Chlorination of Titanium Oxycarbide and Oxycarbonitride

Download files
Access & Terms of Use
open access
Copyright: Adipuri, Andrew
Altmetric
Abstract
The project undertook a systematic study of chlorination of titanium oxycarbide and oxycarbonitride with the aim to develop further understanding of kinetics and mechanisms of the chlorination reactions. The project studied titania, ilmenite ores, and synthetic rutile reduced by carbon in argon and nitrogen and chlorinated at different temperatures, gas flow rates and compositions. Chlorination of titanium suboxides, iron and impurities in ilmenite was also examined. Chlorination of titanium oxycarbide Ti(O,C) or oxycarbonitride Ti(O,C,N) can be implemented at 200 to 400 deg.C, while the commercial chlorination process in the production of titanium metal or titania pigment requires 800 to 1100 deg.C. This makes chlorination of Ti(O,C) or Ti(O,C,N) an attractive technology in processing of titanium minerals. Chlorination reaction is strongly exothermal, which increased the sample temperature up to 200 deg.C above the furnace temperature. The chlorination of Ti(O,C) or Ti(O,C,N) was ignited at 150 deg.C to 200 deg.C depending on the sample composition. Their chlorination at 235 deg.C to 400 deg.C was close to completion in less than 30 min. The chlorination rate of titanium oxycarbide or oxycarbonitride increased with increasing gas flow rate. Sample composition had a significant effect on the extent of chlorination. The optimum results were obtained for titanium oxycarbide or oxycarbonitride produced with carbon to titania molar ratio of 2.5; these samples contained no detectable excess of carbon or unreduced titanium suboxides. In chlorination of reduced ilmenite ores and synthetic rutile, Ti(O,C) or Ti(O,C,N), metallic iron and Ti2O3 were chlorinated. The rate and extent of chlorination of titanium increased with increasing carbon to TiO2 ratio. Chlorination of Ti2O3 was slow relative to Ti(O,C) or Ti(O,C,N) and iron; chlorination of impurity oxides such as MgO, SiO2 and Al2O3 was not observed. The project also examined chlorination of Ti(O,C) or Ti(O,C,N) in ilmenite ore and synthetic rutile after removal of iron, which was achieved by aerated leaching of reduced samples in heated flask containing 0.37 M of ammonium chloride solution. Iron removal from the ilmenite ore or synthetic rutile resulted in higher rate and extent of chlorination of titanium oxycarbide or oxycarbonitride.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Adipuri, Andrew
Supervisor(s)
Ostrovski, Oleg
Zhang, Guangqing
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2009
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 9.13 MB Adobe Portable Document Format
Related dataset(s)