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ABSTRACT

Due to the broadcast nature of wireless networks, users that share the same

channel resources may cause severe interference to each other. Such inter-user

interference becomes a bottleneck for improving the performance of networks.

Recent advances in wireless communication technologies, such as interference

alignment, has brought us new insights on interference management in wireless

networks. Many new results have been obtained for a variety of networks, es-

pecially in terms of degrees of freedom (DoF), which can be seen as an accurate

capacity approximation in high signal-to-noise ratio (SNR). However, there are

still many important problems remaining unsolved. In this thesis, interference

alignment techniques are further investigated in a number of multi-antenna

wireless networks, which are multiple-input and multiple-output (MIMO) X

channel, MIMO interference channel, and device-to-device (D2D) network.

First, a two-user MIMO X channel is studied. It is known that with conven-

tional spatial interference alignment, i.e., linear interference alignment without

symbol extension, the achievable DoF is no more than ⌊Douter⌋, where Douter

denotes the outer bound of DoF of MIMO X Channels. In this thesis, a spatial

interference alignment and zero-forcing framework is proposed in combination

with asymmetric complex signaling, which can achieve the DoF of ⌊Douter⌋+ 1
2

if Douter − ⌊Douter⌋ ≥ 1
2
, and ⌊Douter⌋ otherwise. The result shows that the

technique of asymmetric complex signaling, which was originally proposed for

single-antenna systems, can be useful for MIMO channels, in particular when



symbol extensions are not allowed.

Second, the DoF region of 3-user MIMO interference channels is stud-

ied. The outer-bound of sum DoF of 3-user interference channels has been

already known, but the complete DoF region remains unknown. In this thesis,

an outer-bound of DoF region of 3-user interference channels is first derived.

Then, a linear interference alignment scheme based on spatial interference

alignment is proposed that can achieve all integer DoF inside the region. As a

result, the region can be seen as both the sufficient and necessary condition for

the feasibility of linear interference alignment based on spatial beamforming

in 3-user interference channels.

The third work studies a MIMO D2D LAN underlaying a MIMO cellular

uplink, where multiple D2D users (DUs) intend to communicate with a D2D

receiver. Two D2D communication schemes based on interference alignment

are proposed to manage the interference between the two networks. In the first

scheme, the interference signals from DUs are aligned in the orthogonal signal

space of cellular links at the base station. Hence, the links of cellular users

are completely free from interference. As a result, the DUs can improve the

performance by simply increasing the transmitting power without concerning

its impact on the cellular network. In the second scheme, the signals of DUs

are allowed to span on some links of cellular users, but the peak interference

power on each of the ‘interfered’ links is constrained under a certain threshold.

In addition, the scheme can take advantage of multiuser diversity, i.e., the

performance of D2D LAN can be improved with the increase of the number

of DUs. Performance analysis shows that the interference generated on the

cellular links is eliminated or well controlled, while the quality of service of

the D2D LAN can also be guaranteed.
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Chapter 1

Introduction

Driven by the increasing demands for high-rate data transmission and high-quality

communications, wireless communication technologies has been investigated and ad-

vanced for decades. Recently, the fourth generation wireless network has been de-

ployed and almost reached saturation. With advanced technologies such as OFDM,

capacity and performance of cellular networks have been largely improved. However,

due to the extensive use of smartphones, Tablets, and video streaming, the wireless

data explosion will continue, which necessitates the new research and development of

more advanced wireless communication schemes and technologies.

One key issue for the development of current and future wireless networks is the

high density of wireless devices. With limited radio spectrum, many wireless users

are bound to share the same resources in time and/or frequency domain. As a result,

the interference among devices becomes inevitable. In fact, such mutual interference

is one major bottleneck that limits the capacity of cellular network. Lots of research

effort have been made to investigate interference management techniques. Thanks to

the use of multiple antennas on devices, beamforming has been shown as an effective

technique for interference management, i.e., the direction of transmitted signals is

steered so that their negative effect on receivers can be minimized [1,2]. As a typical

type of beamforming, interference alignment (IA) has recently been proposed [3, 4].

1
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Based on this idea, many surprising results are obtained, especially in terms of degrees

of freedom.

In this chapter, the concepts of degrees of freedom and IA are first introduced

in Section 1.1. Then, some challenging issues and our motivations are discussed in

Section 1.2. Finally, the outline and contribution of the thesis are presented in Section

1.3.

1.1 Interference Alignment and Degrees of Free-

dom

It was known that the capacity of a point-to-point MIMO system with M inputs

and N outputs increases linearly as min{M,N} at high signal-to-noise ratio (SNR)

[5, 6, 20]. MIMO systems offer the possibility of multiplexing signals in space.

Degrees of freedom (DoF), also known as multiplexing gain, is a fundamental pa-

rameter that measures the number of spatial signaling dimensions that are accessible

in the network. Theoretically, DoF is defined as [20]

d , lim
ρ→∞

C(ρ)

log2(ρ)
(1.1)

where C(ρ) is the sum capacity of the network with SNR ρ. As can be seen, DoF pro-

vides accurate capacity approximation in high SNR region. For interference networks,

where multiple transmitters send signals to their respect receivers simultaneously, the

characterization of DoF is very challenging. The emergence of IA brings a new tool

to tackle this problem.

We first use an example in [3] to explain the basic concept of IA. Three transmit-

ters, T1, T2, and T3, communicate with three receivers, R1, R2, and R3, respectively.

The signal from one transmitter constitutes interference on two unintended receivers.

Conventionally, orthogonal transmission scheme such as TDMA [7] can be used for

medium access, i.e., each transmitter-receiver pair transmits in one third of entire

period of time while other two pairs remain silent. As a result, each pair can have



1.1 Interference Alignment and Degrees of Freedom 3
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Figure 1.1 TDMA transmission scheme

one third of the transmission time. The TDMA transmission is shown in Fig. 1.1.

Now, it is interesting to know if we can do better than that. In [3], it is assumed that

the propagation delay can be controlled so that the delay from one transmitter to

the intended receiver is one symbol period, whereas to its unintended receivers is two

symbol period. Then, each transmitter only transmits at odd time slots and remains

silent at even time slots. Consequently, at each receiver, the desired signal arrives at

even time slots while all interference signals are received only at odd time slots, as

shown in Fig. 1.2, which is on top of next page. In that case, each transmitter-receiver

pair can have half of the degrees of freedom, which is more efficient than TDMA. At

each receiver, the two interference signals are aligned at the same time slots, which is

referred to as interference alignment. As we can see, the above artificial delay model

is not realistic. However, the IA is not limited in time. It can be also implement-

ed in space, frequency, or even signal domains. According to [9], IA is defined as a

construction of signals in a way that they cast overlapping shadows at the receivers

where they constitute interference, while remaining distinguishable at the receivers

where they are desired.

In general, IA schemes can be broadly classified into two categories, which are

signal vector space IA [3, 8–10, 18–23, 25, 26] and signal level IA [12–17]. Specifically,
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Figure 1.2 Interference alignment transmission scheme [3]

in signal vector space IA, by exploiting the distinct linear transformation (chan-

nel matrix) between each transmitter-receiver pair, the transmitters perform linear

precoding to rotate the signal vectors on each link. This type of IA inherits the ad-

vantages of linear processing. It is tractable, linearly decodable, and applicable for

any channels [10]. On the other hand, signal-level IA uses structured coding to align

interference in the signal-level space. The advantage of signal-level IA is that it does

not need the distinct rotation of channel matrices, which may not always be available.

Since signal-level IA is derived from the deterministic channel model in [11], they are

most suitable for channels with real coefficients. Moreover, the decoding methods for

signal-level IA are more complicated due to the non-linear effect.

Within the class of signal vector space IA schemes, it can be further divided

into two types, which are linear spatial IA with and without symbol extensions.

Linear spatial IA refers to alignment based on spatial beamforming through multiple

antennas [25], and symbol extension refers to beamforming over multiple channel uses

in time or frequency [3]. In spite of the obvious advantage of symbol extension, which

is to take advantage of time (or frequency) dimensions, it has its own limitations,

such as the added complexity of dealing with block diagonal channel matrices [21], or
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the need to “predict” the channel information under time-varying channel scenarios.

Therefore, many recent research focused on the design of linear IA schemes based

on spatial beamforming only [9, 19, 25–28]. In addition, the DoF achievable through

linear spatial IA is referred to as ‘feasibility of IA’ [25].

1.2 Challenges and Motivations

In recent years, IA has been widely studied and utilized in the DoF characterization of

a variety of networks, including MIMO X networks [4,8,9,18,19], interference channels

[10, 20–29], cellular networks [30–34], cognitive radio networks [35, 36, 38], multi-hop

networks [39–42], and storage system [43], etc. Among these networks, the X channels

and interference channels are the most elementary and fundamental models, i.e., they

are the core networks of many communication networks in practice. Hence, the

understanding of X channels and interference channels is of great importance.

A K × L X network is defined as a communication network with K transmitters

and L receivers and a total of KL independent messages, one from each transmitter

to each receiver. As we can see, the X network is the most generalized model as it

encompasses all types of networks such as interference channels, broadcast channels,

multiple access channels. The DoF characterization of 2 × 2 X channels with M

and N antennas on each transmitter and receiver, respectively was studied in [8].

Then, the concept of IA in 2 × 2 X channel was crystalized in [4, 9]. The outer

bound of DoF of the 2 × 2 X channels with arbitrary number of antennas on each

node was derived in [9], and it was also shown to be achievable with linear spatial

beamforming in combination with symbol extensions. Meanwhile, the DoF of general

K×L X networks was investigated in [18,19], where each node has the same number of

antennas. Let us consider the 2×2 X channel model. As we can see, even though the

outer bound DoF, denoted as Douter, can be achieved, it requires symbol extensions.

When symbol extension is not allowed, the achievable DoF with existing linear spatial

IA schemes is not more than ⌊Douter⌋ [4,9]. It remains unknown if the achievable DoF
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can be higher than ⌊Douter⌋.
A K-user interference channel is comprised of K transmitters and K receivers,

where each transmitter has message only for one corresponding receiver, and causes

interference to other receivers. Interference channel is the most classic and elementary

model. For 2-user interference channels with arbitrary number of antennas on each

node, the DoF was fully characterized in [20], i.e., not only the outer bound DoF was

derived, but also shown to be achievable with linear spatial beamforming schemes.

However, when the number of users is more than 2, i.e., K ≥ 3, the model becomes too

complicated to deal with because of the massive amount of variables associated with

signal dimensions. Hence, for K ≥ 3, we only focus on the symmetric scenario where

each transmitter and each receiver has MT and MR antennas, respectively. Even for

this setup, the results of general K-user interference channels are very limited, i.e., it

was shown in [21] that if η = max(MT ,MR)
min(MT ,MR)

is an integer, each user can achieve DoF of

min(MT ,MR)
η

η+1
when K > η. In [22], the outer bound DoF of each user for 3-user

interference channels was derived as DoF ∗, where

DoF ∗ = min{ κ

2κ− 1
M ,

κ

2κ+ 1
N} (1.2)

with N = max{MT , MR}, M = min{MT , MR} and κ = ⌈ M
N−M

⌉. Accordingly, the
outer-bound of the sum DoF of the network is equal to 3DoF ∗. Moreover, in terms

of feasibility of IA, it was shown in [22, 29] that if each user has the same DoF d, IA

is feasible if and only if d ≤ ⌊DoF ∗⌋.
However, in spite of these achievements, the DoF characterization is still not

completed even for 3-user interference channel. The key issue is that the ‘sum’ DoF

is not equivalent to the DoF region. If we see the DoF of each user as one coordinate,

the DoF region of 3-user interference channel would be a 3-dimensional space that

is closed by multiple planes. Let di denote the DoF of user i (i = 1, 2, 3). The

outer bound of sum DoF
∑3

i=1 di = 3DoF ∗ can be seen as one plane, and the space

under the plane,
∑3

i=1 di ≤ 3DoF ∗, can certainly be seen as an outer bound of DoF

region. However, this region is too loose. Hence, the DoF region of 3-user interference
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channel still remains unknown. Another related problem is the feasibility condition

of IA. Although the feasibility condition is known for each user having the same DoF,

it is unknown if the users are allowed to have different DoF.

IA is not only a powerful tool for theoretical research, but also has great potential

to be applied in modern communication technologies [44–47]. With the 4G networks

reaching saturation, the discussion about possible 5G standard has promoted newly

emerged communication technologies that could be implemented in 5G networks [48],

such as millimeter wave [49–51], massive MIMO [52,53], and device-to-device (D2D)

communications [54–56], etc. Among all these technologies, D2D communication

shows great potential to be compatible with IA for two reasons. First, D2D commu-

nication is in need of an effective interference management mechanism to coordinate

the mutual interference between D2D communication and cellular network [56–58].

Meanwhile, IA is well known for its effectiveness in interference management. Sec-

ondly, since D2D communication is also a part of cellular network operation, it can

be monitored and controlled with base station (BS) [59, 62]. Hence, the BS can allo-

cate the required information (such as channel state information) to different devices,

which facilitates the feasibility of IA.

1.3 Thesis Outline and Contributions

This thesis aims to design IA in MIMO X channel and 3-user interference channels.

Further, the application of IA in D2D communications is investigated.

In Chapter 2, we investigate the achievable DoF of MIMO X channels. A linear IA

scheme based on spatial beamforming is proposed to achieve the DoF of 1
2
⌊2Douter⌋

for arbitrary number of antennas on each node. Note that with conventional spatial

beamforming schemes, only ⌊Douter⌋ DoF can be achieved, which is less than or equal

to 1
2
⌊2Douter⌋. The key of our proposed scheme is to transform the generic complex

channel matrices into double-sized equivalent real channel matrices with asymmetric

complex signaling, which improves the achievable DoF.
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In Chapter 3, we study the DoF region of 3-user interference channels. An outer

bound DoF region is derived and shown to be tight in terms of integer DoF, i.e., the

points with integer coordinates in the region are achievable for sure. In addition, the

achievability of fractional DoF is also discussed. Further, according to the definition

of feasibility of interference alignment [25], the exact feasibility condition of a 3-user

interference channel when each user can have different DoF is in fact equivalent to

our derived DoF region, because all the points with integer coordinates in the region

can be achieved with a linear scheme based on spatial beamforming only.

In Chapter 4, we explore the possibility of applying IA in D2D communications.

We focus on a D2D LAN underlaying a cellular uplink, where multiple D2D users

(DUs) intend to communicate with a D2D receiver. Two IA based D2D communica-

tion schemes are proposed to manage the interference between two networks. The first

scheme is referred as ‘interference-free’ IA scheme, in which the interference signals

from DUs are designed to be aligned in the orthogonal signal space of cellular links at

the evolved NodeB (eNB), so that the links of cellular users (CUs) are completely free

from interference. The second scheme is referred as ‘interference-limiting’ IA scheme.

In this scheme, the DUs’ signals are allowed to span on some links of CUs, but the

peak interference power on each of the ‘interfered’ links is limited. The application

scenarios of these two schemes are complementary to each other. Performance anal-

ysis shows that the interference generated on the cellular links is eliminated or well

controlled, while the quality of service of the D2D LAN can also be guaranteed.

In Chapter 5, the thesis conclusion and perspectives for future work are presented.



Chapter 2

Interference Alignment in

Two-User MIMO X Channels

2.1 Introduction

The outer bound DoF of 2 × 2 MIMO X channels is shown to be achievable with

linear spatial IA in combination with symbol extensions [9]. However, due to the

limitations of symbol extensions, it is essential to characterize the achievable DoF

based on linear spatial lA only.

The spatial beamforming schemes on MIMO X channels was first studied in [4], in

which some linear filters were employed at transmitters and receivers to decompose

the system into either two noninterfering multiple-antenna broadcast sub-channels

or two noninterfering multiple-antenna multiple-access sub-channels. Then, with the

use of spatial interference alignment, some surprisingly high DoF was obtained. In

particular, it was shown in [4] that if transmitters 1 and 2 are equipped with ⌈1
2
⌊4N

3
⌋⌉

and ⌊1
2
⌊4N

3
⌋⌋ antennas, respectively and each receiver is equipped with N antennas,

the DoF of ⌊4N
3
⌋ can be achieved. This spatial IA scheme was then crystalized in [9]

to achieve the DoF of ⌊Douter⌋, where Douter denotes the outer bound of DoF. As

we can see, the DoF achievable through conventional spatial IA schemes is at most

9



2.2 Main Concepts 10

⌊Douter⌋ when symbol extensions are not used. This argument has also been studied

as the topic of feasibility of IA in [9, 19].

In this Chapter, we propose a linear interference alignment and zero-forcing frame-

work that is applied for all antenna configurations with complex channel coefficients.

The framework utilizes spatial beamforming and asymmetric complex signaling [24]

and does not need the symbol extension. We show that for all antenna configura-

tions, our proposed scheme is able to achieve the DoF of 1
2
⌊2Douter⌋ without the use

of symbol extensions, which is equal to or larger than ⌊Douter⌋. In addition, one key

step in our proposed scheme is to transform the generic complex channel matrices

into double-sized equivalent channel matrices with real entries. Because of the use

of asymmetric complex signaling, all equivalent real channel matrices must have the

same quaternion structure and hence lose the generic nature. We further show that

the real equivalent channels created by asymmetric complex signaling can still behave

like generic channels when symbol extension is not allowed.

The paper is organized as follows. In Section 2.2, some main concepts incorpo-

rated in the scheme are presented. In Section 2.3, the system model is introduced.

In Section 2.4, an interference alignment and zero-forcing scheme with asymmetric

complex signaling is proposed. In Sections 2.5, the achievable DoF of the MIMO X

channels are investigated according to different antenna configurations. Section 2.6

summarizes the chapter.

2.2 Main Concepts

2.2.1 Degrees of Freedom

The DoF value of a symbol m transmitted in the system is defined as [18]

dm = lim
ρ→∞

Rm(ρ)

log2 ρ
(2.1)

where ρ denotes the power constraint of the symbol and Rm(ρ) represents the rate of

the codeword encoding the message m. Consider a single user point-to-point channel
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where the transmitted constellation U(−Q,Q)Z = {−Q,−Q + 1, . . . ,−1, 1, . . . , Q −
1, Q} (Q is an integer) is used for a single message. Since it is assumed that the ad-

ditive noise has unit variance and the minimum distance in the received constellation

is, the same as transmitted constellation, also one, the noise can be treated as re-

movable [14]. Therefore Rm ≈ log2 2Q is achievable for the channel. In addition, the

power constraint should be no less than Q2. Hence, ρ = Q2, and the DoF associated

with the symbol can be calculated as

dm = lim
Q→∞

log2 (2Q)

log2Q
2

=
1

2
(2.2)

If the symbol (m = u + jv) is modulated with a two-dimensional constellation

U = V = (−Q,Q)Z = {−Q,−Q + 1, . . . ,−1, 1, . . . , Q− 1, Q}, the rate will be Rm =

2 log2 (2Q). Since the power constraint is 2Q2, each message carries 1 DoF, i.e.,

dm = lim
Q→∞

2 log2 (2Q)

log2 2Q
2

= 1 (2.3)

In this paper, it is assumed that each symbol has only one dimension (real), which

means each symbol contains 1
2
DoF.

2.2.2 Asymmetric Complex Signaling

In wireless communication, we usually deal with symmetric complex Gaussian random

variables such as additive noise, fading channels, and so are the input signals, whose

real and imaginary parts are independent of each other. Inspired by [24], we use

asymmetric complex signaling in our scheme, in which the input signals are chosen

to be complex but not symmetric. By doing so, an M-dimensional complex system

can be transformed into a 2M-dimensional real system.

For instance, we consider a MIMO point-to-point channel with one antenna at

each side. Let x ∈ C denote the transmitted signal which contains two symbols, and

let y ∈ C denote the received signal. We have

y = h11 · (v1 ·m1 + v2 ·m2)
︸ ︷︷ ︸

x

(2.4)
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where v1 ∈ C and v2 ∈ C denote the precoders of m1 andm2, respectively. m1 andm2

are both real, and hij denotes the complex channel coefficient from the jth transmit

antenna to the ith receive antenna with phase ϕij , which can be written as

hij = |hij|(cosϕij + j sinϕij) (2.5)

Since m1 and m2 are real, (2.4) can be expressed alternatively as a real system,

i.e.,

Ȳ =




Re(y)

Im(y)





= |h11|




cosϕ11 − sinϕ11

sinϕ11 cosϕ11



×








Re(v1)

Im(v1)



m1 +




Re(v2)

Im(v2)



m2



 (2.6)

where Re(v) and Im(v) denote real and imaginary parts of v, respectively. It can be

seen that the 1 × 1 complex system is turned into a 2× 2 real system, and both m1

and m2 can be linearly decoded from (2.6).

Note that for a complex channel matrixH ∈ Cn×m, whereH =








h11 · · · h1m

...
. . .

...

hn1 · · · hnm







,

its equivalent real channel matrix Ĥ can be expressed as follows,

Ĥ =








ĥ11 · · · ĥ1m

...
. . .

...

ĥn1 · · · ĥnm








(2.7)

where ĥij = |hij|




cosϕij − sinϕij

sinϕij cosϕij



 for i = 1, 2, · · · , n and j = 1, 2, · · · , m.

Obviously, the equivalent channel matrix Ĥ is no longer generic due to its quater-

nion structure. Hence, some arguments which are suitable for generic channels cannot

be applied directly on such channels. For example, under generic channel conditions,

if two signals from different transmitters are aligned at one receiver, they are almost

surely independent of each other at other receivers because of the random nature
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Figure 2.1 2× 2 MIMO X channel (M1, M2, N1, N2)

of generic channels. However, such argument cannot be used directly if the channel

matrices have quaternion structure.

2.3 System Model

We consider a 2×2 MIMO X channel as depicted in Fig. 2.1. Transmitter Tt (t = 1, 2)

is equipped withMt antennas and receiver Rr (r = 1, 2) is equipped with Nr antennas.

This configuration of antennas is denoted by (M1,M2, N1, N2). In X channels, each

transmitter has messages for both receivers. Without loss of generality, we assume

M1 ≥ M2 and N1 ≥ N2.

Let hij
rt denote the channel gain from the jth antenna of transmitter t to the ith

antenna of receiver r. It can be expressed as

h
ij
rt = |hij

rt|(cosϕij
rt + j sinϕij

rt) (2.8)

where ϕ
ij
rt denotes the phase of hij

rt.

With asymmetric complex signaling, we can let Hrt denote the channel matrix

between transmitter t and receiver r and let Ĥrt denote its equivalent form with real

quantities. All the channel matrices are sampled from continuous complex Gaussian

distributions and each entry of Hrt is independent and identically distributed (i.i.d.).

The global channel information is assumed to be available at all nodes.

Let mrt denote the message vector intended for receiver r from transmitter t. All

elements of mrt (i.e., the symbol mrt) are set to be real, and then each carries 1
2
DoF
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according to (2.2).

2.4 Interference Alignment with Asymmetric Com-

plex Signaling

In this section, we first present signals design. Then, we investigate the conditions

under which the signals are linear independent of each other at both receivers.

2.4.1 Transmit Signals

For each link, the transmit signals are divided into three groups. The signals design

involves the use of three techniques, which are zero forcing, asymmetric complex

signaling, and interference alignment.

There are two message vectors m11 and m21 to be sent from T1, which are desired

signals of R1 and R2, respectively.

For m11, it has three blocks m1
11, m

2
11 and m3

11, each having length L1, L2 and

L3, respectively, i.e.,

m11 =

[

(m1
11)

T

︸ ︷︷ ︸

L1

(m2
11)

T

︸ ︷︷ ︸

L2

(m3
11)

T

︸ ︷︷ ︸

L3

]T

(2.9)

Further, m1
11 is precoded with [v1

11 · · ·vL1
11 ] ∈ CM1×L1, m2

11 is precoded with

[w1
11 · · ·wL2

11 ] ∈ CM1×L2 , and m3
11 is precoded with [u1

11 · · ·uL3
11 ] ∈ CM1×L3 . Then,

the transmitted signal intended for R1 from T1 can be expressed as

x11 =
[

v1
11 · · · vL1

11

]

m1
11

︸ ︷︷ ︸

x1
11

+
[

w1
11 · · · wL2

11

]

m2
11

︸ ︷︷ ︸

x2
11

+
[

u1
11 · · · uL3

11

]

m3
11

︸ ︷︷ ︸

x3
11

(2.10)
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Similarly, we divide m21 into three blocks m1
21, m

2
21, and m3

21, each having length

K1, K2 and K3, respectively, i.e.,

m21 =

[

(m1
21)

T

︸ ︷︷ ︸

K1

(m2
21)

T

︸ ︷︷ ︸

K2

(m3
21)

T

︸ ︷︷ ︸

K3

]T

(2.11)

Furthermore, m1
21 is precoded with [v1

21 · · ·vK1
21 ],m

2
21 is precoded with [w1

21 · · ·wK2
21 ],

and m3
21 is precoded with [u1

21 · · ·uK3
21 ], respectively. Then, the transmitted signal in-

tended to R2 from T1 can be written as

x21 =
[

v1
21 · · · vK1

21

]

m1
21

︸ ︷︷ ︸

x1
21

+
[

w1
21 · · · wK2

21

]

m2
21

︸ ︷︷ ︸

x2
21

+
[

u1
21 · · · uK3

21

]

m3
21

︸ ︷︷ ︸

x3
21

(2.12)

At T2, two message vectors m12 and m22 will be sent, which are the desired signals

of R1 and R2, respectively.

For m12, it is also divided into three blocks m1
12, m

2
12 and m3

12, each having length

J1, J2 and J3 respectively, i.e.,

m12 =

[

(m1
12)

T

︸ ︷︷ ︸

J1

(m2
12)

T

︸ ︷︷ ︸

J2

(m3
12)

T

︸ ︷︷ ︸

J3

]T

(2.13)

We let m1
12 be precoded with [v1

12 · · ·vJ1
12 ], m

2
12 be precoded with [w1

12 · · ·wJ2
12 ], and

m3
12 be precoded with [u1

12 · · ·uJ3
12]. Then, the transmitted signal from T2 intended to

R1 can be expressed as

x12 =
[

v1
12 · · · vJ1

12

]

m1
12

︸ ︷︷ ︸

x1
12

+
[

w1
12 · · · wJ2

12

]

m2
12

︸ ︷︷ ︸

x2
12

+
[

u1
12 · · · uJ3

12

]

m3
12

︸ ︷︷ ︸

x3
12

(2.14)
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For m22, we divide the message vector into three blocks m1
22, m

2
22 and m3

22, each

having length G1, G2 and G3, respectively, i.e.,

m22 =

[

(m1
22)

T

︸ ︷︷ ︸

G1

(m2
22)

T

︸ ︷︷ ︸

G2

(m3
22)

T

︸ ︷︷ ︸

G3

]T

(2.15)

We let m1
22 be precoded with [v1

22 · · ·vG1
22 ], m

2
22 be precoded with [w1

22 · · ·wG2
22 ],

and m3
22 be precoded with [u1

22 · · ·uG3
22 ], respectively. Then, the transmitted signal

intended to R2 from T2 can be expressed as

x22 =
[

v1
22 · · · vG1

22

]

m1
22

︸ ︷︷ ︸

x1
22

+
[

w1
22 · · · wG2

22

]

m2
22

︸ ︷︷ ︸

x2
22

+
[

u1
22 · · · uG3

22

]

m3
22

︸ ︷︷ ︸

x3
22

(2.16)

If the desired signals are linear independent of each other at each receiver, the

total DoF of the system can be calculated as

Dsum =

∑3
γ=1(Lγ +Kγ + Jγ +Gγ)

2
(2.17)

2.4.2 Design of Precoding Vectors

Next, we present the design of precoding vectors. We first examine the received

signals at R1. It can be expressed as

Y1 = H11(x
1
11 + x2

11 + x3
11) +H12(x

1
12 + x2

12 + x3
12)

+ H11(x
1
21 + x2

21 + x3
21) +H12(x

1
22 + x2

22 + x3
22)

︸ ︷︷ ︸

interference

+z1 (2.18)

where zr denotes the noise vector at receiver r (r = 1, 2).

It can be seen that x1
21, x

2
21, x

3
21, and x1

22, x
2
22, x

3
22 are the desired signals for R2,

but also the interference for R1.
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In order to cancel the interference x1
21, x

2
21 and x1

22, x
2
22 at R1, we let

H11

[

v1
21 · · · vK1

21

]

= 0

H11

[

w1
21 · · · wK2

21

]

= 0 (2.19)

and

H12

[

v1
22 · · · vG1

22

]

= 0

H12

[

w1
22 · · · wG2

22

]

= 0 (2.20)

These can be achieved by letting

v1
21, · · · ,vK1

21 ⊂ span{P11} (2.21)

wk
21 = j · vk

21, k = 1, 2, · · · , K2. (2.22)

v1
22, · · · ,vG1

22 ⊂ span{P12} (2.23)

wg
22 = j · vg

22, g = 1, 2, · · · , G2 (2.24)

where Prt denotes the null space of Hrt.

For each channel matrix Hrt, there are (Mt − Nr)
+ independent column vectors

in its null space Prt. In order to satisfy (2.21)-(2.24), we can set

K2 ≤ K1 ≤ (M1 −N1)
+ (2.25)

G2 ≤ G1 ≤ (M2 −N1)
+ (2.26)

where (x)+ = max{x, 0}.
In addition, we want interference x3

21 to be aligned with interference x3
22 at R1.

If N1 ≤M1, we first design u22 to satisfy following conditions.

u1
22, · · · ,u

⌈
G3
2
⌉

22 * span{P12} (2.27)

u
⌈
G3
2
⌉+e

22 = j · ue
22, e = 1, · · · , ⌊G3

2
⌋ (2.28)

In the above, Eq. (2.27) guarantees the message signals precoded by u22 and v22 (r.f.

(2.23)) are not aligned in the same signal space at R2. Otherwise, they will not be

separated and linearly decoded.
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After determining u22, we design u21 as follows.

H11u
ǫ
21 = H12u

ǫ
22, ǫ = 1, · · · , ⌈K3

2
⌉ (2.29)

u
⌈
K3
2

⌉+e

21 = j · ue
21 e = 1, · · · , ⌊K3

2
⌋ (2.30)

K3 ≤ G3 ≤ 2N1 (2.31)

where (2.31) ensures that u1
22, · · · ,u

⌈
G3
2
⌉

22 are independent of each other. Note that

since N1 ≤ M1, u
ǫ
21 can be surely found from (2.29). In addition, from (2.28)-(2.30)

we can get

H11u
⌈
K3
2

⌉+e

21 = H12u
⌈
G3
2
⌉+e

22 , e = 1, · · · , ⌊K3

2
⌋. (2.32)

If N1 > M1, we design u21 and u22 together by letting them satisfy following

conditions,

[

H11 −H12

]




uǫ
21

uǫ
22



 = 0, ǫ = 1, · · · , ⌈K3

2
⌉ (2.33)

K3 ≤ G3 ≤ 2(M1 +M2 −N1)
+ (2.34)

and conditions (2.28) and (2.30).

The received signal at R2 can be expressed as

Y2 = H21(x
1
21 + x2

21 + x3
21) +H22(x

1
22 + x2

22 + x3
22)

+ H21(x
1
11 + x2

11 + x3
11) +H22(x

1
12 + x2

12 + x3
12)

︸ ︷︷ ︸

interference

+z2 (2.35)

Similarly, we want to cancel the interference x1
11, x

2
11 and x1

12, x
2
12 at R2. These

can be achieved by letting

v1
11, · · · ,vL1

11 ⊂ span{P21} (2.36)

wl
11 = j · vl

11, l = 1, 2, · · · , L2 (2.37)

v1
12, · · · ,vJ1

12 ⊂ span{P22} (2.38)

wκ
12 = j · vκ

12, κ = 1, 2, · · · , J2 (2.39)
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and

L2 ≤ L1 ≤ (M1 −N2)
+ (2.40)

J2 ≤ J1 ≤ (M2 −N2)
+ (2.41)

Further, we want interference x3
11 to be aligned with interference x3

12 at R2.

When N2 ≤M1, we let

u1
12, · · · ,u

⌈
J3
2
⌉

12 * span{P22} (2.42)

u
⌈
J3
2
⌉+a

12 = j · ua
12, a = 1, · · · , ⌊J3

2
⌋ (2.43)

H21u
ε
11 = H22u

ε
12, ε = 1, · · · , ⌈L3

2
⌉ (2.44)

u
⌈
L3
2
⌉+b

11 = j · ub
11, b = 1, · · · , ⌊L3

2
⌋ (2.45)

L3 ≤ J3 ≤ 2N2 (2.46)

which implies that

H21u
⌈
L3
2
⌉+c

11 = H22u
⌈
J3
2
⌉+c

12 , c = 1, · · · , ⌊L3

2
⌋ (2.47)

When N2 > M1, u12 and u11 are designed together to satisfy following conditions,

[

H21 −H22

]




uǫ
11

uǫ
12



 = 0, ε = 1, · · · , ⌈L3

2
⌉ (2.48)

L3 ≤ J3 ≤ 2(M1 +M2 −N2)
+ (2.49)

and the conditions (2.43) and (2.45).

2.4.3 Linear Independence

Next, we investigate constraints under which the desired signals on each receiver can

be linearly decoded.

First, we examine the received signals on R1, which can be expressed as

Y1 = H11(x
1
11 + x2

11 + x3
11) +H12(x

1
12 + x2

12 + x3
12)

+ H11x
3
21 +H12x

3
22

︸ ︷︷ ︸

interference

+z1 (2.50)
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We neglect noise vector and rewrite (2.50) as

Y1 = (H11 [v
1
11 · · ·vL2

11 ,u
1
11 · · ·u

⌊
L3
2
⌋

11 ]
︸ ︷︷ ︸

D1
1

H12 [v
1
12 · · ·vJ2

12 ,u
1
12, · · · ,u

⌊
J3
2
⌋

12 ]
︸ ︷︷ ︸

D2
1

H12 [u
1
22 · · ·u

⌊
G3
2
⌋

22 ]
︸ ︷︷ ︸

D3
1

︸ ︷︷ ︸

interference dimensions

H11 [w
1
11 · · ·wL2

11 ,u
⌈
L3
2
⌉+1

11 · · ·uL3
11 ]

︸ ︷︷ ︸

D1
2

H12 [w
1
12 · · ·wJ2

12 ,u
⌈
J3
2
⌉+1

12 · · ·uJ3
12]

︸ ︷︷ ︸

D2
2

H12 [u
⌈
G3
2

⌉+1

22 · · ·uG3
22 ]

︸ ︷︷ ︸

D3
2

︸ ︷︷ ︸

(interference dimensions)

H11 [v
L2+1
11 · · ·vL1

11 ]
︸ ︷︷ ︸

D1
3

H12 [v
J2+1
12 · · ·vJ1

12 ]
︸ ︷︷ ︸

D2
3

H11u
⌈
L3
2
⌉

11 H12u
⌈
J3
2
⌉

12 H12u
⌈
G3
2
⌉

22 )m1

(2.51)

where m1 denotes the real column vector of all received signals in which some interfer-

ences are cancelled due to the precoding and the desired messages and interferences

are reordered, and the terms H11u
⌈
L3
2
⌉

11 , H12u
⌈
J3
2
⌉

12 and H12u
⌈
G3
2
⌉

22 are only shown in

(2.51) when L3, J3, G3 are odd, respectively.

According to (2.28), (2.37), (2.39), (2.43) and (2.45), we can get D1
2 = j · D1

1,

D2
2 = j ·D2

1, D
3
2 = j ·D3

1. Hence, Y1 can be expressed as

Y1 = (
[
H11D

1
1 H12D

2
1 H12D

3
1

]

︸ ︷︷ ︸

G1

j
[
H11D

1
1 H12D

2
1 H12D

3
1

]

︸ ︷︷ ︸

G2

H11D
1
3 H12D

2
3 H11u

⌈
L3
2
⌉

11 H12u
⌈
J3
2
⌉

12 H12u
⌈
G3
2
⌉

22
︸ ︷︷ ︸

G3

)m1

(2.52)

whose real form can be expressed as

Y1 = (
[

Ĥ11D
1
1 Ĥ12D

2
1 Ĥ12D

3
1

] [

Ĥ11jD1
1 Ĥ12jD2

1 Ĥ12jD3
1

]

Ĥ11D
1
3 Ĥ12D

2
3 Ĥ11U

⌈
L3
2
⌉

11 Ĥ12U
⌈
J3
2
⌉

12 Ĥ12U
⌈
G3
2
⌉

22 )m1 (2.53)



2.4 Interference Alignment with Asymmetric Complex Signaling 21

where Ĥ is the equivalent real form of complex channel matrix H as defined in (2.7),

and D denotes the real form of the matrix D, which is defined as follows.

Let D ∈ Cn×m =
[

d1 · · · dm

]

denote a random complex matrix, where dp ∈

Cn×1 =
[

dp(1) · · · dp(n)
]T

denotes the pth column ofD. Then, we letD ∈ C2n×m

and dp ∈ C2n×1 denote the real form of D and dp, respectively, i.e.,

D =
[

d1 · · · dm

]

, where dp =














Re(dp(1))

Im(dp(1))
...

Re(dp(n))

Im(dp(n))














(2.54)

Since ĤD = HD, (2.53) can be written as

Y1 =
[

G1 G2 G3

]

m1 =
[

G′ G3

]

m1 (2.55)

where G1, G2 and G3 are the real form of G1, G2 and G3 in (2.52), respectively, and

G′ is the real form of G′ =
[

G1 G2

]

=
[

G1 jG1

]

.

Next, we shall show that under some constraints, Y1 has full column rank almost

surely. First, we introduce two Lemmas.

Lemma 2.1 For random αij and βij, i = 1, 2, · · ·n and j = 1, 2, · · · , m, a matrix Q

with the quaternion structure as

Q ∈ R2n×2m =








q11 · · · q1m

...
. . .

...

qn1 · · · qnm








where qij =




αij −βij

βij αij



 (2.56)

has full column rank almost for sure if m ≤ n.

Proof: The proof is given in Appendix A.
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Lemma 2.2 Let G ∈ Cn×m be a random matrix (m ≤ n), and G′ =
[

G jG
]

∈
Cn×2m. Then, the real matrix G′ ∈ R2n×2m as defined in (2.54) has full column rank

almost for sure.

Proof of Lemma 2.2 is given as below.

Proof: First, we let gp denote the pth column of complex random matrix G and

define

G′
X =

[

g1 jg1 · · · gm jgm

]

.

Note that G′
X has quaternion structure according to (2.54). Hence, G′

X has full

column rank almost for sure according to Lemma 2.1.

Further, note that G′
X is generated via column permutation of the matrix G′ =

[ G jG ]. According to (2.54), the real matrix G′ can be expressed as

G′ = G′
X · C

where C ∈ R2m×2m is a column permutation matrix. As the permutation of a matrix

does not change the rank of the matrix, G′ also has full column rank almost surely.

Note that the precoding vectors in G1 are designed according to (2.36), (2.38),

(2.42) and (2.44) or (2.48). Since the channels are all generic in complex level, G1 ∈
CN1×(L2+⌊

L3
2
⌋+J2+⌊

J3
2
⌋+⌊

G3
2
⌋) has full column rank for sure as long as

L2 + ⌊
L3

2
⌋+ J2 + ⌊

J3

2
⌋ + ⌊G3

2
⌋ ≤ N1. (2.57)

For G′ =
[

G1 jG1

]

, G′ must have full rank according to Lemma 2.2.

Next, in order to guarantee that Y1 has full column rank, two conditions must be

satisfied. First, Y 1 ∈ C2N1×(
∑3

γ=1(Lγ+Jγ)+G3) must be a square or “thin” matrix, which

means

3∑

γ=1

(Lγ + Jγ) +G3 ≤ 2N1 (2.58)

Secondly, we need to ensure that the columns in G3 are completely independent

of each other and also independent of the columns in G1. From (2.52) we can see
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that the signals in H11D
1
1, H11D

1
3 (and H11u

⌈
L3
2
⌉

11 ) are sent through the same channel

H11, i.e.,

[

H11D
1
1 H11D

1
3 H11u

⌈
L3
2
⌉

11

]

=

H11[v
1
11 · · ·vL2

11 ,u
1
11 · · ·u

⌊
L3
2
⌋

11 ,vL2+1
11 · · ·vL1

11 ,u
⌈
L3
2
⌉

11 ] (2.59)

In order to guarantee that
[

H11D
1
1 H11D

1
3 H11u

⌈
L3
2
⌉

11

]

has full column rank,

we let

L1 + ⌈
L3

2
⌉ ≤ min{N1,M1} (2.60)

which is equivalent to

2L1 + L3 ≤ min{2N1, 2M1} (2.61)

Further, in (2.52) some signals in G1 and G3 are sent through the same channel

H12, which are
[

H12D
2
1 H12D

2
3 H12u

⌈
J3
2
⌉

12 H12u
⌈
G3
2
⌉

22 H12D
3
1

]

. First, similar to

(2.59)-(2.61), to guarantee that
[

H12D
2
1 H12D

2
3 H12u

⌈
J3
2
⌉

12

]

has full column rank,

we must let

2J1 + J3 ≤ min{2N1, 2M2}. (2.62)

Then, since the design of u22 is completely unrelated to v12 and u12, the signals

in

[

H12u
⌈
G3
2
⌉

22 H12D
3
1

]

must be independent of
[

H12D
2
1 H12D

2
3 H12u

⌈
J3
2
⌉

12

]

Due to

channel randomness, the signals that are sent through different channels are indepen-

dent of each other almost surely. Hence, it is ensured that the columns in G3 are

independent of each other and also independent of the columns in G1.

Finally, with (2.58), (2.61) and (2.62) being satisfied, Y1 can have full column rank

almost for sure.
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Likewise, the received signals on R2 can be expressed as

Y2 = (H21[v
1
21 · · ·vK2

21 ,u
1
21 · · ·u

⌊
K3
2

⌋

21 ] H22[v
1
22 · · ·vG2

22 ,u
1
22, · · · ,u

⌊
G3
2

⌋

22 ]

H22[u
1
12 · · ·u

⌊
J3
2
⌋

12 ]
︸ ︷︷ ︸

(interference dimensions)

H21[w
1
21 · · ·wK2

21 ,u
⌈
K3
2

⌉+1

21 · · ·uK3
21 ] H22[w

1
22 · · ·w

L2
22

22 ,u
⌈
G3
2
⌉+1

22 · · ·uG3
22 ]

H22[u
⌈
J3
2
⌉+1

12 · · ·uJ3
12]

︸ ︷︷ ︸

(interference dimensions)

H21[v
K2+1
21 · · ·vK1

21 ] H22[v
G2+1
22 · · ·vG1

22 ] H21u
⌈
K3
2

⌉

21 H22u
⌈
G3
2

⌉

22 H22u
⌈
J3
2
⌉

12 )m2

(2.63)

With the same approach, we can show that Y2 has full column rank almost for

sure if the following three constraints are satisfied,

3∑

γ=1

(Kγ +Gγ) + J3 ≤ 2N2 (2.64)

2K1 +K3 ≤ min{2N2, 2M1} (2.65)

2G1 +G3 ≤ min{2N2, 2M2} (2.66)

2.5 Achievable Degrees of Freedom

In this section, we investigate the achievable DoF of our proposed scheme.

Theorem 2.1 In 2×2 MIMO X channels with Mt antennas at transmitter t and Nr

antennas at receiver r, based on the proposed scheme of interference alignment and

nulling with asymmetric complex signaling, the achievable DoF equals 1
2
⌊2Douter⌋,
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where Douter denotes the outer bound of sum DoF [20], i.e.,

Douter = min







M1 +M2, N1 +N2

max{M1,N1}+max{M1,N2}+M2

2
,

max{M2,N1}+max{M2,N2}+M1

2
,

max{M1,N1}+max{M2,N1}+N2

2
,

max{M1,N2}+max{M2,N2}+N1

2
,

max{M1,N1}+max{M1,N2}+max{M2,N1}+max{M2,N2}
3

The exact value of achievable DoF in different cases are shown in Table 2.1 and 2.2.

Proof: According to (2.17), the optimal achievable DoF is obtained by maximiz-

ing
∑3

γ=1(Lγ+Kγ+Jγ+Gγ) under the constraints that ensure the linear independence.

It is equivalent to solving the following linear optimization problem,

max

3∑

γ=1

(Lγ +Kγ + Jγ +Gγ) (2.67)

st.

3∑

γ=1

(Lγ + Jγ) ≤ 2N1 −G3 (2.58),

3∑

γ=1

(Kγ +Gγ) ≤ 2N2 − J3 (2.64).

2L1 + L3 ≤ min{2N1, 2M1}(2.61), 2J1 + J3 ≤ min{2N1, 2M2}(2.62).

2K1 +K3 ≤ min{2N2, 2M1}(2.65), 2G1 +G3 ≤ min{2N2, 2M2}(2.66).

K2 ≤ K1 ≤ (M1 −N1)
+ (2.25), G2 ≤ G1 ≤ (M2 −N1)

+ (2.26).

J2 ≤ J1 ≤ (M2 −N2)
+ (2.41), L2 ≤ L1 ≤ (M1 −N2)

+(2.40)

K3 ≤ G3 ≤ 2N1 when N1 ≤M1 (2.31).

K3 ≤ G3 ≤ 2(M1 +M2 −N1)
+ when N1 > M1 (2.34).

L3 ≤ J3 ≤ 2N2 when N2 ≤M1 (2.46).

L3 ≤ J3 ≤ 2(M1 +M2 −N2)
+ when N2 > M1 (2.49).

The detailed calculation is given in Appendix B.

Finally, we use a simple example to elaborate the design process and show the

advantage of the proposed scheme. We assume that M1 = M2 = N1 = 2, N2 = 1. By
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Table 2.1 The achievable DoF for three types of antenna configurations

M1 ≥ M2 ≥ N1 ≥ N2

M1 +M2 ≥ 2N1 +N2 3N2 ≤ M1 +M2 < 2N1 +N2 M1 +M2 < 3N2

Achievable DoF N1 +N2
M1+M2+N2

2
1
2
⌊ 4
3
(M1 +M2)⌋

Outer bound DoF [9] N1 +N2
M1+M2+N2

2
2
3
(M1 +M2)

M1 ≥ N1 ≥ M2 ≥ N2

M1 ≥ N1 +N2 N1 + 3N2 ≤ M1 + 2M2 < N1 +N2 + 2M2 M1 + 2M2 < N1 + 3N2

Achievable DoF N1 +N2
M1+N1+N2

2
1
2
⌊
2(2M1+N1+M2)

3
⌋

Outer bound DoF [9] N1 +N2
M1+N1+N2

2
2M1+N1+M2

3

N1 ≥ M1 ≥ M2 ≥ N2

2(M1 +M2) ≥ 2N1 + 3N2 2N1 ≤ 2(M1 +M2) < 2N1 + 3N2 M1 +M2 ≤ N1

Achievable DoF 2N1+N2

2
1
2
⌊ 2(2N1+M1+M2)

3
⌋ M1 +M2

Outer bound DoF [9] 2N1+N2

2
2N1+M1+M2

3
M1 +M2

Table 2.2 The achievable DoF for other three types of antenna configurations

N1 ≥ N2 ≥ M1 ≥ M2

N1 +N2 ≥ 2M1 +M2 3M2 ≤ N1 +N2 < 2M1 +M2 N1 +N2 < 3M2

Achievable DoF M1 +M2
N1+N2+M2

2
1
2
⌊ 4
3
(N1 +N2)⌋

Outer bound DoF [9] M1 +M2
N1+N2+M2

2
2
3
(N1 +N2)

N1 ≥ M1 ≥ N2 ≥ M2

N1 ≥ M1 +M2 M1 + 3M2 ≤ N1 + 2N2 < M1 +M2 + 2N2 N1 + 2N2 < M1 + 3M2

Achievable DoF M1 +M2
M1+N1+M2

2
1
2
⌊
2(2N1+M1+N2)

3
⌋

M1 ≥ N1 ≥ N2 ≥ M2

2(N1 +N2) ≥ 2M1 + 3M2 2M1 ≤ 2(N1 +N2) < 2M1 + 3M2 N1 +N2 ≤ M1

Achievable DoF 2M1+M2

2
1
2
⌊
2(2M1+N1+N2)

3
⌋ N1 +N2

Outer bound DoF [9] 2M1+M2

2
2M1+N1+N2

3
N1 +N2
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solving (2.67), we can get L1 = J1 = J2 = G3 = K3 = 1 and other parameters equal

zero. (The solution can be found in (2.71)). Hence, the transmitted signals can be

expressed as follows,

x11 = v1
11m

1
11; x21 = u1

21m
3
21

x12 = v1
12m

1
12 +w1

12m
2
12; x22 = u1

22m
3
22

where the messages are all real and the designs of precoding vectors are elaborated

in Section 2.4.2.

As a result, the received signals on each receiver is

Y1 = H11

[

v1
11 u1

21

]

︸ ︷︷ ︸

A∈C(2×2)




m1

11

m3
21 +m3

22



+H12

[

v1
12 j · v1

12

]

︸ ︷︷ ︸

B∈C(2×2)




m1

12

m2
12





Y2 =
[

H21u
1
21 H22u

1
22

]

︸ ︷︷ ︸

C∈C(1×2)




m3

21

m3
22





After transforming the system into real form, we have

Y 1 =
[

A B

] [

m1
11 m3

21 +m3
22 m1

12 m2
12

]T

Y 2 = C
[

m3
21 m3

22

]T

Since
[

A B

]

∈ R(4×4) and C ∈ R(2×2) both have full rank almost surely, R1

and R2 can decode m1
11, m

1
12, m

2
12 and m3

21, m3
22, respectively. Hence, the total DoF

of 5
2
is achieved, which equals the outer-bound. Note that with conventional scheme,

only DoF of 2 is achievable.

2.6 Summary

In this chapter, we investigate the achievable DoF of MIMO X channels based on

linear spatial beamforming schemes. While conventional schemes can achieve no

more than ⌊Douter⌋ DoF, we show that the DoF of ⌊Douter⌋ + 1
2
can be achieved if
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Douter − ⌊Douter⌋ ≥ 1
2
, and ⌊Douter⌋ can be achieved otherwise. The improvement

is realized by combining asymmetric complex signaling with interference alignment

framework. The results indicate that the technique of asymmetric complex signaling,

which was originally proposed for single-antenna systems, can provide DoF benefit

for MIMO systems as well when symbol extensions are not allowed.

2.7 Appendix A: Proof of Lemma 2.1

Note that if we can prove Q ∈ R2n×2m has full rank when m = n, then Q would

have full column rank for sure if m < n. Hence, we focus on showing that the matrix

Q in (2.56) has full rank when m = n, i.e., the determinant of Q is non-zero. The

argument will be proved recursively.

When m = 1, we have |Q| = |q11| = (α11)2 + (β11)2, which is non-zero almost for

sure. When m = 2, we have

Q =




q11 q12

q21 q22





=




q11 0

q21 I



 ·




I (q11)−1q12

0 q22 − q21(q11)−1q12





which means

|Q| = |




q11 0

q21 I



 | · |




I (q11)−1q12

0 q22 − q21(q11)−1q12



 |

= |q11| · |q22 − q21(q11)−1q12|

Since q21(q11)−1q12 and q22 are both full rank quaternion structured matrices

and completely random with respect to each other, q′ = q22 − q21(q11)−1q12 is also

a quaternion structured matrix with m = 1, which was already proved to have full

rank almost surely. Therefore, both |q11| and |q′| are non-zero almost surely. Finally,

we can get that |Q| is non-zero almost for sure.
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Next, assuming Q is full rank when m = q, we show that Q is also full rank

when m = q + 1. First of all, we denote Q1 and Q2 as the matrices Q ∈ R2q×2q and

Q ∈ R2(q+1)×2(q+1), respectively. Then, we have

Q2 =











Q1

q1(q+1)

...

qq(q+1)

q(q+1)1 · · · q(q+1)q q(q+1)(q+1)











=




















Q1

α1(q+1) −β1(q+1)

β1(q+1) α1(q+1)

...
...

αq(q+1) −βq(q+1)

βq(q+1) αq(q+1)

α(q+1)1 −β(q+1)1 · · · α(q+1)q −β(q+1)q α(q+1)(q+1) −β(q+1)(q+1)

β(q+1)1 α(q+1)1 · · · β(q+1)q α(q+1)q β(q+1)(q+1) α(q+1)(q+1)




















=




Q W

Z α(q+1)(q+1)



 =




Q 0

Z I



 ·




I Q−1W

0 α(q+1)(q+1) − ZQ−1W



 (2.68)

It is obvious that Q ∈ R(2q+1)×(2q+1) has full rank for sure because it is Q1 added

with one random column and row. Hence, the determinant of Q2 can be calculated

as follows,

|Q2| = det{Q} · det{α(q+1)(q+1) − ZQ−1W} (2.69)

Since Q has full rank, det{Q} is nonzero for sure. Further, since Z, Q−1 and

W are all random matrix or vectors with respect to α(q+1)(q+1), we can get that

ZQ−1W 6= α(q+1)(q+1) almost for sure, which means det{α(q+1)(q+1)−ZQ−1W} is also
non-zero almost surely. Hence, Q2 is proved to have full rank almost for sure.
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2.8 Appendix B: Proof of Theorem 2.1

As can be seen from Table 2.1 and Table 2.2, the network can be divided into six

cases according to different antenna configurations. Further, note that the three cases

in Table 2.2, N1 ≥ N2 ≥M1 ≥ M2, N1 ≥ M1 ≥ N2 ≥ M2, and M1 ≥ N1 ≥ N2 ≥M2,

are just the reciprocal of the three cases in Table 2.1, M1 ≥ M2 ≥ N1 ≥ N2, M1 ≥
N1 ≥ M2 ≥ N2 and N1 ≥ M1 ≥ M2 ≥ N2, respectively. Hence, we only focus on the

cases in Table 2.1.

2.8.1 M1 ≥M2 ≥ N1 ≥ N2

As can be seen from Table 2.1, we further divide this case into three sub-cases, i.e.,

M1 +M2 ≥ 2N1 +N2, 3N2 ≤M1 +M2 < 2N1 +N2, and M1 +M2 < 3N2.

• When M1 +M2 ≥ 2N1 +N2

Since M1 + M2 ≥ 2N1 + N2, we have (M1 − N1) + (M2 − N1) ≥ N2 and (M1 −
N2)+(M2−N2) ≥ N1, which means there always exists L1, L2, K1, K2, J1, J2, G1, G2

that can satisfy the equalities of (2.58) and (2.64), with L3 = J3 = K3 = G3 = 0.

There are many possible solutions for the values of each parameter. We present one

solution as follows,







G1 = G2 = min{M2 −N1, N2}, G3 = 0

K1 = K2 = max{N1 +N2 −M2, 0}, K3 = 0

J1 = J2 = min{M2 −N2, N1}, J3 = 0

L1 = L2 = max{N1 +N2 −M2, 0}, L3 = 0

(2.70)

As a result,
∑3

γ=1(Lγ +Kγ + Jγ +Gγ) is maximized as 2N1+2N2, which leads to

the achievable DoF N1 +N2.

• When 3N2 ≤M1 +M2 < 2N1 +N2

First of all, to maximize
∑3

γ=1(Lγ + Kγ + Jγ + Gγ), we let the equalities hold

for both (2.58) and (2.64). Then, we maximize K1, K2 and G1, G2 as M1 − N1,

M2 − N1, respectively, which gives K3 + G3 + J3 = 2(2N1 + N2 −M1 −M2). Note
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that G3+J3 should be minimized as it denotes the number of interference dimensions

on two receivers. First, since K3 ≤ G3, we minimize G3 + J3 by letting K3 = G3,

i.e., G3 + J3 = 2(2N1 + N2 −M1 −M2) − G3. Further, we can see that G3 + J3 is

minimized if G3 is maximized. Hence, we let K3 = G3 = 2N1 + N2 −M1 −M2 and

J3 = 0. Moreover, since 3N2 ≤ M1 + M2, there exists L1, L2, J1, J2 that can satisfy

the equality of (2.58) for sure.

Finally, one of many possible solutions is given as follows,






G1 = G2 = M2 −N1, G3 = 2N1 +N2 −M1 −M2

K1 = K2 = M1 −N1, K3 = 2N1 +N2 −M1 −M2

J1 = J2 = M2 −N2, J3 = 0

L1 = ⌈M1+N2−M2

2
⌉, L2 = ⌊M1+N2−M2

2
⌋, L3 = 0

(2.71)

Hence, the achievable DoF in this scenario can be calculated as M1+M2+N2

2
.

• When M1 +M2 < 3N2

First, we let the equalities hold for both (2.58) and (2.64). Then, we maximize

L1, L2 and J1, J2 as M1−N2 and M2−N2, respectively; maximize K1, K2 and G1, G2

as M1 −N1 and M2 −N1, respectively. As a result, we have L3 + J3 +G3 = 2(N1 +

2N2 −M1 −M2) and K3 +G3 + J3 = 2(2N1 +N2 −M1 −M2), which means

K3 + L3 + 2(J3 +G3) = 6N1 + 6N2 − 4(M1 +M2) (2.72)

To minimize the number of interference dimensions, i.e., J3+G3, we should max-

imize K3 + L3. Further, we should note that K3 ≤ G3 and L3 ≤ J3, which means

K3 + L3 ≤ G3 + J3. Hence, we let

K3 + L3 = J3 +G3 − x, where x = (M1 +M2) mod 3 (2.73)

which implies that

J3 +G3 = 2(N1 +N2)− ⌊
4(M1 +M2)

3
⌋ (2.74)

As can be seen, the achievable DoF can be calculated as 1
2
(2N1+2N2−J3−G3) =

1
2
⌊4(M1+M2)

3
⌋. As for the exact values of K3, L3, J3, G3, one possible solution of J3 and
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G3 is given as follows,

G3 = 2N1 − ⌊
2(M1 +M2)

3
⌋, J3 = 2N2 − ⌊

2(M1 +M2) + 1

3
⌋

Then, the value of K3 and L3 can be easily obtained according to (2.73).

2.8.2 M1 ≥ N1 ≥M2 ≥ N2

The optimization process of this case is similar to the case of M1 ≥ M2 ≥ N1 ≥ N2,

except G1 = G2 = 0. Hence, we directly provide the results for different antenna

configurations.

• When M1 ≥ N1 +N2







G1 = G2 = G3 = 0

K1 = K2 = N2, K3 = 0

J1 = J2 = min{M2 −N2, N1}, J3 = 0

L1 = L2 = max{N1 +N2 −M2, 0}, L3 = 0

(2.75)

The achievable DoF equals N1 +N2.

• When N1 + 3N2 ≤M1 + 2M2 < N1 +N2 + 2M2







G1 = G2 = 0, G3 = N1 +N2 −M1

K1 = K2 = M1 −N1, K3 = N1 +N2 −M1

J1 = J2 = M2 −N2, J3 = N1 −M2

L1 = ⌈M1+N2−N1

2
⌉, L2 = ⌊M1+N2−N1

2
⌋,

L3 = N1 −M2

(2.76)

The achievable DoF equals M1+N1+N2

2
.

• When M1 + 2M2 < N1 + 3N2







G1 = G2 = 0, K1 = K2 = M1 −N1

J1 = J2 = M2 −N2, L1 = L2 = M1 −N2

G3 = N1 +N2 − ⌊2M1+N1+M2

3
⌋

J3 = N1 +N2 − ⌊2M1+N1+M2+1
3

⌋

(2.77)
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and

K3 + L3 = J3 +G3 − y where y = 2(2M1 +N1 +M2) mod 3 (2.78)

The achievable DoF equals 1
2
⌊2(2M1+N1+M2)

3
⌋.

2.8.3 N1 ≥M1 ≥M2 ≥ N2

Note that in this scenario, K1 = K2 = G1 = G2 = 0.

• When 2(M1 +M2) ≥ 2N1 + 3N2

According to (2.64), we have K3+J3+G3 = 2N2. In order to minimize the number

of interference dimensions, G3 + J3, we first maximize K3 by letting K3 = G3, which

means G3+J3 = 2N2−G3. Hence, we minimize G3+J3 by maximizing G3, i.e., we let

G3 = N2 and J3 = 0. Further, since 2(M1 +M2) ≥ 2N1 + 3N2, it can be proved that

there exists L1, L2, J1, J2 that can satisfy the equality of (2.58) for sure. One possible

solution is L1 = ⌈2N1+N2−2M2⌉, L2 = ⌊2N1+N2−2M2⌋, and J1 = J2 = M2−N2.

As a result, the achievable DoF equals 2N1+2N2−N2

2
= 2N1+N2

2
.

• When 2N1 ≤ 2(M1 +M2) < 2N1 + 3N2

We first let L1 = L2 = M1 − N2 and J1 = J2 = M2 − N2, which implies that

L3 + J3 +G3 = 2(N1 + 2N2 −M1 −M2). In addition, we have K3 + J3 + G3 = 2N2.

Similar to (2.73) and (2.74), we let

K3 + L3 = J3 +G3 − z, where z = 2(M1 +M2 −N1) mod 3 (2.79)

which implies that

J3 +G3 = 2N2 + ⌈
2N1 − 2M1 − 2M2

3
⌉ (2.80)

The value of G3 and J3 can be set as

G3 = ⌈
M1 +M2 −N1

3
⌉, J3 = 2N2 +N1 −M1 −M2

As a result, the achievable DoF equals 2N1 + 2N2 − J3 −G3 =
1
2
⌊2(2N1+M1+M2)

3
⌋.

• When M1 +M2 ≤ N1
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Since M1 + M2 ≤ N1, we have K3 = G3 = 0. First, we let L1 = L2 = M1 − N2

and J1 = J2 = M2 − N2, which means J3 = L3 = 2N2. As a result, the achievable

DoF equals M1+M2. Note that in this case, the equalities should hold for (2.64) and

(2.61).



Chapter 3

Interference Alignment in

Three-User MIMO Interference

Channels

3.1 Introduction

In this chapter, we study 3-user MIMO interference channels, with MT and MR

antennas on each transmitter and each receiver, respectively. The optimal sum DoF

for this model was solved in [22], where the idea of subspace alignment chain was

introduced and the outer-bound of sum DoF was derived. According to [22], the outer-

bound DoF of each link of 3-user interference channels equals DoF ∗, which is given

in (1.2). Hence, the outer-bound of the sum DoF of the network is equal to 3DoF ∗.

Feasibility of interference alignment studies the achievability of DoF obtained by

linear interference alignment based on spatial beamforming, i.e., without the need for

symbol extensions. This problem was first studied in [?], where iterative algorithms

were proposed to test the feasibility of desired alignments. Then, [25] proposed to

determine feasibility of alignment by counting the number of equations and comparing

them with the number of variables. In [25], an interference alignment problem is

35
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defined as “proper” if and only if the number of variables in every set of equations

is not less than the number of equations in that set. Moreover, it is conjectured

in [25] that proper systems are likely to be feasible and improper systems to be

infeasible. This conjecture is confirmed on one hand, i.e., the improper systems are

infeasible [26, 28]. On the other hand, it has been shown that the proper systems

are feasible for sure if MT = MR [28] and/or both MT and MR are divisible by d,

where d denotes the DoF of each user [26]. For the scenarios where each user can

have different DoF, it was shown in [27] that if each user is equipped more than

two antennas, the problem of checking the achievability of a given tuple of DoF is

NP-hard. For 3-user MIMO interference channels, it was shown in [22,29] that when

each user has the same DoF d, the interference alignment is feasible if and only if

(2r + 1)d ≤ max(rN, (r + 1)M), where N = max{MT , MR}, M = min{MT , MR},
for all integers r ≥ 0, which also proves that some proper systems are not feasible.

Let di denote the DoF of user i and D = d1 + d2 + d3. It was shown in [22]

that the outer bound of sum DoF of 3-user interference channel is D ≤ 3DoF ∗. In

addition, if the DoF of each user denotes one coordinate, the DoF region of 3-user

interference channel would be a 3-dimensional space that is closed by multiple planes.

As we can see, the sum DoF D = 3DoF ∗ can be seen as one plane, and the space

under the plane, D ≤ 3DoF ∗, can certainly be seen as an outer bound of DoF region.

However, this region is too loose to be considered as tight. In this paper, we derive

an outer bound DoF region and show that it is tight in terms of integer DoF, i.e., the

points with integer coordinates in the region are achievable for sure. Furthermore, the

achievability of fractional DoF is also discussed. While there is lack of a systematic

approach to prove that all fractional DoF inside the region can be achieved for sure,

we introduce some methods that can examine and confirm the achievability of each

individual case.

Another unsettled issue is the feasibility of linear interference alignment. It was

already known that in general the “proper” system is not equivalent to “feasible”

system [29]. It was also known that if each user has the same DoF d, the feasibility
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condition is d ≤ ⌊DoF ∗⌋ [22]. The achievability is based on a novel technique called

‘subspace alignment chain’. However, when each user can have different DoF, the

feasibility condition remains unknown. According to the definition of feasibility of

interference alignment [25], the exact feasibility condition of a 3-user interference

channel is in fact equivalent to our derived DoF region, because all the points with

integer coordinates in the region can be achieved with a linear beamforming scheme

proposed in this paper, without the need of symbol extension in time, frequency, or

space.

The rest of the paper is organized as follows. In Section 3.2, the system model is

introduced and the outer bound of DoF region is given. In Section 3.3, a beamforming

scheme is proposed based on the concept of interference alignment chain. In Section

3.4, the achievable DoF region of the beamforming scheme is derived. In Section

3.5, with the combination of the beamforming scheme and symbol extension, the

achievability of fractional DoF inside the outer bound DoF region is discussed. Section

3.6 summarizes the chapter.

3.2 System Model and Main Result

We consider a fully connected 3-user MIMO interference channel with MT and MR

antennas at each transmitter and each receiver, respectively. Transmitter i transmits

messages intended to receiver i (i = 1, 2, 3) and causes interference to other two

receivers. Let N = max{MR , MT } and M = min{MR , MT}. Note that when

M
N
≤ 1

2
, the DoF region is just the combination of single user and/or cooperation

DoF outer bounds [20, 22], which can be trivially achieved. Moreover, interference

alignment is irrelevant when M
N
≤ 1

2
. Hence, in this paper, we focus on the region

1
2
< M

N
< 1, where the DoF region remains an open problem.

Let Hji ∈ CMR×MT denote the channel matrix between transmitter i and receiver

j. We assume that all channel matrices are sampled from continuous complex Gaus-

sian distributions and each entry of Hij is independent and identically distributed
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(i.i.d.). The received signals on receiver j can be expressed as

yj =

3∑

i=1

HjiBimi + zj (3.1)

where yj ∈ CMR×1 denotes the received signal, Bi ∈ CMT×di denotes the beamform-

ing matrix of transmitter i, mi ∈ Cdi×1 denotes the original message vector from

transmitter i, and zj ∈ CMR×1 denotes the white Gaussian noise at receiver j.

In addition, in the case of MT > MR (i.e., N = MT and M = MR), each channel

matrix has a (N −M)-dimensional null space. Let nullspace{Hij} denote the span

of the null space of Hij . The following conditions are satisfied almost surely because

the channels are generic and N ≤ 2M .

nullspace{H21} ∩ nullspace{H31} = Ø (3.2)

nullspace{H12} ∩ nullspace{H32} = Ø (3.3)

nullspace{H13} ∩ nullspace{H23} = Ø (3.4)

Let ρ denote the power constraints on each transmitter and Ri(ρ) denote the

achievable rate of user i. The DoF of user i is defined as limρ→∞
Ri(ρ)
log(ρ)

, which can be

interpreted as the number of independent signaling dimensions or streams available

for user i. Further, note that di is the number of signals sent by transmitter i. If

the desired signals on each receiver can be linearly decoded, di would be equal to the

DoF of link i. Then, the sum DoF of the network can be calculated as D =
∑3

i=1 di.

The main results of this paper are given in the following two theorems.

Theorem 3.1 In 3-user interference channels where each transmitter is equipped

with MT antennas and each receiver is equipped with MR antennas, the outer bound

of DoF region, R(d1, d2, d3), is






2tdi + 2tdj + (2t− 1)dk ≤ (3t− 1)N

(2t− 1)di + 2(t− 1)dj + 2(t− 1)dk ≤ (3t− 2)M

(2t− 1)di + (2t− 1)dj + (2t− 1)dk ≤ (3t− 1)M

di + dj ≤ N

(3.5)
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for M
N
∈ [3t−2

3t−1
, 3t−1

3t
), (t = 1, 2, · · ·∞)







2tdi + 2tdj + (2t− 1)dk ≤ 3tM

(2t+ 1)di + 2tdj + 2tdk ≤ 3tN

di + dj ≤ N

(3.6)

for M
N
∈ [3t−1

3t
, 3t

3t+1
), and







(2t+ 1)di + 2tdj + 2tdk ≤ (3t+ 1)M

(2t + 1)di + (2t+ 1)dj + (2t+ 1)dk ≤ (3t+ 1)N

di + dj ≤ N

(3.7)

for M
N
∈ [ 3t

3t+1
, 3t+1

3t+2
), where N = max{MT , MR}, M = min{MT , MR}, i, j, k =

1, 2, 3 and i 6= j 6= k.

Proof: The proof is presented in Appendix A.

Theorem 3.2 For the 3-user MIMO interference channels with MT and MR anten-

nas on each transmitter and receiver, respectively and 1
2
≤ min{MT ,MR}

max{MT ,MR}
< 1, the DoF

of user i, di (where i = 1, 2, 3 and di is integer), is feasible with linear interference

alignment if and only if (3.5)-(3.7) are satisfied.

The converse proof follows directly from Theorem 1, i.e., any DoF that does not

satisfy (3.5)-(3.7) cannot be achieved for sure as (3.5)-(3.7) is outer bound. The

achievability proof is given in Sections 3.3-3.4. Specifically, we first propose a linear

beamforming scheme in Section 3.3. Then, Section 3.4 shows that the achievable DoF

region of the proposed scheme is the same as (3.5)-(3.7) with di being an integer.

Remark 3.1 Now, we compare our results with existing ones based on the example

of M = 4, N = 7. According to our result, the DoF region of this setup is (3.5) with

t = 1, i.e.,






2di + 2dj + dk ≤ 14

di ≤ 4

di + dj + dk ≤ 8

di + dj ≤ N

(3.8)
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Whereas based on the results in [20,22], the DoF region is







di ≤ 4

di + dj + dk ≤ 8

di + dj ≤ N

(3.9)

As we can see, (3.8) has one more constraint than (3.9), which makes our result

a ‘tighter’ DoF region. For instance, the DoF tuple (d1 = 4, d2 = 3, d3 = 1) satisfies

(3.9), but not (3.8), which means it is in fact outside the region and cannot be achieved

at all.

Moreover, Theorem 3.2 shows that any (integer) DoF tuple inside (3.8) can be

achieved with a linear beamforming scheme. This finding is not available in previous

works.

Finally, if we let di = dj = dk = d, (3.8) and (3.9) will both become the same as

the result in [22], i.e., d ≤ 8
3
.

3.3 A Beamforming Scheme

In this section, we propose a spatial beamforming scheme that can achieve all the

integer DoF within the outer bound region R(d1, d2, d3). First, we review the concept

of the subspace alignment chain in [22]. Then, the designs of beamforming matrices

based on subspace alignment chain are elaborated. At last, we discuss how to ensure

the signals are linearly decoded at each receiver. In the following discussion, we

assume MT > MR. Then, N = MT , M = MR. Note that due to the reciprocity of

linear scheme, the same DoF region can be achieved with MT < MR for sure.

3.3.1 Subspace Alignment Chain [22]

Two ends of an alignment chain correspond to the signals that are nulled at one

unintended receiver and cause interference at the other. For the signals in between,

each of which is aligned with another interference signal at each of those undesired
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receivers. The length of each chain is defined as the number of signals that participate

in it.

Let Vj

i(n) ∈ CN×Qj denote the sth Qj-dimensional subspace transmitted by trans-

mitter i which participates in the chain that originates from transmitter j. Consider

one alignment chain originating from transmitter 1, where V1
1(1) is nulled at receiver

2 but causes an interference dimension at receiver 3. The second signal, V1
2(1) from

transmitter 2, should be aligned with V1
1(1) on receiver 3, so that no more interfer-

ence dimension is generated on receiver 3. Then, if V1
2(1) can be nulled at receiver 1,

the chain is finished. Otherwise, transmitter 3 should send a vector, V1
3(1), which is

aligned with V1
2(1) on receiver 1. The chain will keep going until the zero-forcing can

be achieved. Mathematically, it can be expressed as follows,

















H21 0 · · · · · · 0

H31 −H32 0 · · · 0

0 H12 −H13 0 · · ·
...

. . . . . .

0 · · · · · · Hri −Hrj

0 0 · · · 0 Hij

















︸ ︷︷ ︸

H∈CM(S+1)×S·N




















V1
1(1)

V1
2(1)

V1
3(1)

V1
1(2)

...

V1
i(n)

V1
j(n)




















︸ ︷︷ ︸

V∈CS·N×Q1

= 0 (3.10)

where S is the length of the chain, which equals the number of subspaces, V1
i(n), that

participate in the chain.

As can be seen, zero-forcing can be performed at the end of chain when the matrix

H turns into a “fat” matrix, i.e., S ·N > (S + 1)M ⇒ S > M
N−M

. Hence, the length

of the shortest chain can be expressed as

S =







⌈ M
N−M

⌉+ 1 when M
N

= p

p+1

⌈ M
N−M

⌉ when M
N
6= p

p+1

(3.11)

where p = 1, 2, 3, · · · ,+∞. Note that for any chain that is longer than S, H will

always be a “fat” matrix, which means for each antenna configuration, there exist

multiple chains with length equal to S, S + 1, · · · .
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The chains with the length of S are referred to as the original alignment chain-

s. It can be seen there are three original chains. Each chain originates from one

transmitter, i.e., j = 1, 2, 3. The three original chains can be expressed as follows

0
R2←→ V1

1(1)
R3←→ V1

2(1)
R1←→ V1

3(1)
R2←→ V1

1(2) · · ·0

0
R3←→ V2

2(1)
R1←→ V2

3(1)
R2←→ V2

1(1)
R3←→ V2

2(2) · · ·0

0
R1←→ V3

3(1)
R2←→ V3

1(1)
R3←→ V3

2(1)
R1←→ V3

3(2) · · ·0 (3.12)

where V1
1(1)

R3←→ V1
2(1) means that the interference generated by transmitter 1 V1

1(1)

and the one generated by transmitter 2V1
2(1) are aligned at receiver 3, i.e., H31V

1
1(1) =

H32V
1
2(1), as shown in (3.10).

3.3.2 A Beamforming Scheme

In [22], the original chain (3.12) is designed to achieve the point with coordinates

(⌊DoF ∗⌋, ⌊DoF ∗⌋, ⌊DoF ∗⌋) in the space of DoF region. However, there are some

points in the region that cannot be achieved with the scheme in [22]. This is because

those points have unequal values of d1, d2 and d3, which means the signal spaces on

the users are unbalanced, and original chain itself does not have enough flexibility

to distribute the signal space accordingly. Next, we propose a beamforming scheme

design based on three types of chains: original chains, long chains (with length S̄ =

S + 1), and null space of interference channels. Note that in theory, the length of

each chain can be arbitrarily long. Hence, it is not trivial to select the chains that

only with length of S and S + 1.

The beamforming matrix of transmitter i is designed as

Bi =
[

Vi V̄i Ui

]

(3.13)

where Vi is composed of all the subspaces from transmitter i that participate in the

original chains (as shown in (3.12)), i.e.,

Vi =
[

V1
i(1) V1

i(2) · · · V2
i(1) V2

i(2) · · · V3
i(1) V3

i(2) · · ·
]

(3.14)
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and V̄i is composed of all the subspaces from transmitter i that participate in long

chains (which is similar to (3.12) but with one more subspace at the end of each

chain), i.e.,

V̄i =
[

V̄1
i(1) V̄1

i(2) · · · V̄2
i(1) V̄2

i(2) · · · V̄3
i(1) V̄3

i(2) · · ·
]

(3.15)

where V̄j

i(n̄) ∈ CN×Q̄j .

In addition, Ui =
[

U1
i U2

i

]

∈ CM×qi, which is designed as follows

H21U
1
1 = 0, H31U

2
1 = 0

H12U
1
2 = 0, H32U

2
2 = 0

H13U
1
3 = 0, H23U

2
3 = 0 (3.17)

Each part ofUi is nulled at one of the unintended receivers and causes interference

to the other. Let qji denote the number of interference dimensions generated on

receiver j by Ui. We have U1
1 ∈ CN×q31 , U2

1 ∈ CN×q21 , U1
2 ∈ CN×q32, U2

2 ∈ CN×q12 ,

U1
3 ∈ CN×q23 , and U2

3 ∈ CN×q13.

In summary, all the beamforming subspaces of three transmitters can be designed

as follows,

0
R2←→ V1

1(1)
R3←→ V1

2(1)
R1←→ V1

3(1)
R2←→ V1

1(2) · · ·V1
i(⌈S

3
⌉)

Rk←→ 0 (a)

0
R3←→ V2

2(1)
R1←→ V2

3(1)
R2←→ V2

1(1)
R3←→ V2

2(2) · · ·V1
j(⌈S

3
⌉)

Ri←→ 0 (b)

0
R1←→ V3

3(1)
R2←→ V3

1(1)
R3←→ V3

2(1)
R1←→ V3

3(2) · · ·V1
k(⌈S

3
⌉)

Rj←→ 0 (c)

0
R2←→ V̄1

1(1)
R3←→ V̄1

2(1)
R1←→ V̄1

3(1)
R2←→ V̄1

1(2) · · · V̄1
i(⌈S

3
⌉)

Rk←→ V̄1
j(⌈S+1

3
⌉)

Ri←→ 0 (d)

0
R3←→ V̄2

2(1)
R1←→ V̄2

3(1)
R2←→ V̄2

1(1)
R3←→ V̄2

2(2) · · · V̄1
j(⌈S

3
⌉)

Ri←→ V̄2
k(⌈S+1

3
⌉)

Rj←→ 0 (e)

0
R1←→ V̄3

3(1)
R2←→ V̄3

1(1)
R3←→ V̄3

2(1)
R1←→ V̄3

3(2) · · · V̄1
k(⌈S

3
⌉)

Rj←→ V̄3
i(⌈S+1

3
⌉)

Rk←→ 0 (f)

0
R2←→ U1

1, 0
R3←→ U2

2, 0
R1←→ U1

3;U
2
1

R3←→ 0, U1
2

R1←→ 0, U2
3

R2←→ 0; (g) (3.18)

Remark 3.2 Note that although Vj

i(n̄) and V̄j

i(n̄) are designed in the similar way, they

are in fact independent of each other almost for sure. For example, let V1
i(1) and V1

i(2)
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are designed from the original chain with S = 4, i.e.,

0
R2←→ V1

1(1)
R3←→ V1

2(1)
R1←→ V1

3(1)
R2←→ V1

1(2)
R3←→ 0 (3.19)

and V̄1
i(1), V̄

1
i(2) are designed from the long chain as follows,

0
R2←→ V̄1

1(1)
R3←→ V̄1

2(1)
R1←→ V̄1

3(1)
R2←→ V̄1

1(2)
R3←→ V̄1

2(2)
R1←→ 0 (3.20)

(3.19) shows that V1
1(2) is nulled on receiver 3, i.e., H13V

1
1(2) = 0, whereas V̄1

1(2)

in (3.20) is not nulled on receiver 3, i.e., H13V̄
1
1(2) 6= 0, which means V1

1(2) and V̄1
1(2)

are independent of each other for sure. Accordingly, it can be easily proved that V1
3(1)

and V̄1
3(1) are independent of each other. Hence, it can be seen that based on this

design, Vj

i(n̄) and V̄j

i(n̄) are independent of each other.

Although these subspaces are designed, the scheme is not feasible unless the de-

sired signals can be linearly decoded. In the following, we show that the scheme is

feasible for sure under some conditions.

Theorem 3.3 In 3-user interference channels with MT ≥ MR, for the proposed

beamforming design in (3.13)-(3.18), the desired signals on each receiver can be lin-

early decoded for sure if the following conditions are satisfied.

Qj ≤ S ·N − (S + 1)M, j = 1, 2, 3 (3.21)

Q̄j ≤ (S + 1) ·N − (S + 2)M, j = 1, 2, 3 (3.22)

Q1 + Q̄1 + q31 ≤ N −M (3.23)

Q2 + Q̄2 + q12 ≤ N −M (3.24)

Q3 + Q̄3 + q23 ≤ N −M (3.25)

Ql + Q̄j + qjm ≤ N −M, j = 1, 2, 3, when a = 2 (3.26)

Ql + Q̄j + qlj ≤ N −M, j = 1, 2, 3, when a = 0 (3.27)

Qj + Q̄m + qlj ≤ N −M, j = 1, 2, 3, when a = 1 (3.28)

d1 + P1 + q12 + q13 ≤M (3.29)

d2 + P2 + q21 + q23 ≤M (3.30)

d3 + P3 + q31 + q32 ≤M (3.31)
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where l = (j mod 3) + 1, m = (l mod 3) + 1, a = S mod 3, M = MR, N = MT ,

and Pi denotes the number of interference dimensions that are generated by the six

alignment chains, (3.18a)-(3.18f), on receiver i.

Remark 3.3 Note that the value of Pi is various with different length of the alignment

chains. Take P1 for example. Assuming S = 2, for the three original chains, only the

one that originates from transmitter 2 will generate Q2 interference dimensions on

receiver 1. For the long chains (S̄ = 3), the ones originate from transmitters 1 and 2

will generate Q̄1 and Q̄2 interference dimensions on receiver 1, respectively. Hence,

in this case P1 = Q2 + Q̄1 + Q̄2.

Proof of Theorem 3.3: The proof involves two steps. First, on the receiver side,

we need to show that the desired signal space does not overlap the interference space

on each receiver. Then, on the transmitter side, each beamforming matrix, Bi, must

have full column rank.

First, as can be seen, (3.29)-(3.31) ensure that the sum dimensions of the desired

signals and interference does not exceed the total number of dimensions on each

receiver. Take receiver 1 for example, the number of desired signals and interference

dimensions are d1 and P1+ q12+ q13, respectively. Since there are total M dimensions

on the receiver, constraint (3.29) must be satisfied. Further, we shall note that the

direct channel matrices, H11, H22 and H33, are not used in the design of beamforming

subspaces. Hence, due to channel randomness, the desired signal space does not

overlap the interference space on each receiver almost surely.

Next, we show that each beamforming matrix Bi must have full column rank for

sure if (3.21)-(3.28) are satisfied.

The beamforming matrix of transmitter i is composed of all the subspaces from

transmitter i that participate in (3.18). Accordingly, we define the subspaces in the

same position of each chain (starting from the left) to be one layer. Also, let U1
1, U

2
2,

and U1
3 belong to the first layer, and U2

1, U
1
2, U

2
3 belong to the last layer. Hence, the

first layer has V1
1(1),V

2
2(1),V

3
3(1), V̄

1
1(1), V̄

2
2(1), V̄

3
3(1),U

1
1,U

2
2,U

1
3. Further, we can see
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that the subspaces in the same layer belong to different transmitters. For example, in

the first layer, the subspaces that belong to B1, B2 and B3 are
[

V1
1(1) V̄1

1(1) U1
1

]

,
[

V2
2(1) V̄2

2(1) U2
2

]

, and
[

V3
3(1) V̄3

3(1) U1
3

]

, respectively.

In order to prove Bi is full rank, we shall prove each beamforming matrix has full

column rank layer by layer. Take B1 for example, we first show that the subspaces

of B1 in the first layer,
[

V1
1(1) V̄1

1(1) U1
1

]

, has full column rank. Next, we show

that the subspaces of B1 in the first two layers, i.e.,
[

V1
1(1) V̄1

1(1) U1
1 V3

1(1) V̄3
1(1)

]

, has full column rank. Then, the rest of layers is

proved recursively. Assuming the subspaces of Bi in the first n layers have column

rank, we will show that the subspaces in the first n + 1 layers also have full column

rank for sure. Since Bi has totally S+1 layers, the problem is divided into two cases,

i.e., the (n+1)th layer is not the last layer (n+1 < S +1) and the (n+1)th layer is

the last layer (n+ 1 = S + 1). Moreover, the case of n+ 1 = S + 1 is further divided

into 3 subcases according to the value of S mod 3.

In the following, we mainly focus on proving the full column rank of B1, because

B2 and B3 can be proved in the same way.

• The subspaces of Bi in the first layer.

As mentioned before, the subspaces that belong to B1 in the first layer is
[

V1
1(1) V̄1

1(1) U1
1

]

, which is in the null space of H21. Hence, to ensure it has full

column rank, the number of its column vectors cannot be more than the nullity ofH21,

which is guaranteed by (3.23). Further, as one of the subspaces in (3.18a), V1
1(1) ∈

CMT×Q1 is also part of the null space of H in (3.10). As we can see, to ensure V1
1(1)

has full column rank, Q1 must be smaller than the nullity of H, which is guaranteed

by (3.21) with j = 1. Similarly, the full rank of V̄1
1(1) ∈ CMT×Q̄1 that belongs to

(3.18d) is guaranteed by (3.22) with j = 1. As a result,
[

V1
1(1) V̄1

1(1) U1
1

]

must

have full column rank if (3.21)-(3.23) are satisfied.

Similarly, for transmitters 2 and 3, the full rank of
[

V2
2(1) V̄2

2(1) U2
2

]

and
[

V3
3(1) V̄3

3(1) U1
3

]

can be guaranteed by (3.24), (3.21), (3.22) and (3.25), (3.21),

(3.22), respectively.
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• The subspaces of Bi in the first two layers.

The beamforming subspaces of B1 in the second layer is
[

V3
1(1) V̄3

1(1)

]

. Now,

we need to show that the subspaces of B1 in the first two layers,
[

V1
1(1) V̄1

1(1) U1
1 V3

1(1) V̄3
1(1)

]

, has full column rank. It is equivalent to proving

that there exists no nonzero solutions of following equation,

[

V1
1(1) V̄1

1(1) U1
1 V3

1(1) V̄3
1(1)

]








α1

...

αl







= 0 (3.32)

Note that (3.32) can be written as

[

V1
1(1) V̄1

1(1) U1
1

]








α1

...

αs







= −

[

V3
1(1) V̄3

1(1)

]








αs+1

...

αl








(3.33)

By left-multiplying H21 on both sides of (3.33), we get

H21

[

V3
1(1) V̄3

1(1)

]








αs+1

...

αl







= 0 (3.34)

According to (3.18c) and (3.18f), we haveH21

[

V3
1(1) V̄3

1(1)

]

= H23

[

V3
3(1) V̄3

3(1)

]

,

which means

H23

[

V3
3(1) V̄3

3(1)

]








αs+1

...

αl







= 0 (3.35)

Note that
[

V3
3(1) V̄3

3(1)

]

has been proved to have full column rank and is in

the null space of H13. Hence, based on (3.4),
[

αs+1 · · · αl

]T

must be all-zero to

satisfy (3.35). Then, we substitute this result into (3.33). Since
[

V1
1(1) V̄1

1(1) U1
1

]

from the first layer has full column rank, it can be seen that
[

α1 · · · αs

]T

must
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be an all-zero vector. Therefore, we prove the subspaces of B1 in the first two layers

have full column rank.

Similarly, the beamforming subspaces of B2 and B3 in the first two layers also

have full column rank.

• The subspaces of Bi in the first n+ 1 layers.

Next, we show that the subspaces of B1 in the first n+ 1 layers have full column

rank provided that the subspaces of Bi in the first n layers have full column rank for

sure.

Case 1: n < S.

We first discuss the case in which the (n + 1)th layer is not the last layer, i.e.,

n < S. According to (3.18), the subspaces of B1 in the first (n+ 1) layers are
[

V1
1(1) V̄1

1(1) U1
1 V3

1(1) V̄3
1(1) · · · Vι

1(⌈n+1
3

⌉)
V̄ι

1(⌈n+1
3

⌉)

]

where ι = 1, 3, 2 for n+

1 mod 3 = 1, 2, 0, respectively. Hence, we shall prove that all-zero vector is the only

solution for
[

β1 · · · βq

]T

in the following equation,

[

V1
1(1) V̄1

1(1) U1
1 V3

1(1) V̄3
1(1) · · · Vι

1(⌈n+1
3

⌉)
V̄ι

1(⌈n+1
3

⌉)

]








β1

...

βq







= 0 (3.36)

By left multiplying H21 on both sides of (3.36), we can get

H21

[

V3
1(1) V̄3

1(1) · · · Vι
1(⌈n+1

3
⌉)

V̄ι
1(⌈n+1

3
⌉)

]








βs+1

...

βq







= 0 (3.37)

According to (3.18), each subspace in (3.37) is aligned with one subspace of B3 in

previous layers on R2. Hence, (3.37) is equivalent to

H23

[

V3
3(1) V̄3

3(1) · · · Vι
3(⌈n

3
⌉) V̄ι

3(⌈n
3
⌉)

]








βs+1

...

βq







= 0 (3.38)

First of all, since
[

V3
3(1) V̄3

3(1) · · · Vι
3(⌈n

3
⌉) V̄ι

3(⌈n
3
⌉)

]

are in the first n layers, it

has full column rank for sure. In addition, since n < S, the chain cannot end at the nth
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layer, which implies that
[

V3
3(1) V̄3

3(1) · · · Vι
3(⌈n

3
⌉) V̄ι

3(⌈n
3
⌉)

]

∩ nullspace{H23} =

∅ for sure. Hence, we can get
[

βs+1 · · · βq

]T

in (3.38) must be an all-zero vector.

Then, by substituting the results into (3.36), we have

[

V1
1(1) V̄1

1(1) U1
1

]

·








β1

...

βs







= 0

Since it is already proved that
[

V1
1(1) V̄1

1(1) U1
1

]

has full column rank, we can

get
[

β1 · · · βs

]T

= 0 for sure. Therefore, we proved that the subspaces of B1 in

the first n + 1 layers have full column rank for sure. Similarly, the subspaces of B2

and B3 in the first n + 1 layers also have full column rank.

Case 2: n = S.

When n = S, the (n+1)th layer is the last layer. Since the original chains end at

the nth layer, the subspaces of B1 in the (n+ 1)th layer would be V̄ι
1(⌈n+1

3
⌉)
and U2

1.

Hence, the subspaces of B1 in all (n+ 1) layers are
[

V1
1(1) V̄

1
1(1) U

1
1 · · · Vτ

1(⌈n
3
⌉) V̄

τ
1(⌈n

3
⌉) V̄

ι
1(⌈n+1

3
⌉)
U2

1

]

, where τ = (ι mod 3) + 1. Simi-

larly, we shall prove that all-zero vector is the only solution for
[

ǫ1 · · · ǫz

]T

in

the following equation

[

V1
1(1) V̄

1
1(1) U

1
1 · · · Vτ

1(⌈n
3
⌉) V̄

τ
1(⌈n

3
⌉) V̄

ι
1(⌈n+1

3
⌉)
U2

1

]








ǫ1
...

ǫz







= 0 (3.39)

Since the nth layer and the (n + 1)th layer is the last layer of original chain and

long chain, respectively, both Vτ
1(⌈n

3
⌉) and V̄ι

1(⌈n+1
3

⌉)
are in the null space of H31. i.e.,

[

Vτ
1(⌈n

3
⌉) V̄ι

1(⌈n+1
3

⌉)
U2

1

]

⊂ nullspace{H31}. Hence, by left multiplying H31 on

both side of (3.39), we have

H31

[

V1
1(1) V̄

1
1(1) U

1
1 · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)
V̄τ

1(⌈n
3
⌉)

]








ǫ1
...

ǫw







= 0 (3.40)
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where κ = τ mod 3 + 1.

Since
[

V1
1(1) V̄

1
1(1) U

1
1 · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)
V̄τ

1(⌈n
3
⌉)

]

are all in the first n layers,

it has full column rank for sure. Then, proving
[

ǫ1 · · · ǫw

]T

= 0 is equivalent to

proving that
[

V1
1(1) V̄

1
1(1) U

1
1 · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)
V̄τ

1(⌈n
3
⌉)

]

∩ nullspace{H31} = ∅.

First, note that
[

V1
1(1) V̄1

1(1) U1
1

]

∩ nullspace{H31} = ∅ (based on (3.2)). Then,

we show that
[

V3
1(1) V̄

3
1(1) · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)
V̄τ

1(⌈n
3
⌉)

]

∩ nullspace{H31} = ∅. S-

ince
[

V3
1(1) V̄

3
1(1) · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)

]

are the subspaces in the first n−1 layers and
the chain cannot end before the nth layer, we have

[

V3
1(1) V̄

3
1(1) · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)

]

∩
nullspace{H31} = ∅ for sure. Next, for V̄τ

1(⌈n
3
⌉), we have V̄τ

1(⌈n
3
⌉) = H32V̄

τ
2(⌈n+1

3
⌉)
.

Note that V̄τ
2(⌈n+1

3
⌉)
⊂ nullspace{H12} and V̄τ

2(⌈n+1
3

⌉)
∩ nullspace{H32} = ∅ (based on

(3.3)), we can get V̄τ
1(⌈n

3
⌉) ∩ nullspace{H31} = ∅ for sure. Now, we have shown that

[

V1
1(1) V̄

1
1(1) U

1
1 · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)
V̄τ

1(⌈n
3
⌉)

]

has full rank and all of its columns

are not in nullspace{H31}. Further, according to (3.29) we can see that the column

rank of
[

V1
1(1) V̄

1
1(1) U

1
1 · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)
V̄τ

1(⌈n
3
⌉)

]

is equal to or less than M .

Hence, due to channel randomness, the matrix

H31

[

V1
1(1) V̄

1
1(1) U

1
1 · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)
V̄τ

1(⌈n
3
⌉)

]

has full column rank almost for

sure, which is equivalent to
[

V1
1(1) V̄

1
1(1) U

1
1 · · · Vκ

1(⌈n−1
3

⌉)
V̄κ

1(⌈n−1
3

⌉)
V̄τ

1(⌈n
3
⌉)

]

∩ nullspace{H31} = ∅. As a result,

we have proved that
[

ǫ1 · · · ǫw

]T

is an all-zero vector almost surely. After sub-

stituting this result into (3.39), we have

[

Vτ
1(⌈n

3
⌉) V̄ι

1(⌈n+1
3

⌉)
U2

1

]








ǫw
...

ǫz







= 0

which means we need to show that
[

Vτ
1(⌈n

3
⌉) V̄ι

1(⌈n+1
3

⌉)
U2

1

]

has full column rank.

First, it can be proved that
[

Vτ
1(⌈n

3
⌉) V̄ι

1(⌈n+1
3

⌉)

]

has full column rank for sure

with the same approach as (3.36)-(3.38). Then, since
[

Vτ
1(⌈n

3
⌉) V̄ι

1(⌈n+1
3

⌉)
U2

1

]

∈
CN×(Qτ+Q̄ι+q21) is in the null space of H31, the following constraint must be satisfied
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to ensure the full column rank,

Qτ + Q̄ι + q21 ≤ N −M (3.41)

When S mod 3 = 2, we can get that τ = 3 and ι = 2 (recall that ι = 1, 3, 2 for

n+1 mod 3 = 1, 2, 0, respectively, τ = ι mod 3+ 1 and n = S), which implies that

(3.41) becomes (3.26) with j = 2, i.e., Q3 + Q̄2 + q21 ≤ N −M . Hence, we have

proved that when S mod 3 = 2, the subspaces of B1 have full column rank for sure

under the constraint of (3.26) with j = 2.

With the same approach, we can prove that when S mod 3 = 2, the subspaces of

B2 and B3 will both have full column rank under the constraint of (3.26) with j = 3

and j = 1, respectively, i.e.,

Q1 + Q̄3 + q32 ≤ N −M

Q2 + Q̄1 + q13 ≤ N −M

When S mod 3 = 0, we have τ = 2 and ι = 1, which means (3.41) becomes (3.27)

with j = 1. Accordingly, when S mod 3 = 0, the subspaces of B1, B2 and B3 will

have full column rank under the constraints of (3.27) with j = 1, j = 2 and j = 3,

respectively.

When S mod 3 = 1, we have τ = 1 and ι = 3, which means (3.41) becomes

(3.28) with j = 1. Hence, when S mod 3 = 0, the subspaces of B1, B2 and B3 will

have full column rank under the constraints of (3.28) with j = 1, j = 2 and j = 3,

respectively.

3.4 Achievable Degrees of Freedom Region

In this section, we characterize the achievable (integer) DoF region of the proposed

beamforming scheme based on the conditions in Theorem 3.3. Since the 3-user inter-

ference network region we are interested in is 1
2
< M

N
< 1, it can be divided into three

regions, i.e., [3t−2
3t−1

, 3t−1
3t

), [3t−1
3t

, 3t
3t+1

), and [ 3t
3t+1

, 3t+1
3t+2

), where t = 1, 2, · · ·∞. The
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achievable DoF region is studied for each region. Further, note that the achievable

DoF region of 3-user (i, j, k) interference networks is the combination of the bounds

of D = di + dj + dk (sum DoF), di + dj, and di. For any integer DoF tuples satisfying

these bounds, there exists linear precoding schemes such that the desired signals can

be decoded.

We first derive the bounds of sum DoF as they are the same for all three regions.

Then, we investigate the bounds of di+dj and di in different regions, respectively. Note

that the bounds of di + dj and di are studied in the context of three-user interference

channel, which means they are all related to D. Hence, they are completely different

with the bounds of two-user interference channel or point-to-point channel.

3.4.1 Bounds of di + dj + dk

The bounds of sum DoF are obtained based on the following three inequalities, whose

derivations are given in Appendix B.

Qs + Q̄s ≥ 2D − 3M (3.42)

Qs ≥ [(2S + 1)D − 3(S + 1)M ]+ (3.43)

Qi ≥ [(2S + 1)D − (S + 1)M − 2SN ]+ (3.44)

Q̄s ≥ [2D − 3SN + 3SM ]+ (3.45)

where [A]+ = max{A, 0}.
Note that (3.42) and (3.43) are the lower bounds of Qs + Q̄s and Qs for a given

D, respectively. Since Q̄s ≥ 0, the lower bound of Qs + Q̄s cannot be less than that

of Qs, i.e.,

2D − 3M ≥ [(2S + 1)D − 3(S + 1)M ]+

It can be written as






2D − 3M ≥ 0 if D ≤ 3(S+1)M
2S+1

(2S − 1)D ≤ 3SM if D >
3(S+1)M
2S+1

(3.46)
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Further, it has

3M

2
≤ D ≤ 3SM

2S − 1

which leads to

D = d1 + d2 + d3 ≤
3SM

2S − 1
(3.47)

Next, since Qi ≤ S ·N − (S + 1)M (from (3.21)) and [(2S + 1)D − (S + 1)M −
2SN ]+ ≤ Qi (from (3.44)), we can get

S ·N − (S + 1)M ≥ [(2S + 1)D − (S + 1)M − 2SN ]+

It can be derived as






(S + 1)M < S ·N if D <
2SN+(S+1)M

2S+1

(2S + 1)D ≤ 3SN if D ≥ 2SN+(S+1)M
2S+1

which leads to

D ≤ 3SN

2S + 1
(3.48)

where (S + 1)M < S ·N is proved in Section 3.3.1.

(3.47) and (3.48) are the two bounds of D that are applied to all cases. As we

can see, these two bounds are in fact the M-bound and N -bound of sum DoF derived

in [22], respectively.

3.4.2 Bounds of di + dj and di

Next, we investigate the bounds of di + dj and di for different cases. Since each link

has the same antenna configurations, the user indices are interchangeable. Hence, the

bound of one link can be extended to general. This fact can also be applied to the

constraints. We can see that constraints (3.23)-(3.25) have the same form, only with

different indices (so is (3.26), (3.27), (3.28)and (3.29)-(3.31)), which implies that each

constraint contains the bounds of certain links, and the bounds of each link would be
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the same. Hence, in the following, we only study the bounds of d1 + d2 and d2, and

show two bounds for d1 + d2 and one bound for d2, respectively.

• For 3t−2
3t−1
≤ M

N
< 3t−1

3t
(S = 3t− 1)

The DoF of each link can be calculated as






d1 = t ·Qs −Q2 + t · Q̄s + q1

d2 = t ·Qs −Q3 + t · Q̄s + q2

d3 = t ·Qs −Q1 + t · Q̄s + q3

(3.49)

where q1 = q21 + q31, q2 = q12 + q32, q3 = q13 + q23.

(3.49) is explained as follows. Since S = 3t − 1, the subspaces in three original

chains can be expressed as






V1
1(1) V1

2(1) V1
3(1) · · · V1

1(t−1) V1
2(t−1) V1

3(t−1) V1
1(t) V1

2(t) (3.50a)

V2
2(1) V2

3(1) V2
1(1) · · · V2

2(t−1) V2
3(t−1) V2

1(t−1) V2
2(t) V2

3(t) (3.50b)

V3
3(1) V3

1(1) V3
2(1) · · · V3

3(t−1) V3
1(t−1) V3

2(t−1) V3
3(t) V3

1(t) (3.50c)

(3.50)

where the notation is the same as (3.18).

Take d1 for example, which is equal to the number of signals sent by transmitter 1.

As can be seen, there are t, t−1 and t subspaces belonging to transmitter 1 in (3.50a),

(3.50b) and (3.50c), respectively. Since each subspace has Qi dimensions, the number

of signals in the original chains that belong to transmitter 1 equals t·Q1+(t−1)·Q2+

t · Q3 = t · Qs −Q2. Then, for the long chains whose length equals S + 1 = 3t, each

contains t subspaces that belong to transmitter 1. Similarly, the number of signals

in the long chain that belong to transmitter 1 equals t · (Q̄1 + Q̄2 + Q̄3). Since U1

contains q1 signals, we have d1 = t ·Qs −Q2 + t · Q̄s + q1. Likewise, d2 and d3 can be

calculated.

We first characterize the bounds of d1 + d2. Accordingly, we have

d1 + d2 = (2t− 1) ·Qs + 2tQ̄s +Q1 + qs − q3

= D − (t− 1)(Qs + Q̄s)− (Qs + Q̄s −Q1)− q3 (3.51)

where qs = q1 + q2 + q3 and D =
∑3

i=1 di = (3t− 1)Qs + 3t · Q̄s + qs.
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Since Qs + Q̄s ≥ 2D − 3M (from (3.42)), Q1 ≤ (3t − 1)N − 3tM (from (3.21))

and q3 ≥ 0, (3.51) can be written as

d1 + d2 ≤ D − (t− 1)(2D − 3M)− [2D − 3M − (3t− 1)N + 3tM ]+

It is equivalent to

d1 + d2 ≤ min{(3t− 3)M − (2t− 3)D , (3t− 1)N − (2t− 1)D}

which further leads to

2(t− 1)di + 2(t− 1)dj + (2t− 3)dk ≤ 3(t− 1)M (3.52)

2tdi + 2tdj + (2t− 1)dk ≤ (3t− 1)N (3.53)

Another bound of d1 + d2 can be derived based on (3.23) and (3.30). First, from

(3.30) we can get

d2 + p2 ≤M − q21 − q23 ≤M (3.54)

Since in this case d2 = t ·Qs−Q3+t ·Q̄s+q2 and P2 = (t−1) ·Qs+Q3+t ·Q̄s−Q̄1,

(3.54) can be written as

(2t− 1)Qs + 2t · Q̄s + q2 − Q̄1 ≤M (3.55)

Then, since D = (3t− 1)Qs + 3t · Q̄s + qs, (3.55) can be expressed as

D − t(Qs + Q̄S)− Q̄1 − qs + q2 ≤M (3.56)

Further, note that (3.23) implies that

M ≤ N −Q1 − Q̄1 − q31 (3.57)

By taking (3.57) into (3.56), we can get

D − t(Qs + Q̄S) +Q1 − qs + q2 + q31 ≤ N (3.58)
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Since d1 + d2 = D − t(Qs + Q̄S) +Q1 + q3 (according (3.51)), (3.58) is equivalent

to

d1 + d2 ≤ N + qs − q2 − q31 − q3

which can be guaranteed by letting

d1 + d2 ≤ N ⇒ di + dj ≤ N (3.59)

Note that by following the exact procedure of (3.54)-(3.59), same bound can be

obtained from (3.26) with j = 3 and (3.29).

Next, we derive the bound of d2 based on (3.54), which is derived from (3.30).

Specifically, (3.54) can be expressed as

d2 ≤ M − (t− 1)Qs − t · Q̄s −Q3 + Q̄1

= M − t(Qs + Q̄s) +Q1 +Q2 + Q̄1

= M − (t− 1)(Qs + Q̄s)− (Qs + Q̄s − (Q1 +Q2 + Q̄1)) (3.60)

which can lead to

di ≤







(9t− 2)N − 6tM − 2tD

(3t− 2)M − 2(t− 1)D

(6t− 2)(N +M)− (8t− 3)D

(3.61)

The derivation of (3.61) is shown in Appendix C.

Finally, the achievable DoF region for 3t−2
3t−1

≤ M
N

< 3t−1
3t

can be summarized as

(3.47), (3.48), (3.52), (3.53), (3.59) and (3.61). Further, since (3.48), (3.52), the first

and third terms of (3.61) are included in other bounds (the proof is in Appendix D),

the exact achievable DoF region is composed of (3.47), (3.53), (3.59) and the second

term of (3.61), which are the same as (3.5).

• For 3t−1
3t
≤ M

N
< 3t

3t+1
(S = 3t)

In this case, we have di = t · Qs + t · Q̄s + Q̄i + qi. The derivation of the bounds

of di + dj and di will be the same as the previous case. First, we have

d1 + d2 = 2tQs + (2t+ 1)Q̄s − Q̄3 + qs − q3

= D − t(Qs + Q̄s)− Q̄3 − q3 (3.62)
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Since Q̄3 ≥ 0 (from (3.94) in Appendix E), q3 ≥ 0 and Qs + Q̄s ≥ 2D − 3M , we

can get

d1 + d2 ≤ D − t(Qs + Q̄s) ≤ 3tM − (2t− 1)D (3.63)

which leads to

2tdi + 2tdj + (2t− 1)dk ≤ 3tM (3.64)

Then, note that in this case d2 = t(Qs+ Q̄s)+ Q̄2+ q2 and P2 = t · (Qs+ Q̄s)−Q1.

With the same approach as (3.54)-(3.59), the following bound can be obtained based

on (3.23) and (3.30) (or based on (3.27) with j = 2 and (3.29)),

d1 + d2 ≤ N ⇒ di + dj ≤ N (3.65)

Next, to obtain the bound of di, (3.54) is written as

d2 ≤M − t(Qs + Q̄s) +Q1 (3.66)

Since Qs + Q̄s ≥ 2D − 3M and Q1 ≤ 3tN − (3t+ 1)M , we have

d2 ≤ 3tN − 2tD (3.67)

which leads to

(2t+ 1)di + 2tdj + 2tdk ≤ 3tN (3.68)

Finally, by combining (3.47), (3.48), (3.64), (3.65) and (3.68), the achievable DoF

region for 3t−1
3t
≤ N

M
< 3t

3t+1
is the same as (3.6). (Note that in (3.6) the two bounds

derived from (3.47) and (3.48) are both included.)

• For 3t
3t+1
≤ M

N
< 3t+1

3t+2
(S = 3t + 1)

In this case, d1 = t·Qs+Q1+(t+1)Q̄s−Q̄2+q1, d2 = t·Qs+Q2+(t+1)Q̄s−Q̄3+q2

and d3 = t ·Qs +Q3 + (t + 1)Q̄s − Q̄1 + q3. Accordingly, we have

d1 + d2 = 2t ·Qs + (2t+ 1)Q̄s +Q1 +Q2 + Q̄1 + qs − q3

≤ D − t(Qs + Q̄s)− ((Qs + Q̄s)− (Q1 +Q2 + Q̄1)) (3.69)
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Similar to (3.61), based on (3.21), (3.22), (3.42) and (3.43), we can get

di + dj ≤







(9t+ 4)N − (6t + 4)M − (2t+ 1)D

3tM − (2t− 1)D

(6t+ 2)(N +M)− (8t + 2)D

(3.70)

Then, we derive another bound of di + dj . Again, since d2 = t · Qs + Q2 + (t +

1)Q̄s − Q̄3 + q2 and P2 = t · (Qs + Q̄s) + Q̄3, the following bound can be obtained

based on (3.23) and (3.30), (or based on (3.28) with j = 2 and (3.29)).

di + dj ≤ N (3.71)

Next, to derive the bound of d2, (3.54) can be expressed as

d2 ≤M − t(Qs + Q̄s)− Q̄3 (3.72)

Since Qs + Q̄s ≥ 2D − 3M and Q̄3 ≥ 0, we can get

d2 ≤ (3t+ 1)M − 2tD ⇒ di ≤ (3t+ 1)M − 2tD (3.73)

which leads to

(2t+ 1)di + 2tdj + 2tdk ≤ (3t+ 1)M (3.74)

Note that the bound of (3.47) is included in (3.74); and the bound (3.70) is

included in (3.48), (3.71) and (3.74) (The proof is in Appendix F). As a result, by

combining (3.48), (3.71) and (3.74), the achievable DoF region for 3t−1
3t
≤ N

M
< 3t

3t+1

is the same as (3.7).

Remark 3.4 In Sections 3.3-3.4, we propose a beamforming scheme and show that

the achievable DoF region for 3-user interference channels is (3.5)-(3.7) with di being

an integer.
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3.5 Achieving Fractional DoF with Symbol Exten-

sion

In Sections 3.3-3.4, we have shown that all the integer DoF within the outer bound

DoF region can be achieved. In this section, we discuss the achievability of fractional

DoF within the outer bound region with symbol extension over time (or frequency).

For a given antenna configuration (MR, MT ), its DoF region can be found in (3.5)-

(3.7), which would be a 3-dimensional polyhedron. Then, the coordinates of any point

in the region can be expressed as { d
′

1

a1
,
d′2
a2
,
d′3
a3
}, where a1, a2, a3 are natural numbers and

d′1, d
′
2, d

′
3 are non-negative integers. In order to achieve DoF { d

′

1

a1
,
d′2
a2
,
d′3
a3
}, we perform T

symbol extensions (where T equals the least common multiple of a1, a2 and a3). As a

consequence, the system can be equivalent to a new system with antenna configuration

(T ·MR, T ·MT ), and channel matrix is

H′
ij =








Hij(1)
. . .

Hij(T )








where Hij(t) denote the channel matrix between transmitter j and receiver i at time

slot t.

In the equivalent system, the number of signals sent by transmitter i should be

equal to
Td′i
ai
. Further, since the coordinates of point {Td′1

a1
,
Td′2
a2

,
Td′3
a3
} are all integers

and are inside the outer bound region, a beamforming matrix for each transmitter can

be designed based on (3.18). If the desired signals can be linearly decoded on each

receiver, transmitter i will achieve
d′i
ai

DoF, as
Td′i
ai

symbols are sent by transmitter i

over T time slots.

Note that if channel matrices H′
ij are generic, the signals can be linearly decoded

for sure based on previous discussion. However, due to symbol extensions, the equiv-

alent channels are all block diagonal matrices, which may not be generic. Hence,

although all the conditions in Theorem 3.3 are satisfied, it cannot be proved in the
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same way as that of in Theorem 3.3. While there is not a systematic approach to

prove it in general, there are some ways to examine this issue for each individual case.

Let Yd
i and YI

i denote the desired signal space and interference space on receiver i,

respectively. Proving that the desired signals can be linearly decoded on receiver i

is equivalent to showing that Yi =
[

Yd
i YI

i

]

having full column rank. Since each

subspace in Yi is completely determined by randomly generated channels, there are

only two possibilities, i.e., Yi will always or never have full column rank for any group

of random channel matrices [22].

Hence, in order to exam whether DoF of {Td′1
a1

,
Td′2
a2

,
Td′3
a3
} is achievable in the e-

quivalent system, we can first randomly generate a group of generic channel matrices

Hij(t) to create H′
ij. Then, the beamforming matrix can be designed accordingly,

which will give us Yi. Finally, DoF of {Td′1
a1

,
Td′2
a2

,
Td′3
a3
} can be proved to be achievable

as long as Yi has full column rank. Note that if the channels are time-varying, i.e.,

Hij(a) and Hij(b) are independent of each other, no case has been found that a point

inside the DoF region cannot be achieved. This is because under varying channel

condition, the property of equivalent channels are very close to generic channel. If

the channels are constant, i.e., Hij(1) = Hij(2) = · · · = Hij(T ), there are evidences

indicating that some DoF inside the region cannot be achieved. (It is shown in [22]

that under constant channel conditions, the outer-bound of sum DoF can not be

achieved when M
N

= p

p+1
.)

In addition to this approach, we can also prove each individual case mathemat-

ically. In the following, we use an example to elaborate the application of symbol

extensions and explain how to prove that the desired signals are linearly decodable

on each receiver.

• An Example

In this example, we assume MR = 7, MT = 10. We show that DoF of {d1 =

5, d2 = 11
3
, d3 = 11

3
} can be achieved with three symbol extensions. The equivalent
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channel matrix can be expressed as

H′
ij ∈ C21×30 =








Hij(1)

Hij(2)

Hij(3)








(3.75)

As can be seen, the number of dimensions on each transmitter and receiver has

been tripled due to symbol extension. Hence, under this equivalent system, transmit-

ter 1, 2, 3 will send 15, 11, and 11 signals, respectively. The beamforming matrix of

transmitter i, Bi, is designed as follows,

B1 =
[

V1
1(1) V2

1(1) V3
1(1) V̄1

1(1) V̄1
1(2)

]

B2 =
[

V1
2(1) V2

2(1) V3
2(1) V̄1

2(1)

]

B3 =
[

V1
3(1) V2

3(1) V3
3(1) V̄1

3(1)

]

(3.76)

where the notation of Vj
i and V̄j

i follows from (3.18). In addition, V3
1(1), V

3
2(1) and

V3
3(1) are 30× 5 matrix, V̄1

1(1), V̄
1
2(1) and V̄1

3(1) are 30× 4 matrix, others are all 30× 1

vectors.

The design of each subspace can be further expressed as follows,

V1
i(1) = V1

i(1) ·w, V2
i(1) = V2

i(1) · z

V3
i(1) = V3

i(1) ·Π, V̄1
i(1) = V̄1

i(1) ·P, V̄1
i(2) = V̄1

i(2) ·P

where

V
j

i(a) ∈ C30×6 △
=








Vj

i(a)(1) 010×2 010×2

010×2 Vj

i(a)(2) 010×2

010×2 010×2 Vj

i(a)(3)








V̄
j

i(a) ∈ C30×12 △
=








V̄j

i(a)(1) 010×4 010×4

010×4 V̄j

i(a)(2) 010×4

010×4 010×4 V̄j

i(a)(3)








and w ∈ C6×1, z ∈ C6×1, Π ∈ C6×5, P ∈ C12×4 are random matrices.
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Note that Vj

i(a)(t) ∈ C10×2 and V̄j

i(a)(t) ∈ C10×4 are designed according to (3.18),

but based on the channel matrices in time slot t. For example, V3
i(1)(t) are designed

as










H13(t)

H23(t) −H21(t)

H31(t) −H32(t)

H12(t)


















V3
3(1)(t)

V3
1(1)(t)

V3
2(1)(t)







= 0

and V̄1
i(1)(t), V̄

1
1(2)(t) are designed as














H12(t)

H31(t) −H32(t)

H12(t) −H13(t)

H23(t) H21(t)

H31(t)
























V̄1
1(1)(t)

V̄1
2(1)(t)

V̄1
3(1)(t)

V̄1
1(2)(t)











= 0

Next, we show that the signals can be linear decoded on each receiver under

constant channel conditions. Based on previous discussion, the desired signal space

on receiver 1 can be expressed as

Yd
1 =

[

H′
11V

1
1(1) ·w H′

11V
2
1(1) · z H′

11V
3
1(1) ·Π H′

11V̄
1
1(1) ·P H′

11V̄
1
1(2) ·P]

]

and the interference space can be expressed as

YI
1 =

[

H′
12V

1
2(1) ·w H′

12V
2
2(1) · z H′

12V̄
1
2(1) ·P

]

Note that H′
12V

j

2(1) = H′
13V

j

3(1).

Since the channels are constant, we have Hij(1) = Hij(2) = Hij(3) = Hij and

Vj

i(a)(1) = Vj

i(a)(2) = Vj

i(a)(3) = Vj

i(a)(·). Then, let

[

w z
]

= I2×2, P =








04×2 0

I2×2 0

06×2 I2×2







,
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the signal dimensions on receiver 1 can be expressed as Y1 =
[

Yd1
1 Yd2

1 YI
1

]

,

where

Yd1
1 =








A11
(1) A21

(1)

Ā11
(1) Ā12

(1) Ā11
(2) Ā12

(2)

Ā13
(1) Ā14

(1) Ā13
(2) Ā14

(2)








Yd2
1 =








H11V
3
1(1)(·)

H11V
3
1(1)(·)

H11V
3
1(1)(·)







·Π

YI
1 =








B11
(1) B21

(1)

B̄11
(1) B̄12

(1)

B̄13
(1) B̄14

(1)








where Ajπ

(a) ∈ C7×1 and Ājπ

(a) ∈ C7×1 denote the πth column of H11V
j

1(a)(·) ∈ C7×2

and H11V̄
j

1(a)(·) ∈ C7×4, respectively. Bjπ

(a) ∈ C7×1 and B̄jπ

(a) ∈ C7×1 denote the πth

column of H12V
j

2(a)(·) ∈ C7×2 and H12V̄
j

2(a)(·) ∈ C7×4, respectively.

Since H11, H12 are generic channels and the subspaces Vj

i(a), V̄
1
i(a) are independent

of each other, (which can be proved according to Theorem 3.3), a matrix Π can be

found to ensure that Y1 has full rank. Once the full rank of Y1 is settled, the full

rank of Y2 and Y3 can also be guaranteed as they have the same form as Y1. Hence,

we have shown that the desired signals can be linearly decoded on each receiver with

constant channel coefficients for this case.

Remark 3.5 As we can see, the DoF region (3.5)-(3.7) would be tight if all fractional

DoF inside the region can be achieved. Although there are methods to examine each

individual case, we do not claim that the DoF region (3.5)-(3.7) is tight as it is

impossible to cover all cases.
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3.6 Summary

In this chapter, the outer bound of DoF region of 3-user MIMO interference channels

was shown first. Then, a linear beamforming scheme based on alignment chain was

proposed, which can achieve all the integer DoF inside the outer bound DoF region.

In addition, we further discussed the achievability of fractional DoF within the outer

bound region with the proposed scheme in combination with symbol extension.

3.7 Appendix A: Proof of Theorem 3.1

First, we can see that the outer bound DoF region of 3-user interference channel

must contain the bound of d1 + d2 + d3, di + dj and di. Further, it has already been

proved that d1 + d2 + d3 ≤ 3DoF ∗ (where DoF ∗ is defined in (1.2)) and di + dj ≤ N

in [22] and [20], respectively. It is also known that di ≤ M . Hence, in the following,

we focus on the rest of the bounds in (3.5)-(3.7), which are also in the form of

L{di, dj , dk} ≤ M or L{di, dj, dk} ≤ N , where L{di, dj, dk} means a linear

combination of {di, dj, dk}. For these bounds, we refer to those in the form of

L{di, dj, dk} ≤ M and L{di, dj, dk} ≤ N as M-side bounds and N -side bounds,

respectively.

Next, we show that with some extension of [22], the M-side bounds and N -side

bounds can be obtained.

We first briefly review some results in [22]. As mentioned before, the outer bound

of sum DoF can be expressed as D ≤ 3DoF ∗, where DoF ∗ = min{ κ
2κ−1

M, κ
2κ+1

N}.
The two bounds κ

2κ−1
M and κ

2κ+1
N are referred to as M-bound and N -bound, re-

spectively. Assuming MR > MT (N = MR, M = MT ), the region M
N
∈ (1

2
, 1)

can be divided into small regions as M
N
∈ [2L−1

2L
, 2L

2L+1
] and M

N
∈ [ 2L

2L+1
, 2L+1

2L+2
],

L = 1, 2, · · ·+∞. The outer-bound of sum DoF is obtained from the following four

major results,

1. Any M
N
∈ [2L−1

2L
, 2L

2L+1
]⇒ d ≤ 2L

4L+1
N (Appendix A.2.6 of [22])
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2. Any M
N
∈ [ 2L

2L+1
, 2L+1

2L+2
]⇒ d ≤ 2L+1

4L+3
N (Appendix A.2.8 of [22])

3. Any M
N
≥ 2L+1

2L+2
⇒ d ≤ 2L+2

4L+3
M (Appendix A.2.7 of [22])

4. Any M
N
≥ 2L

2L+1
⇒ d ≤ 2L+1

4L+1
M (Appendix A.2.5 of [22])

where d can be seen as d = D
3
. Each result contains certain part of the outer-bound

of sum DoF, which also implies a certain part of the DoF region.

We first examine the first result, i.e., theN -bound sum DoF of the region [2L−1
2L

, 2L
2L+1

].

In [22], the authors provided 2L genie signal sets to each receiver. The genie signal

sets are designed in a way such that each receiver is able to decode the messages from

all three users. Each genie signal set leads to one inequality.

Without loss of generality, we focus on receiver 1 only, where there are 2L inequal-

ities. The left-hand side of these inequalities are always the sum rate of the network,

i.e., nR∑ = n(R1 +R2 +R3), where n and Ri denote the time slots and rate of each

link, respectively. The right-hand side of the inequalities contain several terms. In

one of the inequalities, the terms are Nn log ρ ± h(· · · ) + no(log ρ) + o(n), where ±
means + or −; h(· · · ) is the entropy term that is determined by the corresponding

genie signal set; no(log ρ) + o(n) is the noise distortion. In the other 2L− 1 inequali-

ties, the terms are Nn log ρ+nRj ±h(· · · )+no(log ρ)+ o(n), where j = 2 or 3. Since

the links are interchangeable, by advancing the user indices, R2 and R3 can all be

denoted as R =
R∑

3
. Consequently, these 2L inequalities can be expressed as







1 : nR∑ ≤ Nn log ρ± h(· · · ) + no(log ρ)

2L− 1 : nR∑ ≤ Nn log ρ+ nR± h(· · · ) + no(log ρ)
(3.77)

Then, by summing up all 2L inequalities, the entropy terms will be canceled

out. Ignoring the noise distortion, the result d ≤ 2L
4L+1

N can be easily derived since

d = R
n log ρ

.

Next, we show how to get the N -side bound for M
N
∈ [2L−1

2L
, 2L

2L+1
] based on (3.77).

The issue is addressed according to the value of L mod 3.
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When L mod 3 = 0, we keep two inequalities not advancing the user indices, i.e.,

as






1 : nR∑ ≤ Nn log ρ± h(· · · ) + no(log ρ) + o(n)

1 : nR∑ ≤ Nn log ρ+ nR2 ± h(· · · ) + no(log ρ)

1 : nR∑ ≤ Nn log ρ+ nR3 ± h(· · · ) + no(log ρ)

2L− 3 : nR∑ ≤ Nn log ρ+ nR± h(· · · ) + no(log ρ)

by summing up all 2L inequalities, we have

2Ln(3R) ≤ 2LNn log ρ+ nR2 + nR3 + (2L− 3)nR + no(log ρ)⇒

(4L+ 3)nR ≤ 2LNn log ρ+ nR2 + nR3 + no(log ρ)⇒

(4L+ 3)d ≤ 2LN + d2 + d3 ⇒
4L+ 3

3
D − d2 − d3 ≤ 2LN ⇒

4L+ 3

3
d1 +

4L

3
d2 +

4L

3
d3 ≤ 2LN (3.78)

Since the links are interchangeable, (3.78) can be written as

4L+ 3

3
di +

4L

3
dj +

4L

3
dk ≤ 2LN (3.79)

where i, j, k = 1, 2, 3 and i 6= j 6= k.

When L mod 3 = 1, we keep one inequality not advancing the user indices, i.e.,







1 : nR∑ ≤ Nn log ρ± h(· · · ) + no(log ρ) + o(n)

1 : nR∑ ≤ Nn log ρ+ nR3 ± h(· · · ) + no(log ρ) + o(n)

2L− 2 : nR∑ ≤ Nn log ρ+ nR± h(· · · ) + no(log ρ) + o(n)

By summing up all 2L inequalities, we have

2Ln(3R) ≤ 2LNn log ρ+ nR3 + (2L− 2)nR + no(log ρ) + o(n)

⇒ (4L+ 2)d ≤ 2LN + d3 ⇒
4L+ 2

3
D − d3 ≤ 2LN

⇒ 4L+ 2

3
d1 +

4L+ 2

3
d2 +

4L− 1

3
d3 ≤ 2LN
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which leads to

4L+ 2

3
di +

4L+ 2

3
dj +

4L− 1

3
dk ≤ 2LN (3.80)

When L mod 3 = 2, the N -side bound does not exist.

With the same approach, we can get theN -side bound of DoF for M
N
∈ [ 2L

2L+1
, 2L+1

2L+2
]

based on result (2) (Appendix A.2.8 of [22]), i.e.,






∅ when l = 0

4L+5
3

di +
4L+2

3
dj +

4L+2
3

dk ≤ (2L+ 1)N when l = 1

4L+4
3

di +
4L+4

3
dj +

4L+1
3

dk ≤ (2L+ 1)N when l = 2

(3.81)

where ∅ means that the N -side bound does not exist and l = L mod 3.

Hence, by combining (3.79), (3.80) and (3.81), theN -side bounds for M
N
∈ [P−1

P
, P

P+1
]

(P = 2, 3, · · ·+∞) can be written as






2P+3
3

di +
2P
3
dj +

2P
3
dk ≤ P ·N when p = 0

∅ when p = 1

2P+2
3

di +
2P+2

3
dj +

2P−1
3

dk ≤ P ·N when p = 2

(3.82)

where p = P mod 3

Similarly, based on the derivation of M-bound sum DoF (Appendix A.2.7 and

A.2.5 of [22]), we can get that for M
N
≥ P−1

P
, the M-side bound is







2P
3
di +

2P
3
dj +

2P−3
3

dk ≤ P ·M when p = 0

2P+1
3

di +
2P−2

3
dj +

2P−2
3

dk ≤ P ·M when p = 1
(3.83)

When P mod 3 = 2, the M-side bound cannot be obtained directly from the

corresponding derivation of M-bound sum DoF. However, we should note that in the

derivation of M-bound sum DoF, all the result derived from M
N
≥ P−1

P
can be applied

on M
N
≥ P

P+1
because P

P+1
> P−1

P
. Taking P = 5 for example, the M-side bound of

DoF cannot be obtained from the derivation of M
N
≥ 4

5
⇒ d ≤ 5

9
M , but the bound

derived from M
N
≥ 3

4
⇒ d ≤ 4

7
M still hold, which is 3di + 2dj + 2dk ≤ 4M . Hence,

the M-side bound for P mod 3 = 2 is

2P − 1

3
di +

2P − 4

3
dj +

2P − 4

3
dk ≤ (P − 1) ·M (3.84)
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where P ≥ 5.

As a result, by combining the N -side bound (3.82), the M-side bound (3.83)-

(3.84), the existing outer-bound of sum DoF, and the 2-user bound derived in [20]

(di + dj ≤ N), the outer-bound DoF region of 3-user interference channels for M
N
∈

[P−1
P

, P
P+1

] can be summarized as (3.5)-(3.7).

3.8 Appendix B: Derivation of (3.42)-(3.45)

In Section 3.3 we have shown that each original chain and long chain contain S and

S + 1 subspaces, respectively. In addition, for the original chain and long chain that

originate from transmitter i and j, respectively, each of their subspaces has Qi and Q̄j

signal dimensions, respectively. Hence, the total number of the transmitted signals,

(the sum DoF of the network), can be calculated as

D = S ·Qs + (S + 1)Q̄s + qs (3.85)

where qs = q1 + q2 + q3 and q1 = q21 + q31, q2 = q12 + q32, q3 = q13 + q23.

In addition, from (3.18) we can see that each original chain and long chain gener-

ates (S− 1)Qi and S · Q̄j interference dimensions, respectively, and each signal in Ui

generates one interference dimension. As a result, the total number of interference

dimensions generated by the three users equals (S − 1)Qs + S · Q̄s + qs. Since there

are totally 3M dimensions on the receivers’ side and D desired signals, the number

of interference dimensions cannot be larger than 3M −D, which will lead to (3.42),

i.e., Qs + Q̄s ≥ 2D− 3M . (Note that (3.42) can also be equivalent to the summation

of (3.29)-(3.31).)

Next, we derive (3.43). Taking (3.85) into (3.42), we have

D = (2S − 1) ·Qs + (2S + 1)Q̄s + 2qs ≤ 3M (3.86)

Then, we assume all signals are from either the original chains or the long chains,

i.e., qs = 0. In that case, we can get Q̄s =
D−S·Qs

S+1
according to (3.85). By taking this
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result into (3.86), with qs = 0, we can get

2S + 1

S + 1
(D − S ·Qs) + (2S − 1)Qs ≤ 3M

which leads to (3.43).

Moreover, since Qs =
∑3

i=1Qi and Qi ≤ S ·N − (S + 1)M (according to (3.21)),

we can get (3.44) as follows,

Qi = Qs − (Qj +Qk) ≥ Qs − 2(S ·N − (S + 1)M)

≥ [(2S + 1)D − (S + 1)M − 2SN ]+

Next, since Q̄s ≥ 2D− 3M −Qs (from (3.42)) and Qs ≤ 3(S ·N − (S +1)M), we

have (3.45) as

Q̄s ≥ [2D − 3SN + 3SM ]+

3.9 Appendix C: Derivation of (3.61)

To get the upper bound of di, we want the right side of (3.60) as large as possible,

which is equivalent to minimizing Qs + Q̄s − (Q1 +Q2 + Q̄1).

Note that Qs+ Q̄s ≥ 2D−3M , Qi ≤ (3t−1)N −3tM and Q̄i ≤ 3tN − (3t+1)M .

Hence, if 2D − 3M > 2((3t − 1)N − 3tM) + 3tN − (3t + 1)M , we can maximize

the right side of (3.60) by letting Qs + Q̄s = 2D − 3M , Qi = (3t − 1)N − 3tM and

Q̄i = 3tN − (3t+ 1)M , which gives the first term of (3.61).

Then, if 2D−3M ≤ 2((3t−1)N−3tM)+3tN−(3t+1)M , the value of Qs+Q̄s−
(Q1 + Q2 + Q̄1) can be minimized to zero (which leads to the second term) except

when (6t− 1)D − 9tM > 2((3t− 1)N − 3tM). The reason is that (6t− 1)D − 9tM

is the lower bound of Qs (according to (3.43)), if the value of Q1 + Q2 is lower

than that, the minimum value of Qs + Q̄s − (Q1 + Q2 + Q̄1) should be expressed as

min{Qs −Q1 −Q2}+min{Q̄s − Q̄1}. In that case, by letting Qs + Q̄s = 2D − 3M ,

Qi = (3t−1)N−3tM , Qs = (6t−1)D−9tM and Q̄s = Q̄1 = [(9t−3)M−(6t−3)D]+,

we can obtain the third term of (3.61).
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3.10 Appendix D: Discussion on achievable DoF

region for 3t−2
3t−1 ≤ M

N
< 3t−1

3t

In Appendix D, we show that (3.48), (3.52), the first and third terms of (3.61) are

included in (3.47), (3.53) and (3.59). First of all, it can be easily proved that (3.48) is

included in (3.53). Then, for (3.52), it implies that di + dj ≤ (3t− 3)M − (2t− 3)D,

i.e., the outer bound of di + dj. Note that (3.53) and (3.59) also indicate the outer

bound of di + dj, which are di + dj ≤ (3t − 1)N − (2t − 1)D and di + dj ≤ N ,

respectively. Hence, for (3.52) to be not trivial, the following two inequalities must

be both satisfied in some part of the region,

(3t− 3)M − (2t− 3)D < (3t− 1)N − (2t− 1)D ⇒

2D < (3t− 1)N − (3t− 3)M (3.87)

(3t− 3)M − (2t− 3)D < N ⇒

D >
(3t− 3)M −N

2t− 3
(3.88)

It can be calculated that (3.87) and (3.88) can only be both satisfied in the region

of M
N

< 6t2−11t+5
6t2−9t+3

. Note that 6t2−11t+5
6t2−9t+3

< 3t−2
3t−1

, which means in the region of 3t−2
3t−1
≤

M
N

< 3t−1
3t

, (3.87) and (3.88) can never hold at the same time, i.e., (3.52) is trivial as

it is included by (3.53) and (3.59) in the region of 3t−2
3t−1
≤ M

N
< 3t−1

3t
.

Lastly, we show that (3.61) are included by (3.47), (3.53) and (3.59). As we can

see, (3.53) indicates that di + dj ≤ (3t − 1)N − (2t − 1)D, which also implies that

dk = D − (di + dj) ≥ 2tD − (3t− 1)N . Since the links are interchangeable, we have

dk + dj ≥ 4tD − 2(3t− 1)N , which leads to

di = D − (di + dj) ≤ 2(3t− 1)N − (4t− 1)D (3.89)

It means that the bound (3.53) is not only the outer bound of di + dj , but also

implies the outer bound of di, i.e., di ≤ 2(3t− 1)N − (4t− 1)D. Similarly, the bound

di + dj ≤ N also implies

di ≤ 2N −D (3.90)
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As can be seen, the bounds in (3.61) also indicate the outer bound of di. Hence,

if the outer bound in (3.61) is not lower than that of in (3.89) and (3.90), the bound

would be trivial, i.e., included by (3.89) and (3.90).

The first term of (3.61) is di ≤ (9t− 2)N − 6tM − 2tD. For this bound not to be

included in (3.89) and (3.90), the following two inequalities must be both satisfied,

(9t− 2)N − 6tM − 2tD < 2(3t− 1)N − (4t− 1)D ⇒

(2t− 1)D < 6tM − 3tN (3.91)

(9t− 2)N − 6tM − 2tD < 2N −D ⇒

(2t− 1)D > (9t− 4)N − 6tM (3.92)

which means 6tM − 3tN > (9t − 4)N − 6tM ⇒ M
N

> 3t−1
3t

. Hence, in the region of

3t−2
3t−1
≤ M

N
< 3t−1

3t
, (3.91) and (3.92) cannot be both satisfied for sure.

The third term of (3.61) is di ≤ (6t− 2)(N +M)− (8t− 3)D. For this bound not

to be included in (3.89), the following inequality must be satisfied,

(6t− 2)(N +M)− (8t− 3)D < 2(3t− 1)N − (4t− 1)D

⇒ (2t− 1)D > (3t− 1)M (3.93)

However, according to (3.47) and S = 3t− 1, we have D ≤ (3t−1)M
2t−1

, which means

(3.93) does not hold for sure in the region 3t−2
3t−1
≤ M

N
< 3t−1

3t
.

3.11 Appendix E: Proof of Q̄i ≥ 0

Similar to (3.44), since Q̄i ≤ (S + 1)N − (S + 2)M , we have

Q̄i ≥ Q̄s − 2((S + 1)N − (S + 2)M)

≥ [2D − (5S + 2)N + (5S + 4)M ]+
a
= 0 (3.94)

where the proof of a is as follows,

Proof: According to (3.48), in the region of S−1
S
≤ M

N
< S

S+1
, D ≤ 3S

2S+1
. Hence,

for [2D − (5S + 2)N + (5S + 4)M ]+ to be larger than zero, i.e., 2D > (5S + 2)N −
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(5S + 4)M , the following must be satisfied,

6S

2S + 1
> (5S + 2)N − (5S + 4)M (3.95)

It can be proved that (3.95) can only be satisfied when M
N

> S
S+1

, which means

2D ≤ (5S + 2)N − (5S + 4)M for sure. Therefore, the lower bound of Q̄i is equal to

zero.

3.12 Appendix F: Proof of the redundancy of (3.70)

(3.74) indicates that di ≤ (3t+ 1)M − 2tD, which implies that

di + dj ≤ (6t+ 2)M − 4tD (3.96)

Hence, there are already two upper bounds for di + dj , which are (3.96) and

di + dj ≤ N .

Next, we show that the upper bounds in (3.70) are all included by (3.96) and

di + dj ≤ N .

In the first term, di + dj ≤ (9t+4)N − (6t+4)M − (2t+1)D. For the bound not

being included by di + dj ≤ N , the follows must be satisfied,

(9t+ 4)N − (6t+ 4)M − (2t+ 1)D < N

⇒ (2t+ 1)D > (9t+ 3)N − (6t+ 4)M (3.97)

Note that D ≤ 3SN
2S+1

= 3t+1
2t+1

N , which means it is only possible to satisfy (3.97)

when M
N

> 3t+1
3t+2

, i.e., outside the region of this case.

In the second term, di+ dj ≤ 3tM − (2t− 1)D. For the bound not being included

by (3.96) and di + dj ≤ N , the following two conditions must be satisfied,

3tM − (2t− 1)D < (6t+ 2)M − 4tD ⇒ (2t+ 1)D < (3t+ 2)M

3tM − (2t− 1)D < N ⇒ (2t− 1)D > 3tM −N
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which means (3t+2)M
2t+1

> 3tM−N
2t−1

, i.e.,M
N

< 2t+1
2t+2

. Note that the region of S = 3t + 1

is 3t
3t+1
≤ M

N
< 3t+1

3t+2
. Since 2t+1

2t+2
≤ 3t

3t+1
, the conditions cannot be satisfied inside the

region.

In the third term, di + dj ≤ (6t + 2)(N + M) − (8t + 2)D. For the bound not

being included by (3.96), we have

(6t+ 2)(N +M)− (8t+ 2)D < (6t+ 2)M − 4tD ⇒

(3t+ 1)N < (2t+ 1)D (3.98)

Note that from (3.48) we can derive that D ≤ 3SN
2S+1

= 3t+1
2t+1

N , which means (3.98)

cannot be satisfied for sure.



Chapter 4

Device-to-Device LAN Underlying

Cellular Network

4.1 Introduction

In future cellular networks, underlaying Device-to-Device (D2D) communications are

expected to be incorporated into the network for higher spectrum efficiency. In cellular

operation, each user equipment (UE) is served by the network via base stations, which

are called evolved NodeBs (eNBs) in the LTE architecture. With D2D technologies,

UE units may communicate directly with each other without traversing the core

network [54, 56], or enable multihop relays in cellular networks [55].

Allowing D2D transmissions on the same time-frequency resources as the cellular

uplink/downlink poses two major challenges. First, the interference caused to the

eNBs or cellular users (CU) by D2D devices could critically affect the performance

of cellular devices. Second, the quality-of-service (QoS) requirements of D2D devices

need to be guaranteed. Since both problems are caused by the mutual interference

between cellular links and D2D links, an effective interference coordination mechanism

is needed. Currently, most works deal with the problems from the aspects of resource

scheduling and power control. Many schemes are proposed to jointly allocate the

74
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physical resource blocks (in both time domain and frequency domain) and perform

power control for D2D links subject to interference constraints for cellular operations

and QoS demands of D2D links [57–62]. In addition, in D2D networks, since the D2D

devices can compete or cooperate with each other to reuse the resources, the resource

allocation and access for D2D communication can be treated as games [62–65].

MIMO has been identified as a key enabling technology to improve performance

of communications. In modern cellular networks, devices are usually equipped with

multiple antennas [66, 67]. Thanks to such setup, beamforming has been shown as

an effective technique for interference management, i.e., the direction of transmitted

signals is steered so that their negative effect on receivers can be minimized [1, 2].

Moreover, beamforming is performed in spatial domain, which can be used as a com-

pliment of existing resource allocation schemes and further improve the spectrum

efficiency. In [68], a downlink MIMO beamforming scheme was proposed for eNB to

transmit signals in the nullspace of the interference between eNB and D2D receiver

(DR). In [69], two beamforming schemes for eNB were proposed. The first one is

similar to [68], where eNB uses beamforming to cancel the interference to DR. In

the second one, the eNB aims at serving its cellular user rather than dealing with

interference. The capacity performance of these two cases were evaluated in [69]. The

same system model was also studied in [70], where jointly precoding on both eNB

and D2D transmitter is used to maximize the signal-to-leakage-noise ratio (SLNR) or

signal-to-interference-noise ratio (SINR). The precoding vectors in [70] are selected

from predefined codebooks. In [68–70], each CU shares resources with only one D2D

link in the cellular network. In [71], a beamforming scheme based on interference

alignment (IA) was proposed for three D2D links, but their effects on cellular net-

work were not studied. In [72], IA was adopted to improve the energy efficiency for

both D2D and cellular links.

IA is a type of beamforming that has been extensively studied in a variety of

networks such as interference channel [3], X channel [4], and cellular networks [42,73],

etc. In this paper, we explore the possibility of integrating IA techniques into D2D
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communication systems. We consider a D2D local area networks (LAN) underlaying a

cellular uplink, where multiple DUs intend to communicate with a D2D receiver. This

model can be found in many practical scenarios. For example, some context-aware

applications (on cell phone) allow nearby devices to discover each other and exchange

messages directly. In some occasions, there are many devices with same application

gathering together,and they need to communicate with a common DU. Two D2D

communication schemes based on IA are proposed to manage the interference between

the two networks for different scenarios. The first scheme is referred to as ‘interference-

free’ IA scheme, which can be applied in the scenarios where some sub-channels of

eNB are not occupied by CUs. In this scheme, the interference signals from DUs are

aligned in the orthogonal space of cellular links at the eNB. Hence, the links of CUs

are completely free from interference. Note that if all the sub-channels of eNB are

used by CUs, the orthogonal space of cellular links may not exist. In case of such

scenarios, we propose another scheme which is referred to as ‘interference-limiting’

IA scheme. In this scheme, the DUs’ signals are allowed to occupy some links of

CUs, but the peak interference power on each of the ‘interfered’ links is kept under

a certain threshold γ. It is shown that the ‘interference-limiting’ IA scheme is most

efficient for the scenarios where there are a large number of DUs. The explicit design

frameworks and feasibility conditions of the two schemes are provided. Performance

analysis shows that based on the proposed schemes, the interference generated on the

cellular links is eliminated or well controlled, while the QoS of the D2D LAN can also

be guaranteed.

The rest of the paper is organized as follows. In Section 4.2, system model is in-

troduced. In Section 4.3, the ‘interference-free’ IA-based D2D communication scheme

is proposed, followed by the performance analysis of the networks. In Section 4.4,

the ‘interference-limiting’ IA-based D2D communication scheme is proposed, followed

by the performance analysis of the networks. In Section 4.5, simulation results are

presented and discussed. Section 4.6 concludes the paper.
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Figure 4.1 D2D LAN underlaying a cellular uplink network

4.2 System Model

We consider a D2D LAN underlaying a cellular uplink in a single cell setting, where

multiple DUs intend to communicate with a DR, as shown in Fig. 4.1. The eNB

receives both desired signals and interference signals from CUs and DUs, respectively.

The eNB and DR are equipped with N and Nd antennas, respectively. The CU and

DU each are equipped with M and Md antennas, respectively.

Let He
CU,i denote the channel from CUi to eNB, and ui denote the precoding

vector of CUi. The received signals on eNB at the absence of interference can be

expressed as

y′
e = Deye = De

s∑

i=1

He
CU,iuiP

1
2
c mi +Deze

= P
1
2
c De

[

He
CU,1u1 · · · He

CU,sus

]








m1

...

ms







+Deze

where De ∈ Cs×N denotes the post-processing matrix of eNB, s denotes the number

of links of CU and s ≤ N , mi denotes the message of CUi, Pc denotes the transmit

power of CU, ze denotes the noise on eNB with unit variance. The design of De is
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different in two schemes, which will be explained later.

Then, ui can be designed to lie in the null space of DeHe
CU,i(i), i.e.,

DeHe
CU,i(i) · ui = 0 (4.1)

where DeHe
CU,i(i) denotes the matrix DeH

e
CU,i without the ith row.

As a result, the links from CUs to eNB can be transformed to s parallel links, i.e.,

y′
e = P

1
2
c








λ1

. . .

λs








︸ ︷︷ ︸

Λ∈Cs×s








m1

...

ms







+ z′e (4.2)

where λi = DeH
e
CU,i(i)ui denotes the equivalent channel gain of the i-th link of CU,

and DeH
e
CU,i(i) denotes the i-th row of DeH

e
CU,i. Since there are totally N antennas

on eNB, there will be r = N − s dimensions left ‘unused’ by CUs.

Let He
DU,i denote the channel from DUi to eNB and vi denote the beamforming

vector of DUi. Assuming there are l active DUs, the received signal on eNB in the

presence of interference becomes

ye = P
1
2
c Λm+De

l∑

i=1

He
DU,iviP

1
2
d ti + z′e (4.3)

where m =
[

m1 · · · ms

]T

, ti denotes the message of DUi and Pd denotes the

power of ti, and the design of vi is specified in different schemes.

Then, the received signal on DR is given by

yr =
l∑

i=1

Hr
DU,iviP

1
2
d ti +

s∑

i=1

Hr
CU,iuiP

1
2
c mi + zr (4.4)

where Hr
DU,i and Hr

CU,i denote the channels from DUi and CUi to DR, respectively.

Further, DUi only knows the channel He
DU,i. All the channel matrices are sampled

from continuous complex Gaussian distributions and each entry is independent and

identically distributed (i.i.d.) with zero mean and unit variance. The channels are

assumed to undergo block fading.
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Finally, from (4.3) we should note that if s < Md, then DeH
e
DU,i ∈ Cs×Md is a ‘fat’

matrix, which means vi can be found to null the interference at eNB almost surely,

regardless of the choice of De. Hence, in the following, we only focus on the case of

s ≥Md.

4.3 Interference-Free IA Scheme

In this section, we introduce the ‘interference free’ IA scheme for D2D communica-

tions. We first elaborate the design process of the scheme. Then, the performance

analysis of both D2D LAN and cellular link is provided. Finally, the advantage and

limitation of this scheme are discussed.

4.3.1 Design Process

Four steps are involved in the design process of D2D transmission. In Step 1, the

eNB select l DUs for D2D communications, where l < N ·r
N−Md

and l ≤ Nd. In Step

2, the eNB designs and broadcasts the post-processing matrix De through physical

downlink control channels. In Step 3, each DU designs the precoding vectors vi

according to the received De. Each CU also designs precoding vector ui as described

in Section 4.2. In Step 4, the D2D receiver (DR) designs the receiving filter to decode

transmitted signals.

• Step 1: The l DUs can be selected randomly, or according to some protocols

or preference of DR. To ensure that the signals from DUs can be linearly decoded at

DR, it must have l ≤ Nd. Further, we have following result.

Theorem 4.1 In a cellular uplink network underlaying a D2D LAN, where there are

s links of CUs and l active DUs, the interference on eNB can be nulled while the

desired signals can still be linearly decoded as long as l < N ·r
N−Md

, where r = N − s.

Proof : The eNB receives s desired signals and l interference signals. Since the

desired signals occupy s dimensions, the l interference signals must be aligned to
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r = N − s dimensions. To do so, we should align each of the last l − r interference

signals within the interference space that spanned by the first r interference signals,

i.e.,











a ·He
DU,1 b ·He

DU,2 f ·He
DU,r −He

DU,r+1 0 0 0

g ·He
DU,1 ǫ ·He

DU,2 q ·He
DU,r 0 −He

DU,r+2 0 0
...

... · · · ...
...

...
. . .

...

γ ·He
DU,1 κ ·He

DU,2 λ ·He
DU,r 0 0 0 −He

DU,l











︸ ︷︷ ︸

H′∈CN·(l−r)×Md·l

·
[

(v′
1)

T · · · (v′
r)

T (v′
r+1)

T · · · (v′
l)
T

]T

= 0 (4.5)

where a · · ·λ are all arbitrary complex parameters.

As we can see, the non-zero solution for
[

v′
1 · · · v′

l

]T

can be found if H′ is a

‘fat’ matrix, i.e.,

Md · l > N · (l − r) (4.6)

which is equivalent to

l <
N · r

N −Md

(4.7)

Moreover, since all the channels are generic, there are at least Md · l + 1 non-zero

entries in
[

v′
1 · · · v′

l

]T

. Hence, each of the l precoding vectors can be guaranteed

to be non-zero vector almost surely.

• Step 2: After selecting the potential DUs, the eNB needs to design a proper

post processing matrix De, which should be orthogonal to the interference space.

Since the eNB knows all the receiving channels, it can formulate equation (4.5) with

the channel matrices between selected DUs and eNB. Hence, the interference space

that formed by DUs’ signals is span{
[

He
DU,1v

′
1 · · · He

DU,rv
′
r

]

} ∈ CN×r. Then,

De ∈ C(N−r)×N can be designed as follows,

De ·
[

He
DU,1v

′
1 · · · He

DU,rv
′
r

]

= 0 (4.8)
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Moreover, we assume that eNB will send De to all users (DUs and CUs) through

the physical downlink control channels. Specifically, the matrix De can be sent in an

unquantized uncoded version based on the analog channel state information (CSI)

feedback scheme proposed in [74, 75]. Alternatively, De can also be transmitted

with conventional CSI feedback mechanism based on quantization codebooks [76–78].

First, a common codebook can be stored in eNB and users. Then, De can be quantized

by using the codebook. Each time, the eNB will only broadcast the index of the

corresponding codeword of De.

• Step 3: After receiving De, each DU can design the precoding vector accord-

ingly.

The DUi first calculates Pi ∈ C(N−r)×Md = DeH
e
DU,i (Note that He

DU,i is known

by DUi). Then, the precoding vector vi is determined by calculating the null space

of Pi, i.e,

Pivi = 0 (4.9)

Since N − r = s ≤Md, Pi is either a square or ‘thin’ matrix, which means its null

space does not exist if Pi is full rank.

If the DUi is one of DUs that are selected by the eNB in Step 1, He
DU,i is one of

the channel matrices in (4.5), which means

He
DU,iv

′
i =

[

He
DU,1v

′
1 · · · He

DU,rv
′
r

]








a1
...

ar







. (4.10)

If r + 1 ≤ i ≤ l, a1 · · · ar are all random complex numbers; if 1 ≤ i ≤ r, a1 · · · ar are

all zeros except ai = 1.

Hence, based on (4.8), we can see that Pi must not be full rank and its null space

is vi = span{v′
i}. Therefore, by calculating (4.9), DUi can find the precoding vector

as vi = span{v′
i}.

On the other hand, if the DUi is not selected by the eNB, then Pi is just a

random matrix that has full rank almost surely. Therefore, since a non-zero solution
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of vi that satisfies (4.9) does not exist, those unselected DUs will not start the D2D

transmission.

• Step 4: Finally, DR designs its post processing matrix Ur to decode signals

from DUs. Let gi ∈ CNd×1 = Hr
DU,ivi be the equivalent channel from DUi to DR,

and G =
[

g1 · · · gl

]

, (4.4) can be written as

yr = P
1
2
d giti + G−i(t−i)

T +HP
1
2
c m+ zr (4.11)

where t =
[

t1 · · · tl

]

,m =
[

m1 · · · ms

]T

, andH =
[

Hr
CU,1u1 · · · Hr

CU,lus

]

.

G−i denotes the matrix G without the i-th column.

Then, Ur is designed to cancel the interference from other DUs, while treating

the interference from cellular links as noise. Specifically, let uj ∈ C1×Nd denotes the

j-th row of Ur, i.e., Ur =
[

uT
1 · · · uT

l

]T

. uj is designed as the null-space of

G−j ∈ CNd×(l−1), i.e.,

uj · G−j = 0 (4.12)

Since l ≤ Nd, we have l− 1 < Nd for sure, which means uj can be found for sure.

As a result, the received signal of DUj can be expressed as

yj = ωjP
1
2
d tj + P

1
2
c ujHm+ ujzr, j = 1, · · · , l (4.13)

where ωj = ujgj .

4.3.2 Performance of Cellular Network

We first study the performance of cellular links. Specifically, we investigate the outage

probability of each cellular link, which is defined as the probability of event that ρi

is lower than a predetermined threshold α, where ρi denotes the signal-to-noise ratio

(SNR) of the link of CUi. Note that based on the proposed scheme, the interference

signals from DUs are all aligned in the orthogonal space of cellular links, which means

there is no interference at each cellular link.
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Theorem 4.2 In a cellular uplink network underlaying a D2D LAN, based on the

proposed ‘interference-free’ IA scheme, the outage probability of each cellular link is

Pout = Pr[ρi ≤ α] = 1− 1
α
Pc

+ 1
(4.14)

Proof : Since the interference is completely nulled, the received signals on eNB

can be written as (4.2). Hence, the SNR of CUi, ρi can be expressed as

ρi =
Pc|λi|2
|z′e(i)|2

= Pc

|DeH
e
CU,iui(i)|2

|Deze(i)|2
(4.15)

where DeH
e
CU,iui(i) and Deze(i) denotes the i-th row of vector DeH

e
CU,iui and Deze,

respectively.

Let yi = Deze(i). Since both De and ui are unitary (each of them is the null space

of a matrix), λi and yi follow the same distribution as the elements in He
CU,i and ze,

respectively. Hence, both λi and yi have complex normal distribution with zero mean

and unit variance, which means both |λi|2 and |yi|2 have exponential distributions,

i.e., |λi|2 ∼ exp(1) and |yi|2 ∼ exp(1). Therefore, the probability density function

(pdf) of Z = |λi|
2

|yi|2
is

fZ(z) =
1

(z + 1)2
, for z ≥ 0 (4.16)

Accordingly, the pdf of ρi = Pc · Z is

fρi(z) =
1

Pc(
z
Pc

+ 1)2
, for z ≥ 0 (4.17)

Finally, the outage probability of CUi can be calculated as

Pout = Pr[ρi ≤ α] =

∫ α

0

fρi(z)dz = 1− 1
α
Pc

+ 1
(4.18)

4.3.3 Performance of D2D LAN

Next, we examine the outage probability of each D2D link. Let ρDj denote the SINR

of the link of DUj . The outage probability of the D2D link is Pr[ρDj ≤ β].
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Theorem 4.3 In a cellular uplink network underlaying a D2D LAN, based on the

proposed ‘interference-free’ IA scheme, the outage probability of each D2D link is

Pout = Pr[ρDj ≤ β] = 1− 1

(βPc

Pd
+ 1)s

(4.19)

Proof : Let pj ∈ C1×s = ujH. According to (4.13), the SINR at DR with a high

SNR approximation can be expressed as

ρDj =
Pd|ωj|2

Pcpjp
∗
j + |z′r|2

=
Pd|ωj|2

Pc

∑s

k=1 |pk|2 + |z′r|2

≈ Pd|ωj|2
Pcpjp∗

j + |z′r|2
=

Pd|ωj|2
Pc

∑s

k=1 |pk|2
(4.20)

where pk denotes the k-th element of pj .

Since ωj and pk all follow independent complex Gaussian distribution, based on

the results in [60], the pdf of ρDj can be expressed as

fρDj (x) =
Pc

Pd

s

(xPc

Pd
+ 1)(s+1)

, for x ≥ 0 (4.21)

The outage probability of the link of DUj is calculated as

Pout = Pr[ρDj ≤ β] =

∫ β

0

fρDj (x)dx = 1− 1

(βPc

Pd
+ 1)s

(4.22)

4.3.4 Discussion

The main advantage of this scheme is that the interference from DUs is completely

nulled at the eNB, and hence both cellular and D2D links can achieve the desired

performance by simply adjusting the power. As can be seen from (4.14), the outage

probability of each link of CU is only related to the power of CU, Pc. Further, in

D2D LAN, (4.19) implies that the outage probability of the link of DU will decrease

if the power of DU is increased. Hence, the DUs can adjust the power Pd to obtain

the required QoS without considering its impact on cellular links.

On the other hand, we should also note that this scheme may not be applicable if

the value of N ·r
N−Md

is small. For example, if N ·r
N−Md

≤ 1, then the D2D LAN will not

be active according to Theorem 1.
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4.4 Interference-limiting IA scheme

In this scheme, the DUs’ signals are allowed to occupy some links of CUs. However,

the peak interference power on each of the ‘interfered’ links must be under a certain

threshold γ.

4.4.1 Design Process

Three steps are involved in the design process. In Step 1, the eNB designs and

broadcasts the post-processing matrix De. In Step 2, each DU designs the precoding

vectors vi according to the received De. Each CU also designs precoding vector ui

as described in Section 4.2. In Step 3, some DUs are scheduled for transmission

according to some user selection criterion.

• Step 1: We simply design De as an antenna selection matrix i.e.,

De =
[

Is×s 0s×(N−s)

]

(4.23)

where Is×s denotes the s × s identity matrix and 0s×(N−s) denotes the s × (N − s)

matrix with all zeros. Then, the CUi can design ui accordingly to realize the parallel

channels on the first s antennas of eNB as shown in (4.2).

• Step 2: We describe the design of vi for DUi. From (4.3) we can see that the

j-th row of DeH
e
DU,i represents interference from DUi added on the j-th link of CUs.

Since vi ∈ C(Md×1), it can be designed as the null space of at most Md − 1 rows of

DeH
e
DU,i, so as to keep the corresponding links free from interference.

Assume that we want the first Md − 1 links to be interference free, vi can be

designed by satisfying

De(Md − 1)He
DU,i · vi = 0 (4.24)

where De(Md − 1) denotes the first Md − 1 rows of De.

• Step 3: Since all DUs design their signals to avoid interfering the first Md − 1

links of CUs, it is equivalent to aligning the interference on to the rest s −Md + 1
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links of CUs. The received signal from DUi on eNB can be written as

DeH
e
DU,iviP

1
2
d ti

=
[

01×(Md−1) ϑi
Md
· · · ϑi

s

]T

P
1
2
d ti (4.25)

where ϑi
k is a complex number that represents the interference from DUi on the k-th

link of eNB. Accordingly, the interference power generated on eNB’s kth link by DUi

can be calculated as |ϑi
k|2Pd.

Let γ denote the interference constraint on each link of CU, which can be de-

termined according to the requirement of cellular network. The DUi will become a

qualified DU if the following condition is satisfied,

|ϑi
k|2Pd ≤

γ

Nd

, ∀k = Md, · · · , s (4.26)

Then, DR will select l ≤ Nd qualified DUs to start transmission. When there

are a large number of DUs, the active DUs can be selected based on their equivalent

channels with the semi-orthogonal user selection (SUS) algorithm introduced in [37].

4.4.2 Performance of Cellular Network

We first examine the performance of cellular network. Note that with this scheme, the

first Md − 1 links of CUs are free from interference. Therefore, they have the same

performance as ‘interference-free’ IA scheme. Next, we focus on those ‘interfered’

links of CUs. Let φk denote the SINR of the k-th links of CUs, where k ≥ Md, we

have the following Theorem,

Theorem 4.4 In a cellular uplink network underlaying a D2D LAN, based on the

proposed ‘interference-limiting’ IA scheme, the outage probability of each ‘interfered’

cellular link is

Pout = Pr[φk ≤ α]

= 1− (1 +
α

Pc

)−1 · (1− e−γ′

)−Nd ·

(1 +
Pdα

Pc

)−Nd(1− e−γ′(
Pdα

Pc
+1))Nd (4.27)
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where γ′ = γ

PdNd
.

The proof is given in Appendix A.

4.4.3 Performance of D2D LAN

Note that in this scheme, only those DUs who can satisfy (4.26) are qualified to start

D2D transmission. Hence, we first examine the number of qualified DUs for a certain

threshold of a cellular link.

Proposition 4.1 For the D2D LAN with K DUs underlaying a cellular uplink, given

the interference constraint γ at each link of CU, the number of qualified DUs is

Nq = K · pq ≈ K · (1− e−γ′

)(s−Md+1) (4.28)

where pq denotes the probability of a DU being qualified.

The proof is in Appendix B.

As can be seen, the value of Nq is related to γ and s−Md. First, it is obvious that

when the interference threshold is increased, more DUs will be allowed to transmit.

In addition, we can see that with less links of CUs in the network (smaller s), more

DUs are qualified for transmission.

Next, we study the performance of D2D LAN. Let gi ∈ CNd×1 = Hr
DU,ivi denote

the equivalent channel from DUi to DR, the received signals on DR can be expressed

as

yr =
[

g1 · · · gl

]

︸ ︷︷ ︸

G∈CNd×l

P
1
2
d t+ qc + zr (4.29)

where t =
[

t1 · · · tl

]T

, qc =
∑s

i=1H
r
CU,iuiP

1
2
c mi, and zr denotes the noise on DR.

Since l ≤ Nd, the signal t can be decoded with a zero-forcing filter G−1, which

leads to

y′
r = P

1
2
d t+ G−1(qc + zr) (4.30)
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Then, the rate of D2D LAN can be expressed as

Rr = log2 det(I+
GG∗

(qc + zr)(qc + zr)∗
) (4.31)

Note that the equivalent model in (4.29)-(4.31) is the same as that of in [38].

Hence, it can be proved in the same way as in [38] that the sum rate of D2D LAN

scales as Nd log2(1 + log(Nq)), which means the performance of the network can be

improved by taking advantage of multiuser diversity.

4.4.4 Discussion

As we can see, in this scheme, the number of active DUs is limited by l ≤ min{Nd, Nq}.
Hence, as long as Nq ≥ Nd, the number of active DUs can reach maximum. In

addition, if there are a large number of DUs, this scheme can take advantage of

multiuser diversity to improve the performance of D2D LAN.

4.5 Simulation Results

In this section, we examine the simulation performance of the networks.

Fig. 4.2 and Fig. 4.3 show the theoretical and simulation results of outage prob-

abilities of each link of CU and DU with the use of ‘interference-free’ IA scheme,

respectively, where the x-axis is the threshold of SINR in dB. We set N = 5, Nd = 4,

and M = Md = 3. Three CUs communicate with eNB, i.e., s = 3. Meanwhile,

four DUs communicate with DR, whose signals are aligned in the two-dimensional

orthogonal space of links of CUs at eNB. In addition, the transmitting power of CU

is set to 10dB or 15dB and the power of DU is set to 20dB or 25dB. The theoretical

results are obtained from (4.14) and (4.19) for cellular link and D2D link, respectively.

We can see that the simulation results are matched almost perfectly with theoretical

results. The outage probability of each link decreases when their transmitting power

is increasing. Moreover, the outage probability of the link of CU remains the same
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Figure 4.2Outage probability of cellular link with ‘interference-free’ IA
scheme.

for different transmitting power on DU. This is because the interference signals from

DU are completely nulled at links of CUs.

Fig. 4.4 shows the number of qualified DUs in the application of ‘interference-

limiting’ IA scheme. Specifically, it depicts the growth of the number of qualified

DUs with an increase of total DUs, under different threshold γ. In the simulation,

we set three CUs communicating with eNB, i.e., s = 3. In addition, each DU designs

the precoding vector such that the interference signal does only affect the third link

of CU. Then, the DU who can satisfy (4.26) is selected as a qualified user. The

theoretical results are obtained from (4.28). As we can see, the theoretical results are
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Figure 4.3Outage probability of D2D link with ‘interference-free’ IA scheme.

matched with simulation results perfectly. Hence, Proposition 4.1 is verified in the

figure. For instance, the number of qualified users increases almost linearly with the

increase of total number of DUs. In addition, higher threshold leads to more qualified

DUs because the probability of a DU satisfying (4.26) becomes higher.

Fig. 4.5 shows the simulation results and theoretical results of the outage prob-

ability of each interfered cellular link with ‘interference-limiting’ IA scheme, under

different interference threshold γ. The system model in this simulation is the same as

that in Fig. 4.4. The theoretical result is obtained according to (4.27). As we can see,

the outage probability of the interfered cellular link increases when the interference

threshold increases. This is because more interference power is allowed on the cellular
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Figure 4.4Number of qualified D2D users.

link.

Finally, in Fig. 4.6 we study the sum rate of the D2D LAN achieved with

‘interference-limiting’ schemes, under different transmitting power of DU and differ-

ent number of DUs. We set M = Md = 3 and N = Nd = 4. Three CUs communicate

with the eNB, i.e., s = 3. In ‘interference-limiting’ IA scheme, SUS algorithm [37] is

used to select active DUs from qualified DUs. Hence, the sum rate of D2D LAN can

be calculated according to (4.31). Note that with ‘interference-limiting’ IA scheme,

at most four DUs can be selected. As can be seen, ‘interference-limiting’ IA scheme

can take advantage of multiuser diversity. When there are a large number of DUs,
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Figure 4.5Outage probability of each interfered cellular link.

the performance of D2D LAN can be largely improved.

4.6 Summary

In this paper, we investigated IA in D2D LAN underlaying a cellular uplink, where

multiple DUs intend to communicate with a D2D receiver. Two schemes were pro-

posed to effectively manage the mutual interference between the two networks for

different scenarios. ‘Interference-free’ IA scheme is applicable when the number of



4.6 Summary 93

50 100 150 200 250 300 350 400 450 500
1

2

3

4

5

6

7

8

Number of total D2D users

S
u
m

 r
a
te

 o
f 

D
2
D

 L
A

N
 [

b
it
s
/s

e
c
/H

z
]

‘Interference−limiting’ IA scheme, P
d
=5dB.

‘Interference−limiting’ IA scheme, P
d
=10dB.

‘Interference−limiting’ IA scheme, P
d
=15dB.
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DUs is small and the cellular links are not fully occupied, whereas ‘Interference-

limiting’ IA scheme can be used in other cases. The performance of cellular and D2D

networks with both schemes were analyzed. The theoretical results were corroborated

by simulations.

Appendix A: Proof of Theorem 4.4

The SINR of the k-th link of CUs can be expressed as

φk =
Pc|λk|2

|z′e(k)|2 + Pd

∑Nd

i=1 |ϑi
k|2

(4.32)



4.6 Summary 94

First, we let Λ, Z, and Θi denote |λk|2, |z′e(k)|2 and |ϑi
k|2, respectively, where their

PDF is regardless of index k. In other words, they are i.i.d. for all k. Hence, (4.32)

can be written as

φk =
PcΛ

Z + Pd

∑Nd

i=1Θi

(4.33)

Accordingly, the outage probability of the k-th ‘interfered’ link of CUs can be

expressed as follows,

Pout = Pr[φk ≤ α]

= Pr[Λ ≤ α

Pc

(Z + Pd

Nd∑

i=1

Θi)]

= 1− Pr[Λ >
α

Pc

(Z + Pd

Nd∑

i=1

Θi)] (4.34)

Since Λ has exponential distribution, i.e., Λ ∼ exp(1), (4.34) can be further written

as

Pout = 1− E{e− α
Pc

(Z+Pd

∑Nd
i=1 Θi)}

= 1− E{e− α
Pc

Z} ·
Nd∏

i=1

E{e−
αPd
Pc

Θi} (4.35)

= 1−
∫ +∞

0

e−
α
Pc

zfZ(z)dz ·
Nd∏

i=1

∫ γ′

0

e−
αPd
Pc

θfΘi
(θ)dθ

(4.36)

where γ′ = γ

PdNd
.

(4.35) is due to the fact that the variables Z and Θi for i = 1, · · ·Nd are inde-

pendent of each other. In addition, fZ(z) and fΘi
(θ) denote the PDF of variables Z

and Θi, respectively. Based on Theorem 4.2, it can be shown that Z has exponential

distribution, i.e., Z ∼ exp(1), which means

fZ(z) = e−z for z ≥ 0 (4.37)
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Next, we derive fΘi
(θ). Since Θi are i.i.d for i = 1, · · · , Nd, the index i of Θi is

omitted in the following discussions. Note that Θ is from 0 to γ′, the CDF of Θ is

FΘ(θ) =
1

1− e−γ′
(1− e−θ) for 0 ≤ θ ≤ γ′ (4.38)

which leads to

fΘ(θ) = F ′
Θ(θ) =

e−θ

1− e−γ′
(4.39)

Then, by taking (4.37) and (4.39) into (4.36), we can obtain (4.27).

Appendix B: Proof of Proposition 4.1

The interference constraint on each link is γ, which can be surely guaranteed by

limiting the interference generated by each DU to be less than γ

l
. Further, since

l ≤ Nd, we have (4.26) as the condition that should be satisfied for each selected DU,

which is equivalent to

|ϑi
k′|2 ≤ γ′, ∀k′ = Md,Md + 1, · · · , s (4.40)

where γ′ = γ

PdNd
.

Hence, the DU who can satisfy (4.40) is qualified for D2D communications with

DR. Let pi denote the probability of DUi satisfying (4.40), we have p1 = p2 = · · · =
pK = pq, which is equal to the probability of |ϑi

k′|2 ≤ γ′, ∀k′ = Md,Md + 1, · · · , s.
Further, since the CDF of |ϑi

k′|2 is given in (4.38) as Fϑ(x), we have

pq = [Fϑ(γ
′)]s−Md+1 = (1− e−γ′

)s−Md+1 (4.41)

Finally, the average number of qualified users satisfying the interference constraint

is Nq ≈ K(1− e−γ′

)s−Md+1.



Chapter 5

Conclusion and Future Work

5.1 Thesis Conclusion

Interference alignment techniques have been extensively studied from both theoretical

and practical perspectives. In the field of information theory, IA has been known as

a powerful tool to characterize the DoF of a variety of networks, which is an impor-

tant metric that can be used to approximate the capacity of network. In practical

field, IA can serve as an effective interference coordination mechanism to improve

the performance of communications. However, many problems still remain open in

theoretical research. In addition, it is challenging to integrate IA schemes into newly

emerged communication technologies. This thesis aims to solve some open problems

in the DoF characterization of MIMO X channels and interference channels, as well

as design IA-based interference management schemes.

In Chapter 2, a linear interference alignment framework in combination with asym-

metric complex signaling is proposed for MIMO X channels. It is shown that based on

the proposed scheme, the DoF of ⌊Douter⌋+ 1
2
can be achieved if Douter−⌊Douter⌋ ≥ 1

2
,

and ⌊Douter⌋ can be achieved otherwise, without the use of symbol extensions in time,

frequency, or space. Note that with conventional linear schemes that based on spa-

tial beamforming, the maximum achievable DoF equals ⌊Douter⌋. Our result shows
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that the technique of asymmetric complex signaling, which was originally proposed

for single-antenna systems, can provide DoF benefit for MIMO systems as well when

symbol extensions are not allowed.

In Chapter 3, the DoF region of three-user MIMO interference channel is in-

vestigated, where each transmitter and each receiver is equipped with MT and MR

antennas. The outer bound of DoF region was shown first. Then, a linear beamform-

ing scheme based on alignment chain was proposed, which can achieve all the integer

DoF inside the outer bound DoF region. This work completely solved the problem of

feasibility of IA in such three-user interference channels, Further, it provides a DoF

region that is tight in terms of integer DoF. Finally, the achievability of fractional

DoF within the outer bound region with the proposed scheme in combination with

symbol extension is also addressed.

In Chapter 4, IA techniques is investigated in the context of D2D LAN underlaying

a cellular uplink, where multiple DUs intend to communicate with a D2D receiver.

Two schemes were proposed to effectively manage the mutual interference between

the two networks for different scenarios. ‘Interference-free’ IA scheme is applicable

when the number of DUs is small and the cellular links are not fully occupied, while

‘Interference-limiting’ IA scheme can be used in other cases. The performance of two

networks with both schemes were analyzed. The advantages and limitations of two

schemes were discussed. The theoretical results were corroborated with simulations.

Performance analysis shows that based on the proposed schemes, the interference

generated on the cellular links is eliminated or well controlled, while the quality of

service of the D2D LAN can also be guaranteed.

5.2 Future Work

Apart from the problems addressed in this thesis, there are some interesting and

challenging topics to be investigated in the future.

• In this thesis, an outer bound DoF region of three-user interference channel is
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derived and further shown to be tight in terms of integer DoF. However, as

mentioned in Chapter 3, there is lack of a method to prove that all fractional

DoF in the region is achievable, we cannot claim that the region is tight. In

order to achieve fractional DoF, symbol extension must be used, which will

make the equivalent channel into a block diagonal form. The challenge is to

show that the equivalent channels with block diagonal form behave the same as

generic channels, especially under block fading channel conditions.

• Most IA techniques take advantage of distinct channel rotations by beamforming

at transmitters, which means the channel state information (CSI) is required

at transmitters. If we are only interested in the optimal DoF in theory, we can

simply assume that each transmitter has perfect CSI. However, in practice, the

CSI is usually estimated at receivers and then fed back to the transmitters [80],

which means the CSI at transmitters must be imperfect. Hence, it is interesting

and necessary to investigate the impact of imperfect CSI on the performance of

IA. In fact, there has been some works focusing on the scenarios where the CSI

at transmitters is perfect but outdated due to the channel variations [81–85]. On

the other hand, we should note that the feedback of CSI is usually expressed with

a sequence of binary bits, which means the received CSI is quantized instead

of original [86]. Hence, such quantized feedback of CSI can certainly bring

inaccuracy to the alignment, and hence lead to interference leakage [75, 87]. In

the future work, we will investigate the impact of quantized feedback on IA for

various communication networks, such as D2D communications.
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