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Abstract

This thesis investigates the small time asymptotics of solutions of stochastic equations in

infinite dimensions. In this abstract H denotes a separable Hilbert space, A denotes a

linear operator on H generating a strongly continuous semigroup and (W (t))t≥0 denotes

a separable Hilbert space-valued Wiener process.

In chapter 2 we consider the mild solution (Xx(t))t∈[0,1] of a stochastic initial value problem

dX = AX dt+ dW t ∈ (0, 1]

X(0) = x ∈ H ,

where the equation has an invariant measure μ. Under some conditions L(Xx(t)) has a

density k(t, x, ·) with respect to μ and we can find the limit limt→0 t ln k(t, x, y). For infinite

dimensionalH this limit only provides the lower bound of a large deviation principle (LDP)

for the family of continuous trajectory-valued random variables { t ∈ [0, 1] → Xx(εt) :

ε ∈ (0, 1]}.

In each of chapters 3, 4 and 5 we find an LDP which describes the small time asymptotics

of the continuous trajectories of the solution of a stochastic initial value problem. A crucial

role is played by the LDP associated with the Gaussian trajectory-valued random variable

of the noise.

Chapter 3 considers the initial value problem

dX(t) = (AX(t) + F (t,X(t))) dt+G(X(t)) dW (t) t ∈ (0, 1]

X(0) = x ∈ H,

where drift function F (t, ·) is Lipschitz continuous onH uniformly in t ∈ [0, 1] and diffusion

function G is Lipschitz continuous, taking values that are Hilbert-Schmidt operators.

Chapter 4 considers an equation with dissipative drift function F defined on a separable

Banach space continuously embedded in H; the solution has continuous trajectories in the

i



Banach space.

Chapter 5 considers a linear initial value problem with fractional Brownian motion noise.

In chapter 6 we return to equations with Wiener process noise and find a lower bound for

lim inft→0 t lnP{X(0) ∈ B,X(t) ∈ C} for arbitrary L(X(0)) and Borel subsets B and C

of H. We also obtain an upper bound for lim supt→0 t lnP{X(0) ∈ B,X(t) ∈ C} when

the equation has an invariant measure μ, L(X(0)) is absolutely continuous with respect

to μ and the transition semigroup is holomorphic.
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Chapter 1

Introduction

In section 1.1 we look at some of the literature on small time asymptotics of diffusion

processes which motivates this thesis. Section 1.2 is devoted to a list of notation. In

section 1.3 we outline the contents of the chapters. We end this chapter with a review of

some relevant theory.

1.1 Previous work motivating this thesis

The theme of this thesis is the small time asymptotics of solutions of stochastic differential

equations in a separable real Hilbert space. Let H be a separable Hilbert space. Consider

the stochastic initial value problem

dX(t) = (AX(t) + F (t,X(t))) dt+G(t,X(t)) dW (t) , t ∈ (0, 1],

X(0) = ξ ,

}
(1.1)

where A is the infinitesimal generator of a strongly continuous semigroup (S(t))t≥0 of

bounded linear operators on H, F is a H-valued function on [0, 1] × H, G is a Hilbert-

Schmidt operator-valued function on [0, 1] × H, (W (t))t≥0 is a separable Hilbert space-

valued Wiener process defined on a probability space (Ω,F , P ) with associated filtration

(Ft)t≥0 and ξ is an H-valued F0-measurable random variable. Details on the properties of

A, F , G, ξ and the image space of W (t) are omitted for the time being. The mild solution

of problem (1.1) is defined to be the solution of the equation

X(t) = S(t)ξ +

∫ t

0
S(t− s)F (s,X(s)) ds+

∫ t

0
S(t− s)G(s,X(s)) dW (s) P a.e. (1.2)
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for each t in [0, 1]. Of course the properties of A, F , G, ξ and the solution process itself

must allow the Bochner integral and Itô integral on the right hand side of equation (1.2) to

exist. Typically one uses tools of analysis such as a fixed point theorem on an appropriate

function space to show that the mild solution exists and is unique and has a version with

continuous trajectories. Even when we know existence, uniqueness and continuity of the

mild solution, it is generally hard to quantify the behaviour of the solution at positive

times t because the distributions involved are complicated. Thus it is a consolation that

there may be a relatively simple estimate of the limiting behaviour of the solution in time

interval [0, t] as t goes to zero.

Varadhan [31] was one of the pioneers in small time asymptotics of diffusion processes. He

studied the small time asymptotics of diffusion processes in Rn, for n a natural number.

In [31] Varadhan considered the solution (zζ(t))t∈[0,1] of a stochastic initial value problem

dz(t) = b(z(t)) dt+ σ(z(t)) dB(t) , t ∈ (0, 1],

z(0) = ζ ∈ Rn ,

where (B(t))t≥0 is a Brownian motion in Rk for some natural number k and, among other

conditions,

1. the function b : Rn → Rn is Hölder continuous and bounded,

2. σ is a real n × k matrix-valued function on Rn such that for some positive real

numbers α1 < α2 we have

α1

n∑
j=1

η2
j ≤

n∑
i=1

n∑
j=1

(σ(x)σ∗(x))ij ηjηi ≤ α2

n∑
j=1

η2
j ∀(η1, . . . , ηn) ∈ Rn and ∀x ∈ Rn

and

3. the distribution of zζ(t) has density y �→ p(t, ζ, y) with respect to Lebesgue measure

on Rn for each t ∈ (0, 1].

To simplify notation set a(x) := σ(x)σ∗(x) for all x ∈ Rn. For x and y in Rn define

d(x, y) := inf

{∫ 1

0

√
〈u̇(τ), a−1(u(τ))u̇(τ)〉Rn dτ : u : [0, 1]→ Rn is

absolutely continuous with derivative u̇ and u(0) = x and u(1) = y

}
; (1.3)
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in this equation 〈·, ·〉Rn is the usual inner product in Rn. Varadhan showed that

lim
t→0

t ln p(t, x, y) = −1

2
d2(x, y) , (1.4)

where the convergence is uniform in x and y on bounded subsets of Rn.

For each ε ∈ (0, 1] set zε
ζ(t) := zζ(εt) for all t ∈ [0, 1] and let zε

ζ be the random variable

whose values are the continuous trajectories in Rn of the process (zε
ζ(t))t∈[0,1]. Varadhan

used the limit in equation (1.4) to obtain a large deviation principle for the family of

distributions {L(zε
ζ) : ε ∈ (0, 1]} on the Banach space C([0, 1]; Rn) of continuous functions

mapping [0, 1] into Rn with the supremum norm. He showed that for closed subsets C of

C([0, 1]; Rn) we have

lim
r→0

sup
ε<r

ε lnP{zε
ζ ∈ C} ≤ − inf

u∈C
J (u)

and for open subsets G we have

lim
r→0

inf
ε<r

ε lnP{zε
ζ ∈ G} ≥ − inf

u∈G
J (u).

In these inequalitites P is the probability measure in the underlying probability space and

the rate function is

J (u) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

∫ 1
0 〈u̇(τ), a−1(u(τ))u̇(τ)〉Rn dτ if u : [0, 1]→ Rn is absolutely continuous

and u(0) = ζ and u̇ is square integrable,

∞ for all other u ∈ C([0, 1]; Rn).

(1.5)

More recently, working in infinite dimensional separable Hilbert spaces, Fang and Zhang [13]

followed the same line of investigation as Varadhan. The framework of Fang and Zhang

is as follows:

1. there are two Hilbert spaces H and H1 such that the embedding of H into H1 is

Hilbert-Schmidt and

2. there is a linear operator A on H which is the infinitesimal generator of a strongly

continuous semigroup of bounded linear operators on H and

3. (W (t))t≥0 is a H1-valued Wiener process such that the reproducing kernel Hilbert

space (Hν , |·|Hν ) of ν := L(W (1)) is continuously embedded inH and the embedding
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of Hν in H1 is trace class.

Fang and Zhang showed that the short time asymptotics of the continuous solution of the

equation

dY = AY dt+ dW , t ∈ (0, 1], (1.6)

Y (0) = x ∈ H1

is described by a large deviation principle in trajectory space C([0, 1];H1) with the same

rate function as the large deviation principle describing the short time asymptotics of

the shifted Wiener process (x +W (t))t∈[0,1]. Fang and Zhang implicitly made use of the

exponential equivalence concept from large deviations theory.

In the paper [13] Fang and Zhang also considered the situation where there exists an

invariant measure μ on H1 for equation (1.6) and the transition operators on the space of

real-valued square integrable functions L2(H1, μ) are symmetric. Under these conditions

Fang and Zhang studied the small time limiting behaviour of P{Y (0) ∈ B, Y (t) ∈ C},
where P is the probability measure in the underlying probability space, (Y (t))t∈[0,1] is the

mild solution of equation (1.6) with initial distribution μ and B and C are Borel subsets

of H1.

Working in a more abstract setting, Hino and Ramirez [17] were able to better Fang’s and

Zhang’s upper bound for lim supt→0 t lnP{Y (0) ∈ B, Y (t) ∈ C} by obtaining an upper

bound for P{Y (0) ∈ B, Y (t) ∈ C} which holds at all times t in (0, 1]. While Fang’s

and Zhang’s upper bound was derived using a property specific to symmetric Markov

processes, Hino’s and Ramirez’s approach used the basic theory of Dirichlet forms.

Zhang [33] continued the investigation started in [13]. In [33] the embedding of H into H1

is still Hilbert-Schmidt but the embedding of Hν into H1 need not be trace class. Zhang

obtained a large deviation principle in trajectory space C([0, 1];H1) describing the small

time asymptotics of the mild solution (Yx(t))t∈[0,1] of an initial value problem:

dY (t) = (AY (t) + F (Y (t))) dt + G(Y (t)) dW (t) , t ∈ (0, 1],

Y (0) = x ∈ H1.

Here the diffusion function G takes values in L2(Hν , H), the space of Hilbert-Schmidt

operators mapping Hν into H, and is Lipschitz continuous and bounded and the drift

function F is Lipschitz continuous. For each ε ∈ (0, 1] set Y ε
x (t) := Yx(εt) for all t in [0, 1]

and denote by Y ε
x the corresponding trajectory-valued random variable in C([0, 1];H1).
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Zhang proved that the family {Y ε
x : ε ∈ (0, 1]} satisfies a large deviation principle with

rate function

I(u) :=
1

2
inf

{∫ 1

0
|φ(s)|2Hν

ds : φ : [0, 1]→ Hν is square integrable and

u(t) = x+

∫ t

0
G(u(s))φ(s) ds for all t ∈ [0, 1]

}
.

Zhang’s proof uses the exponential equivalence concept explicitly and the Hilbert-Schmidt

embedding of H into H1 plays an important role. Zhang’s result is particularly impressive

because the diffusion function G depends on the state; this makes the task of relating

the small time behaviour of (Yx(t)) to that of (W (t)) considerably harder. Note that

if the trajectories of (Yx(t)) lie in C([0, 1];H) then Zhang’s large deviation principle in

C([0, 1];H1) does not automatically imply that a large deviation principle also holds in

C([0, 1];H).

1.2 Common notation

In each of the following chapters we define notation whose scope is restricted to that

chapter. However, there are some notational conventions common to all the chapters;

these we list below. In the list (E, ‖ · ‖) and (E1, ‖ · ‖1) are separable Banach spaces,

(H, 〈·, ·〉, |·|) and (H1, 〈·, ·〉1, |·|1) are separable Hilbert spaces, (M,M, μ) and (M1,M1, μ1)

are measure spaces and X is a topological space.

1. Asterisk superscript The asterisk superscript ∗ has two different meanings.

E∗ denotes the Banach space of continuous linear functionals on E with norm

‖l‖E∗ := sup{|l(x)| : x ∈ E and ‖x‖ = 1} ∀l ∈ E∗.

If l ∈ E∗ we write

E∗〈l, x〉E := l(x) for all x ∈ E.

If T is a linear operator mapping a dense subspace of H into H1 then T ∗ denotes

the adjoint operator, that is,

〈Tx, y〉H1 = 〈x, T ∗y〉H

for all x in the domain of T and for all y in the domain of T ∗.
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2. Balls For any point x ∈ E and positive real r we define

BE(x, r) := {y ∈ E : ‖y − x‖ < r} and

BE(x, r) := {y ∈ E : ‖y − x‖ ≤ r}.

If K is a subset of E and r is a positive real number we define

BE(K, r) :=
⋃

x∈K

BE(x, r).

3. Borel σ-algebra We denote the Borel σ-algebra of X by BX .

4. Closure of a set If S is a subset of X then the closure of S is denoted by S.

5. Spaces of continuous functions If a and b are real numbers and a < b then (C([a, b];E), ‖·
‖C([a,b];E)) is the Banach space of continuous functions mapping [a, b] into E with

the supremum norm

‖f‖C([a,b];E) := sup
t∈[a,b]

‖f(t)‖ for all f ∈ C([a, b];E).

6. More spaces of continuous functions If O is a bounded open subset of Rn, where n

is a natural number, then

C∞c (O) denotes the set of all continuous functions which map O into R and have

compact support contained in O and have continuous partial derivatives of all orders;

C0(O) is the set of all continuous real-valued functions defined on O and vanishing

on the boundary of O. This set equipped with the supremum norm is a Banach

space.

7. A continuous linear functional on C([0, 1];E) If t ∈ [0, 1] and l is a continuous linear

functional on E then we define

(δt ⊗ l)(u) := l(u(t)) for all u ∈ C([0, 1];E);

if x ∈ H we define

(δt ⊗ x)(u) := 〈u(t), x〉 for all u ∈ C([0, 1];H).

8. Domains If A is a linear operator on H or a bilinear form on H we denote the linear

6



subspace of H on which A is defined by D(A).

9. Embedding If E is continuously embedded in E1 we write

E ↪→ E1.

10. Identity operator IE denotes the identity operator on E.

11. Indicator function If B is a set in the σ-algebra M then

1B(x) :=

{
1 if x ∈ B,
0 if x ∈M\B.

12. Kernel If T : E → E1 is a bounded linear operator then the kernel of T is denoted

by

kerT := {x ∈ E : Tx = 0}.

13. Law or distribution If Z is a random variable then L(Z) denotes the distribution of

Z.

14. Bounded linear operators (L(E,E1), ‖·‖L(E,E1)) denotes the Banach space of bounded

linear operators mapping E into E1 with the operator norm

‖T‖L(E,E1) := sup{‖Tx‖1 : x ∈ E and ‖x‖ = 1} for all T ∈ L(E,E1).

15. Linear operators that are Hilbert-Schmidt (L2(H,H1), 〈·, ·〉L2(H,H1), ‖ · ‖L2(H,H1)) de-

notes the Hilbert space of Hilbert-Schmidt operators mapping H into H1 with inner

product

〈T, S〉L2(H,H1) :=
∞∑

k=1

〈Tek, Sek〉1 , S and T ∈ L2(H,H1),

where {ek : k ∈ N} is any orthonormal basis of H.

16. Lp spaces If p ∈ [1,∞) then (Lp(M,M, μ; H), ‖ · ‖Lp(M,M,μ; H)) denotes the Banach

space of measurable functions u : (M,M) → (H,BH) such that
∫
M |u(x)|p dμ(x) <

∞ and we define

‖u‖Lp(M,M,μ; H) :=

(∫
M
|u(x)|p dμ(x)

) 1
p

for all u ∈ Lp(M,M, μ; H);

7



strictly speaking we refer to the space of equivalence classes of functions which are

equal μ a.e.. We write Lp(M,M, μ) when the image space of the functions is R.

When the σ-algebra M or the measure μ are obvious we sometimes omit them from

the symbol as well.

L∞(M,M, μ) denotes the set of (equivalence classes of μ a.e. equal) measurable

functions u : (M,M)→ (R,BR) such that the essential supremum of |u| with respect

to μ is finite.

17. Orthogonal complement If U is a subset of H then

U⊥ := {x ∈ H : 〈x, u〉 = 0 for all u ∈ U}

is the orthogonal complement of U .

18. Product σ-algebra and product measure M⊗M1 denotes the product σ-algebra of

subsets of the cartesian product M ×M1 and μ × μ1 denotes the product measure

on M⊗M1 or some sub σ-algebra.

1.3 Summary of the chapters and our results

We now summarise the substance of the following chapters. In this section H denotes a

separable Hilbert space. To simplify notation, we overuse some notation where there is no

ambiguity.

In chapter 2 we consider the solution (Xx(t))t∈[0,1] of the initial value problem

dX = AX dt+ dW , t ∈ (0, 1], (1.7)

X(0) = x ∈ H ,

where the linear operator A onH generates a strongly continuous semigroup and (W (t))t≥0

is a H-valued Wiener process. We assume that equation (1.7) has an invariant measure

μ and that the transition semigroup on L2(H,μ) is symmetric and strongly Feller. Then

for each x in H and each t > 0 the distribution of the random variable Xx(t) is absolutely

continuous with respect to invariant measure μ and has a continuous Radon-Nikodym

derivative k(t, x, ·). We show that under some conditions the small time asymptotics of

the Radon-Nikodym derivative k(t, x, ·) resembles the asymptotics found by Varadhan

for p(t, ζ, ·); this is Proposition 2.2. Our conclusion is that one cannot simply adapt

8



Varadhan’s methods in Rn to find a large deviation principle in C([0, 1];H) for the short

time asymptotics of (Xx(t)).

In chapter 3 we find a large deviation principle in trajectory space C([0, 1];H) which

describes the small time asymptotics of the solution (Xx(t))t∈[0,1] of a stochastic initial

value problem in H:

dX(t) = (AX(t) + F (t,X(t))) dt+G(X(t)) dW (t) , t ∈ (0, 1],

X(0) = x ∈ H.

Here (W (t))t≥0 is a separable Hilbert space-valued Wiener process and ν := L(W (1))

has reproducing kernel Hilbert space Hν , A is the infinitesimal generator of a strongly

continuous semigroup of bounded linear operators on H, F : [0, 1] ×H → H is Lipschitz

continuous in H uniformly in [0, 1] and the diffusion function G : H → L2(Hν , H) is

Lipschitz continuous and not necessarily bounded.

There is no need to work in a Hilbert space containing H via a Hilbert-Schmidt embed-

ding, as Zhang [33] did. We follow the method which Peszat [25] originally employed

to obtain a large deviation principle describing the small noise asymptotics of solutions

of stochastic differential equations. To clarify the difference between our problem and

Peszat’s problem: in our small time asymptotics problem, for each ε ∈ (0, 1] we consider

the process (Xε
x(t))t∈[0,1] which is the continuous solution of

dXε(t) = ε(AXε(t) + F (εt,Xε(t))) dt+ ε
1
2G(Xε(t)) dW (t) , t ∈ (0, 1],

Xε(0) = x ∈ H;

in Peszat’s small noise asymptotics problem, for each ε ∈ (0, 1] Peszat considered the

process (Y ε
x (t))t∈[0,1] which is the continuous solution of

dY ε(t) = (AY ε(t) + F (t, Y ε(t))) dt+ ε
1
2G(Y ε(t)) dW (t) , t ∈ (0, 1],

Y ε(0) = x ∈ H.

We only need to make small modifications to each step of Peszat’s method. The fact

that we work just with Hilbert spaces, unlike Peszat who also had a more general Banach

space to deal with, makes the assumptions we need less restrictive compared to those

Peszat needed; however since the small time asymptotics problem puts the parameter ε

which goes to zero in front of the drift terms as well as the noise term in the stochastic

differential equation, the assumption we make about the strongly continuous semigroup
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generated by the unbounded linear operator A seems more restrictive. Our main result is

the large deviation principle in Corollary 3.4 for the family of C([0, 1];H)-valued random

variables

{(t ∈ [0, 1] �→ Xx(εt)(·)) : ε ∈ (0, 1]}.

In chapter 4 we study the small time asymptotics of the solution of a stochastic equation:

dX = (AX + F (X)) dt+ dW , t ∈ (0, 1],

X(0) = x ∈ E ,

}
(1.8)

whose dissipative nonlinear drift function F : E → E is defined in a separable Banach space

E continuously embedded inH. This drift function might, for example, arise in a stochastic

reaction-diffusion equation, the reaction rate being a decreasing polynomial function with

degree greater than one in the concentration andE being a space of continuous functions on

the bounded domain where the reaction is taking place. Fantozzi [14] investigated the small

noise asymptotics problem for this type of equation but, unlike in chapter 3, we cannot

simply modify the methods used in the small noise asymptotics problem to find a solution

for our small time asymptotics problem. Instead we use exponential equivalence to show

that if a large deviation principle in trajectory space C([0, 1];E) describes the small time

asymptotics of the Ornstein-Uhlenbeck process which is the solution of equation (1.8) with

F identically zero, then a large deviation principle with the same rate function describes

the short time asymptotics of the solution of equation (1.8) when F is nonzero. This is

Proposition 4.2. Proving a large deviation principle in C([0, 1];E) to describe the short

time asymptotics of the Ornstein-Uhlenbeck process is not as straightforward as one might

hope despite the fact that we are dealing with a family of Gaussian random variables in

C([0, 1];E) for which the large deviation principle in C([0, 1];H) is known. Working in

a general separable Banach space E is what complicates matters. To prove the large

deviation principle in C([0, 1];E) we assume that the Wiener process (W (t)) is E-valued.

We also impose an additional condition on the strongly continuous semigroup generated

by the unbounded linear operator A in order to ensure uniform tightness of a family of

Gaussian random variables in E. Our main result is Corollary 4.12.

In chapter 5 we need no new ideas to obtain a large deviation principle in trajectory

space C([0, 1];H) which describes the small time asymptotics of the solution of a stochas-

tic equation with unbounded linear drift on H and additive fractional Brownian motion

noise. Our framework is that of Duncan, Maslowski and Pasik-Duncan [12]. We employ

essentially the same method we used in the second half of the previous chapter for the Ba-
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nach space-valued Ornstein-Uhlenbeck process; our task is now simpler because we work

in a Hilbert space and the only difference compared to Wiener process noise is in the

technical details. The large deviation principle is in Theorem 5.1.

In chapter 6 we return to equations with Wiener process noise and study the small time

asymptotics of the probability of moving from one set to another P{X(0) ∈ B, X(t) ∈ C}.
If we have a lower bound for lim inft→0 t lnP{Xx(t) ∈ C} for all initial states x in H then

we can obtain a lower bound for lim inft→0 t lnP{X(0) ∈ B,X(t) ∈ C} when L(X(0)) is

arbitrary and B is any Borel subset of H. Our lower bound is in Theorem 6.1.

Our upper bound for P{X(0) ∈ B,X(t) ∈ C} in Theorem 6.3 applies when (X(t))t∈[0,1]

is an Ornstein-Uhlenbeck process and L(X(0)) is absolutely continuous with respect to

invariant measure μ and the semigroup of transition operators on L2(H,μ) is holomor-

phic. In the case when L(X(0)) = μ and the transition operators are symmetric our upper

bound agrees with the upper bound of Hino and Ramirez [17]. In fact we obtain Theo-

rem 6.3 by adapting the method Hino and Ramirez used. Compared to the upper bound

of lim supt→0 t lnP{X(0) ∈ B,X(t) ∈ C} when the transition semigroup is symmetric, the

upper bound when the transition semigroup is holomorphic is increased by a factor which

depends on how nonsymmetric the transition semigroup is.

All of the propositions, theorems and corollaries we have referred to in this section contain

results that appear to be new.

1.4 Some background theory

In this section we remind the reader of some theory which will be used in the following

chapters. No proofs are given; the books by Da Prato and Zabczyk [10] and [11] provide

a comprehensive development of the theory. Throughout this section let (E, ‖ · ‖) be a

separable Banach space and let (H, 〈·, ·〉, | · |) and (H1, 〈·, ·〉1, | · |1) be separable Hilbert

spaces and let (Ω,F , P ) be a probability space.

1.4.1 Gaussian measures on a separable Banach space

Let ν be a probability measure on the measurable space (E,BE). The measure ν is

symmetric Gaussian if and only if each continuous linear functional l ∈ E∗, considered as

a random variable on (E,BE , ν), has symmetric Gaussian distribution νl−1 on (R,BR). A

fundamental property of symmetric Gaussian measures on (E,BE) is stated in Fernique’s

theorem.
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Theorem 1.1 (Fernique’s theorem. See [10, Theorem 2.6] for a proof) If ν is a

symmetric Gaussian measure on (E,BE) and λ > 0 and r > 0 satisfy

ln

(
1− ν(BE(0, r))

ν(BE(0, r))

)
+ 32λr2 ≤ −1

then ∫
E

eλ‖x‖2 dν(x) ≤ e16λr2
+

e2

e2 − 1
.

If ν is symmetric Gaussian then its covariance operator Q is the positive definite and

symmetric bounded linear operator from E∗ into E such that∫
E

E∗〈l1, x〉E E∗〈l2, x〉E dν(x) = E∗〈l2, Ql1〉E ∀l1, l2 ∈ E∗;

that this definition makes sense follows from Fernique’s theorem. Hence the characteristic

function of symmetric Gaussian ν is

ν̂(l) :=

∫
E

ei E∗〈l,x〉E dν(x) = e−
1
2 E∗〈l,Ql〉E ∀l ∈ E∗.

Since a probability measure on (E,BE) is uniquely determined by its characteristic func-

tion, a symmetric Gaussian measure on (E,BE) is uniquely determined by its covariance

operator. The convolution of the point mass at x ∈ E and a symmetric Gaussian mea-

sure on (E,BE) is a Gaussian measure with mean x and with covariance operator of the

symmetric Gaussian measure.

If ν is symmetric Gaussian there is a unique Hilbert space Hν such that the embedding

i : Hν → E is continuous and∫
E

E∗〈l, x〉2E dν(x) = ‖l ◦ i‖2H∗ν for all l ∈ E∗.

Hν is called the reproducing kernel Hilbert space of ν. Further details on reproducing

kernel Hilbert spaces can be found in [10, Section 2.2.2].

Now let ν be a symmetric Gaussian measure on (H1,BH1). In the Hilbert space setting we

modify the definition of the covariance operator: the covariance operator of ν is defined

to be the bounded linear operator Q on H1 such that∫
H1

〈x, u〉1〈x, v〉1 dν(x) = 〈Qu, v〉1 ∀u, v ∈ H1.
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The family of covariance operators of symmetric Gaussian measures on (H1,BH1) is pre-

cisely the family of positive definite, symmetric, trace class operators on H1. Thus Q
1
2 is

a well defined positive definite, symmetric, Hilbert-Schmidt operator on H1 and one can

show using [10, Proposition B.1] that Hν = Q
1
2 (H1) and the norm | · |Hν in Hν is given by

|u|Hν = |Q− 1
2u|1, where Q−

1
2 (u) is taken as the element of Q−

1
2 {u} which belongs to the

orthogonal complement of the kernel of Q
1
2 .

1.4.2 The stochastic integral with respect to a Wiener process

Let ν be a symmetric Gaussian measure on (H1,BH1) with covariance operator Q and let

(W (t) : (Ω,F , P ) → (H1,BH1))t≥0 be a Q-Wiener process; this means that

1. W (0) = 0 P a.e.,

2. L(W (t)−W (s)) is symmetric Gaussian with covariance operator (t− s)Q whenever

0 ≤ s < t,

3. W (t1)−W (t0), . . . ,W (tn)−W (tn−1) are independent whenever n ≥ 2 and 0 ≤ t0 <

t1 < · · · < tn

4. and the trajectories t �→W (t)(ω), ω ∈ Ω, are continuous H1-valued functions.

Associated with (W (t))t≥0 is a filtration (Ft)t≥0 such that W (t) is Ft-measurable for each

t ≥ 0 and W (t) − W (s) is independent of Fs whenever 0 ≤ s < t. Set Z := {B ∈
F : P (B) = 0} and for each t ≥ 0 set Gt := σ(W (r) : r ∈ [0, t]), that is, the σ-algebra

generated by the random variables W (r) for all r ∈ [0, t]. In this thesis we may take

Ft = σ(Z ∪ Gt) for each t ≥ 0. If we require the filtration (Ft)t≥0 to be right continuous

we may take Ft := ∩∞n=1σ(Z ∪ Gt+ 1
n
) for each t ≥ 0. We specify the filtration only when

it is important for the analysis.

Fix a positive real number T . The (Ft)-predictable σ-algebra of subsets of [0, T ]×Ω, PT ,

is generated by sets of the form {0}×B, where B ∈ F0 and (a, b]×B, where 0 ≤ a < b ≤ T

and B ∈ Fa.

Let Hν be the reproducing kernel Hilbert space of ν and denote the embedding of Hν into

H1 by i. An elementary process is a finite linear combination of terms of the form

1(a,b]×BSi

where 0 ≤ a < b ≤ T and B ∈ Fa and S is a bounded linear operator mapping H1 into H.

Note that Si is a Hilbert-Schmidt operator mapping Hν into H. One can show that the
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elementary processes form a dense subspace of L2([0, T ]×Ω,PT , λ×P ;L2(Hν , H)), where

λ is Lebesgue measure on B[0,T ] and λ × P is the product measure of λ and P restricted

to PT . Any elementary process can be written in the form

Φ(s, ω) =
n−1∑
k=0

1(tk,tk+1](s)Φk(ω) ◦ i, (1.9)

where n is a natural number and 0 = t0 < t1 < · · · < tn = T and for each k from 0 to

n− 1, Φk is a Ftk -measurable simple function in L(H1, H). For the elementary process Φ

in equation (1.9) and each t ∈ [0, T ] we define the Ito integral

∫ t

0
Φ(s) dW (s) :=

n−1∑
k=0

Φk(W (tk+1 ∧ t)−W (tk ∧ t)). (1.10)

The process (
∫ t
0 Φ(s) dW (s))t∈[0,T ] is a continuous square integrable martingale in H and

we have

E

[∣∣∣∣∫ T

0
Φ(s) dW (s)

∣∣∣∣2
]

= E

∫ T

0
‖Φ(s)‖2L2(Hν ,H) ds.

Equation (1.10) is a linear isometry from a dense subspace of L2([0, T ] × Ω,PT , λ ×
P ;L2(Hν , H)) into the space of continuous square integrable martingales and we define

the stochastic integral of an arbitrary process in L2([0, T ] × Ω,PT , λ × P ;L2(Hν , H)) by

extending the domain of the isometry.

If Φ : ([0, T ]× Ω,PT ) → (L2(Hν , H),BL2(Hν ,H)) is measurable and satisfies

P

{∫ T

0
‖Φ(s)‖2L2(Hν ,H) ds <∞

}
= 1

then the stochastic integral of Φ with respect to W can be defined by the localization

procedure. For details see the localization lemma [10, Lemma 4.9] and the paragraph

following that lemma.

1.4.3 Stochastic convolution and Ornstein-Uhlenbeck process

The definitions of the previous subsection hold in this subsection. Let A : D(A) ⊂ H → H

be the infinitesimal generator of a strongly continuous semigroup (S(t))t≥0 of bounded

linear operators on H. If Φ : ([0, T ] × Ω,PT ) → (L2(Hν , H),BL2(Hν ,H)) is a measurable
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function then the stochastic convolution process is the process of Itô integrals∫ t

0
S(t− s)Φ(s) dW (s) for all t ∈ [0, T ],

provided the Itô integrals exist. Stochastic convolution processes are of interest to us

because one appears in the definition of the mild solution of a stochastic initial value

problem.

Let

F : ([0, T ]×H,B[0,T ] ⊗ BH) → (H,BH)

and

G : ([0, T ]×H,B[0,T ] ⊗ BH) → (L2(Hν , H),BL2(Hν ,H))

be measurable functions and let ξ be a F0-measurable H-valued random variable. By

definition, the mild solution (Xξ(t))t∈[0,T ] of the initial value problem

dX(t) = (AX(t) + F (t,X(t))) dt+G(t,X(t)) dW (t) , t ∈ (0, T ],

X(0) = ξ

satisfies the integral equation

X(t) = S(t)ξ +

∫ t

0
S(t− s)F (s,X(s)) ds+

∫ t

0
S(t− s)G(s,X(s)) dW (s) P a.e.

for each t ∈ [0, T ]. Thus the limiting behaviour of stochastic convolution processes is an

important consideration when studying the small time behaviour of mild solutions.

We can simplify the analysis by focusing on the initial value problem where (W (t))t≥0 is

a H-valued Wiener process, F is identically zero and G is the embedding i of Hν into H:

dX = AX dt+ dW , t ∈ (0, T ], (1.11)

X(0) = ξ.

Notice that, by convention, the operator i is omitted from equation (1.11). The mild

solution of this initial value problem is an Ornstein-Uhlenbeck process:

Xξ(t) := S(t)ξ +

∫ t

0
S(t− s)i dW (s) , t ∈ [0, T ].

From the definition of the Itô integral,
∫ t
0 S(t− s)i dW (s) has symmetric Gaussian distri-
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bution with covariance operator

Qtx :=

∫ t

0
S(s)QS(s)∗x ds , x ∈ H.

We say that a probability measure μ is an invariant measure of a stochastic differential

equation if the mild solution with initial distribution μ also has distribution μ at all times

t > 0. If
∫∞
0 ‖S(s)Q

1
2 ‖2L2(H,H) ds <∞ then

Q∞x :=

∫ ∞

0
S(s)QS(s)∗x ds , x ∈ H,

is the covariance operator of a symmetric Gaussian invariant measure μ for equation (1.11);

thus if L(ξ) = μ then L(S(t)ξ +
∫ t
0 S(t− s)i dW (s)) = μ for all t ≥ 0. When the invariant

measure μ exists, for each t ∈ [0, T ] the operator

(Rt φ)(x) := E
[
φ(S(t)x+

∫ t
0S(t− s)i dW (s))

]
, x ∈ H,

on the bounded, Borel measurable, real-valued functions φ on H extends to a bounded

linear operator on L2(H,μ) with operator norm equal to 1. These operators on L2(H,μ)

form the strongly continuous semigroup of transition operators. If, in addition, S(t)(H) ⊂
Q

1
2
t (H) for all t > 0 then the semigroup of transition operators is said to be strongly Feller.

More details on Ornstein-Uhlenbeck processes and invariant measures can be found in [10,

chapters 5 and 11] and [11, chapter 10].

1.4.4 Large deviation principle

Basic large deviations theory provides useful tools for finding the short time asymptotics

of solutions of stochastic differential equations. We outline some ideas here in the context

of the separable Banach space E.

Suppose the function I : E → [0,∞] is lower semicontinuous. The family of probability

measures {με : ε ∈ (0, 1]} on (E,BE) is said to satisfy a large deviation principle with rate

function I if for each closed set F ⊂ E we have the upper bound

lim
r→0

sup
ε∈(0,r]

ε lnμε(F ) ≤ − inf
x∈F

I(x) (1.12)
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and for each open set G ⊂ E we have the lower bound

lim
r→0

inf
ε∈(0,r]

ε lnμε(G) ≥ − inf
x∈G

I(x). (1.13)

If {I ≤ r} is a compact subset of E for all r ∈ [0,∞) then I is called a good rate function.

We will only consider rate functions that are good. If I is a good rate function then the

upper bound condition in (1.12) is equivalent to the Freidlin-Wentzell condition:

given r ∈ (0,∞) and δ ∈ (0,∞) and γ ∈ (0,∞) there exists ε0 ∈ (0, 1] such that

με(BE({I ≤ r}, δ)) ≥ 1− e
−r+γ

ε for all ε ∈ (0, ε0].

The lower bound condition in (1.13) is equivalent to the Freidlin-Wentzell condition:

given x ∈ E and δ ∈ (0,∞) and γ ∈ (0,∞) there exists ε0 ∈ (0, 1] such that

με(BE(x, δ)) ≥ e
−I(x)−γ

ε for all ε ∈ (0, ε0].

Of special interest to us is the following large deviation principle. Let μ be a symmetric

Gaussian measure on (E,BE) and let (Hμ, | · |Hμ) be its reproducing kernel Hilbert space.

Theorem 1.2 The family of symmetric Gaussian measures

{με(B) := μ(ε−
1
2B) ∀B ∈ BE : ε ∈ (0, 1]}

satisfies a large deviation principle with rate function

I(x) :=

{
1
2 |x|2Hμ

, x ∈ Hμ

∞ , x ∈ E\Hμ.

A proof of this theorem is given in [10, Section 12.1.2]. For two applications see the end

of section 3.4 and Corollary 5.3.

Suppose we have two families of random variables in E: {ξε : ε ∈ (0, 1]} and {ηε : ε ∈
(0, 1]}, defined on (Ω,F , P ). The families are said to be exponentially equivalent if for

each δ > 0

lim
ε→0

ε lnP{‖ξε − ηε‖ ≥ δ} = −∞.

Theorem 1.3 If {ξε : ε ∈ (0, 1]} and {ηε : ε ∈ (0, 1]} are exponentially equivalent then

{L(ξε) : ε ∈ (0, 1]} satisfies a large deviation principle if and only if {L(ηε) : ε ∈ (0, 1]}
satisfies a large deviation principle and these two large deviation principles have the same

rate function.
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This basic result is particularly useful to us when combined with Theorem 1.2. For a proof

of Theorem 1.3 see [18, Lemma 27.13].
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Chapter 2

Small time asymptotics via

densities

2.1 Introduction

We remarked in chapter 1 that Varadhan [31] investigated the small time asymptotics of

an Rn-valued diffusion process (zζ(t))t∈[0,1] with initial point ζ ∈ Rn. He used the limiting

behaviour of the probability density p(t, ζ, ·) of zζ(t):

lim
t→0

t ln p(t, ζ, y) = −1

2
d2(ζ, y) (2.1)

uniformly for ζ and y in any bounded subset of Rn; the function d is defined in equa-

tion (1.3).

In the setting of an infinite dimensional separable Hilbert space H, let (Xx(t))t∈[0,1] be

the mild solution of the stochastic initial value problem

dX = AXdt+ dW t ∈ (0, 1]

X(0) = x ∈ H;

}
(2.2)

we define A and W in section 2.2. Only in special situations is the distribution of Xx(t) ab-

solutely continuous with respect to a natural reference measure on H at all times t ∈ (0, 1].

In this chapter we consider one such special situation, namely when an invariant measure

μ exists and the transition semigroup is strongly Feller and symmetric on L2(H,μ). We

shall see that even when we can obtain the small time limiting behaviour of the prob-

ability density of Xx(t), it may not lead to the large deviation principle for the small
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time asymptotics in trajectory space C([0, 1];H). The density k(t, x, ·) in equation (2.5)

is valid under assumptions (H1) and (H2) and we have the small time limit in equation

(2.11) when assumption (H3) also holds. The form of the limit in equation (2.11) is not

very different from that in equation (2.1). However equation (2.11) only enables us to

obtain the lower bound of the large deviation principle in C([0, 1];H).

2.2 Small time limiting behaviour of densities

Let (H, 〈·, ·〉, |·|) be a separable infinite dimensional Hilbert space. Let A : D(A) ⊂ H → H

be the infinitesimal generator of the strongly continuous semigroup (S(t))t≥0 of bounded

linear operators on H. We use the symbol N (m,C) to denote a Gaussian measure on

(H,BH) with meanm and covariance operator C. Let (W (t) : (Ω,F , P ) → H)t≥0 be anH-

valued Wiener process and let the distribution ofW (1) be ν = N (0, Q), where kerQ = {0}.
The reproducing kernel Hilbert space of ν is denoted by (Hν = Q

1
2 (H), | · |Hν = |Q− 1

2 · |)
and the embedding of Hν into H is denoted by

i : Hν ↪→ H.

Suppose that

Q∞x :=

∫ ∞

0
S(t)QS∗(t)x dt , x ∈ H,

defines a trace class operator and set μ := N (0, Q∞). Then for each t > 0 the operator

Qtx :=

∫ t

0
S(s)QS∗(s)x ds , x ∈ H,

is trace class and kerQt = {0}. The mild solution of the initial value problem (2.2) at

time t ∈ (0, 1],

Xx(t) := S(t)x+

∫ t

0
S(t− s)i dW (s), (2.3)

has distribution N (S(t)x,Qt). Define the strongly continuous semigroup (Rt)t∈[0,1] on

L2(H,μ) by

(Rtφ)(x) :=

∫
H
φ(y) dN (S(t)x,Qt)(y) for μ a.e. x ∈ H

and for all φ ∈ L2(H,μ). We assume that

(H1) Rt is strongly Feller, that is, S(t)(H) ⊂ Q
1
2
t (H) for each positive time t.
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Chojnowska-Michalik and Goldys have shown in [6, Proposition 2] that

S0(t) := Q
− 1

2
∞ S(t)Q

1
2
∞ , t ≥ 0,

defines a strongly continuous semigroup of contractions on H. Some consequences of

assumption (H1) are that for each t > 0

1. Q
1
2
∞(H) = Q

1
2
t (H), which is equivalent to ‖S0(t)‖L(H,H) < 1 and

2. S0(t) is Hilbert-Schmidt.

As shown in [11, Lemma 10.3.3], it follows that for each t > 0 and each x ∈ H the Gaussian

measure N (S(t)x,Qt) is absolutely continuous with respect to μ and its Radon-Nikodym

derivative dN (S(t)x,Qt)
dμ is

dN (S(t)x,Qt)

dμ
(y) = (det(IH −Θt))

− 1
2 exp

[
−1

2
〈(IH −Θt)

−1Q
− 1

2
∞ S(t)x, Q

− 1
2

∞ S(t)x〉

+ 〈(IH −Θt)
−1Q

− 1
2

∞ S(t)x, Q
− 1

2
∞ y〉

− 1

2
〈Θt(IH −Θt)

−1Q
− 1

2
∞ y, Q

− 1
2

∞ y〉
]

(2.4)

for μ a.e. y ∈ H, where Θt := S0(t)S
∗
0(t). We remark that the second and third terms

appearing in the argument of the exponential function in equation (2.4) are defined for only

μ a.e. y, in terms of limits (see for example [11, Proposition 1.2.10]). An equation similar

to (2.4) holds under a weaker condition than (H1) [6, Theorem 2] but, for simplicity, we

work with (H1).

We make another assumption:

(H2) Rt is symmetric for each t > 0.

Chojnowska-Michalik and Goldys [7, Lemma 2.2] have shown that symmetry of Rt is

equivalent to symmetry of S0(t) and this allows us to prove there is a continuous version

of the Radon-Nikodym derivative in equation (2.4).

Proposition 2.1 The symmetry of Rt implies there is a continuous version of the Radon-

Nikodym derivative dN (S(t)x,Qt)
dμ , which we denote by k(t, x, ·):

k(t, x, y) := (det(IH − S0(2t)))
− 1

2 ×

exp

[
−1

2
|Q−

1
2

t S(t)x|2 + 〈Q−
1
2

t S(t/2)x, Q
− 1

2
t S(t/2)y〉 − 1

2
|Q−

1
2

t S(t)y|2
]

(2.5)

for all y ∈ H.
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Proof. We have Θt = S0(t)S
∗
0(t) = S0(2t) thus

(det(IH −Θt))
− 1

2 = (det(IH − S0(2t)))
− 1

2 . (2.6)

The operators

J(t) := Q
− 1

2
∞ Q

1
2
t , t > 0,

are bounded linear bijections and we have

J−1(t) = Q
− 1

2
t Q

1
2
∞ , t > 0.

The identity Q∞ = Qt + S(t)Q∞S
∗(t) yields

J(t)J∗(t) = IH − S0(t)S
∗
0(t) = IH −Θt for t > 0,

thus

(IH −Θt)
−1 = (J−1(t))∗J−1(t) for t > 0. (2.7)

From equation (2.7) we have

〈(IH −Θt)
−1Q

− 1
2

∞ S(t)x, Q
− 1

2
∞ S(t)x〉 = 〈J−1(t)Q

− 1
2

∞ S(t)x, J−1(t)Q
− 1

2
∞ S(t)x〉

= |Q−
1
2

t S(t)x|2. (2.8)

The other two terms in the argument of exp in equation (2.4) are defined in terms of

limits. Let (fk) be an orthonormal basis of H made up of eigenvectors of Q∞. For each

natural number n define

Pnx :=
n∑

k=1

〈x, fk〉fk for all x ∈ H.

In the following expressions (nk) denotes some strictly increasing sequence of natural
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numbers. We have

〈Θt(IH −Θt)
−1Q

− 1
2

∞ y, Q
− 1

2
∞ y〉 = lim

k→∞
〈Θt(IH −Θt)

−1Q
− 1

2
∞ Pnk

y, Q
− 1

2
∞ Pnk

y〉 , μ a.e. y ∈ H,

= lim
k→∞

〈(IH −Θt)
−1Θ

1
2
t Q

− 1
2

∞ Pnk
y, Θ

1
2
t Q

− 1
2

∞ Pnk
y〉

= lim
k→∞

〈(IH −Θt)
−1Q

− 1
2

∞ S(t)Pnk
y, Q

− 1
2

∞ S(t)Pnk
y〉

= 〈(IH −Θt)
−1Q

− 1
2

∞ S(t)y, Q
− 1

2
∞ S(t)y〉

= |Q−
1
2

t S(t)y|2. (2.9)

We have

〈(IH −Θt)
−1Q

− 1
2

∞ S(t)x, Q
− 1

2
∞ y〉 = lim

k→∞
〈Q−

1
2

∞ Pnk
(IH −Θt)

−1Q
− 1

2
∞ S(t)x, y〉 , μ a.e. y ∈ H,

= lim
k→∞

〈(IH −Θt)
−1Q

− 1
2

∞ S(t)x, Q
− 1

2
∞ Pnk

y〉

= lim
k→∞

〈(IH −Θt)
−1Q

− 1
2

∞ S(t/2)x, S0(t/2)Q
− 1

2
∞ Pnk

y〉

= lim
k→∞

〈(IH −Θt)
−1Q

− 1
2

∞ S(t/2)x, Q
− 1

2
∞ S(t/2)Pnk

y〉

= 〈(IH −Θt)
−1Q

− 1
2

∞ S(t/2)x, Q
− 1

2
∞ S(t/2)y〉

= 〈Q−
1
2

t S(t/2)x, Q
− 1

2
t S(t/2)y〉. (2.10)

Substituting the expressions from equations (2.6), (2.8), (2.9) and (2.10) into the right

hand side of equation (2.4), we get the formula for k(t, x, y) shown in equation (2.5). This

completes the proof.

When x and y belong to Q
1
2 (H) we can write k(t, x, y) in terms of only t and the

eigenvalues of A0, the infinitesimal generator of (S0(t))t≥0; then it is straightforward

to find limt→0 t ln k(t, x, y). The results obtained in this way can be of interest only

if μ(Q
1
2 (H)) = 1. We now introduce a further assumption to ensure μ(Q

1
2 (H)) = 1.

Chojnowska-Michalik and Goldys [7, Theorems 2.7 and 2.9] showed that the symmetry of

Rt implies that

SQ(t) := Q−
1
2S(t)Q

1
2 , t ≥ 0,

defines a strongly continuous semigroup of symmetric contractions on H and there is an

isometric isomorphism U : H → H such that

SQ(t) = US0(t)U
−1 for all t ≥ 0.
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Hence, like S0(t), SQ(t) is a Hilbert-Schmidt strict contraction for each t > 0 and the

infinitesimal generators AQ of (SQ(t)) and A0 of (S0(t)) are related by

D(AQ) = U(D(A0)) and AQx = UA0U
−1x for x ∈ D(AQ).

Since (SQ(t)) is a compact, symmetric semigroup of contractions, AQ is self-adjoint and

its spectrum consists of real eigenvalues

0 > −α1 ≥ −α2 ≥ −α3 ≥ · · ·

where −αj → −∞ as j → ∞ (see [19, Theorem 13 in chapter 34] and [24, Theorems 2.3

and 2.4 in chapter 2]). We have −α1 < 0 because e−α1t = ‖SQ(t)‖L(H,H) < 1 for each

t > 0. By [24, Theorem 3.3 in chapter 2], A−1
Q is compact as well as symmetric and hence

there is an orthonormal basis (gk) of H composed of eigenvectors of AQ:

AQgk = −αkgk for all k ∈ N.

We assume that

(H3) A−1
Q is trace class, that is,

∑∞
k=1

1
αk

<∞.

Chojnowska-Michalik and Goldys [7, Theorem 5.1] showed that μ(Q
1
2 (H)) = 1 if and only

if ∫ ∞

0
‖SQ(t)‖2L2(H,H) dt <∞,

where ‖ · ‖L2(H,H) denotes the Hilbert-Schmidt norm. We have

∫ ∞

0
‖SQ(t)‖2L2(H,H) dt =

∫ ∞

0

∞∑
k=1

|SQ(t)gk|2 dt

=

∞∑
k=1

∫ ∞

0
|SQ(t)gk|2 dt

=
∞∑

k=1

∫ ∞

0
e−2αkt dt

=

∞∑
k=1

1

2αk
.

Thus assumption (H3) is equivalent to the assumption that μ(Q
1
2 (H)) = 1.
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Proposition 2.2 Under assumption (H3) we have for all x and y in Q
1
2 (H)

lim
t→0

t ln k(t, x, y) = −1

2
|Q− 1

2 (x− y)|2 (2.11)

and convergence is uniform for Q−
1
2x and Q−

1
2 y in any compact subset of H.

Remark In the example following the proof we show that equation (2.11) does not

necessarily hold if x− y is in Q
1
2 (H) but x and y are in H\Q 1

2 (H).

Proof.

Assumption (H3) is sufficient (but not necessary) to ensure that

lim
t→0

t ln det(IH − S0(2t)) = 0.

We have

t ln det(IH − S0(2t)) = t ln
∞∏

j=1

(1− e−2αjt)

=

∞∑
j=1

t ln(1− e−2αjt) , t > 0.

We can write for t > 0

t ln(1− e−2αjt) =
t

1/ ln(1− e−2αjt)

and by L’Hôpital’s rule

lim
t→0

t ln(1− e−2αjt) = lim
t→0

−(ln(1− e−2αjt))2(1− e−2αjt)

2αje−2αjt

= 0 for each j ∈ N. (2.12)

Since the function x ∈ (0,∞) �→ x ln(1− e−x) is bounded we have

t ln det(IH − S0(2t)) =
∞∑

j=1

2αjt ln(1− e−2αjt)

2αj

→ 0 as t→ 0 (2.13)

by equation (2.12) and Lebesgue’s dominated convergence theorem.

It remains to find the limit of t times the argument of the exponential function in equation

(2.5).
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Let t > 0. We have

Qtx =

∫ t

0
S(2r)Qxdr

= Q
1
2

∫ t

0
AQSQ(2r)A−1

Q Q
1
2x dr

=
1

2
Q

1
2

∫ t

0

d

dr
(SQ(2r)A−1

Q Q
1
2x) dr

=
1

2
Q

1
2 (SQ(2t)A−1

Q Q
1
2x−A−1

Q Q
1
2x)

=
1

2
Q

1
2 (IH − SQ(2t))(−AQ)−1Q

1
2x , x ∈ H.

Substituting x = Q−
1
2 y into this equation, where y ∈ Q 1

2 (H), we have

Q−
1
2QtQ

− 1
2 y =

1

2
(IH − SQ(2t))(−AQ)−1y for y ∈ Q 1

2 (H). (2.14)

By [7, Proposition 2.10]

Q
1
2
t (H) = Q

1
2 (D(

√
−AQ)) for t > 0, (2.15)

therefore Q−
1
2Q

1
2
t is a bounded linear operator with range D(

√
−AQ). Since Q−

1
2Q

1
2
t is

one to one and has a dense range, its adjoint (Q−
1
2Q

1
2
t )∗ has the same properties. From

equation (2.14) we have

Q−
1
2Q

1
2
t (Q−

1
2Q

1
2
t )∗ =

1

2
(IH − SQ(2t))(−AQ)−1; (2.16)

notice that, since ‖SQ(2t)‖L(H,H) < 1, (IH − SQ(2t)) is invertible and the range of the

operator in equation (2.16) is D(AQ). Taking inverses on both sides of equation (2.16) we

have

((Q−
1
2Q

1
2
t )−1)∗Q

− 1
2

t Q
1
2x = −2(IH − SQ(2t))−1AQx , x ∈ D(AQ). (2.17)

Let r > 0. Then since AQ is self-adjoint,

SQ(r)(H) ⊂ D(AQ).
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Hence for u, v ∈ H equation (2.17) yields

−2〈(IH − SQ(2t))−1AQSQ(r)u, SQ(r)v〉 = 〈((Q− 1
2Q

1
2
t )−1)∗Q

− 1
2

t Q
1
2SQ(r)u, SQ(r)v〉

= 〈Q−
1
2

t Q
1
2SQ(r)u, Q

− 1
2

t Q
1
2SQ(r)v〉

= 〈Q−
1
2

t S(r)Q
1
2u, Q

− 1
2

t S(r)Q
1
2 v〉. (2.18)

The expression on the right hand side of equation (2.18) appears in equation (2.5) when

x and y are both in Q
1
2 (H). The expression on the left hand side of equation (2.18) can

be written in terms of the eigenvalues (−αj) of AQ.

Recall that (gk) is an orthonormal basis of H such that AQgk = −αkgk for each k ∈ N.

Setting uk := 〈u, gk〉 and vk := 〈v, gk〉 for k ∈ N, we have from equation (2.18):

t〈Q−
1
2

t S(t/2)Q
1
2u, Q

− 1
2

t S(t/2)Q
1
2 v〉 = −2t〈(IH − SQ(2t))−1AQSQ(t/2)u, SQ(t/2)v〉

= −2t
∞∑

k=1

(1− e−2αkt)−1(−αk)e
−αktukvk

=
∞∑

k=1

2αkt

eαkt − e−αkt
ukvk (2.19)

→
∞∑

k=1

ukvk = 〈u, v〉 as t→ 0, (2.20)

and the convergence is uniform for u and v in any compact subset of H. The uni-

form convergence on compact sets is because for any compact set K ⊂ H we have

sup{∑∞
j=n〈u, gj〉2 : u ∈ K} → 0 as n goes to infinity.

Similarly we have

t|Q−
1
2

t S(t)Q
1
2u|2 =

∞∑
k=1

2αkt

e2αkt − 1
u2

k

→
∞∑

k=1

u2
k = |u|2 as t→ 0, (2.21)

and the convergence is uniform for u in any compact subset of H.
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Finally, using equations (2.13), (2.20) and (2.21), we have for x and y in Q
1
2 (H):

lim
t→0

t ln k(t, x, y) = lim
t→0

−1

2
(t|Q−

1
2

t S(t)x|2 − 2t〈Q−
1
2

t S(t/2)x, Q
− 1

2
t S(t/2)y〉+ t|Q−

1
2

t S(t)y|2)

= −1

2
(|Q− 1

2x|2 − 2〈Q− 1
2x,Q−

1
2 y〉+ |Q− 1

2 y|2)

= −1

2
|Q− 1

2x−Q− 1
2 y|2 ,

and the convergence is uniform for Q−
1
2x and Q−

1
2 y in any compact subset of H. This

completes the proof.

We now consider an example where assumptions (H1), (H2) and (H3) hold.

Example. Let l ∈ (0,∞) and let H = L2((0, l)) with the usual inner product 〈u, v〉 :=∫ l
0 u(t)v(t) dt for all u and v ∈ H. Define the operator (A,D(A)) on H by

Au := u′′ for all u ∈ D(A) where

D(A) :=
{
u ∈ L2((0, l)) : u and u′ are absolutely continuous and

u′′ ∈ L2((0, l)) and lim
t→0

u(t) = lim
t→l

u(t) = 0

}
.

As shown in [32, Proposition 1 of section 3.1], (A,D(A)) is a self-adjoint operator on H

and generates the strongly continuous semigroup (S(t))t≥0 of symmetric bounded linear

operators on H:

S(t)u :=
∞∑

m=1

e−αmt〈u, em〉em , u ∈ H , t ≥ 0 , (2.22)

where {
em(y) :=

√
2

l
sin

(mπy
l

)
, y ∈ (0, l) , m ∈ N

}
is an orthonormal basis of H and

αm :=
π2m2

l2
for all m ∈ N.

Moreover we have

Aem = −αmem for all m ∈ N.
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As shown in [32, Theorem 2 of section 3.1], we have

D(A) = {u ∈ H :

∞∑
m=1

α2
m〈u, em〉2 <∞} and

Au =
∞∑

m=1

−αm〈u, em〉em for all u ∈ D(A).

From these equations we see that A : D(A)→ H is one to one and onto.

Define

Qu :=
∞∑

m=1

qm〈u, em〉em , u ∈ H , (2.23)

where qm > 0 for all m ∈ N and
∑∞

m=1 qm <∞.

It is straightforward to show that

Qtx :=

∫ t

0
S(r)QS(r)x dr , x ∈ H , (2.24)

defines a positive definite, symmetric, trace class operator on H for all t ∈ (0,∞], in

particular the measure μ := N (0, Q∞) exists.

Since Q commutes with S(t) for all positive t, [7, Theorem 2.4] tells us that the transition

semigroup (Rt)t≥0 on L2(H,μ) consists of symmetric operators; hence assumption (H2) is

satisfied.

We have SQ(t) := Q−
1
2S(t)Q

1
2 = S(t) for all t ≥ 0 and, by inspection, A−1 is trace class;

hence assumption (H3) is satisfied.

By [10, Proposition B.1], for each positive t we have S(t)(H) ⊂ Q
1
2
t (H) if and only if there

is a positive real number ct such that

|S(t)x| ≤ ct|Q
1
2
t x| for all x ∈ H. (2.25)

Using equations (2.22) and (2.23) in equations (2.24) and (2.25), one arrives at the con-

clusion that assumption (H1) is satisfied if and only if

sup
k∈N

αke
−2αkt

qk
<∞ for each t > 0. (2.26)

For example, inequality (2.26) is satisfied when qk := (αk)
−r for all k ∈ N and r > 1

2 .

We now assume that inequality (2.26) is satisfied. Let x and y be vectors in H and set

xk := 〈x, ek〉 and yk := 〈y, ek〉 for all k in N. We shall show that equation (2.11) does not
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necessarily hold for x and y in H\Q 1
2 (H) such that x− y is in Q

1
2 (H). We have

lim
t→0

t ln k(t, x, y)

= lim
t→0

[
− t

2
|Q−

1
2

t S(t)(x− y)|2 + t〈Q−
1
2

t S(t/2)x,Q
− 1

2
t S(t/2)y〉 − t〈Q−

1
2

t S(t)x,Q
− 1

2
t S(t)y〉

]
in the sense that if the limit on one side of the equation exists then so does the limit on

the other side and they are equal. By equation (2.21), if x − y belongs to Q
1
2 (H) then

− t
2 |Q

− 1
2

t S(t)(x− y)|2 converges to −1
2 |Q−

1
2 (x− y)|2 as t goes to zero.

Proceeding as in equation (2.19) we have

t〈Q−
1
2

t S(t/2)x,Q
− 1

2
t S(t/2)y〉 − t〈Q−

1
2

t S(t)x,Q
− 1

2
t S(t)y〉 =

∞∑
k=1

2αkte
−αkt

1 + e−αkt
q−1
k xkyk. (2.27)

The expression on the right hand side of equation (2.27) converges to zero as t goes to

zero if
∑∞

k=1 q
−1
k |xkyk| < ∞. On the other hand, if αk = k2 (so that l = π) and qk = 1

k2

and xk = yk = 1
k for each k in N then

t〈Q−
1
2

t S(t/2)x,Q
− 1

2
t S(t/2)y〉 − t〈Q−

1
2

t S(t)x,Q
− 1

2
t S(t)y〉 ≥

∞∑
k=1

k2te−k2t

≥
∫ ∞

0
r2te−r2t dr − 2e−1

=
1

4

√
π

t
− 2e−1 →∞ as t→ 0;

hence in this case we have x = y and limt→0 t ln k(t, x, y) =∞.

2.3 From limits for densities to short time asymptotics in

trajectory space

In this section we assume that (Xx(t))t∈[0,1] is a continuous version of the mild solu-

tion defined in equation (2.3). Equation (2.11) enables us to prove the Freidlin-Wentzell

formulation of the lower bound of the large deviation principle in C([0, 1];H) for small

time asymptotics of (Xx(t))t∈[0,1]. The proof is similar to the proof of Varadhan’s finite

dimensional result [31, Lemma 3.4]. The rate function is

I(u) :=

{
1
2

∫ 1
0 |φ(s)|2Hν

ds if φ ∈ L2([0, 1];Hν) and u(t) = x+
∫ t
0 φ(s) ds ∀t ∈ [0, 1],

∞ otherwise.
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We remark that equation (2.11) does not yield the upper bound of the large deviation

principle so easily. One obstacle is that the limit in equation (2.11) is not uniform on

arbitrary bounded subsets of H. The large deviation principle for short time asymptotics

of an Ornstein-Uhlenbeck process can be obtained without relying on limits of densities.

A fruitful approach is by making clever use of the large deviation principle associated with

the Gaussian distribution of the continuous trajectories of (W (t))t∈[0,1]; this approach is

implemented for solutions of some stochastic equations with nonlinear terms in chapters 3

and 4. Nevertheless we end this chapter by proving the lower bound using equation (2.11)

and Peszat’s exponential tail estimate for stochastic convolutions. The main use of Peszat’s

exponential tail estimate in this thesis is in chapter 3, where it is stated in Theorem 3.10.

For simplicity suppose that x ∈ Q
1
2
∞(H). Let φ ∈ L2([0, 1];Hν). Define

f(t) := x+

∫ t

0
φ(s) ds for all t ∈ [0, 1].

Proposition 2.3 Given δ > 0 and γ > 0 there exists ε0 > 0 such that

P{ sup
t∈[0,1]

|Xx(εt)− f(t)| < δ} ≥ e
− 1

2

R 1
0 |φ(s)|2Hν

ds−γ

ε for all ε < ε0.

Proof. Since Q
1
2
∞(H) is a dense subset of H and of Hν we can take

ψ :=
2N∑
k=1

1( k−1

2N , k

2N ]ak, (2.28)

where N is a natural number and a1, . . . , a2N are vectors in Q
1
2
∞(H), such that the con-

tinuous function

g(t) := x+

∫ t

0
ψ(s) ds , t ∈ [0, 1],

and ψ and N satisfy

1. supt∈[0,1] |g(t)− f(t)| < δ
6 and

2. −1
2

∫ 1
0 |ψ(s)|2Hν

ds > −1
2

∫ 1
0 |φ(s)|2Hν

ds− γ
2 and also

3. |f(t)− f(s)| < δ
3 for all t and s in [0, 1] such that |t− s| ≤ 1

2N .

Let R be a natural number such that

BH(0, δ
6) ⊃ BHν (0, 1

R).
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For each t ∈ [0, 1], for any natural number r ≥ R we can choose a compact subset of Hν

Kt,r ⊂ BHν (g(t), 1
r )

such that μ(Kt,r) > 0; this is because μ(Q
1
2 (H)) = 1 and g(t) belongs to Q

1
2
∞(H), which

is a dense subset of Hν . Set

B :=
⋃

t∈[0,1]

BHν (g(t), 1
R),

which is a compact subset of H. We may assume that the natural number N introduced

in equation (2.28) is so large that we have

sup{|(S(s)− IH)z| : s ∈ [0,
1

2N
] and z ∈ B} < δ

6
. (2.29)

For brevity set for each t ∈ [0, 1]

Bt := BHν (g(t), 1
R) ,

which is contained in BH(f(t), δ
3). Also for brevity set

tn,k :=
k

2n

for each natural number n ≥ N and k ∈ {0, 1, . . . , 2n}.
Let ε ∈ (0, 1]. Let n ≥ N . Let r ≥ R. Set y0 := x. We have

P{Xx(εtn,1) ∈ Btn,1 , . . . , Xx(εtn,2n) ∈ Btn,2n}
≥ P{Xx(εtn,1) ∈ Ktn,1,r, . . . , Xx(εtn,2n) ∈ Ktn,2n ,r}

=

∫
Ktn,1,r

· · ·
∫

Ktn,2n,r

2n∏
j=1

k(ε(tn,j − tn,j−1), yj−1, yj) dμ(y2n) . . . dμ(y1)

=

2n∏
j=1

μ(Ktn,j ,r)×

∫
Ktn,1,r×···×Ktn,2n ,r

2n∏
j=1

k(ε(tn,j − tn,j−1), yj−1, yj) d(μtn,1,r × · · · × μtn,2n ,r)(y1, . . . , y2n),

where μtn,j ,r := 1
μ(Ktn,j ,r)μ on the Borel σ-algebra of Ktn,j ,r for each j ∈ 1, . . . , 2n and
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μtn,1,r×· · ·×μtn,2n ,r is the product measure on the cartesian product Ktn,1,r×· · ·×Ktn,2n ,r.

We apply Jensen’s inequality to obtain

ε lnP{Xx(εtn,1) ∈ Btn,1 , . . . , Xx(εtn,2n) ∈ Btn,2n} ≥

ε ln
2n∏

j=1

μ(Ktn,j ,r) +∫
Ktn,1,r×···×Ktn,2n,r

∑2n

j=1
ε(tn,j−tn,j−1) ln k(ε(tn,j−tn,j−1),yj−1,yj)

tn,j−tn,j−1
d(μtn,1,r × · · · × μtn,2n ,r)(y1, . . . , y2n).

Because ∪2n

j=1Ktn,j ,r is compact in Hν , equation (2.11) applies to the integrand: given any

θ > 0 we have for all sufficiently small positive ε

2n∑
j=1

ε(tn,j − tn,j−1) ln k(ε(tn,j − tn,j−1), yj−1, yj)

tn,j − tn,j−1
≥

2n∑
j=1

−1
2 |yj − yj−1|2Hν

tn,j − tn,j−1
− θ

uniformly for all (y1, . . . , y2n) ∈ Ktn,1,r × · · · ×Ktn,2n ,r. Thus

lim
s→0

inf
ε<s

ε lnP{Xx(εtn,1) ∈ Btn,1 , . . . , Xx(εtn,2n) ∈ Btn,2n}

≥
∫

Ktn,1,r×···×Ktn,2n,r

2n∑
j=1

−1
2 |yj − yj−1|2Hν

tn,j − tn,j−1
d(μtn,1,r × · · · × μtn,2n ,r)(y1, . . . , y2n).

Letting r go to infinity makes Ktn,j ,r shrink in Hν towards g(tn,j) for each j ∈ {1, . . . , 2n}.
Thus for all n ≥ N we have

lim
s→0

inf
ε<s

ε lnP{Xx(εtn,1) ∈ Btn,1 , . . . , Xx(εtn,2n) ∈ Btn,2n}

≥ −1

2

2n∑
j=1

|g(tn,j)− g(tn,j−1)|2Hν

tn,j − tn,j−1

= −1

2

∫ 1

0
|ψ(t)|2Hν

dt

> −1

2

∫ 1

0
|φ(s)|2Hν

ds− γ

2
. (2.30)
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Let ε ∈ (0, 1] and let n ≥ N . We have

P{ sup
t∈[0,1]

|Xx(εt)− f(t)| < δ}

≥ P{Xx(εtn,1) ∈ Btn,1 , . . . , Xx(εtn,2n) ∈ Btn,2n , sup
t∈[0,1]

|Xx(εt)− f(t)| < δ}

= P{Xx(εtn,1) ∈ Btn,1 , . . . , Xx(εtn,2n) ∈ Btn,2n}
− P{Xx(εtn,1) ∈ Btn,1 , . . . , Xx(εtn,2n) ∈ Btn,2n , sup

t∈[0,1]
|Xx(εt)− f(t)| ≥ δ}. (2.31)

Equation (2.30) gives us a lower bound for the first term on the right hand side of equation

(2.31) when ε is small. We now want to show that when we choose n ≥ N sufficiently

large the second term on the right hand side is small compared to the first term. We have

P{Xx(εtn,1) ∈ Btn,1 , . . . , Xx(εtn,2n) ∈ Btn,2n , sup
t∈[0,1]

|Xx(εt)− f(t)| ≥ δ}

≤
2n∑

j=1

P{Xx(εtn,j−1) ∈ Btn,j−1 , sup
t∈[tn,j−1,tn,j ]

|Xx(εt)− f(t)| ≥ δ}. (2.32)

We can bound the jth summand on the right hand side of inequality (2.32). We have

sup
t∈[tn,j−1,tn,j ]

|Xx(εt)− f(t)| ≤ sup
t∈[tn,j−1,tn,j ]

|Xx(εt)−Xx(εtn,j−1)|+ |Xx(εtn,j−1)− f(tn,j−1)|

+ sup
t∈[tn,j−1,tn,j ]

|f(tn,j−1)− f(t)|,

hence

P{Xx(εtn,j−1) ∈ Btn,j−1 , sup
t∈[tn,j−1,tn,j ]

|Xx(εt)− f(t)| ≥ δ}

≤ P{Xx(εtn,j−1) ∈ B, sup
t∈[tn,j−1,tn,j ]

|Xx(εt)−Xx(εtn,j−1)| >
δ

3
}

≤ P{ sup
t∈[tn,j−1,tn,j ]

|
∫ εt

εtn,j−1

S(εt− s)i dW (s)| > δ

6
} , by (2.29),

= P{ sup
t∈[tn,j−1,tn,j ]

|ε 1
2

∫ t

tn,j−1

S(ε(t− s))i dV (s)| > δ

6
}, (2.33)

where V (s) := ε−
1
2W (εs) for all s ∈ [0, 1] is an H-valued Wiener process. Peszat’s expo-
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nential tail estimate yields

P{ sup
t∈[tn,j−1,tn,j ]

|
∫ t

tn,j−1

S(ε(t− s))i dV (s)| > δ

6ε
1
2

} ≤ C exp

( −δ2
36εκ2η

)
, (2.34)

where for chosen α0 ∈ (0, 1
2) and p0 > 1 such that (α0 − 1)p0 > −1 we define

κ :=
supt∈[0,1] ‖S(t)‖L(H,H)

((α0 − 1)p0 + 1)
1

p0

and

η :=
supt∈[0,1] ‖S(t)‖2L(H,H)‖i‖2L2(Hν ,H)

1− 2α0
2−n(1−2α0)

and

C := 4 + exp(4n0!)
1

n0 and n0 :=
p0

2p0 − 2
+ 1.

Thanks to the factor 2−n(1−2α0) in the definition of η we can choose n ≥ N sufficiently

large to ensure that

2nC exp

( −δ2
36εκ2η

)
<

1

2
exp

(
−1

2

∫ 1
0 |φ(s)|2Hν

ds− γ
2

ε

)
∀ε ∈ (0, 1].

From inequality (2.30) there exists s > 0 such that for all ε ∈ (0, s) we have

P{Xx(εtn,1) ∈ Btn,1 , . . . , Xx(εtn,2n) ∈ Btn,2n} > exp

(
−1

2

∫ 1
0 |φ(s)|2Hν

ds− γ
2

ε

)
.

Using this inequality and inequalities (2.32), (2.33) and (2.34) in the right hand side of

(2.31) yields

P{ sup
t∈[0,1]

|Xx(εt)− f(t)| < δ}

≥ exp

(
−1

2

∫ 1
0 |φ(s)|2Hν

ds− γ
2

ε

)
− 2nC exp

( −δ2
36εκ2η

)
∀ε ∈ (0, s)

≥ exp

(
−1

2

∫ 1
0 |φ(s)|2Hν

ds− γ
ε

)
∀ε ∈ (0, s ∧ γ

2 ln 2
).

This completes the proof.
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Chapter 3

Small time asymptotics of the

solution when there is a Lipschitz

continuous drift and diffusion

function

3.1 Introduction

In this chapter we follow Peszat’s paper [25] closely to obtain a large deviation principle

describing the small time asymptotics of the mild solution of a stochastic differential

equation with Lipschitz continuous drift and Lipschitz continuous diffusion function, in

a Hilbert space H. Peszat found a large deviation principle describing the small noise

asymptotics of mild solutions of stochastic differential equations and his methods require

little modification to yield our large deviation principle describing small time asymptotics.

Zhang [33] used exponential equivalence arguments to get a large deviation principle de-

scribing the small time asymptotics of the mild solution of a stochastic equation with

Lipschitz continuous and bounded diffusion function. To deal with the stochastic convolu-

tion term he assumed that the Hilbert space H, in which the unbounded linear drift A and

the strongly continuous semigroup (eAt = S(t))t≥0 it generates are defined, is compactly

embedded in another Hilbert space H1 and (S(t))t≥0 extends to a strongly continuous

semigroup on H1. His result is a large deviation principle for distributions on the space

of continuous H1-valued trajectories, rather than the space of continuous H-valued tra-

jectories. Using Peszat’s methods, we avoid the need to introduce another Hilbert space
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corresponding to Zhang’s H1 and our result holds if the diffusion function is not bounded.

Our main result is the large deviation principle contained in Corollary 3.4.

We now define spaces and functions which we use throughout this chapter. Let (H, 〈·, ·〉, | ·
|) and (U, 〈·, ·〉U , | · |U ) be separable Hilbert spaces. Let A : D(A) ⊂ H → H be the

infinitesimal generator of a strongly continuous semigroup (S(t))t≥0 of bounded linear

operators on H. Set

M := sup
t∈[0,1]

‖S(t)‖L(H,H).

Let

F : ([0, 1]×H,B[0,1] ⊗ BH) → (H,BH)

be a measurable function and let functions F and

G : H → L2(U,H)

satisfy

|F (t, x)− F (t, y)| ≤ Λ|x− y| ∀t ∈ [0, 1] and ∀x, y ∈ H and (3.1)

|F (t, x)| ≤ Λ(1 + |x|) ∀t ∈ [0, 1] and ∀x ∈ H and (3.2)

‖G(x)−G(y)‖L2(U,H) ≤ Λ|x− y| ∀x, y ∈ H and (3.3)

‖G(x)‖L2(U,H) ≤ Λ(1 + |x|) ∀x ∈ H, (3.4)

where Λ is a positive real constant.

Let (Ω,F , P ) be a probability space and let (Ft)t≥0 be a right continuous filtration of

sub σ-algebras of F such that all sets in F of P measure zero are in F0. Let (gk) be

an orthonormal basis of U and let ((βk(t))t≥0) be an independent sequence of real valued

(Ft)-Brownian motions. A cylindrical Wiener process on U is defined by the series

W (t) =
∞∑

k=1

βk(t) gk,

which does not converge in U but converges in an arbitrary Hilbert space U1 containing

U and such that the embedding

J : U ↪→ U1

is Hilbert-Schmidt. Whatever our choice of U1, the distribution of W (1) in U1 has repro-

ducing kernel Hilbert space U . We now fix U1 by taking a decreasing sequence of positive
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real numbers (λk) such that
∑∞

k=1 λ
2
k <∞ and defining U1 to be the completion of U with

the inner product

〈u, v〉U1 :=
∞∑

k=1

λ2
k〈u, gk〉U 〈v, gk〉U for all u, v ∈ U. (3.5)

We abuse notation and denote the inner product on U1 still by 〈·, ·〉U1 and the norm on

U1 is denoted by | · |U1 .

Our aim is to find a large deviation principle describing the small time asymptotics of the

mild solution of the initial value problem

dX(t) = (AX(t) + F (t,X(t))) dt+G(X(t)) dW (t),

X(0) = x ∈ H.

}
(3.6)

The mild solution of (3.6) is the (Ft)-predictable process (Xx(t))t∈[0,1] such that

P{
∫ 1

0
|Xx(t)|2 dt <∞} = 1 (3.7)

and

Xx(t) = S(t)x+

∫ t

0
S(t− s)F (s,Xx(s)) ds+

∫ t

0
S(t− s)G(Xx(s)) dW (s) P a.e. (3.8)

for each t ∈ [0, 1].

The existence, uniqueness and continuity result underlying this work is Theorem 3.18 in

the appendix of this chapter. Notice that Theorem 3.18 applies to more general nonlinear

drift functions than F ; this fact will be useful later when a change of probability measure

introduces an auxiliary problem whose nonlinear drift term is of the type in Theorem 3.18.

Specifically, we will find a large deviation principle for the family of distributions in tra-

jectory space C([0, 1];H):

με
x := L(ω ∈ Ω �→ (t ∈ [0, 1] �→ Xx(εt)(ω)) ) : ε ∈ (0, 1]. (3.9)

From equation (3.8), for each ε ∈ (0, 1] and t ∈ [0, 1] we have P a.e.

Xx(εt) = S(εt)x+

∫ εt

0
S(εt− s)F (s,Xx(s)) ds+

∫ εt

0
S(εt− s)G(Xx(s)) dW (s)

= S(εt)x+ ε

∫ t

0
S(ε(t− u))F (εu,Xx(εu)) du+ ε

1
2

∫ t

0
S(ε(t− u))G(Xx(εu)) dV ε(u), (3.10)
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where

V ε(t) := ε−
1
2W (εt) ∀t ≥ 0

is a U1-valued (Fεt)-Wiener process and L(V ε(1)) = L(W (1)). By Proposition 3.19, for

each ε ∈ (0, 1] the continuous (Ft)-predictable process (Xε
x(t))t∈[0,1] satisfying the equation

Xε
x(t) = S(εt)x+ ε

∫ t

0
S(ε(t− u))F (εu,Xε

x(u)) du+ ε
1
2

∫ t

0
S(ε(t− u))G(Xε

x(u)) dW (u)

(3.11)

P a.e. for each t ∈ [0, 1] also has the distribution με
x in trajectory space. Thus for each

ε ∈ (0, 1] we consider the process (Xε
x(t))t∈[0,1], which is the mild solution of the problem

dXε(t) = (εAXε(t) + εF (εt,Xε(t))) dt+ ε
1
2G(Xε(t)) dW (t)

Xε(0) = x

}

and we define the corresponding trajectory-valued random variable Xε
x : Ω → C([0, 1];H)

by

Xε
x(ω) := (t ∈ [0, 1] �→ Xε

x(t)(ω)) ∀ω ∈ Ω. (3.12)

For each φ ∈ L2([0, 1];U) and x ∈ H we denote by zφ
x the function in C([0, 1];H) such

that

zφ
x(t) = x+

∫ t

0
G(zφ

x(s))φ(s) ds ∀t ∈ [0, 1].

For each x ∈ H we define the prospective rate function Ix : C([0, 1];H) → [0,∞] by

Ix(u) :=
1

2
inf

{∫ 1

0
|ψ(s)|2U ds : ψ ∈ L2([0, 1];U) and u = zψ

x

}
(3.13)

for all u ∈ C([0, 1];H). We will prove the following theorem in Section 3.2; it verifies that

for each x ∈ H the function Ix is well defined and a good rate function.

Theorem 3.1 1. Given φ ∈ L2([0, 1];U) and x ∈ H, zφ
x is well defined; that is, there

is a unique function u ∈ C([0, 1];H) such that

u(t) = x+

∫ t

0
G(u(s))φ(s) ds ∀t ∈ [0, 1].

2. For fixed u ∈ C([0, 1];H) the linear operator

ψ ∈ L2([0, 1];U) �→
(
t �→

∫ t

0
G(u(s))ψ(s) ds

)
∈ C([0, 1];H)
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is compact.

3. Let B ⊂ L2([0, 1];U) be weakly sequentially compact and let K ⊂ H be compact.

Then the set

C := {u ∈ C([0, 1];H) : u = zφ
x for some φ ∈ B and some x ∈ K}

is compact. In particular {Ix ≤ r} is compact for any x ∈ H and any r ∈ (0,∞)

because the closed ball {φ ∈ L2([0, 1];U) : ‖φ‖L2([0,1];U) ≤
√

2r} is weakly sequentially

compact.

For each natural number n let Πn : U → U be the orthogonal projection of U onto the

span of {g1, . . . , gn}:

Πnx :=

n∑
j=1

〈x, gj〉U gj ∀x ∈ U.

In our proof of the upper bound of the large deviation principle we use the fact that Πn

can be written in terms of the bounded linear operator from U1 into U :

Π1
nu :=

n∑
k=1

λ−2
k 〈u, Jgk〉U1 gk ∀u ∈ U1.

We have Π1
nJx = Πnx for all x ∈ U , which follows from the definition of U1.

We can now state two additional assumptions (A1) and (A2) on G and (S(t))t≥0, respec-

tively, which will only be used in the proof of the upper bound of the large deviation

principle.

(A1) For each r ∈ (0,∞)

sup
h∈BH(0,r)

‖G(h)(IU −Πn)‖L2(U,H) → 0 as n→∞.

(A2) For each a ∈ (0, 1] the family of functions in L(H,H) with the norm topology:

{t ∈ [a, 1] �→ S(εt) ∈ L(H,H) : ε ∈ (0, 1]}

is uniformly equicontinuous.

Assumption (A1) is true when G is of the form G(x) = G1(x)B ∀x ∈ H, where B is a

constant operator in L2(U,U) and G1 : H → L(U,H) is Lipschitz continuous.

Assumption (A2) is true when (S(t))t≥0 is an analytic semigroup. Then there is a positive

real constant c such that ‖AS(t)‖L(H,H) ≤ c
t for all t ∈ (0, 1] (see [24, Theorem 5.2 in
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chapter 2]) and consequently ‖S(t)− S(r)‖L(H,H) ≤ c ln( t
r ) for all t, r ∈ (0, 1]. We remark

that in the small noise asymptotics paper [25] Peszat only needed to assume that (S(t))t≥0

is continuous on (0, 1] in the norm topology.

Our two main theorems are the following.

Theorem 3.2 Let K be a compact subset of H and let φ ∈ L2([0, 1];U). Let δ > 0 and

γ > 0. There exists ε0 > 0 such that for all x ∈ K and for all ε ∈ (0, ε0]

P

{
sup

t∈[0,1]
|Xε

x(t)− zφ
x(t)| < δ

}
≥ exp

(
−1

2

∫ 1
0 |φ(s)|2U ds− γ

ε

)
.

Theorem 3.3 Assume that (A1) and (A2) hold. Let K be a compact subset of H. Let

r > 0 and δ > 0 and γ > 0. There exists ε0 > 0 such that for all x ∈ K and for all

ε ∈ (0, ε0]

P{Xε
x /∈ BC([0,1];H)({Ix ≤ r}, δ)} ≤ exp

(−r + γ

ε

)
.

The following result follows immediately from these theorems.

Corollary 3.4 Assume that (A1) and (A2) hold. Let x ∈ H. The family of distributions

{με
x : ε ∈ (0, 1]} defined in equation (3.9) satisfies a large deviation principle with rate

function Ix.

Proof. WhenK = {x} Theorem 3.2 implies the Freidlin-Wentzell formulation of the lower

bound of the large deviation principle of {L(Xε
x) = με

x : ε ∈ (0, 1]} with rate function Ix

and Theorem 3.3 is the corresponding upper bound.

We will show in Section 3.3 that if Theorems 3.2 and 3.3 hold for bounded diffusion

functions G : H → L2(U,H) then the theorems also hold when the function G is not

bounded. Section 3.4 presents some important inequalities from Peszat’s paper [25], which

are used to prove Theorems 3.2 and 3.3 in the case of bounded G in Sections 3.5 and 3.6.

3.2 The rate function

In this section we prove Theorem 3.1.

Proof of Theorem 3.1(1). Let φ ∈ L2([0, 1];U) and let x ∈ H. Take N ∈ N such that

1√
N

Λ‖φ‖L2([0,1];U) < 1.
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Let y ∈ H, let n ∈ {0, 1, . . . , N − 1} and let φn be the element of L2([ n
N ,

n+1
N ];U) defined

by

φn(t) := φ(t) ∀t ∈ [ n
N ,

n+1
N ].

Define the map Fn,y : C([ n
N ,

n+1
N ];H)→ C([ n

N ,
n+1
N ];H) by

(Fn,y(u))(t) := y +

∫ t

n
N

G(u(s))φn(s) ds ∀t ∈ [ n
N ,

n+1
N ].

For arbitrary u, v ∈ C([ n
N ,

n+1
N ];H) and t ∈ [ n

N ,
n+1
N ] we have

|Fn,y(u)(t)− Fn,y(v)(t)| = |
∫ t

n
N

(G(u(s))−G(v(s)))φn(s) ds|

≤ Λ

∫ t

n
N

|u(s)− v(s)||φn(s)|U ds

≤ Λ
1√
N
‖φ‖L2([0,1];U) sup

s∈[ n
N

, n+1
N

]

|u(s)− v(s)|.

Thus Fn,y is a contraction on the Banach space C([ n
N ,

n+1
N ];H) with the sup norm.

Let u0 be the fixed point of F0,x. For 1 ≤ n ≤ N−1 let un be the fixed point of Fn,un−1( n
N

).

Define

u(t) := un(t) for each t ∈ [ n
N ,

n+1
N ] and each n ∈ {0, 1, . . . , N − 1}.

Then, by inspection, u ∈ C([0, 1];H) and one can show by induction on n that

u(t) = x+

∫ t

0
G(u(s))φ(s) ds ∀t ∈ [0, n+1

N ] and ∀n ∈ {0, 1, . . . , N − 1}.

If also v ∈ C([0, 1];H) and

v(t) = x+

∫ t

0
G(v(s))φ(s) ds ∀t ∈ [0, 1]

then u(t) = v(t) for all t ∈ [0, 1
N ] since F0,x has a unique fixed point and one can show by

induction on n that u(t) = v(t) for all t ∈ [0, n+1
N ] and for all n ∈ {0, 1, . . . , N − 1}.

Proof of Theorem 3.1(2). This proof follows the lines of the proof of [10, Proposition

8.4]. Let u ∈ C([0, 1];H). We want to show that the map

ψ ∈ L2([0, 1];U) �→
(
t �→

∫ t

0
G(u(s))ψ(s) ds

)
∈ C([0, 1];H)
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is a compact linear operator. It is straightforward to show that this map is a bounded

linear operator, therefore we will only show that an arbitrary bounded sequence (ψn) in

L2([0, 1];U) is mapped to a sequence in C([0, 1];H) with a convergent subsequence.

Set r := supn∈N ‖ψn‖L2([0,1];U) <∞. For ψ ∈ L2([0, 1];U) such that ‖ψ‖L2([0,1];U) ≤ r and

for 0 ≤ t < s ≤ 1 we have∣∣∣∣∫ s

t
G(u(σ))ψ(σ) dσ

∣∣∣∣ ≤ sup
σ∈[0,1]

‖G(u(σ))‖L2(U,H)

∫ s

t
|ψ(σ)|U dσ

≤ r sup
σ∈[0,1]

‖G(u(σ))‖L2(U,H)

√
s− t.

Thus the family of functions{
t ∈ [0, 1] �→

∫ t

0
G(u(s))ψ(s) ds ∈ H : ψ ∈ L2([0, 1];U) and ‖ψ‖L2([0,1];U) ≤ r

}
is uniformly equicontinuous. We will show that there is a subsequence of the sequence of

continuous functions (
t ∈ [0, 1] �→

∫ t

0
G(u(s))ψn(s) ds ∈ H

)
which converges pointwise on a dense subset of [0, 1]; then, as this subsequence is uniformly

equicontinuous, it is Cauchy in C([0, 1];H) and we will be done.

For t ∈ (0, 1] define the linear operator At : L2([0, 1];U) → H by

Atψ =

∫ t

0
G(u(s))ψ(s) ds , ψ ∈ L2([0, 1];U).

We claim that At is Hilbert-Schmidt. Let (ek) be an orthonormal basis of H and let (φk)

be an orthonormal basis of L2([0, 1]; R). An orthonormal basis of U is (gk) and the family
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of products {φjgk : j, k ∈ N} is an orthonormal basis of L2([0, 1];U). We have

∞∑
k=1

∞∑
j=1

|At(φjgk)|2 =

∞∑
k=1

∞∑
j=1

∞∑
i=1

〈At(φjgk), ei〉2

=
∞∑

k=1

∞∑
i=1

∞∑
j=1

(∫ t

0
〈G(u(s))gk, ei〉φj(s) ds

)2

=
∞∑

k=1

∞∑
i=1

∫ t

0
〈G(u(s))gk, ei〉2 ds

=

∫ t

0

∞∑
k=1

∞∑
i=1

〈G(u(s))gk, ei〉2 ds

=

∫ t

0
‖G(u(s))‖2L2(U,H) ds <∞.

For each ti ∈ (0, 1] ∩ Q, since Ati is a compact operator, the set {Atiψn : n ∈ N}
is relatively compact in H. We can apply the diagonal argument to the sequence of

sequences

At1ψ1 At1ψ2 At1ψ3 At1ψ4 · · ·
At2ψ1 At2ψ2 At2ψ3 At2ψ4 · · ·

...
...

...
...

Atiψ1 Atiψ2 Atiψ3 Atiψ4 · · ·
...

...
...

...

to conclude that there is a strictly increasing sequence of natural numbers (nk) such that

lim
k→∞

Atiψnk
exists for each i ∈ N.

Thus there is pointwise convergence of the subsequence(
t ∈ [0, 1] �→

∫ t

0
G(u(s))ψnk

(s) ds ∈ H
)∞

k=1

on [0, 1] ∩Q.

Proof of Theorem 3.1(3). Let B ⊂ L2([0, 1];U) be weakly sequentially compact and

let K ⊂ H be compact. We want to show that

C := {u ∈ C([0, 1];H) : u = zφ
x for some φ ∈ B and some x ∈ K}
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is compact. Set

q := sup{‖ψ‖L2([0,1];U) : ψ ∈ B},

which is finite because weak sequential compactness of B implies that B is bounded. Let

(un) be a sequence of elements of C. For each n ∈ N there is φn ∈ B and xn ∈ K such

that un = zφn
xn , that is

un(t) = xn +

∫ t

0
G(un(s))φn(s) ds ∀t ∈ [0, 1].

By compactness of K and weak sequential compactness of B, there is a strictly increasing

sequence of natural numbers (nk) and there are vectors x ∈ K and φ ∈ B such that xnk

converges to x in H and φnk
converges to φ in the weak topology of L2([0, 1];U) as k goes

to infinity. We claim that unk
→ u := zφ

x as k →∞.

Given k ∈ N we have for each t ∈ [0, 1]

|u(t)− unk
(t)| ≤ |x− xnk

|+
∣∣∣∣∫ t

0
G(u(s))φ(s) ds−

∫ t

0
G(unk

(s))φnk
(s) ds

∣∣∣∣
≤ |x− xnk

|+
∣∣∣∣∫ t

0
G(u(s))(φ(s)− φnk

(s)) ds

∣∣∣∣+∣∣∣∣∫ t

0
[G(u(s))−G(unk

(s))]φnk
(s) ds

∣∣∣∣
≤ |x− xnk

|+ sup
r∈[0,1]

∣∣∣∣∫ r

0
G(u(s))(φ(s)− φnk

(s)) ds

∣∣∣∣+
Λ

∫ t

0
|u(s)− unk

(s)||φnk
(s)|U ds.

Thus by Gronwall’s Lemma we have

sup
t∈[0,1]

|u(t)−unk
(t)| ≤

(
|x− xnk

|+ sup
r∈[0,1]

∣∣∣∣∫ r

0
G(u(s))(φ(s)− φnk

(s)) ds

∣∣∣∣
)

exp(Λq) ∀k ∈ N

and the right hand side of the above inequality goes to zero as k →∞ because the compact

linear operator

ψ ∈ L2([0, 1];U) �→
(
t �→

∫ t

0
G(u(s))ψ(s) ds

)
∈ C([0, 1];H)

maps the weakly convergent sequence (φnk
) in L2([0, 1];U) to a norm convergent sequence

in C([0, 1];H). This completes the proof of Theorem 3.1.
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3.3 Reducing the problem to the case of bounded G

In this section we show that if Theorems 3.2 and 3.3 hold under the additional assumption

that the function G : H → L2(U,H) is bounded then they hold also for G which is not

bounded. This idea is copied from Cerrai and Röckner [5, Theorem 6.4].

For each R ∈ (0,∞) define GR : H → L2(U,H) by

GR(x) :=

{
G(x) if |x| ≤ R

G( R
|x|x) if |x| > R;

it is straightforward to show that supx∈H ‖GR(x)‖L2(U,H) <∞ and that inequalities (3.3)

and (3.4) also hold with GR in place of G. For each x ∈ H and R ∈ (0,∞) define

IR,x : C([0, 1];H) → [0,∞] by

IR,x(u) :=
1
2 inf

{∫ 1
0 |φ(s)|2U ds : φ ∈ L2([0, 1];U) and u(t) = x+

∫ t
0 GR(u(s))φ(s) ds ∀t ∈ [0, 1]

}
,

for all u ∈ C([0, 1];H).

For each x ∈ H, R ∈ (0,∞) and ε ∈ (0, 1] define (Xε
R,x(t) : (Ω,Ft) → (H,BH))t∈[0,1] to be

the continuous (Ft)-predictable process satisfying

Xε
R,x(t) = S(εt)x+ε

∫ t

0
S(ε(t−s))F (εs,Xε

R,x(s)) ds+ε
1
2

∫ t

0
S(ε(t−s))GR(Xε

R,x(s)) dW (s)

(3.14)

P a.e. for each t ∈ [0, 1] and let Xε
R,x : Ω → C([0, 1];H) be the corresponding trajectory-

valued random variable:

Xε
R,x(ω) := (t �→ Xε

R,x(t)(ω)) ∀ω ∈ Ω.

Recall that we defined (Xε
x(t))t∈[0,1] and Xε

x in equations (3.11) and (3.12).

Lemma 3.5 Let ρ ∈ (0,∞). Given r ∈ (0,∞) and δ ∈ (0,∞) there exists R ∈ (0,∞)

such that

1. for each x ∈ BH(0, ρ)

{IR,x ≤ r} = {Ix ≤ r}

and
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2. for each x ∈ BH(0, ρ) and for each ε ∈ (0, 1]

P{Xε
x ∈ BC([0,1];H)({Ix ≤ r}, δ)} = P{Xε

R,x ∈ BC([0,1];H)({Ix ≤ r}, δ)}.

Proof. Let r > 0 and δ > 0. Set

R := (ρ+ Λ
√

2r) exp(Λ
√

2r) + δ. (3.15)

Let x ∈ BH(0, ρ).

We firstly prove part (1).

Suppose u ∈ C([0, 1];H) and Ix(u) ≤ r. Then there exists φ ∈ L2([0, 1];U) such that

‖φ‖L2([0,1];U) ≤
√

2r and

u(t) = x+

∫ t

0
G(u(s))φ(s) ds ∀t ∈ [0, 1]. (3.16)

Taking the norm of both sides of this equation gives

|u(t)| ≤ |x|+ Λ

∫ t

0
(1 + |u(s)|)|φ(s)|U ds ∀t ∈ [0, 1]

and by Gronwall’s Lemma

sup
t∈[0,1]

|u(t)| < (ρ+ Λ
√

2r) exp(Λ
√

2r) (3.17)

< R. (3.18)

By definition of GR, G(x) = GR(x) for all x ∈ BH(0, R); thus, from (3.16) and(3.18), u

satisfies

u(t) = x+

∫ t

0
GR(u(s))φ(s) ds ∀t ∈ [0, 1]

and IR,x(u) ≤ 1
2

∫ 1
0 |φ(s)|2U ds ≤ r.

Suppose now that v ∈ C([0, 1];H) and IR,x(v) ≤ r. Then for some ψ ∈ L2([0, 1];U) such

that ‖ψ‖L2([0,1];U) ≤
√

2r we have

v(t) = x+

∫ t

0
GR(v(s))ψ(s) ds ∀t ∈ [0, 1].

By taking norms of both sides of the equation and then applying Gronwall’s Lemma we
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conclude that

sup
t∈[0,1]

|v(t)| < R.

Thus v satisfies the equation

v(t) = x+

∫ t

0
G(v(s))ψ(s) ds ∀t ∈ [0, 1]

and it follows that Ix(v) ≤ 1
2

∫ 1
0 |ψ(s)|2U ds ≤ r.

We have shown that {Ix ≤ r} = {IR,x ≤ r}.

We now prove part (2). Let ε ∈ (0, 1].

Define the (Ft)-stopping time

τ(ω) := inf{t ∈ [0, 1] : |Xε
x(t)(ω)| ≥ R} , ω ∈ Ω,

where we take τ(ω) = 1 if |Xε
x(t)(ω)| < R for all t ∈ [0, 1]. By our choice of R and

inequality (3.17) we have

BC([0,1];H)({Ix ≤ r}, δ) ⊂ BC([0,1];H)(0, R).

Thus we can tell if the trajectory Xε
x(ω) lies in BC([0,1];H)({Ix ≤ r}, δ) by observing the

trajectory just up to time τ(ω); also for P a.e. ω ∈ Ω we have supt∈[0,τ(ω)] |Xε
x(t)(ω)| ≤ R

and if τ(ω) < 1 then |Xε
x(τ(ω))(ω)| = R.

Let t ∈ (0, 1]. We have

Xε
x(t) = S(εt)x+ε

∫ t

0
S(ε(t−s))F (εs,Xε

x(s)) ds+ε
1
2

∫ t

0
S(ε(t−s))G(Xε

x(s)) dW (s) P a.e..

Multiplying both sides of this equation by the indicator of the stochastic interval [0, τ ] we

have

1[0,τ ](t)X
ε
x(t) = 1[0,τ ](t)S(εt)x+ 1[0,τ ](t)ε

∫ t

0
S(ε(t− s))F (εs, 1[0,τ ](s)X

ε
x(s)) ds+

1[0,τ ](t)ε
1
2

∫ t∧τ

0
1[0,t](s)S(ε(t− s))G(Xε

x(s)) dW (s) P a.e.
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and, by the localization lemma [10, Lemma 4.9],

1[0,τ ](t)X
ε
x(t) = 1[0,τ ](t)S(εt)x+ 1[0,τ ](t)ε

∫ t

0
S(ε(t− s))F (εs, 1[0,τ ](s)X

ε
x(s)) ds+

1[0,τ ](t)ε
1
2

∫ t

0
1[0,τ ](s)1[0,t](s)S(ε(t− s))GR(1[0,τ ](s)X

ε
x(s)) dW (s)

P a.e..

We also have from equation (3.14)

1[0,τ ](t)X
ε
R,x(t) = 1[0,τ ](t)S(εt)x+ 1[0,τ ](t)ε

∫ t

0
S(ε(t− s))F (εs, 1[0,τ ](s)X

ε
R,x(s)) ds+

1[0,τ ](t)ε
1
2

∫ t

0
1[0,τ ](s)1[0,t](s)S(ε(t− s))GR(1[0,τ ](s)X

ε
R,x(s)) dW (s)

P a.e..

Therefore

1[0,τ ](t)(X
ε
x(t)−Xε

R,x(t)) =

1[0,τ ](t)ε

∫ t

0
S(ε(t− s))[F (εs, 1[0,τ ](s)X

ε
x(s))− F (εs, 1[0,τ ](s)X

ε
R,x(s))]ds+

1[0,τ ](t)ε
1
2

∫ t

0
1[0,τ ](s)S(ε(t− s))[GR(1[0,τ ](s)X

ε
x(s))−GR(1[0,τ ](s)X

ε
R,x(s))] dW (s) (3.19)

P a.e..

By Theorem 3.18 we have

sup
u∈[0,1]

E
[
|Xε

x(u)|2
]
<∞ and sup

u∈[0,1]
E
[
|Xε

R,x(u)|2
]
<∞.

Thus, taking norms on both sides of equation (3.19), then squaring both sides and taking

expectations, we obtain

E
[
|1[0,τ ](t)(X

ε
x(t)−Xε

R,x(t))|2
]

≤ 2(ε2 + ε)M2Λ2

∫ t

0
E
[
|1[0,τ ](s)(X

ε
x(s)−Xε

R,x(s))|2
]
ds for each t ∈ [0, 1]. (3.20)

As the function t ∈ [0, 1] �→ E[|1[0,τ ](t)(X
ε
x(t) − Xε

R,x(t))|2] ∈ R is measurable and

bounded, Gronwall’s Lemma can be used with inequality (3.20) to show that for arbi-
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trarily small positive α we have

sup
t∈[0,1]

E[|1[0,τ ](t)(X
ε
x(t)−Xε

R,x(t))|2] ≤ α exp(2(ε2 + ε)M2Λ2). (3.21)

Inequality (3.21) implies that

1[0,τ ](t)X
ε
x(t) = 1[0,τ ](t)X

ε
R,x(t) P a.e. for each t ∈ [0, 1] (3.22)

and, since processes (1[0,τ ](t)X
ε
x(t))t∈[0,1] and (1[0,τ ](t)X

ε
R,x(t))t∈[0,1] have left continuous

trajectories, equation (3.22) implies equality of trajectories

1[0,τ ](t)X
ε
x(t) = 1[0,τ ](t)X

ε
R,x(t) ∀t ∈ [0, 1] P a.e..

We conclude that for P a.e. ω ∈ Ω,

1. if τ(ω) = 1 then Xε
x(ω) = Xε

R,x(ω) and

2. if τ(ω) < 1 then |Xε
x(τ(ω))(ω)| = |Xε

R,x(τ(ω))(ω)| = R and trajectories Xε
x(ω) and

Xε
R,x(ω) do not belong to BC([0,1];H)({Ix ≤ r}, δ).

Thus

P{Xε
x ∈ BC([0,1];H)({Ix ≤ r}, δ)} = P{Xε

R,x ∈ BC([0,1];H)({Ix ≤ r}, δ)}.

This completes the proof of Lemma 3.5.

In the rest of this section, given x ∈ H and φ ∈ L2([0, 1];U) and R > 0 we denote by

zφ
R,x the function u ∈ C([0, 1];H) such that u(t) = x+

∫ t
0 GR(u(s))φ(s) ds for all t ∈ [0, 1];

recall that zφ
x is the function v ∈ C([0, 1];H) such that v(t) = x+

∫ t
0 G(v(s))φ(s) ds for all

t ∈ [0, 1].

Lemma 3.6 Let K ⊂ H be compact. Given φ ∈ L2([0, 1];U) and δ > 0 there exists R > 0

such that:

1. for all x ∈ K we have

zφ
x = zφ

R,x

and

2. for all x ∈ K and all ε ∈ (0, 1] we have

P{Xε
x ∈ BC([0,1];H)(z

φ
x , δ)} = P{Xε

R,x ∈ BC([0,1];H)(z
φ
x , δ)}.
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Proof. Let φ ∈ L2([0, 1];U) and let δ > 0. We know from Theorem 3.1(3) that

C :=

{
u ∈ C([0, 1];H) : u(t) = x+

∫ t

0
G(u(s))φ(s) ds ∀t ∈ [0, 1] for some x ∈ K

}
is compact and thus a bounded subset of C([0, 1];H). Set

R := sup
u∈C

sup
t∈[0,1]

|u(t)|+ δ. (3.23)

Then for each x ∈ K, u ∈ C([0, 1];H) satisfies the equation

u(t) = x+

∫ t

0
G(u(s))φ(s) ds ∀t ∈ [0, 1]

only if it belongs to C, in which case supt∈[0,1] |u(t)| < R and

u(t) = x+

∫ t

0
GR(u(s))φ(s) ds ∀t ∈ [0, 1];

that is, u = zφ
x implies u = zφ

R,x.

Now we prove part (2). Let x ∈ K and ε ∈ (0, 1]. Define the (Ft)-stopping time

τ(ω) := inf{t ∈ [0, 1] : |Xε
x(t)(ω)| ≥ R} , ω ∈ Ω,

where we take τ(ω) = 1 if |Xε
x(t)(ω)| < R for all t ∈ [0, 1]. By our choice of R in

equation (3.23) we have

BC([0,1];H)(z
φ
x , δ) ⊂ BC([0,1];H)(0, R).

Thus to see whether the trajectory t ∈ [0, 1] �→ Xε
x(t)(ω) lies in BC([0,1];H)(z

φ
x , δ) it suffices

to observe it just at times t ∈ [0, τ(ω)]. We proceed as in the proof of Lemma 3.5(2).

For P a.e. ω ∈ Ω we have supt∈[0,τ(ω)] |Xε
x(t)(ω)| ≤ R, thus for each t ∈ (0, 1] we have

1[0,τ ](t)X
ε
x(t) = 1[0,τ ](t)S(εt)x+ 1[0,τ ](t)ε

∫ t

0
S(ε(t− s))F (εs, 1[0,τ ](s)X

ε
x(s)) ds+

1[0,τ ](t)ε
1
2

∫ t

0
1[0,τ ](s)S(ε(t− s))GR(1[0,τ ](s)X

ε
x(s)) dW (s) P a.e.
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and also

1[0,τ ](t)X
ε
R,x(t) = 1[0,τ ](t)S(εt)x+ 1[0,τ ](t)ε

∫ t

0
S(ε(t− s))F (εs, 1[0,τ ](s)X

ε
R,x(s)) ds+

1[0,τ ](t)ε
1
2

∫ t

0
1[0,τ ](s)S(ε(t− s))GR(1[0,τ ](s)X

ε
R,x(s)) dW (s) P a.e..

Just as in the proof of Lemma 3.5(2) we obtain the equality of trajectories

1[0,τ ](t)X
ε
x(t) = 1[0,τ ](t)X

ε
R,x(t) ∀t ∈ [0, 1] P a.e.

and from this we have

P{Xε
x ∈ BC([0,1];H)(z

φ
x , δ)} = P{Xε

R,x ∈ BC([0,1];H)(z
φ
x , δ)}.

This completes the proof of Lemma 3.6.

Corollary 3.7 Suppose that Theorem 3.2 holds under the additional assumption that the

diffusion function G : H → L2(U,H) is bounded. Then it also holds if the function G is

not bounded.

Proof. Let K ⊂ H be compact and let φ ∈ L2([0, 1];U) and let δ > 0. Take R > 0 as in

Lemma 3.6. For any x ∈ K we have zφ
x = zφ

R,x by Lemma 3.6(1).

Let γ > 0. Since GR is a bounded function, by Theorem 3.2 there exists ε0 > 0 such that

for all x ∈ K and for all ε ∈ (0, ε0]

exp

(
−1

2

∫ 1
0 |φ(s)|2U ds− γ

ε

)
≤ P{Xε

R,x ∈ BC([0,1];H)(z
φ
R,x, δ)} = P{Xε

x ∈ BC([0,1];H)(z
φ
x , δ)},

where the equality on the right is from Lemma 3.6(2).

Corollary 3.8 Suppose that Theorem 3.3 holds under the additional assumption that the

diffusion function G : H → L2(U,H) is bounded. Then it also holds if the function G is

not bounded.

Proof. Let K ⊂ H be compact. Take ρ ∈ (0,∞) such that K ⊂ BH(0, ρ). Let r ∈ (0,∞)

and let δ ∈ (0,∞). Take R > 0 as in Lemma 3.5. Let γ > 0. Since the function GR is
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bounded, by Theorem 3.3 there exists ε0 > 0 such that for all x ∈ K and for all ε ∈ (0, ε0]

exp

(−r + γ

ε

)
≥ P{Xε

R,x /∈ BC([0,1];H)({IR,x ≤ r}, δ)} = P{Xε
x /∈ BC([0,1];H)({Ix ≤ r}, δ)},

where the equality on the right is from Lemma 3.5.

Thanks to Corollaries 3.7 and 3.8 our task reduces to proving Theorems 3.2 and 3.3 under

the additional assumption:

(A3) the function G : H → L2(U,H) is bounded, that is:

sup
x∈H

‖G(x)‖L2(U,H) <∞.

3.4 Exponential bounds

To prove Theorems 3.2 and 3.3 in the case of boundedG we shall need some exponential tail

estimates for stochastic integrals and stochastic convolutions due to Chow and Menaldi [8]

and Peszat [25]. The formulations we present without proof are Peszat’s [25].

Let P1 denote the (Ft)-predictable σ-algebra of [0, 1] × Ω. Let ξ : ([0, 1] × Ω,P1) →
(L2(U,H),BL2(U,H)) be a measurable function.

Theorem 3.9 (Chow’s and Menaldi’s bound for stochastic integrals) If there ex-

ists a positive real number η1 such that∫ 1

0
‖ξ(s)‖2L2(U,H) ds ≤ η1 P a.e.

then for any δ > 0

P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0
ξ(s) dW (s)

∣∣∣∣ ≥ δ

}
≤ 3 exp

(
− δ2

4η1

)
.

Theorem 3.10 (Peszat’s bound for stochastic convolutions) Let (T (t)) be a strongly

continuous semigroup of bounded linear operators on H. Suppose α0 ∈ (0, 1
2) and p0 > 1

are such that

κ :=

(∫ 1

0
t(α0−1)p0‖T (t)‖p0

L(H,H) dt

) 1
p0

<∞.
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If there exists a positive real number η2 such that

sup
t∈[0,1]

∫ t

0
(t− s)−2α0‖T (t− s)ξ(s)‖2L2(U,H) ds ≤ η2 P a.e.

then the process (
∫ t
0 T (t− s)ξ(s) dW (s))t∈[0,1] has a continuous version in H and for any

δ > 0

P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0
T (t− s)ξ(s) dW (s)

∣∣∣∣ ≥ δ

}
≤ C exp

(
− δ2

κ2η2

)

where C = 4 + exp(4n0!)
1

n0 and n0 = p0

2p0−2 + 1.

In the proof of Theorem 3.3 we also use a large deviation principle associated with the

trajectory-valued random variable W : (Ω,F , P ) → (C([0, 1];U1),BC([0,1];U1)) defined by

W (ω) := (t ∈ [0, 1] �→W (t)(ω) ∈ U1) ∀ω ∈ Ω.

As shown in [32, Theorem 1 in Section 6.2], the distribution of W is symmetric Gaussian

and its reproducing kernel Hilbert space is

HW :=

{
t ∈ [0, 1] �→ J

∫ t

0
ψ(s) ds : ψ ∈ L2([0, 1];U)

}
,

with norm ‖ · ‖HW
defined by

‖y‖2HW
:=

∫ 1

0
|ψ(s)|2U ds : ψ ∈ L2([0, 1];U) and y(t) = J

∫ t

0
ψ(s) ds ∀t ∈ [0, 1].

Thus, by [10, Theorem 12.7], the family of Gaussian measures

{L(ε
1
2W : (Ω,F , P ) → (C([0, 1];U1),BC([0,1];U1))) : ε ∈ (0, 1]}

satisfies a large deviation principle with rate function IW : C([0, 1];U1) → [0,∞] defined

by

IW (f) :=

{
1
2‖f‖2HW

if f ∈ HW ,

∞ if f /∈ HW .
(3.24)

3.5 The lower bound

In this section we prove Theorem 3.2 under the additional assumption (A3).
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Proof of Theorem 3.2 assuming (A3). Let K ⊂ H be compact and fix φ ∈
L2([0, 1];U). Recall that for each x ∈ K zφ

x ∈ C([0, 1];H) satisfies

zφ
x(t) = x+

∫ t

0
G(zφ

x(s))φ(s) ds ∀t ∈ [0, 1].

Fix δ > 0 and γ > 0. For each ε ∈ (0, 1] define the process (W ε(t) : (Ω,Ft) →
(U1,BU1))t∈[0,1] by

W ε(t) := W (t)− ε− 1
2J

∫ t

0
φ(s) ds ∀t ∈ [0, 1]. (3.25)

By [10, Theorem 10.14] (W ε(t))t∈[0,1] is a Wiener process with respect to filtration (Ft)

on probability space (Ω,F , P ε) where

dP ε(ω) = exp

(
ε−

1
2

∫ 1

0
〈φ(s), ·〉U dW (s)(ω)− 1

2ε

∫ 1

0
|φ(s)|2U ds

)
dP (ω) (3.26)

and P ε(W ε(1))−1 = P (W (1))−1.

Taking the reciprocal of the Radon-Nikodym derivative in equation (3.26) we have

dP (ω) = exp

(
−ε− 1

2

∫ 1

0
〈φ(s), ·〉U dW (s)(ω) +

1

2ε

∫ 1

0
|φ(s)|2U ds

)
dP ε(ω)

and we use Lemma 3.20 to replace the Itô integral on the right hand side by one with

respect to (W ε(t))t∈[0,1]:∫ 1

0
〈φ(s), ·〉U dW ε(s) =

∫ 1

0
〈φ(s), ·〉U dW (s)− ε− 1

2

∫ 1

0
|φ(s)|2U ds P ε a.e..

Thus we have

dP (ω) = exp

(
−ε− 1

2

∫ 1

0
〈φ(s), ·〉U dW ε(s)(ω)− 1

2ε

∫ 1

0
|φ(s)|2U ds

)
dP ε(ω).

To shorten notation, for each x ∈ K and each ε ∈ (0, 1] set

A(ε, x) :=

{
ω ∈ Ω : sup

t∈[0,1]
|Xε

x(t)(ω)− zφ
x(t)| < δ

}
and

D(ε) :=

{
ω ∈ Ω :

∣∣∣∣ε 1
2

∫ 1

0
〈φ(t), ·〉U dW ε(t)(ω)

∣∣∣∣ ≤ γ

2

}
.
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We have

P (A(ε, x)) =

∫
Ω

1A(ε,x) dP

=

∫
Ω

1A(ε,x) exp

(
−ε− 1

2

∫ 1

0
〈φ(s), ·〉U dW ε(s)− 1

2ε

∫ 1

0
|φ(s)|2U ds

)
dP ε

≥
∫

Ω
1A(ε,x)∩D(ε) exp

(
−ε− 1

2

∫ 1

0
〈φ(s), ·〉U dW ε(s)− 1

2ε

∫ 1

0
|φ(s)|2U ds

)
dP ε

≥ exp

(
− γ

2ε
− 1

2ε

∫ 1

0
|φ(s)|2U ds

)
P ε(A(ε, x) ∩ D(ε)).

It remains to show that there exists ε0 > 0 such that P ε(A(ε, x) ∩ D(ε)) ≥ exp(− γ
2ε) for

all x ∈ K and for all ε ∈ (0, ε0]. We will actually show something more:

P ε(A(ε, x)c ∪ D(ε)c) → 0 as ε→ 0 uniformly in x ∈ K.

Let ε ∈ (0, 1] and let x ∈ H.
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For each t ∈ (0, 1] we have

|Xε
x(t)− zφ

x(t)|

=

∣∣∣∣S(εt)x− x+ ε

∫ t

0
S(ε(t− s))(F (εs,Xε

x(s))− F (εs, zφ
x(s))) ds

+ ε

∫ t

0
S(ε(t− s))F (εs, zφ

x(s)) ds

+

∫ t

0
S(ε(t− s))(G(Xε

x(s))−G(zφ
x(s)))φ(s) ds

+

∫ t

0
(S(ε(t− s))− IH)G(zφ

x(s))φ(s) ds

+ ε
1
2

(∫ t

0
S(ε(t− s))G(Xε

x(s)) dW (s)− ε− 1
2

∫ t

0
S(ε(t− s))G(Xε

x(s))φ(s) ds

)∣∣∣∣
≤ sup

r∈[0,ε]
|S(r)x− x|+ εMΛ

∫ t

0
|Xε

x(s)− zφ
x(s)| ds

+ εMΛ

∫ 1

0
(1 + |zφ

x(s)|) ds

+MΛ

∫ t

0
|Xε

x(s)− zφ
x(s)||φ(s)|U ds

+ sup{‖(S(r)− IH)G(zφ
x(s))‖L2(U,H) : r ∈ [0, ε] , s ∈ [0, 1]}

(∫ 1

0
|φ(s)|2U ds

) 1
2

+ sup
r∈[0,1]

ε
1
2

∣∣∣∣∫ r

0
S(ε(r − s))G(Xε

x(s)) dW (s)− ε− 1
2

∫ r

0
S(ε(r − s))G(Xε

x(s))φ(s) ds

∣∣∣∣ .(3.27)

The last term on the right of (3.27) can be written in terms of a stochastic convolution

with respect to integrator (W ε(t))t∈[0,1]. For each t ∈ (0, 1] the function

(s, ω) ∈ ([0, 1]× Ω, P1) �→ 1[0,t](s)S(ε(t− s))G(Xε
x(s)(ω)) ∈ (L2(U,H),BL2(U,H))

is measurable and bounded; thus Lemma 3.20 applies and we have for each t ∈ [0, 1]∫ t

0
S(ε(t−s))G(Xε

x(s)) dW ε(s) =

∫ t

0
S(ε(t−s))G(Xε

x(s)) dW (s)−ε− 1
2

∫ t

0
S(ε(t−s))G(Xε

x(s))φ(s) ds

P a.e.. Considering continuous versions of the processes we have P a.e.

ε
1
2

∫ t

0
S(ε(t− s))G(Xε

x(s)) dW ε(s)

= ε
1
2

(∫ t

0
S(ε(t− s))G(Xε

x(s)) dW (s)− ε− 1
2

∫ t

0
S(ε(t− s))G(Xε

x(s))φ(s) ds

)
∀t ∈ [0, 1].(3.28)
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Squaring both sides of inequality (3.27) and using equation (3.28) we have

|Xε
x(t)− zφ

x(t)|2

≤ 6

[
sup

r∈[0,ε]
|S(r)x− x|2 +M2Λ2

(
ε2 +

∫ 1

0
|φ(s)|2U ds

)∫ t

0
|Xε

x(s)− zφ
x(s)|2 ds

+ ε2M2Λ2

(∫ 1

0
(1 + |zφ

x(s)|) ds
)2

+ sup{‖(S(r)− IH)G(zφ
x(s))‖L2(U,H) : s ∈ [0, 1] and r ∈ [0, ε]}2

∫ 1

0
|φ(s)|2U ds

+

(
sup

r∈[0,1]

∣∣∣∣ε 1
2

∫ r

0
S(ε(r − s))G(Xε

x(s)) dW ε(s)

∣∣∣∣
)2
⎤⎦

for all t ∈ [0, 1] P ε a.e.. Hence from Gronwall’s Lemma,

sup
t∈[0,1]

|Xε
x(t)− zφ

x(t)|2

≤ 6

[
sup

r∈[0,ε]
|S(r)x− x|2 + ε2M2Λ2

(∫ 1

0
(1 + |zφ

x(s)|) ds
)2

+

sup{‖(S(r)− IH)G(zφ
x(s))‖L2(U,H) : r ∈ [0, ε] , s ∈ [0, 1]}2

∫ 1

0
|φ(s)|2U ds+

sup
r∈[0,1]

∣∣∣∣ε 1
2

∫ r

0
S(ε(r − s))G(Xε

x(s)) dW ε(s)

∣∣∣∣2
]

exp

(
6M2Λ2

(
1 +

∫ 1

0
|φ(s)|2U ds

))
P ε a.e..

Thus

P ε{ sup
t∈[0,1]

|Xε
x(t)− zφ

x(t)| ≥ δ}

≤ P ε

{
sup

r∈[0,ε]
|S(r)x− x|2 + ε2M2Λ2

(∫ 1

0
(1 + |zφ

x(s)|) ds
)2

+

sup{‖(S(r)− IH)G(zφ
x(s))‖L2(U,H) : r ∈ [0, ε] , s ∈ [0, 1]}2

∫ 1

0
|φ(s)|2U ds+

sup
r∈[0,1]

∣∣∣∣ε 1
2

∫ r

0
S(ε(r − s))G(Xε

x(s)) dW ε(s)

∣∣∣∣2 ≥ δ2

6 exp(6M2Λ2(1 +
∫ 1
0 |φ(s)|2U ds))

}
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and there exists ε1 > 0 such that for all x ∈ K and for all ε ∈ (0, ε1] we have

P ε{ sup
t∈[0,1]

|Xε
x(t)− zφ

x(t)| ≥ δ}

≤ P ε

{
sup

r∈[0,1]

∣∣∣∣∫ r

0
S(ε(r − s))G(Xε

x(s)) dW ε(s)

∣∣∣∣ ≥ δ

3ε
1
2 exp(3M2Λ2(1 +

∫ 1
0 |φ(s)|2U ds))

}
.(3.29)

Since we are assuming (A3), we can apply Peszat’s tail estimate from Theorem 3.10 to the

term on the right hand side of (3.29). Thus for all x ∈ K and for all ε ∈ (0, ε1] we have

P ε(A(ε, x)c) ≤ C1 exp

(−δ2
εK1

)
(3.30)

→ 0 as ε→ 0,

where the numbers C1 and K1 in Peszat’s exponential estimate (3.30) are positive real

constants that do not depend on ε or on x.

We also have from Theorem 3.9

P ε(D(ε)c) ≤ P ε

{
ω ∈ Ω : sup

t∈[0,1]

∣∣∣∣∫ t

0
〈φ(s), ·〉U dW ε(s)(ω)

∣∣∣∣ > γ

2ε
1
2

}

≤ 3 exp

(
− γ2

16ε
∫ 1
0 |φ(s)|2U ds

)
→ 0 as ε→ 0.

This completes the proof of the theorem.

3.6 The upper bound

In this section we assume that (A3) holds and we prove Theorem 3.3 using the following

proposition.

Proposition 3.11 Let K ⊂ H be compact. Given a > 0 and δ > 0 and φ ∈ L2([0, 1];U)

there exists ε0 > 0 and b > 0 such that for all ε ∈ (0, ε0] and for all x ∈ K we have

P

{
sup

t∈[0,1]
|Xε

x(t)− zφ
x(t)| ≥ δ, sup

t∈[0,1]

∣∣∣∣ε 1
2W (t)− J

∫ t

0
φ(s) ds

∣∣∣∣
U1

≤ b

}
≤ exp

(
−a
ε

)
.

The virtue of this proposition is that given positive δ the exponential bound on the right

hand side has a, which we can choose to be as large as we please, in the numerator; the cost
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is the restriction on ε
1
2W , but we have the large deviation principle of {L(ε

1
2W ) : ε ∈ (0, 1]}

to describe how these distributions behave. There is some work involved in arriving at

the proof of Proposition 3.11 and this is left till the end. We only remark that we need

several lemmas which use assumptions (A1), (A2) and (A3).

Proof of Theorem 3.3 assuming (A3). Let K be a compact subset of H. Fix r > 0

and δ > 0 and γ > 0. Let a be a positive real number, to be specified later. By

Proposition 3.11, for each φ ∈ L2([0, 1];U) there exists bφ > 0 and εφ > 0 such that for all

ε ∈ (0, εφ] and for all x ∈ K we have

P

{
sup

t∈[0,1]
|Xε

x(t)− zφ
x(t)| ≥ δ, sup

t∈[0,1]

∣∣∣∣ε 1
2W (t)− J

∫ t

0
φ(s) ds

∣∣∣∣
U1

≤ bφ

}
≤ exp

(
−a
ε

)
.

(3.31)

Recall from equation (3.24) that IW is the rate function of the large deviation principle

satisfied by {L(ε
1
2W ) : ε ∈ (0, 1]}. We have

{IW ≤ r} =

{
u ∈ C([0, 1];U1) : u(t) = J

∫ t

0
ψ(s) ds ∀t ∈ [0, 1],

where ψ ∈ L2([0, 1];U) and

∫ 1

0
|ψ(s)|2U ds ≤ 2r

}
⊂

⋃
ψ∈L2([0,1];U):

R 1
0 |ψ(s)|2U ds≤2r

{
v ∈ C([0, 1];U1) : sup

t∈[0,1]

∣∣∣∣v(t)− J ∫ t

0
ψ(s) ds

∣∣∣∣
U1

< bψ

}
.

Since {IW ≤ r} is a compact subset of C([0, 1];U1), there exists a natural number l and

φ1, . . . , φl ∈ L2([0, 1];U) such that
∫ 1
0 |φj(s)|2U ds ≤ 2r for each j ∈ {1, . . . , l} and

{IW ≤ r} ⊂
l⋃

j=1

{
v ∈ C([0, 1];U1) : sup

t∈[0,1]

∣∣∣∣v(t)− J ∫ t

0
φj(s) ds

∣∣∣∣
U1

< bφj

}
=: C. (3.32)

For each x ∈ H we may appeal to the definition of C in (3.32) and write

P{Xε
x /∈ BC([0,1];H)({Ix ≤ r}, δ)}

≤ P{Xε
x /∈ BC([0,1];H)({Ix ≤ r}, δ), ε 1

2W ∈ C}+ P{ε 1
2W /∈ C}

≤
l∑

j=1

P

{
Xε

x /∈ BC([0,1];H)({Ix ≤ r}, δ), sup
t∈[0,1]

∣∣∣∣ε 1
2W (t)− J

∫ t

0
φj(s) ds

∣∣∣∣
U1

< bφj

}
+ P{ε 1

2W /∈ C}. (3.33)
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Set ε1 := min{εφ1 , . . . , εφl
}. For each j ∈ {1, . . . , l} we have from inequality (3.31) that

for all ε ∈ (0, ε1] and for all x ∈ K

P

{
Xε

x /∈ BC([0,1];H)({Ix ≤ r}, δ), sup
t∈[0,1]

∣∣∣∣ε 1
2W (t)− J

∫ t

0
φj(s) ds

∣∣∣∣
U1

< bφj

}

≤ P

{
Xε

x /∈ BC([0,1];H)(z
φj
x , δ), sup

t∈[0,1]

∣∣∣∣ε 1
2W (t)− J

∫ t

0
φj(s) ds

∣∣∣∣
U1

< bφj

}
≤ exp

(
−a
ε

)
. (3.34)

Since the open set C contains {IW ≤ r}, by the upper bound of the large deviation

principle of the family {L(ε
1
2W ) : ε ∈ (0, 1]} there exists ε2 > 0 such that for all ε ∈ (0, ε2]

P{ε 1
2W /∈ C} ≤ exp

(−r + γ
2

ε

)
. (3.35)

Set ε3 := ε1∧ε2. Returning to inequality (3.33), we have for all x ∈ K and for all ε ∈ (0, ε3]

P{Xε
x /∈ BC([0,1];H)({Ix ≤ r}, δ)} ≤ l exp

(
−a
ε

)
+ exp

(−r + γ
2

ε

)
≤ (l + 1) exp

(−r + γ
2

ε

)
when a is taken as r − γ

2 .

Finally set ε4 := ε3 ∧ γ
2 ln(l+1) . Then for all x ∈ K and for all ε ∈ (0, ε4]

P{Xε
x /∈ BC([0,1];H)({Ix ≤ r}, δ)} ≤ exp

(−r + γ

ε

)
.

This completes the proof of the theorem.

Now we work towards proving Proposition 3.11. In the following we make use of (A3):

Γ := sup
x∈H

‖G(x)‖L2(U,H) <∞,

as well as (A1) and (A2).

Fix φ ∈ L2([0, 1];U). For each ε ∈ (0, 1] define F̃ε : ([0, 1]×H,B[0,1] ⊗ BH) → (H,BH) by

F̃ε(s, x) := εF (εs, x) +G(x)φ(s) ∀s ∈ [0, 1] and ∀x ∈ H. (3.36)
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It is not difficult to show that for each ε ∈ (0, 1] F̃ε is measurable and

|F̃ε(s, x)− F̃ε(s, y)| ≤ θ(s)|x− y| ∀x, y ∈ H and ∀s ∈ [0, 1] (3.37)

and

|F̃ε(s, x)| ≤ θ(s)(1 + |x|) ∀s ∈ [0, 1] and ∀x ∈ H, (3.38)

where θ(s) := Λ(1 + |φ(s)|U ), s ∈ [0, 1], is a function in L2([0, 1]; R).

By Theorem 3.18, for each ε ∈ (0, 1] and each x ∈ H we may define (Zε
x(t))t∈[0,1] as the

continuous (Ft)-predictable process such that

Zε
x(t) = S(εt)x+

∫ t

0
S(ε(t− s))F̃ε(s, Z

ε
x(s)) ds+ ε

1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s) (3.39)

for all t ∈ [0, 1] P a.e.. To prove Proposition 3.11 we will need some lemmas concerning

the processes (Zε
x(t))t∈[0,1]. In the proofs of these lemmas the only properties of F̃ε we use

are those in (3.37) and (3.38).

Lemma 3.12 Given a ∈ (0,∞) and R ∈ (0,∞) there exists D ∈ (0,∞) such that for all

ε ∈ (0, 1] and for all x ∈ BH(0, R) we have

P{ sup
t∈[0,1]

|Zε
x(t)| ≥ D} ≤ exp

(
−a
ε

)
.

Proof. Let x ∈ BH(0, R) and let ε ∈ (0, 1]. For each ω in the set of P measure 1 where

the trajectory t �→ Zε
x(t)(ω) satisfies equation (3.39) we have for all t ∈ [0, 1]:

|Zε
x(t)| ≤ |S(εt)x|+ |

∫ t

0
S(ε(t− s))F̃ε(s, Z

ε
x(s)) ds|+ ε

1
2 |
∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)|

≤ M |x|+M

∫ t

0
θ(s)(1 + |Zε

x(s)|) ds+ ε
1
2 |
∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)|

≤ M |x|+M

(∫ 1

0
θ(s)2 ds

) 1
2

+M

(∫ 1

0
θ(s)2 ds

) 1
2
(∫ t

0
|Zε

x(s)|2 ds
) 1

2

+ ε
1
2 sup

r∈[0,1]
|
∫ r

0
S(ε(r − s))G(Zε

x(s)) dW (s)|.
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Squaring both sides of the last inequality and then applying Gronwall’s Lemma yields

sup
t∈[0,1]

|Zε
x(t)|2 ≤ 4

[
M2|x|2 +M2

∫ 1

0
θ2(s) ds+ ε sup

r∈[0,1]
|
∫ r

0
S(ε(r − s))G(Zε

x(s)) dW (s)|2
]

× exp

(
4M2

∫ 1

0
θ(s)2 ds

)
P a.e..

Set

D1 := 4 exp

(
4M2

∫ 1

0
θ(s)2 ds

)(
M2R2 +M2

∫ 1

0
θ(s)2 ds

)
and

D2 := 4 exp

(
4M2

∫ 1

0
θ(s)2 ds

)
.

Then we have for each x ∈ BH(0, R) and for each ε ∈ (0, 1]:

sup
t∈[0,1]

|Zε
x(t)|2 ≤ D1 +D2ε sup

t∈[0,1]
|
∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)|2 P a.e.

and for any D ∈ (0,∞) such that D2 > D1 we have

P{ sup
t∈[0,1]

|Zε
x(t)|2 ≥ D2} ≤ P

{
ε sup

t∈[0,1]

∣∣∣∣∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣2 ≥ D2 −D1

D2

}
.

(3.40)

We can apply Theorem 3.10 to the right hand side of inequality (3.40). Take α0 ∈ (0, 1
2)

and p0 > 1 such that (α0 − 1)p0 > −1; then for all ε ∈ (0, 1]

(∫ 1

0
t(α0−1)p0‖S(εt)‖p0

L(H) dt

) 1
p0

≤M

(
1

(α0 − 1)p0 + 1

) 1
p0

=: κ;

also for all t ∈ (0, 1] and for all ε ∈ (0, 1] and for all x ∈ H∫ t

0
(t− s)−2α0‖S(ε(t− s))G(Zε

x(s))‖2L2(U,H) ds ≤
M2Γ2

1− 2α0
=: η.

Thus by Theorem 3.10, for any δ ∈ (0,∞), for all ε ∈ (0, 1] and for all x ∈ H we have

P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣ ≥ δ

}
≤ C exp

(
− δ2

κ2η

)
, (3.41)
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where C = 4 + exp(4n0!)
1

n0 and n0 = p0

2p0−2 + 1. From inequalities (3.40) and (3.41), for

all D ∈ (0,∞) such that D2 > D1 and for all x ∈ BH(0, R) and for all ε ∈ (0, 1]

P{ sup
t∈[0,1]

|Zε
x(t)| ≥ D} ≤ P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣ ≥ (
D2 −D1

εD2

) 1
2

}

≤ exp

(
−D

2 −D1

εD2κ2η
+ lnC

)
.

Thus taking D2 = (a+ lnC)D2κ
2η +D1 gives the desired result.

We introduce some notation to be used in the following lemmas. Set

tn,k :=
k

2n
for n ∈ N and k = 0, 1, . . . , 2n.

Lemma 3.13 Given a > 0 and δ > 0 there is a natural number N such that for each

n ≥ N there exists εn > 0 such that for all ε ∈ (0, εn] and for all x ∈ H we have

P

{
sup

k∈{0,1,...,2n−1}
sup

t∈[tn,k,tn,k+1]
|ε 1

2

∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)| ≥ δ

}
≤ exp

(
−a
ε

)
.

Proof. For the purpose of applying Theorem 3.10, fix α0 ∈ (0, 1
2) and p0 > 1 such that

(α0 − 1)p0 > −1.

Let x ∈ H, let ε ∈ (0, 1], let n ∈ N and let k ∈ {0, 1, . . . , 2n − 1}. For each t ∈ [tn,k, tn,k+1]

we have∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s) =

∫ t

0
S(ε(t− s))1[tn,k,tn,k+1](s)G(Zε

x(s)) dW (s) P a.e.

and, considering continuous versions,

sup
t∈[tn,k,tn,k+1]

|
∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)|

≤ sup
t∈[0,1]

|
∫ t

0
S(ε(t− s))1[tn,k,tn,k+1](s)G(Zε

x(s)) dW (s)| P a.e..
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Thus

P

{
sup

t∈[tn,k,tn,k+1]
|ε 1

2

∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)| ≥ δ

}

≤ P

{
sup

t∈[0,1]
|ε 1

2

∫ t

0
S(ε(t− s))1[tn,k,tn,k+1](s)G(Zε

x(s)) dW (s)| ≥ δ

}
. (3.42)

The function ξ : ([0, 1]× Ω,P1) → (L2(U,H),BL2(U,H)) defined by

ξ(s, ω) := 1[tn,k,tn,k+1](s)G(Zε
x(s)(ω)) ∀(s, ω) ∈ [0, 1]× Ω

is measurable and for each t ∈ (0, 1]∫ t

0
(t− s)−2α0‖S(ε(t− s))ξ(s)‖2L2(U,H) ds ≤ M2Γ2

∫ t

0
(t− s)−2α01[tn,k,tn,k+1](s) ds

≤ M2Γ2

1− 2α0
2−(1−2α0)n =: ηn.

Set κ := M( 1
(α0−1)p0+1)

1
p0 . By Theorem 3.10 we have

P

{
sup

t∈[0,1]
|ε 1

2

∫ t

0
S(ε(t− s))1[tn,k,tn,k+1](s)G(Zε

x(s)) dW (s)| ≥ δ

}
≤ C exp

(
− δ2

εκ2ηn

)
,

(3.43)

where C = 4 + exp(4n0!)
1

n0 and n0 = p0

2p0−2 + 1. From inequalities (3.42) and (3.43) we

have

P

{
sup

k∈{0,1,...,2n−1}
sup

t∈[tn,k,tn,k+1]
|ε 1

2

∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)| ≥ δ

}

≤
2n−1∑
k=0

P

{
sup

t∈[tn,k,tn,k+1]
|ε 1

2

∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)| ≥ δ

}

≤ exp

(
− δ2

εκ2ηn
+ ln(2nC)

)
.

Now observe that there exists N ∈ N such that for each n ≥ N we have

− δ2

κ2ηn
< −a
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and there exists εn > 0 such that

− δ2

κ2ηn
+ ε ln(2nC) ≤ −a ∀ε ∈ (0, εn].

This completes the proof of the lemma.

Lemma 3.14 Let R > 0. Given a > 0 and δ > 0 there is a natural number n0 such that

for each n ≥ n0 there exists εn > 0 such that for all ε ∈ (0, εn] and for all x ∈ BH(0, R)

P{ sup
k∈{0,1,...,2n−1}

sup
t∈[tn,k,tn,k+1]

|Zε
x(t)− S(ε(t− tn,k))Z

ε
x(tn,k)| ≥ δ} ≤ exp

(
−a
ε

)
.

Proof. Let x ∈ BH(0, R) and ε ∈ (0, 1] and n ∈ N and k ∈ {0, 1, . . . , 2n − 1}.
For t ∈ [tn,k, tn,k+1] we have

|Zε
x(t)− S(ε(t− tn,k))Z

ε
x(tn,k)|

≤
∣∣∣∣∫ t

0
S(ε(t− s))F̃ε(s, Z

ε
x(s)) ds− S(ε(t− tn,k))

∫ tn,k

0
S(ε(tn,k − s))F̃ε(s, Z

ε
x(s)) ds

∣∣∣∣
+

∣∣∣∣ε 1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)− ε 1
2

∫ tn,k

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣ P a.e.

=

∣∣∣∣∣
∫ t

tn,k

S(ε(t− s))F̃ε(s, Z
ε
x(s)) ds

∣∣∣∣∣+
∣∣∣∣∣ε 1

2

∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ P a.e.

≤ M

∫ t

tn,k

θ(s)(1 + |Zε
x(s)|) ds+

∣∣∣∣∣ε 1
2

∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ P a.e.

≤ M(1 + sup
r∈[0,1]

|Zε
x(r)|)2−n

2

(∫ 1

0
θ(s)2 ds

) 1
2

+ sup
r∈[tn,k,tn,k+1]

∣∣∣∣∣ε 1
2

∫ r

tn,k

S(ε(r − s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ .
Thus

sup
k∈{0,1,...,2n−1}

sup
t∈[tn,k,tn,k+1]

|Zε
x(t)− S(ε(t− tn,k))Z

ε
x(tn,k)|

≤ 2−
n
2M

(∫ 1

0
θ(s)2 ds

) 1
2

+ 2−
n
2M

(∫ 1

0
θ(s)2 ds

) 1
2

sup
r∈[0,1]

|Zε
x(r)|

+ sup
k∈{0,1,...,2n−1}

sup
r∈[tn,k,tn,k+1]

∣∣∣∣∣ε 1
2

∫ r

tn,k

S(ε(r − s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ P a.e..

66



From this we have

P{ sup
k∈{0,1,...,2n−1}

sup
t∈[tn,k,tn,k+1]

|Zε
x(t)− S(ε(t− tn,k))Z

ε
x(tn,k)| ≥ δ}

≤ P

{
2−

n
2M

(∫ 1

0
θ(s)2 ds

) 1
2

≥ δ

3

}
+ P

{
sup

r∈[0,1]
|Zε

x(r)| ≥ δ2
n
2

3M(
∫ 1
0 θ(s)

2 ds)
1
2

}

+ P

{
sup

k∈{0,1,...,2n−1}
sup

r∈[tn,k,tn,k+1]

∣∣∣∣∣ε 1
2

∫ r

tn,k

S(ε(r − s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ ≥ δ

3

}
.

There exists a natural number N1 such that for each n ≥ N1 the first probability on the

right hand side vanishes. Set ã := a+ ln 2. By Lemma 3.12 there is a natural number N2

such that for all n ≥ N2 and for all ε ∈ (0, 1] and for all x ∈ BH(0, R)

P

{
sup

t∈[0,1]
|Zε

x(t)| ≥ δ2
n
2

3M(
∫ 1
0 θ(s)

2 ds)
1
2

}
≤ exp

(
− ã
ε

)
.

By Lemma 3.13 there is a natural number N3 such that for each n ≥ N3 there exists

εn > 0 such that for all ε ∈ (0, εn] and for all x ∈ H we have

P

{
sup

k∈{0,1,...,2n−1}
sup

t∈[tn,k,tn,k+1]

∣∣∣∣∣ε 1
2

∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ ≥ δ

3

}
≤ exp

(
− ã
ε

)
.

Thus for each n ≥ max{N1, N2, N3}, for all ε ∈ (0, εn] and for all x ∈ BH(0, R) we have

P{ sup
k∈{0,1,...,2n−1}

sup
t∈[tn,k,tn,k+1]

|Zε
x(t)− S(ε(t− tn,k))Z

ε
x(tn,k)| ≥ δ} ≤ 2 exp

(
− ã
ε

)
≤ exp

(
−a
ε

)
.

This completes the proof of the lemma.

To simplify notation, for each natural number n define the function

πn(t) :=

{
k
2n if t ∈

(
k
2n ,

k+1
2n

]
, k = 0, 1, . . . , 2n − 1

0 if t = 0.

Lemma 3.15 Let R > 0. Given a > 0 and δ > 0 there is a natural number n0 such that

for each n ≥ n0 there exists εn > 0 such that for all ε ∈ (0, εn] and for all x ∈ BH(0, R)
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and for all T ∈ [0, 1] we have

P

{
ε

1
2

∣∣∣∣∫ T

0
S(ε(T − s))G(Zε

x(s)) dW (s)

−
∫ T

0
S(ε(T − s))G(S(ε(s− πn(s)))Zε

x(πn(s))) dW (s)

∣∣∣∣ ≥ δ

}
≤ exp

(
−a
ε

)
.

Proof. Let n ∈ N and let ε ∈ (0, 1] and let x ∈ BH(0, R). It is straightforward to check

that the function

(s, ω) ∈ ([0, 1]× Ω,P1) �→ S(ε(s− πn(s)))Zε
x(πn(s))(ω) ∈ (H,BH)

= 1{0}(s)x+
2n−1∑
k=0

1(tn,k,tn,k+1](s)S(ε(s− tn,k))Z
ε
x(tn,k)(ω)

is measurable. Let ρ > 0 and define

τρ(ω) := inf{t ∈ [0, 1] : |Zε
x(t)(ω)− S(ε(t− πn(t)))Zε

x(πn(t))(ω)| ≥ ρ},

where we set inf ∅ = 1. Since (Ft) is a right continuous filtration, τρ is a (Ft)-stopping

time.
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Let T ∈ (0, 1]. We have

P

{
ε

1
2

∣∣∣∣∫ T

0
S(ε(T − s))G(Zε

x(s)) dW (s)

−
∫ T

0
S(ε(T − s))G(S(ε(s− πn(s)))Zε

x(πn(s))) dW (s)

∣∣∣∣ ≥ δ

}
≤ P

{
ε

1
2 sup

t∈[0,1]

∣∣∣∣∫ t

0
1[0,T ](s)S(ε(T − s))[G(Zε

x(s))−G(S(ε(s− πn(s)))Zε
x(πn(s)))] dW (s)

∣∣∣∣ ≥ δ

}

≤ P

{
ε

1
2 sup

t∈[0,1]

∣∣∣∣∫ t

0
1[0,T ](s)S(ε(T − s))[G(Zε

x(s))−G(S(ε(s− πn(s)))Zε
x(πn(s)))] dW (s)

∣∣∣∣ ≥ δ,

sup
t∈[0,1]

|Zε
x(t)− S(ε(t− πn(t)))Zε

x(πn(t))| < ρ

}

+ P

{
sup

t∈[0,1]
|Zε

x(t)− S(ε(t− πn(t)))Zε
x(πn(t))| ≥ ρ

}

≤ P

{
ε

1
2 sup

t∈[0,1]

∣∣∣∣∫ t∧τρ

0
1[0,T ](s)S(ε(T − s))[G(Zε

x(s))−G(S(ε(s− πn(s)))Zε
x(πn(s)))] dW (s)

∣∣∣∣ ≥ δ

}

+ P

{
sup

t∈[0,1]
|Zε

x(t)− S(ε(t− πn(t)))Zε
x(πn(t))| ≥ ρ

}

= P

{
ε

1
2 sup

t∈[0,1]

∣∣∣∣∫ t

0
1[0,τρ∧T ](s)S(ε(T − s))[G(Zε

x(s))−G(S(ε(s− πn(s)))Zε
x(πn(s)))] dW (s)

∣∣∣∣ ≥ δ

}

+ P

{
sup

t∈[0,1]
|Zε

x(t)− S(ε(t− πn(t)))Zε
x(πn(t))| ≥ ρ

}
, (3.44)

where the last equality follows from the localization lemma [10, Lemma 4.9].

We have∫ 1

0
1[0,τρ∧T ](s)‖S(ε(T − s))[G(Zε

x(s))−G(S(ε(s− πn(s)))Zε
x(πn(s)))]‖2L2(U,H) ds

≤ M2Λ2

∫ 1

0
1[0,τρ](s)|Zε

x(s)− S(ε(s− πn(s)))Zε
x(πn(s))|2 ds

≤ M2Λ2ρ2.
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Thus, by Theorem 3.9,

P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0
1[0,τρ∧T ](s)S(ε(T − s))[G(Zε

x(s))−G(S(ε(s− πn(s)))Zε
x(πn(s)))] dW (s)

∣∣∣∣ ≥ δ

ε
1
2

}

≤ 3 exp

(
− δ2

ε4M2Λ2ρ2

)
. (3.45)

We now choose ρ ∈ (0,∞) such that

δ2

4M2Λ2ρ2
≥ a+ ln 6. (3.46)

By Lemma 3.14 we can find n0 ∈ N such that for each n ≥ n0 there exists εn > 0 such

that for all ε ∈ (0, εn] and for all x ∈ BH(0, R)

P

{
sup

t∈[0,1]
|Zε

x(t)− S(ε(t− πn(t)))Zε
x(πn(t))| ≥ ρ

}
≤ exp

(
−a+ ln 2

ε

)
. (3.47)

With ρ chosen to satisfy inequality (3.46), inequalities (3.45) and (3.47) combine in equa-

tion (3.44) to give the desired result.

Lemma 3.16 Given a > 0 and δ > 0 and 0 ≤ T1 < T2 ≤ 1 and R > 0 there exists b > 0

and there exists ε0 ∈ (0, 1] such that for each x ∈ BH(0, R) and for each ε ∈ (0, ε0]

P{ |ε 1
2

∫ T2

T1

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1)) dW (s)| ≥ δ, sup

T1≤t≤T2

ε
1
2 |W (t)|U1 ≤ b }

≤ exp

(−a
ε

)
.

Proof. Recall that (gk) is an orthonormal basis of U and for each n ∈ N we define the

projection in U :

Πn(u) =

n∑
k=1

〈u, gk〉Ugk ∀u ∈ U.

In the course of this proof we choose numbers D ∈ (0,∞), n ∈ N, T1 < T̃1 < T̃2 < T2 and

a partition T̃1 = t0 < t1 < · · · < tl = T̃2 as well as b ∈ (0,∞) in order to control the size
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of the five terms on the right hand side of the inequality

P{ ε 1
2 |
∫ T2

T1

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1)) dW (s)| ≥ δ, sup

t∈[T1,T2]
ε

1
2 |W (t)|U1 ≤ b}

≤ P{|Zε
x(T1)| ≥ D}

+ P{ ε 1
2 |
∫ T2

T1

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))(IU −Πn) dW (s) | ≥ δ

4
, |Zε

x(T1)| < D}

+ P

{
ε

1
2

∣∣∣∣∣
∫ T̃1

T1

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))Πn dW (s) +∫ T2

T̃2

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))Πn dW (s)

∣∣∣∣ ≥ δ

4

}
+ P

{
ε

1
2

∣∣∣∣∣
∫ T̃2

T̃1

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))Πn dW (s)

−
∫ T̃2

T̃1

l−1∑
j=0

1(tj ,tj+1](s)S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))Πn dW (s)

∣∣∣∣∣∣ ≥ δ

4
,

|Zε
x(T1)| < D

}

+ P

⎧⎨⎩ ε
1
2 |
∫ T̃2

T̃1

l−1∑
j=0

1(tj ,tj+1](s)S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))Πn dW (s) | ≥ δ

4
,

sup
t∈[T1,T2]

ε
1
2 |W (t)|U1 ≤ b

}
= term 1 + term 2 + term 3 + term 4 + term 5. (3.48)

Let ã > a.

By Lemma 3.12 we can take D ∈ (0,∞) such that for all x ∈ BH(0, R) and for all ε ∈ (0, 1]

term 1 := P{|Zε
x(T1)| ≥ D} ≤ exp

(
− ã
ε

)
. (3.49)

Let x ∈ BH(0, R) and ε ∈ (0, 1]. Define the (Ft)-stopping time

τx,ε(ω) :=

{
T1 if |Zε

x(T1)(ω)| ≥ D

1 otherwise.
(3.50)
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The function

(s, ω) ∈ ([0, 1]×Ω,P1) �→ 1(T1,T2](s)S(ε(T2−s))G(S(ε(s−T1))Z
ε
x(T1)(ω)) ∈ (L2(U,H),BL2(U,H))

is measurable and belongs to L2([0, 1] × Ω,P1, λ × P ; L2(U,H)). Thus, applying the

localization lemma [10, Lemma 4.9], we have for arbitrary n ∈ N∫ t

0
1[0,τx,ε](s)ε

1
2 1(T1,T2](s)S(ε(T2 − s))G(S(ε(s− T1))Z

ε
x(T1))(IU −Πn) dW (s)

=

∫ t∧τx,ε

0
ε

1
2 1(T1,T2](s)S(ε(T2 − s))G(S(ε(s− T1))Z

ε
x(T1))(IU −Πn) dW (s) ∀t ∈ [0, 1]

P a.e.. Using this fact we have

term 2

:=P{ |ε 1
2

∫ T2

T1

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))(IU −Πn) dW (s)| ≥ δ

4
, |Zε

x(T1)| < D }

≤ P
{

sup
t∈[0,1]

|ε 1
2

∫ t∧τx,ε

0
1(T1,T2](s)S(ε(T2 − s))G(S(ε(s− T1))Z

ε
x(T1))(IU −Πn) dW (s)| ≥ δ

4
,

|Zε
x(T1)| < D

}

= P

{
sup

t∈[0,1]
|ε 1

2

∫ t

0
1[0,τx,ε](s)1(T1,T2](s)S(ε(T2 − s))G(S(ε(s− T1))Z

ε
x(T1))(IU −Πn) dW (s)| ≥ δ

4
,

|Zε
x(T1)| < D

}
.(3.51)

Since∫ 1

0
ε1[0,τx,ε](s)1(T1,T2](s)‖S(ε(T2 − s))G(S(ε(s− T1))Z

ε
x(T1))(IU −Πn)‖2L2(U,H) ds

≤ εM2 sup
h∈BH(0,MD)

‖G(h)(IU −Πn)‖2L2(U,H) P a.e.,
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Theorem 3.9 yields an estimate of the term on the right hand side of inequality (3.51):

term 2

≤P{ sup
t∈[0,1]

|ε 1
2

∫ t

0
1[0,τx,ε](s)1(T1,T2](s)S(ε(T2 − s))G(S(ε(s− T1))Z

ε
x(T1))(IU −Πn) dW (s)| ≥ δ

4
}

≤3 exp

(
− δ2

64εM2 suph∈BH(0,DM) ‖G(h)(IU −Πn)‖2L2(U,H)

)
.

By assumption (A2) we can now choose n ∈ N such that

ln 3− δ2

64M2 suph∈BH(0,DM) ‖G(h)(IU −Πn)‖2L2(U,H)

≤ −ã

and we obtain

term 2 ≤ exp

(
− ã
ε

)
∀x ∈ BH(0, R) and ∀ε ∈ (0, 1]. (3.52)

We choose T̃1 and T̃2 such that T1 < T̃1 < T̃2 < T2 and

ln 3− δ2

64M2Γ2(T̃1 − T1 + T2 − T̃2)
≤ −ã.

Then again by Theorem 3.9 we have

term 3

:= P

{
ε

1
2

∣∣∣∣∣
∫ T̃1

T1

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))Πn dW (s)

+

∫ T2

T̃2

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))Πn dW (s)

∣∣∣∣ ≥ δ

4

}
≤ P{ sup

t∈[0,1]
|
∫ t

0
1(T1,T̃1]∪(T̃2,T2](s)ε

1
2S(ε(T2 − s))G(S(ε(s− T1))Z

ε
x(T1))Πn dW (s)| ≥ δ

4
}

≤ 3 exp

(
− δ2

64εM2Γ2(T̃1 − T1 + T2 − T̃2)

)
≤ exp

(
− ã
ε

)
∀x ∈ BH(0, R) and ∀ε ∈ (0, 1]. (3.53)

Let T := {T̃1 = t0 < t1 < · · · < tl = T̃2} be a partition of [T̃1, T̃2] and set ΔT :=

max{tj+1 − tj : j = 0, 1, . . . , l − 1}.
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For x ∈ BH(0, R) and ε ∈ (0, 1] define the (Ft)-stopping time τx,ε as in equation (3.50).

By the localization lemma [10, Lemma 4.9] we have

∫ t

0
1[0,τx,ε](s)

l−1∑
j=0

1(tj ,tj+1](s) [S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))

−S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))] Πn dW (s)

=

∫ t∧τx,ε

0

l−1∑
j=0

1(tj ,tj+1](s) [S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))

−S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))] Πn dW (s) ∀t ∈ [0, 1] P a.e..

Thus

term 4

:=P

{
ε

1
2

∣∣∣∣∣
∫ T̃2

T̃1

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))Πn dW (s)

−
∫ T̃2

T̃1

l−1∑
j=0

1(tj ,tj+1](s)S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))Πn dW (s)

∣∣∣∣∣∣ ≥ δ

4
,

|Zε
x(T1)| < D

}

≤ P

⎧⎨⎩ sup
t∈[0,1]

ε
1
2

∣∣∣∣∣∣
∫ t∧τx,ε

0

l−1∑
j=0

1(tj ,tj+1](s)[S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))

− S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))]Πn dW (s)

∣∣∣∣∣∣∣ ≥
δ

4
,

|Zε
x(T1)| < D

⎫⎪⎬⎪⎭
≤ P

⎧⎨⎩ sup
t∈[0,1]

ε
1
2

∣∣∣∣∣∣
∫ t

0
1[0,τx,ε](s)

l−1∑
j=0

1(tj ,tj+1](s)[S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))

− S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))]Πn dW (s)

∣∣∣∣∣∣∣ ≥
δ

4

⎫⎪⎬⎪⎭ .

(3.54)
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In order to apply Theorem 3.9 to the right hand side of (3.54) we observe that

1(tj ,tj+1](s)1[0,τx,ε](s)‖[S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))

− S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))]Πn‖L2(U,H)

≤ 1(tj ,tj+1](s)1[0,τx,ε](s)‖S(ε(T2 − s))[G(S(ε(s− T1))Z
ε
x(T1))−G(S(ε(tj − T1))Z

ε
x(T1))]Πn‖L2(U,H)

+ 1(tj ,tj+1](s)1[0,τx,ε](s)‖[S(ε(T2 − s))− S(ε(T2 − tj))]G(S(ε(tj − T1))Z
ε
x(T1))Πn‖L2(U,H)

≤MΛD‖S(ε(s− T1))− S(ε(tj − T1))‖L(H,H)1(tj ,tj+1](s)

+ Γ‖S(ε(T2 − s))− S(ε(T2 − tj))‖L(H,H)1(tj ,tj+1](s).

Thus we have the bound∫ 1

0

l−1∑
j=0

1(tj ,tj+1](s)1[0,τx,ε](s)‖[S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1))

− S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))]Πn‖2L2(U,H) ds

≤ 2

∫ 1

0

l−1∑
j=0

1(tj ,tj+1](s)[M
2Λ2D2‖S(ε(s− T1))− S(ε(tj − T1))‖2L(H,H)

+ Γ2‖S(ε(T2 − s))− S(ε(T2 − tj))‖2L(H,H)] ds

≤ 2(M2Λ2D2 + Γ2)

×
(

sup

{
‖S(ηr)− S(ηs)‖L(H,H) : r, s ∈ [(T̃1 − T1) ∧ (T2 − T̃2), 1]

and |r − s| ≤ ΔT and η ∈ (0, 1]

})2

;

the last expression does not depend on ε ∈ (0, 1] or x ∈ BH(0, R) and goes to 0 as ΔT → 0

since, by (A2), the family of functions

{t ∈ [(T̃1 − T1) ∧ (T2 − T̃2), 1] �→ S(ηt) ∈ L(H,H), η ∈ (0, 1]}

is uniformly equicontinuous in the norm topology. For brevity set

ζ(ΔT ) := sup

{
‖S(ηr)− S(ηs)‖L(H,H) : r, s ∈ [(T̃1 − T1) ∧ (T2 − T̃2), 1]

and |r − s| ≤ ΔT and η ∈ (0, 1]

}
.
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We now choose partition T = {T̃1 = t0 < t1 < · · · < tl = T̃2} such that ΔT satisfies

ln 3− δ2

128(M2Λ2D2 + Γ2)(ζ(ΔT ))2
≤ −ã.

Then from inequality (3.54) and Theorem 3.9 we have

term 4 ≤ exp

(
− ã
ε

)
∀x ∈ BH(0, R) and ∀ε ∈ (0, 1]. (3.55)

Finally we consider term 5. Recall that by definition of the inner product 〈·, ·〉U1 in U1,

the bounded linear operator from U1 into U

Π1
nu :=

n∑
k=1

〈u, λ−2
k Jgk〉U1 gk , u ∈ U1,

satisfies Π1
n Ju = Πnu ∀u ∈ U . We will use the result∫ 1

0
1(c,d](s)Φ ◦ J dW (s) = Φ(W (d)−W (c)) P a.e. (3.56)

when 0 ≤ c < d ≤ 1 and Φ : (Ω,Fc) → (L2(U1, H),BL2(U1,H)) is Fc measurable and

E[‖Φ‖2L2(U1,H)] <∞; this result is clear when Φ is simple and can be shown for general Φ

by approximation in L2(Ω,Fc, P ;L2(U1, H)) with simple functions.

We have for each ε ∈ (0, 1] and x ∈ H

ε
1
2 |
∫ T̃2

T̃1

l−1∑
j=0

1(tj ,tj+1](s)S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))Πn dW (s)|

= ε
1
2 |

l−1∑
j=0

∫ 1

0
1(tj ,tj+1](s)S(ε(T2 − tj))G(S(ε(tj − T1))Z

ε
x(T1))Π

1
nJ dW (s)| P a.e.

= ε
1
2 |

l−1∑
j=0

S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))Π

1
n(W (tj+1)−W (tj))| P a.e. (3.57)

≤ 2lMΓ‖Π1
n‖L(U1,U)ε

1
2 sup

t∈[T1,T2]
|W (t)|U1 . (3.58)
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Equation (3.57) follows from equation (3.56). We choose 0 < b < δ
8lMΓ‖Π1

n‖L(U1,U)
, then

for each ε ∈ (0, 1] and each x ∈ BH(0, R)

term 5 = P

⎧⎨⎩ε 1
2 |
∫ T̃2

T̃1

l−1∑
j=0

1(tj ,tj+1](s)S(ε(T2 − tj))G(S(ε(tj − T1))Z
ε
x(T1))Πn dW (s)| ≥ δ

4
,

sup
t∈[T1,T2]

ε
1
2 |W (t)|U1 ≤ b

}
= 0,

(3.59)

by inequality (3.58).

With b chosen as in the last paragraph, we combine inequalities (3.48), (3.49), (3.52),

(3.53), (3.55) and (3.59) to obtain for all x ∈ BH(0, R):

P{|ε 1
2

∫ T2

T1

S(ε(T2 − s))G(S(ε(s− T1))Z
ε
x(T1)) dW (s)| ≥ δ, sup

t∈[T1,T2]
ε

1
2 |W (t)|U1 ≤ b}

≤ 4 exp

(
− ã
ε

)
∀ε ∈ (0, 1]

≤ exp
(
−a
ε

)
∀ε ∈ (0, ε0],

where ε0 = ã−a
ln 4 ∧ 1.

This completes the proof of the lemma.

Proposition 3.17 Let R ∈ (0,∞). Given a > 0 and δ > 0 there exist b > 0 and ε0 > 0

such that for all x ∈ BH(0, R) and for all ε ∈ (0, ε0] we have

P

{
sup

t∈[0,1]

∣∣∣∣ε 1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣ ≥ δ, sup
t∈[0,1]

|ε 1
2W (t)|U1 ≤ b

}
≤ exp

(
−a
ε

)
.

Proof. Let ã > a. Let n be a natural number. For each k ∈ {0, 1, . . . , 2n − 1} and

t ∈ [tn,k, tn,k+1] we have∣∣∣∣ε 1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣ ≤
∣∣∣∣ε 1

2S(ε(t− tn,k))

∫ tn,k

0
S(ε(tn,k − s))G(Zε

x(s)) dW (s)

∣∣∣∣
+

∣∣∣∣∣ε 1
2

∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ P a.e..(3.60)
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Since the processes in inequality (3.60) are continuous on [tn,k, tn,k+1], for each k ∈ {0, 1, . . . , 2n − 1}
we have

sup
t∈[tn,k,tn,k+1]

∣∣∣∣ε 1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣
≤ Mε

1
2

∣∣∣∣∫ tn,k

0
S(ε(tn,k − s))G(Zε

x(s)) dW (s)

∣∣∣∣
+ ε

1
2 sup

t∈[tn,k,tn,k+1]

∣∣∣∣∣
∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ P a.e..

Consequently

sup
t∈[0,1]

∣∣∣∣ε 1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣
≤ Mε

1
2 sup

0<k≤2n−1

∣∣∣∣∫ tn,k

0
S(ε(tn,k − s))G(Zε

x(s)) dW (s)

∣∣∣∣
+ ε

1
2 sup

0≤k≤2n−1
sup

t∈[tn,k,tn,k+1]

∣∣∣∣∣
∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ P a.e.

≤ Mε
1
2 sup

0<k≤2n−1

∣∣∣∣∫ tn,k

0
S(ε(tn,k − s))G(Zε

x(s)) dW (s)

−
∫ tn,k

0
S(ε(tn,k − s))G(S(ε(s− πn(s)))Zε

x(πn(s))) dW (s)

∣∣∣∣
+Mε

1
2 sup

0<k≤2n−1

∣∣∣∣∫ tn,k

0
S(ε(tn,k − s))G(S(ε(s− πn(s)))Zε

x(πn(s))) dW (s)

∣∣∣∣
+ ε

1
2 sup

0≤k≤2n−1
sup

t∈[tn,k,tn,k+1]

∣∣∣∣∣
∫ t

tn,k

S(ε(t− s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ P a.e..

By Lemma 3.13 and Lemma 3.15 respectively, there exist a natural number n0 and a

positive number ε0 such that

1. for all x ∈ H and for all ε ∈ (0, ε0] we have

P

{
sup

0≤k≤2n0−1
sup

t∈[tn0,k,tn0,k+1]

∣∣∣∣∣ε 1
2

∫ t

tn0,k

S(ε(t− s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ ≥ δ

3

}
≤ exp

(
− ã
ε

)

2. and for each k ∈ {1, . . . , 2n0 − 1} and for all x ∈ BH(0, R) and for all ε ∈ (0, ε0] we
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have

P

{
ε

1
2

∣∣∣∣∫ tn0,k

0
S(ε(tn0,k − s))G(Zε

x(s)) dW (s)

−
∫ tn0,k

0
S(ε(tn0,k − s))G(S(ε(s− πn0(s)))Z

ε
x(πn0(s))) dW (s)

∣∣∣∣ ≥ δ

3M

}
≤ exp

(
− ã
ε

)
.

Hence for arbitrary b > 0 and for all x ∈ BH(0, R) and for all ε ∈ (0, ε0] we have

P

{
sup

t∈[0,1]

∣∣∣∣ε 1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣ ≥ δ, sup
t∈[0,1]

|ε 1
2W (t)|U1 ≤ b

}

≤ P

{
ε

1
2 sup

0<k≤2n0−1

∣∣∣∣∫ tn0,k

0
S(ε(tn0,k − s))G(Zε

x(s)) dW (s)

−
∫ tn0,k

0
S(ε(tn0,k − s))G(S(ε(s− πn0(s)))Z

ε
x(πn0(s))) dW (s)

∣∣∣∣ ≥ δ

3M

}
+ P

{
ε

1
2 sup

0≤k≤2n0−1
sup

t∈[tn0,k,tn0,k+1]

∣∣∣∣∣
∫ t

tn0,k

S(ε(t− s))G(Zε
x(s)) dW (s)

∣∣∣∣∣ ≥ δ

3

}

+ P

{
ε

1
2 sup

0<k≤2n0−1

∣∣∣∣∫ tn0,k

0
S(ε(tn0,k − s))G(S(ε(s− πn0(s)))Z

ε
x(πn0(s))) dW (s)

∣∣∣∣ ≥ δ

3M
,

sup
t∈[0,1]

|ε 1
2W (t)|U1 ≤ b

}

≤ 2n0 exp

(
− ã
ε

)
+ P

{
sup

0<k≤2n0−1
ε

1
2

∣∣∣∣∫ tn0,k

0
S(ε(tn0,k − s))G(S(ε(s− πn0(s)))Z

ε
x(πn0(s))) dW (s)

∣∣∣∣ ≥ δ

3M
,

sup
t∈[0,1]

|ε 1
2W (t)|U1 ≤ b

}

≤ 2n0 exp

(
− ã
ε

)
+

2n0−2∑
j=0

P

{
ε

1
2

∣∣∣∣∣
∫ tn0,j+1

tn0,j

S(ε(tn0,j+1 − s))G(S(ε(s− tn0,j))Z
ε
x(tn0,j)) dW (s)

∣∣∣∣∣ ≥ δ

3M2(2n0 − 1)
,

sup
t∈[0,1]

|ε 1
2W (t)|U1 ≤ b

}
, (3.61)
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where the last line follows from the observation that for each k ∈ {1, 2, . . . , 2n0 − 1} we

have

ε
1
2

∣∣∣∣∫ tn0,k

0
S(ε(tn0,k − s))G(S(ε(s− πn0(s)))Z

ε
x(πn0(s))) dW (s)

∣∣∣∣
≤

k−1∑
j=0

ε
1
2

∣∣∣∣∣
∫ tn0,j+1

tn0,j

S(ε(tn0,k − s))G(S(ε(s− tn0,j))Z
ε
x(tn0,j)) dW (s)

∣∣∣∣∣ P a.e.

≤ M
2n0−2∑
j=0

ε
1
2

∣∣∣∣∣
∫ tn0,j+1

tn0,j

S(ε(tn0,j+1 − s))G(S(ε(s− tn0,j))Z
ε
x(tn0,j)) dW (s)

∣∣∣∣∣ P a.e..

According to Lemma 3.16 we can find b1 > 0 and ε1 > 0 such that for all x ∈ BH(0, R)

and for all j ∈ {0, 1, . . . , 2n0 − 2} and for all ε ∈ (0, ε1] we have

P

{
ε

1
2

∣∣∣∣∣
∫ tn0,j+1

tn0,j

S(ε(tn0,j+1 − s))G(S(ε(s− tn0,j))Z
ε
x(tn0,j)) dW (s)

∣∣∣∣∣ ≥ δ

3M2(2n0 − 1)
,

sup
t∈[0,1]

|ε 1
2W (t)|U1 ≤ b1

}

≤ exp

(
− ã
ε

)
.

Now returning to inequality (3.61) with b1 in place of b we see that there exists ε2 ∈
(0, ε0 ∧ ε1] such that for all x ∈ BH(0, R) and for all ε ∈ (0, ε2] we have

P

{
sup

t∈[0,1]

∣∣∣∣ε 1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣ ≥ δ, sup
t∈[0,1]

|ε 1
2W (t)|U1 ≤ b1

}
≤ exp

(
−a
ε

)
.

We can now prove Proposition 3.11.

Proof of Proposition 3.11. Let K ⊂ H be compact. Fix a > 0 and δ > 0 and

φ ∈ L2([0, 1];U). For ε ∈ (0, 1] and x ∈ K and b a positive real number which will be

specified later, we set

D(ε, x, b) :=

{
sup

t∈[0,1]
|Xε

x(t)− zφ
x(t)| ≥ δ, sup

t∈[0,1]

∣∣∣∣ε 1
2W (t)− J

∫ t

0
φ(s) ds

∣∣∣∣
U1

≤ b

}
.
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As in equation (3.25), define the process

W ε(t) := W (t)− ε− 1
2J

∫ t

0
φ(s) ds ∀t ∈ [0, 1].

By [10, Theorem 10.14], (W ε(t))t∈[0,1] is a Wiener process with respect to filtration (Ft)

on probability space (Ω,F , P ε) where

dP ε(ω) = exp

(
ε−

1
2

∫ 1

0
〈φ(s), ·〉U dW (s)− 1

2ε

∫ 1

0
|φ(s)|2U ds

)
dP (ω)

and P ε(W ε(1))−1 = P (W (1))−1.

For λ > 0 set

M(ε, λ) :=

{
ω ∈ Ω :

∫ 1

0
〈φ(s), ·〉U dW (s)(ω) ≥ − λ

ε
1
2

}
.

We have

P (D(ε, x, b)) ≤ P (D(ε, x, b) ∩M(ε, λ)) + P (M(ε, λ)c). (3.62)

By Theorem 3.9 we have immediately

P (M(ε, λ)c) ≤ P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0
〈φ(s), ·〉U dW (s)

∣∣∣∣ > λ

ε
1
2

}

≤ 3 exp

(
− λ2

4ε
∫ 1
0 |φ(s)|2U ds

)
. (3.63)

The rest of the proof involves finding an exponential bound for the first term on the right

hand side of (3.62). We have

P (D(ε, x, b) ∩M(ε, λ))

=

∫
Ω

1D(ε,x,b)∩M(ε,λ)(ω) exp

(
−ε− 1

2

∫ 1

0
〈φ(s), ·〉U dW (s)(ω) +

1

2ε

∫ 1

0
|φ(s)|2U ds

)
dP ε(ω)

≤ exp

(
λ

ε
+

1

2ε

∫ 1

0
|φ(s)|2U ds

)
P ε

{
sup

t∈[0,1]
|Xε

x(t)− zφ
x(t)| ≥ δ, sup

t∈[0,1]
ε

1
2 |W ε(t)|U1 ≤ b

}
. (3.64)
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By equation (3.28) we have

Xε
x(t) = S(εt)x+ ε

∫ t

0
S(ε(t− s))F (εs,Xε

x(s)) ds+ ε
1
2

∫ t

0
S(ε(t− s))G(Xε

x(s)) dW ε(s)

+

∫ t

0
S(ε(t− s))G(Xε

x(s))φ(s) ds ∀t ∈ [0, 1] P a.e..

Recall that in equation (3.36) we defined

F̃ε(s, y) := εF (εs, y) +G(y)φ(s) ∀(s, y) ∈ [0, 1]×H.

Thus (Xε
x(t) : (Ω,Ft, P

ε) → (H,BH))t∈[0,1] is the solution of the equation{
dXε(t) = (εAXε(t) + F̃ε(t,X

ε(t))) dt+ ε
1
2G(Xε(t)) dW ε(t) t ∈ (0, 1]

Xε(0) = x.
(3.65)

Let (Zε
x(t) : (Ω,Ft, P ) → (H,BH))t∈[0,1] be the solution of the equation{
dZε(t) = (εAZε(t) + F̃ε(t, Z

ε(t))) dt+ ε
1
2G(Zε(t)) dW (t) t ∈ (0, 1]

Zε(0) = x.
(3.66)

By Proposition 3.19 we have the equality of the distributions on (C([0, 1];H⊕U1),BC([0,1];H⊕U1)):

P ε(Xε
x,W

ε)−1 = P (Zε
x,W )−1;

here trajectory-valued random variables are defined as in equation (3.74). Thus we have

P ε

{
sup

t∈[0,1]
|Xε

x(t)− zφ
x(t)| ≥ δ, sup

t∈[0,1]
ε

1
2 |W ε(t)|U1 ≤ b

}

= P

{
sup

t∈[0,1]
|Zε

x(t)− zφ
x(t)| ≥ δ, sup

t∈[0,1]
ε

1
2 |W (t)|U1 ≤ b

}
. (3.67)
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For each t ∈ [0, 1] we have P a.e.:

|Zε
x(t)− zφ

x(t)|

=

∣∣∣∣S(εt)x+ ε

∫ t

0
S(ε(t− s))F (εs, Zε

x(s)) ds+ ε
1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

+

∫ t

0
S(ε(t− s))G(Zε

x(s))φ(s) ds

− x−
∫ t

0
G(zφ

x(s))φ(s) ds

∣∣∣∣
≤ |S(εt)x− x|+

∣∣∣∣ε∫ t

0
S(ε(t− s))(F (εs, Zε

x(s))− F (εs, zφ
x(s))) ds

∣∣∣∣
+

∣∣∣∣ε ∫ t

0
S(ε(t− s))F (εs, zφ

x(s)) ds

∣∣∣∣
+

∣∣∣∣∫ t

0
S(ε(t− s))(G(Zε

x(s))−G(zφ
x(s)))φ(s) ds

∣∣∣∣
+

∣∣∣∣∫ t

0
(S(ε(t− s))− IH)G(zφ

x(s))φ(s) ds

∣∣∣∣
+

∣∣∣∣ε 1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣
≤ sup

r∈[0,ε]
|S(r)x− x|+ εMΛ

(∫ t

0
|Zε

x(s)− zφ
x(s)|2 ds

) 1
2

+ εMΛ

∫ 1

0
(1 + |zφ

x(s)|) ds

+MΛ

(∫ t

0
|Zε

x(s)− zφ
x(s)|2 ds

) 1
2
(∫ 1

0
|φ(s)|2U ds

) 1
2

+ sup{‖(S(r)− IH)G(zφ
x(s))‖L2(U,H) : s ∈ [0, 1], r ∈ [0, ε]}

(∫ 1

0
|φ(s)|2U ds

) 1
2

+ sup
r∈[0,1]

∣∣∣∣ε 1
2

∫ r

0
S(ε(r − s))G(Zε

x(s)) dW (s)

∣∣∣∣ .
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Thus, since process (Zε
x(t))t∈[0,1] is continuous,

|Zε
x(t)− zφ

x(t)|2

≤ 6

[
sup

r∈[0,ε]
|S(r)x− x|2

+M2Λ2

(
ε2 +

∫ 1

0
|φ(s)|2U ds

)∫ t

0
|Zε

x(s)− zφ
x(s)|2 ds

+ ε2M2Λ2

(∫ 1

0
(1 + |zφ

x(s)|) ds
)2

+ sup{‖(S(r)− IH)G(zφ
x(s))‖L2(U,H) : s ∈ [0, 1], r ∈ [0, ε]}2

∫ 1

0
|φ(s)|2U ds

+ sup
r∈[0,1]

∣∣∣∣ε 1
2

∫ r

0
S(ε(r − s))G(Zε

x(s)) dW (s)

∣∣∣∣2
]

∀t ∈ [0, 1] P a.e..

Applying Gronwall’s Lemma we have

sup
t∈[0,1]

|Zε
x(t)− zφ

x(t)|2

≤ 6

[
sup

r∈[0,ε]
|S(r)x− x|2 + ε2M2Λ2

(∫ 1

0
(1 + |zφ

x(s)|) ds
)2

+ sup{‖(S(r)− IH)G(zφ
x(s))‖L2(U,H) : s ∈ [0, 1] and r ∈ [0, ε]}2

∫ 1

0
|φ(s)|2U ds

+ sup
r∈[0,1]

∣∣∣∣ε 1
2

∫ r

0
S(ε(r − s))G(Zε

x(s)) dW (s)

∣∣∣∣2
]

exp

(
6M2Λ2

(
1 +

∫ 1

0
|φ(s)|2U ds

))

P a.e.. It follows that there exists ε1 > 0 such that for all x ∈ K and for all ε ∈ (0, ε1] we

have

P

{
sup

t∈[0,1]
|Zε

x(t)− zφ
x(t)| ≥ δ, sup

t∈[0,1]
ε

1
2 |W (t)|U1 ≤ b

}

≤ P

{
sup

r∈[0,1]

∣∣∣∣ε 1
2

∫ r

0
S(ε(r − s))G(Zε

x(s)) dW (s)

∣∣∣∣ ≥ δ

c
, sup

t∈[0,1]
ε

1
2 |W (t)|U1 ≤ b

}
,

where c := 3 exp(3M2Λ2(1 +
∫ 1
0 |φ(s)|2U ds)).
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Given ã > a, by Proposition 3.17 there exist positive real numbers b and ε2 such that for

all ε ∈ (0, ε2] and for all x ∈ K we have

P

{
sup

t∈[0,1]

∣∣∣∣ε 1
2

∫ t

0
S(ε(t− s))G(Zε

x(s)) dW (s)

∣∣∣∣ ≥ δ

c
, sup

t∈[0,1]
|ε 1

2W (t)|U1 ≤ b

}
≤ exp

(
− ã
ε

)
.

Thus for all x ∈ K and for all ε ∈ (0, ε1 ∧ ε2] we have

P

{
sup

t∈[0,1]
|Zε

x(t)− zφ
x(t)| ≥ δ , sup

t∈[0,1]
|ε 1

2W (t)|U1 ≤ b

}
≤ exp

(
− ã
ε

)
. (3.68)

Now from inequalities (3.64) and (3.67) and (3.68) we have for all x ∈ K and for all

ε ∈ (0, ε1 ∧ ε2]:

P (D(ε, x, b) ∩M(ε, λ)) ≤ exp

(
λ+ 1

2

∫ 1
0 |φ(s)|2U ds− ã

ε

)
. (3.69)

By firstly choosing λ such that −λ2

4
R 1
0 |φ(s)|2U ds

+ ln 3 < −a and then choosing ã such that

λ + 1
2

∫ 1
0 |φ(s)|2U ds − ã < −a, we see, on combining inequalities (3.62), (3.63) and (3.69),

that there exist b > 0 and ε0 > 0 such that for all x ∈ K and for all ε ∈ (0, ε0]

P (D(ε, x, b)) ≤ exp
(
−a
ε

)
.

This completes the proof of Proposition 3.11.

3.7 An example

In this section we consider an example where we can apply our large deviation principle.

Let O be a bounded domain in Rn with a C∞ boundary ∂O (this means that for each

x ∈ ∂O there is a positive number r and a real-valued C∞ function φ defined on some open

subset of Rn−1 such that for some i ∈ {1, . . . , n} we have yi = φ(y1, . . . , yi−1, yi+1, . . . , yn)

for all (y1, . . . , yn) ∈ BRn(x, r) ∩ ∂O).

Let H = U = L2(O). Let A : D(A) = W 2,2(O) ∩W 1,2
0 (O) → H be defined by

Au :=
∑
|α|≤2

aα
∂α1

∂x1
α1
· · · ∂αn

∂xn
αn
u , for all u ∈ D(A);

in this definition α = (α1, . . . , αn) ∈ {0, 1, 2}n and |α| :=
∑n

j=1 αj and the functions aα
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are in C∞(O) and there is a positive number θ such that

∑
|α|=2

aα(x)ξα1
1 · · · ξαn

n ≥ θ

n∑
j=1

ξ2j ∀x ∈ O and ∀(ξ1, . . . , ξn) ∈ Rn.

By [24, Theorem 2.7 in chapter 7], A generates an analytic semigroup (S(t))t≥0 of operators

on H. Thus condition (A2) is satisfied.

We have in mind the physical system of a lump of material occupying O ⊂ R3 and con-

taining a reactive component which undergoes an exothermic reaction. Our condition that

F : ([0, 1]×H,B[0,1] ⊗BH) → (H,BH) be Lipschitz continuous in H uniformly in time in-

terval [0, 1] is rather restrictive. Differential equations describing energy conservation (and

mass conservation) often involve a generation or consumption term which is a polynomial

function of degree greater than one. However if f : R → R is a fixed Lipschitz continuous

function then

F (t, x) := (ξ ∈ O �→ f(x(ξ))) , x ∈ H,

is Lipschitz continuous in H uniformly in time. To be specific, we define

f(r) :=

{
βe

−γ
r+δ , r > −δ

0 , r ≤ −δ ,
(3.70)

where β, γ and δ are positive real numbers; the function f in equation (3.70) is an

Arrhenius function [23, page 212]. We think of H as the space of temperature functions

on O while F represents the heat generation from the chemical reaction. The deterministic

initial value problem in H:

dx

dt
= Ax(t) + F (t, x(t)) , t > 0,

x(0) = x0 ∈ D(A),

models the temperature evolution of the lump of material immersed in a constant temper-

ature bath. We are interested in the short time asymptotics of the solution of the related

stochastic differential equation.

Our choice of diffusion functionG is very important becauseG determines the rate function

in equation (3.13). Unfortunately, justifying a choice of G on physical grounds is hard.

Let Q be a positive definite, symmetric, trace class operator on H. Let g : R → R

be a fixed Lipschitz continuous function and let c be a fixed function in H. We define
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G1 : H → L(H,H) by

G1(u)v := g

(∫
O
c(ξ)u(ξ) dξ

)
v , ∀u, v ∈ H.

Then the diffusion function

G(u) := G1(u)Q
1
2 ∀u ∈ H

is Lipschitz continuous and satisfies (A1).

Alternatively, if H has an orthonormal basis (ek) of eigenvectors of Q such that

sup
k∈N

sup
ξ∈O

|ek(ξ)| <∞

and g : R → R is a bounded and Lipschitz continuous function then we define G2 : H →
L(H,H) by

(G2(u)v)(ξ) := g(u(ξ))v(ξ) ∀ξ ∈ O and ∀u, v ∈ H;

the function

u ∈ H �→ G2(u)Q
1
2 ∈ L2(H,H)

is another diffusion function we can use since it is Lipschitz continuous and satisfies (A1).

Let (W (t))t≥0 be a (Ft)-Wiener process with values in some Hilbert space U1 such that

L(W (1)) has reproducing kernel Hilbert spaceH. The continuous mild solution (Xx(t))t∈[0,1]

of the stochastic equation

dX(t) = (AX(t) + F (t,X(t))) dt+G(X(t)) dW (t)

X(0) = x ∈ H

}
(3.71)

may be loosely interpreted as the evolving temperature function in the lump of material

when a source of noise is present. Recall that in equation (3.9) we set

με
x := L(ω ∈ Ω �→ (t ∈ [0, 1] �→ Xx(εt)(ω))) for each ε ∈ (0, 1].

Corollary 3.4 tells us that for each open subset G of C([0, 1];H)

lim
r→0

inf
ε<r

ε logμε
x(G) ≥ − inf

u∈G
Ix(u)
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and for each closed subset F of C([0, 1];H)

lim
r→0

sup
ε<r

ε logμε
x(F ) ≤ − inf

u∈F
Ix(u),

where

Ix(u) =
1

2
inf

{∫ 1

0
|φ(s)|2 ds : φ ∈ L2([0, 1];H) and u(t) = x+

∫ t

0
G(u(s))φ(s) ds ∀t ∈ [0, 1]

}
.

3.8 Appendix

Let Hilbert spaces H, U and U1 be as defined in Section 3.1.

Let T ∈ (0,∞). Let (Ω,F , P ) be a probability space. Let (Ft)t≥0 be a filtration of sub

σ-algebras of F such that all sets in F of P measure zero are in F0 and let (W (t) :

(Ω,Ft, P ) → (U1,BU1))t≥0 be a U1-valued (Ft)-Wiener process such that L(W (1)) has

reproducing kernel Hilbert space U . Let (S(t))t≥0 be a strongly continuous semigroup of

bounded linear operators on H. Let the function F : ([0, T ]×H,B[0,T ] ⊗ BH) → (H,BH)

be measurable and suppose there is a function θ ∈ L2([0, T ]; R) such that

|F (t, x)− F (t, y)| ≤ θ(t)|x− y| ∀t ∈ [0, T ] and ∀x, y ∈ H and (3.72)

|F (t, x)| ≤ θ(t)(1 + |x|) ∀t ∈ [0, T ] and ∀x ∈ H. (3.73)

Let G : H → L2(U,H) be Lipschitz continuous. Let x ∈ H.

Theorem 3.18 (Existence, uniqueness and continuity of solutions) There exists a

(Ft)-predictable process (X(t))t∈[0,T ], unique up to equivalence among processes satisfying

P{
∫ T

0
|X(t)|2 dt <∞} = 1,

such that

X(t) = S(t)x+

∫ t

0
S(t− s)F (s,X(s)) ds+

∫ t

0
S(t− s)G(X(s)) dW (s) P a.e.

for each t ∈ [0, T ]. Moreover it has a continuous version and supt∈[0,T ]E[|X(t)|p] <∞ for

each p ∈ [2,∞).

The proof of this theorem is omitted as it is almost identical to the proof of [10, Theorem

7.4].
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Let P ′ be another probability measure on the σ-algebra F of subsets of Ω. Let (Gt)t≥0

be a filtration of sub σ-algebras of F such that all sets in F of P ′ measure zero are in

G0. Let (V (t) : (Ω,Gt, P
′) → (U1,BU1))t≥0 be a U1-valued (Gt)-Wiener process such that

L(V (1)) = L(W (1)).

Suppose that (X(t))t∈[0,T ] is the continuous (Ft)-predictable process in Theorem 3.18 and

suppose that (Y (t))t∈[0,T ] is the continuous (Gt)-predictable process satisfying

Y (t) = S(t)x+

∫ t

0
S(t− s)F (s, Y (s)) ds+

∫ t

0
S(t− s)G(Y (s)) dV (s) P ′ a.e.

for each t ∈ [0, T ]. Let H ⊕ U1 denote the Hilbert space H × U1 with componentwise

addition and scalar multiplication and inner product

〈(x1, y1), (x2, y2)〉H⊕U1 := 〈x1, x2〉+ 〈y1, y2〉U1 ∀x1, x2 ∈ H and ∀y1, y2 ∈ U1.

We remark that the norm topology in H ⊕ U1 is the same as the product topology on

H ×U1. The trajectory-valued random variable (X,W ) : (Ω,F , P ) → C([0, T ];H ⊕U1) is

defined by

(X,W )(ω) := t ∈ [0, T ] �→ (X(t)(ω),W (t)(ω)) ∀ω ∈ Ω (3.74)

and (Y, V ) : (Ω,F , P ′) → C([0, T ];H ⊕ U1) is defined analogously.

Proposition 3.19 The trajectory-valued random variables (X,W ) and (Y, V ) have the

same distribution.

Proof. It is well known that the Borel σ-algebra of C([0, T ];H ⊕ U1) is generated by the

family of all finite linear combinations of continuous linear functionals on C([0, T ];H⊕U1)

of the form δt ⊗ (u, v) where t ∈ [0, T ] and (u, v) ∈ H ⊕ U1 and

(δt ⊗ (u, v))(f, g) := 〈u, f(t)〉+ 〈v, g(t)〉U1 ∀f ∈ C([0, T ];H) and ∀g ∈ C([0, 1];U1).

Thus we can conclude that L(X,W ) = L(Y, V ) if

L (〈u1, X(t1)〉+ 〈v1,W (t1)〉U1 + · · ·+ 〈un, X(tn)〉+ 〈vn,W (tn)〉U1) =

L (〈u1, Y (t1)〉+ 〈v1, V (t1)〉U1 + · · ·+ 〈un, Y (tn)〉+ 〈vn, V (tn)〉U1) (3.75)

for arbitrary n ∈ N and 0 ≤ t1 < · · · < tn ≤ T and u1, . . . , un ∈ H and v1, . . . , vn ∈ U1.

Let p ∈ (2,∞). Define Hp((Ft), P ) to be the vector space of all processes (U(t) :

(Ω,Ft) → (H,BH))t∈[0,T ] such that supt∈[0,T ]

∫
Ω |U(t)|p dP < ∞ and (U(t))t∈[0,T ] has a
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(Ft)-predictable version, with norm supt∈[0,T ](
∫
Ω |U(t)|p dP )

1
p ; we identify processes that

are equal P a.e. at each time t ∈ [0, T ]. Hp((Ft), P ) is a Banach space. Define the

Banach space Hp((Gt), P
′) in the same way but with Gt taking the place of Ft and P ′

taking the place of P . Following the proof of [10, Theorem 7.4], one can show that the

map K : Hp((Ft), P ) → Hp((Ft), P ) defined by

(KU)(t) := S(t)x+

∫ t

0
S(t− s)F (s, U(s)) ds+

∫ t

0
S(t− s)G(U(s)) dW (s) ∀t ∈ [0, T ]

(3.76)

for each U ∈ Hp((Ft), P ), is a contraction map provided that T is small enough. To

simplify matters and avoid having to partition [0, T ] into shorter subintervals, we assume

that K is a contraction with the given T . By [10, Proposition 7.3] the process KU de-

fined in equation (3.76) has a continuous version and if supt∈[0,T ] |U(t)| ∈ Lp(Ω,F , P ; R)

then also supt∈[0,T ] |(KU)(t)| ∈ Lp(Ω,F , P ; R). Similar statements hold for the map

K′ : Hp((Gt), P
′) → Hp((Gt), P

′) defined by

(K′U)(t) := S(t)x+

∫ t

0
S(t− s)F (s, U(s)) ds+

∫ t

0
S(t− s)G(U(s)) dV (s) ∀t ∈ [0, T ]

(3.77)

for each U ∈ Hp((Gt), P
′). Define X0(t) = x for each t ∈ [0, T ] and Y0(t) = x for each

t ∈ [0, T ]. Clearly for arbitrary n ∈ N and u1, . . . , un ∈ H and v1, . . . , vn ∈ U1 and

0 ≤ t1 < · · · < tn ≤ T we have

L(〈u1, X0(t1)〉+ 〈v1,W (t1)〉U1 + · · ·+ 〈un, X0(tn)〉+ 〈vn,W (tn)〉U1) =

L(〈u1, Y0(t1)〉+ 〈v1, V (t1)〉U1 + · · ·+ 〈un, Y0(tn)〉+ 〈vn, V (tn)〉U1).

Thus

L(X0,W ) = L(Y0, V ). (3.78)

Suppose for some m ∈ N we have continuous processes (Xm−1(t))t∈[0,T ] ∈ Hp((Ft), P ) and

(Ym−1(t))t∈[0,T ] ∈ Hp((Gt), P
′) such that

sup
t∈[0,T ]

|Xm−1(t)| ∈ Lp(Ω,F , P ; R), (3.79)

sup
t∈[0,T ]

|Ym−1(t)| ∈ Lp(Ω,F , P ′; R) (3.80)

and L(Xm−1,W ) = L(Ym−1, V ). (3.81)
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Define

Xm(t) := (KXm−1)(t) ∀t ∈ [0, T ] and

Ym(t) := (K′Ym−1)(t) ∀t ∈ [0, T ].

Given n ∈ N and u1, . . . , un ∈ H and v1, . . . , vn ∈ U1 and 0 ≤ t1 < · · · < tn ≤ T we will

show that

L(〈u1, Xm(t1)〉+ 〈v1,W (t1)〉U1 + · · ·+ 〈un, Xm(tn)〉+ 〈vn,W (tn)〉U1) =

L(〈u1, Ym(t1)〉+ 〈v1, V (t1)〉U1 + · · ·+ 〈un, Ym(tn)〉+ 〈vn, V (tn)〉U1). (3.82)

For this purpose we introduce some processes which approximate (Xm(t))t∈[0,T ] and (Ym(t))t∈[0,T ]

and are simpler in form. Let {TjJ : j ∈ N} be an orthonormal basis of L2(U,H) where Tj ∈
L(U1, H) for each j ∈ N. Then for each R ∈ L2(U,H) we have

∑i
j=1〈R, TjJ〉L2(U,H)TjJ

converges to R in L2(U,H) as i goes to∞. For each N ∈ N and i ∈ N define the continuous

processes

X(N,i)
m (t) := S(t)x+

∫ t

0
S(t− s)F (s,Xm−1(s)) ds+

2N−1∑
k=0

i∑
j=1

〈S(t(1− k
2N ))G(Xm−1(t

k
2N )), TjJ〉L2(U,H)Tj(W (tk+1

2N )−W (t k
2N ))

and

Y (N,i)
m (t) := S(t)x+

∫ t

0
S(t− s)F (s, Ym−1(s)) ds+

2N−1∑
k=0

i∑
j=1

〈S(t(1− k
2N ))G(Ym−1(t

k
2N )), TjJ〉L2(U,H)Tj(V (tk+1

2N )− V (t k
2N ))

for all t ∈ [0, T ]. It is not too difficult to see that (3.81) implies L(X
(N,i)
m ,W ) = L(Y

(N,i)
m , V )

for arbitrary natural numbers N and i. Thus

L(〈u1, X
(N,i)
m (t1)〉+ 〈v1,W (t1)〉U1 + · · ·+ 〈un, X

(N,i)
m (tn)〉+ 〈vn,W (tn)〉U1) =

L(〈u1, Y
(N,i)
m (t1)〉+ 〈v1, V (t1)〉U1 + · · ·+ 〈un, Y

(N,i)
m (tn)〉+ 〈vn, V (tn)〉U1) (3.83)

for arbitrary natural numbers N and i.

Since relations (3.79) and (3.80) hold, for each t ∈ [0, T ], taking N and i sufficiently large
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makes X
(N,i)
m (t) approach Xm(t) as close as we please in L2(Ω,F , P ;H) and also makes

Y
(N,i)
m (t) approach Ym(t) as close as we please in L2(Ω,F , P ′;H). Thus from equation

(3.83) there follows equation (3.82) and L(Xm,W ) = L(Ym, V ). By equation (3.78) and

the induction principle

L(Xm,W ) = L(Ym, V ) for each m ∈ {0, 1, 2, . . .}.

Since supt∈[0,T ]

∫
Ω |Xm(t) − X(t)|p dP → 0 and supt∈[0,T ]

∫
Ω |Ym(t) − Y (t)|p dP ′ → 0 as

m→∞, equation (3.75) follows from equation (3.82). This completes the proof of Propo-

sition 3.19.

We conclude this appendix with a useful result which is not entirely obvious. It shows the

relationship between Itô integrals with respect to two Wiener processes defined on related

probability spaces. Let φ ∈ L2([0, 1];U) and let ε ∈ (0, 1]. Define the probability measure

P ε on (Ω,F) by

dP ε(ω) := exp

(
ε−

1
2

∫ 1

0
< φ(s), · >U dW (s)(ω)− 1

2ε

∫ 1

0
|φ(s)|2U ds

)
dP (ω).

By [10, Theorem 10.14] the process

W ε(t) := W (t)− ε− 1
2J

∫ t

0
φ(s) ds ∀t ∈ [0, 1]

is a (Ft)-Wiener process on the probability space (Ω,F , P ε) and P ε(W ε(1))−1 = P (W (1))−1.

In the following lemma P1 denotes the (Ft)-predictable σ-algebra of subsets of [0, 1]× Ω.

Lemma 3.20 Let Φ : ([0, 1] × Ω,P1) → (L2(U,H),BL2(U,H)) be a measurable function

such that for some positive real number C∫ 1

0
‖Φ(s, ω)‖2L2(U,H) ds ≤ C for P a.e. ω ∈ Ω.

Then ∫ 1

0
Φ(s) dW ε(s) =

∫ 1

0
Φ(s) dW (s)− ε− 1

2

∫ 1

0
Φ(s)φ(s) ds P a.e..

Proof. Suppose firstly that sup(t,ω)∈[0,1]×Ω ‖Φ(t, ω)‖L2(U,H) = R < ∞. Then we can

find a sequence of elementary processes (Φn : ([0, 1] × Ω,P1) → L2(U,H)) such that
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sup(t,ω)∈[0,1]×Ω ‖Φn(t, ω)‖L2(U,H) ≤ 2R for all n ∈ N and

∫
Ω

∫ 1

0
‖Φ(s)− Φn(s)‖2L2(U,H) ds dP → 0 as n→∞.

We can also assume, by taking a subsequence if necessary, that∫ 1

0
‖Φ(s, ω)− Φn(s, ω)‖2L2(U,H) ds→ 0 as n→∞ for P a.e. ω ∈ Ω.

By definition of the Itô integral of an elementary process, for each n ∈ N we have∫ 1

0
Φn(s) dW ε(s) =

∫ 1

0
Φn(s) dW (s)− ε− 1

2

∫ 1

0
Φn(s)φ(s) ds.

For an appropriate subsequence (nk), taking limits as k goes to infinity on both sides of

this equation yields∫ 1

0
Φ(s) dW ε(s) =

∫ 1

0
Φ(s) dW (s)− ε− 1

2

∫ 1

0
Φ(s)φ(s) ds P a.e..

Now suppose that Φ is not necessarily bounded but∫ 1

0
‖Φ(s, ω)‖2L2(U,H) ds ≤ C for P a.e. ω ∈ Ω,

where C is a positive real number. For each natural number N define ρN : L2(U,H) →
L2(U,H) by

ρN (S) :=

{
S if ‖S‖L2(U,H) ≤ N,

N
‖S‖L2(U,H)

S if ‖S‖L2(U,H) > N.

For each N ∈ N, since ρN (Φ) is bounded we have∫ 1

0
ρN (Φ(s)) dW ε(s) =

∫ 1

0
ρN (Φ(s)) dW (s)− ε− 1

2

∫ 1

0
(ρN (Φ(s)))φ(s) ds P a.e..

For an appropriate subsequence (Nk), taking limits as k goes to infinity on both sides of

this equation yields the desired result:∫ 1

0
Φ(s) dW ε(s) =

∫ 1

0
Φ(s) dW (s)− ε− 1

2

∫ 1

0
Φ(s)φ(s) ds P a.e..
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Chapter 4

Small time asymptotics when

there is a nonlinear dissipative

drift term and additive noise

4.1 Introduction

In this chapter we describe the exponential small time asymptotics of the mild solution

of an equation having a nonlinear, dissipative drift function, F : E → E, defined on

a separable Banach space E. We only consider additive Wiener process noise to keep

things simple. Our main results are Propositions 4.2 and 4.11 and Corollary 4.12. We

mentioned in section 3.7 that differential equations for the evolution of temperature or

concentration in a bounded domain O of Rn often contain polynomial functions of the

dependent variable. If such a polynomial function b : R → R has degree greater than

one, then for general u ∈ L2(O) the function ξ ∈ O → b(u(ξ)) need not belong to L2(O).

However if E is a Banach space of continuous functions on O with the supremum norm

then the function:

(F (u))(ξ) := b(u(ξ)) ∀u ∈ E and ∀ξ ∈ O,

may be a well defined mapping of E into E; if in addition b is a decreasing function then

F : E → E is dissipative.

We now make definitions and summarize the contents of this chapter more precisely. Let

(H, | · |) be a separable Hilbert space and let A : D(A) ⊂ H → H be the infinitesimal

generator of a strongly continuous semigroup (S(t))t≥0 of bounded linear operators on H.

Let (Ω,F , P ) be a probability space and let (W (t) : (Ω,F , P ) → H)t≥0 be an H-valued
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Wiener process. The distribution of W (1) on H is denoted by ν, its covariance operator

by Q and its reproducing kernel Hilbert space by (Hν , | · |Hν ). Let

k : Hν ↪→ H

be the embedding of Hν into H.

Our aim is to get a large deviation principle under the conditions of Da Prato’s and

Zabczyk’s existence and uniqueness theorem [10, Theorem 7.13] for the case of nonlinear

dissipative drift defined in a Banach space embedded in H. We now state those conditions.

Let (E, ‖ · ‖) be a separable Banach space, continuously and injectively embedded as a

dense subset in H via the map

j : E ↪→ H.

Sometimes to simplify notation we will omit the embedding , for example we may write

E when we mean the subset j(E) of H. Suppose that S(t)(E) ⊂ E for each t ≥ 0 and the

linear operators on E defined by

SE(t)x := S(t)x ∀x ∈ E and ∀t ≥ 0

form a strongly continuous semigroup in L(E,E). In addition, suppose that there is a

positive real number θ such that

‖SE(t)‖L(E,E) ≤ eθt for all t ≥ 0.

Let

F : E → E

be a dissipative function which is uniformly continuous on bounded subsets of E; saying

that F is dissipative means that

‖x− y − λ(F (x)− F (y))‖ ≥ ‖x− y‖ ∀x, y ∈ E and ∀λ > 0.

The following condition also comes from Da Prato’s and Zabczyk’s existence and unique-

ness theorem.

(B1) For each ε ∈ (0, 1] there is a version of the stochastic convolution process:

WεA(t) :=

∫ t

0
S(ε(t− s))k dW (s) , t ∈ [0, 1], (4.1)
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whose trajectories are in C([0, 1];E), the space of continuous functions mapping [0, 1] into

E.

Whenever (B1) holds, for each ε ∈ (0, 1] we implicitly use the version of (WεA(t))t∈[0,1]

whose trajectories are in C([0, 1];E). We listed condition (B1) separately because we

prove in Proposition 4.4 that this condition is implied by condition (B2) (see below).

Fix ξ ∈ E throughout this chapter. By [10, Theorem 7.13], when (B1) holds, for each

ε ∈ (0, 1] there is a unique process (Xε(t) : (Ω,F , P ) → E)t∈[0,1] whose trajectories

t→ Xε(t)(ω) are in C([0, 1];E) for all ω ∈ Ω and which satisfies the equation

Xε(t) = SE(εt)ξ + ε
1
2WεA(t) + ε

∫ t

0
SE(ε(t− s))F (Xε(s)) ds ∀t ∈ [0, 1]. (4.2)

When ε is 1 we write WA(t) := W1A(t) and X(t) := X1(t) for all t ∈ [0, 1].

In section 4.2 we assume that (B1) holds and we show in Proposition 4.1 that the problem

of finding the exponential small time asymptotics of (X(t))t∈[0,1] is solved if we can find a

large deviation principle for the random variables Xε : (Ω,F , P ) → C([0, 1];E) defined by

Xε(ω) := t �→ Xε(t)(ω) ∀ω ∈ Ω , ε ∈ (0, 1].

For each ε ∈ (0, 1] define the process (Zε(t) : (Ω,F , P ) → E)t∈[0,1] by

Zε(t) := SE(εt)ξ + ε
1
2WεA(t) ∀t ∈ [0, 1]. (4.3)

In Proposition 4.2 we show that if the random variables Zε : (Ω,F , P ) → C([0, 1];E)

defined by

Zε(ω) := t �→ Zε(t)(ω) ∀ω ∈ Ω , ε ∈ (0, 1],

satisfy a large deviation principle then the family {Xε : ε ∈ (0, 1]} satisfies the same

large deviation principle. Thus our focus becomes proving a large deviation principle for

{L(Zε) : ε ∈ (0, 1]}.

If ν(E) = 1 then Hν is continuously embedded in E (see Lemma 4.3 and the paragraph

following it) and we denote the embedding by

i : Hν ↪→ E.

In section 4.3 we assume that the following condition holds.
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(B2)

1. We have ν(E) = 1.

2. There is a number α ∈ (0, 1
2) and an operator G ∈ L(E∗, E), which is the covariance

operator of a symmetric Gaussian measure on E, such that∫ 1

0
σ−2α|i∗S∗E(εσ)l∗|2Hν

dσ ≤ E〈Gl∗, l∗〉E∗ ∀l∗ ∈ E∗ and ∀ε ∈ (0, 1].

Remark If ν(E) = 1 and there is a positive real number c such that

S(t)Q
1
2 (BH(0, 1)) ⊂ Q

1
2 (BH(0, c)) ∀t ∈ [0, 1]

then we have

|i∗S∗E(t)l∗|Hν ≤ c|i∗l∗|Hν ∀l∗ ∈ E∗ and ∀t ∈ [0, 1].

In this case condition (B2)(2) holds with any α ∈ (0, 1
2) and G = c2

1−2α ii
∗ (here, to simplify

notation, we identify Hν and H∗ν ).

In Proposition 4.4 we show, assuming (B2), that (B1) holds. In Proposition 4.11 we show,

assuming (B2), that {Zε : ε ∈ (0, 1]} satisfies a large deviation principle.

In section 4.4 we present an example.

Our problem is different from the small noise asymptotics problem studied by Fantozzi [14]

because in our problem the dependence of the stochastic convolution process (WεA(t))t∈[0,1]

on ε complicates matters. We introduce condition (B2) to ensure convergence of paths

of (WεA(t))t∈[0,1] in C([0, 1];E) to those of the Wiener process as ε goes to zero. Unlike

condition (B1), condition (B2) is not needed in Da Prato’s and Zabczyk’s existence and

uniqueness theorem and it would have been preferable to obtain results assuming just (B1)

instead of (B2).

4.2 Reduction to the linear problem

Throughout this section we assume that condition (B1) holds.

Let ε ∈ (0, 1]. The processes (Zε(t))t∈[0,1] and (Xε(t))t∈[0,1] are related by the equation:

Xε(t) = Zε(t) + ε

∫ t

0
SE(ε(t− s))F (Xε(s)) ds ∀t ∈ [0, 1] (4.4)
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and have continuous trajectories in E. We can write equation (4.4) as

Xε(t)− Zε(t) = ε

∫ t

0
SE(ε(t− s))F (Xε(s)− Zε(s) + Zε(s)) ds ∀t ∈ [0, 1]. (4.5)

For any continuous function z : [0, 1] → E and α ∈ (0,∞), Da Prato and Zabczyk [10,

inequality (7.46)] provide a bound for the unique continuous solution vα
ε : [0, 1] → E of

the integral equation

vα
ε (t) = ε

∫ t

0
SE(ε(t− s))Fα(vα

ε (s) + z(s)) ds ∀t ∈ [0, 1], (4.6)

where Fα : E → E is a Lipschitz continuous function defined by

Fα(x) := F ((IE − αεF )−1x) ∀x ∈ E

which approximates F (see [10, Proposition D.11]); we have

‖vα
ε (t)‖ ≤ εeεωt

∫ t

0
e−εωs‖F (z(s))‖ ds ∀t ∈ [0, 1] and ∀α ∈ (0,∞). (4.7)

The proof of [10, Theorem 7.13] shows that as α ↘ 0, vα
ε converges uniformly to the

unique continuous function vε which satisfies the equation

vε(t) = ε

∫ t

0
SE(ε(t− s))F (vε(s) + z(s)) ds ∀t ∈ [0, 1] (4.8)

and, from equation (4.7),

sup
t∈[0,1]

‖vε(t)‖ ≤ εeεω sup
t∈[0,1]

‖F (z(t))‖. (4.9)

Proposition 4.1 The random variables in C([0, 1];E)

t ∈ [0, 1] �→ X(εt)(ω) , ω ∈ Ω

and

t ∈ [0, 1] �→ Xε(t)(ω) , ω ∈ Ω

have the same distribution.
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Proof. Let α ∈ (0,∞). We claim that the map Tα : C([0, 1];E) → C([0, 1];E) defined by

(Tαf)(t) = ε

∫ t

0
SE(ε(t− s))Fα((Tαf)(s) + f(s)) ds ∀t ∈ [0, 1] and ∀f ∈ C([0, 1];E)

is continuous. For f and g ∈ C([0, 1];E) we have

‖(Tαf)(t)− (Tαg)(t)‖ = ε

∥∥∥∥∫ t

0
SE(ε(t− s))[Fα((Tαf)(s) + f(s))− Fα((Tαg)(s) + g(s))] ds

∥∥∥∥
≤ Kαεe

εω

(∫ t

0
‖(Tαf)(s)− (Tαg)(s)‖ ds+ sup

r∈[0,1]
‖f(r)− g(r)‖

)

for all t ∈ [0, 1], where Kα denotes the Lipschitz constant of Fα. Now Gronwall’s inequality

yields

sup
t∈[0,1]

‖(Tαf)(t)− (Tαg)(t)‖ ≤ Kαεe
εω sup

r∈[0,1]
‖f(r)− g(r)‖eKαεeεω

.

Hence Tα is Lipschitz continuous. The map T : C([0, 1];E)→ C([0, 1];E) defined by

(Tf)(t) = ε

∫ t

0
SE(ε(t− s))F ((Tf)(s) + f(s)) ds ∀t ∈ [0, 1] and ∀f ∈ C([0, 1];E)

is the pointwise limit of continuous functions:

Tf = lim
α↘0

Tαf ∀f ∈ C([0, 1];E)

and is thus Borel measurable. From equation (4.5) we have

(t ∈ [0, 1] �→ Xε(t)(·)) = T (t ∈ [0, 1] �→ Zε(t)(·)) + (t ∈ [0, 1] �→ Zε(t)(·)). (4.10)

Recall our notation X(s) := X1(s) for all s ∈ [0, 1]. We have

X(εt) = SE(εt)ξ +WA(εt) +

∫ εt

0
SE(εt− s)F (X(s)) ds ∀t ∈ [0, 1]

= SE(εt)ξ +WA(εt) + ε

∫ t

0
SE(ε(t− u))F (X(εu)) du ∀t ∈ [0, 1].

Thus we have

(t ∈ [0, 1] �→ X(εt)(·)) = T (t ∈ [0, 1] �→ SE(εt)ξ+WA(εt)(·))+(t ∈ [0, 1] �→ SE(εt)ξ+WA(εt)(·)).
(4.11)
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Let

j̃ : C([0, 1];E) ↪→ C([0, 1];H)

be the continuous embedding of C([0, 1];E) into C([0, 1];H). As in section 3.1 of chapter 3,

we have equality of the distributions of the C([0, 1];H)-valued random variables

j̃(t ∈ [0, 1] �→ Zε(t)(·)) and j̃(t ∈ [0, 1] �→ SE(εt)ξ +WA(εt)(·)).

By [30, Theorem 1.1] we have {j̃(B) : B ∈ BC([0,1];E)} ⊂ BC([0,1];H) and it follows that

the C([0, 1];E)-valued random variables

(t ∈ [0, 1] �→ Zε(t)(·)) and (t ∈ [0, 1] �→ SE(εt)ξ +WA(εt)(·))

also have the same distribution. Hence, by equations (4.10) and (4.11), the random

variables (t ∈ [0, 1] �→ Xε(t)(·)) and (t ∈ [0, 1] �→ X(εt)(·)) have the same distribution.

This completes the proof of Proposition 4.1.

By Proposition 4.1 the family of C([0, 1];E)-valued random variables {t ∈ [0, 1] �→ X(εt)(·) :

ε ∈ (0, 1]} satisfies a large deviation principle if and only if it is satisfied by the family

of random variables {Xε : ε ∈ (0, 1]}. The following proposition shows that our prob-

lem may now be reduced to finding a large deviation principle for the family of random

variables {Zε : ε ∈ (0, 1]}.

Proposition 4.2 Suppose that the family of C([0, 1];E)-valued random variables

{Zε : Zε(ω) := t �→ Zε(t)(ω) ∀ω ∈ Ω }ε∈(0,1]

satisfies a large deviation principle. Then for any δ > 0 we have

lim
ε→0

ε logP

{
sup

t∈[0,1]
‖Xε(t)− Zε(t)‖ ≥ δ

}
= −∞, (4.12)

which implies that the family of random variables in C([0, 1];E)

{Xε : Xε(ω) := t �→ Xε(t)(ω) ∀ω ∈ Ω }ε∈(0,1]

satisfies the same large deviation principle as {Zε}ε∈(0,1] does.

Proof. By comparing equations (4.5) and (4.8) we see that inequality (4.9) yields the

100



bound

sup
t∈[0,1]

‖Xε(t)− Zε(t)‖ ≤ εeω sup
t∈[0,1]

‖F (Zε(t))‖ ∀ε ∈ (0, 1].

Fix δ > 0. Take arbitrary r ∈ (0,∞). We have

P

{
sup

t∈[0,1]
‖Xε(t)− Zε(t)‖ ≥ δ

}
≤ P

{
sup

t∈[0,1]
‖F (Zε(t))‖ ≥ δ

εeω

}

≤ P

{
sup

t∈[0,1]
‖F (Zε(t))‖ ≥ δ

εeω
, sup

t∈[0,1]
‖Zε(t)‖ < r

}

+ P

{
sup

t∈[0,1]
‖Zε(t)‖ ≥ r

}
.

For all sufficiently small ε > 0 the first probability on the right hand side vanishes because

F is bounded on bounded subsets of E. Thus there is an εr > 0 such that

P

{
sup

t∈[0,1]
‖Xε(t)− Zε(t)‖ ≥ δ

}
≤ P

{
sup

t∈[0,1]
‖Zε(t)‖ ≥ r

}
∀ε < εr.

Let I : C([0, 1];E) → [0,∞] be the rate function of the large deviation principle of

{Zε}ε∈(0,1]. Let R ∈ (0,∞). The set {I ≤ R} is compact and we now choose r ∈ (0,∞)

such that

{I ≤ R} ⊂ {x ∈ C([0, 1];E) : sup
t∈[0,1]

‖x(t)‖ < r}.

By the Freidlin-Wentzell formulation (see [10, Proposition 12.2]) of the upper bound of

the large deviation principle of {Zε}ε∈(0,1], given γ ∈ (0,∞) there is a number εR,r,γ > 0

such that

P

{
sup

t∈[0,1]
‖Zε(t)‖ ≥ r

}
≤ e

−R+γ
ε for all ε < εR,r,γ .

Hence

P

{
sup

t∈[0,1]
‖Xε(t)− Zε(t)‖ ≥ δ

}
≤ e

−R+γ
ε for all ε < (εr ∧ εR,r,γ).

Since R ∈ (0,∞) and γ ∈ (0,∞) are arbitrary we have

lim
ε→0

ε logP

{
sup

t∈[0,1]
‖Xε(t)− Zε(t)‖ ≥ δ

}
= −∞.

It follows from [18, Lemma 27.13] that {Xε}ε∈(0,1] satisfies the same large deviation prin-
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ciple as {Zε}ε∈(0,1]. This completes the proof of Proposition 4.2.

4.3 Large deviation principle

In this section we show, assuming (B2), that (B1) holds and the family of C([0, 1];E)-

valued random variables {Zε : ε ∈ (0, 1]} satisfies a large deviation principle. We need a

basic lemma.

Lemma 4.3 Let U and V be separable Banach spaces such that U is continuously and

injectively embedded in V via the map j : U ↪→ V . If μ is a symmetric Gaussian measure

on the Borel σ-algebra of V , BV , and μ(j(U)) = 1 then there is a symmetric Gaussian

measure μ0 on the Borel σ-algebra of U , BU , such that μ = μ0j
−1.

Proof. We have {j(A) : A ∈ BU} ⊂ BV (see [30, Theorem 1.1 in chapter 1]) and

{j−1(B) : B ∈ BV } ⊂ BU since j is measurable. Define a probability measure μ0 on BU

by

μ0(A) := μ(j(A)) ∀A ∈ BU .

By [29, Theorem 4.12 Corollary (c)], j∗(V ∗) is a weak*-dense subspace of U∗. Since for

each h∗ ∈ V ∗ we have

μ0(j
∗h∗)−1 = μ0{x ∈ U : h∗(jx) ∈ ·} = μ(j{x ∈ U : h∗(jx) ∈ ·})

= μ({y ∈ V : h∗(y) ∈ ·} ∩ j(U))

= μ(h∗)−1

is symmetric Gaussian, [4, Corollary 1.3] tells us that μ0 is a symmetric Gaussian measure

on BU . For arbitrary B ∈ BV we have

μ(B) = μ(B ∩ j(U)) = μ(j(j−1(B))) = μ0(j
−1(B)).

This completes the proof of Lemma 4.3.

If condition (B2)(1) holds then by Lemma 4.3 there is a symmetric Gaussian measure ν ′

on the Borel σ-algebra of E such that ν = ν ′j−1. By [10, Proposition 2.8], ν ′ has the same

reproducing kernel Hilbert space as ν and, as defined in section 4.1,

i : Hν ↪→ E
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is the inclusion map of Hν into E, which is a compact operator (see [3, Corollary 3.2.4]).

From the definition of reproducing kernel Hilbert space, the covariance operator of ν ′ is

ii∗ : E∗ → E where, to simplify notation, we identify H∗ν with Hν . We also have k = ji

and Q = kk∗.

Proposition 4.4 Assuming that (B2) holds, the Wiener process (W (t))t∈[0,1] has trajec-

tories continuous in E, for each ε ∈ (0, 1] the process (WεA(t))t∈[0,1] has a version whose

trajectories are continuous in E and, considering such a version of (WεA(t))t∈[0,1], we have

E

[
sup

t∈[0,1]
‖WεA(t)−W (t)‖2

]
→ 0 as ε→ 0. (4.13)

Before proving Proposition 4.4 we state four lemmas which we will use in the proof.

Lemma 4.5 ([21, Theorem 4.10]) Let (U, ‖ · ‖) be a separable Banach space and let

Q ∈ L(U∗, U) be the covariance operator of a symmetric Gaussian measure μ on U . Let

R be a family of positive definite symmetric operators in L(U∗, U) such that for some

constant K ∈ (0,∞) and for all R ∈ R and for all x∗ ∈ U∗ we have

U〈Rx∗, x∗〉U∗ ≤ K2
U〈Qx∗, x∗〉U∗ .

Then each R ∈ R is the covariance operator of a symmetric Gaussian measure μR on U

and the family {μR : R ∈ R} is uniformly tight. Moreover, for all R ∈ R we have∫
U
‖x‖2 dμR(x) ≤ K2

∫
U
‖x‖2 dμ(x).

Lemma 4.6 ([21, Lemma 2.18]) Let U be a separable Banach space and let (μn) be

a uniformly tight sequence of probability measures on (U,BU ). Denote the characteristic

function of a measure ν on U by ν̂. Let F be a weak*-dense linear subspace of U∗. If

for each x∗ ∈ F the sequence of complex numbers (μ̂n(x∗)) converges then (μn) converges

weakly to some probability measure μ on (U,BU ) and

lim
n→∞

μ̂n(x∗) = μ̂(x∗) for all x∗ ∈ U∗.

Lemma 4.7 ([21, Theorem 3.25]) Let (U, ‖ · ‖) be a separable Banach space and let

(μn) be a sequence of symmetric Gaussian measures on U that converges weakly to a
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symmetric Gaussian measure μ on U . Then

lim
n→∞

∫
U
‖x‖2 dμn(x) =

∫
U
‖x‖2 dμ(x).

Lemma 4.8 ([30, Corollary 1 of Theorem 5.7 in chapter 5]) Let m ∈ N. There is

a positive real number Cm such that for any symmetric Gaussian measure μ on a separable

Banach space (U, ‖ · ‖) we have∫
U
‖x‖2m dμ(x) ≤ Cm

(∫
U
‖x‖2 dμ(x)

)m

.

Proof of Proposition 4.4. Let α ∈ (0, 1
2) and G ∈ L(E∗, E) be as in condition (B2)(2).

Let m be a natural number such that 2mα > 1. For each ε ∈ [0, 1] define

Y ε(s) :=

∫ s

0
(s− σ)−αS(ε(s− σ))k dW (σ) for all s ∈ [0, 1].

As shown in [10, Theorem 5.9], this process, which has a measurable version whose tra-

jectories are in L2m([0, 1];H) almost surely, provides us with a version of the stochastic

convolution process whose trajectories are in C([0, 1];H):

WεA(t) :=
sin(πα)

π

∫ t

0
S(ε(t− s))(t− s)α−1Y ε(s) ds , t ∈ [0, 1]. (4.14)

If ε = 0 then the expression on the right hand side of equation (4.14) becomes the

Wiener process (W (t))t∈[0,1]. We will show that condition (B2)(1) implies that the pro-

cess (Y 0(t))t∈[0,1] has a measurable version with trajectories in L2m([0, 1];E); furthermore,

condition (B2)(2) implies that for each ε ∈ (0, 1] the process (Y ε(t))t∈[0,1] has a measur-

able version with trajectories in L2m([0, 1];E). When we use this version of (Y ε(t))t∈[0,1]

in equation (4.14), (WεA(t))t∈[0,1] has trajectories in C([0, 1];E). We will then show that

the convergence in (4.13) occurs.

Let ε ∈ [0, 1]. For any t ∈ [0, 1], it follows from the definition of the Itô integral that Y ε(t)

has symmetric Gaussian distribution on H whose covariance operator is

P̃tx :=

∫ t

0
s−2αS(εs)QS∗(εs)x ds , x ∈ H.
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We can define a symmetric, positive definite, bounded linear operator Pt ∈ L(E∗, E) by

Ptl
∗ :=

∫ t

0
s−2αSE(εs)ii∗S∗E(εs)l∗ ds , l∗ ∈ E∗. (4.15)

For any l∗ ∈ E∗ we have

E〈Ptl
∗, l∗〉E∗ ≤ E〈P1l

∗, l∗〉E∗ =

∫ 1

0
s−2α|i∗S∗E(εs)l∗|2Hν

ds ≤ E〈Gl∗, l∗〉E∗ . (4.16)

Thus, by Lemma 4.5, Pt is the covariance operator of a symmetric Gaussian measure νt

on E. The measure νtj
−1 on H has covariance operator jPtj

∗. For x ∈ H and x∗ the

corresponding element of H∗ we have

jPtj
∗x∗ = j

∫ t

0
s−2αSE(εs)ii∗S∗E(εs)j∗x∗ ds

=

∫ t

0
s−2αS(εs)kk∗S∗(εs)x ds

= P̃tx.

Thus L(Y ε(t)) = νtj
−1 and in particular P{Y ε(t) ∈ j(E)} = 1.

Take a measurable version of the process (Y ε(t))t∈[0,1], that is, such that the function

Y ε : ([0, 1]× Ω, B[0,1] ⊗F) → (H,BH) defined by

Y ε(t, ω) := Y ε(t)(ω) , (t, ω) ∈ [0, 1]× Ω ,

is measurable, the domain having the product σ-algebra. Then the set

D := {(t, ω) ∈ [0, 1]× Ω : Y ε(t)(ω) ∈ j(E)}

is measurable and for each t ∈ [0, 1] we have P{ω ∈ Ω : (t, ω) ∈ D} = 1. Thus the

E-valued process

Y ε
E(t) := 1D(t, ·)Y ε(t) , t ∈ [0, 1]

is a measurable E-valued version of (Y ε(t))t∈[0,1].

We now show that the process (Y ε
E(t))t∈[0,1] has trajectories in L2m([0, 1];E). For each

t ∈ [0, 1] the distribution of Y ε
E(t) on E is νt and its covariance operator Pt satisfies

inequality (4.16). Thus by Lemma 4.5 we have∫
Ω
‖Y ε

E(t)‖2 dP ≤
∫

Ω
‖Y ε

E(1)‖2 dP ∀t ∈ [0, 1]. (4.17)
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From Lemma 4.8 and inequality (4.17) we have∫
Ω

∫ 1

0
‖Y ε

E(s)‖2m ds dP =

∫ 1

0

∫
Ω
‖Y ε

E(s)‖2m dP ds

≤
∫ 1

0
Cm

(∫
Ω
‖Y ε

E(s)‖2 dP
)m

ds

≤ Cm

(∫
Ω
‖Y ε

E(1)‖2 dP
)m

<∞ (4.18)

and thus
∫ 1
0 ‖Y ε

E(s)‖2m ds is finite P a.e..

If f ∈ L2m([0, 1];E) then for each ε ∈ [0, 1] the E-valued function

t �→
∫ t

0
SE(ε(t− σ))(t− σ)α−1f(σ) dσ , t ∈ [0, 1] (4.19)

is continuous; this claim can be proved by following the same steps we use to get inequality

(4.24) below. By [10, Theorem 5.9], for each ε ∈ (0, 1] the process (WεA(t))t∈[0,1] has the

version

WεA(t) :=
sin(πα)

π

∫ t

0
S(ε(t− s))(t− s)α−1jY ε

E(s) ds ∀t ∈ [0, 1]

whose trajectories are continuous in H; thus, by comparison with equation (4.19), we have

the E-valued version

WεA(t) :=
sin(πα)

π

∫ t

0
SE(ε(t− s))(t− s)α−1Y ε

E(s) ds ∀t ∈ [0, 1], (4.20)

which has trajectories continuous in E.

We now prove the convergence in (4.13).

For 0 < ε ≤ 1 we have

W (t)−WεA(t) =
sin(πα)

π

∫ t

0
(IE − SE(ε(t− s)))(t− s)α−1Y 0

E(s) ds

+
sin(πα)

π

∫ t

0
SE(ε(t− s))(t− s)α−1(Y 0

E(s)− Y ε
E(s)) ds (4.21)

=: Kε(t) + Jε(t) for all t ∈ [0, 1], (4.22)
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where Kε(t) and Jε(t) are defined to be the respective terms on the right hand side of

equation (4.21). From the definition in equation (4.22) we have

sup
t∈[0,1]

‖W (t)−WεA(t)‖2m ≤ 22m

(
sup

t∈[0,1]
‖Kε(t)‖2m + sup

t∈[0,1]
‖Jε(t)‖2m

)
.

Thus it suffices to show that limε→0E[supt∈[0,1] ‖Kε(t)‖2m] = 0 and limε→0E[supt∈[0,1] ‖Jε(t)‖2m] =

0.

Step 1. We will show that

lim
ε→0

E

[
sup

t∈[0,1]
‖Kε(t)‖2m

]
= 0. (4.23)

For all 0 < ε ≤ 1 we have, by Hölder’s inequality:

sup
t∈[0,1]

‖Kε(t)‖2m

≤
(

sin(πα)

π
sup

r∈[0,1]
‖IE − SE(r)‖L(E)

)2m(∫ 1

0
σ(α−1) 2m

2m−1 dσ

)2m−1 ∫ 1

0
‖Y 0

E(s)‖2m ds

and the right hand side is an integrable dominating function. If supt∈[0,1] ‖Kε(t)‖ → 0 as

ε→ 0 P a.e. then, by Lebesgue’s dominated convergence theorem, equation (4.23) holds.

Let ω ∈ Ω be such that the path

s ∈ [0, 1] �→ Y 0
E(s)(ω)

belongs to L2m([0, 1];E); we will show that

sup
t∈[0,1]

‖Kε(t)(ω)‖ → 0 as ε→ 0.

Let the sequence (εn) ⊂ (0, 1] converge to 0 as n goes to infinity. Firstly note that for each

fixed t ∈ [0, 1], Kεn(t)(ω) → 0 as n→∞:

‖Kεn(t)(ω)‖ ≤ sin(πα)

π

(∫ 1

0
σ(α−1) 2m

2m−1 dσ

) 2m−1
2m

×
(∫ t

0
‖(IE − SE(εn(t− s)))Y 0

E(s)(ω)‖2m ds

) 1
2m

→ 0 as n→∞
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by Lebesgue’s dominated convergence theorem. Uniform convergence to zero follows once

we show that the family of functions from C([0, 1];E)

t �→ Kε(t)(ω) , 0 < ε ≤ 1,

is uniformly equicontinuous. For brevity, we set

y(s) := Y 0
E(s)(ω) ∀s ∈ [0, 1] and

zε(s) :=
π

sin(πα)
Kε(s)(ω) ∀s ∈ [0, 1] for each ε ∈ (0, 1].

By definition, for each ε ∈ (0, 1]

zε(t) =

∫ t

0
(IE − SE(ε(t− s)))(t− s)α−1y(s) ds ∀t ∈ [0, 1].

If 0 < ε ≤ 1 and 0 ≤ t < u ≤ 1 then

‖zε(u)−zε(t)‖

≤
∥∥∥∥∫ u−t

0
(IE − SE(ε(u− s)))(u− s)α−1y(s) ds

∥∥∥∥+∥∥∥∥∫ u

u−t
(IE − SE(ε(u− s)))(u− s)α−1y(s) ds−

∫ t

0
(IE − SE(ε(t− s)))(t− s)α−1y(s) ds

∥∥∥∥
≤

∥∥∥∥∫ u−t

0
(IE − SE(ε(u− s)))(u− s)α−1y(s) ds

∥∥∥∥+∥∥∥∥∫ t

0
(IE − SE(ε(t− s)))(t− s)α−1(y(s+ u− t)− y(s)) ds

∥∥∥∥
≤ sup

r∈[0,1]
‖IE − SE(r)‖L(E)

(∫ 1

0
σ(α−1) 2m

2m−1 dσ

) 2m−1
2m

×⎡⎣(∫ u−t

0
‖y(s)‖2m ds

) 1
2m

+

(∫ 1−(u−t)

0
‖y(s+ u− t)− y(s)‖2m ds

) 1
2m

⎤⎦ . (4.24)

The expression on the right hand side of inequality (4.24) does not depend on ε and, since

y ∈ L2m([0, 1];E), both integrals inside the square brackets converge to 0 as u − t ↘ 0.

Hence {zε : 0 < ε ≤ 1} is uniformly equicontinuous.
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Step 2. We now show that

lim
ε→0

E

[
sup

t∈[0,1]
‖Jε(t)‖2m

]
= 0. (4.25)

We have

sup
t∈[0,1]

‖Jε(t)‖2m

≤
(

sin(πα)

π
sup

r∈[0,1]
‖SE(r)‖L(E)

)2m(∫ 1

0
σ(α−1) 2m

2m−1 dσ

)2m−1 ∫ 1

0
‖Y 0

E(s)− Y ε
E(s)‖2m ds.

(4.26)

Let t ∈ [0, 1] and ε ∈ (0, 1]. The random variable

Y 0(t)− Y ε(t) =

∫ t

0
(t− σ)−α(IH − S(ε(t− σ)))k dW (σ)

has symmetric Gaussian distribution on H with covariance operator

Qε
t :=

∫ t

0
σ−2α(IH − S(εσ))Q(IH − S(εσ))∗ dσ.

Define the operator P ε
t : E∗ → E by

P ε
t l
∗ :=

∫ t

0
σ−2α(IE − SE(εσ))ii∗(IE − SE(εσ))∗l∗ dσ ∀l∗ ∈ E∗.

The operator P ε
t is a symmetric, positive definite, bounded linear operator and for all

l∗ ∈ E∗ we have

E〈P ε
t l
∗, l∗〉E∗ =

∫ t

0
σ−2α|i∗(IE − SE(εσ))∗l∗|2Hν

dσ

≤
∫ 1

0
σ−2α|i∗(IE − SE(εσ))∗l∗|2Hν

dσ = E〈P ε
1 l
∗, l∗〉E∗ (4.27)

≤ 2

∫ 1

0
σ−2α

(
|i∗l∗|2Hν

+ |i∗S∗E(εσ)l∗|2Hν

)
dσ

≤ 2

1− 2α
|i∗l∗|2Hν

+ 2 E〈Gl∗, l∗〉E∗ . (4.28)

By Lemma 4.5, inequality (4.28) implies that P ε
t is the covariance operator of a symmetric

Gaussian measure νε
t on E. For each x ∈ H and the corresponding linear functional
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x∗ ∈ H∗ we have

jP ε
t j
∗x∗ = Qε

tx.

Thus the distribution of Y 0
E(t) − Y ε

E(t) on E is νε
t . Moreover, by inequality (4.27) and

Lemma 4.5 we have∫
Ω
‖Y 0

E(t)− Y ε
E(t)‖2 dP ≤

∫
Ω
‖Y 0

E(1)− Y ε
E(1)‖2 dP , (4.29)

which holds for all ε ∈ (0, 1] and for all t ∈ [0, 1]. Inequality (4.28) and Lemma 4.5 also

imply that the family of Gaussian measures on E

{L(Y 0
E(1)− Y ε

E(1)) = νε
1 : ε ∈ (0, 1]}

is uniformly tight.

Let (εn) be a sequence of numbers from (0, 1] such that εn converges to 0 as n goes to

infinity. We have

E〈P εn
1 l∗, l∗〉E∗ =

∫ 1

0
σ−2α|((IE − SE(εnσ))i)∗l∗|2H∗ν dσ

≤ sup
r∈[0,1]

‖(IE − SE(εnr))i‖2L(Hν ,E) ‖l∗‖2E∗
1

1− 2α

→ 0 as n→∞

for all l∗ ∈ E∗. Hence the sequence of characteristic functions (ν̂εn
1 ) converges pointwise:

ν̂εn
1 (l∗) = exp

(
−1

2
E〈P εn

1 l∗, l∗〉E∗
)
→ 1 as n→∞

for all l∗ ∈ E∗. By Lemma 4.6 we have that νεn
1 converges weakly to δ0, the point mass

at 0, as n goes to infinity and, by Lemma 4.7, we have

lim
n→∞

∫
Ω
‖Y 0

E(1)− Y εn
E (1)‖2 dP = 0. (4.30)

By Lemma 4.8 we have∫ 1

0

∫
Ω
‖Y 0

E(s)− Y εn
E (s)‖2m dP ds ≤ Cm

∫ 1

0

(∫
Ω
‖Y 0

E(s)− Y εn
E (s)‖2 dP

)m

ds

≤ Cm

(∫
Ω
‖Y 0

E(1)− Y εn
E (1)‖2 dP

)m

→ 0 as n→∞,
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where the second line follows from inequality (4.29) and the third line from equation (4.30).

Since (εn) is an arbitrary sequence from (0, 1] which converges to 0, we conclude that

lim
ε→0

∫ 1

0

∫
Ω
‖Y 0

E(s)− Y ε
E(s)‖2m dP ds = 0.

Equation (4.25) now follows by taking expected values on both sides of equation (4.26).

This completes the proof of Proposition 4.4.

Set

δ2ε := E

[
sup

t∈[0,1]
‖WεA(t)−W (t)‖2

]
∀ε ∈ (0, 1].

It is straightforward to show, using [10, Proposition 2.9(i)], that for each ε ∈ (0, 1] the

random variable

ω �→ (t �→WεA(t)(ω)−W (t)(ω)) (4.31)

in C([0, 1];H) has symmetric Gaussian distribution; Lemma 4.3 tells us that the corre-

sponding random variable in C([0, 1];E) also has symmetric Gaussian distribution. Con-

sequently, except for differences of notation and context, the proof of the next lemma is

from Fang and Zhang [13, Lemma 4.2].

Lemma 4.9 Assuming that (B2) holds, there is a positive number c such that

sup
0<ε≤1

E

[
exp

(
c

supt∈[0,1] ‖WεA(t)−W (t)‖2
δ2ε

)]
<∞.

Proof. The proof makes clever use of Fernique’s theorem as stated in [10, Theorem 2.6].

For each ε ∈ (0, 1] define the symmetric Gaussian distribution με on C([0, 1];E) by

με := L
(
ω ∈ Ω �→ [t �→ 1

δε
(WεA(t)(ω)−W (t)(ω))]

)
.

By Chebyshev’s inequality, for any positive real number r we have

r2με{u ∈ C([0, 1];E) : sup
t∈[0,1]

‖u(t)‖ > r} ≤ 1 ∀ε ∈ (0, 1].

Fix r ∈ [2,∞); then we have

ln

(
1− με(BC([0,1];E)(0, r))

με(BC([0,1];E)(0, r))

)
≤ ln

(
1

3

)
< −1 ∀ε ∈ (0, 1].
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Hence we may choose λ ∈ (0,∞) such that

ln

(
1− με(BC([0,1];E)(0, r))

με(BC([0,1];E)(0, r))

)
+ 32λr2 ≤ −1 for all ε ∈ (0, 1];

with this choice of λ we have from Fernique’s theorem:∫
C([0,1];E)

eλ supt∈[0,1] ‖u(t)‖2 dμε(u) ≤ e16λr2
+

e2

e2 − 1
∀ε ∈ (0, 1].

This completes the proof of the lemma.

Lemma 4.9 is used in the proof of the next lemma, which is the counterpart of [13, Lemma

4.3].

Lemma 4.10 Assuming that (B2) holds, for any δ > 0 we have

lim
ε→0

ε logP

{
ε

1
2 sup

t∈[0,1]
‖WεA(t)−W (t)‖ ≥ δ

}
= −∞.

Proof: Let c be as in Lemma 4.9 and set

C := sup
0<ε≤1

E

[
exp

(
c
supt∈[0,1] ‖WεA(t)−W (t)‖2

δ2ε

)]
.

We have

exp

(
c
δ2

εδ2ε

)
1
{ε

1
2 supt∈[0,1] ‖WεA(t)−W (t)‖≥δ}

≤ exp

(
c
supt∈[0,1] ‖WεA(t)−W (t)‖2

δ2ε

)

for all ε ∈ (0, 1]. Taking expectations of both sides in this inequality, we have

P

{
ε

1
2 sup

t∈[0,1]
‖WεA(t)−W (t)‖ ≥ δ

}
≤ C exp

(
−c δ

2

εδ2ε

)
∀ε ∈ (0, 1].

Now we take logarithms and use δε → 0 as ε → 0, from Proposition 4.4. This completes

the proof of Lemma 4.10.

Define the random variables in C([0, 1];E):

WεA(ω) := t �→WεA(t)(ω) ∀ω ∈ Ω and ∀ε ∈ (0, 1] and

W (ω) := t �→W (t)(ω) ∀ω ∈ Ω.
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Lemma 4.10 means that the two families of random variables in C([0, 1];E)

{Zε = SE(ε ·)ξ + ε
1
2WεA : ε ∈ (0, 1]} and {ξ + ε

1
2W : ε ∈ (0, 1]}

are exponentially equivalent.

The distribution of W : Ω → C([0, 1];E) is symmetric Gaussian and, by [10, Proposition

2.8] and [32, Theorem 1 in section 6], its reproducing kernel Hilbert space is

HW :=

{
t ∈ [0, 1] �→

∫ t

0
u(s) ds : u ∈ L2([0, 1];Hν)

}
, (4.32)

whose norm | · |HW
is defined by

|f |2HW
:=

∫ 1

0
|u(s)|2Hν

ds : u ∈ L2([0, 1];Hν) and f(t) =

∫ t

0
u(s) ds ∀t ∈ [0, 1], (4.33)

for each f ∈ HW .

Proposition 4.11 Assuming that condition (B2) holds, the family {Zε}ε∈(0,1] of ran-

dom variables in C([0, 1];E) satisfies a large deviation principle with rate function Iξ :

C([0, 1];E)→ [0,∞] defined by

Iξ(f) :=

{
1
2 |f − ξ|2HW

if f − ξ ∈ HW

∞ otherwise.
(4.34)

Proof. By [10, Theorem 12.7], the family of random variables {ε 1
2W : ε ∈ (0, 1]} in

C([0, 1];E) satisfies a large deviation principle with rate function I0 : C([0, 1];E) → [0,∞]

defined by

I0(f) :=

{
1
2 |f |2HW

if f ∈ HW

∞ otherwise.

Thus {ξ + ε
1
2W : ε ∈ (0, 1]} satisfies a large deviation principle with rate function Iξ.

Since {Zε : ε ∈ (0, 1]} and {ξ+ ε
1
2W : ε ∈ (0, 1]} are exponentially equivalent, they satisfy

the same large deviation principle (see [18, Lemma 27.13]). This completes the proof of

Proposition 4.11.

Corollary 4.12 Assuming that condition (B2) holds, the family {ω ∈ Ω �→ [t �→ X(εt)(ω)]}ε∈(0,1]

of random variables in C([0, 1];E) satisfies a large deviation principle with rate function

Iξ defined in equation (4.34).

Proof. This follows from Proposition 4.11 and Proposition 4.2 and Proposition 4.1.
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4.4 An example

We now present an example where condition (B2) holds and thus Corollary 4.12 provides

the short time asymptotics.

Let n ∈ {1, 2, 3}. Let O be a bounded domain in Rn with C∞ boundary ∂O. Consider

the second order elliptic operator

Lu := −
n∑

i=1

n∑
j=1

∂

∂xi

(
ai,j

∂u

∂xj

)
+

n∑
k=1

bk
∂u

∂xk
+ cu, (4.35)

where the functions

ai,j : O → R , i, j = 1, . . . , n

are in C∞(O) and satisfy the conditions

1. ai,j = aj,i for all i, j ∈ {1, . . . , n} and

2. for some positive real number C

n∑
i=1

n∑
j=1

ai,j(x)ξiξj ≥ C
n∑

k=1

ξ2k ∀(ξ1, . . . , ξn) ∈ Rn and ∀x ∈ O (4.36)

and the functions

bk : O → R , k = 1, . . . , n and c : O → R

are also in C∞(O).

Define the operator (A2, D(A2)) on L2(O) by

D(A2) := W 2,2(O) ∩W 1,2
0 (O)

and

A2 u := Lu , u ∈ D(A2).

By [24, Theorem 2.7 in chapter 7], −A2 generates an analytic semigroup (S(t))t≥0 on

L2(O).

Let E = C0(O), the continuous functions which vanish on ∂O, with the supremum norm.

Define an operator (Ac, D(Ac)) on C0(O) by

D(Ac) := {u : u ∈W 2,p(O) for all p > n and u = 0 on ∂O and Lu ∈ C0(O)}
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and

Ac u := Lu ∀u ∈ D(Ac).

The operator −Ac generates an analytic semigroup on C0(O) (see [24, Theorem 3.7 in

chapter 7]) which we denote by (SE(t))t≥0. Since C0(O) is continuously embedded in

L2(O) and the graph of −Ac is contained in the graph of −A2 it follows that

SE(t)u = S(t)u ∀u ∈ C0(O) and ∀t ∈ [0, 1].

According to [24, Remark 6.3 in chapter 7], if u0 ∈ C∞c (O) then the function

u(t, x) := (SE(t)u0)(x) , (t, x) ∈ [0, 1]×O,

is in C∞((0, 1]×O) and is a classical solution of the initial value problem⎧⎪⎨⎪⎩
∂u
∂t + Lu = 0 in [0, 1]×O
u(t, x) = 0 on [0, 1]× ∂O
u(0, x) = u0(x) in O.

From this, one can show by using the maximum principle (see, for example, [28, Theorem

4.26]) that there is a non-negative real number θ such that

‖SE(t)‖L(E,E) ≤ eθt for all t ≥ 0.

Take any a ≥ 0 such that the spectrum of A2 +aI lies in {λ ∈ C : Re(λ) > 0}. Let α > n.

We make two claims:

1. the operator Qα/2 := (A2 + aI)−
α
2 ((A2 + aI)−

α
2 )∗ is the covariance operator of a

symmetric Gaussian measure να/2 on L2(O) such that να/2(E) = 1;

2. there is r ∈ (0,∞) such that

S(t)(BHα/2
(0, 1)) ⊂ BHα/2

(0, r) ∀t ∈ [0, 1],

where (Hα/2, ‖ · ‖α/2) is the reproducing kernel Hilbert space of να/2 and for s ≥ 0

BHα/2
(0, s) := {x ∈ Hα/2 : ‖x‖α/2 ≤ s}.

It follows from these two claims that if L(W (1)) = να/2 then condition (B2) holds and
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Proposition 4.4 holds: for each ε ∈ (0, 1] the process

W−εA2(t) =

∫ t

0
S(ε(t− s))k dW (s) , t ∈ [0, 1],

has a version whose trajectories are continuous in E. Also if b : R → R is a continuously

differentiable, decreasing function such that b(0) = 0 and the function F : E → E is

defined by

(F (φ))(x) := b(φ(x)) ∀x ∈ O and ∀φ ∈ E,

then for any ξ ∈ E Corollary 4.12 gives us the small time asymptotics of the continuous

E-valued process (X(t))t∈[0,1] such that

X(t) = SE(t)ξ +W−A2(t) +

∫ t

0
SE(t− s)F (X(s)) ds ∀t ∈ [0, 1].

Proof of claim 1. From [10, Corollary B.4] we have

Hα/2 := im

(
Q

1
2

α/2

)
= im

(
(A2 + aI)−

α
2

)
= D

(
(A2 + aI)

α
2

)
(4.37)

and for all x ∈ im(Q
1
2

α/2)

‖x‖α/2 :=

∣∣∣∣Q− 1
2

α/2x

∣∣∣∣
L2(O)

=
∣∣∣(A2 + aI)

α
2 x
∣∣∣
L2(O)

. (4.38)

By [16, Theorem 1.6.1], the Hilbert space

(Hα/4 := D((A2 + aI)
α
4 ), ‖ · ‖α/4 := |(A2 + aI)

α
4 · |L2(O))

is continuously embedded in the space of continuous functions on O with the supremum

norm. Also, since D(A2) = W 2,2(O) ∩W 1,2
0 (O) consists of elements of C0(O) and the set

D(A2) ∩Hα/4 is dense in the space Hα/4, it follows that

Hα/4 ↪→ C0(O),

where the symbol ↪→ denotes a continuous embedding.

Now we want to show that the inclusion map

Hα/2 ↪→ Hα/4
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is Hilbert-Schmidt. Let (ek) be an orthonormal basis of L2(O). Then ((A2 + aI)−
α
2 ek) is

an orthonormal basis of Hα/2. We have

∞∑
k=1

‖(A2 + aI)−
α
2 ek‖2α/4 =

∞∑
k=1

|(A2 + aI)−
α
4 ek|2L2(O).

Thus it is equivalent to show that the inclusion map

Hα/4 ↪→ L2(O)

is Hilbert-Schmidt. To show this, we consider the self-adjoint operator (A2s, D(A2s)) on

L2(O) defined by

D(A2s) := W 2,2(O) ∩W 1,2
0 (O)

and

A2s u := −
n∑

j=1

n∑
i=1

∂

∂xi

(
ai,j

∂u

∂xj

)
, ∀u ∈ D(A2s).

The ellipticity condition in inequality (4.36) ensures that the spectrum of A2s is contained

in (0,∞) and, as shown in [24, Theorem 3.6 in chapter 7], −A2s generates an analytic

semigroup of contractions on L2(O). Thus Agmon [1, Theorem 13.6, Corollary] gives

us bounds for the eigenvalues (λj) of the symmetric compact operator A−1
2s , in order of

decreasing modulus:

0 < λj ≤ Kj−
2
n for all j ∈ N, (4.39)

where K is a positive real constant. Define the Hilbert space

Hα/4,s := D(A
α
4
2s) with norm ‖x‖α/4,s := |A

α
4
2s x|L2(O).

Let (ej) be an orthonormal basis of L2(O) consisting of eigenvectors of A−1
2s :

A−1
2s ej = λjej for all j ∈ N.

Using Agmon’s bounds in inequality (4.39) we see that the embedding of Hα/4,s into L2(O)
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is Hilbert-Schmidt:

∞∑
j=1

|A−
α
4

2s ej |2L2(O) =

∞∑
j=1

λ
α
2
j

≤ K
α
2

∞∑
j=1

j−
α
n

< ∞

since α > n. By [16, Theorem 1.4.8],

Hα/4 = Hα/4,s

with equivalent norms. Thus the embedding Hα/4 ↪→ L2(O) is also Hilbert-Schmidt and

it follows that the embedding Hα/2 ↪→ Hα/4 is also Hilbert-Schmidt.

We have the following embeddings:

Hα/2
H−S−→ Hα/4 ↪→ E ↪→ L2(O) , (4.40)

where
H−S→ denotes a Hilbert-Schmidt embedding. The Hilbert-Schmidt embedding in ex-

pression (4.40) implies that if (fj) is an orthonormal basis ofHα/2 and (γj : (Ω,F , P ) → R)

is a sequence of independent standard normal random variables then the series
∑∞

j=1 γjfj ,

which converges in L2(Ω,F , P ;Hα/4), has symmetric Gaussian distribution on Hα/4 whose

reproducing kernel Hilbert space is Hα/2. By [10, Proposition 2.8], the induced symmetric

Gaussian measure on L2(O) also has reproducing kernel Hα/2. By the definition of Qα/2

and the definition of Hα/2 in equations (4.37) and (4.38) and equation (4.40), Qα/2 is of

trace class and thus it is the covariance operator of a symmetric Gaussian measure να/2

on L2(O) whose reproducing kernel Hilbert space is Hα/2. Since a symmetric Gaussian

measure on L2(O) is uniquely determined by its reproducing kernel Hilbert space (see [3,

Corollary 3.2.6]), we have completed the proof of claim 1.

Proof of claim 2. We have for any x in Hα/2 and t in [0, 1]:

‖S(t)x‖α/2 = |(A2+aI)
α
2 S(t)x|L2(O) = |S(t)(A2+aI)

α
2 x|L2(O) ≤ sup

r∈[0,1]
‖S(r)‖L(L2(O),L2(O))‖x‖α/2.

This completes the proof of claim 2.

Remark Suppose in this example that b is a decreasing polynomial function, say b(s) :=

−s3 for all s ∈ R. Da Prato [9, Section 3.2] has proved existence and uniqueness of
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mild solutions for systems with dissipative nonlinear drift; his approach is well suited to

reaction-diffusion equations with decreasing polynomial reaction terms and additive noise.

Taking Da Prato’s approach one can reformulate our example with the Banach space L6(O)

replacing C0(O) everywhere. The domain of the function F becomes the subspace L6(O)

of H = L2(O). If L(W (1))(L6(O)) = 1 and ξ ∈ L18(O) then the exponential small time

asymptotics of the unique process (V (t) : (Ω,F , P ) → L6(O))t∈[0,1] whose trajectories are

continuous in H and bounded in L6(O) and which satisfies the equation

V (t) = S(t)ξ +W−A2(t) +

∫ t

0
S(t− s)F (V (s)) ds ∀t ∈ [0, 1],

is described by a large deviation principle inC([0, 1];H) with rate function Iξ : C([0, 1];H)→
[0,∞] defined by equation (4.34).

The advantage of working in Lp spaces which are of Banach type 2 is that [22, Theorem

5.5] takes care of convergence of Gaussian random variables without condition (B2)(2).
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Chapter 5

Small time asymptotics for a

linear equation with additive

fractional Brownian motion noise

5.1 Introduction

In this chapter we find the small time asymptotics of the solution of a stochastic equation

having only linear drift and additive fractional Brownian motion noise in a Hilbert space.

This digression from our study of equations with Wiener process noise is to show that

the method we used for the linear equation in the previous chapter also works when there

is additive fractional Brownian motion noise. We again use the factorization method (as

in the proof of [10, Theorem 5.12]) to show that trajectories of stochastic convolution

processes converge to those of the noise process. This is Lemma 5.5, which corresponds

to Proposition 4.4 in the previous chapter. Lemma 5.6 is proved in the same way as

Lemma 4.9 in the previous chapter. Our main result in this chapter is the large deviation

principle in Theorem 5.1.

5.2 Background

Let (U, 〈·, ·〉U , | · |U ) and (V, 〈·, ·〉V , | · |V ) be separable Hilbert spaces. Let Q be a positive

definite symmetric trace class linear operator on U and let ν be the symmetric Gaussian

measure on U with covariance operator Q. Let

(Uν := Q
1
2 (U), 〈·, ·〉Uν := 〈Q− 1

2 ·, Q− 1
2 ·〉U , | · |Uν := |Q− 1

2 · |U )
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be the reproducing kernel Hilbert space of ν. Fix H ∈ (1
2 , 1). Let (BH

Q (t) : (Ω,F , P ) →
U)t≥0 be a fractional Q-Brownian motion with Hurst parameter H; this means that

(BH
Q (t))t≥0 is a U -valued Gaussian process and

1. E[BH
Q (t)] = 0 for all t ≥ 0;

2. for all non-negative real numbers s and t and for all x and y ∈ U we have

E
[
〈BH

Q (t), x〉U 〈BH
Q (s), y〉U

]
=

1

2
(t2H + s2H − |t− s|2H)〈Qx, y〉U ;

3. the sample paths t �→ BH
Q (t)(ω) are continuous U -valued functions for P a.e. ω ∈ Ω.

Let {e1, e2, . . .} be an orthonormal basis of Uν and let ((βH
n (t) : (Ω,F , P ) → R)t≥0) be a

sequence of independent real-valued fractional Brownian motions with Hurst parameter

H. Duncan, Maslowski and Pasik-Duncan [12, Proposition 2.1] showed that we can define

BH
Q (t) :=

∞∑
j=1

βH
j (t)ej for all t ≥ 0,

where the series converges in L2(Ω,F , P ;U). Duncan, Maslowski and Pasik-Duncan also

defined the stochastic integral of a deterministic vector-valued function with respect to

a fractional Brownian motion in [12]. This is done in three stages. Firstly define the

stochastic integral of a V -valued step function with respect to a real-valued fractional

Brownian motion (βH(t))t≥0 with Hurst parameter H: if T ∈ (0,∞) and n ∈ N and

t0 = 0 < t1 < t2 < · · · < tn ≤ T and v1, . . . , vn ∈ V then∫ T

0

n∑
j=1

1[tj−1,tj)vj dβ
H :=

n∑
j=1

(βH(tj)− βH(tj−1))vj . (5.1)

Since (βH(t0), . . . , β
H(tn)) has symmetric Gaussian distribution on Rn+1, the random

variable on the right hand side of equation (5.1) has symmetric Gaussian distribution in

V . Let p > 1
H . The stochastic integral defined in equation (5.1) gives a bounded linear

operator which maps the dense subspace of Lp([0, T ];V ) consisting of step functions into

L2(Ω,F , P ;V ) and the domain of this operator is then extended to all of Lp([0, T ];V ): if

f ∈ Lp([0, T ];V ) and the sequence of step functions (fn) converges to f in Lp([0, T ];V )

then ∫ T

0
f dβH := lim

n→∞

∫ T

0
fn dβ

H in L2(Ω,F , P ;V );
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as the limit of a sequence of symmetric Gaussian random variables in V ,
∫ T
0 f dβH is itself

a symmetric Gaussian random variable in V and we also have

E

[∣∣∣∣∫ T

0
f dβH

∣∣∣∣2
V

]
=

∫ T

0

∫ T

0
〈f(s), f(t)〉V φ(t− s) ds dt (5.2)

where

φ(r) = H(2H − 1)|r|2H−2 for all r ∈ R.

Finally the stochastic integral of a Hilbert-Schmidt operator-valued function with respect

to (BH
Q (t))t≥0 is defined using the definition of the stochastic integral of f ∈ Lp([0, T ];V )

with respect to (βH(t))t≥0. Let (L2(Uν , V ), ‖ · ‖L2(Uν ,V )) denote the Hilbert-Schmidt op-

erators mapping Uν into V . For G ∈ Lp([0, T ];L2(Uν , V )), that is, G : [0, T ] → L2(Uν , V )

is Borel measurable and
∫ T
0 ‖G(t)‖p

L2(Uν ,V ) dt <∞, define

∫ T

0
GdBH

Q :=
∞∑

n=1

∫ T

0
G(s)en dβ

H
n (s), (5.3)

where the series on the right hand side converges in L2(Ω,F , P ;V ). Equation (5.3) defines

a bounded linear operator
∫ T
0 ·dBH

Q mapping Lp([0, T ];L2(Uν , V )) into L2(Ω,F , P ;V ) and∫ T
0 GdBH

Q has a symmetric Gaussian distribution in V and we have

E

[∣∣∣∣∫ T

0
GdBH

Q

∣∣∣∣2
V

]
≤

∫ T

0

∫ T

0
‖G(u)‖L2(Uν ,V )‖G(v)‖L2(Uν ,V ) φ(u− v) du dv

≤ H(2H − 1)

(
2(p− 1)

Hp− 1

) 2p−2
p

T
2(Hp−1)

p

(∫ T

0
‖G(s)‖p

L2(Uν ,V ) ds

) 2
p

(5.4)

if 1
H < p ≤ 2.

5.3 The small time asymptotics via a large deviation prin-

ciple

Let A : D(A) ⊂ V → V be the infinitesimal generator of a strongly continuous semigroup

of bounded linear operators (S(t))t≥0 on V . Let Φ be a bounded linear operator mapping

U into V and let

i : Uν ↪→ U
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be the Hilbert-Schmidt embedding of Uν into U . We define the mild solution of the

stochastic initial value problem:

dX = AX dt+ Φ dBH
Q

X(0) = x,

where x ∈ V , to be

X(t) = S(t)x+

∫ t

0
S(t− r)Φi dBH

Q (r) (5.5)

for t ≥ 0, where the stochastic integral on the right hand side of equation (5.5) is defined

as in equation (5.3). We remark that for each t ∈ (0,∞) the function

r ∈ [0, t] �→ S(t− r)Φi ∈ L2(Uν , V )

is continuous and hence the stochastic integral
∫ t
0 S(t− r)Φi dBH

Q (r) is well defined. Dun-

can, Maslowski and Pasik-Duncan [12, Proposition 3.2] have shown that there is a version

of (X(t))t≥0 with continuous sample paths P a.e.: specifically, for any α ∈ (0, 1
2) take∫ t

0
S(t− u)Φi dBH

Q (u) =
sin(πα)

π

∫ t

0
(t− s)α−1S(t− s)Y (s) ds for all t ≥ 0, (5.6)

where

Y (s) =

∫ s

0
(s− u)−αS(s− u)Φi dBH

Q (u) for all s ≥ 0. (5.7)

For each ε ∈ (0, 1] and t ∈ [0, 1] we have

X(εt) = S(εt)x+

∫ εt

0
S(εt− s)Φi dBH

Q (s)

= S(εt)x+
∞∑

j=1

∫ εt

0
S(εt− s)Φiej dβH

j (s)

= S(εt)x+

∞∑
j=1

εH
∫ t

0
S(ε(t− s))Φiej dβH,ε

j (s)

= S(εt)x+ εH
∫ t

0
S(ε(t− s))Φi dBH,ε

Q (s), (5.8)
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where ((βH,ε
j (t))t≥0) is a sequence of independent fractional Brownian motions with Hurst

parameter H defined by

βH,ε
j (t) := ε−HβH

j (εt) for all t ≥ 0

and

BH,ε
Q (t) :=

∞∑
j=1

βH,ε
j (t)ej for all t ≥ 0.

Notice from equation (5.8) and Lemma 5.7(2) in the appendix that the distribution of the

random variable

(ω ∈ Ω �→ (t �→ X(εt)(ω)))

in C([0, 1];V ) is the same as the distribution of the continuous trajectories of

Xε(t) := S(εt)x+ εH
∫ t

0
S(ε(t− s))Φi dBH

Q (s) , t ∈ [0, 1].

The process (Xε(t))t∈[0,1] is the mild solution of the initial value problem

dXε = εAXε dt+ εHΦ dBH
Q , t ∈ [0, 1],

Xε(0) = x.

For each ε ∈ (0, 1] we set

WH
εA(t) :=

∫ t

0
S(ε(t− s))Φi dBH

Q (s) for all t ∈ [0, 1]

and assume that this is a continuous version of the process. We also set

WH
0 (t) := ΦBH

Q (t) for all t ∈ [0, 1].

In the following we denote by WH
εA, WH

0 and Xε the C([0, 1];V )-valued random variables

corresponding to the continuous processes (WH
εA(t))t∈[0,1], (WH

0 (t))t∈[0,1] and (Xε(t))t∈[0,1],

respectively. We also abuse notation and denote the constant function

t ∈ [0, 1] �→ x

by x.
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Define the function KH : [0, 1]× [0, 1]→ R by

KH(t, s) :=

(
H(2H − 1)

β(2− 2H,H − 1
2)

) 1
2

1(0,∞)(s)s
1
2
−H 1(0,∞)(t− s)

∫ t

s
(u− s)H− 3

2uH− 1
2 du

(5.9)

for all (t, s) ∈ [0, 1] × [0, 1], where β denotes the beta function. Define the function

I : C([0, 1];V ) → [0,∞] by

I(y) :=
1

2
inf

{∫ 1

0
|f(t)|2Uν

dt : f ∈ L2([0, 1];Uν) and y(t) =

∫ t

0
KH(t, s)Φif(s) ds ∀t ∈ [0, 1]

}
,

(5.10)

taking the infimum of the empty set to be ∞.

We now state our main result in this chapter.

Theorem 5.1 For any closed set F ⊂ C([0, 1];V ) we have

lim
r→0

sup
ε<r

ε2H logP{Xε ∈ F} ≤ − inf
y∈F

I(y − x) (5.11)

and for any open set G ⊂ C([0, 1];V ) we have

lim
r→0

inf
ε<r

ε2H logP{Xε ∈ G} ≥ − inf
y∈G

I(y − x). (5.12)

Remark If we substitute δ = ε2H in inequalities (5.11) and (5.12) then we get the usual

form of a large deviation principle for {Xδ
1

2H : δ ∈ (0, 1]}:

lim
r→0

sup
δ<r

δ logP{Xδ
1

2H ∈ F} ≤ − inf
y∈F

I(y − x)

for all closed sets F ⊂ C([0, 1];V ) and

lim
r→0

inf
δ<r

δ logP{Xδ
1

2H ∈ G} ≥ − inf
y∈G

I(y − x)

for all open sets G ⊂ C([0, 1];V ).

We prove Theorem 5.1 using several lemmas. The following lemma and its corollary are

the basic results underlying Theorem 5.1.

Lemma 5.2 The distribution

μ := L(WH
0 : (Ω,F , P ) → C([0, 1];V ))
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is symmetric Gaussian and its reproducing kernel (Hμ, | · |Hμ) is

Hμ =

{
t ∈ [0, 1] �→

∫ t

0
KH(t, s)Φif(s) ds : f ∈ L2([0, 1];Uν)

}
,

where KH : [0, 1]× [0, 1]→ R is defined in equation (5.9) and for g ∈ Hμ we have

|g|2Hμ
= inf

{∫ 1

0
|f(t)|2Uν

dt : f ∈ L2([0, 1];Uν) and g(t) =

∫ t

0
KH(t, s)Φif(s) ds ∀t ∈ [0, 1]

}
.

Proof. There are three steps in the proof:

1. show that (Hμ, | · |Hμ) is a Hilbert space;

2. show that the embedding j : (Hμ, | · |Hμ) → C([0, 1];V ) is continuous;

3. show that for every continuous linear functional l on C([0, 1];V ) we have

L(l ◦WH
0 : (Ω,F , P ) → R) = N (0, ‖l ◦ j‖2H∗μ),

that is, the symmetric Gaussian distribution with variance the square of the operator

norm of l ◦ j.

Step 1.

Define F : [0, 1]3 → R by

F (u, s, t) := 1(0,∞)(s) s
1
2
−H 1(0,∞)(u− s) 1(0,∞)(t− u) (u− s)H− 3

2uH− 1
2

for all (u, s, t) ∈ [0, 1]3. The function F is measurable and non-negative and

KH(t, s) =

(
H(2H − 1)

β(2− 2H,H − 1
2)

) 1
2 ∫ 1

0
F (u, s, t) du ∀(t, s) ∈ [0, 1]2

is measurable by Tonelli’s theorem. Set

cH =

(
H(2H − 1)

β(2− 2H,H − 1
2)

) 1
2

.

We have

|KH(t, s)| ≤ cH s
1
2
−H 1(0,∞)(s)

(t− s)H− 1
2

H − 1
2

1(0,∞)(t− s) ∀(t, s) ∈ [0, 1]2. (5.13)
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In particular, KH(t, ·) ∈ L2([0, 1]; R) for each t ∈ [0, 1].

Let f ∈ L2([0, 1];V ). We shall show that the function

g(t) :=

∫ t

0
KH(t, s)f(s) ds for all t ∈ [0, 1] (5.14)

belongs to C([0, 1];V ). Let 0 ≤ t1 < t2 ≤ 1. We have

|g(t2)−g(t1)|V ≤
∣∣∣∣∫ t1

0
(KH(t2, s)−KH(t1, s))f(s) ds

∣∣∣∣
V

+

∣∣∣∣∫ t2

t1

KH(t2, s)f(s) ds

∣∣∣∣
V

. (5.15)

For s ∈ (0, t1) we have

KH(t2, s)−KH(t1, s) = cHs
1
2
−H

∫ t2

t1

(u− s)H− 3
2uH− 1

2 du

≤ cHs
1
2
−H 1

H − 1
2

[
(t2 − s)H− 1

2 − (t1 − s)H− 1
2

]
and the factor in brackets on the right hand side can be made as small as we please,

uniformly in s, by taking t1 and t2 sufficiently close together. This observation and in-

equality (5.13) imply that the terms on the right hand side of inequality (5.15) go to zero

as t2 − t1 → 0. Thus g ∈ C([0, 1];V ).

We can now define a bounded linear operator T : L2([0, 1];Uν) → C([0, 1];V ) by

(Tf)(t) :=

∫ t

0
KH(t, s) Φif(s) ds for all t ∈ [0, 1] (5.16)

and for all f ∈ L2([0, 1];Uν). Let N be the kernel of T and let N⊥ be the orthogonal

complement of N . By the projection theorem (for example, see [26, Theorem II.3]), each

element of L2([0, 1];Uν) can be written uniquely as the sum of an element of N and an

element of N⊥. Thus we have

T (N⊥) = T (L2([0, 1];Uν))

and the function T̃ : N⊥ → T (L2([0, 1];Uν)) defined by

T̃ v := Tv ∀v ∈ N⊥
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is onto as well as one to one. For each v ∈ N⊥ we have

|v|L2([0,1];Uν) = inf{|u|L2([0,1];Uν) : u ∈ L2([0, 1];Uν) and Tu = Tv}.

Define

Hμ := T (L2([0, 1];Uν)) and

|f |Hμ := |(T̃ )−1f |L2([0,1];Uν) for all f ∈ Hμ.

Then T̃ is an isometric isomorphism from the closed subspace N⊥ of L2([0, 1];Uν) onto

Hμ. Thus Hμ is itself a Hilbert space.

Step 2.

We now prove that the embedding j : Hμ → C([0, 1];V ) is continuous. Let f ∈ Hμ. For

g = (T̃ )−1f we have

|f(t)|V =

∣∣∣∣∫ t

0
KH(t, s)Φig(s) ds

∣∣∣∣
V

for all t ∈ [0, 1]

≤ ‖Φi‖L(Uν ,V )
cH

(H − 1
2)(2− 2H)

1
2

|g|L2([0,1];Uν).

Thus

sup
t∈[0,1]

|f(t)|V ≤ ‖Φi‖L(Uν ,H)
cH

(H − 1
2)(2− 2H)

1
2

|f |Hμ ∀f ∈ Hμ.

Step 3.

For each t ∈ [0, 1] and v ∈ V let δt ⊗ v be the continuous linear functional on C([0, 1];V )

defined by

(δt ⊗ v)f = 〈v, f(t)〉V for all f ∈ C([0, 1];V ).

By [10, Proposition 2.9] it suffices to show that

L
(
l ◦WH

0

)
= N (0, ‖l ◦ j‖2H∗μ)

for all l ∈ M := {∑n
j=1 δtj ⊗ vj : n ∈ N and 0 ≤ t1 < · · · < tn ≤ 1 and v1, . . . , vn ∈ V },

since this subspace of the continuous linear functionals on C([0, 1];V ) separates points

and generates the Borel σ-algebra of C([0, 1];V ).
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Let n ∈ N and 0 ≤ t1 < · · · < tn ≤ 1 and v1, . . . , vn ∈ V . The distribution of

n∑
j=1

(δtj ⊗ vj)(W
H
0 ) =

n∑
j=1

〈vj ,W
H
0 (tj)〉V =

n∑
j=1

〈Φ∗vj , B
H
Q (tj)〉U

is symmetric Gaussian since (BH
Q (t))t∈[0,1] is a Gaussian process and its variance is

E

⎡⎣⎛⎝ n∑
j=1

〈Φ∗vj , B
H
Q (tj)〉U

⎞⎠2⎤⎦ =

n∑
j=1

n∑
i=1

E
[
〈Φ∗vj , B

H
Q (tj)〉U 〈Φ∗vi, B

H
Q (ti)〉U

]
=

n∑
j=1

n∑
i=1

1

2
(t2H

j + t2H
i − |tj − ti|2H)〈QΦ∗vj , Φ∗vi〉U .(5.17)

Each element of Hμ can be written as

t ∈ [0, 1] �→
∫ t

0
KH(t, s)Φif(s) ds,

where f ∈ N⊥ and we have

n∑
k=1

(δtk ⊗ vk)j

(
t ∈ [0, 1] �→

∫ t

0
KH(t, s)Φif(s) ds

)
=

n∑
k=1

〈vk,

∫ tk

0
KH(tk, s)Φif(s) ds〉V

=
n∑

k=1

∫ tk

0
KH(tk, s)〈vk, Φif(s)〉V ds

=

∫ 1

0
〈

n∑
k=1

KH(tk, s)QΦ∗vk, f(s)〉Uν ds.

Notice that
∑n

k=1KH(tk, ·)QΦ∗vk ∈ N⊥. Thus∥∥∥∥∥
n∑

k=1

(δtk ⊗ vk) ◦ j
∥∥∥∥∥

2

H∗μ

=

∣∣∣∣∣
n∑

k=1

KH(tk, ·)QΦ∗vk

∣∣∣∣∣
2

L2([0,1];Uν)

=
n∑

k=1

n∑
i=1

〈QΦ∗vk, QΦ∗vi〉Uν

∫ 1

0
KH(tk, s)KH(ti, s) ds

=

n∑
k=1

n∑
i=1

〈QΦ∗vk,Φ
∗vi〉U

1

2
(t2H

k + t2H
i − |tk − ti|2H), (5.18)

where the last line follows from [2, equation (6)]. Since the right hand sides of equations

(5.17) and (5.18) are the same this completes the proof of Lemma 5.2.
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From [10, Propositions 12.4 and 12.6] we have the following corollary.

Corollary 5.3 The family of C([0, 1];V )-valued random variables {δ 1
2WH

0 : δ ∈ (0, 1]}
satisfies a large deviation principle with rate function I : C([0, 1];V ) → [0,∞] defined by

I(g) =

{
1
2 |g|2Hμ

if g ∈ Hμ,

∞ if g ∈ C([0, 1];V )\Hμ.
(5.19)

From Corollary 5.3 we have immediately that {x + δ
1
2WH

0 : δ ∈ (0, 1]} satisfies a large

deviation principle with rate function I(· − x).

Our goal in most of the remainder of this chapter is to prove the following lemma, which

is crucial in our proof of Theorem 5.1.

Lemma 5.4 Let r > 0. We have

lim
ε→0

ε2H log P{εH sup
t∈[0,1]

|WH
εA(t)−WH

0 (t)|V ≥ r} = −∞. (5.20)

Proof of Theorem 5.1. Lemma 5.4 is equivalent (just substitute δ = ε2H in equation

(5.20)) to saying that the families of random variables

{x+ δ
1
2WH

0 : δ ∈ (0, 1]} and {x+ δ
1
2WH

δ
1

2H A
: δ ∈ (0, 1]}

are exponentially equivalent; hence both families satisfy the same large deviation principle

(see for example [18, Lemma 27.13]). Since S(t)x→ x as t→ 0 we have that

{x+ δ
1
2WH

δ
1

2H A
: δ ∈ (0, 1]} and {S(δ

1
2H ·)x+ δ

1
2WH

δ
1

2H A
: δ ∈ (0, 1]}

are exponentially equivalent. Thus Lemma 5.4 implies that {S(δ
1

2H ·)x + δ
1
2WH

δ
1

2H A
: δ ∈

(0, 1]} satisfies a large deviation principle with rate function I(·−x), which completes the

proof of Theorem 5.1.

We shall need two other lemmas in order to prove Lemma 5.4.

Lemma 5.5 If m ∈ {2, 3, 4, . . .} then

lim
ε→0

E

[
sup

t∈[0,1]
|WH

0 (t)−WH
εA(t)|2m

V

]
= 0.
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Remark Using this lemma and Hölder’s inequality we get

E

[
sup

t∈[0,1]
|WH

0 (t)−WH
εA(t)|2V

]
≤

(
E

[
sup

t∈[0,1]
|WH

0 (t)−WH
εA(t)|2m

V

]) 1
m

→ 0 as ε→ 0.

Proof. Let m be a natural number greater than 1. Take α ∈ ( 1
2m ,

1
2). For 0 ≤ ε ≤ 1

define

Y ε(s) :=

∫ s

0
(s− σ)−αS(ε(s− σ))Φi dBH

Q (σ) for all s ∈ [0, 1].

By Lemma 5.8 in the appendix, the process (Y ε(s))s∈[0,1] has a measurable version whose

sample paths are in L2m([0, 1];V ) almost surely.

If f ∈ L2m([0, 1];V ) then, as shown in [10, Theorem 5.9], the V -valued function defined

by

t �→
∫ t

0
S(ε(t− σ))(t− σ)α−1f(σ) dσ for all t ∈ [0, 1]

is continuous. A continuous version of (WH
εA(t))t∈[0,1] is:

WH
εA(t) =

sin(πα)

π

∫ t

0
S(ε(t− s))(t− s)α−1Y ε(s) ds for all t ∈ [0, 1].

For 0 < ε ≤ 1 we have

WH
0 (t)−WH

εA(t) =
sin(πα)

π

∫ t

0
(IV − S(ε(t− s)))(t− s)α−1Y 0(s) ds+

sin(πα)

π

∫ t

0
S(ε(t− s))(t− s)α−1(Y 0(s)− Y ε(s)) ds (5.21)

=: Kε(t) + Jε(t) for all t ∈ [0, 1],

where Kε(t) and Jε(t) are defined to be the respective terms on the right hand side of

equation (5.21). Thus

sup
t∈[0,1]

|WH
0 (t)−WH

εA(t)|2m
V ≤ 22m

(
sup

t∈[0,1]
|Kε(t)|2m

V + sup
t∈[0,1]

|Jε(t)|2m
V

)
.

We will show that

lim
ε→0

E

[
sup

t∈[0,1]
|Kε(t)|2m

V

]
= 0
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and

lim
ε→0

E

[
sup

t∈[0,1]
|Jε(t)|2m

V

]
= 0,

from which it will follow that limε→0E[supt∈[0,1] |WH
0 (t)−WH

εA(t)|2m
V ] = 0.

Step 1.

We show that

lim
ε→0

E

[
sup

t∈[0,1]
|Kε(t)|2m

V

]
= 0. (5.22)

For each 0 < ε ≤ 1 we have, by Hölder’s inequality:

sup
t∈[0,1]

|Kε(t)|2m
V ≤

(
sin(πα)

π

)2m

sup
r∈[0,1]

‖IV−S(r)‖2m
L(V,V )

(∫ 1

0
s(α−1) 2m

2m−1 ds

)2m−1 ∫ 1

0
|Y 0(s)|2m

V ds

and the right hand side is an integrable dominating function, as shown in the proof of

Lemma 5.8. If supt∈[0,1] |Kε(t)|V → 0 as ε → 0 almost surely, then equation (5.22)

will follow by Lebesgue’s dominated convergence theorem. Let ω ∈ Ω be such that

the sample path s ∈ [0, 1] �→ Y 0(s)(ω) belongs to L2m([0, 1];V ); we will show that

supt∈[0,1] |Kε(t)(ω)|V → 0 as ε→ 0.

Let the sequence (εn) ⊂ (0, 1] converge to 0 as n goes to infinity. Firstly note that for each

fixed t ∈ [0, 1], Kεn(t)(ω) → 0 as n→∞:

|Kεn(t)(ω)|V ≤
(

sin(πα)

π

)(∫ 1

0
s(α−1) 2m

2m−1 ds

) 2m−1
2m

(∫ t

0
|(IV − S(εn(t− s)))Y 0(s)(ω)|2m

V ds

) 1
2m

→ 0 as n→∞ by Lebesgue’s dominated convergence theorem.

Next we claim that the family of continuous functions

t �→ Kε(t)(ω) , 0 < ε ≤ 1,

is uniformly equicontinuous. For brevity, set

y(s) = Y 0(s)(ω) for all s ∈ [0, 1] and

zε(s) =
π

sin(πα)
Kε(s)(ω) for all s ∈ [0, 1] and 0 < ε ≤ 1.

By definition:

zε(t) =

∫ t

0
(IV − S(ε(t− s)))(t− s)α−1y(s) ds for all t ∈ [0, 1] and 0 < ε ≤ 1.
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If 0 < ε ≤ 1 and 0 ≤ t < u ≤ 1 then

|zε(u)− zε(t)|V

≤
∣∣∣∣∫ u−t

0
(IV − S(ε(u− s)))(u− s)α−1y(s) ds

∣∣∣∣
V

+

∣∣∣∣∫ u

u−t
(IV − S(ε(u− s)))(u− s)α−1y(s) ds−

∫ t

0
(IV − S(ε(t− s)))(t− s)α−1y(s) ds

∣∣∣∣
V

=

∣∣∣∣∫ u−t

0
(IV − S(ε(u− s)))(u− s)α−1y(s) ds

∣∣∣∣
V

+

∣∣∣∣∫ t

0
(IV − S(ε(t− s)))(t− s)α−1(y(s+ u− t)− y(s)) ds

∣∣∣∣
V

≤ sup
r∈[0,1]

‖IV − S(r)‖L(V,V )

(∫ 1

0
s(α−1) 2m

2m−1 ds

) 2m−1
2m

×

⎡⎣(∫ u−t

0
|y(s)|2m

V ds

) 1
2m

+

(∫ 1−(u−t)

0
|y(s+ u− t)− y(s)|2m

V ds

) 1
2m

⎤⎦ . (5.23)

One can show that

(∫ 1−δ

0
|y(s+ δ)− y(s)|2m

V ds

) 1
2m

→ 0 as δ ↘ 0

so inequality (5.23) establishes that {zε : 0 < ε ≤ 1} is uniformly equicontinuous.

We know that zεn(t) → 0 as n → ∞ for each t in [0, 1]. Uniform equicontinuity of the

sequence (zεn) implies that there is uniform convergence to 0. This completes the proof

of equation (5.22).

Step 2.

We show that

lim
ε→0

E

[
sup

t∈[0,1]
|Jε(t)|2m

V

]
= 0.

We have

sup
t∈[0,1]

|Jε(t)|2m
V ≤

(
sin(πα)

π

)2m
(

sup
r∈[0,1]

‖S(r)‖L(V,V )

)2m(∫ 1

0
s(α−1) 2m

2m−1 ds

)2m−1

×
∫ 1

0
|Y 0(s)− Y ε(s)|2m

V ds. (5.24)

For each s in (0, 1] the random variable Y 0(s) − Y ε(s) has a symmetric Gaussian distri-
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bution so that for some constant Cm ∈ (0,∞) we have

E
[
|Y 0(s)− Y ε(s)|2m

V

]
≤ Cm

(
E
[
|Y 0(s)− Y ε(s)|2V

])m
(5.25)

for all s ∈ (0, 1]. We have for each s in [0, 1]

Y 0(s)− Y ε(s) =

∫ s

0
(s− σ)−α(IV − S(ε(s− σ)))Φi dBH

Q (σ)

and thus, by inequality (5.4),

E
[
|Y 0(s)− Y ε(s)|2V

]
≤ 2H sup

r∈[0,1]
‖(IV − S(εr))Φi‖2L2(Uν ,V )

∫ 1

0
σ−2α dσ

→ 0 as ε→ 0 . (5.26)

Thus from inequalities (5.24) and (5.25) and (5.26):

E

[
sup

t∈[0,1]
|Jε(t)|2m

V

]
≤

(
sin(πα)

π
sup

r∈[0,1]
‖S(r)‖L(V,V )

)2m(∫ 1

0
s(α−1) 2m

2m−1 ds

)2m−1

×
∫ 1

0
Cm

(
E
[
|Y 0(s)− Y ε(s)|2V

])m
ds

→ 0 as ε→ 0.

This completes the proof of Lemma 5.5.

It will be convenient to denote the supremum norm in C([0, 1];V ) by | · |∞:

|f |∞ := sup
t∈[0,1]

|f(t)|V for all f ∈ C([0, 1];V ).

Set

δ2ε = E[|WH
εA −WH

0 |2∞] for all ε ∈ (0, 1].

Lemma 5.6 There is a positive real number c such that

sup
0<ε≤1

E

[
exp

(
c
|WH

εA −WH
0 |2∞

δ2ε

)]
<∞.

Proof. By Lemma 5.7, for each ε ∈ (0, 1] the distribution νε := L
(

1
δε

(WH
εA −WH

0 )
)

is a

symmetric Gaussian measure on C([0, 1];V ). The rest of the proof is the same as that of
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Lemma 4.9 in chapter 4, but with νε in place of με everywhere. This completes the proof

of Lemma 5.6.

We now prove Lemma 5.4.

Proof of Lemma 5.4. Let r > 0. For any positive real number c we have

exp

(
c

r2

ε2Hδ2ε

)
1{|εH(W H

εA−W H
0 )|∞≥r} ≤ exp

(
c
|WH

εA −WH
0 |2∞

δ2ε

)
for all ε ∈ (0, 1]. (5.27)

Choose c, as in Lemma 5.6, such that

C := sup
0<ε≤1

E

[
exp

(
c
|WH

εA −WH
0 |2∞

δ2ε

)]
<∞.

Then integrating both sides of equation (5.27) gives:

P{|εH(WH
εA −WH

0 )|∞ ≥ r} ≤ exp

(
−c r2

ε2Hδ2ε

)
C for all ε ∈ (0, 1].

Thus

ε2H logP{|εH(WH
εA −WH

0 )|∞ ≥ r} ≤ −cr
2

δ2ε
+ ε2H logC

→ −∞ as ε→ 0

since Lemma 5.5 implies that δ2ε → 0 as ε→ 0. This completes the proof of Lemma 5.4.

5.4 Appendix

In this section we have two lemmas whose proofs are technical but routine.

Let

Gt : ([0, 1],B[0,1]) → (L2(Uν , V ),BL2(Uν ,V )) , t ∈ [0, 1],

be a family of measurable functions such that∫ 1

0
‖Gt(s)‖2L2(Uν ,V ) ds <∞ for each t ∈ [0, 1]

and the process (
∫ 1
0 Gt(s) dB

H
Q (s))t∈[0,1] has continuous trajectories in V . In particular we
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have in mind continuous stochastic convolution processes, where

Gt(·) = 1[0,t](·)S(ε(t− ·))Φi for some ε ∈ [0, 1].

Lemma 5.7

1. The distribution of the random variable in C([0, 1];V )

G(ω) :=

(
t ∈ [0, 1] �→

∫ 1

0
Gt(s) dB

H
Q (s)(ω)

)
, ω ∈ Ω,

is symmetric Gaussian.

2. If (B̃H
Q (t))t≥0 is another fractional Q-Brownian motion with Hurst parameter H and

(
∫ 1
0 Gt(s) dB̃

H
Q (s))t∈[0,1] has continuous trajectories in V then the random variable

in C([0, 1];V )

G̃(ω) :=

(
t ∈ [0, 1] �→

∫ 1

0
Gt(s) dB̃

H
Q (s)(ω)

)
, ω ∈ Ω,

has the same distribution as G.

Proof. In section 5.2 we saw that for (βH(t))t≥0 a real-valued fractional Brownian motion

with Hurst parameter H and arbitrary f ∈ L2([0, 1]; R) the distribution of
∫ 1
0 f(s) dβH(s)

is symmetric Gaussian, with variance
∫ 1
0

∫ 1
0 f(s)f(t)φ(t− s) ds dt given by equation (5.2).

Let {Gt : [0, 1] → L2(Uν , V )}t∈[0,1] be a family of functions as in the statement preceding

the lemma. For each t ∈ [0, 1] and v ∈ V we define the element of C([0, 1];V )∗:

(δt ⊗ v)f := 〈f(t), v〉V ∀f ∈ C([0, 1];V ).

The subspace of C([0, 1];V )∗

M :=

⎧⎨⎩
n∑

j=1

δtj ⊗ vj : n ∈ N and 0 ≤ t1 < · · · < tn ≤ 1 and v1, . . . , vn ∈ V

⎫⎬⎭
generates BC([0,1];V ) (for example, see the proof of [10, Proposition 1.3]) and it also sepa-

rates points of C([0, 1];V ). We will show that for an arbitrary element
∑n

j=1 δtj ⊗ vj of

M the distribution of

n∑
j=1

(δtj ⊗ vj)G =
n∑

j=1

〈
∫ 1

0
Gtj (s) dB

H
Q (s), vj〉V
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is symmetric Gaussian and we will compute its variance. We have

n∑
j=1

〈
∫ 1

0
Gtj (s) dB

H
Q (s), vj〉V

=
n∑

j=1

〈
∞∑

k=1

∫ 1

0
Gtj (s)ek dβ

H
k (s), vj〉V

=
∞∑

k=1

n∑
j=1

〈
∫ 1

0
Gtj (s)ek dβ

H
k (s), vj〉V (the series converges in L2(Ω,F , P ; R))

=

∞∑
k=1

∫ 1

0
〈ek,

n∑
j=1

G∗tj (s)vj〉Uν dβ
H
k (s).

In the last line the summands are independent random variables. The kth summand has

symmetric Gaussian distribution on R with variance∫ 1

0

∫ 1

0
〈ek,

n∑
j=1

G∗tj (s)vj〉Uν 〈ek,
n∑

j=1

G∗tj (t)vj〉Uνφ(t− s) ds dt.

Thus
∑n

j=1〈
∫ 1
0 Gtj (s) dB

H
Q (s), vj〉V has symmetric Gaussian distribution with variance

∫ 1

0

∫ 1

0

∞∑
k=1

〈ek,
n∑

j=1

G∗tj (s)vj〉Uν 〈ek,
n∑

j=1

G∗tj (t)vj〉Uνφ(t− s) ds dt

=

∫ 1

0

∫ 1

0
〈

n∑
j=1

G∗tj (s)vj ,
n∑

j=1

G∗tj (t)vj〉Uνφ(t− s) ds dt. (5.28)

Since
∑n

j=1 δtj⊗vj is an arbitrary element ofM, by [10, Proposition 2.9(i)] the distribution

of G in C([0, 1];V ) is symmetric Gaussian. Notice that the expression on the right hand

side of equation (5.28) depends on the fractional Brownian motion integrator only through

the values of ν and H. Thus the characteristic functions of G and G̃ agree onM; it follows

that the distributions of G and G̃ on C([0, 1];V ) are equal. This completes the proof of

Lemma 5.7.

Let m ∈ {2, 3, 4, . . .}. Let α ∈ ( 1
2m ,

1
2). Let ε ∈ [0, 1].

Define

Y ε(s) :=

∫ s

0
(s− σ)−αS(ε(s− σ))Φi dBH

Q (σ) for all s ∈ [0, 1].

Lemma 5.8 The map s ∈ [0, 1] �→ Y ε(s) is continuous in L2(Ω,F , P ;V ). The process

(Y ε(s))s∈[0,1] has a measurable version whose sample paths are in L2m([0, 1];V ) P a.e..
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Proof. Let 0 ≤ s < t ≤ 1. We have

|Y ε(t)− Y ε(s)|V =

∣∣∣∣∫ t

0
(t− σ)−αS(ε(t− σ))Φi dBH

Q (σ)

−
∫ s

0
(s− σ)−αS(ε(s− σ))Φi dBH

Q (σ)

∣∣∣∣
V

≤
∣∣∣∣∫ t

0
1[0,s)(σ)(t− σ)−α(S(ε(t− σ))− S(ε(s− σ)))Φi dBH

Q (σ)

∣∣∣∣
V

+

∣∣∣∣∫ t

0
1[0,s)(σ)((t− σ)−α − (s− σ)−α)S(ε(s− σ))Φi dBH

Q (σ)

∣∣∣∣
V

+

∣∣∣∣∫ t

0
1[s,t)(σ)(t− σ)−αS(ε(t− σ))Φi dBH

Q (σ)

∣∣∣∣
V

(5.29)

= |T1|V + |T2|V + |T3|V ,

where T1, T2 and T3 are the three stochastic integrals on the right hand side of equation

(5.29). We now show, using inequality (5.4), that E[|Tk|2V ] goes to 0 as t− s goes to 0 for

k = 1, 2, 3.

We have

E[|T1|2V ] ≤ 2H

∫ t

0
1[0,s)(σ)(t− σ)−2α‖S(ε(t− σ))Φi− S(ε(s− σ))Φi‖2L2(Uν ,V ) dσ

≤ 2H sup

0≤u<v≤1

and v−u≤t−s

‖S(v)Φi− S(u)Φi‖2L2(Uν ,V )

∫ 1

0
σ−2α dσ. (5.30)

Uniform continuity of the function r ∈ [0, 1] �→ S(r)Φi ∈ L2(Uν , V ) ensures that the right

hand side of equation (5.30) goes to 0 as t− s goes to 0.

We have

E[|T2|2V ] ≤ 2H

∫ t

0
1[0,s)(σ)((t− σ)−α − (s− σ)−α)2‖S(ε(s− σ))Φi‖2L2(Uν ,V ) dσ

≤ 2H sup
r∈[0,1]

‖S(r)Φi‖2L2(Uν ,V )

∫ s

0
((s− σ)−2α − (t− σ)−2α) dσ

= 2H sup
r∈[0,1]

‖S(r)Φi‖2L2(Uν ,V )

1

1− 2α
(s1−2α + (t− s)1−2α − t1−2α). (5.31)

Since the function r ∈ [0, 1] �→ r1−2α is uniformly continuous, the right hand side of

equation (5.31) goes to 0 as t− s goes to 0.
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We have

E[|T3|2V ] ≤ 2H sup
r∈[0,1]

‖S(r)Φi‖2L2(Uν ,V )

∫ t

s
(t− σ)−2α dσ

= 2H sup
r∈[0,1]

‖S(r)Φi‖2L2(Uν ,V )

(t− s)1−2α

1− 2α

→ 0 as t− s→ 0.

Thus s ∈ [0, 1] �→ Y ε(s) ∈ L2(Ω,F , P ;V ) is continuous and, as shown in [10, Proposition

3.2], this implies that (Y ε(t))t∈[0,1] has a measurable version.

For each s ∈ (0, 1] the random variable Y ε(s) has a symmetric Gaussian distribution on

V and

E[|Y ε(s)|2V ] ≤ 2H sup
r∈[0,1]

‖S(r)Φi‖2L2(Uν ,V )

∫ 1

0
σ−2α dσ for all s ∈ (0, 1]. (5.32)

By [10, Corollary 2.17], there is a constant Cm ∈ (0,∞) such that

E[|Y ε(s)|2m
V ] ≤ Cm(E[|Y ε(s)|2V ])m for all s ∈ (0, 1]. (5.33)

It follows from inequalities (5.32) and (5.33) that for a measurable version of (Y ε(s))s∈[0,1]

we have

E

[∫ 1

0
|Y ε(s)|2m

V ds

]
=

∫ 1

0
E[|Y ε(s)|2m

V ] ds <∞.

Thus the sample paths s �→ Y ε(s)(ω) are in L2m([0, 1];V ) for P a.e. ω ∈ Ω. This completes

the proof of Lemma 5.8.
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Chapter 6

Small time asymptotics for moving

from one set to another

6.1 Introduction

In this chapter we return to studying the solution (X(t)) of a stochastic equation in a

Hilbert space H with Wiener process noise. We now consider the probability of the event

{X(0) ∈ C, X(t) ∈ E} as time t goes to zero; here the distribution of X(0) need not be

a point mass and C and E are Borel subsets of H. This problem is important because

an evolving system modelled by a stochastic equation may be expected to have a random

variable as its initial condition. For example, if the equation has an invariant measure then

the solution whose initial distribution is the invariant measure is of particular interest.

Let (H, 〈·, ·〉, | · |) be a separable Hilbert space. We assume

(C1) there exists a process (Xξ(t) : (Ω,F , P ) → (H,BH))t∈[0,1] which satisfies the equation

Xξ(t) = S(t)ξ+

∫ t

0
S(t− s)F (s,Xξ(s)) ds+

∫ t

0
S(t− s)G(s,Xξ(s)) dW (s) P a.e. (6.1)

for each t ∈ [0, 1].

In equation (6.1):

1. (S(t))t≥0 is a strongly continuous semigroup of bounded linear operators onH, whose

infinitesimal generator is A : D(A) ⊂ H → H;

2. (W (t))t≥0 is a separable Hilbert space-valued Wiener process on the probability space

(Ω,F , P ) with associated filtration (Ft)t≥0; the distribution of W (1) is denoted by
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ν and the reproducing kernel Hilbert space of ν is (Hν , | · |Hν );

3. the drift function F : ([0, 1]×H,B[0,1] ⊗ BH) → (H,BH) is measurable;

4. the diffusion function G : ([0, 1]×H,B[0,1] ⊗ BH) → (L2(Hν , H),BL2(Hν ,H)) is mea-

surable;

5. the H-valued random variable ξ is F0-measurable and has distribution Ξ.

If ξ takes the constant value x, a point in H, then we write Xx(t) := Xξ(t) for all t in

[0, 1].

We also assume

(C2) for each bounded Borel measurable function φ : H → R and each time t ∈ (0, 1] we

have

E[φ(Xξ(t))|ξ] = (Rtφ)(ξ) P a.e. ,

where (Rtφ)(x) := E[φ(Xx(t))] for all x in H.

If there exists a positive real constant Λ such that

|F (t, x)− F (t, y)|+ ‖G(t, x)−G(t, y)‖L2(Hν ,H) ≤ Λ|x− y| ∀x, y ∈ H and ∀t ∈ [0, 1]

and

|F (t, x)|2 + ‖G(t, x)‖2L2(Hν ,H) ≤ Λ(1 + |x|2) ∀x ∈ H and ∀t ∈ [0, 1]

then by [10, Theorem 7.4] (C1) is satisfied and by [10, Theorem 9.8] (C2) is satisfied.

In section 6.2 we show that if E is a Borel subset of H and for each point x in H we have

lim inft→0 t lnP{Xx(t) ∈ E} ≥ −1
2d

2(x,E) for some non-negative number d(x,E) then we

have

lim
r→0

inf
t<r

t lnP{ξ ∈ C,Xξ(t) ∈ E} ≥ −
1

2
essinfΞ{d2(x,E) : x ∈ C} (6.2)

for any Borel subset C of H. In equation (6.2) essinfΞ is the essential infimum with respect

to measure Ξ. This result was proved for open E by Zhang [33, Theorem 4.4].

In section 6.3 we find an upper bound for lim supt→0 t lnP{ξ ∈ C, Xξ(t) ∈ E} when

(Xξ(t))t∈[0,1] is an Ornstein-Uhlenbeck process driven byH-valued Wiener process (W (t))t≥0.

Fang and Zhang [13] and Hino and Ramirez [17] found a solution for this problem when

there is an invariant measure μ and Ξ = μ and the transition semigroup on L2(H,μ) is

symmetric. We consider what happens when the transition semigroup on L2(H,μ) is holo-

morphic and Ξ is absolutely continuous with respect to μ with square integrable density.
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Our upper bound is not optimal because it does not reduce for finite dimensional H to

the upper bound one can obtain using large deviations arguments.

6.2 The lower bound

Let E be a Borel subset of H and suppose that we have

lim
r→0

inf
t<r

t lnP{Xx(t) ∈ E} ≥ −1

2
d2(x,E) for each x ∈ H, (6.3)

where the numbers d(x,E) are non-negative and depend on x and may be infinity. Inequal-

ity (6.3) arises naturally when for each x in H the family of H-valued random variables

{Xx(t) : t ∈ (0, 1]} satisfies a large deviation principle and E is open; then 1
2d

2(x,E) is

the infimum of the rate function over E and our notation appears more justified. Set

d(C,E) := essinfΞ{d(x,E) : x ∈ C}

for all Borel subsets C of H. Our proof of the following theorem does not depend on E

being open.

Theorem 6.1 Let C be a Borel subset of H such that Ξ(C) > 0. Thanks to inequality

(6.3) we have

lim
r→0

inf
t<r

t lnP{ξ ∈ C, Xξ(t) ∈ E} ≥ −
1

2
d2(C,E).

Proof. Assume d(C,E) <∞. We have for t ∈ (0, 1]

P{ξ ∈ C , Xξ(t) ∈ E} =

∫
Ω

1C(ξ)E[1E(Xξ(t))|ξ] dP

=

∫
H

1C(x)P{Xx(t) ∈ E} dΞ(x).

Choose ε > 0. We can write

P{ξ ∈ C , Xξ(t) ∈ E} = e
− 1

2 d2(C,E)−ε

t

∫
H

1C(x)e
1
2 d2(C,E)+ε

t P{Xx(t) ∈ E} dΞ(x).

Thus

t lnP{ξ ∈ C , Xξ(t) ∈ E} = −1

2
d2(C,E)−ε+t ln

∫
H

1C(x)e
1
2 d2(C,E)+ε

t P{Xx(t) ∈ E} dΞ(x).

(6.4)
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We shall show that the integral on the right hand side of equation (6.4) is bounded below

by a positive number for all sufficiently small t > 0.

By definition of d(C,E), the set U := {z ∈ C : d(z, E) <
√
d2(C,E) + ε} has positive Ξ

measure. For each z in U we have

1

2
d2(z, E) <

1

2
d2(C,E) +

ε

2
, or equivalently − 1

2
d2(z, E)− ε

2
> −1

2
d2(C,E)− ε;

we also have, by inequality (6.3), lim inft→0 t lnP{Xz(t) ∈ E} ≥ −1
2d

2(z, E). Thus for

each z ∈ U there is an sz > 0 such that

P{Xz(t) ∈ E} ≥ e
− 1

2 d2(z,E)− ε
2

t ≥ e
− 1

2 d2(C,E)−ε

t for all t ≤ sz.

Define

Ct :=

{
x ∈ U : P{Xx(t) ∈ E} ≥ e

− 1
2 d2(C,E)−ε

t

}
for each 0 < t ≤ 1.

We will show that there is a positive number a such that Ξ(Ct) ≥ a for all small enough t.

Let δ = Ξ(U) > 0. Suppose, to get a contradiction, limn→∞ inf0<t<1/n Ξ(Ct) = 0. Then

for each n ∈ {1, 2, . . .} there is 0 < tn <
1
n such that Ξ(Ctn) < δ

2n+1 .

For each z ∈ U there is sz > 0 such that t ≤ sz implies z ∈ Ct, thus z ∈ Ctn for all large

enough n.

Hence U =
⋃∞

n=1Ctn and it follows that

δ = Ξ(U) ≤
∞∑

n=1

Ξ(Ctn) ≤ δ

2
,

a contradiction. Thus limn→∞ inf0<t<1/n Ξ(Ct) > 0 , which implies that for some m ∈
{1, 2, . . .}

a := inf
0<t< 1

m

Ξ(Ct) > 0.

It follows that for all t < 1
m we have∫

H
1C(x)e

1
2 d2(C,E)+ε

t P{Xx(t) ∈ E} dΞ(x) ≥ a.

Using this in equation (6.4) we get

lim
r→0

inf
t<r

t lnP{ξ ∈ C , Xξ(t) ∈ E} ≥ −
1

2
d2(C,E).

143



This completes the proof.

6.3 An upper bound for Ornstein-Uhlenbeck processes

6.3.1 Introduction

It is relatively difficult to find a good upper bound for lim supt→0 t lnP{ξ ∈ C, Xξ(t) ∈ E}.
When we have a large deviation principle for the family {Xx(t) : t ∈ (0, 1]} for each x in

H, Theorem 6.1 yields a lower bound for open E; we are also motivated to seek an upper

bound of the same form as the lower bound. From now on we restrict our attention to an

Ornstein-Uhlenbeck process driven by an H-valued Wiener process (W (t))t≥0:

Xξ(t) := S(t)ξ +

∫ t

0
S(t− s)i dW (s) for all t ∈ [0, 1];

here the operator i : Hν ↪→ H is the embedding of Hν into H. The trace class covariance

operator of ν is denoted by Q and we assume that kerQ = {0}.

By using an exponential equivalence argument like that in chapter 4 one can show that

for each x in H the family {ω ∈ Ω �→ (t �→ Xx(εt)(ω)) : ε ∈ (0, 1]} of trajectory-valued

random variables in C([0, 1];H) satisfies a large deviation principle with rate function

Ix(u) :=

{
1
2

∫ 1
0 |φ(s)|2Hν

ds if φ ∈ L2([0, 1];Hν) and u(t) = x+
∫ t
0 φ(s) ds ∀t ∈ [0, 1],

∞ otherwise.

The continuous mapping theorem (see [18, Theorem 27.11]) then tells us that for each x in

H the family of H-valued random variables {Xx(t) : t ∈ (0, 1]} satisfies a large deviation

principle with rate function

Jx(y) := inf{Ix(u) : u ∈ C([0, 1];H) and u(1) = y}

=

{
1
2 |y − x|2Hν

if y − x ∈ Hν ,

∞ otherwise.

For any point x in H and Borel subsets C and E of H define

d(x,E) := inf{|x− y|Hν : y ∈ E} , where we take |z|Hν = ∞ if z ∈ H\Hν

and define

d(C,E) := essinfΞ{d(z, E) : z ∈ C}.
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For Borel subsets C and E of H and arbitrary L < d(C,E) we can write

t lnP{ξ ∈ C, Xξ(t) ∈ E} = −1

2
L2 + t ln

∫
1C(x)e

1
2 L2

t P{Xx(t) ∈ E} dΞ(x) (6.5)

for each t ∈ (0, 1]. If E is closed then by the upper bound of the large deviation principle

of {Xx(t) : t ∈ (0, 1]} the integrand in equation (6.5) converges to zero for Ξ a.e. x in C

as t goes to zero. Thus we suspect that lim supt→0 t lnP{ξ ∈ C, Xξ(t) ∈ E} is bounded

above by −1
2d

2(C,E), at least for closed E. Proving this is another matter.

We assume that

(C3) there exists a symmetric Gaussian invariant measure μ on H.

The covariance operator of μ is Q∞ :=
∫∞
0 S(t)QS∗(t) dt. We may define the strongly

continuous semigroup of transition operators on L2(H,μ) by setting for each t ∈ [0, 1]

(Rtφ)(x) := E[φ(Xx(t))] for μ a.e. x ∈ H and for each φ ∈ L2(H,μ).

When (Rt) consists of symmetric operators and Ξ = μ Fang and Zhang [13, Theorem 2.1]

showed that

lim
r→0

sup
t<r

t lnP{ξ ∈ C, Xξ(t) ∈ E} ≤ −
1

2
(d(C,E) ∨ d(E,C))2 for all sets C and E ∈ BH ;

(6.6)

the symmetric nature of the Markov process (Xξ(t))t∈[0,1] results in the upper bound being

symmetric in E and C. Fang’s and Zhang’s proof used the Lyons-Zheng decomposition

which applies only to such symmetric Markov processes. Hino and Ramirez [17, Theorem

2.8] showed that when (Rt) consists of symmetric operators and Ξ = μ we have

P{ξ ∈ C, Xξ(t) ∈ E} ≤
√
μ(C)μ(E)e

− 1
2 d2(C,E)

t for all t > 0. (6.7)

The proof of Hino’s and Ramirez’s theorem may be adapted in a straightforward way to

yield an upper bound under more general assumptions.

We assume that the following two conditions hold. Notice in particular that (Rt) need not

consist of symmetric operators.

(C4) The distribution Ξ is absolutely continuous with respect to μ and has Radon-Nikodym

derivative ρ ∈ L2(H,μ).

(C5) The semigroup (RC
t ) of operators on L2(H,μ; C) obtained from (Rt) by defining

RC
t (f) := Rt(Re(f)) + iRt(Im(f)) for f ∈ L2(H,μ; C) and t ∈ [0, 1],
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is a restriction of a holomorphic semigroup.

Our definition of holomorphic semigroup is from [20].

Definition 1 Let K ∈ (0,∞) and define the sector s(K) = {z ∈ C : |Im(z)| ≤ KRe(z)}.
The family {T (z) : z ∈ s(K)} of bounded linear operators on L2(H,μ; C) is called a

holomorphic semigroup on the sector s(K) if:

1. T (0) = IL2(H,μ;C), the identity operator on L2(H,μ; C);

2. T (z1)T (z2) = T (z1 + z2) for all z1, z2 ∈ s(K);

3. for each f ∈ L2(H,μ; C)

T (z)f → f in L2(H,μ; C) as z → 0 in s(K̃) , for each K̃ ∈ (0,K);

4. the function z �→< T (z)f, g >L2(H,μ;C) is analytic in the interior of s(K) for all

f, g ∈ L2(H,μ; C).

Goldys [15] has shown that (RC
t ) is a restriction of a holomorphic semigroup if and only

if there is a positive real number a such that

| < Q∞A
∗x, y > | ≤ a|Q 1

2x||Q 1
2 y| for all x, y ∈ D(A∗); (6.8)

furthermore, if inequality (6.8) is true then s( 1
2a) is an analyticity sector and

‖RC
z ‖L(L2(H,μ;C),L2(H,μ;C)) = 1 for all z ∈ s( 1

2a). We remark that in the special case when

(Rt) consists of symmetric operators we have (see, for example, [11, Proposition 10.1.6])

Q∞A
∗ = −1

2
Q|D(A∗)

and then inequality (6.8) is satisfied with a = 1
2 . As a corollary of Goldys’ result we have

this lemma, whose proof is in the appendix of this section.

Lemma 6.2 The semigroup (RC
t ) is a restriction of a holomorphic semigroup if and only

if there is a bounded linear operator B1 ∈ L(H,H) such that

Q∞A
∗x = Q

1
2B1Q

1
2x for all x ∈ D(A∗) (6.9)

and AQ∞ = Q
1
2B∗1Q

1
2 . (6.10)
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Hence we assume that equations (6.9) and (6.10) are true and we set

B := B1 −B∗1 . (6.11)

Our main result is the following upper bound. Keep in mind that our recent assumptions

(C3), (C4) and (C5) are assumed to hold.

Theorem 6.3 For any sets C and E in BH

P{ξ ∈ C,Xξ(t) ∈ E} ≤
(∫

1C ρ
2 dμ

) 1
2

(μ(E))
1
2 e
− d2(C,E)

2βt for all t > 0,

where β := ‖B‖2L(H,H) + 1 and B is the operator defined in equation (6.11).

In the special case when (Rt) consists of symmetric operators we have B = 0 and β = 1 and

if ρ ≡ 1 then Theorem 6.3 gives the upper bound shown in inequality (6.7). However the

upper bound in Theorem 6.3 is not as good as might be hoped. If H is finite dimensional,

one can use the equation

lim
t→0

t lnP{|S(t)ξ − ξ| > δ} = −∞ for each δ > 0,

together with the large deviation principle satisfied by the family of Gaussian random

variables {t 1
2W (1) : t ∈ (0, 1]} and exponential equivalence to show that even when B �= 0

we have lim supt→0 t lnP{ξ ∈ C, Xξ(t) ∈ E} ≤ −1
2d

2(C,E).

In the next subsection we introduce a closed bilinear form E : D(E) × D(E) → R on

L2(H,μ) which is associated with the semigroup (Rt) and we express this form in terms

of a closed derivative-like operator ∇̄ : D(E) → L2(H,μ;H). In the third subsection we

prove Theorem 6.3 by following the steps in the proof of Hino’s and Ramirez’s theorem [17,

Theorem 2.8] and working with the expression of E in terms of ∇̄.

6.3.2 The machinery

Let (L,D(L)) be the infinitesimal generator of (Rt). Define a bilinear form E : D(L) ×
D(L)→ R by

E(u, v) := 〈−Lu, v〉L2(H,μ) =

∫
(−Lu)v dμ for u, v ∈ D(L).

Definition 2 Given a bilinear form B : D(B) × D(B) → R defined on a subspace D(B)
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of L2(H,μ), we define its symmetric part by

B̃(u, v) :=
1

2
(B(u, v) + B(v, u)) for all u, v ∈ D(B)

and its antisymmetric part by

B̌(u, v) :=
1

2
(B(u, v)− B(v, u)) for all u, v ∈ D(B).

We define an inner product on D(L) by

Ẽ1(u, v) := 〈u, v〉L2(H,μ) + Ẽ(u, v) for all u, v ∈ D(L);

the corresponding norm on D(L) is Ẽ
1
2
1 (u) := (Ẽ1(u, u))

1
2 for u ∈ D(L). Following Ma

and Röckner [20, Theorem 2.15], we denote the completion of the normed vector space

(D(L), Ẽ
1
2
1 ) by (D(E), Ẽ

1
2
1 ) and then there is a unique bilinear extension of E : D(L) ×

D(L)→ R to the domain D(E)×D(E) such that the extension is continuous with respect

to the norm Ẽ
1
2
1 on D(E). The continuous extension E : D(E) × D(E) → R is a closed

bilinear form, that is, D(E) is a Hilbert space with the inner product

Ẽ1(u, v) := 〈u, v〉L2(H,μ) + Ẽ(u, v) for all u, v ∈ D(E)

and Ẽ
1
2
1 (u) = (Ẽ1(u, u))

1
2 for all u ∈ D(E). We also have

E(u, v) = 〈−Lu, v〉L2(H,μ) for all u ∈ D(L) and v ∈ D(E). (6.12)

For n ∈ N let C∞b (Rn) be the space of continuous and bounded real-valued functions on

Rn whose partial derivatives of all orders exist and are continuous and bounded. Given A,

a vector space of continuous bounded real-valued functions on H, let Aμ be the subspace

of L2(H,μ) consisting of the classes which contain the functions in A. Define

FC∞b (D(A∗)) := {φ◦ (〈l1, ·〉, . . . , 〈ln, ·〉) : n ∈ N and φ ∈ C∞b (Rn) and l1, . . . , ln ∈ D(A∗)}.

As shown in [11, Proposition 10.2.1], FC∞b (D(A∗))μ is a core for (L,D(L)). It is convenient

to work with the space FC∞b (D(A∗))μ because we can compute Lu for u ∈ FC∞b (D(A∗))μ

and since this space is a core for (L,D(L)) it follows that (D(E), Ẽ
1
2
1 ) is also the completion
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of (FC∞b (D(A∗))μ, Ẽ
1
2
1 ). From [11, Proposition 10.2.2] we have

E(u, v) = −
∫
〈Dv,Q∞A∗Du〉 dμ for u, v ∈ FC∞b (D(A∗))μ, (6.13)

whereDu andDv are the Fréchet derivatives of the representatives of u and v, respectively,

belonging to FC∞b (D(A∗)). Define the linear operator ∇ : FC∞b (D(A∗))μ ⊂ L2(H,μ) →
L2(H,μ;H) by

∇u := Q
1
2 Du for u ∈ FC∞b (D(A∗))μ; (6.14)

here againDu is the Fréchet derivative of the representative of u that belongs to FC∞b (D(A∗)).

Then from equation (6.13) and equations (6.9), (6.10) and (6.11) we have for the antisym-

metric part

Ě(u, v) =
1

2

∫
〈∇u, B∇v〉 dμ for u, v ∈ FC∞b (D(A∗))μ (6.15)

and from equation (6.13) and the Lyapunov equation,

Q∞A
∗x+AQ∞x = −Qx for x ∈ D(A∗) (see for example [11, Proposition 10.1.4]),

we have for the symmetric part

Ẽ(u, v) =
1

2

∫
〈∇u,∇v〉 dμ for u, v ∈ FC∞b (D(A∗))μ. (6.16)

The operator (∇, FC∞b (D(A∗))μ) is closable because if (un) is a sequence from FC∞b (D(A∗))μ

and un → 0 in L2(H,μ) and |∇un−∇um|L2(H,μ;H) → 0 as n,m→∞ then, from equation

(6.16), Ẽ
1
2
1 (un − um) = (|un − um|2L2(H,μ) + 1

2 |∇(un − um)|2L2(H,μ;H))
1
2 → 0 as n,m → ∞;

since the space (D(E), Ẽ
1
2
1 ) is complete we have Ẽ

1
2
1 (un − 0) → 0 as n→ ∞ which implies

that ∇un → 0 in L2(H,μ;H) as n→∞.

Let ∇̄ : D(∇̄) → L2(H,μ;H) be the closure of (∇,FC∞b (D(A∗))μ). The domain of the

closure is

D(∇̄) =
{
u ∈ L2(H,μ) : ∃(un) ⊂ FC∞b (D(A∗))μ such that un → u in L2(H,μ) and

|∇un −∇um|L2(H,μ;H) → 0 as n,m→∞
}

=
{
u ∈ L2(H,μ) : ∃(un) ⊂ FC∞b (D(A∗))μ such that un → u in L2(H,μ) and

Ẽ
1
2
1 (un − um) → 0 as n,m→∞ }

= D(E).
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Let u ∈ D(E) and let the sequence (un) ⊂ FC∞b (D(A∗))μ be such that un → u in L2(H,μ)

and |∇un − ∇um|L2(H,μ;H) → 0 as n,m → ∞; then ∇̄u := limn→∞∇un in L2(H,μ;H)

and also un → u in (D(E), Ẽ
1
2
1 ). Since E : D(E)×D(E)→ R is continuous with respect to

the norm Ẽ
1
2
1 on D(E), we have

Ẽ(u, u) = lim
n→∞

Ẽ(un, un) = lim
n→∞

1

2

∫
〈∇un,∇un〉 dμ =

1

2

∫
〈∇̄u, ∇̄u〉 dμ.

Similarly we can show that for all u, v ∈ D(E)

Ẽ(u, v) =
1

2

∫
〈∇̄u, ∇̄v〉 dμ (6.17)

and

Ě(u, v) =
1

2

∫
〈∇̄u, B ∇̄v〉 dμ. (6.18)

If u and v belong to D(E) ∩ L∞(H,μ) and F ∈ C∞(R) then we have the following rules

of calculus:

(i) uv ∈ D(E) and ∇̄(uv) = u∇̄v + v∇̄u ; (6.19)

(ii) F ◦ u ∈ D(E) and ∇̄(F ◦ u) = F ′(u)∇̄u. (6.20)

These rules follow immediately for functions in FC∞b (D(A∗))μ. For general u, v ∈ D(E)∩
L∞(H,μ) we can find uniformly bounded sequences of functions (un) and (vn) from

FC∞b (D(A∗))μ such that un → u in L2(H,μ) and ∇un → ∇̄u in L2(H,μ;H) and vn → v

in L2(H,μ) and ∇vn → ∇̄v in L2(H,μ;H) and then the rules of calculus follow by sub-

stituting un and vn in equations (6.19) and (6.20) and taking limits.

6.3.3 Proof of Theorem 6.3

In this subsection we prove Theorem 6.3. Let C and E be Borel subsets of H such that

Ξ(C) =
∫

1C ρ dμ > 0 and μ(E) > 0. We want to find an upper bound for
∫

1C(Rt1E)ρ dμ

for each t > 0. Let Ê be a countable union of compact sets such that Ê ⊂ E and

μ(E\Ê) = 0. Since μ is a Radon measure, Ê exists. Define

vt := Rt1E for t ≥ 0

and

w := d(·, Ê) ∧ d(C,E).
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We assume that d(C,E) < ∞. From [27, Lemma 2.1] we have w ∈ D(E) and |∇̄w| ≤ 1

μ a.e.; we give the proof of this important fact in the appendix. Note that for t > 0,

vt ∈ D(L). This follows because, by assumption, for each f ∈ L2(H,μ; C) the L2(H,μ; C)-

valued function z �→ RC
z f is weakly analytic and hence strongly analytic on the interior

of a sector s(K), for some K ∈ (0,∞). Thus t �→ RC
t f is differentiable on (0,∞). This

implies (see [24, chapter 2 Lemma 4.2]) that for each t > 0

Rt(L
2(H,μ)) ⊂ D(L).

We now trace the steps of Hino and Ramirez [17, Theorem 2.8]. Let α be a real number

and set

f(t) :=

∫
v2
t e

2αw dμ for t ≥ 0.

The function f is continuous on [0,∞) and differentiable on (0,∞). For t > 0 we have

f ′(t) = 2

∫
(Lvt)vte

2αw dμ

= −2E
(
vt, vte

2αw
)

by equation (6.12)

= −2
(
Ẽ
(
vt, vte

2αw
)

+ Ě
(
vt, vte

2αw
))
. (6.21)

We use equation (6.18) and the rules of calculus for ∇̄ to obtain for the antisymmetric

part:

−2Ě
(
vt, vte

2αw
)

= −
∫
〈B ∇̄

(
e2αwvt

)
, ∇̄vt〉 dμ

= −2α

∫
vte

2αw〈B ∇̄w, ∇̄vt〉 dμ−
∫

e2αw〈B ∇̄vt, ∇̄vt〉 > dμ

= −2α

∫
vte

2αw〈B ∇̄w, ∇̄vt〉 dμ for t > 0.

Using equation (6.17), we also have for the symmetric part:

−2Ẽ
(
vt, e

2αwvt

)
= −2α

∫
vte

2αw〈∇̄w, ∇̄vt〉 dμ−
∫

e2αw〈∇̄vt, ∇̄vt〉 dμ for t > 0.

Equation (6.21) now becomes

f ′(t) = −2α

∫
vte

2αw〈(B + IH)∇̄w, ∇̄vt〉 dμ−
∫

e2αw〈∇̄vt, ∇̄vt〉 dμ for t > 0. (6.22)
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Hölder’s inequality provides an upper bound for the first term on the right hand side of

equation (6.22):

4α2

(∫
vte

2αw〈(B + IH)∇̄w, ∇̄vt〉 dμ
)2

≤ 4α2

∫
v2
t e

2αw|(B + IH)∇̄w|2 dμ
∫

e2αw|∇̄vt|2 dμ

≤ α4

(∫
v2
t e

2αw|(B + IH)∇̄w|2 dμ
)2

+

(∫
e2αw|∇̄vt|2 dμ

)2

+2α2

∫
v2
t e

2αw|(B + IH)∇̄w|2 dμ
∫

e2αw|∇̄vt|2 dμ

thus

−2α

∫
vte

2αw〈(B + IH)∇̄w, ∇̄vt〉 dμ ≤ α2

∫
v2
t e

2αw|(B + IH)∇̄w|2 dμ+

∫
e2αw|∇̄vt|2 dμ.

Substituting this bound into equation (6.22) we get

f ′(t) ≤ α2

∫
v2
t e

2αw|(B + IH)∇̄w|2 dμ

= α2

∫
v2
t e

2αw(|B∇̄w|2 + |∇̄w|2) dμ

≤ α2β f(t) for t > 0, (6.23)

where β := ‖B‖2L(H,H) + 1. From inequality (6.23) it follows that

f(t) ≤ f(0)eα2βt = μ(E)eα2βt for all t ≥ 0.

Thus, by Hölder’s inequality,

∫
1C(Rt1E)ρ dμ ≤

(∫
1Ce−2αwρ2 dμ

) 1
2
(∫

e2αwv2
t dμ

) 1
2

≤ e−αd(C,E)

(∫
1Cρ

2 dμ

) 1
2

(μ(E))
1
2 e

α2βt
2 for all t ≥ 0.
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Here the real number α is arbitrary; for each t > 0 we minimise the expression on the

right hand side by taking α = d(C,E)
βt . Then we have

∫
1C(Rt1E)ρ dμ ≤

(∫
1Cρ

2 dμ

) 1
2

(μ(E))
1
2 e
− d2(C,E)

2βt for all t > 0.

This completes the proof of Theorem 6.3.

Remark The fact that β appears in the argument of the exponential function in The-

orem 6.3 suggests that, at least in the case of finite dimensional H, our use of Hölder’s

inequality for the term
∫
vte

2αw〈B∇̄w, ∇̄vt〉 dμ appearing in equation (6.22) is crude.

6.3.4 Appendix

Proof of Lemma 6.2

We now show that (RC
t ) is a restriction of a holomorphic semigroup if and only if there is

a bounded linear operator G on H such that

AQ∞ = Q
1
2GQ

1
2 and

Q∞A
∗x = Q

1
2G∗Q

1
2x for all x ∈ D(A∗).

According to Goldys [15, Theorem 2.2], (RC
t ) is a restriction of a holomorphic semigroup

if and only if there is a positive real number a such that

|〈Q∞A∗x, y〉| ≤ a|Q 1
2x||Q 1

2 y| for all x, y ∈ D(A∗). (6.24)

Let x ∈ D(A∗). Since D(A∗) is dense in H, we can take a sequence (yn) ⊂ D(A∗) such

that yn → Q∞A
∗x in H as n → ∞. Then substituting yn for y in inequality (6.24) and

taking limits on both sides gives

|Q∞A∗x| ≤ a‖Q 1
2 ‖L(H,H)|Q

1
2x|.

This means that the operator Q∞A
∗Q−

1
2 : Q

1
2 (D(A∗)) ⊂ H → H is bounded and since its

domain Q
1
2 (D(A∗)) is dense in H, there is a bounded linear operator E on H such that

Q∞A
∗Q−

1
2 = E|

Q
1
2 (D(A∗))

or, equivalently,

Q∞A
∗ = EQ

1
2 on D(A∗). (6.25)
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Let y ∈ H. For any x ∈ D(A∗) we have

〈A∗x,Q∞y〉 = 〈Q∞A∗x, y〉 = 〈EQ 1
2x, y〉 = 〈x,Q 1

2E∗y〉.

Thus

Q∞(H) ⊂ D(A) and AQ∞y = Q
1
2E∗y for all y ∈ H. (6.26)

Inequality (6.24) becomes

|〈x,AQ∞y〉| = |〈Q 1
2x,E∗y〉| ≤ a|Q 1

2x||Q 1
2 y| for all x, y ∈ D(A∗).

In this inequality let y ∈ D(A∗) and replace x by a sequence (xn) ⊂ D(A∗) such that

Q
1
2xn → E∗y in H as n→∞. Taking limits we get

|E∗y| ≤ a|Q 1
2 y|.

Thus E∗Q−
1
2 : Q

1
2 (D(A∗)) ⊂ H → H is bounded and there is a bounded linear operator

G on H such that E∗Q−
1
2 = G|

Q
1
2 (D(A∗))

or, equivalently,

E∗ = GQ
1
2 .

Substituting this expression for E into equations (6.25) and (6.26) gives the desired results.

Proof that w ∈ D(E) and |∇̄w| ≤ 1

We now present Ren’s and Röckner’s proof [27, Lemma 2.1] that if F is a countable union

of compact subsets of H and c is a positive real number then d(·, F ) ∧ c is in D(E) and

|∇̄(d(·, F )∧ c)| ≤ 1 μ a.e.. Ren and Röckner proved this result in the more general setting

of a separable Banach space. In our application H is a separable Hilbert space, which

simplifies the proof.

Let {e1, e2, . . .} be an orthonormal basis for H composed of eigenvectors of Q:

Qej = λjej for all j ∈ N

and such that the sequence (λn) is non-increasing. The set {Q 1
2 ej = λ

1
2
j ej : j ∈ N} is an

orthonormal basis for Hν . For each n ∈ N, let Pn : H → H be the projection onto the
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linear span of {e1, . . . , en}:

Pnx =

n∑
j=1

〈x, ej〉ej for x ∈ H.

The hard work is in proving that if K is a compact subset of H and c is a positive real

number then d(·,K)∧ c ∈ D(E) and |∇̄(d(·,K)∧ c)| ≤ 1 μ a.e.. The steps of the proof are:

1. show that for any fixed n ∈ N and y ∈ H the function

vn(x) := |Pnx− Pny|Hν ∧ c , x ∈ H,

belongs to D(E) and |∇̄vn| ≤ 1 μ a.e.;

2. show that

x �→ d(Pnx, Pn(K)) ∧ c ∈ D(E)

and |∇̄(d(Pn·, Pn(K)) ∧ c)| ≤ 1 μ a.e.;

3. show that d(·,K) ∧ c ∈ D(E) and |∇̄(d(·,K) ∧ c)| ≤ 1 μ a.e..

Step 1 Fix n ∈ N and y ∈ H. Define vn : H → R by

vn(x) = |Pnx− Pny|Hν ∧ c for x ∈ H.

Recall that D(E) is the domain of the closure of the operator ∇ : FC∞b (D(A∗))μ ⊂
L2(H,μ) → L2(H,μ;H) defined in equation (6.14). Since D(A∗) is dense in H, it is

straightforward to show that FC∞b (H)μ, the set of elements of L2(H,μ) which contain

functions from

FC∞b (H) = {φ ◦ (〈l1, ·〉, . . . , 〈lm, ·〉) : m ∈ N and φ ∈ C∞b (Rm) and l1, . . . , lm ∈ H},

is contained in D(E) and for u ∈ FC∞b (H)μ, ∇̄u = Q
1
2Du where Du is the Fréchet

derivative of the corresponding function in FC∞b (H). To show that vn ∈ D(E) we will

find a sequence (um) from FC∞b (H)μ such that um → vn in L2(H,μ) and (Q
1
2Dum)

converges in L2(H,μ;H) as m→∞. We have

vn(x) =

⎛⎝ n∑
j=1

(〈x, ej〉 − 〈y, ej〉)2λ−1
j

⎞⎠ 1
2

∧ c for x ∈ H.
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Define g : Rn → R by

g(z) =

⎛⎝ n∑
j=1

(zj − 〈y, ej〉)2λ−1
j

⎞⎠ 1
2

for z = (z1, . . . , zn) ∈ Rn.

Clearly vn(x) = g(Tx) ∧ c, where

Tx := (〈x, e1〉, . . . , 〈x, en〉) for x ∈ H.

The partial derivatives Djg exist and are continuous and bounded on Rn\{Ty}:

Djg(z) = λ−1
j (zj − 〈y, ej〉)

(
n∑

i=1

(zi − 〈y, ei〉)2λ−1
i

)− 1
2

for 1 ≤ j ≤ n.

By the C∞-Urysohn’s lemma, for each m ∈ N there is a function φm ∈ C∞b (R) such that

φ′m has compact support and 0 ≤ φ′m ≤ 1 and φ′m(t) = 1 for each t ∈ [ 1
m , c] and the closure

of the set {t ∈ R : φ′m(t) �= 0} is contained in (0, c+ 1
m) and

φm(t) =

⎧⎪⎨⎪⎩
t when 1

m ≤ t ≤ c,

c1 when t ≤ am,

c2 when t ≥ c+ 1
m ,

where am = min{t ∈ R : φ′m(t) �= 0} ∈ (0, 1
m) and c1 and c2 are constants such that

c1 ∈ [0, 1
m ] and c2 ∈ [c, c + 1

m ]. The sequence φm converges uniformly to t �→ (0 ∨ t) ∧ c
and φ′m(t) converges pointwise to 1(0,c](t).

For each m ∈ N, φm ◦ g ∈ C∞b (Rn) and thus (φm ◦ g) ◦ T ∈ FC∞b (H). We have∫
(φm(g(Tx))− vn(x))2 dμ =

∫
(φm(g(Tx))− g(Tx) ∧ c)2 dμ

→ 0 as m→∞.

We also have

Q
1
2D((φm ◦ g) ◦ T )(x) = Q

1
2T ∗(D(φm ◦ g)(Tx)) for x ∈ H

= Q
1
2T ∗φ′m(g(Tx))Dg(Tx) for x /∈ y + kerT.

Since kerQ∞ = {0}, μ(y + kerT ) = 0.
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Thus∫ ∣∣∣Q 1
2D((φm ◦ g) ◦ T )(x)− 1(0,c](g(Tx))Q

1
2T ∗Dg(Tx)

∣∣∣2 dμ

≤ ‖Q 1
2T ∗‖2L(Rn,H)

∫ (
φ′m(g(Tx))− 1(0,c](g(Tx))

)2 |Dg(Tx)|2 dμ
→ 0 as m→∞.

We have now shown that vn ∈ D(E) and for μ a.e. x ∈ H

|∇̄vn(x)| ≤ |Q 1
2T ∗Dg(Tx)|

=

∣∣∣∣∣∣
n∑

j=1

Djg(Tx)Q
1
2 ej

∣∣∣∣∣∣ =

⎛⎝ n∑
j=1

λj(Djg(Tx))
2

⎞⎠ 1
2

= 1.

This completes step 1 of the proof.

In the next step of the proof we will use a result from [20, chapter 4 Lemma 4.1]:

if u, v ∈ D(E) ∩ L∞(H,μ) then u ∧ v ∈ D(E) and

∇̄(u ∧ v) = 1{u>v}∇̄v + 1{v>u}∇̄u+ 1{u=v}
1

2
(∇̄u+ ∇̄v). (6.27)

Step 2 Fix n ∈ N. Let K be a compact subset of H. Let {y1, y2, y3, . . .} be a countable

subset of K whose closure in H is K. From step 1 we know that for each m ∈ N the

function

vn,m(x) := |Pnx− Pnym|Hν ∧ c for x ∈ H

belongs to D(E) and |∇̄vn,m| ≤ 1 μ a.e..

Suppose that for some j ≥ 1 we have vn,1 ∧ . . .∧ vn,j ∈ D(E) and |∇̄(vn,1 ∧ . . .∧ vn,j)| ≤ 1

μ a.e.. Then by equation (6.27) we have vn,1∧ . . .∧vn,j ∧vn,j+1 ∈ D(E) and |∇̄(vn,1∧ . . .∧
vn,j ∧vn,j+1)| ≤ 1 μ a.e.. By induction vn,1∧ . . .∧vn,j ∈ D(E) and |∇̄(vn,1∧ . . .∧vn,j)| ≤ 1

μ a.e. for each j ∈ N.

We have vn,1 ∧ . . . ∧ vn,j ↘ d(Pn·, Pn(K)) ∧ c as j → ∞. To see this, notice that given

any δ > 0 there is a y ∈ K such that |Pnx − Pny|Hν < d(Pnx, Pn(K)) + δ and there is a
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sequence α : N → N such that yα(i) converges to y in H; thus

|Pnx− Pnyα(i)|Hν ≤ |Pnx− Pny|Hν + |Pny − Pnyα(i)|Hν

< d(Pnx, Pn(K)) + δ + λ
− 1

2
n |Pny − Pnyα(i)|

< d(Pnx, Pn(K)) + 2δ for sufficiently large i ∈ N.

Since all the functions are bounded by c we have vn,1 ∧ . . . ∧ vn,j → d(Pn·, Pn(K)) ∧ c in

L2(H,μ).

Since |∇̄(vn,1∧ . . .∧vn,j)|L2(H,μ;H) ≤ 1 for all j ∈ N and the closed unit ball in L2(H,μ;H)

is weakly sequentially compact, there is a subsequence (∇̄(vn,1 ∧ . . . ∧ vn,ji))
∞
i=1 which

converges weakly to some V in the closed unit ball of L2(H,μ;H). By the Banach-Saks

theorem (see for example Theorem 2.2 in Appendix A of [20]) we may assume that the

sequence of Cesaro means ( 1
N

∑N
i=1 ∇̄(vn,1∧ . . .∧vn,ji))

∞
N=1 converges to V in L2(H,μ;H);

we also have 1
N

∑N
i=1(vn,1 ∧ . . . ∧ vn,ji) → d(Pn·, Pn(K)) ∧ c in L2(H,μ) as N → ∞.

Closedness of (∇̄, D(E)) now implies that d(Pn·, Pn(K))∧c ∈ D(E) and ∇̄(d(Pn·, Pn(K))∧
c) = V .

For each N ∈ N,∣∣∣∣∣ 1

N

N∑
i=1

∇̄(vn,1 ∧ . . . ∧ vn,ji)

∣∣∣∣∣ ≤ 1

N

N∑
i=1

|∇̄(vn,1 ∧ . . . ∧ vn,ji)| ≤ 1 μ a.e.

and since some subsequence of this sequence of Cesaro means converges to ∇̄(d(Pn·, Pn(K))∧
c) pointwise μ a.e., it follows that |∇̄(d(Pn·, Pn(K)) ∧ c)| ≤ 1 μ a.e.. This completes step

2 of the proof.

Step 3 For each x ∈ H and y ∈ K, |Pnx−Pny|Hν ↗ |x−y|Hν , where we take |x−y|Hν = ∞
if x− y ∈ H\Hν . Thus

d(Pnx, Pn(K)) ↗ sup
n∈N

d(Pnx, Pn(K)) ≤ d(x,K) for each x ∈ H.

We shall show that actually supn∈N d(Pnx, Pn(K)) = d(x,K). We can assume that

supn∈N d(Pnx, Pn(K)) <∞. Suppose that α is a real number such that

sup
n∈N

d(Pnx, Pn(K)) < α.

Then for each n ∈ N there is a vector yn ∈ K such that |Pnx − Pnyn|Hν < α. Since the

closed ball in Hν centred at 0 and of radius α, B̄Hν (0, α), is a compact subset of H and
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K is also compact, there is a subsequence (nk) and h ∈ B̄Hν (0, α) and y ∈ K such that

ynk
→ y in H as k →∞ and Pnk

x− Pnk
ynk

→ h in H as k →∞. Thus x− y = h, which

implies that d(x,K) ≤ α.

Since the sequence of functions converges pointwise and is uniformly bounded, we have

d(Pn·, Pn(K)) ∧ c→ d(·,K) ∧ c in L2(H,μ) as n→∞.

We also have that |∇̄(d(Pn·, Pn(K)) ∧ c)|L2(H,μ;H) ≤ 1 for all n ∈ N. Now arguing in the

same way as in step 2 we conclude that d(·,K)∧ c ∈ D(E) and |∇̄(d(·,K)∧ c)| ≤ 1 μ a.e..

This completes step 3.

Finally, let K1 ⊂ K2 ⊂ K3 ⊂ . . . be an increasing sequence of compact subsets of H and

let F = ∪∞j=1Kj . Then

d(x,Kj) ↘ d(x, F ) for each x ∈ H

and

d(·,Kj) ∧ c→ d(·, F ) ∧ c in L2(H,μ) as j →∞.

We also have |∇̄(d(·,Kj) ∧ c)|L2(H,μ;H) ≤ 1 for all j ∈ N. Again we can argue as in step 2

to conclude that d(·, F ) ∧ c ∈ D(E) and |∇̄(d(·, F ) ∧ c)| ≤ 1 μ a.e..
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Chapter 7

Conclusion

The large deviation principles in Corollary 3.4, Corollary 4.12 and Theorem 5.1 lead us

to expect that for a given stochastic initial value problem the small time asymptotics of

the continuous trajectories of the solution will be described by a large deviation principle

whose rate function is determined only by the diffusion function and the noise process. Ad-

mittedly we have only dealt with drift functions and diffusion functions that are Lipschitz

continuous or are in some sense close to being Lipschitz continuous.

From the point of view of the stochastic modeller, additive Wiener process noise is the sim-

plest choice but it may not reflect the properties of the system being modelled. Observation

of the small time asymptotics of the system of interest may provide useful information as

to how to model the noise in the stochastic equation. On the other hand if we have

a stochastic initial value problem, small time asymptotics estimates provide a relatively

simple rough guide to the behaviour of the system as it moves from its initial state.

Continuous solutions of equations in a separable Hilbert space seem quite manageable

compared to solutions of equations which are continuous in a more general separable

Banach space. We got a taste of this in chapter 4. We faced the problem of getting a large

deviation principle for the small time asymptotics of continuous trajectories in a general

separable Banach space, without making overly restrictive assumptions. In particular

it might be that our assumption that (B2)(2) holds is overly restrictive given the other

assumptions we made in chapter 4.

Chapter 5 reminds us that stochastic integrals have been defined for integrators besides

the familiar Wiener process. Much still remains to be done on small time asymptotics of

solutions of stochastic equations with different types of noise process.

In chapter 6 we saw that getting a good upper bound for
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lim supt→0 t lnP{X(0) ∈ C,X(t) ∈ E} is a challenging problem for general L(X(0)), even

in the case of the solution of a linear equation with Wiener process noise in a separa-

ble Hilbert space H. A question that arises where we left off in chapter 6 is whether

Theorem 6.3 gives a good upper bound for the small time asymptotics or whether we

actually have lim supt→0 t lnP{X(0) ∈ C,X(t) ∈ E} ≤ −1
2d

2(C,E) when H is infinite

dimensional and the transition semigroup on L2(H,μ) is holomorphic and L(X(0)) has

integrable (rather than square integrable) density with respect to μ.
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