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Abstract

Major sources of financial risk for mining projects include geological uncertainty and uncertainty in future
commodity prices, costs, demand levels and interest rates. Geological uncertainty is difficult to model as
there are complicated spatial considerations which are not present in the other sources of uncertainty.
Stochastic simulations are now the common approach to assessing geological uncertainty, and one of the
most common practical methods of producing realisations is conditional sequential simulation. Conditional
sequential simulation algorithms can create multiple realisations that honour the original histogram and
covariance matrix. One of the shortcomings of the conditional simulation algorithms is that there is no
parameter that can provide further information about high order statistics for generated realisations. By
visually comparing the colour realisation images (if they are 2D), we can easily see uncaptured spatial
differences; therefore, any possible dissimilarity or similarity between the realisations cannot be captured

by descriptive geostatistics.

Distance computation as a technique to measure dissimilarity or similarity between images, objects, and
models has received attention in recent years. This thesis presents a formal measure of dissimilarity for
generated realisations by adapting the Kantorovich metric to the geostatistics context. We propose a new
methodology for mapping the space of uncertainty by a distance function that is based upon a physically

meaningful notion of dissimilarity between pairs of realisations.

We are able to quantify the dissimilarity of different realisations. In this framework, the pairwise
dissimilarities between realisations can be used to make a relation or a precise mathematical structure
between them, which can describe the variability of parameters on interest (for example, grade) inside the
space of uncertainty. This method provides a powerful tool to address how realisations are connected to
each other and how this connection (structure) can answer some controversial questions in geostatistical
simulations. Besides, we can use our methodology to optimally subsample a large collection of realizations,

and quantify how well this high-quality subsample represents the overall uncertainty of the collection.

Moreover, such quantification of the space of uncertainty makes it possible to compare the impact of
changing the geostatistical parameters or even simulation algorithms on the space of uncertainty. Our
methodology has the potential to consistently compare the output of different geostatistical simulation

algorithms, such as SGS, sequential indicator simulation (SIS) and turning bands (TBS) simulation.



Furthermore, if we place any deterministic geological reserve estimation, produced, for example, by
Kriging, inside the space of uncertainty, the method can easily reveal how dissimilar other realisations are
to the estimated model. In other words, measuring how close global accuracies (different realisations) are

to the local accuracy (estimation) is now possible.

Finally, the mining processes such as mine optimisation, open pit design and long term scheduling are only
able to handle relatively modest numbers of realisations. It is difficult to say how many realisations are
required to achieve a prescribed level of accuracy based on a very large number of possible realisations.
This method has the ability to construct a collection of schedules (coming from generated realisations) so
that the overall uncertainty is captured in a way prescribed by the user. We argue that this small set of
candidate schedules produce more robust outcomes than schedules selected by other existing risk-based

approaches.
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best fitted lognormal distribution (red line). The right graph shows the probability plot of the histogram
(blue circles) and the fitted lognormal distribution, showing a reasonable fitting between

them (SIS and 2D CaSE). ... uuiutiti ittt e et e e e 201

Figure A-24: Multidimensional scaling embedding of 250 realisations (blue circles), the average of 250
realisations (red circle), the Kriging model (yellow circle) and the real model (green circle) in R?.

The average model is at the minimum distance of the others, while the real model is quite far from the
generated realisations (SIS and 2D CASE)........oviuirirint ittt e 202

Figure A-25: The graph on the left is the histogram of 101,025 interpoint distances of 450 realisations
with the best fitted lognormal distribution (red line). The graph on the right shows the probability

plot of the histogram (blue circles) and the fitted lognormal distribution, showing a reasonable fitting
between them (SIS and 2D CASE).........viniiriti it e 203

Figure A-26: Multidimensional scaling embedding of 450 realisations (blue circles), the average of 450
realisations (red circle), the Kriging model (yellow circle) and the real model (green circle) in R?. The
average model is at the minimum distance from the others, while the real model is quite far from the
generated realisations (SIS and 2D CASE)..........ouiiririe ittt e 203
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Chapter 1

1 Introduction

1-1 Motivation

The best motivation for this study may be found in this quotation from Martinez (2009, p.1),

“A new era is coming for the mining industry. An era where mine planners, mining engineers and mine
analysts, not only ask themselves the question, ‘What if ...?”" when evaluating their respective mine but

also want to know what is the effect of these ‘What if ...?°”.

This means that assessing the uncertainty, namely risk analysis, has to be an inseparable part of any mining
project. The nature of mining projects is extremely complex due to the reason that they have to deal with a
large number of parameters, some of them having been made millions of years ago. This shows that any

future prediction about mining projects cannot be free of uncertainty.

Resource estimation or any geological modelling which involves spatial modelling can be a good example
to describe uncertainty. Uncertainty exists in any geological model, namely a block model, which is
normally created based on exploration data (boreholes data set) collected from a deposit. As the volume of
taken samples (collected data) is considerably smaller than the size of the deposit, implicit or explicit
assumption in this modelling is inevitable. Thus, the uncertainty would always be a part of modelling. As
there is a clear linkage between the geological information and the subsequent studies of geosciences (for

example, pit optimisation and mine design activities), this uncertainty propagate into that level.

An example of this impact was presented on Valle (2000), showing that 60% of the mines surveyed had
an average rate of production that was less than 70% of the designed capacity in the early years. Other
researchers (Rossi and Parker, 1994) reported shortfalls against predictions of mine production in later

stages of production.

Moreover, new approaches to uncertainty not only do not consider it as a problem (that should be avoided),

but also take advantage of it to create opportunities and value. Case studies show that applying the



uncertainty approaches in mine optimisation and mine planning activities can increase the value production

schedules, as well as make a bigger optimal pit size with a better NPV (Dimitrakopoulos, 2011).

Dealing with such an important parameter has to be a mandatory part of any geosciences assessment. As
uncertainty is not avoidable and any future prediction is uncertain, serious problems may occur during
evaluating projects if uncertainty is ignored. Consequently, there is a good potential to make value if
uncertainty is assessed.

1-2 Uncertainty and Risk

Uncertainty may have different meanings in many aspects of engineering and science or even in lay terms.
Although several definitions of uncertainty can be found in textbooks, the following definition, which is
considered causal, may be more effective. “Uncertainty is caused by an incomplete understanding about
what we like to quantify” (Caers, 2011, p.39). The quantifying or measurement of any sort of incomplete
knowledge has to deal with probability; therefore, the measurement of uncertainty has a probabilistic basis,
which, in turn, is associated with the relevant degree of uncertainty. Risk, in this case, is a state of
uncertainty, namely a degree of uncertainty where there is a possibility of loss or any other undesirable
outcome. Risk in this definition has probability. Uncertainty - or risk - would be associated with major
components of mining projects, such as geology, mining, processing plant, transporting network and
markets; in addition, each of these components can be broken down into sub-components, which also

contain uncertainty or risk.

Risk and uncertainty, which is addressed in this thesis, is mostly related to the modelling of uncertainty in
geology and mine planning activities. This modelling or procedure of forecasting any interested parameters
or even making any decision can be divided into three general classes: measurement and collecting data;
making a model; and predicting the parameters from the model. Generally, each step of this procedure is
subject to uncertainty, and thus would be at risk of not meeting financial and technical targets.

There are a few methods to deal with risk. However, it has to be mentioned here that any attempts to model
or quantify the uncertainty (independent of what the methods or approaches are), would inevitably face the
issue that it is difficult to ascertain out whether the modelled uncertainty is correct or not. This means that

"there is no true uncertainty, there is are only the models of uncertainty” (Caers, 2011, p.6).

The following example may make it clearer. Assuming there is a geological block model, to which the

indicator Kriging is applied; consequently, the probability of it being ore or waste is known for each block.



If the original probability of a block being ore is 80% and 20% of it being waste 20%, after digging, there
are just two options for this block, that is, either it is or ore or waste. If it is ore it cannot be said that the

probability of 80% of it being ore block was correct.

1-3 Sources of uncertainty in mining projects

The mining industry requires reasonable evaluation of the characteristics of deposits. For example, resource
estimation, which is a fundamental study for any mining project, requires the information of grade,
impurities, density, rock type, thickness and geological structures of deposit. However, these processes

involve various sources of uncertainty, which are explained here.

The main source of uncertainty can be generally classified into two major groups (Caers, 2011): uncertainty
due to process randomness; and uncertainty due to limited knowledge of the process.

Most of the uncertainty which is relevant to geosciences can be classified into the second group. It
comprises the following sub-groups (which are relevant to the topic of the thesis) roughly explained below.

1. The first sub-group is geological uncertainty, as described here

e The first one in this sub-group is the rock properties (attributes) or any other measurable

parameters in deposits, such as grades, impurities and density.

e The second one is the structural uncertainty (especially for coal mining), the bounding
surface representing layers, deposit shapes, the shape of faults, folds or any other structural

controller and how many of them are involved.

Geological uncertainty is more difficult to model as there are complicated spatial considerations
which are not present in other sources of uncertainty. This type of uncertainty plays an important
role to quantify uncertainty in mining projects as these parameters are a base for all financial or

technical assessment.

2. The second sub-group is financial uncertainty (risk). Major sources of financial risk include
uncertainty in financial parameters, such as future commaodity prices, costs, demand levels, interest

rates and exchange rate, which may vary considerably over time. This uncertainty has a high impact
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on the financial parts of the project. These risks are in some sense easier to quantitatively account
for when assessing project risks, as financial parameters can be modelled as time series in a variety
of ways. This type of uncertainty is generally addressed by the financial markets theory, which is

beyond the scope of this thesis.

3. The third sub-group is uncertainty in any kind of geological interpretation by experts which may
impact on the making of geological models. Having different geological interpretations even for a
same geological feature is quite common in geosciences fields due to the insufficient and
sometimes indirect data available.

4. The next sub-group is uncertainty in modelling, where modelling processes have a set of
assumptions often made around simplicity, availability and utilisation, which are not essentially
based on reality; therefore, modelling cannot typically consider all possible factors that may have
an impact on predicting interested parameters, so the model(s) are unable to capture all features of

reality, consequently making it uncertain.

5. The last sub-group is uncertainty in measurement. Any kind of measurement, for example a grade
analysis, would have uncertainty regarding systematic error (classified as validity issues) and non-

systematic error (classified as reliability issues, which is called the random error).

Most of this thesis addresses grade uncertainty in the first sub-group; the other sources of uncertainty are

not discussed in this study.

1-4 Deterministic methods in geosciences and its limitations

Uncertainty in the majority of measurable properties can be expressed by the variability in value or
probability. That is, random variables have to be taken into account instead of fixed parameters. Methods
or solutions which do not consider any variability in measurable properties can be classified as deterministic

approaches.

Deterministic methods have been established, developed and applied for modelling of the mineral deposits,
optimisation, mine planning, valuation and decision-making for several decades.
These methods generally work based on a single estimation or model, be it in financial or technical terms.

These estimations or models calculate the expected value of the interested parameters accurately, and,
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therefore, ignore all possible variation that the parameters may have, namely variability of values. In many
cases, this variability can be illustrated by the distribution of the values or variance. Figure 1-1 illustrates
the classic example of the flaw of averages ignoring the variability of depth involved when somebody
drowns in a river with 3 ft. average depth. That is, “ plans based on average assumptions are wrong on

average" (Savage and Danzi, 2009, p. 11).

Figure 1-1: Ignoring the variability of depth and relying on its average may present a serious problem

when crossing a river with 3 ft. average depth (Savage and Danzi, 2009)

The Kriging method could be the best example for this drawback of making use of an average in the mining
industry. Kriging estimates the average grade of a block by weighted average of sample grades around the
block. One consequence of considering only the average grade for an estimated block is that it kills the real
variability, which is a part of block estimation; in addition, it creates a problem called the smoothing affect,

which is explained in chapter 3.

The open pit optimisation can be another example of the smoothing affect. In general, pit optimisation
is carried out on a Kriged block model to maximise the Net Present Value (NPV). Figure 1-2 shows
the results (NPV) of this optimisation on the Kriging model against simulated models, namely realisations

(as a non-deterministic method), which clearly illustrates the two following points.

First, simulations are able to cover a broad range of the project's NPVs in the form of probability of
distribution, while only a single estimation derives from the conventional method. The second pointis the
NPV outcome for the conventional method, which is higher than the ninety-fifth quintile of the NPV
distribution. This means that there is a tendency in the conventional method to overestimate the project's
NPV.



These two examples are good answers to the question whether considering uncertainty and risk may or may
not improve the decision making process. Consequently, not considering uncertainty approaches and
relying on the use of an average value approach may underline the failure of many designs in terms of the

ability to meet any sort of project performance indicators.

Limits of Traditional Modelling
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Figure 1-2: Optimisation of mine design in an open pit gold mine, NPV versus “pit shells” and risk profile
of the conventionally optimal design (Dimitrakopoulos, 2011)

1-5 How to deal with uncertainty in geosciences

Stochastic conditional simulations (CS) (Deutsch and Journel, 1998), which are a part of Monte Carlo
simulations, are normally used for modelling uncertainty in spatially distributed variables. The
geostatistical simulation algorithms can generate equally probable realisations, which are able to mimic the
in-situ orebody grade variability. By producing many conditional simulations (realisations) of a single
geological reserve, a naive but instructive assessment of financial risk due to geological uncertainty would
be to evaluate a putative mine exploitation plan against each conditional simulation, thus obtaining a spread
of financial outcomes in terms of net present value, for example. The spreads of financial outcomes of
several competing mine plans may be assessed in this way. Thus, the main advantage of conditional
simulations over, say, a single deterministic geological reserve estimate, produced for example, by Kriging,
is an estimate of the geological uncertainty and concomitant financial risk, which a single geological

estimate cannot possibly provide.



Figure 1-3 illustrates open pit mine design stages from the geological model to the mine scheduling based
on the conventional method and the uncertainty based approach, respectively. As all input variables in the
conventional mine optimisation process and the mine planning activities are expected values, all project
performance indicators would be represented by single values; while in the uncertainty based approach all

project performance indicators are in the form of probability distribution function (pdf).
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Figurel-3: Conventional (deterministic or single model) approach versus risk-based method for mine

planning

1-6 Objective of the thesis

An open pit mine design and production scheduling is a complicated and difficult problem to solve
regarding its scale and the several uncertain parameters involved. The objectives of mine planning activities
are to maximise the NPV while production targets are satisfied. One of the most significant parameters

affecting the optimisation and production scheduling is grade uncertainty. A set of simulated geological



models (generated realisations) provides a quantified description of the grade variability. These generated
realisations can make a space, which is called the space of uncertainty. Quantifying the space of uncertainty

by a notion of dissimilarity or “distance" between generated realisations is a key ingredient in this thesis.

Distance computation as a technique to measure dissimilarity and similarity between images, objects,
attributes, observations and models has received attention in recent years. Many of the techniques used to
measure dissimilarity try to find the best notion of distance for measuring dissimilarity between objects or
models.

This study presents a formal measure of dissimilarity for generated realisations by adapting the Kantorovich
metric (which is the physically meaningful notion of dissimilarity between pairs of realisations) to the
geostatistics context. A new methodology is proposed to address the following different conceptual
subjects in geostatistical simulations; and to find the solution for those, first, and then to apply this
methodology on a practical application in mine design for doing risk assessment. Therefore, the focus is on
the concepts and methods rather than on the detailed applications in items 1, 2 and 3; item 4 includes the

application of the method.

The objectives of the thesis can be classified into four categories. It should be mentioned here that the
proposed methodology may find different applications in other fields of geosciences and it is not limited to

geostatistical simulations, mining planning or what are addressed as the objectives of this thesis below.

The four main objectives of the thesis are:

1. Mapping the space of uncertainty by a distance function that is based upon a physically meaningful
notion of dissimilarity between pairs of realisations. We are able to quantify the dissimilarity of
different realisations and to use this information for modelling and visualising the space of
uncertainty. Consequently, such quantification of the space of uncertainty makes it possible to
compare the impact of changing the geostatistical parameters on the space of uncertainty and to
answer some controversial issues in geostatistical simulation, such as equal-probability of
generated resolutions; likelihood; and how far the realisations are from local accuracy (Kriging

model).

2. Achieving realisation reduction in order to select the sub-collection of realisations that best
represent the possible outcome of stochastic simulation algorithms. The concept of Kantorovich

distance has been used and a simple optimisation model has been developed to find the best
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samples and to quantify how well this high-quality subsample represents the overall uncertainty of
the collection. The optimisation model can be used as a general tool, which is able to select any
subset of representative realisations against user defined criteria. For example, this methodology
can determine the smallest number of conditional simulations that are required to cover 75% of
the total geological uncertainty. Moreover, this approach identifies the corresponding conditional

simulations.

Evaluating of the stochastic simulation algorithms, which is the set of realisations that can easily
be generated by applying a variety of simulation algorithms that the user has to select, such as the
sequential Gaussian simulation (SGS), the turning bands simulation (TBS) and the sequential
indicator simulation (SIS). As the algorithms use different technigques or a random function (RF)
model to generate realisations, in general it would be desirable to compare what they generate.
Therefore, three common stochastic simulation algorithms are compared to evaluate their
performance in the point of mapping the space of uncertainty without using any transfer functions.

Assessing risk based mine design methods. The common risk based methods usually generate
different mine designs based on simulated realisations; consequently, these methods deal with
several mine designs so that just one of them can be, in some way, selected. Finding the best criteria
for this selection can be challenging for any approach. One of the drawbacks of the present
approaches is the lack of a general classification method, namely, the clustering of the mine
designs. In this section, by using the proposed methodology for mapping the space of uncertainty,
it is possible to quantify the dissimilarity of different mine designs and to use this information to
quantify how well the representatives or clusters represent the overall uncertainty to select the sub-

collection of mine design that represents the best possible outcomes.



Chapter 2

2 Literature review

2-1 Introduction

The literature can be divided into two areas. The first is the concept and methodology of the approach.
The other area of literature will focus on developing an application of the methodology that will be used
for mine design activities. Due to this distinction, both parts of the literature review, which are detailed in

this chapter are independent of each other to some extent.

First, quantifying the space of uncertainty is reviewed in the literature. Very few sources can be found on
this issue, which may confirm that little attention has been paid to the definition of the space of uncertainty
and related issues. The author is aware of no other pervious work, excluding the ones discussed here, that
may tackle this problem. The largest part of the review is about geostatistical simulations, which address
the space of uncertainty. The given references are classified into two groups, conventional and distance-
based methods. Although our approach is classified into distance-based method as well, there are significant
differences in the methodology between what has been addressed in the references so far and what is

introduced in chapter 6.

Second, this thesis presents a formal measuring of dissimilarity between two extraction sequences of
production schedules by adapting the distance-based method to the long term mine planning. Due to that, a

brief review of the long term open pit mine production scheduling algorithms is presented here.

Fortunately, there are many mathematical programming models about optimising long term mine
production scheduling. These mathematical models have been studied extensively in the literature since the
1960s. Algorithms reviewed here contain recent studies usually based on multiples realisations (risk-based
methods) and also a few well-known methods that are based on a single geological model that is,

deterministic or conventional methods.
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2-2 A review of the state of the art of evaluating uncertainty in
geosciences

Due to increasing computer performance, it is now possible to construct, for example, 1000 realisations for
block models of size N ~ 10 in less than 48 hours on desktop PC using techniques such as Sequential
Gaussian Simulation (SGS). This would be accomplished much faster if direct block simulation (Boucher
and Dimitrakopoulos, 2009) is used. Due to this high speed computation, conditional simulation algorithms

are commonly used by the mining industry and other geosciences fields to assess geological uncertainty.

However, almost all applications and methodology are applied on generated realisations to assess
uncertainty without considering integral controversial issues in this type of simulations or mapping the
space of uncertainty made by these type of geostatistical simulation algorithms. For example, in all of these
applications, the multiple realisations are randomly sampled without knowledge about underlying
probability space, commonly named as the space of uncertainty. In addition, there has been very little work,
if any, on quantifying how well a given collection of conditional simulations represent the total, for instance,
geological uncertainty.

Often, a number, say 30, is decided upon as the appropriate number of conditional simulations to produce
and 30 conditional simulations are produced and used as a finite collection representing all possible
outcomes. Several questions arise: Why was the number 30 chosen? Is 30 too few or too many? Have the
first 30 conditional simulations produced the best 30 representatives? How well could 30 well-chosen

conditional simulations represent all possible geological outcomes?

There are very few sources related to the impact of number of realisations, but just only on univariate and
bivariate statistics, such as, mean, variance and covariance matrix (Deutsch and Journel, 1998). Their
results, in turn, have confirmed nothing more than the expected ergodic fluctuations of realisations. Thus,
all the above questions are still open. Other issues may be found in this quotation by Goovaerts (1999,
p.163)

“In summary, contrasting with the increasing use of stochastic simulation in risk analysis, it appears
that little attention has been paid to the definition of the space of uncertainty, and related issues such
as the equiprobability of realizations, the equivalence of spaces of uncertainty generated by different
algorithms, and the number of realizations required to sample this space. There is currently no theory

that allows us to determine if the set of all possible outcomes is fairly sampled. ~
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Journel (1997) mentioned that for a simulation algorithm, equiprobability condition of generated
realisations can be guaranteed if individual realisations are completely set off by one random seed drawn

from a uniform distribution; however, each algorithm definitely samples a different subset.

Srivastava (1994) argued that generated realisations by one simulation algorithm cannot be re producible

by the others; thus the simulation algorithm selection might be an important step for any study.

The controversial issues in these type of simulations are not limited to what has been mentioned here.
Myers (1994) and Hu and Ravalec-Dupin (2004) are suitable sources where some conceptual issues of

simulations are discussed in detail.

Mapping the space of uncertainty and its related issues had not received much attention in the literature
before (Arpat and Caers, 2007; Suzuki and Caers, 2008). Previously, attempts at mapping the uncertainty
space had been based on transfer functions responses (Gotway and Rutherford, 1993; Srivastava, 1996;
Goovaerts, 1999; and Qureshi and Dimitrakopoulos, 2007). That is, these sources actually evaluated the
space of uncertainty of response values, except for Srivastava, who did assess the actual outcomes of

simulation algorithms.

These studies simply compared a series of responses created by transfer functions after applying the set of
realisations which derive from different simulation algorithms. This comparison loses not only a significant
amount of the underlying structure of the space of uncertainty, but also does not provide a general
conclusion about them. This thesis briefly explains what could actually be found in the literature and divides

the results into the two following categories, namely conventional and distance-based approaches.

2-2.1 Conventional approaches

Not much research has been found on the space of uncertainty and relative problems by conventional
methods. Some of them, which address the comparison of stochastic simulation algorithm in mapping the

space of uncertainty, are explained here.
Qureshi and Dimitrakopoulos (2007) and Gotway and Rutherford (1993)’s studies are similar to each other
in relation to the stochastic simulation algorithms and transferred functions which were applied. The results

of the former are brought here, as its findings are more recent.
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In both these studies the performances of three different stochastic simulation algorithms, namely sequential
Gaussian simulation (SGS), sequential indicator simulation (SIS), and probability field simulation (PFS)
were studied in mapping the space of uncertainty. That was done by applying three following transfer
functions with minimum cost path, threshold proposition and geometric mean on 100 conditional
realisations with two different sample sets from exhaustive Walker Lake data set. The following results
were obtained from Qureshi and Dimitrakopoulos’ (2007) study: increasing the sample size improves the
precision associated with the response distributions; uncertain distributions produced by SGS, SIS and
JSGS are more precise than those based on PFS; sequential algorithms were found to perform well in
mapping spaces of uncertainty; and that the ability for mapping the spaces of uncertainty depends on the
complexity of the transfer function and that is not necessarily a well understood aspect of the modelling
process (Qureshi, 2002).

Another study about comparing the spaces of uncertainty was conducted by Deutsch and Journel (1992).
In their study, three unconditional simulation algorithms, a sequential indicator simulation (SIS), a
sequential Gaussian simulation (SGS) and a simulated annealing (SA) were used with the same information
and normal score semivariogram model. Regardless of the response variable, the results showed that all
algorithms can generate comparable spaces of uncertainty but they may be different in the point of ergodic
fluctuations in the histogram of their responses. For example, the response distribution of SA was slightly
wider than SIS and SGS.

One of the best studies in comparing the space of uncertainty was carried out by Goovaerts (1999) bringing
a new approach into the comparison of spaces of uncertainty by using the Principal Component Analysis
(PCA). He displayed the set of realisations into the space defined by all characteristics together instead of
looking at the space of uncertainty of each characteristic. His study, in the petroleum field (flow properties
in a sandstone) was based on the comparison of four simulation algorithms: SGS, SIS, PFS and SA. He
generated 100 simulations for each simulation algorithm and took a random subset from the set of generated
realisations and responses variables by increasing the size of the subsets and then calculated univariate and
bivariate statistics of each subset to check the impact number of realisations on them. He concluded by
saying that "the extent of the space of uncertainty increases with the number of realizations generated", but

the rate of that gets smaller after 20 realisations, in his case.

Results of this study, in that case, in the point of the applied response variable, showed that differences
between the simulation algorithms are the most pronounced for long-term responses with SGS granting the

most accurate prediction.
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Perhaps the study of Srivastava (1996) is different from the others as transfer functions were not used in
comparing the space of uncertainty. Although his example, as he described in his paper, is “hopelessly small
and simplistic" (p.61), it has the advantage to generate all possible outcomes of the used simulation
algorithms.

In his study, Srivastava (1996) made a fabricated case for simulations and then applied a few constraints
to limit and reduce the number of possible realisations up to 276. That is, the space of uncertainty consists
of 276 realisations that satisfied all of the constraints. Therefore, a procedure that equiprobably samples

this space should generate any one of these realisations with a probability of i . Table 2-1 shows the least
and the most frequently sample outcomes or realisations for each of the five simulation algorithms, namely

SGS, SIS, Classic SA, Greedy SA and Fixed state SA for 10,000 realisations. As can be seen, each outcome,
shown by a number, has different chances to occur. The author finally concluded that (p.65)

“If each of the 276 outcomes has an equal probability of being generated, then in a set of 10,000
realisations, each one should have a 99% chance of occurring at least at 18 times and not more than
54 times".

Table 2-1: The least and the most frequent sample outcomes (realisations) for each of five simulation

algorithms (Srivastava, 1996)

Least common Most common
Outcome Outcome

Case Number  Frequency Number Frequency
Classical annealing 79 19 217 54
Annealing w/ fixed state 107 11 11 175
Greedy annealing 214 7 218 108
Sequential indicator 51 7 262 85
Sequential gaussian 40 20 184 58

The author clearly states that the equiprobable sampling of the space of uncertainty is of high importance

and of critical concern for any study used to generate realisations for risk analysis.

As per Suzuki and Caers’s study (2008), the conventional approaches in comparing the space of uncertainty
generally followed these steps and, thus, generated many realisations by applying a transfer function and
calculating response values followed by the evaluation of statistical studies on response values. The main
disadvantage of these methods is that they cannot define any relation between the generated realisations;

consequently, they are unable to find the structure of the space of uncertainty, a very important step toward
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the interpretation of the outcome of simulation algorithms. This issue could be resolved by applying the

distance-based method to measure dissimilarity between generated realisations.

2-2.2 Distance-based approaches

Distance computation as a technique to measure the similarity or dissimilarity between images, objects,
databases and models has received attention in recent years. However, finding the right distance function

that may be suitable for measuring the similarity in the field of interest would be challenging.

Distance can not only quantify how different the images, objects and models are from each other, but it can
easily construe a structure between objects in a metric space. For example, distance may be a proper way
to measure how similar or dissimilar the outcomes of simulation algorithms (generated realisations) are in
a metric space and to reveal the relations between them, namely the structure, by calculating all pair
distances between all generated realisations. That is, this approach can map the space of uncertainty in a
metric space by a meaningful notion of dissimilarity between pairs of realisations by using this information
for modelling and visualising the space of uncertainty. As a consequence, questions about sampling the
space of uncertainty; clustering; evaluating the simulation of algorithms; relative locations between the
random realisations; and the distance between the realisations from local accuracy (Kriging model) can be
answered by this approach.

The concept of dissimilarity between multi-point geostatistical realisations has been exploited in the context
of evaluating oil or gas reservoirs by Suzuki and Caers (2008) and by Scheidt and Caers (2009), opening
a new era of uncertainty modelling in metric space by the distance-based method. The topic of selecting
subsets of simulations originates from petroleum reservoir engineering, where generated realisations of a
reservoir are used as input to reservoir flow simulators that forecast reservoir production performance. A
petroleum reservoir simulator is essentially the numerical implementation of the multiphase flow process
of water, oil and gas as per fluids laws. This method has also been used for oil reservoirs to model the
uncertainty of channel facies or patterns modelled by them. In this method, the distance function, which
has usually been used to measure the similarity between generated realisations of a reservoir, is Hausdorff

distance (Dubuisson and Jain, 1994).

Figure 2-1 illustrates this method in a few steps. As can be seen, after calculating the pair distances between
the set of S realisations (step A), the square symmetric distance matrix S x S (dissimilarity distance matrix)

with zero diagonal elements is constructed (step B), and then the distance matrix is embedded into the
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Euclidean space by applying the Multi-dimensional scaling method (MDS) (Cox and Cox, 2000). This
method, including the embedding points (step C), plays a critical role for the next steps. The next step is to
apply MDS, which involves the application of the Kernel method (Sarma, 2006) on the given Euclidean
space in order to transfer the points into a high dimensional space. This technique enables the configuration
of a better linear separation for the points in this space, therefore providing a better clustering result (step
D). Consequently, the high dimensional space is again mapped into its original space to decrease the
dimensionality (step E), which is called the pre-image problem. After that, a small collection of realisations
which are able to represent all generated realisations is chosen as the final selection (step F). The
application of the transfer function on a small subset of realisations allows uncertainty quantification (e.g.,
P10, P50, P90 quantiles) of the response variable.

Below are four major differences between the oil and gas reservoirs modelling and what is usually used in

mining industries to explain why this methodology is not applicable in mining applications.

1. Inmining, the model realisations come from variogram-based geostatistical simulation algorithms
such as SGS and SIS, while in new oil and gas reservoirs these realisations come from training
images and they are usually generated by multiple-point geostatistical algorithms, such as Single
Normal Equation Simulation (SNESI) (Strebelle and Journel, 2001) and Filter-Based Simulation
(FBSI) (Zhang et al., 2006).

2. In mining, the models or realisations are normally based on exact measurements, which are called
hard data, such as drilling data or any sampled points; however, in oil/gas reservoirs these
realisations are based on hard data and the data with uncertainty, which is called soft data such as,

geophysical survey and seismic response.

3. Inoil and gas reservoirs modelling, for example in these studies by Suzuki and Caers (2008), Arpat
and Caers (2007) and Honarkahah and Caers (2010) the prior probability (determined from
historical observation or all possible prior models) and posterior probability (after applying all data)
are usually used to gather the Bayesian approach to assess uncertainty in posterior models, while
in mining, it does not have any application. That is, determining the prior probability in mining is

very difficult and sometimes impossible.

4. Oil/gas reservoirs modelling is distinctly different from optimising scheduling and forecasting a

mine's production over its life. Firstly, this is not a physical process, as per the flow chart below.
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Secondly, it is based on some of the methods available in the field of mathematical programming
that is fundamentally different in both technical and numerical aspects than in finite elements and
related methods needed for implementing the flow simulation.
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Figure 2-1: Scheidt and Caers’ proposed workflow for uncertainty quantification-(A) distance between two
models, (B) distance matrix D, (C) models mapped in Euclidean space, (D) feature space, (E) pre-image
construction, (F) P10, P50 and P90 quantile estimations (Scheidt and Caers, 2009)

In this thesis, the Kantorovich distance has been introduced and applied with a different flowchart to assess

the uncertainty, which is substantially different to what has been introduced for oil/gas reservoirs.
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2-3 Long-term mine planning: A literature review

The open pit mine planning activities begin with this three-dimensional 3D geologic block model, which
presents the structure of orebody (see Figure 2-2). An accurate prediction of the shape, location, size and
specifications of a mineral deposit is required to present a reliable mineral reserve, as well as the technical
and financial planning for exploitation. To achieve these goals, it is necessary to prepare a 3D model based

on the shape, distribution and mineral species for any given mineral deposit (Glacken and Snowden, 2001).

These blocks are assigned different numbers over open pit mine planning activities such as, Rock Properties
(Grade), by applying any resource estimation method, for example Kriging, and the economic value ($),
which can be calculated by the following formula for individual blocks, and the sequence (#) or time (t),

by using any pen pit mine production scheduling algorithm:

Block Value (BV) = Revenues- Costs

MODEL

CELL

®C,vC, ZC

Figure 2-2: 3D geologic block model which presents the structure of orebody

Long-term open pit mine planning activities is a general term for calling all mathematical solutions, namely
optimisation problems, which might be used to find the best block extraction sequence that is able to get
the maximum Net Present Value (NPV) (Whittle 1989). This optimisation process has to consider a variety
of practical and financial constraints of the project. The results of this optimisation problem, whatever it
would be, have a high impact on the feasibility and profitability of mining projects.

As the mining industries current go deeper with lower grade ores, mine planning is becoming a key factor
that can result in ceasing operations or continuing the project (Osanloo et al., 2008).

There are several mathematical solutions to optimise open pit mines as the nature of an open pit mine
optimisation problem can easily be modelled by mathematical models However, for any method that might

be used the following questions should be answered (in the following order):
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o  Which block has to be mined (including ore and waste)
o When it has to be mined

o Where it has to be sent (process lines or waste dump)

Answering the above questions can define the mining strategy and determine how much income a mine
would have during its life. It can be seen that there are several different approaches that directly depend on
how the decision is made for each of the blocks. Nevertheless, most approaches can be divided into two
groups, namely, the deterministic approach which assumes all inputs have fixed known values; and the
uncertainly-based approach which accounts for variability in some data, for example, ore grade, future
product demand and future product price.

A few well-known deterministic and uncertainty-based algorithms have been reviewed to shed light on the
location of the proposed methodology to deal with this problem. The advantages and disadvantages of these
algorithms are briefly explained.

2-3.1 Deterministic approaches

Traditional methods of mine planning involve the creation of a schedule using information from a single
deterministic block model. Often the schedule is optimised to maximise net present values (NPV). Plenty
of research has been conducted on the mine planning problem since 1965 and several types of mathematical
models have been considered for solving the problem. These mathematical models can be divided into the

following classes, each class containing sub-classes:

e Linear programming (LP)
e Mixed integer programming (MIP)
e Integer programming (IP)

e Dynamic programming (DP)

2-3.1.1 Linear programming (LP)

Johnson (1969) introduced the following formulation to optimise mine scheduling using an LP model. The
mathematical form of target function, which is subject to mining capacity, processing capacity and
maximum and minimum of acceptable grade for the plant, can be represented as a maximisation problem

(the constraints are not mentioned here).
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Max. Z =

T
C™.TB;. x™ (2.1)
t=

M N
1 mzzl i=1
T = the number of scheduling periods
N = the total number of blocks in pit
i=block index (1, 2,...,N)

CI™=NPV of block

xfm =the proportion of block i to be mined in period

TB;=the total tonnes of block

This LP model was solved by decomposing the mine life production planning model into small subsets
through Dantzig—Wolf decomposition principles (Tebboth and Richard, 2001); each subset is subsequently
solved as a single problem. After solving all subsets, solving the main problem would be relatively simple.

Although Johnson's (1969) approach can provide the optimum solution by considering the time value,
different processing lines and the cutoff grade strategy, it is unable to solve the problem in its full capacity.
Furthermore, although this model allows for the mining of the portion of a block, it cannot remove the
overlying blocks before that (Osanloo et al., 2008), which causes impractical mine planning (see Figure 2-
3).

B Mined
[ ] In-placed

Figure 2-3: Problem of partial block mining of model (Johnson, 1969)
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2-3.1.2 Mixed integer programming (MIP)

To improve Johnson’s (1969) model (LP), Gershon (1983) introduced an MIP model by adding additional
decision variables to Johnson’s (1969) LP model. Through this change, partial blocks can be mined if
overlaying blocks have been completely removed. This model can provide better practical mine planning
than LP. However, Gershon's (1983) model is unable to deal with a large block model because too many
binary variables need to be applied to solve the MIP.

2-3.1.3 Integer programming (IP)

The general IP mathematical formulation can be given in the following formula.

Max. Z = C,Xy + C, Xy + - + Co X (2.2)

X,, = A column vector of N variables x{* while 7., x* =1
¢, = A row vector of N objective function coefficients containing c;* elements that represents the

NPV resulting from mining block i in period n.

Which is subject to the constraints such as, mining capacity, processing capacity and maximum and

minimum of acceptable grade, and slope angle.

Dealing with a large number of zero—one variables that binary IP formulation has to accomplish to solve
the problem usually constitutes serious limitations for this approach. Several researchers have tried to solve

this problem by reducing the binary variables with different approaches, as follows:

e Lagrangian relaxation (Dagdelen and Johnson, 1986)

e 4D-network relaxation method (Akaike and Dagdelen, 1999)

e Clustering (Ramazan et al., 2005)

e Branch and cut (Caccetta and Hill, 2003)

e Disaggregation (Boland, Dumitrescu, Froyland and Gleixner, 2008)
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2-3.1.4 Dynamic programming (DP)

Dynamic programming methods are the common methods that commercial optimisation software uses to
optimise the open pit mine planning Therefore, it will be more thoroughly explained than the other

methods.

The theory of Dynamic programming (DP) was formulated by Bellman (1957) based on searching and
selecting all possible options. Roman (1974) ) applied Dynamic programming in open pit mine planning
for the first time, following the algorithm steps below :

Determine the location of the starting block of sequencing process

Check all possible sequence blocks above the given block are checked (satisfying the slope

constraint)

Select the sequence giving the highest NPV

Place outside the pit limit the blocks not giving a positive NPV

e Continue this procedure continues until no block needs to be put outside the pit limit

Dowd and Onur (1992), Onur and Dowd (1993) and Tolwinski and Underwood (1992) proposed different
methods to solve the problem. The proposed method by Tolwinski (1998) and Tolwinski and Golosinski
(1995) is now used in a mining commercial optimisation software called NPV scheduler and can be

implemented on large deposits.

As this software is used with all types of mine optimisation and mine planning in this thesis, the procedure,
from optimisation to mine scheduling, which is progressively developed into practical designs by applying
different constraints, or even stockpiling, is explained below. The other commercial mine

optimisation/planning software is similar to Whittle 4D and partially follows the same procedure.

) ] L
s[s[s Y\ J e
slsls :
s[ss WS =

Input Economic Ultimate Pushback Optimising
Model Model Pit Generator Scheduler
o .

Progressively More Engineering Applied

Figure 2-4: The procedure from optimisation to mine scheduling is progressively developed into practical
designs by applying different constraints
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This approach has the following steps, which see can be seen in Figure 2-4:

1. Determine the ultimate pit limit. Lerch-Grossmann (1965) algorithm is used to define the optimum
ultimate pit limit. Using this algorithm yields the boundary with the highest cash flow and pushing

back beyond this boundary decreases the profit.

2. Create Lerch- Grossmann phases (Nested pits). The starting point for this method is to generate
LG Phases by applying the Lerch-Grossmann pit optimisation algorithm. By stepping (for example
m steps) the economic parameters, such as the revenue factor and the commodity price factor in
percentage increments, a series of nested pits is generated and all blocks are divided into maximum

m sequential optimal pits (1,2, ..., m).

3. Create Practical pushback selection. The philosophy of the design of each pushback is to realise
the greatest amount of metal content as early as possible with the minimum waste stripping. If the
number of pushbacks is theoretically increasing, then the mining scenario will gain significant
benefit. However, practically, there will not be sufficient access space between two pushbacks or
minimum mining operating space in mines; therefore, the opportunity to increase the number of
pushbacks is limited. Since the pushback selection is very important, several combinations of the

nested pits have to be investigated to find the best NPV.

4. Create Block extraction sequences. Optimal Extraction Sequence of the blocks (OES) are the
sequential numbers which are usually generated by the scheduling algorithms (or even optimisation

and pushback design algorithms) to maximise, for example, the NPV.

5. Create Block extraction time. This is possibly the last step of this approach design procedure and
it can generally classify the blocks into yearly scheduling by considering the practical mining
constraints; as a consequence, the blocks would be given numbers {1,2, ..., N} while N is the mine
life.

The main advantage of this method is that it is able to generate a practical mine schedule with considering

mining constraints and it is also applicable on large deposits.
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2-3.1.5 The common limitations of the mine planning deterministic approaches

The common limitations of the mine planning deterministic approaches are the same as what has been
discussed in Section 1-3. Nevertheless, these approaches are unable to quantify the risk of not meeting mine
scheduling targets or the other project indicators due to the fact that they deal with a single geological

average model which cannot take into account in situ grade variability.

2-3.2 Uncertainty-based approaches

The uncertainty based approaches and how they generally deal with mine planning activities have been
explained in chapter 1, section 1-5. A great deal of research has been conducted on the mine planning
uncertainty based approaches since the last decade. Still, contrary to deterministic methods, there is not
any clear classification about uncertainty-based methods. The majority of them have used a combination of

conditional simulation with deterministic approaches. Some of them are explained below.

2-3.2.1 Dynamic programming (DP)

Dowd (1994) introduced the following flow chart (see Figure 2-5) for risk assessment in open pit mining.
In this method grade uncertainty can be assessed with other financial uncertainty (see section 1-3), such as
commodity price, mining costs and processing cost. After generating the n realisations and selecting
random combination of input parameters, the revenue block model of each realisation can be made. By
applying pit optimisation and scheduling (using dynamic programming) on individual models, the
probability distribution of each project performance indicator such as NPV and IRR may be calculated.

Although this method can handle both grade and financial uncertainty, it is unable to produce an optimal

schedule and is a time consuming procedure.
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Figure 2-5: Procedure of risk assessment in open pit mine based on Dowd (1994)

2-3.2.2 Linear Programming (LP)

Dimitrakopoulos and Ramazan (2004) proposed a mathematical formulation based on linear programming,
which has been able to consider grade uncertainty and equipment access and mobility, including other
typical operational requirements. This formulation is based on expected block grades and the probabilities
of different element grades being above required cutoffs, both derived from generated realisations. In this
formulation, due to the consideration that needs to be given to equipment access and mobility, probabilities
given to each block is related to the desirability of that block being excavated in a given period. To consider
fleet access to each block, two concentric windows around target block i are defined (see Figure 2-6).

Figure 2-6: Inner and outer windows around the target block i (Dimitrakopoulos and Ramazan, 2004)
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The first target is to mine that block i with the inner window. If the inner window block cannot be mined,
the percent of the tonnage of the block that cannot be mined is called a ‘deviation’ (Y5), which is associated
with costs (¢,) for the objective function below. Hence, the outer window blocks would be mined and again
each percent of deviation (v4;) would be assigned a cost (¢;). That is, for this approach it is more desirable
to mine block i with the blocks in the inner window than the blocks in the outer window. Yet, it is even

better for the smoothness of mining schedules to mine the farther blocks with block i, if possible.

The objective function is:

T N
Max.z [Cf X Yi+ (Z C, X YL + Cy X Y3ti) (2.3)
t=1

i=1

T =The total number of time periods for scheduling

N =The total number of blocks in the model

Y =The deviation percent from 100% probability that the material will be mined in period ¢ would have
the desired properties

C! =The cost coefficient for the probability deviation in period ¢

This method can guarantee producing a practical mine scheduling and minimising movement of large

mining equipment inside the pit. Hence, it can reduce the risk during the first stages of mine production.

However, as NPV is not maximised in the objective function, this method is unable to generate maximum

NPV in the presence of grade uncertainty.

2-3.2.3 Mix Integer Programming (MIP)

Ramazan and Dimitrakopoulos (2004) suggested a mixed integer programming model formulation that is
able to consider grade uncertainty in mine planning. In this method, after generating some random
realisations, scheduling patterns on each realisation are generated by applying a traditional MIP formulation
on each generated realisation (with maximising NPV). Subsequently, by these given schedules patterns,
the probability of each block in a given time period can be calculated. A zero probability means that the
block would not be mined on that period, while one means the block will be mined. The probabilities

between zero and one are considered in a new optimisation model with the following objective function:
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Max.i1 [Z((vfl X pt) x xt) — Z:w X d,tn] (2.4)

t=

T =The maximum number of scheduling periods

N =The total number of blocks to be scheduled

vl =The NPV to be generated by mining block n in period t

pt, =The probability of block i to be scheduled in period t

xt =A binary variable, equal to 1 if the block i is to be mined in period ¢ and 0 otherwise
w =The cost of unit deviation associated with generating a smooth scheduling pattern

dt, =The deviation from a smoothed production pattern when mining block m

M =The total number of blocks with smoothness constraints

The first part of the objective function tries to maximise the probability of the blocks being scheduled in
the period given by realisations. The second part provides the blocks to be accessed by equipment to
minimise the mobility of the mine’s fleet equipment (same as LP method). As it can be seen from the
objective function, this method, contrary to the previous approach, is able maximise NPV with the
consideration of equipment movements and block access in such a way that it is able to produce a schedule
pattern that is less risky than the traditional methods.

There are a few other stochastic MIP methods which were addressed by using these approaches. One of the
most recent of these methods is by Boland, Dumitrescu and Froyland (2009)., in which the need to take
into account geological uncertainty in open-pit mine production scheduling to produce schedules that adapt
over time in response to the information acquired through mining was addressed. They used multiple
geological estimates in a mixed integer multistage stochastic programming approach, in which decisions
made in later time periods can depend on observations of the geological properties of the material mined in
earlier periods. Since the material mined in earlier periods is determined by their decisions, the information
received about uncertain properties as well as the time frame when that information is available is decision-
dependent. Thus, the difficult case of stochastic programming with endogenous uncertainty was attempted;
in addition, a successful mixed integer programming formulation of the open pit mine scheduling was
extended. The problem of this stochastic case is that it is unable to show that can non-anticipatively be
modelled with linear constraints involving variables already present in the model. This observation was
extended to the general class of endogenous stochastic programs, and the special structure of this model

was exploited to show that in some cases a significant proportion of these constraints may be omitted.
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2-3.2.4 Maximum upside and minimum downside approach

The maximum upside/minimum downside (Leite and Dimitrakopoulos, 2007) in assessing grade
variability/risk in different realisations assumes that there is a probability that a given mine design may
perform better than expected; thus, there is an upside potential relating to the orebody considered, similarly

to a downside risk where the project performance indicator’s prediction is not fulfilled (see Figure 2-7).

< Uneertainty in DCF >

Risk Reward

/‘

MAR Average

Figure 2-7: Uncertainty in a distribution of a key project performance indicator (DCF), reward or upside
potential and downside risk with respect to a point of reference such as the minimum acceptable return
(MAR) (Leite and Dimitrakopoulos, 2007)

This method first applies traditional optimisation and mine scheduling on each random generated realisation
to design a pit. Second, it generates the distributions of any other project indicator by applying a given mine
plan on each realisation. Third, it discards the designs that may not meet the user defined criteria and selects
one single pit design that can capture the maximum upside reward and minimum downside risk (see Figure

2-8). The design selection in the approach outlined above is based on type | of the response variable.

DCF

I I Downside

1 2 Pit design

Figure 2-8: Upside potential and downside risk for two pit designs for the same orebody based on
Discounted cash flow ($) (Dimitrakopoulos et al., 2007)
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2-3.2.5 Limitation of maximum upside and minimum downside approach

The maximum upside and minimum downside approaches and any other risk-based mine design method
(Leite and Dimitrakopoulos, 2007) which is based on generating different mine designs by the stochastically
simulated orebody have two drawbacks. The first one is that the distribution of the project indicators (type
1) cannot give any information about different optimised pits, pit designs or mine scheduling and it is likely
that different pit designs have approximately the same project indicators. Therefore, this sort of response
variable (type 1) is unable to reflect the dissimilarities between different optimised pits and pit designs
which come from different realisations. Generally, type | highlights the impact of grade uncertainty in mine
planning activities on the assessment of the financial or technical indicators of the blocks but is not able to
indicate this impact on mine planning; moreover, it assesses uncertainty in sequences or the time extracting

the block’s uncertainty in place (which block) and time (when to mine).

The second drawback is that the chosen design(s) would no longer be equiprobable. This means that some
designs are highly likely to occur, but others would be less able to represent the actual mine design. To
guote from Leite and Dimitrakopoulos, (2007). “Although the simulated orebody models are equally
probable, the corresponding designs are not™ (p.76). The common risk-based methods assume that chosen
design(s) are all equiprobable, and this assumption may cause misleading results in inaccurate design

selection.
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Chapter 3

3 Geostatistical simulations

3-1 Introduction

The modelling grade or any parameter in geological deposits where too many factors control the
mineralisation process constitute a complex procedure and cannot be described by simple models. Recourse
estimation methods are based on little amounts of data which are sampled from a deposit; however,
regardless of how big the deposits are, the collected data would be too small with respect to the volume of
the deposits. The cost and time and sometimes even the technical difficulty are the most important factors
which can limit access to more data from the subsurface. Although this complexity and the lack of access
to all needed data make modelling difficult some techniques are able to handle these models to estimate the
geological parameters. These techniques are classified into the major groups in the following paragraphs.

Similar to Inverse Power Distance (IPD), Nearest Neighbour (NN), and Polygonal, non-geostatistical
estimation methods usually calculate the geological parameters based on different ways of determining the
average of sampled points or grades situated around the point or block that is supposed to be estimated. For
this purpose, the methods need to apply a weighting function to sample points and further establish how
many samples have to contribute to the estimation. That is, it is necessary to find a radius of influence.
Therefore, even though finding the best weights for sample points and determining the radius of influence

is not always easy, there is no fixed method to calculate these geological parameters.

Physical processes do not behave randomly in space and possess spatial continuity in their properties. For
example, a river-bed that is shaped by water flow is governed by a complex physical phenomenon that
makes continuity on the path of the river-bed; otherwise, mineral deposits tend to concentrate in certain
spatial locations. Thus, for describing these variables their regionalised aspect should be considered.
Geostatistics is based on the notion of regionalised variables. A regionalised variable is distributed in space
and has a certain spatial structure which is not limited to the Euclidean space. In addition, the regionalised
property of variables does not allow them to be randomly embedded in the space where they are and, thus

make spatial continuity.

Prior to applying any geostatistical estimation methods, such as the Kriging method, the structure of spatial

continuity of the grade should be modelled. This structure can be defined in the form of spatial trend,
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isotropy or anisotropy and so forth in mineralisation, for example. This spatial continuity model is called
variogram. A variogram can give a mathematical solution to find the best weights for sample points and to
determine the radius of influence for the estimation process not only for Kriging, but also for the other non-

geostatistical estimation methods.

In geostatistics, simulation techniques are the methods or random functions which are able to generate
many models — or realisations - containing the same statistical parameters as the sample data. Contrary to
geostatistical estimation methods, which are only able to provide a single model for a geological
phenomenon and ignore all possible variation for the variables, through simulation techniques all possible
features of a phenomenon, for example possible grades of each block in a block model, can theoretically be
modelled. These realisations are usually used to quantify spatial uncertainty of variables under study.

Different geostatistical simulation algorithms rely on their models of spatial continuity and spatial
uncertainty; an overview of geostatistical simulations and their algorithms will be provided in this chapter.

3-2 Geostatistical estimation (Kriging)

Georges Matheron (1965) formalised the concepts of the theory behind Kriging and for first time
"geostatistics" was introduced as a new terminology in earth science. One of the best definition for
geostatistics states that it is “the study of phenomena that fluctuated in space” (Deutsch and Journel, 1998).
By the early 1970s, the Kriging method had proved to be very useful in the mining industry. Although most
of the geostatistical theory was established in geology and mining engineering in order to map the spatial
distribution of grade and grade estimation, it now comprises several applications in other fields of science

and other areas of engineering.

Kriging now is known by the acronym BLUE, which stands for ‘The Best Linear Unbiased Estimator’
That s, itis a linear combination of weighted sampled points around an unsampled point, which is supposed
to be estimated (see Figure 3-1) and which can be presented as formula (3.1). These weights A; are
proportional to the distance between sampled points and unsampled points and are calculated so that the
variance of estimation becomes minimum. Thus, Kriging can guarantee an acceptable correlation between

the estimated point and the neighbour data, which is called Local accuracy in geostatistics.
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Figure 3-1: Sample Kriging weights for four sampled points located around the point x, where estimation

supposedly occurs

Z(xo)Kriging = Z Aiz(x;) 3.1
i=1

Z(x;) = Regionalized variable and show the value at location x;

The spatial variability of a measurable geological parameter can be modelled by what is called variogram,
which shows the linear correlation between any pair sample in space. Thus, if there are a group of sample
pairs, a variogram can be drawn by calculating their average half squared difference. That is, a variogram
presents the variance of increment [Z(u) — Z(u + h)] between pairs at distance h (Deutsch and Journel,

1998), when a variogram is defined.
2y(h) =var{Z(u) — Z(u + h)} (3.2)

y(h) = C(0) — C(h),Vu (3.3)

C(h): The covariance presents spatial relationship between points as function of distance h.
Covariance can be presented in the form of a matrix; therefore it is called a covariance matrix. Figure 3-2

illustrates the relation between a Variogram and the covariance function.

Estimation methods based on weighted average, such as inverse distance or Kriging, suffer from a well-
known problem in geostatistics called the smoothing effect (Isaaks and Srivastava, 1989). Smoothing relates
to the reduction of variability in the estimated parameter; that is, low grade samples are usually

overestimated while large values are underestimated (Goovaerts, 1997).
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Figure 3-2: The relation between Variogram and covariance function

Figure 3-3 illustrates the smoothing effect on the distribution of the original sample point after estimation.
As it can been seen, extreme samples in tails of distribution disappear after the estimation and the results
shows a new distribution with fewer extremes. Thus, Kriging estimation is not able to reproduce the samples
histogram and, consequently, its covariance matrix. This problem causes a big flaw in global accuracy,

which is essential for an estimation method such as Kriging.
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Figure 3-3: Estimation distribution pdf (thin line) shows the smoothing effect on the distribution of the

original sample point (thick line)

Different approaches have been proposed by estimation and stochastic geostatistical simulation to correct
the issue of the smoothing affect, which are beyond the scope of this thesis. For the interested reader,
further background on how to correct the smoothing effect may be found in these references Journel et al.
(2000), Yamamoto (2005) and Yamamoto (2008).
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Stochastic geostatistical simulations, which will be explained in detail in the next section, have been used
as an alternative to the Kriging method because they can easily provide multiple equiprobable images of
the interest properties, for example grade, in such a way that both the samples histogram and the covariance
matrix can be reproducible. That means that the stochastic geostatistical simulations can guarantee global
accuracy while the Kriging method cannot (Yamamoto, 2008). However, stochastic geostatistical

simulations suffer from lack of local accuracy.

3-3 Stochastic simulations in general

3-3.1 Monte Carlo Simulations

The Monte Carlo Simulation (Malvin and Whitlock, 1986) is a method to iteratively evaluate models by
drawing random numbers from a probability distribution function. As a technique to deal with complex
models, nonlinear models, or those models involving uncertain parameters, the Monte Carlo Simulation
has received attention from different branches of engineering and science and has recently become a
powerful tool for uncertainty analysis. This method is explained here, as the Monte Carlo technique is the

base of all geostatistical simulations to evaluate grade uncertainty.

Figure 3-4 illustrates how this technique works assuming the distribution of x as known and f(x) as a
deterministic function. This technique, generally using a computer program, can draw several random
numbers from distribution x (random input x4, x5 -+ x,,,), and then calculate the deterministic function f (x)

for each individual x;.

The series of the output numbers (f (x;), f (x3), - f (xn,)) Which is a probability distribution of possible
outcomes (pdf), can be analysed by statistics methods to achieve the results, for instance, by drawing the

histogram and calculating the confidence interval.

Ultimately, the Monte Carlo method deals with random numbers and probability statistics to solve
problems; thus, it is classified as a stochastic technique possessing a major advantage over the deterministic

method to handle uncertainty and risk.
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Figure 3-4: The Monte Carlo technique is able to draw many random numbers from distribution x;, and

then calculate the deterministic function f(x) for each individual x;

3-4 Stochastic geostatistical simulations

Stochastic geostatistical simulation, a class of the Monte Carlo method, is the process of generating
alternative, equally probable and high-resolution models of a spatial distribution. The main advantage of
conditional simulations over, for instance, a single deterministic geological reserve estimate, produced, for
example, by Kriging, is an estimate of the geological uncertainty and concomitant risk which a single
geological estimate cannot possibly provide.

Unlike the Kriging, which suffers from smoothing problems, geostatistical simulation can easily reproduce

variance, covariance and probability distribution of data set. The Stochastic geostatistical simulations are

divided here into two following different groups as both are used in this thesis.
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3-4.1 Unconditional simulations

Unconditional simulation is very similar to conditional simulation, where the same principle can be applied
to generate the realisations but with no reference to the actual sampled points. However, it has to be faithful
to mean, variance of the data set and needs to be able to reproduce the covariance matrix or variogram. This
type of simulation is not common in geostatistical simulation as it cannot predict or mimic the reality of the
deposit.

3-4.2 Conditional simulations

The simulation is called conditional if generated realisations are faithful to the sampled points or reference
points at their locations. These realisations try to be honoured distributions of the sampled points and the
spatial correlation of the properties without attempting to ascertain whether any one of the realisations can
be real or not. The main advantage of using these algorithms over deterministic approaches is to correct the
smoothing effect, produced, for example, by Kriging, that may cause less spatial variability than what it
already contains (Deutsch and Journel, 1998).

Conditional simulations are widely used for assessing uncertainty and risk analysis in verities of fields, such
as resource and reserve estimation (Dowd and David, 1976); feasibility study and risk assessment (Dowd,
1994); open pit design and production scheduling (Dimitrakopoulos, 1998); hydrogeology (Yoram, 2003);
environment (Webster and Oliver, 2007); and petroleum (Caers, 2011).

The set of realisations can be easily generated by applying a variety of simulation algorithms such as
sequential Gaussian simulation (SGS) ; sequential indicator simulation (SIS); probability field simulation
(PFS); turning bands simulation (TBS); sequential indicator simulation (SIS); LU decomposition and
simulated annealing (SA). In addition, each algorithm uses different techniques or random function (RF)
models to generate realisations. In the next section the three common algorithms used in this study are

explained.

Figure 3-5 shows images of Kriging versus conditional simulation for the same geological deposit. All

models are conditioned to the 470 sampled points including the same variogram model.
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Kriging Model (A) Realisation No.1 (B)

Realisation No.2 (C) Realisation No.3 (D)

Figure 3-5: The Kriging result against three different realisations (B, C and D) showing reduction of

variability (smoothing problem) in the estimated parameter in the Kriging model (A)

According to Figure 3-5, the grade fluctuations in the simulated images (B, C and D) are much higher than
the single Kriging model (A). Although Kriging can only produce a single model, the number of realisations

are fairly extensive.
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3-5 Stochastic conditional simulation algorithms

We briefly review the stochastic conditional simulation algorithms that are used in this study and refer the
interested reader to the relevant chapters of Goovaerts (1997) and Deutsch and Journel (1998) for more
details.

Let z(u) denote a spatial distribution where z is a random (RV) variable. It can be shown that the N point

multivariate distribution can be decomposed into N- one point conditional cdf (Goovaerts, 1997).

F (ull..,,un; 21,...Zn|(n))

=F(uy;zy(n + N = 1)). F(uy_y; zy_1(n + N — 2)) -+ F(uy; z,|(n + 1)F (ug; z|(n)) (3.5)

n is number of sampled data or size of original conditioning data set, and F(uN; zy(n+ N — 1)) be the
cumulative conditional distribution (cdf) modelling the uncertainty about Z(u,). As mentioned above,
instead of picking up a single estimated value z*(u) from cdf, a series of L simulated values z'(u), [ =
1,2,..,L can be driven. Thus, z'(u) presents a realisation of (RV) of random function Z(u). This
simulation is called conditional if they are faithful to the sampled points (known data) at their locations:

Zl(ua) = Z(ua)' vi

3-5.1 Sequential Gaussian Simulation (SGS)

Sequential Gaussian simulation (SGS) is the most common practical method of producing realisations. The
conditional simulation of a variable z modelled by a Gaussian random function Z(u), consists of the

following steps shown in Figure 3-6.

After normalising all z data into y data with a standard normal cdf, a node on a simulation grid is randomly
selected; subsequently, the Kriging estimate is applied by using neighbour sample data in order to calculate
the mean and the standard deviations. Then we assume that the grade distribution of the estimated node is
a normal distribution with the calculated mean and standard deviations. Then, a value y!(u) is randomly
picked from the Gaussian distribution (cdf) and assigned to the node. Next, the algorithm repeats the
procedure for another node, including already simulated nodes, until all nodes are simulated. Finally, after

assigning a value to all nodes, back transforming the normal values y'(u) into z*(u) is applied.
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Define a random pail
through the grid points

Figure 3-6: The Gaussian conditional simulation flow chart to generate the realisation
3-5.2 Turning Band Simulation (TBS)

The Turning Band simulation (TBS) is an unconditional Gaussian simulation algorithm which is designed
to reduce the dimensional of simulation from 3D to one-dimensional by projecting each node in 3D on 1D
lines (L). First, a set of n lines with different random directions partitions the 3D space is generated. Then,
each node in 3D is projected on each of the n lines. After that, the value for the each node is estimated as
the sum of the simulated values, which come from the n lines. After completing the unconditional
simulation procedures, the model is finally conditioned by sampled data. It is important to note that the
number of lines should be large enough to provide smooth 3D partitioning and also allow for the quality of

the simulations.

However, this simulation algorithm may have an error caused by approximations used in the TBS, such as
the finite number of lines (L).

Figure 3-7 illustrates the grid value for the X point z;(X) in the first quadrant that will be estimated as the
summation of the simulated values obtained from the projections of this point onto the simulated values

from the eight 1D lines.

25(X) = %;z(xi) (36)
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Figure 3-7: Simulation value at the point X using the Turning Band simulation (TBS)

3-5.3 Sequential Indicator Simulation (SIS)

If we want to avoid the assumption of multivariate normality, which is the common assumption for both
mentioned algorithms, the Sequential Indicator Simulation (SIS) is the alternative. The algorithm is the
same as SGS; however, in this method the indicator Kriging (1K) at various cut-offs estimate the conditional

distribution function at each node and simulated values are randomly picked from these local distributions.

IK needs a series of threshold values between the smallest and largest values in the data set. These
thresholds are usually call IK cut-offs and are used for drawing the variograms and generate the cdf of the
estimation point. Traditionally, the nine deciles of the overall distribution of de-clustered data are selected
(Journel, 1982). To illustrate, the first decile could be 10% of samples with a grade below and 90% with
the grade above; the second 20% of samples below and 80% above. But there is a simplified form of IK
called multiple indicator Kriging (MIK). MIK has just one variogram model, which comes from the
indicator variogram at a cut-off of the median of the grade distribution. We use this type of Kriging to

generate SIS in this study.

40



3-6 Relation between stochastic simulation algorithm and the space
of uncertainty

The concept of space of uncertainty and its related issues, such as of equi-probability and independency of
realisations, reproduction of covariance matrix and sampling from random function, have been explained
in this section. There are generally two ideas about the concept of the space of uncertainty (Goovaerts,
1999). The first group believes the space of uncertainty has to be theoretically defined outside any
simulation algorithm. The other groups define the space of uncertainty through the simulation algorithm

including all possible realisations that the simulation algorithm can generate.

In this study we follow the second idea and show the properties of the space of uncertainty by producing

many conditional simulations of a single geological model.

3-7 Transfer function

For practical problems, transfer functions apply on the space of uncertainty to yield a distribution of the
output value, which is called ‘response’. Mathematically, this means that the transfer functions are applied
on all generated realisations and not only produce a distribution of possible project indicators, but also make

create this new space, which is commonly named ‘response’.

Transforming a variable using any mathematical function, for example y; = f(x;), can be divided into two
following transformations: linear transformation and nonlinear transformation. A linear transformation can
keep linear relationships between variables and parameters. Thus, the correlation between x and y would
be the same after a linear transformation. In addition, the nonlinear transformation depends on what kind
of function is used; increases or decreases linear relationships between variables and parameters; and, thus,

the correlation between x; and y; would be completely changed after the transformation.

A transfer function is a term used to describe a generally non-linear function, mathematical model or
algorithm used to describe a process and predict its behaviour, namely responses. A transfer function may
be an algorithm used to optimise the design of an open pit mine (for example, LG) requiring as input the
spatially varying properties of an orebody together with other parameters. Alternatively, it could require a
three-phase reservoir flow simulator as the spatially varying rock properties of the reservoir in addition to
flow characteristics and engineering specifications or, similarly, a simulator of contaminant flow. The

predictions from transfer functions may be evaluated over each realisation of input parameters generated
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with stochastic simulations so as to obtain an uncertain distribution of the response parameters that reflect
the spatial variability and uncertainty in the parameters of interest. Examples of parameters of interest may
be the production schedules in a mine over the life of the mine, or the production curved on a petroleum
reservoir or the cash flows from oil or mineral production, or the parts of a contaminated site which needs

to be remediated.

The following sources contain a few transfer functions which have been applied on generated realisations
in order to make ‘response’: Qureshi and Dimitrakopoulos (2007) , Gotway and Rutherford (1993), Qureshi
(2002) and Goovaerts (1999).
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Chapter 4
4 Data preparation, geostatistical analysis and simulations

4-1 Introduction

In this chapter, we briefly explain the data (as raw material) and methods that are used to generate
realisations (as the final stage of this chapter). This Chapter contains the following two different datasets
that were selected to illustrate four different purposes in this thesis such as mapping the space of uncertainty,
realisation reduction, evaluation of stochastic simulation algorithms and risk based mine design method.
We briefly explain the two dimensional (2D) and the three dimensional (3) data sets.

This two dimensional (2D) data set was first used by Isaaks and Srivastava (1989)to illustrate geostatistical
concepts throughout their book called ‘4n Introduction to Applied Geostatistics . This open source data set,
known as the Walker Lake data set, is derived from a digital elevation model in the Walker Lake area near
the California-Nevada border, in the USA, and is a well-known data set which is used to illustrate different
geostatistical techniques. This data set is actually considered in two forms: an exhaustive data set, including
all data points (real case) and a smaller collected sample data (from the exhaustive data set). Both contain
three different continuous variables named U, V and T. The actual meaning of these variables is not given

but they are viewed as concentrations (in ppm) throughout the book.

As the majority of the statistical and geostatistical parameters of the Walker Lake were known, the
calculation which is required prior to generating the realisations, such as data normalising and Kriging

estimations, is not mentioned here.

As the Walker Lake data set is two dimensional, it cannot be used for illustrating the methodology in the
risk based mine design. Thus, a three-dimensional data set from a typical disseminated copper porphyry
deposit is used to illustrate that. The data set is based on a total of 14,500 m of drilling in 100 diamond drill
holes (see Figure 4-1). As there is no statistical or geostatistical information about this deposit, all the steps
required for simulation, including data preparation, database setup, statistics analysis, compositing,
variography, modelling, Kriging and normalising the data were devised for this case alone, which included

time consuming tasks.
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4-2 Walker Lake data set

The Walker Lake data set consists of the following three measurements: V, U and T, each of 78,000 points
on a1l x1m grid (in this study, only the measurement V is used). From this extremely dense data set a

subset of 470 sample points has been selected to represent a typical sample data set.

The complete set of all information for the 78,000 points is called the exhaustive data set which can be
assumed as a population of interest or reality; subsequently, the smaller subset of 470 points is called the

sample data set, which is supposed to be a representative of the reality.

Figure 4-1 shows the sampled points layout. As it can be seen, some of the samples were collected on a
regular grid; however, on the west side samples were taken in clusters because of the greater interest in
sampling in the high grade area. Figure 4-2 shows the distribution of V in the exhaustive data set and sample

data set, respectively.
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Figure 4-1: The sampled points layout of Walker Lake data set, high grade area has been sampled in more

than the other area causing a clustered of sampling
4-2.1 De-clustered statistics

As it can be seen in Figure 4-2, the mean value of the sample grades is completely different from the true

mean value of the exhaustive data set. The main reason of this issue can be found in Figure 4-1 as the
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clustered nature of sampling from points in the Walker Lake data set causes this significant difference

(those samples are not on a regular grid).

This introduces local sampling biases. For this reason, the mean value of the sample grades may be un-
representative. However, it is possible to estimate the “de-clustered” mean (there are a few methods for this

estimation).
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Figure 4-2: The histogram of exhaustive data (left side) set vs. the histogram of sample data set (right

side) including significant difference between their average grades (V)

This is an estimate of the mean of the samples with elimination of bias due to sample clustering. It is an
approximation of the mean of the deposit volume. Figure 4-3 shows the declustered histogram of the sample

data which approximately has the same mean of the exhaustive data set.
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Figure 4-3: Declustered histogram of the sample data, which approximately has the same average grade of

the exhaustive data set
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4-2.2 Variogram models

As mentioned earlier, we do not bring any calculation required prior to generating realisations. However,
regarding the importance of variograms, the experimental and model of normal score variograms and
indicator variogram are mentioned here. The experimental variogram was calculated for measurement V
for both the total V grades and normal scores. Figure 4-4 shows normal score experimental variograms and
their models. The variogram sets were calculated in the X, Y orthogonal directions, while the two-stage
spherical models were used to model the experimental variograms. This is equivalent to the variogram

model parameters listed in Table 4-1. This variogram is used for generating SGS and TBS realisations.

For generating SIS realisations, indicator variograms have to be calculated. Figure 4-5 shows the
experimental indicator variograms and their models calculated for measurement V. The variogram sets
were calculated in the X, Y orthogonal directions and one-stage spherical models was used to model the
experimental variograms. This is equivalent to the variogram model parameters listed in Table 4-1.
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Figure 4-4: Normal score experimental variograms and their models in two major directions for the

Walker Lake sample data set
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Note that instead of calculating and modelling the indicator variograms at each cut-off a simplified form of
indicator variogram (just one variogram model) derived at a cut-off corresponding to the median of the V

grade distribution is calculated. This variogram is used for generating SIS realisations.
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Figure 4-5: Indicator experimental variograms and their models in two major directions for Walker Lake

sample data set

Table 4-1: Parameters for the variogram models for the Walker Lake case

First structure | Second Structure
Type Model Azimuth | Nugget | Sill Range Sill Range
Normal Score Two-stage
Variogram spherical models 70 0.12 03 20 06 40
Normal Score Two-stage 160 | 012 | 03 | 40 | 06 85
Variogram spherical models
Indicator Variogram | One-stage spherical | 4¢ 009 | 025 | 20 : :
models
Indicator Variogram | One-stage spherical | 5 009 | 025 | 50 - -
models
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4-2.3 Generated realisations and models

Three different conditional simulation algorithms are applied on the normalised sample data set on the
blocks size 5 x 5m. Two of the algorithms are based on Gaussian distribution hypothesis, namely
Sequential Gaussian Simulation (SGS) and Turning Bands simulation (TBS). The other algorithm,
Sequential indicator simulation (SIS), is based on non-Gaussian distribution. Table 4-2 shows the number

of generated realisations using the mentioned algorithms in two different steps or two different seeds.

Table 4-2: Number of generated realisations using three simulation algorithms in two different steps

Simulation algorithm Step 1 Step 2 Total
Sequential Gaussian Simulation (SGS) 450 600 1050
Turning Bands Simulation (TBS) 450 600 1050
Sequential indicator Simulation (SIS) 650 - 650

Further to the generated realisations, three different types of block models are estimated by using a block
size 5 x 5m. The first type is estimated by Kriging; the second type by averaging the total number of each
simulation algorithm, which is normally called E-type (three different E-type models); and the third model

is based on Exhaustive data set.

For example, Figures 4-6, 4-7, 4-8, 4-9 and 4-10 present images of the Kriging Model, the Exhaustive
Model and three generated realisations selected from the total generated realisations of SGS, TBS, SIS with

their histograms, respectively.

Note that all generated realisations contain the same variograms, the same conditional points and
approximately the same histograms; however, by visually comparing the colour realisation, the differences
in the images are revealed (classified as dissimilarity). These differences cannot be described by

geostatistical parameters.
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Figure 4-6: The Kriging model and its histogram of measurement V including the smoothing effect which results
from the Kriging estimation which can be easily seen. The histogram has higher minimum and lower maximum

of V rather than exhaustive data set and the other generated realisations and thus contains the lowest variance
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Figure 4-7: Exhaustive data set model and its histogram of measurement V. V grade varies from 0.0 to 1378

with standard deviation 228.6; the shape of grade distribution is different from the Kriging model
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Figure 4-8: SG realisation and its histogram of measurement V. V grade varies between 0.0 t01403 with
standard deviation 229.4 (no smoothing effect); the shape of grade distribution is the same as the Exhaustive

data set
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Figure 4-9: TB realisation and its histogram of measurement V. V grade varies between 0.0 t01316.4 with
standard deviation 234.3 (no smoothing effect); the shape of grade distribution is the same as the Exhaustive
data set
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Figure 4-10: Sl realisation and its histogram of measurement V. V grade varies from 0.0 to 1315.2 with
standard deviation 228.7 (no smoothing effect); the shape of grade distribution is the same as the Exhaustive

data set

4-3 Copper porphyry data set

A typical disseminated copper porphyry deposit with following geological feature is used in this study to
illustrate the methodology not only for quantifying the space of uncertainty, but also for an application of
this approach to the risk based mine design method.

The mineralisation is hosted in quartz-monzonite porphyry (QMP), which has undergone several phases of
hydrothermal alteration common in porphyry systems. The economic mineralisation appears as small veins
and disseminated grains, primarily in the QMP. No preferred orientation in this mineralisation has been
observed although it is thought to parallel the dykes and main faults. Mineralised zones (domains) have
been classified by the degree of Leaching and Supergene enrichment of the original hypogene sulphide.
Primary mineralisation and high grade economic mineralisation occurred within the Supergene zone. This
conforms to a classical porphyry copper style model, but on a small scale. We focus on a single estimation
domain, called supergene, containing 48 Mt of measured and indicated geological resources. Within the
supergene domain, the copper grades are determined for a set of 413 six meter composites from the drill
holes. The mean copper grade and the standard deviation are 0.81% and 0.35, respectively. Figure 4-11
shows the histogram of copper grade distribution in the supergene zone. The block model contains 2805
blocks of 25 x 25 x 12.5 (x,y and z direction) size.
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Figure 4-12: The exploration boreholes layout of the copper porphyry deposit

After verification of the exploration database a geological, mineralogical and structural model, the final
geological model was developed for deposit. All models were made using Datamine Studio software. Figure
4-13 shows the North-south (6180 N) section of the orebody with three different domains, namely Leached
& Oxide (blue), Supergene (green), Hypogene (red) and closely located boreholes.
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Figure 4-13: North-south section showing domains (blue is Leach zone, green is Supergene zone and red
is hypogene zone) and closest boreholes from the copper porphyry deposit

4-3.1 Sample Compositing

The sample interval length for the drilling is generally about 2.0 m. Composites are used to reduce the
impact of using different sample lengths on the geostatistical support. A composite length of 6.0 m was
chosen for this resource estimate as it is half of 12.0 m, the bench height, and probably close to a Selective
Mining Unit (SMU). During compositing there is some loss of data, which is probably acceptable
considering that the introduced bias in the Supergene is minor, at around 0.1%, which will be well within

the margin of accuracy for this estimation.

4-3.2 Variograms

Experimental variogram maps were calculated using 6.0 m composite samples for total copper grades and
its normal scores; the variograms map sets were calculated in the x,y and z orthogonal directions. One
stage spherical models were used to model the experimental variograms with parameters shown in Table
4-3. The variogram results revealed that the model has a high nugget effect, which confirms high small
scale variations over the supergene zone. Based on that, we expect to have a high grade variation in the
realisations. Figure 4-14 illustrates the normal score variograms and their models used to generate SGS

realisations.
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Figure 4-14: Normal score experimental variograms and their models in three major directions

Table 4-3: Parameters for the variogram models for Cu and its normal score for copper deposit case

Models Nugget Sill Range (E-W) | Range(N-S) | Range(2)

Variogram 0.035 0.119 129.5 140.2 65.3
Normal Score Variogram

0.32 0.68 100 115 77

4-3.3 Generated realisations and models

In order to better present the effects of spatial continuities (variogram ranges) and variability (variogram
sills) on the space of uncertainty unconditional sequential Gaussian realisations, two types of simulation,

namely unconditional and conditional, are used.

The unconditional simulation is applied, first, to generate three series of 3D-realisations with parameters
shown in Table 4-4. For each set of realisations, the variograms are isotropic spherical, the search
neighbourhood is spherical and there are no nugget effects. Unconditional simulation algorithm applies on
normal score data, using the same grid (the copper porphyry block model) for generating unconditional

realisations.

The next series (400 realisations) is generated using conditional sequential Gaussian simulation (SGS) with
the variogram parameters shown in Table 4-4. Two images of these generated realisations and are shown
in Figures 4-16, 4-17 (with plans of the deposit).
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As it is seen, like in the Walker Lake case, the realisations contain the same variograms, the same

conditional points and approximately the same histograms, but they are different from each other.
Further to the generated realisations, two types of block models are estimated. The first type is estimated

by Kriging (see Figure 4-15) and the second type by averaging 400 realisations of conditional sequential

Gaussian simulations (E-type).

Table 4-4: Parameters for the variogram models for unconditional realisation case

oo | Mot s | TR T Roee
Unconditional simulation
Series 1 100 0 1 500 500 500
Series 2 200 0 1 250 250 250
series 3 100 0 1 100 100 100
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Figure 4-15: A plan view of the Kriging model and its histogram of copper grade including the smoothing
effect, which is the result of the Kriging estimation and can be easily seen; the histogram has higher
minimum (0.2%) and lower maximum (1.6%) of Cu rather than generated realisations, and thus has the

lowest variance
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Figure 4-16: A plan view of realisation No.12 and its histogram of copper grade, Cu grade varying from

0.1% to 1.8% with standard deviation 0.264 (no smoothing effect); the shape of the grade distribution is the

same as the sample data set
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Figure 4-17: A plan view of realisation No.31 and its histogram of copper grade, Cu grade varying from

0.1% to1.8% with standard deviation 0.273 (no smoothing effect); the shape of the grade distribution is the

same as the sample data set
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4-4 Conclusion

As we mentioned in this chapter, the data preparation (for both cases) involved many different tasks such
as statistical analysis and geostatistical interpretations, which have been accomplished in its totality.
However, some of these tasks were not fully explained here as many of these data preparation activities are
routine and it is not the main aim of this thesis to describe them. It is obvious that the methodologies, which
will be discussed later, are generally applicable to any kind of data set, those data sets being just two

examples.

Based on the two mentioned data sets (2D and 3D) applying the geostatistical study, estimation and
simulation, the sets of different realisations were generated by three geostatistical simulation algorithms
(SGS, TBS and SIS). As was explained in chapter 3, each simulation algorithm uses different algorithms
to generate the realisation; therefore, the space of uncertainty, where created by these algorithms, should
be different. Although all conditional realisations are faithful to hard data, histogram and spatial correlation
(\Variogram), there is no parameter that can provide further information about high order statistics for
realisations. In other words, the space of uncertainty consisting of all generated realisations cannot be
defined by low order statistics, while the shown images about the few generated retaliations (2D and 3D)

in this chapter are different from each other.

In order to extend the space of uncertainty and having enough spatial variability of parameter V in the
Walker Lake case and Cu in copper porphyry case, the number of generated realisations in this study is
much higher than what is normally generated for assessing the variability and uncertainties of parameters

in geosciences.
These series of generated realisations are provided to verify the performance of the methodology in

assessing and mapping the space of uncertainty, the impact of changing the geostatistical parameters on the

space of uncertainty, as well as comparing the output of three different simulation algorithms.
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Chapter 5

5 Metric space

5-1 Introduction

In the entirety of this thesis, the word ‘space’ is used several times, but what does ‘space’ really mean?

In ancient mathematics and also in the meaning used in everyday life, ‘space’ denotes a geometric
abstraction of the three-dimensional space observed. This fundamental role or method used since Euclid,
the Greek mathematician, construed a logically coherent framework for the idea of ‘space’. Thus, it is called
Euclidean space. The new concept of ‘space’ in Mathematics constitutes a set with objects containing a
structure. For example, in this thesis, a set of generated realisations (objects) can create a space if a structure

can be defined between them.

Figure 5-1 shows a hierarchy of mathematical spaces with the inner product space inducing a norm space.

The norm induces a metric pace. The metric space induces a topology.

Metric spaces

Inner
product
spaces

Figure 5-1: Hierarchy of mathematical spaces

The metric space is used in this thesis as the proposed methodology used for calculation and measurement
of dissimilarity between the realisations is a distance-based method, which satisfies the properties of this

space.
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5-2 Metric space

This section briefly explains some basic and essential concepts, terminology and definitions, which are
important for modelling uncertainty in a metric space and are used in this thesis. For the interested reader,
further background on what is covered here may be found in the following references: Mukherjee (2005),
Shirali and Vasudeva (2006) and O'Searcoid (2006).

Metric space is a set which consists of a pair (X, d), where X is a set, and d is called distance function, d :
X X X — R can be any notion of distance between the set elements. Distance functions satisfy all of the

following properties expected of a notion of distance:
Forallx,y € X:

1. Non-negativity: The distance between two points is a nonnegative real number

dyy = 0 (5.1)

2. Zero implies identity: The distance between two distinct points is strictly positive
dyy =0if x=y  (5.2)
3. Symmetry: The distance from point x to point y is the same as the distance from point y to point x
dyy = dyy (5.3)
4. Triangle inequality: Given a triangle xyz, the length of any side is less than or equal to the sum of
the lengths of the remaining sides

dyy < dy, +d, forallz (5.4)

There are many distance functions which can satisfy these requirements (see Table 5-1). Among these
distance metrics, the Euclidean distance is the most commonly used because of the simplicity of the distance

function In Euclidean norm R™ (a small sub set of metric space) the notion of distance d Vx,y €R"

Xy’
is defined as below:

dyy = |lx =yl (5.5)
1

llxll = Cef + -+ + x2)2 (5.6)
1

Iyl = @f + -+ )2 (5.7)

Table 5-1 shows some of the common distance functions that may be used for dissimilarity measure. A

notion distance between sets is a key ingredient in quantifying dissimilarities. This notion of distance
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depends on the application; must be meaningful; and must be able to explain what causes the dissimilarity

between sets.

As explained above, a metric space is represented by distances between points (which are called interpoint
distances). To describe the vicinity between the points in the metric space, neighbourhood radius (as
mentioned below) is generally used. A neighbourhood of a point is a set containing the point where you
can slightly move it without leaving the set.

In a metric space (X, d), neighbourhood of a point C is a set of the points {xy,..., x,} which are located
inside an open ball with centre x; and radius r, in such a way that d(x;, C) < r. Radius r is called

neighbourhood radius.

Table 5-1: Some of the common distance functions that may be used for dissimilarity measure (Webb and
Copsey, 2011)

Dissimilarity measure Mathematical form
1
P )7
Euclidean distance d, = Zm —y)
i=1
P
City-block distance d.p = Z Ix; — vil
i=1
Chebyshev distance dep = max |x; — ;|
I

1

r m
Minkowski distance of order m dy = {Z(.r; - _\,-‘;)’”}
i=1

p.r
Quadratic distance dg = Z Z(x,- — ¥ Qij(xj — ¥j).
i=1 j=I
Q positive definite
5 |xi — yil
Canberra distance deq = Z :
i=1 Xt
Nonli dist d H d,=D
onlinear distance =
" 0 d,<D
Y xivi

ngular separatior
Angular separation

/2
[ X ]
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It should be mentioned here that the common definitions of the Euclidean spaces such as coordinates, axis,
direction, quadrants, geometric shapes and plane are quite meaningless in the metric spaces. However, there
are a few techniques to embed a metric space into the Euclidean space (R™) by assigning coordinates to the

points, which is explained later.

5-3 Kantorovich Metric

The transportation problem has had an important role in mathematical linear programming due to its general
formulation and methods of solution. The original transportation problem, formulated by the French
mathematician Monge in 1781(Vershik, 2005), consists of finding an optimal way (minimal cost) of
transporting different piles of sand with total volume of V into holes of the same total volume; meanwhile,
all piles are connected to the holes and, therefore, the piles or even a few of these piles may be transported
between holes. In the 1940s, the Russian mathematician and economist Kantorovich introduced a relaxed
formulation of the problem and proposed a variational principle for solving the problem (Deng and Du,
2009).

Distance can be calculated and measured between patterns, objects, subsets, or sometimes between groups
of objects, or even probability density functions (PDFs). Kantorovich distance belongs to the latest group
and is generally used to compute the distance between probability density functions or histograms (in case
of discrete data). That requires a notion of distance between the basic features that are aggregated into the
distributions, which is often called ground distance (Deng and Du, 2009). Before going through the formal

Kantorovich metric, it is essential to explain the two following terms in the context of metric space:

Definition 1: A metric space (X, d), is called compact if every sequence in X has a convergent subsequence.

A set Y of X is compact if every sequence in Y has a subsequence converging to a pointin Y.

Definition 2: A function p from metric space X to the extended real number line is called a measure if it
satisfies the following properties:
uw) =0,vucX (5.8)

u(@ =0 (5.9)

u (U ui> =) wuw)  (5.10)

4
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And a measure is called a probability measure if its total measure is equal to one(u(X) = 1).

The Kantorovich metric provides a way of measuring the distance between two distributions.
Let (X,d) a compact metric space and two u", u° are probability measures on X and the Kantorovich

distance between u”, u® is defined by the following formula:

DQT, 1) =sup{|ffd(yr)—ffd(u5) A f < 1} (5.11)

If () =)
d(x,y)

Kantorovich metric can be defined in the following format as well. This alternative explanation is closer to

Il = supxzy f:X->R (5.12)

what it is used in the thesis.

Let (X, d) acompact metric space on X and & = {u5!,---, 455} set of probability measure on X, V z € X if
pt € & then [ d(x,z) du®t(x) < o,
Let M(ust, us?) set of all probability measure on space X X X with marginal measures 5t and us2.
— 1 — 2
If u € M then fyexdu(x,y) = pt(x) and [ _, du(x,y) = p*(x).

Regarding what was mentioned above, for u51, u$? € & Kantorovich can be defined as below.

DG, ) = inf { f A0 y)dCey): 1 € M i) (5.13)

In some contexts, Kantorovich distance may be known as the Earth Mover's Distance (EMD). The EMD
between two distributions, namely histograms, is the minimum required work for changing one histogram

into the other or the minimal work required to transform the histogram r into the histogram s.

5-4 Similarity in Metric space

The concept of similarity and dissimilarity as a method has been used in many technical fields, such as data
mining; image processing; pattern recognition; machine learning; and classification and categorisation
between the realisations (objects or patterns). The notion that " similarity-based methods (SBM) are a

generalisation of the minimal distance (MD) methods" (Duch and Grudzinski, 1998) may be able to convey
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the idea contained in the method of similarity and dissimilarity. That is, similarity and dissimilarity can be

measured in a metric space by minimising an applied distance function on realisations.

Considering the distance function D is applied on a given set of § generated realisations, the distance
function indicates how far pairs of realisations are from each other in a metric space, similar to Euclidean
distances between two points in R™. Thus, dissimilarity between all the pairs of realisations, namely
interpoint distances, can be calculated for the S(S — 1)/2 distinct pairs of realisations; consequently, the
square symmetric distance matrix S x S, which is usually called dissimilarity matrix, is constructed. The
dissimilarity matrix has zero diagonal elements D;; = 0, as there is no any distance or dissimilarly between

a point and itself.

Calculating the dissimilarity matrix creates a structure between points (realisations) in a metric space, which
can be used for any further study such as, classification, clustering and sampling inside the metric space,
namely the space of uncertainty.

5-5 Multi-dimensional scaling (MDS)

As described before, although the data that we deal with (in this thesis) is in the form of pairwise similarities
or dissimilarities between generated realisations, it can be presented in the form of points; however, these
points in the metric space do not possess any coordinates. Therefore, the data cannot be visualised to get a
sense of how near or far points are from each other. To solve these problems Multi-dimensional Scaling

(MDS) techniques are applied on the dissimilarity distance matrix.

MDS techniques can embed the points from a metric space into the Euclidean space (R™) in such a way
that the inter-point distances after embedding are close to what they were (Cox and Cox, 2000). That is, for
a given dissimilarity matrix S xS of distances D,;, the MDS techniques attempt to find S points
{y1,---,ys}in the Euclidean space R™ for some specified n, such that the distance array

D, := |ly, — ys|I? approximates the array D,.;. For visualisation purposes, the chosen n has to be 2 or 3.

Although there are many different MDS techniques for embedding, all of them use approximation to find
the best points {y;, -+, ¥s}. The following factor, which is called "Stress" in the Kruskal MDS method
(Kruskal, 1964), can describe the accuracy of this embedding. The Stress factor has to be minimised to get
a better embedding result. The Stress factor would be zero, if the MDS can perfectly reproduce the original

distances.
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Kruskal Stress =

le(Dlj Lj)] (5.14)
J

Zl] i

By increasing the dimension from n = 2 or 3 to larger values the inter-point distance approximation,
namely D, would usually become better, and consequently the stress factor would decrease; however, in
most of cases the decreasing trend stops and finally becomes flat. That means that adding more dimension
into R™ could not improve the stress factor. Figure 5-2 schematically shows the number of dimension

versus Kruskal stress.
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Figure 5-2: Schematically illustration of the relation between dimensions of embedding space against

Kruskal Stress

Nevertheless, in this study, we advocate MDS for visualisation purposes only. This means that all further
calculation on the dissimilarity matrix would be based on original distances and not on approximation. The
reasons are the following: first, one finds optimal subsamples based on the original distances D,.; and not
approximations. In addition, the objective minimised has a physical meaning in terms of ‘work’ done. Next,
it contains the flexibility of optimising over the weights assigned to the subsamples. Finally, optimality (or

the solution quality) is guaranteed and the process is reproducible.

5-6 Clustering in metric space

For a given set of data or objects, the classification process is about accurately assigning labels to data by

a defined rule, which is generally called supervised classification.

Clustering, unlike the classification, is about the class label of the data or objects which are unknown.
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That means that the clustering process does not rely on predefined classes therefore that is called
unsupervised classification. Objects or data within a cluster are more similar to each other and are also
very dissimilar to objects in others clusters. The clustering technique or unsupervised classification has

been widely used in different fields and that is a very powerful tool in data mining.

There are many clustering methods; however, they can be mainly divided into the following three groups,
namely distance-based method; density based method; and hierarchal clustering method (Webb and
Copsey, 2011).

The clustering method used in the thesis is distance-based. Generally, in this study, we refer to the
clustering process as an optimisation problem, which tries to classify objects, data and patterns into
individual sub-collections or clusters using Kantorovich distance (as criteria for the dissimilarity). We will
explain our methodology (clustering algorithm) to optimally subsample a large collection of realisations
using Kantorovich distance in chapter 6.

The data clustering can be split into two following steps: selecting of the clustering algorithm and decision

of the number clusters in data set. We briefly explain these steps.

A very rich literature on clustering algorithm has been developed over the past decades; however, the most
cited and popular method for clustering, is the k-means algorithm (Han et al., 2011). It starts with an initial
solution, which is iteratively improved using two optimality criteria in turn until a local minimum is reached
(Franti and Kivijarvi, 2000). The algorithm steps are easy to implement and give reasonable results in most
cases; however, the clustering results are highly dependent on the initialisation points, that is, different
initialisation points may give different clustering results. There are several methods of clustering, such as
Hierarchical clustering, Genetic Algorithms and the Fuzzy method, which are beyond the scope of this
thesis (Webb and Copsey, 2011).

One of the main issues in any type of clustering method is to make a decision about the number of clusters
which have to be made prior to the execution of the algorithm. This needs to include the user in the second
subclass, called the number of clusters in data set. A few techniques can be used here, the elbow method
being the most commonly method to find an appropriate number of clusters. Assuming that the k-means
algorithm is chosen, the elbow method selects number n as the optimum number of clusters if n + 1 cluster
does not add sufficient information or give much better modelling of the data. More precisely, if you graph

the percentage of variance explained by the clusters against the number of clusters, the percentage of
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variance initially increases dramatically and later starts to flatten out as the optimal number of clusters

increases. Thus, the elbow of that graph angle in the graph) would correspond to the optimal number of
clusters (see Figure 5-3).

100 —

90 /R

80

Number of optimum Cluster

40 /

Relative improvement %

1 2 3 4 5 6 7 8 9 10
S- Number of clusters

Figure 5-3: The elbow method for indicating the optimal number of clusters. The optimum number of

clusters is 3
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Chapter 6

6 Description of methodology

6-1 Introduction

It was explained in chapter 4 that all conditional realisations are faithful to hard data, histogram and spatial
correlation (Variogram). In addition, there is no parameter that can provide further information about high
order statistics for realisations and, therefore it is obvious that two realisations can be significantly different
in ways that cannot be captured by descriptive geostatistics. Furthermore, by visually comparing the colour
realisation images (if they are 2D), we can easily see uncaptured spatial differences, which may affect the
results of transferring functions. Although there are several different realisations, some of them are visually
more similar to each other than others. For example, Figures 6-1 and 6-2 present images of four realisations
selected from 450 generated realisations (SGS) of the Walker Lake data set. By visually comparing these
images, we conclude that the images of Figure 6-1 (images A and B) are closer to each other than the images
of Figure 6-2 (images C and D).

In this framework, the pairwise dissimilarities between realisations can be used to make a relation or a
precise mathematical structure between them, which can describe the variability of parameters of interest
(for example, grade) inside the space of uncertainty. This method provides a powerful tool to address how
realisations are connected to each other and how this connection (structure) can answer some controversial

guestions in geostatistical simulations.
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Image B

Figure 6-1: Selected realisations (SGS) of Walker Lake data set that are very close to each other

Image D

Image C

Figure 6-2: Selected realisations (SGS) of Walker Lake data set that are far from each other

Moreover, quantifying this spatial dissimilarity can be a powerful technique to assess and map the space of
uncertainty. Such quantification of the space of uncertainty makes it possible to compare the impact of
changing the geostatistical parameters or even simulation algorithms on the space of uncertainty. Our
methodology has the potential to consistently compare the output of different geostatistical simulation
algorithms, such as SGS, sequential indicator simulation (SIS) and turning bands (TBS) simulation.

Furthermore, if we place any deterministic geological reserve estimation, produced, for example, by
Kriging, inside the space of uncertainty, the method can easily reveal how dissimilar other realisations are
to the estimated model. In other words, measuring how close global accuracies (different realisations) are

to the local accuracy (estimation) is now possible.

68



Moreover, the mining processes, such as mine optimisation, open pit design and long term scheduling, are
only able to handle relatively modest numbers of realisations. It is difficult to say how many realisations
are required to achieve a prescribed level of accuracy based on a very large number of possible realisations.
This method has the ability to construct a collection of realisations so that the overall uncertainty is captured
in a way prescribed by the user. For example, in open pit design, because of the smoothing effects, the NPV
outcome from an ordinary Kriging model (estimation) is usually higher than the mean of the distribution of
NPVs of conditionally simulated realisations (Dimitrakopoulos et al. 2002). This means that selecting
realisations that are not close to the Kriging model is an effective way to indicate the range of possible NPV
estimates; while selecting realisations that are far from one another indicates the range of geological
uncertainty affecting the open pit mine design. To quantify this spatial dissimilarity, we present the
Kantorovich distance as an important and intuitive measure of dissimilarity. This distance may be used to
detect and identify the structural relationships between realisations and has obvious applications to
clustering, selecting representative realisations and visualising uncertainty. In this chapter, we focus on the
concept and methodology of our approach rather than the applications. In the next chapter, we present

applications based on the concepts introduced here.

6-2 Definition of dissimilarity by Kantorovich distance

A notion of ‘distance’ between generated realisations is a key ingredient in quantifying the space of
uncertainty and relative matters. This notion of distance must be geologically meaningful. We now begin

to describe the necessary background constructions and the Kantorovich metric.

Throughout this chapter, we assume that our block model contains N blocks; we denote the three-

dimensional coordinates of the centre of block i by ¢; ,i =1,---, N.
Let X = {1, ..., N} and we define a metric (or distance function) d : X x X —» R* as
adi,j) = ||cl-—cj||2 1<ij=N, (6.1)

Where ||. ||, is the standard Euclidean norm on R3 (between the centres of blocks i and j).
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Let us consider a particular pair of conditional simulations r and s. In the simplest setting, we assume that
there is only one material of interest (for example, copper). For each block i = 1,---, N, simulation r will
assign a mass of material, which we denote by m] . Similarly, from simulation s we have m?, i = 1,---,N.
We assume that ¥, m! = YN, mJ =: M. this is not unreasonable in view of the law of large numbers
and the fact that N is typically very large. Also, all generated realisations have to have approximately the
same average grade (metal content); and otherwise, the realisation would have a bias and should be rejected

from the set of realisations.

We define a probability measure u” on X by u" ({i}) = m]/M; similarity we defineas p° . The
probability measures u"and u® describe the normalised distribution of mass amongst the N blocks in

simulations r and s, respectively. We denote the space of all probability measures on X by M (X).

We are now applying the Kantorovich metric D:M(X) x M(X) - R™ in our setting. For further

background on the Kantorovich metric, please refer to chapter 5 and the references therein.

DG = i o (D DRI = O D) = w1 < 6 =1}

(6.2)
We illustrate why this metric is a good notion of distance for conditional simulations with an example.
Consider the ‘extreme’ pair of realisations r and s, where all of the valuable material in realisation r and
s are contained in blocks i and j , respectively. Then u” ({i}) = 1,and u” ({k}) = 0,k = iand u® ({i}) =
1,and p° ({k}) = 0,k # i. The minimising @ in equation (6.2) is the probability measure satisfying
(@ N)=1 and g((k, D)) =0, (kD) # (i,)), thus D", u*) =d(@,j) = |ci — c,-||2 is the three-

dimensional Euclidean distance between the centres of block i and block j.

Thus, if these special blocks i and j are spatially close, the distance between simulations r and s is small;
the opposite is true if i and j are spatially distant. The metric d is, thus, consistent with a reasonable
geological notion of ‘distance’ between simulations. For more realistic simulations than those in example
2, where the mass is distributed amongst the N blocks, the metric d provides a sum of Euclidean distances,
weighted by how much mass needs to be transferred over these distances. Exactly how much mass needs
to be transferred is determined by the minimisation in equation (6.2). In the next section we describe how

to set up a simple optimisation problem to calculate D.
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6-3 Kantorovich distance computation

In this section we describe how to set up a simple optimisation problem to calculate distances between all
pairs of realisations (inter-point distances) to construct the distance matrix or the space of uncertainty.

Our notion of dissimilarity for realisations r and s will be based upon the ‘work’ required to ‘transform’
realisation r into realisation s. Both realisations contain approximately the same total mass M, but the
spatial distribution of mass is different. To ‘transform’ realisation r into realisation s, mass (the metal
content) must be moved between individual blocks. The total ‘work’ for moving mass will be proportional

to the mass moved and the distance moved.

N
min Z dyj £ (6.3)
i,j=1
Subjectto Y., fi° =m], 1<i<N (6.4)
L fF =md, 1<j<N (6.5)

One way to think of this transportation problem is as follows. The mass in realisation r needs to be moved
to the mass configuration in realisations. The value f;; represents the total mass in the ith block in

simulation r that is moved to the jth block in realisation s.

If blocks i and j are spatially distant, the corresponding distance penalty per unit of mass moved, d;;, will
be large and such a move will be discouraged. However, if blocks i and j are spatially close, moving mass
from i in realisation s to j in realisation r is comparatively attractive. The linear program (6.3)-(6.4) finds
the minimal amount of work (mass moved multiplied by distance moved) to turn realisation s into

realisation . This minimum amount of work defines the distance between realisations r and s.

This problem is a transportation problem and is easily solved using the simplex method or other specialised

methods.

71



6-3.1 Transportation problem

The transportation problem (TP) is a well-known mathematical programming problem classified as a
special type of linear program (LP), which tries to find the minimum cost to transport (supply) mass, goods
or any commodity from a set of sources or suppliers i = 1,---, M to a set of destinations or demanders j =
1,---,N. For example, assume there are M iron ore mines and N smelters where the iron ore that the mines
produce is consumed. Mine i has a supply of s; units, and smelter j has a demand of d; units. The cost per

iron ore unit (for example, tonne) transported from mine i to smelter j is denoted by d;; , and the number

of iron ore units transported is denoted by x;;.

Assume that the total iron ore production for all M mines, s; = Z{‘il s;, and the total demand for iron ore

for N smelters d; = Z?’zl d; is equal to each other. The transportation problem is to compute:

M N
J

i=1

Subject to:

If the total supply and demand are not equal, the given constraints are not satisfied. The equality

constraints can be written as below:
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The structure of this coefficient matrix can be exploited to improve both the time and the space required by

the simplex algorithm on a transportation problem (Rubner et al., 1998)

The transportation simplex algorithm can still be applied when the total supply s; is not equal to the total
demand d;, which is known as an unbalanced transportation problem. There are two cases: first, if supply

s¢ IS greater than the total demand d,

The goal is still to find the minimum cost to satisfy all the demand. In this case, however, there will be

excess supply after the demand has been satisfied. The LP for the unbalanced case is:

M N
Xij 4 -
=1 j

Subject to:
M
inj < St i=1,-,M (612)
N
ZXU- = dt ] = 1,"',N (613)
j
xl-jZO i=1,"',M, ]:1,,N (614)
In order to apply the transportation simplex method, we convert the unbalanced TP to an equivalent
balanced TP. This is done by adding a dummy demand n + 1 with demandd,, , ; = s —d; , and for

which d; 1= 0 (cost of transporting) for i = 1,---, M. The total demand in the modified problem is equal
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to the total supply and the minimum cost is the same for the balanced and unbalanced problems. The dummy

demand gives the suppliers a place to dump their leftover supply at no cost.

The second is in case demand d; is greater than the total supply s; ,
Similar to the first one, we can add a dummy supplier with s, ,; = d; — s, where the costs associated

with dummy supplier is set equal to zero.

A detailed description of the transportation simplex method can be found in Villani, (2003).

6-4 Construction of a dissimilarity distance matrix

One of the most important terminologies in distance-based methods, frequently used in this thesis, is the

dissimilarity distance matrix, which is explained here.

If £75 is the minimising array of mass equation (6.3), then we define the dissimilarity or distance between

realisations r and s to be

N
Dys = 2 dij £ (6.15)

ij=1

Thus, for a set of S generated realisations, the distance matrix S X S can be constructed by calculating the
pairwise distances between S generated realisations. This matrix is called the dissimilarity distance matrix.
This matrix reveals an underlying structure of variability between realisations and would be a base for any
other calculation, clustering, comparison and visualisation that may be needed to evaluated the space of

uncertainty.

As was mentioned in chapter 5, the Kantorovich distance D, satisfies all properties (honnegative,
symmetry and triangle inequality) expected of a notion of distance in the metric space. In this case, the

dissimilarity distance matrix is a square symmetric matrix with zero diagonal elements D;; = 0.

As the dissimilarity matrix is symmetric, the number of calculations of pair distance (ng) for S generated
realisation can be given by this formulang, = S(S — 1)/2. For example, for 100 realisations 4950 distance

pairs calculation should be done to construct the dissimilarity distance matrix.

74



Furthermore, note that D, (in the case of evaluating grade uncertainty) has the units of mass x Euclidean
distance, so we may interpret the quantity D,;/M as the average distance that 1 mass unit of material is
moved to transform realisation r into realisation s. D, may have different units, for example, time x

Euclidean distance.

6-5 Why Kantorovich distance is the robust candidate?

Distance metric is widely used in dissimilarity measurement. Choosing an appropriate distance function to
measure the dissimilarity for a given problem is an important step towards solving it. The main purpose of
measuring of dissimilarity between the realisations or geological block models (in this study) is to compare
two models, namely two different 2D or 3D spatial mass (grade) distributions in order to compute a single

number which evaluates their dissimilarity between them.

Our target in this study is to quantify the dissimilarity between two K dimensional datasets, hamely two
block models (K is number of blocks in a model) where each block has certain amount of mass (grade,

attribute or any feature) and also individual coordinates (x, y and z).

Geostatistics is about spatial variability of the variables (regionalised variables) that have an attribute value
and also a location in a two or three dimensional space. The key point in geostatistics is the assumption of
spatial dependency. That means, the location of data with respect to one another plays an important role in
any geostatistical analysis such as modelling, simulation, and estimation procedures. Therefore a robust
measure of dissimilarity must take into account not only the attributes, but distances between the blocks
(spatial information) as well. In the other word, we need to define a distance function that allows us to take

into account the differences in locations (spatial information) and attributes together

Although there are quite a few references which used and suggested Kantorovich distances as a robust
method for matching multidimensional distributions and dissimilarity measure (Assent et al. 2006), (Tang
et al.2013), (Coen 2007), (Jovic et al. 2007) and the most important one (Armstrong et al. 2012); we explain
here why Kantorovich is the robust distance for dissimilarity measure of the generated realisations in

comparison with Euclidean distance.

The most of distance functions (including Euclidian distance) are normally used in the context of comparing
pairs of variables, cases or in general, between two N dimensional vectors (N is number of attributes or

features). That means, these attributes or features are that basically contribute to measure a distance
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(dissimilarity) between vectors not spatial information. Therefore that would be a very common drawback
for the most of well-known distances functions. For example all distance functions are mentioned in Table

5-1 have same drawback.

6-5.1 Kantorovich distance vs. Euclidean distance

We begin by measuring dissimilarity through the Euclidean distance, and present three pairs of models
(shown in Figures 6-3, 6-4 and 6-5) to illustrate the robustness of Kantorovich distance over Euclidean
distance. We will see that all the three pair models have the same Euclidean distance (dissimilarity) from

each other, while they have very different spatial grade distributions.

If there are two vectors X and Y the Euclidean distance can be defined:

N

Z(xi - ¥i)?

i=1

d(X,Y) =

X = (xl,xz, ...,xN)

Y = (Y1'y2' ""yN)

Assume there are two block models or realisations X and Y with following attributes (see Table 6-1) or in
the other word, there are two vectors (X and Y) of blocks attributes in R°. Euclidean distance between these
vectorsis d(X,Y) = 0.40.

Table 6-1: Grades of 5 blocks in the realisations X and Y for the pairs of models 1 and 2

Block No. 1 2 3 4 5
Realisation X 0.90 0.65 0.45 0.25 0.80
Realisation Y 1.20 0.55 0.25 0.35 0.70

X = (0.90,0.65, ...,0.80)

Y = (1.2,0.55, ...,0.70)
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d(X,Y) = 0.40

As clearly shown, the dissimilarity based on Euclidean distance between these two vectors (realisations) is
only depends on root of square differences between grades (features) of the pair of corresponding blocks,
and the Euclidean distance function doesn’t take into account anything about where these blocks are (spatial
information) in the model or how far these blocks are from each other, and more important point what are
the grades of neighbouring blocks.

Now, we apply Kantorovich metric on the same blocks’ grades in Table 6-1, but for two different pairs of
models are shown in Figures 6-3 and 6-4 (different blocks combinations) to illustrate how well this metric
can handle the spatial information and attributes to gather.

Two realisations X; and Y; (block models) with 5 blocks (2D) are shown in Figures 6-3. The block size
is20 x 20, and distance between the centers of 5 blocks are shown in the matrix M1. By applying the
Kantorovich distance function, and calculating distances Dy, y, between 5 blocks of the given realisations a

measure of their dissimilarity Dy y, =15.66 is obtained.

Block 1 Block2 Block 3 Block 4 Block 5 _
0 50 28.3 50 70.7
50 0 28.3 70.7 50 | Block2

Block 1

M1 =
283 283 0 283 283| g3
50 707 283 0 50
707 50 28.3 50 o | Block4
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2 5
(0.65) (0.80) 2 5
(0.55) (0.70)
3
(0.45) 3
(0.25)
1 4 3 ]
(0.90) (0.25) (1.20) (0.35)
Realisation X, Realisation Y;

Figure 6-3: Realisation X; and Y; with 5 blocks and their grades, our approach is to computing distance
(dissimilarity) between two spatial mass distributions, namely yellow blocks and red blocks. The

Kantorovich distance between these models is Dy, y, =15.66.

Now, we keep the grades the same, but put the blocks closer to each other than what was in Figures 6-3 to
get the following block models X, and Y, (see Figure 6-4).The block size is 20 x 20, and distance between
the centers of blocks are shown in the matrix M2. By applying the Kantorovich distance function, and
calculating distances Dy,y, between 5 blocks of the given realisations a measure of their dissimilarity

Dy,y,=10.83 is obtained.

The difference between Dy y, and Dy, y, clearly shows Kantorovich distance is consistent with a reasonable
geological notion of “distance” between block models (or realisations). That means if the blocks are
spatially close, the Kantorovich distance between them is small and vice versa. That’s why we see

dissimilarity between models X, and Y, less than between models X;and Y; (Dx,y, < Dy,y,)-

It is obvious, in spite of significant and obvious differences between two pairs models, the results of not
only Euclidean distance, but also the most of distance functions for those models (Figure 6-3 and 6-4) are
not affected by changes in distance, and they are not able to distinguish any deference between these two
pairs of models, while the Kantorovich distance appears a meaningful difference (dissimilarity) between

the models.

Block1 Block2 Block 3 Block 4 Block 5 Block 1

0 20 20 283 51 ]
20 0 283 20 50 | Block2
M2 = 20 283 0 20 283 | Block3
283 20 20 0 50
Block 4
51 50 283 50 0 |
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5 5
(0.80) (0.70)
3 4 3 4
(0.45) | (0.25) (0.25) (0.35)
1 2 1 2
(0.90) | (0.65) (1.20) (0.65)
Realisation X, Realisation Y,

Figure 6-4: Realisation X, and Y, with 5 blocks and their grades, our approach is to computing distance
(dissimilarity) between two spatial mass distributions, namely yellow blocks and red blocks. The

Kantorovich distance between these models is Dy, y,=10.83. The blocks in these models are closer to each

other than the blocks in Figure 1 that’s why the Dy,y, < Dy, y,

Now, we present another example to show how Kantorovich distance can even handle swapping grades in
the models (without changing the grades) while Euclidean distance cannot reveal any difference. In the
following examples, we only shuffle the grades of pair blocks 2, 3, 4 and 5 to have the new pair of models

X3 and Y5. Table 6-2 and Figures 6-5 show the grades and these pair of models, respectively.

It is obvious these new block models are quite different from the previous one (X; and Y;), as the spatial
mass (grade) distributions are completely changed, but the Euclidean distance between them remains
exactly the same d(X,Y) = 0.40. While Kantorovich reveals this difference by showing a higher distance

Dy,y, = 18.49 (dissimilarity) between them than Dy y, .

Table 6-2: Grades of 5 blocks in realisations x5 and v, for pair of models 3

Block No. 1 2 3 4 5
Realisation X 0.90 0.25 0.65 0.80 0.45
Realisation Y3 1.20 0.35 0.55 0.70 0.25

79



2 5 2 5
(0.25) (0.45) (0.35) (0.25)
3 3
(0.65) (0.55)

1 4 1 4
(0.90) (0.80) (1.20) (0.70)
Realisation X5 Realisation Y3

Figure 6-5: Realisation X5 and Y5 with 5 blocks and their grades, our approach is to computing distance
(dissimilarity) between two spatial mass distributions, namely yellow blocks and red blocks. The

Kantorovich distance between these models is Dy, y,=18.49. The high grade blocks in these models are far

from low grades in comparison with Figure 1, and that’s why the Dx.y, > Dy y,

As is clearly illustrated through the examples, Kantorovich distance is very sensitive to any changes in
spatial mass distributions of the realisations, namely spatial locations and attributes, and is able to reveal

dissimilarly between the models very well. That’s what we really need from a good distance function.

But what is the key point in Kantorovich metric that gives it an advantage over the other distances? As that
is illustrated, we imagine the blocks grades of realisation X; (i =1,2 and 3) need to deliver into the
realisation Y; (j =1,2 and 3), therefore there are five options (in model Y;) for transporting a grade of a block
from model X; into model Y;, and the distances (spatial information) between blocks play critical role for
this mass transportation. Kantorovich distance tries to transport masses (attributes) to the nearest blocks
first. That means the Kantorovich distance in contrary to the other distance functions doesn’t act as a simple
pairwise distance between blocks, but rather is able to take into account all possible options (blocks) where
are around to the block, and gives priority to closer ones. That is what we need in geostatistics, considering
not only grades of corresponding blocks, but also the grades of neighboring blocks to measure dissimilarity

between them.
We believe that these examples proved that Kantorovich distance is a robust candidate for measuring our

intuitive notion of dissimilarity between blocks models (realisations) which may have different attributes

and features.
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6-6 Illustration of the concept with a simple example

Before going through a realistic application of this approach, we give a very simple example to describe
the proposed approach.

Assume there are just four generated realisations as given in Figure 6-1 and 6-2. By applying the
Kantorovich metric (distance function) and calculating the pairwise distances D, between the given four

images (see Figure 6-6) a measure of their similarity is obtained.

dB,D
¥
%
\

£
by

Qe

Figure 6-6: Calculating 6 pairwise distances D,. between the given four realisations

As it was mentioned before, the number of calculations of the pair distance (ng) for 4 realisations would

be 6 and the following 4 x 4 dissimilarity distance matrix can be constructed.

ImageA  ImageB  ImageC  ImageD

I'mageA 0 4,548,600 6,798,720 5,564,880
I'mageB | 4,548,600 0 6,668,630 4,936,460
ImageC' | 6,798,720 6,668,630 0 9,995, 100
ImageD \ 5,564,880 4,936,460 9,995, 100 0

As it was explained before, D,.¢ has the unit of mass x Euclidean distance; thus, by calculating the quantity

of D,.,/M the ground distances between realisations can be presented.
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Dia/M=1-00 10 0 1064

592 526 1064 0

As can be seen in the matrix above, the image A and B (Figure 6-1) are at minimum distance from each
other (4.84 m) while images C and D (Figure 6-2) are at maximum distance (10.64 m).

For visualisation purposes, we choose n = 2 or 3. Figure 6-7 shows a multidimensional scaling embedding
of the 4 realisations in R% and R3 . The interpoint distances in R® have better approximation for the pairwise

realisation distances D, than R?.

Figure 6-7: Multidimensional scaling embedding of the four realisations in R? (left side) and R3 (right
side)

6-7 Realisation reduction

We now suppose that we have constructed a large number of realisations numbered 1,...,S. With
increasing computer performance, it is possible to construct, for example, S ~ 1000 realisations for block
models of size N ~ 107 in 48 hours on a desktop PC using techniques such as SGS (it would be faster if a
direct block Kriging is used). We will assume that the collection {1, ..., S} well samples the distribution of

all possible realisations and uses this collection as the benchmark against which we compare subcollections.
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Remark 1: We remark that in practice N will typically be larger than S so this assumption is in most cases
false. Nevertheless, for many applications of realisations, many more realisations can be created than used,
whether in an optimisation process (Ramazan and Dimitrakopoulos 2004, Menabde et al. 2004, Froyland
et al. 2004, Boland et al. 2008, Tarhan et al. 2009 and Newman et al. 2010) or as part of a small collection
of possible geological outcomes interrogated by engineers or geologists. It is, therefore, important to choose
S as large as is practicable and then reproduce the variety contained in these S realisations as best as possible

with a significantly smaller number of S <« S realisations to use in optimisations or other applications.

Remark 2: Sampling (realisation reduction) from an original collection S can be done based on different
distance criteria, such as the minimum or the maximum distance between the sub-collection (sampled
realisations) and the original collection S or any other specified distance criteria which may be defined

according to the purpose of sampling.

In Section 2 we identified each realisation s with a probability measure of u* on X = {1, ..., N} and used
the Kantorovich metric to define a distance function on M (X). We again make this identification and
consider the collection G = {ul, ...,ys}. In order to optimally subsample the collection G we consider the
space of probability measures on &, M(&). Principal amongst the elements of M(&) is our reference

measure which gives an equal weight to each of the S generated conditional simulations.

S r
_ r=1 H

P:
S

(6.16)

ForS < S, we seek probability measures Vs of the form
S
Vs =) po % (617)
k=1
Whereps, 20,1 <k <, - Ps, = 1 which are as close as possible to V.

S S
Mg(S) = {vs € M(S): Vs = Z Ps 1K Z Py, =1,p5, 20,1<s5,<S; (6.18)
k=1 k=1
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We define as the class of probability measures that use at most S of the building block and probability

measures s associated with individual conditional simulations.

In order to define closeness, we again turn to the Kantorovich metric. The definition below is the same as
(6.2), except that we have replaced X with S and d with D.
For V as in (6.16) and Vs as in (6.17), we define

S
DV, V) = min RZID(MR,MI)17(;1",;11):17(#",65) —1/8, V(S u) =p1<kl<S} (619)

Following the procedure in the previous section, we have available to us numerical values for the
distances between each pair of conditional simulations s and r, namely D(u*,u"), 1 < r,s < §. Thus, in

principle, given any Vs = Ms(&) we can calculate D (V, Vs). We find

V¢ =arg vgg\l}&g) DV, Vs)  (6.20)

We will again use the idea of ‘transformation’ to transform the larger set of S realisations into a smaller set
of S realisations with minimal ‘work’. Let F.; denote the probability flow from realisation r to
realisation 1 < r,s < S. Because we are reducing S realisations to S realisations, there will be at most S
special realisations s for which E., may be greater than zero; that is, only the S special realisations in the
reduced collection are allowed to receive a positive probability flow. ‘Work” will now become a product

of the probability of E., and the distance D,.

The special realisations will be chosen using binary variables xg, s = 1,...,S, withx; = 1 signifying that
s € {s4, ..., Sg} (the realisation s is selected for the subcollection) and x; = 0 otherwise. We do not insist
that each realisation s,; r = 1,...,S have an equal probability, but that the weightings of the chosen
realisations can vary. The weight for realisation s will be denoted by w,. We state the following mixed

integer linear program (MILP) and then describe the effect of the various constraints.

S
35 = min Z D,sFs (6.21)
,X,w

r,s=1
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Subject to:

ZFM =1/S 1<r<S (622)

s=1

ZFM= w, 1<s<S§  (623)

r=1

R

x; =S (6.24)

%
1l
Jy

Nk

ws =1 (6.25)
s=1
ws<x, 1<s<S (6.26)
F.s =0, 1<rs<sS$ (6.27)

ws=0, x€{01}, 1<s<S§ (6.28)

Equations (6.21) and (6.22) ensure that the probability flow out of each realisation is 1/S and that the
probability flow into realisation s is wy, respectively. Equality (6.24) ensures that exactly S realisations are
chosen for the sub-sampled collection. Equality (6.25) guarantees that the sum of the weights wg in the
chosen sub-collection is 1. Inequality (6.26) forces the weight assigned to realisation s to be zero unless
realisation s is selected for the subsample. As in the transportation problem (6.3)-(6.6), the problem (6.21)-
(6.28) transports a probability of 1/S from the original very large collection of S realisations onto a smaller
collection of S realisations. The penalty for the probability flow from realisation r to realisation s is
proportional to both the size of the flow F,.; and the distance between the realisations D,.;. Thus, if there is
a set of several realisations with mutually small distances D,., it is likely that this set will be replaced by
one realisation from the set with all the probability of that set owing to the one realisation that now
‘represents’ that set. Having solved the MILP above, one has the minimising arrays F, £, and @. The
selected sub-collection consists of those s with X; = 1 and the corresponding weights are given by the
vector g, which has at most S positive entries. The value zg has the units of D, (massxEuclidean
distance) as F;. is dimensionless. Thus, g has the interpretation of ‘work’ required transforming all of the
S realisations into S < S realisations. The quantity zs/M has the units of Euclidean distance and thus may

be interpreted as the average distance over which a single unit of mass is moved to effect this transformation.
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6-8 Selecting representative schedules

Determining the set of realisation M in generated models set N, which can clearly represent the original set,
is a challenging problem even in commonly used clustering methods. In most clustering methods M has to
be assumed as a known parameter, which should be chosen by users.

Below we describe how sub-sampling works:

First, it is important to describe how subsampling can be used to estimate how well all N simulations sample

the limiting ‘true’ distribution of simulations.

The next step it to denote the ‘true’ distribution of simulations as V,,. If we wish to determine I(N, =), it

will be accomplished by extrapolating from known distances.

Denote ap g = d(up N, ton), 1 < P < Q < N. In practice, we will compute some of these values, the

more the better.

Denote F = {(P,Q) € z%,1 < P < Q} we will fit a function f: F - R to the ap o function obeying the

following properties:

1-f =0

(Distance must be non-negative),

2-f(P,P) = OforallP =1

(One can perfectly represent P simulations with P simulations),

3-f(P,Q) > O0forall1<P<Q

(By Lemma A.1 one cannot perfectly represent Q simulations with P < Q simulations),

4-f(P,Q) = f(P + R,Q)forall 1< P+R<Q

More realisation cannot produce a worse representation.

Once we have fitted a function f obeying these properties to our computed ap q values, we then calculate
1 — f(N,) = f(1, ) which is supposed to approximate the fractional improvement of the N scenarios

Vy over the best deterministic single simulation.
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In fact, we are estimating the fractional improvement of the best N scenarios, whereas in practice we merely
have some N scenarios. Thus, our estimations on improvement are more favourable than in reality and

estimate upper bounds on how well the N scenarios represent the limiting distribution. Two issues arise:

1. How representative would my N scenarios be of 10N scenarios?
Compute 1 — f(N,10N) = f(1,10N).

2. How much better could 10N scenarios represent the limiting distribution?
Compute 1 — f(10N,1) = f(1, ).

Following Dupacova et al. (2003) and Growe et al. (2003), we will report D(V, Vs) relative to d(V,V;),
the latter representing the “base” distance between the best deterministic approximation of V. We will also
report relative to d(Vy, V) where Vy can be the Kriging model, ‘E-type’ (average of the N realisations)
or any other model.

Define I, y to be the fractional improvement in distance from V), that one can achieve by using M

scenarios rather than the best single scenario.

d (.uM,N; Vn)

1 =1-— 6.29
My d(uyn, Vn) ( )

Similarly, define I,.,',,N to be the fractional improvement in distance from V, that one can achieve by using

M scenarios rather than the single E-type scenario.

. d(tmn, Vn)
I =1]1]-——— 6.30
M d(Vyn,Vy) ( )

Clearly Iyy=Iyy=1and Liy=1Iy =0

For brevity, we call the quantity 35 = d(u,, , Vn), 31 = d(, 5, V). Thus, 25/ represents the distance

between the optimally subsampled S realisations and the full set of S realisations relative to the distance
between the best single realisation (deterministic approximation) and the full set of S realisations. We call

the quantity the relative accuracy of the optimal S-subcollection.
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V4
Is = (1 - —5> x100% (6.31)
31

Figure 6-8 shows distance zg between the S-subsample and the full sample of S realiations (blue) and

I relative accuracy (red) for 400 realisations.

As can be seen, on one hand, by increasing the number of sub-samples the relative accuracy (Is) of the
optimal S-subcollection increases reaching 100%, if all samples are taken. On the other hand, distance zg

between samples and the optimal S-subcollection decreases to zero if all samples are taken.
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Figure 6-8: Distance ggbetween the S-subcollection and the full collection of S simulations (red) and

relative accuracy (blue)

6-9 Conclusion

In this section we have introduced and applied the Kantorovich distance for the following two main

purposes.

Firstly, we have developed a practical quantitative methodology to define and map the space of uncertainty
by computing the Kantorovich distance between generated realisations. This metric is a good notion of

distance for measuring dissimilarity between geological realisations.
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Indeed, the space of uncertainty is quantified by constructing the dissimilarity distance matrix D;;, which

jr
contains all pairwise distances. To illustrate, a simple example was presented to show how this method

works.

Secondly, in order to select the sub-collection of realisations that best represents the possible outcome of
stochastic simulation algorithms, we used the concept of Kantorovich distance and developed a simple
optimisation model to find the best samples and quantify how well this high-quality subsample represents
the overall uncertainty of the collection. The optimisation model can be used as a general tool, which is
able to select any subset of representative realisations against user-defined criteria. For example, our
methodology can determine the smallest number of conditional simulations that are required to cover 75%
of the total geological uncertainty. Moreover, our approach identifies the corresponding conditional

simulations.

89



Chapter 7

7 Numerical results on geostatistical simulations
7-1 Introduction

As mentioned in pervious chapters, the mathematical algorithm which measures the similarity between
realisations can be classified as a transportation problem that is usually solved using the simplex method or
other specialised methods. However, we are faced with the time-consuming tasks associated with solving
the mathematical problem as we used a very large number of realisations for this study. We believe it is
worth spending more time to create a larger number of realisations to attempt to better capture the attributes
of the space of uncertainty. This study is quite unique in the way of its generated number of realisations
(see Figure 7-1). However, there is definitely no need to generate so many realisations even for mine
planning. As we will explain later in this chapter, after generating some realisations the structure of space

of uncertainty becomes stable and adding more realisations doesn’t significantly change it.

The great number of resource consumption (CPU and memory) required to solve the mathematical
problems for this chapter were all accomplished by the Supercomputer of the School of Mathematics and
Statistics at UNSW. For example, 143,000 hours of CPU time (this time is summation of all CPU’s running
time in parallel) were used to solve the mathematical problem for all simulation algorithms and their
realisations. That shows the applied algorithm need a huge computation times, but this distance has been
widely used in multimedia information retrieval systems in large-scale databases (larger than typical ore
bodies in mining industry), so there are quite a few techniques that are used in the implementation of the
faster algorithms. These references (M. Shishibori and et al, 2011) and (O. Pele and M. Werman, 2009) are

good examples to introduce two powerful algorithms which are able to solve the problem much faster.

Although these fast techniques are able to save the significant time; the plummeting cost of computing
power and storage thanks to the trend of cloud computing has radically changed the computing market. It
is vastly less expensive to rent cloud computing than the old way (such as on PCs or even on local
supercomputers) of doing computational jobs. For example, the cost of renting 240 GB RAM with 32 cores
(CPUSs) per hour is just about few dollars! And that is expected to reach to a few cents very soon. Therefore
that allows us to get as many as cores and RAM that may be needed. Fortunately, the most of calculations
for our approach (comparison between realisations) can be carried out simultaneously, so we can take

advantage of parallel computing to decrease the computation time very cheaply.
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Conditional Simulations

Unconditional Simulation

algorithm

1- Sequential Gaussian
Simulation algorithm
(SGS)

2- Turning Bands

3D Case

Y

200 realisations are generated

2D Case

A\ 4

400 realisations are generated

8 Sets of realisations (10, 30, 50, 100, 150,
200, 300 and 400) are taken to be illustrated

4 Sets (30,100,200 and 400) are illustrated in
this chapter and the rest in appendix A

2D Case

Simulation algorithm
(TBS)

3- Sequential Indicator

A 4

1,050 realisations are generated

7 Sets of realisations (30, 50, 100, 250, 450,
600 and 1,050) are taken to be illustrated

4 Sets (30,100,450 and 1,050) are illustrated
in this chapter and the rest in appendix A

Simulation algorithm
(SIS)

A 4

2D Case

A 4

600 realisations are generated

6 Sets of realisations (30, 50, 100, 250, 450
and 600) are taken to be illustrated

3 Sets (30,250 and 600) are illustrated in this
chapter and the rest in appendix A

\4

600 realisations are generated

6 Sets of realisations (30, 50, 100, 250, 450
and 600) are taken to be illustrated

3 Sets (30,250 and 600) are illustrated in this
chapter and the rest in appendix A

Figure 7-1: The simulation algorithms, data sets and number of generated realisations discussed in this

chapter. As can be seen, all three conditional simulation algorithms (SGS, TBS and SIS) are applied on the

2D case; therefore, the comparison between the results can basically reveal any possible differences

between the simulation algorithms
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Using this technique, in this chapter, we address the following topics: how dissimilar the generated
realisations can be to each other; the impact of changing the geostatistical parameters on the space of
uncertainty; how far the realisations are from local accuracy (Kriging model); and also controversial issues

in geostatistical simulation, such as equal-probability of generated realisations and likelihood.

As mentioned earlier, stochastic simulation algorithms create realisations with identical histograms and
covariance matrices; however, these realisations are significantly different in ways that cannot be captured
by descriptive geostatistics. To quantify this spatial dissimilarity, in previous chapters we presented the
Kantorovich distance as an important and intuitive measure of dissimilarity. Now, we apply the proposed
methodology to detect and identify the structural relationships between realisations and visualise the space

of uncertainty using two different datasets (see chapter 4).

Moreover, as explained in chapter 3, the simulation algorithms, such as sequential Gaussian simulation
(SGS), turning bands simulation (TBS) and sequential indicator simulation (SIS), use completely different
techniques and random function (RF) models to generate realisations (the user has to select one of those).
In this chapter, by mapping the space of uncertainty made by these algorithms, we compare these three

common stochastic simulation algorithms to find out possible differences that they may have.

This chapter contains two different simulation methods (unconditional and conditional) that were selected
to illustrate the above mentioned proposals. First, we illustrate some of the basic properties and advantages
of our dissimilarity quantification and subsampling approach on unconditional simulations; and then we

turn to a realistic sets of conditional simulations, which is the main part of this chapter.

We illustrate and implement the method using two completely different data sets, 2D and 3D, as were
described in chapter 4. Figure 7-1 is a snapshot of this chapter and illustrates the simulation algorithms,

datasets and number of generated realisations, which are studied here.

7-2 Unconditional simulation

As it was explained in chapter 3, the spatial variability of a measurable geological parameter can be
modelled by variograms. A variogram is described by nugget, sill and range and can be used in the

estimation of any sort of variogram-based simulations.
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The range of a variogram presents the structural part of the variogram model where a higher range shows
better mineralisation continuity and also confirms a higher spatial correlation between sample data. We use
this parameter in order to better present the impact of changing the geostatistical parameters, that is, the

variogram’s parameters on the space of uncertainty.

We start with unconditional Gaussian realisations as making variogram models in this type of simulation is
easier. We had already generated three series of 3D-realisations with parameters shown in Table 4-4. As
mentioned in chapter 4, for each set of realisations the variograms are isotropic spherical, the search
neighbourhood is spherical and there are no nugget effects. The block models have a block size of 25 X

25 x 12.5 m (x,y and z direction). Each of the block models contain 2,805 blocks.

Note that the number of realisations in the second series of unconditional simulations is 200, but only 100
of them are used for any comparison between the series of generated realisations. 200 realisations were
used simply to show the impact of the number of subsamplings on the relative accuracy (not for

comparison), as more realisations were needed to show this impact.

7-2.1 Variation in approximation accuracy with S

Having computed the distance array D,; we solve the realisation reduction problem (6.21)-(6.28) to
determine the subset of S weighted realisations that are the best representatives of 200 realisations. In order
to know how large S should be and how well an increasing number of optimum points can represent the
full collection of realisations, we solve (6.21)-(6.28) for different values of S ranging from 1 to 200. In

practice, the number S may be selected based on time or other resource costs.
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Figure 7-2: Multidimensional scaling embedding of 200 realisations (series 2 of Table 4-4) in R? (blue

diamonds) and the 30 realisations that form the best subsample of size 30 (red diamonds)

As we mentioned in chapter 6, we report 3 relative to z,, the latter representing the ‘base’ distance
between the best deterministic approximation of the collection of S realisations, subsequently calculating
the relative accuracy of the optimal S-subcollection (I). The result of these calculations for thirty different

values of S is presented in Figure 7-3.

Figure 7-3 shows, for example, that using just S = 30 realisations (15% of all 200 realisations), a relative
accuracy of around 52% may be obtained. The red diamonds in Figure 7-2 give a visual representation
via multidimensional scaling of the relative position in R? of the optimal 30 realisations. Note that the
selected (red) points are distributed throughout the entire set of (blue) points to well sample the point of
distribution. The relative weights assigned to the red points are not shown in Figure 7-2; but, typically,
those points at the periphery of the point set have the lowest possible nonzero weight of 1/S = 1/200.
Points closer to the centre will have a weight above the average of 1/S = 1/30. We will demonstrate these

effects in a real case study in the next section.
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relative accuracy (blue)

7-2.2 The impact of spatial continuity on the space of uncertainty

We use two additional series (see series 1 and 3 in Table 4-4) to investigate the effects of spatial continuity
(variogram range) on the ability to subsample. Repeating the computations used for Figure 7-2 for series 1,

and 3 we obtain the results shown in Figure 7-4.
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Figure 7-4: lllustration of the impact of spatial continuity (range) on the relative accuracy (I) of optimal

S-subsamples
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From Figure 7-4, we can see that for a fixed S, we can achieve a greater relative accuracy for series 1, which
has a larger range. The decreasing range leads to a reduction in relative accuracy. These results are exactly
what one would expect; consequently, longer ranges of correlations (with greater spatial continuity) will
tend to make the collection of S realisations more structured and less random. This greater structure,
encoded via the distances D,., can be exploited by our optimal subsampling procedure. In other words,
simulations with a smaller range will require a larger number of subsamples to achieve the same relative

accuracy.

7-2.3 Optimal vs. random subsampling

Figure 7-5 clearly demonstrates the distances zg that can be achieved by optimally subsampling rather
than randomly sampling. The variability of random sampling can also be very high. For example, suppose
that rather than generating 100 realisations and sampling the best 5, one merely generated the first 5
realisations of the 100 and then stopped. The variability in distance zg of the first 5 ranges is from 23,128
to 32,585. Thus, we argue that it is worth investing more time to create a larger number of realisations to
attempt to better represent the true resource uncertainty and to then subsample as best possible from that
larger collection of realisations. Indeed, in this example, the optimal 5 realisations would have a better
relative accuracy than some of the collections of 20 random realisations.
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Figure 7-5: Comparison of distances zg between the optimal subsamples and randomly selected

subsamples
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7-3 Conditional simulation- SGS algorithm and 3D case

Having illustrated some of the basic properties and advantages of our dissimilarity quantification and
subsampling approach on unconditional simulations, we now turn to a realistic set of conditional
simulations of a porphyry copper deposit. We try to explain the properties or attributes of the space of
uncertainty through conditional simulation algorithms as these types of simulation are common in the

geosciences field.

As was explained in chapter 4, three types of block models were estimated by using a block size 25 X
25 x 12:5m (x,y and z direction). The first type is estimated by Kriging; the second type by generating
S = 400 sequential Gaussian conditional simulations; and the third type by averaging all 400 simulated
models (we call this E-type). Each of these block models contains 2,805 blocks that cover the entire

supergene zone.

We now compute the distances D,;, 1 < r <s < 402 using (6.3)-(6.6) where, to the 400 realisations,
we add the Kriged and E-type block models also computing distances between these models. Interestingly,
we note that because of the smoothing effects, the Kriging and E-type models are the closest pair of models,

thatis min D,g = D,~s- Where r* = Kriging and s * = E-type.
1<r,s<402

7-3.1 Impact of the number of realisations on the space of uncertainty

The characterisation of the space of uncertainty is rendered difficult by the fact that only a limited number
of realisations are usually generated. A frequent and still open question relates to the number of realisations
needed to characterise this space (Gooveart 1999). In chapter 4, we mentioned a few case studies which
addressed the impact of the number of realisations on the space of uncertainty by applying a transfer
function. We believe this method loses a significant amount of the underlying structure of the space of
uncertainty produced by simulation algorithms.

As was mentioned in chapter 6, for a set of S generated realisations, the dissimilarity distance matrix § X
S can be constructed by calculating the pairwise distances between S generated realisations and this matrix
reveals the underlying structure of variability between realisations. The dissimilarity distance matrix
consists of a set of points (S) with distances between them (interpoint distance); thus, any property of the

matrix needs to be addressed with interpoint distances.
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For evaluating the impact of the number of realisations on the space of uncertainty, 40 sets of generated
realisations, namely 10,20, ---,400 are taken by stepping 10 increment realisations from 10 to 400, where
each set contains all the realisations of the previous set. For each set, the following parameters of its
dissimilarity distance matrix are calculated to assess the structure of the space of uncertainty. The first
parameters are the probability of distribution function (PDF), Mean, variance and the minimum and
maximum of the interpoint distances. This is followed by the average distance of generated realisations
from the Kriging model. The Kriging model is used as a fixed point inside the space of uncertainty to
constitute a base for any sort of comparison. That is, we check for any possible changes in the location of
the other points in respect to this model, in the space of uncertainty, by increasing the number of realisations.
The last parameter is the relative accuracy (Is) of the optimal S-subcollection; this parameter is able to

reveal how representative points may be changed by increasing the number of realisations.

Furthermore, for better viewing of these parameters and in order to demonstrate comparative evaluation on
the space of uncertainty in detail, 8 sets of realisations (10, 30, 50, 100, 150, 200, 300 and 400) are
illustrated. However, for the sake of brevity, only 4 sets with the following numbers of realisations (30,
100, 200, and 400) are presented here; the rest of the sets have been included in appendix A. We employ
the MDS technique for visualising (in R?) the level of similarity of generated realisations for which the
inter-point distances points in R? approximate the distances D,.c. These graphs can show the points of
distribution in R? that may help to find whether the points are clustered or randomly distributed in the space.
Moreover, the approximate location of the Kriging model in the space can be visualised. It should be
mentioned here that the Kriging model is always at the centre of the space, which mathematically means

that for 3, = d(u, \, Vn), %1 = Kriging model. That means that simulated models have a systematic

tendency to configure the space of uncertainty in such a way that smoothing models always have the
minimum distance to all realisations. Nevertheless, this may not be clearly shown in some figures because

of the approximated distances.

First set - Figure 7-6 shows the result of the interpoint distance calculation for 30 realisations and the
Kriging model. As can be seen, the best fitted distribution is lognormal (positively skewed). As it will be

shown later, the lognormal distribution?® can be the best option to describe the interpoint distance distribution

! The normal and lognormal distributions are closely related in such way that if X is distributed lognormally with

parameters W and o, then log(X) is distributed normally with mean p and standard deviation 0. The density
1 1

— 75 exp(— 55 (log(x) — 1))

2

function of lognormal distribution is f(x) =
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in the space of uncertainty. Figure 7-7 shows multidimensional scaling embedding the realisations. As can

be seen, the Kriging point is at the minimum distance from the others.

The parameters of the histogram are shown in Table 7-1. The maximum interpoint distance in the

dissimilarity distance matrix may be used to describe the size of the space of uncertainty. This parameter is

assessed.
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Figure 7-6: The left graph is the histogram of 465 interpoint distances of 30 realisations and the Kriging
model (dissimilarity distance matrix) with the best fitted lognormal distribution (red line). The right graph
shows the probability plot of the histogram (blue circles) and fitted lognormal distribution, which shows a
reasonable fitting between them (SGS and 3D case)

Table 7-1:Statistical parameters of the histogram of the interpoint distances for 30 realisations

(SGS and 3D case)
No. Std D;:\t\;].ce
Interpoint Mean L Variance Minimum | Maximum Range Skewness
- Deviation from
Distance igi
Kriging
465 31,654.14 8,649.40 74,812,131 | 13,518.60 | 70,311.60 56,793 1.05 24,723.1
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Figure 7-7: Multidimensional scaling embedding of 30 realisations (blue diamonds) and the Kriging model

(red diamonds) in R?. The Kriging point is at the minimum distance from the others (SGS and 3D case)

Second set - Figure 7-8 shows the result of the interpoint distance calculations for 100 realisations and the
Kriging model; the best distribution that can be fitted on the distribution is still lognormal. The parameters
of the histogram are shown in Table 7-2, where the maximum distance (between realisations) is much bigger
than the first set. That means that the space is still getting bigger. Figure 7-9 shows multidimensional scaling
embedding the realisations. As can be seen, the Kriging point is at the minimum distance from the others.
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Figure 7-8: The left graph is the histogram of 5,050 interpoint distances of 100 realisations and the Kriging
model (dissimilarity distance matrix) with the best fitted lognormal distribution (red line). The right graph

shows the probability plot of the histogram (blue circles) and the fitted lognormal distribution which shows
a reasonable fitting between them (SGS and 3D case)
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Table 7-2: Statistical parameters of the histogram of the interpoint distances of 100 realisations

Figure 7-9: Multidimensional scaling embedding of 100 realisations (blue diamonds) and the Kriging model

(red diamonds) in R2. The Kriging point is at the minimum distance from the others (SGS and 3D case)

Third set - Figure 7-10 shows the result of the interpoint distance calculations for 200 realisations and the
Kriging model; the best fitted distribution is still lognormal. Although the extent of the space has become

slightly bigger than the previous one (see Table 7-3), the concentration of points is getting higher than what

it was before, as can be seen in Figure 7-11.
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(SGS and 3D case)
No._ Std . - . Di?t\:ace
Interpoint Mean L Variance Minimum | Maximum Range | Skewness
- Deviation from
Distance .
Kriging
5,050 32,551.20 9,662.09 93,355,956 | 11,582.30 | 91,0225 | 79,440.2 1.35 23,130.0
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Figure 7-10: The left graph is the histogram of 20,100 interpoint distances of 200 realisations and the
Kriging model (dissimilarity distance matrix) with the best fitted lognormal distribution (red line). The right
graph shows the probability plot of the histogram (blue circles) and the fitted lognormal distribution
showing a reasonable fitting between them (SGS and 3D case)

Table 7-3: Statistical parameters of the histogram of the interpoint distances of 200 realisations

(SGS and 3D case)
InteNroéint Mean Std. Variance Minimum | Maximum Range Skewness Déé‘;ce
Distgnce Deviation g from
Kriging

20,100 | 31,619.55 9,467.71 89,637,536 | 11,582.30 | 103,194.00 | 91,611.70 1.45 22,349.3
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Figure 7-11: Multidimensional scaling embedding of 200 realisations (blue diamonds) and the Kriging
model (red diamonds) in R?. The Kriging point is at the minimum distance from the others (SGS and 3D

case)
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Forth set - Figure 7-12 shows the result of the interpoint distance calculations for 400 realisations and the
Kriging model; the best fitted distribution is still lognormal. The extent of the space is the same as in the
previous set (see Table 7-4), thus the concentration of points is getting consistently higher and the space

has become dense (see Figure 7-13).
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Figure 7-12: The left graph is the histogram of 80,601 interpoint distances of 400 realisations and the
Kriging model (dissimilarity distance matrix) with the best fitted lognormal distribution (red line). The right
graph shows the probability plot of the histogram (blue circles) and the fitted lognormal distribution,
showing a reasonable fitting between them (SGS and 3D case)

Table 7-4: Statistical parameters of the histogram of the interpoint distances of 400 realisations

(SGS and 3D case)
No. Std Di?t\zl:r){ce
Interpoint Mean S Variance Minimum | Maximum Range Skewness
- Deviation from
Distance S
Kriging

80,601 | 31,313.38 9,089.90 82,626,268 11,582.3 103,194 | 91,611.70 1.35 22,161.0
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Figure 7-13: Multidimensional scaling embedding of 400 realisations (blue diamonds) and the Kriging
model (red diamonds) in R?. The Kriging point is at the minimum distance from the others (SGS and 3D

case)

7-3.2 The impact of the number of realisations on size and density of the space
of uncertainty (SGS-3D Case)

To evaluate the impact of the number of realisations on size and density of the space of uncertainty, 40
sets of generated realisations, namely 10,20, ---,400 are taken by stepping 10 increment realisations from
10 to 400, each set containing all the realisations of the previous one. For each set the following parameters
are calculated: the average and the standard deviation of the interpoint and the minimum and maximum

distances.

Figure 7-14 (blue curve) shows the variation of the average of interpoint distances versus the number of
realisations. As can be seen, the average distance decreases when the first realisations are generated .In
contrast, after 70 realisations the average distance increases, though not significantly, and then reduces to
what it was before. Beyond the 150" realisation, the average distance remains constant and shows very

insignificant fluctuations around the 31,650.

The red curve in Figure 7-14 shows the variation of the standard deviation of interpoint distances versus
the number of realisations. As is illustrated, the standard deviation decreases (same as the average curve)
when the first realisations are generated however, after 70 realisations it increases up to a maximum of
9,707. Subsequently, the rate of increase and decrease is reduced until it stabilises in a flat curve; that is,
the standard deviation fluctuates to the extent that its rate reduces dramatically by increasing the number of

simulations, remaining stable at around 9,100.
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Figure 7-14: The variation of the average (blue curve) and standard deviation (red curve) of interpoint
distances versus the number of realisations. Both of them are stabilised by increasing the number of
realisations at around 31,650 and 9,100, respectively (SGS and 3D case)

As illustrated earlier, the interpoint distances of histograms in the space of uncertainty follow lognormal
distributions, while the mean and standard deviations of the interpoint distances are stabilised by increasing
the number of realisations. Thus, it can be concluded with confidence that the simulation algorithm
generates retaliations in such a way that the dissimilarity between them (interpoint distances), or precisely

the structure of the space of uncertainty, ultimately follows the lognormal distribution below.

1
ex —_——
101,230V27 X x p( 2x101,2302

Fx) = (log(x) — 13,785)2) 7.1)

In the next section, we will discuss whether this lognormarlity is limited to this case (SGS) or can be valid

for other cases and other simulation algorithms.

After finding the interpoint distance distribution, we can now turn to determine minimum and maximum
possible dissimilarities in the space of uncertainty and answer the question whether increasing the number
of realisations can make any difference to the minimum and maximum interpoint distances. The maximum
interpoint distance can be called the size (how big) of the space of uncertainty and the minimum can

describe how close the generated realisations can be in the space.
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In this case, the size of the space of uncertainty increases with the number of realisations in the three steps
(see Figure 7-15) and then maintains the same level after the 150" realisation. It has to be mentioned here
that the maximum distance comes from a large dissimilarity between two realisations, thus stabilising the
extent of the space of uncertainty even after doubling the number of realisations confirms the tendency of
the conditional simulation to generate and maintain more or less similar realisations (in the limited range)

instead of quite dissimilar ones.

The same condition is presented for the minimum distance. The minimum distance is approximately
stabilised after generating the 50th realisation. That is, the simulation algorithm cannot generate realisations
which are very similar to each other. Thus, there is an area (neighbourhood radius r < D,;;,) around each

retaliation where there are no realisations.

The main reason is that the conditioning data in all generated retaliations, namely sampled points, as
explained in chapter 3, have to honour sampled points and, thus, this condition does not let the simulation
algorithm create a big or a very small space of uncertainty. By decreasing the sampled points in the original
data set, we may expect an expansion of the spaces of uncertainty and larger differences between

realisations.

The realisations which contain larger differences from the other ones are usually located on the edges of
the space of uncertainty and, consequently, are far from the Kriging model. These realisations can be

classified as extreme points in the simulation process.
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Figure 7-15: Impact of the number of realisations on the maximum and minimum distances between the
realisations. As can be seen, both the maximum and minimum distances are stabilised by increasing the

number of realisations (SGS and 3D case)
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As it has been clearly shown before, in the multidimensional scaling graphs, by increasing the number of

realisations the density of the points rises inside the space as a result of not extending the space.

The density of the points can be calculated or compared by using the following two methods. Method 1
includes the number of points that fall within a fixed area or volume (cell or block). This method cannot
apply metric spaces as area or volume and does not have any meaning in these spaces. However, by applying
multidimensional scaling embedding of the points into R?, we are able to reveal and compare the point
density inside the space of uncertainty (see Figures 7-16, 7-17, 7-18 and 7-19). As this embedding method
is not precisely accurate, we only apply it for visualisation purposes in this case (3D) and to make sense of
the point of distribution inside the space of uncertainty.

Method 2 is the number of points that fall within the fixed search radius (neighbourhood radius?), for
instance, the number of points are in a neighbourhood radius r; of a fixed point x; ( x; can be a Kriging or
E-type model). This method can be applied on metric spaces (see Figures 7-20 and 7-21). As this method

seems to be accurate, it can be applied for all cases (2D and 3D).

Figures 7-16 and 7-17 show the point density of multidimensional scaling embedding of 100 realisations
in 2D and 3D graphs, respectively. As illustrated, the points are approximately distributed uniformly in the

space and there are few cells where the number of realisations is higher than 2.
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Figure 7-16: The point density of multidimensional scaling embedding of 100 realisations in R? the

points are approximately distributed uniformly in the space (SGS and 3D case)

2 See chapter 5.
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Figure 7-17: Point density of multidimensional scaling embedding of 100 realisations in R3 . Point density
is shown as a continuous surface to better represent the distribution of data. The points are approximately
distributed uniformly in the space (SGS and 3D case)

Figures 7-18 and 7-19 show the point density of multidimensional scaling embedding of 400 realisations
in 2D and 3D graphs, respectively. The points are distributed in such a way that density in the centre of the
space is much higher than the edges. We know that the Kriging or E-type model is located at the centre of

the space (see Figure 7-13).

We know that condition simulation does not have any systematic bias; therefore, all generated realisations
are equally probable and fairly represent the entire uncertainty space. However, it can be seen here that
there is a larger probability to generate realisations in the neighbourhood of the Kriging or E-type model
rather than the edge of the space. This means that conditional simulation (in this case) has a systematic
tendency to configure the space of uncertainty in such a way that the probability to find or generate the
realisations decreases from the centre to the edge of the space. This trend occurs in all directions but it does

not seem to have a perfect symmetric shape.

In the majority of geoscience applications only a few realisations can be chosen. If this selection is based
on a random selection from all possible outcomes, the set of chosen realisations is not fairly sampled and

the realisation around the Kriging or E-type models have a higher chance to be collected.

The main purpose of using the geostatistical simulation method is to generate the realisations which are
equally probable. Therefore, the chance of being selected inside the space of uncertainty has to be equal
for all retaliations. But as can be seen in Figures 7-18 and 7-19, those graphs do not confirm that the chance

of being selected is equal for all generated realisation.
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Figure 7-18: The point density of multidimensional scaling embedding of 400 realisations in R2. The points
are distributed in such way that the density in the centre of the space is much higher than on the edges. The

number of realisations in the centre cells is higher than the marginal ones (SGS and 3D case)
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Figure 7-19: The point density of multidimensional scaling embedding of 400 realisations in R3. The point
density is shown as a continuous surface to better represent the distribution of data. The points seem to be

approximately distributed into a bell shape although it is not symmetric (SGS and 3D case)

Using this approach to find the density of points inside the pace would be valid if only the approximation
distances, which are made by MDS, were acceptable in the point of Stress factor (for more details see
chapter 5). There are different standards regarding the amount of Stress to tolerate. The procedure we could
find in the literature considers that the stress under 0.1 is excellent while any value over 0.15 is
unacceptable. If the stress factor is high, instead of going through the approximated distance, we can use

the neighbourhood radius to evaluate the density of points around any desired point.
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Figure 7-20 shows the number of realisations that fall within the neighbourhood radius r < a, 0 <a <
Max D, for the Kriging model and the four selected realisations which are sorted based on the distance
from the Kriging model. That is, realisations no.31 and no.350 are closest and farthest to the Kriging model,
respectively. As can be seen, the number of realisations that fall within a fixed neighbourhood radius r for
the Kriging model are much higher than the others. For example, 160 realisations are in neighbourhood
radius r < 20,000 for the Kriging model, while they are less than 80 for realisation no.31 and less than 3

for realisation no.350.

Furthermore, for the Kriging model, all realisations (all space) fall within neighbourhood radiusr <
55,600, while for realisations no.31 and no.350 the neighbourhood radius has to be more than 58,000 and
80,000, respectively.

Moreover, Figure 7-21 shows the histogram (red) of the distances of 400 realisations from the Kriging
model. The histogram (blue) is the distance of 400 realisations from realisation no.350 (extreme point), all
confirming that the number of realisations in the vicinity of the Kriging model are considerably higher than
in the other parts of the space. In addition, by moving away from the Kriging model, the number of
realisations (for the same neighbourhood radius) decreases. The result is exactly the same as what had

already been illustrated through the multidimensional scaling, but this approach is more reliable.
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Figure 7-20: The number of realisations that fall within the neighbourhood radius r for the Kriging model
and the four selected realisations which are sorted, based on the distance from the Kriging model (SGS and
3D case)
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Figure 7-21: The red histogram is the distance of 400 realisations from the Kriging model with the best
fitted lognormal distribution (red line). The blue histogram is the distance of 400 realisations from

realisation no.350 (extreme point) with the best fitted lognormal distribution (blue line) (SGS and 3D case)

As the Kriging model is a fixed point in the space, we check any possible changes in the location of the
other points with respect to this model (in the space of uncertainty) by increasing the number of realisations.
Figure 7-22 shows the variation of the average of distance and distances variance from the Kriging versus
the number of realisations. As can be seen, both of them are stabilised by increasing the number of
realisations, although they fluctuate highly before the 50" realisation. Thus, generating more realisations
does not make a significant change in the structure of the space of uncertainty and the distance histogram
from a fixed point (Kriging) would remain unchanged.
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Figure 7-22: The variation of the average of distance and distances variance from the Kriging versus the
number of realisations. Both of them are stabilised by increasing the number of realisations (SGS and 3D

case)
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7-3.3 Impact of the number of realisations on relative accuracy (SGS and 3D
case)

Before evaluating the impact of the number of realisations on relative accuracy, we first determine the

subset of S weighted realisations that are the best representatives of 400 realisations.

We compute the distances D,, 1 < r < s < 402 using (6.3)-(6.6) (to the 400 realisations, we add the
Kriging and E-type block models and compute distances between these models as well). Interestingly, we
note that because of the smoothing effects, the Kriging and E-type models are the closest pair of models,

that is . mir}m2 D, s = D,»s» Where r* = Kriging and s* =E-type. We then solve (6.21)-(6.28) withS =
<r,s<

30, which we find produces a relative accuracy of 25.64% (Figure 7-23).
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Figure 7-23: Distance zg between the S-subsample and the full sample of S realisations (red) and relative

accuracy (blue) (SGS and 3D case)

To visualise in an approximate way the relative positions of the realisations, we employ the MDS technique
to produce points in R? (see Figure 7-23) for which the inter point distances approximate the distances D,..
Figure 7-24 shows the MDS embedding of 400 simulations, the E-type and the Kriging models with the
optimal weights assigned to each of the 30 subsamples shown as ball heights. The Kriging and E-type

models are shown on the graph.

112



°
° o 8 20 |°
° .'I;::.‘:t‘.‘“..i'. “: ’ °
° ] e co ™
o~ ° ‘g "E % ° °
= L ‘:‘... ,..' o ." s“’%’d:
% 40000 300&':QW£ .%E “..ﬁ:‘ hoga® 09 ¢ 30000 40000
g WS sl a8 ¢
a bl ° 'o:; oS o0 ¢
f) O JEE §
ol o 134 %
® °
°
Dimension 1

Figure 7-24: Multidimensional scaling embedding of 400 realisations (blue balls), the E-type model,

(yellow ball) and the Kriging (green ball) in R? and the 30 realisations that form the best subsample of size
30 (red balls) (SGS and 3D case)

These peripheral selections are effectively chosen to represent themselves only, while the selected
realisations nearer to the centre of the figure represent not only themselves, but those realisations nearby,
effectively absorbing the weights from these nearby realisations. This unequal weight distribution is another
advantage that our approach has over simply taking the first S realisations computed (we remark that if one

requires wy, = 1/ in (6)-(13), the optimisation model (6)-(13) is easily modifiable to achieve this).

Kriging

Base surface

Figure 7-25: Multidimensional scaling embedding of 400 realisations, the E-type model, and the Kriging
model in R3. The 30 subsamples that best represent the 402 points are shown above the base surface with
the height of the “ball’ indicating the relative weight given to each of the 30 subsamples. The Kriging and
E-type models are shown on the graph (SGS and 3D case)
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Two issues are apparent from Figures 7-24 and 7-25 .Firstly, the distances D, for r = Kriging or r = E-
typeands = 1,...,S are small on average when compared to the overall average of the distances D, 1 <
r < s < S.Formally, (1/8)¥5_, D,s = 23,606 for r = Kriging and 22, 073 for r = E-type, while the

overall average of distances is

1
S(5-1)/2 g:l Zr<s Drs = 31, 313.

Secondly, the weights given to the selected realisations tend to be higher nearer to the centre of the figure,
while those selected realisations near the periphery tend to have lower weights (and often, the lowest

possible nonzero weight of (1/S = 1/30).
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Figure 7-26: Impact of the number of realisations on relative accuracy, namely sub-sampling for the 8 sets
with the following number of realisations 10, 30, 50, 100, 150, 200, 300 and 400 (SGS and 3D case)

More of the overall distribution of the realisations may be seen by computing a larger number S; further,
this information is able to be used to not only choose a good subsample, but also to allocate optimal weights
to the subsample. We now compute what was done above for the rest of the collected sets, namely 10, 30,
50, 100, 150, 200, 300, and 402), to evaluate the impact of the number of realisations on relative accuracy
(see Figure 7-26).

For a better comparison between the different sets, we compute the percentage of the number of sub-

samples for each set to get same x axis. Figure 7-27 shows the impact of the percentage of the number of
sub-samples (% %) on relative accuracy of the 8 sets. As can be seen, after 50 realisations (the third set)

the differences between relative accuracy of the sets become insignificant. For instance, for 20% of the sub-
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samples, the difference between the relative accuracy of 100 realisations (the fourth set) and 400 realisations

(the eighth set) is less than 10 percent. This number would be around 5 percent for 40% of sub-samples.

The mean reason for these insignificant changes can be addressed by equation 6.31. As we explained in
chapter 6, 35/, ratio represents the distance between the optimally subsampled S realisations and the full
set of S realisations. If this ratio does not vary significantly by increasing the number of realisations (for a
fixed amount of%%) that means the distance between the best single realisation (z;) and the set of

collected S realisations does not change. That is, the structure of the space of uncertainty almost remains

the same after generating a certain number of realisations.
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Figure 7-27: Impact of the percentage of the number of sub-samples on relative accuracy, hamely sub-
sampling for the 8 sets with the following number of realisations: 10, 30, 50, 100, 150, 200, 300 and 400.
After 50 realisations (red Curve), the differences between the relative accuracy of the different set has

become insignificant (SGS and 3D case)

7-4 Impact of the simulation algorithms and the number of
realisations on the space of uncertainty (2D case)

In the previous sections, we explained some properties of the space of uncertainties with an example of the
three dimensional (3D) data set and the SGS algorithm.

This section compares the space of uncertainty generated by three of the most commonly used algorithms:
sequential Gaussian simulation (SGS); turning bands simulation (TBS); and sequential indicator simulation
(SIS) by applying a different data set, namely Walker Lake data set (see chapter 4). As was explained in
chapter 3, these algorithms use completely different techniques and random function (RF) models to

generate realisations.
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All three simulation algorithms are applied on the Walker Lake data set; therefore, the results of the
comparison between their spaces of uncertainty can basically reveal any possible difference between these

simulation algorithms.

The main reasons to use the Walker Lake data set as a 2D case study are as follows. First, we want to use
at least two completely different data sets to conduct a better evaluation of the properties of the space of
uncertainty. Other models and cases will likely show the same properties in case these two data sets in 2D
and 3D share common properties. The second reason lies in the Walker Lake case being an open source
data set which is well- known in the geostatistics field; therefore, all computations and mentioned results
can be repeatable for those who may be interested in applying this method. Finally, the Walker Lake case
has an exhaustive data set which is presented here as a real model. Thus, including the Kriging model, there
would be two fixed points where the distance between them (in all types of simulation algorithms) always
remains constant. That gives a better sense of the structure of the space of uncertainty (made by the

algorithms) where we are meant to compare.

Similar to what has been presented in the previous section for the 3D case, we first generate different
realisations using each of the simulation algorithms for the 2D data set; after that the characteristics of the
space of uncertainty of each of them are calculated individually; and, finally, we compare these spaces to

find any possible differences between them.

Furthermore, we calculate deterministic geological reserve estimations, produced by Kriging, and also the
real model (exhaustive data set) into the space of uncertainty to reveal how dissimilar other realisations are
to the estimated and the real model. In other words, we measure how close global accuracies (different

realisations) are to the local accuracy (estimation) and the real model.

7-4.1 Evaluating the space of uncertainty generated by SGS algorithm? (2D
Case)

In this example, 1,050 realisations are generated by SGS algorithms. This huge number of generated
realisations would help to find any possible changes that may have occurred inside the space of uncertainty

by increasing the number of realisations.

3 In this section, as the numbers in Figures and Tables are in form of scientific format a X 10° for sake of brevity
they are shown without 10°.
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To evaluate the impact of the number of realisations on the space of uncertainty, 52 sets of generated
realisations, namely 10,30, ---,1050 are taken by stepping 20 increment realisations from 10 to 1050, each
set containing all realisations of the previous set.

Furthermore, similar to the three dimensional (3D) data set, for better illustration of the impact of the
number of realisations on the space of uncertainty, 7 sets with the following number of realisations 30, 50,
100, 250, 450, 600 and 1050 are taken from 52 sets to obtain a better view of these parameters and conduct
a comparative evaluation on the space of uncertainty in detail (Kriging and also the real model are included
in all sets). However, for the sake of brevity, only 4 sets with the following number of realisations 30, 100,
450, and 1050 are presented here; the rest of the sets are detailed in appendix A. Similar to the previous
case, the parameters for each set are assessed (as explained for the 3D case).

First set -Figure 7-28 shows the histogram of the interpoint distance for 30 realisations. As can be seen, the

best fitted distribution is lognormal. The parameters of the histogram are shown in Table 7-5.
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Figure 7-28: The left graph is the histogram of 435 interpoint distances of 30 realisations with the best fitted
lognormal distribution (red line). The right graph shows the probability plot of the histogram (blue circles)
and fitted lognormal distribution which shows a reasonable fitting between them (a x 10°)-(SGS and 2D

case)
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Table 7-5: Statistical parameters of the histogram of the interpoint distances of 30 realisations

(SGS and 2D case)
No Ave. Ave.
Interpoint Mean S.td'. Variance Minimum Maximum Skewness Distance | Distance
- Deviation from Real from
Distance L
model Kriging
435 5.962 1.142 1.304 3.882 9.905 0.785 5.940 4.897
(ax 10°)

Figure 7-29 shows multidimensional scaling embedding of 30 realisations. As illustrated, the Kriging point
(red circle) is at the minimum distance from the others, while the real model (green circle) is far from the
generated realisations. That is, the real model is close to the edge of the space of uncertainty. This may not
be a good signal for the simulation algorithm (SGS) to fail to generate close retaliations to the real model.
Being at the edge of the pace of uncertainty means the model is quite dissimilar to the other models, thus it

is called the extreme model.
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Figure 7-29: Multidimensional scaling embedding of 30 realisations (blue circles), the Kriging model (red
circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others

and the real model is quite far from the generated realisations (SGS and 2D case)

Second set - Figure 7-30 shows the histogram of the interpoint distance for 100 realisations. As can be seen,

the best fitted distribution is lognormal. The parameters of the histogram are shown in Table 7-6.
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Figure 7-30: The graph on the left is the histogram of 4950 interpoint distances of 100 realisations with the
best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the
histogram (blue circles) and fitted lognormal distribution, which shows a reasonable fitting between them
(ax 10°) - (SGS and 2D case)

Table 7-6: Statistical parameters of the histogram of the interpoint distances of 100 realisations
(SGS and 2D case)

No Ave. Ave.
Interpoint | Mean Std. Variance | Minimum | Maximum | Skewness | LD'Stance | Distance
Distance Deviation from Real from

model Kriging
4,950 6.040 1.221 1.491 3.397 12.166 0.996 6.034 4.938
(a x 10°)
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Figure 7-31: Multidimensional scaling embedding of 100 realisations (blue circles), the Kriging model (red

circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others

and real model is quite far from the generated realisations (SGS and 2D case)
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Figure 7-31 shows the multidimensional scaling embedding of 100 realisations. As illustrated, the Kriging
point (red circle) is at the minimum distance from the others, while the real model (green circle) is far from

the generated realisations.

For better viewing and to achieve more accuracy in the embedded interpoint distances, the realisations are
embedded into R® as well. Figure 7-32 shows the embedded points in 3D. As illustrated, the real model is
close to the edge of the space and there are very few points around it, while the Kriging is in the centre of
the space. The 3D Figure 7-32 is very similar to 2D Figure 7-30, but its Kruskal stress factor is 25% less

than 2D, which may give a better view of the space of uncertainty.

Figure 7-32: Multidimensional scaling embedding of 100 realisations (blue balls), the Kriging model and
the real model (yellow balls) in R3. The Kriging point is at the minimum distance from the others and the
real model is quite far from the generated realisations. Embedding points in the 3D may give better accuracy
and illustration than 2D (SGS and 2D case)

Third set - Figure 7-33 shows the histogram of the interpoint distance for 450 realisations. As can be seen,
the best fitted distribution is lognormal. The parameters of the histogram are shown in Table 7-7.

120



0346

03¢

0251

02r

Density

01sf

01F

00aF

3

0.9999 -
0.509 -
nmf
0ot
G
orst
st
0z

0.1
0osk

Probability

0.0001

Data

Figure 7-33: The graph on the left is the histogram of 101,025 interpoint distances of 450 realisations with
the best fitted lognormal distribution (red line). The one on the right shows the probability plot of the
histogram (blue circles) and the fitted lognormal distribution, which shows a reasonable fitting between

them (a x 10°)- (SGS and 2D case)

Table 7-7: Statistical parameters of the histogram of the interpoint distances of 450 realisations
(SGS and 2D case)

No Ave. Ave.
Interpoint Mean D S.td'. Variance Minimum Maximum Skewness Distance | Distance
) eviation from Real from
Distance L
model Kriging
101,025 6.096 1.232 1518 3.397 14.235 0.963 6.093 5.001
(a x 10%)

Figure 7-34 shows multidimensional scaling embedding of 450 realisations. As be illustrated, the Kriging

point (red circle) is at the minimum distance from the others, while the real model (green circle) is still far

from the generated realisations. The space is getting dense as a result of not extending the space by

increasing the number of realisations.
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Figure 7-34: Multidimensional scaling embedding of 450 realisations (blue circles), the Kriging model (red
circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others
and the real model is quite far from the generated realisations (SGS and 2D case)

Fourth set -Figure 7-35 shows the histogram of the interpoint distance for 1,050 realisations. As can be
seen, the best distribution that can be fitted on the output distribution is lognormal. The parameters of the
histogram are shown in Table 7-8
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Figure 7-35: The graph on the left is the histogram of 554,931 interpoint distances of 1,050 realisations
with the best fitted lognormal distribution (red line). The right shows the probability plot of the histogram
(blue circles) and fitted lognormal distribution, which shows a reasonable fitting between them (a x 10°)-
(SGS and 2D case)
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Table 7-8: Statistical parameters of the histogram of the interpoint distances of 1,050 realisations

(SGS and 2D case)
No Ave. Ave.
Interpoint Mean D S.td'. Variance Minimum Maximum Skewness Distance | Distance
- eviation from Real from
Distance L
model Kriging
554,931 6.076 1.240 1.539 3.397 15.406 0.994 6.131 4.996
(a x 109

Figure 7-36 shows multidimensional scaling embedding of 1,050 realisations. As illustrated, the Kriging

point (red circle) is at the minimum distance from the others, while the real model (green circle) is far from
the generated realisations.
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Figure 7-36: Multidimensional scaling embedding of 1,050 realisations (blue circles), the Kriging model

(red circle) and the real model (green circle) in R2. The Kriging point is at the minimum distance from the

others and the real model is quite far from the generated realisations (SGS and 2D case)

7-4.1.1 Impact of the number of realisations on the size and density of the space of
uncertainty (SGS-2D case)

Figure 7-37 (blue curve) shows the variation of the average of interpoint distances versus the number of

realisations. As can be seen, the average distance increases when the very first realisations are generated,

but after 120 realisations this number slightly decreases to be reinstated soon after. Beyond 300 realisations,
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the distance remains constant and shows very insignificant fluctuations around 6.08 x 10°. The red curve
in Figure 7-37 shows the variation of the standard deviation of interpoint distances versus the number of
realisations. As can be seen, the standard deviation increases (same as the average curve) when the first
realisations are generated; but after 120 realisations it decreases to the minimum 1.2 x 10° when the rate
of increase and decrease reaches a plateau. That is, the standard deviation fluctuates in a manner that is

dramatically reduced by increasing the number of simulations, remaining stable at around 1.23 x 10°.
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Figure 7-37: The variation of the average (blue curve) and the standard deviation (red curve) of the
interpoint distances versus the number of realisations. Both of them are stabilised by increasing the number

of realisations around 6.08 x 10° and 1.23 x 10°, respectively (SGS and 2D case)

As illustrated earlier, the interpoint distances in the space of uncertainty follow a lognormal distribution
and the mean and standard deviations of the interpoint distances are stabilised by increasing the number of
realisations. Thus, it can be concluded with confidence that the simulation algorithm generates retaliations
in such a way that the dissimilarly between the interpoint distances, or, more precisely, the structure of the
space of uncertainty ultimately follows below the lognormal distribution.

1
ex -
(1.23 x 108) X V21 X x p( 2 % (1.23 x 106)2

Fx) = (log(x) — 6.1 X 106)2) (7.2)

Similar to the first case (3D), the size of the space of uncertainty increases with the number of realisations

but becomes stabilised by increasing (more than 730) the number of realisations (see Figure 7-38). It has to
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be mentioned here that jump points in Figure 7-38 derive from very few generated realisations, namely the

extreme points that are on the edge of the space of uncertainty.

The same condition occurs for the minimum distance, which is approximately stabilised after generating
300 realisations. That is, the simulation algorithm cannot generate realisations which are closer than Dy,;,, =
3.397 x 10%. The main reason for that, as described before, is the conditioning data which limits the

variation to the specific range [ Dyin, Diax] @nd generating more realisations cannot extend this limit.
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Figure 7-38: Impact of the number of generated realisations on the maximum and minimum distances

between the realisations. Both the maximum and the minimum distances are stabilised by increasing the

number of realisation (SGS and 2D case)

As the stress factor (in MDS) is more than 32% in this case, instead of going through the approximated
distance, we can use the neighbourhood radius to evaluate the density of the points around any desired
point. Figure 7-39 shows the number of realisations that fall within the neighbourhood radius r < a, 0 <
a < Max D, for the Kriging, the real model and the four selected realisations which are sorted based on
the distance from the Kriging model. That is, realisations no.304 and no.504 are closest and farthest to the
Kriging model, respectively. As can be seen, the number of realisations that fall within a fixed
neighbourhood radius r for the Kriging model are considerably higher than the others. For example, there
are 600 realisations in neighbourhood radius r < 5 x 106 for the Kriging model (more than 57% of all
realisations), while there are less than 360 for realisation no.504 and less than 120 for the real model and

realisation no.504.
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Figure 7-39: The number of realisations that fall within the neighbourhood radius r for the Kriging, the real
model and the four selected realisations, which are sorted based on the distance from the Kriging model
(r X 10°) (SGS and 2D case)

Moreover, Figure 7-40 shows the histogram (red) of the distances of 1,050 realisations from the Kriging
model, the histogram (blue) from realisation n0.504 (extreme point), and the histogram (green) from the
real model. Those histograms confirm that the number of realisations in the vicinity of the Kriging model
is significantly higher than the other parts of the space and by moving away from the Kriging model, the

number of realisations (for the same neighbourhood radius) decreases.
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Figure 7-40: The red histogram is the distance of 1,050 realisations from the Kriging model with the best
fitted lognormal distribution (red line); the blue histogram is the distance of 1,050 realisations from
realisation no.504 (extreme point) with the best fitted lognormal distribution (blue line); and the green
histogram is the distance of 1,050 realisations from the real model with the best fitted lognormal distribution
(green line) (SGS and 2D case)
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As the Kriging and the real models are fixed points in the space, we check any possible change in location
of the other points with respect to these models by increasing the number of realisations. Figure 7-41 shows
the variation of the average of distance and distances variance from the Kriging and the real models versus

the number of realisations.
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Figure 7-41: The variation of the average of distance and distances variance from the Kriging (red lines)
and real models (green lines) versus the number of realisations. All of the graphs are stabilised by increasing

the number of realisations (SGS and 2D case)

As can be seen, all of the graphs are stabilised by increasing the number of realisations, although they
highly fluctuate before the 100" realisation. Thus, generating more realisations does not make significant
changes in the structure of the space or the interpoint distance histograms from the fixed points (Kriging
and real model); therefore, the structure of the space would remain unchanged.

7-4.1.2 Impact of the number of realisations on relative accuracy (SGS-2D case)

The impact of the number of realisations on relative accuracy (sub-sampling) of SGS realisations is
evaluated by determining following seven sets of generated realisations from 14, 34, 54, 104, 204, and 304
to 404. It has been concluded that using more sets of realisations does not change the results. The result of

these calculations is presented in Figure 7-42.
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For better comparison between those sets, we compute the percentage of the number of sub-samples for

each set to get the same x axis. Figure 7-43 shows the impact of the percentage of the number of sub-

S .
samples (ﬁ %) on the relative accuracy of those seven sets.
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Figure 7-42: Impact of the number of realisations on relative accuracy, namely sub-sampling for the 7 sets
with the following number of realisations (14, 34, 54, 104, 204, 304, and 404) (SGS and 2D case)

As can be seen, after 54 realisations (the third set) the differences between the relative accuracy of the sets
become insignificant. For instance, for 20% of the sub-samples, the difference between the relative accuracy
of 104 realisations (the fourth set) and 404 realisations (the seventh set) is less than 5 percent. This number
would be around 2.5 percent for 40% of sub-samples. As it was explained before, that means that the
distance between the best single realisation (z,) and the set of collected S realisations does not change by
increasing the number of realisations. That is, the structure of the space of uncertainty of SGS almost

remains constant after generating a certain number of realisations.
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Figure 7-43: Impact of the percentage of number of sub-samples on the relative accuracy, namely sub-
sampling for the 7 sets with the following number of realisations (14, 34, 54, 104, 204, 304, and 404) (SGS

and 2D case)

7-4.2 Evaluating the space of uncertainty generated by TBS algorithm (2D
Case)

As was described in chapter 3, the Turning Band simulation (TBS) is an unconditional Gaussian simulation
algorithm, which is designed to reduce the dimensional of simulation from 3D to one-dimensional. After
completing unconditional simulation procedures, the model is conditioned by sampled data. Although TBS
and SGS can both be classified as Gaussian simulation, they use completely different ways, or random

functions, to generate realisations (see chapter 3).

To evaluate the impact of the number of realisations on the space of uncertainty, where it is created by
Turning bands simulation algorithms (TBS), 600 realisations were generated (see chapter 4) and 60 sets
of generated realisations, namely 10,30, ---,600 were taken by stepping 10 increment realisations from 10
to 600, each set containing all the realisations from the previous set. For each set, we repeat exactly what

was done for SGS algorithm to assess the structure of the space of uncertainty.

Furthermore, similar to the previous section, for better illustration of the impact of the number of
realisations on the space of uncertainty, 6 sets with the following numbers of realisations 30, 50, 100, 250,

450 and 600 are taken from 60 sets to obtain a better view of these parameters and to produce a comparative
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evaluation on the space of uncertainty in detail (both the Kriging and also the real model are included in all
sets). For the sake of brevity, only 3 sets with the following number of realisations (30, 100, and 600) are
presented here; the rest of the sets are in appendix A. The possible interpoint distribution between the

generated realisations and its statistics are assessed so a comparison can be drawn between them.

First set - Figure 7-44 shows the histogram of the interpoint distance for 30 realisations. As can be seen,
the best fitted distribution is lognormal. The parameters of the histogram are shown in Table 7-9.
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Figure 7-44: The left graph is the histogram of 435 interpoint distances of 30 realisations with the best fitted
lognormal distribution (red line). The right graph shows the probability plot of the histogram (blue circles)
and fitted lognormal distribution which shows a reasonable fitting between them (a x 10°)- (TBS and 2D

case)

Table 7-9: Statistical parameters of the histogram of the interpoint distances of 30 realisations
(TBS and 2D case)

No Ave. Ave.
Interpoint Mean S.t d . Variance Minimum Maximum Skewness Distance | Distance
) Deviation from Real from
Distance S
model Kriging
435 5821 1.237 1.530 3.484 10.086 0.914 5.693 4.548
(ax 109

Figure 7-45 shows multidimensional scaling embedding of 30 realisations. As illustrated, the Kriging point

(red circle) is at the minimum distance from the others, while the real model (green circle) is far from the

generated realisations. The results are more or less the same as the SGS algorithm.
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Figure 7-45: Multidimensional scaling embedding of 30 realisations (blue circles), the Kriging model (red
circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance of the others

and the real model is considerably distant from the generated realisations (TBS and 2D case)

Second set -Figure 7-46 shows the histogram of the interpoint distance for 100 realisations and the fitted
lognormal distribution. The parameters of the histogram are shown in Table 7-10.
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Figure 7-46: The left graph is the histogram of 4950 interpoint distances of 100 realisations with the best
fitted lognormal distribution (red line). The right graph shows the probability plot of the histogram (blue
circles) and fitted lognormal distribution, which shows a reasonable fitting between them (a x 106)- (TBS

and 2D case)

Table 7-10: Statistical parameters of the histogram of the interpoint distances of 100 realisations
(TBS and 2D case)

No Ave. Ave.
Interpoint Mean S.td ’ Variance Minimum Maximum Skewness Distance | Distance
- Deviation from Real from

Distance igi
model Kriging
4,950 5.956 1.281 1.642 3.352 13.004 1.059 5.794 4.682
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Figure 7-47 shows multidimensional scaling embedding of 100 realisations. As illustrated, the Kriging point
(red circle) is at the minimum distance from the others, while the real model (green circle) is far from the

generated realisations. The results are comparable to the SGS algorithm.
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Figure 7-47: Multidimensional scaling embedding of 100 realisations (blue circles), the Kriging model (red
circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others

and the real model is quite far from the generated realisations (TBS and 2D case)

For better viewing and to achieve more accuracy in the embedded interpoint distances, the realisations are
embedded into R3 as well. Figure 7-48 shows the embedded points in 3D. As illustrated, the real model is
close to the edge of the space with a few points around it, while the Kriging is in the centre of the space.
The 3D figure 7-48 is similar to the 2D Figure 7-47, but its Kruskal stress factor is 20% less than the 2D,

which may give a better view of the space of uncertainty.

Extreme point

Real Model

Figure 7-48: Multidimensional scaling embedding of 100 realisations (blue circles), the Kriging model and
the real model (yellow circles) in R3. The Kriging point is at the minimum distance from the others and the
real model is quite far from the generated realisations. Embedding points in the 3D may give better accuracy
and precision illustration than 2D (TBS and 2D case)
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Third set -Figure 7-49 shows the histogram of the interpoint distance for 600 realisations and the fitted

lognormal distribution. The parameters of the histogram are shown in Table 7-11.
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Figure 7-49: The left graph is the histogram of 179,700 interpoint distances of 600 realisations with the best
fitted lognormal distribution (red line). The right graph shows the probability plot of the histogram (blue
circles) and fitted lognormal distribution, demonstrating a reasonably adjusted fitting between them (a x

10°)

Table 7-11: Statistical parameters of the histogram of the interpoint distances of 600 realisations
(TBS and 2D case)

No Ave. Ave.
Interpoint Mean S.t d . Variance Minimum Maximum Skewness Distance | Distance
) Deviation from Real from

Distance L
model Kriging
179,700 5.800 1.199 1.437 3.052 14.357 1.064 5.724 4.615

(ax 10%)

Figure 7-50 shows multidimensional scaling embedding of 600 realisations. As illustrated, the Kriging point
(red circle) is at the minimum distance from the others, while the real model (green circle) is far from the

generated realisations. The results are consistent with the SGS algorithm.
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Figure 7-50: Multidimensional scaling embedding of 600 realisations (blue circles), the Kriging model (red
circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others

and the real model is quite far from the generated realisations (TBS and 2D case)

7-4.2.1 Impact of the number of realisations on size and density of the space of uncertainty
(TBS-2D case)

Figure 7-51 (blue curve) shows that the variation of the average of interpoint distances versus the number
of realisations. As can be seen, the average distance increases when the very first realisations are generated,
however, after 5 realisations the distance decreases significantly, and then rises slightly up to 6.0 x 10°.
Beyond the 250" realisation, it remains constant and shows very insignificant fluctuations around 5.85 X
108. The red curve in Figure 7-51 shows that the variation of the standard deviation of interpoint distances
versus the number of realisations. As can be seen, the standard deviation increases (same as the average
curve) when the first realisations are generated, but after 5 realisations it decreases to a minimum of 1.2 x
10°; then the rate of fluctuation is reduced and reaches a plateau. That is, the standard deviation fluctuates
in a manner in which its rate reduces dramatically by increasing the number of simulations, remaining stable
at around 1.21 x 10°.
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Figure 7-51: The variation of the average (blue curve) and standard deviation (red curve) of interpoint
distances versus the number of realisations. Both graphs are stabilised by increasing the number of

realisations around 5.85 x 10° and 1.21 x 10°, respectively (TBS and 2D case)

As previously illustrated, the interpoint distances in the space of uncertainty (in this case) follow a
lognormal distribution where the mean and standard deviation of the interpoint distances are stabilised by
increasing the number of realisations. Thus, it can be concluded with confidence that the simulation
algorithm generates retaliations in such a way that the dissimilarity between the interpoint distances, or,
more precisely, the structure of the space of uncertainty ultimately follows below the lognormal

distribution.
1 1
exp (_ _
(1.21 x 10°) x V2w X x 2 x(1.21x10°)

Flx) = (log(x) — 5.85 x 106)2) (7.3)

Similarly to what was explained for the SGS algorithm, the size of the space of uncertainty increases with
the number of realisations (see Figure 7-52), but becomes stabilised after generating 150 realisations. That

is, the simulation algorithm cannot generate realisations which are far from Dy, = 14.35 x 10°.

The condition occurs with minimum distance, which is stabilised after generating 330 realisations. That is,

the simulation algorithm cannot generate realisations which are closer than D,,;,, = 3.05 X 10°.
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Figure 7-52: Impact of the number of generated realisations on the maximum and the minimum distances
between the realisations. Both the maximum and the minimum distances are stabilised by increasing the

number of realisations (TBS and 2D case)

To evaluate the density of the points around any desired points, similar to the SGS algorithm, we used
method 2, called neighbourhood radius (see section 7-3.2), instead of going through the approximated
distance (the stress factor is more than 32 %). Figure 7-53 shows the number of realisations that fall within
the neighbourhood radius r < a, 0 < a < Max D, for the Kriging, the real model and the four selected
realisations, which are sorted based on the distance from the Kriging model. That is, realisations no.554
and 81 are closest and farthest to the Kriging model, respectively. As can be seen, the number of realisations
that fall within a fixed neighbourhood radius r for the Kriging model are much higher than the others. For
example, 450 realisations are in neighbourhood radius r < 5 x 10° for the Kriging model (more than 75%
of all realisations), while they are less than 225 for realisation no.554, and less than 120 for the real model.
This confirms that the number of realisations in the vicinity of the Kriging model is considerably larger
than in the other parts of the space. In addition, by moving away from the Kriging model, the number of

realisations (for the same neighbourhood radius) decreases.

Moreover, Figure 7-54 shows the histogram (red) of the distances of 1,050 realisations from the Kriging
model, the histogram (blue) from realisation no.81 (extreme point) and the histogram (green) from the real
model. Those histograms confirm that the number of realisations in the vicinity of the Kriging model is
substantially higher than the other parts of the space, and by moving away from the Kriging model the

number of realisations (for the same neighbourhood radius) decreases.

136



650
O A
-7 2~
550 p -
7
5 500 2 I
T 450 ‘ 2
/i
§ 400 f " = — — - Kriging u
] /
E 350 7 = = = - Real Model
© 300 ! A S o |
- ! ! Realization No.460
8 250 + + o I
[S ) , 1/ Realization No.463
5 200 ; 7 B
Z 150 Realization No.544 | |
? N
100 s (S Realization No.81 |
t
50 ; ¥
0 - Pe= |
2 3 4 5 6 7 8 9 10 11 12 13
Neighbourhood radius r

Figure 7-53: The number of realisations that fall within the neighbourhood radius r for the Kriging, the real
model and the four selected realisations, which are sorted based on the distance from the Kriging model
(r X 10%) (TBS and 2D case)
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Figure 7-54: The red histogram is the distance of 600 realisations from the Kriging model with the best
fitted lognormal distribution (red line); the blue histogram is the distance of 600 realisations from realisation
no.81 (extreme point) with the best fitted lognormal distribution (blue line); and the green histogram is the
distance of 600 realisations from the real model with the best fitted lognormal distribution (green line) (TBS

and 2D case)

As the Kriging and the real model are fixed points in the space, we check any possible change in the location
of the other points with respect to these models by increasing the number of realisations. Figure 7-55 shows
the variation of the average distance and their variances from the Kriging and the real model versus the

number of realisations.
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Figure 7-55: The variation of the average of distance and distances variance from the Kriging (red lines)
and the real model (green lines) versus the number of realisations. All of the graphs are stabilised by

increasing the number of realisation (TBS and 2D case)

As can be seen, all of the graphs are stabilised by increasing the number of realisations although they highly
fluctuate before the 150" realisation. Thus, generating more realisations does not create a significant change
in the structure of the space of uncertainty and distance histograms from fixed points (Kriging and real
model) would be unchanged.

7-4.2.2 Impact of the number of realisations on relative accuracy (TBS-2D case)

To evaluate the impact of the number of realisations on relative accuracy (sub-sampling) of TBS
realisations, we determine that simply following these seven sets of generated realisations (11, 31, 51, 101,
201, 301 and 401). The result of these calculations is presented in Figure 7-56.

For better comparison between those sets, we compute the percentage of the number of sub-samples for
each set to get the same x axis. Figure 7-57 shows the impact of the percentage of the number of sub-

samples (% %) on relative accuracy of the 7 sets.
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Figure 7-56: Impact of the number of realisations on relative accuracy, namely sub-sampling for the 7 sets
with the following number of realisations 11, 31, 54, 101, 201, 301 and 401 (TBS and 2D case)

As can be seen, after 51 realisations (the third set) the differences between the relative accuracy of the sets
become insignificant. For instance, for 20% of the sub-samples, the difference between the relative accuracy
of 104 realisations (the fourth set) and 401 realisations (the seventh set) is less than 8 percent. This number
would be around 5 percent for 40% of sub-samples.
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Figure 7-57: Impact of the percentage of the number of sub-samples on relative accuracy, namely sub-
sampling for the 7 sets with the following number of realisations 11, 31, 51, 101, 201, 301 and 401 (TBS

and 2D case)
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7-4.3 Evaluating the space of uncertainty generated by SIS algorithm (2D
case)

The sequential indicator simulation (SIS) is the most widely used non-Gaussian simulation algorithm (see
chapter 3) which, in this point, (non-Gaussian random function) is very different from SGS and TBS.

To evaluate the impact of the number of realisations on the space of uncertainty where it is created by the
sequential indicator simulation algorithm (SIS), 600 realisations were generated (see chapter 4) and 60 sets
of generated realisations, namely 10,30, ---, 600, are taken by stepping 10 increment realisations from 10
to 600. Also, each set of the realisations contains all the realisations of the previous set. For each set, the

parameters of its dissimilarity distance matrix are calculated.

Furthermore, similar to the three dimensional (3D) data set, for better illustration of the impact of the
number of realisations on the space of uncertainty, 6 sets with the following number of realisations -30,
50, 100, 250, 450 and 600 - are taken from 60 sets to obtain a better view of these parameters. They also
perform a comparative evaluation on the space of uncertainty in detail (the Kriging and also the real model
are included to all sets), but for the sake of brevity just 4 sets with the following number of realisations (30,
100, and 600) are presented here, the rest of the sets being introduced in appendix A. Similarly to the
previous cases, we assess the possible interpoint distribution between the generated realisations and its

statistics to obtain a comparison between them.

First set - Figure 7-58 shows the histogram of the interpoint distance for 30 realisations and the fitted
lognormal distribution. The parameters of the histogram are shown in Table 7-12.
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Figure 7-58: The left graph is the histogram of 435 interpoint distances of 30 realisations with the best fitted

lognormal distribution (red line). The right graph shows the probability plot of the histogram (blue circles)
and fitted lognormal distribution, which shows a reasonable fitting between them (a x 10°)- (SIS and 2D

case)
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Table 7-12: Statistical parameters of the histogram of the interpoint distances of 30 realisations

(SIS and 2D case)

Ave. Ave. Ave

No. Distance Distance L
. Std. . L . Distance

Interpoint | Mean " Variance | Minimum | Maximum | Skewness from from

- Deviation from
Distance Average Real Krigin
model model ging

435 5591 1.088 1.183 3.466 9.637 0.752 3.971 6.310 3.971

(ax 10°)

Figure 7-59 shows multidimensional scaling embedding of 30 realisations. As illustrated, the Kriging point

(red circle) is at the minimum distance from the others, while the real model (green circle) is far from the

generated realisations. The results are similar to the SGS algorithm.
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Figure 7-59: Multidimensional scaling embedding of 30 realisations (blue circles); average of 30

realisations (red circle); the Kriging model (yellow circle); and the real model (green circle) in R?. The

average model is at the minimum distance from the others and the real model is quite far from the generated

realisations (SIS and 2D case)

Second set - Figure 7-60 shows the histogram of the interpoint distance for 100 realisations and the fitted

lognormal distribution. The parameters of the histogram are shown in Table 7-13.
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Figure 7-60: The left graph is the histogram of 4950 interpoint distances of 100 realisations with the best

fitted lognormal distribution (red line). The right graph shows the probability plot of the histogram (blue

circles) and the fitted lognormal distribution, showing an adequate fitting between them (a x 10°)- (SIS

and 2D case)

Table 7-13: Statistical parameters of the histogram of the interpoint distances of 100 realisations
(SIS and 2D case

Ave. Ave. Ave
No. Distance Distance L
. Std. . - . Distance
Interpoint | Mean S Variance | Minimum | Maximum | Skewness from from
- Deviation from
Distance Average Real Krigin
model model ging
4950 5617 1.098 1.186 3.395 10.64 0.815 4.004 6.344 4.78
(ax 10°)
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Figure 7-61: Multidimensional scaling embedding of 100 realisations (blue circles); average of 100

realisations (red circle); the Kriging model (yellow circle); and the real model (green circle) in R2. The

average model is at the minimum distance from the others and the real model is quite far from the generated

realisations (SIS and 2D case)
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Figure 7-61 shows multidimensional scaling embedding of 100 realisations. As illustrated, the Kriging point
(red circle) is at the minimum distance from the others, while the real model (green circle) is far from the

generated realisations.

For better viewing, and in order to achieve more accuracy in the embedded interpoint distances the
realisations are embedded into R3 as well. Figure 7-62 shows the embedded points in 3D. As illustrated,
the real model is close to the edge of the space with few points around it, while the Kriging is in the centre
of the space. The 3D figure 7-62 is similar to 2D Figure 7-61, but its Kruskal stress factor is 20% less than
2D, which may provide a better view of the space of uncertainty.

Dim3

Dim1

Figure 7-62: Multidimensional scaling embedding of 100 realisations (blue circles), the Kriging model and
the real model (yellow circles) in R3. The Kriging point is at the minimum distance from the others and real
model is quite far from the generated realisations. Embedding points in the 3D may give a better accuracy
and illustration than 2D (SIS and 2D case)

Third set -Figure 7-63 shows the histogram of the interpoint distance for 600 realisations and the fitted

lognormal distribution. The parameters of the histogram are shown in Table 7-14
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Figure 7-63: The left graph is the histogram of 210,925 interpoint distances of 600 realisations with the best
fitted lognormal distribution (red line). The right graph shows the probability plot of the histogram (blue

circles) and fitted lognormal distribution, which shows a reasonable fitting between them (a x 10°)- (SIS

and 2D case)

Table 7-14: Statistical parameters of the histogram of the interpoint distances of 600 realisations

(SIS and 2D case

Ave.

Ave.

No. Distance Distance Ave.
. Std. . - . Distance
Interpoint | Mean . Variance Minimum | Maximum | Skewness from from

- Deviation from
Distance Average Real Krigin
model model 9ing

179,700 5.528 1.049 1.100 3.015 12.27 0.93 3.935 6.312 4.74

(ax 10°)

Figure 7-64 shows multidimensional scaling embedding of 600 realisations. As illustrated, the Kriging point

(red circle) is at the minimum distance from the others, while the real model (green circle) is far from the

generated realisations. The results are similar to the SGS and TBS algorithms.
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Figure 7-64: Multidimensional scaling embedding of 600 realisations (blue circles); average of 600
realisations (red circle); the Kriging model (yellow circle); and the real model (green circle) in R?. The
average model is at the minimum distance from the others and real model is quite far from the generated
realisations (SIS and 2D case)

7-4.3.1 Impact of the number of realisations on the size and density of the space of
uncertainty (SI1S-2D case)

Figure 7-65 (blue curve) shows the variation of the average of interpoint distances versus the number of
realisations. As can be seen, the average distance increases when the very first realisations are generated,
but after 40 realisations it decreases significantly, and subsequently increases slightly up to 6.0 x 10°.
Beyond 200 realisations, it remains constant and shows insignificant fluctuations around 5.55 x 10°. The
red curve in Figure 7-65 shows the variation of the standard deviation of interpoint distances versus the
number of realisations. As can be seen, the standard deviation increases (same as the average curve) when
the first realisations are generated, but after 25 realisations it decreases to a minimum of 1.0 x 10°.
Subsequently, the rate of increase and decrease reduces until it plateaus. That is, the standard deviation
fluctuates until it reduces dramatically by increasing the number of simulations; it finally remains stable at
around 1.05 x 10°.
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Figure 7-65: The variation of the average (blue curve) and standard deviations (red curve) of interpoint
distances versus the number of realisations. Both of them are stabilised by increasing the number of

realisations around 5.5 x 10° and 1.05 x 109, respectively (SIS and 2D case).

We illustrated early the interpoint distances in the space of uncertainty (in this case) following a lognormal
distribution As the mean and standard deviations of the interpoint distances are stabilised by increasing the
number of realisations, it can be concluded with confidence that the simulation algorithm generates
retaliations in such a way that the dissimilarity between the interpoint distances, or precisely the structure

of the space of uncertainty, ultimately follows below the lognormal distribution.

1
ex —
(1.05 x 10°) x V2w X x p( 2 % (1.05 x 106)2

Fx) = (log(x) — 550 X 106)2) (7.4)

Similar to what was explained for the SGS algorithm, the size of the space of uncertainty increases with the
number of realisations in the five steps (see Figure 7-66) and is stabilised after generating 150 realisations.

That is, the simulation algorithm cannot generate realisations which are far from D, = 14.35 x 10°.

There is the same condition for the minimum distance, where the graph stabilised after generating
approximately 330 realisations. That is, the simulation algorithm cannot generate realisations which are

closer than Dy,;,, = 3.05 x 10°.

To evaluate the density of the points around any desired points, similar to the SGS and TBS algorithms,

we used method 2, namely the neighbourhood radius (see section 7-3.2), instead of going through the
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approximated distance (the stress factor is more than 32 %). Figure 7-67 shows the number of realisations
that fall within the neighbourhood radius r < a, 0 < a < Max D, for the Kriging, the real model and the

four selected realisations, which are sorted based on the distance from the Kriging model.

6.5

13.0 | | | | |
12.0 6

F N
e \aximum Distance 5

-
g
o

Q
=
§100 3
kz] == Minimum Distance S
ho] -
9.0 45 2
IS =)
2 £
E 80 4 35
3 =
= 70 3.5 i
6.0 3
5.0 2.5

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Number of realisation

Figure 7-66: Impact of the number of generated realisations on the maximum and minimum distances
between the realisations. Both of them are stabilised by increasing the number of realisations (SIS and 2D

case)

That is, realisations n0.554 and no.81 are closest and farthest to the Kriging model, respectively. As can be
seen, the number of realisations that fall within fixed neighbourhood radius r for the Kriging model are
much higher than in the other parts of the space. For example, 450 realisations are in neighbourhood radius
r <5 % 10° for the Kriging model (more than 75% of all realisations), while they are less than 225 for

realisation no.554 and less than 120 for the real model.

This confirms that the number of realisations in the vicinity of the Kriging model is considerably higher
than in the other parts of the space and by moving away from the Kriging model, the number of realisations
(for the same neighbourhood radius) decreases. The result is the same as what has already been illustrated
for the Gaussian algorithms.
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Figure 7-67: The number of realisations that fall within the neighbourhood radius r for average, the Kriging
and the real models, as well as the two selected realisations no.279 and no.277, which have closest and

farthest distances from the Kriging model, respectively (SIS and 2D case)

Moreover, Figure 7-68 shows the histogram (red) of the distances of 600 realisations from the Kriging
model, the histogram (blue) from realisation no.277 (extreme point), and the histogram (green) from the
real model. Those histograms confirm that the number of realisations in the vicinity of the Kriging model
is much higher than in the other parts of the space, and by moving away from the Kriging model the number
of realisations (for the same neighbourhood radius) decreases.
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Figure 7-68: The red histogram is the distance of 600 realisations from the Kriging model with the best
fitted lognormal distribution (red line); the blue histogram is the distance of 600 realisations from realisation
no.277 (extreme point) with the best fitted lognormal distribution (blue line); and the green histogram is
the distance of 600 realisations from the real model with the best fitted lognormal distribution (green line)
(SIS and 2D case)
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7-4.3.2 Impact of the number of realisations on relative accuracy (S1S-2D case)

To evaluate the impact of the number of realisations on relative accuracy (sub-sampling) of TBS
realisations, we determined that by simply following seven sets of generated realisations (11, 31, 51, 101,
201, 301 and 401) and using more sets does not change the results. The result of these calculations is
presented in Figure 7-69.

For better comparison between those sets, we compute the percentage of the number of sub-samples for

each set to achieve the same x axis. Figure 7-70 shows the impact of the percentage of the number of sub-
samples (% %) on relative accuracy of the 7 sets. As can be seen, after 34 realisations (the third set), the

differences between the relative accuracy of the sets has become insignificant. For instance, for 20% of
sub-samples, the difference between the relative accuracy of 104 realisations (the fourth set) and 404
realisations (the seventh set) is less than 2.5 percent. This number would be around 1 percent for 40% of

sub-samples.
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Figure 7-69: Impact of the number of realisations on the relative accuracy, namely the sub-sampling for the
7 sets with the following number of realisations 14, 34, 54, 104, 204, 304, and 404 (SIS and 2D case)
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Figure 7-70: Impact of the percentage of the number of sub-samples on the relative accuracy, namely sub-
sampling for the 7 sets with the following number of realisations (14, 34, 54, 104, 204, 304 and 404) (SIS

and 2D case)

After 34 realisations, the differences between the relative accuracy of the different sets have become
insignificant. As previously explained, that means that the distance between the best single realisation (z1)
and the set of collected S realisations does not change by increasing the number of realisations. That is, the
structure of the space of uncertainty of SIS remains practically unchanged after generating a certain amount

of realisations.

7-5 Conclusion

Although the conclusions that can be presented by this chapter, to some degree, would be specific to the
two different used data sets (2D and 3D), it is clear that the space of uncertainty generated by three
simulation algorithms (SGS, TBS and SIS) when the same information (conditioning data, histogram,
variogram) is being used, may not vary significantly from one algorithm to another. As was shown, in spite
of significant and obvious differences between the two data sets used, the results of those cases are almost

the same (in the point of comparison between the simulation algorithms).
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The factors that influence the characteristics of the space of uncertainty and have been addressed in this

study are, as follows:

1. We know that condition simulation does not contain any systematic bias and all generated
realisations are equally probable and fairly represent the entire space of uncertainty. However,
we can see in this study that there is a larger probability to generate realisations in the
neighbourhood of the Kriging or the E-type models rather than on the edge of the space. This
means that there is a systematic tendency to configure the space of uncertainty in such a way
that the probability to find or generate the realisations decreases from the centre to the edge of

the space.

2. In the majority of geoscience applications only a few realisations can be chosen. If this
selection is based on a random selection (which normally is), the set of chosen realisations is
not fairly sampled and the realisations which are around the Kriging or the E-type model have

a higher chance to be collected.

3. The interpoint distance histograms (in the space of uncertainty) follow lognormal distributions
and the mean and the standard deviations of the interpoint distances are stabilised by increasing
the number of realisations. Thus, it can be concluded with confidence that the simulation
algorithms generate retaliations in such a way that the dissimilarity between them (interpoint
distances), or precisely the structure of the space of uncertainty, ultimately follows a lognormal
distribution. It is not easy to explain why the similarity or interpoint distances in the space of
uncertainty tend to be approximately lognormally distributed. The main reason may be that all
the lognormal algorithms are conditional to sampled points; therefore, that would not allow
realisations to be generated with so many differences (dissimilarity). That is, the generated
realisations tend to be similar (close) to each other rather than far from, and this may create the

positive skew distribution.

4. By increasing the number of generated realisations the size of the space of uncertainty would

not change, only the point of density increases.

5. We know that the condition simulation does not have any systematic bias, so all generated

realisations are equally probable and fairly represent the entire space of uncertainty. However,
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8.

there is a larger probability to generate realisations in the neighbourhood of the Kriging or the
E-type model.

By increasing the number of generated realisations, the difference between the relative
accuracy of the sets, namely sub-sampling, would be insignificant. That means that the

structure of the space of uncertainty remains relatively unchanged.

As can be seen in Table 7-15, there are no major differences between the means, the standard
deviations, the variances and the minimum and maximum of the simulation algorithms.
However, SGS shows a higher variation (in interpoint distances) than the other algorithms
while the SIS shows the lowest. That means that the ability to generate different realisations
(that are not similar to each other) for SGS is the highest and for SIS is the lowest. That can be
confirmed again by comparing the minimum and the maximum graphs of the interpoint

distances of the simulation algorithms (see Table 7-15).

As we explained before, for a better comparison between the simulation algorithms, two points
are fixed in all three spaces of uncertainty, namely the real model (exhaustive data set) and the
Kriging model. As can be seen in Table 7-15, the average distances between the generated

realisations (by simulation algorithms) and these fixed points are close to each other.

Table 7-15: Statistical parameters of the interpoint distances distributions of the simulation algorithms

(All 2D — cases)

Ave. Ave.
Simulation Std. . - . Distance | Distance

Algorithm Mean Deviation Variance Minimum Maximum Skewness from Real from
model Kriging

SGS 6.076 1.240 1.539 3.397 15.406 0.994 6.131 4,996

TBS 5.800 1.199 1.437 3.052 14.357 1.064 5.724 4.615

SIS 5.528 1.049 1.1 3.015 12.27 0.930 6.312 4,740

(ax 10°)
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Chapter 8

8  Stochastic mine design and risk analysis using metric
space

8-1 Introduction

As explained in the literature review, traditional methods of mine planning involve the creation of a
schedule using information from a single deterministic block model. Often the schedule is optimised to
maximise, for example, the net present value (NPV). Currently, multiple randomly generated sets of block
models, called realisations, are available. Each realisation is compatible with sampled data and satisfies
various geostatistical restrictions. For over a decade methods that are based on selecting a single schedule
to exploit the orebody, using multiple realisation information, have slowly been developed. Many of these
rely on constructing a collection of schedules and assessing these schedules in a limited way against the
available realisations. In this chapter we highlight the shortcomings of such approaches and put forward a
novel methodology to mitigate these shortcomings. Our new approach works directly with a candidate set
of schedules; for example, those generated by individually optimising each realisation. We introduce a
means for measuring the difference between pairs of schedules in this collection and, using this information,
select a small set of candidate schedules for further analysis by NPV. We argue that this small set of

candidate schedules produce more robust outcomes than schedules selected by other existing approaches.

While conditional simulations are relatively commonly used by the mining industry to assess grade
uncertainty in mine optimisation, mine scheduling and mine planning activities, there has been very little
work, if any, on quantifying how well a given collection of realisations represent the total grade of

uncertainty in mine designs.

Although quantifying the space of uncertainty of all kinds of stochastic simulations and subcollecting
realisation(s) that best represent the space of grade uncertainty have been well developed and addressed in
chapter 6, the nonlinearity of the optimisation process (as a transfer function) is still a big challenge when
applying the representative realisations to the mine design process. This is because only a limited number
of realisations are generated and used (as a finite collection of all possible outcomes) by any sort of risk

based mine design method.
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Risk based mine design methods usually generate different mine designs based on a stochastically simulated
orebody. Mathematically, this means that the transfer functions (such as pit optimisation and any kind of
mine scheduling algorithms) are applied on the space of grade uncertainty and not only produce a
distribution of possible project indicators, but also make a new space, which is commonly named

‘response’.

We differentiate between two types of responses. The first is response data that can be represented by
number(s) (type 1), for example any project performance indicator, such as NPV, Internal Rate of Return
(IRR), cash flow, ore tonnage or metal quantity. The second type of response can be represented by sets or
series of numbers (type I1). Type Il can be a series of optimal extraction sequences (OES) of blocks or even
a set of spatially connected blocks with a pit geometry, such as a series of nested pits, designed pushbacks
or even the set of blocks which is mined during a fixed period of time, for example, yearly. That is, type Il

responses show how a mine has to be mined to get the highest possible NPV, for example.

In the past, several research groups have addressed stochastic optimisation and mine planning to evaluate
the risk of project performance indicators (type I) using conditional simulations; however, they have two
drawbacks. The first is that the distribution of the project indicators (type I) cannot provide any information
about different optimised pits, pit designs or mine scheduling; in addition, it is likely that different pit
designs have approximately the same project indicators. Therefore, this sort of response variable (type I) is
unable to reflect the dissimilarities between different optimised pits or pit designs, which come from
different realisations. Generally, type | highlights the impact of grade uncertainty (in mine planning
activities) on the assessment of the financial or technical indicators of the blocks. Type II, however,
indicates this impact on mine design and assesses the uncertainty in sequences or the time extracting the

blocks-uncertainty in place (which block) and time (when to mine).

The second drawback is that the chosen design(s) would no longer be equiprobable. This means that some
designs are highly likely to occur while others would be less able to represent the actual mine design.
According to Dimitrakopoulos et al., (2007) “Although the simulated orebody models are equally probable,
the corresponding designs are not" (p.76). The common risk based methods assume that chosen design(s)

are all equiprobable and this assumption may cause misleading results in inaccurate design selection.

Although we developed and described an application of the distance based method in chapter 6 to quantify
the dissimilarity of different realisations, we very briefly summarise and restate the methodology and
findings of chapter 6 here in order to apply them to pit optimisations, mine designs or scheduling using a

type 1l response. We also use this information to optimally subsample a collection of the designs, quantify
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how well the high-quality collection represents the overall uncertainty and measure the weights of the
chosen designs. In this chapter we address the need to take into account the probability or weight of the
chosen design(s) that can be produced by any risk based mine design method. This approach can be readily

generalised to promote a more robust performance of risk based mine design methods.

8-2 RIisk based methods

Some risk based methods (Dimitrakopoulos et al., 2007) and (Leite and Dimitrakopoulos, 2007) generally
try to choose a single or modified mine design among the other designs, which may provide the best or
better results based on the quantified risk of the project indicators. They deal with a limited number of
designs without considering or identifying the structural relationships between them. Notably, there are

spatial differences (dissimilarities), which may affect the results of further processing.

The maximum upside or minimum downside (Dimitrakopoulos et al., 2007) approach, as described in
chapter 2, is one such risk-based method. This method, briefly, first applies traditional optimisation and
mine scheduling on each random generated realisation to design a pit. Second, it generates the distributions
of any other project indicator by applying a given mine plan on each realisation. Third, it discards the
designs that may not meet user defined criteria and selects one design that can capture the maximum upside
reward or minimum downside risk. The design selection in the approach outlined above is based on type |
of the response variable, while the designs are significantly different in ways that cannot be captured only

by type I. Considering the use of type Il in these methods may avoid the two following issues.

The first simple example that addresses the first issue, is shown in Figure 8-1, where there are four ore
blocks which have a Gaussian grade distribution of which means are shown on the blocks (the standard
deviations are the same). We randomly draw grade values from their grade distributions to generate 10,000
equal probable realisations; then, we try to find all possible mining combinations (block sequences) in such
a way that the high grade blocks are mined first if their top block has already been mined. As can be seen
in Figure 8-1, there are only six possible sequences with the given frequencies. It is clear that the first
extraction sequence is highly likely to occur with a probability of more than 68%, while the fifth is less

likely to occur, with a probability of 0.36%.

As risk based methods do not consider any probability or weight for the chosen design(s), it is highly likely
that a low probable design, for example path 5, can satisfy the conditions, such as maximising the upside
and minimising the downside, while highly probable designs might be discarded. It is clear that higher

probable design(s) have to be focused on doing any further assessment.
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This example, albeit fabricated, reveals the importance of considering the probability or weight of each
design before making any decisions about them. In contrast to this example, in real case, all possible mining
combinations (block sequences) may be completely different from each other. This means that the
probability that two different realisations have exactly the same optimal extraction sequences (OES) is very
low. In such cases, we try to find or measure the similarity (or dissimilarity) between them, instead of
exactly matching them. This means that although there are many different OES, some are more similar to
each other than others.

Pathl=1--3--2-4 Path2=1--2--3--4 Path3=1-2-4--3
Freqency = 6827 Fregency = 341 Fregency = a8
1 0.6 0.5 2 1 0.6 miu—y 0.5 2 1 0.6 my 0.5 2
3 0.7 04 E 3 0.7 iy 0.4 4 3 0.7 ¢ 0.4 4
Path4 = 2--1--3--4 Path 5 = 2--1--4--3 Path 6 = 2--4--1--3
Freqency = 2025 Fregency = 36 Fregency = 673
1 0.6 i 0.5 2 1 0.6 i 0.5 2 1 0.6 0.5 2
3 0.7 =====04 E 3 0.7 ¢ 0.4 4 3 0.7 04 4

Figure 8-1: Six possible mining block sequences (schedules) and their probabilities

This approach addresses the second issue to be avoided. In the second issue, each schedule is individually
optimised regarding NPV, production targets (such as ore production and yearly target grade) and mining
constraints. However, applying these optimised schedules to the other realisations incurs a high risk of not
meeting production targets and, therefore, the new schedule which is not optimised would not guarantee
practical solutions. Although they may show high NPV in the point of maximum upside and minimum

downside, they would not be achievable.

Moreover, it would be a time consuming procedure to go through each realisation one by one, checking
production targets or mining constraints. For example, in this theoretical case, more than 10,000 schedules
would have to be checked. We explain in section 8-5.2 how to apply the distance based method to select a

set of schedules that can solve this issue.
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In this fabricated example we have simulated 4-block models and have shown the relative percentages of
each possible extraction sequence (path) to find out which one would most likely happen. Now, we take an

advantage of this example to explain how to select the most popular extraction sequence(s).

As we explained on chapter 6, our sub-sampling method based on Kantorovich distances treats extraction
sequences as vectors or objects having distances from each other. It helps us to partition the extraction
sequences into a few clusters, such that extraction sequences within each cluster are as similar to each other
as possible, and dissimilar from objects in other clusters as possible. Size of each cluster depends on how
many points (extraction sequences) sit around (nearby) the cluster centre point. A cluster centre point is a
point which minimises the sum of distances between it and other points in cluster. We will take these points
(or only one point) as representative(s) or the most popular extraction sequences for mine design.

In this example, there are only six possible extraction sequences, therefore numbers of possible cluster
would be six. As each extraction sequence appears many times, so the size of each cluster would be equal
to the given frequencies (see Table 8-1), namely weight(@,). Each cluster centre is a vector in R* , and we
are able to calculate Kantorovich distance (dissimilarity) between them based on extraction sequences and
geometric spatial information of the blocks. However, as the most popular extraction sequences, namely
cluster centre 1 has more than half of total weight, it doesn’t need to calculate dissimilarity matrix for these

6 extraction sequences.

Table 8-1: shows the extraction sequences (vectors) and their weights of each cluster centre.

Block1 | Block 2 | Block3 | Block4 | Weight (@)
Path 1/Centre of cluster 1 1 3 2 4 68.27%
Path 2/Centre of cluster 2 1 2 3 4 3.41%
Path 3/Centre of cluster 3 1 2 4 3 0.98%
Path 4/Centre of cluster 4 2 1 3 4 20.25%
Path 5/Centre of cluster 5 2 1 4 3 0.36%
Path 6/Centre of cluster 6 2 4 1 3 6.73%

We have shown these clusters as circles with different sizes (@,) in Figure 8-2, as the cluster 1 is the largest
cluster (the most popular), picking up this extraction sequences (if we are looking for a single extraction
sequences) as an outcome can cover more than 68% of the total uncertainty, and this amount would increase

up to 88.5% if we add the second largest cluster, namely cluster 4.
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In the real example later in this chapter, we will show that number of extraction sequences is equal to
number of realisations (instead of having only six possible sequences), but we are able to partition them
into a few clusters same as what has been shown in Figure 8-2 based on their similarities, and then the pick

up the centre point of one of these clusters which is the most popular as a final outcome.

Figure 8-2: Six clusters of the fabricated example, size of the clusters are schematically equal to their
weights, the centre point of the cluster 1 is the final outcome, as cluster 1 has more than half of total weight

Thus far, we know the probability of the schedules occurring for the given realisations (see Table 8-1).
Now, we turn to calculate the NPV of these schedules to understand how these probabilities relate to the
NPV. For calculating the NPVs, we assume the annual interest rate is 20%, value ($) of each block for one

percent grade is about 20,000$, and each block takes one year to get mined.

Table 8-2 shows NPV statistics for the six representative schedules. As seen, schedule no.1 (path 1) not
only has the highest probability between the six other schedules, but it also has the highest individual NPV
(29,367 3$) between the schedules. Therefore, we can say that the schedule no.1 is robust in terms of NPV

as well.
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Table 8-2: NPVs for the six representative schedules

First | Second | Third | Fourth First Second | Third | Fourth
. . . .. | block's | block's | block's | block's | NPV | Probability

Schedule | block's | block's | block's | block's value | Value | Value | Value $ %

grade | grade grade grade $ $ $ $
(1P_§t2_14) 0.60 0.70 0.50 0.40 12,000 | 14,000 | 10,000 | 8,000 | 29,367 68.27
(1P_2t_h3_24) 0.60 0.50 0.70 0.40 12,000 | 10,000 | 14,000 | 8,000 | 28,904 3.41
(1P-2t—2-33) 0.60 0.50 0.40 0.70 12,000 | 10,000 | 8,000 | 14,000 | 28,325 0.98
(2P-it-h3i1) 0.50 0.60 0.70 0.40 10,000 | 12,000 | 14,000 | 8,000 | 28,626 20.25
(zp_it_rf?)) 0.50 0.60 0.40 0.70 10,000 | 12,000 | 8,000 | 14,000 | 28,047 0.36
(zlizt_hlg) 0.50 0.40 0.60 0.70 10,000 | 8,000 | 12,000 | 14,000 | 27,584 6.73

Although, in this case, the most probable schedule has the highest NPV, that is worth considering what if
the NPV was not the highest for this schedule. That means, another schedule with less probability has the
highest NPV.

It is clear that there is no any unique answer for this situation, and as a general rule, the more money we
stand to make, the more money we stand to lose. That means, we typically need to take on more risk to
achieve higher returns (NPV). As a matter of fact, there are different levels of risk attached to different
types of mine schedules, and therefore we have to decide first what level of risk we are comfortable with.
A mining company may select the highest probable schedule (less NPV) because the probability of low
block values corresponding to this schedule is the highest, so it is highly likely to happen, namely more
realistic. On the other hand, other company may choose the highest NPV (less chance) because the
difference between their NPVs (less probable and high probable schedules) is high enough to outweigh the
risk, and this risk is within the acceptable risk range for that company.

We will study a real case for a better comparison between risk (probability) and NPV later in section 8-5.

8-3 Definition of dissimilarity and realisation reduction

We restate here, in a more abridged way, the methodology which was more thoroughly described in chapter
6, by measuring the distance between two extraction sequences, namely type Il of response variables (a
metric on the space of extraction sequences). Let s = {sy,...sy } and r = {ry, ...y } be two extraction
sequences of two mine designs where each set shows the order of digging up the individual blocks from the

first scheduled block (s4,7y) to the last one (sy, 7y) -
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We suppose that the extraction sequences are of the same length; if the sequences are of different lengths,
strategies to handle this are discussed in Remark 8-1. A simple way to define distance between s and r
could be to consider them as N-vectors and compute YN, |s; — ;] or XN, (s; — ;). However, such an
approach ignores the spatial locations of blocks. For example, suppose that s = r, except at two positions
i* and j* where r;» = s« and r;« = s;« (to create r, we take s and just swap the extraction number of two
blocks in the sequence). Using the simple sums above, the ‘distance’ computed between s and r is
completely independent of how spatially close block i* and block j* are. However, for a useful definition
of distance, if the blocks are physically close, the sequence distance should also be close; while if the blocks
are spatially distant, then the sequence distance should be larger.

The method we now propose incorporates geometric spatial information from the block model. We denote
the three-dimensional coordinates of the centre of block i, by ¢;, i =1,..., N, and set d;; = |¢; — ¢, the
Euclidean distance between the centres of blocks i and j. To define the distance between these two
sequences, in which we denote D,.,, we compute the minimal ‘work’ required to transform sequence r into
sequence s. There are two issues here: the ‘work’ and ‘transforming’. First, let’s examine ‘transforming’:
we imagine that we have a bipartite graph (Figure 8-3) with 2N nodes and N2 arcs, shown below. On the
left N nodes we write the values of sequence s and on the right N nodes we write the values of sequence r.
We then ‘transform’ sequence s into sequence by flowing ‘sequence value along the N2 arcs. If f;; > 0
denotes the flow from block i on the left to block j on the right, then mathematically we require for each i
=1,...,N, X1 fij = s; (total flow leaving block i is s;) and for each , j = 1,.... N, Y, f;; =7 (total

flow entering block j is ;).

Figure 8-3: The Kantorovich process, the minimum work for transferring the left distributions to the right

side
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There are several different sets of flows that satisfy these 2N equations (we have N2 variables and only
2N equations). However, we want a particular flow, one that minimises ‘work’. We define effort
as Z’Q’Fl d;j fij; that is, the total effort is a weighted sum of the flows, weighted according to the spatial

distance between the block pairs i and j. In summary, we define

N
min D difiy
i,j=1
Subjectto Y., f° =m], 1<i<N (8-1)
L fF =md, 1<j<N (8-2)

We have already explained in chapter 6 how to solve this standard transportation problem using linear

programs.

Remark 8-1. In the situation where sequences s and r have lengths N and M, respectively, M — N is
assumed without loss of generality that M < N. One possible approach is to ‘pad’ sequence r to create
r' = [r,_my,M+1..,M+ 1], where there are N — M copies of M + 1 at the end of 7, and then apply

the methodology above to the N -sequences s and .

We now have a way of measuring the distance between two extraction sequences. Suppose that we are
provided with a collection of extraction sequences from which we wish to, for example, extract some
representative sequences for a more intensive analysis, or wish to compute which extraction sequences are
‘outlier ‘s. This collection of extraction sequences could arise via the individual optimisation of a collection
of conditional simulations, such as in the maximum upside and minimum downside scheme. If we have §
extraction sequences, we may compute zg for the § $(S — 1) /2 distinct pairs of extraction sequences. We
call this S(§ —1)/2 x §(S — 1)/2 matrix, the similarity matrix. The value zg has the units of D,.;. Thus,

Zg has the interpretation of “Work’ required to transform all of the S schedules into S <« § schedules.

We may now use the method developed in chapter 6 to extract a subcollection of S «< § extraction
sequences that best represent the larger collection of S sequences. We called this method ‘realisation
reduction. Indeed, the realisation reduction method is based on transporting the probability of 1/S from the

original large collection of S extraction sequences into a smaller collection of S extraction sequences
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(representative extraction sequences); therefore, each of the representative extraction sequences s?, ..., sS

is given the weight @;, which satisfies the following properties:

0<d, <1 (8 —4)
S
Zasi=1 (8 —5)
i=1

We refer to chapter 6 for details. Once these S representative extraction sequences s, ..., s have been
found, one can straightforwardly create a ‘cluster’ of sequences around each of these representatives
(cluster centres) by assigning each non-representative sequence to the representative sequence it is closest
to, according to the distance D. That is, assign sequence r to the representative sequence s** if D,k <
D, g forall 1 < k <S. Because (i) each sequence is more similar, in the sense of the distance D, to
sequences within the same cluster than to sequences in different clusters, and (ii) the distance D penalises
spatial distance, we expect that the NPV and other type-I statistics will also be similar within a cluster. It
may indeed happen that sequences in different clusters may have similar NPVs or other type-1 statistics; in
fact, this property demonstrates that using type-I statistics is a very poor way of determining the similarities

of the sequences.

Remark 8-2. As we know, &g are proportional to the size of each cluster; therefore the weight or the
probability of any cluster centre (@) varies with the size of the cluster. We can apply a similar idea to find
the weight or the probability w, of the any chosen extraction sequences r inside the cluster C;, r # s*. That
means we re-cluster the space by enforcing the chosen extraction sequences r as a centre of a cluster. The
variability of w,, for this kind of selection can be 1/ < w, < & . Now, we are able to compare w,

against @; to calculate how much weight can be lost, if r is chosen instead of S.

Applying grade uncertainty in mine design produces physical differences in optimised pit limits, pushback
designs or the scheduling patterns. For example, Figure 8-4 schematically presents one section of a mine
with three different scheduling patterns (which come from three different realisations). As seen, each
section has 122 blocks, which are classified into four pushbacks. By visually comparing these sections, we
conclude that design 1 is closer to design 2 than design 3. Quantifying this similarity can be a powerful

technique to risk assessment in mine designs.

For example, to quantify the dissimilarities between these sections, first, we apply the best case scenario

which consists of mining out pushback 1 from the top down, before starting the next pushbacks. That can
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generate three different optimal extraction sequences of the blocks. By calculating D,.; between the given
three sequential series, the following optimal pairwise distances (dissimilarities) are calculated
Dy, =54,244.2, D,3; = 151,041, and D,; = 98,148.9. Schedules 1 and 2 are at a minimum distance from
each other, while schedules 1 and 3 are at a maximum distance. This is what can be visually seen.

117 | 118

[57 [ 53 [ o8
2oL | 10z
o7 [ 305

108
(322 [ 115 [ 134 | 115 |
(76 [ 117 | 115 |

[ 85 | &9 |
[ 92 [ o5 | 94 [ 95 |
[ 92 | 5 [ 100 | 101 |
705 | 107 | 205 | 505 | Pushback 1
[ 115 [ 129 ] 115 [ 116 | Pushback 2
C-Scheduling_3 Pushback 3
Pushback 4

Figure 8-4: The schematic mine section of three different mine designs (based on three realisations) with

different pushback designs (coloured blocks) and block sequences (number in each block)

8-4 Type Il of response variables

In this section, type Il of the response variables and the application of this term to quantify the dissimilarity
between the different designs are briefly explained. The open pit mine planning stages are shown in Figure
8-5; as can be seen, they are divided into three different stages.

By applying optimisation and the mine design procedure over each realisation the following series of
responses of type Il can normally be obtained. These series could be used for measuring the dissimilarity
between the designs.

1- Lerch-Grossman (LG) phases, Nested pits

2- Practical pushback sequences

3- Block extraction sequences

4- Block extraction time
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Figure 8-5: Open pit mine design stages from the geological model to mine scheduling?

LG phases: The starting point for mine design is to generate LG Phases. By stepping (for example m steps)
the economic parameters, such as the revenue factor and the commodity price factor in percentage
increments a series of nested pits is generated and all blocks are divided into maximum m sequential optimal
pits (1,2,..,m). By applying the LG phases on S realisations, S different sequences
{(s11, »S1m) (S22, r Szm)s wer (Ss.15 ) Ss.m )} OF these nested pits can be generated. It is clear that the
similarity between the n series would be smaller if the number of steps (m) becomes smaller. Further,
extremely small steps tend to give block optimal extraction sequences instead of optimal nested pits. In

such a case the dissimilarity becomes much larger.

Practical pushback sequences: This is the same as the LG phases series, but the number of practical
pushbacks (chosen by a mine designer) would be much less than m. For example, in Figure 8-5, there are
four different pushbacks for each design where all blocks in pushback n.1 (purple) have the number 1, in

the second pushback (green) are 2, and so on.

Block extraction sequences: Optimal Extraction Sequence of the blocks (OES) is the sequential numbers
usually generated by the scheduling algorithms (or even the optimisation and pushback design algorithms)
to maximise, for example, NPV. In Figure 8- 4, the numbers inside each block in each mine design show

the extraction sequences of the block. In this chapter, we use these same sequences.

Block extraction time: This is almost the last step of a mine design procedure and it can generally classify
the blocks into yearly scheduling by considering practical mining constraints; therefore, the blocks would

be given the numbers {1,2, ..., N} while N is the mine life.
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Making any change in the financial and technical parameters, constraints and algorithms would alter these
sequence numbers. For example, the pushback sequences can be altered by changing the number of
pushbacks, pushback size and minimum distance between pushbacks. Also, the block extraction times can

be altered, for instance, by bounds and target values of grade.

In addition, mine designs are progressively developed into practical designs by applying different
constraints, from optimisation to mine scheduling (or even stockpiling); consequently, the similarities
between the corresponding designs at different stages are not the same, although there may be some
correlation between them. For example, Figure 8-6 shows a correlation between the distances (similarities)
in the sequences of the pushback designs and the block extraction sequences of corresponding scheduling
for 101 realisations, which were noted in section 8-5. As can be seen, they have a correlation coefficient
of 51 %. Selecting the appropriate response variables highly depends on accuracy, sensitivity and the stages
that we need to measure the dissimilarities. For example, in contrast to the other mentioned type 1, the OES
series usually contain many sequential numbers (which may range from thousands to millions), and
therefore the similarity between the two OES series is usually smaller than the similarity between the

corresponding pushbacks or block extraction times.
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Figure 8-6: Correlation between the distances of pushback sequences and the block extraction sequences

Note that the block extraction sequences and the block extraction times behave in a similar manner to each
other (see correlation coefficient ~92% in Figure 8-7). However, the block extraction times (for example,

yearly) do not consider any block sequence variation within a year and give one number to all blocks which
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are mined in the same year. This makes the schedules closer to each other than OES. Figure 8-7 shows a
correlation between the distances in the block extraction times and the blocks extraction sequences of
corresponding scheduling for the 101 realisations which were mentioned in section 8-5. As described above,
the x axis range (dissimilarity between yearly block extraction times) is smaller (two times) than y axis

(dissimilarity between OES).
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Figure 8-7: Correlation between the distances of yearly block extraction times and the block extraction
sequences

8-5 Application at a copper porphyry deposit

A typical copper porphyry deposit was used with the following geological features to illustrate our
methodology and also to compare it to the maximum upside and minimum downside approach for the open

pit mine design procedure outlined above.

The mineralisation is hosted in the quartz-monzonite porphyry (QMP), which has undergone several phases
of hydrothermal alteration common in porphyry systems. The economic mineralisation appears as small
veins and disseminated grains, primarily in QMP. Mineralised zones (domains) have been classified by the
degree of leaching and supergene enrichment of the original hypogene sulphide primary; in addition, high-
grade economic mineralisation has occurred within the supergene zone. This confirms that this
mineralisation is a classical porphyry copper style model, but on a small scale. A single estimation domain

is focused where there are 48 million tonnes of measured and indicated geological resources. Within the
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supergene domain, the copper grades are determined for a set of 414 six-meter composites from the drill
holes. The mean copper grade and its standard deviation is 0.75% and 0.35, respectively. The block model
has 2805 ore blocks with a size (dimensions) of 25 x 25 x 12.5 (x, y and z direction) sizes. In order to
assess the possible range of the response variable outcomes of mine designs, 101 realisations were
generated by using the conditional sequential Gaussian simulation. Subsequently, applied pit optimisation
generated the corresponding nested pits, pushbacks and scheduling. Each design maximises the NPV as a
first priority in relation to the operational constraints and the financial and technical parameters, which are
shown in Table 8-3. These mine planning activities for 101 realisations were the most time-consuming task
of the study. We use NPV Scheduler Ver. 4 as an optimiser software for all mine planning activities in this
study.

Table 8-3: The financial and technical parameters used for the mine design

Parameters Value Unit

Mining cost 1.25 $/tonne
Processing cost 20 $/tonne
Other costs 450 $/tonne
Mine production 2,500,000 | tonne/year
Pit slope 38 degree
Copper recovery 85 %
Discount rate 16 %
Mining limit (capacity) 10,000,000 | tonnel/year
Grade Target 0.8 %
Min & Max allowed grade 06,10 %

8-5.1 Maximum upside and Minimum downside Approach

First, we applied the maximum upside and minimum downside approach which has been described in

chapter 2, and NPV was selected as the key project indicator.

The NPVs were calculated by designing the optimal pit limits by selecting the corresponding three optimal
pushbacks and finally by applying the yearly scheduling (using the parameters given in Table 8-3). The
maximum upside and minimum downside of all calculated NPVs in each schedule are represented by red
and blue points, respectively, in Figure 8-8. As can be seen, there are clear fluctuations between the different

downsides and upsides of the designs.
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Figure 8-8: Maximum upside and minimum downside for 101 schedules

By applying an NPV of 167.3M$, as a minimum acceptable NPV (point of reference), 10 schedules are
first nominated (~10 % of all schedules). Figure 8-8 shows the distribution of 101 NPVs for each
nominated schedule. The amount of downside risk and the maximised reward, which was sorted by the
maximum upside, is shown in Table 8-4. As can be seen in Figure 8-8, schedule no. 24 is the best in
minimising downside risk and maximising reward, as 5.866M$ and 59.935 M$, respectively. The second
best is 41, which is close to 24 when compared to the others. In the next section we will be able to see that

these two schedules are far away from each other in the point of block extraction sequence.

As can be seen in Figure 8-9, some designs, for example, designs no. 88, 96 or 86, 56, 21 and 72, are
significantly close to each other; therefore, this approach based on Type | information is unable to identify

any differences between them.

230,000,000

220,000,000
210,000,000
200,000,000
2Z190,000,000
180,000,000
170,000,000
160,000,000 ‘ ‘ ‘

# of Schedules

PV $

Figure 8-9: Upside and downside NPV for only 10 selected schedules
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Table 8-4: Maximum upside and minimum downside for the selected schedules sorted by maximum

upside
Schedule Min NPV $ Max NPV $ Min.downside $* Max.upside$*
24 174,166,232 228,235,057 5,866,232 59,935,057
41 171,734,730 225,901,357 3,434,730 57,601,357
72 169,301,915 224,010,164 1,001,915 55,710,164
86 169,737,535 223,665,355 1,437,535 55,365,355
21 169,175,104 223,581,882 875,104 55,281,882
56 169,258,947 222,556,767 958,947 54,256,767
17 168,947,698 222,356,713 647,698 54,056,713
88 170,156,877 222,316,061 1,856,877 54,016,061
96 170,181,230 221,699,368 1,881,230 53,399,368
13 168,731,643 219,022,427 431,643 50,722,427

*Please refer to chapter 2 to see how to calculate of the minimum downside and the maximum upside

8-5.2 Distance based method approach

After illustrating some of the criteria of the risk based methods on the selection of the best design(s), we
now turn to the distance based method. In section 8-3, the Kantorovich metric was presented as a robust
approach to clustering and selecting representative scenarios and now we apply the approach to a realistic

set of 101 schedules of the porphyry copper deposit.

Remark 8-3. In this study, we use a multidimensional scaling (MDS) algorithm, as described in chapter 5,
to provide a visual representation of the space of uncertainty to get a better sense about the space, the pattern
of similarity, possible clusters and their centres. Although applying MDS algorithm may take the advantage
of using the Euclidean-based subsampling or clustering techniques, in this study this algorithm is only used
for visualisation purposes to better explain the differences between the approaches. The optimal subsamples

and clusters are based on the original distances D,.;, and not approximations.

8-5.2.1 Computing the distance between the schedules

Creating the space of uncertainty, the dissimilarity distance matrix can be constructed by computing the
pairwise distances D, 1 < r < s < 101 between the optimal extraction sequences of 101 schedules using

equations (1)-(4), and thus a 5050 x 5050 dissimilarity distance matrix is constructed.
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Figure 8-10: Upside and downside NPV for 101 selected schedules projected (MDS) on Euclidean space R!
(x axis numbers in this Figures are in form of scientific format x 108 , but for sake of brevity they are

shown without 108)

Figure 8-10 shows a multidimensional scaling (MDS) embedding of the given dissimilarity distance matrix
in R, so that the interpoint distances in R approximate the pairwise schedule distances D,... R! is used
here to compare the results of two approaches, namely a comparison between Figures 8-8 and 8-10. As
seen, the two graphs have the same y axis (NPV), but a different x axis. x axis in Figure 8-10 has a physical
meaning and shows the projected Euclidean space coordinate, that is, it indicates how close (similar or
dissimilar) the designs are to each other. Figure 8-10, representing the distance based approach, can present
the combination of type | and type Il response variables which give more complete information about a
mine design. For example, as can easily be seen, the extraction sequence of schedule 24 is around 20% of

range far from 41, while their NPVs are not so far (see Table 8-4).

8-5.2.2 Clustering and selecting representative schedules

The results of any type of clustering algorithm are the collections (clusters) where the data points inside
each cluster are more similar than the data points between the clusters. We use our methodology (refer the
reader to section 3 for details) to optimally subsample a large collection of schedules and to quantify how
well this high-quality subsample represents the overall uncertainty of the collection. The basic issue of the
subcollection selection is to identify the best number of subsets or collections in the given space. Following
Dupacova et al. (2003), we report zg relative to z;, the latter representing the ‘base’ distance between the

best deterministic approximation of the collection of S realisations. Thus, zg = z; represents the distance
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between the optimally subsampled S realisations and the full set of S realisations relative to the distance
between the best single realisation (deterministic approximation) and the full set of S realisations. For
brevity, we call the quantity Is = (z; — z;+1)/21 X 100% and the relative improvement of the optimal S-
subcollection. Clearly I; = 0 (S = 1 provides no relative accuracy), and I = 100 (S = S provides a

100% relative accuracy).

The number of collections has to be chosen in such a way that adding another collection does not create a
better relative improvement in the data set. As seen in Figure 8-11, there is no significant change in the
relative improvement after S = 3. The number of collections chosen can therefore be 3; consequently,
depending on how many members the collections have, the weight of the collection centres (@) can be
determined. The number of collections in our approach indicates how much spatial grade variability can
generally make a difference in mine scheduling; moreover, the weight of each collection centre clearly
shows how much spatial grade variability does not significantly impact on mine scheduling. The weight of
collections is also a key factor to determine the sample sizes proportion if, for any reason, using as an
example what has been addressed in Leite and Dimitrakopoulos (2007), a limited number of designs have

to be selected for futher processes.

Table 8-5 illustrates the best representative schedules (collections centres) of each collection and their
weights. As seen, schedule 41, with 47.52 % weight (&4, = 0.4752) has the highest weight, while two
other collection centers have appromimatly the same weight (@3 = 0.2673, &3 = 0.2574). This means
that more than 47% of S schedules are more similar to schedule 41 compared to the other schedules. If we
assume that the reality is somewhere in this space, it has a 47% chance of being similar to schedule 41 or

inside the cluster of no.l. Therefore, this cluster can be the first selection for futher processing.

100

40

Relative improvement

2 3 4 5 6 7 8 9 10
S- Number of

Figure 8-11: Number of collections S vs. relative improvement I, with three collections as the optimum
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Table 8-5: Representative schedules and their weights for the three collections

Collections |  Representative Weight (@,)
No. schedule %
1 41 47.52
2 3 26.73
3 73 25.74

An MDS embedding of the all the points in R? (for better visualisation, n = 2 is chosen) can be seen in
Figure 8-12. The schedules (all points) are clustered rather than being randomly distributed in the space.
The result of clustering is shown as the colouring of the points into three collections and the coloured circles
are the centres of each collection. As seen in Figure 8-12, schedule 24, which is the best selection of

maximum upside and minimum downside approach, is in cluster no.1.

Based on what was explained in Remark 8-2, we how compare w-, against @,, to show how much weight
or probability can be lost by picking up schedule 24 instead of 41 in Remark 8-2. This weight or probability
(w,4) is around 8.9 %, which is 4.33 times less than &,,. The main reason for this significant difference
can be explained by distance D, schedule 24, in cluster no.1; it is not only far from the cluster centre point

(schedule 41), but also from the other schedules, namely an outlier in cluster no.1.

Remark 8-3. Applying outlier detection techniques after clustering the data set can be helpful to have better
clusters although we do not apply this technique in this chapter. For the interested reader, further
background on outlier detection in clusters may be found in the reference Han et al. (2011). In the distance-
based approach, schedule X in cluster Y can be an outlier (see chapter 3) if no more than n schedules in the
cluster can be found at a neighbourhood radius r or less from X; that is, an outlier is a schedule(s) that is
far away from the others in the point of Kantorovich distance (they are dissimilar to other schedules

although they are in the same cluster).

8-5.3 Statistical analysis of type | for type 11

After clustering the schedules and calculating weights or probability of the chosen schedules, we now turn
to the space of uncertainty of type I (in this case NPV) to assess the NPVs of the representative schedules,
also including that of the clusters. This space of uncertainty of type I is usually represented by the histogram
of response values. In this case, for given NPVs in section 5.1, for each collection, two histograms

(maximum upside and minimum downside) of schedules are drawn (Figure 8-13).
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Figure 8-12: Multidimensional scaling embedding of 101 schedules in R? classified into three clusters

Tables 8-6 and 8-7 show NPV statistics of the histogram of each cluster and the maximum upside and the

minimum downside for the three representative schedules, respectively. As seen, cluster no.1 not only has

the highest average NPVs and the lowest variances between the three other clusters, but it also has the
highest individual NPV (schedule 41) between the other three representative schedules. That is, the

tendency of individual schedules within the collection is to have approximately a similar NPV;
consequently, the schedules in collection no.1 have a higher NPV and they achieve maximum upside and

minimum downside. It is not unexpected that all 10 nominated schedules of the maximum upside and

minimum downside approach already be in collection no.1. Therefore, the representative schedule is robust
in terms of NPV as well.

Table 8-6: Mean, St. Deviation, Minimum, Maximum, of the maximum upside and minimum downside

histograms for the clusters

Maximum upside (NPV $) Minimum downside (NPV $)
Collection Mean St. Deviation Min. Max. Mean St. Deviation Min. Max.

1 220,494,007 2.74.E+06 211,908,550 | 228,235,057 | 166,299,432 2.62.E+06 161,450,217 | 174,166,232
2 215,921,337 3.38.E+06 204,322,242 | 222,075,503 | 159,758,897 4.28.E+06 149,049,042 | 166,750,458
3 217,397,927 4.30.E+06 205,397,132 | 230,303,072 | 160,627,237 3.15.E+06 155,636,339 | 167,583,273

Table 8-7: Maximum upside and minimum downside for the three representative schedules

Collections | Representative | Weight (®,) | MinNPV | Max NPV | Min.downside | Max.upside
No. Schedules % $ $ $ $

1 4 47.52 171,734,730 | 225,901,357 3,434,730 57,601,357

2 3 26.73 163,348,799 | 217,537,810 - 4,951,201 49,237,810

3 73 25.74 159,462,138 | 217,287,580 -8,837,862 48,987,580
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Figure 8-13: Six histograms for the NPVs of maximum upside (left sides) and minimum downside (right
sides) for three clusters
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If we were to choose a single cluster (S = 1), the representative schedule would be the most ‘practically
robust’ in terms of meeting production targets compared to the other schedules. By increasing the number
of clusters, we have more representative schedules; while each representative schedule is practically robust
with respect to other realisations in its cluster, its robustness with respect to realisations outside the cluster
may be poor. In an extreme case where each cluster consists of a single schedule, we have lost all the aspects
of practical robustness that can be obtained via our methodology. While using a single cluster provides high
practical robustness, there is no guarantee that this single representative schedule performs well in terms of
type-I statistics, such as NPV-based statistics. For modest numbers of clusters, one may inspect the type-I
statistics of each cluster's representative schedule and balance this against the practical robustness of the
schedule, indicated by the distance of the representative schedule from all other schedules. For example, in
our case study, the representative schedule 41 is relatively close to many other schedules, such as those in
its cluster, but also far from some schedules in the other two clusters. Fortunately, the type-1 (in this
example, NPV-based) statistics of schedule 41 are superior to those of the other two representative
schedules 3 and 73, so one might choose schedule 41 as a good balance of practical robustness and
suggested NPV performance.

The other risk-based methods of schedule selection, including maximum upside and minimum downside,
effectively consider the extreme situation where each schedule is in its own cluster and select a schedule
purely on the basis of type-1 (specifically NPV) statistics. This ignores the practical robustness of the
selected schedule and the NPV obtained in reality may be far from the predicted NPV. Our methodology
thus generalises these other risk-based methods by incorporating practical robustness into the schedule

selection procedure and enables a balancing of practical robustness with type-I statistics.

8-6 Conclusion

Risk based mine design methods usually generate different mine designs based on simulated realisations;
consequently, these methods deal with many mine designs so that just one of them can be, in some way,
selected. Finding the best criteria for this selection can be challenging for any approach. One of the
drawbacks of exiting approaches is the lack of a general classification method, namely, the clustering of

the mine designs.

In this chapter, we proposed a new methodology for mapping the space of uncertainty by a distance function

that is based upon a physically meaningful notion of dissimilarity between pairs of mine designs, using the
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Kantorovich metric. Regarding this methodology, we are able to quantify the dissimilarity of different mine
designs and use this information to quantify how well the representatives or clusters depict the overall
uncertainty. In order to select the subcollection of mine design that gives the best representative design, we
have again used the concept of Kantorovich distance and developed a simple optimisation model for the
best samples. To choose a single representative from the total list of representatives, we suggested
computing NPV statistics for schedules within each cluster and chose the representative for the cluster with

the 'best’ cluster statistics.

This approach relies on a reasonable clustering inside the space of uncertainty of Type II; consequently,
any method(s), which can find possible spatial patterns (in this space) would get better results.

176



Chapter 9
9 Conclusions and future work

9-1 Overview

The application of geostatistical conditional simulations, which normally requires large numbers of
generated realisations has increased enormously during the past two decades. As previously explained,
there is no parameter that can provide further information about high order statistics for generated
realisations; therefore, it is concluded that two realisations can be significantly different in ways that cannot
be captured by descriptive geostatistics.

The main objective of this study was to model the uncertainty in the earth science; or, precisely, to quantify
geological uncertainty and mine planning risk using distance based techniques. For this objective, the
following steps were taken to address this issue, in the following order:

selecting the distance function (Kantorovich distance) to explain what causes the dissimilarity

between realisations;

computing the distance between pairs of realisations for measuring the dissimilarity between them;

optimally subsampling a large collection of realisations and quantifying how well this high-quality

subsample represents the overall uncertainty of the collection;

and presenting the applications of this approach to address controversial issues in the earth science.

We have developed a practical quantitative methodology to define and map the space of uncertainty by
computing Kantorovich distance between generated realisations. This method provides a consistent and
repeatable mathematical framework for modelling uncertainty, not only for geological modelling but also
for mine planning. This distance approach is able to structure relations between generated realisations into
the metric space. Quantifying this spatial structure, namely measuring dissimilarity, can be a powerful
technique to assess and map the space of uncertainty. In addition, this space can be visualised (embedding

into the Euclidean space) by using the multi-dimensional scaling algorithm.
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The mentioned sub-sampling technigue to take the best representatives of the space of uncertainty following
the concept of Kantorovich distance provides an efficient strategy to reduce the number of realisations

inside the space of uncertainty.

9-2 Summary of the study

The main conclusions observed in this thesis can be summarised, as follows:

e The notion of dissimilarity or ‘distance’, namely Kantorovich distance between realisations, is the
key ingredient in constructing a formal measure of dissimilarity for generated realisations and for
guantifying the space of uncertainty. This distance is geologically meaningful and is able to explain
what causes the dissimilarity between realisations. Moreover, this distance is able to provide a

structure to a collection of generated realisations establishing a meaningful relation between them.

e Multi-Dimensional Scaling (MDS) provides a Euclidean representation (R™) of the space of
uncertainty, which makes it (dissimilarity distance matrix) possible to visualise it in 2D or 3D

space.

Moreover, the approximate location of the Kriging model, the E-Type and the real model in the
space and the other realisations can be easily visualised. Although this technique is able to reveal
the structures of the space of uncertainty (if the stress factor is low), it has been used in order to

enable the visualisation of the data.

e Determining the set of representative samples M is a challenging problem even in traditional
clustering methods. In most clustering methods M has to be assumed as a known parameter, which
should be chosen by users .We used our methodology to optimally subsample (M) a large collection
of realisations (N) and quantify how well this high-quality subsample (N) represents the overall
uncertainty of the collection. For example, our methodology can determine the smallest number of

realisations that are required to cover 80% of the total geological uncertainty.

o If realisations (points) are clustered rather than randomly distributed in the space, the approximate
MDS representation of the realisations in R? opens the possibility of using Euclidean-based
subsampling or clustering technigues, such as K-means, to select S cluster centres. These clustering

techniques attempt to minimise the total distance from centerpoints to other points. These cluster
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centres might be used as the selected subsamples. However, the realisations are not usually

clustered.

The effects of special continuities (variogram ranges) and variability (variogram sills) have been
investigated on the space of uncertainty. As has been observed, decreasing the range of variogram
leads to a reduction in the relative accuracy; consequently, longer ranges of correlations (greater
spatial continuity) will tend to make the collection of § realisations more structured and less
random. Simulations with a smaller range will require a larger number of subsamples to achieve

the same relative accuracy.

Increasing the sill or decreasing the range leads to a reduction in the relative accuracy of the
sampling method. These results are exactly what one would expect; longer ranges of correlations
(greater spatial continuity) and lower sills (lower variability) will tend to make the collection of S
realisations more structured and less random. This greater structure, encoded via the distances Drs,
can be exploited by our optimal subsampling procedure. In other words, simulations with a larger
sill and smaller range will require a larger number of subsamples to achieve the same relative

accuracy.

The comparison of distances zS between the optimal subsamples and randomly selected
subsamples revealed that the variability of random sampling can be very high. That means that
generating N realisations and sampling the best M (M << N) would achieve better results (a better
relative accuracy) rather than simply generating the first M realisations of the N without pursuing
it further. Therefore, it is worth investing more time to create a larger number of realisations to
attempt to better represent the true resource of uncertainty and to then subsample as best possible

from that larger collection of realisations.

As was previously described and shown (the MDS’s figures), in all types of simulation algorithms
(SGS, TBS, SIS) and the two mentioned cases (2D and 3D), the distances D, for r = Kriged or
r =E-typeands = 1;:::; S are small on average when compared with the overall average of the
distances. That means that the smooth models are very close to each other rather than the other

realisations.

The sub-sampling approach normally makes the unequal weight distribution for selected
realisations and the weights given to the selected realisations (by the sub-sampling approach) tend

to be higher nearer to the centre of the space of uncertainty (the MDS’s figures), while those
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selected realisations near the periphery tend to have lower weights. These peripheral selections are
effectively chosen to represent themselves only, while the selected realisations nearer to the centre
of the figure represent not only themselves but those realisations nearby, which are effectively

absorbing the weights from these nearby realisations.

The condition simulation algorithms are supposed to generate equally probable realisations (fairly
representing the entire space of uncertainty). However, we could verify in this study that there was
a larger probability to generate realisations in the neighbourhood of the Kriging or the E-type model
rather than the peripheral of the space. This means that there is a systematic tendency to configure
the space of uncertainty in such a way that the probability to find or generate the realisations
decreases from the centre to the edge of space. Therefore, if the realisations are randomly selected,
those realisations which are around the Kriging or the E-type model have a higher chance to be
collected rather than the others.

The interpoint distances histograms (in the space of uncertainty) of all conditional simulation
algorithms (SGS, TBS and SIS) follow lognormal distributions. The lognormarlity of this
interpoint distance distributions can be easily observed even between a few generated realisations
and would not be changed by increasing the number of realisations.

The means and standard deviations of the interpoint distances distributions (for all conditional
simulation algorithms) are stabilised by increasing the number of realisations; thus, it can be
concluded with confidence that the simulation algorithms generate retaliations in such a way that
the dissimilarly between them (interpoint distances), or more precisely, the structure of the space

of uncertainty, ultimately follows one lognormal distribution (for each algorithm).

We cannot mathematically explain why the similarity or interpoint distance distributions in the
space of uncertainty tend to be approximately lognormally distributed. However, the main reason
may be that all the lognormal algorithms are conditional to sampled points, which would not allow
for the generation of realisations with a high number of differences (dissimilarity). That is, the
generated realisation tend to be similar (close) to each other rather than far, causing the distributions

to be positively skewed.

By increasing the number of realisations, the average number of interpoint distances fluctuates first

before remaining constant (showing very insignificant fluctuations around a fixed number). It is
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noteworthy that adding more points (realisations) to the metric space would not change the average

distance between points.

By determining maximum possible dissimilarities in the space of uncertainty, we tried to answer
the question whether increasing the number of realisations could make any difference to the
maximum interpoint distances. The maximum interpoint distance displays the size (how big) of the
space of uncertainty. As illustrated, maximum distances are approximately stabilised by increasing
the number of realisations. That is, the simulation algorithm cannot generate the realisations, which

are very dissimilar to each other; therefore, the size of the space remains unchanged.

By determining the minimum possible dissimilarities in the space of uncertainty, we tried to
answer the question whether increasing the number of realisations could make any difference to
the minimum interpoint distances. The minimum interpoint shows how close the generated
realisations can be in the space. As illustrated, minimum distances are approximately stabilised by
increasing the number of realisations. That is, the simulation algorithm cannot generate the
realisations, which are very similar to each other. Thus, there is a distance (neighbourhood

radius r < Dy,;,,) around each retaliation, where there no any realisations.

The realisations which have larger differences (maximum distance) to the other ones are usually
located on the edges of the space of uncertainty (peripheral of the space). These realisations can be
classified as extreme points in the simulation process. These realisations make distributions of

positively skewed interpoint distances.

We used two methods to measure the density of the space, both of them confirming that the density
of the points rises inside the space (because the space is not extended) by increasing the number of
realisations. The point density (number of points around the smoothed models) is much higher than

other points.

We used two fixed points (for all simulation algorithms), namely the Kriging and the real model,
to check any possible change in the location of points with respect to these two fixed points, by

increasing the number of realisations.

The variation of the average distance and its variance from these fixed points, for example Kriging,

versus the number of realisations show that both of them (the average of distance and its variance)
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are stabilised by increasing the number of realisations. However, they fluctuate before getting
stabilised. That means that, generating more realisations does not make significant changes in the
structure of the space of uncertainty; in addition, distance histograms from a fixed point (Kriging)

would be unchanged.

We have clearly shown that for all three conditional simulation algorithms the real model is closer
to the edge of the spaces of uncertainty rather than the centres. This may not be a good signal for
the simulation algorithms which fail to generate close realisations to the real model. Being at the
edge of the pace of uncertainty means the model is quite dissimilar to the other models. As
previously explained, even by increasing the number of realisations the chance of generating the
realisation close to the real model is very low. As a result, if the efficiency of the simulation
algorithms or generated realisations is linked to how well they can emulate the real model, it can
be said that in the mentioned case (Walker Lake case, exhaustive data set) it shows very low

efficiency.

The next item demonstrates the impact of the number of realisations on the relative accuracy (sub-
sampling). It was explained that after generating a certain number of realisations, the differences
between the relative accuracy of the sets become insignificant. That means that the distance
between the best single realisation (z;) and the set of collected S realisations does not change by

increasing the number of realisations.

There is no significant difference in statistics (such as standard deviations, variances and minimum
and maximum) of the interpoint distance distributions among the simulation algorithms (see Table
7-15). However, SGS shows a higher variation (in interpoint distances) than the other algorithms
while SIS shows the lowest. This means that the ability to generate different realisations (that are
not similar to each other) is the highest for SGS and in the lowest for SIS. That can be confirmed
again by comparing the minimum and the maximum interpoint distances of the simulation

algorithms.

An alternative approach to compare between the spaces of uncertainty created by simulation
algorithms is to check the fixed points (the Kriging and the real models). It has been confirmed that
the distance between the Kriging and the real models remains constant in all the space of
uncertainty. That gives us an option to insert the 2D MDS maps together to compare the spaces. As

can be seen in all figures (2D MDS maps) the embedded points into R? show almost the same
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spaces. Moreover, the average distances (original distances) between the generated realisations (by
the all simulation algorithms) and these fixed points are close to each other (see Table 7-15). We
believe that these results confirm that the different simulation algorithms (SGS, TBS and SIS)

generate similar spaces.

Although the quantifying of the space of uncertainty of all kinds of stochastic simulations and the
sub-sampling of realisations have been well developed and addressed in this thesis, the nonlinearity
of the transfer functions (such as pit optimisation, mine planning and mine scheduling) is still a big
challenge when applying these transfer functions on the representative realisations. The structure
of the space of uncertainty (interpoint distances) and their representatives would change by
applying any nonlinear functions; consequently, the representative realisations would not be valid
after that.

As mentioned above, the output results after feeding the realisations into transfer functions is called
‘response’ and the space these results make is called ‘the space of uncertainty of responses’. We
differentiated between these two types of response to obtain a better assessment of uncertainty
about the response values in this thesis. The first results are response data that can be represented
by number(s) (type 1), which are usually represented by the histogram of response values. The
second type of response can be represented by sets/series of numbers (or even objects). For
example, type 1l can be a series of optimal extraction sequences (OES) of blocks, or even a set of
spatially connected blocks with a pit geometry, such as a series of nested pits. Measuring the
distance between type Il of response variables (for example, Optimal Extraction Sequences) can

define a new metric space, which we called ‘the space of uncertainty of responses’.

By applying optimisation and the mine design procedure over each realisation the following series
of responses of type Il were obtained: Lerch-Grossman phases (Nested pits), practical pushback
sequences, block extraction sequences and block extraction time. These series were used for
measuring the dissimilarity between the designs. We applied the methodology on the pairs of

extraction sequences of these series.
We explained and illustrated that some these series mentioned above (nested pits, pushbacks, and

OES) are more similar to each other than others. That means that some of these series are highly

likely to occur, while the others would be less likely. Therefore, the assumption that chosen

183



design(s) are all equiprobable would not be correct and this assumption may cause misleading

results in inaccurate design selection.

e We illustrated the capabilities of this methodology on mine planning or scheduling and showed
how this approach can be robust for selecting the best scenario (schedule) among given schedules.
To confirm the competency of the proposed methodology, we applied this method and also the
maximum upside and minimum downside approach (as another risk-based method) on a typical
copper porphyry deposit to make a comparison between the results (the chosen schedules) of these
approaches. As the result showed, the probability of happening the selected mine schedules by our
approach is significantly higher than the maximum upside and minimum downside method.

9.3 Future Work

In this section, a few ideas on the distance-based method framework are described. These ideas focus on
limitations of the present study and avenues for future research. We believe that the application of the
distance-based method in the mining industry is quite new and has not received much attention in earlier
research, while the capabilities of this method to handle various complicated issues (in this thesis grade

uncertainty) is remarkable and can present a promising performance and easy implementation.

Seeking for a better Metric

Selecting a meaningful distance function in the entire range of distance-based methods is an important
stage. In this study we presented a formal measure of dissimilarity for generated realisations by adapting
the Kantorovich metric which is the physically meaningful notion of dissimilarity between pairs of
realisations to the geostatistics context. However, there is not a single distance measure that is able to
capture or reveal the best measure of dissimilarity between pairwise data. Therefore, it is worth seeking a
better dissimilarity distance function that is able to discriminate more aspects of dissimilarity between

pairwise data, namely realisations.

Furthermore, the applied Kantorovich distance (in this thesis) is a complex and sophisticate metric. That
has a complexity of at least O (N?) (N is the size of the data), and an optimisation problem has to be solved
to measure the distance between each pair of realisations. Therefore, one of the limitation of this metric is
the great number of resource consumption (CPU and memory) which is required to solve the optimisation

problems. Thus, these approaches quickly become cumbersome when dealing with a large amount of data.
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Moreover, this distance functions should provide a robust measure between pairwise data in such a way
that the structure of the space of uncertainty (made by interpoint distances) can be effectively clustered in
order to sample the best representative data points. We have to mention here that no matter how robust
clustering of algorithms is, it has to be consistent with the distance function that is applied for measuring

the dissimilarity.

Take advantage of Multidimensional scaling

Although, in this study, we advocate MDS for visualisation purposes only, and all calculation on the
dissimilarity matrix was based on original distances and not on approximation; developing a robust MDS
techniques that is able to embed the points from a metric space into the Euclidean space (R™) in such a
way that the inter-point distances after embedding are very close to what they were could take advantage
of the readily-available lower-dimensional Euclidean space. That means, when the embedded points in the
R™ space possess coordinates, we are able to use all Euclidean space properties such as different clustering
techniques (for instance k-means clustering method), visualise all data (if n < 3) measuring the point

density and having points distribution in space.
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APPENDIX A

Numerical results on geostatistical simulations

A.1 Sequential Gaussian Simulation algorithm (SGS and 3D Case)

Figure A-1 shows the result of the interpoint distance calculations for 10 realisations and the Kriging model.
As can be seen, the best fitted distribution is lognormal (positively skewed). The lognormal distribution is

the best fit. The parameters of the histogram are shown in Table A-1.
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Figure A-1: The graph on the left is the histogram of 55 interpoint distances of 10 realisations and the
Kriging model (dissimilarity distance matrix) with the best fitted lognormal distribution (red line). The
graph on the right shows the probability plot of the histogram (blue circles) and fitted lognormal

distribution, showing a reasonable fitting between them (SGS and 3D case)

Table A-1: Statistical parameters of the histogram of the interpoint distances of 10 realisations

(SGS and 3D case)
No. Std DQt\;%ce
Interpoint Mean - Variance Minimum Maximum Range Skewness
- Deviation from
Distance igi
Kriging
55 34,478.66 9,652.89 93,178,264 16,099.40 59,168.50 43,069.1 0.47 25 361.7
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Figure A-2 shows multidimensional scaling embedding of 10 realisations. As illustrated, the Kriging point

is at the minimum distance from the others
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Figure A-2: Multidimensional scaling embedding of 10 realisations (blue diamonds) and the Kriging model

(red diamond) in R2. The Kriging point is at the minimum distance from the others (SGS and 3D case)

Figure A-3 shows the result of the interpoint distance calculations for 50 realisations and Kriging model;
the best fit distribution is still lognormal. The parameters of the histogram are shown in Table A-2. Figure
A-4 shows multidimensional scaling embedding the realisations. The Kriging point is at the minimum
distance from the others.
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Figure A-3: The graph on the left is the histogram of 1,275 interpoint distances of 50 realisations and the
Kriging model (dissimilarity distance matrix) with the best fitted lognormal distribution (red line). The
graph on the right shows the probability plot of the histogram (blue circles) and fitted lognormal

distribution, showing a reasonable fitting between them (SGS and 3D case)
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Table A-2: Statistical parameters of the histogram of the interpoint distances of 50 realisations

(SGS and 3D case)
Ave.
NO'. Std . - . Distance
Interpoint Mean o Variance Minimum Maximum Range Skewness
Distance Deviation from
Kriging
1,275 31,520.48 8,166.98 66,699,619 11,582.40 59,168.30 58,729.3 0.97 22 473.9
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Figure A-4: Multidimensional scaling embedding of 50 realisations (blue diamonds) and the Kriging model

(red diamond) in R2. The Kriging point is at the minimum distance from the others (SGS and 3D case)

Figure A-5 shows the result of the interpoint distance calculations for 150 realisations and the Kriging
model; the best fit distribution is still lognormal. The parameters of the histogram are shown in Table A-3.

Figure A-6 shows multidimensional scaling embedding the realisations
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Figure A-5: The graph on the left is the histogram of 11,325 interpoint distances of 150 realisations and the
Kriging model (dissimilarity distance matrix) with the best fitted lognormal distribution (red line). The
graph on the right shows the probability plot of the histogram (blue circles) and the fitted lognormal

distribution, showing a reasonable fitting between them (SGS and 3D case)
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Table A-3: Statistical parameters of the histogram of the interpoint distances of 150 realisations

(SGS and 3D case)
No._ Std . - . Dét\z/:l%ce
Interpoint Mean o Variance | Minimum | Maximum Range | Skewness
- Deviation from
Distance o
Kriging
11,325 | 31,601.94 9,408.51 88,520,153 | 11,582.3 103,194 | 91,611.70 1.50 29331 7
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Figure A-6: Multidimensional scaling embedding of 150 realisations (blue diamonds) and the Kriging

model (red diamond) in R?. The Kriging point is at the minimum distance from the others

Figure A-7 shows the result of the interpoint distance calculations for 300 realisations and the Kriging
model; the best fit distribution is still lognormal. The parameters of the histogram are shown in Table A-4.
Figure A-8 shows multidimensional scaling embedding the realisations.
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Figure A-7: The graph on the left is the histogram of 45,150 interpoint distances of 300 realisations and the
Kriging model (dissimilarity distance matrix) with the best fitted lognormal distribution (red line). The
graph on the right shows the probability plot of the histogram (blue circles) and the fitted lognormal
distribution showing a reasonable fitting between them (SGS and 3D case)
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Table A-4: Statistical parameters of the histogram of the interpoint distances of 300 realisations
(SGS and 3D case)

Figure A-8: Multidimensional scaling embedding of 300 realisations (blue diamonds) and the Kriging

model (red diamond) in R%. The Kriging point is at the minimum distance from the others

A.2 Sequential Gaussian Simulation algorithm (SGS and 2D Case)

Figure A-9 shows the result of the interpoint distance calculations for 50 realisations. As can be seen, the
best distribution that can be fitted on output distribution is lognormal. The parameters of the histogram are

shown in Table A-5.

o

Figure A-9: The graph on the left is the histogram of 1225 interpoint distances of 50 realisations with the
best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the

histogram (blue circles) and fitted lognormal distribution which shows a reasonable fitting between them

(ax 10°) (SGS and 2D case)
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Table A-5: Statistical parameters of the histogram of the interpoint distances of 50 realisations

(SGS and 2D case)
No Ave. Ave.
Interpoint Mean S.td'. Variance Minimum Maximum Skewness Distance | Distance
- Deviation from Real from
Distance L
model Kriging
1225 0.651
5.998 1.144 1.309 3.492 9.905 5.996 4.901
(ax 109

Figure A-10 shows multidimensional scaling embedding of 50 realisations. As illustrated, the Kriging point
(red circle) is at the minimum distance from the others, while the real model (green circle) is far from the
generated realisations.
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Figure A-10: Multidimensional scaling embedding of 50 realisations (blue circles), the Kriging model (red
circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others,

while the real model is quite far from the generated realisations (SGS and 2D case)

Figure A-11 shows the result of the interpoint distance calculations for 250 realisations. As can be seen, the
best distribution that can be fitted on output distribution is lognormal. The parameters of the histogram are
shown in Table A-6.
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Figure A-11: The graph on the left is the histogram of 31,125 interpoint distances of 250 realisations with
the best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the
histogram (blue circles) and fitted lognormal distribution showing a reasonable fitting between them (a x

10°) (SGS and 2D case)

Table A-6: Statistical parameters of the histogram of the interpoint distances of 250 realisations

(SGS and 2D case)
No Ave. Ave.
Interpoint Mean D S.td'. Variance Minimum Maximum Skewness Distance | Distance
) eviation from Real from
Distance .
model Kriging
31,125 6.058 1.204 1.456 3.397 14.024 0.906 6.092 4,998
(a x 10%)

Figure A-12 shows multidimensional scaling embedding of 250 realisations. As illustrated, the Kriging
point (red circle) is at the minimum distance from the others, while the real model (green circle) is far from

the generated realisations.

192



.
] P ol
oee 0
o ® ® e® oo
. - 3 .'.4.- % e « |*
o et oe® ..o'. N
* o8 e, * % o _oee °
- oo T T, ..-o.'“.q. LI
.
= l:‘o.' % o b oo ". AR
(<] ° o ® "o o (o0’ oo .
g - L] .....' ﬂ.h ol e Py D) .
oo o 0
é_g 6 ¢ E e 2, A (;..o‘,.- $2e°° o5
o %" oo u.': @ W gl e
e of : RN L
. o |® e % e (o e
Sle M o0 s
e * c.'-. e @
9 o o ,,... e
L o L]
.
L]
Dimension 1

Figure A-12: Multidimensional scaling embedding of 250 realisations (blue circles), the Kriging model (red
circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others

while the real model is quite far from the generated realisations (SGS and 2D case)

Figure A-13 shows the result of the interpoint distance calculations for 600 realisations. As can be seen, the
best distribution that can be fitted on output distribution is lognormal. The parameters of the histogram are
shown in Table A-7.
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Figure A-13: The graph on the left is the histogram of 179,700 interpoint distances of 600 realisations with
the best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the

histogram (blue circles) and the fitted lognormal distribution showing a reasonable fitting between them

(ax 10°)- (SGS and 2D case)
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Table A-7: Statistical parameters of the histogram of the interpoint distances of 600 realisations

(SGS and 2D case)
No Ave. Ave.
Interpoint Mean D S.td'. Variance Minimum Maximum Skewness Distance | Distance
- eviation from Real from
Distance igi
model Kriging
179,700 6.093 1.236 1.527 3.397 14.235 0.943 6.095 4,998
(a x 109

Figure A-14 shows multidimensional scaling embedding of 600 realisations. As illustrated, the Kriging

point (red circle) is at the minimum distance from the others, while the real model (green circle) is far from
the generated realisations.
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Figure A-14: Multidimensional scaling embedding of 600 realisations (blue circles), the Kriging model (red

circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others

while the real model is quite far from the generated realisations (SGS and 2D case)

A.3 Turning Bands Simulation algorithm (TBS and 2D Case)

Figure A-15 shows the result of the interpoint distance calculations for 50 realisations, and the fitted
lognormal distribution. The parameters of the histogram are shown in Table A-8
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Figure A-15: The graph on the left is the histogram of 1,225 interpoint distances of 50 realisations with the
best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the
histogram (blue circles) and fitted lognormal distribution, showing a reasonable fitting between them (a x

10°)- (TBS and 2D case)

Table A-8: Statistical parameters of the histogram of the interpoint distances of 50 realisations

(TBS and 2D case)
No Ave. Ave.
Interpoint Mean S.td'. Variance Minimum Maximum Skewness Distance | Distance
- Deviation from Real from
Distance .
model Kriging
1225 5975 1.290 1.660 3.472 11.343 103l 5845 | 4643
(ax 10°)

Figure A-16 shows multidimensional scaling embedding of 50 realisations. As illustrated, the Kriging point
(red circle) is at the minimum distance of the others, while the real model (green circle) is far from the

generated realisations.
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Figure A-16: Multidimensional scaling embedding of 50 realisations (blue circles), the Kriging model (red
circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others,

while the real model is quite far from the generated realisations (TBS and 2D case)

Figure A-17 shows the result of the interpoint distance calculations for 250 realisations and the fitted
lognormal distribution. The parameters of the histogram are shown in Table A-9.
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Figure A-17: The graph on the left is the histogram of 31,125 interpoint distances of 250 realisations with
the best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the
histogram (blue circles) and the fitted lognormal distribution, showing a reasonable fitting between them
(ax 10%)- (TBS and 2D case)
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Table A-9: Statistical parameters of the histogram of the interpoint distances of 250 realisations
(TBS and 2D case)

No Ave. Ave.
Interpoint Mean S.td'. Variance Minimum Maximum Skewness Distance | Distance
- Deviation from Real from
Distance -
model Kriging
31,125 5883 1.252 1.657 3.224 14,357 1131 5803 | 4.662
(ax 109

Figure A-18 shows multidimensional scaling embedding of 250 realisations. As illustrated, the Kriging

point (red circle) is at the minimum distance from the others, while the real model (green circle) is far from
the generated realisations.
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Figure A-18: Multidimensional scaling embedding of 250 realisations (blue circles), the Kriging model (red

circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others,
while the real model is quite far from the generated realisations (TBS and 2D case)

Figure A-19 shows the result of the interpoint distance calculations for 450 realisations and the fitted

lognormal distribution. The parameters of the histogram are shown in Table A-10.
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Figure A-19: The graph on the left is the histogram of 101,025 interpoint distances of 450 realisations with
the best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the
histogram (blue circle) and the fitted lognormal distribution, showing a reasonable fitting between them

(ax 10°)- (TBS and 2D case)

Table A-10: Statistical parameters of the histogram of the interpoint distances of 450 realisations
(TBS and 2D case)

No Ave. Ave.
. Std. . - . Distance | Distance
Int_erpomt Mean Deviation Variance Minimum Maximum Skewness from Real from
Distance igi
model Kriging
101,025 5825 1.207 1.458 3.052 14.357 1.068 5.747 4.624
(ax 109

Figure A-20 shows multidimensional scaling embedding of 450 realisations. As illustrated, the Kriging

point (red circle) is at the minimum distance from the others, while the real model (green circle) is far from

the generated realisations
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Figure A-20: Multidimensional scaling embedding of 450 realisations (blue circles), the Kriging model (red
circle) and the real model (green circle) in R?. The Kriging point is at the minimum distance from the others,

while the real model is quite far from the generated realisations (TBS and 2D case)

A.4 Sequential Indicator Simulation algorithm (SIS and 2D Case)

Figure A-21 shows the result of the interpoint distance calculations for 50 realisations and the fitted
lognormal distribution. The parameters of the histogram are shown in Table A-11.
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Figure A-21: The graph on the left is the histogram of 1,225 interpoint distances of 50 realisations with the
best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the
histogram (blue circles) and the fitted lognormal distribution, showing a reasonable fitting between them
(ax 109)- (SIS and 2D case)
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Table A-11: Statistical parameters of the histogram of the interpoint distances of 50 realisations

(SIS and 2D case)

Ave. Ave. Ave
No. Distance Distance L
. Std. . - . Distance
Interpoint | Mean " Variance | Minimum | Maximum | Skewness from from
- Deviation from
Distance Average Real Krigin
model model ging
1225 1 5682 | 4 156 1.336 3.482 10.64 0.893 4.03 6.37 4.84
(ax 10°)

Figure A-22 shows multidimensional scaling embedding of 50 realisations. As illustrated, the Kriging point

(red circle) is at the minimum distance from the others, while the real model (green circle) is far from the

generated realisations. The results are similar to the SGS algorithm.
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Figure A-22: Multidimensional scaling embedding of 50 realisations (blue circles), Average of 30
realisations (red circle), the Kriging model (yellow circle) and the real model (green circle) in R?. The

average model is at the minimum distance from the others, while the real model is quite far from the
generated realisations (SIS and 2D case)

Figure A-23 shows the result of the interpoint distance calculations for 250 realisations and the fitted
lognormal distribution. The parameters of the histogram are shown in Table A-12.
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Figure A-23: The graph on the left is the histogram of 31,125 interpoint distances of 250 realisations with
the best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the
histogram (blue circles) and the fitted lognormal distribution, showing a reasonable fitting between them

(ax 10°8)- (SIS and 2D case)

Table A-12: Statistical parameters of the histogram of the interpoint distances of 250 realisations

(SIS and 2D case)

Ave. Ave. Ave

No. Distance Distance L
- Std. . - . Distance

Interpoint | Mean L Variance | Minimum | Maximum | Skewness from from

- Deviation from
Distance Average Real Krigin
model model ging

311125 5547 1.056 1.115 3.145 11.42 0.898 3.950 6.275 4.711

(ax 109

Figure A-24 shows multidimensional scaling embedding of 250 realisations. As illustrated, the Kriging

point (red circle) is at the minimum distance from the others, while the real model (green circle) is far from

the generated realisations.
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Figure A-24: Multidimensional scaling embedding of 250 realisations (blue circles), the average of 250
realisations (red circle), the Kriging model (yellow circle) and the real model (green circle) in R2. The
average model is at the minimum distance of the others, while the real model is quite far from the generated
realisations (SIS and 2D case)

Figure A-25 shows the result of the interpoint distance calculations for 450 realisations and the fitted

lognormal distribution. The parameters of the histogram are shown in Table A-13.
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Figure A-25: The graph on the left is the histogram of 101,025 interpoint distances of 450 realisations with
the best fitted lognormal distribution (red line). The graph on the right shows the probability plot of the
histogram (blue circles) and the fitted lognormal distribution, showing a reasonable fitting between them
(ax 10°)- (SIS and 2D case)

202



Table A-13: Statistical parameters of the histogram of the interpoint distances of 450 realisations

(SIS and 2D case)

Ave. Ave. Ave
No. std Distance Distance Distan.ce
Interpoint | Mean " Variance | Minimum | Maximum | Skewness from from
) Deviation from
Distance Average Real Krigin
model model ging
101,025 | 5524 | g5g 1121 3.015 11.78 0.922 3.929 6278 | 4.70
(ax 10°)

Figure A-26 shows multidimensional scaling embedding of 450 realisations. As illustrated, the Kriging

point (red circle) is at the minimum distance from the others, while the real model (green circle) is far from
the generated realisations.
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Figure A-26: Multidimensional scaling embedding of 450 realisations (blue circles), the average of 450

realisations (red circle), the Kriging model (yellow circle) and the real model (green circle) in R2. The

average model is at the minimum distance from the others, while the real model is quite far from the
generated realisations (SIS and 2D case)
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