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Abstract

Multiple-input multiple-output (MIMO) wireless technology is an emerging cost-

effective approach to offer multiple-fold capacity improvement relative to the conven-

tional single-antenna systems. To achieve the capacities of MIMO channels, MIMO

bit-interleaved-coded-modulation (BICM) systems with iterative detection and decod-

ing (IDD) are studied in this thesis.

The research for this dissertation is conducted based on the iterative receivers

with convolutional codes and turbo codes. A variety of MIMO detectors, such as a

maximum a posteriori probability (MAP) detector, a list sphere detector (LSD) and a

parallel interference canceller (PIC) together with a decision statistic combiner (DSC),

are studied. The performance of these iterative receivers is investigated via bounding

techniques or Monte-Carlos simulations. Moreover, the computational complexities of

the components are quantified and compared.

The convergence behaviors of the iterative receivers are analyzed via variance trans-

fer (VTR) functions and variance exchange graphs (VEGs). The analysis of conver-

gence behavior facilitates the finding of components with good matching. For a fast

fading channel, we show that the “waterfall region” of an iterative receiver can be

predicted by VEG. For a slow fading channel, it is shown that the performance of an

iterative receiver is essentially limited by the early interception ratio (ECR) which is

obtained via simulations.

After the transfer properties of the detectors are unveiled, a detection switching

(DSW) methodology is proposed and the switching criterion based on cross entropy

(CE) is derived. By employing DSW, the performance of an iterative receiver with a

list sphere detector (LSD) of a small list size is considerably improved. It is shown

that the iterative receiver achieves a performance very close to that with a maximum

a posteriori probability (MAP) detector but with a significantly reduced complexity.

For an iterative receiver with more than two components, various iteration sched-

ules are explored. The schedules are applied in an iterative receiver with PIC-DSC. It

is shown that the iterative receiver with a periodic scheduling outperforms that with

the conventional scheduling at the same level of complexity.
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Chapter 1

Introduction

1.1 Literature Review

Nowadays, wireless communication is playing a roll of ever increasing importance in

our everyday lives. New wireless services such as mobile Internet with multimedia

streaming are making their ways to the market. In this background, the availabil-

ity of low-cost equipment providing high transmission quality and efficient spectrum

utilization is crucial to the success of these services. Thanks to the overwhelming

performance improvements as well as the cost-reduction in the electronic devices, a

great deal of major theoretical developments can be put into practice.

The major constraints on the performance of the wireless communication systems

are the channel effects such as noise, interferences and fading which distort the trans-

mitted signals. The most straightforward approaches to level up the reliability as well

as the speed of data transmission are to increase the transmit power and to use a larger

bandwidth. However, these two resources are so expensive that high power efficiency

and high spectral efficiency [1] are invariably desirable.

In 1948, Shannon established the fundamental limits on the transmission rates in

digital communications [3, 4]. This inspired the research on error control coding (ECC)

techniques to approach the capacity limits. The milestone of the ECC development
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is the turbo coding technique which is proposed by Berrou and Glavieux in 1993. By

employing a parallel concatenated convolutional code, named as a turbo code, the gap

between the achievable channel utilization and the capacity limits of an additive white

Gaussian noise (AWGN) channel is almost closed [6]. However, even the near-capacity

performance of a single-transmit-single-receive antenna wireless system can not meet

the required spectral efficiency for some applications such as the home Audio/Visual

(A/V) networks. In this background, many advanced technologies are explored in

order to achieve a higher spectral efficiency.

Multiple-input-multiple-output (MIMO) wireless is an emerging cost-effective tech-

nology that offers multiple-fold capacity than the conventional single-antenna wireless

systems [7, 40]. By introducing antenna arrays at both transmitter and receiver,

MIMO system enables increased achievable spectral efficiency and reliability for a

given total transmit power. To approach the capacity of MIMO channels, space-time

coding (STC) and related signal processing techniques have evolved into one of the

most exciting research areas in wireless communications.

Initially, the designing of joint space-time dependencies in transmitted signals

which endeavors to optimize the diversity [5] and coding gain [3] is of the greatest

interests. The earlier research involves code design such as Alamouti space-time codes

[31], space-time block codes (STBCs) and space-time trellis codes (STTCs) [25]. Re-

cently, concentration has been shifted to independent multiple antenna transmissions

which do not execute coding across antennas. The concept of bit-interleaved-coded-

modulation (BICM) [26] are extended to MIMO cases and the MIMO-BICM systems

attract significant attentions.

To achieve the optimal performance of a MIMO-BICM system, a maximum likeli-

hood receiver [9] featuring joint detection and decoding is required. Unfortunately, the

maximum likelihood receiver is of a complexity exponential to the number of transmit

antennas as well as the block length of the channel code ( due to the bit interleaver

[38]). For a system with a large number of transmit antennas and a channel code with

2



a moderate block length, the complexity is prohibitive. Henceforth, iterative receivers

which decouple the detection and decoding are currently under intensive investigations.

Although there is no theoretical proof that the performance of an iterative receiver

converges to that of the optimal maximum likelihood receiver, the turbo-principle is

tested to be very effective in this scenario [8].

A typical iterative receiver for MIMO-BICM involves a maximum a posteriori prob-

ability (MAP) detector, a decoder, a bit interleaver and a bit de-interleaver. Soft

information is exchanged between the detector and the decoder in an iterative fashion

and the overall complexity of the receiver is no longer exponential to the block length

of the channel code. However, the complexity of the MAP detector is still exponential

to the number of transmit antennas so that its implementation is still infeasible, for

a system with a large number of antennas. To replace the MAP detector, various

sub-optimal [32] detection approaches are proposed and are well-exploited.

1.2 Motivation

The receiver for a wireless system can be studied via union bounding techniques [1,

3, 4]. For an iterative receiver with a decoder which is itself concatenated, however,

deriving the bounds becomes very tough. Moreover, the union bounds may fail to

predict the performance of an iterative receiver with a reduced-complexity detector

in conjunction with a concatenated decoder, due to the high probability that the

iterative processing does not converge to successful decoding. Therefore, empirical

methods have been widely applied to tracking the iterative decoding in practice.

There have been many algorithms proposed for the MIMO detection. Among those,

the one with the best performance and complexity trade-off has yet to be found for the

iterative receivers. Moreover, the best iteration schedule [33] has yet to be discovered

for an iterative receiver with more than two components.
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1.3 Contribution

We conduct our research based on the iterative receivers with several kinds of de-

tections and various channel codes. We apply the union bound technique to predict

the bit error probability (BEP) of the iterative receiver with a parallel interference

canceller (PIC) in conjunction with a decision statistics combining (DSC) (which is

also referred to as an iterative PIC-DSC receiver) over a slow Rayleigh fading MIMO

channel. A good match between the analytical bound and the simulated performance

is presented.

We study the convergence behaviors of the iterative receivers via the evolution of

the variances. For a fast fading channel, the “waterfall region” [10][30] of an iterative

receiver is predicted. For a slow fading channel, we show that the performance of

an iterative receiver is essentially limited by the early interception ratio defined in

Chapter 4. After the transfer properties of the detectors are unveiled, a detection

switching methodology (which performs switching between a list sphere detector and

a PIC-DSC in the iterative receiver) is proposed and the switching criterion based on

cross entropy is derived. We show a significant complexity-reduction by employing the

detection switching.

For an iterative receiver with more than two components, iteration schedules are

studied. In terms of performance and complexity trade-off, we show that an itera-

tive PIC-DSC receiver with a periodic scheduling clearly outperforms that with the

conventional scheduling.

1.4 Dissertation Overview

The dissertation is organized as the following. In Chapter 2, we investigate the channel

codes which are used throughout the studies for the MIMO-BICM systems. In the

first place, we introduce the convolutional codes and quantify the complexities. The

recursive systematic convolutional codes and the non-systematic convolutional codes
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are compared. Afterwards, the iterative decoding for a turbo code and a stopping

criterion based on cross entropy are studied.

We start the Chapter 3 with the description of MIMO systems and space-time

coding techniques. The iterative receiver with a MAP detector are studied and we

see how a list sphere detector (LSD) [8] can provide a performance close to that of

a MAP detector but with significantly reduced complexity. Subsequently, we present

an iterative receiver with PIC-DSC, and derive a performance bound on its bit error

probability. After that, a summary of this chapter is given.

In chapter 4, we present the approaches for tracking the convergence behaviors

of the iterative receivers. We introduce two empirical measurements which are the

mutual information [10] and variance [14]. The convergence behaviors of the decoders

are presented via variance exchange graphs. After that, we derive the variance transfer

function of PIC and depict that for LSD. Later, the convergence behaviors of the

iterative receivers for MIMO-BICM are investigated via variance exchange graphs.

Subsequently, we re-visit the complexity issue for the MIMO detection and propose a

detection switching. The switching criterion based on cross entropy is derived. Finally,

we present the simulation results and discuss the complexities of various schemes.

In chapter 5, we investigate the scheduling for the iterative receivers with more than

two components. A periodic scheduling and a master-slave scheduling are presented.

Afterward, the applications in the iterative receivers are investigated.

In chapter 6, we summarized the results and make suggestions for the future works.
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Chapter 2

Error Control Channel Coding

In 1940s, Shannon showed that for any given channel it is possible to transmit infor-

mation at a rate, which is known as the capacity of the channel, with an arbitrarily

small error rate. Moreover, he showed that one method to achieve the capacity is by

adding redundant digits to the transmitted data.

Nowadays, error control coding techniques are widely used in digital communica-

tions and it is one of the main advantages of digital systems over analog systems.

In wireless systems, the channel influences cause errors in the received signal. By

assigning each message of k bits a codeword with n digits (n > k), the channel en-

coder introduces redundancy so as to reduce the reception errors quantified as bit

error rate (BER), where Rc = k
n

< 1 is called the code rate. The number of places in

which two codewords differ is referred to as the distance which is useful to reflect the

error-correction capability of the channel code.

The primary purpose of employing error control coding in wireless communications

is to increase the reliability of transmission within the constraints of signal power and

system bandwidth. As a result, the same BER can be achieved with a smaller SNR

in a coded system than in an un-coded system. The improved power efficiency by

employing a coded system is measured by coding gain. Generally, a coded system

yields a larger coding gain at lower BERs (or higher SNRs). At a very low SNR,
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however, negative coding gains are found for coded systems and this phenomenon is

due to the threshold effect [3].

In this chapter, we begin our study with convolutional codes. The non-systematic

convolutional (NSC) codes and recursive systematic convolutional (RSC) codes are

described and compared. After that, the popular turbo codes (TC) are narrated. The

complexity issue of the turbo decoder is discussed and a stopping criterion for iterative

decoders is introduced.

2.1 Convolutional Codes

The distinguishing feature of a convolutional code over a block code [1]-[4] is that its

current output block depends on one or more previous input blocks. For a convolu-

tional code, it is no longer possible to divide the code stream into distinct codewords.

Thus, we must consider the distance between the code sequences. The term free dis-

tance, which is defined as the smallest distance between any pair of code sequences

commencing and finishing on the same states [3, 4], is frequently used in the study of

convolutional codes.

2.1.1 Encoder

NSC Codes

Let us consider a rate Rc = 1
2

NSC encoder as shown in Figure 2.1. The binary

un-coded message (or information) sequence is given by

u = (u1, u2, u3, ¦ ¦ ¦, ut, ¦ ¦ ¦, uτ ), ut ∈ {0, 1} (2.1)

where t is the index for a time instant and τ is the length of the message sequence.

The output coded digits are denoted by

7



Figure 2.1: A code rate Rc=1/2, memory order m = 2 NSC encoder with generator
[7, 5]8.

c(1) = (c
(1)
1 , c

(1)
2 , c

(1)
3 , ¦ ¦ ¦, c(1)

t , ¦ ¦ ¦, c(1)
Γ )

c(2) = (c
(2)
1 , c

(2)
2 , c

(2)
3 , ¦ ¦ ¦, c(2)

t , ¦ ¦ ¦, c(2)
Γ ) (2.2)

where c
(1)
t and c

(2)
t are the encoded digits from the first and second output branch of

the encoder. The relation of the encoded digits and the input message bits are

c
(1)
t = ut + ut−1 + ut−2

c
(2)
t = ut + ut−2 (2.3)

where “+” stands for a modulo-2 addition. We see that the encoder stores two most

recent message bits, so we say that the memory order of this encoder is m = 2 and

the constraint length of the code is υ = m + 1. Each branch of the encoder has a

coded sequence which consists of Γ = τ + m binary coded digits. We may describe

the connections between the shift register elements and the modulo-2 adders by the

following two generator sequences

g(1) = (g
(1)
1 , g

(1)
2 , g

(1)
3 ) = (111)

g(2) = (g
(2)
1 , g

(2)
2 , g

(2)
3 ) = (101) (2.4)

8



where g(1) corresponds to the upper connections and g(2) is for the lower connections.

The equivalent octal representations of the two generator sequences are 78 and 58. For

brevity, we refer to this code as NSC [7, 5]8.

By convolving the input message sequence and the generator sequences, we obtain

the output sequences which can be written as

c(1) = u ∗ g(1)

c(2) = u ∗ g(2) (2.5)

where “∗” denotes the convolution operation. The input and output sequences can be

represented as u(D), c(1)(D), c(2)(D). Then, we have

u(D) = u1 + u2D + u3D
2

c(1)(D) = c
(1)
1 + c

(1)
2 D + c

(1)
3 D2

c(2)(D) = c
(2)
1 + c

(2)
2 D + c

(2)
3 D2 (2.6)

where the multiplication by D corresponds to delay by one input block period. The

shift register of length m can be represented by polynomials as follows:

g(1)(D) = 1 + D + D2

g(2)(D) = 1 + D2 (2.7)

which are called the generator polynomials. By arranging the generator polynomials

of a convolutional code into a matrix, we get

G(D) =
[
1 + D + D2, 1 + D2

]
(2.8)

which is called the generator matrix. Then, the encoding operation can be simplified

9



as:

C(D) = u(D)G(D) (2.9)

RSC Codes

In a systematic convolutional code [3, 4], the first output sequence is the replica of the

information sequence. The generator matrix can then be represented as

G(D) = [I,P(D)] (2.10)

where I is a identity matrix. It is shown [3] that if the generator matrix is represented

as

G(D) = [T(D),S(D)] (2.11)

the equivalent systematic generator matrix is

Gsys(D) =
[
I,T−1(D)G(D)

]
(2.12)

The equivalent systematic encoder is shown in Figure 2.2. The encoded digits from

Figure 2.2: A code rate Rc=1/2, memory order m = 2 RSC encoder with generator
[1, 5/7]8.

the first output branch are the replica of the input message bits and we refer to it as

systematic bits. The code is called a recursive systematic convolutional (RSC) code in

10



that there are feedback connections in the structure of the encoder. For brevity, we

denote this code by RSC [1, 5/7]8.

The encoding operation can also be modelled as a discrete time finite-state Markov

process [1] begins at the initial state S0 = 0 and and finishes at the terminal state

SΓ = 0, where the number of states in the trellis diagram [4] is Ms.

2.1.2 Decoder

System Model

Figure 2.3: A model of a coded system with BPSK on a AWGN channel.

The model of a coded system is shown in Figure 2.3. The encoded sequence is mod-

ulated by a binary-phase-shift-keying (BPSK) modulator and the modulated sequence

is denoted by

xΓ
1 = (x1, ...xt, ...,xΓ) (2.13)

where xt = [x
(0)
t , x

(1)
t , ..., x

(n−1)
t ]. The modulated sequence xΓ

1 is corrupted by AWGN

and the received sequence is rΓ
1 = (r1, ...rt, ..., rΓ) where rt = [r

(0)
t , r

(1)
t , ..., r

(n−1)
t ]. By

examining the received sequence rΓ
1 , the soft-input-soft-output (SISO) decoder yields

an estimate of the input message sequence as well as the estimate of the coded sequence

.
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Decoding Operation

In this dissertation, we consider the SISO maximum a posteriori probability (MAP)

algorithm for decoding. The MAP algorithm minimizes the bit error probability by

estimating the soft output in the form of the a posteriori probability (APP). Based on

the received sequence r, the decoder computes the log-likelihood ratio (LLR) of a bit

given by

Λ(ut) = log
P

(
ut = 1|rΓ

1

)

P (ut = 0|rΓ
1 )

(2.14)

and makes a hard decision on that bit by

ũt =





1 if Λ(ut) ≥ 0

0 if Λ(ut) < 0
(2.15)

We denote the transition probabilities as

P (rΓ
1 |xΓ

1 ) =
Γ∏

t=1

R(rt|xt) (2.16)

where

R(rt|xt)=
n−1∏
i=0

p(r
(i)
t |x(i)

t ) (2.17)

For an AWGN channel with variance σ2
w, we have

p(r
(i)
t |x(i)

t = j) =
1√

2πσw

e
− (r

(i)
t −j)2

2σ2
w (2.18)

where j ∈ {0, 1}. The APP of a message bit can be computed by

P (ut = j|rΓ
1 ) =

∑

(s′,s)∈Bj
t

P
(
St−1 = s′, St = s|rΓ

1

)
=

∑

(s′ ,s)∈Bj
t

P
(
St−1 = s′, St = s, rΓ

1

)

P (rΓ
1 )

(2.19)
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where 0 ≤ s′, s ≤ Ms−1 are the states in the trellis. Bj
t is the set of transitions s′ → s

that are caused by input bit ut = j. We define ϕt(s
′, s) = P

(
St−1 = s′, St = s, rΓ

1

)
.

Then, the LLR can be written as

Λ(ut) = log

∑

(s′,s)∈B1
t

ϕt(s
′, s)

∑

(s′,s)∈B0
t

ϕt(s
′, s)

(2.20)

To compute the joint probability ϕt(s
′, s), we make the following definitions

αt(s) = P
(
St = s, rt

1

)
(2.21)

βt(s) = P
(
rΓ
t+1|St = s

)
(2.22)

and

γj(s′, s) = P (ut = j, St = s, rt|St−1 = s′) (2.23)

Then, the LLR can be given as

Λ(ut) = log

∑

(s′,s)∈B1
t

αt−1(s
′)γ1(s′, s)βt(s)

∑

(s′,s)∈B0
t

αt−1(s′)γ0(s′, s)βt(s)
(2.24)

The definitions in (2.21)-(2.23) are derived as follows. We may write

γj
t(s

′, s) =





pt(j) exp

(
−
Pn−1

i=0

�
r
(i)
t −x

(i)
t,j(s)

�2

2σ2
w

)
for (s′, s) ∈ Bj

t

0 otherwise

(2.25)

where pt(j) is the a priori probability of ut = j, j ∈ {0, 1} and x
(i)
t,j(s) is the encoder

output associated with the transition s′ → s and input ut = j.
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The αt(s) can be written as

αt(s) = P (St = s, rΓ
1 ) =

Ms−1∑

s′=0

αt−1(s
′)

∑

j∈{0,1}
γj

t(s
′, s) (2.26)

which can be computed via a forward recursion [3]. The initial conditions are α0(0) = 1

and α0(s) = 0, s 6= 0.

The βt(s) can be written as

βt(s) = P (rΓ
t+1|St = s) =

Ms−1∑

s′=0

βt+1(s
′)

∑

j∈{0,1}
γj

t+1(s, s
′) (2.27)

and it can be computed via a backward recursion. The conditions for t = Γ are

βΓ(0) = 1 and βΓ(s) = 0, s 6= 0.

2.1.3 Performance

0 1 2 3 4 5 6

10
−4

10
−3

10
−2

10
−1

Eb/No

B
E

R

Performance of convolutional code Rate 1/2

uncoded
NSC(7,5)
NSC(37,21)
RSC(7,5)
RSC(37,21)

Figure 2.4: Performance of NSC [7, 5]8 and RSC [1, 5/7]8 with code rate Rc=1/2.

To illustrate the performance of convolutional codes, the BERs of NSC codes and

RSC codes with Rc = 1
2

on an AWGN channel are plotted in Figure 2.4. (Throughout

the thesis, the Eb/No in dB is used to specify the SNR.) We observe that the coding
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gain by applying the NSC [37, 21]8 (m = 4) is about 0.8dB larger than that with NSC

[7, 5]8 (m = 2), at a BER=10−5. Thus, we may say that a NSC code with a larger

memory order outperforms a NSC code with a smaller memory order at a high SNR

(or low BER). At a low SNR, on the other hand, we see that the coded systems have

negative coding gains over the un-coded systems. Also, the NSC code with smaller

memory order outperforms that with a larger memory order. The same phenomena

are observed for the RSC decoders. Moreover, we observe that a NSC code performs

better than its equivalent RSC (“equivalent” means that the NSC and RSC are of the

same generator polynomial) at SNRs whereas it performs worse than its equivalent

RSC code at low SNRs.

0 1 2 3 4 5 6

10
−4

10
−3

10
−2

10
−1

Eb/No

B
E

R

Performance of convolutional code Rate 2/3

uncoded
NSC(7,5)
NSC(37,21)
RSC(7,5)
RSC(37,21)

Figure 2.5: Performance of NSC [7, 5]8 and RSC [1, 5/7]8 with code rate Rc=2/3.

The performance of the codes of rate Rc = 2/3 are plotted in Figure 2.5, where

the higher rate codes are acquired by puncturing [3][4] the codes with Rc = 1/2. It

is observed that a RSC code with Rc = 2/3 performs better than its equivalent NSC

code at all SNRs. This observation holds for the codes with Rc ≥ 2/3 and that is the

major reason why the NSC constituent codes are not adopted for turbo codes [6].
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2.1.4 Complexity

In the evaluation of the overall complexity of the MAP decoder, we omit the complexity

of conducting the exponential operation in (2.25) by assuming that prior to the MAP

decoding, the received soft values have already been converted into probabilities via

exponential operations. (We assume that part of complexity belongs to the detector or

demodulator.) The complexity of a MAP decoder for one time unit is shown in Table.

2.1 [3]. From this table, we see that the complexity of a MAP decoder is exponential

to the memory order of the code.

Addition Multiplication
2 · 2k · 2m + 6 5 · 2k · 2m + 8

Table 2.1: Complexity of MAP decoding.

Let us assume that an addition operation costs the same computation as a multi-

plication operation. Hence, we may say that an addition (or a multiplication) costs 1

computation unit (CU). Considering an encoder with Rc = 1/2 and one input branch

(k = 1), the complexity per time unit of MAP decoding is quantified as 14(2m + 1)

CUs.

2.2 Turbo Codes

In the last section, the convolutional codes are studied. We see that the performance

of a convolutional code can be improved by increasing the memory order. However,

the performance of convolutional codes of high memory orders are still several dBs

away from the channel capacity [1][4].

In 1993, significant excitement was aroused by a paper which presented codes that

were claimed to be only 0.5dB away from the Shannon bound. These codes were

named as “turbo codes” and they have become a major focus of coding research and

applications.
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2.2.1 Encoder

Figure 2.6: A parallel concatenated convolutional code (turbo code) encoder.

The encoder of a turbo code is virtually a parallel concatenated convolutional code

(PCCC) encoder which is shown in Figure 2.6. Each of the two RSC encoders is of

Rc = 1
2

and the overall code rate of the turbo code is 1/3. A rate 1/2 turbo code

can be obtained by puncturing the parity check digits of the constituent RSC codes

[3][4][6]. For brevity, we denote the turbo code which consists of two identical RSC [1,

5/7]8 constituent codes as TC [7, 5]8. The asymmetric turbo code [30] which employs

different RSC components are not studied in this dissertation.

Again, the un-coded binary message sequence is denoted by u = (u1, u2, u3, ¦ ¦ ¦, uτ ),

the output sequences from the first encoder are

c(0) = (c
(0)
1 , c

(0)
2 , c

(0)
3 , ¦ ¦ ¦, c(0)

t , ¦ ¦ ¦, c(0)
Γ )

c(1) = (c
(1)
1 , c

(1)
2 , c

(1)
3 , ¦ ¦ ¦, c(1)

t , ¦ ¦ ¦, c(1)
Γ ) (2.28)

The first encoded stream is the replica of the input sequence followed by m tail digits

which are used for the trellis termination [3, 4]. The second encoded stream is made

up of the parity-check digits of the first encoder.

The interleaved message sequence, denoted by ũ, serves as the input to the second
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RSC encoder. The encoded stream is made up of the parity-check digits of the second

encoder, written as

c(2) = (c
(2)
1 , c

(2)
2 , c

(2)
3 , ¦ ¦ ¦, c(2)

t , ¦ ¦ ¦, c(2)
Γ ) (2.29)

2.2.2 Iterative MAP Decoding of Turbo Codes

Let us assume the BPSK modulated sequence xΓ
1 = (x1,x2, ...,xΓ), where xt =

[x
(0)
t , ..., x

(n−1)
t ], is corrupted by an AWGN channel and the received sequence is rΓ

1 =

(r1, ...rt, ..., rΓ), where rt = [r
(0)
t , r

(1)
t , ..., r

(n−1)
t ].

Figure 2.7: Structure of an iterative MAP decoder for turbo codes.

The iterative MAP decoder for turbo decoding is shown in Figure 2.7. The input

sequence to the first decoder is denoted by

r′ =
{

(r
(0)
1 , r

(1)
1 ), · · ·, (r(0)

t , r
(1)
t ), · · ·, (r(0)

Γ , r
(1)
Γ )

}
(2.30)

The input sequence to the second decoder is

r′′ =
{

(r̃
(0)
1 , r

(2)
1 ), · · ·, (r̃(0)

t , r
(2)
t ), · · ·, (r̃(0)

Γ , r
(2)
Γ )

}
(2.31)
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where r̃(0) = (r̃
(0)
1 , · · ·, r̃(0)

t , · · ·, r̃(0)
Γ ) is the interleaved version of the systematic bits

stream.

The turbo decoder involves two component RSC decoders which are concatenated

via an interleaver and a de-interleaver. The first RSC decoder takes the input r′ to

produce a soft output. This output is interleaved and used to produce an improved

estimate of the a priori probabilities (APRs) of the systematic bits for the second

decoder. The second decoder takes the input r′′ as well as the APRs from the first

decoder to yield another soft output sequence. The de-interleaved soft sequence is

feedback to the first decoder and serves as the a priori information to improve the

soft output of the first decoder, for the next decoding iteration. Subsequently, the

second decoder takes the refined a priori probabilities to improve its soft output ...

The iteration continues until the maximum number of iterations is reached.

At the kth decoding iteration, the LLR of the APP (a posteriori LLR) from the

first MAP decoder is given by [3]

Λk
1(ut) = log

∑

(s′,s)∈B1
t

αk
t−1(s

′)p1,k
t (1) exp

(
−
Pn−1

i=0

�
r
(i)
t −x

(i)
t,1(s)

�2

2σ2
w

)
βk

t (s)

∑

(s′,s)∈B0
t

αk
t−1(s

′)p1,k
t (0) exp

(
−
Pn−1

i=0

�
r
(i)
t −x

(i)
t,0(s)

�2

2σ2
w

)
βk

t (s)

(2.32)

where p1,k
t (j) is the a priori probabilities for ut = j acquired from the output of the

second MAP decoder in the (k − 1)th decoding iteration. The initial values for the

a priori probabilities are p1,k=1
t (1) = p1,k=1

t (0) = 0.5, t ∈ {1, ..., Γ}. To extract the a

priori information from the APP, we rewrite (2. 32) as the following

Λk
1(ut) = log

p1,k
t (1)

p1,k
t (0)

+ log

∑

(s′,s)∈B1
t

αk
t−1(s

′) exp

(
−
�
r
(0)
t −x

(0)
t,0

�2
+
Pn−1

i=1

�
r
(i)
t −x

(i)
t,1(s)

�2

2σ2
w

)
βk

t (s)

∑

(s′,s)∈B0
t

αk
t−1(s

′) exp

(
−
�
r
(0)
t −x

(0)
t,1

�2
+
Pn−1

i=1

�
r
(i)
t −x

(i)
t,0(s)

�2

2σ2
w

)
βk

t (s)

= log
p1,k

t (1)

p1,k
t (0)

+
2

σ2
w

r0
t + Λk

1e(ut) (2.33)
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where

Λk
1e(ut)= log

∑

(s′,s)∈B1
t

αt−1(s
′) exp

(
−
Pn−1

i=1

�
r
(i)
t −x

(i)
t,1(s)

�2

2σ2
w

)
βt(s)

∑

(s′,s)∈B0
t

αt−1(s′) exp

(
−
Pn−1

i=1

�
r
(i)
t −x

(i)
t,0(s)

�2

2σ2
w

)
βt(s)

(2.34)

Λ1e(ut) is referred to as the LLR value of the extrinsic information (EXT) or the

extrinsic LLR value. We see that the extrinsic LLR generated by the first decoder is

a function of its parity check digits and does not correlate with the systematic bits.

Therefore, the Λ̃1e(ut), which is the interleaved version of Λ1e(ut), does not correlated

with r̃0 and it can be used as a priori knowledge by the second MAP decoder.

The a priori probabilities to the second decoder can be obtained from the extrinsic

LLR as

p2,k
t (1) =

e
eΛk

1e(ut)

1 + eeΛ1e(ut)
, p2,k

t (0) =
1

1 + eeΛk
1e(ut)

(2.35)

In the second decoding stage, the a posteriori LLR is computed as

Λk
2(ut) = log

p2,k
t (1)

p2,k
t (0)

+
2

σ2
w

r̃
(0)
t + Λk

2e(ut)

= Λ̃k
1e(ut) +

2

σ2
w

r̃
(0)
t + Λk

2e(ut) (2.36)

where Λk
2e(ut) is used to update the a priori information to the first decoder for the

(k + 1)th iteration, that

p1,k+1
t (1) =

e
eΛk

2e(ut)

1 + eeΛ2e(ut)
, p1,k+1

t (0) =
1

1 + eeΛk
2e(ut)

(2.37)

2.2.3 Performance

The performance of the turbo codes of Rc = 1/2 and various memory orders is illus-

trated in Figure 2.8. For Eb/No ∈ [0.6, 0.8], the BER of TC [37, 21]8 promptly drops

and this region is referred to as the waterfall region [30]. At BER=10−5, the perfor-

mance of TC [37, 21]8 is less than 0.6dB away from the capacity limits. In addition, a
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Figure 2.8: Performance of Rc=1/2 turbo codes with interleaver size=32768, the num-
ber of decoding iterations IC=18.

significant error floor [30] is observed at BER between 10−5 and 10−6 and this region

is referred to as the error-floor region. The performance of TC [15, 17]8 is about 0.1dB

worse than that of TC [37, 21]8 at BER=10−5 and no error floor is observed at BER≥
10−6. The performance of TC [7, 5]8 is about 0.5dB worse than that of TC [37, 21]8

at BER=10−4.

From the above observations, we may conclude that at high SNRs (Eb/No > 0.5dB),

a turbo code with a larger memory order has a superior performance compared to that

with a smaller memory order. This phenomenon is explained in [3] that increasing the

memory order of component codes usually brings about increased free distance and

effective free distance which dictate the behavior of the code at high SNRs.

At the low SNRs, it is observed that a turbo code with a smaller memory order

works better than that with a larger memory order. This phenomenon is explained in

[3] that the performance of turbo codes at low SNRs are dominated by error coefficients

which are generally higher for codes with larger memory orders. In Chapter. 4, this

phenomenon will be explained by the analysis of convergence behavior of the iterative

decoding.

The performance of TC [37, 21]8 with various interleaver sizes are shown in Figure
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Figure 2.9: Performance of a Rc=1/2 turbo code [37,21]8 with various interleaver sizes,
the number of decoding iterations IC=18.

2.9. At high SNRs, a TC with a larger interleaver size tends to bring about better

performance. At low SNRs, the BERs of TC [37, 21]8 with interleaver sizes larger than

4096 are almost identical.

2.2.4 Complexity

To evaluate the complexity of the iterative MAP decoding for the turbo codes, we

omit the computations of the interleaving and de-interleaving operations so that the

complexity of each turbo decoding iteration can be approximated as twice the com-

plexity of a MAP decoding. Thus, the overall complexity is about 2IC times of the

MAP decoding, where IC is the total number of iterations for each transmission frame.

Therefore, the complexity of the turbo decoder is approximated as 28(2m + 1)IC CUs

per time unit.

2.2.5 Stopping Criterion

For a turbo coded system, a fixed number IC is often selected and each frame is decoded

with IC turbo decoding iterations. Generally, IC is set according to the worst frame
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examined. However, most frames do not need that many turbo decoding iterations

to converge. In practice, a stopping criterion is adopted to avoid the unnecessary

iterations of turbo decoding. To date, many stopping criteria are proposed in literature

and a criterion based on cross-entropy (CE) [21] is of great interests in this thesis.

Apart from the application in turbo decoding, this stopping criterion is also applicable

to other concatenated systems which employ iterative processing.

Let us denote the extrinsic information of the systematic bits from the two RSC

decoders at the kth decoding iteration by q1,k(ut) and q2,k(ut). The CE between the

output extrinsic information of the two RSC decoders is represented as

T (k) = Eq2,k(ut)

{
log

q2,k(ut)

q1,k(ut)

}
(2.38)

For a turbo code, we may assume that the extrinsic stream from the first RSC decoder

and that from the second RSC decoder are statistical independent. Thus, the CE can

be approximated as

T (k) ≈
∑

t

log
q2,k
t (ut)

q1,k(ut)
=

∑
t

{
q2,k(ut = 1) log

q2,k(ut = 1)

q1,k(ut = 1)
+ q2,k

t (ut = 0) log
q2,k(ut = 0)

q1,k(ut = 0)

}

=
∑

t

{
−4 Λk(ut)

1

1 + exp(Λk
2(ut))

+ log
1 + exp(−Λk

1(ut))

1 + exp(−Λk
2(ut))

}
(2.39)

where4Λk(ut) = Λk
1(ut)−Λk

2(ut). If the decoding converges, we can make the following

assumptions:

1) The sign of the LLR values are not likely to change anymore.

2) The magnitude of the LLR values are very large (so we have log(1 + x) ≈ x).

3) 4Λk(ut) has the same sign as ut and it is of a small value.

Consider 1) and 3), (2.39) can be approximated as [21]

T (k) ≈
∑

t

{
−ũk

t 4 Λk(ut)
1

1 + exp(
∣∣Λk

2(ut)
∣∣) + log

1 + exp(−
∣∣Λk

1(ut)
∣∣)

1 + exp(−
∣∣Λk

2(ut)
∣∣)

}
(2.40)
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Consider 2), the CE can be finally simplified as

T (k) ≈
∑

t

∣∣4Λk(ut)
∣∣2

e(|Λk
1(ut)|) (2.41)

The BER performance of the TC [37, 21]8 with stopping criterion is shown in Figure

2.10. In the simulations, we stop the decoding iterations once T (k) ≤ 0.001T (1). We

see that the resultant performance degradation is very small.
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Figure 2.10: Performance of a Rc=1/2 turbo code [37,21]8 with and without stopping
criterion, maximum number of decoding iterations=18.

2.3 Summary

In this chapter, convolutional codes and turbo codes are briefly reviewed. We see

that a stronger code performs better than a weaker code at high SNRs whereas it is

another way round at low SNRs. While the performance of channel codes at high

SNRs are of greater interests, the behaviors of the channel codes at all SNRs are

required to be considered in concatenated systems such as MIMO-BICM systems. In

the next chapter, we will explore the application of the channel codes in MIMO cases

and investigate the methods to approach the capacities of MIMO channels.
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Chapter 3

Iterative Receivers for the MIMO

systems

3.1 Introduction to MIMO Systems

3.1.1 System Model and Capacity

Figure 3.1: Block diagram of a MIMO system

System Model

Let us consider a complex baseband and discrete time MIMO system with nT transmit

and nR receive antennas, as shown in Figure 3.1. Omitting the index of the time

instant, the transmitted complex symbol at the ith transmit antenna is represented

as xi, i ∈ {1, 2, ..., nT}. The transmitted symbols from all the transmit antennas
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are represented by an column vector x = [x1, x2, ..., xnT ]T ([•]T denotes the transpose

operation) which can be referred to as a hyper-symbol. The entries of the symbols are

chosen from a complex constellation with 2M possible signal points, where M ≥ 1 is

called the level of digital modulation.

The channel is represented by a matrix H with size nR × nT . The ji-th element

of H, denoted by hji, is the complex channel fading coefficient for the ith transmit to

the jth receiver antenna, where j ∈ {1, 2, ..., nR} and i ∈ {1, 2, ..., nT}. We assume

that the received power for each antenna is equal to the total transmitted power so

that the channel coefficients are constraint by E[
∑nT

i=1 |hji|2] = nT .

The noise at the receiver is described by an nR × 1 column vector written as

n = [n1, ..., nnR ]T . Its components are statistically independent complex zero-mean

Gaussian variables and with independent real and imaginary parts. The variance per

dimension is σ2
w.

The received signals are represented by an nR × 1 column vector r = [r1, ..., rnR ]T .

After coherent detection [1], the received vector can be written as

r = Hx + n (3.1)

In this dissertation, we assume that perfect knowledge of the channel coefficients,

or channel state information (CSI) [3], is available to the receiver and the random

channel coefficients follow the Rayleigh distribution [1]-[4]. Moreover, we assume that

there are no antenna correlations so that each element in H is statistically independent

from any other element.

Definition of SNR

Let us use ρ to denote the physically measured SNR that ρ = Es/2σ
2
w where Es is the

energy of a hyper symbol x. We use the convention No = 2σ2
w and thus the SNR can

be written as ρ = Es/No. The average signal energy per transmitted complex symbol
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from one antenna is Es/nT . The receive antennas collect a total energy of nREs on

average and it is the energy for nT M coded digits or nT MRc transmitted message (or

information) bits. Therefore, the energy of one information bit is Eb = nR

nT MRc
Es. The

relation between Eb/No and Es/No can be given as

Eb/No =
nR

nT MRc

Es/No (3.2)

and to which we shall adhere throughout this dissertation.

Capacity

The system capacity is defined as the maximum possible spectral efficiency such that

the probability of error is arbitrarily small. The instantaneous capacity [5][8] is given

by

C= log2 det

(
In +

ρ

nT

HHH

)
= log2 det

(
In +

Es

2nT σ2
w

HHH

)
(3.3)

where In is the identity matrix with n = min(nR, nT ). For a fast fading channel, the

capacity can be represented as the mean value of the instantaneous capacity, which is

written as

Cf=E

[
log2 det

(
In +

Es

2nT σ2
w

HHH

)]
(3.4)

For a slow fading channel, we use the term outage probability, denoted by Po, to

specify the probability of not achieving a certain capacity CH . The outage probability

is written as

Po=P

{
log2 det

(
In +

Es

2nT σ2
w

HHH

)
< CH

}
(3.5)

The capacity of a 4 by 4 MIMO channel is plotted in Figure 3.2. On the left of

this figure, we see that the capacity of a fast fading channel is an increasing function

of the SNR. Moreover, the capacity with 4-QAM constraint [4][48] is smaller than the

capacity of the MIMO channel and this difference becomes larger as the SNR increases.
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Figure 3.2: The left is the capacity of a 4 by 4 fast fading channel. The right is the
probability that the capacity is smaller than 4 for a 4 by 4 slow fading channel.

For a 4 by 4 MIMO system with 4-QAM, we see that the minimum SNR for achieving

a capacity of 4 bits per channel use is about 1.6dB. The outage capacity probability

of a 4 by 4 slow fading MIMO channel is plotted on the right of this figure.

3.1.2 Space-Time Coding Approaches for MIMO Systems

Space-Time Trellis Codes

In order to approach the capacity of a MIMO channel, error control channel coding

techniques are necessarily adopted. In the earlier stage, joint designing of error con-

trol coding, modulation, transmit and receive diversity was widely explored. Tarokh,

Seshadri and Calderbank [25] introduced the space-time trellis codes (STTCs) and

showed that the STTCs are able to simultaneously provide a substantial coding gain

and diversity improvement.

Figure 3.2 and Figure 3.3 are the encoder and decoder architectures of a system

with STTC. Binary message sequence is sent to the STTC encoder and a complex
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Figure 3.3: The architecture of an STTC encoder.

Figure 3.4: The architecture of an STTC decoder.

symbol for each antenna is generated from a code trellis. The encoding process is

trying to maximize the diversity as well as the coding gain. The STTC decoder

operates on the received signal and estimate the most likely transmitted information

sequence.

The STTC schemes are designed specifically for operation in a quasi-static fading

(slow fading) environment, where the channel remains constant for the whole frame

while differing over frames. However, the assumption of slow fading conditions does

not hold for the scenarios such as communication with high mobility and orthogonal-

frequency-division-multiplexing (OFDM) with frequency domain interleaving, where

the channel is more appropriately to be modelled as a fast fading channel. Unfortu-

nately, the STTCs are signal-space codes and it is likely to give rise to poor performance

in fast fading scenarios [9].
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MIMO Bit-Interleaved-Coded-Modulation

The bit-interleaved-coded-modulation (BICM) systems are proposed in favor of a SISO

system which undergoes fast fading [26]. This idea is now widely explored in MIMO

cases as well. The transmitter architecture of a MIMO-BICM system is shown in Fig-

ure 3.5. The encoded sequence c is de-multiplexed into nT streams and a cyclic-shifter

Figure 3.5: Transmitter architecture for MIMO-BICM systems.

is employed at the de-multiplexer for spatial interleaving [9]. Then, each stream is

independently interleaved, modulated (with M -ary digital modulation) and transmit-

ted by a separate antenna. Each hyper-symbol carries MnT coded digits which are

written as c = [c1, c2, ..., ..., cl, ..., cMnT
]T , cl ∈ {−1, 1}. The modulator in Figure 3.5 is

modelled by x =map(c) which maps the coded digits into constellation symbols.

At the receiver side, the best solution is to use a joint detector/decoder which

computes the likelihood of each bit given all the knowledge of received complex signal

vector r and the constraints imposed by the channel code. Such a receiver is referred

to as a maximum likelihood (ML) receiver with which the MIMO-BICM systems are

shown to outperform the STTCs for fast fading channels [9].

Unfortunately, the complexity of a ML receiver is prohibitive even for a channel

code with moderate block length. Therefore, iterative receivers which decouple the

detection and decoding are widely exploited. In such an iterative receiver, the MIMO

detector incorporates soft information provided by the channel decoder to perform

processing in spatial domain. The channel decoder operates with the soft information

given by the MIMO detector to carry out time-domain processing. The soft infor-

mation is exchanged between the detector and decoder in an iterative manner and
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the operation of the receiver is usually referred to as iterative detection and decoding

(IDD). Although there is no strict theoretical proof that the iterative receiver is nec-

essarily converged to the optimal solution, the application of “turbo principle” in this

scenario is tested to work very well.

A Preview of Iterative MIMO Receivers

An optimal iterative MIMO receiver should involve a MAP detector and a MAP de-

coder. For every time instant, the MAP detector computes the a posteriori probability

(APP) of the coded digits conditioned on the received signal vector. Omitting the in-

dex of the time instant, the a posteriori LLR value from the MAP detector can be

written as

ΛD(cl|r) = log
p(cl = 1|r)

p(cl = −1|r) (3.6)

where cl is the lth coded digits in a hyper symbol. Considering the bit interleaver

in Figure 3.5, we may assume that the bits within a hyper symbol are statistically

independent of one another. Using the Bayes’ theorem, (3.6) can be written as

ΛD(cl|r) = log

∑

c∈Cl,+1

p [r|x =map(c)] p(c)

∑

c∈Cl,−1

p [r|x =map(c)] p(c)
= log

∑

c∈Cl,+1

p [r|x =map(c)] exp
∑

j∈f
ΛA(cj)

∑

c∈Cl,−1

p [r|x =map(c)] exp
∑

j∈f
ΛA(cj)

(3.7)

where Cl, +1 is the set of 2MnT−1 bit vectors c having cl = +1 and Cl,−1 is that

with cl = −1 (C is the set of 2MnT bit vectors c). f is the set of indices j satisfies

f = {j|j = 1, 2, .., MnT , cj = 1}. ΛA(cj) is the a priori LLR value provided by the

MAP decoder in the previous receiver iteration. The likelihood function used in (3.7)

is written as

p[r|x =map(c)] =
exp[− 1

2σ2
w
· |r−Hx|2]

(2πσ2
w)nR

(3.8)

To generate ΛD(cl|r) in (3.7), the detector needs to compute the a priori proba-

bilities for all the 2MnT candidates. Therefore, the complexity of the MAP detector
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is exponential to the number of transmit antennas nT and the modulation level M .

Thus, the complexity of an iterative receiver with MAP detector is still prohibitive

for a MIMO system with a relatively large number of antennas and high-order mod-

ulations, although the complexity is no longer exponential to the block length of the

channel code.

In this background, some computationally efficient detectors based on the MAP

algorithm have been proposed [8][22][23]. Among those, list sphere detection (LSD)

is of great interests in this dissertation. Instead of exhaustively computing the bit

metrics, the LSD provide soft information by searching over a list of candidates where

the size of the list determines the complexity of the detector. This kind of detector is

also referred to as an “APP based detector” [22] and it is non-linear.

Some linear detectors such as parallel interference canceller (PIC) [5][19], mini-

mum mean-square-error filter (MMSE) [18] and zero forcing detector (ZF) [17] for the

MIMO-BICM systems are proposed. The complexity of these detectors are generally

lower than the APP based detector due to their linearity. Since these detectors operate

by performing interference suppression or cancellation (ISC), we refer to them as “ISC

based detectors”. The performance of ISC based receiver can be improved with some

complexity increase, such as the MMSE detector with successive interference cancel-

lation (MMSE-SIC) [45]. In this chapter, we consider the iterative receivers with a

MAP detector, a LSD and a PIC.

3.2 Iterative receiver with a MAP detector

3.2.1 Architecture and Algorithm

The architecture of the iterative receiver with a MAP detector is shown in Figure

3.6 (which is also applicable to the iterative receivers with APP based detectors). In

order to simplify the illustration, the multiplexing/de-multiplexing and spatial inter-

leaving/spatial de-interleaving are included in the block of interleaving/de-interleaving.
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Figure 3.6: An iterative receiver with a MAP detector for a MIMO-BICM system.

Generally, the MAP detector can be viewed as an inner decoder and hence the archi-

tecture of the iterative receiver with MAP detector and a MAP decoder is analogous

to the turbo decoder described in the previous chapter. Here, we call an iteration

between the detector and decoder as a receiver iteration and use ID to denote the

total number of receiver iterations.

To distinguish the soft values of the detector and that of the decoder, we use Λk
D1

to denote the a posteriori LLR value yielded by the detector and let Λk
A1 represent the

a priori LLR (which are provided by the decoder at the (k − 1)th iteration) available

at the detector, in the kth receiver iteration. We use Λk
D2 to denote the a posteriori

LLR generated by the decoder and let Λk
A2 represent the a priori LLR available to the

decoder.

By separating the a priori knowledge from the APP, the soft output of the MAP

detector at kth receiver iteration can be written as

Λk
D1(cl|r) = Λk

A1(cl) + log

∑

c∈Cl,+1

p[r|x =map(c)] exp
∑

j∈fl

Λk
A1(cj)

∑

c∈Cl,−1

p[r|x =map(c)] exp
∑

j∈fl

Λk
A1(cj)

(3.9)

where fl is the set of indices j satisfies f = {j|j = 1, 2, .., MnT , j 6= l, cj = 1}. Let us

defined c[l] the sub-vector of c obtained by removing its lth element cl. Also, we define
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ΛA1,[l] the column vector made up by all the ΛA1 values excluding that for cl and the

vector can be represented as ΛA1,[l] = [ΛA1(c1), ..., ΛA1(cl−1), ΛA1(cl+1), ..., ΛA1(cMnT
)]T .

Then, the a posteriori LLR value of the bit of interest can be represented by a sum

of the a priori LLR value and the extrinsic LLR value. By multiplying the numerator

and denominator with exp[−1
2

∑MnT

l=1 Λk
A1(cl)], (3.9) can be written as

Λk
D1(cl|r) = Λk

A1(cl) + log

∑

c∈Cl,+1

p[r|x =map(c)] exp


∑

j∈fl

1
2
Λk

A1(cj)−
∑

j∈fl

1
2
Λk

A1(cj)




∑

c∈Cl,−1

p[r|x =map(c)] exp


∑

j∈fl

1
2
Λk

A1(cj)−
∑

j∈fl

1
2
Λk

A1(cj)




= Λk
A1(cl) + log

∑

c∈Cl,+1

p[r|x =map(c)] exp
(

1
2
cT

[l] ·Λk
A1,[l]

)

∑

c∈Cl,−1

p[r|x =map(c)] exp
(

1
2
cT

[l] ·Λk
A1,[l]

) (3.10)

where f = {j|j = 1, 2, .., MnT , j 6= l, cj = −1} and the likelihood function p[r|x =map(c)]

is computed by (3.8). Also, we have

Λk
E1(cl|r) = log

∑

c∈Cl,+1

p[r|x =map(c)] exp
(

1
2
cT

[l] ·Λk
A1,[l]

)

∑

c∈Cl,−1

p[r|x =map(c)] exp
(

1
2
cT

[l] ·Λk
A1,[l]

) (3.11)

which denotes the extrinsic LLR value provided by the detector. In line with the turbo

principle, this interleaved extrinsic information can be used as the a priori information

at the decoder.

The decoder takes the a priori knowledge of all the coded digits and the constraints

imposed by the channel code to generate new APP of a coded bit, written as Λk
D2(cl).

The extrinsic information on the coded digits is computed as Λk
E2(cl) = Λk

D2(cl) −
Λk

A2(cl). The interleaved version of this extrinsic LLRs will be served as the new a

priori knowledge for the detector in the next iteration.
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3.2.2 Performance
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Figure 3.7: Performance of MIMO-BICM iterative receiver with a MAP detector on
a fast fading 4 by 4 MIMO channel (where 4-QAM with grey mapping is used). The
number of receiver iterations ID = 10 and the number of turbo decoding iterations
IC = 10.

The performance of the iterative receivers with a MAP detector and turbo codes

with different memory orders are shown in Figure 3.7. The channel is modelled as a

4 × 4 fast fading MIMO channel and 4-QAM with grey mapping is employed. The

frame length is set to 8192. 10 receiver iterations (ID = 10) and 10 turbo decoding

iterations (IC = 10) per receiver iteration are used. At BER=10−5, we observe that

the performance of the receiver with TC [7, 5]8 is only 0.7dB away from the capacity

limit. The performance degradation by replacing the TC [7, 5]8 with TC [15, 17]8 is

about 0.15dB and that with TC [37, 21]8 is about 0.3dB.

It is shown that the iterative receiver with a turbo code of a higher memory order

does not necessarily perform better than that with a lower memory order. As we will

see later in this chapter, similar phenomena are also observed for the iterative receivers

with LSD and PIC, over either fast fading channels or slow fading channels.
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3.3 Iterative Receiver with A List Sphere Detector

The iterative receiver with a list sphere detector shares the same structure as that

with a MAP detector, as shown in Figure 3.6. In this section, we start with presenting

the sphere decoding algorithm (SDA). After that, we proceed to the application of the

SDA in the MIMO-BICM iterative receivers.

3.3.1 Sphere Decoding Algorithm

At a time instant, the sphere decoder (SD) finds the ML estimate of the transmitted

signal by

x̃ = arg min
x∈∆

||r−Hx||2 (3.12)

= arg min
x∈∆

[
(x− x̂)HHHH(x− x̂) + rH(I−H(HHH)−1HH)r

]

where x̂ = [x1, x2, ..., xnT ] is the center of the search sphere acquired via ZF filtering

[17][23], which is computed by x̂ = (HHH)−1HHr. ∆ is the set which consists of the

2MnT hyper-symbols (which are also referred to as candidates or hypotheses). Each

entry of the nT -dimensional vector x are taken from a constellation of 2M points. Since

rH(I−H(HHH)−1HH)r is independent to the decision on x, (3.12) can be written as

x̃ = arg min
x∈∆

(x− x̂)HHHH(x− x̂) (3.12b)

Generally, the solution can be found without computing (3.12b) for all the hyper-

symbols. Especially, SD only examines the hypotheses that lie within a sphere

(x− x̂)HHHH(x− x̂)2≤ R2 (3.13)

with a radius R large enough to contain the solution. By using the complex Cholesky

factorization [1][8], we acquire V which is an upper triangular nT×nT matrix satisfying
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VHV = HHH. Let us denote the entries of the matrix V as vij , i ≤ j = 1, ..., nT so

that equation (3.13) becomes

(x− x̂)TVTV(x− x̂)=

nT∑
i=1

v2
ii

[
xi − x̂i +

nT∑
j=i+1

vij

vii

(xj − x̂j)

]2

≤ R2 (3.14)

If the summation in (3.14) is smaller than R2, every component in the summation has

to be less than R2. Starting from layer i = nT , we get

v2
nT nT

(xnT
t − x̂nT

t )2≤ R2 (3.15)

The SD chooses a candidate for xnT which satisfies (3.15) and continues with layer

i = nT − 1. Then, we get

v2
nT−1,nT−1

[
xnT−1

t − x̂nT−1
t +

vnT−1,nT

vnT,nT

(xnT
t − x̂nT

t )

]2

+v2
nT nT

(xnT
t − x̂nT

t )2≤ R2 (3.16)

Now, the SD chooses a candidate for xnT−1
t within the range of equation (3.16). If a

candidate is found, SD proceeds to the next layer i = nT − 2 and finds a candidate for

xnT−2
t . Otherwise, it goes back to the previous layer and search for another hypothesis

which is within the range.

If SD reaches the last layer (i = 1) and at least one candidate is within the cor-

responding radius, it chooses the one with the smallest value of (3.13) as the final

estimate. Otherwise, a larger radius has to be used and the same operations will be

repeated.

Obviously, the performance of the algorithm is closely related to the setting of the

initial radius. Choosing a too small initial radius may result in the failure of locating

the best solution, whereas choosing a too large initial radius will lead the SD to search

too many hypotheses, resulting a high computational complexity. There are many

discussions on choosing the initial radius for SDA [46, 47]. In our works, however, a

good initial radius is assumed to be empirically acquired.
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3.3.2 List Sphere Detection

The SDA is efficient for searching the ML symbol estimates. To be applicable in

the MIMO iterative receivers, the SD is revised to generate a list of candidates £

which contains the ML estimate and its N − 1 neighbors of smallest value in (3.13).

This revised SD is referred to as list sphere detection (LSD) and N is called the list

size of LSD. The extrinsic LLRs of the detector output in the kth iteration can be

approximated as [8]

Λk
E1(cl|r) ≈ 1

2
max

c∈£∩Cl,+1

{
− 1

σ2
w

||r−Hx||2 + cT
[l] ·Λk

A1,[l]

}

−1

2
max

c∈£∩Cl,−1

{
− 1

σ2
w

||r−Hx||2 + cT
[l] ·Λk

A1,[l]

}
(3.17)

where x =map(c). c[l] and Λk
A1,[l] are defined in Section 3.2.1.

The performance and complexity of the LSD is also tied to the choice of the initial

radius. If the initial radius is too small, the target list size N cannot be met and

there will be a considerable difference between (3.17) and (3.11). If the radius is set

to be too large, on the other hand, too many hypotheses will be evaluated and the

computational efficiency will be greatly contaminated. Generally, the initial radius of

LSD is larger than that of SDA and it depends on the target list size.

3.3.3 Performance

Fast Fading Channels

The BER performance of the iterative receivers with LSD are shown in Figure 3.8,

where the channel is modelled by a 4 × 4 fast fading MIMO channel. The settings

of the simulation are the same as in Section 3.2.2 and 4-QAM with grey mapping is

employed. The channel code is TC [7, 5]8 and the number of turbo decoding iterations

is set to IC = 10. At BER=10−5, a 0.2dB performance degradation is observed by

replacing the MAP detector with a LSD of list size N = 128, where the total number
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Figure 3.8: Performance of MIMO-BICM iterative receiver with LSD of various list
sizes on fast fading channels. 4-QAM. Frame length=8192, ID = 10 and IC = 10.

of candidates is 256. The performance of the iterative receiver with LSD (N = 64)

is 0.15dB worse than that with LSD (N = 128). The performance of the iterative

receiver with LSD (N = 32) is more than 1 dB away from that with a MAP detector.

Slow Fading Channels
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Figure 3.9: Performance of MIMO-BICM iterative receiver with LSD (N = 128).
Frame length=1024, ID = 10 and IC = 10.

For a slow fading channel, the performance of the iterative receivers with LSD
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(N = 128) and a variety of channel codes are shown in Figure 3.9. The performance of

the iterative receiver with a MAP detector and TC [7, 5]8 is also plotted which is 1.2dB

away from the outage capacity (at FER=10−2). With TC [7, 5]8, the performance of

the iterative receiver with LSD (N = 128) is 0.15dB worse than that with a MAP

detector (at FER=10−2). The performance degradation by replacing TC [7, 5]8 with

TC [15, 17]8 is about 0.3dB and that with TC [37, 21]8 is about 0.45dB. Also, the

iterative LSD receiver with NSC [37, 21]8 is tested and it is 1.2dB worse than that

with TC [7, 5]8. In addition, no error floor is observed at FER≥ 10−3.
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Figure 3.10: Performance of MIMO-BICM iterative receiver with LSD (N = 8− >
128) and a turbo code [7,5]8.

The performance of the iterative LSD receivers with varied list lengths are shown in

Figure 3.10 whereby the TC [7, 5]8 is employed. Similar performance for the receivers

with N = 128 and N = 64 are observed. At FER=10−2, the performance of the

iterative LSD receiver with N = 32 is 0.25dB worse than that with N = 64 and the

FER of the iterative LSD receiver with N = 16 is 0.5dB away from that with N = 32.

Moreover, another 0.5dB performance degradation is observed by further decreasing

the list size to N = 8. No error floor is observed at FER≥ 10−3.
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3.3.4 Complexity

In this section, we evaluate the complexity of LSD for slow fading MIMO channels.

Since the channel remains the same within one frame of transmission, the computation

of the preprocessing, such as performing the Cholesky decomposition, is not taken into

account.

The complexity of the LSD is determined by the complexity of 1) finding the

candidate list £ as well as 2) generating the LLR values by (3.18). To measure the

complexity of the latter, let us assume that the metric 1
σ2

w
||r−Hx||2 in (3.17) can be

stored before the receiver iterates. Therefore, the complexity of computing (3.17) is

determined by the computation of cT
[l]·Λk

A1,[l] (which consists of nT M−1 multiplications

and nT M − 1 additions) as well as the list size N. Thus, the complexity of conducting

(3.17) is about 2N(nT M − 1) CUs per bit and 2NΓ(nT M − 1)/Rc CUs per frame,

where Γ is the frame size defined in Chapter 2.

Now we would like to measure the complexity of finding the candidate list £.

Generally, finding a list of candidates with best metrics is slower than finding the ML

solution. However, the difference in complexity is so small [8] that it is reasonable to

use the complexity of SDA to roughly approximate that of generating the candidate

list.

To date, many efforts have been made towards speeding up the SDA [28][29]. Here,

we approximate the complexity of SDA as in [28]. For a 4 by 4 MIMO channel with

4-QAM, 4 “parallel searchers” [28] is the best choice and hence the parameter “z”

in [28] is equals to 8. The parameter “K” in [28] is 4 so that the total number of

multiplications required is approximated as Kz + K(K + 1) = 52 for each channel

use. Empirically, the number of additions is of the same level as the number of mul-

tiplications. Thus, the complexity of SDA can be roughly approximated by 104 CUs

per channel use and 104 Γ
RcMnT

CUs per frame. For a system with nT = nR = 4,

4-QAM modulation (M = 2) and Rc = 1/2, the complexity of finding the candidate

list £ can be approximated as 26Γ CUs per frame. Note that this approximation is
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too optimistic and the complexity in practice is moderately higher than that. From

simulations (not shown), the complexity of generating the candidate list is about 4

times than we estimated (26Γ CUs per frame), for the worst case examined. Thus, we

treat the complexity of generating the list as 104Γ CUs per frame.

From the above, we see that the complexity of finding the candidate list £ is

comparable to that of computing (3.17) with small list size. For LSD with large list

sizes, the majority of the complexity resides in the computation of (3.17). Finally, the

complexity of LSD for a 4 by 4 slow fading channel and 4-QAM is approximated as

(104 + 28NID)Γ, where ID is the total number of receiver iterations. The complexity

of LSD is shown in Table. 3.1.

Preparing the list Generating the LLR values
104 Γ

RcMnT
CUs/Frame 2NΓ(nT M − 1)ID/RcCUs/Frame

Table 3.1: Complexity of LSD.

3.4 Iterative Receiver with PIC-DSC

3.4.1 Architecture and Algorithm

In this section, we study a linear detector, namely the parallel interference canceller

(PIC), for the iterative MIMO receivers. The study of PIC in MIMO systems has its

origin from its application in the CDMA systems [19]. One distinguishing feature of

PIC over the APP-based detectors is that the non-linear tree search methodology is

replaced by performing linear transformation. Another feature of PIC is that the a

posteriori LLRs on the coded digits, rather than the extrinsic LLRs, are typically used

to estimate the transmitted symbols for a system with small number of interferers

(number of users or antennas). For a system with large processing gain (large number

of antennas or users), on the other hand, the exchanging of extrinsic probabilities

performs better and is typically used [27]. In this dissertation, we concentrate on
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Figure 3.11: Architecture of iterative PIC-DSC receiver for MIMO-BICM.

MIMO systems with antenna number less than 8 so that APPs are chosen as the

soft estimates to perform the parallel cancellation. The iterative PIC receivers are

examined over slow fading channels.

The receiver architecture is shown in Figure 3.11. In the first receiver iteration, the

PIC operation is equivalent to a matched filtering [1]. In the kth (k ≥ 1) iteration, the

output of the PIC is demodulated, de-interleaved, spatially de-interleaved, multiplexed

and fed to the decoder. The decoder employs the SISO MAP algorithm [3] to generate

the a posteriori LLRs of the coded digits, denoted by Λk(ct). Following the Bayesian

principle, the estimate of a coded bit is given by

ĉk
t = (+1)p(ck

t = 1) + (−1)p(ck
t = −1) =

exp
[
(Λ(ck

t )
]− 1

exp
[
Λ(ck

t )
]
+ 1

= tanh

[
Λ(ck

t )

2

]
(3.18)

The estimated coded sequence are re-interleaved, re-modulated and served as the soft

estimates of the transmitted signals. The detector use the soft estimates to perform

parallel cancellation for the next iteration. The soft outputs of the PIC of the ith

transmitter antenna is written as [5]
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yi,k = hH
i (r−Hx̃k−1

i ) (3.19)

where hi, the ith column of channel matrix H, denotes the channel from the ith

transmitter antenna to all receiver antennas and (•)H denotes Hermitian operation.

x̃k−1
i is an estimation of signals of the all transmitter antennas excluding the ith antenna

in the (k − 1)th iteration, given by

x̃k−1
i = [x̃1,k−1, ..., x̃i−1,k−1, 0, x̃i+1,k−1, ..., x̃nT ,k−1]T (3.20)

Applying (3.20) in (3.19), we have

yi,k = xi,k

nR∑
j=1

|hji|2 +

nT∑
m=1,
m6=i

(xm,k − x̃m,k−1)

nR∑
i=1

h∗jihjm +

nR∑
j=1

h∗jin
j (3.21)

From (3.21) we observe that for the ith antenna, the detector’s output signal yi,k can

be decomposed into three terms. The first term shows that the total channel gain (in

amplitude) for the signal from transmit antenna i is αi =

nR∑
j=1

|hji|2. The second part

shows the uncanceled (or residual) interference from other antennas. The last term is

the output noise which has a variance αiσ2
w for each real dimension. According to the

large number theorem (here nT ≥ 4 will suffice) [1][5], the summation of the residual

interference and noise follows a Gaussian distribution with variance σ2. Then, the

probabilities on the coded digits (at the PIC output) can be computed by

p(yi,k = l) =
1√
2πσ

exp(−(yi,k − lαi)2

2σ2
), l ∈ {−1, 1} (3.22)

The soft estimates from the decoder are APPs which contain the information pro-

vided by the PIC. Thus, the soft decision at the output of detector will be biased for

k > 1. To combat the bias effect, a decision statistic combining (DSC) is proposed
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[5][19] which is given by

yi,k
c =

(σi,k−1
c )2

(σi,k−1
c )2 + (σi,k)2

yi,k +
(σi,k)2

(σi,k−1
c )2 + (σi,k)2

yi,k−1
c (3.23)

where yi,k
c is the output of DSC and yi,k is the output of PIC. σ2

c is the variance

observed at the output of DSC.

3.4.2 Performance Analysis

In this section, we derive performance bound of the receiver with a NSC on a slow

Rayleigh fading MIMO channel. For perfect cancellation, (3.21) becomes

yi = αixi + ñp
i (3.24)

where ni
p =

nR∑
j=1

h∗jin
j is a sample of the noise observed at the PIC’s output for the ith

antenna and it is of a variance αiσ2
w for each real dimension.

Pair-wise Error Probability

We define the transmitted coded digits from the ith antenna as ci = (ci
1, c

i
2, ...., c

i
t, ..., c

i
L),

ci
t ∈ {−1, 1} where L is the length of the coded sequence of each antenna in each

transmission frame. The transmitted sequences from all the antenna are represented

by C = [c1, ..., cnT ]T . The output signal from the interference canceller is denoted by

Y = [y1, ...,ynT ]
T
, where yi = (yi

1, y
i
2, ...., y

i
t, ..., y

i
L).

Let us denote the energy of a hyper-symbol as Es and assume that the transmitted

symbol energy from all the antennas are of the same value. Hence, each transmitted

symbol is of energy Es/nT . Let us consider 4-QAM and hence the energy for each

coded bit is εc = Es/2nT .

The pair-wise error probability (PEP) P (C →Ĉ) [3][4] is the probability that the

decoder chooses Ĉ = [ĉ1, ĉ2, ...., ĉnT ]T as the estimate of the coded sequence whereas
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the genuine coded sequence is C = [c1, c2, ...., cnT ]
T
, C 6=Ĉ. According to the ML rule

[1]-[4], error happens if the distance between C and Y are larger than that between

Ĉ and Y. For a transmission frame with channel H, the conditional PEP is

P (C→Ĉ|H) = P

(
nT∑
i=1

L∑
t=1

∣∣yi
t − αi√εcc

i
t

∣∣2 >

nT∑
i=1

L∑
t=1

∣∣yi
t − αi√εcĉ

i
t

∣∣2
)

(3.25)

We denote d the Hamming distance between C and Ĉ and di the Hamming distance

between ci and ĉi.

Referring [12][13] and for a slow fading channel, we have

P (C→Ĉ|H) = Q




√√√√
nT∑
i=1

εcαi

σ2
w

di


 = Q




√√√√
nT∑
i=1

Esαi

2nT σ2
w

di


 (3.26)

By using Eb = nR

nT Rc log
2M

Es and for 4-QAM, we have

P (C →Ĉ|H) = Q




√√√√
nT∑
i=1

2Rc
Ebαi

nRNo

di


 (3.27)

where No = 2σ2
w and Q(•) is the complementary error function which is given by [1]

Q (z) =
∫∞

z
1√
2π

e(−x2

2
)dx. Using the inequality Q(x) ≤ 1

2
e(−x2

2
), x >> 1, we get

P (C → Ĉ|H) ≤ 1

2
exp

(
−RcEb

nRNo

nT∑
i=1

αidi

)

=
1

2

nT∏
i=1

exp

(
−RcEb

nRNo

αidi

)
(3.28)

Since each antenna is assumed to be independent from other antennas, we have

P (C →Ĉ|H) =

nT∏
i=1

P (ci→ĉi|Hi) (3.29)

To compute the unconditional PEP, we average (3.29) over the random variable αi
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which yields

P (C →Ĉ) =

nT∏
i=1

∫
P (ci→ĉi|Hi)P (αi)dαi (3.30)

where αi =

nR∑
j=1

|hji|2 is of a chi-square distribution with 2nR degree of freedom [1].

The of the channel gain α is written as [1]

P (α) =
α(nR−1)e

�
− α

2σ2
h

�
(2σ2

h)
nR (nR − 1)!

, 0 ≤ α ≤ ∞ (3.31)

By applying (3.28)(3.31) into (3.30) and letting 2σ2
h = 1 (since E[|hji|2] = 1 is as-

sumed), we get:

P (C →Ĉ) ≤ 1

2

nT∏
i=1

∫ ∞

0

e

�
− REb

nRNo
diα

i
�
(αi)(nR−1)e(−αi)

(nR − 1)!
dαi

=
1

2

nT∏
i=1

∫ ∞

0

e

�
−R(

Eb
nRNo

+1)diα
i
�
(αi)(nR−1)

(nR − 1)!
dαi (3.32)

Considering
∫∞
o

e(−Ax)xNdx = N !
AN+1 , we have

P (C →Ĉ) ≤ 1

2

nT∏
i=1

(
REb

nRNo

di + 1

)−nR

(3.33)

Assume that an ideal space interleaver is employed at the transmitter, which means

that the error bits are evenly distributed among nT transmitter antennas. That is

di =





b d
nT
c+ 1, i = 1, ..., a

b d
nT
c, i = a + 1, ..., nT

(3.34)

where a ≡ (d mod nT ) and bxc means the integer part of x.

In the following analysis, we consider two cases depending on the value of Hamming

distance d.

• The case d ≥ nT .
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In this case, di is not equal to zero for all the transmitter antennas. At a high

SNR, the pair-wise error probability can be simplified as

P(C → Ĉ) ≤ 1

2

(
REb

nRNo

)−nRnT

(
nT∏
i=1

di
−nR

)−nR

=
1

2

(
REb

nRNo

)−nRnT

·
(⌊

d

nT

⌋
+ 1

)−anR

·
(⌊

d

nT

⌋)−(nT−a)nR

(3.35)

We can see that with a constituent code which has a free distance greater than

or equal to the number of transmitter antennas, the scheme achieves a full diversity

order of nT nR. The coding gain of the scheme is given by

Gc =

(⌊
d

nT

⌋
+ 1

)a/nT
(⌊

d
nT

⌋)(nT−a)/nT

d2
u

(3.36)

where d2
u is the squared Euclidean distance of the reference un-coded system.

• The case d ≤ nT .

In this case, we have

di =





1, i = 1, ..., d

0, i = d + 1, ..., nT

(3.37)

At a high SNR, the pair-wise error probability can be simplified as

P(C →Ĉ) ≤ 1

2

(
REb

nRNo

)−dnR

(3.38)

From the above equation, we show that in this scenario the scheme can only achieve

a diversity order of dnR.

The above two cases can be summarized as that the diversity order of the scheme

on a slow Rayleigh fading channel is determined by min (d, nT ) nR.
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ABS Bound on the Bit Error Probability

The standard bound, which is also referred to as the average-before-summation (ABS)

bound [20], on the BEP can be acquired by truncating the code distance spectrum

[3][4]. We denote Bd as the error coefficient which is the average number of bit errors

associated with error events of Hamming weight d. The BEP bound can be represented

by

Pb(e) ≤
∞∑

d=dfree

BdPd(C →Ĉ) (3.39)

where Pd(C →Ĉ) is the PEP when the Hamming distance between the events of the

two sequences is d.

LBA Bound on the Bit Error Probability

It is reported in [20] that a tighter upper bound can be obtained by limiting the

conditional union upper bound on the BEP before averaging (LBA) over the fading

vector. Hence, the BEP upper bound by applying LBA is modified as

Pb(e) ≤
∫

min


1

2
,

∞∑

d=dfree

Bd

nT∏
i=1

P (ci,ĉi|Hi)


 P (α)dα (3.40)

where α = (α1, ..., αnT ). A close-form representation of the above expression requires

nT -fold integration which is complicated. However, we can use numerical techniques

to evaluate the above performance bound.

Numerical Results

In the simulations, we consider the BEP performance of an iterative receiver with

PIC-DSC. To ensure full diversity order, a Rc = 1/2 NSC with generator [23, 35]8 and

minimum free distance 7 is used for systems with nT = nR = 2 and nT = nR = 4.

An NSC with generator [133, 171]8 and minimum free distance 10 is used for a system

with nT = nR = 8. Moreover, a simple 4-QAM with Grey mapping is employed.
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Figure 3.12: Performance of iterative receiver with PIC-DSC (ID = 10) and a NSC [7,
5]8 for 2 by 2, 4 by 4, 8 by 8 slow Rayleigh fading MIMO channels. The frame length
is 1024 and 4-QAM with grey mapping is used.

Figure 3.12 shows the performance of the iterative PIC-DSC receivers with 10

receiver iterations and the LBA bounds. The solid curves are the BERs of iterative

PIC-DSC receivers and the dotted curves are the LBA bounds. The dotted-dashed

curves are the performance with perfect cancellation (PC), which can be viewed as

lower bounds for the performance of the iterative receivers with PIC-DSC. From this

plot, we see that the BERs of iterative receivers with PIC-DSC are nicely upper-

bounded by the LBA bounds. For a system with nT = nR = 8, the LBA bound is

about 0.1 dB away from the BER of the iterative receiver with PIC-DSC.

Figure 3.13 shows the performance of the scheme with perfect cancellation and its

comparison with the performance bound. The solid curves are the BERs of systems

with perfect cancellation. The dotted curves are the LBA bounds and the dotted-

dashed curves are the ABS bound. For a system with nT = nR = 2, we observe that

the LBA bound is tighter to the performance of PC than the ABS bounds. For a

system with nT = nR = 4 or nT = nR = 8, the LBA bound almost coincides with the

ABS bound. For a system with nT = nR = 8, the LBA bound is about 0.15 dB away

from the BEP of PC.
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Figure 3.13: The comparison of the LBA bounds and ABS bounds, for 2 by 2, 4 by
4 and 8 by 8 slow Rayleigh fading MIMO channels. The frame length is 1024 and
4-QAM with grey mapping is used..

3.4.3 Performance of Iterative Receiver with PIC-DSC and

Various Channel Codes

The performance of iterative receivers with PIC-DSC and turbo codes are presented

in Figure 3.14. The sub-figure on the left hand side shows the FER performance of

the iterative receiver with 10 receiver iterations. The sub-figure on the right hand side

shows the FERs of the receiver with perfect cancellation. From the sub-figure on the

left, we observe that the iterative receiver with TC [7, 5]8 yields the best performance

whereas the TC [37, 21]8 results in the worst performance at FER≤0.003. Moreover,

error floors are observed for the iterative receiver with TC [37, 21]8 and TC [15, 17]8

at FER≤0.001. From the sub-figure on the right, we witness that the TC [37, 21]8

and TC [15, 17]8 are of the best interference-free performance.

The performance of iterative receivers with PIC-DSC and their interference-free

counter-parts are compared for a variety of channel codes in Figure 3.15. The solid

curves are for the performance of the iterative receivers while the dotted curves are

that with perfect cancellation. We observe that the iterative receiver with PIC-DSC

and convolutional code [37, 21]8 is able to approach its interference-free performance
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Figure 3.14: FERs of iterative receives with PIC-DSC (ID = 10, IC = 10) and with
perfect cancellation. The frame length is 1024 and 4-QAM with grey mapping is used.

whereas the iterative receivers with turbo codes cannot. At FER=0.01, the iterative

receiver with TC [37, 21]8 is observed to be 2.2dB away from its interference-free

performance.

The observed error floors as well as the huge differences from their interference-free

performance lead to the undesirable performance of the iterative receivers with TC

[15,17]8 and TC [37, 21]8. In fact, the error floor is also observed for the iterative

receiver with a weaker channel code such as TC [7, 5]8 or an NSC code with m = 4.

3.4.4 Complexity

We evaluate the complexity of PIC-DSC by (3.20), (3.23) and (3.24) over slow fading

channels. The operation of (3.20) consists of nT nR complex multiplications as well

as nT nR − 1 complex additions, for each channel use. Each complex multiplication

consists of four multiplications as well as two addition and each complex addition

consists of two additions. Therefore, the complexity of the operation of (3.20) can

be measured by 6nT nR + 2(nT nR − 1) = (8nT nR − 1)CUs, for each channel use.

In (3.23), four multiplications and 3 additions are required for one bit. Hence, the
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Figure 3.15: The FERs of iterative receivers with PIC-DSC (and the FERs of receivers
with perfect cancellation) and various channel codes. The frame length is 1024 and
4-QAM with grey mapping is used.

complexity by computing (3.24) is measured by 7 CUs for each bit. The computing

of (3.23) consists of one addition, 3 multiplication and 1 exponential operation. Since

one exponential operation is tested to cost about 5 CUs, the complexity of computing

(3.23) is measured by 9 CUs for each bits.

The overall complexity of the PIC-DSC is (8nT nR − 1) Γ
RcMnT

+ 7 Γ
Rc

+ 9 Γ
Rc

≈
(

8nR

RcM
+ 16

Rc

)
Γ. Obviously, the complexity of PIC-DSC is linear with the antenna

numbers. For the simple case that nR = nT = 4 , 4-QAM (M = 2) and Rc = 1/2,

the complexity of PIC operation per frame can be approximated as 64ΓID CUs per

frame where ID is the total number of receiver iterations. Moreover, we find that the

PIC-DSC is faster than LSD with moderate list size (N ≥ 4).
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3.5 Performance Comparison of Various Iterative

Receivers

The performance of the iterative receivers with MAP, LSD ( N ∈ {8, 16, 32, 64}) and

PIC-DSC over slow-fading MIMO channels are plotted in Figure 3.16 where TC [7,

5]8 is used. An error floor is observed for the iterative receiver with PIC-DSC whereas
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Figure 3.16: Comparison of the FERs of iterative receivers with various detectors.The
frame length is 1024 and 4-QAM with grey mapping is used.

no error floors are observed for those with MAP detectors and LSD detectors. We see

that the FER of iterative receiver with PIC-DSC is about 0.75 dB worse than the that

with a MAP detector at FER=10−2 and larger performance differences are observed

for lower FERs. The performance of the iterative receiver with PIC-DSC is similar

to that with LSD (N = 16) at FER=10−2 whereas the iterative receiver with LSD

(N = 16) outperforms that with PIC-DSC at FER>10−2.

3.6 Summary

In this chapter, the iterative receivers with various detectors and different channel

codes are examined and we see that capacity of a MIMO channel can be approached
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by a MIMO-BICM system with iterative detection and decoding. However, explicit

explanations for some observations are required such as 1) the error floor observed

for the iterative PIC-DSC receiver and 2) the performance degradation by employing

stronger turbo codes. These questions will be investigated in the following chapters.
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Chapter 4

Convergence Analysis and

Detection Switching for Iterative

Detection and Decoding

In the previous chapter, we show that an analytical performance bound is able to

predict the performance of an iterative receiver with PIC-DSC and a NSC decoder.

For turbo-coded MIMO-BICM systems, however, there is significant probability with

that the iterative process does not converge to successful decoding, as shown in Section

3.4.3. In this case, people have commenced to investigate the convergence behavior of

iterative processing via empirical measures. The analysis of convergence is useful to

find good component codes which can be matched to the MIMO detectors, as shown

later in this chapter.

4.1 Empirical Measures

4.1.1 Mutual Information

The most notable methodology for the convergence analysis of a turbo-like system is

the extrinsic information transfer (EXIT) chart in which mutual information (MI) is
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used to measure the reliability of the exchanged information between the components.

The performance of iterative decoding can be predicted by solely looking at the input-

output relations of individual constituent decoders.

In [10], it is assumed that the a priori soft input to the decoder is closely approxi-

mated as an output of AWGN channel, represented by

A = µA · x + nA (4.1)

where x is the unknown transmitted systematic bits and nA is the AWGN with variance

σ2
A. In addition, the Gaussian consistent condition [10] must be fulfilled so that µA =

σ2
A

2
. The conditional PDF of A is written as

PA(ξ|X = x) =
e−((ξ−x)2/2σ2

A)

√
2πσA

(4.2)

where X is the random transmitted systematic bits.

The mutual information between the transmitted systematic bits X and the a priori

LLR value A is defined as [10]

IA = I(X; A) =
1

2

∑
x=−1,1

∫ ∞

−∞
PA(ξ|X = x) log2

[
2PA(ξ|X = x)

PA(ξ|X = 1) + PA(ξ|X = −1)

]
dξ

0 ≤ IA ≤ 1 (4.3)

Combining (4.2) and (4.3), we have

IA = 1−
∫ ∞

−∞

e
− (ξ−σ2

A/2)2

2σ2
A√

2πσ2
A

log2(1 + e−ξ)dξ (4.4)

At the output of the decoder, mutual information is also used to quantify the extrinsic
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output IE = I(X; E) computed by

IE = I(X; E) =
1

2

∑
x=−1,1

∫ ∞

−∞
PE(ξ|X = x) log2

[
2PE(ξ|X = x)

PE(ξ|X = 1) + PE(ξ|X = −1)

]
dξ

(4.5)

where E stands for the extrinsic LLR at the decoder’s output.

By measuring the mutual information at the input and the output of a component

decode, we are able to depict its mutual information transfer function. Generally, a

very large frame size is required for an accurate measurement of mutual information.

4.1.2 Variances

In [14], it is reported that the variance is as accurate as the mutual information in

the study of the turbo-like systems. However, the calculation of variance is much

easier than the computation of mutual information. In this dissertation, we use the

evolution of variances to track the convergence behaviors of the iterative receivers for

MIMO-BICM systems.

Observation Variance

The first type of variance will be used is the observation variance (OV) which is the

normalized variance of the noisy observation of the signal [14]. This parameter can

be straightforwardly used to measure the reliability of the output signal from linear

detectors such as PIC and MMSE filter.

Assuming that the Gaussian consistent condition is met that µA =
σ2

A

2
(as shown in

the previous section), the observation of the signal y can be viewed as the summation

of symbol c of unitary power and a Gaussian noise sample n with variance σ2
obv such
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that y = c + n. The LLR of the signal can be calculated as

Λ(y) = log

(
P (y|c = 1)

P (y|c = −1)

)
= log


exp(− (y−1)2

σ2
obv

)

exp(− (y+1)2

σ2
obv

)




=
(y + 1)2 − (y−1)2

2σ2
obv

=
2y

σ2
obv

(4.6)

Bit Variance

The application of OV in an APP based detector such as an LSD is not straightforward

as the output from the detector is soft probabilities rather than values. Thus, we

introduce another type of variance, namely the bit variance (BV). The BVs of the

un-coded (or information) bits and coded digits are calculated as

σ2
bit(u) = E

[∣∣∣∣u− tanh

(
Λ(u)

2

)∣∣∣∣
2
]

(4.7)

σ2
bit(c) = E

[∣∣∣∣c− tanh

(
Λ(c)

2

)∣∣∣∣
2
]

(4.8)

If c is correctly decoded, its LLR Λ(c) → ±∞ and hence the σ2
bit(c) approaches zero

(the tanh(•) converts ±∞ into ±1). If no knowledge of c is acquired, on the other

hand, the LLR Λ(c) → ±0 and σ2
bit(c) approaches 1. The mapping between the BV

and OV is obtained by combining (4.6) and (4.8) and it is shown in Figure 4.1.

By computing the BVs (or OVs) of the input and output signals of a decoder or a

detector, we are able to depict its variance transfer (VTR) function.

4.2 Variance Transfer Functions of Decoders

4.2.1 VTR Function of the RSC Decoder

The RSC decoder operates on two streams of a priori LLRs which are the ΛA(u) (on

the information bits) from the other decoder and ΛA(c) (on the coded digits) from the
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Figure 4.1: The mapping between observation variance and bit variance.

detector. Let us use σ2
bit,in(uA) to measure the variance of the a priori information to

the decoder and use σ2
bit,out(uE) to parameterize the extrinsic information generated by

the decoder. In addition, we use σ2
bit,in(cA) and σ2

bit,out(cE) to denote the bit variance

of the stream consists of coded digits. Thus, the VTR function of an RSC decoder

can be represented as

σ2
bit,out(uE) = z[σ2

bit,in(uA), σ2
bit,in(cA)] (4.9)

σ2
bit,out(cE) = Θ[σ2

bit,in(uA), σ2
bit,in(cA)] (4.10)

The variance transfer model of the RSC decoder is shown in Figure 4.2. For an AWGN

channel with single antenna, the VTR can be written as σ2
bit,out(uE) = z[σ2

bit,in(uA), Eb/No].

Since a RSC decoder is a non-linear system, a close-form representation of the transfer

Figure 4.2: The VTR model of a RSC decoder.

function is not feasible. Hence, the transfer functions of decoders are often obtained
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via simulations with very large frame sizes. (In our simulations, we set the decoding

frame size to 40,000.)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input variance of RSC

ou
tp

ut
 v

ar
ia

nc
e 

of
 R

S
C

VTR of RSC Decoder (37,21)

Eb/No=0dB
Eb/No=0.7dB
Eb/No=1dB
Eb/No=2dB

Figure 4.3: The VTR function of the RSC [1,21/37]8 decoder.

The VTR functions of RSC [1, 21/37]8 decoder (Rc = 1/2) with different SNRs

are given in Figure 4.3 for an AWGN channel. It shows that the VTR of a decoder

is an increasing function of it’s input variance. For the ease of illustration, we define

the reduction in the bit variance, given by σ2
bit,in(uA)− σ2

bit,out(uE), as the bit variance

reduction (BVR) of the decoder. The BVR can be used to reflect the capability of

error correction and a larger BVR is invariably desirable.

The VTR functions of Rc = 1/2 RSC decoders with a variety of generator polyno-

mials are depicted in Figure 4.4. Each sub-figure shows the VTR functions for various

decoders and a fixed Eb/No. We observe that the VTR functions of a RSC [1, 17/15]8

decoder are close to those of the RSC [1, 21/37]8 decoder for all the Eb/No examined.

Hence, we will focus on the RSC [1, 21/37]8 decoder and the RSC [1, 5/7]8 decoder

for the following analysis.

At Eb/No =0dB, we observe that the VTR curve of RSC [1, 21/37]8 is below that

of RSC[1, 5/7]8 for σ2
bit,in(uA) < 0.4. This observation implies that the RSC [1, 21/37]8

decoder is able to achieve a larger BVR at σ2
bit,in(uA) < 0.4. For σ2

bit,in(uA) > 0.4, on
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Figure 4.4: Comparison of the VTR functions of various RSC decoders.

the other hand, the curve for RSC [1, 21/37]8 is above that for RSC[1, 5/7]8 which

means RSC [1, 21/37]8 has a smaller BVR.

An interesting finding is that as the Eb/No becomes larger, the σ2
bit,in(uA) at which

the curve of RSC [1, 21/37]8 intercepts with that of RSC[1, 5/7]8 also becomes larger

(move towards the right), and vice versa. it suggests that if the Eb/No is large enough,

the BVR of the RSC [1, 21/37]8 is larger than that of the RSC[1, 5/7]8 for all the

σ2
bit,in(uA) values (as shown in the sub-figure of Eb/No = 2dB). If the Eb/No is small

enough, on the other hand, the BVR of the RSC [1, 21/37]8 is smaller than that of

RSC[1, 5/7]8 for all the σ2
bit,in(uA) values.

4.2.2 VEG of the Turbo Decoder

The variance transfer model of a turbo decoder can be obtained by concatenating two

RSC decoders, as shown in Figure 4.5. We see that the output extrinsic information
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Figure 4.5: The VEG model of a turbo decoder.

of the first decoder is used as the a priori information for the second decoder, and the

output extrinsic information of the second decoder is used as the a priori information

for the first decoder. In order to narrate the iterative nature of the decoding operation,

both of the decoder VTR curves are plotted into a single graph (Figure 4.6), namely

variance exchange graph (VEG), where the axes of the second decoder are swapped.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input var of decoder1, output var of decoder2

In
pu

t v
ar

 o
f d

ec
od

er
2,

 o
ut

pu
t v

ar
 o

f d
ec

od
er

1

VEG of TURBO Decoder(37,21) 

− − − −Eb/No=1dB
____Eb/No=0.7dB 

Figure 4.6: The VEG and trajectory of a turbo decoder [37, 21]8.

In the first iteration of the turbo decoding, there is no a priori information to the

first RSC decoder and hence the σ2
bit,in,k=1(uA) = 1, where k is the index of the decoding

iteration. At iteration k, the output extrinsic information from the first decoder is

forwarded to the second decoder. After that, the output extrinsic information from

the second decoder is feedback to the first decoder. The iteration proceeds as long as
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σ2
bit,out,k+1(uE) < σ2

bit,out,k(uE). The condition of σ2
bit,out,k+1(uext) = σ2

bit,out,k(uext) can

be visualized as the intersection of the two VTR curves in the VEG.

If the intersection is found to be at a very low variance value close to zero, the

turbo decoding is likely to converge to a successful decoding and we can see a tunnel

between the two VTR curves, as shown in Figure 4.6. If the intersection happens at

a relative large variance value (we refer to it as an early intersection), on the other

hand, there is no tunnel between the two VTR curves, as shown in Figure 4.7. In such

a case, the turbo decoding is not able to converge to successful decoding.

In Figure 4.6 where Eb/No = 0.7dB, we observe that the curves of the two RSC

[1, 21/37]8 decoders do not but almost get in touch with each other. This observation

suggests that the TC [37, 21]8 is likely to converge to successful decoding at Eb/No =

0.7dB. Therefore, we see that the waterfall region of a turbo code, shown in Figure

2.8, is predicted by VEG.
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Figure 4.7: VEGs and trajectories of turbo decoders at Eb/No = 0dB.

For comparison, the VEG of TC [37, 21]8 and that of TC [7, 5]8 are plotted in

Figure 4.7 where Eb/No = 0dB. The solid curves are the VTR functions of RSC [1,

21/37]8 and the dashed curves are the VTR functions of RSC [1, 5/7]8. We observe

that although both of the two turbo decoders cannot converge to successful decoding
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(a tunnel does not exist), the TC [7, 5]8 stops at a smaller σ2
bit,out(uext) compared to

the TC [37, 21]8. This observation can be regarded as another explanation of why the

TC [7, 5]8 performs better than TC [37, 21]8 at a low SNR.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input var of decoder1, output var of decoder2

In
pu

t v
ar

 o
f d

ec
od

er
2,

 o
ut

pu
t v

ar
 o

f d
ec

od
er

1

VTR of RSC Decoder ,Eb/No=1dB

RSC [37,21] a tunnel exists,
 waterfall region <1dB

RSC [7,5] 
Intersection still
exists, waterfall >1dB.

Figure 4.8: VEGs and trajectories of turbo decoders at Eb/No = 1dB.

At Eb/No = 1dB (Figure 4.8), we see a tunnel between the VTR curves of RSC [37,

21]8 decoders whereas the intersection between the curves of the RSC [1, 5/7]8 decoders

is still there. This observation implies that at Eb/No = 1dB, the TC [37, 21]8 is able

to converge to a successful decoding whereas the TC [7, 5]8 cannot. Consequently, the

TC [7, 5]8 requires a larger Eb/No to approach its waterfall region.

4.2.3 VTR Function of the Turbo Decoder

Figure 4.9: The VTR model of a turbo decoder

In the previous section, the convergence behavior of a turbo code is examined by

VTR functions and VEG. In a concatenated system employing a turbo code (such
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as an turbo-coded BICM system), the turbo decoder is usually treated as a single

component rather than two RSC decoders. The soft information about the coded

digits c is exchanged between the turbo decoder and the other component (such as a

MIMO detector). In Figure 4.9, we show the VTR model of a turbo decoder where
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Figure 4.10: VTR functions of turbo decoders. The left is with APP output and the
right is with extrinsic output.

only the coded digits are considered.

The VTR function of TC [37, 21]8 and that of TC [7, 5]8 are depicted in Figure

4.10. The figure on the left employs the extrinsic LLRs on the coded digits as the

output (which is applicable for a MAP detector or an LSD). We observe that for

σ2
bit,in(c) > 0.5, the TC [37, 21]8 yields a larger BVR than TC [7, 5]8 does. For

σ2
bit,in(c) > 0.5, however, the TC [7, 5]8 is able to yield larger BVR. The figure on the

left uses the a posteriori LLRs on the coded digits as the output (which is applicable

for PIC or MMSE filter). We observe that for σ2
bit,in(c) > 0.25, the TC [37, 21]8 yields

a larger BVR than TC [7, 5]8 does. For σ2
bit,in(c) > 0.25, however, the TC [7, 5]8 is

able to yield a larger BVR. The observations are align with the results obtained in

Figure 2.8. For a conclusion, we may say that the TC [37, 21]8 has a better transfer

property at low variances (or high SNRs) whereas TC [7, 5]8 has a preferable transfer

property at high variances (or low SNRs).
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4.3 Variance Transfer Functions of Detectors

The transfer functions of decoders are relatively standard and not changeable for

a variety of channels. However, the transfer functions of MIMO detectors are closely

related to the properties of channel. In this section, we investigate the variance transfer

functions of MIMO detectors on both fast fading and slow fading channels. Unlike a

decoder which have two streams of a priori knowledge (which are ΛA(u) from other

decoder and ΛA(c) from the detector), a detector operates with the a priori knowledge

on the coded digits only.

4.3.1 VTR Function of the PIC

Since the operation of PIC is virtually performing linear transformation, it is feasible

to derive the VTR function of the PIC based on (3.21).

VTR Function of PIC on a Slow Fading Channel

From the definition in Chapter 3, each complex symbol xi is of energy Es

2nT
in each real

dimension. In the following derivation, we use
√

Es

2nT
xi to denote the complex symbol

from the ith transmit antenna, where Re(xi) ∈ {−1, 1} and Im(xi) ∈ {−1, 1}. Then,

(3.21) is written as

yi,k =

√
Es

2nT

{
xi,k

nR∑
j=1

|hji|2 +

nT∑

m=1,m6=i

∆m,k
x

nR∑
i=1

h∗jihjm

}
+

nR∑
j=1

h∗jin
j (4.11)

where ∆m,k
x = xm,k − x̃m,k−1 is the difference between the estimated symbol and the

genuine transmitted symbol in the kth iteration.

Virtually, (4.11) is a symbol-level representation of the received signal where the

OVs and BVs cannot be straightforwardly employed. Since the variance for the real

part and that for the imaginary part is identical (because there is a single decoder

employed at the receiver, as shown in Figure 3.6 and Figure 3.11), we may perform
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the derivation of the VTR by purely considering the real part of (4.11), written as

Re
(
yi,k

)
=

√
Es

2nT

[
Re

(
xi,k

) nR∑
j=1

|hji|2 + Re

nT∑

m=1,m6=i

∆m,k
x

nR∑
i=1

h∗jihjm

]
+Re

(
nR∑
j=1

h∗jin
j

)

(4.12)

where we assume QPSK modulation. For normalization, we divide both sides of (4.11)

with
√

Es

2nT

nR∑
j=1

|hji|2 and obtain the bit-level normalized output signal from PIC, writ-

ten as

Re
(
yi,k

nor

)
= Re

(
xi,k

)
+

(
nR∑
j=1

|hji|2
)−1

·Re

(
nT∑

m=1,m6=i

∆m,k
x

nR∑
i=1

h∗jihjm +

√
2nT

Es

nR∑
j=1

h∗jin
j

)

(4.13)

Thus, the difference between the normalized PIC output signal and genuine digit is

Re(yi,k
nor − xi,k) = Re

(
nT∑

m=1,m6=i

∆m,k
x

nR∑
i=1

h∗jihjm +

√
2nT

Es

nR∑
j=1

h∗jin
j

)
·
(

nR∑
j=1

|hji|2
)−1

(4.14)

The expectation of the squared value of (4.14) is

E
[
Re(yi,k

nor − xi,k)
]2

= E





(
nR∑
j=1

|hji|2
)−1

Re

(
nT∑

m=1,m6=i

∆m,k
x

nR∑
i=1

h∗jihjm +

√
2nT

Es

nR∑
j=1

h∗jin
j

)



2

For MIMO-BICM systems, we assume that an ideal interleaver is employed so that

∆m
x and ∆n

x are independent for m 6= n. Then, we have

E
[
Re(yi,k

nor − xi,k)
]2

=
1(

nR∑
j=1

|hji|2
)2





nT∑

m=1,m6=i




(
Re

nR∑
i=1

h∗jihjm

)2

E
(
Re ∆m,k

x

)2

(4.15)

+

(
Im

nR∑
i=1

h∗jihjm

)2

E
(
Im ∆m,k

x

)2


 +

2nT

Es

nR∑
j=1

[(
Re h∗ji

)2 (
Re nj

)2
+

(
Im h∗ji

)2 (
Im nj

)2
]}

As shown in Figure 3.11, there is a single decoder in the iterative receiver. Therefore,

68



the input bit variances from all the antennas to the PIC are assumed to be identical

that σ2
bit(x

m,k) = σ2
bit(x

n,k),m 6= n. For brevity, we denote it by σ2
bit(x

k). Moreover,

the bit variance of the real part is the same as that of the imaginary part so that

E
(
Re ∆m,k

x

)2
= E

(
Im ∆m,k

x

)2
= σ2

bit(x
k). Consequently, we have

E
[
Re(yi,k

nor − xi,k)
]2

=

nT∑

m=1,m6=i





∣∣∣∣∣
nR∑
i=1

h∗jihjm

∣∣∣∣∣

2

σ2
bit(x
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 + nT

Es
2σ2

w

nR∑
j=1

∣∣h∗ji
∣∣2

(
nR∑
j=1

|hji|2
)2

(4.16)

Finally, let us denote the normalized observation variance for the real part (or imagi-

nary part) of the detected signal by σ2
obv(y

i,k) and we have σ2
obv(y

i,k) = E
[
Re(yi,k

nor − xi,k)
]2

=

E
[
Im(yi,k

nor − xi,k)
]2

. Then, we get the variance transfer function of PIC as the follow-

ing

σ2
obv(y

i,k) =

nT∑

m=1,m6=i

∣∣∣∣∣
nR∑
j=1

h∗jihjm

∣∣∣∣∣

2 (
nR∑
j=1

|hji|2
)−2

· σ2
bit(x

k) +

[
Es

nT

nR∑
j=1

|hji|2
]−1

· 2σ2
w

(4.17)

The expression of (4.18) implies that the output OV of PIC is linear with the input

BV of the estimated signal which is obtained from the decoder. Moreover, (4.17)

suggests that if the feedback from the decoder is completely reliable that σ2
bit(x

k) = 0,

the output signal of PIC has a normalized observed variance 2σ2
w/

(
Es

nT

nR∑
j=1

|hji|2
)

and

the physically measured SNR is ρ = Es

No

nR∑
j=1

|hji|2 /nT . For slow fading channels, we see

that the VTR of the PIC is a variable of the channel matrix H and hence the transfer

function of PIC differs over frames.
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VTR Function of PIC on a Fast Fading Channel

For a fast fading channel, the expectation of the squared value of (4. 13) is written as

σ2
obv(y

i,k) = E
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√
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Re
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h∗jin
j

] (
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|hji|2
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2

(4.18)

Assuming the independent conditions are applicable, the above equation can be written

as:

σ2
obv(y

i,k) =

nT∑
m=1,
m6=i
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x ]2E
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2
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and finally it can be simplified as

σ2
obv(y

i,k) = E
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 2σ2
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(4.20)

The derived VTRs of PIC are shown in Figure 4.11. The expression of (4.21) shows

that the VTR of PIC for a fast fading channel is also a linear function and it is

related to the statistics of the channel coefficients. For Rayleigh fading channels, we

have E




(
Es

nT

nR∑
j=1

|hji|2
)−1


 = nT

nREs
. If the feedback from the decoder is completely

reliable (perfect feedback) that σ2
bit(x

k) = 0, the output SNR of each antenna is EsnR

NonT
.

For a system with nT = nR and at σ2
bit(x

k) = 0, in particular, the SNR at the output

of PIC is exactly Es

No
(which means PIC is optimal if input σ2

bit(x
k) = 0).
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Figure 4.11: VTR functions of PIC, 4 by 4 fast fading channel, 4-QAM.

4.3.2 VTR Function of the LSD

For the ML detection, Matthew R. McKay and Iain B. Collings show that deriving

a tight bound for the performance is not possible [17]. Also, there are no theoretical

developments for the transfer functions of APP based detections in literature. In this

section, the variance transfer function for the LSD is obtained by simulations with

very large frame size.

In the previous analysis of the transfer characteristics of PIC, we show that the

transfer function of a detector is a variable of the channel coefficients for a slow fading

channel. For a fast fading channel, however, the average transfer property is fixed and

it only relies on the statistics of the channel coefficients.

Figure 4.12 presents the derived VTR function of PIC (where the output OV is

transformed into BV according to (4.6) and (4.8) ) and the simulated VTR curves of

LSD with varied list sizes. The channel is modelled as a 4 by 4 fast fading channel

and the Eb/No is 2.5dB. For accuracy, the frame size is set to be 16384. 4-QAM is

employed and the full list size of LSD is 2nT M = 256. Similarly to that in Section

4.2.1, we define the reduction in the bit variance, given by σ2
det,in(c) − σ2

det,out(c), by

the bit variance reduction (BVR) of the detector.
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Figure 4.12: VTR functions of detectors,Tx=Rx=4,4-QAM

4.3.3 Comparison of the VTR Functions of LSD and PIC

Variance Transfer Characteristics at a High Variance Region

At a high variance region (e.g. σ2
det,in(c) > 0.8), we have the following observations:

a) A LSD with list size N ≥ 8 has a larger BVR than the PIC.

It suggests that the LSD may perform better than PIC when strong interferences

between antennas are in presence. The philosophy behind could be found from (3.17).

At a high input variance region, the soft information from the decoder is not reliable

so that the a priori LLR values to the LSD are very small. Hence, the summation of

cT
[l] ·Λk

A1,[l] in (3.17) is not significant so that the detector is close to a an optimal MAP

detector.

For PIC, on the other hand, the term of uncanceled interference, given by

nT∑

m=1,m6=i

(xm,k−

x̃m,k−1)

nR∑
i=1

h∗jihjm in (3.21), is very large at a high input variance region. Thus, the

PIC operation is close to a matched filtering [1]. However, the performance of the

matched filtering is shown [44] to be far from that of the optimal MAP detector.

b) The differences between the LSD with various list size is small.

At a high variance region, the a priori LLR values to the LSD are so small that
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incomplete list sizes do not significantly impair the accuracy of searching in (3.17).

Thus, the BVR of LSD with different list sizes is very similar at this region. As the

LLR values become larger (and the input variance decreases), the gap between the

VTR of the LSD with a smaller list size and that with a larger list size becomes

significant.

Variance Transfer Characteristics at a Low Variance Region

At a very low input variance region (e.g. σ2
bit(x

k) < 0.05) we obtain the following

observations

a) The PIC has a larger BVR than a LSD with a full list size.

b) As the input variance approaches zero, the VTR of a LSD with a small list size

stray away from that with a full list size.

In the scenario with a low input variance, the a priori LLR values to the LSD

are so large that the summation of cT
[l] · Λk

A1,[l] dominates the computation of (3.18).

Thus, the accuracy of the generated extrinsic output is largely related to the list size

of LSD. (This argument is valid since we consider that a priori information is not used

in improving the center of the sphere).

On the other hand, we see from last section that the PIC is able to approach the

optimal performance as the input variance approaches zero. We may also say that the

PIC has a better transfer property than LSD with incomplete list size at a low input

variance region.

The above observations and analysis motivate a detection switching in the iterative

receiver which will be presented in section 4.5.
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4.4 VEG of Iterative Detection and Decoding

4.4.1 VEG of IDD on Fast Fading Channels

By plotting the VTR function of a detector and that of a decoder in a single graph

where the axes for the decoder are swapped, we obtain the VEG of the IDD scheme.

The input variance and the output variance of decoder are denoted as σ2
dec,in and

σ2
dec,out. The input variance and the output variance of detector are denoted as σ2

det,in

and σ2
det,out. In the VEG of the IDD shown in Figure 4.13, the horizontal axis is for

σ2
dec,out and σ2

det,in and the vertical axis is for σ2
dec,in and σ2

det,out. The solid curves are
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Figure 4.13: VEG of IDD,Tx=4,Rx=4, 4-QAM, Rc=1/2,Eb/No = 2.25dB.

the VTRs of decoders and the dashed curve is the VTR of the LSD(N = 128) where

Eb/No = 2.25dB. We observe that the curve of LSD intercepts with that of TC [37,

21]8 at σ2
dec,in = 0.85 and the trajectory stops at this intersection point. Since this

intersection happens before the IDD converges to a very small variance, we refer the

intersection as an early interception (EC) between the VTR curves of the detector and

the decoder. From the VEG in Figure 4.13, it is obvious that the iterative receiver

with TC [37, 21]8 requires a higher Eb/No to remove the EC and achieve its waterfall

region.
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On the other hand, we observe that the VTR curve of LSD does not intercept

the VTR curve of TC [7, 5]8 at Eb/No = 2.25dB. Thus, the iterative receiver with

LSD(N = 128) and turbo decoder [7, 5]8 is likely to converge to successful decoding.

For this iterative receiver, we may say that the minimum Eb/No at which EC does

not happen is about 2.25dB. In such a manner, the waterfall region of the iterative

detection and decoding (shown in Figure 3.8) can be predicted.

4.4.2 VEG of IDD on Slow Fading Channels

For slow fading MIMO channels, the capacities are not identical among different trans-

mission frames. In light of that, outage capacity probability is adopted to characterize

the capacity of a slow fading channel. For the study of the iterative detection and

decoding on slow fading MIMO channels, we also have to rely on the statistics.

The concept of outage capacity probability of slow fading channels can be explained

as: At a certain Eb/No, there is a probability with that the instantaneous capacity of

the channel of a frame below the target capacity. From transfer characteristics’ point

of view, analogously, there is a probability with that the transfer function curve of the

detector intercepts with that of the decoder before the IDD converges (EC happens)

to a low variance. We refer to the probability of EC as early interception ratio (ECR).

Apparently, the achievable FER performance of an iterative receiver on a slow fading

channel is invariably larger than or equal to the ECR.

Since the transfer functions of the decoders are not regular functions, it is not

feasible to obtain the ECR in a close-form. However, a precise ECR can be obtained

by simulating a very large number of frames. The ECRs of iterative receivers with

PIC-DSC and LSD (with N = 8, 16, 32, 64, 128) are shown in Figure 4.14 where a TC

[7, 5]8 is used. We observe that the iterative receiver with the PIC-DSC has a larger

ECR than that with the LSD(N ≥ 16). As Eb/No increases, the difference between

the ECR of iterative receiver with PIC-DSC and that with LSD(N ≥ 16) also becomes

larger. (We observe that at FER <0.02, the ECR curve for the iterative PIC-DSC
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Figure 4.14: Early interception ratio of iterative receivers (of various detectors) with
Rc=1/2 TC [7, 5]8 on a 4 by 4 slow fading channel. Frame size=1024 and ID=10.
4-QAM with Grey mapping is used.

receiver is not parallel to that for the outage capacity. The phenomenon gives rise to

the error floor observed in Figure 3.14.) At Eb/No = 7dB, a smaller ECR is observed

for the iterative receiver with LSD(N = 8) than that with PIC-DSC. Moreover, we

observe that as the list size of LSD approaches the full list size, the resultant ECR

reduction by increasing the list size becomes marginal.

The outage probability is also plotted in Figure 4.14. We observe that the ECR

of the iterative LSD receiver with full list size and TC [7, 5]8 is about 1.1dB away

from the outage capacity at FER=10−3. For this reason, the FER performance of

the iterative receivers are more than 1.1dB away from the outage capacity as shown

in Chapter 3. To approach the outage probability, we need to reduce the ECR. One

possible solution is to use some other channel codes which are of a better transfer

property, such as a specially designed irregular LDPC code [34].
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4.5 Detection Switching in the Iterative Detection

and Decoding

4.5.1 Detection Switching

To bring down the complexity of the iterative receiver with LSD, a reduced list size

is always preferable as long as a certain level of performance can be maintained. In

Figure 3.10, we see that the performance of iterative receiver with LSD (N = 32)

is only 0.2dB away from that with full list size. However, considerable performance

degradation are observed if smaller list sizes (e.g. N = 16 and N = 8) are used. As

unveiled in Figure 4.12, the reason for such a behavior is that as the input variance

becomes low, the VTR function of LSD with incomplete list size strays away from that

with full list size.

On the other hand, we notice that the PIC has a very attractive VTR function

at a low variance region whereas it cannot compete with that of LSD (of small list

size) at a high variance region. Thus, it is reasonable to employ an LSD at the first

few iterations and replace it with PIC-DSC at later iterations where the variance is

relatively low. In another word, we would like to employ a PIC-DSC in the iterative

receiver as long as the IDD process works in a low variance region where the EC is

not likely to happen in the subsequent iterations. Thus, LSDs with further reduced

list sizes are promising to be used in the first few iterations. In this thesis, we propose

a detection switching (DSW) from LSD to PIC in the iterative receiver.

4.5.2 Switching Criterion

Simply, the switching can be carried out as long as the variance is smaller than a

pre-defined value. However, the evaluation of the BVs requires the knowledge of the

transmitted signal which is practically unavailable.

As presented in Chapter 2, the cross entropy can be adopted to predict the con-
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vergence of the turbo decoding. In the following, we shown that the CE can also be

used to predict the convergence of IDD to determine when to carry out the DSW. And

hence, it can be used to determine when to switch from the LSD detector to PIC-DSC

detector.

Let us denote the APPs of coded digits from the turbo decoder at the kth re-

ceiver iteration by qk(ct). The CE between the output APPs of coded digits from two

consecutive receiver iterations is represented as

T (k) = Eqk(ct)

{
log

qk(ct)

qk−1(ct)

}
(4.21)

Since the correlation between the soft information of two consecutive iterations are

small for the first few receiver iterations [35][39], we may assume that the soft out-

put from the decoder at receiver iteration k is statistically independent from that at

receiver iteration k′ (k′ 6= k). For the first few iterations, the cross entropy of the

decoder output APPs can be approximated as

T (k) ≈
∑

t

log
qk(ct)

qk−1(ct)

=
∑

t

{
qk(ct = 1) log

qk(ct = 1)

qk−1(ct = 1)
+ qk(ct = 0) log

qk(ct = 0)

qk−1(ct = 0)

}
(4.22)

Let us define 4Λk(ct) = Λk(ct) − Λk−1(ct). Similar to (2.41), we can simplify the CE

as

T (k) =
∑

t

∣∣4Λk(ct)
∣∣2

e(|Λk−1(ct)|) (4.23)

Though (4.23) is an approximation since the condition 3) made for the derivation

of (2.41) may not be met, simulation shows that switching at T (k)<0.1 is able to

yield good results. Simply, we start the iteration with LSD and switch to PIC once

T (k)<0.1. If the condition is not met, we switch to PIC at the end of the receiver

iteration.

At the first iteration with PIC, the extrinsic information from the decoder are used
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for cancellation and hence the output of PIC is not biased. At later PIC iterations,

the APPs from the decoder is used for cancellation and hence it is biased. Similar to

Section 3.4.1, the DSC is employed after the detection switching.

4.5.3 Simulations

Frame Error Performance

In the simulations, we consider slow fading channels and all the settings are the same

as in Section 3.3.3. The total number of receiver iteration ID is 10 where the maximum

number of iterations with LSD is 5. The FER of the receivers with and without DSW
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Figure 4.15: FER of iterative receiver with DSW and Rc=1/2 TC [7, 5]8 on a 4 by 4
slow fading channel. Frame size=1024 and ID=10. 4-QAM with Grey mapping.

are shown in Figure 4.15. From the left, we see that the FER of the iterative receiver

with LSD (N = 8) is about 0.55dB worse than that with PIC-DSC at FER=10−2.

By employing the DSW, the iterative receiver is about 0.7dB better than that with

LSD(N=8) and 0.2dB better than that with PIC-DSC. As the SNR increase, the

performance gain by using DSW over the PIC-DSC becomes larger. No error floor is

observed for the iterative receiver employing DSW.
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From the right of Figure 4.15, we see that the FER of the iterative receiver with

LSD(N = 16) is similar to that with PIC-DSC at FER=10−2. By employing the

DSW, however, the iterative receiver is about 0.6dB better than that with LSD(N=16)

or PIC-DSC. The performance of that scheme is only 1.2dB away from the outage

capacity. Again, no error floor is observed for the iterative receiver employing DSW.
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Figure 4.16: FER of iterative receiver with DSW and Rc=1/2 TC [7, 5]8 on a 4 by 4
slow fading channel. Frame size=1024 and ID=10. 4-QAM with Grey mapping.

The FERs of the iterative receivers with DSW and LSD (N = 16, 32) are shown in

Figure 4.16. We see that the iterative receiver with DSW and a small list size (N = 16)

outperforms that with a larger list size (N = 32) and no switching. (The complexities

of these two schemes will be compared later on). From the above results, we see that

the DSW is effective to improve the performance of the iterative receiver with LSD of

a relatively small list size.

Complexity

From the above results, we see that the DSW can improve the performance of the

iterative receiver with LSD(N = 8, 16, 32). In this section, we will show that by

introducing the DSW, the near-optimal performance of the iterative receiver can be

achieved with a reduced complexity. The reduction in the complexity is due to the
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reduced list size as well as the decreased number of iterations in which LSD operations

are conducted.

In Chapter 3, the complexity of LSD and PIC-DSC is quantified with computation

units (CUs). For the iterative receiver employing the switching, we use ILSD to denote

its average number of iterations in which the LSD is conducted. The average number

of iterations with the PIC-DSC is ID−ILSD. The computation complexity is shown in

Table 4.1 for different detection methods. We see that the complexity of the iterative

receiver with DSW is also determined by the average ILSD which varies with SNRs.

From simulations, the average number of iterations with LSD is shown in Figure 4.17.

The computation complexities quantified with CUs are also plotted. Compared to the

iterative receiver with LSD(N = 32), up to 82% (at Eb/No = 7dB) CUs of detection

operations can be saved by employing the iterative receiver with DSW from LSD

(N = 16) to PIC-DSC (and which also achieves a slightly better performance, as

shown in Figure 4.16).

complexity evaluation
LSD(N = 16) DSW (104 + 28NILSD)Γ + 64Γ(ID − ILSD)
LSD(N = 32)no DSW (104 + 28NID)Γ
PIC-DSC 64ΓID

Table 4.1: Complexity of DSW and LSD, 4-QAM and 4×4 MIMO slow fading channels.
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Chapter 5

Scheduling of the Iterative

Receivers for Turbo Coded MIMO

Systems

In an iterative receiver with a turbo decoder, the convergence analysis involves the

transfer functions of three components which are the MIMO detector, the first RSC

decoder and the second RSC decoder. It is shown in [33] that the same convergence

point of the iterative receiver with multiple components can be reached independent

of the iteration schedules, provided that sufficient number of iterations are conducted.

However, different schedules may have varied computational complexities. Hence, the

iterations between the components in the receiver are required to be carefully scheduled

to achieve a good performance and complexity trade-off.

In an iterative receiver with more than two components, the transfer function of

each component has multiple inputs and hence the transfer function of that component

can be multiple dimensional. In Figure 5.1, the VTR function of a RSC [1, 5/7]8 is

depicted as a three-dimensional surface where the output variance of the decoder is

determined by the input variance from the detector as well as the input variance from

the other decoder. Needless to say, the analysis of the convergence behavior of a
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Figure 5.1: 3D VTR of RSC [1, 5/7]8

three-component iterative receiver is not straightforward.

5.1 Conventional Scheduling for the Iterative Re-

ceiver

In Chapter 3 and 4, the iterative MIMO receiver with a turbo decoder is considered

as a two-component concatenated system where the two RSC decoders are viewed as

a single entity. Soft information is exchanged between a MIMO detector and a turbo

decoder (which is called a receiver iteration or a outer iteration). In the turbo decoding

of each receiver iteration, information is also passed between two RSC decoders (which

is referred to as the decoding iteration or inner iteration). In this dissertation, we call

this type of passing information as a conventional scheduling. In a receiver with such

an iteration scheduling, the MIMO detector does not see the exchanging of information

between the two RSC decoders.

The iterative receiver with a conventional scheduling is shown in Figure 5.2. For

each frame, ID receiver iterations are conducted and we say that the detector activates

ID times for each frame. In each receiver iteration, two RSC decoders of the turbo
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Figure 5.2: the conventional scheduling of the iterative MIMO receiver

decoder exchange soft information IC times. Hence, a RSC decoder activates IDIC

times for each frame.

In Figure 5.3, we depict the trajectory of the iterative receiver with the conventional

scheduling in a series of two-dimensional graphs where we consider a 4 by 4 fast fading

MIMO channel with 4-QAM and Eb/No = 3dB. In the first iteration, the output of the

detector is of a relative large variance. Hence, there is no tunnel between the VTRs of

the two RSC decoders and the turbo decoding iteration stops at a high variance. In a

subsequent receiver iteration, the output of the detector is improved so that the turbo

decoding iteration stops at a lower variance, although a tunnel is still not observed.

In the eighth receiver iteration, a tunnel between the VTRs of the two RSC decoder

is obvious and the iterative receiver converges to successful decoding.

The advantage of employing such an iteration scheduling is that both the design and

the convergence analysis of the iterative receiver are quite straightforward. In addition,

the waterfall region of the iterative receiver can be easily and precisely predicted, as

shown in Chapter 3. However, this scheduling is not necessarily optimal for a three-

component iterative receiver, in terms of computational efficiency. As shown in Figure

5.3, at the first receiver iteration, the iterative decoding process stops at a point

with a bit variance around 0.85, no matter how many decoding iterations are used.

Therefore, a fixed number of turbo decoding iterations, for example IC = 10, will
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Figure 5.3: The VEG of the RSC [7, 5]8 decoders in the iterative detection and decod-
ing

give rise to a high complexity (IDIC times of turbo decoding iterations per frame)

due to the unnecessary turbo decoding iterations conducted. Although some stopping

criteria can be applied to reduce the numbers of the turbo decoding operations, the

overall complexity of the receiver has yet to be investigated and to be compared to

the receiver with other schedules.

5.2 New Schedules for the Iterative Receiver

5.2.1 Periodic Schedule for the Iterative Receiver

In [33], it is suggested that the most recent priors should be used to generate new

soft outputs upon each activation of the components. In the conventional scheduling,

however, the two RSC decoders are treated as a single component so that the a priori

information to the first RSC decoder is assumed to be unavailable in the first decoding
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iteration of every receiver iteration.

In this section, we investigate a new scheduling, named a periodic scheduling, for

the iterative MIMO receiver.

The periodic scheduling is of the following features:

1. The three components are activated in a periodic fashion. The activation order

is

Detector, RSC1, RSC2,︸ ︷︷ ︸
1st receiver iteration

Detector, RSC1, RSC2,︸ ︷︷ ︸
2nd receiver iteration

...

2. When a component is in activation, it takes the most recent a priori information

provided by the other two components to generate new soft information.

Figure 5.4: The periodic schedule for the iterative MIMO receiver.

The iterative receiver with the periodic scheduling is shown in Figure 5.4 where the

operations of interleaving and de-interleaving between any two components are omitted

for a simple illustration. The numbers in circles are used to denote the activation order

in every receiver iteration.

Process 1. In each activation of the detector, it takes the a priori information on

the coded digits from the two RSC decoders to generate new soft outputs for both

RSC decoders.
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Process 2. The first RSC decoder takes the a priori information on the coded digits

from the detector as well as the a priori knowledge on the information bits from the

second decoder (in the last receiver iteration) to yield an updated soft output of the

coded digits (which will be passed to the detector) and the extrinsic information on

the systematic (or message) bits (which will be passed to the second RSC decoder).

Process 3. The second RSC takes the a priori knowledge provided by the first RSC

decoder as well as the a priori information on the coded digits from the detector to

generate its updated soft output on the coded digits and extrinsic information on the

systematic bits for the detector and the first RSC decoder, respectively.

The same operations are repeated in the next receiver iteration.
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Figure 5.5: The VEG of the RSC decoders in the iterative receiver with the periodic
schedule.

The variance exchange between the two RSC decoders in the iterative receiver with

the periodic scheduling is shown in Figure 5.5. In comparison with Figure 5.3, we see

that fewer variance exchanges (iterations) between the two RSC decoders are required

to achieve the a certain bit variance (e.g σ2
bit = 0.57).
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5.2.2 Master-Slave Schedule for the Iterative Receiver

In this section, we investigate another iteration scheduling named as a master-slave

(MS) scheduling.

The MS scheduling is of the following features:

1. The activation order is

Detector, RSC1, Detector, RSC2,︸ ︷︷ ︸
1st receiver iteration

Detector, RSC1, Detector, RSC2,︸ ︷︷ ︸
2nd receiver iteration

...

In each receiver iteration, the detector activates twice and each of the decoders activate

once. We see that the detector is in a pivotal position and we may refer it as a “master”

whereas the decoders are viewed as “slaves”.

2. When a component is in activation, it takes the most recent a priori information

provided by the other two components to generate new soft information (analogous to

the periodic scheduling).

Figure 5.6: The master-slave schedule for the iterative MIMO receiver.

The iterative receiver with the MS scheduling is shown in Figure 5.6.

Process 1. In the first activation of the detector, it takes the a priori information

on the coded digits from the two RSC decoders, generates soft output on the coded

digits and passes it to the first RSC decoder only.
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Process 2. The first RSC decoder takes the a priori information on the coded digits

from the detector and the a priori information of the information bits from the second

decoder (in the last receiver iteration) to yield new soft outputs of the coded digits as

well as the EXT on the information bits.

Process 3. The updated soft output of the coded digits is passed back to the

detector. The detector activates for the second time, generates new soft information

on the coded digits and passes it to the second decoder only.

Process 4. The second RSC takes the a priori knowledge of the information bits

provided by the first RSC decoder as well as the a priori information on the coded

digits from the detector to generate new soft outputs.

The same operations are repeated in the subsequent receiver iterations.

5.3 Iterative Receivers with PIC-DSC and new sched-

ules.

In this section, we evaluate the new schedules in the iterative receiver with PIC-DSC.

The complexity of the PIC-DSC and that of the MAP decoder (RSC [1, 5/7]8) acquired

in the earlier sections are listed in Table 5.1. For a 4 by 4 MIMO system with 4-QAM,

PIC-DSC MAP decoder [7, 5]8
Complexity per frame 64ΓCUs 70Γ CUs

Table 5.1: Complexity of PIC-DSC and MAP decoder.

we see that the complexities of these two components are comparable. Hence, we may

say that the complexity of the iterative receiver is proportional to the total number

of activations of the components, where the detector and decoder are regarded to be

equivalent in terms of complexity. (The complexity in Table 5.1 is based on the use

of a [7, 5] RSC code. For a scheme with more complex codes, a better scheduling will

achieve more gains.)
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Now, we compare the performance of the iterative receivers with different schedules.

In order to get a fair comparison, we made some modifications for the conventional

scheduling. The modifications are as follows:

a) The stopping criterion based on CE described in Chapter 2 is adopted to avoid

unnecessary turbo decoding iterations.

b) In the first (inner) iteration of the turbo decoding, the first RSC decoder takes

the a priori knowledge from the second RSC decoder obtained in the previous receiver

(outer) iteration.

Hence, the activation order of the modified conventional scheduling is

Detector,RSC1,RSC2,RSC1,RSC2,...,︸ ︷︷ ︸
1st receiver iteration, until T (k)≤0.001T (1)

Detector,RSC1,RSC2,RSC1,RSC2..︸ ︷︷ ︸
2nd receiver iteration, until T (k)≤0.001T (1)

The performance of the receivers is shown in Figure 5.7. In each scheduling, the

iteration is terminated when the total number of activations reaches 30 (the detector

and the two decoder have operated 30 times in total) or 60. We observe that the

iterative receiver with the periodic scheduling clearly outperforms that with the other

two schedules (30 activations). As the total number of activations increases, the per-

formance differences become smaller. Moreover, we see that the periodic scheduling

can achieve a similar performance at a much lower complexity, compared with other

schedules.
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Chapter 6

Conclusion

6.1 Summary of Results

The application of MIMO techniques is considered to be an attractive solution in the

development of new generation wireless communications featuring very high spectral

efficiency and power efficiency. For feasible implementation, iterative detection and

decoding techniques for MIMO system have been well-explored.

This dissertation has studied a variety of iterative detection and decoding schemes

for MIMO-BICM systems. To approach the capacity of MIMO channel with acceptable

complexity, various detectors and channel codes are investigated. For a system with

a linear detector and a simple convolutional code, union bounding techniques are

employed to predict the performance. For an iterative receiver with a more powerful

detector and a stronger channel code, we employ the variance transfer functions to

analyze the iterative decoding behaviors. By following such a methodology, a good

channel code (turbo code [7, 5]8 in this thesis) is found for an iterative receiver.

For fast fading channels, we showed that the waterfall region of an IDD scheme can

be predicted via VTR, in the same manner as the waterfall region of a turbo code. For

slow fading channels, the performance of an iterative receiver is found to be restricted

by the early interception ratio between the components’ transfer curves.
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In order to fully exploit the advantage of PIC-DSC and that of LSD while circum-

venting their shortages, a detection switching is proposed for the iterative receivers.

Moreover, a switching criterion based on the cross entropy is introduced. For a slow

fading channel, we show that considerably reduced complexity is achieved by using

the detection switching, at a FER performance within 1.2dB to the outage capacity.

To reduced the overall complexity of the iterative receiver with three components,

a periodic scheduling and a master-slave scheduling are studied. We see that this

scheduling outperforms the conventional scheduling in terms of performance and com-

plexity trade-off.

6.2 Future Works

The work in this dissertation can be further strengthened by the following:

1. The channel codes studied in this dissertation are convolutional codes and

turbo codes. However, a code with a better shape of transfer function has yet to be

investigated. By designing and employing an irregular convolutional code [37] as the

constituent code of a turbo code, it is potential to improve the transfer property and

hence the performance of the receiver.

2. In this dissertation, the channel is assumed to be perfectly know by the receiver

which is not realistic. Thus, joint channel estimation and iterative detection and

decoding is of great interests. Especially, the pilot sequence for the channel estimation

can be used to modify the transfer functions of the decoders as in [38] so that a better

convergence behavior can be achieved.
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