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Abstract

Transportation systems form critical links that connect developed cities with the broader world. They

connect our residential, recreational, employment, and natural environments. Annual population

and vehicle ownership growth place an increasing strain on transport systems, resulting in escalating

levels of congestion and delay. Using new infrastructure and expansion is a problematic solution,

as it often incentivises greater private vehicle use and worsens long-term congestion. Infrastructure

expansion requires repeated and increasing levels of capital investment.

The Connected and Autonomous Vehicle (CAV) is an emerging technology that facilitates commu-

nication with infrastructure and other agents. CAVs address many inefficiencies of human driving

by exhibiting instantaneous reaction times, smaller headways, and vehicle platooning. Their funda-

mentally different driving behaviour may render many infrastructure planning and modelling tools

not applicable to future mixed fleets and CAVs. This thesis develops a comprehensive modelling

framework for the emulation of CAV behaviour in microsimulation, with a focus on car-following,

lane-changing, gap-acceptance, autonomous merging, and vehicle cooperation. The developed frame-

work is implemented in a range of investigations aimed at better understanding the impact of mixed

fleets and CAVs on vehicle kinematics, intersection performance, and safety. Uncertainties regarding

CAV behaviour and motorway capacity, delay redistribution through signal optimisation, and the

need for recalibrating macrosimulation modelling parameters are also investigated.

These investigations indicate that CAVs improve network performance, driver aggression (acceler-

ation), and driver comfort (jerk). Low levels of penetration improved fleet operations, leading to

increased throughput, increased capacity, reduced delay, and reduced likelihoods of accidents and

conflicts. Average network delay is decreased significantly by redistributing the CAV travel time sav-

ings to all network agents, through signalling re-optimisation. Finally, this thesis demonstrates that

macrosimulation modelling parameters used for human fleets show reduced predictive qualities when

applied to mixed fleets and CAV environments. The performed recalibration provides significantly

improved results in the predictive quality of volume-delay functions.
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Abstract

Transportation systems form critical links that connect developed cities with

the broader world. They connect our residential, recreational, employment,

and natural environments. Annual population and vehicle ownership growth

place an increasing strain on transport systems, resulting in escalating levels of

congestion and delay. Using new infrastructure and expansion is a problematic

solution, as it often incentivises greater private vehicle use and worsens long-

term congestion. Infrastructure expansion requires repeated and increasing

levels of capital investment.

The Connected and Autonomous Vehicle (CAV) is an emerging technology

that facilitates communication with infrastructure and other agents. CAVs ad-

dress many inefficiencies of human driving by exhibiting instantaneous reaction

times, smaller headways, and vehicle platooning. Their fundamentally differ-

ent driving behaviour may render many infrastructure planning and modelling

tools not applicable to future mixed fleets and CAVs. This thesis develops a

comprehensive modelling framework for the emulation of CAV behaviour in

microsimulation, with a focus on car-following, lane-changing, gap-acceptance,

autonomous merging, and vehicle cooperation. The developed framework is

implemented in a range of investigations aimed at better understanding the

impact of mixed fleets and CAVs on vehicle kinematics, intersection perfor-

mance, and safety. Uncertainties regarding CAV behaviour and motorway

capacity, delay redistribution through signal optimisation, and the need for

recalibrating macrosimulation modelling parameters are also investigated.

These investigations indicate that CAVs improve network performance, driver

aggression (acceleration), and driver comfort (jerk). Low levels of penetration

improved fleet operations, leading to increased throughput, increased capacity,

reduced delay, and reduced likelihoods of accidents and conflicts. Average

network delay is decreased significantly by redistributing the CAV travel time

savings to all network agents, through signalling re-optimisation. Finally,

this thesis demonstrates that macrosimulation modelling parameters used for

human fleets show reduced predictive qualities when applied to mixed fleets

and CAV environments. The performed recalibration provides significantly

improved results in the predictive quality of volume-delay functions.
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List of Mathematical Notation

Best efforts have been made to keep mathematical notation in this thesis con-

sistent. However, the repetition of symbols in varying context is unavoidable.

For this reason, symbols are defined after each equation within the text. The

most common use-case for each symbol is defined below. Unless explicitly

stated, this thesis uses the International System of Units.

English

a Vehicle acceleration.

B Euler integral beta function.

cx Calibration parameter. The subscript x denotes that a single

model may have multiple different calibration parameters.

C Link capacity.

d Vehicle deceleration. Also represents the mechanical drag coeffi-

cient in the AICC model.

g Gravitational acceleration.

g1 Distribution skewness.

g2 Distribution kurtosis.

gapx Gap length surrounding the ego vehicle. Also represents the num-

ber of vacant cells in the Cellular Automata model.

H Binary Heaviside function.

H0 Null hypothesis for the ANOVA analysis.

Ha Alternate hypothesis for the ANOVA analysis.

i Identification number for an individual lane, link, or node.

j Vehicle jerk.

Jd Delay parameter used in the Davidson VDF.

k Aerodynamic drag coefficient.

l Length of the vehicle. Also represents average queue length in

queueing theory.

Lw Lane width.

m Mass of the vehicle.

n Identification number for an individual vehicle. Also represents

population size in a statistical distribution.

O Number of vehicles having departed from an intersection ap-

proach in a single platoon.
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p Politeness factor used in the MOBIL car-following model.

P Probability of a specified outcome. Also represents vehicle power

in the Fadhloun and Rakha car-following model.

Pmax Parameter in the proposed CAV emulation framework, provides

an upper bound on vehicle acceleration and reaction distances.

Pmin Parameter in the proposed CAV emulation framework, provides

a lower bound on vehicle acceleration and reaction distances.

r Vector of parameters for the driver specific random term used in

discrete-choice modelling. Also represents the perceived risk in

the Pollatschek et al., gap-acceptance model.

S Set of all action for a player in a Nash’s equilibrium game.

t Discretised time increment. Also represents the truncated power

function, and travel time on a link in strategic modelling.

U Utility of an option in discrete-choice modelling. Also represents

the weighting factor in a range of models.

v Velocity of the ego vehicle.

vf Free flow speed.

v∗ Desired velocity of the ego vehicle.

V Agent volume.

W Wait time.

x Position of the ego vehicle. Also represents the horizontal carte-

sian coordinate in the Tang et al., model.

x∗ Nash’s equilibrium solution.

X Vector of explanatory variables, used in discrete-choice mod-

elling. Also represents the input vector in neural network models.

Xo Spring speed-dependant relaxation length.

x̄ Population mean.

y Vertical cartesian coordinate in the Tang et al., model.

Z1(g1) Transformed dataset skewness.

Z2(g2) Transformed dataset kurtosis.
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Greek

α Vector of driver-specific random term parameters, used in

discrete-choice modelling. Also used as a calibration parameter

in VDFs.

β Vector of parameters, used in discrete-choice modelling. Also

used for the alternate specific constant, and a calibration param-

eter in VDFs.

∆t Time headway between the ego vehicle and its leader or follower.

∆v Difference between the velocity of the ego vehicle and its leader

or follower.

∆x Difference between the position (spacing) of the ego vehicle and

its leader or follower.

ε Random error term.

η Driveline efficiency of the vehicle.

Λ Approach or lane arrival rate.

µ Coefficient of friction. Also represents the logit model scale pa-

rameters in Farah et al., gap-acceptance model, and the depar-

ture rate in queueing theory.

φ Membership function in fuzzy logic models. Also representing

the cumulative standard-normal distribution.

ρ Density of traffic flow. Also used for approach utilisation rate in

queueing theory.

ρmax Maximum density of the traffic flow.

ρref Road curvature.

σ Steering angle.

τ Vehicle (or driver) reaction time. Also used to represent the

spring dampening coefficient in the Li et al., car-following model.

θ Binary term used for conditional components of models. Also

represents vehicle heading in the Tang et al., model.
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1 Introduction

The transport network forms the lifeblood of a city, it connects the largest of

central commercial districts with the most remote residential towns, from the

tallest of skyscrapers to our beloved outback, nature, and wilderness. However,

this vital resource is struggling to maintain its flow. Population growth, private

car adoption, and an increasing desire to travel are all contributing to exces-

sive congestion. Transportation systems have facilitated explosive growth in

advanced and sophisticated interconnected cities. Urban growth has brought

about the modern technological age, an era of both automation and conve-

nience. Transportation, mobility, and the network have all benefited from

refinement; from humble beginnings as horse-drawn carriages on dirt roads to

modern iterations of Connected and Autonomous Vehicles (CAVs) on highly

engineered and optimised pavements. Congestion is not a new problem, nor is

it a problem with a myriad of options and economical solutions. The age-old

strategy of build, expand, grow, sprawl, has worsened the compounding traffic

problem. CAV adoption may be a means of addressing congestion, without

expensive investment in new infrastructure.

Each advancement in mobility has aided in alleviating the problems of its pre-

decessor. During the late 19th century, London alone used 50,000 horses per

day. Regulators of the time were concerned with the generation of waste by-

product associated with this mode of transit. The quantity was unmanageable

and posed significant health risks, also affecting the sanitation of water and

attracting pests and disease-carrying insects [Johnson, 2015]. The solution

was not one of policy or behavioural change, but a new technology that fun-

damentally changed the landscape of mobility to a mode that did not exhibit

the same limitations. Mass production of an affordable automobile arose as

the most viable solution. The privately-owned automobile is now the cause

of unsustainable fuel consumption and pollution. Human operators facilitate

inefficiencies in network operation, leading to congestion and delay. Finally,

safety concerns plague modern city transportation systems, with regulators

unable to balance system efficiency against system safety.

As the automobile addressed the concerns of the horse-drawn carriage, society

verges on a technological precipice where advancements in the clean-burning
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electric CAV may be the solution to problems posed by the human-driven

combustion engine automobile. CAVs are envisaged as self-driving vehicles

capable of network navigation with little or no human intervention. While

the road to automation started many decades ago, with the invention of the

electric starter to replace the hand-crank in 1910 [Boyd, 1968], more recent

advancements in automation have given rise to the possibility of completely

driverless systems in the near future.

The consumer and commuter behavioural changes that CAVs may incite are

difficult to predict, most predominantly due to limited empirical information.

Potential improvements in travel speeds and times delivered by coordinated

vehicle operation, instantaneous reaction times, and platooning may improve

network performance and inadvertently increase travel demand. If capacity

and network throughput do not increase proportionately, this scenario could

lead to worsening congestion. Alternatively, if the private vehicle ownership

model becomes antiquated and “Mobility as a Service” (MaaS) prevails, the

sharing economy may reduce network demand through increased vehicle oc-

cupancy. The benefits of this outcome could couple with the potential ad-

vantages of CAV operation and provide substantial improvements for network

performance. Predicting the performance of a mixed fleet or CAV network

is difficult due to a range of uncertainties. Information availability is limited

regarding the tangible impact of CAVs on capacity, throughput, and traffic

flow. User attitudes toward vehicle ownership are also evolving, potentially

reducing reliance on privately owned vehicles. Additionally, government leg-

islative frameworks, manufacturing capabilities, and penetration rates increase

the uncertainty in predicting future network performance.

Further difficulty in predictive efforts arise when considering the unique and

intricate development of different cities. Geography, climate, culture, and

wealth have all contributed to the development of localised transportation

paradigms. Consider the United States, which has a historical focus on road

and highway infrastructure construction. This investment in roads is the result

of an expansive landmass and a monetary policy that used investment in road

infrastructure to reduce the effects of the great depression by creating jobs

and valuable long-term assets. Singapore however, faces resources scarcity and

limited available landmass, freshwater, food, agriculture, and are catering for
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an ageing population. These issues have forced Singapore to create planning

policies that better incentivise mass transit. Parts of Europe, such as Paris

and London, have developed the same way, with narrow roads in high-density

urban spaces placing restrictions on speed limits and infrastructure allocated

to motorways. An integration strategy for CAVs suitable for one geographic

location may be inappropriate for another.

Industry and academia are reacting appropriately to this technological change.

60% of long-term large urban area transportation plans include CAVs to some

degree, an increase from just 6% in 2015 [Cottam, 2018]. Infrastructure

planning efforts involve using strategic macrosimulation and operational mi-

crosimulation modelling, to assess the performance of transport networks and

the effects of future infrastructure development. Macrosimulation modelling

generally relies on the four-step modelling process, grounded in probabilistic

mathematical models that provide aggregate performance metrics. Microsim-

ulation modelling uses mathematical models to emulate agent interactions in

discrete time steps over a modelling time horizon. Both forms of modelling

rely on a set of calibrated formulations that appropriately depict the decision-

making process of the modelled agents. The literature contains a vast array

of formulations used for modelling agents in a microsimulation environment;

there is an absence of an appropriate and holistic framework for CAVs, capable

of testing the impact of different CAV behaviour and implementation policies

on network performance.

Thesis Objectives

This thesis develops a versatile algorithm capable of emulating the behaviour

of CAVs in a microsimulation environment. The algorithm emulates idealised

CAV behaviour, taking full advantage of the offerings of Vehicle-to-Vehicle

(V2V) and Vehicle-to-Infrastructure (V2I) communication protocols. The for-

mer allows CAVs to communicate with one another, allowing them to operate

cooperatively, manage microscopic space negotiation, and transfer information

between themselves. The later allows CAVs to communicate with the wider

network, collect information on downstream problems, receive optimal routing

information, or take part in large-scale cooperative operation determined by

a centralised controller.
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Human drivers rely on rudimentary heuristics to process information while

driving, allowing them to make quick, and often sub-optimal, decisions. While

CAVs could behave in the same way, greater operational efficiency can be

derived from V2V and V2I. The cooperation and communication delivered

through V2V would allow instantaneous vehicle reaction times to external

stimuli, or for vehicles to maintain a significantly shorter spacing. V2I allows

vehicles to surrender operational control to a centralised framework, poten-

tially improving fleet efficiency in space-negotiation activities such as merging

and weaving. These vehicle characteristics form critical assumptions in the

proposed CAV emulation framework, and so the capabilities of V2V and V2I

must be accordingly understood. V2V and V2I will result in vehicle opera-

tion that greatly differs from that of human vehicles, meaning that existing

mathematical model used for macrosimulation and microsimulation may not

be applicable for mixed or fully autonomous fleets. For this reason, it is nec-

essary to design a comprehensive modelling framework that reconsiders not

only the three staples of microsimulation; car-following, lane-changing, and

gap acceptance, but also revaluates vehicle cooperation, altruistic behaviour,

and acceleration and braking characteristics.

Thesis Contributions

Further contribution of this thesis lies in its use of the developed algorithm

to evaluate the impact of CAVs in a range of different studies. The literature

presents numerous detailed studies assessing CAV behaviour on the high-level

intersection and network impacts, which are used in this thesis to benchmark

the developed algorithm. In addition to benchmarking and performance val-

idation, the intersection and network assessments provide further knowledge

into the effects of cooperative behaviour on performance such as average travel

times, throughput, capacity, and vehicle kinematics. The additional investi-

gations conducted as part of this thesis are explained as follows.

The first investigation uses the algorithm to understand further the effects of

CAV cooperation on a small network, explicitly focusing on vehicle kinematics

and occupant comfort. Much of the literature has made assumptions regarding

CAV behaviour without validating or assessing their consequence. For this

reason, the first investigation in this thesis focuses specifically on the impact
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of CAV behaviour on the vehicle kinematics, validating whether the use of

such behaviour is appropriate. The next study then investigates intersection

performance as a result of incremental CAV penetration.

The kinematic and network assessment is followed by a study that assesses

the feasibility of reallocating infrastructure resources from vehicles to other

agents in the network. This investigation determines the implications of re-

optimising traffic signal times to transition from a vehicle-priority model to

a pedestrian-priority model. Such a re-optimisation may be feasible once the

CAV Penetration Rate (CPR) surpasses a threshold. The results of this in-

vestigation determine whether distributing travel time savings through CAV

operation to other intersection agents, leads to a global intersection improve-

ment in either the busiest of pedestrian environments and the most sparse. If

benefits in neither environment are found for total system delay, this concept

can naturally be dismissed. However, the contrary would provide conceptual

validity and warrant further investigation.

The subsequent investigation assesses changes to highway capacity and merge

junction throughput. Effects of CAV behaviour are assessed under a range of

scenarios including altruism, selective cooperation, and a trajectory forecast-

ing algorithm used to adjust vehicle kinematics before vehicle arrival at the

motorway merge point. Network demand in this investigation is incrementally

loaded to determine the impacts of induced demand and providing mobility to

previously precluded members. This investigation intends to provide signifi-

cantly greater insights into CAV behaviour for motorway weaving and merge

zones, which are often the bottlenecks in interconnected motorway systems.

The following investigation in this thesis aims to address the parameters in-

volved in macrosimulation mathematical models. While a microsimulation

modelling framework is useful in determining network impacts, it is limited

in its ability to draw generalised implications of larger city areas. For this

reason, a macrosimulation model is often used, especially when evaluating the

future long-term impacts of “State Significant” projects. This investigation

first evaluates the applicability of current mathematical models and parame-

ters to mixed fleet and CAV networks. If the models are found to be deficient,

a recalibration effort is conducted to adjust the parameters for mixed fleet

5



environments. Finally, the predictive qualities of the recalibrated models are

determined to ensure generalised results. This investigation provides a simple

means of delivering continued use of traditional strategic modelling parame-

ters for future networks with mixed fleets. Traditionally, strategic modelling

parameters are obtained from the Highway Capacity Manual (HCM).

This thesis concludes with a safety assessment, quantifying the change in con-

flict likelihood on networks as a result of CAV integration. Many administra-

tions worldwide are striving for zero deaths on roads. The initiative in New

South Wales (NSW), Australia is called “Towards Zero” [Transport for New

South Wales, 2018]. NSW has been progressing towards this goal through

legislative change, decreasing speed limits, and imposing greater penalties ei-

ther as fiscal fines or driving restrictions for minor infractions. Aggressive

approaches of this nature may not be necessary if a safety assessment of CAV

operation shows a reduction in network conflicts. This investigation uses ve-

hicle trajectory data generated from microsimulation network operation to

identify the likelihood of conflicts.

In summation, the contribution of this thesis lies in its development and use

of a custom CAV behavioural control algorithm. The algorithm is then used

in a range of studies to assess the consequences of CAV adoption for soci-

ety, the economy, and the environment. The studies cover a wide range of

complexities, where some aim to quantify changes to road capacity, junction

throughput, and safety, while others aim to assess the feasibility of untested

concepts such as the implementation of pedestrian-priority models at intersec-

tions. Ultimately, this thesis and its component studies quantify many of the

unknowns surrounding road network development and will be a useful resource

for the evolution of planning policies and legislative frameworks. The findings

of the experimentation conducted in this thesis play a small but critical role

in understanding the effects of this disruptive technology, and how best to

incorporate it into our multi-modal transport paradigm.

Thesis Outline

Chapter 1 provided an introduction to this thesis, the remainder is structured

as follows. Chapter 2, Chapter 3, and Chapter 4 provide an overview of CAVs,
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microsimulation human vehicle emulation models, and CAV behavioural mod-

els, respectively. Chapter 5 provides the first major contribution of this thesis

through the development of a model and algorithm used for CAV behaviour

emulation in microsimulation, in conjunction with the emulation of human

vehicles. Chapter 6 investigates CAV kinematics in a microsimulation set-

ting, acting as validation for the developed models and algorithms. Chapter

7 investigates the impact of CAV integration on isolated intersection perfor-

mance. Chapter 8 asses the potential and impact of redistributing intersection

delay through signal optimisation by transitioning from a vehicle-priority sig-

nalling regime to a pedestrian-priority regime. Chapter 9 assesses the impact

of CAV integration on motorway capacity and weaving and merge junction

throughput. Chapter 10 investigates the applicability of strategic modelling

parameters to mixed fleet networks, the scope of recalibration of these models,

and the predictive quality of the recalibrated models. Chapter 11 investigates

changes to network safety as a result of CAV integration, assessing conflict

likelihoods. Finally, Chapter 12 concludes with a summation of the work and

concluding remarks.
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2 Connected and Autonomous Vehicles, A Review

The automotive industry leverages technological and methodological advance-

ments to better refine their product. The automobile has slowly transitioned

from a purely mechanical system to one with well-integrated automated pro-

cesses. The rudimentary self-propelled steam-powered vehicle (1769) has been

transformed by strides in power delivery through the internal combustion en-

gine (1807), in ignition through the electric starter (1911), and in pressure

delivery through hydraulic braking and steering systems (1922 and 1926), to

its modern counterpart staple of mobility and movement.

Automation provides independence and self-sufficiency to a system, granting

it decision-making capabilities with varying degrees of complexity [Shladover,

2018]. Major developments in vehicle automation began with cruise control in

1950. Cruise control allowed a vehicle to maintain a set speed indefinitely. An-

tilocking braking systems in 1985 meant that vehicles could also autonomously

regulate pressure delivery to the wheels during emergency braking events.

Global Positioning Systems (GPS) in 1992 automated route selection and

navigation. Most modern vehicles are fitted with assistive features such as

rear-view cameras (2009), lane identification and lane-keeping, adjacent vehi-

cle detection, adaptive cruise control (ACC), and autonomous parallel parking

capabilities. These advancements have made the private vehicle faster, safer,

more efficient, and more reliable.

These autonomous features are passive, restricting their operation to only

alerting a driver. Driving requires functions that extend beyond decision-

making, as drivers must also acquire information from their surroundings in

support of environmental perception. A vehicle that is capable of doing both

is considered autonomous. Systems that aid in environmental perception are

explained in detail later in this section. To extend the nuance of the nomencla-

ture, a vehicle that communicates either with other vehicles, the network, or

a cloud server is considered connected. A vehicle can be automated without

being connected, and vice versa. However, the general public and industry

expect that the natural maturity of this technology will result in vehicles that

are proficient at both.
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The overuse of terms such as “autonomous vehicle” and “self-driving car” has

obscured their specific meaning. Without reservation, these terms have been

applied to CAV technology in all areas of the complexity spectrum. When

discussing CAV technology, the vehicles are generally divided into six levels

ranging from L0 (completely human) to L5 (completely autonomous). The

degree and extent of the permitted driver disengagement define the level of

the CAV. Lower order CAVs allow short periods of disengagement in specific

settings. Higher-order CAVs allow sustained disengagements in a broader ar-

ray of settings and driving scenarios. Similarly, the degree of connectivity of a

vehicle is defined by the quantity and type of information it exchanges. For ex-

ample, low-level connectivity would constitute uni-directional communication,

where a vehicle passively receives information from its surroundings. Higher-

level connectivity would constitute bi-directional communication where the

vehicle can return kinematic, location, or other information to the system

The applications of V2V communication include [Shladover, 2018];

� Cooperative collision warnings and hazard alerts, collision mitigation,

and active braking.

� Cooperative adaptive cruise control, with tighter vehicle-following and

enhanced traffic flow stability.

� Close-formation automated platooning, enabling aerodynamic drafting.

� Automated manoeuvre negotiation at merging locations or intersections.

� Transit bus connection protection.

These applications are time-critical and safety-oriented, meaning that the com-

munication must be fast, low latency, and reliable. V2I communication can

enable the following additional features and policies [Shladover, 2018];

� Providing traffic signal status information in real-time for in-vehicle dis-

play, signal violation warning, or green wave speed advisories to drivers,

extended to traffic signal priority requests.

� Providing traffic and weather condition information and real-time rout-

ing advisories to drivers.

� Fleet management functions of vehicle routing and scheduling.

� Access control to closed facilities.
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� End of queue warnings.

� Active support for lane guidance.

� Vehicle probe data applications to provide detailed traffic information

(speed, volume, travel time, queue length, and stops) or road surface

condition information (pavement roughness, or slippery conditions).

� Mayday and concierge services (such as OnStar).

� Electronic toll collection and parking payments.

The remainder of this chapter begins with a detailed explanation of the CAV,

modern hardware that allows it to operate, and what capabilities this implies.

This information is critical in justifying the CAV behavioural assumptions

embedded in the microsimulation algorithm developed in Chapter 5.1. This

chapter then outlines CAV control software and concludes with an outline of

recent trials worldwide using CAVs, and aggregate insights obtained.

2.1 Hardware and Capabilities of the CAV

The hardware of this emerging technology is under development, though the

essential elements remain consistent between manufacturers. The hardware

is tasked with three primary duties; Exteroceptive Sensoring, Proprioceptive

Sensoring, and Communicative Sensoring [Campbell et al., 2018], and is simply

shown in Figure 1;

Figure 1: Remote sensing hardware of the CAV [Gates, 2017].
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Exteroceptive Sensoring

Exteroceptive Sensoring is used for environmental perception. This family of

sensors creates a digital image of the vehicle’s locale, allowing it to calculate

distances to surrounding objects. Sensors in this family include LiDAR (Light

Detection and Ranging), RADAR (Radio Detection And Ranging), optical

cameras, and ultrasonic devices.

LiDAR measures distance by emitting a pulse of light and measuring its re-

turn time. The vehicle’s surroundings are visually mapped by emitting at

a 150kHz frequency (150,000 pulses per second) up to a distance of 250m.

Precision and accuracy are altered by adjusting the pulse frequency and the

fidelity of the return pulse measuring equipment. The cost for this detailed

360-degree visibility is high, with the development of solid-state LiDAR and in-

frared LiDAR potentially reducing costs. Solid-State LiDAR integrates many

of the mechanical components of a traditional LiDAR into a single microchip,

resulting in a smaller, cheaper, easier to calibrate, less likely to fail, and easier

to mass-produce product [Higgins, 2015].

RADAR uses radio waves to measure the distance, angle, and velocity of

objects. The RADAR emits radio waves at different frequencies, with higher

frequencies providing higher fidelity information. RADARs are appropriate for

short-to-medium range, serving approximately 50m-100m. They complement

the information gathered from LiDARS as they are cheaper, easier to work

with, and already fitted in modern vehicles for features such as adaptive cruise

control and collision detection.

Cameras produce a digital image through passive light sensors. Cameras are

advantaged in their ability to detect colour and texture, allowing CAVs to

perceive their environments better. Where a LiDAR or RADAR can determine

the presence of a traffic light or street sign, a camera can further determine its

colour or the specificities of the instruction. They allow a CAV to analyse their

position relative to road markings. A camera is cheap and readily available,

but the computational power needed to infer relative distances and velocities

compared to LiDAR is very high. Also, camera sensors are sensitive to low-

intensity light and may not work appropriately in poor weather conditions.
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Ultrasonic: measures distances to nearby objects by emitting a sound wave

at a specific frequency and measuring the time delay in detecting the return

wave. They are generally the cheapest of these sensors, work well in poor

weather, and are regularly used as parking aids. They are regarded as the

most accurate for close-proximity distance measurements but have multiple

sources of error for longer distances. Constructive or destructive interference

can alter the nature of the ultrasonic sound wave. Wave characteristics are also

subject to the temperature and humidity of the medium through which they

travel, although, most ultrasonic sensors algorithmically correct for errors.

Proprioceptive Sensoring

Proprioceptive Sensoring calculates information regarding the vehicle system.

This family of sensors monitors the vehicle, calculating its motion, kinemat-

ics, and detailed location. The data informs future movement of the vehicle,

including motor speed, wheel position, and joint angles.

GPS is a satellite-based radio navigation system that provides Ephemeris and

Almanac data used for geolocation and time. GPS uses trilateration to deter-

mine location by concurrently requesting position information from at least

four satellites. The location of the GPS receiver is determined by super-

positioning the information from all connected satellites and calculating the

overlapping region. Commercial-grade GPS can be accurate to within 1m,

but all GPS receivers need a direct line of sight and can be obstructed by tall

buildings and trees in urban environments. Survey grade GPS receivers are

accurate to within centimetres but cost significantly more.

Internal Measurements Units (IMU) measure forces using three accelerome-

ters, angular rates using a gyroscope, and magnetic fields using magnetome-

ters. By placing these sensors orthogonally to one another, the IMU makes

measurements in all three directions of motion. The IMU can only provide

information about the motion of a vehicle and not its location. The Internal

Navigation System (INS) uses data gathered from the IMU to calculate ve-

locity, altitude, and angular positions. The sensors suffer from accumulated

error and lead to drift, which is corrected using the vehicles GPS.
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Encoders are electro-mechanical devices that convert the linear or angular

movement of a shaft or rotor, into a linear or angular transduction. Encoders

are generally attached to vehicle wheels and odometers to measure distances

and velocities in real-time. They are susceptible to errors due to wheel slippage

in low traction environments. Encoders are combined with an INS and GPS

to provide low-cost location information.

Communicative Sensoring

Communicative Sensoring exchanges information between the system and sur-

rounding vehicles. This family of sensors is used to transmit and receive in-

formation about the vehicle or surrounding agents. They also provide digital,

visual, and auditory cues to other agents. Techniques for Information Tech-

nology Systems (ITS) and communications include;

� 5.9 GHz Dedicated Short Range Communication (DSRC) is a technol-

ogy that is similar to Wi-Fi but is designed specifically for transportation

applications. DSRC transmits time-critical and safety-critical messages

over a small licenced and protected portion of the electromagnetic spec-

trum with low latency.

� Wi-Fi can be used in a supportive role for minor ITS functionality. It has

high connection latency and experiences message degradation through

packet loss and delays when communication channels are congested. For

this reason, it can not be used for critical information communication.

� Cellular refers to 4G or 5G telecommunications and their future iter-

ations. Cellular has the advantage of a privately developed and main-

tained network of infrastructure, requiring little involvement from public

entities. Private ownership and maintenance allow telecommunications

to be used in most transport networks without developing new and ded-

icated infrastructure.

� Satellite is used in remote locations where cellular service is not avail-

able, and the provision of communications infrastructure is technically

or fiscally infeasible. Latency issues with Satellite communications mean

they are not appropriate for all applications.

� Bluetooth can provide only very short-range and low-bandwidth com-

munication, so it should only be reserved for a supportive role.
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The CAV Ecosystem and Perceived Impacts

Junior, the 2007 Defence Advanced Research Programs Agency (DARPA) Ur-

ban Challenge entry by Stanford [Levinson et al., 2011] used similar early-stage

versions of this hardware. Objects surrounding the trajectory of the vehicle

were detected using the Velodyne HDL-64E S2 rotating 64-beam LiDAR. This

LiDAR maps 2.2 million points per second, ideal for generating digital contour

maps of the vehicle’s surroundings. The LiDAR was positioned atop the ve-

hicle, giving it a detection range of 120m with an accuracy of 2cm [Velodyne

Corporation, 2019]. Numerous RADARs positioned on the front, rear, and

sides of the vehicle attained information regarding nearby objects. A SICK

LD-LRS LiDAR scanner on either side adequately covered blind-spots while an

Applanix POS LV 420 internal GPS guided the vehicle. This system is used

for geospatial data acquisition and can provide geolocation to within 20cm

[Applanix Corporation, 2015]. The hardware was controlled and operated by

an onboard Xeon computer, running a Linux operating system. A 12-core

server executed the vision and laser algorithms, while a 6-core server han-

dled planning, controls, and low-level communication. The vehicle used the

powerful onboard computing capabilities to consider a wide range of possible

manoeuvres and react quicker compared to its human driver counterpart.

CAVs have access to a significant amount of data that human drivers are oth-

erwise ignorant to, or unable to process. CAV hardware communicates with

devices embedded in the greater network through V2V and V2I (generalised as

V2X). V2X communication is based on the communication standards defined

for Wireless Access in Vehicular Environments (WAVE) under the Institute of

Electrical and Electronics Engineers (IEEE) standards 1609 (dedicated short-

range communication) and 802.11p (wireless local area network, medium ac-

cess control, and physical layer communications) [Milanes et al., 2012]. WAVE

systems comprise of three elements, the roadside unit, the onboard unit, and

the service channels.

The roadside unit is installed in existing transportation infrastructure such as

traffic lights and signals. Milanes et al., used the roadside unit as a control

station and a means of data processing for their simulation of an unsignaled

intersection [Milanes et al., 2012]. The roadside unit was expected to “classify
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the vehicles within the driving area, identify stopped vehicles as obstacles,

inform each vehicle about its vicinity, provide information in advance about

the road layout, manage each specific area using priority levels according to

the kind of vehicle to avoid potential collisions and to identify in advance

traffic situations of risk”. Each vehicle provides the roadside unit with data,

which it then processes, and returns safe paths and manoeuvres for the vehicle.

The centralised controller prevents collisions and the formation of barricades

through the intersection. Figure 2 shows a hypothetical rendering of the three

elements of V2V and V2I systems in operation;

Figure 2: WAVE communication systems, comprising of the roadside unit, the

on-board unit, and the service channels [Mercedes-Benz, 2014].

The control system maintains a data exchange between the vehicles, reduc-

ing communication packet loss, and ensuring vehicle safety. Milanes et al.,

showed that even with 100 stations competing for a single channel, the de-

lay in communication for low priority vehicles was 515µs, near negligible and

insignificant for real-time traffic control. The onboard unit maintains connec-

tivity between the CAV and the roadside unit. The service channels transmit

information between the vehicles (V2V) or between the infrastructure (V2I).

The small lag in information transfer allows the microsimulation modelling

discrete time step to be reduced to its computational minimum.
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Despite the myriad of complementary sensors compensating for each other’s

weaknesses, further development and testing is necessary. Perception in poor

weather and unfavourable lighting conditions is problematic as both vision-

based systems and LiDAR-based systems are unable to see road markings.

Dense rain and snow can cause “phantom obstacles” to be detected, making

distance measurements to obstacles inaccurate. Lens-flares, large shadows,

and poor lighting can disrupt data acquisition from visual sensors, with a

priori information potentially outdated [Van Brummelen et al., 2018]. The

limitations of sensors need to be well understood. Long-range automotive

RADAR has a typical range of 4.5s – 7.5s and 150m - 250m at highway speeds

of 120km/h [Al Henawy & Schneider, 2011]. The Insurance Corporation of

British Columbia instructs human drivers to look at least twelve seconds ahead

to ensure safe driving [ICBC, 2015]. Often, redundant sensors validate and

correct one another, aiding in faulty sensor identification through an expensive

and inefficient means [Ding, 2005]. Modern methods employ cross-checking,

where a sensor’s current behaviour is benchmarked against its behaviour dur-

ing fault-free operations [Heredia et al., 2008].

The network resulting from the amalgamation of civil transport infrastructure

and technological innovation will be unlike any that has existed before, differ-

ing from its traditional and contemporary form, which has formed the status

quo for the last century [Hancock et al., 2019]. How might a future city operate

when 30% of its downtown traffic no longer circle the city in search of parking

[Shoup, 2007], or the notion of private vehicle ownership is antiquated? Many

theories have been posed as to what the implications are for a future centred

on autonomous transport. Some are described in brief as follows.

Transport Logistics (food): Trucking and freight accounted for 28% of the food

supply chain, and caused 71% of its emissions. Also, fresh produce lost 8% of

its weight in the transportation process. Wastage is reduced by automating

mechanical processes, optimising routing, less idling of engines, and less engine

cold starts by long operating autonomous drivers [Heard et al., 2018]. The

platooning of trucks is also estimated to reduce energy intensity by 10% - 15%

[Wadud et al., 2016]. Even minor reductions in the cost of transporting goods

could cater to a previously uneconomical unfulfilled demand.
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Safety: The National Highway Traffic Safety Administration indicates that

human-related errors such as distraction, fatigue, and emotional driving ac-

count for 94% of accidents [Van Brummelen et al., 2018]. Data obtained

from the Australian Bureau of Statistics (ABS) and Transport for New South

Wales (TfNSW) indicates that negligent behaviour such as driving under the

influence, fatigue, and speeding comprises of 31.3% of accidents [Transport for

New South Wales, 2017]. Automating the driving process should also mitigate

human-caused error and accidents.

Increased Vehicle Demand: Subject to legislation, CAVs could provide mobil-

ity to a segment of the market previously precluded from vehicle ownership

or operation (elderly, disabled, young, inebriated), which could increase road

demand. Additionally, reallocating in-vehicle travel time to productive work

could reduce the penalty that operating a vehicle in congestion posses on the

decision to travel or selection of mode and route [Adnan et al., 2018].

Effects on Public and Active Transport: In a shared mobility economy, nar-

rower car lanes, less on-street parking, and fewer roadways would increase the

utility of travelling by public and active transport modes [Krechmer et al.,

2016]. Alternatively, an improved vehicle travel experience may accelerate ur-

ban sprawl, with larger trip distances being infeasible by public and active

transport [Litman, 2017]. Additionally, the safety of active transport users is

under scrutiny, as studies have shown that CAV sensors are unable to detect

pedestrians and cyclists, nor can they accurately predict the future intentions

of these agents [Botello et al., 2019]. This problem is made worse by the “en-

hanced immunity fallacy”, where another agent believes that enhanced CAV

technology will maintain safety [Harper et al., 2016b].

Ethics and Morality: Minor errors in sensors and hardware can lead to po-

tentially fatal incidents. While the ideal outcome is for a CAV to react well

in advance and eliminate the need for catastrophic accident mitigation, their

programming still needs to accommodate ‘mayday’ circumstances. The source

of failure may also be remote, through malicious interference, as these tech-

nologies are susceptible to manipulation [Hashim & Omar, 2017].

Over-Reliance on Machines: An over-reliance on machines may lead to a degra-
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dation of critical skills and loss of competencies [Bazilinskyy et al., 2015]. It

can also lead to an exacerbation of the obesity crisis. A distrust and over-trust

in machinery can lead to disuse and abuse, respectively.

Servicing the First and Last Mile: The-first and last-mile problem relate to the

time, effort, and delay involved in trips that originate (first mile) or destinate

(last mile) in a populated city centre. Transportation, freight, and logistics

trips expend significant manual labour in the first and last mile, with pro-

portionally less progress than the remaining trip. By automating this portion

of the trip, greater economic output is derived from activities constrained by

traversing city centres.

This thesis intends to provide validity and numerical backing through mi-

crosimulation to these theories, and test the implications of a range of other

policies and applications of CAVs. Real-world trials are sparse, expensive, and

timely. By creating a microsimulation framework capable of emulating mixed

fleet and CAV behaviour, policy and integration structures can be mass-trailed

in theoretical feasibility studies. Experimentation with frameworks, policy,

and regulation would outpace the development of the technology, which does

not often happen with legal frameworks left to play catchup. A microsimula-

tion framework is critical as full-scale trials would otherwise be too dangerous

or expensive to attempt while CAV technology develops from its infancy.

2.2 Software Control of CAVs

The previous section extensively explored the innovations in hardware that al-

low a CAV to operate. In conjunction with hardware, the software algorithms

that control dataflow and interpret information play a vital role in CAV oper-

ation. Understanding the algorithms used to control real CAV behaviour can

aid in developing microsimulation control algorithms. The remainder of this

section explores recent developments in CAV control software and algorithms.

While industrial development of CAV control software remains commercial

and confidential, the literature is proposing a range of techniques to bridge the

gap between data acquisition from hardware, and response action by the CAV.

Zhou et al., propose a reinforcement-learning based approach to control driving

behaviour and improve real-time traffic efficiency, vehicle fuel consumption,
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and driver safety [Zhou et al., 2019]. Reinforcement learning places an agent

within an environment from which it receives feedback. At any given state, the

agent receives all necessary inputs, computes a probabilistic action, and then

receives a reward. The nature of the reward reinforces positive decisions and

punishes incorrect decisions, allowing the agent to learn before transitioning

to the next state.

Zhou et al., developed the Deep Deterministic Policy Gradient algorithm to

determine the appropriate reward system for positive behaviour. Using ob-

served data during runtime, the algorithm updates the critic and actor, which

are responsible for evaluating the vehicles current circumstances, and updat-

ing the policy (reward) function, respectively. Using this framework, the au-

thors demonstrated that CAVs could be trained to intelligently decelerate in

response to both preceding vehicles and the status of traffic lights. The multi-

factor consideration to appropriate acceleration rates led to gentler and safer

decelerations as CAV platoons approached signalised intersections. Addition-

ally, when observing environments with varying congestion, their framework

demonstrated that the effect on average speed was slight, meaning that travel

efficiency remained high regardless of the level of congestion.

Ma et al., developed a framework centred on the Shooting Heuristic algorithm

to construct feasible CAV trajectories that optimise traffic performance [Ma

et al., 2017]. The Shooting Heuristic algorithm smooths traffic flow by con-

ducting speed harmonisation and reducing the occurrence of sudden speed

drops that lead to start-stop conditions. The algorithm simplifies vehicle tra-

jectories through discrete quadratic representation and then reconstructs new

trajectories subject to physical limitations, safety, and signal timing.

Determining system performance used in the Shooting Heuristic is an infi-

nite dimension problem with non-linear objectives and constraints, making

its exact solution computationally difficult to determine. For this reason, the

authors develop a framework to optimise system performance. The algorithm

begins by initialising a set of control parameters, passing them to the Shoot-

ing Heuristic algorithm, and calculating a preliminary trajectory. System

performance based on the preliminary trajectory is optimised by the Shoot-

ing Heuristic first using simplified analytical approaches. The trajectory is
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then passed to a dedicated optimisation algorithm, which determines if the

preliminary trajectory was already optimised. If not, it then uses a rule-based

process to update the control parameters and restarts the process in the next

iteration. Using this framework, Ma et al., demonstrated that the optimised

CAV trajectories improve manual trajectories by 36.7%, 39.7%, and 67.1%, in

terms of travel time, fuel consumption, and safety, respectively.

Li and Li addressed the limitations of previous trajectory optimisation algo-

rithms by providing a complete solution that does not require runtime heuris-

tics and simplifications, guaranteeing the optimality of the solution [Li & Li,

2019]. Constraints on the algorithm include acceleration bound by mechanical

limits, positive monotonic speed restriction, communication distances remain-

ing below a reliable threshold, and boundary conditions that explain behaviour

during an initial time and final position. A meaningful trajectory can be com-

puted by using a finite number of piece-wise quadratic equations, allowing

the error to remain arbitrarily small and the trajectory to be optimised in

accordance with the mechanical and spatial constraints.

Using this approach, the authors simulate a jam occurring in a platoon of seven

vehicles. The simulation demonstrates that stable platoon behaviour reoccurs

after 20s. When travelling at an initial velocity of 12m/s, the platoon is able

to absorb the lead vehicles deceleration without having to exceed maximum

deceleration limits. The developed framework is expandable by adding addi-

tional constraints such as limitations on jerk, considering vehicle kinematic

characteristics, assessing the impact of heterogeneous acceleration rates, and

impacts of communication or implementation delay.

2.3 Recent Trials using CAV Technology

This section outlines in brief recent trials of CAVs. Assessing CAV hardware

provides extensive insight into their ultimate capabilities. Results from real-

world trials offer valuable access to information regarding limitations imposed

by transport systems, engagement with other agents, or technical barriers not

otherwise considered. The trials outlined below were conducted by vehicle

manufacturers, government entities, and private enterprise. Unfortunately,

more often than not, the results and lessons learnt of such trials are not pub-

licised. Trials include;
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� Ford and Baidu: Ford and Baidu have partnered in China to trail 45

L4 CAVs on 31mi of open road. This extent will be increased to 84mi

within a year [Szymkowski, 2019]. Baidu is also the developer of V2X

technology and aims to use this trial as a means of testing both CAVs

and their communication framework.

� Queensland and Renault: The Queensland government is using a AUD$1.5

million custom-built Renault Zeo 2 to better understand how CAVs will

interact with the built environment. Additionally, the trial aims to deter-

mine what infrastructure changes are required to make the State CAV-

ready [Schmidt, 2019].

� United Kingdon (UK): The UK federal government is investing GBP£25

million into three CAV trials for 2021, with many smaller CAV trials

already underway. The vehicles are intended to be options for those

that struggle to access public transport, and a means of revolutionising

goods movement and freight logistics [Williams, 2018].

� Minnesota: Minnesota’s challenging weather allows the city to gather a

unique perspective on the operation of CAVs. Trials in the state focus on

the performance of sensing equipment and vehicles in snowy conditions

and iced roads, the number of trials in which are sparse. The trials begin

with testing operations on roads by the State authority and gradually

increase in complexity to testing V2I connectivity and impacts on transit

priority and fuel efficiency [Hietpas, 2017].

� Intel: Intel is working with the Israeli government to test their ‘Mobil-

eye’ platform in Jerusalem. The trials test safety in heavily congested

and aggressive driving environments. Mobileye aims to provide MaaS

with vehicle, software, platform, mapping, and safety mechanisms. By

trialling vehicles in unfamiliar situations, Intel hopes to gain better data

to train its artificial intelligence algorithms [Reichert, 2019].

� Perrone Robotics and Virginia: Perrone Robotics equipped a vehicle

with L4 autonomy and trialled it on Virginian roads. This trial pro-

gressed the complexity of public trials by allowing the vehicle to au-

tonomously navigate complex roundabouts, intersections, and areas with

pedestrians and cyclists. During the trial, there were no safety inci-

dences, the vehicle did not forfeit control to a human at any point, and

the service received a positive reception from the public [Perrone, 2019].
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� Navya: Navya is a French CAV manufacturer focusing on different vehi-

cle solutions for segments of the transportation market. In July, Navya

was permitted by Japan to operate an autonomous bus without a steer-

ing wheel, pushing CAV trails closer to L5 autonomy [Navya, 2019].

� Drive Me by Volvo: The Drive Me project aims to align the motivations

of the public, private, and academic sector to accelerate the development

of CAVs. Headed by Volvo, the project initiated in 2013 and has now

progressed to on-road trials of prototype commercial vehicles in Gothen-

burg, Sweden [Volvo, 2017].

This list serves only as an introduction to the number and diversity of CAV

trials currently being conducted worldwide. iMOVE maintains a database of

currently 104 entries that describe worldwide CAV trials [iMOVE, 2020]. Each

trial aims to provide insights into a previously untested environment for CAV

operation or collect data to strengthen and train learning algorithms. While

many trials have operated successfully, others have resulted in unfortunate

accidents and highlighted the current limitations of this technology.

The use of Tesla’s “autopilot” feature, though impressive, is not flawless. The

first death using Tesla’s self-driving features occurred in 2016 when a vehicle

operating autonomously collided with a tractor-trailer at an intersection. Re-

portedly, the vehicle’s sensors were unable to distinguish between the colour

of the trailer and the colour of the overshadow sky, resulting in a side-on col-

lision and death of the driver [Corfield, 2017]. This incident highlighted the

importance of positioning the sensors on vehicles in appropriate locations. The

fatality could have been avoided by an alert driver prepared to resume control

of the vehicle, and a sensor system that was not misguided by poor lighting

and colour conditions. Though Tesla makes no claims that their vehicles are

self-driving, that is the implication and eventuality of autopilot.

The first death of a pedestrian occurred by an Uber self-driving vehicle in 2018.

The pedestrian was walking a bicycle across a four-lane road when the CAV

operating in autonomous mode struck and later killed the pedestrian. This

fatality could have also been avoided by an attentive operator, or by a pedes-

trian crossing within the confines of a legal crossing area [Levin, 2018]. This

incident brought to light two key findings, the first being that Uber’s CAVs

are unable to identify jaywalkers. The system did not contain a capability to
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determine when pedestrians may decide to inattentively and illegally cross the

road. The other lesson from this incident is that the behaviour of pedestrians

and cyclists is far more stochastic than the rule-based and relatively deter-

ministic behaviour of vehicles. CAVs still require substantial development in

understanding the probabilistic behaviour of other agents in the network and

be prepared to react to changing circumstances.

Real-world testing has been limited to simple network operations and vehicle

interaction, with trials restricted by a lagging legislative framework. This is

where work such as this thesis provides significant contributions. By creating

a digital environment in which to emulate CAV behaviour and conduct sce-

nario testing, a range of different manufacturing decisions, CAV behaviour,

implementation strategies, and optimal use cases can be evaluated. Though

limited in its capabilities, microsimulation testing is faster, safer, cheaper, and

can be conducted without awaiting the legal framework accompanying CAVs

to progress.

2.4 Summary

This chapter detailed the nature of a CAV, the hardware it is comprised of, and

the technical capabilities that this hardware enables. Understanding CAVs is

critical as their behaviour can not be emulated without understanding their

technical limitations. A review of recent progress in commercial CAV develop-

ment indicates that while the hardware currently has limitations in reliability

and guaranteeing safety, they enable vehicle reaction times and safety many

order of magnitudes greater than what humans are capable of. Additionally,

the technical capabilities facilitated by V2V and V2I protocols allow degrees

of cooperative and decentralised movement that are otherwise unachievable by

a human fleet. A framework developed for emulating CAVs must be centred

on many of these benefits, while also providing flexibility and expandability

for when further technological advances increase CAV capabilities.
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3 Mathematical Models for the Microsimulation of

Human Driven Vehicle Behaviour

Chapter 2 outlined the capabilities of CAV hardware. Understanding the

technical limitations places appropriate constraints on behaviour emulated in

the microsimulation environment. A microsimulation setting is a valuable

tool for assessing the performance of transport networks, or in evaluating the

traffic impact of proposed developments and network alterations. This style

of modelling generates individual agents and allows them to interact within

the confines of a virtual environment.

Three major algorithms control the behaviour of vehicles in microsimulation;

the car-following model, the lane-changing model, and the gap-acceptance

model. These time-discrete algorithms dictate the behaviour of each agent

in the network for each time increment. This chapter, in brief, outlines the

development of these algorithms and mathematical models, and the data used

to emulate human vehicles in a microsimulation setting. A Literature review

of human-oriented models is essential as a well-developed model may already

apply for CAV behaviour. In the absence of an appropriate model, a literature

review would highlight model features to avoid when developing a modelling

framework for CAVs. This literature review explains each family of models

and then provides limited examples using impactful or unique contributions.

3.1 Car-Following Algorithms

Car-following models play a vital role in ensuring that microsimulation models

reproduce real traffic flows and movement. The literature contains numerous

car-following models, each offering a nuanced and novel means of accurately

modelling the car-following behaviour of human motorists in a range of driving

conditions [Brackstone & McDonald, 1999]. Car-following models are gener-

ally categorised into one of four types. Gazis-Herman-Rothery (GHR) models

are built on the principle of stimulus-response, where a follower reacts to a

leader. Collision Avoidance models are commonly developed using Newton’s

equations of motion and aim to maintain safe following distances. Psycho-

Physical models state that drivers react to small changes to speed based on

external cues, and discretise the behavioural domain into regions. Fuzzy Logic

models use rule-based logic to discretise driver behaviour and conditionally
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apply actions in microsimulation [Olstam & Tapani, 2004]. Additionally, an

example of a recurrent neural network car-following model is also provided,

which is a model style generally used by the literature in emulating CAVs, but

can also be applied to human behaviour. This section explains each type of

model in greater detail.

3.1.1 Gazis-Herman-Rothery Models

GHR models are built on the proposition that a driver’s acceleration is pro-

portional to the following distance and velocity difference between the ego and

lead vehicle. This type of model controls the behaviour of the ego vehicle by

quantifying its response relative to its leader [Olstam & Tapani, 2004]. GHR

models take the following form [Brackstone & McDonald, 1999];

an(t) = cvn+1
n (t)

∆v(t− τ)

∆x(t− τ)
(1)

Where, an(t) is the acceleration of vehicle n at time t, ∆v and ∆x are the

difference in speed and location between the ego and lead vehicle, respectively,

τ is the time increment for the time-dependant model, and c is a calibration

constant.

Though most GHR models maintain the assertion that car-following behaviour

is proportional to velocity and headway, they vary in the complexity of this

relationship. ∆v and ∆x may themselves be functions of other parameters

that influence human behaviour. Outlined in brief below are examples of car-

following models developed using the GHR approach.

Greenberg Model

The Greenberg model is one of the earlier derivations of the fundamental

diagram and is based on the theory of the continuity of a compressible fluid

[Greenberg, 1959]. Greenberg proposed that traffic behaves like a continuous

fluid and so may be modelled using the theory of fluid dynamics. He did,

however, state that this approach may not be appropriate for low traffic density

scenarios. His fundamental diagram model is defined as follows;

v = c · ln(ρ) (2)
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Where, v is the velocity of the vehicle, c is a constant sensitivity calibration

parameter, and ρ is the normalised traffic flow.

Though the Greenberg model is capable of replicating the high-level behaviour

of vehicles in an uncongested network, it does not capture the large number

of influential factors that impact driver car-following behaviour. By its na-

ture, the fundamental diagram accurately represents aggregate fleet responses

to density and can holistically replicate the behaviour of a stream. How-

ever, when circumstances deviate from the norm such as variations in driver

characteristics or obstructions in vehicle trajectories, the model is unable to

reproduce this naturally occurring stochasticity in busy environments.

Grazis et al., Model

Grazis et al., altered the Greenberg model by adjusting the sensitivity of lateral

acceleration, making it proportional to the headway rather than a constant

value [Gazis et al., 1959]. The authors theorised that headway played a psy-

chological role in governing the acceleration of a driver. Their alteration is

presented in the following expression;

v = f(∆x) · ln(
1

l · ρ
) (3)

Where, v is the velocity of the vehicle, f(∆x) is a hyperbolic function of the

headway that governs sensitivity, l is the vehicle length, and ρ is the density

of the traffic flow.

This change captures a deterrence to acceleration when headways and vehicle

spacing is small. By doing so, the model introduced localised fluctuations in

the traffic stream as drivers now reacted to individual and varying space head-

ways. Experimental verification showed that this alteration better replicated

the test data than Greenberg’s original model.

Zang et al., Model

Zhang et al., evaluated the impact of the lead vehicles tail light on the driving

behaviour of the ego vehicle [Zhang et al., 2018]. Their model is an extension

of the Full Velocity Difference (FVD) model [Jiang et al., 2001], which is lim-
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ited in its ability to describe non-standard phenomena in traffic streams, but

otherwise has a compact form and performs well under standard conditions.

Zhang et al., proposed that a vehicle spacing exists wherein the tail light of

the preceding vehicle affects driving behaviour. Using this assumption, they

expanded the FVD model to the following expression;

an(t) = f(vn(t),∆xn(t),∆vn(t), ...) + θn(t)f(n, t) (4)

Where an(t) is the acceleration of vehicle n at time t, vn(t) is the velocity,

∆xn(t) is the spacing between the ego and lead vehicle, ∆vn(t) is the relative

velocity, θn(t) is a binary term to indicate whether the tail light of vehicle n−1

is red, and f(n, t) is a conditional function designed to determine whether the

state of the lead vehicles tail light should impact the behaviour of the ego

vehicle. f(n, t) is defined as follows;

f(n, t) = f0tanh(1− ∆xn(t)

∆xn(0)
)H(−∆vn(t))∆vn(t) (5)

Where, H is the Heaviside function which equals 1 if x ≥ 0 and 0 otherwise,

and ∆xn(t) is the spacing between the lead and ego vehicle.

Zhang et al., used a loop road of 1.5km length and 100 cars, then introduced

a perturbation for 5s. Using the FVD model, vehicles experienced a speed

change of 0.2m/s to 13.3m/s. When using the altered model with f0 = 0.5,

the exhibited speed change varied between 2.74m/s and 7.2m/s. This 34.4%

reduction in the oscillation amplitude showed that the proposed model assists

in reducing erratic behaviour and smoothening traffic flow.

Spring-Mass-Damper-Clutch Model

Recent developments in GHR models have drawn inspiration from other areas

of physics and mechanics. Li et al., developed a car-following model using the

mechanics of a “Spring-Mass-Damper-Clutch” system, where the ego vehicle

driving behaviour also influences the lead vehicle [Li et al., 2019]. The non-

linear wave propagation analysis technique used in their study means that

a traffic stream can be modelled as multiple chained “Spring-Mass-Damper-

Clutch” systems, allowing the proposed car-following model to be scaled and

used for macroscopic assessment. Their car-following model is as follows;
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mnan(t) = kn(∆xn(t− τ)−Xo(vn(t− τ))) + cn∆vn(t− τ) (6)

Where, mn is the mass of vehicle n, an(t) is the acceleration at time t, vn(t)

is the vehicle velocity, τ is the spring dampening coefficient, Xo is the spring

speed-dependant relaxation length, and cn is the clutch time delay parameter.

Under standard driving conditions like on a highway, the velocity of the ve-

hicle is bound between the maximum and minimum spring relaxation length,

meaning that Xo = x′n · vn, where x′n is the gradient of the speed-dependent

relaxation length curve. Equation 6 then becomes;

an(t) =
kn

mn(∆xn(t− τ)− x′nvn(t− τ))
+

cn
mn∆vn(t− τ)

(7)

This model, like the other GHR models, is built on the inherent assumption

that drivers have an infinite perception and diminishing reaction to external

stimuli. The Li et al., model fundamentally incorporates wave propagation as

a means of modelling traffic streams. While both assumptions may be appro-

priate for human driving fleets, neither will suffice to model the instantaneous

reaction times or platooning behaviour of CAVs.

3.1.2 Collision Avoidance Models

Collision avoidance models differ to GHR in that the car-following behaviour

is not external stimuli dependant, but in response to creating and maintaining

a safe distance from the lead vehicle. For this reason, most are manipulations

of Newton’s laws of motion [Brackstone & McDonald, 1999]. Examples of

collision avoidance models include the following.

Kometani and Sasaki Model

Kometani and Sasaki were first to use collision avoidance as the driving mo-

tivation for car-following behaviour [Kometani & Sasaki, 1959]. Their model

is not governed by a system of stimulus and response, but uses Newton’s laws

of motion to specify a safe, collision-free following distance. The original for-

mation of the model is as follows;

∆x(t− τ) = c1v
2
n−1(t− τ) + c2v

2
n(t) + c3vn(t) + c4 (8)
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Where, ∆x(t− τ) is the vehicle displacement during a time increment τ , c1 to

c4 are calibration parameters, and vn(t) is the velocity of vehicle n at time t.

A floating car survey of two vehicles on a city street was used to obtain data

for calibration of this model. 22 replications of the experiment yielded 310s for

analysis. Best fit parameters produced an r2 value of 0.75. When repeating

this experiment with two vehicles on a faster test track, the results produced

an r2 of 0.25 and 0.95 for the two vehicles.

This initial attempt at developing a collision avoidance car-following model

indicated that it was able to replicate human driving behaviour in select cir-

cumstances. Kometani and Sasaki were limited in their access to data and test

scenarios. Perhaps with vehicle interaction data from different speed zones and

traffic densities, the authors could have increased the scope of training data

used to calibrate the model. The resulting car-following model would be more

diverse, and experience reduced error in differing circumstances.

Gipps Model

The Gipps car-following model was derived by setting restrictions on the vehi-

cle kinematics, based on driver performance [Gipps, 1981]. The model assumes

that the following vehicle will adjust and maintain a headway to avoid colli-

sions in a sudden emergency stop. The model is presented in Equation 9;

v(n, t+ τ) = min(va(n, t+ τ), vb(n, t+ τ)) (9)

Where, v(n, t+τ) is the velocity of the vehicle at time t, τ is the reaction time

of the driver, va(n, t+ τ) is the velocity of the vehicle during acceleration and

vb(n, t+ τ) is the velocity of the vehicle during deceleration.

The driver’s acceleration towards a desired speed is provided in Equation 10;

va(n, t+ τ) = v(n, t) + 2.5a(n)τ(1− v(n, t)

v∗(n)
)

√
0.025 +

v(n, t)

v∗(n)
(10)

Where, v(n, t) is the velocity of vehicle n at time t, v∗(n) is the desired speed

of the road section and a(n) is the maximum acceleration of the vehicle.
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The change in vehicle velocity is bound by the section speed limit and the

vehicle acceleration capabilities. Spatial constraints also bound vehicle motion.

The deceleration equation is presented in Equation 11;

vb(n, t+ τ) = d(n)τ −

√√√√ d(n)2 − d(n)(2x(n− 1)τ − l(n− 1)

−x(n, t)τ − v(n−1,t)2

d′(n−1)

(11)

Where, d(n) is the maximum deceleration tolerated by the vehicle x(n, t) is the

position of vehicle n at time t, l(n− 1) is the effective length of the preceding

vehicle and d′(n− 1) is an estimation of the preceding vehicle’s deceleration.

During this models formulation, Gipps introduced three parameters to incor-

porate human decision making. The first is human reaction time. The second

is a prediction of the preceding vehicles deceleration rate. The third was in-

corporated into his derivation and prevented underestimating the intentions

of the preceding driver. These assumptions cause the model to exhibit sudden

and erratic accelerations based on the movement of a leader. The model does

not monitor adjacent lanes, and so the imprudent lane change of adjacent

leaders causes a large deceleration.

General Model, MOBIL

The general minimising overall braking induced by lane change (MOBIL)

model captures the implications of a lane change on surrounding vehicles [Kest-

ing et al., 2007]. Kesting et al., state that despite other lane-changing models

being adept at replicating the decision-making process of a driver intending

to change lanes, they lack the ability to incorporate implications for the other

vehicles in the utility functions that govern advantageous lane changes. Such

a model and style of driving would help bridge the cognitive dissonance that is

present between maximising ones own utility in a lane change and the impact

this decision has on the wider network.

This model has three major advantages. The first advantage is that the

lane-changing model is no longer responsible for calculating traffic conditions.

Calculations of the gaps, relative velocities, and accelerations are transferred

to the car-following model, allowing the lane-changing model to be simpler
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and more concise. The second advantage is that when longitudinal and lane-

changing models are consistent with each other, the lane-changing model is

also collision-free if the car-following model is collision-free. This assumption

again simplifies the formulations for this proposed model. Finally, the braking

deceleration forced on another vehicle during the lane change manoeuvre can

be used as a surrogate measure of safety. This allows the authors to unify

safety and motivation into a single model.

This model differs from other car-following models in two ways. The first way

is that its utility function for defining a good lane change is built on acceler-

ation factors alone. The second is that this model incorporates a “politeness

factor”. The purpose of the “politeness factor” is to vary the intentions of

the lane change, from purely egotistic to more altruistic [Kesting et al., 2007].

The “politeness factor” changes the consideration that a vehicle has for its

impacts on surrounding vehicles, to the point where this factor can mandate

a lane change not occur unless there is a benefit for the system. The model is

presented in the following expression;

an − an
(driver)

+ p(
an+1 − an+1

(new follower)
+

an−1 − an−1

(old follower)
) > ∆ath (12)

Where, the first two terms represent the utility gained from the possible lane

change for vehicle n, and p is the “politeness factor”.

Models of this nature raise questions regarding the cooperativeness of vehicles

in real-world traffic streams. Much of traffic, mobility, and transport is built

on the economic principle of maximising one’s own utility. Drivers often do not

have the capability nor the willingness to assess the impacts of their actions

on the wider network in real-time.

Fadhloun and Rakha Model

Fadhloun and Rakha developed a model that emphasises human-in-the-loop

[Fadhloun & Rakha, 2019]. The model captures driver perception and controls

the inaccuracies and errors of other car-following models. The model consists

of three major components, one for stead-state, one for collision avoidance, and

one for vehicle dynamics. The collision avoidance component is responsible for
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ensuring safe vehicle operation by intervening when a collision would otherwise

be unavoidable. The collision avoidance model is an unaltered form of the

kinematic equation of motion and is presented in Equation 13;

vCAn+1 =
√
v2
n + 2dmax(∆x−∆xρ) (13)

Where, vCAn+1 is the velocity calculated using the collision avoidance model, vn

is the speed of the following vehicle, dmax is the maximum deceleration, ∆x

is the headway spacing between the ego and lead vehicle, and ∆xρ is the jam

density spacing.

The steady-state speed is calculated using the nonlinear functional form of the

Van Aerde model [Van Aerde, 1995]. It is presented in Equation 14;

vV An+1 =

−c1 + c3vf + sn+1 −

√√√√ (c1 − c3uf −∆x)2

−4c3((∆x− c1)uf − c2)

2c3
(14)

Where, vV An+1 is the velocity calculated using the steady-state model, c1 to c3

are modelling calibration parameters, and vf is the free flow speed.

Finally, the vehicle dynamics model is used to ensure that its physical and

mechanical capabilities bound the behaviour of the vehicle. Using Newton’s

second law of motion, the acceleration of the vehicle is the difference between

the tractive forces and resistive forces (aerodynamics, rolling resistance, and

grade resistance) acting on the vehicle, divided by its mass. The dynamics

model is presented in Equation 15;

an+1 =
min(3600, f( vn+1

vmax
) · ηc4Pvn+1

,mgµ)−Rn+1

m
(15)

Where, an+1 is the acceleration provided by the vehicle dynamics models,

f( vn+1

vmax
) is the throttle function which uses initial velocity (vn+1) and final

velocity (vmax), η is the driveline efficiency, c4 is a parameter accounting for

gear-shift impacts at slow speeds, P is the vehicle power, m is the vehicle

mass, g is gravitational acceleration, and µ is the coefficient of friction.
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This model improved on previous iterations of collision avoidance models by

modelling the driver throttle and brake pedal input, smoothening the accelera-

tion profile of vehicles to be consistent with empirical data, explicitly capturing

driver perception, and controlling inaccuracies and errors.

3.1.3 Psycho-Physical Models

Psycho-physical models are an extension of GHR models, where “action points”

and thresholds are added to discretise car-following behaviour [Brackstone &

McDonald, 1999]. In a GHR model, objects far from a vehicle will continue

to have a small, but non-negligible, impact on its behaviour. Psycho-physical

models aim to quantify regions between which the car-following behaviour

changes. The reasoning is that driver behaviour changes as the nature of their

interaction with other agents in the network changes. This interaction can

be characterised by speed differences, headways, proximity to turns, or other

external stimuli. This subsection outlines a range of novel and significant

psycho-physical models.

Evans and Rothery Model

Evans and Rothery are credited with creating the first psycho-physical car-

following model in 1973 [Evans & Rothery, 1973]. This style of modelling

addresses the GHR models limitations, which did not consider a drivers ability

to quantitatively assess headway, changes in headway, and relative speed, all

of which are considered important in defining driver car-following behaviour.

Evans and Rothery conducted field experiments in which examiners asked

participants to take the role of passengers in a test setting. The examiners then

asked participants whether the lead vehicle was travelling faster than, at the

same speed, or slower than the ego vehicle. This experiment was repeated at

varying headways between 80ft and 550ft. The experiment showed that when

relative velocity divided by spacing exceeded ±0.03s−1, it could be detected

75% of the time. Some experiments showed that subjects might be receptive

to the change in pitch of the vehicle as it accelerates. Further investigations

showed that this mechanism was effective in predicting acceleration for vehicles

with a non-rigid suspension.
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Wiedemann Model

The Wiedemann car-following model uses decision points and regions to define

vehicle behaviour [Wiedemann, 1974]. The regions are presented diagrammat-

ically in Figure 3 [PTV Group, 2016];

Figure 3: Thresholds for the regions within the Wiedemann psycho-physical

car-following model [PTV Group, 2016].

The thresholds are defined as follows;

� AX: Desired spacing between stationary vehicles. This distance is the

sum of the lead vehicles length and the bumper-to-bumper distance be-

tween vehicles.

� BX: Minimum following distance when the speed difference between the

lead and ego vehicle is low.

� SDX: Maximum following distance until which the actions of the lead

vehicle will effect those of the ego vehicle.

� SDV: Critical threshold where the ego vehicle notices it is approaching

a slower travelling lead vehicle.

� OPDV: Point where a driver determines that their speed is lower than

that of the lead vehicle.
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The “No Reaction” state occurs when the headway to the lead vehicle is

too large. The “Collision” region imposes the maximum deceleration when

the headway falls below AX, to prevent an accident. The “Deceleration”

region is designed to match the speed of the ego vehicle with the lead vehicle

as the car-following headway approaches BX. The “Reaction” region defines

behaviour when a vehicle approaches a noticeably slower region and is forced

to decelerate.

This model is limited by its tendency to segment driving behaviour based on

the prevalence of information to the driver. V2V and V2I will greatly ex-

tend not only the information available to the vehicle but also the quantity,

quality, and accuracy of that information. For this reason, adjusting the pa-

rameters, mathematical models, and regions of psycho-physical models such

as the Wiedemann model may not allow for the emulation of CAV behaviour

in a simple and adjustable framework. A psycho-physical model reverts to a

GHR model when the prevalence of information available to CAVs pushes the

region thresholds to infinite.

Fritzsche Model

The Fritzsche car-following model is used in the Paramics microsimulator,

and shares similarities with the Wiedemann model [Fritzsche, 1994]. Fritzsche

claimed that modelling the propagation of waves in traffic streams using ther-

modynamics and fluid mechanics is only reasonable for moderately dense traf-

fic (<30 cars/lane/km). Traditionally, thermodynamics and fluid mechanics

models along with the fundamental diagram were used to relate velocity, den-

sity, and flow, and extrapolated to calculate capacity. Fritzsche claimed that

this process introduced errors as the correlation between the models and data

could not be adequately established.

Fritzsche proposed a psycho-physical car-following model that segregated the

perception of speed into two regions, the perception of headway into four

regions, and the perception of gaps into two regions. Perception of positive

and negative speed difference is defined as follows;

∆vPTN/PTP = ±cPTN/PTP (∆x)2 ∓ c2 (16)
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Where, ∆vPTN/PTP is the perception threshold distance for positive velocity

changes (PTP ) and negative velocity changes (PTN), c and c2 are modelling

parameters and ∆x is the headway to the preceding vehicle.

The thresholds describing the ego vehicles reaction to a car-following headway

is described below as one of four states, and diagrammatically presented in

Figure 4;

Figure 4: The action regions of the psycho-physical Fritzsche car-following

model [Fritzsche, 1994].

� Desired Distance (AD): Distance that the ego vehicle maintains.

� Risky Distance (AR): Limiting distance headway before the ego vehicle

decelerates heavily to avoid a collision.

� Safe Distance (AS): Smallest required headway before the ego vehicle

will positively accelerate, limiting speed permitted.

� Braking Distance (AB): Maximum distance required to stop during max-

imum deceleration.

The “Danger” region indicates that the headway is smaller than AR and so

maximum deceleration is necessary. The “Closing in” region indicates that

the lead vehicle is within perception range of a negative speed change (PTN),

but the headway is greater than AR. This situation forces the ego vehicle to
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decelerate and match the velocity of the lead vehicle when the headway reaches

AR. “Following 1” and “Following 2” define regions of inaction or statistically

induced variance in acceleration. Finally, “Free Driving” indicates a region

where the lead vehicle’s velocity change is imperceivable or positive (PTP)

and the headway is sufficiently large (AD), meaning that the ego vehicle can

accelerate freely if travel speed limits permit.

Winsum Model

Winsum stated that car-following models lacked a human component, as they

attempted to emulate human behaviour solely from an engineering perspec-

tive [Van Winsum, 1999]. He proposed that drivers apply a heuristic as they

attempt to cope with limitations in reflexive and adaptive capabilities. This

heuristic allows a driver to interpret vast amounts of data to make real-time de-

cisions affecting vehicle operation. Using psychological assumptions and mea-

surements, Winsum proposed the following expression [Van Winsum, 1999];

an = 1.04 ·c1 ·(

1.8
tan(1.1×an−1×tan( 1.8

∆tn−1Vn
))

an−1 ·

√
2×

∆tn−1vn− 1.8

tan(1.1×an−1×tan( 1.8
∆tn−1Vn

))

−an−1

)0.72 +c2 +ε (17)

Where, an is the acceleration of the current vehicle, c1 and c2 are calibration

constants, ∆tn−1 is the time headway to the preceding vehicle, and ε is a

random error term representative of uncaptured influences.

Though Winsum did not test this model in a microsimulation environment or

verify its accuracy; his concluding remarks stated that this model was still too

simple to capture all of the factors affecting a driver’s car-following behaviour.

3.1.4 Fuzzy Logic Models

Fuzzy logic models convert strict mathematical models and definitions into

qualitative rule-based reasoning. For example, rather than defining a mini-

mum headway, fuzzy logic applies categorical classifications such as “critical”,

“close”, “comfortable”, and “far”. Each category has an associated probabil-

ity distribution, with the distributions overlapping adjacent categories. Car-

following would then become a matter of IF “close” AND “getting closer”
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THEN “brake”. Fuzzy logic allows a system to better represent the disaggre-

gate and stochastic behaviour of its constituents.

Kikuchi and Chakroborty Model

Kikuchi and Chakroborty were the first to propose the use of fuzzy logic to

model car-following [Kikuchi & Chakroborty, 1992]. Where the other models

used deterministic rules to dictate the reaction of the following vehicle in re-

sponse to its lead vehicle, Kikuchi and Chakroborty claimed that car-following

was an aggregation of vague rules that differed by circumstance. Fuzzy logic

modelling uses language and descriptive rules with a probability distribution

to model the imprecise human reasoning process.

The value of fuzzy logic inference is realised when the premise is compatible

with the rule governing it. Only then is accuracy in a predicted consequence

achieved. Consider the example provided by the authors;

Input : x is somewhat A (x = A′)

Rule : if x is A then y is B (R : x = A− > y = B)

Conclusion : y is somewhat B (y = B′)

(18)

The appropriateness of the conclusion is contingent on the accuracy of the

input and the validity of the rule. The input for the Kikuchi and Chakroborty

model is;

� Distance between the lead and following vehicle

� Relative speed between the lead and following vehicle

� Acceleration (or deceleration) rate of the lead vehicle

Each rule of the fuzzy logic model discretises the input into six language-

based categories, and each category has an associated membership function.

By conditionally following the rules, a vehicle determines its acceleration. For

example, if the following distance is adequate, and the relative speed is near

zero, and the lead vehicle deceleration is mild, then the following vehicle should

decelerate mildly. This model applies to both the lead vehicle and the following

vehicle, and is mathematically represented in Equation 19 as;
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an = (
∆v + an+1 · τ

∆t
) + β∆x · φ (19)

Where, an is the acceleration of the following vehicle, ∆v is the perceived

relative speed, an+1 is the perceived acceleration of the lead vehicle, τ is the

time interval over which the model is run, ∆t is the time over which the

following vehicle will match the lead vehicle (set to 2.5s in this study), β∆x is

the number of categories from which the perceived distance (∆x) deviated from

adequate, and φ is the lateral translation made to the membership function

for this deviation (set to 1 in this study).

The level of compatibility between the input and rules is determined using

fuzzy inference. Though this study did not verify the membership functions

through collected field data, it was able to show that using a fuzzy logic ap-

proach yields comparable results to using a deterministic modelling approach.

Fuzzy logic models better explain deviations and dispersions in data as prob-

abilistic stochasticity, something that deterministic models are unable to do.

McDonald et al., Model

The fuzzy logic model proposed by McDonald et al., shares similarities with the

Kikuchi and Chakroborty model [McDonald et al., 1997]. The model uses two

inputs to the decision-making process, the relative speed between the lead and

follow vehicles (∆v) and the ratio of the separation between the two vehicles to

the desired separation (∆x/∆xmax). The ∆v and ∆x/∆xmax both have five

language-based categories, with ∆v ranging from “opening fast” to “closing

fast”, and ∆x/∆xmax ranging from “much too far” to “much too close”. This

segregation results in five driver response language-based categories ranging

from “strong acceleration” to “strong deceleration”.

Calibration data is needed to adjust the membership functions and fine-tune

the operation of the model. Data was collected by asking six drivers to drive

along a motorway and give there subjective opinion of following distances. The

membership functions of the language-based categories were defined using the

collected data and a triangular distribution. The car-following model is defined

in the following equation;
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c1 + c2 = 1

AS(i)c1 +AS(j)c2 = AS(ij)

(20)

Where, AS(i) is the average deceleration rate corresponding to ∆v and ∆x/∆xmax

in set i, AS(j) is the average deceleration rate corresponding to ∆v and

∆x/∆xmax in set j, and AS(ij) is the resulting acceleration rate when ∆v

and ∆x/∆xmax belong to different sets i and j. c1 and c2 are both parameters

used to determine the percentage that the base rates will fire when ∆v and

∆x/∆xmax are in different base sets.

Using this approach, the calibrated model appropriately replicated field car-

following behaviour. Their work found that ∆x/∆xmax (deviation between

the desired and actual following distance) was most important to car-following

behaviour.

Khodayari et al., Model

Khodayari et al., developed a fuzzy logic car-following model by using a Gaus-

sian membership function for each fuzzy set, and three membership functions

per input [Khodayari et al., 2011]. The inputs were relative distance, relative

speed, velocity of the following vehicle, and instantaneous reaction delay.

While the distribution of these membership functions can be obtained from

observed data as other studies have done, instantaneous reaction delay is more

difficult to quantify. Khodayari et al., achieved this by observing the relative

velocity and acceleration of lead and following vehicle pairs. As the lead

vehicle accelerates or decelerates, the relative velocity changes. As a result,

the following vehicles adjust their acceleration. The instantaneous reaction

time is the time difference between the relative velocity changes and when the

following vehicle’s acceleration changes accordingly.

By including instantaneous reaction time as part of the inputs in their fuzzy

logic model, Khodayari et al., experienced a 33% reduction in the root mean

square error (RMSE) when compared to not considering this variable input.

The model demonstrated a mean absolute percentage error of 23.92%.
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3.1.5 Recurrent Neural Networks

Neural network models consist of the input layer, a number of hidden layers,

and an output layer. Reinforcement learning is used to create and strengthen

probabilistic pathways between the input and output through the hidden lay-

ers. This style of modelling is gaining popularity due to its parameter-free

and data-driven nature. Neural network models are generally deficient at

modelling traffic oscillation, a problem with human vehicle fleets that is ex-

pected to be less pertinent with CAV fleets. Zhou et al., developed a recurrent

neural network (RNN) that addressed the oscillation limitation of other neural

network based car-following models [Zhou et al., 2017].

RNNs are used in speech recognition, language translation, stock prediction,

image recognition, and various other applications. RNNs operate by not being

a memoryless process, they retain data from previous iterations and time

increments to help inform future decision. This characteristic makes them

well-suited for the applications above, where the nature of any particular word,

sentence fragment, data point, or pixel is contingent on its surrounding, and

the strength of influence diminishes as the distance between points increases.

Zhou et al., implement an RNN by sequencing weighted input data through

concurrent hidden layers. The length of the data is unrestricted and variable.

The RRN takes an input of spacing, relative speed, and vehicle speed for the

current time step, and outputs acceleration for the next time step. Based on

outputted acceleration, the vehicle position and velocity for the next time step

are updated based on the kinematic equations of motion. When comparing the

RNN modelling framework with other models, the RNN model demonstrates

a 41.7% reduction in RMSE.

3.2 Lane-Changing Algorithms

The lane-changing model is a crucial aspect of microsimulation modelling, as

it reconciles a drivers’ short term and long term goals [Gipps, 1986]. Lane-

changing algorithms define a set of conditions under which a vehicle desires to

change lanes. The lane change is classified as one of two types, a Mandatory

Lane Change (MLC) or a Discretionary Lane Change (DLC). An MLC is

incited by an unavoidable need to change lanes such as obstructive objects in
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the drivers’ current lane or an upcoming turning movement. A DLC is one

that may not be strictly necessary but will provide short term advantages to

the driver. This short term advantage may result from overtaking a slower

vehicle or passing a heavy vehicle.

Many lane-changing models implement decisions that are generally based on

the outcomes of a utility function, which evaluate travelling in adjacent lanes.

This utilitarian means of evaluating lane-changing does not allow for coopera-

tion between vehicles, as the implications of a vehicle’s decision on surrounding

vehicles and the traffic stream are not evaluated or considered [Kesting et al.,

2007]. Nor do many models allow a DLC when the vehicle is within a zone

strictly reserved for MLCs [Toledo et al., 2003].

Lane-changing models are primarily classified as one of four types, rule-based,

discrete-choice, incentive-based, and artificial intelligence models. The re-

mainder of this subsection provides a brief outline of each type and the novel

models proposed throughout literature.

3.2.1 Rule Based Models

Rule-based models follow rigid frameworks that outline the lane change trig-

gering thresholds. Rules are often static and comprehensive, dictating the

specific conditions under which a lane change occurs. This subsection outlines

in detail some of the unique contributions to rule-based lane-changing.

Gipps Lane-Changing Model

The 1986 Gipps lane-changing model evaluates the decision to change lanes

by answering the following three questions; “Is it possible to change lanes?

Is it necessary to change lanes? Is it desirable to change lanes?” [Gipps,

1986]. Gipps considered the following factors as being the most significant

contributors to a drivers decision to change lanes;

� “Whether it is physically possible and safe to change lanes” – Drivers

will not change lanes if the perceived risk of changing lanes is greater

than what the driver is willing to accept. The perceived risk is a function

of the driver’s position relative to the gap in the adjacent lane and the
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velocity of both the preceding and following vehicles in the adjacent lane.

A driver’s willingness to accept greater risks will increase as the need to

change lanes increases, caused by an approaching obstacle or turning

movement.

� “The location of permanent obstructions” – Drivers accustomed to the

road network are familiar with upcoming obstacles such as regularly

parked cars. This knowledge may incentivise a driver to change lanes

and ignore the temporary advantage that is offered by the lane with the

obstacle. As mentioned above, this desire to change lanes will increase

as proximity to the obstacle decreases.

� “The presence of transit lanes” – Transit lanes are specially reserved

for use by public transport vehicles and other high occupancy transit

vehicles. Generally, a transit vehicle will only exit the transit lane if it

is obstructed. Conversely, other vehicles will only enter the transit lane

if forced to by an upcoming turning movement.

� “The driver’s intended turning movement” – The distance of the driver

from its turning movement directly impacts a driver’s willingness to

change lanes. Beyond a particular distance, the proximity to the turn-

ing movement will not impact the driver’s decision. This indifference

reduces as the turning movement approaches.

� “The presence of heavy vehicles” – drivers tend to avoid following heavy

vehicles, primarily due to their slow acceleration rate. This behaviour

is most prominent when the heavy vehicle is accelerating from rest, and

almost non-existent when the heavy vehicles reach cruising velocity.

� “Speed” – The primary reason for changing lanes is to increase speed. If

a driver perceives the adjacent lane as having greater speed and believes

that travelling in this lane will result in a short term travel time or speed

advantage, then changing lanes will appear as more appealing.

Though the Gipps lane-changing model is used in the Aimsun commercial

microsimulator, it is still limited in its applicability to CAV operation. The

model is rigid, meaning that despite the model having the potential for ex-

pansion through the definition of new rules, the new rules must also be rigidly

designed. The rules currently contained within the model focus on the ego

vehicle and provides no scope for cooperation with surrounding vehicles. The
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final limitation is that the domain of the rules must be expansive, covering ev-

ery situation a vehicle could experience in its movement in a microsimulation

environment. This domain grows significantly when cooperation with more

vehicles is considered in a well-connected environment.

Kita Model

Kita proposed modelling rule-based lane-change through the use of game the-

ory [Kita, 1999]. Kita argued that the behaviour of the lane-changing vehicle

and giving-way vehicle is not independent, and so should not be modelled as

such. For this reason, Kita modelled the interaction between the two vehicles

as a system following a two-person non-zero-sum non-cooperative game. Such

a game particularly describes the situation where a vehicle on the mainline

will actively change lanes in response to a merging vehicle.

The parameters of the game are as follows; the players consist of the two

conflicting vehicles (even though lane changing actions have wider network

impacts on vehicles in the near vicinity), a single game is played for each in-

teraction, all games in the system are independent of one another, the drivers

are aware of the pay-off matrix of other vehicles but do not communicate deci-

sions with one another (i.e. a non-cooperative game with perfect information).

If the lane-changing vehicle is defined as P1 and the through-vehicle in the

mainline is defined as P2, then the strategy of P1 (p) is given as p = {1 :

merge, 2 : pass} and similarly the strategy of P2 (q) is given as q = {I :

giveway, II : do not giveway}. The pay-off matrices are then;

[P1] =

I II( )
1 a11 a12

2 a21 a22

[P2] =

I II( )
1 b11 b12

2 b21 b22

(21)

Where;

� a11 = c1t3 + c2 where, t3 is the time to collision (TTC) between the

merging vehicle and the follower of the following vehicle in the target

lane.
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� a12 = c1t2 + c2 where, t2 is the TTC between the merging vehicle and

the following vehicle in the target lane.

� a21 = a22 = c3t1 where, t1 is the TTC between the merging vehicle and

the end of the merging lane.

� b11 = b21 = c4t5 + c5 where, t5 is the TTC between the following vehicle

in the target lane and the merging vehicle’s own following vehicle in its

adjacent lane.

� b12 = c6t2

� b22 = c7t4 where, t4 is the time headway between the leader and follower

of the lane-changing vehicle in the target lane.

� c1, c2, c3, c4, c5, c6, c7 are explanatory variables calibrated using a method

of method likelihood estimation.

The model was tested on a case study in the Keiyo Expressway in Chiba

Prefecture, Japan. Using 25 conflicts as training data for model calibration,

the model had a correlation coefficient of 0.7 between the observed data and

the model predictions. This level of correlation was deemed high enough by

Kita to conclude the applicability of a game-theory approach to modelling

lane-changing behaviour.

Cellular Automata Model

The Cellular Automata model, extended by Nagel et al., is a microscopic car-

following model that also explicitly defines the conditions under which a lane

change would occur [Nagel et al., 1998]. The base conditions are;

� gapn(t) < min{vn(t) + 1, vmax} where, gapn(t) is the number of empty

cells ahead in the same lane, vn(t) is the speed of vehicle n at time t,

and vmax is the maximum allowed velocity of the vehicle.

� gapn,o(t) > min{vn(t)+1, vmax} where, gapn,o(t) is the number of empty

cells in the target lane.

� gapn,ob(t) > vmax where, gapn,ob(t) is the number of empty cells behind

the lane-changing vehicle in the target lane.

The first two conditions evaluate the adjacent lanes in search of favourable

conditions. The third condition evaluates the target lane for sufficient space
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for the lane change. The movement of the vehicle is defined as; if (v <

vmax) then v := v + 1 (accelerate if possible); if (v > gap) then v := gap

(slow down if necessary); if (v ≥ 1) then with probability p, do v := v − 1

(add variability and natural human stochasticism to the creation of a gap).

Being a macrosimulation model, the Cellular Automata model is not bur-

dened with having to define the caveats of microsimulation lane-changing. A

microsimulation rule-based lane-changing model explicitly defines how a ve-

hicle reacts in every interaction type between agents and network objects.

A macrosimulator, however, does not model specific agent interactions, as

it models using aggregate link or node flows. For this reason, macrosimu-

lation models lack the detail of their microsimulator counterparts. While a

macrosimulation model for lane-changing can provide insights into the funda-

mental mathematical thresholds for evaluating a lane-change, the model is not

directly transferable and nor is it appropriate for defining cooperative vehicle

interactions between CAVs.

3.2.2 Discrete Choice Based Models

Discrete-choice models determine the utility of an action (or discrete choice)

by aggregating quantitative variables and quantising qualitative variables. Pa-

rameters that affect a decision are aggregated to form a utility function that

quantitatively provides the cost of that decision. The specificities of com-

peting decisions are entered into the utility function in-turn, calculating an

overall utility for each option. The utility of each competing decision is then

placed into a utility model, such as the logit model or probit model. The

utility model provides the probability of selecting each available option. This

subsection outlines novel and unique discrete-choice lane-changing models.

Target Lane Model

The target lane model assesses the utility of all available lanes and moves the

driver to the lane with the highest utility [Toledo et al., 2003]. This multi-

lane assessment provides the driver with the greatest selection of target lanes,

particularly on multi-lane highways. The utility of each lane is evaluated using

the following equation;
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UTLint = βTLi XTL
int + rnα

TL
int + εTLint ∀i ∈ (lane1, ..., lanen) (22)

Where, UTLint is the utility of lane i as a target lane TL for driver n at time t,

βTLi is the vector of parameters that affect the utility of lane i, XTL
int is the cor-

responding vector of explanatory variables, rn is the vector of parameters for

the driver-specific random term αTLint , and εTLint is the random term associated

with the target lane utilities.

Target lane model utilities are governed by specific lane attributes such as

density, speed of traffic, presence of heavy vehicles, number of lanes required

to move from the current lane to the target lane, and the appropriateness and

distance of the target lane to the next turning movement. The error terms of

the utility function are assumed to be independent, and identically Gumbel

distributed. This assumption allows use of the multinomial logit model to

estimate the probability of selecting each available lane [Toledo et al., 2003].

The multinomial logit model is as follows;

P (TLint = i ∗ vn) =
e(UTL

int i∗vn)∑
j∈TL e(V TL

int j∗vn)
(23)

Where, P (TLint = i ∗ vn) is the probability of selecting lane i as the target

lane, UTLint i ∗ vn) is the utility derived by selecting lane i, and j is the set of all

possible target lanes.

To estimate the coefficients of explanatory variables in the utility function,

vehicle trajectory data was collected in a section of the I-395 southbound

highway in Arlington, Virginia. Using the collected dataset and the method

of maximum likelihood, the calculated utility function is as follows;

UTLint =βi − 0.011ρint + 0.119vint + 0.022∆xfrontint θadjint

+ 0.115∆vfrontint θadjint − 2.783θtailgateint θCLint + 1.000θCLint

− 2.633∆CLint + βpathi [xexitnt ]0.371 − 0.980θnextexitnt ∆Exiti

− α1vn + εTLint

(24)

Where, βi is the constant for lane i, ρint and vint is the lane specific density

and speed respectively, ∆xfrontint and ∆vfrontint is the spacing and relative speed

of the preceding vehicle in lane i respectively, θadjint equals 1 if i is the current or
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directly adjacent lane and 0 otherwise, θtailgateint equals 1 if the vehicle n is being

tail-gated and 0 otherwise, ∆CLint is the number of lane changes required to

move from the current lane to lane i, βpathi is the path plan impact coefficient

for lane i, xexitnt is the distance to the exit for driver n, θnextexitnt equals 1 if

the driver intends to take the next exit and 0 otherwise, and ∆Exiti is the

number of lane changes required to move from lane i to the exit lane.

To validate this model, Toledo et al., implemented it in microscopic traffic

simulation and tested it against data obtained for a specific section of the

I-80 motorway in Berkeley, California. Comparison between the proposed

target lane model and the default shift directional model showed a 29.79%

improvement in the RMSE of the speed, and a 13.41% improvement in the

ability to emulate real driver lane selection processes.

The target lane model shows improvement in environments where drivers can

select from numerous potential target lanes. The model retains a heavy in-

fluence of human characteristic and does not conduct an assessment on the

impacts of the vehicle decision on other vehicles in its immediate surround-

ings. While this additional assessment is not necessary to emulate selfish

human behaviour, it may be critical in emulating cooperative CAV behaviour

and deriving maximum utility from automated mechanical systems.

Ahmed Model

Ahmed proposed a lane-changing model designed to reflect the heterogeneity

in motorist driving behaviours[Ahmed, 1999]. Ahmed considered the explana-

tory variables that affect driver behaviour, and segregated the lane-change

manoeuvre into three categories; MLC, DLC and forced merging. An MLC is

dictated by an upcoming turning movement, forcing a vehicle into the correct

lane. A DLC is the result of a vehicle unsatisfied with its current situation.

A forced merge occurs in heavy conditions when the target lane gap is not

sufficient but is actively increased by the aggressive behaviour of the lane-

changing vehicle. The probability that a driver performs a lane change is

given by Equation 25;

Pt(LC|vn) =
1

1 + e−XLC
n (t)βLC−cLCαn

(25)
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Where, LC is the lane change type (mandatory, discretionary, or forced lane

change), Pt(LC|vn) is the probability of executing a lane change for vehicle n

and time t, XLC
n is the vector of explanatory variables that affect the decision

to change lanes, βLC is the corresponding vector of parameters, αn is the

driver-specific random term, and cLC is the calibration parameter for αn.

To trigger a lane change, minimum gap acceptance criteria must also be met.

The critical minimum gap is defined as;

gapcr,n±1
n = eX

cr,n±1
n (t)βn±1+cn±1αn+εn±1

n (t) (26)

Where, gapcr,n±1
n is the critical gap to the leader or follower in the target lane

for vehicle n at time t, Xcr,i
n is the vector of explanatory variables that affect

gap n ± 1, βn±1 is the corresponding vector of parameters, αn is the driver-

specific random term, cn±1 is the calibration parameter for αn, and εn±1
n is a

normally distributed random term (N = σ2
n±1).

The probability of executing the lane-change was given in Equation 25, the

probability of accepting a lane-change is as follows;

Pn(gap acceptance | αn)

= Pn(lead gap acceptable | αn) Pn(lag gap acceptable | αn)

= Pn(gapleadn (t) > gapcr,leadn (t) | αn) Pn(gaplagn (t) > gapcr,lagn (t) | αn)

(27)

Where, gapleadn (t) is the probable lead gaps in the target lane, and gaplagn (t) is

the probable lag gaps in the target lane.

Ahmed verified the model by implementing it in the MITSIM macroscopic traf-

fic simulator. The RMSE percentage error decreased from 5.81% to 1.56%,

and the error in traffic counts decreased from 9.08% to 7.53%. When imple-

mented in MITSIM (along with a proposed acceleration car-following model),

the proposed lane-changing model better reflected the observed data in all cat-

egories, with the Theil’s inequality (a measure of fitness, with lower coefficients

implying a better fit) reducing from 0.050 to 0.039.

During free flow conditions (ρ ≤ 19veh/km/lane), the model parameters

showed a significant t-statistic. However, the model parameters were deter-
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mined by calibrating to a case study that contained curvature in the roadway

upstream of the data collection point, the presence of a weaving segment, and

two exits downstream of the data collection point. These geometric features

may have effected driving behaviour, and hence the calibration of the model.

Sun and Elefteriadou Model

Sun and Elefteriadou designed a stated preference survey to evaluate a driver’s

decision when faced with a range of different scenarios [Sun & Elefteriadou,

2011]. The survey investigated the impact of situations including upcom-

ing turns, terminating lanes, stopped buses, another vehicle merging into the

driver’s lane, slower-moving vehicles ahead, shorter queue lengths in adjacent

lanes, the influence of trucks and heavy vehicles, being tailgated by another

vehicle, and pavement conditions, on a driver’s decision to change lanes.

Their study found that the factors which affect lane-changing differed by the

current situation of the driver. For example, a driver that is currently waiting

behind a bus is most influenced by the level of traffic congestion and queueing

ahead, location of the next bus stop, distance to the bus, and the number

of people at the bus stop. A driver that observes a queue advantage in the

adjacent lane is most influenced by the queue length difference, the distance to

the next turn, and the congestion on the target lane. A vehicle experiencing

tailgating is most influenced by the current speed limit, the level of congestion

on all lanes, and the relative position of the driver to the entire corridor. While

each scenario has its corresponding utility function, the utility function for the

stopped bus scenario is provided in Equation 28 for illustrative purposes;

V (LC) =β0 + β1Cgst+ β2Queue+ β3LocStop+ β4Dist+ β5NPson

+ α1DriverTypeA+ α2DriverTypeB + α3DriverTypeC
(28)

Where, DriverType are all dummy variables, Cgst is the level of congestion,

Queue is the queue ahead, LocStop is the distance to the next stop, Dist is

the distance to the bus, and NPson is the number of boarding passengers.

Sun and Elefteriadou also developed a lane-changing model through data col-

lated from revealed preference surveys into the reaction of drivers under var-

ious conditions [Sun & Elefteriadou, 2012]. The authors state that previous
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models which divide lane-changing into MLC or DLC may not be sufficient

for modelling lane-changing in urban environments, congested situations, and

arterial roads. The authors claim that drivers are exposed to situations in

congested urban environments that greatly differ from those on a motorway

network, and so the mitigating factors triggering a lane change also differ.

Their study used an instrumented vehicle to collect information on a diverse

group of 40 drivers, varying in age, gender, driving experience, occupation,

vehicle ownership, and perceived aggressiveness. Drivers navigated the route

while the system recorded details regarding potential lane changes, attempted

but not successful lane changes, and completed lane changes. An appropri-

ate classification scheme was then applied to the data. The first classification

scheme clustered data based on driver aggressiveness using the K-means al-

gorithm, which attempts to naturally cluster data points. The second classi-

fication scheme was based on driver behaviour. An aggressiveness index for

each driver was calculated by observing the difference between the number

of attempted and completed lane changes. The results were again clustered

using the K-means algorithm.

The results of the analysis found that segregating (and aggregating) the driving

behaviour into four key groups based on aggressiveness was sufficient in better

predicting the lane-changing intentions of drivers. Microsimulators such as

CORSIM and Aimsun currently use up to 10 different categories, without

providing a justification for this selection, nor drawing parallels to real-world

behaviour. Sun and Elefteriadou suggest that conducting a stated preference

survey on how aggressive a driver is and segregating results into four categories,

would improve the modelling results as compared to current fleet segregations

used in commercial microsimulators.

3.2.3 Artificial Intelligence Models

Artificial intelligence lane-changing models introduce randomness into the

lane-changing process and provide weighting to the subjective considerations

of different variables affecting motorists. They are often classified into five key

categories. Hidden Markov models infer unknown information from known ob-

servable information by constructing probabilistic models that relate the two.

Neural network models use training data and reinforced learning to create a
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network of probabilistic pathways between the input and output. Regression

models use simple mathematical models to fit relationships between inputs and

outputs. Cognitive models help approximate the cognitive process of human

drivers during decision-making events. Finally, fuzzy logic systems are built on

probabilistic reasoning that rely on qualitative descriptors [Tang et al., 2018].

Ding et al., Model

Ding et al., developed a back-propagation neural network to predict the lane-

changing behaviour of motorists [Ding et al., 2013]. Neural networks are

so-called as they attempt to mimic the human neural system. A large in-

terconnected system of parallel, non-linear, adaptive nodes connects through

pathways. As data moves between the layers from node to node, certain path-

ways are strengthened, leading to a natural probabilistic set of outcomes for a

specific input. This style of reinforced learning mimics the way humans learn

and apply experience to new problems.

Neural networks have demonstrated great predictive and problem-solving ca-

pabilities through their pattern identification, signal processing, self-optimising,

and self-organising tendencies. These characteristics also make neural net-

works ‘black boxes’, where self-correcting weighting factors for nodes and path-

ways transforms input data, making the process intractable and unpredictable.

The process of calculating the weighting factor for paths between nodes is

referred to as the learning law (or learning algorithm) [Ding et al., 2013]. The

learning law relies on the principle of reward and punishment, where weighting

factors are strengthened when the neural network reacts appropriately to an

input (reward). Conversely, the weighting factors are reduced when the output

is an undesirable reflection of the input (punishment). The mathematical

expression for a back-propagation neural network system is defined as;

Yj = f(

n∑
i=1

Ui,nXi − cn) = f(Nn) (29)

Where, X is the input vector of variables, Un is the path connection cost for

neuron n, cj is the threshold to obtain an output, N is the input of neurons

in the system, and f is the transfer function.
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The training data in this study consisted of 40 sets of lane-changing samples,

each with four variables (prior position, velocity, acceleration, and time head-

way). The output is a prediction of the vehicle state in the lane-changing pro-

cess in the next 1s. The training process used was the Levenberg-Marquardt

algorithm, where network weights are iteratively adjusted to minimise output

errors. When using a prediction horizon of 1s, this modelling framework exhib-

ited an RMSE of 0.0184. The RMSE increased to 0.2273 when the prediction

horizon increased to 2s.

Ding et al., demonstrated the effectiveness of using back-propagation neural

networks to predict and model lane changes. However, they also demonstrated

the difficulty and limitations of such an approach. The training data required

to develop the neural network needs to be extensive and complete, which may

be difficult to obtain in many circumstances. Additionally, the neural network

will exhibit the same bias as the training data, whether the bias is intentional

and known or hidden to the modeller. Finally, the neural network will be

adept at handling scenarios which it has seen repeatedly or scenarios that are

similar to what it has previously experienced. But if this modelling approach

is applied to an unfamiliar environment where motorist behaviour deviates

significantly from the training data, the risk of incorrect outputs increases.

Tang et al., Model

Tang et al., developed an adaptive fuzzy neural network model designed to pre-

dict steering angles [Tang et al., 2018]. Fuzzy logic system based models trans-

form qualitative descriptors into quantitative values through probability dis-

tributions. The limitations of fuzzy logic systems include non-comprehensive

rules defining the fuzzy inference, a lack of learning mechanisms to correct er-

rors in the interface, and limited incorporation of factors in the analysis. Tang

et al., corrected these limitations by developing a fuzzy neural network with

adaptive learning abilities. The movement of vehicles is modelled as follows;

x(τs + 1) = x(τs) + v(τs) · τ · cos(θ(τs))

y(τs + 1) = y(τs) + v(τs) · τ · sin(θ(τs))

θ(τs + 1) = θ(τs) + v(τs) · τ · tan(θs(τs)/l)

(30)

Where, θ is the vehicle heading, x and y represent the cartesian coordinates of
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the vehicle, x0 and y0 represent its centroid, θs is the steering angle, v is the

instantaneous velocity, l is the length of the vehicle, τ is the computational

time steps, and τs is the simulation time step.

The modelling framework consists of a fuzzy neural network receiving instan-

taneous kinematic and geolocation data. The framework then interacts with

an adaptive learning algorithm which uses the accuracy of the outputs to up-

date the fuzzy rules and parameters of the membership functions. The fuzzy

rules take the form;

Ri : IF (∆x and is Ai) and (∆y is Bi) and (∆v and is Ci)

and (θ is Di) and (acc is Ei)

THEN yi if fi(∆x,∆y,∆v, θ, acc)

(31)

Where, A,B,C,D,E are the fuzzy sets relating to ∆x, ∆y, relative velocity,

heading angle, and acceleration, respectively. The membership functions are

defined by trapezoids displayed in Equation 32;

m(x) =


x− c1/c2 − c1 c1 ≤ x < c2

1 c2 ≤ x < c3

c4 − x/c4 − c c3 ≤ x < c4

0 x < c1 or c4 < x

(32)

Where, φ is the membership function for different variables, and c1 to c4 are

parameters defining the shape of trapezoids bounding each fuzzy rule.

The learning algorithm uses the least-squares error method to minimise the

RMSE. The algorithm identifies rules that make the greatest contribution to

the output. The most impactful fuzzy sets divide into two, and each is replaced

with a new set of rules, adding 25 rules to the database. The process repeats,

continually updating the membership functions for the fuzzy system.

Ting et al., compared the performance of this adaptive fuzzy neural network

approach with other approaches such as neural networks, support vector ma-

chine, hidden Markov models, and multivariable linear regression. For vehicles

driving at 60 km/hr, the adaptive fuzzy neural network approach showed im-

provements up to 59% compared to the other methods. Similar improvements

were seen when speed increased to 80 km/hr and 100 km/hr.
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Hou, et al. Model

Hou et al., developed a lane-changing model that leverages Bayes classifiers

and decisions-trees to model lane-changing decision-making [Hou et al., 2013].

Bayes classifiers are an extension of Bayes theory of conditional probability

where the classifiers predict the likelihood that a specific outcome, record,

or data point, belongs to a particular membership class. The equation for

calculating the conditional probability is given as;

P (yi|X) =
p(X|yi)P (yi)

p(X)
(33)

Where, X is the input vector, P (·) is the conditional probability and p(·) is the

probability density function. If y1 and y2 represent the merge and no merge

classes, and if for example P (y1|x) > P (y2|x), then x is classified to y1.

The risk of misclassification is reduced by using a penalty term (λki). This

penalty term changes the Bayes classification rule to;

x belongs to yi if l12 =
p(x|y1)

p(x|y2)
> (<)

p(y2)λ21

p(y1)λ12
(34)

Hou et al., used the k nearest neighbour method to estimate the class-conditional

probability density functions. This method does not force an assumption re-

garding the distributional form, unlike the maximum likelihood method. The

Bayes classifiers were then combined with a decision-tree model. At each node

in the tree, the models determine if xi ≥ a, where a is a threshold value. The

size of the tree plays a key role in the effectiveness of this method, where a

small tree greatly increases the likelihood of misclassification, and a large tree

overfits the model to the specific training dataset.

The Bayes classifiers used were ∆vlead and ∆vlag (the speed difference be-

tween the ego and lead vehicle, and ego and lag vehicle, respectively), ∆xlead

and ∆xlag (the distance to the lead vehicle and lag vehicle, respectively), and

∆xlane (the distance to the end of the merging lane). This method demon-

strated an accuracy of 92.3% for merging events and 79.5% for non-merging

events. When using the method of decision trees, the accuracy reduced to

80.8% for the merging events and increased to 84.3% for the non-merging

events. The two methods were combined, using a “majority voting” rule, re-

sulting in a merging accuracy of 79.3% and a non-merging accuracy of 94.3%.
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For safety reasons, it is more important to accurately identify a non-merge

event than it is to identify a merge event. Misclassifying a merge event as

a non-merge event results in a missed opportunity for the vehicle and the

repercussions are minor. Hou et al., demonstrated that by adjusting the mis-

classification penalty parameters, the accuracy of non-merge events increases,

but with a trade-off of reduced accuracy for merging events.

3.3 Gap-Acceptance Algorithms

Gap-acceptance models evaluate the gap in the target lane and determine its

appropriateness for lane-changing. They may either exist as standalone models

or in conjunction with their lane-changing model counterparts. While the lane-

changing model identifies whether or not a vehicle should change lanes, the

gap-acceptance model identifies whether the target gap is appropriate. For this

reason, many gap acceptance models focus on stream stability and platooning.

Violating the buffer space of lead and following vehicles in the target lane

(imprudent lane change) is not only dangerous for the lane-changing vehicle,

but can lead to erratic and sudden reactions by vehicles in the target lane.

TSS Gap-Acceptance Model

The Gipps gap-acceptance model, as modified by TSS for implementation in

the Aimsun microsimulator, calculates the minimum critical gap between the

preceding and following vehicle [Transport Simulation Systems, 2014]. If a gap

falls below the critical minimum gap, then it is rejected, and the vehicle awaits

an acceptable gap to surface in the target lane traffic stream. The minimum

upstream gap is calculated using Equation 35;

gapup(t) ≥max(0,
vlc(t)

2

2dlc
+ 0.5vup(t)τup + max(0,−vup(t)

2

2dup

+ aup(1− 0.5aup)dupτ
2
up + (1− aup)vup(t)τup))

(35)

Where, gapup(t) is the minimum upstream gap, vlc is the ego vehicle velocity,

dlc is the ego vehicle deceleration, vup(t) is the upstream vehicle velocity during

time t, τup is the upstream vehicle reaction time, and aup and dup are the

upstream vehicle acceleration and deceleration, respectively.

The minimum downstream gap is found using Equation 36;
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gapdw(t) ≥max(0,
vdw(t)2

2ddw
+ 0.5vlc(t)τlc + max(0,−vlc(t)

2

2dlc

+ adw(1− 0.5adw)dlcτ
2
lc + (1− adw)vlc(t)τlc))

(36)

Where, gapdw(t) is the minimum downstream gap, vlc and dlc is the velocity

and deceleration of the current vehicle respectively, and vdw(t), τlc, adw and

ddw is the velocity during time t, reaction time, acceleration, and deceleration

of the downstream vehicle, respectively.

The Gipps gap-acceptance model provides practical ranges to characterise a

safe gap. However, conceptually, the model is difficult to reconcile with the way

that human drivers evaluate a gap. The model indefinitely considers the kine-

matics of target lane vehicles on gap acceptability, regardless of the distance

between the vehicles. Additionally, the Gipps gap-acceptance model assumes

that a rejected gap will not later become acceptable, despite increasing driver

urgency with progressing time.

Lee Model

Vehicle reaction time plays a critical role in gap-acceptance models and has two

effects on the traffic stream. The first is that it causes the wave-like reaction

lag often observed when vehicles embark from a standstill. The reaction time

forces each following vehicle to experience a slight delay before it accelerates,

increasing the gap between itself and the preceding vehicle. The reaction time

also has safety implications, as it forces larger gaps in high-velocity scenarios.

Lee models the minimum gap as a random variable using a log-normal distri-

bution (Equation 37) [Lee, 2006]. The log-normal ensures that the calculated

gaps are always non-negative, as follows;

ln(gapi,cr) = βiXi + rnα
i + εi i ∈ (lead, lag) & (right, left) (37)

Where, gapi,cr is the critical gap in the direction of lane change i, βi and Xi

is the vector of parameters and explanatory variables respectively, rn is the

parameter for the driver-specific random term αi, and εi is a random term

where εi ∼ N (0, σ2
g).
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For the gap to be appropriate, the driver must accept both the lead gap and

the lag gap. The following equation gives the probability of changing lanes;

P (change in direction i, rn) = P (l = i, rn)

= P (accept lead gap|i, rn)× P (accept lag gap|i, rn)

= P (gaplead i > gaplead i,cr|i, rn)× P (gaplag i > gaplag i,cr|i, rn)

(38)

Where, i is the chosen target lane, gaplead d and gaplag d are the available lead

and lag gaps in the direction of i respectively, l is the lane-changing action,

and rn is the parameter for the driver-specific random term.

Assuming that critical gaps follow the log-normal distribution, the probability

that a gap will be acceptable is given by;

P (gaplead i > gaplead i,cr|i, rn) = P (ln(gaplead i) > ln(gaplead i,cr|i, rn))

= φ(
ln(gapi)− βiXi − rnαi

σi
)

(39)

Where, φ[·] is the cumulative standard-normal distribution.

The computation of the critical minimum gap value isn’t particularly pertinent

to modelling the interactions between CAVs. An ideal model for calculating

critical gap values would focus on the psychological implication of small gaps

on the driver, or the efficiency of the traffic stream. Focusing on collision avoid-

ance may play a reduced role as near-instantaneous access to vast amounts of

data could render collisions unlikely.

Farah et al., Model

Farah et al., used synthetic data generated from a driving simulator and data

from a stated preference survey to develop a detailed critical gap-acceptance

model [Farah et al., 2009]. The questionnaire consisted of two parts, with

the first part collecting socioeconomic data about the participants. This data

included age, gender, marital status, education, income, and previous car ac-

cidents. The second part consisted of a 44-question assessment of questions

grouped into four categories, where respondents were able to select a score
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on a six-point scale. The categories included recklessness and carelessness,

anxiousness while driving, anger and hostility, and patience and carefulness.

The participants drove four different uninterrupted rural highway scenarios,

each with a length of approximately 7.5km. The simulator collected vital

information in 0.1s increments, information including longitudinal and lateral

position, speed and acceleration of the subject vehicle and all other vehicles

in the scenario, times and location of passing manoeuvres, distances between

vehicles, and relative speeds. The data collected from the experiment was used

to develop a gap-acceptance model. The model has a binary outcome where

drivers either accept or reject a gap, by comparing it to an unobserved critical

gap. This model is given in Equation 40;

Xn,t =

{
1 if gapn,i ≥ gapcrn,i
0 if gapn,i < gapcrn,i

(40)

Where, i is a unique gap identifier, Xn,i is the choice variable for driver n,

gapn,i is the available gap, and gapcrn,i is the critical gap value.

The critical gap is defined as the point where a driver is indifferent to accepting

or rejecting a gap. Since this value is not directly observable, it was modelled

as a random variable given by the following equation;

gapcrn,i = Xn,i · β + εn,i (41)

Where, Xn,i is the vector of explanatory variables, β is the vector of associated

parameters, and εn,i is a random error term following the logit distribution.

The probability of accepting a gap is then determined using a binary logit

choice model, given in Equation 42;

Pn,i(accept gap) =
1

1 + e−µ·(Gn,i−Xn,i·β)
(42)

Where, µ is a scale parameter for the model, which is inversely proportional

to the standard deviation of the critical gap distribution.

Farah et al., tested the performance of five different models. Model 1 included

traffic condition variables, model 2 further added geometric road design, model

3 and model 4 further added driving style scores and socioeconomic character-

istics, respectively, and finally, model 5 contains all of the parameters in model
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1 to 4. Likelihood tests showed that model 4 best fit the gap-acceptance data

observed from the driving simulators. The fitted model 4 is as follows;

gapcrn,i =34.01− 0.30SS + 5.15FG+ 0.42FS − 0.14OS

− 2.35RG− 7.00Age1 − 4.95Age2 − 2.84G

+ 0.23P + 1.05Km− 7.5E − 5CD

(43)

Where, the parameters represent various behaviour, geometric, and socioeco-

nomic characteristics. Model 4 has a level of significance of p−value = 0.4645.

Farah et al., successfully demonstrated the influence of socioeconomic vari-

ables and personal driving factors on accepting gaps. While these factors are

strongly representative of human driving, they play a supplementary role in

CAV operation. Either CAVs will operate more predictably, following rigid

logic, in which case these factors are redundant in CAV gap-acceptance. Or,

understanding that these parameters influence human gap-acceptance could

form the basis of CAV gap-acceptance behaviour. The second behavioural de-

sign decision would allow a smoother transition from human drivers to CAVs

and allow their decisions to be more random, distributed, and human-like.

Kim et al., Model

Kim et al., proposed dynamically updating the critical gap parameter in real-

time, making it contingent on the location of the vehicle in the merging lane

[Kim et al., 2008]. This approach differed from other gap-acceptance models

that generally hold the critical gap value constant. The authors conducted a

comprehensive study into the effects of leading and trailing gaps, target lane

density, vehicle location on the target lane, and relative speed, to evaluate the

factors that greatest contributed to motorist gap-acceptance behaviour. Data

was collected on two different merge junctions on a motorway in Seoul, Korea.

For the leading and trailing gap, analysis showed that 15%, 50%, and 85% of

drivers accepted a leading gap of 0.35s, 0.8s, and 1.9s, and a trailing gap of

0.6s, 1.4s, and 3.3s, respectively. The small range in variability showed that

difference in gap-acceptance between drivers was 0.3s. The authors concluded

that small variances did not warrant treating lead and lag gaps as variable.
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Impact of traffic density in the target lane on motorist gap-acceptance was

assessed by partitioning the data into four density scenarios, ranging from

20veh/km to 50veh/km. In each category, the driver data showed how far into

the acceleration lane a motorist travelled before changing lanes. The results

demonstrated that the location distribution of the lane changes appreciably

varied with lane density in the target lane, with drivers often accepting a gap

at the start of the merging section in low traffic density.

The chi-square (χ2) statistical test was performed to determine whether vehicle

location on the acceleration lane affected motorist gap-acceptance. The test

evaluated whether distributions of the accepted gap location were comparable,

using a confidence level of 95%. The results showed that the total length of the

acceleration lane, and distance of the motorist to the end of the acceleration

lane, both influenced gap-acceptance behaviour. Finally, Kim et al., found

that drivers accept a gap when relative speed is within ±15km/hr.

Using this information, Kim et al., developed a table which segmented the

acceleration lane into eight sections, and the driving fleet into ten driver types.

The collected data was utilised to calculate the critical minimum gap for each

driver type and each acceleration lane segment. These critical gap values had

the advantage of varying with distance to the end of the acceleration lane,

providing this framework with the advantage of using a dynamic critical gap

distance. The microsimulator checks the vehicle location, then evaluates if the

lead and trailing gap and relative speed are within the thresholds defined for

the current segment, with a positive outcome resulting in an accepted gap.

Evaluation of this gap-acceptance framework demonstrated strong statistical

evidence that the modelled data represented observed data, both for deter-

mining gap-acceptance concerning density on the target lane and concerning

relative speed between vehicles. While statistical significance was established,

the authors did not evaluate the predictive qualities of the modelling frame-

work in a new environment or with different data. Frameworks such as this

risk overfitting calibrated parameters to the measured data and then repro-

ducing the observed data during runtime. If such an occurrence did affect the

modelling results, then the gap-acceptance modelling framework of Kim et al.,

may require substantial calibration to each location in which it is implemented.
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Hwang and Park Model

Hwang and Park used the probit discrete choice model to calculate the likeli-

hood of accepting a gap [Hwang & Park, 2005]. Hwang and Park state that

the use of a utility function in conjunction with the probit discrete choice

model can appropriately reflect human gap-acceptance decision-making. The

mathematical expression of the model is as follows;

Pa = Φ(
Va − Vr

σ
)

Pr = 1− Pa
(44)

Where, Pa and Pr is the probability of accepting or rejecting a gap respectively,

and Φ is the cumulative normal distribution function.

Field data was used to determine the explanatory variables that affect gap-

acceptance and warrant inclusion in the model. The data consisted of vehicle

location, length, velocity, and headway, in 0.5s increments. Initial explanatory

variables consisted of total gap, lead and lag gap, front gap, remaining dis-

tance, subject heavy vehicle (dummy variable), object heavy vehicle (dummy

variable), and velocity difference between the subject, lead, and lag vehicle.

Parameter estimation was conducted on all variables, and those that showed

low statistical significance were iteratively removed. The final model consisted

of seven explanatory variables that affect gap-acceptance; lead and lag gap,

front gap, remaining distance, subject heavy vehicle (dummy variable), and

object heavy vehicle (dummy variable).

The style of modelling and data analytics in this study provides useful in-

sights into the human behavioural component of gap-acceptance. While the

model itself is simplistic, the statistical analysis on factors that influence gap-

acceptance helps inform geometric design and driving policy. It also helps

inform the factors that CAVs must be sensitive to if they are to mimic hu-

man drivers and integrate well in a mixed fleet, or avoid if they are idealised

drivers. As with any other study that is contingent on data collection from

a specific source and the use of curve fitting, this approach must be cautious

of the inclusion of outliers, bias data, or data is not representative of general

network operation.
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Unsignaled Intersection Gap-Acceptance

Amina and Maurya assessed the applicability of gap-acceptance models to

complex unsignaled and uncontrolled intersections [Amin & Maurya, 2015].

These intersections either lack a clear definition of priority movements, or

drivers simply ignore priority and enter the intersection regardless of conven-

tion or oncoming traffic. The authors question the appropriateness of the as-

sumption in many gap-acceptance models, primarily that drivers are rational

and consistent. This assumption implies that gap-acceptance models generally

do not permit a gap to be accepted that is smaller than one they have already

rejected, and it implies that microsimulation agents will repeatedly perform

the same actions when presented with the same situation.

The authors collected data from a four-legged uncontrolled intersection located

in a semi-urban area of Ahmedabad (India). Five video cameras were used

to gather critical information such as vehicle arrival rate/time, accepted and

rejected gap/lag time, speed and type of conflict vehicles, waiting time of minor

street vehicles at stop lines, driver’s age and gender, and vehicle occupancy.

The data was then analysed using several different critical gap calculation

approaches. Their applied approaches that have not been discussed in this

literature review include;

� The Raff method for calculating critical gap states that the critical gap

time is when the frequency of gaps rejected below that time is equal to

the frequency of gaps accepted above that time, when the drivers are

indifferent to accepting a gap [Raff et al., 1950]. This method is similar

to the Greenshield method, which plots the frequency of accepting or

rejecting a gap against the gap size, and the critical gap is that which

shows equal acceptance and rejection [Gattis & Low, 1999].

� The lag method and Harder’s method [Brilon et al., 1999] both use lags

or gap times to calculate the critical gap. These methods observe the size

of the gaps that drivers on the minor approach arm accept, and assumes

that this gap time is an appropriate reflection of the critical gap of the

system. This method is effective in undersaturated traffic environments.

� Ashworth’s method states that if the critical gap time (tc) and follow-

up time (tf ) for vehicles in a system were both normally distributed,
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then the accepted gap time (ta) could be modelled as E(tc) = E(ta) −
qpV ar(ta), where qp is the mainstream flow [Ashworth, 1968].

� Wu’s model presents a probability equilibrium between accepting and

rejecting gaps [Wu, 2006]. The advantage of this approach is that it does

not require the assumption of a probability distribution for observed

gaps, or the assumptions that the observed gaps are an appropriate

reflection of the system.

Using these methods, the authors compared theoretical results with observed

measurements. The theoretical models substantially overpredicted the critical

gap time for an unregulated and unsignaled intersection, with observations

showing that the minor approach forced the mainline approach to slow down

and yield at times. This study demonstrated a clear limitation in many of the

theoretical models presented for calculating gap-acceptance, their reliance on

stringent rules and traditional intersection operation. These models may also

be over-representative of the environments from which they were developed

and calibrated, showing their lack of versatility in new modelling environments.

Pollatschek et al., Model

Pollatschek et al., presented a model that focused on gap-acceptance on sec-

ondary lanes when waiting at an unsignaled intersection, directly addressing

the issue raised by Amina and Maurya [Pollatschek et al., 2002]. The model

balances the risk of accepting small gaps against the disbenefit of not accept-

ing them, achieved by accounting for perceived risk and waiting time. The

authors developed a relationship between the increase in accepting a gap and

the fall of perceived risk, when waiting time increases. The average waiting

time for a gap is calculated as follows;

W (i) = i[etnr/i − (1 +
tnr
i

)] (45)

Where, W (i) is the wait time for an average perceived gap on the mainline i,

and tnr is the gap time above which there is a negligible risk of an accident.

The perceived risk is then calculated as;

r(t) =

{
∞ t ≤ tsa
r′0(t− tsa)−α t > tsa

(46)
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Where, r(t) is the perceived risk, and tsa is the gap time under which an

accident is virtually guaranteed.

Finally, an estimation of the average gap on the mainline is given by;

gapi =
u · gap0 +

∑i
j=1 tj

u+ 1
(47)

Where, gap0 is the priori estimate of the average gap, gapi is the updated

estimate, u is the shape parameter of the gamma distribution function that is

used to estimate the priori state of the traffic, and tj is the rejected gaps.

This approach to gap-acceptance modelling quantifies the risk a motorist per-

ceives, without considering many of the stochastic factors that may affect a

drivers tendency towards taking risky actions. Mood, trip purpose, random

variability, time of day, vehicle occupancy, trip length, familiarity with the

environment, and countless other factors may affect the motorist’s willingness

to accept risks. The authors acknowledged the limitations of taking capac-

ity values from this model and applying them to other geographic regions,

or those that exhibit a different driving behaviour profile. Additionally, CAV

operations would not be affected by many of the factors listed above, and so

risk calculations would be more deterministic.

3.4 Summary and Model Comparison

The literature review contains a myriad of diverse model types, each with their

own advantages and disadvantages. GHR models calculate acceleration as a

proportional response to following distance and velocity difference between

the ego and lead vehicle. While mathematically simple in nature, the major

limitation of these models is continual minute adjustments to acceleration in

response to external stimuli, regardless of the distance between the ego and

lead vehicles, unless a hard-cap is placed on the model. This tendency places

an increasing computational strain on hardware during emulation when the

number of vehicles in the simulation increases. Additionally, such an approach

is not appropriate for CAVs due to the computational and mechanical strain of

repeated minor adjustments to control actuators. Collision avoidance models

generally suffer from the same limitations as GHR models, but they differ in

that acceleration is in response to a safe gap as opposed to a leaders kinematics.
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Psycho-physical models address the limitation of GHR and Collision Avoid-

ance models by using “action points” and thresholds to trigger discrete events

during car-following. The thresholds are calibrated based on observed site-

specific data in varying circumstances such as urban and rural, congested

and free flow, freeway and arterial, or multi-lane and single-lane. The psycho-

physical car following modelling technique is an attractive approach to use with

CAVs, especially when combined with the rule-based lane-changing modelling

approach. The modular nature of psycho-physical and rule-based models al-

lows infinite discretisation and incorporation of modules to allow the model

to react to any number of circumstances. This characteristic makes them

applicable to CAV behaviour, where CAV reactions may change depending

on a vehicle’s future intentions or desire to cooperate. As the features for

CAVs are developed, a psycho-physical and rule-based model would give way

to expansion and easy modification.

Fuzzy-logic, machine learning, and artificial intelligence models are an emerg-

ing and promising field. These models use a data-driven process to calibrate

and train learning algorithms autonomously, converting the modelling process

from a calibration exercise to a data analysis exercise. The limitation of these

models is in their requirement of extensive and diverse quantities of data. The

neural networks that depend on reinforcement leaning must be exposed to the

same circumstances numerous times before the probabilistic pathways reliably

emulate appropriate human decision making. A model calibrated for one envi-

ronment may not be applicable for another due to differing driving behavioural

characteristics, meaning that the difficult data acquisition and calibration pro-

cess must be repeated. The nature and workings of the neural networks are

also hidden from the modeller, meaning that mistakes can not be traced or

manually corrected. Finally, this style of modelling is not appropriate for CAV

emulation in the near-term, where the quantity of data required for calibration

and validation is not available. However, they may form the most appropriate

and reliable form of emulation models in the long-term, when training data is

in abundance.

66



4 Mathematical Models for the Microsimulation Em-

ulation of CAV Behaviour

Growing interest in CAV technology has resulted in increased academic re-

sponse. The literature contains numerous different techniques, models, and

algorithms for the microsimulation emulation of CAV behaviour. Many newly

developed models follow a proactive approach, where understanding vehicle

technology dictates behaviour rather than simply replicating it. The proactive

approach is possible as CAVs follow algorithms in their operations. Although,

the intractable nature of machine learning algorithms and artificial intelligence

may result in CAV behaviour being as stochastic as human driving behaviour,

undermining the proactive approach.

This chapter contains a review of the methods used to model CAV behaviour,

with a more detailed description provided for specific unique and novel ap-

proaches. The chapter is subdivided into four sections, exploring car-following,

lane-changing, gap-acceptance, and automated intersection operation. While

autonomous intersections are only possible in a 100% CAV fleet, exploring

how they are modelled can provide insights into space negotiating techniques

for CAVs during regular network operations.

4.1 Car-Following Models

The car-following models for human vehicles presented in Chapter 3 differ from

those for CAVs primarily in their treatment of kinematic variables. While hu-

man vehicle models assume the kinematics of surrounding vehicles and capture

inherent stochastic behaviour, CAV models rely on the availability of accessible

and correct kinematic information. CAV models use the expected capabilities

of V2X as critical points in their development. V2X allows models to focus on

elements such as information exchange, trust, platooning, and data verifica-

tion, elements that were not necessary for the human variant of car-following

models. The remainder of this section presents in brief detail novel and unique

examples of CAV car-following models.
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AICC Algorithm

Congestion in highway environments is a growing concern in major cities

worldwide. Historically, the highway congestion problem has been addressed

by increasing the capacity through expansion. However, industrialisation and

accelerating urban sprawl renders this solution no longer viable. The AICC

algorithm aims to reduce headways between vehicle and significantly increase

the capacity of all roads, while still maintaining occupant safety and comfort

[Ioannou & Chien, 1993]. Ioannou and Chien developed a car-following algo-

rithm that maintains constant headways and following distances. Equation 48

shows the formulation used to define a safe distance for each vehicle;

∆xdn = ∆xmn + ∆xan (48)

Where, ∆xmn is the minimum distance required to avoid collisions, and ∆xan

is a parameter included to ensure greater safety and comfort.

Equation 49 provides the expression for ∆xmn , which considers the maximum

allowable jerk (Jmax) during acceleration and braking;

∆xmn =
v2
n − v2

n−1

2an−1
+ vn(τ +

an + an−1

Jmax
+

1

an−1
(anτ +

an(an + an−1)
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− 1

2

(an + an−1)2

Jmax
)) + (

1

2
anτ

2 +
an(an + an−1)2

2J2
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− 1

6

(an + an−1)8

J2
max

+
an(an + an−1)
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τ

+
1

2an−1
(anτ +

an(an + an−1)

Jmax
− 1

2

(an + an−1)2

Jmax
)2)

(49)

Where, vn−1 and vn are the velocities of the lead and following vehicles respec-

tively, an−1 and an are the maximum deceleration of the lead and following

vehicles respectively, Jmax is the maximum jerk, τ is the time required to de-

tect the stopping manoeuvre (sensor communication delay for CAVs), and Pn

is the vehicle engine input.

The following system of equations describes the vehicle kinematics;
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d

dt
xn(t) = ẋn(t) = vn(t)

d

dt
ẋn(t) = ẍn(t) = an(t)

d

dt
ẍn(t) = b(ẋn, ẍn) + a(ẋn)Pn(t)

(50)

Where, a(ẋn) and b(ẋn, ẍn) are given by the following equations;

a(ẋn) =
1

mnτn(ẋn)

b(ẋn, ẍn) = −2
kdn
mn

ẋnẍn −
1

τn(ẋn)
(ẍn +

kdn
mn

ẋ2
n +

dmn(ẋn)

mn
)

(51)

Where, xn, vn and an is the position, velocity and acceleration of the nth ve-

hicle respectively, mn is the vehicle mass, τn is the interpretation and reaction

time of human drivers and communication sensor delay for CAVs, kdn is the

aerodynamic drag coefficient, and dmn(ẋn) is the mechanical drag coefficient.

In simulating a highway network, Ioannou and Chien demonstrated that the

“human look ahead model”, “human linear follow-leader model” and “human

optimal control model” resulted in flow rates of 500veh/hr, 1000veh/hr and

2200veh/hr, respectively. Alternatively, the AICC model produced flow rates

of 3500veh/hr, resulting in a 59% capacity increase over the best simulated

human driving models.

Car-following algorithms such as AICC indicate that increasing CPR also in-

creases transportation network capacity without demanding significant addi-

tional infrastructure. Cities could economically cater to increasing demands

without sacrificing land and resources through the creation of more highways

or lanes. The introduction of CAVs in this manner would lead to immediate

economical remediation of the world’s major congestion problems.

Although, Ioannou and Chien did not investigate the performance of the AICC

algorithm in mixed fleets, nor did they investigate the impact of mixed fleets

on highway capacity. While homogeneous behaviour from completely human

and completely CAV fleets may result in stable performance, the challenge is

in understanding how heterogeneous fleets and CAV-human interactions will

affect network and highway performance.

69



Guériau et al., Model

Guériau et al., proposed a multi-anticipative car-following model that im-

proved traffic stability by weighting the past influences from surrounding ve-

hicles [Guériau et al., 2016]. The model is divided into three layers to reli-

ably consider information from the vehicle surroundings and limit disturbances

caused by behavioural decisions. The physical layer governs vehicle dynamics

and car-following behaviour. The communication layer controls information

exchange based on proximity to other vehicles and reliability rules, expressed

as probabilities. Finally, the trust layer models reliability in the information

received and evaluates its trust in the surrounding vehicles.

Human-driven vehicles are emulated using the IDM car-following model, which

gives acceleration as a function of the vehicle’s current velocity, headway, and

relative velocity [Treiber & Kesting, 2013]. The model is as follows;

an = c1(1− (
vn
v0

)c2 − (
xn
x0

)2) (52)

Where, the first term vn/v0 compares the current speed (vn) to the desired

speed (v0), the second term xn/x0 compares the desired spacing (xn) to the

current spacing (x0), and c1 and c2 are calibration terms. The desired spacing

is given by;

xn = x0 +max(0, vn∆t+
v∆v

2
√
a · d

) (53)

Where, xn is the current vehicle gap, x0 is the minimum gap, vn is the current

velocity, ∆t is the time headway, ∆v is the relative velocity, and a and d are

the comfortable acceleration and deceleration rate, respectively.

The bilateral multi-anticipative model provided in Equation 54 emulates CAV

behaviour. Multi-anticipative refer to the nature of this model, as it consid-

ers the bi-directional impact of multiple lead and surrounding vehicles. The

behaviour of the vehicle is then a response to the kinematic requirements im-

posed by each vehicle. Such an approach appreciably improves flow stability

[Monteil et al., 2014]. The model is as follows;

an = fIDM (vn,
∑
j

Unj∆xn+j ,
∑
j

Unj∆vn+j) (54)
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Where, fIDM is the IDM function presented in Equation 52, and Unj is the in-

teraction coefficient that represents the weighting on the information between

agent n and j (an indication of trust between the two vehicles).

While evaluating this framework, certain vehicles were fitted with “faulty”

sensors that provided higher errors of up to 50% in speed and headway. Trust

is computed based on a weighted average of the past 6,000 interaction results

between the vehicle and other agents. Guériau et al., address cooperation

uncertainties in average lane speeds and stability by changing CPR and main-

taining consistent CAV behaviour.

Without CAVs in the network, their microsimulation modelling indicated that

vehicles on the merge lane slowed to a complete halt as they waited for appro-

priate gaps in the mainline to arise. However, with 50% CAVs in the network,

both the merging vehicles and the mainline maintain near free flow speeds.

The centralised roadside unit implementing the control protocol homogenised

the speed and headway among the onramp and the mainline lanes, leading to

improved throughput, traffic flow, and traffic stability.

While it is valuable to understand how changing CPR effects networks, static

behaviour between scenarios may not be an appropriate assumption. CAVs

can alter behaviour in response to technological advancement, implementa-

tion policy changes, and increasing fleet integration. This ability to change

behaviour means that it may be valuable to vary the degree to which a CAV

operates as a CAV in the network, meaning that CAV behaviour would be-

come more distinct as their penetration rate increased. Such an approach

would smoothen the transition between driving styles in mixed fleets, without

an abrupt introduction of a vehicle type with a stark difference in behaviour.

Jia and Ngoduy Model

Jia and Ngoduy developed a platooning-based cooperative driving model, with

specific consideration of inter-vehicle communication [Jia & Ngoduy, 2016].

This work expanded traditional car-following models, which are generally a

function of vehicle speed, headway, and speed of the lead vehicle. Jia and

Ngoduy refined CAV behaviour using the capabilities and limitations of the
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IEEE 802.11p networking standard, and the following assumptions;

� Platoons exhibit smaller intra-vehicle, and larger inter-vehicle, spacing.

� All vehicles are assumed to be identical.

� Vehicle speed and position is measured precisely.

� Each vehicle has a fixed transmission range and a frequency of 10Hz.

The general equation for the car-following acceleration model is;

an(t) =f(vn(t),Γ1(∆xn(t)),Γ2(∆vn(t)), ...

Where, n ∈ N1(t) for Γ1, n ∈ N2(t) for Γ2, ...)
(55)

Where, an(t), vn(t), and ∆xn(t) is the acceleration, velocity, and distance

headway for vehicle n at time t. N1, N2 are time dependant topologies which

consist of a varying number of vehicles depending on the surroundings of

the ego vehicle. Γ1,Γ2 represent the corresponding control algorithm for the

parameters over which they act. This model is expandable to include any

number of variables that may affect CAV operation.

The state of the platoon leader takes the average of the vehicle states in the

preceding platoon. The following vehicles then attain the state of the platoon

leader. The consensus algorithm provides this state and is given by;

ui,k(t) =
N∑
j=1

aij{

γ1[xj,k(t− τj)− xi,k(t) + biv0(t− τ0(t))τj

+ (1− bi)v0,k(t− τ̂0)τj − (i− j) · s]

+ γ2[vj,k(t− τj)− vi,k(t)]}

+ βbi{γ1[x0,k(t− τ0(t))− xi,k(t) + v0,k(t− τ0)τ0(t)− i · s]

+ γ2[v0,k(t− τ0(t))− vi,k(t)]}

+ β(1− bi){γ1[x0,k(t− τ̂0(t))− v0,k(t− τ̂0)(τ̂0 − τ0)− xi,k(t)− i · s]

+ γ2[v0,k(t− τ̂0(t))− vi,k(t)]}

(56)

Where, aij is the (i, j)th entry in the adjacency matrix, β, γ1 and γ2 are control

parameters, x0,k(t − τ̂0) and v0,k(t − τ̂0) is the previous known location and

72



velocity of the platoon leader respectively (used in the case of lost or corrupted

communication), τj is the delays to vehicles, and bi is an indicator of whether

the platoon data is reaching all members of the platoon.

From Equation 56, the first and second expressions represent the estimated

position and velocity error between vehicle i and j, respectively. The third

and fourth expressions represent the error in position and velocity received

from the leader, respectively if the communication is received. Finally, the

fifth and sixth expressions are the same as the third and fourth, but instead

apply to the last successful communication received by the vehicle.

Jia and Ngoduy’s model provides a novel means of emulating platoon be-

haviour and the effect of intra- and inter-vehicle communication. This mod-

elling framework may be beneficial in verifying the technology that will form

the backbone of the future mobility landscape. However, using such a proto-

col for microsimulation purposes may not be appropriate as this work focuses

on the communication process, as opposed to the behavioural outcomes and

implications of vehicle communication.

Talebpour and Mahmassani Model

Talebpour and Mahmassani developed a set of mathematical models to ad-

dress the limitations of existing models in a mixed fleet setting [Talebpour

& Mahmassani, 2016]. Their study uses three major models to emulate ve-

hicles with no communication capabilities, vehicle-to-vehicle communication,

and CAV communication. The models are as follows;

� Vehicles with no communication capability: A model developed by Ham-

dar et al., [Hamdar et al., 2008] and extended by Talebpour et al.,

[Talebpour et al., 2011] is used for this situation. The model is based on

collision avoidance due to its high weighting on driver decision making.

� Vehicle-to-vehicle communication: The IDM [Kesting et al., 2010] em-

ulates communication between vehicles, notifying vehicles of the down-

stream driving environment, including weather and road conditions.

� CAVs: Models to describe CAV operation are based on the assumptions

that a CAV may only travel fast enough to still come to a complete stop
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within its sensing distance. The CAV maintains a headway and velocity

sufficient to facilitate coming to a complete standstill should the leader

chose to decelerate at its maximum rate.

To maintain safety, the maximum velocity of a CAV is given by;

vmax =
√
−2adeccn ∆x (57)

Where, vmax is the maximum velocity, and adeccn is the maximum deceleration

for the vehicle. ∆x = min[sensor detection range,∆xn]. ∆xn is the headway

between the vehicle and its leader, and is given by;

∆xn = (xn−1 − xn − ln−1) + vnτ +
v2
n−1

2adeccn−1

(58)

Where, xn−1 and xn are the position of the lead and ego vehicle, ln−1 is the

length of the lead vehicle, and τ is the reaction time of the ego vehicle.

This safety constraint and the acceleration of the vehicle is given by a model

developed by Van Arem et al., as follows [Van Arem et al., 2006];

adn(t) = caan−1(t−τ)+cv(vn−1(t−τ)−vn(t−τ))+cx(∆xn(t−τ)−∆xmin) (59)

Where, adn(t) is the deceleration rate of vehicle n at time t, ∆xn is the headway

between the vehicle and its leader, ∆xmin is the minimum allowed headway,

and ca, cv and cx are calibration parameters that alter the influence of the

lead vehicle on the following vehicle.

These modelling approaches provide a robust solution to emulating CAV be-

haviour in a microsimulation network setting; however, they do not make

special consideration for lateral communication and inter-vehicle cooperation.

These models are effective at emulating platooning behaviour, and their frame-

work comprehensively covers mixed fleets and vehicles with limited communi-

cation capabilities. However, the rigidity of the framework makes it difficult

to fine-tune and modify intricate details, which would aid its integration with

a microsimulator. Additionally, lateral communication and active cooperation

during network operations are not considered.
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4.2 Lane-Changing Models

The human-oriented lane-changing models differ from models for CAVs in

that CAV models often place a greater focus on system utility. Human lane-

changing models reflect the utilitarian and selfish actions of human drivers, and

do not aim to create situations of local optimum performance. Instead, they

focus on modelling the needs of the individual. CAV lane-changing models

place a greater influence on quantifying the impacts of the actions of one

vehicle on the localised system. They tend to design actions in a way that

either requires cooperation from surrounding vehicles, or changes behaviour

based on the impact of actions on surrounding vehicles. Outlined in this

section are a range of novel and unique lane-changing frameworks for CAVs.

Antoniotti et al., Model

Antoniotti et al., presented a merge control protocol for the emulation of CAVs

at highway merge junctions [Antoniotti et al., 1997]. The controller dictating

vehicle operations aims to meet the following hierarchical objectives;

� There must be no accidents.

� All vehicles must merge.

� Traffic must remain as smooth as possible.

The first condition monitors the gap between vehicles, ensuring that vehicles

trajectories do not overlap. The second condition forces vehicles in the main-

line to yield to merging vehicles, forcing “niceness” in the CAV operation.

The control protocol is programmed in the SHIFT language, with a vehicle

deceleration between -0.5g and 0.1g. The controller maintains a specific time

headway between vehicles, so the acceleration is calculated as follows;

an = c1 × (∆tn/∆t− 1) + c2 × (vn − vn−1) (60)

Where, c1 is the headway calibration parameter (set at 7), ∆tn/∆t is the ratio

of the actual to desired time headway, vn is the velocity of vehicle n, and c2

is the speed calibration parameter (set at 0.5).

The vehicle starts in the “Enter Merge Lane” state, where it attains an initial

speed of 22m/s. It then moves to the “Align to Gap” state after 240m,
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where the vehicle adjusts its velocity to the mainline. This state sets vehicle

acceleration to the minimum value imposed by the headway to its current

leader and the lead vehicle in the target lane. The vehicle then enters the

“Merge State”, where the lag vehicle in the target lane reduces its relative

velocity to less than 4m/s, and the vehicle changes lanes once the appropriate

gap has been created. Once the lane-changing manoeuvre is completed, the

vehicle rests in the “Cruise” state.

This lane-changing protocol was evaluated by implementing it on a 10km high-

way environment with three entry ramps, tested under two demand scenarios

(low demand and high demand). Under the low demand scenario, the control

protocol safely and efficiently controlled vehicle operation. The speed of ve-

hicles did not exceed the limit of 28m/s, nor did they drop below 24.5m/s.

However, the high demand case highlighted the limitation of this modelling

approach. The simplistic hard limits set on acceleration caused successive

vehicles to reach their maximum deceleration rate without having appropri-

ately adjusted their kinematics in retaliation to the preceding vehicle. This

occurrence resulted in collisions under saturated conditions.

While this protocol is simple and effective in low demand scenarios, it is un-

scalable to higher demands. However, their results indicate that the use of

CAVs could reduce the congestion on highways, to the point of complete miti-

gation. This algorithm would also mean that ramp metering techniques would

no longer be required to maintain flows into merging junctions, which currently

operate as congestion control mechanisms for many onramp arrangements.

Liu et al., Model

Liu et al., developed a means of predicting vehicle trajectory during lane-

changing using a hidden Markov model [Liu et al., 2014]. Their work improved

the early detection of accidents and warning systems for drivers. Though

the framework was not explicitly developed for use in microsimulation, no

part of the framework precludes its implementation in microsimulation. The

framework segregates the trajectory of the vehicle into three segments; the

beginning stage, the cutting in stage, and the ending stage.
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The beginning stage observes the behaviour of the vehicle and classifies it as

either “dangerous” or “normal”. A stochastic process using a hidden Markov

model classifies the vehicle by considering the historical states of the vehicle.

The hidden Markov model (λ) is expressed as;

λ = {N,M,Pπ, P, e} (61)

Where, N is the series of discrete hidden states, P is the probability of tran-

sitioning from one state to another, Pπ is the initial probability of each state

when the systems begin before reaching the observation interval, and e is the

likelihood of a vehicle in a specific state emitting a particular observation.

The hidden Markov model uses prior observations and the forward algorithm

to determine the probability of observing a particular outcome, given the

behaviour it has already observed. The forward algorithm is initialised using

the initial state distribution (π). The probability of subsequent observations

is then calculated using Equation 62;

aj(k) = ej(xk)
N∑
i=1

ai(k − 1)Tij (62)

Where, aj(k) is the probability of observing the subsequent observation k,

ej(xk) is the probability of observing the current observation xk, and Tij is

the likelihood of transitioning between states at time k. The likelihood of

observing the sequence of events x is given by,

P (x|λ) =
N∑
i=1

ai(K) (63)

Where, K is the set of observations.

Liu et al., trained the algorithm using the SHRP2 sample dataset and the 100

Car near-crash dataset. The authors found that the trained model correctly

predicted the trajectory of “normal” and “aggressive” drivers 92.5% and 80.0%

of the time, respectively. While the use of a hidden Markov model and the

forward algorithm for trajectory prediction showed strong results, the innate

data requirements of such a framework were not discussed.

The authors successfully demonstrated that driver behaviour affects lane-
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changing trajectories, meaning that a CAV operating under such a prediction

framework would require training under a vast array of conditions. The ve-

hicles would need to witness driver behaviour pertaining to different driving

conditions such as network geometry, congestion, weather effects, and time of

day, and also consider different behavioural types in response to each of these

stimuli. The framework is adept at forecasting trajectories, but the authors

do not discuss the data required and the risk of over-training the algorithm.

Ho et al., Model

Ho et al., used the bicycle model for vehicle guidance during lane-changing [Ho

et al., 2009]. The proposed algorithm generates a virtual curve that connects

the current lane with the target lane. Their framework begins with passing

the vehicle angle, data from the lane-keeping controller, and the virtual curve,

to the bicycle model. The bicycle model then estimates the vehicles lateral po-

sition and returns the value to the controller. The controller uses the returned

values to adjust the vehicle relative to its expected trajectory.

The bicycle model simplifies vehicle representation by combining the wheels on

each axel into a single wheel. Displacement sensors placed in front and behind

the vehicle centre of gravity maintain lateral displacement. The state-space

model describing the lateral dynamics of the vehicle with respect to steering

angle and road curvature is given in Equation 64 [Ackermann, 2012];

d

dt


yf

ẏf

yr

ẏr

 =


0 1 0 0

a21 a22 −a21 a24

0 0 0 1

a41 a42 −a41 a44



yf

ẏf

yr

ẏr

+


0 0

b21 b22

0 b32

b41 b22


[

σf

ρref

]
(64)

Where, σf is the steering angle, ρref is the reference road curvature, aij and

bij are vehicle parameters, and yf and yr is the lateral displacement between

the front and rear sensor to the reference lane, respectively.

The reference road curvature is given by;

ρref =
d2y
dx2√

1 + ( dydx)2
(65)
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Where, y is the lateral position, and x is the longitudinal position.

The lateral position is given by;

y(x) = Lw × (10(
x

∆x
)3 − 15(

x

∆x
)4 + 6(

x

∆x
)5) (66)

Where, Lw is the lane width, ∆x is the desired longitudinal distance.

The desired longitudinal distance is given by;

d = v

√
Lw
amax

× (60(
xm
∆x

)− 180(
xm
∆x

)2 + 120(
xm
∆x

)3) (67)

Where, v is the velocity of the vehicle, amax is the maximum vehicle accelera-

tion, and xm is the point of maximum curvature along the vehicle trajectory.

Ho et al., evaluated the control algorithm through simulation and experimenta-

tion by developing a miniature autonomous vehicle. The authors demonstrated

that simulation provides reasonably close results to physical experimentation.

This finding is significant as the authors developed a single control protocol

that could be applied in both real-world CAV operation and within simulation.

A coherent control protocol between simulation and implementation renders

the development of heuristics, simplifications, and approximations unnecessary

for emulating CAV behaviour. While this study is computationally simple and

tailored to an environment with limited markings and vehicle connectivity, it

assumes vehicles operate individually and do not leverage CAV communica-

tions capabilities, especially in cooperative lane-changing environments.

Nie et al., Model

Nie et al., proposed a decentralised framework for lane-changing decision-

making that used incentive-based modelling to predict the future decisions

and states of vehicles [Nie et al., 2016]. The framework is subdivided into

three modules, prediction, decision-making, and decision-coordination. The

prediction module uses instantaneous vehicle kinematic information in a co-

operative car-following model to predict the following state of all vehicles.

The prediction is then forwarded to the decision-making module, which forms

a decision that is optimally beneficial for the vehicle. Finally, the decision is
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broadcast to the surrounding vehicles via the coordination module, leading to

a final coordinated action.

The prediction model is as follows;

an = − 1

ct
vn + V (

m∑
i=0

cr∆xn+i) +W (
m∑
i0

cu∆vn+i)

V (
m∑
i=0

cr∆xn+i) =
1

ct
vmax(tanh(cs

m∑
i=0

cr∆xn+i)

+ tanh(cs(
m∑
i=0

cr∆xn+i −∆xs)))

W (

m∑
i0

cu∆vn+i) = cv

m∑
i=0

cu∆vn+i

(68)

Where, an and vn is the acceleration and velocity of vehicle n, ∆vn+i and

∆xn+i is the relative velocity and relative spacing of the vehicle to its leader,

cr and cu are interaction coefficients between the vehicle and its leader, ct is a

relaxation term as velocity approaches the maximum limit, cs is a smoothing

coefficient, cv is the sensitivity to relative velocity, and ∆xs is the safe headway

between vehicles.

The decision-making module evaluates whether the utility gained from a lane

change is greater than the utility of keeping the current lane. The equation

underpinning the module is given by;

U(sc, C, T ) = (āsv − asv)+p(min(āt − at | t ∈ NT ))+

q(max(āc − ac | n ∈ Nc)), T ∈ {L,R}

Ns = {j ∈ Vs : 0 ≤ ‖xsv−xj‖≤ L}, S = C or T

TS = arg maxT∈{L,R}U(sv, C, T )

Subject to U(sv, C, T ) > ∆ath

(69)

Where, sv, C, and T is the subject vehicle, current lane, and target lane

respectively, L and R represents left and right direction target lane, U is the

overall advantage of changing lanes, NC and NT are the sets of following

vehicles in the current and target lane respectively, ā is the acceleration of the
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vehicle should a lane change occur, Vs is the set of all vehicles in the target

lane, and ath is the switching threshold.

Nie et al., conducted simulations using this framework on two separate mo-

torway environments, the first containing an onramp, and the second without

the onramp. The environments have a flow of 600veh/hr across two lanes,

well below saturated conditions. Simulations with a duration of 300s showed

that the proposed method improves platoon stability and prevents the forma-

tion of stop-and-go driving conditions from uncooperative and imprudent lane

changes. The benefits of homogenising the driving fleet are also seen in im-

proved traffic flow stability. The framework decreases the lane-changing time

of the vehicle to half and improves the spatial distribution of lane changes,

rather than having them concentrated at a single location.

4.3 Gap-Keeping Models

Gap-acceptance models are generally part of the cooperative lane-changing

or car-following models for CAVs. As shown in Section 4.1 and Section 4.2,

microsimulation models for CAVs use V2V and V2I as an integral part of be-

havioural emulation. For this reason, the notion of gap-acceptance becomes

somewhat antiquated, as vehicle cooperation forces the creation of appropri-

ate gaps. Instead, this section presents the gap-keeping models designed to

maintain inter- and intra-vehicle platoon spacing. Studies of this nature are

sparse, as they have been addressed in detail under the car-following and lane-

changing sections of the literature review.

Naranjo et al., Model

Naranjo et al., developed an ACC model using fuzzy logic to maintain the gap

between a vehicle and its leader [Naranjo et al., 2003]. Using the ACC and

fuzzy logic algorithm, the authors generated vehicle reaction information and

forwarded it to the vehicle hardware. The control and gap-keeping algorithm

were implemented in a mass-produced vehicle to investigate its performance.

While the algorithm was not explicitly designed for use in microsimulation,

its algorithmic nature makes it readily adaptable.

ACC is restricted in its applicability, showing reliable performance in a narrow
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bandwidth of speeds. To address this limitation, the authors used fuzzy logic

to reinforce the ACC algorithm. The algorithm starts by using the Center of

Mass method, which takes a weighted average of the inputs to generate an

output. So;

xout =

∑
i Uixi∑
i Ui

(70)

Where, xi is the value of rule i, Ui is the weighting of rule i, and xout is the

output variable.

The vehicle speed error and acceleration estimate are passed to the fuzzy

controller. Speed error is defined as the difference between the current speed

and the desired speed, and acceleration is the change in speed for the lowest

time interval possible by the computer clock. The algorithm produces the

accelerator pedal pressure needed to reach the appropriate velocity in response

to the vehicles current speed and headway. The membership functions define

a “null” point and then use ORBIX, a language that allows fuzzy logic rules

to be written in natural language. ORBIX allows the membership function

to contain three categories, the null point, less than the null point, and more

than the null point. This structure results in the following four rules controlling

vehicle motion;

� IF speed error MORE THAN null THEN accelerate up

� IF speed error LESS THAN null THEN accelerate down

� IF acceleration MORE THAN null THEN accelerate up

� IF acceleration LESS THAN null THEN accelerate down

The algorithm was implemented in a commercial vehicle on a closed road

system with a speed limit of 80km/hr. The equipped vehicle followed a human

driver. During experimentation, the CAV reached a minimum gap of 0.06s and

a minimum distance of 1.86m. The speed-time diagram of the CAV mimicked

the human vehicle while remaining partially time-shifted. The probabilistic

fuzzy-logic means of controlling gap raises questions regarding safety as ACC

already shows safety concerns when operating under 30km/hr. The authors

showed acceptable performance using fuzzy-logic in low-velocity environments,

but the probabilistic nature of the framework could potentially cause issues in

congested stop-start conditions.
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Bang and Ahn Model

Bang and Ahn proposed a rule-based platoon movement model based on swarm

intelligence [Bang & Ahn, 2017]. Swarm intelligence describes the aggregated

movement of individual agents such as the flocking of birds or the schooling of

fish. Swarm intelligence models are defined by three key regions, the repulsion

zone, the alignment zone, and the attraction zone. The repulsion zone imme-

diately surrounds the agent and precludes other agents from residing within it,

acting as a means of maintaining safety. The alignment zone is where vehicles

aim to reconcile their kinematic behaviour and follow the unified movement.

Within the attraction zone, agents attempt to minimise the spacing between

themselves and move closer together, towards the swarm centroid.

Bang and Ahn used the mechanics of a spring and damper system to model

the three zones of the swarm intelligence model. The natural attraction and

repulsion caused by the extension and contraction of spring systems represent

vehicle motion in the attraction and repulsion zone. The damping system mod-

els the alignment zone. The specificities of the spring damper car-following

system have already been discussed in Section 4.1, and so only the CAV pla-

tooning concept using swarm intelligence is provided here.

The reaction of the swarm is akin to the reaction of gas particles placed under

pressure. While the spring constant and traffic density are low, the vehicles

are spatially spread and occupy the corridor. Increasing the vehicle density

is mimicked by increasing the spring constant, resulting in the vehicles trav-

elling closer to one another and providing stronger influence on each other’s

behaviour. As the flow and density increases, the vehicles continue to form

larger and tighter platoons. Bang and Ahn set the spring constant directly

proportional to flow, using a maximum, quadratic, or cubic function. This

characteristic allows the platoon to adaptively change its behaviour in re-

sponse to the number of members in the platoon.

To evaluate the framework, the authors implemented it in a motorway section

with an onramp. Five different demand scenarios were assessed, ranging from

500veh/hr to 2500veh/hr. As the congestion in the environment increased,

the time needed for the vehicles to cluster and form a platoon decreased. From
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the 500veh/hr to 2500veh/hr case, the clustering time fell from 572s to 61s.

The authors, however, do not report any network metrics to indicate what

impact platoon clustering has on network performance.

Swarm intelligence forces vehicle to cluster by attracting them to the clus-

ter centroid. While vehicles further back of the platoon are pulled forwards

towards the centroid, the vehicles leading the platoon are pulled back. This

behaviour raises two critical concerns. The first, is it necessary to draw back

leading vehicles in an attempt to join a platoon? Aggregating vehicles in the

network is a benefit as it homogenises vehicles behaviour and reduces stochas-

tic movement. However, the benefit must be weighed against the disbenefit of

pulling back lead vehicles. The second concern is that forcing the formation of

platoons by proactively altering vehicle kinematics unnecessarily reduces the

number and size of gaps in the network, which may inadvertently reduce net-

work performance in high lane-changing scenarios. Most frameworks advocate

for the formation of platoons. However, they do so in a natural way without

forcing their formation. Without providing network performance metrics, it

is difficult to comment on the benefit of using swarm intelligence.

4.4 Autonomous Intersection Models

Many intersections are designed with a cycle time of 120s to 140s, with phase

times of as little as 35s. If a vehicle arrives during the commencement of the

stop phase, it can experience a delay up to 100s. The use of CAVs, centralised

control intersections, and V2I communication is hypothesised to significantly

reduce delay time, frequency of stops, and vehicle emissions at intersections

([Kamal et al., 2013], [Qian et al., 2015] and [Makarem et al., 2012]). An

unsignaled intersection is generally proposed as operating on a priority basis,

with certain vehicles being given right of way through the intersection. The

resulting vehicles adjust their trajectories to accommodate for the priority

vehicles. The intersection remains as the centralised source of instructions

and information, dictating the movement of each vehicle through it.

Many automated intersection designs depend on a 100% fleet penetration of

CAVs. While approaches such as this still provide valuable insights into unique

CAV control and cooperation protocols, their real-world applications are lim-

ited in the short-term. The autonomous intersection control protocols that
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focus on mixed fleet operations provide more realistic real-world short-term

intersection impacts of CAV behaviour. Especially those frameworks that in-

crease the degree of complexity by including other agents such as cyclists and

pedestrians. The literature review in this section provides in brief detail the

unique and novel solutions to automated intersection operation.

Makarem et al., Model

Makarem et al., modelled the autonomous intersection using second-order dy-

namics and gradient-descent optimised navigation functions. The motion of

each vehicle is modelled using Equation 71. Using second-order dynamics

increases simulation realism taking into account inertial, acceleration, and de-

celeration forces. The model is as follow;

ai =
1

mi
ki (71)

Where, ai is the vehicle acceleration, ki is the control input, and mi is the

vehicle mass.

The motion function then feeds into the navigation function, which dictates

the direction of the vehicle. The navigation function, shown in Equation 72,

is designed to attain a high value as the vehicle veers off track;

φi = λ1(xi,goal − xi)2 + λ2

∑
i6=j

1

β(qi, qj)
(72)

Where, the first term is the distance of the vehicle from its goal and attains

a higher value as the vehicle moves off its optimal path, and the second term

is a penalty function that attains a higher value as the vehicle moves into the

sensing (safety) zone of other vehicles.

The repulsive force between vehicles (β) is given in Equation 73;

β0(qi, qj) =

{
3(
‖qi−qj‖

σ )2 − 2(
‖qi−qj‖

σ )3 if ‖qi − qj‖< σ

1 else
(73)

During each time step, the vehicle traverses its optimum trajectory accord-

ing to the gradient-descent method. Using the above described underlying

framework, Makarem et al., simulated an unsignaled intersection in Aimsun
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and Matlab. The key parameters used to assess intersection performance were

vehicle average speeds, number of stops, vehicle throughput, fuel consump-

tion, and vehicle emissions. This vehicle control algorithm demonstrated im-

provements in intersection performance over conventional adaptive signalling

schemes, particularly during high flow scenarios. There was no change in

average speed, a 69% reduction in the number of stops, a 20% increase in

throughput, a 58% reduction in fuel consumption, a 25% reduction in carbon

monoxide emissions, and a 50% reduction in nitrous oxide emissions.

Their proposal focused on decentralised control of CAVs through intersections,

only feasible at 100% CPR. While testing was conducted on a relatively simple

intersection (single lane approach arms), the feasibility and practicalities of a

decentralised control approach are questioned when implementing this frame-

work in larger intersections. Consider a common intersection with four lanes

per approach arm. The location of vehicles on the x or y plane often overlaps

at multi-lane intersection approaches. In this case, the self-contained sensing

equipment in CAVs such as RADAR and LiDAR are not capable of appro-

priately tracking trajectories during vehicle motion. RADAR and LiDAR are

currently capable of mapping the unit’s immediate surroundings, with limited

ability to penetrate surfaces and see behind obstacles. This limitation of the

hardware highlights the safety implications of a decentralised approach, where

a centralised control unit would not have the same limitations.

Kamal et al., Model

Kamal et al., proposed a similar solution to modelling autonomous intersec-

tions [Kamal et al., 2013]. However, they adopted a centralised approach with

a control algorithm that maintained the trajectory of eight vehicles within the

intersection during each time step. The control algorithm is the cost function

shown in Equation 74;

j =
T−1∑
t=0

(wv
∑
l∈L

M∑
n=1

(vln(t+ 1)− vd)2 + wu
∑
l∈L

M∑
n=1

(uln(t))2

+
4∑
p=1

∑
l∈L

M∑
n=1

∑
k∈L

M∑
m=1

fpln,km(t+ 1))

(74)

Where, the first cost term reflects a vehicle deviating from their desired path,
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the second cost term is concerned with the acceleration of the vehicle, and the

third cost term is associated with the risk of collisions.

The risk of collisions is defined by the following risk function;

fpln,km(t) = Hδpln,kme
−(anl (xln(t)−zlp)2+amk (xkm(t)−zkp )2) (75)

Where, fpln,km(t) is the risk of vehicle ln and vehicle km colliding at point p

at time t, H, anl , and amk are calibration constants, and δpln,km is defined as;

δpln,km =

{
θplnθ

p
km if k 6= l

0 otherwise
(76)

Where, θpi is a binary value for vehicle i passing through collision point p.

By simultaneously controlling eight vehicles through the intersection, and with

a heavy emphasis on comfort and safety, Kamal et al., demonstrated a 106%

growth in traffic flow with 0% of the traffic turning left, and a 93% growth

in traffic flow with 20% of the traffic turning left. These improvements indi-

cate the potential advantages of implementing CAV technology in a centrally

controlled intersection.

Makarem et al., and Kamal et al., both showed that intersection improvements

are attained when the focus of the centralised control mechanism is on perfor-

mance and optimal trajectory, or when the focus is on occupant comfort and

environmental implications.

AIM Model

A comprehensive study conducted at the University of Texas [Kockelman et al.,

2017] investigated the multifaceted implications of CAVs. Among their studies

included a microsimulation-based assessment of CAV penetration using the

Autonomous Intersection Management (AIM) model [Dresner & Stone, 2008].

AIM emulates the DSRC capabilities of CAVs through information exchange

with an intersection manager. The intersection manager calculates real-time

vehicle trajectory and conducts a comparison with a reservation table. The

reservation table is responsible for storing past requests made by preceding
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vehicles. If the trajectory does not conflict with currently reserved space-time,

the intersection manager guarantees the vehicle safe-passage and appends its

request to the reservation table. However, if a request is denied, then the

vehicle is forced to decelerate and request a later time.

The limitation of this study is that CAV behaviour assessment in microsimu-

lation is limited only to isolated intersections. A comprehensive study should

also consider a network of intersections and the motorway environment. This

is because isolated intersections risk creating an idealised environment, where

true arrival and departure rates and vehicle platoon formation is not appropri-

ately emulated. Additionally, the AIM model does not emulate CAV platoon-

ing, considered one of the most advantageous characteristics of CAV operation.

Fayazi and Vahidi Model

Fayazi and Vahidi developed a mixed-integer linear programming (MILP) solu-

tion for optimally scheduling CAVs through an unsignaled intersection [Fayazi

& Vahidi, 2018]. MILP uses linear subject constraints to optimise the objec-

tive function, with some or all solutions to the objective function’s inputs

required to be integers. The intersection controller receives speed and loca-

tion information and returns an intersection access time for each vehicle. The

vehicles then use localised planning and mapping to adjust their trajectories

in relation to their allotted access time.

The objective function is to minimise the access time of the last vehicle (and

consequently maximise intersection throughput). The cost function of vehicle

access to the intersection is given by;

J = w1(taccess,j − t0) + w2(

n∑
i=1

|taccess,i − taccess,des,i|) (77)

Where, J is the total cost function, the first term represents the penalty of

not receiving a requested access time (delay), taccess,j is the expected arrival

time, t0 is the current time, and the second term is the penalty for a vehicle

travelling at an undesired speed to meet its access time.

The objective function is subject to three constraints. The speed and acceler-
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ation for the vehicle must remain within limits; for this reason, a restriction is

placed on the access time of the vehicle into the intersection. A minimum head-

way must be maintained between vehicles along the same movement. Finally,

a safe gap among conflicting vehicles must ensure collision-free operation.

Linear programming requires continuity in both the objective function and

constraints. Fayazi and Vahidi address discontinuity by using the “big-M”

method. This method uses a dummy binary variable to conditionally switch

from one function to another, using the switch to cover discontinuous portions

of the domain. Other techniques include subdividing absolute value terms

into two constraints (one for positive and negative), or providing additional

constraints to limit the search domain prior to the discontinuity.

The MILP solution was compared against two other frameworks. The first

framework involved CAVs using image recognition to identify the signal state

manually and making a decision. The other framework used V2I to inform

CAVs of the signal state from preceding vehicles. The results indicate what

the MILP solution results in up to 98.9% fewer vehicle stops, 99.5% less stop

delay, and an average travel time decrease of 29%.

It is apparent from the results that moderating vehicle trajectories and arrival

times to reduce start-stop delay has beneficial impacts on intersection perfor-

mance. However, Fayazi and Vahidi did not comment on the effect that this

behavioural change had on queue lengths. It is trivial to understand that if

the number of stops of a vehicle is reduced or eliminated, the corresponding

delay that is derived explicitly from stops will also decrease. Reporting on

stop delays, in this case, becomes a disingenuous metric. The authors did not

report on the length of queues arising from keeping vehicles in constant mo-

tion. The approach arm of the intersection was 500m long, which is typically

significantly longer than the distance between adjacent intersections in urban

environments. If MILP intersection control results in larger queue lengths,

then it can not be considered an appropriate solution, regardless of its delay

advantages.
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4.5 Summary and Concluding Remarks

Through a detailed review of the literature, a number of models have been pro-

posed for the emulation of CAV behaviour in microsimulation. While many of

these contributions have implemented their models in experimental testbeds

and demonstrated substantial improvements in intersection or network perfor-

mance, they currently have a range of limitations that must be addressed.

The data-driven nature of artificial intelligence, machine learning and neural

network models makes them difficult and near-impossible to calibrate or val-

idate. They require vast quantities of varied data to serve as training data.

This data requirement, unfortunately, limits their use until after CAVs are well

integrated into transport systems and the necessary data is widely available.

Meaning that they are not appropriate for predictive and planning purposes

while CAV technology is in its infancy and the data is unavailable. However,

the purely data-reliant nature of these models may make them more appro-

priate for emulation and planning in the long term.

Validation is an important component of any model development, which re-

quires real-world data to serve as a comparison point. Without real-world data

available for validation, many of the proposed models in literature neglect this

vital step. They instead use the justification of temporary assumptions, rea-

sonableness, and appropriateness to bypass the validation process and use their

proposed models for predictive efforts. This approach still provides substan-

tial value to the literature, as it provides an insight into potential outcomes

given that specific assumptions hold. While this style of model development is

beneficial for forecasting significantly into the future, CAV technology is under

rapid development and approaching network integration. For this reason, a

more robust modelling framework is necessary that doesn’t contain rigid as-

sumptions, but instead as fluid, interchangeable, and modifiable modules that

evolve as more information regarding CAVs becomes available.

Finally, many of the developed models do not undergo stress-testing in con-

gested environments, experimentation in mixed-fleets, or facilitate integration

into larger frameworks that address multiple components of vehicle behaviour

emulation. For these reasons, benefit would be derived from developing a

unique framework that addresses these limitations.
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5 Development of a Mixed-Fleet Microsimulation

Emulation Framework

This chapter contains two major sections. Section 5.1 develops in detail a new

algorithm for emulating CAV behaviour in a microsimulation setting. Section

5.2 then intimately describes the way in which human vehicle behaviour is

emulated. Both sections together form the entirety of the emulation framework

used for mixed-fleets in microsimulation in the remainder of this thesis.

5.1 CAV Behavioural Emulation Framework

Chapters 3 and 4 provided an extensive review of the variety of models and

modelling techniques used to emulate human vehicle and CAV behaviour in

microsimulation, respectively. The question may then be asked why a frame-

work for emulating CAV behaviour is not developed using the myriad of models

already available? Chapter 3 discusses the inherent assumptions regarding hu-

man behaviour incorporated in human vehicle microsimulation models. These

assumptions force the vehicle to exhibit behaviour such as perception-reaction

lag, compression waves in traffic streams arising from erratic behaviour, un-

cooperativeness in lane-changing and space negotiation, and preventing the

formation of platoons. While new models designed specifically for CAVs ad-

dress many of these issues, they also have a range of limitations. Limitations

including unreasonable amounts of calibration data and time, inflexible and

rigid definitions of behaviour, or models that were created in isolation and do

not have the capabilities to work as part of a larger framework.

This section outlines the development of a CAV emulation framework. The

strength of this framework is in its simplicity, unique ability to scale, and small

number of parameters that require calibration. Additionally, the components

of this framework are modular; they can be removed, altered, or appended

to, when greater information regarding CAV behaviour is available. Finally,

the greatest strength of this framework is its provision of a unified and cohe-

sive description of car-following, lane-changing, and gap-acceptance for CAVs.

Additionally, this framework contains a trajectory optimisation component for

collision-free merging at junctions. The novelty of this framework lies in its co-

operative nature by simultaneously assigning the vehicle multiple leaders and

followers. The behaviour of the vehicle then subtends to the set of constraints
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that is most conservative in terms of safety and cooperation. This process is

explained in greater detail throughout Section 5.1.1.

5.1.1 Car-Following Component

The car-following model defines how a vehicle reacts to other agents in its

vicinity or an obstruction in its trajectory. This framework maintains safety

through altruistic interactions with other vehicles by assigning the ego-vehicle

multiple leaders and followers. The primary leader and follower are defined

as the direct leader and follower of the ego vehicle in the current lane. Sec-

ondary (and tertiary) leaders and followers depend on the future intentions

of the vehicle. For a vehicle desiring a lane change, the secondary leader and

follower are the vehicles surrounding the target gap in the target lane. This

approach simultaneously allows the framework to calculate the necessary ac-

celeration imposed by safety constraints to all vehicles and subtends to the

most conservative. Refer to Figure 6 for a diagrammatic representation;

Figure 5: A diagrammatic representation of the dynamically assigned leaders

and followers to an ego vehicle.

The remainder of this section contains a detailed explanation of the frame-

work’s car-following component. It initially defines behaviour concerning a

trajectory obstacle, such as traffic lights and physical obstructions, and con-

cludes by outlining CAV behaviour relative to other vehicles.

Reacting to an Obstructed Trajectory

This section outlines how a CAV reacts to an obstacle in its trajectory. The

proximity of the vehicle to the obstacle is divided into four regions, each gov-

erning the behaviour of the vehicle differently based on safety constraints and

urgency. The four regions are diagrammatically presented in Figure 6;
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Figure 6: The structure of the regions that define CAV behaviour.

The four regions are;

� Region 1: Closest region to the obstruction. In this region, the vehicle

decelerates at its maximum rate to come to a complete stop. Under most

circumstances, the vehicle will have no acceleration and velocity by the

time it reaches Region 1, by design of the framework.

� Region 2: Region in which safety governs the behaviour of the vehicle.

The vehicle uses a safety-based deceleration rate calculated using the

kinematic equations to ensure appropriate deceleration with respect to

its leader. This approach avoids collision with the obstacle and brings

the vehicle to a complete stop as it approaches Region 1.

� Region 3: Region in which the obstacle influences the behaviour of the

vehicle. The vehicle begins to decelerate while still making arrangements

to leave the obstructed lane if a lane change is necessary.

� Region 4: Furthest region from the obstruction in the vehicle trajectory.

In this region, the obstruction has no implications on vehicle behaviour.

Region 1

The behaviour of the vehicle in Region 1 is trivial. Let x define the distance

between the vehicle and the obstacle. Then, Region 1 is defined by 0 ≤ x <

xstop. xstop is the distance by which the vehicle comes to a complete stop

before the obstacle. The acceleration enforced by the other regions ensures

that the vehicle velocity approaches zero as x approaches xstop. But if this is

not the case, then when x ≤ xstop;

an,t+τ = dmax (78)

Where, an,t+τ is the acceleration of vehicle n in the next time increment t+ τ ,

and dmax is the maximum permitted deceleration.
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xstop is a distance set by the modeller. For this work;

xstop = 1 (79)

Region 2

Region 2 is defined by xstop ≤ x < xcritical, and controls the motion of the

vehicle based on safety. The vehicle must come to a complete stop as x ap-

proaches xstop. The deceleration is governed by the kinematic equation of

motion;

an,t+τ =
−v2

n,t

2× (xn,t − xstop)
(80)

Where, an,t+τ is the acceleration of vehicle n in the next time increment t+ τ ,

vn,t is the current vehicle velocity, and xn,t is the distance between the vehicle

front bumper and the obstacle.

xcrtical is determined by placing a limit on the rate of change of acceleration

(δa/δt = (ai,t+τ − ai,t)/τ), denoted as the jerk (Jmax). The jerk often is a

reflection of passenger comfort. Acceleration and velocity as a function of jerk

are given by;

a =
∫
Jmax dt = Jmaxt

v =
∫
Jmaxt dt = 1

2Jmaxt
2

At the desired velocity vmax, and ensuring the vehicle reaches standstill as x

approaches xstop, the time over which this deceleration can occur is given by

t = (xcritical − xstop)/vmax. Using v = vmax and t = (xcritical − xstop)/vmax,

we can derive that vmax = 0.5Jmax((xcritical − xstop)/vmax)2. Therefore;

xcritical = (
2v3
max

Jmax
)1/2 + xstop (81)

Region 3

In Region 3, the vehicle is aware of and influenced by the obstacle. A parabolic

profile models the rate of change of this acceleration profile. With limited in-

formation regarding manufacturer specifications for CAVs, the selection of
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the acceleration profile is somewhat arbitrary, so long as the chosen profile is

reasonable. No one profile is more valid than another while available informa-

tion regarding vehicle operations is sparse. The parabolic profile is chosen for

this work for several reasons. Firstly, acceleration approaches 0m/s2 as x ap-

proaches xcritical and xapproach, providing the profile with a smooth transition

into adjacent regions. Additionally, the rate of change of a parabolic profile (in

this case representing Jerk) can be mathematically restricted to a maximum

value (Jmax) due to the accessible nature of its mathematical representation

and derivatives.

The symmetric nature of a parabola with negative concavity results in two

occurrences congruent with traditional driving characteristics. The first is that

acceleration approaches a minimum value as the vehicle spacing approaches

a high enough value to enter Region 4 where proximity to the lead vehicle is

irrelevant, or low enough to reach Region 2 where safety parameters and factors

govern acceleration. Reaching a minimum acceleration value allows the vehicle

to smoothly transition into the adjacent Region. Secondly, the parabola by

definition has the greatest rate of change (jerk) at its extreme points and with

the interface between adjacent regions. The interface points coincide with real

vehicles embarking from constant velocity motion such as cruising speed and

reacting to a lead vehicles motion, where jerk is often highest.

The acceleration profile of Region 3 is designed to limit a kinematic response.

Acceleration response is confined to Pmin × amax ≤ an,t+τ ≤ Pmax × amax.

Pmax and Pmin are parameters designed to curtail the domain of acceptable

acceleration values for regular vehicle operation. Pmin prevents a CAV from

continuously reacting, accelerating, and decelerating, making its behaviour

more human-like. The decision to not make a CAVs reaction continuous,

but rather stimuli and need dependant, is appropriate considering the com-

putational and mechanical demand that continuous and minute changes in

behaviour would have on the vehicle. This condition resembles many of the

thresholds used in psycho-physical car-following models for emulating human

behaviour. Pmax reserves the maximum acceleration of the vehicle for emer-

gencies rather than regular operation. Refer to Figure 7 for a diagrammatic

representation of the Pmax and Pmin parameters;
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Figure 7: Graphical representation of Pmin and Pmax.

The acceleration in Region 3 takes the form;

an,t = −φ(xn,t − xcritical)(xn,t − xapproach) + Pmin × amax

Where, φ will be calculated momentarily. The maximum value of an,t =

Pmax × amax occurs at xn,t = (xcritical + xapproach)/2. Therefore;

Pmax × amax =− φ(
1

2
(xcritical + xapproach)− xcritical)

× (
1

2
(xcritical + xapproach)− xapproach) + Pmin × amax

Pmaxamax = −1
4φ(xapproach − xcritical)(−xapproach + xcritical) + Pminamax

Pmaxamax − Pminamax = 1
4φ(xapproach − xcritical)2

φ = 4amax(Pmax − Pmin)(xapproach − xcritical)−2

So;

an,t+τ = − 4amax(Pmax − Pmin)

(xapproach − xcritical)2
(xn,t − xcritical)(xn,t − xapproach)

+ Pminamax

(82)

To determine the value of xapproach, jerk is used to limit the gradient of the

acceleration profile. So;
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d
dxan,t ≤ Jmax

Jmax ≥
d

dx
(− 4amax(Pmax − Pmin)

(xapproach − xcritical)2
(x2 − x(xcritical + xapproach)

+ (xcriticalxapproach)) + Pminamax)

Jmax ≥ − 4amax(Pmax−Pmin)
(xapproach−xcritical)2 (2x− (xcritical + xapproach))

In the most extreme scenario, d
dxai,t = Jmax. Therefore to account for the

most extreme scenario;

Jmax = − 4amax(Pmax−Pmin)
(xapproach−xcritical)2 (2x− (xcritical + xapproach))

−4amax(Pmax−Pmin)(2x−xcritical−xapproach) = Jmax(xapproach−xcritical)2

4amax(Pmax − Pmin)xapproach − 4amax(Pmax − Pmin)(2x− xcritical)

= Jmaxx
2
approach − 2Jmaxxapproachxcritical + Jmaxx

2
critial

0 =(Jmax)x2
approach + (−2Jmaxxcritical − 4amax(Pmax − Pmin))xapproach

+ (Jmaxx
2
critical + 4amax(Pmax − Pmin)(2x− xcritical))

For convenience, let C1 = Jmaxxcritical, C2 = 4amax(Pmax − Pmin), and C3 =

2C1 + C2. Then;

0 = (Jmax)x2
approach − C3xapproach + (C1xcritical + C2(2x− xcritical))

xapproach = (C3 +
√
C2

3 − 4Jmax(C1xcritical + C2(2x− xcritical)))/2Jmax

xapproach is inversely proportional to x, so the maximum value of xapproach

occurs at the minimum value of x (x = xcritical). Then;

xapproach =
C3 +

√
C2

3 − 4Jmax(C1xcritical + C2(2xcritical − xcritical))
2Jmax

=
2C1 + C2 +

√
4C2

1 + 4C1C2 + C2
2 − 4Jmaxxcritical(C1 + C2)

2Jmax
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=
2C1 + C2 +

√
4C2

1 + 4C1C2 + C2
2 − 4C1(C1 + C2)

2Jmax

=
2C1 + C2 +

√
4C2

1 + 4C1C2 + C2
2 − 4C2

1 − 4C1C2

2Jmax

=
2C1 + C2 +

√
C2

2

2Jmax

=
C1 + C2

Jmax

So;

xapproach =
Jmaxxcritical + 4amax(Pmax − Pmin)

Jmax
(83)

Region 4

The obstacle is of no interest to the vehicle, and so a reaction is not war-

ranted. The vehicle can continue to behave with its current kinematics or the

kinematics imposed by another condition in this framework.

Summary

In summary, CAVs following this framework will exhibit an acceleration, ve-

locity, and displacement profile as pictured in Figure 8. Figure 8 does not

provide a probability distribution for vehicle kinematics, but provides a repre-

sentative profile for how CAV kinematics change as the vehicles proximity to

vehicles and obstacles changes. A precise profile is derived when the framework

parameters are set.

(a) Typical CAV acceleration profile.
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(b) Typical CAV velocity profile.

(c) Typical CAV displacement profile.

Figure 8: Typical acceleration, velocity, and displacement profiles exhibited

by CAVs as they approach an obstruction in the vehicles’ trajectory.

For xn,t < xstop,

an,t+τ = amax

Where, xstop is manually defined.

For xstop ≤ xn,t < xcritical,

an,t+τ =
−v2

n,t

2×(xn,t−xstop)

Where, xcritical = (2v3
max

Jmax
)1/2 + xstop

For xcritical ≤ xn,t < xapproach,

an,t+τ = − 4amax(Pmax−Pmin)
(xapproach−xcritical)2 (xn,t − xcritical)(xn,t − xapproach) + Pminamax
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Where, xapproach = Jmaxxcritical+4amax(Pmax−Pmin)
Jmax

For xn,t ≥ xapproach,

an,t+τ = 0

General Car-Following Model

The general car-following model, adapted from Van Arem et al., [Van Arem

et al., 2006], describes vehicle behaviour in other circumstances. Other studies

[Talebpour & Mahmassani, 2016] have also used this model, and is as follows;

an,t+τ = caan−1,t + cv(vn−1,t − vn,t) + cx(∆xn,t −∆xmin) (84)

Where; ca, cv and cx are unitless calibration parameters that govern the influ-

ence of the lead vehicle on the ego vehicle. When increasing these parameters,

the ego vehicle will have a greater and more extreme reaction to the changing

kinematics of the lead vehicle. ca, cv and cx are set to values of 1.0, 0.58 and

0.1 respectively, refer to [Van Arem et al., 2006] for a detailed explanation of

the parameters. ∆xn,t and ∆xmin is the current spacing between the lead and

ego vehicle, and the minimum permitted spacing, respectively.

The remainder of this section explains how the car-following framework directs

vehicle kinematics, based on the vehicle’s current circumstances and position

in the network.

Vehicle as Platoon leader

The leader of the platoon has no preceding vehicle, rendering an−1,t and ∆xn,t

mute. Using Equation 84, acceleration for this vehicle is calculated as the

factored difference between the desired and current velocity, given as;

an,t+τ = cv(vdesired,t − vn,t) (85)

Vehicle as Platoon Follower, without Lane Changing

A platoon follower faces a range of situations that may require an acceleration

adjustment. These include, speed surpassing the maximum limit, the headway
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falling below the minimum value, or actively reacting to the behaviour of the

lead vehicle and maintaining safe operation. The CAV’s response to these

circumstances is outlined below.

Velocity Constraint: If the vehicle velocity is outside the desired range, the

velocity component of the general car-following model is applied, similarly to

the application of the model to the platoon leader, given as;

an,t+τ = cv(vdesired,t − vn,t) (86)

Headway constraint: If the headway between the vehicle and its leader falls

below the minimum permitted headway, the maximum deceleration is used

to establish safe following distances. Alternatively, if the headway increases

to greater than the minimum headway, then the headway component of the

general car-following model is applied as follows;

an,t+τ = caan−1,t + cx(∆xn,t −∆xmin) (87)

Safety Constraint: The velocity and headway constraints alone are limited in

that unsafe situations can arise even when neither restriction has been trig-

gered. Consider the scenario where the ego vehicle is travelling slightly below

the speed limit, and the lead vehicle has stopped at a traffic light downstream,

with a headway marginally higher than the minimum value. In this case, both

constraints would recommend that the vehicle accelerate when, in reality, a

strong deceleration is required. For this reason, a safety constraint is respon-

sible for preventing collisions, given as;

an,t+τ = caan−1,t +
v2
n−1,t − v2

n,t

2(∆xn,t −∆xmin)
(88)

This safety condition is triggered when vn,t surpasses specific thresholds. This

prevents the constraint from being unnecessarily implemented such as when a

lead vehicle is significantly far from the ego vehicle. This constraint is triggered

when vn,t ≥ vdesired × P , where P is a linear interpolation between Pmax and

1 when xcritical ≤ x < xapproach, and P is a linear interpolation between Pmin

and Pmax when xstop ≤ x < xcritical. In summary;

P =

{
x−xcrit

xapp−xcrit (1− Pmax) + Pmax for xcrit ≤ x < xapp
x−xstop

xcrit−xstop (Pmax − Pmin) + Pmin for xstop ≤ x < xcrit
(89)
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Vehicle as Platoon Follower, with Lane Changing

If the platoon follower intends to change lanes or facilitate the lane change

of another vehicle, the acceleration criteria are adjusted to accommodate the

stringent safety conditions of the lane change. This section presents the math-

ematical models to describe car-following with lane-changing. A derivation

and description of the mathematical model is provided in Section 5.1.2, which

discusses the gap-acceptance portion of the framework. The adjusted velocity,

headway and safety constraint are outlined below, with an additional con-

straint that addresses behaviour as the vehicle approaches the end of its link

segment while being situated in the incorrect lane.

Velocity Constraint: The velocity condition continues to regulate vehicle be-

haviour based on current and desired speed, but has the additional role of

satisfying the spatial safety constraint of a lane change. The additional com-

ponent forces the creation of a gap deemed appropriate for a lane change (refer

to Section 5.1.2 for the gap-acceptance criteria).

an,t+τ = cv × P ×
vn−1,t

1 + 1
2
n
m

− vn,t (90)

Where;

P =
x− xcritical

xapproach − xcritical
for P ∈ [0, 1] (91)

n and m are fixed parameters explained in Section 5.1.2. n is the number of

time increments reserved to act as a spatial buffer between vehicles, and m

is the duration over which the lane-changing process occurs. The factor P

moderates the importance of the velocity constraint on lane-changing. It is

contingent on the spacing between the ego vehicle and its leader and follower

in the target lane. If the leader and follower are far (x ≥ xapproach), then their

velocity has no bearing on the lane-changing decision, and an acceleration

adjustment is not necessary, meaning that P = 0. If the vehicles are close

(x ≤ xcritical), then the velocity of the vehicles must be considered at all times

and P = 1. For xcritical < x < xapproach, P is calculated using Equation 91.

In summary;
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P =


1 for x ≤ xcritical

x−xcritical
xapproach−xcritical for xcritical < x < xapproach

0 for x ≥ xapproach

(92)

Headway Constraint: The headway condition now also has an added compo-

nent designed to meet the safety constraints of the lane change.

an,t+τ = cx(∆xn,t −∆xmin −
1

2
n× vn−1,t) (93)

Safety Constraint: The safety condition is calculated here the same way as in

the platoon follower case without lane-changing.

End of Link Constraint: When a vehicle requires a lane change, the vehicle

must be mindful of the approaching end of the link. This constraint only

applies if the vehicle is not in its target lane. The calculation of acceleration

in response to a trajectory obstacle can also be used to calculate the vehicle

response to an ending link segment. This calculation was explained in Section

5.1.1. Conditionally triggering this constraint reduces unnecessary decelera-

tion in retaliation to a lane drop. The conditional trigger is as follows, let x

be the distance between the vehicle and the ending link segment;

For x > xapporach, the proximity to the link end is of no consequence to the

vehicle’s behaviour, which continues to search for an appropriate target gap.

For xcritical < x ≤ xapporach, if vn,t > vmax× x−xcritical
xapproach−xcritical (1−Pmax)+Pmax,

then acceleration is dictated by the logic outlined in Section 5.1.1. Else, the

proximity of the lane drop does not affect the behaviour of the vehicle.

For xstop < x ≤ xcritical, if vn,t > vmax × x−xstop
xcritical−xstop (Pmax − Pmin) + Pmin,

then acceleration is dictated by the logic outlined in Section 5.1.1. Else, the

proximity of the lane drop does not affect the behaviour of the vehicle.

5.1.2 Gap-Acceptance Component

Gap-acceptance models evaluate the appropriateness and acceptability of tar-

get gaps during lane-changing. In this framework, an acceptable gap is deter-

mined by a spatial headway requirement and a speed requirement. Figure 9

shows the arrangement of the ego, lead, and following vehicles. When the ego
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vehicle targets the gap between the lead and following vehicle in the adjacent

lane, the following notation is used;

Figure 9: Arrangement and notation used to describe the system of vehicles

in a lane change.

The remainder of this section outlines the mathematical formulations for eval-

uating the acceptability of a target gap.

Headway and Velocity Constraints

The headway condition states that the size of the target gap must be suffi-

ciently large to accommodate the lane-changing vehicle, the minimum head-

way, and a speed dependant safety factor designed to act as a buffer between

vehicles during a lane change. This condition is mathematically given by;

gapmin,n,t = Ln + 2xmin + n× vn,t (94)

Where, gapmin,n,t is the minimum distance required to accept a gap, Ln is the

length of the lane-changing vehicle and n× vn,t is the additional safety factor.

This safety factor is a distance calculated by multiplying the current travel

velocity (vn,t) by a time n, meaning that higher travel speeds demand a greater

buffer distance. n is the time for which the safety buffer is provided and should

be calibrated using a safety assessment where the likelihood of vehicle conflict

during lane-changing is reduced to an acceptable level.

The velocity of the leader and follower in the target lane must be such that

over the life of the lane change, their behaviour does not violate the minimum

safety distance incorporated in the gap acceptance criteria (n × vn,t). This

restriction implies that both the target lane leader and follower may close the

gap to the ego vehicle by a distance of 1
2n× vn,t.
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A gap of 1
2n× vn,t metres is permitted to close at a rate of vn±1,t− vn,t metres

per second, over a time period of m seconds, where m is the duration of the

lane change manoeuvre. The velocity requirement of the leader and follower

in the target lane can then be calculated relative to the ego vehicle velocity.

(vn±1,t − vn,t)×m > 1
2n× vn,t. Then;

vn+1,t > vn,t(1 +
1

2

n

m
) (95)

Similarly;

vn−1,t < vn,t(1−
1

2

n

m
) (96)

The velocity constraint becomes less relevant as the distance between the ego

vehicle and the lead or following vehicle in the target lane increases. The

weighting factor presented in Equation 92, in Section 5.1.1, can again be used

to reduce the impact of the velocity constraint;

P =


1 for x ≤ xcritical

x−xcritical
xapproach−xcritical for xcritical < x < xapproach

0 for x ≥ xapproach

(97)

Where, x is the distance between the front bumper of the ego vehicle to the

rear bumper of the lead vehicle, or the rear bumper of the ego vehicle to the

front bumper of the following vehicle.

Evaluating Multiple Gaps

V2V and V2I infrastructure are further leveraged to allow vehicles to intelli-

gently and actively select a gap in the target lane. Rather than the ego vehicle

targetting the immediate adjacent gap, the ego vehicle actively selects a gap

that reduces its impact on the target lane. Impact on the target lane is defined

as the level of deceleration that arises in the target lane as a result of the ego

vehicle changing lanes.

The ego vehicle evaluates and compares the different downstream gaps by

assigning a score to each gap, using impact on acceleration in the target lane

as a proxy for the score. The minimum score is 0, for gaps that fail the gap

acceptance criteria outlined in Section 5.1.2. A gap becomes more favourable

as the impact reduces, with a higher score indicating a more favourable gap.
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If all gaps have a score of 0, then the adjacent gap is selected. A proxy for the

score for each gap in the target lane is determined as follows;

score ≈an−1,t =
v2
n,t − v2

n−1,t

2× (gapn,t − gapmin)

≈
v2
n,t − v2

n−1,t

gapn,t − gapmin

≈∆Speed

∆Gap

So;

score = (∆Speed)c1(∆Gap)c2 (98)

Where, ∆Speed is the difference in the travel speed between the ego vehicle

and the following vehicle (vn,t − vn−1,t), ∆Gap is the difference between the

minimum required spacing and the current spacing between the ego and fol-

lowing vehicle (x − xmin), and c1 and c2 are weighting factors that alter the

significance of the two components of the score with respect to one another.

The gap with the lowest score is selected as the target gap. Figure 10 displays

the relationship between the score, ∆Speed and ∆Gap;

Figure 10: Visual representation of the score as a function of ∆Speed and

∆Gap, using c1 = 0.5 and c2 = 0.5.
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5.1.3 Lane-Changing Component

Lane-changing is the act altering wheel alignments to shift into the adjacent

lane. This framework does not suggest or control the mechanics of the vehicle

wheel alignment. This framework also does not indicate when an MLC is nec-

essary, the microsimulator controls both actions. The microsimulator identifies

the need for an MLC and notifies this CAV behavioural control framework,

which then moderates vehicle kinematics until the vehicle is ready for the lane

change. Control is then reverted to the microsimulator, which sets the appro-

priate wheel alignments. Once the lane change is completed, control of the

vehicle operation is once again returned to this framework.

This framework does, however, trigger a DLC based on a novel criterion that

evaluates the impact on the target lane. The DLC may be conducted when

the travel speed of the adjacent lane is sufficiently better than the current

vehicle travel speed. This section outlines in greater detail, the circumstances

that trigger a DLC.

Discretionary Lane Change Evaluation

For a DLC to be deemed acceptable, it must increase the overall utility of the

localised system. The localised system consists of the lane-changing vehicle

and the following vehicle in the target lane. The utility in the final state of

the system must be greater than the utility of the initial state.

An ego vehicle travelling with an initial velocity of vn,t and a desired velocity

of vdesired, has an initial dis-utility of dn,t = −vdesired + vn,t. This dis-utility is

the difference between the vehicles current and desired travel speed. Similarly,

the following vehicle in the target lane has a dis-utility of dn−1,t = −vdesired +

vn−1,t. Therefore, the total initial dis-utility of this localised system is;

d(n & n−1),t = vn,t + vn−1,t − 2vdesired (99)

Where, d(n & n−1),t is the total initial dis-utility of the system containing the

ego vehicle n and the following vehicle n− 1 in the target lane.

The final utility for the localised system is again the summation of the final

utility of the ego and following vehicle, both of which are derived below.
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The expected velocity of the ego vehicle is the average of its maximum and

minimum, both of which were calculated in Section 5.1.2. From that section;

vn+1,t > vn,t(1 + 1
2
n
m) −→ vn,t < vn+1,t/(1 + 1

2
n
m)

vn−1,t < vn,t(1− 1
2
n
m) −→ vn,t > vn−1,t/(1− 1

2
n
m)

Then;

E[vi,t+m] =
1

2
(
vi+1,n

1 + 1
2
n
m

+
vi−1,n

1− 1
2
n
m

)

=
vi+1,t

2 + n
m

+
vi−1,t

2− n
m

=
mvi+1,t

2m+ n
+
mvi−1,t

2m− n

=
vi+1,tm(2m− n) + vi−1,tm(2m+ n)

4m2 − n2

The final dis-utility of the ego vehicle is calculated as;

dn,t+m = −vdesired +
vn+1,tm(2m−n)+vn−1,tm(2m+n)

4m2−n2

For the following vehicle, the deceleration caused by the lane-changing vehicle

was presented in Section 5.1.1 and is calculated as an−1,t = cx(∆x−∆xmin).

Using the kinematic equation;

an−1,t =
v2
n,t−v2

n−1,t

2∆x

cx(∆x−∆xmin) =
v2
n,t−v2

n−1,t

2(∆x−∆xmin)

v2
n,t − v2

n−1,t = 2cx(∆x−∆xmin)2

vx,t =
√
v2
x−1,t + 2cx(∆x−∆xmin)2

The final dis-utility for the following vehicle is then;

dn−1,t+m = −vdesired +
√
v2
n−1,t + 2cx(∆x−∆xmin)2
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The final dis-utility for the system of two vehicles becomes;

d(n & n+1),t+m =
vn+1,tm(2m− n) + vn−1,tm(2m+ n)

4m2 − n2

+
√
v2
n−1,t + 2cx(∆x−∆xmin)2 − 2vdesired

(100)

For the DLC to be acceptable, the final utility must be greater than the initial

utility. So;

d(n & n+1),t < d(n & n+1),t+m

vn,t + vn−1,t − 2vdesired <
vn+1,tm(2m− n) + vn−1,tm(2m+ n)

4m2 − n2

+
√
v2
n−1,t + 2cx(∆x−∆xmin)2 − 2vdesired

vn,t < −vn−1,t+
vn+1,tm(2m−n)+vn−1,tm(2m+n)

4m2−n2 +
√

(v2
n−1,t+2cx(∆x−∆xmin)2)

So, for a DLC to be accepted;

vn,t < f(vn−1,t , vn+1,t , ∆x) (101)

Where;

f(vn−1,t , vn+1,t , ∆x) =− vn−1,t

+
vn+1,tm(2m− n) + vn−1,tm(2m+ n)

4m2 − n2

+
√
v2
i−1,t + 2cx(∆x−∆xmin)2

(102)

The velocity of the ego vehicle must fall below a threshold governed by the ve-

locity of the lead and following vehicle in the target lane, and the gap between

them, before a DLC is considered a betterment for the system.

Caveats on Triggering the Discretionary Lane Change

In addition to the criteria outlined above, other conditions must also be met

before the DLC is conducted. The additional measures are introduced to

implement this framework in microsimulation, where rules must be explicitly

defined to avoid unintended vehicle behaviour. The additional caveats are

demonstrated in Figure 11 and explained below;
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Figure 11: Visual representation of the caveats on discretionary lane changing.

The additional caveats are as follows;

� The preferred lane must not be the current lane. The preferred lane

is provided by Vissim when the vehicle has an upcoming MLC. The

purpose of this caveat prevents the vehicle from travelling further away

from the target lane when there is an upcoming MLC.

� The distance to an obstacle in the vehicle trajectory is greater than a

certain distance away (xdlc,min). This caveat prevents a DLC that may

be deemed unnecessary or irrational. For example, if vehicles are waiting

at a traffic light and the adjacent lane has negligible fewer vehicles, then a

DLC to gain negligible space should not be seen as a reasonable decision.

For this thesis, xdlc,min = 10m.

� The final caveat is on the velocity of three vehicles involved in the DLC

system. vn,t ≤ Pmin × vdesired, vn+1,t ≥ Pmax × vdesired and vn−1,t ≥
Pmax × vdesired. These thresholds necessitate a reasonable requirement

for a lane change. Minor differences in travel speed between two adjacent

lanes, or a slightly lower travel speed than the desired speed, should not

be justification enough to trigger a DLC.

5.1.4 Cooperative Merging Component

The final component of this framework is to coordinate vehicles through merge

points cooperatively. This capability also leverages the offerings of V2V and

V2I infrastructure. Traditionally at a merge point, one-of-two scenarios occur;

� Auxiliary Lane: The merging lane will exist as an auxiliary lane that

may either be sustained or taper downstream. This arrangement gives

vehicles adequate time to merge into the adjacent lane and also acts as

a source of storage and capacity. The drawback of this approach is that

additional resources must be provided for the provision of an auxiliary

lane.
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� Priority Servicing: Traffic on the merge lane will be forced to yield to the

mainline, causing a queue in the merge lane to build if the arrival rate

is greater than the service rate. While this approach does not require

additional infrastructure, its primary drawback is that if the mainline

is approaching saturation, then the merging vehicles may be forced to

yield indefinitely.

By forecasting trajectories, vehicle behaviour upstream can be adjusted to

avoid conflict at a merge point downstream. This approach has the benefits of

not requiring additional infrastructure for an auxiliary lane, nor does it force

vehicles to stop and yield completely.

The merge zone precedes the merge point, within which, vehicles have their

trajectory adjusted. The modeller defines the length of the merge zone. The

larger the merge zone, the greater the time that a vehicle will have to adjust its

trajectory. If a conflict is identified at the last moment due to a short merge

zone, the conflicting vehicles will experience high deceleration rates or will

collide with one another at the merge point. Refer to Figure 12 for a diagram-

matic representation of the merge zone, merge point and the zipper merge

network geometry in which this method for merging would be appropriate.

Figure 12: Arrangement of the merge point and zone, and the network geom-

etry in which this proposed control framework would provide benefit.

Vehicle requesting passage through the merge point are placed on a reservation

table. The objective function to optimise the reservation table is to minimise

the maximum delay (refer to Equation 103). This objective function is chosen

as it provides the highest equity to the system, ensuring that neither the

mainline nor the merging lane has sufficiently more priority. By minimising

the maximum delay, the system does not operate optimally from a total system
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delay perspective. However, it does provide the most politically acceptable

solution, where all vehicles are treated equally, and optimisation is performed

at the local conflict level. The objective function is given as;

objective =
T∑
t=1

n∑
j=1

2
min
i=1

(
di|j,t

vadjusted
−
di|j,t

vi|j,t
) (103)

Where, t is the simulation time step for all time steps t ∈ [1, T ], j is the specific

conflict pair for all conflict pairs j ∈ [1, n], i is the ID for the vehicle in conflict

j for i ∈ [1, 2], d is the merge point distance, and v is the vehicle velocity.

Once the vehicles enter the merge zone, their kinematic information is recorded

to the reservation table. The reservation table is optimised each time incre-

ment. Optimisation involves the identification of conflicts, which are resolved

by minimising the maximum delay. The optimised reservation table returns

velocities to the vehicles, which are implemented in the following time step.

This process is divided into two components, where the first component cre-

ates and maintains the reservation table using C++. The pseudocode for this

component is provided in Algorithm 1;

Algorithm 1: Pseudocode cooperative merge algorithm; reservation

table component

import: S = {Reservation Table}
initialise: S′ = 0, n̂ = {n}
while n̂ 6= 0 do

select a vehicle n from n̂ to update

if i /∈ S then
Create new entry n and add to S′

end

else if n ∈ S then
Update entry n from S and add to S′

end

Remove n from n̂

Remove n from S
end

if S 6= 0 then
Vehicles remaining in S have exited the merge zone

end

return S′
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Where, S is the set of all entries on the reservation table, S′ is the incrementally

built updated reservation table, and n̂ is the set of all vehicles n currently in

the merge zone.

The second component conducts the optimisation process externally using

Python. The pseudocode for this component is provided in Algorithm 2;

Algorithm 2: Pseudocode cooperative merge algorithm; optimisa-

tion component

import: S = {Reservation Table}
initialise: S′ = 0, ĵ = {j}
while ĵ 6= 0 do

select j from ĵ to update

for x1,j > x2,j do
calculate total pair delay d(1,2),j

end

for x2 > x1 do
calculate total pair delay d(2,1),j

end

if d(1,2),j > d(2,1),j then
adjust kinematics of vehicle 1

append x1,j and j2,j to S′

end

else if d(2,1),j > d(1,2),j then
adjust kinematics of vehicle 2

append x1,j and j2,j to S′

end

Remove j from ĵ

end

return S′

Where, ĵ is the set of all conflict pairs in the reservation table, j is the conflict

pair currently under investigation, xn,j is the kinematic information of vehicle

n in conflict pair j, and d(p,q),j is the conflict pair delay of vehicle p preceding

vehicle q in conflict pair j.

Delay is calculated as the difference in travel time from the vehicles current

location to the end of the merge zone, travelling at both its current speed
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(vn|j,t) and its adjusted speed in response to the conflict (vadjusted). Where,

t is the current time increment in a modelling period of T , j is the vehicle

conflict pair currently under consideration from all vehicle conflict pairs n and

i is the vehicle currently under consideration from the conflict pair.

5.1.5 Interacting with Different Vehicle Types

The algorithm contains several provisions to facilitate the interaction between

different vehicle types. The primary interaction of concern is between a human

vehicle and a CAV. In the case where a human vehicle is the following vehicle,

the human vehicle car-following model explained in Section 5.2.1 maintains

appropriate spacing and headway to the lead vehicle. The model remains

consistent regardless of whether the leader is another human or a CAV. This

decision is predicated on the assumption that a human vehicle is incapable of

discerning whether a leader is a CAV or another human vehicle.

However, when a CAV is following a human vehicle, the algorithm institutes a

greater following distance. While CAVs are technologically capable of driving

at short following distances, human drivers are not psychologically capable

of the same. This characteristic is demonstrated by the high penalty placed

on short following distances in many human car-following models presented

in Section 3.1. For this reason, the algorithm has a provision that allows a

greater minimum car-following distance when a CAV follows a human vehicle.

The cooperative merge component of the algorithm presented in Section 5.1.4

is contingent on V2I communication protocol, as all vehicles in the system for-

feit control to a centralised controller while navigating through a merge point.

Human vehicles can be given direction through VMS systems, however, their

compliance can not be guaranteed. For this reason, the algorithm assumes

that the trajectory of the human vehicle is unalterable. When a CAV inter-

acts with a human vehicle at a merge point, the CAV will always adjust its

trajectory to prevent the conflict.

Finally, the last provision made by the algorithm is to facilitate the imple-

mentation of a hierarchical priority structure. The algorithm allows the CAV

(or human) fleet to be segregated into any number of subclasses, with the

subclasses engaging in selective cooperation. This provision allows experimen-
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tation involving non-complete cooperation between all vehicle manufacturers.

Human vehicles are granted the highest subclass rank, meaning CAVs are

forced to cooperate with and facilitate the actions of human vehicles.

The same provision in the algorithm that facilitates subdividing the CAV fleet

also allows each subclass to have different behavioural characteristics. This can

be implemented by changing the algorithm parameters for each subclass. Such

a decision may be desirable when investigating the effect of fleet heterogeneity

and the consequence of manufacturers designing slightly different CAVs. How-

ever, the experimentation in this thesis uses a homogenous CAV fleet unless

explicitly stated. The reason for this arises from the highly regulated nature of

the vehicle manufacturing sector. Communication protocols are standardised

under IEEE standards, and vehicles contain numerous standardised features

such as airbags, seatbelts, ABS, and crumple zones. Additionally, operating

motor vehicles contains a myriad of standardised network conventions and leg-

islations. It is unreasonable to anticipate that CAVs will enter such a highly

regulated industry and be given the freedom to diversify their operation. In

fact, CAVs may be subject to significantly higher degrees of standardisation

as many of the human factors involved in human driving are mechanised.

5.2 Microsimulation Emulation of Human Vehicles

For experimentation in microsimulation, the CAV control framework presented

in Section 5.1 must be accompanied by a human vehicle emulation framework.

This work does not redesign the behaviour of human vehicles. The literature,

as presented in Chapter 3 has extensively explored feasible and innovative

means for emulating human behaviour, many of which are used in commercial

software and for evaluating state-significant infrastructure projects.

This thesis uses both the Vissim and Aimsun commercial microsimulators to

assess the intersection, corridor, and network implications of CAVs and mixed

fleets under a range of settings. The Vissim and Aimsun microsimulators

have been in commercial development for many years, continually experiencing

refinement and enhancement. The mathematical models that underpin their

vehicle behaviour are both well documented and available in the literature.

Additionally, their programming interfaces allow for a high level of control

over vehicle behaviour. The remainder of this section describes the nature of
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the human vehicle behavioural models used for microsimulation. All models

presented in this chapter are used in this thesis without modification.

5.2.1 Car-Following Models

The Vissim platform uses the psycho-physical Wiedemann car-following model,

while the Aimsun platform uses the collision-avoidance Gipps car-following

model. Both are explained in greater detail in the following subsections.

Wiedemann Car-Following Model

The Wiedemann car-following model was explored as part of the literature

review in Section 3.1.3. To briefly reiterate, the Wiedemann car-following

model is a psycho-physical model, meaning that it subdivides the domain of

human reaction into subregions. The subregions calculate acceleration differ-

ently, depending on the urgency and safety requirements of the vehicle. Refer

to Figure 3 for a diagrammatic representation of the different regions. The

regions operate as follows;

� Free Driving: In this state, the driver aims to maximise its travel speed.

The preceding vehicle does not affect the behaviour of the current vehicle.

� Approaching: This state arises when a vehicle approaches a driver with

a lower speed. Deceleration is set to result in no difference in speed

between the current and lead vehicle when the driver has reached the

safe following distance.

� Following: In this state, the vehicle follows the lead vehicle without

changing acceleration. The safe following distance is kept constant. This

behaviour is akin to the platooning behaviour of CAVs. However, this

state is not stable and is only maintained when the lead vehicle has a

lower desired velocity than the follower, but the follower is still travelling

with speed within its tolerance and does not conduct a DLC.

� Braking: This state arises when the distance to the preceding vehicle

falls below safe. The vehicle applies a medium to heavy deceleration

to recreate a safe following distance. This situation arises if the lead

vehicle abruptly changes behaviour or if an adjacent vehicle changes

lanes in front.
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For implementation in microsimulation, the regions follow a stringent math-

ematical structure and thresholds define different actions in various regions.

The parameters for the Wiedemann car-following model and the values used

for this thesis are as follows;

� CC0 Standstill Distance (1.5m) – Average standstill distance between

vehicles. It has no variance.

� CC1 Headway Time (0.9s) – Time headway used to calculate the average

following distance.

� CC2 Following Variation (4.0m) – Headway by which the safe following

distance is allowed to surpass before the following vehicle accelerates

within maximum link speeds.

� CC3 Threshold for Entering Following (−8.00s) – Time taken to reach

the safe following distance when a slower lead vehicle is registered.

� CC4 Negative Following Threshold (−0.35m/s) – Sensitivity of the ve-

hicle to the lead vehicles negative changes in velocity.

� CC5 Positive Following Threshold (0.35m/s) – Sensitivity of the vehicle

to the lead vehicles positive changes in velocity.

� CC6 Speed Dependency of Oscillation (11.44m · s) – Influence of dis-

tance on speed oscillations, with 0 indicating that speed oscillations are

independent of distance.

� CC7 Oscillation Acceleration (0.25m/s2).

� CC8 Standstill Acceleration (3.50m/s2) – Desired acceleration when

starting from a standstill, limited by the maximum acceleration.

� CC9 Acceleration with (1.50m/s2) – Desired acceleration at 80km/hr,

limited by the maximum acceleration.

These parameters refine behaviour when localised deviations from standard

behaviour are observed. However, the default parameters recommended by

Vissim are performing well, and so adjustments to these parameters are not

warranted. The mathematical models that define the regions of this model are

calculated as follows [Aghabayk et al., 2013];

Ax = L+ CC0 (104)

Where, Ax is the collision threshold and L is the length of the lead vehicle.
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Bx = Ax + CC1× v (105)

Where, Bx is the deceleration threshold and v is the velocity of the vehicle

if it is slower than the lead vehicle. Otherwise, it is the velocity of the lead

vehicle with an error term randomly generated between -0.5 and 0.5.

CLDV =
CC6

17000
× (∆x− L)2 − CC4 (106)

Where, CLDV is the reaction threshold and ∆x is the distance headway

between the current and lead vehicle.

SDV = −∆x−Bx − CC2

CC3
− CC4 (107)

Where, SDV is the perception threshold.

SDX = Bx + CC2 (108)

Where, SDX is the unconscious reaction threshold.

OPDV = − CC6

17000
× (∆x− L)2 − δ × CC5 (109)

Where, OPDV dictates the upper bound for when unconscious reaction still

applies, and δ is a dummy variable that is 1 when the subject speed is greater

than CC5 and 0 otherwise.

The Wiedemann model for human vehicles in urban settings and the default

parameters recommended by the commercial microsimulator are as follows;

� Average Standstill Distance (2.00m) – Average distance between two

vehicles with a deviation of 1.0m normally distributed about 0m.

� Additive Part of Safety Distance (2.00) – Used in the calculation of the

safety distance (explained in Equation 110).

� Multiplic Part of Safety Distance (3.00) – Used in the calculation of the

safety distance (explained in Equation 110).

The safety distance (b) mentioned above is a function of the additive part

(badd) and the multiplic part (bmult). The safety distance is calculated as;

b = (badd + bmult × z)×
√
v (110)
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Where z has a range of 0 to 1, normally distributed about 0.5 with a standard

deviation of 0.15, and v is the vehicle velocity (m/s).

Consider the following hypothetical example of vehicle kinematics when a

vehicle is subject to an imprudent lane-change;

Figure 13: A hypothetical example of the changes in vehicle kinematic infor-

mation for an agent subjected to an imprudent lane change.

The vehicle is initially in a stable condition prior to an imprudent lane change

occurring. The lane change causes the headway between the ego vehicle and

its leader to immediately fall below an acceptable level. This occurrence is

demonstrated by the horizontal black line in Figure 13. The vehicle then

responds by decelerating and reducing its velocity, recreating the appropri-

ate headway between itself and the new leader. The overcompensation by

deceleration is corrected through acceleration, and again a reduction in the

headway between the vehicles occurs. This oscillatory pattern continues until

new homeostasis is established.

The degree of oscillation in Figure 13 is exaggerated for demonstrative pur-

poses. While a collision-avoidance model such as the Gipps car-following

model makes minute continuous alterations to vehicle kinematics, a psycho-

physical model such as the Wiedemann car-following model makes larger cor-

rections when a vehicle’s situation crosses specific thresholds. This character-

istic means it is common during microsimulation to observe a vehicle exhibit

large decelerations at merge junctions and during imprudent lane-changing.
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Gipps Car-Following Model

The Gipps car-following model was explained in brief in Section 3.1.2. To

reiterate, the Gipps collision-avoidance car-following model was developed by

restricting vehicle kinematics, and ensuring that headway is maintained that

can facilitate vehicles braking at maximum deceleration. The velocity of the

vehicle using this model is calculated by;

v(n, t+ τ) = min(va(n, t+ τ), vb(n, t+ τ)) (111)

Where, v(n, t+τ) is the velocity of the vehicle at time t, τ is the reaction time

of the driver, va(n, t+ τ) is the velocity of the vehicle during acceleration and

vb(n, t+ τ) is the velocity of the vehicle during deceleration.

The driver’s acceleration towards the desired speed is calculated by;

va(n, t+ τ) = v(n, t) + 2.5a(n)τ(1− v(n, t)

v∗(n)
)

√
0.025 +

v(n, t)

v∗(n)
(112)

Where, v(n, t) is the velocity of vehicle n at time t, v∗(n) is the desired speed

of the road section and a(n) is the maximum acceleration of the vehicle.

The deceleration equation is presented in the following Equation;

vb(n, t+ τ) = d(n)τ −

√√√√ d(n)2 − d(n)(2x(n− 1)τ − l(n− 1)

−x(n, t)τ − v(n−1,t)2

d′(n−1)

(113)

Where, d(n) is the maximum deceleration tolerated by the vehicle x(n, t) is the

position of vehicle n at time t, l(n− 1) is the effective length of the preceding

vehicle and d′(n− 1) is an estimation of the preceding vehicle’s deceleration.

Gipps evaluated the model by using parameters deemed appropriate for human

drivers. Parameters were set to a maximum acceptable acceleration (a(n)) of

2.0 m/s2, a maximum acceptable deceleration (d(n)) of −3.0m/s2, a desired

velocity (vn) of 20.0m/s and a reaction time (τ) of 2/3s. The deceleration

parameter acts as a mechanism for dampening disturbances that perturbed

through the flow. Figure 14a display the speed-time graphs for seven succes-

sive vehicles when the deceleration of the preceding vehicle is under-predicted
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(d′(n − 1) < d(n)). Similarly, Figure 14b displays the graph for when the

deceleration of the lead vehicle is over predicted (d′(n− 1) > d(n)).

(a) Speed-Time graph under predicted lead vehicle deceleration (d′(n− 1) < d(n))

(b) Speed-Time graph for over predicted lead vehicle deceleration (d′(n− 1) > d(n))

Figure 14: Speed-Time graphs generated using the Gipps collision-avoidance

car-following model [Gipps, 1981].

When d′(n− 1) < d(n) (Figure 14a), the deceleration intention of the preced-

ing vehicle was underestimated. This prediction forces the following vehicles

to brake harder, resulting in the headway to increase. To compensate, the fol-

lowing vehicles then increase their velocities to reduce the headway. This leads

to the formation of a wave-like reaction lag that can be observed propagating

through a traffic stream. When d′(n−1) > d(n) (Figure 14b), the deceleration

intentions of the preceding vehicle was overestimated. This prediction forces

the following vehicles to brake at a lower rate, allowing stability to re-establish

within the traffic stream sooner.
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For microsimulation implementation, the following parameter values are used;

� τ - Reaction time, set to 2/3s.

� an - Maximum acceleration, determined by a normal distribution for

each vehicle to be an ∼ N(1.7, 0.32) m/s2).

� vmax - Maximum velocity for a vehicle, determined by a normal distri-

bution to be vmax ∼ N(20, 3.22) m/s2.

� bn - Maximum deceleration for a vehicle, set at −2.0an m/s
2.

� b̂ - Deceleration of the vehicle, calculated by min{−3.0, (bb−3.0)/2}m/s2.

By fixing the probabilistic parameters to their mean values, the Gipps car-

following model can be described as being a function of the vehicles current

velocity (vn(t)), the proceeding vehicles current velocity (vn−1(t)), and the

headway between the two vehicles (xn−1(t)−sn−1−xn(t)). This then allows the

model to be graphically represented. Figure 15 below shows the acceleration

profile for the Gipps car-following model as a function of the vehicles current

speed when the velocity of the preceding vehicle is 18m/s;

(a) Acceleration in the next time increment, as a function of velocity and headway.

(b) Change in acceleration as a function

of velocity and headway.

(c) Change in velocity as a function of ve-

locity and headway.

Figure 15: Effect on vehicle kinematics using the Gipps car-following model,

assuming statistically distributed parameters attain their mean value.
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Using the Gipps car-following model, vehicles travel at their maximum velocity

until a threshold is reached. The threshold is a combination of speed and

headway, where vehicle operation is assumed to be safe. Once this threshold

is reached, the model implements a high deceleration rate to rectify the safety

issue, a behaviour that is seen in Figure 15 as a sudden drop. This figure

indicates that the change in acceleration and change in velocity is consistently

low, but suddenly and drastically varies the moment that the critical point in

velocity and headway is reached.

Gipps identified the sudden and extreme reaction of this model as a limitation.

During normal car-following behaviour, the model will not have the opportu-

nity to reach these threshold values, as vehicle acceleration will be moderated

well in advance. However, these situations may occur spontaneously at merge

junctions and lane changes, where vehicles from the adjacent lane imprudently

enter into small headways. Strong deceleration rates resulting from such ac-

tions perturbs the traffic and creates a ripple effect downstream of the braking

location. These perturbations can significantly reduce the efficiency of a traf-

fic stream and result in unnecessary delays, similarly to human driving condi-

tions. These characteristics make the Gipps car-following model appropriate

for human behaviour.

5.2.2 Gap-Acceptance Models

The gap-acceptance models in both the Vissim and Aimsun platform act as

a boolean check for the gap size, and determine acceptability. This section

explains in greater detail the gap-acceptance models derived from the Wiede-

mann models for Vissim, and the Gipps models for Aimsun.

Vissim Gap-Acceptance Process

The default gap-acceptance process used by the commercial microsimulator is

retained in its native state for manual vehicle operation [PTV Group, 2016].

Gap-acceptance in Vissim is contingent on the speed of the lane-changing

vehicle and the target lane following vehicle. Gap-acceptance is used for three

major actions in Vissim, lane-changing, negotiating space through conflict

areas, and reacting to priority rules. The remainder of this subsection explains

in brief, gap-acceptance in each of these circumstances.
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Gap-Acceptance in Lane-Changing

Lane-changing can be divided into two types, the first is a regular lane change,

and the second is an overtaking manoeuvre. For a regular lane change, the

modeller dictates the minimum acceptable gap, set by default to 0.5m. Mini-

mum gap is also subject to the safety distance determined by Equation 110.

An overtaking manoeuvre involves changing to the adjacent lane, accelerating

beyond a vehicle or a group of vehicles, and changing back to the original lane.

Refer to Figure 16 for an example;

Figure 16: An overtaking manoeuvre conducted in the Vissim microsimulator.

The overtaking manoeuvre requires a vehicle to change to the adjacent lane

and then return downstream, making it inherently more dangerous than a

traditional lane change. For this reason, Vissim requires a gap downstream of

the last vehicle being overtaken that is at least the length of the vehicle plus

two times the safety distance defined by Equation 110.

Gap-Acceptance in Conflict Areas

Conflict points in Vissim identify locations in the microsimulation network

where the trajectory of two opposing vehicles may cross. The rules at a conflict

point dictate which of the two vehicles has priority. Refer to Figure 17 for an

example of a priority rule. The priority rules can be configured in one of three

ways. The first is to provide neither movement with a priority (Figure 17a).

The second is to provide a specific movement with priority over another (the

East-West movement in Figure 17a), and the last is to force a movement to

yield to another (the East-West movement in Figure 17c). This figure does not

highlight all conflicts, as turning movements would also conflict with through

movements;
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(a) Neither movement has

priority.

(b) East-West movement

has priority.

(c) North-South move-

ment has priority.

Figure 17: Example of conflict areas in a 4-way signalised intersection.

As vehicles approach a conflict area, they become aware of other vehicles also

approaching the conflict point. Depending on which of the three alternatives

the conflict point is configured in, the vehicle will adjust its trajectory and

kinematics to ensure the gap between vehicles increases to greater than the

minimum required gap. The minimum gap is calculated using Equation 110.

Gap-Acceptance in Priority Rules

Priority rules differ from conflict areas in that they allow the modeller to

specify a distance and time headway, defining in greater detail the nature of

an acceptable gap. Figure 18 provides an example of how priority rules are

structured;

(a) Priority rule depicting

the minimum distance and

time headway defining an

acceptable gap

(b) The time and distance

requirements have been in-

creased to require a larger

gap between vehicles.

(c) The minimum gap

has been further increased,

now extending into multi-

ple upstream links.

Figure 18: An example of a priority rule used at the approach arm of a round-

about. The three subfigures indicate how the gap between the priority (green

line) and yielding (red line) vehicle can be altered.
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When configuring the priority areas, the modeller has control over three pa-

rameters; distance headway, time headway, and maximum speed. Referring to

Figure 18, the distance headway defines how far behind the solid green line a

conflicting vehicle must be for a vehicle waiting at the red stop line to accept

a gap. The green triangle indicates distance headway. Time headway works

similarly, except calculates the threshold headway as a time. The third pa-

rameter (maximum speed) defines a threshold beyond which the priority rule

no longer considers distance headway and only uses time headway.

Modellers use the priority rule approach over the conflict areas approach to

manually define the gap-acceptance criteria as opposed to vehicles adhering to

a model. This approach may be necessary for forcing the model and vehicle

behaviour to better adhere to observed behaviour, for calibration and valida-

tion purposes. If no such unique behaviour is observed, the recommendation

is to use conflict areas over priority rules to define gap-acceptance.

Gipps Gap-Acceptance Model

The Gipps gap-acceptance model was already presented as part of the liter-

ature review in Section 3.3. To reiterate, the Gipps gap-acceptance model

determines the acceptability of a gap based on the following three require-

ments; the gap is positive, the computed speed is positive, and the imposed

deceleration is smaller than the maximum desired deceleration. The minimum

gap is calculated between the proceeding and following vehicle. The minimum

upstream gap is evaluated using the following equation;

Gapup(t) ≥max(0,
vlc(t)

2

2dlc
+ 0.5vup(t)τup +max(0,−vup(t)

2

2dup
+

aup(1− 0.5aup)dupτ
2
up + (1− aup)vup(t)τup))

(114)

Where, Gapup(t) is the minimum upstream gap, vlc is the ego vehicle velocity,

dlc is the ego vehicle deceleration, vup(t) is the upstream vehicle velocity, τup is

the upstream vehicle reaction time, τlc is the ego vehicle reaction time, dup is

the upstream vehicle deceleration, and aup is the upstream vehicle acceleration.

The minimum downstream gap is evaluated using the following equation.
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Gapdw(t) ≥max(0,
vdw(t)2

2ddw
+ 0.5vlc(t)τlc +max(0,−vlc(t)

2

2dlc
+

adw(1− 0.5adw)dlcτ
2
lc + (1− adw)vlc(t)τlc))

(115)

Where, Gapdw(t) is the minimum downstream gap, vdw(t) is the downstream

vehicle velocity, ddw is the downstream vehicle deceleration, and adw is the

downstream vehicle acceleration.

5.2.3 Lane-Changing Models

Vissim provides a distinction in vehicle behaviour for mandatory and discre-

tionary lane-changing, and provides the user with a range of parameters that

control the nature of the lane change. Aimsun, on the other hand, uses the

rule-based Gipps lane-changing model to evaluate discretionary and manda-

tory lane changes. This section discusses both models.

Vissim Lane-Changing Model

An MLC is conducted when a vehicle must be situated in the appropriate

lane to travel to the next node or link. Vissim allows the vehicle to use

the maximum acceptable deceleration rate for itself and imposes this rate on

the following vehicle in the target lane to create a sufficiently large gap. As

the vehicle approaches the end of the link or node and is still situated in

the incorrect lane, the maximum permitted braking rate increases. This rate

ensures the vehicle comes to a standstill as it reaches the emergency distance

before the end of the connector.

A DLC is conducted if the vehicle finds greater speed or space in an adjacent

lane. While a modeller can not affect vehicle “aggressiveness”, the modeller

can control the safety distance that is required for a DLC to be accepted. A

suitable gap depends on the speed of the lane-changing vehicle and the speed

of the following vehicle in the target lane. Greater detail regarding the safety

constraints of an acceptable gap has already been discussed in Section 5.2.2.

The modeller has control over the following lane-changing model elements;

� Free lane selection (True): Whether vehicles are free to choose any lane

as a target lane, or if changing into a specific lane is restricted.
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� Slow Lane Rule (False): The slow lane rule, used in countries such as

Australia and Germany, requires that vehicles return to the slow lane

after conducting an overtaking manoeuvre. Cooperation can then be

increased between vehicles if this rule is in effect, forcing vehicles to

create acceptable gaps actively.

� Maximum Deceleration (−4m/s2): The upper bound of the deceleration

rate used by vehicles during a lane-changing event.

� Accepted Acceleration (−1m/s2): The lower bound of the deceleration

rate imposed on the vehicle and the following vehicle of the target lane

during a lane-changing event.

� Deceleration Slope (−1m/s2 per 100m travelled): The deceleration slope

changes how quickly the accepted acceleration rate approaches the max-

imum deceleration rate, as the vehicle itself approaches the emergency

stop point before the connector.

Gipps Lane-Changing Model

The Gipps lane-changing model was introduced in brief during the literature

review in Section 3.2.1, and is explained in greater detail here. To reiterate,

the Gipps lane-changing model evaluates the process of changing lanes by

assessing “Is it possible to change lanes? Is it necessary to change lanes? Is

it desirable to change lanes?” [Gipps, 1986]. An explanation of the factors in

Gipps lane-changing model is provided in the remainder of this subsection.

The first question posed by the model is whether a lane change is physically

possible. A lane change is deemed physically impossible if it meets either of

the following three conditions. The first is that the target lane physically does

not exist, such as moving left into the third lane of a two-lane road. The

second is that the target lane contains an obstruction upstream. The third

is that changing into the target lane causes a deceleration that violates the

limits imposed by the Gipps car-following model.

If it is possible to change lanes, the vehicle will evaluate whether it has an

upcoming MLC. If the MLC is “close”, the vehicle will make attempts to

position itself in the correct lane. Close is defined as 10s of travel.
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As the vehicle approaches an MLC and is not situated in the correct lane,

its urgency to change lanes increases. Urgency is reflected in changes to the

vehicle’s willingness to brake harder and accept smaller gaps, given by;

dn = (2− xturn − xn(t)

10v∗n
)× bn,max (116)

Where, dn is the drivers braking rate, xturn is the location of the turn, xn is

the position of the vehicle, v∗n is the free-flow speed of the driver, and bn,max

is the maximum braking rate of the driver.

Vehicles are also precluded from driving in a transit lane, except where an

obstructed vehicle trajectory forces the action. In this case, a vehicle is allowed

to change lanes into the transit lane 10s before the obstruction. While a non-

transit vehicle is driving in the transit lane, the lane-changing model continues

to check if the adjacent lane is clear and if the vehicle is safe to return to its

original lane. The requirement to return, however, is ignored if the vehicle is

close to an MLC required from the transit lane.

When the vehicle is not close to an intended lane change, it is considered to

be positioned in the middle region. The middle region extends to 50s before

the MLC. In the middle region, the vehicle can still change lanes, but subject

to the condition provided in Equation 117. This condition ensures that the

vehicle does not stray too far from a lane necessary for a downstream MLC;

(lp − l1)(li − l)(li − I) = 0 (117)

Where, lp is the preferred lane determined through the lane-changing model,

li is the current lane, and I is the total number of lanes.

If previous factors have not forced a lane change, the vehicle is able to conduct

a DLC. A DLC provides the vehicle with an advantage over its current situa-

tion. The vehicle first assesses competing lanes for a downstream obstruction

that may affect its travel conditions less than the obstruction in its current

lane. If none are found, it inspects for heavy vehicles. If none are found, the

vehicle then checks whether competing lanes provide a travel speed advantage,

calculated using the Gipps car-following model. Better travel performance in

the adjacent lane and safe gap conditions allows the vehicle to change lanes.
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Figure 19: Flowchart of the Gipps lane-changing model [Gipps, 1986].
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Using the aforementioned conditions, the vehicle ensures that safety con-

straints posed by the gap-acceptance model (Section 5.2.2) are not violated.

If safety is satisfied, the vehicle executes the lane-changing manoeuvre. Figure

19 provides the rule-based structure of the Gipps lane-changing model.

5.3 Framework Summary

This chapter consisted of two sections, the first developed a detailed modelling

framework for CAVs, and the second provided the accompanying human emu-

lation framework. The CAV framework, the major contribution of this thesis,

transcoded many of the V2V and V2I benefits explored in Chapter 2 into a set

of mathematical models and rule-based modules. The benefit of this frame-

work is in its modular design. The mathematical models are interchangeable

when more information regarding CAV behaviour is available. Additionally,

new calibration parameters proposed as part of the model development are

limited and tractably related to real-world physics.

This framework leverages shorter vehicle spacing, instantaneous reaction times,

cooperation during lane-changing, decentralised vehicle control through merge

junctions, interplay with human vehicles, all while conservatively maintaining

safety and passenger comfort. Model validation is a critical component of any

model development. However, real-world operational data is not available to

conduct validation. For this reason, the following chapter provides a detailed

kinematic assessment of the framework and comparison with human vehicles,

providing validity to the performance of the developed framework.

The second section of this chapter detailed the emulation of human vehicles

in microsimulation. Since the investigations in this thesis focus on the impact

of mixed-fleets, it is critically necessary to also emulate their behaviour. Em-

ulating human behaviour is not a unique contribution of this thesis, and so

this component of the framework uses models proposed by the literature and

already implemented in commercial microsimulators.
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6 Vehicle Kinematics and Parameter Sensitivity

Abstract: Models require validation before they are fit for forecasting and pre-

dictive works. The process of validation compares data generated by the model

with observed data collected from real-world experimentation. Data pertaining

to CAV operation is not available, especially for CAVs in a network setting.

For this reason, validation in the traditional sense is not possible to perform.

This chapter uses a range of other methods to validate the proposed CAV em-

ulation model in the absence of real-world data. The first method generates

kinematic-time plots to qualitatively demonstrate the stability of the emulation

model and the consistency of CAV behaviour in platoons. The second method

conducts a thorough statistical analysis of vehicle kinematics during network

operation using trajectory data. The analysis demonstrates that as network

CPR increases, vehicles accelerations and vehicle jerks do not statistically ex-

perience a change, which vehicle velocity experiences an increase. These results

strongly demonstrate that the CAV control algorithm does not vary vehicle be-

haviour by artificially manipulating existing parameters such as acceleration

rates and speed limits. The underlying kinematics of the CAV has been kept

consistent with the human vehicle, meaning that velocity improvements and

network efficiency increases are the result by design of the algorithm. Finally,

this chapter concludes with a detailed sensitivity assessment of the parameters

proposed in the framework development.

This chapter evaluates the kinematic performance of the CAV emulation frame-

work defined in Chapter 5.1 and the human vehicle emulation framework de-

fined in Chapter 5.2. This evaluation provides an insight into CAV vehicle

operation, ensuring that vehicle safety and comfort has not been sacrificed in

the pursuit of network efficiency and performance. The assessments in this

chapter also serve as a form of pseudo-validation. Validation is the process

of benchmarking modelled data against real-world observed data, where a fit-

for-purpose model would limit deviations between the two data sets. In the

absence of real-world data, traditional forms of validation can not be con-

ducted. This chapter conducts a comprehensive statistical study into the

kinematic performance of human, mixed, and CAV fleets. By demonstrating

that statistically there is no change in the underlying acceleration and jerk

kinematic variables, improvements in network performance are solely the re-
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sult of the developed algorithms performance, and not through manipulation

of superficial vehicle and driving parameters.

A kinematic assessment of the CAV emulation framework developed in this

thesis is carried out using three approaches. The first is to create a space-time

plot of a vehicle platoon under normal operation and lane-changing. These

plots reveal whether platoon stability is maintained and helps highlight erratic

behaviour arising due to the framework. The second is to perform a kinematic

assessment on a small network. Vehicle kinematics consist of the velocity

(m/s), acceleration (m/s2), and jerk (m/s3). Kinematics provides valuable

insight into vehicle comfort as they are a proxy for forces experienced by

passengers. Finally, the third assessment is to perform a sensitivity analysis

of the parameters introduced in this framework (Pmin, Pmax and n).

Vehicle passengers are more sensitive to vehicle forces, as drivers can brace

against the steering wheel. Also, drivers generally are more comfortable in

situations over which they have direct control. For both these reasons, an

adverse change in vehicle kinematics would indicate inappropriate parame-

ters in the behavioural control framework. Also, a kinematic assessment will

highlight whether vehicles are behaving more erratically and closer to their

extremes. The sensitivity analysis intends to determine the degree to which

the parameters influence vehicle behaviour.

6.1 Kinematic-Time Plot Assessment

The kinematic-time plot assessment provides a qualitative indication of sta-

bility and reasonable behaviour. The quantitative assessment can be found

under Section 6.3 and Section 6.4, where the framework is implemented in

a microsimulation environment. Before the kinematic-time plots can be cre-

ated, the base case parameters must first be defined. For the remainder of

this thesis, except where explicitly stated, Pmax = 0.75, Pmin = 0.25, n = 2τ ,

τ = 0.1s, amax = 4m/s2, Jmax,approach = 1m/s3, and Jmax,critical = 3m/s3.

Ten CAVs are successively introduced to a road with a speed limit of 60km/hr.

The vehicles are generated at a headway of 1.5m and instructed to maintain a

minimum headway of 2.0m. The minimum headway for CAVs is set to 0.5m

(refer to Section 6.2 for a justification of this headway value). The value is

134



increased to 2.0m here to create the kinematic-time plots, as a short headway

makes the individual vehicles difficult to discern. A red-light traffic light is

placed 100m downstream from the generation point of the vehicles. Figure 20

and Figure 21 provide the kinematic-time diagrams for a car-following scenario

and a lane-changing scenario respectively;

(a) Displacement-Time plot (b) Velocity-Time plot

(c) Acceleration-Time plot (d) Jerk-Time plot

Figure 20: Kinematic variable vs time plots for the scenario depicting the

car-following for a platoon. Vehicles are generated at a spacing less than the

minimum permitted distance and are approaching a red light 100m away. Each

consecutive vehicle is represented by a darker shade.

The displacement-time plot from Figure 20 indicates that spacing between ve-

hicles increases as time increases. Vehicles are generated into the environment

at a headway (1.5m) lower than their minimum permitted value (2.0m), caus-

ing them to decelerate immediately. The acceleration-time plot in the same

figure effectively displays the transition in vehicle behaviour, from reacting to

a lead vehicle to responding to a trajectory obstruction. The initial deceler-

ation is in response to the headway violation. Each consecutive vehicle has

a cumulatively smaller headway to its lead vehicle, leading to a consequently
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higher declaration. Vehicle velocity stabilises before vehicles transition to the

xapproach zone and must start reacting to the encroaching traffic light. Figure

20 indicates that vehicle behaviour does not surpass the maximum defined

thresholds, nor does erratic behaviour arise. Each consecutive vehicle exhibits

behaviour resembling its lead vehicle, attesting to the stability of the frame-

work. The kinematic-time plots for the lane-changing scenario are as follows;

(a) Displacement-Time plot (b) Velocity-Time plot

(c) Acceleration-Time plot (d) Jerk-Time plot

Figure 21: Kinematic variable vs time plots for the lane-changing scenario,

where an adjacent vehicle enters the platoon. Vehicles still react to a red light

100m away. Each consecutive vehicle is represented by a darker shade.

For the lane-changing scenario depicted in Figure 21, vehicles are introduced

to the environment at a headway of 3.0m, and vehicle three travels in parallel

to vehicle two until 2.0s. At 2.0s, vehicle three communicates its intention to

change lanes, at which point, deceleration of all vehicles can be seen in the

acceleration-time plot. Once an adequate gap has been created, by approx-

imately 6.0s, the displacement-time plot shows the entrance of vehicle three

through the branching of the line representing vehicle two.
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Figure 21 represents the unique and critical element of this modelling frame-

work. When the lane-change is triggered at t = 3s, the platoon reacts as a

singular unit and adjusts acceleration collectively. This behaviour is in direct

contrast to the velocity-time plots generated for the Gipps car-following model

presented in Figure 14. Since this is a discrete-time model, with vehicles react-

ing to direct leaders, the platoon still exhibits a delay of one time-increment

(τ = 0.1s). The perception-reaction lag could be further reduced by having

a vehicle react to the platoon leader, as opposed to their direct lead vehicles.

However, this approach would only provide further benefits for long platoons.

At a simulation resolution of τ = 0.1s, a platoon of ten vehicles will experience

an average delay of 0.5s due to the discrete-time nature of this framework. The

following section uses vehicle trajectory data generated from microsimulation

for a more detailed quantitative kinematic assessment.

Figure 20 and Figure 21 display the changes in kinematic variables relative to

longitudinal displacement from the origin. They do not, however, provide the

plots for lateral displacement as the vehicles change lanes. The reason why the

later have been omitted is that lateral displacement is controlled by the mi-

crosimulator and not by the proposed algorithm. When the model developed

in this thesis approves a lane-changing request, control of the vehicle reverts to

the microsimulator which then controls wheel alignments and lateral displace-

ment. Once the lane change manoeuvre is completed, vehicle control reverts

to the developed algorithm. The kinematic variable plots relative to longitudi-

nal displacement demonstrated the contribution of the developed framework.

Lateral displacement is not a contribution of this thesis, and so similar plots

would repeat the work of commercial microsimulators. Additionally, the way

in which the microsimulator control lateral displacement is unique to each

commercial modelling package.

6.2 Network Evaluation of Vehicle Kinematics

A microsimulation modelling approach is used to determine the kinematic per-

formance of a network that transitions from human-driven vehicles to CAVs.

The microsimulator used is Vissim 9.09, commercially developed by PTV

[PTV Group, 2016]. The framework for CAV emulation presented in Chap-

ter 5.1 is implemented using the Vissim Application Programming Interface

(API). The API is written in C++ and allows the modeller to control every
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aspect of vehicle behaviour between entering and exiting the network.

The framework parameters are consistent with those presented in Section 6.1;

however, the minimum headway between vehicles is 0.5m. CAVs are expected

to communicate at a rate of 1 communication per 515µs [Milanes et al., 2012],

which is approximately 2000 cycles per second. In an extreme scenario, the

CAVs are operating at 22.2m/s at a headway of 0.5m. For a collision to

occur in the worst-case scenario, the lead vehicle would need to decelerate at

its maximum rate (−8m/s2), and communication would need to experience

complete disruption for 1.12s consecutively, 2,240 consecutive communication

cycles.

The intention of this work is not to assess or validate the claim that CAV

communication will not be disrupted for 1.12s. This seems unreasonably high

for the mass deployment of automated vehicles. Other studies [Latrech et al.,

2018] have used a minimum headway comprised of the standstill distance and

a factor of the current travel velocity. A faster-moving vehicle does not justify

a decrease in safety, only an increase in consequences should an accident occur.

When assuming that CAV sensing equipment is faultless, the velocity compo-

nent of minimum headway becomes redundant, and the minimum following

distance can be reduced to the standstill distance.

The remainder of this subsection provides a detailed description of the mod-

elling environment, an assessment on model stability, and an analysis of the

network kinematic performance.

6.2.1 Network Geometry

The network environment for this kinematic assessment (provided in Figure

22) consists of two signalised intersections, one roundabout, one priority in-

tersection, and a merge junction. The approach arm of each intersection is

separated by 100m, with a network speed limit of 60km/hr. Driving conven-

tion follows Australian laws, with vehicles adhering to the road’s left side.
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Figure 22: Network used for the kinematic assessment of the CAV framework.

The top-left signalised intersection contains a filtered right turn on all ap-

proaches, which yields to the conflicting through movements. The bottom-left

signalised intersection differs in that it contains a dedicated right turn lane

with a corresponding green-time in the signal phasing. The roundabout inter-

section follows Australian standards where vehicles navigate through it clock-

wise. The priority junction gives priority to the East-West movement, with

the North-South movement yielding and waiting for a sufficient gap. Finally,

the merge junction is defined as the dual-lane mainline situated on the right

and the onramp merging lane situated on the left. The merge lane yields to

the mainline.

The signalling structure is presented in Figure 23. For the top-left signalised

intersection phasing (Figure 23a), each “b” phase is separated by a 4s inter-

phase time with no movements. The total cycle time is then 60s. For the

bottom-left signalised intersection phasing (Figure 23b), each phase is sepa-

rated by a 4s inter-green time that contains non-conflicting movements from

the preceding and following phases. This structure results in a total cycle time

of 100s. The phasing diagrams are as follows;
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(a) Signalling structure used for the top left signalised intersection. The green colour

indicates movements with priority, while the yellow movements are those that yield

to opposing conflicting movements.

(b) Signalling structure used for the bottom left signalised intersection.

Figure 23: Signal phasing structure of for the signalised intersections

The model contains a 30min warmup period with a 60min assessment period

following the warmup. The warmup is loaded with 80% of the demand com-

pared to the peak modelling period. Seeing as this is a hypothetical network,

the demand was set visually to ensure that the network reached capacity but

did not cause latent demand and off-network queueing. The origin-destination

(OD) matrix used in this study is provided in Table 1;

Table 1: Origin-destination matrix used for the peak hour (veh/hr). The

zones correspond to those outlined in Figure 22.

140



Microsimulation modelling techniques use stochastic probability distributions

in parameters to model day-to-day variations in traffic networks. If the vari-

ability in parameters such as network loading rates results in drastically differ-

ent results, then the model can not be used to reliably forecast future scenarios

[RMS, 2013]. For this reason, model stability must be established for the en-

vironment. Model stability was established using 50 random seeds to verify

the model’s internal consistency. Table 2 provides aggregated network results

for all seeds;

Table 2: Results of the internal consistency analysis conducted on this envi-

ronment using 50 random seeds.

The standard deviation as a percentage of the median result is below 15%

for all performance metrics, with the majority falling under 5%. Serviced

demand has a standard deviation to median value ratio of 0.4%, indicating

that all demand enters the network. The total distance and total travel time

have a ratio of 0.3% and 5.0% respectively, indicating that irregularities in

network operation such as grid-locking do not occur. The model is considered

stable using these results. The median seed is determined by calculating the

distance of each seed from the median value. Seed number 2461 exhibited the

most median behaviour and is used for the kinematic and sensitivity analysis.

6.2.2 Kinematic Results

Five iterations of the model were run that transitioned the fleet from human-

driven to CAV in 25% increments. The microsimulator during runtime pro-

duces a trajectory file that contains the vehicle ID of every vehicle in the

network, along with instantaneous speed and instantaneous acceleration for

each 0.5s time increment. The Surrogate Safety Assessment Module (SSAM)

developed by the US Federal Highway Administration (FHWA) was used to

convert the raw trajectory data into a Comma Separated Value (CSV) file.

The raw data is then converted to a 2D array using Python, with vehicle ID
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on the x-axis, timestamp on the y-axis, and the array containing either instan-

taneous velocity, acceleration, or jerk. Python is then used again to create a

frequency histogram for each of these kinematic variables.

Using the modelling environment outlined in Section 6.2.1 and the data gen-

eration methodology outlined above, Figure 24 provides the frequency distri-

bution for velocity, acceleration, and jerk obtained from the model runs. The

darkening colour of the columns indicates an increasing CPR;

(a) Velocity frequency distribution histogram for 25% CPR increments.

(b) Frequency histogram providing

greater detail in the low velocity results.

(c) Frequency histogram providing greater

detail in the high velocity results.
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(d) Acceleration frequency distribution histogram for 25% CPR increments.

(e) Frequency histogram providing greater

detail in the low acceleration results.

(f) Frequency histogram providing greater

detail in the high acceleration results.

(g) Jerk frequency distribution histogram for 25% CPR increments.
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(h) Frequency histogram providing

greater detail in the low jerk results.

(i) Frequency histogram providing greater

detail in the high jerk results.

Figure 24: Frequency histograms depicting the distribution of velocity, accel-

eration, and jerk of vehicles during network operation

The frequency histograms in Figure 24 provide several interesting insights into

the kinematic performance of mixed fleets and CAVs. Based on visual inspec-

tion, the velocity distribution tends to skew to the right as CPR increases.

This outcome implies that vehicles on average tend to travel faster as the

mixture of CAVs in the fleet increases. The mean value of the fleet velocity

between different CAV scenarios increases from 11.70m/s in the 0% CAV base

case, to 12.67m/s, 13.41m/s, 13.68m/s, and finally to 14.02m/s in the 100%

CAV case. Though velocity provides a valuable insight into network perfor-

mance, where a higher average velocity indicates a better performing network,

it provides little indication into passenger comfort. A vehicle under constant

velocity, regardless of the velocity, experiences no force and hence no discom-

fort to the passengers. For this reason, it is necessary to assess the impact of

CAV integration on acceleration and jerk.

Visually observing the acceleration and jerk distributions in Figure 24, a trend

is more difficult to identify. It appears as though increases in CAV penetration

result in fleet behaviour showing a higher frequency of acceleration and jerk

around 0.1 m/s2 and 0 m/s3 respectively. The figure also shows a reduction

in the frequency of higher and lower acceleration and jerk results, aggregating

in the centre of the distribution. The mean value of the different CAV pene-

trations provides no further clarity, with acceleration having a mean value of
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0.9 m/s2 for all CAV penetrations, and jerk having a mean value of 0 m/s3

for all CAV penetrations. To gain greater clarity in the results, the following

subsection conducts a thorough quantitative assessment.

6.3 ANOVA Assessment of Network Kinematics

Section 6.2.2 used primarily visual inspection to conclude the kinematic im-

pacts of CAVs. Due to the size of the dataset, this approach does not provide

a reliable or meaningful means of assessment. For a more in-depth analysis of

the impact of changing CPR on network kinematics, an analysis of variance

(ANOVA) is used. An ANOVA assessment verifies the presence of a difference

between two or more different datasets. The ANOVA assessment is relatively

simple, and can only indicate a binary true or false answer to whether there

is a similarity between the datasets, or not [Lane, 2007].

6.3.1 Verification of ANOVA Assumptions

The use of an ANOVA assessment requires the verification of three assump-

tions, which are first explained and verified before the ANOVA assessment is

explained and conducted.

Assumption 1: Homogeneity of Variance

The first assumption states that the standard deviation of the populations

involved in the assessment is equal. To demonstrate validation of this as-

sumption, refer to Table 3;

Table 3: The population standard deviations for each dataset involved in the

ANOVA assessment.

The standard deviations, while not the same, are considered similar enough to
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carry out the ANOVA assessment. The ratio between the standard deviation

to the median value of the columns in Table 3 yields a result of 10.7%, 5.0%,

and 22.9% for the velocity, acceleration, and jerk, respectively.

Assumption 2: Normality of Population Distribution

The second assumption states that the population distribution of each dataset

is normal. While there are numerous ways of establishing normality of a

dataset [Ghasemi & Zahediasl, 2012], this thesis uses the D’Agostino’s K2

Test, which uses skewness and kurtosis as goodness-of-fit metrics. Skewness

and kurtosis are calculated using Equation 118 and Equation 119, respectively;

g1 =
m3

m
3/2
2

=
1
n

∑n
i=1(xi − x̄)3

( 1
n

∑n
i=1(xi − x̄)2)3/2

(118)

g2 =
m4

m2
2

− 3 =
1
n

∑n
i=1(xi − x̄)4

( 1
n

∑n
i=1(xi − x̄)2)2

− 3 (119)

Where, g1 is the skewness, g2 is the kurtosis, mz is the zth moment of prob-

ability about the mean, n is the population size, xi is the ith sample in the

population, and x̄ is the population mean.

The skewness and kurtosis values for each CAV penetration are provided in

Table 4;

Table 4: The skewness and kurtosis for each CPR and kinematic variable in

the ANOVA assessment.

Skewness stays well below the critical value of ±1.96 for a significance level

of P < 0.05, however, the kurtosis value exceeds this critical value. This

method is not always reliable for measuring kurtosis for a dataset greater than
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200 samples [Ghasemi & Zahediasl, 2012]. Large datasets generally require a

transformation to provide a better estimate of skewness and kurtosis.

The skewness is transformed using;

Z1(g1) = δ asinh(
g1

α
√
µ2(g1)

) (120)

Where, Z1(g1) is the transformed skewness, µ2(g1) is presented below in Equa-

tion 122, and δ and α are calculated as follows;

W 2 =
√

2γ2(g1) + 4− 1

δ = 1/
√

lnW

α2 = 2/(W 2 − 1)

(121)

Where, γ2(g1) is presented below in Equation 123. µ2(g1) is calculated as;

µ2(g1) =
6(n− 2)

(n+ 1)(n+ 3)
(122)

γ2(g1) is calculated as;

γ2(g1) =
36(n− 7)(n2 + 2n− 5)

(n− 2)(n+ 5)(n+ 7)(n+ 9)
(123)

The kurtosis is transformed using;

Z2(g2) =

√
9A

2
(1− 2

9A
− (

1− 2/A

1 + g2−µ1(g2)√
µ2(g2)

√
2/(A− 4)

)1/3) (124)

Where, µ1(g2), µ2(g2), and A are given in Equation 125, Equation 126, and

Equation 127, respectively.

µ1(g2) is given by;

µ1(g2) = − 6

n+ 1
(125)

µ2(g2) is given by;

µ2(g2) =
24n(n− 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5)
(126)

A is given by;
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A = 6 +
8

γ1(g2)
(

2

γ1(g2)
+

√
1 +

4

γ1(g2)2
) (127)

Where, γ1(g2) is given by;

γ1(g2) =
6(n2 − 5n+ 2)

(n+ 7)(n+ 9)

√
6(n+ 3)(n+ 5)

n(n− 2)(n− 3)
(128)

Table 5 below provides the transformed skewness and kurtosis values. The

values are now significantly closer to the ±1.96 threshold, with the majority

falling within this threshold. The kurtosis values for the jerk datasets still

show a high value, indicating that the jerk distributions contain a narrower

peak than the traditional long-drawn tails of the normal distribution. Refer

to the following table for the transformed values;

Table 5: The skewness and kurtosis after being transformed.

Assumption 3: Independence of Observations

The final assumption states that the process generating the data is stochastic

and the observations are independent of one another. Since each vehicle in the

network is generated through a memoryless process, there is no dependency of

data generated from one vehicle to another. This property of microsimulation

holds true as the vehicle fleet transitions from human to CAVs. Additionally,

the random seed is altered between consecutive runs. For these reasons, the

final assumption of the ANOVA assessment process is validated.

6.3.2 Methodology of the ANOVA Analysis Process

The ANOVA analysis uses the right-skewed F-Distribution and begins by

defining the null and alternative hypothesis. If the F-value is greater than

a critical F-value for a specific level of significance, the null hypothesis should
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be rejected. For this assessment, the null hypothesis is that the mean of the

distribution for a given kinematic variable for each CPR is statistically the

same. The alternate hypothesis is that they are statistically different.

H0 : µx,0% CAV = µx,25% CAV = µx,50% CAV = µx,75% CAV = µx,100% CAV

Ha : means are not equal

Where, H0 is the null hypothesis, Ha is the alternate hypothesis, µ is the mean

of the dataset, and x is the kinematic variable currently under investigation.

The F-value is calculated using Equation 129;

F =
MST

MSE
(129)

Where, MST is the mean sum of squares between datasets, and MSE is the

mean sum of squares within datasets.

The mean sum of squares between datasets (MST ) is calculated using;

MST =
SST

p− 1
(130)

Where, SST is the sum of squares between datasets, and p is the number of

datasets involved in the analysis.

The sum of squares between datasets (SST ) is calculated using Equation 131;

SST =

p∑
i=1

ni(xi − x̄)2 (131)

Where, ni is the number of data points in dataset i, xi is the mean of dataset

i, and x̄ is the mean of all data involved in the analysis.

The mean sum of squares within datasets (MSE) is calculated using;

MST =
SSE

n− p
(132)

Where, SSE is the sum of squares within datasets.

The sum of squares within datasets (SSE) is calculated using Equation 133;
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SST =

p∑
i=1

(ni − 1)S2
i (133)

Where, Si is the standard deviation of dataset i.

6.3.3 ANOVA Assessment Results

100,000 data points were extracted from each dataset to form a sample, which

was used to conduct the ANOVA analysis. This process was repeated for 500

iterations for each kinematic variable. The F-value for each iteration and each

kinematic variable is provided in Figure 25 as a box plot;

Figure 25: The F-value distribution generated from 500 iterations of the

ANOVA assessment of 100,000 data points, for each kinematic variable.

Without context and interpretation, the values in Figure 25 provide little

information. To determine whether the null hypothesis should be accepted

or rejected, the F-value must be compared to a critical F-value. The critical

F-value is drawn from the F-distribution, the probability density function of

which is provided in Equation 134 [Abramowitz & Stegun, 1948];

f(x; d1, d2) =
1

B(d1
2 ,

d2
2 )

(
d1

d2
)
d1
2 x

d1
2
−1(1 +

d1

d2
x)−

d1+d2
2 (134)

Where, x is the probability, d1 is the first degree of freedom (d1 = p − 1), d2

is the second degree of freedom (d2 = n− p), and B is the Euler integral Beta

Function. B is calculated as follows [Abramowitz & Stegun, 1948];

B(d1, d2) =

∫ 1

0
td1−1(1− t)d2−1 dt (135)

Where, t 7→ tn+ is the truncated power function, calculated by Equation 136.
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tn+ =

{
tn if t > 0

0 if t ≤ 0
(136)

Using the F-distribution tables for a one-way ANOVA analysis is a valid and

simpler means of calculating the critical F-value. The ANOVA tables require

df1 (4), df2 (99,995) and the level of confidence (α) to find the corresponding

critical F-value. The level of confidence dictates how extreme the results of

the ANOVA analysis must be to reject the null hypothesis. Higher α values

increase the likelihood of committing “Type I” error, rejecting the null hy-

pothesis when it is true. Table 6 provides the results of the ANOVA analysis

for the kinematic parameters, a range of α values, and the associated critical

F-value for d1 = 4 and d2 = 99, 995 for reference. This table also reports the

P-value, which indicates the likelihood that the null hypothesis is correct;

Table 6: Results of the ANOVA analysis and the critical F-values associated

with d1 = 4 and d2 = 99, 995.

The consensus on an appropriate P-value and α value is generally 0.05, al-

though the threshold used is generally circumstance dependant. The results

in Table 6 indicate that as CPR increases, there is a 0% probability that the

velocity distribution of the network stays the same, and a 4.25% and 53.6%

probability for the acceleration distribution and jerk distribution, respectively.

The results of the kinematic assessment indicate that as CAV penetration in-

creases, the velocity distribution of the network appreciably changes. However,

there is far more evidence to show that acceleration and jerk distribution do

not change. This outcome demonstrates that the forces experienced by pas-

sengers do not change between human-driven vehicles and CAVs. Consistency

in forces, and by extension comfort, demonstrates that the design of the al-

gorithm for the emulation of CAVs is conservative and does not introduce

unreasonable or unrealistic driving conditions.
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6.4 Sensitivity Assessment of Framework Parameters

The three parameters introduced in this framework are Pmax = 0.75, Pmin =

0.25, and n = 0.2. Changing these parameters is not anticipated to have an

appreciable impact on traffic performance. This expectation is because the

parameters alter acceleration restrictions, and acceleration was already shown

in Figure 24d to sit well within the predefined thresholds. The sensitivity

analysis in this section is conducted by independently varying each parameter

by ±10% and ±25%. This results in a total of 13 scenarios when also including

the base case. The scenarios are labelled as follows;

� Scenario 1: Pmax = 0%, Pmin = 0% and n = 0%

� Scenario 2: Pmax = −25%, Scenario 3: Pmax = −10%

� Scenario 4: Pmax = +10%, Scenario 5: Pmax = +25%

� Scenario 6: Pmin = −25%, Scenario 7: Pmin = −10%

� Scenario 8: Pmin = +10%, Scenario 9: Pmin = +25%

� Scenario 10: n = −25%, Scenario 11: n = −10%

� Scenario 12: n = +10%, Scenario 13: n = +25%

The overall impacts of the sensitivity analysis are not difficult to predict.

Increasing the parameters related to acceleration will result in higher network

velocities, acceleration rates, and jerks. Without collecting primary data from

CAVs, these parameters are not possible to calibrate. But understanding the

influence of minor changes in their values on vehicle comfort is valuable.

The analysis is conducted on the same network explained in Section 6.2.1, us-

ing the same signalling structure and random seed. The outputted trajectory

data is once again converted to CSV using SSAM and analysed using Python.

The following histograms show the frequency distribution for the kinematic

performance of the network (velocity, acceleration, and jerk), for CPR in 25%

increments, resulting in a total of 12 distinct histograms;
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(a) Velocity frequency distribution histogram for 25% penetration increment of CAVs.

(b) Greater detail for low velocity results. (c) Greater detail for high velocity results.

(d) Velocity frequency distribution histogram for 50% penetration increment of CAVs.

(e) Greater detail for low velocity results. (f) Greater detail for high velocity results.
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(g) Velocity frequency distribution histogram for 75% penetration increment of CAVs.

(h) Greater detail for low velocity results. (i) Greater detail for high velocity results.

(j) Velocity frequency distribution histogram for 100% penetration increment of CAVs.

(k) Greater detail for low velocity results. (l) Greater detail for high velocity results.

Figure 26: Velocity histograms for each sensitivity scenario, for all CPR cases.
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Visual inspection of the velocity frequency histograms indicates that, as antici-

pated, the average velocity in the network shows marginal changes in response

to the different sensitivity scenarios. For a 25% CPR, there is a noticeable

leftward shift in the histogram for Scenario 4, 8, and 13 (+10% Pmax, +10%

Pmin, and +25% n). By forcing the vehicles to decelerate at a higher rate, it is

apparent that vehicles were more likely to experience a lower velocity. As CPR

increased to 50%, 75%, and 100%, a similar observation was found. Although,

the difference between these scenarios and the base case was significantly less

than in the 25% CPR scenario.

The following figure provides the same histograms for the acceleration results;

(a) Acceleration frequency distribution histogram for 25% CPR.

(b) Greater detail for low acceleration. (c) Greater detail for high acceleration.
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(d) Acceleration frequency distribution histogram for 50% CPR.

(e) Greater detail for low acceleration. (f) Greater detail for high acceleration.

(g) Acceleration frequency distribution histogram for 75% CPR.

(h) Greater detail for low acceleration. (i) Greater detail for high acceleration.
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(j) Acceleration frequency distribution histogram for 100% CPR.

(k) Greater detail for low acceleration. (l) Greater detail for high acceleration.

Figure 27: Acceleration histograms for each sensitivity, for all CPR cases.

The effects of the parameters sensitivities are more apparent on acceleration

than they are on velocity. Figure 27 shows a minor rightward drift for Scenario

4, 8, and 13 (+10% Pmax, +10% Pmin, and +25% n). This behaviour is as

expected, increasing the parameters directly related to acceleration result in

higher accelerations in the network. AS CPR increases, the difference in the

acceleration profiles between sensitivity scenarios reduces, with the exception

of Scenario 2 and Scenario 3. These scenarios reduce the maximum acceler-

ation during regular operation and show that lower acceleration rates are far

more frequent than in the base case Scenario 1.

The following figure provides the sensitivity results for the jerk experienced

by the vehicles;
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(a) Jerk frequency distribution histogram for 25% penetration increment of CAVs.

(b) Greater detail for low jerk results. (c) Greater detail for high jerk results.

(d) Jerk frequency distribution histogram for 50% penetration increment of CAVs.

(e) Greater detail for low jerk results. (f) Greater detail for high jerk results.
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(g) Jerk frequency distribution histogram for 75% penetration increment of CAVs.

(h) Greater detail for low jerk results. (i) Greater detail for high jerk results.

(j) Jerk frequency distribution histogram for 100% penetration increment of CAVs.

(k) Greater detail for low jerk results. (l) Greater detail for high jerk results.

Figure 28: Jerk histograms for each sensitivity scenario, for all CPR cases.
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The comments made regarding the velocity and acceleration histograms are

also applicable to jerk histogram. The results of the sensitivity analysis were

anticipated, and are summarised as follows;

� Increasing n (safety distance incorporated into lane-changing) results in

a greater frequency of low velocity, acceleration, and jerk results. This

result is anticipated as increasing n forces vehicles to provide larger gaps

for cooperative lane-changing, forcing decelerations at a greater rate.

� Increasing Pmax also results in more lower-range velocity, acceleration,

and jerk results. This outcome is in response to the framework impos-

ing greater decelerations, resulting in vehicles attaining lower velocities

quicker and increasing the frequency of low-velocity outcomes.

� Increasing Pmin results in the same outcome as increasing n and Pmax.

The outcomes mentioned above are based on visual inspection of the frequency

histograms. This method does not provide a quantitative analysis, nor does

it indicate statistical significance. Despite its limitations, visual inspections

provide indications of trend. Table 7 provides the mean of each histogram.

The scale of the numbers and the small absolute change between them makes

trends difficult to discern. Table 8 provides the percentage change between

the mean value of the kinematic variable and the base case (Scenario 1) result;

Table 7: The mean value of each kinematic variable distribution.
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Table 8: Relative change in the mean value of the kinematic variable distri-

bution for each sensitivity and CPR, compared to the base case.

Table 8 provides a greater insight into which sensitivity scenarios have a mea-

surable impact on network vehicle kinematics. This table indicates that the

network velocity doesn’t see a considerable difference when CPR is greater

than 25%. At 25% CPR, Scenario 5, 8, 9, 10, 11, and 12 show an apparent

increase in the mean velocity. These scenarios correspond to an increase in

the three parameters, which results in higher accelerations and higher travel

velocities. The results in Table 8 demonstrate that at 50% CPR and greater,

the sensitivity cases don’t show a major difference against the base case. This

result may be attributed to a higher average velocity in the network resulting

in vehicles spending less time in the network, which would, in turn, reduce the

congestion, lane-changing, weaving, and degree of deceleration required by the

remaining vehicles. The investigation in Chapter 7 verifies this outcome.

The skewness of each distribution has been calculated using Equation 118 and

presented in Table 9. The skewness demonstrates the lean of the histogram,

with a negative skewness value indicating a left lean relative to the mean value.

A greater negative value indicates that a distribution is more left-leaning;
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Table 9: The skewness of the kinematic variable distributions, for each sensi-

tivity scenario and CPR.

The percentage change in skewness compared to the base case scenario is

presented in Table 10;

Table 10: Percentage change in the skewness, for each sensitivity scenario

compared to the base case.

The colour distribution in Table 10 closely resembles the colour distribution
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of Table 8. The increase in network velocity in Scenario 5, 8, 9, 10, 11, and 12,

have already been mentioned numerous times. Table 8 indicates that for 25%

CPR, there is a general rightward shift to the lean of the frequency. However,

this lean shifts leftward as CPR increases further. The expected cause of

this lean shift is that as CAV behaviour increases the average velocity of the

network, this results in an average increase in acceleration and corresponding

increases in jerk. However, at CPR greater than 25%, the saturation level of

the network falls significantly, enough to mitigate congestion. The reduced

levels of congestion expectedly reduce weaving, lane-changing, interactions

between vehicles, and expectantly reduce the required acceleration and jerk.

Although, this explanation is explored in greater detail in Chapter 7.

Finally, an ANOVA analysis of 500 iterations is conducted on each scenario,

comparing the base case scenario to the sensitivity scenarios in-turn. Each it-

eration randomly samples 100,000 data points from the dataset. This method-

ology means that df1 = 1 and df2 = 99, 998. The null hypothesis is that the

mean value of the sensitivity frequency distribution is the same as that of the

base case scenario, with the alternative hypothesis being that they are differ-

ent. At a level of significance of α = 0.05, the critical F-value is 3.842. The

mean F-Value of each scenario is provided in Table 11;

Table 11: The F-Value for the ANOVA analysis comparing the sensitivity

scenario with the base case. The critical F-value is 3.842 for α = 0.05
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In Table 11, red indicates scenarios where the null hypothesis should be re-

jected and yellow represents scenarios where it should be accepted. The

ANOVA analysis confirms that changing the parameters Pmax, Pmin and n

by ±10% or ±25% has minimal impacts on vehicle behaviour. The network

velocity tends to increase as these parameters are increased. Still, the ANOVA

analysis, and visual inspection of the frequency histograms, indicates that the

underlying kinematics of acceleration and jerk in vehicle operations experi-

ences negligible (statistically insignificant) change. This finding indicates that

despite the emulation framework replicating expected CAV behaviour and im-

proving network performance, it does without sacrificing passenger comfort.

6.5 Summary and Conclusion

In this chapter, a detailed kinematic and sensitivity analysis of the developed

CAV modelling algorithm was conducted. The chapter started with a qualita-

tive confirmation of platoon stability through the generation of kinematic-time

plots for a platoon of ten vehicles conducting a lane change (Section 6.1). It

then conducted a qualitative assessment of network kinematics while incre-

mentally transitioning the fleet to CAV (Section 6.2 and Section 6.3). Finally,

this chapter concluded with a sensitivity analysis of the parameters introduced

in the developed algorithm (Section 6.4). The kinematic-time plots attest to

the stability of the emulation algorithm, during both regular car-following and

lane-changing. Acceleration and jerk rates do not surpass critical predefined

values, nor does erratic behaviour and deviations in vehicle motion occur dur-

ing sudden deceleration events. These results qualitatively demonstrate the

algorithms stability. The quantitative results of the network kinematic as-

sessment indicate that as CAV penetration increases, the velocity distribution

of the network appreciably changes while acceleration and jerk distributions

stay consistent. This outcome demonstrates that the forces experienced by

passengers do not change between human-driven vehicles and CAVs. Consis-

tency in forces, and by extension comfort, demonstrates that the design of the

algorithm for the emulation of CAVs is conservative and does not introduce

unreasonable or unrealistic driving conditions, providing it further validation.

Finally, the ANOVA analysis confirms that changing the parameters Pmax,

Pmin and n by ±10% or ±25% has minimal impacts on vehicle behaviour. This

finding indicates that by design of the algorithm, its replication of passenger

safety and comfort is not contingent on coincidentally calibrated parameters.
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7 An Investigation into the Implications of CAVs

on Isolated Intersection Performance

Abstract: Intersections form a major component of road transport systems.

Priority-based navigation and traffic signals render the capacity of an inter-

section significantly lower than the link section, causing them to act as arte-

rial network bottlenecks. This chapter assesses the impact of CAV penetra-

tion on traditional isolated intersections. The investigated intersections in-

clude signalised intersection with dedicated turn, signalised intersection with

filtered turn, roundabout intersection, and priority give-way intersection. The

intersections are investigated in the Vissim microsimulator using the devel-

oped CAV control algorithm. Modelling results demonstrate that throughput

increases by up to 110%, delay reduces by up to -63%, queue length decreases

by up to -28%, and average speed increases by up to 130%. However, each

intersection type did not improve to the same degree, raising the concern that

disproportionate enhancements to parts of the network may redistribute the lo-

cation of bottlenecks and pinch points. Additionally, this chapter investigates

the formation and movement of platoons contingent on intersection green time.

The results indicate that higher CAV benefits would better from lower green and

cycle times, providing each signalised movement with a higher turnover rate.

CAVs verge on becoming household objects, as hardware and computational

capabilities meet the safety and performance expectations held for these ve-

hicles. CAV technology could revolutionise transportation as it promotes car-

sharing and the notion of MaaS [Hietanen, 2014]. On the other hand, CAVs

may increase the utility of a private vehicle, whereby in-vehicle travel time

is better utilised, and private vehicle mode share and congestion increases

[Davidson & Spinoulas, 2015]. Government regulation, policy and interven-

tion will strongly direct the development and implementation of CAVs [Fa-

jardo et al., 2011]. However, an implementation framework requires develop-

ment before the transport network is ready to cater to these vehicles. Well

informed policy-related decisions to develop a sustainable future are difficult

to make due to the lack of understanding regarding future CAV behaviour and

lack of structure surrounding CAV implementation.

This chapter addresses uncertainties surrounding the intersection impacts of
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CAVs, with a specific focus on cooperation and altruistic behaviour. The

literature presents a range of algorithms used to emulate CAV behaviour and

assess intersection performance. Although, these attempts either emulate CAV

behaviour through a rudimentary change in commercial software parameters,

or a non-complete behavioural emulation algorithm focusing on part of vehicle

behaviour in microsimulation.

The remainder of this chapter is structured as follows; Section 7.1 contains

a brief literature review of recent attempts at emulating CAV behaviour and

assessing intersection performance. Section 7.2 introduces the microsimulation

environment used for experimentation and the structure of the tests. Section

7.3 and Section 7.4 provide the results and discussion, respectively. Finally,

Section 7.5 provides a brief summation of the work and the conclusions drawn.

7.1 Literature Review of CAV intersection Modelling

The literature proposes numerous means of evaluating the intersection per-

formance of mixed fleets and CAV networks. Attempts vary in complexity

with some opting to change commercial microsimulator variables, and others

developing complex intersection control mechanisms. This section provides a

brief explanation of the unique and novel attempts at quantifying the impact

of CAVs on intersection performance.

Yang Study

Yang investigated the network and intersection impacts of CAVs by integrat-

ing them into the four-step modelling process [Yang, 2017]. The four-step

modelling process starts by segregating the network into zones and determin-

ing how many trips each zone produces (trip production). Next, the number

of trips each zone attracts is determined (trip distribution), resulting in the

formation of an OD matrix. The OD matrix is subdivided into a matrix for

each available transit mode (mode choice). Finally, the OD matrix is applied

to the network in a traffic assignment process to determine link flows.

Yang incorporated CAVs in trip production and trip generation by multiply-

ing existing generation and attraction models by a factor 0.05. The existing

models produce (or attract) trips contingent on household size and household
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income, meaning that zones with greater household sizes or incomes are more

likely to produce more CAV trips. CAVs were introduced into mode choice

by providing them with a separate utility function used in the nested logit

structure. The utility function for CAVs is as follows;

UDA =

civttsovα+ ctermTij + copcostDsovCop

+ cpcost(Tollsov + cwkp(i))

cna
(137)

Where, UDA is the driver utility, civt, tsov, and α are the coefficient, actual,

and reduction rate, for in-vehicle travel time, respectively. cterm and Tij is the

terminal time coefficient, and terminal time from zone i to zone j, respectively.

copcost, Dsov, and Cop are the auto operation coefficient, travel distance, and

auto operation cost, respectively. cpcost, Tollsov and cwkp(i) are the parking

cost coefficient, toll cost, and parking cost in zone i, respectively.

During trip assignment, the CAVs differed from human vehicles through a 50%

reduction in in-vehicle travel time, parking fees, and vehicle reaction time, also

leading to a proportional decrease in headway and increase in capacity.

Using this modelling approach, Yang demonstrated that a 10% CPR leads

to a -4.22% reduction in travel time and a +4.86% increase in travel speed.

As CPR increases to 90%, these improvements become -22.15% in travel time

and +32.12% in travel speed. Yang’s modelling also demonstrated that CAVs

induce more trips and cannibalise trips from competing mass transit modes.

A 10% CPR results in a -2.53% change in transit trips and a +0.27% increase

in total trips. These changes increase to -10.16% reduction in transit trips and

+4.51% increase in total trips as CPR approaches 90%.

Yang’s study indicated the potential for CAVs to induce more vehicles into al-

ready congested environments. For this reason, it is critical to understand

what CAV behaviour implies for the arterial and local road environment.

Whether traditional intersections will be able to cater for the increased demand

must be determined to plan for a mode of transit that will quickly dominate

the transit fleet due to its inherent attractive qualities. This chapter veri-

fies the improvements found by Yang in a macrosimulation environment by

emulating agent interactions.
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Patel et al., Study

Patel et al., used a multi-class cell transmission model (CTM) to investigate

how reduced reaction times affect travel time and congestion on highly con-

gested arterial roads and freeway networks [Patel et al., 2016]. The speed

of vehicles in the network was a function of free-flow speed, capacity, and

backward wave propagation, given by;

u(k1, ..., kM ) = min{uf ,
qmax(k1

k , ...,
kM
k )

k
,w(

k1

k
, ...,

kM
k

)(kjam − k)} (138)

Where, u(k1, ..., kM ) is the speed of different vehicle classes M , uf is the

free flow speed, qmax(k1/k, ..., kM/k is the capacity function given the class

proportion kM/k, w(k1/k, ..., kM/k is the backward wave speed function of

class proportion kM/k, and kjam is the jam density.

Flow in the cell transmission model is modelled as;

ymi (t) = min{nmi−1(t),
nmi−1(t)

ni−1(t)
Qi(t),

nmi−1(t)

ni−1(t)

wi(t)

uf
(N −

∑
m∈M

nmi (t))} (139)

Where, ymi (t) is the transition flow of class m from cell i at time t, nmi−1(t) is

the number of vehicle, and Qi(t) is the cell capacity.

Link capacity is given by;

qmax =
uf

uf
∑

m∈M
km
k ∆tm + l

(140)

Where, ∆tm is the reaction time of class m, and l is the vehicle length.

Finally, the backward wave speed is calculated using;

w =
l∑

m∈M
km
k ∆tm

(141)

The model was implemented on two arterial road networks, a freeway envi-

ronment and a model replicating downtown Austin. On the arterial network,

CAVs used a priority reservation-based system to traverse intersections and

conflict points. The modelling indicates that on the first arterial network
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where intersections are further apart, the use of a reservation-based protocol

for intersection control reduced travel times. However, on another arterial net-

work, the reservation-based protocol was only beneficial at 50% demand. Once

demand was increased to 75%, the traditional priority signalling scheme was

found to lower travel times. The authors found that shorter CAV reaction

times (50% less) were responsible for the improvement in the first environ-

ment. They also found that suboptimal reservations made by the controller

in the second environment due to the close proximity of adjacent intersections

resulted in worsening performance.

Prior to saturation, the arterial roads models showed that at 25% CPR, total

travel time reduced by as much as 50%. The improvements found in the

freeway environment were more modest, though, with better performance in

the higher CPR scenarios. Under saturated conditions (100%) demand, a 72%

reduction in travel times was seen. The less drastic improvements in freeway

travel times were attributed to the fact that freeways do not contain signal

delays, and so can not take full advantage of the reservation controller on

onramps. Results on the downtown Austin model showed that intersection

reservations reduced travel times by 55%, and reduced reaction times resulted

in a travel time reduction of 78%.

Patel et al., indicate that CAV network integration has significant potential

travel time implications. However, the inclusion of a reservation-based cen-

tralised controller for intersections may be inappropriate for evaluating short

term intersection effects of CAVs. While such an advancement may be the

eventual conclusion to the evolution of intersections, its implementation in the

short term while this technology is untested and in its infancy is extremely

unlikely, primarily due to safety and logistical concerns. For this reason, a ro-

bust modelling exercise of traditional intersection control schemes with CAV

operation should be conducted, as is presented in this chapter.

Guler et al., Study

Guler et al., used an enumeration based approach to minimise intersection

delay [Guler et al., 2014]. The approach modelled two one-way streets and

equipped certain vehicles with CAV hardware. A signal controller enumerated
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through different release patterns of vehicles into the intersection in accordance

with an objective function. The study considers the impacts of platooning and

adaptive signalling regimes, while also varying the demand and the CPR.

The algorithm works as follows. All vehicles currently in the intersection

zone are placed in a set. The intersection controller then enumerates through

all possible release combinations of vehicles through the intersection. The

departure pattern is that which results in the minimum delay. Equation 142

is used to determine the penalty (time taken) for a vehicle to traverse the

intersection. This expression appropriately incorporates the effects of vehicle

platooning on vehicle departures and delay;

Pn,k = max(
s

v
,
−a 1

ρmax,m
(On,k − 1) +

√
(a 1

ρmax,m
(On,k − 1))2 + 2as

a
) (142)

Where, Pn,k is the penalty for vehicle n in departure pattern k, s is the length

of the conflict zone, v is the assumed intersection crossing speed, a is the

vehicle acceleration, ρmax,m is the saturation flow rate of approach m, and

On,k is the number of successive vehicles that have departed from the current

approach in the current platoon.

Experimentation scenarios had a demand of 1000veh/hr, 1500veh/hr, and

2000veh/hr. Demand was distributed over the two approaches, where a per-

fectly balanced demand would have a demand ratio of one, and the ratio

would approach zero as the demand became weighted to one approach. The

authors tested a range of intersection control mechanisms, including first-in-

first-out, a traditional signalling scheme, and their developed minimum delay

algorithm. The results of the modelling found that in both the low demand

and high demand scenarios, the minimum delay algorithm far outperformed

the first-in-first-out approach, leading to delay reduction of over 50% in both

the balanced and unbalanced demand scenario. However, when compared to

a fixed-time signalling scheme, the minimising delay algorithm showed little

improvement, usually performing on par with a traditional signalling scheme.

While the minimum delay algorithm showed improvement over the first-in-

first-out approach, this algorithm is not an appropriate means of intersection

control. The first-in-first-out approach is inherently flawed in mixed-fleet en-
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vironments because the signal control must provide a minimum green time to

account for human reaction time and error. When the reservation table for a

first-in-first-out approach repeatedly alters between approaches, platoons are

unable to form and so the minimum green time must be repeated. However,

the minimise delay algorithm prioritises a platoon depending on wait time, in

much the same way as actuated signalling already does, accounting for why the

authors observed little to no benefit from adopting this algorithm as compared

to traditional intersection signals.

Le Vine et al., Study

Le Vine et al., investigated the relationship between rider comfort and intersec-

tion capacity [Le Vine et al., 2015]. The investigation developed a microsimu-

lation environment in which the authors altered vehicle driving parameters to

measure the impact on capacity. The study area consisted of a 4-arm approach

signalised intersection with a free flow speed of 50km/hr. Signals used 90s

cycle times with two phases. Traffic demand on all approaches was divided

in the ratio 1:3:1 for the left turn, through movement, and right turn respec-

tively. A traffic density of 20s/veh (250veh/hr/approach) used in the study

found an intersection capacity of 1793veh/hr.

The base case intersection had an average vehicle delay of 20s. The first mod-

elling scenario has a CPR of 25%, and CAV kinematics were constrained to

that similar to a Light Rail vehicle (1.34m/s2 longitudinal acceleration and

1.47m/s2 lateral acceleration). Under this scenario, the average vehicle de-

lay increased by 5%. When CAV kinematics were altered to match that of

Heavy Rail (0.58m/s2 longitudinal acceleration and 0.49m/s2 lateral acceler-

ation), delay increased by 36%. The delay increases corresponded to capacity

decreases of 4% and 18%, respectively for the two scenarios.

This study emulated CAV behaviour in Vissim by changing vehicle accelera-

tion rates and did not attempt to account for many of the other anticipated

benefits of CAVs such as platooning and quicker reaction times. By decreasing

acceleration, it is not difficult to see why intersection delay increased and ca-

pacity decreased. Although, this study does raise critical concerns regarding

CAV operation. The majority of studies conclude that CAV penetration will
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lead to more efficient driving and higher road capacity. Le Vine et al., empha-

sise that if CAVs are programmed more conservatively, and treat occupants

as passive passengers (like on public transport), then acceleration rates on

par with traditional public transport vehicles may not lead to intersection im-

provements. A conservative driving fleet could reduce road capacity, contrary

to the belief of much of the literature.

Elhenawy et al., Study

Elhenawy et al., proposed a completely autonomous and unsignaled intersec-

tion that negotiated space between vehicles based on game theory and Nash’s

equilibrium. [Elhenawy et al., 2015]. A non-zero non-cooperative game was

played where the drivers have the option to either yield or not yield. It is

played with two players, where a player anticipates the behaviour of vehicles

conflicting with its trajectory. The payoff matrix is standard, where the non-

yielding vehicle is considered the winner, both vehicles yielding is considered

a tie, and both vehicles not yielding is considered a loss. Each vehicle in the

game can accelerate, decelerate, or continue at a constant velocity.

The game is structured as follows. Once each vehicle is within 200m of the

centralised intersection controller, it provides its kinematic details to the con-

troller. The controller then uses the values of the closest vehicle to the in-

tersection to determine the set of feasible actions that all other vehicles can

perform. The controller creates a game matrix for the four vehicles and sim-

ulates each possible set of actions. A payoff table provides the value for each

outcome. Nash’s equilibrium is a solution to the game matrix which satisfies

the following equation;

∀n, xn ∈ Sn : fn(x∗n, x∗−n) ≥ fn(xn, x−n) (143)

Where, n is the specific player with action xn, Si is the set of all actions of

player n, fn(xn, x−n) is the score of player n playing action xn and player −n
playing action x−n, and x∗ is the solution to Nash’s equilibrium.

Elhenawy et al., implemented the algorithm in a single-lane four-way-approach

intersection with a speed limit of 40km/hr. After conducting 30,000 simula-

tions, the authors found that on average, the algorithm reduced travel time
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by 49% and delay of 89%. This study indicates the potential upper bound for

travel time savings with a 100% CPR. This approach has significant potential

to coordinate adjacent intersections and calculate a globally optimal solution

to a game played at the network level. However, it is limited in the short-term

as it can not be adopted for a mixed fleet environment.

Sharon and Stone Study

Sharon and Stone extended the AIM protocol to hybrid AIM (H-AIM) [Sharon

& Stone, 2017], as AIM was only effective at CPR greater than 90%. Alterna-

tively, H-AIM demonstrated intersection performance benefits from as little as

1% CPR. The main difference between the AIM and H-AIM protocol is that

when trajectories of vehicles overlap, the AIM protocol immediately denies

the request of the second vehicle. H-AIM will consider the request and only

immediately deny it if the second vehicle conflicts with a human. To identify

a human vehicle, the intersection controller manually counts the number of

vehicles on a given lane and then compares that count to the number of reser-

vation requests received. If the count is greater than the reservation table,

then the controller assumes the difference is comprised of human vehicles.

Vehicles are assigned a turning policy based on whether they are human or

CAV. A turning policy identifies all safe movements for a particular vehicle

class. For example, it would be unwise to permit a human vehicle in the left

lane to turn right, whereas a CAV may be able to safely and reliably do so.

Additionally, the H-AIM protocol prevents the allocation of a safe and unsafe

policy to a pair of human and CAVs, as this would again place the human

vehicle in dangerous situations.

Sharon and Stone applied the H-AIM protocol to a four-way intersection with a

travel speed of 25m/s. Results from their modelling indicate that during low

traffic levels (≤ 300veh/hr) and high traffic levels ≥ 700veh/hr, using safe

turning policies results in worsening performance for human vehicles. The

only benefit was brought to human vehicles when the most conservative and

safest lane policy was used, which restricted each lane to a single unshared

turning movement. CAVs, on the other hand, benefited from adopting an

unsafe turning policy, regardless of the CPR.
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The H-AIM protocol showed benefits over the AIM protocol when the most

conservative lane policy was used, where each lane has a dedicated and un-

shared turning movement. The practicality of such a solution should be ques-

tioned. Dedicated lanes with unshared movements are only viable with bal-

anced traffic flow and balanced phase green-time. Once the balance is dis-

rupted, excessive queueing will begin to arise in the oversaturated movement,

which would have otherwise been distributed over many lanes. For this reason,

the H-AIM protocol may not be appropriate for use in most intersections.

7.2 Experimentation Methodology

A review of the literature indicates that prior work has focused on sophisti-

cated implementations of CAV infrastructure to evaluate the impact of CAV

behaviour on intersection performance. The decentralised control of an inter-

section is only feasible at a 100% penetration, which is many decades away.

Decentralised controllers and optimisation algorithms fail to take into account

the economic impacts of developing, manufacturing, and retrofitting the in-

frastructure with the required hardware. This chapter addresses the implica-

tions of placing CAVs into the currently used intersection infrastructure and

transport systems.

This chapter addresses a gap in the literature by retaining existing signalling

and priority structures, but transitioning the fleet gradually to autonomous.

The chapter critically investigates the impact of CAV behaviour on intersec-

tion performance, providing a detailed assessment of metrics such as delay,

throughput, queue length, and average speed. An investigation is conducted

on a range of intersections such as a signalised intersection with a filtered right

turn, signalised intersection with a dedicated right turn, roundabout, and pri-

ority junction. This chapter then assesses the impact of vehicle platooning and

signal green-time on intersection throughput. The remainder of this section

provides in greater detail the structure of the experimentation.

7.2.1 Experimentation Structure

The investigation is conducted on four individual intersections, refer to Section

7.2.2 for more detail about each intersection. For each model environment,

the capacity is determined by incrementally loading the network and observing

when throughput ceases to increase with increased demand. Once capacity is
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found, 250 iterations of microsimulation are conducted in each environment to

develop a Demand vs Throughput relationship. This relationship is required

to find intersection capacity.

Bias is avoided by using a stochastic and memoryless Monte Carlo method.

This method randomly generates a random seed RS where RS ∈ [1, 9999],

and demand where Degree of Saturation (DoS) DoS ∈ [0, 1.1] for each iter-

ation. This process is repeated for each 20% increment of CPR, providing a

comprehensive image of the intersection capacity, and is outlined in Figure 29;

Figure 29: The stochastic and memoryless Monte Carlo process used to de-

termine the capacity of each intersection, as a result of increasing CPR.

7.2.2 Modelling Environment

The modelling environments consist of a signalised intersection with a filtered

right turn, a signalised intersection with a dedicated right turn, a roundabout

section, and a priority junction. The remainder of this subsection provides

greater detail about each of these environments.

The signalised intersection with a right turn filter (Figure 30a) contains two

lanes per approach. The left lane shares the through and left-turn movement,

and the right lane shares the through and right-turn movement. Each ap-

proach arm is 200m in length, but the intersection node for data collection

purposes extends 100m beyond the intersection stop line. The signalling struc-

ture uses a split structure approach (Figure 30b) with the right turn forced to

filter through the opposing movements. The demand at each approach is in the

ratio 2:3:1 between the left turn, through movement, and right turn, respec-

tively. Demand is generated at 50km/hr, the speed limit of the environment.

Figure 30 provides the environment geometry and phasing structure;
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(a) Geometric layout. (b) Phasing arrangement. Green and yellow arrows indi-

cate priority and giving way movements, respectively.

Figure 30: Geometric layout and signal phasing for the signalised intersection

with a filtered right turn.

The signalised intersection with a dedicated right turn (Figure 31a) contains

three lanes per approach, with each turning movement (left, through, and

right) having a dedicated lane. The signalling structure differs from the previ-

ous intersection in that it uses a double-diamond phasing scheme (Figure 31b),

where the right turn at each approach is given dedicated priority green-time

in the signal cycle. Other elements of this environment including the demand

ratio, speed limit, data collection node, and approach arm length, are the

same as the previous environment. The environment geometry and phasing

structure are provided in the following figure;

(a) Geometric layout. (b) Phasing arrangement.

Figure 31: Geometric layout and signal phasing for the signalised intersection

with a dedicated right turn.

To retain generality in the results, critical consideration has been given to

designing the experiments for this investigation. The approach arms of a

signalised intersection operate independently, meaning that an intersection
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with more approach arms will have an increased number of turning movements

and corresponding conflict points. Consider the following conflict diagrams for

a two-way, three-way, and four-way intersection;

(a) Two-way intersection

contain 0 conflict points.

(b) Three-way intersection

contain 6 conflict points.

(c) Four-way intersection

contain 24 conflict points.

Figure 32: Number of conflicts points in different intersection arrangements.

The impact of increasing the number of conflicts is that the phasing arrange-

ments must be redesigned to minimise conflicts in any given phase. Increasing

the number of phases while maintaining a set cycle time means that each phase

now has a lower green time. Therefore the impact of intersection geometry at

signalised intersections is the resulting change to phase green times. Consider

the following phasing structures appropriate for each intersection.

(a) Two-way phasing

diagram.

(b) Three-way phasing diagram.

(c) Four-way phasing diagram.

Figure 33: The phasing diagram of different geometric arrangements, indicat-

ing that greater conflict points result in more phases.
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The impact of changing phase times is a critical component of this investi-

gation and is discussed in greater detail towards the end of this subsection.

Other lane allocations also exist in intersection configurations. For example,

Melbourne, Australia has provisions for “hook-turns” and “p-turns”. The

hook-turn lane allocation places a vehicle into the left-most lane, forces them

to wait for conflicting traffic to clear, then permits them to conduct a right

turn across all lanes in the intersection. The p-turn occurs at an intersec-

tion where a right turn is banned. A vehicle is forced forward towards the

adjacent intersection, where they conduct a u-turn, travel back to the previ-

ous intersection, and conduct a left turn from the opposing direction. These

lane allocations are rare and not permitted in NSW due to their inherently

more dangerous configuration. For this reason, they have been excluded from

the investigation and the remaining signalised lane allocation configurations

reflect the most commonly used in NSW.

The roundabout intersection (Figure 34), contains two lanes per approach,

with the left lane sharing the left and through movement, and the right lane

sharing the through and right movement. Each approach arm is 200m in

length, and the intersection node for data collection extends 100m beyond

the intersection stop line. The demand at each approach is in the ratio 2:3:1

between the left turn, through movement, and right turn, respectively. No

U-Turning vehicles are included in this environment. Demand is generated

into the network at 50km/hr, but the speed is reduced to 30km/hr as vehi-

cles circulate the roundabout, increasing back to 50km/hr as they exit. The

geometry is as follows;

Figure 34: Geometric layout of the roundabout intersection.
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The priority junction (Figure 35), contains a major East-West movement, and

minor North-South movement. The Northern and Southern approach arms

are forced to yield to the major movement. The North and South approach

allows both left and right turn, with a through movement possible by making

a left turn followed by a right turn when travelling southbound, vice versa

when travelling northbound. Other elements of this environment, including

the demand ratio, speed limit, data collection node, and approach arm length,

match the previous environments. The environment geometry is as follows;

Figure 35: Geometric layout of the priority intersections.

Finally, the environment used to assess the impact of green-time and CAV

platooning on throughput is provided in Figure 36. This environment is a

1km approach arm with a signal used to form a queue. Demand is effectively

infinite, as vehicles are produced into the network at the maximum loading

rate permitted by Vissim. The cycle time is 180s and alternates between a

green phase ranging from 5s to 80s, and an off phase for the remainder of the

cycle time. The geometry is as follows;

Figure 36: Geometric layout for the environment used to assess green time

and platooning on intersection performance.

For this experiment, the phase time is set from 5s to 80s in 1s increments,

and CAV penetration was increased from 0% to 100% in 20% increments.
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The results for the signal timing assessment can not be generalised further

for the following two reasons. Australian signal design guidelines mandate a

minimum of 4s for the amber phase in a traffic sequence. If the green time is

set to the minimum of 1s, the resulting phase time is 5s, acting as the lower

bound. It is uncommon to see cycle times greater than 180s, as this results in

extensively long delay times for waiting motorists. When using the most basic

split phasing arrangement, the 180s cycle time is divided by two, resulting in

90s for each phase. If the results demonstrate strong trends between a phase

time of 5s to 80s, then additional assessment to 90s will not be necessary.

7.2.3 Result Evaluation Metrics

This study uses a range of performance metrics to understand CAV impacts.

The performance metrics and justification for their use are itemised as follows.

Demand vs CPR vs Throughput curve: This metric provides a means of under-

standing the benefits of platooning and shorter reaction times. The maximum

throughput is intersection capacity. Understanding how it changes with CPR

will provide an insight into how much induced demand a CAV network can

absorb, or how much benefit it can provide to existing saturated environments.

Demand vs CPR vs Delay curve: This curve indicates whether increases in

intersection DoS lead to the same proportionate increase in delay, in both low

and high CPR scenarios. Junction delay functions (JDF) model the delay

experienced in response to DoS. Developing a demand vs CPR vs delay curve

will indicate if traditional JDF relationships still hold as CPR increases.

Demand vs CPR vs Average Speed curve: Understanding average travel speed

provides an accessible understanding of delay by contextualising it with the

real-world implication for a driver.

Demand vs CPR vs Average Queue Length curve: Understanding the impact

of CAVs on queue length is critical in understanding whether intersection

design standards need to be updated, depending on the discharge rate of CAVs

and there propensity to clear queues.

Signal Discharge Rate vs CPR curve: Human-driven vehicles have a perception-
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reaction lag when moving from a standstill at an intersection. As the traffic

signal green-time is reduced, proportionately more of the green-time is wasted

in this lag as opposed to moving vehicles through the network. CAV pla-

tooning eliminates this lag, meaning that signal green-times could be reduced.

Such a reduction would ideally reduce the overall phase time and reduce the

delay experienced by the average vehicle at the intersection.

7.3 Experimentation Results

Figure 37 provides results for the signalised intersection with a right turn filter;

(a) Demand vs Throughput for each CPR (b) Demand vs Delay for each CPR

(c) Demand vs Speed for each CPR (d) Demand vs Queue for each CPR

Figure 37: Intersection performance for the signalised intersection with a fil-

tered right turn, as CAV penetration increases.

Figure 37a displays a benefit to vehicle capacity when CPR increases. During

unsaturated conditions, the increase in throughput is linearly proportional to

demand increase, as is expected. Once capacity is reached, indicated by the

linear increase transitioning to a flat line, increases in demand do not increase

throughput. Higher levels of CPR improves the resilience of the intersection,

shown by its ability to accommodate more demand before reaching capacity.
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Refer to Table 12 for the quantitative increase in intersection capacity.

The vehicle delay graph (Figure 37b) shows a similar degree of increased re-

siliency. Unsaturated conditions provide negligible increases to vehicle delay.

Once the intersection approaches capacity, demonstrated by the sharp inflec-

tion point, each additional vehicle has a greater impact on intersection delay,

resulting in the well-understood compounding increase in delay effect. It is

noteworthy that CAVs have three clear impacts on intersection delay; they

postpone the onset of the inflection point and allow the intersection to carry

more demand before delay increases, they slow the compounding effect of ad-

ditional vehicles demonstrated by the lower gradient of the curve after the

inflection point, and they reduce the ultimate delay experienced by the vehi-

cles demonstrated by the lower curve tip. Similar observations are made when

assessing the average queue at the intersection (Figure 37d). Refer to Table 12

for the quantitative decrease in intersection delay and average queue length.

The increase in average travel speed for the different CPR scenarios follows the

same curve used to model junction delay. This occurrence is important to note

as this means that JDFs for strategic modelling may only need a recalibration

rather than a complete re-derivation. Otherwise, average travel speed shows

the same benefits as the other metric. CPR increases intersection resiliency,

allowing vehicle travel at higher speeds with greater network demand loading.

Additionally, when speed does decrease, it remains higher than it would oth-

erwise fall to, at lower a CPR. Refer to Table 12 for the quantitative increase

in average travel speeds, and changes to the other performance metrics;

Table 12: Overall impacts of CAV behaviour on the signalised intersection

with right turn filter.
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Figure 38 provides results for signalised intersection with a dedicated right

turn;

(a) Demand vs Throughput for each CPR (b) Demand vs Delay for each CPR

(c) Demand vs Speed for each CPR (d) Demand vs Queue for each CPR

Figure 38: Intersection performance for the signalised intersection with a ded-

icated right turn, as CAV penetration increases.

The results for the signalised intersection with the dedicated right-turn are

similar to that of the intersection with the filtered right turn. CAV operation

increases the resiliency of the network and allows it to cater to significantly

greater demand. The intention of investigating both the filtered right turn

and the dedicated right turn is that a reasonable expectation would be for

right-turning vehicles waiting for gaps in the opposing stream to stifle the

right lane in a shared-lane arrangement.

Intuition may suggest that finding appropriate gaps becomes difficult when

CPR is higher, as inter-vehicle spacing is small. When combined with a high

demand, it would lead to both lower throughputs and higher delays. The re-

sults in Figure 38 and the summary in Table 13 demonstrate that this intuition

is correct. While the filtered right turn intersection saw substantial benefits

from CAV operation, greater benefits are achieved from a geometric realign-
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ment and providing the right turn with a dedicated lane and signal time. The

following table provides the quantitative change in performance metrics;

Table 13: Overall impacts of CAV behaviour on the signalised intersection

with a dedicated right turn.

Figure 39 provides the results for the roundabout intersection;

(a) Demand vs Throughput for each CPR (b) Demand vs Delay for each CPR

(c) Demand vs Speed for each CPR (d) Demand vs Queue for each CPR

Figure 39: Intersection performance for the roundabout intersection, as CAV

penetration increases.

The performance of the roundabout intersection lies between that of the sig-
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nalised intersection with a filtered right turn, and signalised intersection with

a dedicated right turn, for all metrics. During runtime, vehicles were observed

entering the roundabout as platoons of multiple vehicles, helping increase the

throughput. Although, since the demand from all approaches was balanced,

a significantly long platoon was not able to form which could have otherwise

warped the results of the roundabout intersection.

250 iterations of each CAV penetration scenario using different random seeds

indicates that roundabouts are more sensitive to random variability and slight

changes in vehicle arrival patterns. This finding is demonstrated by the lack

of distinction in the results between CPR scenarios (shown in Figure 39b and

Figure 39d specifically). While the previous two intersection types demon-

strated a clear distinction between CPR scenarios, the roundabout results are

less clear for CPR under 40%, indicating the contingency of roundabout per-

formance on beneficial vehicle arrival patterns, particularly for queue length

and delay. Refer to Table 14 for the quantitative change in network metrics;

Table 14: Overall impacts of CAV behaviour on the roundabout intersection.

Figure 40 provides the results for the priority intersection;

(a) Demand vs Throughput for each CPR (b) Demand vs Delay for each CPR
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(c) Demand vs Speed for each CPR (d) Demand vs Queue for each CPR

Figure 40: Intersection performance for the priority intersection, as CAV pen-

etration increases

Referring to Figure 40d, while other intersections demonstrated that the in-

cremental increase in queue length after reaching capacity for the 100% CAVs

scenario was generally less than that for the mixed fleets scenario, the prior-

ity section did not demonstrate this property. Although, despite the queues

being the same length, vehicles traversing the priority junction in platoons

caused the queues to dissipate quicker. Figure 39b demonstrated this out-

come through the lower delay time for higher CAV penetrations despite the

same queue length.

Additionally, without a clear turn-based priority, the priority junction suffers

the same effect as the roundabout intersection, where random variability in

arrival patterns results in a lack of distinction in intersection performance

while CPR is below 40%. Refer to Table 15 for the quantitative change in

network metrics;

Table 15: Overall impacts of CAV behaviour on the priority intersection.
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Finally, Figure 41 provides the results for how vehicle throughput and other

metrics change in relation to the green-time offered to vehicles;

(a) Green-Time vs Throughput for each

CAV Penetration

(b) Green-Time vs Delay for each CAV

Penetration

(c) Green-Time vs Average Speed for each

CAV Penetration

(d) Green-Time vs Average Acceleration

for each CAV Penetration

Figure 41: Changes to platoon behaviour as CAV penetration and signal green-

time increases.

The results in Figure 41 differ from the other intersections in that this is not

an assessment of a specific intersection type, but rather the performance of

vehicles and platoons in response to different signal green-times. These results

provide numerous noteworthy insights. Figure 41a indicates that increasing

the green-time results in higher throughput, an expected finding in itself. As

CPR increases, the rate of increase in throughput also increases. This occur-

rence is attributed to the effect of instantaneous reaction times and shorter

headways on vehicle platooning.

Perception and reaction lag is a pertinent source of inefficiency when vehicles

debark from a traffic light, which is why providing more green-time provides

higher throughput per cycle (indicated by the linear increase in Figure 41a).
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Once vehicles join the end of the queue at free flow speed as the perception

reaction lag dissipates through the traffic stream, throughput per cycle ceases

to increase, indicated by the flattening of the throughput per cycle curve in

Figure 41a.

Referring to Figure 41b, the importance of eliminating the perception-reaction

lag inefficiency is demonstrated more clearly. Delay decreases linearly with

increasing green-time until a critical point is reached. This critical point is

when vehicles join the end of the queue and traverse the intersection in the

same cycle, and join the queue at speeds greater than standstill. As green-

time further increases, the speed at which additional vehicles join increases,

resulting in the hyperbolic style curve observed. Throughput would be at its

maximum if all vehicles joined the queue at free flow speeds, which would result

in the linear portion of the curve in Figure 41b being eliminated. The same

figure shows that as CPR increases, the queue delay approaches this optimal

outcome with the shortening of the linear perception-reaction lag section of

the delay.

The explanation provided above regarding the observed behaviour in through-

put and delay is further demonstrated in Figure 41c. This figure demonstrates

that a 100% CPR, the intersection operates with higher average speeds result-

ing from eliminating the perception-reaction lag and more vehicles joining the

end of queues at higher speeds. The average acceleration, shown in Figure

41d, is lower as CAV penetration increases, which is also an expected out-

come. Firstly, the CAVs in this thesis are designed to have lower acceleration

limits than the human vehicles, and also adhere to these limits more strin-

gently. Additionally, CAVs joining the back of queues at higher speeds means

that acceleration for shorter periods is sufficient to reach free flow speeds.

7.4 Discussion

The comprehensive microsimulation modelling at each intersection indicates

that CAVs provide a substantial benefit to intersection performance. The

signalised intersection with a filtered right turn experienced a throughput in-

crease of 84% as CPR increased to 100%. Similarly, the other intersections,

signalised intersection with a dedicated right turn, the roundabout intersec-

tion, and the priority intersection, experienced a throughput increase of 110%,
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51%, and 38%, respectively. Herein potentially lies the first logistical challenge

of CAV integration into transport networks. Though at first glance a network-

wide throughput increase appears to be a benefit, this increase in throughput

may result in the movement or formation of bottlenecks, as each intersection

type does not experience the same proportional increase. Consider the inter-

face between a residential precinct and the arterial road network. While the

arterial road network experiences up to a 110% increase in throughput at sig-

nalised intersections, the local residential road network primarily consisting of

roundabouts and priority intersections will only increase in throughput by up

to 51%. Without proper planning to cater for this additional demand reaching

low capacity intersections, bottlenecks may arise in new areas.

The queue length is an important metric as it greatly informs design deci-

sions. Queue length demonstrated an appreciable reduction in the signalised

intersection with a dedicated right turn and in the roundabout intersection.

Naturally, an assumption may be that greater throughput results in shorter

queues. However, this chapter indicates that this is only true at two intersec-

tions, meaning that many of the white papers and thought pieces that advo-

cate for reclaiming road space from vehicles for the purposes of other agents,

may not be possible. Assuming that with higher CPR, vehicle demand also

increases to maintain intersection operation at capacity, design changes can

not be made to reduce the storage space available to vehicles. However, if the

demand were to not increase with higher CPR, then queue lengths would fall

substantially, and road space could be reclaimed.

Delay also experiences a drastic reduction, with the signalised intersection

with a filtered right turn, signalised intersection with a dedicated right turn,

roundabout intersection, and priority intersection experiencing a reduction

in delay of -40%, -63%, -48%, and -35%, respectively, as CPR approaches

100%. A reduction in delay may not have unforeseen implications such as

those mentioned for throughput and queue length. However, shorter travel

times often incentivise changes to travel behaviour, with people electing to

make more trips by private vehicle or changing their existing travel mode

to a private vehicle. Such a behavioural shift brought on by better road

network performance would result in increased congestion. While this chapter

demonstrates that an undersaturated CAV network is more resilient and able
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to cater to a higher level of demand, even an oversaturated intersection is

subject to collapse and degradation in performance eventually.

Average travel speed also increased in all environments, with the intersections

experiencing an increase in average travel speed of 52%, 130%, 80%, and 44%,

respectively. While the percentage improvement in average speed is substan-

tial at 100% CPR, lower CAV penetrations show significantly less and even

negligible levels of average travel speed improvement. At priority-controlled

junctions such as the roundabout intersection and priority intersection, the ar-

rival of vehicles plays a large role in the performance of the environment. As

random seed values change, the arrival patterns of vehicles and the emergence

of gaps changes, occasionally leading to opportune scenarios and other times

increasing vehicle delay. For this reason, low CPR scenarios showing benefits

in average travel speeds were primarily the result of the opportune alignment

of vehicle arrivals and gaps in opposing traffic streams.

The effect of CAV platooning on intersection throughput indicates that as

green-time increases, throughput also increases. This finding is expected and

holds true for human vehicles too. However, as CPR increases, throughput

improvement occurs through the mitigation of the perception-reaction lag of

human drivers. Increasing CPR results in throughput increasing, and delay

decreasing, proportionately faster with each additional second of green-time.

Referring to Figure 41b, the greatest reduction in delay for each consecutive

second of green-time occurs when green-time is below 40s. After 40s, improve-

ment to delay still occurs, although the rate of improvement diminishes. When

observing 0% CPR at 40s green-time, the base case scenario still operates well

below optimal conditions. This result implies that signal times could actually

be reduced as CPR increases, allowing phases to occur more frequently and in-

creasing the turnover between movements. Short signal times can not be used

now for human vehicles due to the high proportion of green-time wasted in

perception-reaction by human drivers. But they should be implemented with

CAVs, and result in shorter delays for vehicles. A higher turnover of phases

would also reduce the required infrastructure storage space at intersections.
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7.5 Conclusion

In this chapter, the impact of CAV penetration on intersection performance

was explored. Intersection performance increased substantially, with through-

put increasing by up to 110%, delay reducing by up to -63%, queue length

decreasing by up to -28%, and average speed increasing by up to 130%. How-

ever, this chapter demonstrated that proportionally, all intersections do not

experience the same degree of improvement, raising the concern that dispro-

portionate enhancements to parts of the network may redistribute the location

of bottlenecks and pinch points. Additionally, improved travel conditions may

result in the induction of demand and mitigate any improvements possible

through CAV operation.

The other significant contribution of this chapter was in its assessment of

the platoon formation and movement in response to changing phase green-

times. This chapter demonstrated that large portions of the green-time were

wasted by human drivers in perception and reaction, while CAVs can utilise

the time better. This outcome means that shorter phase times are possible

as CPR increases, increasing the turnover of phases, reducing the delay per

approach arm, and ideally reducing the infrastructure required as storage space

at intersections.
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8 Intersection Phasing Optimisation for a Pedestrian-

Priority Signalling Scheme

Abstract: Rapid progress has been occurring in the development of CAVs as

a means of solving existing transportation problems. This chapter assesses

the feasibility of transitioning existing vehicle-priority signalling schemes to a

pedestrian-priority scheme. Such a change could lead to the redevelopment of

signalling schemes in densely populated city centres, resulting in behavioural

changes in transit and mobility. This study is undertaken using microsimula-

tion to assess the travel times and delays of agents in the system. It uses two

intersections as testbeds. The first represents a pedestrian-dominated environ-

ment and the second represents a vehicle-dominated environment. The custom

behavioural model for CAVs is integrated into the microsimulator Aimsun to

emulate CAV behaviour. Testing consists of developing three signalling scenar-

ios. The first is the base case that reflects current signal operation. The second

aims to minimise vehicle delay, and the third aims to minimise pedestrian de-

lay. The results indicate that transitioning from the current vehicle-priority

signalling scheme to a pedestrian-priority scheme results in a substantial in-

crease in the vehicle and total system delay in a vehicle-dominated environ-

ment, regardless of the CAV penetration. However, the pedestrian-dominated

environment showed reductions in total system delay from such a transition

when CAV penetration exceeded 40%. This study indicates that through the

efficiency of CAV operation, signal green-time can be reallocated from vehicles

to pedestrians in pedestrian-dominated environments without increasing total

system delay. This finding has substantial implications for how pedestrian-

focused infrastructure, such as recreational and commercial precincts, central

business districts, and public transit hubs, are designed.

As cities continue to proliferate, transport issues such as congestion, road acci-

dents, emissions, parking requirements, and mobility constraints consequently

worsen. These issues may be addressed through the network integration of

technological advancements in mobility, such as CAVs. Several studies in the

literature have attempted to understand the impact of this technology on the

economy, environment, and society. However, the literature indicates that

attempts to homogenise the disjointed intentions of designing traffic signals

for vehicles and pedestrians have not been investigated in detail, especially
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with consideration to CAVs and mixed fleets. Previous chapters in this the-

sis demonstrated that CAVs improve intersection and network performance.

This chapter intends to investigate whether the travel time savings gained from

CAVs can be redistributed to other agents in the network (mainly pedestrians)

through a re-optimisation of intersection traffic signalling.

This chapter intends to determine the effect on intersection performance by

converting current vehicle-priority signalling schemes to a pedestrian-priority

signalling scheme. The change would theoretically create a safer and more

comfortable crossing experience for pedestrians. Whether this leads to a re-

duction in conflicts is not within the scope of this chapter, as Chapter 11 assess

the impact of CAV operation on vehicle conflict rates. Changing intersections

from vehicle-priority to pedestrian-priority would result in worsened vehicle

performance at most intersections. For this reason, such a transition may

only be possible by leveraging the operational advantages offered by CAVs,

such as instantaneous reaction times and platooning.

The investigation is conducted through microsimulation and use of a commer-

cial traffic simulator (Aimsun). The study focuses on investigating the mixed

fleet transition between a fully human-driven (0% CPR) and a fully auto-

mated (100% CPR) traffic fleet, in 10% increments of CAVs. The study uses

two calibrated and validated intersections located in Sydney, Australia. The

first is Ultimo Road / Quay Street intersection, and the second is Great West-

ern Highway / Marsden Street intersection. The former testbed represents

a pedestrian-dominated environment, while the latter is a vehicle-dominated

environment. The intention of testing both extremes of the spectrum is to

identify whether such a signalling regime change is beneficial in any case.

If neither case shows an improvement in total system performance, then a

pedestrian-priority signalling scheme warrants no further investigation. How-

ever, if either case shows a benefit, with the most likely being the pedestrian-

dominated environment, then further investigations should also be undertaken

to determine economic, environmental, and safety benefits arising from such

a signalling structure transition.

This chapter contributes to the literature through an assessment of signal

configuration and CAV operation on user experience, measured as delay. The
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chapter considers the impacts of signals on the three major agents expected to

share intersections in the near-term; human vehicles, CAVs, and pedestrians.

The novelty of this chapter is in its intensive emulation of CAV behaviour to de-

termine the travel implications on the agents as signal phasing is re-optimised.

In addition, this study contributes to the literature by recommending the CAV

penetration at which specific signalling schemes are best used.

The immediate benefactors of the results and conclusions produced by this

study would be government agencies and decision-makers for transport-related

infrastructure, as this study aids in understanding the impacts of CAVs in

pedestrian-dominated and vehicle-dominated environments. The results would

ideally highlight the need for informed intersection design and infrastructure

layout that considers the implications on all agents in the system.

The remainder of this chapter is structured as follows. Section 8.1 contains

a summation of the literature and the work completed to date. Section 8.2

outlines the framework for the experimentation conducted in this study and

provides in greater detail the process used for pedestrian emulation. Section

8.3 explains the specificities of the case studies. Section 8.4 and Section 8.5

provide the results and discussion, respectively. Finally, Section 8.6 concludes

the chapter with a summation of the work.

8.1 Literature Review of Vehicle and Pedestrian Interaction

Several studies have quantified the extent of pedestrian conflicts and accidents

in road networks. The Governors Highway Safety Association in the United

States [Retting, 2017] showed that on average, 16 pedestrians are fatally in-

jured per day. The European Transport Safety Council [Adminaite et al.,

2015] state that pedestrians account for 21% of road fatalities in the European

Union. East Asia and India also show unreasonably high rates of pedestrian

conflicts, with India showing 60% [Mohan et al., 2009] and the region of East

Asia showing 20% of all accidents involving a pedestrian, respectively. These

reports show that pedestrian conflicts are not confined to a specific geographic

location or social behaviour, but are a universal problem. The World Health

Organisation [Organization, 2015] showed that pedestrian conflicts worldwide

range from 12% to 38%, with countries averaging 25%. Additionally, 54% of

conflicts occur during legal activities [Kumar & Parida, 2011].
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To reiterate, this study does not intend to quantify changes in pedestrian

conflicts using a pedestrian-priority signalling scheme. It aims to determine

whether doing so is feasible in the context of delay, travel time, and general in-

tersection performance. The remainder of this section outlines recent attempts

at understanding the interaction between pedestrians and vehicles.

Daganzo and Knoop investigated the effect of giving pedestrians total right

of way, with permission to cross at any point and with complete priority [Da-

ganzo & Knoop, 2016]. Vehicles were modelled using kinematic wave theory

and the Newell’s car-following model on an infinitely long road with pedestrian

crossings. Their experimentation found that for low pedestrian volumes, the

road capacity is inversely proportional to the square of the pedestrian volume.

Their formulations indicate that more pedestrians crossing results in less vol-

ume at each crossing point, and hence greater road capacity between them,

but also results in increased vehicular delay. A similar study by Anderson and

Knoop found that low pedestrian volumes resulted in decreased vehicle travel

speeds and increased delays when pedestrians are given right of way [Anderson

& Knoop, 2018]. The contribution of this chapter is to extend the work of

Daganzo and Knoop through the investigation of whether any reduction in the

pedestrian delay is sufficient to offset the effect on vehicle delay, an outcome

that would lead to the better design of intersections in pedestrian-dominated

city centres. While a system allowing unfettered pedestrian crossing is appeal-

ing, especially in dense city centres, its practicality and safety are questioned

in environments containing human drivers.

Many studies have investigated the impact of shared spaces, rather than pro-

viding either transit mode priority at crossings. Shared space schemes are

designed to decrease disorder on roads, augment safety awareness, diminish

the separation between vehicles and pedestrians, and attract people to walk-

ing or cycling. Anvari et al., presented a microscopic mathematical model for

shared spaces by integrating the car-following model and the shortest path al-

gorithm based on the flood fill algorithm, into the Social Force Model [Anvari

et al., 2016]. This model evades conflicts and is successful in incorporat-

ing interaction factors between pedestrians and vehicles. Their experiment

observed higher vehicle flow, higher vehicle speed, and greater segregation be-

tween pedestrians and vehicles in the study area. Their study indicated that
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the shared space concept is highly dependent on context, with factors such

as flow, ratio, speed of both pedestrians and vehicles, and infrastructure de-

sign all influencing shared space performance. This chapter aims to determine

whether signal optimisation is a viable means of reaching global improvement,

opposed to the context-specific benefits found with shared space schemes.

Frosch conducted a similar study using data from Grumbein’s Island on West

Virginia University [Frosch, 2017]. The study implemented a shared space in

microsimulation, where interaction between vehicles and pedestrians happens

frequently. Simulations in Vissim were performed to calculate network perfor-

mance measures such as travel time, delay time, queue length, and the impact

of the proposed shared space on the upstream and downstream intersection.

The results of his study found that travel time decreased by 13%. Addition-

ally, the average delay reduced from 60s to 20s, and queues were observed to

dissipate quicker compared to the base scenario. The shared space concept

reduced the network impact of the congestion zone. Shared spaces can only

be implemented in low vehicle flow scenarios and at intersections without long

crossing distances for pedestrians. For this reason, the study in this chapter

employs a signal optimisation approach to determine if pedestrians can benefit

at intersections where shared space is not feasible.

Other studies have focused on the interaction between human vehicles and

pedestrians. Arkell quantified the impact of pedestrians on network perfor-

mance using an Auckland Light Rail access site as the case study [Arkell,

2017]. Light rail vehicle headways of 3min and 5min were both investigated

during the AM and PM peak periods. This study found that pedestrians had a

significant impact on the average delay experienced by the Light Rail vehicle.

The presence of pedestrians resulted in vehicle delays, where vehicles had to

wait for pedestrians to clear the intersection in unprotected phases. The travel

time of the Light Rail significantly increases in both the AM and PM peak due

to the right of way of pedestrians at intersections. This chapter aims to extend

the works of Arkell by investigating the network impact of optimising for each

agent in turn. Doing so will lead to the development of a spectrum bound by

pedestrian-dominated locations and vehicle-dominated location. Such a spec-

trum would demonstrate system optimality and the consequences of extreme

solutions that discriminately benefit a single agent.
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Jayaraman et al., investigated the interaction between CAVs and pedestrians

using Uncertainty Reduction Theory [Jayaraman et al., 2018]. This theory

asserts that more information about a system leads to less uncertainty. Their

study investigated signalised and unsignalled environments. They found that

at unsignalled crosswalks, CAV driving behaviour had minimal impact on

pedestrians’ trust. The authors determined that CAVs could integrate into a

shared-space environment with ease, as pedestrians have little to no reaction

to the proximity of a CAV. Nevertheless, this chapter focuses on the signalised

crossing environment where the implementation of a shared zone is not feasible.

Hagenzieker et al., conducted a study in which cyclists assessed different inter-

actions between bicycles and vehicles (both human and automated vehicles)

[Hagenzieker et al., 2020]. The subjective insights provided by the participants

indicated that cyclists do not expect to feel safer around a CAV as compared

to a human vehicle, nor do they have the certainty that CAVs would stop

for them. Several other studies ([Vissers et al., 2017], [Blau, 2015], [Lundgren

et al., 2017], [Lagström & Malmsten Lundgren, 2016], [Habibovic et al., 2014])

have also used stated-preference surveys to quantify the hesitation of cyclists

and pedestrians in interacting with CAVs. Their results show that pedestri-

ans are less likely to cross the road when the driver of an approaching vehicle

behaves uncommonly or is inattentive. These studies generally indicate that

pedestrians are cautious in interacting with CAVs. Vissers et al., determined

that outward displays of communication from the CAV, such as lighting and

signage, could be used to improve the comfort experienced by pedestrians

[Vissers et al., 2017]. Ideally, by prolonging the green-time provided to pedes-

trians for crossings, this discomfort can be alleviated. While this study does

not determine changes to comfort and safety, it investigates whether changing

the signalling scheme is possible without intersection performance impacts.

Several studies have conducted microsimulation of CAVs, with most consider-

ing only the 100% CPR case. Few studies have considered gradually loading,

which better reflects a realistic transition period. Minelli et al., modelled the

implications of altering mode share on the travel time of the system using

the Paramics microsimulator [Minelli et al., 2015]. Their result indicates that

a fully autonomous network experiences improvements in travel times, but a

network with increased demand results in significant delays. The authors at-
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tributed this to too many CAVs concurrently choosing the shortest path. The

current study aims to extend the work of Minelli et al., by determining if the

CAV operation performance improvements can be reinvested into the system

through signal optimisation and achieve a better pedestrian outcome.

8.2 Experimentation Framework

The framework used in this study consists of a collection of interconnected

modules (Figure 42), each responsible for generating, using, analysing or trans-

ferring data. The traffic data and network data modules provide constraints

on the simulation. The traffic data is used to calibrate the model and gener-

ate the agents during runtime; it consists of both vehicle and pedestrian agent

volumes over the modelling period. The network data provides the geospatial

constraints on the movement of the agents. These constraints consist of ge-

ometric movement, speed limits, and signalling controls. The microsimulator

allows the agents to interact with one another. The microsimulator forwards

vehicle information to the external algorithm, which then uses this information

to calculate and return appropriate actions for the CAVs. Finally, the simula-

tion results are then passed from the microsimulator to the analysis platform

for processing. Refer to the following figure for a diagrammatic representation

of the interconnection between modules;

Figure 42: Overview of the framework used for this study.
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Traffic Data: Vehicle and pedestrian volumes were both obtained from site

visits. This traffic data is used to adjust the OD matrix iteratively. Vehicle

turning counts were calibrated in 15-minute intervals, and pedestrian counts

were aggregated into 1-minute intervals. Greater detail about the two study

areas is provided in Section 8.3.

Network Data: Open Street Map and Google Maps geospatial data imported

to the microsimulator were used to create the geometric network. Also, the

Street View features of these geospatial imagery platforms provide additional

network information such as speed limits, signalling schemes, and phasing

configurations, which were calibrated and adjusted using the video recordings

from the site visits.

Microsimulator: The microsimulator is a combination of Aimsun 8.1 for sim-

ulating vehicle travel and delay (here forth referred to as VehicleSim) and

a discrete-time based microscopic simulator for calculating pedestrian delay

(here forth referred to as PedestrianSim). The microsimulation process is

responsible for facilitating the interaction between the agents in the environ-

ment and the movement of data between the different modules. VehicleSim

provides the external algorithm with the geolocation, speed, acceleration, and

lane-changing intention of each vehicle for the current time increment. In re-

turn, the external algorithm provides VehicleSim with the acceleration and

lane-changing status for the next time increment. Additionally, the microsim-

ulator records information regarding network performance during runtime and

provides data on individual agents, links, intersections, and the network.

External Algorithm: The external algorithm, developed in Chapter 5.1, is

used to dictate the CAV behaviour. The algorithm receives information from

VehicleSim related to the current vehicle position and behaviour. It then uses

this information to determine the appropriate acceleration and lane-changing

behaviour for the CAV for the next time increment. The algorithm interacts

with VehicleSim through a dynamic linking library (DLL), developed using

the Aimsun MicroSDK (software development kit).
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8.2.1 Pedestrian Emulation

Pedestrians are emulated using a discrete-time based simulation tool (Pedes-

trianSim) developed in Microsoft Excel. This tool achieves two objectives; the

first is to estimate pedestrian delay for each CPR scenario, and the second

is to optimise phasing structures that result in minimum pedestrian delay for

the pedestrian-priority scenarios.

PedestrianSim emulates pedestrian behaviour in 1s increments over a 1hr

modelling period and calculates the delay experienced by the pedestrians in

response to each signal phasing scheme. Pedestrian delay is equal to the dura-

tion of the red light that each pedestrian agent experiences. For this reason,

stochastic distributions to describe the characteristics of the pedestrian fleet

(such as age, walking speed, walking gate, and trajectory) are not necessary.

A 100% compliance rate for the traffic signals is assumed.

PedestrianSim works as follows. Input into PedestrianSim is the arrival vol-

umes of the pedestrians in 1min bins, and the traffic light phasing times

(green-time, red-time, and phase-time). The arrival of the pedestrians be-

tween 1min bins is deterministic and already known based on real site visits

and primary data collection. Within the 1min bins, the arrival of the pedes-

trians at the second-to-second discretisation is random. Random arrival is

created by assigning each 1s time step with a random number. The number

of pedestrians to arrive during that 1s time step is equal to the proportion of

the random number assigned to that time step, against all time steps in that

1min bin. This process is outlined in Equation 144;

Vt,b = Vb ×
RNDt,b∑60,b
i=1,bRNDi,b

(144)

Where, Vt,b is the pedestrian volume for the ith second in the bth bin, Vb is

the total pedestrian arrival for the bth bin, and RNDt,b is the random number

associated with the ith second in the bth bin.

Random arrival over the 1min bins avoids bias for any particular signalling

schemes. If the pedestrian arrives while the traffic signal is green, then a

delay of 0 is registered for that pedestrian. If the pedestrian arrives during a

red light, then the delay is counted in 1s increments until the light changes
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to green. The total pedestrian delay is then the summation of the delay

experienced by all pedestrians during the simulation period.

8.2.2 Signal Optimisation Process

The optimisation objective function is to minimise average delay for the agent

under investigation. For the vehicle-priority signalling scenario, the objective

is to minimise vehicle delay. Similarly, for the pedestrian-priority signalling

scenario, the objective is to minimise pedestrian delay.

The branch and bound (B&B) algorithm is used to optimise the signalling

for each scenario tested. The B&B algorithm works by incrementally moving

through a decision tree where the set of all solutions is partitioned into subsets

of solutions. The decision tree contains all feasible cycle times and green-

time arrangements for the signalling structure, and the algorithm operates

by exploring each branch in succession. If a better solution is found in the

next iteration along a branch, then the solution branch is retained and further

investigated. Otherwise, the branch is terminated, and further solutions are

not investigated along it. This process continues until all branches have been

explored, with the optimal solution providing the lowest total system delay.

The pseudocode for the B&B algorithm is provided in Algorithm 3;

Algorithm 3: Pseudocode for the B&B Algorithm

set: L = {X}
initialise: x̂

while L 6= 0 do
select a subproblem S from L to explore

if a solution x̂′ ∈ {x ∈ s | f(x) < f(x̂)} can be found then
Set x̂ = x̂′

end

if S cannot be pruned then
Partition S into S1,S2,...,Sr

Invert S1,S2,...,Sr into L

end

Remove S from L
end

return x̂
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Where, L is the unexplored search space, x̂′ is the solution under investigation,

and S is the branch under investigation. Selection of the first iteration affects

the performance of the B&B algorithm.

Three components affect the algorithm; the search strategy, branching strat-

egy, and pruning rules. The search strategy, highlighted in the third line of

the pseudocode, influences the order of node selection. The search strategy

used is called best-first search. This strategy selects the next iteration as the

phasing structure that generates the minimum delay time. The branching

strategy refers to how each subproblem is divided, with this study using the

wide branching strategy. This strategy divides the current branch under in-

vestigation into all possible sub-branches by incrementing the green-time by

±1s. The pruning rule indicates whether to proceed further along a specific

subproblem. The bounding function serves as the pruning rule, with this

study electing to discard (prune) subsequent nodes along branches that in-

crease previously calculated delay time. A subproblem may appear more than

once from a specific parent node in an iteration. If the subproblem has already

been explored for that CPR, the branch is pruned.

If the first iteration is chosen poorly, many modelling iterations are needed to

reach the optimal solution. For this reason, queueing theory with a Markovian

arrival and departure rate is used to determine the first iteration.

The wait time of a system is a function of the arrival rate and the average

queue length, given by Equation 145;

wq = λ−1
q lq (145)

Where, wq is the wait time of the approach arm, λq is the arrival rate of the

approach arm, and lq is the average queue length of the approach. The average

queue length (lq) is calculated by Equation 146;

lq =
ρc+1

(c− 1)! (c− ρ)2
· P0 (146)

Where, ρ is the utilisation rate of the approach, c is the number of lanes of

the approach, and P0 is the probability of the approach having no queue. The

utilisation of an approach is determined using Equation 147;
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ρ =
λ

c× µ
(147)

Where, µ is the departure rate of the approach per lane. The probability of

the approach lane having no queue is calculated using Equation 148;

P0 = 1 + ρ+
ρ2

2(1− ρ
c )

(148)

Using Equation 145 to 148, the average queue length of a movement at the

intersection becomes a function of the arrival rate (λ), the number of lanes

(c) and the departure rate (µ). Therefore, the total intersection delay is the

summation of the delay experienced by each vehicle in each turning movement

of the intersection, and is calculated using Equation 149;

Delay =

n∑
x=1

Ax×λ−1×
( λ
c×µ)c+1

(c− 1)! (c− λ
c×µ)2

×(1+
λ

c× µ
+

( λ
c×µ)2

2(1− λ
c2×µ)

) (149)

Where, x is the ID of the turning movement, n is the total number of turning

movements in the intersection, and Ax is the arrival rate of turning movement

x. The approach arrival rate (λ) and departure rate (µ) are calculated using

Equation 150 and Equation 151, respectively;

λx =
Ax × CycleT imex

3600
(150)

µx =
Dx × CycleT imex

3600
× GreenT imex
CycleT imex

(151)

Where, Dx is the discharge rate of turning movement x. Equation 149 to 151

are used to develop a single equation to calculate the total delay experienced

by the intersection. The delay equation becomes a function of the green-

time given to each turning movement. Using a system of partial differential

equations, the minimum delay and corresponding phase green-time and cycle-

time are calculated, also forming the first iteration to the B&B algorithm.

8.3 Case Studies

This investigation uses two case studies, both located in Sydney, Australia.

The first is the pedestrian-dominant Ultimo Road/Quay Street Intersection lo-

cated near the Sydney CBD. The second is the vehicle-dominant Great West-

ern Highway/Marsden Street Intersection located in the western suburbs of
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Sydney. The purpose of selecting two vastly distinct locations is to investi-

gate pedestrian-priority at both ends of the spectrum. Finding no benefit in

a vehicle-dominant environment would not dismiss the possibility of finding

benefit in a system dominated by pedestrians. Alternatively, finding benefits

exclusively in a pedestrian-dominated environment would not provide insight

into the range of intersections where a pedestrian-priority signalling scheme

could be beneficial.

8.3.1 Study Area

Primary data at both intersections were collected between 11:30 AM and 12:30

PM. Historical traffic data provided by the RMS was used to convert the

observed data into average weekday AM peak hour volumes [RMS, 2018].

Figure 43 provides both a context map and the point-of-view of the cameras

used to record vehicle and pedestrian activity.

(a) Pedestrian-dominant environment

context map.

(b) Vehicle-dominant environment con-

text map.

(c) Pedestrian-dominant environment site

visit first person view from the recording

equipment.

(d) Vehicle-dominant environment site

visit first person view from the recording

equipment.
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(e) Pedestrian-dominant microsimulation

model environment.

(f) Vehicle-dominant microsimulation

model environment.

Figure 43: Context map, location photograph, and microsimulation model for

each of the study environments.

8.3.2 Model Volumes

Traffic and pedestrian volumes are provided in Table 16 (veh/hr);

Table 16: Observed traffic volumes from 11:30 AM to 12:30 PM.
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Traffic data was collected in 15min intervals and 1min intervals for vehicles

and pedestrians, respectively. In Table 16, L, T, and R is the left turn, through

movement, and right turn volumes respectively. Using the RMS historical

traffic volumes database, a peak hour factor of 1.46 is used at Ultimo Road /

Quay Street and 1.37 is used at Great Western Highway / Marsden Street to

convert observed volumes to average AM peak-hour volumes [RMS, 2018].

8.3.3 Model Calibration

The RMS Traffic Modelling Guidelines suggests using the GEH goodness-of-fit

calibration criteria [RMS, 2013]. This GEH statistic is a Chi-squared statistic

designed to be tolerant of large errors in low flows. It is often used to compare

two sets of traffic counts, the observed counts and the modelled counts. Refer

to Section 11.3.2 and Equation 171 for a detailed empirical description of

the calibration process, where it is applied to a network as opposed to an

intersection. The GEH statistic is required to be less than 10 for 100% of

turning movements and less than 5 for 85% of turning movements. The scaled

observed volume (veh/hr), modelled volume (veh/hr), and GEH for each

turning movement are provided in Table 17;

Table 17: Scaled volume (veh/hr), modelled volume (veh/hr), and GEH.

Regression analysis is also conducted to avoid prioritisation of larger or smaller

turning movements. The regression analysis involves fitting a linear model

originating at 0 to the observed volumes and modelled volumes data. The r2
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value for Ultimo Road / Quay Street and Great Western Highway / Marsden

Street is 0.9978, and 0.9995, respectively, well above the 0.95 requirements

stated in the RMS modelling guidelines.

Finally, model stability is established by demonstrating that the total vehicle

kilometres travelled between random seeds does not vary significantly. The

RMS modelling guidelines recommend the seed numbers when creating cali-

brated models. The vehicle kilometres travelled results are provided in Table

18. This table indicates that the models are sufficiently stable, meaning that

they are fit for purpose in this study;

Table 18: Vehicle kilometres travelled results for each seed.

8.3.4 Experimentation Structure

The experimentation structure is as follows. Ten random seeds are mod-

elled for each scenario, and the median seed results are used for reporting.

CAV penetration is incrementally increased at both intersections in 10% in-

crements, starting from 0% completely human-driven to 100% completely au-

tonomous. Each CAV penetration scenario tests three signalling regimes, con-

sisting of the base case signalling structure, the structure that minimises vehi-

cle delay (vehicle-priority), and the structure that minimises pedestrian delay

(pedestrian-priority). These optimal signalling regimes are found using the

B&B optimisation algorithm outlined in Section 8.2.2. Fairness is maintained

by imposing restrictions on the structure of phase lengths, as follows;

� The length of the pedestrian crossing phase must not be less than the
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time taken to cross the intersection at a walking speed of 1.2m/s.

� The inter-green phase within a cycle must be 4s long.

� All crossings must be given green-time in each cycle.

8.4 Results

This section presents the microsimulation modelling results as average delay

and level of service (LOS). LOS contextualises the delay and provides a scale

of significance to changes in delay between scenarios. RMS’s LOS criteria is

an amendment to the original HCM criteria [Roads & Authority, 2002].

8.4.1 Pedestrian-Dominant Environment

Figure 44 and Table 19, provide the average delay and LOS results for the

three signalling regimes in the pedestrian-dominant environment;

Figure 44: Delay per agent at the Ultimo Road / Quay Street intersection for

the three modelling scenarios, in 10% increments of CAV penetration.

When implementing the base case or vehicle-priority signalling scheme, the

system shows little performance improvement with increasing CPR. However,

when a pedestrian-priority signalling scheme is used, the delay per agent re-

duces with increasing CPR. This experimentation shows that system benefits

are attained when transitioning to a pedestrian-priority signalling model at a

CPR greater than 40%.

The base case signalling scheme with 0% CAVs has an average delay per agent
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of 45.4s. As CPR increases, the average delay per pedestrian remains constant,

and the average delay per vehicle declines at a compounding rate of -3.1% with

each 10% increment in CPR. The total system delay per agent, considering

both vehicles and pedestrians declines at a compounding rate of -1.15%.

The vehicle-priority signalling regime shows an oscillating pattern about the

results of the base case signalling regime as CPR increases from 0% to 100%.

In this signalling regime, the pedestrians experience a compounding delay

increase of 0.57% per agent for each 10% increment of CPR. This increase is

attributed to the re-optimisation of cycle times for vehicle performance, which

experience a compounding delay decrease of -3.14%. When considering the

system as a whole and combining pedestrian and vehicle delays, each 10%

increment of CPR results in a compounding delay decrease of -0.84%.

The pedestrian-priority signalling scheme showed significant delay reductions

with increasing CPR, for all agents. The vehicles, pedestrians, and total sys-

tem experience a compounding delay decrease of -5.68%, -3.04%, and -4.92%,

respectively. Despite the compounding delay decrease rate being greater than

that of the vehicle-priority scheme for vehicles, the absolute delay in the

pedestrian-priority scheme is substantially higher. Vehicle delay under the

pedestrian-priority scheme is 41s and 23s for the 0% and 100% CPR cases,

respectively. However, under the vehicle-priority scheme, these delays are 19s

and 13s, respectively. While CAV operation aids in reducing vehicle delay, the

increase in absolute delay caused by the signal scheme change does not return

to base case levels. Table 19 provides the delay and LOS for each scenario;

Table 19: Delay (sec) and LOS at the Ultimo Road / Quay Street intersection

for all CPR and signalling scenarios.
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The LOS results indicate that while the base case and vehicle-priority sig-

nalling regime both experience a reduction in total system delay with increas-

ing CAV penetration, they remain within the same LOS bracket, a rating of

D. However, the pedestrian-priority scheme causes a reduction in delay signif-

icant enough to increase the intersection by two brackets from an E to a C.

This table contextualises the results and helps determine the significance of

the delay reduction.

8.4.2 Vehicle-Dominant Environment

The vehicle-dominant Great Western Highway / Marsden Street Intersection

shows different results to that of the pedestrian dominated environment. The

modelling results (refer to Figure 45 and Table 20) indicate that in vehicle-

dominated environments, transitioning to a pedestrian-priority model is not

beneficial for intersection performance regardless of the CAV penetration. Re-

fer to the following figure for the change in delay for each signalling scheme in

the vehicle-dominant environment;

Figure 45: Delay per agent at the Great Western Highway / Marsden Street

Intersection for the three modelling scenarios, in 10% increments of CPR.

When retaining the base case signalling regime, the pedestrians experience no

change in delay, and the vehicles experience a compounding delay decrease of

-4.56%. This results in a total system compounding delay decrease of -4.12%.

Implementation of the vehicle-priority signalling regime results in small changes

210



to total system delay with changing CAV penetration. Compounding vehicle

delay decreases by -4.79%. The difference in delay between the base case and

vehicle-priority signalling regime is -4.05% and -6.39% for the 0% and 100%

CPR cases, respectively. The pedestrians experience a compounding delay

decrease of -1.28%, resulting in a total system delay decrease of -4.45%.

Under the pedestrian-priority signalling regime, the vehicles, pedestrians, and

total system experienced a compounding delay decrease of -4.32%, -11.91% and

-4.48%, respectively. While increasing CPR aided in reducing vehicle delay,

the delay between the pedestrian-priority case and base case experienced by

vehicles increased by 90.0% and 94.9% for 0% and 100% CPR, respectively.

The LOS table also indicates the substantial increase in delay experienced by

the system under the pedestrian-priority regime regardless of CPR;

Table 20: Delay (sec) and LOS at the Great Western Highway / Marsden

Street intersection for all CPR and signalling scenarios.

8.4.3 Results Summary

Section 8.4.2 and Section 8.4.1 made mention of the results for pedestrians

and vehicles separately. The figures and tables above only show the aggre-

gated average delay per agent for the network. Figure 46 provides a detailed

summation of the delay experienced per vehicle and per pedestrian for each

signalling and CPR scenario;
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(a) Pedestrian-dominant environment

Base case signalling scheme.

(b) Vehicle-dominant environment Base

case signalling scheme.

(c) Pedestrian-dominant environment

Vehicle-priority signalling scheme.

(d) Vehicle-dominant environment

Vehicle-priority signalling scheme.

(e) Pedestrian-dominant environment

Pedestrian-priority signalling scheme.

(f) Vehicle-dominant environment

Pedestrian-priority signalling scheme.

Figure 46: Comprehensive modelling results detailing average delay experi-

enced by vehicles, pedestrians, and system average for each CPR, signalling

scheme, and intersection.
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This data provides significant insights into CAVs, pedestrians, and signalling

schemes. Increasing CAV penetration from 0% to 100% reduces the delay

for all agents, regardless of the intersection type and the signalling scheme

used. The vehicle-dominated environment only showed total system perfor-

mance improvements under the vehicle-priority scheme. The improvements to

vehicle operation offered through CAV technology were not sufficient to offset

the increase in delay caused by transitioning to a pedestrian-priority model.

Such a transition is possible at a pedestrian-dominated environment where

pedestrian volumes account for a larger proportion of the system. At ap-

proximately 40% CAVs, total system performance under a pedestrian-priority

scheme fell below that of a vehicle-priority and base case signalling scheme.

However, total system performance improvements in the pedestrian-dominant

environment using a pedestrian-priority signalling scheme were the result of

significant sacrifice to vehicle performance.

8.5 Discussion

The results show a global decrease in the delay experienced by each agent in

the system between a CPR of 0% and 100%, indicating that regardless of the

signalling scheme adopted, CAV operation will have benefits for both pedes-

trians and vehicles. In the pedestrian-dominated environment, this benefit

amounts to a compounding delay decrease of -3.10% with each 10% increment

in CAV penetration, and -4.56% in the vehicle-dominated environment.

The vehicle-priority signalling scheme offers vehicles benefit at both locations.

However, the pedestrians experience a reduction in delay only at the vehicle-

dominated location. When comparing the base case signalling regime to the

vehicle-priority scheme, there are no additional benefits to vehicle delay at

either location. The reason for this is because intersections in Australia are

designed to minimise delay and maximise LOS for vehicles, with system perfor-

mance being measured through vehicle delay exclusively, effectively meaning

that the base case already operates similarly to a vehicle-priority scheme.

Using the vehicle-priority signalling scheme, pedestrians experience a com-

pounding decrease in delay of -1.28% in the vehicle-dominated environment,

but an increase of 0.57% in the pedestrian-dominated environment. Compar-

ing delay in absolute terms, this increase in delay amounts to 1.9s per pedes-
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trian. The disparity in the volume of pedestrians at the two intersections is the

cause of this increase. At Ultimo Street / Quay Street, the pedestrian volumes

are higher, meaning that when using a random arrival pattern, the volume of

pedestrians arriving during a red light is greater. At the vehicle-dominated

environment, the likelihood of arriving at a red light is the same. However,

lower proportions of pedestrians reduce the impact on total pedestrian delay.

Using a pedestrian-priority signalling scheme has total system benefit only

at the pedestrian-dominated environment, although still increases the delay

for vehicles in both environments. Pedestrians experience greater benefit,

with compounding delay reducing at -3.04% and -11.91% at the pedestrian-

dominated and vehicle-dominated locations, respectively. When comparing

against the base case signalling scheme, the pedestrian-priority scheme re-

sults in a -59.9% and -80.7% decrease in pedestrian delay at the pedestrian-

dominated and vehicle-dominated locations, respectively, with 100% CAVs.

The vehicles experience a substantial increase in delay. For the 0% CPR case,

vehicle delay increases by 44.3s (124%) and 54.5s (90%) at the pedestrian-

dominated and vehicle-dominated environments, respectively. These figures

change to 18.5s (71%) and 36s (95%) when CPR increases to 100%.

The use of a pedestrian-priority signalling scheme in a vehicle-dominated en-

vironment should be disregarded. The increase in vehicle delay unreasonably

outweighs the benefit delivered to pedestrians, especially considering the rel-

atively smaller proportion of pedestrians at such a location. However, the use

of this scheme in a pedestrian-dominated environment indicates that benefits

to the system delivered through CAV operation can be reallocated to green-

time for pedestrian crossings. Doing so does raise equity concerns. Minimising

the total system delay disproportionately affects the minority (the vehicles),

worsening their situation for the betterment of the majority (the pedestrians).

A CAV proportion of 40% is the first case where the total system delay of

the pedestrian-priority signalling scheme falls below that of the other two

schemes. At this penetration, the delay per agent decreased by -1.35% (-0.4s).

This reduction is an amalgamation of a pedestrian delay decrease of -49% (-

16s) and a vehicle delay increase of 80% (24.5s). Criteria must be developed

to determine whether such a course of action will better the system and is
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equitably appropriate to do so. Criteria for determining system betterment

could include;

� Trip purpose and value of time: Determining approximate trip purposes

and then assigning a value of time is a means of converting delay values

to monetary and economic impacts. The appropriate course of action

would then be that which minimises economic impacts.

� Safety: This study has neither considered the vehicle safety implications

of shortening vehicle green times, nor the pedestrian safety implications

of lengthening crossing times. Such an investigation would determine

the likely change in accidents for vehicles and pedestrians. Many studies

determine the economic impact of an accident based on severity, so such

studies can be applied to convert safety to a monetary economic impact.

� Commercial traffic: Changes to commercial traffic has historically jus-

tified infrastructure spend. Consider the AUD$290million cost of the

Newcastle Light Rail project, designed to increase urban amenities and

pedestrian activity in the central business district [Paris, 2017]. This

chapter demonstrated that while changing from a vehicle-priority sig-

nalling scheme to a pedestrian-priority scheme does not have infrastruc-

ture costs, it has economic costs in the form of vehicle delay. A cost-

benefit analysis into the economic benefit of increased pedestrian traffic

and spending, against the financial burden of increased vehicle delays,

could again provide further clarity into the feasibility of the signalling

change.

� Other Key Performance Indicators (KPI): Improving pedestrian comfort

has other societal benefits. An improved pedestrian network incentivises

walking and naturally reduces dependence on private vehicles. This, in

turn, leads to reduced vehicle congestion and improved health. Ad-

ditionally, an improved pedestrian network would lead to higher pedes-

trian traffic around commercial businesses and increase economic output.

KPIs such as these quantify indirect and intangible impacts of decisions.

This study demonstrated that the transition from a vehicle-priority signalling

scheme to a pedestrian-priority scheme has benefits for the system. However,

it has raised the equability concerns around redistributing delay for the better-

ment of the majority at the detriment of the minority. Further investigations
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into the economic impacts of delay, societal benefits of changes in conflict rates,

or potential benefits in increased physical activity and foot-traffic around com-

mercial businesses, may provide a strong argument into the implementation

of such a scheme.

8.6 Conclusion

This study quantified the impacts of transitioning from a vehicle-priority phas-

ing structure to a pedestrian-priority phasing structure. The feasibility of do-

ing so was evaluated by increasing the CAV penetration in 10% increments

from 0% to 100%. Two different intersections, a pedestrian-dominated loca-

tion and a vehicle-dominated location, were used to assess the impact of three

different signalling regimes, the base case scheme, a vehicle-priority scheme,

and a pedestrian-priority scheme.

The study found that regardless of the signalling scheme adopted, increasing

CAV penetration results in a decrease in delay for all agents in the network. In

a pedestrian-dominated environment, a pedestrian-priority signalling scheme

can improve the pedestrian LOS without significant detriment to the vehicle

LOS. At 40% penetration of CAVs, the average delay per agent is -1.35% lower

when comparing a pedestrian-priority scheme to the base case regime. This

is the results of a -48.5% reduction in pedestrian delay and an 80.1% increase

in vehicle delay. The trend continues to 100% CAV penetration, where the

total system delay is reduced by -16.6%, comprised of a -60% reduction in

pedestrian delay and a 71.1% increase in vehicle delay. No such benefits are

found in transitioning the vehicle-dominated environment to a pedestrian-

priority signalling scheme, regardless of CAV penetration.
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9 Effect of CAV Behaviour and Selective Coopera-

tion on Motorway Capacity

Abstract: This chapter conducts two investigates to explore the impact of CAVs

on motorway weaving and merge junctions. The first investigation involves

incrementally loading a weaving section and merge section with traffic, to de-

termine the resiliency of these bottlenecks to congestion with increasing CPR.

This investigation demonstrates that when weaving proportions are low (5%),

a 100% CAV results in an 83% throughput increase. When the weaving pro-

portion is increased to unreasonably high levels (40%) inefficiencies resulting

from the CAV emulation framework result in decreasing throughput as CPR

increases. This outcome is the result of stringent cooperation requirements

between vehicles globally reducing the average travel speed of vehicles to cater

to the large proportion of lane-changing vehicles. In the high weaving propor-

tion scenario, human behaviour concentrates the delay with vehicles waiting on

the secondary lanes of the weaving section, whereas CAVs distribute the delay

among all agents and result in overall worse system performance. In contrast,

the merge junction showed a 131% throughput increase with a 100% CAV fleet.

The second investigation segregates the CAV fleet in subclasses and forces hi-

erarchical priority through the weaving section, forcing vehicles to selectively

cooperate. The purpose of this investigation is to assess the impact of potential

policies that provide vehicles with priority through the infrastructure. Segregat-

ing vehicles by class and then instituting a class hierarchy showed to provide

little to no disbenefit to network performance, assuming that weaving propor-

tions stayed below 20% and demand remained below saturation (DoS ≤ 0.8).

The literature, governments, and the private sector all regard CAV technology

as highly disruptive to current transportation systems. Many patents such as

that by Bloomquist et al., [Bloomquist et al., 2005] outline potential V2V and

V2I components retrofitted to infrastructure in preparation for CAV operation.

These advancements would accelerate CAV integration into transport systems.

As a direct consequence of recent advancements, significant research is being

conducted into the potential impacts of CAVs on highway environments. How-

ever, these studies often confine the study area to a disjointed subsection of the

highway. While experimentation of this nature provides valuable insights into
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the impact of CAVs, doing so often creates an idealised environment which

obscures additional critical information by the extents of the microsimulation

study area. For example, queue formation and dissipation become difficult

to access when the approach length of intersections or the ramp length of

highways is inadequate to cater for demand. This becomes a more significant

concern in studies that either assess the impact of increased traffic demand or

discover that altruistic or cooperative merging operation leads to a reduction

in capacity or travel speeds. Another limitation in many studies is the use of

standard commercial software parameters in emulating CAV behaviour.

This chapter uses the developed CAV emulation algorithm to investigate the

impact of CAV penetration and demand increase on the performance of high-

way weaving sections and merge junctions. Additionally, this chapter exam-

ines the impact of segregating the CAV vehicle fleet into separate classes and

providing certain classes with priority over others. CAV technological advance-

ment is being driven by private sector investment, so an investigation into the

impacts of monopolistic behaviour such as premium services is necessary.

The remainder of this chapter is structured as follows. Section 9.1 provides an

in-depth review of the literature and relevant studies. Section 9.2 explains the

framework for experimentation in the microsimulation environment. Section

9.3 details the results and Section 9.4 provides a discussion. Finally, the

chapter concludes with Section 9.5, providing a summation.

9.1 Literature Review of CAV Behaviour Impacts on Motor-

way Environments

The literature contains studies conducted on the potential capacity and through-

put impacts of CAVs, with a heavy emphasis on the highway environment.

This section contains a summation of relevant work done to date. The lit-

erature presents two opposing views on the impact of CAVs on throughput.

While all sources acknowledge that CAV operation will increase throughput in

the short-term on highways, contention arises on the longevity of this improve-

ment. The literature also presents opposing views on the source of bottlenecks

and point of failure in future mixed fleet networks.

Lioris et al., developed a fluid network model that made two predictions [Li-
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oris et al., 2016]. The first is that if the saturation flow of every movement is

increased by a factor γ, then the network can support a throughput increase

of γ. The second prediction is that despite this increase in throughput, delay

and travel time remain unchanged. Their case study included a Los Angeles

network with 16 intersections and 73 links. The authors demonstrated that

when signal configurations are held constant, a 100% increase in network de-

mand leads to an average queue length increase of 76%. However, when the

signal configuration is altered to adopt a control regime that permits 6 phase

changes per cycle, the queue increase is 2% compared to the base case fixed

signal configurations. This change still represents an increase of 99% if the

alternate signalling regime is applied to the base case demand. The study

concluded that employing an adaptive signal control with vehicle platooning

may cause the storage capacity of links to be the limiting factor for network

throughput. The limitation of this study is in its use of a mesoscopic simulator.

The mesoscopic simulator accurately models arrival and departure rates at in-

tersections, but queues on links are stored as point queues that discharge into

the intersection at the saturation flow rate. By using a fully microscopic model

in this chapter, an additional degree of realism in representing the interactive

effects of adjacent intersections can be incorporated. The interactive effects

alter arrival and departure patterns, especially in congested environments.

Hu et al., proposed a “Polite Lane-Changing” protocol to achieve optimal

performance when considering both network efficiency and network safety [Hu

et al., 2012]. They investigated different lane-changing behaviour on efficiency

and safety in the highway environment. The safest scenario was for CAVs to

never change lanes, and the most efficient scenario was for CAVs to always

change lanes. Neither option is practical, so the most optimal scenario was

the hybrid scenario that used the Politeness Factor to evaluate the upstream

effects of changing lanes. Hu et al., differentiated the behaviour of CAVs and

regular vehicles by setting CAV reaction time to 0. Their study found that a

CAV penetration of 50% with a politeness factor of 0.6 to 0.8 leads to the most

optimal performance. Increasing CAV penetration further in highly saturated

environments was found to have an adverse effect on the network, similar to

the findings of Lioris et al. The limitation of this study was in its use of a

strategic simulator as opposed to an agent-based microsimulator. Discrete-

time microsimulators provide an additional degree of realism by emulating
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agent interaction and network response such as queuing and platooning.

Maarafi had similar findings by emulating the behaviour of CAVS in the Vis-

sim microsimulator [Maarafi, 2015]. CAV behaviour was emulated by altering

the parameters of the Wiedemann car-following models, and experimentation

was conducted on a calibrated model of the I-79 motorway. Maarafi found

that a 60% CPR led to a 17% improvement in motorway throughput. Their

study also found that increasing demand by 40% from the base case leads to a

throughput decrease of 18%. Maarafi attributes this behaviour to the block-

ing of onramps and offramps caused by human vehicles. This chapter differs

through its implementation of a custom framework for CAV behaviour as op-

posed to changing default software parameters. Also, the scope is extended

by also considering the effect of segment weaving proportions and merge geo-

metric alignment.

Van Arem et al., found similar results when conducting a study using a simi-

lar methodology to the studies mentioned above [Van Arem et al., 2003]. The

authors demonstrated that when the time headways generally maintained by

human drivers are also adopted for CAVs (1.5s), a CPR greater than 40%

caused performance to deteriorate in situations that also had high demand.

Network elements such as lane drops and merges had the highest performance

when vehicles using ACC were segregated from the fleet and placed in a sep-

arate lane. Adopting a significantly shorter headway (0.5s) showed improved

traffic flow. This arrangement led to an improvement in traffic efficiency,

with maximal lane flows ranging from 2100veh/hr to 2900veh/hr. This fleet

consisted of 20% human vehicles, 20% of vehicles using ACC and 60% using

AICC. The authors used a discrete-time based methodology to update various

modules of their simulation model periodically. This chapter aims to extend

current understanding by conducting an analysis based on real-time agent in-

teraction in a microsimulation setting. This chapter also alters the proportion

of vehicles at merge junctions and uses two distinct types of merge junctions

for experimentation.

Liu et al., concluded that the throughput capacity of the merge junction would

limit motorway throughput as opposed to the storage capacity of the onramp

[Liu et al., 2018]. Their study involved developing a custom behavioural con-
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trol algorithm for CAVs and emulating the behaviour in a microsimulation

environment using Aimsun. The test environment consisted of one 4-lane

motorway with demand incrementally increasing until motorway saturation.

CAVs were introduced to the environment in 20% increments. Their study

found that motorway throughput increases by 46% to 70% over current ca-

pacities at a 100% CPR [RMS, 2017]. However, the study found a reduction

of 13% caused by bottlenecking of the onramp merge junctions. This chapter

follows a similar methodology and extends the scope of the simulation environ-

ment to include both a traditional weaving section and a zipper merge section.

A conventional weaving section that provides a temporary auxiliary lane has a

higher capacity but also has higher embedded construction and maintenance

costs. The zipper merge has the advantage of requiring a smaller infrastructure

footprint, but sacrifices merge capacity. By investigating both arrangements, a

better understanding of failure points and potential future bottlenecks can be

derived, as opposed to only investigating a subset of geometric arrangements.

Alternatively, studies such as that conducted by Letter and Elefteriadou re-

ported no evidence of a decrease in network performance [Letter & Elefteri-

adou, 2017]. They presented a longitudinal freeway merge control algorithm

to maximise the travel speed for CAVs. The algorithm facilitated commu-

nication between vehicles and roadside units to optimise the trajectories of

vehicles. They modelled four different demand scenarios, three different CAV

penetration rates and three different safe time gap settings depending on driver

aggressiveness. In the experimentation, the throughput was shown to be equal

to the demand during undersaturated conditions and equal to the theoreti-

cal maximum achievable value during oversaturated conditions. The average

travel speed, total travel time, and average travel time per distance improved

between 3% and 7% for the free flow conditions. As the demand increased,

the improvements in travel speed improved by 61.4%. The contribution of this

chapter is to use agent-based discrete-time modelling to represent interactions

between agents better. The limitation of strategic-based modelling approaches

is the disengagement of the performance of adjacent intersections. Queueing

at one intersection has no impact on the approach arms of adjacent intersec-

tions. This interaction downstream on the highway may potentially limit the

benefits gained from merge points and weaving sections upstream.
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Baskar et al., propose a model-based predictive control approach for coordinat-

ing CAVs [Baskar et al., 2008]. In this study, all CAVs are capable of intelligent

speed adaptation, ACC, and dynamic route planning and guidance. The con-

trol architecture consists of high-level controls that provide information about

the region and network, roadside units that control localised behaviour like

on a highway section, platoon controllers that execute platoon manoeuvres,

and vehicle controls that translate commands from the rest of the architec-

ture into control signals for vehicle actuators. Their approach determines the

state of the system and aims to predict the behaviour over a time horizon.

An open-loop control optimisation problem is then solved to determine the

actions required to minimise the adverse effects of vehicle actions, constrained

by their optimality criteria. Using this approach, the authors found that on

a 10km highway with two lanes and no onramps or offramps, total system

travel time improved by 10%. The limitation of this study is that without

conflicting traffic from onramps and offramps, an essential degree of realism

when evaluating the impacts of cooperation is missing from the system. On-

ramps form a critical source of vehicles that disrupt well-formed platoons, and

offramps force cooperation through weaving and lane-changing. This chapter

aims to address this by contextualising the motorway weaving and merging

section with the surrounding supporting ramp infrastructure.

Several studies have empirically demonstrated the effect of increasing human

vehicle demand leading to reductions in throughput on motorways. Cas-

sidy and Bertini used observed data for the Gardiner Expressway in Ontario,

Canada, to demonstrate that excessive demand resulted in a throughput de-

crease of between 4% and 20% on three separate occasions [Cassidy & Bertini,

1999]. A similar effect was again demonstrated by Cassidy and Rudjanakanok-

nad through observations of the Northbound 805 Freeway in San Diego, United

States [Cassidy & Rudjanakanoknad, 2005]. This effect was also demonstrated

for human vehicles by other studies ([Banks, 1991], [Hall & Agyemang-Duah,

1991], [Oh & Yeo, 2012], [Persaud et al., 1998], and [Srivastava & Geroliminis,

2013]). This chapter will quantify whether this effect persists for CAVs.

The literature indicates that some studies find CAV penetration and demand

increase will lead to bottlenecking in the network and reductions in through-

put, other studies show continued improvement. The studies that mention a
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reduction in capacity are then further divided based on the cause of this re-

duction. While some studies attribute the bottleneck to link capacity, others

attribute it to the intersection and merge junction throughput. This chapter

adds to the current state-of-the-art by addressing the limitations of the studies

mentioned above. The chapter contextualises the operation of the motorway

and identifies the critical failure point of weaving sections and zipper merge

junctions that are subject to changing demand, changing CAV penetration,

and changing weaving proportion.

9.2 Experimentation Methodology

The literature review has identified two distinct findings regarding CAV oper-

ations and motorway sections. The first offers an optimistic outcome, where

CAV operation increases motorway capacity. The other provides a cautionary

warning, where collapses in merge junctions and ramps result in bottlenecks

and reductions in capacity. These investigations lack a detailed assessment

of the role played by the weaving and merging section of the motorway. The

weave and merge section cause bottlenecking and delays and therefore requires

a thorough investigation before commenting on motorway capacity.

This chapter investigates many of the gaps still present in literature. Firstly,

this chapter assesses the impact of CAV fleet integration on the capacity

of weaving sections on motorways. Weaving sections are often the lowest

throughput component of motorways, so if their capacity does not also in-

crease, then any increase in motorway section capacity is essentially meaning-

less. This chapter then investigates the impact of increasing congestion on

weaving section performance, assessing key metrics such as travel time and

speed, for changing levels of CPR, demand, and weaving proportions.

Next, this chapter assesses the performance of a motorway zipper merge, where

the number of upstream lanes is greater than the number of downstream lanes.

Finally, this chapter concludes with an investigation into the effect on motor-

way performance of segregating the vehicles into different classes and institut-

ing a priority hierarchy. The purpose of this investigation is to gain insights

into how network performance changes if different “brands” of CAVs are pre-

cluded from cooperating, or if CAV and infrastructure operators implement a

“premium” priority service.
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The remainder of this section explains the nature of the experimentation con-

ducted in this chapter. It provides a detailed description of the modelling

environments and the metrics used for evaluating network performance.

9.2.1 Experimentation Structure

As mentioned previously, this chapter conducts three distinct investigations

into the effect of CAV behaviour on motorway weaving sections. This subsec-

tion explains the three investigations in greater detail.

Investigation 1: Effect of CAV Behaviour on Weaving Sections

The first investigation involves evaluating the impact of CAVs on motorway

weaving section performance. This investigation incrementally loads the mi-

crosimulation area with demand to find capacity. Capacity is defined as the

point where additional demand does not lead to an equal increase in through-

put through the merge section. This process is repeated for CAV penetration

increments of 25%, and a weaving proportion of 5%, 10%, 20%, and 40%.

The first investigation quantifies the effect of vehicle cooperation on weaving

section performance. This thesis has designed CAVs to operate with altru-

ism, giving way, and cooperating. How such a framework will perform in a

congested environment is difficult to predict. The key difference between this

methodology and those used in other investigations is that here the proportion

of weaving vehicles is altered. Holding the weaving proportion constant does

not provide an insight into the breadth of situations to which CAVs will be ex-

posed. Additionally, if the weaving proportion is low, then vehicles essentially

do not interact with one another, meaning that the cooperative capabilities of

a framework are not stressed.

Investigation 2: Effect of CAV Behaviour at Zipper Merge Sections

The second investigation assesses the performance of a zipper merge under

varying CAV penetration. A zipper merge consists of two lanes upstream

seamlessly merging into a single lane downstream. Vehicles in both lanes

offset their positions from one another to ensure that trajectories do not cross

at the downstream merge point. Vehicles from both lanes alternate as they
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move through the merge point, hence the name zipper merge. This style of

merge is often used when two major highway or arterial segments join.

The purpose of this investigation is to assess the benefit derived by the trajec-

tory forecasting cooperative merge algorithm developed in Section 5.1.4. The

algorithm forecasts vehicle trajectories upstream and adjusts vehicle kinemat-

ics, to prevent conflicts at the downstream merge point and create a smoother

and conflict-free merging experience. The algorithm should improve merge

point throughput and average speed. Performance improvement may be de-

rived from well-informed conflicting vehicles performing minute kinematic ad-

justments upstream, rather than large braking actions at the merge point.

Investigation 3: Effect of Conditional CAV Cooperation on Weav-

ing Sections

The final investigation assesses the impact of selective cooperation at a merge

junction. A 100% CAV fleet is incrementally segregated into 2, 3, 4, and 5 dif-

ferent vehicle classes. The different vehicle classes are selective in their choice

to cooperate with another vehicle class. For simplicity, the vehicle classes are

ordered chronologically, and a vehicle will not cooperate with another vehicle

that has a lower class number.

This investigation assesses the impact of “premium infrastructure”. Uber al-

ready segregates their market by offering more premium vehicles for a higher

price. Infrastructure is also segregated, where access to certain motorways is

granted only for toll-paying customers. For these reasons, it is not unreason-

able to expect segregation in the CAV market, where vehicle or infrastruc-

ture operators provide customers with “premium” paths and priority through

the network. Additionally, this investigation assesses the impact of vehicle

manufacturers denying cooperation requests from other vehicle brands. Strat-

ification of the transport fleet is emulated by dividing the microsimulation

vehicle fleet into different vehicle classes and allowing vehicle types to reject

the cooperation requests of lower-ranking vehicles.

9.2.2 Modelling Environment

Figure 47 shows the two distinct modelling environments used in this study;
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(a) Model 1 is used for investigation 1 and 3.

(b) Model 2 is used for investigation 2.

Figure 47: Modelling environments used for the different investigations.

Environment 1 is a weaving section where two major arterial roads or motor-

ways interact briefly, before segregating downstream. During the 300m long

interaction area, the vehicles change lanes to position themselves in the appro-

priate lane before the downstream segregation. Environment 2 differs in that

the number of downstream lanes is less than the number of upstream lanes,

meaning that one lane from each approach arm merges and vehicles collide

at a conflict point. Both environments have an approach arm of 230m and a

speed limit of 80km/hr. Detectors for collecting network performance metrics

are placed on all lanes, downstream of the merge point.

To prevent collisions in Environment 2, Figure 47b demonstrates the conflict

area used to assess gap-acceptance for human vehicles. Section 5.2.2 provides

a detailed explanation of the operation of conflict areas. CAVs operating

under the framework developed in this thesis do not obey the conflict area,

but instead, operate under the algorithm proposed in Section 5.1.4.

The base demand matrix for Environment 1 is provided in Table 21, and is

symmetrical between both approach arms in all environments. The base case

matrix is multiplied by a scaling factor when used in this study. Figures

in this chapter that refer to a demand multiplier are referring to scaling of

these base case matrices. Environment 2 only has 1 exit, so a matrix is not

necessary. The base case volume for Environment 2 is 50veh/hr, 25veh/hr

from both approach arms. Both environments have a 30min warm-up period
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which contains 80% of the demand of the 1hr peak modelling period used for

assessment. The base case matrix for Environment 1 is as follows;

Table 21: Base case OD matrices used for the modelling Environment 1.

50 iterations of each environment were run using a 0% CPR (base case), and

a demand DoS of 0.9, to establish the model stability of both environments.

The random seed number was randomly generated from a uniform distribution

from 1 to 99,999. The standard deviation as a proportion of the median of

50 seeds for the critical network metrics (average delay, average travel speed,

average travel distance, and average travel time) is provided in Table 22;

Table 22: Stability results for both modelling environments.

The stability analysis demonstrates that the modelling environments show low

variability between random seeds, except for the average delay metric. Vari-

ability in average delay is expected when modelling a congested environment

operating at a high DoS. The distribution of gaps can either provide lucrative

opportunities for fortunate vehicles or cause vehicles to be severely hindered

by the absence of gaps. This behaviour is further demonstrated by average
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delay variability increasing as the weaving proportion in the network increases.

9.2.3 Result Evaluation Metrics

Data is collected from all environments using data collection points and travel

time counters. The data collectors are placed 1m downstream of the merge

points. They record several aggregated fleet metrics such as average vehicle

speeds, average acceleration, average queuing delay, and the number of vehi-

cles traversing the counter. The travel time counters range the span of the

corridor and provide aggregate average travel times from each origin to each

destination. The results in Section 9.3 report average travel speed, average

travel time, and queueing delay resulting from each investigation and case.

9.3 Experimentation Results

This subsection presents the modelling results, segregated by investigation.

Investigation 1: Effect of CAV Behaviour on Weaving Sections

Investigation 1 assess the impact of CAV behaviour, as developed in this thesis,

on the performance of motorway weaving sections. The investigation begins

by incrementally loading the network to establish capacity. Figure 48 demon-

strates the change in throughput in response to the change in demand for each

CAV penetration, segregated by weaving proportion;

(a) Throughput vs Demand for each CPR

and 5% weaving proportion.

(b) Throughput vs Demand for each CPR

and 10% weaving proportion.
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(c) Throughput vs Demand for each CPR

and 20% weaving proportion.

(d) Throughput vs Demand for each CPR

and 40% weaving proportion.

Figure 48: Throughput vs Demand for the purposes of determining capacity

for each CAV penetration and each weaving proportion.

Capacity is defined as the point along the curve marking a substantial change

in gradient, from constant to 0. This point indicates that additional demand

is not traversing the weaving section and capacity has been reached. Table

23 below provides the demand multiplier corresponding to the capacity in the

modelling environment. The demand multiplier is used to scale the base case

matrices provided in Table 21 for the different DoS scenarios;

Table 23: Environment 1 capacity for each CPR and weaving proportion.

The first trend identified by the capacity assessment is that as CAV penetra-

tion increases, so does the environment capacity. The environment contains

no traffic signals and vehicles are generated into the environment at maximum

speed and with a large headway controlled by the microsimulator. This means

that vehicles do not have the opportunity to form tight platoons with mini-

mum headway, as followers do not have the opportunity to catch up to leaders.

Therefore, any benefit gained in throughput and capacity is solely the result

of communication and efficient lane-changing. CAVs are still able to change
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lanes at lower headways and cooperate to create space.

Table 24 provides the change in capacity relative to the base case;

Table 24: Change in capacity relative to the 0% CAV base case.

The other trend identified by this assessment is that when weaving propor-

tion is high, increasing the CAV proportion results in reduced weaving section

throughput. This outcome contradicts many of the results previously found in

this thesis, where increasing CAV proportions has resulted in greater through-

puts. This specific outcome is seen when the weaving proportion increases

to 40%, a number that is unreasonably high and included for the purpose of

stress-testing both the CAV emulation algorithm and road infrastructure. The

reason why a high weaving proportion adversely affected vehicle throughput

is due to the cooperative and altruistic design of the CAV control algorithm.

Consider that when 4-lanes worth of traffic travel through 4 lanes with no

interaction and weaving, each lane has an effective utilisation rate of 100%.

Consider now that in a poorly designed network, the same 4-lanes of traffic

are forced to all change lanes and weave through the middle two lanes. The

weaving lanes now have an effective utilisation rate of 200% each, with the

remaining lane having a utilisation rate of 0% each. These scenarios represent

extreme cases. The modelled case has a 40% weaving proportion, meaning

that the two weaving lanes have a utilisation rate of 140% each.

The additional demand on the lane abides by the cooperative and altruistic

nature of the algorithm, meaning that all CAVs are decelerating to give way

to other CAVs also navigating through the weaving lanes. Normal human

behaviour would force merging vehicles to wait in congested environments,

resulting in low travel time for high demand links and higher travel times

for low demand links, therefore resulting in a low weighted average travel

time. The CAVs, however, are designed to minimise the maximum travel
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time, resulting in an even and equitable distribution in delay, leading to a

worsening of performance in environments with significant vehicle interaction

and weaving.

Having determined environment capacity, this study now assesses a range of

scenarios. CPR ∈ [0%, 100%] in 25% increments, DoS ∈ [0.1, 1.2] in 0.1

increments, weaving proportions of 5%, 10%, 20%, and 40%, with 20 random

seeds for each of these cases. This experiment setup results in a total of

4,800 iterations. The results for the average network speed for each weaving

proportion is provided in Figure 49;

(a) Average network speed for each CPR,

DoS, and 5% weaving proportion.

(b) Average network speed for each CPR,

DoS, and 10% weaving proportion.

(c) Average network speed for each CPR,

DoS, and 20% weaving proportion.

(d) Average network speed for each CPR,

DoS, and 40% weaving proportion.

Figure 49: Average network speed for each CPR (each line), DoS, and weaving

proportion(each subplot).

Figure 49 demonstrates that when the weaving proportion is low (Figure 49a),

a 100% CAV network outperforms a mixed fleet and human network, exhibit-

231



ing a speed that is 22% higher than the 0% CAV network and 46% higher than

the mixed fleet networks. As the proportion of weaving vehicles increases, the

100% CAV scenario quickly falls to the worst-performing environment, the

reason for which has already been discussed above. While the performance of

all mixed fleet scenarios drops when weaving proportion increases, the higher

CAV scenarios are more severely impacted in the high demand situations.

The queuing delay only considers the time that vehicles spend queueing. The

queue state is initiated when a vehicles speed drops below 5km/hr. Figure 50

provides the average queuing delay for each weaving scenario;

(a) Average queueing delay for each CPR,

DoS, and 5% weaving proportion.

(b) Average queueing delay for each CPR,

DoS, and 10% weaving proportion.

(c) Average queueing delay for each CPR,

DoS, and 20% weaving proportion.

(d) Average queueing delay for each CPR,

DoS, and 40% weaving proportion.

Figure 50: Queueing delay for each CPR (each line), DoS, and weaving pro-

portion (each subplot).

The queueing delay in Figure 50 indicates a similar outcome to the average
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network speed metric. Lower CPRs show a queueing delay at low levels of

weaving (5% and 10%), but the 100% CAV fleet avoids a queueing delay.

Better performance of the 100% CPR fleet results from its design to minimise

maximum delay in cooperative environments. While the human vehicles in

mixed fleet environments offload delay to other network agents and maintain

a higher average speed, the 100% CAV scenario distributes the delay among

all vehicles. This behaviour, although results in a lower average speed, keeps

the speed of all agents greater than the threshold defining queueing. However,

the high weaving scenarios oversaturate the balance of delay distribution and

queueing increases to beyond that in the self-serving human vehicle approach.

Finally, Figure 51 provides the average travel time results for each scenario;

(a) Average travel time for each CPR,

DoS, and 5% weaving proportion.

(b) Average travel time for each CPR,

DoS, and 10% weaving proportion.

(c) Average travel time for each CPR,

DoS, and 20% weaving proportion.

(d) Average travel time for each CPR,

DoS, and 40% weaving proportion.

Figure 51: Average travel time for each CPR (each line), DoS, and weaving

proportion (each subplot).
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Figure 51 confirms the outcome demonstrated by the other two metrics. A

selfish behavioural attitude is appropriate in high weaving scenarios to reduce

average travel times. The 100% fleet shows better or on-par performance to

that of the mixed fleet until weaving proportions reach 40%. The average travel

times presented in Figure 51 provide unique insight. While the other figures

demonstrate that a 0% CAV network outperforms the mixed fleet environ-

ments in terms of average travel speed, the average travel time is significantly

lower between DoS of 0.7 and 1.0. This outcome confirms that the tendency

for humans vehicles to avoid cooperation in weaving segments results in better

average speeds (as the minimum value of speed is bound) but leads to worse

overall network travel times (as delay can indefinitely increase).

Investigation 2: Effect of CAV Behaviour at Zipper Merge Sections

Investigation 2 assess the impact of CAV penetration on zipper merges, where

the first-in-first-out style of scheduling is generally adhered to by human

drivers. The capacity of the merge for each CAV penetration is found in

the same way as it was for Investigation 1. Figure 52 provides the throughput

vs demand plot for each CAV penetration scenario;

Figure 52: Environment 2 capacity for each CPR and weaving proportion.

Once again, capacity is defined as the point where the gradient of the line

changes. The reason why Figure 52 does not exhibit a horizontal-like curve

after reaching capacity is due to the geometric nature of the zipper merge en-
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vironment. This environment has four lanes upstream and three lanes down-

stream. While two of the upstream lanes are forced to merge into a single

lane, the other two remain unobstructed, meaning that additional demand

continues to flow unhindered in the outer two lanes while the inner two lanes

are funnelled through a merge. For this reason, Figure 52 displays a reduc-

tion in the curve gradient as opposed to a horizontal line demonstrated by the

previous environment. Table 25 provides the quantitative capacity values for

this environment, as well as the capacity change relative to the base case;

Table 25: Change in the Environment 2 capacity for each CPR case relative

to the 0% CAV base case.

The second environment shows a clear and predictable trend, as CPR in-

creases, as does the capacity of the zipper merge. This outcome is the direct

result of the trajectory forecasting cooperative merge algorithm proposed in

Section 5.1.4. The algorithm forecasts the trajectory of vehicles and adjusts

their kinematics upstream, avoiding conflicts downstream. The human vehi-

cles, however, operate using conflict areas and occasionally must come to a

complete stop in search of an appropriate gap, significantly limiting through-

put. The cooperative algorithm shows an increase of 131% in throughput for

a 100% CAV fleet compared to a human fleet.

Having determined the environment capacity, this study now assesses a range

of scenarios where CPR ∈ [0%, 100%] in 25% increments and DoS ∈ [0.1, 1.3]

in 0.1 increments. The weaving proportion is redundant here as demand is

equal on both approach arms, which results in the highest possible number of

vehicle conflicts at the merge point. Additionally, multiple seeds are not used

in this investigation. Computational time for trajectory forecasting is high

due to the excessive data transfer between different modules, programming

languages, and storage media. A modelling iteration in Investigation 2 is

approximately 240 times longer than that in Investigation 1, running at slower

than real-time. For this reason, a single seed is used in this investigation. The

experiment setup results in a total of 60 iterations.
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The experimentation results are provided below in Figure 53 for average travel

speed, average queue delay, and average travel time;

(a) Average travel speed for investigation

2, for each CAV penetration case.

(b) Average queue delay for investigation

2, for each CAV penetration case.

(c) Average travel time for investigation

2, for each CAV penetration case.

Figure 53: Results for investigation 2, for each CAV penetration rate.

Figure 53 demonstrates significant improvements in vehicle performance. Fig-

ure 53a shows that the average speed of vehicles between the 0% CAV and

100% CAV cases marginally varies. However, both cases far outperform the

mixed fleet case, having an 18% and 5% higher average speed in the DoS 0.7

and DoS 1.0 cases, respectively. The 0% CAV and 100% CAV penetration

cases have one source of inefficiency each, whereas all mixed fleet environ-

ments have two. The inefficiency in the 0% CAV scenario is that all vehicles

on the secondary approach must give way to all vehicles on the primary ap-

proach, leading to excessive queueing and delay on the secondary approach.

The source of inefficiency in the 100% CAV case is that vehicles must negotiate
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space to reduce overall maximum delay, leading to inefficiencies for vehicles

with altered trajectories. The mixed fleet scenario, however, is subject to both

sources of inefficiency. The CAVs must not only give way to other conflicting

CAVs, but also to human vehicles, meaning that both the primary and sec-

ondary approach is restricted. To remediate this problem, the CAVs need to

be designed to be more aggressive and not always play the role of the passive

agents in a human-CAV interaction.

Figure 53b indicates that despite the 0% CAV case having near highest aver-

age travel speeds, all CAV cases far outperform the 0% base case in average

queueing delay. The trajectory forecasting algorithm is designed to adjust ve-

hicle kinematics before the merge point, which leads to reduced braking and

hence reduced start-stop conditions. The continuous flow of vehicles not only

increases throughput but also reduces the time vehicles spend in queues. This

outcome is reflected in Figure 53c, which demonstrates that despite having

lower travel speeds, CAVs still spend less time queueing and traversing the

merge junction. At a DoS of 1.0, the 100% CAV case had a 70% lower travel

time than the 0% CAV case, despite showing near-identical average travel

speeds at the data collection point directly after the merge zone.

Investigation 3: Effect of Conditional CAV Cooperation on Weav-

ing Sections

Investigation 3 assesses the impact of selective cooperation on weaving section

performance. Infrastructure funding is increasingly from the private sector,

where companies own private toll roads, private bus services, private train

lines, and soon to be privatised CAV fleets. Private transport infrastructure

often undermines the purpose of transport, which is to provide accessible and

equitable mobility to all, by segregating the market and creating premium

services. The question should then be asked how the infrastructure would

perform if CAVs were also segregated, with premium services being offered

priority treatment in the network.

The environment used in Investigation 3 is the same as that in Investigation 1,

so capacity does not need recalculation. This investigation segregates the CAV

subset of the fleet into vehicle classes. The classes are ordered, and a vehicle in
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a higher class will refuse to cooperate with a vehicle in a lower class. Human

vehicles retain the highest class and receive cooperation from all CAVs. The

CAV portion of the fleet is equally divided among all CAV classes.

The investigation assesses CPR ∈ [0%, 100%] in 25% increments and DoS ∈
[0.1, 1.2] in 0.1 increments, number of CAV vehicle classes varying from 2 to

5 in increments of 1 class, and weaving proportion of 5%, 10%, 20% and 40%.

Each case is run using 3 random seeds. This experimentation structure results

in a total of 2,880 iterations. Table 26 to Table 29 below provide the travel

time (sec) results for each of the cases, with each table proving the results for

a specific weaving proportion;

Table 26: Heatmap of average travel time for each CPR, DoS, CAV vehicle

classes, and 5% weaving proportion.
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Table 27: Heatmap of average travel time for each CPR, DoS, CAV vehicle

classes, and 10% weaving proportion.

Table 28: Heatmap of average travel time for each CPR, DoS, CAV vehicle

classes, and 20% weaving proportion.
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Table 29: Heatmap of average travel time for each CPR, DoS, CAV vehicle

classes, and 40% weaving proportion.

The previous four heatmaps indicate that segregating the CAV fleet into vehi-

cle classes and providing specific classes with priority does not impact network

travel times in most cases. When the weaving proportion is below 20%, no

difference is observed between the different vehicle class cases, regardless of

the CPR or the DoS. As weaving proportion increases to 20%, increasing the

number of vehicles classes adversely affects network performance when the

network is operating near capacity (DoS greater than 0.8). At a DoS of 1.0,

additional vehicle classes reduce travel speeds by 17%. The adverse impacts

on system travel time increase as weaving proportion is increased further. At

a 40% weaving proportion and DoS of 1.0, five vehicle classes increase travel

time by 29% compared to the two-vehicle-class case.

This investigation demonstrates that while the infrastructure is under-utilised,

segregating the vehicle class into premium services will not adversely affect

weave section performance. Additionally, such a policy can also be imple-

mented in busy areas where excessive weaving and lane-changing does not

occur.
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9.4 Discussion

Each investigation conducted in this chapter identified an interesting reaction

by the network in response to a stimulus. The first investigation assessed the

impact of CAVs on weaving sections as the proportion of weaving vehicles

increased. This study found that cooperation and altruism in motorway junc-

tions with high proportions of weaving vehicles lead to substantially worse

performance than traditional selfish human behaviour. This finding indicates

that a logical and structured hierarchy for negotiating space through weaving

junctions would benefit all agents involved. While this thesis has demonstrated

that the altruistic design of CAVs has great benefits in the arterial road net-

work, it is apparent that the motorway junctions require greater complexity

in defining cooperation conditions.

The second investigation demonstrated that CAV integration at zipper merges

substantially increase the throughput of the junction, while also reducing the

queueing delay experienced by agents. The merge junctions provide benefits

as the trajectory is moderated before vehicles arrive at the merge zone. How-

ever, human vehicle involvement in mixed fleet settings substantially reduces

the benefit of the system. This does, however, raise an interesting question

regarding the capabilities of variable message signs (VMS), ITS, and other

warnings signs offered to human drivers. Could the efficiency of this merge

protocol exhibited with a 100% CAV fleet also be demonstrated by a mixed

fleet where humans are given extensive information regarding imminent colli-

sions at merge points and instructions on how to react? If so, then perhaps

high levels of CAV penetration will not be necessary to derive the benefits

observed in this study for zipper merges.

Finally, the third investigation assessed the impact of segregating the CAV

fleet into vehicle classes and providing certain classes with priority over others.

The investigation found that even when CAV fleets are subdivided into as

much as 5 classes, networks experience no travel time impacts if they are

operating under capacity, regardless of the weaving proportion. This indicates

that if transport and mobility are privatised in an autonomous future, the

segregation of services into “premium” and “basic” will not hinder network

performance. Nor will a decision by manufacturers to prevent communication

with one another. However, cooperation was shown to be highly beneficial
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for vehicle kinematics (Chapter 6), intersection performance (Chapter 7) and

road safety (Chapter 11).

High proportions of weaving vehicles were shown to be problematic in all

investigations, substantially impacting the network performance. CAV be-

haviour, as designed in this thesis, relies on localised game-theory-type as-

sessments where vehicles change lanes when a mutual benefit is found for the

lane-changing vehicle and its follower in the target lane. This structure pro-

vides the vehicle with a microscopic assessment of its actions. A problem arises

when CAVs enter the merge section and immediately broadcast their desire

to change lanes. Surrounding vehicles respond by decelerating and creating

adequate space, rendering the remaining 300m merge section under-utilised.

If the game-theory style approach was extended over the entirety of the merge

section using a centralised controller, the location of vehicles and conflicting

weaving pairs could be distributed over a longer distance, severely reducing

their impact on upstream vehicles and better utilising the available space.

9.5 Conclusion

This chapter investigated the impact of increasing CPR on weaving sections

and zipper merges. Additionally, this chapter assessed the weaving section im-

pact of CAV fleet segregation and preferential treatment for different vehicle

classes. The assessment indicates that CAV behaviour can increase weaving

section throughput by 83% with a 100% CAV penetration. However, this is as-

suming a relatively low weaving proportion of 5%. As the weaving proportion

increases to 40%, altruistic and selfless CAV behaviour causes inefficiencies to

arise in the network. Human behaviour concentrates the delay with the ve-

hicles waiting on the secondary movement. In contrast, CAVs distribute the

delay among all agents and result in an overall worse situation. This outcome,

however, does not occur in zipper merges. The trajectory forecasting merge

algorithm demonstrates that capacity can be increased by up to 131%. The

average speed of vehicles was relatively the same between CPR scenarios. How-

ever, the time spent in queueing was substantially lower. Finally, segregating

vehicles by class and then instituting a class hierarchy showed to provide little

to no disbenefit to network performance, assuming that weaving proportions

stayed below 20% and demand remained below saturation (DoS ≤ 0.8).
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10 Recalibration of the BPR Volume Delay Func-

tion for the Strategic Modelling of CAVs

Abstract: This chapter assesses the adequacy of the BPR volume delay function

for the strategic modelling of Connected and Autonomous Vehicles (CAVs).

Three testbed environments are simulated at 10% increments of CAV penetra-

tion rates (CPR) to observe network performance in mixed fleet environments.

The microsimulation dataset is compared with the BPR travel time predictions

to evaluate the need for recalibration. Where appropriate, the BPR modelling

parameters are redefined as a function of the CPR. The predictive quality of

the recalibrated model is then validated by comparing it against the BPR func-

tion on synthetic data. The numerical results indicate an overall improvement

in travel time prediction using the recalibrated model, with a significant reduc-

tion in root mean square error from 15.16 to 8.86. The recalibrated model also

outperformed the traditional BPR model in 67% of the 4620 cases used for

validation, and better-predicted travel time by 5.43 times.

The implications of CAVs on transport infrastructure has been discussed in ex-

tensive detail throughout the previous chapters. This thesis investigated their

effects on intersection and network performance, operational vehicle safety,

motorway capacity, the contingency of road performance on vehicle coopera-

tion, and optimisation of signalling for other network agents. However, it has

not commented on how CAVs may affect the network planning process, which

often relies on macroscopic citywide strategic modelling.

Transport modelling is critical in infrastructure planning and traffic manage-

ment. The current transport planning framework does not consider the im-

pact of CAVs on network performance. The Sydney Strategic Travel Model

(STM) considers modes of travel by car, rail, ferry, bus, cycle and walk, and a

combination thereof [Bureau of Transport statistics, 2012], failing to include

future and emerging technology. CAV behavioural models have been proposed

in the literature that rely on changing behavioural parameters such as sight

distance, minimum acceptable gap lengths, and lane change preferences ([Tet-

tamanti et al., 2016], [Qian et al., 2015], [Kamal et al., 2013], [Antoniotti et al.,

1997], [Ioannou & Bose, 1999]). Such attempts do not appropriately capture

the intricate and complex effects of CAV behaviour on network performance.
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Strategic models often contain predefined parameters calibrated against lo-

cal traffic data to capture field characteristics. The current suggested values

for these parameters may be inappropriate for use with CAVs, as they were

calibrated against localised historical data generated by human drivers. Sim-

ulation results from other studies suggest that 50% of the total travel time is

reduced when at least 80% of the vehicles are equipped with V2X communi-

cation technology [Katsaros et al., 2011]. This thesis has demonstrated that

CAVs increase intersection throughput by 110%, reduce intersection delays by

63%, and reduce queue lengths by 28%. With the same traffic volume, net-

work delay induced by CAVs is lower than that of human vehicles and may

result in the over-prediction of travel time in current strategic models. Travel

time is a major contributing factor to vehicle routing in strategic models, the

gross miscalculation of which, would render strategic models unusable.

This chapter investigates the validity of the continued use of current strategic

modelling parameters for CAVs. Although many studies explored the impli-

cations of CAVs on transport planning ([Epting, 2019], [Beza & Zefreh, 2019],

[Clements & Kockelman, 2017], [Harper et al., 2016a]), the impacts have been

discussed more conceptually than empirically. This chapter aims to examine a

common strategic model used in the current transport planning practice and

propose necessary modifications to more accurately reflect CAV behaviour.

This chapter focuses on the BPR volume delay function (VDF) in its form

outlined in the HCM. It also provides a brief assessment and commentary of

the Conical and Davidson functions. VDFs are models designed to mimic the

deterioration in link travel speed as link volume increases. Their position in

the strategic modelling framework is presented in Section 10.1.1, and their

significance is outlined in Section 10.1.2.

The remainder of this chapter is structured as follows. Section 10.1 briefly

describes the transport planning framework, reviews currently used volume

delay functions, and new strategic models proposed for CAVs. Section 10.2

presents the methodology and framework to recalibrate the selected models

and parameters. This section also presents the microsimulation environments

and scenarios used for evaluation. Section 10.3 presents the results of this

study, which includes the microsimulation results, mathematical predictions

using the original strategic models, and the recalibrated models. Section 10.4
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provides a discussion of the results and the limitations of the study, with

possibilities for future research. Finally, Section 10.5 provides a summation

and conclusion.

10.1 Review of the Relevant Literature

This section commences with a brief description of strategic modelling, to

contextualise the use of VDFs and draw attention to their importance. A

literature review of popular VDFs then follows. Finally, this section concludes

with a review of recent attempts at modifying or proposing strategic modelling

techniques for use with CAVs.

10.1.1 Strategic Modelling in Transport Planning

Transport modelling is an invaluable resource that helps inform governments

of travel behaviour changes on a citywide scale, as a consequence of policy

change or investment in civil transport infrastructure. The four-step model is

a widely used demand forecast model which estimates future travel behaviour,

network performance, and patronage on links. The four steps of the model

are detailed are as follows;

� Trip Generation: The first step uses macroeconomic data (population

and employment) and land use data (zone boundaries and points of

interest) to determine the number of trips produced by each zone.

� Trip Distribution: The second step distributes the trips by using the

same macroeconomic and land use data to determine the relative attrac-

tiveness of each zone.

� Mode Choice: The third step uses generalised path costs to determine

the capture rate of each mode between each origin-destination pair.

� Route Assignment: The final fourth step assigns the road traffic origin-

destination matrix to the network through a process of equilibrating

general path costs.

The four-step modelling process relies on developing a generalised cost function

for each link and node in the network. By summing discretised link and node

costs, a total path cost between origin-destination pairs is determined. The

generalised path costs of competing routes are then equilibrated by adjusting

vehicle routing volumes [Saw et al., 2015]. Link delays and node delays are
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contingent on a range of factors including capacity, volume, heavy vehicle

proportions, behavioural parameters, and localised parameters. The specific

VDF for links addressed in this chapter is the BPR function, explained in

greater detail in Section 10.1.2.

To contextualise the use and significance of the BPR function, refer to Figure

54. From this figure, it is apparent that determining the costs of paths in the

network underpins the strategic modelling process. If the path costs are un-

derestimated, this affects the attractiveness of the path and then affects route

assignment and mode choice. If the performance of a major network motorway

is then overestimated as a result of the initial error, it may have implications

on the relative attractiveness of zones and affect the future distribution of

citywide population and employment. The ramifications of calculation errors

in the path costs can have significant implications on the outcome of business

cases and the cost-benefit analysis of new transport infrastructure. For this

reason, the appropriateness of current VDFs must be evaluated for applicabil-

ity to CAV behaviour. Strategic modelling is structured as follows;

Figure 54: Contextualisation of the BPR function within the wider strategic

modelling framework.

V2X technology grants CAVs access to information that was previously not

available to human drivers, resulting in a behavioural shift in the vehicle fleet

246



[Wedel et al., 2009]. Additionally, V2X communication also enables cooper-

ative manoeuvring, where vehicles travel coordinately under a centralised or

decentralised decision-making strategy [Hobert et al., 2015]. This effectively

mitigates factors of misjudgement, misinterpretation, and response time that

are common in driver interactions. For these reasons, existing functions and

parameters used for calculating link delay functions may not be appropriate

and require investigation.

10.1.2 Volume Delay Functions and Capacity Models used in Macro-

scopic Strategic Modelling

This investigation into the applicability of current strategic modelling tech-

niques to CAV behaviour focuses exclusively on VDFs. However, capacity is

often a variable required by most, if not all, VDFs. For this reason, an ap-

propriate way of determining link capacity must also be investigated. This

section outlines currently used VDFs and techniques by which link capacity is

determined.

Volume Delay Functions

VDFs describe the relationship between travel time (or cost) of a road link

and the traffic volume. These functions are critical in most traffic assignment

models by specifying the impact of road utilisation on the travel time. With an

expected improvement in road capacity from CAVs, it is important to assess

whether the currently proposed fundamental relationship between capacity

and travel time still hold as the fleet transitions to CAVs.

The standard BPR function developed by the U.S. Bureau of Public Roads in

the 1960s is defined as;

t = t0(1 + α(
V

C
)β) (152)

Where, t is the link travel time, t0 is the link travel time under free flow

conditions, V/C is the volume to capacity ratio (similar to DoS), and α and

β are calibration parameters, unique to each road geometry and environment.

The BPR function was developed by fitting a polynomial equation to a speed-

flow curve observed on a single United States motorway [Manual, 2000]. It is
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the most widely used function in transport modelling [Mtoi & Moses, 2014]

due to its simplicity and minimal input requirements. Parameters α and β

determine the shape of the function, and their values are often predefined

based on assumptions and network characteristics. α regulates the magnitude

of the travel time increase relative to volume increase. β controls the rate at

which the link cost increases with the flow, to reach the magnitude defined

by α. Higher values of α indicate that conditions on a particular link become

much worse with increasing traffic volume, while higher values of β indicate

that the road is unable to absorb the effects of increasing traffic and congestion

effects become prominent sooner.

The Conical Volume Delay Function [Spiess, 1990] was introduced as an al-

ternative to the BPR function and is defined as;

t = t0(2 +

√
α2(1− V

C
)2 + β2 − α(1− V

C
)− β) (153)

Where, t is the travel time (or cost) of the studied road link, t0 is the travel

time under free flow condition, V/C is the volume to capacity ratio, and α

and β are calibration parameters where α > 1 and β = (2α− 1)/(2α− 2).

The Conical VDF addresses inherent drawbacks of the BPR function, where

the high exponent β value could lead to overflow conditions and loss of preci-

sion [Spiess, 1990]. High values of β in the BPR functions assign undue weight

to overloaded links during the first few iterations of an equilibrium assignment,

which can cause numerical problems. With high values of β, the estimated

travel time for a link far under capacity becomes independent of the actual

traffic volume as (V/C)β → 0. The equilibrium model consequentially locally

reforms into an all-or-nothing assignment model and provides solutions that

may not be unique to links.

Spiess suggests that the difference between the Conical function and the BPR

function is small for V/C < 1, so the parameters from BPR could be directly

transferred to the Conical function. Parameters α and β may require recali-

bration against traffic data generated from CAVs, to better assist the model’s

applicability to CAVs networks.

Davidson developed the Davidson Function in 1966 based on principles of
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queuing theory [Akçelik, 1991]. The function is defined as;

t = t0(1 +
Jd · x
1− x

) for V < C (154)

Where t is the travel time (or cost) of the studied road link, t0 is the travel

time under free flow condition, x = V/C is the volume to capacity ratio, and

Jd is the delay parameter.

The Davidson Function gained popularity over its ability to accommodate

different traffic conditions and environments [Mtoi & Moses, 2014]. However,

the function is unable to express travel time for traffic conditions where volume

exceeds link capacity. For V > C, 1−x < 0, the travel time (t) for the link then

decreases as traffic volume increases. This contradicts the fundamental speed-

flow relationship, where an increase in traffic flow leads to a decrease in travel

speed and an increase in travel time. Furthermore, Davidson’s function has

been a subject of discussion as the function implies the equivalence between

free flow travel time and the reciprocal of the link capacity (t0 = 1/C). The

inherent inconsistency is unjustified from the viewpoint of delay formulation,

and the ambiguity of parameter definitions also complicates the parameter

calibration process [Akçelik, 1991].

Capacity Models

The HCM defines capacity as the maximum flow that can reasonably traverse

the cross-section of a road segment. Capacity is an essential parameter in

traffic state analysis, evident by its frequent occurrence in strategic modelling.

The Selected Maxima method states that capacity is the maximum observed

flow over a period. This approach assumes that the actual road capacity

is rarely observed due to the presence of external factors such as driver be-

haviour, weather conditions, and other factors that prevent idealised traffic

performance. A deterministic maximum value gives the value of capacity with

an aggregation of negative factors that reduce road capacity in accordance

with the effect of localised conditions [Dervisoglu et al., 2009]. The calibra-

tion process estimates the deterministic maximum value and allows room for

capacity reduction when investigating the impact of incidents.

249



The Fundamental Diagram method uses speed, flow, and density data to con-

struct diagrams that display capacity. Mathematical models such as Green-

shields and Van Aerdes can be used to fit the plotted data, with capacity

being the maximum turning point of the fitted curve. Greenshields model is

as follows [Rakha & Crowther, 2002];

u = uf −
uf
kj
k

q = ku = ufk −
uf
kj
k2

(155)

Where, q is flow, k is density, u is the average space-mean speed, uf is free

flow speed, and kj is the jam density.

Greenshields model assumes a linear relationship between speed and density.

When plotting this model, the y-intercept is free flow speed, and the gradient

is given by the ratio between free flow speed and jam density. By making use

of the fundamental relationship q = kvs, a parabolic relationship is derived

for the flow-density relationship. The highest point of the flow-density curve

is the capacity(qc), corresponding to the critical density (kc).

Equation 156 outlines Van Aerde’s method [Rakha & Crowther, 2002];

k =
1

h
=

1

c1 + c2
uf−u + c3u

q = ku =
u

c1 + c2
uf−u + c3u

c1 =
uf
kju2

c

(2uc − uf )

c2 =
uf
kju2

c

(uf − uc)2

c3 =
1

qc
−

uf
kju2

c

(156)

Where, k is the density, h is headway between vehicles, c1is fixed spacing

constant, c2 is the first variable spacing constant, c3 is the second variable

spacing constant, uf is free flow speed, and uc is speed at capacity.

Van Aerde’s method is based on a simple car-following model which uses the

minimum headway distance between consecutive cars. Using the relationship

k = 1/h, the model describes the headway as a combination of three terms;
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a constant term, a term that depends on the difference between speed and

free flow speed at any given time, and a term that depends on the speed at

any given time. The Van Aerde model is used to fit the observed data, and

capacity is determined by the maximum flow on the fitted speed-flow curve.

The Product Limit method, initially proposed by Kaplan and Meier in 1958,

is used for lifetime data analysis such as estimating the fraction of patients

living for a certain amount of time after treatment [Kaplan & Meier, 1958].

By considering a traffic breakdown as a failure event, when a sudden drop

in traffic speed occurs due to demand exceeding capacity, the Product Limit

method estimates capacity based on flow observations made over the observa-

tion period. The distribution function of capacity is given as;

Fc(q) = 1−
∏
i:qi≤q

ki − di
ki

for i ∈ {B} (157)

Where, Fc(q) is the distribution function of capacity c, qi is traffic volume in

interval i, ki is the number of intervals with a traffic volume of qi ≤ q, di is

the number of breakdowns at a volume of qi, and B is the set of breakdown

intervals where traffic is fluent in interval i but the average speed drops below

the threshold speed in the next time interval i+ 1.

The limitation of the Product Limit method is that it does not specify the type

of distribution function required. Also, the value of the capacity distribution

function will only be one if the product in the equation is zero. This outcome

occurs when the maximum observed value of q belongs to B, when the flow is

observed directly after a breakdown.

10.1.3 Recent Attempts at the Strategic Modelling of CAVs

Rather than assessing the validity of existing strategic modelling techniques,

the literature has contributed new ways of modelling CAVs. These contribu-

tions range in complexity, from simple mathematical models to complex neural

networks that require extensive data and calibration. This section provides a

brief outline of the range of these contributions.
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Multiclass Cell Transmission Model

Levin and Boyles developed a multiclass CTM to model dynamic traffic as-

signment for shared road scenarios with mixed fleets [Levin & Boyles, 2016].

A car-following model was then developed based on driver reaction times to

estimate capacity and backwards wave speed. Consider a scenario where ve-

hicle 2 follows vehicle 1 at a speed of u m/s with vehicle length l m. Vehicle

1 begins to decelerate at t = 0, and vehicle 2 decelerates at a rate of a, after a

reaction time of ∆t. The model describes the distance between vehicle 1 and

vehicle 2 at time t using kinematics;

x1(t)− x2(t) =


u− 1

2at
2 + L for t ≤ ∆t

−at∆t+ 1
2a(∆t)2 + L for ∆t < t ≤ u/a

u2

2a − ut+ 1
2a(t−∆t)2 + L for t > u

a

(158)

Where, u is the velocity, a is the acceleration, u/a is the time required to reach

a complete stop (the position of vehicle 1 is constant for t > u/a), and L is

the following distance.

Minimum distance between vehicle 1 and vehicle 2 occurs when both vehicles

come to a stop, at t = u/a + ∆t, when t > u/a . The minimum distance is

then given by;

x1(t)− x2(t) =
u2

2a
− u(

u

a
+ ∆t) + 1/2a(

u

a
)2 + L (159)

To avoid collisions, the safe following distance needs to be greater than the

sum of the minimum following distance given above and the vehicle length l;

L ≥ −u
2

2a
+ u(

u

a
+ ∆t)− 1

2
a(
u

a
)2 + l = u∆t+ l (160)

Using the relationship between headway and density (k = 1/L) and the fun-

damental flow-density relationship (q = ku), capacity for free flow speed with

maximum density is calculated using;

qmax =
uf

uf∆t+ l
(161)

To account for heterogeneous fleets, consider a different density, headway, and

reaction time for each vehicle class m. Assuming that the vehicle proportion

of each class (km/k) remains constant, the capacity for mixed fleets is;
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qmax =
uf

uf
∑

m∈M
km
k ∆tm + l

(162)

Levin and Boyles also explored intersection capacity using larger conflict re-

gions [Levin & Boyles, 2016]. The Conflict Region algorithm is a simplification

of a reservation-based policy developed by Dresner and Stone designed for ar-

bitrary vehicle prioritisation [Dresner & Stone, 2004]. Levin and Boyles modify

the Conflict Region algorithm to accommodate LEMITM [Bento et al., 2013],

which is a policy that allows reservation of space-time for all possible turning

movements, and increases safety margins for human vehicles that lack the abil-

ity to communicate with the infrastructure. The developed algorithm follows

the key assumption of LEMITM, that the intersection controller determines

whether a vehicle waiting at an intersection is a CAV based on its ability to

communicate with the controller digitally. The proposed model does not ac-

count for potential human errors. The Conflict Region algorithm omits the

ability for the intersection controller to cancel granted reservations for CAVs

if a human vehicle fails to enter the intersection in time.

Levin and Boyles conducted experiments using two classes of vehicles; human

vehicles with a reaction time of 1s and CAVs with a reaction time of 0.5s. Vehi-

cle lengths are set to 20ft. The total demand remains unchanged throughout

the experiments, while CPR varies. Based on Equation 162, CAVs require

0.593 of the capacity that human vehicles require. In a single intersection

study, the experiments assume a demand of 1200veh/hr at each intersection

approach, with an assumed capacity of 1800veh/hr and a free flow speed of

60mi/hr. CPR increased in 10% increments, and each experiment had a 1hr

duration with random vehicle departure times.

The results showed that average travel time decreased linearly with increasing

CPR between 0% and 60%. The travel time is almost unchanged for CPR

greater than 70%. Total travel time was selected as a measure of effective-

ness, with the apparent trend showing that intersection capacity increases

with increasing CPR. The minimal change in travel time above 70% pene-

tration is explained by a sufficient increase in intersection capacity at that

point to accommodate the network demand. Levin and Boyles’s study pro-

vides insight into the potential network improvement with increased CAV

penetration. However, the study’s use of deterministic time headway that
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may not adequately capture the stochasticity of traffic flow. Furthermore, the

model does not consider vehicular interaction, as the model assumes vehicle

behaviour to be independent of the type of vehicle preceding and following it.

Finally, by not independently determining capacity, or increasing the degree of

saturation, their experimentation reached undersaturated conditions by 70%

CAV penetration and prevented showing any further improvement.

Markov Chain Model

Ghiasi et al., addressed the drawbacks of Levin and Boyles approach [Ghiasi

et al., 2017]. Ghiasi et al., modelled mixed fleets on a one-lane highway seg-

ment, where vehicle types are distributed stochastically, and vehicle headways

are distributed randomly depending on the corresponding vehicle type. This

analytical stochastic model characterises traffic patterns by three critical fac-

tors; CPR, CAV platooning intensity, and mixed traffic headway settings. A

Markov Chain model describes the vehicle type distribution in the mixed fleet

scenarios while incorporating the two other parameters mentioned above.

Consider a stream of N vehicles along the highway segment, vehicle class is

denoted by An ∈ {0, 1}, where An = 1 if the nth vehicle is CAV and An = 0 if

the vehicle is human. An is representative of the state variable at step n, with

state-space S := {1, 0}. The CAV penetration rate P1 describes the expected

percentage of CAV in the traffic stream, where P1 := E(
∑

n∈N An/N). The

percentage of human vehicles in the stream is then defined as P0 = 1 − P1,

where P0 := E(
∑

n∈N (1 − An)/N). CAV platooning intensity is denoted by

O, where O = 1 represents maximum platooning intensity where all CAVs are

perfectly platooned in one group, O = 0 represents independent platooning

where CAVs and human vehicles are randomly distributed, and O = −1 rep-

resents minimum platooning intensity where the number of CAV platoons are

at a maximum.

Let tsr denote the probability for a type-s vehicle followed by a type-r vehicle,

so t10 would represent the probability for a CAV (1) followed by a human

vehicle (0). tsr for each interaction type is a function of the CAV penetration

rate (P1) and the degree of platooning (O), and is provided in Equation 163;
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t10(P1, O) : =

 P0(1−O) for O ≥ 0

P0 +O(P0 −min(1, P0
P1

)) for O < 0

t11(P1, O) : = 1− t10(P1, O)

t01(P1, O) : =

 P1(1−O) for O ≥ 0

P1 +O(P1 −min(1, P1
P0

)) for O < 0

t00(P1, O) : = 1− t01(P1, O)

(163)

The expected capacity of the Markov Chain model is given by;

q = E(
1

h
) = E(

N − 1∑N−1
n=1 hn

) (164)

Where, hn is the time headway between vehicle n and vehicle n+ 1, and N is

the total number of vehicles.

Due to the random headway distributions and the exponential number of vehi-

cle type distributions, it is difficult to evaluate link capacity. For this reason, a

closed-form analytical solution was proposed that approximates capacity. The

closed-form solution is provided in Equation 165;

q =
N − 1∑N−1
n=1 E(hn)

=
N − 1∑N−1

n=1 hAnAn+1

(165)

The probability of the nth vehicle of type-s, followed by a type-r vehicle is;

Pr(AnAn+1 = sr) = Pstsr(P1, O) (166)

Then, the approximated expected headway can be calculated as
∑N−1

n=1 hAnAn+1

N−1 =∑
s,r∈S Pstsr(P1, O)hsr. Therefore, the closed-form of the capacity approxima-

tion is given by;

q̃(P1, O, h) =
1∑

s,r∈S Pstsr(P1, O)hsr
(167)

Where h is the vector of expected headways; h = [h11, h10, h01, h00].

The study shows that the approximate capacity is sufficient to represent actual

capacity by investigating the theoretical relationship between the two capacity

models and comparing numerical results from experiments.
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Linear Regression Delay and Artificial Neural Network Model

Adebisi simulated the delay experienced by mixed fleet traffic at two signalised

intersections by modelling different CPRs using the Vissim microsimulation

[Adebisi, 2018]. The study developed a V2I communication algorithm that

optimised travel dynamics by adjusting the speed and acceleration of the ar-

riving CAVs based on their position and the state of the traffic signal, at each

0.1s time step. During each time increment, the algorithm;

� Collects vehicle data such as vehicle class, speed, acceleration, and po-

sition within a predefined communication range.

� Terminates communication with the human vehicles and proceeds to op-

timise the travel time dynamics for the CAVs. The optimisation involves

adjusting trajectories to avoid collisions in vehicle movement.

� Ceases communication if the traffic light is red. Else, determines how

much green-time is left before the red phase.

� Determines whether the vehicle can travel through the intersection be-

fore the red phase at its current speed. If not, calculates and communi-

cates the new speed and acceleration information to the vehicle.

� Vehicles that cannot travel through the intersection before the red phase

due to signalling and operational constraints will come to a complete stop

at the approach.

Adebisi then proposed two delay models as a function of four variables; cycle

length, effective green time, degree of saturation of the lane group, and CAV

penetration rate. Cycle lengths for the intersection are fixed, but the effective

green-time is expected to change with respect to CAV penetration. The sat-

uration flow rate is obtained through the relationship S = 3600/h, where h is

the saturation headway obtained by plotting the discharge headway at each

signal head. Their study increased CPR from 0% to 90% in 10% increments,

with 100% not being assessed as a completely autonomous fleet would render

signals redundant. The two delay models, Linear Regression Delay model and

Artificial Neural Net model, are outlined below.

The linear regression model takes the form;

yi = β0 + β1xi,1 + β2xi,2 + ...+ β(p− 1)xi,p−1 + εi (168)
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Where yi is the control delay obtained through microsimulation, and xi is

the selected variable. Adebisi used MATLAB to perform multiple regression

analysis and obtained p ≤ 0.05, which showed the significance of the variables

in the model at 95% confidence interval. An R-squared value of 0.76 and an

analysis of variance showed an overall p ≤ 2.02× 10−6, suggesting a good fit.

Artificial Neural Networks are a collective of mathematical systems efficient

in processing and interpreting large datasets to produce an estimation or ap-

proximation. The Artificial Neural Networks model used by Adebisi is a three-

category layer model consisting of the input layer, numerous hidden layers, and

the output layer. The network’s nodes, dubbed neurons, compute input values

(xj) and their assigned weightings (wj) within a non-linear activation function.

The function is given by Equation 169;

y = F (
N∑
j=0

xjwj ), x0 ≡ 1 (169)

All neurons within a layer are linked to all neurons within the consecutive layer

via weight lines. The weight lines denote the degree of weighting needed to

minimise errors. In the estimation of delay, the input layer requires variables

from the four categories of cycle length, effective green-time, DoS, and CAV

penetration rate. Variables are processed into the first hidden layer where the

nodes and the collection of weight factors sort inputs via a training method

which employs the backpropagation algorithm. The sort intends to produce

the optimal combination of all layers exhibiting minimal overall errors.

Adebisi compared the proposed linear regression delay model and Artificial

Neural Networks model with the Webster and HCM model. The study per-

formed another simulation to obtain a set of data that is different from the

data used to calibrate the proposed models. Delay data was collected for each

lane group for the two intersections that were studied. The simulated and

calculated delay output for a specific lane group is plotted in Figure 55;
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Figure 55: Comparison of the two approaches proposed by Adebisi, against

the Webster model and the HCM model [Adebisi, 2018].

Results from the comparison show that delay estimated by the proposed mod-

els are more accurate than the conventional delay models, with the estimate

from the Artificial Neural Networks model closely aligning with the observed

data (estimated error of approximately 3.2%). The linear regression model has

an error of 8.1%, whereas the HCM and Webster’s model had a higher error

of 32.2% and 33.5%, respectively. Adebisi’s work showed significant improve-

ment in delay estimation with the proposed models, which further reiterates

the inadequacy of existing strategic models in measuring mixed fleet delay.

However, there are limitations to the study which must be addressed. The

linear regression model assumes a linear relationship between the delay and

the selected variables, which may be an oversimplification of the traffic flow

characteristics. Despite the accuracy of the Artificial Neural Networks model

estimates, a major limitation of this model is that it does not explain the

behaviour of the network. The system iteratively searches for a set of values

which best fit the given data but fails to provide a physical or mathemati-

cally basis which supports the estimated traffic performance. This model is

also computationally and data intensive. The study also fails to examine the

predictive quality of the proposed model at a low or high degree of saturation

where network behaviour is relatively unstable.
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This chapter aims to extend the foundational work established by many of the

authors and work explored throughout this literature review, by evaluating

the applicability of the BPR path cost model to CAV behaviour. This chapter

then proposes adjustments to the strategic model, if warranted, by recalibrat-

ing relevant modelling parameters and applying correction terms. This process

results in a simple model, providing practitioners with an interim solution to

modelling CAVs, without resorting to computationally intensive, data-hungry,

and mathematically complex solutions presented in the literature. Addition-

ally, this chapter verifies the predictive qualities of the adjusted models by

benchmarking them against the current BPR model in new environments.

10.2 Experimentation Development

Based on the literature review, many have proposed models and techniques

for the macrosimulation modelling of CAVs and mixed fleets. However, none

have attempted to verify the applicability of existing methods, nor has an

investigation been conducted into the effectiveness of adding a correction term

to existing VDFs that more accurately reflects CAVs and mixed fleets. For this

reason, this chapter will investigate how well the BPR VDF performs as the

driving fleet is incrementally transitioned to 100% CAV. If the BPR function

is found to be inadequate, then recalibrating the model parameters will be

attempted, with a verification of the recalibrated model performance. The

remainder of this section contains a thorough description of the methodology

and experimentation setup.

The investigation begins with the development of a testbed. The environment

is a simple “Type A Weaving” motorway corridor with three onramps and

offramps. The intricate details of the environment and proof of its stability

is provided in Section 10.2.1. Once stability is established, capacity must be

determined for each CPR. The literature review in Section 10.1 provides a

range of methods through which to calculate capacity, however, none were

considered appropriate. The methodology for calculating corridor capacity is

provided in Section 10.2.2. Finally, this section concludes with an explanation

of the experimentation structure.
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10.2.1 Modelling Environment

Three testbeds are used in this study to generate data. Each testbed is a hy-

pothetical motorway section consisting of three sets of onramps and offramps.

Figure 56 displays a single section; the full modelling environment consists of

three of these sections joined consecutively;

Figure 56: A schematic of the network geometry used for this study.

The three testbeds differ in weaving area length, speed limit, and weaving

proportion. Refer to Table 57 for the differences between the three testbeds;

Figure 57: The weaving length, speed limit, and weaving proportion used to

differentiate the three testbeds.

Each onramp uses a form of ramp metering to ensure that weaving vehicles

do not cause a choke point to arise and artificially restrict flow. The ramp

metering operates by holding vehicles on the ramp until the adjacent mainline

average travel speed returns to a minimum of 50km/hr. CAV behaviour is

controlled by the framework developed in Chapter 5.1, and human behaviour

is controlled by the microsimulator using the models in Chapter 5.2.

The naming convention for the zones in the base OD matrix is as follows.

The mainline is the main motorway movement, with vehicles travelling from

East (“Mainline On”) to West (“Mainline Off”). The ramps are numbered

sequentially in order of appearance, starting with 1 in the East and 3 in the
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West. “On” and “Off” ramps have the appropriate suffix appended to their

name. So a vehicle travelling from the mainline to the third offramp would

be labelled as “Mainline On to Ramp 3 Off”. Using this naming convention,

Table 30 provides the base OD matrix for each of the testbeds. To moderate

demand in the network, the base case matrices are multiplied by an integer

scaling factor, similar to the study conducted in Chapter 9;

Table 30: The base OD matrices used for each testbed in this study.
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The number of weaving vehicles in the first weaving section is the summation of

vehicles travelling from “Mainline On” to “Ramp 1 off” and vehicles travelling

from “Ramp 1 On” to every destination bar “Ramp 1 Off”. This method of

calculating weaving proportion amounts to a weaving proportion of 15%, 23%,

and 33% in the first, second and final section, respectively, in Testbed 1.

Model stability is established by conducting 50 iterations of each testbed using

0% CAVs and a network demand at capacity. The standard deviations of

the key network metrics (average delay, average travel time, average travel

distance, and average speed) were calculated as a proportion of the median

value. The network results of the stability analysis are provided in Table

31. The average delay has a higher deviation compared to the other metrics,

an expected outcome for environments operating near capacity. The other

metrics show little variance compared to their median values;

Table 31: Network statistics used to establish model stability. Each value is

the proportion of the standard deviation of all runs, to the median value. 50

iterations for each testbed was used.

Each iteration uses a warmup period of 30min, where the network is loaded

with 80% of the peak hour demand. The warmup period is then followed by

a peak modelling period of 1hr, which is used for network evaluation.

10.2.2 Corridor Capacity

Capacity plays a critical role in the BPR function. If the capacity of an en-

vironment is not known accurately, then using an approximation in the BPR

function would compound error upon error, potentially leading to a disingen-

uously inaccurate result. For this reason, extensive care has been taken in

determining the corridor capacity. While many of the approaches presented

in Section 10.1 were explored to determine capacity, they were not deemed
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appropriate for this study. Those approaches either required an unreasonably

intimate knowledge of the corridor and specific driving behaviour, or they

provided approximations, the accuracy of which would be difficult to verify.

This study used a modified version of the Selected Maxima method. Since

the localised factors that affect capacity in this corridor were unknown, the

network was incrementally loaded, and throughput was observed. Data were

collected on each of the three offramps and the two mainline lanes leading

to the end of the model. The environment was then incrementally loaded

with traffic by multiplying the base OD matrix by a factor starting at 1 and

incrementally increasing by 1. Total network throughput is calculated by

summing the volume measured at each detector. An example plot of total

throughput vs demand multiplier is provided in Figure 58;

Figure 58: The corridor throughput plotted against corridor demand, used to

calculate the capacity of the modelling environment.

Incrementally loading the corridor reduces the complexity in identifying its

capacity. Referring to Figure 58, capacity is defined as the point where an ap-

preciable increase in corridor demand does not lead to an appreciable increase

in throughput, when the gradient of the plot approaches 0. This methodology

was sufficient in determining capacity in Chapter 9, however, it still contains

a degree of ambiguity that is not acceptable considering the nature of this

study. The additional information provided in Table 32 provides the percent-

age change in demand, the percentage change in throughput, a ratio of the

two metrics, and a 3-value running average.
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Table 32: The quantitative values used to generate Figure 58, also showing

the rate of change for demand and throughput. This table is used to inform

capacity.

In Table 32, the pale yellow colour depicts the demand multipliers that result in

an undersaturated corridor, the darker orange colour depicts the oversaturated

environment, and the unique orange colour results in the corridor capacity.

The criteria used for this evaluation is as follows. When ∆Demand/∆Through

is near 100%, it indicates that the incremental demand loaded to the network

was able also to reach the detectors at the exit points, and hence the network

is still performing in an unhindered state below capacity. As the network is

further loaded, this ratio drops, indicating proportionally less throughput than

in the previous case.

Setting a threshold for the ∆Demand/∆Through ratio is not adequate for

defining capacity. Due to the inherent stochasticity of microsimulation mod-

elling, a particular run may show a decrease in throughput while the next

may show an increase that more than sufficiently compensates for the previ-

ous decrease. For this specific reason, an average of the previous 3 results is

used, dubbed as the “running average” in Table 32. While placing a threshold

on the running average provided substantially more representative calculations

for capacity, it also was limited in its usefulness when consecutive runs tend to

oscillate around a value. In rare cases where the oscillation occurred, manual

selection of the capacity multiplier was made.
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10.2.3 Experimentation Structure

The experimentation structure is as follows;

� Establish Model Stability: The stability of the modelling environments

must first be proven, to provide validity to any data synthesised from it.

Model stability has already been demonstrated in Section 10.2.1.

� Determine the Capacity: The capacity for each modelling environment

in 20% increments of CAVs is calculated using the methodology outlined

in Section 10.2.2.

� Verify BPR Performance: Synthetic data is generated for the modelling

environment in 20% CPR and 10% DoS increments. By comparing the

synthetic data with the predictions made by the BPR function, the ap-

propriateness of the BPR’s use with CAVs and mixed fleets is evaluated.

� BPR Model Correction: If the BPR function is found to be deficient

in appropriately calculating link delay for CAVs and mixed fleets, then

a range of correction techniques will be attempted using the synthetic

data as a means of calibration.

� Corrected Model Validation: The corrected model is then validated by

comparing its predictive qualities against the BPR function in a new set

of modelling environments.

10.3 Experimentation Results

This section provides the experimentation results. The results are segregated

into the subsections mentioned in Section 10.2.3. Demand values in this section

are a multiplication factor for the base case matrices provided in Table 30.

10.3.1 Testbed Capacity

Capacity for each testbed and each CPR was found by incrementally loading

the network with demand and using the process identified in Section 10.2.2.

Capacity found using a single random seed is not reliable, as random seeds

and natural microsimulation stochasticity render any one modelling result in-

significant unless it is benchmarked against other results. For this reason,

300 iterations of each testbed for each CPR were conducted, where the de-

mand was randomly generated for DoS ∈ [0, 1.1] and random seed (RS) was
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randomly generated for RS ∈ [1, 99999]. Figure 59 provides the throughput

recorded for each iteration;

(a) Demand vs Throughput for the first testbed, discretised by CAV penetration.

(b) Demand vs Throughput for the second testbed, discretised by CAV penetration.

(c) Demand vs Throughput for the third testbed, discretised by CAV penetration.

Figure 59: Plotting throughput vs demand, to determine the environment

capacity for different CAV penetrations. The capacity is defined as the inflec-

tion point where a demand increase does not lead to an appreciable increase

in throughput.
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Figure 59 demonstrates that while each testbed is undersaturated, an increase

in demand leads to an identical rise in throughput. For each CAV penetration,

the environment reaches a point where the Demand vs Throughput plot be-

comes horizontal and additional demand does not increase throughput further.

This point is defined as capacity. Table 33 provides the quantitative value for

capacity, for each CAV penetration and each testbed.

Table 33: The capacity for each testbed and each CAV penetration.

The values in Table 33 are used to define the different DoS scenarios. The

increase in capacity relative to the 0% CAV case for each testbed is provided

in Table 34;

Table 34: The change in capacity for each testbed and each CAV penetration

rate, relative to the base case 0% CAV scenario.

10.3.2 Verify BPR Model Performance

Verification of the BPR model requires synthetic data. Synthetic data was

generated for all three testbeds, CAV s ∈ [0%, 100%] in 10% increments,
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DoS ∈ [10%, 100%] in 10% increments, and 20 randomly generated itera-

tions for each case. This structure amounts to a total of 6,600 iterations of

modelling. The synthetic data is then aggregated into two groups, 30% re-

served for the VDF model evaluation and recalibration, and the remaining

70% reserved for VDF model validation if it is warranted.

Table 35 below provides the average microsimulation travel time for each CPR

and DoS scenario. This table shows that travel time increases as congestion in

the network build, and travel time decreases with increasing CAV penetration.

The first result is well understood, but it does demonstrate that the system

reacts rationally to growing levels of congestion. The second finding has been

already demonstrated in this thesis, specifically in Chapter 7 and Chapter 9.

The travel time results for the environments in this study are as follows;
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Table 35: Average travel time (sec) for each CPR, DoS and testbed, averaged

for a randomly selected 30% of the synthetic data.

Table 36 demonstrates the difference in travel time calculated through the

synthetic data, and travel times predicted by the BPR function. For the BPR

function to be used appropriately, it’s parameters must be calibrated for each

use case. The BPR α and β values that minimised error between the synthetic

data and the prediction made by the BPR function were used (α = 1.0122 and

β = 4.1856). Deviations in travel time predictions are as follows;
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Table 36: Difference in the average travel speed predicted by the BPR function,

and the average travel speed found in using the synthetic data.

Table 36 shows that despite the BPR parameters being calibrated to minimise

error, the BPR tends to incorrectly predict travel time when either DoS or

CPR increases. The RMSE for the BPR function is 11.56, 9.68 and 7.95, for the

three testbeds respectively. Decreasing the weaving proportion from Testbed

1 to Testbed 3 reduced the error of the BPR corridor travel time predictions.

To contextualise this error, consider the scenario that generated the highest

error value of 48s/veh. This scenario had a demand of 9,912veh, implying

a total system delay of 476,000s in the 1hr modelling period for this 3-link

corridor. Extrapolating to a citywide network would result in substantially

poor results. For this reason, recalibrating the BPR function parameters to

better predict delay in mixed fleet environments will be attempted.
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10.3.3 BPR Model Recalibration

The BPR function has no capabilities to cater to CPR. This section starts by

proposing a unique α and β for each CPR and for each testbed, optimised

to minimise the delay prediction error of the BPR function for 30% of the

synthetic data. Figure 60 plots the resulting optimised parameters;

Figure 60: Optimised α and β values for each CPR and testbed.

A linear model is fitted to the average parameter value for each CPR. The

linear best fit model for the α and β parameter is provided in Figure 61.

Figure 61: The linear models fitted to the α and β parameters.
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The r2 value describing the goodness of fit of the linear model is 0.9013 and

0.9821 for the α and β parameters respectively. The calibrated linear models

for both parameters is provided in Equation 170;

α = −0.7302× CPR+ 1.4193

β = −4.8811× CPR+ 6.7691

Where, CPR ∈ [0, 1]

(170)

10.3.4 Corrected Model validation

The recalibrated BPR parameters were used to develop an α and β model

with respect to CPR. The predictive qualities of the recalibrated model are

evaluated using the remaining 70% of the synthetic data. Provided in Table

37 is the difference in synthetically generated travel time and that predicted

by the recalibrated model, similar to Table 36 developed for the BPR model;
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Table 37: Difference in the average travel speed predicted by the recalibrated

model, and the average travel time found using the synthetic data.

To directly compare the performance of the original BRP model to the recal-

ibrated variant, RMSE is used. Table 38 contains the ratio of RMSE for the

recalibrated BPR function, to RMSE for the original BPR function. A value

between 0 and 1 in green indicates that the recalibrated model outperformed

the original BPR function. A value greater than 1 in red indicates the op-

posite, and the BPR outperformed the recalibrated function. The predictive

qualities of the recalibrated model are as follows;
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Table 38: A direct comparison of the BPR function vs its recalibrated variant.

A green value indicates the recalibrated model outperformed the original BPR,

with a red value indicating the opposite.

Through visual inspection of Table 38, it is clear that there are specific points

where the recalibrated model performs significantly worse than the original

BPR model. However, the overarching distribution of green does seem to

indicate that the model as a whole operates better. Visual inspection alone is

insufficient to conclude, a qualitative assessment follows.

When considering the aggregated synthetic data and applying the two BPR

variants to each data point, the original model yields an RMSE of 15.16,

whereas the recalibrated BPR yields an RMSE of 8.86. This change amounts

to a model improvement of 42%. The improvement is comprised of 67% of
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the data points showing an improvement in travel time prediction, with the

remaining 33% showing a worse prediction. However, simply calculating the

number of instances of improvement is also insufficient, as the 67% could have

shown negligible improvement, while the remaining 33% could have shown

significantly worse performance. By assessing the absolute improvement in

travel time prediction, the significance of the improvement can be investigated.

The average improvement of all data points is 543%. This figure indicates

that the improvements in travel time prediction are 5.43 times better than

any errors arising from the new BPR model. The predictive qualities of the

new approach, while not flawless, far outweigh the predictive qualities of the

original BPR model in a mixed fleet environment.

10.3.5 Commentary on the Conical and Davidson VDFs

A similar methodology was used to attempt a recalibration of both the Conical

and Davidson VDFs, with neither showing positive results. This methodology

was successfully applied to the BPR function is due to the simple nature of

the model. The α and β parameters occur in the BPR function once, mak-

ing their role both tractable and relatable to real-world phenomena. There-

fore, altering the model has a predictable consequence that also reflects the

change observed in real-world fleet operation or in synthetic data. The Coni-

cal and Davidson function, however, have a complex relationship between the

travel time prediction and their calibration parameters (refer to Equation 153

and Equation 154). This complex relationship results in modifications to the

model, as conducted for the BPR function, having unintended consequences.

The methodology used in this study for recalibrating the BPR function is not

appropriate for either the Conical function or the Davidson function.

10.4 Discussion

The results reported in Section 10.3 demonstrate that the traditional BPR

function performs well for undersaturated conditions, but performs poorly as

congestion or CPR increases. When the α and β parameters are recalibrated as

functions of CPR, the predictive qualities of the BPR function improve. Before

and after recalibration, the BRP function RMSE improved from 15.16 to 8.86.

In 67% of cases, the recalibrated variant better-predicted travel time than

the traditional BPR function. Finally, of the 4,620 simulation runs forming
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the 70% of the dataset used for validation, the recalibrated BPR function

better-predicted travel time by 5.43 times.

The implications of the results found in this chapter are two-fold. Firstly, this

study demonstrates that the BPR function can benefit from recalibration and

make its form more appropriate for use with mixed fleets and CAVs. Secondly,

this study demonstrates that for legacy purposes, the BPR function does not

need to be explicitly replaced with more complicated and sophisticated models

developed specifically for CAVs. The literature review in Section 10.1 demon-

strated that alternative approaches for mixed fleet and CAV VDFs relying

on artificial intelligence and machine learning requires substantial quantities

of data for training and calibration purposes. Other approaches proposed in

the literature are not as simple and accessible as the BPR function. For this

reason, validating its continued use is critical.

There are, however, questions raised in regards to the methodology used in

this study that warrant further investigation. The original BPR function was

developed by curve-fitting a model to data observed from a single motorway

section in the United States. The small dataset used for calibration signif-

icantly narrows the use-cases in which the parameters recommended in the

HCM are appropriate. For this reason, the HCM recommends recalibrating

the BPR model parameter for each environment in which it is used. While

this study used three different testbeds to synthesise the data, it still followed

a similar methodology to that used in the development of the original BPR

function. The detailed investigation conducted in Chapter 9, where motorway

performance as a function of CAV penetration was assessed, demonstrated that

motorway section performance is significantly susceptible to the proportion of

weaving vehicles. This implies that the synthetic data used for calibration and

validation in this study may also be subject to the same over-fitting as the

original BPR function.

Additionally, this study demonstrated that the weaving proportion affected

the optimal α and β parameters. Figure 60 showed that the variance in

the optimum parameters is higher for low CAV penetrations (less than 20%).

Therefore it is less reliable to use a curve-fitted model to calculate the param-

eter for lower CAV penetration rates. Table 37 reconfirms this expectation,
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as travel time predictions in the low CAV penetration and high DoS region

tend to show a greater error against the observed travel time. Altering the

parameters to be functions of CPR may not be enough. If the parameters also

show sensitivity to vehicle weaving proportions, speed limits, weaving segment

length, and other factors, then also including these factors in the parameter

function may yield improved results. However, each additional factor included

in the assessment exponentially increases the data required and the modelling

time, especially if a covariate assessment approach is used.

The CAV emulation framework developed as part of this thesis and presented

in Chapter 5.1 is underpinned by the critical assumption of cooperativeness.

The investigation in Chapter 9 demonstrated that cooperativeness at merge

junctions significantly worsens performance when the proportion of vehicle

weaving is high. This study used weaving proportions of up to 33%, which

is relatively high compared to what real networks experience. Had the weav-

ing proportion been lower, the recalibration and prediction efforts may have

yielded further improvements than they already did.

During the recalibration process of the BPR parameters, a linear best-fit model

was used as it provided a high r2 value for both parameters and is simple. This

decision raises two key questions. The first, would an alternate model have

yielded better results? The second, what are the real-world implications or

justifications for using a specific model, and the value of the parameters? This

study demonstrated that α and β are both inversely linearly proportional to

CPR. In the BPR function, lowering the α parameter reduces the gradient of

the travel time increase between a DoS of 0 and approximately 0.85, resulting

in a sharper increase in travel time between DoS 0.85 and 1. Raising the β

parameter influences the magnitude of the travel time increase at a DoS of 1.

To say that CAVs have an inversely linear relationship means that increasing

the CPR reduces the travel time impact of proportionally additional demand.

This relationship was verified in Chapter 7, indicating the derivation of an

inverse relationship is consistent with the other findings in this thesis.
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10.5 Conclusion

In this study, the applicability of the BPR VDF to mixed fleets and CAVs

was investigated. Synthetic data was generated using 6,600 modelling iter-

ations. 30% of the synthetic data was used to assess the parameters of the

BPR function. When it was found that the BPR function showed errors as

CPR or DoS increases, the same 30% of the data was used to generate a

linear relationship between CPR, α, and β. The recalibrated BPR function

now contained α and β parameters that were a function of CPR. Using the

remaining 70% of synthetic data, the predictive qualities of the recalibrated

BPR function parameters were assessed. This assessment demonstrated that

the RMSE improved from 15.16 to 8.86. In 67% of cases, the recalibrated vari-

ant better-predicted travel time than the traditional BPR function. Finally, of

the 4,620 simulation runs, forming the 70% of the dataset used for validation,

the recalibrated BPR function better-predicted travel time by 5.43 times.
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11 Safety Assessment of Mixed Fleets using the Sur-

rogate Safety Assessment Module

Abstract: The transportation network can provide additional utility by address-

ing the safety concerns on roads. On-road fatalities are an unfortunate loss

of life and lead to significant costs for society and the economy. CAVs, envis-

aged as operating with idealised safety and cooperation, could be a means of

mitigating these costs. This chapter provides insights into the safety improve-

ments to be attained by incrementally transitioning the fleet to CAVs. This

investigation is done by constructing a calibrated microsimulation environment

in Vissim and deploying the custom-developed CAV control algorithm. CAVs

are introduced to the environment in 10% increments, and safety performance

is assessed using SSAM. The results of this study show that CAVs at low

penetrations result in an increase in conflicts at signalised intersections but

a decrease at priority-controlled intersections. The initial 20% penetration of

CAVs is accompanied by a +22%, -87%, -62% and +33% change in conflicts at

the signalised, priority, roundabout and DDI intersection respectively. CAVs

at high penetrations indicate a global reduction in conflicts. A 90% CAV pen-

etration is accompanied by a -48%, -100%, -98% and -81% change in conflicts

at the signalised, priority, roundabout and DDI intersection respectively.

Safety in transport is at the forefront of technological design, innovation, and

regulation. The NSW state government of Australia is one of many regulatory

bodies focused on delivering a safer and more efficient road network. Through

its “Towards Zero” initiative, the NSW state government aims to implement

strategic and emerging technology to reduce the number of deaths and severe

injuries on the road network [Transport for New South Wales, 2018].

Accidents on roads are highly correlated with driving behaviours such as jerk

[Pande et al., 2017], perception of risk and reward [Dixit, 2013], and the real-

time state of the network such as density [Alsalhi et al., 2018]. The ABS and

TfNSW indicate that accidents caused by negligent behaviours such as driving

under the influence, fatigue and speeding contribute around 30% to the total

number of accidents [Transport for New South Wales, 2017]. These accidents

are a small subset of the negligent behaviour conducted by motorists, saying

that CAV technology will mitigate 30% of accidents is an initial and conserva-
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tive estimate. An independent study conducted by PricewaterhouseCoopers

(PwC) indicates this reduction could be as high as 90% [PwC, 2004].

Significant economic benefits accompany the safety benefits of CAV technol-

ogy. Road accidents result in a substantial financial cost to society, as shown

by the Australian Bureau of Infrastructure, Transport and Regional Economics

(BITRE) in their 2006 inquiry into the financial implications of vehicular ac-

cidents [BITRE, 2009]. The inquiry concluded that road accidents and deaths

cost the community AUD$2.8 Billion per year. That is AUD$3,180,598 from

each fatality, AUD$346,869 from each serious injury, and AUD$17,511 from

each minor injury. The breakdown of costs indicates that post-accident vehicle

repair and output losses (the loss to society due to sudden death) contribute

to over half the costs incurred through an accident. CAV technology has the

potential to reduce accidents and associated costs significantly.

When assessing the situation from either a financial and economic perspective,

or a societal impact perspective, potential safety improvements through CAV

technology provides a strong business case. This chapter investigates further

the effects on road safety resulting from CAV uptake using a microsimulation

modelling approach and SSAM. The remainder of this chapter is structured

as follows; Section 11.1 contains a summation of the literature and work com-

pleted to date. Section 11.2 introduces the framework used for this exper-

imentation. Section 11.3 discusses the development of the microsimulation

network. Section 11.4 and Section 11.5 contain a summation of the results

and the discussion, respectively. Finally, Section 11.6 provides a conclusion.

11.1 Literature Review of Vehicle Conflicts and Safety

Knowledge regarding the safety implications of CAVs derived from microsim-

ulation modelling is limited. Physical CAV components are rigorously tested

during development to minimise component and vehicle failure. Testing CAVs

in network settings is difficult due to the requirement of expensive resources

and the ethical uncertainties of human involvement in the trial of emerging

technology. This ethical uncertainty applies to both the field and simulative

testing of cooperative operations. This section outlines the safety studies con-

ducted regarding current practices that inform the design of infrastructure,

as well as investigations into the safety impacts of CAVs. Also, this section
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in brief outlines crash-prediction models that have been calibrated using ob-

served data. These models provide insights into the geometric factors that

affect human driving safety, provoking thought into whether the same factors

will influence a CAV.

11.1.1 Safety Studies of Human Driven Vehicles

The review of human-focused safety studies is segregated by intersection type.

This section covers priority intersections such as the roundabout, signalised

intersections such as the 4-way lights, and diverging diamond interchanges.

Roundabout Intersection Studies

The roundabout has been a staple of network design since the 1950s in many

developed countries. Its relatively cheap construction costs, low maintenance,

and priority-controlled operation make it a great fit in low-flow and low-

velocity environments. Vehicle trajectories are forced through a narrow path in

a circular motion, with conflicting vehicles required to yield. A study in Victo-

ria, Australia [Austroads, 1993] measured the casualty rates at 73 intersections

before and after the installation of roundabouts. Before installation, these in-

tersections were either give way, stop, or police controlled. Post-installation,

the study found a 74% reduction in casualty rates, a 32% reduction in property

damage, and a 68% reduction in pedestrian casualty.

Kim and Choi found that the likelihood of accidents could be predicted at

roundabouts using a model dependant on the number of approaches, number

of entry lanes, entry width, flare width, number of circulating lanes, and cir-

culating lane width [Kim & Choi, 2013]. Their study indicated that speed

was not a significant contributor to the rate of accidents because roundabouts

generally act as pinch points, wherein they force deceleration to 50% of free

flow speeds as vehicles travel through them.

Qin et al., created a negative binomial crash prediction model using data for

roundabouts obtained in Wisconsin [Qin et al., 2011]. Their approach devel-

oped a range of models with dependent variables that included Annual Average

Daily Traffic (AADT), number of legs, number of lanes, geographic location

in Wisconsin, the configuration of the yield signage, inscribed circle diameter,
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and outer circle diameter. The model that considered the geographic location

of the roundabout best fit the observed data. This study demonstrated that

the familiarity of the driver to the concept and operation of a roundabout was

more influential to its safety performance than the geometric considerations

given to its inner and outer diameters or other design elements.

Turner and Roozenburg used data from 104 roundabouts in New Zealand to

develop a range of accident prediction models empirically describing the likeli-

hood of accidents in differing circumstances [Turner & Roozenburg, 2006]. The

models estimate the likelihood of accidents for situations such as entering and

circulating vehicles, rear-end collisions, loss-of-control accidents, pedestrians,

cyclists, and high-velocity roundabouts. Contrary to other accident prediction

models, their study found that speed and flow play a more significant role in

the occurrences of accidents in motor vehicles than the geometric design does.

Their model suggests that if the mean circulating velocity of 20km/h were

increased by 20%, the resulting number of accidents would increase by 38%.

Signalised Intersection Studies

Contrary to priority-controlled intersections, the signalised intersection op-

erates by dictating right of way and minimising concurrent conflicting move-

ments. However, this style of operation introduces the motorist to the “dilemma

zone” [Papaioannou, 2007]. The dilemma zone is the amber light period where

a driver must decide whether to break in preparation of the red light or pro-

ceed through the intersection. Papaioannou found that the factors affecting

this decision included pavement condition, intersection layout, cycle length,

position in a platoon, and vehicle speed. The study concluded that in a

60km/h zone, 26.3% of drivers exceed the speed limit to cross the intersection

in the dilemma zone. Males on average are 14 times more likely to exceed

the speed limit and pass through the intersection on an amber light, with the

85% percentile exceeding the speed limit by 26%. The compliant behaviour

of CAVs may eliminate dangerous behaviour such as this.

The diverging diamond intersection (DDI) was first implemented in the United

States in 2009 and has gained popularity in recent times. The operation of

a DDI involves the traffic stream momentarily crossing to the opposing side
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before returning to the correct side at another crossing point downstream.

This configuration reduces the number of conflicting movements present in

conventional diamond intersections. DDIs yields higher throughput, contain

fewer conflict points, and are designed to be safer. Claros et al., measured

the change in the frequency of accidents in six locations in Missouri before

and after the implementation of a DDI [Claros et al., 2015]. This study found

substantial reductions in the occurrences of accidents for all severity types.

Fatal crashes showed a 59.3% to 63.2% reduction, property damage crashes

showed a 33.9% to 44.8% reduction, and total crashes showed a 40.8% to 47.9%

reduction. A comparable study conducted by Hummer et al., used a similar

methodology and found supporting results [Hummer et al., 2016]. Their study

demonstrated that replacing conventional intersections with DDIs resulted in

an overall crash reduction of 33%.

Variance in the explanatory variables used in these crash prediction models

makes it difficult to predict the effect of CAVs on intersection safety. Models

such as that presented by Qin et al., place heavy emphasis on the importance

of geometric design in roundabout safety, other models such as that by Turner

and Roozenburg focus on the flow and speed of vehicles. CAVs are expected

to traverse the network in platoons with significantly smaller headways and

higher average speeds. The Turner and Roozenburg models imply that the

likelihood of accidents has the potential to increase in the interim scenarios,

as portions of the network begin to transition to autonomous. Similarly, the

notion of the dilemma zone, though pertinent to motorists occupying the road

today, is antiquated for a vehicle whose behaviour is governed by a set of de-

terministic algorithms. For this reason, a framework developed in this thesis

for evaluating CAV behaviour is necessary to gain insights into safety implica-

tions. This framework is implemented to evaluate CAV safety by determining

the likelihood of conflicts qualitatively. The economic impact of CAVs through

safety improvements can then be determined.

11.1.2 Safety Studies of Autonomously Driven Vehicles

Assessing CAV safety is necessary for evaluating their societal and economic

impact. Studies of this nature may accelerate the development of political and

legal policies required to facilitate their adoption. Outlined in this section are

the sparse and recent investigations regarding the safety implications of CAVs.
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Carbaugh et al., assessed the severity and frequency of rear-end collisions for

automated and human highway systems [Carbaugh et al., 1998]. Their mod-

elling found that in their testbed, a typical human driver has a probability of

collision of 0.87, whereas an alert human driver has a probability of collision

of 0.11. The CAVs, on the other hand, were found to have a probability of

collision of 0.028. They also collided at less than 30% the velocity of typical

human drivers. This study indicated that CAVs are four times safer than hu-

man drivers. The testbed was confined to the highway environment, assessing

the safety implications of transverse vehicle interactions. Also, their study

used probabilistic models to identify conflicts between vehicles. The novelty

of this chapter is in its use of microsimulation modelling to emulate CAV be-

haviour for each agent. The evaluation of safety is conducted via analysis of

vehicle trajectories in forecasting position and identifying potential conflicts.

Additionally, this chapter assesses CAV safety implications for intersections.

Deluka Tibljas et al., quantified CAV safety using a microsimulation environ-

ment [Deluka Tibljaš et al., 2018]. CAV behaviour was emulated by changing

the parameters of the Wiedemann 99 model [PTV Group, 2016], and safety

performance was assessed using SSAM. Their study concluded that the num-

ber of conflicts would increase with the introduction of CAVs. While both this

chapter and their study use microsimulation with Vissim and the SSAM mod-

ule for safety evaluation, the novelty of this chapter lies in its use of a custom

and external control protocol for dictating CAV behaviour. Deluka Tibljas et

al., adjusted the parameters of the default car-following model used by the

microsimulation software. Refined results can be obtained by using a frame-

work that has been developed specifically for CAVs, giving special attention

to CAV behaviour, communication, and cooperation.

Rahman and Abdel-Aty used the Vissim commercial microsimulator and SSAM

in their analysis of the effects of CAV behaviour on safety [Rahman & Abdel-

Aty, 2018]. Their study used a calibrated model of the Holland East-West

Expressway (SR408) in Orlando, Florida as the testbed, and the IDM car-

following model to emulate the behaviour of CAVs. Their study used five sur-

rogate metrics to assess safety; the standard deviation of speed, time-exposed

TTC, time-integrated TTC, time exposed rear-end crash risk index (RCRI),

and sideswipe crash risk. Their study showed a reduction in time-exposed
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TTC and time-integrated TTC of 19% to 21% when CAVs were allowed to

form platoons in all lanes. When CAV operation was confined to a managed

lane, the study found a reduction of 26% to 28% for both metrics, respectively.

This chapter uses a similar methodology; however, it employs a different CAV

car-following model and extends the findings by also investigating safety at a

range of intersections in an arterial roadway setting.

Kidando et al., used the 2017 crash data obtained from the Signal Four Ana-

lytics website maintained by the University of Florida, to qualitatively assess

the likelihood of accidents [Kidando et al., 2018]. The crash data indicated

that for their segment, 85.1% of accidents were at intersections, with the re-

maining 14.9% occurring on the freeway. Rear-end collisions accounted for

55% of all collisions. The authors qualitatively assessed each accident type

and determining whether CAV operation and technology would be adequate

in eliminating it. Kidando et al., concluded that the potential reduction in

conflicts resulting from CAV operation is between 17% and 70%. This chapter

uses microsimulation modelling and a custom CAV control algorithm to assess

safety as opposed to a qualitative analysis of historical crash data. Addition-

ally, the large range identified by Kidando et al., provides scope for further

refinement and more specified results.

Rahman et al., attempted to investigate the impact of CAV operation on

safety during reduced visibility conditions [Rahman et al., 2018]. They used

the Interstate I-4 in Florida as their base model, the IDM car-following model

for CAV behaviour, and the Vissim commercial microsimulator for modelling

vehicle interaction. Their study used the standard deviation of speed, the

standard deviation of headway, and RCRI as surrogate measures of safety.

The “look ahead” parameter of the commercial software was considered most

critical for calibrating to fog conditions. Also, the ten parameters of the

car-following model were iteratively adjusted to find the best match between

observed and modelled car-following behaviour during fog conditions. The

modelling found the most significant improvement at a CPR of 100%, with

significant decreases seen after 30% penetration. The limitation of this study

was in its constraint of the assessment to the highway environment. The

modelling environment used in this chapter extends the understanding of CAV

safety by conducting simulations in a mixed urban and freeway setting.
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As data becomes available regarding CAV operation, these models can be bet-

ter calibrated. The California Department of Motor Vehicles (DMV) requires

that disengagement and accident data be made public by CAV developers,

in exchange for permits to operate the vehicles [California, State of, 2018]. A

study into the 2015 data released by manufacturers [Dixit et al., 2016] assessed

several metrics, including the trust placed in CAVs by the occupants. This

study evaluated the degree of correlation between autonomous disengagements

and manual disengagements. An autonomous disengagement event is where

the occupant is required to take control of the vehicle due to a shortcoming

or error on the CAVs behalf. A manual disengagement event is where the oc-

cupant willingly seizes control of the CAV. The study found that there was a

high correlation (0.73) between the frequency of autonomous disengagements

and manual disengagements, indicating that trust in this emerging technology

is currently fickle. Further real-world and microsimulation testing is neces-

sary to develop a complete picture regarding CAV safety. Studies such as

this chapter that evaluate the safety impacts of emerging technology and help

build confidence in its potential.

11.2 Experimentation Framework

The framework for this study uses traffic and network data to emulate CAVs

in a microsimulation environment. During a simulation, the microsimulator

records trajectory data which the SSAM module uses to highlight potential

conflicts that arose during runtime. Outlined in Figure 62 is the data flow

structure of this study, with a more detailed explanation of each component

provided in this section.

The framework consists of four key components. The data (yellow) is used to

provide an element of realism to the testing, by calibrating and validating the

study area to a real road network. This data acts as spatial and behavioural

constraints for vehicle operation. The microsimulator (grey) is used to emu-

late vehicle interactions based on the restrictions imposed by the network and

traffic data. The microsimulator is also responsible for generating, recording,

and forwarding data to both the external control algorithm and analysis plat-

form. The CAV emulation algorithm (orange) is responsible for dictating CAV

movement. The microsimulator passes vehicle geospatial and behavioural in-

formation to the external control algorithm, where appropriate acceleration
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and lane-change decisions are determined and returned to the microsimulator.

The analysis platform (red) processes microsimulator data.

Figure 62: Framework for the flow of data in this study.

The Data

The traffic data consists of volume along links and a characteristic 24-hour

traffic profile. Volume along links is available as AADT from public sources

and converted to typical peak hour volumes using the characteristic profiles.

This data is then used to calibrate an OD matrix manually. This process

ensures a well-calibrated and fit for purpose base traffic model.

Google Maps, Bing Maps, and OpenStreetMap are used to obtain network

data. Using their Satellite capabilities, these platforms form an underlay for

creating the network geometry, ensuring correct road alignment and number

of lanes. The Street-View capabilities of Google Maps aid in determining the

signal phasing configuration. Cycle durations are set using the Roads and

Maritime Services (RMS) signalling guidelines [RMS, 2016].
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The Microsimulator

The microsimulator used for this study is Vissim 9-09 [PTV Group, 2016]. The

microsimulator provides an environment in which the agents obtained from the

traffic data can interact with each other. The interactions are confined in scope

by restrictions imposed by the network data. The urban environment uses the

Wiedemann 74 model, and the freeway environment uses the Wiedemann 99.

The microsimulator also generates, stores, and forwarding real-time data in-

cluding vehicle positions, current behaviour, and future intentions to the CAV

algorithm. The algorithm uses this information to determine the appropriate

course of action and returns the acceleration and lane-changing intentions of

the vehicle for the next time increment.

The Surrogate Safety Assessment Module

SSAM is a tool created by Siemens Energy and Automation, Inc. with the

FHWA [Gettman et al., 2008]. This tool uses trajectory data generated by mi-

crosimulators to identify potential conflicts, based on the definition of a conflict

provided by the modeller. A trajectory file is created by the microsimulator

during model runtime and contains information about the position and move-

ment of each vehicle. Data in the trajectory file forms a subset of either the

“Dimension”, “Timestep” or “Vehicle” class, explained as follows;

� The Dimension class contains information regarding the spatial char-

acteristics of the observation area. “MinX”, “MinY”, “MaxX” and

“MaxY” are used to define the rectangular bounding box of the mi-

crosimulation environment.

� The Timestep class contains a recording of the current time step since

the commencement of the simulation. This variable allows SSAM to

position the vehicles temporally.

� The Vehicle class contains information about the spatial characteristics

of the vehicle. “VehicleID”, “Link ID”, “Lane ID”, “Front X”, “Front

Y”, “Rear X”, and “Rear Y” are used to position the vehicle spatially.

“Speed” and “Acceleration” forecast the movement of the vehicle.

Using the temporal and spatial information, SSAM determines whether the

trajectory of the vehicle will interact with that of another, and reports infor-
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mation regarding this interaction. This information includes time to conflict,

speed during conflict, and speed after conflict. SSAM provides a range of cri-

teria by which to define a collision. Maximum TTC is estimated based on the

current location, speed, and trajectory of the two vehicles involved in the inter-

action. Maximum post-encroachment-time (PET) is the time between when

the preceding vehicle and following vehicle last occupied the same space.

The rear end angle and the crossing angle are also used to identify potential

conflicts. The rear end angle defines a potential collision during car-following

and lane-changing. The crossing angle defines potential collisions in head-on

scenarios, such as during manoeuvres through an intersection. Figure 63a

provides a diagrammatic representation of these angles;

(a) Rear end angle and the crossing angle. (Source:

[Gettman et al., 2008])

(b) A scenario where SSAM may

inaccurately identify a conflict.

Figure 63: The definition of rear-end and crossing angle used by SSAM, and a

scenario in the Vissim microsimulator where a conflict may be misidentified.

Due to the small headway kept between CAVs, SSAM tends to flag safe in-

teractions for CAVs as a potential conflict. Consider the situation depicted

in Figure 63b, where spatial restrictions in a congested environment force a

lane-changing vehicle to remain in the centreline between both lanes. Once

the front bumper of the vehicle has entered the adjacent lane, the following

vehicles will no longer consider this vehicle as a leader and progress to seem-

ingly drive through its rear. However, SSAM uses both the front and rear

coordinates and flags these interactions as conflicts.
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The Analysis Platform

The analysis platform is responsible for processing raw data obtained from

the microsimulator and SSAM. The data from the microsimulator and SSAM

include;

� Node evaluation results - Contain information regarding the performance

of intersections by tracking the movement of vehicles through the node.

This information is used to infer volume, density, speed, and delay.

� Link evaluation results - Provide similar information, but along links

and for midblock locations.

� Detector data - Can be collected at any point in the network and is used

to attain velocity, acceleration, and delay information.

� Network performance data - Provides a high-level aggregation of net-

work statistics including total system travel time, total system delay,

throughput, and volume.

� Trajectory data – Contains the geospatial and movement information for

each vehicle in the network for each time increment. This information

is used to infer potential conflicts.

� Vehicle input data – Creates a record of all vehicles entering the network

and distinguishes between vehicle types (human-driven or CAVs). This

information, with the trajectory data, classifies an interaction as either

between humans, between CAVs, or containing both.

11.3 Case Study

The microsimulation environment is based on the Geelong area of Victoria,

Australia. This location is chosen due to its hybridisation of both a highway

environment and a residential urban environment. The area also has extensive

publicly available data to use readily for calibration of the base model. Out-

lined in this section are the specificities of the case study and the structure of

the experimentation.

11.3.1 Microsimulation Network

Calibration has been conducted to retain realism, with a DDI artificially in-

corporated into the environment. The reason for adding a DDI is because
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this element of the transport network is increasing in popularity, resulting in

it changing from being a rare occurrence in transport networks to becoming

accessible by regular motorists. The DDI is safer than conventional intersec-

tions because it has fewer conflict points between interacting movements. So,

if safety improvements can also be seen for an intersection arrangement that

is already safer than conventional intersections, then this would further attest

to the benefits of CAVs.

The elements of the network are as follows, with the contextualised modelling

environment provided thereafter in Figure 64;

� Signalised Intersection: Four signalised intersections are present in the

environment. One exists as a conventional four-way intersection, one is

in the form of a DDI, and the other two are present at the motorway

onramp and offramp.

� Priority Junctions: Eleven priority junctions are present in the form of

four roundabouts and seven give-way junctions.

� DDI Intersection: A DDI has been artificially added to the environment

in the top left of the study area. The DDI is a network element that

is increasing in popularity and warrants investigation. Its geometric

and signal configuration makes it a safer intersection arrangement than

conventional intersections.

� Highway Environment: The study area contains the M1 Geelong Ring

Road (Princess Freeway). This motorway contains two lanes in each

direction with onramps accessing the motorway through a third tapered

lane.
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Figure 64: The calibrated microsimulation network of the Geelong area in

Victoria, Australia.

11.3.2 Model Calibration

Calibration is the process of ensuring that modelled network behaviour aligns

with observed network behaviour. The objective function for calibration is to

minimise the Geoffrey E. Havers (GEH) statistic, which is a function of the

observed and modelled volumes. The objective function is expressed as;

objective = min{GEH = f(M,C)} (171)

Where, M and C are the modelled and counted traffic volumes respectively.

The GEH statistic is calculated using;

GEH =
|M − C|

0.5× (M + C)0.5
(172)

The GEH statistic measures the deviation between observed and modelled
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traffic volumes. The absolute size of the measurement weights the deviations.

This method ensures that smaller modelled volumes need to be closer to ob-

served volumes, while larger volumes have a degree of tolerance.

Calibration followed the RMS modelling guidelines [RMS, 2013], where the OD

matrix is iteratively adjusted in response to the deviation calculated between

the observed and modelled flows. Similar methods are used in a range of other

studies ([Oketch & Carrick, 2005], [Hollander & Liu, 2008], [Rahman et al.,

2019], [Chu et al., 2003]). The GEH statistic is calculated for each turning

movement or link flow independently. The portion of turning movements in

the model containing a GEH statistic less than the threshold indicates the

calibration quality. The guidelines recommend that 85% and 100% of volumes

have a GEH statistic less than 5 and 10, respectively. Figure 39 displays the

GEH Statistic for all major network links, calculated using a range of methods

and all showing that the RMS criteria has been met.

Table 39: Network scale calibration results using the GEH statistic method.

AADT data used to calibrate the model is available publicly through the

VicRoads Open Data platform [VicRoads, 2020]. This database provides ex-

tensive coverage for the majority of Victorian arterial and motorway roads.

AADT was converted to peak-hour AM flow using the “Typical Hourly Traffic

Volume” provided by the Victorian Government [Victoria Government, 2019].

The typical hourly volumes indicated an AADT to AM peak-hour volume

conversion factor of 0.091.

Figure 65 provides the observed modelled volume for all major network links.

This figure demonstrates that modelled volumes are sufficiently close to ob-

served volumes, and the model is calibrated for the scope and purpose of this

study. The calibrated demand was doubled during model runtime to ensure

that latent demand is present in the model, not to skew results with an un-

dersaturated network. Calibration results are as follows;
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Figure 65: GEH statistic for major network links.

Signal cycle and phase times follow the RMS traffic signal design guidelines

[RMS, 2016]. These guidelines incorporate a degree of optimality and safety in

signal and phasing design. They reduce the number of conflict points arising

in a cycle and ban risky arrangements such as dual turns filtering through

opposing traffic movements. This ensures that baseline safety results are not

artificially accentuated through the implementation of unoptimised phasing.

Travel time information along key links or queue length information at key

intersections is a standard means of validating a microsimulation model. This

study area is well under saturated and performs at near free flow speeds in

the weekday peak period. The key routes in the microsimulation environment

have an average travel speed that ranges between 94% and 107% of observed

travel speeds, with observed travel speeds obtained from Google Travel Time

data. A deviation of between -6% and +7% is considered acceptable for this

microsimulation environment and is well within the ±15% threshold identified

by the RMS modelling guidelines.
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The default SSAM parameters are recommended by the United States FHWA

and several other studies. The SSAM parameters are discussed in greater

detail in Section 11.3.3. Calibration through traffic volumes and validation

through travel times indicates that the OD matrix, network software param-

eters, and the vehicle behavioural parameters are adequately calibrated.

11.3.3 Surrogate Safety Assessment Module Parameters

The TTC and PET values were set to 1.5s and 5s respectively for the human

vehicles, defaults recommended by the software to reflect human capabilities.

The rear-end angle and crossing angle were set to 30◦ and 80◦ respectively,

also defaults recommended by the software. These values have been calibrated

and recommended by the United States FHWA ([Gettman et al., 2008], [Sabra

et al., 2010]) and have been used in a number of other studies ([Stevanovic

et al., 2013], [Wu et al., 2018], [Huang et al., 2013], [Ni et al., 2013], [Sta-

matiadis et al., 2013]). The standstill and following distance for CAVs were

reduced to one-third. For this reason, the TTC and PET values defining CAV

conflicts have also been reduced to one-third. The results are presented as a

percentage difference between the base case and each scenario, meaning that

biases inherent to the base case are also contained within each scenario tested.

11.3.4 Experimentation Structure

Between the different scenarios, CPR is increased in 10% increments from

0% being the base case with a fully human fleet to 100% being the fully

autonomous case. Three random seeds are used in each of these scenarios.

The environment location of the results reported in Section 11.4 are as follows;

� Signalised Intersection – Located on Hamilton Highway, at the North-

East end of the study area.

� DDI North – Located on Shannon Avenue, the Northern end of the DDI.

� DDI South – Located on Shannon Avenue, the Southern end of the DDI.

� Roundabout – Located at the intersection of Barrabool Road and Shan-

non Avenue, at the South-East end of the study area.

� Highway – Large continuous roadway located in the West of the model

environment.
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11.4 Results

The results attained through microsimulation for the entire network are pro-

vided in Section 11.4.1 and Figure 66. The results are then disaggregated by

intersection type in Section 11.4.2 and Figure 68. These results are the median

of three random seeds. Using the median of multiple seeds accounts for the

stochasticism of microsimulation modelling and the variability of day-to-day

operation. The conflicts are further separated by the type of vehicle involved

in the interaction. “M-M” represents a human vehicle following and interact-

ing with another human vehicle, “A-M” represents a human vehicle following

a CAV, and “M-A” represents a CAV following a human vehicle. Interactions

involving a CAV following a CAV are excluded, as SSAM incorrectly identifies

their behaviour as overly aggressive and potential conflicts when compared to

human driving.

11.4.1 Conflicts on Highways

Figure 66 shows that a 10% CPR accompanies a 56% reduction in potential

conflicts for the entire network. However, 84% of the 4,341 conflicts observed

in this modelling environment occurred in segment midblocks during lane-

changing and weaving actions. The remaining 16% of conflicts that occurred

at intersections show results substantially less drastic than that observed for

the entire network. The dramatic reduction in midblock conflicts is attributed

to two factors. The first is that by increasing the proportion of CAVs in

the network but holding the total demand constant, platooning operation

increased the number of inter-platoon gaps in road segments. These gaps are

then leveraged by human vehicles to conduct lane changes. The second cause

is that by introducing CAVs into the fleet, the frequency of human vehicle

interactions is reduced, naturally adding to the reduction in human vehicle

conflicts. Refer to the following figure for the change in total network conflicts

by interaction type;
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Figure 66: Number of potential accidents within the environment, in 10%

increments of CPR.

The inter-platoon headway distribution of vehicles in 10% increments of CPR

is provided in Table 40, calculated using detectors throughout the highway.

This table indicates that the average headway increases by 17.65% (0.94s).

On an average Australian highway at 90km/hr or average suburban road at

60km/hr, this increase in headway amounts to a distance headway increase of

23.5m and 15.7m respectively, justifying the long-term reduction in conflicts

with increasing CAV penetration.

The first 20% penetration of CAVs increases the average headway on the high-

way by 2.4% (0.13s). This amounts to a distance headway increase of 3.18m

and 2.12m on highways and suburban roads, respectively. The headway in-

crease is equivalent to approximately 106% the size of a small car or 71%

the size of a medium car, which is substantial additional buffer room in lane-

changing, especially when the CAVs are designed to be wholly altruistic and

cooperative. Perhaps if a demand increase accompanied CAV penetration, av-

erage headways in the network would not increase as significantly, and conflict

rates would stay consistent until higher penetrations of CAVs. Refer to the

following table for the change in average headway as CPR increases;
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Table 40: Tabular representation of the inter-platoonal spacing distribution

for the fleet along the highway.

Figure 67 provides a visual representation of the change in headway distri-

bution. The headways are segregated in 2s bins. This figure, in complement

to Table 40, indicates that the mean headway drift towards larger values and

but the occurrence of small (less than 2s) and large (greater than 6s) head-

ways increases. The significance of this outcome is that when demand is held

constant and CPR increases, the formation of more platoons and increasing

inter-platoon gaps makes lane-changing easier for human vehicles. Refer to the

following figure for the change in headway distribution with increasing CPR;

Figure 67: Distribution of highway vehicle spacing, with increasing CPR.

11.4.2 Conflicts at Intersections

When observing rates of conflicts at a granular intersection level (Figure 68),

the increase in safety is significantly less. On the contrary, the microsimula-

tion modelling indicates that while conflicts between human vehicles decline,
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the conflicts between CAVs and human vehicles increases disproportionately.

This outcome results in an initial increase in intersection conflicts at low CPRs,

before a decline in conflicts for higher CPRs. For the first 20% of CAV pen-

etration, the signalised, priority, roundabout, and DDI intersection show a

change in conflicts of +22%, -87%, -62% and +33% respectively;

(a) Signalised intersection conflicts. (b) Priority intersection conflicts.

(c) Roundabout intersection conflicts. (d) DDI intersection conflicts.

Figure 68: Number of potential accidents during different situations in the

microsimulation environment, in 10% increments of CAV penetration.

Signal controlled intersections such as the signalised intersection and DDI in-

tersection both show an increase in total conflicts for low CPRs, whereas the

priority-controlled intersections such as the priority intersection and round-

about both show an immediate and significant reduction in conflicts. This
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observation provides further confirmation of aggressive vehicle behaviour in

the dilemma zone causing safety concerns at signalised intersections. The ag-

gressive and dangerous behaviour during amber signalling phases continues to

drive conflict rates in signalised environments.

Also, Figure 68a and Figure 68d indicate that while human following vehicles

are responsible for the increase in conflicts at the DDI intersection; this is

not the case with the signalised intersection, where CAV following vehicles

drive the increase in conflicts. The differentiating factor between the two

intersections is the geometry, where turning radii are significantly higher in

the signalised intersection than the DDI intersection. This difference raises

the question of whether geometry and turning radii continue to affect vehicle

safety as the literature’s crash prediction models suggest it does for human

vehicles, or if this outcome occurred as a result of software limitations.

The commercial microsimulator returns headway as the front-bumper-to-front-

bumper distance between vehicles. During a turn, however, the vehicles are not

laterally in the same plane, causing the headway passed to the algorithm being

marginally higher than actual. The algorithm compensates by accelerating

and reducing the gap. SSAM, however, uses both the front and rear bumpers

position in the identification of conflicts, with the marginal decrease in the gap

between vehicles considered a potential conflict. This behaviour may result in

SSAM identifying an artificial increase in conflicts for cases where CAVs are

the following vehicle.

Between the 0% CAV base scenario and the 90% CPR scenario, signalised,

priority, roundabout, and DDI intersections experience a reduction in conflicts

of 48%, 100%, 98%, and 81%, respectively. The greater reduction in conflicts

observed at the two priority intersections is attributed to the same factors

mentioned above to explain the reduction in segment midblocks. Also, the

stringent gap-acceptance and altruistic nature of vehicle cooperation reduces

conflicts during lane-changes, such as those occurring at priority intersections.

Results for the DDI intersection presented in Figure 68d shows an increase in

conflicts when transitioning from 10% to 20% CAVs, and 50% to 60% CAVs.

The increase is attributed to two factors. The first is that the number of
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conflicts at this intersection is relatively small, at 16 in the base scenario. Mi-

nor fluctuations caused by the variance between random seeds can potentially

cause large relative changes to the small base case result. The second reason

is that this behaviour occurs in the lower CPR scenarios where the likelihood

of human drivers interacting with one-another is still high as CAVs have not

dominated the fleet.

Figure 69 further segregates conflicts by type as either a rear-end conflict,

lane change conflict, or crossing conflict. When the conflicts are segregated by

type, the two signal-controlled intersections once again show distinct results

from the two priority-controlled intersections. The priority intersection (Fig-

ure 69b) and roundabout intersection (Figure 69c) are dominated by rear-end

collisions, with lane-changing and crossing conflicts being substantially lower.

This outcome is consistent with the intentions of the CAV control algorithm.

The CAV cooperative gap-acceptance protocol forces the vehicle to commu-

nicate and facilitate the formation of appropriate gaps, while also having a

strict acceptance criterion for gaps. This leads to a low level of lane-changing

conflicts shown in these figures;

(a) Signalised intersection conflicts. (b) Priority intersection conflicts.
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(c) Roundabout intersection conflicts. (d) DDI intersection conflicts.

Figure 69: Number of potential conflicts further segregated by conflict type.

Network geometry explains the low level of crossing conflicts at the two priority

junctions. A crossing conflict is defined as occurring between 80◦ and 180◦

relative to the vehicle (refer to Figure 63a). However, the concentric direction

of motion around a roundabout makes such an angle rare and difficult to

achieve. This also applies to the priority intersection, where vehicles travel

near parallel to their target lane.

The signalised intersection and DDI show a significantly higher proportion

of crossing and lane-changing conflicts. In low penetration scenarios, CAV

behaviour introduces more conflicts than the human vehicle conflicts that it

mitigates (Figure 69a). This figure also indicates that the CAV as the following

vehicle contributes a larger share of the newly occurring conflicts. The CAV

gap-acceptance criteria are based on a headway and speed thresholds, meaning

that the CAVs do not behave differently depending on the following vehicle

type. Allowing them to accept small gaps even with human vehicles, results in

one of two outcomes. Either the aggressive 0.5m headway is not appropriate

for a heterogeneous mixed fleet environment, or the two vehicles being in

different planes of motion is resulting in a mismatch between the headway

calculated by Vissim and the headway calculated by SSAM. Both have been
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discussed prior when commenting on the results of Figure 68. In the interest

of conservative safety, the headway of a CAV following a human vehicle is

increased to 3.0m for the remainder of this thesis.

The lane-changing conflicts increase by up to 5 conflicts at the DDI intersec-

tion (Figure 69d). It is difficult to comment on the statistical significance of

this outcome, considering that it may be the result of deviations between ran-

dom seeds and the inherent stochasticity of microsimulation modelling. This

outcome requires further investigation.

Table 41 provides the standard deviation for the results attained from the

different random seeds. The standard deviation between seeds provides insight

into the uncertainty and variability introduced to the network through CAVs.

Relative to the observed values, the low standard deviations indicate that

CAV presence does not cause uncertain and erratic or dangerous behaviour in

human vehicles during mixed fleet scenarios.

Table 41: Standard deviation for the number of conflicts for different intersec-

tions in the environment.

Table 42 provides the results for only the “M-M” interaction type, normalised

to represent the number of conflicts between human vehicles when factoring in

the decreasing number of human vehicles in the microsimulation environment;
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Table 42: Number of conflicts for different intersections in the environment

for the “M-M” interaction type, normalised for the volume of human vehicles

remaining in the network.

The decreasing trend in this table is at comparable rates to that presented

in Figure 66 and Figure 68, indicating that the results are not skewed by a

decreasing presence of human vehicles in the network. The modelling indicates

that even if human drivers continue to operate in a mixed fleet environment,

the likelihood of a human driver being involved in an accident with another

human or autonomous vehicle decreases.

11.5 Discussion

A clear pattern emerges when observing the number of potential conflicts for

the entire network. As CPR increases, the number of accidents involving

human vehicles decreases. This result is attributed to several factors. Firstly,

CAVs treat amber lights as red lights, eliminating the dilemma zone that

has been established as the cause of many conflicts at signalised intersections

[Papaioannou, 2007]. Additionally, CAV behaviour is designed as cooperative

and altruistic. The gap-acceptance criteria ensures that vehicles do not merge

or change lanes into a gap that results in unsafe headways, nor do the vehicles

merge if it results in excessive braking for the merging or following vehicle.

Managing imprudent lane changes with CAVs through cooperation, limits vari-

ations in speed and reduces conflicts, which were a major source of conflicts

in this environment. The effect would be greater in cases where the following

vehicle is distracted, as this leads to an eight-fold increase in the likelihood of

collisions [Carbaugh et al., 1998]. Finally, CAVs have access to complete and

correct information regarding their surroundings, with vehicle reaction time

reduced to the minimum simulation time step of the microsimulator. This

information means that CAVs do not make assumptions regarding the spatial

and behavioural characteristics of surrounding vehicles. Having access to this
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precise information means that minimum safe headway requirements are never

violated, further reducing the likelihood of potential conflicts.

The results indicate that CAVs in the short term have the potential to in-

crease conflicts at intersections, findings consistent with the Deluka Tibljas

et al., [Deluka Tibljaš et al., 2018] and Turner and Roozenburg [Turner &

Roozenburg, 2006]. The 0.5m headway is inappropriate in a mixed fleet set-

ting with substantial heterogeneous behaviour. Once homogeneity returns to

the vehicle fleet in higher CAV penetrations, the use of this headway results

in a decrease in conflicts. However, it should be noted that demand was kept

constant throughout the study, meaning that an increase in CAVs leads to an

increase in gaps in the network. The increase in gaps may be the cause of the

reduction in conflicts, warranting a further investigation with a higher DoS.

In the highway environment, the results of this study show benefit to safety

from a 10% CAV penetration. Other studies do not show significant im-

provements until a CAV penetration of 20% to 30% ([Rahman et al., 2019],

[Papadoulis et al., 2019]). The limitations of the other studies are in their

emulation of CAV behaviour. These studies have opted to use rudimentary

autonomous features such as ACC and lane guidance to emulate what is a

highly promising technology that is currently in its infancy. To “implement

lower level automation features under a connected vehicle environment which

is available in many vehicles in the market” [Rahman et al., 2019] has sig-

nificant caveats. CAV technology will not be ready, implemented, or see sig-

nificant market penetration for decades to come. Computational capabilities

and data processing techniques improve at an exponential rate. The approach

used in this study in applying highly refined CAV operations such as precise

vehicle coordination, minimal headways, and complete cooperation may be op-

timistic. CAV operation may not match the assumptions made in this study

either, but it provides new insights into defining and refining the assumptions

of CAV behaviour for future studies.

The results also show that when CAV penetration increases and homogeneous

operation returns to the network, potential conflicts are likely to decrease,

consistent with much of the literature. The initial 10% penetration of CAVs

results in an approximate 56% network-wide reduction in conflicts, with 8%
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of accidents at this penetration involving a CAV. An accurate cost of a CAV

is difficult to identify but is estimated to start at $250,000 (USD) [LeVine,

Steve, 2017]. A 56% reduction in network-wide conflicts (with 8% involving a

CAV) still leads to an estimated economic saving of 22% of total accident costs

when considering only vehicle replacement costs. As CAVs become cheaper,

this economic benefit will increase substantially. However, using the higher

purchase price, this amounts to a saving of approximately AUD$786 million

annually for Australia alone. This figure is calculated based on the AUD$2.8

billion cost to the economy found in the BITRE study [BITRE, 2009], ad-

justed for inflation at 1.9% per annum using the consumer price index (CPI)

[Australian Bureau of Statistics, 2020]. This figure is conservative and does

not include the potential savings arising from prevented damage to property

and infrastructure. This figure also does not consider the effects of reducing

CAV prices, which would further increase economic savings.

The economic savings figure also does not consider the savings in infrastructure

development. Most transport infrastructure contains redundancies designed

to facilitate the movement of emergency vehicles or operate if an accident

occurs. This emergency infrastructure consists of emergency-vehicle-only lanes

on motorways or shoulders on arterials. These savings in construction will be

significant for a country such as Australia, where development in metropolitan

areas has occurred near existing transport corridors, without residual space to

grow. All future projects in the Sydney and Melbourne long-term master plans

contain vastly more expensive tunnelling components where cost increases

exponentially with the number of lanes and tunnel diameter.

The DDI (Figure 68d), designed to be safer than conventional intersections,

experiences a more gradual improvement in safety. Reductions in conflicts do

not begin until CPR reaches 30%, indicating that the inherent safety of DDIs

and lack of conflict points requires a higher penetration of CAVs to extract

similar benefits to that extracted at lower penetration rates from traditional

intersections. The signalised environment (Figure 68a) showed the highest

increase in the number of conflicts of the four scenarios for the initial 10%

penetration of CAVs. This has been attributed to more dangerous driving by

human drivers in the dilemma zone, decreasing CAV safety at low headways.
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When observing the standard deviations between seeds, a notable observation

is that the standard deviation is higher for lower CPRs. This indicates that

the presence of CAVs in a mixed fleet environment disrupts the homogeneity

in both a completely human and heavily autonomous environment. While hu-

man behaviour and personal preferences regarding speed, headway, and other

driving elements cause variances in a traffic stream, agents do not generally

deviate substantially from accepted bounds. Speed is regulated by design lim-

its, and headway is governed by risk aversion. CAVs also exhibit homogeneity,

as they follow speed and headway requirements dictated by algorithms. How-

ever, whilst the CAVs in this study adhere to a 0.5m headway, the human

vehicles standstill at a distance four times higher than this, and drive with

a headway significantly higher. The difference in the fundamental behaviour

of these vehicle types disrupts the order and uniformity of the fleet. Conse-

quently, the seeds exhibit a high degree of variability regarding the prevalence

and structure of gaps in conflicting traffic streams, which in turn increases

the variability in the number of potential network conflicts. This behaviour,

however, decreases as CAV penetration increases and uniformity in behaviour

once again returns to the network.

A limitation of this chapter is in its decision to hold network demand constant

as CPR increases. Section 11.3.2 mentions that the environment is undersatu-

rated, and demand was doubled to ensure the presence of latent demand in the

base network. However, Chapter 7 demonstrated that intersection throughput

increases by up to 110% with increasing CPR. Despite the system starting in a

congested state, it did not remain this way as CPR increased. Decreasing lev-

els of congestion gave rise to reductions in vehicle interactions in the motorway

section and at the priority intersections, which may have been a contributing

factor to the decrease in conflicts at these intersections. Further investigation

is warranted to provide additional insights into whether a safer network is the

byproduct of an autonomous network or a less congested network.

The implementation of CAVs leads to the idealised vision of a zero-accident

environment. In the interim, smart infrastructure and design decisions are still

required to maintain safety. Crash prediction models are useful in assessing

the safety of designs and will need recalibration to incorporate the presence

and conflict characteristics of CAVs. A reduction in the likelihood of accidents
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as observed here means that the way vehicular insurance is structured may

also require reform. As society embraces the sharing economy with CAVs

servicing travel requirements on-demand, and their tendency to be safer as

shown in this study, insurance agencies may benefit from a restructure in the

way that insurance is sold. Policies involving insuring the driver as opposed

to insuring the vehicle may warrant investigation.

11.6 Conclusion

This chapter investigated the effect of CAV penetration on road network safety.

This investigation was conducted using microsimulation modelling, with CAV

behaviour emulated using the custom developed external control algorithm,

and the likelihood of potential conflicts identified using the surrogate safety

assessment module. The contribution of this chapter lies in its implemen-

tation of this custom control algorithm for CAV emulation and assessment

of CAV safety based on microsimulation testing. The results indicate that

while CAV operation shows a significant overall improvement in safety, this

improvement is concentrated at segment midblocks. The signalised intersec-

tions show an increase in potential collisions for low penetration rates, while

the priority intersections show an immediate and significant decrease. As CAV

penetration increases, the potential conflicts in all settings declines. Reduc-

tions in potential conflicts are greater in priority-controlled intersections such

as roundabouts and give-way environments, as compared to signalised inter-

sections.
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12 Summation and Concluding Thoughts

The final chapter of this thesis provides a brief overview and summation of

the work contained within, as well as parting thoughts.

The introductory chapter to this thesis established the necessity for this work.

CAVs are an unquestionably disruptive force whose development is driven by

the private sector. Often, development by the private sector, and without con-

sultation with the government, outstrips the policy and legal frameworks set

in place for emerging technology. The result is that governments often exhibit

a lack of preparedness when faced with rapid change. Consider recent disrup-

tions in the ride-sharing sector with Uber, the recreational housing sector with

AirBNB, the rise of non-fiat currency with Bitcoin, or changes to the retail

landscape with e-commerce. In each of these instances, private markets have

progressed while policy and legislation have been retroactively amended. A

robust modelling framework is critically necessary to practically test scenarios

and shape the integration of CAV technology with society, to prevent a repeat

pattern also occurring with CAVs.

After the introductory chapter, Chapter Two provided a review of CAV design

and hardware, assessing their potential capabilities and features. Technology

changes at a rapid and accelerating pace, so it is inappropriate to assume that

the CAV technology of today is an initial reflection of its mature capabili-

ties. Adaptations and implementations of autonomous and CAV technology

are still being envisioned. However, baseline assumptions are necessary to

define to initiate planning and modelling efforts, allowing policymakers and

researchers to restrict the infinite domain of possibilities. Understanding CAV

hardware allows for assumptions regarding the three key CAV features that

affect behaviour, reaction time, platooning headway, and cooperation and com-

munication.

Having understood the expected behavioural characteristics of CAVs in Chap-

ter Two, Chapter Three conducted an in-depth review of the literature per-

taining to human vehicle behaviour in microsimulation. The purpose of this

literature review was three-fold; to understand the vast styles of models nec-

essary to emulate vehicle behaviour in a microsimulation setting, to evaluate

309



techniques used in the development of previously influential models, and to

assess the applicability of existing human vehicle models to the behaviour of

CAVs. Microsimulation behavioural models fall into one of three major cate-

gories, car-following, lane-changing, and gap-acceptance. Models from as early

as 1959 have used physical phenomena to describe human behaviour, draw-

ing inspiration from fluid dynamics to spring and damper systems. Generally,

human behavioural models aim to capture the stochastic behaviour of human

drivers. This motivation leads to the development of models that contain the

selfish, flawed, and inefficient tendencies exhibited by human drivers. For this

reason, many of the human behavioural models proposed in the literature are

not applicable for use with CAVs in microsimulation.

The literature has identified that human behavioural models do not appropri-

ately model anticipated CAV behaviour, and so has proposed a range of new

microsimulation models. Chapter Four provided a literature review detailing

the novel and innovative models used to emulate CAV behaviour. While the

research is relatively young as compared to that of human behaviour emula-

tion, the literature already contains a vast array of modelling techniques for

CAVs. Many of the proposed methods leverage modern computational ca-

pabilities and use complex techniques such as machine learning and artificial

intelligence. Approaches such as these result in models that risk overfitting to

training data, are difficult to generalise to a range of driving situations, impos-

sible to trace through for errors and inconsistencies, and generally inaccessible

to gain a sound understanding of the vehicle’s decision making processes. For

these reasons, while many of the models in the literature demonstrated accu-

rately replicating CAV behaviour under limited circumstances, their tendency

to focus on a specific aspect of CAV behaviour makes them difficult to aggre-

gate as part of a wholistic modelling framework. The nature of models in the

literature also increases the difficulty of applying them to a range of innovative

scenarios and examining network performance under new policy and control

mechanisms.

Having completed a detailed literature review and identifying the need for a

simple, complete, and adaptable framework for microsimulation CAV emu-

lation, Chapter Five developed a custom CAV control algorithm. The algo-

rithm addresses the three key components of microsimulation behaviour, car-
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following, lane-changing, and gap-acceptance. Additionally, the framework

proposes a trajectory forecasting cooperative merge algorithm to guide vehi-

cles autonomously through merge junctions downstream. The car-following

component of the algorithm heavily relies on the instantaneous reaction time

and communication capabilities of CAVs to chain vehicles together as pla-

toons. The car-following algorithm proposes a novel way for platoon leaders

to traverse the network, while platoon followers act as convoy units. The dis-

cretionary lane-changing component of the algorithm uses a cooperative game-

theory-style approach that collectively maximises the utility of the system of

vehicles directly effected by the lane change. The gap-acceptance component

outlines a stringent set of rules for critiquing and accepting a gap that pri-

oritises safety, comfort, and impacts on immediate vehicle externalities, once

again highlighting the core focus on vehicle communication.

Chapter Five also explained the models used to emulate human vehicles. Em-

ulation of human vehicles is necessary to complement the emulation of CAVs

in mixed fleet settings, as mixed fleets will persist for decades before an au-

tonomous fleet. Each study uses either the Aimsun or Vissim commercial

microsimulators. For this reason, the native car-following, lane-changing,

and gap-acceptance models used in both of these commercial packages are

retained. The Aimsun package exclusively uses the Gipps models. The Gipps

car-following model is a collision-avoidance model that restricts vehicle kine-

matics based on safety constraints. The Gipps lane-changing model is a rule-

based model that qualitatively explains the scenarios under which a driver

would initiate a lane change. Finally, the Gipps gap-acceptance model is de-

rived from the car-following model, where the safe car-following thresholds

are used to define minimum upstream and downstream gaps for lane-changing

vehicles. Vissim uses the Wiedemann car-following model, which is a psych-

physical model that discretises the domain of human car-following behaviour

and describes each region with a unique mathematical equation. Vissim in-

terconnects lane-changing and gap-acceptance. The modeller defines a range

of parameters that control the gap-acceptance criteria and aversion to risk for

network agents.

The framework developed in Chapter Five appropriately emulates CAV be-

haviour of instantaneous reaction times, coordinated and cooperative manoeu-
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vring, and vehicle platooning. However, in pursuit of network efficiency, pas-

senger safety and comfort must not be compromised. Chapter Six conducted

a detailed kinematic assessment on the modelling framework and a sensitivity

study on the framework parameters, a study that is generally not completed

for proposed CAV models in the literature. The kinematic assessment begins

with the development of kinematic-time plots for a platoon of ten vehicles

for two scenarios. The first scenario is regular car-following as vehicles ap-

proached a stoplight, and the second scenario modelled a vehicle in the par-

allel lane conducting an imprudent lane change into the vehicle platoon. The

kinematic-time plots for both scenarios demonstrated homogeneous coordi-

nated platoonal action and kinematic reactions well within the confines of safe

vehicle behaviour. Next, Chapter Six conducted a kinematic assessment using

a small network of intersections and the trajectory data generated by the mi-

crosimulator. A detailed ANOVA demonstrated that while CAV penetration

changed the high-level vehicle velocity, the underlying vehicle acceleration and

jerk remain unchanged. This outcome implied that CAV behaviour results in

more efficient driving without affecting driver aggression (acceleration) and

driver comfort (jerk). Finally, this chapter concluded with a sensitivity analy-

sis of the three parameters proposed in this framework. The analysis demon-

strated that the parameters had a tractable and predictable change to network

behaviour, which remained unaffected by minor changes in the parameters.

Chapter Seven conducted an investigation into the performance of intersec-

tions subjected to an incremental loading of CAVs. Infrastructure development

is a timely and expensive process, and so requires forethought and planning.

Without understanding the network impacts of CAVs, long-term infrastruc-

ture planning is unwise. This investigation consisted of four intersections, a

signalised intersection with a filtered right turn, signalised intersection with a

dedicated right turn, roundabout intersection, and priority intersection. CAVs

were loaded onto the network in 20% increments, and key performance metrics

such as throughput, delay, queue length, and speed were assessed. The study

indicated that intersection performance increased substantially, with through-

put increasing by up to 110%, delay reducing by up to -63%, queue length

decreasing by up to -28%, and average seed increasing by up to 130%. This

study also identified that not all intersections improve at the same rate or to

the same magnitude. While any improvement may seem beneficial, dispro-
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portionate improvements may lead to increased congestion and delay as high-

efficiency signalised intersections in the arterial network deliver greater quanti-

ties of vehicles to low-efficiency intersections such as roundabouts and priority

junctions in the local road network. The miss-match of adjacent intersections

could lead to the development of new bottlenecks and network failure points.

Additionally, this chapter demonstrated that the CAV behavioural algorithm

developed in this thesis successfully eliminated the perception-reaction lag

from vehicle standstill movement, leading to more efficient use of green-time

and the potential to shorten intersection phasing while increasing the turnover

of movements.

The previous studies have focused on CAV impacts on vehicle experience, and

have found drastic improvements in capacity, speed, travel time, queuing, and

safety. Rather than allowing private vehicles to retain these benefits, improv-

ing travel conditions, inducing demand, and again worsening travel conditions,

consider reallocating CAV travel time savings to other network agents. Chap-

ter Eight assessed the potential to redistribute CAV travel time savings by

implementing pedestrian-priority signalling schemes through traffic signal re-

optimisation. The investigation developed a microsimulation environment of

two distinct areas, one that is dominated by vehicles and another that is dom-

inated by pedestrians. At both environments, CAVs incrementally penetrated

the fleet, and three distinct signalling regimes were examined. The regimes

are the base case signalling regime used at each intersection today, the vehicle-

priority signalling regime that minimises delay for vehicles, and the pedestrian-

priority signalling regime that minimises delay for pedestrians. Additionally,

a pedestrian simulator was developed that calculated the delay of randomly

arriving pedestrians. This study found that in the vehicle-dominated envi-

ronment, transitioning from a vehicle-priority model to a pedestrian-priority

model was not feasible, regardless of the CAV penetration. The increase in

delay for vehicles could not be offset by the reduction in delay for the pedes-

trians. The pedestrian-dominated environment, however, demonstrated that

such a transition was possible when CAV penetration exceeds 40%. At this

penetration, the average delay per agent is -1.35% lower when comparing a

pedestrian-priority scheme to the base case regime, resulting from a -48.5%

reduction in pedestrian delay and an 80.1% increase in vehicle delay. This

study demonstrated that the efficiencies introduced by CAVs could be redis-
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tributed to other agents in the network to create a more equitable mobility

environment in dense city centres.

Motorways form major high capacity links in transport networks. Their pro-

posal, development, widening, and maintenance is often met with mixed re-

ception. As space in major cities worldwide diminishes, extracting greater

utility from existing motorway infrastructure may cater to growing travel and

population demand. Chapter Nine assessed the impact of CAV behaviour at

weaving and merging junctions on motorways. Much of the literature claims

that CAV behaviour will substantially improve capacity, while other parts of

the literature claim that it will give rise to new congestion points and bottle-

necks. This study, which consisted of three investigations, found both to be

true. The first investigation determined the capacity of a weaving section in

25% increments of CAVs and for weaving proportions ranging from 5% to 40%.

The results indicate that for low weaving environments, the section capacity

can increase by up to 83%. However, CAVs are hindered in high weaving pro-

portion environments, with capacity improvements being only 14% for a 40%

weaving proportion. The forced cooperation between vehicles and the man-

dated altruism by design reduced traffic flow efficiency when lane-changing

and weaving became excessive. The second investigation assessed the impact

of CAVs on the performance of a zipper merge. Using the trajectory forecast-

ing cooperative merge algorithm, CAVs increased throughput by up to 131%.

The vehicles did not increase average speed, where the gain in throughput was

the result of eliminating start-stop conditions at busy merge sites and main-

taining a smooth and perpetual flow by actively adjusting trajectories from a

centralised controller upstream of the merge junction. Finally, this study in-

vestigated the impact of segregating the CAV fleet into multiple vehicle types

and offering certain vehicle classes preferential treatment in the network. This

study indicates that providing vehicles with preferential treatment does not

worsen network performance unless the environment is operating near capac-

ity, or the environment has excessive weaving proportions (20% or above).

Microsimulation is a useful tool in evaluating network impacts and is used in

conjunction with macrosimualtion modelling. While microsimulation provides

insights into localised decision impacts and agent interaction, macrosimulation

provides traffic flows for a city-wide scope, making it critical in large-scale in-
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frastructure planning. Chapter Ten investigated the BPR volume delay func-

tion for strategic modelling, and its applicability to mixed fleets and CAVs.

CAVs will be well integrated into society’s mobility options in the near future,

so the integrity of macrosimulation modelling must be investigated for emerg-

ing technology. This study developed three microsimulation models, which

synthesised a large quantity of vehicle demand and travel time data. Using

30% of the synthetic data, the predictive quality of the BPR function was

tested for varying network degree of saturations and CAV penetration rates.

The BPR function was shown to exhibit an RMSE of 11.56, 9.68 and 7.95 for

the three modelling environments. The BPR function tended to incorrectly

predict travel time for highly congested environments and higher CAV pene-

tration rates. The same 30% of the data was used to recalibrate the function,

deriving a linear relationship between both the α and β parameters and CAV

penetration rate. The updated BPR function was validated using the remain-

ing 70% of the synthetic data and showed an RMSE of 7.57, 9.98 and 5.36

for the three different modelling environments. The updated model better

predicted travel time in 67% of cases and showed an improvement in travel

time predictions of 542.6% for the entire validation dataset.

Following passenger comfort and network performance, safety is the next great

barrier impeding technological adoption. Chapter Eleven used the surrogate

safety assessment module to conduct a study into the potential conflict rates

of CAVs. During a simulation, the microsimulator records the trajectory infor-

mation for each vehicle for each time increment. The surrogate safety assess-

ment module uses the trajectory data to forecast vehicle positions and estimate

the likelihood of a collision. This study found that while CAV penetration is

low, CAV behaviour could increase the likelihood of collisions between vehi-

cles. Heterogeneous behaviour leads to the development of dangerous driving

situations where the smaller gap-acceptance policies of CAVs result in unsafe

conditions arising for human drivers. Additionally, stringent compliance with

traffic lights at intersections and quicker reaction times increased the likeli-

hood of crossing angle collisions at signalised intersections. However, once

the network reaches a tipping point (approximately 40% - 50% CAV) and ho-

mogeneous behaviour returns to the network, the likelihood of conflicts also

dissipates. Priority controlled intersections and roundabouts showed immedi-

ate and drastic reductions in potential conflicts as a result of CAV penetration.
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The most likely accident at priority controlled junctions and roundabouts is

a rear-end collision. The CAVs are considered to be faultless and maintain a

generous headway to human vehicles, accounting for the significant and im-

mediate reduction in conflicts in these environments.

This thesis added to the body of understanding by proposing a novel CAV

behavioural control framework and unique trajectory forecasting algorithm

for cooperative merging. In developing this framework and algorithm, as-

sumptions were made regarding imprecise and unavailable vehicle behaviour

parameters. The advantage of this framework is in its ability to change and

alter independent modules when further refinement to behaviour needs to be

made. The framework and algorithm were then applied in a range of stud-

ies that provided further understanding regarding passenger comfort, network

performance, vehicle safety, motorway capacity, signalling optimisation, and

strategic modelling parameters. While the overarching results indicate strong

benefits in all regards from CAV integration, many chapters warn of poten-

tially problematic effects if CAV integration is not planned and regulated.

However, the autonomous future is exciting and ripe with possibilities. Inno-

vations to wasted in-vehicle time by vehicle manufacturers promises to change

the way society interacts with vehicles. The correct economic circumstances

may render private vehicle ownership antiquated in cities with strong pub-

lic and active transport systems. The private vehicle once formed a major

centroid for modern life, may revert to the importance given to any other

household appliance or tool. Or major strides in CAV technology and af-

fordability may rekindle the dwindling attachment of people to their private

vehicles, inciting a new era of private vehicle trips, increased travel demand,

and greater levels of congestion. A strong modelling framework and novel

scenario testing for policy and integration, as that presented in this thesis,

will both aid in ensuring efficient, equitable, environmental, and sustainable

outcomes from connected and autonomous vehicles.
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