tailed) .000 

N 64 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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After a poor relationship between destructive sampling and the OFHG sampling had been established, 

further independent resampling was carried out at 33 plots. A two related samples test, the Wilcoxon 

test (Table 7.10). The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test for the 

case of two related samples or repeated measurements on a single sample (Wilcoxon, 1945). The test 

indicates that the sampling results between recorders were only moderately correlated, despite 

receiving the same training.  

Table 7.10 The Wilcoxon signed-rank test comparing the original Overall Fuel Hazard Guide sampling 

conducted by the Rural Fire Service and additional sampling by the author at identical plot locations. 

Test Statistics
b
 

 
UNSW OFHG - RFS OFHG 

Z -0.589056832 

Asymp. Sig. (2-tailed) 0.55582315 
a
. Based on positive ranks. 

b
. Wilcoxon Signed Ranks Test 

Ranks 

  
N 

Mean 
Rank 

Sum 
of 

Ranks 

UNSW OFHG - RFS 
OFHG 

Negative 
Ranks 

18
a 

15.44444 278 

 
Positive Ranks 13

b 
16.76923 218 

 
Ties 2

c 

  

 
Total 33 

  a
. UNSW OFHG < RFS OFHG 

b
. UNSW OFHG > RFS OFHG 

c
. UNSW OFHG = RFS OFHG 

7.4.3 The Overall Fuel Hazard Guide 

The independent OFHG sampling showed a weak relationship with the VESTA variables collected by 

Rural Fire Service staff. The elevated fuels are consistent between samplers (indicating the 

consistency of their estimation) but the surface fuel loads varied substantially between samplers. 

Rural Fire Service staff did not record continuous integers when assessing surface fuel load, instead 

assigning one of four classes. The surface fuel load is the major component of the total fuel load at the 

Jilliby site. Simply reproducing measurements of fuel loads in the field proved to be a challenging 

task as discovered in other research (Chandler, 1983). 

Unfortunately, when all sites are considered, the dynamic range of the OFHG values (the ratio 

between the smallest and largest possible values) is very small for forest with such complex structure. 

Elevated fuels add little to the overall fuel hazard as calculated (see Figure 7.5). Any variation in fuel 

hazard is therefore largely due to the amount of surface fuel, which is largely composed of leaf litter. 

In more than half of all cases where elevated fuels and bark hazard added to the overall fuel total, they 

only added the lowest amount, two tonnes per hectare, further lowering the intrinsic range of the fuel 
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measurements (see Figure 7.4). There are four categories in surface fuels, three categories of elevated 

fuels and three categories of bark hazard at 130 sites in the Jilliby Catchment study area. This offers 

low dynamic range as a basis for comparison with the continuous variables generated from remote 

sensing. 

 

 

 

Figure 7.4 Histograms of the results of Overall Fuel Hazard Guide sampling at 130 sites. 

These results indicate that any variation in fuel hazard is largely due to the amount of surface fuel, 

which is largely composed of leaf litter. If leaf litter at the Jilliby site does not offer any 

distinguishable spectral properties, as seen in other studies (Brandis and Jacobson, 2003), then OFHG 

may be difficult to quantify with optical remote sensing. Similarly, lidar ground returns cannot 

differentiate between leaf litter and the ground surface. The Vesta sampling regime has a larger 
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number of structural components representing elevated fuels, and is therefore likely to be better suited 

to analysis with remote sensing. 

 

Figure 7.5 The surface fuel component clearly dominates the total available fuel load as measured by the 

Overall Fuel Hazard Guide at the Jilliby Catchment study area.  

7.4.4 Vesta prototype 

Figure 7.6 demonstrates how the Vesta scoring system would rank each of these sites. Note that many 

of the features of the Overall Fuel Hazard guide are replicated but the result is different. The leaf litter 

measured was similar between the Vesta and OFHG scores but the average percent cover score (PCS) 

gave Site 3010 (with the lowest elevated fuels) a higher Vesta total. The closed canopy and high near 

surface fuels weighted the PCS score. 

 

Figure 7.6 No single fuel component clearly dominates the total available fuel hazard score as measured by the 

Vesta prototype scoring system at the Jilliby Catchment study area. 
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7.4.5 Remote Sensing Results 

There was no relationship between the NDVI values and the field data (see Figure 7.7). Landsat 

NDVI rose rapidly with the increase in fuel load measured and approached saturation asymptotically 

as a result of the high aboveground biomass encountered in the field. No relationship was observed 

between lidar derived maximum height and the OFHG survey data. 

 
 

 
 
 
 
 
 

 

 

Figure 7.7 No significant relationship exists between OFHG and NDVI or OFHG and maximum height. 

Results improved with the use of narrow band vegetation indices. The most successful index was the 

ARVI (Figure 7.8, right) has more dynamic range (distribution over greater spread of digital numbers) 

when a histogram of index values in compared is compared to NDVI (Figure 7.8, left). It is 

correspondingly sensitive to changes in vegetation structure in closed canopy forest. 
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Normalized Difference Vegetation Index (NDVI) 

digital numbers  
Atmospherically Resistant Vegetation Index (ARVI) 

digital Numbers  
 

Figure 7.8 ARVI (right) has a higher dynamic range (the distribution is over greater spread of digital numbers) 

when compared to a histogram of NDVI (left). It is correspondingly sensitive to changes in vegetation structure 

in closed canopy forest. 

ARVI is an enhancement of NDVI that is relatively resistant to atmospheric factors (for example, 

aerosol). It uses the reflectance in blue to correct the red reflectance for atmospheric scattering. The 

ARVI fuel load model is based on the ARVI. To create the model a non-linear relationship was 

developed between the field data and the vegetation index based on 33 sites sampled by the author (R
2 

= 0.59). When a relationship was developed directly between the Rural Fire Service sampling and the 

ARVI the power regression had an R
2 
value of 0.45 (see Figure 7.9).  
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Figure 7.9 Narrow band ARVI in a non-linear regression (power) against the total fuel load measured in the 

field by the author (n = 33) (top) and the total fuel load measured in the field by the RFS (n = 127) (bottom).  

The absolute error when comparing modelled predictions based on HyMap ARVI and OFHG (Figure 

7.9) was less than 5 tonnes per hectare in 68% of cases (for 129 sampled plots). However, the 

dynamic range of the model is low and the majority of plots would be considered to have HIGH to 

VERY HIGH fuel loads (see Figure 7.10). 

The study site has a highly diverse range of forest types driven primarily by aspect and elevation. The 

spatial dynamics of forest health, shade created from the sun angle and sensor geometry, and 

inconsistencies in fuel sampling methods all added variation to the remotely sensed data that may not 

have been sampled in the field. Accordingly, regression equations of all available plots (n=129) 

generally featured poor correlations or no correlation. Subsequently, a range of stratification methods 

were employed to find out where the modelling had been successful and where it was breaking down.  
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The ARVI fuel load model 

is based on the 

Atmospherically Resistant 

Vegetation Index (ARVI). 

A non-linear relationship 

was developed between 

the field data and the 

vegetation index based on 

33 independently sampled 

sites. 

y = 28.869x1.9937 

R² = 0.59 

The equation was applied 

to the Atmospherically 

Resistant Vegetation 

Index (ARVI) and the 

results divided into 5 

broad classes.  

The absolute error when 

comparing modelled and 

observed results was less 

than 5 tonnes per hectare 

in 68% of cases (for 129 

sampled plots). 

However, the dynamic 

range of the model is low 

and the majority of plots 

would be considered to 

have HIGH to VERY 

HIGH fuel loads. 

 



 

128 

 

I used the dominant tree species in each plot to stratify the samples for further analysis, based on the 

assumption that these species dominate a niche in an environmental gradient that should remain 

relatively consistent across the study area. The most immediate success was with dry open forest 

dominated by Grey Gum (Eucalyptus punctata), Spotted Gum (Corymbia maculate), and Blue Leaf 

Stringy Bark (Eucalyptus agglomerata). Stands of Spotted Gum in particular showed strong linear 

and non-linear relationships between variables measured in the field (Figure 7.11).  

 
 

 
 

 

 

 
 
 

Figure 7.11 Narrow band and broad band vegetation indices and lidar variables all showed strong correlations 

with fuel attributes sampled in the field in dry open forest (Spotted Gum).  

The RENDI differs from the NDVI by using bands along the red edge, instead of the main absorption 

and reflectance peaks. The NDVI 705 capitalises on the sensitivity of the vegetation red edge to small 

changes in canopy foliage content, gap fraction, and senescence, which are all properties readily 

attributable to fuel hazard. Narrow band vegetation indices, broad band vegetation indices and lidar 

variables all showed strong correlations with fuel attributes sampled in the field in dry and open forest 

(Spotted Gum). For the 15 plots sampled, the ARVI regression predicted fuel scores as measured in 

the field with an R
2 
value of 0.86. Unfortunately, too few of these sites were sampled to make 
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definitive conclusions. However, the results strongly suggest that fuel loads can be assessed spatially 

with remote sensing in dry open forests, as seen in previous research (Chafer et al., 2004, McCarthy, 

2004). 

7.5 Discussion 

The difficulty with interpreting these data, and its relationship with field based fuel hazard scores, is 

that the all important under-storey is subject to occlusion. The complexity of the forest types in the 

Jilliby Catchment area have made mapping fuel loads based on remote sensing more difficult. 

However, the array of instruments at our disposal is helping to define significant relationships 

between what the sensors can “see” and what can be observed on the ground.  

In addition, the Jilliby site suffers from dieback associated with Manorina melanophrys (bell miners) 

birds (Stone, 1996). The presence of the aggressive, colony-forming honeyeater, Manorina 

melanophrys, in the canopies of unhealthy eucalypts is thought to enable some phytophagous insect 

populations to rise to sustained, damaging levels. This has caused widespread tree deaths in moist 

gullies (Stone et al., 2008) and affects the structural composition of the forest.  

McCarthy (2004) suggested a correlation between stand height and surface fine fuel load. However, 

the study excluded the upper and lower productivity extremes in the sites available. These were, for 

example, very low productivity sites of White Box (Eucalyptus albens) or Slender Cypress-pine 

(Callitris preissii) with stand heights of less than 10 m. Sites of very high productivity such as Alpine 

Ash (Eucalyptus delegatensis), Mountain Ash (Eucalyptus regnans) or Cut-tail (Eucalyptus fastigata) 

with stand heights of 40m and more were also excluded. McCarthy defended this decision by stating 

that neither extreme in the productivity range is usually prescribed burned for fuel hazard reduction 

purposes. Unfortunately, one third of all plots sampled at the Jilliby Catchment have trees taller than 

40m, and more than half are over 35 metres (Figure 7.12). 

Similarly, the method introduced by Chafer et al. (2004) relies on variation in multispectral satellite 

derived NDVI values. However, at the Jilliby Catchment site, there is very little variation in NDVI 

between the 129 plots assessed as they are primarily closed, tall forest (Figure 7.12). The high LAI 

and biomass of the moist forest means that the NDVI values become saturated and the result is low 

variation between sites. When this is coupled with the low dynamic range of the field data, the amount 

of information available to differentiate plots is small. 
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Figure 7.12 Histograms of the frequency of lidar returns from the top of canopy representing tree height (left) 

and the frequency of broad band Normalized Difference Vegetation Index (NDVI) values (right). 

The relatively poor correlations achieved in this research from broad band sensors and tree heights 

(Figure 7.12) can be attributed to a number of factors. Table 7.8 demonstrated how poor canopy 

health and exotic species could confound the visual and destructive fuel loads. Disturbance was harder 

to quantify with evidence of recent logging at some of the sites and Bell Miner associated die back 

may have added to variation in spectral response that could not be associated with change in available 

fuel load. 

Figure 7.11 illustrated that fuel loads could be successfully quantified even with coarse spectral 

resolution multi-spectral remote sensing instruments in open, dry forest. Narrow band vegetation 

indices outperformed broad band indices, largely because of extra information in the NIR that allowed 

the use of indices resistant to saturation. The AVRI (Kaufman and Tanre, 1992) was the best 

performing single index. Lidar was shown in parallel research (Turner, 2007) to be able to quantify 

elevated fuels in the under-storey at the Jilliby Catchment study site by calculating density of under-

storey returns. However, as illustrated in Figure 7.5 more than two thirds of the overall fuel hazard 

came from the surface fuel component, which cannot be assessed using lidar. 

 

The development of visual fuel scoring systems that better predict fire behaviour has been welcomed 

by the managers of native vegetation. However, while calibrating visual scoring systems with 

destructive sampling is a well accepted methodology, it has hampered the remote sensing of fuel 

hazard. Fuel scores are not directly linked to the weight of fuels, or the above ground biomass, but are 

tied to the arrangement of available fuels both horizontally and vertically. For example, there could be 

a thick under-storey of dead woody material, but anything over a 6mm maximum would not be 

considered to add to the available fuel. It would however, add substantially to the overall biomass and 

under-storey structure as assessed by remote sensing.  

 

0 

5 

10 

15 

20 

C
o

u
n

t 

Lidar Maximum 

Lidar Tree Height 

0 

20 

40 

60 

80 

0
.2

 

0
.3

 

0
.4

 

0
.5

 

0
.6

 

0
.7

 

0
.8

 

0
.9

 1
 

M
o

re
 

C
o

u
n

t 

Landsat TM NDVI 

Landsat TM NDVI 



 

131 

 

 

  Jilliby Catchment Study Area 

Figure 7.13 Broad band Normalized Difference Vegetation Index (NDVI) SPOT 5 for the region surrounding 

Jilliby. 

Visual assessments of fuel hazard can be rapidly conducted individually but to expand this 

methodology to landscape scales would require extensive field sampling to establish robust 

correlations between remotely sensed variables and fuel loads. The methods trialled were successful 
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in open, dry forest. However, the correlation between structural variables recorded in the field and 

remote sensing variables were weak in moist gullies and tall, closed forest.  

7.6 Conclusions 

The Jilliby Catchment study area posed significant obstacles to the mapping of fuel loads with remote 

sensing due to the tall, closed forest and complex topography. Unfortunately, the study site was not 

representative of the range of fuel loads encountered in the surrounding region. Canopy cover was 

found to vary independently of available fuel load at the Jilliby site, particularly in the tall, closed 

forest.  

No significant relationship was found between broad band satellite data and tree height when the 

entire study site was included. When the site was stratified and only open, dry forest was included in 

the analysis, the sensors showed strong performance in the prediction of fuel hazard scores. Lidar was 

able to accurately measure the elevated fuels across the site, but this was only a small component of 

the overall fuel hazard as measured by visual assessment scores and destructive sampling.  

A new index that summarises the Vesta fuel scoring attributes was introduced and found to be better 

correlated with remote sensing variables. The surface profile component of the Vesta scores proved to 

have a stronger relationship with the destructive sampling fuel weights than the surface measurements 

of the Overall Fuel Hazard Guide. Destructive sampling produced results that were only weakly 

correlated with visual assessment score totals and remote sensing variables. The OFHG (as applied at 

Jilliby) did not collect continuous variables for the surface fuel depth. This did not capture enough 

dynamic range in the surface fuel layer for effective modelling as it constituted the bulk of the 

accumulated fuel hazard. 

Hyperspectral vegetation indices consistently outperformed broad band indices. The narrow bands in 

the near infrared allowed provided a greater variety of indices less sensitive to saturation in high 

canopy cover. The Atmospherically Resistant Vegetation Index was the best performing index when 

the whole site was considered. Remote sensing of forest fuel loads has an important role to play in the 

operational mapping of fire hazard and is particularly useful in open, dry forest. 
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Chapter 8  

Assessing segmentation quality for multi-scale 

vegetation mapping 

This chapter compares a variety of segmentation algorithms capable of delineating vegetation patterns 

based on SPOT-5 data and assesses how a multi-scale, object-based analysis performs in an 

operational setting. Segmentation algorithms require user input to be effective. The aim of this chapter 

was to seek optimal scale parameters of each algorithm for emulating API (Aerial Photo 

Interpretation). This allowed an opportunity to evaluate multiple segmentation algorithms for this 

application without bias, despite different algorithms being applied. It also offered the opportunity to 

test how image pre-processing affects segmentation quality. The results are used to produce a 

demonstration of multi-scale classification of vegetation. 

Mapping vegetation is not an exact science, rather an applied science that imposes boundaries on a 

transition or continuum that is often temporal as well as spatial. The attempt is to capture unique map 

unit boundaries that are not always distinctly definable in nature: it is a form of generalisation. Map 

units can be defined as an assemblage of plant species which are discernible on an interpretive base 

(i.e. aerial photography, satellite imagery) and appear similar structurally and floristically and form 

repeatable units across the landscape (NT, 2009). 

Segmentation algorithms function by grouping spectrally similar pixels into objects. Selecting an 

appropriate scale threshold for segmentation is problematic. The decision on how to merge adjacent 

pixels, and later objects, is based on threshold criteria of dissimilarity or homogeneity specific to each 

algorithm. Objects that are too small offer few benefits for reducing complexity of the raster imagery. 

Objects that are too large are poorly matched to the visually interpreted reference data.  

The chapter begins by exploring empirical discrepancy methods to quantify segmentation quality. It 

tests whether optimising segmentation parameters can allow replication of manually digitised 

vegetation patterns. Based on these results, and applying segmentation at multiple scales, this chapter 

demonstrates how community scale objects may be classified based on homogenous crown size sub-

objects in an operational environment. 

8.1 Quantifying segmentation quality 

In traditional maps, the term 'scale' is used to denote the ratio of a distance on the map to the 

corresponding distance on the ground. The area of the smallest unit in the map is dictated by its 
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apparent size on a printed paper map. Reid (1988) suggests that a more or less circular polygon should 

not fall below about 5 mm diameter, while Gunn et al. (1988) suggest 10 mm diameter as a lower 

threshold (Emery et al., 2001). At a scale of 1:25 000 it is therefore possible to represent a minimum 

on-ground area of between 1.25 ha and 5 ha. At a scale of 1:100 000 it is possible to represent a 

minimum on ground area of between 20 ha and 80 ha.  

As discussed in Chapter 2, the ideal level to map a patch of vegetation at has relatively homogenous 

parameter values. Such a patch will hardly ever be square, so pixels will are unlikely match a natural 

scale level. A solution can be found in irregularly shaped observation units, which are never present 

as such in remote sensing images, but which can be created using image segmentation (Addink et al., 

2007). This is a procedure in which individual pixels are grouped into spatially continuous regions 

where the variance of a (group of) variable(s) (to be selected by the user) does not exceed a certain 

threshold (Haralick and Shapiro, 1985). 

The segmentation algorithms applied here require a 'scale' parameter that defines how large image 

objects are allowed to grow, or the heterogeneity threshold. Each approach starts with an image 

element, such as a pixel or small cluster of pixels, which are combined with surrounding pixels. They 

essentially grow until certain criterion is reached (e.g., a merging cost or maximum heterogeneity). 

Though each algorithm functions differently, the success of each is dependent on the selection of an 

appropriate scale parameter.  

Hierarchical segmentation produces regions of increasing average size which need to be linked to 

thematic levels. The quest for the appropriate segmentation level and thematic scale has led to several 

of empirical investigations and the development of numerous statistical methods (Hay et al., 2001). 

Very little attention is paid to the selection of optimal segmentation parameters in the literature 

(Addink et al., 2007). However, the parameters are thought to affect the relationship between field 

observations of vegetation characteristics and spectral information (Marceau et al., 1994). Object 

definition by segmentation comprises both the choice of spectral bands to be considered and the 

setting of the heterogeneity threshold. With high correlations between adjacent bands, the variance 

that these bands represent easily gets too much weight.  

Addink et al. (2007) studied the scale parameters for segmentation of leaf area index and biomass. 

They defined the optimal spatial definition as the level of segmentation that results in the lowest 

prediction error of the vegetation parameters.  They segmented with ten different heterogeneities 

creating ten object sets. They compared field observations and spectral values and the optimised for 

the lowest prediction error, indicating the optimal heterogeneity for segmentation. Results showed 

that the scale of segmentation affected prediction accuracy and that aboveground biomass and LAI 

http://www.sciencedirect.com.wwwproxy0.library.unsw.edu.au/science/article/pii/S0924271613002220#b0185
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can be associated with different optimal object sizes. Different bands, or wavelengths, show different 

spatial variances (Atkinson and Aplin, 2004), which will also affect object definition.  

The optimal scale of observation (i.e., object size with object-oriented image analysis) depends on the 

scale of the target, and on the spatial heterogeneity of the landscape.  Therefore, multiple scales must 

be trialled to optimise for a solution. The superior approach will create image objects that are as large 

as possible (to reduce complexity and generalise patterns) and still maintain thematic homogeneity in 

each object. Ideally, each image object will delineate a patch of a single type or patch of vegetation, 

whether it is a riparian corridor surrounded by grassland or a patch of heath in a matrix of forest. 

Visual methods have been the most widely-used method of assessing image segmentation quality 

(Zhan et al., 2005). That is, identifying parameters that produce high quality image segmentations by 

visually comparing multiple segmentations. However, a range of object validation techniques have 

been developed for assessing uncertainties in segmentation based object extraction (Hay et al., 2003, 

Möller et al., 2007, Shi et al., 2005). The majority of quantitative comparison studies of segmentation 

software are empirical discrepancy methods (Neubert et al., 2006). Empirical discrepancy methods 

calculate the difference between reference image objects drawn by hand and automatically delineated 

objects, with both topological and geometric measures (Zhan et al., 2005). The topological differences 

can be assessed by comparing the areas covered. Geometric object differences can be determined by 

the comparison of object positions or where their boundaries lie. 

Möller et al. (2007) developed a comparison index for a relative comparison of segmentation results 

at different scales within Definiens Developer 7. They used the area and centre of gravity of 

segmented objects and reference polygons to guide their choice of scale threshold so that at a global 

scale they would reach a balance between over-segmentation and under-segmentation. Clinton et al. 

(2010) demonstrated a similar approach. Lucieer (2004) addressed over-segmentation by creating a 

ratio of the area of the reference polygon and the largest nested segmentation object. 

Following Zhan et al. (2005) and Möller et al. (2007) this research initially focussed on quantitatively 

assessing the geometric and topological quality of a single class (woody vegetation). However, it was 

soon discovered that while an empirical evaluation of segmentation performance is relatively straight 

forward for isolated stands of trees or boundaries in modified landscapes, evaluating the success of 

boundary detection between contiguous vegetation communities is more difficult. 

The Berkeley Segmentation Dataset and Benchmark (Martin et al., 2001) provides a way forward for 

comparing coarse scale segmentation and subjective reference polygons. It is a collection of 12,000 

hand-labelled segmentations of 1,000 images from 30 human subjects. A range of developers have 

submitted segmentation algorithms to a public benchmark based on a training set of 200 images, and a 

test set of 100 images.  
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Performance on the simulated data available in the Berkeley dataset is not a suitable measure for 

segmentation on native forest. The noisy patterns in native vegetation are subjectively delineated by 

experienced interpreters based on field observations. Unfortunately, visual interpretation and 

delineation of vegetation patterns using one observer is already time consuming for operational map 

production. Using multiple air photo interpreters is impractical for map creation or even validation at 

a state-wide scale.  

8.2 Methods 

The first step in this analysis was to conduct a qualitative visual survey of segmentation results using 

the existing air photo interpretation layer and the fine spatial resolution panchromatic band as a 

reference. The scale was increased for each algorithm iteratively and any artefacts of the underlying 

algorithms were examined. This gave a subjective but informative indication of the strength and 

weaknesses of each of the algorithms.  

All analysis was initially carried out on three 10m geometrically corrected digital number bands from 

SPOT-5 imagery. Pre-processing of SPOT 5 was observed (subjectively) to heighten between-class 

variations, and suppress within-class variation (see Figure 9.1). To quantify the improvements of pre-

processing the analysis was performed a second time. The digital numbers representing woody 

vegetation were stretched to fill the entire range (histogram equalised), a Gaussian stretch was then 

performed on the saturation band in HSV space (saturation stretch), and Gram-Schmidt Spectral 

Sharpening (Laben and Brower, 2000) was used on the stretched multispectral bands (pan-sharpening) 

(see Figure 8.1).  

 

Figure 8.1 A histogram of raw SPOT 5 values highlighting the limited number of digital values that account for 

variation in reflectance of woody vegetation (highlighted in red).  
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Figure 8.2 Reference polygons from the original aerial photo interpretation (API). 

Segmentation quality was quantitatively compared using empirical discrepancy methods. For each 

automatically delineated object, both topological and geometric measures were assessed at each scale 

globally and locally. Global statistics were generated for the number of polygons in the image subset 

and their mean and maximum area. The topological differences were assessed by comparison with the 

reference area. The geometric object differences were determined by the comparison of object 
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positions (where their boundaries lie) using the distance between the centroid of segmented objects 

and reference polygons. 

 The benchmark dataset for this research was manually delineated vegetation patterns derived from 

stereo aerial photography (Figure 8.2). The scale of the reference layer of vegetation delineated using 

aerial photography is 1: 100 000. The original aerial photo interpretation (API) data did not have 

sufficient geometric precision to use as training areas (top left) so several objects representative of a 

mix of shapes and sizes were selected (top right). The boundary between woody vegetation and non-

woody vegetation were included, as well as objects with boundaries between classes of woody 

vegetation (bottom left). The panchromatic band was used as a reference when geo-registering API 

objects (bottom right). 

Reference image objects were derived from the existing air photo interpretation and stratified by 

landscape position. The extents were geometrically registered using SPOT-5 panchromatic data 

(2.5m). From the 147 air photo polygons available, 14 were selected across 7 structural classes API 

relied on expert visual assessment of remote sensing data.  

Each segmentation algorithm was run at multiple scales and parameters were adjusted systematically. 

For each automatically delineated object, both topological and geometric measures were assessed at 

each scale globally and locally. Global statistics were generated for the number of polygons in the 

image subset and their mean and maximum area. These were compared to global statistics of 

manually delineated vegetation patterns to seek an ideal segmentation threshold for each algorithm. 

Local statistics were generated for the number of polygons in each reference object and their mean 

and maximum area.   

The topological differences were assessed by comparison with the reference area. The production of 

too many objects is characterised as over-segmentation and the production of too few objects, or 

objects larger than reference, is characterised as under-segmentation. The aim is to seek optimal scale 

parameters of each algorithm for emulating API. The geometric object differences were determined 

by the comparison of object positions (where their boundaries lie) using the distance between the 

centroid of segmented objects and reference polygons. 

A modified Lucieer (2004)‘Area-Fit-Index’ was used to quantify over-segmentation by calculating the 

number of objects inside each reference polygon. The image is over-segmented if overlap is less than 

one hundred percent and under-segmented if overlap is more than one hundred percent. To quantify of 

the fit of each of the reference polygons with the largest segments overlapping these objects, the Area 

Fit Index (AFI) is used where A is the area. 

AFI= Areference polygon - Alargest object / Areference polygon   Equation (10.2) 
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For a perfect fit overlap is 100% and AFI equals 0.0. A reference polygon is over-segmented if 

overlap is less than 100% and AFI is greater than 0.0. A reference polygon is under-segmented if 

overlap is 100% and AFI less than 0.0. In some situations overlap can be less than 100% and AFI is 

less than 0.0, then the object is over-segmented but the largest segment is larger than the reference 

polygon. 

Under-segmentation was quantified with a variation of Möller's ‘Comparison Index’(Möller et al., 

2007). The centre of gravity of each reference polygon was used to select the central image object 

formed by each segmentation algorithm. The area of this central image object increased with the scale 

level and the area it overlaps the reference polygon is reported. As the scale increases the objects 

extend outside the reference areas and so their total area in proportion to the reference polygon is also 

reported. The distances between the gravity centre of each object were calculated following Zhan et 

al. (2005). 

8.2.1 Multi-scale object-based classification 

The results of segmentation were then used to produce a demonstration of multi-scale classification of 

vegetation. The multi-resolution segmentation algorithm (Baatz and Mimler, 2002, Baatz and Schäpe, 

2000) in Definiens Developer 7 was selected based on its performance in topological and geometric 

measures. It is also novel because it includes the shape of the object in its measurement of 

heterogeneity. It allows the user to skew the segmentation in favour of regions with smooth edges and 

a more or less compact form (Figure 8.3). 

300 floristic plots were available for the map sheet. Descriptions of the local distribution of vegetation 

had been recorded at each site by ecologists as well as cover and abundance. Fine scale image objects 

were labelled with a species code when their frequency was noted as clearly dominant (Figure 8.4). 

The object values were exported for each survey site and added to a database for processing. Logistic 

Model Trees (LMT) (Landwehr et al., 2005) in WEKA (Witten and Frank, 2005) was used to classify 

crown scale objects. These were used in turn to classify small patches or stands of trees. These 

classified patches were then aggregated to form classified vegetation community polygons. 
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Figure 8.3 The effect of increasing the scale of multi-resolution segmentation.  

The reference polygons are co-registered with panchromatic SPOT-5 data (top left) and segmentation 

of the image objects increases in scale from over-segmented (top right) to a scale that emulates API 

(bottom left) to an under-segmented scale (bottom right). 
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Figure 8.4 Plot scale objects (left) based on segmentation of the histogram stretched, pan sharpened SPOT 5 

data (centre). 
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Chapter 5 described a spatial filter and a watershed algorithm used to delineate individual crowns 

from relatively coarse spatial resolution HyMap data. For a method to be used operationally it needs 

to be applicable to remote sensing data widely available at regional scales. A seamless coverage of 

SPOT 5 data (panchromatic and multi-spectral) is available for NSW but its use in vegetation 

mapping has been problematic (McCauley, 2006) not used in vegetation mapping. The coverage 

features three 10m multispectral bands and one 2.5m panchromatic band.  

In this chapter the watershed function was replaced with the Full Lambda-Schedule algorithm 

(Robinson et al., 2002). The algorithm was originally designed to detect anomalies so the pre-

processing steps were modified to turn each crown into an anomalous value. A 10m NDVI image was 

pan-sharpened with an inverted 2.5m histogram-equalised panchromatic image. This was subjected to 

a local maximum focal filter with a circular kernel size of 3 pixels radius. The result is that large 

crowns appear as circular objects and that isolated paddock trees are delineated. Figure 8.5 shows the 

results of pan-sharpening and spatial filtering on an NDVI image.  

 

Figure 8.5 An inverted, histogram-equalised 2.5m spatial resolution panchromatic image was used to sharpen 

NDVI and delineate tree crowns. 

8.3 Results 

8.3.1 Topological accuracy for woody/non-woody boundaries 

Analysis was first conducted on objects with simple linear boundaries between woody and non-woody 

vegetation. This reflects existing research (see Section 9.1) where empirical discrepancy methods 
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have been used to assess segmentation quality of agricultural fields and other regular geometric 

shapes. As the scale parameters are labelled differently for each algorithm, the parameters have been 

standardised (Table 8.1). The segmentation approaches need to be able to delineate the broad 

variations in woody vegetation that are clearly visible on enhanced imagery without creating too 

many artefacts, effectively generalising the data. Each segmentation algorithm was tested using the 

raw digital numbers and the pre-processed equalisation-stretched imagery.  

Table 8.1 Standardised measure of scale parameters between algorithms. Scale parameters in categories 1-5 

were selected to match each other, not as an attempt to mirror the API scale. 

Results Definiens Developer 7 SCRM Minimum Area ENVI FX (15% edge) 

Scale 1 10 0.5 25 

Scale 2 20 1 50 

Scale 3 40 4 85 

Scale 4 80 16 95 

Scale 5 160 64 99 

 

8.3.1.1 Quantifying under-segmentation of woody/non-woody areas 

Under-segmentation was assessed by selecting the central image object within the reference polygon 

and comparing its area with the area of the reference area as the scale is increased. At fine scales only 

one very small object was selected so the ‘area covered’ score was low. All algorithms approached the 

ideal of 1.00 as the scale parameter reached 3 or 4 and the central objects increased in size (Figure 

8.6). 

 

Figure 8.6 The central object increases in area with an increase in the segmentation scale parameter until it 

reaches 1.0. 

The ‘overlap’ measure is a relative ratio of the area of the image object and the area of the reference 

polygon. Again, it started low with one small image-object selected but as the scale increased the area 

of the object eventually became larger than the reference polygon. The optimum scale of 
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segmentation was scale 3 for Definiens and SCRM and scale 4 for ENVI (Figure 8.7).

 

Figure 8.7 The central object increases in overlap with an increase in the segmentation scale parameter. 

8.3.1.2 Quantifying over-segmentation of woody/non-woody areas 

Over-segmentation was assessed by selecting all image objects with their centroid inside the reference 

polygon and comparing their area with the area of the reference polygons as the scale was increased. 

The polygon count started very high when over-segmentation was being assessed. As the scale 

increased it approached the ideal of 5.00 (the number of reference polygons) and then tend to 0.00 (if 

no objects have their centroid inside the reference polygon). Again, the optimum scale of 

segmentation the areas was Scale Parameter 3 for Definiens and SCRM and Scale Parameter 4 for 

ENVI (Figure 8.8). 

 

Figure 8.8 At a scale parameter of 1 there are many small objects. As the scale parameter increases the size of 

the objects begin to match the five reference polygons. 

The ‘overlap’ measure is a relative ratio of the area of the image objects with their centroid inside the 

reference and the area of the reference polygon. The optimum scale parameter selected by the over-

segmentation measure was near Scale Parameter 3 for Definiens and SCRM and before Scale 
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Parameter 4 for ENVI (Figure 8.9).

 

Figure 8.9 The area varies erratically as the scale increase because some of the polygons will fall out of the 

reference area according to their shape. 

The results for the segmentation of woody/non-woody areas is as would be expected for all three 

algorithms. At fine scales they over-segmented the image reference polygons and the ratio of the area 

of overlap was accurate. At coarse scales the accuracy decreases and in some cases the image objects 

overlap the reference polygon area by as much as 30 times the area.  

The optimum scale of segmentation for delineation of the binary woody vegetation reference objects 

was determined as the intersect of the reference result for all measures (Figure 8.10). All measures 

intersected close to Scale Parameter 3 allowing for the selection of standardised ideal segmentation 

scale parameter for each algorithm. 

 

Figure 8.10 By plotting all of the measures (for Definiens in this case) the ideal scale parameter can be selected 

by based on the intersect with the reference polygon results.  
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8.3.2 Quantifying under-segmentation for all reference polygons 

Under-segmentation was assessed by selecting the central image object within the reference polygon 

and comparing its area with the area of the reference area as the scale is increased. After analysis was 

conducted on woody/non-woody areas the reference set selection was widened to include API 

polygons (n=14) that were representative of internal vegetation type boundaries as well as binary 

woody boundaries.  

Under-segmentation was assessed for all boundaries (including internal boundaries) for reference 

polygons by selecting the central image object within the reference polygon and comparing its area 

with the area of the reference area as the scale is increased. At fine scales only one very small object 

was selected and the ‘Area Covered’ score was low (Figure 8.11). When all reference polygons were 

used the area of the central image object only neared 1.00 as the Scale Parameter was increased to the 

maximum, higher than the woody, non-woody boundary results. 

 

Figure 8.11 When all boundaries were assessed the central image object only neared 1.00 as the Scale 

Parameter was increased to the maximum. 

The relative ratio of the area of the image object and the area of the reference polygon started low as 

only one image-object but all three algorithms reached an optimal scale, near Scale Parameter 3. 

However, they diverged significantly at higher scales (Figure 8.12). When these two measures are 

combined there is no optimum scale of segmentation that can offer the satisfactory combination of 

area covered and overlap. Without a clear unique optimum scale it is a trade of between over and 

under segmentation. 
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Figure 8.12 The overlap diverged at a similar place to the woody boundary but diverged to a greater degree at 

high scales. 

8.3.3 Quantifying over-segmentation for all reference polygons 

Over-segmentation was assessed by selecting all image objects with their centroid inside the reference 

polygon and comparing their area with the area of the reference polygons as the scale was increased. 

The polygon count started significantly higher when all reference polygons were used in the over-

segmentation measures. At fine scales many objects were created inside the reference polygons and so 

the object count was very high (Figure 8.13). As the scale increased all three algorithms approached 

1.00 (or 0.00 if no objects had their centroid inside the reference polygon). Similarly to the woody 

boundaries, the optimum scale parameter selected by the over-segmentation measure was near Scale 

Parameter 3 for Definiens and SCRM and before Scale Parameter 4 for ENVI. 

 

Figure 8.13 When all polygons were used the object count was very high at finer scales. 

When all polygons were used, the optimum scale parameter selected by the global overlap measures 

was near Scale Parameter 3 for Definiens and SCRM and between Scale Parameter 3 and 4 for ENVI 

(Figure 8.14). 
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Figure 8.14 For this measure the smaller the polygons the better the fit. Their overlap begins to deviate 

significantly after Scale 3. 

8.3.4 Global Statistics 

As a global reference point the number of polygons and mean area per polygons were compared for 

the entire mapped area. The subset area is over 7000 hectares and featured 147 polygons with an 

average size of 49 hectares (Table 8.2). This is the benchmark for global statistics of each of the 

segmentation algorithms. 

Table 8.2 Summary statistics of the reference air photo interpretation. Area is calculated in hectares. 

Coonabararan Aerial Photo Interpretation Map Sheet Subset 
Reference 
polygons 

Count: 2906 147 19 

Minimum: 0 0 2 

Maximum: 11991 665 257 

Sum: 264110 7236 738 

Mean: 91 49 53 

Standard Deviation: 404 88 77 

 

From the global statistics for Definiens Developer 7 and SCRM we can infer that a Scale Parameter of 

3 was ideal for replicating API (Figure 8.15). This is reinforced by a qualitative visual survey which 

indicates that these scales are visually the most similar to the reference layer.  
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Figure 8.15 Global polygon count for reference and each segmentation approach. 

 

Figure 8.16 Global mean area for reference and each segmentation approach. 

 

SCRM was the only algorithm to apply polygon smoothing by default and uses Douglas-Peucker 

simplification (Douglas and Peucker, 1973, Ramer, 1972) but this was discarded for parity with the 

other segmentation algorithms. The parameters applied are in Table 8.3. Global statistics inferred that 

a SCRM parameter scale of 4 was ideal for replicating API with 3 band digital number data.  

Table 8.3 Segmentation scale parameters for Size Constrained Region Merging. Area is calculated in hectares. 

SCRM Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 

Minimum segment size 0.5  1  4  16  64  

Desired Mean segment size 2  4  16  64  256  

Maximum allowed merger size 4.5  9  36  144  576  

Minimum Vertex Length 20 m 20 m 20 m 20 m 20 m 

 

The ENVI FX algorithm was configured to detect edges at a fine scale (15%) and a range of region 

merging scales was executed (50%-99%). The number of objects detected by ENVI FX was larger 

than the other algorithms in the comparison because of its tendency to isolate anomalies such as small 
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clearings and dams. This skews the global statistics making it difficult to compare with other methods. 

For this comparison the scales were chosen for their similarity with the other segmentation algorithms 

rather than best fit for the reference data. The best fit with reference data according to global statistics 

was 95% merging for digital number data and 99% merging for processed data, a better solution could 

be found by segmenting above Scale Parameter 5. 

8.3.5 Geometric accuracy 

Geometric accuracy was assessed at multiple scales, following Möller et al. (2007), by dissolving 

polygons with centroids inside the reference polygons. A matrix of the distance between points was 

calculated for the centre of gravity of dissolved image objects and the centre of gravity of reference 

polygons. A pictorial example is given with tables for Definiens Developer 7’s multi-resolution 

segmentation of the three band digital number image. Despite all of the quantifiable topological 

measures recommending Scale Parameter 3 the results at this scale showed poor geometric accuracy 

(Table 8.4). The results indicate that over-segmentation (many small polygons) that are classified and 

then merged based on class will have superior geometric accuracy (Scale Parameter 1) (Figure 8.17).  

Table 8.4  The geometric accuracy of Definiens Developer’s multi-resolution segmentation of three band SPOT-

5 digital number data (10m): a summary of the Euclidean distance (in metres) between centroids of dissolved 

image objects and reference polygons at multiple scales. 

Average distance between 
reference and image object 

centroids 

Scale Parameter 1 Scale Parameter 2 Scale Parameter 3 Scale Parameter 4 

130 350 443 1081 

 

   

Figure 8.17 The larger objects show poor geometric fit as the shapes diverge from the reference. 

The API used as a reference and the Definiens segmentation results have been overlayed on 2.5m 

panchromatic SPOT 5 imagery below to illustrate the differences (Figure 8.18 and Figure 8.19).  
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Figure 8.18 The manually delineated polygons based on air photo interpretation take into account colour, 

texture and landscape position. Detail is limited by effort. 

 

Figure 8.19 Definiens segmentation at the ‘optimum’ scale offered the best combination of polygon count and 

area matching but produce results with low geometric accuracy.  
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Manually delineated polygons based on air photo interpretation (Figure 8.18) effectively map 

variation in texture and shape but are limited by resolution and the effort applied. Automated 

segmentation (Figure 8.19) requires no more effort to produce finer scale results but eventually the 

usefulness of the generalisation that results decreases. Definiens performed well at scale 3. However,  

this choice of parameter produces results with low geometric accuracy (Figure 8.17). When the 

polygons were small (Scale 1) the smaller image objects had a much higher topological accuracy. The 

tested segmentation algorithms performed well on woody and non-woody vegetation boundaries. A 

standardised setting for SPOT-5 was derived (Scale 3 for Definiens and SCRM) using topological 

measures to assess performance. However, for segmentation of vegetation community boundaries 

(internal floristic boundaries in woody vegetation) geometric and topological accuracy was low.  

8.3.6 SPOT 5 crown scale classification 

I argued in Chapter 6 that the image object scale should match the thematic object scale for accurate 

classification. The combination of the HyMap Crown Delineation Algorithm pre-processing and 

ENVI FX allowed the imagery to be partitioned into image objects at the same scale as the target 

theme (crowns). When using SPOT data as an alternative to HyMap data the spatial and spectral 

resolution of SPOT-5 prevents the results providing accurate tree species inventory data. However, 

the image objects created are useful in multi-scale classification because they take account of the 

heterogeneity in natural landscapes (see Figure 8.20). Features such as shadow and clearing can be 

ignored in a multi-scale classification.   

 
 

Figure 8.20 Image objects at a crown scale based on SPOT 5 data. 
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Figure 8.21 Example of a plot located in open woodlands.  

Existing plot scale information (Ismay et al., 2004) has a GPS location but no spatial information 

about the distribution of species in the plot. As an example, site number COBB0125 is pictured 

(Figure 8.21). Tree crowns are scatted and isolated in Grassy White Box. The objects in bold are 

within a 50m radius of the plot centre. 

The dominant species were listed in the field with comments about condition and structure. It was 

attributed with a floristic unit and the structure was described as shrubby tall open woodlands to open 

forests. This level of detail is too broad for precise crown scale classification so the species lists at 

each plot had to be examined.  

The plot information described the surrounding area as ‘Grassy White Box Woodland’ with moderate 

community condition. The reflectance at this site is high because it is mostly grassland or exposed 

soil. This prevented crowns at this site being used as training areas even though White Box was 

clearly dominant over-storey species Table 8.5.  

Table 8.5 Dominant species from the mid-storey and tallest strata were extracted from a full floristic list. 

Site 
Number 

Stratum 
Lower 
height (m) 

Upper 
height (m) 

Percent 
cover (%) 

Dominant 
species 1 

Dominant 
species 2 

Dominant 
species 3 

COBB0125 Mid-storey 3 10 10 White Box 
Acacia 
penninervis 

- 

COBB0125 Tallest 16 16 25 White Box - - 
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Training and modelling were more successful in closed forest. From the dominant species recorded at 

each plot 275 training samples were selected with 25 different attributes. After classes with only one 

example were removed there were 20 classes, which include shadow and two grassland classes (Table 

8.6). The WEKA results (Table 8.8) indicate that LMT showed moderate accuracy (kappa = 0.52) 

using image object means from 3 band of pan sharpened and histogram equalised SPOT-5 data. The 

crown scale classification accuracy was high for distinctive classes. The tall and spectrally distinctive 

Angophora floribunda and bright clearings performed particularly well. The dark and narrow crowned 

Callitris endlicheri, and Eucalyptus volcanica and Eucalyptus dealbata could be differentiated from 

other eucalypts. The confusion matrix (Table 8.1) shows that species with a mallee growth form 

(Eucalyptus blakelyi) or those in the mid-storey (Casuarina species) were rarely classified accurately. 

Eucalyptus melliodora and Eucalyptus albens were easily confused with each other.  

Table 8.6 Species codes and scientific names of species used in crown and stand scale modelling. 

Code Species Description Code Species Description Code Species Description 

YLB Eucalyptus melliodora NLI Eucalyptus crebra BLKY Eucalyptus Blakelyi 

WCP Callitris glauca MAC Eucalyptus macrorhyncha BCP Callitris endlicheri 

WBO Eucalyptus albens LFB Eucalyptus nortonii APLB Eucalyptus bridgesiana 

VOL Eucalyptus volcanica DEL Eucalyptus dealbata ANG Angophora floribunda 

UNKN Unknown COR Corymbia trachyphloia  RED Eucalyptus camaldulensis 

SHD Shadow CLRA Clearing Aqua CAS Casuarina 

ROS Eucalyptus rossii CLRW Clearing White   

 

Table 8.7 Modelling results in a confusion matrix. LMT was conducted on 252 samples. 

Modelled  as->  a b c d e f g h i J            k l m n o p q r s t 

a = YLB  4 0 2 2 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 1 

b = WCP  0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 

c = WBO  2 0 4 1 0 0 1 0 2 8 0 0 0 0 0 0 1 0 0 1 

d = VOL  0 0 0 9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

e = UNKN  0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

f = SHD  0 0 0 2 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 

g = ROS  0 0 1 0 0 0 3 0 9 0 0 1 0 0 0 0 0 0 0 0 

h = RED  1 0 0 0 0 0 0 0 1 4 0 0 0 0 0 1 0 0 0 1 

i = NLI  1 0 2 0 0 0 5 0 21 0 0 0 0 0 0 0 0 1 0 0 

j = MAC  1 0 2 0 0 0 0 0 0 26 0 0 0 0 0 1 0 0 0 2 

k = LFB  0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 

l = DEL  0 0 0 0 0 0 1 0 0 0 0 9 0 0 0 0 0 1 0 0 

m = COR  0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 

n = CLRA  0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 

o = CLRW  0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

p = CAS  5 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 

q = BLKY  0 0 1 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 1 
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r = BCP  0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 17 0 0 

s = APLB  3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

t = ANG  0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 31 

 

Table 8.8 Modelling results based on 252 ‘crown’ objects with 20 attributes including shadow and two classes 

of grassland.  

Description Count 

Correctly classified instances 144 

Incorrectly classified instances 108 

Total number of instances 252 

Percent Correct 0.57 

Kappa statistic 0.53 

 

 

Figure 8.22 Tree crowns automatically delineated using the HyMap Crown Delineation Algorithm pre-

processing and ENVI FX was classified using LMT. 

8.3.6.1 SPOT 5 multi-scale classification results 

The automated segmentation results are over-segmented. However, the added detail of variation of 

vegetation patterns is not limited by effort applied (Figure 8.24). Each image object has a relative 

number and area of classified tree crowns nested beneath it (Figure 8.24). Therefore objects can be 

classified based on cover and abundance of individual species (Figure 8.25). 
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Figure 8.23 Tree crowns delineated from pan sharpened SPOT 5 imagery can be classified based on training 

samples.  

 

Figure 8.24 Over-segmentation allows for most variation in vegetation patterns at a patch scale to be recorded.  
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Figure 8.25 Patch scale image objects classified based on cover and abundance of crown scale sub-objects 

(crowns). 

 

Figure 8.26 Patch scale image objects classified based on dominant crown species. This example shows objects 

with greater than 20% cover of Callitris endlicheri, Angophora floribunda or Eucalyptus melliodora. 
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Despite greater uncertainty in the modelling than seen at the Jilliby site, and the lack of data on the 

spatial distribution of species, the model was applied across the landscape as a proof of concept. The 

model could reliably differentiate between several broad groups of woody vegetation. The cypress 

pine species (Callitris endlicheri and Callitris glauca), and rough barked apple (Angophora 

floribunda) were easily differentiated from eucalypt species. Eucalyptus crebra, Eucalyptus 

macrorhyncha, and Eucalyptus volcanic could also be differentiated based on SPOT 5 spectral 

response. However, there were eight other eucalypt species sampled that were consistently confused 

with other species.  

Figure 8.26 illustrates how image objects at a patch scale can be classified on the cover and 

abundance of individual species. Callitris endlicheri is easily identifiable by its dark photo pattern in 

SPOT 5 imagery. Despite a limited number of crown samples the mapping followed the expected 

distribution. Callitris endlicheri features a small narrow crown but was easily classified when all 

polygons with >20% were cover were selected. Tree counts are also possible though are less reliable. 

Similarly, Angophora floribunda patches were effectively classified despite them often occurring in 

shady gullies that would usually be problematic in a raster based classification. Shadow could be 

classified at a crown scale level and ignored for the patch scale. Eucalyptus melliodora is an example 

where the crowns were not particularly distinct but the model output follows the landscape position 

expected, i.e. large over mature tree crowns on the edge of cleared woodlands. 

8.3.6.2 Smoothing of community polygon raster boundaries 

The default polygon output from Definiens Developer is a polygon raster. The exported shape file 

describes the border of the image objects along a pixel raster which can lead to jagged and confusing 

edges and poor performance in boundary accuracy measures. Smoothed boundaries are easier to 

interpret as they remove the spatial noise associated with jagged edges. 

Definiens Developer 7 has a variety of tools for smoothing region boundaries. However, these 

generated significant artefacts and distortion in the output regardless of scale. The Polynomial 

Approximation with Exponential Kernel (PAEK) smoothing (Bodansky et al., 2002) was found to 

provide good results. It calculates smoothed lines using a parametric continuous averaging technique, 

making the results easier to interpret for users accustomed to air photo interpretation (see Figure 

8.27). Reference boundaries from higher resolution data (bottom left) are used to calculate boundary 

fit (bottom right) and the Area-Fit-Index. 
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Figure 8.27 Segmentation results are a polygon raster by default (top left). The best performing smoothing 

solution was found to be the PAEK algorithm. 

8.4 Discussion 

The segmentation quality of three algorithms was evaluated at multiple scales using SPOT-5 data. The 

reference image objects were delineated manually. The measure of success for each algorithm 

included global statistics, area fitting, and a comparison of the distance between object centroids. The 

aim was to assess the operational feasibility of using segmentation on low spectral and spatial 

resolution data at regional scales.  

The results show that pre-processing had the effect of making the equivalent scale finer, or producing 

more image objects than at the same scale using digital number data. Visually, this type of pre-

processing increased between class variation and minimised illumination artefacts. Visual methods 

are widely-used for assessing image segmentation quality (Zhan et al., 2005). 

Segmentation was performed at multiple scales, so that the optimal scale parameters could be selected 

based on reference polygons. The ‘optimum’ scale of segmentation was defined using topological and 

geometric metrics. For example, the optimum scale of segmentation for delineation of the binary 

woody vegetation reference objects for Definiens was Scale 3 for the topological measures tested 

(Figure 8.10).  
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However, when the internal boundaries of vegetation were included (Figure 8.11) the only way to 

produce segmented objects that were comparable with the size and shape of API was to use Scale 5, 

where all other measures performed poorly. Similarly, despite the good performance of Definiens at 

Scale 3, this choice of parameter produces results with low geometric accuracy when assessing 

vegetation community boundaries (Figure 8.17). The Euclidean distance between reference objects 

and segmented objects at Scale 3 was unsatisfactory (~500m) (Table 8.4).  

So, Definiens, SCRM and ENVIFX performed poorly when trying to replicate the size and shape of 

community scale polygons based on API. However, a number of geometric and topological measures 

showed good performance at fine scales. Only the measures of global statistics and those used for 

quantifying over-segmentation detracted from the results. 

The solution presented was to over-segment the imagery and rely on a classification of each small 

object to create meaningful landscape units following much the same schema as Chapter 6. Once tree 

crowns (or components of tree crowns) were classified (Figure 8.22) they were used to classify patch 

scale segmentation (Figure 8.24) by individual species occurrence (Figure 8.26) and cover/abundance. 

To create a community scale vegetation map these classes were merged (Figure 8.25). 

Where sufficient field data are available, sub-object statistics at a crown scale can be used for 

classification at a community scale. The crown scale classification based on SPOT-5 allowed for the 

proportion of dominant species to be estimated. This approach produced meaningful arrangement of 

species at a formation level. Hilltop species were restricted to hilltops and woodland species were 

restricted to floodplains (Figure 8.25). 

More field samples and better information about the spatial distribution of species within and around 

the plots would be needed for conclusive results. The approach dealt well with a heterogeneous 

landscape by allowing small patches of cleared land and shadows to be classified separately. 

8.5 Conclusion 

This study differs to previous research in a number of ways. The automated analysis at 

Coonabarabran is compared to vegetation boundaries determined manually by a human interpreter. 

More importantly, it assesses the performance of segmentation for detecting internal boundaries 

between vegetation types within closed forest.  

Empirical evaluation of a segmentation algorithm’s performance is relatively straight forward for 

isolated stands of trees and boundaries in modified landscapes. However, evaluating internal 

boundaries in closed forest is more challenging as their precise location is subjective. 

Definiens Developer 7, the ENVI 4.5 Feature Extraction Module, and Size Constrained Region 

Merging all successfully segmented data at fine scales, but artefacts of their algorithms appear at 
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broader scales. Vegetation mapping based on SPOT-5 data should take a multi-scale approach; 

classifying fine scale sub-objects based on field sampling and merging them based on class to create 

final map units.  

Chapter 9  

Discussion and Conclusions 

The aim of this thesis was to develop tools for the delineation and classification of native vegetation. I 

argued that the main obstacle to successful spatial modelling of field data has been a lack of spatial 

and spectral resolution and an inability to make meaningful predictions through a change in scale. I 

suggested that heterogeneous vegetation needs to be analysed across multiple scales to be able to 

effectively categorise it as a vegetation community. Individual tree crown delineation and 

classification alone will not describe a community. Nor is it possible to delineate a patch of vegetation 

and decipher the component species based on the average spectral response.  

A multi-scale, object-based, hierarchical approach was introduced to generalise floristic data collected 

at the plot scale to a vegetation community map using remote sensing. This framework used the cover 

and abundance of classified tree crown objects to inform the classification of larger patches of 

vegetation. Community scale image objects were then named using the same hierarchical framework 

used by ecologists in plant ecology. 

I conclude in this chapter by describing what was novel in the context international studies. I look at 

the limitations of the research, and conclude by suggesting future avenues of research. I also cite some 

specific lessons relevant to vegetation mapping in Australia. 

9.1 Hyperspectral remote sensing of vegetation type 

There were a number of challenges in the use of airborne hyperspectral data but the solutions to these 

problems ended up enhancing its utility. The spatial precision of HyMap acquired at low altitude and 

over hilly terrain was poor. To improve the spatial precision, the HyMap data were co-registered with 

small footprint lidar. This took advantage of the additional spatial precision of lidar and the structural 

information implicit in an active canopy penetrating system.  

An automated area-based ground control point selection algorithm selected 10, 000 GCPs were 

generated with an average RMSE of less than 3.0. This proved sufficient to co-register individual 

crowns in most cases. The key innovation here was to pre-process the optical data to offer a greyscale 

image that accentuated tree crowns so that they could be matched the canopy height model. Other 
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studies that sought to co-register imagery and lidar have had mixed success. Mundt et al. (2006) 

successfully used GPS ground control based selection of GCPs but this was in flatter terrain. 

Koukoulas and Blackburn (2005) saw registration errors for small crowns (Koukoulas and Blackburn, 

2005).  

The practical limitations on field sampling presents a challenge for high spatial resolution 

hyperspectral remote sensing, including studies using image based training areas. There were 

hundreds of thousands of tree crowns that needed to be classified at the Jilliby site and only 130 plots 

were sampled (~800 tree crowns).  However, this is a relatively high sampling density for the size of 

the study area when compared to other studies (Bunting and Lucas, 2006, Ismay et al., 2004). 

Machine learning algorithms offer flexibility for classifying highly dimensional hyperspectral data. 

The results can reduce the number of bands needed in classification, further reducing co-linearity, and 

offer new insights into the structure of data. For example, the bands that contributed the most to 

differentiating crown species in the study area were in the SWIR and visible parts of the spectrum in 

sectors related to chlorophyll and leaf-moisture.  

Logistic Model Trees (LMT) has rarely been used to classify vegetation. It combined the transparency 

of CART, the performance of MP and the inbuilt parameter (band) selection of LDA. It uses a step-

wise fitting process to constructs the logistic regression models and can select relevant attributes 

(bands) in the data in a natural way.  And it uses cross-validation to find a number of boosting 

iterations (Friedman et al., 2000) so that it doesn't overfit the training data. It also has the advantage of 

being computationally efficient and will scale well to larger datasets. 

The HyMap Crown Delineation Algorithm (HCDA) introduced in Chapter 6 showed it was possible 

to use HyMap as the sole source of image data in the delineation of large tree crowns. The accuracy 

was assessed in terms of topological and geometric fit and classification accuracy. The imagery is 

coarser than those used in existing tree delineation studies (Bunting and Lucas, 2006, Culvenor, 2002, 

Leckie et al., 2005a). I would argue that the use of HyMap at a crown scale is defensible for large 

crowns but only if a secondary high spatial resolution data source is available selecting training areas 

and for validation.  

The HCDA is based on existing principles of local maxima detection, top hat segmentation and 

watershed segmentation. It is computationally efficient and allows for extraction of spectral 

information from HyMap data for individual tree crowns. More samples are for a comprehensive 

quantitative evaluation. The study showed it performed well with large crowns, with some over-

segmentation, but its performance was only moderate in open forest with exposed soils or in 

homogenous stands of small crowns. 
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Bands used for segmentation were selected by MLA, which has not featured in the literature, based on 

the premise that they would create objects that best differentiated species. SCRM created patch scale 

objects that were populated with species cover and abundance information for use in community scale 

classification. One of the advantages multi-scale, object-based classification framework presented 

here is that segmenting representative objects, whether at a branch scale or a small homogenous stand, 

can potentially allow for robust image objects for spectral extraction. 

This approach was trialled on SPOT 5 data and produced meaningful arrangement of species at a 

formation level. Hilltop species were restricted to hilltops and woodland species were restricted to 

floodplains. The optimum scale of segmentation for delineation of vegetation communities was 

determined for three segmentation algorithms using quantitative metrics so the algorithms could be 

compared without bias. Air photo interpretation (API) was used as reference data and topological and 

geometric accuracy was assessed at multiple scales using un-processed and pre-processed imagery. 

Again, more samples are required for an exhaustive quantitative comparison but the results were 

clear. Segmentation algorithms cannot produce ‘API-like’ polygons just by increasing the scale. 

Shadow and clearings dominate boundary detection and region-merging at course scales. The image-

objects boundaries no longer intersect with thematic boundaries making the premise of classification 

tenuous. It is the same problem dealt with by Strahler et al. (1986) continuous scene model, where 

coarse resolution image elements are larger than the thematic attributes being mapped. The solution is 

a multi-scale, object-based classification framework where only small crown scale objects have 

relatively homogenous spectral and physical values are classified. The results can inform the 

classification of larger patches.  

Australian natural resource management in require that vegetation be mapped and monitored but the 

limited resources available dictate that ecologists tasked with this responsibility have to rely on 

remote sensing data. Unfortunately, the existing operational survey methods for vegetation type are 

not ideal for use as training data for remote sensing.  

Australian guidelines for vegetation survey methods do recommend that homogenous patches of 

vegetation should be sampled in the field (Hnatiuk et al., 2009, McCauley, 2006, Sivertsen and 

Metcalfe, 1995). However, native vegetation rarely occurs in homogenous stands. Instead it occurs in 

heterogeneous patches nested in a mosaic (Forman, 1995).  

Hierarchy theory acknowledges the heterogeneity in natural systems and proposes that the 

classification of a landscape unit is dependent on the scale of observation. Ecologists conduct patch 

and crown scale analysis, and require remote sensing to answer questions at these regional scales. The 

sampling scale of operational satellites data is fixed at the sensor, but plot size is flexible. 
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To make the most of limited survey data I argued for a hierarchically nested series of plots. A 20m by 

20m plot is considered a reasonable area for many vegetation types, the main exceptions being 

grassland (too large), and wet Eucalypt tall forests (too small) (Emery et al., 2001). 

9.2 Fuel loads and remote sensing 

Vegetation structure was assessed by quantifying forest fuel load using remote sensing. Hyperspectral 

vegetation indices outperformed broad-band indices for mapping the spatial distribution of forest 

fuels. The narrow bands provided a greater variety of indices less sensitive to saturation in high 

canopy cover. 

Small footprint lidar successfully penetrated the canopy and offered quantitative information about 

the structure of the understorey. However, the total fuel load assessed in the field was dominated by 

leaf litter component in wet forest, which was problematic to quantify with remote sensing. 

The Jilliby site was subject to rigorous field sampling of fuel structure and weight, which raised a 

number of important issues related to how fieldwork is conducted for remote sensing studies. We 

found the visual assessment of fuel hazard scores was not directly linked to the weight of fuels. In 

addition, the two rapid field assessment methods trialled gave different results for the same sites. 

Existing research indicated that there is a relationship between tree height and fuel loads and between 

NDVI and fuel loads. However, no significant relationship was found between broad-band satellite 

data and tree height in the wet forest of the study site. Canopy cover was found to vary independently 

of available fuel load, particularly in tall, closed forest. Lidar was able to accurately measure the 

elevated fuels across the site, but this was only a small component of the overall fuel hazard as 

measured by visual assessment scores and destructive sampling. 

A new index that summarises the Vesta fuel scoring attributes was introduced and found to be better 

correlated with remote sensing variables than the OFHG method. The surface profile component of 

the Vesta scores proved to have a stronger relationship with the destructive sampling fuel weights 

than the surface measurements of the OFHG. Destructive sampling produced results that were only 

weakly correlated with visual assessment score totals and remote sensing variables. This would likely 

change if larger areas were completely harvested, as seen in the successful quantification of total 

biomass by remote sensing (Turner, 2006). However, the relationship between total biomass and fuel 

load is uncertain. 

Unfortunately, the OFHG did not collect continuous variables for the surface fuel depth. Thus, the 

method did not capture enough dynamic range in the surface fuel layer for effective modelling, as it 

constituted the bulk of the accumulated fuel hazard. I would recommend a more quantitative approach 

for the visual assessment of surface fuel sampling, as seen in the Vesta method. 
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9.3 Limitations of the research 

Both study sites featured in this research were the subject of previous vegetation mapping (Bell and 

Driscoll, 2006, Ismay et al., 2004). The floristic groups mapped had been named on the basis of the 

dominant crown species and this research followed a similar approach.  

Since optical remote sensing instruments detect changes in reflectance of material surfaces the study 

was limited this study to canopy species of woody vegetation. The use of this classification 

framework for nature conservation rests upon the assumption that they provide information about the 

distribution of many species, though this is rarely tested (Burgman et al., 1993). Predicting the 

distribution and composition of understorey species based on dominant overstorey species is 

problematic. 

The crown species sampled at the Jilliby site were dominated by Blackbutt (Eucalyptus pilularis) as it 

has a characteristically large crown and was present in all strata. Independent species data was 

available for use in classification but further ground samples would be required to determine how 

robust the classification is in areas outside those described in the plots. Not all species in the study site 

were sampled in the field, and not all of the sampled species were included in the model. An 

additional source of error is that crown surveys record the location of crown stems, not the canopy 

centre.  While visual adjustment of crown centres has precedent in the literature (Clark et al., 2005), it 

does introduce a source of bias. 

The primary result of this thesis was a vegetation map classified on cover and abundance of dominant 

crown species. The multi-scale, object-based, hierarchical approach is used to generalise floristic data 

collected at the plot scale is novel. However, the approach is burdened by the need to survey tree 

crowns and can be confounded by highly diverse ecosystems. The assessment of vegetation type and 

fuel loads both have a temporal component; this was not assessed in the thesis. 

9.4 Future research 

Processing HyMap data with spatial co-registration, model-based atmospheric correction and cross-

track illumination correction has the effect of changing the reflectance values of hyperspectral data. 

The effect pre-processing had on segmentation and classification at a crown object scale is unknown 

but would be a fruitful avenue for further research. For example, Behnia (2005) compared four 

frequently adopted image fusion algorithms (pan-sharpening) and concluded that the tested 

approaches improved the spatial resolution effectively but distorted the original spectral signatures.  

Previous studies have shown that using an image-object based approach can improve classification 

accuracy over pixel-based approaches (Addink et al., 2007, Baatz and Schäpe, 2000, Benz et al., 

2004). More research is required to determine if a multi-scale, object-based approach to vegetation 

types will provide gains over single scale results.  
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The scope of this work was restricted to spectral values and ignored textural and semantic 

information. Using expert knowledge to help constrain the distribution of vegetation types has shown 

to be successful in vegetation modelling (Keith and Bedward, 1999). Utilising this approach to create 

rules based on landscape position for patch scale polygons should further improve classification 

accuracy. 

Airborne hyperspectral sensors are clearly disadvantaged by the limited spatial coverage they can 

provide. They are best used in concert with other data sources, which provide greater temporal and 

spatial coverage. They could be targeted towards high conservation or high risk areas or used to 

improve the analysis of broadband satellite data. For example, lidar and HyMap could be used as 

training areas to develop a relationship between structure and satellite based reflectance or for 

validation.  

Fuel loads were predicted with higher accuracy in drier and more open forest. An object-based 

approach may also improve performance, as this has proven to be the case in other studies of 

structural attributes (Addink et al., 2007). 

More work needs to be done on assessing segmentation quality. Finer scale air photo interpretation 

would be helpful as well as higher density field survey data. Varying the inputs to segmentation to 

include terrain and multiple sensor data is also promising. 

9.5 Conclusions 

Turning plot data into maps requires a transition between scales. The only tool capable of providing 

current information about landscape scale variables is remote sensing. Plot data needs to be used to 

train the classification of remote sensing data but a number of obstacles have been encountered.  

Pixel-based classification of vegetation have underperformed in NSW (McCauley, 2006). They 

cannot transparently generalise local scale heterogeneity into broad map units as there is too much 

noise in natural images for them to be interpreted by managers of natural resources. 

Hyperspectral remote sensing extra information, particularly in the SWIR, for differentiating eucalypt 

species. I presented a new multi-scale, object-based framework for classifying vegetation type using 

hyperspectral imagery. No assumptions were made about a relationship between scales of field 

information and remote sensing. An explicit link was formed by quantifying species diversity at a plot 

scale. This has enabled the multi-scale mapping of vegetation type that has potential uses at course 

scales in natural resource management and at fine scales for local decision making. 

Forest fuel loads were found to vary independently of canopy cover in tall, wet forest. The 

relationship between the accumulation of fuels and remote sensing variables was clearer in the dry 
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open forest that is more representative of the regional ecology. Lidar and optical sensors struggled to 

detect the leaf litter that drove overall fuel load. 

I would encourage other remote sensing research to use the same language, and the same appreciation 

of scale, as ecologists. The reaction from government partners to chlorophyll content and sub-pixel 

abundance maps was not encouraging. However, my attempts to map the same variables they collect 

in the field were met with great enthusiasm. 
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Appendix 

Source code for HyMap Crown Delineation Algorithm in IDL (Chapter 4) 

Semi-automated crown delineation with HyMap: Watershed Workflow in IDL 

To apply the watershed algorithm open the IDL Interactive Development Environment and follow the sample 

code below. Lines that are preceded with “;” are comments and do not have to be entered. Each line can be 

entered one at a time at the command prompt of the Interactive Development Environment, which will preview 

each step and create an output TIFF image. 

IDL programming code for the watershed algorithm 

;Radius of disc...  

r = 2  

;Create a disc of radius r  

disc = SHIFT(DIST(2*r+1), r, r) LE r  

 ;Read the image  

a = READ_TIFF(‘USER_FILENAME.tif') 

 ;Invert the image  

b = MAX(a) - a  

TVSCL, b, 0  

 ;Remove holes of radii less than r  

c = MORPH_CLOSE(b, disc, /GRAY)  

TVSCL, c, 0 

 ;Create watershed image  

d = WATERSHED(c, CONNECTIVITY = 8, /LONG) 

;Display it, showing the watershed regions  

TVSCL, d, 0  

;Merge original image with boundaries of watershed regions  

e = a > (MAX(a) * (d EQ 0b))  

TVSCL, e, 0 

WRITE_TIFF, 'USER_FILENAME_D.tif', (d) 
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