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ABSTRACT 

This thesis investigates the time-dependent behaviour of slender reinforced high-

strength concrete (HSC) panels, with particular emphasis on the combined effects of 

creep and shrinkage on the buckling capacity and its degradation with time.  

The short-term response of one-way HSC panels is studied first, in order to set 

the basis for the long-term analysis. A theoretical model is developed, which accounts 

for the geometric and material nonlinearities including the strain softening and cracking 

of concrete, tension-stiffening and reinforcement yielding. An experimental study is 

carried out, including testing to failure of eight one-way full-scale panels under in-plane 

loads with different load eccentricities, slenderness, and reinforcement ratios. The 

failure of all panels was a sudden buckling failure. A close correlation between the 

theoretical model and the experimental results is obtained.  

The time-dependent response of one-way HSC panels is then investigated. A 

nonlinear theoretical model is developed based on a time-stepping analysis to account 

for the variation of the internal stresses and deformations with time. A rheological 

generalized Maxwell chain model is used to account for creep of the concrete as well as 

its shrinkage, cracking, tension-stiffening and aging through strain- and time-dependent 

springs and dashpots. The incremental governing equations are solved numerically at 

each time step. An experimental program is conducted, which consists of testing five 

one-way HSC panels under sustained in-plane loads with various eccentricities and load 

levels. Two panels failed by creep buckling and the rest exhibited long-term stable 

behaviour, which were then loaded to failure. Good agreement is achieved between the 

test and theoretical results.  



II 
 

Finally, the long-term behaviour of two-way HSC panels is examined by 

developing an incremental nonlinear model that uses the Von Karman plate theory with 

large displacement kinematics. The rheological generalized Maxwell chain model is 

used to model the creep of concrete, including the shrinkage and cracking. The 

numerical and parametric study reveals that the time-dependent behaviour can be 

significantly weakened by cracking of concrete.  

Based on the results presented here, it can be concluded that creep and shrinkage 

can significantly influence the load-carrying capacity of HSC panels. The theoretical 

models developed here provide effective tools to predict their time-dependent response. 
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND AND SIGNIFICANCE 

The use of high-strength concrete (HSC) in various construction applications has 

become widely accepted. Applications in columns and walls of high-rise building, long-

span box-girder bridges, and structural components of offshore structures have been 

reported. The popularity of HSC is due to the pronounced advantages of the material, 

such as the superior strength and stiffness, long durability, and light-weight 

construction. In comparison to normal-strength concrete (NSC) structures, it is now 

possible to build slender columns and walls using high-strength concrete without 

reducing their load-carrying capacity. Thus, its use allows for reduced dimensions of the 

structural members and consequently, for a reduction in the overall cost of the building. 

Among the various applications of HSC for structural members, this research focuses on 

high-strength concrete wall panels.  

Vertical high-strength concrete wall panels are subjected to compression forces 

in general, which apart from leading to axial shortening of the members, increase the 

susceptibility of the walls to buckling failures. In this sense, HSC panels are more prone 

to buckling failure than panels made of conventional normal-strength concrete because 

of their high slenderness ratio. This becomes even more critical when initial 

imperfection exists or when the axial load is an eccentric one, which is the case in most 

practical applications. The buckling failure of slender HSC panels is characterized by 

sudden and explosive manner, which initiates crushing of the concrete and/or yielding 

of steel reinforcement.  
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On the other hand, stubby walls with low slenderness may fail by concrete 

crushing or yielding of the reinforcement before the loss of geometrical stability. Many 

factors affect the buckling and failure behavior of HSC panels, including the steel 

reinforcement ratios in the two orthogonal directions, location of the reinforcement, 

slenderness ratio, aspect ratio, concrete strength, and the boundary conditions. These 

parameters need to be fully investigated and understood in order to enhance the 

effective design and safe use of HSC panels.  

However, in most cases, the wall panel is subjected to sustained loads that result 

from its self-weight and loads that are transferred from the structure. When these loads 

are combined with the normal construction inaccuracies and load eccentricities that 

cannot be prevented especially in concrete construction, the wall will undergo 

increasing lateral deflection with time due to creep of the concrete. The time-dependent 

behavior is likely to cause excessive deflection and cracks, may consequently lead to 

loss of stability of the member, a phenomenon usually referred to as creep buckling.  

In addition to the parameters mentioned above, the time-dependent behavior of 

HSC panels is characterized by many physical phenomena that introduce a level of 

complexity into their structural analysis. These include the dependence of the creep 

strains on the level of stresses that vary with time, their interaction with non-mechanical 

shrinkage and thermal strains, the aging and nonlinear time-dependent behavior of the 

concrete material, and the effects of structural imperfections that cannot be avoided in 

practice. Consideration and characterization of these effects make accurate prediction of 

the nonlinear behavior of wall panels a challenging and difficult task. Therefore, the 

problem of creep buckling needs to be thoroughly understood and properly addressed in 

the course of wall design in order to achieve safely designed structures and to extend 

their design life.  
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The short-term behavior of reinforced concrete (RC) wall panels, especially 

those made of normal-strength concrete has been extensively studied during the past 

few decades. Both experimental and analytical investigations have been carried on. 

(Swartz and Rosebraugh 1974; Swartz et al. 1974; Saheb and Desayi 1989, 1990; Gupta 

and Rangan 1998; Farvashany et al. 2008). Among the existing analytical studies, a 

number of studies were based on empirical or semi-empirical equations to predict the 

ultimate strength of concrete panels. Rigorous analytical studies were also undertaken 

by a few researchers, in which the material and geometric nonlinearities were accounted 

for. On the other hand, the studies on high-strength concrete panels under eccentric 

loading, and especially experimental investigations are limited.  

Long-term studies on HSC panels cannot be found in the open literature. On the 

other hand, only a limited number of research works have focused on the time-

dependent performance of NSC wall panels under sustained loading, but without 

addressing their creep buckling response. Numerous research works have been 

conducted on studying the creep buckling behavior of structures made of metals and 

polymers, and reinforced concrete structures other than wall panels (Rabotnov and 

Shesterikov 1957; Hoff 1958; Bažant 1968; Behan and O'Connor 1982; Chang 1986; 

Hamed et al. 2010a, b; Hamed et al. 2011). These studies shed light on the creep 

behavior of HSC panels in general and the creep buckling behavior in particular, but the 

numerical tools developed in these studies cannot be directly applied to concrete panels 

due to the different geometry and different material behavior. Hence, there is a need for 

further studies in this field.  

This research focuses on investigating the long-term and creep buckling 

behavior of high-strength concrete wall panels. For this, theoretical models and 

numerical tools are developed, and a new experimental investigation regarding the 
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buckling and the creep buckling behavior of HSC panels is conducted. The models take 

into account the effects of creep and shrinkage, the aging, cracking, tension-stiffening 

and the geometric nonlinearity. Design and analysis recommendations are established in 

the light of the outcomes of this research study.  

1.2 OBJECTIVES AND SCOPE 

The primary objective of this research is to enhance the fundamental understanding and 

to provide an insight into the long-term behavior of high-strength concrete wall panels. 

This goal will be achieved by developing nonlinear mathematical models for their 

analysis and by conducting experimental investigations that will reveal further aspects 

of the structural behavior, and will be used to validate the theoretical models. The 

following specific tasks are undertaken:   

 To develop nonlinear theoretical models that is able to predict the short-term 

behavior of HSC panels, in order to establish the foundation for the long-term 

analysis. Experimental study will also be conducted to verify the short-term 

theoretical model. 

 To develop nonlinear theoretical models that are able to characterize, describe 

and explain quantitatively the long-term physical performance of high-strength 

reinforced concrete panels under sustained loads, taking into account the 

geometric and material nonlinearities. Emphasis will be placed on the 

phenomenon of creep buckling;   

 To undertake short-term and long-term experiments on full-scale one-way HSC 

panels to validate the theoretical models developed in this study and to provide 

benchmark data for other researchers;   
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 To parametrically analyze key material and geometric variables, and the 

boundary conditions that can affect the behavior of HSC panels;  

 To review the existing design codes of concrete walls and to provide 

recommendations for the analysis and design of HSC panels.    

1.3 OUTLINE OF THESIS  

The thesis includes eight chapters. Chapter 2 present a review of the previous works 

published in the literature that are relevant to this study. The design codes are reviewed 

first with focuses on their approaches dealing with the creep and shrinkage effects in the 

design of wall panels. Then the literature on the short-term behavior of RC panels is 

addressed. Since there is lack of studies on the time-dependent response of HSC panels, 

the investigations on the long-term behavior of panels/plates and columns made of other 

materials are reported. Following that, the works on studying the long-term response of 

RC columns and shells are summarized. The last part of the chapter describes the 

material studies of the HSC in the literature and the theoretical models for the prediction 

of the material properties of HSC that can be employed in this research study are 

reported.   

Chapter 3 describes the theoretical and experimental investigations of the short-

term response of slender one-way HSC wall panels. The study focuses on the failure 

behavior of one-way HSC panels under instantaneous in-plane eccentric loading. The 

nonlinear model accounts for the geometric and material nonlinearities including the 

strain softening of concrete in compression, cracking and tension-stiffening as well as 

yielding of the steel reinforcement. The model describes the entire equilibrium path of 

HSC panels through the use of the arc-length method. The theoretical model is 

compared to and verified by the test results of 8 one-way HSC panels, which were 
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tested to failure in this study under short-term in-plane loading. The effects of 

reinforcement ratio and arrangement, load eccentricity and slenderness ratio are also 

examined in the experimental study.  

The long-term behavior of one-way HSC panels is studied in Chapters 4, 5 and 6 

progressively. Chapter 4 conducts a theoretical time-stepping analysis on general 

slender one-way panel subjected to sustained in-plane loading without the consideration 

of cracking. A rheological model that is based on the generalized Maxwell chain is 

adopted to model creep. The model accounts for the geometric nonlinearity through 

large displacements kinematic relations and accounts for the change of the internal 

stresses and deformation with time. A numerical example is presented and a parametric 

study is conducted to highlight the importance of the in-plane load level and eccentricity 

on the nonlinear time-dependent behavior of one-way general panels.  

Chapter 5 develops a more detailed and more specific nonlinear long-term 

theoretical model to study the time-dependent response of one-way HSC panels based 

on the time-stepping analysis presented in Chapter 4. Apart from the creep, the model 

takes into account the shrinkage, aging, cracking and tension-stiffening of the concrete 

through strain- and time-dependent springs and dashpots in the generalized Maxwell 

chain. The incremental governing equations are derived and solved using the multiple 

shooting method. A smeared cracking model is adopted, and an iterative procedure is 

conducted at each time step for the determination of the unknown rigidities of the 

cracked section, as well as the length of the cracked region. The capabilities of the 

model are demonstrated through numerical and parametric studies.  

The theoretical model developed in Chapter 5 is validated by the test results 

reported in Chapter 6, where a long-term experimental study is carried out on one-way 

HSC panels. Five simply-supported slender one-way HSC panels are tested in this study 
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under sustained eccentric in-plane loads up to a period of four months. A variety of 

parameters including the in-plane load level, the load eccentricity and age of concrete 

are investigated in the test. Two panels failed by creep buckling under the sustained 

loads, whereas the other three panels exhibited stable behavior, and thus, were loaded to 

failure at some time after initial loading without the release of the sustained loads. Close 

correlations are achieved between the test and theoretical results.  

In Chapter 7, the nonlinear long-term behavior of slender HSC panels in two-way 

action is investigated. A nonlinear theoretical model that considers the geometric 

nonlinearity is developed for the two-way panel based on the time-stepping analysis. 

Von Karman plate theory is used and the plane stress condition is adopted. A 

rheological material model that is based on the generalized Maxwell chain is adopted to 

model the creep of concrete. The concrete is assumed to be linear viscoelastic at first in 

order to highlight the effect of creep on the time-dependent response. Then, the cracking 

is included in the model using a smeared cracking approach. The incremental governing 

equations are solved numerically at each time step through the combined use of Fourier 

series expansions of the deformations and loads in one direction and the multiple 

shooting method in the other direction. Numerical examples are demonstrated and a 

parametric study is conducted to investigate the effects of in-plane load level and 

eccentricity, slenderness ratio, boundary conditions, aspect ratio, reinforcement ratio 

and shrinkage.  

Chapter 8 summarizes the main outcomes and conclusions drawn from this 

research investigation, and recommendations for the future research are also made.  

  



8 
 

CHAPTER 2 LITERATURE REVIEW 

A summary of the existing research studies published in the open literature pertained to 

the subject of this thesis is presented in this chapter. It starts with a general review on 

the design codes of practice including AS3600, ACI318 and Eurocode 2 regarding the 

design of wall panels.  Emphasis is placed on the design approaches that deal with the 

time-dependent effects of concrete. Next, the findings of the studies on the short-term 

responses of the NSC and HSC wall panels are reported, in order to set the basis for the 

long-term investigation of HSC panels. The panels in both one-way and two-way 

actions are included. It is found that the instantaneous behavior of NSC and HSC panels 

have been extensively investigated in the literature, but studies that focused on the long-

term response of HSC panels cannot be found in the open literature. Therefore, the 

literature on long-term behavior of the panels and columns made of metals and 

composite materials are addressed in the next section, followed by a summary of the 

research works on the long-term behavior of RC columns and shells. The last section 

describes the prior investigations on the material properties of the high-strength 

concrete. Typical theoretical material models which can be potentially utilized in the 

theoretical models to be developed in this thesis are summarized in this section, 

including the ones for predicting the creep and shrinkage, compressive and tensile 

strength, elastic modulus, constitutive relations, tension-stiffening effect and crack 

width of high-strength concrete. 
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2.1 REVIEW OF CODE PROVISIONS FOR WALL DESIGN 

A general overview of three major codes of practice (AS3600, ACI318, Eurocode 2) 

that provide design guidelines for concrete walls is presented in this section with 

emphasis on the design methods of wall panels against the time-dependent effects of 

concrete. A detailed discussion on the codes can be found in the following chapters 

where they are compared to the short-term and long-term theoretical models developed 

in this study.  

2.1.1 Australian Standards – Concrete Structures (AS3600-2009) 

AS3600 (2009) discusses the design of reinforced concrete walls in Section 11 with 

characteristic concrete compressive strength at 28 days ranging from 20 MPa to 100 

MPa, namely from normal-strength to high-strength. The one-way and two-way 

buckling strengths of walls are both accounted for in the provisions and they are 

distinguished and characterized by the effective length of the wall. The strength design 

formulae apply only when walls are subjected to in-plane loading. For walls subjected 

to combined in-plane and out-of-plane loading, the provisions of designing slabs and 

columns, wherever appropriate, should be used as recommended in Section 11. The 

AS3600 (2009), however, provided no specific guidelines for including the long-term 

effects into the design of the walls for which the effect of creep may substantially 

influence their performance. Creep might lead to gradual lost in the structural capacity 

and may eventually lead to creep buckling. Therefore, it should carefully be accounted 

for in slender structures. 

2.1.2 American Concrete Institute code ACI318 (2008)  

The ACI318 (2008) presents an empirical method for designing concrete walls in 

Chapter 14. It focuses on panels generally subjected to a resultant force of all factored 
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loadings located within the middle third of the overall thickness of the wall. Only one-

way action of the wall is taken into account in this design procedure. Chapter 14 also 

includes another method specified for out-of-plane design of slender wall panels.   In 

this approach, the slender wall panel is treated as a simply supported member subjected 

to combined axial load and out-of-plane uniform lateral load. The empirical methods for 

general wall design and slender wall design are applicable to both normal and high 

strength concrete. Yet, similar to AS3600 (2009), the time-dependent characteristics of 

the HSC are not considered here.   

2.1.3 European code (Eurocode 2) 

The Eurocode2 (2005) provides design guidelines for walls in Section 5 where they are 

considered as columns subjected to vertical load and transverse moments at the top and 

bottom ends. According to Eurocode 2, when the wall is subjected predominately to 

lateral bending, the design of a wall will be carried out as a slab. In addition, the code 

provides instructions in Section 12 for designing walls made of plain concrete or 

reinforced concrete with reinforcement less than the minimum quantity required in the 

code. A simplified design method is given in this section where the wall is subjected to 

bending and axial force. One-way and two-way actions are both accounted for in this 

equation, and it is suitable for the design of both NSC and HSC walls. Nevertheless, the 

long-term behavior of HSC walls is not discussed.  

2.2 SHORT-TERM BEHAVIOR OF CONCRETE WALL PANELS 

Many research works have been found in the literature to investigate the behavior of 

reinforced NSC and HSC panels in one-way/two-way actions. Yet, the majority of these 

works focused on their short-term performance. To the best of the author’s knowledge, 
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studies on their long-term behaviors of HSC and even NSC panels cannot be found in 

the open literature. Therefore, the existing experimental and analytical studies pertained 

to short-term behavior of the RC panels are reported first, followed by review of the 

literature on the long-term response of plates and columns made from metals and 

polymers. After that, the findings of existing studies on the time-dependent behaviors of 

reinforced concrete columns and shells are reported, which will provide some insights 

into the investigation of the long-term behavior of HSC panels.  

2.2.1 Short-term behavior of concrete panels in one-way action  

2.2.1.1 NSC wall panels 

Oberlender and Everard (1977) presented results of testing 54 concrete walls and 

compared the test results with the analytical methods for wall design prescribed by 

ACI318 (1971). Two axial loading schemes, namely, concentric loading and eccentric 

loading were applied to each wall configuration. The slenderness ratio of the walls 

ranged from 8 to 28. The strength of concrete was varied between 25 MPa to 46 MPa. It 

was shown that the empirical equations for wall design provided by Chapter 14 of 

ACI318 (1971) gave considerably lower predictions of the failure loads for walls with 

small slenderness ratio (8 to12). The predictions for intermediate slenderness ratios (16 

to 20) were compatible with test failure loads. For larger slenderness ratios (24 to 28), 

the equations overestimated the failure loads. The other comparison was made between 

the test results and the method appearing in Chapter 10 of ACI318 (1971) which treated 

walls as columns for design purposes. The ultimate strength method in Chapter 10 

actually takes the slenderness effects into account. It was found that this method has 

correlated well with test data and was recommended as the proper method for designing 

wall panels.  



12 
 

 Saheb and Desayi (1989) reported test results of 24 reinforced concrete wall 

panels carrying eccentric in-plane vertical loading in one-way action with concrete 

compressive strength ranging from 20.17 MPa to 25.17 MPa. The experimental study 

investigated the effects of various parameters that can influence the strength and 

behavior of wall panels, such as slenderness ratio (height-to-thickness ratio of the wall), 

aspect ratio (height-to-width ratio of the wall), and amounts of reinforcement in the 

vertical and horizontal directions. The experimental ultimate loads were compared with 

the predictions of an empirical equation which was developed by modifying the ACI318 

(1977) and Zielinski et al. (1982) equations. It was shown in this study that the ultimate 

strength of wall panels decreased linearly with an increase in the aspect ratio but 

decreased nonlinearly with an increase in the slenderness ratio. The vertical 

reinforcement had significant effect on the wall strength, which grew linearly with the 

increase of the vertical reinforcement ratio. The effect of horizontal reinforcement on 

the ultimate strength was found to be negligible. The proposed modified empirical 

formula gave slightly conservative but safe estimations of the ultimate load of wall 

panels in one-way actions, and so it was recommended to be used in the design of 

reinforced concrete wall panels.  

2.2.1.2 HSC wall panels 

Gupta and Rangan (1998) presented an experimental study on high strength concrete 

structural walls which were subjected to in-plane axial compressive load and horizontal 

in plane load. The authors also developed a model that is based on the modified 

Compression Field Theory proposed by Vecchio and Collins (1986) and the 

conventional theory of reinforced concrete sections subjected to combined bending 

moment and axial compression for predicting the shear and flexural strengths. The 
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analytical results showed good correlation with the ones obtained from tests conducted 

in this study as well as other test results available in the literature.  

 Fragomeni and Mendis (1998) tested 16 eccentrically loaded normal and high-

strength concrete wall specimens and compared the results with theoretical predictions 

based on ACI318 (1995). The strength of concrete used in the study varied between 

32.9 MPa and 67.4 MPa. The high-strength concrete walls exhibited a more brittle 

bending failure in contrast to normal-strength concrete walls. The failure of HSC walls 

involved less concrete crushing than normal strength concrete specimens did, which 

occurred after yielding of reinforcement. The difference was attributed to the higher 

compressive strength of the high-strength concrete walls, which prevented early 

occurrence of concrete crushing. The comparison with the ACI318 (1995) code 

indicated that the code produced reasonable evaluations of the axial load capacity of 

normal-strength concrete wall panels but overestimated the axial capacity of high-

strength concrete walls. 

 Yun et al. (2004) also compared the predictions of the ACI318 (1999) with 

experiments performed on high-strength concrete walls. Yet, it was found that the 

ACI318 (1999) underestimated the load-carrying capacity of high-strength concrete 

wall panels.  

 Farvashany et al. (2008) tested seven large-scale HSC shear-wall specimens that 

were loaded to failure under constant in-plane axial load and horizontal in-plane load. 

The effect of the ratio of steel reinforcement on the strength of the shear-wall was 

examined. It was found that increasing the vertical reinforcement ratio led to an increase 

in the horizontal failure load, while the effect of horizontal reinforcement ratio was less 

profound, only leading to marginal increase of the shear strength for higher ratio.  
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 Doh (2002) carried out tests on 18 concrete wall panels in both one-way and 

two-way actions. The panels were subjected to eccentric in-plane loads in the test. Both 

normal strength concrete panels and high strength concrete panels were tested, with 

compressive concrete strength varying from 35.7 MPa to 78.2 MPa. The aspect ratio 

and slenderness ratio were varied in the test to examine their influences on the panel 

behavior. The test results showed that both NSC and HSC panels in one-way action 

have developed a single curvature in the vertical direction at failure. The failure cracks 

were horizontal (perpendicular to the loading direction) and near the center of the 

panels, signifying bending failure.  

Regarding the panels in two-way actions, both NSC and HSC panels developed 

biaxial curvature crack pattern at failure. Also here sudden and explosive types of 

failure were observed for HSC panels. The ultimate strength of both NSC and HSC 

panels were found to decrease gradually with the increase in the slenderness ratio. 

However, the reduction appeared to be greater for HSC panels. As indicated in this 

chapter, the HSC panels generally possessed smaller axial strengths than NSC panels, 

due to their relatively high slenderness ratios (30 to 40 in this study). Furthermore, the 

test results showed that the strengths of two-way panels were about three times higher 

than those of one-way panels.  

In addition to the experimental works on the NSC and HSC plates/panels, 

theoretical works were also carried out to analyze the short-term behavior of these 

structures. 

 El-Metwally et al. (1990) performed a stability analysis of eccentrically loaded 

reinforced concrete walls using the finite element (FE) method. The wall was modeled 

as a beam-column and it was subjected to axial loads and moments at both ends. The 

results showed that the failure mode of the beam-column was sensitive to the 
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slenderness ratio and eccentricity. For walls with moderate slenderness ratio, material 

failure rather than instability becomes dominate.  

 Fragomeni and Mendis (1997) performed a numerical analysis on the stability 

of normal and high-strength reinforced concrete walls. The model developed in the 

study took into account the P-Δ effect by implementing iterative analysis that yielded 

more accurate and generally less conservative results than the ACI318 (1989) design 

provisions. Based on their theoretical findings, the authors pointed out that there was no 

significant increase of the strength of the wall as a result of increasing the vertical 

reinforcement ratio if the reinforcement was only placed centrally in one layer. On the 

contrary, increasing the reinforcement ratio in the walls with two layers of 

reinforcement placed in each face would produce substantial increase in the strength of 

the wall.  

Shousha et al. (2007) proposed equations to predict the load-carrying capacity of 

high-strength concrete wall panels supported on all four edges and subjected to 

combined axial and transverse loads. The analysis was undertaken based on equilibrium 

of forces and compatibility of the strains, taking into account nonlinear effects between 

axial load and lateral deflection. The analytical model was verified by the experimental 

results.  

2.2.1.3 Concrete wall panels with openings 

Apart from the studies that focused on solid panels, a few researchers investigated the 

behavior of concrete panels with openings as well.  

Saheb and Desayi (1990b) tested 12 concrete wall panels to failure, which were 

with openings of various geometries, representing the windows and doors. The wall 

panels were eccentrically loaded in both one-way and two-way actions. It was found 

that the failure of the wall panels both in one-way or two-way actions, is characterized 
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by a buckling of the concrete column strips adjacent to the openings. The presence of 

openings offsets the supporting effect in two-way action, leading to approximately equal 

ultimate strength of wall panels in both one-way and two-way actions. Empirical 

equations were developed for assessing the ultimate strength of wall panels with 

openings in one-way and two-way actions. The equations were formulated by means of 

multiplying the equations for predicting the ultimate strength of identical concrete wall 

panels without openings (developed by Saheb and Desayi, 1989), with a reduction 

parameter that represents the geometry of the openings. The equations appeared to be 

satisfactory in terms of estimating the ultimate load of panels with openings.  

Guan et al. (2010) undertook finite element analysis on concrete panels with 

openings. The results were verified with experimental data published prior to the study, 

and consequently, more comprehensive formulae that took into consideration the length, 

height and location of openings were proposed. The authors pointed out that the 

ultimate strength of the panel was more susceptible to the combined effects of 

simultaneous change in both the height and length of the openings rather than a change 

in one of these parameters separately.  

It is shown that many efforts have been made to study the short-term behavior of 

concrete panels. Yet, only few research studies were devoted to the long-term 

performance.  

2.2.2 Short-term behavior of concrete wall panels in two-way action  

Swartz et al. (1974) tested 24 rectangular concrete walls in two-way action which were 

subjected to uniaxial compression along shorter edges, and simply supported along all 

edges. They proposed an equation to predict the buckling pressure of the walls based on 

the test results. The strengths of concrete used in the panels range from 17.2 MPa to 

20.7 MPa. The concrete wall panels failed by buckling (biaxial curvature) at stress 
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levels remarkably lower than the concrete compressive strength. The authors pointed 

out that the collapse mechanism of the tested panels was similar to that for simply-

supported panels subjected to uniform transverse loads. It was concluded in the paper 

that the presence of steel reinforcement was essentially inconsequential to the buckling 

load, but was important with respect to the panel ductility. The proposed formula as 

explained in details in Swartz and Rosebraugh (1974) for predicting the buckling 

pressure, which yielded reasonably conservative and accurate results. However, the 

simplified formula was based on simply-supported boundary conditions and on the 

elastic behaviour of concrete before buckling, which significantly limits its applicability 

in other cases. 

 Saheb and Desayi (1990a) tested 24 rectangular reinforced concrete wall panels 

loaded eccentrically in two-way action, with concrete strength ranging from 20.17 MPa 

to 25.17 MPa. The panels were simply supported along four edges and were subjected 

to in-plane loading. The influences of the aspect ratio (defined as length-to-width ratio), 

thinness ratio (defined as width-to-thickness ratio in this paper), slenderness ratio 

(defined as length-to-thickness ratio), and the ratio of steel reinforcement on the 

performance of the panels were examined. Based on the experimental results, the 

authors proposed two equations to predict the ultimate load-bearing capacity of the 

reinforced concrete panels, in which one is empirical and the other one is semi-

empirical. It was found that the ultimate strength of wall panels in two-way action 

increased linearly with the increase of the aspect ratio as well as the vertical 

reinforcement. On the other hand, it reduced nonlinearly with the increase in thinness or 

slenderness ratios. These findings are somehow similar to the ones observed by Saheb 

and Desayi (1989) for the case of one-way action. Also here, the effect of horizontal 

reinforcement on ultimate strength was negligible. The proposed design equations were 
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able to produce safe predictions of the ultimate strength of concrete wall panels in two-

way action in comparison with the test results and with other nine test results obtained 

in other studies. Yet, the empirical equation was more accurate than the semi-empirical 

one.  

 Aghayere and Macgregor (1990b) reported test results on 9 concrete plates, 

simply supported along four edges and subjected to combined uniform in-plane 

compression and uniform transverse loading. No tests had been conducted before this 

study for RC plates under this combined loading scheme. The parameters examined in 

the study included the aspect ratio, slenderness ratio, and reinforcement ratio. The 

aspect ratios of the panels are 1 and 1.5, with slenderness ratio (defined by 

height/thickness) ranging from 27.3 to 33. The plates were made with concrete strength 

of 32.2 MPa to 40.3 MPa.  

For the square specimen that was subjected to the transverse load only, yield 

lines formed on the tension face of the specimens at maximum loads. Cracks were 

observed along the diagonal on the bottom (tension) face near the corners. At failure, 

crushing of concrete occurred on the top face of the specimen above these cracks. In 

addition, cracks developed perpendicular to the diagonals on the top surface near the 

corners. These cracks resulted from the plate corners being held down, which permitted 

the development of anticlastic corner surfaces. The twisting moment near the corners 

caused torsional cracks on the edges of the plate near the corners. 

In the square specimen tested under combined transverse loads and uniaxial 

loads, cracks were first observed at the bottom face of the specimen in the direction of 

the in-plane load. The reinforcement at the center of the plate yielded at this load. Final 

failure was characterized by an explosive concrete crushing. Cracks were more 

prevalent in the direction of the in-plane loading.  
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Based on the test results, it can be concluded that in most axially loaded 

specimens, buckling of the reinforcement adjacent to the compression face took place at 

failure and all final failures were compression failures due to crushing of the concrete. 

For all specimens, the cracks in the tension face tended to propagate in an orthogonal 

pattern that coincided with the reinforcement layout due to the local stress 

concentrations caused by the presence of reinforcing steel. The crack patterns for the 

axially loaded specimens approached that of a similar plate under transverse loads only.  

As expected, the results of the investigation revealed that the presence of the 

axial in-plane load results in a reduction in the transverse load-carrying capacity. It was 

also found that the degree of reduction depends on the aspect ratio, the concrete 

strength, the amount of reinforcement, and the width-to-thickness ratio. The square wall 

plates (aspect ratio equals to 1.0) exhibited an instability failure mode followed by the 

concrete crushing as a secondary failure, whereas the collapse of rectangular plates 

(aspect ratio equals to 1.5) was caused by concrete crushing.  

 Ghoneim and MacGregor (1994a) tested 19 two-way RC plates that were 

subjected to combined in-plane compressive and transverse loads and simply supported 

on the four edges. The variables in the test included loading type, plate slenderness and 

aspect ratio, reinforcement ratios in the two orthogonal directions, in-plane load level 

and loading sequence. Normal-strength concrete were used with compressive strength 

varying from 18.7 MPa to 26.1 MPa.  

The cracking patterns in Series A which had the largest aspect ratio 

(length/width) (2.17) is shown in Fig. 2.1. These panels were tested under combined 

transverse loads and in-plane load with the in-plane loads applied along the shorter 

edges. It can be seen that the cracks developed in parallel to the long direction, 

indicating almost a one-way action of the plate strips in the middle region, as indicated 
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in Fig. 2.1. The other specimens which had smaller aspect ratios developed orthogonal 

patterns of cracks (see Fig. 2.2) that reflected the reinforcing pattern and indicted a two-

way action.  

 

Fig. 2.1 Typical cracking pattern of Series A (aspect ratio=2.17) (Reproduced from 

Ghoneim and MacGregor (1994a)) 

 

Fig. 2.2 Typical cracking pattern of square specimen (aspect ratio=1) (Reproduced from 

Ghoneim and MacGregor (1994a)) 

The failure of the specimens that were tested under transverse load only was very 

ductile. However, the ones tested under combined transverse and in-plane compressive 
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loads failed explosively. Concrete crushing lines were formed on the top surface 

accompanied by buckling of the compression reinforcement in the direction of the in-

plane load. The test results indicated that the slenderness of the plate and the loading 

sequence mainly determined the effect of the in-plane load on the lateral load capacity 

of RC plates. Both material failure including crushing of concrete and yielding of the 

tension steel and stability failure occurred in the RC plates tested under combined loads.  

The effects of different parameters on the behavior of the RC plates were 

discussed in details in Ghoneim and MacGregor (1994b). It was found that for stocky 

square plates, the presence of the in-plane load increased the lateral load capacity, as the 

geometrically nonlinear effect was insignificant. On the other hand, the presence of the 

in-plane load resulted in substantial reduction in the lateral load capacity of slender 

plates, since the second-order effect of the in-plane load dominated the behavior. It was 

also found that the RC plates behaved highly anisotropically under the action of 

combined uniaxial in-plane and lateral loads because the presence of the in-plane load 

increased the cracking moment about the axis perpendicular to its direction. As revealed 

in the paper, the behavior of the RC plates was also significantly influenced by the 

loading sequence. The proportional loading or prior application of the in-plane load 

resulted essentially in the same load-deflection response. On the other hand, the prior 

application of the lateral loads followed by the application of the in-plane loads led to 

considerably different results from the former two loading cases, which were mainly 

determined by the state of the cracking and the out-of-plane deflection when the in-

plane load was applied.  

 Sanjayan and Maheswaran (1999) carried out experiments on 8 high-strength 

concrete walls loaded eccentrically. The walls were simply supported along the side 

edges only. Different parameters that included the reinforcement ratio, eccentricity, and 
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concrete compressive strength were examined. It was found that the load capacity of the 

wall was significantly influenced by the eccentricity of in-plane loading, while it was 

insensitive to the concrete strength. The typical crack patterns on the tension faces are 

illustrated in Fig. 2.3 and Fig. 2.4 for the eccentrically loaded HSC concrete panels with 

eccentricity that equals to 8 mm and 25 mm, respectively. Ductile type failures were 

observed in walls subjected to eccentricity of 25 mm, while more sudden and explosive 

types of failure were observed in walls with eccentricity of 8 mm. The crack patterns on 

the tension side of all the walls clearly showed that the specimens developed a two-way 

action, typical to classical buckling of thin walls.  

The test results were compared to three codes of practice, namely ACI318 

(1992), AS3600 (1994) and BS8110 (1985), and to three prediction formulae proposed 

by Swartz et al. (1974), Saheb and Desayi (1990a) and Aghayere and MacGregor 

(1990a). The comparison led to the conclusions that the three codes of practice severely 

underestimated the failure loads of eccentrically loaded high-strength concrete panels, 

while the proposed formulae by Swartz et al. (1974) and Saheb and Desayi (1990a) 

considerably overestimated the wall strength. The analytical model of Aghayere and 

MacGregor (1990a) had partial success in predicting the loading capacities, but the 

estimates were still largely different from the test results.  
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Fig. 2.3 Typical cracking pattern of HSC panels (2000 x 1500 x 50mm) simply 

supported on two side edges and free on the loading edges (e = 8 mm) (Reproduced 

from Sanjayan and Maheswaran (1999)) 

 

Fig. 2.4 Typical cracking pattern of HSC panels (2000 x 1500 x 50mm) simply 

supported on two side edges and free on the loading edges (e = 25 mm)  (Reproduced 

from Sanjayan and Maheswaran (1999)) 

In terms of analytical studies, Aghayere and MacGregor (1990a) described the load-

deflection response of simply-supported concrete plates in two-way actions based on the 

assumed deflection method where a deflection function was assumed over the entire 

load range. The plates were under transverse (lateral) and in-plane compression loads. 

The material nonlinearities were taken into account in the analysis by utilizing the 

moment-curvature relationship including the tension-stiffening effect. The predictions 
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agreed well with the experimental results. It was indicated that the presence of axial in-

plane load would be favorable for the transverse load-carrying capacity of the plates, 

provided that the in-plane load is less than the balanced failure load and that the 

slenderness ratio (height/thickness) is less than 25. However, for a given in-plane load, 

the transverse capacity decreased with increasing the slenderness ratio. Nevertheless, 

the model only used uniaxial constitutive relation of concrete, which greatly simplified 

the problem of two-way panel. It also assumed a deflected shape to solve the governing 

equation, which may not always be valid once the concrete started to crack.  

Massicotte et al. (1990) investigated the behavior of two-way slender RC plates 

that were simply-supported along four edges and subjected to combined in-plane and 

lateral loads using a finite element (FE) analysis. The FE analysis was based on the two-

dimensional incremental hypoelastic model in which plane stress condition was 

assumed. The concrete was assumed to be isotropic up to either cracking or crushing, 

and the model allowed for strain softening after both cracking and crushing. A smeared 

crack approach was adopted and a three-dimensional plate-shell element that can 

accommodate large strains and large displacements was used in the model. The 

comparison of the model results with the experimental results showed that the FE model 

could adequately predict the behavior of RC plates. A parametric study based on the FE 

model revealed that the ductility of the plates was strongly affected by the in-plane load 

magnitude. In addition, it was concluded that for a simply-supported RC plates 

subjected to uniaxial in-plane and lateral loading, the lateral load-carrying capacity of 

the plates could be increased more efficiently by increasing the reinforcement ratio in 

the direction perpendicular to the in-plane load than in the direction parallel to the in-

plane load. This is because for RC plates with typically low reinforcement ratios, the 

strengthening influence of reinforcement in the direction parallel to the in-plane loading 
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on the lateral load-carrying capacity was small in comparison to the deteriorating 

influence of in-plane loading. Therefore, the combined effect of increasing the lateral 

capacity by increasing the reinforcement in the parallel direction was insignificant. 

However, in the transverse direction, as there did not exist in-plane loading, the increase 

of the reinforcement could directly increase the lateral load-carrying capacity.  

Ghoneim and MacGregor (1994c) presented an analytical method that was 

capable of predicting the ultimate strength of RC plates supported on four edges and 

subjected to combined uniaxial or biaxial in-plane and out-of-plane loads. Material 

nonlinearities including yielding of reinforcing steel, cracking of concrete and tension-

stiffening effect, strain-hardening and softening of concrete in compression were taken 

into account in the model by using elastic theory of plates with secant rigidities. The 

geometrical nonlinearity was incorporated in the governing equations, which were 

solved by means of expanding the plate deflection and the out-of-plane load into Fourier 

series. The theoretical results were compared with the test results and good correlations 

were reached.  

Attard et al. (1996) also used the FE model to study the out-of-plane buckling of 

reinforced concrete walls. The concrete was modeled using nonlinear orthotropic 16 

degree-of-freedom plate elements. The cracking and nonlinearity of concrete in 

compression were taken into account in the model. However, tension-stiffening was not 

included. The comparison between the theoretical results to available experimental 

results revealed a good correlation. 
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2.3 LONG-TERM BEHAVIOR OF PLATES/PANELS AND COLUMNS MADE 

FROM OTHER MATERIALS 

The findings of previous research works with regard to structures made from metals and 

composite materials are reported first. Then, the literature on concrete structures is 

investigated including columns and shells that may experience creep buckling.  

The phenomenon of creep buckling of structural members has attracted 

extensive research attentions. Among the first studies, Hoff (1956) studied the creep 

buckling behavior of structural metal columns with initial crookedness and presented a 

theory that was able to address the critical time at which the initially imperfect column 

would collapse due to the effect of creep. Both instantaneous elastic and plastic 

deformations were taken into account in the development of the theory that accounted 

for the transient and secondary creep of the material. The rate-of-creep method was 

applied to model the time-dependent stress-strain relations of the metal. 

An alternative method to creep buckling was proposed by Rabotnov and 

Shesterikov (1957) in their investigation of creep stability problem of columns and 

plates. Here, a small out-of-plane disturbance was introduced to the initially straight 

compressed column/plate. Based on the response with time, the column/plate was 

considered unstable if the lateral deflection caused by the disturbance increased in the 

subsequent interval of time or stable if it decreased.  

Distefano (1965) presented a study on the critical loads of axially loaded metal 

columns using linear and nonlinear creep law. The metal investigated in the study 

exhibited bounded creep as time tended to infinity. The author found out using the 

reduced modulus method that the lateral deflection of imperfect columns may become 

unbounded in some cases, thus, exhibiting creep buckling failures. 
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Huang (1976) introduced the large deformation kinematics into the creep 

buckling analysis of initially imperfect columns. As indicated, the analysis that was 

based on the small deformation approach might lead to misleading results given that the 

critical time for creep buckling was determined by the unbounded deflection or 

deflection rates. It was found that creep buckling could be characterized by upper and 

lower bounds at a finite time according to the large deformation analysis. If the acting 

load exceeded the upper bound, instantaneous buckling would occur, while if the load 

was smaller than the lower bound, creep buckling would not occur.  

Tvergaard (1979) investigated the creep buckling behavior of simply-supported 

rectangular plates made from metals under axial compression. The elastic and plastic 

behaviors of the material along with creep were accounted for. A perturbation method is 

used to analyze the creep buckling behavior. An iterative incremental numerical 

analysis was also carried out to investigate the plate creep buckling by further 

considering plasticity. It was shown that in addition to the elastic and creep 

deformations, when plastic yielding also occurred, the imperfection-sensitivity was 

considerably increased.  

Vinogradov (1985) presented a theoretical model for describing the behavior of 

linear viscoelastic eccentrically loaded columns. The study focused on the geometrically 

nonlinear effects of viscoelastic structures using the quasi-elastic method. For material 

exhibiting limited creep, both solutions obtained from geometrically linear and 

geometrically nonlinear analyses predicted the existence of a safe load limit below 

which the deflection of the column would approach an asymptotic value as time went to 

infinity. Moreover, reasonable agreement between the linear and nonlinear results could 

be found when the lateral deflection of the columns remained below 10% of the length 

of the column. Beyond this magnitude of deflection, as the deflections developed with 
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time, the difference between the two solutions increased, and becomes more significant 

for loadings equal or greater than the safe load limit. The linear analysis predicted 

greater rates of creep deformation and in contrary to the nonlinear theory, infinite 

increase of the deflection within a finite time was detected. This conclusion implied that 

the critical time of the structure could not be assessed based on the infinite deformation 

criterion because critical time corresponding to infinite deflection did not exist in the 

geometrically nonlinear analysis, which is more accurate.  

Chang (1986) examined two basic approaches for studying the creep buckling 

problem, namely the linearized dynamical approach developed by Rabotnov and 

Shesterikov (1957) and the quasi-static nonlinear approach proposed by Hoff (1956). 

The former method was used in the case of perfectly straight nonlinear viscoelastic 

columns where a small perturbation was applied in analyzing the stability problem. A 

linear relation of the changes in the stress and strain quantities was characterized in this 

method during the small excursions from the uniformly compressed state following the 

lateral disturbance. On the contrary, the quasi-static nonlinear approach was applied for 

the initially curved or eccentrically loaded columns. Although the former method 

predicted the critical buckling loads while the latter one yielded critical times, it was 

found that the two methods were closely related to each other by taking the transient 

creep (also called primary creep in theory of metal creep) into consideration. The Hoff’s 

approach could also be used to find the critical creep buckling load. 

Minahen and Knauss (1993) analytically and experimentally investigated the 

creep buckling of viscoelastic polymeric columns. The growth of initial imperfections 

was estimated by utilizing the hereditary integral formulation. Small deformation 

kinematics was first used in solving the problem and then the solution was generalized 

to take the non-linear kinematics into account. The results showed that the small 
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deformation theory represented the deformations of the structure closely to the 

experiments and conservatively.  

Ashour (1994) reported an incremental analysis of the creep buckling problem 

of geometrically imperfect circular cylindrical metal panels under uniaxial, lateral and 

multiaxial loading with simply-supported boundary conditions. The analysis was 

developed based on a non-dimensional form of Donnell-type equations for a slightly 

imperfect cylindrical panel and Odqvist’s constitutive equations for steady creep were 

employed. The numerical results showed a good agreement with previous experimental 

and analytical results. As revealed by the parametric study, the creep buckling time 

(critical time) of the cylindrical plate was significantly affected by the level of loads, the 

magnitude and direction of initial imperfection and the curvature of the plate.  

Birman and Magid (1995) presented a practical method for the analysis of 

simply-supported columns with an arbitrary symmetric cross-section. This method was 

applicable as long as the creep of the column material followed Norton’s law. Analysis 

of the numerical results indicated that critical time was sensitive to many parameters, 

such as the chemical content of the material, the test temperature, and the magnitudes of 

the imperfections and compressive loads.  

Kirsanov (1997) analyzed the creep buckling of a column using singular point 

theory and suggested a criterion for creep buckling based on singular points of 

deformation for a perfect system. A singular point was defined as a moment of the 

history of the deformation process if the initial value of speed, acceleration or some 

time-derivative of deflection corresponded to infinity of deflection at this moment. The 

theory of transient creep with power law strain hardening was examined in the analysis. 

The comparison between theoretical and experimental results indicated good agreement.  
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Oliveira and Creus (2000) presented a FE study on plates and shells made of 

polymeric composite materials. The material behavior including thermal, hygroscopic, 

and viscoelastic effects were modelled using an efficient state variable representation. 

An incremental approach was adopted, where the damage was determined and used to 

calculate the modified stiffness matrix. The proposed numerical model was verified by 

an analytical solution for the case of viscoelastic bending. The presented numerical 

examples demonstrated the capability of the model in predicting and describing the 

time-dependent behavior including post-critical behavior of composite shells and plates.  

Selim and Akbarov (2003) studied the three-dimensional creep buckling 

problem of a thick rectangular plate made of viscoelastic composite materials. The plate 

was clamped at four edges and subjected to in-plane compression forces along two 

shorter edges. The plate was assumed to have an initial imperfection. A three-

dimensional linearized theory of stability was used to derive the boundary-value 

equations, which were then solved by employing the finite element method and the 

Laplace transformation. Based on the proposed modelling, the critical time which was 

defined as the time where the imperfection started to increase indefinitely can be 

predicted.  The numerical study showed that the critical time depended on the 

parameters used in the creep model of the material.   

Amoushahi and Azhari (2013) developed a semi analytical finite strip method to 

analyze viscoelastic plates with different boundary conditions by using bubble 

functions. A continuous harmonic function series were used as displacement functions 

in the longitudinal direction and a piecewise interpolation polynomial was used in the 

transverse direction. The material was considered to be linear viscoelastic by expressing 

the relaxation modules into Prony series. Through this method, the change of the 
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deflection of viscoelastic plates with time can be predicted and the buckling loads can 

be determined.  

Jafari et al. (2014) investigated the local buckling behaviour of moderately thick 

viscoelatic composite plates subjected to in-plane loading using finite strip method. 

Higher-order shear deformation theory and effective modulus method were used to form 

the governing equations in the time domain. The critical buckling loads were 

determined through solving the eigenvalue problem related to the global stiffness and 

geometry matrices. The model was validated against other methods reported in the 

literature. A comprehensive parametric study revealed that the local buckling coefficient 

increased with the increase of the rigidity in the longitudinal edges of the composite 

plates.  

Despite the significant achievement in analyzing the creep behavior of 

structures, the solutions of all aforementioned studies cannot be directly applied for the 

creep analysis of concrete structures, since they were carried out based on material 

models of metals or materials other than concrete. Concrete material possesses a 

number of distinctive features like cracking, material nonlinearity, shrinkage and aging 

that metal and other composite materials do not have. This leads to different material 

model to be considered in modelling the time-dependent behavior of concrete structures.  

2.4 LONG-TERM BEHAVIOR OF CONCRETE COLUMNS AND SHELLS 

As mentioned above, one of the main characteristics of the viscoelastic response of 

concrete is the aging effect, which introduces different modeling and computational 

complexities in the creep analysis of concrete structures, and distinguishes the analysis 

approaches from those suitable for metals. A number of methods had been developed to 

predict the material behavior of concrete, in which the ones that are commonly used 
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including the effective modulus method, the age-adjusted effective modulus method, 

rate of creep method, improved Dischinger method, superposition method, and the 

solidification theory (Bažant and Prasannan 1989a;  b). Each individual method was 

extensively discussed and well documented in the literature, and therefore will not be 

the focus of this section. This section, however, will present an overview of the research 

studies that are related to the investigation of the long-term or time-dependent 

performance of concrete structures.  

 Mauch and Holley (1963) undertook an analytical investigation on the instability 

of reinforced concrete columns with initial curvature under sustained load. Instability 

was characterized by a finite desired life time. The concrete was considered as a 

nonlinear material while only linear geometric behavior was considered in the analysis 

of the columns.  The constitutive law of the material was expressed in the form of 

differential type. Other factors that were likely to influence the column strength 

including the slenderness of the column, the initial curvature, and the creep coefficient 

were taken into account. It was found that all these parameters significantly affected the 

column strength.  

 Behan and O'Connor (1982) adopted the superposition creep approach for 

studying the long-term buckling behavior of reinforced concrete columns. The age-

hardening and cracking of concrete were considered in the nonlinear analysis. Also the 

yielding of steel and the inelastic response of the concrete material at all levels of stress 

were considered. Generally satisfactory analytical estimations were obtained for the 

design life, compared with results from 16 columns under sustained loads. 

 Wu (1983) used the integral type law of creep to investigate the creep buckling 

phenomenon in concrete columns with initial imperfections. The elastic-viscoelastic 

correspondence principle was used where the concrete was modeled as a linear standard 
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solid. It was shown that the critical load could be significantly reduced due to creep in 

comparison with the instantaneous buckling load. The critical load was defined as the 

initial load that leads to unbounded magnitude of the displacement over time. It was 

recommended to use the step-by-step method along with non-linear creep laws once the 

linearized solution ceased to be valid. The effects of the reinforcement and aging of 

concrete were also investigated. It was revealed that the long-term displacement can be 

decreased considerably (by almost 50% in the examined cases) by introducing 

additional reinforcement in the concrete structure.  

 Bažant and Tsubaki (1980) considered the nonlinear creep buckling behavior of 

concrete columns. In the examined cases, the stress levels exceeded the serviceable limit 

stress of 50 percent of the concrete strength, where the linear aging creep law of 

concrete ceased to be valid. The criterion for failure was the critical time defined as a 

finite time where the deflection of the column tended to infinity rather than the long-

time critical load which was calculated from a linearized small-deflection theory. 

Bažant and Kim (1979) examined both types of creep of concrete and developed their 

constitutive relations which were then used by Bažant and Tsubaki (1980) in a step-by-

step incremental analysis of columns. The deflection of the column was found to rapidly 

increase after certain period of loading followed by a total collapse of the structure. As 

expected, it was revealed that the larger the applied load, the sooner the time of 

collapsing.  

 Tatsa (1989) presented test results of 7 concrete panels subjected to eccentric 

sustained loading and developed a numerical method to predict the time-dependent 

behavior of the panels. It was found that creep might lead to significant reduction of the 

panel strength, and therefore it was indicated that it is unsafe to design panels based on 

the immediate load-carrying capacity. The step-by-step numerical analysis provided a 
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tool to predict the long-term load capacity of panels as its estimates showed good 

correlation with test results.  

 Bažant and Cedolin (1991) discussed the creep buckling behavior of pin-ended 

imperfect columns by using the rate-of-creep method to describe the linear aging stress-

strain relations, which was firstly introduced by Glanville (1933) and Whitney (1932). 

The concrete was treated as aging viscoelastic material. It was indicated that the rate-of-

creep method yielded inevitable errors and substantially underestimated the creep 

response compared to the real one. Yet, the deficiency of the method could be overcome 

by deliberately increasing the initial elastic deformation. Nevertheless, the errors of the 

solutions were still large in contrast to the age-adjusted effective modulus method which 

was proposed by Bažant (1972).  

 Gilbert (1989) carried out a step-by-step time analysis of concrete columns 

under sustained eccentric loading by assuming a pre-defined deflection function through 

the height of the column and by ignoring the tension-stiffening effect. The model 

showed a reasonably good agreement with experimental results. However, the assumed 

deflection function can actually change after concrete cracking or under different types 

of boundary restraints; and hence, a more accurate model is needed for a more general 

analysis of RC columns. 

 Mickleborough and Gilbert (1991) described test results of 15 slender columns 

subjected to sustained eccentric loading. The eccentricity and the magnitude of applied 

loads were varied among the specimens. The concrete strength ranged between 27 MPa 

to 39 MPa. The columns were loaded over periods of up to 40 days. None of the 

columns failed due to creep buckling over the test period, but substantial time-

dependent lateral deflections were recorded especially for columns with relatively high 

slenderness ratio, large eccentricities of the applied load and relatively large magnitudes 
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of load. Nonetheless, the slenderness played a small role in the time-dependent 

deformation of slender columns that were subjected to minimum design eccentricities 

based on ACI318 (1983).  

 Claeson and Gylltoft (2000) studied the behavior of eccentrically loaded 

concrete columns under both short-term and sustained loading experimentally and 

theoretically. The experimental investigation comprised both normal strength concrete 

and high strength concrete specimens, with concrete strength of approximately 35 MPa 

to 100 MPa. The level of the maximum applied sustained axial load ranged between 70 

percent and 100 percent of the maximum short-term load. The test results indicated that 

the normal strength concrete columns exhibited significant nonlinear creep deformation 

under sustained loading where the high strength concrete columns exhibited relatively 

small nonlinear creep deformation. Furthermore, from the test results it was shown that 

the high strength concrete columns undergo less creep deformations compared to the 

normal strength concrete columns. The numerical analysis used the moment-curvature 

approach of the column. It adopted the modifications to the CEB-FIP (1990) equations 

recommended by Han (1996) as the creep function for high strength concrete and took 

into account the nonlinearity of creep with stress. The results of the analysis had 

satisfactory agreement with the test results.  

 Lee et al. (2008) examined the time-dependent behavior of normal strength 

concrete walls by testing 3 wall specimens and developing a corresponding three 

dimensional finite element model. Concentrated axial loads were applied on the middle 

part of the width of wall panels to represent the concentrated loads transferred through 

the connections between walls and beams, slabs, or columns in reality. The finite 

element model was verified by the test results and both showed that the stress and strain 

in wall panels under concentrated loading reached their maximum at the middle zone of 
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the width of the specimens and decreased towards the edges. The longitudinal long-term 

deflection was therefore expected to reach the maximum at the middle zone of the 

specimen as well.  

 Hamed et al. (2010a) and Hamed et al. (2010b) studied the long-term behavior 

of imperfect thin-walled shallow concrete domes. Nonlinear theoretical models were 

developed using the variational principle, equilibrium conditions, and integral-type 

constitutive relations that accounted for the time-dependent effects of creep and 

shrinkage. The aging of the concrete material and the variation of the internal stresses 

and geometry in time were both considered in the theoretical models through the use of 

incremental step-by-step procedure for the solutions of the governing equations in time. 

Hamed et al. (2010b) indicated that the long-term effects played a critical role in the 

nonlinear behavior and structural safety of shallow, thin-walled concrete domes, while 

Hamed et al. (2010a) showed that the structural behavior of imperfect concrete domes 

and the critical time to cause creep buckling were very sensitive to geometric and 

material imperfections.  

 Hamed et al. (2011) theoretically and experimentally investigated both the short-

term and long-term failure behaviors of thin-walled shallow concrete domes. Nonlinear 

long-term theoretical model of domes that accounted for the nonlinear material 

behavior, creep and shrinkage, and the nonlinear geometric behavior were developed in 

this paper. The governing equations of the long-term model were formulated using a 

time incremental approach and the nonlinear material response was characterized by 

applying the approximate modified principle of superposition method. The experiment 

included testing of two domes in short-term and long-term loading to failure. The 

analytical models were verified by the test results to some extent.  
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 These studies provide the basis for this research, however, here, different 

material, different structural member and boundary conditions, and different material 

models and mathematical creep models will be investigated.   

2.5 TIME-DEPENDENT MATERIAL PROPERTIES OF HIGH-STRENGTH 

CONCRETE 

Ngab et al. (1981) studied the creep and shrinkage properties of high- and normal-

strength concrete by testing concrete specimens in uniaxial compression. The test 

specimens were cured under sealed and dry conditions. The specimens had a 

compressive strength of over 70 MPa and were loaded uniaxially for up to 90 days. It 

was found that the creep for high-strength concrete was significantly less than that for 

normal-strength concrete. This phenomenon was more pronounced for concrete under 

drying conditions. The creep coefficient for high-strength concrete, defined as the ratio 

of creep strain over the instantaneous strain upon loading, was 50 to 75 percent of that 

for normal-strength concrete under drying conditions. In the nondrying concrete, this 

value varied from 75 to 90 percent. Furthermore, the linearity of the stress creep-strain 

relation for high-strength concrete went up to 70 percent of the concrete compressive 

strength fc, which was considerably greater than that in normal-strength concrete 

(usually considered as linear under 0.5 fc). A sustained load in the range of 

serviceability was to increase the compressive strength of both NSC and HSC, whereas 

higher load intensity or staged loading had a detrimental effect on the strength. It was 

also indicated that the ratio of the sustained strength to the short-term strength was 

greater in HSC than NSC. The drying shrinkage strains were found to be slightly higher 

in this study for high strength concrete in contrast to normal strength concrete.  
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 Smadi et al. (1987) experimentally investigated and compared the influences of 

drying and sustained compressive stress on the creep and shrinkage properties of high, 

medium, and low strength concretes. The test specimens had compressive strength at 28 

days varying from 21 MPa to 69 MPa. The results revealed that the creep strain, creep 

coefficient, and specific creep (creep strain per unit stress), were smaller for high-

strength concrete than for medium- and low-strength concrete when they were stressed 

at the same percentage of strength. The creep coefficients for high-, medium-, and low-

strength concrete at 60 days subjected to 0.6fc stress were 0.9, 1.8, and 2.7, respectively. 

In addition, high-strength concrete had higher linear proportionality limit in the stress-

creep strain relation than the other medium- and low-strength concrete. The stress at the 

limit reached 65% of the ultimate strength for the high-strength concrete and 45% for 

the other ones. It was also revealed that the long-term drying shrinkage for low-strength 

concrete was larger than the medium- and high- strength concrete.   

Similar findings regarding the low creep characteristics of high-strength 

concrete were also obtained by Hwee and Vijaya (1990). The authors tested columns 

made of high-strength concrete with compressive strength of 60 MPa. The creep 

attained from the experiments for high-strength concrete was substantially smaller than 

that for normal-strength concrete. The final shrinkage of high strength concrete at 20 

years was estimated at 750 µin./in. which was close to the corresponding final shrinkage 

strain of normal strength concrete that was estimated at 710 µin./in. according to 

AS3600 (1988). This was also in accordance with Ngab et al. (1981) and ACI363 

(1984).  

 Mokhtarzadeh and French (2000) conducted tests to address a variety of factors 

affecting the creep and shrinkage characteristics of high-strength concrete, including the 

curing temperature of the specimens, the compressive strength, and the size of the 
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coarse aggregate. It was concluded that temperature increases the specific creep of high-

strength concrete. Moreover, the specific creep was found to decrease with the increase 

of the compressive strength. Efforts were also made to evaluate the creep coefficient of 

high-strength concrete using the equations given in ACI209 (1971), which were 

normally applied for the prediction of creep coefficients of normal-strength concrete. 

The creep coefficient as predicted in this study varied from 0.92 to 2.46, which is 

considerably different than the values predicted by ACI209 (1971), i.e., 1.30 to 4.15. 

Furthermore, the drying shrinkage strain observed in this study ranged between 63 and 

83 percent of values predicted by ACI209 (1971).  

ACI363 (2010) compares the outcomes of a number of researchers regarding 

HSC shrinkage. It concludes that no clear census exists among the reported results with 

regard to the magnitude of drying shrinkage of HSC as compared with normal-strength 

concrete. The drying shrinkage, arising from diffusion of internal water into the outer 

environment, is deemed to be a predominate mechanism of volume change for NSC but 

a less significant one for HSC because HSC has lower water-cement ratio (w/cm). On 

the other hand, the chemical and autogenous shrinkage, which are induced by hydration 

of cement, become more crucial mechanisms for the volume change of HSC due to its 

increased binder content than NSC. Tazawa (1999) reported the autogenous shrinkage 

can be significant for HSC, with values of 200 x 10-6 to 400 x 10-6 for concrete with 

w/cm less than 0.40 and silica fume contents of not less than 10%. Eurocode 2 (1992) 

indicates the autogenous shrinkage strain is a linear function of the concrete strength.  
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2.5.1 Models to predict HSC creep and shrinkage 

2.5.1.1 Bažant and Panula (1984) 

Bažant and Panula (1984) proposed theoretical prediction equation for creep and 

shrinkage of high-strength concrete based on the models of normal-strength concrete 

creep as given by (Bažant and Panula 1978a;  b;  c;  d;  1979a;  b) but with slight 

modification. It was shown that the formulae for basic creep and shrinkage needed no 

change and only a small change in the formula for the concrete strength effect was 

required for drying creep, as shown in the following.  

 
1/2'

' 01d d
d sh

t t

a
 




 

  
 

 (2.1) 

where da =10 for 41' cf MPa, and da =1 for 69' cf MPa 

  ' '
, 1

dc n

sh
d dS t t b

t t

    
 (2.2) 

where db =10 for 41' cf MPa, and db =100 for 69' cf MPa 

Linear interpolation could be used for strength falling between 41 MPa and 69 

MPa. In these equations, 0t is age at start of drying, 't is the age at application of load, 

 ', ttSd  is the time shape function, n is the exponent of double power law, cd is a 

correction factor, sh  is the shrinkage-square half-time, proportional to the square of 

thickness of concrete and '
cf is the standard cylindrical strength at age of 28 days. 

The equation produced acceptable agreement with test measurements available 

in the literature. Nevertheless, due to the limited test data, the method, as suggested by 

the authors, needed further verification when more test results were to be reported.  
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2.5.1.2 AS3600 (2009) 

The AS3600 (2009) gives prediction equations for shrinkage strain and creep coefficient 

of concrete with characteristic compressive strength ranging from 20 MPa to 100 MPa 

at 28 days, which implies they are applicable for both NSC and HSC.  

a) Creep 

The creep coefficient following AS3600 (2009) is determined in the following form: 

 2 3 4 5 .cc cc bk k k k   (2.3) 

- bcc.  = the basic creep coefficient;  

- 2k , 3k  = coefficients accounting for the member size and aging of the concrete; 

- 4k  = 0.70 for an arid environment; 0.65 for an interior environment; 0.60 for a 

temperature inland environment; 0.50 for a tropical or near-coastal environment; 

- 5k = modification factor for high strength concrete; 0.15 k when 50' cf MPa 

or '
335 )0.1(02.0)0.2( cfk    when 10050 '  cf MPa;  

b) Shrinkage  

According to the code, he shrinkage strain should be calculated as the sum of 

autogenous shrinkage ( cse ) strain and the drying shrinkage strain ( csd ) of concrete as 

follows: 

 cs cse csd     (2.4) 

The autogenous shrinkage strain is taken as  

  * 0.11.0 t
cse cse e      (2.5) 

where t is the time (in days) after setting and *
.bcsd  is the final autogenous shrinkage 

strain determined by  

  * ' 60.06 1.0 50 10cse cf      (2.6) 
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The drying shrinkage is calculated as  

 1 4 .csd csd bk k   (2.7) 

 ' *
. .(1.0 0.008 )csd b c csd bf     (2.8) 

where k1 and k4 are factors accounting for influence of member size and environment, 

bcsd.  and *
.bcsd  are basic drying shrinkage strain and final drying basic shrinkage strains. 

2.5.1.3 CEB-FIP (1990)  

The CEB-FIP (1990) model code provides equations for creep and shrinkage prediction 

of concrete. These equations are suitable for C12-C80 concrete, where the number 

denotes the specified characteristic compressive strength in MPa.  

a) Creep 

    0 0 0, ct t t t     (2.9) 

- 0 = notional creep coefficient, as given in Eq.(2.10)  

- c = coefficient to describe the development of creep with time after loading, as 

defined in Eq.(2.15)  

- t = age of concrete (days) at the moment considered 

- t0= age of concrete at loading (days), adjusted by taking into account of effects 

of type of cement and curing tempature 

    0 0RH cmf t     (2.10) 

with 

 
 

0
1/3

0

1
1

0.46
RH

RH RH

h h



   (2.11) 

  
 0.5

0

5.3
cm

cm cm

f
f f

   (2.12) 



43 
 

  
 0 0.2

0 1

1

0.1
t

t t
 


 (2.13) 

where  

-   2 /ch A u  (2.14) 

- h = notational size of member (mm), where Ac is the cross-sectional area and u 

is the perimeter of the member in contact with the atmosphere 

- fcm = mean compressive strength of concrete at the age of 28 days (MPa) 

- fcm0 = 10 MPa 

- RH = relative humidity of the ambient environment (%) 

- RH0 = 100% 

- h0 = 100 mm 

- t1 = 1 day 

    
 

0.3

0 1
0

0 1
c

H

t t t
t t

t t t



 

     
 (2.15) 

with 
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

        
   

 (2.16) 

where 

- t1 = 1 day 

- RH0 = 100% 

- h0 = 100 mm  

b) Shrinkage 

The shrinkage or swelling strains can be calculated as  

    0,cs s cs s st t t t     (2.17) 

where 
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- 0cs = notional shrinkage coefficient; (see Eq.(2.18)) 

- s = coefficient to describe the development of shrinkage with time, as given in 

Eq.(2.23)  

- t = age of concrete (days) 

- ts = age of concrete (days) at the beginning of shrinkage or swelling  

The notional shrinkage coefficient may be obtained from  

  0cs s cm RHf    (2.18) 

with 

     6
0160 10 9 10s cm sc cm cmf f f         (2.19) 

where 

- fcm = mean compressive strength of concrete at the age of 28 days (MPa) 

- fcm0 = 10 MPa 

- sc = coefficient which depends on the type of cement: sc = 4 for slowly 

hardening cements SL, sc = 5 for normal or rapid hardening cements N and R, 

and sc = 8 for rapid hardening high strength cements RS 

 1.55 for 40% 99%RH sRH RH      (2.20) 

 0.25 for           99%RH RH     (2.21) 

with 

  3

01sRH RH RH    (2.22) 

 

where 

- RH = relative humidity of the ambient atmosphere (%) 

- RH0 = 100% 
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The development of shrinkage with time can be determined by  

    
   

0.5

1

2

0 1350

s
s s

s

t t t
t t

h h t t t


 
   

   
 (2.23) 

 

where 

- h is defined in Eq.(2.14)  

- t1 = 1 day 

- h0 = 100 mm  

2.5.1.4 Eurocode2 (2005) 

The Eurocode2 (2005) uses the same equations for prediction of concrete creep and 

shrinkage as given in CEB-FIP (1990) but with adjustments made to characterize the 

effect of concrete strength. The adjustments are summarized herein.  

a) Creep 

Eq.(2.10) is adopted by Eurocode2 (2005) as well to estimate concrete creep. However, 

the influence of concrete strength is characterized in these equations by modifying RH  

and H . In Eurocode2 (2005),  

 
 1/3
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 

    (2.24) 
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  

 
     
  

 (2.25) 

  18
1.5 1 0.012 250 1500 for      35 MPaH cmRH h f         (2.26) 

  18

31.5 1 0.012 250 1500 for      35 MPaH cmRH h f         (2.27) 

where 



46 
 

- h=2Ac/u       

- fcm = mean compressive strength of concrete at the age of 28 days (MPa) 

- RH = relative humidity of the ambient environment (%) 

- h = notational size of member (mm), where Ac is the cross-sectional area and u 

is the perimeter of the member in contact with the atmosphere 

- 1 , 2 , 3 = coefficients to consider the influence of the concrete strength: 

      0.7 0.2 0.5

1 2 335        35         35cm cm cmf f f      (2.28) 

b) Shrinkage 

The shrinkage strain as specified in Eurocode 2 (1992) is calculated as the sum of the 

drying shrinkage strain and autogenous shrinkage strain, as indicated in Eq.(2.29)  

 cs cd ca     (2.29) 

- cs = total shrinkage strain 

- cd = drying shrinkage strain 

- ca = autogenous shrinkage strain 

The drying shrinkage strain is given by 

     ,0,cd ds s h cdt t t k      (2.30) 

with 

     3/2
,

0.04
s

ds s
s

t t
t t

t t h





 
 (2.31) 

   6
,0 1 2

0

0.85 220 110 exp 10cm
cd ds ds RH

cm

f

f
      

        
  

 (2.32) 

  3

01.55 1RH RH RH      (2.33) 

where 
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- t = age of concrete (days) 

- ts = age of concrete (days) at the beginning of shrinkage or swelling  

- kh = coefficient depending on the notional size h=2Ac/u 

- h = notational size of member (mm), where Ac is the cross-sectional area and u 

is the perimeter of that part of the cross section which is exposed to drying  

- fcm = mean compressive strength of concrete at the age of 28 days (MPa) 

- fcm0 = 10 MPa 

- 1ds  = coefficient which depends on the type of cement 

= 3 for cement Class S 

= 4 for cement Class N 

= 6 for cement Class R  

- 2ds  = coefficient which depends on the type of cement 

= 0.13 for cement Class S 

= 0.12 for cement Class N 

= 0.11 for cement Class R  

- RH = relative humidity of the ambient environment (%) 

- RH0 = 100% 

The autogenous shrinkage strain is taken as 

      ca as cat t      (2.34) 

with 

     62.5 10 10ca ckf      (2.35) 

    0.51 exp 0.2as t t     (2.36) 

where 

- fck = characteristic compressive cylinder strength of concrete at 28 days  
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2.5.1.5 JSCE (2002) 

a) Creep 

The creep strain per unit stress   ''' , cpcc tt  of high strength concrete is determined from  

      ' ' ' '
' '

4 1 100 350
, log 1

12 ( )cc cp e
c

W RH
t t t t

f t
 

 
  


 (2.37) 

where 

- )( '' tf c = compressive strength of concrete at loading age (MPa) 

- t’ and t = effective age (days) at the beginning of loading and during loading, 

respectively; 

- W = unit water content (kg/m3) (130kg/m3 W 230kg/m3) 

- RH = relative humidity (%) (40%  RH 90%) 

b) Shrinkage 

In JSCE (2002), shrinkage of high-strength concrete is evaluated as the sum of 

autogenous and drying shrinkages, which are separately predicted.  

      ' ' '
0 0 0, , ,cs ds ast t t t t t     (2.38) 

where 

-  0
' , ttcs = shrinkage strain of concrete from age t0 to t (x10-6) 

-  0
' , ttds = drying shrinkage strain of concrete from age t0 to t (x10-6) 

-  0
' , ttas = autogenous shrinkage strain of concrete from age t0 to t (x10-6) 

The drying shrinkage strain is predicted by 

    
 

0'
0

0

, ds
ds

t t
t t

t t





  


 

 (2.39) 

with 
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    4 '10 15exp 0.007 28 0.25cf W    (2.43) 

where 

-  = representing the time dependency of drying shrinkage 

- ds = final value of drying shrinkage strain (x10-6) 

- W = unit water content (kg/m3) (130kg/m3 W 230kg/m3) 

- V/S = volume surface ratio (mm) (100mm  SV / 300mm) 

- RH = relative humidity (%) (40%  RH 90%) 

- )28('cf = compressive strength of concrete at age of 28 days (MPa) ( 80)28(' cf

MPa) 

- t0 and t = effective age (days) at the beginning of drying and during drying, 

respectively (1 day  0t 98 days, 980 t  days for 980 t ) ; 

-  = coefficient representing the influence of the cement type; 

 = 11 for ordinary or low-heat cement 

 = 15 for high-early-strength cement 

The autogenous shrinkage strain is obtained as 

      ' ' '
0 0,as as ast t t t     (2.44) 

with 
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     ' ' 1 exp
b

as as st a t t  
       (2.45) 

   ' 3070exp 7.2 /as W C     (2.46) 

-  tas
' = autogenous shrinkage strain of concrete from the start of setting to age t 

(x10-6) 

-   = coefficient representing the influence of the cement and admixtures type (

may be 1 when only ordinary Portland cement is used.) 

- '
as = final value of autogenous shrinkage strain (x10-6) 

- W/C = water-cement ratio 

- ts = start of setting (days) 

- a, b = coefficient representing the characteristic of progress of autogenous 

shrinkage 

2.5.1.6 Mazloom (2008) 

Mazloom (2008) proposed equations which were expressed in hyperbolic-power form 

for predicting the creep and shrinkage of high-strength concrete. The derivations of the 

equations were based on the test results conducted for high-strength concrete specimens 

containing various ratios of silica fume.  

a) Creep 
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(26.5 ) ( )c
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t t E t C u Y

SF t t
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    
  

 (2.47) 

with 

 ( ) 103 3.65C u SF   (2.48) 

 01.08 0.0114Y t   (2.49) 

where 
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- ),( 0tt = creep coefficient of concrete at time t in days 

- 0t = age of loading in days 

- )(uC = ultimate specific creep (creep per unit stress) 

- SF = percentage of silica fume replacing cement in concrete mix 

- Y = correction factor accounting for aging of concrete 

b) Shrinkage 

 0
0

0

( )
( , ) ( )

(0.3 12.6) ( )sh sh

t t
t t u

SF t t
 




  
 (2.50) 

with 

 6( ) 516 10sh u Y     (2.51) 

 0.014 0.39        for sealed specimen Y SF   (2.52) 

 1.14 0.007( / ) 0.014 0.39       for drying specimen Y V S SF     (2.53) 

where 

- ),( 0ttsh = shrinkage strain of high-strength concrete at time t; 

- )(ush = ultimate shrinkage strain; 

- Y = correction factor, accounting for ratio of silica fume and volume-surface 

ratio of member; 

- 0t = loading age; 

- SF = percentage of silica fume replacing cement in concrete mix; 

- V/S = volume to surface ratio of concrete specimen; 

After comparing the predicted results to a survey of experimental data available in the 

literature, the equations developed in this study were found to yield more accurate 

estimations than several common methods, such as ACI209 (1992) and CEB-FIP 

(1999), which were used to predict creep and shrinkage for normal strength concrete.  
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2.5.2 Strength and modulus of elasticity 

Concrete strength (compressive and tensile) and elasticity develop with the maturation 

of concrete and vary with regard to environmental temperature and cement type. The 

predictive formulae are given in many building codes, which account for both normal 

strength concrete and high strength concrete.  

2.5.2.1 CEB-FIP (1990)  

a) Compressive Strength 

The development of concrete compressive strength with time is given as  

    cm cc cmf t t f  (2.54) 

with 

  
1/2

1

28
exp 1

/cc t s
t t


        
     

 (2.55) 

 cm ckf f f   (2.56) 

where 

- fcm (t) = mean concrete compressive strength (MPa) at an age of t days  

- fcm = mean compressive strength (MPa) after 28 days  

- βcc(t) = coefficient depends on the age of concrete t 

- t = age of concrete (days) 

- t1 = 1 day 

- s = coefficient depends on the type of cement  

- fck = characteristic compressive strength of concrete (MPa)  

- Δf = 8 MPa 

The age of concrete t will be adjusted according to Eq.(2.57) to take into account the 

effect of temperature during curing.  
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4000
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t t
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 
     
  (2.57) 

where 

- tT = temperature adjusted concrete age, replacing t (days) 

- Δti = number of days where a temperature T prevails 

- T(Δti) = temperature (oC) during the time period Δti  

- T0 = 1 oC 

When subjected to sustained high compressive stresses, the compressive strength of 

concrete is calculated as  

      , 0 , 0, ,cm sus cm cc c susf t t f t t t   (2.58) 

  
1/4

0
, 0

1

, 0.96 0.12 ln 72c sus

t t
t t

t


         
    

 (2.59) 

where 

- fcm,sus (t,t0) = mean concrete compressive strength (MPa) at an age of t (days) 

when subjected to a high sustained compressive stress at an age at loading t0<t 

- βcc(t) = coefficient according to Eq.(2.55)  

- βc,sus(t) = coefficient which depends on the time under high sustained loads t-t0 

(>20 min)  

- fcm = mean compressive strength (MPa) after 28 days  

- t0 = age of concrete at loading (days) 

- t = age of concrete (days) 

- t1 = 1 day 

b) Tensile Strength 

The mean value of tensile strength associated with a specified characteristic 

compressive strength fck can be estimated from the follow.  
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where 

- fctm = mean concrete tensile strength (MPa)  

- fck = characteristic compressive strength of concrete (MPa)  

- fctko,m = 1.40 MPa 

- fcko = 10 MPa 

c) Modulus of Elasticity 

The modulus of elasticity of concrete according to CEB-FIP (1990) is calculated as 

follows 

    ci E ciE t t E  (2.61) 

     1/2

E cct t      (2.62) 

  
1/3

/ci co ck cmoE E f f f      (2.63) 

where 

- Eci(t) = modulus of elasticity (MPa) at the age of t (days) 

- βE(t) = coefficient depends on the age of concrete  

- βcc(t) = coefficient according to Eq.  

- Eci = modulus of elasticity (MPa) at age of 28 days 

- fck = characteristic strength of concrete (MPa)  

- Δf = 8 MPa 

- fcmo = 10 MPa 

- Eco = 2.15 x 104 MPa 
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2.5.3 Constitutive relations  

2.5.3.1 CEB-FIP (1990) 

The compressive and tensile stress-strain relations prescribed in CEB-FIP (1990) are 

valid for concrete with characteristic compressive strength up to 80 MPa. The 

compressive stress-strain relation of concrete given in CEB-FIP (1990) is schematically 

illustrated in Fig. 2.5.  

 

Fig. 2.5 Stress-Strain Diagram for Uniaxial Compression (after CEB-FIP, 1990) 

The stress-strain curve can be predicted as  
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where 

- Eci = tangent modulus of concrete according to Eq.(2.61)  

- σc = compression stress (MPa) 

- εc = compression strain 

- εc1 = -0.0022 

- Ec1 = fcm/0.0022 = secant modulus from the origin to the peak compressive stress 
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fcm 

For the descending part of stress-strain curve, Eq.(2.64) can only be used for values of 

5.0cmc f .  

The stress-strain diagram for unloading of uncracked concrete can be described by  

 c ci cE     (2.65) 

where 

- Δσc = stress reduction 

- Δεc = strain reduction 

2.5.3.2 Constitutive Relations in Tension  

The tensile behavior of concrete is described by a bilinear stress-strain relation for 

uncracked concrete and a stress-crack opening relation for cracked section due to 

discrete nature of concrete fracture, as shown in Fig. 2.6.  

 

Fig. 2.6 Stress-Strain and Stress-Crack Opening Diagrams for Uniaxial Tension 

For uncracked concrete, 
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where 

- Eci = tangent modulus of concrete according to Eq.(2.61)  

- σct = tensile stress (MPa) 

- εct = tensile strain 

- fctm = tensile strength in MPa 

For cracked concrete,  
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where 

- w = crack opening (mm) 

- w1 = crack opening (mm) for ctmct f15.0   

- wc = crack opening (mm) for 0ct   

- GF = fracture energy (Nmm/mm2)  

- fctm = tensile strength (MPa) 

- αF = coefficient, depends on maximum aggregate size 
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2.5.4 Tension stiffening 

The tension stiffening refers to the contribution of concrete between cracks to the 

reinforced concrete member stiffness after cracking takes place. The contribution is a 

result of the tensile capacity of concrete which will resist the tensile stress transmitted 

from steel by bond forces. The contribution is to increase the stiffness of the cracked RC 

member.  

Formulae and models that characterize the phenomenon of tension stiffening have 

been specified in various codes. The ones given in CEB-FIP (1990) and AS3600 (2009) 

are summarized herein.  

2.5.4.1 CEB-FIP (1990) 

The tension stiffening effect may be taken into account by a modified stress-strain 

relation of the embedded reinforcement for practical application as follows: 

a) Uncracked  

 , 1 1         for      0s m s s sr       (2.72) 
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c) Stabilized Cracking 
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d) Post-yielding 
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where 

- εsy = strain at the yield strength 
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- σs = steel stress in the crack 

- σsr1 = steel stress in the crack, when first crack has formed 

- σsrn = steel stress in the crack, when stabilized crack pattern has formed (last 

crack) 

- βt = 0.40 for short-term loading (pure tension) 

- βt = 0.25 for long-term or repeated loading (pure tension) 

- δ = 0.8; coefficient to take into account the ratio ftk/fyk and the yield stress fyk  

2.5.4.2 AS3600 (2009) 

In calculation of the deflection or crack width of beams, the AS3600 (2009) adopts the 

effective stiffness method to account for the tension stiffening effect. The effective 

stiffness after cracking is determined in Eq.(2.76) for estimation of short-term deflection 

or curvature of beams.  
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where 

- Ief = effective second moment of area after first cracking 

- Ief.max = maximum effective second moment of area after first cracking, taken as 

I for RC sections having / 0.005stp A bd  and prestressed sections and 0.6I 

for RC sections when / 0.005stp A bd   

- *
sM  = maximum bending moment at the section 
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- Mcr = cracking moment  

- Z = section modulus of the uncracked section, referred to the extreme fiber at 

which cracking occurs 

- '
.ct ff = characteristic flexural tensile strength of concrete 

- cs = maximum shrinkage-induced tensile stress on the uncracked section at the 

extreme fiber at which cracking occurs 

- pw = web reinforcement ratio for tensile reinforcement   /st pt wA A b d   

- pew = web reinforcement ratio for compressive reinforcement /sc wA b d  

- *
cs = final design shrinkage strain 

For calculation of long-term deflection induced by shrinkage and creep of concrete, 

AS3600 (2009) specifies a deflection multiplier as in Eq.(2.79) The long-term 

deflection is then equal to the short-term deflection timed by kcs. 

  2 1.2 / 0.8cs sc stk A A      (2.79) 

2.5.5 Crack Width 

2.5.5.1 CEB-FIP (1990) 

For all stages of cracking, the design crack width may be calculated according to  

  ,maxk s sm cm csw l       (2.80) 
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where 

- wk = characteristic crack width  

- ls,max = length over which slip between steel and concrete occurs 

- εsm = average steel strain within ls,max  

- εcm = average concrete strain within ls,max  

- εcs = strain of concrete due to shrinkage 

- σs2 = steel stress at the crack 

- σsE = steel stress at the point of zero slip 

- τbk = lower fractile value of the average bond stress 

- s = diameter of the steel bar 

- cise EE /  

- ρs,ef = effective reinforcement ratio (= As/Ac,ef)  

- Ac,ef = effective area of concrete in tension 

2.6 SUMMARY  

A literature review regarding the long-term behavior of high-strength concrete panels 

has been presented. Five major topics have been outlined, which included review of the 

wall design from existing international codes, the short-term behavior of normal and 

high strength concrete wall panels, the long-term behavior of panels and columns made 

of materials other than concrete, the long-term behavior of RC columns and shells and 

the time-dependent material properties of HSC.  

A number of research works have been conducted to examined the instantaneous 

behaviour of concrete panels; however, the studies on high-strength concrete panels 
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under eccentric in-plane loading, and especially the experimental investigations are 

limited. Therefore, the short-term response of HSC panels is investigated first in this 

research study both theoretically and experimentally. This is essential in order to 

provide a benchmark for studying the long-term response of HSC panels.  

Based on the literature review, there are currently no studies that have 

investigated the long-term and creep buckling behaviour of HSC panels. The review on 

the long-term behavior of structures made from metals and polymers as well as 

reinforced concrete columns and shells, reveal the need for studying the time-dependent 

performance of concrete walls. The analytical methods used in the creep buckling 

analysis of concrete columns provided some insights into the creep buckling 

phenomenon of HSC walls, but the application of these methods for the analysis of 

panels and even RC columns is limited, because none of them comprehensively 

accounts for the combined effects of creep, shrinkage, aging, geometric nonlinearity, 

cracking and tension-stiffening through a detailed and general model.  

The last part of the review only presents the findings on time-dependent 

properties of high-strength concrete material, which are investigated and applied in this 

study.  

Finally, it can be seen that high-strength concrete panels are being widely used, 

while their short-term and long-term behavior, especially the effects of creep on the 

stability characteristics of the wall are yet to be clarified. Therefore, further studies are 

needed in order to achieve safely designed HSC panels, and in order to enhance their 

effective design.  
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CHAPTER 3 THEORETICAL AND EXPERIMENTAL 

STUDIES OF THE SHORT-TERM 

BEHAVIOR OF ONE-WAY HSC PANELS 

3.1 INTRODUCTION  

Based on the literature review, it can be seen that the amount of experimental and 

theoretical studies regarding the instantaneous and time-dependent behaviors of HSC 

panels are both limited. Therefore, the short-term and long-term responses of one-way 

HSC panels will both be investigated in this research study. This chapter focuses on the 

short-term response of the one-way HSC panels, the results of which will provide the 

basis for investigating the long-term behavior, as presented in Chapters 4 and 5.  

In this chapter, a nonlinear theoretical model is developed, which accounts for 

concrete cracking, tension-stiffening, strain softening in compression and yielding of the 

reinforcement, along with the geometric nonlinear effects. The theoretical study is 

supported by a comprehensive experimental study, aiming to provide further insight into 

the buckling and failure behavior of one-way HSC panels. The governing equations of 

the model are developed based on large displacement kinematics and are solved 

numerically along with the use of the arc-length continuation method (Crisfield 1983; 

Foster 1992; Sundararajan and Noah 1997). The experimental study includes testing to 

failure of 8 full-scale simply-supported one-way HSC panels, to examine the influences 

of different parameters including the slenderness ratio, load eccentricity, and 

reinforcement arrangement and ratio. The mathematical formulation is presented first, 

followed by the description of the experimental study. The results obtained from the 

tests and theoretical model are then discussed and compared. Comparisons of the 
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theoretical, experimental results, and predictions of the design codes are also included, 

and the proposed model is further verified through comparison with other test results 

from the literature.  

3.2 THEORETICAL FORMULATION 

The mathematical formulation includes the derivations of the equilibrium equations, the 

constitutive relations, and the governing equations along with the solution procedure. 

The nonlinear model presented herein focuses on HSC panels in one-way action, but it 

serves as the basis for the development of the model for two-way panels. A smeared 

cracking modelling approach is used where a distinction is made between cracked and 

uncracked regions through the height of the panel. The model, as presented in Fig. 3.1 

with its sign convention, is generalized to be able to account for axial and transverse 

loads and various combinations of boundary conditions. The kinematic relation of the 

panel considering large displacements is given by: 
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where εxx is the normal strain, u0 and w are the longitudinal axial displacement and the 

out-of-plane deflection, and d/dx denotes a derivative with respect to x. The third term 

in Eq. (3.1) denotes the axial shortening strain due to bending (Chen and Lui 1987). The 

equilibrium equations of a beam-column structure can be found in many textbooks of 

structural mechanics and they read:  
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where Nxx and Mxx are the internal axial force and bending moment, respectively; qz and 

nx are external transversely and longitudinally distributed loads (see Fig. 3.1(a)). The 

general boundary conditions at x = 0 and x = H are given by  

 0 0        or          xx iN N u u   (3.4) 

 
d d
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where 0u , w  and   are external deformations at the edges; Ni, Pi, and Mi (i = 0 or H) 

are concentrated external forces and moments at the edges (Fig. 3.1(a)); λ = -1 for x = 0 

and λ = 1 for x = H. 

 

Fig. 3.1 Sign conventions of the model: (a) Panel geometry, loads, coordinates and 

displacements; (b) Cross-section of the panel; (c) Stress-strain curve of the concrete; (d) 

Absolute stress-strain curve of the steel;  
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3.2.1 Constitutive relations at the material point level  

The constitutive relationship of the concrete accounts for cracking, tension-stiffening, 

and strain softening in compression. For this, the empirical compressive stress-strain 

curve proposed by Lu and Zhao (2010) is adopted, while the tension-stiffening effect is 

introduced through the model of Fields and Bischoff (2004) that takes the form of a 

descending exponential relation between stress and strain in tension after the peak stress 

in tension, as shown in Fig. 3.1(c). Note that the modelling approach proposed here can 

also handle other potential constitutive relations. The constitutive relation of concrete in 

compression adopted here is given as: 
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in which, 
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where σxx is the normal stress in concrete, Ec and fc (in MPa) are the elastic modulus and 

compressive strength of concrete, εL is the concrete strain corresponding to the stress 

level of 0.8 fc on the descending branch of the stress-strain curve, ε0 and E0 are the strain 

and secant modulus, respectively, that correspond to the concrete compressive strength 

fc. The tensile part of the constitutive relation of concrete is given by:  
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where εcr is the cracking strain, which is determined as ft/Ec with ft being the flexural 

tensile strength of concrete. The steel reinforcement is modelled as elastic-perfectly 

plastic, and its constitutive law under both tension and compression is shown in Fig. 

3.1(d) and given by: 
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where σst and εst are the stress and strain of the steel reinforcement, Es and εy are the 

elastic modulus and yielding strain of the steel, respectively.   

3.2.2 Constitutive relations at the section level  

The constitutive relations at the section level are formulated using the classical 

definitions of the stress resultants and using Eq. (3.1). The secant modulus approach is 

implemented here to account for the material nonlinearities of concrete and steel 

reinforcement. The stress resultants are given by: 
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where b and h are the width and thickness of the HSC panel, respectively; εs, As and zs 

are the strain, area and distance to the panel mid-thickness of the steel reinforcement at 

the outer face of the panel; s , sA  and sz  are the strain, area and distance to the panel 

mid-thickness of the steel reinforcement at inner face of the panel (Fig. 3.1(b)); Ecs, Ess 
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and E
ss

are the secant moduli of concrete and steel reinforcements at the outer and inner 

faces of the panel respectively (Fig. 3.1(c)-(d)), which take the following forms:  
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where s , and s  are the stresses in the reinforcements at the outer and inner faces of 

the panel, respectively. Note that the secant moduli depend on the strain level at each 

material point, and they vary through the thickness and height of the panel. By 

substituting the kinematic relation (Eq. (3.1)) into Eqs. (3.12)-(3.13) the stress resultants 

become: 
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where A11, B11 and D11 are the extensional, extensional-flexural, and flexural rigidities 

of the section, and they are given by: 
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3.2.3 Governing equations  

The governing equations are derived by substituting the stress resultants (Eqs. (3.15) 

and (3.16)) into the equilibrium equations (Eqs. (3.2) and (3.3)) For convenience, they 

are presented as a set of 6 first-order differential equations as follows, 
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where Sxx is the shear force.   

3.2.4 Solution procedure  

At each load step, Eqs. (3.20)-(3.25) present a set of nonlinear differential equations due 

to the material nonlinearity that is introduced through the dependency of the rigidities 

on the unknown deformations and strains via Eqs. (3.17)-(3.19) and also due to the 

geometric nonlinearity (Eqs. (3.22) and (3.25)). In general, the rigidities are not uniform 

but they vary along the height of the panel because of cracking and/or stress levels. To 

simplify the analysis, the variation of the rigidities along the height of the cracked 

region is assumed to follow that of the out-of-plane deflection and they are assumed to 

be constant through the height of the uncracked region. This assumption results in two 

types of unknowns that need to be determined at each load step, namely: the rigidities at 
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the critical section, and the start and end points of the cracked region (X1 and X2, see 

Fig. 3.1(a)). Here, an iterative procedure is used to determine these parameters at each 

load step, combined with the use of the numerical nonlinear shooting method (Stoer and 

Bulirsch (2002)) for the solution of the governing equations at each iteration. The arc 

length numerical continuation method, in which the formulation basically follows 

Sundararajan and Noah (1997) is also adopted in order to trace the buckling point and 

obtain the complete nonlinear equilibrium path. This method adds the following 

constraint to the set of governing equations,  
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d d
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d d
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where 0 0{ , }Y   is a point on the equilibrium path, Y is the vector of the unknowns, λ is 

the load parameter, and Δs is the arc length. The iterative procedure follows these steps:  

Step 1. Initial guess. At the first iteration of the first load step, the panel is assumed 

uncracked. However, for the subsequent load steps, the solution from the previous load 

step is used as the initial guess for the current step.  

Step 2. Analysis of the structure. Using the rigidities calculated in the initial guess or in 

the previous iteration (step 3), as well as the calculated locations of the start and end 

points of the cracked region, the governing equations are solved using the nonlinear 

shooting method.  

Step 3. Analysis of the critical section (at the location of maximum bending moment). 

Based on the solution obtained in step 2, the strain at each material point across the 

critical section are determined using the kinematic relations appeared in Eq. (3.1). Once 

the strain distribution is calculated, the rigidities are updated through Eqs. (3.17)-(3.19) 

and X1 and X2 are also determined using the strain distribution at the tensioned face of 
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the panel. The integrations in Eqs. (3.17)-(3.19) are numerically calculated to account 

for the material nonlinearity. 

Step 4. Convergence criteria. If the norm of the relative difference between the 

magnitudes of the rigidities as well as X1 and X2 in two consecutive iterations is 

sufficiently small, the iterative procedure stops and the updated arc length is calculated. 

The analysis for the next load step is then carried out based on the updated arc length. 

Otherwise, the procedure returns to Step 2 with the updated rigidities determined in Step 

3.  

3.3 EXPERIMENTAL STUDY 

As discussed in the Introduction, the test data available for model validation is limited. 

Thus, an experimental study was undertaken to extend the pool of data to validate the 

proposed theoretical model, as well as to examine the influences of various parameters 

on the failure behaviour of one-way HSC wall panels. It includes testing to failure of 

eight full-scale one-way HSC panels under symmetric eccentric axial loads on the top 

and bottom edges. Table 3.1 summarizes the details of the tested panels together with 

the experimental and theoretical failure loads. All panels have two layers of 

reinforcement, as shown in Fig. 3.1(b), except ST2 which has only one reinforcement 

layer being placed at the mid-thickness of the panel. Panel ST1 serves as a control 

(reference) specimen.  
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Table 3.1 Details for the experimental program and results 

    Eccentricity (mm)     Failure load (kN) 

Panel 
No.3 

h 
(mm) 

Designed  
(e) 

Test 
(top)  
(eT) 

Test 
(bottom) 

(eB) 
ρv (%) 

2Φ 
(mm)

Test Model 

Column 
design 

AS3600 
(2009) 

Wall 
design 

AS3600 
(2009) 

Column 
design 

ACI318 
(2008) 

Wall 
design 

ACI318 
(2008) 

ST1 100 16.7 16.5 16.5 0.233 4.77 795 806 508 492 413 593 
1ST2 100 16.7 16.8 16.8 0.233 6.75 804 786 260 485 399 593 

ST3 100 8.3 6.9 7.7 0.233 4.77 1274 1216 508 740 413 593 
ST4 100 33.3 35.2 36.6 0.233 4.77 297 378 508 --- 413 593 

ST5 130 21.7 23.0 23.0 0.284 6 1427 1464 1267 1293 933 1549 

ST6 160 26.7 33.4 32.8 0.292 6.75 1882 1882 2560 1883 1772 2379 

ST7 100 16.7 17.5 17.5 0.164 4 846 818 520 465 410 593 

ST8 100 16.7 17.9 15.3 0.592 7.6 839 855 474 489 423 593 
1 – The panel has only one layer of steel reinforcement, placed at mid-thickness; 
2 – Diameter of steel mesh, with a spacing of 200 mm; 
3 - All panels are 2700 mm tall 
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The parameters that are examined for the different panels compare the reference 

specimen (ST1 in Table 3.1) to changes in the location of reinforcement (comparing 

ST1 to ST2), load eccentricity (comparing ST1 to ST3 and ST4), slenderness ratio 

(comparing ST1 to ST5 and ST6) and vertical reinforcement ratio ρv (comparing ST1 to 

ST7 and ST8). The designed eccentricities (e) are h/12 for specimen ST3, h/3 for 

specimen ST4 and h/6 for the rest specimens, where h is the thickness of each individual 

panel. The actual eccentricities in the experiment for ST1 to ST8 at the top (eT) and 

bottom (eB) ends are also given in Table 3.1, which are computed from the measured 

strains at the end sections (see the Section 3.4.1). Steel mesh was used as the 

reinforcement in all specimens with wire spacing of 200 mm in each orthogonal 

direction. The layout of the reinforcement is given in Fig. 3.2, in which a representative 

cross-section of ST1 is shown. The concrete cover is 20 mm for all specimens except 

ST2 in which only one single layer of reinforcement was used and placed at mid-

thickness of the panel. All panels are 2700 mm high and 460 mm wide. The thickness 

varies per Table 3.1. 
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Fig. 3.2 Strain gauge locations and typical cross-section of the panel 

3.3.1 Cast and curing of the specimens  

All specimens were cast using a commercial ready-mixed high-strength concrete on the 

same day. The set-up of formwork is shown in Fig. 3.3(a). After casting, the panels 

were covered with wet hessian (burlap) and plastic sheets. They were kept moist in 

moulds for 7 days before stripping and then remained at ambient laboratory conditions 

until testing, as indicated in Fig. 3.3(b). The first panel was tested at the age of 42 days 

and, the other panels were tested subsequently one by one every two working days.      
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(a) Set-up of formwork 

 

(b) Stripping formwork 

Fig. 3.3 Preparation and demoulding of specimen 

3.3.2 Material properties  

Concrete cylinders of 100 mm diameter and 200 mm height and prisms of 100x100x500 

mm were cast and cured with the panels. The concrete cylinders were tested in 

compression to measure the full stress-strain behaviour and the prisms were tested under 

4-point bending to determine the flexural tensile strength of the concrete. A typical 

experimental stress-strain curve of the concrete is presented in Fig. 3.4(a); the initial 

modulus of elasticity was Ec = 38.4 GPa and the compressive strength was fc = 81.4 

MPa. The flexural tensile strength of the concrete was measured as ft = 6.8 MPa. 

Samples of the reinforcing steel were tested to determine the stress-strain properties, 
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with a typical result shown in Fig. 3.4(b). As the reinforcement used in the experiment 

was cold-formed steel, a yielding point is not precisely defined. In the analysis, 0.2% 

was adopted as the yielding strain (Eq. (3.11)). The elastic modulus was measured as 

206 GPa.   

 

 

Fig. 3.4 Experimentally obtained compressive stress-strain curve: (a) Concrete; (b) Steel 

3.3.3 Test setup and instrumentation  

All panels were loaded under a deformation control up to failure using a 5000 kN 

capacity testing frame. The test setup is shown in Fig. 3.5. The loading and supporting 

mechanisms at each panel end consisted of a rotatable hinge to provide simply-

supported boundary conditions. The net height of the panels was 2700 mm and the 

centre to centre distance between the steel pin connections was 2800 mm. The out-of-

plane displacements were measured by displacement laser sensors at 5 locations 

symmetrically along the panel height. The panel strains were measured with 34 strain 

gauges, some of which were mounted on the steel reinforcement and the others on the 

concrete surfaces of each panel (Fig. 3.2).  
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(a) Front View (Outer Face) (b) Side View 

Fig. 3.5 Test Setup 

3.4 RESULTS AND DISCUSSION  

The experimental results are presented and discussed here. The theoretical model results 

are compared with the experimental test results reported here and with other test results 

from the literature. A comparison is also made with predictions according to design 

codes.  

3.4.1 Experimental and theoretical results  

 The test results are summarized in Table 3.1, in conjunction with the corresponding 

failure loads predicted by the proposed model and by both wall and column design 

methods in AS3600 (2009) and ACI318 (2008) codes, respectively. Table 3.2 shows the 

model/experimental failure load ratio of all panels, which reveals a mean value of 1.029 

and a standard deviation of 0.102.  

Outer 
Face 
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The measured and predicted load-deflection curves of ST1 to ST6 are presented 

in Fig. 3.6, where wc is the deflection at mid-height of the panel.  

 

 

 

Fig. 3.6 Load vs. deflections at the centre-height of the panel for ST1-ST6 

____ Test 
- - - Model 

____ Test 
- - - Model 

____ Test 
- - - Model 
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Due to variations in the panel thickness and possible errors during panel setting up, the 

actual eccentricity at the panel top and bottom might not achieve exactly the designed 

value. In the theoretical model analyses, the actual eccentricities at the top and bottom 

of a tested panel are used, which are calculated from the concrete strains measured near 

the panel ends on both panel surfaces as follows (assuming a linear strain distribution 

through the panel thickness and a linear material behaviour): 

 c eff cout cin
test

test

E I
e

N h

   (3.27) 

where etest is the actual eccentricity in the test at the top edge (eT) or the bottom edge 

(eB) (see Table 3.1); Ntest, Ieff, εcout and εcin are the experimental axial load, effective 

moment of inertia obtained using the transformed section method, concrete strain on 

outer face and inner face of the panel, respectively. The geometric nonlinearity is 

neglected in Eq. (3.27) as the out-of-plane deflections at the locations near the panel 

ends are small. The mean values of the experimental eccentricities, which were 

determined at a load level equal to 30% the failure load are used here.  

 

Fig. 3.7 Variation of Measured eccentricity with load ratio for Panel ST1 

Similar eccentricities were achieved by applying Eq. (3.27) at the load level equal to 

10%, 20%, 30% and 40% of the peak load, as shown in Fig. 3.7. So the eccentricities at 

the load level equal to 30% of the peak load for each individual panel were used in the 
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theoretical model. The experimental compressive stress-strain curve as presented in Fig. 

3.4(a), as well as the experimental tensile strength (ft) of the HSC concrete are used in 

the theoretical model.  

It is seen in Fig. 3.6 that the panels ST1-ST6 exhibited a nonlinear behavior with 

a limit point that characterizes their failure mode. As observed in the test, cracks were 

almost symmetrically developed around the panel centre. A representative crack pattern 

of ST4 is illustrated in Fig. 3.8. The cracking load predicted by the theoretical model is 

marked in the theoretical curves in Fig. 3.5. As indicated in the strain measurement 

results, all eight panels failed by buckling before crushing of concrete or yielding of 

reinforcement. Thus, unlike elastic beam-columns where instability failures are 

characterized by a bifurcation point in the load-deflection curve which is asymptotic to 

the Euler buckling load, cracking and material nonlinearity actually change the 

instability failure of slender HSC panels to a limit-point mode, where the load drops in 

the post-buckling stage (Chen and Lui 1987). It is observed that the predicted responses 

correlate closely with those from the tests. Due to the brittleness of high-strength 

concrete and the relatively small percentage of reinforcing steel used in the test samples, 

the reinforcement in all panels, except in Panel ST8, fractured at the failure load and the 

panels broke into two parts.  

 

 

Fig. 3.8 Crack pattern of Specimen ST4 at failure   
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Specimens ST7 and ST8 were designed to investigate the influence of reinforcement 

ratio on the ultimate strength of HSC panels. Table 3.1 shows that the failure loads of 

ST7 and ST8 were close to that of ST1. Hence, the capability of reinforcement ratio to 

increase the buckling strength of HSC panels is limited. It was also found that the 

responses of ST7 and ST8 are comparable to that of ST1 and, therefore, for brevity their 

load-deflection curves are not presented here. Nevertheless, since ST8 is designed with 

nearly double the amount of reinforcement of ST1, it exhibited a more ductile failure as 

the reinforcement did not fracture at the peak load and more closely-spaced cracks were 

observed along the panel height. This observation implies that the minimum 

reinforcement ratio as prescribed in some design codes (0.15% in AS3600 (2009) and 

0.12% in ACI318 (2008), which are both smaller than the one in ST1), may need to be 

further examined in the design of HSC panels to ensure some post-peak ductility.  

Fig. 3.9 compares the measured and predicted strains of the reinforcement and 

concrete at the inner face around the mid-height for panels ST1 to ST6. The model is 

found to predict the strains in the HSC panel with good accuracy. Fig. 3.9 also shows 

that the measured peak strains of the concrete and reinforcement at failure loads are 

smaller than the ultimate strain of concrete and the yielding strain of the reinforcement, 

which indicates that buckling is the failure mode of all panels. The experimental and 

predicted strain distributions of ST1-ST6 over the panel thickness at the mid-height 

section and at 100 mm away from top of the panel are shown in Fig. 3.10 and Fig. 3.11 

at three different load levels. It can be seen that with the increase of the load level, the 

neutral axis moves towards the inner face because of cracking and material nonlinearity, 

which is more dominant near the mid-height.  

The deflection profiles of the panels measured from five laser displacement sensors 

at three load levels are shown in Fig. 3.12 along with the predicted profiles from the 



82 
 

theoretical model. It can be seen that the increase of the out-of-plane displacement with 

the increase of the load level is nonlinear due to the geometric and material 

nonlinearities, which are well predicted by the proposed model.  

 

 

 

Fig. 3.9 Load vs. Strains at mid-height section for ST1-ST6  
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Fig. 3.10 Normal strain distributions at mid-height section for ST1-ST6 at three 

different load levels: 20%, 50% and 100% of test failure loads  
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Fig. 3.11 Normal strain distribution at end section for ST1-ST6 at three different load 

levels: 20%, 50% and 100% of test failure loads  

 

____ Test 
- - - Model 

____ Test 
- - - Model 

____ Test 
- - - Model 

____ Test 
- - - Model 

____ Test 
- - - Model 

____ Test 
- - - Model 



85 
 

 

 

 

 

Fig. 3.12 Deflection distribution at three load levels: 20%, 50% and 100% of test failure 

loads  
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3.4.2 Parametric Study 

The load-deflection curves of ST1 and ST2 (shown in Fig. 3.6) are examined to 

determine the effect of the location of reinforcement on the nonlinear behavior of HSC 

panels; panels ST1 and ST2 have nearly the same reinforcement ratios but the 

reinforcement is placed on both faces in ST1 and at the mid-thickness as a single layer 

in ST2. It can be seen that the different arrangements of reinforcement have a negligible 

influence on the failure loads of the panel, mainly because the failure mode is governed 

by buckling and because cracking was not significant. Fig. 3.9 shows that the steel 

reinforcement in ST1 are essentially subjected to compression forces throughout the 

loading history, despite cracking of the panel. This indicates that cracking took place 

only within the concrete cover region. This was also the case for ST2. It is also observed 

in Fig. 3.10 that the neutral axis depths in ST1 and ST2 are comparable.   

 The effect of load eccentricity on the HSC panel behavior is illustrated in Fig. 

3.6 for ST3 and ST4, which is compared to the control panel ST1. Panel ST3, with 

about 1/5 of the eccentricity of ST4, exhibited a more rigid response and significantly 

higher buckling strength (more than 4 times) than that of ST4. Similarly, ST1 with 

approximately half the eccentricity of ST4 had a capacity of 2.7 times that of ST4. Fig. 

3.9 reveals that due to the small eccentricity, the reinforcement and concrete of the 

tension face in ST3 are all in compression throughout the loading history until failure, 

which results in a large neutral axis depth, as seen in Fig. 3.10. For ST4, however, the 

reinforcement on the tension face is in tension because of the large eccentricity.  

 Panels ST5 and ST6 were tested to examine the effect of slenderness ratio on the 

performance of HSC panels. The definition of slenderness ratio (λ) for a column is 

adopted here, which is equal to H/r where r is the radius of gyration ( /eff effr I A , Aeff 

is the effective area of the section). The slenderness ratios for ST1, ST5 and ST6 are 94, 
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72 and 58, respectively. As expected, it is seen in Fig. 3.6 that the smaller the 

slenderness ratio, the higher the load-carrying capacity of the HSC panel, because it is 

dominated by buckling. Nevertheless, it is interesting to see that the decrease in the 

failure load is not proportional to 1/λ2 as in the elastic analysis. This is mainly due to the 

cracking and material nonlinearity, which are combined with the geometric nonlinearity 

and have a significant influence on the buckling failure load of HSC panels.  

 The influence of the slenderness ratio on the performance of HSC panels is 

further studied in Fig. 3.13. The same material characteristics of concrete and steel as 

well as the same width and height of the panel as those in the test are used here to 

predict capacity in Fig. 3.13. The thickness of the panel is varied in order to achieve 

different slenderness ratios. The panel is loaded eccentrically on both ends with an 

eccentricity of 20 mm. The reinforcement ratio for the panel is 0.256% regardless of the 

panel thickness. Both geometrically linear and nonlinear analyses are carried out using 

the proposed theoretical model, in which the linear analysis neglects the P-Δ effect and 

is conducted by omitting the nonlinear terms in Eqs. (3.21) and (3.25). The ratio of the 

failure load of the panel obtained from the geometrically nonlinear analysis ( non
uN ) over 

the one obtained from the geometrically linear analysis ( lin
uN ) is plotted with respect to 

the slenderness ratio in Fig. 3.13. It is seen that with the increase of the slenderness 

ratio, the ratio of the nonlinear failure load to the linear one decreases significantly, 

indicating the significant influence of the geometric nonlinearity. In panels with small 

slenderness ratios (less than 27), the linear and nonlinear analyses yield close results 

because the failure mode is characterized by material failure. For slenderness ratio 

between 27 and 62, although the predicted failure mode is crushing of concrete, the 

geometrically nonlinear model predicts a significantly smaller failure load, which are 

66% to 95% of the failure loads that obtained by the geometrically linear analysis. In 
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this portion of Fig. 3.13 the combined effects of the geometric and material 

nonlinearities accelerate the failure of the HSC panel. For slenderness ratio greater than 

62, buckling dominates the failure of the panels.  

 

Fig. 3.13 Predicted ultimate strength (load per unit area) of HSC panels vs. slenderness 

ratio   

3.4.3 Comparisons of Test, Model, and Code Equations 

As the one-way HSC panel can be treated either as a wall or column, the calculated 

capacities by the design codes are based on two methods: the column design method 

(Chapter 10 in AS3600 (2009) and ACI318 (2008)) and wall design method (Chapter 11 

in AS3600 (2009) and Chapter 14 in ACI318 (2008)). In the calculation of the capacity, 

the capacity reduction factor is taken as  = 1.0. It can be seen in Table 3.1 that in 

contrast to the model predictions, the predictions by both methods in AS3600 (2009) 

and ACI318 (2008) are generally significantly lower than the test results. Table 3.2 

shows the code/experimental failure load ratios of all panels based on wall and column 

designs. Depending on the adopted design concept and code, the mean values range 

between 0.664 to 0.963, which are smaller than the mean model/test ratio of 1.029, and 
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the standard deviations range between 0.182 to 0.486, which are significantly higher 

than the standard deviation of the model/test ratio (0.102).    

Table 3.2 Predicted to test ratios for high strength concrete tests reported in this chapter 

Panel No. 
Model / 

Test 

Column design 
AS3600 

(2009) / Test 

Wall design 
AS3600 

(2009) / Test 

Column design 
ACI 318 

(2008) / Test 

Wall design  
ACI 318 

(2008) / Test 

ST1 1.014 0.639 0.619 0.519 0.746 

ST2 0.978 0.323 0.603 0.496 0.738 

ST3 0.954 0.399 0.581 0.324 0.465 
ST4 1.273 1.71 --- 1.391 1.997 

ST5 1.026 0.888 0.906 0.654 1.085 
ST6 1 1.36 1.001 0.942 1.264 

ST7 0.967 0.615 0.55 0.485 0.701 
ST8 1.019 0.565 0.583 0.504 0.707 

Average 1.029 0.812 0.692 0.664 0.963 
Standard 
Deviation 

0.102 0.486 0.182 0.345 0.486 

 

The wall design methods in both codes are based on empirical or semi-empirical 

formulae that do not consider the geometrical and material nonlinearity appropriately. 

The wall design method in AS3600 (2009) even fails to predict the capacity of Panel 

ST4 which has the largest eccentricity in all specimens. The reason for the large gap 

between the predictions by the column design methods and the test is that the codes do 

not consider the influence of load eccentricity in the calculation of the buckling load for 

slender columns. ACI318 (2008) adopts an effective rigidity approach and AS3600 

(2009) uses the rigidity of the section when the balanced failure happens. However, the 

section (and the neutral axis depth) at failure on which the effective rigidity is evaluated 

is actually determined by the combined axial load and bending moment, which depends 

on the load eccentricity and slenderness ratio. Therefore, it is recommended that these 
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factors need to be incorporated into the calculation of the rigidities for the buckling load 

of HSC panels.  

 

 

Fig. 3.14 Loading paths and section capacity lines of ST1-ST6  
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Fig. 3.14 presents the panel interaction section capacity curves for ST1-ST6 which are 

obtained according to the column design method in AS3600 (2009). Superimposed on 

the section capacity curve is the test loading path and the predicted load paths by the 

proposed theoretical model based on geometrically linear and nonlinear analyses. The 

figures clearly reveal that the load-carrying capacities of all the panels predicted by the 

geometric linear analysis significantly overestimate the capacity from the one predicted 

by the geometric nonlinear analysis, which, however, correlate well with the test results. 

The buckling failures of all the test panels are characterized by a limit-point, which in 

most cases develop before the test load path curve intersected the section capacity 

envelop.  

3.4.4 Comparisons of Model Results with Test Results in the Literature 

The capabilities of the proposed theoretical model are further examined by comparing 

the model prediction to other test results available in the literature. As the available test 

data on HSC panels are limited, the comparison study is extended to NSC panels. The 

test results of Saheb and Desayi (1989) and Fragomeni and Mendis (1998) are included 

here and the details of their experiments along with the corresponding theoretical failure 

loads as predicted by the proposed model are presented in Table 3.3. All the panels were 

simply-supported and were tested in one-way action under eccentric compression 

loading. Only the compressive strength was reported in each study and, therefore, the 

elastic modulus and tensile strength used in the model are evaluated based on AS3600 

(2009), while the constitutive relations follow Eqs. (3.7)-(3.9). The panels have a single 

layer of reinforcement with 4 mm wires placed at the mid-thickness in Saheb and 

Desayi (1989), while in Fragomeni and Mendis (1998), the panels are reinforced at both 

faces where the diameter of the reinforcement is 2 mm.  
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As seen in Table 3.3, the theoretical failure loads correlate reasonably well with 

the test ones with a mean model/experimental failure load ratio of 0.985 and a standard 

deviation of 0.126. All panels were predicted to fail by buckling using the proposed 

model. 

Table 3.3 Comparison of test results in the literature with the predictions of the 

proposed model 

Literature 
Panel 
No. 

Dimensions 
λ 

 e 
(mm) 

fc 
 

(MPa) 
ρv 

(%) 

Failure load 
(kN) Model 

/ Test H 
(mm) 

b 
(mm) 

h 
(mm) 

Test Model 

Fragomeni 
and 

Mendis 
(1998) 

1a 1000 200 50 70 8.3 40.7 0.250 162 156 0.963 

1b 1000 200 50 70 8.3 58.9 0.250 187 202 1.080 

2a 1000 300 50 70 8.3 42.4 0.250 232 241 1.039 

2b 1000 300 50 70 8.3 65.4 0.250 264 324 1.277 

3a 1000 200 40 87 6.7 37.1 0.310 100 91 0.910 

4b 1000 300 40 87 6.7 54 0.210 217 173 0.797 

5a 1000 500 40 87 6.7 35.7 0.250 201 223 1.109 

Saheb and 
Desayi 
(1989) 

WAR-1 600 900 50 42 8.3 17.9 0.173 484 463 0.957 

WAR-2 600 600 50 42 8.3 17.9 0.173 315 304 0.965 

WAR-3 600 400 50 42 8.3 17.9 0.173 198 206 1.040 

WAR-4 600 300 50 42 8.3 17.9 0.173 147 154 1.048 

WSR-1 450 300 50 31 8.3 17.3 0.165 214 206 0.963 

WSR-2 600 400 50 42 8.3 17.3 0.165 254 200 0.787 

WSR-3 900 600 50 62 8.3 17.3 0.165 299 256 0.856 

Aeverage 0.982 

                          
Standard 

Deviation 
0.121 

3.5 CONCLUSIONS  

A nonlinear theoretical model has been developed for the failure analysis of one-way 

slender reinforced high-strength concrete panels. The model accounts for concrete 

cracking, tension-stiffening, nonlinearity in compression and yielding of the steel, as 

well as the geometric nonlinearity. It describes the entire equilibrium path of HSC 

panels through the use of the arc-length method. The model has been validated by an 



93 
 

experimental study which has provided more insight into the behaviour of HSC panels. 

All the tested panels exhibited nonlinear responses due to the geometric and material 

nonlinearities and they failed dominantly by buckling. The buckling load is influenced 

by cracking and nonlinear material softening in compression. As a result, instability 

failure of HSC panels has shifted from the bifurcation buckling for the case of elastic 

panels to a limit-point buckling mode.  

 The influences of reinforcement ratio and location, load eccentricity, and 

slenderness ratio on the performance of HSC panels have been examined in the 

experimental study. The results have revealed that the reinforcement ratio and location 

has an insignificant influence on the buckling load of slender HSC panels with normal 

load eccentricities ( / 6e h ), but increasing the reinforcement ratio and reinforcing the 

panel at both faces can result in a more ductile failure. On the other hand, the behaviour 

of the HSC panel is substantially influenced by the load eccentricity and the slenderness 

ratio. Estimations of the load capacities of the tested HSC panels using a column design 

approach and simplified models for walls in the design codes showed considerable 

deviation from the test results. In general, the design models are conservative compared 

to the nonlinear model proposed in this chapter. The main reason for the conservative 

prediction is that for wall design, the formulae in the codes are empirical or semi-

empirical that do not properly consider the material and geometrical nonlinearities, and 

the design codes exclude the influence of load eccentricity in the calculation of the 

effective rigidity in the column design approach, which is used to determine the 

buckling load. The capability of the proposed theoretical model was further 

demonstrated through comparison between test results available in the literature and 

predictions of the model, which has shown a good correlation between the results. 

Therefore, these simplified formulae in the codes should be reconsidered. 
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Finally, it can be concluded that the failure mode of HSC panels with typical 

slenderness ratios, as commonly used in practice, is characterized by brittle and sudden 

buckling failure that is sensitive to the slenderness ratio and to uncertainties regarding 

the magnitude of load eccentricity, which should be carefully considered in their design. 

The test results have shown that the brittle failure can be partially controlled by 

increasing the amount of reinforcement in the panel. These aspects have been well 

demonstrated by the proposed model, which also has shown and explained the 

interaction between the geometric and material nonlinearities.  
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CHAPTER 4 THEORETICAL STUDY OF THE LONG-

TERM BEHAVIOR OF GENERAL ONE-

WAY VISCOELASTIC PANELS WITHOUT 

CONSIDERING CRACKING 

4.1 INTRODUCTION 

The instantaneous response, particularly the buckling failure response of slender one-

way HSC panels was studied in Chapter 3. It was shown that the coupling effect of 

geometric and material nonlinearities along with the imposed axial loads significantly 

reduced the buckling capacity of one-way HSC panels compared to classical buckling of 

elastic panels. Buckling failures may also occur to slender panels under sustained axial 

loads due to the additional weakening caused by creep and shrinkage of concrete. In 

such cases, buckling failures may occur over time under a sustained load that is 

significantly smaller than the instantaneous buckling load, a phenomenon typically 

referred to as creep buckling. The creep buckling failure is characterized by sudden loss 

of structural stability at a certain point of time after the panel being loaded. Such 

behavior was observed in reinforced concrete (RC) columns and shells (Bažant 1968; 

Bockhold and Petryna 2008; Hamed et al. 2011). On the other hand, the creep 

deformations may not necessarily lead to buckling failure but they may increase the 

internal stresses and decrease the residual strength of the wall when additional loads are 

to be applied. The dependence of the creep strains on the level of stresses that may vary 

with time, their interaction with shrinkage and thermal strains, and the nonlinear 

geometrical and material response, make accurate prediction of the creep behavior of 

HSC panels a challenging and difficult task. 
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It has been shown in Chapter 2 that the instantaneous buckling and failure 

behavior of NSC and HSC panels have been extensively investigated in the literature 

(Oberlender and Everard 1977; Saheb and Desayi 1989; Fragomeni and Mendis 1997). 

However, studies that focused on the buckling behavior of HSC panels including the 

influence of creep and shrinkage could not be found in the open literature.  

Therefore, the long-term behavior of the one-way HSC panel is investigated in 

Chapter 4, 5 and 6. This chapter focuses on the theoretical examination of general 

viscoelastic panels, where material nonlinearities of concrete and steel reinforcement, 

shrinkage and aging of concrete are not considered. A more comprehensive theoretical 

investigation of the long-term response of the HSC one-way panel under the influences 

of creep and shrinkage is conducted in the next chapter that takes into account the 

concrete cracking and tension-stiffening effect, aging of concrete and yielding of steel 

reinforcement. An experimental long-term study of the HSC panels is carried out in 

Chapter 6 to validate the theoretical model presented in Chapter 5.  

In this chapter, a nonlinear theoretical model is developed based on a step-by-step 

time analysis, which takes into account the variation of the internal stresses and 

deformations with time. A rheological material model that is based on the generalized 

Maxwell chain is used for modelling the creep of the concrete. The incremental 

governing equations are derived, and their solution at each time step is achieved 

numerically. The mathematical formulation of the model is presented next, followed by 

numerical and parametric studies. 

4.2 MATHEMATICAL FORMULATION 

The variational principle of virtual work ( 0U W   , is the variational operator) is 

used for the formulation of the incremental equilibrium equations along with the 



97 
 

boundary conditions. The sign conventions for the coordinates, loads, and 

displacements are shown in Fig. 4.1(a). The time of concern t is subdivided into nt 

discrete time steps with tr = tr - tr-1 (r = 1,2,…nt), and the virtual work of the internal 

stresses at time tr-1+Δtr reads  

 ( ) Vxx xx xxU d          (4.1) 

where σxx and εxx are the in-plane normal stress and strain respectively, Δ is the 

incremental time operator, and V is the volume of the panel.  

 

Fig. 4.1 (a) Panel geometry, loads, coordinates, and displacement (b) Maxwell chain 

The stress and strain are functions of the independent coordinates x and z (Fig. 4.1(a)) 

and time tr-1, which for brevity are omitted here. The incremental kinematic relation is:  

 2
, , , ,0, 1

1
( ) ( ) ( ) ( ) ( ) ( )

2xx r x r xx r x r x r x rt u t z w t w t w t w t           (4.2) 

where u0 and w are the longitudinal displacement and out-of-plane deflection, and ( ),x 

denotes a derivative with respect to x. The virtual work of the external loads applied at 

time tr+Δtr is:  
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             
        


(4.3) 

where qz and nx are external distributed loads; N0, P0, and M0 are external loads and 

bending moment at the top of the panel (x=0), NH, PH and MH  are loads and moment at 

the bottom of the panel (x=H) (see Fig. 4.1(a)). Using Eqs. (4.1)-(4.3), the incremental 

equilibrium equations read  

 ,xx x xN n    (4.4) 

    , , , ,,xx xx z xx xx x x xx x xM q N N w N w            (4.5) 

where Nxx and Mxx are the axial force and bending moment, respectively.  

4.2.1 Constitutive relations 

A differential-type form of Boltzmann’s principle of superposition Bažant and Wu 

(1974) is adopted here. For simplicity, aging is not considered. The constitutive relation 

is derived in an incremental form using the generalized Maxwell model, as shown in 

Fig. 4.1(b). For this, the relaxation function is expanded into Dirichlet series, as follows 

 ( ')

1

( , ') ( , ')
m

t tR t t R t t E e E




 




    (4.6) 

where )',( ttR  is the relaxation function, )',( ttR  is the approximated relaxation 

function, 't  is the time at application of loading, t is the time since first loading, Eµ is 

the modulus of the µth Hookean spring in the Maxwell chain, m is the number of units, 

τµ is the relaxation time of the µth unit and E is the modulus of the m+1 spring that is 

not coupled to any dashpot (see Fig. 4.1(b)). The moduli of the springs in the Maxwell 

chain are determined using least squares method to fit test data or a known expression 
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of R(t,t'), assuming   E (  is the viscosity of the µth dashpot). The incremental 

constitutive relation is as follows Bažant and Wu (1974): 

 
( )

( ) ( )
( )

xx r
xx r r

c r

t
t t

E t


 

    


 (4.7) 

  
1

( ) 1 r

m
t

c r
r

E t e E E
t

 









   
  (4.8) 

where   is the incremental creep strain, and cE  is quasi-elastic modulus. After 

obtaining the solution at time tr, the stresses at each Maxwell unit are determined as 

follows: 

  1( ) ( ) ( ) 1r rt t
r r xx r rt e t E t e t  

       
      (4.9) 

The stress resultants are formulated by substitution of the kinematic relation Eq. (4.2)

into Eq. (4.7) and integration throughout the cross-sectional area: 

 2
, , ,0,

1
( ) ( ) ( )

2xx r c r eff x x x x rN t E t A u w w w t          
  (4.10) 

  ,( ) ( ) ( )xx r c r eff xx rM t E t I w t       (4.11) 

   1
1

1
( ) 1 ( )
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r
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r r
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t e N t
E t A


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

 




 
     

  (4.12) 

   1
1

1
( ) 1 ( )

( )
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m
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r r
c r eff

t e M t
E t I






 




 
      

  (4.13) 

where )(~
rt and )(~

rt  are the incremental membrane creep strain and change of 

curvature, Aeff and  Ieff are the effective cross-sectional area and moment of inertia 

considering the steel reinforcement. Note that the modular ratio used here is 

( )s c rn E E t  which varies with time (Es is the elastic modulus of steel).  
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4.2.2 Governing equations 

The governing equations are formulated using the equilibrium equations (Eqs. (4.4)-

(4.5)) and the stress resultants (Eqs. (4.10)-(4.13)). They are presented as a set of 6 first-

order differential equations in terms of the unknown deformations and forces. Note that 

terms of high order product may be neglected due to the use of sufficiently small time 

increments: 

 , ( ) ( )x r rw t t    (4.14) 

 , ( ) ( ) ( ) ( )x r r xx r c r efft t M t E t I        (4.15) 

 , ,, 1 1( ) ( ) ( ) ( ) ( ) ( )xx x r xx r xx r x r xx r x rM t S t N t w t N t w t         (4.16) 

 , ( ) ( )xx x r z rS t q t    (4.17) 

 , ( ) ( )xx x r x rN t n t    (4.18) 

 , ,0, 1( ) ( ) ( ) ( ) ( )x x r x r xx r c r eff ru w t w t N t E t A t           (4.19) 

where Sxx is the shear force of the panel and   is the rotation of the cross-section of the 

panel. The boundary conditions are: 

   0 0 0,         or        iN N i H u u        (4.20) 

    , , ,  0,            or          x x x iM N N w Nw P i H w w             (4.21) 

   ,0,            or          i xM M i H w          (4.22) 

where 0u , w  and   are external deformations. 1 for x=0 and 1 for x=H. 

Here Eqs. (4.14)-(4.19) are solved by the numerical multiple shooting method. 

4.2.3 Creep properties 

The relaxation function of concrete takes the following approximated expression Bažant 

and Kim (1979):  
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  (4.24) 

where 2)'( tt  , 008.00  , )',( ttJ is the compliance function of concrete, and 

)',( tt  is the creep coefficient which is evaluated based on AS3600 (2009) as:  

 2 3 4 5 cc.b( , ')t t k k k k   (4.25) 

where cc,b is the basic creep coefficient and k2, k3, k4, and k5 are factors that depend on 

the age and strength of the concrete, geometry of the structure, time of loading, and the 

environmental conditions. 

4.3 NUMERICAL STUDY 

4.3.1 Numerical example 

The panel investigated in this study is 5.0 m high by 1.5 m wide and 150 mm thick. The 

compressive strength and elastic modulus of the concrete are fc' = 80 MPa and Ec = 39.6 

GPa, respectively. The number of units in the Maxwell model (m) equals 5 in this 

example. The panel is assumed to be loaded at the age of 28 days. Following AS3600 

(2009), the creep coefficient is given by  

 
0.8

0.8

1.403( 28)
( ,28)

( 28) 20.45

t
t

t
 


 

 (4.26) 

The vertical steel reinforcement ratio is taken as 0.0015 and its elastic modulus is 

Es=200 GPa. The panel is simply supported at both ends and is loaded by an eccentric 

sustained load. The variation of the out-of-plane deflection with time for the case of N0 

= 3300 kN and eccentricity e=7.5 mm is shown in Fig. 4.2. The axial load actually 
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equals 50% of the classical Euler buckling load (Pcr=6628 kN) and the eccentricity is 

0.05 of the thickness (h). As can be seen, the out-of-plane deflection increases with time 

as a result of creep and tends to increase to infinity at certain time. Due to the 

difficulties in generating a criterion for creep buckling, Hoff (1958) and Bažant and 

Cedolin (1991) suggested the use of maximum allowable deflection as a creep buckling 

criterion. Here, the maximum deflection is limited to 1.5h, and the corresponding time 

is defined as “critical time”, which equals 663 days in Fig. 4.2.   

 

Fig. 4.2 Variation of maximum out-of-plane deflection with time of examined panel 

The distributions of the deflection and the bending moment through the height of the 

panel at three different times are shown in Fig. 4.3. The results show that the increase in 

the deflection is associated with a significant increase and redistribution of the bending 

moment with time. These magnified moments may lead to cracking of the concrete, 

which may further weaken the structure and reduce its buckling capacity.  
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Fig. 4.3 Distribution of the out-of-plane deflection (a) and bending moment (b) at three 

different times 

4.3.2 Parametric study 

The influence of the magnitude of the sustained load is studied in Fig. 4.4. As expected, 

the critical time at which creep buckling occurs decreases with increasing initial load. 

Nevertheless, Fig. 4.4(b) shows that this decrease is exponentially proportional to the 

applied pressure. This exponential relation can be expressed in the following form 
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 0

0

crN Pct Cet
  (4.27) 

where C and α are parameters that depend on the geometry and material of the panel, tc 

is the critical time to be predicted and t0 is the critical time that corresponds to the 

minimum N0 for which buckling occurs ( min
0N ). In this case, crPN 42.0min

0  , which 

defines the long-term buckling load of the panel under this eccentricity and t0=6157.3 

days. This result is in accordance with that obtained using the simplified Effective 

Modulus Method (EMM) approach. In the latter, 22min
0 HIEN eff with 

)]',(1[ ttEE c  which yields crPN 42.0min
0  and provides a level of validation to the 

proposed model. However, the model developed here is more general and 

comprehensive than the EMM model, as it accounts for gradual loading of the structure 

and provides a basis for more comprehensive models that include cracking and material 

nonlinearity to be developed.  
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Fig. 4.4 Response of viscoelastic panel with e=0.05h: (a) Maximum out-of-plane 

deflection response with time; (b) Critical time versus axial load  

 The influence of the eccentricity under N0 = 0.5Pcr is studied in Fig. 4.5 (te is the 

critical time of the panel loaded with e=0). Fig. 4.5 shows that tc is also very sensitive to 

variations in the eccentricity. Unlike classical buckling that is determined based on the 

magnitude of the applied load, creep buckling is determined based on the magnitude of 

the time-dependent deflection. Hence, the results reveal that the structural stability over 

time needs to be carefully investigated as small variations in the eccentricity may 

initiate creep buckling. To clarify this, the time response of the panel under N0 = 

0.38Pcr, for which creep buckling is not expected to occur based on Fig. 4.5 is 

investigated for different values of e. The results, which for brevity are not presented 

here, reveal that once e exceeds 0.5h, buckling occurs. It is therefore important to take 

into account the coupling effect of the eccentricity and loading level in the creep 

buckling analysis of slender one-way panels.  
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Fig. 4.5 Response of viscoleastic panel with N0=0.5Pcr: (a) Maximum out-of-plane 

deflection response with time; (b) Critical time versus eccentricity 

4.4 CONCLUSIONS 

A nonlinear theoretical model has been presented in this chapter to study the time-

dependent performance of viscoelastic panels. The model is based on one-way modeling 

of the panel, and accounts for the large-displacement kinematics and for the variation of 

the internal stresses and geometry with time. The present model can effectively predict 

the creep buckling response of the panel with different eccentricities and boundary 

conditions. The sensitivity of the critical time to cause creep buckling to the applied 
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load and eccentricity has been revealed and quantitatively described by the proposed 

model. This chapter provides a basis for further and more detailed studies that account 

for cracking and material nonlinearity. 
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CHAPTER 5 THEORETICAL STUDY OF THE LONG-

TERM BEHAVIOR OF ONE-WAY HSC 

PANELS 

5.1 INTRODUCTION 

The theoretical model presented in the last chapter considers concrete as a viscoelastic 

material, which sets up a foundation for a more comprehensive and sophisticated study 

of the long-term response of the HSC panel. In this chapter, the nonlinear model is re-

developed, which accounts for combined effects of creep, shrinkage, aging of concrete, 

geometric nonlinearity, cracking and tension-stiffening through the step-by-step time 

analysis. The rheological material model that is based on the generalized Maxwell chain 

is used for modelling all the aforementioned material behavior through strain- and time-

dependent springs and dashpots. The solution of the incremental governing equations of 

the panel at each time step is achieved numerically, combined with the use of a smeared 

cracking model and an iterative procedure for the determination of the sections rigidities 

and the creep strains. The model presented is a general one that is applicable for various 

combinations of boundary conditions, load scenarios, material and section properties. 

The mathematical formulation of the model is presented next, followed by numerical 

and parametric studies, and a comparison of the model with test results appeared in the 

literature.  
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5.2 MATHEMATICAL FORMULATION 

The mathematical formulation includes the derivation of the incremental equilibrium 

equations, the constitutive relations, and the governing equations. In general, the wall 

panel can be either under one-way or two-way actions. However, in many cases, the 

aspect ratio of the wall (height/length), the type of connections to the adjacent members, 

and the load force a one-way action of the wall through its height. Hence, the model 

developed here focuses on one-way panels, but it serves as the basis for the 

development of models for two-way panels. A smeared cracking modelling approach is 

adopted along with a distinction between the cracked and the uncracked regions through 

the height of the panel. The sign conventions for the coordinates, loads, and 

displacements are shown in Fig. 5.1(a) and 1(b).  

In order to describe the time-dependent variation of the internal stresses, as well 

as the time-dependent cracking and increase of the deformations due to the influence of 

creep and shrinkage, an incremental time-stepping analysis is implemented. For this, the 

time of concern t, which is measured from the time of first loading, is subdivided into nt 

discrete time steps with Δtr = tr - tr-1 (r = 1,2,…,nt). The incremental kinematic relation 

of the panel takes the following form considering large displacements:  

  2

0, 1, , , ,
1

( ) ( ) ( ) ( ) ( ) ( )
2xx r x r xx r x r x r x rt u t z w t w t w t w t           (5.1) 

where xx  is the total strain that includes the viscoelastic strain v
xx  (instantaneous strain 

ins
xx  + creep strain cp

xx ) and the stress-independent shrinkage strain sh
xx ; u0 and w are the 

longitudinal vertical displacement and the out-of-plane deflection, and ( ),x denotes a 

derivative with respect to x.  The basic equilibrium equations of the panel are similar to 

a beam-column member, which can be found in many textbooks of structural 

mechanics. The derivations of the incremental form of these equations and their 
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boundary conditions were presented in detail in the last chapter using the variational 

principle of virtual work, which are therefore omitted herein. Yet, in the last chapter, the 

creep buckling response of HSC panels was preliminary investigated without the 

consideration of cracking and shrinkage of the concrete, which can significantly affect 

the buckling capacity. The incremental equilibrium equations read:  

 ,xx x xN n    (5.2) 

    , , , , ,xx xx z xx xx x x xx x xM q N N w N w            (5.3) 

where Nxx and Mxx are the axial force and bending moment, respectively; qz and nx are 

external distributed loads (see Fig. 5.1(a)). Note that functions that appear without the 

  operator are known functions from the previous time step. The general boundary 

conditions at x = 0  and x = H are given by  

 0 0       or        xx iN N u u       (5.4) 

  , , ,        or        xx x xx xx x xx x iM N N w N w P w w           (5.5) 

 ,       or        xx i xM M w         (5.6) 

where 0u , w  and   are external deformations at the edges; Ni, Pi, and Mi (i = 0 or H) 

are concentrated external forces and moments at the edges (Fig. 5.1(a)); λ = -1 for x = 0 

and λ = 1 for x = H. 
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Fig. 5.1 Sign conventions of the model: (a) Panel geometry, loads, coordinates and 

displacements; (b) Cross-section of the panel; (c) Instantaneous stress-strain curve of 

the concrete; (d) Instantaneous absolute stress-strain curve of the steel; (e) Maxwell 

chain model 

5.2.1 Constitutive relations at the material point level 

The constitutive relations account for creep, shrinkage, aging and cracking of the 

concrete, while the steel is considered elastic-perfectly plastic. The concrete is 

considered linear viscoelastic in compression and nonlinear viscoelastic in tension due 

to the cracking and tension-stiffening. The nonlinearity of the concrete in compression 

is not considered because in most practical cases the level of stresses under sustained 
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loads is relatively small and within the linear range, bearing in mind that the stress-

strain curve in HSC is linear up to almost 70% of the compressive strength. The 

instantaneous constitutive relation of the concrete at initial loading (t = t0) is presented 

first, from which the long-term constitutive relation is derived. The model proposed by 

Fields and Bischoff (2004), which is shown in Fig. 5.1(c), is used to model the tension-

stiffening effect, although the modelling approach presented in this chapter can be used 

for various tension-stiffening models: 
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 (5.7) 

where σxx is the normal stress in the concrete, Ec is the elastic modulus of the concrete at 

the time of loading, cr is the cracking strain under instantaneous loading, which is 

determined as /t cf E  with ft being the flexural tensile strength of concrete. Note that ft, 

Ec and cr vary with time due to aging. 

 The constitutive relation of the steel reinforcement under both tension and 

compression is shown in Fig. 5.1(d) and is given by: 
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 (5.8) 

\where σs and εs are the stress and strain of the steel reinforcement, Es and εy are the 

elastic modulus and yielding strain of the steel.   

 A rheological model which is based on the generalized Maxwell chain is used to 

formulate the long-term constitutive relation of concrete as presented in Bažant and Wu 

(1974) for linear cases (see Fig. 5.1(e)). However, in order to account for cracking, 

tension-stiffening and aging, strain and age dependent spring and dashpot constants are 

introduced here (Carol and Murcia 1989; Hamed and Bradford 2012). Yet, for these 
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constants to be determined, the relaxation modulus needs to be defined first. Using Eq. 

(5.7), along with replacing ins
xx  with v

xx  and defining the secant modulus Esc as v
xx xx 

to account for the nonlinear constitutive relation in tension, the relaxation modulus 

( , , )v
xxR t t  can be approximated as follows, assuming the same creep characteristics in 

both tension and compression (Gilbert 1988):  
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 

  

         

 (5.9) 

where ( , )t t  is the creep coefficient of the concrete at time t for a load applied at time 

t . In general, the viscoelastic characteristics of concrete depend on both the stress level 

and the viscoelastic strain and not just on the latter as described by Eq. (5.9). However, 

studies reveal that creep in tension may produce high levels of cracking and material 

softening over time (creep rupture) although the levels of stresses or instantaneous 

strains can be smaller than the peak tensile capacity (Carpinteri et al. 1996; Di Luzio 

2009). In addition, many studies and design codes including Gilbert and Wu (2009) and 

CEB-FIP (1990) indicate that tension-stiffening can decrease to about 50% with time 

due to progressive cracking and bond slip. Therefore, in order to approximately simulate 

these two weakening effects with time, and due to the lack of accurate data regarding 

the effect of creep on the tension-stiffening effect, the relaxation modulus in Eq. (5.9) is 

defined as a function of the total viscoelastic strains v
xx  rather than the instantaneous 

strain or the stress level. In this approximated approach, cracking and material softening 

are assumed to occur once the viscoelastic strain reaches the cracking strain although 

the instantaneous strain is smaller than the cracking one, which may predict earlier 

cracking at some material points but can still simulate the creep rupture and the 
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influence of creep on reducing the tension-stiffening effect (Hamed and Bradford 2012). 

The relaxation modulus is then expanded into a Dirichlet series, which describes a 

generalized Maxwell model (Fig. 5.1(e)), as follows:  

 ( )/
1

1

( , , ) ( , , ) ( , ) ( , )
m

t tv v v v
xx xx xx xx xx m xxR t t R t t E t e E t




    




       (5.10) 

where xxR  is the approximated relaxation modulus, ( , )v
xxE t    is the modulus of the µth 

spring in the Maxwell chain, m is the number of units, τµ is the relaxation time of the 

µth unit. Note that the spring moduli and the dashpot constants (

( , ) ( , )v v
xx xxt E t       ) are strain and age-dependent, which in general require the 

expansion of the relaxation modulus into a Dirichlet series at different ages and at 

different strain levels for their evaluation due to the variation of the internal stresses 

with time. This computational difficulty is treated in the subsequent. 

 The aging of concrete is introduced through an aging function ( , )ins
xxv t  that 

describes the increase in the secant modulus with time and which is presented ahead. It 

was shown in Carol and Bazant (1993) that the use of rheological Maxwell or Kelvin 

models with spring constants that increase proportionally to the same function v(t') is 

equivalent to the solidification theory developed in Bažant and Prasannan (1989a) that 

accounts for aging of the concrete. In the linear (strain-independent) case considered in 

Carol and Bazant (1993), the function v(t') actually describes the increase in the 

macroscopic elastic modulus over time, while here it is assumed to describe the 

macroscopic secant modulus due to the nonlinearity introduced by the tension-stiffening 

effect. Thus, the spring modulus in the Maxwell unit can then be expressed as 

( , ) ( , ) ( )v ins v
xx xx xxE t v t E     . Hence, the calculation of the spring moduli at different 
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ages of loading is avoided, while ( )v
xxE   still needs to be determined at different levels 

of viscoelastic strain.  

 Eq. (5.9) shows that the relaxation modulus can be separated into two functions: 

one that is a function of strain only, and one that is a function of time only. Hence, the 

spring moduli can be determined by curve fitting of xxR with Rxx for a chosen strain 

level, while their variation with cracking follows that of the secant modulus (Hamed and 

Bradford 2012). Here, the spring moduli are calculated for v
xx cr   in Eq. (5.9), 

yielding 0( )v
xxE E   .  The variation of the spring moduli with the increase of the 

viscoelastic strain becomes:   
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Following the subdivision of the time of concern into a number of time steps, the 

incremental constitutive relations can be formulated, which are based on a numerical 

time integration assuming a constant strain rate and a constant aging function and spring 

modulus at each time increment  (Bažant and Wu 1974; Hamed 2012) as follows: 
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in which cE   is the pseudo normal modulus, and c  is the incremental prescribed 

normal strain that includes the effects of both creep and shrinkage.  These are given by:  
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where   is the stress in the µth Maxwell unit. 

 In the numerical study of Section 5.3, the creep coefficient and shrinkage strain 

are assumed to follow AS3600 (2009), yielding: 
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 sh cse csd
xx xx xx     (5.17) 

where th = 2Ag/ue is the size factor of the specimen, with Ag as the gross cross-sectional 

area and ue as the perimeter of the cross-section that is exposed to the atmosphere; k3 

and k4 are coefficients that introduce the influence of the age of concrete at the time of 

loading ( t ) and the environmental effects; φcc,b is the basic creep coefficient that 

depends on the characteristic strength; k5 is a factor that reflects the influence of the 

concrete strength, which takes the following form 

 
   5 '

3 3

1.0                                           for   50 MPa
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f f 

      
 (5.18) 

where  0.008
3 40.7 / (1.0 1.12 )htk e   , and cf   is the characteristic compressive 

strength of concrete at 28 days; cse
xx and csd

xx  in Eq. (5.17) are the chemical and drying 

shrinkage strains, respectively, which depend on the characteristic compressive strength 

as well. They are given as follows: 
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where *
.csd b is the final drying basic shrinkage strain that depends on the quality of the 

aggregates, and t refers to the time elapsed since termination of curing. 
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 The effect of aging on the nonlinear relaxation modulus and the spring constants 

is introduced through the development of Ec, ft, and cr with time following CEB-FIP 

(1990), and assuming that the development of the tensile strength with time follows that 

of the compressive strength: 

 
1/2

28
( ) (28)exp 0.25 1t tf t f

t

        
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 (5.21) 
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The aging function can then be determined as the ratio between the time-dependent 

secant modulus with respect to its value at the time of initial loading t0:  

 0( , ) ( , ) / ( , )ins ins ins
xx sc xx sc xxv t E t E t     (5.23) 

5.2.2 Constitutive relations at the section level 

The constitutive relations at the cross-section level of the panel are determined using the 

classical definition of the stress resultants and using Eq. (5.12) as follows: 
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where b and h are the width and thickness of the HSC panel, respectively; ssE , εs, and 

As are the secant modulus of elasticity, strain and area of the steel reinforcement at the 

outer face of the panel, respectively (see Fig. 5.1); ssE  , s  , and sA  are the secant 

modulus of elasticity, strain and area of the steel reinforcement at the inner face of the 

panel, respectively; zs and sz  are the distances of the steel reinforcement from the mid-
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thickness of the panel (see Fig. 5.1(b)). Note that cE  and c   depend on the strain level 

at each material point, and they vary through the thickness and height of the panel. By 

substituting the kinematic relation Eq. (5.1) into Eqs. (5.24) and (5.25), the stress 

resultants become 

 2
11 0, 1 11, , , ,
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 (5.26) 
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where A11, B11 and D11 are the extensional, extensional-flexural, and flexural 

viscoelastic rigidities of the panel, and N  and M  are the incremental effective force 

and bending moment that introduce the effects of creep and shrinkage. The viscoelastic 

rigidities and the effective force and bending moment take the following form: 
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5.2.3 Incremental governing equations 

The incremental governing equations are derived by substituting the stress resultants 

(Eqs. (5.26) and (5.27)) into the equilibrium equations (Eqs. (5.2) and (5.3)), noting that 

terms of higher product of the incremental displacements and forces are neglected due 

to the use of sufficiently small time increments. For convenience, the equations are 

presented as a set of first-order differential equations:  

 , ( ) ( )x r rw t t    (5.33) 
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where Sxx is the shear force.  

5.2.4 Solution procedure 

At each time step, Eqs. (5.33)-(5.38) present a set of nonlinear differential equations due 

to the dependency of the viscoelastic rigidities on the unknown deformations via Eqs. 

(5.28)-(5.30). These rigidities are uniform along the uncracked region but they vary 

along the cracked region. To simplify the analysis, the variation of the rigidities along 

the cracked region is assumed to follow that of the out-of-plane deflections, which 

actually determines the distribution of the nonlinear bending moment. This assumption 

results in two types of unknowns that need to be determined at each time step, namely: 

the rigidities at the critical section, and the start and end points of the cracked region 
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(X1 and X2, see Fig. 5.1(a)). Here, an iterative procedure is used to determine these 

parameters at each time step, combined with the use of the numerical multiple shooting 

method (Stoer and Bulirsch 2002) for the solution of the incremental governing 

equations at each iteration. The iterative procedure follows these steps:  

Step 1. Initial guess. At the first iteration of the instantaneous loading, the panel is 

assumed uncracked. However, for the subsequent time steps, the solution from the 

previous time step is used as the initial guess for the current step.  

Step 2. Analysis of the structure. Using the rigidities calculated in the initial guess or in 

the previous iteration (step 3.3), as well as the calculated locations of the start and end 

points of the cracked region, the incremental governing equations become linear ones 

with variable coefficients in space, which are solved numerically.  

Step 3. Analysis of the critical section (at the location of maximum bending moment). 

Based on the solution obtained in step 2, the equivalent rigidities of the critical section 

are determined as follows:  

3.1     The incremental strain at time tr is calculated at each material point across the 

critical section using the kinematic relation appears in Eq. (5.1). The total strain 

εxx(tr) is obtained by adding the incremental strain Δεxx to the total strain 

accumulated in time tr-1, i.e., εxx(tr-1).    

3.2       The total viscoelastic strain is obtained as  

 v sh
xx xx xx     (5.39) 

3.3      Once the normal strain distribution is determined in step 3.2, the spring moduli 

of each point through the thickness of the panel are determined via Eq. (5.11). 

Consequently, the viscoelastic rigidities and the incremental effective forces due 

to creep and shrinkage are determined through Eqs. (5.28)-(5.32) and the normal 
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stresses are updated using Eq. (5.15). The integrals in Eqs. (5.28)-(5.32) are 

numerically solved due to the material nonlinearity.  

Step 4. Convergence Criteria. If the norm of the relative difference between the 

magnitudes of the viscoelastic rigidities as well as X1 and X2 in two consecutive 

iterations is sufficiently small, the iterative procedure stops. Otherwise, the procedure 

returns to step 2 with the updated rigidities of step 3.3.  

 The analysis is conducted up to a certain time (the critical time) where the 

deformations of the system exceed a prescribed limit (Hoff 1958; Bažant and Cedolin 

1991). In general, the incremental exponential form of the creep law outlined above 

allows increasing the time step interval throughout the analysis (Bažant and Wu 1974). 

However, the time step is kept relatively small throughout the analysis here because the 

rate of creep is relatively high at the early stages of loading and at unknown times for 

which buckling with time may occur. A proper time step is selected for a given load 

level in the way that the difference between the predicted critical times of creep 

buckling for the selected time-step and one-half of it is of minor significance.  

5.3 NUMERICAL STUDY 

The numerical study includes a numerical example along with a parametric study, and a 

comparison with test results available in the literature, which demonstrate the 

capabilities of the proposed theoretical model. 

5.3.1 Numerical Example 

A one-way HSC panel that is subjected to an eccentric sustained axial load is 

investigated. The panel is simply supported at the top and bottom edges as shown in 

Fig. 5.2. Deformed bars of 5.0 mm diameter with spacing of 230 mm and a concrete 
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cover of 20 mm are used, which result in a total vertical reinforcement ratio of 

( ) /v s sA A bh   = 0.2%. The yielding strength and elastic modulus of the steel are 

500 MPa and 200 GPa, respectively. The panel is assumed to be loaded at the age of 28 

days after casting with N0 = 794.2 kN, which equals to 30% of the instantaneous elastic 

Euler buckling load (Pcr = 2647.3 kN). The load is applied with an eccentricity of e = 

h/6 = 16.7 mm, which results in edge moments of M0 = 13.2 kNm and MH  = -13.2 kNm 

(Fig. 5.1). Curing of the concrete is assumed to terminate after 7 days since casting, and 

the shrinkage from 7 to 28 days is considered as prescribed initial strain at first loading. 

The development with time of the shrinkage strain and the creep coefficient follow Eqs. 

(5.16)-(5.20) with k3 = 1.1, k4 =0.65, 
csd .b
*  800106 and th = 90.9 mm as follows: 
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The number of Maxwell units (m) used to model the viscoelastic behavior of concrete is 

taken as 5 in this example with 15


 (days).  
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Fig. 5.2 Geometry, material properties and loads of the panel investigated in the 

numerical study 

The time-dependent variation of the deflection and the bending moment at mid-height 

are shown in Fig. 5.3. The deflection is normalized with respect to the thickness of the 

panel h. It can be seen that the panel undergoes increasing deflection with time due to 

the effects of creep, shrinkage, and cracking of the concrete. This increased deflection 

leads to an increase in the bending moment at mid-height due to the geometric 

nonlinearity of the member (P-Δ effect). As shown in Fig. 5.3, beyond a certain time, 

the out-of-plane deflection as well as the bending moment tends to asymptotically 

increase towards infinity. Nevertheless, due to the brittleness of the concrete and its 

limited ability to undergo large deformations, a buckling failure criterion that is based 

on a maximum normalized out-of-plane deflection (w/h) of 0.4 is adopted in this case 

(Hoff 1958; Bažant and Cedolin 1991). Other creep buckling criteria may also apply, 

but it was found in this numerical example that beyond this deflection limit, the 
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deformations, stresses, and strains dramatically increase. Hence, the analysis is stopped 

at t=171 days, which refers to the critical time for buckling that is predicted to occur 

under an axial load that equals to only 30% of the instantaneous elastic buckling load. 

 

 

Fig. 5.3 Variation of the out-of-plane deflection (a) and bending moment (b) with time 

at mid-height 

Under instantaneous loading, no cracking of the concrete is predicted. However, the 

results reveal that cracking appears at 3 days after initial loading as a result of shrinkage 

and creep effects (Fig. 5.3). The cracks propagate with time from mid-height towards 

the top and bottom edges with X1 = 125.7 mm and X2 = 3374 mm (see Fig. 5.1(a)) at t = 

171 days. Fig. 5.4 shows the distribution of the out-of-plane deflection and bending 

moment through the height of the panel at various times, which exhibit the importance 

of the long-term geometric nonlinear effects, and the ability of the model to describe the 

structural response at different times.  
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Fig. 5.4 Deflection (a) and bending moment (b) distribution through the height at three 

different times 

Fig. 5.5 shows the distribution of the instantaneous and long-term total normal strains 

and stresses through the thickness of the critical section at mid-height. In flexural RC 

members under sustained loading but with no geometric nonlinear effects, relaxation of 

the compressive stresses occurs with time along with an increase in the compressed 

depth due to the restraint provided by the steel reinforcement. Here, the compressive 

stresses continuously increase with time and the neutral axis is shifting inwards toward 

the compressed face, as was also reported in the experimental study of Tatsa (1989). 

Fig. 5.6 shows a very small relaxation of the compressive stress provided by the 

reinforcement because the section at the edge is uncracked and has a zero magnification 

of the bending moment due to the geometric nonlinearity.  
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Fig. 5.5 Normal total strain (a) and stress (b) distribution at mid-height section at two 

different times 

 

Fig. 5.6 Normal total strain (a) and stress (b) distribution at the edge section at two 

different times  

The variation with time of the peak stresses and strains of the concrete and the steel 

reinforcement are shown in Fig. 5.7 and Fig. 5.8, respectively. It can be seen that the 

compressive and tensile strains of the concrete continuously increase with time. The 

compressive stress in the concrete at the critical time (t = 171 days, where the 

deformation starts to increase rapidly) is -43.5 MPa, which is within the linear 

viscoelastic range of behavior of the concrete as assumed by the model. The tensile 
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stress in the concrete starts to decrease after cracking as shown in Fig. 5.7(d) along with 

tension-stiffening effects. Fig. 5.8 shows that the stresses in the steel reinforcements on 

both sides of the panel tend to increase with time. The increase is induced by the 

restraint of the creep and shrinkage deformations of the concrete, and by the additional 

bending moment due to the geometric nonlinearity. The stress in the reinforcement at 

the critical time for which buckling is predicted to happen is less than the yielding 

strength. These results indicate that in this case, no material failure in steel or concrete 

is expected to occur before buckling.  

It can be seen that the model is capable of describing the nonlinear time-

dependent response of the structure, including the distribution of stresses and strains at 

different times and different locations. Although concrete is still elastic in compression 

when buckling failure is predicted to happen; in other cases, crushing or softening of the 

concrete or yielding of the steel may occur before buckling. Thus, the creep and 

shrinkage effects may also lead to premature material failures with time due to their 

coupling with the geometric nonlinear effects that significantly increase the stresses. 

Such aspects of structural behavior should also be considered in the design of HSC 

panels, as well as in estimating their design life.  
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Fig. 5.7 Variation of total strain and stress in the extreme fibers of concrete at mid-

height section: (a) Strain at inward face; (b) Stress at inward face; (c) Strain at outward 

face; (d) Stress at outward face 

 

Fig. 5.8 Variation of stresses in the steel reinforcement at mid-height section: (a) 

Reinforcement close to the inward surface; (b) Reinforcement close to the outward 

surface 



129 
 

5.3.2 Parametric study 

A parametric study is conducted here to investigate the influences of some of the 

parameters that govern the nonlinear time-dependent response. Three parameters are 

investigated, which include the magnitude and eccentricity of the sustained load, and the 

steel reinforcement ratio. The panel investigated in Section 3.1 is used as a reference 

one with N0 = 0.3Pcr = 794.2kN, e = h/6 and v = 0.2%. Thus, when one parameter is 

changed, the other two are kept constant. The results are summarized in Table 5.1 and 

are presented in Fig. 5.9 and Fig. 5.10. 

 

Table 5.1 Results of parametric study 

Parameters 
Examined 

N0 e v (%) tcr (days) 

Magnitude of 
Sustained Load 

0.2Pcr h/6 0.2 Stable 

0.3Pcr h/6 0.2 171.1 

0.35 Pcr h /6 0.2 55.1 
0.4 Pcr h /6 0.2 20.6 

Load Eccentricity 

0.3 Pcr h /3 0.2 6.5 
0.3 Pcr h /6 0.2 171.1 
0.3 Pcr h /9 0.2 1421 
0.3 Pcr h /12 0.2 Stable 

Reinforcement Ratio 

0.3 Pcr h /6 0.2 171.1 
0.3 Pcr h /6 0.8 211.1 

0.3 Pcr h /6 1.6 341.1 

0.3 Pcr h /6 4.0 Stable 
Note: Pcr = 2647.3 kN, h = 100 mm 
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Fig. 5.9 Influence of load level on the long-term behavior of the HSC panel (e = h/6, v 

= 0.2%); (a) Variation of the out-of-plane deflection at mid-height with time; (b) 

Critical time versus load level  

 

Fig. 5.10 Influences of load eccentricity (N0 = 0.3Pcr, v = 0.2%) (a) and reinforcement 

ratio (N0 = 0.3Pcr, e = h/6) (b) on the long-term behavior of the HSC panel 

The influence of the magnitude of the sustained load on the buckling with time is shown 

in Fig. 5.9. The eccentricity and reinforcement ratio are h/6 and 0.2% respectively for 

all load levels. As expected, the increase of the imposed load causes earlier buckling of 

the panel (reduction of the critical time). However, it can be seen in Fig. 5.9(b) that the 

critical time is very sensitive to small changes in the magnitude of the applied load, and 
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the relation between the two is nonlinear. It can also be seen in Fig. 5.9 that no buckling 

is predicted for the case of N0 = 0.2Pcr as the deflection-time curve becomes almost 

constant after a certain time, which indicates a stable behavior. The minimum 

magnitude of sustained load that leads to buckling with time of the panel (defined as Pcrl 

here) equals 0.24Pcr. Thus, the buckling capacity of the panel is reduced by 76% due to 

the combined effects of creep, shrinkage and cracking, which is critical in the design of 

HSC panels. This result is different from the corresponding result calculated using the 

commonly used and simplified Effective Modulus Method. In this method, 

2 2
crl effP EI H , with E  as the effective elastic modulus that is given by 

)]',(1[ ttEE c  , and Ieff  as the moment of inertia of the transformed gross cross-

section, which yields Pcrl = 0.4Pcr. Those differences can be even larger for different 

boundary conditions, as shown in Chapter 4, which indicate that such simplified 

methods should be carefully considered for the design and analysis of slender RC 

structures with geometric nonlinearity (Hamed et al. 2010b).  

 The effect of the load eccentricity on the time-dependent response of the HSC 

panel is investigated in Fig. 5.10(a) and Table 5.1, in which N0 = 0.3Pcr and v = 0.2%. 

Also here, the sensitivity of the behavior upon changes in the load eccentricity is 

revealed, where small variations of the eccentricity may trigger earlier long-term 

buckling failures. Fig. 5.10(a) shows that the change of the critical time with the load 

eccentricity is also nonlinear. These results reveal the importance of considering 

different load scenarios in the design of slender HSC panels, as inaccuracies in 

estimating the actual load eccentricity (which is very common) may have a critical 

influence on the predicted behavior.  

 The effect of the reinforcement ratio is shown in Fig. 5.10(b) and Table 5.1.  N0 

= 0.3Pcr and the eccentricity is h/6 for all cases. It can be seen that the critical time of 
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the HSC panel increases with the increase of the reinforcement ratio, and for v > 4%, 

no creep buckling occurs. Thus, in addition to the role of the tensile reinforcement in 

carrying tensile stresses at the cracked region, the increase in both the tensile and 

compressive reinforcement ratio can significantly restrain the creep deformations of the 

concrete and can prevent buckling of the panel with time. These results reveal a 

potential way of controlling the long-term buckling of the panel with time without the 

need to change its geometry, which can be effective for slender panels.  

5.3.3 Comparison to test results from the literature 

A comprehensive experimental study regarding the creep buckling response of HSC 

panels could not be found in the literature. Nevertheless, in order to provide some level 

of validation to the proposed theoretical model, a comparison with the test results of 

Tatsa (1989) that include creep testing of NSC panels without buckling is presented. 

The compressive strength of the concrete used by Tatsa (1989) is 24.3 MPa, and the 

dimensions of the panel are 145 mm thickness, 300 mm wide and 2500 mm high. The 

one-way panel is simply-supported at the top and bottom edges and is subjected to 

eccentric sustained loads at 50 mm eccentricity at both edges. The panel is 

symmetrically reinforced on both faces with a reinforcement ratio of 1.04%, and it was 

loaded at 28 days. Shrinkage is assumed to commence at 7 days after casting. As no 

data was reported regarding the creep and shrinkage properties of the concrete, they are 

estimated based on AS3600 (2009) considering the different dimensions, age and 

strength of concrete, as well as the different exposure to atmosphere at laboratory 

conditions compared to the numerical example presented in sections 3.1 (Eqs. (5.16)-

(5.22)). They are given as follows, 
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The comparison of the predicted out-of-plane deflection of the panel at mid-height with 

the test results appears in Fig. 5.11. It can be seen that the theoretical results generally 

agree well with the test results although the predicted instantaneous deflection is slightly 

smaller than the actual one. Some small discrepancies can also be observed at the 

delayed stages after loading (t > 60 days) which can be partially attributed to different 

actual creep and shrinkage properties than the ones used in the model. Nevertheless, the 

comparison provides a level of validation to the proposed model.  Yet, further 

verifications of the model through comparison with creep tests including buckling need 

to be conducted, which is considered for further study by the authors. 

 

 

Fig. 5.11 Comparison of the theoretical model with experimental results 

5.4 CONCLUSIONS 

A theoretical model has been developed for the one-way time-dependent analysis of 

reinforced high-strength concrete panels. The model accounts for creep, shrinkage and 

aging of the concrete, as well as for cracking and tension-stiffening through a 
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rheological viscoelastic model that is based on the generalized Maxwell chain. It 

considers the geometric nonlinearity and describes the variation of the internal stresses 

and deformations with time through a time-stepping analysis.  

 The capabilities of the theoretical model have been examined and demonstrated 

through numerical examples and parametric studies, which have shown the increase of 

the out-of-plane deflection of the HSC panel with time, and the change of the strain and 

stress distributions at different cross-sections. Most importantly, it has been shown that 

the long-term effects of creep and shrinkage can cause premature buckling of the panel 

with time. The predicted load that leads to buckling with time can be much smaller than 

the elastic buckling load, which shows the importance of considering these long-term 

effects in the design of HSC panels.  

 It has been shown that the change in the deflection of the panel is accompanied 

by shifting of the neutral axis towards the compression side, and by a continuous growth 

of the compressive and tensile stresses in the concrete and the steel reinforcement. Such 

increase in the stresses may lead to material failures by concrete crushing or steel 

yielding even before buckling occurs. It has also been shown that even though the 

concrete may not be cracked under instantaneous loading, creep and shrinkage may lead 

to time-dependent cracking that can significantly decrease the buckling capacity of the 

panel. The parametric study has shown that the time-dependent buckling behaviour is 

very sensitive to key parameters, such as the load magnitude and eccentricity, and that 

in some cases, creep buckling failures can be prevented by providing sufficient 

reinforcement.  

 Finally, it can be concluded that the model developed here sets a theoretical 

basis for the nonlinear time-dependent analysis of HSC panels including the effects of 

creep and shrinkage. It also clarifies the important roles these parameters can have on 
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the buckling capacity, and it provides a tool for their quantitative evaluation. Yet, 

further aspects of the structural behaviour including the two-way action, temperature 

effects, and the material nonlinearity in compression need to be investigated. 

 



136 
 

CHAPTER 6 EXPERIMENTAL STUDY OF THE LONG-

TERM BEHAVIOR OF ONE-WAY HSC 

PANELS 

6.1 INTRODUCTION 

This chapter presents experimental results of the long-term behavior of one-way HSC 

panels subjected to eccentric uniaxial in-plane loads. The experimental program 

consisted of five HSC panels simply-supported along the two short edges only and 

tested under sustained loading. Two panels failed by creep buckling under the sustained 

loads, whereas the other three panels were loaded to failure at some time after initial 

loading without the release of the sustained loads. The influences of the loading age, 

eccentricity, and level of the in-plane load on the time-dependent behavior are 

investigated in the test. The experimental study conducted herein aims to validate the 

proposed model as presented in Chapter 5 and to improve the understanding of the time-

dependent behaviour of one-way HSC panels. Moreover, as there appears to be a 

shortage of reliable test data reported for one-way HSC panel under sustained eccentric 

in-plane loading in the open literature, the test findings represent a benchmark database 

that can be used for further long-term stability study of HSC panels. The experimental 

program is described firstly in the chapter, followed by a comparison of the test results 

with the model results.  
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6.2 EXPERIMENTAL PROGRAM 

6.2.1 Test specimens 

In the experimental investigation, five slender high-strength concrete panels were tested 

under sustained in-plane compression load that was eccentrically applied on the two 

short edges. All panels were simply supported on the loading edges and loaded 

horizontally. They possess the same dimensions, where the height (H), width (b) and 

thickness (h) are 2700 mm, 460 mm and 100 mm, respectively. These dimensions are 

similar to the ones used in the short-term experimental study presented in Chapter 3, 

which provides the basis for this study. Moreover, they were all equally reinforced at 

the outer and inner layers in the in-plane load direction with the total reinforcement ratio 

equal to 0.22%. SL52 welded steel mesh with bar diameter of 4.77 mm in two 

orthogonal directions was used as the reinforcements. The geometric configuration and 

layout of reinforcement of the panels are depicted in Fig. 6.1. The concrete cover is 20 

mm for all specimens. The specimens were prepared, casted and cured in the same way 

as the short-term experiment study described in Chapter 3.  

Three parameters were examined in the tests, that include the loading age, 

eccentricity and level of load. The details of the loading conditions are reported in Table 

6.1. The eccentricities presented here are the actual ones, which were determined using 

the concrete strains measured near to the edges of the specimens in test and following 

Eq. (3.27). The load level for each panel is determined as the ratio of the measured 

sustained load divided by the corresponding short-term load-carrying capacity predicted 

by the proposed short-term theoretical model using the tested material properties and 

eccentricities. As the short-term model was validated comprehensively by comparing 

with test results generated in the short-term experimental study and with others from the 

literature, and also because the tested long-term specimens have the same dimensions, 
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concrete strength, steel reinforcement and loading eccentricities, as the specimens tested 

under short-term loading in Chapter 3, its predicted failure loads are considered to be 

reliable.  

 

(a) Strain gauge locations in the long-term test 

 

(b) Cross-section of tested panel 

Fig. 6.1 Strain gauge location and cross-section of all panel specimens 

Panels LT2 and LT3 were tested at an old age, whereas the other specimens were all 

loaded at the same concrete age of 22 days. The effect of loading age was investigated 

by comparing the test results of Specimen LT3 to those of LT5 because both have the 

same eccentricity. The eccentricity was varied between Specimen LT2 and LT3 to 
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examine role of the load eccentricity. Specimen LT1 and LT5 were designed to study 

the influence of the in-plane load level on the long-term performance of HSC panels. 

Specimen LT4 was initially loaded to 75% of its predicted short-term failure load, 

followed by an unloading stage until the load was dropped to 62% of the failure load, 

which was kept constant with time after that.   

 

Table 6.1 Details of loading conditions  

Panel 
No.  

Loads (kN)  Eccentricity (mm)  

Sustained  load   
(kN)  

Predicted short-term 
failure load (kN) 

Sustained 
load level 

 
1eL 

(mm) 

2eR 
(mm) 

3edesign

/h 
 

LT1 591 638 93% 22.5 21.9 1/6 

LT2 320 436 73% 31.1 37.5  1/3 

LT3 615 820 75% 19.1 18.8  1/6 

LT4 369 593 62% 24.1 27.8  1/4 

LT5 548 764 72%  19.6 21.4  1/6  
1–Eccentricity measured in the test at left edge; 
2–Eccentricity measured in the test at right edge; 
3–Designed eccentricity; 
 

6.2.2 Preparation of test specimens 

The formworks of the panel specimens were built using structural grade plywood and 

laid horizontally on the ground in the structural laboratory. The SL52 mesh was cut to 

the required dimension and placed at the top and bottom layers that were held in place 

by steel bar chairs. The formwork and details of the reinforcement are illustrated in Fig. 

6.2. The specimens were cast using a commercially mixed high-strength concrete. The 

casting of specimens as well as the testing was done in pairs, in the order of LT1, LT2 

and LT3, LT4 and LT5. After casting, the panels were covered with wet hessian and 

wrapped with plastic sheets at the outside of the hessian. They were kept moist in the 
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formwork for 14 days before stripping and remained in the ambient laboratory 

conditions until the day of loading.     

 

(a) Set-up of formwork 

 

(b) Details of reinforcing mesh 

Fig. 6.2 Preparation of test specimen 

6.2.3 Test setup and instrumentation  

The HSC panels were tested horizontally in a universal testing frame with hydraulic 

jack at one end and two load cells at the other end. The load was applied and monitored 
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to remain constant through the hydraulic jack. The test setup is shown in Fig. 6.3 and 

Fig. 6.4.  

 

(a) Top view 

 

(b) Side view 

Fig. 6.3 Long-term test set-up 
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(a) Left end: load cell  (b) Right end: hydraulic jack 

Fig. 6.4 Details of test setup 

A number of spring plates with high load-carrying capacity were inserted between the 

jack and the end support plate so as to minimize the dropping of the axial sustained load 

with time. The loading and supporting mechanisms at each panel end consisted of a 

rotatable hinge to provide simply-supported boundary condition (See Fig. 6.4). The load 

eccentricity was set up in a way that the panel would deform upwards under loading. 

The two external load cells were installed to measure the applied load throughout the 

entire test, as shown in Fig. 6.4. The out-of-plane displacements were measured by laser 

displacement sensors at 3 points of the outer (top) face of the panel that were 

symmetrically distributed along its length, i.e. at x = 100 mm, x = 1350 mm, and x = 

2600 mm. 18 strain gauges were mounted on the surfaces of steel and concrete at the 

critical locations as shown in Fig. 6.1(a). The displacements of the hinge plates on the 

two ends were monitored using the linear strain conversion transducer (LSCT), as 

shown in Fig. 6.3. 

6.2.4 Test procedure  

The panel specimens were loaded by a hydraulic pump. Each panel was loaded up to the 

desired load level first, and then once the load level had been reached, the valve on the 
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jack was closed to prevent further loading and then the pump was released. The process 

of applying the instantaneous loads ordinarily last less than half an hour. The sustained 

load tended to drop as a result of concrete creep. The dropping was fairly remarkable 

especially at the first few hours after the sustained load was applied. So the load was 

topped up from time to time as needed, to maintain at the constant level throughout the 

test. The procedure of adjusting the load is as follows: first, use the hydraulic pump to 

load the pressure to the desired level which can be read directly from a pressure gauge 

connected to the oil hose; then, the valve was opened so that the pump was connected 

through to the jack; finally, the load was topped up by driving the jack through the 

pump. As aforementioned, two specimens were failed by creep buckling under the 

sustained load. The other three panels were loaded to failure at some time after initial 

loading by increasing the imposed load level without the release of the existing loads, 

since they displayed long-term stable behaviours.  

6.2.5 Material properties 

Concrete cylinders of 100 mm diameter and 200 mm height as well as concrete prisms 

of 100x100x500 mm were cast and cured along with the panels. Five concrete cylinders 

were tested in compression to measure the compressive strength and elastic modulus of 

concrete and three prisms were tested under 4-point bending to determine the flexural 

tensile strength of the concrete. These material properties were measured at the 

commencement and completion of the panel test, as reported in Table 6.2. The 

development of the material properties of concrete with time was determined using the 

interpolation method, as their difference at the beginning and end of test were fairly 

small.  

Two standard concrete prisms of 75x75x280 mm with gauge studs mounted on 

both ends were cast and cured for each pair of specimens as well in order to measure the 
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shrinkage strain following AS1012.13 (1992). The measurement of the shrinkage strain 

commenced immediately after the test specimens were demoulded at 14 days using the 

vertical comparator as shown in Fig. 6.5, and stopped once the panel was failed. The 

measured data is shown in Fig. 6.7.  

 

Fig. 6.5 Measurement of shrinkage strain 

 

Fig. 6.6 Creep rig setup  
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Three cylinders were placed in a standard creep rig under a sustained stress of 30 MPa 

for each pair of panels, as presented in Fig. 6.6. The stresses were applied hydraulically 

at the same time of the test of corresponding specimens and adjusted to remain constant 

due to the occurrence of creep and shrinkage. The total strains which included the 

elastic strain, the shrinkage strain and creep strain were measured from the three 

cylinders using Demec strain gauges. The shrinkage strains were measured from two 

unloaded companion cylinders with the same dimensions as the creep cylinders. The 

creep strains were then determined by subtracting the sum of the measured shrinkage 

strain and instantaneous elastic strain from the total strains. The creep coefficient, 

determined as the ratio of measured average creep strain to the measured average elastic 

strain, is shown in Fig. 6.8.  

Since the same steel reinforcement as in the short-term test was used here, the 

material properties of the steel reinforcement determined in the short-term test was 

adopted, where the yielding strain was 0.2% and the measured elastic modulus was 206 

GPa. The stress-strain relation is the same as presented in Fig 3.3(b).  

 

Table 6.2 Material properties of concrete at the start and end of panel testing 

Panel 
No. 

Concrete 
Age (Days) 

f'
c 

(MPa) 
Ec 

(GPa) 
ft 

(MPa) 
Event on the timeline 

LT1 
22 80.9 36.4 5.3 Initial loading 
38 89.5 37.3 6.4 Failure 

 LT2 & 
LT3 

99 91.7 40.25 6.9 Initial loading of LT2 
203 95 39.3 7 Failure of LT3 

LT4 & 
LT5 

22 101 39.5 5.9 Initial loading of LT4 & LT5 
91 103.5 39.8 8.9 Failure of LT5 
126 103 40.5 8.9 Failure of LT4 
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Fig. 6.7 Shrinkage strain measured in the tests 

 

Fig. 6.8 Creep coefficient measured in the tests 
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6.3 EXPERIMENTAL RESULTS AND DISCUSSIONS 

The experimental results as well as the predictions by the long-term theoretical model 

are summarized in Table 6.3. As mentioned earlier, the predicted short-term failure 

loads are obtained by using the short-term theoretical model in Chapter 3 along with 

employing the experimental material properties and loading conditions. The concrete is 

assumed to be linear viscoelastic in compression and nonlinear in tension in the long-

term model, where cracking and tension-stiffening which follows the rule proposed by 

Fields and Bischoff (2004) as in Chapter 5 are considered. The self-weight of the panel 

is not considered in the long-term model as the positive bending moments caused by the 

self-weight is negligible compared to the negative bending moments produced by the 

eccentric in-plane loading. The measured material properties are incorporated into the 

long-term theoretical model, in which the aging effect of the concrete for the elastic 

modulus and strength is modelled via interpolating the experimental data with time. The 

creep coefficients attained in the experiment are also used in the theoretical model. By 

means of using the least square method to fit the experimental relaxation modulus as 

determined in Eq. (5.9), the spring moduli in the expanded relaxation modulus are 

determined. Since Specimens LT1, LT4 and LT5 were cast using the same concrete 

mixture and cured under similar conditions, and they were loaded at the same age, their 

material properties including strength, elastic modulus, creep coefficient and shrinkage 

are considered to be the same and the average values are used in the model. The number 

of Maxwell units (m) used to model the viscoelastic behavior of concrete is taken as 5 

with 15


 (days) in the model. The spring constants for Panels LT1, LT4 and LT5 

obtained by the least squares methods are: E1 = 9313 MPa, E2 =4573 MPa, E3 =3982 

MPa, E4 =3097 MPa, E5 =2889 MPa, E6 =15200 MPa. The creep properties of the aged 

Panels LT2 and LT3 were different from the other three panels. So the associated 
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springs constants are E1 = 3494 MPa, E2 = 3661 MPa, E3 = 2650 MPa, E4 = 4849 MPa, 

E5 = 5493 MPa, E6 = 20058 MPa. 

 

Table 6.3 Comparison of test results to predicted results by the theoretical model 

Panel 
No.  

Test  Prediction 

Concrete 
age upon 
loading 

(t0) (days) 

Load 
duration 
(t) (days) 

Failure 
mode 

Ultimate 
failure 

load (kN) 
 

Critical 
time (t) 

Failure 
mode 

Short-term 
failure 

load (kN) 

LT1 22 13 
Creep 

buckling 
591 

 
18 

Creep 
buckling 

638 

LT2 146 57 
Stable 

(crushed) 
373 

 
N/A Stable 436 

LT3 99 42 
Stable 

(crushed) 
794 

 
N/A Stable 820 

LT4 22 104 
Stable 

(crushed) 
466 

 
N/A Stable 593 

LT5 22 69 
Creep 

buckling 
548  107 

Creep 
buckling 

764 

 

Cracking occurred to all specimens during or right after the instantaneous loading as 

predicted by the theoretical model, which firstly started in the middle spans and then 

propagated to the two edges with loading and time. All panel specimens collapsed in 

buckling failure modes either with time (creep buckling) or after continuous 

instantaneous loading to failure (crushed), since they were all slender panels that had 

identical geometric configurations. The cracking regions generally concentrated within 

the middle one-third span of the specimens. A typical buckling failure mode is shown in 

Fig. 6.9. Panel LT1 and LT5 failed by creep buckling under the sustained load, whereas 

the other three specimens were crushed at a certain time after initial loading since they 

exhibited long-term stable responses.  



149 
 

  

Fig. 6.9 Representative buckling failure mode  

The variation of the center deflections versus time is plotted in Fig. 6.10-Fig. 6.13 for 

all panels, where both experimental and predicted results are shown. It can be seen that 

in general the model results show close correlations with the test results, which 

demonstrates the capability of the theoretical model in predicting the time-dependent 

performance of HSC panels.  

Fig. 6.10 investigates the effect of loading age on the long-term behavior of one-

way HSC panel under the same level of eccentric in-plane loads. LT3 is loaded at 99 

days whereas LT5 is loaded at 22 days. The test load levels and eccentricities of these 

two specimens appeared not to be completely identical as it was very difficult to control 

the sustained load level and eccentricity in such long-term buckling test. Nevertheless, 

the load levels and eccentricities of both panels were close enough for comparison with 

each other. It can be observed that both specimens experienced increased out-of-plane 

deflections with time due to the combined effects of creep, shrinkage and geometric 

nonlinearity. In addition, the early-loaded Specimen LT5 showed a softer behavior with 

a larger deflection compared to Specimen LT3 that was tested in an old age. This is 

within the expectation since aged concrete creeps less. The predicted curves agree fairly 

well with the measured ones until the failure of the specimens. Specimen LT5 is 
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characterized by a sudden buckling failure under the sustained load at 69 days after 

initial loading. On the contrary, Specimen LT3 was predicted to be long-term stable and 

the change of tested deflection with time clearly validated the prediction. Hence, the 

panel was loaded to failure at t = 42 days by increasing the existing in-plane load. The 

panel failed by buckling as well with the ultimate failure load equal to 794 kN that is 

fairly close but slightly smaller than the predicted short-term load-carrying capacity. 

Based on the results of this panel, the creep and shrinkage seem to have almost no 

influence on the residual strength of the panel.   

 

Fig. 6.10 Effect of loading age: variation with time of the center out-of-plane 

displacement of Specimen LT3 and LT5 (ooo and xxx Test; ______ Model) 

The experimental and theoretical deflections of Specimens LT2 and LT3 are plotted 

against time in Fig. 6.11 for the examination of the influence of the eccentricity of the 

in-plane load on the time-dependent response of HSC panels. Panel LT2 was tested 

under an eccentricity that equals to 1/3h while Panel LT3 was loaded with a load 

eccentricity of 1/6h. There was a time lag in the loading age of the two specimens. 
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However, since the two panels were cast using the same batch of concrete and they were 

loaded in an old age at which there is no siginifciant variation of material properties 

with time, the material properties of these two specimens including the creep, elastic 

modulus and strength are considered to be the same in this study. It can be seen that tas 

long as no creep buckling failure happens with time, then changes in the eccentricity 

have a minor influnce on the creep response. Due to different load levels in the two 

panels, but with almost the same sustained load to failure load ratio, the instantaneous 

defleciton of Panel LT3 is larger, and the creep responses are very similar as predicted 

by the model. Similiar to LT3, Specimen LT2 was going to reach a stable state 

eventurally as predicted by the long-term theoretical model (see Table 6.3).  So it was 

loaded to failure at 57 days with the ultimate failure load achieved at 373 kN, which is 

around 17% smaller than the predicted short-term capacity. Thus, the long-term effects 

of creep and shrinkage may reduce the residual strength of HSC panels, which need to 

be considered in their design.  

 

Fig. 6.11 Effect of in-plane load eccentricity: variation with time of the center out-of-

plane displacement of Specimen LT2 and LT3 (ooo and xxx Test; ______ Model) 
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Fig. 6.12 investigates the influence of the in-plane load level on the time-dependent 

performance of HSC panels. Specimen LT1 and LT5 were tested under 93% and 72% 

of the corresponding short-term failure loads, respectively, and they both failed by creep 

buckling at different times. It can be seen that the theoretical result of LT1 correlates 

with the test result reasonably well and apparently, the centre deflection of Specimen 

LT1 which was subjected to the higher axial loads increased more rapidly than that of 

Specimen LT5. Consequently, Specimen LT1 failed more rapidly as well, characterized 

by a brittle creep buckling failure that occurred at 13 days in contrast to 69 days for 

Panel LT5. Good correlation also appears for LT5. It was shown in Chapter 5 that the 

critical time to cause creep buckling is very sensitive to the load level. This theoretical 

observation is also validated here and it explains to some extent the difference between 

the predicted critical time and the observed one for LT5. The load ratio used in the 

model was 72%, but Fig. 6.12 shows that increasing the load level slightly by 3% or 5% 

can dramatically influence the time-dependent behavior and the predicted critical times, 

which equal to 96 days and 70 days, respectively, for the load levels that corresponds to 

75% and 77% of the short-term load-carrying capacity of LT5. This 3% or 5% 

difference between the two applied loads in the model can be within the typical 

tolerances of any testing of RC structures, but the results of the long-term test 

investigated here are very sensitive to this parameter.   

As mentioned earlier, Panel LT4 was first loaded to 75% of its predicted short-

term failure load. The load was then dropped to 62% of its failure load and remained 

constant with time. The panel exhibited a typical stable behaviour with time. Yet, in 

order to highlight the influence of this loading history, where residual plastic 

deformation exist before creep due to the unloading stage, and which may reflect real 

loading scenario in practice, the load versus deflection for LT4 is shown in Fig. 6.13. It 
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shows the entire loading history of loading, unloading, creep under sustained load, and 

reloading to failure. The instantaneous load deflection curved as predicted by the 

theoretical model is also shown for comparison. The panel exhibited a stable behaviour 

under the sustained load and therefore, it was loaded to failure after 104 days since first 

loading. The measured ultimate strength of the panel was 466 kN, compared to 593 kN 

for the predicted short-term load capacity. Thus, it can be seen that under this loading 

scenario, creep may have a more significant impact on the residual strength of the panel, 

which dropped by about 21% from the short-term strength.  Similar figures are also 

presented for LT2 and LT3. 

 

Fig. 6.12 Effect of in-plane load level: variation with time of the center out-of-plane 

displacement of Specimen LT1 and LT5 (ooo and xxx Test; ______ Model; . . . . . . Model 

results for Panel LT5 with load equals to 75% of the failure load; — . — . Model results 

for Panel LT5 with load equals to 77% of the failure load) 
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Fig. 6.13 In-plane load vs. out-of-plane center deflection of Specimen LT4 

The load versus the centre out-of-plane deflections for Specimens LT2 and LT3 are 

plotted in Fig. 6.14-Fig. 6.15. It can be seen that the instantaneous behaviour of the 

tested panel is well captured and described by the short-term theoretical model, whose 

capability in predicting the short-term performance of HSC panels has already been 

validated and demonstrated in Chapter 3. The magnitudes of the deflections at the 

maximum load were comparable to those under the short-term loading.  It is found that 

the residual strength of Panel LT3 is close to the prediction while there is a perceptible 

reduction for the residual strength of Panel LT2, which has larger load eccentricity.   

The tested and predicted compressive strains of steel and concrete at the inner 

face of mid-span section for Panel LT1, LT2, LT3 and LT5 versus time are given in Fig. 

6.16-Fig. 6.19. Generally, the strains are well predicted by the long-term theoretical 

model. It can be seen that the absolute value of the compressive strains in the steel and 

concrete increase with time due to the long-term effects of creep and shrinkage and 

geometric nonlinearity. The steel strains at the time of failure were all less than the 
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yielding strain 0.2%, indicating that no yielding happened to the reinforcement, and 

indicating that failure has actually occurred due to buckling.  

 

 

Fig. 6.14 In-plane load vs. out-of-plane center deflection of Specimen LT2 

 

Fig. 6.15 In-plane load vs. out-of-plane center deflection of Specimen LT3 
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Fig. 6.16 Variation with time of compressive strains at the mid-height section of 

Specimen LT1 (a) concrete at the bottom surface; (b) steel in compression (ooo Test; 

______ Model) 
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Fig. 6.17 Variation with time of compressive strains at the mid-height section of 

Specimen LT2 (a) concrete at the bottom surface; (b) steel in compression (ooo Test; 

______ Model) 
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Fig. 6.18 Variation with time of compressive strains at the mid-height section of 

Specimen LT3 (a) concrete at the bottom surface; (b) steel in compression (ooo Test; 

______ Model) 
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Fig. 6.19 Variation with time of compressive strains at the mid-height section of 

Specimen LT5 (a) concrete at the bottom surface; (b) steel in compression (ooo Test; 

______ Model) 
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6.4 SUMMARY AND CONCLUSIONS 

An experimental study that consisted of testing 5 slender HSC panels to failure under 

sustained loading is conducted in this chapter to investigate the time-dependent 

behaviour of HSC one-way panels and the influence of creep on the residual strength of 

the panel. The panels were subjected to in-plane eccentric compression loads and 

simply supported along the short edges. It was found in this study that the out-of-plane 

deflections along with the strains in steel and concrete continuously increase with time 

due to the combined effect of creep, shrinkage, cracking of concrete and geometric 

nonlinearity. Two panels were collapsed by creep buckling under the sustained load and 

the other three panels exhibited long-term stable response and therefore were loaded to 

failure at some time after loading without the release of the existing load.  

Three factors that can substantially affect the response of the panels were 

examined in the study, including the loading age, the magnitude and eccentricity of the 

in-plane load. It is found in this long-term study that the loading age is crucial. The 

specimen tested at an older age showed smaller instantaneous and long-term deflections 

and exhibited stable response. On the other hand, creep buckling failure occurred to the 

panel that was loaded at the earlier age under the same load level. Furthermore, the 

long-term behaviour of the HSC panels is significantly affected and very sensitive to the 

in-plane load level. The higher load resulted in larger instantaneous deflection of the 

specimen and more rapid increase of it with time, which eventually led to earlier creep 

buckling. It is also found in this study that small difference in the load level such as 3% 

or 5%, which exists within the typical tolerance in any reinforced concrete structure 

testing,  can give rise to notable variation in terms of the critical time of slender HSC 

panels.  
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Finally, as seen in the present experiment, the time-dependent effects of creep 

and shrinkage, coupled with the geometric nonlinearity, has caused reductions of the 

residual strength of HSC panels to varying degrees.  This reduction should be carefully 

considered and treated in the design of slender HSC wall panels, as their ultimate 

carrying capacities after being loaded over time under the sustained service loads will 

be smaller than that under the instantaneous loads.  
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CHAPTER 7 THEORETICAL STUDY OF LONG-TERM 

BEHAVIOR OF TWO-WAY HSC PANELS 

7.1 INTRODUCTION 

All the investigations carried out so far regarding the long-term behavior of high-

strength concrete (HSC) panels have focused on their one-way actions. However, in 

practice, the panels can be restrained to a certain degree on more than two edges, which 

enforce the panel to behave in a two-way action. Such panels are referred to as two-way 

panels. Similar to one-way panels, slender two-way concrete panels may undergo 

increasing in-plane and out-of-plane deformations with time under eccentric sustained 

in-plane and/or out-of-plane loads due to the combined effects of geometric nonlinearity 

and long-term creep. This may cause excessive deflection and cracking when the 

structure is in serviceable state or may eventually lead to creep buckling failures.  

Although the long-term effects may result in similar type of problems as in one-

way concrete panels, the two-way behavior in terms of moment redistributions, cracking 

and buckling are significantly different. Therefore, a new theoretical model that utilizes 

the mechanics of thin plates is developed in this chapter for the analysis and prediction 

of the long-term response of HSC panels. A time-stepping analysis is used to account 

for the effect of creep. A rheological material model is adopted, which is based on the 

generalized Maxwell chain. In order to highlight the long-term effects only, a linear 

viscoelastic material behavior is assumed at the first part of the study. In the second part, 

the concrete is considered to be linear viscoelastic in compression, but with cracking 

and brittle behavior in tension being accounted for using a smeared cracking approach. 

The incremental governing equations are solved numerically at each time step based on 
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a Fourier series expansion of the deformations and loads in one direction, and using the 

numerical multiple shooting method in the other direction. An iterative procedure is 

developed at each time step to determine the section rigidities and creep strains when 

the cracking of the concrete is accounted for. The mathematical formation of the model 

is presented first, followed by numerical and parametric studies.  

7.2 MATHEMATICAL FORMULATION 

In this section, the panel is considered to behave viscoelastic where cracking is not 

accounted for. The general governing equations derived here are applicable to any 

combination of external loads and boundary conditions. Concrete cracking is introduced 

into the model in a simplified way as shown in Section 7.3.2. 

As in the one-way theoretical model, a time-stepping analysis approach is 

adopted in order to account for the time-dependent change of the internal stresses and 

the increase of the deformations of the structure with time. The mathematical 

formulation consists of the development of the incremental equilibrium equations, the 

constitutive relations and the governing equations. The sign conventions for the 

coordinates, loads and displacement are shown in Fig. 7.1. The middle plane of the 

panel is taken as the xy plane, where the x and y axes are directed along the edges. The z 

axis is taken normal to the middle plane and measured positive downwards. The forces 

and bending moments at the boundaries as well as the lateral loads are also presented in 

Fig. 7.1. The torsional moments at the boundaries are not shown in the figure for brevity 

and clarity.  
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Fig. 7.1 Sign conventions of the investigated panel 

7.2.1 Kinematic relations 

In typical HSC panels, the dimensions in the z direction are much smaller than those in 

the other two directions. Therefore, a plane stress condition is adopted, where the 

stresses in the z direction including the normal and shear stresses are equal to zero. The 

theoretical model is based on Von Karman plate theory where the large displacement 

theory is applied. The incremental kinematic relations of the plate then read 
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where εxx and εyy are the total normal strains in the x and y directions; γxy is the total 

shear strain in the xy planes. Each total strain has two components: the instantaneous 

strain and the creep strain. u and v are the in-plane displacements along x and y 

directions, and w is the out-of-plane deflection along z axis, and 
x




 and 
y




 denote the 

Myy
b

yy
b Nyx

b
Nyy

b
Q

Myy
0

yy
0

Nyx
0Nyy

0
Q

x, u

z, w

y, v

Mxx
0

xx
0

Nxy
0

N
xx
0

Q

Mxx
a

xx
a

N
a

N

xx
a

Q

xy

h

b

a

z
q



165 
 

partial derivative with respect to x and y, respectively;   represents the incremental 

operator and note that any displacement that appear without the  operator are the 

accumulated known quantity from the previous time step.  

7.2.2 Equilibrium equations 

The variational principle of virtual work is used to derive the nonlinear incremental 

equilibrium equations along with the boundary conditions, which leads to  

 0U W    (7.2) 

where δU and δW are the internal virtual work and external virtual work and δ is the 

variational operator. The internal virtual work is  

      
v

dVxx xx xx yy yy yy xy xy xyU                      (7.3) 

where σxx and σyy are the normal stresses in the x and y directions; σxy is the shear stress 

in the xy plane; V is the volume of the panel. Note that all the stresses and strains are 

functions of space and time, which for brevity are not included in the formulation. By 

substituting Eq.(7.1) into Eq.(7.3) and making integration with respect to z as well as 

integration by parts with respect to x and y, the internal virtual work becomes 
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(7.4) 

where Nxx and Nyy are the internal axial forces in the x and y directions and Nxy are the 

internal shear force in the xy plane; Mxx and Myy are the internal bending moments along 
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x and y axes and Mxy is the internal torsional bending moment; a and b are the length 

and width of the panel (see Fig. 7.1). The external virtual work is given by  
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where qz is the out-of-plane distributed load applied perpendicular to the top surface of 

the panel throughout the whole area; i
xxN , i

xyN , i
xxM and i

xxQ  are the external axial loads, 

in-plane shear forces, bending moments and shear forces applied at the boundaries x = 0 

and x = a (i = 0 at x = 0 and i = a at x = a); i
yyN , i

yxN , i
yyM and i

yyQ  are the external 

axial loads, in-plane shear forces, bending moments and shear forces applied at the 

boundaries y = 0 and y = b (i = 0 at y = b and i = a at y = b). By substituting Eq.(7.4) and 

Eq.(7.5) back into Eq. (7.3), the incremental equilibrium equations can be obtained as  

 0xyxx
NN

x y


 

 
 (7.6) 

 0yy xyN N

y x

 
 

 
 (7.7) 

 

2 2 2 2 2 2

2 2 2 2 2 2

2 222 2 2

2 2
2 2 2 2 0

xx xx xx yy yy yy

yy xyxx
xy xy xy

w w w w w w
N N N N N N

x x x y y x

M MMw w w
N N N q

x y x y x y x yx y

         
        

     

        
         

        

(7.8) 

The general boundary conditions at x = 0 and  x = a are given by 
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where u , v , and w are the external deformations at the edges; and i = 0 at x = 0 and i = 

a at x = a. The general boundary conditions at y = 0 and y = b are given by 
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where u , v  and w  are the external deformations at the edges; and i = 0 at y = 0 and i = 

b at y = b. 

7.2.3 Constitutive relations at material point level 

As mentioned before, the concrete is considered to be linear viscoelastic in order to 

highlight the creep effects on the long-term behaviour of HSC panels. The steel 

reinforcement is modelled as elastic at this stage. A rheological model which is based 

on the generalized Maxwell chain is used to formulate the long-term constitutive 

relation of concrete (Bažant and Wu 1974). The relaxation moduli can be approximated 

as follows: 
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where ( , )xxR t t , ( , )yyR t t  and ( , )xyR t t  are the relaxation moduli in x and y directions 

and xy plane; ( , )t t  is the creep coefficient of the concrete at time t for a load applied at 

time t ; Ec and Gc are the elastic and shear moduli of concrete, and their correlation is 

given by  
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where   is the Poisson’s ratio, which is assumed to be time-independent in this study 

(Bazant 1988). Thus, due to the lack of experimental data regarding the creep behavior 

of concrete in shear, the latter is assumed to be similar to the creep behavior under 

normal stresses. The relaxation moduli can be expanded into Dirichlet series as follows 

(Bažant and Wu 1974):  
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where xxR , yyR  and xyR  are the approximated relaxation moduli; E and G  are the 

moduli of the µth spring in the Maxwell chain for the modelling in the normal and shear 

directions; m is the number of units; τµ is the relaxation time of the µth unit. Note again 

that in this study, m and τµ are assumed to be identical in the normal and shear 

directions for simplicity, respectively.   
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 Following the subdivision of the time of concern into a number of time steps, the 

incremental constitutive relations of plane stress state can be formulated as follows, 

which are based on numerical time integration 
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where ( )c rE t  and ( )rG t  are the pseudo normal and shear moduli, and ( )xx rt , ( )yy rt

and ( )xy rt  are the incremental prescribed normal strains in x and y directions and shear 

strain in the xy plane that includes the effects of creep and shrinkage. These are given by  
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where xx
 , yy

  and xy
  are the stresses in the µth Maxwell unit and sh  is the 

shrinkage strain which is assumed to be uniform in the x and y directions, as well as 

through the thickness of the panel. Based on Eq. (7.14), the following relations are 

obtained for ( )rG t  and G  
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7.2.4 Constitutive relations at section level 

The constitutive relations at the cross-section level of the panel are determined using the 

classical definition of stress resultants and using the constitutive relations Eq. (7.18)-

(7.20) as follows:   
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where h is the thickness of the panel. Note that the forces and bending moments are 

defined as the distributions of these quantities per unit length. By substituting the 

kinematic relations Eq.(7.1) into Eqs.(7.31)-(7.36), the stress resultants become  
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where C  and D  are axial and flexural viscoelastic rigidities of the two-way panel; 

( )xx rN t , ( )yy rN t  are the incremental effective axial forces in the x and y directions and

( )xy rN t is the incremental effective shear force in the xy plane; ( )xx rM t  and ( )yy rM t  

are the incremental effective bending moments along x and y axis and ( )xy rM t is the 

incremental effective torsional bending moment. The viscoelastic rigidities, which 

account for the internal reinforcement, are given by 
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where /sn E E , Es is elastic modulus of steel reinforcement; Asx and sxA are the areas 

of the steel reinforcements at the inner and outer faces of the panel in the x direction; zsx 
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and sxz are the locations of the corresponding reinforcements measured from the mid-

thickness of the panel. Note that the total reinforcement ratio and their locations in the x 

and y direction are assumed to be the same in this study. The effective forces and 

bending moments are given as 
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By substituting Eqs. (7.26)-(7.28) into Eqs. (7.45)-(7.50) along with using Eqs. (7.18)-

(7.20) and Eqs. (7.23)-(7.25), xxN , yyN , xyN , xxM , yyM and xyM can be determined as  
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7.2.5 Governing equations 

The incremental governing equations are formulated by substitution of the stress 

resultants Eqs. (7.37)-(7.42) into the equilibrium equations (7.6)-(7.8), noting that terms 

of higher product of the incremental displacements and forces are neglected due to the 

use of sufficiently small time increments. The incremental governing equations are 

partial differential equations in terms of the unknown displacements: 

    ,  ,  0         1,  2,  3p u v w p       (7.57) 

where p  consists of differential operators. For brevity, the explicit form of these 

equations is not presented here.  

7.2.6 Solution procedure 

The set of incremental partial differential equations (7.57) and the boundary conditions 

(7.9)-(7.10) are reduced to a set of ordinary differential equations by a separation of 

variables and expansion into the truncated Fourier series (Hong and Teng 2002; Hamed 

et al., 2010a). 
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where F = (Fu, Fv, or Fw) is the number of  terms in the relevant Fourier series. The 

solution of the initial state or previous accumulated displacements and the external loads 

along the panel and at the boundaries take the forms 
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The functions gm(y) are  
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By minimizing the errors due to the truncated Fourier series by the Galerkin procedure 

with trigonometric weighting functions, the partial differential equations are converted 

into the linear ordinary differential equations in the x direction,  

    
0

( ) , ,  ( )d          1, 2, 3; 1, 2, ..., 2
b

m
p p mx u v w g y y p m F     (7.62) 

The governing equations along with the boundary conditions are solved through the use 

of the multiple shooting method at each time step (Stoer and Bulirsch 2002). Similar to 

the analysis of one-way panel, the analysis presented here is also conducted up to a 

certain time (the critical time) where the deformations of the system exceed a prescribed 

limit (Hoff 1958; Bažant and Cedolin 1991). A proper time step is selected for a given 
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load level in the way that the difference between the predicted critical times of creep 

buckling for the selected time-step and one-half of it is of minor significance.  

7.3 NUMERICAL STUDY 

The governing equations derived in Eq. (7.57) and the solution procedures proposed in 

Eqs. (7.58)-(7.61) are generally applicable for any combinations of loading scenarios 

and boundary conditions. Nevertheless, to demonstrate the capability of the proposed 

theoretical model in predicting the time-dependent behavior of HSC panels, a relatively 

simple case is selected in the numerical study in which the rectangular (or square) panel 

is simply-supported on four edges and subjected to an in-pane eccentric compression 

load in the x direction only, as shown in Fig. 7.2.  

This section presents the numerical results of two panels where one is square 

and the other one is rectangular, as well as a parametric study that aims to investigate 

the effects of the aspect ratio, load level and eccentricity, slenderness ratio, cracking, 

reinforcement ratio and shrinkage. For simplicity also, only the first term of the Fourier 

series is considered in deriving the governing equations. For clarity, in all numerical and 

parametric studies, only the influence of creep is considered, while the effect of 

shrinkage is separately investigated in Section 7.3.3.8 as one of the parameters.  
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Fig. 7.2 HSC panel used in numerical study: simply-supported on four edges and loaded 

by uniformly distributed eccentric compression forces in the x direction 

7.3.1 Numerical Example I: Simply-supported two-way square HSC panel  

For a simply-supported rectangular panel subjected to uniform eccentric compression 

forces in the x direction only, the boundary conditions are given by 

0 0 0a b b
xy xy xy yy yyN N N N N      and 0 0a

xx xxN N   (Fig. 7.2). The panel investigated 

here is a square one with the dimensions of 2000×2000×100 mm (a×b×h). There are 

two layers of steel reinforcement in both orthogonal directions, placed at top and bottom 

of the specimen. The reinforcement ratios in the x and y directions (ρx and ρy), where ρx 

= (Asx+ A’sx)/bh and ρy = (Asy+ A’sy)/ah, are both 0.2% and the reinforcement at the top 

and bottom in each direction are equal. The concrete cover is 20 mm and the elastic 

modulus of the steel is 200 GPa, respectively. The panel is assumed to be loaded at the 

age of 28 days after casting with 0
xxN = a

xxN = 20.3 kN/mm, which equals to 60% of the 

instantaneous buckling load (Pcr = 33.9 kN/mm), that is determined according to the 

classical equation given as (Dym and Shame 2013): 
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The load is assumed to be applied at 28 days with an eccentricity of e = h/6 = 16.7 mm, 

which results in edge moments of 0
xxM = a

xxM = 339 kNm/m (Fig. 7.1). The development 

with time of the creep coefficient follows AS3600 (2009) as in Chapter 5, which gives 

 
0.8

0.8

1.45
( )

17

t
t

t
 


 (7.64) 

The number of Maxwell units (m) used to model the viscoelastic behavior of concrete is 

taken as five in this example with 15


 (days). The spring constants in the Maxwell 

model yielded by the least squares methods are E1 = 1684 MPa, E2 = 7537 MPa, E3 = 

8674 MPa, E4 = 4050 MPa, E5 = 1199 MPa, E6 = 16287 MPa. 

The time-dependent variation of the out-of-plane deflection and the bending 

moments at the center of the panel are shown in Fig. 7.3 and Fig. 7.4. The time t is 

measured since the time of first loading. The deflection is normalized with respect to the 

thickness of the panel h. It can be seen that the deflection of the panel and hence the 

bending moments Mxx and Myy increase with time as a result of the combined effects of 

creep and geometric nonlinearity. Similar to the one-way panel, the out-of-plane 

deflection as well as the bending moment tends to asymptotically increase towards 

infinity beyond a certain time. The criterion for critical time of buckling failure adopted 

here follows the same definition as in the one-way panel where buckling considered to 

occur when the normalized out-of-plane deflection (w/h) reaches a given limit. The limit 

in this numerical study is taken as 4 and the corresponding time, referred to as the 

critical time, equals 1400 days in this case. As indicated in Fig. 7.4(b), the ratio of 

Mxx/Myy also increases with time, which implies that stress redistribution occurs with 

time and the influence of the geometric nonlinearity becomes more pronounced in the x 

direction than in the y direction.  
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Fig. 7.3 Variation with time of the (a) out-of-plane deflection; (b) bending moment Mxx 

at the center of the panel 
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Fig. 7.4 Variation with time of the (a) bending moment Myy; (b) the ratio of Mxx/Myy at 

the center of the panel 

7.3.2 Numerical Example II: Simply-supported two-way rectangular HSC panel  

The second panel studied here is a more realistic and general one with the dimensions of 

5000×3500×150 mm (a×b×h). The material properties, reinforcement ratios along with 
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the boundary conditions are the same as in the first panel. The sustained load level is 60% 

of its own elastic buckling load, which equals 22.4 kN/mm. The eccentricities at both 

edges are h/6, which equals to 25 mm. The time-dependent variation of the out-of-plane 

deflection and the bending moments at the center of the panel are shown in Fig. 7.5 and 

Fig. 7.6. Similar to the first panel, this panel also undergoes increased deflection with 

time due to creep and geometric nonlinearity. It fails by creep buckling as well at t = 

4900 days.  

The out-of-plane deflection distribution and the bending moments Mxx and Myy 

distribution along x and y directions at various times are shown in Fig. 7.7-Fig. 7.9. The 

result shows that the time-dependent increase of the out-of-plane deflection caused 

significant increase of bending moments in both x and y directions. It also demonstrates 

the ability of the proposed theoretical model in predicting and describing the time-

dependent response of thin panels. It is clear by inspecting Fig. 7.8(a) that due to the 

creep and geometric nonlinearity, the bending moment Mxx is increasing with time and 

at some time, the maximum bending moment may appear at the center rather than at the 

edges which is the location of maximum Mxx for the panel under instantaneous loading. 

The shift of the maximum Mxx from the edges to the middle as time goes should be 

carefully taken into consideration in designing the concrete panels as the maximum 

bending moments in the x direction appear at different locations for short-term response 

and long-term response. Failure to do so may result in unexpected serviceability 

problems such as excessive deflection and concrete cracking etc., or even structural 

failure in the long run.  
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Fig. 7.5 Variation with time of the (a) out-of-plane deflection; (b) bending moment Mxx 

at the center of the panel 
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Fig. 7.6 Variation with time of the (a) bending moment Myy; (b) the ratio of Mxx/Myy at 

the center of the panel 
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Fig. 7.7 Deflection distribution through x direction (a) and y direction (b) at three 

different times 
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Fig. 7.8 Bending moment Mxx distribution through x direction (a) and y direction (b) at 

three different times 
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Fig. 7.9 Bending moment Myy distribution through x direction (a) and y direction (b) at 

three different times 

 

 

0 1000 2000 3000 4000 5000
100

150

200

250

300

350

400

450

500

550

 x (mm)

 M
yy

 (
kN

m
/m

)

(a)

t=0 days

t=100 days

t=200 days

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

y (mm)

 M
yy

 (
kN

m
/m

)

(b)

t=0 days

t=100 days

t=200 days



189 
 

7.3.3 Parametric study 

A parametric study is carried out in this section to examine the effects of the key factors 

on the time-dependent response of HSC panels. The factors include the magnitude and 

eccentricity of the sustained in-plane load ( 0
xxN ), the slenderness ratio defined as b/h, 

and the aspect ratio defined as a/b, boundary conditions, cracking, shrinkage and the 

steel reinforcement ratios (ρx and ρy). All the aforementioned factors are examined 

based on the viscoelastic material behaviour, except the shrinkage and reinforcement 

ratio, which are studied along with the consideration of cracking. The panel investigated 

in the first numerical example is used as a reference. All panels have the same 

dimensions as the reference panel unless specifically stated. Moreover, all the panels 

studied here contains equal reinforcement ratios in both orthogonal directions (ρx = ρy), 

and in each direction, the reinforcement are equally placed at the inner and outer layers.  

7.3.3.1 Effect of load level 

Fig. 7.10 presents the influence of the level of the sustained load on the time-dependent 

behaviour of the square two-way HSC panel that is simply-supported on four edges. For 

all load levels, the same dimensions, eccentricity, reinforcement ratios (ρx and ρy) and 

material properties as the reference panel are used. It can be seen that the increase of the 

imposed load level leads to earlier occurrence of buckling (shorter critical time). It can 

also be observed that the panel studied here is stable in the long run under load level 

that is lower than 50% of the elastic buckling load Pcr, as the increase in the out-of-

plane deflection stops increasing and becomes almost constant after a certain time. The 

minimum load level to cause creep buckling for the examined panel is 51% of its elastic 

buckling load. This result is in accordance with that obtained using the simplified 

Effective Modulus Method (EMM), where Ec in Eq. (7.63) is replaced with
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 / 1 ( , )cE t t  . Nevertheless, if cracking is taken into account or biaxial loading 

scenarios are considered, the simplified effective modulus method might lead to 

inaccurate results.  

 

Fig. 7.10 Influence of load level on the long-term behavior of the HSC panel for the 

square panel (e = h/6, [ρx, ρy] = 0.2%, a×b×h = 2000×2000×100 mm)  

7.3.3.2 Effect of load eccentricity 

Fig. 7.11 reveals the change of the out-of-plane deflection at the centre of the square 

panel with time under the in-plane compression load with different eccentricities. The 

load is equal to 52% of the elastic buckling load. As seen in the figure, the time-

dependent behaviour is very sensitive to the eccentricity. Thus, it is essential in the 

design to consider different load scenarios as small inaccuracy in estimating the actual 

load eccentricity may result in catastrophic buckling failure in the long term.  
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Fig. 7.11 Influence of eccentricity on the long-term behavior of the square HSC panel (

0
xxN = 0.52Pcr, [ρx, ρy] = 0.2%, a×b×h = 2000×2000×100 mm) 

7.3.3.3 Effect of slenderness ratio 

The normalized deflection at the center of the panels with various thicknesses is plotted 

against the time in Fig. 7.12. The load level, the eccentricity as well as the 

reinforcement ratios in both orthogonal directions are 0.6Pcr, h/6, and 0.2%, 

respectively, where Pcr is the elastic buckling load corresponding to the panel with 100 

mm thickness in order to keep the load unchanged for the three different cases. The 

slenderness ratio is defined as a/h. Three different thicknesses 90 mm, 100 mm and 120 

mm are investigated, which give the slenderness ratios of 22.2, 20 and 16.7. It can be 

seen that under the same magnitude of sustained load, the panels that are 90 mm and 

100 mm thick are unstable whereas the panel with 120 mm thickness exhibits stable 

behavior. For the unstable panels, the critical time increases with increasing the 

thickness. Therefore, in practical design and use of the two-way panels, the creep 

buckling failure can be prevented by increasing the thickness of the panel.  
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Fig. 7.12 Influences of slenderness on the long-term behavior of the square HSC panel (

0
xxN  = 0.6Pcr, e = h/6,  [ρx, ρy] = 0.2%, a×b = 2000×2000 mm) 

7.3.3.4 Effect of boundary conditions  

The support conditions are varied at the two loading edges (x = 0 and x = a), while the 

other two edges at y = 0 and y = b remain simply-supported. Three different cases are 

investigated in this section, including simply-supported with eccentric loading at both 

loading edges (Case I), simply-supported at both loading edges with concentric loading 

at one edge and eccentric loading at the other (Case II), and fixed support at one loading 

edge and simply-supported with eccentric loading at the other (Case III). The details are 

given in Table 7.1. The panel has the same geometric and material properties as the 

reference panel.  
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Table 7.1 Details of boundary conditions and loads  

 
Boundary support condition In-plane load 

 
x = 0 x = a y = 0 y = b 0

xxN  a
xxN  

Case I SS1 SS SS SS 
 

Eccentric 
(e=h/6) 

Eccentric 
(e=h/6) 

Case II SS SS SS SS 
 

Eccentric 
(e=h/6) 

Concentric 

Case III Fixed SS SS SS 
 

N/A 
Eccentric 
(e=h/6) 

1 – Simply-supported; 

The variation of the center deflection with time for the three cases are depticed in Fig. 

7.13. It can bee seen that creep buckling happens to both Case I and Case II. It can also 

be seen that Case I that is loaded eccentrically at both ends is more vulnerable to creep 

buckling. On the other hand, Case III is the stiffest one among the three cases due to the 

fixed support at one end, which leads to an ultimate stable state.   

 

Fig. 7.13 Influences of boundary conditions on the long-term behavior of the square 

HSC panel ( 0
xxN  = 0.6Pcr,  [ρx, ρy] = 0.2%, a×b×h = 2000×2000×100 mm) 
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7.3.3.5 Effect of aspect ratio 

The result for the effect of aspect ratio is shown in Fig. 7.14 where five aspect ratios 

namely 0.5, 0.75, 1, 1.5 and 2 are investigated. The aspect ratios are achieved by 

varying the length (a) of the panel whereas the width (b) and thickness (h) remain the 

same as the reference panel. All panels possess the same reinforcement ratio of 0.2% in 

both orthogonal directions, and under the in-plane compression load in the x direction 

with 0
xxN = 0.6Pcr and e =h/6. The maximum deflections for the panels with aspect ratio 

from 0.5 to 1.5 appear at the center of the specimen, whereas for the panel with a/b=2, 

the maximum deflection occurs around a quarter of the length. It is observed in the 

figure that the long-term behavior of the two-way panel is substantially influenced by 

the aspect ratio and the panel with aspect ratio of 1 is the most critical case. The critical 

time decreases either with the increase of the aspect ratio as long as it is larger than 1 or 

with the decrease of the aspect ratio as long as it is smaller than 1.  The increase of the 

critical time associated with the increase of aspect ratio can be explained by the fact that 

the panel with longer length (a) is stiffer and hence has smaller deflections under the 

same load level, which is obvious by observing the instantaneous deflection.  
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Fig. 7.14 Influence of aspect ratio on the long-term behavior of the HSC panel ( 0
xxN = 

0.6Pcr, e = h/6, [ρx, ρy ] = 0.2%, b×h = 2000×100 mm)  

The distribution of the center deflection, the bending moments Mxx and Myy along x and 

y directions at various times are illustrated through Fig. 7.15 to Fig. 7.23 for the panels 

with aspect ratio equal to 0.5, 1 and 2, respectively. It can be observed that with the 

increase of the length (a) (and so the aspect ratio), the edge moments 0
xxM  and a

xxM  

have a smaller influence on the behavior of the two-way panel.  
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Fig. 7.15 Deflection distribution through x direction (a) and y direction (b) at three 

different times for the panel with aspect ratio equal to 0.5 
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Fig. 7.16 Bending moment Mxx distribution through x direction (a) and y direction (b) at 

three different times for the panel with aspect ratio equal to 0.5 
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Fig. 7.17 Bending moment Myy distribution through x direction (a) and y direction (b) at 

three different times for the panel with aspect ratio equal to 0.5 
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Fig. 7.18 Deflection distribution through x direction (a) and y direction (b) at three 

different times for the panel with aspect ratio equal to 1 
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Fig. 7.19 Bending moment Mxx distribution through x direction (a) and y direction (b) at 

three different times for the panel with aspect ratio equal to 1 
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Fig. 7.20 Bending moment Myy distribution through x direction (a) and y direction (b) at 

three different times for the panel with aspect ratio equal to 1 
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Fig. 7.21 Deflection distribution through x direction (a) and y direction (b) at three 

different times for the panel with aspect ratio equal to 2 
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Fig. 7.22 Bending moment Mxx distribution through x direction (a) and y direction (b) at 

three different times for the panel with aspect ratio equal to 2 
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Fig. 7.23 Bending moment Myy distribution through x direction (a) and y direction (b) at 

three different times for the panel with aspect ratio equal to 2 
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7.3.3.6 Effect of cracking 

In the analysis presented in this section, the cracking of concrete is taken into account in 

the model. Although high-strength concrete possesses higher tensile strength than 

normal-strength concrete, it is still a brittle material and the cracking of the concrete 

imposes a significant impact on the short-term and long-term behaviour of HSC 

structures. Hence, in the theoretical model, the concrete is considered to be linear 

viscoelastic but brittle in tension due to cracking, and linear viscoelastic in compression, 

because the nonlinearity in the stress-strain relation for high-strength concrete under 

compression commences only at around 70% of the compressive stress. The tension-

stiffening is not accounted here, and the effective Poisson’s ratio of concrete is assumed 

to be zero once cracking appears (Ghoneim and MacGregor 1994). Following the above 

assumptions, the stress-resultants for the cracked panel can be derived based on Eqs. 

(7.40)-(7.42), which read 

 
2

2
( ) ( )xx r cr xx r

w
M t D M t

x

    


 (7.65) 

 
2

2
( ) ( )yy r cr yy r

w
M t D M t

y

    


 (7.66) 

 
2

( ) ( )xy r cr xy r

w
M t D M t

x y

    
 

 (7.67) 

where crD   is the flexural cracked rigidity, which is given by   

 2 2 2
2 2

d  / ( 1) /
1 1

n

h dn
z

cr sx sx sx sx

d

E E
D z z nA z b n A z b

 





 
          (7.68) 

 
for

0 for

ins
xx cr

z ins
cr xx

E
E

 

 

   


 (7.69) 

where dn is the depth of the neutral axis depth measured from the top extreme fiber of 

the section; εcr is the concrete cracking strain where εcr= ft/Ec, and ft is the flexural 
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tensile strength of the concrete obtained from uniaxial testing,  as suggested by Chen 

(1982) for 2D problems under tension-tension state of stresses.  

By substituting the Fourier series expansion of w into the Eqs. (7.65)-(7.67) and 

taking only the first term of the Fourier series for simplicity, the incremental bending 

moments for cracked section are given by 

 1
2

d ( )
( ) sin ( )

dxx r cr xx r

w xy
M t D M t

b x

       
 

 (7.70) 

 
2

1( ) sin ( ) ( )yy r cr yy r

y
M t D w x M t

b b

         
  

 (7.71) 

 1d ( )
( ) cos ( )

dxy r cr xy r

w xy
M t D M t

b b x

            
   

 (7.72) 

At each time step, Eq. (7.57) presents a 4th-order nonlinear differential equation due to 

the dependency of the viscoelastic rigidities on the unknown deformations via Eq. 

(7.68). It is assumed that the rigidity along the cracked region is uniform through its 

length, which equal to crD  . The rigidity along the uncracked region is also uniform and 

equals D . This assumption results in two types of unknowns that need to be 

determined at each time step, namely: the rigidities at the critical section, and the start 

and end points of the cracked region X1 and X2 along x axis. Here, an iterative 

procedure is used to determine these parameters at each time step, combined with the 

use of the numerical multiple shooting method for the solution of the incremental 

governing equations at each iteration. The iterative procedure follows these steps:  

Step 1. Initial guess. At the first iteration of the instantaneous loading, the panel is 

assumed uncracked. However, for the subsequent time steps, the solution from the 

previous time step is used as the initial guess for the current step.  

Step 2. Analysis of the structure. Using the rigidities calculated in the initial guess or in 

the previous iteration (step 3.3), as well as the calculated locations of the start and end 
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points of the cracked region, X1 and X2, the incremental governing equations become 

linear ones with variable coefficients in space, which are solved numerically using the 

shooting method.  

Step 3. Analysis of the critical section and update the rigidities. The rigidity is evaluated 

at the location that has the maximum tensile strains.   

3.1. Based on the solution obtained in step 2, the incremental bending moment at 

time tr is calculated at the critical section by using the stress-resultants. The total 

bending moment is obtained by adding the incremental bending moments at time 

tr to the total bending moments accumulated up to the step tr-1. 

3.2. The instantaneous strain at the critical section in the y direction ( ins
yy ),is then 

calculated as follows:  

 
yyins

yy
cr

M z

D
 


 (7.73) 

where z is measured from the neutral axis that is determined from the previous 

iteration as presented in Step 3.4. 

3.3. Once the normal strain distribution is determined in Step 3.2, the neutral axis 

depth dn is determined by taking the relative distance between the point of zero 

strain and the extreme fibre on the top surface. Consequently, the viscoelastic 

rigidities and the incremental forces due to creep are calculated. 

3.4. Update of z coordinates: The z coordinate is updated in this step because of the 

shifting of the neutral axis with cracking. So the new location of the neutral axis 

is determined based on using the first moment of area as follows 

 
 

d  ( 1)

( )  ( 1)

cr

n

z

sx sx sx sx

d
na

cr n sx sx

z z nA z n A z

z
z d nA n A



     


   


 (7.74) 
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where zna is the z coordinate of the neutral axis location and zcr is the z 

coordinate where ins
yy cr  . Following the calculation of zna, the origin of the z 

coordinates is then moved to this point and the new z coordinate system is then 

established along with updating sxz and sxz ; 

Step 4. Convergence Criteria. If the norm of the relative difference between the 

magnitudes of the viscoelastic rigidities as well as X1 and X2 in two consecutive 

iterations is sufficiently small, the iterative procedure stops. Otherwise, the procedure 

returns to step 2 with the updated rigidities and z coordinates obtained in step 3.3 and 

3.4, respectively.  

The panel studied in this section has the same dimensions and boundary 

conditions as the one in Section 7.3.1. The eccentric in-plane load level in x direction 

( 0
xxN ) is 0.2 crP , where Pcr is the corresponding elastic buckling load. The eccentricity at 

both loading edges is h/20. The reinforcement ratios ρx and ρy are both 2%, which are 

equally distributed in the top and bottom layers in each direction. The concrete 

compressive strength, cf  , flexural tensile strength, ft , and elastic modulus, Ec are 80 

MPa, 5.4 MPa, and 39.6 GPa, respectively. The long-term results are shown in Fig. 

7.24-Fig. 7.25. The results for the panel without considering cracking are also plotted in 

the figures for comparison. The limit of the normalized out-of-plane deflection for the 

criterion of the creep buckling is reduced to 1 in this study because of the limited ability 

of concrete structure to undergo large deformation. It can be observed in the figure that 

the out-of-plane deflection as well as the bending moments Mxx and Myy and the ratio 

between them at the centre of the panel grow with the increase of time due to the 

combined effect of creep, concrete cracking and geometric nonlinearity. Creep buckling 

happens at the time t =235 days since the first application of the sustained load. In 
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contrast, the linear viscoelastic plate loaded under the same loading conditions is much 

stiffer such that the out-of-plane deflection increases much less than the cracked panel. 

Moreover, creep bucking does not happen to the linear viscoelastic panel in such low 

load level. So it can be seen that the cracking of the concrete can significantly weaken 

the panel and enforce the panel to buckle under a low load level that would not cause 

any failure for the linear viscoelastic panel. Hence, it is essential to take the cracking of 

concrete into consideration in the analysis and design of the time-dependent behaviour 

of two-way HSC concrete panels.  

The effect of in-plane load level is studied for the panel with cracking in Fig. 

7.26, where three load levels 15%, 20% and 25% are investigated. It can be seen that 

with the consideration of cracking, the behaviour of the HSC panel becomes very 

sensitive to the variation of the load level such that a small change in the magnitude of 

the load can impose a significant influence on the time-dependent response. The 

minimum load that can induce creep buckling to the panel with cracking is found to be 

17% of the instantaneous elastic buckling load, which is much smaller than that for the 

viscoelastic panel. The simplified EMM also fails in predicting this long-term buckling 

load.  
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Fig. 7.24  Variation with time of the (a) out-of-plane deflection; (b) bending moment 

Mxx at the center of the panel 
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Fig. 7.25  Variation with time of the (a) bending moment Myy; (b) the ratio of Mxx/Myy at 

the center of the panel 
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Fig. 7.26 Influence of load level on the long-term behavior of the HSC panel (e = h/20, 

[ρx, ρy ] = 2%, a×b×h = 2000×2000×100 mm)  

7.3.3.7 Effect of reinforcement ratio 

The effect of the reinforcement ratios is studied in Fig. 7.27 for the cracked panel where 

0
xxN  = 0.2Pcr, and the eccentricity is h/6 for all cases. It is revealed that the time-

dependent response of the cracked HSC panel is also very sensitive to the reinforcement 

ratio. The critical time of the HSC panel increases with the increase of the 

reinforcement ratio, and for the case where the reinforcement ratio equals to 3%, the 

panel exhibits a long-term stable behavior. The results reveal that the creep buckling can 

be potentially prevented by increasing the amount of reinforcement without changing 

the geometry of the panel.  
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Fig. 7.27 Influence of reinforcement ratio on the long-term behavior of the HSC panel (

0
xxN  = 0.2Pcr , e = h/20, [ρx, ρy ] = 2%, a×b×h = 2000×2000×100 mm)  

7.3.3.8 Effect of shrinkage 

The influence of shrinkage on the long-term behavior of cracked HSC panels is 

investigated in Fig. 7.28.  Two panels are examined in the figure, where one considers 

the effect of shrinkage while the other does not. The shrinkage is assumed to start at the 

age of 14 days and its development with time is in accordance with AS3600 (2009) as in 

Chapter 5, which is as follows: 
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As shown in the figure, the shrinkage only slightly weakens the panel and a softer time-

dependent response is obtained for the panel with shrinkage. Creep buckling failure 

occurs to both panels and the critical time reduces from 235 days to 225 days due to the 

effect of shrinkage.  
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Fig. 7.28 Influence of shrinkage on the long-term behavior of the HSC panel ( 0
xxN  = 

0.2Pcr , e = h/20, a×b×h = 2000×2000×100 mm)  

7.4 SUMMARY AND CONCLUSIONS 

A nonlinear theoretical model is developed in this chapter for the time-dependent 

analysis of two-way HSC panels. Creep, shrinkage and cracking of the concrete are 

accounted for through a rheological viscoelastic model. The model considers the 

geometric nonlinearity and describes the variation of the internal stresses with time 

through a step-by-step time analysis.  

It has been shown in the numerical study for the linear viscoelastic panel that the 

out-of-plane deflection together with the internal bending moments increase with time 

as a result of the combined effects of creep and geometric nonlinearity, which may lead 

to creep buckling failures. The capabilities of the theoretical model for quantitatively 
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describing the increase of the deflection and capturing ultimate failure are clearly 

demonstrated through the numerical examples.  

A parametric study is also conducted in this chapter to investigate some vital 

factors that can potentially influence the time-dependent behavior of the HSC panel. It 

is found that the HSC panel undergoes smaller increase of deflection over time with the 

decrease of uniaxial load level, and eccentricity, or with the increase of the 

reinforcement ratio. The panel exhibits more rigid instantaneous and long-term 

responses with the fixed boundaries or concentric in-plane loading than with the 

eccentric in-plane loading. The investigation on the influence of aspect ratio shows that 

the HSC panel is most vulnerable when the aspect ratio equals to 1, where creep 

buckling failure happens earliest. Panels with aspect ratios other than 1 have larger 

critical times or stable long-term responses.  

The simplified study carried out for the HSC panels considering cracking has 

suggested that the long-term performance of the panel is highly influenced by cracking 

where creep buckling could be happening under relatively low load levels. It also 

highlights the importance of considering the effect of cracking in the design of two-way 

HSC panels. It has been revealed that the shrinkage tends to slightly weaken the cracked 

HSC panel.  
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CHAPTER 8 SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

8.1 SUMMARY AND CONCLUSIONS 

The thesis presents theoretical and experimental investigations on the short-term and 

long-term responses of slender HSC panels under in-plane loading, with particular 

emphasis on their buckling behaviour. Both one-way and two-way panels are examined. 

Although the short-term behaviour of RC panels has been widely investigated in the 

literature, the existing studies have mainly focused on normal-strength concrete panels. 

Research works on HSC panels, especially the experimental studies are very limited and 

the problem of creep buckling has not been addressed yet.  

At the first stage of this thesis, the short-term behaviour of HSC panels has been 

addressed both theoretically and experimentally. The model considers concrete 

cracking, tension-stiffening, strain-softening of the concrete in compression, and 

yielding of the steel reinforcement along with the geometric nonlinearity. It describes 

the entire equilibrium path of one-way HSC panel under eccentric in-plane loading 

through the use of the arc-length method. The model has been validated by an 

experimental study that has been conducted in this thesis and by other test results that 

appeared in the literature. The experimental study includes testing to failure of eight 

full-scale HSC panels. All the tested panels have showed nonlinear responses due to the 

geometric and material nonlinearities and failed dominantly by buckling characterized 

by a limit-point mode. A number of parameters are investigated in the experimental 

study, including the reinforcement ratio and location, load eccentricity and slenderness 

ratio.  The results have shown that the load eccentricity and slenderness ratio have 



217 
 

profound influences on the behaviour of HSC panels, but the influences of the 

reinforcement ratio and location are of minor importance. However, they play a more 

critical role in controlling the ductility of these panels.  Estimations of the buckling 

loads of the tested HSC panels by the design codes have revealed considerable deviation 

from the experimental results, mainly because the codes do not properly consider the 

material and geometric nonlinearities, as well as the load eccentricity in the calculation 

of the effective rigidities. On the other hand, a good correlation has been achieved 

between the theoretical and the test results.  

The creep buckling response of general slender one-way viscoelastic panels has 

been investigated first without considering cracking, in order to highlight and clarify the 

creep effects only. A nonlinear theoretical model has been developed in this regard, 

which accounts for the geometric nonlinearity and the variation of the internal stresses 

and deformations with time through a step-by-step time analysis. Creep is modelled by a 

rheological model that is based on the generalized Maxwell chain. The concrete has 

been considered to be linear viscoelastic. The effects of cracking, aging, and shrinkage 

have been considered in a more advanced model presented in a subsequent chapter. The 

results have shown that typical slender one-way panels subjected to sustained eccentric 

in-plane loading experience increased out-of-plane deflection with time, associated with 

a significant increase and redistribution of the bending moment, which may ultimately 

lead to creep buckling failures. The results of the parametric study reveal that the 

critical time at which the creep buckling happens is very sensitive to the magnitude and 

eccentricity of the applied load. The model is validated to some level by comparison to 

the simplified Effective Modulus Method (EMM). However, the model presented in this 

thesis is more general and comprehensive than the EMM model and it accounts for 
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gradual loading of the structure and provides a basis for more comprehensive models 

that includes cracking, shrinkage, tension-stiffening and aging of the concrete. 

 A more sophisticated model has been developed in Chapter 5 for the time 

analysis of slender one-way HSC panels, which accounts for creep, shrinkage and aging 

of the concrete, as well as for cracking and tension-stiffening. The capabilities of the 

theoretical model have been examined and demonstrated through numerical examples 

and parametric studies, which show that the increase with time of the out-of-plane 

deflection is accompanied by shifting of the neutral axis towards the compression side, 

and by a continuing growth of the compressive and tensile stresses in the concrete and 

the steel reinforcement. The results also reveal that even though the concrete may not be 

cracked under instantaneous loading, creep and shrinkage may result in time-dependent 

cracking that can considerably reduce the buckling capacity of the panel. It has been 

shown that the long-term effects of creep and shrinkage can cause premature buckling 

of the panel with time, and that the long-term buckling loads can be smaller than the 

elastic buckling loads, which highlight the importance of considering these long-term 

effects in the design of HSC panels. The parametric study clarifies that the time-

dependent behavior of one-way panels can be significantly influenced by the magnitude 

and eccentricity of the in-plane load and under given circumstances, creep buckling 

failure can be avoided by using sufficient reinforcement.  

The long-term response of slender one-way HSC panels has been experimentally 

investigated in Chapter 6. The experimental program consists of testing five simply-

supported one-way slender HSC panels under sustained eccentric in-plane loading. Two 

panels failed by creep buckling under the sustained load due to the combined effects of 

creep, shrinkage, cracking and geometric nonlinearity, and the other three panels 

showed long-term stable response and therefore were loaded to failure without releasing 
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the existing load at some time after initial loading.  Three parameters including the 

loading age, the magnitude and eccentricity of the in-plane load have been investigated 

in the experimental program. The results show that the loading age is a crucial factor 

affecting the behavior of HSC panels. Creep buckling failure occurred to the panels 

loaded at the earlier age, whereas panels loaded at an older age exhibited stable 

behavior. It has also been shown that the long-term response of slender HSC panels is 

very sensitive to the magnitude and eccentricity of the in-plane load and that the effects 

of creep and shrinkage lead to reductions of the residual strength to varying degrees. 

This reduction should be carefully considered in the design of HSC wall panels, as their 

ultimate strength after being loaded over time will be smaller than the one under 

instantaneous loads.   

Chapter 7 presents a nonlinear theoretical model for the time-dependent analysis 

of slender HSC panels in two-way actions. The model considers creep, shrinkage and 

cracking of the concrete through a rheological viscoelastic model.  Von Karman plate 

theory is used for deriving the incremental governing equations through variational 

principles. The equations are solved numerically at each time step based on a Fourier 

series expansion of the deformations and loads in one direction, and using the numerical 

multiple shooting method in the other direction.  In the numerical study, the model has 

been demonstrated to be able to effectively predict the time-dependent behavior of two-

way HSC panels, where the out-of-plane deflection along with the internal bending 

moments increase with time as a result of the combined effects of creep and geometric 

nonlinearity, which may ultimately lead to creep buckling failures. The parametric study 

has suggested that the long-term behavior of the two-way HSC panel can also be 

affected by many factors including the reinforcement ratio and the boundary conditions 

and so on. The results for the study on the aspect ratio have shown that the HSC panel is 
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most vulnerable when the panel is square (aspect ratio equals 1). Panels with aspect 

ratio other than 1 have shown prolonged critical times or stable long-term behavior. The 

simplified study on the effect of cracking has revealed that the time-dependent behavior 

of HSC panels can be significantly weakened by cracking of the concrete, leading to 

earlier creep buckling and smaller long-term buckling load. Hence, it is of vital 

importance to consider the effect of cracking in the design and buckling analysis of two-

way HSC panels. The HSC panel can be further weakened by shrinkage of concrete, as 

indicated in the study, resulting in larger increase of out-of-plane deflection and earlier 

buckling failure.  

Finally, it can be concluded from the short-term study that the failure mode of 

HSC panels with typical slenderness ratio as commonly used in practice is characterized 

by brittle and sudden buckling failure that is very sensitive to the slenderness ratio and 

to uncertainties regarding the load eccentricity, which should be carefully considered in 

the design. The test results have shown that the brittle failure can be partially controlled 

by increasing the amount of reinforcement in the panel. These aspects have been well 

demonstrated by the proposed model, which also has shown and explained the 

interaction between the geometric and material nonlinearities. It can also be concluded 

from the long-term study that the time-dependent behavior of HSC panels in one-way 

and two-way actions are both significantly influenced by the long-term effects of creep 

and shrinkage. Buckling failures can occur at much lower load level than the elastic 

buckling load due to the combined effects of creep, shrinkage, and cracking, as 

observed in the experimental study and predicted in the model.  The long-term models 

developed here set theoretical basis for the nonlinear time-dependent analysis of HSC 

panels, including the effects of creep and shrinkage. The study also clarifies the 

important roles that critical parameters can have on the buckling capacity of the panel, 
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and it provides the tools for their quantitative evaluation. The long-term test on the one-

way HSC panels provides benchmark database for future long-term stability study of 

HSC panels.   

8.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

Based on the thesis presented above, the research goals that were established at the 

beginning of the study have been successfully accomplished. However, in the course of 

the study, a few areas have been identified that may be useful for future research and for 

extending and enhancing the current study. Scope for future studies is outlined in the 

following:  

 It has been shown in Chapter 3 that the major codes of practice are not accurate 

in predicting the buckling capacity of slender one-way HSC panels. More 

accurate design formulae for one-way panels can be developed. 

 The nonlinear long-term model developed for the one-way HSC panel can be 

extended to account for the material nonlinearity of concrete in compression, 

since more stocky panels can exist in practice than the ones examined in this 

study. In these cases, the instantaneous stress-strain relation in compression is 

nonlinear, the creep coefficient is stress-dependent, and the phenomenon of 

creep rupture needs to be taken into account.  

 The interaction between creep, shrinkage and thermal strains, and their influence 

on the behaviour of HSC panels, especially on the time-dependent thermal 

buckling behaviour can be further investigated. 

 The long-term model for two-way panel can be further developed to include the 

aging, tension-stiffening, and material nonlinearity in compression. 
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 The wall design guidelines in the codes for two-way panels can be reviewed and 

compared to the long-term theoretical model to account for the effects of creep 

and shrinkage in a more simplified way.  
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