The control of bone formation by neuropeptide Y receptors

Download files
Access & Terms of Use
open access
Copyright: Alison, Susan Jean
Altmetric
Abstract
Osteoporosis is a growing health concern, characterised by deterioration of bone and increased fracture incidence. Anabolic treatments for reversing bone loss are presently limited. A bone anabolic response was recently reported following deletion of hypothalamic neuropeptide Y2 receptors in mice. In contrast, no discernable bone phenotype was observed in Y4 receptor knockout (Y4-/-) mice, revealing specificity between the Y receptors in their control of bone formation. Studies in this thesis revealed a second anabolic response in the absence of another Y receptor subtype; the Y1 receptor. The potential interaction between the Y1 and Y2- anabolic pathways with each other and with Y4 was investigated through the generation of mouse models lacking multiple Y receptor subtypes. Interestingly, no synergistic elevation in bone volume was observed in Y1-/-Y2-/- double knockout mice, indicative of shared mechanisms of action. In contrast, the synergistic elevation in bone volume of male Y2-/- Y4-/- mice was likely due to additive effects of leptin signalling. Consequentially, potential interaction between Y receptors and leptin was investigated by crossing the Y receptor knockouts onto the leptin deficient ob/ob background, revealing differential responses of the Y receptor pathways to leptin deficiency, with the anabolic response of the Y2-/- model retained in Y2-/-/ob mice but abolished in Y1-/-/ob mice compared to Y1-/-. Differential responses of these two pathways were also revealed following gonadectomy of Y1-/- and Y2-/- mice. Importantly, these studies also demonstrated the ability of the central Y2- anabolic pathway to halt gonadectomy-induced bone loss. Interestingly, cultured stromal cells from germline Y2-/- mice exhibited an enhanced ability to undergo mineralisation and adipocyte differentiation, associated with a greater number of mesenchymal progenitor cells present within the bone of Y2-/- mice, suggesting a potential mechanism for the greater mineralisation of the Y2-/- model in vitro and in vivo. Y1 receptor expression was also detected in stromal cells from wild type mice, but was nearly abolished in Y2-/- mice. Together these findings demonstrate an important therapeutic potential for these pathways in the treatment of osteoporosis and indicate that modulation of Y receptor signalling within the bone microenvironment may alter proportions of mesenchymal progenitor populations with effects on bone formation.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Alison, Susan Jean
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2006
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download whole.pdf 3.58 MB Adobe Portable Document Format
Related dataset(s)