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Abstract

Schedule disruptions commonly affect airline operations and cause a great disparity between

the expected and actual operational costs. Many disruption management methods have been

proposed to address this disparity, establishing the classes of proactive and reactive approaches.

While the efficacy of reactive approaches is greatly affected by the level of recoverability result-

ing from proactive decisions, there is little research regarding the integration of the disruption

management classes. Recoverable robustness is one such method that bridges the gap between

the proactive and reactive approaches. This thesis aims to demonstrate the potential recover-

ability improvements from applying recoverable robustness to airline planning problems.

The recoverable robust tail assignment and aircraft maintenance routing problems are in-

troduced to demonstrate the potential of this framework. These problems are formulated as

stochastic programs, which are efficiently solved by integrating column generation and Benders’

decomposition. The development of enhancement techniques is required to solve the large-scale

optimisation problems resulting from large flight schedules and sets of disruption scenarios.

In addition, the aircraft maintenance routing problem introduces a novel modelling approach

designed to minimise the effect of disruptions that occur on preceding days.

A general framework for column-and-row generation is developed in this thesis to improve

the solution runtime and quality compared to a standard column generation approach. This

framework is presented as an alternative solution approach to Benders’ decomposition.

An explicit evaluation of column-and-row generation against column generation is performed

using the integrated airline recovery problem as an example. This evaluation demonstrates an

improvement in solution runtimes and assesses the suitability of employing the integrated airline

recovery problem in the recoverable robustness evaluation stage. A novel modelling approach for

passenger recovery is also proposed, attempting to improve the evaluation stage feedback. This

modelling approach reallocates passengers to alternative flights following flight cancellations,

effectively reducing operational costs and increasing passenger flow.

This thesis demonstrates the ability of recoverable robustness to improve the recoverabil-

ity of various airline planning problems. We show the necessity of the many enhancement

techniques developed in this thesis to achieve the best results from applying the recoverable

robustness framework.
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Chapter 1

Introduction

Operations research is an interdisciplinary field that employs a variety of analytical tools to

improve decision making. Great success in the application of operations research is witnessed

in industries where better planning decisions have the ability to significantly reduce costs. One

such industry that is heralded as an operations research success story is the aviation industry.

The two largest costs for an airline are fuel and crew, driving great interest in finding the best

allocation of these scarce resources. The use of operations research has greatly transformed the

airline industry, becoming integral to the planning and operations processes.

The application of operations research to minimise the cost of crew and aircraft has improved

the profitability of airlines and lead an expansion of the industry. Lower costs permitted airlines

to provide services to a greater number of airports that were previously viewed as uneconomical.

This expansion was coupled with an increase in competition as more airlines operated common

routes. The positive effect of the improved scheduling decisions was the increase in revenue as

air travel became available to a wider population.

The push from airlines to remain price competitive and offer a greater number of services has

impacted negatively on efficient operations. The expansion of the airline industry by offering

a greater number of flights to each destination has not been mirrored by investment in shared

resources such as airport infrastructure. This has placed pressure on these resources, especially

during periods of poor weather, seriously affecting the ability of airlines to operate their flight

schedule as planned. Additionally, the decrease in ticket prices caused by an increase in com-

petition prompted further efforts to reduce operating costs. The reduction in costs involved

the planning of crew and aircraft using optimisation techniques. Unfortunately this process

was performed under the expectation that the schedule will be operated as planned. Schedules

1
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became brittle, greatly reducing the capability of airlines to remain on time.

Negative effects from applying operations research to the airline industry have arisen due to

a lack of understanding of how planning decisions affect the magnitude of schedule disruptions.

Disruption management attempts to address the disparity between the planned and operational

costs through better planning decisions and actions on the day of operations. Robust planning

is a proactive approach to disruption management that typically focuses on the airline planning

process. This approach introduces redundancies into the planned solutions to help avoid sched-

ule disruptions. While robust planning is effective in improving the operational performance of

the airline, this is generally at the expense of an overly conservative planning solution. Airline

recovery describes the actions taken by an airline to return operations back to what was orig-

inally planned, following a disruptive event. The action of recovery is a reactive approach to

disruption management that is generally not considered during the planning process. Both ap-

proaches have been demonstrated to reduce the impact of disruptions on an airline by reducing

operational costs.

While disruption management is divided into proactive and reactive approaches, there are

very few examples from the literature that link the two. Robust planning attempts to identify

features of the planning process that are expected to provide improved operational performance.

Unfortunately, there is no guarantee that the robustness features will provide the desired im-

provement without explicit evaluation in an operational environment. Conversely, the ability

of an airline to employ recovery actions is impacted by the decisions made during the planning

process.

There is a strong relationship between airline recovery actions and robust planning ap-

proaches. However, much of the planning and recovery methods have been developed in iso-

lation. The concept of recoverable robustness, introduced by Liebchen et al. [57], is the focus

of this thesis, which attempts to bridge the gap between proactive and reactive approaches to

disruption management. This thesis investigates various optimisation models that explicitly

consider the possible recovery actions for airlines during the planning process.

1.1 Aim of Thesis

Recoverability is a measure of the difficulty faced by an airline to return operations back to plan

following a disruptive event. A desired outcome from improving recoverability is the reduction
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in operational costs. The aim of this thesis is to investigate the application of recoverable

robustness to improve the recoverability of airline planning solutions.

The airline planning process involves solving a number of interrelated optimisation prob-

lems. These problems include, but are not limited to, schedule design, aircraft routing and crew

planning. The aircraft routing problem is solved early in the planning process and consequently

the solutions to this problem affects the solutions to problems solved in the subsequent stages.

As such, the planning decisions made in the aircraft routing problem can have a significant

impact on the overall recoverability of the airline. The primary focus of this thesis is the tail

assignment problem, which is a form of the aircraft routing problem. To provide an exten-

sive review of applying recoverable robustness to airline planning problems, extensions to the

tail assignment problem, such as including maintenance constraints and integrating with crew

planning, are also investigated.

1.2 Overview of Study

Recoverable robustness is an approach that permits the explicit consideration of recovery actions

in the solution process of planning stage problems. This approach improves the recoverability

of airline planning solutions by simultaneously solving planning and recovery problems, where

the latter evaluates the recoverability of the former. Any potential recoverability improvements

identified as a result of this evaluation are provided as feedback to the planning stage. The

modelling of the planning and recovery problems is of critical importance in this thesis, which

is discussed in Chapters 2 and 3.

The aircraft routing problem and its derivative, the tail assignment problem, are the main

foci of this thesis. Examples of the modelling approaches used to formulate each problem are

presented in Chapter 2. A detailed overview of the current approaches developed for the aircraft

maintenance planning problem and the various robustness techniques are also presented. This

discussion demonstrates the benefits of considering robustness in the airline planning process. In

addition, Chapter 2 highlights the limitations of the current robustness approaches to improve

the recoverability of airline planning problems.

The evaluation stage of the recoverable robustness framework solves a recovery problem

to assess the recoverability of the planning stage solution. Recovery is a critical part of the

recoverable robustness framework, as such an understanding of the current solution approaches
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is essential. A review of the complete airline recovery process is provided in Chapter 3. This

review includes examples of the aircraft and crew recovery problems, detailing the various

modelling techniques that are relevant throughout this thesis. The efficiency of the recovery

problem solved in the evaluation stage of the recoverable robustness framework significantly

affects the runtime of the solution approach. The current approaches developed to efficiently

solve airline recovery problems are presented in Chapter 3.

The individual stages of airline planning and recovery are within the class of large-scale opti-

misation problems. Since the recoverable robustness framework simultaneously solves planning

and recovery problems, decomposition methods are required to improve the problem tractabil-

ity. The solution techniques that are employed throughout this thesis are column generation,

Benders’ decomposition and branch-and-price. Each of these solution techniques are discussed

in Chapter 4.

The concept of recoverable robustness is applied to the tail assignment problem in Chapter

5. This represents the first application of recoverable robustness to airline planning problems.

The recoverable robust tail assignment problem is a feedback robust approach that extends

the robust and recoverable planning approaches presented in Chapter 2. The planning and

recovery tail assignment problems presented in Chapters 2 and 3 are used in the planning and

evaluation stages of the recoverable robustness framework respectively. As a contribution to the

recoverable robustness framework, a full set of recovery options are employed in the evaluation

stage to accurately simulate the actions of an airline. The solution methods presented in

Chapter 4 are applied to solve the recoverable robust tail assignment problem, with a number

of problem-specific enhancement techniques detailed in Chapter 5. The results presented in

Chapter 5 demonstrate the potential gains in recoverability for the tail assignment problem

achieved by applying recoverable robustness.

The application of recoverable robustness to airline planning problems is extended in Chap-

ter 6 by solving an aircraft maintenance routing problem in the planning stage. Maintenance

planning is a critical part of the airline business process to ensure the safe operations of the

entire fleet. A contribution of this chapter is a novel modelling technique for the aircraft main-

tenance planning problem that extends upon the maintenance planning approaches presented in

Chapter 2. As an extension to Chapter 5, the planning stage of the recoverable robust problem

is more complex, and the larger data sets used in the computational experiments increase the

complexity of the evaluation stage. As such, the solution methods presented in Chapter 5 are
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developed further in Chapter 6, investigating additional enhancements techniques. The results

will demonstrate that the recoverable robustness framework is applicable and effective for a

variety of airline planning problems.

The solution approach of column-and-row generation is reviewed in Chapter 7. This solution

approach is applied to solve the integrated airline recovery problems presented in Chapters 8

and 9. A contribution of Chapter 7 is the development of a general framework to apply column-

and-row generation to problems with multiple sets of secondary variables. This framework is

presented as a direct alternative to Benders decomposition.

The integration of stages from the sequential planning process is demonstrated in Chapter 2

to reduce operational costs. The integration of the aircraft and crew planning problem is consid-

ered as a potential extension of the recoverable robustness framework investigated in Chapters

5 and 6. Chapter 8 introduces the integrated aircraft and crew recovery problem to investigate

its implementation in the evaluation stage of the recoverable robustness framework. The solu-

tion approach of column-and-row generation is employed to improve the solution runtimes of

the integrated airline recovery problem. A contribution of Chapter 8 is the explicit evaluation

of the solution runtimes and quality achieved using column-and-row generation compared to a

standard column generation approach. A number of enhancement techniques for column-and-

row generation are identified in Chapter 8, contributing to the solution approach. In addition,

the application of column-and-row generation to solve the integrated airline recovery problem

improves upon the solution approaches presented in Chapter 3.

The quality of the feedback from the evaluation stage of the recoverable robustness frame-

work greatly affects the efficacy of the approach. Chapter 9 investigates the consideration of

passengers in the recovery problem to improve operational costs and the evaluation feedback.

Passenger recovery is modelled through the cancellation variables, detailing the alternative

travel arrangements for passengers on cancelled flights. This passenger recovery approach is

evaluated using the integrated airline recovery problem developed in Chapter 8 and solved using

column-and-row generation. The major contribution of Chapter 9 is the novel modelling ap-

proach for passenger recovery. This modelling approach formulates the recovery problem with

two sets of secondary variables, demonstrating the strength of the column-and-row generation

framework developed in Chapter 7. Chapter 9 also demonstrates the benefits of considering

passengers in the recovery process by reducing operating costs and increasing passenger flow

through the network.
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Chapter 10 will discuss the conclusions from each of the preceding chapters and detail the

key contributions. The investigation of the recoverable robustness framework will highlight a

number of limitations, which are discussed in this chapter. The conclusions will demonstrate

the potential recoverability improvements achieved by applying recoverable robustness to airline

planning problems.



Chapter 2

Airline Planning

The complete airline planning process is a large, intractable problem, which is frequently broken

into a number of smaller sequential stages. These stages typically consist of, but are not

limited to, schedule design, fleet assignment, aircraft routing and crew planning. To address

the complexity of the complete planning problem a sequential solution approach is employed.

The sequential approach involves solving each stage in the order presented above, using the

solutions to preceding stages as input. While this approach significantly reduces the complexity

of the complete planning problem, a disadvantage of this process is that there is no feedback

between the stages. As such, it is common for the sequential approach to result in a suboptimal

global solution and fixing the solution from preceding stages may cause infeasibility [27, 92].

There have been numerous approaches proposed to alleviate these two undesired effects, which

include using a feedback process and the integration of problem stages.

An airline is a very resource-intensive business requiring the efficient management of these

interrelated resources to achieve low operational costs. The two largest costs of an airline

are fuel and crew remuneration which has motivated much research into the related problems

of aircraft routing and crew pairing. While it is important to efficiently plan the crew and

aircraft resources at a low cost, anecdotal evidence has indicated that the resulting solution

may be highly susceptible to schedule perturbations. A common effect of any disruption is an

increase in operating costs, with the design of the planning solution significantly impacting the

magnitude of this increase. Various robust planning approaches for the aircraft routing and crew

pairing problems developed to address this undesired planning outcome will be discussed in this

chapter. Robust planning attempts to reduce the operating costs of an airline by introducing

redundancies and strategies to reduce the effect of schedule perturbations.

7
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The aircraft routing problem is solved early in the sequential process using the solution to

fleet assignment as input. The objective of the aircraft routing problem is to allocate aircraft to

flights while adhering to structural and operational constraints, such as maintenance require-

ments. This objective is achieved by constructing a sequence of flights for each aircraft, called

aircraft routes, to be performed within a specific time horizon. A solution to the fleet assign-

ment problem assigns a set of flights to each fleet type, as such the aircraft routing problem

is separable by type. This allows the set of aircraft considered in the problem to be treated

as a homogeneous commodity; therefore this problem can be solved as a feasibility problem.

An alternative to the aircraft routing problem is the tail assignment problem. This alternative

problem can be solved for a heterogeneous fleet with each aircraft individually identified by its

tail number. In the tail assignment problem, the individual characteristics of each aircraft are

provided, facilitating fleet decisions.

The crew pairing problem is one of the most critical stages in the airline planning process

due to its complexity and high planning costs. A major source difficulty for crew planning

problems is the non-linear remuneration structure and complex set of work rules affecting the

construction of crew duties and pairings. The work rules for crew dictate the satisfactory

working conditions for the staff, which include an upper bound on the total working hours and

the number of hours spent flying in a single day. Similar to an aircraft route, a crew pairing

is a sequence of flights that is performed by a crew within a time horizon. A crew pairing

generally spans multiple days, which can include a number of overnight stays away from their

home base. The sequence of flights that are performed by a crew group during a single day is

called a duty, and a crew pairing is constructed as a sequence of duties. Due to the complexity

of this problem, significant benefits have been realised through the use of operations research

techniques.

The aircraft routing problem and its various maintenance and robust planning derivatives

are the focus of this thesis. Section 2.1 will provide a basic framework for the aircraft routing

and tail assignment problems to help direct the discussion of the relevant literature. This basic

framework is followed by a discussion of literature related to the maintenance planning problem,

robust and recoverable airline planning problems and recoverable robustness in Sections 2.2.1,

2.2.2 and 2.2.3 respectively. While numerous robust planning approaches have been developed

for the crew pairing problem, the discussion of these approaches in this chapter will be limited

to cases that also involve the aircraft routing problem.
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2.1 Mathematical Formulation

The aircraft routing problem is a fundamental stage of the sequential airline planning process.

The mathematical model for the aircraft routing problem is presented in Section 2.1.1 and

its derivative, the tail assignment problem, will be presented in Section 2.1.2. The following

sections present the basic formulations of these problem which have been the focus of various

alternative planning and robustness approaches. Examples of the extensions that have been

previously considered are presented in Section 2.2.

2.1.1 Aircraft Routing Problem

There are many variations of the aircraft routing problem (ARP) that have been developed to

address different planning objectives. As stated previously, the primary objective of the ARP

is to ensure that each flight in the schedule is assigned an aircraft. Secondary objectives, such

as maintenance planning, can be satisfied in the construction of flight routes. The solution to

this problem describes a set of flight routes for each aircraft in the fleet, which can span time

periods ranging from a single day to many weeks. The notation given in Table 2.1 will be used

to describe the formulation of the ARP.

The ARP presented in this section forms a single stage within the sequential planning

process. The first stage in this process involves the schedule design, which determines the city

pairs to serve and the frequency and timing of flights between these cities. The solution to the

schedule design stage constructs a set of flights j ∈ N that are operated by the airline. An

aircraft flight route specifies the flights operated by an aircraft between the origination and

R is the set of all aircraft r

P is the set of all flight strings p

N is the set of all flights j

B is the set of airports b where aircraft flight strings can originate and terminate

C is the set of all feasible connections in the network, C = {(i, j)|i, j ∈ N ∪B}

yp = 1 if flight string p is used, 0 otherwise

cp = the cost of using flight string p

ajp = 1 if flight j is in string p, 0 otherwise

Table 2.1: Notation for the aircraft routing problem.
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termination at overnight airports B. The construction of aircraft flight routes requires the set

of all pairs of flights that can be performed in succession, called connected flights, to be defined.

A pair of connected flights (i, j), i, j ∈ N ∪ B is identified by i) the destination of i being the

same as the origin of j; and ii) the difference between the departure of j and the arrival of i

is less than a minimum connection time, called the minimum turn time. All pairs of flights

that satisfy these two conditions are called feasible connections and are contained in the set

C = {(i, j)|i, j ∈ N ∪B}. A connection network is defined with all flights in N representing the

nodes (the source and sink nodes are given by B), and the arcs are given by the connections

contained in C.

An aircraft flight route is defined as a subset of flights in N that form a connected path

through the connection network described above. The flight string formulation introduced by

Barnhart et al. [12] is used to develop the ARP presented in this chapter. This problem is

solved under the assumption that all aircraft are the same type, so the set of feasible flight

strings p for all aircraft are contained in P . The decision variables yp equal 1 if flight string p

is operated by an aircraft, 0 otherwise. The parameters ajp equal 1 to indicate that flight j is

contained in flight string p, which are the constraint coefficients of the decision variables yp.

The ARP is defined as,

(ARP)

min
∑

p∈P

cpyp, (2.1)

s.t.
∑

p∈P

ajpyp = 1 ∀j ∈ N, (2.2)

∑

p∈P

yp ≤ |R|, (2.3)

yp ∈ {0, 1} ∀p ∈ P. (2.4)

The objective function of the ARP minimises the total cost of assigning aircraft to flight routes.

Flight coverage is enforced through constraints (2.2) and the number of flight routes is restricted

to at most |R|, which is the number of aircraft, by constraints (2.3). Since the cost of flying

each flight is identical for all aircraft of the same fleet, it is possible to set cp = 0, ∀p ∈ P and

solve the ARP as a feasibility problem. Alternatively, the cost of a flight string can be used to

introduce robustness into the planning problem. Such a method involves defining a connection

cost function which favours or penalises specific connection times. This type of robustness is

called proxy robustness and a good example of this approach is presented in Grönkvist [45].
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2.1.2 Planning Tail Assignment Problem

An extension of the ARP is the tail assignment problem, whereby each aircraft is identified indi-

vidually to model aircraft specific characteristics [45]. Greater detail of each aircraft is provided

in the tail assignment problem by observing aircraft specific constraints, such as maintenance

and restricted flight constraints. Additionally, the tail assignment problem allows the inte-

gration of the fleet assignment and aircraft routing problems through the explicit definition

of aircraft capacities. The planning tail assignment problem (PTAP) is presented using the

additional notation given in Table 2.2.

P r is the set of all strings p for aircraft r

yrp = 1 if aircraft r uses string p, 0 otherwise

crp = the cost of aircraft r using string p

Table 2.2: Additional notation for the planning tail assignment problem.

Since each aircraft is individually identified by their tail number, the set of flight routes P

is partitioned to define an individual set P r for each aircraft r. The decision variables yrp equal

1 if flight string p is operated by aircraft r, at a cost of crp in the objective function. The cost

structure of this problem is identical to that of the ARP. However, it is possible to introduce

aircraft specific costs given the individual referencing of decision variables.

The PTAP is given by,

(PTAP)

min
∑

r∈R

∑

p∈P r

crpy
r
p, (2.5)

s.t.
∑

r∈R

∑

p∈P r

ajpy
r
p = 1 ∀j ∈ N, (2.6)

∑

p∈P r

yrp ≤ 1 ∀r ∈ R, (2.7)

yrp ∈ {0, 1} ∀r ∈ R, ∀p ∈ P r. (2.8)

The primary objective of the PTAP is identical to that of the ARP; as such there is little dif-

ference between the solutions of the two problems. The main difference is observed in the set

of constraints (2.7) that ensure at most one flight route is assigned to each aircraft. This is

required in the PTAP given that each aircraft is individually referenced, whereas in the ARP

an upper bound on the flight route count is sufficient.
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The ARP and the PTAP demonstrate the basic form of the aircraft routing and tail as-

signment problems that are the focus of much research. In many cases, the basic form of the

problems remains unchanged with much of the variation seen in the construction of aircraft

routes. While the ARP and PTAP have been presented using the flight string notation, an

alternative formulation for these problems is as a multi-commodity flow problem.

2.2 Related Literature

The literature presented in this section details the current approaches used to solve the main-

tenance planning problem and apply robustness to the airline planning process. Section 2.2.1

describes the current maintenance planning approaches, relative to particular business prac-

tices. This is followed by a description of robust and recoverable airline planning approaches

in Section 2.2.2. Finally, the recoverable robustness framework is described in Section 2.2.3.

2.2.1 Aircraft maintenance planning

The aviation industry is governed by regulatory bodies who define the requirements of airlines to

ensure safe operations. One such requirement of airlines is the regular maintenance of aircraft.

There are a number of different maintenance checks that must be performed, each having a

different scope, duration and frequency [23]. The simplest and most frequent maintenance

check is called a type A check which is required once every 65 hours of flight time [23]. Since

there are significant penalties for exceeding maintenance limits set by aviation governing bodies,

airlines aim to perform type A checks once every 35 to 40 hours. A maintenance check can

last for a number of hours, during which the aircraft is inactive. Therefore, airlines aim to

perform any maintenance overnight. Given the strict regulatory requirement and the cost of

maintenance, efficient maintenance planning is of great interest to an airline.

The aircraft routing process involves the solution to the aircraft routing and maintenance

planning problems which are either solved separately or as part of an integrated problem. The

business practices of airlines has a direct effect on the formulation of the maintenance planning

problem, which are reviewed by Lacasse-Guay et al. [52]. In [52], the authors explain that

the various formulations fall into three broad categories, big cycle, strings and one-day routes.

There are many similarities between these approaches, with each following the primary objective

to plan regular maintenance visits for aircraft. The difference between the formulations arise
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from the methods employed to construct the aircraft flight routes.

The maintenance planning problem can be solved within the aircraft routing problem or

using the aircraft routing solution as input. The former approach is more common for the strings

and one-day routes approaches where the latter is generally used in identifying a big cycle. While

the two different methods effectively solve the maintenance planning problem, suboptimality

can result from using a fixed aircraft routing solution. The integration of maintenance planning

and aircraft routing provides the necessary flexibility to identify the optimal solution to both

problems. Such an integrated aircraft routing and maintenance planning problem is developed

in Chapter 6.

Big Cycle formulation

The big cycle approach involves identifying a single flight route covering multiple days that

includes every flight in the schedule. Solving the aircraft routing problem with this objective

alone finds a solution that enforces the equal utilisation of all aircraft. To ensure that all

maintenance requirements are satisfied, regular visits to maintenance stations are scheduled in

the construction of the cycle. The single flight route is operated by every aircraft in the fleet,

with each overnight stop in the cycle representing an aircraft starting point. Since the big cycle

is constructed to be maintenance feasible, the operation of all aircraft on this cycle satisfies the

maintenance requirements for the entire fleet.

Early work on the aircraft maintenance routing problem is presented by Feo and Bard

[37]. The problem considered by [37] combines the maintenance routing problem with an

objective to minimise the number of maintenance station locations. The authors assume that

the maintenance planning is solved following the solution to the aircraft routing problem. As

such, the maintenance planning problem receives a set of generic flight routes that must be

assigned to aircraft to satisfy a 4-day maintenance requirement. The solution to this problem

identifies a 7-day cycle satisfying a 4-day maintenance requirement while identifying the required

locations for maintenance stations. Using the solution to the aircraft routing problem as input

reduces the flexibility of the approach, potentially resulting in suboptimal solutions.

A multi-commodity flow formulation is employed for the aircraft routing problem developed

by Clarke et al. [23], which is modelled to directly consider maintenance requirements in the

construction of aircraft routes. In [23], the maintenance planning and aircraft routing problems

are integrated, allowing flexibility in the construction of the big cycle. This flexibility in the
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route construction captures more passenger through revenues from the aircraft routing solution

while achieving an optimal maintenance planning.

Gopalan and Talluri [44] introduce the concept of a line-of-flying (LOF) as the sequence

of flights performed by an aircraft during a single day. The LOFs are provided as an input

from the aircraft routing problem, however some modification is required to identify a solution

with a sufficient number of maintenance opportunities. A big cycle is constructed to contain

all LOFs with a visit to a maintenance station scheduled once every three days. Similar to [37],

the LOFs are set from the solution to the aircraft routing problem. While some modification

is permitted on the LOFs, this reduced flexibility in the maintenance planning problem is a

limitation to the approach. The integration of aircraft routing and maintenance planning in

Chapter 6 addresses this limited flexibility and ensures the optimality of both problem.

The big cycle approach is effective in providing a maintenance planning solution that also

satisfies the equal utilisation of all aircraft. This secondary outcome from the maintenance

planning unfortunately compounds the effect of schedule perturbations, whereby a single dis-

ruption affects the complete cycle for all aircraft. The aircraft maintenance routing problem

developed in Chapter 6 is solved for a single day, therefore avoiding the effects of disruptions

from previous days.

String formulation

The string model for maintenance planning introduces the concept of flight strings for aircraft

flight routes that are maintenance feasible. This modelling approach identifies flight strings

that begin and end at maintenance stations, hence providing an adequate number of mainte-

nance station visits to satisfy regulatory requirements. The ARP presented in Section 2.1.1, is

developed using a flight string model formulation, as such all flight routes contained in P are

maintenance feasible. The solution to the ARP will provide an optimal aircraft routing and

maintenance planning.

The airline planning process is solved as a series of sequential stages to improve problem

tractability. However, it is expected that the integration of two or more stages can achieve a

higher solution quality. Barnhart et al. [12] presents an example of the integrated fleet assign-

ment and aircraft routing problem to capture more through revenues with better fleet assign-

ment decisions. The flight string model permits the use of column generation, demonstrating

its effectiveness for solving the aircraft routing problem.
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The modelling approach presented by Feo and Bard [37] is applied by Sriram and Haghani

[80] in a string model for the maintenance scheduling problem. Sriram and Haghani [80] illus-

trate the difference between the big cycle and string formulations where the former requires each

aircraft to perform the same cycle and the latter identifies individual cycles for each aircraft.

Similar to [37], the LOFs from an aircraft routing solution are used as input for this problem,

with no modification of the routes permitted. Sriram and Haghani [80] solve the maintenance

routing problem for a heterogeneous fleet allowing flexibility through the reassignment of LOFs

to different fleet types.

By design, the string approach is less susceptible to disruptions than the big cycle approach

since each aircraft is assigned an individual flight string. However, the maintenance feasible

flight strings span multiple days, as such it is common for maintenance plans to be affected

by schedule perturbations from previous days. Any disruption to the maintenance plan re-

quires costly intervention by the airline, rerouting aircraft to satisfy maintenance requirements.

The one-day routes approach employed in Chapter 6 helps to avoid schedule perturbations by

constructing flight strings that only span a single day.

One-day Routes formulation

The big cycle and string models presented previously involve the construction of maintenance

plans with little consideration given to schedule perturbations. Hence, any schedule disruption

can cause the current maintenance plan to become infeasible. The one-day routes approach

schedules maintenance checks for a single day to minimise the impact of disruptions from

previous days. As such, this approach is a form of robust planning.

A key feature of the one-day routes approach is the construction of flight routes that span

a single day, originating and terminating at permissible overnight airports. The objective of

this approach is to identify a sufficient number of flight routes terminating at maintenance

stations, satisfying all maintenance requirements. Regardless of any disruption that may occur

on previous days, the solution to this problem ensures that on average all maintenance critical

aircraft originating from each airport will receive maintenance the following night.

Heinhold [47] describes an example of a one-day routes approach implemented by Southwest

Airlines. In [47], the minimum number of required maintenance routes is calculated as an

expectation of the number of aircraft at each overnight airport requiring maintenance the

following day. An optimisation problem is formulated to identify swapping opportunities that
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minimise any penalties for not assigning maintenance routes to maintenance critical aircraft.

This simple approach effectively ensures that the majority of maintenance critical aircraft are

provided maintenance routes and that only small changes are required to achieve maintenance

coverage for the whole fleet.

The concept of one-day routes is investigated further by Lapp and Cohn [54] to achieve

adequate maintenance planning through the modification of LOFs. The approach of Lapp and

Cohn [54] is similar to that presented by Heinhold [47]. However, a multi-stage optimisation

problem is used to improve the tractability of the problem. The input for this problem is

the set of originally planned LOFs departing from each overnight airport; the subset of these

terminating at maintenance stations are termed MLOFs. Since the original LOFs do not

provide complete maintenance coverage for all aircraft, the first stage of this model identifies

the overnight airports that require additional MLOFs. A LOF is converted to a MLOF by

performing a single swap with a MLOF departing from a different airport that has an over

supply. This process is performed to increase the maintenance reachability from all airports in

the network compared to the original aircraft routing solution.

The one-day routes maintenance planning problems by Heinhold [47] and Lapp and Cohn

[54] demonstrates the potential of this modelling approach. A limitation of both [47] and [54]

is the requirement of the aircraft routing solution as an input to the maintenance planning

problem. This is addressed in Chapter 6 with the integration of the aircraft routing and

maintenance planning problems.

2.2.2 Robust and recoverable airline planning

In the airline planning process there has been great interest in the development of proactive

approaches to avoid disruptions. These approaches are broadly termed robust airline planning,

which focus on developing solutions that are less susceptible to disruptive events. This has

stemmed from an awareness of the significant increase in operating costs that can result from

ill-considered planning approaches. Broadly, the solution to robust airline planning problems

can be executed to plan, even in the event of a disruption. As a variation on robust planning, the

concept of recoverable airline planning in introduced. Recoverable airline planning integrates

the proactive and reactive, also called airline recovery, approaches of disruption management

in the planning process. A key feature of recoverable planning is the expectation that the

recovery process will be required during daily operations. Therefore, the design of the planned
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solution should improve the efficacy of recovery techniques to reduce the additional operational

costs. Recoverable robustness is an approach that attempts to improve the recoverability of

planning stage solutions. This approach is investigated throughout this thesis with applications

to various airline planning problems.

The development of airline planning solutions to improve operational performance, as mea-

sured by a reduction in costs, is achieved through two main approaches; proxy and feedback

robustness. While both approaches attempt to improve operational performance, vastly differ-

ent solution methods are employed for each. A detailed discussion of robust solution approaches

will be presented in the following section including the relevant solution methods.

The proxy robust approach to airline planning identifies and exploits particular planning

characteristics that are a proxy for robustness. Such proxies include increasing aircraft turn-

times or promoting crew and aircraft to use the same flight connections to avoid the spread of

delay through the network. The strength of proxy robust approaches depends on how efficacious

the identified aspect is at capturing the desired robustness goals, which can vary across data sets.

Furthermore, additions to the model (eg. enlarging the set of possible decisions, or introducing

additional constraints) may render a particular proxy robust approach less effective. There is,

by definition of this class, no feedback between the planning stage and the operations stage

that could improve the robust solution, potentially leading to an overly conservative planned

solution.

Conversely, the feedback robust class introduces this feedback via second-stage (recovery)

decisions. Feedback robust approaches are a superior method for reducing the weighted recovery

costs since an explicit evaluation of the planned solution is performed during the optimisation

process. This evaluation generally involves a simulation of the recovery process, the outcome of

which is used to improve the robustness and recoverability of the planned solution. Feedback

robustness has a strong dependency on the scenarios used in the solution process by having a

significant effect on the expected operational costs. In addition, the iterative scheme increases

solution runtimes, which can greatly exceed that of an equivalent proxy robust model. This

demonstrates a trade-off between the solution quality and runtimes for each of the robustness

approaches, both critical aspects for large scale optimisation problems. The recoverable robust-

ness framework is an example of a feedback robust approach whereby an evaluation stage solves

a recovery problem to assess the recoverability of the planning stage solution.
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Proxy robustness

The integration of stages in the sequential planning process is expected to improve the solution

quality by providing greater flexibility in the problem stages. Also, the integration of multiple

stages allows the use of additional proxy robust approaches to further improve robustness and

operational performance. An example of this is presented by Cordeau et al. [27], integrating

the aircraft routing and crew pairing problems. The integration of these two planning stages

permits the use of short connections by crew, which are defined by having a connection time

less than the minimum sit time for crew, only when the two flights are performed by the

one aircraft. Ensuring that the short connections are used by the same aircraft and crew

improves the robustness by reducing the possibility of delays spreading to multiple flight strings.

The complexity of this problem is addressed by employing Benders’ decomposition, improving

tractability by separating the two planning stages into a master and subproblem formulation.

The integration of the crew pairing and aircraft routing problems in a Benders’ decom-

position framework is extended by Mercier et al. [63], introducing the concept of restricted

connections. Restricted connections are defined as connections just long enough not to be con-

sidered short, and are penalised if the two flights of the connection are serviced by the same

crew but not the same aircraft. This penalty is an attempt to further improve the robustness

of the integrated problem. The solution process developed by Cordeau et al. [27] is improved

by Mercier et al. [63] by implementing acceleration techniques, such as the Magnanti-Wong

method [60] to identify Pareto-optimal Benders’ cuts. The Magnanti-Wong and Three-phase

methods are reviewed in the implementation of recoverable robustness in Chapters 5 and 6.

Two further extension to the integrated planning problems of Cordeau et al. [27] and Mercier

et al. [63] are presented by Mercier and Soumis [64] and Papadakos [69]. Mercier and Soumis [64]

extend upon Cordeau et al. [27] to include flight retiming while implementing solution methods

presented by Mercier et al. [63]. Papadakos [69] presents a model which integrates the fleet

assignment, maintenance routing and crew pairing. The results from these extensions further

demonstrate the potential improvements in planning costs and robustness achieved through the

integration of problem stages.

The primary motivation for integrating multiple planning stages in the approaches pre-

sented above is to reduce operational costs. However, explicitly modelling the use of short and

restricted connections achieves an improvement in robustness as a positive externality. Weide

et al. [93] and Dunbar et al. [33] present alternative approaches to the integrated planning
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problem, focusing on the improvement in specific robustness measures. The major focus of [93]

and [33] is reducing the propagation of delay through the flight network. Propagated delay

results from crew changing aircraft following a disruption and spreading delays to previously

undisrupted flights. Explicitly modelling features designed to reduce the prevalence of delay

propagation greatly improves the operational performance.

The iterative solution approach for the integrated problem uses a feedback process to im-

prove the solution quality. The solution approach implemented by [93] and [33] iterates between

the two integrated problems, solving the crew pairing (aircraft routing) problem using a fixed

aircraft routing (crew pairing) solution from the previous iteration. To achieve greater oper-

ational performance Weide et al. [93] introduce a non-robustness measure to the crew pairing

problem that increases the slack time for crew using restricted connections to mitigate delay

propagation. This is further enforced in the aircraft routing problem, which has an objective to

maximise the number of restricted connections performed by aircraft that are also performed

by crew. The robust planning model of Dunbar et al. [33] provides much greater detail of delay

propagation through flight network, resulting in a more robust planning solution. Dunbar et

al. [33] explicitly measures the probability of propagated delay across flight strings for crew and

aircraft with an objective to minimise this. Both Weide et al. [93] and Dunbar et al. [33] deter-

mine that the length of the connections is a contributing factor to the operational performance

of an airline planning solution.

Significant improvements in operational costs are observed from the integration of multiple

planning stages [27, 33, 63, 64, 69, 93]. This potential improvement is the motivation for consid-

ering the integrated recoverable robust aircraft routing and crew duty problem in Chapter 8.

The application of recoverable robustness is expected to directly improve the recoverability of

the integrated planning problem through an explicit evaluation of the planned solution. This

is an improvement upon the integrated planning problems presented above, whereby improved

operational performance is achieved through proxy robust approaches.

Integration of two or more airline planning stages has been shown to improve robustness,

however there have been many alternate methods proposed for individual planning stages. In

the case of the aircraft routing problem, Lan et al. [53] propose the use of flight re-timing to

reduce delay propagation. The objective of this model is to find an optimal aircraft routing while

reducing the amount of delay experienced by passengers and missed connections. Borndörfer

et al. [18] present an alternative model for the aircraft routing problem, more specifically the
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tail assignment problem, which aims to find the aircraft routing with the lowest potential

propagated delay. In [18] the probability of the length of delay is explicitly modelled, and the

expected delay is included in the objective function. In practice, a general method of introducing

robustness into the tail assignment problem is via key performance indicators, examples of such

methods are explained in Wu [94]. Using a set of scenarios, developed from airline data, the

authors [18] compare the amount of propagated delay resulting from their model with a tail

assignment developed from a traditional key performance indicator method. Chapters 5 and

6 demonstrate an improvement in operational performance with the application of recoverable

robustness to the tail assignment and aircraft routing problem respectively.

Recoverability

The work presented above describes robust planning approaches that attempt to improve oper-

ational performance by exploiting specific planning characteristics. There are many character-

istics that are identified as favourable, such as the better use of short connections in Cordeau

et al. [27] and minimising the expected propagated delay in Dunbar et al. [33]. While these

approaches help to avoid and minimise the effect of disruptions, there is no consideration of the

actions employed by an airline during recovery.

An alternative approach to robust planning involves the enhancement of characteristics that

improve the recoverability of the planned solution. Recoverability is a measure of how difficult

or costly it is to return the operational schedule to plan following a disruption. This can be

evaluated in a variety of ways, most commonly through the expected recovery costs. However, a

measure of recoverability can also include the effort required by the airline during recovery, such

as the number of changes implemented. Improving the recoverability of the planned solution is

achieved through proxy and feedback robust approaches. The recoverable robustness framework

applied in Chapters 5 and 6 is an example of such a feedback robust approach.

There are many features of the planning solution that can be enhanced to improve recov-

erability. An example of a proxy robust approach is given by Ageeva [4] which is solved with

the objective of increasing the prevalence of aircraft swapping opportunities. Swapping oppor-

tunities are periods of time when two aircraft are planned to be on the ground at the same

airport. In the event that one of the aircraft is disrupted, a swap can be made to allow the

higher-valued route to continue on time. Since swapping opportunities can be identified in the

planning stage, this approach has the potential to improve recoverability by proxy robustness.
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The concept of recoverability is investigated by Eggenberg [34] in the development of both

robust and recoverable aircraft routing problems. The aircraft routing problem is solved by

optimising a number of favourable planning characteristics using uncertainty feature optimi-

sation. Robustness is achieved in the aircraft routing problem by focusing on the amount of

time between flights in each connection, using different metrics to achieve different optimisa-

tion objectives. Enforcing larger connection times between flights is a very simple and effective

method to avoid delay propagation, however this results in a very conservative solution. Re-

coverable airline schedules are also presented in [34], again with a focus on the connection time

between flights. The improved recoverability for the aircraft routing problem in [34] is achieved

by incorporating the aircraft swapping technique of Ageeva [4]. To determine the potential

recoverability of the planned solution, Eggenberg [34] solves a recovery problem over a series of

disruption scenarios.

The fundamental difference between recoverable and robust airline schedules is the explicit

focus on recovery decisions during the planning stage. Kang [51] presents a proxy robust

approach described as degradable scheduling, developed by prescribing a simple recovery policy.

Degradable scheduling follows the idea that disruptions will occur in operations and that the

highest revenue earning flights should be protected from delays and cancellations. This unique

method for robust planning involves decomposing the airline schedule into a number of different

layers, partitioning the flights by their expected yield. The different layers provide a priority in

which flights are protected in a disruption, with flight delays and cancellations first occurring

in the lowest layer. The design of the planning solutions guides the recovery process to achieve

the highest revenue following any disruptive event.

Some US airline networks are designed with a hub and spoke structure, with the majority

of the activity occurring at the hubs. Rosenberger et al. [74] exploits this particular network

structure by introducing the concept of hub isolation and short cycles. By limiting the number

of aircraft that service each hub in the network, it is possible to isolate a disruption to a

particular hub, protecting flights servicing other airports. The introduction of short cycles is

a scheduling decision that takes account of the actions performed by the operations controller.

This approach attempts to minimise the number of flights in each string between the departure

and arrival at the same hub. Short cycles ensure that if a cancellation occurs at a hub, the

number of flights in an aircraft flight route subsequently requiring cancellation is minimised.

These concepts focus on possible recovery decisions, providing the operations controller with
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many low cost recovery options.

While the network design for an airline is critical in determining the markets that can be

serviced there is also a significant effect on recoverability. Smith and Johnson [79] address the

impact network design has on recovery options and introduce the concept of station purity.

This concept attempts to limit the number of fleets that can service each station. When each

aircraft within a fleet is interchangeable, station purity can provide more aircraft swapping

opportunities at each base, which has been shown to have a positive effect on the expected

recovery costs. Gao et al. [41] present an extension to this concept by applying station purity

to the integrated crew planning and fleet assignment problem. In the integrated model, the

station purity constraints attempt to limit the number of fleets and crew bases that service each

station. This approach attempts to improve the recoverability of the crew planning solution

by providing more options for crew to return to base, avoiding costly overnight stays and

deadheads.

Proxy robust approaches are limited in their ability to improve recoverability without the

explicit evaluation of the planned solution. This is addressed by feedback robust approaches,

where an evaluation stage is fundamental to the solution approach. The recoverable robustness

framework is such a feedback robust approach, with the potential improvements in recoverability

demonstrated in Chapters 5 and 6.

Feedback robustness

Yen and Birge [99] present an example of a feedback robust approach to solve the crew pairing

problem. This problem is formulated as a stochastic program which has the inherent character-

istic of improving the master problem with feedback from a number of scenario subproblems.

In this stochastic programming model each subproblem describes a disruption scenario related

to flight delays. The authors evaluate the effect of particular disruption scenarios on the prop-

agation of delay caused by crew pairings and the interaction with the aircraft routing solution.

The benefit of feedback robust approaches is the ability to accurately simulate airline recov-

ery in the second-stage of the solution process. This accurate simulation greatly improves the

recoverability of the first-stage through the feedback from the second-stage recovery decisions.

As an improvement upon the feedback robust approach by Yen and Birge [99], Chapters 5 and

6 solve recovery problems in the evaluation stage that implement a full set of recovery policies.

Robustness and recoverability of airline planning problems can be achieved with both proxy
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and feedback robust approaches. As presented above, proxy robustness focuses on enhancing

specific characteristics of the airline planning problem. Consequently, problems formulated

in a proxy robust approach are purely deterministic, with no feedback from the evaluation

of the resulting solution. Without feedback, it is very difficult in the planning stage to ensure

improvements are made to the expected operational performance. It is necessary to use feedback

in the development of recoverable planning solutions as an iterative evaluation of the recovery

process. In feedback robust approaches, the planned solution can be evaluated with a full

set of recovery policies, which explicitly and implicitly incorporate all proxy robust techniques

to improve recoverability. Therefore, feedback robustness provides a superior approach for

developing more recoverable airline planning solutions. The results presented in Chapters 5

and 6 demonstrate the significant improvements in recoverability achieved by the application

of recoverable robustness.

2.2.3 Recoverable robustness

Outside the airline literature, Liebchen et al. [57] have developed a concept called recoverable

robustness with an application to railway transportation. Recoverable robustness is a feedback

robust approach that evaluates the recoverability of the planning solution during the optimi-

sation process. This technique focuses on finding a planning solution that is recoverable in a

limited number of steps, or with limited effort. Liebchen et al. [57] present the recoverable ro-

bust timetabling problem as a demonstration of this technique. In addition to finding a planned

solution that is recoverable with limited effort, the recoverable robust timetabling problem also

attempts to minimise the number of changes made to the planned timetable in the recovery

stages. In this work, the authors contrast recoverable robustness with robust planning, indi-

cating that strict robustness can often be overly conservative, requiring a planned solution to

perform under all disruptions. As a key feature of recoverable robustness, this technique recog-

nises that in a disruption the planned solution will need to be changed in operations, so the

objective is to reduce the expected recovery costs and the number of changes required. Chapter

5 presents the first application of recoverable robustness for airline planning problems.

The work of Liebchen et al. [57] presents a generic framework for recoverable robustness,

however it does not provide many details of practical application. The recoverable robustness

concept is applied to the rolling stock planning problem by Cacchiani et al. [20] to demonstrate

its use in real world applications. This problem addresses the allocation of rolling stock to trips,
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which is similar to the aircraft routing problem. A major difference is that the composition

of the rolling stock can be modified through coupling and uncoupling decisions at termination

locations. Recoverable robustness for this problem aims to protect the rolling stock planning

solution from blockages that restrict flow through the network. This is achieved through the

evaluation of scenarios with the objective of minimising trip cancellations, the number of addi-

tional coupling and uncoupling decisions and the changes to the end-of-day planning. Benders’

decomposition is employed to efficiently separate each scenario into individual subproblems.

Employing Benders’ decomposition to improve the tractability of the recoverable robustness

framework is investigated in Chapters 5 and 6.

2.3 Summary

The planning approach of the aircraft routing problem has been the focus of much research

on efficient maintenance planning and robustness. While the aircraft routing problem is solved

under the expectation of perfect operating conditions, it is evident from the prevalence of dis-

ruptions that robustness is a necessary consideration. Robust planning can involve a number of

different approaches, such as one-day routes maintenance planning and minimising propagated

delay, each with various strengths and weaknesses. An example of robust planning using the

one-day routes approach is presented in Chapter 6.

It is common for robust approaches to attempt to avoid disruptions, however it is also

possible to improve recoverability through better planning decisions. With the use of proxy

and feedback robust approaches, the recoverability of the planned solution can improve the

performance of the recovery process by providing a set of tools that are expected to reduce the

operational costs. While both the proxy and feedback robust approaches are used for robust

and recoverable planning, feedback robustness provides a superior approach through the ex-

plicit evaluation of the planning solution during the optimisation process. The feedback robust

approach of recoverable robustness is applied to the tail assignment and aircraft maintenance

routing problems in Chapters 5 and 6 respectively.

The next chapter discusses the reactive approach to airline disruption management, airline

recovery. An example of the aircraft and crew recovery problem is presented along with the

current solution approaches.



Chapter 3

Airline Recovery

Airline disruption management is described as having two main forms, the proactive and reac-

tive approaches. In Chapter 2, the proactive approach to disruption management is discussed

in regards to the aircraft routing problem. Proactive approaches attempt to identify solutions

to the aircraft routing problem that are less susceptible to disruptions. This can involve us-

ing techniques to avoid disruptions completely, such as longer connection times, or providing

strategies to improve the recoverability of the planned solution. The reactive approach to dis-

ruption management, commonly referred to as airline recovery, is a vital aspect of the airline

business process. This approach is employed to provide efficient, continued operations for an

airline in the event of a schedule disruption. Regardless of the proactive approach employed

in the planning stage, the prevalence of schedule disruptions indicates the need for the airline

recovery process.

Airline recovery involves the redistribution of resources following a schedule disruption to

minimise any additional operating costs. The resources considered in the airline recovery process

are identical to those in the planning stage, as such it is common to apply a sequential solution

approach. The complete airline recovery process involves the stages of schedule, aircraft and

crew recovery, each sharing many characteristics with the comparable planning stage. Similar

to the planning stage, the sequential solution approach for airline recovery solves each stage in

order, using the fixed decisions from preceding stages as input. An additional stage is included

in the recovery process, passenger recovery, attempting to maintain a high level of passenger

satisfaction. Passenger satisfaction is an important consideration for airlines since this indicates

the willingness for passengers to travel with the airline in the future, which is greatly affected by

flight delays and cancellations. Since passengers do not contribute a direct cost to the airline,

25
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historically this stage is only considered following the solution to all other stages. A greater

understanding of passenger satisfaction and more attention to passenger related performance

metrics has prompted a recent surge in interest in the passenger recovery problem. A very good

review of all stages in the complete airline recovery process can be found in Clausen et al. [24].

While the airline planning and recovery process share many similar characteristics, the

most significant difference arises from the allowable solution runtimes. The airline planning

process is undertaken across a number of months prior to the day of operations; as such each

of the stages are provided runtimes ranging from many hours to days. Comparatively, airline

recovery is executed following a disruptive event as an immediate intervention by the operations

control centre. Therefore, the complete recovery process must be solved with runtimes in the

order of minutes to be of practical use to the airline. Much of the research regarding airline

recovery stages involves strategies and techniques that are used to reduce the size of the problem

and improve the solution runtimes. The following sections will discuss the current strategies

developed for the recovery problem, describing the different approaches applied for each stage.

Continuing the comparison between the airline planning and recovery process, this chapter

will be presented in a similar form to Chapter 2. Two different mathematical models are pre-

sented in Section 3.1, the aircraft and crew recovery problems, to direct the discussion of the

relevant literature. The modelling of the aircraft and crew recovery problems are described in

this chapter due to their importance in the airline recovery process and to provide an intro-

duction to models that are developed throughout this thesis. This is followed by a discussion

in Section 3.2 of the current approaches employed to solve each of the airline recovery stages.

As mentioned previously, the airline recovery process involves the solution to the schedule, air-

craft, crew and passenger recovery problems. Each of these stages define very discrete fields of

research and will be used to direct the discussion throughout this chapter.

3.1 Mathematical Formulation

A disruption is characterised by an incident that prevents flights from arriving or departing

as scheduled. Incidents causing disruptions are related to a variety of factors, including poor

weather, unplanned maintenance and late arriving passengers. Since a disruption perturbs the

schedule used to make airline planning decisions, it is possible that the aircraft routes and

crew duties can no longer be operated as expected. Without intervention by the airline opera-
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tions control centre, schedule perturbations can result in aircraft not receiving maintenance as

required or crew exceeding the maximum allowable work hours.

The airline operations control centre employs a variety of strategies to reduce the effect of the

disruption and construct aircraft routes and crew duties to adhere to operational constraints.

Such strategies, or recovery policies, involve flight delays and cancellations, crew deadheading

(transporting crew as passengers), aircraft ferrying (flying an aircraft without passengers) and

the use of reserve crew. Historically, the recovery process was undertaken manually without

the use of automated decision support systems and with personal experience playing a very

significant role in the decision making. With the advancement of computing technology, there

has been a greater interest in the development of automated recovery solutions approaches. The

following sections will present examples of the recovery tail assignment and crew duty problems.

These examples introduce a number of features that are implemented in the evaluation stage

of the recoverable robustness framework investigated throughout this thesis.

3.1.1 Recovery Tail Assignment Problem

The aircraft recovery problem is generally solved following the schedule recovery, however it

is common for formulations to integrate these two problems. Since aircraft are allocated an

individual flight route on the day of operations, the aircraft recovery problem presented in

this section attempts to maintain that detail by identifying aircraft by their tail number. The

primary objective of the recovery tail assignment problem (RTAP) is to identify new flight routes

for each aircraft while minimising the length of flight delays and the number of cancellations.

It is common for a disruption to cause schedule perturbations which can prohibit aircraft from

terminating at required locations affecting maintenance planning decisions. As such, these

effects must be directly considered in the RTAP to reduce the impact of the disruption on the

planned solution. Since there is little difference between the formulation of the planning and

recovery tail assignment problems, to provide consistency the notation presented in Tables 2.1

and 2.2 along with the additional notation of Table 3.1 is used to describe the RTAP.

There have been many different approaches developed to solve the aircraft recovery problem,

with much of the variation related to strategies designed to improve the solution runtimes. These

strategies include restricting the set of allowable recovery policies and selecting only a subset

of aircraft that are considered in the problem. The RTAP is developed by implementing the

recovery options of flight delays and cancellations and aircraft rerouting. These recovery policies
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ND
is the set of disruptable flights, ND ⊆ N

Nin is the set of all carry-in activities j, including flights and origination nodes

Nout is the set of all carry-out activities j, including flights and termination nodes

Uj is the set of all delay copies v for flight j ∈ N

N̂ is the set of all nodes in the connection network defined by flight-copy pairs jv

N̂D
is the set of disruptable nodes in the connection network defined by flight-copy pairs jv

Ĉ
is the set of all feasible connections between flight-copy pairs in the network, C =

{(iu, jv)|iu, jv ∈ N̂ ∪B}

Mb is the minimum number of aircraft required to start the following days flying from base b

zj = 1 if flight j is cancelled, 0 otherwise

dj = the cost of cancelling flight j

obp = 1 if string p terminates at airport b, 0 otherwise

Table 3.1: Additional notation for the recovery tail assignment problem.

cover the most practical policies available to the airline, omitting the ferrying of aircraft. The

decision to formulate a model without aircraft ferrying is two-fold, i) this action is extremely

costly for an airline since no passengers are conveyed, and ii) with a greater awareness of

anthropogenic climate change, aircraft should be only used for revenue generating purposes. By

not including aircraft ferrying the optimal solution to the RTAP includes more flight delays and

cancellations, increasing the potential recovery costs. This set of recovery policies implemented

for the RTAP are also implemented in the evaluation recovery problems developed throughout

this thesis.

One major difference between the planning and recovery problems is the flight schedule

used to form the connection network. There are two features of the recovery problem that

restrict the flight schedule, the start time of the disruption and the length of the recovery

window. A recovery window is a period of time during which recovery actions are permitted

and commences immediately after a disruption occurs. Thus, the disruptable flight schedule

ND, is defined to contain all flights from N that depart after the disruption occurs but before

the end of the recovery window. An additional method for selecting flights to include in the

disruptable schedule is based upon which aircraft are considered in the model. The aircraft, and

crew for the crew recovery problem, can be partitioned into disruptable and non-disruptable

sets where the flight routes for the former can be modified but not for the latter. The use
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of a recovery window and the selection of aircraft greatly reduces the problem size, having a

significant effect on the solution runtimes. The use of a recovery window to reduce the problem

size is presented in Chapters 8 and 9 with the results in Section 8.3.2 demonstrating the effect

this approximation technique has on solution runtimes.

The implementation of flight delays in the RTAP uses the technique of flight copies. The

flight copies technique involves the multiple duplication of each flight contained in N with

each copy assigned a progressively earlier or later departure time. This technique is used for

modelling flight delays, as seen in Thengvall et al. [87], and also to model flight retiming options,

for example Mercier and Soumis [64]. Since recovery is performed on the day of operations, the

only retiming options available to the airline are given by copies representing later departure

times. Figure 3.1 provides a simple example of a flight schedule, displayed as a time-line

network, with three possible flight copies for each originally scheduled flight. For each flight j

the set of allowable copies is given by Uj , with a flight-copy pair described by jv, where j ∈ N
and v ∈ Uj . Since the flight schedule is partitioned into sets of disruptable and non-disruptable

flights, a different set of allowable flight copies must be defined for each flight in the schedule.

In the RTAP, recovery actions are only permitted on flights contained in ND, implying that

the flights contained in N\ND must depart as scheduled. This is achieved by including only a

single flight copy in the set Uj = {0}, ∀j ∈ N\ND. Flight delays are permitted on all flights

contained in ND, which is modelled by including the additional copies vi, i = 1, . . . , n in the set

of allowable copies Uj = {0, v1, . . . , vn}, ∀j ∈ ND. The flight-copy approach is a very simple,

but effective, method to model flight delays. The modelling approach and notation presented

here is used in all evaluation recovery problems developed in this thesis.

The connection network for the RTAP must include the flight-copies representing delay

options for the disruptable flights. Using the definition for the flight-copy pairs, jv, the set of

all flight-copy pairs for the full and disruptable schedule is given by N̂ and N̂D respectively.

The definition of a feasible connection is given in Section 2.1.1 and is used to construct the set

Ĉ = {(iu, jv)|iu, jv ∈ N̂}, containing all connections between the flight-copy pairs in N̂ . Thus,

the connection network used for the RTAP is defined by the flight-copy pairs in N̂ representing

the nodes and the arcs are represented by the connections in Ĉ.

The recovery policy of flight cancellations is modelled in the RTAP with the introduction

of the decision variables zj . In the solution to the RTAP, flight j is cancelled if zj equals 1 and

the flight is covered by an aircraft if zj equals 0. The cancellation of flight j contributes a cost
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Figure 3.1: Flight copies example. Solid lines represent the scheduled flights, the dashed lines

represent the flight copies. For a time-line network, time is on the horizontal axis and the

airport locations are provided on the vertical axis. Note: BNE = Brisbane, SYD = Sydney and

MEL = Melbourne.

of dj to the objective function of the RTAP.

A flight string formulation is used for the RTAP to define flight routes spanning a period

from the start of the disruption until the end of the recovery window. Since a disruption can

occur at any point during the day, the recovery flight strings must originate from the current

location of each aircraft. Additionally, at the conclusion of the recovery window the recovery

flight strings must terminate at locations to continue the operation of originally planned flight

routes. To model this aspect of the recovery problem, the concepts of carry-in and carry-out

flights are introduced. A carry-in activity, contained in Nin, specifies the current location of an

aircraft immediately prior to a disruption, given as flights or origination airports. The carry-in

activity describes an origination airport if an aircraft flight route has not commenced prior to

the disruption. Similarly, a carry-out activity specifies the expected location of aircraft at the

end of the recovery period, given as flights or termination airports. Termination airports are

included in Nout if there exist originally planned aircraft flight routes that terminate within

the recovery period. These concepts are used to define the starting and ending activities of the

flight routes constructed for the RTAP. Since a recovery window is implemented in Chapters 8

and 9, the concepts of carry-in and carry-out activities are fundamental to the recovery problem

formulations.

Flight strings in the RTAP are constructed to specify the flights performed by each individual

aircraft during the recovery period. Using the flight-copy notation, referencing flight j without
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identifying any copy v collectively represents all flight-copy pairs jv, v ∈ Uj . So the parameter

ajp equals 1 to indicate that flight j, delayed by any length of time, is included on string p.

Since the recovery policy of flight delays is implemented in this problem, the departure time

of each flight in the string must also be defined. The length of flight delays is used to define

the cost for flight string p operated by aircraft r, crp, which is estimated to reflect the indirect

cost of passenger dissatisfaction. In addition to describing a set of connected flights, the flight

string also indicates end-of-day location b, either aircraft bases or overnight airports, for each

aircraft. The set of all end-of-day locations is given by B. While flight strings must terminate

at carry-out activities, the parameters obp equal 1 to indicate that flight string p continues from

that activity and terminates at base b at the end of the day. To maintain feasibility for the

following days’ schedule, a minimum number of aircraft Mb are required to terminate at each

end-of-day location b.

The model used to solve the RTAP is defined as,

(RTAP)

min
∑

r∈R

∑

p∈P r

crpy
r
p +

∑

j∈ND

djzj , (3.1)

s.t.
∑

r∈R

∑

p∈P r

ajpy
r
p + zj = 1 ∀j ∈ ND, (3.2)

∑

r∈R

∑

p∈P r

ajpy
r
p = 1 ∀j ∈ Nout, (3.3)

∑

p∈P r

yrp ≤ 1 ∀r ∈ R, (3.4)

∑

r∈R

∑

p∈P r

obpy
r
p ≥Mb ∀b ∈ B, (3.5)

yrp ∈ {0, 1} ∀r ∈ R, ∀p ∈ P r, (3.6)

zj ∈ {0, 1} ∀j ∈ ND. (3.7)

The objective of the RTAP minimises the additional cost of aircraft recovery related to flight

delays and cancellations. The flight coverage constraints (3.2) ensure that every flight is either

covered by an aircraft or cancelled. Since each flight string must terminate at a carry-out

activity, constraints (3.3) ensure that each of these activities are covered by exactly one flight

string. Constraints (3.4) impose the restriction that each aircraft can only operate at most one

route in a feasible solution. Since flight cancellations are implemented as a recovery policy, the

flow balance of the original flight schedule is not maintained. Hence, constraints (3.5) impose a
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lower bound on the number of aircraft required to terminate at each airport to commence the

following day’s flying.

3.1.2 Crew Duty Recovery Problem

In the sequential airline recovery process, the crew recovery problem is solved following the

schedule and aircraft recovery problems. In this framework, it is common to fix the solutions

to each of these preceding problems and use the decisions as input. Unfortunately fixing the

decisions from preceding stages provides little flexibility to the crew recovery problem resulting

in suboptimal, or even infeasible, solutions. An alternative approach involves implementing

the recovery policies of flight delays and/or cancellations, permitting changes to the recovered

schedule. This approach provides feedback to the preceding stages in the sequential recovery

process to improve the solution quality and address the possible suboptimality and infeasibility

in crew recovery. The crew duty recovery problem (CDRP) is an example of the latter approach,

formulated to include the recovery policies of flight delays and cancellations.

This thesis focuses on the application of recoverable robustness to the tail assignment prob-

lem, as such the CDRP is not considered in isolation. The features presented in this section

are used to develop an integrated airline recovery problem, integrating the RTAP and CDRP.

The formulation of the integrated airline recovery problem is discussed in Chapters 8 and 9.

The CDRP presented in this section is formulated using the flight string notation of Barnhart

et al. [12], defining strings as a sequence of flights performed by a crew group within a specific

time horizon. For the CDRP, the time horizon is defined by a recovery window contained

within a single day; as such the focus of this problem is the construction of crew duties. The

CDRP is modelled using a framework similar to that used in the formulation of the planning

tail assignment problem (PTAP) and RTAP; therefore the notation presented in Tables 2.1, 2.2

and 3.1 is used to describe this problem. However, additional notation given in Table 3.2 is

required to describe crew specific recovery policies.

Similar to the crew planning problems, the construction of pairings and duties for crew

recovery must respect a set of complex work rules. Since the CDRP is solved using a recovery

window within a single day, only the duty rules are considered in the construction of flight

strings. The most important duty rules that are considered in the CDRP limit the number of

working hours performed in a day, in particular the upper bound on the number of working

hours is 13 and only 8 of which can be spent flying.
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K is the set of all planned and reserve crew k

Kres
is the set of all reserve crew, Kres ⊂ K

P k
is the set of all flight strings p for crew k

avjp = 1 if flight-copy jv is in string p, 0 otherwise

κv+
j = the number crew deadheading on flight-copy jv

κv−
j dummy variable for counting the number of deadheading crew on flight-copy jv

νk
= 1 if crew k deadheads back to their crew base from the start of the disruption period, 0

otherwise

gDHD
= the cost of deadheading crew on one leg within a duty

gDHB
= the cost of deadheading crew back to their crew base

Table 3.2: Additional notation for the crew duty recovery problem.

The remuneration structure for crew in the planning and recovery process is defined by a

complex function based upon the number of working and flying hours. Barnhart et al. [13]

presents an example for the cost of a duty for crew k, DutyCost(k), as a function of the flying

hours, fly(k), the total elapsed hours, elapse(k), and the minimum number of guaranteed

hours, minGuar. The cost of a duty is given by,

DutyCost(k) = max{fly(k), fd · elapse(k),minGuar}, (3.8)

where minGuar is set at 6 hours [13] and fd is a fraction that is airline specific. For the crew

recovery problem, the cost of recovering a duty for crew k, RecDutyCost(k), is the difference

between the cost of the recovered duty and the originally planned duty, OrigDutyCost(k).

Therefore, the cost of recovering a crew duty is given by,

RecDutyCost(k) = max{0,max{fly(k), fd · elapse(k),minGuar} −OrigDutyCost(k)},
(3.9)

where the parameters minGuar and fd are set identical to equation (3.8).

The CDRP is formulated to include the recovery policies of flight delays and cancellations,

crew deadheading and the use of reserve crew. The recovery policies of flight delays and

cancellations are implemented in the CDRP using the same techniques presented in Section

3.1.1. This involves the use of flight copies to model flight delays and the introduction of the

decision variables zj to represent flight cancellations.
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The use of reserve crew and crew deadheading are recovery policies specific to the crew

recovery problem. Reserve crew, Kres, are additional crew located at each crew base that are

available to operate duties to prevent the originally planned crew violating work rules. In the

event that reserve crew are required, the flight strings assigned to each reserve crew k must also

respect the crew duty work rules. While employing reserve crew increases the crew recovery

cost, their tactical use can limit the number of required flight delays and cancellations.

Crew deadheading involves the transportation of crew as passengers to reposition them

throughout the network. This recovery action is a costly option for airlines since the crew are

still paid for the deadheaded flights, and passengers are potentially lost if these flights are fully

booked. Two different types of crew deadheading are considered in the CDRP, deadheading

within a pairing and back to base. Deadheading within a pairing is modelled using the variables

κv+j to count the additional number of crew assigned to flight-copy jv. This also requires the

additional variables κv−j in the CDRP to ensure that the number of deadheading crew on flight-

copy jv is one less than the total number of assigned crew. Deadheading crew back to base

contributes a large cost to the airline, since this action either results in flight cancellations or

the use of reserve crew. This type of crew deadheading in modelled in the CDRP using the

variables νk, which equal 1 if the originally planned crew group k is deadheaded back to base

immediately following the disruption or 0 otherwise. The cost of deadheading crew within a

pairing and back to base is given by gDHD and gDHB respectively.

As explained in Section 3.1.1, the flight schedule for recovery problems is partitioned into

disruptable and non-disruptable flights. Since flight copies are used to model flight delays in

the CDRP, the sets N̂ and N̂D are defined in the same manner as for the RTAP. One major

difference between the connection network for aircraft and crew is the minimum time between

flights that defines a feasible connection. The minimum time between two consecutive flights

for crew is called the minimum sit time, which is generally longer than the minimum turn time

for aircraft. This has the effect of reducing the total number of possible connections between

flights, however it is possible for crew to operate connections less than the minimum sit time

provided that same connection is also used by an aircraft. This is an important consideration

of the integrated airline recovery problems presented in Chapters 8 and 9. The connections

with a ground time between the minimum sit and turn times are call short connections.

A recovery window is used in the CDRP to restrict the set of disruptable flights, as such the

concepts of carry-in and carry-out activities are defined in the same way as for the RTAP. Using
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these definitions, the recovered crew duty flight strings span the recovery window by traversing

through the connection network from a carry-in to carry-out activities. The recovered crew

duties must satisfy the duty work rules, including the hours worked before and after the recovery

window.

The CDRP is given by,

(CDRP)

min
∑

k∈K

∑

p∈P k

ckpy
k
p +

∑

j∈ND

djzj +
∑

j∈ND

∑

v∈Uj

gDHDκv+j +
∑

k∈K

gDHBνk, (3.10)

s.t.
∑

k∈K

∑

p∈P k

ajpy
k
p −

∑

v∈Uj

κv+j + zj = 1 ∀j ∈ ND, (3.11)

∑

k∈K

∑

p∈P k

ajpy
k
p = 1 ∀j ∈ Nout, (3.12)

∑

k∈K

∑

p∈P k

avjpy
k
p − κv+j + κv−j = 1 ∀j ∈ ND, ∀v ∈ Uj , (3.13)

∑

p∈P k

ykp + νk = 1 ∀k ∈ K\Kres, (3.14)

∑

p∈P k

ykp ≤ 1 ∀k ∈ Kres, (3.15)

ykp ∈ {0, 1} ∀k ∈ K, ∀p ∈ P k, (3.16)

zj ∈ {0, 1} ∀j ∈ ND, νk ∈ {0, 1} ∀k ∈ K, (3.17)

κv+j ≥ 0, κv−j ≥ 0 ∀j ∈ ND, ∀v ∈ Uj . (3.18)

The objective of the CDRP minimises the recovered crew duty cost, the costs related to flight

delays and cancellations and the number of deadheaded crew. The cost of a crew flight string

ckp is the sum of the RecDutyCost(k), given by equation (3.9), and the cost of delays on that

string. The constraints (3.11) ensure that every flight is either assigned a crew group or is

cancelled. All carry-out activities must be operated by exactly one crew, which is given by

constraints (3.12). Constraints (3.13) ensure that exactly one less than the number of crew

assigned to flight-copy jv are deadheading crew. Each of the crew groups originally planned

to operate the current days schedule, k ∈ K\Kres, must either be assigned a recovered flight

string or deadheaded back to base, captured by constraints (3.14). The reserve crew, k ∈ Kres,

are located at each crew base to operate flight strings if required. Therefore each reserve crew

k need not be assigned a flight string in the recovered solution, as described by constraints

(3.15). Since there is not a strict restriction on the number of crew available to the airline there
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is no need to ensure adequate coverage at each crew base at the end of the day. However, all

originally planned flight strings are constructed to terminate at either their crew base or at a

permissible overnight location. This is also enforced in the construction of each feasible flight

string in the CDRP.

3.2 Related Literature

Each stage within the complete airline recovery process presents a very difficult and complex

problem. Consequently, there have been various approaches employed to efficiently solve these

problems while attempting to achieve high-quality solutions. Such solution approaches for the

aircraft and crew recovery problems involve variations on the RTAP and the CDRP, such as

including only a subset of all recovery policies or considering only a subset of all aircraft or crew.

The stages of the sequential recovery process have different characteristics that are exploited

to develop efficient solution approaches.

The recoverable robustness framework solves a recovery problem to evaluate the recover-

ability of the planning stage solution. As such, the efficiency of the solution approach for

the recovery problem has a significant effect on the runtimes of recoverable robustness frame-

work. In this section, various approaches that attempt to improve the solution runtimes are

presented. Many of these approaches are employed in the evaluation stage of the recoverable

robustness framework implemented in Chapters 5 and 6. In addition, the integrated airline

recovery problem is considered in Chapters 8 and 9. Column-and-row generation is used to

solve the integrated airline recovery problem in Chapters 8 and 9, which is a contribution to

the current solution approaches for this problem type. Finally, Chapter 9 presents a novel,

alternative modelling approach for the passenger recovery problem.

The following sections will provide an analysis of the current approaches that have been

developed for each stage in the complete recovery process. The discussion will be separated

into reviews of the aircraft, crew and passenger recovery stages, given in Sections 3.2.1 - 3.2.3.

A current focus of airline recovery solution approaches is the integration of two or more stages

from the sequential process. The various methods used to formulate and solve the integrated

airline recovery problems will be discussed in Section 3.2.4.
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3.2.1 Aircraft recovery

Early work on airline recovery is presented by Teodorović and Guberinic [84] focusing specifically

on the aircraft recovery problem. The aircraft recovery problem of [84] attempts to minimise

the amount of delay experienced by passengers when one or more aircraft become unavailable.

This optimisation model is developed by implementing only the recovery policy of flight delays

and is solved using a branch-and-bound approach. This work is extended by Teodorović and

Stojković [85] to include the additional recovery policy of flight cancellations. In [85], the

problem is formulated as a multi-objective optimisation problem, attempting to minimise the

amount of delay and the number of cancelled flights. Extending upon [84] and [85], Teodorović

and Stojković [86] present an aircraft recovery problem considering the effect of recovery actions

on crew. This work is one of the first attempts to develop an integrated airline recovery problem.

The time-line network is the most common approach used to describe the flight schedule

in the aircraft recovery problem. An example of an aircraft recovery problem developed using

this network definition is presented by Jarrah et al. [49]. Two alternative models are developed

by Jarrah et al. [49] to focus on specific recovery policies, one using flight delays and the other

using cancellations. While both recovery policies of flight delays and cancellations are considered

in [49], since they are included in two separate models it is difficult to evaluate the trade-off

between the recovery decisions. This limitation is addressed in an extension presented by Cao

and Kanafani [21, 22]. In [21] and [22], the authors develop a quadratic zero-one programming

model implementing recovery policies of flight delays and cancellations, and aircraft ferrying.

The use of the time-line network is developed further by Yan and Yang [97], presenting a

unique design that concisely describes the effect of disruptions on the planned schedule. By

employing this network design, Yan and Yang [97] efficiently solve the aircraft recovery problem

with a full set of recovery policies. The network design developed by Yan and Yang [97] has

received considerable attention, with two key extensions presented by Yan and Tu [96] and

Yan and Lin [95]. Yan and Tu [96] consider a very similar model to [97], extended to consider

multiple fleet types and Yan and Lin [95] develop an aircraft recovery problem with a specific

focus on airport closure disruptions.

Thengvall et al. [87] follows on from Yan and Yang [97], by presenting an alternative aircraft

recovery problem formulated on a time-line network. A key feature of [87] is the objective of

minimal deviation from the planned aircraft routes, which is introduced to produce a more

human friendly solution. This objective is achieved by adding protection arcs to the network to
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preserve the use of connections that are included in the original aircraft flight routes. Thengvall

et al. [87] also demonstrates the use of flight copies to model flight delays in the aircraft recovery

problem. The concept of minimal deviation is fundamental to the recoverable robustness frame-

work, with an alternative modelling approach investigated in Chapters 5 and 6. In addition,

the minimal deviation objective is implemented in the integrated airline recovery problems in

Chapters 8 and 9.

Two extensions to [87] are presented by Thengvall et al. [89] and Thengvall et al. [88]

to consider multiple fleets, allowing ferry flights and performing aircraft swaps between fleet

types and subtypes. In [87], the authors present an interesting discussion stating that the

costs associated with flight delays and cancellations are difficult to quantify and are generally

provided as an estimate. An alternative approach is suggested whereby the costs are set by

the operations controller in the form of weights to achieve a recovered solution with desired

characteristics.

The time-band network presented by Argüello [8] is developed as an alternative network

design to provide an improvement in the solution runtimes of the aircraft recovery problem.

To reduce the size of the recovery network, time is discretised into bands and all activities

occurring in these bands are aggregated by location. The discretised time-bands form an ap-

proximation of the original network with the aggregation of nodes, however this comes at the

expense of errors in the estimation of the delay costs. Since the exact arrival and departure

times are no longer available, aircraft connections are made using a first-in-first-out policy. An

aircraft recovery model developed on a time-band network is presented by Bard et al. [11] and

solved as a mixed-integer program. This problem is solved with different time-band lengths

to evaluate the sensitivity of the runtimes and solution to this network approximation. The

authors demonstrate that as the length of the time bands increase, the runtimes of the model

decrease and, as a result of the approximation, the solution cost also decreases. The results for

the approach indicate its potential use in a real-time environment.

The time-band network is further explored in the aircraft recovery problem developed by

Eggenberg et al. [35]. In [35], the time-band network is extended by including aircraft main-

tenance opportunities and generating individual networks for each aircraft. The inclusion of

aircraft maintenance opportunities in the network description is used to limit the effect of

recovery actions on the maintenance feasibility of each aircraft. As explained in Chapter 2,

maintenance planning is an important consideration of the airline business process since severe



3.2. RELATED LITERATURE 39

penalties exist for exceeding the set maintenance limits. The results presented improve upon

previous approaches developed using this network design in regards to the recovery cost and

solution runtimes.

The connection network is a network design traditionally used for airline planning and re-

covery problems. Rosenberger et al. [73] present an aircraft recovery problem using this network

design, employing the recovery policies of flight delays and cancellations and the rerouting of

aircraft. Given the potential size of this problem, the authors employ a heuristic to select a

minimal number of aircraft to include in the model for possible rerouting. Heuristic approaches

to restrict the affected equipment considered in recovery models is a common method applied

to reduce the problem complexity and improve solution runtimes.

The cost of recovery must account for a number of different factors including the additional

cost of fuel for aircraft and the use of any extra resources. In addition to the many real and

tangible costs for the airline, there are indirect costs, such as the effect of a disruption on

passengers, that are difficult to quantify. Andersson [6] considers the difficulty in calculating

all airline recovery costs and presents two different methods in which they can be defined. The

first method uses exact costs for each feature of the recovery problem, and the second uses

weights to achieve a solution with desired characteristics. The advantage of using real costs

is that the optimal recovery solution estimates the cost that will be incurred by implementing

recovery actions. However, the use of weights, as presented by Thengvall et al. [87], empowers

the operations controller to find a recovery solution that enhances particular characteristics.

The recoverable robustness framework requires the evaluation stage to provide high quality

feedback in short runtimes. It is observed from the solution approaches presented above that the

techniques employed either improve the solution quality or runtimes, but not both. For example,

a feature of the time-line network [21, 22, 49, 87–89, 95–97] is the accurate description of the

recovery problem. However, this network design negatively affects solution runtimes as a result

of a very large problem formulation. By contrast, the time-band network [8,11,35] approximates

the recovery problem to achieve fast solution runtimes. To satisfy the requirements of the

recoverable robustness framework, Chapters 5 and 6 employ a connection network [73] in the

evaluation stage. This network description accurately models the recovery problem and is

consistent with the modelling approach used for the planning stage. Additionally, high quality

feedback is achieved in Chapters 5 and 6 by employing a full set of recovery policies in the

evaluation stage, modelled using real costs.
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3.2.2 Crew recovery

The crew recovery problem is the recovery stage that has received the most interest due to

the high operational costs. The cost of crew represents the second largest cost to an airline,

which is significantly impacted by schedule perturbations. Comparing the crew and aircraft

recovery problems, the crew problem involves a larger number of individual flight strings and

complex work rules resulting in a more complex problem. During the airline planning stages,

each crew member is assigned a personalised schedule detailing a set of flights to work within

a duty period. A major difficulty that arises during a disruption is the management of these

personalised schedules, attempting to minimise the number of changes that are required.

The research regarding the crew recovery problem can be classified into two different mod-

elling approaches, using a fixed flight schedule or allowing flight delays and cancellations. The

fixed flight schedule models are designed to operate within the sequential recovery process

where the schedule and aircraft recovery is solved first and then fixed for subsequent stages.

This technique simplifies the crew recovery problem by reducing the size of the recovery net-

work and limiting the possible recovery decisions. Alternatively, allowing flight delays and

cancellations increases the complexity of the crew recovery model. However, this modelling ap-

proach improves the solution quality and the possibility of an infeasible crew recovery solution

is reduced. The solution approaches developed for both modelling types are discussed in the

following sections.

Fixed flight schedule

An example of the crew recovery problem to fit within the sequential recovery process is pre-

sented by Wei et al. [91]. The crew recovery problem, described as the crew pairing repair

problem, is formulated as a multi-commodity flow problem with an objective to repair the

broken pairings with as little modification to the planned solution as possible. The authors

implement a depth-first search to solve the crew recovery problem, attempting to replicate the

actions performed by the airline operations control centre. The search process involves the

generation of a small set of pairings, which are tested for feasibility and help direct the next

step in the search. Experiments demonstrate very fast runtimes for this solution approach, with

the first feasible solution found within two seconds for all cases.

The operational airline crew scheduling problem is proposed by Stojković et al. [83] as an

integer non-linear multi-commodity flow problem. A key contribution of this approach is the
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consideration of the planned monthly blocks for each crew member during the recovery process.

Since this model uses a fixed flight schedule, the recovery policies include the over or under

covering of flights, within the airline requirements, to form feasible recovery solutions. The

schedule is restricted to an operational period of one or seven days to reduce the problem

size and improve solution runtimes. The tasks that are performed by the crew preceding and

succeeding this period are frozen, with operations expected to be back to plan by the end of the

operational period. This method of fixing activities is investigated further in Chapters 8 and 9

in regards to carry-in and carry-out activities. Additionally, the authors implement a heuristic

approach to reduce the complexity of recovery problem by selecting a subset of crew to include

in the model. The technique of column generation coupled with an early branching strategy is

employed to solve this problem.

Medard and Sawhney [62] present a crew recovery problem as the integration of the crew

pairing and rostering problems. This problem is solved using two different approaches, a depth-

first search heuristic and column generation. The solution runtimes of this problem are improved

by employing a preprocessing stage to construct crew dependent networks used in the generation

of feasible crew pairings. The depth-first search approach involves the traversal of these crew

dependent networks to generate pairings, which are checked for legality using the Carmen Rave

system. Column generation is implemented with a pricing subproblem that identifies the k -

shortest paths, each of which are also checked for legality using the Carmen Rave system. The

two different methods demonstrate fast solution runtimes, with the best performance observed

from the depth-first search.

There are significant differences between the crew remuneration structure for US and Euro-

pean airlines that greatly affect the solution to the crew recovery problem. Nissen and Haase [67]

highlight these differences and develop a crew recovery problem focusing specifically on Euro-

pean airlines. The major difference presented by [67] is that Europe commonly remunerate

crew using a salary as opposed to a wage in the US. Since very little difference in crew costs

is observed by European airlines during recovery, Nissen and Haase [67] present a model to

minimise the number of changes that are made to an individual crew members planned pair-

ing. The model partitions the crew members by their qualification group to provide a higher

solution quality. To achieve fast solution runtimes a recovery window is implemented to re-

duce the number of flights considered in the recovery problem. This set of flights is further

reduced by identifying the disruptable flights on which recovery actions are performed. The
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authors present a series of results using different lengths of recovery windows demonstrating

the trade-off between the solution runtime and quality.

Using flight delays and cancellations

An unfortunate result from using a fixed flight schedule is the limited flexibility provided to the

crew recovery problem causing suboptimal, or even infeasible, results. Solving the crew recovery

problem with flight delays and cancellations attempts to avoid this difficulty, facilitating a

feedback process with the aircraft recovery problem. One of the first examples of the crew

recovery problem considering flight cancellations is presented by Lettovsky et al. [56]. This

work extends upon Johnson et al. [50] and forms part of the PhD thesis of Lettovsky [55].

The authors present a number of approaches that attempt to reduce the computation time of

the recovery algorithm such as a heuristic to select the included crew and compact storage for

the generated columns. The model is tested against three scenarios, which include different

numbers of affected crew. In all cases the solution times are within an acceptable range for use

in an online situation.

An extension on the fixed schedule crew recovery problem by Stojković et al. [83] is given by

Stojković and Soumis [81] considering the use of flight delays. Flight delays are implemented

using the technique of time windows, with the windows individually defined for each flight

based upon operational constraints. As a further extension, Stojković and Soumis [82] address

a more realistic problem by considering multiple crew types within each crew group. Column

generation is used to solve both [81] and [82] with the subproblem solved by a multi-label

dynamic programming algorithm. The results presented demonstrate high quality solutions,

but unfortunately the solution runtimes do not encourage use in an online environment.

A novel approach to the crew rescheduling problem is presented by Abdelghany et al. [1],

formulated using the recovery policies of flight delays and cancellations. A novel solution

approach is presented in [1] where the flight schedule is partitioned into chronologically ordered

sets of resource-independent flights. Resource independence implies that each crew group can

only operate a single flight within each set. A sequential process is then employed by solving a

crew recovery problem for each set of flights. A number of preprocessing steps are employed to

improve the computation time of the optimisation problem, including shifting the disruption to

the hubs and using a heuristic to identify the included crew. This model is evaluated against

one test case, demonstrating the solution runtime improvements achieved by this approach for
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this crew recovery problem.

While solving the crew recovery problem solved using flight delays and cancellations in-

creases the problem flexibility, global optimality is still affected by the sequential solution

approach. It is necessary to integrate the aircraft and crew recovery problems to improve the

solution quality of the airline recovery process. The integrated airline recovery problem is the

focus of Chapters 8 and 9, with the development of a novel passenger recovery approach in

Chapter 9.

3.2.3 Passenger recovery

Passenger recovery is the final stage in the sequential recovery process that attempts to identify

new itineraries for all disrupted passengers. While there are no direct costs associated with

passengers, the indirect costs related to passenger satisfaction must be considered. Assessing

the impact of disruptions on passengers is very difficult, as such few recovery approaches exist

that explicitly consider passenger flows through the network. The approaches that have been

developed for passenger recovery are generally formulated as part of an integrated problem with

aircraft or crew. The integration of passenger recovery with other stages aids in making flight

delay and cancellation decisions that minimise the impact of disruptions on passengers.

One of the first examples of a passenger recovery problem is presented by Bratu and Barn-

hart [19], which also considers aircraft routing and the use of reserve crew. The authors describe

the difficulty of modelling the costs associated with passenger delays, and develop two different

models as part of this analysis. The first model attempts to minimise the number of passengers

that are disrupted by a schedule perturbation. In this case, the cost for disrupting each passen-

ger assigned to the same itinerary is identical, and there is no consideration to the actual cost

of delay. Consequently, the objective value of this problem is an approximation of the true cost

of the disruption. The second model more accurately describes the cost of disrupting passen-

gers by providing an estimate of the actual delay costs. The indirect cost related to passenger

satisfaction is an important consideration of any passenger recovery problem. However, this

indirect cost can only be calculated as an estimate.

An example of an integrated aircraft and passenger recovery problem is presented by Jafari

and Zegordi [48]. This integrated problem is solved by using the modelling approach presented

by Abdelghany et al. [1]. The objective of this problem is to minimise the costs associated

with reassigning aircraft to recovered flight routes and the construction of new itineraries for
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disrupted passengers. The costs associated with disrupted passengers are provided only as an

estimate, further demonstrating the difficulty in accurately modelling the true cost of disrup-

tions.

The integrated aircraft and passenger recovery problem was the focus of the 2009 ROADEF

challenge. This challenge considered real world instances of an airline experiencing schedule

disruptions with a requirement to identify a solution within 10 minutes. The objective of this

challenge was to minimise the operating costs of the airline, related to the direct costs of aircraft

and ground services, and indirect costs of passenger inconvenience. The passenger inconvenience

costs attempt to model the effect of flight delays, missed connections and downgrading of flight

class. The best solution approach for this problem is presented by Bisaillon et al. [17], solving

the recovery problem with a large neighbourhood search heuristic.

The consideration of passengers in the recovery process has a significant impact on the

operational performance of the airline. Therefore, considering passengers in the evaluation

stage of the recoverable robustness framework is expected to provide a higher quality feedback

to improve the planning stage solution. Chapter 9 investigates a novel modelling approach

for passenger recovery that identifies alternative travel arrangements for disrupted passenger

in the event of a flight cancellation. The approach in Chapter 9 will present an effective

passenger recovery without requiring the unnecessary complexity of identifying new itineraries

for disrupted passengers.

3.2.4 Integrated recovery

The solution approaches developed for the complete airline recovery problem involve a trade-off

between solution quality and runtime. The sequential solution approach is a prominent example

of this with suboptimal results arising from fixed scheduling decisions. The previous sections

describe examples of approaches developed for each of the recovery stages to either improve the

runtimes or solution quality. In the same manner, the integrated recovery problem has been

considered to alleviate the suboptimal results from the sequential recovery process. Since the

integrated problem is a very large and complex problem, the trade-off between solution runtimes

and quality is still very evident. Improvement in solution techniques and computing capabilities

has aided the development of integrated airline recovery problems, which are solvable in real

time.

An early attempt to develop an integrated airline recovery is presented in the PhD thesis of
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Lettovsky [55]. This problem integrates all aspects of the airline recovery process, which includes

schedule, aircraft, crew and passenger recovery. To address the potential size of this problem,

Benders’ decomposition is applied to improve the tractability of the model by separating each

recovery stage into individual subproblems. The subproblem for crew recovery is implemented

separately in Lettovsky et al. [56], as a demonstration of the modelling approach. Unfortunately

the integrated recovery problem is not implemented, so no evaluation of the solution approach

is provided.

The crew recovery model of Abdelghany et al. [1] is extended by Abdelghany et al. [2], with

the integration of pilots, flight attendants and aircraft. The sequential solution approach devel-

oped by Abdelghany et al. [1] is also applied in Abdelghany et al. [2] as a further demonstration

of this technique. The benefits of integrating the aircraft and crew in the optimisation model

ensures that the recovered solution remains feasible for all resources with consistent flight delays

and cancellations. The model is evaluated against a set of scenarios based upon disruptions

caused by the US Ground Delay Program. The results from experiments show that this model

is able to achieve significant delay reductions within very short runtimes.

The Benders’ decomposition framework presented by Lettovsky [55] for the integrated re-

covery problem is developed further by Petersen et al. [70]. The approach presented by Petersen

et al. [70] combines the solution techniques of Benders’ decomposition and column generation

to improve the tractability of the problem. To further reduce problem complexity, a number

of preprocessing steps are executed to select a subset of flights, aircraft and crew to include in

the model. The integrated recovery problem is evaluated against a number of scenarios, which

include varying the flow rate of aircraft for different lengths of time at hub and spoke airports.

The results demonstrate that the integrated approach is able to achieve a lower recovery cost

than the equivalent sequential recovery process. The runtimes for this model are promising for

online applications where most of the presented scenarios are solved within the set 30 minute

time limit.

It is clear from the above approaches that decomposition techniques are required to effi-

ciently solve the integrated airline recovery problem. Unfortunately, the decomposition tech-

niques of Benders’ decomposition [55, 70] and the partitioning of the flight schedule [2] do not

guarantee integral optimality. Chapter 8 solves the integrated airline recovery problem using

column-and-row generation to improve solution runtimes while providing a guarantee of near

optimal solutions.
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3.3 Summary

Airline recovery is a necessary aspect of disruption management to continue operation of aircraft

routes and crew pairings following schedule perturbations. The regular nature of disruptive

events and the potential increase in operating costs indicates the need for an efficient and

accurate recovery process. Since airline recovery is a large and intractable problem, there

is a trade-off between the solution runtime and quality. This chapter has presented various

techniques that have been developed to address these issues and efficiently solve airline recovery

problems. The column-and-row generation framework developed in Chapter 7 is applied to the

integrated airline recovery problem in Chapters 8 and 9 as a contribution to the previously

discussed solution methods.

The vast majority of literature presented in this chapter attempts to improve the runtime

and quality through solution and modelling techniques for the recovery problem. A key feature

of recoverable robustness is identifying planning solutions that are recoverable in limited effort.

By contrast, the intelligent planning decisions achieving limited effort improve the runtimes and

quality of the airline recovery process. The recoverable robustness framework has not previously

been applied to airline planning problems, and its application with a full set of recovery policies

in Chapters 5 and 6 is a novel extension to the approach.

The following chapter will present a collection of solution techniques commonly applied to

airline planning and recovery problems. These techniques will be employed to a variety of

mathematical models presented throughout this thesis.



Chapter 4

Solution Methods

In the previous chapters, examples of the mathematical models and current modelling ap-

proaches for airline planning and recovery problems were introduced. It was explained that

due to a high level of complexity, the complete planning and recovery problems are commonly

separated into a series of sequential stages in an attempt to improve tractability. While each

stage in the planning and recovery processes is much simpler to solve than the complete prob-

lem, these stages still fit within the class of large-scale optimisation problems. There have

been a variety of solution approaches that have been developed specifically for this problem

class, both heuristic and exact methods. The heuristic approaches involve exploiting problem

characteristics to quickly identify feasible solutions, while exact methods use decomposition

techniques to define more tractable formulations. In this thesis, the problems developed for

airline planning and recovery are solved using exact solution methods. In addition, strategies

and new techniques are investigated to improve upon the current solution methods.

Two exact solution methods commonly applied to large-scale optimisation problems are

column generation and Benders’ decomposition. Column generation is a solution technique

that is used to solve problems with a large number of variables, each displaying a special

combinatorial structure. Classical examples of problems solved by column generation are the

cutting stock and bin packing problems. This solution approach involves the construction of

a master and subproblem, where the subproblem dynamically generates variables (columns)

to include in the master problem. By contrast, Benders’ decomposition is applied to mixed-

integer programs that have a large number of constraints that display a special structure, such

as block-diagonal with a set of linking variables. The most prominent examples of problems

applying Benders’ decomposition are in the field of stochastic programming. This decomposition

47
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approach involves the construction of a master problem, as a relaxation of the original problem,

and a series of independent subproblems. The solution to each subproblem is used to generate

cuts which tighten the relaxation of the master problem. The application of column generation

and Benders’ decomposition to airline planning and recovery problems is discussed in Chapters

2 and 3 as methods to improve the efficiency of the solution process.

Airline planning and recovery problems are formulated as mixed-integer programs, generally

requiring the use of branch-and-bound to identify the optimal integer solution. The approaches

of column generation and Benders’ decomposition aid in efficiently solving the linear program-

ming (LP) relaxation to optimality, however this solution may be far from integer optimality.

Branch-and-bound is an approach that systemically partitions the feasible region of integer

variables by restricting the variable bounds. Examples of branching techniques will be pre-

sented in Section 4.3, including a description of branch-and-price, which is the integration of

branch-and-bound and column generation.

4.1 Column Generation

The column generation solution approach efficiently solves large-scale optimisation problems

by exploiting the fact that most variables are non-basic in the optimal solution. This involves

defining a smaller, more tractable master problem as a restriction on the original problem and a

subproblem to identify columns to add to the master. An important characteristic of problems

solved by column generation is the structure of the variables that permits their generation

with the solution to a subproblem. Airline planning and recovery problems display such a

structure with flight string variables defining a connected path through a network. As such,

the subproblem can be formulated as a network flow problem and solved by various dedicated

solution algorithms. A detailed review of column generation and related applications is provided

in Desaulniers et al. [29] and Lübbecke and Desrosiers [59]. This section will describe the column

generation solution approach using the planning tail assignment problem (PTAP), presented in

Section 2.1.1, as an example to direct the discussion.

The column generation approach described in this section is applied to solve the planning

and evaluation stages of the recoverable robustness problems in Chapters 5 and 6. An exten-

sion of this solution approach, column-and-row generation, is investigated in Chapter 7. This

extension is then applied to solve integrated airline recovery problem in Chapters 8 and 9, evalu-
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ating the improvement in solution runtime and quality against the standard column generation

approach.

4.1.1 Master problem

The restricted master problem (RMP) for the column generation solution approach is initially

formulated with a subset of all possible variables from the original problem. This initial prob-

lem formulation significantly reduces the complexity of a previously intractable problem. For

example, the PTAP is formulated using flight strings that describe paths through a connection

network, resulting in a highly combinatorial set of variables. Since a set of flight string vari-

ables, P r, are constructed for each aircraft r considered in the problem, it is not difficult to

see the potential size of this problem. The enumeration of all possible variables results in an

extremely large and intractable problem that is difficult to solve with the use of commercial

solvers. To address this difficulty, the RMP is formulated to contain only a very small subset

of all variables, P̄ r ⊆ P r ∀r ∈ R, forming a more easily solvable problem.

The RMP is constructed as a smaller, restricted version of the original problem, therefore

the optimal solution can be found very quickly. By the LP duality theory, the optimal dual

solution is also found and used to calculate the reduced cost of all variables. The dual solutions

for the PTAP are defined as β = {βj |∀j ∈ N} and γ = {γr|∀r ∈ R} for constraint (2.6) and

(2.7) respectively. Using these definitions, the reduced cost of variable p for aircraft r is given

by,

c̄rp = crp −
∑

j∈N

βjajp − γr. (4.1)

Since the RMP is solved to optimality, the variables p ∈ P̄ r, ∀r ∈ R have a reduced cost c̄rp ≥ 0

and c̄rp = 0 for all basic variables. This property implies that any improvement in the objective

function of the RMP is only possible through the addition of variables. A subproblem is solved

to identify variables with a negative reduced cost to add to the RMP.

4.1.2 Subproblem

The restriction on the original problem given by the RMP is relaxed through the addition of

variables generated in the column generation subproblem. Only variables that are expected

to improve the objective value of the RMP are added to the problem. These variables are

identified by having a reduced cost crp < 0. While any variable with a negative reduced cost
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will provide an improvement to the objective of the RMP, a minimisation problem is formed

to ensure that such a variable is found. In general, the column generation subproblem for each

aircraft r is of the form,

ĉr = min
p∈P r
{crp −

∑

j∈N

βjajp − γr}. (4.2)

The strength of the column generation solution approach relies on identifying the variable

structure to formulate a more tractable subproblem. As explained previously, airline planning

and recovery problems exhibit a variable structure permitting the formulation of the subproblem

as a network flow problem, or shortest path problem. Identifying this variable structure allows

the set of variables P r to be defined as the feasible solutions of a shortest path problem. The

shortest path problem used to solve (4.2) for the PTAP will be described using the notation

presented in Table 2.1.

The shortest path problem involves identifying a set of connections (i, j) to form a path

through the connection network C with a minimum cost. This is modelled by the decision

variables wrij that equal 1 to indicate that aircraft r uses connection (i, j) in a connected flight

route through the network and 0 otherwise. In the PTAP, an aircraft flight route may originate

and terminate at airports b ∈ B, representing the source and sink nodes of the network. For

each aircraft r a single source node, given by sr, is defined and the allowable sink nodes are all

b ∈ B. Using these definitions, the column generation subproblem for aircraft r is given by,

ĉr = min
∑

(i,j)∈C

crijw
r
ij−

∑

(i,j)∈C

βjw
r
ij − γr, (4.3)

s.t.
∑

i∈N
|(i,j∈C)

wrij ≤ 1 ∀j ∈ N, (4.4)

∑

j∈N
|(sr ,j∈C)

wrsrj = 1 ∀j ∈ N, (4.5)

∑

b∈B

∑

j∈N
|(i,b∈C)

wrib = 1 ∀i ∈ N, (4.6)

∑

i∈N∪{sr}
|(i,j∈C)

wrij −
∑

k∈N∪B
|(j,k∈C)

wrjk = 0 ∀j ∈ N, (4.7)

wrij ∈ {0, 1} ∀(i, j) ∈ C. (4.8)

The objective of (4.3)-(4.8) is to find the minimum reduced cost variable p ∈ P r. Constraints

(4.4) ensure that each flight is included at most once in flight string p. The origination and
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termination of the flight string is given by constraints (4.5) and (4.6) such that aircraft r

originates from sr and terminates at any b ∈ B respectively. Finally, constraints (4.7) ensure

that a connected flight route through the network is identified. Constraints (4.7) are called flow

balance constraints which force the number of incoming connections to each node to equal the

number of outgoing connections. The solution to (4.3)-(4.8) defines a sequence of arcs to form

a connected path from the source node to a sink node.

Given a feasible solution to the column generation subproblem, the flight string variable p

can be constructed by setting the parameters ajp by the following expression,

ajp =
∑

i∈N
|(i,j)∈C

wrij ∀j ∈ N. (4.9)

While the feasible region of the column generation subproblem describes all variables contained

in P r, it is not possible that the solution to this problem will identify a variable p ∈ P̄ r with

a negative reduced cost. This stems from the statement made previously where all variables

contained in the RMP have a reduced cost of crp ≥ 0. Therefore, only variables p ∈ P r\P̄ r will
be identified by the solution to the subproblem to add to the RMP.

Column generation is an iterative solution process that involves i) solving the RMP to

optimality to identify an upper bound on the original problem and the current optimal dual

solution, and ii) solving the subproblem to identify negative reduced cost columns to improve

upon this upper bound. This process continues until no further columns are identified by the

subproblem to add to the RMP, which is indicated by ĉr ≥ 0, ∀r ∈ R. Since the minimum

reduced cost variables for all aircraft are non-negative, this indicates that no further improve-

ment to the objective of the RMP can be made. Therefore, the current solution to the RMP is

the optimal solution to the original problem.

4.1.3 Solution algorithms

Since the column generation subproblem, given by (4.3)-(4.8), is defined as a mixed integer

program, improved efficiency in the solution process is achieved through the use of problem

specific algorithms. As mentioned previously, the subproblem for the PTAP is defined as a

network flow problem for which a number of solution algorithms have been developed. Examples

of the available solution algorithms for network flow problems are presented by Ahuja et al. [5].

The solution algorithms presented in this section are used throughout this thesis.
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Shortest path problem

The column generation subproblem, given by (4.3)-(4.8), is a shortest path problem solved by

a reaching algorithm. Such a reaching algorithm is described by Algorithm 4.1. A reaching

algorithm is a method of finding the shortest path by propagating the distance from the current

node to all connected nodes of a higher index value [5]. This algorithm is employed to solve

the column generation subproblems for the various models developed throughout this thesis.

The connection network that is used for the PTAP is an acyclic directed graph. This

network structure is common across airline planning and recovery problems. A benefit of this

network structure is that the nodes can be sorted in a topological order, where node i is ordered

before node j if ∃(i, j) ∈ C [5]. This ordering of the nodes aids in the development of efficient

solution algorithms since the shortest path to each node is found by examining each arc only

once. The complexity of such a solution algorithm is O(m), where m is the number of arcs in

the connection network.

The parameters and variables that are used to describe Algorithm 4.1 are introduced in

Table 4.1. Each of the nodes within the network are identified by the indices i and j, with the

arc connecting the two nodes labelled as (i, j). In the network for the PTAP there are multiple

source and sink nodes representing the overnight airports for aircraft. Since Algorithm 4.1 finds

the shortest path for a single aircraft, only one source node is considered and labelled −1 for

convenience. Also, the aircraft flight route is permitted to terminate at any overnight airport

in the network, so multiple sink nodes are considered in the algorithm.

There are two main variables in Algorithm 4.1 that are used to calculate the shortest path

through the network, dist(j) and prev(j). The variable dist(j) is used to store the distance

of the shortest path to node j and prev(j) stores the node i that immediately precedes node

j in that path. In the initialisation of Algorithm 4.1, the distance accumulated at the source

node is set to 0, i.e. dist(−1) ← 0, and since there are no nodes preceding the source, the

dist(j) is the distance stored at node j

dist(−1) is the distance stored at the source node, set to 0

prev(j) is the node, i, previous to node j in the shortest path to j, (i, j) ∈ C

prev(−1) is the previous node to the source node, set to −1

cost(i, j) is the cost of including connection (i, j) ∈ C in the shortest path

Table 4.1: Definitions for variables used in Algorithm 4.1.
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Algorithm 4.1 Algorithm to find the shortest path through an acyclic network

Finding the shortest distance

1: Set dist(−1)← 0 and prev(−1)← −1 for the source node,

2: set dist(i)←∞ and prev(i)← −2 for all nodes i ∈ N .

3: for all nodes, i, in the topologically sorted list do

4: for all nodes, j, such that (i, j) ∈ C do

5: Set tempDistance← dist(i) + cost(i, j).

6: if tempDistance < dist(j) then

7: Set dist(j)← tempDistance,

8: set prev(j)← i.

9: end if

10: end for

11: end for

Identifying the path with the shortest distance

12: Let i be the sink node for the shortest path.

13: while prev(i) is not the source node do

14: Add prev(i) to the shortest path,

15: set i← prev(i).

16: end while

previous node is set to prev(−1)← −1. For all other nodes in the network, the distance is set

to dist(j) ← ∞ and the previous node is arbitrarily assigned to prev(j) ← −2. The shortest

path from the source node to a sink node is given by a set of nodes j and a set of connections

(i, j). Using the cost for each connection (i, j), cost(i, j), the distance of the shortest path is

calculated as the sum of this cost for all connections that exist in the path.

The execution of Algorithm 4.1 involves processing of each node in the network and updating

the shortest path to any connected node if required. The processing of a node i calculates the

shortest path from i to each connected node j. This involves taking the distance stored at

the current node dist(i) and adding on the connection cost cost(i, j). If dist(j) > dist(i) +

cost(i, j), then the distance of the shortest path to node j must be updated, dist(j)← dist(i)+

cost(i, j). Additionally, the previous node in the shortest path to node j must also be updated
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to prev(j)← i.

The algorithm terminates when all nodes in the topologically sorted list have been processed,

indicating that all arcs have been examined. The shortest path is then found by identifying the

sink node where the minimum distance is stored. A path is made through the network from this

sink node back to the source by identifying the previous node stored in the variables prev(j).

The shortest path is constructed by appending node i = prev(j) to the path and iteratively

updating j ← i until the source node is reached.

Multi-label shortest path problem

Algorithm 4.1 can be extended to store multiple labels at each node in the network to track

resources in addition to cost. This is a required modification to solve the subproblem of crew

planning and recovery problems. The use of multiple labels for these problems arises from the

many resources that must be tracked through the network, such as flying and working hours

for crew, to satisfy the complex work rules. The labels allow for paths with a suboptimal

distance but a favourable resource consumption to be retained for further propagation through

the network. Examples of multi-label shortest path problems are presented by Desrochers and

Soumis [30] and Dumitrescu and Boland [32].

Alternative definitions for the parameters in Table 4.1 are given in Table 4.2 to introduce

an additional index to represent label l at node j. The multi-label shortest path problem

given by Algorithm 4.2 is described using the notation provided in Table 4.2. Algorithm 4.2 is

implemented in Chapters 8 and 9 to solve the column generation subproblem for the crew duty

recovery problem.

While a similar structure is observed in Algorithms 4.1 and 4.2, there are key differences

dist(j, l) is the distance to node j stored on label l

consum(m, j, l) is the consumption of resource m to node j stored on label l

prev(j, l) is the node, i, previous to node j in the shortest path to j stored on label l, (i, j) ∈ C

prevLabel(j, l)
is the label, k, extended from prev(j, l) to node j in the shortest path to j stored on

label l

use(m, i, j)
is the amount of resource m consumed by including connection (i, j) ∈ C in the

shortest path

maxLabels the maximum number of labels that can be stored at a node

Table 4.2: Definitions for variables used in Algorithm 4.2.
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Algorithm 4.2 Multi-label algorithm to find the shortest path through an acyclic network

Finding the shortest distance

1: Set dist(−1)← 0 and prev(−1)← −1 for the source node,

2: set dist(i, 0)←∞ and prev(i, 0)← −2 for all nodes i ∈ N .

3: for all nodes, i, in the topologically sorted list do

4: for all labels, k, stored at node i do

5: for all nodes, j, such that (i, j) ∈ C do

6: Set tempDistance← dist(i, k) + cost(i, j),

7: set tempConsum(m)← consum(m, i, k) + use(m, i, j), ∀m.

8: Create new label l,

9: set dist(j, l)← tempDistance and consum(m, j, l)← tempConsum(m), ∀m,

10: set prev(j, l)← i and prevLabel(j, l)← k.

11: Using a dominance condition, compare label l against currently stored labels.

12: Eliminate any currently stored labels which are dominated by l.

13: if label l either dominates or is not dominated by a currently stored label then

14: Add label l to the set of label at j, sorted by distance.

15: if the number of labels exceeds maxLabels then

16: Eliminate the label that has the greatest distance to node j.

17: end if

18: end if

19: end for

20: end for

21: end for

Identifying the path with the shortest distance

22: Let i be the sink node.

23: while prev(i, l) is not the source node do

24: Set j ← prev(i, l),

25: set l← prevLabel(i, l).

26: Add j to the shortest path.

27: Set i← j.

28: end while
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that affect the implementation. Firstly, line 4 in Algorithm 4.2 is added to iterate over all stored

labels at a node. It is important to note that while there is a maximum number of labels that can

be stored at each node, there need not be any more than one. Secondly, while the previous node

in the shortest path is recorded with the variables prev(j, l), it is also important to record the

label propagated from the previous node with the variable prevLabel(j, l). Finally, in addition

to updating the shortest distance at each node, Algorithm 4.2 also stores the consumption of

each resource m with the variables consum(m, j, l).

The complexity of the shortest path problem is significantly increased with the introduction

of multiple labels. Since multiple labels are employed to propagate suboptimal paths, a näıve

algorithmic approach is to store every path entering each node. The difficulty with this approach

is the enormous number potential paths through the network, each requiring an individual

label. This is addressed by a dominance condition to ensure that only Pareto optimal labels

are stored. The dominance condition described here is developed from the condition presented

by Desrochers and Soumis [30]. Using the crew duty recovery problem (CDRP) presented in

Section 3.1.2 as an example, the dominance condition that is implemented throughout this

thesis is detailed below.

In the CDRP there are numerous rules that dictate a feasible crew duty, most importantly

the number of flying and working hours. Thus, label l at node i stores the cost of the current

shortest path to the node, dist(i, l), the number of flying hours, consum(1, i, l), and the total

elapsed hours, consum(2, i, l). Using these variables, the following dominance condition is used

to identify the Pareto optimal labels.

Definition 4.1.1. (Dominance Condition)

Given two labels at node i, (dist(i, 1), consum(1, i, 1), consum(2, i, 1)) and

(dist(i, 2), consum(1, i, 2), consum(2, i, 2)), that are not equal. Label 1 dominates label 2 if

dist(i, 1) ≤ dist(i, 2), consum(1, i, 1) ≤ consum(1, i, 2) and consum(2, i, 1) ≤ consum(2, i, 2).

Using Definition 4.1.1, the dominance of any new label arriving at a node is evaluated

against all currently stored labels. The comparison between the new label and all currently

stored labels has three possible results. Firstly, if the new label dominates any stored label,

the dominated labels are removed from the node. Second, if the new label is dominated by any

stored label, then the new label is discarded. Finally, if no dominance is established between

the new label and the stored labels, then the new label is added to the list of labels stored at
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that node. For the first and third case, if the number of labels exceeds maxLabels, the label

that has the largest distance to the node is eliminated. It is important to note that if labels are

eliminated by the maxLabels condition, Algorithm 4.2 becomes a heuristic multi-label shortest

path algorithm. At the sink node, the label that achieves the lowest cost is selected and the

resulting path is the minimum reduced cost path.

The algorithms presented in this section are simple approaches that efficiently solve network

flow problems. Given that the algorithms require a topological ordering of the nodes in the as-

sociated network graph, this indicates a strong compatibility with airline planning and recovery

problems. While Algorithms 4.1 and 4.2 have been presented with an application to the PTAP

and CDRP respectively, this does not represent a limitation to their use. It is possible to apply

Algorithm 4.1 and 4.2 to any shortest path problem on a network with a topologically ordered

set of nodes. Examples of such applications are presented in Chapters 5, 6, 8 and 9.

4.2 Benders’ Decomposition

Benders’ decomposition is a solution approach originally proposed to solve mixed-integer pro-

gramming problems [16]. This decomposition approach is effective in reducing the complexity

of mixed-integer programs that display a block diagonal constraint matrix. The application of

Benders’ decomposition constructs multiple independent problem with subsets of variables and

constraints. The partitioning of the block diagonal structure results in a set of independent

subproblems that are more efficiently solved in isolation than as a whole. Benders’ decomposi-

tion is employed to partition the planning and evaluation stages of the recoverable robustness

framework implemented in Chapters 5 and 6.

The typical form of a problem that Benders’ decomposition can be applied to is given by,

(P)

min cTx+
∑

s∈S

αsfTs y
s, (4.10)

s.t. Ax = b, (4.11)

Bx+Dsy
s = ds ∀s ∈ S, (4.12)

x ≥ 0, ys ≥ 0 ∀s ∈ S. (4.13)

The problem P is defined by two variable types, x and ys, which are labelled as the first-stage

and second-stage decision variables respectively. Also, there are two distinct sets of constraints,

constraints (4.11) which only contain the variables x and constraints (4.12) which provide the
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link between the first and second-stage decision variables.

The benefit of Benders’ decomposition is that a master problem (BMP) is formulated to

contain only the x variables and constraints (4.11). The resulting BMP is much less complex

than the original problem and hence it is easier to solve. The BMP describes a relaxation of the

original problem that is tightened through the addition of cuts, generated from the solutions to

a series of independent subproblems. This introduces an iterative process between solving the

master problem and using this solution to solve subproblems to identify cuts.

The primal Benders’ subproblem for scenario s (PBSP-s) is formulated with the second-

stage decision variables and constraints (4.12). This decomposition reduces the complexity of

the original problem by fixing the values of the first-stage decision variables in the PBSP-s to

the current solution of the BMP, x̄. As a result, solving each individual PBSP-s in isolation

is much simpler than solving all subproblems simultaneously in the original formulation. The

decomposition of problem P into the BMP and the PBSP-s is given by,

BMP PBSP-s

min cTx+
∑

s∈S

αsϕs, (4.14)

s.t. Ax = b, (4.15)

(pis)
T (ds −Bx) ≤ ϕs ∀i, s (4.16)

(wis)
T (ds −Bx) ≤ 0 ∀i, s (4.17)

x ≥ 0. (4.18)

µs(x̄) = min fTs y
s, (4.19)

s.t. Dsy
s = ds −Bx̄, (4.20)

ys ≥ 0. (4.21)

Since the BMP is formulated without any reference to the second-stage variables, cuts are

added to reflect the second-stage decisions made in the PBSP-s. The constraints (4.16) and

(4.17) represent the optimality and feasibility cuts which are generated from the solution to the

PBSP-s. Also, the set of variables, ϕs, are included in the BMP to provide a lower bound on

the optimal objective value of the PBSP-s, µs(x̄), for each scenario s.

The PBSP-s is solved using a fixed solution to the BMP, as such the feasibility of the PBSP-

s is not guaranteed. If the PBSP-s is proved to be infeasible, this results in an unbounded dual

problem, hence a dual ray, (wis)
T , can be identified to construct a feasibility cut. The addition

of a feasibility cut to the BMP “cuts-off” the solution, x̄, that caused the infeasibility in the

PBSP-s. If the PBSP-s is feasible, the optimal solution to the subproblem provides an extreme

point, (pis)
T , in the dual feasible region which is used to construct an optimality cut.
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The feasibility cuts are added to the BMP whenever the PBSP-s is infeasible, while the

optimality cuts are only added if an optimality condition is violated. If µs(x̄) > ϕ̄s, then the

addition of a cut generated using the optimal dual solution to the PBSP-s, (pis)
T , will tighten

the current relaxation of the BMP. If µs(x̄) ≤ ϕ̄s, then solving the PBSP-s with the current

solution to the BMP achieves the minimum objective value for subproblem s. This indicates

that the addition of an optimality cut is not required in the current iteration. If the optimality

condition for subproblem s∗ is satisfied in the current iteration, this does not indicate that no

further cuts are required from this subproblem for the remainder of the solution process. As

the relaxation of the BMP is tightened, it is possible that the minimum objective value for

subproblem s∗ may not be achieved with each solution x̄. Hence, the optimality condition must

be checked for each subproblem s ∈ S in every iteration. If the optimality condition for all

scenarios is satisfied in the one iteration, i.e. µs(x̄) ≤ ϕ̄s, ∀s ∈ S, then the current solution to

the BMP is the optimal solution to the original problem.

Benders’ decomposition is described in this section with a focus on stochastic programming

problems. The concept of recoverable robustness shares many characteristics with stochastic

programs, as such there are solution methods that are common between the two. The recover-

able robustness framework solves a planning stage problem which is evaluated against a set of

disruption scenarios by solving a recovery problem. Comparing this concept to problem P, the

planning stage decision are given by the variables x and the recovery decisions for each disrup-

tion scenario s are given by the variables ys. The implementation of Benders’ decomposition

for the recoverable robustness framework, including a number of enhancement techniques, is

described in Chapters 5 and 6.

4.3 Branch-and-Price

Branch-and-bound is a general solution algorithm that is applied to integer programming prob-

lems to find the optimal integer solution. The algorithm is most simply described by two key

stages i) the branching stage, which enumerates the feasible region by restricting the bounds

of integer variables, and ii) the bounding stage, which defines upper and lower bounds on the

optimal solution. This process forms a sequence of increasingly restrictive subproblems that

attempt to more closely represent the convex hull of the feasible region. The use of bounding

truncates the search of these subproblems based upon the best found upper and lower bounds.
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Branch-and-bound can be used as an exact solution approach, since, in the absence of bounding,

the complete enumeration of the feasible region will identify the optimal integer solution.

Identifying the optimal solution to an integer program does not require the complete enu-

meration of the feasible region if the LP relaxation can be defined. The branch-and-bound

algorithm begins by solving the LP relaxation of the original problem to identify a lower bound

on the optimal integer solution. The node that represents the LP relaxation of the original

problem formulation is called the root node of the branch-and-bound tree. Using the solution

to the LP relaxation at the root node, a fractional integer variable, z̄ = a, a /∈ Z, is selected and

subproblems are created by setting the bounds z̄ ≤ ⌊a⌋ and z̄ ≥ ⌈a⌉ on the left and right branch

respectively. This branching stage partitions the feasible region into smaller subproblems, elim-

inating the solution that caused the fractionality of z̄. The LP relaxation of each subproblem

is then solved and if any fractional integer variables exist, further branching is performed.

The bounding stage defines the best upper U and lower L bounds identified in the branch-

and-bound tree. At the root node, U is set to the best feasible integer solution, generally

identified using a heuristic such as the simple rounding of the fractional variables, and L is

set to the objective value of the LP relaxation. Since each branch defines a restriction on

the original problem, the lower bound at the current node l, given by the solution to the LP

relaxation, must be at least as large as the bounds identified at preceding nodes. Heuristic

approaches attempt to find a feasible integer solution at each node to identify the local upper

bound u, if u exists and u < U the global upper bound is updated to U = u. If the LP relaxation

of a subproblem is infeasible, or l > U indicating that the best integer solution at that node

will be greater than U , then the node is deleted and that branch is no longer propagated.

Branch-and-bound is an iterative process that continues to partition the feasible region

until no further branching is possible or a stopping condition is met. If no further branches

are possible, then the optimal integer solution is given by a leaf node in the branch-and-

bound tree. While this process guarantees that the optimal integer solution is found, it is

very time consuming and more efficient approaches are preferred. Considering the best found

upper and lower bounds, it is possible to define a stopping condition to guarantee integer

optimality without the complete enumeration of the branch-and-bound tree. If U = L, then

the integer solution that gives U is the optimal solution for the original problem. Alternatively,

an optimality gap, ǫ, can be defined as part of the stopping criteria, terminating the branch-

and-bound process if (U −L)/L < ǫ. The optimality gap is a useful approach to terminate the
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solution process early while achieving near optimal solutions.

In the branch-and-bound process, the solution to the LP relaxation at each node in the

tree is used to partition the feasible region, eliminating any fractional solutions. This process

becomes more complicated when the LP relaxation is solved by column generation since the

optimal LP solution is found using only a subset all possible variables. At the termination

of the column generation solution approach, the variables added to solve the LP relaxation

to optimality may not include the variables necessary to identify the optimal integer solution.

Consequently, branching only on the variables contained in the RMP at the root node may result

in suboptimal, or even infeasible, solutions to the integer program. The solution algorithm

of branch-and-price [15, 90] has been developed to alleviate this difficulty by solving the LP

relaxation at each node in the branch-and-bound tree with column generation. This ensures

that the variables required in the integer optimal solution are generated during the branch-

and-bound process. In the branch-and-price algorithm, the variables may be generated either

locally or globally, however the branching decisions from each preceding node must be observed.

Column generation is employed in all models developed throughout this thesis, hence branch-

and-price is necessary to identify the integer optimal solutions.

4.3.1 Constraint branching

The branch-and-bound algorithm described above introduces the concept of branching on vari-

ables, i.e. eliminating fractional solutions by restricting the variable bounds. However, this is

not an effective method of branching for branch-and-price. With variable branching, any bound

restrictions are potentially made redundant by the generation of new variables with identical

decisions at subsequent nodes in the tree. This is particularly evident in airline planning and

recovery problems, formulated using flight strings in a set partitioning framework, which are

classically modelled using binary variables. For a fractional binary variable z̄, the branching

decisions involve setting z̄ = 0 on the left branch and z̄ = 1 on the right. Since the binary vari-

ables in airline problems represent flight strings, setting a fractional variable to zero does not

preclude the related flight string from being regenerated in subsequent nodes and entering the

problem. As such, the left branch would be redundant and results in an ineffective enumeration

of the feasible region. A method used to address this situation is to form branches based upon

the information derived from the problem constraints. This branching technique is introduced

by Ryan and Foster [76] for transportation problems and is termed constraint branching.
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In the airline context, Barnhart et al. [12] introduces the constraint branching technique of

follow-on branching. Follow-on branching involves identifying two flight coverage constraints

that are satisfied by more than one basic variable. For example, in the PTAP this occurs if there

exists two variables with non-zero solutions representing flight strings p, q where arip = ariq =

arjp = 1, arjq = 0 and aripy
r
p + ariqy

r
q = 1. The flight pair to branch on is identified by searching

over the set of fractional variables to find the most fractional flight connection (i∗, j∗). The

two branches are formed by imposing restrictions on the permissible flight strings in the each

of the subproblems. For the left branch, all flight strings p, current or generated, must include

the flight connection (i∗, j∗) ∈ p if the flights i∗ or j∗ are contained in p. On the right branch,

all flight strings p must not use the identified connection, (i∗, j∗) /∈ p. However on the right

branch it is not a requirement that the flights i∗ and j∗ do not exist on the same string for that

aircraft, so (i∗, k) ∈ p, k ∈ N and (l, j∗) ∈ p, l ∈ N where k 6= j∗ and l 6= i∗ is permissible. This

form of branching is demonstrated to produce a more balanced branch-and-bound tree while

preserving the structure of the column generation subproblems [15].

4.4 Summary

Three fundamental solution methods were presented in this chapter, column generation, Ben-

ders’ decomposition and branch-and-price. These three solution methods are employed through-

out this thesis, with various enhancement techniques identified in each chapter. Column gener-

ation is applied to solve each of the problems developed in this thesis. This solution approach

is extended in Chapter 7, with the development of a general framework for column-and-row

generation. Both column generation and column-and-row generation are used to solve the in-

tegrated airline recovery problems in Chapters 8 and 9. Benders’ decomposition is employed to

improve the tractability of the recoverable robustness framework employed in Chapters 5 and

6. A number of enhancement techniques for the Benders’ decomposition solution process are

identified in each application of this approach. In addition, the general framework developed for

column-and-row generation presented in Chapter 7 is a direct alternative to Benders’ decom-

position. Finally, branch-and-price, implemented with the follow-on branching rule presented

in Section 4.3.1, is used to solve each problem considered in this thesis to integral optimality.

To improve the convergence of the branch-and-price algorithm, a number of problem specific

branching rules are developed.



Chapter 5

Recoverable Robust Tail Assignment

Problem

The high cost associated with airline recovery has driven an interest in the development of

planned solutions that are less susceptible to disruptions. Chapter 2 outlines a number of

approaches that have been used to achieve this objective, under the concepts of robust and

recoverable airline planning. These approaches are grouped into two broad categories, proxy

and feedback robustness, which describe the model formulation and solution methods. In this

chapter the recoverable robust tail assignment problem (RRTAP) is presented as an example

of a feedback robust approach for improving recoverability.

As stated in Chapter 1, recoverability is a measure of the amount of intervention required

by an airline to return operations back to plan following a disruptive event. A characteristic of

airline planning problems attempting to improve recoverability is the explicit consideration of

the possible recovery actions available to an airline. This is demonstrated in the proxy robust

approaches of Ageeva [4], Eggenberg [34] and Kang [51] and the feedback robust approach

of Yen and Birge [99]. The proxy robust approaches focus on specific characteristics of the

planned solution that are expected to improve recoverability, such as increasing the prevalence

of aircraft swapping opportunities. Unfortunately, by the nature of proxy robustness there is

no evaluation of the improved recoverability of the planned solution during the optimisation

process. By contrast, the feedback robust approach of Yen and Birge [99] is developed as a

stochastic program to explicitly evaluate the recoverability of the planned crew pairing solution.

However, the evaluation of the crew pairing solution is performed with only a limited set of

63
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recovery policies, greatly inflating the impact of the simulated disruptions. Each of these

approaches are limited in their ability to improve the recoverability of the planned solution.

The RRTAP is a feedback robust approach that evaluates the recoverability of the planned

stage solution against a set of disruption scenarios during the solution process. The planning

and recovery tail assignment problems presented in Chapters 2 and 3 respectively, are integrated

in the formulation of the RRTAP. The contributions of this chapter are:

1. the use of the full set of recovery policies in the subproblems that evaluate the recover-

ability of the planned solution,

2. to the best of the author’s knowledge, this is the first application of recoverable robustness

to airline planning problems.

The use of a full set of recovery policies extends [99] by considering flight cancellations and

aircraft rerouting. This feature also extends the proxy robust approaches by providing an eval-

uation stage during the optimisation process. In addition, the recoverable robustness framework

presented by Liebchen et al. [57] is applied to timetable recovery for railways, hence the recov-

ery policies are limited to delay and cancellation decisions. The nature of the tail assignment

problem permits a larger set of recovery policies than [57], as such the RRTAP provides a con-

tribution to the recoverable robustness framework. Modelling the evaluation stage with a full

set of recovery policies accurately simulates the actions taken by the operations control centre

following a disruption to produce the highest quality feedback.

The recoverable robustness framework presented by Liebchen et al. [57] attempts to identify

a planned solution that is recoverable in limited effort. The definition of limited effort is problem

specific, however it is closely related to the concept of recoverability. For the RRTAP, limited

effort is defined by two different features of the recovery process i) the number of changes from

the planned solution that are required during recovery and ii) the total recovery cost. While

the lowest recovery cost is ideal, the number of changes required by an airline to achieve this

cost must also be small. By assigning a cost to each change from the planned solution, the

weighted sum of the recovery and change costs effectively models the trade-off between these

two features in the RRTAP.

The mathematical model of the RRTAP will be presented in Section 5.1. This section will

describe the model notation and formulation of the planning and recovery tail assignment prob-

lems in the RRTAP. The RRTAP describes a very large and complex mixed integer program,
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requiring the use of sophisticated techniques to develop an efficient solution approach. The

relevant solution methods employed for the RRTAP are detailed in Section 5.2. The recov-

erability of the RRTAP is evaluated against a set of disruption scenarios and a comparison

against a representative proxy robust model is provided in Section 5.3. To provide a greater

understanding of the solution approach used for the RRTAP, the effect various enhancement

techniques and different parameter values has on the recoverability and runtimes is presented

in this section. A summary of the results and the conclusions drawn are presented in Section

5.4. The work presented in this chapter appears in the publication of Froyland, Maher and

Wu [40].

5.1 Recoverable Robust Tail Assignment Problem

We define the tail assignment problem as the task of assigning routes to individual aircraft,

ensuring that all flights in the schedule are serviced while maintaining operational constraints.

The RRTAP solves the planning and recovery tail assignment problems simultaneously in a

stochastic programming framework to improve the recoverability of the planned solution. To

accurately model the recovery problem, the RRTAP employs a full set of recovery options

along with estimations of the actual costs. In addition, the planning tail assignment problem is

generally modelled as a feasibility problem, which results in a large number of feasible solutions.

Therefore, the use of the RRTAP improves the expected recovery costs of the planned solution

without any additional planning costs.

The tail assignment problem for the RRTAP has been developed using a flight string formu-

lation introduced by Barnhart et al. [12]. The notation presented in Tables 5.1 and 5.2 is used

to describe the planning and recovery stages in the RRTAP. The notation that is consistent

between the RRTAP and the planning (PTAP) and recovery (RTAP) tail assignment problems

is also presented here to provide a clear description of the model. A superscript s denotes the

components of the model that relate to the evaluation stage and the disruption scenario s which

they belong to, where s ∈ S.
The flight schedule N used in the RRTAP is defined in the same way as for the PTAP in

Section 2.1.1. In addition, the definition of a feasible connection presented in Section 2.1.1 is

used to construct the set C. In the RRTAP, a flight string, or flight route, p is defined as a

sequence of connected flights to be operated by one aircraft r. The decision variables yrp and
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S is the set of all scenarios s

R is the set of all aircraft r

B is the set of airports b where aircraft flight strings can originate and terminate

P r
is the set of all flight strings p for aircraft r, the optimal planning variables

P sr
is the set of all flight strings p for aircraft r in scenario s, the recovery variables

N is the set of all flights j

Ns−pre
is the set of flights j that depart before the first disrupted flight in scenario s

Ns−post
is the set of flights j that depart after the first disrupted flight in scenario s

C is the set of all feasible connections in the network, C = {(i, j)|i, j ∈ N ∪B}

Table 5.1: Sets used in the RRTAP.

ysrp equal 1 when flight string p is operated by aircraft r in the planning and evaluation stages

respectively. The cost of using flight route p for aircraft r is given by crp and c
sr
p in the planning

and evaluation stages respectively. The cost of a flight route in the planning stage is dependent

on the length of the connections contained in that route. In the evaluation stage, the cost of a

flight route is defined by the amount of delay on flights contained in the string. In the model

constraints, the parameters ajp and asjp are the coefficients of the decision variables, yrp and

ysrp respectively, that capture whether flight j is included in string p. In addition to describing

a set of connected flights, the flight string also indicates end-of-day locations. All end-of-day

locations b, described as aircraft bases or overnight airports, used in the model are contained

in the set B. The parameters obp and osbp equal 1 if flight string p terminates at base b in the

planning and evaluation stages respectively. The RRTAP is solved for a single day schedule, so

to maintain feasibility for the following days’ schedule we enforce a minimum number of aircraft

to terminate at each end-of-day location b through the parameter Mb. The sequence of flights

and the end-of-day location described by a flight string represents a column in the constraint

matrix.

As explained in Section 2.1.1, the tail assignment problem is the task of assigning flight

routes or strings to each individual aircraft. Treating each aircraft individually in this problem

requires an explicit definition of all aircraft r contained in the set R. The set R contains all

aircraft used in the model, and this is the same set used in the planning and evaluation stages.

We generate individual strings for each aircraft r, and the strings generated for the planning

and evaluation stages are contained in the sets P r and P sr respectively. As a result we treat
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yrp = 1 if aircraft r uses flight string p, 0 otherwise

crp = the cost of aircraft r using flight string p

ajp = 1 if flight j is in string p, 0 otherwise

obp = 1 if string p terminates at airport b, 0 otherwise

ysrp = 1 if aircraft r uses flight string p in scenario s, 0 otherwise

csrp
= the cost of aircraft r using string p in scenario s, this includes the cost of any delayed

flights on that string

asjp = 1 if flight j is in string p in scenario s, 0 otherwise

osbp = 1 if string p terminates at airport b in scenario s, 0 otherwise

zsj = 1 if the flight j is cancelled in scenario s, 0 otherwise

dj = the cost of cancelling flight j

ǫs+jr ,ǫ
s−
jr



































































ǫ
s+
jr = 1, ǫs−jr = 0

if flight j is assigned to aircraft r for the planning

stage but not for recovery in scenario s

ǫ
s+
jr = 0, ǫs−jr = 1

if flight j is assigned to aircraft r for for recovery

in scenario s but not for the planning stage

ǫ
s+
jr = 0, ǫs−jr = 0

if flight j is not assigned to aircraft r in both

the planning stage and recovery in scenario s

gSW
weight applied to ǫs−jr in the objective function, the swap cost

ws
weight for each scenario in the objective function

Mb is the minimum number of aircraft required to start the following days flying from base b

Table 5.2: Variables used in the RRTAP.
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the sets P r and P sr for all aircraft r as disjoint.

In the formulation of the recovery tail assignment problem we implement the recovery

techniques of flight delays and cancellations while also allowing aircraft rerouting. The technique

of modelling flight delays with flight copies is presented in Section 3.1.1, which is implemented

for the RRTAP. Flight cancellations are included in the model through the additional variables

zsj , that equal 1 if flight j is cancelled in scenario s, contributing a cost of dj to the objective.

The addition of the cancellation variables allows the decision of an aircraft either operating or

cancelling a flight in the recovery problem.

Since we are attempting to simulate the recovery process while finding the planned solution,

it is important to enforce non-anticipativity. All of the flights j in this model are contained

in the set N , and to model non-anticipativity we define two partitions of this set, N s−pre and

N s−post, N = N s−pre ∪ N s−post. The sets N s−pre and N s−post include all of the flights that

depart before and after the first disrupted flight in scenario s respectively.

A key feature of the recoverable robustness framework is the objective to find a planned

solution that is recoverable in limited effort. In the RRTAP, limited effort is defined in two

parts, minimising the number of deviations from the planned solution during recovery and the

lowest cost recovery solution. To reduce the number of deviations, any difference between the

planned and recovered flight routes assigned to an individual aircraft is penalised using the

variables ǫs+jr and ǫs−jr . In the objective function, the swap cost gSW is applied for every flight

j that is added to the planned route for aircraft r in the recovered solution for scenario s,

indicated by ǫs+jr = 0 and ǫs−jr = 1. It is possible to add and remove flights from an aircraft’s

planned route, however removing a flight is penalised through either cancellation or adding it

to another route. The second part of the limited effort definition in the RRTAP is the attempt

to find a planned solution with the lowest expected recovery cost. As stated at the start of this

section, we will be using actual costs for the delay and cancellation of flights in the recovery

scenarios.

The objective of minimal deviation is similar to that presented by Thengvall et al. [87]. In

the RRTAP the recovery model includes constraints in the column generation master problem to

track the amount of deviation from the planned solution. This differs from the model presented

in Thengvall et al. [87] where the deviation from the planned solution is restricted through

arc constraints in the column generation subproblem. The objective of Thengvall et al. [87]

is to maintain the use of the planned connections in recovery, whereas our model attempts to
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maintain the same flights for each aircraft.

The recoverable robust tail assignment problem is formulated to simultaneously solve the

planning and recovery problems in the one model. We describe the RRTAP as follows,

(RRTAP)

min
∑

r∈R

∑

p∈P r

crpy
r
p +

∑

s∈S

ws

{

∑

r∈R

∑

p∈P sr

csrp y
sr
p +

∑

j∈N

djz
s
j +

∑

r∈R

∑

j∈N

gSW ǫs−jr

}

, (5.1)

s.t.
∑

r∈R

∑

p∈P r

ajpy
r
p = 1 ∀j ∈ N, (5.2)

∑

p∈P r

yrp ≤ 1 ∀r ∈ R, (5.3)

∑

r∈R

∑

p∈P r

obpy
r
p ≥Mb ∀b ∈ B, (5.4)

∑

r∈R

∑

p∈P sr

asjpy
sr
p + zsj = 1 ∀s ∈ S, ∀j ∈ N, (5.5)

∑

p∈P sr

ysrp ≤ 1 ∀s ∈ S, ∀r ∈ R, (5.6)

∑

r∈R

∑

p∈P sr

osbpy
sr
p ≥Mb ∀s ∈ S, ∀b ∈ B, (5.7)

∑

p∈P r

ajpy
r
p −

∑

p∈P sr

asjpy
sr
p = 0 ∀s ∈ S, ∀r ∈ R, ∀j ∈ N s−pre, (5.8)

∑

p∈P r

ajpy
r
p −

∑

p∈P sr

asjpy
sr
p = ǫs+jr − ǫs−jr ∀s ∈ S, ∀r ∈ R, ∀j ∈ N s−post, (5.9)

yrp ∈ {0, 1} ∀r ∈ R, ∀p ∈ P r, (5.10)

ysrp ∈ {0, 1} ∀s ∈ S, ∀r ∈ R, ∀p ∈ P sr, (5.11)

zsj ∈ {0, 1} ∀s ∈ S, ∀j ∈ N, (5.12)

ǫs+jr ≥ 0, ǫs−jr ≥ 0 ∀s ∈ S, ∀r ∈ R, ∀j ∈ N. (5.13)

The planning tail assignment problem is described by constraints (5.2)-(5.4) and (5.10). Sim-

ilarly the recovery tail assignment problem is described by constraints (5.5)-(5.7) and (5.11)-

(5.12) for each scenario s. The constraints (5.8)-(5.9) are used to track any deviation between

the planning and recovery tail assignment problem variables.

The objective function (5.1) minimises the cost of the planning tail assignment and the

expected cost of recovery from all scenarios, weighted by ws, with a penalty for each flight

change, gSW . Flight coverage in the planning stage is enforced through constraints (5.2) and in

the evaluation stage through constraints (5.5) with an additional variable, zsj , to allow for flight
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cancellations. The restriction on the number of available aircraft is described in constraints

(5.3) and (5.6) for the planning and evaluation stages. Also, constraints (5.4) and (5.7) ensure

the required number of aircraft are positioned at each airport at the end of the day to begin

the next days flying in the planning and evaluation stages. The set of constraints (5.8) are

the non-anticipativity constraints ensuring that each aircraft r is assigned to the same flights

in both the planning and evaluation stages up to the first disrupted flight for each scenario

s. Since all scenarios are known ahead of time we require these constraints to reflect decisions

that would be made by the airline operations control centre in the event of a disruption. After,

and including, the first disrupted flight, constraints (5.9) are used to count any deviation in the

flight strings assigned to each aircraft for planning and recovery variables in absolute terms.

In the objective function we only include the variable ǫs−jr , which represents whether flight j is

added to the recovered flight route of aircraft r. Since the RRTAP is a minimisation problem,

the optimal solution requires ǫs+jr and ǫs−jr to be tightly constrained at the lower bound, which

is defined by constraints (5.9) or (5.13). Now the lower bound of (5.13) is dominated by (5.9)

when the left hand side is greater than zero, which is at most 1. Therefore, the values of ǫs+jr

and ǫs−jr will be at most 1 in the optimal solution of the RRTAP.

5.2 Solution Methodology

The RRTAP is a large scale optimisation problem that simultaneously solves the planning and

recovery tail assignment problems. The resulting näıve formulation of the RRTAP is a very

large and intractable problem, requiring decomposition and enhancement techniques to improve

the solution runtime. A key feature of our solution methodology is to integrate the techniques of

Benders’ decomposition and column generation, shown to be very effective in solving integrated

airline planning problems [27, 63, 69].

Since the RRTAP is similar in structure to a stochastic program, when decomposed by

Benders’ decomposition, each of the recovery scenarios form an individual subproblem. This

technique moves the difficult constraints, equations (5.8)-(5.9), to the subproblem, and by fixing

the planning variables from the master problem, the individual recovery problems are solved

more efficiently.

The planning master problem can take any form since the only connection between it and

the subproblems is the assignment of flights to aircraft, which is the main objective of the tail
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assignment problem. This is also true for the recovery subproblems, where a variety of simple or

complicated recovery policies can be used. By having the recovery problem defining individual

subproblems, it is even possible to use heuristic recovery techniques in an attempt to improve

the runtime of the RRTAP.

In the implementation of Benders’ decomposition, further techniques can be used to acceler-

ate the convergence of this method. Such techniques include the Magnanti-Wong method [60],

the independent Magnanti-Wong method [68] and local branching [71]; here we employ the

Magnanti-Wong method [60]. To attain an integral solution we require the use of branch-and-

price and in our implementation we have contributed new, and modified existing, branching

rules for use with the tail assignment problem. By identifying specific structures in our problem,

we are able to exploit this through branching rules to enhance the branch-and-price process.

In the next sections we will describe how we applied the techniques of Benders’ decomposi-

tion and column generation to the RRTAP and the various enhancement techniques developed.

5.2.1 Benders’ decomposition

The RRTAP displays the necessary characteristics to apply Benders’ decomposition. The gen-

eral form of such problems is presented by P in Section 4.2, which contain first and second-stage

variables that are linked through a set of complicating constraints. Comparing the RRTAP to

P, the variables yrp are equivalent to variables x, and the scenario variables ysrp can be likened to

the variables ys. As such, the general application of Benders’ decomposition provided in Section

4.2 can be employed for the RRTAP. This section will discuss in detail the implementation of

the Benders’ decomposition solution process using the notation presented in Table 5.3.

The decomposition for this problem is clear given the distinct separation of variables,

ysrp , z
s
j , ǫ

s+
jr and ǫs−jr , between each of the recovery scenarios, s ∈ S. The primal Benders’

Φ is the objective function value of the Benders’ master problem (BMP)

ϕs
the decision variable added to the BMP. This variable is the lower bound on the optimal

objective value for the PBSP-s, ∀s ∈ S

ȳ is the optimal solution for the planning variables in the BMP for the current iteration

µs(ȳ) is the objective function value for the PBSP-s for a fixed planning stage solution ȳ, ∀s ∈ S

Ωs
the set of all Benders’ optimality cuts ω for scenario s added to the BMP

Table 5.3: Additional notation for the Benders’ decomposition model.



5. RECOVERABLE ROBUST TAIL ASSIGNMENT PROBLEM 72

subproblems (PBSP-s) created for each scenario s include these variables and the constraints

(5.5)-(5.9). Only of the planning variables, yrp, ∀r ∈ R, ∀p ∈ P r and the constraints (5.2)-(5.4)

are included in the Benders’ decomposition master problem (BMP).

The solution to the BMP defines the best possible planning solution given the current

realised evaluation information, which is given by ȳ = {ȳrp, ∀r ∈ R, ∀p ∈ P r|ȳrp = 1}. Each

subproblem, PBSP-s, finds an optimal recovery strategy for a given set of optimal planning

variables ȳ and a particular disruption scenario s.

The primal Benders’ decomposition subproblem for scenario s is described by,

(PBSP-s)

µs(ȳ) = min
∑

r∈R

∑

p∈P sr

csrp y
sr
p +

∑

j∈N

djz
s
j +

∑

r∈R

∑

j∈N

gSW ǫs−jr , (5.14)

s.t.
∑

r∈R

∑

p∈P sr

asjpy
sr
p + zsj = 1 ∀j ∈ N, (5.15)

∑

p∈P sr

ysrp ≤ 1 ∀r ∈ R, (5.16)

∑

r∈R

∑

p∈P sr

osbpy
sr
p ≥Mb ∀b ∈ B, (5.17)

∑

p∈P sr

asjpy
sr
p =

∑

p∈P r

ajpȳ
r
p ∀r ∈ R, ∀j ∈ N s−pre, (5.18)

∑

p∈P sr

asjpy
sr
p + ǫs+jr − ǫs−jr =

∑

p∈P r

ajpȳ
r
p ∀r ∈ R, ∀j ∈ N s−post, (5.19)

ysrp ≥ 0 ∀r ∈ R, ∀p ∈ P sr, (5.20)

zsj ≥ 0 ∀j ∈ N, (5.21)

ǫs+jr ≥ 0, ǫs−jr ≥ 0 ∀r ∈ R, ∀j ∈ N. (5.22)

To ensure that PBSP-s is always feasible, an initial set of strings, p′ ∈ P sr, are generated by

replicating the routes from the optimal master problem variables, ȳ. The initial set of strings is

constructed by setting ajp′ ȳ
r
p′ = asjp′y

sr
p′ , ∀j ∈ N s−pre, ∀r ∈ R, ∀p′ ∈ P r. This satisfies the cover

constraints (5.15), since we are able to set zsj = 1, ∀j ∈ N s−post, and the non-anticipativity

constraints (5.18).

We define the dual variables as βs = {βsj |∀j ∈ N}, γs = {γsr|∀r ∈ R}, λs = {λsb|∀b ∈ B},
and δs = {δsrj |∀r ∈ R, ∀j ∈ N} for the constraints (5.15), (5.16), (5.17), and (5.18)-(5.19)

respectively. For each scenario s, after solving PBSP-s a Benders’ cut is generated from the

dual solutions of (5.15)-(5.19). The resulting Benders’ optimality cut generated from a single
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iteration of the Benders’ decomposition algorithm is defined as,

ϕs ≥
∑

j∈N

βsj +
∑

r∈R

γsr +
∑

b∈B

λsbMb +
∑

r∈R

∑

j∈N

∑

p∈P r

δsrj ajpy
r
p. (5.23)

For a fixed ȳ, the right hand side of the Benders’ optimality cut, equation (5.23), is the objective

function value for the dual of PBSP-s. The dual solutions of (5.15)-(5.19) express an extreme

point of the dual problem of PBSP-s. The initial columns generated for each subproblem ensure

that PBSP-s is always feasible and hence only optimality cuts, of the form given by equation

(5.23), are required to be added to the BMP.

To apply the Benders’ cuts from the PBSP-s to the BMP an additional decision variable ϕs

must be added to the master problem objective function. The value of ϕs in the solution of the

BMP provides the current lower bound of the objective function for the PBSP-s in the master

problem, constrained by the added cuts. In the solution process of the Benders’ decomposition

scheme we introduce the set Ωs, which contains all Benders’ cuts ω for scenario s. Each Benders’

cut ω is defined by the dual variables βωs, γωs, λωs and δωs from the PBSP-s for disruption

scenario s. The Benders’ decomposition master problem (BMP) is given by,

(BMP)

Φ = min
∑

r∈R

∑

p∈P r

crpy
r
p +

∑

s∈S

wsϕs, (5.24)

s.t.
∑

r∈R

∑

p∈P r

ajpy
r
p = 1 ∀j ∈ N, (5.25)

∑

p∈P r

yrp ≤ 1 ∀r ∈ R, (5.26)

∑

r∈R

∑

p∈P r

obpy
r
p ≥Mb ∀b ∈ B, (5.27)

ϕs −
∑

r∈R

∑

j∈N

∑

p∈P r

δωsrj ajpy
r
p ≥

∑

j∈N

βωsj +
∑

r∈R

γωsr +
∑

b∈B

λωsb Mb

∀s ∈ S, ∀ω ∈ Ωs, (5.28)

yrp ∈ Z
+ ∀r ∈ R, ∀p ∈ P r, (5.29)

ϕs ≥ 0 ∀s ∈ S. (5.30)

The Benders’ decomposition solution process is performed by solving the BMP and then with

the optimal planning solution, ȳ, checking PBSP-s for each scenario s for any improvement

cuts. For a given iteration n, the lower bound of PBSP-s for each scenario s is provided by

the value of ϕsn in the solution to BMP and the upper bound is given by µs(ȳn). In Section

4.2, the condition for adding a cut from scenario s in iteration n is given by µ(ȳn) > ϕsn, which
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is a very strict stopping condition. To relax this condition, the addition of cuts to the BMP

from scenario s in iteration n is given by the gap between the upper and lower bounds of the

PBSP-s, µ(ȳn) and ϕsn respectively, relative to the Benders’ master problem objective value,

Φn. This optimal subproblem criteria is similar to the condition proposed in Papadakos [69] as

the stopping criteria. In iteration n of the Benders’ decomposition solution process, a cut will

be added if the following condition is violated,

µs(ȳn)− ϕsn
Φn

≤ ε ∀s ∈ S, (5.31)

where ε is the tolerance that we have used in our model, set at ε = 10−4. The solution to the

Benders’ master problem is the optimal solution to the original problem when no improvement

can be made with the addition of cuts. This is equivalent to condition (5.31) being satisfied for

all s ∈ S.

The Magnanti-Wong method

In each iteration of the solution process the generated cuts provide an incremental improvement

to the master problem. The efficiency of the solution process is highly dependent on the quality

of these cuts. In the PBSP-s it is common for a degenerate primal solution to be found,

indicating that multiple optimal dual solutions exist. In this situation, the cut that will produce

the best improvement in the BMP can be found using the Magnanti-Wong method [60]. The

objective of this method is to find a cut that dominates all other possible cuts in the current

iteration of the subproblem; we call such a cut Pareto optimal. Given two optimal dual solutions

(βs1,γ
s
1,λ

s
1, δ

s
1) 6= (βs2,γ

s
2,λ

s
2, δ

s
2), the cut generated from solution 1 dominates solution 2 if and

only if

∑

j∈N

βs1j +
∑

r∈R

γsr1 +
∑

b∈B

λs1bMb +
∑

r∈R

∑

j∈N

∑

p∈P r

δsr1jajpy
r
p

≥
∑

j∈N

βs2j +
∑

r∈R

γsr2 +
∑

b∈B

λs2bMb +
∑

r∈R

∑

j∈N

∑

p∈P r

δsr2jajpy
r
p,

(5.32)

for all y = {yrp, r ∈ R, p ∈ P r} with a strict inequality for at least one point. To find the Pareto

optimal cut the Magnanti-Wong method introduces an auxiliary optimisation problem to find

the cut which is closest to a chosen core point, y0. The core point is a point that is chosen to

be within the relative interior of the LP relaxation of (5.25) - (5.30), y0 ∈ ri(yLP ); the method

by which this point is obtained is explained later in this section. Since the core point is selected
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to be within ri(yLP ), by satisfying condition (5.32) for y = y0 ensures that the condition

is satisfied for all y. We define the dual Magnanti-Wong auxiliary problem (DMWAP-s) for

scenario s as,

(DMWAP-s)

max
∑

j∈N

βsj +
∑

r∈R

γsr+
∑

b∈B

λsbMb +
∑

r∈R

∑

j∈N

∑

p∈P r

δsrj ajpy
0r
p , (5.33)

s.t.
∑

j∈N

βsj +
∑

r∈R

γsr+
∑

b∈B

λsbMb +
∑

r∈R

∑

j∈N

∑

p∈P r

δsrj ajpȳ
r
p = µs(ȳ), (5.34)

(βs,γs,λs, δs) ∈ ∆s, (5.35)

where ∆s is the dual feasible region of the PBSP-s and its objective function value is given by

µs(ȳ).

The dual Magnanti-Wong auxiliary optimisation problem, DMWAP-s, is identical to the

dual problem of PBSP-s with the addition of constraint (5.34) and a change in the objective

function. The primal form of DMWAP-s (PMWAP-s), can be derived from the PBSP-s by i)

including a primal variable corresponding to the additional dual constraint (5.34); and ii) setting

the right hand side of the comparison constraints (5.18)-(5.19) to the value of the core point y0.

As such, the implementation of the PMWAP-s does not require much additional development

and the computational time is comparable to the PBSP-s. In the Benders’ decomposition

solution process we solve the PMWAP-s to find the Pareto optimal cuts.

To implement the Magnanti-Wong method it is a requirement to find a representative core

point within the relative interior of the LP relaxation of the BMP. In the case of a degenerate

PBSP-s, the DMWAP-s, or the primal form, is guaranteed to find the dual solution that is

Pareto optimal for the chosen core point as defined by the dominance condition (5.32). Given

that the Benders’ master problem is solved using column generation, the set of all variables

has not been completely enumerated, hence the LP relative interior is not fully known. This

makes the task of finding a core point within the relative interior difficult, and consequently

the core point selection can only be made as an approximation without the guarantee that

y0 ∈ ri(yLP ). Mercier et al. [63] state that using a core point y0 /∈ ri(yLP ) does not preclude
PMWAP-s from finding a valid Benders’ cut. However, the further that y0 is from ri(yLP )

the weaker the Benders’ cuts that are generated by this method. An important consideration

for the Magnanti-Wong method is whether the chosen core point y0 is closer to the relative

interior ri(yLP ) than the solution to BMP, ȳ. The solution to PMWAP-s will always generate

a Benders’ cut closest to the chosen core point y0, which will satisfy the dominance condition
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(5.32). If the core point is further from the relative interior than the current solution to BMP,

then the Benders’ cut generated by the solution to PMWAP-s can be further from ri(yLP )

than the cut generated from PBSP-s. This demonstrates the importance of finding a good

representative core point to ensure that the Magnanti-Wong method finds the best possible

Benders’ cut to improve the BMP solution.

Papadakos [68] developed various enhancements for the Magnanti-Wong method, which we

will discuss in Section 5.2.3, along with different schemes used to find an appropriate core

point. One such scheme for a binary problem is to set the core point to y0 = 1 or y0 = 0,

which is employed by Mercier et al. [63]. However, this particular scheme is not useful for our

problem given the complexity of the comparison constraints (5.18)-(5.19) and generally causes

the PMWAP-s to be infeasible. Another scheme, presented by Papadakos [68], is to set the

core point to the initial solution of the BMP, y0 → ȳ0, then after each iteration n of the master

problem update the core point by y0 → 1
2y

0 + 1
2 ȳn. The benefit of this particular scheme is

that at each iteration n of the Benders’ decomposition solution process the core point is moving

closer towards the ri(yLP ). So even if the initial core point is not within the relative interior,

y0 /∈ ri(yLP ), it is possible to incrementally improve the potential strength of the Benders’ cuts

with more iterations of the Benders’ decomposition solution process. Through experimental

experience this latter scheme from [68] has been shown to be useful in our problem to find a

representative core point. We demonstrate in Section 5.3.3 that the Magnanti-Wong method

greatly improves the efficiency of the Benders’ decomposition solution process.

5.2.2 Column generation

Given the exponentially large number of variables in the Benders’ master (BMP) and sub-

problems (PBSP-s), both are solved using column generation. Each of these problems share a

similar structure and the column generation subproblems are solved using the same algorithm.

For conciseness we will only describe in detail the implementation of column generation for the

PBSP-s.

The PBSP-s is formulated as a LP and can be efficiently solved using column generation.

Each iteration of the column generation solution process improves the master problem with

the addition of negative reduced cost columns. These columns are generated from a column

generation subproblem using the current LP dual solutions to the PBSP-s. In Section 5.2.1

we defined the dual variables for each scenario subproblem, s, as βs = {βsj |∀j ∈ N}, γs =
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{γsr|∀r ∈ R}, λs = {λsb|∀b ∈ B}, and δs = {δsrj |∀r ∈ R, ∀j ∈ N} for the constraints (5.15),

(5.16), (5.17), and (5.18)-(5.19) respectively.

The PBSP-s describes a recovery tail assignment problem, as such the definitions of the

flight schedule and connection network presented in Section 3.1.1 for the RTAP are used. In

Section 3.1.1, the technique of flight copies is used to implement delays, greatly affecting the

construction of the flight schedule and connection networks. Since flight copies are also used to

model flight delays in the PBSP-s, a brief review of the implementation will be provided. The

set of copies v for flight j is given by Uj . There are different sets of copies for each partition

of the flight schedule, as such Uj = {0}, ∀j ∈ N s−pre indicating the set of copies only contains

the copy representing the original scheduled departure. Also, for all flights j ∈ N s−post, Uj

contains v = 0 and at least one other copy representing some delay on flight j. So, we define

the set N̂ s = {jv|j ∈ N s−pre ∪ N s−post, v ∈ Uj} as all nodes in the connection network for

the PBSP-s. The rules presented in Section 3.1.1 that describe a feasible connection using

the flight-copy notation are used to define the set of connections for the PBSP-s given by

Ĉs = {(iu, jv)|iu, jv ∈ N̂ s ∪B}.
The column generation subproblem for the PBSP-s is formulated as a network flow problem

for each aircraft r. We define the variables xsriujv that equal 1 if connection (iu, jv) is used in a

string generated for aircraft r in scenario s, 0 otherwise. The cost of using connection (iu, jv) for

aircraft r in scenario s is defined by csriujv . Finally, br ∈ B represents the overnight base where

aircraft r is located at the start of the day. The shortest path problem to generate negative

reduced cost columns for the PBSP-s is defined as,

ĉsrp = min
∑

(iu,jv)∈Ĉs

csriujvx
sr
iujv
−

∑

jv∈N̂s

∑

iu∈N̂s

|(iu,jv)∈Ĉs

(βsj + δsrj )xsriujv

−
∑

b∈B

∑

iu∈N̂s

|(iu,b)∈Ĉs

λsbx
sr
iub
− γsr, (5.36)

s.t.
∑

iu∈N̂s

|(iu,jv)∈Ĉs

xsriujv −
∑

kw∈N̂s

|(jv ,kw)∈Ĉs

xsrjvkw = 0 ∀jv ∈ N̂ s, (5.37)

∑

v∈Uj

∑

iu∈N̂s

|(iu,jv)∈Ĉs

xsriujv ≤ 1 ∀j ∈ N s−pre ∪N s−post, (5.38)
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∑

iu∈N̂s

|(br,iu)∈Ĉs

xsrbriu = 1, (5.39)

∑

b∈B

∑

iu∈N̂s

|(iu,b)∈Ĉs

xsriub = 1, (5.40)

xsriujv ∈ {0, 1}, ∀(iu, jv) ∈ Ĉs. (5.41)

The problem described by (5.36)-(5.41) is a network flow problem with one source and

multiple sink nodes. Constraints (5.37) describe the flow balance and constraints (5.38) ensure

that each node in the network is visited at most once. As a variation on the classic network flow

problem, the use of multiple flight copies requires that only one copy per flight is included in

the shortest path, which is achieved through the coverage constraints (5.38). Given that (5.36)-

(5.41) is formulated as a network flow problem, there are a number of classical algorithms

available to efficiently solve this problem. Since the connection network is an acyclic directed

graph, Algorithm 4.1 is implemented to solve the column generation subproblem for the PBSP-

s.

It must be noted that there is a subtle difference in the flight schedule used between the

formulations of the PBSP-s and the RTAP. In the RTAP, the flight schedule is defined using

a recovery window, fixing the activities preceding and succeeding this period. The concept of

carry-in and carry-out activities is introduced to ensure that the recovered solution continues

operations following the recovery period. The recovery window is not employed in the solution

of the PBSP-s, and as such all flights in the schedule are considered. A set of non-anticipativity

constraints are introduced to fix the activities preceding the disruption, and recovery actions

are permitted on all flights that depart after the disruption until the end of the day. This

difference in the flight schedule used does not greatly affect the solution approaches, the only

effect is seen in construction of the connection networks.

There is little difference in the column generation subproblem for the BMP and the PBSP-s,

since both are formulated as network flow problems. The column generation subproblem of the

BMP is formulated with the constraints (5.37)-(5.41), however a different connection network

is required. Since the BMP solves the planning tail assignment problem, there is no possibility

to delay flights. As such, for all flights j ∈ N , we define Uj = {0}, containing only the copy

representing the original scheduled departure time. So, using this flight copy definition the

connection network can be constructed in the same manner presented above for the PBSP-s.



5.2. SOLUTION METHODOLOGY 79

Another difference between the column generation subproblems of the BMP and the PBSP-s

is the form of the objective function. For the BMP we define the optimal dual solutions as

u = {uj |∀j ∈ N}, v = {vr|∀r ∈ R}, w = {wb|∀b ∈ B}, and ρ = {ρsω|∀s ∈ S, ∀ω ∈ Ωs}
for the constraints (5.25)-(5.28) respectively. As a result the objective function for the column

generation subproblem of the BMP is given by,

c̄rp =
∑
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ρsω, ∀r ∈ R.
(5.42)

Since the structure of the BMP is modified after each iteration through the addition of Benders’

cuts, the objective function (5.42) must be updated with the respective additional dual variables.

The addition of Benders’ cuts only affects connection costs while maintaining the network

structure. Similar to the PBSP-s, the connection networks for the BMP is also an acyclic

directed graph, therefore it is possible to implement Algorithm 4.1 to efficiently solve the

network flow problem.

The efficiency of the column generation process depends on the initial solution provided to

the LP relaxation of the restricted master problem. For the first iteration of the BMP a set

of initial columns is manufactured by allowing the number of aircraft to equal the number of

flights, with each aircraft performing only one flight to satisfy the flight cover constraints (5.25).

For the aircraft assignment constraints (5.26) and the end of day constraints (5.27) only the

first n variables are included, where n = |R|. To satisfy all of the constraints in the BMP we

reintroduce the concept of ferry flights, which is the repositioning of aircraft by flying without

passengers. Constraints (5.27) are satisfied by using these ferry flights, and any columns that

contain these flights are given an artificially high cost to ensure that they do not appear in

the final solution. This is consistent with the statement made in Section 3.1.1, since the ferry

flights are only included in the BMP as a modelling approach to guarantee an initial feasible

solution. For each subsequent iteration of the BMP, the column generation master problem is

initialised with the solution found in the previous iteration. The initialisation of the PBSP-s

is simpler since the initial recovery variables can be based off the optimal planning variables

from the BMP for the current iteration. The methods for generating the initial variables for

the PBSP-s is explained in Section 5.2.1.

It is a well known aspect of column generation that symmetry between the variables within



5. RECOVERABLE ROBUST TAIL ASSIGNMENT PROBLEM 80

the master problem affects the computational performance of the algorithm. This occurs in our

model since we identify each aircraft individually, however they are mathematically identical.

To reduce the effects of this symmetry we assign one aircraft to each flight that has no preceding

connecting flight; thus the only connection arc to that flight is from a source node. The number

of flights with the only preceding connection from a source node for each overnight airport is

provided by the constant Mb. This constant is used in constraint (5.27) to ensure that the

required number of aircraft overnight at each end-of-day location b. Difficulties arise when the

number of aircraft starting at base b is greater than Mb, allowing some symmetry to still exist.

We address this problem by adding a branching rule to exclude aircraft from using particular

starting flights. The specifics of this branching rule will be detailed in Section 5.2.4.

5.2.3 The two-phase algorithm

Given the size of the Benders’ master problem, it is computationally difficult to solve to integral

optimality for every iteration. To overcome this complication we have implemented a two-phase

algorithm which is based off the three-phase algorithm developed to solve the integrated crew

scheduling and aircraft routing problem with Benders’ decomposition [27,63,69]. The two-phase

algorithm, described by Algorithm 5.1, is a heuristic that initially solves the linear relaxation

of the RRTAP, and re-introduces the integrality requirements to the BMP after the first phase

is completed. In Cordeau et al. [27], Mercier et al. [63] and Papadakos [69] the third phase is

used to check the feasibility of adding integrality to the Benders’ subproblem after solving the

integral Benders’ master problem. This is not necessary for our model since for all scenarios s,

the PBSP-s is always feasible for any solution to the master problem, as explained in Section

5.2.1. Thus, it is only necessary to implement the two-phase algorithm for our model.

To demonstrate the benefit of the RRTAP we take the integral BMP solution and evaluate

the recovery costs by solving the PBSP-s, ∀s ∈ S, to integrality. Given the structure of the

two-phase algorithm it is possible to evaluate the solution at the completion of both phases.

Using the solution to the BMP at the completion of Phase 1 can provide a good upper bound

for the problem. To find this upper bound, the BMP is solved once to integrality using all the

cuts added to the BMP by the completion of Phase 1. This provides a planning solution to

evaluate by solving all scenarios using the PBSP-s. For all scenarios s, the PBSP-s is then

solved to integrality to find the current best recovery solution to the RRTAP. The cuts which

are added in Phase 2 tighten this upper bound, however in Section 5.3 we demonstrate the
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Algorithm 5.1 The two-phase algorithm

PHASE 1

1: Relax the integrality requirements for the BMP and PBSP-s ∀s ∈ S.
2: Set ϕs ← 0, ∀s ∈ S.
3: repeat

4: Solve the BMP using column generation, (5.24)-(5.30).

5: for all scenarios s ∈ S do

6: Solve the PBSP-s using column generation, (5.14)-(5.22).

7: if condition (5.31) is not satisfied then

8: if solution to PBSP-s is degenerate then

9: Use the Magnanti-Wong method to find the Pareto optimal Benders’ cut.

10: end if

11: Add cut of type (5.23) to the BMP.

12: end if

13: end for

14: until condition (5.31) is satisfied, ∀s ∈ S.

PHASE 2

15: Re-introduce the integrality requirements for the BMP.

16: Retain all cuts that have been added in PHASE 1.

17: repeat

18: Solve the BMP using column generation, (5.24)-(5.30).

19: for all scenarios s ∈ S do

20: Solve the PBSP-s using column generation, (5.14)-(5.22).

21: if condition (5.31) is not satisfied then

22: if solution to PBSP-s is degenerate then

23: Use the Magnanti-Wong method to find the Pareto optimal Benders’ cut.

24: end if

25: Add cut of type (5.23) to the BMP.

26: end if

27: end for

28: until condition (5.31) is satisfied, ∀s ∈ S.
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Phase 1 bound is very close to the optimal solution.

It is not necessary to include the Magnanti-Wong method [60] in Algorithm 5.1, however

we have found great computational benefit from its use each time the PBSP-s is solved as

demonstrated in Section 5.3.3. Another possible technique to improve the computational per-

formance of the Benders’ decomposition algorithm is to implement the independent Magnanti-

Wong method [68], which is solved to find cuts independent of the subproblem solution. In

Papadakos [68], the benefit of using the independent Magnanti-Wong method is to generate

initial cuts that provide a good lower bound for the master problem without having to solve the

Benders’ subproblems. Since our problem requires a large number of cuts to find the optimal

solution, the addition of one initial cut does not create a significant enough improvement in the

BMP. As a result we have chosen not to include the independent Magnanti-Wong method [68]

and only implement the original Magnanti-Wong method [60].

5.2.4 Branching rules

Three different branching rules have been implemented for this problem, two are designed

to eliminate the fractional solutions from the optimal LP relaxation and a third is to break

symmetry in the BMP. In Section 4.3.1, the concept of constraint branching, developed by

Ryan and Foster [76], is introduced. Constraint branching is demonstrated to be very effective

within the branch-and-price framework, as such the branching rules developed for the RRTAP

are based upon this idea.

The first of the branching rules implemented for the RRTAP is modelled off the follow-on

branching presented by Barnhart et al. [12]. A description of this rule is presented in Section

4.3.1. This branching rule is implemented in the RRTAP using the same method that is

described in Section 4.3.1, so no further details regarding the implementation are required.

The second of the branching rules, which we define as aircraft/arc branching, excludes

strings of flights being allocated to a particular aircraft. This method of branching has been

developed from the rule presented in Barnhart et al. [14] for multi-commodity flow problems.

In their problem, the commodity to branch on is determined by the largest amount of flow; in

our case each of our commodities have the same amount of flow, hence the method requires

some variation. We search over all fractional variables to find the two most fractional for each

aircraft. Comparing the sum of the fractional values from the pair of variables for each aircraft,

the largest sum indicates the aircraft, r∗, and the fractional variables to branch on. Each
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variable in the pair represents a string of flights with some of the flights common between the

two strings. There is at least one common node between the strings since there is only one

origin for each aircraft. By ordering the flights in both strings by their position, the divergence

point is identified as the earliest position that contains a different flight between the two strings.

Two new strings of flights are identified from the divergence point to the sink node and arc1 and

arc2 are defined to contain the connections between the flights in these two strings respectively.

Algorithm 5.2 Aircraft/Arc branching

1: Let i be the position indicator for the current flight.

2: Given a pair of flight strings p1 and p2 for aircraft r∗,

3: set i to the position of the first flight in both strings, i← 0,

4: set the divergence point d to the starting position, d← 0, this assumes that the two strings

only share the source node.

5: Initialise arc1 and arc2 as empty flight strings.

6: while i < length of p1 and i < length of p2 do

7: if flight at position i in string p1 6= flight at position i in string p2 then

8: Set the divergence point d← i.

9: Exit loop.

10: end if

11: Increment i by 1.

12: end while

13: for all flights from position d to the length of p1 do

14: append flight to arc1.

15: end for

16: for all flights from position d to the length of p2 do

17: append flight to arc2.

18: end for

19: if there exists a connected pair of flights that is found in both arc1 and arc2 then

20: eliminate this pair and all succeeding flights from arc1 and arc2.

21: end if

22: On the left branch, exclude all connections in arc1 for aircraft r∗.

23: On the right branch, exclude all connections in arc2 for aircraft r∗.
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The branching is performed by excluding aircraft r∗ from using the flight connections contained

in arc1 on the left branch, and arc2 on the right branch. A detailed description on identifying

arc1 and arc2 to branch on is presented in Algorithm 5.2.

With the two branching rules implemented there must be a priority assigned to each speci-

fying when they are used. In our model we assign a higher priority to the follow-on branching

than the aircraft/arc branching. We assign the priorities in this way since the follow-on branch-

ing takes a more global view of the problem, branching on pairs of flights for all aircraft. At

the point that no valid follow-on branching exists, then we exclude strings of flights from use

by each aircraft.

As mentioned in Section 5.2.2 we have implemented a third branching rule to help eliminate

the symmetry in the master problem. This branching rule searches all of the fractional variables

looking at the starting flights to identify a particular flight which is used by two different aircraft.

We define V r
j = {v ∈ V |rv = r, sv = j} where V is the set of all fractional variables and rv and

sv are the aircraft and starting flight for variable v respectively. The fractionality of a particular

aircraft pair and starting flight is calculated by f r1r2j =
∑

v∈V
r2
j
v, if V r1

j 6= ∅. We branch on

the tuple (r1, r2, j) with the largest f r1r2j , excluding r1 from starting with flight j on the left

branch and excluding r2 from starting with flight j on the right branch. This branching rule is

assigned the highest priority forcing the earliest branches to break the symmetry of the master

problem.

5.3 Computational Experiments

To evaluate the effectiveness of using the recoverable robustness framework we compare the

difference in cost for a simulated recovery scenario between our solution and a representative

proxy robust algorithm. We develop a proxy robust algorithm using the connection cost of

Grönkvist [45] in defining the cost of a flight string crp. The new proxy robust model consisting

of the objective function
∑

r∈R

∑

p∈P r crpy
r
p and the constraints (5.2)-(5.4) and (5.10) is solved to

find an optimal tail assignment. Since the aircraft routing and, by extension, the tail assignment

problem is a feasibility problem, the selection of a cost function is used only as a proxy to favour

specific connection lengths and improve robustness. The solutions found using the Grönkvist

connection cost function and the RRTAP are just two of a large number of feasible solutions to

the tail assignment problem. As such, there are potentially many other feasible solutions that
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Figure 5.1: Connection cost function presented in Grönkvist [45]. Time parameters (minutes):

tmin = 40, tstart = 120, tlower = 180, tupper = 300, tend = 360. Cost Parameters ($): cstart =

500, clower = 100, cupper = 5000.

have better and worse recoverability than the two compared here. Therefore, the Grönkvist

connection cost function is selected only as an example of proxy robust approaches and to

demonstrate the improvements in recoverability that can be achieved with the RRTAP.

The connection cost function presented in the PhD thesis of Grönkvist [45] attempts to

improve the robustness of tail assignments by assigning costs to flight connections based on

their length. We illustrate the connection cost function implemented for our representative

proxy robust model and in the first stage of our recoverable robust model in Figure 5.1. The

motivation for this form of connection cost function is related to the potential of propagated

delay and recovery possibilities. Grönkvist argues that very short connections, tmin ≤ t ≤ tstart,
while ideal in regards to aircraft utilisation, are more prone to propagating delay, and suggests

that a compromise ideal connection length of t = 120. The medium length connections, tlower ≤
t ≤ tupper, are penalised heavily since they do not provide high enough utilisation and are too

short to service extra flights in a recovery situation. The long connections, t ≥ tend, are also

favoured since in a recovery situation the aircraft can be used to service additional flights within

the connection time.

We evaluate the effectiveness of the Grönkvist connection cost function by individually op-

timising the recovery decisions using the PBSP-s for each disruption scenario s. The resulting

cost indicates the recovery performance of the Grönkvist planning solution. We expect the

results to already be very good, given the intelligent choice of objective function and exact

optimisation of recovery through our model. Indeed, such an exact quantification of the per-
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formance of the Grönkvist solution by explicitly determining the optimal recovery strategies

and evaluating the recovery costs, has to our knowledge not been carried out. It is against

this representative proxy robust model that we review the performance of the RRTAP. We

compare the weighted recovery costs and the constituent costs of changes, cancellations and

delay minutes in our experiments.

We mention in Section 5.2 that it is possible to use any formulation for the planning tail

assignment problem. The Grönkvist solution used in our experiments is a proxy robust model

based on a connection cost function. Without much further work the RRTAP could be refor-

mulated to use any proxy robust planning model in the BMP and improve the recoverability

of that model through intelligent allocation of flights to aircraft. For example, the RRTAP

provides great flexibility in i) the models used for the planning and recovery problems, and ii)

the data and flight networks used in the solution.

A major benefit to the RRTAP is that the weighted recovery cost of the final solution will

be no worse than that of the solution to the model used in the BMP. So there is always a

potential benefit in applying the recoverable robustness framework to any model.

We implemented this model in C++ and called SCIP 2.0.1 [3] to solve the integer program

using CPLEX 12.2 as the linear programming solver.

5.3.1 Description of scenarios and model parameters

The test data for this model consists of 53 flights with 341 feasible connections in a domestic

network operating with 3 major airports, serviced by 10 aircraft. Two different types of dis-

ruption scenarios have been implemented, which are airport closures and aircraft grounding,

resulting in 102 scenarios. The specifics of the disruption scenarios are presented in Table 5.4.

We estimate the relative probability of each of the above scenarios occurring in a single day

and encode these probabilities as the weights, ws, in equations (5.1) and (5.24). There are a

number of different disruptions that could affect the operations of an airline, and within our

model we only include a subset of them. Given that each of these scenarios are not mutually

exclusive, the sum of the probabilities assigned to each scenario do not equate to 1.

To determine the probability of an airport closure we assume that this schedule is a summer

schedule, so it is more likely for an afternoon closure to occur than a morning closure. In the

summer there is very little chance of fog, which is the main contributor to morning airport

closures. Also, in summer, severe storms characterised by high winds and regular lightning
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Type Affected
Start Duration Weight

Scenarios
Time (min) ws (%)

Airport closure One scenario for 6am 180 0.07 0-2

each major airport 300 0.03 3-5

12pm 180 1.4 6-8

300 0.6 9-11

Aircraft grounding One scenario for 6am 60 3.5 12-21

each aircraft 120 0.7 22-31

240 0.14 32-41

Aircraft grounding One scenario for 12pm 60 3.5 42-51

each aircraft 120 0.7 52-61

240 0.14 62-71

Aircraft grounding One scenario for 5pm 60 3.5 72-81

each aircraft 120 0.7 82-91

240 0.14 92-101

Table 5.4: Disruption scenarios used.

strikes generally occur in the afternoon. We estimate that in a season a single airport may

experience an afternoon closure approximately 3-4 times, so we assign a daily probability of

2% for a closure of any length. Similarly, we expect that there is little chance of a morning

closure during the summer season so we assign a probability of 0.1% for a closure of any length.

Further, we have estimated that in the case of an airport closure there is a 70% chance that it

will last for 180 minutes, and a 30% chance that it will last for 300 minutes. For example we

estimate that an afternoon airport closure of 300 minutes will occur with a probability of 2%

× 30% = 0.6%.

An aircraft grounding could be attributed to a number of different factors, which include

technical issues, delays in the cleaning of an aircraft or baggage loading/unloading issues. The

scenarios represent the situation when an aircraft is not ready for a scheduled departure. Using

data for US airlines published by the Bureau of Transportation Statistics [72], in August 2011

approximately 18% of all flights were delayed, and out of all flight delays approximately 26%

were caused by factors in the airlines control, so 18% × 26% = 4.68% of all flights were delayed

due to airline factors. We assume that an aircraft grounding causes flight delays due to airline

factors, so for a single aircraft grounded for 60, 120 and 240 minutes we assign the probabilities
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of 3.5%, 0.7% and 0.14% respectively. Now, 3.5% + 0.7% + 0.14% = 4.34%, which is less than

4.68%, the percentage of all flight delayed due to airline factors, and this difference occurs since

we are approximating the rate of delay.

To determine the lowest cost recovery solution we have assigned costs for each minute

delayed and for flight cancellations. As mentioned in Section 5.1, we aim to use actual costs

in evaluating our model. It is very difficult to determine the actual costs for both delays and

flight cancellations since there is an unknown component of lost revenues. The delay costs are

set at $100 AUD per minute for a full aircraft, a figure based on the EUROCONTROL report

by Cook et al. [26] which estimates the cost of delays at e74 per minute. The cancellation

cost per passenger for all flights in the network is estimated using an average ticket price of

$350 multiplied by a lost revenue parameter or loss rate. The loss rate is an airline specific

parameter indicating the expected amount of passenger recapture after a cancellation. A loss

rate less than 1 indicates that a percentage of passengers are recaptured by rebooking themselves

on another flight provided by the airline, whereas a value greater than 1 represents the loss of

all passengers and possible future bookings with the airline. The inclusion of a loss rate is

an attempt to capture the direct and indirect costs, such as lost revenues and loss of goodwill

respectively, associated with the cancellation of a flight. Since the loss rate is very difficult to

estimate we have presented our results using a set of values ranging from 0.01 to 3 (0.01, 0.125,

0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) to provide a broad test of our model. Both the average ticket

price and loss rate could be flight specific and the implementation of this is trivial.

In determining the cost of flight delays and cancellations we assume that the aircraft are at

75% capacity. Since the aircraft is not booked to capacity we have developed a simple method

for calculating the cost of cancellations for each individual flight. We assume that one third

of the passengers on the cancelled flight will be rebooked to the next available flight with the

same O-D pair at a cost of 25% of $100 AUD per minute to the next departure. This cost of

rebooking passengers onto the next flight is simply the cost of the delay experienced in waiting

for the next departure. The rest of the passengers on the cancelled flight are not rebooked and

as a result the revenue is lost. The revenue that is lost from the cancelled flight is calculated

from this proportion of passengers. Since the passengers are not accommodated on the next

available flight, there is the option of rebooking themselves with this airline or another. This

rebooking process is captured in the lost rate. Also, the delay cost per flight given in the

EUROCONTROL report [26] is based on a full aircraft. Given that we are assuming a 75%



5.3. COMPUTATIONAL EXPERIMENTS 89

capacity, the delay cost of an aircraft per minute in our model is $75.

As mentioned in Section 5.1 we handle flight delays using flight copies in the recovery

network. For our experiments we have used a maximum allowable delay of 180 minutes, with a

flight copy increment of 30 minutes. Given that the delay increment is 30 minutes, the results

will over estimate the true delay costs, since many shorter feasible connections may exist in

the delay window for each flight. Greater granularity is possible by decreasing the delay copy

increment, however this degrades the computational performance with the addition of more

flight copy arcs to the connection network.

5.3.2 Comparison of recoverable robust solutions and Grönkvist solution

The RRTAP attempts to find a planned solution that requires minimal changes during the

recovery from disruptions. To represent the difficulty faced by operations controllers to reroute

aircraft we use a swap cost parameter gSW . This parameter can be likened to a cap on the

number of allowable changes during a disruption, however a cap is more restrictive than a

penalty. In our model, low swap costs result in more changes made in the recovered solution,

which provides a lower recovery cost. We have found that the lower recovery cost occurs because

greater flexibility is allowed in the model, so it is possible to reroute more aircraft to avoid costly

delays and cancellations. As a review of the different trade-offs and outcomes we present our

results with swap costs in the range 10 ≤ gSW ≤ 10000 (10, 500, 1000, 2500, 5000, 10000). A

swap cost of 10 illustrates the case where there is virtually no penalty for changes. It is also

trivial to implement this parameter with different values for each flight or aircraft in the model.

The BMP of the recoverable robust model is solved using the Grönkvist connection cost

function. This allows us to investigate whether our algorithm can provide superior recovered

solutions when compared to the proxy robust model. The relative performance between the

two robust tail assignment models is evaluated using the weighted sum of the recovery costs

over all scenarios. This is defined as

WeightedCost =
∑

s∈S

ws
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, (5.43)

which is the second term in the objective function (5.1). We use equation (5.43) to calculate

the weighted simulated recovery cost using the solution from the proxy robust model and the

solution to the RRTAP at the completion of Phase 1 and 2 of the two-phase algorithm. We

compare the weighted recovery costs calculated with different cancellation loss rates and swap
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costs. For all parameter sets, the weighted recovery cost of the recoverable robust solution at

the completion of Phase 2 either equals or improves upon the proxy robust solution which is

demonstrated in Table 5.5.

Table 5.5 presents the percentage improvement in the weighted recovery costs at the com-

pletion of Phase 1 and 2. The largest improvement in the weighted recovery costs achieved at

the completion of Phase 2 is 14.83%, which occurs with gSW = 1000 and a loss rate equal to

0.25. There is an apparent nonlinear relationship between recoverable robustness improvement

and the swap costs, with the greatest improvement occurring with swap costs in the range

1000 < gSW < 5000. In that range and with a loss rate ≥ 0.25, the RRTAP achieves an average

improvement of 8.77% over the proxy robust solution, with a minimum improvement of 1.21%.

The most important practical feature of the RRTAP is the ability to reduce the weighted re-

covery costs when compared to the proxy robust model, and in general to any planning tail

assignment model. Since the tail assignment problem can be formulated as a feasibility prob-

lem, any improvement in the recoverability of the planned solution is made at no extra cost to

the airline.

There are many methods of weighting the length of connections to achieve a desired tail

assignment solution. The Grönkvist connection cost function is an example of this, attempting

to avoid the propagation of delays and create recovery opportunities. To demonstrate the

relative performance of alternative connection cost functions against the Grönkvist function,

Swap Cost

500 1000 2500 5000 10000

L
o
ss

R
a
te

0.01 (-1.32,-0.19) (-1.8,-1.8) (-1,0.55) (-0.73,-0.73) (-0.71,0.67)

0.125 (-1.73,-1.5) (-1.46,-0.71) (-0.2,0.23) (-0.66,-0.51) (-0.62,-0.39)

0.25 (-1.27,-0.99) (-14.83,-14.66) (-1.21,-7.65) (-1.73,-1.73) (-1.71,-1.71)

0.5 (-1.08,-9.97) (-14.54,-14.4) (-12.83,-12.8) (-1.37,-0.99) (-1.3,-0.5)

1 (-0.96,-0.73) (-12.83,-12.79) (-13.26,-13.19) (-5.95,-5.57) (-0.97,-0.93)

1.5 (-0.86,-7.64) (-11.68,-11.65) (-12.33,-12.22) (-5.17,-0.67) (-0.99,-0.37)

2 (-0.78,-0.47) (-10.73,-10.73) (-11.51,-11.45) (-4.91,-4.98) (-1.16,-0.81)

2.5 (-0.72,-0.64) (-9.93,-9.93) (-10.8,-11.23) (-4.75,-4.7) (-0.9,-0.38)

3 (-0.66,-0.39) (-9.23,-9.13) (-10.18,-10.18) (-4.38,-4.44) (-0.89,-0.89)

Table 5.5: Relative difference between the Grönkvist solution (x) and the recoverable robust

solution, Phase 2 (y) and Phase 1 (z), ((y − x)/x (%), (z − x)/x (%)). For conciseness the

results using a swap cost of 10 are omitted. Relative difference greater than 5% is highlighted.
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we have solved the tail assignment problem using linear (t), quadratic (t2), square root (
√
t)

and hyperbola (1/t) functions. The results in Table 5.6 present the number of test cases where

the selected function dominates Grönkvist and the average relative difference in the weighted

recovery cost. The set of test cases, 54 in total, contains all of the experiments used to create

Table 5.5, including the experiments with a swap cost equal to 10. Each of the functions

presented in Table 5.6 construct a tail assignment with different characteristics, for example

the linear, quadratic and square root functions favour shorter connections compared to the

hyperbola function which favours long connections. While the results presented in Table 5.6

show that the linear and square root functions dominate Grönkvist in most test cases, Grönkvist

outperforms the quadratic and hyperbola functions. Table 5.6 also shows that the range of mean

relative differences is not particularly large, even over this collection of disparate cost functions.

Function Linear Quadratic Square root Hyperbola

Number of cases dominating Grönkvist (/54) 38 15 47 15

Average relative difference -3.62% 0.62% -5.74% 0.62%

Table 5.6: Analysis of connection cost functions. The constructed tail assignment is evaluated

against 54 test cases using different penalties and loss rates.

The RRTAP could be solved using any connection cost function as the master objective,

and one would be guaranteed to obtain a planned solution better than or equal to the solution

obtained using that particular proxy robust cost function. Because the Grönkvist function

has appeared in the literature to solve the tail assignment problem [45, 46] we choose to solve

RRTAP relative to this function.

The results in Table 5.5 demonstrate that the RRTAP improves upon the weighted recovery

costs of the proxy robust solution in most cases. To illustrate the performance of the RRTAP

solution when compared to the proxy robust solution for each individual recovery scenario we

have selected 4 representative cases; i) Swap Cost = 500, Loss Rate = 0.5; ii) Swap Cost =

1000, Loss Rate = 1.5; iii) Swap Cost = 2500, Loss Rate = 1; and iv) Swap Cost = 2500, Loss

Rate = 2.5. Figure 5.2 presents the individual recovery costs in each scenario for the proxy

robust, Phase 1 and Phase 2 solutions. Comparing the results of the RRTAP and the proxy

robust solution we find much more improvement variability in the individual recovery costs

across the scenario set. The individual recovery cost for scenario s is calculated by,

IndividualCost(s) =
∑

r∈R

∑

p∈P sr

csrp y
sr
p +

∑

j∈N

djz
s
j +

∑

r∈R

∑

j∈N

gSW ǫs−jr , (5.44)
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Figure 5.2: Individual recovery costs for all 102 scenarios - comparison between Grönkvist, Phase 1, and Phase 2 results. The scenario

numbers are presented in Table 5.4
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which is presented for all cases in Figure 5.2. We have selected two types of scenarios for use

in this model, airport closure and aircraft grounding, as explained in Table 5.4. An airport

closure has a much greater impact on an airlines operations than an aircraft grounding since a

large number of flights and aircraft are potentially affected. In Table 5.7 we present the number

of flights that are affected in the airport closure scenarios. The flights are classified affected

if they are scheduled to arrive at, or depart from, the closed airport within the closure time.

Comparing Table 5.7 with Figure 5.2 it is clear that the weighted recovery cost is dependent on

the number of affected flights. Since there is a much greater recovery cost associated with an

airport closure compared to an aircraft grounding, we have separated out their costs in Figure

5.2. It is difficult to determine the affected flights for the aircraft grounding scenarios since this

is dependent on the planned routing, which we are optimising.

Scenario 0 1 2 3 4 5 6 7 8 9 10 11

Flights affected 2 8 8 16 5 10 8 13 4 5 1 1

Table 5.7: Number of flights affected in the airport closure scenarios. Scenarios 0-11.

While the RRTAP solution may perform better across the sum of the individual recovery

costs than the proxy robust model, there are a number of scenarios where it performs worse.

The largest relative improvements occur for the aircraft grounding scenarios. This demonstrates

that for the larger disruption scenarios, which involve more flights and aircraft, the planned

routing does not have much impact on the recovery costs. The results in Figure 5.2 show

that the improvement in the sum of the recovery costs is attributable to an improvement in

the cost for a large proportion of the individual scenarios. This is an important result since

we are attempting to improve the recoverability of the tail assignment for a broad range of

disruptions. Therefore, if the improvements were restricted only to a few scenarios the efficacy

of this technique would be reduced.

The RRTAP is a robust planning model that is closely aligned with stochastic programming.

Since we are applying a weight to the recovery cost for each scenario, the objective of this model

attempts to minimise the weighted recovery cost for the given scenario set. There are other

robust modelling formulations that can be applied to the tail assignment problem, each with

their own emphasis and advantages and disadvantages. For example, one may wish to minimise

the maximum recovery cost across the entire scenario set. Such a model, which we will label

the pure robust tail assignment problem (PRTAP), can be easily formulated from the model



5. RECOVERABLE ROBUST TAIL ASSIGNMENT PROBLEM 94

described by (5.1)-(5.13) with a change in the objective function and the addition of a set

of constraints. To formulate the PRTAP we modify the objective function by removing all

variables relating to the recovery subproblems. To minimise the maximum recovery cost we

introduce the variable µmax to the objective function, representing the upper bound on the

recovery costs from all scenarios. To enforce this upper bound we add a set of constraints that

require µmax to be greater than or equal to the recovery solution cost for all scenarios. We

define the PRTAP as,

(PRTAP)

min
∑

r∈R

∑

p∈P r

crpy
r
p + µmax, (5.45)

s.t. Constraints (5.2)-(5.13), (5.46)

µmax ≥
∑

r∈R

∑

p∈P sr

csrp y
sr
p +

∑

j∈N

djz
s
j +

∑

r∈R

∑

j∈N

gSW ǫs−jr ∀s ∈ S, (5.47)

µmax ≥ 0. (5.48)

The PRTAP decomposes between the planning and all recovery scenario variables and Benders’

decomposition may be applied. This model is identical to the RRTAP, with the addition of the

maximum recovery cost variable, µmax, to the objective function and the inclusion of additional

constraints (5.47) to enforce the maximum recovery cost across the complete scenario set.

Because of the differing objectives, the recoverable robust (RRTAP) and pure robust (PRTAP)

formulations should produce different results. Given these distinct objective functions, it is very

difficult to identify a metric that provides a fair comparison between the two models. Taking

this into account, both the weighted recovery costs, as calculated by equation (5.43), and the

90th percentile recovery cost over all scenarios for the RRTAP and the PRTAP is presented in

Figure 5.3. Across all parameter sets, the difference in the maximum recovery costs between

the two models is within the range of -3.73% to 6.05%, with an average of 1.04% indicating

only a small improvement in the PRTAP over the RRTAP. Since there is little variation in the

maximum recovery costs, the 90th percentile has been selected for Figure 5.3 to demonstrate

any difference between the two models. The results show that the RRTAP outperforms the

PRTAP in terms of the weighted recovery costs for all selected cases, which is to be expected

since this value is a term in the objective function of the RRTAP. Also, in comparing these

two models by the 90th percentile, the PRTAP only improves upon the RRTAP in three of

the selected cases and only with a swap cost of 10000. From these results it is clear that in
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Figure 5.3: Weighted and 90th percentile recovery costs - comparison between the RRTAP and

a Pure Robust formulation.

a feedback robust model using a full recovery problem, the minimisation of the weighted cost

results in an acceptable reduction in the magnitude of all recovery costs.

The runtimes for the PRTAP provides interesting results when compared to the RRTAP.

The experiments for the RRTAP had a maximum runtime of 3 hours to ensure that a solution

could be found in a reasonable time frame. We find that on average the PRTAP requires 4.01

times as long as the RRTAP to find the optimal solution, with average runtimes of 7371.18 and

3093.93 seconds for the PRTAP and RRTAP respectively. We provide a greater analysis of the

runtime for the RRTAP in Section 5.3.3.

5.3.3 Behaviour of solution runtimes

The RRTAP is a large scale model for which a number of enhancement techniques have been

applied to improve the solution runtime. In Section 5.2 we documented the techniques that have

been implemented to solve RRTAP. The key feature of the solution methodology is the use of

Benders’ decomposition and column generation, which are commonly used to solve large-scale

optimisation problems. To further improve the solution runtimes we introduced the Magnanti-

Wong method [60], as illustrated in Section 5.2.1, to generate Pareto optimal Benders’ cuts.

We also implemented a number of branching rules described in Section 5.2.4 for use in Phase

2 of the two-phase algorithm. In Figure 5.4 we present the runtimes for the RRTAP using

different algorithmic enhancements on the four cases selected for Figure 5.2. The different

results presented in Figure 5.4 are defined as i) including all enhancements presented in Section

5.2; ii) including only the Magnanti-Wong method [60] with the default branching rules in the
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SCIP 2.0.1 distribution; iii) using the branching rules described in Section 5.2.4 without the

Magnanti-Wong method; and iv) a standard Benders’ decomposition formulation, i.e. without

the Magnanti-Wong method and with the default branching rules. The expectation is that the

Phase 1 runtimes are similar for the pairs of results (i, ii) and (iii, iv), however it is possible to

have fluctuations in the computational experiments. We also expect that the Phase 2 runtimes

are similar for the result pairs (i, iii) and (ii, iv). There is a greater chance of a variability in

the Phase 2 runtimes since the Magnanti-Wong method generates different cuts to the standard

Benders’ decomposition approach. The addition of Magnanti-Wong cuts generates a different

problem by the end of Phase 1, which affects the complexity of the integer program and the

number of branches required.

We find that the runtimes for the RRTAP using all enhancements are significantly lower than

when none are used. This is to be expected, especially in regards to the branching rules, since

the rules included in the SCIP 2.0.1 distribution do not use any problem specific information.

The inclusion of the branching rules has the effect of reducing the amount of time spent in

Phase 2 of the two-phase algorithm. By using the Magnanti-Wong method, we are able to

reduce the amount of time spent in Phase 1 of the two-phase algorithm, however it does not

provide a marked improvement in Phase 2 when run with the SCIP 2.0.1 branching rules, and

in two cases it is worse. Even though solving the auxiliary problem for the Magnanti-Wong

method adds extra runtime to each iteration, it is clear that this method genuinely improves

the generated cuts. Figure 5.4 demonstrates that while each enhancement can improve the
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parameter set.

runtimes for the algorithm, it is necessary to include all enhancements to achieve the greatest

runtime improvement.

While the enhancements developed for this algorithm have a significant effect on the run-

times, we found that the parameters used can also have an affect. Figure 5.5 illustrates the

runtimes required to calculate the results presented in Table 5.5 for the RRTAP. In our experi-

ments we limited the runtimes to 3 hours. In the cases where the runtime exceeds 3 hours, the

model was terminated after the first run of the Benders’ decomposition algorithm completed

following the 3 hour time limit. Given that the Benders’ subproblems’ solutions, the upper

bounds, are not strictly nonincreasing, the best solution found during the runtime is used in

the calculations of Table 5.5. In Table 5.5 we see that there is little difference between the

optimal solution at the completion of Phase 2 and the upper bound calculated at the comple-

tion of Phase 1. Figure 5.5 shows that in some cases the time spent in Phase 2 attempting

to find the optimal solution, which is not always found, can be quite significant. In order to

achieve a solution quickly that is close to optimal, one could simply complete just Phase 1 of

the two-phase algorithm.

5.3.4 Investigation of constituent recovery costs

The recovery costs calculated from the evaluation of the proxy robust and RRTAP models can

be broken down into their constituent costs for changes, delays and cancellations. Figure 5.6
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Figure 5.6: Change, cancellation and delay costs - comparison between the Grönkvist, Phase 1

and Phase 2.

presents this breakdown, demonstrating the trade-offs that can occur when setting the model

parameters. In Section 5.3.2 we have demonstrated that the recoverable robust solution either

equals or improves on the weighted recovery cost of the proxy robust solution. Given that

the model optimises the weighted recovery costs, it is possible for the proxy robust solution

to outperform the recoverable robust solution for individual recovery policy costs. One such

example is the swap costs of gSW = 5000, where the number of changes in the proxy robust

solution is lower than the recoverable robust solution. However, for the same swap cost of

gSW = 5000, the recoverable robust solution significantly outperforms the proxy robust result

for the delay costs. For other swap costs, such as gSW = 1000 and gSW = 2500, the results

are quite varied with the improvement being attributed to a decrease in changes and delays

respectively. This is attributable to the minimum length of delay for an individual flight and its

associated cost. Since the flight delays are discretised to be every 30 minutes from the original

departure, the minimum cost of delay is $75 × 30 minutes = $2250. For the proxy robust

solution, the tendency is to allow more changes, rather than to delay flights for swap costs

less than 2250, and for swap costs greater than 2250 to allow more flight delays than changes.
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Thus, using a swap cost of gSW = 5000 we find that the preferred recovery policy for the proxy

robust solution is to delay flights, so any improvement from the RRTAP will be found through

reducing the number of delayed flights.

In Table 5.5 it is possible to see that the greatest weighted improvement in the recovery costs

occurs when gSW = 1000 and gSW = 2500. Above we have presented the case where gSW =

5000, with the benefit attributable to a decrease in the total delay costs. This is combined with

an increase in the total number of changes performed during the recovery process. The largest

weighted recovery cost improvement occurs when gSW = 2500 and we see that this benefit is

largely due to a reduction in the delay costs. While the greatest improvement is in the delay

costs, there is still an improvement in the change costs. As mentioned above, we find that the

improvement in both costs is due to the minimum cost of delay being close to the swap costs of

gSW = 2500. The result of decreased flight delays is particularly important since this directly

reduces the number of delay minutes experienced by passengers, which has a real effect on the

on-time performance of an airline.

5.3.5 Effect of flight copy increments

In our model we have used discrete flight copies to handle flight delays for the recovery sub-

problems. As mentioned above we have used a delay copy increment of 30 minutes for each

flight copy, with a maximum delay of 180 minutes. In Figure 5.7 we present the weighted

recovery costs and the runtime for the RRTAP using different delay increments with a swap

cost of gSW = 2500 and loss rate of 1.5. As expected, the figure shows that as the delay copy

increment decreases, resulting in a larger recovery flight network due to more flight copies, the

solution runtime increases. We also see that there is a great difference in the weighted recovery

costs that are calculated using different delay copy increments. Using discrete flight copies in

the recovery model has the effect of overestimating the recovery costs by forcing larger delays

than may be necessary. Comparing the resulting recovery costs between the smallest delay

increment in Figure 5.7, 15 minutes, and a delay increment of 30 minutes, we calculate the

weighted recovery costs of 25,995 and 29,563 respectively. This equates to a 13.73% overesti-

mate of the recovery costs for the given parameter sets. For each of the results in Figure 5.7

we have omitted the breakdown of the recovery costs for brevity, however we will provide a

concise description of our findings. By decreasing the delay copy increment we see different

results in recovery components of changes, delays and cancellations: the number of delayed
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Figure 5.7: Comparison of the solution runtimes and weighted recovery costs using different

delay copy increments. The bars and the points represent the solution runtimes and weighted

recovery costs respectively. These results have been calculated using a swap cost of 2500 and

loss rate of 1.5. Maximum possible delay is 180 minutes.

flights and number of changes increases, while the number of cancellations and delay minutes

decreases. Since there are now more delay options available we find a decrease in the number of

cancellations. With the increase in the number of delayed flights and a decrease in the number

of delayed minutes, we see that the average delay per delayed flight decreases from 81.6 minutes

to 63.9 minutes. These results show that by using discrete flight copies we are overestimating

the weighted recovery costs for the model, however by changing the delay copy increment the

resulting recovery solutions can change quite dramatically.

5.4 Conclusions

In this chapter we presented a novel recoverable robustness model for the tail assignment

problem. We show that the solutions to this model guarantee reduced recovery costs with

no increase in the planning costs. Further, the recovery tail assignment is modelled with a

full set of recovery decisions, including flight cancellations and delays and aircraft rerouting.

The sophisticated recovery subproblems create a complex mixed-integer program, which we

are able to solve in a reasonable time frame using various enhancement techniques. We have

formulated the RRTAP as a stochastic program drawing on solution methods such as Benders’

decomposition. By solving this problem as a two-stage stochastic program, it is possible to
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separate and solve individually the planning and recovery tail assignment problems. This

structure allows for the use of different recovery algorithms and a wide range of planning

algorithms and methods which can be improved upon using the RRTAP.

Through the use of Benders’ decomposition and column generation we have demonstrated

an efficient solution approach for the RRTAP. The acceleration technique of the Magnanti-Wong

method [60] has been applied to the Benders’ decomposition formulation, which significantly

improves the computational performance. Further, we improved the column generation pro-

cess for the Benders’ decomposition master problem by introducing a branching technique to

eliminate symmetry, branching on an aircraft pair and starting flight.

We compared the results of the RRTAP against a proxy robust solution developed using a

connection cost function presented by Grönkvist [45]. We found this connection cost function

provided a simple, but effective, way to introduce robustness into the tail assignment problem.

Through the use of our recovery algorithm, we evaluated the recoverability of a planning tail

assignment constructed using this connection cost function. Using this connection cost function

in the planning stage of our recoverable robustness algorithm we developed a planned tail

assignment with a better recoverability compared to the Grönkvist solution.

The two-phase method was employed to efficiently solve the RRTAP following the appli-

cation of Benders’ decomposition. It was identified that the integral master problem solution

using the cuts added by the completion of Phase 1 provides a good upper bound on the optimal

solution. This is critical in reducing solution runtimes since a large proportion of the runtimes

are spent in Phase 2 adding cuts to improve the lower bound towards the Phase 1 upper bound.

Terminating the algorithm at the completion of Phase 1 results in near optimal solutions with

very fast computational times.

The results were presented with a range of values for airline specific parameters, namely the

swap costs and lost rates. The method used to assign costs to changes, delays and cancellations

can have varied effects on the cost benefits from the RRTAP. We demonstrated that due to the

value of the minimum delay cost and the swap costs there can be a tendency towards greater

changes or delays in the final solution. By presenting a range of values for the parameters

we demonstrated that a trade-off between different recovery cost components can be achieved.

This allows each airline to value delays, cancellations and changes differently depending on their

individual business practices.

A common method to reduce the complexity of a recovery problem is to use discrete flight
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copies to handle flight delays. Our analysis compared the results from using different numbers

of flight copies, which has shown a potentially large overestimation of recovery costs. Further,

changing the number of flight copies has an effect on the minimum possible delay cost and

hence affects the composition of delays and changes in the final solution. With the discovery of

a good upper bound at the end of Phase 1, richer results for the RRTAP can be obtained by

using a greater number of flight copies without substantial increases in solution runtimes.

The tail assignment problem used in the planning stage of the RRTAP does not explicitly

consider maintenance routing for aircraft. Aircraft maintenance routing is a critical aspect of the

airline planning process ensuring the safe operation of the airline fleet. There are a number of

different approaches described in Section 2.2.1 used to model the maintenance routing problem,

which can be incorporated into the recoverable robustness framework. The one-day routes

modelling approach is of particular interest since maintenance planning robustness is inherit in

its formulation. While the one-day routes provides a maintenance plan that is not affected by

disruptions in the long term, daily schedule perturbations still affect the maintenance routings.

In this chapter recoverable robustness was demonstrated to improve the recoverability of the

single day routes for the tail assignment problem. It is expected that similar improvements

can be achieved with the recoverable robust single day maintenance routing problem. The use

of recoverable robustness in conjunction with a one-day maintenance routing formulation is

investigated in the following chapter.

The improvement in recoverability for the RRTAP is promising in regards to the wider

application of the recoverable robustness framework. The resources of aircraft and crew are

highly connected, as such a true analysis on the effect of disruptions must consider both. Thus, a

natural extension to the RRTAP is to integrate the planning problems for the aircraft and crew.

The integrated aircraft routing and crew scheduling problem presented by Cordeau et al. [27]

demonstrates the potential benefits from this integration in regards to improved solution quality

and robustness. By integrating aircraft and crew, the complexity of the planning problem is

significantly increased, and similarly for the recovery problem. One of the greatest hindrances

of the recoverable robust solution process is the requirement to solve a large number of recovery

problems to provide feedback to the planning problem. As such, it is only possible to develop

a recoverable robust integrated aircraft routing and crew scheduling problem if fast solution

runtimes can be achieved for the recovery problem. Potential solution approaches for the

integrated airline recovery problem are investigated in Chapters 8 and 9 of this thesis.



Chapter 6

Recoverable Robust Single Day

Aircraft Maintenance Routing

Problem

The application of recoverable robustness to the tail assignment problem is investigated in

Chapter 5. The results presented for the recoverable robust tail assignment (RRTAP) demon-

strate the potential improvements in recoverability achieved by this technique. While the tail

assignment problem is representative of airline planning problems solved in practice, there are

many features omitted that greatly affect the solution quality. One such feature is aircraft

maintenance planning, which is a necessary consideration to ensure the safe operation of the

airline fleet. A novel maintenance planning problem is considered in this chapter to further

investigate the application of recoverable robustness to airline planning problems.

The aircraft maintenance routing problem is solved to ensure maintenance checks are per-

formed on aircraft at regular intervals. Various approaches employed to solve this problem are

presented in Section 2.2.1, each with a different business practice focus. Three categories of

modelling approaches are described in Section 2.2.1, the big cycle, strings and one-day routes

approaches. The big cycle approach is solved to identify a single flight route that can be oper-

ated by all aircraft within the fleet, satisfying maintenance requirements and achieving equal

aircraft utilisation. The strings approach constructs maintenance feasible flight routes that

span between maintenance stations. Finally, the one-day routes approach constructs flight

strings that span from the start to the end of the day, providing an adequate number of routes

103
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departing from each overnight base that terminate at a maintenance station. A key feature

of the one-day routes approach is the ability to reduce the effects of schedule perturbations

from previous days on the maintenance plan for the current day. Since the improvement in

recoverability is related to improved operational performance, the one-day routes approach is

investigated in this chapter.

The contributions of this chapter are:

1. the introduction of a novel modelling approach to integrate the aircraft routing and main-

tenance planning problems,

2. the further investigation of the recoverable robustness framework by employing alternative

planning stage problems,

3. evaluating the recoverable robustness problem using various data sets and a large number

of evaluations scenarios.

Firstly, the maintenance planning problem introduced in this chapter is developed using the

concept of one-day routes. Previous studies employing this modelling approach [47,54] require

the solution of an aircraft routing problem as input. This reduces the efficacy of the approach

since only small modifications to the aircraft routing solution can be made. The maintenance

planning problem presented in this chapter addresses this by integrating the aircraft routing

and maintenance planning problems.

Secondly, the potential of the recoverable robustness framework to improve the recoverability

of airline planning problems is presented in Chapter 5. This chapter continues the investigation

from Chapter 5 by considering an alternative, more complex, planning-stage problem that more

closely represents airline business practices. The application of recoverable robustness to the

maintenance planning problem attempts to improve recoverability while ensuring the mainte-

nance plan is satisfied. The problem formulation is a contribution of this chapter, demonstrating

the possible simultaneous improvement in maintenance planning and recoverability.

Finally, the evaluation of the recoverable robustness framework in this chapter is performed

on large airline schedules to demonstrate the applicability of the approach. The data set used

in Chapter 5 is not representative of real-world airline schedules; hence, larger data sets are

considered in this chapter to demonstrate the challenges in developing an efficient solution

approach. In addition, the effect that increasing the number of evaluation scenarios has on the

solution process and improvement in recoverability is assessed.
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This chapter is presented in two parts, the formulation of the single day aircraft mainte-

nance routing problem and the application of recoverable robustness. This structure is used to

highlight the individual strengths of the maintenance planning approach and the recoverable

robustness framework. Section 6.1 discusses the model for the single day aircraft maintenance

routing problem. This will provide a full description of the techniques used to formulate this

problem, in particular the novel maintenance planning approach. This is followed by a descrip-

tion of the recoverable robust single day aircraft maintenance routing problem in Section 6.2.

The recoverable robustness framework in this chapter involves the evaluation of the planning

aircraft routing solution using a recovery subproblem. The description of the recovery problem

used in the evaluation stage will be presented in Section 6.2. The solution techniques of Ben-

ders’ decomposition and column generation are employed to solve the problems presented in

this chapter. A description of their implementation will be provided in Section 6.3. The results

from our experiments will be presented in Section 6.4, demonstrating the improved recover-

ability achieved for the maintenance planning problem solved for large airline schedules. The

conclusions and potential research directions will be discussed in Section 6.5. This work pre-

sented in this chapter has been completed in collaboration with Guy Desaulniers and François

Soumis.

6.1 Single Day Aircraft Maintenance Routing Problem

The single day aircraft maintenance routing problem (SDAMRP) is solved to find a set of

aircraft routes that ensure maintenance feasibility for each individual day. This problem is

motivated by the unfortunately common situation where maintenance plans spanning multiple

days become infeasible due to schedule perturbations. To avoid the effects of schedule pertur-

bations occurring on previous days, the SDAMRP is solved to generate an adequate number of

single day aircraft routes originating from each overnight airport that terminate at maintenance

bases. The solution to the SDAMRP provides a maintenance plan at the start of the day that

satisfies the maintenance requirements for each aircraft.

There are a number of maintenance checks that must be performed on aircraft to satisfy

aviation regulatory requirements. The maintenance check performed most frequently is a type

A check, which is modelled in the SDAMRP to be required once every six days. This assumption

ensures that a sufficient amount of time is given to achieve high utilisation of aircraft while not
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exceeding any maintenance requirements. While performing a type A check once every six days

may be appropriate for most airlines, it is trivial to alter this to match individual business

practices.

The maintenance routing problem developed in this chapter is based upon the concept of

maintenance misalignments. A maintenance misalignment occurs when an aircraft that re-

quires maintenance at the end of the day is assigned a fight route that does not terminate at

a maintenance station. If there exists any maintenance misalignments in an aircraft routing

solution, costly aircraft swaps must be performed during the day to satisfy maintenance re-

quirements. As a contribution of the SDAMRP, each maintenance misalignment is penalised in

an attempt to provide a sufficient number of routes departing from each overnight airport that

terminate at maintenance stations.

The SDAMRP is an extension upon the aircraft routing problem (ARP) presented in Section

2.1.1. Primarily, the SDAMRP is formulated as the ARP with an additional set of constraints

to count the number of maintenance routes departing from each overnight airport. As such, the

notation presented in Table 2.1 is used for the SDAMRP with some modifications required to

model the additional maintenance constraints. For completeness, all notation used to describe

the SDAMRP, including any required modifications, is presented in Table 6.1.

6.1.1 Aircraft routing flight strings

The SDAMRP is developed using the flight string formulation introduced by Barnhart et al. [12].

A flight string p is defined as a sequence of flights that is performed by an aircraft during a single

day. It is required that each flight string originates and terminates at an overnight airport b,

which are contained in the set B. The set of flights used to construct the aircraft flight strings

is given by N and all feasible connections are contained in C. The definitions for the sets N

and C are provided in Section 2.1.1.

A major difference between the formulation of the ARP and SDAMRP is the partitioning

of the set of feasible flight strings by origination airport into disjoint sets. All strings p that

are assigned to aircraft originating from overnight airport b are contained in the set Pb. The

decision variables yp equal 1 if flight string p is operated by an aircraft and 0 otherwise. Each

flight string is described by the parameters ajp that equal 1 to indicate that flight j is contained

in string p and 0 otherwise. The cost of flight string p, cp, is dependent on the length of the

connections contained in that string, which can be weighted as a form of proxy robustness for
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B is the set of all overnight airports b where aircraft flight strings originate and terminate

Pb is the set of all flight strings p that originate from airport b, the planned flight strings

N is the set of all flights j

C is the set of all feasible connections in the network, C = {(i, j)|i, j ∈ N ∪B}

yp = 1 if flight string p is used in the planning stage, 0 otherwise

cp = the cost of using flight string p in the planning stage

ajp = 1 if flight j is in string p in the planning stage, 0 otherwise

tp
= 1 if string p terminates at a maintenance base at the end of day in the planning stage, 0

otherwise

Rb is the number of aircraft that overnight at base b

ψb the number of flight strings originating from airport b that terminate at a maintenance base

Fb(ψb)
is the function in the objective to penalise the number of maintenance misalignments at

airport b

Table 6.1: Sets and variables used in the SDAMRP.

the planned solution. An example of a proxy robust approach based upon connection lengths

in presented by Grönkvist [45].

Aircraft are a finite resource for airlines that are strategically positioned across airports

throughout the network. The number of aircraft that are positioned at overnight airport b at

the beginning of each day is given by Rb. Therefore, this parameter provides an upper bound

on the number of flight routes that can originate from b in a feasible solution. This model can

be solved for any flight schedule since flow balance ensures that a sufficient number of aircraft

terminate at each overnight airport b to begin the following days flying.

6.1.2 Maintenance misalignment

The SDAMRP attempts to satisfy the maintenance requirements for each aircraft by penalising

the expected number of maintenance misalignments at each overnight base. This is achieved by

introducing the variables ψb and parameters tp to count the number of routes departing from

airport b that terminate at a maintenance base. The parameters tp equal 1 to indicate that

string p terminates at a maintenance base and 0 otherwise. Using the parameters tp, the model

constraints force the value of ψb to equal the number of maintenance routes that depart from

airport b.

The maintenance requirements of each aircraft at the start of the day can be described by

one of two states, either requiring maintenance that evening or not. Therefore, the expected
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number of aircraft that require maintenance departing from each overnight airport is conve-

niently modelled by a binomial distribution. Using the assumption that maintenance is required

once every six days, the probability of an aircraft requiring maintenance is 1/6. To minimise

the number of maintenance misalignments the penalty function Fb(ψb) is introduced. This

function penalises the difference between the expected required maintenance routes, given by

the binomial distribution, and the actual number of maintenance routes, given by the variables

ψb. While the penalty function is conveniently described by Fb(ψb), it is necessary to define this

function in terms of integer variables in order to formulate the SDAMRP as a mixed-integer

program. The specific details regarding this penalty function will be provided in Section 6.1.4.

6.1.3 Mathematical model

The parameters and variables described above are used to formulate an aircraft maintenance

routing problem that is solved for a single day flight schedule. The complete formulation of the

SDAMRP is presented below,

(SDAMRP)

min
∑

b∈B

∑

p∈Pb

cpyp+
∑

b∈B

Fb(ψb), (6.1)

s.t.
∑

b∈B

∑

p∈Pb

ajpyp = 1 ∀j ∈ N, (6.2)

∑

p∈Pb

yp ≤ Rb ∀b ∈ B, (6.3)

ψb =
∑

p∈Pb

tpyp ∀b ∈ B, (6.4)

yp ∈ {0, 1} ∀b ∈ B, ∀p ∈ Pb, (6.5)

ψb ≥ 0 ∀b ∈ B. (6.6)

The objective of the SDAMRP minimises the cost of aircraft routing and any penalties resulting

from maintenance misalignments. Constraints (6.2) ensure that every flight j contained in the

original schedule N is included on a single flight route. An upper bound on the number of

aircraft departing from each overnight airport is given by constraints (6.3). A contribution of

this chapter is the inclusion of constraints (6.4) to count the number of routes departing from

overnight airport b that terminate at a maintenance station. By counting the number of aircraft

routes terminating at a maintenance station, the number of maintenance misalignments at each

overnight airport b can be penalised by the function Fb(ψb).
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6.1.4 Penalty function for maintenance misalignments

As explained in Section 6.1.2, the function Fb(ψb) penalises the difference between the expected

required and actual number of maintenance routes departing from airport b. The actual number

of maintenance routes is given by ψb and the expected number is obtained from a binomial

distribution, B(Rb, φ) where φ = 1/6. Given this distribution, we define the variables pbi as the

probability that exactly i aircraft at overnight airport b require maintenance at the end of the

day. The value of pbi is defined as,

pbi =

(

Rb
i

)

φi(1− φ)Rb−i. (6.7)

Using the values calculated for these variables and the actual number of maintenance routes

given by ψb, it is possible to quantify the expected number of maintenance misalignments at

each overnight airport b. This expectation, Eb(ψb), is given by,

Eb(ψb) =



















Rb
∑

i=ψb+1

(i− ψb)pbi if 0 ≤ ψb < Rb,

0 if ψb = Rb.

(6.8)

The penalty function included in the objective of the SDAMRP is described by Fb(ψb) =

τEb(ψb), where τ is an arbitrary positive weight. In the case that cp > 0, ∀b ∈ B, ∀p ∈ Pb in

equation (6.1) it may be necessary to use a relative large value for τ in the penalty function to

increase the efficacy of this approach.

It is clear from equation (6.8) that the function Fb(ψb) is not linear, hence a reformulation

is required to construct the SDAMRP as a mixed-integer program. The reformulation of Fb(ψb)

and the SDAMRP involves modelling the penalty function using a set of integer variables. To

describe this, we first define ∆i
b as a sequence of step sizes,

∆i
b = Fb(i− 1)− Fb(i) ∀i = 1, . . . , Rb, (6.9)

which is a decreasing sequence in i. Thus, the penalty function can be defined as the sum of

this sequence,

Fb(ψb) =



















Rb
∑

i=ψb+1

∆i
b if 0 ≤ ψb < Rb,

0 if ψb = Rb.

(6.10)

Now, in the current form it is not possible to use equation (6.10) in the mixed-integer pro-

gramming formulation of the SDAMRP. The difficulty with equation (6.10) is the lower bound
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in the summation, ψb + 1. By introducing the set of binary variables Zib, i = 1, . . . , Rb, it is

possible to define ψb =
∑Rb

i=1 Z
i
b. The reformulation of the SDAMRP is performed by replacing

ψb by
∑Rb

i=1 Z
i
b in constraints (6.4) and Fb(ψb) by Fb(0)−

∑Rb

i=1∆
i
bZ

i
b. This results in an linear

objective function and a mixed-integer programming formulation of the SDAMRP.

6.2 Recoverable Robust Single Day Aircraft Maintenance Rout-

ing Problem

The application of recoverable robustness to the tail assignment problem is presented in Chapter

5. As explained in the previous chapter, recoverable robustness is a framework that attempts

to identify a planned solution that is recoverable with limited effort. This chapter further

investigates the application of recoverable robustness to airline planning problems, using the

SDAMRP as an alternative problem for the planning stage. Modelling the planning stage of

the recoverable robustness problem using the SDAMRP attempts to minimise the effect of

disruptions on the maintenance planning solution.

The recoverable robust single day aircraft maintenance routing problem (SDAMRP-RR)

investigates the application of the recoverable robustness framework developed in Chapter 5 to

the maintenance planning problem presented in Section 6.1. As such the notation presented

in Tables 5.1, 5.2 and 6.1 is used in this section. For conciseness, the notation relevant to the

SDAMRP-RR will be presented in Tables 6.2 and 6.3. Only a brief description of the features

presented in previous chapters will be given in this section.

L is the set of all airports l

S is the set of all scenarios s

P s
b

is the set of all flight strings p in scenario s that originate from airport b, the recovery

variables,

Ns
is the set of flights j included in the flight schedule for scenario s, Ns ⊆ N

Cs
is the set of feasible connections between flights in Ns, Cs = {(i, j)|i, j ∈ Ns}, Cs ⊂ C

Uj is the set of all delay copies v for flight j ∈ Ns,

N̂s
is the set of flight-copy pairs jv included in scenario s, j ∈ Ns, v ∈ Uj

Ĉs
is the set of feasible connections between flight-copy pairs in N̂s, Ĉs = {(iu, jv)|iu, jv ∈ N̂s}

C̄s
is the set of feasible connections in C related to the connections in Ĉs, C̄s = {(i, j)|(i, j) ∈

C ∧ (iu, jv) ∈ Ĉs, ∃u ∈ Ui, ∃v ∈ Uj}

Table 6.2: Additional sets used in the SDAMRP-RR.
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The SDAMRP-RR simultaneously solves the planning and recovery aircraft routing prob-

lems, where the latter is used to evaluate the recoverability of the former. The evaluation stage

is a fundamental aspect of the recoverable robustness framework, which is used to explicitly

evaluate the recoverability of the planning stage solution. In the SDAMRP-RR, the evaluation

stage solves a recovery problem for a set of disruption scenarios S. Improved recoverability of

the planned aircraft routing solution is assessed by the expected recovery costs and the effort

required to return operations back to plan for each scenario s ∈ S. The planning problem

is given by the SDAMRP and the recovery aircraft routing problem developed in this section

ensures the satisfaction of the maintenance plan. In this section a description of the recovery

problem is provided along with the details regarding the integration of planning and evaluation

stages.

6.2.1 Aircraft recovery flight strings

Similar to the SDAMRP, the feasible flight strings for aircraft are partitioned by overnight

airport b into disjoint sets. All flight strings p departing from overnight airport b in scenario s

are contained in the set P sb . The flight string formulation is used to define the aircraft routes

in both the planning and recovery problems. However, there are significant differences in each

problem affecting the string construction. Similar to the SDAMRP, the decision variables ysp

equal 1 if string p is operated by an aircraft in scenario s and 0 otherwise. Each flight string

originates from an overnight base, however the connections used prior to the disruption in

scenario s are fixed. Since these connection are fixed, it is possible to omit these flights from

the schedule and the connection network. As such, an alternative set of flights, N s, is used to

define the recovery schedule for each scenario s and all feasible connections between the flights

in N s are contained in Cs. It is important to note that in describing features from the recovery

tail assignment problem (RTAP) that are relevant to the SDAMRP-RR the sets ND and CD

are replaced by the sets N s and Cs respectively.

Since the recovery flight schedule defined by the set N s omits all flights preceding the

disruption described by scenario s, the location of each aircraft at the start of the disruption

must be specified. The possible locations of an aircraft at the start of a disruption are contained

in L, which describes all airports l within the flight network. The parameter vslp indicates that

in scenario s the aircraft operating flight string p in the planning stage is positioned at airport

l at the start of the disruption.
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ysp = 1 if flight string p is used for recovery in scenario s, 0 otherwise

csp = the cost of using flight string p for recovery in scenario s

asjp = 1 if flight j is in string p in scenario s, 0 otherwise

eijp, e
s
ijp

= 1 if connection (i, j) is in string p in the planning stage or scenario s respectively, 0

otherwise

tsp
= 1 if string p terminates at a maintenance base at the end of day for recovery in scenario

s, 0 otherwise

osbp
= 1 if string p terminates at airport b at the end of the day for recovery in scenario s, 0

otherwise

vslp
= 1 if the aircraft operating the planned flight string p is positioned at airport l at the start

of scenario s, 0 otherwise

csj = the lost revenue and passenger delay cost resulting from cancelling flight j in scenario s

gLR
the loss rate parameter, a quantitative measure of passenger dissatisfaction resulting from a

flight cancellation

zsj = 1 if the flight j is cancelled in scenario s, 0 otherwise

ǫs+ij ,ǫs−ij



































































ǫ
s+
ij = 1, ǫs−ij = 0

if connection (i, j) is used for the planning stage

but not for recovery in scenario s

ǫ
s+
ij = 0, ǫs−ij = 1

if connection (i, j) is used for recovery in scenario s

but not for the planning stage

ǫ
s+
ij = 0, ǫs−ij = 0

if connection (i, j) is not used in both the planning stage

and recovery in scenario s

gSW
the swap cost, weight applied to ǫs−ij in the objective function

ws
weight for each scenario s in the objective function

Zi
b

= 1 if i flight strings originating from airport b terminate at a maintenance base at the end

of the day in the planning stage

∆i
b weight applied to Zi

b to penalise the ith maintenance misalignment

Table 6.3: Additional variables used in the SDAMRP-RR.
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6.2.2 Recovery policies

The recovery aircraft routing problem used in the evaluation stage of the SDAMRP-RR is

a more general form of the RTAP presented in Section 3.1.1. The major difference between

the aircraft recovery problem and the RTAP is the partitioning of the feasible flight routes.

As explained above, the flight routes for each scenario in the evaluation stage are partitioned

by origination airport, similar to the SDAMRP. In addition, it is not necessary to construct

individual routes for each aircraft, however it is necessary to ensure the same number of routes

depart from each origination airport as set in the planning stage. Since these are only subtle

differences between the recovery problem of the evaluation stage and the RTAP, the definitions

given in Section 3.1.1 can be used.

The recovery problem is solved with a full set of recovery options, including aircraft rerouting

and flight delays and cancellations. In the event of a disruption, the aircraft routes in the

planning stage solution may not be feasible for the disrupted flight schedule N s, hence the

construction of new routes is required. The new aircraft routes are generated in the recovery

process to respect the origination locations and maintenance requirements. A necessary feature

of aircraft recovery problems is that maintenance critical aircraft are assigned flight routes

terminating at maintenance stations. This is enforced in the generation of recovery flight

routes in the SDAMRP-RR.

The recovery policies of flight delays and cancellations are implemented using the same

techniques presented in Section 3.1.1 for the RTAP. Flight delays are implemented using flight

copies, with all copies v for flight j contained in the set Uj . Flight cancellation in the SDAMRP-

RR are modelled with the variables zsj , that equal 1 to indicate flight j is cancelled in scenario

s at a cost of csj . A recovery window, as described in Section 3.1.1, is employed to reduce the

complexity of the evaluation stage in the SDAMRP-RR. However, the recovery window is only

used to restrict the flights which can be delayed. Aircraft rerouting and flight cancellations are

permitted on all flights contained in the set N s.

There is a subtle difference in the definition of flight cancellation costs csj for the SDAMRP-

RR compared to the RRTAP in Chapter 5. In this chapter, the cost of a flight cancellation is

given by the cost of rebooking passengers onto alternative flights and the amount of lost revenue

from each passenger that is not rebooked. This definition does not quantitatively describe any

loss of good will as a result of passenger dissatisfaction. In the SDAMRP-RR, this is modelled

with the introduction of a loss rate parameter gLR to indicate the willingness of passengers
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to rebook with the airline. There are three important ranges for the loss rate parameter i)

gLR < 1 indicates that passengers are not discouraged to travel with the airline in the future

and some of the lost revenue is recaptured by passengers rebooking with the airline, ii) gLR = 1

does not account for any recapture or loss of future bookings, and iii) gLR > 1 describes the

situation where passengers are less likely to rebook with the airline in the future. The results

will demonstrate the effect that different values of gLR has on the efficacy of the recoverable

robustness framework.

Flight schedules are designed to ensure that an adequate number of aircraft terminate at

each overnight base to continue the following days flying. This is the result of flow balance, and

hence model constraints are not required to enforce this coverage in planning aircraft routing

problems. Unfortunately in recovery problems, flight cancellations commonly break the flow

balance of the original schedule. In addition, the recovery schedule N s may not contain the

required flights to guarantee adequate end of day coverage at each overnight base. To address

this aspect of recovery problems for the cyclic schedules used in this chapter, the parameter Rb

specifies the minimum number of aircraft required to terminate at each overnight base b. In the

model constraints for the aircraft recovery problem, the parameters osbp are introduced, which

equal 1 if string p in scenario s terminates at overnight airport b and 0 otherwise.

6.2.3 Objective of minimal deviation

An important feature of the recoverable robustness framework is the objective of minimal de-

viation from the planned solution. Since the SDAMRP-RR is solved as an aircraft routing

problem, each aircraft is not individually identified. Therefore, the objective of minimal devi-

ation is implemented by attempting to construct aircraft routes in the recovery problem with

the same connections used by aircraft in the solution to the planning stage. However, the set of

connections in the planning and evaluations stages is different as a result of flights omitted from

the recovery schedule and the alternative departure times representing flight delays. Therefore,

the set C̄s is defined to contain the connections (i, j) ∈ C where there exists copies u ∈ Ui and
v ∈ Uj such that (iu, jv) ∈ Ĉs. As stated previously, a flight string p is defined by a sequence

of connected flights. Thus, the parameters eijp and e
s
ijp are defined to equal 1 if the connection

(i, j) ∈ C̄s is included in string p for the planning stage and recovery scenario s respectively.

To minimise the number of connection changes between the planning and recovery solutions

we introduce the variables ǫs+ij and ǫs−ij . If a connection (i, j) is used in a planned route and not
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in a recovery route for scenario s, ǫs+ij equals 1 and ǫs−ij equals 0. Alternatively, if connection

(i, j) is used in a recovery route for scenario s and not in a planned route, ǫs+ij equals 0 and ǫs−ij

equals 1. Finally, if the connection is not used in either a planned or recovery route for scenario

s then both ǫs+ij and ǫs−ij equal 0. In the objective function we include only the variables ǫs−ij to

count the total number of connections used in recovery that are not used in the planned aircraft

routes. This is done to avoid double counting the total number of changes resulting from the

inclusion of both sets of variables.

The mathematical model for the SDAMRP-RR is given by,

(SDAMRP-RR)

min
∑

p∈P

cpyp +
∑

b∈B

{

Fb(0)−
Rb
∑

i=1

∆i
bZ

i
b

}

+
∑

s∈S

ws

{

∑

p∈P s

cspy
s
p +

∑

j∈Ns

gLRcsjz
s
j +

∑

(i,j)∈Cs

gSW ǫs−ij

}

, (6.11)

s.t.
∑

b∈B

∑

p∈Pb

ajpyp = 1 ∀j ∈ N, (6.12)

∑

p∈Pb

yp ≤ Rb ∀b ∈ B, (6.13)

Rb
∑

i=1

Zib −
∑

p∈Pb

tpyp = 0 ∀b ∈ B, (6.14)

∑

b∈B

∑

p∈P s
b

asjpy
s
p + zsj = 1 ∀s ∈ S, ∀j ∈ N s, (6.15)

∑

p∈P s
b

ysp ≤ Rb ∀s ∈ S, ∀b ∈ B, (6.16)

∑

b1∈B

∑

p∈P s
b1

osb2py
s
p ≥ Rb2 ∀s ∈ S, b2 ∈ B, (6.17)

∑

b∈B

∑

p∈P s
b

vslpy
s
p −

∑

b∈B

∑

p∈Pb

vslpyp = 0 ∀s ∈ S, ∀l ∈ L, (6.18)

∑

b∈B

∑

p∈P s
b

tspv
s
lpy

s
p −

∑

b∈B

∑

p∈Pb

tpv
s
lpyp ≥ 0 ∀s ∈ S, ∀l ∈ L, (6.19)

∑

b∈B

∑

p∈Pb

eijpyp −
∑

b∈B

∑

p∈P s
b

esijpy
s
p = ǫs+ij − ǫs−ij ∀s ∈ S, ∀(i, j) ∈ C̄s, (6.20)

yp ∈ {0, 1} ∀b ∈ B, ∀p ∈ Pb, ysp ∈ {0, 1} ∀s ∈ S, ∀b ∈ B, ∀p ∈ P sb , (6.21)

zsj ∈ {0, 1} ∀s ∈ S, ∀i ∈ N s ǫs+ij , ǫ
s−
ij ≥ 0 ∀s ∈ S, ∀(i, j) ∈ C̄s, (6.22)

Zib ∈ {0, 1} ∀b ∈ B, ∀i ∈ {1, . . . , Rb}. (6.23)
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The SDAMRP-RR combines the planning stage of the SDAMRP with an evaluation stage pro-

vided by aircraft recovery subproblems. The objective of the SDAMRP-RR is the sum of the

objective from the SDAMRP and the weighted cost of recovery and penalties resulting from

connection changes in each scenario. The modifications described in Section 6.1.4 to formu-

late the SDAMRP as a mixed-integer program have been applied in the formulation of the

SDAMRP-RR, given by equations (6.11) and (6.14). Constraints (6.12)-(6.14) describe the

SDAMRP as the planning stage for the recoverable robust problem.

The constraints related to the evaluation stage of the recoverable robust problem are given

by equations (6.15)-(6.20). Constraints (6.15) are the flight coverage constraints including the

decision variables zj to describe flight cancellations. An upper bound on the number of aircraft

flight strings departing from each overnight base in a feasible recovery solution is given by

constraints (6.16). Since flow balance is not guaranteed in the recovery schedule, the number

of aircraft required to terminate at each overnight base is provided by constraints (6.17).

The link between the planning and recovery stages is provided by constraints (6.18)-(6.20).

Constraints (6.18) are included to identify the number of aircraft located at each airport at the

start of a disruption described by scenario s. As a key feature of the SDAMRP-RR, the aircraft

expected to receive maintenance at the end of the day are still assigned a flight route that

terminates at a maintenance station in the recovered solution. Constraints (6.19) ensure that

the number of routes originating from airport l that terminate at maintenance stations is the

same in the planning and evaluation stages. Finally, a measure of limited effort in the recovery

of the SDAMRP is given by the number of different connections used between the planning and

evaluation stages. Therefore, constraints (6.20) are included in the SDAMRP-RR to count the

number of connections used in the recovered solution that are not set in the planning stage.

6.3 Solution Methodology

The SDAMRP and SDAMRP-RR are large-scale optimisation problems that require the use

of decomposition techniques to develop efficient solution approaches. The decomposition tech-

niques employed in this chapter are column generation and Benders’ decomposition. Both of

these solution techniques are introduced in Chapter 4 and applied to the RRTAP in Chapter

5. For conciseness, only the key features of each solution approach will be presented in this

section.
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6.3.1 Benders’ decomposition

The SDAMRP-RR displays a similar structure to problem P presented in Section 4.2. In

particular, the first-stage (deterministic) decision variables x of problem P are related to the

planning aircraft routing variables yp of the SDAMRP. Also, it can be observed that the second-

stage (probabilistic) decision variables ys are related to the aircraft recovery variables ysp for

each scenario s. Given the similarity between the SDAMRP-RR and problem P, the standard

implementation of Benders’ decomposition described in Section 4.2 can be applied to achieve

an efficient solution approach.

In the SDAMRP-RR, there is a clear separation of variables between the planning and

recovery problems to define the master and subproblems respectively. The subproblems given

by this decomposition, which we will label as the primal Benders’ subproblem (PBSP-s), are

defined for each scenario s to consist of the recovery string variables ysp, the cancellation variables

zsj , and the comparison count variables ǫs+ij and ǫs−ij . Each of the subproblems represent a

recovery problem that is solved for a given disruption scenario to evaluate the effect of the

planning decisions on the cost of recovery.

The Benders’ master problem (BMP) for the SDAMRP-RR is defined as a planning aircraft

routing problem given by the SDAMRP. The BMP is formulated to contain the planning string

variables ysp, the constraints (6.12)-(6.14) and a set of additional cuts to reflect the decisions

made in each PBSP-s. The decision variables ϕs are introduced in the added cuts to provide

a lower bound on the objective value of the PBSP-s for each scenario s. The BMP formulated

without any added cuts is identical to the SDAMRP. Since the added cuts progressively restrict

the feasible region, all feasible solutions to the BMP are feasible for the SDAMRP. It should

also be stated that due to this property the solution to the SDAMRP is a lower bound on the

optimal solution to the BMP.

Evaluating the recoverability of the planning solution is performed by solving the PBSP-

s with fixed solution values from the BMP. The fixed solution to the BMP, given by ȳn =

{ȳnp, ∀b ∈ B, ∀p ∈ Pb|ȳnp = 1}, represents the best possible planning solution in iteration n

achieved with the previously realised evaluation information. The benefits of Benders’ decom-

position is observed in this stage since solving each individual subproblem with a fixed master

problem solution is much simpler than solving the original problem as a whole. Fixing the

solution to the planning stage significant reduces the complexity of the original problem by

permitting the evaluation stage to be solved purely as a series recovery problems.
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The PBSP-s is defined as an aircraft recovery problem given by,

(PBSP-s)

µs(ȳn) = min
∑

p∈P s

cspy
s
p +

∑

j∈Ns

gLRcsjz
s
j +

∑

(i,j)∈Cs

gSW ǫs−ij , (6.24)

s.t.
∑

b∈B

∑

p∈P s
b

asjpy
s
p + zsj = 1 ∀j ∈ N s, (6.25)

∑

p∈P s
b

ysp ≤ Rb ∀b ∈ B, (6.26)

∑

b1∈B

∑

p∈P s
b1

osb2py
s
p ≥ Rb2 b2 ∈ B, (6.27)

∑

b∈B

∑

p∈P s
b

vslpy
s
p =

∑

b∈B

∑

p∈Pb

vslpȳnp ∀l ∈ L, (6.28)

∑

b∈B

∑

p∈P s
b

tspv
s
lpy

s
p ≥

∑

b∈B

∑

p∈Pb

tpv
s
lpȳnp ∀l ∈ L, (6.29)

∑

b∈B

∑

p∈P s
b

esijpy
s
p + ǫs+ij − ǫs−ij =

∑

b∈B

∑

p∈Pb

eijpȳnp ∀(i, j) ∈ C̄s, (6.30)

ysp ∈ {0, 1} ∀p ∈ P s, zsj ∈ {0, 1} ∀j ∈ N s, (6.31)

ǫs+ij , ǫ
s−
ij ≥ 0 ∀(i, j) ∈ C̄s. (6.32)

The objective of the PBSP-s minimises the cost of recovery, in particular flight delay and

cancellation costs, and penalise any changes from the connections set in the planning stage.

The dual variables for this problem are defined as αs = {αsj , ∀j ∈ N s}, βs = {βsb , ∀b ∈ B},
δs = {δsb , ∀b ∈ B}, γs = {γsl , ∀l ∈ L}, λs = {λsl , ∀l ∈ L} and ρs = {ρsij , ∀(i, j) ∈ Cs} for the

constraints (6.25)-(6.30) respectively.

The general application of Benders’ decomposition solves the PBSP-s to identify either a

feasibility or optimality cut in each iteration. A feasibility cut is added to the BMP in the event

that the PBSP-s is proved to be infeasible, conversely an optimality cut is added if a feasible

solution exists. Because of the similar structure of the variables in the PBSP-s and BMP, an

initial feasible solution can be constructed for the PBSP-s using ȳn. As a result, only optimality

cuts are generated from the PBSP-s and added to the BMP. The Benders’ optimality cut is

given by,

ϕs ≥
∑

j∈Ns

αsj +
∑

b∈B







Rb (β
s
b + δsb) +

∑

l∈L

∑

p∈Pb

vslpyp (γ
s
l + tpλ

s
l ) +

∑

(i,j)∈Cs

∑

p∈Pb

eijpypρ
s
ij







. (6.33)

Given an optimal solution to the PBSP-s, the dual solutions used to construct the cut given

by equation (6.33) represents an extreme point of the dual feasible region. Since the PBSP-s
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is a highly degenerate problem, there are potentially many extreme points in the dual problem

that provide the same objective value. The efficacy of the cuts constructed from each of these

extreme points when added to the BMP is not identical. Therefore, the convergence of the

solution process can be improved by selecting the most dominate. There are many approaches

that can be applied to identify the most dominate optimality cut.

The rate of convergence of the Benders’ decomposition solution process is highly dependent

on the strength the cuts added to the master problem. A common approach used to identify

the extreme point in the dual problem providing the most dominate optimality cut, called the

Pareto-optimal cut, is presented by Magnanti and Wong [60]. The use of the Magnanti-Wong

method to identify Pareto-optimal cuts is demonstrated in the solution process of various airline

optimisation problems [27, 63, 69] and in Chapter 5. The improvements in solution runtimes

achieved by implementing this method is presented in Section 5.3.3. The Magnanti-Wong

method has been applied to find Pareto-optimal cuts from the solution of the PBSP-s in this

chapter in an attempt to achieve similar runtime improvements.

The BMP is solved to find the best possible planning solution relative to the cuts added

from the PBSP-s. All Benders’ cuts ω added to the BMP from the PBSP-s for scenario s are

contained in the set Ωs. The BMP is given by,

(BMP)

Φn = min
∑

p∈P

cpyp +
∑

b∈B

{

Fb(0)−
Rb
∑

i=1

∆i
bZ

i
b

}

+
∑

s∈S

wsϕs, (6.34)

s.t.
∑

b∈B

∑

p∈Pb

ajpyp = 1 ∀j ∈ N, (6.35)

∑

p∈Pb

yp ≤ Rb ∀b ∈ B, (6.36)

Rb
∑

i=1

Zib −
∑

p∈Pb

tpyp = 0 ∀b ∈ B, (6.37)

ϕs −
∑

b∈B

{

∑

l∈L

∑

p∈Pb

vslpyp (γ
ωs
l + tpλ

ωs
l ) +

∑

(i,j)∈Cs

∑

p∈Pb

eijpypρ
ωs
ij

}

≥
∑

j∈Ns

αωsj +
∑

b∈B

Rb
(

βωsb + δωsb
)

∀s ∈ S, ∀ω ∈ Ωs, (6.38)

yp ∈ {0, 1} ∀b ∈ B, ∀p ∈ Pb, (6.39)

Zib ∈ {0, 1} ∀b ∈ B, ∀i ∈ {1, . . . , Rb}, (6.40)

ϕs ≥ 0 ∀s ∈ S. (6.41)
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The objective of the BMP minimises the cost of aircraft routing, the penalties arising from

maintenance misalignments and the weighted sum of the lower bounds on the PBSP-s ob-

jective values. The constraints (6.35)-(6.37) are identical to constraints (6.2)-(6.4) from the

SDAMRP following the modification described in Section 6.1.4. The additional constraints

representing Benders’ optimality cuts constructed from the dual solutions to the PBSP-s are

given by equations (6.38).

The lower and upper bounds on the objective value for the PBSP-s in iteration n are given

by the solution value of ϕ̄sn and the objective value µs(ȳn) respectively. The iterative solution

process between the BMP and the PBSP-s progressively restricts the feasible region with the

addition of cuts to improve upon the lower bounds given by ϕs. This improvement in the

bounds for each scenario results in a strictly non-decreasing lower bound on the objective value

of the original problem, given by Φ. Simultaneously, the addition of cuts also has the effect of

reducing the upper bound on the objective value of the original problem. However, the sequence

of upper bounds from each iteration is not strictly non-increasing. The upper bound on the

original problem in iteration n is given by,

ΦUBn =
∑

p∈P

cpȳnp +
∑

b∈B

{

Fb(0)−
Rb
∑

i=1

∆i
bZ̄

i
nb

}

+
∑

s∈S

µs(ȳn), (6.42)

where Z̄n = {Z̄inb, ∀b ∈ B, ∀i ∈ {1, . . . , Rb}|Z̄inb = 1} are the fixed solution values for the

maintenance count variables in iteration n. The best upper bound identified during the solution

process is labelled as Φ̂UB = maxn{ΦUBn }. Using the lower and upper bounds on the original

problem, the optimality gap in iteration n is calculated by,

Gapn =
Φ̂UB − Φn

Φn
. (6.43)

Two different stopping conditions are used in the SDAMRP-RR, the first is given by the

gap between the upper and lower bounds on the original problem and the other is related to

the addition of cuts. By defining the optimality gap using equation (6.43), the solution quality

can be measured at the end of each iteration. If the optimality gap lies within a desired range,

then the solution process can be terminated.

Alternatively, optimality cuts are added to the BMP in iteration n if the difference between

the lower and upper bounds, ϕsn and µs(ȳn) respectively, for scenario s violate an optimality

condition. The optimality condition that is implemented for this problem is adopted from a
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condition presented by Papadakos [69], which is given by,

µs(ȳn)− ϕsn
Φn

≤ ε. (6.44)

The tolerance level, ε, that is used for this problem is 10−4. Using this optimality condition,

the optimal solution to the original problem is identified when (6.44) is satisfied for all scenarios

s in a single iteration. The optimality condition given by equation (6.44) is identical to that

used in Chapter 5.

While it is expected that the optimality gap stopping condition will be reached prior to

the cut addition condition, both stopping conditions are implemented for this problem. The

primary purpose of the latter stopping condition is to identify when cuts must be added from

each subproblem. Using this condition stops redundant cuts being added to the master problem

from scenarios that are already solved close to optimality. The optimality gap condition takes

a global view of the problem, terminating the solution process when a desired gap is reached.

The two-phase algorithm

The heuristic two-phase algorithm described by Algorithm 5.1 is applied in the Benders’ decom-

position solution process for the SDAMRP-RR. The implementation of Algorithm 5.1 in this

chapter is identical to that presented in Chapter 5, as such no further explanation is required.

A feature of the two-phase algorithm that is not discussed in the previous chapter is the

calculation of the optimality gap at the completion of Phase 2. Since the integrality requirements

are not reintroduced for the PBSP-s, the solution to the BMP at the end of Phase 2 may not

be the integer optimal solution to the SDAMRP-RR. The optimality gap between the current

implementable solution and the optimal solution can be found by solving the PBSP-s for all

scenarios s to integral optimality. Using equation (6.42) to calculate the upper bound on the

optimal solution and setting Φ̂UB to this, the optimality gap of the implementable solution is

calculated by equation (6.43).

Parallel computing

The Benders’ decomposition framework lends itself to parallel computing methods as demon-

strated by Linderoth and Wright [58]. Since each of the recovery subproblems in the SDAMRP-

RR are completely separable and solved independently, it is possible to solve each of these

concurrently. The concurrent approach for solving the Benders’ decomposition subproblems
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does not affect the solution methods for each individual problem, as such the generation and

addition of optimality cuts remains the same. The only difference between the sequential and

concurrent approach is in the implementation of the Benders’ decomposition process to include

the distribution of subproblems onto a number of compute threads.

The distribution of the subproblems for the SDAMRP-RR attempts to achieve the minimum

amount of idle time for all threads. In the first iteration, the subproblems are assigned to

threads in numerical order, where the first n subproblems are each solved on one of the n

threads. Once a thread finishes executing the solution process for the current subproblem,

then next subproblem in the list is solved on that thread. The evaluation stage for the current

iteration concludes when all subproblems have been assigned to a thread and the execution of

each thread has completed.

For the subsequent iterations, the solution runtime for each subproblem in the previous

iteration is used in the assignment process of subproblems to threads. The subproblems are

sorted by solution runtime in descending order and the n subproblems with the longest runtime

in the previous iteration are each assigned to one of the n threads. As in the previous case, once

a thread completes the execution of the solution process the next subproblem in the runtime

sorted list is assigned to that thread.

Significant improvements in the convergence of the Benders’ decomposition solution process

are observed by the implementation in a parallel computing environment. The results in Section

6.4.5 will detail the difference in the optimality gaps achieved with the sequential and concurrent

solution approaches.

6.3.2 Column generation

Column generation is applied to optimisation problems formulated with a large number of

variables displaying a special combinatorial structure. Each of the three problems presented

in this chapter, the SDAMRP, BMP and PBSP-s, display such a structure with the variables

describing paths traversed by aircraft through a connection network. Since flight string variables

are used in the formulation of each of these problems, the implementations of the column

generation solution approach are very similar. A detailed description of column generation

implemented to solve the PBSP-s will be provided in this section. For completeness, the

differences in the implementation of column generation for the SDAMRP, BMP and PBSP-s

will also be highlighted and explained.
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As explained in Section 4.1.1, the restricted master problem (RMP) is formulated as a

restriction on the original problem by containing only a subset of all possible variables. This

restriction is defined by the sets P̄b ⊆ Pb and P̄ sb ⊆ P sb which replace Pb and P
s
b respectively in

the SDAMRP, BMP and PBSP-s. The solution to the RMP will provide an upper bound on

the objective value of the original problem, that is improved with the addition of variables to

the sets P̄b and P̄
s
b .

Column generation for the PBSP-s

The flight string variables in the PBSP-s define paths through a connection network that

originate and terminate at overnight airports. Given this variable structure, the set of all

possible variables P sb can be described by the feasible region of a network flow problem. Using

the dual variables defined in Section 6.3.1, the reduced cost of a flight string p originating from

overnight airport b is given by,

c̄sbp = csbp −
∑

j∈Ns

asjpα
s
j − βsb −

∑

b∈B

osbpδ
s
b −

∑

l∈L

vslp

{

γslb + tspλ
s
l

}

−
∑

(i,j)∈Cs

esijpρij . (6.45)

In the optimal solution to the RMP, all variables contained in P̄ sb have a reduced cost of c̄sbp ≥ 0

and c̄sbp = 0 for all variables contained in the basis. This indicates that an improvement in

the objective value of the RMP is only achieved through the addition of variables from the set

P sb \P̄ sb , ∀b ∈ B. By setting the objective function of a shortest path problem to equation (6.45),

the solution will identify variables with a reduced cost c̄sbp ≤ 0 that are expected to improve the

objective function of the RMP.

Since negative reduced cost variables are identified by the solution to a network flow problem,

the solution methods presented in Section 4.1.3 can be applied to the PBSP-s. The connection

network defined for the PBSP-s is an acyclic directed graph, as such the nodes can be sorted in a

topological order. By sorting the nodes in a topological order the reaching algorithm described

by Algorithm 4.1 can be employed to solve the shortest path problem in O(m) time, where m

is the number of arcs in the network.

Column generation for the BMP and SDAMRP

Since the variables in the BMP describe the flow of aircraft through a connection network similar

to the PBSP-s, a shortest path problem can also be solved to identify the minimum reduced cost

variables. The major difference between the shortest path problems solved to identify negative
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reduced cost columns for the BMP and the PBSP-s is the form of the objective function that

is used. Since the RMP formulated for the BMP has a different structure to the PBSP-s,

a different set of dual variables must be defined. The dual variables for the BMP are given

by u = {uj , ∀j ∈ N}, v = {vb, ∀b ∈ B}, w = {wb, ∀b ∈ B} and κ = {κsω, ∀ω ∈ Ωs} for

constraints (6.35)-(6.38) respectively. Therefore, the reduced cost function of a variable in the

BMP originating from overnight airport b is given by,

c̄bp = cbp −
∑

j∈Ns

ajpu
s
j − vb + tpwb +

∑

s∈S

∑

ω∈Ωs

{

∑

l∈L

vslp (γ
ωs
l + tpλ

ωs
l ) +

∑

(i,j)∈C

eijpρ
ωs
ij

}

κsω. (6.46)

Solving a shortest path problem using equation (6.46) as the objective function identifies neg-

ative reduced cost variables for the BMP. Since the connection network defined for the BMP

can be sorted in a topological order, this shortest path problem can be solved using Algorithm

4.1.

The connection networks defined for the SDAMRP and BMP are identical, as such the

same set of feasible columns is defined for both problems. This implies that the shortest path

problem employed to identify negative reduced cost columns for the BMP can also be used for

the SDAMRP. The only modification required is the elimination of the final term in equation

(6.46) to define the objective function of the shortest path problem for the SDAMRP.

6.3.3 Trust region

The standard implementation of the Benders’ decomposition solution process is commonly

affected by slow convergence to the optimal solution. One aspect affecting the convergence of

the algorithm is the efficacy of the cuts generated in the subproblem. A number of approaches

have been proposed to address this difficulty by improving the strength of each added cut to

tighten the feasible region of the master problem quickly and efficiently [38, 60, 68]. As stated

in Section 6.3.1, the Magnanti-Wong method [60] has been implemented in the solution process

for the SDAMRP-RR to identify Pareto-optimal cuts.

The quality of the solution to the Benders’ master problem is also identified as a factor

affecting the convergence of the solution approach. Rei et al. [71] present an example applying

local branching to the Benders’ master problem to improve the bounds on the problem while

generating multiple optimality cuts. This approach also reduces the number of times that

the master problem is solved, which is described as a time consuming feature of the Benders’

decomposition approach.
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An undesired effect of the Benders’ decomposition solution approach is the potentially large

distances between master problem solutions from consecutive iterations. The movement of

the master problem solution to different parts of the feasible region between iterations may

render many of the added cuts ineffective. This increases the number of iterations executed in

the Benders’ decomposition solution process, requiring the generation of more optimality and

feasibility cuts. An approach proposed to address this involves defining a trust region in the

formulation of the master problem. A trust region enforces the solution in the current iteration

to be found within a neighbourhood around the master problem solution from the previous

iteration. This is implemented with either a regularisation term in the master problem objective

function [75] or an additional set of constraints [58, 78].

The trust region in the SDAMRP-RR introduces a set of constraints to measure the distance

between solutions of consecutive iterations. Since the BMP is solved using column generation,

it is not possible to define the trust region based upon the solution values alone. As explained

in Section 6.1, a flight string describes a set of connected flights to be performed by a single

aircraft. Therefore, the optimal solution to the BMP is described by the set of connections that

are used in the aircraft flight routes. Thus, a measure of the distance between solutions is the

number of different connections that are used.

To implement the trust region in the SDAMRP-RR the following set of constraints are

added to the BMP,

∑

b∈B

∑

p∈Pb

eijpyp + ǫ+ij − ǫ−ij =
∑

b∈B

∑

p∈Pb

eijpȳ(n−1)p ∀(i, j) ∈ C, (6.47)

This set of constraints is similar to the linking constraints (6.32) in the PBSP-s, as such the

counting variables ǫ+ij and ǫ−ij are defined in a very similar manner. To minimise the number

of connection changes between solutions of consecutive iterations, the term
∑

(i,j)∈C g
TRǫ−ij is

added to the objective function of the BMP. The value of the weight gTR in the objective

function affects the number of connection changes which are made.

While the trust region is used to restrict the feasible region of the master problem, it is

important to ensure that the resulting objective function value is less than the best found

upper bound. This is achieved by including a constraint to impose an upper bound on the

objective function value. Such a constraint for the BMP is given by,

∑

p∈P

cpyp +
∑

b∈B

{

Fb(0)−
Rb
∑

i=1

∆i
bZ

i
b

}

+
∑

s∈S

wsϕs ≤ Φ̂UB. (6.48)
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The addition of the trust region and the upper bound on the objective value introduces a

two-stage solution process for the BMP. The first stage solves the BMP as described in Section

6.3.1 to identify the current lower bound on the objective of the original problem. The second

stage adds the constraints (6.47) and (6.48) to the BMP, which is then solved to identify a

solution within a neighbourhood of the solution from the previous iteration. While it is only

necessary to solve the second-stage of this process to generate optimality cuts, the lower bound

identified in the first stage is used in the stopping condition described by (6.43). In addition,

this lower bound multiplied by a tolerance ξ ≥ 1 can be used interchangeably with Φ̂UB in

constraint (6.48) provided ξΦ < Φ̂UB. By replacing the right-hand side of constraint (6.48)

with min{ξΦ, Φ̂UB}, the solution to the second stage will remain close to the current lower

bound and the solution from the previous iteration solution.

This two-stage solution process for the BMP is implemented to solve the SDAMRP-RR. Our

implementation involves the process described above, however it is possible that the solution

to the original problem achieved by this approach overestimates the optimal solution. Once

the optimal solution is found by this process, the Benders’ decomposition solution algorithm

continues, however only the first stage is used when solving the BMP. The solution process then

terminates when either stopping condition presented in Section 6.3.1 is satisfied.

Solving the BMP using a trust region identifies a suboptimal solution at each iteration of

the Benders’ decomposition solution process. While the optimality of the BMP affects the cuts

generated in the evaluation stage, it is demonstrated by Geoffrion and Graves [42], Côté and

Laughton [28] and Rei et al. [71] that suboptimal solutions to the BMP does not affect the finite

convergence of the solution process. In particular, Geoffrion and Graves [42] describes a solution

process that only identifies feasible suboptimal solutions to the BMP at each iteration. The

termination of the solution process in [42] occurs when no further feasible solutions to the BMP

exist with an objective value less than the best found upper bound. The algorithm described

by Geoffrion and Graves [42] is similar to our implementation, however the stopping conditions

presented in Section 6.3.1 significantly alters the solution approach. Our implementation of

Benders’ decomposition terminates with the optimal solution prior to all feasible solutions

being identified, greatly improving the solution runtimes.

The results presented in the following section will demonstrate that the trust region method

is a necessary enhancement to improve the convergence of the Benders’ decomposition solution

process. By contrast, the solution approach for the RRTAP did not require a trust region,
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with acceptable solution runtimes achieved through the implementation of the Magnanti-Wong

method alone. The major differences between the RRTAP and the SDAMRP-RR affecting

runtimes are the size of the data sets and number of scenarios used in the evaluation stage. As

such, the SDAMRP-RR describes a much larger and more complex problem requiring the use

of additional enhancement techniques to reduce the solution runtimes.

6.4 Computational Results

The SDAMRP attempts to provide an adequate number of maintenance routes departing from

each overnight airport to satisfy the maintenance requirements of all aircraft. The ability of the

SDAMRP to achieve this desired goal is evaluated by comparing the resulting solution with that

of an aircraft routing problem solved without any maintenance considerations. To provide this

set of benchmark results, an aircraft routing problem is formulated from the SDAMRP with

the maintenance counting constraints (6.4) eliminated and the term
∑

b∈B Fb(ψb) removed from

the objective. Both the SDAMRP and the benchmark problem is solved for four different flight

schedules and the number of maintenance misalignments from each is compared.

The SDAMRP-RR is presented as an extension to the SDAMRP, attempting to improve

recoverability with no impact to the planned maintenance solution. The improved recoverability

is evaluated by simulating the recovery of disruption scenarios for the SDAMRP and SDAMRP-

RR solutions and comparing the resulting recovery costs. A selection of the flight schedules

used to benchmark the SDAMRP are used in this analysis of the improved recoverability.

6.4.1 Description of schedule data and parameters

Four different flight schedules are used in this chapter to demonstrate the versatility of the

maintenance scheduling approach of the SDAMRP. Table 6.4 provides the details of each of

the schedules which vary in the number of flights, airports and aircraft. The key features of

each flight schedule is the set of airports where aircraft flight routes terminate, called overnight

bases, and the subset of these where maintenance can be performed. Since all aircraft flight

routes originate and terminate at overnight bases, the SDAMRP attempts to provide a sufficient

number of routes from each of these bases that terminate at maintenance stations.

Traditionally the aircraft routing problem is solved following the fleet assignment, which

partitions the schedule into sets of flights, one for each fleet type. Since the aircraft assigned
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F267 A49 F578 A153 F1165 A289 F3370 A526

Flights 267 578 1165 3370

Aircraft 49 153 289 526

Airports 20 50 97 73

Overnight(Maintenance) bases 12(1) 41(2) 67(5) 73(10)

Table 6.4: Flight schedule details.

to a single partition of the schedule are all of the same type, the traditional formulation of the

aircraft routing problem describes a feasibility problem. Solving the SDAMRP, and similarly

the SDAMRP-RR, as a feasibility problem is accomplished by setting the cost of each flight

route to zero, i.e. cp = 0, ∀b ∈ B, ∀p ∈ Pb. Setting the costs in this way is equivalent to having

a zero cost on each arc in the connection network, hence this formulation will be described as

solving the SDAMRP with a zero connection cost function (ZCF).

Parameters for the SDAMRP-RR

To thoroughly review the SDAMRP-RR, experiments are performed by also solving the planning

stage using a proxy robust connection cost function introduced by Grönkvist [45] (GCF). This

proxy robust connection cost function is implemented in the RRTAP presented in Chapter 5.

To provide a direct comparison with the results presented in Section 5.3, the identical parameter

settings for the GCF are used to solve the SDAMRP-RR. A contribution of this chapter is a

more detailed review of the application of recoverable robustness to the aircraft routing problem,

discussing the impact of the connection cost functions on the recoverability improvements and

solution runtimes.

The definition of parameters used for the SDAMRP-RR are identical to that given in Sec-

tion 5.3.1 for the RRTAP. In particular, the swap cost gSW is used to penalise any different

connections between the planning and recovery solutions. The experiments presented in this

section solve the SDAMRP-RR with a range of swap costs to broadly analyse the recoverability

improvement, i.e. gSW ∈ {2000, 5000, 7500}. The magnitude of this parameter directly affects

the flexibility of the recovery solution by minimising the number of connection changes that

are made. The cost of a flight delay is based upon the EUROCONTROL report by Cook and

Tanner [25] and is set at $100AUD. Similar to the RRTAP, it is assumed that the load fac-

tor for the entire schedule is 75%, so the cost of delaying a flight by one minute is equal to
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$100AUD× 0.75 = $75AUD. Finally a loss rate gLR is used to quantitatively describe passen-

ger dissatisfaction. An indepth analysis of the solution to the SDAMRP-RR achieved using

different loss rates is performed by presenting the results with gLR ∈ {0.5, 1.0, 1.5, 2.0}. Similar

to the swap cost parameter, the flexibility of the recovery solution decreases as gLR increases.

A selection of the flight schedules presented in Table 6.4 are used to evaluate the SDAMRP-

RR, namely the F267 A49 and F578 A153 schedules. These schedules are selected to provide an

example of the potential recoverability improvements that can be achieved by the application of

recoverable robustness. In Chapter 5, the RRTAP is evaluated on a schedule that contains 53

flights operated by 10 aircraft. The evaluation of the SDAMRP-RR extends upon the analysis

presented in the previous chapter by assessing the applicability of the recoverable robustness

framework to larger flight schedules.

Evaluation scenarios for the SDAMRP-RR

The solution process of the SDAMRP-RR is separated into planning and evaluation stages.

The evaluation stage involves assessing the recoverability of the current planning solution by

solving recovery problems for a set of disruption scenarios. The disruption type selected for

each scenario in the evaluation stage is an airport closure. This disruption type is selected

for the SDAMRP-RR since airport closures generally require significant intervention by the

airline during recovery. While there are many different types of disruptions that can occur, it is

believed that airport closures provide a good example of the benefits that can be achieved with

the recoverable robustness framework. In practice, it is trivial to implement different disruption

types in the evaluation stage to match the desired outcomes of each airline.

The airport closure scenarios are generated from the original flight schedule to represent

closures at different airports with a range of starting times and durations. The airports where

at least 5% of all arrivals or departures occur are selected as the affected airports for the closure

scenarios. For the F267 A49 data set there are six airports that satisfy this criteria and for

the F578 A153 there are four. To assess the impact of disruptions on maintenance planning,

the airports where aircraft maintenance can be performed are included in the set of affected

airports for both data sets.

To provide a broad range of scenarios at each airport the earliest and latest start times for

the closures are 6:30am and 5:00pm local time respectively, and the durations range between 1

and 5 hours. The set of scenarios is constructed such that there are an equal number of closure
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start times and durations. Using the F267 A49 data set as an example, if the evaluation stage

is solved with 24 scenarios, 4 are generated for each airport by using 2 different starting times

and durations. While each of the scenarios are not equally likely, we wish to improve the

recoverability across the complete set of scenarios, as such a uniform distribution is used.

6.4.2 Analysis of maintenance misalignment

As part of regular maintenance planning, a fraction of all aircraft require maintenance at the

end of each day. In this chapter it is assumed that aircraft require maintenance once every six

days, therefore 1/6 of aircraft at each overnight airport will require maintenance the following

day. By this assumption, adequate maintenance planning requires at least 1/6 of all aircraft

routes originating from each airport to terminate at a maintenance station at the end of the

day.

To demonstrate the benefits of the SDAMRP, the solution is compared against an aircraft

routing problem that is solved without considering maintenance planning. The solution ap-

proach used as a benchmark for this analysis assumes that the aircraft routing and maintenance

planning are performed separately. Given the aircraft routing solution, modifications are made

a posteriori to ensure all aircraft receive maintenance as required. This is the airline planning

approach presented by Feo and Bard [37], Gopalan and Talluri [44], Sriram and Haghani [80],

and Lapp and Cohn [54]. The solution to the SDAMRP attempts to identify an aircraft routing

solution that requires little manual modification to satisfy all maintenance requirements. As

such, we believe that a comparison against the standard aircraft routing solution is acceptable

for this analysis.

The improved maintenance planning by the SDAMRP is assessed by calculating the total

number of maintenance misalignments across all airports. The number of maintenance mis-

alignments at overnight airport b is calculated by

MMb = max

{

0,
Rb
6
−

Rb
∑

i=1

Zib

}

, (6.49)

and the total number of maintenance misalignments is given by MMTot =
∑

b∈BMMb. This

value is calculated for both the standard aircraft routing problem and the SDAMRP. The

maintenance misalignment results are presented in Table 6.5.

The results in Table 6.5 demonstrate that the SDAMRP significantly reduces the number of

maintenance misalignments compared to the standard aircraft routing solution. The improve-



6.4. COMPUTATIONAL RESULTS 131

Misalignment F267 A49 F578 A153 F1165 A289 F3370 A526

Aircraft Routing 2.67 3.5 6.67 3.0

SDAMRP 1.17 0.5 0.0 0.0

Improvement (%) 56.25 85.71 100.0 100.0

ARP - Runtime (sec) 1.61 6.4 155.82 67675.0

SDAMRP - Runtime (sec) 7.27 6.97 168.84 65087.0

Table 6.5: Maintenance misalignments and solution runtimes for different flight schedules.

ment in the number of maintenance misalignments across all data sets is at least 56.25%, and

for two of the flight schedules the number of misalignments is reduced to zero. This result is

very important since the SDAMRP is solved at the equivalent stage as the standard aircraft

routing problem, so any maintenance misalignments that exist requires an additional mainte-

nance planning problem to be solved. The results demonstrate that is possible to completely

eliminate the need for any further modification of the aircraft routing solution by solving the

SDAMRP.

6.4.3 Analysis of planning recoverability

The application of recoverable robustness to the SDAMRP is an attempt to reduce the impact of

disruptions on daily maintenance plans. The optimisation process of the SDAMRP-RR involves

the evaluation of the SDAMRP by solving a recovery problem for a set of disruption scenarios,

generated using the method described in Section 6.4.1. A total of 150 disruption scenarios are

used in the evaluation stage of the SDAMRP-RR for both data sets. The feedback process

in the recoverable robustness framework reduces the expected recovery costs of the SDAMRP

while still providing a reduced number of maintenance misalignments in the planned solution.

Most importantly, the recovery problem solved in the evaluation stage ensures that maintenance

is still performed on maintenance critical aircraft at the end of the day.

To assess the recoverability improvement given by the SDAMRP-RR, the solutions to both

the SDAMRP and SDAMRP-RR are evaluated against a set of disruption scenarios. To provide

a fair comparison between the solutions of the SDAMRP and SDAMRP-RR, a set of 300

disruptions scenarios are generated for the recoverability evaluation. Since this alternative

set of scenarios is different to the 150 used in the evaluation stage of the SDAMRP-RR, any

advantage to the recoverable robust solution in this analysis is removed.

The recoverability of the solutions to the SDAMRP and SDAMRP-RR is given by the
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average cost of the recovery solutions over the set of 300 evaluation scenarios. The solution to

each model, given by ȳ, is used as an input to a recovery problem defined by the PBSP-s, and the

cost of recovery for scenario s is given by the objective function value µs(ȳ). Therefore, we define

the recoverability of the aircraft routing solution from the SDAMRP as Rec =
∑

s∈S w
sµs(ȳ).

We define the recoverability achieved using the solution to the SDAMRP-RR in the same

manner, which is labelled as RecRR.

There are many features and parameters of the SDAMRP-RR that affect the efficacy of the

recoverable robustness framework and solution runtimes. The key features affecting the possible

improvement in the recoverability are i) the value of the swap cost parameter gSW , ii) the value

of the loss rate parameter gLR, and iii) the number of scenarios used in the evaluation stage.

Both the swap cost gSW and the loss rate gLR are closely related with a trade-off between the

number of aircraft swaps and flight cancellations observed in the recovery solutions. As such,

the results for the SDAMRP-RR using different values for gSW and gLR will be presented in the

following section. Solving the recovery problem is a time consuming feature of the recoverable

robustness framework, consequently the number of scenarios that are used in the evaluation

stage of the SDAMRP-RR has a great effect on the solution runtimes. The result of increasing

the number of scenarios will be presented in following sections. The results analyse the effects

that each of these features has on the number of maintenance misalignments, recoverability

improvement and solution runtimes.

Effect of swap cost and loss rate parameters

The swap cost and loss rates parameters are airline specific values that greatly affect recov-

erability improvement and solution runtimes of the SDAMRP-RR. Since the SDAMRP-RR is

solved as a planning problem the runtime required to find the optimal solution is not of criti-

cal importance. However, it is possible to reduce the solution runtimes for the SDAMRP-RR

through the intelligent selection of these parameters. The values of the swap cost and loss

rate parameters also affect the flexibility of the recovery solution, which directly impacts the

potential recoverability improvement.

The improvement in the recoverability of the SDAMRP from applying recoverable ro-

bustness is given by the relative difference between Rec and RecRR. This is calculated by

Improve = |Rec − RecRR|/min{Rec,RecRR} and is given as a percentage in Figure 6.1. The

results presented in this figure demonstrate the recoverability improvement achieved using dif-
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Figure 6.1: Relative difference in the recoverability of the SDAMRP by applying recoverable

robustness. 150 scenarios are used in the evaluation stage of the SDAMRP-RR.

ferent swap costs, loss rates and connection cost functions. It is clear from this figure that

the greatest improvement in recoverability is achieved with a swap cost gSW = 7500 regardless

of the value of gLR with only one exception. This is a feature of the recoverable robustness

framework since the solution to the SDAMRP-RR attempts to minimise the number of changes

from the planned solution. As the value of gSW increases, the effect of this parameter forces

the solution to the SDAMRP-RR to require fewer changes during recovery compared to the

SDAMRP. Therefore, total number of swaps performed in the evaluation of the SDAMRP-RR

will be much less than that required for the SDAMRP. Consequently, the weighted recovery cost

from the evaluation of the SDAMRP increases as the swap cost increases, where the converse

is true for the SDAMRP-RR. This explains the behaviour presented in Figure 6.1 where the

recoverability improvement increases as the swap cost increases.

The flexibility in the recovery problem has a significant effect on the efficacy of the recov-

erable robustness framework. The values of gLR have a direct correlation with the flexibility

of the recovery problem, whereby larger values reduce the number of flight cancellations that

are made. Figure 6.1 demonstrates that as the value of gLR increases, the reduced flexibil-

ity in the recovery problem negatively affects the improvement in recoverability achieved by
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the SDAMRP-RR. This effect of reduced flexibility is observed for both of the data sets and

connection cost functions.

Flexibility in the planning stage is also observed to affect the potential recoverability im-

provement of the SDAMRP-RR. In Figure 6.1, a greater recoverability improvement is achieved

for both data sets using the ZCF. Since the ZCF does not impose a cost on connections in the

network, the construction of aircraft flight routes is only affected by the maintenance mis-

alignment constraints and the added Benders’ cuts. By contrast, the GCF favours the use of

specific connections in the construction of flight routes, reducing the efficacy of the Benders’

cuts. Therefore, the Benders’ cuts have a greater impact on the flight route construction when

the ZCF is used compared to the GCF, hence permitting a greater recoverability improvement

for the SDAMRP-RR.

In Section 6.3.1, the implementation of the two-phase method for solving the SDAMRP-RR

is described. The first phase of this method solves the LP relaxation of the SDAMRP-RR

to optimality to provide a lower bound on the optimal integer solution. As demonstrated in

Section 5.3.2, using all the cuts generated in Phase 1 of the two-phase method and solving the

BMP to integer optimality, the resulting solution is a very good approximation to the optimal

solution found at the end of Phase 2. This is also demonstrated in Figure 6.1 with the stars

describing the improvement in recoverability given by the solution to the SDAMRP-RR at the

end of Phase 1. It is important to note that the improvement in recoverability reported in

Figure 6.1 does not include the cost of maintenance misalignments. Consequently, it is possible

for the solution found at the end of Phase 1 to outperform the solution found at the end of

Phase 2 in terms of recoverability. It is clear that the Phase 1 solution is a good approximation

of the solution that is achieved at the end of Phase 2.

The runtimes for each of the cases presented in Figure 6.1 is given in Figure 6.2. A maximum

runtime for the SDAMRP-RR is set at 10 hours (36000 seconds), which is exceeded for most

of the cases presented. When the maximum runtime is exceeded, the method used to find

the best integer solution to the SDAMRP-RR depends on the current phase of the solution

process. If the algorithm terminates during Phase 1, the solution to the SDAMRP-RR is found

by solving the BMP to integral optimality with the current set of generated cuts. Otherwise,

if the algorithm terminates during Phase 2, the solution to the SDAMRP-RR is given by the

best integer solution to the BMP found during the solution process.

Since the runtimes for the SDAMRP-RR are very high, identifying a good upper bound at
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Figure 6.2: Runtimes of the SDAMRP-RR. 150 scenarios in the evaluation stage of the

SDAMRP-RR.

the end of Phase 1 for the SDAMRP-RR is of great importance. Figure 6.2b is a prime example

of this, where the runtimes for Phase 1 are significantly less than the runtimes for Phase 2.

By comparing the results in Figure 6.1b with the runtimes in Figure 6.2b, it is clear that the

additional time required to identify the integer optimal solution does not have a significant

effect on the improvement in recoverability.

As a final note, the runtimes for the SDAMRP-RR solved with the ZCF, Figures 6.2a and

6.2c, are generally greater than when the GCF is used, Figures 6.2b and 6.2d. The use of the

ZCF in the planning stage of the SDAMRP-RR increases the degeneracy of the problem which

greatly affects the convergence of the Benders’ decomposition solution process. One cause of

degeneracy is symmetry in the BMP, which requires a greater number of cuts from the PBSP-s

to eliminate identical solutions. The GCF helps to eliminate the symmetry in the BMP through

the cost of the aircraft flight routes, also reducing the number of optimal solutions. While the

runtimes required for the SDAMRP-RR using the ZCF are much greater than when the GCF

is used, Figure 6.1 demonstrates that the former achieves a better recoverability improvement.

This presents a trade-off between solution runtime and quality, arising from the flexibility of

the BMP.



6. RECOVERABLE ROBUST MAINTENANCE ROUTING PROBLEM 136

Number of evaluation scenarios

This section examines the effect that increasing the number of scenarios has on the improvement

in recoverability. In the previous section, the solution to the SDAMRP-RR is solved with 150

scenarios in the evaluation stage. To further analyse the recoverable robustness framework,

experiments are performed with 250, 350 and 500 scenarios in the evaluation stage of the

SDAMRP-RR. The set of scenarios in each of these experiments are generated using the process

described in Section 6.4.1. Similar to the experiments in the previous section, the solutions to

the SDAMRP and SDAMRP-RR are evaluated against a set of 300 disruption scenarios.

Two different results are observed from the different data sets as the number of evaluation

scenarios increases. Firstly, Figure 6.3a demonstrates that the number of scenarios used in the

evaluation stage of the SDAMRP-RR does not greatly affect the recoverability improvement for

the F267 A49 data set. In particular, the variation in the recoverability improvement caused

by an increase in the number of scenarios is much less than that achieved using different swap

penalty values. This indicates that it is more effective to intelligently select the values for the

parameters gSW and gLR than to increase the number of scenarios.

For the F578 A153 data set, as the number of scenarios increases a much greater variation

in the recoverability improvement is observed in Figure 6.3b. In particular, the increase in the

number of evaluation scenarios causes the recoverability improvement using the F578 A153 data

set to decrease to very low levels. For example, using 500 scenarios in the evaluation stage with

gSW = 2000, the SDAMRP-RR is solved to find an aircraft routing solution that has a 0.36%

150 250 350 500
Number of evaluation scenarios

0

2

4

6

8

Re
lat

ive
 d
iff
er
en
ce
 (%

)

a)
F267_A49 dataset solved with GCF

Swap Cost
2000
5000
7500

150 250 350 500
Number of evaluation scenarios

b)
F578_A153 dataset solved with GCF

Two-phase Method
Phase 2
Phase 1

        Relative difference in recovery costs

Figure 6.3: Relative difference in the recoverability of the SDAMRP by applying recoverable

robustness. The SDAMRP-RR is solved with different sets of scenarios in the evaluation stage.

The cancellation loss rate is set at gLR = 1.5.



6.4. COMPUTATIONAL RESULTS 137

Master iterations Optimality gap

Evaluation scenarios Evaluation scenarios

Swap cost 150 250 350 500 150 250 350 500

2000 7 6 2 5 0.96% 0.47% 26.92% 1.71%

5000 9 9 2 4 0.92% 0.81% 30.3% 6.64%

7500 9 7 2 2 1.25% 1.42% 25.32% 35.27%

Table 6.6: Number of master iterations and the optimality gap of the SDAMRP-RR solved for

the F578 A153 data set using different sets of evaluation scenarios.

improvement in recoverability. In addition, using 350 evaluation scenarios the recoverability

improvement is almost negligible. Given that the runtimes required to achieve this improvement

have been capped at 10 hours, this result is not encouraging for practical application. It is clear

for the F578 A153 data set that the selection of the gSW and gLR parameter values is much more

effective in improving the solution quality and runtimes compared to increasing the number of

evaluation scenarios.

The poor recoverability improvement for the F578 A153 data set is the result of the large

runtimes required in the evaluation stage of the SDAMRP-RR. The maximum runtime is ex-

ceeded for all but four of the experiments presented in Table 6.6, which is indicated by an

optimality gap greater than 1%. It is important to note that the optimality gap reported in

Table 6.6 is calculated using equation (6.43) with an integer first-stage and continuous second-

stage solutions.

In Figure 6.3b, the worst recoverability improvement is observed when 350 scenarios are

used in the evaluation stage. By comparing Figure 6.3b with Table 6.6, it is clear that these

experiments also display the worst runtime performance. Only 2 master problem iterations are

performed for the experiments using each of the swap cost values examined. This demonstrates

that the runtime spent solving the evaluation scenarios has a significant impact on the recover-

ability improvement achieved by the SDAMRP-RR. Also, large optimality gaps are observed for

all experiments using 350 scenarios in the evaluation stage, explaining the poor recoverability

improvement presented in Figure 6.3b.

6.4.4 Maintenance misalignment in the SDAMRP-RR

The results in Section 6.4.2 demonstrate that the SDAMRP significantly reduces the number

of maintenance misalignments compared to a standard aircraft routing solution. While the
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application of recoverable robustness to the SDAMRP attempts to improve the recoverability

of the planned solution, this should not come at the expense of maintenance planning. In

stochastic programming problems, the solution to the first-stage variables without considering

any uncertainty information provides a lower bound on the optimal stochastic solution. As such,

there is a cost associated with considering the second-stage uncertainty information during the

optimisation process. This is observed when comparing the solutions to the SDAMRP and

SDAMRP-RR, where a lower bound on the number of maintenance misalignments is given by

the solution to the SDAMRP. Figure 6.4 presents a comparison of the number of maintenance

misalignments for the SDAMRP, SDAMRP-RR and the standard aircraft routing problem.

The dashed line represents the SDAMRP solution, which is the best possible solution, and the

dot-dashed line is the solution to the standard aircraft routing problem.

The results in Figure 6.4 for the SDAMRP-RR are all within the gap between the SDAMRP

and aircraft routing solution, with most solutions close to the lower bound. While the SDAMRP-

RR is a conservative planning approach, the results demonstrate that this solution does not

greatly affect the reduction in maintenance misalignments achieved by the SDAMRP. It is in-
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Figure 6.4: Assessing the impact of recoverable robustness on maintenance misalignments. 150

scenarios are used in the evaluation stage of the SDAMRP-RR.
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teresting to note that the number of maintenance misalignments for the SDAMRP-RR when

solved with the ZCF is equal to the solution of the SDAMRP for a large number of cases.

This can be explained by the increased flexibility that is provided by not artificially imposing

flight string costs based on connection lengths. Since the aircraft routing problem is highly de-

generate, there are large set of solutions that can achieve the same maintenance misalignment

result. In this case, the application of recoverable robustness to the SDAMRP helps to select

the solution from this set that provides the best recoverability.

It is observed in Figure 6.4 that the greatest reduction in maintenance misalignment is

achieved by solving the SDAMRP-RR with the F578 A153 data set. This is expected since

the same result is also observed in Table 6.5 for the SDAMRP. The most interesting observa-

tion is that solving the SDAMRP-RR for the F578 A153 data set displays the least variation

from the SDAMRP solution across all parameter values. This is an important result since it

demonstrates that the application of recoverable robustness to larger data sets does not greatly

affect the maintenance planning of the SDAMRP. It can be concluded that the solution to the

SDAMRP-RR improves recoverability while still achieving a significant reduction in the number

of maintenance misalignments.

6.4.5 Enhancement techniques for the SDAMRP-RR

The application of Benders’ decomposition to solve the SDAMRP-RR is described in Section

6.3.1. While Benders’ decomposition greatly improves the tractability of the SDAMRP-RR, the

standard implementation of this solution technique exhibits poor convergence to the optimal

solution. A number of techniques are introduced in Sections 6.3.1 and 6.3.3 to improve the

convergence of the Benders’ decomposition solution process and reduce solution runtimes. In

this section the performance of the parallel computing and trust region enhancements are

assessed, demonstrating the improved convergence achieved by their implementation. The

experiments solve the SDAMRP-RR for the F267 A49 and F578 A153 data sets using the GCF

and 50 scenarios in the evaluation stage.

The evaluation of the different enhancement techniques for the F267 A49 and F578 A153

data sets is presented in Table 6.7. The optimality gap reported in these tables is given by

equation (6.43) with the lower and upper bound calculated with integer optimal solutions to

the BMP and PBSP-s. Since the stopping conditions presented in Section 6.3.1 involves the
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Swap Penalty All Enhancements Parallel Only Trust Region Only No Enhancements

F267 A49

2000 1.26% 1.64% 1.34% 3.75%

5000 1.29% 6.88% 2.44% 11.92%

7500 2.82% 11.68% 2.84% 19.06%

F578 A153

2000 2.75% 3.09% 2.99% 5.14%

5000 6.22% 7.29% 11.8% 10.71%

7500 9.06% 11.4% 21.23% 17.51%

Table 6.7: Optimality gap of the SDAMRP-RR solved for the F267 A49 and F578 A153 data

sets using different enhancement techniques. The SDAMRP-RR is solved with the GCF and

50 evaluation scenarios. Bold entries are the experiments that terminate within the maximum

runtime.

calculation of the optimality gap using continuous second stage solutions, it is likely that the

results reported in Table 6.7 are greater than 1%.

It is clear that the use of all enhancements is necessary to achieve the best convergence for

the Benders’ decomposition solution process for both data sets. This is not surprising since the

two enhancement techniques focus on two separate stages of the solution process. However,

it is interesting to note that for the F267 A49 data set the trust region method achieves a

better convergence compared to using a parallel computing environment. This demonstrates

the strength of the trust region method to focus the solutions of the Benders’ master problem

between consecutive iterations and improving the efficacy of the Benders’ optimality cuts.

A different conclusion can be drawn from the results for the F578 A153 data set, providing

a richer analysis of the enhancement techniques. It is observed that using parallel computing

achieves a greater improvement in the convergence of the Benders’ decomposition solution

approach compared to the trust region method. Since the F578 A153 data set is much larger

than the F267 A49 data set, a greater proportion of the solution runtime per iteration is required

for the evaluation stage. Therefore, the benefits from distributing the recovery problems to a

number of parallel compute threads will be more pronounced for the F578 A153 data set. It is

expected that as the problem size and the number of scenarios in the evaluation stage increases,

the use of parallel computing will have a greater impact on the convergence of the Benders’

decomposition solution process.
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6.5 Conclusions

This chapter presents two major contributions to airline planning problems, the development

of the SDAMRP and an analysis of the recoverable robustness framework. The SDAMRP

describes a single day maintenance routing problem that introduces a modelling technique to

effectively provide adequate maintenance coverage for the entire fleet. The modelling approach

used for the SDAMRP is a novel approach that penalises the number of maintenance mis-

alignments that occur at each airport. This model is extended with the application of the

recoverable robustness framework to improve the recoverability of the maintenance planning

solution. The application of recoverable robustness protects the maintenance planning solu-

tion from perturbations during the day of operations while reducing the expected operational

costs. The analysis of the SDAMRP-RR contributes to the recoverable robustness framework

demonstrating the potential recoverability improvements that can be achieved for larger data

sets.

The formulation of the SDAMRP in Section 6.1 describes a mathematical programming

model with linear constraints and a non-linear objective function. The non-linear objective

function arises from the introduction of a penalty for any maintenance misalignments in the

planned solution. The non-linearity of the objective function is addressed by a unique refor-

mulation described in Section 6.1.4. This reformulation provides an equivalent mixed integer

programming model which can be solved using a standard column generation approach.

A significant reduction in the number of maintenance misalignments is achieved by the

solution to the SDAMRP compared to a standard aircraft routing solution. A minimum im-

provement of 56.25% is achieved in the experiments performed on 4 flight schedules of varying

sizes. A conclusion that can be drawn from the results is that the SDAMRP is very effective

in reducing the number of maintenance misalignments for all of the examined flight schedules.

The SDAMRP-RR is presented as a large-scale optimisation problem requiring the use of

Benders’ decomposition and column generation to improve the problem tractability. To address

the poor convergence of the Benders’ decomposition solution process additional enhancement

techniques, including the Magnanti-Wong method [60], the two-phase method, parallel com-

puting and a trust region method, are applied to solve the SDAMRP-RR. This combination of

enhancement techniques is demonstrated to significantly improve the problem convergence. In

addition, the use of parallel computing is demonstrated to provide a greater improvement in

the convergence of the Benders’ decomposition solution approach for larger data sets.
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The application of recoverable robustness presented by the SDAMRP-RR achieves a con-

siderable improvement in the recoverability of the SDAMRP. Solving the SDAMRP-RR for

large flight schedules extends upon the results presented in Chapter 5, further demonstrating

the potential of the recoverable robustness framework. A contribution of this chapter is the

evaluation of the recoverability improvement achieved using different connection cost functions

in the planning stage. The results demonstrated that flexibility in the planning stage is directly

proportional to the recoverability improvement. In addition, the SDAMRP-RR is solved with

various numbers of scenarios in the evaluation stage, further extending the analysis in Chapter

5. The results from this analysis conclude that an acceptable improvement in recoverability

can be achieved with a modest number of scenarios in the evaluation stage.

Solving the single day problem in isolation for each day of flying is a significant advantage

of the SDAMRP. However there are potential benefits from extending the single day mainte-

nance routing problem to construct maintenance plans for longer time frames or consider other

maintenance check types. Another possible extension of this problem is the integration with a

maintenance location planning problem to reduce costs by eliminating unnecessary maintenance

bases.

The recoverable robustness framework investigated in this chapter is greatly affected by

the problem size and number of evaluation scenarios. A potential extension of the recoverable

robustness framework is the development of an integrated recoverable robust aircraft routing

and crew duty problem. As demonstrated in Section 6.4.3, a limitation of the framework is the

runtime required to solve the evaluation stage. To properly investigate this possible extension,

it is important to develop an efficient solution approach for the integrated airline recovery

problem. Chapter 7 introduces the column-and-row generation solution approach to achieve

this goal with Chapters 8 and 9 demonstrating the application of this solution approach to

integrated airline recovery problems.



Chapter 7

Column-and-Row Generation

Column-and-row generation is a solution approach that extends standard column generation

to reduce problem complexity and solution runtimes. Column generation, described in Section

4.1, relies on the assumption that only a small subset of all variables are basic in the optimal

solution. Using this assumption, a smaller, more compact linear program is formed, which

is solved by dynamically generating variables. This assumption is also the basis for column-

and-row generation coupled with the understanding that the basic variables have non-zero

coefficients in a small subset of all rows. Similar to column generation, a restricted linear

program is formed through the elimination of columns, and in addition rows are also eliminated

to further reduce the problem size. A row generation procedure updates the set of rows in the

master problem with the expectation of improving the objective function value by expanding

the set of permissible columns. With the elimination of both columns and rows, a small initial

master problem is formed by this solution approach. This problem then grows both horizontally

and vertically with the addition of columns and rows that are identified as necessary to find

the optimal solution.

A key feature of column-and-row generation is the dynamic generation of structural con-

straints for the master problem. As such, problems must display a decomposable structure

that permits the elimination of constraints. There are many practical applications that display

this particular problem structure, for example the multi-stage cutting stock problem and inte-

grated airline planning and recovery problems. In this thesis, the application of column-and-row

generation to solve the integrated airline recovery problem will be discussed.

This chapter will provide an overview of the column-and-row generation solution approach

and a general framework for its implementation. Section 7.1 will discuss the current applications

143
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of column-and-row generation, including the various generic frameworks that have been devel-

oped. The features of column-and-row generation fundamental to the framework implemented

in this thesis will be presented in Section 7.3. This will be followed by a general algorithm for

the column-and-row generation solution approach in Section 7.4. The work that is presented

in this chapter appears as part of a paper submitted to Transportation Science by Maher [61].

7.1 Related Literature

Constraint generation in the form of cutting planes is widely applied to solve integer program-

ming problems. A modern development of constraint generation is column-and-row generation,

involving the dynamic generation of variables and structural constraints. One of the earli-

est modern applications of column-and-row generation is presented by Zak [100] to solve the

multi-stage cutting stock problem. The multi-stage cutting stock problem is an extension of

the classical single-stage cutting stock problem, which is successfully solved using column gen-

eration [43]. Each stage in the multi-stage cutting stock problem involves a number cutting

size decisions which are then passed to subsequent stages. The cutting size decisions made in

each intermediate stage are modelled as constraints to restrict the decisions to later stages. As

such, this problem is conveniently solved by column-and-row generation where constraints are

initially eliminated to reduce the number of intermediate cutting decisions that can be made.

The column-and-row generation approach presented in [100] describes three different subprob-

lems, two identify columns to add based on the current set of rows, and the third identifies

any additional rows. Column-and-row generation is demonstrated in [100] to be an efficient

approach for the multi-stage cutting stock problem, however assumptions made by the author

limit the potential improvements.

An interesting application of column-and-row generation is presented by Avella et al. [9]

for solving the time-constrained routing problem. This problem considers a large number of

tourist sites to identify individual itineraries that maximise personal utility. Column-and-row

generation is employed to formulate a smaller problem that contains only a subset of all possible

sites. A column generation procedure is executed to identify the utility-maximising itineraries

given the current set of tourist sites, and the row generation procedure updates the sites that

are considered in the model. Avella et al. [9] presents a typical example of the types of problems

that column-and-row generation can be applied to and the relevant solution methods.
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The p-Median problem is presented by Avella et al. [10] as an example of column-and-

row generation within a branch-cut-and-price framework. Since all variables and constraints

are explicitly known a priori, variations on the column and row generation procedures are

presented in [10]. The generation of columns does not require a pricing subproblem, since

the columns are selected for addition to the LP by directly evaluating the reduced costs. The

two processes in the column-and-row generation algorithm presented by [10] are strongly linked,

with the addition of columns invoking the addition of related linking constraints. An important

aspect of column-and-row generation is the calculation of the dual variable solutions for the

eliminated constraints. In [10], the column-and-row generation approach is exact since the dual

variables for the eliminated rows can be calculated correctly as a result of the problem structure.

Avella et al. [10] present a special case in regards to the dual variable calculation, which is not

applicable to the problems considered in this thesis. The method used to calculate an optimal

dual solution in this thesis is presented in Section 7.3.2.

While column generation is applied to large-scale optimisation problems, there have been

very few examples of similar applications of column-and-row generation. Muter et al. [66]

present a robust crew pairing problem on a schedule including extra flights that are potentially

employed during recovery. The extra flights considered in this problem are not available during

the planning stage, however the crew pairings must be constructed under the expectation that

the flights will be used in the event of a disruption. In [66], only a subset of extra flights

will be required in the optimal solution. Therefore, all extra flights are eliminated from the

original formulation to define a more tractable problem. Column generation is used to solve

the current formulation of the master problem. Due to the eliminated constraints, it is possible

that the early termination of the solution process may occur. This is addressed by a heuristic

iterative procedure that examines previously generated columns to identify favourable rows for

addition to the master problem. This is a good example applying column-and-row generation

to real-world problems, however the use of a heuristic in the row generation procedure raises

the possibility of suboptimal solutions. The column-and-row generation approach presented in

this thesis is exact with the row generation procedure accurately calculating the dual values for

the eliminated rows.

The split delivery vehicle routing problem and a network design problem for urban rapid

transit systems are discussed by Feillet et al. [36]. The application of a simultaneous column

and cut generation approach is described in relation to these two problems, where rows are
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added to eliminate infeasiblities in the dual problem. The row generation procedure involves

the construction of a dual solution as part of an optimality condition. The approach that is

presented in [36] dynamically generates structural constraints, however it is more closely related

to cut generation than column-and-row generation.

7.1.1 Generic frameworks

Each of the above papers describe a unique implementation of the column-and-row generation

solution approach. It is clear from the various implementations that there is little consensus on

the general application of this solution approach. This is compounded further by three recent

studies that focus on the development of a generic column-and-row generation framework,

namely Frangioni and Gendron [39], Sadykov and Vanderbeck [77] and Muter et al. [65]. Each

of the generic frameworks presented in these papers involve the dynamic generation of structural

constraints, however there are key differences regarding the implementation.

Frangioni and Gendron [39] introduce the Structured Dantzig-Wolfe Decomposition (SDW)

as an extension of the standard Dantzig-Wolfe decomposition to include row generation. This

column-and-row generation approach involves the formulation of a Lagrangian subproblem to

dualise rows not currently required in the master problem. Since a subset of all complicating

structural constraints are dualised to reduce the problem complexity, the full problem formula-

tion must be known a priori. An interesting aspect of this approach is that the duals related to

the eliminated structural constraints can be ignored without any loss of exactness to the solu-

tion algorithm. Additional rows for the master problem are identified by solving the Lagrangian

subproblem to find columns with a positive value in the optimal solution. These columns, along

with their associated rows are added to the master problem by using a variable mapping from

the subproblem variable space.

Column generation for extended formulations is presented by Sadykov and Vanderbeck [77]

as a generic column-and-row generation approach. This approach shares many similarities with

SDW, however there are some fundamental differences. The reformulation of the original prob-

lem permits a restricted form of the extended formulation to be defined. The restricted form

includes only a subset of all possible columns and rows from the original problem, as such a

subproblem is required to dynamically generate each. Similar to [39], a Lagrangian subproblem

is formulated to identify any rows that are required in the current restricted extended formula-

tion. An interesting aspect of this approach is that columns are generated using a subproblem
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designed for the compact formulation which are then added via a variable mapping to an ex-

tended formulation of the problem. By solving the master problem as an extended formulation,

linear combinations of the added columns can be made to construct feasible solutions, which is

not possible in a standard column generation approach.

Muter et al. [65] present a generic scheme for solving large-scale linear programs with

column-dependent-rows. The column-dependent-rows is an interesting feature of optimisation

problems which commonly arises in many practical applications. Two different examples are

presented in [65], the multi-stage cutting stock problem and the quadratic set covering prob-

lem, to demonstrate the implementation of this approach. A key difference between Muter et

al. [65] and both Frangioni and Gendron [39] and Sadykov and Vanderbeck [77] is that the

problem is solved using the compact formulation and the row generation pricing subproblem

is explicitly defined to calculate the dual variables for the eliminated constraints. In [65], it is

identified that the dual variable solution related to the eliminated constraints are critical in the

row generation procedure and defining optimality conditions. Finally, both [39] and [77] rely

on the full problem description being know a priori, where [65] generates structural constraints

without any prior knowledge of the eliminated rows. This difference presents a limitation of

the former generic frameworks, while the latter can be applied to a wider range of problems.

An approach that is similar to the generic column-and-row generation frameworks presented

above is the row-reduced column generation (RrCG) introduced by Desrosiers et al. [31]. RrCG

generalises the improved primal simplex and dynamic constraint aggregation methods to im-

prove the efficiency of column generation for highly degenerate master problems. A similarity

between [31] and the framework presented in this chapter is the restriction on the set of com-

patible columns as a result of eliminating rows from the master problem. In addition, the set

of duals related to the eliminated constraints must be calculated to solve a column generation

subproblem that considers the incompatible columns.

The RrCG employs dynamic constraint aggregation, as such the implementation of this

approach is fundamentally different to the column-and-row generation framework developed in

this chapter. Firstly, the set of compatible columns in column-and-row generation is restricted

based upon the elimination of variable linking constraints. Comparing this to the RrCG, the

aggregated constraints in the master problem defines the set of compatible columns. Secondly,

constraint aggregation in the RrCG permits the full problem description to be given by the

master problem formulation. This is not the case for column-and-row generation, since the
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elimination of linking constraints restricts the integration of the decision variables. Thirdly,

the method employed to update the set of compatible columns for column-and-row generation

only requires the solution to a column generation subproblem, compared to solving an LP using

column generation in the RrCG. Finally, updating the set of compatible columns in the RrCG

results in an alternative aggregation of constraints in the master problem. This is significantly

different to column-and-row generation, where rows are added to the master problem, leaving

the current set of constraints unchanged.

7.2 Contributions of the Column-and-Row Generation Frame-

work

The generic frameworks presented above do not directly apply to the problems presented in

this thesis, thus an alternative framework is developed using existing features where appropri-

ate. Firstly, the problem formulation of the integrated airline recovery problems presented in

Chapters 8 and 9 are fully known a priori, which is a feature permitting the use [39] or [77].

However, the eliminated constraints are from the compact problem formulation, therefore the

framework presented by Muter et al. [65] is more appropriate. The framework presented in this

section is an extension of that developed by Muter et al. [65].

A contribution of this thesis is the further development of column-and-row generation and

the provision of novel applications for this approach. In [65], the column-dependent-rows de-

scribe linking constraints between a primary set of variables and a single set of secondary

variables. The framework presented here extends [65] to consider multiple sets of secondary

variables. Secondly, an algorithmic approach is presented in this chapter to detail the imple-

mentation of column-and-row generation within a general framework. Another contribution

of this chapter is the application of column-and-row generation to a problem structure that

is commonly solved by Benders’ decomposition. The column-and-row generation framework

is presented as an alternative, efficient solution approach for this problem type. Finally, the

generic framework developed by Muter et al. [65] does not provide any explicit evaluation of

the runtime improvement compared to a standard column generation approach. This thesis

will provide such an evaluation in regards to two different formulations of the integrated airline

recovery problem.
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7.3 Features of the Column-and-Row Generation Framework

The solution approach presented by Muter et al. [65] involves defining two restrictions on

the original problem, the restricted master problem (RMP) and the short restricted master

problem (SRMP). The RMP is constructed to contain all constraints from the original problem

but only a subset of all possible variables. The SRMP describes a further restriction on the

original problem, containing a subset of all variables and constraints that form the RMP.

Since the SRMP is formed by eliminating structural constraints from the RMP, variable fixings

in the column generation subproblems are used to restrict the set of permissible columns.

This technique of variable fixing is presented by Zak [100], Muter et al. [65] and Muter et

al. [66]. In addition, the variable fixing employed in this chapter is similar to defining the set

of compatible columns in Desrosiers et al. [31]. By applying variable fixings in the column

generation subproblem, all feasible solutions to the SRMP are feasible for the RMP and the

original problem.

The critical aspects of the column-and-row generation procedure are the formulation of

the RMP and SRMP, and the method used to calculate an optimal dual solution to identify

favourable rows. These two features will be discussed in Sections 7.3.1 and 7.3.2 respectively.

Finally, a general algorithm for the row generation procedure that will be employed throughout

this thesis will be presented in Section 7.3.3. Since column generation is described in Section

4.1, it is not necessary to detail the application of this technique to solve the SRMP.

7.3.1 Formulation of the restricted problems

To provide an overview of column-and-row generation, the key features will be discussed with

respect to a generic problem. The example problem is formulated with a single set of primary

variables and multiple sets of secondary variables. In the problem description x is used to

represent a single vector of primary variables, and each vector of secondary variables is given

by yi, i ∈ {1, 2, . . . , n}. The multiple sets of secondary variables considered in this framework

extends the generic framework presented by Muter et al. [65].

Since this section focuses on problems solved by column generation, it is assumed that

vectors x and yi contain only a subset of all possible variables from the original problem. The

structure of the original problem, and by extension the RMP, contains a set of constraints

related to each x and yi, Ax and Ai respectively, with a set of linking constraints AiLx and AiLy
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between x and yi. The rows representing the linking constraints are dynamically generated

using the row generation procedure developed in this section.

To construct the SRMP, it is necessary to redefine the variable vectors and constraint

matrices used to describe the RMP. Initially, a subset of linking constraints are eliminated from

the RMP, which involves removing rows from AiLx and AiLy , to provide the constraint matrices

ĀiLx and ĀiLy respectively. As stated previously, the elimination of rows from the RMP is coupled

with the fixing of variables in the column generation subproblem. This is required to prohibit

the generation of variables with non-zero elements in the eliminated rows. Consequently, the

set of all possible variables that can be generated for the SRMP is reduced, therefore the vectors

x̄ ⊂ x and ȳi ⊂ yi are defined. While all rows in the matrices Ax and Ai are still present in the

formulation of the SRMP, the restriction on the possible set of variables requires the elimination

of columns, hence the matrices Āx and Āi are defined.

The matrix representation of the RMP and SRMP is given by,

RMP SRMP

min cxx+
∑

i

ciyi, (7.1)

s.t. Axx = b, (7.2)

Aiyi = bi ∀i, (7.3)

AiLx x−AiLy yi = 0 ∀i, (7.4)

x ≥ 0, yi ≥ 0. (7.5)

min c̄xx̄+
∑

i

c̄iȳi, (7.6)

s.t. Āxx̄ = b, (7.7)

Āiȳi = bi ∀i, (7.8)

ĀiLx x̄− ĀiLy ȳi = 0 ∀i, (7.9)

x̄ ≥ 0, ȳi ≥ 0. (7.10)

It must be reiterated that the elimination of rows also limits the set of feasible variables

that can be generated in the column generation subproblems. This is critical aspect of the

implementation of column-and-row generation, permitting the property that a feasible solution

for the SRMP is feasible for the RMP and the original problem. This property is used in

the calculation of an optimal dual solution, which is required to identify favourable rows for

addition to the SRMP.

7.3.2 Calculation of dual solutions

To demonstrate the correctness of the column-and-row generation framework described here,

an additional problem is introduced, the RMP′. This problem is formulated with all constraints

from the RMP, but only a subset of all possible variables. Thus, the formulation of the RMP′
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is identical to the RMP at an intermediate stage of the column generation solution process.

To describe the RMP′, the matrices ÃiLy are introduced to contain all rows eliminated from

AiLy to construct the SRMP. Additionally, a set of dummy variables ỹi are created such that

each y ∈ ỹi has a non-zero element in only one row of ÃiLy . This is an important condition

imposed on the construction of ỹi that is exploited in Theorem 7.3.1. The dummy variables

contained in ỹi also have non-zero elements in the rows of (7.3), thus the matrices Ãi must be

introduced. Therefore, the matrix representation of the RMP′ is given by,

(RMP′)

min c̄x̄+
∑

i

{

c̄iȳi + c̃iỹi
}

, (7.11)

s.t. Āx̄ = b, (7.12)

Āiȳi + Ãiỹi = bi ∀i, (7.13)

ĀiLx x̄− ĀiLy ȳi = 0 ∀i, (7.14)

− ÃiLy ỹi = 0 ∀i, (7.15)

x̄ ≥ 0, ȳi ≥ 0, ỹi ≥ 0. (7.16)

For each row in equations (7.12)-(7.15) there is an equivalent row in equations (7.2)-(7.4). It is

assumed that in this formulation the optimal solution to the RMP′ is not the optimal solution

to the original problem. This implies that additional columns with a negative reduced cost

can be found by solving the column generation subproblems for the primary and secondary

variables. This is an important property of the RMP′ that is used to ensure the correctness of

the dual solution calculation.

By construction, an optimal primal solution to the SRMP is a feasible solution to the RMP′.

The following lemma will prove that this feasible primal solution to the RMP′ is an optimal

solution.

Lemma 7.3.1. The optimal primal solution to the SRMP is an optimal primal solution to the

RMP′.

Proof. The constraints (7.15) force the variables ỹi to be zero in any feasible solution of the

RMP′. As such, the optimal primal solution to the RMP′ can be found by eliminating con-

straints (7.15) and solving this problem with the variables ỹi fixed to zero. Solving this modified

form of the RMP′ is equivalent to solving the SRMP.

It is possible to solve the LP relaxation of the RMP′ to find the optimal dual solution.
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However, given the large number of linking constraints in the original problem, this is potentially

a very time consuming process. Since the SRMP has been solved to optimality, ideally the dual

solution to the RMP′ can be calculated from this solution.

There are two major steps in the procedure to calculate an optimal dual solution for the

RMP′. Firstly, the constraints (7.7)-(7.9) in the SRMP are identical to the constraints (7.12)-

(7.14). Therefore, the solutions to the related dual variables can be simply equated. The

second step involves finding the solutions for the dual variables related to the rows in (7.15),

which are the constraints eliminated to form the SRMP. This involves solving the column

generation subproblems for the secondary variables to accurately calculate the values of these

dual variables.

Additional notation is required to describe the calculation of the dual variables for the

rows eliminated to form the SRMP. An index set Ui is defined to reference each row u in the

constraint matrix AiLy . Extending this notation, the index set for the rows included in the

SRMP is given by Ūi and all eliminated rows are contained in Ui\Ūi. Finally, the dual variables
for each row in AiLy is given by γi = {γiu|u ∈ Ui}. This notation conveniently describes the rows

which are eliminated or contained in the SRMP and the dual values which must be computed.

The value of γiu is calculated from the minimum reduced cost ĉi for a variable with a non-zero

entry in row u of matrix ÃiLy . This is achieved by executing Algorithm 7.1.

Algorithm 7.1 Computing a feasible dual solution

1: Assume that γiu = 0 and force all feasible solutions to the column generation subproblem

for the secondary variables i to have a 1 in row u of ÃiLy and 0 in all rows v ∈ Ui\Ūi, v 6= u.

2: Solve the column generation subproblem to identify variable ŷ that has the minimum re-

duced cost ĉi.

3: Set γiu = −ĉi.

The calculation procedure given by Algorithm 7.1 relies on the structure of the RMP′ and

the form of the dummy variables that populate the rows u ∈ Ui\Ūi. The reasoning provided

here draws upon the discussion related to the column-and-row generation framework by Muter

et al. [65]. For ŷ, found by Algorithm 7.1, to be eligible to enter the basis of the RMP′ implies

that ĉi < 0. Since ŷ has a non-zero element in a row of ÃiLy , the construction of the RMP′

forces ŷ = 0 upon the addition of this column, resulting in a degenerate simplex iteration.

To avoid this situation, it is assumed that the minimum reduced cost for all variables found
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using Algorithm 7.1 is at least zero. This requirement ensures that the dual solutions that are

computed for γi are feasible for the RMP′. The following theorem will prove the feasibility of

the computed values for γi and that the resulting feasible dual solution is also optimal.

Theorem 7.3.1. The dual solutions computed for γi forms an optimal dual solution to the

RMP′.

Proof. The first step of this proof is to show that the solutions calculated for the dual variables

γi using Algorithm 7.1 are feasible for the RMP′. For this proof the variable γ̄iu is assumed to

have a value that satisfies all dual constraints of the RMP′. Additionally, the reduced cost of a

column y ∈ ỹi is given by c̄iy.

Algorithm 7.1 solves the column generation subproblem for the secondary variables i to

identify ŷ that has the minimum reduced cost ĉi, assuming γiu = 0. Comparing ŷ with the

variables currently in the RMP′, there are two possible outcomes:

i) There exists a column y ∈ ỹi identical to ŷ. Since y is identical to ŷ, ĉi = c̄iy − γ̄iu. In

Algorithm 7.1, the value of γiu is set to −ĉi, hence c̄iy− γ̄iu+γiu = 0. Therefore, setting γiu = −ĉi

ensures dual feasibility.

ii) There exists a column y ∈ ỹi that has a non-zero element in row u of ÃiLy but is not

identical to ŷ. This implies that the variable γiu exists in at least one dual constraint. Assume

that setting γiu = −ĉi violates a constraint in the dual of the RMP′. This implies that c̄iy

calculated using γiu = −ĉi in place of γ̄iu is negative, i.e. c̄iy − γ̄iu + γiu < 0. Since ĉi + γiu = 0,

then ĉi > c̄iy − γ̄iu. Now, step 2 of Algorithm 7.1 identifies ŷ that has the minimum reduced

cost, so ĉi > c̄iy − γ̄iu is a contradiction. Therefore, c̄iy − γ̄iu + γiu ≥ 0 must be true, hence the

computed value for γiu satisfies all dual constraints.

The first step of this proof has established that the dual solutions calculated for γi using

Algorithm 7.1 are feasible for the RMP′. Therefore, the calculated values for γi can be used

as the dual solutions for the constraints (7.15). A feasible dual solution for the RMP′ is then

simply constructed by equating the solutions to the dual variables representing constraints

(7.12)-(7.14) to the dual solutions of the SRMP.

The second step proves that the feasible dual solution constructed for the RMP′ is also

optimal. Firstly, it is stated in Lemma 7.3.1 that the optimal primal solution to the SRMP

is also optimal for the RMP′. In addition, the solutions to the dual variables representing

constraints (7.12)-(7.14) are equated to the dual solutions of the SRMP. Since the right hand

side of the constraints represented by equations (7.15) are zero, the value of the respective dual
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variables do not affect the optimal objective function value. It follows that the dual objective

function value for the RMP′ is identical to the dual objective function value of the SRMP. Given

that the dual objective function value of the SRMP is equal to the primal objective values of the

SRMP and RMP′, then primal and dual objective values for the RMP′ are equal. Therefore,

the feasible dual solution constructed for the RMP′ is optimal.

7.3.3 Row generation algorithm

Using the optimal dual solution to the RMP′, the row generation algorithm is executed to

identify rows to update the SRMP. This procedure involves solving the column generation

subproblem for the primary variables to find negative reduced cost columns feasible for the

RMP′. While all columns identified during this procedure are feasible for the RMP′, it is

likely that, due to the eliminated constraints, they are infeasible for the SRMP. Such columns

are identified by displaying at least one non-zero element in the rows u ∈ Ui\Ūi. If columns

infeasible for the SRMP are found, then u must be added to Ūi and the related row to the

SRMP. Consequently, the SRMP grows vertically and horizontally with the addition of rows

and columns respectively. The row generation algorithm is detailed in Algorithm 7.2.

The column-and-row generation solution approach terminates when no favourable rows are

Algorithm 7.2 Row generation algorithm

Input: An optimal solution to the SRMP.

1: Set the dual values for rows (7.12)-(7.14) to the dual solutions for the rows (7.7)-(7.9).

2: for all secondary variable sets i do

3: for all rows u contained in ÃiLy do

4: Execute Algorithm 7.1 to compute the value of γiu.

5: end for

6: end for

7: By Theorem 7.3.1 an optimal dual solution for the RMP′ has been computed.

8: Solve the column generation subproblem for the primary variables to identify variables

feasible for the RMP′.

9: if a negative reduced cost column has at least one non-zero entry in the rows of ÃiLy then

10: add the rows with non-zero entries in ÃiLy to ĀiLy .

11: end if
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identified by Algorithm 7.2. This is consistent with the termination condition of the standard

column generation approach, terminating when no columns with a negative reduced cost for

the RMP are found. Since an optimal dual solution is calculated for the RMP′, the column

generation subproblem for the primary variables accurately evaluates the minimum reduced

cost. Therefore, if no negative reduced cost columns are found for the RMP′, then the solution

to the RMP′ is optimal for the original problem.

7.4 Column-and-Row Generation Solution Algorithm

The column-and-row generation solution algorithm implemented in this thesis is developed by

combining the fundamental features of the approach developed in Section 7.3. The first stage

of the solution algorithm involves the formulation of the SRMP, which is detailed in Section

7.3.1. Using the solution to the SRMP, Section 7.3.2 details the calculation procedure that is

required to form an optimal dual solution for the RMP′. The final step in the column-and-row

generation solution algorithm, described in Section 7.3.3, executes Algorithm 7.2 to identify

favourable rows for the SRMP. The complete column-and-row generation solution algorithm is

given by Algorithm 7.3.

The various applications of column-and-row generation in Section 7.1 present two alternative

implementations of the column and row generation stages. In particular, the two stages are

either performed separately, which is presented by Zak [100] and Muter et al. [66], or they

are performed together, as in Avella et al. [9], Avella et al. [10] and Feillet et al. [36]. The

column-and-row generation solution approach described by Algorithm 7.3 is an example of the

former implementation. Specifically, the SRMP is solved to optimality by column generation

Algorithm 7.3 Column-and-row generation algorithm

1: Eliminate columns from the original problem to form the RMP.

2: Eliminate rows (and subsequently columns) from the RMP to form the SRMP.

3: repeat

4: Solve the SRMP to optimality.

5: Use Algorithm 7.2 to compute the optimal dual solution to the RMP′ and identify any

favourable rows.

6: until no rows are added to ĀiLy in Algorithm 7.2

7: The solution to the SRMP is the optimal solution to the original problem.
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prior to the execution of the row generation procedure. By separating the column and row

generation stages, a reduction in the runtimes of the column generation subproblems is achieved

by restricting the set of permissible columns. This is an important feature of the solution

approach that significantly affects the problems investigated in this thesis.

7.5 Summary

This chapter presents a general framework for column-and-row generation that is employed to

solve the integrated airline recovery problems developed in Chapters 8 and 9. A contribution

of this framework is the consideration of multiple sets of secondary variables with related

linking constraints. This extends the column-and-row generation approach presented by Muter

et al. [65], requiring the solution to multiple column generation subproblems to calculate an

optimal dual solution for the RMP′. In addition, the framework presented in this chapter

is applied to problems with linking constraints in the compact formulation. As such, this

framework is a direct alternative to decomposition methods, such as Benders’ decomposition,

which are commonly applied to this problem type.

The following chapters describe the implementation of column-and-row generation to solve

the integrated airline recovery problem. The efficiency of the solution approach is critical in

airline recovery, therefore the use of column-and-row generation is investigated to improve the

solution runtimes. Chapters 8 and 9 explicitly evaluate the improvements in solution runtime

and quality achieved with column-and-row generation compared to a standard column genera-

tion approach. While this evaluation is provided for frameworks of Frangioni and Gendron [39]

and Sadykov and Vanderbeck [77], this is not the case for the framework by Muter et al. [65].

The evaluation presented in the following chapters and the development of related enhancement

techniques are contributions of this thesis.



Chapter 8

Integrated Airline Recovery

Problem

The application of the recoverable robustness framework to aircraft routing problems is pre-

sented in Chapters 5 and 6. The objective of recoverable robustness is to improve the recov-

erability of the planned solution, which is of critical importance for airline operations. The

potential of this technique is demonstrated by the recoverable robust tail assignment (RRTAP)

and the recoverable robust single day aircraft maintenance routing problem (SDAMRP-RR).

However, focusing on a single stage limits the effectiveness of this approach. An improvement

in recoverability for the aircraft routing problem alone does not guarantee that this improve-

ment will be realised in the operating environment involving the related resources of crew and

passengers.

Based on the results of Chapters 5 and 6, it is expected that the recoverability of the complete

airline operations can be improved by applying recoverable robustness to an integrated airline

planning problem. In Chapter 2, the complete airline planning process is described as a very

large and intractable problem, with each individual stage presenting a difficult optimisation

problem. As such, any model integrating multiple planning stages is very complex, requiring

the use of sophisticated solution techniques. Examples of integrated planning problems are

presented in Cordeau et al. [27] and Dunbar et al. [33], each describing alternative solution

approaches.

A complicating factor of integrating aircraft and crew in the recoverable robustness frame-

work is the runtime of the evaluation recovery problem. In Chapters 2 and 3 the planning and

157
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recovery tail assignment problems are discussed, where the latter is described as a more difficult

problem. Given that the improvement in recoverability is highly dependent on the feedback

provided from the recovery evaluation stage, it is necessary to solve the recovery problem to

near optimality. Therefore, the objective of this chapter is to investigate solution approaches

that efficiently solve an integrated airline recovery problem in short runtimes.

Various solution approaches employed to solve each stage of the airline recovery process

are presented in Chapter 3. While there has been considerable interest in individual recovery

stages, the integrated recovery problem has recently been receiving increased attention. There

are two key approaches used to reduce the complexity of the integrated problem and improve

solution runtimes, i) applying Benders’ decomposition to partition the individual stages into

subproblems [55, 70], and ii) partitioning the flight schedule into chronologically ordered sets

of flights to define a series of discrete recovery problems [2]. While each of these approaches

efficiently solve the integrated recovery problem, approximations are made, which reduces the

solution quality. In particular, Benders’ decomposition is solved with continuous second stage

variables, therefore the optimal solution may not provide integral optimality. This chapter

applies column-and-row generation to directly solve the integrated recovery problem in an

effort to improve solution runtimes and further develop the available solution techniques.

The contributions of this chapter are:

1. the explicit evaluation of column-and-row generation against a standard column genera-

tion approach, identifying various enhancement techniques,

2. integrating column-and-row generation into a branch-and-price framework,

3. solving the integrated airline recovery problem using column-and-row generation, guar-

anteeing near optimal integer solutions.

Firstly, the column-and-row generation framework developed in Chapter 7 extends the

generic scheme presented by Muter et al. [65]. The scheme developed by [65] has been applied

to various problem, however no evaluation of column-and-row generation against a standard

column generation approach is presented. This chapter provides such an evaluation, and as

a result a number of enhancement techniques are identified. Column-and-row generation has

been developed as a method solve large-scale linear programs displaying a special problem

structure. As such, the integration of this approach with a branch-and-price framework has not
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been published before. This chapter presents a strategy to efficiently solve each node in the

branch-and-bound tree by column-and-row generation. Finally, the application of column-and-

row generation to solve the integrated recovery problem eliminates the need for approximations

in the solution process. Integral optimality is achieved for all components of the integrated

problem, contributing to the available solution techniques for this problem.

This chapter presents the integrated airline recovery problem and discusses the application of

the column-and-row generation framework presented in Chapter 7. The master problem for the

integrated recovery problem is presented in Section 8.1, which is solved using column generation

to provide benchmark results. The implementation of column generation and column-and-row

generation is presented in Section 8.2, including a number of enhancement techniques identified

through the evaluation of the solution approach. To demonstrate the benefits of solving the

integrated recovery problem by column-and-row generation, a comparison against the results

produced using column generation is made in both solution quality and runtime. These results

are presented in Section 8.3. The conclusions provided in Section 8.4 aim to present the tech-

nique of column-and-row generation as an alternative solution method for integrated airline

and transportation problems. The work that is presented in this chapter appears as part of a

paper submitted to Transportation Science by Maher [61].

8.1 Integrated Airline Recovery Problem

The integrated recovery problem (IRP) attempts to minimise the costs associated with flight

delays and cancellations and the additional cost of crew following a schedule disruption. This

problem is formulated to integrate the schedule, aircraft and crew recovery problems. In Chap-

ter 3 the tail assignment and crew duty recovery problems are presented. These problems form

the basis for the IRP, with the link between the two provided by the flight cancellation and

delay decisions and specific flights allocated to each aircraft and crew. In this chapter we dis-

cuss the key features of the recovery tail assignment problem (RTAP) and crew duty recovery

problem (CDRP), presented in Sections 3.1.1 and 3.1.2 respectively, that are relevant to the

IRP.

The notation used to describe the IRP is first introduced in Chapters 2 and 3, however for

completeness the relevant notation is provided Tables 8.1 and 8.2. The notation used to define

the IRP will be described with reference to Chapters 2 and 3. For this problem, the set of all



8. INTEGRATED AIRLINE RECOVERY PROBLEM 160

K is the set of all planned and reserve crew k

Kres
is the set of all reserve crew, Kres ⊂ K

R is the set of all aircraft r

P k, P r
is the set of all flight strings p assigned to crew k or aircraft r respectively

N is the set of all flights j

BK , BR
is the set of crew bases/overnight airports b for crew and aircraft respectively

ND
is the set of disruptable flights j, ND ⊆ N

NK
in, N

R
in

is the set of all carry-in activities j, flights and origination nodes, for crew and aircraft

respectively, NK
in ⊂ N ∪BK and NR

in ⊂ N ∪BR

NK
out, N

R
out

is the set of all carry-out activities j, flights and termination nodes, for crew and aircraft

respectively, NK
out ⊂ N ∪BK and NR

out ⊂ N ∪BR

Uj is the set of all delay copies v for flight j ∈ N

N̂
is the set of all nodes in the connection network defined by flight-copy pairs jv, representing

flights, origination and termination nodes

N̂D
is the set of disruptable nodes in the connection network defined by flight-copy pairs jv,

representing flights, origination and termination nodes

CK , CR
is the set of connections (iu, jv), iu, jv ∈ N̂ for crew and aircraft respectively

E is the set of short connections E = CR\CK

ED
is the set of disruptable short connections, ED = {(iu, jv) ∈ E|iu ∈ N̂D ∨ jv ∈ N̂D}

Table 8.1: Sets used in the IRP.

crew is given by K, indexed by k, and the set of all aircraft is given by R, indexed by r. The set

of crew K also includes all available reserve crew Kres. As an extension of current techniques,

the solution approach for the IRP demonstrates an efficient algorithm that includes all crew

and aircraft, as defined by K and R respectively. Using all crew and aircraft allows for the

optimal allocation of all available resources.

8.1.1 Recovery flight schedule and connection network

A single day flight schedule is used to described and evaluate the IRP, with the set of flights

in the schedule given by N . A recovery window is used for the IRP to restrict the number of

flights considered in the recovery problem. Thus, the set of disruptable flights ND, a subset of

all flights N , is defined to contain all flights that are primarily affected by the disruption and

those that depart after the disruption occurs, but before the end of the specified time window.

Restricting the flights included in the IRP using a recovery window requires the activities

performed by crew and aircraft before and after this window to be fixed. This is achieved using
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the concepts of carry-in and carry-out activities, as described in Section 3.1.1. All carry-in

activities for crew and aircraft are contained in the sets NK
in and NR

in respectively. Similarly all

carry-out activities for the crew and aircraft are contained in the sets NK
out and N

R
out respectively.

To efficiently solve the IRP, the recovery policy of flight delays is implemented using flight

copies. The technique described in Section 3.1.1 for modelling flight delays using flight copies is

used for the IRP. In this model, it is important to note that the nodes representing origination

and termination airports are treated as non-disruptable flights. This definition is made for

convenience in discussing carry-in and carry-out activities.

The connection network used for this model is described using the flight-copy representation

for each node in the network. The set of all nodes is represented by N̂ = {jv|j ∈ N ∧ v ∈ Uj},
detailing all flight-copy pairs that exist for each disruptable and non-disruptable flight. Using

the same notation, the set of all disruptable nodes is given by N̂D = {jv|j ∈ ND ∧ v ∈ Uj}.
The connection network for this problem is defined by a set of nodes, given by flight-copy pairs,

and a set of arcs as connections between the nodes. A connection between two flight-copy pairs

(iu, jv), iu, jv ∈ N̂ is feasible if i) the destination of flight i is the same as the origin of flight j and

ii) the departure of flight-copy jv occurs after a specified amount of time following the arrival

of flight-copy iu. All feasible connections for crew are contained in the set CK and require a

minimum sit time between the arrival of iu and the departure of jv. Feasible connections for

aircraft require a minimum turn time for each connection contained in CR.

8.1.2 Aircraft routes and crew duties

The modelling approach for the IRP is based upon the string formulation introduced by Barn-

hart et al. [12]. In the IRP, a flight string is defined as a set of connected flights from a carry-in

to a carry-out activity. The flight strings are constructed individually for each crew and aircraft,

as such the crew duties describe personalised schedules and the aircraft routes describe individ-

ual tail assignments. The terms aircraft route and tail assignment will be used interchangeably

throughout this chapter.

Using the flight-copy representation of each node for this model, any reference to flight j

without specifying a copy v collectively states all flight-copy pairs associated with that flight. So,

the parameters akjp and a
r
jp specify whether flight j, representing any flight-copy pair jv, v ∈ Uj ,

is included on string p for crew k and aircraft r respectively. A flight string will either terminate

within the recovery window, by ending at a crew base or aircraft overnight airport, or will
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xkp = 1 if crew k uses flight string p, 0 otherwise

yrp = 1 if aircraft r uses flight string p, 0 otherwise

ckp, c
r
p = the cost of using flight string p for crew k or aircraft r respectively

akjp, a
r
jp = 1 if flight j is in string p for crew k or aircraft r respectively, 0 otherwise

ekiujvp, e
r
iujvp = 1 if connection (iu, jv) is in string p for crew k or aircraft r respectively, 0 otherwise

akvjp , a
rv
jp = 1 if flight-copy jv is in string p for crew k or aircraft r respectively, 0 otherwise

orbp
= 1 if string p, assigned to aircraft r, terminates at airport b within the recovery window, 0

otherwise

zj = 1 if the flight j is cancelled, 0 otherwise

dj = the cost of cancelling flight j

κv+
j = the number crew deadheading on flight-copy jv

κv−
j dummy variable for counting the number of deadheading crew on flight-copy jv

νk
= 1 if crew k deadhead back to their crew base from the start of the disruption period, 0

otherwise

gDHD
= the cost of deadheading crew on one leg within a duty

gDHB
= the cost of deadheading crew k back to their crew base

ōrb
= 1 if the planned flight string for aircraft r terminates at airport b within the recovery

window, 0 otherwise

Table 8.2: Variables used in the IRP.

terminate at a carry-out flight. If the flight string assigned to an aircraft terminates within the

recovery window, the parameter orbp describes the terminating airport b for aircraft r. Since

flight cancellations are implemented as a recovery policy for the IRP, the flow balance of the

original schedule is not maintained. To ensure enough aircraft are positioned at each airport b

to operate the schedule for the following day, the minimum number of required aircraft must

be specified. Now, the number of planned aircraft flight strings terminating at each end-of-

day location within the recovery period is given by
∑

r∈R ō
r
b , ∀b ∈ BR, where ōrb indicates that

aircraft r terminates at airport b. Therefore, this expression defines the minimum number of

aircraft required to terminate at each end-of-day location b within the recovery window for the

IRP.

Within the set of all aircraft connections, CR, it is common to have connection times less

than the minimum sit time for crew. These connections are called short connections, and it

is permissible for crew to operate the two flights in succession, as defined by this connection,

only if a single aircraft also operates the same two flights. The set of all short connections are
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contained in E = CR\CK , and the subset of short connections that include flight-copy pairs in

N̂D are contained in the set ED. If a flight string includes two flight-copy pairs that form a

short connection, the parameters ekiujvp and eriujvp indicate the inclusion of connection (iu, jv)

on string p for crew and aircraft respectively.

Legality of crew duties

There a numerous rules that dictate the construction of feasible flight strings for crew which

must be strictly adhered to during the recovery process. Crew flights strings can be described

as either a duty, pairing or schedule, each spanning a different time period. A crew duty is

the most fundamental flight string for crew which specifies the sequence of flights performed

during a single day. A crew pairing is constructed as a sequence of duties, and similarly a crew

schedule is a sequence of pairings. There are rules that are specific to the construction of duties,

pairings and schedules, however for a single day schedule, which is used for the IRP, the most

important rules that must be considered are the crew duty rules.

One of the most fundamental rules regarding the construction of crew duties is the flight

string origination and termination locations. Each crew is employed at one of many crew bases

throughout the network, so to avoid overnight stays away from base, ideally a duty is constructed

to start and end at the same crew base. Unfortunately, the design of the flight schedule does

not permit all crew duties to terminate at their respective crew base, requiring an overnight

stay at a permissible airport. This rule is modelled in the IRP through the construction of

recovered crew duties and if a crew duty originates from a permissible overnight airport, it

must terminate the required crew base.

The number of hours that a crew duty spans is an important consideration to manage the

effects of fatigue. There are two rules that are modelled in the IRP, a maximum number of

flying hours and a limit on the total duration of the crew duty, which are set of 8 and 13 hours

respectively. These are the most important duty rules related to working hours and are strictly

adhered to in the IRP. Another important, but complicated, rule is the 8-in-24 rule that requires

crew to receive additional rest if more that 8 hours flying is performed in a 24 hour period [13].

Given that crew are assigned personalised schedules and are limited to 8 hours flying in a single

day, the 8-in-24 rule will not be violated for most crew in the recovered solution. In the event

that this rule is violated by the solution to the IRP, further adjustment can be made to the

recovered duties at the end of the day to provide an adequate amount of rest.
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It is important to note that prior to a disruption crew may have performed part of a duty,

consuming allowable flying and working hours. The personalised schedules are respected in the

recovery of crew duties by originating each duty from a carry-in location and accounting for the

working history prior to the disruption. This ensures that the recovered crew duties, including

the flights performed prior to the disruption, respect the crew duty rules.

8.1.3 Recovery policies

The set of recovery policies implemented in the IRP include the generation of new aircraft

routes and crew duties, crew deadheading (transportation of crew as passengers), the use of

reserve crew, and flight delays and cancellations. In the column generation algorithm, feasible

crew duties and aircraft routes are generated for each crew and aircraft contained in K and R

respectively. The length of delay that is required on each flight is determined in the generation

of these new flight strings for aircraft and crew by the selection of flight-copy pairs. The

parameters akvjp and arvjp describe the length of delay, as specified by copy v, selected for flight j

on string p for the crew and aircraft respectively. The IRP also allows for the cancellation of

any flight that can not be covered by both crew and aircraft. Flight cancellations are defined in

the IRP through the use of the variables zj , which equal 1 to indicate that flight j is cancelled

at a cost of dj .

Since a disruption affects the departure and arrival times of flights, it is possible for crew

members to violate duty rules if the original duties are operated as planned. To avoid exceeding

any duty limits a set of crew specific recovery policies are employed. Firstly, crew deadheading

is used to transport crew as passengers to continue the operation of disrupted flight strings.

Two different types of deadheading are implemented in the IRP, deadheading within a duty

and deadheading back to base. The variables κv+j are introduced to count the number of crew

that deadhead within a duty on flight-copy jv. To model crew deadheading within a duty the

dummy variables κv−j are required to ensure that the number of crew deadheading on flight-

copy jv is one less than the total number of crew assigned to that flight-copy. The cost of

deadheading crew on one leg within a duty is given by gDHD. Alternatively, the variables νk

indicate whether crew k deadhead to their crew base immediately following the start of the

disruption at a cost of gDHB.

As a result of recovery actions, it is not guaranteed that the set of originally planned crew

are able to operate the recovered schedule. To achieve the greatest coverage of flights, reserve
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crew are employed to operate duties unable to be performed by the original set of planned

crew. This recovery action provides crew to operate flights in an effort to avoid costly flight

cancellations.

The integrated recovery problem is presented in a compact formulation with variables xkp for

crew and yrp for aircraft representing feasible flight strings. The full description of this problem

is presented below,

(IRP)

min
∑

k∈K

∑

p∈P k

ckpx
k
p +

∑

j∈ND

∑

v∈Uj

gDHDκv+j +
∑

k∈K

gDHBνk +
∑

r∈R

∑

p∈P r

crpy
r
p +

∑

j∈ND

djzj ,

(8.1)

s.t.
∑

k∈K

∑

p∈P k

akjpx
k
p −

∑

v∈Uj

κv+j + zj = 1 ∀j ∈ ND, (8.2)

∑

k∈K

∑

p∈P k

akjpx
k
p = 1 ∀j ∈ NK

out, (8.3)

∑

r∈R

∑

p∈P r

arjpy
r
p + zj = 1 ∀j ∈ ND, (8.4)

∑

r∈R

∑

p∈P r

arjpy
r
p = 1 ∀j ∈ NR

out, (8.5)

∑

r∈R

∑

p∈P r

orbpy
r
p ≥

∑

r∈R

ōrb ∀b ∈ BR, (8.6)

∑

k∈K

∑

p∈P k

akvjpx
k
p − κv+j + κv−j = 1 ∀j ∈ ND, ∀v ∈ Uj , (8.7)

∑

k∈K

∑

p∈P k

ekiujvpx
k
p −

∑

r∈R

∑

p∈P r

eriujvpy
r
p ≤ 0 ∀(iu, jv) ∈ ED, (8.8)

∑

k∈K

∑

p∈P k

akvjpx
k
p − κv+j −

∑

r∈R

∑

p∈P r

arvjpy
r
p = 0 ∀j ∈ ND, ∀v ∈ Uj , (8.9)

∑

p∈P k

xkp + νk = 1 ∀k ∈ K\Kres, (8.10)

∑

p∈P k

xkp ≤ 1 ∀k ∈ Kres, (8.11)

∑

p∈P r

yrp = 1 ∀r ∈ R, (8.12)

xkp ∈ {0, 1} ∀k ∈ K, ∀p ∈ P k, yrp ∈ {0, 1} ∀r ∈ R, ∀p ∈ P r, (8.13)

zj ∈ {0, 1} ∀j ∈ N, νk ∈ {0, 1} ∀k ∈ K, (8.14)

κv+j ≥ 0, κv−j ≥ 0 ∀j ∈ ND, ∀v ∈ Uj . (8.15)
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The objective of the IRP is to minimise the cost of recovery for aircraft and crew. The recovery

costs include the cost of flight delays and cancellations, reserve crew, additional crew duty costs

and the cost of crew deadheading.

The coverage of flights within the recovery window by the crew and aircraft is enforced by

constraints (8.2) and (8.4). The terms akjpx
k
p and arjpy

r
p in these constraints denote whether

flight j is operated by crew k and aircraft r respectively and the variables zj indicate whether

it is cancelled. The constraints (8.3) and (8.5) ensure that each carry-out flight is serviced

by crew and aircraft in the recovered solution. The carry-out flight coverage ensures that the

solution to the IRP positions the crew and aircraft to continue activities following the end of

the recovery window as planned.

This problem is solved for a single day schedule, so the aircraft are required to be positioned

at airports to maintain flow balance for the following days operations. Since all recovery actions

occur within the recovery window, the positioning of the aircraft must be considered before the

conclusion of this window. Two cases can occur in the recovery of aircraft; either i) an aircraft

is assigned a carry-out flight, allowing it to follow a planned routing to an end-of-day location,

or ii) the recovered flight route terminates within the recovery window requiring an end-of-

day location to be specified. The minimum number of aircraft required to terminate at each

end-of-day location within the recovery window is enforced through constraints (8.6).

The recovery policy of crew deadheading within a duty is implemented through the surplus

crew count constraints (8.7). This set of constraints ensure that crew deadheading is only

permitted on flight-copy pairs that are operated by at least one crew. The variables κv+j count

the number of crew deadheading on flight-copy pair jv which is penalised in the objective

function.

In the IRP, the integration between the crew and aircraft variables is described by the short

connection and delay consistency constraints, equations (8.8) and (8.9) respectively. The short

connection constraints (8.8) permit the use of connection (iu, jv) ∈ ED by crew if an aircraft is

also using the same connection. The delay consistency constraints (8.9) ensure that the length

of delay on any flight in a feasible aircraft recovery solution is identical for the crew recovery

solution, and vice versa. This is an improvement upon the common sequential recovery practice,

where the delays enforced in one stage may result in subsequent stages being infeasible. The

IRP avoids any issues regarding the feasibility of flight delays by simultaneously solving the

crew and aircraft recovery problems. Since there exists one delay consistency constraint for
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each flight-copy pair, this set of constraints grows very quickly with the number of copies. It

is on this set of constraints that the row generation procedure is implemented to improve the

solution runtime.

The number of crew and aircraft operating the recovered schedule is based upon the origi-

nally planned duties and routings. Each crew that is assigned a duty from the planning stage

must also be assigned a duty in the IRP or deadheaded back to base, which is captured by

constraints (8.10). This is not true for the reserve crew since they are not required to perform

any duties during recovery, which is captured by the inequality in constraints (8.11). Similar

for crew, each aircraft that is assigned a flight route in the planned solution must be assigned

a flight route in recovery, which is given by (8.12).

It is common practice in both the sequential stage and integrated recovery problems to select

a subset of crew, aircraft and flights to reduce the problem size and improve solution runtimes.

To improve the computational performance of the IRP, the concept of a recovery window has

been used to reduce the number of flights included in the optimisation problem. While this

provides an upper bound on the optimal recovery cost, it is believed that this approach is

realistic and consistent with the objective to quickly return operations to plan. To ensure that

all reassignment and rerouting options are available, the full set of crew and aircraft are used in

the IRP. The selection of all crew and aircraft for this problem demonstrates that fast solution

algorithms are possible on larger data sets using current solution techniques.

8.2 Solution Methodology

In this chapter the IRP is solved using both column generation and column-and-row generation

to provide a comparison between the two solution approaches. The column generation solution

approach is introduced in Section 4.1 and the general framework for column-and-row generation

applied to problems throughout this thesis is presented in Chapter 7. As explained in Chapter 7,

there are two key components of the column-and-row generation approach, column generation

and row generation, which will be discussed separately in relation to the IRP.

Section 8.2.1 describes the column generation subproblems that are used to identify re-

covered crew duty and aircraft routing flight strings. The discussion in Section 8.2.1 assumes

that the IRP is solved by a standard column generation approach. This is extended in Section

8.2.2 to include row generation, detailing the required modifications to the column generation
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subproblems. Section 8.2.2 will describe the formulation of the short restricted master problem

(SRMP) and the row generation procedure that is employed to solve the IRP.

8.2.1 Column generation

The formulation of the IRP contains two sets of variables for which column generation can

be applied. These variables are related to crew duties and aircraft routes, which are defined

as flight strings. While each of the variable types have similar structures, there are specific

rules governing their generation requiring the implementation of two individual column gener-

ation subproblems. In this section the column generation subproblem for each variable type is

described, including the relevant solution methods.

In the column generation procedure a restricted master problem (RMP) is defined by in-

cluding only a subset of all possible columns, P k and P r, and is solved to find the optimal dual

solution. The dual variables αK = {αKj , ∀j ∈ ND ∪ NK
out} and αR = {αRj , ∀j ∈ ND ∪ NR

out}
are defined for the flight coverage constraints (8.2)-(8.3) and (8.4)-(8.5), respectively. The dual

variables for the aircraft end-of-day location constraints (8.6) are defined by ǫ = {ǫb, ∀b ∈ BR}.
The dual variables for the surplus crew count constraints (8.7) are given by η = {ηvj , ∀j ∈
ND, ∀v ∈ Uj}. For the short connection constraints (8.8) and the delay consistency constraints

(8.9), the dual variables are given by ρ = {ρij , ∀(i, j) ∈ ED} and γ = {γvj , ∀j ∈ ND, ∀v ∈ Uj},
respectively. Finally, the dual variables δK = {δk, ∀k ∈ K} and δR = {δr, ∀r ∈ R} are defined

for the crew and aircraft assignment constraints, (8.10)-(8.11) and (8.12), respectively. Using

the set of optimal dual solutions, the column generation subproblems for crew and aircraft are

solved to identify negative reduced cost columns to add to the sets P k and P r.

Crew duty subproblem

The crew duty subproblem (PSPk) is solved as a shortest path problem with one source node

and multiple sink nodes. The source node represents a carry-in activity, and the sink nodes

represent carry-out activities, including permissible crew and overnight bases. The shortest

path must adhere to resource constraints that restrict the number of flying hours and the total

hours of the flight string. The decision variables wkiujv are introduced in the PSPk that equal 1

if connection (iu, jv) is used in the shortest path and 0 otherwise. The connection network used

for the shortest path problem is CR, which permits the possible use of all short connections.

The model for the PSPk is given by,
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(PSPk)

ĉkp = min RecDutyCost(k,wk)−
∑

(iu,jv)∈CR

αjw
k
iujv
−

∑

(iu,jv)∈ED

ρiujvw
k
iujv

−
∑

j∈ND

∑

v∈Uj

∑

iu∈N̂D

|(iu,jv)∈CR

{

ηvj+γ
v
j

}

wkiujv − δk, (8.16)

s.t.
∑

iu∈N̂D

|(iu,jv)∈CR

wkiujv −
∑

lu∈N̂D

|(jv ,lu)∈CR

wkjvlu = 0 ∀jv ∈ N̂D, (8.17)

∑

v∈Uj

∑

iu∈N̂D

|(iu,jv)∈CR

wkiujv ≤ 1 ∀j ∈ ND, (8.18)

∑

u∈Ui

∑

jv∈N̂D

|(iu,jv)∈CR

wkiujv = oki ∀i ∈ NK
in , (8.19)

∑

j∈NK
out

∑

v∈Uj

∑

iu∈N̂D

|(iu,jv)∈CR

okjw
k
iujv

= 1, (8.20)

∑

(iu,jv)∈CR

wkiujvω
n
iujv
≤ Ωn n = 1, 2, (8.21)

wkiujv ∈ {0, 1} ∀(iu, jv) ∈ CR. (8.22)

The objective of PSPk is to find the duty for crew k with the minimum reduced cost by solving

a resource constrained shortest path problem (RCSPP). Constraints (8.17) describe the flow

balance at each node in the network to ensure a connected path is found. Now, the shortest

path problem is formulated on a connection network designed using flight-copies, as such there

are many nodes for the same flight but each with a different departure time. Only one de-

parture time is permissible per flight, so a modification to the classic RCSPP is required with

constraints (8.18) ensuring that at most one flight-copy per flight is active in the shortest path.

The shortest path for crew k must originate from a single carry-in activity, which is achieved

by setting oki = 1 for a single i ∈ NK
in , 0 otherwise, in constraints (8.19). Also, the termination

location of the duty is enforced by constraint (8.20), with all permissible termination locations

j captured by the parameter okj = 1, and for all locations j that are not permissible okj = 0.

Constraints (8.21) limit the consumption of each resource along the shortest path with the

upper bound on flying hours given by Ω1 = 8 and on total hours given by Ω2 = 13. The

consumption of each resource on connection (iu, jv) is given by ωniujv , n = 1, 2.

In the objective function (8.16), the complex cost structure used for crew remuneration is
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denoted by RecDutyCost(k,wk), where wk = {wkiujv , ∀(iu, jv) ∈ CR}. This cost structure is

identical to equation (3.9), with further definitions for each component provided in this section.

Since the PSPk is solved on a connection network, the consumption of resources is defined for

each arc in the network, i.e. the flying hours, fly =
∑

(iu,jv)∈CR wkiujvω
1
iujv

and the total elapsed

hours, elapse =
∑

(iu,jv)∈CR wkiujvω
2
iujv

. As such, the expression for the cost of a duty in the

IRP is given by

RecDutyCost(k,wk) = max{0,max{fly(k), fd · elapse(k),minGuar} −OrigDutyCost(k)},
(8.23)

where minGuar is set at 6 hours [13] and fd is a fraction which is airline specific and is set at

fd = 5/8 [13].

In consideration to the resource restrictions and complex cost structure, a multi-label short-

est path algorithm is required to solve PSPk. Each label l at node iu stores the cost of the

current shortest path to the node, ĉiul, the number of flying hours, H1
iul
, and the total elapsed

hours, H2
iul
. Now, the connection network described in Section 8.1 forms an acyclic directed

graph. Given this network structure, all the nodes can be listed in a topological order, where

node iu is ordered before node jv if ∃(iu, jv) ∈ CR [5]. Therefore, the multi-label shortest path

algorithm described by Algorithm 4.2 can be implemented to solve the PSPk.

The description of Algorithm 4.2 stipulates the requirement of a maximum number of labels

that can be stored at each node. The implementation of this algorithm for the PSPk also

includes a maximum number of labels for an efficient solution approach. As such, the dominance

condition given by Definition 4.1.1 is used to assess the suitability of each label stored at a node.

Aircraft routing subproblem

The column generation subproblem for the aircraft routing variables solves a shortest path

problem from a single origination location to one of multiple termination locations or overnight

airports. For this problem a set of decision variables wriujv are introduced that equal 1 if

the connection (iu, jv) is used in the shortest path and 0 otherwise. The column generation

subproblem for the aircraft routing variables (PSPr) is defined by,
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(PSPr)

ĉrp = min
∑

(iu,jv)∈CR

criujvw
r
iujv
−

∑

(iu,jv)∈CR

αjw
r
iujv
−

∑

b∈BR

∑

iu∈N̂D

|(iu,b)∈CR

ǫbw
r
iub

+
∑

(iu,jv)∈ED

ρiujvw
r
iujvp

+
∑

j∈ND

∑

v∈Uj

∑

iu∈N̂D

|(iu,jv)∈CR

γvjw
r
iujv
− δr, (8.24)

s.t.
∑

iu∈N̂D

|(iu,jv)∈CR

wriujv −
∑

lu∈N̂D

|(jv ,lu)∈CR

wrjvlu = 0 ∀jv ∈ N̂D, (8.25)

∑

v∈Uj

∑

iu∈N̂D

|(iu,jv)∈CR

wriujv ≤ 1 ∀j ∈ ND, (8.26)

∑

u∈Ui

∑

jv∈N̂D

|(iu,jv)∈CR

wriujv = ori ∀i ∈ NR
in, (8.27)

∑

j∈NR
out

∑

v∈Uj

∑

iu∈N̂D

|(iu,jv)∈CR

wriujv = 1, (8.28)

wriujv ∈ {0, 1} ∀(iu, jv) ∈ CR. (8.29)

The objective of the PSPr is to find a path through the connection network for aircraft r with

the minimum reduced cost. Constraints (8.25) ensure flow balance for each node in the network,

and the constraints (8.26) ensure at most one departure for each flight is used in the shortest

path. Each aircraft is assigned a carry-in activity, which is given by ori = 1 for a single i ∈ NR
in,

and orj = 0, ∀j ∈ NR
in\{i}. The origination of the shortest path from this node is enforced by

constraints (8.27). Finally, aircraft are permitted to terminate at any specified carry-out activ-

ities or overnight airports, which is captured by constraint (8.28). The termination location for

most aircraft is not of great importance, therefore they may terminate at any carry-out activity

or overnight airport. If an aircraft is planned to receive maintenance at the end of the day, the

termination locations will enforce this requirement.

The PSPr describes a shortest path problem for which a large number of solution algorithms

are available. Similar to the connection network for crew, the network for aircraft is an acyclic

directed graph which permits the topological ordering of the nodes. However, the PSPr only

considers a single resource in the shortest path, path distance, therefore Algorithm 4.1 is used

to efficiently solve this problem.

In any iteration of the column generation algorithm, the most negative reduced cost for all
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aircraft, ĉRp , can be found by solving the PSPr for each aircraft r and setting ĉRp = minr∈R{ĉrp}.
Now, all connection costs and dual variables, except for δR = {δr, ∀r ∈ R}, included in (8.24)

are aircraft independent. Therefore, by setting δr = δR, ∀r ∈ R, where δR = maxr∈R{δr} in

(8.24), it is possible to find a lower bound on ĉRp , labelled as c̃Rp , by solving this aircraft routing

shortest path algorithm only once. The aircraft routing subproblem developed by this method

is labelled PSPR and will be used as part of the row generation procedure described in Section

8.2.2.

8.2.2 Row generation

An important feature of the IRP is the use of a full set of recovery policies, which includes flight

delays. There are a number of different methods that are available to implement flight delays,

such as time windows [81] and discrete flight copies [87], each with relative strengths regarding

the problem formulation and solution methods. The technique of flight copies has been selected

to model delays as a result of its simplicity in implementation for column generation and to fit

within the column-and-row generation framework.

By implementing flight delays using flight copies, a critical consideration of the integrated

problem is to ensure that the crew duty and the aircraft routing solutions use the same copy

(delay) for each flight. The delay consistency constraints(8.9) capture this. However, this

is at the expense of adding a large number of constraints to the restricted master problem

(RMP). Since the optimal variables have non-zero coefficients in only a small subset of the

delay consistency constraints, many rows related to these constraints are not required in the

RMP.

The implementation of delay copies in the IRP provides alternate flight departure times

given by a uniform discretisation of a maximum allowable delay. While this is a popular

method of implementation that has been employed by Yan and Young [98], Thengvall et al. [87]

and Andersson and Varbrand [7], Bratu and Barnhart [19] state that a number of copies may

be dominated by shorter delay options. Further, Petersen et al. [70] suggests the modelling of

flight delays by an event-driven approach, linking delays to activities related to each flight. This

reduces the size of the recovery problem by only including the delays for each flight that provide

feasible connections. While uniform delay options are implemented for the IRP, column-and-

row generation provides an optimisation approach to select the most important delay options.

While it is possible to implement the recovery flight network reductions as described by [19]
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and [70], this would simply result in the further enhancement of the column-and-row generation

approach.

Comparing the IRP with the RMP in Section 7.3.1, it is clear that the delay consistency

constraints (8.9) describe linking constraints similar to (7.4). These constraints provide the link

between the primary and secondary sets of variables, which are given by the crew duty and

aircraft routing variables in the IRP respectively. While the RMP in Section 7.3.1 describes a

problem with multiple secondary variables, the IRP is a special case of this problem class with

the aircraft routing variables as the only set of secondary variables. Therefore, the problem

structure of the IRP permits the use of the column-and-row generation framework presented in

Chapter 7.

The implementation of the column-and-row generation algorithm, Algorithm 7.3 and a

description of each feature of this algorithm with respect to the IRP will be provided in this

section. As a contribution of this chapter, the column-and-row generation solution approach

developed by Muter et al. [65] is evaluated against column generation to identify any potential

enhancement techniques. A description of the techniques identified by this evaluation will be

provided throughout this section.

Formulation of the restricted problems

The column-and-row generation framework requires the formulation of a RMP and SRMP as

restrictions on the original problem. The formulation of the RMP is provided in Section 8.2.1

with the SRMP describing a further restriction on the original problem by the elimination of

delay consistency constraints (8.9). The SRMP is initialised with all rows related to constraints

(8.2)-(8.8) and only a subset of rows for the delay consistency constraints (8.9) as defined by

v ∈ Ūj , ∀j ∈ ND. The set Ūj is initially populated with one copy for most flights j, which is

generally the copy representing the scheduled departure time, i.e. Ūj = {0}. However, as a

result of flight delays caused by the initial disruption it is possible that no feasible connection

containing the flight-copy pair j0 exists. In these situations, the set Ūj = {0, v′} is defined for

flight j, where v′ represents the copy with the earliest departure time that provides at least one

feasible connection for flight j.

The elimination of rows to form the SRMP is coupled with the fixing of variables in the

column generation subproblems. This variable fixing is given by wkiujv = wriujv = 0, ∀u ∈
Ui\Ūi, ∀v ∈ Uj\Ūj , which restricts the set of feasible columns. Using this definition, flight
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delays can be partitioned into those permitted on flight strings (allowable delays) and those

which are not permitted (non-allowable delays). Thus, the set of copies Ūj describes the set

of allowable delays for flight j in the current formulation of the SRMP and the non-allowable

delays are contained in Uj\Ūj . This distinction between allowable and non-allowable delays is

made to describe the restriction on the feasible region through the elimination of constraints

from the RMP.

The algorithms implemented to solve the column generation subproblems for the SRMP are

identical to those discussed in Section 8.2.1 for the RMP. However, to conveniently describe

the variable fixings in the column generation subproblems, the sets C̄K ⊆ CK , C̄R ⊆ CR and

ĒD ⊆ ED are defined to include only the flight copies contained in Ūj , ∀j ∈ N . The connection

networks, described by C̄K and C̄R, used in the subproblems for the SRMP are much smaller

than that for the RMP, and hence the PSPk and PSPr are solved more quickly. Since this

restriction on the connection networks limits the set of feasible columns, the solution to the

SRMP provides an upper bound on the optimal solution of the IRP.

Row generation algorithm

The row generation algorithm described in Section 7.3.3 involves two key steps, the calculation

of an optimal dual solution for the RMP′ and identifying favourable rows to add to the SRMP.

The results ensuring the accuracy of the dual solution calculation procedure are presented in

Section 7.3.2, which are used to develop Algorithm 7.2. The specific details regarding the

implementation of Algorithm 7.2 for the IRP will be discussed in this section.

The calculation of the optimal dual solution to the RMP′ is a fundamental part of the row

generation procedure. By solving the SRMP to optimality using column generation, Theorem

7.3.1 states that the optimal dual solution to the RMP′ can be calculated using the solution to

the SRMP and Algorithm 7.1. Given the very similar problem structures of the SRMP and the

RMP′, the dual solutions that must be calculated are related to the rows eliminated to form

the SRMP, which are given by γ ′ = {γv′j , ∀j ∈ ND, ∀v′ ∈ Uj\Ūj}. The solutions to each of

the variables contained in γ ′ are found by executing Algorithm 7.1, solving the PSPR as the

column generation subproblem in step 2. The use of the PSPR in this algorithm is a problem

specific enhancement technique that reduces the runtimes required to calculate the solutions to

the dual variables for all eliminated rows.

The second part of the row generation procedure involves using the optimal dual solution
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to the RMP′ to identify favourable rows to add to the SRMP. This process is described by

steps 8-11 of Algorithm 7.2, which involves solving the column generation subproblem for the

primary variables to find columns feasible for the RMP′. Since the primary variables for the

IRP are the crew duty variables, the PSPk is solved as the pricing subproblem in step 8 of this

algorithm. The crew duty variables generated by this subproblem describe individual duties for

each crew k, hence a larger number of favourable rows can be identified by solving the PSPk

once for each k ∈ K. This is a natural modification of the row generation procedure which is

necessary to develop an efficient solution approach for the IRP.

The dual variable estimation of the row generation procedure is a feature of this approach

that is identified to be very computationally expensive. Given the set of flight-copy pairs,

∪j∈NDUj\Ūj , requires the PSPR to be solved once for each flight-copy pair contained in this

set. Even with the most efficient shortest path algorithm, the large number of executions re-

quired to calculate all dual variables can have a significant negative impact on the solution

runtimes. Consequently, the number of times that Algorithm 7.2 is executed will affect the

overall performance of the column-and-row generation solution process. One approach to ad-

dress this runtime issue is to vary the number of rows that are added in each call to the row

generation procedure. It has been observed that by adding too few rows at each execution

requires more calls to the row generation algorithm. Similarly, adding too many rows has the

effect of increasing the size of the SRMP too rapidly. A successful approach involves adding

more rows to the SRMP based upon the value of the calculated dual variables. This is achieved

for the IRP by adding a row for every flight-copy pair which the calculated value of the dual

variable is positive. The ideal number of rows to add at each iteration is difficult to determine.

However, this approach significantly improves the solution runtimes compared to the standard

row generation procedure.

Row generation warm-up

The subset of rows initially included in the SRMP greatly affects the efficiency of the column-

and-row generation solution process. In Section 8.2.2, the initialisation of the SRMP involves

selecting a single delay copy for each flight which is näıvely set to the scheduled departure time.

Ideally, the only rows included in the SRMP should represent the amount of delay for each flight

that is required in the optimal solution of the IRP. Unfortunately the optimisation problem to

identify the optimal set of delay options is analogous to the original recovery problem, hence
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an alternative technique is required.

An approach implemented for the IRP uses information from the standard column genera-

tion approach to provide a warm-start for column-and-row generation. This approach involves

formulating the RMP with all rows from the original problem but only the columns contained

in the initial formulation of the SRMP. The RMP is then solved by column generation and in

each iteration of the solution algorithm, variables are constructed with no restriction on the

allowable delay options. The initial set of delay copies for the SRMP is updated by reviewing

each generated flight string p and if jv ∈ p, then the delay copy v is added to the set Ūj . After

n iterations of the column generation solution process, the SRMP is formed to contain only the

delay consistency constraints (8.9) described by the sets Ūj , ∀j ∈ ND and all columns in the

current formulation of the RMP.

A key feature of this approach is that no additional development work is required and the

computational time is equivalent to that of the standard column generation approach. During

this warm-up period the runtime of the two solution approaches is identical, therefore the

expected runtime improvements are observed by applying column-and-row generation in the

succeeding iterations. By retaining the initial columns added during this process, the column-

and-row generation approach is provided with a warm-start for the set of columns and rows.

The runtime improvements achieved by this approach demonstrate the importance of an

intelligent selection of rows in the initial formulation of the SRMP. This is expected, since this

observation is similar to the well known relationship between the initial set of columns and the

efficiency of the standard column generation approach. A complicating factor of applying a

warm-up period for column-and-row generation is the additional parameter required to specify

the number of column generation iterations that must be executed. The value of this parameter

has been observed through experiments to greatly affect the efficacy of this approach with an

acceptable runtime improvement for the IRP achieved with 20 iterations.

8.2.3 Branching rules

Integral optimality is achieved for the IRP by employing the technique of branch-and-price. This

problem includes many different variable types and thus a set of problem specific branching rules

have been designed for each. Three different branching rules have been implemented for the

IRP, one related to the cancellation or covering of flights and the other two create branches using

information from the variable flight strings. The first of the branching rules described here for
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the IRP is a pure variable branching rule, and the last two are derived from the Ryan/Foster

branching technique [76]. By implementing multiple branching rules for the IRP, a priority

must be assigned to each dictating when they are used in the solution process. A description

of each rule is provided below in the order of their assigned priority.

A key feature of the airline recovery process is the ability to cancel flights in an effort to

regain schedule feasibility. This feature appears in the IRP through inclusion of variables zj in

the flight coverage constraints for the crew and aircraft, equations (8.2) and (8.4) respectively. A

cancellation variable branching rule is introduced for the IRP which forces the decision of either

covering a specified flight on the left branch or cancelling that flight on the right branch. Upon

identifying flight j′ with the most fractional cancellation variable, zj′ , branches are created by

enforcing zj′ = 0 on the left branch and zj′ = 1 on the right branch. The described rule is

very simple and fast, and is designed to eliminate fractional cancellation variables early in the

branch-and-bound tree.

A very effective branching technique for airline optimisation problems formulated in a set

partitioning framework is follow-on branching, as described in Section 4.3.1. The implementa-

tion of this branching rule is very similar to that presented in Sections 4.3.1 and 5.2.4, however

the multiple sets of variables in the IRP is a complicating factor. A more detailed description of

follow-on branching is provided here to explain the identification of branching candidates from

multiple variable types.

The implementation of follow-on branching for the IRP identifies the most fractional pair of

connected flights for either the crew duty or aircraft routing variables. Since the flight coverage

constraints, equations (8.2) and (8.4), are delay independent, each flight is identified without

considering the delay copies. By ignoring the multiple copies for each flight, the index i is used

to reference all flight-copy pairs iu, u ∈ Ui and the connection (i, j) identifies all connections

(iu, jv) ∈ CK ∪ CR, ∀u ∈ Ui, ∀v ∈ Uj . The set of fractional variables for crew k is defined as

P kf = {p ∈ P k|xkp /∈ Z}, and similarly the set of fractional variables for aircraft r is defined as,

P rf = {p ∈ P r|yrp /∈ Z}. The fractionality of a connection (i, j) is calculated by,

fracKfOn(i, j) = min

{

∑

k∈K

∑

p∈P k
f

|(i,j)∈p

xkp, 1−
∑

k∈K

∑

p∈P k
f

|(i,j)∈p

xkp

}

and

fracRfOn(i, j) = min

{

∑

r∈R

∑

p∈P r
f

|(i,j)∈p

yrp, 1−
∑

r∈R

∑

p∈P r
f

|(i,j)∈p

yrp

}

,

(8.30)
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for crew and aircraft variables respectively. The connection with the greatest fractionality for

either crew or aircraft is identified as (i∗, j∗) and is selected as the branching candidate. The

candidate variable type, crew or aircraft, that this branching applies to is also identified by this

selection. Upon identifying connection (i∗, j∗) and the candidate variable type, the branching

is performed on all variables of this type using the method described in Section 4.3.1.

An alternative branching rule is developed for the IRP that examines the allocation of

specific flights to individual crew and aircraft. This branching rule selects a crew group k or

aircraft r and enforces or disallows the use of an identified flight-copy. The fractionality of a

variable identifier/flight-copy pair, (k, iu) and (r, iu), is calculated by,

fracKflt(k, iu) = min

{

∑

p∈P k
f

|iu∈p

xkp, 1−
∑

p∈P k
f

|iu∈p

xkp

}

and

fracRflt(r, iu) = min

{

∑

p∈P r
f

|iu∈p

yrp, 1−
∑

p∈P r
f

|iu∈p

yrp

}

,

(8.31)

for the crew and aircraft variable types respectively. Branching is performed on the variable

identifier/flight-copy pair that has the greatest fractionality, as described by the equations

(8.31). On the left branch, all variables associated with the identifier, k∗ or r∗, must contain

the flight-copy i∗u∗ in the flight string. On the right branch all flight strings for the variables

associated with the identifier, k∗ or r∗, must not contain the flight-copy i∗u∗ .

As a contribution to the column-and-row generation solution method, the row generation

procedure is integrated into the branch-and-price framework. Since the branch-and-price algo-

rithm is executed with a subset of all rows contained in the IRP, without allowing the addition

of rows throughout this process, any identified lower bounds are potentially greater than the

true bound. To avoid this inaccuracy in the solution process, the row generation algorithm

is called only at nodes where the column generation procedure concludes with a lower bound

greater than the current best bound. By executing the row generation algorithm in these se-

lected situations ensures that the optimal solution is found with branch-and-price and avoids

unnecessary executions of this time-costly procedure.

8.3 Computational Results

The computational results demonstrate the benefit of using column-and-row generation (CRG)

to solve the IRP compared to a standard column generation approach (Colgen). The following
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discussion compares these two approaches based upon computational performance. For this

analysis computational performance is defined as the runtime required to solve the IRP and

the final solution quality as measured by the best found solution and the optimality gap. These

results justify the use of column-and-row generation as a viable alternative to column generation

for solving integrated airline optimisation problems.

8.3.1 Description of data and disruption scenarios

The performance of the IRP is evaluated on a flight schedule provided by an airline consisting

of 262 flights, serviced by 48 aircraft of a single fleet type and 79 crew groups. This schedule is

designed for a point-to-point carrier servicing 20 airports; 12 of the airports are overnight bases

for aircraft and 4 are crew bases. The original duties and routings are generated by solving an

integrated airline planning problem with an objective of minimising crew costs and the total

number of aircraft operating the schedule.

A set of 16 disruption scenarios are generated as test cases for the IRP. The scenarios

describe airport closures at two major airports in the network, occurring in the morning at

6am, 7am, 8am and 9am for either 3 or 5 hours. The numbers used to reference each scenario

are provided in Table 8.3. An airport closure imposes a delay on all flights that are scheduled

to arrive at or depart from the affected airport until the end of the closure period. In these

experiments a recovery window of 6 hours is used, representing the total time allowed to return

operations back to plan. The recovery window starts from the reopening of the affected airport,

thereby the set of disruptable flights ND includes all flights departing within a 9 or 11 hour

window from the start of the closure. Within the recovery window, the IRP implements a full

set of recovery policies including flight delays and cancellations, crew deadheading, the use of

reserve crew and the generation of new crew duties and aircraft routes.

Scenario Start Time 6am 7am 8am 9am

Scenario Number (0,8), (1,9) (2,10), (3,11) (4,12), (5,13) (6,14), (7,15)

Table 8.3: Scenario numbers. The bracketed values indicate two different closure durations (3

hours, 5 hours) and bold represents the scenarios related to airport two.

A common approach to improve the runtime of airline recovery problems is to use only a

subset of crew, aircraft and flights, which are those identified as disruptable. A key feature of

the IRP is the use of the full sets of crew and aircraft to provide the greatest number of duty
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Scenario 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|ND| 150 151 149 150 147 145 150 149 182 183 185 186 184 182 184 183

Table 8.4: The number of disruptable flights for each scenario.

and routing options. Now, a recovery window is used to identify the set of flights ND to include

in the IRP and the size of this set for each scenario is documented in Table 8.4. While the use

of a recovery window is an approximation of the full recovery problem, it is consistent with the

common objective to return operations to plan as quickly as possible. The size of the recovery

window dictates the allowable recovery time and at the conclusion of the window no further

recovery actions can be taken.

Airlines incur significant realised and unrealised costs due to flight delays and cancellations

during the recovery process. These costs are modelled in the IRP to quantitatively define the

effects of the disruption on the airline and passengers. The data provided for this problem

includes the number of passengers booked on each flight, which is used in the calculation

of the delay and cancellation costs. The cost of flight delays has been estimated from the

EUROCONTROL report by Cook and Tanner [25], where it is stated that the average cost

of delay for a full aircraft is e81 per minute. For convenience, this value is converted into

Australian dollars, so the cost of a full aircraft delayed for a minute is $100 AUD.

Flight delays are implemented in the IRP using the technique of flight copies, as described in

Section 8.1. The maximum allowable delay on any flight is set at 180 minutes, and 7 flight copies

have been used to divide this delay into discrete blocks. Therefore, the minimum possible delay

on any flight is 30 minutes, with each subsequent flight copy departure occurring at 30 minute

intervals. Since flight delays are discretised with the use of flight copies, the resulting recovery

costs are an overestimate of the best possible solution. This occurs because there potentially

exist shorter feasible connections within the 30 minute delay window that could provide an

improved recovery solution. It is possible to increase the number of flight copies to improve

the solution quality. However, the number of delay consistency constraints, equation (8.9), is

dependent on the chosen number of copies. Providing a greater granularity of delays with more

flight copies results in a much larger column generation master problem and a larger connection

network for the pricing subproblem, degrading the computational performance. The results will

demonstrate that by using column-and-row generation the improvement in the computational

performance over a standard column generation approach is still achieved as the problem size



8.3. COMPUTATIONAL RESULTS 181

grows with an increased number of copies.

Quantitatively defining the cost of flight cancellations is difficult due to the indirect costs

related passenger dissatisfaction. In the event of a flight cancellation, passengers are either i)

rebooked onto an alternative flight operated by the airline, ii) rebooked onto a flight operated

by a different airline, or iii) provided a refund and some compensation and must rebook their

own flight. Case iii) is the most uncommon outcome and results in the greatest passenger

dissatisfaction compared to cases i) and ii). However, in all situations it is difficult to estimate

the proportion of passengers that are lost from potential future bookings with the airline. In

these experiments, it is assumed that only the ticket revenue is lost and passengers are not

deterred from booking with the airline in the future. The calculation of the total lost revenue

for each flight assumes an average ticket price of $350 multiplied by the number of booked

passengers. The IRP is solved assuming that the passengers are not rebooked by the airline

onto any flights, resulting in the loss of the total expected revenue from the cancelled flight.

This model is implemented in C++ by calling SCIP 3.0.1 [3] to solve the integer program

using CPLEX 12.4 as the linear programming solver.

8.3.2 Comparison of solution runtimes

It is of high importance for the practical application of any recovery algorithm that a solution

can be found in short runtimes. Figure 8.1 compares the runtime required to solve the IRP

when using the solution approaches of column generation and column-and-row generation. To

demonstrate the appropriate use of this model in practical applications, a maximum runtime of

1200 seconds (20 minutes) is applied. There is an expected trade-off between solution speed and

quality, where reducing the allowable runtime time generally causes an increase in the objective

value and the widening of the optimality gap given by the best found solution. Figure 8.1 shows

that in the vast majority of experiments, the optimal solution is found with runtimes much less

than 1200 seconds. Thus, it is possible to reduce the maximum allowable runtimes without a

great impact on the solution quality in most cases.

The results presented in Figure 8.1 demonstrate that the solution to the IRP is achieved

much faster using column-and-row generation compared to column generation for all but two

cases. Across the 16 scenarios used for the experiments, the average relative improvement in

runtimes achieved by column-and-row generation is 27.01%, with a range of -84.3% (scenario 1)

to 126.76% (scenario 14). These improvements demonstrate a significant runtime benefit from
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Figure 8.1: The runtimes to solve the IRP for each scenario with a maximum of 1200 seconds

(20 minutes). This figure compares the solution approaches of column generation (bars) and

column-and-row generation (bars with hatching).

using column-and-row generation to solve the IRP.

A key feature of column-and-row generation is the smaller set of rows used in the formula-

tion of the SRMP compared to the RMP. There is a well known direct relationship between the

number of constraints in a problem and the expected time required to solve the linear program-

ming relaxation. Both solution approaches involve a column generation process, which involves

solving the LP relaxation of the RMP, and SRMP, each time a set of columns is added. Since

the RMP and SRMP are formulated as very similar problems, with the latter containing less

constraints, solving the LP for the SRMP requires significantly less simplex iterations resulting

in faster execution times.

Figure 8.1 provides a breakdown of the solution runtimes into the processes of LP solve,

column generation and row generation. It is clear from this figure that the reduction in the time

spent solving the LP is a major component of the solution runtime improvement. Using scenario

12 as an example, solving the LP of the SRMP requires a total of 111.7 seconds for column-and-

row generation, where column generation requires 180.22 seconds to solve the LP of the RMP.

The total solution runtime improvement for scenario 12 is 109.76 seconds, of which a significant

proportion can be attributed to the reduced execution time for solving the LP relaxation. This

demonstrates that column-and-row generation significantly improves a solution process which

is integral to both approaches.
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Another significant improvement in solution runtimes is attributable to the time required

during the column generation procedure. Since the reduced set of rows results in a smaller

connection network, the column generation subproblems are solved much quicker in the column-

and-row generation solution approach. It is observed that the time required for each call to

the column generation subproblem is on average 0.2857 seconds quicker for column-and-row

generation compared to column generation. The magnitude of this improvement can be ex-

plained using scenario 4 as an example, where the column generation subproblems are called

311 times for both solution approaches. For this scenario, column-and-row generation requires

0.1369 seconds less per call, which results in a 42.57 second improvement in the solution run-

times. This runtime reduction is achieved through the variable fixings in the column generation

subproblems related to the rows eliminated from the SRMP. It is clear from Figure 8.1 that

the required additional process of row generation does not greatly contribute to the runtimes of

the column-and-row generation approach. Therefore, there is a significant runtime advantage

in solving the LP relaxation and the column generation subproblems from applying column-

and-row generation.

Effects of problem size

The number of rows initially removed from the RMP to form the SRMP is directly proportional

to the number of flight copies used in the model. An increase in the number of flight copies

impacts the two competing factors affecting the runtime of the column-and-row generation

approach, i.e. the smaller problem size and the row generation algorithm. With a greater

number of flight copies, the SRMP initially defines a problem much smaller than the related

RMP, potentially providing a considerable speed up in the runtime required for each LP solve.

However, the more flight copies that are removed may require additional executions of the row

generation procedure to identify the optimal set of rows, having a negative effect on the runtime

of the column generation subproblems.

Figure 8.2 displays the relative difference in runtimes between the column generation (x) and

column-and-row generation (y) approaches by varying the number of flight copies. The relative

difference is calculated by (x − y)/min{x, y}, reporting the difference in runtimes relative to

the best performing solution approach. For example, a relative difference of 25% indicates that

the runtime of column-and-row generation is 80% of that achieved by column generation. Con-

versely, a relative difference of -50% indicates that column generation solves the IRP in 66.67%
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Figure 8.2: The relative difference in runtimes between column generation (x) and column-and-

row generation (y) using different sets of flight copies. The values in the figure are calculated by

(x − y)/min{x, y} with a maximum reported improvement capped at 100%. Note: maximum

runtime of 1 hour was used for these results.

of the runtime required by column-and-row generation. The results in Figure 8.2 demonstrate

that across all experiments performed, column-and-row generation outperforms the column

generation approach in most cases, with an average relative improvement of 27.07%.

The results in Figure 8.2 demonstrate a better average runtime performance for column-and-

row generation compared to column generation. While this is true for the average case, there

are many individual experiments where the reverse result is observed. This generally occurs

when the column-and-row generation approach requires more branching to identify the optimal

integer solution. For example, scenario 1 formulated with 7 flight copies is solved significantly

faster with column generation due to the column-and-row generation approach requiring 29

more nodes in the branch-and-bound tree. While the LP of the root node is solve much faster

by column-and-row generation (327 seconds compared to 439 seconds), the branch-and-price

algorithm has more difficultly converging to integrality for the SRMP. The structure of the

SRMP appears to affect the efficacy of the branching rules and the performance of the primal

heuristics. This is a common observation from the experiments in this chapter regarding the

implementation of column-and-row generation within the branch-and-price framework.
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Figure 8.3: Time required to solve scenarios with different recovery window lengths. The

recovery windows are set at 6 hours (red), 8 hours (green) and until the end of the day (blue).

A maximum runtime of 1200 seconds (20 minutes) and 7 flight copies per flight are used

The length of the recovery window is another feature of the IRP that affects the problem

size by directly impacting the number of flights included in the set ND. As the length of the

recovery window increases, the number of flights that depart within that period also increases.

A larger set of disruptable flights ND has two main effects on the IRP, i) an increase in the

number of constraints in both the RMP and SRMP, and ii) an increase in the size of the

connection network used in the column generation subproblems.

Figure 8.3 presents the time required to solve all of the scenarios used in the experiments

with different recovery window lengths, 6 hours, 8 hours and until the end of the day. An

interesting observation from this figure is the runtimes required to solve all scenarios using a

window of 6 hours is significantly shorter than when the other two window lengths are used.

This indicates that the increase in the size of ND has a great effect on the solution runtime,

which is very evident when the recovery window is extended from 6 to 8 hours.

It is observed in Figure 8.3 that the increased problem complexity from extending the recov-

ery window has a more pronounced effect on the runtime of the column generation approach.

This is evident from the significant decrease in the number of scenarios that column generation

solves to optimality within the runtime of 1200 seconds. Also, the separation of the frontiers

produced by the two solution approaches using an 8 hour window demonstrates the greater

degradation of runtime performance from column generation.
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Analysing enhancement techniques

A contribution of this chapter is the explicit evaluation of the column-and-row generation

approach against column generation and the development of specific enhancement techniques.

While the techniques introduced in Section 8.2.2 are presented in relation to the IRP, they

may be applied in any implementation of column-and-row generation. The most important

enhancement techniques discussed are the number of rows added during the row generation

procedure and the row warm-up technique used to provide an initial formulation of the SRMP

with a meaningful set of delay options. Figure 8.4 presents the relative difference in solution

runtimes for column-and-row generation implemented with different enhancements compared

to a standard column generation approach.

The strength of the column-and-row generation approach to improve upon solution runtimes

of column generation is evident in Figure 8.4. This is demonstrated by all implementations of

column-and-row generation achieving an improvement in the solution runtimes compared to

the standard column generation approach. In particular, column-and-row generation imple-

mented without any enhancement improves upon the solution runtimes of column generation

by 11.91%. This result also outperforms the implementations of column-and-row generation

using the additional rows or warm-up enhancements in isolation. This is surprising since the

enhancements are expected to improve upon the runtime of the standard implementation, not
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Figure 8.4: The relative difference in runtimes between column generation (x) and column-

and-row generation implemented with different enhancement techniques (y). The values in the

figure are calculated by (x− y)/min{x, y}.
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degrade the performance. However, the runtimes using the individual enhancements are still

shorter on average than that achieved by the standard column generation approach.

While each enhancement implemented individually degrades the performance of the column-

and-row generation approach, significant runtime improvements are observed by their combined

use. This is demonstrated in Figure 8.4, implying that a strong relationship exists between the

two enhancement approaches. In this figure, column-and-row generation using all enhancements

demonstrates runtimes that are 27.01% shorter on average when compared to the standard

column generation approach. Comparing this result to the standard implementation of column-

and-row generation, the use of all enhancements improves runtimes by 15.88%. This exhibits a

significant runtime improvement from the use of enhancement techniques in the implementation

of column-and-row generation.

The experiments performed in this section demonstrate that the greatest difference in the

efficiency of the solution approaches is the convergence to the integer optimal solution. In

each of the figures presented above, the largest variations in solution runtimes is commonly

caused by an increased number of nodes in the branch-and-bound tree. This effect is observed

in a number of results presented in Figure 8.4. The use of enhancement techniques greatly

reduces the runtime required to solve the root node with ineffective branching eroding any

gains. For example, the implementation of column-and-row generation with all enhancements

outperforms column generation in the time required to solve the root node, with scenarios 1

and 9 being solved 110 and 153 seconds faster respectively. These two scenarios display the

greatest improvement in the root node solving time but the integer optimal solution is found

quicker by column generation. While column-and-row generation achieves an improvement in

solution runtimes, these results demonstrate that greater reductions can be achieved through

more effective branching techniques.

8.3.3 Analysis of solution quality

While the speed of solution is critical for airline recovery problems, there is also a high im-

portance placed on the quality of the best solution found. The solution quality of the IRP is

assessed by the optimality gap that is achieved at the termination of the maximum allowable

runtime. The results presented in Figure 8.1 display the time required for the IRP to achieve

an optimality gap of 1%, given a maximum runtime of 1200 seconds. While column-and-row

generation solves all scenarios within 1200 seconds, this runtime may be prohibitive for practical
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Figure 8.5: Time for the IRP to solve to within a 1%, 2% and 5% optimality gap. A maximum

runtime of 1200 seconds is used for these experiments. A comparison between column generation

(dashed line) and column-and-row generation (solid line).

application of the solution algorithm.

Figure 8.5 presents the time required to achieve an optimality gap of 1%, 2% and 5% within

a maximum runtime of 1200 seconds. This figure demonstrates that reducing the solution

runtime greatly affects the ability of both column generation and column-and-row generation

to solve each scenario to within a 1% optimality gap. Therefore it is necessary to reduce

the solution quality in order to improve the solving rate of the two approaches. While the

frontiers in each figure of Figure 8.5 are similar, there are critical points where the increased

optimality gap permits the early termination of the solution algorithm. This is observed for

the column-and-row generation approach at 300, 400 and 700 seconds where the number of

scenarios terminating within the maximum allowable runtime increases by at least one for the

2% and 5% optimality gaps. This is also observed for the column generation approach, however

the effect is not as pronounced.

It is clear from Figure 8.5 that as the maximum allowable runtime decreases, the number

of scenarios that are solved to optimality for both solution approaches also decreases. The

column-and-row generation is less affected by the reduction in runtimes as demonstrated by

the frontier in this figure dominating the frontier achieved by the column generation approach.

This indicates that column-and-row generation achieves a faster convergence to all displayed

optimality gaps, resulting in higher quality solutions early in the solution process.
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8.3.4 Analysis of recovery statistics

The composition of the recovery policies in the solution to the IRP greatly affects passenger

satisfaction and the acceptability to the operations control centre. The main recovery policies

that are implemented for the IRP are flight delays and cancellations and the crew-specific

policies of deadheading and the use of reserve crew. Figure 8.6 demonstrates the use of each

of these recovery policies in the solutions achieved by column generation and column-and-row

generation. It is important to note that scenario 0 is not solved to optimality by column

generation, therefore the recovery solution is expected to present a greater use of recovery

policies compared to generating recovered crew duties and aircraft routes.

Column generation and column-and-row generation both solve the IRP to within an opti-

mality gap of 1% for most scenarios. Hence, very little difference between the solutions will be

observed. This is demonstrated in Figure 8.6 with only subtle variations in the use of the re-

ported recovery policies. The most significant difference in the solutions is given by the number

of deadheaded crew, with the column generation solution exceeding column-and-row generation

solution in four of the scenarios examined compared to two in the reverse. A feature of the

solution approaches affecting the composition of recovery policies is related to the construction

of flight strings for the SRMP and RMP. Since the SRMP contains less rows than the RMP

throughout the solution process, there are many columns that are initially not permissible in the
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statistics and crew specific recovery policies respectively.
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column-and-row generation approach. This results in feasible integer solutions with minimal

delay being added to the solution pool in the column-and-row generation approach, promoting

the use of alternative recovery policies. Consequently, the different sets of columns and feasible

solutions found during the solving process can impact upon the composition of recovery actions

in the optimal solution.

It is clear from Figure 8.6 that the magnitude of the disruptions simulated in scenarios

8-15 is much greater than that in scenarios 0-7. This is shown by the number of flight delays

and cancellations that are made using both solution approaches. In particular, a significant

number of disrupted flights in scenarios 8-15 are due to cancellations. The prevalence of each

recovery action in the optimal solution to the IRP is controlled through the use of penalty

parameters as described in Section 8.3.1. While it is trivial to modify these parameters to

adjust the composition of the recovery actions in the optimal solution, it is important to note

that this will also affect the solution runtimes of both column generation and column-and-row

generation.

8.4 Conclusions

This chapter presents column-and-row generation as an alternative approach for solving the

integrated airline recovery problem. The integrated recovery problem is a very large and com-

putationally difficult problem for which there have been many attempts to develop efficient

solution methods. The use of column-and-row generation to solve the IRP has been demon-

strated to significantly improve the solution runtime and quality compared to a standard column

generation approach.

The column-and-row generation methodology applied for the IRP is based on the work by

Muter et al. [65], who presented a framework to solve large scale linear programs with column-

dependent-rows. Due to the structure of the IRP, a branch-and-price procedure is required to

achieve integral optimality. The optimality of the problem solved by column-and-row generation

is ensured by calling the row generation procedure at selected nodes within the branch-and-

bound tree. The treatment of the row generation procedure in the branch-and-price framework

for the IRP extends the current column-and-row generation approaches and improves upon the

efficiency of the solution process.

A motivation for applying column-and-row generation to solve the IRP is to reduce solution
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runtimes. The results in Section 8.3 demonstrate that across the majority of the experiments,

column-and-row generation outperforms column generation in solution runtime and quality.

The improvement in runtimes is observed through a decrease in the time required for each

LP solve in the column-and-row generation procedure. The number of flight copies and the

length of the recovery window has a direct effect on the size of the IRP, impacting the solution

runtimes. The results demonstrate that as the problem size increases, column-and-row genera-

tion still achieves significant improvements over a standard column generation approach. The

improvements achieved through the use of column-and-row generation demonstrate a practical

solution approach for the integrated recovery problem.

Section 8.3 explicitly evaluates the column-and-row generation approach against standard

column generation. This evaluation of the framework presented by Muter et al. [65] has not

previously been published, and the results demonstrate a significant improvement in solution

runtimes. From this evaluation a number of enhancement techniques have been developed

which are applicable to any implementation of column-and-row generation. In particular, it

is demonstrated that the addition of extra rows during the row generation procedure and the

use of a warm-up period achieves the greatest improvement for the column-and-row generation

approach when implemented in combination.

Column-and-row generation provides a direct solution approach for the IRP that achieves

near optimal solutions within the desired time-frame. This is a significant improvement on

alternative solution approaches where integral optimality is not guaranteed, such as Benders’

decomposition. Further, at each iteration of the column-and-row generation approach the opti-

mal solution to the SRMP provides an upper bound on the original problem. This is a significant

advantage of this approach, permitting the early termination of the solution algorithm.

While the application of column-and-row generation reduces the runtime of the IRP, this

improvement is not great enough to implement this algorithm into the recoverable robustness

framework. Recoverable robustness requires the explicit evaluation of a planned solution against

numerous recovery scenarios during the solution process. Unfortunately, the results for the IRP

demonstrate runtimes that are prohibitively large to efficiently solve the recoverable robust

integrated aircraft and crew scheduling problem.

The improvements in the runtime for the IRP using column-and-row generation are encour-

aging for the real-world application of this approach. This integrated recovery model solves the

key elements of the complete recovery process, schedule, aircraft and crew. Another critical
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aspect of the recovery problem is the consideration of passengers, which is neglected in the

formulation of the IRP. While passengers do not contribute a direct cost to an airline, the indi-

rect costs associated with good-will can have considerable effects on future revenue. A natural

extension to the IRP is the consideration of passenger flows following the cancellation of flights.

A novel approach to considering passengers in the integrated recovery problem is presented in

the following chapter.



Chapter 9

Integrated Airline Recovery

Problem with Passenger

Reallocation

The quality of the feedback from the evaluation stage of the recoverable robustness framework

significantly affects the efficacy of the approach. In Chapters 5 and 6, high quality feedback

is achieved by employing a full set of recovery options. A full set of recovery options is also

employed for the integrated airline recovery problem (IRP) investigated in Chapter 8 for use

in the evaluation stage of the recoverable robustness framework. A feature omitted from the

recovery problems developed in Chapters 5, 6 and 8 is the consideration of passenger flows fol-

lowing a disruption. Passenger recovery is only considered through the costs of flight delays and

cancellations, neglecting the possibility of reallocating passengers to alternative flights. Con-

sidering passengers in the evaluation stage of the recoverable robustness framework is expected

to significantly improve the feedback quality, and hence the recoverability.

As explained in Chapter 3, there are very few examples in the literature with a specific

focus on passengers during the recovery process. Since passenger recovery occurs as the final

stage of the sequential recovery process, it is necessary to integrate this problem with other

stages to improve operational performance. Passenger recovery is most commonly integrated

with the aircraft recovery problem [19, 48] or within a complete integrated framework [55, 70].

The passenger recovery problem attempts to identify new itineraries for each passenger that is

disrupted during recovery. While this formulation may be necessary for some airlines, point-to-

193
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point carriers more commonly operate single flight itineraries, hence this problem description

is unnecessarily complex. This chapter introduces a novel modelling approach for passenger

recovery to reaccommodate passengers on alternative flights in the event of a flight cancellation.

The integrated airline recovery problem with passenger reallocation (IRP-PR) is a direct

extension of the IRP presented in Chapter 8. This extension permits the evaluation of the pas-

senger recovery approach developed in this chapter by comparing the solutions of the IRP and

IRP-PR. In addition, column-and-row generation was presented in the previous chapter as an

effective method to improve the runtimes of the IRP compared to a standard column generation

approach. Since the IRP-PR displays a similar problem structure to the IRP, column-and-row

generation is also applied in this chapter.

The contributions of this chapter are:

1. the introduction of a novel modelling technique for passenger recovery,

2. further evaluation of the column-and-row generation solution approach.

The most important contribution of this chapter is the modelling of flight cancellation

variables to prescribe alternative travel arrangements for disrupted passengers. This is a simple

but novel modification to the IRP, which is very effective in reducing the operational costs of the

airline. To the best of the author’s knowledge, this modelling approach has not previously been

considered in airline recovery problems. Secondly, the experiments in Chapter 8 provide an

explicit evaluation of the column-and-row generation framework developed by Muter et al. [65],

which has not been previously performed. This chapter extends that contribution by evaluating

the application of this solution approach to a more complex and difficult optimisation problem.

This chapter presents the IRP-PR as an extension of the IRP by considering passenger

reallocation options in the event of a flight cancellation. The problem description is provided in

Section 9.1 and for conciseness only the features specific to the IRP-PR will be discussed. The

IRP-PR is solved by column-and-row generation and a description of its implementation will be

given in Section 9.2. Finally, the computational experiments for the IRP-PR are presented in

Section 9.3. The results will demonstrate the potential reduction in operational costs that can

be achieved by considering passenger reallocation during recovery. In addition, an evaluation of

the column-and-row generation solution approach against column generation will be provided.
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9.1 Integrated Airline Recovery Problem with Passenger Real-

location

The integrated airline recovery problem with passenger reallocation (IRP-PR) integrates the

schedule, aircraft and crew recovery problems with consideration to passenger flows through

the recovered network. The integration of aircraft and crew recovery ensures that the optimal

solution to both problems is found with consistent flight delay and cancellation decisions. The

IRP-PR explicitly considers passengers by modelling the alternative travel arrangements for

passengers booked on cancelled flights.

The IRP-PR is modelled with three major types of decision variables which are described

as the aircraft, crew and cancellation variables. The aircraft and crew variables detail the

movement of these resources through the flight network. The cancellation variables provide the

reallocation options for the passengers booked on cancelled flights. The three variable types are

linked in the IRP-PR by the flight delay and cancellation decisions and specific flights allocated

to each aircraft and crew. An important aspect of the IRP-PR is the use of all aircraft and crew

resources in the recovery problem, allowing for the optimal allocation of all available resources.

The notation and model descriptions provided in Chapter 8 are relevant to the formulation

of the IRP-PR. As such, only the notation required to describe the passenger reallocation in

the integrated recovery problem along with a detailed description of the modelling approach is

provided in this chapter. The additional notation used to describe the IRP-PR is presented in

Table 9.1

9.1.1 Cancellation variables

A major contribution of this chapter is the modelling of passenger flow in the recovery problem

using the flight cancellation variables. A common approach used to describe the cancellation

of flights is with a single variable zj that equals 1 to indicate the cancellation of flight j and

0 otherwise. This modelling approach is employed in the recovery tail assignment problem

(RTAP) and the crew duty recovery problem (CDRP) in Chapter 3 and for the IRP in Chapter

8. In the IRP-PR, the variable zjp is defined to indicate the cancellation of flight j but also the

reallocation of passengers to alternative flights as given by scheme p. Since there are multiple

reallocation options following the cancellation of each flight, the set P j is defined to contain

each passenger reallocation scheme p available following the cancellation of flight j.
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P j
is the set of all schemes p describing the reallocation of passengers following the cancellation

of flight j

N j
is the set of flights i departing earlier than flight j within a specified time window. Flights

i and j have the same O-D pair, N j ⊆ N

N
post
i

is the set of flights j departing later than flight i within a specified time window. Flights i

and j have the same O-D pair, Npost
i ⊆ N

zjp = 1 if the flight j is cancelled and reallocation scheme p is used, 0 otherwise

djp = the cost of cancelling flight j and using reallocation scheme p

hv
ijp

is the number of passengers from flight i reallocated to flight j departing on copy v in scheme

p

Maxcap is the total passenger capacity of the aircraft

Pax(j) is the number of passengers originally booked on flight j

rj is the number of seats on flight j available for passenger reallocation, rj =Maxcap−Pax(j)

Table 9.1: Additional notation for the IRP-PR.

To conveniently describe the passenger reallocation schemes in the IRP-PR, the sets Npost
i

and N j are defined to contain the alternative flights for disrupted passenger. The alternative

flights for passengers following the cancellation of flight i are identified by having the same

origin-destination (O-D) pair as i and depart within a time window commencing from the

departure time of i. Using this definition, the set Npost
i contains all flights j that are travel

alternatives for passengers booked on flight i. Conversely, the set N j contains all flights i for

which flight j is a travel alternative.

Each of the reallocation schemes p for the cancellation variables can be likened to the

solution of a knapsack problem. For example, following the cancellation of flight i the size of

the knapsack is given by the number passengers booked on that flight, Pax(i), and the items

to enter the knapsack are the available seats rj = Maxcap − Pax(j) on alternative flights

j ∈ Npost
i . In the model constraints, the number of passengers reallocated to the flight-copy

pair jv following the cancellation of flight i on the reallocation scheme p is given by hvijp.

The cost of a reallocation scheme, djp, attempts to quantitatively describe the impact of a

flight cancellation on passenger satisfaction. For this modelling approach, the cost of a flight

cancellation considers the delay experienced by the reallocated passengers and the number of

passengers not provided with alternative travel arrangements. The cost of reallocating passen-

gers to alternative flights is estimated to be equivalent to a passenger experiencing a flight delay

of the same duration. The cost of not providing alternative travel arrangements is identical
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to the standard flight cancellation modelling approach, which includes the revenue lost and a

measure of passenger dissatisfaction.

The mathematical model of the IRP-PR is given by,

(IRP-PR)

min
∑

k∈K

∑

p∈P k

ckpx
k
p +

∑

j∈ND

∑

v∈Uj

gDHDκv+j +
∑

k∈K

gDHBνk

+
∑

r∈R

∑

p∈P r

crpy
r
p +

∑

j∈ND

∑

p∈P j

djpzjp, (9.1)

s.t.
∑

k∈K

∑

p∈P k

akjpx
k
p −

∑

v∈Uj

κv+j +
∑

p∈P j

zjp = 1 ∀j ∈ ND, (9.2)

∑

k∈K

∑

p∈P k

akjpx
k
p = 1 ∀j ∈ NK

out, (9.3)

∑

r∈R

∑

p∈P r

arjpy
r
p ≤ 1 ∀j ∈ ND, (9.4)

∑

r∈R

∑

p∈P r

arjpy
r
p = 1 ∀j ∈ NR

out, (9.5)

∑

r∈R

∑

p∈P r

orbpy
r
p ≥

∑

r∈R

ōrb ∀b ∈ BR, (9.6)

∑

k∈K

∑

p∈P k

akvjpx
k
p − κv+j + κv−j = 1 ∀j ∈ ND, ∀v ∈ Uj , (9.7)

∑

k∈K

∑

p∈P k

ekijpx
k
p −

∑

r∈R

∑

p∈P r

erijpy
r
p ≤ 0 ∀(i, j) ∈ ED, (9.8)

∑

k∈K

∑

p∈P k

akvjpx
k
p − κv+j −

∑

r∈R

∑

p∈P r

arvjpy
r
p = 0 ∀j ∈ ND, ∀v ∈ Uj , (9.9)

∑

k∈K

∑

p∈P k

rja
kv
jpx

k
p − rjκv+j −

∑

i∈Nj

∑

p∈P i

hvijpzip ≥ 0 ∀j ∈ ND, ∀v ∈ Uj , (9.10)

∑

p∈P k

xkp + νk = 1 ∀k ∈ K\Kres, (9.11)

∑

p∈P k

xkp ≤ 1 ∀k ∈ Kres, (9.12)

∑

p∈P r

yrp = 1 ∀r ∈ R, (9.13)

xkp ∈ {0, 1} ∀k ∈ K, ∀p ∈ P k, yrp ∈ {0, 1} ∀r ∈ R, ∀p ∈ P r, (9.14)

zjp ∈ {0, 1} ∀j ∈ ND, ∀p ∈ P j , νk ∈ {0, 1} ∀k ∈ K, (9.15)

κv+j ≥ 0, κv−j ≥ 0 ∀j ∈ ND, ∀v ∈ Uj . (9.16)

The alternative modelling approach used for the cancellation variables requires significant modi-
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fication to the constraints of the IRP to form the IRP-PR. In the IRP-PR, a cancellation variable

is defined for each passenger reallocation scheme p following the cancellation of flight j, zjp.

As such, the single cancellation variable zj in the objective and constraints of the IRP must

be replaced by the summation over all reallocation schemes p for flight j given by
∑

p∈P j zjp.

In addition, the cancellation variables are eliminated from the flight coverage constraints for

aircraft (9.4), which is then modified to be an inequality constraint. This modification is pos-

sible since the consistency of flight cancellations is enforced by other constraints in the model.

By eliminating the cancellation variables from constraint (9.4), the IRP-PR presents a model

formulation that has a structure identical to the general problem presented in Section 7.3.1.

This permits the use of the column-and-row generation framework presented in Chapter 7 to

solve the IRP-PR.

The passenger reallocation approach developed in this chapter also requires the addition of

constraints to model the rebooking of passenger onto alternative flights. If flight i is cancelled,

passengers can be rebooked onto flights contained in the set Npost
i . The rebooking process must

ensure that the alternative flights are operated by crew and aircraft in the recovered schedule

and that the delays on the reallocation options are respected. In addition, an upper bound

on the number of passengers reallocated to flight j is given by rj = Maxcap− Pax(j). These

conditions are enforced with the passenger reallocation constraints (9.10), providing further

integration between the crew and cancellation variables.

9.2 Solution Methodology

Airline operations are very dynamic with the current state of the system changing almost every

minute. For recovery problems to be implemented in practice, it is necessary to achieve high

quality solutions in very short runtimes. Column-and-row generation has been demonstrated

in Chapter 8 to achieve this requirement for the IRP. The extension presented by the IRP-

PR introduces additional variables and constraints that further increases the complexity of the

recovery problem, potentially resulting in the longer solution runtimes. As explained above,

the problem structure of the IRP-PR permits the use of the general framework presented in

Chapter 7. Therefore, it is expected that solving the IRP-PR by column-and-row generation

achieves similar improvements in the solution runtimes and quality compared to a standard

column generation approach.
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The column-and-row generation solution approach will be discussed in relation to the key

components of column generation and row generation. Section 9.2.1 will discuss the column

generation approach applied to solve the IRP-PR. This description is provided assuming that

the IRP-PR is solved by column generation alone. A particular focus of Section 9.2.1 is the

column generation subproblem for the cancellation variables. Finally, Section 9.2.2 will describe

the application of the column-and-row generation framework developed in Chapter 7 to the

IRP-PR.

9.2.1 Column generation

There are three variable types that column generation is applied to in the IRP-PR, the crew,

aircraft and cancellation variables. The crew and aircraft variables are defined as variable flight

strings, which are dynamically generated by solving a shortest path problem. The cancellation

variables detail passenger reallocation schemes which are described in Section 9.1.1 as the

solution to a bounded knapsack problem. The column generation subproblems for the crew

and aircraft variables are presented in detail in Section 8.2.1, so only the key features will be

discussed here. To provide a complete overview of the modelling approach for the cancellation

variables, a detailed description of the cancellation variable subproblem will be presented in

this section.

The restricted master problem (RMP) is formulated to contain a subset of all possible

variables that are included in the IRP-PR. This involves defining P̄ k ⊆ P k, P̄ r ⊆ P r and

P̄ j ⊆ P j for the crew, aircraft and cancellation variables respectively to form a smaller, more

tractable optimisation problem. The column generation subproblems are solved to identify

any columns favourable to the original problem, which are then added to the sets P̄ k, P̄ r and

P̄ j . This provides an iterative process that continues until no further favourable columns are

identified, indicating that the current solution to the RMP is the optimal solution to the original

problem.

The column generation procedure involves identifying the minimum reduced cost variables

for crew, aircraft and flight cancellations by solving respective subproblems with the current

optimal dual solution to the RMP. The dual variables for the flight coverage constraints (9.2)-

(9.3) and (9.4)-(9.5) are defined as αK = {αKj , ∀j ∈ ND∪NK
out} and αR = {αRj , ∀j ∈ ND∪NR

out}
respectively. The dual variables ǫ = {ǫb, ∀b ∈ BR} are defined for the aircraft end-of-day

location constraints (9.6). The dual variables for the surplus crew count constraints (9.7) are
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defined by η = {ηvj , ∀j ∈ ND, ∀v ∈ Uj}. The dual variables for the short connection constraints

(9.8), delay consistency constraints (9.9) and the passenger reallocation constraints (9.10) are

given by ρ = {ρij , ∀(i, j) ∈ ED}, γ = {γvj , ∀j ∈ ND, ∀v ∈ Uj} and λ = {λvj , ∀j ∈ ND, ∀v ∈ Uj}
respectively. Finally, the dual variables δK = {δk, ∀k ∈ K} and δR = {δr, ∀r ∈ R} are defined

for the crew and aircraft assignment constraints, (9.11)-(9.12) and (9.13), respectively. These

sets of dual variables are used to define the reduced cost functions for the crew, aircraft and

cancellation variables. The reduced cost functions are set as the objective functions for the

respective column generation subproblems.

Crew and aircraft column generation subproblems

The column generation subproblems for the crew duty and aircraft routing variables can be

described as;

ĉkp = min
p∈P k

{

RecDutyCost(k)−
∑

j∈ND∪NK
out

αja
k
jp −

∑

(iu,jv)∈ED

ρiujve
k
iujvp

−
∑

j∈ND

∑

v∈Uj

{

ηvj + γvj + rjλ
v
j

}

akvjp − δk
}

∀k ∈ K,
(9.17)

ĉrp = min
p∈P r

{

∑

j∈ND

∑

v∈Uj

crvjpa
rv
jp −

∑

j∈ND∪NR
out

αja
r
jp −

∑

b∈BR

ǫbo
r
bp

+
∑

(iu,jv)∈ED

ρiujve
r
iujvp

+
∑

j∈ND

∑

v∈Uj

γvj a
rv
jp − δr

}

∀r ∈ R.
(9.18)

In problems (9.17) and (9.18), the minimisation problem is defined over the sets P k and P r,

which contain all possible flight strings for crew k and aircraft r respectively. While this

description indicates that additional variables can be identified from the sets P̄ k ⊆ P k and

P̄ r ⊆ P r the reduced costs for all variables in these sets is at least zero. Therefore, all negative

reduced cost variables identified by solving (9.17) and (9.18) will be contained in P k\P̄ k and

P r\P̄ r.
The feasible regions describing problems (9.17) and (9.18) are identical to that of the column

generation subproblems for crew (PSPk) and aircraft (PSPr) respectively in Chapter 8. The

only difference between (9.17) and the PSPk is the additional dual variables related to the

passenger reallocation constraints in the objective function. This modification of the objective

function has no effect on the structure of the crew flight strings or solution methods that may
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be applied to solve (9.17). Therefore, the same definitions and solution algorithms used to solve

the PSPk and PSPr can be applied to the problems (9.17) and (9.18) respectively.

Cancellation variable subproblem

Each cancellation variable defines a reallocation scheme providing alternative travel arrange-

ments for passengers in the event of a flight cancellation. Ideally this modelling approach

provides an alternative travel arrangement for all disrupted passengers, however this is not

always possible. As such, passengers on cancelled flights are partitioned into two categories,

stranded and reallocated passengers. To model the cost of a flight cancellation dip, a cost is

assigned to each of these categories. Namely, the parameter gCAN is defined as the cost of

leaving a single passenger stranded and gRAij as the cost of reallocating a single passenger to

flight j following the cancellation of flight i. Both the costs given by gCAN and gRAij include a

quantitative measure of passenger dissatisfaction and loss of good will. The definition of dip for

the reallocation of passengers by scheme p following the cancellation of flight i is given by,

dip = gCANPax(i) +
∑

j∈Npost
i

∑

v∈Uj

hvijp
(

gRAij − gCAN
)

. (9.19)

Equation (9.19) consists of a fixed cost which assumes all passengers are stranded and a variable

cost that is dependent on the number of passengers rebooked onto alternative flights. The tradi-

tional approach used to model flight cancellations only considers the fixed cost of this equation.

The variable cost in equation (9.19) is a contribution of this chapter, which is implemented in

an attempt to reduce the operational cost of an airline.

Using the definitions of the dual variables given in Section 9.2.1, the reduced cost of a

cancellation variable for flight i is given by,

d̄ip = gCANPax(i)− αKi +
∑

j∈Npost
i

∑

v∈Uj

hvijp
(

λvj + gRAij − gCAN
)

. (9.20)

It is clear that the first two terms of equation (9.20) are not dependent on the reallocation of

passengers to alternative flights. Therefore, the objective function for the cancellation variables

column generation subproblem is defined by the final term of equation (9.20).

The column generation subproblem for the cancellation variables (CV-PSP) to identify

passenger reallocation schemes for flight i is given by,
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(CV-PSP)

d̃ip = max
∑

j∈Npost
i

∑

v∈Uj

hvijp
(

gCAN − λvj − gRAij
)

, (9.21)

s.t.
∑

j∈Npost
i

∑

v∈Uj

hvijp ≤ Pax(i), (9.22)

hvijp ≤ rjwvij ∀j ∈ Npost
i , ∀v ∈ Uj , (9.23)

∑

v∈Uj

wvij = 1 ∀j ∈ Npost
i , (9.24)

hvijp ∈ Z
+ ∀j ∈ Npost

i , ∀v ∈ Uj , (9.25)

wvij ∈ {0, 1} ∀j ∈ Npost
i , ∀v ∈ Uj . (9.26)

The problem described by CV-PSP is a difficult integer programming problem that shares many

similarities with a bounded knapsack problem. The main difference between the CV-PSP and

a bounded knapsack problem arises from the multiple copies for flight j given by the set Uj .

The multiple copies complicates the formulation of the CV-PSP, requiring that at most one

copy v for each flight j is used as a reallocation option. This is enforced through the addition

of the variables wvij and constraints (9.23)-(9.24).

A more convenient formulation of the cancellation variable subproblem can be found by

eliminating the need to consider multiple copies for each flight. This is achieved for the CV-

PSP by identifying a single copy v′ for each flight j that satisfies λv
′

j = minv∈Uj
{λvj}. Replacing

∑

v∈Uj
λuj with λv

′

j and setting wv
′

ij = 1 for all flights j ∈ Npost
i forces the use of at most one copy

for each flight. The resulting problem is called the reduced pricing subproblem (CV-PSPR),

which is a bounded knapsack problem equivalent to the CV-PSP. The CV-PSPR is given by,

(CV-PSPR)

d̃ip = max
∑

j∈Npost
i

hv
′

ijp

(

gCAN − λv′j − gRAij
)

, (9.27)

s.t.
∑

j∈Npost
i

hv
′

ijp ≤ Pax(i), (9.28)

hv
′

ijp ≤ rj ∀j ∈ Npost
i , (9.29)

hv
′

ijp ∈ Z
+ ∀j ∈ Npost

i . (9.30)

The following theorem will prove that the optimal solution to the CV-PSPR is also optimal

for the CV-PSP.
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Theorem 9.2.1. The optimal solutions to the CV-PSP and CV-PSPR are identical.

Proof. Assume that an optimal solution to CV-PSP for a given flight i has been found describing

passenger reallocation scheme p with an objective value d̃′ip. The optimal solution is described

by the variables h̄v
′

ijp > 0, ∀j ∈ Npost
i , where v′ is the copy for flight j where wv

′

ij = 1.

Let ∃j0 ∈ Npost
i , such that λv

′

j0
> minv∈Uj0

{λvj0}, and ∀j ∈ N
post
i \j0, λv′j = minv∈Uj

{λvj}.
Therefore, the objective value for the optimal solution to the CV-PSP is can be written as,

d̃′ip =
∑

j∈Npost
i \j0

h̄v
′

ijp

(

gCAN − λv′j − gRAij
)

+ h̄v
′

ij0p

(

gCAN − λv′j0 − gRAij0
)

. (9.31)

Since h̄v
′

ij0p
> 0 ⇒ ∑

v∈Uj0
\v′ h̄

v′

ij0p
= 0. Let λv

′′

j0
= minv∈Uj0

{λvj0} and since rj0 does not

depend on v ∈ Uj0 another feasible solution to CV-PSP is given by setting ĥvijp = h̄vijp, ∀j ∈
Npost
i , ∀v ∈ Uj with ĥv′′ij0p = h̄v

′

ij0p
and ĥv

′

ij0p
= 0.

Now λv
′′

j0
< λv

′

j0
, so the objective value for this new feasible solution d̃′′ip is greater than

d̃′ip. Hence, d̃′ip is not the objective value for the optimal solution to the CV-PSP, which is a

contradiction to the original assumption.

Therefore, the optimal solution to the CV-PSP exists only when λv
′

j = minv∈Uj
{λvj}, ∀j ∈

Npost
i , which is the objective value given by the solution to the CV-PSPR. So the optimal

solutions to the CV-PSP and CV-PSPR are identical.

The CV-PSPR describes a bounded knapsack problem, hence the linear relaxation is solved

to optimality using a greedy heuristic. Additionally, the right hand side of constraints (9.28)

and (9.29) are integer, so the solution to the greedy heuristic also provides the integer optimal

solution. This feature of the CV-PSPR ensures very small runtimes, resulting in very little time

spent generating columns for the cancellation variables.

Scaling of the passenger reallocation constraint coefficients. Computational exper-

iments indicate that the passenger reallocation constraints (9.10) significantly increase com-

plexity of the recovery problem, resulting in long solution runtimes. These constraints can

be likened to big-M constraints, which are well known for negatively affecting the ability to

identify integer solutions. A method identified to improve the computational performance of

the IRP-PR is to scale the passenger reallocation constraints (9.10) by rj . By applying this

scaling, the set of constraints (9.10) can be restated as,

∑

k∈K

∑

p∈P k

akvjpx
k
p − κv+j −

∑

i∈Nj

∑

p∈P i

h̃vijpzip ≥ 0 ∀j ∈ ND, ∀v ∈ Uj , (9.32)
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where h̃vijp = hvijp/rj . Replacing constraints (9.10) with the scaled constraints (9.32) ensures

that the coefficients of the crew duty variables are one in all rows of the IRP-PR. This replace-

ment requires a modification to the reduced cost functions for the crew duty and cancellation

variables. The modified reduced cost functions are given by,

c̄kp = ckp −
∑

j∈ND∪NK
out

αKj a
k
jp −

∑

(i,j)∈ED

ρije
k
ijp −

∑

j∈ND

∑

v∈Uj

{

ηuj + γuj + λvj

}

akvjp − δk, (9.33)

d̄ip = gCANPax(i)− αKi +
∑

j∈Npost
i

∑

v∈Uj

h̃vijp
(

λvj +
(

gRAij − gCAN
)

rj
)

. (9.34)

This constraint modification significantly affects the structure of the column generation sub-

problem for the cancellation variables. In particular, the scaled coefficients h̃vijp are no longer

integer, therefore integrality is not required for the decision variables. The scaled reduced

cancellation variable pricing subproblem (CV-PSPRS) is defined as,

(CV-PSPRS)

d̃ip = max
∑

j∈Npost
i

h̃v
′

ijp

(

(

gCAN − gRAij
)

rj − λv
′

j

)

, (9.35)

s.t.
∑

j∈Npost
i

h̃v
′

ijprj ≤ Pax(i), (9.36)

h̃v
′

ijp ∈ [0, 1] ∀j ∈ Npost
i . (9.37)

Since the CV-PSPRS is a bounded knapsack problems formulated as a linear program, the op-

timal solution is found using a greedy heuristic. Similar to the CV-PSPR, the right hand side

of constraints (9.36) are all integer, hence only integer quantities of passengers are reallocated

to each available flight. The computational experiments presented in Section 9.3 will discuss

the improvements in the solution runtimes for the IRP-PR achieved by applying the described

scaling of the coefficients for the cancellation variables.

9.2.2 Row generation

The inclusion of multiple sets of secondary variables in the general problem formulation is a

contribution of the column-and-row generation framework presented in Chapter 7. Chapter

8 describes a problem that contains a set of primary variables and a single set of secondary

variables. While the general framework presented in Chapter 7 can be applied to this type of

problem, the implementation in Chapter 8 does not demonstrate the strength of the column-

and-row generation approach. By contrast, the IRP-PR presents a problem with a set of
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primary variables, given by the crew duty variable, and two sets of secondary variables, the

aircraft routing and cancellation variables. The IRP-PR fits within the more general case of the

framework presented in Chapter 7, providing an example of the contribution to the column-and-

row generation solution approach. The application of the column-and-row generation framework

to the IRP-PR will be discussed in the following sections.

Formulation of the restricted problems

The short restricted master problem (SRMP) is defined as a further restriction of the RMP

by eliminating a set of structural constraints. The SRMP is formulated for the IRP-PR to

including only a subset of all possible rows from the delay consistency (9.9) and the passenger

reallocation constraints (9.10) that form the RMP. Since the recovery policy of flight delays is

modelled using flight copies, the set of rows selected to include in the SRMP is given by a subset

of all copies Ūj ⊆ Uj for each flight j. The initialisation of the sets Ūj is identical to the method

described in Section 8.2.2. As explained in Section 7.3.1, the elimination of rows to form the

SRMP is coupled with variable fixings in the column generation subproblems. Therefore, all

feasible solutions to the SRMP are feasible for the RMP and the IRP-PR.

The formulation of the SRMP is a fundamental feature of the column-and-row generation so-

lution approach. The modelling approach for flight delays in the IRP-PR conveniently describes

the eliminated rows by the sets Ūj . This notation is also used to describe the restriction on the

column generation subproblems, where Uj is replaced by Ūj . Similar to Chapter 8, the variable

fixings in the column generation subproblems are described by the elimination of connections

from the connection networks. Namely the sets C̄K ⊆ CK , C̄R ⊆ CR and ĒD ⊆ ED are defined

to contain only the connections related to the flight copies in Ūj , ∀j ∈ ND. This reduces the

runtimes of the column generation subproblems, which is a source of the improvement in the

solution runtimes for the complete problem.

Row generation algorithm

The general framework for the row generation procedure is detailed in Algorithm 7.2. This

algorithm involves two stages, the calculation of the optimal dual solution and identifying

favourable rows to include in the SRMP. Since the IRP-PR is formulated with two secondary

variables, a modification to the dual calculation procedure presented for the IRP is required.

The calculation of an optimal dual solution is necessary to accurately evaluate the reduced
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costs of variables feasible for the RMP′. As stated by Theorem 7.3.1, the optimal dual solution

to the RMP′ is calculated from the optimal solution of the SRMP using Algorithm 7.1. The

rows contained in the RMP′ are partitioned into two groups defined by the sets Ūj and Uj\Ūj .
Using the results from Section 7.3.2, the dual solutions for the rows related to Ūj in the RMP′

are simply equated to the solutions of the respective rows in the SRMP.

The dual variables for the rows related to Uj\Ūj in the RMP′ are given by γ ′ = {γv′j , ∀j ∈
ND, ∀v′ ∈ Uj\Ūj} and λ′ = {λv′j , ∀j ∈ ND, ∀v′ ∈ Uj\Ūj}. Since the dual variables contained in

γ ′ and λ′ are related to the rows not included in the SRMP, the solutions must be calculated

using the PSPR, which is defined in Section 8.2.1, and CV-PSPRS respectively in step 2 of

Algorithm 7.1. As stated in Section 8.2.2, the PSPR is used as a problem specific enhancement

to the row generation procedure. Unfortunately, no such general column generation subproblem

can be formed for the cancellation variables, requiring the CV-PSPRS to be solved once for

each λv
′

j ∈ λ′.

Favourable rows for the SRMP are identified by evaluating the reduced costs of primary

variables feasible for the RMP′. Similar to the IRP, the primary variables for the IRP-PR

are the crew duty variables, as such problem (9.17) is solved in step 8 of Algorithm 7.2. To

identify crew duty variables feasible for the RMP′ in Algorithm 7.2, problem (9.17) is solved

with the complete set of possible delay copies given by Uj . If any negative reduced cost variables

are found, the flight-copy pairs contained on the related flight strings indicate the rows that

must be included in the SRMP. In addition to adding rows to the SRMP, the related variable

fixings in the column generation subproblems are relaxed, increasing the size of the connection

network. If no negative reduced cost variables are found, the current solution for the SRMP is

the optimal solution to the IRP-PR. The procedure to identify favourable rows for the SRMP is

identical to the process described for the IRP in Section 8.2.2. Therefore, to identify a greater

number of rows to add to the SRMP, problem (9.17) is solved once for each k ∈ K.

Section 8.2.2 describes a number of enhancement techniques that are employed in the solu-

tion process of the IRP. In particular, a method to increase the number of rows added to the

SRMP and a row warm-up procedure are discussed. The results in Section 8.3 demonstrate

improved runtime performance from the implementation of these techniques, as such they are

also employed in the solution process of the IRP-PR. In the following section an additional

enhancement technique is described that uses properties of the row generation framework to

improve the convergence of the branch-and-price algorithm.
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9.2.3 Variable fixing

In Section 8.2.1, the PSPk and PSPr are formulated as network flow problems describing vari-

ables contained in P k and P r respectively. The formulation of the PSPk and PSPr introduces

arc-based variables wkiujvp for crew (wriujvp for aircraft) that equal 1 to indicate that connection

(iu, jv) is used on flight string p. The elimination of rows to form the SRMP is coupled with

the fixing these arc-based variables wkiujvp = 0 (wriujvp = 0) in the network flow problems, where

v ∈ Uj\Ūj . As explained above, this variable fixing can also be described as the elimination of

connections from the networks used to solved the shortest path problems for crew and aircraft.

The row generation procedure described in Section 9.2.2 involves the addition of rows to

the SRMP and the unfixing of variables in the column generation subproblems. This causes the

size of connection networks used for each shortest path problem to increase, having a negative

effect of solution runtimes. Ideally, the SRMP is formed to contain only the rows related to

the flight delays in the optimal solution, which would result in the smallest possible connection

networks for column generation subproblems. As explained in Section 8.2.2, identifying such a

set of rows is analogous to solving the original problem, therefore only an approximation can

be made.

A variable fixing heuristic is proposed to reduce the size of the column generation subprob-

lems using the optimal solution to the SRMP at the root node of the branch-and-bound tree.

This heuristic assumes that the flight-copy pairs used in the optimal solution of the LP relax-

ation for the SRMP have a high probability of occurring in the integer optimal solution. Given

the high level of degeneracy in airline planning and recovery problems, it is also assumed that the

flight-copy pairs included on variables that have a reduced cost of zero will potentially be used in

the integer optimal solution. More formally, the set I = {jv|c̄kp = 0∧ akvjp = 1, ∀k ∈ K, ∀p ∈ P k}
defines the set of flight-copy pairs that are expected to be included on basic variable flights

strings. This identifies a subset of flight-copy pairs that is used to eliminate rows from the

SRMP and reduce the size of the column generation subproblems. From I, the set of connec-

tions included in the column generation subproblems is defined as C̄ = {(iu, jv)|iu ∈ I∧jv ∈ I},
hence the variable fixing, wkiujv = 0, wriujv = 0, ∀(iu, jv) /∈ C̄ can be applied.

This heuristic uses information from the optimal solution to the LP relaxation of the IRP-

PR as a proxy for the integer optimal solution. As such, it is not guaranteed that the solutions

providing the best lower and upper bounds for the IRP-PR will contain only the flight-copy pairs

included in I. Consequently, it is possible that the integer optimal solution that is found using
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this heuristic will overestimate the true optimal solution. To provide a meaningful comparison

of the solution quality achieved with the solution approaches of column generation and column-

and-row generation, the optimality gap in this chapter is calculated using a lower bound set at

the LP solution found at the root node.

9.2.4 Branching rules

The integer optimal solution for the IRP-PR is found using the technique of branch-and-price.

This involves solving the LP relaxation of the original problem to optimality and applying

branching rules to partition the problem and enforce integrality. At each node in the branch-

and-bound tree, column generation is used to solve the LP relaxation of the modified problems

to optimality. The branching rules implemented must efficiently partition the feasible region of

the problem without destroying the column generation subproblem structure. This is achieved

by employing constraint branching techniques as described in Ryan and Foster [76].

Since the IRP-PR is an extension of the IRP, the branching rules that are described in

Chapter 8 are also implemented here. However, the alternative modelling approach that is used

for the flight cancellation variables in the IRP-PR requires some modification to the branching

rules given in the previous chapter. In particular the cancellation variable branching is modified

to include multiple variables for each flight coverage constraint. In addition, the application of

the identifier/flight branching rule for the flight cancellation variables will also be described.

Finally, an additional branching rule is implemented for the IRP-PR to eliminate any fractional

solutions to the cancellation variables.

The first of the branching rules presented in Chapter 8 is a variable branching rule for the

cancellation variables. In the IRP, the decision to cover or cancel a flight is determined by

explicitly branching on the cancellation variables, forcing the variable to 1 and 0 on the left

and right branches respectively. Since the IRP-PR is formulated with multiple cancellation

variables for each flight, it is not possible to directly apply this variable branching. Flight j is

identified as a branching candidate if that flight is partially covered by a variable flight string

and partially cancelled. Branching is performed by forcing all aircraft and crew flights strings

including flight j to zero on the right branch and all cancellation variables for flight j to zero

on the left branch. The application of this branching rule does not completely eliminate the

fractionality of all variables, as such additional branching rules are required.

The final rule in Chapter 8 describes an identifier/flight branching rule for branching on the
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aircraft and crew flight string variables. This rule is applied in the IRP-PR, also branching on

the cancellation variables zip, which are identified by the cancelled flight i. The calculation of

the fractionality for a cancellation variable identifier/flight pair is similar to equations (8.31) for

the crew and aircraft variables in the IRP. The implementation of this branching rule is identical

to that given in the previous chapter, and is easily extended to the cancellation variables.

The modelling approach for the cancellation variables introduces difficulties regarding the

branch-and-price framework. To ensure integrality of the cancellation variables is achieved, an

additional variable branching rule is implemented for the IRP-PR. The variable branching rule is

defined to select the cancellation variable that is most fractional, i.e. maxi∈ND{minp∈P i
f
{zip, 1−

zip}}, which is then fixed to 0 on the left branch and 1 on the right branch. In the solution

process of the IRP-PR this branching rule is assigned the lowest priority resulting in it being

seldom called. However, in some instances it is required to find the integer optimal solution.

9.3 Computational Results

The results for the IRP-PR aim to demonstrate the benefits of considering passengers in the

recovery process with the reduction in operational costs. The reallocation considerations within

the IRP-PR attempts to provide passengers with alternative travel arrangements in situations

where flight cancellations are required. This is a two-fold benefit for the airline with the

recapturing of lost revenue and the improvement of passenger satisfaction. Since the IRP-PR

is an extension upon the IRP, a comparison will be made between the two models in regards

to runtime, cost and disruption statistics.

Section 9.2 discusses the implementation of column-and-row generation for the IRP-PR.

This solution approach is employed to eliminate a large number of constraints from the RMP

and improve the solution runtime and quality, as measured by the optimality gap. The results

from experiments will provide a justification for employing column-and-row generation to solve

the IRP-PR with a comparison to a standard column generation approach.

The measure of solution quality is based upon the optimality gap achieved at the termination

of the maximum allowable runtime. This measure is important for the scenarios that fail to

solve within this runtime, requiring the best found integer solution to be implemented. In

Section 9.2.3, a variable fixing heuristic is introduced which potentially overestimates the lower

bound of the IRP-PR. As stated, a meaningful comparison between the column generation and
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column-and-row generation solution approaches is provided by calculating the optimality gap

as the relative difference between the LP solution at the root node and the best found integer

solution. Any reference to the optimality gap hereafter is a reference to the gap calculated in

this manner.

9.3.1 Description of data and disruption scenarios

The data and disruption scenarios that are used for this problem are identical to those used in

the computational experiments of Chapter 8. The motivation for using the same data sets is to

provide consistency in the analysis of the two different recovery models. Therefore only a brief

description of the key features will be provided in this section.

The IRP and IRP-PR are evaluated using a single day flight schedule that contains 262

flights transporting 28,492 passengers which are serviced by 48 aircraft and 79 crew groups.

The flight schedule services 20 airports, of which 12 are overnight bases for aircraft and 4 are

crew bases. Of the 20 airports, the majority of flights originate or terminate at only 2. A

set of 16 disruption scenarios are generated for the evaluation of the IRP and IRP-PR, each

representing a closure at one of the major airports starting at 6am, 7am, 8am or 9am and lasting

for a total duration of 3 or 5 hours. Airport closure scenarios are selected for the evaluation

purposes due to the significant associated recovery costs. Throughout this section the scenarios

will be referred to by an identifying number as detailed in Table 9.2.

Start Time 6am 7am 8am 9am

Airport 1 (0,8) (2,10) (4,12) (6,14)

Airport 2 (1,9) (3,11) (5,13) (7,15)

Table 9.2: Scenario numbers used in the presentation of results. The bracketed values indicate

two different closure durations (3 hours, 5 hours).

A full set of recovery policies, including the generation of new aircraft routes and crew

duties, flight delays and cancellations are implemented for the IRP and IRP-PR. The recovery

actions are permissible directly after the disruption occurs until the end of a selected recovery

window. For these experiments the recovery window is set at 6 hours, commencing after the

affected airport is reopened. While the use of a recovery window approximates the complete

recovery problem, this approach is consistent with the objective to return operations back to

plan as quickly as possible. The number of flights that depart within the closure period and
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Scenario 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|ND| 150 151 149 150 147 145 150 149 182 183 185 186 184 182 184 183

Table 9.3: The number of disruptable flights for each scenario.

recovery window is documented in Table 9.3. It is important to note that while the number

of included flights is reduced, no approximation is made to reduce the number of affected crew

and aircraft.

Flight delays and cancellations are two fundamental actions that are available to airlines

to recover from disruptive events. Flight delays have been modelled using the common flight

copies technique, with 7 copies used for the IRP and IRP-PR to discretise a maximum delay

of 180 minutes. Attempting to provide a true cost of delays, the estimate detailed in the

EUROCONTROL report by Cook and Tanner [25] has been used in these experiments. In [25]

the cost of delaying a full aircraft for a minute is estimated at $100 AUD.

The IRP-PR introduces a direct consideration of passengers following a flight cancellation.

As stated in the previous chapter, the assumption is made that as a result of a flight cancel-

lation passengers are either i) rebooked onto an alternative flight operated by the airline, ii)

rebooked onto a flight operated by a different airline, or iii) provided a refund, including some

compensation, and must rebook their own flight. In Chapter 8, only case iii) was modelled

assuming no loss of good will and that passengers are not deterred from making future book-

ings with the airline. For the IRP-PR case i) is modelled in addition to case iii), so the cost

of cancelling a flight must be adjusted to account for the number of passengers rebooked onto

alternative flights. If a passenger is rebooked onto another flight operated by the airline, the

full revenue is retained minus any delay costs associated with waiting for a later departure time.

It is common that the number of available flying seats is less than the number of passengers

requiring reaccommodation, as such some passengers are not provided alternative arrangements

resulting in the full loss of ticket revenue for the airline.

The IRP solves a recovery problem integrating aircraft and crew to fit within the commonly

applied sequential recovery process. As part of this process, passenger recovery is undertaken

after all preceding stages have been solved. To directly compare the impact of considering

passenger reallocation in the integrated recovery problem, as in the IRP-PR, this reallocation

process is undertaken a posteriori using the solution to the IRP. This is achieved by employing

a greedy approach to rebook passengers onto alternative flights, which are defined as having
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the same O-D pair and departing within a maximum allowable delay window.

This model is implemented in C++ by calling SCIP 3.0.1 [3] to solve the integer program

using CPLEX 12.4 as the linear programming solver.

9.3.2 Comparison between the IRP and IRP-PR

Analysing the solutions to the IRP and IRP-PR aims to identify the effect of modelling passenger

reallocation on the recovery costs, the recovery actions taken and the solution runtime. The

results are produced by solving the two recovery models against the set of 16 scenarios detailed

in Table 9.2. The optimal solution to each scenario is identified when the relative difference

between the primal and dual bounds is less than 5% for the IRP and IRP-PR.

Recovery costs

The motivation for considering the alternative passenger recovery model given by the IRP-PR is

to reduce the recovery costs incurred while accommodating disrupted passengers. The relative

difference in the recovery costs between the IRP and IRP-PR is given in Figure 9.1. This figure

demonstrates that a significant reduction in the operating costs of an airline can be realised

by employing this alternative modelling technique. On average, using the IRP-PR to solve the

recovery problem reduces the operational costs of the airline by 15.32%.

The largest relative improvement in recovery costs is 32.54%, which is achieved in scenario

2. Comparing the solution for this scenario given by the two alternative recovery models, there

is a marked difference in the number of flight cancellations in the recovery process. Specifically

the IRP cancels 4 flights compared to 12 for the IRP-PR. Now, this increase in the number of

cancelled flights achieves a smaller recovery cost for the solution to the IRP-PR since all but

7 passengers are provided alternative travel arrangements. By contrast, applying the greedy

reallocation approach using the solution to the IRP is only able to provide alternative arrange-

ments for 83 of the 373 passengers on cancelled flights. The number of passengers stranded

following a flight cancellation is greater than the total number of seats on a single flight. This

demonstrates the magnitude of the disruption experienced by passengers as a result of solving

the IRP. The ability of the IRP-PR to provide alternative travel arrangements for the majority

of passengers on cancelled flight is common across all scenarios. Therefore, the consideration

of passenger reallocation allows the strategic cancellation of flights to reduce operational costs

of the airline.
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Figure 9.1: The relative difference between the recovery costs of the IRP (x) and IRP-PR (y).

The value of the bars is given by (x− y)/x.

Cancellation and delay information

Considering passengers in the recovery process aims to reduce the impact of cancellations and

delays on passenger travel arrangements. In particular, directly modelling reallocation options

following flight cancellations ensures that passengers are routed to their destination with mini-

mal delay. The reduction in recovery costs, presented in Section 9.3.2, benefits the airline, how-

ever this does not necessarily imply improved passenger satisfaction. In the analysis presented

in this section it is assumed that providing passengers with alternative travel arrangements

directly improves passenger satisfaction.

Figure 9.2 presents the total number of disrupted passengers and the effect of the disruption

on their travel arrangements. The bars are divided into three different groups, i) the reallocated

group are the passengers on cancelled flights that are rebooked onto alternative operating

flights, ii) the delayed group includes all passengers that are booked on flights that depart

later than scheduled, and iii) the cancelled group are the passengers for which no alternative

travel arrangements are provided. For all passengers in the cancelled group, the tickets are

refunded and the passengers must rebook themselves onto alternative flights. The passengers

that are placed in this group are the most affected by the disruption, resulting in poor passenger

satisfaction and the potential loss of future bookings.

The passenger reallocation approach developed for the IRP-PR increases the number of can-
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Figure 9.2: The number of reallocated, delayed and cancelled passengers from the IRP (bars)

and IRP-PR (bars with hatching) solutions.

celled flights, however this is combined with an increase in the number of passengers reallocated

onto alternative flights. Since reallocation options are directly modelled, flight delay decisions

are made to ensure an adequate number of seats are available for the passengers on cancelled

flights. It is clear in Figure 9.2 that by solving the IRP-PR more passengers are provided with

alternative travel arrangements compared to the IRP, greatly reducing the number of cancelled

passengers in each scenario. This result has a direct positive impact on passenger satisfaction

by ensuring that a greater number of passenger arrive at their destination within a reasonable

time frame.

The average on-time performance of the airline is very similar using the solutions to the IRP

and the IRP-PR. The major difference between the two models is improved flow of passengers

through the network achieved by solving the IRP-PR. On average, the solution to the IRP-PR

disrupts 4232 passengers compared to 4568 for the IRP, providing a decrease of 336 passengers.

Given that the solution to the IRP-PR provides a smaller recovery cost than the IRP, the

decrease in the number of disrupted passengers demonstrates that this cost saving is not at the

expense of passengers.

Another important passenger related metric is the average number of delay minutes expe-

rienced, which is presented in Figure 9.3. While a decrease in the average number of disrupted

passenger is observed, this results in a marginal increase in the average delay minutes per pas-

senger and disrupted passenger, 0.633 and 7.456 minutes respectively. There are two factors
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Figure 9.3: The average delay minutes per disrupted passenger (bars) and per passenger (dots)

from the IRP (yellow) and IRP-PR (orange) solutions.

that affect the average number of delay minutes, i) the number of disrupted passengers and

ii) the number of passengers delayed. The number of delay minutes per passenger is almost

identical in the solution to the two models, this implies that the total number of passenger

delay minutes remains unchanged. Since the solution to the IRP-PR disrupts less passengers,

the number of delay minutes per disrupted passenger must increase. Also, the reallocated

passengers experience a delay while waiting for the next available flight, where the cancelled

passenger do not contribute to this statistic. By considering the decrease in the number of

disrupted passengers and the small increase in the average delay minutes, it can be concluded

that an overall positive outcome is achieved by providing alternative travel arrangements for

passengers on cancelled flights.

The key feature of considering passenger reallocation options in the airline recovery problem

is to provide alternative travel arrangements for disrupted passengers. This is demonstrated

in Figure 9.2, with a large shift in the number of passengers from the cancelled group to the

reallocated group, providing improved passenger flow through the network. Therefore it is not

surprising that an increase in the average delay minutes per passenger and disrupted passenger

is observed since flight delays are used as a strategy to ensure that alternative flights exist.

The passenger reallocation of the IRP-PR is designed to reduce the effect of flight cancellations

on passengers with the success measured by the increase of passenger flow through the flight

network.
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Solution runtimes

The additional variables and constraints related to passenger reallocation decisions in the IRP-

PR increases the problem complexity compared to the IRP. As a result, it is expected that

longer runtimes are required to identify the optimal integer solution for the IRP-PR. This is

evident in Figure 9.4 where the IRP is solved to optimality faster than the IRP-PR for 10 of the

presented scenarios. The main difference between the solution process for each model is that

the IRP-PR generally requires a greater number of branches to converge to the integer optimal

solution. Across all scenarios, the IRP-PR requires 47.44 nodes on average compared to 8.63

for the IRP. This is a significant difference in the solution process that has a great effect on the

algorithm runtimes.

The slow convergence displayed by the IRP-PR can be explained further by analysing the

optimality gap of the two models at the root node, presented in Table 9.4. This table shows

that 3 of the scenarios are solved to optimality by the LP solution at the root node for the

IRP compared to just 1 for the IRP-PR. In addition, the optimality gap for the IRP-PR

is significantly larger than that for the IRP in all but one scenario, indicating the potential

requirement of a greater number of branches in the branch-and-price algorithm. This is to be

expected since the passenger reallocation constraints (9.10) are in the form of big-M constraints,

which commonly display difficulties in identifying integer solutions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Scenario Number

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt
im

e 
(x
10

00
 s
ec

)

Runtime comparison between the IRP and IRP-PR
Runtime

IRP
IRP-PR

Figure 9.4: The runtimes to solve the IRP (bars) and IRP-PR (stars) using column-and-row

generation for each scenario with a maximum of 2700 seconds.
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Scenario 0 1 2 3 4 5 6 7

IRP 2888.35% 4630.87% 2312.73% 3303.54% 2605.06% 2093.85% 3528.54% 2729.15%

IRP-PR 3938.63% 6882.72% 4526.38% 5457.22% 0.0% 3155.8% 5648.75% 5100.72%

Scenario 8 9 10 11 12 13 14 15

IRP 900.55% 1425.56% 1162.0% 1700.12% 1114.59% 0.0% 0.01% 0.0%

IRP-PR 1415.53% 2034.81% 1705.44% 2240.13% 2499.49% 2029.96% 5843.9% 4862.17%

Table 9.4: The optimality gap at the root node from solving the IRP and the IRP-PR.

The runtime comparison between the IRP and the IRP-PR demonstrate that the increased

complexity introduced by the passenger reallocation decisions increases the solution runtime.

While this increase in solution runtimes is not ideal for an airline recovery problem, the difference

is not prohibitively large. Figure 9.4 demonstrates that the vast majority of scenarios for the

IRP-PR are solved within 600 seconds (10 minutes), which is within an acceptable runtime for

practical use of the algorithm. Comparing Figures 9.1 and 9.4, it can be concluded that the

potential gains from included passenger reallocation outweigh the resulting increase in runtime.

9.3.3 Comparison of solution methodology

The structure of the IRP-PR is very similar to the IRP, as such the solution approach of

column-and-row generation has been implemented to provide fast runtimes with a high solution

quality. The implementation of column-and-row generation for the IRP is evaluated in the

previous chapter, demonstrating a significant improvement in solution runtime and quality

over a standard column generation approach. In this section, further evaluation of column-

and-row generation is performed in relation to the IRP-PR. This evaluation demonstrates the

significant benefits from applying column-and-row generation and justifies its use to solve the

IRP-PR.

The runtime required to solve the scenarios using the IRP-PR with column generation and

column-and-row generation is presented in Figure 9.5. This figure demonstrates a reduction

in solution runtimes for the IRP-PR when solved with column-and-row generation. This is an

important result since it indicates that a higher quality solution is achievable using column-and-

row generation compared to column generation with shorter runtimes. The runtimes presented

in Figure 9.5 show that column-and-row generation outperforms column generation in 10 of

the presented experiments. This provides a relative difference in solution runtimes of 42.83%,

significantly improving upon the results presented in Chapter 8. It is clear through the explicit
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Figure 9.5: The runtimes to solve the IRP-PR for each scenario with a maximum of 2700

seconds. This figure compares the solution approaches of column-and-row generation (bars)

and column generation (stars).

evaluation of the solution runtimes, column-and-row generation significantly outperforms a

standard column generation approach.

9.3.4 Runtime enhancement techniques

A number of enhancements techniques designed to improve the solution runtime and qual-

ity of column-and-row generation are proposed in Section 9.2. Many of these enhancements,

such as problem specific branching rules, are commonly applied to mixed integer programming

problems. In this chapter a variable fixing heuristic and the reformulation of the cancellation

variables have been developed specifically for the IRP-PR.

The variable fixing heuristic restricts the allowable delay copies used to construct columns,

therefore reducing the feasible region of the IRP-PR. This technique attempts to reduce the

runtimes of the subproblem and the LP solves in each iteration of the column generation

algorithm. The modelling of the cancellation variables in this chapter is a unique approach for

considering passenger reallocation for the integrated recovery problem. Section 9.2.1 details

the scaling of the coefficients for the crew duty and cancellation variables in the reallocation

constraints (9.32). Since the reallocation constraints (9.10) are in the form of big-M constraints,

this scaling is proposed to alleviate the common issues related to identifying integer solutions.

Figure 9.6 details the time required to solve the scenarios with the IRP-PR, implementing
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Figure 9.6: Time required to solve scenarios by employing different enhancement techniques,

specifically the variable fixing heuristic and/or the cancellation variable scaling enhancements.

A maximum runtime of 2700 seconds (45 minutes) is applied.

the variable fixing heuristic and/or the cancellation variable scaling enhancement techniques. It

is interesting to note that all scenarios are solved to optimality within the maximum runtime of

2700 seconds (45 minutes) only when the cancellation variable scaling or both enhancements are

used. As expected, the best overall runtime result is achieved when both of the enhancement

techniques are implemented.

The enhancement techniques attempt to form a SRMP that is more easily solvable by

branch-and-price. Comparing the frontiers created by each of the enhancement techniques,

the greatest improvement is observed for scenarios requiring greater than 500 seconds runtime.

Now, the average time to solve the root node when no enhancements are used is 208 seconds,

with a maximum of 373 seconds. This suggests that the enhancements aid in improving the

convergence to the integral optimal solution for the larger scenarios.

9.4 Conclusions

This chapter presents a novel approach for considering passengers in an integrated airline re-

covery problem through the modelling of cancellation variables. The integrated airline recovery

problem integrates the schedule, aircraft and crew recovery problems, attempting to service the

maximum number of flights following a disruption. The cancellation variables have been mod-
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elled as knapsack variables to describe the possible reallocation options for passengers in the

event of a flight cancellation. This modelling approach contributes to airline recovery problems

by providing a simple and effective method to consider passengers in recovery problems.

The passenger reallocation approach developed for the IRP-PR is demonstrated through

experiments to greatly reduce the recovery costs achieved by the IRP. The reduction in recovery

costs is directly related to the recapturing of lost revenue following flight cancellations by

providing passengers with alternative travel arrangements. This demonstrates the significant

cost benefits that can be achieved by considering passengers during the recovery process.

The solution to the IRP-PR achieves a greater passenger flow through the network as a

result of strategic delay decisions. This is a feature of the modelling approach which affects

the composition of flight delays and cancellations in optimal solution. While the solution to

the IRP-PR results in a larger number of flight cancellations than the IRP, on average less

passengers are disrupted. The delay decisions made in the solution to the IRP-PR provides a

greater number of reallocation options for passengers on cancelled flights, reducing the number

of stranded passengers. This has a significant impact on passenger satisfaction whereby more

disrupted passengers arrive at their destination with a minimal amount of delay. The benefits

achieved by solving the IRP-PR are realised by the airline and passengers through a reduction

in costs and the magnitude of disruption.

Extending the analysis presented in Chapter 8, a comparison of the column generation and

column-and-row generation solution approaches is performed for the IRP-PR. This compari-

son further emphasises the runtime improvements achieved by the column-and-row generation

solution approach. In addition, the formulation of the IRP-PR displays two sets of secondary

variables, providing an example of the contribution of the general framework presented in

Chapter 7. To the best of the author’s knowledge, the column-and-row generation framework

requiring the calculation of two sets of dual variables has not been previously considered.

A number of enhancements have been proposed to reduce the solution runtime of the IRP-

PR by improving the convergence to the integer optimal solution. These enhancements include

a variable fixing heuristic and scaling the cancellation variable coefficients, which are developed

specifically for the IRP-PR. The results demonstrate that the implementation of both enhance-

ments provides the greatest improvement to the solution process by solving all scenarios to

within the desired optimality gap. The variable fixing heuristic is developed using character-

istics of the column-and-row generation solution approach, as such it is possible to implement
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such a heuristic for similar problems where column-and-row generation is applied.

The potential benefits from directly considering passengers during the recovery process are

presented in this chapter. Passenger reallocation approach in the IRP-PR is a simple and novel

approach that is designed to reduce passenger dissatisfaction resulting from flight cancellations.

While this modelling approach reduces the number of cancelled and disrupted passengers, it

does not have a significant effect on the average delay experienced per passenger. Future work on

this problem involves integrating the passenger reallocation approach into a broader passenger

recovery scheme in an attempt to reduce the impact of flight delays. There is an expectation

that further reductions in recovery costs and improvements in passenger satisfaction can be

achieved with the greater consideration of passenger flows in airline recovery problems.



Chapter 10

Conclusions

The concept of recoverable robustness is introduced by Liebchen et al. [57] as a framework to

identify planning solutions that are more recoverable in the event of a disruption. This frame-

work is developed to improve the recoverability of railway transportation problems. While

there are similarities between railway and airline planning problems, there are significant differ-

ences affecting the application of the recoverable robustness framework. This thesis addresses

these differences and presents the first application of recoverable robustness to airline planning

problems. The key features of this thesis are i) investigating the application of recoverable

robustness to various planning problems and ii) identifying and overcoming the challenges of

implementing this technique. The planning problems considered are the tail assignment, air-

craft maintenance routing and the integrated aircraft routing and crew duty problems. Each

problem presents a variety of modelling challenges requiring the investigation of enhancement

techniques to improve solution runtimes. In particular, a number of enhancements for the

Benders’ decomposition solution process are presented and an alternative general framework

for column-and-row generation is developed. The various planning problems considered in this

thesis and the investigation of relevant solution techniques demonstrates the potential and

limitations of the recoverable robustness framework.

The recoverable robust tail assignment problem is presented in Chapter 5 as the first ever

airline application of recoverable robustness. The application of recoverable robustness to the

tail assignment problem is a proof-of-concept to demonstrate the potential improvements in

recoverability for airline planning problems. A key contribution of Chapter 5 is the inclusion of

a full set of recovery policies in the evaluation stage of the recoverable robustness framework.

Formulating the recovery problem with a full set of recovery policies generates high quality feed-

222
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back in the evaluation stage to achieve the greatest improvement in recoverability. An efficient

solution approach is developed in Chapter 5 with the integration of Benders’ decomposition

and column generation. The enhancement techniques of the Magnanti-Wong method [60] and

the two-phase method for the Benders’ decomposition solution process are investigated. It is

concluded that with the use of various enhancement techniques, recoverable robustness is an

efficient and effective method to improve the recoverability of the tail assignment problem.

The aircraft maintenance routing problem is considered in Chapter 6 as part of a further

investigation of the recoverable robustness framework. A contribution of this chapter is a novel

modelling approach that integrates the aircraft routing and maintenance planning problems

using a one-day routes formulation. The experiments on this novel maintenance planning

approach demonstrate significant reductions in the number of maintenance misalignments for

flight schedules of various sizes. The application of recoverable robustness in Chapter 6 attempts

to improve the recoverability of the aircraft maintenance routing problem. A contribution to

the recoverable robustness framework in this chapter is the ability to improve recoverability

while ensuring the maintenance schedule is satisfied in the event of a disruption. Extending

upon the results of Chapter 5 and as a contribution of Chapter 6, the recoverable robust aircraft

maintenance routing problem is solved with a large number of evaluation scenarios and large

flight schedules. The results demonstrate significant improvements in the recoverability of the

maintenance planning problem from applying recoverable robustness. Hence, the results from

Chapters 5 and 6 show that the recoverable robustness framework is an effective method to

improve the recoverability of various airline planning problems. However, the solution quality

and runtimes presented in Chapter 6 indicate that further development of solution techniques

is required to address the limitations of the recoverable robustness framework.

Chapter 2 introduces the integration of multiple stages from the sequential approach as

a potential method to improve the solution quality of the complete planning problem. The

integration of multiple stages attempts to address the common result of suboptimal, and even

infeasible, solutions from the sequential planning process. As an extension on Chapter 5, the

integration of the aircraft and crew planning problems in the recoverable robustness framework

is investigated in this thesis to improve both the solution quality and recoverability. The results

from Chapter 6 indicate that alternative solution techniques are required to reduce the runtimes

of the evaluation stage of the recoverable robustness framework. Therefore, column-and-row

generation is investigated to reduce the complexity and improve the solution runtimes of the
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integrated airline recovery problems presented in Chapters 8 and 9.

Column-and-row generation is described in Chapter 7 as the simultaneous generation of

variables and structural constraints. This solution approach is developed as an extension upon

column generation to improve solution runtimes through a smaller and more restricted master

problem. Chapter 7 details the various applications of this solution approach and introduces

the current generic methods that have been proposed. It is not possible to directly apply

the generic column-and-row generation schemes to the integrated airline recovery problems

developed in this thesis, as such an alternative framework is developed. A contribution of the

framework presented in Chapter 7 is the application of column-and-row generation to problems

with multiple sets of secondary variables. This framework is presented as a direct alternative

to Benders’ decomposition. In addition, the framework developed in Chapter 7 is presented

algorithmically, clearly describing its implementation. The integrated airline recovery problems

developed in Chapters 8 and 9 are given as examples to demonstrate the implementation of the

column-and-row generation framework.

The integrated airline recovery problem is investigated in Chapter 8, integrating the sched-

ule, aircraft and crew recovery problems. The general framework for column-and-row genera-

tion developed in Chapter 7 is applied to the integrated airline recovery problem to improve

the solution runtime and quality. A contribution of this chapter is the explicit evaluation of

column-and-row generation against a standard column generation approach. Since the frame-

work presented in Chapter 7 is developed from the generic scheme presented by Muter et

al. [65], the evaluation in this chapter also demonstrates the performance of the scheme by [65].

The evaluation of column-and-row generation in Chapter 8 identifies a number of enhancement

techniques that are applicable to the general implementation of the solution approach. A con-

tribution of solving the integrated airline recovery problem by column-and-row generation is the

guarantee of near optimal solutions, which is not provided by alternative solution methods such

as Benders’ decomposition. The results in Chapter 8 demonstrate that column-and-row gener-

ation is very effective in reducing the solution runtimes to achieve near optimal solutions for

the integrated airline recovery problem. While a reduction in the solution runtimes is achieved

with column-and-row generation, the magnitude of the runtimes preclude the use of this re-

covery problem in the evaluation stage of the recoverable robustness framework. The results

from Chapter 8 reinforce the conclusion that efficient solution methods must be investigated to

apply recoverable robustness to more complex planning stage problems.
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Passenger recovery is an important stage of the recovery problem that is commonly omitted

from automated solution approaches. A novel modelling approach for passenger recovery is

investigated in Chapter 9 as a simple, but effective, method of considering passengers in any

airline recovery problem. The potential of this modelling approach to improve passenger flows

and reduce recovery costs is demonstrated by solving an integrated airline recovery problem

including passenger considerations in Chapter 9. A contribution of Chapter 9 is the modelling

of the cancellation variables to prescribe passenger reallocation options in the event of a flight

cancellation. This modelling approach is directly applicable to point-to-point carriers where

itineraries commonly contain only a single flight. This chapter demonstrates that higher quality

feedback from the evaluation stage of the recoverable robustness framework can be achieved

with this simple, novel passenger recovery approach. Another contribution of Chapter 9 is the

further evaluation of the column-and-row generation solution approach on a more complex and

difficult optimisation problem. The results demonstrate that the column-and-row generation

framework presented in Chapter 7 effectively reduces the solution runtimes of complex integer

programs with multiple linking constraints.

The recoverable robustness technique is developed throughout this thesis with a focus on

airline applications. The various applications discussed identify a number of potential areas

for further research. In particular, the computational experiments performed employ flight

schedules collected from small to medium sized airlines. To improve the practical applicability

of this approach, further investigation into solution methods and acceleration techniques is

required to address the needs of large airlines. Additionally, the application of the column-and-

row generation solution approach of Chapter 7 in this thesis identifies the need for acceleration

techniques. Identifying the most efficacious of these techniques and developing an enhanced

generic column-and-row generation solution approach is a possible avenue of further research.

This thesis demonstrates the potential improvements in recoverability achieved by applying

recoverable robustness to airline planning problems. The results from each chapter shows that

the application of the recoverable robustness framework requires sophisticated techniques, such

as Benders’ decomposition, column generation and column-and-row generation, to develop effi-

cient solution approaches. The experiments applying recoverable robustness to various planning

problems and data sets demonstrate the versatility and suitability of this approach. Through

further research of this technique and with improvements to the relevant solution approaches,

the full potential of recoverable robustness for airline applications will be realised.
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[65] İ. Muter, Ş. İ. Birbil, and K. Bülbül. Simultaneous column-and-row generation for large-

scale linear programs with column-dependent-rows. Mathematical Programming. To ap-

pear.
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