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Abstract

This thesis investigates the small time asymptotics of solutions of stochastic equations in
infinite dimensions. In this abstract H denotes a separable Hilbert space, A denotes a
linear operator on H generating a strongly continuous semigroup and (W (t))¢>o denotes

a separable Hilbert space-valued Wiener process.

In chapter 2 we consider the mild solution (X, (t));e[o,1) of a stochastic initial value problem

a
P
|

AX dt+dW  t e (0,1]
X(0) = zeH,

where the equation has an invariant measure p. Under some conditions £(X,(t)) has a
density k(t, z, -) with respect to p and we can find the limit lim;_, ¢ In k(¢, 2, y). For infinite
dimensional H this limit only provides the lower bound of a large deviation principle (LDP)
for the family of continuous trajectory-valued random variables {t € [0,1] — X, (et) :
e € (0,1]}.

In each of chapters 3, 4 and 5 we find an LDP which describes the small time asymptotics
of the continuous trajectories of the solution of a stochastic initial value problem. A crucial
role is played by the LDP associated with the Gaussian trajectory-valued random variable
of the noise.

Chapter 3 considers the initial value problem

dX(t) = (AX@t)+F(t,X(t))dt+ G(X(t))dw(t) te(0,1]
X(0) = z€H,

where drift function F'(t, -) is Lipschitz continuous on H uniformly in ¢ € [0, 1] and diffusion
function G is Lipschitz continuous, taking values that are Hilbert-Schmidt operators.
Chapter 4 considers an equation with dissipative drift function F' defined on a separable

Banach space continuously embedded in H; the solution has continuous trajectories in the



Banach space.

Chapter 5 considers a linear initial value problem with fractional Brownian motion noise.

In chapter 6 we return to equations with Wiener process noise and find a lower bound for
liminf; o tln P{X(0) € B, X(t) € C} for arbitrary £(X(0)) and Borel subsets B and C
of H. We also obtain an upper bound for limsup,_,tIn P{X(0) € B, X(t) € C'} when
the equation has an invariant measure p, £(X(0)) is absolutely continuous with respect

to p and the transition semigroup is holomorphic.
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Chapter 1
Introduction

In section 1.1 we look at some of the literature on small time asymptotics of diffusion
processes which motivates this thesis. Section 1.2 is devoted to a list of notation. In
section 1.3 we outline the contents of the chapters. We end this chapter with a review of

some relevant theory.

1.1 Previous work motivating this thesis

The theme of this thesis is the small time asymptotics of solutions of stochastic differential
equations in a separable real Hilbert space. Let H be a separable Hilbert space. Consider

the stochastic initial value problem

dX(t) = (AX(t)+ F(t,X(t))dt + G(t, X(t)) dW(t), te(O,l],} 1)

X(0) = ¢,

where A is the infinitesimal generator of a strongly continuous semigroup (S(¢))¢>o of
bounded linear operators on H, F' is a H-valued function on [0,1] x H, G is a Hilbert-
Schmidt operator-valued function on [0,1] x H, (W (t));>0 is a separable Hilbert space-
valued Wiener process defined on a probability space (2, F, P) with associated filtration
(Ft)e>0 and € is an H-valued Fp-measurable random variable. Details on the properties of
A, F, G, £ and the image space of W (t) are omitted for the time being. The mild solution
of problem (1.1) is defined to be the solution of the equation

X(t):S(t)er/O S(t—s)F(s,X(s))ds+/O S(t— $)G(s, X () dW(s) P ae. (1.2)



for each t in [0, 1]. Of course the properties of A, F, G, £ and the solution process itself
must allow the Bochner integral and It6 integral on the right hand side of equation (1.2) to
exist. Typically one uses tools of analysis such as a fixed point theorem on an appropriate
function space to show that the mild solution exists and is unique and has a version with
continuous trajectories. Even when we know existence, uniqueness and continuity of the
mild solution, it is generally hard to quantify the behaviour of the solution at positive
times t because the distributions involved are complicated. Thus it is a consolation that
there may be a relatively simple estimate of the limiting behaviour of the solution in time

interval [0,t] as t goes to zero.

Varadhan [31] was one of the pioneers in small time asymptotics of diffusion processes. He
studied the small time asymptotics of diffusion processes in R™, for n a natural number.

In [31] Varadhan considered the solution (2¢(t))ico,1) of a stochastic initial value problem

dz(t) = b(z(t))dt +o(z(t))dB(t), te(0,1],
z2(0) = (eR",

where (B(t))>0 is a Brownian motion in R¥ for some natural number k and, among other

conditions,
1. the function b : R — R" is Hélder continuous and bounded,

2. 0 is a real n x k matrix-valued function on R"™ such that for some positive real

numbers a7 < ag we have

O”Z”J<ZZ wnjmgagz% Y(ni,...,nn) € R" and Vo € R"

=1 j=1 7=1
and

3. the distribution of z¢(t) has density y — p(t, ¢, y) with respect to Lebesgue measure
on R" for each ¢ € (0,1].

To simplify notation set a(z) := o(z) o*(z) for all x € R"™. For x and y in R™ define

1
d(z,y) := inf {/0 V), a=L(u(T))a(r))ge dr : w: [0,1] — R™ is

absolutely continuous with derivative @ and u(0) = = and u(1) = y} ; (1.3)



in this equation (-, -)g» is the usual inner product in R™. Varadhan showed that

1
%ir%tlnp(tvxvy) = —§d2(l’,y), (14)

where the convergence is uniform in x and y on bounded subsets of R".

For each € € (0,1] set 2{(t) := zc(et) for all t € [0, 1] and let z¢ be the random variable
whose values are the continuous trajectories in R" of the process (2{(t))sejo,1)- Varadhan
used the limit in equation (1.4) to obtain a large deviation principle for the family of
distributions {£(z¢) : € € (0, 1]} on the Banach space C([0, 1]; R") of continuous functions
mapping [0, 1] into R™ with the supremum norm. He showed that for closed subsets C' of
C([0,1];R™) we have
lim sup eln P{z¢ € C} < — inf J(u)
ueC

r—0 e<p

and for open subsets G we have

r—0e<lr

lim inf € In P{z¢ > — inf .
im inf €ln {zgeG}i 52(;‘7(“)

In these inequalitites P is the probability measure in the underlying probability space and

the rate function is

3 fol (u(7), a Y (uw(T))i(r))gn dr if u: [0,1] — R™ is absolutely continuous
and u(0) = ¢ and 4 is square integrable,

J(u) :==

00 for all other v € C([0, 1]; R™).
(1.5)

More recently, working in infinite dimensional separable Hilbert spaces, Fang and Zhang [13]
followed the same line of investigation as Varadhan. The framework of Fang and Zhang

is as follows:

1. there are two Hilbert spaces H and Hj such that the embedding of H into H; is
Hilbert-Schmidt and

2. there is a linear operator A on H which is the infinitesimal generator of a strongly

continuous semigroup of bounded linear operators on H and

3. (W(t))t>0 is a Hi-valued Wiener process such that the reproducing kernel Hilbert
space (Hy,|-|m,) of v := L(W (1)) is continuously embedded in H and the embedding



of H, in H; is trace class.

Fang and Zhang showed that the short time asymptotics of the continuous solution of the

equation

QL
<
I

AY dt + dW, t e (0,1], (1.6)
Y(0) = zecH

is described by a large deviation principle in trajectory space C([0,1]; Hy) with the same
rate function as the large deviation principle describing the short time asymptotics of
the shifted Wiener process (x + W (t))¢cp,1)- Fang and Zhang implicitly made use of the

exponential equivalence concept from large deviations theory.

In the paper [13] Fang and Zhang also considered the situation where there exists an
invariant measure p on H; for equation (1.6) and the transition operators on the space of
real-valued square integrable functions L?(Hi, 1) are symmetric. Under these conditions
Fang and Zhang studied the small time limiting behaviour of P{Y'(0) € B, Y (¢t) € C},
where P is the probability measure in the underlying probability space, (Y (t)).c[o,1] is the
mild solution of equation (1.6) with initial distribution ¢ and B and C' are Borel subsets
of H.

Working in a more abstract setting, Hino and Ramirez [17] were able to better Fang’s and
Zhang’s upper bound for limsup,_,,tln P{Y (0) € B,Y(t) € C} by obtaining an upper
bound for P{Y(0) € B,Y(t) € C} which holds at all times ¢ in (0,1]. While Fang’s
and Zhang’s upper bound was derived using a property specific to symmetric Markov

processes, Hino’s and Ramirez’s approach used the basic theory of Dirichlet forms.

Zhang [33] continued the investigation started in [13]. In [33] the embedding of H into H;
is still Hilbert-Schmidt but the embedding of H, into H; need not be trace class. Zhang
obtained a large deviation principle in trajectory space C([0,1]; H1) describing the small

time asymptotics of the mild solution (Yz(t)):c[,1) of an initial value problem:

dY (1) = (AY(t)+ F(Y()dt + GY(£))dW(t), e (0,1],
Y(O) = zx € H,;.

Here the diffusion function G takes values in Lo(H,, H), the space of Hilbert-Schmidt
operators mapping H, into H, and is Lipschitz continuous and bounded and the drift
function F' is Lipschitz continuous. For each € € (0, 1] set Y,(¢) := Y (et) for all ¢ in [0, 1]
and denote by Y the corresponding trajectory-valued random variable in C([0,1]; Hy).



Zhang proved that the family {Y? : € € (0,1]} satisfies a large deviation principle with

rate function
1 L . .
Z(u) = 3 inf |¢(s)|zy, ds = ¢ :[0,1] — H, is square integrable and
0
t
u(t) =z + / G(u(s))o(s)ds for all t € |0, 1]} .
0

Zhang’s proof uses the exponential equivalence concept explicitly and the Hilbert-Schmidt
embedding of H into H; plays an important role. Zhang’s result is particularly impressive
because the diffusion function G depends on the state; this makes the task of relating
the small time behaviour of (Y, (¢)) to that of (W (t)) considerably harder. Note that
if the trajectories of (Yz(t)) lie in C([0,1]; H) then Zhang’s large deviation principle in
C(]0,1]; Hy) does not automatically imply that a large deviation principle also holds in
C([0,1]; H).

1.2 Common notation

In each of the following chapters we define notation whose scope is restricted to that
chapter. However, there are some notational conventions common to all the chapters;
these we list below. In the list (E,| - ||) and (E4,| - ||1) are separable Banach spaces,
(H,({-,-),|-]) and (Hy, (-, -)1,||1) are separable Hilbert spaces, (M, M, u) and (My, M1, 1)

are measure spaces and X is a topological space.

1. Asterisk superscript The asterisk superscript * has two different meanings.

E* denotes the Banach space of continuous linear functionals on E with norm
l]|g* :=sup{|i(z)| : = € E and ||z| =1} VI € E™.

If | € E* we write
pl,x)p :=1l(zx) forall z € E.

If T is a linear operator mapping a dense subspace of H into H; then T* denotes

the adjoint operator, that is,
<T1'7 y>H1 = <$,T*y>H

for all x in the domain of T and for all y in the domain of T™*.



2. Balls For any point « € E and positive real r we define

Bg(z,r) = {yeE: |ly—z|| <r} and
Bp(x,r) = {yekE: |ly—z|<r}

If K is a subset of E and r is a positive real number we define

BE(K?T) = U BE(:E7T>'
zeK

3. Borel o-algebra We denote the Borel o-algebra of X by Bx.
4. Closure of a set If S is a subset of X then the closure of S is denoted by S.

5. Spaces of continuous functions If a and b are real numbers and a < b then (C([a, b]; E), ||-
lc(jab);E)) 18 the Banach space of continuous functions mapping [a,b] into E with

the supremum norm

1f lleap;E) = sup, IF ()] for all f € C([a,b]; E).
t€la,

6. More spaces of continuous functions If O is a bounded open subset of R™, where n

is a natural number, then

C2°(O) denotes the set of all continuous functions which map O into R and have

compact support contained in O and have continuous partial derivatives of all orders;

Co(O) is the set of all continuous real-valued functions defined on O and vanishing
on the boundary of O. This set equipped with the supremum norm is a Banach

space.

7. A continuous linear functional on C([0,1]; E) If t € [0, 1] and [ is a continuous linear

functional on E then we define
(0 @ 1)(u) :==l(u(t)) for all u € C([0,1]; E);
if x € H we define

(0 @ x)(u) := (u(t),z) forall u e C([0,1]; H).

8. Domains If A is a linear operator on H or a bilinear form on H we denote the linear



10.

11.

12.

13.

14.

15.

16.

subspace of H on which A is defined by D(A).

Embedding If E is continuously embedded in F; we write

E‘—>E1.

Identity operator Ig denotes the identity operator on F.

Indicator function If B is a set in the o-algebra M then

1B(CL‘) =

1 ifx e B,
0 ifze M\B.

Kernel If T : E — Ej is a bounded linear operator then the kernel of T is denoted
by
kerT :={z € E: Tx = 0}.

Law or distribution If Z is a random variable then £(Z) denotes the distribution of
Z.

Bounded linear operators (L(E, E1), ||| L(g,k,)) denotes the Banach space of bounded

linear operators mapping F into E; with the operator norm

I\ g,z =sup{||Tz[1: * € K and ||z|| =1} for all T € L(E, E).

Linear operators that are Hilbert-Schmidt (Lo(H, H1), (-, ) Lo(r,m1)s |+ | Lo(r,1y)) de-
notes the Hilbert space of Hilbert-Schmidt operators mapping H into H; with inner
product

<T7‘9>L2(H,H1) = Z(T@k,56k>1, S andTELQ(H,Hl),
k=1

where {ej : k € N} is any orthonormal basis of H.
LP spaces If p € [1,00) then (LP(M, M, p; H), || || Lo (a0, 1)) denotes the Banach
space of measurable functions u : (M, M) — (H, By) such that [, |u(z)P du(z) <

oo and we define

el o (v, p s 1) = (/M ju(@)|P du(fﬂ)) for all u € L*(M, M, pi; H);



strictly speaking we refer to the space of equivalence classes of functions which are
equal p a.e.. We write LP(M, M, 1) when the image space of the functions is R.
When the o-algebra M or the measure p are obvious we sometimes omit them from

the symbol as well.

L>®°(M, M, 1) denotes the set of (equivalence classes of p a.e. equal) measurable
functions u : (M, M) — (R, Br) such that the essential supremum of |u| with respect
to w is finite.

17. Orthogonal complement If U is a subset of H then
Ut :={zecH: (z,u) =0 forallucU}

is the orthogonal complement of U.

18. Product o-algebra and product measure M @ M; denotes the product o-algebra of
subsets of the cartesian product M x M; and p X u; denotes the product measure

on M ® M or some sub o-algebra.

1.3 Summary of the chapters and our results

We now summarise the substance of the following chapters. In this section H denotes a
separable Hilbert space. To simplify notation, we overuse some notation where there is no

ambiguity.

In chapter 2 we consider the solution (X, (t)).c[o,1 of the initial value problem

ISH
>
I

AXdt+ dw, te (0,1], (1.7)
X(0) = z€eH,

where the linear operator A on H generates a strongly continuous semigroup and (W (t))>0
is a H-valued Wiener process. We assume that equation (1.7) has an invariant measure
p and that the transition semigroup on L?(H, i) is symmetric and strongly Feller. Then
for each = in H and each ¢ > 0 the distribution of the random variable X, (t) is absolutely
continuous with respect to invariant measure p and has a continuous Radon-Nikodym
derivative k(t,xz,-). We show that under some conditions the small time asymptotics of
the Radon-Nikodym derivative k(t,z,-) resembles the asymptotics found by Varadhan

for p(t,¢,-); this is Proposition 2.2. Our conclusion is that one cannot simply adapt



Varadhan’s methods in R” to find a large deviation principle in C([0,1]; H) for the short
time asymptotics of (X(t)).

In chapter 3 we find a large deviation principle in trajectory space C([0,1]; H) which
describes the small time asymptotics of the solution (Xy(t)):c[,1) of a stochastic initial

value problem in H:

dX(t) = (AX(t)+ F(t, X (1)) dt + G(X (1) dW (), te (0,1],
X(0) = ze€H.

Here (W (t)):>0 is a separable Hilbert space-valued Wiener process and v := L(W (1))
has reproducing kernel Hilbert space H,, A is the infinitesimal generator of a strongly
continuous semigroup of bounded linear operators on H, F': [0,1] x H — H is Lipschitz
continuous in H uniformly in [0, 1] and the diffusion function G : H — Lo(H,, H) is
Lipschitz continuous and not necessarily bounded.

There is no need to work in a Hilbert space containing H via a Hilbert-Schmidt embed-
ding, as Zhang [33] did. We follow the method which Peszat [25] originally employed
to obtain a large deviation principle describing the small noise asymptotics of solutions
of stochastic differential equations. To clarify the difference between our problem and
Peszat’s problem: in our small time asymptotics problem, for each € € (0,1] we consider

the process (Xg(t)):ejo,1) which is the continuous solution of

AX() = e(AX(t) + Flet, X(t))) dt + 2 G(X (1) dW (1), te (0,1],
X0) = zeH;

in Peszat’s small noise asymptotics problem, for each e € (0,1] Peszat considered the

process (Y;(t)):ec(0,1) Wwhich is the continuous solution of

AY<(t) = (AY(t)+ F(t,Y(t)dt + 2 GY () dW(t), te (0,1],
Y(0) = =z¢€H.

We only need to make small modifications to each step of Peszat’s method. The fact
that we work just with Hilbert spaces, unlike Peszat who also had a more general Banach
space to deal with, makes the assumptions we need less restrictive compared to those
Peszat needed; however since the small time asymptotics problem puts the parameter €
which goes to zero in front of the drift terms as well as the noise term in the stochastic

differential equation, the assumption we make about the strongly continuous semigroup



generated by the unbounded linear operator A seems more restrictive. Our main result is
the large deviation principle in Corollary 3.4 for the family of C([0, 1]; H)-valued random
variables

{(t €[0,1] — X, (et)(:)) : e € (0,1]}.

In chapter 4 we study the small time asymptotics of the solution of a stochastic equation:

Q
>
I

(AX + F(X))dt + dW, te(0,1], } 18)

X(0) = z€E,

whose dissipative nonlinear drift function F' : £ — F is defined in a separable Banach space
FE continuously embedded in H. This drift function might, for example, arise in a stochastic
reaction-diffusion equation, the reaction rate being a decreasing polynomial function with
degree greater than one in the concentration and E being a space of continuous functions on
the bounded domain where the reaction is taking place. Fantozzi [14] investigated the small
noise asymptotics problem for this type of equation but, unlike in chapter 3, we cannot
simply modify the methods used in the small noise asymptotics problem to find a solution
for our small time asymptotics problem. Instead we use exponential equivalence to show
that if a large deviation principle in trajectory space C([0,1]; E') describes the small time
asymptotics of the Ornstein-Uhlenbeck process which is the solution of equation (1.8) with
F identically zero, then a large deviation principle with the same rate function describes
the short time asymptotics of the solution of equation (1.8) when F' is nonzero. This is
Proposition 4.2. Proving a large deviation principle in C([0,1]; E) to describe the short
time asymptotics of the Ornstein-Uhlenbeck process is not as straightforward as one might
hope despite the fact that we are dealing with a family of Gaussian random variables in
C(]0,1]; E') for which the large deviation principle in C([0,1]; H) is known. Working in
a general separable Banach space E is what complicates matters. To prove the large
deviation principle in C([0, 1]; E') we assume that the Wiener process (W (t)) is E-valued.
We also impose an additional condition on the strongly continuous semigroup generated
by the unbounded linear operator A in order to ensure uniform tightness of a family of

Gaussian random variables in E. Our main result is Corollary 4.12.

In chapter 5 we need no new ideas to obtain a large deviation principle in trajectory
space C([0,1]; H) which describes the small time asymptotics of the solution of a stochas-
tic equation with unbounded linear drift on H and additive fractional Brownian motion
noise. Our framework is that of Duncan, Maslowski and Pasik-Duncan [12]. We employ

essentially the same method we used in the second half of the previous chapter for the Ba-

10



nach space-valued Ornstein-Uhlenbeck process; our task is now simpler because we work
in a Hilbert space and the only difference compared to Wiener process noise is in the

technical details. The large deviation principle is in Theorem 5.1.

In chapter 6 we return to equations with Wiener process noise and study the small time
asymptotics of the probability of moving from one set to another P{X(0) € B, X(t) € C}.
If we have a lower bound for liminf; .o ¢1n P{X,(¢t) € C'} for all initial states  in H then
we can obtain a lower bound for liminf; ,o¢In P{X(0) € B, X(t) € C} when L£L(X(0)) is
arbitrary and B is any Borel subset of H. Our lower bound is in Theorem 6.1.

Our upper bound for P{X(0) € B, X(t) € C} in Theorem 6.3 applies when (X (t)):c[0,1]
is an Ornstein-Uhlenbeck process and £(X(0)) is absolutely continuous with respect to
invariant measure y and the semigroup of transition operators on L?(H, ) is holomor-
phic. In the case when £(X(0)) = p and the transition operators are symmetric our upper
bound agrees with the upper bound of Hino and Ramirez [17]. In fact we obtain Theo-
rem 6.3 by adapting the method Hino and Ramirez used. Compared to the upper bound
of limsup,_,otIn P{X(0) € B, X(t) € C'} when the transition semigroup is symmetric, the
upper bound when the transition semigroup is holomorphic is increased by a factor which

depends on how nonsymmetric the transition semigroup is.

All of the propositions, theorems and corollaries we have referred to in this section contain

results that appear to be new.

1.4 Some background theory

In this section we remind the reader of some theory which will be used in the following
chapters. No proofs are given; the books by Da Prato and Zabczyk [10] and [11] provide
a comprehensive development of the theory. Throughout this section let (E, || - ||) be a
separable Banach space and let (H,(-,-),|-|) and (Hi,(,*)1,| - |1) be separable Hilbert
spaces and let (2, F, P) be a probability space.

1.4.1 Gaussian measures on a separable Banach space

Let v be a probability measure on the measurable space (E,Bg). The measure v is
symmetric Gaussian if and only if each continuous linear functional [ € E*, considered as
a random variable on (E, Bg, v), has symmetric Gaussian distribution #1=! on (R, Bg). A
fundamental property of symmetric Gaussian measures on (E, Bg) is stated in Fernique’s

theorem.

11



Theorem 1.1 (Fernique’s theorem. See [10, Theorem 2.6] for a proof) Ifv is a

symmetric Gaussian measure on (E,Bg) and A > 0 and r > 0 satisfy

1-— Z/(EE(O,T))
» < 2(Br(0,7)) ) +32hrt < -1

then
2

/ All® dv(x) < el6M® 4 267.
E ec—1
If v is symmetric Gaussian then its covariance operator @) is the positive definite and

symmetric bounded linear operator from E* into E such that
[ etk pla ) pdvia) = sl Ql)e Vi b € B
E

that this definition makes sense follows from Fernique’s theorem. Hence the characteristic

function of symmetric Gaussian v is
(1) := / et exba)e gy (z) = em2 2<bQDE ] € ¥,
E

Since a probability measure on (F, Bg) is uniquely determined by its characteristic func-
tion, a symmetric Gaussian measure on (E, Bg) is uniquely determined by its covariance
operator. The convolution of the point mass at x € E and a symmetric Gaussian mea-
sure on (F,Bg) is a Gaussian measure with mean = and with covariance operator of the

symmetric Gaussian measure.

If v is symmetric Gaussian there is a unique Hilbert space H, such that the embedding

1: H, — FE is continuous and
/ el 2)% dv(z) = ||l o z||%[;f for alll € E*.
E

H, is called the reproducing kernel Hilbert space of v. Further details on reproducing

kernel Hilbert spaces can be found in [10, Section 2.2.2].

Now let v be a symmetric Gaussian measure on (Hy, By, ). In the Hilbert space setting we
modify the definition of the covariance operator: the covariance operator of v is defined

to be the bounded linear operator () on H; such that

/ (x,u)1{x,v)1 dv(z) = (Qu,v)1 Vu, v € Hy.
Hy
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The family of covariance operators of symmetric Gaussian measures on (Hi, By, ) is pre-
cisely the family of positive definite, symmetric, trace class operators on Hy. Thus Q% is
a well defined positive definite, symmetric, Hilbert-Schmidt operator on H; and one can
show using [10, Proposition B.1] that H, = Q%(Hl) and the norm |- |g,
lu|g, = |Q_%u|1, where Q_%(u) is taken as the element of Q_%{u} which belongs to the

orthogonal complement of the kernel of Q%.

in H, is given by

1.4.2 The stochastic integral with respect to a Wiener process

Let v be a symmetric Gaussian measure on (Hi, By, ) with covariance operator () and let
(W(t) : (Q,F,P) — (H1,Bm,))t>0 be a Q-Wiener process; this means that

1. W(0) =0 P ae.,

2. L(W(t) —W(s)) is symmetric Gaussian with covariance operator (¢t — )@ whenever
0<s<t,

3. W(t1)—W(to),...,W(tn) — W (tn—1) are independent whenever n > 2 and 0 < ¢y <
<. <ty

4. and the trajectories t — W(t)(w), w € Q, are continuous H;-valued functions.

Associated with (W (t))¢>0 is a filtration (F;)i>0 such that W (t) is Fi-measurable for each
t > 0 and W(t) — W(s) is independent of Fs whenever 0 < s < t. Set Z := {B €
F : P(B) = 0} and for each t > 0 set Gy := o(W(r) : r € [0,t]), that is, the o-algebra
generated by the random variables W(r) for all » € [0,¢]. In this thesis we may take
Fi =0(2UG,) for each t > 0. If we require the filtration (F;);>0 to be right continuous
we may take F; := N> 0(Z2 U QH%) for each ¢ > 0. We specify the filtration only when

it is important for the analysis.

Fix a positive real number T. The (F;)-predictable o-algebra of subsets of [0,7] x Q, Pr,
is generated by sets of the form {0} x B, where B € Fy and (a,b] x B, where 0 < a < b < T
and B € F,.

Let H, be the reproducing kernel Hilbert space of v and denote the embedding of H, into

Hj by i. An elementary process is a finite linear combination of terms of the form

L(ap)xBSt

where 0 < a < b<7T and B € F, and S is a bounded linear operator mapping H; into H.
Note that Si is a Hilbert-Schmidt operator mapping H, into H. One can show that the

13



elementary processes form a dense subspace of L2([0,T] x Q, Pr, A x P; Lo(H,,, H)), where
A is Lebesgue measure on Bjg 7] and A x P is the product measure of A and P restricted

to Pp. Any elementary process can be written in the form

n—1
(I)(Sv (AJ) = Z 1(tk,tk+ﬂ(8)¢)k(w) © i? (19)
k=0

where n is a natural number and 0 = t)p < t; < --- < t, = T and for each k from 0 to
n—1, @ is a F;, -measurable simple function in L(H;, H). For the elementary process ®

in equation (1.9) and each t € [0, 7] we define the Ito integral
t n—1
/ O(s) dW () 1= Y k(W (tpyr AL) — Wty At)). (1.10)
0 k=0

The process ( fg ®(s) dW(s))iecjo,1) 1s a continuous square integrable martingale in H and

we have )

E

T T )
/0 o(s)dW(s)| | = E / 1012, 1, 1) -

Equation (1.10) is a linear isometry from a dense subspace of L2([0,7] x Q,Pp, A x
P;Ly(H,, H)) into the space of continuous square integrable martingales and we define
the stochastic integral of an arbitrary process in L?([0,T] x Q,Pr, A\ x P; La(H,, H)) by

extending the domain of the isometry.

If @ :([0,7] x Q,Pr) — (La(Hy, H), Br,(m,, 7)) is measurable and satisfies

T
P OO, ds < 0} =1

then the stochastic integral of ® with respect to W can be defined by the localization
procedure. For details see the localization lemma [10, Lemma 4.9] and the paragraph

following that lemma.

1.4.3 Stochastic convolution and Ornstein-Uhlenbeck process

The definitions of the previous subsection hold in this subsection. Let A: D(A) C H — H
be the infinitesimal generator of a strongly continuous semigroup (S(t))s>0 of bounded
linear operators on H. If ® : ([0,T] x Q,Pr) — (La(Hy, H),Br,(m,,m)) is a measurable
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function then the stochastic convolution process is the process of It6 integrals
t
/ S(t—s)®(s)dW (s) for all t € [0,T],
0

provided the It6 integrals exist. Stochastic convolution processes are of interest to us
because one appears in the definition of the mild solution of a stochastic initial value
problem.
Let

F:([0,T] x H,Bjg) @ By) — (H,Bg)

and
G : ([0, T] x H,Bjo,r) ® Bu) — (L2(Hy, H), Bry(a,,m))

be measurable functions and let £ be a Fg-measurable H-valued random variable. By

definition, the mild solution (X¢(t))¢cpo,7) of the initial value problem

dX(t) = (AX()+ F(t, X(1)dt + G(t, X(£))dW(t), te€ (0,T),
X(0) = ¢

satisfies the integral equation
¢ ¢
X(t) = S(t)¢ +/ S(t—s)F(s,X(s))ds +/ S(t—s)G(s,X(s))dW(s) P a.e.
0 0

for each ¢t € [0, 7). Thus the limiting behaviour of stochastic convolution processes is an

important consideration when studying the small time behaviour of mild solutions.

We can simplify the analysis by focusing on the initial value problem where (W (t)):>0 is

a H-valued Wiener process, F' is identically zero and G is the embedding 7 of H, into H:

o
>
I

AX dt+dW, te(0,T) (1.11)
X(0) = ¢

Notice that, by convention, the operator ¢ is omitted from equation (1.11). The mild

solution of this initial value problem is an Ornstein-Uhlenbeck process:
t
Xe(t) = S(0)¢ + / S(t—s)idW(s), te[0,T].
0

From the definition of the It6 integral, fg S(t — s)idW(s) has symmetric Gaussian distri-

15



bution with covariance operator
t
Qix = / S(s)QS(s)*xds, x€ H.
0

We say that a probability measure p is an invariant measure of a stochastic differential
equation if the mild solution with initial distribution p also has distribution p at all times
1
Li2
t>0. If [7]S(s)Q2 HLQ(H,H) ds < oo then

Qoo = /000 S(s)QS(s)*xds, x€ H,

is the covariance operator of a symmetric Gaussian invariant measure p for equation (1.11);
thus if £(&) = p then L£(S(¢)€ + fot S(t—s)idW(s)) = p for all t > 0. When the invariant

measure f exists, for each t € [0, T] the operator
(Ri6)() = E |[o(S(t)a + [;S(t — s)idW(s)| , @€,

on the bounded, Borel measurable, real-valued functions ¢ on H extends to a bounded
linear operator on L?(H, 1) with operator norm equal to 1. These operators on L%(H, p)
form the strongly continuous semigroup of transition operators. If, in addition, S(t)(H) C
Qt% (H) for all ¢ > 0 then the semigroup of transition operators is said to be strongly Feller.
More details on Ornstein-Uhlenbeck processes and invariant measures can be found in [10,
chapters 5 and 11] and [11, chapter 10].

1.4.4 Large deviation principle

Basic large deviations theory provides useful tools for finding the short time asymptotics
of solutions of stochastic differential equations. We outline some ideas here in the context

of the separable Banach space E.

Suppose the function Z : E — [0, 00| is lower semicontinuous. The family of probability
measures {y. : € € (0,1]} on (F, Bg) is said to satisfy a large deviation principle with rate

function Z if for each closed set F' C E we have the upper bound

lim sup elnu(F) < — inf Z(z) (1.12)
=0 cc(0,r) zcF
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and for each open set G C E we have the lower bound

lim inf el > — inf Z(x). 1.1

liny Inf e npe(G) 2 — inf I(z) (1.13)
If {Z <r} is a compact subset of E for all r € [0, 00) then 7 is called a good rate function.
We will only consider rate functions that are good. If 7 is a good rate function then the
upper bound condition in (1.12) is equivalent to the Freidlin-Wentzell condition:

given r € (0,00) and 6 € (0,00) and v € (0, 00) there exists ¢y € (0,1] such that
we(BE({Z <r},0)) >1— e’ forallee (0, €o].

The lower bound condition in (1.13) is equivalent to the Freidlin-Wentzell condition:

given x € F and ¢ € (0,00) and «y € (0, 00) there exists ey € (0, 1] such that

—I(z)—v

pe(Bg(x,0)) > e « for all € € (0, €o].

Of special interest to us is the following large deviation principle. Let p be a symmetric

Gaussian measure on (E, Bg) and let (Hy, |- |g,) be its reproducing kernel Hilbert space.

Theorem 1.2 The family of symmetric Gaussian measures
{ue(B) == p(e2B) VBeBg:ee (0,1}

satisfies a large deviation principle with rate function

1.2
I(z) == 2|x|H“ @€ Hy
00 .o € E\H,,.

A proof of this theorem is given in [10, Section 12.1.2]. For two applications see the end
of section 3.4 and Corollary 5.3.
Suppose we have two families of random variables in E: {{ : € € (0,1]} and {7, : € €
(0,1]}, defined on (2, F, P). The families are said to be exponentially equivalent if for
each § > 0

lim eIn P& — | > 8} = —oc.

Theorem 1.3 If {¢ : e € (0,1]} and {n. : € € (0,1]} are exponentially equivalent then
{L(&) : € € (0,1]} satisfies a large deviation principle if and only if {L(n.) : € € (0,1]}
satisfies a large deviation principle and these two large deviation principles have the same

rate function.
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This basic result is particularly useful to us when combined with Theorem 1.2. For a proof
of Theorem 1.3 see [18, Lemma 27.13].
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Chapter 2

Small time asymptotics via

densities

2.1 Introduction

We remarked in chapter 1 that Varadhan [31] investigated the small time asymptotics of
an R"-valued diffusion process (2¢(t)):c[o,1] With initial point ¢ € R". He used the limiting
behaviour of the probability density p(t,(,-) of z¢(t):

1
lim tIn p(t, ¢, y) = —5d*(C,y) (2.1)

uniformly for ¢ and y in any bounded subset of R™; the function d is defined in equa-
tion (1.3).

In the setting of an infinite dimensional separable Hilbert space H, let (X (t))tcp,1) be

the mild solution of the stochastic initial value problem

(2.2)

dX = AXdt+dW te(0,1]
X(0) = z€H;

we define A and W in section 2.2. Only in special situations is the distribution of X,(t) ab-
solutely continuous with respect to a natural reference measure on H at all times ¢ € (0, 1].
In this chapter we consider one such special situation, namely when an invariant measure
p exists and the transition semigroup is strongly Feller and symmetric on L?(H, u). We
shall see that even when we can obtain the small time limiting behaviour of the prob-

ability density of X,(t), it may not lead to the large deviation principle for the small
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time asymptotics in trajectory space C([0,1]; H). The density k(¢,z,-) in equation (2.5)
is valid under assumptions (H1) and (H2) and we have the small time limit in equation
(2.11) when assumption (H3) also holds. The form of the limit in equation (2.11) is not
very different from that in equation (2.1). However equation (2.11) only enables us to

obtain the lower bound of the large deviation principle in C([0,1]; H).

2.2 Small time limiting behaviour of densities

Let (H,(-,-),|-|) be a separable infinite dimensional Hilbert space. Let A: D(A) C H — H
be the infinitesimal generator of the strongly continuous semigroup (S(t)):>0 of bounded
linear operators on H. We use the symbol A (m,C) to denote a Gaussian measure on
(H, Bpr) with mean m and covariance operator C. Let (W (t) : (Q,F, P) — H);>0 be an H-
valued Wiener process and let the distribution of W (1) be v = N(0, Q), where ker Q = {0}.
The reproducing kernel Hilbert space of v is denoted by (H, = Q%(H), ||z, = ]Q_% 1)
and the embedding of H, into H is denoted by

1: H, — H.
Suppose that
Qoo ::/ St)QS*(t)xdt, =z € H,
0

defines a trace class operator and set p := N(0, Qo). Then for each ¢ > 0 the operator

t
Qi ::/ S(s)QS*(s)xds, =€ H,
0
is trace class and ker @; = {0}. The mild solution of the initial value problem (2.2) at
time ¢ € (0, 1],
t
Xo(t) == S(t)x + / S(t—s)idW(s), (2.3)
0

has distribution N'(S(t)x,Q;). Define the strongly continuous semigroup (R¢):c(o,1] on
L?(H, ) by

(Ri)(x) == /H o(y) AN (S(t)z, Q)(y) for puae. = € H

and for all ¢ € L*(H, ;). We assume that
1
(H1) R is strongly Feller, that is, S(¢)(H) C Q7 (H) for each positive time ¢.
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Chojnowska-Michalik and Goldys have shown in [6, Proposition 2] that
_1 1
So(t) = Qu’S(t)QRE& , t>0,

defines a strongly continuous semigroup of contractions on H. Some consequences of

assumption (H1) are that for each ¢ > 0
1 1
L. Q5%(H) = Q} (H), which is equivalent to |[So(t)||(z,z) < 1 and
2. So(t) is Hilbert-Schmidt.

As shown in [11, Lemma 10.3.3], it follows that for each ¢ > 0 and each € H the Gaussian
measure N (S(t)z, Q) is absolutely continuous with respect to u and its Radon-Nikodym
derivative 70[/\/(8&2%@‘) is
AN (S(t)z, Q1)

) = (det(Tn = 00)F exp | 5 (T — €)' Q (0, QS (1))

1
2

+ (I — ©)7'Q2 S(t)z, Q)

Y, ng%w (2.4)

- %<®t(IH - Gt)_lQo_o%
for p a.e. y € H, where ©; := Sy(t)S;(t). We remark that the second and third terms
appearing in the argument of the exponential function in equation (2.4) are defined for only
i a.e. y, in terms of limits (see for example [11, Proposition 1.2.10]). An equation similar
0 (2.4) holds under a weaker condition than (H1) [6, Theorem 2] but, for simplicity, we
work with (H1).

We make another assumption:

(H2) R; is symmetric for each t > 0.

Chojnowska-Michalik and Goldys [7, Lemma 2.2] have shown that symmetry of R, is
equivalent to symmetry of Sy(t) and this allows us to prove there is a continuous version

of the Radon-Nikodym derivative in equation (2.4).

Proposition 2.1 The symmetry of R; implies there is a continuous version of the Radon-
Nikodym derivative W, which we denote by k(t,x,-):

k(t,z,y) = (det(Iy — So(2t))) 2 x

exp |5 1Q, Sl +(Q: *S(t/2w, Q; S5(t/2)y) — 51Q: *S(0l?| (25)
forally e H.
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Proof. We have 0, = Sy(t)S;(t) = So(2t) thus

=
—
o
=2}
~—

(det(Iy — ©,))"2 = (det(Iy — So(2t))) 2.
The operators )
11
J(t) = Qx"Qf , >0,
are bounded linear bijections and we have
11
JH ) =Q,%Q%, t>0.
The identity Qoo = Q1 + S(t)Qo0S*(t) yields
J)J*(t) = Ig — So(t)S5(t) =Ig — Oy fort >0,

thus
(Ig — @t)_1 = (J_l(t))*J_l(t) for t > 0. (2.7)

From equation (2.7) we have

(In — ©)1Qx2 S(H)r, Qx> S(t)a) = (J 1 (HQx2 S(t)x, T L (1)@ S(t)a)
— Q. Sl (2.8)

The other two terms in the argument of exp in equation (2.4) are defined in terms of
limits. Let (fx) be an orthonormal basis of H made up of eigenvectors of Q. For each

natural number n define

n

Pz =Y (x,fi)fe forallz e H.
k=1

In the following expressions (ny) denotes some strictly increasing sequence of natural
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numbers. We have

(41 — ©1) '@y, Q)

1 1 1 1
— kli)Il;Q((IH - @t)_lef Qoo2 nkya @t2 Q002 Pnky>

_1 _1
= lim (I = 00) ' Qu* S() P,y Qo S(t) Payy)

= (I — 9 Q=2 5(1)y, Qe S(t)y)

_1 _1
kliIl(}o(@t(IH - @t)il 002 Pnky7 QOO2 Pnky> 9 M a.e. y € H7

= Q. Sl (2.9)

We have
(In ~ 0 QIS(0)r, @xty) = Jim (Qu Py (I — ) ' QFS(0)r,y) . o y € I,

= lim (I — €)' QIS(1)x, Qa Pryy)

— lim (Zn — ©)7 QI S(t/2)2, Solt/2)Qx Payy)

= lim (I — @t)_lQ;o%S(tﬂ)x, Q;%S(t/2)Pnky>

= (U~ ©)7'Q 5(t/2)r, Q= S(1/2)

= Q) S(t/2)e, Q; 2 S(t/2)y). (2.10)

Substituting the expressions from equations (2.6), (2.8), (2.9) and (2.10) into the right
hand side of equation (2.4), we get the formula for k(¢, z, y) shown in equation (2.5). This

completes the proof.

When = and y belong to Q%(H) we can write k(t,z,y) in terms of only ¢ and the
eigenvalues of Ag, the infinitesimal generator of (Sp())i>0; then it is straightforward
to find limy_,gtInk(t,z,y). The results obtained in this way can be of interest only
if M(Q%(H)) = 1. We now introduce a further assumption to ensure M(Q%(H)) = 1
Chojnowska-Michalik and Goldys [7, Theorems 2.7 and 2.9] showed that the symmetry of
R; implies that

N

So(t) =Q 2S(1)Qz , >0,

defines a strongly continuous semigroup of symmetric contractions on H and there is an

isometric isomorphism U : H — H such that
So(t) =USy(t)U™"  for all t > 0.
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Hence, like So(t), Sg(t) is a Hilbert-Schmidt strict contraction for each ¢t > 0 and the
infinitesimal generators Ag of (Sg(t)) and Ag of (Sp(t)) are related by

D(Ag) = U(D(Ap)) and Agx = UAgU ' for z € D(Ag).

Since (Sg(t)) is a compact, symmetric semigroup of contractions, Ag is self-adjoint and

its spectrum consists of real eigenvalues
0>—-a1 2 - >—az>---

where —a; — —o0 as j — oo (see [19, Theorem 13 in chapter 34] and [24, Theorems 2.3
and 2.4 in chapter 2]). We have —a; < 0 because e~ = ||Sq(t)||p(m,m) < 1 for each
t > 0. By [24, Theorem 3.3 in chapter 2], Aél is compact as well as symmetric and hence

there is an orthonormal basis (gj) of H composed of eigenvectors of Ag:
Aggr = —aggr  for all k € N.

We assume that
(H3) Aél is trace class, that is, > o0 - < o0.

A

Chojnowska-Michalik and Goldys [7, Theorem 5.1] showed that M(Q%(H )) = 1 if and only
if -
| 15001 s < .

where || - ||z, (m,m) denotes the Hilbert-Schmidt norm. We have

00 oo
| 180yt = [ 3" ISata?de
0 0 k=1
= > | Isaml ar
k=170
= Z/ e 2okt gt
k=10
_ ii
1 20%

Thus assumption (H3) is equivalent to the assumption that M(Q%(H ) =1.
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Proposition 2.2 Under assumption (H3) we have for all x and y in Q%(H)
. 1 _1 2
}/m&tlnk‘(t,x,y) :_§|Q 2($_y)| (211)

and convergence is uniform for Q_%m and Q_%y in any compact subset of H.

Remark In the example following the proof we show that equation (2.11) does not
necessarily hold if x — y is in Q%(H) but z and y are in H\Q%(H)
Proof.

Assumption (H3) is sufficient (but not necessary) to ensure that

%ir%tln det(Iy — S()(zt)) =0.

We have
tindet(Igy — So(2t)) = tln H(l _ o205t
j=1
= Yt e, >0
j=1

We can write for ¢t > 0

o, t
tn(l =) = P ey

and by L’Hopital’s rule

—(In(1 — e 2041))2(1 — g2t
lim¢ln(l — e 2% = lim (In(1 —e _)3 ( e )
t—0 t—0 2avje— 20t

= 0 foreachjeN (2.12)

Since the function x € (0,00) — zIn(1 —e™*) is bounded we have

o0

tindet(Ig — So(2t)) =

j=1
— 0 ast—0 (2.13)

2a;tIn(1 — e~ 24t)

2aj

by equation (2.12) and Lebesgue’s dominated convergence theorem.

It remains to find the limit of ¢ times the argument of the exponential function in equation
(2.5).
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Let t > 0. We have

Qirx = /OtS(Qr)Qxdr

t
1 — =
= Q2/0 AQSQ(QT)AQlQ%IdT

1 1 [td IRt
= 2Q2/0 J(SQ(%)AQ Qzx)dr
1 1 1 1
= 5Qa(SQ(zt)Ag;Qa:c - A5' Q)
1

= 5Q%(IH — So(26)(—Ag)'Q2x, we H.
Substituting x = Qféy into this equation, where y € Q%(H)7 we have
QQUQ Iy = J(In — Sa(20))(~Ag) 'y for y € Q3 (M) (2.14)
By [7, Proposition 2.10]
QF (H) = Q3 (D(\/~4g)) fort >0, (2.15)

1 1
therefore Q_%Qf is a bounded linear operator with range D(\/—Aq). Since Q_%Qf is

1
one to one and has a dense range, its adjoint (Q_%Qf)* has the same properties. From

equation (2.14) we have

1 1 1 L 1
Q2R (Q72Q¢7)" = 5(n — Sq(26))(=Ag) ™ (2.16)

notice that, since [|Sq(2t)|rm,m) < 1, (Ig — Sq(2t)) is invertible and the range of the
operator in equation (2.16) is D(Ag). Taking inverses on both sides of equation (2.16) we

have

1 _1
(@Q72Q7)™)"Q Q2w = —2(In — Sp(21)) ' Agr .z € D(4g). (2.17)
Let » > 0. Then since Ag is self-adjoint,

Sq(r)(H) € D(Aq).
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Hence for u,v € H equation (2.17) yields

—2((I — Sg(20) M AgSa(ru, So(rv) = ((Q72Q7)™)*Q; *QESq(r)u, So(r)v)

= (Q7S(NQFu, Q2 S(MQiY).  (2.18)

The expression on the right hand side of equation (2.18) appears in equation (2.5) when
x and y are both in Q%(H ). The expression on the left hand side of equation (2.18) can
be written in terms of the eigenvalues (—cy;) of Ag.

Recall that (gy) is an orthonormal basis of H such that Aggy = —oygy for each k € N.
Setting ug := (u, gx) and vg := (v, g) for k € N, we have from equation (2.18):

HQ, 2 S(H/2)Q%u, Q; PS(H/2)Q4v) = —2t((Tn — So(20) AgSa(t/2)u, So(t/2)v)

o
= 2t Z(l — e 2oty TL (o) e Ry
k=1

= 20t
k
= D g o Uk (2.19)
k=1
o
— Zukvk = (u,v) ast—0, (2.20)
k=1

and the convergence is uniform for v and v in any compact subset of H. The uni-
form convergence on compact sets is because for any compact set K C H we have
sup{zz?in(u,g])2 cu € K} — 0 as n goes to infinity.

Similarly we have

1R SO = Y
k=1
oo
— up = |uf*> ast—0, (2.21)
k=1

and the convergence is uniform for u in any compact subset of H.
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Finally, using equations (2.13), (2.20) and (2.21), we have for z and y in Q%(H)

lim — (11, 2 ()af? — 20(Q, 2 S(t/2)x, @, 2S(1/2) + 11Q, *S(1)yP)

5@ P~ 2(Q e, Q Hy) + @ hyP)

1, 1 _1
= _§|Q 21‘—@ 2y|27

%E%tln k(t,x,y) =

and the convergence is uniform for Qféa; and Qféy in any compact subset of H. This

completes the proof.

We now consider an example where assumptions (H1), (H2) and (H3) hold.
Example. Let [ € (0,00) and let H = L?((0,1)) with the usual inner product {u,v) :=
fol u(t)v(t) dt for all uw and v € H. Define the operator (A, D(A)) on H by

Au = " forallu € D(A) where
D(A)

{u € L*((0,1)) : w and u’ are absolutely continuous and

u” € L2((0,1)) and lim u(t) = limu(t) = 0} .

t—0 t—l

As shown in [32, Proposition 1 of section 3.1], (4, D(A)) is a self-adjoint operator on H
and generates the strongly continuous semigroup (S(¢)):>0 of symmetric bounded linear

operators on H:

oo
S(t)u := Z e !y eplem, uwe€H, t>0, (2.22)

m=1

{em(y) = \/?sin <@) , ye(0,), me N}

is an orthonormal basis of H and

where

2, 2
Ay, 1= TFZT for all m € N.
Moreover we have
Ae,, = —ame,, for all m € N.
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As shown in [32, Theorem 2 of section 3.1], we have

D(A) = {ueH: Z a2 (u, ep)? < 00} and
m=1

Au = —am (U, em)en for all u € D(A).
m=1
From these equations we see that A : D(A) — H is one to one and onto.
Define
[e.e]
Qu = Z m (U, em)em , uw€EH, (2.23)
m=1
where ¢, > 0 for all m € Nand ) °_ | gm < 0.
It is straightforward to show that

t
Qix ::/0 S(r)QS(r)zdr, z€H, (2.24)

defines a positive definite, symmetric, trace class operator on H for all ¢ € (0,0¢], in
particular the measure p := N (0, Q) exists.

Since ) commutes with S(t) for all positive ¢, [7, Theorem 2.4] tells us that the transition
semigroup (Ry)¢>0 on L2(H, ;1) consists of symmetric operators; hence assumption (H2) is
satisfied.

We have Sg(t) := Q_%S(t)Q% = S(t) for all t > 0 and, by inspection, A~! is trace class;
hence assumption (H3) is satisfied. )

By [10, Proposition B.1], for each positive ¢t we have S(t)(H) C Q7 (H) if and only if there

is a positive real number ¢; such that
1
|S(t)z| < ¢t|Qf x| forall z € H. (2.25)

Using equations (2.22) and (2.23) in equations (2.24) and (2.25), one arrives at the con-

clusion that assumption (H1) is satisfied if and only if

—2ayt
sup HE " <o for each t > 0. (2.26)
keN gk

For example, inequality (2.26) is satisfied when g := (ag) ™" for all k € N and r > %

We now assume that inequality (2.26) is satisfied. Let xz and y be vectors in H and set

xy = (z,e) and yi := (y, e) for all k in N. We shall show that equation (2.11) does not
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necessarily hold for x and y in H\Q%(H) such that z —y is in Q%(H) We have
%E}%tlnk(t, x,y)
) to 1 _1 1 _1 _1
= lim | 1@ E SO — )P Q0 S (/202 Q) S(1/2) — Q2 S (1), @, *S(0y)

in the sense that if the limit on one side of the equation exists then so does the limit on

the other side and they are equal. By equation (2.21), if x — y belongs to Q%(H) then
_1

—£|Q, 2S(t)(x — y)|* converges to —%|Q_%(:c —)|? as t goes to zero.

Proceeding as in equation (2.19) we have

—at
20 te™

_1 _1 _1 _1 >

HQY P S(E/2)2.Qr 2 S(¢/2)y) — HQr > 5. Q2 St = Y

k=1

The expression on the right hand side of equation (2.27) converges to zero as t goes to

zero if 372 ¢ '|wkyk| < co. On the other hand, if ay = k? (so that | = 7) and ¢, = %
and xp = yp = % for each k in N then

HQ; PS(t/2)8, Q) 2 S(H/2)y) — HQ; 2 S(1)2,Q; 2 S(ty) > S ke M
k=1
> o 2t 77’2td o 2 71
> /0 r<te T e

1
= \/?—261—>OO ast — 0;
4\ t

hence in this case we have x = y and lim;_,o tInk(¢, z,y) = co.

2.3 From limits for densities to short time asymptotics in

trajectory space

In this section we assume that (Xi(t))icp,1) is a continuous version of the mild solu-
tion defined in equation (2.3). Equation (2.11) enables us to prove the Freidlin-Wentzell
formulation of the lower bound of the large deviation principle in C([0,1]; H) for small
time asymptotics of (Xz(t))¢e[o,1j- The proof is similar to the proof of Varadhan’s finite

dimensional result [31, Lemma 3.4]. The rate function is

I(u) == LY g(s)2, ds it ¢ € L2([0,1]; H,) and u(t) = = + [Lé(s)ds it € [0,1],
. 00 otherwise.
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We remark that equation (2.11) does not yield the upper bound of the large deviation
principle so easily. One obstacle is that the limit in equation (2.11) is not uniform on
arbitrary bounded subsets of H. The large deviation principle for short time asymptotics
of an Ornstein-Uhlenbeck process can be obtained without relying on limits of densities.
A fruitful approach is by making clever use of the large deviation principle associated with
the Gaussian distribution of the continuous trajectories of (W(t))c[o,1]; this approach is
implemented for solutions of some stochastic equations with nonlinear terms in chapters 3
and 4. Nevertheless we end this chapter by proving the lower bound using equation (2.11)
and Peszat’s exponential tail estimate for stochastic convolutions. The main use of Peszat’s

exponential tail estimate in this thesis is in chapter 3, where it is stated in Theorem 3.10.

1
For simplicity suppose that z € Q% (H). Let ¢ € L*([0,1]; H,). Define

t
ft) ==z —1—/0 ¢(s)ds for all t € [0,1].

Proposition 2.3 Given § > 0 and v > 0 there exists ¢g > 0 such that

—% [ 10()|Fy, ds—
P{ sup |X,(et) — f(t)| <} >e e for all € < €.
te[0,1]

1
Proof. Since Q% (H) is a dense subset of H and of H, we can take

2N
b= L(sst )@k (2.28)
1
where N is a natural number and ay,...,ayn are vectors in Q3 (H), such that the con-

tinuous function

g(t) := J:Jr/otd}(s) ds, tel0,1],
and ¢ and N satisfy
L. supyepay19(t) — f(B)] < % and
2. —3 fol [p(s)[3, ds > —3% fol |6(s)[3;, ds — 3 and also
3. |f(t) = f(9)| < % for all t and s in [0, 1] such that [t — s| < ZLN

Let R be a natural number such that



For each t € [0, 1], for any natural number » > R we can choose a compact subset of H,
Kt,r - BHV(g(t)’ %)

1
such that pu(Ky,) > 0; this is because M(Q%(H)) =1 and g¢(t) belongs to Q% (H), which

is a dense subset of H,,. Set

which is a compact subset of H. We may assume that the natural number N introduced

in equation (2.28) is so large that we have
1 J
sup{|(S(s) — Im)z|: s € [0, 2—N] and z € B} < 5 (2.29)
For brevity set for each ¢ € [0, 1]

B, = EHu(g(t)7 )7

==

which is contained in By (f(t), g) Also for brevity set

for each natural number n > N and k € {0,1,...,2"}.

Let € € (0,1]. Let n > N. Let r > R. Set yo := x. We have

P{Xx(etn 1) S Btn 19 aXz(ﬁth”) S Btny2n}
Z P{X (Etn 1 S Ktn AT Xx(Gtmzn) S Ktmgn,r‘}

= / / Hk tn] tn] 1) Yji— layj)du(yQ")"'d,u(yl)
nlr Kt 2nr —

- H“ -

27L
/ TT #Ce(tng = tng—1)sy5-1,07) Aty X -+ X ity g ) W15 - Y2,
K 1 rXee X Ky

n,gn ,T ]:1

where pi,, . r yH on the Borel o-algebra of K; for each j € 1,...,2" and

_ 1
o H(Ktn,jﬂ“ n,joT"
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ity 0 X+ X g, on 1S the product measure on the cartesian product Ky, | » X+ X Ky 0 .

We apply Jensen’s inequality to obtain

eln P{X (€tn1) € By, 1y .- Xa(etnan) € Bty n } >

elnHu to o

2" €(tn,j—tn,j—1) M k(e(tn,j—tn,j—1),Yj—1,Y;)
/ > = S —— Aty g0 X2 X ity ) (Y1, -5 Y2n )
Ktn 1,7 X x Kt on,r

t’"«a]

Because U —1K4, ;r is compact in H,, equation (2.11) applies to the integrand: given any

6 >0 we have for all sufficiently small positive €

21’L
Z 6(tn,j - tn,j—l) In k(E( —1n n,j— 1 s Yji—1, yj > Z ’y] Yj— 1‘HV )
— tnj — th 1 ng ~ tnj-1

uniformly for all (y1,...,y2n) € Ky, p X --- ¥ Ki, - Thus

lim inf eIn P{X,(etn1) € By, ;.- , Xa(etnon) € By, ,n}

s—0e<s

slui — yjal3
> / Z J J—11H, d( Mty 1,7 X e X [Lthn,r)(yly o ,an).
KtanX XKt on,T

T j=1 tna.? tn:] 1

Letting 7 go to infinity makes Ky, ; , shrink in H,, towards g(t,, ;) for each j € {1,...,2"}.
Thus for all n > N we have

lim inf €In P{X,(€tn1) € Bt,, -, Xa(etnon) € By, 0}

s—0e<s

> _72 ,jfl)’%{V
- t

n,j—1
= —/ [ (t)[7, dt

5 [ o6 a5~ (2:30)

V
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Let € € (0,1] and let n > N. We have

P{ sup |Xz(et) — f(t)| <6}
te(0,1]

> P{Xx(ftml) € Btn,w - ,Xm(etmgn) € Btn’2n, sup |Xx(6t) — f(t)’ < (5}
te(0,1]

= P{Xx(ﬁtml) & Btn,l’ . ,Xx(etnzn) I~ Btn’gn}

— P{X.(etn1) € By, 1., Xe(etnan) € Bt on SFp] | Xz(et) — f(1)] > 6} (2.31)
telo0,1

Equation (2.30) gives us a lower bound for the first term on the right hand side of equation
(2.31) when € is small. We now want to show that when we choose n > N sufficiently

large the second term on the right hand side is small compared to the first term. We have

P{X(etn1) € By, 1y .., Xe(€etnan) € Bt on s 31[1p] | X (et) — f(t)] > 0}
tef0,1

t€[tn,j—1,tn,;]

< Y P{Xu(etnj1) € By, ,, sup |Xu(et) - f(t)] > 6} (2.32)
j=1

We can bound the jth summand on the right hand side of inequality (2.32). We have

sup |Xm(6t) - f(t)| < Sup |X:1:(€t) - Xz(dn,jflﬂ + |Xm(6tn,jfl) - f(tn,j*1)|
t€[tn,j—1,tn,;] t€[tn,j—1,tn,j]
+  sup  |f(tnj-1) — f(B)],
tE[tn,jfl,tn,j]
hence

P{X,(€tnj-1) € By, ; ,, sup  |Xa(et) — f(t)] =6}
te[tn,j,l,tn’j]

d
< P{X,(etn ;1) € B, sup | Xg(et) — Xp(ety j—1)| > g}

t€ltn,j—1,tn,j]
et 5
< P{ sup | S(et —s)idW(s)| > =}, by (2.29),
tE[tnyjfl,tn,j] €tn’j,1 6
1 [t . o
= P{ sup |2 / S(e(t—s))idV(s)| > =}, (2.33)
t€tn,j—1:tn,;j] tn,j—1 6

where V (s) := 67%W(es) for all s € [0,1] is an H-valued Wiener process. Peszat’s expo-
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nential tail estimate yields

) -5
P sup ’ t— S )’L dV(S)‘ > T} S CeXp <36€/{,27]) y (234)

tn] 1)71_]] n]l 662
where for chosen ag € (0, 3) and py > 1 such that (ap — 1)py > —1 we define

supsefo,1) 1S (O Lz, m)

(a0 — 1)po +1)7

and
_ SUPefo,1] HS(t)H%(H,H)”Z'H%Q(HV,H) 9—n(1-2aq)
B 1 — 209
and
C:=4+ exp(4n0!)% and ng = P41,
2]90 —2

Thanks to the factor 2=™(1=220) ip the definition of n we can choose n > N sufficiently

large to ensure that

Y _1rl 2 ds— 2
2”Cexp( 0 ><1exp( 2 Jo 19(5)i, 45 2) Ve € (0,1].

36er2n 2 €

From inequality (2.30) there exists s > 0 such that for all € € (0, s) we have

;ﬁwwmbw—;>.
€

P{X.(etn1) € B, s, Xa(etnan) € By, ,n } > exp (

Using this inequality and inequalities (2.32), (2.33) and (2.34) in the right hand side of
(2.31) yields

P{ sup |Xz(et) — f(t)] <}
t€[0,1]

1 rl 2 Y 2
1 ds — 2 -
exp ( 2 fO |¢(S)‘Hy > 2 ) —2"C exp <36i27’]> Ve € (07 3)
€ €

10l 2
_1 ds —
exp< RO 7) Ve (0.5 A 1),

Y

v

This completes the proof.
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Chapter 3

Small time asymptotics of the
solution when there is a Lipschitz
continuous drift and diffusion

function

3.1 Introduction

In this chapter we follow Peszat’s paper [25] closely to obtain a large deviation principle
describing the small time asymptotics of the mild solution of a stochastic differential
equation with Lipschitz continuous drift and Lipschitz continuous diffusion function, in
a Hilbert space H. Peszat found a large deviation principle describing the small noise
asymptotics of mild solutions of stochastic differential equations and his methods require

little modification to yield our large deviation principle describing small time asymptotics.

Zhang [33] used exponential equivalence arguments to get a large deviation principle de-
scribing the small time asymptotics of the mild solution of a stochastic equation with
Lipschitz continuous and bounded diffusion function. To deal with the stochastic convolu-
tion term he assumed that the Hilbert space H, in which the unbounded linear drift A and
the strongly continuous semigroup (e4* = S(t));>¢ it generates are defined, is compactly
embedded in another Hilbert space H; and (S(t)):>0 extends to a strongly continuous
semigroup on Hj. His result is a large deviation principle for distributions on the space
of continuous Hi-valued trajectories, rather than the space of continuous H-valued tra-

jectories. Using Peszat’s methods, we avoid the need to introduce another Hilbert space
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corresponding to Zhang’s H; and our result holds if the diffusion function is not bounded.

Our main result is the large deviation principle contained in Corollary 3.4.

We now define spaces and functions which we use throughout this chapter. Let (H, (-, ), |-
|) and (U, (-,")v,| - |u) be separable Hilbert spaces. Let A : D(A) C H — H be the
infinitesimal generator of a strongly continuous semigroup (S(t));>0 of bounded linear

operators on H. Set

M = sup |[|[S)|rcw,m)-
tel0,1]

Let
F:(]0,1] x H, 8[071] ® By) — (H,Bg)

be a measurable function and let functions F and

G:H — Ly(U,H)

satisfy
|F(t,z) — F(t,y)] < Alx—y| Vtel0,1] and Vx,y € H and (3.1)
|F(t,z)] < A(l+|z|) Vtel0,1] and Vo € H and (3.2)
1G(x) = Gl o,y < Alz—y| Vo,y € H and (3.3)
1G@) [y < AL+ |2]) VoeH, (3-4)

where A is a positive real constant.

Let (2, F, P) be a probability space and let (F;);>0 be a right continuous filtration of
sub o-algebras of F such that all sets in F of P measure zero are in Fy. Let (gx) be
an orthonormal basis of U and let ((8;(t))¢>0) be an independent sequence of real valued

(F:)-Brownian motions. A cylindrical Wiener process on U is defined by the series

W(t) = Br(t) g,
k=1

which does not converge in U but converges in an arbitrary Hilbert space U; containing
U and such that the embedding
J:U—=U;

is Hilbert-Schmidt. Whatever our choice of Uy, the distribution of W (1) in U; has repro-

ducing kernel Hilbert space U. We now fix U; by taking a decreasing sequence of positive
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real numbers (A;) such that 3%, A7 < oo and defining U; to be the completion of U with

the inner product
oo
Z)\ u, gk )u (v, gr)u  for all u,v € U. (3.5)
k=1

We abuse notation and denote the inner product on U; still by (-, )y, and the norm on
U, is denoted by | - |v,

Our aim is to find a large deviation principle describing the small time asymptotics of the

mild solution of the initial value problem

dX(t) = (AX(@)+ F(t, X()))dt +G(X(t))dW(t), (3.6)
X(0) = zeH. '
The mild solution of (3.6) is the (F;)-predictable process (X (t)):e(o,1] such that
1
2 oo} = :
P IR de < och =1 (3.7
and
X, (t) = S(t)x —|—/ S(t—s)F(s,Xz(s))ds +/ S(t—s)G(Xx(s))dW(s) P ae. (3.8)

for each t € [0,1].

The existence, uniqueness and continuity result underlying this work is Theorem 3.18 in
the appendix of this chapter. Notice that Theorem 3.18 applies to more general nonlinear
drift functions than F'; this fact will be useful later when a change of probability measure

introduces an auxiliary problem whose nonlinear drift term is of the type in Theorem 3.18.

Specifically, we will find a large deviation principle for the family of distributions in tra-
jectory space C([0,1]; H):

b = £(w € Qs (1€ [0,1] o Xu(et)(w)) e (0,1] (39)
From equation (3.8), for each ¢ € (0,1] and t € [0, 1] we have P a.c.
Xo(et) = Setz+/ S(et — 5)F(s, Xa(s ds+/ S(et — 8)G(Xa(s)) AW (s)
— S(et)r+e /0 S(e(t — u))F(ew, X (ew)) du + ¢ /0 S(e(t — u)) G (X (ew)) dVF(u), (3.10)
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where

VE(t) = e 2W(et) ¥t >0

is a Uj-valued (F¢)-Wiener process and L£(V¢(1)) = L(W(1)). By Proposition 3.19, for
each € € (0, 1] the continuous (F)-predictable process (X5 (t))¢c[o,1) satisfying the equation

t t
Xi(t) = S(et)x + e/ S(e(t —u))F(eu, X5 (u)) du + €2 / S(e(t —u))G(Xg(u)) dW (u)
0 0
(3.11)
P a.e. for each t € [0,1] also has the distribution xS in trajectory space. Thus for each

€ € (0,1] we consider the process (X3 (t)):c[0,1), which is the mild solution of the problem

AX(t) = (eAXC(t) + eF(et, X<(t))) dt + 2 G(X<(t)) AW (¢)
X0) =

and we define the corresponding trajectory-valued random variable X : Q — C([0, 1]; H)
by
Xe(w) = (te€0,1] » X(t)(w)) Yw e . (3.12)

For each ¢ € L2([0,1];U) and # € H we denote by 2 the function in C([0,1]; H) such
that

t
20t) ==z +/ G(22(s))¢(s)ds VYt € [0,1].
0
For each © € H we define the prospective rate function Z, : C([0,1]; H) — [0, o] by
1, ! 2 2 VP
Zo(u) := §1nf |Y(s)|irds - ¢ € L*([0,1];U) and u = 25 (3.13)
0

for all w € C([0,1]; H). We will prove the following theorem in Section 3.2; it verifies that

for each x € H the function 7, is well defined and a good rate function.

Theorem 3.1 1. Given ¢ € L*([0,1);U) and x € H, 22 is well defined; that is, there
is a unique function u € C([0,1]; H) such that

u(t) == +/ G(u(s))o(s)ds Vt e [0,1].
0
2. For fized v € C([0,1]; H) the linear operator
ve PO - (1o [ Glu)e)ds) e ool )
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18 compact.

3. Let B C L*([0,1];U) be weakly sequentially compact and let K C H be compact.
Then the set

C:= {uGC’([O,l];H):u:zaf‘;s for some ¢ € B and some x € K}

is compact. In particular {Z, < r} is compact for any x € H and any r € (0,00)
because the closed ball {¢ € L*([0,1];U) : 9l 220,130 < V2r} is weakly sequentially

compact.

For each natural number n let 11, : U — U be the orthogonal projection of U onto the

Span of {917 s 7gn}:

n

I,z := Z(w,gj)U gj VxeU.
j=1

In our proof of the upper bound of the large deviation principle we use the fact that II,

can be written in terms of the bounded linear operator from U into U:
n
H}]u = Z /\,;2<u, Jgk>U1 gk Yu € Uj.
k=1

We have Il Jx = I,z for all z € U, which follows from the definition of Uj.

We can now state two additional assumptions (Al) and (A2) on G and (S())>0, respec-
tively, which will only be used in the proof of the upper bound of the large deviation
principle.

(A1) For each r € (0, 00)

sup  [|G(h)(Iy — Hn)HLQ(U,H) — 0 asn — oo.
heBH(O,T‘)

(A2) For each a € (0,1] the family of functions in L(H, H) with the norm topology:
{t € [a,1] — S(et) € L(H,H) : €€ (0,1]}

is uniformly equicontinuous.
Assumption (Al) is true when G is of the form G(z) = Gi(x)B Vx € H, where B is a
constant operator in Lo(U,U) and Gy : H — L(U, H) is Lipschitz continuous.
Assumption (A2) is true when (S(t))¢>0 is an analytic semigroup. Then there is a positive

real constant ¢ such that ||AS(t)|pq,m) < § for all ¢ € (0,1] (see [24, Theorem 5.2 in
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chapter 2]) and consequently ||S(t) = S(r)||p(a,m) < cln(%) for all ¢,r € (0,1]. We remark
that in the small noise asymptotics paper [25] Peszat only needed to assume that (S(t))i>0

is continuous on (0, 1] in the norm topology.

Our two main theorems are the following.

Theorem 3.2 Let K be a compact subset of H and let ¢ € L?([0,1];U). Let § > 0 and
v > 0. There exists g > 0 such that for all x € K and for all € € (0, €]

P{ sup |X5(t) — 22(t)] < 5} > exp <—§fol ¢(s)|t ds _7> |

t€0,1] €

Theorem 3.3 Assume that (A1) and (A2) hold. Let K be a compact subset of H. Let
r>0and§d >0 and v > 0. There exists ¢ > 0 such that for all x € K and for all
€€ (0, 60]

€ —7r+
P{X; ¢ Bo(oamy({Ze <7}, )} < exp < - 7) :
The following result follows immediately from these theorems.

Corollary 3.4 Assume that (A1) and (A2) hold. Let x € H. The family of distributions
{ns e € (0,1]} defined in equation (3.9) satisfies a large deviation principle with rate

function Z,.

Proof. When K = {x} Theorem 3.2 implies the Freidlin-Wentzell formulation of the lower
bound of the large deviation principle of {£(XS) = uS : € € (0,1]} with rate function Z,

and Theorem 3.3 is the corresponding upper bound.

We will show in Section 3.3 that if Theorems 3.2 and 3.3 hold for bounded diffusion
functions G : H — Lo(U, H) then the theorems also hold when the function G is not
bounded. Section 3.4 presents some important inequalities from Peszat’s paper [25], which

are used to prove Theorems 3.2 and 3.3 in the case of bounded G in Sections 3.5 and 3.6.

3.2 The rate function

In this section we prove Theorem 3.1.

Proof of Theorem 3.1(1). Let ¢ € L?([0,1];U) and let x € H. Take N € N such that

1
—A an < 1.
Wi 191l 22([0,11;0)
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Let y € H, let n € {0,1,..., N — 1} and let ¢, be the element of Lz([%, ”TH], U) defined
by

¢n(t) = (t) Vit € [%7 HTH]

Define the map F,, : C([%, %) H) — C([%, ) H) by
(Fry —y+/G s)ds Vte [%, .
For arbitrary u,v € C([%&, %]; H) and ¢t € [%, 2] we have

t
[Fny(u)(t) = Fny (0) ()] = I/n (G(u(s)) = G(v(s)))dn(s) ds|

IA
.

— e
=

5) = v(s)||¢n(s)|v ds

w fuls) — v(s)]

s
by

< \/>”¢HL2 o) _SUP

’ N

Thus F,, is a contraction on the Banach space C([%, ]; H) with the sup norm.

Let ug be the fixed point of Fy ;. For 1 <n < N —1 let u,, be the fixed point of F;,
Define

’unfl(L]\Lf)'

u(t) == up(t) for each t € [£, %] and each n € {0,1,..

LN -1

Then, by inspection, u € C([0,1]; H) and one can show by induction on n that
—:1:+/G s)ds Vte [0, and Vn € {0,1,...,N —1}.
If also v € C([0,1]; H) and
—x+/G s)ds Vt e [0,1]

then u(t) = v(t) for all t € [0, %] since Fy, has a unique fixed point and one can show by
induction on n that u(t) = v(t) for all t € [0, 2] and for all n € {0,1,..., N — 1}.

Proof of Theorem 3.1(2). This proof follows the lines of the proof of [10, Proposition
8.4]. Let uw € C([0,1]; H). We want to show that the map

Y e L*([0,1;U (tH/G )eC’([O 1]; H)
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is a compact linear operator. It is straightforward to show that this map is a bounded
linear operator, therefore we will only show that an arbitrary bounded sequence (¢,,) in
L?([0,1]; U) is mapped to a sequence in C([0,1]; H) with a convergent subsequence.

Set 7 := suppen [[¥nll L2(0,1,0) < 00. For ¢ € L*([0,1];U) such that [|¢| 120,10y < 7 and
for 0 <t < s <1 we have

/G(u(cr))w(a)dcr < sup ||G(U(U))”L2(U,H)/ Y(0)|u do
t c€[0,1] t
< r s 1G(w(o)| Lo,y Vs —t.
oc|0,

Thus the family of functions

{t € [0,1] — /0 G(u(s))(s)ds € H : v € L*([0,1];U) and 11 22 (f0,1;0) < 7‘}

is uniformly equicontinuous. We will show that there is a subsequence of the sequence of

continuous functions
t
<t €[0,1] — / G(u(s))n(s)ds € H>
0

which converges pointwise on a dense subset of [0, 1]; then, as this subsequence is uniformly
equicontinuous, it is Cauchy in C(]0,1]; H) and we will be done.
For t € (0,1] define the linear operator A; : L2([0,1];U) — H by

At = /0 Glu(s)b(s)ds . & € L¥([0,1];1).

We claim that A; is Hilbert-Schmidt. Let (ex) be an orthonormal basis of H and let (¢x)
be an orthonormal basis of L?([0, 1];R). An orthonormal basis of U is (gi) and the family
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of products {¢;gr : j,k € N} is an orthonormal basis of L?([0,1];U). We have

[c.olENNe el o]

DY 1A = DD 0D (Abigr), )
k=1 j=1 k=1 j=1 i=1

oo o0 o0

-ZEQZ(/ g, €1)b5(s) d f

k=1 1i=1 j=1

= [ Y S Gs)an e s

k=1 i=1
= [ G g ds < oc.
For each t; € (0,1] N Q, since Ay, is a compact operator, the set {Ay¢, : n € N}

is relatively compact in H. We can apply the diagonal argument to the sequence of

sequences
Atl wl At1 wQ Atl w3 At1 w4

Atz wl Atg ¢2 Atg w3 Atg w4

Ayt Ao Az Ayids

to conclude that there is a strictly increasing sequence of natural numbers (ny) such that
klim Ay, Yy, exists for each ¢ € N.
—00

Thus there is pointwise convergence of the subsequence

e}

<t€01|—>/G $))thn, (s )dsEH)kl

on [0,1] N Q.

Proof of Theorem 3.1(3). Let B C L?([0,1];U) be weakly sequentially compact and
let K C H be compact. We want to show that

C:={uecC(0,1);H) : u=2 forsome ¢ € B and some z € K}
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is compact. Set
q = sup{||[¥l z2(o,1v) * ¥ € B},

which is finite because weak sequential compactness of B implies that B is bounded. Let
(un) be a sequence of elements of C. For each n € N there is ¢, € B and x, € K such
that u, = zg;n, that is

un(t)—:cn—i—/o Glun(s))bn(s) ds ¥t € [0, 1].

By compactness of K and weak sequential compactness of B, there is a strictly increasing
sequence of natural numbers (nj) and there are vectors z € K and ¢ € B such that z,,
converges to x in H and ¢,, converges to ¢ in the weak topology of L?([0,1];U) as k goes
to infinity. We claim that w,, — u = zf as k — oo.

Given k € N we have for each t € [0, 1]

4lt) — tny (O S |~ |+ \ / Gu(3))é(s) ds — /0 Gty (5)) o () d
< Jranlt () ds| +
[ 6106) = Gl () (5
< ol s | [ GE)6() — 6, (5) ds| +

rel0,1]

A / 4(5) — iy (5) | (3)] .

Thus by Gronwall’s Lemma we have

/O "G u(3))(6(5) — buy () ds

exp(Aq) VkeN
tef0,1] r€[0,1]

sup |u(t)—up, ()| < <\:U — Zn,| + sup

and the right hand side of the above inequality goes to zero as k — oo because the compact

linear operator

¢ e L*([0,1;U <tn—>/G )ec([o 1]; H)

maps the weakly convergent sequence (¢y, ) in L2([0,1]; U) to a norm convergent sequence
in C([0,1]; H). This completes the proof of Theorem 3.1.
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3.3 Reducing the problem to the case of bounded G

In this section we show that if Theorems 3.2 and 3.3 hold under the additional assumption
that the function G : H — Lo(U, H) is bounded then they hold also for G' which is not
bounded. This idea is copied from Cerrai and Rockner [5, Theorem 6.4].

For each R € (0,00) define Gr : H — Lo(U, H) by

G(x) if x| <R
pid

Crlw) = { G(hx) if |x| > R;

||

it is straightforward to show that sup,¢ g |G r(®)| L, (v, ) < o0 and that inequalities (3.3)
and (3.4) also hold with G in place of G. For each z € H and R € (0,00) define
Trs: C([0,1]; H) — [0, 00] by

TR o(u) ==

1 inf {fol lp(s)|% ds = ¢ € L2([0,1};U) and u(t) = = + fg Gr(u(s))p(s)ds Vt e 0, 1]} ,

for all w € C([0,1]; H).
For each x € H, R € (0,00) and € € (0,1] define (X5 ,(¢) : (2, F¢) — (H,Bm))ejo,1) to be

the continuous (F;)-predictable process satisfying

t t
Xp (1) ZS(et)a:—i—e/ S(e(t—s))F(es,Xﬁ’x(s))ds—l—eé/ S(e(t—s))Gr(Xk . (s)) dW (s)
0 0
(3.14)
P a.e. for each t € [0,1] and let Xpa Q= C([0,1]; H) be the corresponding trajectory-

valued random variable:
Xf%,x(w) = (t— X§7x(t)(w)) Yw € Q.
Recall that we defined (Xg(t))e[o,1] and X3 in equations (3.11) and (3.12).

Lemma 3.5 Let p € (0,00). Given r € (0,00) and 6 € (0,00) there exists R € (0,00)
such that

1. for each x € By (0, p)
{IR,:U < 7’} = {Iz < 7’}

and
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2. for each x € By (0,p) and for each € € (0,1]
P{X; € Be(o;m)({Ze < 71,0)} = P{XRk ;. € Beo;m)({Ze < 71,0) -
Proof. Let r > 0 and § > 0. Set
R := (p+ AV2r) exp(AV2r) + 6. (3.15)

Let € By(0, p).

We firstly prove part (1).
Suppose u € C([0,1]; H) and Z,(u) < r. Then there exists ¢ € L?([0,1];U) such that
9l 22(p0,1);0) < V2r and

u(t) =z —I—/O G(u(s)) ¢(s)ds Vt e [0,1]. (3.16)

Taking the norm of both sides of this equation gives

t
u(®)] < |z +A/ (L+Ju(s))|o(s)|uds Vi€ [0,1]
0
and by Gronwall’s Lemma

t;ép” lu(t)] < (p+ AV2r)exp(AV2r) (3.17)

< R. (3.18)

By definition of G, G(z) = Gr(x) for all x € By(0, R); thus, from (3.16) and(3.18), u

satisfies

u(t) =z —i—/o Gr(u(s))p(s)ds ¥t e [0,1]

and Zp ,(u) < %fol lp(s)|Z ds < r.
Suppose now that v € C([0,1]; H) and Zg . (v) < r. Then for some ¢ € L*([0,1];U) such
that HwHLQ([O,l];U) S \/Z we have

v(t) == +/O Gr(v(s))y(s)ds Vt e [0,1].

By taking norms of both sides of the equation and then applying Gronwall’s Lemma we

47



conclude that

sup |v(t)| < R.
t€(0,1]

Thus v satisfies the equation
t
o(t) =z + / Go(s)b(s)ds Vi € [0,1]
0

and it follows that Z,(v) < %fol [0 (s)|? ds < r.
We have shown that {Z, <r} ={Zr, <r}.

We now prove part (2). Let € € (0,1].
Define the (F;)-stopping time

7(w) :=1inf{t € [0,1] : | X;(t)(w)| > R} , w € Q,

where we take 7(w) = 1 if |X5(¢)(w)] < R for all ¢ € [0,1]. By our choice of R and
inequality (3.17) we have

Beo,);)({Ze <7}, 6) C Bepo,1);a)(0, R).

Thus we can tell if the trajectory Xg(w) lies in Be((o,1],m)({Zz < 7}, 0) by observing the

trajectory just up to time 7(w); also for P a.e. w € €2 we have sup;c(g () [X5(#) ()| < R
and if 7(w) < 1 then | XS (7(w))(w)| = R.
Let ¢t € (0,1]. We have

X5 (1) :S(et)a;—i—e/o S(e(t—s))F(es,Xé(s))ds—i—eé/O S(e(t—s))G(X5(s))dW (s) P ae..

Multiplying both sides of this equation by the indicator of the stochastic interval [0, 7] we

have
Lo (XS(W) = Lo (OS(et)z + 1o (t)e /0 S(e(t — ) Fles, 1o () X5(s)) ds +

Lo,7] (t)f% /0 ' Lo, (8)S(e(t — 5))G(Xg(s))dW (s) P ae.
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and, by the localization lemma [10, Lemma 4.9],

oA (DX = Lon(OS(et)e + Lga (e | S(e(t — ) F(es, 1o () X5(s)) ds +
0

1

o6 [ 1i071(5) 0 (5)S(elt = )Gl (5)X5(5) AW (o)

P a.e..

We also have from equation (3.14)

Lon(DXa(t) = Loa(0S(ee + 1o (0)e [ S(elt — ) F(es, 11(5) X als)) ds +
0

1

Lo (t)e? / 10,77() 0.1 (8)S(e(t — $))G (10,1 (8) Xz o)) AW (s)

P a.e..

Therefore

Lo, (8) (X5 ( ) Xpo(t) =

Hom® [ St = 5))[F(es, 1o (5)XE(5)) — Fles, 1) (5) X (5)))ds +
Lo (t)e? / 1o (9)S(e(t — ) [Cr(Ljo (8)X5(5)) — Gr(Ljo () X5oa(s)] AW (s)  (3.19)

P a.e..
By Theorem 3.18 we have

sup B [|XS(u)]’] <oo and sup E [ X5 . (u)| ?] < .
uel0,1] uel0,1]

Thus, taking norms on both sides of equation (3.19), then squaring both sides and taking

expectations, we obtain

E [[1n(t)(X5(t) = X5 0 (t)]
< 2(62+6)M2A2/0 [|1[07]( N(X5(s) = Xp (s ))]2} ds for each t € [0,1]. (3.20)

As the function t € [0,1] — E[|1j(t)(X5(t) — X5 (1)) 2 ¢ is measurable and

|
bounded, Gronwall’s Lemma can be used with inequality (3.2 ) to show that for arbi-
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trarily small positive a we have

ot B[, (#)(X5(t) = Xfo(1))1%] < cvexp(2(€® + €) M?A?). (3.21)

Inequality (3.21) implies that
Lo (8) X5 () = L7 (1) X (t) P ae. for each t € [0,1] (3.22)

and, since processes (1jo,)(t)Xz())ejo,1) and (Lo.7(t) X% . (¢))teo,1) have left continuous

trajectories, equation (3.22) implies equality of trajectories
1[07.,.} (t)X;(t) = 1[0’.,.} (t)Xpr’x(t) Vit € [0, 1] P a.e..
We conclude that for P a.e. w € ),
L. if 7(w) = 1 then X (w) = X§ ,(w) and

2. if 7(w) < 1 then |X{(7T(w))(w)| = [X§ ,(T(w))(w)| = R and trajectories Xj(w) and
Xfm(w) do not belong to Be(joy;:a)({Ze < 7}, 0).

Thus

P{X; € Boo,;m({Ze < 7},0)} = P{X}k, € Beqom)({Ze <7} 6)}
This completes the proof of Lemma 3.5.

In the rest of this section, given z € H and ¢ € L*([0,1];U) and R > 0 we denote by
z}’;x the function u € C([0,1]; H) such that u(t) = z + f(f Gr(u(s))o(s)ds for all ¢t € [0,1];
recall that z$ is the function v € C([0,1]; H) such that v(t) = z + f(f G(v(s))p(s) ds for all
t €0,1].

Lemma 3.6 Let K C H be compact. Given ¢ € L*([0,1];U) and & > 0 there exists R > 0
such that:

1. for oll z € K we have
and
2. for allx € K and all € € (0,1] we have
P{X{ € Beqoapm (22, 6)} = P{X} . € Beqoam (22, 6)}.
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Proof. Let ¢ € L2([0,1];U) and let 6 > 0. We know from Theorem 3.1(3) that
t
C:= {u e C([0,1; H) : u(t) ==z +/ G(u(s))p(s)ds Vte[0,1] for some x € K}
0
is compact and thus a bounded subset of C([0, 1]; H). Set

R :=sup sup |u(t)|+ 9. (3.23)
ueC tel0,1]

Then for each = € K, u € C([0,1]; H) satisfies the equation
t
u(t) == +/ G(u(s))p(s)ds Yt e [0,1]
0

only if it belongs to C, in which case supco 17 [u(t)| < R and

u(t) == —|—/0 Gr(u(s))p(s)ds Vt e [0,1];

that is, u = zf implies u = z}’;w.

Now we prove part (2). Let z € K and € € (0, 1]. Define the (F;)-stopping time
T(w) :=1inf{t € [0,1] : | X5(t)(w)| > R}, w €N,

where we take 7(w) = 1 if | X{(¢)(w)] < R for all ¢ € [0,1]. By our choice of R in

equation (3.23) we have

Be(o.m) (225 8) € Beo,:1)(0, R).

Thus to see whether the trajectory ¢ € [0, 1] — Xg(t)(w) lies in Beo,1);m) (22, 6) it suffices
to observe it just at times ¢ € [0, 7(w)]. We proceed as in the proof of Lemma 3.5(2).

For P a.e. w € Q2 we have sup;c(o () [ X5 (t)(w)| < R, thus for each ¢ € (0,1] we have

Lo @)Xe(t) = 1j(t)S(et)x + 1o 7 (t)ﬁ/o S(e(t — s))F(es, 1,71(s)Xz(s)) ds +

1[0;](?5)6%/0 Lio,71(s)S(e(t — 8))Gr(Ljo.(s)X5(s)) dW(s) P ae.
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and also
o (OXalt) = Lo OS(e)s + L (0hc [ S(et = 9)Fes, Lo ) X5 s +
to (et [ L (S (elt — 9)Grllo (5 Xi o () AWV (s) P ae.
Just as in the proof of Lemma 3.5(2) we obtain the equality of trajectories
Lo (0) Xz (t) = 17 (t) XR (1) VE€[0,1] P ae.
and from this we have
P{X; € Boo:m) (%4, 0)} = P{X}4 € Beqom) (25, 0)}-

This completes the proof of Lemma 3.6.

Corollary 3.7 Suppose that Theorem 3.2 holds under the additional assumption that the
diffusion function G : H — Lo(U, H) is bounded. Then it also holds if the function G is

not bounded.

Proof. Let K C H be compact and let ¢ € L%([0,1];U) and let 6 > 0. Take R > 0 as in
Lemma 3.6. For any z € K we have 25 = zﬁ}x by Lemma 3.6(1).
Let v > 0. Since Gp is a bounded function, by Theorem 3.2 there exists ¢y > 0 such that

for all z € K and for all € € (0, €]

- (—% Jilo(s)l ds

. ) < P{X%,, € Boom) (254 0)} = P{X5 € Beo.,m)(25,0) },

where the equality on the right is from Lemma 3.6(2).

Corollary 3.8 Suppose that Theorem 3.3 holds under the additional assumption that the
diffusion function G : H — Lo(U, H) is bounded. Then it also holds if the function G is

not bounded.

Proof. Let K C H be compact. Take p € (0,00) such that K C Bg(0,p). Let r € (0,00)
and let § € (0,00). Take R > 0 as in Lemma 3.5. Let v > 0. Since the function G is
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bounded, by Theorem 3.3 there exists ey > 0 such that for all z € K and for all € € (0, €]

—r + € €
exp < € 7) > P{Xf, ¢ Beqoum({Tre <7}0)} = PAXE ¢ Boqom ({Ze < 7},0)},

where the equality on the right is from Lemma 3.5.

Thanks to Corollaries 3.7 and 3.8 our task reduces to proving Theorems 3.2 and 3.3 under

the additional assumption:

(A3) the function G : H — Ly(U, H) is bounded, that is:

sup [[G(@) | (w1 < -
zeH

3.4 Exponential bounds

To prove Theorems 3.2 and 3.3 in the case of bounded G we shall need some exponential tail
estimates for stochastic integrals and stochastic convolutions due to Chow and Menaldi [§]

and Peszat [25]. The formulations we present without proof are Peszat’s [25].

Let P; denote the (F;)-predictable o-algebra of [0,1] x Q. Let £ : ([0,1] x Q,P;) —
(L2(U, H), Br,u,m)) be a measurable function.

Theorem 3.9 (Chow’s and Menaldi’s bound for stochastic integrals) If there ex-

1sts a positive real number n1 such that

1
[ IR e ds<m P ac

then for any 6 > 0

2
P< sup >6p < 3exp <—6> .
t€[0,1] 4m

Theorem 3.10 (Peszat’s bound for stochastic convolutions) Let (T'(t)) be a strongly

A%@MW@

continuous semigroup of bounded linear operators on H. Suppose ag € (0, %) and pg > 1

are such that

1 1
Po
o= ( /0 oo~ D TP dt> < oc.
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If there exists a positive real number no such that

t
sup / (t— )72 T(t — $)E() I3,y ds <m2 P ace.
te[0,1] JO

then the process (fg T(t —5)&(s) AW (s))iec(o,) has a continuous version in H and for any

0>0
t 52
P < sup / T(t—s)E(s)dW(s)| >6dp < Cexp <_2>
tef0,1] |Jo K21,
where C = 4+ exp(dng!) ™ and ng = 32 + 1.

In the proof of Theorem 3.3 we also use a large deviation principle associated with the
trajectory-valued random variable W : (Q, F, P) — (C([0,1}; U1), Be(jo,13;0,)) defined by

W(w) = (t €[0,1] — W(t)(w) € U1) Yw € Q.

As shown in [32, Theorem 1 in Section 6.2], the distribution of W is symmetric Gaussian

and its reproducing kernel Hilbert space is

Hy = {te [0, 1] »—>J/Otw(s)ds - e L*([0, 1];U)},

with norm || - ||z, defined by

1 t
[l 52/0 [W(s)lfrds = ¢ € L*([0,1];U) and y(t) = J/O Y(s)ds Vit e[0,1].
Thus, by [10, Theorem 12.7], the family of Gaussian measures
1
{[’(EEW : (Qvf7 P) - (C([Ov 1]; Ul)aBC([O,l];Ul))) t€ec (07 1]}

satisfies a large deviation principle with rate function Zy : C([0,1];U;) — [0, 0o] defined
by

sIflI%, if f € Hw,
R 2 w
Iw(f) -—{ N it f ¢ Hiy (3.24)
3.5 The lower bound

In this section we prove Theorem 3.2 under the additional assumption (A3).
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Proof of Theorem 3.2 assuming (A3). Let K C H be compact and fix ¢ €
L2(]0,1]; U). Recall that for each z € K 2% € C([0,1]; H) satisfies

2t) =z —i—/o G(22(s))p(s)ds vt € [0,1].

Fix 6 > 0 and v > 0. For each € € (0,1] define the process (W€¢(t) : (Q,F) —
(UlaBUl))te[o,l] by

We(t) = W(t) — e 2J /0 t(;S(s) ds ¥t e [0,1]. (3.25)

By [10, Theorem 10.14] (W*(t));e[0,1) is a Wiener process with respect to filtration ()
on probability space (2, F, P¢) where

1

i) =ow ([0 u o) - o [ eka) el 620

and P<(W¢(1))~t = P(W (1))~ L.
Taking the reciprocal of the Radon-Nikodym derivative in equation (3.26) we have

ap) =ew (~ 06w ars@) + 3 [ 166k as) e

and we use Lemma 3.20 to replace the Ito6 integral on the right hand side by one with

respect to (W(t))efo,1):

1 1 o .
/0<¢(s),->UdW€(s):/0 (p(s), Y AW (s) / 6(s)|?ds  P€ ae..

Thus we have

[NIES

apw) =e (et o) a6 - 3 [ 16611 ds) a )

To shorten notation, for each z € K and each € € (0, 1] set

Ale,z) = {w € sup |XS(t)(w) — 22(t)| < (5} and

te(0,1]

D) = {wens|d /01<¢<t>,‘>UdW€<t><w>]g

no |2
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We have

PAEa) = [ TaeadP

= 1 A(e.z exp<—e
/Q Ale,z)

1 1 1
[ tatcaroesn (<t [ ot g0 awe (s - 5 [Clocas ) ap

D=

/01<¢(8)7'>U dW*(s) — 216/01 |¢(S)%ds) dP*

v

> o (-3 -5 [ 166 ) (A2 D)

It remains to show that there exists €9 > 0 such that P(A(e,z) N D(€)) > exp(—5) for
all x € K and for all € € (0, ¢g]. We will actually show something more:

P(A(e,z)°UD(e)) -0 as € — 0 uniformly in x € K.

Let e € (0,1] and let z € H.
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For each ¢ € (0,1] we have

| X5(t) — 22(2)]

= [stetre —a-te [ Stele - e X5 (6) ~ Fles 2061 ds
+ e/ot S(e(t — 5))F(es, 22(s)) ds
# [ (e = NG - GlLols) ds
+ /0 (S(elt — 3)) — I G=2())o(5) ds

[

</s (t — 8))G(X5(s)) dW (s 2/5 (t — s))G(XS( ))¢()d>

< sup \S(r)x—x|+eMA/ |XE(s) — 22(s)| ds
re(0,¢€] 0

1
+€MA/O (1+122(s)|) ds

+ MA /0 IXE(s) — 22()|6(3)|o ds

1 3
+sup{[|(S(r) = Im)G (2 ()l Lo ,m) : 7 € [0,€], s €[0,1]} (/ lp(s |2Ud8>

+ sup ez / S(e(r —s))G(X5(s)) dW (s é/ S(e(r —s))G(X5(s))o(s)ds|.(3.27)

rel0,1]

The last term on the right of (3.27) can be written in terms of a stochastic convolution

with respect to integrator (W(t)).ejo,1)- For each t € (0,1] the function
(s,w) € ([0,1] x 2, P1) = 1o () S(e(t — 8))G(X5(s)(w)) € (La(U, H), Bryw,m))
is measurable and bounded; thus Lemma 3.20 applies and we have for each ¢ € [0, 1]
/s (t—s))G(XE(s)) AW(s) /s (t—3))G(XE(s)) dW (s)— é/ S(e(t—3))G(XE(s))o(s) ds

P a.e.. Considering continuous versions of the processes we have P a.e.

m\»—t

/ S(elt — 5))G(X5(s)) dW(s)
- </5 (t— )G (XE(s)) IV (s) — é/s (t — ) G(XE( ))¢()ds> vt € [0, 1].(3.28)
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Squaring both sides of inequality (3.27) and using equation (3.28) we have
X5 (t) — 22())?

1 ¢
sup |S(r)z — x\z + M?A? <€2 + / ](b(s)% ds) / | XE(s) — zf(s)|2 ds
0 0

re[0,€]
EIEI (/1(1 + |Z;f(s)y)ds>
0
1

+sup{[|(S(r) = Im)G (2 () Loy © 5 € [0,1] and r € [0, €]}? /0 [6(s)[r ds

2
(s ]

rel0,1]

for all ¢ € [0,1] P€ a.e.. Hence from Gronwall’s Lemma,

2

M=

€

/0 " S(e(r — ) G(X(s)) dWE(s)

sup | Xg(t) — 29(t)|
tel0,1]

2
< 6 [ sup |S(r)x — z|? + 2M?A? (/01(1 + |zf(s)\)d8> +

r€[0,€]

1
sup{[[(S(r) — Im)G (22 (s)) | Lo w,m) = 7 € [0¢], s €0, 1]}2/0 |6(s)IE; ds +

2] exp <6M2A2 <1 + /01 |¢(s)%}ds)> P¢ ae..

N |=

sup
rel0,1]

€

/0 " S(e(r — $)G(X5(s)) W (s)

Thus

P{ sup |Xg(t) — 22(t)| > 6}
te(0,1]

1 2
< P { sup |S(r)z — z|? + £M?A? (/ (1+ |zf(s)|)ds> +
0

r€[0,€]

1
sup{[|(S(r) — Im)G (22 (s)) | oy = 7 € [0s€], s € [0, 1]}2/0 |6 (s)lEr ds +

=

€

/0 " S(e(r — ) G(XE(s)) dWE(s)

sup

2 52
>
ref0,1] ~ Gexp(6M2A2(1 + fol |p(s)|% ds)) }
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and there exists €; > 0 such that for all x € K and for all € € (0, ¢1] we have
P{ sup |Xg(t) —22(t)| > 6}
te(0,1]
5
> — : .(3.29)
3e2 exp(3M2A2(1 + [, |o(s)[F ds))

< P¢< sup
rel0,1]

/0 " S(e(r — 5)G(X5(s)) W (s)

Since we are assuming (A3), we can apply Peszat’s tail estimate from Theorem 3.10 to the
term on the right hand side of (3.29). Thus for all x € K and for all € € (0, ¢1] we have

Y
P(A(e, 1)) < Chexp <d§1> (3.30)

— 0 ase—0,

where the numbers € and K in Peszat’s exponential estimate (3.30) are positive real
constants that do not depend on € or on x.

We also have from Theorem 3.9

P¢(D(e)’) < P€ {w €Q: sup
t€[0,1]

/ t<¢<s>,->UdW€<s><w>] > }

1
2€2

,.YQ
< _
= 36Xp< 16ef01|¢(s)2Uds>

— 0 ase—0.

This completes the proof of the theorem.

3.6 The upper bound

In this section we assume that (A3) holds and we prove Theorem 3.3 using the following

proposition.

Proposition 3.11 Let K C H be compact. Given a >0 and 6 > 0 and ¢ € L*([0,1];U)
there exists eg > 0 and b > 0 such that for all € € (0, ¢e0] and for all x € K we have

" < b} < exp <—%> .

The virtue of this proposition is that given positive d the exponential bound on the right

2 W (1) J/O o(s) ds

P{ sup | X5(t) — 22(t)| > 6, sup
te[0,1] t€[0,1]

hand side has a, which we can choose to be as large as we please, in the numerator; the cost
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is the restriction on €2 W, but we have the large deviation principle of {E(e% W):ee(0,1]}
to describe how these distributions behave. There is some work involved in arriving at
the proof of Proposition 3.11 and this is left till the end. We only remark that we need

several lemmas which use assumptions (A1), (A2) and (A3).

Proof of Theorem 3.3 assuming (A3). Let K be a compact subset of H. Fix r > 0
and 6 > 0 and v > 0. Let a be a positive real number, to be specified later. By
Proposition 3.11, for each ¢ € L?([0,1];U) there exists by > 0 and €, > 0 such that for all
€ € (0,€e4] and for all z € K we have

a

ezW / o(s)ds <b¢}§exp (—7>.

€

(3.31)

Recall from equation (3.24) that Zy is the rate function of the large deviation principle
satisfied by {L’(e%W) : € €(0,1]}. We have

P{ sup | Xg(t) — z0(t)| > 6, sup
te[0,1] te(0,1]

(Tw <7} = {ueC([O,l];Ul):u(t):J/Otw(s)ds vt e [0,1],

where 1 € L*([0,1]; U) and / [ (s)|% ds < 27’}

( /¢ ds <b¢,}.

Since {Zw < r} is a compact subset of C([0, 1];U;), there exists a natural number [ and
¢1,...,¢ € L?([0,1];U) such that fo |9 ()| ds < 2r for each j € {1,...,1} and

v(t) — J/O ¢j(s)ds .

For each z € H we may appeal to the definition of C in (3.32) and write

C U ve C([0,1];Up) : sup
t€[0,1]

YeL?([0,1];0):

I [()[3 ds<2r

l
{Zw <r} C U {v € C([0,1];U7) : sup

=1 t€[0,1]

< b¢j} =:C. (3.32)

P{X5 ¢ Beqo,m({Ze <7}, 0)}
< P{X ¢ Booapm({Te <1}, 6), W € C} + P{e3W ¢ C}

€2W / qb] ds <b¢j}

+ P{6§W ¢ C}. (3.33)

IN

ZP{X ¢ Beoapm({Ze <7}, 0), sup

te(0,1]
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Set €1 := min{ey,, ..., €4, }. For each j € {1,...,1} we have from inequality (3.31) that

for all € € (0,¢;] and for all x € K
€2 W (t / pi(s)ds| < b¢j}

62W / ®j(s)ds <b¢j}

< e (-2). (3.34)

€

{X ¢ Beo,1);m)({Ze <7}, 9), sup
t€[0,1]

IN

P {X; ¢ BC([O,I];H)(Z$j7 6)7 sup
t€[0,1]

Since the open set C contains {Zyy < r}, by the upper bound of the large deviation
principle of the family {E(E%W) : € € (0,1]} there exists ez > 0 such that for all € € (0, €3]

P{e3W ¢ C} < exp <_T: g) . (3.35)

Set €3 := €1 A\€a. Returning to inequality (3.33), we have for all x € K and for all € € (0, €3]

€ T+ 3
P{X; ¢ Beqoam({Ze <7}, 0)} < lexp (—7) +exp < - 2)
_ i
< (I+1)exp <r+2>
€
when a is taken as r — 3.
Finally set €4 := €3 A m Then for all € K and for all € € (0, e4]

—r + ’7
P{X¢ ¢Bc(o1 ({I <r}, 5)}<exp< - >
This completes the proof of the theorem.
Now we work towards proving Proposition 3.11. In the following we make use of (A3):

[ = sup |G(2)|| o, 1) < 00,
zeH

as well as (A1) and (A2).
Fix ¢ € L([0,1];U). For each € € (0, 1] define F, : ([0,1] x H, Bjo) ® Bu) — (H,Bu) by

F.(s,z):=¢€F(es,x) + G(x)p(s) Vs e€[0,1] and Vz € H. (3.36)
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It is not difficult to show that for each e € (0,1] F, is measurable and

|F.(s,2) — Fe(s,y)| < 0(s)|z —y| Va,y € H and Vs € [0,1] (3.37)
and
|E.(s,z)| < 0(s)(1+|z|]) Vsel0,1] and Yz € H, (3.38)

where 0(s) := A(1+ |¢(s)|v), s € [0,1], is a function in L?(]0,1];R).
By Theorem 3.18, for each € € (0,1] and each x € H we may define (Z5(t))¢c(o,1) as the

continuous (F)-predictable process such that
ZE(t eta:+/5 (t—s))F.(s, Z(s ))ds—i—e%/S (t—5))G(Z(s))dW(s) (3.39)

for all ¢ € [0,1] P a.e.. To prove Proposition 3.11 we will need some lemmas concerning
the processes (Z5(t)):c(0,1)- In the proofs of these lemmas the only properties of F, we use
are those in (3.37) and (3.38).

Lemma 3.12 Given a € (0,00) and R € (0,00) there ezists D € (0,00) such that for all
€ € (0,1] and for all x € By (0, R) we have

f%ng|Z%>|zzﬁ}gexp(j).

Proof. Let x € By (0, R) and let € € (0,1]. For each w in the set of P measure 1 where
the trajectory ¢t — ZS(t)(w) satisfies equation (3.39) we have for all ¢ € [0, 1]:

|1Z5(t)] < |S(et) 33|+|/ S(e(t —9)) (s Z5(s ))ds|+e2|/ S(e(t — 5))G(Z5(s)) dW ()]

IN

MM+MAH®OH%®WMHHAﬂﬁ—wﬂ%@ww®

M|z|+ M (/010(3)2&9)% + M (/01 9(3)2(113>é (/Ot \Z;c(s)\?ds)é

ez sup | [ S(e(r — 8)G(Z5(s)) dW (s)].
re[0,1] Jo

IN

62



Squaring both sides of the last inequality and then applying Gronwall’s Lemma yields

sup |Zg(t)? < 4
te[0,1]

1 T
lex\z—i-MQ/ 0%(s)ds + € sup | S(e(r—s))G(ch(s))dW(s)\Z]
0 refo,1] Jo

1
X exp <4M2/ 6(s)? ds> P ae..
0
Set
1 1
Dy = 4dexp <4M2 / 0(5)2d5> (M2R2+M2 / 9(8)2d8> and
0 0
1
Dy, = 4dexp <4M2/ 0(3)2d5>.
0

Then we have for each x € By(0, R) and for each € € (0,1]:

t
sup |Z5(t)|> < Dy + Doe sup | [ S(e(t — 8))G(Z5(s)) dW (s)|> P a.e.
t€[0,1] tel0,1] JO

and for any D € (0,00) such that D? > D; we have

2

P{ sup |Z;()]> > D*} < P{ e sup
t€[0,1] te[0,1]

/0 S(e(t — 5))G(Z(s)) W (s)

D2 — D, }
> — — %
> =
(3.40)

We can apply Theorem 3.10 to the right hand side of inequality (3.40). Take g € (0, %)
and pp > 1 such that (ag — 1)pg > —1; then for all € € (0, 1]

1 1

! »0 1 0
tl@0=po || g et) |20 dt) <M () = K;
(/o 15Dy - (g —1)po +1 "

also for all ¢t € (0,1] and for all € € (0,1] and for all z € H

t 2 ) M2T?
—2ap € PR
/o (b= 8) 70N S(elt = NG Z(D Ly ds < T4 =51

Thus by Theorem 3.10, for any § € (0,00), for all € € (0,1] and for all z € H we have

2
P{ sup > 5} < Cexp (—52> ) (3.41)
t€[0,1]

/ S(e(t — $))G(Z(s)) AW (s)
0 R=T)
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1
where C' = 4 + exp(4ng!) "0 and ny = 2;(’)0_2 + 1. From inequalities (3.40) and (3.41), for

all D € (0,00) such that D* > D; and for all # € By (0, R) and for all € € (0, 1]

1
<D2—D1>2}
> (= 1
- €D

P{sup |Z5(t)| > D} < P{sup / S(e(t — 8))G(Z5(s)) AW (s)
te(0,1] tel0,1] 1J0

D? — Dy
- +InC ).
exp( eDgl-iQn +In )

IN

Thus taking D? = (a + In C) Dak?n + Dy gives the desired result.

We introduce some notation to be used in the following lemmas. Set

k
ok = om forneNand k=0,1,...,2".

Lemma 3.13 Given a > 0 and § > 0 there is a natural number N such that for each

n > N there exists €, > 0 such that for all € € (0,€,] and for all x € H we have

NI

P sup sup e
ke{0,1,....2" =1} t€[tp kb, k+1)

/tt S(e(t—s))G(Z(s)) dW (s)| > (5} < exp (—%) .

Proof. For the purpose of applying Theorem 3.10, fix o € (0, %) and pg > 1 such that
(ap —1)po > —1.
Let x € H, let e € (0,1], let n € N and let k € {0,1,...,2" —1}. For each t € [t, i, tn k+1]

we have
t t
/t S(e(t —8))G(Z5(s)) dW (s) = /0 S(e(t — s))l[tmk’tn’kﬂ](s)G(Zg(s)) dW(s) P a.e.
n,k
and, considering continuous versions,

¢
sup | / S(e(t — 5))G(ZE(s)) dW (s)]
tE€[tn,kotn k1] Yink
¢
< sup | [ S(e(t—s)1p
telo,1] JO

s)G(Z(s))dW (s)| P a.e..

n,kvtn,k+l] ( )
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Thus

P su € S _ G . 5
{te[tnk:ikle}‘ / (e(t NG(Z5(s)) dW (s)| > }

< {sup \e%/ S(e(t = )L, ot rin] (8 )G(zg(s))dW(s)yza}. (3.42)

t€[0,1]

N[

The function § : ([0,1] x Q,P1) — (L2(U, H), Br,,m)) defined by

§(5,0) = Ly ) (DG(ZEHW)) W(s,w) € [0,1] x ©

is measurable and for each t € (0, 1]

t t
/O(t_s)QQOHS(E(t_S))€<£)”%g(U,H) ds < Mze/O( ) 720U g ] (8) ds
2172
< ﬂg—(l—%o)n = .
1-— 20&0

1
Set Kk 1= M(m)%. By Theorem 3.10 we have

1 X
{ sup ‘62/ S(e(t —s)) 1[tnk7nk+1]( 8)G(Z5(5) AW (s)] 2 5} = Cox <_6 2 >,

t€[0,1] KT
(3.43)
1
where C' = 4 + exp(4ng!) ™ and ng = 2p€0—2 + 1. From inequalities (3.42) and (3.43) we
have
P sup sup é/ S(e(t — 8))G(Z5(s)) dW (s)| > &
ke{0,1,...2" =1} t€[ty kot kt1] n,k
m—1 )
< Y rd s [ sl )6z ave) o
k=0 te[tn,k7tn,k+l] n k
<

52
- In(2™C) | .
eXP( 6’43277n * n( )>
Now observe that there exists IV € N such that for each n > N we have

52

K21,

< —a
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and there exists €, > 0 such that

2

+eln(2"C) < —a Ve € (0,¢€,].

KT

This completes the proof of the lemma.

Lemma 3.14 Let R > 0. Given a > 0 and 6 > 0 there is a natural number ng such that
for each n > ng there exists €, > 0 such that for all € € (0,€,] and for all x € By (0, R)

P{ _sup sup | Z5(t) = S(elt — tap)) Za(tns)| 2 0} exp (=2).
ke{0,1,....27 =1} t€[tp kbn, k+1] €

Proof. Let x € By(0,R) and € € (0,1 and n € N and k € {0,1,...,2" — 1}.
For t € [t, i, tn k+1) We have
|25 (8) = S(e(t — tnk)) Z (tn i)

< €t — 5))Fuls, Z5(5)) ds — S(e(t — toz) /O " etk — ) Buls, Z5(5)) ds

tn,k
62/ S(e(t — 5))G(Z5(s)) dW (s) — ;/ S(e(t —s))G(Z(s))dW (s)| P a.e.
0
_ e(t — ) Eu(s, Z(s)) ds| + 62/ S(e(t — 9))G(Z5(s) AW (s)| P ace.
nk nk
< M/ 0(s)(1+|Z5(s)]) ds + eé/ S(e(t —8))G(Z5(s))dW (s)| P a.e.
tn,k nk
< M1+ sup |Zg(r 3(/9 >
rel0,1]
+ sup é/ S(e(r — $))G(Z5(s)) AW ()|
re[tn,k:tn,k+1 n k
Thus
sup sup | Z5(t) — S(e(t — tnk)) Z; (tn )|
ke{071,...,2"—1} te[t"’k,tn,]ﬁ_ﬂ
N T I
< 27:=:2M </ 9(5)2d8> +272M </ 9(3)2d5> sup |Z5(r)|
0 0 rel0,1]
+ sup — / S(e(r — $)G(ZE(s) AW (s)| P ae..
]{36{0,1,...,2"—1} Te[tn’k,tn’k_,_l] tn,k
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From this we have

P{  sup sup | Z5(t) — S(e(t — tnk)) Zz(tnk)| = 6}
k€{0,1,...,27 =1} t€[tn kb kot

a 1 ) > 5 522
< P{2 2M</ o(s) ds) > - o+ PQ sup |Z5(r)| > T
0 3 ref0,1] 3M( [, 0(s)?ds)

}

There exists a natural number Nj such that for each n > Nj the first probability on the

N|=

>

Wl

%/ S(e(r — ))G(Z5(s)) W (s)

ke{071772n_1} re[tn,kvtn,k-‘rl]

+ P { sup sup

right hand side vanishes. Set @ := a 4+ 1n2. By Lemma 3.12 there is a natural number Ny
such that for all n > Ny and for all € € (0,1] and for all z € By (0, R)

. — Sexp(a)'
te[0,1] fo 5)2ds)? €

By Lemma 3.13 there is a natural number N3 such that for each n > N3 there exists

€n, > 0 such that for all € € (0,¢,] and for all x € H we have
<o ()
- <exp|—].
€

Thus for each n > max{Nj, Na, N3}, for all € € (0,¢€,] and for all z € By (0, R) we have

l\:)\»—t

P sup sup
ke{0,1,...,2n—1} te[tn,k,tn’k+1

/ S(e(t — ))G(Z5(5)) dW (s)| >

w

P{ sup sup |Z5(t) — S(e(t —tni))Zy(tnk)| >0} < 2exp <—Cz>

k‘G{OJ,...,Q”—l} te[tnyk,tn,]ﬁ_ﬂ
a
< exp <—7> .
€

This completes the proof of the lemma.

To simplify notation, for each natural number n define the function

t) = 2]31 1ft€(2n7k2n1:| 3 ]{;_07177211_1
”n()-—
0 ift=0.

Lemma 3.15 Let R > 0. Given a > 0 and 6 > 0 there is a natural number ng such that
for each n > ny there exists €, > 0 such that for all € € (0,€,] and for all x € By (0, R)
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T
S(e(T = 5))G(Z(s)) dW (s)

0
T

and for all T € [0, 1] we have
P {eé
-, S(e(T = 8))G(S(e(s — mn(s))) Zz(mn(s))) AW (s)| = 5}
< w(d)

Proof. Let n € N and let € € (0,1] and let x € By (0, R). It is straightforward to check
that the function

(s,0) € ([0,1] x Q,P1) +—  S(e(s — mn(s))) Z5(mn(s))(w) € (H,Br)
2n—1

= 1oy (8) + D L ptnra) (9)S(€(s — b)) Z8 (tn ) ()
k=0

is measurable. Let p > 0 and define
Tp(w) :=inf{t € [0,1] : | Z;(t)(w) — S(e(t — mn(t))) Zz(mn(t)) (W) = p},

where we set inf () = 1. Since (F3) is a right continuous filtration, 7, is a (F;)-stopping

time.
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Let T € (0,1]. We have

P{e5

T
/0 S(e(T — $))G(Z5(s)) dW (s)

2

/O Lio,7(8)S(e(T = 8))[G(Z;(s)) — G(S(e(s = ma(s))) Zz (T (s)))] AW (s)

T
—/0 S(e(T = 5))G(S(e(s — mn(s))) 2z (mn(s))) AW (5)

< P<{€2 sup
t€(0,1]

<P e% sup
t€(0,1]

NI

y

> 9,

/O Lio,7(8)S(e(T = 8))[G(Z(5)) — G(S(e(s = ma(s))) Zz (T (5)))] AW (s)

sup |Z;(t) — S(e(t — mn(t))) Z5(mn(t))] < p}
t€(0,1]

+p{ sup |Z5(8) — S(e(t — 7 (£)) 25 (ma(8))] = p}

t€(0,1]

y

<P {65 sup /0 ! Lio,7(8)S(e(T = 8))[G(Z(s)) = G(S(e(s = ma(s))) Zz (T ()] AW (s)

te€(0,1]

+P{ sup |Z5() — S(e(t — 7 (£)) 2 (ma(1))] > p}

te€(0,1]

=P {65 sup / Lio,r,n1)(8)S(e(T — 5))|G(Z5(5)) — G(S(e(s — mn(s))) Z;(mn(s)))] dW (s)| = 5}
te(0,1] |J0
+P {;}5% |ZE(t) = S(e(t — ma (1)) Z5 (mn(t))] = p} , (3.44)

where the last equality follows from the localization lemma [10, Lemma 4.9].

We have
1
/O Lo,rn1) ()|S(e(T = 8))[G(Z5 () — G(S(e(s — m()) Zs (mn (DT, 0.0) I

1
< MQAZ/O Lo,7,1(5)1 Z5(s) — S(e(s — mn(5))) Zg(ma(5))|* ds
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Thus, by Theorem 3.9,

P {él{g)ﬂ /Ot Lio,r,n1)(8)S(e(T = 8))[G(Z5(s)) — G(S(e(s — mn(s))) Z;(mn(s)))] AW (5)| =
52
< 3exp <_e41\421\2p2> . (3.45)
We now choose p € (0,00) such that
52
YENeT > a+1n6. (3.46)

By Lemma 3.14 we can find ng € N such that for each n > ng there exists €, > 0 such
that for all € € (0,¢,] and for all x € By (0, R)

In 2

P{ Sup | ZE(t) — S(e(t — ma(8)) Z5(ma 1)) = p} < exp (—“* n ) S (34
tel0,1] €

With p chosen to satisfy inequality (3.46), inequalities (3.45) and (3.47) combine in equa-

tion (3.44) to give the desired result.

Lemma 3.16 Givena >0 and d >0 and 0 < Ty <15 <1 and R > 0 there exists b > 0
and there ezists ey € (0,1] such that for each x € By (0, R) and for each € € (0, €

Ty )
Pl | ST — $)G(S(e(s = T ZHT)) AW () 2 6, sup 3|W (D), <)

—a
< exp <> .
€

Proof. Recall that (gx) is an orthonormal basis of U and for each n € N we define the

projection in U:
n

M(u) = > (u,gklugr  Vu €U,
k=1

In the course of this proof we choose numbers D € (0,00), n € N, T} < T < Ty < Ty and

a partition Tl =<1 <<t = Tg as well as b € (0,00) in order to control the size
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of the five terms on the right hand side of the inequality

Ty 1
P{e7| . S(e(Ty — 5))G(S(e(s = T1)) Z5(T1)) dW (s)| = 6, te[s%lpT]éIW(t)lUl < b}
< P{|Z,(Th)| > D}
1 T2
+ P{e2| . S(e(Th — 8))G(S(e(s — T1)) Z5(Th)) Iy — ) dW (s) | > g 1Z5(T1)| < D}
4P { ¢ TTI S(e(Ty — 8))G(S(e(s — T1)) ZE (1)L, dW () +
1 . s
ST — )G (S(e(s — Ty) Z4(Ty), dW (s)]| > 4}
T
T
+ P { €2 . S(e(Ty — s))G(S(e(s — Th)) Zo(Th))IL, dW ()

Moa

Ty -1
—/T D Ltytyn) (8)S (T = 1)) G(S(e(t; — T1)) Z5 (T1)) L dW (5)| >
1 =0

|1Z5(Th)| < D}

e(Ty — t7))G(S(e(t; — T1)) Zg(Th)) I, dW (s) | >

+
o)
—
a
=
\

@
E
,J;\oq

sup €2 [W(t)[r, <b
tE[Tl,TQ}

= term 1+ term 2 + term 3 + term 4 + term 5. (3.48)
Let a > a.

By Lemma 3.12 we can take D € (0, 00) such that for all x € By (0, R) and for all € € (0, 1]

term 1:= P{|Z5(T})| > D} < exp <—a> . (3.49)
€
Let x € By (0, R) and € € (0,1]. Define the (F;)-stopping time

(3.50)

() T, if |Z5(Th)(w)| > D
Trelw) =
we 1 otherwise.
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The function
(s;w) € ([0, 1]xQ,P1) = L(p, 15)(5)S(e(T2—s5))G(S(e(s—T1)) Z(T1)(w)) € (L2(U, H), B, w,m))
is measurable and belongs to L?([0,1] x Q,P1, A x P; Lo(U, H)). Thus, applying the

localization lemma [10, Lemma 4.9], we have for arbitrary n € N

/0 10,70, (8)€2 1y 131 (8) S (e(To = )G (S (e(s = T1) Z(Th)) (Iy — L) AW ()

1

tATz,e
= [ 1 (9T = 9)G(S(els - T ZHT)) Ty ~ L) dW(s) Vi€ 0.1
0
P a.e.. Using this fact we have

term 2
Ts

=P{Ie} | (T~ )GS(e(s — 1) Z5(T0) Uy — L) W (5)| 2 >

<p { sup e [ L, (9)S(6(T2 = ) G(S(els — T ZH(T)) Iy~ L) AW ()] = 3,
te(0,1] 0

= P{ sup ez / Lo, ()1 (1,101 (8)S(e(T2 — 5))G(S(e(s — T1)) Zz(Th)) Iy — 1L,) AW (s)| >
t€[0,1] 0

|Z(Th)| < D }.(3.51)
Since

1
/O €Lio,r, ()1 (1, 1) ()| S(e(To — 8))G(S(e(s — T1)) Ze(Th) Iy — W) |17, .11 ds

< eM? sup ||G(h)(IU—Hn)||%2(U,H) P a.e.,
he B (0,M D)
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Theorem 3.9 yields an estimate of the term on the right hand side of inequality (3.51):

term 2

SP{tzl[épl] €2 /0 Lio,re ) ()11 12 () S (e(T2 — ) G(S(e(s — T1)) Z(Th)) (Iy — 1) AW ()] =

}

S,

52
<Bexp [ — '
< 64eM? suppep,, 0.pa) |G(h) (T — Hn)”%xU,H))

By assumption (A2) we can now choose n € N such that

52
In3 — < —a
64102 SUPheBy (0,DM) ||G(h)(IU - HH)H%Q(U,H)
and we obtain
term 2 < exp <_a> Vx € By (0, R) and Ve € (0,1]. (3.52)
€

We choose Tl and Tg such that T1 < Tl < Tg < Ty and

2
3— = g — < —a.
64M2F2(T1 T+ 15 — TQ)
Then again by Theorem 3.9 we have
term 3
1 T
= Pqe2 S(e(Ty — s))G(S(e(s —Th)) Zg(T1))IL, dW (s)
T
Ty 5
# [ - )G els - T)ZT, W (s)| > §
T>
t 1 . 5
< Pl | /0 i oty 1 (8)63 S (6T = 5))G(S els — T Z5(Ta) T dW (s)] > )
te(o,
52
< Jexp (— = = >
64€M2F2(T1 T+ 15 — TQ)
< exp (_a) Va € By (0, R) and Ve € (0, 1]. (3.53)
€

Let 7 := {Tl =ty <t < - <t = Tg} be a partition of [Tl,TQ] and set A7y =
max{tj1 —t; : j=0,1,...,1—1}.
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For x € By (0, R) and € € (0,1] define the (F;)-stopping time 7, as in equation (3.50).

By the localization lemma [10, Lemma 4.9] we have

/Ot Lor.(5) jZZ Lt 111 (8) [S(e(Th — 9))G(S(e(s — T1)) Z5(Th))
—S(e(Ty — t;)G(S(e(ty — T1)) Z5(T1))] I, dW (s)
- /0“% gl(tﬁtﬂ—ﬂ(s) [S(e(Ty — $))G(S(e(s — T1)) Z5(Th))
—S(e(Ty — t;))G(S(e(t; — T1)) ZS(Ty)] L, dW (s) Vit € [0,1] P ae..
Thus
term 4 )

S(e(Tz = 5))G(S(e(s — T1)) 25 (T1)) I dW (s)

::P{eé

ST

Ty -1
/ Z ot (5)S((Ts — ) G(S(e(t; — T1) ZE(TO))IL, AW (s)| >

|1Z2(T1)] <D}

-1
,€

L S ) el ~ ) GOS(els = T Z5(T)
j=0

< P sup €2
t€0,1]

— S(e(To — t5))G(S(e(t; — T1)) Z5(T1)))1L, dW (s)| >

IR

|1Z:(Th)] <D}

5}
> — 5.
— 4

(3.54)

-1
<P { Sup e / Lo, Z La, tJH] e(Tz — 5))G(S(e(s — T1)) Z;(T1))
te(0,1] =0

= S(e(Ta = 13))G(S(e(ty — T1)) 2, (T1)) Ty dW (s)
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In order to apply Theorem 3.9 to the right hand side of (3.54) we observe that

Lty 5441 (5) 10,7, ()N [S(e(T2 — 5)) G(S(e(s — T1)) Z3(T1))
— S(e(Ta — 15))G(S(e(ty — T1)) 2o (1) Un| Ly ()
<ty 5401 () L0, ($) 1S (e(T2 — 9))[G(S(e(s — T1)) 2, (Th)) — G(S(e(ty — Th)) Z(To) M| £y 1)
+ Lt 001 ()0, g () [S(€(T2 = 8)) = S(e(T — )]G (S (e(ty — T1)) Zz(T) | Ly v,y
< MAD|[S(e(s —T1)) — S(e(t; = T)) | i.m Lty y111(5)
+ TIS(e(Tz = ) = S(e(Ta = )L,y Lty 401 (5)-

~—

)
)

Thus we have the bound

11-1

/ th 1) ()07, () [[[S(e(T = )G (S (e(s — T1)) Z5(Th))

— S(e(Ty = ;))G(S(e(t; — T)) Ze(T))La||7, (17 11y ds
11-1

2 / th 1) ()M A2 D2 (e(s — T1)) — S(elt; — T .1

IN

+I2(|S(e(To — 8)) = S(e(To = t)I7 (41,1 d
< 2(M?A%D? +T?)

x <Sup {!5(777‘) = Ss)llnam) ¢ s € (T = Ta) A (T2 = ), 1]

2
and [r —s| < A7 and n € (0,1]}) ;

the last expression does not depend on € € (0, 1] or x € By (0, R) and goes to 0 as A7 — 0
since, by (A2), the family of functions

{t e (11 = T1) ATz — T2),1] = S(nt) € L(H, H), 1€ (0,1]}

is uniformly equicontinuous in the norm topology. For brevity set
((Ar) = sup {HS(W) — S8) |y 178 € [(Ty = T1) A (To — Tb), 1]

and |r —s| < A7 and 7 € (0,1]}.
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We now choose partition 7 = {Tl =to<t1 <--- <t = Tg} such that A7 satisfies

52
In3 — < —a.
"3 SOVEAIDE F T (A - "
Then from inequality (3.54) and Theorem 3.9 we have
term 4 < exp <_a> Vx € By (0, R) and Ve € (0,1]. (3.55)
€

Finally we consider term 5. Recall that by definition of the inner product (-, )y, in Uj,

the bounded linear operator from U; into U

n

H}lu = Z<u, /\I;QJgk>U1 gk , UE Ui,
k=1

satisfies TIL Ju = IT,u Vu € U. We will use the result
1
/ Lo (5)B 0 J AW (s) = B(W(d) — W(e) P ae. (3.56)
0
when 0 < ¢ < d < 1and @ : (Q,F) — (L2(Ur, H), Br,w, i) is Fe measurable and
E [H<I>H%2 (i) < 005 this result is clear when @ is simple and can be shown for general ®

by approximation in L?(Q, F., P; Ly(Uy, H)) with simple functions.
We have for each € € (0,1] and z € H

Rl
€2 / D Lty (8)S(e(To = )G (S(e(ty — Th)) Zg(Th)) I dW (s))]
j=0

T
L -1 1

= )y / L, 15,0 (8)S(e(T2 — 1)) G(S(e(t; — T1)) Z(Ty)) I, T dW (s)| P ace.
j=0
-1

= €3] Y S(e(Ty — ;)G (S(e(t; — T0))ZE(Ta)) L (W (tj41) — W(t;))| P ae. (3.57)
j=0

< 2AMT|LY | Ly 0ye?  sup  [W(H)|o, (3.58)
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Equation (3.57) follows from equation (3.56). We choose 0 < b < W”L(UU), then
n 15
for each e € (0,1] and each x € By(0, R)
Ty -1 S
term 5 = ez D Lt 5000 (9)S(e(T2 — )G (S(e(t; — Th)) Z5(T1))L, dW (s)] > "
Ty
7=0

sup  e2|W(t)[e, <byp =0,
tE[T17T2]

(3.59)
by inequality (3.58).

With b chosen as in the last paragraph, we combine inequalities (3.48), (3.49), (3.52),
(3.53), (3.55) and (3.59) to obtain for all z € By(0, R):
T

P{lez | S(e(Ty = ))G(S(e(s — T1)) Z5(T1)) AW (s)| > 6, sup e2|W(t)|y, < b}
T te[Ty,Tz]

4 exp (_a) Ve € (0,1]
€

< exp (—%) Ve € (0, €],

IN

where e¢g = ‘fnjf AL,

This completes the proof of the lemma.

Proposition 3.17 Let R € (0,00). Given a > 0 and 6 > 0 there exist b > 0 and ¢y > 0
such that for all x € By (0, R) and for all e € (0, €] we have

P < sup
t€[0,1]

Proof. Let @ > a. Let n be a natural number. For each k£ € {0,1,...,2" — 1} and

& / S(e(t — $)G(Z5(s)) AW (s)| >

d, sup |6%W(t)|U1 < b} < exp (_2) :
t€(0,1] €

t € [tnk,tnkt1) we have

S S(e(t — tr)) /0 " S(eltnn — 8))G(Z5(s)) AW (s)

é/ S(e(t — 8))G(Z5(s)) AW (s)

P a.e..(3.60)

e%/t S(e(t — 8))G(Z5(s)) dW (s)

77



Since the processes in inequality (3.60) are continuous on [t,, i, t, k+1], foreach k € {0,1,...,2" — 1}

we have

sup
L€ty kytn kt1]

;/ S(e(t — 8))G(Z5(s)) AW (s)

Nl

tn,k
< 2k | [ Sleltnn - )Gz @ ()
0
+e su / S(e(t — $))G(Z5(s)) AW (s)| P ae..
te[tn k7 n, k+l n k
Consequently

sup
te[0,1]

. / S(e(t — £)G(Z5(s)) AW (s)

1
< Me>2 sup
0<k<2n—1

/0 " S (et — ) G(Z5(s)) AW (s)

+ €2 sup su P a.e.

0<k<2™"—1 t€[ty,kstn, k+1]

/0 " S (et — 5)G(Z5(5)) AW (s)

/ S(e(t — $)G(Z5(s)) AW (s)

1
Me2  sup
0<k<2n—1

IN

_ /0 . S(e(tn — 8))G(S(e(s — mn(s))) Zz(mn(s))) dW (s)

1
+ Me2  sup
0<k<2n—1

/0 " S (el — )G(S(els — mu(5)) 2 (mal ) AW ()

+ E% sup su P a.e..

0<k<27—1 t€[ty o tn, k+1]

/ S(e(t — $)G(Z5(s)) AW (s)

By Lemma 3.13 and Lemma 3.15 respectively, there exist a natural number ng and a

positive number €y such that

1. for all x € H and for all € € (0, ¢g] we have

l\.’)\»—t

P { sup sup

0<k<2m0—1 te[tno,kvtno,k+1

/ S(e(t — $)G(Z5(s)) AW (s)| >

== ()

2. and for each k € {1,...,2™ — 1} and for all x € By(0, R) and for all € € (0, eg] we
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have
1
P{62
LI _a
3 [ =P AT )

Hence for arbitrary b > 0 and for all z € By(0, R) and for all € € (0, 9] we have

/0 " S ety — 5)G(ZE(5)) AV (5)

_/0 " S(e(tng,k — 8))G(S(e(s — Ty (5))) Z5 (o (5))) dW (s)| =

P{ sup e%/ S(e(t — $))G(ZE(s)) AW (s)| > 6, sup |3 W (B)on gb}
te[0,1] te[0,1]
tn Jk
< P{eé sup / " S(eltng — 5))G(Z5(s)) AW (s)
o<k<2m0-11|Jo
tno,k 5
[ (et~ NGS(els w2 () W (5)| > 51
+P{eé sup sup / S(elt — 8))G(Z5(s)) dW (s)| > 5}
0<k<2m0 — 1te[n0ktn0 k+1] |V tng k 3
tn k 6
+P{e§ sup / " S(eltngk — 9))G(S(e(5 — Ty (8))) Zs(mng () W (s)| > IR
0<k<2m0—-1|J0
sup |e2 W (t)|y, <
te€[0,1]
< 2™ exp (_a>
€
1 tng,k 1)
+PS  sup ez / €(tno e = $))G(S(e(s = g (5))) Zz (ng (5))) AW ()| = o7
0<k<2m0-—1 0
sup |e2W (t)|y, < b}
te(0,1]
< 2™ exp (_a)
5

3M2(2M0 — 1)’

[NIE

/tno‘”l €(tngj+1— 8))G(S(€(s = tng ) Z5(tng 5)) AW (s)| >

€

210 —2
+ Z P{e
7=0 nQ,J

sup |e2W(t)|o, gb}, (3.61)
te[0,1]
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where the last line follows from the observation that for each k& € {1,2,...,2"0 — 1} we

have
[ Sleltngs = DO (els = 7y () Ze (D) AW ()
k= 1 tng,i+1
< Z : / S(eltag i — S)CS(e(s — tug 1)) Z(tng 1) dW(s)| P e,
202 | i
< MY | [ Sleltnggin ~ NS — tug) il AW )| P e
=0 t

ng,J

According to Lemma 3.16 we can find b > 0 and €; > 0 such that for all z € By (0, R)
and for all j € {0,1,...,2™ — 2} and for all € € (0, ;] we have
P {eé 0

[ (et = DS el = tag )10 ) W (3)| = s,

nQ,J

1
sup |e2W(t)[u, < by
te(0,1]

Now returning to inequality (3.61) with b; in place of b we see that there exists ez €
(0, €0 A €1] such that for all x € By (0, R) and for all € € (0, e2] we have

P< sup
t€[0,1]

e / S(e(t — ))G(Z5(s)) AW (s)| > 8, sup reéw<t>|Ulgbl}Sexp(—a).
tel0,1] €

We can now prove Proposition 3.11.

Proof of Proposition 3.11. Let K C H be compact. Fix a > 0 and § > 0 and
¢ € L*([0,1];U). For € € (0,1] and x € K and b a positive real number which will be

specified later, we set
D(e,x,b) := { sup |XS(t) — 22(t)] > 6, sup ezW / o(s)ds| < b}.

te[0,1] t€[0,1]
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As in equation (3.25), define the process
) t
W) = W(t) — e_ZJ/ b(s)ds vt e [0,1].
0

By [10, Theorem 10.14], (W*(t));c[0,1) is @ Wiener process with respect to filtration (F)
on probability space (2, F, P¢) where

AP () = exp ( /O (6s) W () — /0 1 |¢<s>\%ds> 4P(w)

and P¢(W€(1))~! = P(W (1))~ L.
For A > 0 set

1
M(e, A) = {w cQ: /O (6(5), o AW (s)(w) > —

(:m—t‘ >
——

We have
P(D(e,x,b)) < P(D(e,z,b) N M(e,N)) + P(M(e, \)°). (3.62)
By Theorem 3.9 we have immediately

P< sup
te(0,1]

3 ( % > (3.63)
< €ex e R E— . .
= TP el I0(o) 2 ds

The rest of the proof involves finding an exponential bound for the first term on the right
hand side of (3.62). We have

| >~

P(M(e, A))

IN

>

/0 (6(5), Y AW (s)

N|=

€

P(D(e,z,b) N M(e,\))
[T 1 [t
~ [ tocemun@en (< [ areie) + o [ lolds) ae)

IA

1
exp <A+21 / I¢<s>%ds) Pf{sup |X5(t) — 22(t)] > 8, sup e%\W€<t>|Ulsb}.<3.64>
€ €Jo t€[0,1] t€[0,1]
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By equation (3.28) we have
t Lot
Xi(t) = S(et)z+ e/ S(e(t — s))F(es, X5(s))ds + €2 / S(e(t — s))G(X5(s)) dW*(s)
0 0
t
+ [ S(e(t —5))G(X5(s))p(s)ds vVt €[0,1] P a.e..
0
Recall that in equation (3.36) we defined

Fe(s,y) == eF(es,y) + G(y)o(s) V(s,y) € [0,1] x H.

Thus (X5 (t) : (Q, Ft, P€) — (H,Bu))iejo,1) is the solution of the equation

{ dX(t) = (eAX(t)+ E.(t, X (t)))dt + G%G(Xe(t))dWG(t) t e (0,1]
(3.65)
X0) = =z
Let (Zg(t) : (2, F¢, P) — (H,Bp))tepp,1) be the solution of the equation
dZe(t) = (eAZ(t) + F(t, Z¢(t))) dt + E%G(Ze(t)) aw(t) te(0,1]
Z¢(0) = . (3.66)

By Proposition 3.19 we have the equality of the distributions on (C([0, 1]; H&U1 ), B (o) Hau,)):
PY(X5, W)™ = P(Z;, W)™

here trajectory-valued random variables are defined as in equation (3.74). Thus we have

P4 sup |XE(t) — 22(1)] > 6, sup €3 [W(t)|y, <b
te[0,1] t€[0,1]

= P{ sup |ZS(t) — 22(t)] > 0, sup G%IW(t)\UI < b}. (3.67)
te0,1] t€[0,1]
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For each t € [0, 1] we have P a.e.:

|Z5(t) — 22(2)]

= ‘S(et ere/ S(e(t —s))F(es, Z:(s ))ds—}—eé/o S(e(t —s))G(Z(s)) dW (s)
/S (t—35))G(Z:(s))p(s) ds

—x—/szs
0

|S(et)x — x| + |e
0

IN

(e(t — 5))(F(es, Zg(s)) — Fes, 2£(s))) ds

€ t € — S GSZ(z)S S
" Aﬂ@ ))F(es, 22(s)) d

4 /0 S(e(t — 5))(G(Z5(s)) — G(22(5)))b(s) ds

-y/ww—W—mm%@w@@
0

4+l / S(e(t — $))G(ZE(5)) dW (s)
0

IN

sup |S(r)z — x| + eMA </0t 1ZE(s) — 22(s)[? ds)é

re[0,¢]

—i—eMA/l(l +129(s))) ds

+ MA (/ |ZE(s |2ds) (/ o (s |Uds>
+sup{[[(S(r) = Im)G (23 ()| ooy + 5 € [0,1], 7 € [0, €]} </01 |¢(s)\?]d8>

+ sup
rel0,1]

g/Sr—wmfmmww
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Thus, since process (Z5(t))ie[0,1) is continuous,

|Z5(t) = 22(8)|

< 6| sup |S(r)z — z|?
r€[0,€]

1 t
2A% (&2 s)|? ds €(s) — 22(s)|> ds
T M2A ( +/0 |¢<>\Ud)/0|zx<> 9P d
1 2
62 2)2 Z¢S S
SN (/0 (1+|x<>|>d)
1
T sup{I(S(r) — L) G2 a5 € 0,1, 7 € [0, €]} /0 16(s) 3 ds

+ sup
rel0,1]

& /0 " S(e(r — £)G(Z5(s)) AW (s)

2
] vVt € [0,1] P ae..

Applying Gronwall’s Lemma we have

sup |Z5(t) — 25(1)[?

te(0,1]

1 2

< 6| sup |S(r)z — x> + M?A? (/ (1+122(s)) ds)
0

r€[0,€]

1
+sup{[[(S(r) — Im) G (25 (5))l| Lo,y = s € [0, 1] and 7 € [0, 6]}2/0 |6(s)IE; ds

2] exp <6M2A2 <1 + /01 lp(s)|% ds>>

P a.e.. It follows that there exists €; > 0 such that for all z € K and for all € € (0,¢;] we

+ sup
rel0,1]

& /0 " S(e(r — $))G(Z5(s)) dW (s)

have

P{ sup |Z5(t) — 22(t) > 6, sup e2|W(t)|y, <b
te[0,1] t€[0,1]

< P sup
rel0,1]

where ¢ := 3exp(3M2A2(1 + fol [p()]% ds)).

o
27
c

ez /0 S(e(r — 8))G(Z5(s)) dW (s)

, Ssup €%|W(t)‘U1 <b )
te€(0,1]
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Given a > a, by Proposition 3.17 there exist positive real numbers b and e such that for

all € € (0, 2] and for all z € K we have

P < sup
tel0,1]

Thus for all € K and for all € € (0, €; A e2] we have

N

¢ >

| sttt =6z awes)| = S

» Sup |E%W(t)’U1 < b} < exp <—a> )
€

te(0,1]

P{ sup |Z5(t) — 28(8)| =6, sup |e2W(t)|y, < b} < exp (—“) . (3.68)
t€(0,1] t€(0,1] €

Now from inequalities (3.64) and (3.67) and (3.68) we have for all x € K and for all
e € (0,e1 Aeg):

(3.69)

1 ~
P(D(e, z,b) N M(e, \)) < exp <A+§f0 \d)is)%ds _a> |

—)\2
4 [y |6(s)I3, ds
A+ %fol |p(s)|? ds — a < —a, we see, on combining inequalities (3.62), (3.63) and (3.69),

that there exist b > 0 and ¢y > 0 such that for all x € K and for all € € (0, €]

By firstly choosing A such that + In3 < —a and then choosing a such that

P(D(e,x,b)) < exp (_ﬂ) .

€

This completes the proof of Proposition 3.11.

3.7 An example

In this section we consider an example where we can apply our large deviation principle.
Let O be a bounded domain in R" with a C* boundary 0O (this means that for each
x € O there is a positive number r and a real-valued C* function ¢ defined on some open
subset of R"~! such that for some i € {1,...,n} we have y; = ¢(Y1, ..., Yio1, Yit1>---»Yn)
for all (y1,...,yn) € Bre(z,7) N 00).

Let H=U = L*(0). Let A: D(A) = W*2(0O)n W01’2((9) — H be defined by

ot o%n
Au = |¥2 aa@:rlal 8wna"u , forall u e D(A);

in this definition a = (a1,...,an) € {0,1,2}" and |a| := > 7, a; and the functions aq
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are in C*°(0) and there is a positive number # such that

D aa(@)te g >0y ¢ Vo e Oand V(& ..., &) €R™

la|=2 j=1

By [24, Theorem 2.7 in chapter 7], A generates an analytic semigroup (S(¢))¢>0 of operators
on H. Thus condition (A2) is satisfied.

We have in mind the physical system of a lump of material occupying @ C R? and con-
taining a reactive component which undergoes an exothermic reaction. Our condition that
F:([0,1] x H,Bjy1) ® Bu) — (H, By ) be Lipschitz continuous in H uniformly in time in-
terval [0, 1] is rather restrictive. Differential equations describing energy conservation (and
mass conservation) often involve a generation or consumption term which is a polynomial
function of degree greater than one. However if f : R — R is a fixed Lipschitz continuous
function then

F(t,z) = (€O f(2(£), =€H,

is Lipschitz continuous in H uniformly in time. To be specific, we define

flr) = { Perss, r>=0 (3.70)

0, r<-—4,

where 3, v and & are positive real numbers; the function f in equation (3.70) is an
Arrhenius function [23, page 212]. We think of H as the space of temperature functions
on O while F represents the heat generation from the chemical reaction. The deterministic

initial value problem in H:

CC% = Ax(t)+ F(t,z(t)), t>0,

z(0) = x0€ D(A),

models the temperature evolution of the lump of material immersed in a constant temper-
ature bath. We are interested in the short time asymptotics of the solution of the related

stochastic differential equation.

Our choice of diffusion function G is very important because G determines the rate function
in equation (3.13). Unfortunately, justifying a choice of G on physical grounds is hard.
Let @ be a positive definite, symmetric, trace class operator on H. Let g : R — R

be a fixed Lipschitz continuous function and let ¢ be a fixed function in H. We define
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G1:H—>L(H,H) by

Ggmv:g<éf@m@mg1“ Vuv € H

Then the diffusion function

(SIS

Gu) =G (u)Q2 Yue H

is Lipschitz continuous and satisfies (A1).

Alternatively, if H has an orthonormal basis (ex) of eigenvectors of @) such that

sup sup |eg(§)] < o0
keN €O

and g : R — R is a bounded and Lipschitz continuous function then we define Go : H —
L(H,H) by
(Ga(u)v)(§) == g(u(&))v(§) V&€ O and Vu,v € H;
the function
ue H— Gg(u)Q% € Ly(H,H)
is another diffusion function we can use since it is Lipschitz continuous and satisfies (A1).

Let (W (t))t>0 be a (F;)-Wiener process with values in some Hilbert space U; such that
L(W (1)) has reproducing kernel Hilbert space H. The continuous mild solution (X (t));e[o1]

of the stochastic equation

(3.71)

AX(t) = (AX(t)+ F(t, X(1))dt + G(X (1) dW (1)
X(0) = z€eH

may be loosely interpreted as the evolving temperature function in the lump of material
when a source of noise is present. Recall that in equation (3.9) we set
ps = Lw € Qe (t€[0,1] — Xy(et)(w))) for each € € (0,1].

Corollary 3.4 tells us that for each open subset G of C([0,1]; H)

e~
Fp el log (@) 2 = Rl L)
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and for each closed subset F' of C([0,1]; H)

. e
Jim sup ¢ log Ha(F) < — inf To(u),

where
1 ¢
I, (u) = %inf {/0 |p(s)|?ds = ¢ € L*([0,1]; H) and u(t) = —i—/o G(u(s))p(s)ds ¥t e [0, 1]} .

3.8 Appendix

Let Hilbert spaces H, U and U; be as defined in Section 3.1.

Let T' € (0,00). Let (2, F, P) be a probability space. Let (F;)i>0 be a filtration of sub
o-algebras of F such that all sets in F of P measure zero are in Fy and let (W (¢) :
(Q,F:, P) — (U1, Bu,))i>0 be a Uj-valued (F;)-Wiener process such that £(W (1)) has
reproducing kernel Hilbert space U. Let (S(t)):>0 be a strongly continuous semigroup of
bounded linear operators on H. Let the function F': ([0,7] x H,Bjy 1) ® By) — (H,Bg)
be measurable and suppose there is a function § € L?([0, T]; R) such that

|F(t,x) = F(t,y)]
|F(t, )]

IN

O(t)|x —y| Vte|0,T] and Va,y € H and (3.72)
0(t)(1 + |z|) Vt € [0,T) and ¥ € H. (3.73)

A

Let G : H — Lo(U, H) be Lipschitz continuous. Let z € H.

Theorem 3.18 (Existence, uniqueness and continuity of solutions) There exists a

(Ft)-predictable process (X (t));c(o,r), unique up to equivalence among processes satisfying

T
2 sol —
P IX@R < o) =1,
such that
X(t)—S(t)aH-/o S(t—s)F(s,X(s))ds+/0 S(t—s)G(X(s))dW(s) P a.e.

for eacht € [0, T]. Moreover it has a continuous version and sup,cpo ) E[| X (t)|P] < oo for

each p € [2,00).

The proof of this theorem is omitted as it is almost identical to the proof of [10, Theorem
7.4].
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Let P’ be another probability measure on the o-algebra F of subsets of Q. Let (G;)i>0
be a filtration of sub o-algebras of F such that all sets in F of P’ measure zero are in
Go. Let (V(t) : (Q,G, P') — (U1, By,))i>0 be a Uj-valued (G;)-Wiener process such that
LV (1) =LW(1)).

Suppose that (X (t))e[o,r] is the continuous (F;)-predictable process in Theorem 3.18 and
suppose that (Y'(t));c(o,7] is the continuous (G;)-predictable process satisfying

Y(t)=S5(t)r+ /0 S(t—s)F(s,Y(s))ds —|—/0 S(t—s)G(Y(s))dV(s) P ae.

for each ¢ € [0,7]. Let H & U; denote the Hilbert space H x U; with componentwise

addition and scalar multiplication and inner product

(z1,91), (x2,¥2))HoU, = (T1,22) + (Y1, ¥2)U, V1,22 € H and Vyi,y2 € U1.

We remark that the norm topology in H & U; is the same as the product topology on
H x Uj. The trajectory-valued random variable (X, W) : (Q, F, P) — C([0,T]; H ® Uy) is
defined by

(X, W) (w):=t€]0,T] = (X(t)(w), W(t)(w)) YweQ (3.74)
and (Y, V) : (Q,F,P)— C([0,T]; H & Uy) is defined analogously.
Proposition 3.19 The trajectory-valued random variables (X, W) and (Y,V') have the

same distribution.

Proof. It is well known that the Borel o-algebra of C([0,T]; H @ U;) is generated by the
family of all finite linear combinations of continuous linear functionals on C([0,7T]; H®Uy)
of the form §; ® (u,v) where ¢t € [0,T] and (u,v) € H & U; and

(0r @ (u,0))(f; 9) := (u, F()) + (v, 9(O))v, Vf € C([0,T]; H) and Vg € C([0,1]; Uy).
Thus we can conclude that £(X, W) = L(Y,V) if

L ((ur, X (t1)) + (o1, W(t1))o, + -+ + (un, X (tn)) + (on, W(tn))v,) =
L (<U1,Y(t1)> + <7)1, V(t1)>U1 +eee <un7 Y(tn)> + <UTZ7 V(tn)>U1) (375)

for arbitrary n ¢ Nand 0 <t; < ---<t, <T and uy,...,u, € H and vq,...,v, € U;.

Let p € (2,00). Define H,((F:),P) to be the vector space of all processes (U(t) :
(Q,F) — (H,Bw))teo,r such that SUPye(0,7] JolU@®)|PdP < oo and (U(t))tejo,r has a
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(F1)-predictable version, with norm sup,co 71( [, [U(#)[” dP)%; we identify processes that
are equal P a.e. at each time t € [0,T]. Hp((F:),P) is a Banach space. Define the
Banach space H,((G:), P') in the same way but with G; taking the place of F; and P’
taking the place of P. Following the proof of [10, Theorem 7.4], one can show that the
map K : H,y((F), P) — Hp((Fi), P) defined by

(KU)(t) = S(t)e + / "S(t— )P (s, U(s)) ds + / "S(t— $)GU(s) aW(s) i e [0,T]

’ ’ (3.76)
for each U € H,((F:), P), is a contraction map provided that 7" is small enough. To
simplify matters and avoid having to partition [0, 7] into shorter subintervals, we assume
that IC is a contraction with the given T. By [10, Proposition 7.3] the process KU de-
fined in equation (3.76) has a continuous version and if supycp 77 |U(¢)| € LP(Q, F, P;R)
then also supycpo 7 [(KU)(t)| € LP(2, F, P;R). Similar statements hold for the map
K':Hy((Gt), P') — Hp((Ge), P') defined by

(K'U)(t) == S(t)x + /t S(t—s)F(s,U(s))ds+ /t S(t—s)G(U(s))dV(s) Vte[0,T]

’ " (3.77)
for each U € H,((G;), P'). Define X(t) = x for each ¢t € [0,T] and Yy(t) = = for each
t € [0,7]. Clearly for arbitrary n € N and wuq,...,u, € H and v1,...,v, € U; and
0<t1 < - <t, <T we have

L((u1, Xo(t1)) + (v, W(t1))vy + -+ + (tn, Xo(tn)) + (vn, W(tn))v,) =
£(<U1, Yb(tl» + <U1, V(t1)>U1 + -+ <umyb(tn)> + <’Uny V(tn)>U1)'

Thus
L(Xo, W) = L(Yy, V). (3.78)

Suppose for some m € N we have continuous processes (Xm—l(t))te[O,T] c 'Hp((ft), P) and
(Yo—1(t))eeo,r) € Hp((Ge), P') such that

sup |Xm—1(t)] € LP(Q,F,P;R), (3.79)
t€[0,T]
sup |Yi_1(t)] € LP(Q,F,P;R) (3.80)
t€[0,T]

and L(Xpm_1,W) = L(Ym_1,V). (3.81)
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Define

Givenn € Nand uq,...,up, € Hand vy,...,v, €U and 0 < t1 < --- < t, < T we will
show that

L((ur, Xin(t1)) + (01, W(t1))u, + -+ (un, X (tn)) + (0, W(tn))v,) =
L({u1, Yin(t1)) + (v, V(E))u, + -+ + (tn, Yin(tn)) + (vn, V(En))uy). (3.82)

For this purpose we introduce some processes which approximate (X, ())¢ejo,r) and (Yo (t))iepo,7]
and are simpler in form. Let {T}J : j € N} be an orthonormal basis of Lo (U, H) where T; €
L(Uy, H) for each j € N. Then for each R € Ly(U, H) we have Z§:1<R,7}J>L2(U7H)1}J
converges to R in Lo(U, H) as i goes to co. For each N € N and i € N define the continuous

processes
XND@ = St + /O "t - $)F(s, X () ds +
2:2__012(5@(1 — o NG X1 (t ), Tjd) Ly, T (W (55 — W (t%))
and
YO = Sz 4+ /0 "S(t — $)F (s, Yo 1(s)) ds +
2:_01 '21<S(t(1 — o NGV 1 (t55)), Ty ) Lo,y T (V (H55E) = V(t5%))
— =

for allt € [0, T7]. It is not too difficult to see that (3.81) implies /J(X,(nN’i), W) = ,C(YT,(lN’i), V)

for arbitrary natural numbers N and . Thus

£(<u17X7(nN7i) (tl» + <U17 W(t1)>U1 +ot <un>Xr(nN7i) (tn)> + <Um W(tn)>U1) =
L({ur, Y (#1)) + (w1, V(D))o + -+ (un, Y, (1)) + (0n, VE))oy)  (3.83)

for arbitrary natural numbers N and 1.

Since relations (3.79) and (3.80) hold, for each ¢ € [0, 7], taking N and i sufficiently large
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makes X" (t) approach X,,(t) as close as we please in L?(Q, F, P; H) and also makes

Yn(TN’i) (t) approach Y,,(t) as close as we please in L?(€2,F, P'; H). Thus from equation
(3.83) there follows equation (3.82) and L(X,,, W) = L(Y,,, V). By equation (3.78) and

the induction principle
L(Xm, W)= L(Y;,,V) for each m € {0,1,2,...}.

Since supyeqo 11 fo [Xm(t) — X ()P dP — 0 and supyejo 1 Jo |Ym(t) = Y (8)|PdP" — 0 as
m — 00, equation (3.75) follows from equation (3.82). This completes the proof of Propo-
sition 3.19.

We conclude this appendix with a useful result which is not entirely obvious. It shows the
relationship between It6 integrals with respect to two Wiener processes defined on related
probability spaces. Let ¢ € L?([0,1];U) and let € € (0, 1]. Define the probability measure
P< on (Q,F) by

i @)= e ([ <ol s W60 - 5 [ 66) ds) ap)

0

By [10, Theorem 10.14] the process
Lot
We(t) == W(t) — 6_2J/ o(s)ds Vte|0,1]
0

is a (F;)-Wiener process on the probability space (2, F, P¢) and P¢(W¢(1))~! = P(W(1))~L.
In the following lemma P; denotes the (F;)-predictable o-algebra of subsets of [0, 1] x €.

Lemma 3.20 Let @ : ([0,1] x Q,P1) — (L2(U, H), Br,w,m)) be a measurable function

such that for some positive real number C
! 2
/0 [®(s, )7,y ds <C  for Pae we.

Then
1 1 Lol
/0 O(s)dW (s):/o O(s)dW (s) — ¢ 2/0 O(s)p(s)ds P a.e..

Proof. Suppose firstly that sup( ,)ecpo1x0 |®# w)ll,@w,m) = B < oo. Then we can
find a sequence of elementary processes (®, : ([0,1] x Q,P1) — Lo(U, H)) such that
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SUP(¢.w)ef0,1]x2 | Pn(t W)l Lo,y < 2R for all n € N and

1
/Q/O [®(s) — ‘I’n(S)HQLQ(aH) dsdP — 0 asn— oo.

We can also assume, by taking a subsequence if necessary, that
1
/0 |P(s,w) — @n(s,w)H%Q(Uﬂ) ds —0 asn— oo for Pae. wel.

By definition of the It6 integral of an elementary process, for each n € N we have

1 1 -
/0 D, (s)dW (s):/o D, (s)dW (s) —€ 2/0 O, (s)p(s)ds.

For an appropriate subsequence (ny), taking limits as k goes to infinity on both sides of

this equation yields

1 1 s
/0 O(s)dW (s)—/O O(s)dW (s) — e 2/0 O(s)p(s)ds P ae..

Now suppose that ® is not necessarily bounded but
1
/0 ||<I>(s,w)H%2(U7H) ds < C for Pae. wef,

where C' is a positive real number. For each natural number N define py : Lo(U, H) —
LQ(U7 H) by

S if [Ny, i) < N,
pn(S) = { A0

" if |l o,y > N

ST Ly U, )

For each N € N; since py(®P) is bounded we have

1 1 1 1
/ o (B(s)) dW(s) = / o (B(s)) AW (s) — 3 / (o (@(5))(s)ds P ac.
0 0 0

For an appropriate subsequence (Ny), taking limits as k goes to infinity on both sides of

this equation yields the desired result:

1 1 Lol
/0 O(s)dW (s):/o O(s)dW (s) — ¢ 2/0 O(s)p(s)ds P ae..
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Chapter 4

Small time asymptotics when
there is a nonlinear dissipative

drift term and additive noise

4.1 Introduction

In this chapter we describe the exponential small time asymptotics of the mild solution
of an equation having a nonlinear, dissipative drift function, F' : F — FE, defined on
a separable Banach space E. We only consider additive Wiener process noise to keep
things simple. Our main results are Propositions 4.2 and 4.11 and Corollary 4.12. We
mentioned in section 3.7 that differential equations for the evolution of temperature or
concentration in a bounded domain O of R™ often contain polynomial functions of the
dependent variable. If such a polynomial function b : R — R has degree greater than
one, then for general u € L?(O) the function ¢ € O — b(u(€)) need not belong to L2(O).
However if E is a Banach space of continuous functions on O with the supremum norm

then the function:
(F(w)() :==b(u(§)) VYueE and Ve O,

may be a well defined mapping of F into F; if in addition b is a decreasing function then

F . F — F is dissipative.

We now make definitions and summarize the contents of this chapter more precisely. Let
(H,|-|) be a separable Hilbert space and let A : D(A) C H — H be the infinitesimal
generator of a strongly continuous semigroup (S(¢)):>0 of bounded linear operators on H.

Let (Q,F, P) be a probability space and let (W(t) : (Q,F,P) — H);>0 be an H-valued
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Wiener process. The distribution of W (1) on H is denoted by v, its covariance operator

by @ and its reproducing kernel Hilbert space by (H,, |- |m,). Let
k:H,— H

be the embedding of H, into H.

Our aim is to get a large deviation principle under the conditions of Da Prato’s and
Zabczyk’s existence and uniqueness theorem [10, Theorem 7.13] for the case of nonlinear
dissipative drift defined in a Banach space embedded in H. We now state those conditions.
Let (E,| - ||) be a separable Banach space, continuously and injectively embedded as a
dense subset in H via the map

j:E— H.

Sometimes to simplify notation we will omit the embedding , for example we may write
E when we mean the subset j(E) of H. Suppose that S(t)(F) C E for each t > 0 and the

linear operators on E defined by
Sp(t)z:=S(t)x VYxe€ EandVt>0

form a strongly continuous semigroup in L(F, F). In addition, suppose that there is a

positive real number 6 such that
1SE®) || L(pm) < e forall t > 0.

Let
F:FE—FE

be a dissipative function which is uniformly continuous on bounded subsets of F; saying

that F' is dissipative means that
lo =y — A(F() = F)]| > |z —y| Va,y € E and VA > 0.

The following condition also comes from Da Prato’s and Zabczyk’s existence and unique-

ness theorem.

(B1) For each € € (0, 1] there is a version of the stochastic convolution process:

Woa(t) = /OtS(e(t—s))de(s) L telo], (41)
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whose trajectories are in C([0,1]; E), the space of continuous functions mapping [0, 1] into
E.

Whenever (B1) holds, for each e € (0, 1] we implicitly use the version of (Wea(t)):e(o1)
whose trajectories are in C([0,1]; E). We listed condition (B1) separately because we

prove in Proposition 4.4 that this condition is implied by condition (B2) (see below).

Fix ¢ € FE throughout this chapter. By [10, Theorem 7.13], when (B1) holds, for each
€ € (0,1] there is a unique process (X(t) : (Q,F,P) — E)ico,1) whose trajectories
t — X(t)(w) are in C([0,1]; E) for all w € Q and which satisfies the equation

XE(t) = Sp(et)é + 2 Wea(t) + ¢ /0 t Sp(e(t — 8))F(X(s))ds Vvt e [0,1]. (4.2)

When € is 1 we write Wa(t) := Wya(t) and X (¢) := X'(¢) for all ¢ € [0, 1].

In section 4.2 we assume that (B1) holds and we show in Proposition 4.1 that the problem
of finding the exponential small time asymptotics of (X (t));c[0,1) is solved if we can find a
large deviation principle for the random variables X€ : (2, F, P) — C([0, 1]; E) defined by

X(w):=t— X(t)(w) YweQ, e€(0,1].
For each € € (0, 1] define the process (Z<(t) : (2, F, P) — E)g[o,1] by
Z6(t) = Sp(et)e + e2Wou(t) Vit € [0,1]. (4.3)

In Proposition 4.2 we show that if the random variables Z¢ : (Q,F,P) — C([0,1]; E)
defined by
Z%(w) =t — Z(t)(w) YweQ, ee(0,1],

satisfy a large deviation principle then the family {X€¢ : e € (0, 1]} satisfies the same
large deviation principle. Thus our focus becomes proving a large deviation principle for
{L(Z°) e € (0,1]}.

If v(E) = 1 then H), is continuously embedded in E (see Lemma 4.3 and the paragraph
following it) and we denote the embedding by

i1: H,— FE.

In section 4.3 we assume that the following condition holds.
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(B2)
1. We have v(E) = 1.

2. There is a number « € (0, %) and an operator G € L(E*, E), which is the covariance

operator of a symmetric Gaussian measure on E, such that
1
/ o 2i* S (eo)* |7, do < KGU*,I*)p+  VI* € E* and Ve € (0, 1].
0

Remark If v(E) = 1 and there is a positive real number ¢ such that

(Bu(0,1)) C Q2(Bu(0,¢)) Vte[0,1]

D=

S(H)Q

then we have
|i*SE) |, < cli*l*|g, VI*€ E* and Vt € [0,1].

In this case condition (B2)(2) holds with any o € (0, 3) and G = 152204 i7* (here, to simplify

notation, we identify H, and H).
In Proposition 4.4 we show, assuming (B2), that (B1) holds. In Proposition 4.11 we show,
assuming (B2), that {Z¢: € € (0,1]} satisfies a large deviation principle.

In section 4.4 we present an example.

Our problem is different from the small noise asymptotics problem studied by Fantozzi [14]
because in our problem the dependence of the stochastic convolution process (Wea(t)):e(o,1)
on € complicates matters. We introduce condition (B2) to ensure convergence of paths
of (Wea(t))iepp,1) in C([0,1]; E) to those of the Wiener process as € goes to zero. Unlike
condition (B1), condition (B2) is not needed in Da Prato’s and Zabczyk’s existence and
uniqueness theorem and it would have been preferable to obtain results assuming just (B1)
instead of (B2).

4.2 Reduction to the linear problem

Throughout this section we assume that condition (B1) holds.
Let € € (0,1]. The processes (Z(t))ic[0,1] and (X(t));e(o,1) are related by the equation:

X(t) = Z°(t) + ¢ /O t Sp(e(t — s)) F(X(s))ds Wt € [0,1] (4.4)
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and have continuous trajectories in E. We can write equation (4.4) as
t
Xe(t)— Z(t) = e/ Sp(e(t —s)) F(X(s) — Z°(s) + Z(s))ds  Vt € [0,1]. (4.5)
0

For any continuous function z : [0,1] — F and « € (0,00), Da Prato and Zabczyk [10,
inequality (7.46)] provide a bound for the unique continuous solution v¢ : [0,1] — E of

the integral equation
t
V2 (t) = e/ S(e(t — 5)) Fa(v®(s) + 2(s))ds Vi € [0, 1], (4.6)
0
where F,, : E — FE is a Lipschitz continuous function defined by
Fo(z) = F((Igp — aeF) '2) VzeE
which approximates F' (see [10, Proposition D.11]); we have
t
loZ(t)]] < eeE“’t/ e “?||F(z(s))||ds Vte[0,1] and Ya € (0, 00). (4.7)
0

The proof of [10, Theorem 7.13] shows that as a \, 0, v converges uniformly to the

unique continuous function v. which satisfies the equation
¢
ve(t) = e/ Se(e(t —s)) F(ve(s) + z(s))ds ¥Vt €[0,1] (4.8)
0
and, from equation (4.7),

sup [lve(t)[| < ee™ sup [[F(2(2))]]- (4.9)
te(0,1] tel0,1]

Proposition 4.1 The random variables in C([0,1]; E)
te0,1] — X(et)(w), weN

and
te0,1]— X(t)(w), we

have the same distribution.
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Proof. Let a € (0,00). We claim that the map T, : C([0,1]; E) — C([0,1]; E) defined by
t
(Taf)(t) = 6/0 Se(e(t — ) Fa((Taf)(s) + f(s))ds vt €[0,1] and Vf € C([0,1]; E)
is continuous. For f and g € C([0,1]; F) we have

t—s

I(Taf) () = (Tag) DI =

af)(s) + f(5)) = Fa((Tag)(s) + g(s))] ds

IN

Kqee™ (/ I(Taf)(s) = (Tag)(s)| ds 4 sup ||f(7“)—9(7“)||>
0

rel0,1]

for all ¢t € [0, 1], where K, denotes the Lipschitz constant of F,,. Now Gronwall’s inequality
yields

sup [[(Taf)(t) = (Tag)(t)]| < Kaee™ sup | f(r) = g(r)[le™><".
te[0,1] ref0,1]

Hence T, is Lipschitz continuous. The map T : C([0,1]; E) — C([0,1]; E') defined by

/ Su(e(t — ) F(TF)(s) + f(s))ds vt € [0,1] and ¥f € C([0,1]; E)
is the pointwise limit of continuous functions:
Tf= ii{%Taf VfeC(0,1]; E)
and is thus Borel measurable. From equation (4.5) we have
(t€0.1] > X)) = T(t € [0,1] = Z()()) + (€ [0,1] = Z°W)()).  (4.10)
Recall our notation X (s) := X1(s) for all s € [0,1]. We have
X(et) = Sg(et) + Wal(et) / Sg(et —s)F(X(s))ds Vte0,1]
= Sg(et)é + Wal(et) / Se(e(t —u))F(X(eu))du Vt € [0,1].
Thus we have

(t €[0,1] — X(et)(-)) = T(t € [0,1] = Sp(et)d +Walet)(-))+(t € [0,1] — Sp(et)é+Walet)(-)).
(4.11)
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Let
j:C([0,1; E) — C([0,1]; H)

be the continuous embedding of C([0, 1]; E) into C([0,1]; H). As in section 3.1 of chapter 3,
we have equality of the distributions of the C([0, 1]; H)-valued random variables

J(t€10,1] = Z(t)(-)) and j(t € [0,1] = Sp(et)é + Walet)()).

By [30, Theorem 1.1] we have {j(B) : B € Beo1;)} € Bepo,1);m) and it follows that
the C(]0, 1]; E')-valued random variables

(t €10,1] — Z(t)(-)) and (¢t € [0,1] — Sg(et)€ + Wa(et)(-))

also have the same distribution. Hence, by equations (4.10) and (4.11), the random
variables (¢t € [0,1] — X<(¢)(-)) and (¢t € [0,1] — X(et)(-)) have the same distribution.
This completes the proof of Proposition 4.1.

By Proposition 4.1 the family of C([0, 1]; E')-valued random variables {t € [0, 1] — X (et)(-) :
e € (0,1]} satisfies a large deviation principle if and only if it is satisfied by the family
of random variables {X€¢ : € € (0,1]}. The following proposition shows that our prob-

lem may now be reduced to finding a large deviation principle for the family of random
variables {Z¢ : ¢ € (0,1]}.

Proposition 4.2 Suppose that the family of C([0,1]; E)-valued random variables
1Z2°: Z9(w) =t Z(t)(w) Yw € Q}ee(o

satisfies a large deviation principle. Then for any § > 0 we have

limelog P < sup || X(t) — Z(t)|| =6 p = —o0, (4.12)
=0 te0,1]

which implies that the family of random variables in C([0,1]; E)
(X9 X(w) =t X()(w) Yw e Qo
satisfies the same large deviation principle as {Z}.c(,1) does.

Proof. By comparing equations (4.5) and (4.8) we see that inequality (4.9) yields the
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bound

sup [[X(t) — Z°(t)|| < ee” sup [[F(Z(t))|| Ve € (0,1].
te[0,1] te[0,1]

Fix 6 > 0. Take arbitrary r € (0,00). We have

IN

P{ sup || X(t) —Z°(t)| > 6}

te(0,1]

P{ sup ||[F(Z¢(t))]| > (sw}

t€[0,1] €e

)
< Pqsup [|[F(Z°()| > —, sup [|Z°@)] <r
te[0,1] €e te[0,1]

+P{ sup [|1Z°(0)] zr}.

te(0,1]

For all sufficiently small € > 0 the first probability on the right hand side vanishes because
F' is bounded on bounded subsets of E. Thus there is an ¢, > 0 such that

P osup [|[X()—Z@)||>6p <P sup [|Z°(t)|| > Ve < €.
te0,1] t€[0,1]

Let Z : C([0,1]; E) — [0,00] be the rate function of the large deviation principle of

{Z %} ee(0,1)- Let R € (0,00). The set {Z < R} is compact and we now choose r € (0, 00)

such that

{ZT <R} c{zecC(01];E) Pt lz(@)] <7}

By the Freidlin-Wentzell formulation (see [10, Proposition 12.2]) of the upper bound of
the large deviation principle of {Z}.c(01], given v € (0,00) there is a number eg ;. > 0
such that

P{osup |Z@)|| >rp<e e forall €< eppn.
t€[0,1]

Hence

P{ sup || X(t) — Z°(t)|| > 5} < e forall e < (€r N €Rrry)-
t€[0,1]

Since R € (0,00) and 7 € (0,00) are arbitrary we have

limelog P ¢ sup [|[X(¢t) — Z°(t)|| > 6 p = —o0.
=0 t€[0,1]

It follows from [18, Lemma 27.13] that {X“}.c(o,1) satisfies the same large deviation prin-
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ciple as {Z}cc(o,1)- This completes the proof of Proposition 4.2.

4.3 Large deviation principle

In this section we show, assuming (B2), that (B1) holds and the family of C([0,1]; E)-
valued random variables {Z¢ : € € (0, 1]} satisfies a large deviation principle. We need a

basic lemma.

Lemma 4.3 Let U and V be separable Banach spaces such that U is continuously and
injectively embedded in V' via the map j : U — V. If i is a symmetric Gaussian measure

on the Borel o-algebra of V', By, and u(j(U)) = 1 then there is a symmetric Gaussian

measure 1o on the Borel o-algebra of U, By, such that = poj~'.

Proof. We have {j(A) : A € By} C By (see [30, Theorem 1.1 in chapter 1]) and
{i7Y(B) : B € By} C By since j is measurable. Define a probability measure o on By
by

Ho(A) 1= u(j(A)) VA€ By.

By [29, Theorem 4.12 Corollary (c)], 7*(V*) is a weak*-dense subspace of U*. Since for

each h* € V* we have

po(5* )Y = po{x €U : *(jz) €} = p(j{z € U: h*(jz) € -})
= pu{yeV:h'(y) e-}nijl))
= ()™

is symmetric Gaussian, [4, Corollary 1.3] tells us that g is a symmetric Gaussian measure

on By. For arbitrary B € By we have
w(B) = u(BNjU)) = p(i(71(B)) = mo(i " (B)).
This completes the proof of Lemma 4.3.

If condition (B2)(1) holds then by Lemma 4.3 there is a symmetric Gaussian measure v/
on the Borel o-algebra of E such that v = /51, By [10, Proposition 2.8], 2/ has the same

reproducing kernel Hilbert space as v and, as defined in section 4.1,

1:H, — F
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is the inclusion map of H, into E, which is a compact operator (see [3, Corollary 3.2.4]).
From the definition of reproducing kernel Hilbert space, the covariance operator of v/ is
i7* : B* — E where, to simplify notation, we identify H) with H,. We also have k = ji
and Q) = kk*.

Proposition 4.4 Assuming that (B2) holds, the Wiener process (W (t)).cjo,1] has trajec-
tories continuous in E, for each e € (0,1] the process (Wea(t))icpp,1) has a version whose

trajectories are continuous in E and, considering such a version of (Wea(t))elo,1), we have

E | sup |[Wea(t) =W@®)|*| -0 ase—0. (4.13)
tel0,1]

Before proving Proposition 4.4 we state four lemmas which we will use in the proof.

Lemma 4.5 ([21, Theorem 4.10]) Let (U,| - ||) be a separable Banach space and let
Q € L(U*,U) be the covariance operator of a symmetric Gaussian measure p on U. Let
R be a family of positive definite symmetric operators in L(U*,U) such that for some
constant K € (0,00) and for all R € R and for all x* € U* we have

v{Ra*, 2" < K2 p{Qa*, a*) .

Then each R € R is the covariance operator of a symmetric Gaussian measure ur on U

and the family {ur : R € R} is uniformly tight. Moreover, for all R € R we have

/U o] dun(x) < K /U o] dpz).

Lemma 4.6 ([21, Lemma 2.18]) Let U be a separable Banach space and let (u,) be
a uniformly tight sequence of probability measures on (U, By ). Denote the characteristic
function of a measure v on U by U. Let F be a weak*-dense linear subspace of U*. If
for each z* € F the sequence of complex numbers (fu,(x*)) converges then (u,) converges

weakly to some probability measure p on (U, By) and
lim g, (%) = p(z*)  for all z* € U™.

Lemma 4.7 ([21, Theorem 3.25]) Let (U,| - ||) be a separable Banach space and let

(1n) be a sequence of symmetric Gaussian measures on U that converges weakly to a
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symmetric Gaussian measure g on U. Then

Jim / 2|12 dyan () / |2 duu(a)

Lemma 4.8 ([30, Corollary 1 of Theorem 5.7 in chapter 5]) Let m € N. There is
a positive real number Cy, such that for any symmetric Gaussian measure p on a separable

Banach space (U, || - ||) we have

L alPrano) < ¢ ([ ||x|r2du<x>>m

Proof of Proposition 4.4. Let a € (0, 3) and G € L(E*, E) be as in condition (B2)(2).
Let m be a natural number such that 2ma > 1. For each € € [0, 1] define

Ye(s) := /OS(S —0) “S(e(s —0))kdW (o) forall se€]0,1].

As shown in [10, Theorem 5.9], this process, which has a measurable version whose tra-
jectories are in L*™([0,1]; H) almost surely, provides us with a version of the stochastic

convolution process whose trajectories are in C([0, 1]; H):

Weal(t) := sin(m / S(e(t —s))(t — ) 'Y(s)ds, te][0,1]. (4.14)

If € = 0 then the expression on the right hand side of equation (4.14) becomes the
Wiener process (W (t));c(0,1- We will show that condition (B2)(1) implies that the pro-
cess (YO(t))iefo,1] has a measurable version with trajectories in L™ ([0, 1]; E); furthermore,
condition (B2)(2) implies that for each e € (0,1] the process (Y(t)):c[,1) has a measur-
able version with trajectories in L*™([0,1]; E). When we use this version of (Y(t))se(o,1)
in equation (4.14), (Wea(t))icp,1) has trajectories in C([0,1]; E). We will then show that
the convergence in (4.13) occurs.

Let € € [0, 1]. For any ¢ € [0, 1], it follows from the definition of the It6 integral that Y (¢)

has symmetric Gaussian distribution on H whose covariance operator is

t
P ::/ 5725 (es)QS* (es)xds , =€ H.
0
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We can define a symmetric, positive definite, bounded linear operator P, € L(E*, E) by
t
Pl = / 520G (es)id* Sh(es)l ds ,  I* € B, (4.15)
0
For any I* € E* we have
1
B P 1) pe < g(PUF 1) s :/ s72i* Sy (es)|3;, ds < p(GU*, 1*) . (4.16)
0

Thus, by Lemma 4.5, P; is the covariance operator of a symmetric Gaussian measure 14

1

on /. The measure v4j~ on H has covariance operator jFP;j*. For x € H and z* the

corresponding element of H* we have

t
jRj xr = j/ 57298 (es)ii* S (es)j x* ds
0
t
= /s_QaS(es)k‘k‘*S*(es)xds
0

= F)tl‘.

Thus L£(Y¢(t)) = v,j~! and in particular P{Y*(t) € j(E)} = 1.
Take a measurable version of the process (Y(t))¢cjo,1, that is, such that the function
Ve ([0,1] x Q, By ® F) — (H,Bp) defined by

Y(t,w) :=Y(t)(w), (t,w)el0,1]xQ,
is measurable, the domain having the product o-algebra. Then the set
D= {(tw) € [0,1] x Q: V()W) € j(E))

is measurable and for each ¢t € [0,1] we have P{w € Q : (t,w) € D} = 1. Thus the
FE-valued process
YE(t) :=1p(t,)Y(t), te€]0,1]

is a measurable E-valued version of (Y(t))cjo,1]-
We now show that the process (Yg(t))iejo,1) has trajectories in L*™([0,1]; E). For each
t € [0,1] the distribution of Y5(¢) on E is v and its covariance operator P satisfies

inequality (4.16). Thus by Lemma 4.5 we have

[Ivs@izar < [ vspap vee 0.1 (@17
Q Q
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From Lemma 4.8 and inequality (4.17) we have

/Q/Ol [Y5(s)|* dsdP = /Ol/gHYas)H?mdes
/01 Cim ( i ||Y5(3)H2dP)m ds
Crm </Q||Y§7(1)||2dP>m <5 418

If f € L*>([0,1]; E) then for each € € [0, 1] the E-valued function

IN

IN

and thus fo Y5 (s)[|>™ ds is finite P a.e..

tH/ Sp(e(t— o))t — ) f(o)do , te[0,1] (4.19)

is continuous; this claim can be proved by following the same steps we use to get inequality
(4.24) below. By [10, Theorem 5.9], for each ¢ € (0, 1] the process (Wea(t)):ejo,1) has the

version

Weal(t) = sin(r / S(e(t —8))(t—s)* jYi(s)ds VYt e [0,1]

whose trajectories are continuous in H; thus, by comparison with equation (4.19), we have

the E-valued version

Woa(t) - Sln / S(e(t — 8))(t — S)a—ly}g(s) ds Vte[0,1], (4.20)

which has trajectories continuous in E.

We now prove the convergence in (4.13).
For 0 < € <1 we have

W) - W@ = 2 [ e = ittt = ) - 52 vEe)ds
4 sinlra / Sue(t — $))(t — $)°L(Y2(s) — YE(s)) ds (4.21)
=: Ke(t) + J(t) forall t €0,1], (4.22)
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where K(t) and J(t) are defined to be the respective terms on the right hand side of
equation (4.21). From the definition in equation (4.22) we have

sup [[W(t) — Wea(t) [ < 2™ ( sup || Ke(t)[*™ + sup IIJe(t)II2m> :
te(0,1] te(0,1] te(0,1]

Thus it suffices to show that lime o E[supe( 17 [| K (£)[|*™] = 0 and lime_o E[supe(o 1) [|7e(£)[*™] =
0.

Step 1. We will show that

lim E
=0 lefo,1]

sup ||Ke(t)||2m] =0. (4.23)

For all 0 < € <1 we have, by Holder’s inequality:

sup || K (t)[*"
te(0,1]

2m
sin(ma L qy2m
<<(7T) sup ”IE_SE(T)’L(E)> </ U( I)Qm—l dJ)
™ r€[0,1] 0

and the right hand side is an integrable dominating function. If sup;cjo 1) [[Ke(?)|| — 0 as

2m—1

1
/0 V(s 2™ ds

€ — 0 P a.e. then, by Lebesgue’s dominated convergence theorem, equation (4.23) holds.
Let w € Q be such that the path

s €[0,1] — Yig(s)(w)
belongs to L>™([0,1]; E); we will show that

sup [|[K(t)(w)|| — 0 ase—0.
t€[0,1]

Let the sequence (€,,) C (0, 1] converge to 0 as n goes to infinity. Firstly note that for each
fixed ¢t € [0,1], K, (t)(w) — 0 as n — oc:

2m—1

K. (D) < Snre) (/law—l)zi”il da) =

™ 0

A

2m

< ([ 1005 = Sitentt = ¥R 17 s

— 0 asn—o o
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by Lebesgue’s dominated convergence theorem. Uniform convergence to zero follows once
we show that the family of functions from C([0,1]; E)

t— K (t)(w), 0<e<l,

is uniformly equicontinuous. For brevity, we set

y(s) = YP(s)(w) Vsel0,1] and
2(s) = SinWTa)Ke(s)(w) Vs €[0,1] for each e € (0, 1].

By definition, for each € € (0, 1]

t
zE(t)z/(JE—SE(e(t—s)))(t—s)a—ly(s) ds Ve o1
0
IfO0<e<landO0<t<wu<1then

12 (w) =z (@)

< [ e - st = pw— 1 ats)as] +

[ e = Sutctu— o= Myts) ds = [ (1= Sp(ett =)t - 91 (o) ds
< [ e - stctu— sty as| +

[t = Sttt )t = 91"t - u—1) —olo)) ds
< s g~ Sp(r)lcey ([ o5 da)”; x

rel0,1]

(/0 (o as) " ( / T s+ — gl ds) R

The expression on the right hand side of inequality (4.24) does not depend on € and, since
y € L>™(]0,1]; E), both integrals inside the square brackets converge to 0 as u —t \, 0.

Hence {z¢:0 < e < 1} is uniformly equicontinuous.
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Step 2. We now show that

lim E | sup ||J.(t)]*™| = 0. (4.25)
=0 14e0,1)
We have
2m
sup ||Je(2)]l
te€(0,1]
sin(ma) v 1)-2m_ ot
< sup ||1S5(r)l|Lem) ( / ol D= da) / 1Y8(s) — Yis(s)[[*™ ds.
™ r€[0,1] 0 0

(4.26)
Let t € [0,1] and € € (0,1]. The random variable

t
YO(t) —Y<(t) = / (t—0) %Iy — S(e(t —0)))kdW (o)
0
has symmetric Gaussian distribution on H with covariance operator
¢
QF = / 021y — S(eo)) QI — S(ea))* do.
0
Define the operator Pf : E* — E by
t
P / =201y — Sp(eo))ii*(In — Sp(eo)) 1 do VI* € E*.
0

The operator Pf is a symmetric, positive definite, bounded linear operator and for all
I* € E* we have

t
P ) e = /a2ayi*(IE—SE(ea))*z*\§,Vda
0

IN

1
/ o *i*(Ig — Sp(eo)) 1*|}, do = g{P{l*, 1*) p- (4.27)
0

1
< 2/ o 2 (|i*1*3;, + |i* Sy (eo)l*|F,) do
0

< 1T7om i3, + 2 B{GU*, %) . (4.28)

By Lemma 4.5, inequality (4.28) implies that Pf is the covariance operator of a symmetric

Gaussian measure vy on E. For each x € H and the corresponding linear functional
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z* € H* we have
JF{j*a" = Q.

Thus the distribution of Y2(t) — Y5(¢) on E is vf. Moreover, by inequality (4.27) and

Lemma 4.5 we have
/ V(1) — Ya()|2dP < / IY2(1) — Y5(1)2dP (4.20)

which holds for all € € (0,1] and for all ¢ € [0, 1]. Inequality (4.28) and Lemma 4.5 also

imply that the family of Gaussian measures on F

{L(YE(1) = Y5(1) = vi :e€ (0,1}

is uniformly tight.
Let (e,) be a sequence of numbers from (0, 1] such that €, converges to 0 as n goes to

infinity. We have

1
AP Y e = / 2 ((Iy — Splen0))i) V4 do
0
< sup (T — Se(enr)ils g, ) 1013 —
C ref0,] L(H..E) 1 -2«

— 0 asn— o

—

for all I* € E*. Hence the sequence of characteristic functions (¥{™) converges pointwise:

P

1
vi"(I*) = exp <—2E<Pf"l*,l*>E*> —1 asn— o0

for all I* € E*. By Lemma 4.6 we have that v{" converges weakly to dp, the point mass

at 0, as n goes to infinity and, by Lemma 4.7, we have
lim ||YE( ) =Y (1)||*dP = 0. (4.30)

n—oo

By Lemma 4.8 we have

/OI/QHYEO(S)—YE"(S)HdePdS < Cm/l </ ||yE0(s)—Y§"(3>||2d:>mds
< </ g an(l)n?dp)

— as n — oo,
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where the second line follows from inequality (4.29) and the third line from equation (4.30).

Since (€,) is an arbitrary sequence from (0, 1] which converges to 0, we conclude that

1
lim/ /HYg(s)—Yﬁ(s)HdePds:O.
0 JQ

e—0

Equation (4.25) now follows by taking expected values on both sides of equation (4.26).
This completes the proof of Proposition 4.4.

Set
2 .=E

€

sup ||[Weal(t) — W(t)H2] Ve € (0,1].
te[0,1]

It is straightforward to show, using [10, Proposition 2.9(i)], that for each e € (0, 1] the

random variable

wi (= Wea(t)(w) — W(t)(w)) (4.31)

in C([0,1]; H) has symmetric Gaussian distribution; Lemma 4.3 tells us that the corre-
sponding random variable in C([0, 1]; E) also has symmetric Gaussian distribution. Con-
sequently, except for differences of notation and context, the proof of the next lemma is

from Fang and Zhang [13, Lemma 4.2].

Lemma 4.9 Assuming that (B2) holds, there is a positive number ¢ such that

( suptefo,1] [[Weal(t) — W(t)HQ)]
exp | ¢ 5 < 0.

sup F
0<e<1

Proof. The proof makes clever use of Fernique’s theorem as stated in [10, Theorem 2.6].

For each € € (0, 1] define the symmetric Gaussian distribution x. on C([0,1]; E) by
pe=L(w e [t FWealt)(w) - W(B@))]).-
By Chebyshev’s inequality, for any positive real number r we have

r2ucfu € C([0,1; E) = sup |lu(t)|| >r} <1 Vee (0,1].
te(0,1]

Fix r € [2,00); then we have

1- ez§ 3 07
n He(Boo;p) (0, 7) <In (1> < -1 Vee (0,1].
te(Be(poy:e)(0,7)) 3
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Hence we may choose X € (0, 00) such that

N (1 — pe(Bejo,1,2)(0, 7))

< + 3202 < —1  forall e € (0,1];
pe(Be(o,1);5)(0,7))

with this choice of A we have from Fernique’s theorem:

e2
e2 —

/ Asuprcon IO g () < o164 | Ve € (0,1].
C([0,1;E)

This completes the proof of the lemma.

Lemma 4.9 is used in the proof of the next lemma, which is the counterpart of [13, Lemma
4.3].

Lemma 4.10 Assuming that (B2) holds, for any § > 0 we have

limelog P { ez sup |[Wea(t) — W(H)| > 6% = —.
=0 t€(0,1]

Proof: Let ¢ be as in Lemma 4.9 and set

su Woa(t) — W(t)|?
G o B e ( Preoa [Wea ()= WO )]
0<e<1 02
We have
AT o (P Wea(t) = WO
P02 ) et suprepon IWea-w )25} = 52

for all € € (0,1]. Taking expectations of both sides in this inequality, we have

P{eé sup [|[Wea(t) — W(t)|| > (5} < Cexp( o > Ve € (0,1].

—c—
2
te[0,1] €d;

Now we take logarithms and use . — 0 as € — 0, from Proposition 4.4. This completes

the proof of Lemma 4.10.

Define the random variables in C(]0, 1]; E):

Wepa(w) = t— Wa(t)(w) VYw e Q and Ve € (0,1] and
W(w) = t—W({t)(w) Ywe.
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Lemma 4.10 means that the two families of random variables in C([0,1]; E)
(Z° = Sple )+ e2Wen: €€ (0,1]} and {E+e2W: e€ (0,1]}

are exponentially equivalent.
The distribution of W : @ — C([0, 1]; E) is symmetric Gaussian and, by [10, Proposition

2.8] and [32, Theorem 1 in section 6], its reproducing kernel Hilbert space is

Hy = {t €10,1] — /Otu(s) ds : u € L*(|0, 1];H,,)} , (4.32)

whose norm | - |, is defined by

w

1 t
|f|§{w ::/ |u(s)\%1y ds :ue L?([0,1];H,) and f(t) :/ u(s)ds Vte[0,1], (4.33)
0 0

for each f € Hy .

Proposition 4.11 Assuming that condition (B2) holds, the family {Z¢}.c(,1) of ran-
dom variables in C([0,1]; E) satisfies a large deviation principle with rate function Zg :
C([0,1]; E) — [0, 00] defined by

‘ (4.34)
00 otherwise.

{ Lf—eB, iff-¢€Hy
Proof. By [10, Theorem 12.7], the family of random variables {G%W ce € (0,1]} in
C(]0,1]; E) satisfies a large deviation principle with rate function Zy : C ([0, 1]; E) — [0, oc]
defined by

slflfi, i f€Hw

00 otherwise.

Thus {§ + W :ec (0,1]} satisfies a large deviation principle with rate function Z.
Since {Z€ : € € (0,1]} and {f—i—G%W : € € (0,1]} are exponentially equivalent, they satisfy

the same large deviation principle (see [18, Lemma 27.13]). This completes the proof of

Proposition 4.11.

Corollary 4.12 Assuming that condition (B2) holds, the family {w € Q +— [t — X (et)(w)]}ee(0,1]
of random wvariables in C([0,1]; E) satisfies a large deviation principle with rate function
T¢ defined in equation (4.34).

Proof. This follows from Proposition 4.11 and Proposition 4.2 and Proposition 4.1.
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4.4 An example

We now present an example where condition (B2) holds and thus Corollary 4.12 provides

the short time asymptotics.

Let n € {1,2,3}. Let O be a bounded domain in R™ with C*° boundary 9O. Consider

the second order elliptic operator
=35 (g )+ g+
i=1 j=1 a < Ox

where the functions
aj j :O—=R ,i,j=1,...,n

are in C*°(0) and satisfy the conditions
1. a;j =a;; forall i,j € {1,...,n} and

2. for some positive real number C

Zza” T)&iEj > cng Y(€1,...,&) € R and Yz € O

i=1 j=1
and the functions
by :O—=R ,k=1,....n and c:0—R

are also in C*°(0).

Define the operator (A, D(A3)) on L%(O) by
D(Ag) := W*2(0) n Wy (0)

and
AQU = Lu , U € D(AQ)

(4.35)

(4.36)

By [24, Theorem 2.7 in chapter 7], —As generates an analytic semigroup (S(t)):>0 on

L?(0).

Let E = Cy(0), the continuous functions which vanish on 0O, with the supremum norm.

Define an operator (A., D(A.)) on Cy(O) by

D(A.) == {u: ue W*P(O) for all p > n and v = 0 on O and Lu € Cy(O)}
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and
Acu:=Lu VYue D(A.).

The operator —A, generates an analytic semigroup on Cp(O) (see [24, Theorem 3.7 in

chapter 7]) which we denote by (Sg(t))i>0. Since Co(O) is continuously embedded in
L?(0) and the graph of —A, is contained in the graph of —As it follows that

Sep(t)u= St)u Yu € Co(O) and Vt € [0, 1].
According to [24, Remark 6.3 in chapter 7], if ug € C2°(O) then the function
u(t,z) == (Sp(t)uo)(x) , (t,z) €[0,1] x O,
is in C°°((0,1] x O) and is a classical solution of the initial value problem

U Lu=0 in [0,1] x O
u(t,x) =0 on [0,1] x 9O
u(0,z) = ug(z) in O.

From this, one can show by using the maximum principle (see, for example, [28, Theorem

4.26]) that there is a non-negative real number 6 such that

ISE@®) || e, < ¥ forallt > 0.

Take any a > 0 such that the spectrum of Az +al lies in {A € C: Re(\) > 0}. Let a > n.

We make two claims:

L. the operator Qs := (A2 + al)™2((Az 4+ al)™2)* is the covariance operator of a

symmetric Gaussian measure v, , on L?(O) such that v, /Q(E) =1;

2. there is r € (0, 00) such that

S(t)(By. (0, 1))C§Ha/2(0,r) vt € [0,1],

a/2

where (Hy /2, || - |la/2) is the reproducing kernel Hilbert space of v, /o and for s > 0
EH&/Q(O’ s):={x € Ha/2 : Hm||a/2 < s}.

It follows from these two claims that if L(W (1)) = v,/2 then condition (B2) holds and
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Proposition 4.4 holds: for each e € (0, 1] the process

Ween,(t) = /0 t S(e(t — s)kdW(s) , te[0,1],

has a version whose trajectories are continuous in E£. Also if b : R — R is a continuously
differentiable, decreasing function such that 5(0) = 0 and the function F' : E — E is
defined by

(F(¢))(z) := b(¢p(x)) Vo e O and Vo€ E,

then for any £ € F Corollary 4.12 gives us the small time asymptotics of the continuous
E-valued process (X (t));e[o,1] such that

t
X(t)=Se(t)f+W_a,(t) +/ Sp(t—s)F(X(s))ds Vtel0,1].
0
Proof of claim 1. From [10, Corollary B.4] we have
1 o o
H, = im (Q;/2> — im ((A2 n aI)_f) - D ((A2 + aI)5> (4.37)
1

and for all x € im(Q;/2)

- ](A2 + a[)fa:’LQ(O) . (4.38)

_1
l2llagz = ‘Qafgx
L*(0)

By [16, Theorem 1.6.1], the Hilbert space
(Hoja = D((A2 +al) %), || - llaja = (A2 + al)T - | 20)

is continuously embedded in the space of continuous functions on O with the supremum
norm. Also, since D(Ay) = W22(0)nN VVO1 2(0) consists of elements of Cy(O) and the set
D(Az2) N H, 4 is dense in the space H, 4, it follows that

Ha/4 — 00(6)7

where the symbol < denotes a continuous embedding.

Now we want to show that the inclusion map

Ha/2 — Ha/4
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is Hilbert-Schmidt. Let (ej) be an orthonormal basis of L2(©). Then ((Ag + al)”2e}) is

an orthonormal basis of H,/,. We have

D I(As+al) Zerl2 =Y [(As +al)~ Tex[72(0)-
k=1 k=1

Thus it is equivalent to show that the inclusion map
Ha/4 - L2(O)

is Hilbert-Schmidt. To show this, we consider the self-adjoint operator (Ass, D(Aas)) on
L?(0) defined by
D(Ag,) := W22(O) n W, ?(0)

and

N~ 0 du
Agsu = — ZZ 8733‘1 (ai’jaxj> , Yu € D(AQS)

j=1i=1

The ellipticity condition in inequality (4.36) ensures that the spectrum of As;, is contained
in (0,00) and, as shown in [24, Theorem 3.6 in chapter 7], —Ass generates an analytic
semigroup of contractions on L?*(0). Thus Agmon [1, Theorem 13.6, Corollary] gives
us bounds for the eigenvalues ()\;) of the symmetric compact operator AQ_SI, in order of
decreasing modulus:

0<\ <Kjn foralljeN, (4.39)
where K is a positive real constant. Define the Hilbert space

Ha/478 = D(Ags) with norm Hx||a/4,s = \AQZS x|L2(O).

Let (e;) be an orthonormal basis of L?(0) consisting of eigenvectors of A!:

Aylej =Nje; foralljeN.

Using Agmon’s bounds in inequality (4.39) we see that the embedding of H, /4 , into L?(0)
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is Hilbert-Schmidt:

“é:ﬂQ

0 «

vy 2
> 145, eiliz0)
i=1

<
Il
—

INA
~
[N]1)

Nt

.

3\|Q

<
Il
—

since o > n. By [16, Theorem 1.4.8],
Ha/4 = Hoz/4,s

with equivalent norms. Thus the embedding H, /4, — L?(0) is also Hilbert-Schmidt and
it follows that the embedding H, /5 < H, /4 is also Hilbert-Schmidt.

We have the following embeddings:
H-S 2
Ha/2 - Ha/4 — FE— L (O) ) (440)

where "5° denotes a Hilbert-Schmidt embedding. The Hilbert-Schmidt embedding in ex-
pression (4.40) implies that if (f;) is an orthonormal basis of H,, /o and (v; : (2, F, P) — R)
is a sequence of independent standard normal random variables then the series Zj; V5 i
which converges in L?(Q, F, P; H,, /4), has symmetric Gaussian distribution on H, /4 whose
reproducing kernel Hilbert space is H, /2. By [10, Proposition 2.8], the induced symmetric
Gaussian measure on L?(0) also has reproducing kernel H, /2. By the definition of Q, /o
and the definition of H,/ in equations (4.37) and (4.38) and equation (4.40), @, /2 is of
trace class and thus it is the covariance operator of a symmetric Gaussian measure v, o
on L%(O) whose reproducing kernel Hilbert space is H, /2. Since a symmetric Gaussian
measure on L%(0O) is uniquely determined by its reproducing kernel Hilbert space (see [3,

Corollary 3.2.6]), we have completed the proof of claim 1.
Proof of claim 2. We have for any z in H,/, and t in [0, 1]:

IS(B)allasz = |(As+al)® S(t)x|r20) = [S(t)(Az+al)? x| 210y < SI[BPI] 1S L2020 1]l ay2-
rel0,

This completes the proof of claim 2.

Remark Suppose in this example that b is a decreasing polynomial function, say b(s) :=

—s3 for all s € R. Da Prato [9, Section 3.2] has proved existence and uniqueness of

118



mild solutions for systems with dissipative nonlinear drift; his approach is well suited to
reaction-diffusion equations with decreasing polynomial reaction terms and additive noise.
Taking Da Prato’s approach one can reformulate our example with the Banach space L5(0)
replacing Cy(O) everywhere. The domain of the function F becomes the subspace L°(0)
of H= L*(0). If LW(1))(L°(0)) =1 and ¢ € L'¥(0) then the exponential small time
asymptotics of the unique process (V(t) : (Q, F,P) — LG(O))te[OJ} whose trajectories are

continuous in H and bounded in L%(O) and which satisfies the equation
t
V(t) = S(t)E+ W_y,(t) —|—/ S(t—s)F(V(s))ds Vtel0,1],
0
is described by a large deviation principle in C'([0, 1]; H) with rate function Z¢ : C([0,1]; H) —
[0, 00] defined by equation (4.34).

The advantage of working in LP spaces which are of Banach type 2 is that [22, Theorem

5.5] takes care of convergence of Gaussian random variables without condition (B2)(2).
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Chapter 5

Small time asymptotics for a
linear equation with additive

fractional Brownian motion noise

5.1 Introduction

In this chapter we find the small time asymptotics of the solution of a stochastic equation
having only linear drift and additive fractional Brownian motion noise in a Hilbert space.
This digression from our study of equations with Wiener process noise is to show that
the method we used for the linear equation in the previous chapter also works when there
is additive fractional Brownian motion noise. We again use the factorization method (as
in the proof of [10, Theorem 5.12]) to show that trajectories of stochastic convolution
processes converge to those of the noise process. This is Lemma 5.5, which corresponds
to Proposition 4.4 in the previous chapter. Lemma 5.6 is proved in the same way as
Lemma 4.9 in the previous chapter. Our main result in this chapter is the large deviation

principle in Theorem 5.1.

5.2 Background

Let (U, (-, )v,|-|v) and (V,(-,-)v,| - |v) be separable Hilbert spaces. Let @) be a positive
definite symmetric trace class linear operator on U and let v be the symmetric Gaussian

measure on U with covariance operator (). Let

(), )0, = (Q 72, Q72w | - [y, = 1Q72 - o)

D=

(U,, =Q
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be the reproducing kernel Hilbert space of v. Fix H € (3,1). Let (Bg(t) (L F,P) —
U)i>0 be a fractional @-Brownian motion with Hurst parameter H; this means that

(Bg (t))e>0 is a U-valued Gaussian process and
1. E[Bg(t)] =0 for all ¢ > 0;

2. for all non-negative real numbers s and t and for all x and y € U we have

B [(B(0).2)o (B (3).9)0] = 52 + 2~ |t = ) (@)1

3. the sample paths ¢ — Bg (t)(w) are continuous U-valued functions for P a.e. w € .

Let {e1,e,...} be an orthonormal basis of U, and let ((8(t) : (2, F, P) — R);>0) be a
sequence of independent real-valued fractional Brownian motions with Hurst parameter

H. Duncan, Maslowski and Pasik-Duncan [12, Proposition 2.1] showed that we can define
[o.¢]
Bg(t) = Zﬁf(t)ej for all £ > 0,
j=1

where the series converges in L?(2, F, P;U). Duncan, Maslowski and Pasik-Duncan also
defined the stochastic integral of a deterministic vector-valued function with respect to
a fractional Brownian motion in [12]. This is done in three stages. Firstly define the
stochastic integral of a V-valued step function with respect to a real-valued fractional
Brownian motion (37 (t));>¢ with Hurst parameter H: if T € (0,00) and n € N and
to=0<ti1 <ty <---<tp, <Tandvy,...,v, €V then

n

T n
/O S a0 dBT = SO () — BT (L))o, (5.1)
j=1

=1

Since (87 (tg),...,"(t,)) has symmetric Gaussian distribution on R"*!, the random
variable on the right hand side of equation (5.1) has symmetric Gaussian distribution in
V. Let p > % The stochastic integral defined in equation (5.1) gives a bounded linear
operator which maps the dense subspace of LP(]0,T]; V') consisting of step functions into
L?(Q, F, P; V) and the domain of this operator is then extended to all of LP([0,T];V): if
f € LP([0,T]; V) and the sequence of step functions (f,) converges to f in LP([0,T];V)
then

T T
/ fdpf .= lim/ fndpf in L}(Q,F,P;V);
0 n—ee Jo
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as the limit of a sequence of symmetric Gaussian random variables in V, fOT fdpH is itself

a symmetric Gaussian random variable in V' and we also have

T 2 T T
H = S — S S .
/0 Jdp V]— /0 /0 (F(s), £ $(t — s) dsdt (5.2)

¢(r)=H(2H — 1)|1“|2H_2 for all r € R.

where

Finally the stochastic integral of a Hilbert-Schmidt operator-valued function with respect
to (Bg(t))tZO is defined using the definition of the stochastic integral of f € LP([0,T];V)
with respect to (87 (t))e=0. Let (La(Uy, V), || - |l 1a,,v)) denote the Hilbert-Schmidt op-
erators mapping U, into V. For G € LP([0,T]; L2(U,,V)), that is, G : [0,T] — Lo(U,,V)

is Borel measurable and fo |G(t) dt < oo, define

HL2 U,,V)

/TGdBH ':i/TG(s)e ) (5.3)
0 ¢ n=1"0 e '

where the series on the right hand side converges in L(§, F, P; V). Equation (5.3) defines
a bounded linear operator f(;[ ~ng mapping LP([0,T]; L2(U,,V)) into L?(£2, F, P; V) and

fOT G ng has a symmetric Gaussian distribution in V' and we have

2

T T T
B[ Gy | < /0 /0 1@ Lo, i IC@ Lo, ) bt — v) dudo
§
2p—2 2
2(])—1) p 2(Hp—1) T )
< wer - (D) T ([ 160, 0,0 45) 6
1f%<p<2

5.3 The small time asymptotics via a large deviation prin-
ciple

Let A: D(A) C V — V be the infinitesimal generator of a strongly continuous semigroup

of bounded linear operators (S(t)):>0 on V. Let ® be a bounded linear operator mapping

U into V and let
1 :U, —=U
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be the Hilbert-Schmidt embedding of U, into U. We define the mild solution of the

stochastic initial value problem:

dX = AXdt+®dBj
X(0) = =,
where x € V', to be
t
X(t) = S(b)z + / S(t — r)@i dBE (r) (5.5)
0

for t > 0, where the stochastic integral on the right hand side of equation (5.5) is defined
as in equation (5.3). We remark that for each ¢t € (0, 00) the function

€ [0,4] — S(t — r)®i € Ly(U,, V)

is continuous and hence the stochastic integral f(f S(t—r)d: ng (r) is well defined. Dun-
can, Maslowski and Pasik-Duncan [12, Proposition 3.2] have shown that there is a version

of (X (t));>0 with continuous sample paths P a.e.: specifically, for any a € (0, 3) take

sin(ma)

/ S(t —u)®i dBQ( u) = /Ot(t —5)*1S(t — 5)Y(s)ds forallt >0, (5.6)

s

where s
Y(s) = / (s —u)"*S(s —u)®i ng(u) for all s > 0. (5.7)
0

For each € € (0, 1] and t € [0, 1] we have
X(et) = S et:r—l—/ S(et — s)®i dBY (s)
= eta:—{—Z/ S(et — s)Die; dpl (s)
_ s@HZGH /0 S(e(t — 5))ie; A3 (s)
=1

= S(et)x + € /0 S(e(t — s))Pi ng’e(s), (5.8)

123



where ((ﬁf’e(t))tzo) is a sequence of independent fractional Brownian motions with Hurst

parameter H defined by
He . —HpH
B;7°(t) =€ "B (et) forallt >0
and

o0
H,e H,e
Byt (t) = E B (t)e; forallt > 0.
=1

Notice from equation (5.8) and Lemma 5.7(2) in the appendix that the distribution of the

random variable

(we Q= (t = X(et)(w)))

in C([0,1]; V) is the same as the distribution of the continuous trajectories of
¢
XE(t) = S(et)a + € / S(e(t — 5))®idBH(s) . te[0,1].
0
The process (X(t))¢e[o,1) is the mild solution of the initial value problem

dX¢ = eAX“dt+"®dBj, tel0,1],
X¢0) = =z

For each € € (0, 1] we set
t
WH(t) = / S(e(t — s))Pi ng(s) for all ¢t € [0, 1]
0
and assume that this is a continuous version of the process. We also set
Wil(t) == ®B5(t) forall t € [0,1].

In the following we denote by W2, W and X¢ the C([0,1]; V)-valued random variables
corresponding to the continuous processes (We{{l(t))te[o,l]a (W({{(t))te[o,l} and (X(t))sefo,1]»

respectively. We also abuse notation and denote the constant function

te0,1] —x
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Define the function Ky : [0,1] x [0,1] — R by

1
2 t
Rt (mz}f(ig,}fl é)) 10,000 (8)52 ™ L0 (1 = ) / (u = )12l =% du
(5.9)
for all (¢,s) € [0,1] x [0,1], where [ denotes the beta function. Define the function
Z:C([0,1];V) — [0,00] by

1 1
I(y) := 2inf{/ \f(®)|g, dt: f € L*([0,1];U,) and y(t / Ku(t,s)®if(s)ds vt €0, 1]}
0
(5.10)
taking the infimum of the empty set to be co.

We now state our main result in this chapter.

Theorem 5.1 For any closed set F C C([0,1]; V') we have

lim sup €% log P{X¢ € F} < — 1nf I( x) (5.11)

r—0 e<r

and for any open set G C C([0,1]; V) we have

lim inf €2f log P{X® € G} > — mf I( ). (5.12)

r—0elr

2H

Remark If we substitute 6 = ¢ in inequalities (5.11) and (5.12) then we get the usual
1

form of a large deviation principle for {X°* :§ € (0,1]}:

hmsupélogP{XMH EF}<—1an( x)
=0 5<r

for all closed sets F' C C([0,1]; V) and

hm 1nf510gP{X52H €eG}>— 1nf I( x)

—0d<r

for all open sets G C C([0,1]; V).

We prove Theorem 5.1 using several lemmas. The following lemma and its corollary are

the basic results underlying Theorem 5.1.

Lemma 5.2 The distribution

wi= LW (Q,F,P)— C([0,1];V))
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is symmetric Gaussian and its reproducing kernel (Hy, |- |g,) is

H, = {t € [0,1] »—>/0 Ky (t,s)®if(s)ds: f € L*([0, 1];U,,)},

where Kp : [0,1] x [0,1] — R is defined in equation (5.9) and for g € H,, we have

1 t
1%, :inf{/o |f(®)|E, dt: f € L*([0,1];U,) and g(t) :/0 Ku(t,s)®if(s)ds Yt e |0, 1]}.

Proof. There are three steps in the proof:
L. show that (Hy, |- |m,) is a Hilbert space;
2. show that the embedding j : (Hy, |- |x,) — C([0,1]; V) is continuous;

3. show that for every continuous linear functional [ on C([0, 1]; V) we have
Lo Wi s (9,7, P) — R) = N (0, [l jI%,),

that is, the symmetric Gaussian distribution with variance the square of the operator

norm of [ o j.

Step 1.
Define F' : [0,1]> — R by

N

)H—%UH—

Fu, 5,8) 1= 1(0,00)(8) 8271 10 oy (= 8) 1(g o) (¢ — ) (1w — s

for all (u,s,t) € [0,1]3. The function F' is measurable and non-negative and

H(2H —1)
3(2—2H,H —

-
KHu,s)—( 1)> /0 Flus,t)du Y(t,s) € 0,1
2

is measurable by Tonelli’s theorem. Set

1

B H(2H —1) 2
M= \Be-2HH-L)) -

We have

N

(t—s)""

1
[Kr(t,s)| < e s2™ 1 o0y (5) 7

T L0t —5) V(t,s) €0, 12 (5.13)
2



In particular, Kz (t, ) € L%([0,1];R) for each ¢ € [0, 1].
Let f € L?([0,1]; V). We shall show that the function

g(t) == /Ot Kp(t,s)f(s)ds for all ¢t € 0,1] (5.14)

belongs to C([0,1]; V). Let 0 < ¢; <ty < 1. We have

t2

t
l9(t2)—g(t1)lv < / (Kn(ta,s) — Kp(ty,s))f(s)ds| +| [ Kpu(ta,s)f(s)ds| . (5.15)
0 |4 t1 v
For s € (0,t1) we have
1 to 3 )
Kp(ty, s) — Ku(ty,s) = CHSQH/ (u—s) o 2uf2 gy
t1

1

< cysi [(t2 = 5)175 — (1 — )

_1
2

and the factor in brackets on the right hand side can be made as small as we please,

uniformly in s, by taking ¢; and to sufficiently close together. This observation and in-

equality (5.13) imply that the terms on the right hand side of inequality (5.15) go to zero

as tg —t1 — 0. Thus g € C([0,1]; V).

We can now define a bounded linear operator T : L?([0,1];U,) — C([0,1]; V) by

(Tf)(t) = /Ot Kg(t,s)®if(s)ds forallt e [0,1] (5.16)

and for all f € L%([0,1];U,). Let N be the kernel of T and let N+ be the orthogonal
complement of N. By the projection theorem (for example, see [26, Theorem II.3]), each
element of L2([0,1];U,) can be written uniquely as the sum of an element of N and an

element of N*. Thus we have
T(N*) = T(L*([0, 1] Uy))
and the function T : N+ — T(L2([0,1];U,)) defined by

Tv:=Tv Yve Nt
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is onto as well as one to one. For each v € N+ we have
[0l r2(j013:0,) = Inf{|ul 20,130,y + v € L*([0,1);U,) and Tu = Tv}.
Define

H, = T(L*([0,1];U,)) and
fla, = (D) flrzqoayw,) forall f € Hy.

Then T is an isometric isomorphism from the closed subspace N+ of L?([0,1]; U,) onto
H,. Thus H, is itself a Hilbert space.

Step 2.
We now prove that the embedding j : H, — C([0,1]; V) is continuous. Let f € H,. For
g = (T)~'f we have

t
Oy = / Ku(t,s)®ig(s)ds|  for all £ € [0,1]
0 v
. CH
< ||Ps T
< |®illpw,,v (— )2 2m)} 9] 22 (j0.13:0,)
Thus
. cH
sup |f(t)|y < ||Pi ” flg, VfeH,.
t€[071]| ®Olv < ®illLw,.m - %)(2—2H)5| |1, "
Step 3.

For each t € [0,1] and v € V let §; ® v be the continuous linear functional on C([0, 1]; V)
defined by
(0t @v)f = (v, f(t))v forall feC([0,1;V).

By [10, Proposition 2.9] it suffices to show that
£ (Lo W) = N, [0 jI%)

forallle M :={37_ 0, ®v;: ne€Nand0 <t <---<t, <landwv,...,v, €V},
since this subspace of the continuous linear functionals on C(]0,1]; V') separates points
and generates the Borel o-algebra of C([0,1]; V).
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LetneNand 0<t; <---<t, <1andwvq,...,v, € V. The distribution of

> 0y @u) (W) = (w, Wi (4))v = > _(®*v;, B (t))u
j=1 j=1 J=1

is symmetric Gaussian since (Bg (t))tcjo,1] is a Gaussian process and its variance is

2

B (@, Boo | | = XD E[(@v;, By () (® v, By (k)]
j=1 j=1i=1
n n 1 ) )
=D ST+ — |t — i) {Q2 ), B*vi)y.(5.17)
j=1i=1

Each element of H,, can be written as

€ [0,1] H/O Kul(t,s)Dif(s) ds

where f € N+ and we have

n n th

> (0, @ vi)J (te [0, 1] H/ Kp(t,s)®if(s)d ) = > (vn, | Kulty, s)®if(s)ds)y
k=1

k=1 0

) Z/ Kin(te,s) o, Dif(5)v ds

= /o ZKHtk; )QP v, f(s))u, ds.

k=1

Notice that "1_; Kp(t, )Q®*v € Nt. Thus

n 2 2
Z (0, ®vg) 04 = QP vy,
k=1 H, L2([0,1];U,)
= YD (@ Qe e, [ Kt Kl s) ds
k=1 1=1
= ZZ (Q®* vy, D v;)y ( + 25 |ty — ]2, (5.18)
k=1 i=1

where the last line follows from [2, equation (6)]. Since the right hand sides of equations
(5.17) and (5.18) are the same this completes the proof of Lemma 5.2.
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From [10, Propositions 12.4 and 12.6] we have the following corollary.

Corollary 5.3 The family of C([0,1];V)-valued random variables {5%WOH : 0 € (0,1]}
satisfies a large deviation principle with rate function T : C([0,1]; V) — [0, 00] defined by

I(9) = sloli, 79 € H (5.19)
00 if g€ C([0,1; V)\Hp.

From Corollary 5.3 we have immediately that {z + (5%W(f1 : 0 € (0,1]} satisfies a large
deviation principle with rate function Z(- — x).

Our goal in most of the remainder of this chapter is to prove the following lemma, which

is crucial in our proof of Theorem 5.1.

Lemma 5.4 Let r > 0. We have

lin% e2Hlog P{ef sup |WH(t) = W (t)|y > r} = —oc. (5.20)
- t€[0,1]

H

Proof of Theorem 5.1. Lemma 5.4 is equivalent (just substitute § = €27 in equation

(5.20)) to saying that the families of random variables
{z+62WE :5€(0,1]} and {z + 5%W;fﬁA .5 € (0,1]}

are exponentially equivalent; hence both families satisfy the same large deviation principle

(see for example [18, Lemma 27.13]). Since S(t)x — = as t — 0 we have that
1 1 1
{z+ 52W§%A : 6 € (0,1]} and {S(627 )z + 52W§%A : 6 € (0,1}

are exponentially equivalent. Thus Lemma 5.4 implies that {S(d ﬁ)x +6 %I/VéHL L o€
2H
(0, 1]} satisfies a large deviation principle with rate function Z(- — z), which completes the

proof of Theorem 5.1.
We shall need two other lemmas in order to prove Lemma 5.4.

Lemma 5.5 If m € {2,3,4,...} then

lim E | sup |W({{(t) — ng(t) %/m =0.
=0 14e0,1)
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Remark Using this lemma and Hoélder’s inequality we get

3=

E

sup !ch’(t)—Wii(t)I%] < (E

t€[0,1]

sup [Wg' (t) — WA (t) Z’Vm] )

tel0,1]
— 0Oase—0.

Proof. Let m be a natural number greater than 1. Take a € ( ,;) For0<e<1
define

Y(s) := /Os(s —0) “S(e(s — 0))Pi ng(o*) for all s € [0,1].

By Lemma 5.8 in the appendix, the process (Y(s))c[0,1] has a measurable version whose

sample paths are in L2 ([0, 1]; V') almost surely.

If f € L*™([0,1];V) then, as shown in [10, Theorem 5.9], the V-valued function defined
by

t— /t S(e(t — o))t —0)* L f(o)do for all t € [0,1]
0

. . . . H L
is continuous. A continuous version of (Wi (%))ieo,1) is:

wh _ sinr / S(e(t —5))(t —5)* Y(s)ds for all t € [0,1].

For 0 < € <1 we have

Wil - whm = [ v = stete = e - 9y ds +

sin(ra / S(e(t — $))(t — $)*=1(YO(s) — Y(s)) ds (5.21)
= K (t) foralltel0,1],

where K(t) and J(t) are defined to be the respective terms on the right hand side of
equation (5.21). Thus

sup Wy (t) — WA R < 227 < sup |Kc(t)[7" + sup [Je(t) 2vm>-
t€(0,1] t€[0,1] t€(0,1]

We will show that
lim F

e—0

sup IKe(t)I%m] =0
t€[0,1]
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and

lim F

e—0

sup |J€(t)|%/m] =0,
te(0,1]

from which it will follow that lim._.q E[supte[m] ]WOH(t) — Wﬁ(t)\%/m] = 0.

Step 1.
We show that

lim F

e—0

sup |K(t) %,m] = 0. (5.22)
te(0,1]

For each 0 < ¢ < 1 we have, by Holder’s inequality:

. 2m 1 2m—1 1
sin(mao a—1)=2m_ m
sup \K;(t)?vms( ( )) sup 11y —S() 3 ( /0 s(aD3i ds) /0 YO(s) 2 ds

te[0,1] 0 r€[0,1]

and the right hand side is an integrable dominating function, as shown in the proof of
Lemma 5.8. If sup,cjo ) [Ke(t)[y — 0 as € — 0 almost surely, then equation (5.22)
will follow by Lebesgue’s dominated convergence theorem. Let w € () be such that
the sample path s € [0,1] — Y(s)(w) belongs to L?>™([0,1];V); we will show that
sup;e(o,1) [Ke(t)(w)|y — 0 as € — 0.

Let the sequence (€,) C (0, 1] converge to 0 as n goes to infinity. Firstly note that for each
fixed t € [0, 1], K, (t)(w) — 0 as n — oc:

1

e = <Sm(m>(Als(a_l)ﬁd‘s)%</0t'“V‘5<6n<f—s>>>Y0<s><w>12vmds)zm

™

— (0 as n — oo by Lebesgue’s dominated convergence theorem.
Next we claim that the family of continuous functions
t— K (t)(w), 0<e<l,
is uniformly equicontinuous. For brevity, set

y(s) = Y9s)(w) forall se[0,1] and

T
‘ = ———K. for all .1 <1.
2%(s) e — (s)(w) forall se[0,1] and 0 < e <

By definition:

25(t) = /Ot(IV — S(e(t —9)))(t—5)*Ly(s)ds forallte[0,1] and 0 < e < 1.
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IfO0<e<land 0<t<u<1then

|2(u) — 2 (t)|v

< [T v = stetw— ) 9yl ds
0 14
| [ v = Stetw= s =9y ds= [ (1 = (et = )t = )" y(s) ds
_ / "y = S(e(u — 9)))(u — 5)*y(s) ds
0 1%
| [y = (et =)t =97 Huls +u =)~ y(s) ds
0 1%
1 . 27;7;1
= et v = S(r)llLevv) (/0 st Dan= ds>

x {( / u_t|y<s>|%vmds)2i” ¥ ( / T s e d)] 62

One can show that

1-5 e
</ |y(s+5)—y(s)|%/mds) —0asd\,0
0

so inequality (5.23) establishes that {z€: 0 < e < 1} is uniformly equicontinuous.

We know that z2*(t) — 0 as n — oo for each ¢ in [0,1]. Uniform equicontinuity of the
sequence (z*) implies that there is uniform convergence to 0. This completes the proof
of equation (5.22).

Step 2.
We show that

lim E | sup |J.(t)]3™| = 0.
=0 fefo,1]
We have
2m Sin(ﬂa) am . ! (a—1) 522 Zm
sup ’JE(t) 1% S sup HS(T)HL(V,V) / S 2m—1 dS
t€[0,1] ™ r€l0,1] 0
1
X/ YO(s) = Y(s5)[7" ds. (5.24)
0

For each s in (0,1] the random variable Y?(s) — Y¢(s) has a symmetric Gaussian distri-
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bution so that for some constant C, € (0,00) we have
E[[Y%(s) = Y¥(s)[2"] < C (B [[Y*(s) = Y(s) )" (5.25)
for all s € (0,1]. We have for each s in [0, 1]
Yo(s) = (o) = [ (s a) (v - Slels - o)) i dBY (o)

and thus, by inequality (5.4),

1
BIVO6) =Y @F] < 28 sup (v = S(er) il /O o do
re|0,

— Oase—0. (5.26)

Thus from inequalities (5.24) and (5.25) and (5.26):

2m
sin(ma 1 1y 2m
sup |Je(t) Vm] < ( 70) up |rs<r>||L<v,v>> < / s Dty ds)
te[0,1] ™ r€l0,1 0

/O [[YO(s) = Y(s)[3])™ ds

— Oase— 0.

2m—1
E

This completes the proof of Lemma 5.5.

It will be convenient to denote the supremum norm in C([0,1]; V') by | - |so:

|[floo == sup [f(t)|y forall f € C([0,1];V).
t€[0,1]

Set
EWH -~ W 2] forall e € (0,1].

o0

Lemma 5.6 There is a positive real number ¢ such that

WH o WH 2
sup E [exp <C|EA20°O>} < 0.
0<e<1 O¢

Proof. By Lemma 5.7, for each € € (0,1] the distribution v, := £ (6—16(W54 - Wf)) is a

symmetric Gaussian measure on C([0,1]; V). The rest of the proof is the same as that of
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Lemma 4.9 in chapter 4, but with v, in place of . everywhere. This completes the proof

of Lemma 5.6.

We now prove Lemma 5.4.

Proof of Lemma 5.4. Let r > 0. For any positive real number ¢ we have

(W = W'l

TQ
exXp (062[1562> 1{|6H(W:147W({{)‘0027'} S exp <663> fOI' all € € (0, 1] (527)

Choose ¢, as in Lemma 5.6, such that

WH _ WH 2
C := sup E |exp CM < 0.
0<e<1 562

Then integrating both sides of equation (5.27) gives:

r2

P V2 = Wl = 1) < exp (e

) C for all € € (0,1].
Thus

2
r
Hlog P{lef (WH —wi)|o > 7} < —C5 + e log C

— —o0 ase—0

since Lemma 5.5 implies that 2 — 0 as € — 0. This completes the proof of Lemma 5.4.

5.4 Appendix

In this section we have two lemmas whose proofs are technical but routine.

Let
Gy : ([0,1], Bjoyy) — (L2(Uy, V), Bryw,vy) »  t€10,1],

be a family of measurable functions such that
! 2
/0 1Ge($)17,(0,,v)ds < oo for each t € [0, 1]

and the process (fol Gi(s) ng(S))te[O,l] has continuous trajectories in V. In particular we
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have in mind continuous stochastic convolution processes, where
Gi(-) = 1po,q(-) S(e(t —-))®i  for some € € [0, 1].

Lemma 5.7

1. The distribution of the random variable in C([0,1]; V)

G(w) := (te [0,1] H/Ol Gi(s) ng(s)(w)> ., weQ,

is symmetric Gaussian.

2. If (Bg(t))tzo is another fractional Q-Brownian motion with Hurst parameter H and
(fol Gi(s) dfﬁ’g(s))tem’” has continuous trajectories in V' then the random variable
in C([0,1]; V)

o= (reon [ G dBge)e) . wen

has the same distribution as G.

Proof. In section 5.2 we saw that for (3 (t));>0 a real-valued fractional Brownian motion
with Hurst parameter H and arbitrary f € L%([0,1];R) the distribution of fol f(s)dBH(s)
is symmetric Gaussian, with variance fol fol f(s)f(t)o(t — s) dsdt given by equation (5.2).
Let {Gy : [0,1] — La(Uy, V) }ejo,1] be a family of functions as in the statement preceding
the lemma. For each t € [0,1] and v € V' we define the element of C([0,1]; V)*:

0y @) f = (f(t),v)y VfeC(0,1];V).

The subspace of C([0,1]; V)*

n
M = Z5t1®vj :neNand0<t; <---<t,<landvy,...,v, €V
j=1

generates Bg((o,1];v) (for example, see the proof of [10, Proposition 1.3]) and it also sepa-

rates points of C([0,1];V)). We will show that for an arbitrary element 7, 0¢; ® v; of
M the distribution of

n

noo1
Z((Stj & Uj)G = Z(/ th (8) ng(S),Uj>V
j=1 70

=1
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is symmetric Gaussian and we will compute its variance. We have
n 1
S G dBE (). v
j=1

n o 1
= Z<Z/O Gi;(s)ex dB (s), vj)v

=1 k=1

o n 1
= ZZ(/ Gy, (s)ex dBe(s),vj)v  (the series converges in L*(Q2, F, P;R))
k=1j=1 70

0 1 n
=3 [ e Yo o, s (o).
k=170 j=1

In the last line the summands are independent random variables. The kth summand has

symmetric Gaussian distribution on R with variance
1 1 n n
/0 /O (ers Y G ()vj)u, (en, D Gr (v v, é(t — s) ds dt.
j=1 J=1

Thus 377 fol Gy, (s) ng (s),v;)v has symmetric Gaussian distribution with variance

n

1 1 0 n
/0 /0 S en S G (5o e S Gl (Bu)un ot — ) ds dt

k=1 j=1 j=1

1 1 n n
SR CACTS WA I R (5.29)
j=1 j=1

Since } 7, 0¢, ®v; is an arbitrary element of M, by [10, Proposition 2.9(i)] the distribution
of G in C([0,1]; V) is symmetric Gaussian. Notice that the expression on the right hand
side of equation (5.28) depends on the fractional Brownian motion integrator only through
the values of v and H. Thus the characteristic functions of G and G agree on M; it follows
that the distributions of G and G on C([0,1]; V) are equal. This completes the proof of

Lemma 5.7.

Let m € {2,3,4,...}. Let a € (5, 3). Let € € [0,1].
Define s
Ye(s) i / (s — o) S(e(s — 0))®idBL (o) for all s € [0, 1].
0

Lemma 5.8 The map s € [0,1] — Y¢(s) is continuous in L*(Q,F, P;V). The process

(Y(s))sefo,1] has a measurable version whose sample paths are in L*"([0,1]; V) P a.e..
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Proof. Let 0<s<t<1. We have

Y-l = |[ (=it —a)eidngo

- [ stets - o) aiaBg(o

|4

/0 1jo.6)(0)(t — o) *(S(e(t — 7)) — S(e(s — 0))) @i dBE (o)

|4

+ \ / L. (@)(t = 0) ™ = (s — ) ) S(e(s — 0))®i dBY (o)
0 |4

+ ‘/0 L (o)t — o) “S(e(t — o)) Pi ng(O') (5.29)

= |Tilv +|Tolv + T3]y,

|

where 17, To and T3 are the three stochastic integrals on the right hand side of equation
(5.29). We now show, using inequality (5.4), that E[|T}|?] goes to 0 as t — s goes to 0 for
k=1,2,3.

We have

BT[] < QH/O Lo,5)(0)(t = ) **(|S(e(t — 0)) @i — S(e(s — 0))PillZ, 1, 1) do

IN

1
2H sup IS (v)®i — S(U)(I)iH%g(Ul,,v) / o2 do. (5.30)
0<u<v<1 0

and v—u<t—s

Uniform continuity of the function r € [0,1] — S(r)®i € Ly(U,, V) ensures that the right
hand side of equation (5.30) goes to 0 as t — s goes to 0.
We have

B[] < 2H/O Lo,6)(@)((t =)™ = (s = 0)"*[IS(e(s — 0)) @il 2, g, 1) do

< 2 s S0 [ (601 (=01 do
re|0,

1
= 2H sup HS(T)‘PZ’H%Q(UWV)ﬁ(sl_m+(t—5)1_2a7t1_20‘). (5.31)
rel0,1] — ol

Since the function r € [0,1] + r!72¢ is uniformly continuous, the right hand side of

equation (5.31) goes to 0 as t — s goes to 0.

138



We have
t
BITSR] < 2H s IS0, / (t— o) do
re|0, S

2H sup || S(r)®il? (t—s)
= sup r)Pg -~
rel0,1] Pl 1 - 20

— 0 ast—s—0.

Thus s € [0,1] — Y<(s) € L*(Q, F, P; V) is continuous and, as shown in [10, Proposition
3.2], this implies that (Y“(Z));c[o,1) has a measurable version.

For each s € (0, 1] the random variable Y¢(s) has a symmetric Gaussian distribution on
V and

1
E[[Y<(s)}] < 2H sup |]S(r)<I>iH%2(UV V)/ o 2*do  for all s € (0,1]. (5.32)
rel0,1] ’ 0

By [10, Corollary 2.17], there is a constant C,, € (0,00) such that
E[[Y<(s)2™] < C(E[|Y(s)3])™ for all s € (0,1]. (5.33)

It follows from inequalities (5.32) and (5.33) that for a measurable version of (Y“(s)).c0,1]

we have

E 1|Y€(,s)|2vmds = 1E[|Y€(s)%/m]ds<oo.
[ o = |

Thus the sample paths s — Y¢(s)(w) are in L2™(]0,1]; V) for P a.e. w € Q. This completes
the proof of Lemma 5.8.
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Chapter 6

Small time asymptotics for moving

from one set to another

6.1 Introduction

In this chapter we return to studying the solution (X (t)) of a stochastic equation in a
Hilbert space H with Wiener process noise. We now consider the probability of the event
{X(0) € C, X(t) € E} as time t goes to zero; here the distribution of X (0) need not be
a point mass and C' and F are Borel subsets of H. This problem is important because
an evolving system modelled by a stochastic equation may be expected to have a random
variable as its initial condition. For example, if the equation has an invariant measure then

the solution whose initial distribution is the invariant measure is of particular interest.

Let (H,(-,-),|-|) be a separable Hilbert space. We assume
(C1) there exists a process (X¢(t) : (0, F, P) — (H, Bu))e|o,1) which satisfies the equation

Xe(t) = S(t){—i—/o S(t—s)F(s,Xg(s))ds—i—/O S(t—s5)G(s,Xe(s))dW(s) P a.e. (6.1)
for each t € [0, 1].
In equation (6.1):

1. (S(t))s>0 is a strongly continuous semigroup of bounded linear operators on H, whose

infinitesimal generator is A: D(A) C H — H;

2. (W (t))¢>0 is a separable Hilbert space-valued Wiener process on the probability space
(Q, F, P) with associated filtration (F):>0; the distribution of W (1) is denoted by
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v and the reproducing kernel Hilbert space of v is (Hy, |- |g,);
3. the drift function F': ([0, 1] x H, By 1) ® By) — (H, By) is measurable;

4. the diffusion function G : ([0,1] x H, By 1) ® By) — (L2(Hy, H), Br,(#, 7)) is mea-

surable;
5. the H-valued random variable ¢ is Fg-measurable and has distribution =.

If £ takes the constant value x, a point in H, then we write X,(t) := X¢(t) for all ¢ in
[0, 1].

We also assume

(C2) for each bounded Borel measurable function ¢ : H — R and each time t € (0,1] we

have

Elp(Xc(1))[€] = (Ri9)(§) P ae.,

where (Ryp)(x) := E[¢(X.(t))] for all x in H.

If there exists a positive real constant A such that
|F(t,x) = F(t,y)| + |G, 2) = Gt y) | Ly, 1) < Al —y| Yo,y € H and Vit € [0, 1]

and
F(t,2) + G 0)12, (1, a0y < A+ |of?) V€ H and ¥t € [0, 1]

then by [10, Theorem 7.4] (C1) is satisfied and by [10, Theorem 9.8] (C2) is satisfied.

In section 6.2 we show that if F is a Borel subset of H and for each point x in H we have
liminf, o tIn P{X,(t) € E} > —1d?(z, E) for some non-negative number d(z, E) then we
have

lim inf ¢ In P{¢ € C, X¢(t) € B} > —%essinfg{dQ(x,E) e (6.2)

r—0t<r
for any Borel subset C' of H. In equation (6.2) essinfz is the essential infimum with respect

to measure =. This result was proved for open E by Zhang [33, Theorem 4.4].

In section 6.3 we find an upper bound for limsup, ,otIn P{{ € C, X¢(t) € E} when
(Xe(t))ie(o,1) is an Ornstein-Uhlenbeck process driven by H-valued Wiener process (W (t)):>o-
Fang and Zhang [13] and Hino and Ramirez [17] found a solution for this problem when
there is an invariant measure y and = = p and the transition semigroup on L?(H, ) is
symmetric. We consider what happens when the transition semigroup on L?(H, ) is holo-

morphic and = is absolutely continuous with respect to p with square integrable density.
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Our upper bound is not optimal because it does not reduce for finite dimensional H to

the upper bound one can obtain using large deviations arguments.

6.2 The lower bound

Let E be a Borel subset of H and suppose that we have

1
lim inf ¢1n P{X,(t) € E} > —§d2(:p,E) for each x € H, (6.3)

r—0t<r

where the numbers d(x, F') are non-negative and depend on 2 and may be infinity. Inequal-
ity (6.3) arises naturally when for each x in H the family of H-valued random variables
{X.(t) : t € (0,1]} satisfies a large deviation principle and E is open; then 3d?(z, E) is

the infimum of the rate function over E and our notation appears more justified. Set
d(C,E) = essinfz{d(z,E) : z € C}

for all Borel subsets C' of H. Our proof of the following theorem does not depend on F

being open.

Theorem 6.1 Let C' be a Borel subset of H such that Z(C') > 0. Thanks to inequality
(6.3) we have

1
lim inf ¢In P{¢ € C, X¢(t) € B} > —§d2(C, E).
Proof. Assume d(C, E) < co. We have for ¢ € (0, 1]
PlEeC, X e By = [ 10() Pla(Xe(t)le)aP
_ / Lo(2)P{X.(t) € B} d=(z).
H
Choose € > 0. We can write
7%d2(C,E)7e %dQ(C,E)Jre
P{EcC, Xe(t) e By e i / Lo(@)e ™ T PUX, (1) € B} d=(z).
H
Thus

Ld2(C,E)+e

T P{X,(t) € E} d=(z).
(6.4)

V]

tnP{{ e C, X¢(t)e E} = —%dZ(C, E)—e-l—tln/ lo(x)e
H
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We shall show that the integral on the right hand side of equation (6.4) is bounded below
by a positive number for all sufficiently small ¢ > 0.
By definition of d(C, E), the set U :={z € C : d(z,FE) < \/d?*(C, E) + €} has positive 2

measure. For each z in U we have

€

2d (2, E) < 2d (C,E)+ 5 OF equivalently 2d (z,E) 5

1
> —§d2(C’, E)—¢
we also have, by inequality (6.3), liminf, .o ¢tIn P{X.(t) € E} > —1d?*(z, E). Thus for
each z € U there is an s, > 0 such that

-3d?(z,E)-§ —3d%(C.B)—c

P{X.(t) e E} >e 7 >e ¢ for all t < s,.

Define

~$d?(C,BE)—c

C’t::{xEU:P{Xm(t)EE}Ze 7 } for each 0 < t < 1.

We will show that there is a positive number a such that Z(C}) > a for all small enough ¢.
Let 6 = Z(U) > 0. Suppose, to get a contradiction, lim, o infoercq/p Z(Cy) = 0. Then
for each n € {1,2,...} there is 0 < ¢, < L such that Z(C;,) < 2;%.

For each z € U there is s, > 0 such that ¢t < s, implies z € C}, thus z € Cy, for all large
enough n.

Hence U = J;2; Ct, and it follows that

U) <) E(C,) <

n=1

§ =

[1]

9

a contradiction. Thus limy, e infocic1/n Z(Ct) > 0, which implies that for some m €

1,2,...}

a:= inf E(Ct) > 0.
o<t<t

It follows that for all ¢ < % we have
1d%(C,E)+e
/ lo(x)e™ & P{X,(t) € E}dE(z) > a.
H
Using this in equation (6.4) we get

1
lim inf ¢ In P{¢ € C', X¢(t) € B} > —§d2(0, E).
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This completes the proof.

6.3 An upper bound for Ornstein-Uhlenbeck processes

6.3.1 Introduction

It is relatively difficult to find a good upper bound for limsup,_,, tIn P{¢{ € C, X¢(t) € E}.
When we have a large deviation principle for the family {X,(¢) : ¢ € (0, 1]} for each z in
H, Theorem 6.1 yields a lower bound for open E; we are also motivated to seek an upper
bound of the same form as the lower bound. From now on we restrict our attention to an

Ornstein-Uhlenbeck process driven by an H-valued Wiener process (W (t)):>0:
t
Xe(t) :== S(t)€ +/ S(t—s)idW(s) forallte[0,1];
0

here the operator i : H, — H is the embedding of H, into H. The trace class covariance

operator of v is denoted by @ and we assume that ker Q = {0}.

By using an exponential equivalence argument like that in chapter 4 one can show that
for each x in H the family {w € Q — (t — X, (et)(w)) : € € (0,1]} of trajectory-valued

random variables in C(]0, 1]; H) satisfies a large deviation principle with rate function

Zo(u) := LIy lo(s)|3 ds if ¢ € L2([0,1]; H,) and u(t) = z + [; ¢(s)ds Vt € [0,1],
e o0 otherwise.

The continuous mapping theorem (see [18, Theorem 27.11]) then tells us that for each = in
H the family of H-valued random variables {X;(t) : t € (0,1]} satisfies a large deviation

principle with rate function

Tx(y) = inf{Z,(u): vwe C([0,1]; H) and u(l) =y}
B %|y—x|§{y ity—oeH,y,
00 otherwise.

For any point  in H and Borel subsets C and E of H define
d(z,E) :=inf{|z —y|lg, : y € E}, where we take |z|g, = o0 if z € H\H,

and define
d(C,E) := essinfz{d(z, F) : z € C}.
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For Borel subsets C and E of H and arbitrary L < d(C, E) we can write

1,2

tinP{{ € C, X¢(t) e E} = —%LQ + tln/ 1C(x)e27 P{X,(t) € E}d=(x) (6.5)

for each ¢t € (0,1]. If E is closed then by the upper bound of the large deviation principle
of {X5(t): t € (0,1]} the integrand in equation (6.5) converges to zero for = a.e. z in C
as t goes to zero. Thus we suspect that limsup, o tIn P{¢ € C, X¢(t) € E} is bounded
above by —2d*(C, E), at least for closed E. Proving this is another matter.

We assume that

(C3) there ezists a symmetric Gaussian invariant measure f on H.

The covariance operator of p is Qo = fooo S(t)QS*(t) dt. We may define the strongly

continuous semigroup of transition operators on L?(H, 1) by setting for each t € [0, 1]
(Rip)(x) := E[p(X4(t))] for pae € H and for each ¢ € L*(H, p).

When (R;) consists of symmetric operators and Z = p Fang and Zhang [13, Theorem 2.1]
showed that

}%igg tln P{{ € C, X¢(t) € B} < —%(d(C, E)Vd(E,C))?* for all sets C and E € By;

(6.6)
the symmetric nature of the Markov process (X¢(t));e[o,1] results in the upper bound being
symmetric in ¥ and C. Fang’s and Zhang’s proof used the Lyons-Zheng decomposition
which applies only to such symmetric Markov processes. Hino and Ramirez [17, Theorem
2.8] showed that when (R;) consists of symmetric operators and = = p we have

-$d?(C.EB)

P{&eC, Xe(t) e B} < V/p(C)yw(E)e™ ¢ forallt>0. (6.7)

The proof of Hino’s and Ramirez’s theorem may be adapted in a straightforward way to
yield an upper bound under more general assumptions.

We assume that the following two conditions hold. Notice in particular that (R;) need not
consist of symmetric operators.

(C4) The distribution = is absolutely continuous with respect to p and has Radon-Nikodym
derivative p € L*(H, j1).

(C5) The semigroup (RY) of operators on L*(H, u; C) obtained from (Ry) by defining

Ri(f) := Ry(Re(f)) +1Re(m(f)) for f € L*(H,u;C) and t € [0,1],
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s a restriction of a holomorphic semigroup.

Our definition of holomorphic semigroup is from [20].

Definition 1 Let K € (0,00) and define the sector s(K) = {z € C: |[Im(z)| < KRe(z)}.
The family {T(z) : z € s(K)} of bounded linear operators on L*(H,u;C) is called a

holomorphic semigroup on the sector s(K) if:
1. T(0) = Ip2(fr,u,0), the identity operator on L*(H, 1;C);
2. T(z1)T(z2) =T (21 + 22) for all z1,22 € s(K);

3. for each f € L*(H, u;C)

T(z)f — f in L*(H,1;C) as z — 0 in s(K), for each K € (0, K);

4. the function z —< T(2)f,g9 >r2(muc) s analytic in the interior of s(K) for all
f.g € L*(H, ;).

Goldys [15] has shown that (RY) is a restriction of a holomorphic semigroup if and only

if there is a positive real number a such that
| < QueA’z,y > | < alQ2a||Q7y| for all z,y € D(A®); (6.8)

furthermore, if inequality (6.8) is true then s(i) is an analyticity sector and
||RS”L(L2(H,;L;(C),L2(H,u;c)) =1 for all 2z € s(5). We remark that in the special case when

(R;) consists of symmetric operators we have (see, for example, [11, Proposition 10.1.6])

1
Qoo A” = =5 Qlp(ar)

and then inequality (6.8) is satisfied with a = % As a corollary of Goldys’ result we have

this lemma, whose proof is in the appendix of this section.

Lemma 6.2 The semigroup (Rf) s a restriction of a holomorphic semigroup if and only
if there is a bounded linear operator By € L(H, H) such that

Qo A*r = Q%BlQ%x for all x € D(A*) (6.9)
and AQw = QIBQ:. (6.10)
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Hence we assume that equations (6.9) and (6.10) are true and we set
B:= B - B;. (6.11)

Our main result is the following upper bound. Keep in mind that our recent assumptions
(C3), (C4) and (C5) are assumed to hold.

Theorem 6.3 For any sets C' and E in By

_d?%(C.B)

P{¢ e C,X(t)e E} < </ 1o p? du>2 (,u(E))% e 26t for allt >0,

where 3 1= HBH%(H,H) + 1 and B is the operator defined in equation (6.11).

In the special case when (R;) consists of symmetric operators we have B = 0 and § = 1 and
if p = 1 then Theorem 6.3 gives the upper bound shown in inequality (6.7). However the
upper bound in Theorem 6.3 is not as good as might be hoped. If H is finite dimensional,

one can use the equation
71inr(1)tlnP{]S(t)§ — ¢ >0} =—o00 for each § >0,

together with the large deviation principle satisfied by the family of Gaussian random
variables {t%W(l) : t € (0,1]} and exponential equivalence to show that even when B # 0
we have limsup, o tIn P{¢ € C, X¢(t) € E} < —1d?*(C, E).

In the next subsection we introduce a closed bilinear form £ : D(€) x D(£) — R on
L?(H, ;1) which is associated with the semigroup (R;) and we express this form in terms
of a closed derivative-like operator V : D(€) — L?(H,u; H). In the third subsection we
prove Theorem 6.3 by following the steps in the proof of Hino’s and Ramirez’s theorem [17,
Theorem 2.8] and working with the expression of £ in terms of V.
6.3.2 The machinery
Let (L,D(L)) be the infinitesimal generator of (R;). Define a bilinear form &£ : D(L) x
D(L) — R by

E(u,v) = (=Lu,v) 20, = /(—Lu)v du  for u,v € D(L).

Definition 2 Given a bilinear form B : D(B) x D(B) — R defined on a subspace D(B)
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of L*(H, 11), we define its symmetric part by

B(u,v) = %(B(u,v) + B(v,u)) for all u,v € D(B)
and its antisymmetric part by
B(u,v) := %(B(u, v) — B(v,u)) for all u,v € D(B).

We define an inner product on D(L) by

E1(u,v) = (u,v) r2(pr ) + E(u,v)  for all u,v € D(L);

the corresponding norm on D(L) is 51% (u) == (& (u,u))% for w € D(L). Following Ma
and R('jcliner [20, Theorlem 2.15], we denote the completion of the normed vector space
(D(L),&7) by (D(£),&) and then there is a unique bilinear extension of £ : D(L) x
D(L) — R to tllle domain D(&) x D(E) such that the extension is continuous with respect
to the norm £ on D(E). The continuous extension £ : D(€) x D(E) — R is a closed
bilinear form, that is, D(&) is a Hilbert space with the inner product

E1(u,v) = (U, V) p2(p ) + E(u,v) for all u,v € D(E)
1 -
and &7 (u) = (& (u,u))% for all u € D(E). We also have

E(u,v) = (=Lu,v) 2,y for allu € D(L) and v € D(E). (6.12)

For n € N let C;°(R™) be the space of continuous and bounded real-valued functions on
R™ whose partial derivatives of all orders exist and are continuous and bounded. Given A,
a vector space of continuous bounded real-valued functions on H, let A, be the subspace

of L?(H, ) consisting of the classes which contain the functions in .A. Define
FCP(D(AY)) :={opo({l1,"),...,{ln,)) :n € Nand ¢ € Cy°(R") and ly,...,l, € D(A™)}.

As shown in [11, Proposition 10.2.1], FC;°(D(A*)), is a core for (L, D(L)). It is convenient

to work with the space FCp°(D(A*)), because we can compute Lu for u € FC°(D(A¥)),
~1

and since this space is a core for (L, D(L)) it follows that (D(£), £} ) is also the completion
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1
of (FC°(D(A*))u, £7). From [11, Proposition 10.2.2] we have
E(u,v) = — /(DU,QOOA* Du)dp for u,v € FC°(D(A")),, (6.13)

where Du and Dv are the Fréchet derivatives of the representatives of u and v, respectively,
belonging to FC°(D(A*)). Define the linear operator V : FC°(D(A*)), C L*(H,pn) —
L*(H, i; H) by

Vu:=Qz Du forue FCy°(D(A") s (6.14)

here again Du is the Fréchet derivative of the representative of u that belongs to FCp°(D(AY)).
Then from equation (6.13) and equations (6.9), (6.10) and (6.11) we have for the antisym-
metric part

E(u,v) = ;/(Vu, BVwv)du for u,v € FCy°(D(A")), (6.15)

and from equation (6.13) and the Lyapunov equation,
QooA*r + AQooxr = —Qx  for x € D(A*) (see for example [11, Proposition 10.1.4]),

we have for the symmetric part

E(u,v) = ;/(Vu, Vu)dp  for u,v € FCP(D(AY)),- (6.16)

The operator (V, FCp°(D(A*)),) is closable because if (uy,) is a sequence from FCp°(D(A*)),
and u, — 0 in L?(H, ) and |V, — Vum|r2(m, 1y — 0 as n,m — oo then, from equation
1

= 1
(6.16), &2 (up — um) = (lup — um|%2(H7M) + %|V(un - um)]%Q(Hyu;H))ﬁ — 0 as n,m — 00;

|
1 1

since the space (D(E),&7) is complete we have £ (u, —0) — 0 as n — oo which implies
that Vau, — 0in L?(H,pu; H) as n — oo.

Let V : D(V) — L?(H, u; H) be the closure of (V,FC°(D(A*)),). The domain of the

closure is

D(V) = {ue L*(H,p):I(u,) C FC°(D(A*)), such that u, — u in L*(H, p) and
\Vun — V|2 (p,um) — 0 as n,m — oo}

= {ue L*(H,p): I(uy) C FC°(D(A*)), such that u, — u in L*(H, p) and
glé(un—um) — 0 asn,m— oo }

= D(&).
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Let u € D(E) and let the sequence (uy,) C FCg°(D(A*)), be such that u, — w in L?(H, )
and |Vu, — Vum|L2(H’mH) — 0 as n,m — oo; then Vu := lim, .o Vu, in L2(H,u; H)
and also u, — u in (D(E), 51%) Since £ : D(E) x D(E) — R is continuous with respect to
the norm 51% on D(E), we have

. . 1 1 /-
E(u,u) = lim E(up,up) = lim 3 (Vup, Vuy) dp = 2/<Vu, Vu) du.

n—oo n—oo

Similarly we can show that for all u,v € D(E)

E(u,v) = % / (Vu, Vo) dps (6.17)

and

E(u,v) = ;/(Vu, B Yv) dp. (6.18)

If w and v belong to D(E) N L>®(H, p) and F € C*°(R) then we have the following rules

of calculus:

(i) weDE) and V(w) = uVv+oVu; (6.19)
(iil) Foue D(€) and V(Fou) = F'(u)Vu. (6.20)

These rules follow immediately for functions in FCy°(D(A*)),. For general u,v € D(£)N
L>®°(H,pn) we can find uniformly bounded sequences of functions (u,) and (v,) from
FCp*(D(A*)), such that u, — u in L*(H, u) and Vu, — Vu in L?(H, u; H) and v, — v
in L2(H,n) and Vv, — Vv in L?(H, u; H) and then the rules of calculus follow by sub-
stituting w,, and v, in equations (6.19) and (6.20) and taking limits.

6.3.3 Proof of Theorem 6.3

In this subsection we prove Theorem 6.3. Let C' and E be Borel subsets of H such that
2(C) = [1¢ pdp > 0 and u(E) > 0. We want to find an upper bound for [ 1¢(Rilg)pdp
for each ¢ > 0. Let E be a countable union of compact sets such that E c E and
u(E\E) = 0. Since x is a Radon measure, F exists. Define

vy = Rylg fort >0

and

w:=d(-,E) Nd(C, E).
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We assume that d(C, E) < oo. From [27, Lemma 2.1] we have w € D(€) and |Vw| < 1
1 a.e.; we give the proof of this important fact in the appendix. Note that for ¢ > 0,
v; € D(L). This follows because, by assumption, for each f € L?(H, u; C) the L?(H, u; C)-
valued function z — RCf is weakly analytic and hence strongly analytic on the interior
of a sector s(K), for some K € (0,00). Thus ¢t — RFf is differentiable on (0, 00). This
implies (see [24, chapter 2 Lemma 4.2]) that for each ¢ > 0

Ry(L*(H,p)) € D(L).

We now trace the steps of Hino and Ramirez [17, Theorem 2.8]. Let a be a real number

and set
f(t) = /vfeQaw dyp  for t > 0.

The function f is continuous on [0, 00) and differentiable on (0, 00). For ¢ > 0 we have

i) = 2/(Lvt)vte2aw du
= -2€ (vt,vtemw) by equation (6.12)
= -9 <€~ (vt,vte2o‘w) +& (vt,vtezaw)) . (6.21)

We use equation (6.18) and the rules of calculus for V to obtain for the antisymmetric

part:
—2& (vt, vtezaw) = - /(B \Y% (eQO””vt) , Vo) dp
= —2a/vte2a“’<B Vw, Vo) du — /eQO‘w<B Vo, Vo) > dp

= —2a/vte2aw<B Vw, V) dp  for t > 0.

Using equation (6.17), we also have for the symmetric part:

—2& (vt,ezawvt) = —2a/vte2aw<@w,?vt) du — /eZO‘w(?vt,?vt) du  for t > 0.
Equation (6.21) now becomes

() = —2a/0t62aw<(B + Ig)Vw, Vo) du — /620‘7"(?%,?1}0 dp fort>0. (6.22)

151



Holder’s inequality provides an upper bound for the first term on the right hand side of
equation (6.22):

2
402 (/ 02 (B 4 I7)Vw, Vuy) du)

IN

4a2/vtezaw](B+IH)Vw|2du /e2aw|@vt\2d,u

2 2
ot </1}3620‘w\(3 +IH)@w|2du> + (/ eQaw]@vthu)

+2a2/vt2e2aw|(B+IH)Vw\2d,u, /ezo‘w\Vvthu

IN

thus
—2a/vte2aw<(B + Ig)Vw, Vo) dp < a2/vfe2°‘“’](3 + I)Vw|? du + /ego‘w?vt!2 d.
Substituting this bound into equation (6.22) we get

) < a® @B+ L) Tl du

= aQ/UthQO‘w(]BVw]2+\Vw|2) du

< o®Bf(t) fort>0, (6.23)
where (§ := HBH%(H’H) + 1. From inequality (6.23) it follows that
F(t) < F(0)e™Pt = p(E)e™Pt for all t > 0.

Thus, by Holder’s inequality,

/1()(Rt1E)pdu < </1Ce 20w 2dﬂ> ( 20w Qd,u>
2[3t
2

o—0d(C.E) ( / 1cp? du) ()

[N

IN

e for all £ > 0.
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Here the real number « is arbitrary; for each ¢ > 0 we minimise the expression on the

right hand side by taking o = d(%;E). Then we have

_d*(c,EB)

1
2
/lc(RtlE)pd,u < (/ 1cp? d,u,) (M(E))% e bt for all ¢ > 0.

This completes the proof of Theorem 6.3.
Remark The fact that 3 appears in the argument of the exponential function in The-
orem 6.3 suggests that, at least in the case of finite dimensional H, our use of Holder’s
inequality for the term [ v, (BVw, Vu,) du appearing in equation (6.22) is crude.
6.3.4 Appendix
Proof of Lemma 6.2
We now show that (RY) is a restriction of a holomorphic semigroup if and only if there is
a bounded linear operator G on H such that
AQu = Q2:GQ: and
QuoA*x Q:G*Qix for all z € D(A").

According to Goldys [15, Theorem 2.2], (RY) is a restriction of a holomorphic semigroup

if and only if there is a positive real number a such that
{QoA%x,y)| < a\Q%xHQ%y\ for all z,y € D(A™). (6.24)

Let © € D(A*). Since D(A*) is dense in H, we can take a sequence (y,) C D(A*) such
that ¥, — QeA*x in H as n — oo. Then substituting y, for y in inequality (6.24) and

taking limits on both sides gives

1 1
Qoo A™x| < al|Q2 || L(a,m)|Q2 7).

This means that the operator QOOA*Q_% : Q% (D(A*)) € H — H is bounded and since its
domain Q%(D(A*)) is dense in H, there is a bounded linear operator £ on H such that

QuA* Q™7 = EIQ% or, equivalently,

(D(A*))

QooA* = EQz  on D(A%). (6.25)
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Let y € H. For any x € D(A*) we have
1 1
(A", Qooy) = (Qoo A"z, y) = (EQ2x,y) = (x,Q2E"y).

Thus
Quo(H) C D(A) and AQuy = Q2E*y for all y € H. (6.26)

Inequality (6.24) becomes
(2, AQooy)| = [(Q2z, E*y)| < a|Q72||Q7y| for all 2,y € D(A¥).

In this inequality let y € D(A*) and replace = by a sequence (x,) C D(A*) such that

Q%xn — E*yin H as n — oo. Taking limits we get
1
[Ey| < al@2yl.

Thus E*Q‘é : Q%(D(A*)) C H — H is bounded and there is a bounded linear operator

G on H such that E*Q_% G|

0} (D(av) or, equivalently,

E* = GQx.
Substituting this expression for E into equations (6.25) and (6.26) gives the desired results.

Proof that w € D(£) and |[Vw| < 1

We now present Ren’s and Rockner’s proof [27, Lemma 2.1] that if F' is a countable union
of compact subsets of H and c¢ is a positive real number then d(-, F) A ¢ is in D(€) and
IV(d(-, F)Ac)| <1 pae.. Ren and Réckner proved this result in the more general setting
of a separable Banach space. In our application H is a separable Hilbert space, which

simplifies the proof.

Let {e1,ea,...} be an orthonormal basis for H composed of eigenvectors of Q:
Qej = Nje; foralljeN

1
and such that the sequence ()\,) is non-increasing. The set {Q%ej = Afej:j € N}isan

orthonormal basis for H,. For each n € N, let P, : H — H be the projection onto the
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linear span of {e1,...,e,}:

n
Pyx = Z(x,q)ej for x € H.
j=1

The hard work is in proving that if K is a compact subset of H and c is a positive real
number then d(-, K) Ac € D(E) and |V(d(-, K) Ac)| <1 p a.e.. The steps of the proof are:

1. show that for any fixed n € N and y € H the function
vp(z) = |Ppx — Pyylp, Nc, x € H,

belongs to D(€) and |Vu,| <1 u a.e.;

2. show that
x— d(Ppx, Py(K))Nce D(E)

and |V(d(Py-, Po(K))Ac)| <1 pae.;

3. show that d(-, K) Ac € D(€) and |V(d(-,K) Ac)| <1 p ae..
Step 1 Fix n € Nand y € H. Define v, : H — R by
vn(x) = |Pyx — Poylg, ANc for x € H.

Recall that D(€) is the domain of the closure of the operator V : FCp°(D(A*)), C
L*(H,p) — L*(H,p; H) defined in equation (6.14). Since D(A*) is dense in H, it is
straightforward to show that FC°(H),, the set of elements of L?*(H,u) which contain

functions from
FCr(H)={po({(l1,),...,{lm,)) :m € Nand ¢ € C;°(R™) and ly,...,ln € H},

is contained in D(€) and for u € FC°(H),, Vu = Q2 Du where Du is the Fréchet
derivative of the corresponding function in FC;°(H). To show that v, € D(E) we will
find a sequence (u,,) from FCp°(H), such that u, — v, in L?(H,u) and (Q%Dum)

converges in L?(H, u; H) as m — oo. We have

vn(@) = [ Y (@,¢5) = (,;)°A\;" | Ac forze H.
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Define g : R — R by

NI

g(z) = Z(zj - (y,ej))Q)\j_l for z = (21,...,2,) € R™
j=1
Clearly v, (z) = g(T'z) A ¢, where
Tz = ({x,e1),...,(z,e,)) forze H.

The partial derivatives D;g exist and are continuous and bounded on R™\{T'y}:

N

Dig(z) = A7 (2 — (v, €5)) (Z(zi —(y, e¢>)2Ai1> for 1 < j <n.

=1

By the C*°-Urysohn’s lemma, for each m € N there is a function ¢, € Cp°(R) such that
¢/, has compact support and 0 < ¢/, < 1 and ¢/,(t) = 1 for each ¢ € |1, ¢] and the closure
of the set {t € R: ¢/, (t) # 0} is contained in (0,c + X) and

1
t when -~ <t <c,

dm(t) =< ¢ when t < ayy,,

co whent>c+ %,

where a,, = min{t € R : ¢/,(t) # 0} € (0,1) and ¢; and ¢, are constants such that
c1 € [0,2] and ¢5 € [c,c+ L]. The sequence ¢, converges uniformly to ¢ — (0V ¢) Ac
and ¢}, (t) converges pointwise to 1(g ().

For each m € N, ¢, 0 g € Cp°(R") and thus (¢ 0g) o T € FC°(H). We have

/ (Gm(9(T)) — vn(@))?dp = / (m(9(T2)) — g(T) A ) dp

— 0 asm — oo.

We also have

Q:D((dmog)oT)(z) = Q2T*(D(émog)(Tz)) forzeH
= Q%T*(Z);n(g(Tx))Dg(Tac) for x ¢ y + kerT.

Since kerQo = {0}, pu(y + kerT') = 0.
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Thus

[1@3D((én 0 9) 0 D)) - 10(0(T) QAT Do) d

< QT B [ (Gn(0(T0) ~ 10 (6(T2)* [Dg(T) di

— 0 asm — oo.
We have now shown that v, € D(E) and for p a.e. z € H

Vou(z)] < |Q3T*Dg(Tx)|

= Yo Dig(T2)Qres| = | Yo N(Djg(T)) | =1.

j=1 J=1
This completes step 1 of the proof.

In the next step of the proof we will use a result from [20, chapter 4 Lemma 4.1]:
if u,v € D(E) N L>®(H, ) then u Av € D(E) and

_ _ _ 1 _
V(iuNAv) = 1{u>U}VU + 1{U>U}Vu + l{u:v}i(V’u + Vo). (6.27)

Step 2 Fix n € N. Let K be a compact subset of H. Let {y1,y2,¥s,...} be a countable
subset of K whose closure in H is K. From step 1 we know that for each m € N the
function

Un,m () = |Ppx — Poym|a, Nc for x € H

belongs to D(€) and |Vu,m| <1 p ae..

Suppose that for some j > 1 we have v, 1 A ... Avyj € D(E) and [V(vp1 A ... Aoy )| <1
p a.e.. Then by equation (6.27) we have vy 1 A...Avy jAvyj+1 € D(E) and |V (vp1 AL A
Unj AUnj+1)| <1 pace.. By induction v, 1 A...Avy; € D(E) and |v(vn71/\.../\vn7j)| <1
u a.e. for each j € N.

We have v, 1 A ... Avpj \, d(Py:, Po(K)) Acas j — oo. To see this, notice that given
any d > 0 there is a y € K such that |P,z — Ppy|g, < d(Pyx, P,(K)) + § and there is a
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sequence a : N — N such that y, ;) converges to y in H; thus

Pz — Poyay e, < |Pnx — Poyla, + |Poy — Pavagy|m,
1
< d(anapn(K))+5+)‘n2|Pny_Pnyo¢(i)|
< d(Ppz,P(K))+2§ for sufficiently large i € N.

Since all the functions are bounded by ¢ we have v, 1 A ... Avp; — d(Py-, Po(K)) Acin
L?(H, p).

Since |V (vp 1 A.. NV )2 pmy < 1 forall j € N and the closed unit ball in L?(H,p; H)
is weakly sequentially compact, there is a subsequence (v(vml Ao AN p,))ee, which
converges weakly to some V in the closed unit ball of L?(H, u; H). By the Banach-Saks
theorem (see for example Theorem 2.2 in Appendix A of [20]) we may assume that the
sequence of Cesaro means (+ Zf\il V(vpaA...Avpj,)) -y converges to V in L?(H, u; H);
we also have %Zfil(vn,l Ao Nvgj) — d(Ppy Po(K)) Acin L*(H,pu) as N — oo.
Closedness of (V, D(£)) now implies that d(P,-, P,(K))Ac € D(E) and V(d(Py-, Po(K)) A
c)=V.

For each N € N,

N
1 — 1 _
N g V(opa Ao Avg )| < N E IV(upa Ao Ao )| <1 poace.
i=1 i=1

and since some subsequence of this sequence of Cesaro means converges to V(d(P,,-, P, (K))A
c) pointwise u a.e., it follows that |V (d(P,-, P.(K)) Ac)| <1 p a.e.. This completes step
2 of the proof.

Step 3 Foreachx € H andy € K, |Pox—Poy|u, /" |v—y|m,, where we take |z —y|m, = 0o
if v —y € H\H,. Thus

d(Pyz, P, (K)) / supd(Ppz, P,(K)) < d(xz,K) for each z € H.
neN

We shall show that actually sup,cyd(Ppx, Pp(K)) = d(xz,K). We can assume that
sup,en d(Ppz, P, (K)) < co. Suppose that « is a real number such that

supd(P,z, P, (K)) < a.
neN

Then for each n € N there is a vector y,, € K such that |P,z — P,yn|m, < a. Since the

closed ball in H,, centred at 0 and of radius «, By, (0, a), is a compact subset of H and
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K is also compact, there is a subsequence (n;) and h € By, (0,a) and y € K such that
Yn, — Yy in H as k — oo and P, — Py, yn, — hin H as k — oo. Thus x —y = h, which
implies that d(z, K) < a.

Since the sequence of functions converges pointwise and is uniformly bounded, we have
d(Py-, Po(K)) Ac — d(-,K) Ac in L*(H, ) as n — oo.

We also have that |V (d(P,-, P,(K)) A 2y < 1 for all n € N. Now arguing in the
same way as in step 2 we conclude that d(-, K) Ac € D(€) and |V(d(-, K)Ac)| <1 p ae..
This completes step 3.

Finally, let K1 C Ko C K3 C ... be an increasing sequence of compact subsets of H and
let F'=U52, K. Then

d(z,K;) \,d(z,F) foreach z € H

and
d(wK;)Nc—d(-,F)Ac in L*(H,pu) as j — oo.

We also have |V (d(-, K;) A r2(m ) < 1 for all j € N. Again we can argue as in step 2
to conclude that d(-, F) Ac € D(E) and |[V(d(-, F) Ac)| <1 p ae..
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Chapter 7

Conclusion

The large deviation principles in Corollary 3.4, Corollary 4.12 and Theorem 5.1 lead us
to expect that for a given stochastic initial value problem the small time asymptotics of
the continuous trajectories of the solution will be described by a large deviation principle
whose rate function is determined only by the diffusion function and the noise process. Ad-
mittedly we have only dealt with drift functions and diffusion functions that are Lipschitz

continuous or are in some sense close to being Lipschitz continuous.

From the point of view of the stochastic modeller, additive Wiener process noise is the sim-
plest choice but it may not reflect the properties of the system being modelled. Observation
of the small time asymptotics of the system of interest may provide useful information as
to how to model the noise in the stochastic equation. On the other hand if we have
a stochastic initial value problem, small time asymptotics estimates provide a relatively

simple rough guide to the behaviour of the system as it moves from its initial state.

Continuous solutions of equations in a separable Hilbert space seem quite manageable
compared to solutions of equations which are continuous in a more general separable
Banach space. We got a taste of this in chapter 4. We faced the problem of getting a large
deviation principle for the small time asymptotics of continuous trajectories in a general
separable Banach space, without making overly restrictive assumptions. In particular
it might be that our assumption that (B2)(2) holds is overly restrictive given the other

assumptions we made in chapter 4.

Chapter 5 reminds us that stochastic integrals have been defined for integrators besides
the familiar Wiener process. Much still remains to be done on small time asymptotics of

solutions of stochastic equations with different types of noise process.

In chapter 6 we saw that getting a good upper bound for
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limsup,_,otln P{X(0) € C, X (t) € E} is a challenging problem for general £(X(0)), even
in the case of the solution of a linear equation with Wiener process noise in a separa-
ble Hilbert space H. A question that arises where we left off in chapter 6 is whether
Theorem 6.3 gives a good upper bound for the small time asymptotics or whether we
actually have limsup,_otln P{X(0) € C,X(t) € E} < —1d*(C,E) when H is infinite
dimensional and the transition semigroup on L?(H, ) is holomorphic and £(X(0)) has
integrable (rather than square integrable) density with respect to p.
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