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Abstract

Wavelet estimators for a probability density enjoy many good properties; however,

they are not shape-preserving in the sense that the final estimate may be negative

nor integrate to unity. A solution to negativity issues may be to estimate first

the square-root of the density and then square this estimate up. In this thesis,

we propose and investigate such an estimation scheme, generalising to higher

dimensions a previous construction of Penev and Dechevsky (1997), which is valid

only in one dimension, using nearest-neighbour balls. The theoretical properties

of the proposed estimator are obtained, and it is shown to reach the optimal rate

of convergence uniformly over large classes of densities under mild conditions.

For spatially inhomogeneous densities and in general, there is a need to threshold

the empirical wavelet coefficients in order to avoid over-fitting. In the case of

density estimation, the most common approach is to use cross-validation over a

likelihood function. Aligned with our results, we provide a principled alternative

using a cross-validation type approach over an empirical approximation to the

Bhattacharyya coefficient and the associated Hellinger distance, which is suitable

when the square-root of the density is estimated. The effectiveness of these data-

driven algorithms is demonstrated via Monte Carlo simulations and a thorough

review of their usage in the traditional Old Faithful geyser dataset. Finally, we

aim to extend these tools and applications to the raising field of intrinsic statistics

in Riemannian manifolds and present an example on how techniques based on

k-th nearest neighbours can be applied in image analysis using the MNIST and

Fashion-MNIST datasets.
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Chapter 1

Introduction

Probability density functions (PDFs) are a central concept in probability and statis-

tics. An absolutely continuous random variable X with values in R is completely

described by its PDF as it provides a way for probabilities and other properties

about X to be calculated, for instance

P (a ≤X ≤ b) = ∫
b

a
f(d)dx.

The problem of density estimation is about the construction of an estimator f̂

of f from a given set of observations Xi, i = 1,2, ..., n of X. Although it shares

some methods and concepts with regression, it differs from it and is an important

problem on its own. If the functional form of the density is known or assumed

in advance, density estimation is then the procedure to determine the underlying

parameters of the distribution. For instance, one of such methods is maximum

likelihood estimation, that can be traced back to Gauss and was developed in its

current form and popularised by R. Fisher between 1912 and 1922 (Hald, 1999).

On the other hand, when there is no formal parametric structure the methods

are called nonparametric. In this case, f is taken to belong to a large family

of densities so that it cannot be represented by a finite number of parameters

(Izenman, 1991; Simonoff, 2012; Sprent and Smeeton, 2016). Nonparametric

density estimation has a rich history of methods with different assumptions and

mathematical properties. The so called naïve estimator was introduced in Fix and

Hodges (1951), followed by Rosenblatt (1956) and Parzen (1962) who cemented
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the work on kernel-based density estimation - a method widely in use today.

Towards the end of the twentieth century, the recently developed theory of wavelets

seemed like a next step in the development of such estimators. The mathemati-

cal theory of wavelets offers a powerful tool for approximating possibly irregular

functions or surfaces and has been successfully applied in many different fields

of physics, mathematics and engineering. Classical references on the topic are

Daubechies (1992); Meyer (1992), or see Strang (1989, 1993); Mohlenkamp and

Pereyra (2008) for shorter reviews. In statistics, it provides a convenient frame-

work for nonparametric density estimation and regression. Indeed, some variants

of wavelet estimators are (near-) optimal in some sense over large classes of func-

tions (Donoho and Johnstone, 1994, 1995, 1996, 1998; Fan et al., 1996; Kerky-

acharian and Picard, 1993). Comprehensive reviews of wavelet methods applied

to statistics can be found in Härdle et al (1998); Vidakovic (2009); Nason (2010).

One major drawback, though, of such wavelet-based estimators is that they are

in general not ‘shape-preserving’. When estimating a probability density f , the re-

sulting estimator f̂ may neither be non-negative, nor integrate to 1; see Dechevsky

and Penev (1997, 1998). Usually, simple numerical rescaling solves the integra-

bility issue, but overcoming the non-negativity issue requires caution. One way to

address it is to first construct a wavelet estimator of g =
√
f which, when squared

up, would obviously produce an estimator of f satisfying the non-negativity con-

straint. Another is to produce an estimator of g = log f (O’Sullivan (1988); Kooper-

berg and Stone (1991); Hazelton and Cox (2016)) and then obtain f by eĝ. The

former is convenient in its simplicity and, as explained below, it is the one we will

pursue in this work.

When performing estimation using wavelets, a few choices have to be made to

calculate the resulting estimator. Similarly to kernel-based density estimators

and other nonparametric methods, wavelet-based estimators are subject to over-

or under-smoothing. Thus, for a wavelet-based estimator, one needs to chose

an appropriate resolution that somewhat is an optimal approximation between

these two pathological extremes. Also, in kernel-based methods, it is known that

the Epanechnikov kernel is optimum among a broad family of kernel functions
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(Epanechnikov, 1969) although, it is worth adding, there is no much loss in effi-

ciency using other popular kernels. On the other hand, the wavelet case is more

complicated as one should, in principle, choose a wavelet that better reflects the

underlying local structure of the derivatives of the function being approximated.

The combination of this local structure and the wavelet-basis decomposition leads

to a sparse representation that uses fewer terms but that is optimal in a simi-

lar sense as for the resolution. This is often done by exclusion or shrinkage of

coefficients based on a thresholding rule. Again, in order to properly apply the

method, one needs to be able to discover where this threshold lies. In this thesis,

we shall present a data-driven method to select these meta-parameters, exploiting

the structure of the estimator and the fact that we target the square root
√
f of the

density.

Our construction will be based on properties of nearest neighbours, extending

a construction of Penev and Dechevsky (1997) made to approximate
√
f in the

univariate case to the multivariate setting. In his International Congress of Mathe-

maticians (ICM) address (Donoho, 2002), D. Donoho talks about the unreasonable

effectiveness of harmonic analysis and argues that this is due in part to the fact that

"information has its own architecture", an "inner architecture" that "we should

attempt to discover and exploit". Interestingly enough, our algorithm based on

nearest neighbours brings to the fore the geometry of the data, thus taking one

step further Donoho’s argument about the role of harmonic analysis (and wavelet-

based methods in particular) in providing the scaffold upon which those estimators

are built.

This thesis is organised as follows. Chapter 2, "Foundations", has an overview

of nonparametric density estimation, the theory of wavelets and the link between

these two. It concludes with a short review of existing literature in shape-preserving

density estimation. In Chapter 3, "A shape-preserving multivariate density estima-

tor using wavelets", we present our estimator accompanied by several asymptotic

results thus providing further insights into its properties. Simulation results com-

pare our estimator against traditional methods. This chapter appeared in Aya-

Moreno et al. (2018). Next, Chapter 4 "The non-linear shape-preserving wavelet-
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based density estimator", fully develops data-driven methods to determine resolu-

tion, threshold and other required parameters in the construction of the estimator.

Again, asymptotic results give the reader confidence that the algorithms used are

sound under some general assumptions. This chapter finishes with a practical ex-

ample on how these methods are applied with real-life data. As a coda to the

theoretical work of the previous chapters and to further emphasise the geomet-

ric nature of the tools, we present in Chapter 5 "Image analysis application" a

short application of some of the above techniques in a practical problem in im-

age classification, specifically using the Modified National Institute of Standards

and Technology (MNIST) and Fashion MNIST (Fashion-MNIST) datasets. Finally,

Chapter 6, "Discussion" summarises our results and discusses a number of poten-

tial avenues for future research.
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Chapter 2

Foundations

2.1 Nonparametric density estimation

Density estimation, in the continuous setting, is the problem of finding the PDF

which may have generated a given sample. The problem is usually stated as fol-

lows: given a sample of n i.i.d observations X1,X2, ...,Xn, Xi ∈ Ω ⊂ Rd, find an

underlying f ∶ Rd → R PDF that "best" describes or explains the data, i.e. such that

Xi ∼ f can be justified in some sense.

For instance, the statistician can assume as a starting point that the PDF belongs

to a certain family of distributions, F = {fθ ∣ θ ∈ Θ}, where Θ is the parameter

space. The problem above is then reduced to find a certain parameter θ̂ ∈ Θ such

that Xi ∼ fθ̂. This could be accomplished by a maximum likelihood estimation, i.e.

θ̂ = arg max
θ

∏i fθ(Xi).

Alternatively, when a suitable family cannot be proposed or potential parametric

families do not explain the data well, nonparametric or distribution free methods

exist that allow the scientist to assume as little structure as possible. Among those

nonparametric methods for density estimation are histograms, Kernel density esti-

mation (KDE) and wavelet-based density estimation. A common characteristic of

those is that the number of parameters grows with the number of data points; in

the worst case keeping all observations as parameters. For comparison, we briefly

explain KDE.
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Kernel density estimation was first proposed in Rosenblatt (1956) and Parzen

(1962). In the univariate case, the kernel density estimator is defined as

f̂h(x) =̇
1

n

n

∑
i=1

Kh (x − xi) =
1

nh

n

∑
i=1

K (x − xi
h

) (2.1)

where K is usually a symmetric, nonnegative kernel function which satisfies ∫ K =

1, i.e. a probability function itself. The hyperparameter h is the bandwidth and

plays a crucial role in controlling overfitting: a too wide bandwidth will over-

smooth the estimator whereas a too small value will overfit the sample at hand.

See Figure 2.1. Kernel density estimation is probably the most popular method

due to its simplicity, it has been well studied, produces smooth densities (when

K is smooth) and can easily be generalised to multiple dimensions. Although

variations to this exist, note that the basic definition uses the whole sample as

parameters. For further details see e.g. Silverman (1986).

-1 0 1 2 3

0.5

1.0

1.5

(a) Overfitted, h = 0.05

-1 0 1 2 3

0.5

1.0

1.5

(b) Rule Of Thumb bandwidth (Sil-
verman, 1986), h = 0.233

-1 0 1 2 3

0.5

1.0

1.5

(c) Oversmoothed, h = 0.35

Figure 2.1. Example KDE estimators of a mixture distribution (dashed blue line), based on a
sample of 40 points (red dots) with three different bandwidths and a Gaussian kernel function.

In this work, we use wavelet-based density estimation, which will be introduced

shortly.

2.2 Wavelet theory

The origins of wavelet theory lie at the intersection of various problems in math-

ematics, engineering and physics (Jorgensen (2006)). In the early 20th century,

Haar (1909) introduced a multi level approach to function approximation using

his "system χ", now called Haar wavelet, in Hilbert spaces. Some argue that it took

nearly seventy years for a general construction of his system χ to be rediscovered

and formalised, but the truth is that a chain of developments and specific "wavelet
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examples" were proposed throughout the twentieth century that finally took shape

in the wavelet corpus we have today (Meyer (1992); Daubechies (1992)). The

Shannon "wavelet" of around 1940 or wavelet "prototypes" in the work of Lusin

and Calerón are often cited examples of such intermediate developments (Labate

et al. (2013); Meyer (1992)).

However, a turning point occurred around 1976, when Jean Morlet, a French

geophysicist, developed wavelets (in French ondelettes) to solve the problem of

detailed analysis of seismic signals (Morlet (1976)). His work started with the Ga-

bor transform and through connections with some methods in quantum mechanics

became what is known today as the continuous wavelet transform (Grossman and

Morlet (1984))). It is worth pointing out that they rediscovered the admissibility

condition and the reproducing formula of Calderón (1965), a mathematical re-

sult on integro-differential operators (Saeki, 1995; Rzeszotnik, 2001). Soon after

that, in the late 1980s and early 1990s, Mallat (1989); Meyer (1992); Daubechies

(1992), among others, developed the theory of Multiresolution Analysis (MRA), a

discretisation of Morlet and Grossman’s work that is recursive in the same way as

the Haar’s system was but more general and suitable to be implemented by com-

puter. Today, the literature on wavelets is quite extensive and their applications

are growing (Strang (1989); Mohlenkamp and Pereyra (2008)). For instance,

the JPEG 2000 format used in most digital cameras today is based on wavelets

(Taubman and Marcellin (2012)) and there are also numerous applications in

statistics (e.g. Härdle et al (1998); Jorgensen (2006); Antoniadis (2007)). Below

we present the essential wavelet theory concepts and properties that we will use

throughout.

2.2.1 Multiresolution Approximation

The construction of MRA in Rd can be introduced in several ways. Here we chose

to follow more or less the presentation by Meyer (1992). Other slightly different

perspectives are offered in Mallat (1989); Daubechies (1992); Härdle et al (1998);

Jorgensen (2006) among many others.

Definition 2.2.1. A multiresolution approximation of L2(Rd) is an increasing se-
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quence Vj, j ∈ Z, of closed linear subspaces of L2(Rd) satisfying1:

Vj+1 = {2j d/2f(2j.) ∶ f ∈ Vj} for all j ∈ Z, (2.2)

⋂
j∈Z
Vj = {0}, (2.3)

⋃
j∈Z
Vj is dense in L2(Rd),and (2.4)

There is ϕ ∈ V0 such that {ϕ(x − .) ∶ z ∈ Zd} is a orthonormal basis of V0. (2.5)

The function ϕ is called the scaling function or father wavelet. Let Wj be the

orthogonal complement of Vj within Vj+1, that is Vj+1 = Vj ⊕Wj. The so called

mother wavelets are found in Wj, but before their introduction, an important

concept is in order. We extend MRA with the following:

Definition 2.2.2. Let Dα be the α-th (multi-index notation) partial weak derivative

operator (Dα = (∂/∂x1)α1 . . .(∂/∂xd)αd). A multiresolution approximation is called

r-regular for r ∈ N, if the function ϕ in (2.2.1) can be chosen such that for each

m ∈ N there is a positive positive constant Cm such that

∣Dαϕ(x)∣ ≤ Cm (1 + ∣x∣)−m , (2.6)

for any multi-index ∣α∣ = α1 +⋯ + αd ≤ r.

We can now present the structure of the space Wj (Meyer, 1992)

Theorem 1. Let Vj be an r-regular MRA of L2(Rd) and for x ∈ Rd and multi-index α,

let xα = (xαii ) for i = 1,2, ..., d. Then there exist Q = 2d − 1 functions ψ(q) such that for

every multi-index α ∈ Nd with ∣α∣ ≤ r, 1 ≤ q ≤ Q and m ∈ N , m ≥ 1

(a) ∣Dαψ(q)(x)∣ ≤ Cm (1 + ∣x∣)−m , (2.7)

(b) {ψ(q)(x − z),1 ≤ q ≤ Q,z ∈ Zd} is an orthonormal basis of W0; and (2.8)

(c) ∫ xαψ(q)(x)dx = 0. (2.9)

1The reader may note that in Meyer (1992), orthogonality is not part of the MRA but con-
structed from a Riesz basis. As our main results are developed in the orthonormal setting, we
incorporate that in the definition although a more general setting seems possible (see Subsec-
tion 2.3.2, Subsection 4.4.3 and Chapter 6).
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As these ψ(q) satisfy (c) above, this implies that they have positive and negative

parts. Also, by (a), their derivatives vanish as ∣x∣ increases. They must have some

sort of wave-like shape, hence their name "wavelets". Condition (c) above is some-

times used instead of r-regularity and defines the number of vanishing moments of

the wavelets - essentially they are equivalent in this context. For definiteness, we

formalise the concept below.

Definition 2.2.3. A wavelet ψ ∈ L2(Rd) is said to have N vanishing moments, if

∫ xαψ(x)dx = 0, for ∣α∣ ≤ N. (2.10)

Now, define ϕj,z(x) = 2j d/2ϕ(2jx − z) and ψ(q)
j,z (x) = 2j d/2ψ(q)(2jx − z). As ⋃j∈Z Vj =

L2(Rd), the direct sum⊕j∈ZWj is L2(Rd); this means, in principle, that the wavelets

ψ
(q)
j,z can be used to represent any f ∈ L2(Rd) across all levels of refinement. How-

ever, this Wj-only representation does not work as it implies an unattainable full

coverage towards zero in the frequency domain, requiring a "cork", a low pass

filter to cover that region (Valens, 1999)2. This low pass filter is provided by a

starting V0 representation, leading to L2(Rd) = V0 ⊕ (⊕j∈NWj). Actually, the initial

scale j = 0 is arbitrary, so one can start at any scale J0 ∈ Z. This can be formalised

in the following.

Let the coordinate projections of f into Vj and Wj be

αj,z =̇ < f,ϕj,z > (2.11)

β
(q)
j,z =̇ < f,ψ(q)

j,z > . (2.12)

Then, the above direct sum for L2(Rd) means that for any f ∈ L2(Rd) we have

(Qd = {1,2, ...,2d − 1})

f(x) = ∑
z∈Zd

αJ0,zϕJ0,z(x) +
∞

∑
j=J0

∑
z∈Zd

∑
q∈Qd

β
(q)
j,z ψ

(q)
j,z (x), (2.13)

2An alternative argument in Meyer (1992), pg. 67, is that the extension of MRA to more general
Lp (Rd) spaces will trigger the need for an initial set of basis functions that are not "waves", i.e.
that do not integrate to 0 but to 1.
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and the projection of f in VJ is

fJ(x) = ∑
z∈Zd

αJ,zϕJ,z(x). (2.14)

Now, as ϕ and ψ(q) are in V1 (V1 = V0 ⊕W0), they can be expressed in its basis as

ϕ(x) = ∑
z∈Zd

Hzϕ(2x − z) (2.15)

ψ(q)(x) = ∑
z∈Zd

G
(q)
z ϕ(2x − z), (2.16)

where Hz and G(q)
z are the coordinates of ϕ and ψ(q) respectively. If ϕ has compact

support, so do the ψ(q) and there is only a finite number of terms in the sums

(2.15, 2.16). In the one-dimensional case, Hz and Gz are known in the signal

processing community as filter banks and are central to numerical calculations on

l2(R) sequences. In fact, Daubechies (1988) elaborates in great detail how condi-

tions imposed on a MRA construction are equivalent to certain conditions on Hz

and Gz, finalising with her celebrated breakthrough on the construction of com-

pactly supported orthogonal wavelets in L2(R) of arbitrary number of vanishing

moments which we will summarise in Subsection 2.2.3.

The term ∑z∈ZαJ0,zϕJ0,z(x) is called the ‘trend’ at level J0, while, for each level j ≥

J0, ∑z∈Z∑q∈Qd
β

(q)
j,z ψ

(q)
j,z (x) is the ‘detail’ at level j. A key feature of a multiresolution

representation such as (2.13) is that, for any j ≥ J0, the trend at level j+1 coincides

with the trend at level j supplemented with the detail at level j. Specifically,

∑
z∈Zd

αj+1,zϕj+1,z(x) = ∑
z∈Zd

αj,zϕj,z(x) + ∑
z∈Zd

∑
q∈Qd

β
(q)
j,z ψ

(q)
j,z (x). (2.17)

This implies that the projection onto VJ1+1 as in (2.14) is equivalent to this trun-

cated wavelet expansion

fJ0,J1(x) = ∑
z∈Zd

αJ0,zϕ0,z(x) +
J1

∑
j=J0

∑
z∈Zd

∑
q∈Qd

β
(q)
j,z ψ

(q)
j,z (x), (2.18)

which is what one uses in practice. Of course, truncation will make sense only if

this projection can be made close to f in some objective sense. This is presented
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next.

2.2.2 Wavelet approximations in Sobolev spaces

From the father wavelet ϕ, let the approximating kernel K ∶ Rd × Rd → R be

K(x, y) = ∑
z∈Zd

ϕ(x − z)ϕ(y − z) (2.19)

and its refinement at resolution j ∈ N be

Kj(x, y) = ∑
z∈Zd

2djϕ(2jx − z)ϕ(2jy − z) = ∑
z∈Zd

ϕj,z(x)ϕj,z(y). (2.20)

Define the two associated operators:

Kf(x) = ∫
Rd
K(x, y)f(y)dy

and

Kjf(x) = ∫
Rd
Kj(x, y)f(y)dy,

for all functions f ∈ L2(Rd). We will see that Kj is an approximate identity but

before that a remarkable result

Theorem 2. (Meyer (1992), Theorem 4 (Ch. 2), Corollary p. 38) Let Vj be an r-

regular MRA of L2(Rd) and let Kj ∶ L2(Rd) → Vj be the orthogonal projection defined

above. Then for any polynomial P of degree less than or equal to r, Kj(P ) = P .

Thus, in a r-regular MRA, polynomials of degree less than or equal to r are kept

unchanged by the projection operator Kj, which sheds light on the nature of the

spaces Vj associated with such MRA.

Finally, to define the approximation power of wavelets and MRA, we use Sobolev

spaces, which are defined as follows.

Definition 2.2.4. A space of functions defined on Ω ⊂ Rd for which all mixed partial

derivatives up to order m ≥ 0 exist (in the weak sense) and that belong to Lp(Ω),
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1 ≤ p ≤ ∞ is called a Sobolev space. Formally,

Wm,p(Ω) = {φ ∈ Lp(Ω) ∶Dαφ ∈ Lp(Ω) ∀α ∈ Nd ∶ ∣α∣ ⩽m} ,

where Dα is the αth (multi-index notation) partial weak derivative operator, and

∣α∣ = α1+⋯+αd. A norm on Wm,p(Ω) is classically defined as ∥φ∥m,p = ∑∣α∣≤m ∥Dαφ∥p
(Triebel, 1992).

Now, suppose that the father wavelet ϕ introduced in Assumption 3.2.2 is such

that the induced kernel (2.19) satisfies the following assumption.

Assumption 2.2.1. The kernel K (2.19) is such that ∣K(x, y)∣ ≤ F (x−y), for some

square integrable function F ∶ Rd → R with ∫Rd ∣x∣νF (x)dx < ∞ for all ν ∈ Nd such

that ∣ν∣ = m. Moreover, for all x ∈ Rd, ∫Rd(y − x)ν
′

K(x, y)dy = δ0,ν′, for all ν′ ∈ Nd

such that ∣ν′∣ ≤m − 1.

Theorem 3. (Härdle et al (1998), Theorem 8.1(ii)) Under assumptions above and

if f ∈Wm,p, then ∥Kjf − f∥p ≤ C2−j.

For a thorough presentation of above see Daubechies (1992); Meyer (1992); Här-

dle et al (1998).

Now, we focus our attention to one important aspect we haven’t addressed in de-

tail. As mentioned above, the existence and construction of wavelets of compact

support will enable the implementation of algorithms that do not need to approx-

imate or compute, somehow, infinite sums. We cover this next.
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2.2.3 Wavelets of compact support

The Haar system is usually cited as the basic example of a MRA in L2(R). The

scaling and wavelet functions are defined by

ϕ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, 0 ≦ x < 1

0, otherwise;
(2.21)

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, 0 ≦ x < 1/2

−1, 1/2 ≦ x < 1

0, otherwise.

(2.22)

The corresponding plots are as depicted in Figure 2.2.
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(a) Scaling function
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(b) Mother wavelet

Figure 2.2. Haar system

Here an example in the smaller space L2([0,1]). The projections of f(x) = sin(πx)

into V2 and W2 are plotted in Figure 2.3 (a). The sum between these two functions

lets to a new refinement in V3 = V2 ⊕W2 plotted in (b). For comparison, the true f

is also plotted in (b) as a dotted red line.

The Haar system has compact support but its regularity is r = 0, i.e. it is able to

represent perfectly only functions that are constant on the dyadic intervals (see

Theorem 2), and a valid question is whether or not it is possible to construct

wavelet basis of regularity r for any r ≥ 1 that has compact support. The answer



2.2. WAVELET THEORY 15

0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

(a) Projection into V2 and W2

0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

(b) Projection into V3 and true f (dotted red line)

Figure 2.3. Haar MRA in L2([0,1]) for sin(πx)

to this was provided in the following result by I. Daubechies

Theorem 4. For each integer r ≥ 1, there exists a MRA Vj of L2(R) which is r-regular

and such that the associated functions ϕ and ψ have compact support.

The presentation above is from Meyer (1992), as Daubechies (1988) has a more

detailed theorem based on the "graphical" algorithm of such systems. The end re-

sult in the later is the introduction of a family of wavelets now known as Daubechies

wavelets. After elaborating all the constraints associated with the coefficients Hz

in (2.15) in order for them to become a MRA3, the solutions with "minimal phase"

(and smallest support) for a given number of vanishing moments are chosen -

these are the Daubechies’ wavelets. Some of these Daubechies’ wavelets are plot-

ted in Figure 2.4. Note that the plots are not at the same scale: the support of

Daubechies’ ϕ of order r is [0,2r − 1] and the support of ψ is [−r + 1, r]. With the

increase in regularity, one pays the price of a longer support.

An interesting result by Daubechies, (Daubechies, 1992, Th. 8.1.4), demonstrates

that there are no symmetric, real-valued, orthogonal wavelets of minimal compact

support for a given number of vanishing moments. However, by relaxing restric-

tions on the size of the support, it is possible to construct orthonormal wavelets

with other properties. For instance, a higher degree of symmetry may be desired

in certain signal processing applications, like image analysis. Or for compression

(sparsity), having vanishing moments in the scaling function in addition to those

of the mother wavelet, i.e. having ∫ xlϕ(x)dx = 0 for l = 1, ..., L− 1, leads to better

compression ratios. I. Daubechies also built wavelets with these characteristics

3G
(q)
z in 2.16 are derived directly from Hz in the univariate case
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Figure 2.4. The Daubechies wavelet family for different regularities. Plots not drawn at the same
scale. The plots for r = 1 are Haar’s wavelets, better seen in Figure 2.2.

and they are known as symlets and coiflets respectively. The reader is encouraged

to visit Daubechies (1992) for more details.

2.2.4 Wavelet extensions

2.2.4.1 Riesz frames

If one is willing to sacrifice orthogonality, it is possible to extend MRA beyond

the orthonormal case by using frames (Daubechies, 1992). In fact, frames have

provided the foundation for the variety of wavelet extensions that came after the

breakthroughs in the field in the late 80’s. These include so called second gener-

ation wavelets (Sweldens, 1996) and many multivariate anisotropic extensions in

current research (Grohs et al., 2013). Precursors to frames were known already in

the signal processing community as quadrature mirror filters. In analysis, frames,

introduced by Duffin and Schaeffer (1952), can be regarded as the most natu-

ral generalization of the notion of an orthonormal basis (Casazza and Kutyniok

(2012)).
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Definition 2.2.5. A family of functions (ϕλ)λ∈Λ in a Hilbert space H is a frame if

there exist 0 < A, B < ∞ so that for all f ∈ H,

A ∥f∥2 ≤ ∑
λ∈Λ

∣< f,ϕλ >∣ ≤ B ∥f∥2
.

If A = B, it is called a tight frame, with the case A = B = 1 corresponding to

an orthogonal basis. In essence, the upper bound establishes boundedness of the

(< f,ϕλ >)λ∈Λ sequence whereas lower bound ensures 0 ∈ H can only be repre-

sented by the zero sequence (0)λ∈Λ. In fact, it can be shown that if (ϕλ)λ∈λ is

a frame, there is another family (ϕ̃λ)λ∈Λ which is also a frame and that the two

lead to the following reconstruction formula, an extension to (2.11), (2.12) and

(2.13)4,

αλ=̇ < f, ϕ̃λ >, (2.23)

f(x) = ∑
λ∈Λ

αλϕλ(x). (2.24)

Because of this pair of dual frames, the construction is usually called biorthogonal

(Daubechies, 1992). In signal processing, calculating the sequence αλ corresponds

to the analysis phase and computing the sum for the reconstruction the synthesis

phase, with the coefficients themselves for ϕ and ϕ̃ called quadrature mirror filters.

Biorthogonal wavelets thus offer more flexibility and include as particular cases

the spline wavelets. In our work, we will focus on orthogonal wavelets but some

results can be extended easily to the biorthogonal case and we will offer some

numerical examples of this.

2.2.4.2 Further reading

Despite being a relatively young area of mathematics, the literature of wavelets is

quite vast with nearly half a million entries reported by a Google’s scholar search

as of 2019. The reader interested in deepening their knowledge can, in addition

to the classical books by Daubechies (1992), Meyer (1992) and Mallat (1999),

look at introductory sources, reference and application books like Strang (1989);
4Let Zj = {i ∈ Z ∶ i ≥ j}, then make Λ = Zd⊕(ZJ0 ×Q ×Zd) to map indexes for alphas and

betas.
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Härdle et al (1998); Valens (1999); Weiss and Wilson (2001); Jorgensen (2006);

Vidakovic (2009); Starck et al. (2010); Labate et al. (2013). For literature refer-

ences regarding general construction of wavelets and Riesz frames see Cohen and

Daubechies (1992); Sweldens (1996); Casazza and Kutyniok (2012); Grohs et al.

(2013).

2.3 Density estimation with wavelets

Density estimation is a central problem in statistics and within nonparametric the-

ory it is perhaps one of the most investigated topics (Silverman, 1986). The

mathematical theory of wavelets presented above offers a powerful tool for ap-

proximating possibly irregular functions or surfaces and, in statistics, it provides

a convenient framework for some nonparametric problems, in particular density

estimation.

Before we even heard of wavelets, we had realized that if only there

existed some very special functions, for which we had drawn up a

wish list, then we could tackle a whole variety of statistical problems

that had not been successfully tamed before. And then wavelets came

along, and they did all we had hoped for.

(D. Donoho, as quoted by (Daubechies, 1993))

Indeed, some variants of wavelet estimators are (near-) optimal in some sense

over large classes of functions (Kerkyacharian and Picard, 1993; Donoho et al.,

1996; Donoho et al, 1995; Donoho and Johnstone, 1994, 1995, 1996, 1998; Fan

et al., 1996). Härdle et al (1998); Vidakovic (2009) and Nason (2010) give com-

prehensive reviews of wavelet methods applied to statistics. Below, we present

their application to density estimation.

2.3.1 Linear wavelet-based density estimation

Let f in (2.13) be a PDF. Noting that αj0,z = E{ϕj0,z(X)} and β
(q)
j,z = E{ψ(q)

j,z (X)}

paves the way for their estimation, upon observing a sample from f , by empirical

averages, say α̂j0,z and β̂
(q)
j,z . In addition, for any practical purpose the infinite
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expansion (2.13) needs to be truncated after a finite number of terms, say J ≥ j0

– in the wavelet jargon, one says that f is approximated to the resolution level J .

So, a wavelet estimator for f writes

f̂J(x) = ∑
z∈Zd

α̂j0,zϕj0,z(x) +
J

∑
j=j0

∑
z∈Zd

∑
q∈Qd

β̂
(q)
j,z ψ

(q)
j,z (x), (2.25)

which may ultimately include some thresholding of the estimated coefficients.

Note that the sums over z are finite if the wavelets have compact support, as it

is usually assumed.

Putting together the work on approximating kernels, wavelets (Theorem 3) and

the above estimator (2.25), we have

Theorem 5 (Härdle et al (1998), Th. 10.1). Let K be a kernel such that assumption

2.2.1 holds, and if f belongs to Wm,2 then the Mean Integrated Squared Error (MISE)

is uniformly bounded in balls B(L) = {f ∶ ∥f∥Wm,2 < L and f a probability density},

sup
f∈B(L)

E [∥f̂J − f∥
2
] ≤ C1

2J

n
+C22−2Jm, (2.26)

where C1 and C2 as positive constants.

When the two antagonistic quantities on the RHS are balanced, this is 2J(n) ∝ n
1

2m+1 ,

we obtain

sup
f∈Bm,2(L)

E [∥f̂J − f∥
2
] ≤ Cn− 2m

2m+1 , (2.27)

for some C > 0.

2.3.2 Wavelet thresholding and shrinkage

The advantage of wavelet-based density estimators lies in their ability to capture

local phenomena by "even simple non-linearities" involving coordinate threshold-

ing (Donoho et al. (1996)). Thresholding involves the suppression and/or shrink-

age of the estimated beta coefficients by some sort of rules. Three main approaches

have been proposed: hard and soft thresholding (Donoho et al. (1996); Delyon

and Juditsky (1996)), where coefficients are selected based on their magnitude

being greater than a given threshold and then they are kept as-is (hard) or shrunk
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towards zero (soft) linearly; and block thresholding, where coefficients are se-

lected as a block of neighbouring translations (Hall et al. (1997)) and kept as-is.

The term linear estimator refers to the fact that the estimator (2.18), via the esti-

mated coefficients (2.11) and (2.12), is a linear function of the empirical measure

νn =
n

∑
i=1

δXi , (2.28)

δx the Dirac mass at point x (Härdle et al (1998)). This is, if f, g are two PDFs,

α ∈ [0,1] and f̂L is a linear estimator, then Eαf+(1−α)gf̂L = αEf f̂L + (1 − α)Egf̂L
(Donoho et al. (1996)). Of course, thresholding in its various forms breaks this

identity.

We will see later that the estimator presented in this work is not, strictly speaking,

linear in the above sense. However, in keeping with standard terminology, we will

refer to our full estimator as the linear version and the estimator with selected

coefficients by a criterion similar to above as the non-linear case.

For future reference, we present the traditional wavelet estimator and the thresh-

olding method applied to (2.18). First, define empirical coefficients α̂j,z and β̂
(q)
j,z

for (2.11) and (2.12) respectively as empirical averages5

α̂j,z =
1

n

n

∑
i=1

ϕj,z(Xi) (2.29)

β̂
(q)
j,z = 1

n

n

∑
i=1

ψ
(q)
j,z (Xi). (2.30)

Hard thresholding of betas is defined by

β̃
(q)
jz =̇

⎧⎪⎪⎪⎨⎪⎪⎪⎩

β̂
(q)
jz , if ∣β̂(q)

jz ∣ >KC(j)n−1/2

0, otherwise
(2.31)

where C(j) is a resolution-varying function and K is a positive constant to be

determined. In Donoho et al. (1996), C(j) =
√
j whereas in Delyon and Juditsky

(1996) C(j) =
√
j − J0

6. Finally, the hard thresholded estimator is then defined by

5Naturally E [ 1
n ∑

n
i=1 ϕj,z(Xi)] =< f,ϕj,z >= αj,z for i.i.d Xi, and similarly for β(q)j,z .

6Note Donoho et al. (1996) and Delyon and Juditsky (1996) use different meaning for j, J0



2.3. DENSITY ESTIMATION WITH WAVELETS 21

f̂J0,J1(x) = ∑
z∈Zd

α̂J0,zϕJ0,z(x) +
J1

∑
j=J0

∑
z∈Zd

∑
q∈Qd

β̃
(q)
j,z ψ

(q)
j,z (x).. (2.32)

The soft threshold is a slight variation. Define the threshold for level j as τj =

KC(j)n−1/2, then β̃
(q)
j,z =̇ sign(β̂(q)

jz )(β̂(q)
jz − τj)+. The difference between the hard

and soft approaches over a coefficient is depicted in Figure 2.5. The shape of

soft thresholding justifies the name "wavelet shrinkage" given to its application

(Donoho and Johnstone, 1995, 1998).
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Figure 2.5. Effect of the different thresholding approaches for a threshold of τ = 0.5 over a given
beta coefficient.

Note that because of the characterisation of Sobolev spaces in terms of wavelet

coefficients (Meyer (1992), Theorem 2.8), a bounded ∥φ∥m,p < ∞ will "force" most

of the β(q)
j,z to be small, making the choice β̃(q)

j,z = 0 natural for this case; as opposed

to shrinking the alpha coefficients, which are left intact and correspond to a purely

linear estimator (Donoho and Johnstone, 1996).

Finally, another practical aspect of (2.32) is defining J0 and J1. In Donoho et al.

(1996), the resolution is found to be J0(n) ∝ log(n/ log(n)), where the propor-

tionality constant depends on the parameters of the Sobolev or Besov space under

consideration. One way to avoid pin pointing these is to choose J0 and J1 empiri-

cally, taking into account of the fact that the resolution is a smoothing parameter.

In fact, the primary resolution level plays the role of bandwidth in the linear part

of a thresholded wavelet estimator (the alphas), and so correct choice of this quan-

tity can alleviate difficulties caused by over- or under-smoothing (Hall and Penev

(2001)). In this work, we will present a way to determine these resolutions on a

and J1. Ours similar to the later as it is more commonly used.
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data-driven manner.

2.4 Shape-preserving density estimators

One major drawback, though, of the above wavelet-based estimators is that they

are in general not ‘shape-preserving’. When estimating a PDF f , that means

that the resulting estimator f̂J may neither be non-negative, nor integrate to one

(Dechevsky and Penev, 1997, 1998). Usually, simple rescaling solves the inte-

grability issue, but overcoming the non-negativity issue requires caution. Two

approaches are possible (Vannucci and Vidakovic, 1997): one may truncate the

estimate to its positive part and then re-normalize or one may estimate a trans-

formed version of f , usually
√
f or log(f), and then transform back to have a

nonnegative estimate. The transformation
√
f was introduced by Good and Gask-

ins (1971) and developed for the wavelet case by Pinheiro and Vidakovic (1997),

whereas Leonard (1973); Silverman (1982); Gu and Qiu (1993) are credited with

the introduction and study of estimation based on the log(f) transform, further

developed for the wavelet case by Koo and Kim (1996).

Here, we focus on the square root transform. To estimate g ≐
√
f , consider the

univariate case. Clearly, g ∈ L2(R), as ∫R g
2(x)dx = ∫R f(x)dx = 1, hence we can

write its expansion (2.13), viz.

g(x) = ∑
z∈Z

αj0,zϕj0,z(x) +
∞

∑
j=j0

∑
z∈Z

βj,zψj,z(x), (2.33)

where

αj,z = ∫
R
ϕj,z(x)g(x)dx = ∫

R
ϕj,z(x)

√
f(x)dx (2.34)

βj,z = ∫
R
ψj,z(x)g(x)dx = ∫

R
ψj,z(x)

√
f(x)dx. (2.35)

Difficulty in estimating these coefficients arises as αj,z = E{ϕj,z(X)/
√
f(X)} and

βj,z = E{ψj,z(X)/
√
f(X)} can no longer be estimated directly by sample averages.

Pinheiro and Vidakovic (1997) got around the presence of the unknown factor
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1/
√
f in these expectations by plugging in a pilot estimator of f . This is,

α̂j,k =
1

n

n

∑
i=1

ψj,k (Xi)√
f̃n (Xi)

(2.36)

β̂j,k =
1

n

n

∑
i=1

φj,k (Xi)√
f̃n (Xi)

, (2.37)

where f̃n is a pilot estimator of f that is computationally simple and gives sensible

“weights” to ϕj,k’s and ψj,k’s. Their choice of a counting pilot

f̃n (Xi) = #{Xj ∈ (Xi − r,Xi + r)} (2.38)

with radius r ∈ R+, seemed to produce good results and can be generalised in a

direct manner to the multivariate case (Vannucci, 1995). They, however, did not

pursue a detailed theoretical analysis of that estimator.

Rather, Penev and Dechevsky (1997) suggested a more elegant construction based

on order statistics and spacings, e.g. a direct estimator for βj,z is

2√
π
⋅ 1√

n
[
n−1

∑
m=1

ψj,kX(m+1)

√
X(m+1) −X(m)] (2.39)

where X(m) denote order statistics of the sample and
√
X(m+1) −X(m) is the square

root of the spacing between consecutive observations. Unfortunately, direct appli-

cation of their idea is limited to the univariate case, as spacings are not defined

in more than one dimension. Yet, the need for a multivariate extension of the

‘Dechevsky–Penev’ construction was explicitly called for by McFadden (2003) in

his Nobel Prize lecture.

Cosma et al. (2007) and Peter and Rangarajan (2008) attempted such extension

but lost much of the initial flavour of the idea. In fact, Cosma et al. (2007) gave up

the idea of estimating
√
f and enforced the non-negativity constraint by resorting

to a non-negative ‘father wavelet’, making their construction very close in spirit to

a spline-like estimator. This angle of attack has some advantages, e.g., it allows

for dependent observations, and it remains valid under regularity conditions on f

milder than the usual belonging to some Besov space. However, it does not easily



24 CHAPTER 2. FOUNDATIONS

lend itself to the introduction of thresholding, thus it is unable to consummate the

full potential of wavelet-based approaches.

In contrast, Peter and Rangarajan (2008) started from the expansion (2.33) but

estimated the coefficients by Maximum Likelihood, which requires solving a high-

dimensional optimisation problem and careful numerical treatment. Unfortu-

nately, empirical evaluation of their approach seemed to obtain best results using

a single-level expansion, i.e. alphas only, which leads to question their approach

in light of known optimal theoretical results of nonlinear estimators. More re-

cently, Peter et al. (2017) elaborated further by bringing Bayesian model selection

into their approach, pointing out interesting links to Riemannian geometry, the

hypersphere and the approach of Minimum description length (MDL). Central to

their approach is the use of the Hellinger Distance (HD), from which we will profit

too. Also, though rich in practical and simulation experiments, there is no further

theoretical analysis of the depth that we present in here.

Finally, we can also mention Brown et al. (2010), which involves wavelet meth-

ods for estimating
√
f . However, those authors transform through binning the

density estimation problem into a Poisson regression one, for which considering

the square-root of f is justified explicitly for its variance-stabilising effect. Their

framework is thus very different to what is investigated here. For instance, it relies

on a rule-of-thumb estimator for the initial resolution level, Jn = ⌊log2 n
3/4⌋, and

corresponding bin widths w = 1/T , where T = 2Jn, effectively taking the form of

w ≃ 1
n3/4 for a density defined in [0,1]. For the interested reader, it might be useful

to contrast this approach with a preceding example in the Digital Signal Process-

ing (DSP) literature of a wavelet-based estimation of the square-root of a density

in they call the "discrete" case of histograms, Yoon and Vaidyanathan (2004). In

contrast to binning, we will present a first principles, completely data-driven algo-

rithm to calculate a reference initial resolution in a multivariate setting.
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Chapter 3

A shape-preserving multivariate den-

sity estimator using wavelets

3.1 Definition of the estimator

3.1.1 Motivation

Let X = {X1, . . . ,Xn} be a random sample from an unknown d-dimensional distri-

bution F admitting a density f on Rd. Denote by X(k);i the kth closest observation

from Xi among the other points of X . Define R(k);i = ∥X(k);i −Xi∥ the Euclidean

distance between Xi and X(k);i, and

V(k);i = c0R
d
(k);i, where c0 =

πd/2

Γ(d/2 + 1)
, (3.1)

the volume of the ball of radius R(k);i centred at Xi – hence it is the smallest

ball centred at Xi containing at least k other observations from X . It is known

(Ranneby et al, 2005, Proposition 2) that, conditionally on Xi, and as n→∞,

nV(1);i ↝ Exp{f(Xi)}, (3.2)

meaning that (Johnson et al., 1994, Section 10.5), as n→∞,

√
nV(1);i

LÐ→ Rayleigh [{2f(Xi)}−1/2] . (3.3)
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Now, consider an arbitrary square-integrable function φ ∶ Rd → R, and define

Sn =
2√
π

1√
n

n

∑
i=1

φ(Xi)
√
V(1);i. (3.4)

By the Law of Iterated Expectations, we have

E(Sn) = E{ 2√
π
φ(Xi)E (

√
nV(1);i ∣Xi)} .

The expectation of a Rayleigh(σ)-random variable is known to be σ
√
π/2. If the

convergence in law (3.3) implies the convergence of the moments (this is indeed

the case here as will be formally derived later), then

E(Sn) → E{ 2√
π
φ(Xi)

√
π

2
√
f(Xi)

}

= ∫
Rd

φ(x)√
f(x)

f(x)dx

= ∫
Rd
φ(x)

√
f(x)dx.

Hence, Sn is an asymptotically unbiased estimator of ∫Rd φ(x)
√
f(x)dx. This fact

naturally suggests estimating the wavelet coefficients (2.35) by statistics of type

(3.4), which is the idea formally investigated in here.

3.1.2 Definition

Let g =
√
f , where f is the d-dimensional density to estimate. As g ∈ L2(Rd) always,

we have, by (2.13),

g(x) = ∑
z∈Zd

αJ0,zϕJ0,z(x) +
∞

∑
j=J0

∑
z∈Zd

∑
q∈Qd

β
(q)
j,z ψ

(q)
j,z (x),

with, for all j ∈ N, z ∈ Zd and q ∈ Qd,

αj,z = ∫
Rd
ϕj,z(x)

√
f(x)dx and β

(q)
j,z = ∫

Rd
ψ

(q)
j,z (x)

√
f(x)dx.

The approximation of g to the resolution level J ≥ J0 is

gJ(x) = ∑
z∈Zd

αJ0,zϕJ0,z(x) +
J

∑
j=J0

∑
z∈Zd

∑
q∈Qd

β
(q)
j,z ψ

(q)
j,z (x). (3.5)
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Now, motivated by the observations made in Section 3.1.1, we define the estima-

tors of the wavelet coefficients αj,z and β(q)
j,z in (3.5) as

α̂j,z =
Γ(k)

Γ(k + 1/2)
1√
n

n

∑
i=1

ϕj,z (Xi)
√
V(k);i, j ∈ N; z ∈ Zd (3.6)

β̂
(q)
j,z = Γ(k)

Γ(k + 1/2)
1√
n

n

∑
i=1

ψ
(q)
j,z (Xi)

√
V(k);i, j ∈ N; z ∈ Zd; q ∈ Qd, (3.7)

for some integer k ≥ 1. The coefficient Γ(k)/Γ(k + 1/2) guarantees the consistency

of these estimators, as will arise from the proof of Proposition 3.2.1 below. Note

that, for k = 1, Γ(1)/Γ(3/2) = 2/
√
π, as it was anticipated in Section 3.1.1. Also,

in the case d = 1, when the volume of a ball amounts to the width of an interval,

(3.6) and (3.7) can easily be compared to the estimators in Penev and Dechevsky

(1997) (their equations (3.2) and (3.3)). Although not identical, they definitely

have the same flavor and are asymptotically equivalent.

Plugging (3.6) and (3.7) into the expansion (3.5) produces the estimator

ĝJ(x) = ∑
z∈Zd

α̂J0,zϕJ0,z(x) +
J

∑
j=J0

∑
z∈Zd

∑
q∈Qd

β̂
(q)
j,z ψ

(q)
j,z (x). (3.8)

For a set of coefficients {cz; z ∈ Zd} essentially defining a particular wavelet family,

the father wavelet satisfies ϕ(x) = ∑z∈Zd czϕ (2x − z) (and similar for the functions

ψ(q)’s); see Daubechies (1992). This implies that ϕj,z(x) = ∑z′∈Zd cz′ϕj+1,z′−2z (x),

which, in turn, carries over to the wavelet coefficients, viz. α∗j,z = ∑z′∈Zd cz′α
∗
j,z−2z′

(and similar for β̂∗(q)j,z ). This so-called dilation equation is the key to expression

(2.14). Now, substituting in (3.6) yields

α̂j,z =
Γ(k)

Γ(k + 1/2)
1√
n

n

∑
i=1

ϕj,z (Xi)
√
V(k);i

= Γ(k)
Γ(k + 1/2)

1√
n

n

∑
i=1

{ ∑
z′∈Zd

cz′ϕj+1,z′−2z (Xi)}
√
V(k);i

= ∑
z′∈Zd

cz′ {
Γ(k)

Γ(k + 1/2)
1√
n

n

∑
i=1

ϕj+1,z′−2z (Xi)
√
V(k);i}

= ∑
z′∈Zd

cz′α̂j+1,z′−2z,

and similar for β̂(q)
j,z from (3.7). Hence, although the wavelet estimator developed
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in this paper is different in nature, the dilation equation applies to it as it does in

the conventional case. This directly yields the simple and convenient expression

for the estimator, viz.

ĝJ(x) = ∑
z∈Zd

α̂J+1,zϕJ+1,z(x). (3.9)

Squaring this up provides an estimator f̂J of f . As already noted in Penev and

Dechevsky (1997), estimating f by squaring up an estimate of
√
f has the addi-

tional advantage of providing an easy way for normalising the density estimate.

Specifically, enforcing the condition 1 = ∫Rd f̂(x)dx = ∫Rd ĝ
2
J(x)dx amounts to im-

posing

∑
z∈Zd

α̂2
J0,z

+
J

∑
j=J0

∑
z∈Zd

∑
q∈Qd

β̂
(q)2
j,z = ∑

z∈Zd
α̂2
J+1,z = 1, (3.10)

given that the wavelets are orthonormal. If this sum is not 1 after raw estimation

of the coefficients by (3.6) and (3.7) but, say, is another constant κ, it is enough

to divide each estimated coefficient by
√
κ for enforcing (3.10). Conventional

wavelet estimators do not enjoy such a convenient way of normalising.

In the following section, the asymptotic properties of the coefficient estimators

(3.6) and (3.7) are obtained. The asymptotic properties of the estimator (3.8)–

(3.9) for
√
f and the ensuing estimator f̂J = ĝ2

J for f will be obtained in Section

3.3.

3.2 Asymptotic properties of the estimators of the

wavelet coefficients

Throughout this thesis we work under the following two standard assumptions.

Assumption 3.2.1. The sample X = {X1, . . . ,Xn} consists of i.i.d replications of a

random variable X ∈ Rd whose distribution F admits a density f .

Assumption 3.2.2. The functions ϕ and ψ(q) (q ∈ Qd), have compact support on Rd

and are bounded. Defining ϕJ0,z (x) = 2dJ0/2ϕ(2J0x−z) and ψ(q)
j,z (x) = 2d j/2ψ(q)(2jx−

z), {ϕJ0,z, ψ
(q)
j,z ; j = J0, . . . ,∞, z ∈ Zd, q ∈ Qd} is an orthonormal basis of L2(Rd).
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Now, the main ingredient in (3.6) and (3.7) is V(k);i, which is a quantity of type

kth Nearest Neighbour (k-NN). Procedures based on k-NN ideas have always

been very popular in nonparametric statistics, from Loftsgaarden and Quesenberry

(1965); Devroye and Wagner (1977); Mack and Rosenblatt (1979); Hall (1983b)

for density estimation to Lin and Jeon (2006); Gadat at al. (2016) for classifica-

tion problems, Henze (1988); Mondal et al. (2015) for two-sample testing, and

Delattre and Fournier (2017); Ebner et al. (2018) for entropy estimation. The

underlying theory has been extensively studied in the literature (Percus and Mar-

tin, 1998; Evans et al., 2002; Evans, 2008; Baryshnikov et al., 2009; Kuljus and

Ranneby, 2015); see Biau and Devroye (2015) for a recent comprehensive review.

Good properties for such k-NN quantities require the underlying density f to be

well-behaved in the following sense.

Assumption 3.2.3. The density f has convex compact support C ⊂ Rd, with

supx,y∈C ∥x − y∥ = c1 < ∞. It is bounded and bounded away from 0 on C, i.e., there

exist constants a1 and a2 such that infx∈C f(x) = a1 > 0 and supx∈C f(x) = a2 < ∞.

In addition, f is differentiable on C, with uniformly bounded partial derivatives

of the first order.

We have then the following result.

Proposition 3.2.1. Under Assumptions 3.2.1-3.2.3, for all j ∈ {J0, . . . , J}, z ∈ Zd

and q ∈ Qd, the estimators (3.6) and (3.7) are such that

E(α̂j,z) = αj,z +O(n−1/d), Var(α̂j,z) = k3 { Γ(k)
Γ(k + 1/2)

}
2

O(n−1)

E(β̂(q)
j,z ) = β

(q)
j,z +O(n−1/d), Var(β̂(q)

j,z ) = k3 { Γ(k)
Γ(k + 1/2)

}
2

O(n−1),

as n→∞. In particular, if k is such that k3/2Γ(k)/Γ(k + 1/2) = o(n1/2), then

E{(α̂j,z − αj,z)2} → 0 and E{(β̂(q)
j,z − β

(q)
j,z )

2
} → 0

as n→∞, and the estimators are consistent.

Proof. The proof makes use of an extension of Theorem 5.4 in Evans et al. (2002),
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and is given in Appendix.

The condition k3/2Γ(k)/Γ(k + 1/2) = o(n1/2) is obviously satisfied if k keeps a fixed

value. If it is the case, then we have directly α̂j,z = αj,z + OP (n−1/max(2,d)) and

β̂
(q)
j,z = β(q)

j,z + OP (n−1/max(2,d)) as n → ∞, for all j ∈ {J0, . . . , J}, z ∈ Zd and q ∈ Qd.

It also allows k to grow along with n. As k → ∞, Γ(k)/Γ(k + 1/2) ∼ k−1/2 and the

condition is equivalent to k = o(n1/2). It appears that the (first order) asymptotic

bias of α̂j,z and β̂
(q)
j,z does not depend on k, while their (first order) asymptotic

variance increases with it. This can be attributed to larger covariances among the

V(k);i’s as k gets large, and suggests – at least at this level – to keep k as small as

possible, that is, to use k = 1 always. Below, the results are presented both for

k ≐ kn satisfying k3/2Γ(k)/Γ(k + 1/2) = o(n1/2) and for k = 1.

3.3 Asymptotic properties of the estimators of
√
f

and f

3.3.1 Pointwise consistency

In this section, the estimator ĝJ(x) (3.8)–(3.9) is first shown to be pointwise con-

sistent for
√
f(x) at all x. This essentially follows from the results of Section 3.2

through the theory of approximating kernels; see Bochner (1955) for early devel-

opments, and Meyer (1992); Härdle et al (1998) for the wavelet case. Then we

have the following result.

Proposition 3.3.1. Under Assumptions 3.2.1-3.2.3, the estimator (3.8)–(3.9) is

such that, at all x ∈ C,

(i) E{ĝJ(x)} =KJ+1

√
f(x) +O(n−1/d),

(ii) {Γ(k+1/2)
Γ(k) }

2
n
k3 Var{ĝJ(x)} ≤ κ ∫RdK

2
J+1(x, y)dy +O(n−1/d),

for some constant κ < ∞, as n → ∞. Moreover, the order of the remainder terms

holds uniformly in x ∈ C.

Proof. See Appendix.
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This result obviously implies the pointwise consistency of ĝJ(x) for
√
f(x) at any

fixed x ∈ C provided that k3/2Γ(k)/Γ(k + 1/2) = o(n1/2), in particular if k is kept

fixed.

3.3.2 Uniform L2-consistency

Consistency in Mean Integrated Squared Error (L2-consistency) of estimator (3.8)-

(3.9) can now be established uniformly over large classes of functions, such as

Sobolev classes introduced in 2.2.2.

It follows from Assumption 3.2.3 that there exists an integer m ≥ 1 such that

f ∈Wm,2(C): f has uniformly bounded partial derivatives on C, which implies f ∈

W 1,∞(C), and as W 1,∞(C) ⊂W 1,2(C), at least m = 1. Of course, more regular (i.e.,

smoother) densities f allow for a higher value ofm. In addition, under Assumption

3.2.3,
√
f ∈Wm,2(C) as well. This appears clearly from the multivariate version of

Faà di Bruno’s formula (see, e.g., Hardy (2006)), which reads here, for all α ∈ Nd

such that ∣α∣ ≤m:

Dα
√
f = ∑

ξ∈Ξ

f 1/2−∣ξ∣∏
β∈ξ

Dβf,

where Ξ is the set of all partitions ξ of the elements of α and the product is over

all ‘blocks’ β of the partition ξ. Then the L2-norm of the second factor in each

term is bounded because ∣β∣ ≤ m and f ∈ Wm,2(C), and the first factor f 1/2−∣ξ∣

is uniformly bounded for all 0 ≤ ∣ξ∣ ≤ m, because f is both bounded from above

(case ∣ξ∣ = 0) and bounded away from 0 (case ∣ξ∣ ≥ 1). This also implies that, if

f ∈ Bm,2(L) = {φ ∈ Wm,2(C) ∶ ∥φ∥m,2 ≤ L} for some constant 0 ≤ L < ∞, i.e., a ball

of radius L in Wm,2(C), then
√
f ∈ Bm,2(L′) for some other constant 0 ≤ L′ < ∞.

Now, suppose that the father wavelet ϕ introduced in Assumption 3.2.2 is such

that the induced kernel (2.19) satisfies the following assumption.

Assumption 3.3.1. The kernel K (2.19) is such that ∣K(x, y)∣ ≤ F (x−y), for some

square integrable function F ∶ Rd → R with ∫Rd ∣x∣νF (x)dx < ∞ for all ν ∈ Nd such

that ∣ν∣ = m. Moreover, for all x ∈ Rd, ∫Rd(y − x)ν
′

K(x, y)dy = δ0,ν′, for all ν′ ∈ Nd

such that ∣ν′∣ ≤m − 1.
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Here, for x ∈ Rd and ν ∈ Nd, ∣x∣ν = ∏d
k=1 ∣xk∣νk , and δν,ν′ is the d-fold Kronecker delta,

equal to 1 if νk = ν′k for all k ∈ {1, . . . , d} and 0 otherwise. This assumption is the

multivariate version of Conditions H-N in (Härdle et al, 1998, Section 8.3), with

the same interpretation as their Remark 8.3. In particular, it allows the pointwise

results (Proposition 3.3.1) to be extended uniformly in x and over suitable Sobolev

classes of functions.

Theorem 6. Under Assumptions 3.2.1-3.3.1, the estimator (3.8)–(3.9) is such that

sup
f∈Bm,2(L)

E (∥ĝJ −
√
f∥2

2) ≤ κ12−2Jm + κ2n
−2/d + κ′3n−1k3 { Γ(k)

Γ(k + 1/2)
}

2

2dJ , (3.11)

for some constants κ1, κ2, κ′3 < ∞ and n large enough.

Proof. See Appendix.

Clearly, the bound in the right-hand side of (3.11) is a non-decreasing function of

k, which suggests to take k = 1 as it was already noted below Proposition 3.2.1.

For that choice, we have directly:

Corollary 6.1. Under Assumptions 3.2.1-3.3.1, the estimator (3.8)–(3.9) with k = 1

in (3.6)-(3.7) is such that

sup
f∈Bm,2(L)

E (∥ĝJ −
√
f∥2

2) ≤ κ12−2Jm + κ2n
−2/d + κ32dJ/n,

for some constants κ1, κ2, κ3 < ∞ and n large enough.

The terms depending on J are balanced for 2J ∝ n1/(2m+d), in which case

sup
f∈Bm,2(L)

E (∥ĝJ −
√
f∥2

2) ≤ κ′n−
2m

2m+d + κ′′n−2/d,

for two constants κ′, κ′′ < ∞. Note that E(∥ĝJ −
√
f∥2

2) is the expected squared HD

between the true f and its estimator ĝ2
J , hence is a meaningful risk measure as
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such. By the Cauchy-Schwarz inequality, it follows in any case

∥ĝ2
J − f∥2

2 = ∥(ĝJ −
√
f)(ĝJ +

√
f)∥2

2 ≤ ∥ĝJ −
√
f∥2

2 × ∥ĝJ +
√
f∥2

2.

Assumptions 3.2.2 and 3.2.3 ensure that the second factor is bounded, whereby

we have the following result about ĝ2
J as an estimator of the density f .

Theorem 7. Under Assumptions 3.2.1-3.3.1, the estimator ĝ2
J with k = 1 in (3.6)–

(3.7) and 2J ∝ n1/(2m+d) is a uniformly L2-consistent estimator of f , such that

sup
f∈Bm,2(L)

E (∥ĝ2
J − f∥2

2) ≤ κ′n−2m/(2m+d) + κ′′n−2/d, (3.12)

for some constants κ′, κ′′ < ∞.

Note that the first term in the right-hand side of (3.12) is the optimal nonpara-

metric rate of convergence in this situation, as per the classical results of Stone

(1980). That term is dominated by the second one only for d > 2m/(m−1). Hence

we have the following corollary.

Corollary 7.1. Under Assumptions 3.2.1-3.3.1, the estimator ĝ2
J with k = 1 in (3.6)–

(3.7) and 2J ∝ n1/(2m+d) is asymptotically optimal for f uniformly over Bm,2(L) ⊂

Wm,2(C), in the sense that, for d ≤ 2m/(m − 1),

sup
f∈Bm,2(L)

E (∥ĝ2
J − f∥2

2) ≤ κ′n−2m/(2m+d).

As 2m/(m − 1) > 2, the estimator is always optimal in one and two dimensions.

Under the classical mild smoothness assumption m = 2, it is optimal for 1 ≤ d ≤

4 – this probably covers most of the cases of practical interest, given that the

optimal rate of convergence itself becomes very poor in higher dimensions (Curse

of Dimensionality). In any case, for ‘rough’ densities f (m = 1), the estimator

reaches the optimal rate in all dimensions.
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3.4 Numerical experiments

3.4.1 Simulation study

In this section the practical performance of the shape-preserving estimator ĝ2
J

based on (3.8)–(3.9), normalised by forcing (3.10), is compared to that of the

classical wavelet estimator. Normalisation is of course necessary for f̂ = ĝ2 to be

considered a PDF. Three bivariate (d = 2) and one trivariate (d = 3) Gaussian mix-

tures were considered: (a) two bivariate components, showing two peaks with

very different covariance structures (Figure 3.1a); (b) two bivariate components,

showing two similar peaks (Figure 3.1b); (c) a bivariate version of the ‘smooth

comb’ (Marron and Wand, 1992), showing 4 peaks of decreasing spread (Figure

3.1c); and (d) three trivariate components producing a bimodal density (Figure

3.1d). The exact expressions are available in the Appendix B.1. Those where

scaled and truncated to the unit hypercube [0,1]d, in order to satisfy Assumption

3.2.3. Note that mixtures (a)-(c)-(d) exhibit peaks of different spread and orien-

tation, features known to cause difficulties in density estimation.

For each density, M = 500 random samples of size n = 2`, for ` ∈ {7, . . . ,13}, i.e.,

from n = 128 up to n = 8192,1 were generated, and our procedure was used on

each of them for estimating f . Proper normalisation of all estimates was enforced

through (3.10). The accuracy of a given estimate f̂ was measured by the In-

tegrated Squared Error (ISE) ∫[0,1]d{f̂(x) − f(x)}2 dx and the Squared Hellinger

Distance (SHD) between f̂ and f , i.e., 1
2 ∫[0,1]d{

√
f̂(x) −

√
f(x)}2 dx. Both were

approximated by Riemannian summing on a fine regular partition of [0,1]d. The

MISE and the Mean Squared Hellinger Distance (MSHD) of an estimator was then

approximated by averaging the ISE’s and SHD’s over the M = 500 Monte Carlo

replications, see Tables 3.1 and 3.2.

Estimators (3.6)-(3.7) were computed with bivariate wavelets ϕj,z and ψ
(q)
j,z ob-

tained by tensor products of univariate Daubechies wavelets with 10 vanishing

1Sample sizes as powers of 2 are customary in the wavelet framework due to their suitability
when resorting to the Fast Wavelet Transform, however the estimator described in Section 3.1.2
remains obviously valid for any arbitrary sample size n.
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(a) 2D Gaussian mix (a) (b) 2D Gaussian mix (b)

(c) 2D Comb (c)

1.8

3.6

5.4

7.2

9.0

10.8

12.6

(d) 3D Gaussian mix (d)

Figure 3.1. Densities used in the simulation study.

moments (Daubechies, 1992). In agreement with the asymptotic results, the value

k = 1 in (3.6)-(3.7) was given primary focus, but k ∈ {2,4,8, ..,
√
n} were also tested

to investigate the effect of k in finite samples. For the three densities and all sample

sizes, the choice k = 1 always lead to the final estimator with the smallest MISE or

MSHD, or within statistical significance (given M = 500 Monte Carlo replications)

to the estimator with the smallest MISE. Hence in Table 3.1 only the results for

k = 1 are reported. In (3.8), the baseline resolution was taken J0 = 0 and the res-

olution levels J ∈ {−1,0,1,2,3} were considered – the case J = −1 is here defined

as the estimator with the trend at baseline level J0 = 0 only. For comparison, the

density f was also estimated on each sample by the classical wavelet estimator

described in Härdle et al (1998), whose MISE and MSHD were approximated in

the exact same way as above. For computing the HD, though, it was necessary to

consider the non-negative part of that estimator.

The whole procedure was developed in Python, using the BallTree k-NN algorithm

(Omohundro, 1989) and the PyWavelets library that supports a number of orthog-
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onal and biorthogonal wavelet families.

Table 3.1. (Approximated) Mean Integrated Square Errors (MISE) for the shape-
preserving estimator (SPWDE), the classical wavelet estimator (Class.) and the
kernel density estimator (KDE) for different sample sizes. Wavelet estimators were
computed for different values of J + 1 (J0 = 0). The smallest MISE is highlighted
for each sample size.

2D Gaussian mix (a)

n J+1 SP Class. KDE

128

0 3.500 3.690

0.600
1 2.485 2.763
2 1.316 1.087
3 1.077 0.676
4 4.306 1.727

256

0 3.501 3.692

0.410
1 2.474 2.761
2 1.227 1.055
3 0.634 0.488
4 2.218 0.915

512

0 3.501 3.691

0.284
1 2.465 2.758
2 1.196 1.039
3 0.416 0.388
4 1.066 0.472

1024

0 3.502 3.691

0.193
1 2.462 2.757
2 1.164 1.030
3 0.292 0.336
4 0.521 0.250

2048

0 3.502 3.691

0.132

1 2.460 2.757
2 1.148 1.026
3 0.235 0.310
4 0.258 0.136
5 1.432 0.480

4096

0 3.503 3.691

0.084

1 2.459 2.756
2 1.140 1.023
3 0.204 0.296
4 0.131 0.077
5 0.620 0.242

8192

0 3.503 3.691

0.054

1 2.459 2.756
2 1.132 1.022
3 0.188 0.290
4 0.067 0.048
5 0.290 0.123

2D Gaussian mix (b)

n J+1 SP Class. KDE

128

0 4.172 4.267

0.418
1 2.975 3.285
2 0.760 1.101
3 0.831 0.438
4 3.964 1.760

256

0 4.171 4.268

0.279
1 2.963 3.278
2 0.676 1.060
3 0.440 0.243
4 2.008 0.908

512

0 4.171 4.268

0.179
1 2.958 3.275
2 0.638 1.042
3 0.233 0.143
4 1.039 0.465

1024

0 4.171 4.267

0.121
1 2.955 3.273
2 0.619 1.033
3 0.119 0.096
4 0.519 0.238

2048

0 4.171 4.268

0.077

1 2.953 3.272
2 0.610 1.028
3 0.063 0.070
4 0.258 0.119
5 1.299 0.480

4096

0 4.171 4.268

0.050

1 2.953 3.272
2 0.609 1.026
3 0.034 0.058
4 0.127 0.060
5 0.588 0.243

8192

0 4.171 4.268

0.032

1 2.955 3.272
2 0.609 1.025
3 0.020 0.052
4 0.064 0.030
5 0.277 0.123

2D Comb (c)

n J+1 SP Class. KDE

128

0 6.191 6.274

0.926
1 5.118 5.252
2 3.532 3.875
3 1.271 1.275
4 3.365 1.756

256

0 6.190 6.275

0.616
1 5.108 5.249
2 3.436 3.833
3 0.869 1.078
4 1.776 0.891

512

0 6.190 6.274

0.410
1 5.096 5.245
2 3.388 3.812
3 0.656 0.985
4 0.956 0.481

1024

0 6.190 6.274

0.270
1 5.095 5.243
2 3.366 3.803
3 0.556 0.940
4 0.497 0.264

2048

0 6.190 6.274

0.177

1 5.093 5.243
2 3.353 3.799
3 0.500 0.915
4 0.253 0.149
5 1.081 0.479

4096

0 6.190 6.274

0.114

1 5.091 5.243
2 3.347 3.796
3 0.479 0.903
4 0.130 0.094
5 0.531 0.244

8192

0 6.190 6.274

0.073

1 5.088 5.242
2 3.345 3.795
3 0.468 0.897
4 0.068 0.065
5 0.262 0.121

3D Gaussian mix (d)

n J+1 SP Class. KDE

128

0 2.889 3.020

0.591
1 1.480 1.712
2 0.807 0.527
3 6.435 2.846
4 54.752 21.605

256

0 2.887 3.019

0.425
1 1.445 1.697
2 0.471 0.374
3 3.565 1.514
4 34.649 10.832

512

0 2.887 3.021

0.305
1 1.428 1.692
2 0.276 0.289
3 1.896 0.791
4 22.053 5.598

n J+1 SP Class. KDE

1024

0 2.886 3.020

0.211
1 1.420 1.688
2 0.185 0.246
3 0.975 0.407
4 12.523 2.942

2048

0 2.887 3.020

0.151
1 1.418 1.687
2 0.134 0.225
3 0.499 0.208
4 6.825 1.566

4096

0 2.887 3.020

0.103
1 1.416 1.686
2 0.107 0.215
3 0.250 0.108
4 3.044 0.825

In terms of MISE, both estimators show comparable performance. The observed

differences in MISE are low, sometimes giving preference to one estimator and
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Table 3.2. (Approximated) Mean Squared Hellinger Distance (MSHD) for the
shape-preserving estimator (SP), the classical wavelet estimator (Class.) and the
kernel density estimator (KDE) for different sample sizes. Wavelet estimators were
computed for different values of J + 1 (J0 = 0). The smallest MSHD is highlighted
for each sample size.

2D Gaussian mix (a)

n J+1 SP Class. KDE

128

0 0.445 0.563

0.061
1 0.264 0.387
2 0.117 0.212
3 0.122 0.116
4 0.358 0.224

256

0 0.446 0.563

0.042
1 0.262 0.387
2 0.104 0.208
3 0.073 0.087
4 0.230 0.137

512

0 0.447 0.564

0.029
1 0.261 0.387
2 0.098 0.204
3 0.045 0.069
4 0.133 0.082

1024

0 0.447 0.564

0.019
1 0.261 0.386
2 0.094 0.202
3 0.029 0.059
4 0.073 0.050

2048

0 0.448 0.564

0.013

1 0.262 0.386
2 0.092 0.201
3 0.020 0.053
4 0.040 0.032
5 0.157 0.070

4096

0 0.448 0.564

0.009

1 0.263 0.386
2 0.091 0.201
3 0.016 0.050
4 0.021 0.022
5 0.087 0.039

8192

0 0.448 0.564

0.006

1 0.263 0.386
2 0.090 0.201
3 0.014 0.048
4 0.011 0.016
5 0.047 0.021

2D Gaussian mix (b)

n J+1 SP Class. KDE

128

0 0.570 0.643

0.044
1 0.354 0.502
2 0.093 0.213
3 0.101 0.100
4 0.339 0.212

256

0 0.571 0.643

0.029
1 0.352 0.500
2 0.082 0.207
3 0.057 0.069
4 0.213 0.128

512

0 0.571 0.643

0.020
1 0.351 0.500
2 0.076 0.204
3 0.032 0.050
4 0.128 0.077

1024

0 0.571 0.643

0.013
1 0.352 0.499
2 0.073 0.203
3 0.018 0.040
4 0.071 0.044

2048

0 0.571 0.643

0.009

1 0.351 0.499
2 0.071 0.202
3 0.010 0.035
4 0.039 0.025
5 0.153 0.068

4096

0 0.571 0.643

0.006

1 0.352 0.499
2 0.071 0.202
3 0.005 0.032
4 0.020 0.015
5 0.085 0.038

8192

0 0.571 0.643

0.004

1 0.352 0.499
2 0.071 0.202
3 0.003 0.030
4 0.011 0.008
5 0.045 0.021

2D Comb (c)

n J+1 SP Class. KDE

128

0 0.770 0.820

0.067
1 0.546 0.693
2 0.309 0.438
3 0.100 0.174
4 0.244 0.192

256

0 0.770 0.820

0.045
1 0.545 0.693
2 0.299 0.432
3 0.067 0.154
4 0.145 0.120

512

0 0.770 0.820

0.030
1 0.544 0.692
2 0.294 0.430
3 0.050 0.145
4 0.085 0.078

1024

0 0.770 0.820

0.021
1 0.544 0.692
2 0.292 0.429
3 0.041 0.140
4 0.047 0.052

2048

0 0.770 0.820

0.014

1 0.544 0.692
2 0.290 0.428
3 0.036 0.137
4 0.025 0.036
5 0.100 0.056

4096

0 0.770 0.820

0.009

1 0.544 0.692
2 0.290 0.428
3 0.033 0.136
4 0.014 0.027
5 0.055 0.031

8192

0 0.770 0.820

0.006

1 0.544 0.692
2 0.289 0.428
3 0.032 0.135
4 0.007 0.022
5 0.029 0.017

3D Gaussian mix (d)

n J+1 SP Class. KDE

128

0 0.392 0.461

0.066
1 0.152 0.257
2 0.115 0.120
3 0.480 0.368
4 0.869 0.911

256

0 0.392 0.461

0.047
1 0.146 0.254
2 0.068 0.091
3 0.352 0.239
4 0.767 0.688

512

0 0.392 0.461

0.034
1 0.143 0.253
2 0.041 0.075
3 0.235 0.150
4 0.670 0.499

n J+1 SP Class. KDE

1024

0 0.393 0.461

0.024
1 0.142 0.252
2 0.026 0.066
3 0.144 0.092
4 0.555 0.342

2048

0 0.393 0.461

0.017
1 0.142 0.252
2 0.017 0.062
3 0.083 0.055
4 0.422 0.222

4096

0 0.393 0.461

0.012
1 0.141 0.251
2 0.013 0.059
3 0.046 0.033
4 0.286 0.137

sometimes to the other, without clear pattern. By contrast, in terms of the MSHD,

the Shape-Preserving Wavelet-based Density Estimation (SPWDE) estimator clearly

outperforms the classical estimator, with in some cases an MSHD twice as low. This
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can obviously be understood by the fact that the HD between densities is based

on their respective square-roots. Hence, the SP estimator, primarily based on esti-

mating
√
f , perfectly aligns with that criterion. Given the adequacy of the HD for

assessing the proximity between densities, this clearly gives a real edge to the SP

estimator over the classical one beyond solving automatically the negativity issue.

As an illustration, Figure 3.2 shows typical estimates for the shape-preserving es-

timator and the classical one for sample size n = 4096 (k = 1, J0 = 0 and J = 3).

Note how the classical estimator loses mass in areas of low density, even for this

large sample.

Figure 3.2 also reveals how challenging it is, for both estimators, to re-construct

two peaks of such different spread. In that respect, the introduction of a thresh-

olding scheme would be helpful to allow a higher resolution to be selected while

killing out any unwarranted noise. The shape-preserving estimator is expected to

profit more from the introduction of such thresholding, as it is noted from Tables

3.1-3.2 that the classical estimator sometimes allows a higher resolution, already.

More on this topic in Section 4.2.

Finally, as it may be thought of as an ‘overall benchmark’ in nonparametric density

estimation, the classical multivariate kernel density estimator (Wand and Jones,

1995, Chapter 4) was also computed on the same M = 500 samples for each sam-

ple size for each of the 4 densities shown in Figure 3.1, and its MISE and MSHD

reported in Tables 3.1-3.2 as well. A diagonal bandwidth matrix (with different

diagonal entries) was used, selected using Cross-Validation (CV). It is seen that

KDE does better than the (linear) SPWDE estimator for small sample sizes. An ex-

planation may lie in the fact that variability of nearest-neighbour type statistics is

high in small samples, directly affecting the coefficient estimators (3.6)-(3.7), and

hence ultimately ĝJ ; see (A.6) in Appendix. On the other hand, for large sample

sizes, the SP wavelet estimator catches up and even beats KDE. It is reasonable

to believe that, with the above-mentioned thresholding, which is essentially the

strength of the wavelet method, the SP estimator would outperform the compe-

tition in a more pronounced way, and this even for small sample sizes. We will
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(b) Shape preserving estimator
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(c) Classical estimator

Figure 3.2. Comparisons of estimates for Gaussian Mixture (a), n = 4096, k = 1 and J0 = 0 and
J = 3.

present a data driven thresholding algorithm in Section 4.3 along with some in-

sights into its asymptotic behaviour.

3.4.2 Real data: Old Faithful geyser

Old Faithful geyser is a very active geyser in the Yellowstone National Park, Wyoming,

USA. Data on eruption times and waiting times (both in minutes) between erup-
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(b) 3D-density estimate

Figure 3.3. Old Faithful dataset

tions of Old Faithful form a well-known bivariate data set of n = 272 observations.

In particular, it was used for illustration in Vannucci (1995), in a review of dif-

ferent types of wavelet density estimators. The shape-preserving estimator was

computed on these data using Daubechies wavelets with 7 vanishing moments (as

in Vannucci (1995)). Visually, the most appealing result was obtained with J0 = 0

and J = 2, producing the estimate shown in Figure 3.3. As opposed to Figure 6

in Vannucci (1995), the shape-preserving estimator shows some small bumps of

potential interest near the main peaks. In view of the raw data (scatter plot, left

panel), this seems legitimate.



Chapter 4

The non-linear shape-preserving wavelet-

based density estimator

4.1 Overview

Recall that the shape-preserving wavelet-based estimator for the square root of a

density was defined by (3.8) as

ĝJ(x) = ∑
z∈Zd

α̂J0,zϕJ0,z(x) +
J

∑
j=J0

∑
z∈Zd

∑
q∈Qd

β̂
(q)
j,z ψ

(q)
j,z (x)

and that, as mentioned in Subsection 2.3.2, these estimators have the ability to

capture local phenomena by applying a threshold to the coordinates in the wavelet

decomposition. Among the various thresholding approaches, we focus here on

hard thresholding of beta coefficients whereby only the beta coefficients that are

larger in magnitude than a given value are kept. This can be done for instance as

in (2.31)

β̃
(q)
jz =̇

⎧⎪⎪⎪⎨⎪⎪⎪⎩

β̂
(q)
jz , if ∣β̂(q)

jz ∣ >KC(j)n−1/2

0, otherwise
,

where K is to be determined and C(j) makes the threshold level-dependant.

Aligned with Proposition 3.2.1 and remarks thereafter, we continue to use k = 1,

i.e. nearest neighbour distances. However, several parameters still need to be

defined:
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• the initial resolution level J0

• the highest level J (usually referred to as J1 in the literature) or, equivalently,

the number of additional levels in the beta expansion;

• the cut-off point or threshold as defined by K and resolution-varying func-

tion C(j);

• or, in a general hard thresholding like (2.31), find τ (q)
j,z = 0,1 in β̃(q)

j,z = τ (q)
j,z β̂

(q)
j,z

that select or remove coefficients from the wavelet series;

• the wavelet basis {ϕj,z, ψ(q)
j,z }.

In addition, the results regarding near optimal asymptotic behaviour presented

in Subsection 3.3.2 were announced under some assumptions that, as with tradi-

tional wavelet estimators, were formulated in terms of the regularity of the esti-

mated density. In practice this is a drawback since, in general, it is impossible to

know the parameters of the functional class where the function sits (Härdle et al,

1998). To address this, the chapter presents data driven methods that define sev-

eral of the parameters required above, making possible the practical application

of our methodology.

As pointed out in remarks following Theorem 6 and its corollary, the Hellinger

distance is a meaningful and natural risk measure for the shape-preserving esti-

mator based on the square root of the density. In here, we use this metric along

with Leave-one-out Cross-Validation (LOO-CV) to propose a framework whereby

the parameters above can be defined.

This chapter is structured as follows. In Section 4.2, we introduce the framework

and present two methods to find a suitable best resolution using the HD. Based on

this, Section 4.3 further extends the framework to select C(j) and find K or τ (q)
j,z

to make possible a hard threshold, non-linear definition of the estimator. Finally,

in Section 4.4, simulation results are shown demonstrating the practicality of the

above procedures.
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4.2 Resolution selection

As pointed out in Vannucci and Vidakovic (1997), one of the major issues in or-

thogonal series density estimation is choosing the amount of basis functions to

use. In the specific case of wavelet series, this is usually posed as finding the right

(projecting) scale parameter at which to truncate the wavelet series (3.9). It is

described in Hall and Penev (2001) as the primary resolution level, which plays a

similar role to the bandwidth parameter in the kernel density estimator, and so a

correct choice of this quantity can alleviate difficulties caused by over-smoothing,

when too small, or over-fitting, when too large (Vannucci and Vidakovic, 1997).

In fact, wavelet-based estimators are forgiving of over-smoothing. As noted in Hall

and Penev (2001), the penalty for a very large degree of over-smoothing is only a

logarithmic function of sample size in asymptotic terms and the reason that taking

a small (conservative) primary resolution level performs relatively well. However,

wavelet estimators are no more "forgiving of under-smoothing" than are conven-

tional kernel estimators, and so choosing a too large resolution level can degrade

performance fairly quickly . This has been demonstrated also in experiments for

our shape-preserving estimator in the linear case (Chapter 3), where increasing

the resolution level produces a sharp decline in performance.

In fact, contrary to Hall and Penev (2001) where the authors propose a "multiple

cross-validation" algorithm based on subregions, constructed via visual inspection

of a pilot estimate, that takes the minimum of the corresponding best resolutions

among those; here we present a CV algorithm to find an ideal resolution level

that is then used as the maximum resolution when it comes to calculate a non-

linear threshold of coefficients (see Theorem 9). So, instead of picking a J0 for

alphas and then adding some additional levels J0 . . . J1 of betas, our approach

here can be understood as finding a reasonably good J + 1 in (3.9) and working

our way backwards towards (3.8), pruning some betas in the process, to increase

the effectiveness of the initial estimate.

Marron (1987) presents and discusses various data-driven methods for choosing

the bandwidth in delta sequence estimators, i.e. linear estimators of the form
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f̂λ(x) = n−1∑n
i=1 δλ(x,Xi), where δλ ∶ Rd × Rd → R is indexed by the smooth-

ness parameter λ. Kernel-based and orthogonal series estimators are of this form

(Walter, 1992). In kernel density estimation, δh(x,Xi) = 1
hK((x − Xi)/h). In

wavelet-based density estimation, alpha only expansions are also of this form,

where δj(x,Xi) =Kj(x,Xi), Kj defined as (2.20). To see this, take the alpha only

part of (2.25) and rewrite the estimator

f̂j(x) = ∑
z∈Zd

α̂j,zϕj,z(x)

= ∑
z∈Zd

( 1

n

n

∑
i

ϕj,z(Xi))ϕj,z(x)

= n−1
n

∑
i

∑
z∈Zd

ϕj,z(Xi)ϕj,z(x)

= n−1
n

∑
i

Kj(Xi, x). (4.1)

Among the methods surveyed in Park and Marron (1990) to select λ, the most

widely studied is least squares CV, proposed by Rudemo (1982) and Bowman

(1984). This has been shown, for the kernel density estimator, to asymptotically

converge to the optimum under very weak conditions (Stone (1984); Burman

(1985)). In fact, Marron (1987) shows that choosing the bandwidth λ by these

methods in the somewhat general framework of delta sequences is, in a strong

sense, asymptotically equivalent to minimising the MISE. For the square root esti-

mator, this is the Hellinger distance, which motivates the definitions below.

As in this section we focus on determining an optimal resolution level, let ĝJ rep-

resent the alphas-only estimator at level J of the square root of f , as it is similarly

done for the same problem in the traditional wavelet estimator (Tribouley, 1995).

The HD between that estimator and the true density f is

HD(ĝ2
J , f)2 = 1

2 ∫
(∣ĝJ(x)∣ −

√
f(x))

2
dx = 1 − ∫ ∣ĝJ(x)∣

√
f(x) dx, (4.2)

assuming that ĝJ has been normalised, i.e. that ∫ ĝ2
J(x)dx = 1 by enforcing (3.10)

as explained there.

A subtlety here that seemed important in our numerical experiments is that al-
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though ĝ2
J = f is shape-preserving, ĝJ can be negative. Hence the use of ∣ĝJ ∣ =

√
ĝ2
J

above. The last integral is the Bhattacharyya Coefficient (BC) BJ between the esti-

mator ĝ2
J and f (Bhattacharyya, 1946). Minimising the HD is of course equivalent

to maximising this term, although it depends on f and is therefore not available

in practice.

Let ĥJ be the standard wavelet-based density estimator (2.25) without the betas.

Let S(−i) = {Xj ∶ j ≠ i} be the sample excluding Xi and ĥ
(−i)
J the same estimator

constructed from S(−i). It can be easily shown that, asymptotically as n→∞,

E{ 1

n

N

∑
i=1

ĥ
(−i)
J (Xi)} → E{∫ ĥJ(x)f(x)dx} ,

which suggests to use as estimator for the risk ISE(ĥJ , f) = ∥ĥJ − f∥
2
= ∥ĥJ∥

2
+

2 ∫ ĥJ(x)f(x)dx + ∥f∥2 the quantity

CV (J) = ∫ ĥ2
J(x)dx − 2

n

N

∑
i=1

ĥ
(−i)
J (Xi), (4.3)

which, although it does not include ∥f∥2 = ∫ f 2, can be used to determine a best

resolution level J as the missing, unknown term does not depend on J (Tribouley,

1995). This formulation is nothing but the traditional LOO-CV estimator for the

parameter J (Stone, 1974).

Going back to the BC, the occurrence of
√
f under the integral sign immediately

suggests a similar approach to (3.4), where ∣ĝ(−i)J ∣ plays the role of the square

integrable φ and where we "replace"
√
f(Xi) by 2√

π n

√
V(1);i, thus constructing an

empirical BC via LOO-CV.

We need to be more explicit than in Chapter 3 regarding normalisation of the

estimator. Here, we denote by g̊ the unnormalised, raw estimator (3.8), whereas

the normalised estimator becomes ĝ = 1
∥̊g∥ g̊. Note, this normalised version is the

one we used to report our results there. Thus, based on (3.6), (3.7) and (3.8)

(excluding the betas) we define the leave-one-out versions below.

Let the super-script (−i) denote our estimator calculated from the sample minus
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the i-th observation. The alphas-only version of the raw estimator, g̊(−i)J , is

g̊
(−i)
J (x) = ∑

z

α̂
(−i)
J,z ϕJ,z(x) (4.4)

= ∑
z

⎛
⎝

2√
π(n − 1)

∑
i′ ≠i

ϕJ,z(Xi′)
√
V

(−i)

(k);i′

⎞
⎠
ϕJ,z(x). (4.5)

From this the normalised estimator excluding observation i is

∥̊g(−i)J ∥
2
= ∑

z

(α̂(−i)
J,z )

2
(4.6)

ĝ
(−i)
J (x) = 1

∥g̃(−i)J ∥
g̊
(−i)
J (x). (4.7)

Then, by our previous discussion, we have that

B̂(v)
J = 2√

πn
∑
i

∣ĝ(−i)J (Xi)∣
√
V(1);i (4.8)

is a reasonable approximation to B(v)
J = ∫ ∣ĝJ(x)∣

√
f(x) dx - we use the superscript

(v) to indicate the use of the normalised ĝJ (we will use (u) for the unnormalised

counterpart).

With the above, we determine the smoothing parameter J as done for delta esti-

mators (Marron, 1987) using the Least Squares (LS) approach. For an i.i.d sample

S of size n, the data-driven, best resolution level is calculated as

Ĵ
(v)
n = argmax

j

2√
πn
∑
i

∣ĝ(−i)j (Xi)∣
√
V(1);i. (4.9)

This is our first method.

A slightly different approach (Geenens and Lafaye de Micheaux, 2020) is to re-

move ∥ĝ∥ = 1 in derivation (4.2) so as to deal with the L2 distance between the

unnormalised g̊ and
√
f , which leads to

1

2
∥∣̊gJ ∣ −

√
f∥

2
= 1

2 ∫
g̊J(x)2dx − ∫ ∣̊gJ(x)∣

√
f(x) dx + 1

2
. (4.10)

The middle term can be subject to the same treatment as above. Although g̊J is not
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a PDF and we have a correcting 1
2 ∥̊gJ∥ term, with a slight abuse of Bhattacharyya

’s terminology, we still refer to below using

B(u)
j = ∫ ∣̊gj(x)∣

√
f(x) dx − 1

2 ∫
g̊j(x)2 dx. (4.11)

This leads to the alternative best resolution formulation

Ĵ
(u)
n = argmax

j
B̂(u)
j

= argmax
j

{ 2√
πn
∑
i

∣̊g(−i)j (xi)∣
√
V(1);i −

1

2
∥̊gj∥2} . (4.12)

The advantage of this approach is not computational (we know that ∥̊gj∥ can be

easily calculated), but procedural - it helps us to determine the performance of

this estimator a lot easier because it does not have a ratio form with the parameter

being optimised in the denominator.

Let the true J for ĝJ (resp. g̊J) be J∗(v)n = argmaxj B
(v)
j (resp. J∗(u)n = argmaxj B

(u)
j ).

Although we know g̊J →
√
f in HD when 2J ∝ n1/(2m+d) for k = 1 (see Corollary 6.1

and following remark), it remains to be seen that the optimum B(v)
j converges in

some sense to the optimal J for ĝJ .

To do this, we use the same arguments outlined in Rudemo (1982); Hall (1982,

1983b) adapted to our setting. Namely, that the estimated resolution level will

be asymptotically optimal as the best (true) resolution if B(m)

J∗(m)
/B(m)

Ĵ
(m)

n

→ 1 in prob-

ability. For this, we adapt the strategy and results of Marron (1987) about the

asymptotic optimality of smoothing parameter determination via LOO-CV. Those

are general enough to apply to the two step process outlined in the overview:

resolution selection and thresholding parameter finding.

Denote by An the search parameter space for both steps, the resolution level and

the thresholding parameter. We introduce the following assumptions.

Assumption 4.2.1. Denote # (An) be the cardinality of the parameter space for

the smoothing parameter. Then # (An) ⩽ Cnρ for some C, ρ > 0, i.e. it grows at

most algebraically fast.
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Assumption 4.2.2. There are two positive constants C′, ε > 0, such that for any

possible parameter choice λ ∈ An, C′−1nε ≤ λ ≤ C′n1−ε.

Theorem 8. Under assumptions 3.2.1-3.3.1, 4.2.1-4.2.2, for both, the normalised

(m) = (v) and unnormalised (m) = (u) methods of J resolution selection, Ĵ(m)
n

is asymptotically optimal. This is, the true BC at the true optimum level J∗(m) is

asymptotically equal to the true BC calculated at the optimum Ĵ
(m)
n found using the

estimated coefficient. Formally,

lim
n→∞

B(m)

J∗(m)

B(m)

Ĵ
(m)

n

= 1 a.s.

The proof for (m) = (u), found in the appendix, is a recast of Theorem 2 in Mar-

ron (1987) for delta sequences, where the metric under consideration is the L2

distance in the hypersphere (4.10). There are some other rather technical as-

sumptions added in Marron (1987), but they are proven to hold for kernel and

orthogonal series estimators in Marron and Härdle (1986); Marron (1987) un-

der the other assumptions that we adopted here throughout the thesis. Assump-

tion 4.2.1 is simple enough for this and the following algorithm as we will discuss,

leaving Assumption 4.2.2 as the only other important assumption we have added.

The major subtlety in adopting the approach of Marron (1987) lies in the fact that

our alphas-only estimator is not exactly a delta sequence. So, instead of (4.1)

above, we have

g̊J(x) = ∑
z

α̂J,zϕJ,z(x)

= ∑
z

( 2√
πn

n

∑
i

ϕJ,z(Xi)
√
V(1);i)ϕJ,z(x)

=
n

∑
i

(∑
z

ϕJ,z(Xi)ϕJ,z(x))
2√
πn

√
V(1);i

=
n

∑
i

KJ(Xi, x)
2√
πn

√
V(1);i

=
n

∑
i

δJ(Xi, x)Fi,n, (4.13)

where the factor 1
n representing the Dirac mass at Xi, δXi, is replaced by a factor
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Fi,n (a random variable) that represents the square root of the density at i. Thus,

a delta sequence estimator can be seen as f̂λ(x) = ∑i δλ(Xi, x)δXi (see (2.28));

whereas our construction is, in an abstract sense1, g̊j(x) = ∑i δj(Xi, x)
√
δXi. The

case (m) = (v) follows naturally as asymptotically B(u)
j → B(v)

j − 1
2 as n→∞.

4.3 Thresholding coefficients

Our thresholding algorithm is again based on HD (4.2) and an empirical approxi-

mation similar to (4.8), along with the same variant around the use of g̊J instead

of ĝJ . First, fix J0 and J1. Note that in (2.31) and by using C(j) =
√
j − J0 + 1

(Delyon and Juditsky, 1996), β̂(q)
j,z is chosen if

∣β̂(q)
j,z ∣

√
j − J0 + 1

> λ, (4.14)

where we have absorbed
√
n into the unknown constant λ. Call the left hand side

λj,z,q and let λj[t],z[t],q[t] be the corresponding descending ordering of those lambdas

between levels J0 and J1. Let us use these indexes to reorder the betas from largest

to smallest and, with a little bit of abuse of notation, call them β[t], identifying [t]

with corresponding (j[t], z[t], q[t]). We can now write a hard-threshold version of

our unnormalised estimator with coefficients up to λ[τ] (see Figure 4.1) as

g̊[τ](x) = ∑
z∈Zd

α̂J0,zϕJ0,z(x) +
τ

∑
t=1

β̂[t]ψ[t](x). (4.15)

With a slight abuse of notation, we can think of all the alpha coefficients as rep-

resented by αj,z = β(0)
j,z and being prepended to the list of selected indexes (always

retained) and likewise ϕj,z represented by ψ(0)
j,z . With this notation, the expression

above can be put succinctly as

g̊[τ](x) =
τ

∑
t=1

β̂[t]ψ[t](x). (4.16)

The same normalisation as the original algorithm and a similar variant for the

LOO-CV formulation should allow us to construct ĝ(−i)
[τ]

. Now, similar to deriva-

1Of course, to be understood formally, as the square root of the Dirac’s δx function does not
make sense. The reader, however, may be familiar with the work of Craven (1985).
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Figure 4.1. Thresholding coefficients up to λ

tion (4.13), hard thresholding as per (2.31) up to λ[τ] can be written as a delta

sequence as

g̊[τ] =
n

∑
i

δ[τ] (x,Xi)Fi,n, (4.17)

where

δ[τ] (x,Xi) =
τ

∑
t=1

ψ[t](x)ψ[t] (Xi) . (4.18)

As mentioned above, we are expressing our estimator like that to make the results

of Marron (1987) for orthogonal series density estimators available. It is worth

adding that our notation ĝ[τ] emphasises the fact that, after fixing the levels, there

are only a finite number of cut points for the threshold constant λ that matter in a

given sample {Xi}, although it is of course meaningful to express, in all generality,

the hard-thresholding estimator for an arbitrary λ as ĝλ.

Proceeding in a similar fashion to the smoothing parameter J above, define the

empirical BC for a given λ[τ] as

B̂(v)

[τ]
= 2√

πn
∑
i

∣ĝ(−i)
[τ]

(Xi)∣
√
V(1);i, (4.19)

and the corresponding empirical optimum λ̂
(v)
n for samples of size n as

λ̂
(v)
n = argmax

λ
[τ]

2√
πn
∑
i

∣ĝ(−i)
[τ]

(Xi)∣
√
V(1);i. (4.20)

Let the true λ be λ∗(v) = supλB
(v)
λ = supλ ∫ ∣ĝλ(x)∣

√
f(x) dx, with ĝλ as previously

described. The unnormalised variants B̂(u)

[τ]
and λ̂(u)

n can be defined in similar fash-
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ion as in previous section, viz.

λ̂
(u)
n = argmax

λ
[τ]

B̂(u)
λ
[τ]

(4.21)

B̂(u)
λ
[τ]

= 2√
πn
∑
i

∣̊g(−i)
[τ]

(xi)∣
√
V(1);i −

1

2
∥̊g[τ]∥

2
. (4.22)

Then we have a similar result as for the resolution level

Theorem 9. Fix J1 = Ĵ(m)
n as per (4.9) and (4.12) for (m) = (v), (u) respectively.

Fix J0 ≤ J1 with J1−J0 = O(logn). Then under assumptions 3.2.1-3.3.1, 4.2.1-4.2.2,

where the parameter space here is An = {λj,z,q}, the quantities λ̂(m)
n as defined by

(4.20) and (4.21) are asymptotically optimal, this is

lim
n→∞

B(m)

λ∗(m)

B(m)

λ̂
(m)

n

= 1 a.s.

for (m) = (v), (u).

The sketch of the proof uses the same tools as Theorem 8 for Ĵ(m)
n and can be

found in the appendix.

Note that in our algorithm the optimal resolution level is J1, with J0 chosen few

levels below. As the constant in J1 −J0 = O(logn) is undetermined, one can follow

the standard practice of picking up few levels difference between these two.

Now, we propose a novel variation around (4.14). In Donoho and Johnstone

(1996), the right hand side of (2.31), KC(j)n1/2, depends on σ, the standard

deviation of the terms ψ(q)
j,z (Xi) −E [ψ(q)

j,z (Xi)], which in turn is linked to the errors

β̂j,z − βj,z. As ĝ(−i)
[τ]

requires calculating (β̂(q)
j,z )

(−i)
, we can use these to calculate an

empirical σ̂(q)
j,z leading to this novel threshold formulation

∣β̂(q)
jz ∣

σ̂
(q)
j,z

> λ (4.23)

where (σ̂(q)
j,z )

2
= Var{(β̂(q)

j,z )
(−i)

} is the jackknife estimator of variance of each beta

coefficient (Tukey, 1958; Miller, 1974; Efron and Stein, 1981). One by-product
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of above is that we have eliminated the need for a C(j) in (2.31), a subject of

theoretical controversy (Donoho et al, 1995; Donoho and Johnstone, 1996; Delyon

and Juditsky, 1996), pushing further for a fully data-driven threshold design.

Asymptotically, this is equivalent to our algorithm above but our simulations have

shown this approach to have benefits in most cases. Future work is required to

analyse this particular threshold method further.

4.4 Numerical experiments for non-linear estimator

Our algorithm for the non-linear case has two stages: first, determine the best

resolution to use and then calculate the hard-threshold value for beta coefficients

around that resolution. In the same manner, this section follows the same strategy:

first, it presents the performance of the best resolution level, comparing against its

true value, and second, it shows results for the various thresholding options and

discuss them.

4.4.1 Resolution level

In this section we present simulation results to determine the best resolution level

using the algorithms outlined in Section 4.2. Recall that we have two approaches,

Ĵ
(v)
n and Ĵ(u)

n , defined by (4.9) and (4.12), using the normalised and unnormalised

estimator respectively. Mixtures of different number of components, smoothness

and covariance structures were tested against a few wavelet bases with different

regularity. Densities used are shown in Figure 4.2: (a) is a similar 2D Gaussian

comb as in Chapter 3; (b) is a mixture of two pyramid densities2, i.e. non smooth;

(c) is a 2D Gaussian mixture with very different spreads; and (d) a mixture of

Gaussians with very elongated covariances in different directions. Analytic forms

are in the appendix.

For each of these densities and for different sizes, 100 samples of i.i.d observa-

tions were generated. Unlike experiments in the previous chapter, we opted here

to have sample sizes not following a power of two progression to highlight inter-

2These pyramids are constructed by taking the tensor product of two piecewise functions and
ensuring it integrates to one.



54 CHAPTER 4. THE NON-LINEAR SHAPE-PRESERVING DENSITY ESTIMATOR

(a) 2D Comb (b) Pyramids mix

(c) 2D Gaussian mix 1 (d) 2D Gaussian mix 2

Figure 4.2. Densities used in best J simulation study.

actions between the resolution level and the sample size. As the true density is

available, we calculated the HD of ĝ2
n to f and from this, computed the theoretical

best J∗(m)
n , (m) = (v), (u), for each sample. We compared the difference between

the estimated Ĵ(m)
n and the true J∗(m)

n for the different wavelet bases and the two

algorithms (m) = (v), (u), producing Figure 4.3 to Figure 4.6.

Figure 4.3 illustrates the performance of the method for Figure 4.3. In (a) and (b),

the point of highest average difference between calculated and true J is at n = 500

and n = 1000 for the Daubechies 4 and symlet 6 wavelet basis respectively. Below

(a), in (c), we present the corresponding B̂(m)

J plots for both (m) = (v), (u) for the
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Daubechies wavelet at sample size n = 500. In these plots, the normed version,

Ĵ
(v)
n , lies between [0,1], whereas Ĵ(u)

n diverges as the estimator overfits the sample

as J increases. However, the impact overall seems minimal as what matters is the

position of the peak. For comparison, the calculated HD to f is displayed at the

bottom of (c). Note that both, (v) and (u) methods produce the same HD - the

blue and amber lines are dotted so they are clearly superimposed on each other.

This is expected: even if we use the unnormed version of B̂(u)
J to determine J ,

the resulting function is always normalised, i.e. a bona fide density. Below (b),

in (d), the case n = 1000 for the symlet 6 wavelet is shown. Similarly to (c), the

peak of both curves for the BC, normalised and unnormalised, appear very flat.

The true HD on the other hand, seems well defined at J = 4. The result is that,

sometimes, the estimated Ĵ(m) may have a peak at J = 3 instead of 4, producing

the average difference shown in the plot above. However, in these cases, it seems

to be under-predicting, which results in a conservative J .

A similar situation is depicted in Figure 4.4. Here, the average difference reaches

−1 at relatively large sample sizes. Here the bottom of the HD curve is slightly

tilted on the J = 5 side whereas the peak of both curves, B̂(v)
J and B̂

(u)
J , is on

the J = 4 side. In this case, it makes sense to approach the problem of picking

a resolution level in the continuum, as suggested in (Hall and Penev, 2001). See

Chapter 6, Discussion.

In the next section, we will see that despite this apparent shortcoming, further

extending the estimator by applying thresholding does indeed improve its per-

formance. Finally, here we also demonstrate that our shape-preserving estimator

works well in the biorthogonal case which we describe briefly in Chapter 6. Specif-

ically, here we extended our wavelet estimator for biorthogonal wavelets using the

estimated coefficients (6.1) and the norm (6.3).

The density in Figure 4.2 (c) is a typical example of suitability of wavelet thresh-

olding in density estimation, as it exhibits components with high locality. At a

relatively large sample size, we see in Figure 4.5, (a) and (b), that the resolution

level seems to be underpredicted for n = 5000. In this particular case, the cor-

responding curves (c) and (d) appear to have a plateau in the range J = 2 . . .4.
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(a) Average difference using Daubechies 4 (b) Average difference using symlet 6

(c) B̂(m)

J and HD for n = 500 (d) B̂(m)

J and HD for n = 1000

Figure 4.3. Results in best J methods over 100 simulations for each sample size for the density
shown in Figure 4.2 (a). Top row, average difference in calculated Ĵ

(m)
n versus true value J∗(m)n

for two wavelet bases and a few sample sizes. Bottom row, comparison between optimisation
curves for B̂(m)J and corresponding true Hellinger distances for two sample sizes across different
resolution levels. Note that the Hellinger distances are identical for the two methods, as expected.

We believe the practitioner should always inspect the spread of the optimisation

curve to discover potential issues like this. A technique like a continuum resolu-

tion level may alleviate the problem. It is worth adding that, as can be seen in

Subsection 3.4.1, our estimator seems to have faster decay in performance after

the optimum than the classical one. This is the reason why we use this optimum

resolution level Ĵ(m) as the upper limit J in (3.5) and leave J0 as few levels below

but leave for future research the theoretical reasons behind this phenomenon.

We conclude these examples on best resolution level choice with a typical anisotropic

density, Figure 4.2 (d). As can be seen, unlike the issues with locality shown above,
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(a) Using symlet 6 (b) Using biortogonal spline 2.8

(c) B̂(m)

J and HD for n = 3500 (d) B̂(m)

J and HD for n = 3500

Figure 4.4. Best J difference for Figure 4.2 (b).

the algorithm seems to perform well under the anisotropic case. At n = 5000, it

seems to have found the right resolution and the B̂(m)

J , (m) = (v), (u), and HD

curves seem aligned.

4.4.2 Thresholding

Recall that we introduced two optimisation solutions, λ̂(v)
n and λ̂(u)

n , corresponding

to the normalised and unnormalised approximation of the BC. We also presented

two possible hard-thresholding inequalities, (4.14) and (4.23), corresponding to

a level-dependent threshold (Donoho and Johnstone, 1996; Delyon and Juditsky,

1996) and our novel threshold involving the estimation of the variance of β̂(q)
j,z .

More over, for comparison, we also used the universal threshold ∣β̂(q)
jz ∣ > λ, orig-

inally defined for the classical estimator (Donoho et al, 1995). For the wavelets
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(a) Using Daubechies 4 (b) Using symlet 6

(c) B̂(m)

J and HD for n = 5000 (d) B̂(m)

J and HD for n = 5000

Figure 4.5. Best J difference for Figure 4.2 (c).

basis, we used just symlets with 3 and 4 vanishing moments, and Daubechies

wavelet with 4 vanishing movements. The number of resolution levels for betas

was 1, 2 or 3, below the best J calculated by the procedure in previous section. In

all, we passed each density and sample size through a battery of 2 x 3 x 3 x 3 = 54

combinations, which we briefly report below.

Again, we picked sample sizes not following a 2K geometric progression to capture

the effect of discretisation imposed by integer resolution levels. Here, we focused

this final analysis on two combs and two mixtures, all Gaussian mixtures, in the

spirit of Figure 3.1 (a) and (d), in turn inspired by Marron and Wand (1992).

Figure 4.7 (a) is a kurtotic, bimodal mixture made out of three Gaussians; (b) is

a simple mixture of two Gaussians with different spread; (c) is similar to the claw
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(a) Using symlet 6 (b) Using biortogonal spline 3.9

(c) B̂(m)

J and HD for n = 5000 (d) B̂(m)

J and HD for n = 5000

Figure 4.6. Best J difference for Figure 4.2 (d).

density in Marron and Wand (1992); and (d) is akin to the smooth comb there but

in 2D. The analytic forms are in the appendix.

For each sample size, we generated 100 samples, we ran the best J algorithm

corresponding to the normalised and unnormalised optimisation targets, followed

by runs of the 9 combinations of the remaining parameters explained above. For

comparison, we ran a multivariate KDE estimator with a Gaussian kernel and a

bandwidth (covariance) matrix H

f̂(x) = 1

n

n

∑
i=1

∣H ∣−1/2 (2π)−d/2 e− 1
2
(x−Xi)

TH−1(x−Xi).

At the end, the HD was calculated using a grid method.
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(a) Kurtotic Mixture 1 (b) Mixture 2

(c) 2D Comb 1 (claw) (d) 2D Smooth comb

Figure 4.7. Densities used in hard threshold simulation study.

Simulation results for these densities, using the Daubechies 4 and Symlet 3 wavelets

are summarised in Table 4.1 to Table 4.4. The columns on those are: n is the sam-

ple size; B̂(m)

J is the Bhattacharyya formula used, (m) = (v), (u); ∆J is the number

of levels below Ĵ
(m)
n ; KDE is the median HD (approximated as explained above) for

the KDE estimator with covariance H calculated via CV using maximum likelihood

(Seabold and Perktold, 2010); λ, λ
√

∆J and λσB are the different hard-threshold

algorithms, corresponding to the simple universal threshold ∣β̂(q)
jz ∣ > λ, (4.14) and

(4.23) respectively. For each of these thresholding algorithms, first quantile Q1,

median Med and Q3 are reported. We have used bold face to highlight the cases in
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which the median HD for these estimators is less than or equal to the correspond-

ing median for the KDE. Note that we are comparing the kernel estimator, which

does not drop any observation and in essence has n free parameters, against our

method that aims to reduce the number of parameters using thresholding. Re-

ducing the number of free parameters without compromising performance is a

key requirement in big data applications. So, the fact that our algorithm achieves

similar performance in several cases is noteworthy.

We start our analysis by highlighting some facts in Table 4.1 for the kurtotic

mixture (Figure 4.7 (a)). In these experiments as well as in the others we per-

formed, one observes a slight decrease in performance by using more than 1 level

of delta estimators but it is always within margin of error. Other thresholding

options like soft and block thresholding are worth experimenting with to see if

this phenomenon is different. Indeed, in our real data analysis, without any a

priori knowledge of the truth, it seemed 2 levels produced better density estimates

(see next section). We note also that in this experiment and the others, our novel

hard thersholding of formula (4.23) performed better than the other well-known

strategies. Finally, for this kurtotic mixture, the performance of our estimator is

better towards the big sample sizes3.

Gaussian Mixture 2 (Figure 4.7 (b)) is an interesting case where one can see

our non linear estimator performing better than KDE for small sample sizes (Ta-

ble 4.2). We can add, for instance, that for n = 250, ∆J = 1 the median of number

of coefficients was 187 and 183 for the normed and unnormed algorithms respec-

tively (see supplementary Table B.2).

In Table 4.3, 2D Comb (claw) (Figure 4.7 (c)), we see a similar phenomenon to

Table 4.1 but here using Symlet with 3 vanishing moments. In this case and the

next one, less regularity is better. See the plots for all these tables in Appendix B.

Note that in many cases, the KDE median estimate is outside the Q1 −Q3 range.

In fact, it is quite remarkable that at n = 6000 one can get a HD close to or better

than the KDE by using less that 500 coefficients.

3The fact that wavelet methods are showing their advantages at larger sample sizes and high
signal-to-noise ratios is well documented in the literature (see, e.g., Hall et al. (2018))) and we
observe this phenomenon being confirmed in our present simulations.
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n B̂(m)
J

∆J
λ λ

√
∆J λσB

KDE
Q1 Med Q3 Q1 Med Q3 Q1 Med Q3

250

B̂(v)
J

1 0.0805 0.0881 0.0952 0.0805 0.0881 0.0952 0.0810 0.0889 0.0962

0.0410

2 0.0812 0.0871 0.0948 0.0828 0.0885 0.0960 0.0820 0.0898 0.0983

3 0.0816 0.0871 0.0944 0.0828 0.0879 0.0942 0.0820 0.0898 0.0983

B̂(u)
J

1 0.0845 0.0904 0.0966 0.0845 0.0904 0.0966 0.0859 0.0924 0.0963

2 0.0838 0.0882 0.0972 0.0842 0.0891 0.0971 0.0868 0.0927 0.0989

3 0.0838 0.0879 0.0952 0.0836 0.0879 0.0940 0.0868 0.0927 0.0990

500

B̂(v)
J

1 0.0374 0.0447 0.0781 0.0374 0.0447 0.0781 0.0315 0.0396 0.0785

0.0294

2 0.0427 0.0514 0.0775 0.0464 0.0583 0.0775 0.0340 0.0407 0.0785

3 0.0438 0.0523 0.0776 0.0482 0.0591 0.0776 0.0341 0.0407 0.0786

B̂(u)
J

1 0.0387 0.0772 0.0810 0.0387 0.0772 0.0810 0.0340 0.0778 0.0807

2 0.0467 0.0767 0.0809 0.0512 0.0771 0.0810 0.0367 0.0781 0.0810

3 0.0481 0.0768 0.0809 0.0518 0.0768 0.0810 0.0367 0.0781 0.0810

1000

B̂(v)
J

1 0.0215 0.0239 0.0275 0.0215 0.0239 0.0275 0.0186 0.0203 0.0229

0.0199

2 0.0226 0.0255 0.0299 0.0241 0.0282 0.0326 0.0192 0.0214 0.0241

3 0.0242 0.0264 0.0309 0.0261 0.0295 0.0336 0.0192 0.0215 0.0242

B̂(u)
J

1 0.0218 0.0239 0.0271 0.0218 0.0239 0.0271 0.0187 0.0205 0.0230

2 0.0229 0.0258 0.0302 0.0248 0.0287 0.0331 0.0192 0.0216 0.0241

3 0.0243 0.0274 0.0310 0.0265 0.0303 0.0339 0.0193 0.0217 0.0242

1500

B̂(v)
J

1 0.0154 0.0174 0.0198 0.0154 0.0174 0.0198 0.0139 0.0156 0.0171

0.0157

2 0.0166 0.0186 0.0211 0.0176 0.0200 0.0226 0.0144 0.0164 0.0178

3 0.0172 0.0192 0.0220 0.0179 0.0205 0.0231 0.0145 0.0164 0.0179

B̂(u)
J

1 0.0152 0.0174 0.0198 0.0152 0.0174 0.0198 0.0139 0.0153 0.0169

2 0.0165 0.0186 0.0211 0.0174 0.0200 0.0226 0.0143 0.0163 0.0176

3 0.0171 0.0192 0.0220 0.0179 0.0205 0.0231 0.0144 0.0163 0.0176

2000

B̂(v)
J

1 0.0133 0.0145 0.0165 0.0133 0.0145 0.0165 0.0119 0.0132 0.0145

0.0136

2 0.0139 0.0151 0.0169 0.0141 0.0163 0.0175 0.0121 0.0133 0.0151

3 0.0143 0.0156 0.0177 0.0148 0.0164 0.0180 0.0122 0.0134 0.0151

B̂(u)
J

1 0.0133 0.0145 0.0164 0.0133 0.0145 0.0164 0.0119 0.0131 0.0144

2 0.0140 0.0151 0.0169 0.0144 0.0163 0.0175 0.0121 0.0133 0.0150

3 0.0143 0.0156 0.0174 0.0148 0.0164 0.0179 0.0122 0.0134 0.0150

3000

B̂(v)
J

1 0.0105 0.0110 0.0120 0.0105 0.0110 0.0120 0.0095 0.0100 0.0107

0.0109

2 0.0107 0.0116 0.0124 0.0109 0.0121 0.0130 0.0097 0.0103 0.0110

3 0.0108 0.0116 0.0127 0.0111 0.0122 0.0132 0.0097 0.0103 0.0110

B̂(u)
J

1 0.0105 0.0110 0.0120 0.0105 0.0110 0.0120 0.0094 0.0100 0.0107

2 0.0107 0.0116 0.0124 0.0110 0.0121 0.0129 0.0097 0.0103 0.0111

3 0.0108 0.0117 0.0126 0.0111 0.0122 0.0133 0.0097 0.0104 0.0110

4000

B̂(v)
J

1 0.0086 0.0091 0.0099 0.0086 0.0091 0.0099 0.0081 0.0087 0.0092

0.0094

2 0.0091 0.0095 0.0105 0.0094 0.0097 0.0107 0.0082 0.0087 0.0094

3 0.0091 0.0096 0.0106 0.0094 0.0100 0.0109 0.0082 0.0087 0.0094

B̂(u)
J

1 0.0087 0.0092 0.0101 0.0087 0.0092 0.0101 0.0081 0.0087 0.0092

2 0.0091 0.0096 0.0106 0.0094 0.0098 0.0108 0.0081 0.0088 0.0093

3 0.0091 0.0097 0.0107 0.0095 0.0100 0.0112 0.0082 0.0088 0.0093

6000

B̂(v)
J

1 0.0068 0.0075 0.0081 0.0068 0.0075 0.0081 0.0065 0.0070 0.0077

0.0072

2 0.0070 0.0076 0.0082 0.0074 0.0079 0.0085 0.0067 0.0072 0.0077

3 0.0073 0.0077 0.0080 0.0077 0.0081 0.0088 0.0067 0.0072 0.0077

B̂(u)
J

1 0.0067 0.0073 0.0078 0.0067 0.0073 0.0078 0.0064 0.0069 0.0073

2 0.0068 0.0074 0.0080 0.0071 0.0076 0.0084 0.0065 0.0070 0.0074

3 0.0069 0.0074 0.0080 0.0072 0.0077 0.0085 0.0065 0.0070 0.0074

Table 4.1. (Approximated) Mean Squared Hellinger Distance (MSHD) for the vari-
ous non linear estimator algorithms using the Daubechie 4 wavelet for the density
Kurtotic Mixture 1 (Figure 4.7 (a)). See text for column descriptions. Correspond-
ing number of coefficients found in table B.1

The 2D smooth comb (Figure 4.7 (d)) turned out to be somewhat disappointing.

Again, we saw good performance of the estimators built using Symlet 3 for small

sample sizes - although KDE tended to be inside the Q1−Q3 quantile range, which

arguably puts it at the same level. As the sample size increases, the estimators’

performance improves as expected, but it cannot keep with KDE which seems to
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n B̂(m)
J

∆J
λ λ

√
∆J λσB

KDE
Q1 Med Q3 Q1 Med Q3 Q1 Med Q3

250

B̂(v)
J

1 0.0365 0.0401 0.0479 0.0365 0.0401 0.0479 0.0250 0.0300 0.0344

0.0351

2 0.0426 0.0483 0.0538 0.0456 0.0510 0.0596 0.0289 0.0326 0.0377

3 0.0441 0.0496 0.0562 0.0460 0.0527 0.0621 0.0295 0.0336 0.0386

B̂(u)
J

1 0.0365 0.0399 0.0463 0.0365 0.0399 0.0463 0.0246 0.0289 0.0340

2 0.0421 0.0483 0.0545 0.0456 0.0510 0.0597 0.0290 0.0326 0.0372

3 0.0447 0.0502 0.0562 0.0468 0.0527 0.0625 0.0292 0.0348 0.0380

500

B̂(v)
J

1 0.0231 0.0267 0.0329 0.0231 0.0267 0.0329 0.0176 0.0206 0.0238

0.0247

2 0.0254 0.0298 0.0346 0.0259 0.0320 0.0370 0.0185 0.0223 0.0265

3 0.0253 0.0302 0.0355 0.0263 0.0306 0.0377 0.0188 0.0223 0.0269

B̂(u)
J

1 0.0230 0.0267 0.0326 0.0230 0.0267 0.0326 0.0176 0.0202 0.0235

2 0.0251 0.0298 0.0353 0.0266 0.0320 0.0372 0.0185 0.0223 0.0262

3 0.0264 0.0302 0.0355 0.0263 0.0318 0.0379 0.0190 0.0223 0.0269

1000

B̂(v)
J

1 0.0149 0.0159 0.0183 0.0149 0.0159 0.0183 0.0128 0.0140 0.0155

0.0163

2 0.0153 0.0169 0.0195 0.0156 0.0177 0.0198 0.0132 0.0146 0.0162

3 0.0156 0.0171 0.0198 0.0157 0.0179 0.0207 0.0132 0.0146 0.0162

B̂(u)
J

1 0.0149 0.0159 0.0184 0.0149 0.0159 0.0184 0.0128 0.0140 0.0155

2 0.0154 0.0169 0.0196 0.0158 0.0179 0.0198 0.0132 0.0146 0.0162

3 0.0156 0.0171 0.0199 0.0158 0.0180 0.0207 0.0132 0.0146 0.0162

1500

B̂(v)
J

1 0.0114 0.0124 0.0141 0.0114 0.0124 0.0141 0.0102 0.0114 0.0126

0.0128

2 0.0119 0.0130 0.0147 0.0123 0.0136 0.0155 0.0105 0.0115 0.0129

3 0.0118 0.0130 0.0150 0.0123 0.0136 0.0157 0.0105 0.0115 0.0129

B̂(u)
J

1 0.0114 0.0124 0.0141 0.0114 0.0124 0.0141 0.0102 0.0114 0.0126

2 0.0119 0.0130 0.0147 0.0123 0.0136 0.0155 0.0105 0.0115 0.0129

3 0.0118 0.0130 0.0150 0.0123 0.0133 0.0157 0.0105 0.0115 0.0129

2000

B̂(v)
J

1 0.0098 0.0104 0.0113 0.0098 0.0104 0.0113 0.0090 0.0097 0.0107

0.0110

2 0.0103 0.0111 0.0120 0.0105 0.0113 0.0124 0.0090 0.0099 0.0108

3 0.0101 0.0111 0.0121 0.0103 0.0112 0.0125 0.0090 0.0099 0.0108

B̂(u)
J

1 0.0099 0.0104 0.0113 0.0099 0.0104 0.0113 0.0090 0.0097 0.0107

2 0.0103 0.0111 0.0120 0.0105 0.0113 0.0124 0.0090 0.0099 0.0108

3 0.0101 0.0111 0.0121 0.0104 0.0112 0.0125 0.0090 0.0099 0.0108

3000

B̂(v)
J

1 0.0078 0.0087 0.0096 0.0078 0.0087 0.0096 0.0075 0.0084 0.0091

0.0087

2 0.0082 0.0090 0.0099 0.0083 0.0090 0.0100 0.0075 0.0085 0.0091

3 0.0081 0.0089 0.0097 0.0082 0.0091 0.0098 0.0075 0.0085 0.0091

B̂(u)
J

1 0.0078 0.0087 0.0096 0.0078 0.0087 0.0096 0.0075 0.0084 0.0090

2 0.0082 0.0090 0.0099 0.0083 0.0090 0.0100 0.0075 0.0085 0.0091

3 0.0081 0.0089 0.0097 0.0082 0.0091 0.0098 0.0075 0.0085 0.0091

4000

B̂(v)
J

1 0.0069 0.0072 0.0080 0.0069 0.0072 0.0080 0.0065 0.0070 0.0076

0.0073

2 0.0070 0.0074 0.0080 0.0071 0.0075 0.0082 0.0066 0.0071 0.0076

3 0.0070 0.0073 0.0080 0.0071 0.0074 0.0081 0.0066 0.0071 0.0076

B̂(u)
J

1 0.0069 0.0072 0.0080 0.0069 0.0072 0.0080 0.0065 0.0070 0.0076

2 0.0070 0.0074 0.0080 0.0072 0.0075 0.0082 0.0066 0.0071 0.0076

3 0.0070 0.0074 0.0081 0.0071 0.0075 0.0082 0.0066 0.0071 0.0076

6000

B̂(v)
J

1 0.0059 0.0062 0.0065 0.0059 0.0062 0.0065 0.0057 0.0061 0.0064

0.0057

2 0.0060 0.0063 0.0066 0.0061 0.0064 0.0068 0.0057 0.0061 0.0064

3 0.0060 0.0064 0.0066 0.0061 0.0065 0.0067 0.0057 0.0061 0.0064

B̂(u)
J

1 0.0059 0.0062 0.0065 0.0059 0.0062 0.0065 0.0057 0.0061 0.0064

2 0.0060 0.0063 0.0066 0.0061 0.0064 0.0068 0.0057 0.0061 0.0064

3 0.0060 0.0064 0.0066 0.0061 0.0065 0.0067 0.0057 0.0061 0.0064

Table 4.2. (Approximated) Mean Squared Hellinger Distance (MSHD) for the vari-
ous non linear estimator algorithms using the Daubechie 4 wavelet for the density
Mixture 2 (Figure 4.7 (b)). See text for column descriptions. Corresponding num-
ber of coefficients found in table B.2

improve faster. Despite this, we stress on the fact that the discrepancy in the risk

values is non significant. Maybe this could reappear if we increase the sample size

and the best J level hits a sweet spot of good performance, but of course we are

not sure. For more on this, specially in regards to potential improvements, visit

our discussion in Chapter 6. Nonetheless, it is interesting to note that one achieves
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n B̂(m)
J

∆J
λ λ

√
∆J λσB

KDE
Q1 Med Q3 Q1 Med Q3 Q1 Med Q3

250

B̂(v)
J

1 0.0609 0.0664 0.0714 0.0609 0.0664 0.0714 0.0629 0.0671 0.0749

0.0574

2 0.0622 0.0658 0.0720 0.0623 0.0651 0.0718 0.0634 0.0693 0.0754

3 0.0610 0.0656 0.0708 0.0603 0.0652 0.0691 0.0634 0.0693 0.0753

B̂(u)
J

1 0.0609 0.0664 0.0718 0.0609 0.0664 0.0718 0.0630 0.0676 0.0752

2 0.0620 0.0658 0.0725 0.0623 0.0655 0.0718 0.0644 0.0695 0.0754

3 0.0606 0.0651 0.0708 0.0603 0.0656 0.0695 0.0646 0.0695 0.0754

500

B̂(v)
J

1 0.0497 0.0523 0.0564 0.0497 0.0523 0.0564 0.0498 0.0530 0.0571

0.0386

2 0.0501 0.0531 0.0559 0.0503 0.0533 0.0564 0.0504 0.0533 0.0571

3 0.0499 0.0528 0.0553 0.0499 0.0524 0.0554 0.0506 0.0534 0.0571

B̂(u)
J

1 0.0501 0.0528 0.0567 0.0501 0.0528 0.0567 0.0504 0.0537 0.0572

2 0.0503 0.0532 0.0560 0.0504 0.0533 0.0559 0.0509 0.0537 0.0571

3 0.0499 0.0528 0.0557 0.0499 0.0523 0.0551 0.0509 0.0537 0.0571

1000

B̂(v)
J

1 0.0233 0.0266 0.0334 0.0233 0.0266 0.0334 0.0210 0.0249 0.0300

0.0257

2 0.0259 0.0299 0.0361 0.0275 0.0322 0.0398 0.0222 0.0262 0.0314

3 0.0269 0.0307 0.0388 0.0301 0.0344 0.0421 0.0224 0.0263 0.0315

B̂(u)
J

1 0.0234 0.0281 0.0451 0.0234 0.0281 0.0451 0.0216 0.0261 0.0452

2 0.0261 0.0305 0.0450 0.0276 0.0330 0.0449 0.0227 0.0270 0.0454

3 0.0272 0.0315 0.0450 0.0306 0.0349 0.0449 0.0228 0.0270 0.0454

1500

B̂(v)
J

1 0.0170 0.0190 0.0214 0.0170 0.0190 0.0214 0.0161 0.0177 0.0197

0.0205

2 0.0185 0.0207 0.0224 0.0202 0.0222 0.0246 0.0168 0.0183 0.0199

3 0.0197 0.0215 0.0240 0.0216 0.0239 0.0262 0.0167 0.0183 0.0202

B̂(u)
J

1 0.0170 0.0189 0.0214 0.0170 0.0189 0.0214 0.0160 0.0177 0.0200

2 0.0185 0.0207 0.0226 0.0201 0.0222 0.0246 0.0167 0.0183 0.0203

3 0.0197 0.0216 0.0240 0.0218 0.0239 0.0266 0.0167 0.0182 0.0202

2000

B̂(v)
J

1 0.0145 0.0161 0.0177 0.0145 0.0161 0.0177 0.0135 0.0147 0.0159

0.0174

2 0.0158 0.0178 0.0190 0.0170 0.0189 0.0204 0.0140 0.0149 0.0163

3 0.0169 0.0185 0.0197 0.0182 0.0198 0.0220 0.0140 0.0149 0.0163

B̂(u)
J

1 0.0145 0.0161 0.0176 0.0145 0.0161 0.0176 0.0135 0.0147 0.0157

2 0.0157 0.0175 0.0188 0.0170 0.0189 0.0205 0.0140 0.0149 0.0163

3 0.0169 0.0184 0.0198 0.0182 0.0200 0.0221 0.0139 0.0149 0.0164

3000

B̂(v)
J

1 0.0119 0.0126 0.0138 0.0119 0.0126 0.0138 0.0112 0.0120 0.0129

0.0138

2 0.0127 0.0135 0.0143 0.0133 0.0142 0.0150 0.0114 0.0123 0.0130

3 0.0133 0.0139 0.0150 0.0138 0.0146 0.0158 0.0115 0.0123 0.0130

B̂(u)
J

1 0.0119 0.0126 0.0136 0.0119 0.0126 0.0136 0.0111 0.0119 0.0128

2 0.0127 0.0133 0.0143 0.0133 0.0142 0.0149 0.0112 0.0122 0.0129

3 0.0133 0.0139 0.0149 0.0138 0.0146 0.0158 0.0113 0.0123 0.0130

4000

B̂(v)
J

1 0.0105 0.0113 0.0119 0.0105 0.0113 0.0119 0.0098 0.0105 0.0110

0.0115

2 0.0112 0.0118 0.0127 0.0115 0.0121 0.0131 0.0101 0.0107 0.0114

3 0.0115 0.0120 0.0129 0.0117 0.0125 0.0132 0.0101 0.0107 0.0114

B̂(u)
J

1 0.0105 0.0113 0.0119 0.0105 0.0113 0.0119 0.0098 0.0105 0.0110

2 0.0112 0.0118 0.0127 0.0115 0.0121 0.0131 0.0101 0.0107 0.0114

3 0.0115 0.0120 0.0129 0.0117 0.0125 0.0132 0.0101 0.0107 0.0114

6000

B̂(v)
J

1 0.0091 0.0093 0.0098 0.0091 0.0093 0.0098 0.0083 0.0088 0.0091

0.0092

2 0.0093 0.0097 0.0100 0.0093 0.0098 0.0102 0.0085 0.0088 0.0092

3 0.0093 0.0097 0.0101 0.0094 0.0099 0.0104 0.0085 0.0088 0.0092

B̂(u)
J

1 0.0089 0.0093 0.0098 0.0089 0.0093 0.0098 0.0082 0.0087 0.0090

2 0.0092 0.0097 0.0100 0.0093 0.0098 0.0103 0.0083 0.0088 0.0092

3 0.0092 0.0097 0.0103 0.0093 0.0099 0.0104 0.0084 0.0088 0.0091

Table 4.3. (Approximated) Mean Squared Hellinger Distance (MSHD) for the var-
ious non linear estimator algorithms using the Symlet 3 wavelet for the density 2D
Comb 1 (claw) (Figure 4.7 (c)). See text for column descriptions. Corresponding
number of coefficients found in table B.3

a remarkably low HD using as little as 163 coefficients4.

4163 is the median of number of coefficients for the case n = 6000, B̂(u)J , ∆J = 1, λσB in the
table. See complementary results in Table B.4
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n B̂(m)
J

∆J
λ λ

√
∆J λσB

KDE
Q1 Med Q3 Q1 Med Q3 Q1 Med Q3

250

B̂(v)
J

1 0.0241 0.0282 0.0347 0.0241 0.0282 0.0347 0.0221 0.0265 0.0323

0.0312

2 0.0244 0.0283 0.0348 0.0249 0.0296 0.0351 0.0224 0.0277 0.0336

3 0.0245 0.0281 0.0336 0.0244 0.0282 0.0324 0.0224 0.0277 0.0336

B̂(u)
J

1 0.0241 0.0283 0.0351 0.0241 0.0283 0.0351 0.0217 0.0265 0.0322

2 0.0248 0.0286 0.0349 0.0248 0.0294 0.0354 0.0223 0.0277 0.0335

3 0.0246 0.0280 0.0336 0.0244 0.0278 0.0325 0.0223 0.0277 0.0335

500

B̂(v)
J

1 0.0176 0.0196 0.0229 0.0176 0.0196 0.0229 0.0159 0.0186 0.0206

0.0207

2 0.0176 0.0199 0.0229 0.0177 0.0200 0.0232 0.0161 0.0190 0.0213

3 0.0172 0.0194 0.0230 0.0170 0.0196 0.0224 0.0161 0.0190 0.0213

B̂(u)
J

1 0.0176 0.0199 0.0231 0.0176 0.0199 0.0231 0.0159 0.0186 0.0206

2 0.0177 0.0199 0.0229 0.0178 0.0200 0.0232 0.0161 0.0190 0.0214

3 0.0172 0.0194 0.0230 0.0171 0.0196 0.0224 0.0161 0.0190 0.0214

1000

B̂(v)
J

1 0.0126 0.0132 0.0148 0.0126 0.0132 0.0148 0.0122 0.0132 0.0144

0.0138

2 0.0125 0.0132 0.0146 0.0126 0.0133 0.0146 0.0125 0.0133 0.0147

3 0.0124 0.0132 0.0146 0.0124 0.0131 0.0144 0.0125 0.0133 0.0147

B̂(u)
J

1 0.0126 0.0132 0.0148 0.0126 0.0132 0.0148 0.0122 0.0132 0.0144

2 0.0125 0.0132 0.0146 0.0126 0.0133 0.0146 0.0125 0.0133 0.0147

3 0.0124 0.0132 0.0146 0.0124 0.0131 0.0144 0.0125 0.0133 0.0147

1500

B̂(v)
J

1 0.0111 0.0118 0.0127 0.0111 0.0118 0.0127 0.0110 0.0118 0.0126

0.0109

2 0.0110 0.0117 0.0126 0.0110 0.0118 0.0126 0.0110 0.0118 0.0127

3 0.0111 0.0117 0.0126 0.0110 0.0118 0.0126 0.0110 0.0118 0.0127

B̂(u)
J

1 0.0111 0.0118 0.0127 0.0111 0.0118 0.0127 0.0110 0.0118 0.0126

2 0.0110 0.0117 0.0126 0.0110 0.0118 0.0126 0.0111 0.0118 0.0127

3 0.0111 0.0117 0.0126 0.0110 0.0118 0.0126 0.0111 0.0118 0.0127

2000

B̂(v)
J

1 0.0105 0.0110 0.0118 0.0105 0.0110 0.0118 0.0105 0.0111 0.0118

0.0092

2 0.0105 0.0110 0.0117 0.0104 0.0109 0.0117 0.0106 0.0111 0.0119

3 0.0105 0.0109 0.0116 0.0104 0.0109 0.0117 0.0106 0.0111 0.0119

B̂(u)
J

1 0.0105 0.0110 0.0118 0.0105 0.0110 0.0118 0.0105 0.0111 0.0118

2 0.0104 0.0110 0.0117 0.0105 0.0109 0.0117 0.0106 0.0111 0.0119

3 0.0105 0.0109 0.0116 0.0104 0.0109 0.0117 0.0106 0.0111 0.0119

3000

B̂(v)
J

1 0.0097 0.0100 0.0104 0.0097 0.0100 0.0104 0.0097 0.0100 0.0104

0.0073

2 0.0096 0.0100 0.0103 0.0096 0.0100 0.0104 0.0097 0.0101 0.0105

3 0.0096 0.0100 0.0104 0.0096 0.0099 0.0103 0.0097 0.0101 0.0105

B̂(u)
J

1 0.0097 0.0100 0.0104 0.0097 0.0100 0.0104 0.0097 0.0100 0.0104

2 0.0096 0.0100 0.0103 0.0096 0.0100 0.0104 0.0097 0.0101 0.0105

3 0.0096 0.0100 0.0104 0.0096 0.0099 0.0103 0.0097 0.0101 0.0105

4000

B̂(v)
J

1 0.0093 0.0095 0.0098 0.0093 0.0095 0.0098 0.0093 0.0097 0.0099

0.0062

2 0.0092 0.0095 0.0098 0.0092 0.0095 0.0097 0.0093 0.0097 0.0100

3 0.0092 0.0095 0.0098 0.0092 0.0095 0.0097 0.0093 0.0097 0.0100

B̂(u)
J

1 0.0093 0.0095 0.0098 0.0093 0.0095 0.0098 0.0093 0.0097 0.0100

2 0.0093 0.0095 0.0098 0.0093 0.0095 0.0098 0.0093 0.0097 0.0100

3 0.0092 0.0095 0.0098 0.0092 0.0095 0.0098 0.0093 0.0097 0.0100

6000

B̂(v)
J

1 0.0088 0.0090 0.0091 0.0088 0.0090 0.0091 0.0089 0.0090 0.0092

0.0048

2 0.0088 0.0090 0.0092 0.0088 0.0089 0.0091 0.0089 0.0090 0.0092

3 0.0088 0.0089 0.0091 0.0088 0.0089 0.0091 0.0089 0.0090 0.0092

B̂(u)
J

1 0.0088 0.0090 0.0091 0.0088 0.0090 0.0091 0.0089 0.0090 0.0092

2 0.0088 0.0089 0.0091 0.0088 0.0089 0.0091 0.0089 0.0090 0.0092

3 0.0088 0.0089 0.0091 0.0088 0.0089 0.0091 0.0089 0.0090 0.0092

Table 4.4. (Approximated) Mean Squared Hellinger Distance (MSHD) for the var-
ious non linear estimator algorithms using the Symlet 3 wavelet for the density 2D
Smooth comb (Figure 4.7 (d)). See text for column descriptions. Corresponding
number of coefficients found in Table B.4

4.4.3 Real data: Old Faithful geyser

We close this chapter by revisiting the real data example of Subsection 3.4.2, the

Old Faithful geyser dataset, and providing insights on practical usage of the esti-

mator. From this point of view, we addressed three of the five points mentioned in

Section 4.1, although in a slightly, surprising different way.
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• For the final resolution level J1, the practitioner can use any of the two Ĵ(v)
n ,

Ĵ
(u)
n algorithms of Section 4.2

• They can use a cut-off point or selection method as defined by (4.23), which

does not require a resolution-varying function C(j);

However, we still have two important unknowns

• The lowest level J0 or equivalently, the number of additional levels in the

beta expansion, and

• the wavelet basis {ϕj,z, ψ(q)
j,z }.

As can be seen in the results of our simulation studies, the number of levels for

the beta coefficients had most of the time the surprising effect of increasing the

HD due to the additional number of coefficients to consider for hard-thresholding.

We believe the introduction of soft thresholding may alleviate this, as it has a

shrinking effect. As the Old Faithful geyser dataset has 272 points in R2, i.e. it

can be seen as a 544 dimensional data vector, one would expect that this has to

be greater than the number of free parameters in the alpha and beta coefficients,

thus providing a simple upper bound on the number of levels.

Picking the right wavelet basis seems more challenging and here we offer a prac-

tical guide on how to achieve this with our estimator. Figure 4.8 and Figure 4.9

show the optimisation curve generated when we apply formula (4.23) for the

Daubechies 3 and Symlet 4 wavelet bases using 2 levels of beta coefficients. Symlet

4 produces a smoother density, of course, using 321 alphas and betas. Daubechies

3 requires fewer at 162 coefficients. The corresponding B̂(v)
J values are (approx.)

0.91383 (Daubechies 3) and 0.91719 (Symlet 4) which, if not by the inclination

for a smoother density, tells us that indeed Symlet 4 should be preferred in this

case.

For comparison, see the plot of the best KDE estimate using the Gaussian kernel,

where the bandwidth has been determined using CV, Figure 4.10.

Contrast above with the optimisation curves if one increases the number of vanish-
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Figure 4.8. Optimisation curve, left, and density, right, for the Old Faithful geyser dataset using
Daubechies 3 and ∆J = 2.

Figure 4.9. Optimisation curve, left, and density, right, for the Old Faithful geyser dataset using
Symlet 4 and ∆J = 2.

ing moments in both cases. Using Daubechies 4 wavelet with ∆J = 1 (Figure 4.11),

one can see that most of the curve lies on the right hand side of its maximum, in-

dicating that the threshold is not going to be much effective. Indeed, the resulting

density seems over-smoothed as compared to the ones above and the situation is

not much different for ∆J = 2 as shown in Figure 4.12, or for Symlet 5 for ∆J = 1

(Figure 4.13) and ∆J = 2 (Figure 4.14).

We finalise this chapter with results using biorthogonal bases, the most general

wavelet construction and of interest in the recent literature on multidimensional,

sparse wavelet expansions. It is worth noting that we used the tensor product

method to construct multivariate wavelet expansions (e.g. (Daubechies, 1992),

Ch. 10) as opposed to the anisotropic methods of curvelets (Candès and Donoho,

2004, 2005), shearlets (Labate et al., 2005) and α-molecules (Grohs et al., 2013).
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Figure 4.10. Kernel density estimator for Old Faithful geyser dataset

Figure 4.11. Optimisation curve, left, and density, right, for the Old Faithful geyser dataset using
Daubechies 4 and ∆J = 1.

Although the results we present here are indeed promising, theoretical and prac-

tical work is required to bring those novel algorithms to our construction as it is

well-known that in the general anisotropic case the number of non-zero beta co-

efficients using the tensor product is O(n), i.e. not optimal for a general sparse

representation (Starck et al., 2010).

We first show the optimisation curve and the biorthogonal, spline wavelets of Co-

hen and Daubechies (1992) for the case 2.6 - this is, 6 vanishing moments on the

deconstruction filters and 2 on the synthesis phase. We used 2 levels of betas (Fig-

ure 4.15). In this and the following results, we used the normed version of the BC

(4.19) and the corresponding algorithm (4.20). The result is not smooth: this uses

a linear spline (2 vanishing moments) to reconstruct the signal but the optimisa-

tion curve seems balanced as described in the Daubechies 3 and Symlet 4 results

above. Reversing the role of these bases using now 6.2, one gets a smoother den-
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Figure 4.12. Optimisation curve, left, and density, right, for the Old Faithful geyser dataset using
Daubechies 4 and ∆J = 2.

Figure 4.13. Optimisation curve, left, and density, right, for the Old Faithful geyser dataset using
Symlet 5 and ∆J = 2.

sity and the optimisation curve is still well-behaved, producing Figure 4.16. This

change brings an improvement on the values for B̂(v)

[τ]
of 0.92118 and 0.92689

for 2.6 and 6.2 respectively. Taking the case 6.2 even further, we produced den-

sities for ∆J = 3,4, shown in Figure 4.17. They are very similar, again showing

peaks and jumps better as is typically the case in hard thresholding (Donoho et al.,

1996), and with slight improvement on the normed BC of 0.92701 and 0.92704

for ∆J = 3 and ∆J = 4 levels respectively. The number of free parameters (coeffi-

cients) in the result seems also under control, 270 and 342 respectively.

We finalise this section showing the case of using similar regularity on both basis.

In their seminal paper (Cohen and Daubechies, 1992), the authors mention the

convenience of using different vanishing moments in the deconstruction and syn-

thesis phase, for speed and rate of compression. As we did in here, using the filter
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Figure 4.14. Optimisation curve, left, and density, right, for the Old Faithful geyser dataset using
Symlet 5 and ∆J = 2.

Figure 4.15. Optimisation curve, left, and density, right, for the Old Faithful geyser dataset using
biorthogonal spline wavelets 2.6 and ∆J = 2.

with the highest number of vanishing moments produces a smooth result despite

the fact that the deconstruction filter has a lower regularity. On the other hand, in

Figure 4.18 we show the optimisation curve using the biorthogonal 3.3 wavelet for

our three different threshold strategies and using the normed BC. The end result,

shown in (d) for the (c) case (the others are quite similar), has to be discarded and

here is why. One can see that in (a) and (b), there are few segments, representing

few λ[τ] cut points on the right of the maximum. This means that very few beta

coefficients were preserved and the threshold is too strict, leaving the estimator

very similar to gJ0, which is 2 levels below the optimum found by the first stage

of the algorithm. Also, in the case of using the threshold based on the empirical

variance, (4.23), the curve has several local maxima, which can be considered

problematic5.

5We also checked the estimator picking the maximum on the peak to the left of 4.18(c) and the
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Figure 4.16. Optimisation curve, left, and density, right, for the Old Faithful geyser dataset using
biorthogonal spline wavelets 6.2 and ∆J = 2.

Figure 4.17. Plot of density for the Old Faithful geyser dataset using biorthogonal spline wavelets
6.2 with (left) ∆J = 3 and (right) ∆J = 4.

In summary, the results using spline wavelets with 6.2 vanishing moments seemed

the best and, aligned with classical theory of hard thresholding for the classical

estimator (Donoho et al., 1996), with better peaks and jumps6. With all above

considerations, we just illustrated the kind of analysis that it is possible with our

estimator in practice and how, guided by the optimisation curve, one can make an

informed decision of which wavelet basis to chose.

generated density does not improve as most of the important betas still lie to the left of that point.
It is worth adding that although in this figure it is quite evident that we have multiple peaks, most
of the curves shown so far exhibit local maxima to the right of the main peak but with tiny jumps.
This makes the BC difficult to use as optimisation target itself in our setting.

6Of course, this is very subjective, and we encourage the reader to compare for instance with
Jiang and Provost (2011), Peherstorfer et al. (2014), or Kovacs et al. (2017).
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(a) ∣β̂
(q)
j,z ∣ > λ (b) ∣β̂

(q)
j,z ∣ > λ

√
j − J0 + 1

(c) ∣β̂
(q)
j,z ∣ > λ σ̂

(q)
j,z

(d) Density result for (c)

Figure 4.18. Optimisation curves for different threshold strategies using biorthogonal splines 3.3
for the Old Faithful geyser dataset ∆J = 2
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Chapter 5

Image analysis application

5.1 Preliminaries

In this chapter we apply and extend the methods developed in Chapter 3 and

Chapter 4 to a couple of corpus in machine learning, the MNIST and the Fashion-

MNIST datasets.

The MNIST dataset is a large database of labelled handwritten digits of the postal

office commonly used as benchmark for machine learning and image processing

algorithms. It consists of 60000 images of the ten digits, each set of approximately

6000 observations, along with 10000 test images. The digits are monochrome,

anti-aliased and normalised to a 28 × 28 pixel box. A sample of ten samples for

each digit is shown in Figure 5.1. This was featured in the original paper that

introduced the convolutional neural network architecture LeCun et al. (1998) as

a modified NIST - specifically adjusted to improve statistical homogeneity of the

data1. This was one of the first success stories of convolutional neural networks,

in this case applied to a Optical Character Recognition (OCR), further exploiting

the idea of backpropagation and "representation" developed for neural networks

in Rumelhart et al. (1986). A more detailed explanation of the method as it applies

to this dataset can be found in Efron and Hastie (2016).
1NIST has two sources of digits, some written by censor bureau personnel and other by high

school students, having arguably different statistical properties. That was corrected by MNIST.
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Figure 5.1. Sample of 10 observations from the MNIST dataset for each digit

The second, Fashion-MNIST, is a more recent and perhaps less known dataset2 de-

signed as a drop-in replacement to MNIST (Xiao et al., 2017). It follows identical

binary format representation, so existing algorithms that work with MNIST can

be readily used on this data. It consists of processed images from the Zalando’s

e-commerce store, which offers fashion articles in different categories for men,

women, kids and neutral. The original pictures of the products were processed

through a standardised pipeline to produce pictures of 28 x 28 pixels. The prod-

ucts in the store are featured from different angles, but this dataset contains only

the front version of each product. To facilitate comparison with MNIST, the prod-

ucts are divided in 10 categories as well, see Figure 5.2. This dataset was built as a

more realistic benchmark for image processing algorithms as it contains images of

real objects, albeit in a restricted setting and with very small size compared with

real pictures. Nonetheless, it appears to be a more challenging task than MNIST

for several algorithms reported in the paper, having on average a 10% difference

in accuracy between the two datasets. Although it is claimed there are near dupli-

cates in the original Fashion-MNIST between the training and test sets, artificially

inflating test accuracy results(Geier, 2019), we used the original published dataset

as the differences to be under 1% and there is a component of subjectivity in this

2According to Google scholar, as of today, there are more than 1,300 pre-prints and papers
citing this dataset.
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Figure 5.2. Sample of 10 observations from the Fashion-MNIST dataset for each category

analysis.

Let’s describe the problem more formally. Let W and H be the spaces correspond-

ing to width and height indexes. Theoretically they can be the [0,1] interval, but in

practice they are just the integer indexes. Likewise, [0,1] can represent the differ-

ent values of grey although in digitalised images they are values in {0 . . .255}. An

image is then a function f ∶W×H→ [0,1]. Let I be the space of images, a subspace

of L2, with images normalised such that ∫W×H f
2(w,h)dw dh = 1. This normalisa-

tion makes each image the square root of a PDF and I a subset of the hypersphere,

a Riemannian manifold - an approach similar to Srivastava et al. (2007); Peter and

Rangarajan (2008). Thus, the problem for both, MNIST and Fashion-MNIST, is to

built a function C ∶ I → {0 . . .9}, that correctly identifies the label (digit or cat-

egory) of a given image f . Note that in MNIST and Fashion-MNIST, an image f

always belong to a class. This is of course an instance of supervised learning. One

can think of each MNIST digit as a cloud of points on the hypersphere, like in Fig-

ure 5.3. Because images are originally positive functions, i.e. f ≥ 0, observations

for each class are in the positive octant of the hypersphere as shown in the picture.

Now, imagine that each class of images Ci ⊂ I is somewhat paired with πi, a PDF

on I, such that a classifier C can be defined as C(f) = argmaxi πi(f). Cast this

way, a classification algorithm can be seen as a problem of estimating such πi for
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Figure 5.3. The all positive octant on the S2 hypersphere as embedded in R3.

each class based on a sample for each. This problem can be solved in a nonpara-

metric way using nearest neighbours, originally called discriminatory analysis (Fix

and Hodges, 1951, 1952; Cover and Hart, 1967).

To develop this method, a notion of distance is required in the sample space.

Thus, one key advantage of working on the hypersphere, a Riemannian mani-

fold, is that close formulas for geodesics, exponential maps, inverse of exponential

maps (logs) and other quantities are available in analytic form. Besides, in recent

developments in computer vision and machine learning, there is now interest in

using spaces with non-Euclidean geometries, aiming to capture intrinsic properties

of the data, e.g. Pizer and Marron (2017).

5.2 Landmark nearest neighbours on the hypersphere

In general, k-NN classification works by simply picking the most common label

appearing among the k-NN of a given point f . It is a nonparametric algorithm

as described in Chapter 2 where, similarly to KDE, each observation is kept as a

parameter of the classifier. For multivariate datasets, this makes the classification

function C having O(nd) complexity, where n is the number of samples and d is

their dimension, which is not practical for big data applications (Cai and Chen,

2015; Deng et al., 2016). For instance, in the MNIST case, using a mid range
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laptop, the Riemannian distance between a test image and an observation takes

around 0.4 ms. So, obtaining the closest digit among the 60000 images in the

dataset can take around 25 secs, a performance not suitable for most applications.

It is natural to think of reducing the dimension of the data or in selecting a much

smaller subset of observations in such a way that they are somehow representative

of the set and no accuracy is lost.

A popular technique for dimensionality reduction is spectral embedding. Spectral

embedding has a long history (Chung and Graham, 1997; Weiss, 1999) and it

is based on the connections between the eigen decomposition of the Laplacian

matrix of a graph and graph partitioning. This method has been extended and

applied in the setting of an affinity matrix between observations (Ng et al., 2002).

The affinity or similarity matrix is a measure of the closeness between objects

that assigns to each pair of observations a value aff(xi, xj) = ai,j in [0,1], with

0 representing no affinity and 1 maximum similarity. The embedding is done by

selecting the top d eigenvectors in the corresponding eigenvalue decomposition

and use them to calculate a projection of the observations in the lower dimensional

space Rd. Figure 5.4 and Figure 5.5 show an example embedding into R3 for the

different digits of MNIST. There are several ways to convert a metric into an

affinity. The most widely used are the linear and exponential methods, which will

be explained in Results section.

Reducing the number of relevant observations is also an important strategy. Yan

et al. (2009) focus on reducing the execution time of an spectral embedding. It

presents what the authors call k-means approximate spectral clustering (KASP).

This algorithm uses k-means clustering on the original data to obtain centroids

y1..k and build a matching table to associate each observation to its closest cen-

troid y. Then run spectral clustering on the centroids to obtain an m-way cluster

membership for each centroid. Finally, recover the membership for each obser-

vation by looking up the membership of the matched centroid. In Cai and Chen

(2015) the authors use instead a method based on sparse encoding to find a good

approximation to the matrix factorisation of the affinity matrix. The basis vectors

used in the sparse representation are called landmarks and every observation has
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Figure 5.4. R3 embedding of MNIST digits "0" to "4" with 10 clusters.

a sparse representation in this basis. Again, the purpose is to reduce the compu-

tational costs associated with spectral clustering of the affinity matrix. Deng et al.

(2016) applies this method in the context of "big data". In the above methods, the

norms used are the Euclidean norms in the respective spaces. In here, we present

a similar approach to those but based on the hypersphere.

The algorithm is a straightforward application of spectral embedding and goes as

follows (see Algorithm 1). First, pairwise distances are calculated for the given

image category and then converted to an affinity matrix. This is used to generate

a spectral embedding into p dimensions of the image category C. Over these

projected vectors V ⊂ Rp, standard k-means is calculated to get l clusters Kc ⊂
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Figure 5.5. R3 embedding of MNIST digits "5" to "9" with 10 clusters.

{1, . . . ,#(ιC)}. Finally, we look back the images ιC and calculate the Karcher

mean for each cluster based on the indexes of the corresponding vectors Kc. We

explain each of these steps below.

As hinted by these plots, the densities of the different MNIST categories into the

hypersphere are not convex. That is, the geodesic between two images within

the same category is not guaranteed to travel within the same digit. This further

motivates the need to find some sort of "coverage" of the density by some land-

marks which would represent neighbouring images and that, in turn, will serve as

a reference for k-NN. This is captured in the next step, in which we use a standard

implementation of k-means to find those clusters.
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Algorithm 1 Simple landmark selection on the hypersphere

function LANDMARKS(ιC , p, l)
// ιC: array of images in a particular category C
// p: integer, dimensions in projection space, p ≥ 1
// l: integer, number of landmarks, l ≥ 1
for all ιi ∈ C, ιi′ ∈ C, i′ > i, do

Di,i′ = δ(ιi, ιi′) // Pairwise distance on the hypersphere
end for
A← TOAFFINITY(D)
E ← SPECTRALEMBEDDING(A,p)
V ← PROJECT(E, ιC)
K ← KMEANS(V, l)
for c← 1 . . . l do

Sc ← {ιi ∶ ιi ∈Kc}
mc ← KARCHERMEAN(Sc)

end for
return {mc ∶ c = 1 . . . l}

end function

In these figures, we have represented, by using different colours, 10 clusters for

each R3 embedding as an example. In practice, we used a larger number of di-

mensions and a much larger number of clusters. Finally, we need to "invert" those

clusters into the hypersphere in order to find corresponding landmarks. To do

this, we calculate the Karcher mean for each found cluster in the hypersphere.

The Karcher mean is a generalisation of the centre of mass, i.e. the mean, in the

context of Riemannian manifolds (Grove, 1976; Karcher, 1977)3. It is defined as

the point that minimises the distance, using the manifold’s intrinsic metric, to a

set of points

µ = arg min
p∈M

N

∑
i=1

d2 (p, xi) . (5.1)

The distance d on the hypersphere, defined as the length of the geodesic between

two points, can also be easily calculated by d (xi, xj) = arccos ⟨xi, xj⟩.

The mean can be calculated iteratively as per Algorithm 2 (Peter et al., 2017;

Pennec, 2006) where κ is a learning rate parameter that regulates speed of con-

vergence and ε is a desired threshold. The expressions Expµ(γ) and Logµ(f) stand

for the exponential and inverse-exponential maps on the manifold. The first is

3This is also named Fréchet mean or Riemannian centre of mass. In tandem with current
literature, we will use Karcher mean, although Karcher himself preferred the term Riemannian
centre of mass as, according to him, it better conveys its goal and origins(Karcher, 2014).
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Algorithm 2 Karcher mean

function KARCHERMEAN(S)
// S = {fi}: set of m = #(S) images
µ← f1

repeat
γt = κ

m ∑
m
i=1 Logµ (fi)

µ = Expµ (γt)
until ∥γt − γt−1∥ < ε
return µ

end function

the map that intuitively develops a geodesic along a given vector γ in the tan-

gent bundle at µ using the canonical affine connection determined by the metric.

The Logµ(f) is the reverse operation in the sense that it gives the corresponding

tangent vector along the geodesic connecting two points (Lee, 2013). In general,

they are local operations available around a neighbourhood of µ and usually hard

to compute. However, on the hypersphere they are available in closed form and

defined almost everywhere4. Those closed forms are (Pennec, 2006; Lee, 2013;

Peter et al., 2017)

Expµ(γ) = cos(∣γ∣)µ + sin(∣γ∣) γ
∣γ∣

(5.2)

Logµ (ι) = ρ̃
cos−1 (⟨µ, f⟩)√

⟨ρ̃, ρ̃⟩
, (5.3)

where ρ̃ = f − ⟨µ, f⟩µ.

In the following section we present the results of the above algorithm and discuss

future work.

5.3 Results

We ran several scenarios for the landmark k-NN on the hypershpere algorithm,

for both the MNIST and Fashion-MNIST datasets. There are several free param-

eters in Algorithm 1 to pick landmarks for each class: the number of landmarks

per class, the way to translate the distance metric into an affinity matrix and the

number of projections for the spectral embedding of such matrix. For the number
4The cut locus of a point in the hypersphere is the point on the opposite side of the diameter,

hence exponential and logarithmic maps are defined in the whole hypersphere except at that point.
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of landmarks we picked 25, 50, 75, 125 and 175 as examples. Naturally, overall

accuracy improves as the number of landmarks increases. On the flip side, the

time spent per classification increases as it is linear in the number of landmarks

and the number of classes. This means that the difference in speed of the clas-

sification, important when dealing with a chain of several algorithms in a data

pipeline, between the 25 (fastest) and 175 (slowest) extremes is sevenfold and the

correct choice is a the trade-off between performance and accuracy. See Table B.6.

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

25

Linear
3 0.962 0.981 0.856 0.869 0.744 0.710 0.941 0.837 0.759 0.834 0.852

8 0.970 0.984 0.826 0.875 0.747 0.667 0.916 0.802 0.806 0.838 0.846

21 0.975 0.982 0.842 0.854 0.728 0.709 0.915 0.813 0.824 0.846 0.852

0.2
3 0.968 0.969 0.842 0.805 0.784 0.580 0.943 0.812 0.826 0.692 0.826

8 0.978 0.971 0.871 0.825 0.764 0.681 0.922 0.799 0.789 0.807 0.844

21 0.979 0.974 0.865 0.825 0.749 0.743 0.944 0.863 0.846 0.860 0.867

0.4
3 0.976 0.984 0.872 0.848 0.733 0.742 0.951 0.847 0.832 0.857 0.867

8 0.988 0.982 0.876 0.863 0.753 0.747 0.942 0.846 0.837 0.878 0.874

21 0.988 0.986 0.879 0.867 0.722 0.702 0.945 0.846 0.843 0.887 0.870

0.6
3 0.979 0.979 0.845 0.867 0.745 0.719 0.941 0.824 0.791 0.866 0.858

8 0.986 0.982 0.835 0.870 0.738 0.730 0.928 0.830 0.815 0.867 0.861

21 0.981 0.985 0.850 0.873 0.681 0.717 0.922 0.797 0.706 0.900 0.845

0.8
3 0.964 0.984 0.872 0.866 0.736 0.695 0.947 0.810 0.765 0.856 0.853

8 0.977 0.980 0.837 0.857 0.714 0.701 0.925 0.804 0.835 0.872 0.853

21 0.978 0.983 0.827 0.866 0.720 0.685 0.927 0.830 0.773 0.872 0.849

1.0
3 0.972 0.982 0.856 0.863 0.742 0.702 0.945 0.832 0.771 0.833 0.853

8 0.977 0.982 0.835 0.862 0.747 0.700 0.930 0.788 0.781 0.837 0.847

21 0.969 0.984 0.831 0.859 0.697 0.701 0.899 0.829 0.790 0.857 0.845

50

Linear
3 0.980 0.989 0.878 0.872 0.785 0.785 0.945 0.865 0.850 0.877 0.885

8 0.982 0.985 0.871 0.890 0.786 0.772 0.947 0.869 0.848 0.893 0.887

21 0.985 0.986 0.869 0.873 0.780 0.761 0.956 0.866 0.830 0.883 0.881

0.2
3 0.979 0.974 0.864 0.850 0.822 0.772 0.952 0.838 0.839 0.859 0.877

8 0.986 0.981 0.906 0.861 0.826 0.736 0.947 0.811 0.860 0.859 0.880

21 0.989 0.982 0.898 0.859 0.803 0.818 0.950 0.881 0.887 0.900 0.898

0.4
3 0.980 0.983 0.898 0.858 0.789 0.810 0.954 0.885 0.874 0.884 0.893

8 0.987 0.987 0.905 0.878 0.817 0.828 0.950 0.871 0.872 0.900 0.901

21 0.989 0.987 0.900 0.869 0.785 0.807 0.954 0.875 0.875 0.897 0.896

0.6
3 0.980 0.989 0.873 0.873 0.764 0.787 0.962 0.871 0.857 0.901 0.888

8 0.984 0.987 0.890 0.884 0.788 0.796 0.949 0.863 0.863 0.896 0.892

21 0.990 0.986 0.888 0.884 0.782 0.793 0.959 0.863 0.838 0.897 0.890

0.8
3 0.979 0.990 0.884 0.857 0.752 0.780 0.962 0.867 0.850 0.887 0.883

8 0.986 0.986 0.879 0.890 0.791 0.788 0.951 0.862 0.847 0.882 0.888

21 0.989 0.987 0.880 0.887 0.783 0.784 0.954 0.871 0.846 0.889 0.889

1.0
3 0.981 0.988 0.883 0.871 0.774 0.764 0.963 0.871 0.850 0.892 0.886

Continued on next page
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Table 5.1 – continued from previous page

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

8 0.983 0.986 0.890 0.891 0.780 0.783 0.949 0.858 0.850 0.887 0.888

21 0.985 0.986 0.873 0.878 0.791 0.783 0.954 0.869 0.840 0.885 0.887

75

Linear
3 0.983 0.990 0.895 0.880 0.821 0.802 0.957 0.878 0.871 0.893 0.899

8 0.986 0.988 0.888 0.902 0.836 0.813 0.954 0.877 0.864 0.899 0.903

21 0.987 0.987 0.880 0.882 0.829 0.800 0.968 0.879 0.867 0.891 0.899

0.2
3 0.982 0.979 0.872 0.870 0.843 0.780 0.958 0.881 0.840 0.898 0.892

8 0.988 0.982 0.914 0.877 0.870 0.801 0.954 0.837 0.878 0.897 0.901

21 0.989 0.983 0.912 0.869 0.843 0.821 0.960 0.884 0.908 0.913 0.910

0.4
3 0.981 0.990 0.913 0.882 0.829 0.849 0.958 0.884 0.887 0.908 0.910

8 0.989 0.987 0.918 0.879 0.836 0.862 0.961 0.875 0.891 0.909 0.912

21 0.988 0.989 0.915 0.879 0.824 0.846 0.966 0.897 0.880 0.902 0.910

0.6
3 0.985 0.991 0.911 0.873 0.804 0.819 0.963 0.882 0.899 0.899 0.904

8 0.987 0.990 0.903 0.896 0.821 0.825 0.964 0.888 0.868 0.902 0.906

21 0.988 0.988 0.902 0.892 0.821 0.826 0.966 0.895 0.865 0.895 0.906

0.8
3 0.983 0.992 0.897 0.878 0.807 0.806 0.966 0.886 0.874 0.894 0.900

8 0.984 0.989 0.899 0.902 0.832 0.824 0.963 0.877 0.861 0.896 0.904

21 0.987 0.989 0.892 0.897 0.822 0.823 0.971 0.889 0.862 0.883 0.903

1.0
3 0.983 0.990 0.896 0.887 0.800 0.799 0.962 0.882 0.859 0.903 0.898

8 0.986 0.988 0.908 0.896 0.817 0.817 0.958 0.879 0.859 0.906 0.903

21 0.986 0.990 0.883 0.895 0.831 0.825 0.960 0.885 0.862 0.904 0.904

125

Linear
3 0.988 0.992 0.905 0.890 0.849 0.853 0.967 0.891 0.871 0.913 0.913

8 0.988 0.990 0.912 0.906 0.854 0.852 0.973 0.900 0.881 0.917 0.919

21 0.986 0.989 0.902 0.901 0.861 0.850 0.970 0.901 0.887 0.907 0.917

0.2
3 0.984 0.984 0.909 0.877 0.869 0.853 0.968 0.904 0.876 0.921 0.916

8 0.988 0.986 0.933 0.902 0.892 0.838 0.956 0.865 0.869 0.918 0.916

21 0.988 0.984 0.922 0.889 0.864 0.849 0.967 0.888 0.923 0.925 0.921

0.4
3 0.988 0.992 0.932 0.887 0.867 0.863 0.962 0.894 0.911 0.917 0.923

8 0.990 0.991 0.932 0.895 0.875 0.882 0.971 0.896 0.905 0.908 0.926

21 0.989 0.991 0.930 0.902 0.876 0.866 0.971 0.904 0.895 0.913 0.925

0.6
3 0.987 0.991 0.923 0.879 0.852 0.861 0.970 0.891 0.889 0.910 0.917

8 0.989 0.992 0.919 0.897 0.860 0.862 0.974 0.902 0.892 0.906 0.921

21 0.988 0.990 0.921 0.900 0.860 0.869 0.975 0.911 0.878 0.912 0.922

0.8
3 0.987 0.993 0.911 0.894 0.857 0.853 0.964 0.886 0.881 0.904 0.914

8 0.987 0.990 0.916 0.904 0.855 0.853 0.970 0.897 0.883 0.902 0.917

21 0.987 0.991 0.907 0.901 0.865 0.859 0.976 0.906 0.885 0.907 0.920

1.0
3 0.986 0.992 0.912 0.890 0.857 0.859 0.960 0.898 0.874 0.913 0.916

8 0.987 0.990 0.916 0.911 0.852 0.845 0.971 0.898 0.863 0.904 0.915

21 0.987 0.990 0.910 0.900 0.854 0.843 0.973 0.910 0.880 0.904 0.917

175

Linear
3 0.988 0.992 0.917 0.900 0.867 0.876 0.972 0.896 0.906 0.920 0.924

8 0.988 0.992 0.926 0.909 0.874 0.867 0.976 0.901 0.896 0.916 0.926

21 0.988 0.992 0.922 0.906 0.888 0.885 0.975 0.912 0.887 0.914 0.928

0.2
3 0.987 0.988 0.918 0.883 0.893 0.868 0.972 0.913 0.893 0.924 0.925

8 0.985 0.989 0.939 0.908 0.883 0.854 0.954 0.897 0.908 0.919 0.925

Continued on next page
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Table 5.1 – continued from previous page

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

21 0.989 0.985 0.933 0.902 0.875 0.867 0.969 0.890 0.924 0.938 0.928

0.4
3 0.988 0.991 0.928 0.894 0.879 0.880 0.970 0.901 0.910 0.924 0.928

8 0.990 0.991 0.934 0.903 0.897 0.892 0.977 0.906 0.914 0.918 0.933

21 0.989 0.991 0.936 0.910 0.891 0.886 0.975 0.907 0.903 0.922 0.932

0.6
3 0.986 0.992 0.927 0.892 0.881 0.879 0.973 0.898 0.900 0.917 0.926

8 0.987 0.992 0.926 0.902 0.885 0.880 0.979 0.902 0.896 0.913 0.927

21 0.988 0.990 0.928 0.908 0.880 0.886 0.977 0.907 0.889 0.911 0.927

0.8
3 0.988 0.992 0.924 0.897 0.866 0.866 0.967 0.900 0.895 0.925 0.924

8 0.988 0.992 0.921 0.904 0.877 0.867 0.975 0.906 0.885 0.907 0.924

21 0.989 0.991 0.919 0.902 0.885 0.878 0.974 0.913 0.894 0.913 0.927

1.0
3 0.986 0.992 0.925 0.894 0.869 0.866 0.969 0.887 0.894 0.914 0.921

8 0.990 0.992 0.928 0.907 0.876 0.865 0.977 0.904 0.893 0.918 0.926

21 0.986 0.991 0.919 0.905 0.888 0.869 0.976 0.911 0.896 0.916 0.927

Table 5.1. Accuracy of landmark k-NN over MNIST with different algorithmic
choices. KM is the number of Karcher means used in each image class. Affinity
is either linear or of quadratic exponential decay with given sigma. Rp list the
number of dimensions in the spectral embedding projection. Columns 0 to 9 list
the corresponding accuracy, with the total classification accuracy across the test
set in the column total.

To produce the affinity matrix, we used a linear transformation or a negative ex-

ponential transform. The first is defined by ai,j = 1 − d(fi, fj)/D, where d(fi, fj) is

the geodesic distance between images fi and fj and D is the maximum distance

possible. As the affinity matrix is a generalisation of the adjacency matrix in a

graph, this choice makes points further away from a give point less "connected" to

it, i.e. with affinity close to 0.

Another popular choice is the exponential5, e.g. (Weiss, 1999), ai,j = e−d
2(fi,fj)/σ

2

where σ is a free parameter. This choice again makes close objects having an

affinity close to 1, with values further away approaching zero rapidly depending

on σ. Figure 5.6 shows a histogram of the geodesic distances between observations

for the digit "9" in MNIST. From the histogram, one sees that a small value around

0.2 will make the object graph very disconnected, whereas a value around 1.0 or

even bigger will make the distribution of values closer to 1. Given a fixed choice

5Also known a Gaussian or heat kernel (Yan et al., 2009; Cai and Chen, 2015; Deng et al.,
2016).
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Figure 5.6. Histogram of distances in the hypersphere for the digit "9" in MNIST.

for number of means and projection dimension, there seems to be an optimum

value which can be chosen by CV. However, it is worth adding, that the choice of

the affinity function has no impact on the k-NN classifier as the classification is

performed using the metric d on the hypersphere. It only impacts on the quality

of the embedding and the subsequent choice of the Karcher means.

Finally, another parameter is the number of dimensions in the embedding space,

Rp. This has an overall impact on accuracy but it shows different behaviours

depending on the choice of sigma. We picked p = 3,8,21 for this parameter to

highlight contrasting behaviours. p = 3 gives a baseline and data cab be visualised

as we did in Figure 5.4 and 5.5. On the other hand, the performance of the k-

means algorithm that we use to pick the clusters degrades with increased number

of dimensions. In these datasets, a value of p = 8 seemed to work best.

The k-NN classifier itself depends on the choice of k. We obtained best results

with k = 1, i.e. by picking the class of the nearest neighbour among the selected

Karcher means, a similar result to the foundational reports Fix and Hodges (1951,

1952) and as done in Yan et al. (2009).

When using the maximum number of 175 landmarks per class, an embedding into

Rp with p = 8 and σ = 0.4 the overall accuracy of this landmark-based classifica-

tion was 93.3%. It is well-known that deep neural network methods outperform

all other classifiers in this dataset. However, excluding this approach, Xiao et



5.3. RESULTS 87

al. (2017) presents other 13 approaches based on several classifiers found in the

Python machine learning library scikit-learn with different hyper-parameters

for a total of 129 experiments. Our approach sits at the 67% percentile of that

table, out performing several classifier implementations in the package6. How-

ever, the following algorithms, gradient boosting, k-nearest neighbours, multi-

layer perceptron classifier, random forest and support vectors7, still have better

performance than ours under certain configurations. For details on these algo-

rithms, see Pedregosa et al. (2011) and the code repository referenced there. Our

results are found in B.6 in the appendix.

On the other hand, results for Fashion-MNIST, shown in Table B.5 in the appendix,

are less than bright. The average accuracy for the various scikit-learn clas-

sifiers reported in the same paper for Fashion-MNIST is 80.8%. The best config-

uration of our approach is near with 80.2%, better still than decision trees, de-

cision trees, Gaussian naive Bayes, stochastic gradient descent classifier, logistic

regression and passive-aggressive classifiers and percentron8, but now sitting at

an average performance. It is possible that improvements to our approach can

improve this figure but it is worth mentioning that although the Fashion-MNIST

dataset attempted to bring more realistic examples for an image classifier, it fell

short due to the low resolution quality of the final pictures. It can be seen in one

confusion matrix among the numerous runs, that there are two major clusters of

images, one for dresses and bags, and another for shoes. It is likely that starting

with better quality images, other dimensions within the data could have been dis-

covered, either by the algorithm or by some pre-processing, which is not possible

for such low quality images.

Increasing the number of Karcher means improves the accuracy to the average re-

ported above for this dataset, but it also makes the classification run slower. One

6Namely DecisionTreeClassifier, ExtraTreeClassifier, GaussianNB,
LinearSVC, LogisticRegression, PassiveAggressiveClassifier, Perceptron
and SGDClassifier

7In code, identified by GradientBoostingClassifier, KNeighborsClassifier,
MLPClassifier, RandomForestClassifier and SVC

8Specific names are: DecisionTreeClassifier, ExtraTreeClassifier, GaussianNB,
SGDClassifier, LogisticRegression and PassiveAggressiveClassifier and
Perceptron



88 CHAPTER 5. IMAGE ANALYSIS APPLICATION

way to alleviate this problem is to have different number of landmarks per class.

For instance, in Figure 5.7, the accuracy for the classes "Trouser", "Sneaker", "Bag"

and "Ankle boot" is around 95% . Therefore, one does not need to increase the

number of landmarks for these classes and can instead add more landmarks for the

harder to classify "Shirt", "Sandal" and "Pullover". In the case of Fashion-MNIST,

starting with our best classifier at 175 landmarks per class, one can increase the

number up to around 800 for some classes, reaching an average accuracy of 81%,

slightly above the average reported by the creators of Fashion-MNIST as men-

tioned previously.

T-shirt/top

Trouser

Pullover

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Ankle boot

771 12 27 27 6 0 146 0 11 0

7 955 11 17 5 0 3 0 2 0

10 0 671 7 196 0 114 0 2 0

35 15 22 826 64 0 36 0 2 0

2 0 138 39 706 0 112 0 3 0

0 0 0 0 0 656 0 141 4 199

182 7 114 28 133 0 519 0 17 0

0 0 0 0 0 5 0 933 0 62

1 1 10 2 13 1 23 6 942 1

0 0 1 0 0 0 0 43 0 956

Figure 5.7. An example confusion matrix for the landmarks-based k-th NN classifier over the
Fashion-MNIST dataset.

Another alternative is to preprocess the images. Preprocessing to elicit certain

image features (e.g. Nixon and Aguado (2019); Parker (2010)) can improve clas-

sification. Of course, it can also decrease accuracy, but negative results are most

likely not reported in the literature. The extend to which this is a science rather

than tinkering is a subject of much debate in the machine learning community,
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specially in regards to methods derived from convolutional networks. Instead,

what we would like to point out in here is that the wavelet expansion of the im-

ages in the hypersphere can also be used to alter the underlying metric and that

it can also improve the performance of the classifier - of course, depending on the

adjustment.

We illustrate that by the simple example of blurring the images by truncating the

discrete wavelet transform up to a certain level. Recall that the distance in the

hypersphere is defined as d (xi, xj) = arccos ⟨xi, xj⟩. The reason behind this is quite

simple, the cosine of the angle of two vectors in the embedding space is

cosα =
⟨xi, xj⟩
∥xi∥ ∥xj∥

. (5.4)

By being on the hypersphere, we are guaranteed that ∥xi∥ = ∥xj∥ = 1, hence the

metric above. But if xi is a density, we can calculate the wavelet expansion of its

square root and, therefore, its norm can be directly calculated by 3.10. In the case

of images, this reduces to an operation over its discrete wavelet transform, namely

the sum of the squares of all the coefficients.

So, what happens if we restrict the wavelet expansion to a certain level and use

that in calculating the distance? In Figure 5.8, we have some examples of the

Fashion-MNIST dataset before and after the wavelet expansion is truncated to

two levels. As can be seen, it amounts to some sort of averaging or blurring of

the images. Overall, with this particular transformation, the results (Table B.5)

improved on average by 1% across the board.

In a very generic way, if we call the set of kept indexes L, then the metric effectively

used is

⟨xi, xj⟩ = ∑
λ∈L

β
(i)
λ β

(j)
λ (5.5)

∥xi∥2 = ⟨xi, xi⟩ (5.6)

d (xi, xj) = arccos
⟨xi, xj⟩
∥xi∥ ∥xj∥

, (5.7)

where β(i) and β(j) are the corresponding coefficients in the discrete wavelet ex-
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T-shirt/top Sandal

Trouser Shirt

Pullover Sneaker

Dress Bag

Coat Ankle boot

Figure 5.8. Effect of restricting the wavelet expansion of images in the Fashion-MNIST dataset. For
each category, the original is on the left and the transformed image is on the right, here restricted
to two levels in the wavelet expansion using the Symlet wavelet with 3 vanishing moments.

pansion for xi, xj. Undoubtedly, further refinements of the above and other al-

ternative approaches that profit from the Riemannian manifold structure of the

space of densities are possible but time precluded us from exploring more and, as

we said, it is rather an area of future research. Potential research work is discussed

in Chapter 6.
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Chapter 6

Discussion

Penev and Dechevsky (1997) suggested an elegant construction of a wavelet es-

timator of the square-root of a univariate PDF in order to deal with negativity

issues in an automatic way. However, as it was based on spacings, their idea could

not be easily generalised beyond the univariate case. This thesis provides such

an extension, essentially making use of nearest neighbour balls, the “probabilistic

counterpart to univariate spacings” (Ranneby et al, 2005) in higher dimensions.

The asymptotic properties of the estimator were obtained. It always attains the

optimal rate of convergence in Mean Integrated Square Error in d = 1 and d = 2

dimensions, in dimensions up to d = 4 for reasonably smooth densities, and in

all dimensions for ‘rough’ densities. In practice, the estimator was seen to be on

par with the classical wavelet estimator, while automatically producing estimates

which are always bona fide densities.

In addition, we presented a fully developed thresholding scheme of practical use.

This was based on the Hellinger distance combined with LOO-CV. Because the

shape-preserving estimator was based on the square root, the Hellinger distance

was a natural metric to use for thresholding. In addition, we used again a particu-

lar link between nearest neighbour balls and the underlying distribution, making

possible to calculate an empirical Bhattacharyya coefficient using LOO-CV. With

this technique, we developed straightforward algorithms to select various hyper-

parameters in the wavelet construction.
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First, a global resolution level can be easily determined. As the estimator’s perfor-

mance decays fairly quickly when under-smoothing occurs, this optimal resolution

level turned out to be the recommended maximum resolution. This is interesting

and worth exploring from a theoretical perspective in future research. As picking

this resolution level is similar to finding the bandwidth in kernel density estima-

tion, our implementation has the same shortcoming described in Hall and Penev

(2001) of restricting this bandwidth to the values (1
2
)j. At the expense of more

computation time, it is in principle possible to extend our method to the contin-

uum by estimating an additional factor p that scales each level by p2j.

Another parameter is the initial resolution, which we found to have little impact,

solely affecting the thresholding itself. As this is O(log(n)), a practical low value

between 1 to 3 can be used. To threshold the beta coefficients, we again based our

method on this empirical Bhattacharyya coefficient. We used hard thresholding

to simplify our algorithms, although a soft-thresholding variant is also possible.

Within hard thresholding, we presented three ways to calculate the threshold,

two based on the traditional presentations of Donoho and Johnstone (1996) and

Delyon and Juditsky (1996), and a novel approach involving the empirical vari-

ance of the beta coefficients. As the first two methods implicitly rely on a global

variance or a level-by-level variance, we found our approach out-performing the

former two in most simulations. Indeed, there is a vast literature on block thresh-

olding, which we mentioned briefly in Subsection 2.3.2, that aims to find the right

balance between the global and local view of a threshold (Chicken and Cai, 2005).

This has already been applied to shape-preserving estimators based on the square

root of the density, like (Brown et al., 2010; Shirazi and Chaubey, 2019). Hence,

it is certainly worth exploring a block thresholding variant of our novel jackknife-

based thresholding strategy.

Of particular interest for future research is the connection between our approach

and MDL, already studied for HD in (Peter et al., 2017). Indeed, sparse rep-

resentations in wavelet bases were popularised by D. Donoho under the name of

"Compressed Sensing" in early 2000 (Donoho, 2006), and viewed as a model selec-

tion approach competing with MDL, the Bayesian information criterion, and other



94 CHAPTER 6. DISCUSSION

techniques, they are still an active area of research, e.g.Rissanen (2000); Roos et

al. (2009); Adler et al. (2017); Dwork et al. (2020). Finally, we also tackled the

difficult task of picking an appropriate wavelet basis, in particular its number of

vanishing moments. This is a particularly difficult question when dealing with

real-life data problems. We applied our methodology to the Old Faithful geyser

dataset and were able to suggest a wavelet basis based on analysis of the opti-

misation curve and the Bhattacharyya coefficient results. We believe the method-

ology we sketched can be further formalised as part of the scientific method as

advocated by authors like Box (1976); Blei (2014) and references therein.

As seen in numerical experiments on Section 4.4, we also implemented an ex-

tension of the algorithm using biorthogonal wavelets by a slight variation of the

initial formulation. The use of biorthogonal filters to estimate the square root of

a density has been previously demonstrated in the DSP literature, e.g. Yoon and

Vaidyanathan (2004); Kaushik et al. (2014), but using histograms as first approx-

imation. In our case, the adaptation to the biorthogonal setting is straightforward.

Equations (3.6) and (3.7) are defined now using the dual basis

α̂j,z=̇
Γ(k)

Γ(k + 1/2)
1√
n

n

∑
i=1

φ̃j,z (Xi)
√
V(k);i (6.1)

β̂
(q)
j,z =̇

Γ(k)
Γ(k + 1/2)

1√
n

n

∑
i=1

ψ̃
(q)
j,z (Xi)

√
V(k);i, (6.2)

with dual coefficients ˆ̃αj,z and ˆ̃βj,z using ˜̃ϕ = ϕ and ˜̃ψ = ψ respectively. The esti-

mator g̊J0,J(x) is defined using the standard basis as before. Finally, the norm can

also be computed easily (Casazza and Kutyniok (2012), Prop 1.15(iii) with x = y)

using coefficients and their duals

∥̊gJ0,J∥
2 = ∑

z∈Zd

α̂J0,z ˆ̃αJ0,z +
J

∑
j=J0

∑
z∈Z

∑
q∈Qd

β̂
(q)
j,z

ˆ̃βj,z, (6.3)

making the extension with norm equal to 1 straightforward.

Last but no least, we established the asymptotic optimality of the maximum reso-

lution and hard thresholding using the tools of Hall (1983a); Marron and Härdle

(1986) and Marron (1987). Here, we adapted their quite generic results on delta
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estimators to the resolution level and thresholding problems, proving the suitabil-

ity of the algorithms under somewhat general assumptions. In this regard, it is

well-known that thresholding wavelet coefficients in the classical case gives better

estimates in general Besov spaces (Donoho et al., 1996; Donoho and Johnstone,

1998). Although we limited ourselves here to Sobolev spaces, it is possible that

our results can be extended there.

In all simulations and experiments, we employed multidimensional wavelets based

on the tensor product. This performed relatively well, showing remarkable spar-

sity in our simulations as seen in supplementary tables (Appendix B.2). However,

it is well-known that the number of coefficients required by the tensor product

is O(n) in the general case, lacking the ability to adapt to anisotropies in the

data (Starck et al., 2010)1. Therefore, of particular interest is the topic of the

construction of wavelet basis in a multivariate setting beyond the limitations of

the isotropic tensor product we used in this work. Although classic literature on

wavelet density estimation focuses on the orthogonal case, e.g. Kerkyacharian and

Picard (1993); Donoho and Johnstone (1996); Donoho et al (1995); Donoho et al.

(1996); Vannucci (1995); Vannucci and Vidakovic (1997); Penev and Dechevsky

(1997); Härdle et al (1998), the biorthogonal setting is the most general wavelet

construction (Meyer, 1992; Daubechies, 1992; Sweldens, 1996), and the one ad-

vanced in the current literature on wavelet-based regression and DSP - specially

in the context of multivariate data, e.g. ridgelets (Candès, 1998), curvelets (Can-

dès and Donoho, 2005), shearlets (Labate et al., 2005) and α-molecules (Grohs

et al., 2013). As mentioned above, we made a first step by extending our con-

struction to the biorthogonal case - again using a tensor product of biorthogonal

wavelets to go into multiple dimensions. Thus, it is natural to postulate that a

framework based on the Hellinger distance and the Bhattacharyya coefficient, as

the one advanced in this thesis for the shape-preserving density estimator based

on orthogonal, evenly spaced wavelets, could have natural extensions in modern

1It is worth adding, that we extended our algorithm a little in the multi-level case by splitting
the betas into different levels, allowing the sorting to pick up different thresholds for different
levels. This gives the method more degrees of freedom as one has in a cross-validated bandwidth
selection in KDE. For lack of space and time, these results are not presented here. In addition, this
construction is still within the limited setting of a tensor product and probably not as relevant as
future research as the multi-variate, anisotropic methods mentioned in here.
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frameworks like α-molecules (Grohs et al., 2013) and irregular grids and scales,

e.g. (Vanraes et al., 2001; Aldroubi et al., 2004; Kittipoom et al., 2011). Indeed,

as we noted in Chapter 3 and Chapter 4, discretisation of scale produces jumps

between levels that, one wishes, could be dealt with using arbitrary scale factors

or initial resolutions (Hall and Penev, 2001). More over, irregular grids, a natu-

ral setting for sampled data, pose the problem of scale-mixing due to interactions

between uneven grids and discrete scaling (Jansen, 2003). Certainly, this is an

immediate area of research where we believe our construction could be exploited

in more generality. On this, it is worth mentioning the progress made on kernel-

based methods beyond (2.1) and it would only be fair to compare any improved

estimator against other state-of-the-art approaches. Weighted KDE, where each

kernel term has an arbitrary weight ωi, has a long history, even with links to near-

est neighbours (Breiman et al., 1977; Abramson, 1982). More recently, motivated

by the demands of big data, those weighted formulations have led naturally to `1

regularised estimators (Bunea et al., 2007) and interest in sparse KDE (Girolami

and He, 2003). So, comparing anisotropic variants would only make sense against

algorithms like those of (Deng et al., 2008; Hong et al., 2008; Kristan et al., 2011;

Doosti and Hall, 2016).

Apart from above, there is one challenge remaining that can be motivated from an

algorithmic perspective and that could potentially establish deeper links between

the selected metric, the Hellinger distance, and thresholding itself. In our algo-

rithm, a thresholding formula, being either the simple threshold, a level-adjusted

version or our data-driven variance method, becomes embedded into a particular

sorting of the beta coefficients (Figure 4.1) done in advance over a set of selected

betas. Here, the selection of a sorting algorithm and hence the corresponding

threshold formula was independent of the optimisation target, the Bhattacharyya

coefficient (equivalently, the Hellinger distance). If instead of sorting in advance,

those remaining betas are sorted based on the optimisation target itself, this would

be equivalent to a greedy optimisation. The not so obvious reason on why this fails

is that, on close inspection, many of the optimisation curves plotted in sub section

4.4.3, Real data: Old Faithful geyser, have multiple local maxima. For instance,

although Figure 4.16 has a global maximum, one can notice several tiny valleys
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appearing in the way to the top as one travels from right to left. An extreme case

of this is the failed wavelet basis choice of Figure 4.18, (c) and (d). Modified

"greedy" methods like those of Starck et al. (2010) could potentially be applied

here and are another possible focus of research that, in addition, could establish

a deeper link between the thresholding approach and the optimisation target we

used. It is our hope that taking these constructions into modern frameworks like

α-molecules (Labate et al. (2013)) can push even further the applicability of or-

thogonal and biorthogonal series decompositions in a wider range of statistical

problems.

In regards to this, we ventured into applying some of the techniques developed

above to image analysis. Similar to Peter and Rangarajan (2008); Peter et al.

(2017), we treated images as densities using the square root representation and at-

tempted a couple of well-known image classification problems, MNIST and Fashion-

MNIST, adapting the use of k-NN to this setting. The state of the art on these

problems is the use of connectionist methods based on the neural networks frame-

work, a nonparametric regression technique2. As a full set of nearest neighbours

is impractical for this kind of "big data" problems, we developed a technique to

pick representatives to calculate those based on spectral embedding and Karcher

means. The reason for this is that we treated grey scale images as square root

densities and in doing so we made them part of the hypersphere, a well-known

Riemannian manifold. The advantage of using the hypersphere is that its geome-

try is well known and a number of constructions from Riemannian geometry have

closed form formulae.

Although the performance obtained was slightly better than average, we believe

there is room to extend the proposed construction. As mentioned in Chapter 5,

there are a number of options to use a nonparametric method like wavelets while

exploiting at the same time the simplicity of the hypersphere, thus providing a

level of explain-ability. For instance, an easy generalisation of (5.5) is to consider

a weighting function wλ associated with the index λ ∈ L in the calculation of the

2The practitioner is essentially free to chose the architecture, number of nodes and their rela-
tionships, and in this sense is essentially nonparametric.
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inner product

⟨xi, xj⟩ = ∑
λ∈L

wλβ
(i)
λ β

(j)
λ . (6.4)

This can be seen as favouring a certain direction in the tangent space, effectively

making the neighbourhoods in the hypersphere like ellipses instead of circles (Fig-

ure 6.1). Thus, assigning more weight wλ in (6.4) to coefficients corresponding to

Figure 6.1. A elliptical neighbourhood in the hypersphere by modifying the distance metric by
weights

components ϕj,z(x)ψj,z(y) in the tensor product will favour the coordinate x over

y in calculating the distance, i.e. will make horizontal lines more important to

calculate differences3

Today, there is a huge variety of semi-structured data, images, shapes, trees,

graphs, etc. that require sophisticated statistical tools beyond the methods de-

veloped in the last part of the twentieth century. The most popular algorithms

nowadays are connectionist approaches based on neural networks, e.g. methods

grouped under the so called deep learning, convolutional networks and similar.

As intrinsically nonparametric methods, they have been very successful in appli-

cations to these kind of data but are considered "back boxes" with little room for
3Although not the infinite dimensional hypersphere of densities, slightly related work can be

found in the now rich literature of wavelets on the sphere S2 and more generally on Sn, .e.,g
(Antoine et al., 2002; Starck et al., 2006).
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interpretability. More importantly perhaps, there has been criticism about the na-

ture of advancements in the field, with some authors arguing that there have not

been real improvements in the last 10-15 years, at least in certain problems, when

scrutinised under the same metrics and experimental setups (Sculley et al., 2018;

Yang et al., 2019; Lin, 2019; Blalock et al., 2020).

On the other hand, much less press have been devoted to the nascent work of

statistics in Riemannian manifolds and "manifold data" or "object oriented statis-

tics", e.g. Pennec (2006); Wang and Marron (2007); Grohs and Wallner (2009);

Charon and Trouvé (2013); Marron and Alonso (2014). There is also an extensive

literature on wavelets in Riemannian manifolds, e.g. (Dahlke, 1994; Geller and

Mayeli, 2009; Pesenson, 2015) and references therein. We hope that the methods

and algorithms presented in this thesis, extending the nonparametric method of

density estimation using wavelets combined with the geometry of data, nearest

neighbours and Riemannian manifolds, find a novel point of convergence in these

recent areas of research.



Appendix A

Proofs

Preliminaries

First some preliminary concepts and technical results are presented.

For any convex and compact C ⊂ Rd, let ∂C denote its boundary. For η > 0, define

the η-belt of C as

C(<η) = {x ∈ C ∶ inf
y∈∂C

∥y − x∥ < η} ,

the set of points in C within Euclidean distance η or less from ∂C. Also, we call

C(>η) = C /C(<η) the η-interior of C.

Fix x ∈ C, call Bx (r) the ball of radius r centered at x and µ(Bx(r)) = c0rd its

volume (µ is the Lebesgue measure on Rd, c0 = πd/2/Γ(d/2 + 1)). Results in Percus

and Martin (1998) and Evans et al. (2002) show that the following two properties

hold for any compact and convex set C ⊂ Rd:

C1. There exists c2 > 0, independent of x ∈ C, such that for r < supx,y∈C ∥x − y∥,

µ (Bx (r) ∩C) ≥ c2rd ;

C2. There exist constants λ > 0 and c3 > 0 such that for all 0 < η < λ, µ{C(<η)} < c3η.

The following technical lemma will be used repeatedly in the proofs below.

Lemma 1. Let X = {X1, . . . ,Xn} be a random sample from a distribution F admit-
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ting a density f supported on C ⊂ Rd satisfying Assumption 3.2.3. Let R(k);i be the

distance between Xi and its kth nearest neighbor in the sample, as defined in Section

3.1.1. Let φ ∶ Rd → R be bounded on C and a > 0 such that ∫Rd φ (x) f (x)1−a
dx < ∞.

Then, for all i ∈ {1, . . . , n}, as n→∞,

E{φ (Xi)Rad
(k);i} = E{φ (Xi)E (Rad

(k);i∣Xi)}

= 1

na
Γ (k + a)

Γ (k)
1

ca0
{∫

Rd
φ (x) f (x)1−a

dx +O (n−1/d)} .

Proof. Call

ωx (r) = ∫
Bx(r)

f (z) dz,

the probability that the random variable X ∼ F falls in Bx (r), and set ωi(r) =

ωXi(r) when referring to the ball centered at one particular observation Xi from

the sample. Let F(k);i be the distribution function of R(k);i for fixed Xi, that is,

F(k);i(r) = Pr(R(k);i ≤ r∣Xi). With Xi fixed, Lemma 4.1 in Evans et al. (2002)

writes

dF(k);i(r) = k(
n − 1

k
)ωi(r)k−1(1 − ωi(r))n−k−1 dωi(r).

Hence

E (Rad
(k);i∣Xi) = k(

n − 1

k
)∫

c1

0
radωi(r)k−1(1 − ωi(r))n−k−1 dωi(r).

Since f is positive on C and C is convex, ωi(r) is strictly increasing for r ∈ [0, r0]

for some r0, and ωi(r) ≡ 1 for r0 ≤ r. Writing hi(ω) for the inverse function ω−1
i

(where it exists), a change of variable yields

E (Rad
(k);i∣Xi) = k(

n − 1

k
)∫

1

0
hi(ω)adωk−1(1 − ω)n−k−1 dω.

Define δn = n−1/d, and break this expectation down into

E (Rad
(k);i∣Xi) = k(

n − 1

k
)∫

ωi(δn)

0
hi(ω)adωk−1(1 − ω)n−k−1 dω

+ k(n − 1

k
)∫

1

ωi(δn)
hi(ω)adωk−1(1 − ω)n−k−1 dω

= k(n − 1

k
)∫

ωi(δn)

0
hi(ω)adωk−1(1 − ω)n−k−1 dω +O(n−b)
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for all b > 0, uniformly in Xi, as per Lemma 5.3 of Evans et al. (2002).

Now, with hx = ω−1
x , see that

E{φ (Xi)E (Rad
(k);i∣Xi)}

= ∫
C
φ(x){k(n − 1

k
)∫

1

0
hx(ω)adωk−1(1 − ω)n−k−1 dω} f(x)dx (A.1)

= ∫
C
φ(x){k(n − 1

k
)∫

ωx(δn)

0
hx(ω)adωk−1(1 − ω)n−k−1 dω} f(x)dx +O(n−b),

as φ and f are bounded on the compact C. As b can be taken arbitrarily large, the

remainder term can be neglected in front of any term tending to 0 polynomially

fast. Hence, (asymptotically) all contribution to the inner integral in (A.1) comes

from the set ω ∈ (0, ωx(δn)), that is, when R(k);i is smaller than δn.

Now, write (A.1) as

∫
C
⋯dx = ∫

C(>δn)

⋯dx + ∫
C(<δn)

⋯dx ≐ (I) + (II)

with C(>δn) and C(<δn) the δn-interior and δn-belt of C as defined above.

Integral (I): ∫C(>δn) ⋯dx, hence x ∈ δn-interior and the distance from x to ∂C is at

least δn. Hence for all r ≤ δn, Bx(r) ∩C = Bx(r). The first mean value theorem for

definite integrals establishes the existence of ξ1 ∈ Bx (r) ⊂ C such that

ωx (r) = ∫
Bx(r)

f (z)dz = f (ξ1)µ (Bx (r)) = f(ξ1)c0r
d. (A.2)

By the mean value theorem, there is a ξ2 between x and ξ1, hence ξ2 ∈ Bx (r) ⊂ C,

such that f (ξ1) = f (x) + ∇f (ξ2)′ (x − ξ1). Because ξ1 ∈ Bx(δn) and ∥∇f (ξ2) ∥ <M

for an absolute constant M (the partial derivatives of f are uniformly bounded

on C by Assumption 3.2.3), we have ∣f (ξ1) − f (x)∣ < δnM and hence f (ξ1) =

f (x) + O (δn). Substitution in (A.2) gives ωx (r) = {f (x) +O (δn)} c0rd. As f is

bounded from below, this means that, as n→∞,

hx(ω) = { ω

c0f(x)
}

1/d

{1 +O(δn)},
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where the O(δn)-term holds uniformly in x and ω. This can be substituted in the

inner integral of (A.1), and we obtain

∫
C(>δn)

φ(x){k(n − 1

k
)∫

1

0
hx(ω)adωk−1(1 − ω)n−k−1 dω} f(x)dx

= Γ(n)
Γ(k)Γ(n − k)

(1 +O(δn))∫
C(>δn)

φ(x)f 1−a(x)
ca0

dx

∫
1

0
ωa+k−1(1 − ω)n−k−1 dω

= Γ(n)
Γ(k)Γ(n − k)

Γ(k + a)Γ(n − k)
Γ(n + a)

(1 +O(δn))∫
C(>δn)

φ(x)f 1−a(x)
ca0

dx

= Γ(n)
Γ(n + a)

Γ(k + a)
Γ(k)

1

ca0
(1 +O(δn))∫

C(>δn)

φ(x)f 1−a(x)dx.

Now, given that f is bounded from below and above on C, f(x)1−a ≤ a3, with

a3 ≡ max{(1/a1)1−a, a1−a
2 }, and by C2 above, µ(C(<δn)) < c3δn for n large enough.

So,

∣∫
C(<δn)

φ(x)f 1−a(x)dx∣ ≤ sup
x∈C(<δn)

∣φ(x)∣a3c3δn = O(δn),

as n→∞. Therefore,

∫
C(>δn)

φ(x)f 1−a(x)dx = ∫
C
φ(x)f 1−a(x)dx +O(δn) = ∫

Rd
φ(x)f 1−a(x)dx +O(δn).

Noting that Γ(n)/Γ(n + a) = n−a{1 +O(n−1)} = n−a{1 +O(δn)}, we finally get

∫
C(>δn)

φ(x){k(n − 1

k
)∫

1

0
hx(ω)adωk−1(1 − ω)n−k−1 dω} f(x)dx

= 1

na
Γ (k + a)

Γ (k)
1

ca0
{∫

Rd
φ (x) f (x)1−a

dx +O (n−1/d)} . (A.3)

Integral (II): ∫C(<δn) ⋯dx, hence we can no more assume that Bx(r) ⊂ C. How-

ever, as supx∈C(<δn) f(x) ≤ supx∈C f(x) ≤ a2 and µ(Bx(r) ∩ C) < µ(Bx(r) = c0rd, it

holds ωx(r) < a2c0rd. An upper bound for its inverse is thus hx(ω) ≤ (a2c0)−1/dω1/d.
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Hence,

∣(II)∣ ≤ ∫
C(<δn)

∣φ(x)∣ {k(n − 1

k
)∫

1

0
hx(ω)adωk−1(1 − ω)n−k−1 dω} f(x)dx

≤ ∫
C(<δn)

∣φ(x)∣ {k(n − 1

k
)∫

1

0
(a2c0)−aωa+k−1(1 − ω)n−k−1 dω} f(x)dx

= Γ(a + k)
Γ(k)

Γ(n)
Γ(n + a)

(a2c0)−a∫
C(<δn)

∣φ(x)∣f(x)dx

≤ Γ(a + k)
Γ(k)

Γ(n)
Γ(n + a)

(a2c0)−a sup
x∈C

∣φ(x)∣a2c3δn,

by C2 above. Thus, as n→∞,

∣(II)∣ ≤ Γ(k + a)
Γ(k)

O(n−aδn) =
Γ(k + a)

Γ(k)
O(n−a−1/d). (A.4)

Putting together (A.3) and (A.4) in (A.1), it follows that

E (φ (Xi)Rad
(k);i) =

1

na
Γ (k + a)

Γ (k)
1

ca0
(∫

Rd
φ (x) f (x)1−a

dx +O (n−1/d)) ,

as announced.

Proof of Proposition 3.2.1

The proof is given for the coefficients α̂j,z. The proof for the coefficients β̂(q)
j,z is

identical.

Bias: From (3.6), we have with (3.1),

E(α̂j,z) = E{ Γ(k)
Γ(k + 1/2)

1√
n

n

∑
i=1

ϕj,z (Xi)
√
V(k);i}

= n1/2 Γ(k)
Γ(k + 1/2)

√
c0 E{ϕj,z (X1)Rd/2

(k);1
} .

Applying Lemma 1 with φ = ϕj,z and a = 1/2 yields

E{ϕj,z (X1)Rd/2

(k);1
} = n−1/2 Γ(k + 1/2)

Γ(k)
1

√
c0

{∫
Rd
ϕj,z(x)

√
f(x)dx +O(n−1/d)} ,
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which gives

E(α̂j,z) = ∫
Rd
ϕj,z(x)

√
f(x)dx +O(n−1/d) = αj,z +O(n−1/d).

Variance: Lemma 4.6(ii) of Evans (2008) gives an upper bound on the variance

of statistics of type Sn = ∑n
i=1 hi,n(X), where hi,n(X) is an arbitrary (measurable)

function of the sample point Xi and its k-nearest neighbors among the sample X .

Take here

hi,n(X) = ϕj,z (Xi)
√
V(k);i

and see that α̂j,z = Γ(k)Sn/{Γ(k + 1/2)
√
n}. Lemma 4.6(ii) of Evans (2008) reads

Var(Sn) ≤ 2(n + 1)(3 + 8k2dc0)E{h2
i,n(X)} , (A.5)

for n ≥ 16k. Here,

E{h2
i,n(X)} = E{ϕ2

j,z (Xi)V(k);i}

= c0E{ϕ2
j,z (Xi)Rd

(k);i} =
k

n
{∫

Rd
ϕ2
j,z(x)dx +O(n−1/d)} ,

from Lemma 1 with φ = ϕ2
j,z and a = 1. By definition, ∫Rd ϕ

2
j,z(x)dx = 1 (orthonor-

mal wavelet basis, Assumption 3.2.2), hence E{h2
i,n(X)} = k{1+O(n−1/d)}/n. From

this and (A.5), we conclude that, as n→∞,

Var(α̂j,z) ≤ { Γ(k)
Γ(k + 1/2)

}
2

1

n
2(n + 1)(3 + 8k2dc0)

k

n
{1 +O(n−1/d)}

= k3 { Γ(k)
Γ(k + 1/2)

}
2

O(n−1).
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Proof of Proposition 3.3.1

From (3.9) we have

ĝJ(x) = ∑
z∈Zd

α̂J+1,zϕJ+1,z(x) = ∑
z∈Zd

Γ(k)
Γ(k + 1/2)

1√
n

n

∑
i=1

ϕJ+1,z (Xi)
√
V(k);iϕJ+1,z(x)

= Γ(k)
Γ(k + 1/2)

√
c0√
n

n

∑
i=1

R
d/2

(k);i ∑
z∈Zd

ϕJ+1,z (Xi)ϕJ+1,z(x)

= Γ(k)
Γ(k + 1/2)

√
c0√
n

n

∑
i=1

R
d/2

(k);i
KJ+1(x,Xi), (A.6)

hence

E{ĝJ(x)} =
Γ(k)

Γ(k + 1/2)
√
n
√
c0 E{KJ+1(x,X1)Rd/2

(k);1
} .

Lemma 1 with φ =KJ+1(x, ⋅) and a = 1/2 establishes that

E{KJ+1(x,X1)Rd/2

(k);1
} = 1√

n

Γ(k + 1/2)
Γ(k)

1
√
c0

{∫
Rd
KJ+1(x, y)

√
f(y)dy +O(n−1/d)} ,

and inspection of the proof of Lemma 1 reveals that the O(n−1/d) term holds uni-

formly in x ∈ C. This means that

E{ĝJ(x)} = ∫
Rd
KJ+1(x, y)

√
f(y)dy +O(n−1/d) =KJ+1

√
f(x) +O(n−1/d),

as n→∞, uniformly in x ∈ C, proving (i). It follows from (A.6) as well that

Var{Γ(k + 1/2)
Γ(k)

√
n

k3
ĝJ(x)} = c0

k3
Var{

n

∑
i=1

hi,n(X)}

where here hi,n(X) = KJ+1(x,Xi)Rd/2

(k);i
. Lemma 1 with a = 1 and φ = K2

J+1(x, ⋅)

yields

E{h2
i,n(X)} = k

c0n
{∫

Rd
K2
J+1(x, y)dy +O(n−1/d)}

(with again the O(n−1/d)-term holding uniformly in x ∈ C). Hence, for n ≥ 16k,

Lemma 4.6(ii) of Evans (2008) gives

Var{
n

∑
i=1

hi,n(X)} ≤ 2(n + 1)(3 + 8k2dc0)
k

c0n
{∫

Rd
K2
J+1(x, y)dy +O(n−1/d)} ,
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whereby

Var{Γ(k + 1/2)
Γ(k)

√
n

k3
ĝJ(x)} ≤ constant × ∫

Rd
K2
J+1(x, y)dy +O(n−1/d).

This establishes (ii).

Proof of Theorem 6

The MISE E(∥ĝJ −
√
f∥2

2) can classically be decomposed into the integrated squared

bias and the integrated variance:

E (∥ĝJ −
√
f∥2

2) = ∥E (ĝJ) −
√
f∥2

2 + E (∥ĝJ − E (ĝJ) ∥2
2) . (A.7)

For the bias term, it follows from Proposition 3.3.1(i) that

∥E (ĝJ) −
√
f∥2 ≤ ∥KJ+1

√
f −

√
f∥2 +O(n−1/d).

As f ∈ Bm,2(L) implies
√
f ∈ Bm,2(L′) for some 0 ≤ L′ < ∞, one can call on (multi-

variate versions of) Theorem 8.1(ii) and Corollary 10.1 of Härdle et al (1998) to

obtain

sup
f∈Bm,2(L)

∥KJ+1

√
f −

√
f∥2 ≤ κ12−J m,

for some constant κ1. Hence, for n large enough,

sup
f∈Bm,2(L)

∥E (ĝJ) −
√
f∥2 ≤ κ12−J m + κ2n

−1/d, (A.8)

for constants κ1, κ2 < ∞.

To evaluate ∫RdK
2
J+1(x, y)dy in the right-hand side of Proposition 3.3.1(ii) we use

that

∫
Rd
K2
J+1(x, y)dy = ∫

Rd
22d(J+1)K2(2J+1x,2J+1y)dy

≤ 22d(J+1)∫
Rd
F 2(2J+1(x − y))dy = 2(d+1)J ∫

Rd
F 2(v)dv,
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where Assumption 3.3.1 justifies the inequality. It follows

Var{ĝJ(x)} ≤ constant × n−1k3 { Γ(k)
Γ(k + 1/2)

}
2

{2dJ ∫
Rd
F 2(v)dv +O(n−1/d)} ,

which can be integrated over the compact C:

E{∥ĝJ − E (ĝJ) ∥2
2} = ∫

Rd
Var (ĝJ(x))dx

≤ constant × n−1k3 { Γ(k)
Γ(k + 1/2)

}
2

{2dJ ∫
Rd
F 2(v)dv +O(n−1/d)} .

Hence, for n large enough, there exists a constant κ′3 < ∞ such that

E{∥ĝJ − E (ĝJ) ∥2
2} < κ′3n−1k3 { Γ(k)

Γ(k + 1/2)
}

2

2dJ . (A.9)

Plugging (A.8) and (A.9) in (A.7) yields the result.

Proof of Theorem 8

Our proofs here follow the same structure as in Marron (1987) but in the setting

of HD and our estimator. Naturally, they rely on different intermediate results

but the spirit of the argument can be made remarkably similar. From there, we

are interested in Theorem 2, which has as corollary what we will recast as our

Theorem 8 and Theorem 9. The results there are presented in such generality,

that they can be applied easily to both. In Theorem 8, we will make use of the

results in Marron (1987) as applied to choice of bandwidth in kernel estimators.

In Theorem 9, we will use the same in the context of orthogonal series estimators.

We will adopt here the notation Λn to refer to the parameter space for both cases,

resolution level selection and hard thresholding.

Let Λn be the set of possible resolution levels J of the estimator g̊J from a sample

of size n. Thus, λ represents the kernel-equivalent bandwidth parameter for a

particular resolution level J , i.e. λ = 2−j. Recall (4.13)

g̊J(x) =
n

∑
i

δJ(Xi, x)Fi,n,
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where Fi,n = 2√
πn

√
V(1);i. Note that the factor Fi,n for delta estimators discussed

in Marron (1987) is instead 1
n and represents the measure at Xi. We align our

notation by rewriting Fi,n = 1
n

2√
π

√
V(1);i = 1

nwi,n, where wi,n = 2√
π

√
nV(1);i. Recall

that
√
nV(1);i is the Rayleigh distributed random variable we introduced in (3.3).

Assume our parameter λ ranges over a finite set whose cardinality grows at most

algebraically fast, i.e. such that # (Λn) ⩽ Cnρ for some C, c > 0. As the resolu-

tion level is O(log2 n) (Donoho et al., 1996), this is in general satisfied. Also,

the assumption on the bias B(x) in Marron (1987), (4.9) corresponds to Proposi-

tion 3.3.1 (i).

Let’s take B̂(u)
j in (4.12) and do

B̂(u)
j = ∑

i

∣̊g(−i)j (Xi)∣Fi,n −
1

2
∥̊gj∥2

= ∑
i

∣̊g(−i)j (Xi)∣Fi,n − ∫ g̊j(x)
√
f(x)dx+

1

2
− 1

2 ∫
(̊gj(x) −

√
f(x))

2
dx.

(A.10)

Note the last term is just HD (̊g2
j , f)2, which, for succinctness, we shall call HD2

j .

Define dMj as

dMj = E [1

2 ∫
(̊gj(x) −

√
f(x))

2
dx]

= E [HD2
j] .

So, if we had the following

n

∑
i=1

∣̊g(−i)j (Xi)∣Fi,n − ∫ g̊j(x)
√
f(x)dx −

n

∑
i=1

√
f(Xi)Fi,n + 1 = o (dMj ) , (A.11)

then by using A.10

B̂(u)
j −

n

∑
i=1

√
f(Xi)Fi,n +

1

2
+HD2

j = o (dMj )
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and we have a result similar to Marron (1987), Theorem 2, in the sense that

lim
n→∞

sup
λ∈Λn

RRRRRRRRRRRR

B̂(u)
j +HD2

j − T
dMj

RRRRRRRRRRRR
= 0 a.s (A.12)

where T , in our case much simpler, is

T =
n

∑
i=1

√
f(Xi)Fi,n −

1

2
. (A.13)

From (A.12), Theorem 8 follows as a corollary (Marron (1987), Corollary 2).

Expression (A.11), is a rewrite of Lemma 2 in Marron (1987), which is at the core

of the results there. Again, as HD2
j = 1 − BC j, where BC j is the corresponding

Bhattacharyya coefficient (4.2), then (A.11) becomes

n

∑
i=1

∣̊g(−i)j (Xi)∣Fi,n −
n

∑
i=1

√
f(Xi)Fi,n +HD j

2 = o (E [HD2
j]) . (A.14)

A quick remark. We have

g̊
(−i)
J (x) =

n

∑
i′≠i

δJ(Xi′ , x)F (−i)
i′,n ;

where the factor F (−i)
i′,n depends on S(−i) but δj does not. In general, if Xi appears

among the k nearest neighbours to Xi′ in the sum, we can look at the (k + 1)-th

nearest, i.e.

V
(−i)

(k);i′
= V(k);i′ , if i /∈ NN (k)

i′ (A.15)

V
(−i)

(k);i′
= V(k+1);i′ , if i ∈ NN (k)

i′ (A.16)

where NN (k)
i′ is the set of k nearest neighbours to Xi′. For k = 1 this means that

if Xi is the nearest neighbour to Xi′, then in calculating g̊(−i)j we have to use V(2);i′

instead. So, g̊(−i)J (x) and g̊J(x) differ on the points i′ that have i as neighbour in

S and note that by Lemma 4.2 in Evans (2008), this number is bounded indepen-

dently of S.
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Following the argument in Marron (1987), (A.11) is rewritten

sup
λ∈Λn

n−1(n − 1)−1 ∣∑
i≠i′
Ui,i′∣ (dMj )−1 → 0 a.s . (A.17)

where

Ui,i′ = δλ(Xi′ ,Xi)wiwi′ − ∫ δ(x,Xi)
√
f(x)dx −

√
f(Xi′) + 1. (A.18)

Note Wi′ = E [Ui,i′ ∣Xi′] is related to the point-wise bias we studied in Subsec-

tion 3.3.1, B(x) = g̊j(x) −Kj

√
f(x),

Wi′ = B(Xi′)wi′ − ∫ B(x)
√
f(x)dx. (A.19)

Therefore, the expression there, namely (7.4),

∞

∑
n=1

# (Λn) sup
λ∈An

P [∣n−1
n

∑
j=1

Wj∣ > εdMj ] < ∞ (A.20)

can be derived in a similar fashiion in virtue of Proposition 3.3.1 and stated as-

sumptions.

Equation (7.2) in Marron (1987) involves the k-th order cumulants cumk

∣n−2k (dMj )−k∑ cumk (Vi1,i′1 , . . . , Vik,i′k)∣ ≤ Ckn
−γk, (A.21)

where Vi,i′ = Ui,i′ −Wi′ and the summation ranges over all distinct pairs. As we

remarked above, the number of affected neighbours i′ such that i ∈ NN (k)
i′ is

bounded independently of S and we can apply a similar argument to Marron

(1987) to prove that

sup
λ∈Λn

n−2 ∣∑
i≠i′
Vi,i′∣ (dMj )−1 → 0 a.s . (A.22)

These two assert (A.17) and therefore (A.11), which is what we wanted to achieve.



112 APPENDIX A. PROOFS

Proof of Theorem 9

Let Λn be the set of possible thresholds t of the estimator g̊[t] from a sample of size

n. Thus, λ represents the smoothness parameter for orthogonal series estimators.

Recall that the threshold-dependent definition of the SPWDE estimator (4.16):

g̊[τ](x) =
τ

∑
t=1

β̂[t]ψ[t](x).

can be writen as a delta sequence (4.17)

g̊[τ] =
n

∑
i

δ[τ] (x,Xi)Fi,n,

where δ[τ] is defined by (4.18)

δ[τ] (x,Xi) =
τ

∑
t=1

ψ[t](x)ψ[t] (Xi) .

Thus, the assumptions we used to derive Theorem 8 in the context of J need to be

revised here and we look at them below.

As we mentioned in Section 4.3, the number of threshold choices come directly

from the number of observations in the sample, hence # (Λn) ≤ nc holds for some

c ≥ 1. Also, if not for the factor Fi,n, the unnormalised g̊[τ] estimator of
√
f has

the shape of delta estimators discussed in (Marron, 1987), under the scope of

orthogonal series estimator. The only remaining assumption we add is that there

are two constants C and ε > 0 such that

C−1nε ≤ λ ≤ Cn1−ε. (A.23)

Apart from these observations, the proof follows the same argument as for Theo-

rem 8.
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Appendix B

Supplementary results

B.1 Example distributions

• Mixtures for simulation study in Subsection 3.4.1

f(a) = 0.16667N
⎛
⎜
⎝
(0.20000,0.30000),

⎛
⎜
⎝

0.00167 0.00000

0.00000 0.00167

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.83333N
⎛
⎜
⎝
(0.70000,0.70000),

⎛
⎜
⎝

0.01500 0.00016

0.00016 0.01500

⎞
⎟
⎠

⎞
⎟
⎠

f(b) = 0.50000N
⎛
⎜
⎝
(0.40000,0.30000),

⎛
⎜
⎝

0.00833 0.00000

0.00000 0.00625

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.50000N
⎛
⎜
⎝
(0.70000,0.70000),

⎛
⎜
⎝

0.00827 0.00036

0.00036 0.00631

⎞
⎟
⎠

⎞
⎟
⎠

f(c) = 0.36364N
⎛
⎜
⎝
(0.20000,0.30000),

⎛
⎜
⎝

0.00500 0.00000

0.00000 0.00375

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.27273N
⎛
⎜
⎝
(0.50000,0.50000),

⎛
⎜
⎝

0.00331 0.00014

0.00014 0.00253

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.22727N
⎛
⎜
⎝
(0.65000,0.70000),

⎛
⎜
⎝

0.00250 0.00000

0.00000 0.00187

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.13636N
⎛
⎜
⎝
(0.82000,0.85000),

⎛
⎜
⎝

0.00165 0.00007

0.00007 0.00126

⎞
⎟
⎠

⎞
⎟
⎠
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f(d) = 0.40000N

⎛
⎜⎜⎜⎜
⎝

(0.30000,0.40000,0.35000),

⎛
⎜⎜⎜⎜
⎝

0.02000 0.01000 0.00000

0.01000 0.02000 0.00000

0.00000 0.00000 0.02000

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟
⎠

+ 0.30000N

⎛
⎜⎜⎜⎜
⎝

(0.70000,0.70000,0.60000),

⎛
⎜⎜⎜⎜
⎝

0.01333 0.00000 0.00000

0.00000 0.01333 0.00000

0.00000 0.00000 0.01333

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟
⎠

+ 0.30000N

⎛
⎜⎜⎜⎜
⎝

(0.70000,0.60000,0.35000),

⎛
⎜⎜⎜⎜
⎝

0.02500 0.00000 0.00000

0.00000 0.02500 0.01000

0.00000 0.01000 0.02500

⎞
⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟
⎠

• Mixtures for simulation study in Subsection 4.4.1

f(a) = 0.36364N
⎛
⎜
⎝
(0.20000,0.30000),

⎛
⎜
⎝

0.00500 0.00000

0.00000 0.00375

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.27273N
⎛
⎜
⎝
(0.50000,0.50000),

⎛
⎜
⎝

0.00331 0.00014

0.00014 0.00253

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.22727N
⎛
⎜
⎝
(0.65000,0.70000),

⎛
⎜
⎝

0.00250 0.00000

0.00000 0.00187

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.13636N
⎛
⎜
⎝
(0.82000,0.85000),

⎛
⎜
⎝

0.00165 0.00007

0.00007 0.00126

⎞
⎟
⎠

⎞
⎟
⎠

f(b)(x, y) = 19.2

⎛
⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

8(x − 0.125) x ≥ 0.125, x ≤ 0.25

1 − 2(x − 0.25) x ≥ 0.25, x ≤ 0.75

0 otherwise

⎞
⎟⎟⎟⎟
⎠

×

⎛
⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

16(y − 0.625) y ≥ 0.625, y ≤ 0.6875

1 − 16(y − 0.6875) y ≥ 0.6875, y ≤ 0.75

0 otherwise

⎞
⎟⎟⎟⎟
⎠

+

16

⎛
⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

16(x − 0.5) x ≥ 0.5, x ≤ 0.5625

1 − 16(x − 0.5625) x ≥ 0.5625, x ≤ 0.625

0 otherwise

⎞
⎟⎟⎟⎟
⎠

×

⎛
⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

8(y − 0.125) y ≥ 0.125, y ≤ 0.25

1 − 1.6(y − 0.25) y ≥ 0.25, y ≤ 0.875

0 otherwise

⎞
⎟⎟⎟⎟
⎠
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f(c) = 0.94737N
⎛
⎜
⎝
(0.50000,0.50000),

⎛
⎜
⎝

0.05000 0.00000

0.00000 0.05000

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.03158N
⎛
⎜
⎝
(0.65000,0.70000),

⎛
⎜
⎝

0.00033 0.00001

0.00001 0.00025

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.02105N
⎛
⎜
⎝
(0.69000,0.75000),

⎛
⎜
⎝

0.00033 0.00000

0.00000 0.00025

⎞
⎟
⎠

⎞
⎟
⎠

f(d) = 0.50000N
⎛
⎜
⎝
(0.30000,0.50000),

⎛
⎜
⎝

0.01562 0.01437

0.01437 0.01562

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.50000N
⎛
⎜
⎝
(0.70000,0.50000),

⎛
⎜
⎝

0.01562 −0.01437

−0.01437 0.01562

⎞
⎟
⎠

⎞
⎟
⎠

• Mixtures for simulation study in Subsection 4.4.2

f(a) = 0.74074N
⎛
⎜
⎝
(0.45000,0.45000),

⎛
⎜
⎝

0.00992 0.00043

0.00043 0.00758

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.18519N
⎛
⎜
⎝
(0.70000,0.70000),

⎛
⎜
⎝

0.00050 0.00000

0.00000 0.00038

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.07407N
⎛
⎜
⎝
(0.45000,0.45000),

⎛
⎜
⎝

0.00033 0.00000

0.00000 0.00025

⎞
⎟
⎠

⎞
⎟
⎠

f(b) = 0.50000N
⎛
⎜
⎝
(0.45000,0.45000),

⎛
⎜
⎝

0.00496 0.00021

0.00021 0.00379

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.50000N
⎛
⎜
⎝
(0.70000,0.70000),

⎛
⎜
⎝

0.00062 0.00000

0.00000 0.00047

⎞
⎟
⎠

⎞
⎟
⎠
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f(c) = 0.50000N
⎛
⎜
⎝
(0.66000,0.33000),

⎛
⎜
⎝

0.00992 0.00043

0.00043 0.00758

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.10000N
⎛
⎜
⎝
(0.25000,0.25000),

⎛
⎜
⎝

0.00062 0.00000

0.00000 0.00047

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.10000N
⎛
⎜
⎝
(0.25000,0.50000),

⎛
⎜
⎝

0.00062 0.00000

0.00000 0.00047

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.10000N
⎛
⎜
⎝
(0.25000,0.75000),

⎛
⎜
⎝

0.00062 0.00000

0.00000 0.00047

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.10000N
⎛
⎜
⎝
(0.50000,0.75000),

⎛
⎜
⎝

0.00062 0.00000

0.00000 0.00047

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.10000N
⎛
⎜
⎝
(0.75000,0.75000),

⎛
⎜
⎝

0.00062 0.00000

0.00000 0.00047

⎞
⎟
⎠

⎞
⎟
⎠

f(d) = 0.27273N
⎛
⎜
⎝
(0.25000,0.25000),

⎛
⎜
⎝

0.00625 0.00000

0.00000 0.00469

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.23636N
⎛
⎜
⎝
(0.25000,0.50000),

⎛
⎜
⎝

0.00312 0.00000

0.00000 0.00234

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.20000N
⎛
⎜
⎝
(0.25000,0.75000),

⎛
⎜
⎝

0.00208 0.00000

0.00000 0.00156

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.16364N
⎛
⎜
⎝
(0.50000,0.75000),

⎛
⎜
⎝

0.00156 0.00000

0.00000 0.00117

⎞
⎟
⎠

⎞
⎟
⎠

+ 0.12727N
⎛
⎜
⎝
(0.75000,0.75000),

⎛
⎜
⎝

0.00125 0.00000

0.00000 0.00094

⎞
⎟
⎠

⎞
⎟
⎠

B.2 Thresholding - Number of coefficients

Number of wavelet coefficients for the various non linear estimator algorithms of

Section 4.3 using different wavelets for the densities in Figure 4.7. In each table

and for each algorithm, Med is the median number of coefficients required across

all samples, whereas Q1 and Q3 represent the lower and upper quantile ranges.

Values in bold highlight the same entries as in corresponding tables in the main

text.
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n pB̂J ∆J
λ λ

√
∆J λσB

Q1 Med Q3 Q1 Med Q3 Q1 Med Q3

250

1B̂J

1 101.0 108.0 118.2 101.0 108.0 118.2 151.5 167.0 181.2

2 101.8 111.5 119.0 100.0 109.0 124.0 222.0 241.5 265.0

3 98.5 107.5 122.0 102.0 115.0 136.2 301.5 331.5 362.2

2B̂J

1 101.0 107.0 112.2 101.0 107.0 112.2 148.0 160.0 175.0

2 102.0 110.0 120.0 100.0 106.5 124.0 223.5 240.5 266.0

3 98.5 107.5 123.0 101.0 111.0 127.2 301.5 330.5 365.0

500

1B̂J

1 118.0 136.0 146.0 118.0 136.0 146.0 166.8 194.5 211.0

2 117.0 127.0 135.0 119.0 128.0 140.2 229.5 244.5 260.5

3 113.0 121.5 132.2 122.0 129.0 139.0 309.0 329.5 350.8

2B̂J

1 113.0 122.0 137.2 113.0 122.0 137.2 160.8 173.5 197.0

2 114.8 124.5 134.0 119.0 126.5 136.0 226.0 238.5 260.0

3 112.0 123.0 137.2 118.8 128.0 142.2 309.0 326.0 350.8

1000

1B̂J

1 147.0 153.0 159.0 147.0 153.0 159.0 203.0 213.0 225.0

2 132.0 137.0 142.0 137.0 142.0 149.0 236.0 255.0 270.0

3 125.0 134.0 144.0 127.0 134.0 138.0 323.0 345.0 367.0

2B̂J

1 148.0 152.0 159.0 148.0 152.0 159.0 201.0 212.0 223.0

2 131.0 136.0 140.0 134.0 141.0 148.0 236.0 251.0 267.0

3 125.0 133.0 142.0 127.0 134.0 138.0 319.0 342.0 362.0

1500

1B̂J

1 155.0 158.0 164.0 155.0 158.0 164.0 202.0 217.0 231.2

2 137.0 143.0 150.8 140.0 146.5 151.0 247.2 266.5 281.8

3 138.2 145.5 152.0 130.0 135.0 151.2 327.0 361.0 385.0

2B̂J

1 155.0 158.0 164.0 155.0 158.0 164.0 202.0 213.0 225.0

2 137.0 141.0 149.8 140.0 146.5 151.0 242.5 265.5 280.8

3 137.0 144.0 151.0 129.0 134.0 148.0 325.2 358.5 380.8

2000

1B̂J

1 161.0 166.0 171.0 161.0 166.0 171.0 214.0 226.0 239.0

2 142.0 148.0 159.0 142.0 148.0 155.0 250.0 267.0 290.5

3 142.0 151.0 163.0 143.8 163.5 175.2 337.8 355.0 385.0

2B̂J

1 161.0 165.0 170.2 161.0 165.0 170.2 214.0 226.0 238.2

2 141.0 147.5 157.0 142.0 147.5 154.0 249.0 267.0 290.5

3 142.0 150.0 161.2 140.8 162.0 173.2 337.8 354.5 385.0

3000

1B̂J

1 170.0 174.0 180.0 170.0 174.0 180.0 222.8 234.0 247.0

2 157.0 164.0 170.2 151.8 160.0 168.0 266.0 286.0 307.0

3 160.0 168.0 175.0 166.8 173.5 183.0 360.0 383.0 405.5

2B̂J

1 169.0 173.0 179.0 169.0 173.0 179.0 222.8 233.5 247.0

2 157.0 164.0 170.0 150.5 159.0 166.2 265.8 283.0 305.2

3 159.8 167.0 175.0 165.5 173.0 182.0 359.0 381.5 405.5

4000

1B̂J

1 172.0 178.0 183.0 172.0 178.0 183.0 234.0 242.0 257.0

2 162.0 167.0 172.0 162.0 170.0 180.0 283.0 299.0 320.0

3 164.0 172.0 177.0 170.0 175.0 184.0 376.0 397.0 419.0

2B̂J

1 174.0 179.0 183.0 174.0 179.0 183.0 223.0 238.0 253.0

2 161.0 165.0 170.0 158.0 172.0 179.0 274.0 288.0 310.0

3 163.0 171.0 178.0 169.0 174.0 184.0 370.0 386.0 411.0

6000

1B̂J

1 185.0 189.0 193.0 185.0 189.0 193.0 225.0 241.0 257.0

2 170.0 174.0 178.0 173.0 180.0 182.0 271.0 295.0 318.0

3 173.0 176.0 184.0 178.0 186.0 190.0 363.0 395.0 422.0

2B̂J

1 183.0 186.0 192.2 183.0 186.0 192.2 228.0 244.5 258.2

2 171.0 175.0 179.0 173.0 176.0 181.0 272.8 299.0 321.5

3 172.8 179.0 183.0 179.0 185.0 192.0 369.5 397.0 427.5

Table B.1. Number of wavelet coefficients using the Daubechies 4 wavelet for the
density Kurtotic Mixture 1 (Figure 4.7 (a)). Corresponding table for Hellinger
distance is 4.1
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n pB̂J ∆J
λ λ

√
∆J λσB

Q1 Med Q3 Q1 Med Q3 Q1 Med Q3

250

1B̂J

1 120.5 126.0 132.0 120.5 126.0 132.0 175.0 187.0 200.0

2 112.0 117.0 130.5 114.5 121.0 128.5 225.0 241.0 265.0

3 115.0 120.0 132.0 118.0 126.0 139.5 313.0 335.0 362.0

2B̂J

1 120.0 124.0 130.0 120.0 124.0 130.0 169.5 183.0 198.5

2 109.0 115.0 124.0 113.0 118.0 127.5 218.5 238.0 264.5

3 111.5 119.0 128.0 115.5 122.0 136.5 302.0 330.0 362.0

500

1B̂J

1 129.0 135.0 141.2 129.0 135.0 141.2 188.0 199.5 211.5

2 125.0 134.5 147.0 124.8 134.5 148.0 245.0 270.0 292.2

3 127.0 137.0 148.2 137.0 146.5 152.2 339.5 360.5 391.2

2B̂J

1 128.0 134.5 141.0 128.0 134.5 141.0 186.2 198.0 211.0

2 123.0 132.0 143.0 123.0 132.5 147.2 242.5 266.5 289.0

3 125.0 135.0 146.0 131.0 143.5 149.2 336.2 357.5 387.2

1000

1B̂J

1 142.8 146.0 152.0 142.8 146.0 152.0 204.8 219.5 228.8

2 147.0 151.5 156.0 148.0 153.5 160.0 278.5 299.5 324.8

3 144.0 149.0 156.2 144.8 150.5 157.0 372.8 399.0 432.5

2B̂J

1 142.0 146.0 152.0 142.0 146.0 152.0 203.0 216.0 226.2

2 147.0 151.0 155.2 147.0 152.0 159.0 273.8 297.5 319.5

3 144.0 149.0 156.0 144.0 150.0 156.2 371.8 397.5 431.2

1500

1B̂J

1 149.0 153.0 158.0 149.0 153.0 158.0 209.8 220.0 228.2

2 149.8 154.0 158.2 152.0 158.0 163.0 283.0 301.5 324.2

3 150.0 158.0 170.5 148.0 155.5 182.0 382.5 402.0 428.5

2B̂J

1 148.0 153.0 158.0 148.0 153.0 158.0 209.0 219.5 228.0

2 149.8 154.0 158.2 152.0 157.0 163.0 283.0 301.5 324.2

3 148.8 157.0 170.0 147.8 155.0 179.5 382.5 402.5 426.2

2000

1B̂J

1 153.0 157.0 160.0 153.0 157.0 160.0 219.0 228.0 236.2

2 153.0 158.0 163.2 156.0 162.5 169.2 301.0 318.0 339.2

3 164.8 176.0 191.2 155.0 182.5 196.2 399.8 416.0 442.0

2B̂J

1 153.0 157.0 160.0 153.0 157.0 160.0 218.8 227.5 236.0

2 153.0 158.0 162.2 156.0 162.0 169.0 301.0 318.0 334.2

3 163.8 175.0 191.0 154.0 180.0 194.0 399.0 416.0 438.5

3000

1B̂J

1 155.0 159.0 163.2 155.0 159.0 163.2 226.0 235.5 250.2

2 159.0 167.0 176.0 163.0 169.0 179.0 311.8 332.5 352.5

3 176.8 190.0 203.2 187.0 202.0 220.0 412.8 433.0 456.0

2B̂J

1 155.0 159.0 163.0 155.0 159.0 163.0 225.8 235.5 250.2

2 159.0 167.0 176.0 162.0 169.0 178.2 309.0 329.5 352.5

3 176.8 189.5 202.2 187.0 202.0 220.0 409.8 433.0 454.5

4000

1B̂J

1 161.0 166.0 170.0 161.0 166.0 170.0 231.8 241.0 253.0

2 173.0 181.0 187.0 169.0 180.0 191.0 328.0 344.5 361.2

3 190.0 198.0 207.0 195.0 211.5 225.2 429.5 445.5 466.0

2B̂J

1 161.0 165.0 169.0 161.0 165.0 169.0 231.0 241.0 252.2

2 172.8 179.5 187.0 169.0 179.5 189.2 326.8 342.5 357.8

3 190.0 198.0 206.0 193.8 209.0 225.2 425.0 444.5 463.0

6000

1B̂J

1 169.0 174.0 178.0 169.0 174.0 178.0 236.0 248.0 257.2

2 181.0 189.0 197.0 184.0 190.0 197.0 333.0 351.0 368.2

3 196.0 204.5 212.0 213.8 220.0 228.0 433.5 455.5 475.0

2B̂J

1 169.0 174.0 178.0 169.0 174.0 178.0 236.0 248.0 257.2

2 181.0 188.5 196.0 184.0 190.0 197.0 333.0 351.0 368.0

3 196.0 204.0 212.0 212.8 220.0 227.2 433.5 454.5 475.0

Table B.2. Number of wavelet coefficients using the Daubechies 4 wavelet for the
density Mixture 2 (Figure 4.7 (b)). Corresponding table for Hellinger distance is
4.2
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n pB̂J ∆J
λ λ

√
∆J λσB

Q1 Med Q3 Q1 Med Q3 Q1 Med Q3

250

1B̂J

1 95.0 98.0 102.0 95.0 98.0 102.0 168.0 178.0 187.0

2 78.5 84.0 92.0 77.5 84.0 92.5 207.0 217.0 229.0

3 84.5 99.0 108.0 91.5 108.0 128.5 258.0 267.0 283.0

2B̂J

1 94.5 98.0 101.5 94.5 98.0 101.5 167.5 176.0 184.5

2 77.0 82.0 89.0 76.5 83.0 90.0 203.5 215.0 226.0

3 84.0 97.0 106.0 90.5 105.0 127.5 253.0 265.0 280.0

500

1B̂J

1 99.0 103.0 118.5 99.0 103.0 118.5 178.0 186.0 197.2

2 90.0 100.5 114.0 97.8 106.5 119.0 227.8 240.5 255.0

3 106.8 120.0 135.0 116.0 125.5 138.0 279.0 291.0 308.0

2B̂J

1 99.0 102.0 115.0 99.0 102.0 115.0 175.0 185.0 195.2

2 88.0 97.0 112.0 92.8 105.0 114.0 225.0 237.5 250.0

3 106.8 120.0 137.2 116.0 126.5 138.5 277.8 290.5 304.2

1000

1B̂J

1 131.0 136.5 141.0 131.0 136.5 141.0 196.0 208.5 223.0

2 121.0 126.5 132.0 122.0 127.5 137.0 263.8 283.0 297.0

3 109.8 116.0 132.0 112.0 120.0 132.0 317.5 342.0 355.2

2B̂J

1 123.0 135.0 139.0 123.0 135.0 139.0 191.8 204.5 222.0

2 119.5 126.0 132.0 121.0 127.5 136.2 256.0 277.5 296.0

3 110.8 118.5 137.0 113.8 124.0 139.0 303.8 334.0 354.2

1500

1B̂J

1 136.0 139.0 143.2 136.0 139.0 143.2 205.5 217.0 235.0

2 124.0 130.0 139.0 127.8 134.0 139.0 273.5 291.5 314.0

3 117.0 125.0 134.0 114.0 125.0 140.0 326.2 355.0 377.2

2B̂J

1 135.0 138.5 142.2 135.0 138.5 142.2 200.8 214.0 232.2

2 123.0 129.0 138.0 127.0 133.0 139.0 268.0 289.0 308.2

3 115.0 125.0 134.2 114.0 124.0 139.0 324.0 354.0 369.8

2000

1B̂J

1 137.0 141.5 146.0 137.0 141.5 146.0 209.0 222.5 234.0

2 129.0 133.0 139.0 130.0 136.0 144.0 278.5 296.0 314.0

3 124.8 133.0 141.0 123.8 137.0 150.2 339.0 357.0 373.0

2B̂J

1 137.0 141.0 146.0 137.0 141.0 146.0 207.8 219.5 230.5

2 129.0 132.0 137.0 130.0 135.5 142.0 277.0 294.5 312.0

3 123.0 131.5 140.0 121.0 132.0 147.2 336.8 356.0 371.5

3000

1B̂J

1 141.0 145.5 151.0 141.0 145.5 151.0 220.0 230.0 243.0

2 135.8 143.0 152.0 137.8 143.0 152.0 293.0 308.5 326.2

3 133.8 144.0 156.0 150.0 161.5 169.2 351.5 372.0 389.0

2B̂J

1 140.8 145.0 149.2 140.8 145.0 149.2 218.8 228.0 241.2

2 134.0 141.0 149.2 136.0 140.0 151.0 291.8 306.0 324.2

3 133.0 142.5 155.2 150.0 160.5 168.0 351.5 369.5 389.0

4000

1B̂J

1 144.0 148.0 154.0 144.0 148.0 154.0 225.0 239.0 253.0

2 145.8 155.0 164.0 141.8 153.0 166.0 297.0 316.5 338.2

3 145.0 155.5 163.5 160.0 169.0 177.2 362.0 381.5 403.0

2B̂J

1 144.0 147.5 154.0 144.0 147.5 154.0 222.0 238.5 253.0

2 143.5 154.0 163.0 141.8 153.0 164.2 297.0 316.0 338.0

3 143.8 155.0 163.0 158.0 168.0 177.0 362.0 381.5 403.0

6000

1B̂J

1 152.8 159.0 165.0 152.8 159.0 165.0 235.8 247.0 257.2

2 158.8 165.5 171.0 158.0 167.0 181.0 312.8 328.0 343.8

3 159.8 165.0 175.0 167.8 177.0 184.0 375.8 395.5 411.2

2B̂J

1 152.8 159.0 163.2 152.8 159.0 163.2 235.8 247.0 254.8

2 160.8 165.0 171.0 159.5 170.5 181.2 315.2 327.0 340.8

3 160.0 166.5 175.2 163.8 174.0 182.5 379.0 395.5 412.0

Table B.3. Number of wavelet coefficients using the Symlet 3 wavelet for the
density 2D Comb 1 (claw) (Figure 4.7 (c)). Corresponding table for Hellinger
distance is 4.3
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n pB̂J ∆J
λ λ

√
∆J λσB

Q1 Med Q3 Q1 Med Q3 Q1 Med Q3

250

1B̂J

1 76.0 78.0 80.0 76.0 78.0 80.0 132.0 142.0 150.0

2 64.0 68.0 74.0 65.0 68.0 76.0 164.0 177.0 193.0

3 70.0 76.0 97.0 76.0 81.0 105.0 209.0 224.0 244.0

2B̂J

1 76.0 78.0 80.0 76.0 78.0 80.0 129.0 138.0 147.0

2 64.0 68.0 73.0 64.0 68.0 72.5 161.8 174.0 191.5

3 69.0 74.0 91.5 73.0 80.0 101.8 206.0 223.0 243.0

500

1B̂J

1 78.0 81.0 85.0 78.0 81.0 85.0 134.8 144.5 154.0

2 69.0 75.0 88.0 70.8 80.0 90.2 169.0 183.0 196.2

3 90.0 102.0 113.5 97.0 117.5 138.2 216.2 231.5 248.0

2B̂J

1 77.8 81.0 85.0 77.8 81.0 85.0 134.0 144.5 153.2

2 69.0 74.5 87.0 69.0 77.5 88.2 168.0 182.0 195.0

3 86.0 102.0 111.0 94.0 113.0 137.2 213.0 230.5 246.2

1000

1B̂J

1 87.0 90.0 95.0 87.0 90.0 95.0 141.0 150.0 156.0

2 87.0 93.5 105.2 87.0 96.5 112.2 179.0 191.5 201.2

3 104.0 116.5 136.0 123.0 134.5 151.2 227.0 241.0 253.5

2B̂J

1 87.0 90.0 94.2 87.0 90.0 94.2 140.8 150.0 155.2

2 87.0 93.0 105.0 87.0 96.5 112.0 179.0 191.0 201.0

3 104.0 116.5 136.0 123.0 133.5 151.0 227.0 240.5 253.0

1500

1B̂J

1 91.0 93.0 98.2 91.0 93.0 98.2 147.0 152.5 161.2

2 92.0 106.5 114.0 97.0 109.5 120.0 184.8 197.0 209.0

3 123.0 135.5 144.2 125.8 139.0 154.2 232.0 245.5 261.5

2B̂J

1 90.8 93.0 98.0 90.8 93.0 98.0 147.0 152.0 160.2

2 92.0 106.5 114.0 97.0 109.0 120.0 184.8 196.5 208.2

3 122.8 135.0 144.0 125.8 137.0 152.5 232.0 245.5 261.5

2000

1B̂J

1 93.0 96.0 100.0 93.0 96.0 100.0 151.0 156.0 162.0

2 102.8 110.5 117.2 102.8 114.0 123.2 191.0 200.0 214.2

3 128.0 138.0 147.0 134.0 145.0 161.2 240.8 250.0 264.2

2B̂J

1 93.0 96.0 100.0 93.0 96.0 100.0 150.5 156.0 161.2

2 102.8 110.5 117.2 102.0 113.5 123.0 191.0 200.0 214.2

3 128.0 138.0 145.2 133.8 145.0 161.0 240.8 250.0 264.2

3000

1B̂J

1 96.0 101.0 106.0 96.0 101.0 106.0 150.8 157.0 164.0

2 113.0 117.0 123.0 113.8 120.0 126.0 192.8 208.0 217.2

3 135.0 143.0 155.2 140.0 151.0 168.0 240.0 258.0 272.0

2B̂J

1 96.0 101.0 106.0 96.0 101.0 106.0 150.8 156.5 164.0

2 112.8 117.0 122.2 113.8 120.0 126.0 191.8 208.0 217.2

3 135.0 143.0 155.2 140.0 151.0 168.0 240.0 258.0 272.0

4000

1B̂J

1 101.5 106.0 110.0 101.5 106.0 110.0 150.0 157.0 165.5

2 115.0 118.0 127.5 119.0 124.0 136.5 190.5 205.0 215.0

3 140.0 145.0 162.0 148.0 164.0 179.0 238.0 256.0 267.0

2B̂J

1 101.8 106.0 111.0 101.8 106.0 111.0 151.0 158.0 166.0

2 115.8 119.0 129.0 119.0 124.0 136.2 190.8 205.0 215.0

3 140.0 148.0 164.2 148.8 166.5 179.0 238.0 256.0 267.0

6000

1B̂J

1 105.0 109.0 115.0 105.0 109.0 115.0 155.0 160.5 168.2

2 116.0 123.0 141.0 120.0 128.5 145.0 200.0 210.0 221.0

3 144.8 158.5 171.0 157.8 170.5 179.0 249.0 260.0 273.2

2B̂J

1 104.2 107.5 113.8 104.2 107.5 113.8 157.0 163.0 169.5

2 116.2 123.0 137.5 119.0 127.5 142.2 198.0 211.0 222.5

3 142.5 157.5 167.8 158.8 169.0 178.8 246.2 258.5 274.8

Table B.4. Number of wavelet coefficients using the Symlet 3 wavelet for the den-
sity 2D Smooth comb (Figure 4.7 (d)). Corresponding table for Hellinger distance
is 4.4

B.3 Image analysis results

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

25

Linear
3 0.727 0.915 0.568 0.756 0.590 0.499 0.433 0.896 0.930 0.917 0.723

8 0.728 0.915 0.525 0.753 0.645 0.513 0.477 0.908 0.941 0.930 0.734

Continued on next page
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Table B.5 – continued from previous page

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

21 0.723 0.917 0.541 0.764 0.615 0.498 0.477 0.901 0.932 0.949 0.732

0.2
3 0.575 0.906 0.607 0.696 0.608 0.456 0.525 0.915 0.874 0.928 0.709

8 0.616 0.927 0.605 0.705 0.653 0.428 0.558 0.905 0.880 0.920 0.720

21 0.705 0.923 0.555 0.693 0.661 0.408 0.520 0.911 0.938 0.942 0.726

0.4
3 0.719 0.920 0.576 0.745 0.648 0.529 0.477 0.888 0.932 0.954 0.739

8 0.748 0.930 0.575 0.766 0.606 0.556 0.474 0.904 0.941 0.902 0.740

21 0.743 0.904 0.540 0.726 0.617 0.541 0.519 0.907 0.942 0.946 0.739

0.6
3 0.738 0.919 0.553 0.787 0.601 0.488 0.429 0.889 0.931 0.946 0.728

8 0.741 0.921 0.543 0.756 0.624 0.528 0.490 0.902 0.947 0.943 0.739

21 0.722 0.926 0.568 0.671 0.630 0.483 0.493 0.911 0.923 0.941 0.727

0.8
3 0.740 0.923 0.572 0.790 0.615 0.482 0.415 0.893 0.927 0.931 0.729

8 0.750 0.913 0.565 0.763 0.643 0.512 0.488 0.907 0.944 0.924 0.741

21 0.712 0.926 0.556 0.731 0.597 0.495 0.507 0.896 0.937 0.945 0.730

1.0
3 0.745 0.915 0.568 0.769 0.627 0.510 0.414 0.882 0.932 0.929 0.729

8 0.721 0.919 0.567 0.733 0.640 0.509 0.508 0.912 0.943 0.925 0.738

21 0.714 0.919 0.548 0.776 0.556 0.496 0.515 0.899 0.937 0.947 0.731

50

Linear
3 0.760 0.926 0.562 0.734 0.680 0.580 0.456 0.900 0.931 0.945 0.747

8 0.762 0.923 0.599 0.769 0.686 0.583 0.471 0.912 0.947 0.950 0.760

21 0.757 0.944 0.568 0.754 0.669 0.589 0.489 0.909 0.927 0.949 0.755

0.2
3 0.655 0.936 0.582 0.738 0.613 0.600 0.538 0.907 0.907 0.956 0.743

8 0.654 0.944 0.614 0.718 0.693 0.588 0.564 0.930 0.895 0.940 0.754

21 0.733 0.940 0.616 0.744 0.667 0.560 0.544 0.935 0.952 0.930 0.762

0.4
3 0.748 0.939 0.587 0.761 0.640 0.625 0.472 0.917 0.939 0.941 0.757

8 0.737 0.941 0.587 0.766 0.664 0.643 0.489 0.910 0.949 0.942 0.763

21 0.777 0.939 0.581 0.752 0.669 0.628 0.514 0.932 0.936 0.941 0.767

0.6
3 0.734 0.933 0.578 0.763 0.665 0.593 0.515 0.916 0.930 0.939 0.757

8 0.764 0.935 0.605 0.752 0.675 0.613 0.475 0.916 0.942 0.942 0.762

21 0.737 0.945 0.577 0.736 0.664 0.595 0.527 0.921 0.933 0.937 0.757

0.8
3 0.741 0.930 0.586 0.758 0.667 0.562 0.460 0.897 0.925 0.956 0.748

8 0.766 0.931 0.584 0.756 0.672 0.608 0.496 0.916 0.946 0.938 0.761

21 0.760 0.944 0.573 0.753 0.659 0.592 0.484 0.915 0.933 0.948 0.756

1.0
3 0.761 0.926 0.601 0.773 0.632 0.573 0.455 0.907 0.932 0.950 0.751

8 0.760 0.927 0.588 0.751 0.676 0.590 0.481 0.911 0.937 0.952 0.757

21 0.736 0.952 0.573 0.761 0.671 0.599 0.484 0.913 0.929 0.947 0.756

75

Linear
3 0.746 0.939 0.591 0.754 0.678 0.627 0.497 0.915 0.934 0.947 0.763

8 0.753 0.940 0.598 0.774 0.686 0.614 0.545 0.913 0.948 0.953 0.772

21 0.751 0.951 0.595 0.783 0.680 0.620 0.528 0.926 0.942 0.955 0.773

0.2
3 0.679 0.946 0.602 0.770 0.690 0.681 0.529 0.919 0.918 0.960 0.769

8 0.719 0.947 0.636 0.737 0.698 0.657 0.508 0.922 0.902 0.947 0.767

21 0.752 0.950 0.633 0.749 0.668 0.629 0.552 0.937 0.947 0.939 0.776

0.4
3 0.746 0.951 0.605 0.784 0.657 0.664 0.510 0.919 0.946 0.948 0.773

8 0.744 0.945 0.615 0.795 0.680 0.685 0.516 0.922 0.950 0.946 0.780

21 0.762 0.942 0.597 0.769 0.666 0.662 0.536 0.938 0.941 0.947 0.776

Continued on next page
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Table B.5 – continued from previous page

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

0.6
3 0.754 0.951 0.587 0.755 0.675 0.635 0.516 0.919 0.936 0.944 0.767

8 0.752 0.948 0.603 0.783 0.676 0.637 0.505 0.920 0.942 0.948 0.771

21 0.755 0.948 0.589 0.769 0.689 0.644 0.516 0.931 0.938 0.945 0.772

0.8
3 0.740 0.947 0.569 0.763 0.693 0.618 0.477 0.908 0.936 0.956 0.761

8 0.775 0.942 0.601 0.771 0.692 0.657 0.514 0.911 0.947 0.951 0.776

21 0.744 0.955 0.590 0.761 0.694 0.644 0.510 0.936 0.943 0.945 0.772

1.0
3 0.746 0.942 0.576 0.740 0.695 0.618 0.466 0.925 0.926 0.937 0.757

8 0.750 0.943 0.594 0.771 0.697 0.625 0.515 0.913 0.946 0.957 0.771

21 0.740 0.957 0.587 0.769 0.689 0.634 0.491 0.916 0.939 0.954 0.767

125

Linear
3 0.731 0.944 0.611 0.784 0.691 0.677 0.519 0.927 0.945 0.956 0.779

8 0.772 0.955 0.612 0.776 0.708 0.672 0.520 0.921 0.950 0.965 0.785

21 0.753 0.954 0.640 0.806 0.704 0.688 0.518 0.937 0.945 0.960 0.790

0.2
3 0.702 0.958 0.635 0.783 0.679 0.701 0.534 0.931 0.934 0.958 0.781

8 0.755 0.953 0.670 0.760 0.685 0.702 0.524 0.940 0.933 0.957 0.788

21 0.763 0.957 0.662 0.790 0.668 0.703 0.547 0.940 0.952 0.943 0.793

0.4
3 0.745 0.953 0.618 0.800 0.666 0.714 0.536 0.925 0.943 0.962 0.786

8 0.760 0.952 0.640 0.790 0.664 0.713 0.531 0.936 0.945 0.954 0.788

21 0.764 0.953 0.602 0.788 0.715 0.710 0.532 0.943 0.938 0.952 0.790

0.6
3 0.739 0.953 0.600 0.780 0.676 0.679 0.543 0.934 0.944 0.951 0.780

8 0.769 0.953 0.610 0.789 0.705 0.678 0.507 0.939 0.945 0.950 0.784

21 0.765 0.951 0.612 0.782 0.689 0.681 0.522 0.939 0.942 0.953 0.784

0.8
3 0.749 0.952 0.614 0.778 0.690 0.667 0.499 0.930 0.945 0.952 0.778

8 0.757 0.953 0.615 0.786 0.711 0.688 0.521 0.922 0.950 0.960 0.786

21 0.748 0.957 0.630 0.778 0.711 0.694 0.518 0.942 0.940 0.957 0.788

1.0
3 0.741 0.951 0.606 0.786 0.688 0.661 0.498 0.928 0.946 0.957 0.776

8 0.780 0.952 0.610 0.776 0.690 0.684 0.517 0.920 0.946 0.964 0.784

21 0.758 0.955 0.622 0.786 0.697 0.679 0.508 0.942 0.939 0.956 0.784

175

Linear
3 0.746 0.950 0.621 0.808 0.691 0.706 0.539 0.935 0.944 0.961 0.790

8 0.769 0.951 0.640 0.794 0.714 0.705 0.535 0.935 0.950 0.961 0.795

21 0.763 0.958 0.643 0.804 0.718 0.699 0.506 0.945 0.949 0.956 0.794

0.2
3 0.728 0.958 0.630 0.798 0.700 0.709 0.546 0.936 0.941 0.961 0.791

8 0.753 0.956 0.668 0.782 0.698 0.708 0.540 0.946 0.944 0.951 0.795

21 0.781 0.957 0.687 0.803 0.684 0.714 0.553 0.952 0.949 0.941 0.802

0.4
3 0.748 0.953 0.655 0.813 0.679 0.728 0.545 0.930 0.948 0.964 0.796

8 0.771 0.954 0.640 0.806 0.699 0.732 0.523 0.938 0.944 0.962 0.797

21 0.766 0.956 0.636 0.804 0.721 0.740 0.545 0.930 0.936 0.960 0.799

0.6
3 0.735 0.953 0.633 0.797 0.689 0.705 0.548 0.942 0.943 0.953 0.790

8 0.777 0.957 0.652 0.781 0.708 0.710 0.512 0.930 0.948 0.960 0.793

21 0.762 0.955 0.646 0.800 0.712 0.712 0.528 0.939 0.946 0.957 0.796

0.8
3 0.725 0.955 0.636 0.794 0.687 0.706 0.538 0.934 0.945 0.960 0.788

8 0.768 0.954 0.659 0.792 0.699 0.713 0.518 0.932 0.952 0.961 0.795

21 0.769 0.958 0.645 0.799 0.695 0.712 0.533 0.947 0.945 0.956 0.796

1.0
3 0.749 0.952 0.653 0.799 0.679 0.692 0.528 0.931 0.947 0.957 0.789

Continued on next page
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Table B.5 – continued from previous page

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

8 0.768 0.956 0.638 0.789 0.717 0.708 0.522 0.922 0.948 0.965 0.793

21 0.763 0.958 0.652 0.794 0.713 0.704 0.512 0.940 0.943 0.956 0.794

Table B.5. Accuracy of landmark k-NN over Fashion-MNIST with different algo-
rithmic choices and a modified Riemannian metric. KM is the number of Karcher
means used in each image class. Affinity is either linear or of quadratic exponen-
tial decay with given sigma. Rp lists the number of dimensions in the spectral
embedding projection. Columns 0 to 9 the corresponding accuracy, with the over-
all accuracy in the column total

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

25

Linear
3 0.962 0.981 0.856 0.869 0.744 0.710 0.941 0.837 0.759 0.834 0.852

8 0.970 0.984 0.826 0.875 0.747 0.667 0.916 0.802 0.806 0.838 0.846

21 0.975 0.982 0.842 0.854 0.728 0.709 0.915 0.813 0.824 0.846 0.852

0.2
3 0.968 0.969 0.842 0.805 0.784 0.580 0.943 0.812 0.826 0.692 0.826

8 0.978 0.971 0.871 0.825 0.764 0.681 0.922 0.799 0.789 0.807 0.844

21 0.979 0.974 0.865 0.825 0.749 0.743 0.944 0.863 0.846 0.860 0.867

0.4
3 0.976 0.984 0.872 0.848 0.733 0.742 0.951 0.847 0.832 0.857 0.867

8 0.988 0.982 0.876 0.863 0.753 0.747 0.942 0.846 0.837 0.878 0.874

21 0.988 0.986 0.879 0.867 0.722 0.702 0.945 0.846 0.843 0.887 0.870

0.6
3 0.979 0.979 0.845 0.867 0.745 0.719 0.941 0.824 0.791 0.866 0.858

8 0.986 0.982 0.835 0.870 0.738 0.730 0.928 0.830 0.815 0.867 0.861

21 0.981 0.985 0.850 0.873 0.681 0.717 0.922 0.797 0.706 0.900 0.845

0.8
3 0.964 0.984 0.872 0.866 0.736 0.695 0.947 0.810 0.765 0.856 0.853

8 0.977 0.980 0.837 0.857 0.714 0.701 0.925 0.804 0.835 0.872 0.853

21 0.978 0.983 0.827 0.866 0.720 0.685 0.927 0.830 0.773 0.872 0.849

1.0
3 0.972 0.982 0.856 0.863 0.742 0.702 0.945 0.832 0.771 0.833 0.853

8 0.977 0.982 0.835 0.862 0.747 0.700 0.930 0.788 0.781 0.837 0.847

21 0.969 0.984 0.831 0.859 0.697 0.701 0.899 0.829 0.790 0.857 0.845

50

Linear
3 0.980 0.989 0.878 0.872 0.785 0.785 0.945 0.865 0.850 0.877 0.885

8 0.982 0.985 0.871 0.890 0.786 0.772 0.947 0.869 0.848 0.893 0.887

21 0.985 0.986 0.869 0.873 0.780 0.761 0.956 0.866 0.830 0.883 0.881

0.2
3 0.979 0.974 0.864 0.850 0.822 0.772 0.952 0.838 0.839 0.859 0.877

8 0.986 0.981 0.906 0.861 0.826 0.736 0.947 0.811 0.860 0.859 0.880

21 0.989 0.982 0.898 0.859 0.803 0.818 0.950 0.881 0.887 0.900 0.898

0.4
3 0.980 0.983 0.898 0.858 0.789 0.810 0.954 0.885 0.874 0.884 0.893

8 0.987 0.987 0.905 0.878 0.817 0.828 0.950 0.871 0.872 0.900 0.901

21 0.989 0.987 0.900 0.869 0.785 0.807 0.954 0.875 0.875 0.897 0.896

0.6
3 0.980 0.989 0.873 0.873 0.764 0.787 0.962 0.871 0.857 0.901 0.888

8 0.984 0.987 0.890 0.884 0.788 0.796 0.949 0.863 0.863 0.896 0.892

21 0.990 0.986 0.888 0.884 0.782 0.793 0.959 0.863 0.838 0.897 0.890

0.8
3 0.979 0.990 0.884 0.857 0.752 0.780 0.962 0.867 0.850 0.887 0.883

Continued on next page



B.3. IMAGE ANALYSIS RESULTS 125

Table B.6 – continued from previous page

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

8 0.986 0.986 0.879 0.890 0.791 0.788 0.951 0.862 0.847 0.882 0.888

21 0.989 0.987 0.880 0.887 0.783 0.784 0.954 0.871 0.846 0.889 0.889

1.0
3 0.981 0.988 0.883 0.871 0.774 0.764 0.963 0.871 0.850 0.892 0.886

8 0.983 0.986 0.890 0.891 0.780 0.783 0.949 0.858 0.850 0.887 0.888

21 0.985 0.986 0.873 0.878 0.791 0.783 0.954 0.869 0.840 0.885 0.887

75

Linear
3 0.983 0.990 0.895 0.880 0.821 0.802 0.957 0.878 0.871 0.893 0.899

8 0.986 0.988 0.888 0.902 0.836 0.813 0.954 0.877 0.864 0.899 0.903

21 0.987 0.987 0.880 0.882 0.829 0.800 0.968 0.879 0.867 0.891 0.899

0.2
3 0.982 0.979 0.872 0.870 0.843 0.780 0.958 0.881 0.840 0.898 0.892

8 0.988 0.982 0.914 0.877 0.870 0.801 0.954 0.837 0.878 0.897 0.901

21 0.989 0.983 0.912 0.869 0.843 0.821 0.960 0.884 0.908 0.913 0.910

0.4
3 0.981 0.990 0.913 0.882 0.829 0.849 0.958 0.884 0.887 0.908 0.910

8 0.989 0.987 0.918 0.879 0.836 0.862 0.961 0.875 0.891 0.909 0.912

21 0.988 0.989 0.915 0.879 0.824 0.846 0.966 0.897 0.880 0.902 0.910

0.6
3 0.985 0.991 0.911 0.873 0.804 0.819 0.963 0.882 0.899 0.899 0.904

8 0.987 0.990 0.903 0.896 0.821 0.825 0.964 0.888 0.868 0.902 0.906

21 0.988 0.988 0.902 0.892 0.821 0.826 0.966 0.895 0.865 0.895 0.906

0.8
3 0.983 0.992 0.897 0.878 0.807 0.806 0.966 0.886 0.874 0.894 0.900

8 0.984 0.989 0.899 0.902 0.832 0.824 0.963 0.877 0.861 0.896 0.904

21 0.987 0.989 0.892 0.897 0.822 0.823 0.971 0.889 0.862 0.883 0.903

1.0
3 0.983 0.990 0.896 0.887 0.800 0.799 0.962 0.882 0.859 0.903 0.898

8 0.986 0.988 0.908 0.896 0.817 0.817 0.958 0.879 0.859 0.906 0.903

21 0.986 0.990 0.883 0.895 0.831 0.825 0.960 0.885 0.862 0.904 0.904

125

Linear
3 0.988 0.992 0.905 0.890 0.849 0.853 0.967 0.891 0.871 0.913 0.913

8 0.988 0.990 0.912 0.906 0.854 0.852 0.973 0.900 0.881 0.917 0.919

21 0.986 0.989 0.902 0.901 0.861 0.850 0.970 0.901 0.887 0.907 0.917

0.2
3 0.984 0.984 0.909 0.877 0.869 0.853 0.968 0.904 0.876 0.921 0.916

8 0.988 0.986 0.933 0.902 0.892 0.838 0.956 0.865 0.869 0.918 0.916

21 0.988 0.984 0.922 0.889 0.864 0.849 0.967 0.888 0.923 0.925 0.921

0.4
3 0.988 0.992 0.932 0.887 0.867 0.863 0.962 0.894 0.911 0.917 0.923

8 0.990 0.991 0.932 0.895 0.875 0.882 0.971 0.896 0.905 0.908 0.926

21 0.989 0.991 0.930 0.902 0.876 0.866 0.971 0.904 0.895 0.913 0.925

0.6
3 0.987 0.991 0.923 0.879 0.852 0.861 0.970 0.891 0.889 0.910 0.917

8 0.989 0.992 0.919 0.897 0.860 0.862 0.974 0.902 0.892 0.906 0.921

21 0.988 0.990 0.921 0.900 0.860 0.869 0.975 0.911 0.878 0.912 0.922

0.8
3 0.987 0.993 0.911 0.894 0.857 0.853 0.964 0.886 0.881 0.904 0.914

8 0.987 0.990 0.916 0.904 0.855 0.853 0.970 0.897 0.883 0.902 0.917

21 0.987 0.991 0.907 0.901 0.865 0.859 0.976 0.906 0.885 0.907 0.920

1.0
3 0.986 0.992 0.912 0.890 0.857 0.859 0.960 0.898 0.874 0.913 0.916

8 0.987 0.990 0.916 0.911 0.852 0.845 0.971 0.898 0.863 0.904 0.915

21 0.987 0.990 0.910 0.900 0.854 0.843 0.973 0.910 0.880 0.904 0.917

175

Linear
3 0.988 0.992 0.917 0.900 0.867 0.876 0.972 0.896 0.906 0.920 0.924

8 0.988 0.992 0.926 0.909 0.874 0.867 0.976 0.901 0.896 0.916 0.926

Continued on next page
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Table B.6 – continued from previous page

KM Affinity Rp 0 1 2 3 4 5 6 7 8 9 Total

21 0.988 0.992 0.922 0.906 0.888 0.885 0.975 0.912 0.887 0.914 0.928

0.2
3 0.987 0.988 0.918 0.883 0.893 0.868 0.972 0.913 0.893 0.924 0.925

8 0.985 0.989 0.939 0.908 0.883 0.854 0.954 0.897 0.908 0.919 0.925

21 0.989 0.985 0.933 0.902 0.875 0.867 0.969 0.890 0.924 0.938 0.928

0.4
3 0.988 0.991 0.928 0.894 0.879 0.880 0.970 0.901 0.910 0.924 0.928

8 0.990 0.991 0.934 0.903 0.897 0.892 0.977 0.906 0.914 0.918 0.933

21 0.989 0.991 0.936 0.910 0.891 0.886 0.975 0.907 0.903 0.922 0.932

0.6
3 0.986 0.992 0.927 0.892 0.881 0.879 0.973 0.898 0.900 0.917 0.926

8 0.987 0.992 0.926 0.902 0.885 0.880 0.979 0.902 0.896 0.913 0.927

21 0.988 0.990 0.928 0.908 0.880 0.886 0.977 0.907 0.889 0.911 0.927

0.8
3 0.988 0.992 0.924 0.897 0.866 0.866 0.967 0.900 0.895 0.925 0.924

8 0.988 0.992 0.921 0.904 0.877 0.867 0.975 0.906 0.885 0.907 0.924

21 0.989 0.991 0.919 0.902 0.885 0.878 0.974 0.913 0.894 0.913 0.927

1.0
3 0.986 0.992 0.925 0.894 0.869 0.866 0.969 0.887 0.894 0.914 0.921

8 0.990 0.992 0.928 0.907 0.876 0.865 0.977 0.904 0.893 0.918 0.926

21 0.986 0.991 0.919 0.905 0.888 0.869 0.976 0.911 0.896 0.916 0.927

Table B.6. Accuracy of landmark k-NN over MNIST with different algorithmic
choices. KM is the number of Karcher means used in each image class. Affinity
is either linear or of quadratic exponential decay with given sigma. Rp list the
number of dimensions in the spectral embedding projection. Columns 0 to 9 list
the corresponding accuracy, with the total classification accuracy across the test
set in the column total.
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Appendix C

Software implementations

Implementation of SPWDE estimator:

https://github.com/carlosayam/pywde.

Of particular interest:

• pywde/pywde_ext.py contains an extension to PyWavelets for multivariate-

tensor products.

• pywde/simple_estimator.py is an implementation of the classic wavelet-

based estimator of (2.25).

• pywde/square_root_estimator.py has the implementation used for

the linear SPWDE.

• pywde/spwde.py contains implementations for the best resolution level

and hard-thresholding algorithms, the non-linear SPWDE.

Commands to generate simulations, results, tables and plots are in the following

repository:

https://github.com/carlosayam/pywde-run.

https://github.com/carlosayam/pywde
https://github.com/PyWavelets/pywt
https://github.com/carlosayam/pywde-run
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