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Chapter 1

Introduction

In this thesis we develop new methods for analysing multivariate abundance data

in ecology. These data are routinely collected to study how community structure

changes in response to the environment. They consist of measurements of abundance

of plants or animals (most commonly presence/absence, counts, cover or biomass)

simultaneously collected for a large number of taxa, with the intention of making

inference about the community as a whole, rather than individual species or taxa.

In Section 1.1 we describe three such datasets, which we will use as motivating

examples in this thesis. These data are collected to study how environmental factors

are associated with the distribution of species, as well as how species interact with

one another.

From the point of view of analysis, multivariate abundance data present several

challenges. They are highly discrete, with a large portion of observed absences,

as many taxa will only be observed at a few sites. Sample sizes are often small,

particularly when considered relative to the dimension of the response, with the

number of response variables generally of the same order and sometimes exceeding

the sample size (Table 1.1).

The main contribution of this thesis is a flexible and powerful method for modelling

multivariate abundance data with Gaussian copulas. We begin in Chapter 2 by

reviewing how multivariate abundance data are currently being modelled. Methods

include generalised estimating equations for marginal inference (Section 2.2) and
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hierarchical models for conditional inference (Section 2.3). In Chapter 3 we review

copulas. They are a flexible method for marginal multivariate inference, commonly

used in finance (Cherubini et al., 2004) and engineering (Genest & Favre, 2007),

but largely unexplored for ecology. They are well suited to modelling complex

data, given their flexibility (copulas allow specification of marginal distributions and

covariance structure independently of one another) and relative ease of estimation

with maximum likelihood (Section 3).

The two dominant properties of multivariate abundance data are their discreteness,

and their high dimension. Estimating the covariance between variables is challeng-

ing for these data, as there are a large number of response variables (taxa) compared

to the sample size (number of sites). As a result, most models currently used either

assume independence (Section 2.1), which has consequences for the power of infer-

ence (Section 7.1.1), or use latent variables (Section 2.3) to specify a parsimonious

covariance matrix. Latent variables additionally provide information about the pat-

terns of correlation between taxa. Latent variable modelling is one of several types of

covariance modelling (Chapter 4). There are other covariance modelling paradigms,

like graphical models (Section 4.1.2), which can elicit quite different information

about correlations, but currently no method which allows these to be implemented

for multivariate abundance data.

In Chapter 5 we propose a novel method for applying any covariance modelling

algorithm intended for Gaussian data, to discrete data. This algorithm allows us

to fit parsimonious multivariate models, which respect the key properties of mul-

tivariate abundance data. We can additionally investigate patterns in covariance

between species with a variety of covariance models, and answer questions about

how species interact. In Chapter 6 we demonstrate the power of these models by

carrying out graphical modelling (Section 4.1.2) on a large and complex multivariate

ordinal dataset. We demonstrate how Gaussian copula graphical models allow us to

investigate species interactions in the presence of covariates, and can provide new

insights into relationships between species.

The other key property of multivariate abundance data is their discreteness. The

mean-variance relationship induced by the discreteness of the data is often modelled
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with extensions of generalised linear models (GLMs, Nelder & Wedderburn, 1972).

However, the sparseness of the data has the additional consequence that means of

taxa are often near zero. Currently, marginal inference for multivariate abundance

data is commonly implemented with Wald and score tests using generalised esti-

mating equations (Section 2.2), as these can account for the discrete nature of the

data, as well as covariance between species. However, Wald tests are known to lose

power for counts when means are small, and score test can have poor power for

unbalanced sampling designs, both common properties of multivariate abundance

data. Gaussian copulas, in addition to modelling covariance, are a powerful method

for marginal likelihood based inference. They allow for hypothesis testing of treat-

ment effects, and model selection for important environmental predictors, free us

from the limitations of GEE statistics. In Chapter 7 we propose Gaussian copulas

as a method for marginal inference. We investigate how our method overcomes the

limitations of existing inference methods and demonstrate superior power properties.

We conclude the introduction by taking a closer look at our motivating datasets.

1.1 Example datasets

We will demonstrate the methods proposed in this thesis with three diverse mul-

tivariate abundance datasets. Table 1.1 summaries some of the key properties of

these data. The chosen datasets possess some of the common properties of multi-

variate abundance data. All of them have a high proportion of zeros (leading to

strong discreteness), and a large number of variables relative to the sample size.

The count datasets are overdispersed relative to the Poisson distribution (Figures

1.1b and 1.2).

The hunting spider data is included as it is a well known ecological dataset popu-

larised in an important methodological paper (ter Braak, 1986). The bush regener-

ation data on the other hand has an unbalanced sampling design, which complicates

analysis and impacts on the power of tests statistics for marginal hypothesis testing.

The NZ native forest data are very sparse, high dimensional and ordinal, all of which

present a challenge to analysis.
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Throughout this thesis, as is commonly done in literature, we will use the term

”species” to loosely mean the taxonomic level to which data are classified. But

for some of these data (like the bush regeneration data) the variables are often not

classified to species, but rather another taxonomic level.

Dataset # of sites # species Proportion of zeros Response

Bush regeneration 10 24 0.36 count

Hunting spider 28 12 0.46 count

NZ* native forest 964 1311 0.97 % cover(ordinal)

Table 1.1: Data summary: All datasets have high proportions of absences and a large number of

species relative to sample size. *New Zealand.

1.1.1 Bush regeneration data

These data are part of a survey to assess the effect of vegetation restoration on

invertebrate communities (Data were obtained from Anthony J. Pik at Macquarie

University). Invertebrates were counted from pitfall traps at ten sites. Pitfall traps

are holes dug in the ground, and all animals that fall in (and are trapped) are

counted. Note that only two of the sites were control sites, with eight having un-

dergone bush regeneration projects.

There were five pitfall traps per site, though one trap was lost. Invertebrates were

classified to order (a level of phylogenetic classification of plants and animals, above

family but below class) and aggregated across samples for analysis. A total of 24

orders were observed in the study. The primary question of interest is to test for a

difference in the invertebrate communities between regenerated and control sites, as

an indicator of success of the regeneration efforts.

There are no published ecological results for these data, though visual analysis (Fig-

ure 1.1) indicates a difference between regenerated and control sites for some species.

These data are sometimes used for methodological work in ecological statistics; for

example, Warton (2017) used this dataset to demonstrate that transformations can-

not stabilise variance for small counts.
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Treatment Acarina Araneae Blattodea Collembola · · · Seolifera

Control 21 12 3 1093 · · · 0

Reveg 70 1 0 580 · · · 0

Reveg 306 3 0 13541 · · · 0

Reveg 98 7 0 2809 · · · 0

Control 8 5 4 477 · · · 0

Reveg 112 13 1 7527 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

Reveg 320 10 0 5184 · · · 5

Table 1.2: Bush regeneration data (sub-sample): Counts of invertebrates at several sites. Some

orders (e.g. Blattodea, Seolifera) are rare, while others (e.g. Collembola) are abundant. There are

only two control sites in the data, and eight impacted sites.

Table 1.2 contains a subset of the data. Invertebrates in this dataset are classified to

order, rather than species. Ten classes are represented, with the most common being

Insecta and Arachnida. We can see some orders ( e.g. Blattodea) have very small

counts with many absences, while others (e.g. Collembola) have very large counts.

In Figure 1.1 (top) we have plotted the mean of each order against the variance. The

counts appear overdispersed relative to the Poisson, with the variance exceeding the

mean for most species. Figure 1.1 (bottom) shows the abundance of each order at

regenerated sites (boxplot) overlayed with the abundance at the two control sites

(red points). We can see that for some species (e.g. Blattodea and Diptera) there

appear to be large differences in abundance between control and regenerated sites.

1.1.2 Hunting spider data

These data consist of counts of hunting spiders caught in pitfall traps, with 12

species found at 28 sites (van Der aart & Smeenk-Enserink, 1974). The primary

aim of this study was to identify the main environmental factors associated with

the distribution of the species studied. The data contain six covariates thought to

be associated with spider abundance, namely: dry soil mass; percent cover of bare

sand; percent cover of fallen leaves or twigs; percent cover of moss; percent cover of
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(a)

(b)

Figure 1.1:

(a): Points are mean and variance of bush regeneration data by order, with red line at variance

equals mean (Poisson assumption). The variance is larger than the mean for most species, implying

overdispersion.

(b) Boxplot of (log of) abundance by species at regenerated sites, overlayed (in red) with (log of)

abundance at the two control sites. Some orders, like Blattodea and Diptera, seem to be impacted

by the regeneration while others are not.
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herb layer and reflection of the soil surface with a cloudless sky.

Table 1.3 presents a subset of the data and two of the covariates (cover of bare

sand, cover of fallen leaves or twigs). Species in the data are Alopecosa accentuata

(Alopacce), Alopecosa cuneata (Alopcune), Alopecosa fabrilis (Alopfabr), Arctosa

lutetiana (Arctlute), Arctosa perita (Arctperi), Aulonia albimana (Auloalbi), Par-

dosa lugubris (Pardlugu), Pardosa monticola (Pardmont), Pardosa nigriceps (Pard-

nigr), Pardosa pullata (Pardpull), Trochosa terricola (Trocterr), Zora spinimana

(Zoraspin). Of the twelve species in this dataset, eleven are of the family Lycosi-

dae (Wolf spider) with Zora spinimana being of the family Miturgidae. Of the wolf

spiders, four species are of genus Pardosa, three are of the genus Alopecosa, two

are of genus Arctosa, and one species of each of Aulonia and Trochosa. Species

vary in terms of mean abundance, with some species (e.g. Pardnigr) having large

means while other species (e.g. Alopfabr) are commonly absent. The plot of means

against variances (Figure 1.2) shows overdispersion relative to the Poisson, with

species having larger variance than their mean. Relationships between the species

and two of the covariates (cover of bare sand and cover of fallen leaves or twigs,

converted to binary variables) are shown in Figure 1.3. We observe relationships

between some species abundances and both environmental predictors. For example,

species Alopfabr and Pardlugu seem to respond to the presence of bare sand, while

Alopacce and Aluoalbi each differ according to the presence of fallen leaves.

Previous analyses have found strong relationships between species abundance and

environment (ter Braak, 1986), with patterns of association between species largely

described by environmental variables (Peres-Neto et al., 2001; Hui et al., 2015a).

1.1.3 New Zealand native forest cover data

The dataset contains records of cover for 1831 forest plant taxa (most are classified

to species level) at 1246 sites collected as part of the New Zealand Carbon Moni-

toring System, with the aim of advancing national-scale biodiversity reporting and

monitoring. Data collection is lead by Manaaki Whenua landcare research in con-

junction with Scion Research institute. These data included many types of plants,

with the most common classification being Forb, Graminoid, Fern, Shrub and Tree.
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Site Bare sand Fallen leaves Alopacce Alopfabr Pardmont · · · Pardnigr

1 0 0 25 0 60 · · · 12

2 0 1.7918 0 0 1 · · · 15

3 0 0 15 2 29 · · · 18

4 0 0 2 0 7 · · · 29

5 0 0 1 0 2 · · · 135

6 2.3979 3.434 0 0 11 · · · 27

7 0 0 2 0 30 · · · 89

8 0 4.2627 0 0 2 · · · 2

· · · · · · · · · · · · · · · · · · · · · · · ·

28 3.434 0 15 14 6 · · · 0

Table 1.3: Hunting spider data (sub-sample): Counts of spiders at several sites. Some species

(e.g. Alopfabr) are rare, while others (e.g. Pardnigr) are abundant.

Figure 1.2: Points are mean and variance by species of hunting spider, with red line at variance

equals mean (Poisson assumption). The variance is larger than the mean, implying overdispersion.
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Figure 1.3:

Top: Abundance by species of hunting spider and presence of bare sand. For several species (e.g.

Alopfabr and Pardlugu) there seems to be an effect of bare sand.

Bottom: Abundance by species and presence of fallen leaves. Some species abundances (e.g.

Alopacce and Aluoalbi) seem to be affected by the presence of fallen leaves.
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Analyses of these data have found that tree distributions are most strongly predicted

by mean annual temperature and mean annual solar radiation (Leathwick, 1995).

Additionally tree-ferns are found to interact with other species though their impact

on nutrient cycling, organic matter accumulation and ground-level irradiance, often

shading out tree seedlings (Brock et al., 2016). Analysis of traits found that leaf size

and wood density are predictive of the forest phase: shaded understoreys, tree-fall

gaps, treefern groves and clearings (Lusk & Laughlin, 2016).

A network of permanent 0.04-ha (20 × 20 m) plots are spread throughout New

Zealand’s indigenous forests and shrublands. Protocols for forest plot measurements

are based on Allen (1993). Cover (in ordinal categories) was assessed for each species

in several tiers at different heights. To obtain an estimate of total cover at a site,

we took the maximum cover over all the tiers. We use a subset of these data which

contains measurements at 964 sites identified as native forests, which reduced the

number of species with at least one presence to 1311. The data additionally includes

a number of covariates including altitude, aspect, slope, soil depth, drainage, ground

cover, canopy height and cover, herbivore damage and fauna. In Figure 1.4a, we plot

the raw data for all 1311 species, with white representing absences and darker colours

representing higher cover categories (Table 1.4). We can see that most observations

(97%) are absences, and only a few species are present in a large number of locations

(Figure 1.4b). In Figure 1.5 we plot the Pearson correlations of species presences for

the 123 species with 100 or more presences. Most species appear to be uncorrelated.

For those that are correlated, the majority of strong correlations are positive.

These data have often been used to test and demonstrate models which find re-

lationships between species and environment, or cluster species and sites. These

analyses have found that the measured environmental variables explain the major-

ity of the variation among the spider catches (ter Braak, 1986). The species can

best be clustered into three clusters, or two latent variables. Sites 2224, 2628 were

characterized by Arctosa perita (Arctperi) and to a lesser extent Alopecosa fabrilis

(Alopfabr), while Pardosa lugubris (Pardlugu) strongly identified with sites 8, 1521

(Hui et al., 2015a).
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(a)

(b)

Figure 1.4:

(a) Plot of raw NZ cover data. Absences are white, with darker colours for higher cover categories

(Table 1.4). Most observations (97%) are absences.

(b) Number of presences by species at 964 sites. Most species are present in less than 50 sites.
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Category 0 1 2 3 4 5 6

Cover 0 <1% 1-5% 5-25% 25-50% 50-75% 75-100%

Table 1.4: Cover categories for New Zealand native forest data. i.e. cover between 25% and 50%

is recorded as category 4.

Figure 1.5: NZ cover data: Correlation of species presences for species with 100 or more presences.

Most species are not highly correlated. Of those that are, most species correlations are positive.
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Chapter 2

Model based analysis of

multivariate abundance data

Historically, multivariate abundance data have been analysed with algorithmic meth-

ods (Legendre & Legendre, 2012). These methods first transform data, to try to

account for the mean-variance relationship present, and then construct a pairwise

dissimilarity matrix. Dissimilarities can be distance measures (such as euclidean

distance) or, more generally, any measure of how dissimilar vectors are, like the

Bray-Curtis dissimilarity (Bray & Curtis, 1957; Legendre & Legendre, 2012), which

quantifies proportional dissimilarity. Bray-Curtis dissimilarity is not a distance as

it does not obey the triangle inequality.

These dissimilarities are then modelled as a function of covariates. More recently,

and in line with modern statistical practice, model based approaches have become

more widely used to analyse these data. Model based approaches have many ad-

vantages to algorithmic methods, including better power properties, the ability to

answer more diverse and interesting questions, and proven methods for checking

assumptions (Ives & Helmus, 2011; Warton et al., 2015b). In this chapter we will

review several model based methods most commonly used for analysing multivariate

abundance data.
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2.1 Models assuming independence

Due to the challenging nature of multivariate abundance data, it is historically com-

mon to assume a model where species are independent, and carry out inference based

on this assumption. In ecology there is still a desire to carry out community level

modelling (Ferrier & Guisan, 2006), and many interesting models with independence

assumptions have been created for this purpose.

Many of these models are extensions of generalised linear models (GLMs; Nelder

& Wedderburn, 1972), which are are commonly used for regression modelling of

univariate non-normal data. A univariate response y is assumed to arise from an

exponential family distribution F , with density function

f(y;µ, φ) = exp

{
yµ− b(µ)

a(φ)
− c(y, φ)

}
.

The canonical parameter µ, which for count and binomial distributions is the mean,

is related to covariates X = (x1, ..., xK) via a known link function

g(µij) = β0j +XT
i βj,

for site i = 1, · · ·N and species j = 1, · · ·P . This specification includes as special

cases many well known discrete distributions, including the Bernoulli distribution

for modelling binary data and the binomial, Poisson and negative binomial distri-

butions for counts. There are several parameterisations for the negative binomial

distribution, in this thesis we use the definition found in McCullagh & Nelder (1989),

such that the variance V (µ) = µ+ φµ2.

Most simply, one can model species separately as a function of environmental co-

variates using GLMs (e.g. Yee & Wild, 1996; Austin, 2002). These models assume

individual species are distributed according to a distribution Fj, with species-specific

dispersion parameter ψj, where the mean µij depends on covariates X though species

specific coefficients βj, and a link function g(·). Letting the vector θ contain all the
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model parameters, we have response Yij at site i for taxonomic group j, where

Yij ∼ Fj(µij, ψj)

g(µij) = β0j +XT
i βj

L(θ) =
P∏
j=1

N∏
i=1

fj(µij, ψj).

It is important to highlight that these models are designed to model and predict

for one species, and multivariate inference based on these models does not take into

account any correlation between species, other than through common responses to

known covariates.

An interesting extension of GLMs are finite mixture of regression models. These

allow for community level modelling of multi-species data, by assuming all species

can be classified into a small number groups (species archetypes), according to their

environmental response (Dunstan et al., 2011; Hui et al., 2013). The model for

G� P archetypes is

Yij|g ∼ Fj(µijg, ψj)

gj(µijg) = β0j +XT
i βg

L(θ) =
G∑
g=1

πg

P∏
j=1

N∏
i=1

fg(µij, ψj).

Here fg is the model for the gth archetype, g = 1, . . . , G, and πg, (with
∑G

g=1 πg = 1),

are the mixing proportion of species whose mean response is governed by archetype

g. This modelling framework allows species in the same archetype to have a shared

response to covariates βg, rather than individual species responses βj. This formu-

lation borrows strength across species of the same archetype to improve predictive

performance, particularly for rare species.

Another mixture model approach (Foster et al., 2013) aims to classify sites in en-

vironmental space, by the pattern of species that occur (or are absent) there. One

can also use mixture models to simultaneously group by species and site (Pledger &

Arnold, 2014), with or without environmental covariates. In all these models, species

are assumed to be independent conditional on covariates and group membership.
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A different approach is to assume a joint structure for the response of individual

species to environmental covariates. The method of Ovaskainen & Soininen (2011)

assumes species-specific coefficients βjk’s are distributed according to a multivariate

Gaussian distribution for different species, while the VGAM method (Yee, 2004; Yee

et al., 2010) models coefficients by reducing the rank of the matrix of βjk’s.

One can also include trait information, as well as environmental covariates, and

interactions of the two, as predictors in models (Pollock et al., 2012; Jamil & ter

Braak, 2013; Brown et al., 2014; Warton et al., 2015c). These models aim to explain

how environmental covariates act on species abundance, through their interaction

with traits.

All these methods go some way to explaining correlation between species as a func-

tion of environment, site, traits, and membership of a cluster, but species are as-

sumed to be independent conditional on these explanatory variables. These models

fail to account for many sources of correlation between species, including unobserved

covariates and species interactions. This leads to a loss of power at detecting truly

important covariate effects when it comes to marginal inference (Section 7.1.1). In

addition, these models, by definition, cannot be used to investigate patterns of cor-

relation between species, as the correlation is not modelled.

2.2 Generalised estimating equations

2.2.1 Description

Generalised estimating equations (GEEs; Liang & Zeger, 1986; Zeger & Liang, 1986)

are commonly used for marginal inference for correlated non-normal response vari-

ables. Over the past decade, GEEs have emerged as a commonly applied too for

studying multivariate abundance data (Warton et al., 2015b), as they are straightfor-

ward to fit with existing software, and enable marginal inference, which can answer

many of the questions of interest to ecologists. GEEs don’t explicitly model the

covariance structure of the data, but rather treat it as a nuisance parameter which

is accounted for during inference on the marginal effects.
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The starting point for GEEs are GLMs (defined in Section 2.1). For GLMs, model

parameters are estimated by solving the score equations (estimating equations)

0 =
N∑
i=1

Div(µ̂i)(yi − µ̂i), (2.1)

where Dj is a vector whose kth element is ∂µ̂i/∂βk, and v(µ̂i) is the variance as a

function of the mean. GEEs extend the concept of estimating equations to corre-

lated data, without the need to specify a joint model for the data. They introduce a

correlation matrix R, such that the marginal covariance of the responses is param-

eterised as Vi = A
1/2
i RA

1/2
i , where Ai is a diagonal matrix of variances v(µ̂i). The

estimating equations thus become

0 =
N∑
i=1

DiVi(yi − µ̂i). (2.2)

When the correlation matrix is the identity (R = I), solving Equation (2.2) is equiv-

alent to solving Equation (2.1), these are called independence estimating equations

(Hilbe et al., 2003). The inclusion of a more general R can take correlation between

variables into account for estimation or inference. For example, for panel data, R

might have a compound symmetry structure, or autoregressive for temporally cor-

related data. Iteratively reweighted least squares is used for estimation if a closed

form solution does not exist (McCullagh & Nelder, 1989).

2.2.2 Inference

To carry out inference, Wald and score tests can be used, as they only require an

estimate of the covariance matrix of parameters. A naive estimate assumes that the

correlation structure is correctly specified, and is given by

ˆvar(β̂) = γ−1R =

(
N∑
i=1

DiV
−1
i DT

)−1
. (2.3)

A more robust estimate of the covariance matrix is given by the sandwich estimator

(Liang & Zeger, 1986; Zeger & Liang, 1986)

ˆvars(β̂) = γ−1R γγ−1R , (2.4)
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where

γ =
N∑
i=1

DiV
−1
i (yi − µ̂i)(yi − µ̂i)TV −1i DT .

An alternate, more efficient robust estimator of covariance (Pan, 2001b) can be

constructed using a moment based estimator of R̂ with Pearson residuals, so letting

γ =
N∑
i=1

DiV
−1
i A

1/2
i R̂A

1/2
i V

−1/2
i DT (2.5)

in Equation (2.4). This estimator is consistent when the mean-variance relationship

is correctly specified and there exists a common correlation matrix for all observa-

tions.

In the context of multivariate abundance data, the correlation matrix specifies de-

pendence between species. A priori, we might assume all pairwise species corre-

lations are potentially different, and estimate an unstructured matrix. However,

when sample size is small, this matrix cannot be estimated reliably because of the

large number of correlation parameters relative to the number of observations, and

some simplification of the structure is required. For GEEs, a regularised sandwich

estimator (Warton, 2011) has been proposed in this context, as a way to obtain

an estimable covariance matrix, with which to carry out inference. This estimator

shrinks the estimate of the covariance matrix towards the identity matrix, to ensure

it is positive definite.

Due to lack of an explicit likelihood function for GEEs, likelihood ratio statistics

and information criteria can not be used for marginal inference (Rotnitzky & Jewell,

1990), unless independence between variables is assumed. Likelihood free marginal

inference for parameters can be carried out using the GEE approach, as covariance

between variables can be estimated, however inference not based on likelihoods

can have less desirable properties (Section 7.1.2). Model selection for GEEs can

also be carried out using quasi-information criteria, which make use of covariances

(Pan, 2001a; Cantoni et al., 2005; Wang & Qu, 2009; Wang et al., 2012a; Cho &

Qu, 2013). The quasi likelihoods used in these criteria are analogous to assuming

independence between species, and hence these model selection criteria suffer from

the same properties as inference based on assuming independence (Section 7.1.1).
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As variance parameters are treated as a nuisance, it is not natural to model the

patterns in covariance between variables with GEEs (Chapter 4).

2.3 Hierarchical models

Methods which explicitly model covariance between species have recently been de-

veloped. These are generally hierarchical models (e.g. Gelman & Hill, 2006). There

are several incarnations of these models, but commonly the data are assumed to arise

from a particular distribution, often from the exponential family, with some mean

parameter µij, and species-specific dispersion parameters ψj. So, as with GLMs,

Yij ∼ F (µij, ψj).

The mean in then modelled as

g(µij) = XT
i βj + εij,

where g(·) is a link function, Xi is a vector of covariates for the ith observation

and βj is a vector of species specific coefficients. The error εi is assumed to be

multivariate Gaussian with some correlation matrix εi ∼ N(0,Σ). The covariance

matrix Σ here describes the residual covariance between species on the latent scale.

As we have little information about how species are correlated, it is natural that the

covariance matrix is unstructured, as for example in Pollock et al. (2014). In order

to estimate an unstructured covariance matrix, which has (P − 1)P/2 parameters,

a lot of data are required. As discussed in Section 1.1, this is not generally available

for multivariate abundance data. Recently, some hierarchical models have overcome

this limitation, by imposing some structure on Σ, to reduce the number of variables

requiring estimation. One option is to assume that all pairs of species have the

same correlation (Jamil & ter Braak, 2013), however this is highly restrictive and

ecologically implausible. Reducing the dimension of the covariance matrix without

overly restrictive assumptions can be done using latent variables (Section 4.1.1:

Walker & Jackson, 2011; Hui et al., 2015a; Ovaskainen et al., 2016; Warton et al.,

2015a; Hui, 2016). These models are difficult to fit, and are generally estimated

using Markov chain Monte Carlo, or more recently variational approximations (Hui

et al., 2016).
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2.4 Conditional and marginal models

We have discussed several approaches for modelling multivariate abundance data,

some of which are marginal (GEEs) while others are conditional (hierarchical). It

is important to make a distinction between such models, as they have different

interpretations and characteristics.

Latent variables (and random effects) in conditional models govern the covariance

between variables as well as overdispersion characteristics, and can produce unin-

tended artefacts. For example, assuming a bivariate Poisson distribution such that

logE(yij|ui) = µj + γui, γ determines both the covariance between variables as well

as overdispersion of each margin (Murray et al., 2013). For count data this can be

overcome by using a negative binomial distribution marginally, to model overdisper-

sion, leaving the latent variables to model only covariance (Ovaskainen et al., 2016;

Hui, 2016; Hui et al., 2016).

Interpretation of parameters in conditional models is by nature conditional on ran-

dom effects or latent variables, and distinct from interpretation in marginal models.

For example, in a log linear model, the marginal mean is given by E(Y ) = exp(µj +

σ2/2), while in a similarly defined marginal model the mean is E(Y ) = exp(µj),

giving µj a quite different interpretation marginally.

In this thesis we will focus on marginal modelling. Marginal modelling of multivari-

ate abundance data is most commonly carried out with GEEs. We will introduce

copulas as an alternative marginal model for multivariate abundance data (Chapter

3). Unlike GEEs, copula models specify a likelihood, making likelihood based infer-

ence available. This can greatly improve the power of inference, including hypothesis

testing and model selection (Chapter 7). In addition, covariance between species

are explicitly modelled by copulas. This allows us to gain insight into patterns of

correlation by using covariance models (Chapter 4).
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Chapter 3

Copulas for discrete data

In order to model multivariate abundance data, we have to solve two sets of problems

simultaneously. Firstly, we need a way to model multivariate discrete data in a

way which allows flexible (positive and negative) correlations between variables.

Secondly, due to the small sample sizes and sparse data, we also do not have enough

data to estimate the full set of correlations between species, and so must introduce

some structure into the covariances.

This chapter will discuss copula models, with a focus on Gaussian copulas for discrete

data. These will allow us to flexibly model discrete multivariate abundance data.

Later chapters will focus on modelling covariances parsimoniously.

3.1 Copulas

Copulas are a flexible class of models which allow the modelling of data from any

set of marginal distributions, with the covariance structure of any multivariate

distribution. Copula modelling is rooted in Sklar’s Theorem (Sklar, 1959). This

states that the joint cumulative distribution function of a P -variate random vari-

able, H(y1, y2, · · · , yP ), j = 1, 2, · · · , P , can be written in the form

H(y1, y2, · · · , yP ) = C(F1(yi), F2(y2), · · · , Fp(yP )), (3.1)

where C and Fj are uniquely determined when H is known and continuous. Here

Fj is the jth marginal distribution and C : [0, 1]P → [0, 1] is known as a copula. In
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other words, any multivariate distribution is a copula model, provided we have the

correct specification for the marginal distributions and copula. From a modelling

perspective, the main appeal of copulas is that the covariance structure can be

specified independently of the marginal distributions, making them very flexible.

Copula models can be built assuming parametric forms for the Fj ∈ Fθ and C ∈ Cρ,

or semi-parametrically or non-parametrically, where either the Fj or C or both do not

assume a parametric form (e.g. Genest et al., 1995; Shih & Louis, 1995; Deheuvels,

1979). They have a long history in econometrics (Cherubini et al., 2004) as well

as engineering (Genest & Favre, 2007; Favre et al., 2004; Salvadori & De Michele,

2004) but are only sporadically used in other fields.

We start by discussing parametric copulas with continuous margins, and how they

can easily be derived from multivariate distributions. We then introduce copulas

with discrete margins, which can be understood as a latent variable model. We go on

to define the Gaussian copula with discrete margins, for which estimation methods

are discussed. We compare these models to generalised estimating equations, which

are commonly used to model multivariate abundance data, and discuss how we will

extend existing copula models to deal with multivariate abundances.

3.2 Parametric copula models

For a continuous random variable, the joint density h(·) can be derived by differen-

tiating Equation (3.1) to obtain

h(y1, y2, · · · , yP ) = c(F1(yi), F2(y2), · · · , FP (yP ))
P∏
j=1

fj(yj),

where Fj and fj are the marginal distributions and densities, and c(u) = ∂C(u)/∂u

is the copula density. Parametric copulas specify a parametric distribution for each

of the Fi(·) as well as the copula density c(·). One way to construct valid copulas

is from existing multivariate distributions using the probability integral transform

theorem (Nelsen, 1999).
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3.2.1 Gaussian copulas

A valid copula density must have C : [0, 1]P → [0, 1] with uniform margins. To

derive a Gaussian copula, we start with a P -variate Gaussian distribution with zero

mean, unit variance, and correlation matrix R,

ΦP (z1, z2, ..., zP ;R) =
1

(2π)k/2|R|1/2
exp

(
−1

2
zTR−1z

)
.

Then using the probability integral transform we have, for a univariate Gaussian,

Φ(zi) = ui, where ui ∈ [0, 1] and ui ∼ Unif(0, 1). So we construct a Gaussian copula

CG(u1, u2, ..., up) = ΦP (Φ−1(u1),Φ
−1(u2), ...,Φ

−1(uP ), R)

The corresponding copula density is then given by

cG(u1, u2, ..., up) = |R|−1/2 exp

(
−1

2
zT (R−1 − I)z

)
, (3.2)

where zj = Φ−1(uj).

Data from any continuous distribution can be transformed, via a probability integral

transform, such that it is marginally standard Gaussian. The key assumption in

a Gaussian copula model is that these marginally Gaussian variables are jointly

multivariate Gaussian.

3.3 Copulas for discrete data

In the case of discrete data, the copula distribution in Equation (3.1) is not unique,

however it is uniquely defined on the Cartesian product of the ranges of the marginal

distribution functions (Genest & Neslehova, 2007). This non uniqueness does not

prevent the use of parametric copulas for modelling discrete data. In the case where

Yj are all discrete, the copula density is found by obtaining the 2P finite differences

P (Y = y) =
∑
i1=0,1

· · ·
∑
iP=0,1

(−1)i1+···+imC(F1(y1 − i1), · · · , FP (yP − iP )). (3.3)

There are 2P term in this equation, and so to compute the likelihood for a sample

of size N, the copula distribution must be evaluated at N × 2P points. Alternately,

we can write the copula as a latent variable model, where latent variables u have a
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copula distribution c(u), and for each yj, f(yj|uj) = I(Fj(y
−
j ) ≤ uj < Fj(y

−
j )). The

joint distribution of y and u is given by

f(y, u) = f(y|u)f(u) =
P∏
j=1

I(Fj(y
−
j ) ≤ uj < Fj(yj))c(u).

The required marginal distribution of y is then given by

f(y) =

∫
f(y, u)du =

∫ P∏
j=1

I(Fj(y
−
j ) ≤ uj < Fj(yj))c(u)du

=

∫
A

c(u)du,

where Ai = ∩j
[
(Fij(y

−
ij |βj, ψj), Fij(yij|βj, ψj)

]
. This is equivalent to Equation (3.3)

(Smith & Khaled, 2012). There are a number of examples of parametric copulas

used for discrete data, see Nikoloulopoulos (2013a) for full discussion. We are aiming

to model multivariate abundance data, where pairs of species can potentially have

either positive or negative dependence, and correlations for each pair are potentially

different. Only the elliptical (including the Gaussian copula) and Vine copulas are

able to model a wide range of dependence, including positive and negative depen-

dence, in a way that allows the pairwise dependence between variables to be different

for each pair of variables.

3.4 Gaussian copula with discrete margins

For discrete Gaussian copulas we employ Equation (3.4) with the Gaussian copula

density in Equation (3.2), to obtain the likelihood

L(y|β, ψ, θ) =
N∏
i=1

∫
Ai

|Rθ|−1/2 exp

(
−1

2
zTi (R−1θ − I)zi

)
dui, (3.4)

where zij = Φ−1(uij) and Ai = ∩j
[
(Fij(y

−
ij |βj, ψj), Fij(yij|βj, ψj)

]
, with i = 1, . . . , N

observations. Ai is a hypercube of all values on the copula scale which, when dis-

cretised, give us the observed Y.

To maximise the copula likelihood, it is necessary to first approximate the required

rectangular integrals (3.4), and then maximise the resulting approximate likelihood.

The latter is generally done using standard numerical optimisation methods like

quasi-Newton algorithms (Nikoloulopoulos, 2013a).
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To approximate the integrals for low dimensional problems, or in cases where the

likelihood can be factored in a small dimension, such as with clustered data with

a small number of observations per cluster, it is possible to use deterministic ap-

proximations to the required rectangle integral (Joe, 1995; Miwa et al., 2003; Craig,

2008), which are then maximised numerically.

For larger dimensional problems, where deterministic approximations are compu-

tationally infeasible, it is common to use sampling methods to approximate the

integrals, followed by numerical optimisation. This procedure is effective when

the likelihood cannot be factorised to a smaller dimension, but correlations can be

parametrised by a small number of parameters, as in time series and spatial prob-

lems. Examples of sampling methods include the randomised quasi-Monte Carlo

(Genz & Bretz, 2002), as well as importance sampling methods (Masarotto & Varin,

2012).

In very high dimensional problems, when maximising the full likelihood is not fea-

sible, a two stage method can be used. Here parameters belonging to marginal

distributions are estimated assuming independence, and then correlations are esti-

mated conditional on the marginal parameters. Letting lj(θj) be the jth marginal

log likelihood, and l(θ, R) the complete log likelihood, the two stage method solves

1. θ̂j = arg maxθj lj(θj) for j = 1, · · · , P , and

2. R̂j = arg maxR l(θ̂, R).

A further method of approximating the likelihood is the method of inference func-

tions for margins (Xu, 1996), which employs lower dimensional margins. This

method is used in high dimensional problems, when estimation of all covariance

parameters simultaneously is infeasible, even when marginal parameters have been

estimated first. For the Gaussian copula, for example, each covariance matrix pa-

rameter ρj,k appears only in the joint marginal distributions of variable j and k.

Writing the bivariate j, k margin as lj,k(θj, θk, ρjk), this method would proceed by

solving for all pairs j and k
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(θ̂j, θ̂k, σ̂j,k) = arg max
θj ,θk,ρj,k

lj,k(θj, θk, ρjk).

This maximisation can be carried out jointly, or sequentially as in the two stage

method. The estimators (θ, R) are consistent and in many cases efficient (Xu, 1996;

Joe, 2005)

3.5 Modelling multivariate abundance data with

copulas

Gaussian copulas with discrete margins provide a flexible framework for modelling

multivariate discrete data. They have many desirable properties in this context.

Any set of marginal distributions can easily be combined to form a copula model,

with the only requirement being a well specified density and cumulative distribution

functions for each margin. We could therefore easily model some species with pres-

ence/absence data, with ordinal or count data for others. Additionally, Gaussian

copulas allow very flexible correlation structures to be modelled. In later chapters

we will see that Gaussian copulas also allow us to easily specify parsimonious but

flexible correlations. In this section we will briefly compare copulas with generalised

estimating equations, which are commonly used for marginal inference for multi-

variate abundance data (Section 2.2). We will then describe an existing framework

for multivariate generalised linear models, which we will in later chapters extend to

model multivariate abundance data.

3.5.1 Comparison to generalised estimating equations

There is a close relationship between copulas and marginal models estimated with

GEEs. Both modelling frameworks assume the same marginal distributions,

Yij ∼ Fj(µij, ψj)

g(µij) = β0j +XT
i βj,
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and the same model under an independence assumption, with likelihood specified

by

L(θ) =
P∏
j=1

N∏
i=1

fj(µij, ψj). (3.5)

In addition, maximum likelihood estimates using independence estimating equations

(Hilbe et al., 2003) are equivalent to parameter estimates under a two stage estimat-

ing procedure (Section 3.4) for copulas, as both procedures estimate marginal models

separately for each species. In practice this is done by fitting GLMs marginally to

each species, and this procedure is commonly used when implementing GEEs for

multivariate abundance data (Wang et al., 2012b).

GEEs for correlated data do not explicitly specify a likelihood, while copulas do, for

example the Gaussian copula likelihood is given in Equation (3.4). This is the main

advantage of copulas over GEEs, as it allows likelihood based inference like likelihood

ratio tests and information criteria. In addition, copula models can accommodate

mixed data types, while GEEs generally do not. Copula models explicitly model

correlation, and so can be used to investigate patterns of covariance between species

(Chapter 5), while GEEs treat correlations as nuisance.

3.5.2 Multivariate GLMs using Gaussian copulas

Many of the models in Chapter 2 are extensions of generalised linear models to

multivariate outcomes. It is common to use GLMs as a basis for modelling multi-

variate abundance data marginally, as it accounts for the mean-variance relationship

commonly observed in discrete data.

GLMs have previously been extended to multivariate data with Gaussian copulas

(Song et al., 2009). Masarotto & Varin (2012) establishes a framework for modelling

correlated clustered, longitudinal, temporal and spatial data using the likelihood

specification in Equation (3.4), where the marginal distributions Fj are assumed to

arise from a distribution in the exponential family, as in traditional GLMs.

The models described in Song et al. (2009) are highly multivariate, in the sense that

there are many correlated variables being modelled, however the covariance between
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response variables is parametrised with a small number of variables, which does not

grow with the number of response variables, such as spatial or temporal covariance

functions for example. This type of model can be estimated by obtaining an es-

timate of the full likelihood with sampling approximations, and then numerically

maximising this estimate. This is possible as there are relatively few parameters to

maximise over.

For multivariate abundance data, the number of variables in the correlation matrix

is quadratic in the number of response variables. Maximising the required likelihood

is difficult, but can be done (for moderate P ) using approximate methods, if there

is enough data to estimate all the parameters. For multivariate abundances, we

often have few observations relative to the number of response variables, and so

an unstructured covariance matrix is not estimable. In Chapter 4 we look at how

covariance modelling techniques can be used to reduce the number of parameters

in these models while making few and ecologically defensible assumptions. We will

then, in Chapter 5, describe a novel algorithm for the estimation of these models,

and demonstrate how they can be applied to model multivariate abundance data.
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Chapter 4

Covariance modelling of

multivariate data

As well as being highly multivariate, abundance data often does not have many

observations relative to the number of variables. So while we would like to model

an unstructured covariance matrix, where pairwise correlations are free to vary in-

dependently, this specification is generally not estimable from the data. In order

to define a parsimonious model, some structure must be added to the covariance

matrix, we will refer to this as covariance modelling (Pourahmadi, 2013).

Covariance modelling includes design driven covariance structures like compound

symmetry or autoregressive covariances, as well as data driven covariance models

like latent variable and graphical models. In this chapter we will focus on data

driven covariance models, as these can induce parsimony in multivariate models in a

flexible way and with few assumptions. Additionally, they are a method to uncover

interesting patterns in dependence of multivariate data.

4.1 Covariance modelling of Gaussian data

Data driven models for covariance give us valuable information about the structure

of multivariate data, when there are a large number of response variables, and

the literature on such tools for Gaussian data is quite advanced. Two methods of
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particular interest are latent variables models and graphical models.

4.1.1 Latent variable models

Latent variable models assume covariance between response variables is driven by

a shared response to several unobserved latent variables. In the context of ecology,

these are often interpreted as unobserved environmental covariates (Warton et al.,

2015a). The simplest form of latent variable model is a factor analysis (Everitt,

1984). Here the response Y (of dimension P ) is independent Gaussian with diagonal

covariance matrix Ψ, conditional on a latent Gaussian variable Z ∼ N(0, I) with

dimension Q� P . We can write

Y = µ+ ΛZ +W,

where W ∼ N(0,Ψ) independently of X, and Λ is a matrix of factor loadings. If we

know Z, then this is a linear regression, but Z is unobserved. To find the marginal

mean and covariance of Y we observe

E(Y ) = E(µ+ ΛZ +W )

= µ+ ΛE(Z) + E(W )

= µ,

V ar(Y ) = E[(µ+ ΛZ +W − µ)(µ+ ΛZ +W − µ)T ]

= E[(ΛZ +W )(ΛZ +W )T ]

= ΛE(ZZT )ΛT + E(WW T )

= ΛΛT + Ψ.

Covariance between variables is therefore a sum of shared responses to the latent

variables ΛΛT , where each variable has an additional variance component Ψj,j. Fac-

tor analysis induces structure into the covariance matrix, which can give us impor-

tant information about how variables are correlated. We can plot factor loadings

Λj,q, with q = 1, · · · , Q, to look for patterns among variables, where variables close

to one another are highly correlated, and respond similarly to the latent variables.

We can also plot scores Zi,q, to look for which sites cluster together, and are therefore

correlated.
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Another advantage of latent variable methods is that they can significantly reduce

the number of variables for estimation in the covariance matrix, with minimal as-

sumptions about the covariance between variables. The number of variables in a

factor analysis model, after ensuring identifiability (Anderson, 1962) is the number

of variables in Λ (PQ), minus identifiability constraints Q(Q−1)/2, plus P , the num-

ber of elements in the diagonal matrix Ψ. So KFA = P (Q+ 1)−Q(Q− 1)/2, while

the number of elements in an unstructured covariance matrix is KUN = P (P −1)/2.

Table 4.1 shows that even for moderate P , a factor analysis with up to six latent fac-

tors will substantially reduce the number of parameters that need to be estimated.

This is due to the number of variables in a factor analysis being linear in P , rather

than quadratic. This is particularly important for small sample sizes, as is common

in multivariate abundance data.

Number of variables (P) 20 20 20 40 40 40 60 60 60

Number of factors (Q) 2 4 6 2 4 6 2 4 6

Unstructured 190 190 190 780 780 780 1770 1770 1770

Factor Analysis 59 94 125 119 194 265 179 294 405

Table 4.1: Number of parameters in unstructured and latent variable covariance matrices. The

number of parameters in a factor analysis can be orders of magnitude lower than an unstructured

covariance matrix.

Factor analysis models are commonly estimated by maximum likelihood. The log

likelihood is given by

l(y; Λ,Ψ) = −N
2

log |ΛΛT + Ψ| − 1

2
tr[S(ΛΛT + Ψ)−1],

where S =
∑

i(y − µY )(y − µY )T . Score functions cannot be solved directly, so

iterative procedures are often used. Alternately the likelihood can be maximised

using the expectation maximisation algorithm (EM; Dempster et al., 1977).

Extensions of latent variable models can expand the use of this very powerful tech-

nique further. Spatial and temporal factor analysis (Wang & Wall, 2003) are latent

factors that are smooth in space or time. These can model unobserved variables

which are assumed to be spatially or temporally smooth, as would be the case for
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environmental variables like temperature and rainfall. They can be used as a simple

way to model spatial and temporal correlation between variables, that arises as a

result of several separate processes (factors), some of which may act over longer and

others over shorter spatial or temporal scales. Another extension of latent variable

models is structural equation models (Sánchez et al., 2005). These models are re-

lated to confirmatory factor analysis: a model is hypothesised for how observed and

latent variables are interrelated, and model summary measures are used to compare

competing models, or assess the viability of a proposed model. A further exten-

sion is sparse factor analysis (Meng et al., 2014), where the matrix of loadings is

encouraged to be sparse.

As discussed in Section 2.3, latent variable models have recently been used in mul-

tivariate hierarchical Bayesian models in ecology, both to induce sparsity, and to

find patterns in covariance between species. In Chapter 5 we describe a novel algo-

rithm for applying any covariance modelling algorithm designed for Gaussian data

to multivariate abundance and other discrete multivariate data.

4.1.2 Gaussian graphical models

Gaussian graphical models (Banerjee et al., 2006; Meinshausen & Bühlmann, 2006;

Yuan & Lin, 2007; Friedman et al., 2008; Rothman et al., 2008) describe conditional

independence relationships between Gaussian variables. For a P -variate Gaussian

random variable Z ∼ N(0,Σ), variables j and j′ are conditionally independent,

given the rest, if the (j, j′) element of Θ = Σ−1 is zero (Baba et al., 2004). To

estimate graphical models, modern methods impose an L1 penalty on the elements

of Θ to encourage sparsity. The problem is thus reduced to maximising a penalised

log likelihood, namely

log |Θ| − tr(SΘ)− λ||Θ||1, (4.1)

where tr() denotes the trace and ||Θ||1 is the L1 norm (sum of absolute values). Fast

algorithms for solving this constrained optimisation iteratively employ the coordi-

nate descent algorithm (Friedman et al., 2008). The subgradient Equation for (4.1)
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is

Θ−1 − S − λΓ = 0,

where Γq,r = sign(Θq,r) if Θq,r 6= 0 and Γq,r ∈ [−1, 1] if Θq,r = 0. The resulting

graph can be interpreted as the pattern of direct and indirect relationships among

variables, or more formally conditional dependence.

Graphical models are not commonly implemented for ecological data, with some

recent exceptions. Harris (2015) describes a Markov model for binary data based

on the well known Ising graphical model (Ravikumar et al., 2010), while Morueta-

Holme et al. (2016) implements graphical modelling on transformed abundances,

both with the intention of inferring species interactions.

4.2 Covariance modelling of discrete data

While covariance modelling of Gaussian data is well understood, covariance mod-

elling of discrete data remains challenging. Models for Gaussian data have been

extended to the discrete data setting, though generally separately for each covari-

ance modelling paradigm and a particular discrete distribution. In addition many

of these do not allow joint modelling of a response to predictors with covariance

modelling.

Flexible tools for graphical and latent factor modelling of discrete and mixed data

can be achieved by using non-parametric marginal distributions (Carvalho et al.,

2008; Liu et al., 2009; Gruhl et al., 2013; Murray et al., 2013; Abegaz & Wit,

2014; Fan et al., 2016; Abegaz & Wit, 2015; Guo et al., 2015). As interest is on

the covariance structure, these treat marginal distributions as nuisance parameters.

and by design do not include predictors. An alternative formulation for covariance

modelling without covariates is item response theory, which allows latent variable

modelling for binary and multinomial data (Hambleton, 1991).

For joint modelling of predictors and covariance of counts and categorical outcomes,

generalised latent variable models (Skrondal & Rabe-Hesketh, 2004; Holst & Budtz-

Jørgensen, 2013) provide a flexible covariance modelling method. These models
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are able to fit generalised linear mixed models and structural equation models in

a combined framework. However, these cannot be used to carry out other forms

of covariance modelling, and are restricted to the Poisson distribution for counts,

which generally fits poorly for multivariate abundance data (ver Hoef & Boveng,

2007). Resorting to a Poisson distribution with latent variables for overdispersed

counts can induce unintended artefacts (Section 2.4).

It is possible to build graphical models for discrete data by extending Gaussian

graphical models to other members of the exponential family (Banerjee et al., 2006;

Lee & Hastie, 2015). These models include the well known Ising models for binary

data. The Ising model can be fit using approximations to the intractable normal-

ising constant (Banerjee et al., 2006; Höfling & Tibshirani, 2009; Ravikumar et al.,

2010), but is difficult to fit in large dimensions. Additionally, for other marginal

distributions, including the Poisson for counts, these extensions place restrictions

on the direction of conditional relationships between variables. To overcome this

limitation for counts, node wise graphical models have been proposed (Allen & Liu,

2013), however these are local in nature and do not estimate a global model of

dependence, making them inefficient.

There are a number of quite flexible Bayesian methods for covariance modelling

of discrete and mixed data, these include Bayesian graphical models (Pitt et al.,

2006; Smith & Khaled, 2012) as well as latent variable models (Murray et al., 2013).

Bayesian copula graphical models are implemented in Dauwels et al. (2013) and Guo

et al. (2015) via a conditional EM algorithm.

4.3 Covariance modelling of multivariate abun-

dance data

Latent variable models and graphical models make quite different and interesting

assumptions about the structure of the data. Graphical models assume most vari-

ables are conditionally independent of one another, and hence the precision (inverse

covariance) matrix is sparse. For multivariate abundance data, where variables are

species, we can interpret these conditional dependence relationships as species inter-
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actions. This definition of ”species interactions” applied here concerns two species

that interacting with one another not in terms of the species abundance being corre-

lated or co-occurring, but being correlated after accounting for the effect of all other

species and environment filtering. The output graph gives us information about

how correlations between species are controlled by common interactions with inter-

mediate species. Importantly, these models explain all correlations between species

as interactions between them. On the other hand, latent variable models propose

correlation between species as a result of unobserved or missing covariates. In ecol-

ogy, these are often interpreted as unmeasured environmental variables, which drive

dependence between species. Model based ordination plots (Ovaskainen et al., 2016;

Hui, 2016), obtained by plotting latent factors and scores, can be used to visualise

the drivers of site and species differences. Both these structures are plausible expla-

nations for correlation between species, and it is of interest to ecologists to explore

and test such relationships.

The power of covariance modelling techniques is the ability to find patterns in de-

pendence between variables, and in particular those not explained by known covari-

ates. To model multivariate abundance data, where environmental covariates have

a strong effect on how species are related, the effects of these have to be accounted

for if covariance modelling is to give us useful information on species interactions.

In Chapter 5 we propose a novel method to apply any covariance modelling method

for Gaussian data to discrete data.

In addition to finding patterns in covariance between species, covariance models

can substantially reduce the number of parameters in the covariance matrix, while

making only mild assumptions on the structure of the matrix. This property allows

us to conduct inference on multivariate abundance data, where there are generally

few observation relative to the number of species. In Chapter 7 we propose a method

for likelihood based marginal inference for discrete data using copulas and covariance

modelling.
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Chapter 5

Covariance modelling of discrete

data with copulas

The main appeal of copula models is their flexibility, as the covariance structure can

be modelled separately from marginal models. In this chapter will extend the flex-

ibility of Gaussian copulas further, by allowing existing algorithms for covariance

modelling of Gaussian data to be utilised for estimating the covariance structure

when the responses are non-Gaussian. This will allow us to combine any collec-

tion of marginal distributions, and any covariance modelling algorithm designed for

Gaussian data.

As we discussed in Chapter 4, covariance modelling techniques, like factor analysis

and graphical models, can find patterns in covariance for multivariate data, as well

as allow the building of parsimonious multivariate models, when there are few ob-

servations relative to the number of variables. These are both desirable properties

for multivariate models of abundance data in ecology, where we often have a small

sample size relative to the number of variables.

In this chapter we will describe a flexible algorithm which can combine any set

of discrete (or continuous) response distributions, and any covariance modelling

algorithm designed for Gaussian data, in a Gaussian copula framework. We then

demonstrate the use of this algorithm with factor analytic and graphical covariance

models.
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5.1 Model formulation

We model discrete response matrix y as a copula with marginal parameter vec-

tors (β, ψ), and correlation matrix Rθ, parameterised by a set of variables θ. The

likelihood (from Equation 3.4), is given by

L(y|β, ψ, θ) =
N∏
i=1

∫
Ai

|Rθ|−1/2 exp

(
−1

2
zTi (R−1θ − I)zi

)
dui, (5.1)

where zij = Φ−1(uij) and Ai = ∩j
[
(Fij(y

−
ij |βj, ψj), Fij(yij|βj, ψj)

]
. Here Fij are the

marginal distributions with marginal parameters βj and ψj.

5.2 Estimation

We implement a type of Monte Carlo expectation maximisation (MCEM; Wei &

Tanner, 1990) algorithm to estimate this integral. We chose an algorithm which is

easy to implement, and allows the flexibility we desire. We will start by defining the

the MCEM algorithm, Gaussian score equation and Dunn-Smyth residuals (Dunn

& Smyth, 1996).

Definition 1 (Monte Carlo Expectation Maximisation). The expectation maximi-

sation algorithm (EM; Dempster et al., 1977) is a method to maximise the likelihood

function in the presence of missing data z. This is done iteratively; in the E-Step

one calculates the Q function,

Q(θ, θ̂(m)) =

∫
zi

f(z|y; θ̂(m)) log f(z; θ)dz,

which is the expectation of the log likelihood with respect to the conditional pre-

dictive distribution f(z|y;Rθ̂(m)), under the current value of the model parameters

θ̂(m) at the mth iteration. The Q function is then maximised in the M-Step to find

the new value of the model parameters,

θ̂(m+1) = arg max
θ

Q(θ, θ̂(m)).

These steps are repeated iteratively until convergence. When the Q function is

not available in closed form, a Monte Carlo estimate of the required expectation
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can be used instead. This is the Monte Carlo Expectation Maximisation algorithm

(MCEM; Wei & Tanner, 1990). The Q function is replaced by

Q̃(θ, θ̂(m)) =
1

K

K∑
k=1

log f(zk;Rθ̂(m)),

in the E-Step, where zk, k = 1, ..., K are drawn from f(z|y; θ̂(m)).

Definition 2 (Gaussian score equation for covariance parameters).

∂l(z;Rθ)

∂θ
=

N∑
i=1

∂ logNP (zki ;Rθ)

∂θ
. (5.2)

Definition 3 (Dunn-Smyth residuals). Dunn-Smyth residuals are a useful diagnos-

tic tool for generalised linear modelling (Dunn & Smyth, 1996), but are used here

as a device for numerical approximation of the integrand in Equation (5.1). Let uij

be a uniform random variable. A Dunn-Smyth residual can be defined as

zij = Φ−1{Fij(y−ij) + uijfij(yij)},

where Fij(y
−
ij) = lim

x→y−ij
Fij(x). The distribution of these residuals, given the marginal

distributions, is a truncated multivariate normal with identity covariance matrix.

g(zi) =

∏P
j=1 φ(zkij)∏P
j=1 fij(yij)

Iz∈Ai
,

where Ai = ∩j
[
(Fij(y

−
ij |βj, ψj), Fij(yij|βj, ψj)

]
.

This distribution has positive probability only in the region of integration of the

copula likelihood (Equation (5.1)), making it a candidate for importance sampling

to estimate this integral. Importance sampling schemes using these and similar

constructs appear by other names in Heinen & Rengifo (2007), Nikoloulopoulos

(2013b) and others, where the resulting approximations are maximised numerically,

as discussed in Chapter 3.4. Instead of implementing a numerical optimisation

scheme, we note in the following theorem that the copula score function, when

approximated by importance sampling with Dunn-Smyth residuals, can be rewritten

as a weighted sum of Gaussian score equations. This allows us to maximise the
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copula likelihood using the very algorithms used to carry out covariance modelling

of Gaussian data.

Lemma 1. The discrete Gaussian copula likelihood can be approximated by im-

portance sampling with K sets of Dunn-Smyth residuals

Li(yi;Rθ) =

∫
Ai

|Rθ|−1/2 exp

(
−1

2
zTi (R−1θ − I)zi

)
dui

≈
P∏
j=1

fij(yij)
K∑
k=1

c(zk;Rθ), (5.3)

where NP (·;R) is a multivariate Gaussian density with zero mean, unit variance

and correlation matrix R, c(·;Rθ) = NP (zki ;Rθ)/
∏P

j=1 φ(zkij) is the Gaussian copula

density with correlation matrix Rθ, fij(·) is the marginal distribution of variable

j and observation i. The proof in Appendix A follows by importance sampling

arguments.

We now demonstrate the link between the Gaussian score equation, and the Gaussian

copula score.

Theorem 1. An estimate of the derivative of the Gaussian copula likelihood with

discrete margins (with respect to covariance parameters) can be written as a weighted

sum of derivatives of the multivariate Gaussian distribution.

Proof: Differentiating the log likelihood approximation from Lemma 1 we have

∂l(y;Rθ)

∂θ
=

N∑
i=1

1∑K
k=1 c(z

k
i ;Rθ)

K∑
k=1

∂c(zki ;Rθ)

∂θ

=
N∑
i=1

1∑K
k=1 c(z

k
i ;Rθ)

K∑
k=1

∂c(zki ;Rθ)

∂ log c(zki ;Rθ)

∂ log c(zki ;Rθ)

∂θ

=
N∑
i=1

1∑K
k=1 c(z

k
i ;Rθ)

K∑
k=1

c(zki ;Rθ)
∂ log c(zki ;Rθ)

∂θ

=
N∑
i=1

K∑
k=1

c(zki ;Rθ)∑K
k=1 c(z

k
i ;Rθ)

∂ log c(zki ;Rθ)

∂θ

=
N∑
i=1

K∑
k=1

wik(Rθ)
∂ log φP (zki ;Rθ)

∂θ
, (5.4)
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where wik := c(zki ;Rθ)/(
∑K

k=1 c(z
k
i ;Rθ))

Covariance modelling algorithms, like those which estimate a factor analysis or struc-

tured covariance matrices, maximise the Gaussian likelihood by design, or equiva-

lently solve the Gaussian score equations. By writing the copula score equation as a

weighted sum of the Gaussian scores, we are able to utilise these algorithms with a

weighted set of the Dunn-Smyth residuals. As the weights wik are a function of the

parameters to be estimated, these must be iteratively updated, and so we arrive at

the algorithm below.

5.3 Algorithm

To carry out covariance modelling on discrete data with a Gaussian copula, we

iteratively implement the covariance modelling algorithm designed for Gaussian data

on a weighted set of Dunn-Smyth residuals.

Algorithm 1 Covariance modelling for discrete data

For data y and covariates X

1. Estimate Fij(·;Xi) using a univariate modelling algorithm (e.g. glm)

2. For k = 1, · · · , K, simulate Dunn-Smyth residuals

zijk = Φ−1{F̂ij(yijk − 1) + uijkf̂ij(yij)}

3. Initialise w
(0)
ik ∝ 1 and write (z, w(m)) for the set of Dunn-Smyth residuals and

weights

4. For m = 1, 2, · · · , until convergence

a Apply covariance modelling algorithm to weighted residuals (z, w(m−1))

to obtain θ̂(m)

b Recalculate weights w
(m)
ik ∝ c(zik;Rθ̂(m)) from Theorem 1

Note: As most covariance modelling algorithms use the sample covariance matrix as

a sufficient statistic, we can in practice use the weighted correlation matrix of Dunn-

Smyth residuals R
(m)
w = 1

N

∑N
i=1

∑K
k=1wik(Rθ̂(m−1))zki (zki )T as a sufficient statistic in

step 4a.
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This algorithm has two estimation steps. Firstly, marginal parameters (β, ψ) are es-

timated assuming independence, as with independence estimating equations (Liang

& Zeger, 1986). Secondly, these estimates (β̂, ψ̂) are plugged into the copula like-

lihood L(y|β, ψ, θ) (Equation 5.3). The resulting plug-in likelihood L(y|β̂, ψ̂, θ) is

maximised for covariance parameters θ using an iterative procedure, which can be

understood as a MCEM algorithm (McLachlan & Krishnan, 1997) where the sam-

ple for the E-step is achieved by reweighting the residuals, and the M-Step is the

covariance modelling algorithm, see Appendix A.3 for proof.

The integral in equation 5.1 can be estimated numerically in other ways, including

quadrature (see for example: Song et al., 2009). However, the derivation above

leads most naturally to the MCEM algorithm described. This algorithm can easily

incorporate existing covariance modelling algorithms designed for Gaussian data,

without the need for alteration.

The derivation of the approximate likelihood in derivative in Theorem 1 leads very

naturally to the MCEM algorithm described. Alternative methods to estimate the

required integrals are possible, including various quadrature methods.

We obtain consistent estimates for all model parameters (see Appendix A.2 for

proof). This algorithm extends the flexibility of Gaussian copulas to implement any

covariance modelling framework designed for Gaussian data to discrete data.

5.4 Application to covariance modelling methods

Algorithm 1 can be implemented with covariance models estimated by maximum

likelihood as well as penalised likelihood. We will demonstrate this with two exam-

ples, graphical modelling for penalised likelihood and factor analysis for maximum

likelihood.

5.4.1 Application to graphical models

Modern implementations of graphical modelling for Gaussian data optimise a pe-

nalised likelihood with a lasso penalty (Banerjee et al., 2006). Though this is not
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a maximum likelihood algorithm, as required by Theorem 1, we will show that Al-

gorithm 5.3 can nevertheless be used to carry out graphical modelling of discrete

data.

We begin by applying the relevant likelihood penalty to the approximate log like-

lihood in Theorem 1. Let Θ = R−1 be the precision matrix. The penalised log

likelihood estimate can be written;

lλ(y; Θ) =

[
N∑
i=1

P∑
j=1

log(fij(yij))

]
+

N∑
i=1

log

[
K∑
k=1

c(zki ; Θ)

]
− λ||Θ||1,

from Lemma 1. To find the maximiser of this function we write

0 =
∂lλ(y; Θ)

∂Θ
=

N∑
i=1

K∑
k=1

wik(Θ)

[
∂ log φP (zki ; Θ)

∂Θ

]
− λΓ

0 =
N∑
i=1

K∑
k=1

wik(Θ)
[
Θ− zki z’ki

]
− λΓ

0 = Θ̂−

[
1

N

N∑
i=1

K∑
k=1

wik(Θ̂)zki z’ki

]
− λΓ, (5.5)

where Γq,r = sign(Θq,r) if Θq,r 6= 0 and Γq,r ∈ [−1, 1] if Θq,r = 0. Equation (5.5) is

analogous to the Equation (4.1) solved by Gaussian graphical modelling algorithms

like the graphical lasso (Friedman et al., 2008), with the sample covariance ma-

trix replaced by a weighted covariance matrix with weights wik. We can therefore

solve Equation (5.5) iteratively using the graphical lasso algorithm together with

Algorithm 1.

5.4.2 Application to factor analysis

As discussed in Section 4.1.1, factor analysis is solved by maximum likelihood, either

by numerically solving the score equations or with the EM algorithm. The numerical

algorithms are implemented to solve the following score equations (Everitt, 1984).

0 = diag

(
Σ−1

[
1

N

N∑
i=1

yiy
′
i

]
Σ−1 − diag(Σ−1)

)

0 = Σ−1

[
1

N

N∑
i=1

yiy
′
i

]
Σ−1Λ− Σ−1Λ.
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Now looking at the copula likelihood estimate we have

l(y; Λ,Ψ) =

[
N∑
i=1

P∑
j=1

log(fij(yij))

]
+

N∑
i=1

log

[
K∑
k=1

c(zki ;R)

]
,

where R = ΛΛT + Ψ. We differentiate with respect to both Λ and Ψ to obtain

0 =
∂l(y;R)

∂Ψ
=

N∑
i=1

K∑
k=1

wik(R)

[
∂ log φP (zki ;R)

∂Ψ

]

0 =
N∑
i=1

K∑
k=1

wik(R)
[
diag(R−1zki z

′k
iR
−1 − diag(R−1))

]
0 = diag

(
R−1

[
1

N

∑
i

K∑
k=1

wik(R)zki z
′k
i

]
R−1 − diag(R−1)

)
. (5.6)

Similarly the derivatives with respect to Ψ give us score equations

0 = R−1

[
1

N

N∑
i=1

K∑
k=1

wik(R)zki z
′k
i

]
R−1Λ−R−1Λ.

Comparing these to the score equations for factor analysis for Gaussian data, it is

clear we can replace the data covariance matrix with a weighted covariance matrix of

Dunn-Smyth residuals with weights wik, and use standard factor analysis algorithms,

iteratively updating the weights, to model the correlation matrix R.

5.5 Simulation results

5.5.1 Factor analysis: Binary data

We compare Algorithm 1 to two alternative strategies for factor analysis of discrete

data. We generate a one factor binomial model for binary data with probit link

using the lava.tobit (Holst, 2012) package. This package is able to simulate and

estimate a probit regression with latent factors. In this special case, the Gaussian

copula is equivalent to a hierarchical model (Nikoloulopoulos, 2013b), and thus can

be fitted using software for hierarchical latent variable modelling, like lava.tobit.

Additionally we will compare to a naive procedure in which we carry out a factor

analysis on Pearson residuals or one set of Dunn-Smyth residuals from a binomial

generalised linear model. Both these sets of residuals should be approximately nor-

mally distributed marginally, and so a factor analysis algorithm can be applied di-
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Figure 5.1: Comparison of Algorithm 1 to the lava.tobit package (b) and factor analysis of

Pearson residuals (a). Values above the red line indicate the copula model is performing better.

Algorithm 1 generally outperforms these alternatives, especially as dimension increases.

rectly to these residuals for an approximate solution. For further simulation details

see Appendix B.1.1.

We will measure the performance of factor analysis models by the Frobenius norm (as

in Ledoit & Wolf (2003)) of the difference of estimated and true covariance matrices.

Figure 5.1a shows that Algorithm 1 generally outperforms the naive application of

factor analysis algorithms to Pearson residuals. One set of Dunn-Smyth residuals

performs similarly to Pearson residuals, and we do not include these results. Figure

5.1b shows that with as few as 50 sets of Dunn-Smyth residuals Algorithm 1 generally

outperforms the lava.tobit package in terms of accuracy.
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5.5.2 Graphical model: Count data

For graphical modelling we simulate data from a Gaussian copula with Poisson

marginal distributions, and a chosen graphical structure. We then measure how

well our model, and others, are able to discover the graphical structure. We gen-

erated and estimated graphical structures and data using the huge package (Zhao

et al., 2012) in R, which simulates and estimates Gaussian graphical models. Graph-

ical modelling works best for sparse matrices, so the graphs we generate have a 70%

probability for conditional independence for any pair of variables. For model selec-

tion we use the StARS criterion (Liu et al., 2010) which chooses the model with the

most stable graphical structure across sub samples. We then compare Algorithm 1

to the local Poisson model (Allen & Liu, 2013) as well as a naive application of a

graphical modelling algorithm to Pearson and one set of Dunn-Smyth residuals. For

further simulation details see Appendix B.1.2.

We measure the performance of the graphical modelling algorithms as the propor-

tion of correctly identified conditional dependence relationships. Figure 5.2a shows

that Algorithm 1 generally outperforms the naive application of graphical modelling

algorithms to Pearson residuals, one set of Dunn-Smyth residuals performs similarly

to Pearson residuals and is not shown. Algorithm 1 also generally outperforms the

local Poisson model (Figure 5.2b), particularly as dimension (P) increases.

Poisson distributed counts were simulated for easy comparison to the local Poisson

model, but note our model can easily be extended to modelling overdispersed counts

by using a negative binomial regression in the marginal model, as below.

5.6 Practical Application

5.6.1 Count data: Hunting spider data

We will demonstrate our method on the spider dataset (Section 1.1.2) which con-

tains counts of the number of hunting spiders caught in traps for 12 species taken

from 28 sites, modelled as a function of environmental variables. For these data

we fit marginal negative binomial generalised linear models with all the available
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Figure 5.2: Comparison of Algorithm 1 to graphical modelling of Pearson residuals (a) and the

local Poisson model (b; Allen & Liu, 2013). Values above the red line indicate the copula model has

a higher recovery rate, (i.e. proportion of correctly identified conditional dependence relationships)

and is therefore performing better. Algorithm 1 generally outperforms these alternatives, especially

as dimension increases.
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environmental covariates using the mvabund package (Wang et al., 2012b), which

also contains these data. We then use Algorithm 1 to estimate the graph of condi-

tional independences using the graphical lasso implemented in the glasso package

(Friedman et al., 2008). We also carry out a factor analysis using the factanal

function in base R (R Core Team, 2014).

Figure 5.3 has the output of a factor analysis and graphical model before controlling

for covariates (left) and after (right). The first row are factor scores in a two factor

model, the second row are loadings for each species, and the third row are the graphs

obtained from a graphical model.

In our ecological example we study covariance relationships before ad after account-

ing for correlation due to the environmental covariates. With variables representing

different species, we could interpret the graphical model as a model of species inter-

actions, and attempt to identify which species interact directly with one another,

and which are correlated due to their interaction with common species. The fac-

tor analysis of these data highlights latent factors which drive correlations among

species, which may be unmodelled environmental variables.

We have coded the plots of scores (Figure 5.3a-b) according to the covariates in

Figure 1.3, the presence of bare sand (filled for present and unfilled for absent), and

the presence of fallen leaves (blue triangle for present and red square for absent).

We observe clustering in Figure 5.3a according to both variables. Sites with bare

sand and no fallen leaves (filled squares) load negatively on both factors (bottom left

of Figure 5.3a), while sites with fallen leaves and no bare sand (unfilled triangles)

load positively on factor 2 and negatively on factor 1 (top left of Figure 5.3a). No

patterns are visible after controlling for these covariates (Figure 5.3b).

Additionally there are patterns among species in Figure 5.3c-f. For example, species

Pardlugu (Pardosa lugubris) has negative interactions with both Alopacce (Alopecosa

accentuata) and Pardmont (Pardosa monticola), who interact positively with one

another, before controlling for covariates (Figure 5.3e). However these negative in-

teractions are absent after controlling for covariates (Figure 5.3f). Looking at Figure

1.3, we can see that Pardlugu has decreased abundance in the presence of bare sand
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Results of covariance models before (left) and after (right) controlling for covariates.

Factor scores (a and b), factor loadings (c and d) and graphs (e and f). We observe clustering of sites

in terms of these covariates in (a), while after controlling for covariates, these patterns are absent

in (b). Figure (c) to (f) also show responses to covariates. Pardlugu has negative interactions with

both Alopacce and Pardmont, who interact positively, before controlling for covariates (e), which

are absent after controlling for covariates (f). Pardlugu has the opposite response to covariates to

Alopacce and Pardmont (Figure 1.3), so these interactions may be explained by the covariates.
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and increased abundance in the presence of fallen leaves, while both Alopacce and

Pardmont have the opposite response to these covariates. The difference between

Figure 5.3e and f may therefore be due to these interactions being explained by

these covariates. These patterns are consistent with the factor loading plots Figure

5.3c-d. In Figure 5.3c, before controlling for covariates, Pardlugu loads negatively

on factor 2, while Alopacce and Pardmont load positively on factor 2 (Figure 5.3c).

After controlling for covariates, Pardlugu has very small loading on both factors,

indicating it is not strongly correlated to any of the species (Figure 5.3d). The

interaction between Alopacce and Pardmont remains positive even after controlling

for covariates (Figure 5.3f), and they both load positively on factor 2 (Figure 5.3d)

in the full model.

5.7 Discussion

We have developed a general algorithm for covariance modelling of discrete data.

It can combine any likelihood based covariance modelling procedure designed for

Gaussian data, with any set of marginal distributions, and is simple and flexible. The

algorithm we present does not place restrictions on the sign of covariance parameters,

nor is it restricted to one or a small class of covariance models. It is fully flexible

in terms of both the marginal distributions and covariance parameters, and only

assumes the covariance structure of the latent variable is that of a multivariate

Gaussian, and marginal distributions are correctly specified.

Simulation results show our method is not only more general than alternative pro-

posals, but also has advantages in performance. For graphical modelling of counts,

our model outperforms the local Poisson model (Allen & Liu, 2013), and has the fur-

ther advantage that it can additionally accommodate covariates and overdispersion.

For factor analysis of binary data, our method also outperforms the lava.tobit

package on R. An alternative approach we also considered was to perform covari-

ance modelling on a single set of residuals from univariate models, but this seemed

to lose considerable efficiency.

The method described has many advantages, most notably the flexibility not offered
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by other methods, as well as advantages in statistical performance. It is however

less computationally efficient than many of the methods we compared to, including

all the methods which use one set of residuals, as well as the lava.tobit package,

which uses composite likelihood (Lindsay, 1988). That being said, the computational

burden of our method is not overly large, with graphical analysis of 10 species and

1000 sites taking less than 1 second, 40 species and 1000 sites less than 90 seconds,

and 1000 species with 1000 sites taking less than 3 hours. These times including

model selection to select sparseness along a path of 100 shrinkage values. The code

has not been optimised with C++ or Fortran, and this is planned for future research.

In addition, inference for many alternate covariance models for discrete data is

conditional (see section 2.3), while copula inference is marginal, which changes the

interpretation of model parameters (see section 2.4). These two types of models are

therefore used to answer different questions.

We demonstrate our method with two well known covariance modelling frameworks,

but it is simple to substitute other (possibly penalised) likelihood-based covariance

modelling algorithms for Gaussian data. Covariance modelling of Gaussian data is

a fast moving area of research (Section 4), with new methods often being developed.

Our algorithm can accommodate these new covariance modelling methods as soon as

they become available, and allow them to be used with discrete data. There is also

no reason that all the marginal distributions need to be from the same family, nor

do they need to all be discrete. All combinations of covariance modelling algorithms

and marginal distributions can be accommodated.
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Chapter 6

Species interactions in New

Zealand native forests

The introduction, explanation of conditional independence (Section

6.1), visualising multivariate abundance data (Section 6.2), as well as

Methods (Section 6.3.1) and data analysis was carried out by GCP

with input from supervisors FKCH and DIW. This chapter was com-

pleted in collaboration with Joanna M. Buswell3, who supplied the

data, and Angela T. Moles1 and Fiona J. Thomson2, who assisted

with interpretation of results from an ecological perspective and sug-

gest phrasing for ecological aspects of the Results and Discussion sec-

tions.

1. School of Biological, Earth and Environmental Sciences, UNSW Australia, NSW

2052, Australia

2. Landcare Research, Lincoln, 7640, New Zealand

3. Ministry for the Environment, Wellington, New Zealand

How species of plants and animals interact with one another is an important ques-

tion of interest to community ecologists. This question can be investigated in a

number of ways. One method is to directly observe species interacting (for example

pollination or predation), and build models based on these observed interaction net-

works (Jordano et al., 2003; Wells & O’Hara, 2013). Alternately one can measure
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the abundance of a small number of species over time, and estimate how species

abundance influences future abundance of other species (Brown et al., 2001; Car-

rara et al., 2015). Both these methods require data to be collected specifically for

the purpose of studying interactions, and are limited to studying a small number

of species. In addition, interaction networks can be inferred from proxies like func-

tional traits, geographical distributions and phylogenies (e.g. Morales-Castilla et al.,

2015), in the absence of empirical data.

It is also possible to extract information on species interactions from routinely col-

lected co-occurrence data (multivariate abundance data). For this type of data,

interactions have been studied using null models (Gotelli & Ulrich, 2010; Strong Jr

et al., 2014) and more recently hierarchical models (Section 2.3; Pollock et al., 2014;

Ovaskainen et al., 2016). In both cases, species interactions are defined in terms of

correlations. Species are thought to interact if they are correlated, possibly after

accounting for known covariates. There are however several reasons species might

be correlated. These include a joint response to missing covariates, or a common

interaction with other species in the community. The first of these can be studied

with latent variable models (Section 4.1.1), which can be interpreted as modelling

missing covariates. Factor loadings from latent variable models provide information

about how species respond to missing covariates.

To distinguish between species which interact directly, and those which are corre-

lated due to shared interactions with other species, we need to investigate condi-

tional dependence relationships, which can be studied with graphical models (Sec-

tion 4.1.2). Graphical models have not been widely employed in ecology, with some

exceptions (Harris, 2016; Morueta-Holme et al., 2016). They are however becoming

popular in other biological fields such as neuroscience (Huang et al., 2010; Allen

et al., 2012), and gene expression studies (Schultz et al., 2012; Allen & Liu, 2013).

In this chapter we will analyse ordinal data in the form of percent cover categorised

into six categories (Table 1.4). Graphical modelling of ordinal data can be carried

out with Bayesian models (Dobra & Lenkoski, 2011; Mohammadi & Wit, 2015). In

a likelihood framework graphical models for ordinal data are generally fitted semi-

parametrically (Liu et al., 2009; Guo et al., 2015), with non-parametric marginal
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(a) X and Y independent. (b) X and Y dependent.

Figure 6.1:

Mosaic plot example when X and Y are independent (a) and dependent (b).

distributions, such that the marginal distributions are modelled non-parametrically

without reference to any covariates.

In Chapter 5 we described a method for applying covariance modelling techniques,

including graphical models, to discrete data, which can be presence/absence, biomass,

count and ordinal. In this chapter we will demonstrate conditional dependence with

a simple example. We will then describe how graphical models can differentiate be-

tween correlations between species, and conditional dependence (which we interpret

as species interactions). We then contrast graphical modelling with other methods

of visualising high dimensional data in ecology. Finally we use graphical models to

investigate species interactions in New Zealand native forests.

6.1 Conditional independence

The concept of conditional independence is best illustrated with an example. For

two binary variables, their dependence can be displayed in a mosaic plot. When

variables are independent, mosaic plots have parallel rectangles both vertically and

horizontally (Figure 6.1a), while dependent variables do not (Figure 6.1b).
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For our example, we generate presence/absence data for three species, A, B, and

C, such that species B and C interact with A, but not with one another. We do

this by first generating species A. We then generate species B with probabilities of

presence conditional on the presence or absence of species A, but irrespective of the

presence of species C, and vice versa. The relationship between species A and B,

and A and C are displayed in Figure 6.2a-b respectively. For example when A is

absent (A=0), species B is more likely to be absent, while species C is more likely

to be present. As both B and C depend on A, they are not generally independent

(Figure 6.2c). The information in these plots is pairwise between species, and is

related to the information we obtain from correlations. For this example, all three

species are correlated (Figure 6.2d).

We simulated this example such that species B and C do not interact directly, their

presence depends only on the presence of A. Figure 6.2 demonstrated that pairwise

metrics, such as correlation, cannot extract these interactions, as interactions are

conditional. In Figure 6.3 we go one step further to show the joint probabilities

of each pair of variables conditional on the third. Figure 6.3 (a) and (b) exhibit

conditional dependence. However, in Figure 6.3c, we see that conditional on A,

species B and C are independent (the mosaic sub-plots for A=0 and A=1 have

parallel rectangles). We can now observe that while species B and C are correlated,

and dependent, they are independent conditional on A.

The purpose of graphical models is to find these conditional relationships. These

model precision matrices, which specify conditional independence patterns, rather

than correlation matrices. As in the above example, it is possible to have a dense

matrix of correlations (all correlations between A, B and C are non-zero), but a

sparse precision matrix (the conditional dependence between B and C is 0).

6.2 Visualising multivariate abundance data

We present graphical models as a powerful technique for visualising multivariate

abundance data, which shows information on species interactions. In ecology the

most common methods for visualising multivariate data are ordination techniques.
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(a) (b)

(c)

B

A

C

(d)

Figure 6.2: Dependence between species (a) A and B, (b) A and C, and (c) B and C. No pair of

species is independent.

(d) Correlation graph of species A, B, and C showing correlations (lines) between all pairs of

species, with blue lines for positive correlation and red for negative.
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(a) A and B conditional on C. (b) A and C conditional on B.

(c) B and C conditional on A.

B

A

C

(d) Interaction.

Figure 6.3: Conditional dependence for species (a) A and B conditional on C, (b) A and C

conditional on B and (c) B and C conditional on A. No conditional independence observed in (a)

or (b). Plot (c) has parallel rectangles in the sub-plots of B and C conditional on A being either

one or zero, so B and C are conditionally independent given A.

(d) Interaction graph of species A, B, and C showing independence (no line) between B and C

conditional on A, positive dependence (blue line) between A and B conditional on C, and negative

dependence (red line) between A and C conditional on B.
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Ordination is a generic name given to methods which reduce multivariate data from

many response variables, to just two, in order to display the data on a scatter

plot. In ecology, by far the most common method of ordination is non-metric multi-

dimensional scaling (nMDS; Kruskal, 1964). This is an algorithmic method which

rearranges points in two dimensions, such that the ordering of pairwise distances

between points best matches the ordering of pairwise dissimilarities between obser-

vations (sites). These dissimilarities are commonly calculated using a metric such

as Bray-Curtis (Bray & Curtis, 1957) on (possibly transformed) data.

Recently, model based methods for ordination, using latent variables, have become

increasingly popular for visualising data (Hui et al., 2015a; Ovaskainen et al., 2016).

Model based ordination gives roughly the same interpretation as an nMDS plot, and

serves as a method to reduce many response variables to a two dimensional scatter

plot. Sites similar to one another in terms of species composition or relative abun-

dance tend to be highly correlated, and so cluster together. However, model based

ordination has several advantages over distance based techniques such as nMDS.

They appropriately handle the properties of multivariate abundance data, including

the mean-variance relationship, which can confound trends in location with trends in

dispersion if not accurately modelled (Warton et al., 2012). In addition these models

are based on likelihoods, and inherit the desirable properties of likelihood inference,

including model selection methods and good predictive capacity (Hui et al., 2015a).

In addition the axes of the resulting ordination plots (or latent variables) can be

interpreted as missing covariates in the model. Graphical models are related to la-

tent variable models, as both model covariance between variables (Chapter 4). The

main distinction between them is in the information they illicit about correlations.

Graphical models display information on conditional dependence, and hence species

interactions, which no other visualisation method currently used in ecology is able

to do.

While we believe this provides a powerful new way to visually investigate multivari-

ate abundance data, it does come with some strong assumptions. Graphical models

assume that most species do not interact with one another, and give misleading

results if this is not the case. For multivariate abundance data this amounts to an
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assumption that most species interact directly with only a few others. This does

not imply that most species are not correlated; a sparse precision matrix can induce

a dense correlation matrix. In addition, graphical models, like other penalised like-

lihood methods (Hastie et al., 2015) are only reliable as a measure of conditional

independence when there is a lot of data relative to the number of variables, which is

often not the case for multivariate abundance data. Also, for discrete data, the con-

ditional independence relationships obtained from copula graphical models (Section

5.4.1) are on a latent scale, and do not necessarily imply conditional independence of

the discrete data. They do however imply near conditional independence for ordinal

variables with a large number of categories (Abegaz & Wit, 2014). For these reasons

we present graphical models as primarily an exploratory tool.

The main output of graphical modelling is a ‘graph’ (we will refer to this as an

interaction graph for clarity), which for P species can be represented as a P by P

matrix G of species interactions, with Gj,k = 0 if species j and k do not interact,

and Gj,k = 1 if they do. It is common to plot interaction graphs with vertices being

species, and lines only between species which interact (as in Figure 6.3d). We can

also obtain the sign of the interaction (positive or negative) as well as a relative

measure of the strength of interactions. Modern graphical modelling techniques use

penalised likelihood (Tibshirani, 1996), with a penalty parameter λ which controls

the total number of interactions. We can obtain a sparse graph with very few

interactions, or a dense graph with many interactions, from the same data. Using

the method described in Chapter 5, we can obtain an interaction graph for the

raw data, or we can first account for covariates and obtain a residual graph. This

is conceptually similar to residual ordination (Ovaskainen et al., 2016; Hui, 2016),

sometimes referred to as partial ordinations. Residual interaction graphs do not

contain species interactions that are explained by a shared response to covariates

included in the model.
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6.3 Data analysis

6.3.1 Methods

We implement graphical modelling using Algorithm 1 from Section 5.3 with a cu-

mulative link (Agresti, 2010) marginal model to the New Zealand native forest cover

data (Section 1.1.3). These data contain observations of cover (in ordinal classes)

for 1311 species at 964 sites. We included slope and altitude as covariates. The final

graph is chosen by BIC (Section 7.2.3). For plotting we leave out species which did

not interact with any other species from all graphs. We employ the Fruchterman

Reingold algorithm (Fruchterman & Reingold, 1991) to position nodes in two di-

mensions. This algorithm attempts to position edges in two dimensional space such

that the edge lengths are equal and there are as few crossings as possible.

6.3.2 Results

We have analysed 1311 species at 964 sites. Of these, 142 were found to have in-

teractions with other species. Due to the large number of interacting species, the

interaction graph of all species (Figure 6.4) is not visually very informative, never-

theless we can see some important patterns. Most New Zealand forest species are

positively associated with one another (blue lines), with the two ends of this gra-

dient of positive association being negatively associated (as shown by the u-shaped

group of positive associations dominating). The dominant species at one end of

the spectrum tend to be associated with silver beech forest (Lophozonia menziesii

(NOTMEN), Raukaua simplex (RAUSIM), Myrsine divaricata (MYRDIV), Blech-

num procerum (BLEPRO), Coprosma foetidissima (COPFOE), and Notogrammitis

billardierei (GRABIL)), while the other end of the gradient is dominated by species

associated with the early-mid stages of regeneration of disturbed lowland forest

(Cyathea dealbata (CYADEA), Melicytus ramiflorus (MELRAM), Knightia excelsa

(KNIEXC) and Uncinia uncinata (UNCUNC)).

For more informative plots, we can zoom in on certain subsets of species, to better

examine interactions between individual species. These subset interaction graphs
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Figure 6.4: Interaction graph for all species after controlling for covariates (slope and altitude).

There are a range of positive (blue) and negative (red) interactions between species. Species which

do not interact directly have no lines joining them. The colour of the dot corresponds to species

type; herbs (red), shrubs (green), trees (blue), vines (magenta) and tree ferns (cyan). Species

at one end of the spectrum (NOTMEN, RAUSIM, MYRDIV, BLEPRO, COPFOE, and GRA-

BIL) are associated with silver beech forest, while the other end of the gradient is dominated by

species associated with the early-mid stages of regeneration of disturbed lowland forest (CYADEA,

MELRAM, KNIEXC, and UNCUNC).
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Figure 6.5: Herb interactions; the interaction graph (right) is much more informative than the cor-

relations induced by these interactions (left). The interaction graph clearly shows a group of exotic

(red) herbaceous (TRIREP, DIGPUR, HOLLAN, AGRCAP, LOTPED, ANTODO, HYPRAD))

that are positively associated with one another, and not associated with any native (green) species.

The correlation graph is too dense to interpret.

display interactions between the species after accounting for covariates and inter-

actions with all other species. To contrast interaction graphs with correlation, in

Figure 6.5 we have plotted all the correlations in (a), and the interaction graph in

(b), for all herb species in the data. This is similar to Figure 6.2d and 6.3d, where

the interactions between species A and C, and species A and B, induce correla-

tion between species B and C. The interaction graph (Figure 6.5b) shows a clear

distinction between native herbaceous species (green points), and exotic herbaceous

species (red points). The group of exotic herbaceous species on the right of the figure

(Trillium repens (TRIREP), Digitalis purpurea (DIGPUR), Holcus lanatus (HOL-

LAN), Agrostis capillaris (AGRCAP), Lotus pedunculatus (LOTPED), Anthoxan-

thum odoratum (ANTODO) and Hypochaeris radicata (HYPRAD)) are positively

associated with one another, and not associated with any native species. In ad-

dition Hymenophyllum sanguinolentum (HYMSAN) and Hymenophyllum villosum

(HYMVIL) have a negative interaction even though they can co-occur (Brownsey

& Perrie, 2014). No patterns are distinguishable on the correlation graph.

Lastly we plot interaction graphs before and after controlling for covariates. Looking
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Figure 6.6: Interaction graph of trees before (a) and after (b) controlling for covariates . Negative

interactions between NOTCLI and other species are not present after controlling for covariates

(slope and altitude).

at these graphs can suggest which interactions are explained by the covariates mod-

elled. For example negative interactions between Fuscospora cliffortioides (NOT-

CLI) and other species are present on the graph not controlling for any covariates

(Figure 6.6a) but absent after controlling for altitude and slope (Figure 6.6b).

6.4 Discussion

In general, interaction graphs are quite informative, and much more so than the

associated graph of correlations (Figure 6.5). In Figure 6.5b we observe a clear

distinction between native herbaceous species (green points), and exotic herbaceous

species (red points). This pattern is consistent with the fact that these exotic species

are not shade tolerant, and thus differ from many of the native herbaceous species

(a group which includes a range of understorey ferns) in not being able to survive in

forest understoreys. The associated plot of correlations (Figure 6.5a) is too complex

to distinguish any patterns.

As this system is well studied, we would expect the interaction graphs to be consis-

tent with known interactions between species. For example, the negative association

between beech forest and broadleaf forest (Figure 6.4) was consistent with our initial
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expectation that there would be a separation between the two main forest types of

New Zealand. This prediction was based on the observation that podocarp-broadleaf

forest and beech forests tend not to co-occur, but are not obviously separated by

geography or climate. In addition, the fact that most interactions are positive is

consistent with Figure 1.5, which indicates most correlations are positive for these

species.

In Figure 6.6 we observed negative interactions between Fuscospora cliffortioides

(NOTCLI) and other species, which are present before controlling for covariates,

but absent after controlling for covariates (including altitude). This is understood

to have happened because the lack of co-occurrence is explained by environment.

Fuscospora cliffortioides occurs in montane and subalpine forest that tends to oc-

cur at altitudes between 400 m - 1380 m above see level (Wiser et al., 2011),

whereas Prumnopitys ferruginea (PRUFER), Weinmannia racemosa (WEIRAC)

and Raukaua simplex (RAUSIM) occur in lower altitude forest types, that range

from sea-level up to 700 m in the south island and up to 1100 m in the north island

(Wiser et al., 2011).

Some of the interactions we found were surprising, and can be used to generate

hypotheses for further investigation. In Figure 6.4, we observed most beech forest

species interacting positively, and broadleaf-podocarp interacting positively, with

negative interactions separating the two forest types. However, this separation was

not supported for the three species in Fuscospora, the other genus of southern beech

present in New Zealand (Fuscospora solandri (NOTSOL), F. cliffortioides (NOT-

CLI), F. fusca (NOTFUS). The three Fuscospora species fell in different parts of

the graph rather than clustering together or with Lophozonia menziesii, and were

not associated with many other species (either negatively or positively).

The negative interaction between Hymenophyllum sanguinolentum (HYMSAN) and

Hymenophyllum villosum (HYMVIL) (Figure 6.5) is also surprising. These two

species can co-occur (Brownsey & Perrie, 2014) but are often confused for each

other. This negative interaction may therefore be an artefact of misclassification

rather than a true negative interaction. Field ecologists may identify one or the

other of these species, and assume everything similar in a plot is the same herb.
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The result would be that the species would rarely be recorded to co-occur.

For the New Zealand native forest data, graphical models have been able to confirm

known patterns of interaction, as well as generate hypotheses based on surprising

interactions. Overall, graphical models have allowed the visualisation of a large and

complex dataset, to better understand the ecology of species interaction. Hence

this technique of fitting graphical models to discrete data via Gaussian copulas is a

potentially valuable exploratory tool for multivariate analysis in ecology.
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Chapter 7

Multivariate inference for discrete

data with Gaussian copulas

In this chapter, we propose a likelihood based method of marginal inference for

multivariate abundance data, and other correlated discrete data. Inferring the re-

lationship between environmental and experimental variables and the community

of species is at least partly the aim of all our motivating datasets (Section 1.1),

and most multivariate abundance data. As discussed in Chapter 2, conditional in-

ference for multivariate abundance data is implemented with hierarchical models,

generally estimated with Bayesian methods (Section 2.3: Walker & Jackson, 2011;

Ovaskainen et al., 2016; Warton et al., 2015a, and others). Common approaches to

marginal inference for multivariate discrete data are generalised estimating equa-

tions (GEEs; Liang & Zeger, 1986; Zeger & Liang, 1986) and copula models (Sklar,

1959), although inference for multivariate abundance data in particular is almost

always implemented with GEEs (Section 2.2).

To carry out marginal inference with GEEs, Wald and score tests only require a co-

variance matrix for model parameters, which can be estimated even when there are

many species relative to sample size (Warton, 2011). They are therefore the most

common way to conduct marginal inference in this context. In addition, score tests

only require the calculation of the null model, giving them a substantial computa-

tional advantage over both Wald and likelihood ratio tests. These tests however are
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known to suffer from poor power for data with properties very commonly seen in

multivariate abundance data. The Wald test statistic is known to lose power when

conditional means are near a boundary, such as when species are rare, and hence

overall species means are low. The score test statistic (and related information cri-

teria), on the other hand, can have poor power when the distribution of covariates is

skewed, for example when sampling is unbalanced, another common characteristic

of these data. We demonstrate that a likelihood ratio test and likelihood based

information criteria do not have these disadvantages, and are better suited to these

data.

In order to conduct a likelihood ratio test, we must first define and estimate a

multivariate likelihood. GEEs only define a likelihood when variables are assumed

to be independent, which has a detrimental impact on power (Section 7.1.1). In

Chapter 5, we describe a method for covariance modelling of discrete correlated

data using copulas. In this chapter we will demonstrate how discrete copulas, with

covariance models, can be used to carry out inference about community-environment

associations for correlated discrete data. We will use a Gaussian copula likelihood

for multivariate abundance data to conduct likelihood ratio tests and model selection

with standard information criteria. We demonstrate desirable power properties of

these statistics in the context of analysing multivariate abundance data.

7.1 Hypothesis testing

7.1.1 Modelling covariance vs. assuming independence

It is straightforward to construct a likelihood ratio test for multivariate data by

assuming independence between variables. Warton (2011), for example, investigates

the performance of this test, relative to a test statistic that incorporates covariance

between variables. When the covariate effect is along the dominant eigenvector,

the direction in which the data are most variable, then incorporating covariance

actually leads to poorer power relative to assuming independence. When the effect

is orthogonal to the dominant eigenvector, tests which estimate dependence tend to

have better power.
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Figure 7.1a demonstrates this effect. For a bivariate Gaussian random variable, we

have plotted likelihood ratio statistics derived from models assuming independence

(left) and models estimating the correlation (right). The likelihood ratio statistic

at the maximum likelihood estimator (MLE; round dot) is equal to one, by defini-

tion. As we move away from the MLE, the likelihood ratio statistic decreases, and

consequently the power of tests increases, and indicated by the intensity of colour.

When assuming independence, the power increases uniformly in all directions away

from the MLE. By contrast, when correlations are estimated, the power increases

more quickly orthogonal to the main eigenvector, to reflect the direction in which

data are least variable. As a consequence, the relative power of these two statistics

depends critically on the direction of the covariate effect.

Let us assume the covariate is a treatment, where the effect of treatment can be

in the same direction as the covariance of the response (square) or orthogonal to it

(triangle). For example, with two positively correlated species, a treatment effect

in the direction of the covariance implies treatment has the same effect for both

species, either increasing or decreasing both abundances, while a treatment effect

orthogonal to the covariance implies that the treatment increases abundance for one

species, but decreases abundance for the other. When testing for a treatment effect

along the main eigenvector (square), then a test assuming independence is more

powerful (square is in darker region on left then right). On the other hand, when

the covariate effect is orthogonal to the main eigenvector (triangle), a likelihood

ratio test which assumes covariance has better power (triangle is in darker region in

on the right than left)

So interestingly, assuming independence when variables are correlated can lead to

superior power in particular circumstances. Of course, we generally don’t know

the direction of the effect in practice, and so would prefer a test which is more

powerful under most circumstances, and this is illustrated in Figure 7.1b. In these

plots, red indicates regions where estimating correlation is more powerful, while in

blue regions it is better to assume independence. For uncorrelated data, both tests

are asymptotically equivalent, but as correlation increases (ρ = 0.5 on the left and

ρ = 0.9 on the right), we can see red regions, where the correlation is estimated,
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are dominant, implying which a test statistic which estimates correlation tends to

be more powerful in general.

7.1.2 Power comparison of Wald, score, and likelihood ratio

statistics

We start by defining the Wald, score and likelihood ratio tests statistics. The Wald

test statistic is defined as

W = (θ̂ − θ0)T Σ̂(θ)−1(θ̂ − θ0),

where Σ̂(θ) is an estimate of the covariance of θ, and θ0 is the value of θ under the

null hypothesis. We use the sandwich estimator given in Equation (2.4). The score

test statistic is given by

S = u(θ)T Σ̂(θ)−1u(θ),

where u(θ0) = ∂ logL(θ)
∂θ
|θ0 is the score. The likelihood ratio statistic is

LR = 2 logL(θ̂)− 2 logL(θ0).

All three are asymptotically χ2
d distributed when the null model is correct, where d

is the difference in the number of parameters between the two models.

As discussed in Section 2.2, GEEs can be used for marginal inference on correlated

discrete data. Specifically, hypothesis tests that only require an estimate of covari-

ance, such as the Wald and score tests, can be carried out in the GEE framework.

Wald, score and likelihood ratio statistic are asymptomatically equivalent (Rao,

2009), however finite sample properties differ depending on the data and model.

Several power studies have shown no clear superior test asymptotically and by sim-

ulation (Sutradhar & Bartlett, 1993; Lemonte & Ferrari, 2012; Dobek et al., 2015).

Importantly though, is that the Wald and score statistics have some undesirable

properties. The Wald statistic does not increase monotonically when the observed

value of the test statistic is on the boundary of the parameter space (Væth, 1985)

and as effect size increases (Hauck Jr & Donner, 1977). Both Wald and score tests

also present extreme behaviour for unbalanced experimental designs (i.e., either
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(a)

(b)

Figure 7.1:

a) Likelihood ratio statistic for bivariate Gaussian assuming (left) independence and (right) cor-

related likelihood. As we move away from the MLE (round dot) the power of the test statistic

increases, and indicated by the intensity of colour. When testing for a covariate effect along the

main eigenvector (square), the test assuming independence is more powerful (square is in darker

region on the left than right). On the other hand, when the covariate effect is orthogonal to the

main eigenvector (triangle) the likelihood which estimates covariance has better power (triangle is

in darker region on right than left).

b) Relative power when we assume independence vs. estimate correlation when correlation is i) 0.5

and ii) 0.9. Red indicates estimating correlation leads to better power. As correlation increases

(left to right), the region where estimating correlation leads to better power dominates.
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very low or very high power, Warton, 2008), as will be illustrated in the example

below. Multivariate abundance data often have these properties, including unbal-

anced sampling designs, and more generally skewed predictors. Very small means

are also common due to most species being rarely observed. This tends to place test

statistics on or near the boundary of the parameter space. In these circumstances

likelihood ratio tests can be expected to behave more consistently and have better

power in general.

Consider a negative binomial regression with one binary predictor e.g. a treatment

factor with two levels.

Y ∼ NegBin(λi, φ)

log(λi) = XT
i β

XT =

1 1 1 1 1 . . . 1

0 0 . . . 0 1 . . . 1

 ,
with N observations in total, n0 in the control and n1 = N − n0 in the treatment

group. Under this simple model, it is straightforward to derive the Wald, score

and likelihood ratio statistics to test for an effect of treatment, and consider their

behaviour. The statistics are given by

W (β1) =
(log ȳ1 − log ȳ0)

2n0n1ȳ0ȳ1
ȳ0n0 + ȳ1n1 + φȳ0ȳ1N

S(β1) =
(ȳ1 − ȳ0)2n0n1

Nȳ(1 + φȳ)

LR(β1) = 2
2∑
g=1

ngȳg log

(
ȳg
ȳ

)
− 2

2∑
g=1

ng(ȳg + φ−1) log

(
1 + φȳg
1 + φȳ

)
,

where ȳg is the observed mean of group g, and φ is the overdispersion parameter.

In Figure 7.2a we plot the observed test statistic against the proportion of obser-

vations in the less variable group, with observed means for the null and alternate

group set to ȳ0 = 0.1 and ȳ1 = 1 respectively, overdispersion held at φ = 2 and a

sample size of N = 10. If the variance of the two groups was not relevant to power,

then we would expect this graph to be symmetric around 0.5. However, when most

of the observations are in the less variable group (here the null group, as the vari-

ance increases with the mean), then the variance component is underestimated and
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hence test statistics are inflated. This effect is far more pronounced for the score

test statistic than the Wald and likelihood ratio. This kind of unbalanced design is

often observed in ecological datasets, for example the bush regeneration data (Sec-

tion 1.1.1), which has two control sites and eight treatment sites. This effect is more

generally observed when the predictors are skewed.

In Figure 7.2b, we plot the three statistics against the null group mean ȳ0, with the

alternate group mean held at ȳ1 = 0.1, overdispersion φ = 2, and a sample size of

N = 50, with n0 = n1 = 25. The test statistics will be zero when ȳ0 = ȳ1 = 0.1 and

should, for a good test, increase monotonically as ȳ0 moves away from ȳ1 in either

direction. That is, as the difference between the groups increases, so does the power

of the test. In the case of the score and likelihood ratio statistic, this is indeed the

case. However, the Wald statistic approaches zero as ȳ0 approaches the boundary

of zero. Again, such low means are prevalent in multivariate abundance data. For

example, in the bush regeneration data (Section 1.1.1), the order Blattodea only

appears in one of the eight regenerated sites.

7.1.3 Simulation results

In Chapter 5 we specified a copula likelihood, which can be used to conduct likeli-

hood ratio tests for multivariate discrete data, even when sample size is not large

relative to the number of variables. In this section we compare this likelihood ratio

test with the Wald and score test conducted with a GEE (Section 2.2), on data

with properties (mean, overdispersion and correlation) derived from the bush regen-

eration data (Section 1.1.1). The data are simulated from a Gaussian copula with

negative binomial marginal distributions.

To assess the effect of unbalanced design, we simulated from a bivariate model,

with varying sample sizes in null and treatment groups. For all simulations we have

a single covariate, a treatment effect, which is either in the direction of the main

eigenvector of the covariance matrix between species or orthogonal to it. For each

simulated dataset, we conduct a test for treatment effect with GEEs (using both

Wald and score statistics, implemented in the mvabund package in R) and using

Gaussian copulas with a likelihood ratio test. We estimate the likelihood for the
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Figure 7.2:

(a) Observed test statistic plotted against the proportion of observations in the less variable group

for negative binomial with a treatment effect and ȳ0 = 0.1, ȳ1 = 1, φ = 2 and N = 10. If

the variance of the two groups was not relevant to power, we would expect to see this graph be

symmetric around 0.5. When most of the observations are in the less variable group, the variance

is underestimated and hence test statistics are inflated. This effect is far more pronounced for the

score statistic than the Wald and likelihood ratio statistics.

(b): Test statistics plotted against the null group mean ȳ0, with the alternate group mean held at

ȳ1 = 0.1, φ = 2, n0 = n1 = 25. The test statistic will be 0 when ȳ0 = ȳ1 = 0.1 and should, ideally,

increase monotonically as ȳ0 moves away from ȳ1 in either direction. In the case of the score and

likelihood ratio statistic, this is the case, however the Wald statistic approaches 0 as ȳ0 approaches

the boundary of 0.
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Gaussian copula model (Equation 5.1) with Algorithm 1, with negative binomial

marginal distributions. We use the mvabund package to estimate the marginals,

with the overdispersion parameter estimated by maximum likelihood (for further

simulation detail see Appendix B.2.1). Note that all three tests estimate marginal

models in the same way, the only difference is how covariance is estimated and used

to conduct hypothesis testing for parameters.

The results of these simulations are displayed in Figure 7.3. The top two plots have

more observations in the treatment (more variable) group, and we can see the score

statistic has very low power in this situation, followed by the Wald test, with the

likelihood ratio test faring the best. In the bottom two plots, more observations are

in the control (less variable) group, and the score test outperforms the others. If

the treatment effect is orthogonal to the main eigenvector of the covariance matrix

(Figure 7.3, left), tests that estimate correlation (solid lines) outperform tests that

assume independence (dotted lines), while the opposite is true when the treatment

effect is along the main eigenvector (Figure 7.3, right).

These results are consistent with our expectations, as discussed in Section 7.1.2. The

score and Wald test perform worse when more observations are in the less variable

group, while the likelihood ratio test performs more consistently across unbalanced

designs. In addition, estimating covariance improves power of all tests, except when

the treatment effect is in the direction of the dominant eigenvector.

7.2 Model selection

7.2.1 Model selection for marginal models

Model selection is widely used in ecology (Burnham et al., 2011; Grueber et al.,

2011). In the case of multivariate abundance data, many environmental variables

are routinely collected, and interest is in which of these are related to the community

of species or which would be useful in predicting communities at unsampled sites.

Model selection for marginal models for multivariate abundance data can be carried

out using the GEE framework. However, this is complicated by the lack of an explicit
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Figure 7.3: Results of power simulation for hypothesis tests when varying the direction of the

treatment effect and the number of observations in less variable group. When the treatment effect

is along the main eigenvector of the covariance matrix (right), tests assuming independence (- - -)

are more powerful. Conversely, the opposite is true then the effect is orthogonal (left). When more

of the observations are in the more variable group (top), the score test has very little power, while

when more of the observations are in the less variable group (bottom), the score test outperforms

the others.



7.2. MODEL SELECTION 77

likelihood unless independence is assumed. Model selection using likelihood based

information criteria like Akaike information criterion (AIC; Akaike, 1974) and the

Bayesian information criterion (BIC; Schwarz et al., 1978) can only be conducted

under the assumption of independence, that is, adding univariate information crite-

ria across species (AIC indep; Lyons et al., 2016). Another option is to implement

criteria which use pseudo likelihoods (Pan, 2001a; Cantoni et al., 2005; Wang &

Qu, 2009; Wang et al., 2012a; Cho & Qu, 2013) that assume independence (though

the correlation matrix appears in the penalty term). Similarly to hypothesis testing

(Section 7.1.1), we would expect criteria that assume independence to perform well

when the covariate effects align with the direction of the main eigenvectors of the

covariance matrix, and poorly when orthogonal to them.

Another option is to use non likelihood based model selection criteria in the GEE

framework. The score information criterion (SIC; Stoklosa et al., 2014) does not

assume independence in the likelihood estimate. It is based on the score statistic,

and we expect it to have similar properties to the score test (see Section 7.1.2). We

will explore how these criteria compare to AIC based on the copula likelihood (AIC

copula).

7.2.2 Simulation study

We will explore the behaviour of the SIC, QIC (Pan, 2001a) and AIC with a Gaussian

copula model for multivariate abundance data. We begin by defining these criteria.

The QIC is defined as

QIC = −2
N∑
i=1

P∑
j=1

log fj(yij, θj) + 2tr(ΩΣ̂(θ))

Here Σ̂(θ) is a sandwich estimator of cov(θ̂) given in Equation (2.4), and Ω is the

naive estimator of covariance, given in Equation (2.3). Notice the covariance of

parameters only enters into the penalty term, and not the likelihood. The AIC is

defined as

AIC = −2 logL(θ) + 2q,
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where q is the number of variables in the model. The likelihood for the Gaussian

copula model is defined in Equation (5.1). The SIC is defined as

SIC = −u(θ0)
TΣ−1(θ)u(θ0) + 2q.

Unlike the other criteria, the SIC is not defined for one model, but between two

models, a null model with θ = θ0 and an alternate model where some components

of θ which are zero under the null model are allowed to vary.

We simulated data to mimic the properties of the spider dataset (Section 1.1.2)

with means, overdispersion and the number of species and sites derived from the

data. Response was a log linear function of the predictor. To test for sensitivity to

the direction of covariate effects, we simulated environmental effects along all the

eigenvectors of the covariance matrix, and measured the proportion of simulations

for which the model selection criteria chose the correct model. For all marginal

models (for both GEEs and copula models) we fit negative binomial distributions

with the mvabund package in R. Wald and score tests were also conducted using the

mvabund package, while copula models were estimated with Algorithm 1. For further

simulation details see Appendix B.2.2. Results for the AIC assuming independence

of species (AIC indep), QIC, AIC using the copula likelihood (AIC copula) and

SIC are shown in Figure 7.4. There are P = 12 eigenvectors, with eigenvalues of a

range of magnitudes. As expected (Section 7.1.1) the AIC assuming independence,

and the QIC, which assumes independence in the quasi likelihood term, has similar

power regardless of the direction of the covariate effect. On the other hand, criteria

that estimate dependence (SIC and AIC copula) are more powerful when the effect

of treatment is along a less dominant eigenvector (those with smaller eigenvalues).

To investigate the differences between the copula AIC and the SIC for unbalanced

and skewed predictors, we simulated from a bivariate negative binomial model with

a predictor that acted to increase the abundance of both simulated species. In this

scenario we expect the SIC will be more powerful for positively skewed predictors,

or for unbalanced binary predictors when most observations are in the less vari-

able group. In these circumstances the SIC underestimates the variance component

(Section 7.1.2).
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Figure 7.4: Model selection success (proportion of simulations that chose the correct model)

plotted against the direction of covariate effect. Model selection procedures which assume inde-

pendence (QIC and sum of AIC) do not react to the direction of the covariate effect, while the

SIC and copula are more powerful when the covariate effect is along the eigenvectors with smaller

eigenvalues (on the left), as this is the direction where data is least variable.
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We again simulate data based on the properties of the hunting spider data, how-

ever the data we simulate are bivariate, so the first two species only are used. We

generate either a binary predictor, with a set proportion (between 0 and 1) of ob-

servations in the less variable (null) group, or a skewed predictor (for a range of

skewness values) with zero mean and unit variance. We then generate data from a

negative binomial GLM with the relevant predictor. We carry out model selection

using each criterion, with candidate models having either the correct predictor or

no predictor. For more simulation details see Appendix B.2.3. Figure 7.5 shows

the proportion of simulations which chose the correct model plotted against the

proportion of observation in the less variable group (left) and the skewness of the

predictor (right). The skewness of the predictor (left) has no effect on the likelihood

based criteria (AIC copula), while the SIC is more powerful when the predictor is

positively skewed (right). For the unbalanced sampling design (left), the copula

AIC is more powerful for a balanced design, while the SIC is more powerful when

most of the observations are in the less variable group. The main advantage of the

SIC is computational, as it requires fitting only the least complex model at each

stage of the forward selection path. However, unlike the other criteria discussed, it

cannot carry out all subsets selection, because the criterion is defined in terms of

the sequence in which models are added (Stoklosa et al., 2014).

7.2.3 Model selection for covariance models

We have introduced inference for multivariate abundance data with Gaussian copu-

las and covariance modelling. Covariance models often sit in a larger class of models,

and model selection is typically necessary on this aspect of the model as well. For

example, in factor analysis, model selection is needed to chose the number of factors,

while for graphical models the sparsity of the graph is chosen using model selection.

Using a Gaussian copula likelihood we can select for both marginal and covariance

parameter models using traditional information criteria like AIC and BIC. This al-

lows us to better investigate the patterns in covariance between species, as detailed

in Chapter 4.



7.2. MODEL SELECTION 81

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion of observations in less variable group

M
od

el
 s

el
ec

tio
n 

su
cc

es
s

SIC
AIC copula

(a)

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Skewness

M
od

el
 s

el
ec

tio
n 

su
cc

es
s

SIC
AIC copula

(b)

Figure 7.5: Model selection success (proportion of simulations which chose the correct model)

plotted against the the proportion of observations in the less variable group for a binary covariate

(left) and skewness of a continuous covariate (right). Likelihood based model selection procedures,

such as the AIC using a Gaussian copula model (—), tend to do best for balanced samples (when

the proportion in the less variable group is close to 0.5), and are not impacted by skewness (right).

When most of the observations are in the less variable group (left), and when predictors are

positively skewed (right), the SIC (- - -) is more powerful.
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7.3 Data analysis

We conduct Wald, score and likelihood ratio tests on the bush regeneration dataset

(Section 1.1.1). The resulting p-values (Table 7.1) for the Wald and likelihood

ratio tests indicate evidence of an effect of treatment, while the score test does

not. We expect this pattern when there is an unbalanced design with most of the

observations in the more variable group (Figure 7.2b). As the regeneration data are

counts modelled with a negative binomial distribution, the more variable group is

the group with the higher mean, which for most orders is the regeneration group

(Figure 1.3), with the notable exception of Blattodea.

Test p-value

GEE Wald 0.028

GEE score 0.307

Copula LR 0.026

Table 7.1: Results of hypothesis tests using the Wald and score test with GEEs and the Gaussian

copula likelihood ratio. All tests are conducted by re-sampling due to small sample sizes.

Next we conduct model selection on the spider dataset (Section 1.1.2), adding one

variable at a time to an intercept model. The change in the information criteria

which estimate correlation (AIC copula and SIC) is listed in Table 7.2. For the two

most skewed variables, cover of bare sand and cover of herb layer, we observe very

similar change in AIC relative to an intercept model, but quite different changes in

SIC values. This is consistent with Figure 7.5, which shows that SIC is sensitive to

the skewness of predictors, while AIC is not.

7.4 Discussion

We have shown that Gaussian copula models allow us to conduct likelihood based

inference, both for hypothesis testing and model selection, on discrete multivariate

abundance data. Currently used inference based on approximations to the likeli-

hood, like Wald and score tests, and related information criteria, have undesirable

power properties for such data, and the Gaussian copula likelihood often outper-
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Variable ∆ AIC SIC Skewness

dry soil mass -76.1059 -34.5244 -0.67706

cover of bare sand -41.5617 -8.54002 0.792439

cover of fallen leaves -46.6372 9.964125 0.631565

cover of moss -8.44453 -26.7662 0.206096

cover of herb layer -44.6164 -36.4822 -0.75924

reflection -42.5855 3.321501 -0.3075

Table 7.2: The change in AIC and SIC when adding each variable individually to an intercept

model, and skewness of each variable. The two variables with the largest difference in skewness

(bare sand and herb layer) have similar AIC values, but very different changes in SIC values. This

is consistent with the SIC being sensitive to skewness.

forms these methods. In addition, we can conduct model selection on the covariance

models to better understand the patterns in covariance between variables (species),

which is not possible using GEE based approaches. Both hypothesis testing and

model selection require only a small addition to existing GEE models to estimate

covariance matrices, and can be done with minimal additional computational over-

head.

Variable selection methods not discussed here can also be implemented with a Gaus-

sian copula likelihood. For very high dimensional problems, sure independence

screening procedures (Fan & Lv, 2008) use measures of dependence between the

response and each covariate separately to chose a model. For generalised linear

models, the likelihood for a model fitting each covariate separately can be used

to conduct such screening procedures (Fan & Song, 2010). A natural multivariate

extension of this would be a copula likelihood, as described in this chapter.

Another well known variable selection method is the lasso (Tibshirani, 1996; Hastie

et al., 2015). This applies a L1 penalty to the coefficients in a regression, which

encourages some of them to shrink to zero, thereby excluding them from the model.

This has been applied to modelling multiple spices in the mixture model framework

(Hui et al., 2015b), as well as for presence only data (point event data of species

locations, Phillips et al., 2006; Renner & Warton, 2013). In this thesis we use
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penalised likelihood to estimate sparse graphical Gaussian copula models (Section

5.4.1). A penalty could equally be applied to coefficients in the marginal models, to

carry out model selection of covariates.
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Chapter 8

Discussion

Copulas are a powerful, flexible method for marginal modelling of multivariate data.

While many fields have made extensive use of copulas (e.g. finance and engineering;

Cherubini et al., 2004; Genest & Favre, 2007), they remain largely unexplored in

ecology (with some exceptions; Eskelson et al., 2011; de Valpine et al., 2014). This

may be due in part to fast and accurate estimation methods for copulas with discrete

margins only recently becoming available (Genz & Bretz, 2002; Masarotto & Varin,

2012). Given the need for flexible multivariate modelling in ecology, there is a lot

of scope for copula models to be further implemented.

In this thesis we have demonstrated how copulas can be used to model sparse data

and we have developed tools to study correlations and interactions between species,

by adapting parsimonious models for covariance to discrete data (Chapter 5). Our

focus in that chapter was on developing a flexible method, where existing covariance

modelling algorithms could be used off the shelf with discrete data. The algorithm

we present produces consistent estimates (Section A.2), however it does not jointly

maximise all model parameters. An algorithm which is both flexible and which

jointly maximises model parameters could be further explored. We expect such an

algorithm to be more computationally intensive, though feasible. It would improve

efficiency of estimates, but we expect such improvements may be small (Joe, 2005).

We presented, in Chapter 6, a novel way to visualise multivariate abundance data,

which provides information about species interactions. The conditional dependence
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relationships displayed by our method cannot be visualised with the dominant visu-

alisation methods like nMDS, which use algorithmic approaches. This is an example

where models can be used to answer more complex questions.

We have discussed the limitations of this method in the context of sparse data, which

limit it to being an exploratory tool for multivariate abundance data. In cases when

sample sizes greatly exceed the dimension, these models can be expected to find

conditional dependence relationships with some confidence (Liu et al., 2012; Strobl

et al., 2012). In future we would like to explore how measures of uncertainty in these

relationships can be calculated, and how these are affected by dimension, sample

size, and discreteness of the data.

Chapter 7 introduced inference methods for multivariate abundance data using

Gaussian copulas with discrete margins, and demonstrated superior power prop-

erties relative to alternative methods, by using likelihood based hypothesis testing

and model selection, and estimating correlations. While model selection can be car-

ried out efficiently, due to small sample sizes, the likelihood ratio test we present,

like the alternative methods, relies on residual re-sampling for inference. This makes

the method (and others) quite computationally intensive. It would be of interest to

explore alternative and less computationally intensive strategies.

8.1 Further extensions

Ecologists are very interested in how and why species and sites are related. Possible

reasons for correlations already discussed include shared response to environmental

covariates (both measured and unmeasured), temporal and spatial patterns, species

traits, phylogeny, and interactions with common species (Warton et al., 2015a). We

have not explored these all in detail in this thesis, however copula models could be

adapted to model many of these mechanisms.

Spatial factor analysis has been proposed as a way to study multivariate abundance

data with spatial latent variables (Wang & Wall, 2003; Thorson et al., 2015, 2016).

These can model unobserved environmental covariates that are spatially smooth.

Different latent factors can model spatial correlation at several scales (Ovaskainen
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et al., 2016). An advantage of these, relative to standard factor analytic models, is

that they improve prediction at unobserved locations, in a similar way to kriging

(Stein, 2012). The method proposed in Chapter 5 can be straightforwardly extended

to model spatial factors and make such prediction simple and fast.

For temporal data, vector autoregressive state space models can model species cor-

relations in time. For sparse data they can be implemented as a dynamic factor

analysis (Zuur et al., 2003), which reduces the number of parameters to be esti-

mated in a similar way to spatial factor analysis, with factors that are smooth in

time. Some current implementations assume Gaussian errors (e.g, Holmes et al.,

2012), though hierarchical models that allow exponential response distributions are

also available (Helske, 2014). Multivariate time series models can be built in the

copula framework (Heinen & Rengifo, 2007; Brechmann & Czado, 2015), and these

could be extended to model sparse data with a dynamic factor analysis structure,

to better model sparse discrete multivariate data.

For heterogeneous data, mixtures of factor analysers (Zoubin et al., 1996) can si-

multaneously perform clustering and ordination of multivariate data. These models

have been extended to non Gaussian responses with hierarchical Bayesian models

(Hui, 2017). Mixtures of factor analysers are covariance models, and so the method

in Chapter 5 can be extended to perform ordination and clustering with a marginal,

likelihood based model.

Many datasets in ecology are collected in a structured way, for example several

samples taken within sites, to estimate within site variation. This process induces

correlation in the data, with samples within one site being more similar than sam-

ples from different sites. Most often this is modelled (for univariate responses) with

random effects in hierarchical mixed models (McCulloch & Neuhaus, 2006). Mul-

tivariate models with parsimonious covariance structure and random effects have

been proposed and applied to ecological data (Ovaskainen & Soininen, 2011), but

methods to apply these to a wide range of data types (counts, biomass and ordi-

nal) are not widely available. In contrast, copula models for discrete data could

be straightforwardly extended to incorporate these sources of correlation, while still

modelling between species correlations in a parsimonious way with, for example, la-
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tent factors. For copula models, changing marginal distributions is trivial. Inference

methods explored in Chapter 7 can be extended to carry out hypothesis testing and

model selection in this context.

Another possible source of correlation we have not discussed in detail are phyloge-

netic similarities (Webb et al., 2002). Species that have similar phylogeny may be

expected to inhabit more similar environments than those that are phenologically

different. It is of interest to account for such correlations in modelling, as it can

reduce the complexity of the species covariance matrix. This could be carried out

by using phylogenetic distance as a basis for correlation functions, similar to the

way spatial correlation is often modelled. Another option is to carry out covariance

regression (Hoff & Niu, 2012). These models could provide additional information

about the extent to which phylogeny induces correlations. Phylogeny has a com-

plex relationship with species traits (Kraft et al., 2007; Best et al., 2013), and the

interplay of these could be studied with copula models.

The focus of this thesis has been copula modelling of multivariate abundance data,

which has, among other things, allowed us to apply covariance models not generally

used in ecology to investigate species interactions. In particular in Chapter 6 we

introduce a method to visualise species interactions using graphical models in a

Gaussian copula framework. Graphical models could also be incorporated into a

hierarchical framework more commonly used in ecology. Model of this type have

been used in other areas, including RNA and microbial sequencing (Gallopin et al.,

2013; Dangl & Jojic, 2015). Using marginal Poisson distributions, such models would

need to be extended to handle the overdispersion generally found in multivariate

abundance data.

This thesis has made significant advances to inferential tools for multivariate data

in ecology. Copula modelling, combined with covariance models, can yield insights

into patterns in covariance between species, and allow for parsimonious likelihood

based inference. We provide, in this thesis, a basis for greater application of copula

models in community ecology, as there is vast scope for this approach to yield further

insights.
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Appendix A

APPENDIX: PROOFS

A.1 Proof of Lemma 1

We aim to show the ith component of discrete Gaussian copula likelihood can be

approximated by importance sampling with K sets of Dunn-Smyth residuals, that

is

Li(yi;Rθ) =

∫
Ai

|Rθ|−1/2 exp

(
−1

2
zTi (R−1θ − I)zi

)
dui

≈
P∏
j=1

fij(yij)
K∑
k=1

c(zki ;Rθ),

where zki is the kth sample of Dunn-Smyth residuals for observation i, c(·;Rθ) =

NP (zki ;Rθ)/
∏P

j=1 φ(zkij) is the Gaussian copula density with correlation matrix Rθ.

The region of integration is given byAi = ∩Pj=1

[
Fij(y

−
ij |βj, ψj), Fij(yij|βj, ψj)

]
, Fij(y

−
ij |·) =

lim
x→y−ij

Fij(x|·), NP (·;R) is a multivariate Gaussian density with zero mean, unit vari-

ance and correlation matrix R, and φ(·) is a univariate standard Gaussian density.

Here fij(yij) = P (Yij = yij) is the probability mass function if yij are discrete, and

the probability density function fij(yij) =
∂Fij(yij)

∂yij
when yij are continuous. We

assume the fij(yij) are well defined, i.e identifiable, continuous and at least three

times differentiable as function of θ.

We begin by noting the distribution of the randomised Dunn-Smyth residuals given
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the data and marginal distributions is

g(z) =

∏P
j=1 φ(zkij)∏P
j=1 fij(yij)

1Bi
, (A.1)

where Bi = ∩Pj=1

[
Φ−1(Fij(y

−
ij |βj, ψj)),Φ−1(Fij(yij|βj, ψj))

]
. We then approximate

the ith likelihood component by first changing the variable of integration to zi, then

multiplying and dividing by the importance sampling distribution in A.1, and finally

approximating this distribution with randomised Dunn-Smyth residuals.

Li(yi;Rθ) =

∫
Ai

|Rθ|−1/2 exp

(
−1

2
zTi (R−1θ − I)zi

)
dui

=

∫
Bi

NP (zi;Rθ)dzi

=

∫
Bi

NP (zi;Rθ)

∏P
j=1 fij(yij)∏P
j=1 φ(zkij)

g(zi)dzi

=
P∏
j=1

fij(yij)

∫
Bi

NP (zi;Rθ)∏P
j=1 φ(zkij)

g(zi)dzi

≈
P∏
j=1

fij(yij)
K∑
k=1

NP (zki ;Rθ)∏P
j=1 φ(zkij)

=
P∏
j=1

fij(yij)
K∑
k=1

c(zk;Rθ)
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A.2 Consistency

We aim to prove the consistency of estimates obtained by estimating a Gaussian

copula with discrete margins using Algorithm 1. We follow the standard proof of

consistency for maximum likelihood found in (for example) Ferguson (1996). The

standard proof proceeds by defining τ(θ), which is maximised at the maximum

likelihood estimate (MLE) θ̂,

τ(θ) = log
Ln(θ)

Ln(θ0)
=

1

n

n∑
i=1

log
f(yi; θ)

f(yi; θ0)
,

where yi is a P -vector of data at observation i = 1, . . . , N . This quantity then

converges to it’s expectation under θ0 by the strong law of large numbers,

1

n

n∑
i=1

log
f(yi; θ)

f(yi; θ0)

P−→ Eθ0 log
f(y; θ)

f(y, θ0)
.

This expectation is equal to the negative of the Kullback - Leibler divergence,

Eθ0 log
f(y; θ)

f(y, θ0)
= −K(θ0, θ) < 0

unless f(y, θ) = f(y; θ0). Therefore the MLE maximises τ(θ) (assuming identifia-

bility), which converges to a function which is maximised by θ0, from which θ̂
p−→ θ0

follows. A difficulty in our case is that we are not using MLEs for estimation – Al-

gorithm 1 is a two-step estimation procedure, where we estimate β from a marginal

likelihood and then maximise the conditional likelihood given these parameter es-

timates. We wish to show that treating β as ‘nuisance parameters’, we can get

consistent estimates of parameters of R in the covariance model.

Conditions

We assume mild regularity conditions, where conditions 1-6 are stated in Casella &

Berger (2002) Chapter 10.

1. The observation yi ∼ f(y, β, R) for i = 1, . . . , N are independent.

2. β is identifiable, i.e. if β 6= β′ then f(y, β, R) 6= f(y, β′, R).

3. The densities f(y, β, R) have common support, and f is differentiable in β.

4. The parameter space Ω contains an open set ω of which the true parameter

β0 is an interior point.
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5. For every y in Y the density f(y, β, R) is continuous and at least three times

differentiable in β, and
∫
f(y, β, R)dy can be differentiated three times under

the integral sign.

6. There exists an open subset of ω ∈ Ω containing β0 and an integratable func-

tion Mr(y), such that for every β ∈ ω and y ∈ Y∣∣∣∣ ∂3∂3βr
log f(y, β, R)

∣∣∣∣ ≤Mr(y)

for r = 1, . . . , dim(β), where Eβ0(Mr(y)) <∞

7. For r = 1, 2, ..., dim(β) there are bounded functions Vr(y) such that in the

neighbourhood of β0 for any fixed R(
∂

∂βr
log f(yi, β, R)

)2

≤ Vr(y)

with Eθ0(Vr(y)) <∞.

We proceed by defining the Gaussian copula likelihood for θ = (β,R) as

ln(θ) = logLn(β,R) =
1

n

n∑
i=1

log f(ti; β,R),

where β is the P × K matrix, with βj,k being the coefficient for the kth covariate

regressed on the jth variable. Let θ0 = (β0, R0) be the true parameters, and β̂ be

the matrix of coefficients where the jth row is found by maximising the jth marginal

likelihood, as in Algorithm 1 step 1;

β̂j = argmaxβj

n∑
i=1

logLj(yj, βj). (A.2)

Lemma 2. Equation A.2 is equivalent to using independence estimating equations

in the GEE framework, which under conditions 1-6, are consistent (Liang & Zeger,

1986), so β̂
P−→ β0.

Analogously to the standard maximum likelihood proof, the value R̂ found by Al-

gorithm 1 maximises τ ′(R) where

τ ′(R) = log
Ln(β̂, R)

Ln(β̂, R0)
=

1

n

n∑
i=1

log
f(yi; β̂, R)

f(yi; β̂, R0)
.

We cannot use the law of large numbers directly to show this converges to its ex-

pectation under θ0 as each summand of τ ′(R) is a function of all the data, through

β̂. To prove this we first consider lemma 3.
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Lemma 3.

1

n
ln(β̂, R)

P−→ Eθ0 log f(y, β0, R)

Proof

Under conditions 1-7 it holds that for any fixed R the Taylor expansion of the

standardised likelihood around β0 is

1

n
ln(β̂, R) =

1

n
ln(β0, R) +

1

n
(β̂ − β0)T

∂ln(β,R)

∂β

∣∣∣∣
β̃

, (A.3)

where β̃ is between β̂ and β0. By the Cauchy-Schwarz inequality, the last term is∣∣∣∣∣
∣∣∣∣∣ 1n(β̂ − β0)T

∂ln(β,R)

∂β

∣∣∣∣
β̃

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

n
||β̂ − β0|| ×

∣∣∣∣∣
∣∣∣∣∣∂ln(β,R)

∂β

∣∣∣∣
β̃

∣∣∣∣∣
∣∣∣∣∣.

By Lemma 2, we know ||β̂ − β0|| = op(1). We then look at the square of the last

term ∣∣∣∣∣
∣∣∣∣∣
(
∂ln(β,R)

∂β

∣∣∣∣
β̃

)∣∣∣∣∣
∣∣∣∣∣
2

=

dim(β)∑
r=1

(
n∑
i=1

∂

∂βr
log f(yi, β, R)

∣∣∣∣
β̃

)2

= OP (n2),

which follows from the regularity conditions. Hence∣∣∣∣∣
∣∣∣∣∣∂l(β,R)

∂β

∣∣∣∣
β̃

∣∣∣∣∣
∣∣∣∣∣ = OP (n),

So the remainder term in equation A.3 is given by∣∣∣∣∣
∣∣∣∣∣ 1n(β̂ − β0)T

∂l(β,R)

∂β

∣∣∣∣
β̃

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

n
||β̂ − β0|| ×

∣∣∣∣∣
∣∣∣∣∣∂ln(β,R)

∂β

∣∣∣∣
β̃

∣∣∣∣∣
∣∣∣∣∣

=
1

n
oP (1)OP (n) = oP (1).

This in turn implies

1

n
ln(β̂, R) =

1

n
ln(β0, R) +

1

n
(β̂ − β0)T

∂ln(β,R)

∂β

∣∣∣∣
β̃

=
1

n
ln(β0, R) + oP (1).

Hence for any R

1

n
ln(β̂, R)

P−→ Eθ0 log f(y, β0, R)
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Now we can return to the standard proof. We have

τ ′(R) = log
Ln(β̂, R)

Ln(β̂, R0)
=

1

n

n∑
i=1

log
f(yi; β̂, R)

f(yi; β̂, R0)

P−→ Eθ0 log
f(y; β0, R)

f(y, β0, R0)

= −K(θ0, θ) < 0

unless f(y, θ) = f(y; θ0), and so θ̂
P−→ θ0 and hence R̂

P−→ R0.
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A.3 Proof of equivalence of Algorithm 1 to EM

algorithm

Here we show that Algorithm 1 is an example of a MCEM algorithm. As discussed

in Definition 1, the EM algorithm iterates the E-Step and M-Step. In the E step we

calculate the Q function

Q(θ, θ̂(m)) =
N∑
i=1

∫
zi

f(zi|yi;Rθ̂(m)) log f(zi;Rθ)dzi.

which is the expectation of the log likelihood with respect to the conditional predic-

tive distribution f(z|y;Rθ̂(m)). Here z are the latent variables and yi are the discrete

data, both of dimension P , and θ̂(m) is the estimate of θ from the previous iteration.

The M-sept maximises the Q function. The two steps are iterated until convergence.

E-Step: Calculate weights (Algorithm 1, step 4b)

For a Gaussian copula with discrete margins, f(zi;Rθ) = NP (zi;Rθ) and

f(yi|zi;Rθ) = f(y = y′|z = z′;Rθ)

=

1 if zi ∈ Bi = ∩Pj=1

[
Φ−1(Fij(y

−
ij |βj, ψj)),Φ−1(Fij(yij|βj, ψj))

]
0 otherwise.

.

And so we obtain the conditional likelihood

f(zi|yi;Rθ) ∝ f(yi|zi;Rθ)f(zi;Rθ)

= 1zi∈Bi
NP (zi;Rθ),

which is the truncated multivariate normal distribution with covariance matrix Rθ.

To carry out an MCEM algorithm we need to sample from f(zi|yi;Rθ̂(m)) at the mth

iteration (Definition 1). We do this by first sampling Dunn-Smyth residuals, whose

distribution is a truncated multivariate normal with identity covariance matrix (see

equation A.1), and then weight observations accordingly. To obtain draws from

f(zi|yi;Rθ(m)) by weighting samples from g(z), the weights must be proportional to

w′ik(Rθ(m)) =
f(zki |yi;Rθ(m))

g(zki )
∝ NP (zki ;Rθ(m))∏P

j=1 φ(zkij)
= c(zki ;Rθ(m)).
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In equation 5.4 we define

wik(Rθ(m)) =
w′ik(Rθ(m))∑K
k=1w

′
ik(Rθ(m))

=
c(zki ;Rθ(m))∑K
k=1 c(z

k
i ;Rθ(m))

∝ c(zki ;Rθ(m)),

so proportionality is maintained, and hence the distribution of the weighted sam-

ple. We therefore have weighted samples (zki , wik(Rθ(m))) distributed according to

f(zi|yi;Rθ(m)). Now the function to be maximised can be written

Q(θ, θ̂(m)) =
N∑
i=1

∫
zi

f(zi|yi;Rθ̂(m)) log f(zi;Rθ)dzi

≈
N∑
i=1

K∑
k=1

wik(Rθ̂(m)) logNP (zki ;Rθ)

:= Q̃(θ, θ̂(m))

M-Step: Maximise Q̃ function (Algorithm 1, step 4a)

We now need to maximise the Q̃ function. Differentiating Q̃ with respect to θ we

get

∂Q(θ, θ̂(m))

∂θ
≈

N∑
i=1

K∑
k=1

wik(Rθ̂(m))
∂ logNP (zki ;Rθ)

∂θ
.

This is the same as equation 5.4, and is the function maximised by applying covari-

ance modelling algorithms to weighted Dunn-Smyth residuals in step 4a.

In Algorithm 1 step 4 we iterate these two steps until convergence.
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Appendix B

Simulation detail

B.1 Chapter 5

B.1.1 Figure 5.1

• Convert hunting spider data to presence/absence.

• Calculate marginal means for each species (probability of presence).

• For each combination of sample size N and number of species P (see Figure

5.1), simulate 100 binary samples with estimated means and covariance ma-

trix modelled with one latent variable (standard Gaussian). When samples

dimension P differs from data, sample P means from hunting spider data with

replacement.

• Use Algorithm 1 with K = 200 Dunn-Smyth residuals, binomial marginal dis-

tributions and factor analysis covariance structure estimated with the factanal

function to estimate model; extract estimated covariance matrix.

• Use lava.tobit to estimate latent variables model and extract estimated co-

variance matrices.

• Fit marginal GLMs using the glm function with

family = binomial(link="probit"). Extract Pearson residuals and gen-

erate one set of Dunn-Smyth residuals according to Definition 3 in Chapter

5.
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• Use the factanal function to estimate one factor model with the Pearson and

Dunn-Smyth residuals and extract estimated covariance matrices.

• Calculate Frobenius norm of all estimated covariance matrices and the true

covariance matrix.

• Plot ratios of these norms.

B.1.2 Figure 5.2

• For hunting spider data, calculate marginal means for each species.

• Generate graph with the huge.generator function in huge package with 70%

probability of conditional independence between each pair of species, extract

covariance matrix.

• For each combination of sample size N and number of species P (see Fig-

ure 5.1), simulate 100 samples from the Poisson distribution with estimated

marginal means and simulated covariance matrix. When samples dimension

P differs from data, sample P means from with replacement.

• Use Algorithm 1 with K = 200 Dunn-Smyth residuals, Poisson marginal distri-

butions and Graphical model estimated with the huge package, extract graph.

• Estimate graph structure with local Poisson model (Allen & Liu, 2013).

• Fit marginal GLMs using the glm function with family=Poisson. Extract

Pearson residuals and generate one set of Dunn-Smyth residuals according to

Definition 3 in Chapter 5.

• Use the huge package to estimate graph with the Pearson and Dunn-Smyth

residuals.

• Shrinkage parameter for all models selected with the StARS criterion (Liu

et al., 2010).

• For each estimated graph calculate proportion of correctly identified condi-

tional dependence relationships (recovery rate).

• Plot ratios of recovery rates.
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B.2 Simulation detail Chapter 7

B.2.1 Figure 7.3

• For bush regeneration data, fit marginal negative binomial models with manyglm

function in mvabund package, and extract estimated mean and overdispersion

for first two species.

• Treatment effect is positive and equal for both species, such that the control

group has a smaller mean than the treatment group.

• Correlation between species is either 0.8 (such that treatment effect is along

the main eigenvector of correlation matrix) or -0.8 (such that treatment effect

is orthogonal to the main eigenvector of correlation matrix)

• With a total sample size (N) of ten, let binary predictor (treatment) have

either two or eight observations in the treatment group, for a range of effect

sizes.

• For each combination of correlation (−0.8, 0.8), effect size and number of ob-

servations in null group (2, 8) conduct 100 simulations.

• Carry out Wald and score tests for treatment using the manyglm function in

mvabund package, estimating covariance with both independence assumption

cor.type="I" and unstructured covariance cor.type="R".

• Carry out likelihood ratio test, with likelihood estimated with Algorithm 1,

K = 200 Dunn-Smyth residuals and unstructured covariance matrix.

• Carry out likelihood ratio test under independence assumption by adding log

likelihood for each species.

• Calculate power for each test as the proportion of simulations for which the

test rejects the null hypothesis.

B.2.2 Figure 7.4

• For hunting spider data, fit marginal negative binomial models with one covari-

ate (presence of bare sand) using the manyglm function in mvabund package.

Extract null mean, overdispersion and treatment effect size and direction.
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• Set sample size (N) to 28 and number of species (P ) to 12 as in hunting spider

data.

• Create matrix of size P where one eigenvector is the treatment direction and

the others are orthogonal to it and one another.

• Create vector of eigenvalues on log scale.

• For k = 1, · · ·P , assign the kth largest eigenvalue to the eigenvector in the

direction of treatment effect and create correlation matrix from eigenvectors

and eigenvalues.

• Simulate 1000 observations for each k with corresponding correlation matrix,

negative binomial distribution using the mvabund package, and treatment effect

size derived from data.

• Fit model with no covariate (null model) and with correct covariate (alternate

model).

• Select best model using QIC, AIC indep, SIC and AIC copula.

• Calculate proportion of times each model selection criterion selected the cor-

rect model.

B.2.3 Figure 7.5

• For hunting spider data, fit marginal negative binomial models using the

manyglm function in mvabund package. Extract null means and overdisper-

sion for first two species.

• Set sample size (N) to 28, number of species (P) to 2, and correlation between

species to 0.8.

• [Figure 7.5a] Create binary covariate with proportion of observation in less

variable group at 9 values between 0 and 1.

• [Figure 7.5b] Create continuous covariate X with zero mean, unit variance

and skewness at one of 9 values.

• Simulate 1000 observations for each scenario with negative binomial distribu-

tion.

• Fit model with no covariate (null model) and with correct covariate (alternate

model).
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• Select best model using SIC and AIC copula.

• Calculate proportion of times each model selection criterion selected the cor-

rect model.
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