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Abstract

Dynamical systems that are close to non-ergodic are characterised by the existence of
subdomains or regions whose trajectories remain confined for long periods of time.
A well-known technique for detecting such metastable subdomains is by considering
eigenfunctions corresponding to large real eigenvalues of the Perron-Frobenius transfer
operator. The focus of this thesis is to investigate the asymptotic behaviour of trajectories
exiting regions obtained using such techniques. We regard the complement of the
metastable region to be a ‘hole’, and show in Chapter 2 that an upper bound on the escape
rate into the hole is determined by the corresponding eigenvalue of the Perron-Frobenius
operator. The results are illustrated via examples by showing applications to uniformly
expanding maps of the unit interval. In Chapter 3 we investigate a non-uniformly
expanding map of the interval to show the existence of a conditionally invariant measure,
and determine asymptotic behaviour of the corresponding escape rate. Furthermore,
perturbing the map slightly in the slowly expanding region creates a spectral gap. This
gap is often observed numerically when approximating the Perron-Frobenius operator
with schemes such as Ulam’s method. We investigate the asymptotic scaling of the
spectral gap as the perturbation vanishes. In Chapter 4 we consider escape rate from
random sets under the action of random dynamics and prove a result analogous to that
of Chapter 2. We also show, under fairly weak assumptions, that in Oseledets subspaces
Lyapunov exponents with respect to different norms are equal. The results are applied to
Rychlik random dynamical systems. Finally, Chapter 5 deals with the main themes of the
earlier chapters in the settings of deterministic and random shifts of finite type. There,
we demonstrate methods to decompose shifts into complementary subshifts of large
entropy. Much of the material in this thesis has either appeared in a scientific journal or
has been submitted to one for publication.
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Introduction

In the ergodic theory of dynamical systems it is common to seek a decomposition into

parts which may be studied on their own, with the obvious advantage that this enables

us to understand systems otherwise too complex to study. A system or a component

that cannot be decomposed any further is said to be ergodic. Nevertheless, many ergodic

systems possess regions that remain close to invariant for long periods of time. In such

cases it is still fruitful to study these “close-to-invariant” regions separately.

In deterministic settings, sets which confine typical trajectories for longer than usual

periods of time are said to be almost-invariant or metastable. We may think of the dynamics

on such sets as “close to non-ergodic”.

The same idea also translates to non-autonomous (time-dependent) or random dy-

namical systems. Here, the randomness or time-dependence provides different “rules”

at each application of the dynamics. In return, it makes sense for the metastable sets to

also vary with time. To encompass the idea that they may possibly be non-static, such

sets have been given the name coherent structures or random metastable sets.

Applications of the theory of metastability are numerous, including areas of molecular

dynamics [102], where the metastable sets are regions in the phase space that ensure stable

molecular conformations; astrodynamics [40], where the metastable sets are regions from

which asteroid escape is rare; physical oceanography [37, 63], where metastable regions

are stable structures such as gyres and eddies; and atmospheric science [64, 100], where

vortices in the stratosphere form time-dependent metastable regions.

While metastability is usually quantified by measuring the amount of mass that is

exchanged in finite time (in fact, in a single application of the dynamics), our approach

in this thesis will primarily be to investigate the long-term or asymptotic behaviour of
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the dynamics in the presence of metastability. The central theme of our work shall be

dealing with rate of escape — a quantity that describes the asymptotic speed at which

typical trajectories exit a given region, never to return. We study escape rates through the

theory of open dynamical systems and their conditionally invariant measures — measures that

remain invariant under the condition of non-escape. Provided that the escape rate of an

open system is sufficiently low, naturally, one may regard the corresponding subdomain

as metastable.

One needs to be careful here in order to distinguish between the two types of me-

tastability we have just described because, while in practice they often are one and

the same, we will show in this thesis that there do exist simple but counterintuitive

counterexamples.

Throughout we shall pursue the idea of regarding a closed dynamical system, with

two or more metastable sets, as (two or more) open dynamical systems where the domain

of each is metastable.

The primary tools that we shall use in both the deterministic and random settings are

Perron-Frobenius (transfer) operators. Their isolated non-unit eigenvalues, or respectively

isolated nonzero Lyapunov exponents, indicate presence of eigenfunctions whose decay

rates are slower than the exponential separation of nearby trajectories. These eigenfunc-

tions have been used to heuristically decompose the domain into two metastable regions,

linking the slow exponential decay of eigenfunctions with slow exchange of trajectories;

see e.g. [39]. One may then ask how the rate of escape from such metastable regions is related

to the corresponding isolated spectral values? We will answer this question for deterministic

systems in Chapter 2 and, later in Chapter 4, extend it to the random setting. Roughly

speaking, the isolated spectral values determine upper bounds on the escape rate from

either of the metastable domains in the decomposition.

In the third chapter we shall investigate the anomalous case of a non-uniformly

expanding interval map with an indifferent fixed point at the origin. The spectrum of the

corresponding Perron-Frobenius operator does not contain any isolated eigenvalues and

this presents a difficulty in determining a good metastable decomposition, as it is unclear

which non-unit eigenvalue should be chosen to obtain optimal metastability. We present

two different but related solutions that provide us with more insight into the problem.
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Firstly, by excising a small hole in the problematic region, we will prove the existence of

a unique conditionally invariant measure, and show the limiting behaviour of escape

rate as the hole closes. Secondly, by introducing a small random perturbation in the

same region we will show the existence of a spectral gap and determine the asymptotic

behaviour of the isolated second eigenvalue as the noise vanishes. This analysis explains

commonly observed behaviour when one tries to apply Ulam’s method [106] to this class

of intermittent maps. The majority of the material in Chapter 3 has appeared in [61] as

joint work with Gary Froyland and Rua Murray.

The random perturbation exercise of Chapter 3, in conjunction with the results of

Chapter 2 on deterministic dynamical systems motivates for investigation of similar

phenomena in a completely random setting. To this we dedicate Chapter 4, first by

introducing the concept of escape rate to random dynamical systems and then translating

our results of Chapter 2 accordingly. Perron-Frobenius operators become Perron-Frobenius

operator cocycles and the spectrum of eigenvalues becomes the spectrum of Lyapunov

exponents. We will show that coherent structures (random metastable sets) obtained

from eigenfunctions corresponding to large L1-Lyapunov exponents possess escape rates

whose upper bounds are given by the absolute value of the corresponding Lyapunov

exponent. We will then further extend these results to other types of Lyapunov exponents

(not just L1), in particular those calculated using the variation norm, provided the setting

is such that an Oseledets splitting [92] holds.

While Chapter 5 slightly diverges from the material preceding it, we use similar

techniques to approximate lower bounds of topological entropies of some symbolic

dynamical systems. In symbolic dynamics or shift spaces, roughly speaking, a cylindrical

hole may be thought of as a “forbidden sequence” and the corresponding escape rate

may be interpreted as the loss in topological entropy. Thus in this setting, detecting holes

with low escape is, in a sense, equivalent to detecting subshifts with high topological

entropy. We shall study the spectral properties of adjacency matrices rather than Perron-

Frobenius operators. More precisely, by considering eigenvectors of adjacency matrices

that correspond to large real subdominant eigenvalues, we will decompose a shift of

finite type into two complementary subshifts in such way that each subshift retains a

high topological entropy. In the spirit of Chapter 4, we generalise our results to random
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shifts of finite type, where we consider the Lyapunov spectrum of cocycles of adjacency

matrices. All our results will be illustrated through simple examples.



Chapter 1

Background and Literature Review

This first chapter is a brief introduction to closed dynamical systems and the somewhat

lesser-known open dynamical systems, together with some motivation and useful results

that shall be needed for later parts of the thesis. Basic knowledge of measure theory and

L1 spaces is assumed. For an elementary introduction to dynamical systems from the

measure-theoretic point of view we recommend the book of Lasota and Mackey [79].

Some other books the reader may find useful are by Bogachev [12], for a comprehensive

treatment of measure theory; Walters [109], for an introduction to ergodic theory; Bo-

yarsky and Góra [19], for a focus, within this theme, on the study of expanding interval

maps; Lind and Marcus [85] for a beginner’s introduction to symbolic dynamics; and

Arnold [1] for a comprehensive introduction to random dynamical systems.

We also attempt to provide an up-to-date literature survey in the areas related to

open dynamics. This is by no means a complete or self-contained introduction, and the

reader is encouraged to consult the references given throughout the chapter. We note

that a recent survey paper of Demers and Young [44] provides a good starting point to a

reader interested in venturing into the area of open dynamical systems.

1.1 Closed Dynamical Systems

Measurable transformations are the central objects of study in the ergodic theory of dynam-

ical systems.
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Definition 1.1 (Measurable transformation). Let (X,B) be a measurable space. A trans-

formation T : (X,B) 	 is measurable if T−1B ⊆ B; that is, T−1B ∈ B for any B ∈ B.

Let m be a natural finite reference measure on (X,B). For example, when X is a

Eucledian space, m is naturally the Lebesgue measure in which case we denote it `.

Definition 1.2 (Non-singular transofmation). A measurable transformation T : (X,B) 	
is said to be non-singular with respect to m if m(B) = 0 implies that m(T−1B) = 0 for all

B ∈ B.

In this thesis we regard a (closed) dynamical system, denoted by the tuple (X,B, m, T),

to be the action of a measurable non-singular transformation T on the finite measure

space (X,B, m). One studies orbits or trajectories of points x ∈ X under the iterates of T,

given by {x, T(x), T2(x), . . . }.

Definition 1.3 (Invariant measure). A measure µ on (X,B) is said to be invariant under

T if µ(B) = µ(T−1B) for all B ∈ B. The transformation T is said to preserve µ while the

dynamical system (X,B, µ, T) is said to be measure-preserving.

Invariant measures are important objects in the ergodic theory of dynamical systems

as they convey useful statistical information about long-term behaviour of trajectories

(cf. Birkhoff’s Individual Ergodic Theorem [10]).

Definition 1.4 (Ergodicity). Let (X,B, µ, T) be a measure-preserving dynamical system.

A set B ⊆ X is invariant if T−1B = B. If every invariant B ∈ B is trivial, that is either

µ(B) = 0 or µ(X \ B) = 0, then (T, µ) is said to be ergodic.

The ergodic property is commonly assumed in the study of dynamical systems, and

we will often do so in this thesis. It is, however, not an overly restrictive assumption as

in the absence of ergodicity one is free to partition the domain into ergodic components

(non-trivial invariant sets) and study the dynamics on each of these separately. Concepts

describing higher levels of complexity of dynamical systems, such as mixing and exactness,

are sometimes also useful. For definitions and further information we refer the reader to

e.g. [79] or [46].
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Definition 1.5. A dynamical system (X∗,B∗, m∗, T∗) is a (metric) factor of (X,B, m, T)

if there exists a measurable map π : (X,B) → (X∗,B∗) (called the factor map or semi-

conjugacy) such that π is measure-preserving (m ◦ π−1 = m∗) and T∗ ◦ π = π ◦ T, that is

the diagram

X T−−−→ X

π

y π

y

X∗ T∗−−−→ X∗

commutes. If, in addition, π has a measurable inverse then the two systems are (metri-

cally) isomorphic.

Sometimes, besides just measurability, the phase space X enjoys the additional struc-

ture of a smooth Riemannian manifold equipped with a metric d. In such cases we shall

require B to be the Borel σ-algebra and T to possess a Jacobian derivative JT (or T′)

almost everywhere.

1.1.1 Perron-Frobenius Operator

Rather than studying trajectories of individual points under the action of a dynamical

system (X,B, m, T), often a more effective approach is to study “trajectories” of whole

distributions of points. We shall do this via the corresponding Perron-Frobenius (transfer)

operator P , acting on real-valued integrable functions of (X,B, m), defined below.

Definition 1.6 (Perron-Frobenius operator). Let T : (X,B, m) 	 be a non-singular mea-

sure-preserving transformation. The Perron-Frobenius operator associated with T is the

unique operator P : L1(X,B, m) 	 satisfying the following integral equation:

∫

B
P f dm =

∫

T−1B
f dm ∀B ∈ B, ∀ f ∈ L1(m). (1.1)

When X is a smooth Riemannian manifold and T is C1, equation (1.1) may also be

written in the more explicit form:

P f (x) = ∑
y∈T−1x

f (y)
|JT(y)| , ∀ f ∈ L1(m), ∀x ∈ X, (1.2)
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where JT stands for the Jacobian determinant of T, while | · | is a modulus sign.

Recall that a measure ν on X is absolutely continuous with respect to m, denoted ν� m,

if ν(B) = 0 whenever m(B) = 0 for all B ∈ B. If both ν � m and m � ν then the two

measures are equivalent, denoted ν ∼ m. Radon-Nikodym Theorem [91] (see e.g. [12,

Theorem 3.2.2]) asserts that there exists a derivative f ∈ L1(m) such that f = dν/dm ≥ 0.

If f is normalised, it is called a density1.

It is a well-known fact that (normalised) stationary points of the Perron-Frobenius op-

erator are densities of absolutely continuous invariant (probability) measures (ACI(P)M),

µ� m. That is, if P f = f and f ≥ 0, then the measure µ := f ·m given by

µ(B) =
∫

B
f dm, ∀B ∈ B

is invariant. In fact the converse is also true: any density of an absolutely continuous

invariant measure is a stationary point of the Perron-Frobenius operator.

If the Perron-Frobenius operator admits a unique stationary density (that is, its eigen-

value is of multiplicity one), then the corresponding measure is ergodic; see e.g. [79,

Theorem 4.2.2]. The distance to the next-largest eigenvalue generally provides some

information on how close to non-ergodic the measure is.

Spectral Gap and Quasi-compactness

Let sp(L) denote the spectrum of a bounded linear operator L on a Banach space

(Y, ‖ · ‖Y) (see e.g. [78] for the definition of a spectrum of a linear operator). The spectral

radius of L is then

R(L) := {sup |z| : z ∈ sp(L)}

and the essential spectral radiusRess(L) is the smallest number such that any z ∈ sp(L)
with |z| > Ress(L) is an isolated eigenvalue (therefore there are at most countably

many eigenvalues outside the essential spectrum and accumulations are only possible

on the essential radius). Operators whose spectral radius is strictly greater than the

essential spectral radius are said to be quasi-compact. This property is desirable for Perron-

1For signed measures f need not be non-negative.
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Frobenius operators as it guarantees the existence of a spectral gap — the difference

between 1 and the modulus of the “second” eigenvalue. More information and discussion

on the spectrum of transfer operators may be found in, for example, the book of Baladi [7].

1.1.2 Functions of Bounded Variation

Let I = [0, 1] and let ` be the Lebesgue measure on I. For maps T : (I, `) 	 it is often

useful to work with Perron-Frobenius operators acting not on L1, but on the space of

functions of bounded variation.

Definition 1.7. The variation (or total variation) of a function f ∈ L1(I, `), denoted var( f )

is defined to be

var( f ) = inf
g

sup

{
n−1

∑
i=0
|g(xi+1)− g(xi)| : 0 = x0 < · · · < xn < 1

}

where the infimum is taken over all versions of f , that is all g ∈ L1(I, `) satisfying

`( f − g) = 0.

Let BV be the set of all f ∈ L1(I, `) such that var( f ) < ∞ and define the BV-norm

‖ f ‖BV := max{var( f ), ‖ f ‖L1}.

The Banach space (BV, ‖ · ‖BV) is called the space of functions of bounded variation.

Perron-Frobenius operators of many expanding maps of the interval (e.g. some Lasota-

Yorke [80] or Rychlik maps [99]) do not possess a spectral gap in L1 but do so in BV. This

setting has historically been a standard testbed for spectral analysis of chaotic dynamical

systems. Lasota and Yorke [80] showed that for piecewise C2 uniformly expanding2 maps

with finitely many branches, the inequality (now known as the Lasota-Yorke inequality)

‖Pn f ‖BV ≤ θn‖ f ‖BV + C‖ f ‖L1 (1.3)

holds for some θ ∈ (0, 1), C > 0 and all f ∈ BV. Hofbauer and Keller [72], and Rychlik

2A map T is expanding if |JT| > 1 almost everywhere. It is uniformly expanding if ess inf |JT| > 1.
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[99] showed under the relaxation to allowing a countable number of branches, with

requirements that 1/|T′| is of bounded variation and

1/τ := lim
n→∞

(
‖1/(Tn)′‖∞

)1/n
> 1, (1.4)

that P : BV 	 is quasi-compact. Soon after, Keller [74] proved that 1/τ is the essential

spectral radius of P .

1.1.3 Shifts of Finite Type

Shifts of finite type (also known as topological Markov chains) are special types of dynamical

systems acting on sequence spaces. Below we will introduce the main concepts. For

proofs of our claims and any additional details, the reader may wish to read the relevant

parts in the books of Lind and Marcus [85], and Kitchens [77].

Definition 1.8 (Shift space). Let A be an alphabet — a finite collection of K symbols.

Define a one-sided (resp. two-sided) full N-shift to be a collection of all infinite (bi-infinite)

sequences of elements of A, respectively

AZ+
:= {x = (xi)i∈Z+ : xi ∈ A, ∀i ∈ Z+}, (1.5)

AZ := {x = (xi)i∈Z : xi ∈ A, ∀i ∈ Z}. (1.6)

We write x = x0x1x2 . . . or x = . . . x−2x−1x0x1x2 . . . for their respective elements. In

this subsection we concentrate on one-sided shifts and most definitions and properties

translate naturally to their two-sided counterparts. The left shift map σ : AZ+
	 acts

according to

(σx)i = xi+1,

that is, it shifts all elements of x to the left by one. This map is invertible on AZ but not

on AZ+
. A shift consists of any σ-invariant set Σ ⊆ AZ+

, together with σ itself, denoted

(Σ, σ). A subshift of (Σ, σ) is any shift (Σ′, σ) such that Σ′ ⊆ Σ. In particular, any shift

coded on A is a subshift of the full shift (AZ+
, σ).

A block (or word) of length k is any finite sequence of k symbols from the alphabet,
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written as b = [b0b1 . . . bk−1], where bi ∈ A. For a point x ∈ AZ+
, denote by x[k,k+n] the

block [xk . . . xk+n]. Given a collection of forbidden blocks F, the set of points that do not

contain any of the forbidden blocks is invariant under σ, and therefore defines a shift.

When F is finite, this set is called a shift of finite type, denoted (ΣF, σ) (or (Σ, σ) if there is

no ambiguity in regard to what F is). The memory of a shift of finite type is always one

less than the length of the longest forbidden block.

Definition 1.9. Let Bk(ΣF) be the set of all allowed3 blocks of length k in a shift of finite

type ΣF. The topological entropy of ΣF is defined to be the exponential growth rate of the

number of elements of Bk:

htop(ΣF) = lim
k→∞

1
k

log |Bk(ΣF)|.

Topological entropy (or just entropy) may be thought of as a measure of the dynamic

complexity of a shift. A subshift’s entropy is always lower than or equal to the entropy

of its parent shift. Observe that the topological entropy of a full N-shift is log N, so this

is the maximum entropy of any subshift encoded with N symbols.

By appropriately changing the alphabetA and the forbidden blocks F, one can always

recode any shift of finite type into a conjugate shift of memory 1, so that every forbidden

block of the recoded shift is of length two. Such shifts (ΣF, σ) may be represented by

their 0− 1 transition matrices M ∈ MN×N({0, 1}) where Mij = 0 if and only if [ij] ∈ F

(or equivalently Mij = 1 if and only if [ij] ∈ B2(ΣF)). Since M determines F we shall

often write ΣM instead of ΣF. We may also represent any memory-1 shift of finite type

ΣM by a directed graph, determined by M serving as the adjacency matrix in the obvious

way 4.

By the Perron-Frobenius Theorem for non-negative matrices [52], M has a real positive

eigenvalue, equal to its spectral radiusR(M). The topological entropy of a shift of finite

type (ΣM, σ) is then simply

htop(ΣM) = logR(M). (1.7)

3Those that are not forbidden.
4Let V = A be the vertices, and define the edges E according to (v, w) ∈ E if and only if Mvw = 1. The

set of all infinite random walks on the graph G = (V , E) represents the shift space (ΣM, σ).
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Now we describe the procedure to impose a measure on a shift of finite type. For a

block b = [b0b1 . . . bk−1] and position j, a cylinder Cj(b) ⊆ Σ is

Cj(b) = [b0b1 . . . bk−1]j := {x ∈ Σ : x[j,j+k] = b}.

Regarding cylinders as open sets, the collection of all cylinders in Σ generates a topology

(equal to the infinite product of discrete topologies on A). We may then define a Borel σ-

algebra B, creating a measurable space (Σ,B). Observe that in this setting σ is continuous

and measurable. A common way to obtain a measure on a shift of finite type ΣM is to

take a row-stochastic matrix P compatible with M (that is Pij > 0 implies that Mij = 1),

and its left stationary vector p (satisfying pP = p). The corresponding Markov measure

µ(p,P) is defined by its value on cylinders:

µ(p,P)([b0b1 . . . bk−1]) := pb0 Pb0b1 · · · Pbk−2bk−1
.

It can be checked that the resulting dynamical system (ΣM,B, µ(p,P), σ) is measure-

preserving. A Markov measure whose Kolmogorov-Sinai entropy equals the topological

entropy htop(ΣM) is called maximal measure or measure of maximal entropy. An advantage

of studying shifts of finite type (equipped with a Markov measure) over other types

of dynamical systems is that every point contains information on its orbit under the

iteration of σ, that is the left shift map is trivial, while all of the dynamical complexity is

contained in the space Σ and the measure µ(p,P).

Also, recall that a non-negative square matrix P is irreducible if for all indices i, j there

exists an integer n such that (Pn)ij > 0. If the compatible stochastic matrix P of a shift

ΣM is irreducible, it follows that P has a unique left stationary probability vector p and

the corresponding Markov measure is ergodic.

One may also find it useful to impose a metric d on Σ (compatible with the topology

generated by cylinders) as follows:

d(x, y) :=





2−k, x 6= y and k is maximal so that x[−k,k] = y[−k,k]

0, x = y.
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1.1.4 Markov Partition

Often in the study of dynamical systems it is convenient, if possible, to utilise the tools

and machinery of shifts of finite type. In order to do so, one needs the concept of a

Markov partition. Below we recall the definition of a Markov partition for expanding

maps. A similar concept exists more generally for hyperbolic (Axiom A) maps.

Definition 1.10 (Markov partition [15]). Let T : X 	 be an expanding map. A partition

(modulo sets of zero measure) η = {B0, . . . , BN−1} of X is said to be Markov if for every

i = 0, . . . , N − 1, T(Bi) is (exactly) a union of sets in η.

Dynamical systems that possess a finite Markov partition may be studied via their

symbolic dynamics. We do this by assigning to every point x ∈ X a sequence y =

(yi)
∞
i=0 ∈ {0, . . . , N − 1}Z+

according to yi = k if and only if Ti(x) ∈ Bk; that is, y

contains the itinerary of x, with respect to the elements of the Markov partition, under

the iteration of T. The set of all such y, together with the left shift map, defines a shift of

finite type (ΣM, σ), where the transition (adjacency) matrix M ∈ MN×N({0, 1}) is given

by

Mij =





1, Bj ⊂ T(Bi), the closure of T(Bi)

0, otherwise.

The map π : X → ΣM, given by π(x) = y, is continuous (see e.g. [85, Proposition

6.5.8]) and the following diagram commutes:

X T−−−→ X

π

y π

y

ΣM
σ−−−→ ΣM

Thus (ΣM, σ) is a topological factor of (X, T) where π is the corresponding topological

semi-conjugacy. Since π is one-to-one almost everywhere, with an appropriate choice of

measure on ΣM one may be able to obtain a dynamical system on ΣM that is metrically

isomorphic to the original one on X.
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Example 1.11. Let T : I 	 be the doubling map defined by

T(x) := 2x (mod 1) =





2x, 0 ≤ x ≤ 1/2

2x− 1, 1/2 < x ≤ 1.

It is easy to check that η = {[0, 1/2], [1/2, 1]} is a Markov partition for T. We encode the

elements of the partition with {0, 1}. The corresponding adjacency matrix is

M =


 1 1

1 1


 ,

thus T is modelled by the one-sided full 2-shift ΣM = {0, 1}Z+
. For every x ∈ I the

corresponding y = π(x) ∈ ΣM is given by the fractional part of the binary representation

of x (which is unique Lebesgue-almost everywhere). The stochastic matrix P = (1/2)M

is compatible with M, the row-vector p = (1/2, 1/2) uniquely satisfies pP = p and the

corresponding ergodic Markov measure is given by

µ(p,P)([b0b1 . . . bk−1]j) = 2−k.

Observe that π−1[b0b1 . . . bk−1]j is a union of dyadic intervals and that µ(p,P) ◦ π−1 = `.

This is enough to show that (I, `, T) is metrically isomorphic to (ΣM, µ(p,P), σ).

1.1.5 Ulam’s Method and Numerics

Ulam’s method [82, 106] is a well-known scheme used to discretise the Perron-Frobenius

operator.

Given a non-singular measurable transformation T : (X,B, m) 	 and its Perron-

Frobenius operator P , take any finite partition η = {B1, . . . , BN} of X. Let {χB}B∈η be

the set of characteristic functions on elements of η, defined by

χBi(x) =





1, x ∈ Bi

0, otherwise.
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Define a projection Πη from L1(m) to the finite N-dimensional space spanned by {χB}B∈η

by

Πη f := ∑
B∈η

∫
B f dm
m(B)

χB, f ∈ L1(m). (1.8)

The operator Pη := Πη ◦ P ◦Πη is the Ulam approximation of P . Its matrix representation

Pη, with respect to the normalised basis {(1/m(B))χB}B∈η in L1(m) (and standard basis

in RN with left multiplication) is called the Ulam matrix and its entries are given by

(Pη)ij =
m(Bi ∩ T−1Bj)

m(Bi)
, 1 ≤ i, j ≤ N.

The Ulam matrix Pη (also denoted PN) is row-stochastic and defines a Markov chain,

which is a finite state model of the original dynamical system T. In Chapter 3 we

shall utilise the observation that Ulam’s approximation of P may be thought of as the

Perron-Frobenius operator of a small random perturbation of T [53, 68].

Left eigenvectors of Pη are often good numerical approximations of the eigenfunctions

of P , and similarly for the corresponding eigenvalues.

If η is a Markov partition, observe that that the Ulam matrix is compatible with the

adjacency matrix of the corresponding shift of finite type.

1.2 Open Dynamical Systems

The main theme of this thesis is the study of open dynamical systems, also known as dynam-

ical systems with holes. Here we introduce the basic concepts. The book of Dorfman [47]

also contains some introductory material to the area.

While the idea behind open dynamical systems is simple and there are many similari-

ties to closed systems, there are also important distinctions. For example, the position

and the size (measure) of the hole are factors that play important roles in the dynamical

behaviour [21], but do not possess an analogue in closed dynamics.

An open dynamical system consists of a map T on a measurable domain A in a

measure space (X,B, m) such that A ⊂ T(A). Trajectories may eventually leave A to fall

into the hole, H = X \ A, at which stage the dynamics are terminated. Although often
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only measurability is necessary, if X is a topological space, A is sometimes assumed to

be open [95] (or closed [44]).

A common (but not the only) way to obtain an open system is to consider a closed

dynamical system (X,B, m, T) and introduce a measurable hole H ∈ B so that A = X \H

is the domain. Then the restriction

TA := T|A : A→ X,

together with BA = B ∩ A and mA = m|A define an open dynamical system, sometimes

denoted (A,BA, mA, TA). As TA is only defined on A, pre-images of sets under the open

map TA are given by T−1
A B = T−1B ∩ A for any B ∈ B. While we may start with T

defined on all of X, for the purposes of studying open dynamics it is irrelevant what

values T takes on H.

Although the example below is not obtained in this way, it illustrates well the concept

of an open dynamical system.

Example 1.12. Perhaps the most famous open dynamical system is the horseshoe map,

first studied by Stephen Smale in 1967 [103]. The domain A is a square, which under the

action of T is “compressed” vertically and “stretched” horizontally in an area-preserving

fashion, and then “folded back”, as shown in Figure 1.1. The points that are found

outside the original square are discarded before the next iteration of the map when the

stretching and folding process repeats. After any finite number of iterations, a set of

points of positive Lebesgue measure remains. Nonetheless, almost every point exits the

square in finite time. The set of points that forever remain in the square is invariant,

and the closed dynamics on this set is what is often studied in the horseshoe map (see

e.g. [73]).

1.2.1 Escape Rates and Survivor Sets

Let the time of escape of a point x ∈ A be the smallest positive integer ξ(x) such that

Tξ(x)(x) ∈ H. Define An to be the set of all points that stay in A up to the nth iterate of T;
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→ →

Figure 1.1: One iteration of the horseshoe map of Example 1.12.

that is, An consists of all points that have not yet escaped by time n:

An = {x ∈ A : ξ(x) > n} (1.9)

=
n⋂

i=0

T−i A

= T−n
A A.

Because the points in An may be seen as the points that “survive” up to n iterates we

refer to this set as the n-step survivor. The set of points that never escape is given by

∞⋂

n=1

T−i A =: A∞, (1.10)

often called just the survivor [86] or the repeller [7]. Since A∞ is invariant, the action of T

on A∞ determines a closed dynamical system, often studied in its own right, as is the

case with the horseshoe map.

Escape rate is the rate of asymptotic decay of the measure of n-step survivors, defined

more precisely below.

Definition 1.13 (Escape rate). Upper and lower escape rates of a measure m from a measur-

able set A ⊂ X under the action of T : X 	 are respectively

E(A; m) := − lim inf
n→∞

1
n

log m(An),

E(A; m) := − lim sup
n→∞

1
n

log m(An),
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where An is as in (1.9). If E(A; m) = E(A; m), then we say that the escape rate from A

(with respect to m) exists and is given by

E(A; m) := − lim
n→∞

1
n

log m(An) ∈ [0, ∞]. (1.11)

While the notion of escape rate as we have described above applies to the domain A of

an open dynamical system, the definition works just as well for any other measurable set

of an open or closed dynamical system. When it is clear what the underlying measure

is, we may omit writing it: E(A; m) = E(A). On the other hand, if we are talking about

multiple transformations, say T and S, we shall denote escape rate from A under T and

S respectively as E(A; m, T) and E(A; m, S).

Proposition 1.14. Let (X,B, m, T) be a closed dynamical system and let A, B ⊆ X be measur-

able sets. Below are some useful (and well-known) properties of escape rates:

(i) if A ⊆ B then E(A) ≥ E(B);

(ii) E(AN) = E(A) for all N ∈N;

(iii) if m(X \ A) = 0 then E(A) = 0;

(iv) if m(A) = 0 then E(A) = ∞.

Proof.

(i) Since A ⊆ B then we have for any integer n, An ⊆ Bn, hence m(An) ≤ m(Bn).

Taking logarithms, dividing by n and taking the limit gives the required result.

(ii) First we will show that for all n, N ≥ 0, (AN)n = AN+n; that is, the points in AN

that survive for n steps under T are exactly those points in A that survive for N + n

steps. This may or may not be immediately obvious, but nevertheless it is a simple

exercise in set theory:

(AN)n =
n⋂

i=0

T−i(AN)
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=
n⋂

i=0

T−i




N⋂

j=0

T−j(A)




=
n⋂

i=0

N⋂

j=0

T−(i+j)(A)

=
n+N⋂

k=0

T−k(A) = AN+n.

The result then follows:

E(AN) = − lim
n→∞

1
n

log m((AN)n)

= − lim
n→∞

1
n

log m(AN+n)

= − lim
n→∞

1
n− N

log m(An) = E(A).

Points (iii) and (iv) are a consequence of the non-singularity of T. We will leave the

proofs as an exercise.

Proposition 1.15. Let (X,B, m, T) be a dynamical system and let A ⊂ X be measurable. Then

for any γ ∈ (0, 1]

(i) if m(An+1) ≥ γm(An) for all n ≥ 0, then E(A) ≤ − log γ;

(ii) if m(An+1) ≤ γm(An) for all n ≥ 0, then E(A) ≥ − log γ.

Proof.

(i) Inductively, m(An) ≥ γnm(A) thus

E(A) = − lim inf
n→∞

1
n

log m(An)

≤ − lim inf
n→∞

1
n

log(γnm(A))

= − log γ.

(ii) is analogous to (i) with inequalities reversed.
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Corollary 1.16. If the following limiting ratio exists

lim
n→∞

m(An+1)

m(An)
=: λ, (1.12)

then the escape rate from A exists and equals − log λ.

Proof. For any ε > 0 there exists a sufficiently large N ∈N such that for all i ≥ 0

λ− ε ≤ m(AN+i+1)

m(AN+i)
≤ λ + ε.

Hence by Proposition 1.15

− log(λ + ε) ≤ E(AN) ≤ − log(λ− ε),

and by Proposition 1.14 (ii) the same inequality holds for E(A), but since ε is arbitrary

we must have E(A) = − log λ.

Proposition 1.17. The converse of the statement of Corollary 1.16 is generally not true.

Proof. We provide a counterexample to the converse. Let T : I 	 be an expanding one-

branch map of the interval that is piecewise affine on a countable number of subintervals,

and whose endpoints (xn)n≥0 satisfy x2k = 2−k3−k and x2k+1 = 2−k3−k−1, k ≥ 0. Then T

is constructed so that T(xn) = xn−1, from which we see that An = [0, xn] and `(An) = xn.

The ratio m(An+1)/m(An) oscillates between 1/2 and 1/3 hence the limiting ratio in

(1.12) does not exist. However, escape rate exists and equals log
√

6.

Definition 1.18. An integrable function f ∈ L1 is said to be bounded away from zero and

infinity if inf f > 0 and sup f < ∞. If an L1 version of f satisfies this (that is ess inf f > 0

and ess sup f < ∞), then we shall say that f is essentially bounded away from zero and

infinity.

It is useful to keep in mind the following well-known result regarding escape with

respect to “equivalent” measures (in the stronger sense of equivalence given by Definition

1.18).



1.2 Open Dynamical Systems 21

Proposition 1.19. If ν and m are equivalent measures and the Radon-Nikodym derivative

dν/dm is essentially bounded away from zero and infinity, then one has E(A; ν) = E(A; m) for

any measurable set A.

Proof. As dν/dm is essentially bounded away from zero and infinity, there exists a

positive constant C such that almost everywhere

C−1 ≤ dν

dm
≤ C. (1.13)

Hence for any positive integer n we have

ν(An) =
∫

An

dν

dm
dm

≤
∫

An
C dm

= Cm(An).

Thus

E(A; ν) = − lim
n→∞

1
n

log ν(An)

≥ − lim
n→∞

1
n

log(Cm(An))

= − lim
n→∞

1
n

log C− lim
n→∞

1
n

log m(An)

= 0 + E(A; m).

Similarly, by considering the lower bound of dν/dm in (1.13) we obtain the reverse

inequality E(A; ν) ≤ E(A; m), and the result follows.

Another useful fact, stated below, is that escape rate is an invariant of a metric

isomorphism or a metric factor (see Bunimovich and Yurchenko [21, Lemma 2.3.5] for a

proof).

Proposition 1.20. Let (X∗,B∗, m∗, T∗) be a factor of (X,B, m, T) with some factor map π,

and suppose that for A∗ ∈ B∗, the escape rate exists. Then E(A; m, T), the escape rate from

A = π−1A∗, exists and equals E(A∗; m∗, T∗).
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1.2.2 Some Simple Examples

Example 1.21 (Tent map with a hole [47]). For ε > 0 consider the following map T :

[0, 1]→ [0, (1− ε)−1] defined by

T(x) =





2
1−ε x, 0 ≤ x ≤ 1

2

2
1−ε (1− x), 1

2 ≤ x ≤ 1.

The domain is A := [0, 1] and the hole is H := (1, (1− ε)−1] as shown in Figure 1.2(a)

for ε = 1/3. Let m = ` be the Lebesgue measure. The diagram in Figure 1.2(b) shows

the n-step survivors for n ∈ {0, 1, 2, 3, 4}, and ε = 1/3. Observe that the sequence of

An describes the familiar construction of the middle-thirds Cantor set, where A∞ is the

Cantor set itself.

0
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︸ ︷︷ ︸
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H

(a) Graph of T

A

A
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A
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A
3

A
4

(b) Survivor sets

Figure 1.2: Tent map with a hole.

Let us calculate the escape rate of the Lebesgue measure from A. Since at each step a
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proportion ε falls into the hole, it is easy to see that `(An) = (1− ε)n. Hence

E(A; `) = − lim
n→∞

1
n

log `(An)

= − lim
n→∞

1
n

log(1− ε)n

= − log(1− ε).

Example 1.22 (Doubling map with a varying hole). Let T : I 	 be the usual doubling

map, given by T(x) := 2x (mod 1). For a ∈ (0, 1] let A := [0, a) and H := [a, 1], as shown

in Figure 1.3(a).
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(a) Graph of T.
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(b) Escape from A as a function of a.

Figure 1.3: Doubling map with a hole.

First, we will consider the case of a = 3/4. The first three n-step survivors are

A = [0, 3/4)

A1 = T−1[0, 3/4) ∩ [0, 3/4) = [0, 3/8) ∪ [4/8, 6/8)
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A2 = T−1([0, 3/8) ∪ [4/8, 6/8)) ∩ [0, 3/4) = [0, 3/16) ∪ [4/16, 6/16) ∪ [8/16, 12/16).

Since it is difficult to see any pattern here, we resort to a coding approach. In Example

1.11 we stated that the one-sided full two-shift (ΣM, σ) with its Markov measure µ(p,P)

is metrically isomorphic to (T, `) with isomorphism π : I→ ΣM. The hole H = [3/4, 1]

corresponds to the cylinder H∗ := [11]0 as H = π−1H∗. Let A∗ be the complement of the

hole H∗. The first few n-step survivors under σ are:

A0
∗ = {[00]0 ∪ [01]0 ∪ [10]0} ,

A1
∗ = {[000]0 ∪ [001]0 ∪ [010]0 ∪ [100]0 ∪ [101]0}

A2
∗ = {[0000]0 ∪ [0001]0 ∪ [0010]0 ∪ [0100]0 ∪ [0101]0 ∪ [1000]0 ∪ [1001]0 ∪ [1010]0} .

The pattern is now much more obvious: An
∗ is the union of all cylinders of length (n + 2)

at position 0 that do not contain the block [11]. The recursive formula for the number of

(n + 2)-cylinders in each An
∗ is

#An
∗ = #An−1

∗ + #An−2
∗ ,

hence #An
∗ are the Fibonacci numbers {3, 5, 8, . . . } and #An

∗ is approximated5 by φn for

large n, where φ =
√

5+1
2 is the golden ratio. We can then calculate the escape rate from

A∗ under the action of the left shift:

E(A∗; µ(p,P), σ) = − lim
n→∞

1
n

log µ(p,P)(An
∗)

= − lim
n→∞

1
n

log
(

2−(n+2)#An
∗
)

= − lim
n→∞

1
n

log
(

2−(n+2)φn
)

= − log(φ/2)

= log 2− log φ, (1.14)

but by Proposition 1.20 this equals E(A; `, T). We should mention that this result is

5The ratio #An∗/φn approaches a constant as n→ ∞ and in particular lim(1/n) log(#An∗/φn) = 0.
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hardly new or surprising. The hole corresponds to [11], which is the forbidden block

of the golden mean shift A∞ = Σ{[11]}. The topological entropies of the full 2-shift and

the golden-mean shift are log 2 and log φ respectively. It is well-known that for shifts

of finite type, escape rate corresponds to the difference in topological entropies hence

(1.14).

A similar6 method may be applied to a = 2/3 to show that the corresponding escape

rate also equals − log(φ/2), thus, as escape is monotone (Proposition 1.14 (i)) it must be

constant for all a ∈ [2/3, 3/4]. More methods and results regarding escape from dyadic

intervals of the doubling map can be found in [21].

For a whole range of values of a we approximate escape from [0, a) by using Ulam’s

method (for open systems outlined in Section 1.2.7) and plot the results in Figure 1.3(b).

Note the “devil’s staircase” structure, and that the plot verifies our claim that escape is

constant for a ∈ [2/3, 3/4]. It is also an interesting fact that the mapping a 7→ E([0, a)) is

continuous on all of (0,1] and differentiable at a = 1, with derivative −1/2 (cf. [21, 75]).

1.2.3 Conditionally Invariant Measures

As we mentioned previously, invariant measures are important objects in the study of

closed dynamical systems. Their open-system-analogues are conditionally invariant mea-

sures — measures that are invariant under the condition of non-escape. We describe

these formally below.

Definition 1.23. Consider a dynamical system (X,B, m, T) and a measurable domain

A ⊆ X. A measure µA on X is said to be conditionally invariant with respect to A if

µA(B)µA(T−1A ∩ A) = µA(T−1B ∩ A), for all B ∈ B, (1.15)

or, perhaps more intuitively7

µA(T−1
A B) = µA(T−1

A A)µA(B), for all B ∈ B. (1.16)

6But not identical; since H = [2/3, 1] is not a Markov hole the calculation is a little more involved.
7Compare (1.16) with definition of conditional probability.
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Substituting B = A into either equation we see that µA(A) = 1 so µA is necessarily a

probability on A. Since we do not care what the value of µA is on H, to avoid ambiguity,

we shall generally assume that µA is supported on A. Note that if A = X then (1.15)

becomes

µA(B) = µA(T−1(B)), for all B ∈ B

hence µA = µ is invariant. Also any invariant measure on an invariant subset of

the survivor set is trivially conditionally invariant. Both of these facts suggest that

conditionally invariant measures in open systems are a natural generalisation of invariant

measures in closed systems.

Observe that µA(An) = (µA(A1))n, therefore escape rate with respect to a condition-

ally invariant measure is trivial to compute:

E(A; µA) = − lim
1
n

log(µA(A1))n = − log µA(A1).

Equation (1.16) may also be written more concisely as µA ◦ T−1
A = λµA where

λ := µA(A1). For this reason8, λ is sometimes called the eigenvalue9 of the conditionally

invariant measure µA. Since it is often more convenient, we may work with the eigen-

value λ = λ(A) ∈ [0, 1], rather than with the escape rate E(A) = − log λ(A) ∈ [0, ∞].

Example 1.24. Let us return to the tent map with a hole from Example 1.21. It is easy to

see that setting µA to be the Lebesgue measure on [0, 1] will satisfy (1.15).

1.2.4 Conditional Perron-Frobenius Operator

Definition 1.25. Let (X,B, m, T) be a closed dynamical system with Perron-Frobenius

operator P , and let A ⊆ X be measurable. The conditional Perron-Frobenius operator with

respect to A, denoted by PA, is defined for any f ∈ L1(X,B, m) by

PA( f ) = χAP(χA · f ).

8And its connection to the Perron-Frobenius operator, which will be described later.
9Other proposals have been to call λ the geometric rate of escape or retention ratio.
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We have already noted that in a closed system, stationary points of the Perron-

Frobenius operator are densities corresponding to absolutely continuous (with respect

to m) invariant measures. Analogously, it is a well-known fact that, in an open system,

positive eigenfunctions of the conditional Perron-Frobenius operator are densities of the

absolutely continuous conditionally invariant measures (ACCIM) [95]. For completeness

we formalise and prove this below.

Proposition 1.26. Let A be a measurable subdomain of a dynamical system (X,B, m, T) and

let PA : L1(X,B, m) 	 be the corresponding conditional Perron-Frobenius operator. Suppose

that a non-negative function f ∈ L1(X,B, m) satisfies
∫

A f dm = 1 and PA f = λ f for some

λ ∈ (0, 1]. Then the measure with density f , µA := f · m, is conditionally invariant with

eigenvalue λ.

Proof. Since PA f = λ f we have for any set B ∈ B

λµA(B) = λ
∫

B
f dm

=
∫

B
PA f dm

=
∫

B
P(χA · f ) dm

=
∫

T−1B∩A
f dm

= µ(T−1B ∩ A).

Substituting B = A into the expression above, we see that λ = µ(A1). Hence µ satisfies

µ(A1)µ(B) = µ(T−1B ∩ A) and is therefore conditionally invariant.

Definition 1.27. Often it is useful to define the normalised conditional operator, P̂A, by

P̂A f =
PA f
‖PA f ‖L1

, f ∈ L1(X,B, m). (1.17)

Nonnegative fixed points of P̂A are densities of absolutely continuous conditionally

invariant measures.

Example 1.28. Consider the doubling map with a hole from Example 1.22. The condi-
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tional Perron-Frobenius operator PA is given by

PA f (x) =





1
2 f
( x

2

)
+ 1

2 f
(

x+1
2

)
, 0 ≤ x < 2a− 1

1
2 f
( x

2

)
, 2a− 1 ≤ x < a

0, otherwise.

When a = 3/4 we find that PA f = λ f is satisfied by the following density

f (x) =





1
φ2 , 0 ≤ x ≤ 1/2

1
φ3 , 1/2 < x ≤ 3/4

0, otherwise,

with λ = φ/2. Therefore, by Proposition 1.26, the measure µA = f · ` is conditionally

invariant.

1.2.5 Existence and Uniqueness of Conditionally Invariant Measures

An important question in the study of open dynamical systems is whether there exists

a conditionally invariant measure. Sufficient conditions for an open dynamical system

were given by Collet et al. [28, 29].

As is the case of invariant measures in closed systems, conditionally invariant mea-

sures in open systems are rarely physically relevant and most do not provide useful

information about the underlying dynamics. The paper of Demers and Young [44] gives

insightful discussions on when a conditionally invariant measure is natural or physically

relevant. Absolute continuity (usually with respect to Lebesgue or SRB) is not enough,

and the authors demonstrate this by constructing uncountably many absolutely continu-

ous conditionally invariant measures (ACCIM) in a fairly general setting. They conclude

that a natural conditionally invariant measure would be one that is absolutely continuous and

whose density f is a limit point of Pn
A1.

Even though ACCIMs are rarely unique, it is often the case that when restricted

to densities in a set of sufficiently regular functions essentially bounded away from
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zero and infinity, a unique ACCIM exists. This is a desirable case as, by Proposition

1.19, the corresponding eigenvalue determines the Lebesgue escape rate. The standard

approach here is to look for fixed points of the normalised conditional operator and

often an open-systems-equivalent of a Lasota-Yorke inequality needs to be satisfied10.

First results concerning ACCIMs were proved in Pianigiani and Yorke [95] for open

expanding maps on Rn that possess a finite Markov partition11, followed by results of

Collet et al. [30, 31]. More recently, many authors have studied ACCIMs of open interval

maps with non-Markov holes, often with the condition that the hole is sufficiently small;

see for example [20, 42, 43, 86, 107]. Other similar work has been done in the settings

of Anosov diffeomorphisms, [23–26], open billiards [88], Markov chains [50, 108] and

topological Markov chains [32].

1.2.6 More Examples and Useful Results

Absorbing-state Markov Chains

Recall that a state i of a Markov chain is said to be absorbing if its transitional probability

pii = 1. That is, once the state i is entered the process remains in this state forever. This

closely resembles the behaviour of an open system, where once an orbit enters the hole,

it is terminated. It is thus not surprising that the idea of conditionally invariant measures

was originally borrowed from the area of absorbing-state Markov chains first studied by

Vere-Jones [108].

Repellers and Thermodynamic Formalism

As we mentioned earlier, survivor sets are also called repellers. A repeller is defined to be

a compact, T-invariant set K that has an open neighbourhood U so that

K = {x ∈ U : Tn(x) ∈ U, ∀n ≥ 0}. (1.18)

10Unlike closed dynamical systems, proving a Lasota-Yorke inequality for the conditional Perron-
Frobenius operator does not automatically imply the existence of an ACCIM for the underlying open
system.

11If the corresponding system without a hole possesses a Markov partition, and the hole is Markov (a
union of elements of the partition), then the system with hole will satisfy this property.
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The escape rate from a repeller is assumed to be the escape rate from any neighbourhood

U satisfying (1.18).

In particular, any hyperbolic fixed point of a dynamical systems is a repeller, but

more interestingly, many dynamical systems possess so called strange repellers which

are (generalised) Cantor sets. In his book, Falconer [48] refers to repellers of expanding

interval maps T as “cookie-cutter sets” and notes that these sets arise as attractors of

related iterated function schemes, which may be viewed as inverse branches of T.

Recall that the topological pressure of a potential ϕ is defined as

P(T, ϕ) := sup
{

hν(T) +
∫

ϕ dν : ν is a T-invariant probability
}

, (1.19)

where hν(T) is the Kolmogorov-Sinai entropy of T (see e.g. [109] for the definitions).

Any measure that achieves this supremum is called an equilibrium state. Note that an

equilibrium state for ϕ = 0 is a measure of maximal entropy and the pressure coincides

with the topological entropy of the system.

For T that is uniformly expanding and C2 on a repeller K in a smooth Riemannian

manifold, we have the escape rate formula:

E(K; `, T) = −P(T|K,− log |JT|) (1.20)

= − sup
{

hµ(T)−
∫

log |JT| dµ

}
, (1.21)

where the supremum is taken over all T-invariant Borel probability measures µ on K

[16, 18, 30]. The result also holds for uniformly hyperbolic repellers in which case the

potential − log |JT| is additionally restricted to unstable manifolds12 [22, 24, 25, 88, 110].

Non-uniformly hyperbolic counterexamples of Young [110] and Baladi et al. [8], however,

show that more generally (1.20) is not true and only an upper bound on escape rate

remains.

There also exists an interesting relation between topological pressure and dimension,

known as the Bowen-Ruelle formula [17]. More precisely, the Hausdorff dimension of an

12The formula in (1.21) may be viewed as a generalisation to Pesin’s Entropy Formula [93], which states
that in certain closed systems Kolmogorov-Sinai entropy equals the sum of positive Lyapunov exponents.
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expanding repeller is the unique s ≥ 0 such that

P(T|K,−s log |JT|) = 0. (1.22)

Let us return to Example 1.21 with ε = 1/3. Here K is the middle-thirds Cantor set

and JT = 3 everywhere. Hence (1.22) becomes

sup {hν(TK)− s log 3} = 0.

Now on K, T is topologically conjugate to the full 2-shift and has topological entropy

equal to log 2. Hence the Hausdorff dimension of the Cantor set is s = log 2/ log 3.

Shifts of Finite Type

In our final chapter we will investigate topological entropy of shifts of finite type. As

suggested by Example 1.22, when we introduce a cylindrical hole Cj(b) to a shift of finite

type ΣF, the resulting survivor set is a subshift of ΣF with collection of forbidden blocks

F∪ {b}. The escape rate into the hole (of the measure of maximal entropy) may the seen

as the loss in topological entropy, that is

E(XF \ Cj(b)) = htop(XF)− htop(XF∪{b}). (1.23)

Similarly, this formula holds when the hole is a union of cylinders. This is well-known

and (1.23) may be regarded as a special case of (1.21). Relevant studies include the paper

of Lind [84] where loss in topological entropy is investigated for small perturbations,

work of Collet et al. [32] regarding escape into cylindrical holes and more recently work

of Ferguson and Pollicott [49] where the authors generalise some of the results of [84]

and [21]. In this light, the problem of maximising topological entropy of subshifts of

finite type is equivalent to the problem of minimizing escape rate into holes that are

unions of cylinders. We will discuss this idea further in Chapter 5.
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A Sequence of Shrinking Holes

Consider a closed dynamical system with a sequence of holes Hn, where m(Hn) → 0.

Suppose that for every Hn a unique natural ACCIM µn exists. Do these converge to

the natural ACIM of the closed system as n → ∞? This is an important question

concerning whether an open system with a small hole may be viewed as a perturbation

of the corresponding closed system. Demers [42, 43], using Young towers [111], shows

that the answer is affirmative in the setting of uniformly expanding interval maps and

certain logistic maps with holes. In Chapter 3 will use similar techniques to prove such

convergence for Pomeau-Manneville maps [97] with holes.

Another related problem is in regard to the behaviour of escape rate as the hole closes.

For maps that are uniformly expanding, it is easy to show that13 E(X \ Hn) ∼ m(Hn) as

m(Hn)→ 0. Bunimovich and Yurchenko [21] study the doubling map with the Lebesgue

measure and consider Markov holes, Hn of length 2−n. By studying the isomorphic full

2-shift with the Bernoulli measure, they compute the asymptotics of E(A \ Hn) as n→ ∞

to first order and relate them to the period of the “infinitesimal hole” — the unique point

contained in every Hn. Subsequently these results have been generalised to escape from

shifts other than the full shift in [49]. Keller and Liverani [75] also study the escape rates

of systems with small holes as an application of an abstract perturbation result. They

consider Lasota-Yorke maps with possibly countably many branches and a family of

compact interval holes shrinking to a point z as ε→ 0. All three papers provide formulae

for the limiting ratio of escape rate to the size of the hole, dependent on the periodicity

of the infinitesimal hole. In Chapter 3 we will consider a similar problem of determining

the asymptotics of escape rate with size of the hole for non-uniformly expanding interval

maps.

13Throughout the thesis we will use the following (standard) Big-O notation: f (x) = O(g(x)) as x → a
if and only if there exist positive real numbers M and δ such that | f (x)| ≤ M|g(x)| whenever |x− a| < δ
(if a = ∞ then we replace “whenever |x− a| < δ” by “for all sufficiently large x”). If both f (x) = O(g(x))
and g(x) = O( f (x)) as x → a, then we write f (x) ∼ g(x) as x → a (not to be confused with equivalence
of measures, where we use the same symbol).
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Escape Rate and the Position of the Hole

It is shown in [21] that for the doubling map with a hole the escape rate is related to the

first return time of a positive measure subset of the hole: longer return time to the hole

implies faster escape rate into the hole. More precisely, for times longer than the return

time, longer return time to the hole implies smaller survivor sets. Unfortunately, the

proofs rely heavily on combinatorial arguments based upon the full 2-shift (or N-shift)

structure, and thus are specific to the doubling map and systems metrically conjugate

to the doubling map. Even for reasonably simple systems such as piecewise affine

expanding Markov maps, similar results are not known.

In Chapter 2 we will consider a related problem of minimising escape rate while

keeping constraints on the measure of the hole.

Using Open Systems to Model Closed Systems

In this thesis, one of the main ideas is that a metastable system may be viewed as a

combination of two or more open systems with low escape rate. We describe two recent

papers which explore similar concepts.

Tokman et al. [105] study piecewise smooth maps of the interval that possess two

invariant subintervals of positive Lebesgue measure and exactly two ergodic ACIPMs.

The pre-image of the boundary is called the infinitesimal hole and both ACIPMs are

required to be positive on it. They perturb such maps slightly to destroy the two

invariant subsets and show that the (now unique) ACIPM may be approximated by a

convex combination of the two initial ergodic ACIPMs. The perturbation needs to be

such that, regarding the dynamics on each previously invariant subinterval as open, no

holes are created near the boundary point. The authors show that the unique ACIPM

may be approximated as a convex combination of the two ACIPMs of the unperturbed

system, where the weights are determined by the limiting ratio of escape rates of the

corresponding open systems in presence of the perturbation.

Góra et al. [69] generalise results of [105] to higher dimensions. Their approach is to

start with two maps: one that preserves two or more disjoint invariant sets in Rn and the

other which does not. Based on these, they define a collection of random maps which
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model the perturbation.

1.2.7 Ulam’s Method in Open Dynamical Systems

Accurate numerical approximation of escape rate by “brute force” attempts to evaluate

the limit in (1.11) or (1.12) is generally extremely difficult. A reason for this is because

the limiting set A∞ is often fractal and errors propagate in calculations of the measure

of the sets An. A more effective approach is to approximate a conditionally invariant

measure whose eigenvalue determines the escape rate. If we know (or assume) that the

density of this ACCIM is bounded away from zero and infinity, the approximation of its

corresponding eigenvalue gives us the Lebesgue escape rate.

Most work in the topic of rigorous numerical approximation of escape rates has been

by Bahsoun et al. [4–6], who provide algorithms that use a modified version of Ulam’s

method [106] to perform necessary computations.

Given an open dynamical system T : A → X, for a finite partition η of X we will

require that either H ∈ η or H is a union of sets in η. Ulam’s approximation of the

conditional Perron-Frobenius operator PA is given by

PA,η = Πη ◦ PA ◦Πη,

where as in (1.8), Πη is the projection onto the space spanned by characteristic functions

of sets in η. The corresponding matrix representation with respect to the normalised

basis of characteristic functions is PA,η where

(PA,η)ij =




(Pη)ij, Bi, Bj * H

0, otherwise.

Any non-negative left eigenvector of PA,η and its corresponding eigenvalue will approxi-

mate a conditionally invariant density and the escape rate (w.r.t. m), respectively.



Chapter 2

Relating Open and Closed Dynamical

Systems

In this chapter we present some results motivated by the problem of identifying regions

of slow mixing in closed dynamical systems. A well-known heuristic approach is first to

detect eigenfunctions f of the Perron-Frobenius operator that correspond to large real

non-unit eigenvalues ρ . 1. This is often indicative of almost-invariant sets [36, 39, 89].

One then partitions the domain into two regions A+ and A− according to the positive

and negative supports of the acquired eigenfunction f .

In our approach we shall use the same algorithm, but consider the two elements A+

and A− of the partition as the domains of two disjoint open dynamical systems. We will

show in Theorem 2.5 that the escape from each set is bounded above by − log ρ.

We will also show that in order to obtain meaningful results, one requires the Perron-

Frobenius operator to possess a spectral gap. We apply our results in the setting of

Lasota-Yorke maps, where the spectral gap is achieved in the space of functions of

bounded variation.

The material in this chapter, apart from the final section on flows, has appeared in

[65].
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2.1 Almost-invariant Sets

Definition 2.1 (Invariance ratio [36, 39]). Let T : (X,B, m) 	 be a measurable non-

singular transformation. For a measurable set A ∈ B the invariance ratio is defined to

be

$(A; m) :=
m(T−1A ∩ A)

m(A)
. (2.1)

Almost-invariant or metastable sets [39, 54, 56] are sets A for which $(A) is close to 1.

That is to say that the probability for a point in A to remain in A after one application

of T is close to one. Dynamical systems that are close to non-ergodic typically have

a decomposition into non-trivial sets, each of which has a high invariance ratio. The

identification of such almost-invariant or metastable sets is often very difficult; see [62] for

a recent computational study. Application areas include molecular dynamics [102] and

ocean dynamics [37, 63].

Definition 2.2. Let (X,B, m) be a measure space. For a function f ∈ L1(m) we denote

by supp( f ) := {x ∈ X : f (x) 6= 0} the support of f .

By f+ := max( f , 0) and f− := max(− f , 0), we define the positive and negative

parts of f ∈ L1(m). It has been known for a while that in the presence of a large real

second eigenvalue of the Perron-Frobenius operator, the supports of the positive and

negative parts of the corresponding eigenfunction are usually almost-invariant. That is,

if P f = ρ f with ρ . 1, then the sets

A+ = supp( f+), and A− := supp( f−) (2.2)

may be seen as m-almost invariant. Dellnitz and Junge [39] formalised this claim for a

measure |ν|, obtained from a signed measure ν with density f (with respect to m).

In the Lasota-Yorke [83] (or Rychlik [99]) map setting, with P : BV 	, the value τ

in (1.4) is intimately connected with the average rate of expansion experienced along

orbits. Thus BV spectral points of P larger than 1/τ in magnitude cannot be explained

by local expansion of T and must be due to the influence of global structures such as

almost-invariant and metastable sets, producing decay rates slower than the average local

expansion rate.
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Almost-invariant sets have formally been associated with isolated spectral points of

P [38]. In such a setting, if the map possesses a Markov partition and one restricts oneself

to searching for almost-invariant sets that are unions of Markov sets, then lower and

upper bounds for the largest possible almost-invariance ratio are given by the second

largest eigenvalue of an associated Markov chain [54].

In our main result of this chapter (Theorem 2.5) we will demonstrate that sets A+ and

A− constructed in (2.2) also possess a low escape rate (of the measure m). Thus, there is

a strong connection between almost-invariant sets and the construction we have used to

define our slow escape sets A+ and A−. One might therefore naively expect that sets with

low escape rate should have a high invariance ratio and vice-versa. However, escape rate

is an asymptotic quantity, while almost-invariance measures exchange under just one

iteration of a map. We give examples below to demonstrate that a set may simultaneously

have (i) high almost-invariance and high escape rate and (ii) low almost-invariance and

low escape rate.

Example 2.3 (High almost-invariance, infinite escape rate). Let T : S1 	 be the irrational

rotation of the circle, T(x) := x + 2πα where α 6= 0 is small. Let A = [0, π/2]. The

pre-image of A is given by T−1A = [2πα, π/2 + 2πα]. Thus the invariance ratio of A

with respect to Haar measure on the circle is (π/2− 2πα)/(π/2) ≈ 1. However, for

1 < 4nα < 3 we have T−n A ∩ A = ∅, therefore escape rate from A with respect to any

measure is infinite; see Figure 2.1.

Example 2.4 (Low almost-invariance, arbitrarily low escape rate). Let T : I 	 be defined

as follows:

T(x) =




(1 + ε)x, 0 ≤ x ≤ 1/4;

2x (mod 1), 1/4 < x ≤ 1.

Let A = [0, 1/2]. The invariance ratio of A with respect to the Lebesgue measure equals

to 1/2. However its escape rate is log(1 + ε) ≈ 0; see Figure 2.2.
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Figure 2.1: Illustration of Example 2.3 with α = 1/72 and n = 26.

2.2 Escape Rates and the Perron-Frobenius Spectrum

Here we state and prove the main result of this chapter, which provides a bound on

escape rate from sets in (2.2) by relating the eigenvalue ρ of the Perron-Frobenius operator

P to the largest eigenvalues of the conditional operators PA+ and PA− .

Theorem 2.5. Let T : X 	 be a non-singular transformation on the finite measure space

(X,B, m) and let P : L1(X,B, m) 	 be the corresponding Perron-Frobenius operator. Suppose

that P has a real positive eigenvalue 0 < ρ < 1, with corresponding bounded eigenfunction

−∞ < f < ∞. Define the measurable sets A+, A− ⊂ X by

A+ := supp( f+) and A− := supp( f−).

Then one has E(A+; m) ≤ − log ρ and E(A−; m) ≤ − log ρ.

Proof. Define a finite measure ν on X by

ν(B) :=
∫

B
| f | dm, B ∈ B.
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Figure 2.2: Graph of T in Example 2.4, with ε = 0.2.

Now note that for all n ≥ 0 we have f > 0 on An
+. Also An+1

+ = T−1An
+ ∩ A+, therefore

ρν(An
+) = ρ

∫

An
+

f dm

=
∫

An
+

P f dm

=
∫

T−1 An
+

f dm

=
∫

T−1 An
+∩A+

f dm +
∫

T−1 An
+∩(X\A+)

f dm

≤
∫

T−1 An
+∩A+

f dm

= ν(An+1
+ ),

where the inequality above is due to f ≤ 0 on X \ A+. Since ν(An+1
+ ) ≥ ρν(An

+), by (i)

of Proposition 1.15 we have E(A+; ν) ≤ − log ρ. It remains to show that E(A+; m) ≤
E(A+; ν). Since f ≤ C for some constant C > 0, we have ν(An

+) ≤ Cm(An
+) for all n ≥ 0.
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This gives

E(A+; ν) = − lim inf
n→∞

1
n

log(ν(An
+))

≥ − lim inf
n→∞

1
n

log(Cm(An
+))

= E(A+; m).

Thus

E(A+; m) ≤ E(A+; ν) ≤ − log ρ

The inequality for A− is obtained by considering − f in place of f and following the

same procedure.

Remark 2.6. At the time of writing this thesis, it was pointed out to me that Lawler and

Sokal used a similar approach in [81, Lemma 3.4]. The setting of [81] is reversible Markov

processes with killing and the authors relate the spectrum of a self-adjoint L2 operator

describing a Markov process to the spectral radii of two operators associated with the

processes with killing. Our results do not assume reversibility and apply in a Banach

space, thus are more general.

Corollary 2.7. Let T : (X,B, m) 	 be non-singular with Perron-Frobenius operator P :

L1(X,B, m) 	 that admits a positive real eigenvalue 0 < ρ < 1. Then

inf
A∈B

max {E(A; m), E(X \ A; m)} ≤ − log ρ. (2.3)

Remark 2.8. If one wishes to create a 2-partition of X such that each element of the

partition has upper escape rate lower than − log ρ, then the set { f = 0}may be absorbed

into either A+ or A−. Enlarging A+ does not increase E(A+) so Theorem 2.5 also holds

for A⊕ := X \ A− and A	 := X \ A+. The desired 2-partition is then {A+, A	} or

{A⊕, A−} (or any other redistribution of { f = 0} among the two sets).

Remark 2.9. By Proposition 1.14 (ii), we may replace TA with TA1 and obtain an open

system with an identical escape rate. We may think of TA1 as an open system on A with

hole A \ T−1A. Consider now our partition {A+, A	} of X formed from the positive
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and non-positive parts of some f ∈ L1 satisfying P f = ρ f , 0 < ρ < 1. By the above

remarks, the open system TA+ has the same escape rate as the open system TA1
+

, where

the hole for the latter system is A+ \ T−1A+ = A+ ∩ T−1A	 ⊂ A+. Thus, while the

hole H = A	 for the open system TA+ is very large in measure, we may easily construct

another system TA1
+

with the same escape rate, but a hole H = A+ ∩ T−1A	 that is likely

to be much smaller in terms of m. Similarly, we may define an open system TA1
	

, with

hole A	 \ T−1A	 = A	 ∩ T−1A+ ⊂ A	; this open system has the same escape rate as

TA	 .

2.3 Spectrum of P in L1

As a motivation for this section we begin with a result of Ding et al. [45].

Theorem 2.10 (Corollary 3.2 [45]). Let (X,B, m) be a σ-finite measure space and T : X 	 be a

non-singular transformation, whose Perron-Frobenius operator P has a positive fixed density. If

0 ∈ sp(P), then sp(P) = {z ∈ C : |z| ≤ 1}.

Consider now a smooth Riemannian manifold X with measure m and T : X 	

differentiable almost everywhere so that its Perron-Frobenius operator P , given by (1.2),

has a fixed ACIM. The following lemma, more specifically than Theorem 2.10, states that

if 0 is an eigenvalue of P , then every point in the open unit disk is also an eigenvalue.

Lemma 2.11. Let P be as above and suppose that there exists h ∈ L∞(m) such that h > 0 and

Ph = h. Suppose also there is a nonzero f̂ ∈ L∞(m) satisfying P f̂ = 0. Every ρ ∈ C such that

|ρ| < 1 is an eigenvalue of P with corresponding eigenfunction f ∈ L∞(m).

Proof. This proof appears in a slightly different context in the proof of [7, Theorem 1.5 (7)].

If ρ = 0 we are done. Let ρ 6= 0. Then f := ∑∞
n=0 ρn( f̂ /h) ◦ Tn · h is an eigenfunction

with eigenvalue ρ. To see this, we note that f ∈ L∞ and compute

P f (x) = ∑
y∈T−1x

∞

∑
n=0

ρn( f̂ /h) ◦ Tn(y) · h(y)/|JT(y)|

= ∑
y∈T−1x

f̂ (y)/|JT(y)|+ ∑
y∈T−1x

∞

∑
n=1

ρn( f̂ /h) ◦ Tn(y) · h(y)/|JT(y)|
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= 0 + ρ ∑
y∈T−1x

∞

∑
n=0

ρn( f̂ /h) ◦ Tn(x) · h(y)/|JT(y)|

= ρ
∞

∑
n=0

ρn( f̂ /h) ◦ Tn(x) ∑
y∈T−1x

h(y)/|JT(y)|

= ρ f (x).

Remark 2.12. A related result of Collet and Isola [27] shows that if T is a piecewise C∞

expanding Markov map with bounded first and second derivatives, then the spectrum of

P , acting on C0 functions, is the entire unit disk and every spectral point is an eigenvalue

of infinite multiplicity.
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Figure 2.3: Graphs of L1 eigenfunctions for the doubling map x 7→ 2x for ρ = 0.25, 0.5,
and 0.75.

Example 2.13. Figure 2.3 shows three eigenfunctions for the doubling map on [0, 1]. We

may apply Theorem 2.5 to any one of these eigenfunctions to obtain two open systems,

both of which have escape rates slower than − log ρ. In order to be able to apply Lemma

2.11 we note that f̂ = χ[0,1/2] − χ(1/2,1] satisfies P f̂ = 0 and h ≡ 1 satisfies Ph = h. Each

eigenfunction produces a very large hole (of Lebesgue measure 1/2), and Lemma 2.11

says that one may set ρ as close to unity as one wishes, to obtain very slow escape rates.

The penalty that one pays for producing escape rates less than log 2 are sets A+ and A−
that may be very complicated. We discuss this further in the next section.
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2.4 Application to Lasota-Yorke Maps

Let I = [0, 1] and let ` denote the Lebesgue measure on I. Firstly, we shall formally define

Lasota-Yorke maps [80].

Definition 2.14 (Lasota-Yorke map [80]). A transformation T : I 	 is said to be a Lasota-

Yorke map if the following conditions are satisfied:

(LY1) There exists a finite partition {a0, a1, . . . an} with a0 = 0 and an = 1 so that T is

monotone and C2 on the interior of each interval (ai−1, ai), i = 1, . . . , n.

(LY2) T is uniformly expanding; that is τ := inf |T′| > 1 where the infimum is taken over

all points in [0, 1] for which the derivative exists.

Lasota-Yorke maps were shown [80] to possess absolutely continuous conditionally

invariant measures with density of bounded variation. The following lemma states that

for interesting Lasota-Yorke maps, zero is in the L1-spectrum of the Perron-Frobenius

operator, thus by Lemma 2.11 we can expect the L1-spectrum of P to be the entire unit

disk.

Lemma 2.15. Let T be a Lasota-Yorke map and suppose that there are two monotone branches

Ti := T|(ai−1,ai)
and Tj := T|(aj−1,aj)

, i 6= j, for which

Ti(ai−1, ai) ∩ Tj(aj−1, aj) 6= ∅.

Furthermore, suppose that the distortion estimate

ess sup
x,y∈I

∣∣∣∣
T′(x)
T′(y)

∣∣∣∣ < C (2.4)

holds for some constant C ∈ R. Then there exists a nonzero f̂ ∈ L∞(`) such that P f̂ = 0.

Proof. We construct a nonzero f̂ ∈ L1(`) with P f̂ = 0. As Ti and Tj are monotone

and expanding, the set Ti(ai−1, ai) ∩ Tj(aj−1, aj) is an interval, which we denote (x1, x2).
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Define f̂ by

f̂ (x) =





0, x ∈ [0, 1] \ (T−1
i (x1, x2) ∪ T−1

j (x1, x2))

1, x ∈ T−1
i (x1, x2)

ζ(x), x ∈ T−1
j (x1, x2)

We now determine the value of ζ(x) so that P f̂ = 0. For x ∈ (x1, x2) we have

P f̂ (x) = ∑
y∈T−1x

f̂ (y)
|T′(y)|

=
1

|T′i (T−1
i (x))|

+
ζ(T−1

j (x))

|T′j (T−1
j (x))|

. (2.5)

Equating (2.5) with zero and rearranging, we obtain

ζ(T−1
j (x)) = −

|T′j (T−1
j (x))|

|T′i (T−1
i (x))|

,

therefore ζ = −|T′j /T′i | which, by (2.4) is essentially bounded so f̂ ∈ L∞. For x /∈ (x1, x2)

clearly P f̂ (x) is also zero by the definition of f̂ .

Thus we have shown that the L1 Perron-Frobenius spectrum for a large class of

Lasota-Yorke maps is the whole unit disk and the scenario of Example 2.13 holds.

2.5 Spectrum of P in BV

Here, we investigate the spectrum of P in the space of function of bounded variation,

and the corresponding implication on the escape rate.

By replacing the Banach space (L1(`), ‖ · ‖L1) with (BV, ‖ · ‖BV), the space of functions

of bounded variation, as per the discussion in Section 1.1.2 the operator P : (BV, ‖ ·
‖BV) 	 becomes quasi-compact. Eigenfunctions of P that lie in BV give rise to sets A±
with a relatively simple structure.
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Definition 2.16. Let I be the family of sets A ⊂ I where each A ∈ I may be written as a

countable union of intervals, including possibly singleton sets of the form {x} = [x, x].

Proposition 2.17 (Li and Yorke [83]). If f ∈ BV then supp( f ) ∈ I .

Corollary 2.18. If f ∈ BV then f+, f− ∈ BV; thus the sets A+ and A− of Theorem 2.5 belong

to I .

Example 2.19. Returning to the doubling map x 7→ 2x (mod 1), it is well known that the

spectrum of P : BV 	 is contained in {|z| ≤ 1/2} ∪ {1}. Thus, all BV eigenfunctions

corresponding to eigenvalues 0 < ρ < 1 must in fact have ρ ≤ 1/2 = 1/τ. In particular,

this excludes the third, more irregular L1 eigenfunction in Figure 2.3.

Thus, for the doubling map in the BV setting, Theorem 2.5 guarantees the existence

of open subsystems defined on reasonably regular domains (in the sense of Definition

2.16) with escape rates less than log C where C ≥ τ; the theorem does not, however,

guarantee the existence of open systems on regular domains with escape rates less than

log 2 = log τ. In the following section we shall investigate a map for which Theorem 2.5

does predict open systems on regular domains with escape rates slower than log τ.

2.6 A Map with Escape Rate Slower than log τ

In this section we exhibit a map for which we identify two disjoint open subdomains,

both of which have an escape rate slower than log τ. The sets A+ and A− constructed in

Theorem 2.5 are one good way to define such open systems. Via numerical exploration,

we investigate whether there are other decompositions into open systems with even

slower escape rates than the decomposition identified by Theorem 2.5.

As an exponential version of (2.3), given a closed system, we propose to maximise

the following quantity

ψ(A) := min{λ(A), λ(I \ A)}, A ∈ I .
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Example 2.20. Consider the following piecewise affine map T : I 	 [55].

T(x) =





4x, x ∈ [0, 1/8);

4x− 1/2, x ∈ [1/8, 2/8);

4x− 1, x ∈ [2/8, 4/8);

4x− 2, x ∈ [4/8, 6/8);

4x− 5/2, x ∈ [6/8, 7/8);

4x− 3, x ∈ [7/8, 1].

The graph of T is shown in Figure 2.4. The Perron-Frobenius operator of T has an

isolated second largest eigenvalue ρ2 = 1/2 with the corresponding eigenfunction

f2 ∈ BV, shown in Figure 2.5.

0 0.5 1.0
0

0.5

1.0

A
︷

︸︸
︷

︸ ︷︷ ︸
T−1A

︸ ︷︷ ︸
T−1A

Figure 2.4: Graph of T in Example 2.20. The braces indicate the set A = [0, 1/2] and the
two components of its pre-image. The two red lines indicate the components of a set that
maximises ψ in the σ-algebra generated by 32 dyadic intervals.

By considering where f2 is positive and where it is negative, we can partition the
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Figure 2.5: Graph of second eigenfunction f2 of P .

domain of T into two sets, A− = [0, 1/2) and A+ = [1/2, 1]. The escape rate of both of

these sets is much lower than log τ:

E(A−) = E(A+) = − log 3/4 = log 4/3,

compared to log τ = log 4, and both satisfy the inequality of Theorem 2.5. Sets with

even lower escape rates do exist (for example, if we take A = [0, 1− ε] for small enough

ε, then we can make E(A) as close as we like to zero). However it is not immediately

obvious that there exists a set A ∈ I with ψ(A) > 3/4; that is, the escape rate from

both A and the complement of A is lower than − log 3/4 (note that the escape rate of

I \ A = I \ [0, 1− ε] = (1− ε, 1] is − log 1/4).

Intervals of length 1/2. First, we will maximise ψ(A) over the class of all intervals of

length 1/2. Let Iα,1/2 be an interval of length 1/2 centered at x = α ∈ [1/4, 3/4]. Figure

2.6 suggests that ψ(Iα,1/2) is maximised when α = 1/4, that is Iα,1/2 = [0, 1/2], coinciding

with the set A− identified by Theorem 2.5.
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Figure 2.6: Graph of ψ(Iα,1/2) where Iα,1/2 is an interval of length 1/2 with varying center
point α.

Intervals of varying lengths. We also consider intervals Iα,l with centres and lengths

α, l ∈ {i/512}i=0,...,255. Again, we found that ψ(Iα,l) ≤ 3/4 for all α, l considered, with

the maximum achieved by I1/4,1/2.

Finite unions of intervals. We may also consider A to be a finite union of elements

from an interval partition of I. We maximise ψ(A) over all unions of intervals in the

partition I16 := {[i/16, (i + 1)/16) : i = 0, . . . , 15} and find ψ(A) ≈ 0.799 for A =

[0, 7/16) ∪ [1/2, 9/16). If we repeat on the finer partition I32 := {[i/32, (i + 1)/32) : i =

0, . . . , 31} we obtain maximal ψ(A) ≈ 0.8198 for A = [0, 13/32) ∪ [16/32, 19/32). This

set is coloured in red in Figure 2.4.

If we allow more complicated sets than those in I , then combining Theorem 2.5,

Lemma 2.15, and Lemma 2.11 we see that sup{ψ(A) : A ⊂ I} = 1 as per the discussion

in Section 2.3 for the doubling map.

2.7 Related Work

Bunimovich and Yurchenko [21] demonstrate for the doubling map that keeping measure

of a hole constant, escape rate is dependent on the position of the hole. More generally,
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numerical investigations such as Figure 2.6 clearly display the dependence of escape

rate on the position of the hole, and support our observation that the holes identified by

Theorem 2.5 are positioned so as to form open systems with very low escape rates.

The holes considered in Tokman et al. [105] are the holes A+ ∩ T−1A	 ⊂ A+ and

A	 ∩ T−1A+ ⊂ A	 discussed in Remark 2.9. Our results of Theorem 2.5 may be viewed

as generalised converses to [105], who study the particular setting of Lasota-Yorke maps

and require very precise knowledge on the initial closed dynamical system. In contrast,

we begin with a closed system about which we know very little, apart from the existence

of eigenvalues for its Perron-Frobenius operator. From the eigenvalue and eigenfunction

information, we are able to determine two holes and form two open systems the rate of

escape from which is guaranteed to be slower than the rate suggested by the eigenvalue.

In general, the identification of such open systems is far from obvious. Our approach

may handle very general settings (only non-singularity is required to define the Perron-

Frobenius operator), and provides useful information even for macroscopic holes when

the closed system may be far from non-ergodic.

2.8 Open Flows

As an aside, in this section we will describe a method to apply Theorem 2.5 to flows.

Flows are dynamical systems in continuous time. For a reference to relevant definitions

and discussions on flows see for example [79, Chapter 7].

Let X be a Hausdorff space with a Borel σ-algebra and a finite measure m. A flow

{φt}t∈R on (X,B, m) is a family of mappings φ : X ×R → X satisfying the following

properties:

(F1) the map (x, t) 7→ φ(x, t) is continuous;

(F2) φ(x, 0) = x for all x ∈ X;

(F3) φ(φ(x, t), t′) = φ(x, t′ + t) for all x ∈ X and t′, t ∈ R.

For notational convenience and to emphasise the similarity to discrete dynamical systems

one usually abbreviates φ(x, t) = φt(x).
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The concept of open flows, apart from related work on continuous Markov processes

with killing (e.g. [81]) and recent work in Froyland et al. [57, Section 3.3], is largely an

unresearched area of dynamical systems. In contrast to the related concept to entropy,

which cannot be completely translated to the setting of continuous time, defining escape

rate for flows is both natural and intuitive. As in Definition 1.13, for a measurable set

A ⊆ X one defines upper and lower escape rates to be respectively

E(A; m, φ) := − lim inf
t→∞

1
t

log m(At,φ);

and

E(A; m, φ) := − lim sup
t→∞

1
t

log m(At,φ),

where

At,φ := {x ∈ X : φs(x) ∈ A, ∀s ∈ [0, t]} .

If the upper and lower escape rates coincide, then escape rate from A, E(A) exists and

equals to either of these.

It is often useful to model a flow as a discrete-time dynamical system. Let τ > 0 and

consider Tτ := φτ as a time-τ map on X. Observe that for any 0 < τ ≤ t ∈ R

At,φ =
⋂

s∈[0,t]

φ−s A ⊆
n⋂

i=0

T−i
τ A =: An,Tτ ,

where n := bt/τc. Hence m(At,φ) ≤ m(An,Tτ) and, provided all the limits below exist,

we have

E(A; m, φ) = − lim
t→∞

1
t

log m(At,φ)

≥ − lim
t→∞

1
t

log m(An,Tτ)

= −1
τ

lim
t→∞

τ

t
log m(An,Tτ)

= −1
τ

lim
n→∞

1
n

log m(An,Tτ)

=
1
τ

E(A; m, Tτ).
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The difference between the sets At,φ and An,Tτ is precisely the set of points in A which

make faster than τ-long “excursions” out of A; that is Bt,τ = An,Tτ \ At,φ where

Bt,τ :=
{

x ∈ A : (φτ)i(x) ∈ A, i = 0, . . . , n and ∃s ∈ [0, t] so that φs(x) /∈ A
}

.

Lemma 2.21. Let φ be a flow on (X,B, m) and let A ∈ B. Suppose there is a C ≥ 1 such that

for all sufficiently large t and sufficiently small τ one has

m(Bt,τ) ≤ Cm(At,φ). (2.6)

Then

lim
τ→0

1
τ

E(A; m, Tτ) = E(A; m, φ).

Proof. Using the assumption in (2.6) we have

lim
t→∞

1
t

log m(At,φ) ≤ lim
t→∞

1
t

log
[
m(At,φ) + m(Bt,τ)

]

≤ lim
t→∞

1
t

log
[
(1 + C)m(At,φ)

]

= lim
t→∞

1
t

log(1 + C) + lim
t→∞

1
t

m(At,φ)

= lim
t→∞

1
t

log m(At,φ).

Therefore limt(1/t) log
[
m(At,φ) + m(Bt,τ)

]
= limt(1/t) log m(At,φ) which yields the

result:

lim
τ→0

1
τ

E(A; m, Tτ) = − lim
τ→0

1
τ

lim
n→∞

1
n

log m(An,Tτ)

= − lim
τ→0

1
τ

lim
t→∞

1
bt/τc log

[
m(At,φ) + m(Bt,τ)

]

= − lim
t→∞

1
t

log
[
m(At,φ) + m(Bt,τ)

]

= − lim
t→∞

1
t

log m(At,φ)

= E(A; m, φ). (2.7)
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Recall that for a flow φ : X×R→ X, the Perron-Frobenius operator is defined to be

the unique operator P : L1(m)×R→ L1(m) that satisfies

∫

B
Pt f dm =

∫

φ−tB
f dm ∀B ∈ B, f ∈ L1(m), t ∈ R.

The corresponding infinitesimal generator, acting on all f ∈ L1(m) for which the

following limit exists, is given by

A f = lim
t→0

Pt f − f
t

.

Froyland et al. [57, Theorem 3.5] extend our Theorem 2.5 to continuous time to apply

to infinitesimal generators Aε with ε-diffusion. Their proof, however, also holds in the

non-diffusive case when ε = 0. We summarise this result and our discussion above in

the following.

Theorem 2.22 (Froyland et al. [57]). Let A be the infinitesimal generator of a flow φ. Suppose

that A f = ρ f for some ρ < 0 and f ∈ L∞(m), and define A± := {± f > 0}. Then for all

τ > 0
1
τ

E(A±; m, φτ) ≤ −ρ. (2.8)

Theorem 2.23. In the setting of and Lemma 2.21 and Theorem 2.22 we have

E(A±; m, φ) ≤ −ρ.

Proof. The result follows from taking the limit as τ → 0 in (2.8) and applying Lemma 2.21.



Chapter 3

Escape from an Intermittent Map with a

Hole

In this chapter we study Pomeau-Manneville (PM) maps, which are simple examples of

non-uniformly expanding interval maps. Unlike Lasota-Yorke maps from the previous

chapter, the corresponding Perron-Frobenius operators do not exhibit a spectral gap

in BV. This would present a challenge in applying Theorem 2.5, as it is unclear which

non-unit eigenvalue should be chosen to partition the interval into two metastable sets.

Through either creating a small hole in the non-uniformly expanding region, or intro-

ducing a small random perturbation in this region, one can make the dynamics uniformly

expanding. Both procedures may be seen as a result of numerical approximation (coarse

graining) of the Perron-Frobenius operator.

We will present results on existence and convergence of conditionally invariant

measures of PM map with a hole and we will also describe the spectral behaviour of the

Perron-Frobenius operator under coarse-graining.

The material in this chapter is joint work with Rua Murray and Gary Froyland and

has appeared in [61].

We shall begin this chapter by describing the Pomeau-Manneville map in Section 3.1,

state some well-known results, introduce the hole and give some preliminary results

on asymptotics. In Section 3.2 we provide some motivation for the material to follow,

by demonstrating our toy model — a two-state metastable Markov chain. Section 3.3
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deals with the Young tower construction and existence of an ACCIM on the domain

of uniform expansion. In Section 3.5 we state the results on the existence of a second

eigenfunction of the closed system with bounds on the position of the second eigenvalue.

Finally, Section 3.6 describes Ulam’s method or coarse-graining and presents numerical

results illustrating the various scalings with hole sizes.

3.1 Pomeau-Manneville Map with a Hole

Let ` be the Lebesgue measure on I := [0, 1] and let T : I 	 be a Pomeau-Manneville

map [87, 97] which near 0 has the form

T(x) = x + cα x1+α + g(x) (T)

where g is C2 and the derivative g′(x) = o(xα) (in conventional little-o notation1).

Suppose also that T has two branches with breakpoint x0 such that T is one-to-one and

onto (0, 1) on both (0, x0) and (x0, 1). We suppose also that T is C2 on both (x0, 1) and

(ε, x0) for every ε > 0 and that T′ > 1 on both (0, x0) and (x0, 1). Note that T′(0) = 1 so

x = 0 is an indifferent fixed point; see Figure 3.1.

We assume that α ∈ (0, 1), which ensures that these maps support a unique absolutely

continuous invariant (probability) measure2 µ∗, the dynamics of (T, µ∗) is exact, and T

exhibits polynomial decay of correlations with rate O(k1−1/α) (see e.g. [94, 112]). The

slow decay of correlations occurs because typical orbits of T require anomalously long

times to escape from the neighbourhood of 0.

1That is limx→0
g′(x)

xα = 0.
2We reserve unstarred µ here for the corresponding ACIM on the Young Tower (to be introduced later

on).
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0

1

0 1
x0

Figure 3.1: An example of a Pomeau-Manneville map with g(x) = 0, cα = 1 and α = 0.9.

3.1.1 Asymptotic Behaviour in the Neighbourhood of the Fixed Point

Define the sequence (xn) of pre-images of x0 in (0, x0) recursively by T(xn) = xn−1.

Computations of Young [112, Section 6] show that

xn ∼ n−1/α, (3.1)

and `(xn+1, xn) ∼ n−1−1/α. (3.2)

Let (γn) be the sequence of the corresponding points in the right branch, that satisfy

T(γn) = xn−1.

The density h = dµ∗/d` of the ACIM arises as a unique fixed point of the Perron-

Frobenius operator for T. It has been shown [112] that h is bounded away from zero, and

that it admits a singularity at x = 0 with h(x) ∼ x−α as x → 0.

To this end, we fix ε0 ∈ (0, x0) and partition [0, 1] = Iε0,1 ∪ Iε0,2 where Iε0,1 = [0, ε0]

and Iε0,2 = (ε0, 1]. For all formal results we assume that ε0 is a preimage of x0, that is

ε0 = xn−1 for some integer n, so that the hole [0, ε0] is Markov. A simple integration then

shows that
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µ∗([0, ε0]) =
∫

[0,ε0]
h(x) d`(x)

∼
∫

[0,ε0]
x−α d`(x)

∼ ε1−α
0 . (3.3)

For small ε0 the set [0, ε0] is almost-invariant. As mentioned in Section 2.1, almost-

invariant sets are often associated with isolated eigenvalues outside the essential spec-

trum of the Perron-Frobenius operator. However, for Pomeau-Manneville-type maps3,

the eigenvalue 1 corresponding to the invariant density is not isolated from the essential

spectrum on any reasonable subspace of L1, leaving no room for isolated “second” eigen-

values. Nevertheless, small random perturbations, or certain numerical approximations

of P (such as Ulam’s method) do possess a spectral gap.

Some of the main goals of this chapter will be to obtain the asymptotic scaling of

escape rate from Iε0,2 and to explain the scaling of the spectral gap created from the

Ulam approximation. Our preliminary attempt involves a two-state toy model of the

dynamics.

3.2 A Two-state Metastable Model

Our first approximate version of the Perron-Frobenius operator P is a crude two-state

Markov chain approximation, which nevertheless turns out to be an accurate descriptor

of the important dynamics. For any probability measure m one can construct a 2-state

Markov chain with transition matrix

Pε0,m =


1− aε0 aε0

bε0 1− bε0


 ,

3Indeed any expanding maps with indifferent periodic points.
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where

(Pε0,m)ij =
m(Iε0,i ∩ T−1Iε0,j)

m(Iε0,i)
.

This Markov chain describes the movement between a small neighbourhood of 0 and the

rest of the interval. Note that the numbers 1− aε0 and 1− bε0 are the invariance ratios

$(Iε0,1) and $(Iε0,2) respectively, as given by (2.1). The normalised left stationary vector

of Pε0,m is p = (
bε0

aε0+bε0
,

aε0
aε0+bε0

).

We can view this two-state model in two ways:

• As two one-state open systems where the geometric escape rate4 from the two states

equals the invariance ratios, 1− aε0 and 1− bε0 .

• As a coarse-grained closed system; the rate of mixing is determined by the second

eigenvalue of Pε0,m which equals 1− aε0 − bε0 and the scaling of the rate of mixing

as ε0 → 0 is determined by whichever aε0 , bε0 approaches zero most slowly.

We will now attempt to explain the statistical behaviour of T by this crude two-state

model. The numbers aε0 , bε0 are determined by the choice of measure m and there are a

couple of natural choices:

(i) m = ` — one has as ε0 → 0

aε0 =
`([0, ε0] ∩ T−1[ε0, 1])

`([0, ε0])

=
`([xn+1, xn])

`([0, xn])

∼ n−1−1/α

n−1/α

= n−1 ∼ εα
0 ,

and similarly

lim
ε0→0

bε0

ε0
= lim

ε0→0

`([ε0, 1] ∩ T−1[0, ε0])

ε0`([ε0, 1])

4λ where − log λ is the escape rate.
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= lim
ε0→0

γn+1 − x0

ε0

= lim
x→x+0

1
T′(x)

.

Hence bε0 ∼ ε0 as ε0 → 0.

(ii) m = µ — although no closed formula is available, it is well-known that the invariant

density h(x) ∼ x−α as x → 0 and inf h > 0. Thus we obtain

aε0 ∼
∫ xn

xn+1
x−α d`(x)

∫ xn
0 x−α d`(x)

∼ x−α
n (xn − xn+1)

x1−α
n

∼ (n−1/α)−αn−1−1/α

n1−1/α

= n−1 ∼ εα
0

and since h is bounded in the neighbourhood of x0 we also have bε0 ∼ ε0 thus the

behaviour is the same as when m = `.

Below we note some rates of scaling for this two-state model.

• The stationary measure given by the two-state model gives the interval Iε0,1 a

mass of
bε0

aε0+bε0
∼ ε1−α

0 which matches the previously calculated ACIM scaling of

µ∗([0, ε0]) in (3.3).

• The rate of escape from the second state is − log(1− bε0) ≈ bε0 ∼ ε0. We will show

in the next two sections (Theorem 3.9) that this matches the escape from Iε0,2 with

respect to the ACCIM µ∗.

• The rate of escape from the first state is − log(1− aε0) ≈ aε0 ∼ εα
0 . We know that

escape from Iε0,1 is subexponential, giving escape rate of 0. The escape predicted

by the two-state model, however, is effectively the rate experienced when the map

T is perturbed slightly to become uniformly expanding on Iε0,1.
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• The second eigenvalue is 1− aε0 − bε0 . Since aε0 + bε0 ∼ εα
0 , the spectral gap scales

like εα
0 . We will see later (Theorem 3.10) that this matches the scaling of the second

eigenvalue of the Ulam matrix.

Thus, despite its simplicity, this two-state Markov model

(i) captures well the relative mass of Iε0,1 and Iε0,2;

(ii) provides escape rates from the two states consistent with true or perturbed escape

rates for T;

(iii) and captures well the mixing rate of a perturbed version of T.

These properties, expressed very clearly with only two states, will carry across to

matrices arising from Ulam approximations of P .

3.3 Young Tower Construction for PM Map with and with-

out a Hole

We study the open and closed dynamics of T via a Young tower of returns to an interval

away from the indifferent fixed point at 0. For the ACIM, the construction is standard and

can be found in Young [111, 112]. For the ACCIM, we puncture the tower for the closed

dynamics, and look for a fixed point of the normalised conditional Perron-Frobenius

operator on the open tower. Because of the normalisation, the fixed point must have

growing mass concentration as height increases up the tower; some effort is needed to

control this growth.

Recall that T : I 	 satisfies (T) and has two, onto one-to-one branches, with a disconti-

nuity at x0. Set ∆0 = [x0, 1] to be the base. The Young tower ∆ will be constructed as the

tower of first returns to ∆0. For x ∈ ∆0 let

R(x) := min{n > 0 : Tn(x) ∈ (x0, 1)}
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be the return time to ∆0. We partition ∆0, according to the return times, into {∆0,i}∞
i=1

where ∆0,i := {x ∈ ∆0 : R(x) = i}. The tower is defined to be

∆ := {(x, n) ∈ ∆0 ×Z+ : n < R(x)}

so that above any x ∈ ∆0 the height is R(x)− 1. For l ≥ 1 the upper levels of the tower

are ∆l = ∆ ∩ {n = l} partitioned as {∆l,i}∞
i=l+1 where ∆l,i = {(x, l) ∈ ∆ : x ∈ ∆0,i}. A

natural measure ν on ∆ is Lebesgue on ∆0 lifted by upwards translation5.

For α ∈ (0, 1), R is integrable with respect to ` [112], that is
∫

∆0
R d` < ∞. The tower

map F : ∆ 	 is defined by

F(x, l) =




(x, l + 1), l < R(x)− 1

(TR(x), 0), l = R(x)− 1.

The projection map π : ∆ → I given by π(x, l) = Tl(x) defines a semi-conjugacy

T ◦ π = π ◦ F.

Note that F is non-singular and because {[0, x0], [x0, 1]} is a Markov partition for T,

the tower map F maps each top level ∆l,l+1 injectively onto ∆0. These facts are used in

our arguments below.

For x, y ∈ ∆ define the separation time s(x, y) to be the smallest number of returns n to

∆0 such that (FR)n(x) and (FR)n(y) are in different elements ∆0,i of the partition of ∆0.

Proposition 3.1. Let T : I 	 be a Pomeau-Manneville map satisfying (T) and let F : ∆ 	 be the

tower map as described above. There exist constants β ∈ (0, 1) and c < ∞ such for any x, y in

the same level of the tower ∆l the Jacobian of F satisfies the regularity condition

∣∣∣∣
JF(x)
JF(y)

∣∣∣∣ ≤ exp(c βs◦F(x,y)). (JF)

Proof. Let τ0(x) := min{n > 0 : Tn(x) ∈ [x0, 1]} denote the first passage/return time

to ∆0. In order to choose β such that (JF) is satisfied, note that standard estimates (see for

5More formally, ν is the product of the Lebesgue measure and counting measure on the levels of the
tower.
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example [112]) give a constant c0 such that

log
∣∣∣∣

JTτ0(x)
JTτ0(y)

∣∣∣∣ ≤ c0 |Tτ0(x)− Tτ0(y)|

when x, y are in the same one-to-one branch of Tτ0 . Choosing β < 1 large enough so that

|JT(x)| β > 1 for all x ∈ [x1, 1] ensures that |J(Tτ0)(x)| > β−1 for almost every x ∈ (0, 1].

Hence, distances between points are expanded by at least β−1 on every visit to ∆0. If

s(x, y) = n then x, y lie in the same one-to-one branch of (Tτ0)n so

|Tτ0(x)− Tτ0(y)| ≤ βn−1 |(Tτ0)n(x)− (Tτ0)n(y)|
≤ βs◦F(x,y) ν(∆0)

and (JF) follows.

Truncation and Escape from the Tower

Next, for each n we impose a hole in the tower:

Hn := ∪l≥1,i≥n+1∆l,i;

that is, Hn consists of all elements directly above H1
n := ∪i≥n+1∆0,i. Note that the highest

level of ∆ \ Hn is n− 1 and

H1
n = (∆ \ Hn) ∩ F−1Hn; (3.4)

that is H1
n consists of all the points that fall into the hole in exactly one iteration of the

map F (see Figure 3.2).

If P : L1(∆, ν) 	 is the Perron-Frobenius operator on the tower then

Pϕ(x) = ∑
y∈F−1x

ϕ(y)
|JF(y)| , for ϕ ∈ L1(∆)
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[x0, γn] [γn, 1]

H
1
n

∆0,n ∆0,n−1 ∆0,2 ∆0,1

∆1,2

∆n−2,n−1

∆n−1,n

∆n,n+1

∆n+1,n+2

Figure 3.2: Young Tower for Pomeau-Manneville map with base identified with [x0, 1].

and for each hole Hn the conditional operator Pn : L1(∆, ν) 	 is given by

Pn ϕ(x) = χ∆\Hn(x)P(ϕ · χ∆\Hn)(x)

= χ∆\Hn(x) ∑
y∈F−1x\Hn

ϕ(y)
|JF(y)| .

The normalised conditional Perron-Frobenius operator is P̂n : L1(∆, ν) 	which acts

according to

P̂n ϕ =
Pn ϕ

‖Pn ϕ‖ L1
. (3.5)

Distribution of R on the Base

The distribution of R on ∆0 is determined by the exponent α. Note that R(x) = i precisely

when T(x) ∈ (xi−1, xi−2), hence R(x) ≥ i when T(x) ∈ (0, xi−1). Using (3.1) we have

`({x : R(x) ≥ i}) ∼ i−1/α
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and the tail of the return time distribution is

∑
i≥n+1

`({R ≥ i}) ∼ ∑
i≥n+1

i−1/α ∼ n1−1/α

(giving polynomial decay of correlations with rate O(n1−1/α) [112, Theorem 5]) and

ν(H1
n) = `({R ≥ n}) ∼ n−1/α. (3.6)

3.3.1 Existence and Uniqueness of ACCIM

In this section we prove the existence and uniqueness of an absolutely continuous

conditionally invariant probability measure of F : ∆ 	 with hole Hn. It should be

noted that Pianigiani and Yorke [95, Theorems 1 & 2], may be directly applied in our

setting to show these claims. Nonetheless, we shall duplicate the corresponding results

on a suitable tower. Obtaining explicit, uniform bounds on the density of the ACCIMs

(independently of hole size) is necessary for our estimates of escape rates and for showing

convergence of conditionally invariant measures to the invariant measure as the hole

closes6.

For a fixed constant C > 0 let C∗ be a set of regular functions in L1(∆, ν) defined as

C∗ :=
{

ϕ ∈ L1(∆, ν) : ϕ ≥ 0, ϕ(x) ≤ ϕ(y)eCβs(x,y)
for a.e. comparable x, y

}
.

Above, x, y ∈ ∆ are considered comparable if either they are both in the same cell of the

partition ∆l,i, or if they are both in ∆0.

Furthermore for every n ∈ Z+ let Cn ⊆ C∗ be a family of regular densities on ∆ \ Hn,

that is

Cn :=
{

ϕ ∈ C∗ :
∫

∆\Hn
ϕ dν = 1, ϕ|Hn = 0

}
.

Lemma 3.2. For each B > 0 the set CB
∗ := {ϕ ∈ C∗ : ‖ϕ‖L∞ ≤ B} is compact in L1(∆, ν). In

addition, for each n there is a B = B(n) such that Cn ⊆ CB
∗ so that each Cn is also compact.

6The ACCIMs we construct have uniformly bounded densities on ∆ (Corollary 3.4), but not when
projected back to the interval [0, 1].
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Before we start the proof, recall that a family of real-valued continuous functions

{ϕs}s∈S on a compact metric space X are said to be equicontinuous if, for every ε > 0,

there exists δ > 0 such that for all s ∈ S, |ϕs(x)− ϕs(y)| < ε whenever d(x, y) < δ. The

Arzelà-Ascoli Theorem [2, 3, 51] states that {ϕs}s∈S is relatively compact (in the space

of continuous functions with the uniform norm) if an only if it is equicontinuous and

uniformly bounded.

Proof of Lemma 3.2. Straight-forward arguments show that CB
∗ and Cn are closed up to

equivalence a.e. We concentrate on showing that both sets are relatively compact. For

any positive integer M let XM = ∪0≤l<i≤M∆l,i. For another positive integer j let

X j
M = {x ∈ XM : (FR)i(x) ∈ XM, i = 1, 2, . . . , j}

and define X∞
M = ∩∞

j=1X j
M.

Define a metric dβ on ∆ by dβ(x, y) = βs(x,y) (for non-comparable x and y set s(x, y) =

0). We claim that X∞
M is compact in dβ. Note that since F maps each ∆l,l+1 onto ∆0, for any

x′ ∈ {1, 2, . . . , M}N and l, i such that 0 ≤ l < i ≤ M there exists an x ∈ X∞
M ∩ ∆l,i such

that (FR)n(x) ∈ ∆0,(x′)n for all n ∈N. Suppose that {xj} ⊂ X∞
M is a sequence converging

to some x ∈ ∆. Then for any n ∈ Z+ there is an xj such that s(xj, x) ≥ n. In particular

(FR)n(x) ∈ XM for all n ∈ Z+. Therefore x ∈ X∞
M, hence X∞

M is closed. Now for any

ε > 0 let N be the smallest integer such that βN ≤ ε. Define the set

ηε :=
⋃

0≤l<i≤M

{
x ∈ X∞

M ∩ ∆l,i : (FR)n(x) ∈ ∆0,1 ∀n > N
}

.

Then it is easy to see that ηε is a finite ε-net for X∞
M therefore X∞

M is totally bounded. As

X∞
M is a closed and totally bounded subset of a complete metric space it follows that it is

compact.

Now we will show that CB
∗ is equicontinuous. For a given ϕ ∈ CB

∗ and any ε > 0

choose δ = min(β, C−1 log(1+ ε/B)). Take any x, y ∈ ∆ such that dβ(x, y) < δ. As δ ≤ β

we have s(x, y) ≥ 1 so x and y are in the same cell of the partition of ∆. Then

|ϕ(x)− ϕ(y)| ≤ ϕ(x)|1− exp(Cβs(x,y))|
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≤ B(exp(Cβs(x,y))− 1)

≤ B(eCδ − 1)

≤ ε.

Thus CB
∗ is equicontinuous and in particular it is equicontinuous when restricted to

the compact set X∞
M. In addition CB

∗ is uniformly bounded (by B) so by Arzelà-Ascoli

Theorem the restriction to a compact set CB
∗ |X∞

M
is relatively compact in the uniform norm.

To show that CB
∗ is relatively compact in L1(∆, ν) suppose (ϕn) is a sequence in CB

∗ .

Given ε > 0 fix an integer K such that B(exp(CβK)− 1) < ε and then choose M large

enough so that ν(∆ \ XK
M) < ε. As CB

∗ |X∞
M

is relatively compact, there exists a Cauchy

subsequence (ϕnj) and an integer J so that for all j, k > J

|ϕnj(y)− ϕnk(y)| < ε, ∀y ∈ X∞
M. (3.7)

We proceed to show that (ϕnj) is a Cauchy sequence in L1(∆, ν). For any x ∈ XK
M, choose

y ∈ X∞
M so that s(x, y) ≥ K. This is always possible, as for x ∈ ∆l,i we can choose

y ∈ ∆l,i ∩ X∞
M so that x and y are in the same ∆0,j after each of the first K returns to ∆0.

Then

|ϕnj(x)− ϕnj(y)| ≤ B(eCβK − 1) < ε (3.8)

and similarly

|ϕnk(x)− ϕnk(y)| < ε. (3.9)

Using (3.7), (3.8) and (3.9), we obtain that for all x ∈ XK
M and j, k > J

|ϕnj(x)− ϕnk(x)| ≤ |ϕnj(x)− ϕnj(y)|+ |ϕnj(y)− ϕnk(y)|+ |ϕnk(y)− ϕnk(x)|
< 3ε.

Finally, for any j, k > J we have

‖ϕnj − ϕnk‖L1 =
∫

∆\XK
M

|ϕnj − ϕnk | dν +
∫

XK
M

|ϕnj − ϕnk | dν

< 2Bν(∆ \ XK
M) + 3εν(XK

M)
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≤ ε(2B + 3ν(∆)).

Thus (ϕnj) is Cauchy, therefore (ϕn) has a limit point. As CB
∗ is also closed, we conclude

that it is compact in the Banach space L1(∆, ν).

Now consider ϕ ∈ Cn. For any ∆l,i, 1 ≤ l < i ≤ n by the Integral Mean Value

Theorem there exists x∗ ∈ ∆l,i such that

ϕ(x∗) =
1

ν(∆l,i)

∫

∆l,i

ϕ dν,

so

ess sup
∆l,i

ϕ ≤ eCβ ϕ(x∗)

=
eCβ

ν(∆l,i)

∫

∆l,i

ϕ dν

≤ eCβ

ν(∆l,i)
.

Similarly on the base of the tower we obtain ess sup ∆0
ϕ ≤ eC

ν(∆0)
. If we choose

B = B(n) := eC max
(

1
ν(∆0)

, max
1≤l<i≤n

1
ν(∆l,i)

)
,

then Cn ⊆ CB
∗ hence Cn is also compact.

Theorem 3.3. Let C ≥ c/(1− β). For each n ∈ Z+ the normalised conditional operator P̂n

admits a fixed point in Cn.

Proof. Note that Cβ + c ≤ C. First, we will show that P̂nCn ⊆ Cn from which a standard

fixed point argument will follow. Let ϕ ∈ Cn; it suffices to show that Pn ϕ ∈ C∗. Now

let (z, l), (w, l) ∈ ∆l,i where 1 ≤ l < i ≤ n so that both (z, l) and (w, l) have only one

pre-image of F, namely (z, l − 1) and (w, l − 1). Here, separation time is invariant under

F so s((z, l), (w, l)) = s((z, l − 1), (w, l − 1)). Moreover, JF = 1 on these levels, since the
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translation is straight upwards. Hence

(Pn ϕ)(z, l) =
ϕ(z, l − 1)
JF(z, l − 1)

≤ ϕ(w, l − 1) exp(Cβs((z,l−1),(w,l−1)))

1
= (Pn ϕ)(w, l) exp(Cβs((z,l),(w,l))).

On the base, the story is different as for each (z, 0), (w, 0) ∈ ∆0 there are n pre-images on

the top levels of the tower. For l = 0, . . . , n− 1 let (zl, l) ∈ ∆l,l+1 be such that F(zl, l) =

(z, 0) and similarly for (wl, l). Now we have s((zl, l), (wl, l)) = s((z, 0), (w, 0)) + 1 for

every l = 0, · · · , n− 1. Then for any ϕ ∈ Cn

(Pn ϕ)(z, 0) =
n−1

∑
l=0

ϕ(zl, l)
|JF(zl, l)|

≤
n−1

∑
l=0

ϕ(wl, l)
|JF(wl, l)| exp(Cβs((zl ,l),(wl ,l))) exp(cβs◦F((zl ,l),(wl ,l)))

≤ (Pn ϕ)(w, 0)max
l

exp(Cβs((zl ,l),(wl ,l))) exp(cβs◦F((zl ,l),(wl ,l)))

= (Pn ϕ)(w, 0)max
l

exp(Cβs((z,0),(w,0))+1) exp(cβs◦F((zl ,l),(wl ,l)))

= (Pn ϕ)(w, 0) exp((Cβ + c)βs((z,0),(w,0))).

Since Cβ + c ≤ C we have P̂n ϕ ∈ Cn for all ϕ ∈ Cn and therefore P̂nCn ⊆ Cn.

It is easy to see that Cn is convex as for any ϕ, φ ∈ Cn and x, y ∈ ∆ \ Hn, we have

tϕ(x) + (1− t)φ(x) ≤ (tϕ(y) + (1− t)φ(y)) exp(Cβs(x,y)).

Moreover, the operator Pn is continuous as P is contractive:

‖Pn ϕ−Pnφ‖L1 = ‖P((ϕ− φ) · χ∆\Hn)‖L1

≤ ‖(ϕ− φ) · χ∆\Hn‖L1

≤ ‖ϕ− φ‖L1 .
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By the Integral Mean Value Theorem and the conditions on ϕ ∈ CB
∗ ,

1
ν(H1

n)

∫

H1
n

ϕ dν ≤ eC 1
ν(∆0 \ H1

n)

∫

∆0\H1
n

ϕ dν.

Hence

1 =
∫

∆
ϕ dν =

∫

H1
n

ϕ dν +
∫

∆0\H1
n

ϕ dν +
∫

∆\∆0

ϕ dν

≤
(

eC ν(H1
n)

ν(∆0 \ H1
n)

+
ν(∆0 \ H1

n)

ν(∆0 \ H1
n)

) ∫

∆0\H1
n

ϕ dν +
∫

∆\∆0

ϕ dν

< eC ν(∆0)

ν(∆0 \ H1
n)

(∫

∆0\H1
n

ϕ dν +
∫

∆\∆0

ϕ dν

)

= eC ν(∆0)

ν(∆0 \ H1
n)

∫

∆\H1
n

Pn ϕ dν

=: α
∫

∆
Pn ϕ dν.

Since 1/‖Pn ϕ‖L1 < α, the normalisation map Pn ϕ 7→ Pn ϕ/‖Pn ϕ‖L1 is continuous.

Combining the above results with Lemma 3.2 we see that Cn is a compact, convex set,

invariant under the continuous map P̂n. The Schauder Fixed Point Theorem [101] asserts

that P̂n has a fixed point ϕn ∈ Cn.

We prove uniqueness of ϕn in Cn below.

Corollary 3.4. Let C satisfy the hypothesis of Theorem 3.3. For each n ∈ Z+ there is a unique

ϕn ∈ Cn such that Pn ϕn = λn ϕn where λn = ‖Pn ϕn‖L1 . In addition, ϕn is essentially bounded

above and below by positive constants.

Proof. Let ϕn ∈ Cn be a fixed point of P̂n. Then ϕn satisfies Pn ϕn = λn ϕn where

λn = ‖Pn ϕn‖L1 . Now if ess inf ϕn = 0 then the regularity of ϕn ensures that ϕn|∆l,i ≡ 0

a.e. on some ∆l,i. Take any x ∈ ∆0,i. Then 0 = λl
n ϕn(Fl(x)) = (P l

n ϕn)(Fl(x)) = ϕn(x),

hence ϕn|∆0,i ≡ 0. All of ∆0 is comparable so this forces ϕn to vanish on ∆0 and hence on

all of ∆. Clearly this is not possible as ϕn is a density so necessarily ess inf ϕn > 0.

Now, since ϕn is essentially bounded above7 and below by positive constants,− log λn

is the Lebesgue escape rate into the hole Hn so λn is unique (cf. Proposition 1.19).

7Note that ϕn ∈ Cn and see Lemma 3.2.
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In the proof of uniqueness of ϕn we borrow a technique from [95]. Suppose that there

is another eigenfunction φn with the same eigenvalue λn. For any s ∈ R we are able to

construct another eigenfunction ξs of Pn, namely

ξs := sϕn + (1− s)φn.

Let σ > 1 be the largest real number so that ess inf ξs ≥ 0 for all s ∈ (1, σ]. Then

necessarily ess inf ξσ = 0 and ξσ = lims→σ ξs ∈ Cn. We have already seen in the first part

of the proof that this cannot be, hence ϕn is unique in Cn.

Corollary 3.5. Let C be such that Theorem 3.3 holds and let ϕn and λn be as in Corollary 3.4. For

each n ∈ Z+ let µn be the measure on ∆ with density ϕn = dµn/dν. Then µn is an absolutely

continuous conditionally invariant probability measure for the open system with hole Hn. In

particular λn = 1− µn(H1
n).

Proof. In Proposition 1.26 we stated that nonnegative normalised eigenfunctions of the

Perron-Frobenius operator are densities of absolutely continuous conditionally invariant

probability measures. As µn is conditionally invariant with eigenvalue λn we have

λn = µn(F−1(∆ \ Hn) \ Hn)

= µn(F−1(∆) \ Hn)− µn(F−1(Hn) \ Hn)

= 1− µn(H1
n).

3.3.2 Convergence of ACCIM to the ACIM of the Closed System

Lemma 3.6. Let ϕn ∈ Cn be as in Theorem 3.3. There exist positive constants a and b (indepen-

dent of n) such that

ess inf
∆\Hn

ϕn ≥ a and ess sup
∆\Hn

ϕn ≤ b

for all n ∈ Z+.
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Proof. Fix n ∈ Z+ and let ϕn,i = ϕn|∆0,i for 1 ≤ i ≤ n and ϕn,n+1 = ϕn|H1
n
. First we

approximate a lower bound of λn and then obtain a uniform upper bound for λ−n
n . We

begin with the result of Corollary 3.5 to obtain

λn = 1−
∫

H1
n

ϕn dν

≥ 1− ν(H1
n)e

C

∫
∆0

ϕn dν

ν(∆0)

≥ 1− ν(H1
n)

ν(∆0)
eC,

where the first inequality above is a consequence of the Integral Mean Value Theorem and

the property that ϕ(x) ≤ eC ϕ(y) for all x, y ∈ ∆0. Now using the fact that ν(H1
n) · n <

ν(∆) we obtain

λn ≥ 1− eCν(∆)
n · ν(∆0)

= 1− C′

n

for the constant C′ := eCν(∆)/ν(∆0) independent of n. Next choose n∗ ∈ Z+ so that

C′/n < 1/2 for all n ≥ n∗. By the Mean Value Theorem there is a constant C′′ such that

log(1− C′/n) ≥ −C′′/n for all n ≥ n∗ and hence

λ−n
n ≤

(
1− C′

n

)−n

= e−n log(1−C′/n)

≤ eC′′ . (3.10)

Using the bound on λ−n
n and the fact that ϕn is an eigenvector of norm 1 we obtain

1 = ‖ϕn‖L1 = ‖ϕn,n+1‖L1 +
n

∑
i=1

i

∑
j=1

λ
−(j−1)
n ‖ϕn,i‖L1

≤ (ess inf
∆0

ϕn)eC

(
ν(H1

n) +
n

∑
i=1

i

∑
j=1

λ
−(j−1)
n ν(∆0,i)

)
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≤ (ess inf
∆0

ϕn)eC

(
ν(H1

n) +
n

∑
i=1

i · eC′′ν(∆0,i)

)

≤ (ess inf
∆0

ϕn)eC+C′′
(

∞

∑
i=1

i · ν(∆0,i)

)

= (ess inf
∆0

ϕn)eC+C′′ν(∆).

Hence we have a uniform lower bound on ϕn on ∆0 and therefore on all of ∆ \ Hn for all

n ≥ n∗:

ess inf
∆\Hn

ϕn = ess inf
∆0

ϕn ≥
(

eC+C′′ν(∆)
)−1

> 0.

With (3.10) we are also able estimate an upper bound of ϕn, for n ≥ n∗:

ess sup
∆\Hn

ϕn ≤ λ−n
n ess sup

∆0

ϕn

≤ eC′′ eC

ν(∆0)

∫

∆0

ϕn dν

≤ eC+C′′

ν(∆0)
.

Since n∗ is finite, we conclude that there exist constants a > 0 and b > 0 such that

ess inf ϕn ≥ a and ess sup ϕn ≤ b for all n ≥ 1.

Corollary 3.7. Let the hypotheses of Theorem 3.3 hold. There are constants a and b (independent

of n) such that

a ≤ lim
n→∞

− log λn

ν(H1
n)
≤ b.

Proof. Using limx→1
log x
1−x = −1 and 1− λn =

∫
H1

n
ϕn dν in conjunction with the result of

Lemma 3.6 proves the claim.

Theorem 3.8. For every positive integer n let ϕn ∈ Cn and λn < 1 be as in Corollary 3.4.

Then ϕn
L1
→ ϕ, where ϕ is the density of the unique absolutely continuous invariant probability

measure µ of the closed system F : ∆ 	.

Proof. The result of Lemma 3.6 ensures that all ϕn are elements of Cb
∗, which, as seen

in Lemma 3.2, is compact. Hence a subsequence of (ϕn), say (ϕni), converges to some
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density ϕ′. Let (µni) and µ′ be the corresponding measures. Then for any measurable

A ⊆ ∆ we have

µ′(F−1A) = lim
i→∞

µni(F−1A)

≤ lim
i→∞

µni(F−1(A \ Hni))

= lim
i→∞

λni µni(A \ Hni)

= lim
i→∞

λni µni(A) = µ′(A).

But µ′ ◦ F−1 ≤ µ′ is possible only if µ′ is invariant, therefore µ′ = µ and ϕ′ = ϕ almost

everywhere. Hence ϕn → ϕ in L1(∆, ν) as required.

3.4 Realisation of ACCIM for T

We have mentioned earlier that there is a semi-conjugacy π between T and F. This

enables us to translate all of the results for the tower down to the interval [0, 1]. We

summarize these below.

Theorem 3.9. Let T be a Pomeau-Manneville map that satisfies (T) with α ∈ (0, 1). Let

H∗n = [0, xn], be a nested sequence of Markov holes with Tn(xn) = x0 and xn < xn−1 for each

n ≥ 1. The following are true:

(i) T admits a finite unique ACIM µ∗ whose density h is bounded away from zero.

(ii) The map T|(xn,1] with hole H∗n admits an ACCIM µ∗n with eigenvalue λn which is unique

in the set of probability measures with densities bounded away from zero and infinity.

Moreover the corresponding density hn := dµ∗n/d` is uniformly (independently of n)

bounded away from zero.

(iii) The density of the ACCIM converges in L1 to the density of ACIM; that is hn
L1
→ h as

n→ ∞.

(iv) The escape rate E((xn, 1]; `) exists and equals − log λn ∼ xn as n→ ∞.
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(v) For an arbitrary hole [0, ε], the (upper and lower) escape rates into the hole asymptotically

scale like ε.

Proof.

(i) Existence of a unique ACIM is well-known. Proof and an argument on a lower

bound on the density h can be found in [112, Theorem 5 and Section 6.3].

(ii) By Corollary 3.4 and Corollary 3.5 there is a unique ACCIM µn on the tower with

density ϕn bounded above and below. Let π : ∆→ I be the factor map for F and

T and define µ∗n := µn ◦ π−1. It is easy to check that µ∗n is conditionally invariant

with eigenvalue λn. Now let Pπ : L1(∆, ν) → L1(I, `) be the Perron-Frobenius

operator of π (given by either (1.1) or (1.2)). Then the density hn = dµ∗n/d`

satisfies hn = Pπ ϕn. Obtaining a uniform lower bound on hn is straightforward: if

x ∈ [x0, 1], then hn(x) = ϕn(x, 0) ≥ a (where a is as in Lemma 3.6); if x ∈ [xn, x0),

let z ∈ (x0, γ1) be such that T(z) = x. Then

hn(x) = Pπ ϕn(x)

= ∑
(y,l)∈π−1x

ϕn(y, l)
J(Tl)(y)

≥ ϕn(z, 1)
JT(z)

≥ a
JT(γ1)

.

Similarly, using the fact that π has a finite number of pre-images in each ∆ \ Hn,

and by the uniform upper bound on ϕn we may obtain a (non-uniform) upper

bound on hn, dependent on n. Repeating the uniqueness argument of Corollary

3.4 we see that each µ∗n is unique in a set of measures supported on ∆ \ Hn with

density bounded away from zero and infinity.

(iii) Clearly the Perron-Frobenius operator Pπ is continuous. By Theorem we have 3.8

ϕn → ϕ in L1(∆, ν) so by continuity Pπ ϕn → Pπ ϕ in L1(I, `), that is hn
L1
→ h.

(iv) Clearly− log λn is the escape rate of µ∗n into H∗n . To show that this is also the escape
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rate of the Lebesgue measure, we need to show that hn is bounded away from zero

and infinity. For every x ∈ [xn, 1] there are at most n points (z, l) ∈ ∆ \ Hn such

that x = Tl(z), thus

hn(x) = ∑
(y,l)∈π−1x

ϕn(y, l)
J(Tl)(y)

< nb,

where b is as in Lemma 3.6. We have already shown in (ii) that fn is bounded below

by a positive constant, thus by Proposition 1.19, E([xn, 1]; `) exists and equals

− log λn. Finally, from Corollary 3.7

− log λn ∼ ν(H1
n) = `([x0, γn]) ≈

xn

JT(x0)
∼ xn.

(v) For any ε ∈ (0, x0) we can find n ∈N such that xn ≤ ε < xn−1. Hence

E([xn, 1])
xn

≤ E([ε, 1])
ε

≤ E([ε, 1])
ε

≤ E([xn−1, 1])
xn−1

.

Taking the limit as the denominators approach zero, and using the result of (iv), we

get the required result E([ε, 1]) ∼ E([ε, 1]) ∼ ε as ε→ 0.

3.5 On Second Eigenfunctions

We have previously mentioned that although the Perron-Frobenius operator of the

Pomeau-Manneville map does not possess a spectral gap, certain approximations of it

do. Here we will formalise this and give bounds on the second eigenvalue with the size

of the perturbation. The results in this section are not a part of the original contribution

of this thesis and are included for completeness. We refer the reader to [61, Section 5] for

details of the proofs.

The proof showing existence of a second eigenfunction with bounds on its eigenvalue
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uses a novel setup of a signed Young tower, consisting of two “subtowers”, ∆ε,+ and

∆ε,− joined through the hole Hn. The first subtower ∆ε,+ = ∆ \ Hn is as in the previous

section. Points from ∆ε,+ that enter Hn are no longer lost to the system but enter the other

subtower ∆ε,− where the dynamics continue (with uniform expansion) before the orbit

returns back to ∆ε,+. The second eigenfunction of the corresponding Perron-Frobenius

operator has the property that it is positive on ∆ε,+ and negative on ∆ε,−. In this thesis

we will not deal with this double tower and will only state the results concerning the

factor map T. For more information on the tower construction and the proofs, we refer

the reader to our original paper [61].

As before let (xn) be a sequence in [0, x0] defined recursively by T(xn) = xn−1 and

let (γn) be a corresponding sequence in (x0, 1) defined by T(γn) = xn−1. For ε > 0 let

n = n(ε) be the smallest integer such that γn − x0 < ε and assign the following values

to constants ε0, ε1 and ε2:

ε0 := xn−1, (3.11)

ε1 := γn − x0, (3.12)

ε2 := γn − γn+1. (3.13)

Now, we wish to perturb T so that when an orbit enters [0, ε0], its new location

is determined not by T, but by an appropriately distributed random variable. We can

formalise this in the following way. Let zk represent the points in an orbit of the perturbed

system and let ξk be i.i.d. random variables on [0, ε0] with density function

ρε(z) =
1

ε1T′(T−1
right(z))

,

where Tright : [x0, x0 + ε1]→ [0, ε0] is the right branch of T in the neighbourhood of the

break point. The density ρε is chosen to be the push-forward of the uniform density on

[x0, x0 + ε1] by the Perron-Frobenius operator P of T, that is for f = ε−1
1 on [x0, x0 + ε1)
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and f = 0 otherwise we have

P f (z) = ∑
y∈T−1z

f (y)
|T′(y)| =

ε−1
1

T′(T−1
right(z))

= ρε(z).

When ε is small, ρε is close to constant (since T is C2 on the right-hand branch). The

perturbed dynamics act according to

zk+1 =





ξk+1, T(zk) ∈ [0, ε0)

T(zk), otherwise.
(3.14)

Following the ideas of [79, Chapter 10], we will now derive the transfer operator of

the process in (3.14). Let fk be the density of zk and let B ∈ B(I). Then

Prob{zk+1 ∈ A} = Prob{zk+1 ∈ A and T(zk) ∈ [0, ε0)}
+ Prob{zk+1 ∈ A and T(zk) ∈ (ε0, 1]}

= Prob{ξk+1 ∈ A and zk ∈ T−1[0, ε0]}
+ Prob{zk ∈ T−1(A ∩ (ε0, 1])}

=
∫

A
ρε d`

∫

T−1[0,ε0]
fk d`+

∫

T−1(A∩(ε0,1])
fk d`

=
∫

A
ρε d`

∫ ε0

0
P fk d`+

∫

A
χ(ε0,1]P fk d`,

so the distribution of zk+1 is given by

fk+1(z) = ρε(z)
∫ ε0

0
P fk d`+ χ(ε0,1](z)P fk(z),

and the transfer operator of the perturbed system P ε is then given by

P ε f (z) =





ρε(z)
∫ ε0

0 f d`, z ∈ [0, ε0]

P f (z), otherwise.

Below we summarise results of [61, Theorem 5.6] concerning P ε and its spectrum.
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Theorem 3.10 ([61]).

(i) For any f ∈ L1([0, 1], `), P ε f L1
→ P f as ε→ 0,

(ii) P ε has an eigenvector f ε satisfying P ε f ε = f ε, and f ε L1
→ f ∗, where f ∗ is the density of

µ∗, the unique ACIM for T.

(iii) P ε has an eigenvector hε satisfying P εhε = λεhε where 1− λε ∈
(

ε2
ε1

, 2ε2
ε1

)
and [hε]+

L1
→

1
2 f ∗ as ε→ 0.

3.6 Numerics

Ulam’s method is an effective method for studying T numerically via its Perron-Frobe-

nius operator. We create a partition of size N ∈ N by dividing [0, 1] uniformly into

subintervals of length 1/N, and construct the corresponding Ulam matrix PN. The lead-

ing eigenvalue of PN is 1, and the corresponding stationary eigenvector is a numerical

approximation of a fixed point of P . Surprisingly, given the absence of a spectral gap for

P , these fixed points converge to the density of the unique ACIM of T as N → ∞ [11, 90].

Each Ulam matrix PN is extremely sparse (having O(N) nonzero entries), and their

eigenvalues can be found quickly by iterative methods. Because the dynamics of T are

transitive, each PN is irreducible, so the eigenvalue 1 has strictly larger modulus than the

other eigenvalues. Interestingly, we observe that the spectral gap of PN scales as N−α.

3.6.1 Eigenvalue Scaling

The two-state model of Section 3.2 showed that when the escape rate from the set (0, ε0]

approached zero more slowly than the escape rate from the set [ε0, 1], the gap from 1 of

the second eigenvalue of the two-state Markov chain scaled like the slower escape rate

from [0, ε0]; namely εα
0 .

We now replace the two-state model with the “N-state model” PN arising from Ulam’s

method. The matrix PN is row-stochastic, representing the transitions of a finite state
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Markov chain whose ith state is identified with the subinterval

Ji := [(i− 1)/N, i/N).

The indifferent fixed point at 0 can be associated naturally with the subinterval J1 =

[0, 1/N) ≈ [0, ε0). The only nonzero conditional transition probabilities out of state 1 are

(PN)11 and (PN)12 given by

(PN)11 =
`(J1 ∩ T−1 J1)

`(J1)
= 1− N T−1(1/N)

(PN)12 = 1− (PN)11.

Thus the rate of escape from J1 is

− log(PN)11 ≈ 1− (PN)11 ∼ N−α ∼ εα
0 ,

and this is of the same order as previously computed for the two-state model of Sec-

tion 3.2.

We find numerically that despite increasing the number of states from two to N,

the second eigenvalue of our N-state Ulam matrix retains the scaling predicted by the

two-state model when ε0 = 1/N, namely 1− λ2(N) ∼ N−α; see Figure 3.3.

Connection with the Perron-Frobenius operator P ε. Theorem 3.10 claims the exis-

tence of a second eigenvalue8 λε. The matrix PN successfully reproduces the dynamics

responsible for this eigenvalue, and we now explicitly describe the connection. Set

ε = 1/(N JT(x+0 )) and choose n, ε1, ε2 as in (3.12) and (3.13). Then

T[x0, x0 + ε1] =: [0, ε0] ≈ [0, 1/N) = J1.

8More precisely, it is shown that there is another real eigenvalue very close to 1; based on numerical
computations we conjecture that the eigenvalue λε is indeed the second-largest real eigenvalue.
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Figure 3.3: (a) Variation of the second eigenvalue of PN with N and α. (b) Slope of line of
best fit for each α. Note: Computed by eigs in MATLAB, with Ulam matrices for the PM
map [90, Example 3].

Theorem 3.10 predicts an eigenvalue of P ε,

λε ∈
(

1− 2ε2

ε1
, 1− ε2

ε1

)
.

Numerical computations with PN for a range of N produce second eigenvalues within

this range. In fact, the upper limit is a very good estimate; see Table 3.1.

3.6.2 Ulam’s Method and the Escape Rate from [1/N, 1]

We conclude this chapter with some simple remarks on how to observe the ACCIMs

and their escape rates, numerically. The measure µ∗ = µ ◦ π−1 is an ACIM for T, and

µ∗n = µn ◦ π−1 is an ACCIM for T|(xn,1] with escape rate − log λn ∼ xn. Hence, if

xn ≈ 1/N, then one expects the escape rate from (xn, 1] to scale like 1/N. Now partition

the N × N Ulam matrix PN as

PN =


 (PN)11 aT

b Po
N



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N 1− λ2(N) ε2/ε1

100 0.069494728128226 0.060750416292176
200 0.047118990434159 0.042626262679704
500 0.028582682402957 0.026696029895732
1000 0.019751285772241 0.018706181316717
2000 0.013727390048589 0.013165183357731
5000 0.008542396305559 0.008301674655368
10000 0.005988977377968 0.005866565930472
20000 0.004208535921532 0.004150111773511
50000 0.002646628586393 0.002621525600809

Table 3.1: Comparison of 1− λ2(N) computed numerically as a second eigenvalue of the
N × N Ulam matrix and the corresponding lower bound ε2/ε1 obtained from Theorem
3.10 (α = 0.5).

where a, b are (N − 1)-vectors and Po
N is an (N − 1)× (N − 1) matrix. In fact, Po

N is the

Ulam approximation to the conditional Perron-Frobenius operator χ[1/N,1]P( · χ[1/N,1]).

In Figure 3.4 we present numerical evidence that the leading eigenvalue λo
1(N) of Po

N has

the scaling 1− λo
1(N) ∼ 1/N, independently of α.

Finally, Theorem 3.9 predicts the convergence of the ACCIMs µ∗n to the ACCIM as the

size of the hole H∗n shrinks to 0. We illustrate this convergence numerically as follows. For

a large N∗ (we have used N∗ = 105), form PN∗ and calculate the leading eigenvector. This

is a good approximation to the density of the ACIM for T [90], and we use it as a reference

measure. Next, for a sequence of smaller Nk (we used the values from the first column of

Table 3.1), calculate the leading eigenvector of Po
Nk

. Comparing the probability measure

induced by these eigenvectors with the reference measure from the Ulam approximation

PN∗ we see good convergence in Figure 3.5.



3.6 Numerics 81

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

logN

lo
g
(1

−
λ
1
(N

))

α = 0.1

α = 0.3

α = 0.5

α = 0.7

Figure 3.4: Variation of escape rate from [1/N, 1] with N and α.
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Figure 3.5: Total variation norm error between Ulam approximate ACCIMs with a hole
[0, 1/N] and the Ulam approximate ACIM with a bin size of 10−5. A range of different
PM maps are used, (α is order of tangency of the indifferent fixed point).



Chapter 4

Open Random Dynamical Systems

Random dynamical systems (RDS) provide a setting to model non-autonomous or time-

dependent phenomena. They may also serve as a model for noise or uncertainty in

otherwise deterministic dynamical systems. We will provide the details later, but for

now we note that the randomness is modelled on an abstract (probability) space Ω and

the rules/behaviour of the system are dependent on ω ∈ Ω.

The concepts of metastability and almost-invariant sets were extended to random

dynamical systems in Froyland et al. [58, 59], where these sets are referred to as coherent

structures. To move from deterministic to random (or time-dependent) concepts of

metastability, the authors introduced the Lyapunov spectrum for cocycles of random

Perron-Frobenius operators Pω, replacing the spectrum of a single deterministic Perron-

Frobenius operator P . The associated random Oseledets subspaces now play the role of

eigenfunctions when determining the random metastable sets. Numerical algorithms

and experiments based on this theory were detailed in [60]. Other work on metastability

of random or perturbed dynamical systems includes papers of Colonius et al. [34, 35].

Our goal here is to link the slow decay of random (ω-dependent) functions induced by

the Perron-Frobenius cocycle with escape rates from random metastable sets. Studies of

escape rates for random dynamical systems have, to our knowledge, only been concerned

with escape from fixed (ω-invariant) sets under random or randomly-perturbed maps

(see for example [33, 70, 71]; and for more recent work [41, 98]). In this chapter we shall,

however, deal with the more general concept of escape from a random set under a random
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map. We extend the results of Chapter 2 to random dynamical systems by showing a

relationship between Lyapunov spectrum and the corresponding random escape rates

from metastable sets. The material of this chapter has appeared in [66].

A summary of this chapter is as follows. In Section 4.2, we will show in a rather

general setting (X measurable, non-singular dynamics) that given a Lyapunov exponent

λ(ω, f ) . 0 of ω ∈ Ω and f ∈ L∞, one can define metastable random sets A± along the

orbit of ω as A±(ϑnω) = {±P (n)
ω f > 0}. Our first main result (Theorem 4.7) analogously

to Theorem 2.5 states that the escape rates from A± (with respect to ω) are slower than

−λ(ω, f ). In Section 4.4 we will extend these results to quasi-compact random dynamical

systems that admit an Oseledets splitting and, in particular, to Rychlik random dynamical

systems where the dynamics are given by random expanding piecewise C2 interval maps

and P acts on BV. In this setting of random Rychlik maps, Froyland et al. [58] proved a

result parallel to the result of Keller [74], relating the average expansion of trajectories to

the essential spectral radius (cf. Section 1.1.2). Our main result in Section 4.4 will show a

relation between the escape rate from random almost-invariant sets and isolated values

in the Lyapunov spectrum of P .

4.1 A Brief Introduction to Random Dynamical Systems

We will follow the definitions and notation of Arnold [1], whose book we recommend to

the reader as a thorough introduction to random dynamical systems.

There are two key ingredients that constitute a random dynamical system. The first is

an invertible deterministic measure-preserving dynamical system (Ω,F , P, ϑ) ( where P

is a probability), which serves as a model of noise or randomness. For technical reasons

we shall additionally assume that singletons of Ω are F -measurable. This system is

called the base. The second ingredient is a space Z and a collection of endomorphisms

or transformations on Z indexed by Ω, Φ̃ : Ω → End(Z). We will assume that for

each ω ∈ Ω, Φ̃(ω) preserves whatever structure Z may have (such as linearity or

measurability).

We refer to the tuple (Ω,F , P, ϑ, Z, Φ̃) as a random dynamical system. The dynamics
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on points in Z are determined by the mapping Φ : N×Ω→ End(Z), given by

Φ(n, ω) = Φ(n)(ω) = Φ(n)
ω := Φ̃(ϑn−1ω) ◦ · · · ◦ Φ̃(ϑω) ◦ Φ̃(ω) (4.1)

satisfying the cocycle property:

(C1) Φ(0, ω) = id;

(C2) ∀m, n ∈N, Φ(m + n, ω) = Φ(m, ϑnω) ◦Φ(n, ω).

In (4.1) for notational convenience we have adopted the convention of showing depen-

dence on ω by subscripting and dependence on n by superscripting. We will refer to Φ

as the cocycle while Φ̃ will be its corresponding generator. Two (related) types of cocycles

that we will study in this chapter are measurable map cocycles and their Perron-Frobenius

operator cocycles. In the next chapter we shall deal with adjacency matrix cocycles.

Measurable Cocycles

We assume at first that Z is a measure space (X,B, m) where B is its σ-algebra m finite

measure. A measurable (map) cocycle is a mapping T : N×Ω→ End(X) satisfying (C1)

and (C2) and such that (ω, x) 7→ T(n)
ω (x) is (F ⊗B,B)-measurable for each n ∈N, while

every Tω : X 	 is non-singular with respect to m.

Define a random set1 to be any set-valued function A : Ω → B such that the graph

{(ω, A(ω)) : ω ∈ Ω} is measurable in the product σ-algebra F ⊗ B. We are now in a

position to define rate of escape from a given random set under the random dynamics of

the cocycle.

Definition 4.1. Let T : N×Ω→ End(X,B, m) be a measurable cocycle over (Ω,F , P, ϑ)

and let A : Ω→ B be a measurable random set. The random escape rate with respect to m

is the non-negative valued function E(A, ·) : Ω→ R given by

E(A, ω) := − lim sup
n→∞

1
n

log m(A(n)(ω)), ω ∈ Ω, (4.2)

1Our definition of a random set is slightly weaker than Arnold’s [1] definition of a closed random
set, where X is additionally Polish (with metric d) and for every x ∈ X the mapping ω 7→ d(x, A(ω)) is
measurable.
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where

A(n)(ω) :=
n−1⋂

i=0

T(i, ω)−1A(ϑiω). (4.3)

Limit supremum is used above in order to have a well-defined rate of escape even

when the limit does not exist. Strictly speaking, what we refer to as ‘escape rate’ in this

chapter corresponds to what we considered to be ‘lower escape rate’ in the previous

chapters.

In Definition 4.1 we defined escape rate from a random set. It is, however, often of

interest in dynamical systems to study properties of single orbits. In order to study the

escape rate along a sample orbit we can restrict the domain of a random set just to this

particular orbit.

Definition 4.2. Let A : Ω → B be a random set and let ω∗ ∈ Ω. We shall refer to the

restriction of A to the orbit {ϑnω∗}n∈Z+ as an orbit set.

The following proposition shows that any mapping A : {ϑnω∗}n∈Z+ is an orbit set,

as it may be trivially extended to a random set.

Proposition 4.3. For a fixed ω∗ ∈ Ω, any mapping A : {ϑnω∗}n∈Z+ → B may be extended

to a random set by defining A(ω) = X for all ω ∈ Ω \ {ϑnω∗}n∈Z+ .

Proof. To see that this extension indeed produces a set {(ω, A(ω)} ∈ F ⊗B note that we

may write the graph of A as the union of (Ω \ {ϑnω∗}n∈Z+)×X and
⋃

n∈Z+(ϑnω∗, A(ϑnω∗)).

The former set is a rectangle in F × B and the latter set is a countable union of mea-

surable rectangles, as all singletons are F -measurable. Thus the graph of A is (F ⊗B)-
measurable.

Below we show that, provided the base system is ergodic, escape rate is constant

almost everywhere.

Proposition 4.4. Assume that the base system (ϑ, P) is ergodic and that for almost every ω ∈ Ω

the Radon-Nikodym derivative d(m◦T−1
ω )

dm is bounded. For any fixed random set A : Ω → B,

E(A, ω) is constant almost everywhere.
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Proof. We begin with the observation that A(n)(ω) = T−1
ω A(n−1)(ϑω) ∩ A(ω) (see (4.3))

so that m(A(n)(ω)) ≤ m(T−1
ω A(n−1)(ϑω)). Using the boundedness of the Radon-Niko-

dym derivative one sees that E(A, ω) ≤ E(A, ϑω). We will now show that E(A, ω) =

E(A) for almost any ω ∈ Ω. Assume otherwise. As A is a random set, E(A, ·) is measur-

able and there exists c ∈ R such that the set S := {ω : E(A, ω) ≥ c} has P(S) ∈ (0, 1).

Since ϑ−1(S) ⊇ S and ϑ preserves P we must have ϑ−1S = S almost everywhere, but

this cannot be since P is ergodic.

Perron-Frobenius Operator Cocycles

On the other hand, if we let Z be the space of integrable functions L1(X,B, m) (or a

subspace of L1(X,B, m)), we may define a Perron-Frobenius operator cocycle as follows.

Definition 4.5. Let T : N × Ω → End(X,B, m) be a measurable map cocycle over

(Ω,F , P, ϑ). The corresponding Perron-Frobenius operator cocycle is a linear cocycle P :

N×Ω→ End(L1(X,B, m)) whose generator P̃ is given by

∫

B
P̃(ω) f dm =

∫

T−1
ω B

f dm, ∀ω ∈ Ω, ∀B ∈ B, ∀ f ∈ L1(X,B, m). (4.4)

Definition 4.6 (Lyapunov exponent). Let P : N×Ω→ End(L1(X,B, m)) be the Perron-

Frobenius operator cocycle corresponding to a measurable map cocycle T : N×Ω →
End(X). For any f ∈ L1(X,B, m), and ω ∈ Ω the Lyapunov exponent is defined to be

λ(ω, f ) := lim sup
n→∞

1
n

log ‖P (n)
ω f ‖L1 .

We also define the Lyapunov spectrum to be the set of all Lyapunov exponents:

Λ(ω) := {λ(ω, f ) : f ∈ L1(X,B, m)},

and the quantity λ(ω) ∈ R by

λ(ω) := lim sup
n→∞

1
n

log ‖P (n)
ω ‖op.
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As each Pω : L1(m) 	 is a Markov operator we have ‖Pω f ‖L1 ≤ ‖ f ‖L1 and therefore

Λ(ω) ⊆ [−∞, 0]. With the definition of the Perron-Frobenius cocycle in (4.4), it is natural

to use the L1-norm for calculating the Lyapunov spectrum. However we will see later in

Section 4.4 that when working with subspaces of L1 other norms are sometimes more

informative.

4.2 A Result on Escape Rate for a General Random Dy-

namical System

Our main theorem of this chapter relates the Lyapunov exponents of a Perron-Frobenius

operator cocycle P to the rates of escape from particular orbit sets under the correspond-

ing measurable map cocycle T.

Theorem 4.7. Let T : N×Ω→ End(X,B, m) be a measurable map cocycle over (Ω,F , P, ϑ)

and let P ! : N×Ω → End(L1(X,B, m)) be the corresponding Perron-Frobenius cocycle as

defined in (1.1). Fix an aperiodic ω∗ ∈ Ω and suppose that there exists an f ∈ L∞ such that

λ(ω∗, f ) < 0. Let A+, A− : {ϑnω∗}n∈Z+ → B be defined by

A±(ϑnω∗) := {x ∈ X : ±P (n)
ω∗ f (x) > 0}, n ∈ Z+. (4.5)

Then A± are orbit sets and one has E(A±, ω∗) ≤ −λ(ω∗, f ).

The fact that the sets defined in (4.5) are orbit sets was shown in Proposition 4.3. The

proof of the rest of Theorem 4.7 follows after a preliminary lemma.

Lemma 4.8. In the notation of Theorem 4.7 we have for every n ∈ Z+

∫

A+(ϑnω∗)
P (n)

ω∗ f dm =
1
2
‖P (n)

ω∗ f ‖L1 .

Proof. Firstly we will show that
∫

X P
(n)
ω∗ f dm = 0 for all n ≥ 0. From (4.4) one can see

that Pω∗ preserves integrals over all of X therefore
∫

X P
(n)
ω∗ f dm = M, a constant for all
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n ≥ 0. This implies that ‖P (n)
ω∗ f ‖L1 ≥ |M| for all n ≥ 0. Suppose that M 6= 0. Then

λ(ω∗, f ) = lim sup
n→∞

1
n

log ‖P (n)
ω∗ f ‖L1 ≥ lim sup

n→∞

1
n

log |M| = 0.

This is a contradiction as λ(ω∗, f ) < 0, therefore M = 0 =
∫

X P
(n)
ω∗ f dm. Now we have

0 =
∫

A+(ϑnω∗)
P (n)

ω∗ f dm +
∫

X\A+(ϑnω∗)
P (n)

ω∗ f dm (4.6)

and

‖P (n)
ω∗ f ‖L1 =

∫

A+(ϑnω∗)
P (n)

ω∗ f dm−
∫

X\A+(ϑnω∗)
P (n)

ω∗ f dm. (4.7)

Adding equations (4.6) and (4.7) takes us to the required result.

Proof of Theorem 4.7. The proof is a random version of the proof of Theorem 2.5. Let j, n

be integers such that 0 ≤ j ≤ n and let B ∈ B. Using (4.4) we derive the following:

∫

B
P (j+1)

ω∗ f dm =
∫

T−1
ϑjω∗

B
P (j)

ω∗ f dm

=
∫

T−1
ϑjω∗

B
(P (j)

ω∗ f )χA+(ϑjω∗) dm +
∫

T−1
ϑjω∗

B
(P (j)

ω∗ f )χX\A+(ϑjω∗) dm

≤
∫

T−1
ϑjω∗

B
(P (j)

ω∗ f )χA+(ϑjω∗) dm

=
∫

T−1
ϑjω∗

B∩A+(ϑjω∗)
P (j)

ω∗ f dm.

Hence ∫

B
P (j+1)

ω∗ f dm ≤
∫

T−1
ϑjω∗

B∩A+(ϑjω∗)
P (j)

ω∗ f dm.

Now letting B = A(n−j−1)
+ (ϑj+1ω∗) (defined as in (4.3)) we have for all j ≥ 0

∫

A(n−j−1)
+ (ϑj+1ω∗)

P (j+1)
ω∗ f dm ≤

∫

A(n−j)
+ (ϑjω∗)

P (j)
ω∗ f dm,
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where we have used the relation

A(n−j)
+ (ϑjω∗) = A+(ϑ

jω∗) ∩ T−1
ϑjω∗(A(n−j−1)

+ (ϑj+1ω∗)),

easily obtainable from (4.3). By considering all j = 0, 1, . . . , n − 1 we arrive at the

following series of inequalities:

∫

A(0)
+ (ϑnω∗)

P (n)
ω∗ f dm ≤

∫

A(1)
+ (ϑn−1ω∗)

P (n−1)
ω∗ f dm ≤ · · · ≤

∫

A(n)
+ (ω∗)

f dm.

Hence

1
2
‖P (n)

ω∗ f ‖L1 =
∫

A+(ϑnω∗)
P (n)

ω∗ f dm

≤
∫

A(n)
+ (ω∗)

f dm

≤ ‖ f ‖L∞ m(A(n)
+ (ω∗)),

where the equality above is due to Lemma 4.8, and the second inequality holds because

f ∈ L∞(m). By taking logarithms, dividing by n and taking limit supremum as n→ ∞ we

arrive at the required inequality E(A+, ω∗) ≤ −λ(ω∗, f ). The inequality for E(A−, ω∗)

is obtained by repeating the procedure, while considering − f in place of f .

Remark 4.9. We note that, if for a random set A : Ω→ B (or an orbit set A : {ϑnω∗}n∈Z+ →
B) one defines a conditional operator cocyclePA by P̃A(ω) f := P̃(ω)( f χA(ω)) for all ω ∈ Ω

(or ω ∈ {ϑnω∗}n∈Z+) and f ∈ L1, then the Lebesgue escape rate is given by

E(A, ω) = − lim sup
1
n

log ‖PA(n, ω)1‖L1 ,

which equals in absolute value to the Lyapunov exponent of a constant function with

respect to this conditional cocycle.

Remark 4.10. Note that the sets A± defined by (4.5) are only guaranteed to be orbit sets

when ω∗ is aperiodic. If ω is periodic, one would further require f to be an eigenfunction

of P (p)
ω∗ (where p is the period), in which case the equivalent result would be given by
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Theorem 2.5 of Chapter 2.

4.2.1 Choosing a Metastable Partition

Theorem 4.7 presents a method of finding pairs of orbit sets whose ω-fibres form 2-

partitions of X. Both of these orbit sets have low escape rates. Theorem 4.7 applies

to a large class of random dynamical systems. For the remainder of this section we

will investigate some of the consequences of this result. Similarly to its deterministic

counterpart (Lemma 2.11), Lemma 4.12 will show that in a very general setting one

may choose any ρ ∈ [−∞, 0), find an appropriate f ∈ L1(m) with Lyapunov exponent

λ(ω, f ) = ρ and obtain two random sets with escape lower than −ρ. In particular there

is no spectral gap and ρ may be arbitrarily close to 0, however, as will be suggested in

Example 4.13, such ρ often results in highly irregular random metastable sets.

Definition 4.11. A mapping h : Ω → L1(X,B, m) is said to be a random L1-function if

(ω, x) 7→ h(ω, x) is (F ⊗B,B(R))-measurable. If each hω is a density in L1(X,B, m), it

is called a random density. Such a density is said to be preserved by a Perron-Frobenius

operator cocycle P if Pωhω = hϑω for almost every ω ∈ Ω.

Lemma 4.12. Let P : N×Ω → End(L1(X,B, m)) be a Perron-Frobenius operator cocycle

(of a measurable map cocycle T) over (Ω,F , P, ϑ) that preserves a positive random density

h : Ω→ L∞(X,B, m). Suppose that there exists a random function g : Ω→ L∞(X,B, m) so

that Pωgω = 0 for almost all ω ∈ Ω. Then for every ρ ∈ [−∞, 0] there exists a random function

f : Ω→ L∞(X,B, m) such that λ(ω, fω) = ρ for almost every ω ∈ Ω.

Proof. We adapt the argument of proof of Lemma 2.11 to the random setting. Define

f so that fω := ∑∞
n=0 eρn(gϑnω/hϑnω) ◦ T(n)

ω · hω for every ω ∈ Ω. The facts that f is

measurable and each fω ∈ L∞(m) are inherited from the corresponding properties of g

and h. For any B ∈ B we have

∫

B
Pω fω dm =

∫

T−1
ω B

fω dm

=
∫

T−1
ω B

∞

∑
n=0

eρn(gϑnω/hϑnω) ◦ T(n)
ω · hω dm
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=
∫

T−1
ω B

gω dm +
∫

T−1
ω B

∞

∑
n=1

eρn(gϑnω/hϑnω) ◦ T(n)
ω · hω dm

= 0 + eρ
∫

T−1
ω B

∞

∑
n=0

eρn(gϑn+1ω/hϑn+1ω) ◦ T(n+1)
ω · hω dm

= eρ
∫

B

∞

∑
n=0

eρn(gϑn+1ω/hϑn+1ω) ◦ T(n)
ϑω · hϑω dm

= eρ
∫

B
fϑω.

Thus Pω fω = eρ fϑω almost everywhere. Now for ε > 0 let

Ωε := {ω ∈ Ω : ‖ fω‖L1 ≥ ε}.

Since ω 7→ ‖ fω‖L1 is measurable, the set Ωε is also measurable. Fix ε sufficiently small

so that P(Ωε) > 0. The Poincaré Recurrence Theorem [96, Chapter 26] (see [9] for an

in-depth historical account) asserts that P-almost surely there is a sequence mk ↑ ∞ such

that ϑmk ω ∈ Ωε. Hence

0 ≥ lim sup
n→∞

1
n

log ‖ fϑnω‖L1 ≥ lim sup
k→∞

1
mk

log ‖ fϑmk ω‖L1 ≥ 0,

from which we obtain

λ(ω, f ) = lim sup
n→∞

1
n

log ‖P (n)
ω fω‖L1

= lim sup
n→∞

1
n

log eρn‖ fϑnω‖L1

= ρ + lim sup
n→∞

1
n

log ‖ fϑnω‖L1 = ρ.

It is clear that the set-valued mappings A± : Ω → B defined by A±(ω) := {± fω}
obtained from a random function f are indeed random sets. Thus an application of

Theorem 4.7 to f in Lemma 4.12 implies that for any negative ρ, arbitrarily close to zero,

there exist complementary random sets whose random rate of escape is slower than −ρ.
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Example 4.13. Let (Ω,F , P, ϑ) be the full two-sided 2-shift on {0, 1} equipped with the

σ-algebra F generated by cylinders, and with Bernoulli probability measure P (µ(p,P)

of Example 1.11). Let T̃ : Ω → End([0, 1]) be the generator of a cocycle T, constant on

cylinders, given by T̃(ω) := Tω0 where Ti(x) := 2x + αi (mod 1) for αi ∈ R, i = 0, 1. It

is easy to check that the corresponding Perron-Frobenius operator cocycle P satisfies

Lemma 4.12 with hω ≡ 1 for all ω and gω = gω0 where

gi(x) =




−1/2, 0 ≤ x− αi (mod 1) ≤ 1/2

1/2, 1/2 < x− αi (mod 1) ≤ 1.
, i ∈ {0, 1}.

After applying Lemma 4.12 we conclude that any ρ ∈ [−∞, 0] is a Lyapunov exponent

with an essentially bounded Lyapunov function, hence by Theorem 4.7, there exist

complementary random sets with arbitrarily low escape rates.

For a numerical demonstration we set α0 = 0 and α1 = 0.6. We choose ω∗ ∈ Ω such

that ω∗i = 0 for all i < 0 and ω∗i equals the (i + 1)th digit in the fractional part of the

binary expansion of π for i ≥ 0. The first few central elements of ω∗, with the zeroth

element underlined, are:

ω∗ = (. . . , 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, . . . ).

Numerical approximations of fω∗ for some values of ρ are shown in Figure 4.1. For

ρ = −1 applying the construction in Theorem 4.7 we see from the graph of fω∗ that

A−(ω∗) = [0, 1/2) and A+(ω∗) = [1/2, 1]. As ρ becomes closer to 0 we can see more

oscillations in the fω∗ and, subsequently, higher disconnectedness of the corresponding

sets A±(ω∗).

4.3 Grassmannians

Before we start the discussion on Oseledets splitting, we first give a brief introduction to

Grassmannians and the topology that we use. We follow the setup of [58, Section 2].

Let (Y, ‖ · ‖Y) be a Banach space. A subspace E of Y is said to be closed complemented if
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Figure 4.1: Graphs of fω∗ corresponding to different Lyapunov exponents in Example
4.13. Note the increased irregularity as ρ approaches zero.

it is closed and there exists a closed subspace F of Y such that E∩ F = {0} and E+ F = Y,

where ‘+’ denotes the direct sum; that is, any nonzero element of Y can be uniquely

written as e + f with e ∈ E and f ∈ F. A natural linear map on Y is the projection onto F

along E, defined by PrF‖E(e + f ) = f .

The Grassmannian G(Y) of the space Y is the set of all closed complemented subspaces

of Y. For any E0 ∈ G(Y) there exists at least one F0 ∈ G(Y) such that E0 ⊕ F0 = Y, where

‘⊕’ now denotes topological direct sum. Every such F0 defines a neighbourhood UF0(E0) of

E0 by

UF0(E0) := {E ∈ G(Y) : E⊕ F0 = Y}.

Furthermore, on every such neighbourhood we can define the (E0, F0)-local norm by

‖E‖(E0,F0) := ‖PrF0‖E |E0‖op.

This induces a topological structure of a Banach manifold on G(Y). In particular, given a

suitable topology on Ω, the continuity of maps Ω→ G(Y) is well-defined. In a similar

fashion, by taking the corresponding Borel σ-algebra B(G(Y)) and B(Ω) (or F ), we may

also define measurability of such maps.

By Gd(Y) and Gc(Y) we will denote the subspaces of the Grassmannian G(Y) of Y

consisting only of subspaces of dimension d and codimension c respectively.

Recall that a function f : Y → R is said to be upper semi-continuous at x0 ∈ Y if for
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every ε > 0 there is an open neighbourhood Ux0 such that f (x) ≤ f (x0) + ε for all

x ∈ Ux0 . We shall use the fact that upper semi-continuity implies measurability.

Lemma 4.14. Let d be a fixed integer and let (Y, ‖ · ‖∗) and (Y, ‖ · ‖Y) be two Banach spaces

with ‖ · ‖∗ ≤ ‖ · ‖Y. For a fixed finite d, the function ψ : Gd(Y)→ R defined as

ψ(E) = sup
ξ∈E

‖ξ‖Y

‖ξ‖∗

is upper semi-continuous and therefore measurable.

Proof. Each E ∈ Gd(Y) is finite-dimensional. Since all norms on finite dimensional spaces

are equivalent, the function ψ is well-defined and 1 ≤ ψ(E) < ∞ for all E ∈ Gd(Y). For

any E0 ∈ Gd(Y), let F0 ∈ Gd(Y) be such that E0 ⊕ F0 = Y. For any ε ∈ (0, ψ(E0)
−1) let

Nε ⊂ UF0(E0) be a neighbourhood of E0 such that for all E ∈ Nε,

‖E‖(E0,F0) = ‖PrF0‖E |E0‖op < ε.

Take any E ∈ Nε. For any x ∈ E write x = y − z where y ∈ E0 and z ∈ F0. Then

z = PrF0‖E(y) and ‖z‖∗/‖y‖Y ≤ ‖z‖Y/‖y‖Y < ε. Now

‖x‖Y

‖x‖∗
=
‖y + x− y‖Y

‖y + x− y‖∗
≤ ‖y‖Y + ‖z‖Y

‖y‖∗ − ‖z‖∗
<
‖y‖Y + ε‖y‖Y

‖y‖∗ − ε‖y‖Y

≤ 1 + ε

ψ(E0)−1 − ε
.

The right hand side converges to ψ(E0) as ε→ 0. As E0 and ε are arbitrary, this establishes

upper semi-continuity of ψ on all of Gd(Y).
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4.4 Oseledets Splitting and Applications

In this section we extend Theorem 4.7 to apply in a Banach space (Y, ‖ · ‖Y), with

Y ⊂ L1(m), in which the Perron-Frobenius cocycle admits an Oseledets splitting. We then

apply these new results to expanding maps of the unit interval, where Y is taken to be

the Banach space of functions of bounded variation BV.

Definition 4.15 ([58, 104]). A linear operator cocycle2 P : N×Ω→ End(Y, ‖ · ‖Y) over

(Ω,F , P, ϑ) is said to be quasi-compact if for almost every ω ∈ Ω there exists an α < λ(ω)

such that the set Vα := {y ∈ Y : λ(ω, y) < α} is finite co-dimensional. We will denote

the infimal such α by α(ω).

Quasi-compact cocycles have the property that Lyapunov exponents larger than α(ω)

are isolated. For an isolated Lyapunov exponent r > α(ω), let ε > 0 be small enough so

that Λ(ω) ∩ (r− ε, r) = ∅. If the co-dimension of Vr−ε(ω) in Vr(ω) is d then we call r a

Lyapunov exponent of multiplicity d. There are at most countably many of these and we

refer to them as exceptional Lyapunov exponents. The exceptional Lyapunov spectrum is the set

of pairs of exceptional Lyapunov exponents and their multiplicities, {(λi(ω), di(ω))}p(ω)
i=1 .

For the rest of this chapter we retain the assumption that the base system (ϑ, P) is ergodic,

which ensures that λi, di and p are all constant almost everywhere; see [58] for more

details.

Definition 4.16 (Oseledets splitting [104]). A quasi-compact linear operator cocycle

P : N×Ω → End(Y, ‖ · ‖Y) over (Ω,F , P, ϑ) with exceptional spectrum {(λi, di)}p
i=1,

p ≤ ∞, admits a Lyapunov filtration over a ϑ-invariant set Ω̃ ⊆ Ω of full measure, if

there exists a collection of maps {Vi : Ω → Gci(Y)}p
i=1, such that for all ω ∈ Ω̃ and all

i = 1, . . . , p

(i) Y = V1(ω) ⊃ · · · ⊃ Vi(ω) ⊃ Vi+1(ω)

(ii) Vα(ω) ⊆ ∩p
i=1Vi(ω), with equality if and only if p is infinite;

(iii) PωVi(ω) = Vi(ϑω);

2Not necessarily Perron-Frobenius.
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(iv) λ(ω, v) = limn→∞
1
n log ‖P (n)

ω v‖Y = λi if and only if v ∈ Vi(ω) \ Vi+1(ω). If p is

finite, we take Vp+1(ω) := Vα(ω)(ω).

An Oseledets splitting for P is a Lyapunov filtration with an additional family of maps

{Ei : Ω→ Gdi(Y)}
p
i=1 such that for all ω ∈ Ω̃ and i = 1, . . . , p

(v) Vi(ω) = Ei(ω)⊕Vi+1(ω) (with Vp+1(ω) := Vα(ω)(ω) for p < ∞);

(vi) PωEi(ω) = Ei(ϑω);

(vii) λ(ω, v) = λi if v ∈ Ei(ω) \ {0}.

A Lyapunov filtration is measurable if each Vi : Ω → Gci(Y) is (F ,B(Gci(Y)))-

measurable. An Oseledets splitting is measurable if its Lyapunov filtration is measurable

and each of the maps Ei : Ω→ Gdi(Y) is measurable.

In order to connect the Y-Lyapunov spectrum to escape rate, we first need to relate

the Y-Lyapunov exponents to the L1-Lyapunov exponents used in Theorem 4.7. For this

we shall require a certain relation between the two norms.

Theorem 4.17. Let P : N×Ω → End(Y, ‖ · ‖Y) be a quasi-compact linear operator cocycle

over (Ω,F , P, ϑ) with exceptional spectrum {(λi, di)}p
i=1 and a measurable Oseledets splitting

{Ei}p
i=1 on Ω̃. Let ‖ · ‖∗ be a second norm on Y such that ‖ · ‖∗ ≤ C‖ · ‖Y for some C > 0.

Then for almost any ω ∈ Ω̃, i ∈ {1, . . . , p} and any f ∈ Ei(ω), we have λ‖·‖∗(ω, f ) =

λ‖·‖Y
(ω, f ) = λi; that is, the Lyapunov exponents with respect to the two norms are equal almost

everywhere.

Proof. Firstly note that scaling a norm by a constant does not change the Lyapunov

exponent, hence without loss of generality we may assume that C = 1. Fix i ∈ {1, . . . , p}.
Since ‖ · ‖∗ ≤ ‖ · ‖Y the inequality λ‖·‖∗(ω, f ) ≤ λ‖·‖Y

(ω, f ) for all ω ∈ Ω̃ follows trivially.

Now for the reverse inequality. Define a function c : Ω̃→ R by

c(ω) = sup
ξ∈Ei(ω)

‖ξ‖Y

‖ξ‖∗
= ψ ◦ Ei(ω),

where ψ : Gdi → R is as in Lemma 4.14. Since Ei is (F ,B(Gdi(X)))-measurable and ψ is

(B(Gdi(X)),B(R))-measurable, it follows that c is (F ,B(R))-measurable.
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For a positive integer N let χ{c<N} be the characteristic function of the (measurable)

set {ω : c(ω) < N}. Given any ω ∈ Ω̃, the function c(ω) is finite so χ{c<N}(ω) = 1

for all N > c(ω). Thus χ{c<N} → 1 pointwise. By Lebesgue’s Dominated Convergence

Theorem, we see that P({c < N}) → 1 as N → ∞. Thus we may choose an N large

enough so that P({c < N}) > 0. By the Poincaré Recurrence Theorem there almost

surely exists a sequence mk ↑ ∞ such that ϑmk ω ∈ {c < N}. Then

λ‖·‖∗(ω, f ) ≥ lim sup
k→∞

1
mk

log ‖P (mk)
ω f ‖∗

≥ lim
k→∞

1
mk

log N−1‖P (mk)
ω f ‖Y

= λi(ω),

which completes the proof.

Remark 4.18. By reversing the appropriate inequalities in the proof of Theorem 4.17 and

a similar modification of Lemma 4.14 one can see that the same result holds when the

two norms satisfy the relation C‖ · ‖∗ ≥ ‖ · ‖Y for some C > 0. In particular Theorem

4.17 is satisfied when the two norms are equivalent.

Now we relate the results of this section back to Perron-Frobenius operator cocycles.

A direct consequence of Theorem 4.7 and Theorem 4.17 is the following corollary.

Corollary 4.19. Let T : N×Ω→ End(X,B, m) be a measurable map cocycle over (Ω,F , P, ϑ)

and let its Perron-Frobenius cocycle be P : N×Ω → End(Y, ‖ · ‖Y), where Y ⊆ L1(X) and

‖ · ‖L1 ≤ ‖ · ‖Y. Suppose that P is quasi-compact, with exceptional spectrum {(λi, di)}p
i=1,

admitting a measurable Oseledets splitting Ei : Ω → G(X). For P-almost all ω∗ ∈ Ω̃

and any f ∈ Ei(ω
∗) if A± the orbit sets given by A±(ϑnω∗) = {±P (n)

ω∗ f > 0}, then

E(A±, ω∗) ≤ −λi, i = 2, . . . , p.

This result extends the applicability of Theorem 4.7 to Perron-Frobenius cocycles

on Banach spaces for which the cocycle is quasi-compact and the Banach space norm

dominates the L1-norm. Note that our result also applies to periodic ω∗ as, in this case,

the corresponding Oseledets subspaces Ei(ω
∗) would indeed be eigenspaces.
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4.4.1 Application to Cocycles of Expanding Interval Maps

We now focus on the unit interval, I = [0, 1], one-dimensional map cocycles T : N×
Ω→ End(I), and their Perron-Frobenius operators. In [58] it is shown that the Perron-

Frobenius cocycle is quasi-compact if the index of compactness (a quantity corresponding

to the essential spectral radius in the deterministic setting)

κ := lim
n→∞

1
n

log(1/ ess inf ((Tn
ω)
′(x)))

is less than zero. Such systems are said to be expanding-on-average. This formula for κ

suggests that any Lyapunov spectral points lying between κ and 0 (the latter correspond-

ing to the random invariant density) are associated with large-scale coherent structures

responsible for rates of mixing slower than the local expansion of trajectories can account

for. We apply the results of Corollary 4.19 to show that these sets also posses a slow rate

of escape, bounded by the corresponding exponent in the Lyapunov spectrum. Firstly,

we outline a generalisation to Lasota-Yorke maps — Rychlik maps and their cocycles.

Definition 4.20 (Rychlik map [99]). A map T : I 	 is Rychlik if

(R1) T is C2 on an open subset UT ⊆ I of full measure

(R2) T|B extends to a homeomorphism from B (closure of B) to a subinterval of I, for

each connected component B ⊆ UT

(R3) the function gT, where gT equals 1/|JT| on UT and 0 otherwise, has bounded

variation.

Let Ω ⊆ {1, . . . , k}Z be a shift space on k symbols with the left shift map ϑ : Ω 	

given by (ϑω)j = ωj+1. Furthermore, suppose F is the Borel σ-algebra generated by

cylinders in Ω and suppose that P is an ergodic shift-invariant probability measure on

Ω.

A Rychlik map cocycle is a cocycle T : N×Ω→ End(I) obtained from a collection of

k Rychlik maps {Ti}k
i=1 where the generator T̃ is given by T̃ω = Tω0 . We will denote the

corresponding Perron-Frobenius operator cocycle P : N×Ω → End(BV). For more

details we refer the reader to [58].
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In [58, Corollary 28] it is shown that the Perron-Frobenius cocycle of any Rychlik map

cocycle that is expanding-on-average (i.e. κ < 0) admits a P-continuous (and therefore

measurable) Oseledets splitting in BV. We combine this result with Corollary 4.19 to

obtain the following.

Corollary 4.21. Let T : N×Ω → End(I) be a Rychlik map cocycle which is expanding on

average and let P : N×Ω→ End(BV) be its Perron-Frobenius operator cocycle, which admits

a measurable Oseledets splitting on a set of full P-measure Ω̃ ⊆ Ω. For any isolated Lyapunov

exponent λi < 0 and P-almost any ω∗ ∈ Ω there exist orbit sets A± such that ω-fibres of A±
partition I and E(A±, ω∗) ≤ −λi.

Proof. Since ‖ · ‖L1 ≤ ‖ · ‖BV, a direct application of Corollary 4.19 shows that any pair

of orbit sets A± satisfying A±(ϑnω∗) = {±P (n)
ω∗ f > 0} have escape rates lower than

−λi.

Moreover, by an application of Corollary 2.18 to BV functions we see that each A±(ω),

ω ∈ {ϑnω∗}n∈Z+ , may be written as a countable union of closed sets (including possibly

singleton sets). Thus, as we saw in the deterministic setting, the orbit sets A±, from

which we are bounding the rate of escape, have a relatively simple topological form.

We will use the rest of this chapter to illustrate our techniques via a numerical example.

Firstly, though, we outline the algorithm of [59, Section 6], which we use to numerically

compute Oseledets subspaces.

Algorithm 4.22 ([59]). Let P : N×Ω → End(L1(X,B, m)) be a quasi-compact linear

Perron-Frobenius operator cocycle over (Ω,F , P, ϑ) with a measurable Oseledets split-

ting {(Ei, λi)}. For a test point ω∗ ∈ Ω we apply the following steps to numerically

approximate the corresponding Oseledets subspaces and their Lyapunov exponents:

(A1) Choose integers I, J > 0 and for all n such that −I ≤ n ≤ J − I compute the Ulam

approximations P(ϑnω∗) of Pϑnω∗ , with respect to an appropriate partition. The

corresponding Ulam matrix cocycle is defined in the usual way, denoted P(n)(ω).

(A2) Form the matrix

Ψ(J)(ϑ−Iω∗) := (P(J)(ϑ−Iω∗)TP(J)(ϑ−Iω∗))1/2J .
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(A3) Calculate the orthonormal eigenspace decomposition of Ψ(J)(ϑ−Iω∗), denoted

U(J)
i (ϑ−Iω∗), i = 1, . . . , k.

(A4) Define

E(I,J)
i (ω∗) := P(J)(ϑ−Iω∗)U(J)

i (ϑ−Iω∗).

(A5) The finite dimensional space E(I,J)
i (ω∗) is a numerical approximation to Ei(ω

∗).

Example 4.23. This example is borrowed from [59, p. 746] and we refer the reader to

the original article for additional details. It is easy to check that the cocycle T described

below is Rychlik and expanding-on-average. The base dynamical system is given by a

shift ϑ on sequence space Ω = ΣE ⊂ {1, . . . , 6}Z with adjacency matrix

E =




0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0




,

equipped with the σ-algebra generated by 1-cylinders and the Markov probability mea-

sure P determined by the stochastic matrix 1
2 E.

The map cocycle T is generated by maps T̃ : Ω→ End(I) given by T̃(ω) = Tω0 where

{Ti}6
i=1 is a collection of six Lebesgue-preserving, piecewise affine, Markov expanding

maps of the interval, which share a common Markov partition, graphs of which are

shown in Figure 4.2. The map cocycle T has been designed so that at each step, a

particular (random) interval of length 1/3 (selected from [0, 1/3], [1/3, 2/3] and [2/3, 1])

is approximately shuffled (with some escape) to another of these three intervals. For

example, the map T1 approximately shuffles [0, 1/3] to [1/3, 2/3]. These particular

random intervals are the metastable sets or coherent sets for this random system from

which we show the escape rate is slow.
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T1 T2 T3

T4 T5 T6

Figure 4.2: Graphs of maps T1, . . . , T6, reproduced from [59, Figures 1 & 5].

A test sequence ω∗ ∈ Ω is obtained in the following way. Let α ∈ {0, 1}Z be such

that α0 = 0, and for i ≥ 1, αi is the (2i)th digit in the binary expansion of the fractional

part of π while α−i is the (2i− 1)th digit of the same expansion. Let h : Ω→ {0, 1}Z be

such that

h(ω)i =





0, ωi ∈ {1, 2, 3}

1, ωi ∈ {4, 5, 6}.

Observe that h is three-to-one and that we may uniquely choose ω∗ ∈ h−1{α} that

satisfies ω∗0 = 1. Shown below are some of the central elements of ω∗, with the zeroth

element underlined:

ω∗ = (. . . , 3, 4, 6, 5, 4, 3, 4, 6, 5, 1, 2, 3, 4, 3, 1, 2, 3, 4, 3, 1, 5, 4, 6, 5, 1, 2, 3, 1, 2, . . . ).

It is shown in [59] that Λ(ω∗) ⊂ [−∞, log 1/3] ∪ {λ2(ω
∗)} ∪ {0} where λ2(ω

∗) ≈
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Figure 4.3: Functions fϑiω∗ , spanning second Oseledets subspaces E2(ϑ
iω∗) for i =

0, . . . , 7.

log 0.81, approximated using Algorithm 4.22. The functions fϑnω∗ = P (n)
ω∗ fω∗ spanning

the corresponding Oseledets subspaces E2(ϑ
nω∗) are shown in Figure 4.3. One can see

that, when compared to those in Figure 4.1, these functions are more regular (i.e. lower

variation). We also determine the random metastable sets or coherent sets A±(ϑnω∗) =

{± fϑnω∗ > 0} for the first eight values on the forward orbit of ω∗:

A+(ω∗) = [0, 3/9] , A−(ω∗) = [3/9, 1) ,

A+(ϑω∗) = [3/9, 6/9] , A−(ϑω∗) = [0, 3/9) ∪ (6/9, 1] ,

A+(ϑ2ω∗) = [6/9, 1] , A−(ϑ2ω∗) = [0, 6/9) ,

A+(ϑ3ω∗) = [0, 4/9] , A−(ϑ3ω∗) = (4/9, 1] ,

A+(ϑ4ω∗) = [6/9, 1] , A−(ϑ4ω∗) = [0, 6/9) ,

A+(ϑ5ω∗) = [0, 3/9] , A−(ϑ5ω∗) = [3/9, 1) ,

A+(ϑ6ω∗) = [3/9, 6/9] , A−(ϑ6ω∗) = [0, 3/9) ∪ (6/9, 1] ,

A+(ϑ7ω∗) = [0, 3/9] , A−(ϑ7ω∗) = [3/9, 1) .

As per the discussion in Remark 4.9 we can approximate the rates of escape from A+ and

A− by computing the largest Lyapunov exponent of the matrix approximations of the
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corresponding conditional cocycle (we use I = 0 and J = 20 for parameters I and J in

Algorithm 4.22). We then find that E(A+, ω∗) ≈ − log 0.83 and E(A−, ω∗) ≈ − log 0.89.

This is in agreement with Corollary 4.21 as both escape rates are less than the previously

computed −λ2(ω
∗) ≈ − log 0.81.

By inspecting Tϑkω∗ we see that A+(ϑkω∗) is mostly mapped onto A+(ϑk+1ω∗), k =

0, . . . , 6. This phenomenon is the cause of the slow escape from the random set A+. By

Corollary 4.21, the presence of a Lyapunov spectral value close to 0 forces the existence

of a random set with escape rate slower than that spectral value.



Chapter 5

Bounds on Topological Entropy in

Symbolic Dynamics

In this final chapter we turn our focus to symbolic dynamics of shifts of finite type,

both deterministic and random. We will use techniques similar in theme to those in

the preceding chapters, but this time applied to transition matrices rather than Perron-

Frobenius operators. As per the discussion in Chapter 1, many dynamical systems (more

precisely, those that possess a Markov partition) are semi-conjugate to shifts of finite type

and the results here, rather than being an extension, are somewhat of a simplification

to the results of Chapter 2 and 4. Nevertheless, interesting applications to topological

entropy arise.

This chapter consists of two parts. In Section 5.1 we investigate deterministic shifts

of finite type. This material has appeared in the final section of [65]. In Section 5.2 we

deal with the analogous results in the setting of random shifts of finite type, which has

appeared as the final section of [66].

5.1 Entropy Bound for Shifts of Finite Type

As earlier mentioned in Chapter 1, in the study of shifts of finite type, topological entropy

quantifies the exponential growth rate of the number of allowed blocks with block length.

Equivalently, if one considers a random walk on the corresponding graph, entropy is the
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growth rate on the number of distinct k-paths, and in a sense measures the connectedness

of the graph. We discussed in Section 1.2.6 that the escape rate formula of thermodynamic

formalism translates in this setting to formula (1.23), equating escape rate to the difference

in topological entropies of a shift of finite type and the corresponding subshift on the

survivor set.

In the same spirit of detecting metastable sets that we have exercised in Chapter 2, our

approach to metastability within a shift of finite type is to detect two disjoint subshifts,

both of which possess high topological entropies relative to the original subshift. In the

corresponding graph analogue, this may be seen as an attempt at determining highly

connected subgraphs.

Theorem 5.1. Let (ΣM, σ) be a memory-1 shift of finite type, with corresponding N × N

adjacency matrix M. Let 0 < ρ < R(M) be a real eigenvalue of M with eigenvector v ∈ RN.

Define A+ and A− to be the two sets of indices (sub-alphabets) for which v is positive and

negative, respectively:

A+ := {i ∈ A : vi > 0} , A− := {i ∈ A : vi < 0} .

Let M+ and M− be the restrictions of M to indices in A+ and A− respectively. These adjacency

matrices define two disjoint memory-1 subshifts of ΣM on disjoint symbol sets (A+ and A−),

denoted by ΣM+ and ΣM− . One then has htop(ΣM+) ≥ log ρ and htop(ΣM−) ≥ log ρ.

Proof. It is sufficient to show that R(M+) ≥ ρ, where R(M+) is the spectral radius of

M+. For every i ∈ A+ we have

ρvi = ∑
j∈A

Mijvj

= ∑
j∈A+

Mijvj + ∑
j/∈A+

Mijvj

≤ ∑
j∈A+

(M+)ijvj.

It follows that (ρnv+)i ≤ (Mn
+v+)i for all n ≥ 1 and i ∈ A+, where v+ is the restriction

of v to A+; thus ρn‖v+‖ ≤ ‖Mn
+v+‖. By Gelfand’s Spectral Radius Formula [67] (see e.g.
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[14, Theorem 12.9]) we obtain ρ ≤ R(M+), therefore htop(ΣM+) = log r(MA+) ≥ log ρ.

By considering −v in place of v we also obtain htop(ΣM−) ≥ log ρ.

Example 5.2. Let A = {0, 1, . . . , 8} and ΣM ⊂ AZ+
be the one-sided memory-1 shift

whose allowed transition graph is shown in Figure 5.1.

Figure 5.1: Transition graph of XF.

The adjacency matrix M of ΣM is given by

M =




1 0 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0

1 0 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 1

0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 1




.

We have deliberately constructed the shift ΣM so that its graph of allowed transitions

consists of two weakly-linked subgraphs, each of which is highly internally linked. The

dynamics restricted to each of the two subgraphs generates almost as much entropy as

the dynamics on the whole graph. We expect that the adjacency matrix M has a real

positive eigenvalue ρ close to R(M). If so, we may use Theorem 5.1 to identify two

disjoint subshifts of ΣM, namely ΣM+ and ΣM− with entropy of each larger than log ρ.
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We find that M has largest eigenvalueR(M) ≈ 1.92, and second largest eigenvalue

ρ ≈ 1.42. The eigenvector v corresponding to ρ is shown in Figure 5.2; thus we define

A+ = {0, 2, 3, 7} and A− = {1, 4, 5, 6, 8}. This corresponds to breaking both connections

1 2 3 4 5 6 7 8 9
−0.2

−0.1

0

0.1

0.2

0.3

i

v
i

Figure 5.2: Second eigenvector of M.

between vertices ‘6’ and ‘2’ in Figure 5.1, and taking each of the two connected compo-

nents to be the transition graphs of ΣM+ and ΣM− . We calculate the topological entropy

of each of the newly obtained subshifts: htop(ΣM+) ≈ log 1.47 and htop(ΣM−) ≈ log 1.76.

Both entropies are greater than log ρ, as guaranteed by Theorem 5.1. In this example,

we guessed a good partitioning of the set of states and this guess coincided with the

conclusion of Theorem 5.1. For larger, more complicated examples, Theorem 5.1 can

be used to discover good partitions that may not be as immediately obvious as in this

example.

Example 5.3. As we remarked in the introductory chapter, one can always recode a

shift of higher memory into a conjugate memory-1 shift. Thus, using our technique

of Theorem 5.1, we may also partition memory-2 or higher shifts by first conducting

the appropriate recoding. In Example 5.2, ΣM = ΣF is a recoding of a memory-2 shift

ΣF∗ ⊂ AZ+

∗ where A∗ = {0, 1, 2} and

F∗ = {001, 010, 022, 101, 110, 121, 200, 211, 212, 221}.

The sliding block code π : ΣF∗ → ΣF given by π(y) = x for y ∈ ΣF∗ where xi = 3yi−1 + yi,
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for all i ∈ Z+, conjugates the two shifts. As in Example 5.2 we partition ΣF = ΣM into

two disjoint subshifts ΣG = ΣM+ and ΣH = ΣM− of high topological entropy, relative

to the entropy of ΣF. By applying π−1 and using the fact that π is a conjugacy, we

create a partition of ΣF∗ into two disjoint subshifts of high entropy: ΣG∗ = π−1ΣG and

ΣH∗ = π−1ΣH. From the calculations in Example 5.2 we have htop(ΣF∗) ≈ log 1.92,

htop(ΣG∗) ≈ log 1.47 and htop(ΣH∗) ≈ log 1.76. Moreover,

G∗ = F∗ ∪ {011, 012, 111, 112, 120, 122, 201, 220, 222}

and

H∗ = F∗ ∪ {000, 002, 020, 021, 100, 102, 202, 210}.

thus G∗ ∩H∗ = F∗ and G∗ ∪H∗ contains all words of length three on A∗.

5.2 Entropy Bound for Random Shifts of Finite Type

In this section we use our machinery to obtain results on partitioning random shifts of

finite type into disjoint subshifts of high entropy. We begin by defining random transition

matrices, the corresponding random shifts of finite type and some important properties

such as aperiodicity. We alter some of our notation to match the notation usually applied

to shifts. For a more detailed description of random shifts of finite type see for example

the paper of Bogenschütz and Gundlach [13] and the references therein.

As in Chapter 4, we shall assume that (Ω,F , P, ϑ) is an abstract ergodic base dynami-

cal system.

Definition 5.4. For any integer N ≥ 2, a random transition matrix is defined to be a

measurable N × N transition-matrix-valued function M : Ω → MN×N({0, 1}). For

ω ∈ Ω and n ∈N write the matrix cocycle as

M(n)(ω) := M(ω)M(ϑω) · · ·M(ϑn−1ω).

Note that the map (n, ω) 7→ Mn(ω) satisfies the cocycle properties (C1) and (C2) of
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Chapter 4.

Definition 5.5. Let A = {1, . . . , N} be an alphabet and AZ+
the space of all one-sided

A-valued sequences. A random matrix M : Ω → MN×N defines a subset of AZ+
for

every ω ∈ Ω by

ΣM(ω) := {x ∈ AZ+
: Mxixi+1(ϑ

iω) = 1 for all i ∈ Z+}.

Let σ be the left shift map on each ΣM(ω). Then σ does not preserve each ΣM(ω), hence

ΣM(ω) is not a shift space in the deterministic sense. However, we may study the bundle

random dynamical system determined by the family of maps

{σ : ΣM(ω)→ ΣM(ϑω), ω ∈ Ω},

and we refer to it as a random shift of finite type. The set ΣM := {(ω, ΣM(ω)), ω ∈ Ω} is

called a random shift space.

Definition 5.6. A random transition matrix M : Ω → Mk×k({0, 1}) is aperiodic (or

irreducible) if for almost every ω ∈ Ω there exists a positive integer K = K(ω) such that

M(K)(ω) > 0. If K is independent of ω then M is said to be uniformly aperiodic. We will

also use the terms “aperiodic” and “uniformly aperiodic” to describe the corresponding

random shift space ΣM.

Define

Cn(ω) := {[x0x1 . . . xn−1] : Mxixi+1(ϑ
iω) = 1 for all 0 ≤ i < n− 2}

to be the set of all n-cylinders of ΣM(ω) beginning at position 0.

Proposition 5.7. The following limit exists and is constant P-almost everywhere:

htop(ΣM(ω)) := lim
n→∞

1
n

log |Cn(ω)|.

Proof. Observe that |Cn+m(ω)| ≤ |Cn(ω)| · |Cm(ϑnω)|, thus the sequence {log |Cn(ω)|}n∈Z+

is subadditive. By Kingman’s Subadditive Ergodic Theorem [76] (see e.g. [1, Theorem
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3.3.2]) there exists a measurable function f : Ω→ R∪ {−∞} such that

lim
n→∞

1
n

log |Cn(ω)| = f (ω)

and f ◦ ϑ = f almost everywhere. As (ϑ, P) is ergodic, f is constant almost everywhere

(see e.g. [79, Theorem 4.2.1]).

The quantity htop(ΣM(ω)) is called the topological entropy of ΣM(ω). Denote by

htop(ΣM) the constant where htop(ΣM) = htop(ΣM(ω)) almost everywhere.

Proposition 5.8. |Cn(ω)| = ∑i,j M(n−1)
ij (ω) for every n ≥ 2.

Proof. The proof of this result is largely identical to the proof of its deterministic analogue

(see for example [85, Proposition 2.2.12]).

Definition 5.9. Let {σ : ΣM(ω) → ΣM(ϑω)} and {σ : ΣQ(ω) → ΣQ(ϑω)} be two

random shifts of finite type with common base dynamical system (Ω,F , P, ϑ). The

random shift ΣQ is a subshift of ΣM if

(Qij(ω) = 1) =⇒ (Mij(ω) = 1) for all i, j ∈ A, ω ∈ Ω.

A subshift may not utilise all the symbols of its parent shift for different values

of ω. We may think of this as either a subshift whose alphabet, while finite, changes

with ω or as a subshift on all of the alphabet of its parent shift, but possibly containing

isolated vertices in the associated adjacency graph. We now introduce the notion of a

complementary subshift. Roughly speaking for each ω ∈ Ω two complementary subshifts

of ΣM utilise disjoint subsets of A in a maximal way.

Definition 5.10. Let ΣM be a random shift of finite type and let ΣQ be a subshift of ΣM.

The complementary subshift of ΣM to ΣQ is the subshift ΣQ′ whose elements Q′ij = 1 if

and only if Mij = 1 and Qik = Qkj = 0 for all k ∈ A.

We state a recent extended version of the classical Oseledets Multiplicative Ergodic

Theorem (MET) [92] which guarantees the existence of an Oseledets splitting of RN even

when the adjacency matrices M(ω) are not invertible. This is the case in many interesting
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examples, including some random shifts of finite type. The MET is a central piece of

machinery which we use to determine complementary subshifts with large topological

entropies. Later we will see that the leading Lyapunov exponent λ1 yields the topological

entropy of the shift, while the second Lyapunov exponent λ2, if close to λ1, indicates

the presence of metastability and the ability to form complementary subshifts with large

topological entropies relative to that of the original shift. The following is [59, Theorem

4.1] specialised to adjacency matrices.

Theorem 5.11 (Froyland et al. [59]). Suppose (Ω,F , P, ϑ) is an invertible ergodic base

dynamical system and consider a random transition matrix M : Ω→MN×N({0, 1}). There

exists a forward ϑ-invariant full P-measure subset Ω̃ ⊂ Ω, numbers λr < · · · < λ1 and

dimensions d1, . . . , dr ∈N satisfying ∑l dl = N such that for all ω ∈ Ω̃:

(i) There exist subspaces Wl(ω) ⊂ RN, l = 1, . . . , r, dim(Wl(ω)) = dl;

(ii) RN = W1(ω)⊕ · · · ⊕Wr(ω) for ω ∈ Ω̃;

(iii) M(ω)Wl(ω) ⊆Wl(ϑω) with equality if λl > −∞;

(iv) For v ∈Wl(ω) \ {0} the Lyapunov exponent

λ(ω, v) := limn→∞
1
n

log ‖vM(n)(ω)‖1

exists and equals λl.

The subspaces Wl are called Oseledets subspaces and the splitting in (ii) is an Oseledets

splitting.

Remark 5.12. The result of [59, Theorem 4.1] applies to all measurable random matrices

whose logarithm of the norm is integrable. We have stated the theorem above in the

specific setting of transition matrices where the integrability condition always holds.

The following lemma states that W1(ω) always contains the first quadrant of RN.

Lemma 5.13. Under the hypothesis of Theorem 5.11, for all ω ∈ Ω̃ and for all vectors v > 0

one has λ(ω, v) = λ1. If, in addition, M is uniformly aperiodic, then for all ω ∈ Ω̃ and for all

vectors v ≥ 0 one has λ(ω, v) = λ1.
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Proof. Let v1 ∈ RN satisfy λ(ω, v1) = λ1. Since |v1|M(n)(ω) ≥ |v1M(n)(ω)|, we must

also have λ(ω, |v1|) = λ1, where the absolute values and the inequalities are taken

element-wise. Thus, the leading exponent λ1 is achieved by a nonnegative vector,

namely, v′1 = |v1| ≥ 0.

Suppose first that in fact v′1 > 0. For any v > 0, there exist positive constants c and

C such that cv′1 ≤ v ≤ Cv′1 and therefore for any n ∈ N we have c‖v′1M(n)(ω)‖1 ≤
‖vM(n)(ω)‖1 ≤ C‖v′1M(n)(ω)‖1. We conclude that λ(ω, v) = λ(ω, v′1) for all positive v.

Secondly, we consider the case where v′1 is merely non-negative and nonzero. Since M

is uniformly aperiodic, for every ω there exists an integer K such that M(K)(ω) is positive

and therefore v′1M(K)(ω) is also positive. Using the argument above for positive vectors

and the fact that λ(ω, v) = λ(ϑKω, vM(K)(ω)) we obtain λ(ω, v) = λ(ω, v′1) = λ1 for all

v ≥ 0.

Corollary 5.14. For all ω ∈ Ω̃ one has htop(ΣM(ω)) = htop(ΣM) = λ1.

Proof. Let 1 denote the vector in RN with all entries 1. From Proposition 5.8, clearly

|Cn(ω)| = ‖1M(n−1)(ω)‖1, thus htop(ΣM(ω)) = λ(ω,1). By Lemma 5.13, this equals λ1

for all ω ∈ Ω̃.

Now we state our main result of this section in the following theorem.

Theorem 5.15. Let ΣM be a uniformly aperiodic random shift of finite type with corresponding

random adjacency matrix M : Ω→Mk×k({0, 1}). Fix ω∗ ∈ Ω̃. Let v∗ ∈W`(ω
∗) with ` > 1.

Define the sequence of vectors v : {ϑnω∗}n∈Z+ → Rk on the orbit of ω∗ by

v(ϑnω∗) :=
v∗M(n)(ω∗)
‖v∗M(n)(ω∗)‖1

∈W`(ϑ
nω∗)

and a sequence of sub-alphabets A+ by A+(ϑnω∗) := {i ∈ A : vi(ϑ
nω∗) > 0}. Suppose ΣQ

is a subshift of ΣM such that on the orbit of ω∗ the random matrix Q takes the following values:

Qij(ϑ
nω∗) =





Mij(ϑ
nω∗) if i ∈ A+(ϑnω∗) and j ∈ A+(ϑn+1ω∗)

0 otherwise.
(5.1)
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Then the topological entropy of ΣQ(ω
∗) is less than or equal to λ`, that is h(ΣQ(ω

∗)) ≥ λ`. If

ΣQ′ is the complementary subshift to ΣB then also h(ΣQ′(ω
∗)) ≥ λ`.

Proof. Firstly, we will show by induction that for all i = 1, . . . , k

(v(ω∗)M(n)(ω∗))i ≤ (v(ω∗)Q(n)(ω∗))i. (5.2)

Let v = v+ + v− denote the decomposition of the vector v into nonnegative and non-

positive parts. Then we have (v(ω∗)M(ω∗))i ≤ (v(ω∗)+M(ω∗))i = (v(ω∗)Q(ω∗))i so

(5.2) holds for n = 1. Assuming that (5.2) is true for some n ≥ 1, we proceed with the

inductive step

(v(ω∗)M(n+1)(ω∗))i

‖v(ω∗)M(n)(ω∗)‖1
= (v(ϑnω∗)M(ϑnω∗))i

= ∑
j

vj(ϑ
nω∗)Mji(ϑ

nω∗)

= ∑
j∈A+(ϑnω∗)

vj(ϑ
nω∗)Mji(ϑ

nω∗) + ∑
j/∈A+(ϑnω∗)

vj(ϑ
nω∗)Mji(ϑ

nω∗)

≤ ∑
j∈A+(ϑnω∗)

vj(ϑ
nω∗)Mji(ϑ

nω∗)

=
1

‖v(ω∗)M(n)(ω∗)‖1
∑

j∈A+(ϑnω∗)
(v(ω∗)M(n)(ω∗))jMji(ϑ

nω∗)

≤ 1
‖v(ω∗)M(n)(ω∗)‖1

∑
j∈A+(ϑnω∗)

(v(ω∗)Q(n)(ω∗))jMji(ϑ
nω∗) (5.3)

=
(v(ω∗)Q(n+1)(ω∗))i

‖v(ω∗)M(n)(ω∗)‖1
, (5.4)

where we have used the inductive hypothesis to obtain inequality (5.3). Thus (5.2) holds

for all n ≥ 1 and all i ∈ A. Noting that for i ∈ A+(ϑnω∗) both sides of (5.2) are positive,

we have

‖(v(ω∗)M(n)(ω∗))+‖1 ≤ ‖v(ω∗)Q(n)(ω∗)‖1.

Thus,

lim
n→∞

1
n

log ‖v(ω∗)M(n)(ω∗))+‖1 ≤ lim
n→∞

1
n

log ‖v(ω∗)Q(n)(ω∗)‖1
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≤ lim
1
n

log ‖1Q(n)(ω∗)‖1 = h(ΣQ(ω
∗)).

Next we will show that limn(1/n) log ‖v(ω∗)M(n)(ω∗)‖1 ≤ limn(1/n) log ‖(v(ω∗)M(n)(ω∗))+‖1

to finally obtain that λ` ≤ h(ΣQ(ω
∗)). We need to have some control over the relative

size of the positive and negative parts of v along the orbit of ω∗. To continue the proof of

Theorem 5.15 we first state and prove the following claim.

Claim: Let ω ∈ {ϑnω∗}n∈Z+ and let N = N(ω) be smallest integer such that M(N)(ω) > 0.

Then
1

kN ≤
‖v(ω)+‖1

‖v(ω)−‖1
≤ kN. (5.5)

Proof of claim: As M is a 0− 1 matrix, then maxi,j M(N)
ij (ω) ≤ kN. From the definition of

N we also have mini,j M(N)
ij (ω) ≥ 1. The proof of (5.5) is by contradiction. Suppose that

‖v(ω)+‖1 > kN‖v(ω)−‖1. Then for every i = 1, . . . , k we have

vi(ϑ
Nω)‖v(ω)M(N)(ω)‖1 = (v(ω)M(N)(ω))i

= (v(ω)+M(N)(ω) + v(ω)−M(N)(ω))i

= ∑
j
(v(ω)+)i M

(N)
ij (ω) + ∑

j
(v(ω)−)i M

(N)
ij (ω)

≥ ‖v(ω)+‖1 − kN‖v(ω)−‖1

> kN‖v(ω)−‖1 − kN‖v(ω)−‖1 = 0.

Therefore v(ϑNω) ∈ W`(ϑ
Nω) is a positive vector, but this is a contradiction because

the Lyapunov exponent of any positive vector equals λ1 6= λ`. The inequality 1/kN ≤
‖v(ω)+‖1/‖v(ω)−‖1 is proven similarly.

We continue the proof of the theorem as follows

λ` = lim
n→∞

1
n

log ‖(v(ω∗)M(n)(ω∗))‖1

= lim
n→∞

1
n

log
(
‖(v(ω∗)M(n)(ω∗))+‖1 + ‖(v(ω∗)M(n)(ω∗))−‖1

)

≤ lim
n→∞

1
n

log((1 + kN)‖(v(ω∗)M(n)(ω∗))+‖1)
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= lim
n→∞

1
n

log ‖(v(ω∗)M(n)(ω∗))+‖1.

Hence we have shown (5.5), therefore λl ≤ htop(ΣQ).

By considering −v in place of v we obtain a subshift ΣQ′ with sub-alphabet A− :=

A \A+ that is complementary to ΣQ and the inequality λl ≤ htop(ΣQ′) also holds.

Theorem 5.15 may be used to decompose a metastable random shift space into two

complementary random subshifts, with each possessing a large topological entropy. One

chooses v(ω) ∈W2(ω) corresponding to the second largest Lyapunov exponent λ2 and

partitions according to the positive and negative parts of the push-forwards of v by the

matrix cocycle of M. We illustrate this with the following example.

Example 5.16. Let Ω = {0, 1}Z and let ϑ : Ω 	 be the full two-sided shift on two

symbols. Consider the random matrix M : Ω→M4×4 given by M(ω) = Mω0 where

M0 =




0 1 0 0

1 1 0 1

0 0 1 1

1 0 1 0




and M1 =




1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1




.

We consider a generic point ω∗ ∈ Ω̃ where ω∗i is the (20 + i)th digit of the fractional

part of the binary expansion of π for i > −20 (and ω∗i = 0 for i ≤ −20). The first few

elements of ω∗, with the zeroth element underlined, are given below:

ω∗ = (. . . , 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, . . . ).

Using Algorithm 4.22 (excluding (A1) and with J = 2I = 40) we approximate the largest

Lyapunov exponent λ1(ω
∗) ≈ log 2.20, which, by Corollary 5.14, equals the topological

entropy of the random shift, that is htop(ΣM(ω∗)) ≈ log 2.20. The second Lyapunov

exponent of this system is λ2 ≈ log 1.21. Thus, by Theorem 5.15 we can decompose the

shift ΣM into two complementary subshifts ΣQ and ΣQ′ , each with topological entropy

larger than log 1.21. Moreover, the decomposition is given by the Oseledets subspaces for

λ2. These Oseledets subspaces Wl are spans of the vectors {v(ω∗), v(ϑω∗), v(ϑ2ω∗), . . . },
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whose graphs are shown in Figure 5.3. The sub-alphabetsA+ andA− have the following

values on the first four points in the forward orbit of ω∗:

A+(ω∗) = {1, 2}, A−(ω∗) = {3, 4},
A+(ϑω∗) = {2, 4}, A−(ϑω∗) = {1, 3},
A+(ϑ2ω∗) = {1, 3}, A−(ϑ2ω∗) = {2, 4},
A+(ϑ3ω∗) = {1, 2}, A−(ϑ3ω∗) = {3, 4}.
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Figure 5.3: Vectors spanning Oseledets subspaces corresponding to the second Lyapunov
exponent.

We construct the matrix Q of the random subshift according to (5.1) in Theorem 5.15.

On the first three elements of the forward orbit of ω∗, Q takes the following values:

Q(ω∗) =




0 1 0 0

0 1 0 1

0 0 0 0

0 0 0 0




, Q(ϑω∗) =




0 0 0 0

1 0 1 0

0 0 0 0

0 0 1 0




, Q(ϑ2ω∗) =




1 1 0 0

0 0 0 0

0 1 0 0

0 0 0 0




.
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Similarly the adjacency matrices of the complementary subshift ΣQ′ begin with

Q′(ω∗) =




0 0 0 0

0 0 0 0

0 0 1 0

1 0 1 0




, Q′(ϑω∗) =




0 1 0 0

0 0 0 0

0 1 0 1

0 0 0 0




, Q′(ϑ2ω∗) =




0 0 0 0

0 0 1 0

0 0 0 0

0 0 1 1




.

The graphs of ΣQ and ΣQ′ for the first four elements of the forward orbit of ω∗ are

shown in Figure 5.4.
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Figure 5.4: Graphs of ΣQ and ΣQ′ for first four transitions along the orbit of ω∗. The
grayed-out nodes in each belong to the corresponding complementary subshift.

Using Algorithm 4.22 (with J = 20 and I = 0) we estimate the largest Lyapunov expo-

nents, and therefore the topological entropies, of these two subshifts to be htop(ΣQ(ω
∗)) ≈

log 1.62 and htop(ΣQ′(ω
∗)) ≈ log 1.58. Both are larger than λ2 ≈ log 1.21, as predicted by

Theorem 5.15.



Summary

We started with the aim of investigating escape rates in dynamical systems, with the

premise that metastability is closely linked to low escape.

In the first chapter, we defined the main notions and provided a few useful and

well-known results, together with a literature survey of the area of open dynamical

systems.

We began Chapter 2 by providing two examples emphasising the distinctions between

almost invariance and low escape rate. We then proved our first main result (Theorem

2.5), which showed that the metastable regions constructed from spectral analysis of

the Perron-Frobenius operator do possess low escape rates. More precisely, if P f = ρ f

for real ρ close to 1 then the metastable sets A± := {± f > 0} possess low escape rate,

bounded above by − log ρ. Corollary 2.7 then asserts that

inf
A

max{E(A), E(X \ A)} ≤ − log ρ.

We demonstrated numerically that in the absence of a spectral gap one loses control

of the regularity of the sets A. In order to ensure the existence of a spectral gap for

Lasota-Yorke maps we considered P acting on BV, the space of functions of bounded

variation. In this setting one has some control on the regularity of the partition (Corollary

2.18).

We continued further developing our ideas on escape and spectral gap in Chapter 3,

focussing on the class of Pomeau-Manneville maps with two full branches and an

indifferent fixed point at the origin. We recalled that these maps do not exhibit a spectral

gap on any reasonable Banach space of functions on the interval. After creating a
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small Markov hole Hn = [0, xn] in the problematic neighbourhood at the origin we

demonstrated (Theorem 3.9) that in a set of regular measures with densities bounded

away from zero and infinity, a unique absolutely continuous conditionally invariant

measure µ∗n exists. Moreover, we showed that µ∗n converges in L1 to the ACIM of the

closed system and, for an arbitrary hole [0, ε], the Lebesgue escape rate scales linearly

as ε→ 0 (Theorem 3.9). Thereafter, we provided numerical evidence for the scaling of

second eigenvalue of the coarse-grained Ulam approximation of the operator, which

accurately represents the Perron-Frobenius operator of the map slightly perturbed in

the critical region. The asymptotic behaviour, somewhat surprisingly, agreed with our

simple two-state Markov chain model of the dynamics.

Motivated by the work of Chapter 3 on random perturbations, in Chapter 4 we

engaged into defining and investigating escape rates from fully random dynamical

systems. In the presence of randomness, Perron-Frobenius operators became cocycles

and their Lyapunov spectrum took the place of the deterministic eigenvalue spectrum.

We succeeded in translating our deterministic results to this setting and showed in

Theorem 4.7 that random sets A± that satisfy A±(ϑnω) = {±Pn
ω f > 0} for f ∈ L∞

possess escape rates that are bounded above by the absolute value of the corresponding

Lyapunov exponent |λ(ω, f )|. We proved in Theorem 4.17 that, provided an Oseledets

splitting holds in a Banach space (Y, ‖ · ‖Y) with Y ∈ L1(X) and C‖ · ‖Y ≥ ‖ · ‖L1 , we

have in the isolated Lyapunov spectrum λ‖·‖L1
= λ‖·‖Y

. We then applied this result to

demonstrate the validity of Theorem 4.7 in the setting of Perron-Frobenius cocycles of

Rychlik random dynamical systems in BV.

Finally, in the fifth chapter we adapted our methods to deterministic and random

shifts of finite type, where Perron-Frobenius operators and their cocycles were replaced

by adjacency matrices and their cocycles, respectively. Rather than reducing escape

rate, we considered the equivalent problem of partitioning a shift of finite type into two

complementary subshifts in a way that ensures a large topological entropy is retained in

each element of the partition (Theorem 5.1 and Theorem 5.15).

In conclusion, we successfully demonstrated, in both the deterministic and random

settings, that effective methods for detecting almost-invariant sets are also useful in

the detection of sets with low escape rates. We also showed that our techniques are
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applicable in the area of symbolic dynamics when one searches for complementary

subshifts of high topological entropy.
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